
PROCEEDINGS
~
I • •

,,

VOLUME I

•

HP 3000 INTERNATIONAL USERS GROUP
ORLANDO 1981

, i
·,tl

/1
;.~~

"I(

:~
:,.'.j

}.
). ~ PROCEEDINGS OF THE

HP GE~ERAL SYSTEMS USERS GROUP
1981 INTERNATIONAL MEETING .

APRIL 27 - MAY 1, 1981

ORLANDO, FLORIDA

Qf\rb,<3
f-Il g i-U q
Iq~1

V, I

. -,
\

"CO

.~. ~
"j" "

'f ~'
\l'.

TABLE OF CONTENTS

FOREWARD 0 •.• •

ACKNOWLEDGMENTS . . 0 • • 0 • 0

INTRODUCTION TO THE PROCEEDINGS

PROCEEDINGS 0 • •

INDEX TO PAPERS BY TOPIC AND SESSION CODE

INDEX TO PAPERS BY CLASSIFICATION

INDEX TO PAPERS BY AUTHOR 0 • 0 •

1

2

3

4

5

12

19

" '\, .

FOREWARD

An expression of gratitude is offered to all participants in the

1981 HPGSUG Orlando International Meeting. Your enthusiastic efforts have

made this year's conference a valuable and enjoyable experience.

The HP3000 International Users Group is a growing organization of

individuals dedicated to maximizing their usage of the HP3000 Computer

Resource. Though such a group may experience growing pains from time to

time, it survives by participation of its membership. This volume represents

such an achievement by presenting much of the "state-of-the-art" work being

done today.

The papers were written by professionals and current leaders of

our industry, and contain significant ideas for 1981 and the years ahead.

It represents what I believe to be the most important product of a Users

Group;

"An Exchange of Current Infonnation"

To all of you who contributed to the success of the 1981 HPGSUG

Orlando International Meeting, my warmest thanks.

d&f)~
J.D. Davis

Conference Chairman

HPGSUG 1981 International Meeting

Orlando, Florida

.~

ACKNOWLEDGMENTS

Special thanks to:

--The Florida Conference Committee

Jerry Dav;"s
Larry Gerringer
Jake Bruckhart
Greg Stew'art
Mark Conroy
Jim Oliverio

--Conference Proceedings Committee and
HPGSUG Publications Committee

Dr. John R. Ray, Chairperson
Dr. Lloyd Davis
Dr. John True
Mr. Joe Schneider
Mr. Gary Johnson

-2-

INTRODUCTION TO THE PROCEEDINGS

The Hewlett-Packard General Systems Users Group 1981 Orlando Inter

national Meeting was especially designed for you -- the HP 3000 System

User. This Meeting provided practical, up-to-date information relating

to more effective management and utilization of your HP 3000 System. The

sessions were planned to introduce, define, and explore the 1981 Theme

IIDistributed Processing. 1I

Although the Program was IIDistributed Processing," technical sessions

on other subjects were included. Examples were system performance, operation,

programming techniques, hardware selection, etc. Hewlett-Packard technical

specialists presented sessions allowing the user insights into the Hewlett

Packard product line.

Material for use at the Conference was reviewed by the HPGSUG Publi

cations Committee and appropri"ate members of the Conference Corrmittee. Final

papers and/or abstracts were supplied, in camera ready form, by the author(s).

Information concerning any paper or abstract should be directed to the author(s).

-3-

Proceedings

A major goal of the Conference Committee was to provide attendees

with the printed proceedings at the time of registration. The HPGSUG

Publications Committee and the Florida Conference Committee have worked

to this end.

The volume contains papers and selected abstracts (where papers were

not appropriate and/or available) organized by presentation day and session.

Additionally, a list of presentations organized by Classification is, in-

eluded. Finally, a list of presentations by author is given.

Within each day, the papers are numbered sequentially with pagination

following this plan:

* * * * Session Time --(A-l:15 pm Monday; 8-2:45 pm Monday;
C-8:30 am Tuesday; D-10:00 am Tuesday; E-l:15 pm
Tuesday; F-2:45 pm Tuesday; G-4:00 pm Tuesday,
H-8:30 am Wednesday; 1-10:00 am Wednesday; J-l:30 pm
Wednesday; K-3:00 pm Wednesday; L-8:30 am Thursday;
M-10:OO am Thursday; P-4:00 pm Thursday)

* * * * Session Location - Please see Conference
Program

Day

*
*
*
*
*
*
*
*
*
*
*
*
*
*

A

*
*
*
*
*
*
*

1

*
*
*
*

01

*
*
* * * Page number within this paper

* * * * Session Day -- Monday, Tuesday, Wednesday or Thursday

-4-

INDEX TO PAPERS BY TOPIC AND SESSION

Author Title Session Classification

Monday 1:15 pm

Curtis, Terence A Systems Development Metho- A-l 500
dology Based Upon An Active
Data Dictionary/Directory

Kramer, Jim The Technology of the Quad Editor A-2 300

OIBrien, Matthew Distributed Processing - A A-3 050
Hewlett-Packard Solution

Garvey, Robert B./ Online Database - Start to Finish A-4 200
Womack, Robert L. IV

Davis, Dr. Lloyd D. Faculty Perceptions of Computing A-5 760
Facilities (Based on a study of
UTe Faculty in 1981)

~ Harjul a, Esa A. JOBLIB/3000 A-6 300

OINeill, Daniel R. Distributed 6250 BPI Tape A-7 630

Foote, Richard L. Software Maintenance and Support A-8 100
In The Distributed Environment

Larson, Orland QUERY-Directions for the 1980's A-9 200

Ji9_nday 2:45 pm

Black, Tom/ For First Time Users B-1 500
Roselie Tobes

A. Steven Wolf Evolutionary Systems Development B-2 100
in a Distributed Environment

Kurtz, Barry D. Application System Operation 8-.3 050
and Control

Belcham, Mick Manufacturing Control, Planning 8-4 72Q
and Feedback In A Distributed
Processing Environment

~
Heidner, Dennis Transaction Logging and Its Uses 8-5 200
Damm, Jack Designing Friendly Interactive 8-6 000

Systems

-5-

Author Title Session Classification

LeonaTd, ~111iam Jr. Software Contracts; Preventative B-7 050 ~

Maintenance to Ensure SUbsequent
Quality Services

Beckett, John Distributed Control Using One CPU B-8 050

Holt, Wayne E./ Programming Standards: A Tool for B-9 050
Payne, Delores R. Increased Programmer Productivity

McCauley, George Archive Retrieval System B-l0 500

Souder, Duane A Database Test and Repair B-l1 200
Facility

Rego, Alfredo F. Database Therapy: A Practitioner1s 8-12 200
Experiences

Gloss, Greg ANSI Cobol 198X: A Sneak Preview B-14 420

Tuesday 8:30 am

Ei kenbary, Beth Success wtth M~nufacturing Appli- C-·l 720
cati ons.: Implementation of Materials
Management/30:Q.O

Carlson, Boyd/ ASubsystem. That Improves Response C-3 120
Hennen, Ralph Time for Applicattohs With L~rge

Numbers of Terminals

Davis, Dr. Lloyd D, Computer Aided Learning at UTe C~·4 760

Garvey, Robert B./ A Generalized Name Indextng Method C-5 200
Womack, Robert L. IV for Image Databases

Brand, Jim Using Serial and Demountable Disk C-6 110
Volumes

Storla, Chuck Measuring Transaction Processing C-7 100
Response Times

VanBempt, Gurdo/ Data Base Normalization C-8 200
VanDamme, Jaak

Langley, Jim Laser Printer Paper C-9 600

Kernke, Jutta Business Computer Graphics/ C-ll 300
Decision Making

Tuesday 10:00 am
~

Prirruner, Paul Pseudo-Devices D-l 950

-6-

-7-

Session Classification ~Author

Langley, Jim

Black, Tom/
Turner, Ed ll /

Beetem, Jim'

Tuesday 4:00 pm

Geffken, Joachim

Peckover, Doug

Foster, r~. B.

McQuillen, Jack

Byers, Peter

Mead, Robert L./
Rakusin, Robin P.

Kramer, Jim

Kurtz, Barry
Federman, Nancy/
Steiner, Bob
Beetem, Jim

Title

The Role of Prtnters In a DS
Envtronment~~An Engineering
Feedb~ck Session

Data Communi'cations--.A Techni ca1
Roundtao"' e

User Friendly Applications In
Commercial Realtime Data
Processing

English 3000-A Natural Language
On A Mini-Computer

Systems Life-Cycle-A Framework
for Success

Successful Conversi.on From Two
IBM System/3 to A HP3000

VTEST/3000 On-Line Test Harness
User View

Introducing The HP On-Line
Performance Tool (OPT/3000)

Saving the Precious Resource-
Disc Accesses

HP's Manufacturing Software:
Engineering

Terminal I/O Interface--An
Engineering Feedback Session

'P-ll

F~·12

G-1

G-2

G-4

G-6

G-9

G-9

G-ll

G-10

G-12

600

950.

050

700

050

100

100

100

100

720

600

Wednesday 8:30 am

Colmer, Earl E., Jr. VIP/3000 and VIP-TNC/3000 H-ll 200

Wednesday 10:00 am

Kneppelt, Lee, R /
Sneed, Jerry L. Real-Time, On-Line, Distributed

In the Manufacturing Systems
Environment

I-I 720

Colmer, Earl E., Jr. Alter/3000 Quick Modification
Program

Kalman, David E-ZV The Easy Way to Use V/3000

-8-

1-2

1-3

300

Author Title Session Classification

Vigmalou, Dr. Joseph Dia10guer/3000: Forms Management
for Every Screen

1-4 300

Sera, Arthur

Damm, Jack

Warwaruk, Marshall

Wednesday· 1: 30 pm

Kneppelt,Lee RI
Sneed, Jerry L.

Colmer, Earl

Carnes, Lance

VanSickle, Larry

Hoff, Roger

Colmer, Earl

Warwaruk, Marshall

Thursday 8:30 am

Peterson, Don
Wright, Norm

Ho1instat, David

Dooley, Pat
Rowe, Denis

Brown, Barry

Wi nler, Ted

Fraser, Tom/
Dale, Allan

Folkins, Dale

Time and Resource Accounting
System

Budgeting and Profit Planning
on the HP3000

The Great Companion (Quiz)

Implementing Manufacturing
Systems/ Difficulty of Task

LOGOFF/3000

REX/3000 As a Programmer
Productivity Tool

Applications Program Trans
formations

The All Purpose Computer

QCALC/3000

The Great Companion (Quick)

Centralized Support of A
Distributed Systems
Environment

Building A Faster Machine:
Architecture of the HP3000
Series 44

COCAM - A Data Management
Systenl

Conducting a Long-Range Study

HP7976A: High Performance, 6250
Streaming Tape Storage Subsystem

New Vistas for the HP3000 in On
Line Distributed Networks, A Non
Myopic View

KSAM - It1s Alive and Well ~

-9-

1-5

1-6

1-9

J-l

J-2

J-3

J-4

J-5

J-6

J-9

L-l

L-2

L-4

L-6

L-7

L-8

L-9

300

050

300

720

300

000

000

100

300

300

100

100

500

050

600

100

300

Author Title Session Classification

Black, David
~

Implementation of A Large Scale L-1O 100
Application On A Hewlett Packard
3000 Series III

larson, Orly/ ATechnical Roundtable l-ll 200
Kernke, Jutta/
Souder, Duane/
Rego, Alfredo

Thursday 10:00 am

Dowling, Jim log DB-A System logfiles Data- M-l 200
Base and Reporting System

Wheatl ey', Jack E. Handling Distributed Applications M-2 100
With A Front End Processor

Beasley, Dave Introducing MPE IV M-3 100
Stamps, Bob

Turner, A. Edward Data Communications Support M-4 950
Manager, HP

Dailey, Roy N. Management of Distributed Systems M-5 050

Trasko, Mark S. Keyed Sequenti"al Access Capability M-6 200 ~
In Data Base Systems-The IMSA~'

Enhancement to Hew'l ett Packard
Image

Crow, William M. Life At The End Of A Phone line: M-7 950
An Investigation of Asynchronous
Terminal Data Communications In An
HP/3000 Environment

Kell, Jess TER~1NET: Termi na1 Network Contro11 er M-8 950

Thursday 4:00 pm

Ca rnes, lance Distributed Text Editing P-l 300

Smi th, Terry HP3000 User Standards for Structured P-2 200
Cobol, Image, and V/3000

Ehrhart, Rick IML/3000: An Overview P-3 900

Vanleeuwen, J.F. EDP Productivity and The HP/3000 P-4 050

Lessey, Ken On Line System Design and Deve1op- P-5 050
ment A Case Study: Accounts Payable

langlois, David Using a Packet Switched Tele- P-7 950
~

communications Network

-10-

-11-

PRESENTATIONS BY CLASSIFICATION

000 Programming

Designing Friendly Interactive Systems
Jack Damm

The Obsolessence of Programming Genasys/3000
Ian Farquharson

Increasing Program Productivity/Full Screen Editor
VanBempt, Gurdo/VanDamme, Jaak

REX/3000 As A Programmer Productivity Tool
Lance Carnes

Applications Program Transformations
Larry VanSickle

Industry Software Evolution
Robert Goodman

050 DP Management

Distributed Processing - A Hewlett Packard Solution
Matthew OIBrien

Application System Operation and Control
Barry o. Kurtz

Software Contracts: Preventative Maintenance to
Ensure Subsequent Quality Services

William Leonard, Jr.

Distributed Control Using One CPU
John Beckett

Programming Standards: A Tool for Increased
Programmer Productivity

Wayne E. Holt/Delores R. Payne

The Field Software Coordination Process
Brian M. Perkin

Distributed Processing in High Volume Transaction
Processing Systems

Thonlas L. Fraser

Moving Toward Information Management In An
Integrated Environment

Benjamin Ventresca, Jr.

12

Session

8-6

0-6

E-6

J-3

J-4

P-ll

A-3

B-3

B-7

B-8

B-9

E-4

E-5

F-4

User Friendly Applications in Commercial Realtime
Data Process·ing

Joachim Geffken

G-l

G-4

1-6

l-6

M-5

P-4

Study: P-5

Budgeting and Profit Planning on the HP3000
Jack Damm

On line System Design and Development A Case
Accounts Payable

Ken lessey

Centralized Support of Distributed Systems P-8
Rick Bergquist

Alternative Hardware Growth Paths for the Series II/III P-10
Nancy Valby

Product Assurance Management Roundtable P-12
Ilene Birkwood/Ted Workman/Vince Roland/Sally Dudley

Conducting a long-Range Study
Barry Brown

Management of Distributed Systems
Roy N. Dailey

EDP Productivity and The HP/3000
J. F. Vanleeuwen

Systems Life-Cycle-A Framework for Success
M. B. Foster

100 Systems Management

Software Maintenance and Support In The Distributed A-8
Envi ronment

Richard L. Foote

Evolutionary Systems Development in a Distributed B-2
Environment

A. Steven Wolf

A Subsystem That Improves Response Time for Applications C-3
With large Numbers of Terminals

Boyd Carlson/Ralph Hennen

Using Serial and Demountable Disk Volumes C-6
Jim Brand

,..'\

Measuring Transaction Processing Response Times
Chuck Storla

C-7

13

HP30.0_0/0pttmi'-zi'ng B.atch. Jobs'
Robert M. Green

MPEX/3000: Effective Use of MPE Fileset Concept
Eugene Volokh/ Vladimir Volokh

Using Hardware Monitor To Solve Problems on HP3000-III
Ivan Loffler

The MPE IV Kernel: History, Structure and Strategies
John R. Busch

The MPE IV Kernel: A High Perfor
mance, Integrated Foundation for
MPE - The Design Process

John R. Busch

Successful Conversion From Two IBM System3 to A HP3000
Jack McQuillen

VTEST/3000 On-Line Test Harness-User View
Peter Byers

Introducing The HP On-Line Performance Tool (OPT/3000)
Robert L. Mead/Robin P. Rakusin

D~.2

0-4

F-l

F-9

F-10

G-6

G-7

G-9

Saving the Precious Resource--Disc Accesses G-ll
Jim Kramer

The All Purpose Computer J-5
Roger Hoff

Centralized Support of A Distributed Systems Environment L-l
Don Peterson/Norm Wright

Building A Faster Machine: Architecture of the HP3000 L-2
Series 44

David Holinstat

New Vistas for the HP3000 in On-Line Distributed Networks, L-8
A Non-Myopic View

Tom Fraser/Allan Dale

Implementation of A Large Scale Application On A Hewlett L-10
Packard 3000 Series III

David Black

Handling Distributed Applications With A Front End M-2
Processor

Jack E. Wheatley

Introducing MPE IV
Dave Beasley/Bob Stamps

14

M-3

200 Data Base

Online Dqtab~~~ - ~tart to Finish
R.obert Bt Garvey/Robert L ~ W'omack IV

QUERY-Directions for the 1980's A-9
Orland Larson

Transaction Logging and Its Uses B-5
Dennis Heidner

A Database Test and Repair Facility B-11
Duane Souder

Database Therapy: A Practitioner's Experiences 8-12
Alfredo F. Rego

A Generalized Name Indexing Method for Image Databases C-5
Robert B. Garvey/Robert L. Womack IV

Data Base Normalization C-8
Gurdo VanBempt/Jaak VanDamme

Data Base Design: Polishing Your Image 0-3
Karl H. Kiefer

VIP/3000 and VIP-TNC/30DO
Earl E. Colmer, Jr.

H-l1

E-ZV The Easy Way to Use V/3000 1-3
·David Kalman

A Technical Roundtable L-ll
Orly Larson/Jutta Kernke/Duane Souder/Alfredo Rego

Log DB-A System Logfiles Data base and Reporting System M-l
Jim Dowling

Keyed Sequential Access Capability In Data Base Systems- M-6
The IMSAM Enhancement to Hewlett Packard Image

Mark S. Trasko

HP3000 User Standards for Structured Cobol/ Image, and P-2
V/3DOO

Terry Smith

IMAGE Engineering Feedback P-9
Duane Souder

300 Utilities

The Technology of the Quad Editor
Jim Kramer

15

A-2

JOBLIB/3000
Esa A. Harjula

Business Computer Graphics/Decision Making
Jutta Kernke

Alter/3000 Quick Modification Program
Earl E. Colmer, Jr.

Dialoguer/3000: Forms Management for Every Screen
Dr. Joseph Vigmalou

Time and Resource Accounting System
Arthur Sera

LOGOFF/30ao
Earl Colmer

QCALCj3000
Earl Colmer

The Great Companion (Quick)
Marshall Warwaruk

KSAM - It1s Alive and Well~

Dale Folkins

Distributed Text Editing
Lance Carnes

400 Language Support

ANSI Cobol 198X: A Sneak Preview
Greg Gloss

Experiences With Pascal
David J. Greer

500 Data and Test Processors

A Systems Development Methodology Based Upon An
Active Data'Dictionary/Directory

Terence Curtis

For First Time Users
Tom Black/Roselie Tabes

Archive Retrieval System
George McCauley

Data Capture on the HP3000
Jutta Kernke

COCAM - A Data Management System
Pat Dooley/Den i s Row'e

16

A-6

C-ll

1-2

1-4

1-5

J-2

J-6

J-9

L-9

P-1

B-14

E-3

A-1

B-1

8-10

E-l

L-4

~ 600 peripheral Sof~ware

Distributed 6250 BPI T~pe

Dqn tel R. 0 ~ Nei: 11 .

Laser Printer Paper
Jim Langley

The Role of Printers In a DS Environment--An
Engineering Feedback Session

Jim Langley

Terminal I/O Interface--An Engineering Feedback
Session

Jim Beetem

HP7976A: High Performance, 6250 Streaming Tape
Storage Subsystem

Ted Wimer

A-J

C-9

F-ll

G-12

L-7

700 Business

Faculty Perceptions of Computing Facilities (Based on A-5
A Study of UTC Faculty in 1981)

Dr ...Lloyd D. Davis

Manufacturing Control, Planning and Feedback in A
Distributed Processing Environment

Mick Be1cham

B-4

Success with Manufacturing Applications: Implementation C-l
of Materials Management/3000

Beth Eikenbary

Computer Aided Learning at UTC C-4
Dr. Lloyd D. Davis

Technical Aspects of Large Geographic Databases on 0-5
the HP/3000

Kenneth BerRun/Penny Evers/Thomas Juhasz

The Development of a Large Application System for the F-2
HP3000 Computer

Nancy Federman/Robert Steiner

English 3000-A Natural Language On A Mini-Computer G-2
Doug Peckover

Hp·s Manufacturing Software: Engineering G-10
Barry Kurtz/~anc.y· Federman/Sob Stetner

Real-Time, On-Line, Distributed In the Manufacturing
Systems Environment

Lee R~ Kneppelt/Jerry L. Sneed

17

1-1

Implementing Manufacturing Systems/Difficulty of Task J-l
Lee R. Kneppelt/Jerry L. Sneed

800 Science and Engineering

900 Demonstrations and Games

IML/3000: An Overview
Rick Enrhart

950 Telecommunications

Pseudo-Devices
Paul Primmer

Micro-Distributed-Processing
Michael J. Mason

Data Communications--A Technical Roundtable
Tom Black/Ed Turner/Jim Beetem

Data Communications Support Manager, HP
Edward A. Turner

P-3

0-1

F-7

F-12

M-4

Life At The End Of A Phone Line: An Investigation of M-7
Asynchronous Terminal Data Communications In An
HP/3000 Environment

William M. Crow

TERMNET: Terminal Network Controller M-8
Jess Kell

Using A Packet Switched Teleconmunications Netw'ork P-7
David Langlois

18

PRESENTATIONS BY AUTHOR

Beasley, Dave M-3
Beckett, John B-8
Beetem, Jim F-12, G-12
Belcham, Mick B-4
Bergquist, Rick P-8
Berkun, Kenneth D-5
Birkwood, Ilene P-12
Black, Davi.d L-IO
Black, Tom B-1, F-12
Brand, Jim C-6
Brown, Barry L-6
Busch, John R. F-9, F-IO
Byers, Peter G-9
Carlson, Boyd C-3

~ Carnes, Lance J-3, P-I\

Colmer, Earl E., Jr. H-II, 1-2, J-2, J-6
Crow, \~i 11 iam M. M-7
Curtis, Terence A-I
Dailey, Roy N. M-5
Dale, Allan L-8

Damm, Jack B-6, 1-6
Davis, Dr. Lloyd D. A-5, C-4
Dooley, Pat L-4
Dowling, Jim M-l
Dudley, Sally P-12
Ehrhart, Rick P-3
Eikenbary, Beth C-l
Evers, Penny D-5
Farquharson, Ian 0-6
Federman, Nancy F-2
Folkins, Dale L-9,...

19

Foote, Richard l.. A-8
Foster, M. B. G-4
Fraser, Thomas L. E-5, L-8
Garvey, Robert B. A-4, C-5
Geffken, Joachim G-l
Gloss, Greg 8-14
Goodman, Robert P-ll
Green, Robert M. D-2
Greer, David J. E-3
Harjula, Esa A. A-6
Heidner, Dennis B-5
Hennen, Ralph C-3
Hoff, Roger J-5
Holinstat, David L-2
Holt, ~layne E. 8-9
Juhasz, Thomas D-5
Kalman, David 1-3
Kell, Jess r1-8 ~

Kernke, Jutta L-ll, E-l, C-ll
Kiefer, Karl H. 0-3
Kneppelt, Lee R. 1-1, J-l
Kramer, Jim A-2, G-ll
Kurtz, Barry D. B-3
Langley, Jim C-9, F-l1
Langlois, David P-7
Larson, Orland A-9, L-ll
Leonard, William Jr. B-7
Lessey, Ken P-5
Loffler, Ivan F-l
Mason, J. Michael F-7
McCauley, George B-10
Mcquillen, Jack G-6
Mead, Robert L. G-9
O'Brien, Matthew A-3
OINeill, Daniel R. A-7 ~

20

Payne, Delores R. 8-9

-" Peckover, Doug G-2,
Perkin, Brian M. E-4
Peterson, Don l-l
Primmer, Paul D-l
Rakusin, Robin P. G-9
Rego, AlfredoF. l-ll, B-12
Roland, Vince P-12
Rowe, Denis l-4
Sera, Arthur 1-5
Smith, Terry P-2
Sneed, Jerry l. 1-1, J-l
Souder, Duane B-ll, l-ll, P-9
Stamps, Bob M-3
Steiner, Robert F-2
Storla, Chuck C-7
Tabes, Roselie B-1
Trasko, Mark S. M-6

(I"" Turner, Edward A. M-4, F-12
\.

Val by, Nancy P-1O
VanBempt, Gurdo C-8, E-6
VanDamme, Jaak C-8, E-6
Vanleeuwen, J. F. P-4
VanSickle, larry J-4
Ventresca, Benjamin Jr. F-4
Vigmalou, Dr. Joseph 1-4
Volokh, Eugene D-4
Volokh, Vladimir D-4
Warwaruk, Marshall 1-9, J-9
Wheatley, Jack E. M-2
\~imer, Ted l-7
Wolf, A. Steven B-2
Womack, Robert L. IV A-4, C-5
Workman, Ted P-12
Wright, Norm L-l

""
21

A SYSTEMS DEVELOPMENT METHODOLOGY
BASED UPON AN

ACTIVE DATA DICTIONARY I'DIRECTORY

T. M. Curtis
Quasar Systems Ltd.
March 1981

~1onday A-1 - 01

.~
)

1. Introduction

2. Historical Perspective

3. Proposed Approach

4. Method and Technique

5. Obstacle's to Implementation

6. Conclusions

A-l - 02

Introduction

Computers are not very tolerant of humankind

communications. Phrases such as

"you know"

"things"

"what do you call it"

"etc."

are incomprehensible to the average COBOL compiler.

Similarly people are not tolerant of the machine's

"pickiness" and need for detail. As a result of this

communications gap, the EDP professional has leapt into

the breach to become a translator between the two

uncompromising camps, translating the needs of the user

into language and terms that may be manipulated by the

computer as well as explaining the strengths and

limitations of the machines to unsophisticated users.

The problem with this approach is that the

translator has become the key element in the cycle. All

communications dealing with the development of computer

systems must pass through the EDP professional in both

directions.

In recent years there have been dramatic increases

in the demand for automated systems and the power of

machines to provide services.

However, the supply of EDP professionals

(translators) has not kept pace with either the demand for

A-l - 03

- 3 -

services nor the hardware capacity to deliver the required

services. As a result, the limitation on fully utilizing

the new hardware power to address the burgeoning demand is

~, the EDP professionals.

The traditional approach taken to solve this

problem has been to increase the productivity of the EDP

professional. A procession of analytical, design and

programming techniques has been combined with more

powerful languages, data management systems and utility

software to address the EDP productivity problem.

Although these facilities are worthwhile in their own

right, they are merely treating the symptoms rather than

the problem.

Our challenge is to develop more sophisticated

tools for computers and to raise the level of technical

literacy of their users so that they may directly interact

with the computer for "routine" development processes.

This is a natural continuation of the process that has

relieved EDP organizations of the burden of data

preparation and entry by using hardware to switch from

card input (controlled by EDP organizations) to direct

data entry using DDP and on-site terminals. That is, we

have turned over operational control of systems to the

user. The next evolutionary step is to return routine

development tasks to the user.

A-l - 04

- 4 -

The problem of increasing the level of technical

literacy within our society must be left to our

educational systems.

This paper will address the opportunity presented

by the need to support direct user/computer communications

to effect the development of automated data processing

systems.

A-l - 05

- 5 -

Historical Perspective

Although each of us may follow slightly different

analytical, design and development methodologies, the

underlying principle is the same:

--determine requirements

--design a computer system that will satisfy the

requirements

--develop the system

The requirements are usually, or should be, phrased in non

computer oriented language, comprehensible to the user.

These requirements are then transformed into a computer

design, and the functions and data are translated into

process descriptions.

We have traditionally organized our approach to

preparing detailed procedures (programs) into data and

processing specifications. The file structures, record

layouts and field descriptions are prepared. The

programmer must then combine these data descriptions with

the procedural process descriptions in a program.

We know from experience that the result has been

large, unwieldy, incomprehensible, and unmaintainable

programs and systems. To overcome this problem we have

adopted structured techniques that stringently define the

domain of a process and the size of the resulting module.

This is essentially an attempt to limit the number of

variables and levels of data and processes the programmer

must concurrently deal with.

A-l - 06

- 6 -

By limiting the size and complexity of modules we

have been able to keep the entire complex of data and

processes within the intellectual grasp of the

programmer. The result of this structured technique has

been to achieve greater productivity and dependability

through simplifying and standardizing the fundamental

system building block, the module.

However, these techniques do not produce the

increases in productivity necessary to respond to current

and projected demands.

A-l - 07

~
",

- 7 -

Proposed Approach

General

The dramatic increase in the power of computing

hardware coupled with the relative decrease in cost

provides us with the basis of a solution: if we can

divert some of the power of the machines from "getting the

work done" to easing the man machine interface we can

reduce the comprehension gap between users and machines.

This approach has previously not been feasible because of

the cost of machine power necessary to support this level

of interface as well as the requirement to get the job

done, ie., application systems "required all available

cycles.

Theoretical Framework

All systems are composed of two elemental items:

a) an entity

b) a relationship

It is possible to comprehensively describe a system in

terms of the component entities and relationships that

make up that system.

A-l - 08

- 8 -

Definitions:

Entity: "Thing's existence as opposed to its

qualities or relations."

We have problems manipulating concepts on a

machine, therefore for our purposes an entity may

be considered to be;

That characteristic of something that

identifies, describes or quantifies it.

Relation: "What one person or thing has to do

with another."

for our purposes a relation may be considered to be;

A characteristic or series of

characteristics that establishes a link

between entities based upon some common

identity, description or value.

There are three types of entities that can be used

to describe the nodes of a system:

a) data

b) processes

c) users

Data, or course, refers to the information

maintained, manipulated or produced by the system.

A-l - 09

~.,•• ,: ••• m

r"':'··

- 9 -

Processes refers to the rules, precedences, time

sequences and operations to be performed on the data

handled by the system.

Users refers to the owners, users, controllers and

authorities responsible for and involved with the system.

Each of these entity types may be further

subclassified as follows.

ENTITIES maintained by 0010

DATA

Data item - a primitive - data definition

Data group - sub schema - (record) 1st order

assoc.

Data file - schema - 2nd order association

Data system - (base) - 3rd order association

PROCESSES

Operation

module

program

system

.... a primitive - n+n "_n etc. QUIZ

& QUICK commands

- an association of functions

- an association of modules

- an association of programs

A-l - 10

A physical hierarchical view of the en ti ty types is as follows:

DArrl\
s,{~~r.lIJ~:~1

(111\SI-:)

~~-----

---- "'"-~ ~,
Dl\rl'l\):IU~ "".. "',
(Sl: f-!i~\1t\)

------------------_ Dl\'.Pl\ GI~()Ln)---. -... (SUB Sl1Ii~:i\'Jl\)

/
/

DA'rA
ELEL\ffiN'l'

DATA HIERARCHY

Fig. 1

A-1 - 11

...... -

I)l{C)(~I~SEl I N(~

SYSi.l.'l·:M

~--~
__----e.~_._.

~
...,

..._..._--_::..~._- ---.---.

r·lODULE

OPEl{A'l'IC)N

PROCESS HIERARCHY

A-1 - 12

Fig. 2

AUTHORITY

CONTH.OLLER

USER HIERARCHY

A-1 - 13

USER

Fig. 3

USER

- 10 -

Owner - person or process responsible for

accuracy and timeliness of value

User - person or process that "uses" the

data

Controller - person responsible for controlling

access to the data or process

Authority - person responsible for the defin

ition of the entity

A-1 - 14

- 11 -

Relationships between entities may be of two categories

and take one of three forms.

Relational categories are:

~
V·'.{,~~1

a) absolute: the relation between the

associated entities exists at all

times and under all conditions.

b) conditional: the relationship between

associated entities does or does

not exist based upon the value of

another entity or the result of

another relationship.

The three forms of a relationship are:

a) Relative

b) Associative

c) Algorithmic

a) Relative: "What one person or thing has to do with

another."

"Kind of connection, correspondence,

contrast or feeling that prevails between

two persons or things."

for our purposes we will consider a Relative

Relationships to be;

A-1 - 15

- 12 -

A grouping of entities that collectively

identify, describe or quantify a higher

level entity.

e.g., all information maintained on an

employee is related and provides

an identification, description and

"value" for that employee.

b) Associative: combine for common purpose

connection between related ideas

thing connected with another

for our purposes we will consider an associative

relationship to be;

A grouping of entities based upon a

common or related value of individual or

grouped elements.

e.g., all personnel working in the

products office are "associated"

entities.

c) Algorithmic: process or rules for calculation

for our purposes we will consider an algorithmic

relationship to be;

A procedural relationship established

between entities with the purpose of

identifying, describing, quantifying or

deriving another entity.

A-1 - 16

e.g.,

.. 13 -

the entity "net pay" may be

derived algorithmically as Gross

Pay minus Total Deductions.

Relationships may be established (may exist):

a) between like entities

b) between dissimilar entities

c) both like and dissimilar entities

concurrently

d) recursive (a part may itself be composed of

parts, etc.)

~ .._- -.....

/

/
/ /

/,,-- , / /
I \ / /
I t/ /
, I?

" .:-)

,,0"---
I ', '
\ '
~ I

7/
/ /

/ /

/ /
/

" ,
\,

I
./

RELATIONSHIPS BETWEEN ENTITIES

A-1 - 17

Fig. 3a

- 14 -

Method and Techniques

The active Data Dictionary/Directory appears to be

a viable tool to implement an entity/relationship

description of a computerized system. We are all familiar

with a number of passive data dictionaries used basically

for documentation and data structure source language

generation. Packages exhibiting these characteristics

have been on the market for years. More recently some

dictionaries have become more active, actually resolving

references to stored data entities.

The passive Data Dictionary/Directory has the

typical structure shown in figure 4. Of course, most

current data dictionaries do not maintain process

descriptions below the compile unit level, typically a

program or subroutine. This structure is not conducive to

efficient or effective handling of entity/relationship

descriptions. A proposed structure for an active Data

Dictionary/Directory is provided in figure 5.

A-1 - 18

~
I

--'

USER

""",

"""",
'-'-"

TYPICAL DD/D STRUCTURE

DATA SYSTfl\1 1 n : n

n:n
FILE

PROCESSING
SYSTEvl

PR(X;Rl\M

\.0

)

SUB SCHE1V1A

""

""\.\.

",.

ImM J
J

j

SCHEMA

n:l

n::g,/
'-- --

MODULE

(OPE~TION)
I
f
I

r'1.g. l~

)

---, '-,
What we would like to do.

""-"-..,
......

"-"""-

FUN:T~N~

'1

~
I
--'

N
o

MODULE

PROCESS FITES

(SCHEMAS

OPERATIONS

User does not want the data.
The user wants to do some
thing with the dat~ report,
display, change, add, etc. ITEMS

Fig. 5

- 15 -

The structure may be interpreted such that a series

of hierarchical processes and data entities form a set

joined by relationships. This set of entity/relationships

has been organized and termed a function that is "owned"

or "used" by a user entity. Therefore, to use structured

terminology, if we can establish and define data/process

relationships at each level of the hierarchy we wil be

able to describe a system. If this description can then

be maintained and manipulated by an active Data

Dictionary/Directory, we will have established a Function

Processor .'

A very simple example of this concept is shown by:

(DATA)----......,~ PHOCESS 1__(DATA)

Data can, of course, be a structure

- input file (sc~een, etc.)

- output report (file, etc.).

Process can be

- move

- add

- display, etc.

It is possible to describe processes as a series (time

sequence) of such entities. At higher levels the

description takes the form:

A-l - 21

- 16 -

d~t3 or
I---~

rn::lstf~ z· f:i l-:~

oc

output
rt"~ po ~t

At a lower level, the proc·ess/data relationship may be

described as:

~ .~. .~.. -} ::
l·. y. d(_. ""('(1

(__1: l_:lJ_~~_~~_.~__/

I) 1-1 r ~.. \ ~..: ...
C .. ;.~: ~ ~ ..

The best way of describing how this approach may

worK is through the use of an example. An order entry

application has been selected for demonstration purposes.

The processes to be performed are:

3) Heceive order (Recpi vc~)

b) Perform verification and

credit checks (Verify)

c) Commit stock from inventory (Commit)

d) Back order "shorts"

A-l - 22

(Back Order)

e)

f)

- 17 -

Print picking slips

Generate invoice

(Pick slips)

(Invoice)

for purposes of this discussion we will consider Back

Orders, Picking Slips and Invoices as products of

Commitment.

We may therefore describe the process hierarchy as:

I
i~.£CIl fiE VL~~IF"{

The corresponding data entities are:

a) Orders

b) Client file

c) Stock on hand file (INVENTORY)

d) Back Orders

e) Picking Slips

f) Invoices

A-l - 23

.. 18 -

The data hierarchy may therefore be represented as:
~---..._-_ .._----,

ORDEH.
EN'II1.Y

I _._-----, I_.- -----,

SI'OCK ON PICK.tN(~

OItDl'.:F~. liAND SLIPS

a____..--.•----

BAC[
CLIENTS ORDERS

It should be pointed out that the association of a

data entity to a process entity does not imply ownership.

Rather, the relationship may be classified as:

a) use or input

b) update

c) create

d) delete

e) derive

We may define this function as

Function:

PROCESS

ORDER ENTRY

DATA
ENTITY USED USE

AVG.
VOL. DISTRB PEAK

~\

RECEIVE

VERIFY

COMMIT

ORDERS

ORDERS
CLIENTS

ORDERS
STOCK
BACK ORDERS
PICK SLIP
INVOICE

A-l - 24

INPUT

INPUT
INPUT

INPUT
UPDATE
CREATE
CREATE
CREATE

Information to be
used to support the
structure design.

- 19 -

The RECEIVE process is straightforward and does not

have to be elaborated upon here.

The VERIFY process is interesting. In essence

VERIFY is meant to apply the validation rules that are

part of the data definition for each item in the source

structure. A sample source structure, in this case an

order, is presented below.

ORDER NUMBER

CLIENT IDENTIFIER

CLIENT ADDRESS

CLIENT CONTACT NAME

CLIENT CONTACT PHONE

SALESPERSONS IDENTIFIER

DATE

ORDER LINE

PART NUMBER

PART DESCRIPTION

PART UNIT PRICE

LINE EXTENSION

SALES TAX

TOTAL

A-l - 25

ORDE!\:
ENTRY

-(
input)----_.._--

/ ------"'"

/

ORDEr~S
~ .. __ .- ._.--_._- .

~------------ STOCK I
J-"--'''--- ---- ------I__HA_O~_~D_'__~~ HU - -l

t

VEFtI:FY

CO~iIT

/'

/ /

/ /

LL -~-/---(__l_.n_I)u_t_)------._--

/
/

~_:~=-~ update

'(0 create)

= create)-- ---------

eLlEN'}'

BACK
OftDERS

PIC}~~; I~G

SLlr-~~

create~ . ~ IN'JC,j Cr;

O!{DER lf~NTRY ENT1TY REIATIClNSHIPS

A-l - 26

- 20 -

Each data item of the structure is defined as a

data element within the dictionary.

Typical definitions will contain:

- unique name

- synonyms

- description and purpose

- type of data

- edit/validation rule(s), severity and messages

- source or derivation

- principal site

- responsibility

- authority

- security restrictions

- links to processes

- links to other data items.

Once the relationship between the process (VERIFY)

and the data entity (ORDER) has been established the

functional processor may then sweep the data structure

applying the edit/validation rules. These rules are not

limited to range and type checks but can reference other

data items described in the dictionary. As an example,

the verification of the CLIENT IDENTIFIER may involve the

application of a number of rules.

a) Type is numeric

b) Range 000 - 999

c) Registered on client file CLIENT FILE: PRESENT

d) CREDIT equal OK
A-l - 27

~.

~.
\

- 21 -

The first two rules are simple checks. The third

and fourth rules require the resolution of data entities

contained in other (but related) data structures. The

projected operations of the Function Processor in

resolving these references would be:

a) retrieve definition for CLIENT IDENTIFIER

b) resolve "immediate" rules

d) determine other entities required: CLIENT

FILE: CREDIT

e) resolve physical location

f) obtain physical representation (record)

g) apply rule(s)

h) set status, produce message, etc.

As this example has illustrated, it is possible to

perform the VERIFY function by invoking a primitive

operation (VERIFY) and relying upon the data and process

specifications maintained by the Data Dictionary/Directory.

Similarly the COMMIT process may be simplified to

four subprocesses:

- update the stock on hand

- create back orders

- create picking slips

- create invoices

Again the data and process structures used to

A-l - 28

- 22 -

perform these operations may be defined in the active data

dictionary/directory. The relationships between origin

data structure, process and target data structure are

given by the structure and linkages of the dictionary.

utilizing a top down approach to system

specification we are able to comprehensively describe the

application in a hierarchical fashion.

Once we have the hierarchy of functional blocks we

may further decompose the problem until the leaves of our

hierarchical tree represent primitives in terms of data

and process entities. Anyone familiar with the Jackson

methodology will be acquainted with the technique and

representation of processes and data.

- Data structures are represented hierarchically.

- Relationships are expressed as correspondences.

- Processes are "operations lists" and are merged

with the consolidated data structures, ie.,

hierarchically structured.

This organization can be maintained by a data

dictionary. Indeed many data dictionaries already

maintain most of the information necessary to support this

type of process/data description.

A-l - 29

- 23 -

Obstacles to feasible and practical implementations.

natural language like - to allow the

end user to specify data and processes

in familiar .terms

structured enough to provide

comprehensive and unambiguous data and

process descriptions to the system.

b)

There are two major obstacles to a feasible

implementation of this model. The principal difficulty is

the development of a non procedural grammar that is

concurrently

a)

The second obstacle deals with the operating efficiency of

such a system. The hierarchical trees of entities and

their relationships can quickly become extremely large and

complex for even medium sized applications. The

organization, maintenance and reference of such a

structure will require considerable sophistication to

provide the responsiveness, performance and reliability

necessary to produce a workable tool.

A-l - lJ

- 24 -

Conclusion

The techniques and approach outlined in ·this paper

depend upon tools and technology currently available.

What is necessary is the impetus required to revise our

thinking about how we specify, design and develop

computerized systems. The challenge of closing the gap

between the unsophisticated user and the uncompromising

computer can be addressed from either end. This approach

attempts to use the power of the computer to accept non

procedural, non technical descriptions of functions, data

and processes, and generate automated systems.

A-1 - 31

The Technology of th€ Quad Editor

t, ~.'
\.1 i Rs ~: ".. am e: f'"

Hewlett-Packard Co.
St, Louis t Missouri

ThE: Quad edit·cir is a simple: t·e::,~t. edit.I:I!·-· that. is be:irfg
contributed to the Users Group library at th~~e rne£tings, It has
several features which make it notable and us€ful! the most
important of which are that it texts files in$tantaneously and
that it can undo any or all editing changes, The purpose of this
paper is t.o e:~plair, t.he: t.€chnolc(g~,) behirtd t.~'E:::::€ .3nd ot.hero

fe:at·uY·E:S,

II~ A Brief History and Description of Quad

Quad \\'as
t.e:xt. and
OJ:' e:t-'oa t. j oris I

created to avoid the
k€ep commands} which

high overhead of Edit/3000's
are €ss€ntially file copy

Early versions of Quad simply opened the texted file and made
c: h a r~ 9 e: s d i y. e: c t. 1 ~:} t. c' i t· ITt °t i s: ~. r' e: c 1 u d E; d to h e ~{ c. s sib iIi t. ~)J 0 f ·3 d din 9
or deleting lines from the fil€, It also made editing a somewhat
risky businessJ since changes were b€ing made directly to the
f i 1 E: rat. J-J € y" t. han t. 0 a l\f (; r' k f i 1 € c: 0 p ~).1 (n QIJ R[) U Ci r i ~1 i n ·3 J. 1 :i) m€ ·s n t
QUick And Dirty), NonethelEss Quad was very fS5t for looking at
files and making simpl€ change~.

1 h E: cur' y. e: n t· \" €: 1'"' sic.n (& f f~ 1...1 a d r' e: t· a ins l'1f c' s t· (I f t. h €: .~ d \t ant ,3 9 f; S' c. f
the e~rly versions and e]irnjnat~s the main deficiencies, A file
isst. ill t. e :)~ t € d j u.s t. b ~)} 0 pen i n 9 i t. ISO t. tt 2 t t. "H~ (\ V E: r tr f: -= d c., f .::
f i 1e: cop ~) i s £ 1 i Bi ina t E; d , H0 ~\I ~ V e: r' c h a r"j 9 E; sal'"' e: k E: p t. if': .;: l\l cqr. ~~

f i 1 € J sot. tl ai· a use r i s n Q t. c " mmit. t € d t. Ci t. h e: 11: U r': til h E: doe. 5 .:

keep of the fil€,

Ha \~. i rr 9 s· e· ~(a rat. e t. €')~ t .a n d ~\f CI r' ~~ f i] €~ S 1'" €: qui r" t· ~ I~~ U ,:i Ij t ,_.•
logically merge the two to give th€ user the illusion of working
c. n a sir, 9 1 e: f i 1 e: , Hc- l\t e: v (: ".' i t. sIs 0 ma ~~ € S' i t. P I:, F ~ i b 1 € t. c, c .:: nee: 1
any and all chang€s just by removing them from th€ work fil€~

Quad's undo command returns all lines within a spEcified r~ng€ to
their origjn~l state,

Monday A-2 - 01

1rf ';I e r, e: a 1 G' 1..1 .:P:.1 11,1_1:$ t. I '\11-, e: r, k e: e: J=I i n';1 t.I-, e e.j i t. e: tj .f' i] tE: J ,= fro e: a t. e: a
new file which merges the text and work files, However if th€
keep is back to the texted file and no lines hev€ bEen added or
deleted, then the ke€p is done just by ~pdating existing recordE
in the te~t file, Thus wh€n£ver possible the file copy on
keeping is eliminated also,

It is important that Quad be able to find lines in the te){ted
f i 1e qui c k 1 ~J , Qua d s t. a r' t.sout. t,t i t. h n c; ~~ rl ,::a '-" 1e d 9 e Ca f t. h e: 1c. c c: t· i 0 r_
of lines in the file, and must find requested lines using binary
search, However Quad keeps a r€cord of all blocks read during
the s€arch process and uses this rEcord to shorten 5ubs€quent
searches, Tr.E: Diet.hod is de:scrit.ed in at paper t.it.led fJA Ne:l\l Tool
for Keyed File Access (Sorn€tim€s)" in the proceedings of the
Users Groupls 1980 North A~erican meeting,

III, The Work File

Quad creates a work fil€ only when the user first makes a
c han9 e: t. c. t. h e t. e :~ t. e d f i 1 €: , This C ·3 n bE: a r, ~)J t. ~~J I=i E: 0 f C I-i ·3 n 9 e:
adding Qr deleting a line or modifying an exi~ting lin€,

The work file is a keyed file which allows both keys and data
to be variable length. It can contain two tyP€S of €ntries -
deletes and changes.

Quad allows deletion of a range of records -- for example "D
2/'3 u is a corrd'l~c-nd 1.\lhich dE:J€:t.e::=: linE: numb.;,t.. s 2 t.hr'C1L~9h .:;, To do '"
the deletioG J Quad makes a single entrY in its work file as)
f.:, 1 1Cd» s: :

D0000200000009000

T}-~ i"E i s jf..!~t..~ l~; ct-;.~lr·.~ct.€I"· ~~ E:~.I, Tl-fE: f i ,"·st. ,=t"'d,"'actE:I'" is .:s n [i)l

<f" elF' de 1 € t.e :> I t.tl e n e)~ t. 8 ctJaF'.a ct.e r' oS .=," E: t.ri€ 1 C\ hae I'" l.i ,-, t2 n urI: I::,~".' i n
t.her' a rt 9 e:, and t.h E: l.c: ~: t. 8 .E; y. E: t. t! e: u r::- f:. e: II"· 1 i I! t:; ii 1..1 rri {-:. e: I'"

S i rjCE: de·l E: t· i c,n i s act-:. i E:',,'E:,j l~ i t.l-; .a So i ng 1 e: f.\&t:,,"·k f'i 1 € e:rit.t"·~f'" i t.
is very fast, and thE spEed is ind€pend€nt of thE numb€r of lin€s
bE:' i rIg de- 1 €·t.€d ,

Now suppose that the command was given to delete records 8
through J4, This command would normally result in an entry of
D8," J4 i rlt.o t.l-it: \,"ark f i 1 € , Ho\\'e:ver t.h i $ r-ar;ge: Ct\"€f'·l,ari :=:. ar! a 1. r'e: .ad~)J

e)~ j :s t. i n 9 d £~ 1 e: t. e~ y. a r! 9 e: (l f [)2 ,l9 J s: Q t- hat. Qua d (v Cl U 1dec· IT: tc i r! E: ... t· h e t· \\t 0

into a singlE Entry of D2/14,

1 f 't. t-! e i..! E· e: t"' nQ \" uno ideh ar\ge S o\-' e:r' t.~! e. i r: t. e r' v ~ 1 f i" Cdli ~: t t:' 8!
i t. f.~ 0 L' 1d bene c € S ~: .a r ~)1 t..:r 11 1.1 r! d E: 1e: t. € H 0 vel'"' t. ~: is"" eng € t T r! € i'" e. f c, y. e:
the entry D2/14 would have to be split into two -- D2/4/999 and
Del {lot il' 1 4- ,

The other type of Entry
There is a change €ntry fer
€very line modified,

in thE work file i~ a changE €ntry,
e. '" e ro :); 1 i n £ add e: d ,:I u ~... i r: 1;1 E: d i t· i r: g a rf d

A-2 - 02

IJII1t<'
\"

A change entry con~lS~S of both a k€y and data: Th€ key is
just the letter "e" followed by the 8 character iine numbEr! and
the data is th£ line of text corre$ponding to that li~e number,

IV. The structure of the Work File

"1 t', e: l" .:& 1'" ~~ f" illS: USE: d t. ~JJ t'l'.1 .c .j 1.\1 .~ S I:' I'·' i ';l i. r'j·9 1 1 ~}) ci E=: ~. i ':4 ri ~~=.. d of c, .ro.

another purpose -- a different edito~, The desirE was for a file
access method which gave random access to variable length
records; and re-used space from deleted records,

TJar € s CC] '-' t. i I:' rf i $. a f i 1 e: .:t C C E:: S S BI ~~ t. h .) d l\' h i c: t! I cal 1 t. i, c: k E'. t.
files.

l\1 i t. h Of Cr S t. f i 1 E: ace e: S S o! €: t. hodSit.h €: u ~ € F· ~\f h c' t\' .:-J n t. == d a t 2 ~. t.o r"· e: d
s pee i fiE: S l,1 her € i t. i s t. c, t. e: s t. c. ,.... £ d - - a r' E: C La y-. d n u m1:. E: t-· , t\. i t. h
ticket files the user does not specify; instead he just supplies
t.,.!€ dat.a t·o t·t-IE: acce:ss met.hod .~nd rece:ive:s back a ut.i':~~E:t·u

t. ell i n 9 tl i. m ~\t h e: ret.h e: d a t .3 has b e: e r! s t.o e: d , I n 0 Y" d e: ,... t. c~ r' e: t. f'"' i € ve:
the datal he just supplies the ticket,

1 t· i s i IJ! rcCillO
• t. a r~ t. t. c' Ir. e~ C Cn;l ri i set.rf .:f t. 't.l-i i s t· €: t= rf r; i ('p.J e t;l i v E: :;::

enormous flexibility to the file access manager, Th€ data can b€
put in the most convenient spot, for example a block that is
a 1 ".. e a d ~)J ina b u f fer i n msin me: fJ'i 0 t-· ~)} , lc,i i t. h i n t.1-1 € t.l ':. f: k t. h e: r' e: C 0 t-· d
can be plac€d wh£rever there iE space, With tickEt files ~

".. record need not even be placed cc.nt.iguousl~,1 t\rit.hin t.he: blc.ck -
it can be broken into pieC€5,

Although ticket fil€s might at first seem unnatural or even
c!umsYJ they turn out to be perfectly suited to those
applications in which data is found through pointers; tick€t~

are really just pointers,

I 1ft age de: t. ail d a t. a s e: t $ a e: a ri E: :~~ am J:4 1e . I f' hI e: n e: ';1 1 e: c t. s e: f" i a 1
access, a detail data entry is found through point€rs which are
st. CI y. e:din 0 1:. t't e: y. de: t. ail e: n t r i E: S Q r' i rJ a md ~: t. e 1'" € rf t. ,... ~)J r Tic k e: t.
files could in fact be used to implement Imag€ details and would
relieve Imag€ of the burden of keeping track of free space,
Further they would add a car~~ility that Image details currently
do not have -- variable length records,

KSAM files are another exarnpl€ -- all data in a KSAM fil€ can
be found through pointers if only the location of the root block
in the key file is known, Ticket fil€s will, by the waYJ
rem€mber one ticket for the user,

In order to make ticket files satisfactory as work files l it
was necessary to implement a keyed sequential access method based
on ticket files, The implementation is significantly different
from KSAM and actually more powerful: both keys and data can b€
variable length, space is re-used~ and key£d sEquential access
can be either forward or backward,

A-2 • 03

l'rlE: ~~ E:~]lS ·31"'6: st.•:.....·e:.j ina t.'...·ee·-st·'......Jct.u·e: ca 11 e.:J .3 t.t,,· i e,l r, -9

tri€ a key value is actually distrjbut€d through various levels
of the tr€€ structure; branching occurs when two keys which are
identical for some number of beginning characters first differ.

For e)~ amrc 1€ t. h e: k E"~ ~:.J 5 nAN DY J II ~~R~l (I Rn I

result in the following structure:

tie) Rl't')R'

Y RO!D

Generally tt\is structure will have mor£ levels than KSAM's B
tre£, On the oth£r hand its structure is a function of the data
itself l not of the order in which thE data is loaded, Therefore
tree re~organization is never necessary during loading, whereas
with KSAM it usually is.

k€y is a two-step proces~:

When a key is stored, a ticket is
point~ to data. Thu~ storing data by

stot"'e:d l\litri j.t, The: ticket

v, l' t·, E' H€: 1p F- d C i] i t. ~\

From
r· € qui r' i r. 9
I""e:ason i 5
simple anti

t. h €: S t. art. I l\l.:i rt t.c d t7~ u a d t. Ci b £; a sin 9 1 E: P f' Cf!;n'~' .~ iTl f i 1 E: rf c' t.
an~).1 au:){ilial"·~).' mcssa9€ or documIEnt.at.ic·t-! f·i.lE~, ThE:
t. h 2 t. I \\' ant E: d the a c qui sit. i c· nan d U $ e: (.... f Q U .F: d t. c, t) €: a s
foolproof as possible,

1 ~, i $. Il! t: d r; t t· ti 2 t. ft I.J Q d t! a d t c: h c; \ ... €: a \,. e y-. :.: g (; c: d hE 1 f..' f.~ c i 1 i t. ~)J - -

.a b l; i 1 t - i n rn a n LJ a 1 t Q I.J addC' e s: i n f .a c t. n " l\~ h a v E: qui t E: a r: E. >ct:. Eo n s i v E=:

menu-driven h€lp facility, All of its text can be printed
C& f f 1 i n e: t. cc nt .~ k €: ~ n a d €; qUe: 1.. E:~ L.f ~. E: F' IT: .a n L! ~ 1 .

~l tf (:~ 1 P f a c i 1 i t. ~)' p Jr. E: S € n t. S S Lo O! € t. E: C h fl i cal P f c; t. 1 to~~: S I I n t. t"t E:

fir· So t. pIa c ~: i t. $ h 0 L~ 1d b (.. \~ .:.. r' ~)J E: oCt ~ ~;) of (. 1'". t. h e p r' c: 9"-· ~J fi: n~ f~ 1" t C, I.I} J.... i t. E:

t. h e: h e: 1p t. e)~ t. I NCi t-· € c, v IE: Y" t. h E: t. €)~ t. n: us t. b E: ~~ ,.... €: ve: n t E. d ft·· 0 Tf! IT! .~ J~ i n 9
the program €normous: text takES up program space very quicklyl
The F' e: f c.' y. E: b 1 .=t n ~, c c, mp r' £: :;' s i I:'n i S v E:: r' :).1 d e~: i. y. a b 1 € ,

lhe solution adopted
not fully satisfactory,

in€: a J'" 1 ~,J \ ..' E: ,I'. !Z i '" n $. () f fi l.! a d t.} .~ :::- £ j. n: p 1 t~ but.
~~ 1 i r ~ e: ~\r C' wId b E:: \\r r o

' i t· t. E: n t. Co t. h e ::~ c J6" € E n b ~)J

A-2 - 04

.~

doing an SPL move of a literal to a buffer followed by a call to
a p ".. 0 C E: d u ...'. e: t. Q l'l y-' i t. E: t.1· •E: b u f f €"~ r· t (:\ t. h e: S C j.... €: E: r, , 8 ~l'J us i rJt;J SPL
d €;: f i rl ~ :=: i t. l,) -= S PCI $: $. i b 1e t. (J n! .:~ ~~ e the c c d € t. 0 t\' r i t Eo -= 1 i f'! E: 1c, c· k
1 i ~~ €' t. ti €' 1 in€. i t. s € 1 f be. r d E: too. € don b c. t. t-, 5 i ci € s b :,J a tl i t Ct f ,~ u):: i 1 :i .a r' :~J

text, Thus the code

f\t (I '.) E I't SG ; =::.~ n Tt't i :s i ::; ali net... c- 9 c. t· c' t J-p?:. ~' C I'" e: € n H .1 (l) .:

I.e.l R I 1 E. ' l I] , ~; (. REE t~ J~ 1'1 S G) ;

lhis made help text very Easy to write, UnfortunatEly it'
a 1S Q t\' a s t· e dec'despac e: I Esc h 1 i n E: t (4 t, E: t\~ r' i t. t. € n r'l=: qui I'" €: d its 0 1.\' n
t'Jf 0 v e: .~ n d cal 1 J a rl d t. h ~. r' €: l" a s n c, b 1 .~ n ~{ c c' nl):, f'"' € ::-' == i c., n <~ 1 t. h c· u 9 h
t.r·ailirlg t:llar!~1.s cc,uld tie: ~u~'~\rE:~:ze::d),

An effici.e:nt. sc.lut.icir: t.ei sav€: c()de: Sp.3C€ is t.e- t"taVE: each
screen of h€lp text stored in a FB-relativ£ array in a compressed
f 0 y. 1ft , .~ A P B- Y" e 1 a t· i \t" e: a Y'r' C! ~l i s: a·nSF:L Q r yo. S ~)~ l,t h :i ': h i ~ r,:. a Y" t. c~ f a
code segment), The procedure containing th€ array would fetch
t. t..! e t. e ;){ t. 1 i n e t\ ~)J 1 i n e ina 1 0 0 ~~ .:! r', d cal 1 ·3 n c, t· h € rOo. p fl" C. C E. d 1.1 rh

• € t. 0

write €sch lin€ to the screen, In this way there is only one set
Q f 1ft Q ve a r, d calle 0 d €: f' c' Y" t. h € e: n t ire; s C)-'". e: e: r! rat. J-) I: r-' t. h ·3 n Ci n E: set
p€r lirte~,

The problem is that it is very difficult to
initializ€s arrays with blank-compr£ssed text,
better to just write:

Help'proc : Help's€Q

I.,) r i t. ~ c c, d t~~ t. t J Q t.
I t. ,.,.II~ li 1 d b t: f .:: r

This is a block of help text, which w£ would like to be
convert..ed t.e. a space: e.fficient. l=.y··ocedtJ,...·e nan:€c! He;Jp 'pr"ell:

(for the segment H£lp'seg)

<**>

l'he: sc,l ut. i .:·rt of' CO'Jr·:;·€: is 't.e' ha\,'e.c ~.I··· C";:JI"·.E=Jl'i i.\~t·! i cl..... cl:4r·~ve:ll"ts

such blocks to th€ desir€d procedures, Quad's help facility was
written using such a program which served as a pre-processor to
th€ SPl compiler,

VI, lh€ Command Interpreter

There: \,.ae",,·e
Quad" scomfJiand

't·l,tQ ma i n
i rtt.e:r·~4 ,...'e:t.er :

irnplernenta~ion o~

t, 10 catch as many €rrors as possible during command
a rt a 1)J sis, y' at· 1-1 e: y' t.h a r'j C c. "1 m·3 n d e: :)(e: cut· i c, rf ,

A-2 05

As an example, editors must have commands which include file
nam£s. The editor could be designed do no checking on the file
name; any errors will be detect€d later on by th€ file syst€m,
Quad l however} assures that th€ name is syntactically valid
first. For example it checks that there are no more than three
parts to the name (~il£J group and account)) that each part has
between 1 and 8 alphanumeric characters with the first being
alpha, that there is no more than one lockword , that the lockword
follows the file part J etc, Any error found results in a message
which describes that particular error,

One aspect of emitting meaningful error messag€s is to point
out where in the command the error occurr€d, To this end Quad
points to the error, just as MPE does for command errors,

A-2 - 06

~.,.,
~J

DISTRffiUTED PROCESSING

A HEWLETT PACKARD SOLUTION

Matthew O'Brien
Section Manager
Hewlett Packard General Systems Division
19410 Homestead Road
Cupertino, California 95014

The purpose of this paper is to present a new concept

in the way in which data processing is done within any organ-

ization which presently utilizes a central mainframe computer

with terminal access distributed between many users.

The term- distributed processing has had various meanings

through the development history of different computers. One

meaning that might be attached to the term is that which also

might be called array processing. This involves an array of

processors distributing the power of the CPU and performing

tasks in parallel to accomplish the computation in a shorter

period of time. This is definitely not the meaning that I

wish to attach to the term distributed processing.

For the purpose of this discussion, the following phrases

characterize 'distributed processing':

- locaJization of some cornputational power and program memory

Monday A-3 - 01

- maintenance of a central node for computation and data' base

- minimization of datacommunication traffic

- utilization of the relative strengths of distributed CPUs

- maintenance of privacy by means of local data bases

- utility of shared central mass storage and peripherals

- concept of synergy of "one man - one machine"

This definition warrants an easily understood clarification,

as the concepts are more easily grasped with the presentation

of a concrete example. The distributed processing referred to

is that which is achieved by clustering together a group of

what has been term.ed 'personal computers' around a central node

consisting of a mainframe CPU. Unlike the simple terminal

interface to a central CPU which has been prevalent, this con

figuration leads to clear advances in price, utility, performance

security, etc. Before proceeding, the terms personal computer

and mainframe CPU need clarification.

The mainframe computer was the first result of constructing

electronic devices to perform large amounts of computation or

calculation. Prior to the late 1930's and the early 1940's,

rudimentary machines had been constructed to handle either

calculation with numbers or some other sorting or controlling

function. In order to handle problems which involved extreme

efforts of mental and hand calculation, investigations were begun

into constructing an electronic machine which would automate

A~,3 ~. 02

the calculation process. Perhaps one of the most famous examples

were the calculations to produce a book containing tables of

artillery pro~ctile paths under varying conditions of shell mass

size, charge mass and volatility, wind conditions, atmospheric

density and of course barrel elevation and azimuth. As

so many variables were involved and such great accuracy

was desired, it was necessary to perform many hundreds of

thousands of calculations to produce a satisfactory result.

This example serves well in showing the emergence of the

mainframe computer for two reasons:

- the machine was constructed largely for a single purpose,

to perform large numbers of similar calculations

- it was technilogically impossible to produce a computer

capable enough, portable enough, and in great enough

numbers to couple them directly with the artillery units

to produce real-time computation

The artillery pro~ctile computer pro~ct was successful

and interest grew rapidly in performing diverse computational

tasks. However, fundamental limitations still. existed, the

primary for this discussion being the great expense of producing

the central processing unit and the amount of rnaintenance to

keep it performing correctly.

As the years went by great ilnprovements were made in

refining the CPU, however it's expense, bulk and necessary

level of maintenance continued to jJstify it's name -

A-3 - 03

central processing unit.

The purpose of this im mediate topic is to stress that

the computational structure of the mainframe developed

not due to its inherent suitability for the pb, but due

to technological limitations in producing inexpensive, portable

and reliable computational machines of enough capability

to allow each user his own processor. Granted this limitation,

the only practical solution required a central processor with

multiusers timesharing the CPU through terminal ports. This

multiuser aspect allowed sufficient utility to amortize the

comparatively expensive CPU, and continues to be reflected

today in the continuing drive to allow greater numbers of

users to share the same machine, driving down the per-user

cost of computational power.

Turning now to defi.nir.lg the meaning of personal computer,

it must be stressed that the term can produce varied opinions.

The preferred defUUtion here is a microprocessor-based

processing unit with additional local program and data memory

and some form of mass storage and I/O capability. More

abstractly, a machine with sufficient power and utility to

be used in a stand-alone mode with the capability of being

programmatically altered to perform a very wide range of

tasks. The last point is im portant as it is wished that

program mabIe calculators be excluded, their use being too

limited to manipulation of numbers and device control.

A-3 - 04

The element that has made possible the personal

computer is the large scale integration of many semicon-

ductor devices onto monolithic chips. This has led to

the realization of an effective processing unit which is

inexpensive, very portable and highly reliable.

Personal computers cost a fraction of the price of their

computing counterparts of ten years ago, and fill. the

requirements of cost, reliability and portibility

necessary for personal use.

Subsequent to the emergence of the first micropro-

cessor and the continued density improvements of RAMs

and ROMs in the late 1960s, there emerged the use of

these components as a replacement for large amounts

of combinational circuitry that had previously been

needed to perform certain electronic control functions.

These first uses of microprocessors did not jJstify the

name computer, as no means of user programmability was

available.

By the mid-1970s the personal computer began to emerge,

tentatively and lacking in capability, amount of memory,

sufficient I/O and most importantly, software. Given these

realities, the machines generally found usage solely as

means of technological amusement and as a means of playing

simple games. By the late 1970s a fundamental change had

occurred and personal computers began to be used in serious

A-3 -. 05

applications in science and business.

Today, the personal computer is recognized as a cost

effective means of automating many previously manual

operations. Computationally the processor is able to manage

many demanding tasks and performs quite well in many appli

cations. Increasing emphasis on increasing the performance

of the processor and lowering the cost of the necessary I/O

fUnctions and peripherals continues and can be expected to

yield ne w generations of increasingly cost-effective personal

computers.

Having discussed these two classes of computers and having

brought their development to the present, the next issue that

needs to be examined is where do these computers go from here?

Will increasingly more advanced technology allow personal com

puters of ever increasing performance and ever lowering price

to become so capable and affordable as to displace forever the

mainframe?

My perception of this question is that the answer is no,

that the mainframe will continue to serve an important portion

of the data processing system requirements of most organizations

for the foreseeable future. It is important to note the restrict

ion is made to be most organizations, and the validity of this

restriction is easily shown as many small organizations today do

rely only on a personal or microcomputer as their data processing

A-3 - 06

needs are sufficiently limited in scope as to be adequately met

by the microcomputers and small peripherals.

However, the characteristics of computer usage in a large

organization are usually different. To corroborate the contentio

that the day of the mainframes demise is not im mediate, a few

specific examples of the differences can be made and broken into

two categories, im mediate and future:

Immediate

* vastly higher performance of mainframe is needed to perform

tasks of high numerical accuracy or time consuming tasks

* very involved and large applications require large core

or program memory to successfully execute

* cost effectiveness of sharing expensive mass storage

and peripherals

These points as to the need for the mainframe might

possibly begin to change or weaken as the evolution of

technology continues. However, another larger list can be

made which will not as easily be displaced by technological

change as they are not technology-dependent but rather are

a fundamentally desirable feature:

Future

* the mainframe concentrates and universalizes data

bases which are accessed by many individuals

* allows control of the processing functions of the

organization to be visible and controlled by management

A-3 - 07

* allows managerial control of the security of data b.ases

* makes the backup and physical security of important data

more predictable and controllable

* removes from the hands of unskilled operators the

necessity for determining the validity of the data

base and the funtionality of the computer

* ensures all data processing of critical nature

uses the same revision application

* inherently allows communication between users as

it implies a com mon network

* allows access to higher levels of networking as

mainframe serves as efficient port

* additionally, it is most probable that while technology

will. bring cheaper peripherals and memory to the personal

computer, it will probably always do so to the mainframe

* finally, it appears that perhaps a new generation of

supercomputer might appear using Josephson jlnction

technology, but the cooling requirements will obviate the

small size and portability of microcomputers

Enough said regarding the essentiality of the mainframe

and the inevitability of the microcomputer. Let us now

consider a pair of specific computers; the HP 3000 mainframe

and the HP 125 personal computer. Explaining the HP 125 and

its interaction with the HP 3000 shows where Hewlett Packard

believes the computational system for the medium-to-large

A-3 - 08

organization is headed.

The HP 125 has been designed to be the foremost personal

computer available today. As is the case with all Hewlett

Packard products, we like to think that the HP 125 offers

the customer not a piece of equipment, but also what we believe

is more fundamentally important - it is a solution. It brings

what we believe are the typical strengths of Hewlett Packard

to what is now a somewhat chaotic and young product area.

Hewlett Packard has been recognized for some fundamental

precepts by which it does business; that the satisfaction of

the customer is most important. This is not only the correct

attitude, it also has proven to be a good business practice

as it has over the years built a clientele of loyal customers.

As such, the HP 125 stresses good price/performance,

reliability, serviceability, and presents a total solution

composed of not jJst the product but also the system

interaction and software to make the hardware investment

meaningful.

The HP 125 is structurally based upon the HP 262X terminal

family, sharing some common assemblies. The terminal and CPU

portion appear outwardly much like a HP 262X terminal, with

the mass storage and peripheral devices being connected to

an extended I/O panel on the rear.

A-3 - 09

The HP 125 combines three functional abilities

within one package:

* it serves as an autonomous microcomputer

* it serves as solely a data terminal

* it creates a synergy of use by combining the function

of the microcomputer with the data terminal

As a microcomputer, the HP 125 operates using the

CP/M operating system. This operating system has

become a defacto industry standard for use with the

8080 or Z-80 microprocessor. To support the operating

system, a Z-80 with 64K bytes of system RAM is used.

This constitutes the bulk of the CPU, the only other

significant electronics being a boot ROM to load the

operating system from the disc connected to the

IEEE 488 interface connector and the byte-parallel

interface to the terminal portion of the system.

With this relatively simple CPU, the CP/M operating

system standardizes within the memory space the

necessary functions like input/output, file system,

etc. which allow applications software to be hardware

independent. Manufacturers of hardware who desire

to utilize the standard operating system merely

customize those portions which are necessary to

allow the hardware to correctly perform the hardware

A-3 - 10

dependent I/O functions.

The benefit of supporting the CP/M operating

system is that the HP 125 then is able to directly

run many hundreds of applications that run under CP/M.

Applications include accounting packages, mailing list

programs, word processing, languages, etc. with more

applications being added to the list daily.

One drawback of the standardized CP/M operating

system is that the author of a generalized application

package has had to depend upon the least common denomin

ator of hardware I/O capability. This becomes most readily

apparent with the terminal interface. Most CP/M systems

have been constructed by building a box to contain the

CPU. The user then selected a terminal which he connects to

CPU box. This of course means that the application written

for the CP/M operating system has been forced to assume the

least capable set of terminal features as more advanced

features are not supported on many terminals.

Acknowledging this shortcoming, the HP 125 will be

released with a great deal of specialized software, some

of which has been customized for the superior capab~ties

of the machine by authors of existing software applications

and some of which has been written by Hewlett Packard.

With these two sources of software in addition to all

generalized CP/M software, the HP 125 will bring an unprece-

A- 3 - 11

dented amount of microcomputer software to the purchaser.

As mentioned, the terminal portion of the HP 125 is

a fairly advanced data terminal, utilizing softkey structure

to access such features as the mode of logging data from

video memory to either the integral thermal printer or

the serial. printer connected to the I/O port. Saftkey

tree selection of functions now only serves to lessen the

amounts of keystrokes necessary to select functions, but

also serves to guide the user.

The softkeys within the HP 125 not only have the

inherent functions embedded within them to implement

the terminal features, but are also user programmable

to contain up to 80 bytes which can be used for every

thing from string substitution to escape sequences

which actuate execution of subfunctions contained in

applications. Each user program mabIe softkey can be

accessed from either a keypad stroke or an application

program for user selection. An application or user

programmed pneumonic label can be placed within the

bottom two rows to correspond to each of the eight

programmable keys.

With these advanced terminal features, the HP 125

offers advanced features for a CP/M stand-alone

computer system•

A-3 - 12

The HP 125 maintains a separate terminal function

ality within its operating capabilities. When power

is applied to the system it normally defaults to the

terminal mode of operation, with the selection of

loading the operating system to become a microcomputer

being selectable by the depression of a single softkey.

As a data terminal, the HP 125 has capabilities similar

to those of the HP 2621, with some enhancements common

to more advanced members of the HP 262X terminal family.

Additionally, it presents some features not previously

available.

First a brief description of the terminal. capabilities

of the HP 125 before a discussion of those terminal. features

unique to it.

As a terminal, the HP 125 presents the user with 24

lines containing 80 characters of text. Also on the

screen are a 25th and 26th row containing the labels for

either the embedded softkey tree structure, or when

selected, the user program mabIe softkey pneumonics.

The terminal allows selection of half-bright, underline,

inverse video, or blinking enhancements on a line-to-line

basis.

The keyboard is the fti[extended keyboard which contains

dedicated cursor control, scrolling, softkey, numeric pad,

and screen-oriented editing keys.

A-3 - 13

Input/output is provided by an IEEE 488 port and two

serial ports. One serial port is nominally dedicated to a

serial printer, the other to datacom munications.

Datacom m runs at 9600 baud and supports various handshakes

necessary for use with different CPUs and modems. The datacom m

port also supports the 13265A direct-connect modem. The printer

port is configurable for variable amounts of nuJ..1s, parity, and

the sense of the rate-pacing handshake. This allows the HP 125

to directly use a large amount of serial printers without the

necessity of any special logic or cables.

As an option, the HP 125 supports a thermal printer which is

integrated into the top of the terminal package. Either this

printer or a serial printer (if configured) are supported within

terminal firm ware by a softkey tree which allows the direct

printing of the entire contents of video memory, the visible

screen or a selected line. Additionally, logging modes can be

set so that all data coming to the video memory or only that

data overflowing video memory is printed.

All configuration information is stored in a CMOS RAM

which has battery backup, allowing the user-selected confi

guration to be maintained when the system is powered down.

The terminal supports remote operation and configuration

by use of escape sequences. As an example, the keyboard has

a 'home cursor' key which positions the cursor at the first

character in video memory. An application program can also

A-3 - 14

home the cursor by transmitting the correct escape sequence

to the terminal. By this means, applications running in either

the CP/M CPU within the system or an application running on

a mainframe can efficiently manipulate the terminal features to

provide a friendly applications interface to the user.

The afore described features make the terminal portion of

the HP 125 a high performance terminal for use with both the

CP/M CPU and when used with a remote mainframe. These features

are fairly comparable to those which are supported within the

HP 262X family.

Additional to these, the terminal implements several unique

features which are fundamental for its use as a CP/M terminal

interface and which also generally provide better performance.

Within.. the terminal, an I/O map is maintained which allows

the mapping of any source devices to any destination devices.

(For the purpose of this discussion, note the terminal considers

the output of the CP/M processor to be an input!) An example

may better illustrate this:

In order to diagnose a difficulty in running a CP/M-based

application, the HP 125 user can map the output (console out)

of the CP/M CPU to be not only the CRT screen, but also datacomm

port 1. To this port he has connected a modem which ties over

the phone lines to another HP 125 (or terminal) on which a

knowledgeable user of the application is viewing. By this means,

the output of the application and keystrokes entered by the

A-3 - 15

user (CP/M operates in a full duplex mode) can be viewed for

debugging. Further, were the user to map datacomm port 1 as

the input for the CP/M CPU (console in), the remote viewer can

also run the program and allow the direct operator to watch

in order to learn the correct manner in which to run the

application.

As another example of the value of this feature,

consider a CP/M application written to perform an

accounting function. Within the application, various

output is routed to either the screen or to the printer

for hardcopy. Often it is desired that this fixed

output routing be altered, perhaps to obtain hardcopy

of items normally sent to the screen. With the HP 125

I/O map, this is easily accomplished.

Another distinctive feature of the HP 125 is that

all the ROM-based routines which give the terminal

portion of the product its capabilities are vectored

through locations in RAM upon powering the system on.

By this means, an application which doesn't prefer to

use the terminal capabilities as dictated by the RO M

routines can intercept the routine call and substitute

in RAM its own specialized routine. An example of this

ability is also illustrative:

In the normal mode of operation, the cursor control

and editing keys as supported by terminal firm ware allow

A-3 - 16

the user to manipulate the text on the screen directly.

However, this 'feature' may not be desirable while in the

midst of running an application. The application can

consequently be written to intercept the keystroke process

ing routine and can then trap keystrokes which are extra

neous to the application previous to returning control to

the terminal ROM code for keystroke execution. Or by this

means, the functionality of keys can be altered.

By this method of embedding a high degree of functional

capability in ROM but yet allowing customization of routines

critical to certain applications, the HP 125 goes well

beyond the capabilities of most microcomputers. Very

sophisticated terminal features are ROM resident, and special

ized features are application programmable.

Understanding the HP 125 from the physical and features

standpoint allows us now to address the unique capability

that Hewlett Packard brings to the field of making distributed

processing an asset for organizations with large and diverse

computing needs.

In a previous section, the permanent and essential

nature of the mainframe was discussed. As present users

of the HP 3000 computer can probably attest, a maj:>r

usage of the system involves the creation, maintenance

and access to data bases which allow the smooth function-

A-3 - 17

ing of large organizations. This automation of data

base with instant and accurate access has been the principle

benefit of the computer to the business world.

Granted that the personal computer and the mainframe

have been discussed and the individual merits of both are

appreciated, an examination of the interaction of the

two for doing distributed processing is appropriate.

Personal computers have begun to appear within the

ranks of large organizations for use either by individuals

or for the needs of a small department. While the personal

computer has obviously fulfilled a purpose, the utilization

factor could be greatly larger. The HP 125 performs well. the

tasks being addressed by the personal. computer, but brings

much greater utilization without a greatly appreciable higher

price.

The function that is easily recognized for a personal

computer within a large organization is what may be called

data display and analysis. This term is meant to describe

the typical interaction of a manager with those performance

criteria of his organization represented by a collection of

data.

For the display and analysis of data, the personal

computer of today tends to fail to efficiently perform its

function. The data base for most organizations is large,

communal in nature, sub~ct to frequent correction or update,

A~·3 18

(!".
and most necessarily must be current and correct throughout

the organization. Using a stand-alone personal computer,

much time consuming and detailed analysis has been done

only to find the raw data was incorrect due to an error

in transcription or a recent update.

Additionally, most information within organizations comes

from a multitude of sources. Using a typical division within

Hewlett Packard as an example, data bases are maintained that

updated or accessed by accounting, personnel, purchasing,

scheduling, manufacturing, quality assurance, research & devel-

opment, administration, etc. This is the data that is the

sub~ct of display and analysis.

With todays typical personal computer, the transfer of data

between the micro and the mainframe is at best tedious if not

impossible or prone to error. The HP 125 strives to make this

process the most expedient, error-free and simple process

possible. With a wealth of data base management capability

available on the HP 3000 computer, the HP 125 leverages great

power into the hands of the person who analyzes or updates

the data base.

As an example, the HP 125 supports a screen-oriented

calculator which allows management personnel to easily

create, display and manipulate data. It allows the manager

to quickly explore "what if" questions regarding the vital

numerical data which represents his success or failure.

A-3 - 19
:.-~ J'

Additionally the HP 125 supports a graphical display package

which allows significant data to be displayed by means of

bar charts, pie charts, etc. With the HP 125, the data for

display, analysis and charting can interactively flow over

the terminal data comm port to and from the personal computer

and the mainframe. All data is from the common base of the

mainframe and represents the organizations most recent and

accurate figures. All results of analysis can im mediately

be re-entered into the common data base. Standardized

reports from functional areas can access the database from

other areas in which they don't necessarily have involvement

as to the generation of data, but from which their respective

areas can be directly affected.

All functional areas can present reports that are stan

dardized across the organization as to format. Data flows

efficiently between organizations, as data entered by one

area becomes im mediately accessible for all users. The

security of the data base is cared for by the information

services group, guaranteeing against the hazards of losing

critical data. The access of individuals to data is

controlled by management; the HP 125 can be programmed to

allow only visual display of the data without user

copying to printer or disc while the initial access can

be protected by the HP 3000 using passwords.

The strength of the HP 125 is its interactive ability

A-3 - 20

~
\

to dynamically perform as a port to the mainframe, a

stand-alone personal computer, or a synthesis of the two

functions. Stressing the dual nature of mainframe access

for data interchange with local analysis, theHP 125 features

utility programs which greatly simplify the user interface

and lessen the need for sophistication in performing complex

or powerful analysis of mainframe data.

As an example, take the purchasing department in a large

organization. One of the areas with the greatest potential

for cost minimization is the timely and careful control of

inventory. Suppose that this organization does basic manufact-

uring of Q wide line of products with many subcomponents and

consequently has fifty buyers interacting with a thousand

vendors regarding tens of thousands of purchased parts.

Due to the common and large data base needed to track the

tens of thousands of parts, the HP 3000 presents a good choice

for a central mainframe, probably also functioning for other

purposes within the organization. By utilizing the HP 125

as a personal tool for each of the fifty buyers, an extremely

powerful controlling application can be quiOkly written for

use by each of the buyers.

Organizing the overall data base using the HP 3000 and

IMAGE, the HP 125 can be used serve as the user interface

into the larger database for each user. Data is taken from

the mainframe into each of the fifty buyers personal computers.

A-3 - 21

The data resides locally and is manipulated by each buyer for

program med action items such as overdue shipments, low invent

ory items, high inventory items, changes in scheduling

affecting inventory needs, etc. Purchasing management can

control and standardize the means of analysis of each

buyers proficiency through a common local program. Each

buyer using his own data base can generate reports with

a common format with all buyers reports. Using the

HP 125 graphical package to generate bar or pie charts,

the performance indicators can be directly analyzed and

evaluated.

In this example, the HP 125 served as the individuals

port to the HP 3000 data base, it performed local analysis

of data, reduced datacomm overhead and expense, and allowed

local generation of reports and graphical analysis.

To summarize, it is believed that the manner in which

computers are used by organizations to enter, display and

analyze data is evolving towards a new distributed network

of processing units. The change on the scene is due to the

technological ability to produce processing units that are

inexpensive, reliable and capable. The ability to place

a personal. computer in the hands of an individual has shown

to be not only cost effective, but by being personal has

involved individuals not previously utilizing computing

A-3 - 22

~
\

power directly. While personal computers have these

benefits, they have not fully utilized the greater

advantage of being part of the entire organizational

data processing network within most organizations.

The HP 125 used with the HP 3000 shows the first

step in the evolution of data processing. This evolution

will bring computer usage into the hands of increasingly

greater amounts of individuals within organizations.

Data processing will become more convenient and cost

effective.

A-·3 -. 23

o N LIN E

OAT A 8 A S .£

S1'ART TO FINISH

RObert B. Garvey

Robert L. Womack IV

w1tan Inc.
Kansa. City, Missouri

Monday A-4 - 01

1

A

Presentation Outline

Introduction, wnat will be covered.

The FoundationSI

1 Goals, A System Language and MethodOlogy

2 System Principles

A Element.
1 Components
2 Relationahips

8 Use in System Phase.
1 Analysis 2 F1le Dellqn 3 General Design

3 Informltl0n system Arch1tecture

A General System Architecture
1 Detailing 2 Development 3 Implementat10n

8 Use of Image end V1ew

4 Interactlvlty tnd Control

A Menu programs

B Control Tables

C Data Area Control

o Quiet Call1bl11ty

B Dynamically Callable Prooramsi

1 SL'. USL's

A~4 - 02

1. Introduction

Foundation
••••••••••

Bob Garvey will flrst lay the a foundation for the understanding of an
approach used to understand, des1Qn, and .implement interactive. systems.

A system language, Goals, will be introduced to render systems and
components.

A general set of prlnc1ples will be presented incorporating the
components and structures inherent 1n a structured system. The use of
these components in the system life cycle and as a documentation system
w111 evolve.

A general system architecture will be presented and an approach to
Interact1v1ty will be discussed.

Callables
-----....
Bob Womack will present the detailed use of callable programs in the
3000 environment.

A-4 - 03

.~

~
\

Goals

GOA L S

A system Language

Goals was designed to meet the following criter1a:

* Prov1de good documentation* Ease malnta1nence
* Exped1te development* Provide users early understanding of System

functions and restraints
* Improve project management and reporting* Reduce resources required for documentation* Optimize System performance

Many of the above criteria can be achieved through reasonable
structuring of the system. But many of the structuring techniques
that are now popular are s1mply more trouble than they are worth.
Yourdon, Jackson and certainly 18M-'s HIPO involve more worJc In their
malntalnence than rewards merit. Warn1er comes closest to being
worthwhile but cannot be reasonably maintained in machine sensible
form.

Goals will be descr1bed as a methodology only because it seems to
accomplish all the criteria of the popular "MethodOlogIes", and much
more. We do not feel that any of the methodologies should be
cons1dered ends in themselves and more sacred than the system at hand.
Once the principles are learned and applied the impllcat10ns should be
obvious and the apparent need for a methodology forgotten.

A-4 - 04

Goals

Documentat1on

1 General Statement
2 Goals, structural Notation

1 General statement

The purpose Qf documentat1on 1. to esalst In the malntainenee and
operation of • system. to thOle endS software documentation must be
flexible, easily mOdifiable, current and easy to read. W1tan hal
developed a system of documentation called Goals which use. simple text
files associated through control· numbers to meet the criteria l1sted
above. The following sect10ns (2 and 3) describe the general features
of the structural notation used in GoalS and the General system
structure used in system projects.

Goals 1s used throughout the lite ot a project. It 1s used tOI
1 To state requirements
2 Render flo~ and components in the analysis phase
3 To develop, test and render a general design
4 As a pseudo COde or structured eng11sh for detail design
5 As a high level programming language
6 AI a project ·network descriptor.

2 Goals, structural Notation

Formal structuring permit tnree primitive operat1ons.
Sequence, Repetition and Alternation. structural Notation was
developed to meet the criteria of formal sYstems 1n a generalized
way and was guided by the assumptIon that systems must be rendered
in a machine sensible form. Goals relies upon
text sequences and key words as it'. basis. Structural Notation
1s the basis of the syntax of Goals.

Following are the representations of the primitive structures u.1no
flowCharts and Goals. Tne word procesl 1s used to represent a step, a
procesl or an item depending on the use of the notation at the t1me.

A-4 - 05

Goals Primitive Structures

SEQ U ENe E

Goals

FLaOW
<

..........
BEGIN

•••••••••
)

,
•

1············-1
1 PROCESS 1 1

1·············1,
•

•••••••••••••••
1 PROCESS 2 ,

•................
1................

I PPROCESS 3 ,
•................

!
••••••••••

< END
••••••••••

)

~.
\

GOAlIS 1 PROCESS 1
2 PROCESS 2
3 PRO·CESS 3

A-4 - 06

FLOW

A L T E R· NAT ION

...........
< BEGIN >...........,

•

** *
* *

* IF X * •••

* ** **I
false

1

*
* *

* *
* IF I *

*' *• •
*,
•

false
I
*

*

1·············1
true••• ••>1 PROCESS 1 1···1

1·············1 I
1
1
1
1
1
I
1

! •••~•••-.-_•• ! I
··-true·_·.··>! PROCESS 2 1···1

1····-·······~1 1
1
!
I,.
I
1,
•

* * 1·········~···1 1* IF Z *·.·true····.··)! PROCESS 3 I···!
* * I·············! 1

* * 1* 1
1 1

false I
! 1
1<··_·················_-···_·········_-<·,
•

•••••••••
< end >--.._-...

GOALS IF X IS TRUE
PROCESS 1

II'~ y IS TRUE
PROCESS 2

IF Z IS TRUE
PROCESS 3

A-4 - 07

REP E TIT ION

FLOW
••••••••••

Goals

< BEGIN..._--_._.
!

*

>

<-false···<*
1 *
t..
i•

! 1--···-····--··-1
1<·········-1 PROCESS 1 11-·········__···£

..--_.
< END)-.._.-

* * * *
If' Y .····true····

* I•• *
,·* t·

GOALS REPEAT UNTIL Y IS FALSE
PROCESS 1

PROCESS 1A
PROCESS 18
PROCESS lC

I•
The exclamation point is used to signify control In the
REPEAT loop. If the condition 1s met the control passes to the
statement following the (1) on the same level. If the condition
1s met the control passes to the first statement following the
condition.

Processes lA through lC were added to Show a simple subsequence.

A-4 - 08

Goa11

DATA STRUCTURING

Goals Is a110 used to represent data structure. As w1th control
structure there are three general structures which can be
represented.

nata items listed line after line represent sequence:
1 item-t
2 ltem-2
3 1tem-]

Subsequences are represented as sequences on a level below the
item of which they are are a part.

1 item-l
lA 1teol-1A
18 ltem·1B
lC item-1C
2 1tem-2
3 Item-3

LEVE~S: are represented graphically w1th the use of 1ndentatlon. Tne
first Character in a line 1& considered to begin an "A" level
subsequent levels are 1ndented an additional three spaces each.

Success1vely lower levels (nigher value characters and more deeply
indented) represent subordinate processes. As will be seen in the
general system structure the highest most levels are controled by
increments of time; years, quarters, months, days, etc. wh1le lower
levels are controlled by events or conditions.

CONTRO~ NUMBERSI The control numbers used In Goals are developed by
alternat1ng the use of numbers and letters to represent sucesslvely
lower levels within the system. The system 1s slml11ar to English
outl1ning except that only capital letters and numeric characters are
used. For a given statement there 1s nothing to indicate 1tl posit1on
in the n1erarcny unless the entire control number Is dlp1cted or the
starting control number on the page 1s given. When Goals statements are
macn1ne stored the entire control number is either stored or 1s
assumed.

A-4 - 09

.~

Goals

Repetition 1n data structuring can be represented by "(5)· at the end
Of the item name whIch 1s repeated, this can take the form of an
express10n (i.e. (0>&<15)).

1 1tem-l(S)
lA 1tem-l

Examplel a file of accounts

Account F1le
1 Ac:count(s)
lA Ac·count
18 Account number
Ie Name
10 Address(s)
101 Address type Ch=nome,w-work)
102 Street number
103 Direction
104 Street name
lD5 Affix
lE Amount due
1F Order(s)
1Fl Order number
lF2 Item(l)
1F3 Item

ALTERNAtION:
Alternation· is represented with the IF control word or with the

notation (1,0).

2A IF .e9ment deser1ptlve code = 1
2Al mater1al
28 IF segment descript1ve code = 2
281 supply

Thi. convention 1s seldom used because the REPEAT handles
most situations for the case of data structuring.

The otner type of alternation 1s within 8 string of data items
where the item can either exist or not exist. Another way of rep
resentln a non-reqU1red item.

1 item-l
2 ltem-2
3 ltem-](l,O)

Th1s lays that items 1 and 2 must exIts or are required and item 3 Is
optional.

D1scussion.

The highelt level of repet1tlon within a data structure is assumed to
be the key to the file or at .least the major sort sequence. If

A-4 - 10

Goals

additional keys are required they can be represented with the word KEY
(1.e. item-] (KEY)) or an additional data structure 'can be presented ~
to represent the structure represented when the KEY 1& used.

Goals can be used to represent logical structures a·s well as the
Phys1cal implementations. It Is important that the required logIcal
views of data be derr1ved and documented before any phy- sical
structures be planned. A recommended goal in system de.Ign Is to have
8 one to one relationship between the Phys1cal and the loq1cal
structures of the system. The coding complex1ty 1s reduced appreCiablY
as well as the maintalnenee activity. An add1tional byproduct 1s the
ab111ty to use Query or other general inquiry languages in a more
straight forward fashion.

A-4 - 11

Principles

2 Principles

An Informat1on system is distinguished from operating systems, command
1nterperters, compilers and the lIke. An Information System 1s that
set of communications, operations, files and outputs associated with a
single conceptual "file".

I am not talking about a single program. Historically I am talking
more about an applIcation area.

A. Elements

Al Components

First an analogy: All purely mecanlcal devices are made up of
elemental components, the 1ncline plane, the wheel and axle, the lever
and the chamber, The Phys1cs of these basic components and the
materials from wn1ch they are constructed define the limits of their
application. You may be saying, that list does not sound correct or
"what about the screw". In listing elemental components certain
definitions are 1nherent.' I def1ne the screw as a "rolled incline
Plane".

For informat1on systems I assert that the list 1s: Communications,
files, operations and outputs. The limits for such systems are defined
by the order1ng of the elements us1no the primitive structures
(sequence, alternation and repetition).

As • note, to date the list of elemental components may have been
1nput, procesl and output without reguard to to structure. This 1s
more elemental considerIng all computer processes but 1s unbounded.
This makes a general system design technique very difficult. Adding
hierarchy to the above does not enhance these pr1mitlves to any great
extent.

A2 RelationShips

With these bQundrles and definitions in hand, lets look at the
relationships that develop.

There 1s generally a one to one relationship between file structure and
operations structure, between comrnunlc.tlon. structure and operatIons
structure, between output structure and operations structure. In other
words the operations or control structure mimics the other components
of the system and each componet Is related to the other in structure.
The structure begin with the file structure.

Example, it you have e file of accounts and .you want to report them,
the report program will have to be structured exactly the same as the
f1le or dat8base to report all the data 1n the file. Most often there
1s 8 one to one relationShip between files and outputs. In the report
example the report structure could be expected to look exactly ,like tne
f1le. If the report 1s to look different than the file there would be
in interven1ng operation usually a sort or selection to convert an

A-4 - 12

princIples

intermediate output to the final output.

The same Is true of communications which on the data process1ng level
are the transm1ss10n. to the uses, the screens and the message.. The
structure of a commun1cation 1s generally the same as the operation
structure wh1ch Is the same as the data structure and thus the
communicat1on structure 1s the same as the data structure. This
sUbstantiates the theory that systems can be completly described
knowing only the deta structure. True but limited. Knowing the
structure of any part should in theory give you the whole.

If everything descr1bable about a system can be described in 11~ple
structures (and thus in Goals) and the components of a system include
only communications,' files, operations, and outputs and Goals can be
used 1n all system phases then we have a framework for a general system
covering conception through malntalnence.

Lets look at any application. TraditIonally you would begin wIth a
reQuirements statement and do an analysis of the existing system.
Forget flowcharts, class1c narratives, and other chart1ng techn1ques.
Think of progressively decomposing the system using simple english
outlining starting w1t~ the functions. Functions fit 1nto the
operations structure discussed. You will note that a. you_get down a
level ·or two you will encounter repetitIve tasks dependant on
conditions, add REPEAT and IF to your outlines and keep describin9.
Remember that users can understand outlines and repetition and
alternation are not difficult to understand. ~

-Operations will include existing machine processes, manual proceedures,
paper flows, sorting processes ect. As you are going through the
operat1ons keep a l1st of the f1les that are mentioned and note the
file keys (and sorts) and any advantages or requests for multiple
keys.

List any outPuts or reports prepared by the organization or required in
the future.

Communications w1ll be min1mal at this stage but note any memos that
may gO from one section to another of a "file" of notes used as
crossreference or duplicate of any more permlnent tile.

Your documentation 1& now shap1ng up, your notebook and I .slume that
the whole world has change to 8 1/2 by 11, should be divided Into
commun1cations, f1~e, operations and outputs.

The starting point for des1gn 1s the detail1ng of the files 1n your
file list. You w1ll want to reduce the files as much asposs1ble to a
single file. By way of naming conventions the "f1le" Should have the
same name al the system at hand.

You w1ll notice that many Of the manual files are really communications ~.

in that they are "views" of the file that are required In a particular ~

sUbfunctlon.

A.-4 - 13

Pr1nclples

The design Of the conceptual t11t must be validated against the
r,qu1red operations. I am golnv to leave this hanging for a moment to
discus. a General System Structure.

A-4 - 14-

Architecture-

l General System Structure

A Gen,ral system Structure 1s presented on the following page in Goals.

This structure 11 not apPll~able in all systems but 1S used as a
pattern for SYltem dlscr1ptlon, des1gn and understandln;.

The key elements of design of th1s structure are:
1. f11e unitYI a system w1th this structure hes only

·one conceptual file. It may have any number of
datasets of ~r Physical files but they must be
formalized into one.

2. Journalizing or logging; all changes made to data
items can be (and normally should bel logged.

3. Last action dating, 1ncorporated as part of logging,
permits an offline log.

One deta11~d implicat10n of this 1s need to have a -date
stamp in each detail set and • master date stamp in the
master file.

A-4 - 15

~.,.. ,.,..... ,.
r'···

General System Architecture

8eg!n system
REPEAT until EDSystem

REPEAT until EOYear
REPEAT until EOQuarter

REPEAT unt1l EOMonth
REPEAT until EODay

REPEAT for each user
Begin online
identify operator and 'security
Open system file
Open current files
REPEAT for each Communication

IF control transfer
transfer control

IF batch request
initiate request

IF update , add or delete
Begin
Memo to LOG
LOCK
Update ,add or delete
UNLOCK
End

IF inquiry
perform communication operation

•
1,

•
I
End Online
Beg1n daily batch
Perform dally batch processing
Run LOG analysis
If end of week

Perform Monthly processing
•
ROLL FILES

I,
•
perform Monthly processing
Perform Quarterly processing

••
Pertorm end of year processing

1
Close system
End

A-4 - 16

Architecture

Architecture

A GENERAL DESIGN

With this Architecture and database design complete we have the basi.
for the development and implementation of any appl1cation.

Step 1 Is inquIry into our fl1e, If there 1s only one search criteria
then we calculate into to f1le and return the master data or a summary.
Once positioned 1n a master we can chatn through our detail lets or
follow appropriate programatic paths.

The ma.ter 8creen (e communication) should provide 1nquiry, update, and
addition ability.

Each detail let should nave • screen providing the same update add and
inquiry abi11ty. our screens w111 be one for one with the detail sets.
Th1nk of a detail set as having a buffer that will correspond to
communication (VIEW) buffer. Moving date w1thin one program 1&
facilitated with this concept.

Tne list Of detail sets becomes a list of programs which must be
written to handle th~ retrieval, UPdate, addition, deletion and ed1t1ng
of data for the aetail set.

When th1s 1& complete you will have a function1ng system, 1t w1ll not
function well. I have intentionally oversimplified. The office
proceedures which may be 1n place or will evolve wIll dictate wnat
combinat1on of sets will appear on 8 screen but no effort was be lost ~

in developing the barebones system according to this method. Each let
(detail set) should have its own program to handle retrieval and
update. When reQu1rements demand inclusion the programs can usually be
used with few changes. You can take this one step further to Include a
general scheme to handle mUltiple data lets on one screen.

The question then becomes; "How do 1 t1e this 811 together?".

A-4 - 17

Control

4 Interact1v1ty and Control

Lets lay that we have written a system composed ·of a serles of programs
that co.rrespond to our data lets. The way in which. we permit
1nteract1vlty 15 throUgh a control program called MENU.

4A Menus

A malter data set w111 exist at the top of tne conceptual file and the
pr1mary search path will be the fIle key. Other search paths will be
prov1ded through subsystems such as "Name family" or through automatic
masters. For all detail sets associated to the master there will be a
program to handle that data set. Your analysis will dictate all the
processes that the operator may w1sh to perform. As other requirements
develop associating more than one data set the code can be combined and
new screens developed.

The menu control program provides transfer of control. It can do th1s
either "quietlY" of "loud". Loud 1s the obvious implementat1on, the
operator choses 8 data set from 8 menu screen, the control 1s
transfered via a "call" to a dynamic subprogram the data set 1s
accessed updated, ect. and control returns to the controlling menu.
But let· us give the operator the abilIty to "tell" the system where he
wants to go next. If he does a common area flag can be set to lay
don't display the menu s1mply transfer control to some other
subpro9ram. We call are common area for data SYSBLK and out f18g(l) Ql,

~ Q2, ect. (you are not limited to one level of menu).

A menu structure may look 11ke this:
MAIN MENU

REPEAT UNTIL PARENT OR END OF SYSTEM
IF LOUD

GET MAIN MENU SCREEN
SEND (SHOW) SCREEN
REPEAT UNTIL EDITS PASS

EDIT FIELD
IF EDITS FAIL

SEND SCREEN
•SET MODE TO QUIET

IF QUIET
IF NEXTPROCEEDURE-A

CALL A
IF NEXTPROCEEDUREaB

CALL B
•••

IF NEXTPROCEEDURE =N
CALL N

ELSE
CALL CONTROL'NUMBER'TABLE

•

A-4 - 18

Control

Through this technique thole programs wh1ch are not being used are not
using memory resources. The CONTROL NUMBER TABLE refers to ~

implementat10na which have levels of menus. If the control reference
1& not handled at that menu level control 1s approprlatly paSled to the
proper level where a ,control program can handle 1t.

The quiet "CALL" technique can be used for any of the data set programs
discussed by putt1ng the quIet call structure "aroundft'the program and
requlrlnQ the palsing of appropriate data into or from the
commun1cation buffer. BOb Womack will.aescr1be thiS technique In the
"NAME FAMILY" dlscuss1on.

A-4 - 19

SL's and USL's

S L ' s

o Modules, Entry points, Programs referenced 1n require
C57 entries if they are not allready referenced 1n 8
running program.

o Code 1s sharable by all programs. The PUB.SYS SL
1s avalable to all programs. Account and group SL's
are available to programs being run out Of that Account.

o .You need exclus1ve access to the SL to make an entry 1n it.

o ~hen SL entries are made you do not need to prepare the
SUe It 1s available after you have exited the segmenter.

~
\

U S L • I

o Pro;rams comp1led into a USL must be prepared before they are
runnable.

o Many programs may be compiled into the same USL. When
a program 1s run the system will look to the USL for resolution
of called programs, 1t then lOOks to the PUB.SYS SL unless
a library 1s spec1fied in the RUN. (RUN proglLIBcG)

o All USL resolved entries create XeST entries except the outer
block.

CST'S and XeST'.

o There are 192 CST entrIes available to user processes

o There are 1028 xeST entries ava1lable to user processel.

A-4 - 20

COMPILE INTO A USL

lJOB ~OBNAME,username/ serpass.accountname/accountpa.I,OUTCLASS-,l
leOBOL progname,SNEWPAS ,SNULL
lSEGMENTER
USl., $OLDPASS
NEWSEG progname,progname'
PURGERBM SEGMENT,prOQna e'
USL yourusl
PURGERBM SEGMENT,progna e
AUXUSL SOLOPASS
COpy SEGMENT,progname
EXIT
lTE~L user.acct, yourprog •••> yourusl
lEOJ

PRE P o F U 5 L

lJOB DyourusL,user/userpass.account/accountpasslPRI=ES;OUTCLASS-,1
!PURGE yourrun
lCONTINUE
lBUILD yourrun,DISC-2500,1,11CODEapROG
lSEGMENTER "
USL yourusl
PREPARE yourrun,MAXDATA=16000;CAP=MR,DS
EXIT
ITELL user.acctl yourrun •••) yourrun
lEOtJ

CAL LAB L E S I N T 0 S L ' S

!JOB D1SL,user/userpals.account/accountpass;OUTCLASS-,1
lCOBOL yourprog,eOLDPASS,SNULL
lSEGMENTER .
AUXUSL SOLDPASS
SL SL
ADDSL youfProg
EXIT
lTELL user.acct; yourrun •••) yourrun
IEOJ

A-4 - 21

MEN U

REPEAT u~t11 parent or nd of system
IF lotAd

get menu screen
show screen
REPEAT until edits pass

edit fields
IF edit fall

send screen
1 •
set mode to qUiet

•
If qu1et

IF nextprocedure .• "0"
CALL "0" USING ., ., •

IF nextprocedure = "I"
CALL "I" USING ., ., •

•
•
•

IF nextprocedure. = "n"
CALL "n" using ., ., •

ELSE
CALL "CONTROLNUMBERTABLE" using nextprocedure

•
•

A-4 - 22

FACULTY PERCEPTIONS OF COMPUTING FACILITIES
(Based on a study of UTC Faculty in 1981)

Dr. Lloyd D. Davis

Purpose of Study

The University of Tennessee at Chattanooga is very typical of many of

the public institutions operating today. It had a history of minimal com-

puting until 1974 when major computer acquisitions were made. Further sig-

nificant upgradings have been made since then with another major acquisition

being consummated in 1978. UTC, therefore, is a model of interest to many

concerned with the effects of these computing resources on faculty attitudes

towards the curriculum, general educational issues, relevance of current

computer facilities, and the entire computing mileau. Hence, other institu-

tions may utilize this model and perhaps the data and analyses presented as

a barometer for assessing the impact of instructional/research computing

needs, resources, and values at their own institutions.

Background

UTC is a Masters granting institution located in urban Chattanooga,

Tennessee, and is a primary campus of the University of Tennessee. With

approximately 8,000 students and 250 plus full-time faculty, UTC is prima-

rily an undergraduate institution. Its role within the State of Tennessee

is to provide quality education at the baccalaureate level to a largely

commuting student body. Students have degree options in the many areas of

the Arts & Sciences and the professional areas of Engineering, Computer

Science, Nursing, Business Administration, Human Services and Education.

Somewhat unusual for a state institution is its private foundation with a

$10,000,000 plus endowment which is used to enrich academic areas at UTC.

Monday A-5 - 01

FACULTY PERCEPTIONS 1981

Included in this enrichment was the acquisition of an HP2000 in 1975 strictly

for the use of faculty and students. This timesharing system replaced an IBM

360/30 with RJE capability to a large 360/65 system a hundred miles away_ In

1978, UTC purchased a second academic computer system, the HP3000 Series II

with funds from a capital development campaign. Currently, the HP20QO and

HP3000 are connected to over 80 terminals and provide 63 ports of instruction

and research to students and faculty; UTC continues to provide RJE activity

to two large IBM 3031's at a remote location.

Methodology

In the spring of 1981, all faculty at the University of Tennessee at

Chattanooga were requested to complete a questionnaire concerning their per

ceptions regarding instructional and research computing. The first objective

of this survey was to identify perceptions concerning computing both at a

general level for institutions and for majors at large. The second objective

was to discover specifics about UTC and individual departmental needs. Pre

viously, two other surveys were conducted dealing largely with these same

issues. In 1974, as part of a report to the University of Chattanooga Found

ation, Drs. Carney, Davis, Smullen, and Ward, all of UTe, reported similar

analyses. In 1978 essentially the same study was replicated by Dr. Smullen.

Although the data reported will refer wherever possible to all three

surveys (1974, 1978, 1981), attention will focus on the most current, which

is 1981. For purposes of reporting, some departments have been coalesced

into larger areas. These four larger areas are the Arts & Sciences; Business

~ Administration and Economics; Engineering and Computer Science; and

A-5 - 02

FACULTY PERCEPTIONS 1981

Education, Nursing t Human Services, and miscellaneous. Although the data

could be tabulated in many ways, this report will largely work with the posi

tive responses "Strongly Agree" and "Mostly Agree", for the major ar·eas

outlined.

Responses·to Survey

Fifty-seven percent of the teaching faculty responded to the 1981 sur

vey as compared to 54 percent and 69 percent in 1978 and 1974, respectively.

Table I shows the responses by area, and it is seen that the dominant areas

are Humanities, Physical Science and Mathematics and Business Administration

with 22, 20 and 12 percent of the total, respectively. No department or

area was vastly under-represented or over-represented in the survey. The

continuation of Table I breaks these larger areas into their major compo

nents for purposes of detailing the responses.

Computer Usage

Computer usage of the respondents indicates that the number of faculty

who have used the computer moderately or extensively in the past has in

creased from 49% in 1974 and 48% in 1978 to 52% in 1981 (see Table II). The

Humanities, Education, and Physical Science and Mathematics declined from

21%, 37% and 67% in 1978 to 19%, 32%, and 59%, respectively in 1981. How

ever, Behavioral Science and Engineering grew from 44% and 55% in 1978 to

64% and 100% respectively in 1981, indicating heavy computer experience for

those areas. The area which dec1ined t surprisingly, was Business Administra

tion and Economics, as it declined from 75% to 47% in the same period.

A-5 - 03

~
TABLE I

COMPOSITION OF THE GROUP OF RESPONDENTS

1981 1978 1974
Total Responses 144 125 lIT

Total Faculty 253 231 194

Percentage Response 57% 54% 69%

By College/School/Division Number of % of all Number of Percentage
Responses Responses Faculty Response

Arts and Sciences 1981 71 49% 142 50%

1978 65 52% 130 50%

1974 76 57% 127 60%

Engineering 1981 11 8% 21 53%

1978 11 9% 11 100%

1974 7 5% 8 88%

Business* 1981 17 12% 32 53%

Education* 1981 14 10% 29 48%

Nursing* 1981 7 5% 12 58%

~ Human Services* 1981 14 l~ 17 82%

*Data not available for earlier years for these areas.

COMPOSITION OF THE GROUP OF RESPONDENTS IN 1981

By Area:

Humanities

Physical Science & Mathematics

Behavioral Science

Engineering

Computer

Business

Education

Nursing

Human Services

Misc, Unknown

Total

Percentage of
Frequency All Responses

31 21.5

29 20.1

11 7.6

7 4.9

4 2.8

17 11.8

14 9.7

7 4.9

14 9.7

10 ~

144 100.0

A-5 - 04

TABLE II

UTILIZATION OF THE COMPUTER BY THE RESPONDENTS ~

% Positive Responses % Responses
by Area

Arts & School of School of All Negligible
Sciences Business Engineering Others Extensive Moderate or No Response

1981 42 47 100 31 17 35 48

I have used the computer 1978 37 ** 55 ** 18 30 ·53
extensively in th~ past.

1974 38 ** 100 ** 11 38 51

1981 45 70 91 47 17 35 48
I plan to use the· computer
extensively in my future 1978 54 ** 64 ** 18 50 31
classroom activities.

1974 74 ** 100 ** 26 54 20

1981 58 82 91 70 51 17 32
I do not plan to use the
computer in my future 1978 49 ** 55 ** 34 26 41
research.*

*Disagreement with this statement has been treated as a positive response. No such question was asked in 1974.

**Not available.

TABLE IIA

PERCENTAGE UTILIZATION OF THE COMPUTER BY 1981 RESPONDENTS
(EXTENSIVE OR MODERATE POSITIVE RESPONSES ONLY)

Past Usage Future Classroom Future Research
By Area: Responses Responses Responses

Business, Economics 47 71 71

Physical Sciences, Mathematics 59 55 55

Engineering, CPSC 100 91 91

Behavioral Sciences 64 64 64

Education ,. Et ~1 32 46 46

Humanities 19 29 29

A-5 - 05

FACULTY PERCEPTIONS 1981

This can be explained, in great part, by the fact that the 1978 survey in

cluded Computer Science with Business while the 1981 survey included

Computer Science with Engineering.

The faculty projections of future computer activities in their respec

tive classrooms indicated that both the School of Business and the School of

Engineering will in the future make much more extensive use of the compute·r

in the classroom. The former will grow from 59% to 70% and the latter from

64% to 91%. When asked about the use of the computer in their future re

search all areas reported positive responses. Over 68% of the faculty in

dicated they expected to make extensive or moderate use of the computer in

future research as opposed to 60% in 1978. Also noted was the large decrease

in the neutral or no response category. The data generally supports the fact

that UTC is acquiring either through recruitment or "in-house" training a

computer literate faculty who generally are using the computer more and based

on these experiences, will utilize it more in the future in both their class

room and research activities. Areas such as Engineering, Computer Science,

Behavioral Sciences, and Business are leading this growth.

General Opinions

Faculty at UTC were asked to respond also to general questions concern

ing their perceptions regarding the computer and its effect upon society and

education. Table III shows the data related to these questions.

There has been a small decrease in the positive responses to the state

ment that computers will improve education. Although in 1981 this proposi

tion was agreed with either strongly or mostly by 86% of the faculty, in

A- 5 - 06

~

TABLE III

GENERAL OPINIONS

Percentage Positive Responses All Responses

Arts & Busi- Engi- Agree Neutral Disagree
Sciences ness neering Others Strongly Mostly NA Nostly Strongly

1981 85 88 91 90 51 35 9 3 1
Computers will improve
university education. 1978 86 96 82 56 34 8 2 0

1974 59 54 100 35 25 41* 1 1

1981 55 59 64 44 20 33 28* 14 4
Computers create an
impersonal society.** 1978 52 55 46 16 37 24* 18 5

1974 43 64 57 22 28 25* 15 11

1981 90 82 100 96 54 38 1 6 2
Computers are beyond the
understanding of typical 1978 79 86 82 38 43 6 7 5
university undergraduates.**

1974 78 92 100 53 31 11 4 1

"'1981 47 88
~

82 60 29 29 8 19 15
The computer is as important
a resource as the library. 1978 46 80 64 30 31 7 24 10

1974 28 58 71 20 22 15 29 15

*Large Neutral, No answer, or No Opinion response (20% or over)

**Disagreement with this statement has been treated as a positive response.

A-5 - 07

FACULTY PERCEPTIONS 1981

1978 this issue received 90% positive responses. On the issue of computers

creating an impersonal society, 53% of the faculty disagreed. On several

such questions disagreement was taken as a positive response. Clearly the

faculty feels computers are well within the capability of understanding of

typical undergraduates, as 92% responded positively in 1981, up from 81%

in 1978. Response to whether the computer is as important a resource as

is the library is much less positive. The data analysis indicates 58% of

the faculty affirm this in 1981 as opposed to 61% in 1978. However, both

the Engineering and Business areas grew from 65% and 80% in 1978 to 82%

in 1981 respectively. Not surprisingly, Arts and Sciences disagreed with

the library computer issue and affirmed this issue at only a 47% rate.

Computers in the Curriculum

This section deals with faculty perceptions of the use of the computer

in specific subject matter areas. The responses to the issue of the neces

sity for computers in instruction in Natural Sciences and other sciences,

the desirability of accessing computers in the Behavioral Sciences, the

knowledge of and practice on computers for Business Administration, and the

awareness of computing for students in the Humanities have not changed appre

ciably over the period 1978 to 1981 (see Table IV). That computers are

necessary for instruction in areas such as Natural Science, Engineering and

Mathematics is agreed with by 89% of the faculty with only small variance

among the areas. That instruction for students in the Behavioral Sciences

requires access to problem solving via computers is agreed with by 74% of

the faculty and is as high as 91% in the Engineering area. Eighty-nine

A-5 - 08

~

TABLE IV

COMPUTERS IN THE CURRICULUM

Percentage Positive Responses All Responses

Arts & Busi- Engi- Agree Neutral Disagree
Sciences ness neering Others Strongly Mostly NA Mostr'y Strongly

Computers are necessary for 1981 86 88 91 93 59 30 8 3 0
today's instruction in areas
such as natural science, 1978 89 88 91 57 32 6 5 a
engineering, and mathematics.

1974 88 84 100 56 30 9 1 4

Instruction for students in 1981 85 77 91 80 35 39 21* 3 0
the behavioral sciences
desirably requires access 1978 68 84 46 43 29 25* 3 a
to computers for problem
solving. 1974 79 74 100 38 41 17 5 0

Business Administration 1981 86 100 91 91 60 29 9 1 a
students must have know-
ledge of and practice in 1978 85 94 91 58 30 10 1 1
the uses of the computer
in business applications. 1974 80 92 100 54 32 12 1 1

Students from the humanities 1981 89 65 91 93 44 44 11 1 0 ~
should have an awareness of
the i~f1uence of computers 1978 88 88 91 45 43 10 1 1
to today's society.

1974 82 92 100 40 47 10 3 0

The curriculum of UTC 1981 44 77 64 58 16 38 38* 5 1
should have more breadth
and depth of computer 1978 63 63 55 16 46 30* 6 2
experience available to
the students. 1974 66 78 86 29 41 24* 5 1

A-5 - 09

TABLE IV A

COMPUTERS IN THE CURRICULUM**

kesponses of the various areas concerning
the need for computers in their own curriculum.
from the 1978·and 1981 surveys. Agree Neutral Disagree

Strongly Mostly NA Most!.¥. Strongly
Engineering & CPSC 1981 36 27 27 9 0

1978

Science & Mathematics 1981 28 14 45 7 7

1978 68 24 5 3 0

Behavioral Sciences 1981 36 36 18 9 0

1978 44 44 11 0 0

Business, Economics 1981 53 29 12 0 0

1978 84 11 5 0 0

~ Humanities 1981 26 13 32* 13 16

1978 38 45 14 0 3

*Large Neutral, No Answer or No Opinion (20% or over)

**In 1978 CPSC was tabulated with Business and Engineering with Science.

A-5 ~. 10

FACULTY PERCEPTIONS 1981

percent of the faculty believe that students in Business Administration

must have knowledge of, and practice in, computerized business applications.

A robust 88% of the faculty believe that students in the Humanities should

have awareness of computer influence on society. On the issue of whether

the UTC curriculum should have more breadth and depth of computer experi

ences for students, affirmative responses declined from 62% in 1978 to 54%·

in 1981. Although the areas of Business and Engineering showed higher 1981

figures than the corresponding areas in 1978, Arts and Science faculty

affirmed this by only 44% in 1981', a 19% decrease over 1978. This implies

a general satisfaction with computing for this college rather than a de

crease in interest directed towards computing. Correspondingly, in 1981 as

compared to 1978, even larger numbers of faculty from the areas of Business

and Engineering Believed there should be more computing. This obviously

indicates a major need for computing in these areas and a growth of computing.

When faculty were asked about the need for academic computing in their

own departments, a high of 82% in Business felt their department should uti

lize the computer more in the curriculum than it presently does. The lower

affirmative responses of 42% and 39% from the Sciences and Humanities re

spectively indicate a general satisfaction with what their areas are now

doing, rather than dissatisfaction with the computer. This indicates a

trend towards maturation in terms of computer utilization in these areas.

Computing Facilities

Table V presents data on faculty perceptions of UTC computer facilities.

Many faculty in 1981, especially in the Engineering and Computer Science area,

A-5 - 11

~

TABLE V

PERCEPTIONS OF COMPUTING FACILITIES

Percentage Positive Responses All Responses

Arts & Busi- Engi- Agree Neutral DisagreeSciences ness neering Others Strongly Mostly NA Mostly Strongly1981 42 53 9 49 15 28 35* 12 5UTC maintains and provides
inadequate computer support 1978 48 18 17 29 43* ·8 3for academic instruction
and··reseoarch. *~ 1974 32 100 16 23 48* 11 2

1981 56 71 36 60 19 40 25 10 5The present computer system
and staff is cdnducive to 1978 54 55 17 38 34* 9 2faculty use for academic
projects. 1974 37 86 1 15 44* 29 10

UTC should provide short 1981 85 82 82 96 44 44 9 2 1training courses for faculty
on the computer and the 1978 88 73 47 39 13 0 1available packages.

~
1974 93 71 54 38 8 0 1

The computer should be made 1981 45 76 73 53 19 35 37 8 1more available to the
faculty and students. + 1978 59 55 20 38 33* 9 1

The cluster concept is the
44 15 32 46 6 1mosr desirable means for 1981 44 47 82

providing terminals for stu-
dent instruction. +

The cluster concept is the most
36 27 4 15 52 17 12desirable means for providing 1981 13 12

terminals for faculty research.+

Text processing should be
provided by UTe to its stu
dents and faculty even if
this requires major new
resources. +

1981 44 53 73 53 22 26 35 8 8

*Large Neutral, No Answer, or No Opinion response (20% or over).
**Disagreement wirh this statement has been treated as a positive response.+No such question was asked in 1974.

FACULTY PERCEPTIONS 1981

perceived computing facilities to be inadequate. Positive responses in this

technical area have declined from 100% in 1974 to 18% in 1978 and 9% in

1981. Otherwise the overall faculty responses have been positive with 39%

in 1974, 46% in 1978, and 43% in 1981 affirming UTC provides adequate

instructional and research equipment.

On the issue that the present system and staff are conducive to faculty

use, the positive responses have grown from 16% in 1974 to 55% in 1978 to

59% in 1981. Again, as with the previous question, Engineering and Computer

Science with only 36% positive responses perceive it less positively than

do the other departments. The general dissatisfaction noted from Engineer

ing and Computer Science is believed to be due to the lack of major compu

ter systems that are local and the perceptions associated with computing at

a remote site.

When questioned regarding short training courses for the faculty, 88%

responded affirmatively with little variation over the respective areas.

This service is well received by the general faculty.

The question "should the computer be made more available to the faculty

and students" was answered "yes" by 54% of the faculty in 1981, down from

58% in 1978. Very high rates of 76% and 73% were seen in the areas of Busi

ness and Engineering, indicating a perception of greater need in these areas

than in the university as a whole.

UTC utilizes the cluster approach to provide terminals for the students

and faculty. Approving this cluster concept for student instruction was 47%

of the faculty with a group of 46% being neutral. Engineering endorsed this

A-5 - 13

.~

FACULTY PERCEPTIONS 1981

at a 82% rate. On the issue of desirability of computer clusters for faculty

research, only 19% endorsed this concept with the highs ranging from 36% in

Engineering to a low of 12% in Business.

Text processing is being introduced gradually in UTC on the HP3000

through the package EDIT2. About 48% of the faculty believe this facility

should be offered to faculty and students even if major new resources are

required. Areas ranged from a high of 73% positive support in Engineering

to 44% in Arts and Sciences. Certainly the UTC faculty are strongly behind

the concept of text processing for classroom materials, reports, manuscripts

and resumeso

In general, facilities are recognized as better than adequate by most

areas of the university with the exception of the School of Engineering.

General support for computing facilities and staff, instructional short

courses, and text processing was demonstrated. Faculty research is seem

ingly not served well by the cluster concept but, in all, the computer

systems are generally conducive to faculty use.

Emphasis ~nd Rewards

When responding to the statement "your department should utilize compu

ters more than it does now", 61% responded affirmatively in 1981 as opposed

to 60% in 1978 (see Table VI). Interestingly, those strongly agreeing in

creased from 26% in 1978 to 34% in 1981. The area perceiving this need the

most was Business with 82% positive responses and the least was 45% in the

Arts and Sciences.

A-5 - 14

TABLE VI

EMPHASIS AND REWARDS

Percentage Positive Responses All Responses

Arts & Busi- Engi- Agree Neutral Disagree
Sciences ness neering Others Strongly Host1y NA l-fostly Strongly

1981 45 82 64 78 34 27 26* 7 6
Your department should
utilize computers more 1978 54 46 26 34 26* 13 1
than it does now.

1974 62 86 30 36 21* 9 4

1981 38 65 45 44 11 33 46* 9 1
UTe has a reasonable emphasis
on the uses of the computer 1978 60 64 22 38 34* 5 2
in its educational pro-
cesses.++ 1974 26 71 11 21 51* 16 1

Within its role as a primarily 1981 62 82 91 69 35 34 26* 4 1

undergraduate institution, UTe
places too much importance on 1978 69 73 28 45 18 7 2

computing.** +

Faculty time spent on develop- 1981 18 24 18 16 5 13 42* 24 17·

ing computer uses for the class- ~
room is adequately recognized 1978 15 27 6 12 48* 22 12
as a professional activity by~

the administration.+

*Large Neutral, No Answer, or No Opinion response (20% or over)
**Disagreement with this statement has been treated as a positive response.
+No such question was asked in 1974.
++This question was preceded by "When compared to other primarily undergraduate institutions of its size."

A-5 - 15

~.

FACULTY PERCEPTIONS 1981

The statement "UTC has a reasonable increase emphasis on the use of

the computer in its educational processes"~ showed overall support dec1in-

ing from 60% in 1978 to 44% in 1981. The area of Business supported it

with 65% positive responses; at the other end was the area of the Arts and

Sciences which supported it at only 38%. This statistic is clouded by a

large 64% undecided or neutral set of responses. Perhaps this is an indi-

cation of need for more emphasis rather than a dissatisfaction with the

current emphaRis as being "too much."

The statement "within its role as a primarily undergraduate institution,

UTe places too much importance on computing", is disagreed with by 91% of

the Engineering area, 82% of Business, and 62% of the Arts and Sciences.

This indicates further that faculty perceive that either the same or more

computing is required as opposed to less computing.

With regards to faculty computing activities being adequately recog-

nized as professional activity by the administration, only 18% feel posi-

tive about this issue. The strongest response is that of Business which

reports 24% positive responses. There is a large 42% neutral response

category; this indicates a general perception that instructional computing

does not count towards promotion and tenure in the same manner that schol~r1y

writing does.

In-dep·th Analysis

A second survey was sent to those who were judged to be heavy users or

who requested it. This survey asked for specific information regarding

satisfaction with the systems, their components, the staff, and their

A-5 - 16

FACULTY PERCEPTIONS 1981

functions; it contained several open ended questions regarding future

desired computer acquisitions. Since this paper is designed for general

opinions, most issues in this second survey are not included here.

Thirty-eight of the heaviest faculty users completed the questionnaire.

Eighty-four percent were at least satisfied with our present systems. Near

ly 53% of those responding felt that the 1981 computing environment (HP3000

and HP2000) was better than the 1978 computer system (HP2000 only). UTe

consultants satisfied 90% of the faculty in terms of availability and 89%

in terms of helpfulness. Software satisfied 63% of· the faculty and dissa

tisfied 26%. System reliability was viewed favorably by 67% and negatively

by 24% of the faculty responding. Relevance of UTC newsletters and helpful

ness of UTC manuals were affirmed by 66% and 76% of the respondents,

respectively.

The generally positive responses to these issues indicate that the HP

3000 system has been viewed favorably by a majority of its heavy users.

Furthermore, the staff activities in terms of consulting, documentation,

and overall effectiveness are considered satisfactory or better by a large

majority of users. The Office of Academic Computing, which maintains most

of these functions, is, therefore, by association viewed as a very positiYe

factor in computing in UTC. The negative responses were mostly from

Engineering and Computer Science; these were largely associated with the

requirements or needs associated with large scale systems, major software

packages in technical areas, and specific operating systems. Hence, Hewlett

Packard equipment and software received a general vote of confidence.

A-5 - 17

FACULTY PERCEPTIONS 1981

A-5 - 18

JOBLIB/3000

By Esa A. Harjula

ABSTRACT

The JOBLIB/30QO system is now an advanced productivity tool, combining

interactive macro processing techniques with new practical ideas for

computer aided batch job preparation work. JOBLIB/3000 provides new

approach to batch processing in on-line environment. It makes MPE

even more friendly operating system.

Monday A-6 - 01

DISTRIBUTED 6250 BPI TAPE

by Daniel R. O'Neill

Qualex Technology, Inc.

II'JTRODUCTIOrJ

One of the most frequently heard buzz words of the computer

industry today is that of distributed processing - Qaking a high

level of data processing available to each user, but alloving each

user to attach to and access a large data base.

This paper deals with another aspect of distributee computer power

- that of distributing 6250 BPI tape systems between a number of
CPU IS. Quale>: Technology, Inc. has formally announced nSf-lASH"

SHARED MASS ARCHIVE STORAGE HOST at this HPGSUG user meeting and

this paper will describe system operation, system configurations,

etc. In addition, features of 6250 BPI· technology \viII be high-

~ lighted.

Qualex first introduced 6250 BPI tape technology and systems to

HP end users in September of 1980. Prior to this date this field

proven product (first installed in 1978) was only available to

OEI-Is. Qualex's first tape sl'sterns provided users with a state-of

the-art technology solution to the frustrating backup, archive and

interchange problems being experienced by the HP user. The Qualex

Group 3000 tape systems provide the following features:

* Modern tape technology design

* 125 or 75 inches per second tape speed

* 60 sec rewind time for 2400 foot reel

* Triple density 800/1600/6250 BPI or Dual density 1600/6250

BPI

*
*
*

Switch selectable density
Automatic thread/load

Use of Easy Load cartridges

Monday A-7 - 01

*

*
*

Extensive Diagnostic capability both within the drive and

controller and via loanable software diagnostics

Plug & program compatible with Series II & III

Employs the most field proven 125 ips, small size 6250 drive

in the industry

With the March 1, 1981 announcement by HP of the dedicated channel

7976A Tape Subsystem, for the Series 30, 33 and 44, and the HPIB

interface mOdule (STARFISH) for the HP3000 Series III, the pio-

neering efforts by Qualex to bring this state-of-the-art in tape.

technology to the Hewlett Packard comnunity has been totally en

dorsed. The HP product does not match the performance, economics,

configuration, serviceability and technology of the Qualex product,

but at least no\~, the user knows that the use of 6250 is now

acceptable in the HP world, will have two sources to choose fro~

and can evaluate these sources based on price/performance. ~

It is appropriate at this point to review the advantages of 6250

BPI tape technology to the user.

* Higher Recoraing Rate for Greater Data Throughput

* Reel Storage capacity increased ~ore than threefold

* Improved Read/write reliability with multi track error

correction

* Quicker access to data

* Smaller IBG (0.3 inch vs 0.6 inch @ 1600 BPI)

* Shorter rewind time

Besides the above benefits/features, the 6250 technology provides

additional advantages to HP users - when compared with hardware

they are currently using. These advantages are:

* Auto thread/auto load

* High speed rewind - 500 ips

* 125 ips tape speed
* Quick rewind time - less than 1 minute ~

* Triple density

A-7 -. 02

* S~itch selectable density

* Automatic Hub

* Vastly improved operator features

THE RIGORS OF 6250 Tl-iPE DESIGIJ

To neet these stringent requirements required a new generation of

ta~~ equipnent encompassing significant breakthroughs in tape

transport and capstan design as well as develo?~ent of sophisti

cated controllers to meet all the format encoding/decoding, error

correction and status requirements of the GCR code. TIle controller,

to do this, is basically a co~plex computer in itself.

6250 BPI uses a recording technique known as Group Coded Recording

(GCR). The formatter/controller "codes" bytes of user data into

five bytes of coded data to be recorded such that there will be no

more than two zero's in succession. This provides for an efficient

~ code for recording the data without experiencing the long strings

of ones often displayed in the 800 BPI or NRZI mode of recording.

This coding technique also provides for a self clocking recording

system which, when coupled with the multiple ECC characters built

into the code, allows two tracks in error to be corrected "on the

fly" (without stopping and re-reading).

The 6250 code is extrenely powerful. An ECC character is inserted

after each seventh user byte. Two additional Eee characters are

inserted after the data portion of the bloc}~ is complete. Due to

the "overhead" of group coding and ECC characters, the actual

recording density is 9042 BPI - not 6250. The user data comes to

the t~pe system at a 6250 rate, but this data is actually put on

tape in coded format at ·9042 BPI. This high densi ty not only

required new head and read/write circuit technology, but also new

sophistication in transport design to preclude data errors under

stringent tape motion dynamics.

~ At 6250 BPI, the interrecord gap is cut in half from 0.6 inch, used

A-7 - 03

at 1600 or 800 BPI, to 0.3 inches. The actual start and stop

distances however were reduced by two thirds. At 1600 BPI, the

normal start or stop distances is 0.190 inches whereas at 6250 the

start distance is 0.075 inches. This provides quick access to data

for the user, but representee stiff requirenents for the tape drive

designers.

The Qualex product meets all the requirements of the 6250 code.

Qualex chose the Series 3000 transport it uses (manufactured by

by Telex) because:

* the product is the only unit in it's size designed from the

start for 6250 operation.

* the product had extensive field use with impressive

reliability.

* the product was designed for serviceability and featured

quality components and conservative design margins.

By way of contrast, the competitive product is actually a per

formance strained 75 ips, 1600 BPI machine modified to operate at

6250 BPI, but unable to write the IBI1/ANSI standard 0.3 inch inter

record gaps on start/stop operation and also operates at excessively

high tape tension.

The main thrust of the first part of this paper is to point out that

meeting the challenge of 6250 BPI tape technology requires a more

complex design ~lith a corresponding increase in cost. This increase

in cost translates into substantial benefits to the user in terms of

a significant improvement in reliability; dramatically higher

performance; along with the added benefits of ease of operation.
The performance match between current disk drives and tape nemory

has now been satisfied and in the bargain the user has gained a more

error tolerant product and the solution(s) to the previous tedious

requirements, and resultant problems, associated with operator tape

handling.

A-7 - 04

DISTRIBUTED 6250

The higher cost of this technology is what pro~pted Qualex to study

methods of maximizing return on investment (ROI) to the the user.

Qualex's current product is already lower cost and higher per

formance than the 7976A. However, to further enhance ROI, Qualex

has' designed S~ASH (Shared llass Archive Storage Host) to allow

sharing of this state-of-the-art performance and technology over

multiple CFD's.

SMASH allows the operator to switch the Qualex Group 3000 tape

system between two, three or four CPU's. As the next slides will

show, this system can be shared with various models of the HP3000

computers.

The first slide shows a single tape system tied to a Series III CPU.

The next slide adds the Shar~d Mass Storage Feature option 002.

The following slide shows option 004 which allo~ls coupling four

CPU's to the Group 3000 tape system. The CPU's can be a mix of

Series II or Ill's and Series 44's.

The hardware elements of SMASH are housed in the Series 3000 tape

controller/tape drive cabinet. No additional cabinet is required.

Selection of which CPU is connected to the tape system via S~lASH is

done by an operator activated switch.

A review of cost savings for the user is covered in the follo~ling

charts.

As can be seen, this cost savings of the Qualex tape systems are

significant, running from $20,000 to $194,000 depending on the

configuration selected.

A significant dimension of the S~~SH product for the single CPU

user, making an investment in 6250 tape today, is the opportunity
to enhance his return on investment when his site upgrades to a new

A-7 - 05

CODputer and/or adds additional CPU capability to his site.

In s.uCtmary, 6250 BPI t eCflnology is nov] a real i t:y for HP30 a0

conputers. The user has options to c~oose from with the Dost

cu r rent be ing the SIll1.SH capab il i ty ir.troGuced b~i Qual ex. 6250 BPI

technology is st~te-of-the-art in ~ape design - brings nany

beri'~fits to the user and 1rli tr1 the announcerrient of S!',~ASH, provides

a cost effective solution to a multiple CPU site.

A-7 -. 06

'}

!: DISTRIBUTED 6250 BPI' TAPE
I

o
.......

):a
I
'-J

I

o
ex>

i)

V-SER ADVANTAGES OF 6250

)

6250 TAPE PROVIDES UNIQUE ADVANTAGES TO HP USERS

• Auto ThreadlAutoload

• Triple Denalty

• High Sp.ed Rewind

• 125 Ips Tape Speed

• Switch Selectable Density

• Automatic Hub

• Improved Operator Feature.

)

SINGLE TAPE SYSTEM

)

Qualex

HP7976A

CPU

CPU

- I

-I

-)

controller

atarflah

controller

)::
'.
........

•
--'
N

SMASH· - ANNOUCEMENT

):::a
I

.........

I

-'-,

QUALEXINTRODUCES

"SMASH"

SHARED MASS ARCHIVE STORAGE HOST

SMASH (2 CPU'S)

)

r--, ~l '--,
SMASH - Shared Ma•• Archive Storage Ho.t

CPU

#1

Tape

Drive

Controller

SMASH

CPU

#2

::t::t
I

.........

I

--'
m

)

SMASH (4 CPU'S)

)

-,
SMASH - 4 CPU VersioD

CPU CPU

#1 .2

Tape

)::- Drive
I

........

--.I Controller
'-J

SMASH

CPU Q CPU

#3 #4

Note: CPU'S may be Series II, III or 44.

t COST' COMPARISON· SINGLE CPU
I

0; SERIES III

))

»
I
'J

I

-)

COST COMPARISON

SINGLE SYSTEM on SERIES III

Qualex: $47,500

HP: $67,480

Savings: $19,980

! COST COMPARISON· SINGLE CPU
I

~ SERIES 44

,)

SINGLE SYSTEM on SERIES 44

Qualex: $44,500

HP: $52,250

Savings: $7,750

»
I

........

I

N
N

COST COMPAR"ISON· TWO CPU'S
SERIES III

/))

~

COST COMPARISON - TWO CPU'S SERIES III

Serle8 III - without SMASH

Qualex: $95,000

HP7976A:, $134,960

:J:::a
I

: Savings: $39,960
N
eN

S.r". III - with SMASH

Qualex: '81,814

HP7876A= S134,'80

Savings: $73.346

! COST' COMPARISON' - TWO CPU·S
~ SERIES 44

)

--,
COST COMPARISON - TWO CPU'S SERIES 44

)::I
I

........

I

N
01

Qualex - with SMASH:

HP7976A:

Savings:

$61,614

$104,500

$42,886

t COST COMPARISON· FOUR CPU'S
I

~ 2 SERIES III
2 SERIES 44

.)

.:J>
I

.......

N.......

)
COST COMPARISON - 4. CPU'S

Qualex - with SMASH::

HP7976A:

Savings:

(2-111, 2-44)

$75,828

$239.460

$163,634

SOFTWARE MAINTENANCE AND SUPPORT
IN THE DISTRIBUTED ENVIRONMENT

By:

Richard L. Foote
Systems Consulting Services

Distribution of processing power can pose new challenges for DP

departments and users alike. Development, installation, training and

all other aspects of DP become increasingly complex as the number of

sites increases. A variety of methods are available for meeting this

challenge. They typically involve changes in organizations, software

and procedures. Flexibility and responsiveness are key ingredients.

Traditional support techniques are reviewed and alternatives are ex

plored. Case histories are used to illustrate ways of meeting the

distributed support challenge.

Monday A-8 - 01

~
\ ..

QUERY - DIRECTIONS FOR THE 1980·5

By:

Orl and Larson
Product Manager, HP

The purpose of this presentation will be to announce Hewlett-Packard

plans for enhancements to QUERY~ This will include a list and a brief

description of these new enhancements.

Monday A-9 - 01

DATACOM FOR FIRST TIME USERS

by

Tom Black
Marketing Manager, HP

&

Roselie Tabes
Sales Development Manager, HP

This presentation is intended for DATACOM neophytes. It
covers the fundamental concept of co~puter datacommunication with
out using large munbers of "buzz words". The DATACOM products
available on the HP 3000 computer family will be reviewed, and their
overall capabilities discussed. In addition, some of the major
considerations for a successful DATACOM installation, based on Hp·s
extensive experience in this area, will be reviewed.

FULL TEXT WILL BE DISTRIBUTED AT THE SESSION

Monday B-1 - 01

.~.

~.

.~

EVOLUTIONARY SYSTEMS DEVELOPMENT IN A DISTRIBUTED
ENVIRONMENT

By A. Steven Wolf

Digital Communications Corporation

ABSTRACT

A philosophy and methodology of on-line systems evolutionary development

is presented for a distributed HP 3000 environment. Tools to support this

philosophy including HP products including IMAGE, V/3000, and DSG/3000

and non-HP products including Teleprocessing Monitors, Report Generators

and data base utilities are discussed. Finally, examples of the usage

of this philosophy and associated tools in the actual development of a

marketing information system is discussed. This paper is intended for

system managers, r1IS directors and programmers interested in developing

on-line systems that can be implemented without complex and time-consuming

programming which may change as the needs of the users community changes.

Monday B-2 - 01

APPLICATION SYSTEM OPERATION AND CONTROL

BY BARRY D. KURTZ
(DEVELOPMENT ENGINEER/MTS)

MANUFACTURING SYSTEMS OPERATION R&D
HEWLETT PACKARD COMPANY

CUPERTINO, CALIFORNIA

Monday B-3 - 01

~,

I~

APPLICATION SYSTEM OPERATION AND CONTROL

TABLE OF CONTENTS

I. Introduction

II. Application Sy~tems.

A. Traditional Activities.
B. User Interrac~.

III. HP's Recent Approach to Application System Management on
the HP3000.

A. The Application Monitor.
B. Classes of Users.
C. User Interface.
D. Environment Definition.
E. Application System Operation.
F. System startup.
G. Interactive Application Process Management.
H. Background Job Management.

IV. Conclusion.

B-3 - 02

I. Introduction.

Application System Operation and Control is the daily
execution of, and supervision of, application system
functions. It includes initiating programs that provide
application functions to users and scheduling and monitoring
background processes performing batch processing.

Until now, application system operation and control has
required considerable user intervention. Also, since most
buisness computing machines are general-purpose in nature,
the task of initiating application programs is frequently
left to personnel who are not. computer professionals. Thus
the user of an application (a clerk, receiving dock worker,
etc.) may have to learn the host computer's command language
and error codes, which are optimized for general machine use
instead of individual applications.

Recent developments in operating system software have
lessened the burden on the non-DP professional. These
include user-defined" commands, comprehensive IIhelp"
'facilities, and so on. However, these have solved only a
part of the problem. The user of an application should
perceive the computer system as a comprehensive solution to
an application problem and not as a set of unrelated
application tools.

Hewlett Packard's Application Monitor {developed as a
component of HP' s Materials Management/300'O} has made a
significant contribution to the ease of control and operation
of application syst~ms. By controlling and supervising
application system activities, the Application Monitor
greatly reduces the system management time required of the
system administrator. This allows more time for management
of external functions in the environment where the
applications are used.

B-3 - 03

.~

II. Application Systems.

A. Traditional Activities.

Most application systems involve the following activities:

o Initiation of on-line applications on user terminals.

o Scheduling and monitoring of background job
processing.

o Initiating recovery and cleanup jobs.

o Supervising system operation in order to maintain
consistency in the application system environment.

Traditionally, most of these activities were executed
manually and required frequent human intervention. Control
of the application environment was totally dependant upon
the constant attention of the administrator or.operator of
the system. This practice has led to inconsistent data
processing activities,sometimes resulting in the loss of
critical management reports or accidential data file
destruction.

B. User Interface.

User Interface is a very important area of application
system management. The easier it is for a user to utilize
the functions of an application system, the more productive
each user will be.

In many cases, when a user desires to execute a particular
application function, a program-must be manually initiated
through the use of operating system command language
(whether it be an interactive process or background job).
This requires a knowledge of some command language syntax
and the capability to interpret the host computer's error
codes (which may be difficult for the non computer
professional).

The development of user-defined commands and comprehensive
"help" facilities have certainly improved the user
interface to application systems, but much more can be
acco~plished to ease the burden on the non-DP professional.

B-3 - 04

II. HP's Recent Approach to Application System Management on the
HP3000.

A. The Application Monitor.

The Application Monitor was developed as a component of
HP's Materials Management/3000 product. It is an
integral part of an application system. The monitor
controls the execution of, and provides services to,
applications running under its control. It schedules,
initiates and controls all interactive and batch job
activities in an application system. The monitor takes a
major step towards operatorless, abortless, application
systems by providing automatic application scheduling,
control, and recovery services.

B. Classes of Users.

Two main classes of users make use of the services
provided by the monitor:

o System Administrators

o End users

The system administrator is an individual who has global
responsibility for the application system. This
individual supervises all application system activities
(i.e., background job scheduling, on-line application
scheduling and control, etc.).

The end users of an application include all those who use
application programs functions (i.e., clerks, managers,
receiving dock personnel, stores or inventory personnel,
etc.). End users benefit from good application system
management, which leads to consistent data processing,
reports that are on time, and other benefits. However,
they do not usually get involved in actual operation and
control.

c. User Interface

The user interface utilized by the Application Monitor is
a friendly fill-in-the-form CRT interface. This allows
the user or manager of the system to perform
comprehensive system control without having to learn a ~
complex command language. Each screen presen~ed utilizes
the CRT terminal's function keys. The functions are

8-3':'- 05

described in eight shaded boxes at the top of the screen.
Each box corresponds to a single function key (the
leftmost box corresponding to function key 1 and so on.).

A conunand window is also presellted on monitor menu
selection screens. This area is utilized for special
system control functions that may not be executed by a
simple function key signal.

Sample user interface screens will be presented as part
of this disCllssion.

D. Environment Definition.

The application system environment is defined through the
use of the Application Customizer (also a component of
Materials Management/3000). The cllstomizer allows the
user to define the following information for system
operation:

o Terminal configuration

o Device configuration

o Schedule of when interactive applications are to run
and their associated CRT terminals.

o Schedule of when batch jobs are to be initiated.

This information is stored in the cllstomizer's
application data dictionary for later user by the
monitor. When the data in the dictionary is to be
applied to the current application system environment, a
process is executed that will copy this information
into a "prepared" run time version of the dictionary.

The customizer's data dictionary contains other
information which is application subsystem dependent
(i.e., data item definitions, screen formats, data base
formats, etc.) and will not be discussed in this paper.

E. Application System Operation.

The Monitor is composed of eight seperate programs.
These programs run simultaneously and work together to
monitor and control the application system (Figure 1
depicts the application system environment.).

B-3 - 06

I Host Computer Operating System I

Monitor Control Process

I Interactive Application Programs I

Monitor Services

SIP SAI SMP SAP PSM JSP BJP

Figure 1. Application System Environment.

The application system environment, showing the
relationship of the Application Monitor to other programs.
The Application Monitor initiates, monitors, and controls
run time application activities. Monitor services are
provided to application programs and users to initiate
additional processes and supervise system activity.

B"-3 ~ 07

The following is a brief description of the major
processes that make up the Application Monitor.

Monitor Contro' Process (MCP)

The Monitor Control Process is the parent of all
programs in the application system environment. Once
the application system is active, it is this program
which initiates, monitors and controls application
program activities.

The Mep utilizps a memory table to track program
activity throughout the system. This table is called
the Application Control Table (ACT). Each program in
the system has an entry in the ACT called a Process
Information Block (PIB). The information kept in each
PIB is sufficient for the MCP to monitor current status
of each progr~ and provide any services that are
determined necessary.

System Initialization Process (SIP)

The System Initialization Process is initiated at
system startup time and executes once a day. This
program reads a prepared application data dictionary
generated by the Application Customizer. Based on the
information read from this dictionary, the SIP
initializes global tables to be used by the application
system.

System Administrator Interface (SAl)

This program is the system administrator's "window" to
the Application Monitor. The SAl allows the user to
select various functions to review ~nd control
application system operation.

Figure 2 depicts the user interface for the System
Administrator Process.

Job Scheduler Process (JSP)

The Job Scheduler Process automatically schedules
background jobs that were specified to be run on the
current day. These jobs are pre-defined by the system
administrator through the customizer.

B-3 - 08

Background Job Processor (BJP)

A background job that has been scheduled for execution
will be processed by the Background Job Processor.
This program executes background job commands and
provides comprehensive job restart/recovery capability.
System Activity Process (SAP)

This program allows' the system administrator. to review
and control system activities. Through the SAP user
interface, the system administrator can review the
current activity of all interactive and background jobs
and control background job processing concurrency_

Figure 3 depicts the System Activity user interface.

B-3 - 09

l,lJe 1come_ _ .-mm. irmID---- SAIMEt~U

_ IDiI!imI~ _
~~ IIi1&IiD1

System
Messages

Process
Schedule

Show
Activity

Special
Services

Change EOD

Displays system messages and provides review/reply capabi 1 ity.

Displays alloT the jobs scheduled to be run today. Also
provides add, change, delete capab; 1;ty to the schedule.

Displays the current status oT the system, showing alloT the
active terminal users, and report jobs executing and waiting.

Presents a menu oT additional special services ava; lable to the
System Administrator.

Al lows end of day to be changed on selective or ALL terminals.

Start Terminal Al lows selective or ALL terminals to be started.

Stop Terminal Allows selective or ALL terminals to be stopped.

Figure 2. System Administrator Interface.

The System Administrator Interface is the administrator's
"window" to the application system. The functions which
may be initiated from this screen are represented in eight
shaded boxes at the top of the screen. These functions are
initiated by depressing one of eight CRT terminal function
keys. The first shaded box corresponds to function key 1,
the second to runction key 2, and so on. This relieves the
system administrator or the need to memorize "a system
command language, and allows functions to be initiated
quickly and accurately.

B-3 - 10

System Activitv for 06/02/80

..
.Imi1III__

. ~
*Report Jobs are preceded by an asterisk.

ACTIVITY...._-
Terminal ID Terminal Terminal Response Rpt step Total Activated

or screen or last cumulative elapsed trans (Day,Time)
Report Name Report step trans average minutes /step#

BOB'S TERMINAL REVIEW PART 4 3 10 MON 8:02AM
BARRY'S TERMINAL ADD WORK ORDER 6 4 8 MON 8:00AM
MARTA'S TERMINAL CHANGE PART 4 4 5 MO~~ 8:05AM
HARRY'S TERMINAL REVIEW ROUTING 2 1 4 MON 8:05AM
VINCE'S TERMINAL ADD PURCH ORDER 4 3 20 MON 8:00AM

*DAILY REPORT SORT INPUT 10 3 MON 7:50AM

Figure 3. System Activity Process User Interface.

The System Activity Process allows the system administrator
to review current system activity. Interactive application
transactions may be tracked and background job execution
may be control~ed. In this example, BOB1S TERMINAL is
executing the REVIEW PART transaction (ten transactions
have been executed, and the terminal has been active since
8:02 AM.). A backgound job (DAILY REPORT) is running and
is presently executing the SORT INPUT step.

B-3 - 11

.~

Processing Schedule Maintenance (PSM)

The Processing Schedule Maintenance process allows the
system administrator to review and modify the
background job p~ocessing schedule for the current day.

Figures 4 and 5 depict the user interface for the
Processing Schedule Maintenance process.

System Messages Process (SMP)

Messages informing the system administrator of the
specifics of system activity may be reviewed with the
System Messages Process. Certain messages may require
a reply from the system administrator. The reply may
be processed utilizing the SMP user interface.

Figure 6 depicts the user interface for the System
Messages Process.

B-3 - 12

Processing Schedule for 06/02/80---- SCHEDULE.._ ..-
Job Name Scheduled Run Time/ Auto Job Description

Run Day or Date Sh;ft Start

SUMMARIZED BILL DAILY 09:00 AM N SUMMARIZED BILL REPORT
WEEKLY INVENTORY MONDAY 09:30 AM Y WEEKLY INVENTORY REPORT
PRINT MESSAGES DAILY 11 : 59 PM Y OFFLINE DAILY MESSAGES REPORT
MONTHLY ACTIVITY 02 11 : 59 AM Y ACTIVITY REPORT (2ND DAY OF MO)

~,

Figure 4. Processing Schedule Maintenance User Interface

The Processing Schedule Maintenance process allows the
system administrator to review the background job schedule
for the current day. In this example, three jobs are
scheduled to be run. The first job (SUMMARIZED BILL) has
its AUTO START flag set to "N". This means that it will
require manual intervention to run. The administrator must
set the flag to lIy" in order for the job to run. The other
jobs will run automatically when their time comes up.

B-3 - 13

Modify Processing Schedule.... _~-I. ~_~
CHG SCHEDULE----

Job Name

PART REPORT l

--Todays Run Time-
Time or Shift

I'8'N.

Auto
Start

Job Description for Today

PRRT R~PORT JOB !

Job Status Current Completion
Checkpoint Code

• -
Note: As long as this screen ; s displayed, no new report Jobs UJ ill be

scheduled to run.

Figure 5. Processing Schedule Maintenence User Interface.

The system administrator may modify the current day's
background job schedule through the use or the Processing
Schedule Maintenance process. In this example, a job
(PART REPORTS) is being added to the schedule. If this
Job is to be run at regular intervals, the system
administrator may add it to the permanent Job schedule in
the application data dictionary via the customizer. The
job will then automatically be scheduled to run daily,
weekly, monthly, or yearly as specified.

B-3 -14

System Messages for 06/02/80

--~wmtmI_~ I.·
Ms~~ Message (action or reply

MESSAGES----
07:10 AM 001 Customization completed.
07:20 AM 002 Job CHECK DB CHAINS fai led - initiating recovery.
07:21 AM 003 Job CHECK DB CHAINS fai led - initiating recovery.
07:22 AM 004 *CHECK DB CHAINS restarted once and failed. Retry?

Figure 6. System Messages Process User Interface.

The System Messages Process allows review of system
informational messages and messages requring action from
the system administrator. In this example, a background
job has been restarted and failed on the restart. The
Background Job Processor is asking the system administrator
if the job should run again. The system administrator may
initiate the reply action to this messages by depressing

-the appropriate CRT terminal function key which corresponds
to a shaded box at the top of the ·screen.

B--3 - 15

F. System Startup

The Monitor Control Process is the initial program to be
run in the application system. The MCP is initiated via
a user defined command supplied with the installation
software. This relieves the user from having to know the
physical file name of the MCP and any parameters that
must be supplied.

The MCP launches the System Initialization Process. The
SIP reads the prepared application data dictionary
generated by the customizer. This dictionary contains
information critical to system operation and control.
Utilizing this information, the System Initialization
Process builds global tables to be used during that day's
operation of the system. When initialization is
complete, the MCP begins normal execution.

Figure 7 depicts the application system environment
during system start-up time.

G. Interactive Application Process Management

Application processes are launched according to values
initialized in the ACT. When the MCP initiates an
application program it sends the program its PIB entry
number. This PIB entry number corresponds to a physical
PIB in the ACT. By utilizing this number in Monitor
supplied intrinsics, the application may perform the
following functions:

o Obtain information regarding which interactive
terminal to use

o Start and communicate with a concurrent process to
facilitate simultaneous processing of data

o Send a message to and start a successive process
suspending execution of the application until the
successive process completes

o Log transaction response time for review by the
system administrator

Once the application system is in operation, interactive
applications are automatically initiated according to the
schedule defined by the system administrator via the
Customizer. If the schedule defined for application
initiation is accurate, no user interaction is necessary

B-3 - 16

to gain access to application program functions (The
appropriate application will be presented to the
appropriate set of users at the appropriate time.).

If special needs arise, the system administrator may
modify interactive application activity through the
System Administrator Interface.

Figure 8 depicts the MCP's management of interactive
applications.

B-3 - 17

APPLICATION
CONTROL TABLE

SIP

BACKGROUND
JOB SCHEDULE

PREPARED APPLICATION
DICTIONARY

Figure 7. Application System Startup

The Monitor Control Process (MCP) is the first program to
run in the application system. Its first step is to launch
the System Initialization Process (SIP). The SIP reads' a
prepared application data dictionary generated by the
Application Customizer. From this dictionary, the SIP
builds system-wide tables used in operation and control of
the application system. The two main tables generated are
the Application Control .Table (ACT) and the background job
schedule. Once the tables are initialized, the MCP begins
normal operation and continues execution indefinitely.

B-3 - 18

USER
APPLICATIONS

INTERACTIVE
USER TERMINALS

Figure 8. Interactive Application Management

The Monitor Control Process (MCP) reads the Application
Control Table (ACT) built by the System Initialization
Process. According to values initialized in the ACT the
MCP launches application programs for presentation of
application functions to users. The application programs
utilize monitor intrinsics to request services and allow
the system administrator to review and control application
activities.

B-3 - 19

,~

H. Background Job management

Background jobs are scheduled for execution according to
a job list created by the system administrator via the
customizer. This list is read each day by the System
Initialization Process to determine the jobs to be run
for the current day.

The jobs are automatically executed at the time specified
in the list. If a job fails, predefined recovery
procedures are executed. When intervention is necessary,
the system administrator may modify the execution
sequence of background jobs via the Processing Schedule
Maintenance process.

Figure 9 depicts Monitor's management of background jobs.

~-3 - 20

BACKGROUrJD BACKGROUND JOB
JOB SCHEDULE COMMAND FILE

Figure 9. Background Job Management.

The Job Scheduler Process (JSP) reads the Background Job
Schedule to determine which jobs should be scheduled for
execution at the current time. All jobs that have run
times on or before the current time will be scheduled for
execution. The Background Job Processor (BJP) executes a
job by processing that job'S command file. Up to three
BJPs may run concurrently allowing concurrent execution of
up to three background Jobs. Each job may have recovery
procedures and checkpoints defined. If a job fails, the
recovery procedures are automatically executed and the job
is restarted at the appropriate checkpoint or step.

B-3 - 21

IV. Conclusion

The automation of an application system can significantly
reduce the management time which is required of the
administrator of an application system. This allows more
time for management of external functions in the environment
where the applications are used.

Thp Application Monitor is a major step in HP's long te~

commitment to increase the ease of use of application
systems.

B-3 - 22

MANUFACTURING CONTROL, PLANNING AND FEEDBACK

IN A DISTRIBUTED PROCESSING ENVIRONMENT

By: Mick Belcham
Martin Marietta Data Systems

For a multi-plant manufacturing company the decision to

implement a Distributed Processing environment is obviously

important. However, it only really becomes significant if the

company's management team is capable of recognizing and implemen-

ting the associated required changes in management practice and

control.

Here I am not referring as much to data processing management

as I am to the company's operations management -- those that control

what each plant manufactures and the resources required to do so --

money, people, plant, inventory, etc. To them, the decision is not

so much one of Distributed Processing, not even one of Distributed

Systems, but more importantly one of Distributed Management Control.

It is the formalizing of the levels of responsibility (and hopefully,

authority) that each autonomous production facility has in estab-

lishing what it makes and when it makes it.

Let's take as an example a company that manufactures power

tools and other related equipment.

For the sake of the example let us assume that its headquarters

and its major final assembly operations are in the Chicago vicinity

and that over the years it has grown and built other manufacturing

facilities in the Mid-west and more recently in two of the Southern

states. To date it has done little to change management policies

to reflect this multi-plant situation -- certainly nothing to

Monday 8-4 - 01

~,

Manufacturing Control, etc.
Mick Belcham

take advantage of this "distributed manufacturing" environment.

All it has seen has been the increased complexity of making ship-

ment schedules from the main assembly plant when much of what is

shipped is dependent upon the performance of remote fabrication

and sub-assembly plants; plants that suffer not only from "being

managed independently of the main plant but also from being "buf-

fered" from the shipment schedule by inter-plant transportation

problems.

What has it tried to do? The same thing that all of us

would do if we were to go after the symptoms and not the cause.

It has attempted to tighten centralized control over the remote

plants. Just as it was getting used to the idea of "distributed

manufacturing" -- even dreaming of installing small computers at

each plant site! -- it has had to reverse its posture and make each

plant more (rather than less) dependent upon centralized schedules.

All plans for remote computer sites have been forgotten, the central

computer has been upgraded and the old system (originally designed

to support a single plant environment) has been significantly

modified to fit the new ideology.

And how have things improved? . you guessed it. They

haven't. If anything they are worse. They can't even rely upon

the "goodwill" of the remote plants any more. Everybody is

blaming everybody else. There is even talk at the main assembly

plant of purchasing some of those parts previously fabricated

at one of the plants. "How else can we meet schedules? At least

we will have a better chance of getting what we want when we want

8-4 - 02

Manufacturing Control, etc.
Mick Belcham

when we want it from an 'outside vendor'." Et cetera, et cetera,

et cetera.

What was their mistake? Blindness. Blindness to the basics

of all good management practice -- accountability and insulation.

Accountability for one's own performance, insulation against every-

body else's.

They simply went half way. Each plant was theoretically held

accountable for its inventory levels, its production efficiencies

and its ability to satisfy the main plant's requirements. The

fact was however that each of these factors was more dependent upon

the abilities of the main plant to assemble to a reasonably-stable

production schedule that it was upon the quality of management con-

trol at the remote plant itself. Accountability without insulation.

Before examining the impacts of this scenario (and many like it)

upon the requirements of a Distributed Processing environment let us

take it one step further; take it to its eventual almost suicidal

conclusion (all in the name of good traditional management practice,

mind you!).

It had to go this one further step before the company's man-

agement could be jolted into asking the question that it should have

asked all along, "How do I have to change my management philosphies

in a distributed manufacturing environment? And what should be my

information control mechanisms to SUPpC)l,..t it?".

What was this one final step. Well, think about it? What

would you do? Your com~any's falling apart by all accounts. You

still make the highest quality power tools in the business, your

company name is as well known as ever in the retail market place, etc,

8-4 - 03

Manufacturing Control, etc.
Mick Belcham

etc. However two problems are demanding more and more of your

time -- manufacturing costs are rising alarmingly and your dis

tributors are complaining increasingly about your shipment per-

formance.

You have done all you can to upgrade your control mechanisms

in fact, in the last three years you've doubled the size of your

data processing department to improve communications between the

various manufacturing facilities. And yet the same old problem

occurs time and again -- the remote plants cannot satisfy the

assembly plant's requirements. When the remote plants are asked

for their comments, the answer is always the same, "They tell us

what they want. We assume that they are right. We begin to buy and

~, to make according to their requirements and priorities -- and then

they change them upon us. We have what they don't want, they want

what we don't have."

As company management you always have three options; do nothing,

do something, or do nothing and make it look like something!

Let us assume that the "do something" option prevails, and

that you feel an element of sympathy with the position of the guys

at the remote plants. What can you do further? The answer appears

simple. Establish a new management policy -- assembly production

schedules are to be re-established monthly for the next six months,

but the schedule for the next two months is to be frozen; within

that two month's time frame nothing changes. We'll make what we

said we would make.

Now things begin to get really wild. The distributor's com-

plaints are getting worse because they cannot react to the market

8-4 - 04

Manufacturing Control, etc.
Mick Belcham

place. Your own warehouse inventories increase because they now

have to hedge against unexpected demand during those two months.

Your assembly plant is now second-guessing both the distributors and

the warehouses as to what is real demand and what is only destined

for "hedge" inventory. Your remote fabrication and sub-assembly

plants become outwardly complacent (after all they have a stable

schedule). Inwardly however, they are bracing themselves for

the inevitable re-direction of management policy once the euphoric

honeymoon is over; once everbody recognizes that the company

which once had an indisputable reputation for service has now

become inflexible and un-reactive to the market place it serves.

Back to the management drawing board! The next step? Who

knows? Let us hope however that at least some consideration is

given to the potential advantages of "distribution" -- a Distributed

Processing environment, using Distributed Systems under the over-

all auspices of Distributed Management Control.

The definition of this last term - Distributed Management

Control - is the crux of the whole matter. If implemented correct-

ly it becomes the backdrop for all management control mechanisms and

therefore for all related systems work, particularly in the area

of Manufacturing Control.

As an example let's look at the interface between the main

plant and the remote plants in the earlier example. In the context

of management control it went through three distinct stages:

Stage 1: Very informal, lacking in commitment

from either side, unpredictable. Each

B-4 - 05

,~

~,

~,

Manufacturing Control, etc.
Mick Belcham

manager knowing what he is being held

responsible for (and pleasing the assem-

bly plant is not necessarily it!)

Stage 2: Very straight forward, anything the

assembly plant wants immediately

becomes a mandatory requirement

upon the remote plant whether it's

feasible or not. Each remote plant

becomes a "puppet", accountable

for what it cannot control.

Stage 3: Very structured, "you can only have

what you thought you wanted 2 months

ago"; total accountability.

How would it look with Distributed Management Control? In the

simplest terms it would be like a mature customer/vendor relationship;

formal when required, but flexible wherever possible. More specif-

ically it would be like a high-volume customer/vendor relationship

-- the sort typically controlled by a formal blanket purchase order

with a series of releases against it.

The most important characteristic of such a relationship is

that it can be monitored. The "bounds of reasonableness" are estab-

lished so that both "sides" can see an exception as it occurs and

examine its desirability prior to its becoming critical. Each

has the "right" to refuse or accept an exceptional situation (as

r""" defined by their "blanket" agreement) making each accountable for

his own performance. Equally, each recognizes the desirability of

8-4 - 06

Manufacturing Control, etc.
Mick Belcham

avoiding such exceptional circumstances and (hopefully) sees improved

information and communication as the means by which this may be

achieved.

Enter the world of Distributed Sustems. To quote from the

APICS (American Production and Inventory Control Society) Diction-

ary, the term Distributed Systems "refers to computer systems in

multiple locations throughout an organization, working in a co-

operative fashion, with the system at each location primarily serving

the needs of that location but also able to receive and supply in-

formation from other systems within the network."

In terms of the earlier discussion on Distributed Management

Control, I would like to concentrate on the implied stand-alone

characteristics of such systems in such a network. Obviously inter-

communication is important and each system has to recognize the level

of its dependence upon outside sources. However, the whole essence

of Management Control such as we have discussed in this paper is its

ability to operate in spite of everybody else. Whereas the system

should be capable of communication with others, it should not be

dependent upon it.

And this leads right into the second half of this paper

how do today's on-line inter-active systems relate to such a

management environment.

I would like first to dispense with a semantics problem -

"Closed Loop Systems". It seems likely that this term is to win

the buzz-word title of all time - more people appear to have

listened, for longer, to more other people giving more different

definitions of this one term than any other since Materials

8-4 - 07

~.

Manufacturing Control, etc.
Mick B.elch.am

management became a science rather than a fall guy!

I hope you will bear with my own version of it.

I see it as being comprised of three functions - evaluation,

feedback, and commitment. As such it represents a significant

step forward in materials management practice. (after all it is

not long since the only available words were plan, expedite, and

smoke screen!).

What of these three more contemporary words:

Evaluation: Gone are the days (I hope) when

the feasibility of a given produc-

tion plan was merely a coincidental

characteristic of it! Company

managements have become increasingly

more interested in Manufacturing's view

of their proposed sales (shipment)

schedules and, as such, are expecting

more refined and provable answers.

Meanwhile manufacturing now recognizes

that the only way to avoid being "dumped

on" is by quickly identifying problem

areas - production bottlenecks, inven-

tory restrictions, etc.

Feedback: This is the second "third" of a

closed loop system - equally important

but far less common that "evaluation".

It is amazing how many companies that,

8-4 - 08

Manufacturing Control, etc.
Mick Belcham

having identified a production problem,

limit their reaction to one of "gritting

teeth"! Why? For at least two system-

related reasons; the first being that

their systems were designed only to

identify the effect of the problem not

the cause, and the second being that even

if the cause was identified the prod-

uction schedule cannot be juggled within

the computer system to correctly reflect

what manufacturing will eventually do to

avoid it. Classic cases, always resulting

in negligible feed-back.

Commitment: This third constituent of a Closed Loop

environment is always the most difficult

to obtain. However without it, the other

two are useless. It is the difference

between driving a manufacturing facility

from a "statement of desire", and driving

it from an agreed and feasible schedule.

If a vendor cannot deliver on time, change

the purchase order date so that the system

can re-evaluate the impact. If we cannot

ship to a customer on time, again, change

the date on the order. Change anything

that conflicts with reality. Drive the

8-4 - 09

Manufacturing Control, etc.
Mick Belcham

system off what we think we can do, not

what we would have liked to have happened

if everything had gone right. If a dis-

crepancy occurs, evaluate it, feed it

back to the point at which it can be

averted, and commit to it. Buffer man-

ufacturing against desirable schedules,

give them something they can do, something

they can commit to.

That's called closing the

loop". As can be seen from

the system descriptions that

follow, the basic "closed loop"

philosophies have done much

to influence the design of today's

state-of-the-art manufacturing

systems.

What are the "components"

of such a manufacturing system?
Figure 1 - Components of a Manufacturing System.

(see Figure 1)

Engineering Control: This system should per-

form all maintenance and reporting functions con-

cerning the system's six prime data bases:

-Item Master: One record for

every part number relevent to

the plant in question. It should

8-4 - 10

Manufacturing Control, etc.
Mick Belchan1

contain all descriptive and

policy information related to

that part.

-Product Structure: A series of

records for each manufactured item

describing the lower-level items

(raw material, purchased components,

etc.) from which this item is made.

-Routing: A series of records for

each manufactured item describing

operation-by-operation how this item

is to be made on the shop floor.

-Process: Descriptive information

about each "process" identified on the

routing data base, together with a list

of tools required to complete that "pro-

cess".

-Tool: One record for each tool referred

to in the Process data base. It should

contain descriptive and policy data re-

lated to the use and maintenance of that

tool.

-Work Center: One record per production

"center" in the shop. It should contain

scheduling and efficiency data, capacity,

details, and cost rates.

8-4 - 11

~anufacturing Control, etc.
Mick Belcham

Master Production Scheduling: This system should embody

three functions - Production Planning, Resource re-

quirements Planning, and Master Production Scheduling

function itself. Specifically:

- Production Planning: The development

of an overall statement of production

and its "explosion" to the more detailed

master scheduling level.

-Resource Requirements Planning: A

broad-brush review of the likely impacts

of a given master schedule upon critical

production resources.

-Master production scheduling: The development

of a realistic and detailed Master Schedule

based both upon the exploded Production Plan

and upon evaluation of Resource Requirements.

Inventory· Control: This is the system that should

translate the master schedule into a detailed replen

ishment plan and monitor progress and activity levels

against it. Specifically:

-Planning: The development of the

replenishment plan both for purchased

and for manufactured items.

-Releasing: The preparation of a

B-4 - 12

Manufacturing Control, etc.
Mick Belcham

replenishment order for release

either for its placement with a vendor

or for its dispatch to the shop floor

for picking and manufacture.

-Expediting: The monitoring of the

overall status of purchase and man-

ufacturing orders.

-Recording: The recording of activity

against each purchased or manufactured

part

etc.

issues, receipts, shipments, scrap,

-Accounting: The development of all

associated accounting transactions and

the analysis of these and their resulting

inventory levels.

-Management: The summarization

of activities and performance of

the planning-releasing-expediting

-recording functions and their

presentation in a form which

management can interpret and

act upon.

Manufacturing Control: (or more precisely, Shop Floor

8-4 - 13

~.

Aanufacturing Control, etc.
Mick Belcham

Control) the further translation of the manufacturing

replenishment plan (as developed in inventory control)

into a detailed operation-by-operation statement of work,

and the monitoring of status and performance against it.

Specifically:

-Releasing: The identification of the

appropriate routing for each production

order, and the printing of its shop floor

packet.

-Scheduling: The development of each

production order's schedule, and the

printing of each order's dispatch lists.

-Reporting: The gathering and recording

of labor and other data from the shop

floor.

-Expediting: The reporting of each

order's status and any related exception

conditions.

-Analysis: The periodic review and

summarization of shop floor activity

and the reporting of overall and de-

tailed performance.

-Capacity Requirements Planning: The

development of a long-term work plan for

8-4 - 14

Manufacturing Control, etc.
Mick Belcharn

each work center and the comparison

of this with the expected available

capacities ..

Cost Control: This component of the system should

develop the appropriate standard costs used by the

accounting function (discussed earlier under Inventory

Control) as well as monitor actual purchasing and rnan-

ufacturing costs against these standards. Specifically:

-Cost Generation: The build-up of

tentative and/or current and/or firm

standard costs for each part using the

system's Product Structure and Routing

data bases.

-Standard Costing: The translation of

activity against purchase and production

orders into their appropriate dollar

equivalents, and the reporting both of

performance variances and work in pro-

cess levels.

Purchase Order Control: This system should perform the

traditional Purchasing Department functions associated

with the placing of purchase orders and the mon-

itoring of vendor performance against them. Specifically:

-Placement: The printing of the

8-4 - 15

Manufacturing Control, etc.
Mick B.elcham

purchase order document itself and where

relevent, the individual release schedules

for each open blanket order.

-Expedite: The tracking of each order's

status and likely "dock" dates

-Analysis: The monitoring of actual

vendor performance.

-Reconciliation: The

comparison of

vendor invoices

with their asso-

ciated purchase

order inform.ation.

Now that we have qefined

these system "components"

we can take another look

at ."closing the loop".

Figure 2 shows how some of

these individual components

tie together, not only

from the point of view

of logical information flow

"downwards", but also from

that of feedback (dotted

lines) "upwards".

B-4 - 16

- Components of a
"Closed Loop System"

Manufacturing Control, etc.
Mick B.elcham

So far we have:

-defined the concepts of Distributed

Management Control

-defined a system model suitable for such

an environment and shown how it should hang

together.

Nexc we will describe some of the required system features

in detail, but once again let us precede the discussion with

another go at semantics - this time concerning the term "on

line interactive systems:"

The only obvious consistency between the alternative defini-

tions of this ·term is that none include the v{ords "punched card"! ~

Everything else'is up for grabs! For the sake of the remainder

of this paper I feel we should standardize on one view - mine,

naturally!

Perhaps the best approach is to look at what I see it as

not being. In the first case I see it as a blantant exageration

of a system's capabilities, and in the second I see it as an

understatement (incredible as that may seem!).

First as an exageration; I do not see the term applying to:

-a system with on-line editing

but only batch updating capabilities.

-nor to a system limited only to on-line

inquiry.

8-4 - 17

Manufacturing Control, etc.
Mick Belcham

-nor to a combination of the two.

Equally as an understatement; I do not see the term

applying to:

-a system that, with one on-line

transaction, can evaluate a series

of different situations and options,

report back (still on line) an

optimum result, and, when requested

to do so, update a number of file

records to reflect that conclusion.

In its simplest terms, therefore, I see the term referring

to a system's ability to update files with transactions in full

on-line mode and to be able to process an inquiry against those

updated files with the immediately succeeding transaction.

What does all this mean to the specification of a good

manufacturing.control system? A lot. Simply specifying it as

"on-line and interactive" is not sufficient. A 'go'od system will

embody a. large spectrum of environme'nts - all the way from pure

batch to what I described earlier as an "understatement" (and

which I would like to more specifically entitle "interpretively

interactive"). Let me give you three examples. One for each of

three given environments.

(1) Pure Batch

ABC analysis and reclassification: rarely is

8-4 - 18

Manufacturing Control, etc.
Mick Belcham
Page Nineteen

a part's ABC classification used to drive

anyon-line decision-making activities. Its

constant update therefore is hardly worth

the effort; certainly not worth the over-

head associated with on-line recalculation.

(2) On-~ine/Interactive

Issues and Receipts: in a dynamic manufac-

turing environment the movement of inventory

is a constant activity. Many decisions are

made only on the basis of the current

availability of the part concerned. With-

out these. movements being "on-line -and

interactive" the system would be in.capable

of estimating a part's current availability.

(3) Interperetively Interactive

Production Order Release: as a new

order is forced into production to

satisfy an urgent requirement the two

most critical concerns of an inventory

planner are (1) "have I enough inventory

of each of the required components?" and

(2) "What have I just done to the shop?".

Neither are easy questions, and certainly

not easy answers. They involve research

but it is -important enough to know these

8-4 - 19

~.

Manufacturing Control, Etc.
Mick Belcham
Page Twenty

answers, that a system should handle

the entire release in interactive mode,

and report back interpretively the results.

An example of such a result would be the

system returning the message, "The release

of the total order will cause-shortages.

However halve the order quantity and we

should be OK".

As we go through the description of the system's on-line/

interactive features examples of each processing environment will

appear; each, I hope demonstrating that the type of processing used

is always a compromise between the need for constantlv un-to-date

data, and the overhead associated with processing in full interactive

mode.

B-4 - 20

Manufacturing Control, etc.
Mick B.elcham
Page Twenty-One

ENGINEERING CONTROL (see Figure 3)

o llemMa..
o Product Structure
o Routing
o WorkCen..
o Tool File
o Procell File

ENGINEERING
CONTROL

o Item Entry and Maintenance
o Product Structure Envy and

Maintenance
o Routing Data Entry and Maintenance
o Work C.,.. Entry and Mainte~nce

o Tool Dati En1fY and MaintenlftC8
o PrQC8SI Data Entry and Maintenance
o BOM ExplosionsIWhere U-a Inquiry

o Policy Control
- By Commodity
-Bye...
- By Item

o Item Lilt
o Product Structure Ltlt
o SUndard Routing Lilt
o Work Center w.... UI8d Lilt
o Tool Where Uled Lilt
o Procea Lllt/Where U..
o Single/Muhi Lewl 80M

ExplotionlWhere Ulld
o Summarized 80M ExplOlioft

Figure 3 - Engineering Control Overview

This is the system that main-

capable of on-line interactive

ture, Routing, Process, Tool and

(not necessarily interpretive)

earlier - Item Master, Product Struc-

TUE. OCT 7 9a 53 AN

-ORDER QUAHTITY---
MININUN MAXIMUM INCREMENT
c::J c=:J c::J

ITEM MASTER MAINTENANCE

-ORD£R-
POL ICY QUANTITY
o c::J

ITEM HUMBER DESCRIPTION ACCOUNT CODE COMMODITY
I II II I c:::::J

--MATERIAL CODE-- UHIT OF PLANNER NPS fLOOR
SOURCE TYPE RESTRICT ABC MEASURE CODE CLASS STOCK
0 0 0 0 0 0 0 0

PRODl£T LEAD -SAfm STOCK- CARRY SERVICE YIELQ
DEFINITION TINE POLICY UUANT ITY I LEVel I I
c:::::J 0 (] c:::::J CJ CJ CJ

EHTER FUNCTION c::::J ADD - DfAHGE - DELETE - INQUIRY

M881

Each should beWork Center.

tains the six prime data bases listed

update and inquiry. An example rlGUaa-; •

is shown in Figure 4 (Screen IMOOl)
'~

B-4 - 21

Manufacturing Control, etc A

Mick Belcham
Page Twenty-Two

This would be the screen through which an Item Master record

may be added to the data base (provided it passed some basis

validity checks), changed, inquired of, or deleted (provided

also that it passed its valid!ty checks).

Altogether there would be seven Item Master screens, some

specifically for inquiry purposes only, some for adding or changing

other data fields, and some for a combination of the two. However

only this screen (IMOOl) would be used for adding or deleting Item

Master records.

QUANTITY SCRAP FLOOR OFFSET SCHED\A.ER
COMPOHENT ITEM PER UNIT PERCENT STOCK LEAD TIME NOTES
I :1 t=:J CJ [] 0 CJ

ENTER FUNCTION t=:J ADO - CHANGE - DELETE - JNUUIRY

COMMODITY --MATERIAL COOES--
PARENT ITEM DESCRIPTION CODE SRC TVP RSt ABC

I LI ----', ,--I --..' c:::J 0 [] D []

Another example of a

combination Add-Change-Inquire-

Delete screen is shown in Figure 5

(screen PS002). This is used for

transactions against the Product

PsBB2 PRODUCT STRUCTURE FILE WED. NOV 28 I 11.2 AM H(

Structure and allows specific

parent-component links to be

updated, etc. The validity

checks are more demanding in this

SUBSTITUTE ITEM
1 ,

DELIVER TO
OPERATION
c:::J

'JOURI 8

--ENGIN£ERING CHANGE-
NUMBER DATE

c:::::J c:::::J

case because of the natural structure of the data base. Both Parent

and Component Item Numbers must match already existing Item Master

records. Otherwise any attempted update will be rejected. The

same would be true of the Substitute Item.

Another aspect of interactive processing is also demonstrated

by this screen. The six data fields between "Description" and

"ABC" are not in fact on the Product Structure data base. They

,.... are instead held on the Item Master record for the parent item

8-4 - 22

Manufacturing Control, etc.
Mick Belcham
Page Twenty-Three

and are returned by the system for information purposes only at

the time of transaction entry.

TWb other facets of interactive prqcessing are also applicable

to the Product Structure - List-Type inquiries, and "same-as-

except" processing. Figure 6 (Screen PSOOI) shows a"n example

of each. By specifying the Inquiry function and entering a Parent

Item Number the system will ttreturn'"' a list of all associated pa.rent

component link records. It provides therefore the on-line equivalent

of a bill-af-material. The. second

feature here (same-as-except) is an

extension of this. Rather than

having to specify each parent-com-

ponent link for a new product

structure, an engineer might elect

to specify it based upon its sim-

ilarity with an already existing

~I PROIttT STRUCME INQUIRY TUE. NOV 2S ,e. 33 AM H(

ENTER FlKTlON c=:J INQUIRY OR ADD (TO CREATE tnJlTlPlD
COMMODITY "-MATERIAL ctIES-

~ARENT ITEM NUMBER DESCRIPTION CODE SRCE TYPE RSTR ABC
I I 1c::::J 0 0 0 0

~NT ITEM GUANTITY SCRAP F DELIVER OFST SCH£O --ENGINEERING DG--
S\l8STIME ITEM PER ~IT PCT S TO OPER LT NOTES NUMBER DATE CD

I c::::JCJ (J c::::J 0 CJ c::::Jc::::J 0
I I

I r:=:JCJ lJ c::::J 0 CJ c::::Jc::::J0

I c=:J0 [] c::::J DO c::::Jc=JD
I 1

I c::::J0 0 c::::J 0 c:::J c::::Jc::::J [)
I

I c::::JCJ (J c::::J DO c=:Jc=:J (J
I I

'JOURS 8

bill. By using the Inquiry function,

the existing bill of material can be listed on the screen. Then

having:

-made any adds/changes/deletes to the

existing structure to make it specific to

the new

-changed the Parent Item Number to reflect

the new structure's parent, and

-changed the function from Inquiry

to add

8-4 - 23

Manufacturing Control, etc.
Mick Belcham
Page Twenty-Four

The new product structure can be automatically written

to the data base.

Figure 7 (screen WHOOl) shows Where-Used feature. Entering

a specific, say, purchased part in the Component Item Number field

will cause the sy·stem to list all parent links associated wi.th it;

or, in other words, all manufactured items that have this component

in their single-level bill of material.

an engineer to have access to

It is very important for

this type of information

particularly when designing

a replacement for an existing

part. It effectively 'tells him

which product· structu~e links he

should amend to reflect the re-

placement.

The four manufacturing

engineering data bases - Routing,

Process, Tool and Work· Center

would al.so be available for on-

line update and inquiry - specif

ically for add-change~delete inquiry

functions.

Figure 8 (screen RTOOI) shows

the equivalent Routing screen. Once

again the system "returns" the

heading information. The only

B-4 - 24

"1 PRODUCT STRUCTURE WHERE USED INQUIRY T~ NOV 25 Ie. 53 AM tG
EHlER FUNCTION c:=J IHCUIRY

f-aMaoHENT ITEM NO- -COMPONENT DESCRIPTlON-- CONP LD TN UON PH CHT
II I D Dc:::J

HARENT ITEM NO- -PARENT D£SCRJPTlOH- CHG Df SCP LD oa OFF LD F
SU8STnUTE ITEM NO- QTY PER UOM MAlL CODE CHG CD PeT LVL DEPT LD TM S

II I ~DDc:::::J.DO
Ic:=JD 0 0

I c::::J CJ0 c::::J0 DIi
Ic:=JD CJ 0

I c::::JCJ0 c:=:J0 []Ii
Jc:=JD CJ O'

I c::J0 0 c:::::J0 DII
Ic:=JD 0 O·

I c::::JCI0 c::=::J 0 []Ii
Jc:=JD 0 0

'laUD 7

~TBll MASTER ROUTINGS TUE. NOV 2S 1. 48 AM tG

ENTER flICTJDN c:=J ADO - CHANGE ..; IELETE - ItmUJRY

ITEM tuCSER DESCRIPTJOH MASTEit CHANGE DATE
I I I CJ c:=J .c:::::::J

SUBSTITUTE ITEM DRAWING· tUCBER
I , I I

MATERIAL MATERIAL COHMODITY MATERIAL • Qn OR
ITEM NUKBER DESCRIPTION CODE SPECIFICATIONS' WEIGHT

J I 'c:::J1 1c:::::J

DJSP WORK OPERATION GROUP TYPE
DPER CQO£ CENTER DESCRIPTION SETUP CODE SET UP 8TD HRS 1m sm
t:=J 0 c:::::J I I c::::J c:::::::Jc:=J 0 0

c:::::J cfROZ£N STAND~ c=::=:J c:=Jc::::J 0 0

ACCCbT COOE I I SCHD PRT H£LPER COST MANIMACH SUB' cPNT
PROCESS CODE CODE CODE CODE CODE RATIO CODE
I I 0 '0 0 0 CJ 0

'laURI 8

Manufacturing Control, etc.
Mick Belcham
Page Twenty-Five

updateable information is from the "OPER" (Operation Number)

field and on. One point worth noting is the "Frozen Standard"

line. This would maintain the standards that existed for this

operation at the time that Accounting last "froze" their standards.

It would be maintained for as long as required to insure correct

reporting of variances.

ITEM NUMBER DESCRIPTION CHANGE DRAWING HUM8ERt-----........--~-----., c::::::::J I I
MATERIAL MATERIAL COMMODITY MATERIAL QTY OR

DESCRIPTlC* ITEM NUMBER CODE SPECIFICATIONS WEIGHT
.-......................---.."..---------., c:::J I U::::::J

The operation number shown

on this screen assumes a 6-character

length. This is to allow the system to

maintain both prime and alternate

routings on the data base. The first

four characters would be a normal

sequential operation. The last

two indicate the operation's prime/

alternate condition.

Figure 9 (Screen RT002) demon-

strates the equivalent list-type

inquiry.

At this point it is probably

appropriate to discuss the functional

inter-relationships between these four

data bases. Figure 10 (Manufacturing

Engineering Data Base Relationships)

TI82 MASTER ROUTING
ENTER FlKTJDN c:=:J ItDJlRY

ST CHANGE c::::::::J EFFECTIVE c::::::::J
DISP WORK OPERATION DESCRIPTION

OPER cmE CENTER PROCESS COD£oc::::::::J ~I===::!.-__
c::::::::J Ioc::::::::J ~I=====::;---'
c:::=J1CJ c:::=J ~I=====:::;--_..J
c:::=J'o c:::J ~,=====:::--~

c::::J1o c::::::::JI~=====----..Ic::::J , ----J

PIGURI

ROUTING
Part and

Operation
Number)

WORK CENTE

Work Cente
Number)

TUE. NOV 2S 1.41 AM

ClIBRENT STANDARD
fROZEN STNfPA8Q$ TYPE
SET UP STD 1m HAS S10
c::::::::J c::::J 0 0
c::::::::J c::::::::J 0 (]
c::::::::J c::::::::J D 0
c::::Jc::::J (]. 0
c:::=J c::::J (] (]
c::::::::J c::::J 0 (]
c::::J c::::::::J (] 0
c:::Jc::::J (] (]
c::::Jc:::=J (] (]
c:::Jc:::J D D

PROCESS

(Process
Number)

depicts this. In each operation

record on the routing data base there TOOL

is reference to a work center (man-

datory) and a process (optional).

B-4 - 25

Figure 10 -Manufacturing Engineering
Data Base Relationships (Tool

Number)

Manufacturing Control, etc.
Mick Belcham
Page Twenty-Six

These provide the necessary ties-in to these two other data

bases. In addition, each process data base record can contain

one or more references to the tools required for that process.

These references provide the ties-in to the tool data base,

as well as providing the necessary ~here-used references.

Figures 11 through 13 (screens WCOOl, PM001, and TMOOl)

show some of the data·maintained in on-line mode in each of these

WORK CENTER MAINTEHAHCE TUE. OCT 7 .. 48 AN PROCESS MASTER ruE, NOV 25 1. *D AN

EHTER RKT10N c:::=J ADD· CHANGE " D£L£TE • INQUIRY

QUEUE PROD NAHINADt NtIXBER IF
Will(CEHTER DESCRIPTION HOURS ~Y RATIO MACHINES
c:::=J 1 'c::::::::J c:J 0 0

ENTER FlICTJOH c:::::::::J ADO - CHANGE - DELETE - INQUIRY

PROCESS TYPE DESCRIPTION DRAWING tUCBER
';';'~~----'D' " I

--------INOUSTRIAL ENGINEERING DATA---'---ACTUAL SET UP MACHINE LABOR
EFFICIENCY EFFICIENCY 'CAPACITY CAPACITY

o CJ c::::::::J c::::::::J

SCHEDUL£
CODE
o CHANGE tIJN8ER CHANGE DATE

c:::::J c:::J
EFFECTIVITY DATE

[:::::J
USER
o

---....FROZEH WORK CENTER RATES----
SET UP LABOR SIV cos VAR CDS

c::::::::J c::::::::J r:::=J r::::::J c:::=J
----HEV WORK CENTER RATES:----

SET lP LABOR SlY cos YAR cos
c:::=J c:::=J c:::::J c:::::J c:::::J

,JOURB 11

PBOCESS D£SCRIPTIOH DETAIL
, II II II
, " II II
I II II II
I II II II
I " II II, II II II
,-II&..I ~I ...I --,II

'JOURB 13

_1 TOCI. MASTER

three additional bases.

One final comment on the

EHTER RlCCTION c::::::J ADD • CHANGE • D£L£TE - INQUIRY

OLD TOOL
TID. NUMBER CATEGORY TYPE DESCRIPTION REFERENCE NOt 10 01 I~ __

STORE
LOCATION
c:::J

TOIL Dn III
DIMENSION twIl
c:::J c:::J

INSPECT
FREQUENCY
c:::::::J

Engineering Control System; should

any of these six data bases be

"distributed"? Or in other words,
CUSTOMER

NAME

INITIAL
PlIICHAS£D

DATE
c:::::J

MATERIAL COST COST WD
COST DATE CODE TINE

c::::J c::::J [] 0

---lttSPECTlOIN-1--
LAST INSPECT INSPECTORS

DATE INITIALS
c:::::J 0

APPROVAL
ois it likely that one of the

following is true:

8-4 - 26

IIUER POINT
QUANTITY
o

----SUSSTlME TOCL---
NUMBBt 1 NWCBER 2

'-- I ...1 -"

'JOUBB 13

Manufacturing Control, Etc.
Mick Belcham
Page Twenty-Seven

-the data originates in one (plant)

location and is used by another?

-the data is used by multi (plants)

locations?

Typically the only data to which this may be applicable would

be:

-the Item Master Description field

-the Product Structure.

If this is so then consideration must be given to the need

for inter-location communication of this information. There are

really two options to consider:

-frequent copies of this data being·

made available (in batch mode) to each

appropriate location

-remote on-line access to another.

distributed processor.

Normally the first would be the least complex from a control

point of view, but possibly the least desirable as far as a user

is concerned.

8-4 - 27

.~

Aanufacturing Control, Etc.
Mick Belcham
Page Twenty-eight

MASTER PRODUCTION SCHEDULING (See Figure 14)

DATA BASE
COMPONENTS

o Master Schedule Order
Amendment

o Customer Order Amendment

MASTER
PRODUCTION

SCHEDULE

o MPS Summary
o MPS Details
o Summary Resources
o Resource Requirement Planning
o Summary Routing
o P""ning BOM list

o Item Master
o Requirements File
o Replenishment File
o Summary Routing File
o Summary Resource File
o Planning Bill of Material

Figure 14 - Master Production Scheduling Overview

As can be seen from the overview this would frequently be

viewed as a batch function. This does not mean however that

nothing could interact with the Master Schedule in an on-line

mode. It is just that neither the development of forecast demands

from the Production Plan nor the re-iterative simulation

capabilities of Resource Requirements Planning are seen as

desirable/practicable on-line interactive functions.

The Master-Schedule-related functions which would be on-line

however would be included in the Inventory Control module, just

B-4 - 28

Manufacturing Control, Etc.
Mick Belcham
Page Twenty-Nine

as the same functions would be available for all "inventory" items.

These on-line functions are:

-the addition, ammendment or deletion

of a production order (or in the case of

an MPS item, of the Master Schedule itself).

-the development of lower level component

demands as a result of such a change.

-the entry of customer orders against the

production schedule

-the ability to inquire the status of a

production order (or schedule)

-the ability to time-phase inventory

availability, with specific reference

to monitoring the "consumption" of a

Master Schedule.

'\.

The screens required to satisfy

these last two items are shown in

REPLENISHMENTS

ENTER FUNCTION r:=:::J INQUIRY

ORDER NUKBER

Figures 15 and 16.

The first (Figure 15) shows

Screen RP003. With the entry of

the Inquiry function and the

appropriate master scheduled item,

the system will return a time

8-4 - 29

MATERIAL PLANNER COMMDOln
ITEM HUMBER DESCRIPTION CODE CODE CODE

......J'1.-.-----~---, 0 0 CJ

ORO -REQUIRED-- gTY RECEIPT MY
LOT nPE QUANTITY DATE RECEIVED DATE lIP I R I'---__--I' 0 0 c::::::J r:=:::J c:::::J c:::::J 0 c::::J

'--__--I'0 0 c:::::J r:=:::J c:::::J c:::::l 0 c::::J

~ 'D' 0 c::J r:=:::J c::J c::::J (] c::J

- __---...' 0 0 c:::::Jc:::::J c:::::J c:::::l 0 c::::J
___~J0 0 c:::::J c:::::l c:::::J c:::::l 0 c:::::J

- __---...' 0 0 c:::J c::::J c:::J c::::J 0 c::::::J

'JOURE 115

~anufacturing Control, etc.
L\fick Belcham
Page Thirty

~ phased list of all scheduled production for that item, and the

individual status of each production "batch.

Figure 16 shows Screen SDOOI. The same entry is required

(Inquiry plus Item Number) but, additonally, a date range (start/

stop) can be specified. This allows the Master Scheduler to con-

centrate only upon projected activity during the time period

under consideration. The first two lines provide details from the

part's Item Master data base, one element of which is the part's

current balance on hand (if any). This is the starting point of

the time-phasing. Each projected activity (either production or

usage) is listed in due date sequence and the effect of such

activity shown under the heading AVAIL (available).

SUPPLY I DEMAND REVIEV WED, DEC S 18112 AN
ENTER FUNCTION c:::::J INQUIRY

START STOP Pl CONN MPS FS ALLOe. ON HAND
c:::::J c:::::J 0 c:::J 0 0c:::::J c:::::Jt----- 0 R D E R --- SAFETY STOCK FtlRECAS

LT DCP YIELD POl on INC POL an POl QT
~~~-...., DOD 0c::::J c:::::J [] c::::::l (]

ORDER NUMBER D-lJULTIl 51~ --lID

tlQURB 18

8-4 - 30



Manufacturing Control, etc.
Mick Belcham
Page Thirty-One

INVENTORY CONTROL (see Figure 17)

o All Material Movements
o Order Details EntrY and

Maintenance (CO, WO, PO)
o Inventory Status Inquiries

(by Location)
o Order Status (All Types)
o Supply/Demand Reviews

INVENTORY
CONTROL

(MRP)

DATABASE
COMPONENTS

o Order Master
o Requirements
o Replenishments
o Item MastBr
o Product Structure
o Purchase Orders
o Policy Defaults
o MRPTriggen

o MRP and Inventory
Policy Control

o Shortage Analysis
o Mat8f'ial Allocation
o Order EntrY
o Planning Materials
o Order Releasing
o PickinwKitting
o ReceNing
o Rescheduling

o ABC Analysis
o Order Status
o Transaction Valuation
o Valuation of Held Inventory
o Inventory Valuation and Cover
o ABC Reclassification
o Cycle Count

o MRP Action Lists (by Planner)
o Summary MRP Report
o Rele8S19 Reports
o Allocation/Shortage Reports
o Pick Lists (by Part, by Location)
o Material Forecast Reports
o Stock StaUols Reports
o SS/EOQ Analysis

Figure 17 - Inventory Control Overview

As can be seen from the ove~view this part of the system is

highly interactive in nature. Let us review some of these functions

under the same headings as we used earlier-planning, releasing,

expediting, recording, accounting and management.

(1) Planning: The ability of the system

to develop replenishment plans (both

purchasing and production) for each

recognized inventory item is the nucleus

of the whole system's operation.

8-4 - 31

The



,~

Manufacturing Control, etc.
Mick Belcham
Page Thirty-two

technique used - M~l is a method of

developing a time-phased picture of

each item's expected usage and suggesting

the appropriate replenishment plan to

avoid potential stock outs. This type

of review is conducted in a logical sequence

dictated by each part's position in the

product structure. The highest level

items are tackled first so that

their replenishment plans can be translated

into projected component demands prior to

that level itself'being reviewed by MRP.

In the simplest terms the system recognizes

two record types - supplies and demands.

Each -of these are split again:

-supplies: Production orders

Purchase orders

-demands: customer orders

forecast orders

dependent demands

The latter two are typically created auto-

matically by the system - forecast orders

from a forecasting algorithm ~ dependent

demands from the explosion of production

orders created at the next higher level in

the product structure.

8-4 - 32

The other three



Manufacturing Control, etc.
Mick Belcham
Page Thirty-three

would be input to the system in on-line mode:

Production orders: through screen OPOOl

(see Figure 18)

Purchase orders:

Customer orders:

Two points are

through screens POOOI and

P0003 (see later purchasing

discussion)

through screens OPOOI and

OMOOI (See Figures 18 and 19)

worth noting regarding the

OPOOI screen. Firstly that

the order type field dictates

whether the order being entered

is a production or a customer

order - or a combination of

both. This feature allows for

special customer orders to be

ORDER PROCESSING TUE. NOV 25 1.21 AM
ENTER FlICTI~ c=::J ADO -. CHAtGE .. DElETE

LOT NLIt8ER 0

ORDER/QUANTITY c::J
SHIP DATE c::::J

ALT. ROUTING 0
STD ROUTING 0
NEW RELEASE 0
ORDER DATE c=::J
MATL PRIORITY 0
START DATE c::::J
MGE ItIJ (]

rJOURE 18

~
I

entered that are for non- 811 ORDER MASTER
ENTER FUNCTION c=::J CHANGE - INQUIRY

TlIE. HOV 2S I. 18 AM

inventory items. They do

not have to match a record

on the Item Master; they are

ORDER STATUS ORDER ORDER HOlD
ORDER NUMBER LOT TYPE COOE DATE QUANTJTY CODE

...... ....1 0 0 0 c::::J c:::=J 0

-----QUANTITY------- INPROCESS ACCOUNT
COMPL£TE SCRAPPm REJECTm SHIPPED CRATED CODE am
c:::=J c::J c::J c::J c::J 0

planned for shipment directly
CUSTOMER aJSTOMER

HUMBER NAME
c::::::::::J

INCOME PROMISE REPRDHISE INVENT[Jff
CODE DATE COOE TIMES CODE
o c:=J[] 0 0

from work in process.

The second point re-

lates to the field "Standard

8-4 - 33

PRIORITY PLAN START LEAD EST START MASTER sat BOOKING
CODE DATE TIME DATE LOAD DOLLARS
o c::::::J 0 l· c::::::J c:::::J c::J

PRODUCT ORIGINAL CURRENT SHIP . ITEM ITEM
DEFINITION SHIP DATE DATE CODE NUMBER DESCRIPTION

c:::::J c::::::J c:=:J 0 _, --..1 c=:::::J
FIGURE 19



Manufacturing Control, etc.
Mick Belcham
Page Thirty-Four

BaM". The entry of- an "N" (NO) here (whether for

a special custome~ order or for a non-standard

production order) allows the system, using another

Order Processing screen to present the same-as-except

option to the inventory planner. Using this feature,

a planner can either override the system-suggested

bill-of-material, or simply substitute a part, or

change a "Quantity per".

(2) Releasing: One of the system's most powerful

"interpretively interactive" functions would

be covered by screen OP004 (See Figure 20).

This would allow a user to:

-check for potential shortages prior

to the release of an order

-force-allocate inventory to an order

-force-de-allocate inventory from an order

-force-release an order.

The Shortage function

amply shows this ability.

With the single entry of

an Order Number (typically

for an existing production

order) the system:

~4 ORDER PROCESSING - ALlOCATION/SHORTAGE TUE. NOV 25 J. 2S AM tG
ENTER FUNCTION c:::::J Au.oc - SHORTAGE - DEALLCE • RELEASE

PRO£R NUMBER I I LOT NUMBER 0
~LLOC/DEALLOC QTY c:=.J ORDER ITEM I I
NAX SETS c:::::J

QTY AVAIL DATE
~ ITEMND. QTY REOD REQD DATE AVAILABLE ORDER AFFECTED BY ALLOC

c:=.J c:=.J c:::::::J
c:=.J C=:J c:::::::J
c:=.J c=:J c:::::::J
c:=.J c:=.J c:::::::J
c:=.J c:=.J c:::::::J

-c::::::::J c::::::::J c:::::J
c::::J c::::::::J c:::::::J
c::::J c::::J c:::::::J
c::::J c::::J c:::::::J
C=:J C=:J c:::::::J
C=:J c:=.J c:::::::J
c::::J C=:J c:::::::J I
c::::J c:=.J c:::::::J I
c:=.J c:=.J c:::::::J I

l::::J ~o c:::::::J I

8-4 - 34



Manufacturing Control, etc.
Mick Belcham
Page Thirty-Five

-ascertains the component items that

need to be available.

-checks for any potential shortage

condition that may exist on these

items.

-displays on the screen these potential

shortages.

-ascertains the date on which these

shortages should go away if all goes

according to plan.

-calculates the maximum partial quantity

(if any) that this order could be re-

leased for while still avoiding the

shortage.

(3) Expediting: the system would provide total on-

line reference capability for existing production,

purchase and customer orders (see Figures 21 and 22

- screens RP002 and RQ002).

REPLENISHMENTS

ENTER FUHCTlON c=::J INQUIRY

WED. NOV 28 111.3 AM He! REQUIREMENTS

EHTER FUNCTION c=::J INQUIRY

TUE, NOV 25 UL 38 AM

ORO , Pia BUYR VENDOR ACK ORDER
MDER NUM~ER LOT TYPE STAT TYPE CODE NUMBER DATE DATE

I 10 0 0 0 0 c:::::Jc=::J c=::J

ORDER REQUIRED --LAST RECEIPT-- QTY PROMIS
TEM NUM8ER QUANT lTV liP DATE QUANTITY OATE RECEIYED DATE

1------- c::::J 0 c::::::Jc::::J c::::::J c::::J c=::J

I------ c::::J [] c::::::J c::::J c::::::J c::::J c:::::J
I~-----' c::::J 0 c::::::J c::::J c=::J c::::J c=::J

1------- c::::J [] c:::::Jc::::J c::::::J c::::J c:::::J
1 c::J 0 c=::Jc::Jc=::J c::Jc=::J

I"'------~ c::J D c=::Jc::Jc:::J c=J c=::J

PIIJURB :n

ORDER NUMBER LOT REGISTER TYPE STATUS CUAHTJTY DATE
..-.'--_----II 0 c::J 0 0 r::::::J r:::::::J

---REQUJREO----- -STOCK PULL-- DELIVER TO
ITEM HUMBER CUAHTITY DATE QUANTITY STATUS OPERATION REGISTER
I c::::J c:::J c=J 0 c::J c::J

c::::J c:::J c=J 0 c::J c::J

r::::::J c:::J c=J 0 c::J c::J
'---__=:J r:=J c::::J r:=J 0 c:::J c:::J

r::=J c::::::J r::=J [] c:::J c:::J

c::::J c::::::J c::::J 0 c::J c:::J

PIOURE 2a

8-4 - 35



Manufacturing Control,etc.
Mick Belcham
Page Thirty-Six

The first shows the status of the order

itself, the second shows the status of

the components.

(4) Recording: All receipts and issues, would

be on-~ine transactions

as would the inquiry

on an item's balance

on hand and its one

or more stocking

locations. The

three screens (MVObl,

MV002, and IM005) are

shown in Figures 23

through 25. A number

of points are worth

noting regarding

the two movement

RECEIPTS

-WORK ORDERS-
28 - WIP TO STORES 38 - UHPl.AHNED RECEIPT
21 • RETURN BY ITEM
22 - RETURN BY ORDER
23 - RETURN BY REGISTER

o
o
I II l*JT OF MEAS. 0

ErE CODE 0 RECEIPT DATE r---,
TORE LOCATION (=:J ACCWfT COO£ ....c=:__...

DATE c:::J ORDER QTY c:::::J RECVGlINS c:::J RCVD c:::::J Dt£ c:::::J
SCRIPTll* , I

PJQURS 23

ENTER fUNCTION c:::::J INQUIRY
I - ISSUE BY ITEM
I • ISSUE BY ORDER
2 • ISSUE IY REGISTER

ISSUES

28 - tlNPLAHNED ISSUE

WED. NOY 28 11. ~B AM

ITEM NUN8ER

ITEM MASTER MAINTENANCE

PRIME
UOM ACCOUNT COD£ LOCATION
0' I (=:J

ruE. OCT 1 UI, B8 AM

TOTAL GTY
ON HAND

c:::::J

'IOURI14

R NUMBER 1-' ---'

OT NUMBER 0
TEM tM4BER I:=~----'

GISlER NUMBER [:=J
ANTlTV (:=::J

ETJON CODE 0
OCATION [:=J
CCOtJfT ....1 _

ISSUE DATE c:::=J

- - - - - - - - - - - - - QUANTITY BY LOCATION - • - - - • • • • • • ~

LOCATION QUANTITY LOCATION QUANTITY LOCATION IlUAHTlTY
c=J c:::::J c=J c:::::J c=J c:::=J

c:::J c::::J c:::J c::::J c=J c:::::J
(=:J c:::J (=:J c:::J CJ c:::J
c=J c:::J (=:J c:::J CJ c:::J
c=J c:::J c:J c:::J c:J c:::J

rlQURB 26

B-4 - 36



'Manufacturing Control, etc.
Mick Belcham
Page Thirty-Seven

screens.

-unless a transaction is catagorically

stated as unplanned (functions 20 and

30) it will always be validated against

an existing supply or demand record.

If one cannot be found, or there is some

other discrepancy, the transaction is

rejected

-a completion code can be set if the

transaction is to close-short the supply

or demand record.

-if a store location is not specified

it will assume the part's prime location.

-the issue transaction can be "interpretively

interactive". Functions 11 and 12 will

automatically create issue transactions

by "implication".

-receipts against a purchase order can

be two-staged - firstly into inspection,

then into stores.

(5) Accounting: Each Item Master record contains an

account code. A debit or credit transaction is

created (at full frozen standard costs) wherever

a receipt or issue (respectively) is processed.

8-4 - 37



Manufacturing Control, etc.
:dick Belcham
Page Thirty-Eight

The contra-entry is also created based upon the

transaction's own account code. This may be

specified in the transaction itself (for instance,

for a scrap transaction) or in the original order

record against which it is being processed.

The system also keeps track of the inventory

value and analyzes this by product line, commodity

code, etc.

(6) Management: One of the most powerful features

in an inventory control system" is the ability to

drive the inventory management policies from "default"

records. This enables the inventory planner, (as

can be seen from figure 26) to specify his safety

stock, order quantities etc at a "generic" level

(possibly commodity code) and with one small change,

radically affect the individual replenishment

plans being

developed for
bFIII ITEM DEFAULT FJLE WED. NOY 28 111 39 AM M(

each item within
ENTER FUNCTION c::=:J ADD - CHANGE - DELETE - JNQUIRY

that commodity code.

The end effect

OMHOOITY ----..-MATERIAL CODE-....-..-_.. ACTION
CODE SOURCE TYPE RESTRICT ABC DATE

c:::::J. (] (] (] (] c::=:J

PlANNER PRODUCT
CODE DEFINITION
o c::::J

obviously is to

impact the projected

inventory levels by

reflecting changes in

management policy.

-"--ORDER--- ------ORDER QUANTITY------- -SAFETY STOCK- SERVJCE CARRY
POLICY auANTITY MINIMUM MAXIMUM INC FACTOR OFFSET FACTOR FACTOR FACTOR
D [::=::J [::=::J [::=::J CJ 0 CJ CJ CJ

---..-------FORECAST-..........------- -------COST------- -LEAD TIME- PURCH
POLICY ALPHA I ALPHA 2 ALPHA a ORDER SETUP MFG PURCH DECOUPLE
D CJ CJ CJ c::=:J c::=:J 0 0 0

,rOURR 28

8-4 - 38



Manufacturing Control, etc.
Mick Belcham
Page Thirty-Nine

MANUFACTURING C'ONTROL ('S'ee' Fi'gure 27)

o Work Order StatUI
o Tool Status
o Material Location
o Process Instructions SHOP

FLOOR
CONTROL

DATA BASE,
COMPONENTS

o Work Center Master
o ProceaMal1ltr
q Tool Master
o Item M8I1Itr
o Requirements
o Replenishments
o Order Master
o Scheduled Routing
o Register Maltllr

o Labor Reporting
oRe-routing
oRe-scheduling
o Lead Time Compression
o Schedule Maintenance

o Work Center Schedule
o Forward Load Repons
o Pick Lists
o Scheduled Routings
o Shop Documentation
o Order Status and Analysil
o Machine Utilization
o Labor Performance
o Capecity Planning Report

,~,

Figure 27 ~anufacturin~ Control Overview

Four of the earlier-listed functions of the Manufacturing

Control system should be on-line and/or interactive. They· are:

Order Release, Order Scheduling, Shop Floor Reporting and Order

Expediting (or Status Reporting). The other two, Analysis and

Capacity Requirements Planning, would normally be pure batch.

In interactive mode an order's release and the development

of its operation-by-operation schedule should be simultaneous.

This would be instigated by the OPOOI screen described earlier

B-4 - 39



Manufactur1ng Control, etc.
Mick Belcham
Page Forty

~ specifically by the Force Release indicator. The end effect

would be a completely-developed back schedule of all work based

upon

-the order's due-for-complete date

-the order's size

-the routing used

-the projected move and queue

times betweens operations

It should be available for on-line Inquiry - see Figure 28,

screen SROOI.

~
\

bRal SCHEDUlED RlIITINC TUE. OCT 7 lie 28 AM H(

ENTER F\KTIOH c:=J ADD· CHANGE • DELETE - INQUIRY

ORDER MDCBER LOT DESCRIPTION DRAVING NO ACCOUNT CODE
101 II II I

ORDER DTY ORDER START DATE COMPLETE DATE REGISTER NO PLANHER TYPE HIS
t:=J c=l c:::J c:::J 0 0

OPERATION WORK SET UP STANDARD DTY -SCHEOlA.ED DATES-
CPER DESCRIPTION CENTER HOURS HOURS REQUIRED START COMPLETE

1 Ic:::::::J c:::::::J c:::J c:::::J c:::Jc:::J

I Ic:::::::J c:::::::Jc:::J c:::::J c::::J c:::::::J
c:::::::J c:::Jc:::J c:::::J c:::::::J c:::::J

1 Ic=::J c=::J c:::::::J c:::J c::::J c:::J
: Ic=::Jc=::J c::::=J c:::J c::::Jc=::J

c:::::::J c:::::::J c::::J c:::J c:::::::J c:::::::J
1 Ic:::::::J c:::::::J c::::J c:::J c:::::::J c:::::::J
I Ic:::Jc:::J c::::=J c:::Jc:::J c:::::::J

J
Ic::::::JB c:::::::J c:::J c::::=J c:::Jc::J . c:::::::J c:::J c:::::::J c:::::::J

rtoURB 28

~ SCHEDULED ROUTING ruE. OCT 7 lea 31 AM Ki!

ENTER AJCrlON c::::=J INQUIRY

ORDER tlJMSER LOT DESCRIPTION DRAWING NO ACCOUNT CODE
101 II II I

ORDER DTY ORDER 5TART DATE COMPLETE DATE PlANNER TYPE tV5
[=:J c:::J c:::J 0 0

OPERATION VORK ESTCOMP-QUANTITY--
~ DESCRIPTION CENTER DATE SCHEDUlE COMPlETE SCRAP HELD STAT

Ic:::::::J c:::::::J c:::::J c:::Jc:::Jc:::J0
Ic::::=J c::::J c:::J c:::J c:::Jc:::J 0
Ic::::=J c::::J c:::J c:::J c:::J c:::J 0
Ic:::::::J c::::J c:::J c:::J c:::J c:::J 0
Ic:::J c::::::J c:::J c:::J c:::J c:::J 0
Ic:::J~ c:::J c:::::J c:::::J c:::::J 0

~
Ic:::JB c:::J c:::J c:::J c:::::J0
Ic:::J c:::J c:::::J c:::J c:::J 0

~
Ic:::J c:::::::J c:::J c:::::J c:::J c:::::J 0
Ic=:lc=:l c:::::J c:::::J c:::::J c:::::J 0

FIQURS 30

QUAHTITY ELAPSED COMPL.
ORID tb8ER LOT OPER COMPLETE TIME INDICt

t---- -IO c:::J c:::J c::::J 0

As labor transactions are posted -

see Figure 29, screen SR007- each

operations status should be main

tained and available for on-line

flKTION c:::J

LABOR REPORTING

sa - PLANNED LABQR
41 - UNPlANNED LABOR

TUE. OCT 7 Ie. 42 AN

inquiry see Figure 30, screen SR002.

8-4 - 40

WORK
CENTER MANNO

c::::J
MACH NO.
c:::J

ACCOUHT
NUMBER REASON

""---_....1 0

rlOUBI 88



Manufacturing Control, etc.
Mick B.elcham
Page Forty-One

COST CONTROL (S'ee Figures 31 and 32)

Standard Cost Generation Standard Costing

DATABASE
COMPONENTS

o Item Master
o Order Master
o Work Center
o Production Orden
o Employee Actual Rates
o Labor Transactions

STANDARD
COSTING

o Cost Data Inquiry
o Cost Adjustments

(On Order Closeout)
o Item Master
o Product Structure
o Routing
o Work Center

STANDARD
COST

GENERATION

o Planned Standards
o Current Standards

o Authorize New Frozen
Standards

o Review/Modify Planned
Standards

INTERACTIVE
FUNCTIONS

o Report Requests
o Audit Closed Orders
o Inventory Adjustment

ReconciliationlAudit

o Material Costs Review
o Manufacturi;.g Costs Review
o Cost Sheets
o Cost Comparisons
o Inventory Revaluation

o Labor Variance Report
o Production Order Closeout
o Purchase Material Variance
o WIP Valuation
o Crating Valuation
o WIP Scrap Report

Figure 31 - Cost Control Overview (1)
Figure 32 - Cost Control Overview (2)

The two overviews describe most of the

required system features. Only one screen

relates to the cost generation function and

that is shown in Figure 33 (Screen IM003).
MBB3 ITEM MASTER MAINTENANCE TUE. OCT 7 9.58 AM

EHTER FUNCTION c::::::J CHANGE - INQUIRY

The Change function allows the inter-

active update of the New and Current

JTEN NlDISER DESCRIPTION ACCOUNT CODE
I I

SlY cos YARIABLE
HATERIAL LABOR OVERHEAQ OVERHEAD OyERHEAD

costs; it does not allow for that of
-----------------FROZEN MATERIAl DOllARS-------------------
r.::::::::J r.::::::::J r.::::::::J c::::::J r.::::::::J

Frozen. These have either to be
----------CllRRENT MATERIAL OOlLARS-----------
r.::::::::J r.::::::::J r.::::::::J r.::::::::J r.::::::::J
----..----..-----------NEW MATERIAL DOLlARS-----------
r.::::::::J r.::::::::J r.::::::::J c::::::J c::::::J

'IGURE 33

8-4 - 41



Manufacturing Control, etc.
Mick Belch.am
Page Forty-Two

"rolled" from the Current or New costs, or to be amended in batch

mode. Three screens relate to the Standard Costing function; each

being an inquiry about an order's costs to date. they are "hier-

archical" in design - one provides costs for the order as a whole,

another a summary of costs by operation, and the third the back-

up detail of an individual operation's costs. The second such

screen (SR004) is shown as an example in Figure 34.

_4
SCHEDUlED ROUT ING ruE. OCT 7 19,39 AM ~

ENTER FUNCTION r==J INQUIRY

ORD£R NWtBER LOT DESCRIPTION DRAWING NO ACCOUNT CODE
IDI II II I

ORDER QTY ORDER START OATE COMPLETE DATE COST-CD PAY-CO PLANNER TYPE HIS
t::::J c:=:J c:=:J 0 0 0 0

OPERATION VORK ---------c 0 S T-------- QUANTITY
OP£R DESCRIPTION CENTER ACTUAL SCH£OULEO SCRAPPED Cl»(pLETE

1r==J·! " Ic:::::::J
Ir::=:l! II Ic:::::::J
Ir::=:ll II Ic:::::::J
1r==J1 II Ic:::::::J

~
Ir==JI II Ic:::::::J
Ir::=:ll II Ic:::::J

~
Ic:=JI II Ic:::::J
1c:=J1 " Ic:::::J
Ir::=:l'! II Ic:::::::J
1c:=J1 II 1c:::J

rlGURB 34

8-4 - 42



Manufacturing Control
Mick Belcham
Page Forty-Three

PURCHASE ORDER CONTROL '(See Figure 35)

o Purchase Order
Entry and Maintenance

o P.O. Status Inquiry

PURCHASING

DATA BASE
COMPONENTS

o Item Master
o Replenishment
o P.O. Master
o P.O. Detail
o P.O. Reference
o Vendor Mast8r

o Vendor Selection
(for an Order)

o Placing Orden
o Rescheduling

o Purchase Orders
o Blanket Order Release Schedule

and Summary Reports
o Open Purchase Orders Report
o Cross Reference Report
o Pending Receipts
o DebitMemo
o Projected Purchasing Variance
o Forward Purchasing Cash Commitment

Figure 35 - Purchasing Systems Overview

As was stated earlier this system

component would provide help for
PoB91 PURCHASE ORDER MASTER TUE. NOV 25 Is. 29 AM H;;

the purchasing department in their

placing and expediting of purchase

ENTER FUNCTIOH c::=::J ADD - CHANGE - DELETE - INQUIRY

BLANKET! ORO PO --TAX STATUS-
PURCHASE ORDER NO LOT TYPE ST TP EX NUMBER
, 10 0 0 0 0 c:::=J

ORDER VENDOR
DATE NUMBER

r:::::::J c==J

orders. In all other respects -- SHIP FOB BYR PLN DOCK REQUIRED ---DELIVER TO--
ROUTE CD TERMS CD co DATE DATE INSTRUCTIONS ACCOUNT
r:::::::J 0 CJ 0 0 c:::::::J r:::::::J , I ,--I_----'

purchase order printing, invoice

reconciliation, vendor analysis,

etc- the system would perform in

batch mode. Figures 36 through 38

show the screens that would be used

8-4 - 43

LINE QUANTITY ITEM NUHBER DESCRIPTION PRICE UOMo (::=J _, 1 _1""':::::::===:':: r:::::::J 0
UOM CONV _-------------,c::=::J 1-' ....J

PIOURR 38



danufacturing Control, etc.
Mick Belcham
Page Forty-Four

~
\ to iniate an order (screens POOOI and P0003) and to inquire as

to its current status (P0002 and again P0003).

The system should allow for purchase orders to be placed

both for discoete quanties and as a series of blanket order

releases.

82 PURCHASE ORDER MASTER TUE. HOY 2S 1. 38 AM 93 PURCHASE ORDER MASTER TUE, OCT 7 111 83 AM

ENTER FlJ4CTlON c::::J INQUIRY

BlANKET! ORO PO ORDER ACJ<NOVLEOCE liP PRINT HOlD
PURCHASE ORDER NO LOT TYPE S1AT TP DATE DATE co COE CtJOE CODE
I 10 0 0 0 c:::::J c:::::J 0 0 0 0,

ORDER RECEIPT JRJ RTN VND DOCK REQUIRED
ITEM MJMBER LINE QTY QTY QTY Q(y DATE DATE
,------10 c:::J c:::J c:::J c:::J c:=::J c:=::J

'-- --" 0 c=Jc=Jc=Jc=Jc:::::J c::::::J

'-- -.I' 0 c=Jc=Jc=Jc=Jc::::::J c::::::J

'-- ....I' 0 c=Jc=Jc=Jc=J c::::::J c::::::J

'-- ....I' 0 c:=Jc=Jc=Jc=Jc::::::J c::::::J

'-- --'1 D c=Jc=Jc=Jc=Jc::::::J c:=::J

'lOURS 37

ENTER FUNCTION c::::::J CHANGE - INQUIRY

BLANKET! ORO PO ORDER DOCK REQUIRED ACKNOWlEDGE
PURCHASE ORDER NO LOT TYPE ST TP DATE DATE DATE DATE co
I 10 0 0 0 c:::::J c:::::J c:::::J c:::::J 0

ORDER AMENDED INVOICED -LAST RECEIPT- REt
ITEM NUMBER LINE DTY QTY QTY DTY DA1£ co

r-;.!~~----'I0 c::::::J c::::::J c::::::J c::::::J c::::::J 0

REQUISITJON VENDOR --------BUYER------- ------PLANNER-- INS
HUNBER NAME co NOTES co NOTES CD

.c:::::J c:::=:J O! 10 I 1 0

---VENOOR--------- EVAL ------DELIVERIES---
CONN ORDER NUN PART NUMBER METH "KS EARLY "KS LATE ON TINE TOT

c:::J c::=::J I I 0 c:::J c:::J 0 0

rlGURB 38

B-4 - 44



Manufacturing Control, etc.
Mick Belcham
Page Forty-Five

SUMMARY

So that's it; an on-line interactive system capable of

handling a distributed environment. Obviously it has to be

far more capable than just this brief overview can depict.

However, much of the remainder of the system would almost

follow by implication from the nucleus discussed here.

Let us finally return to the more conceptual requirements

that we reviewed earlier and hopefully agreed.

(1) everything hangs upon management's ability

to implement new techniques of management

control.

(2) the new "techniques" are nothing more than

a logical extension of some very basic man-

agement practices. The difference is that

these have to be formalized in order that

they may be "distributed" and implemented.

(3) in a distributed environment the majority

of control problems arise in the interfaces

not in the manufacturing plants themselves.

(4) a good system will not only be dependent upon

but also positively encourage, Evaluation,

Feedback and Commitment.

B-4 - 45

~.. ·.. ···.'·!~n~'

~,



Manufacturing Control
Mick Belcham
Page Forty-Six

(5) as representatives of a service organization

within our own company it is our responsibil"ity

to help our management understand these aspects

of a distributed environment.

B-4 - 46



Manufacturing Control, etc.
Mick Belcham
Page Forty-Seven

NOTE

The screen formats reproduced in this paper represent

a selection of those available in Martin Marietta Data

System's MAS-H application system. For further information

concerning this system please contact:

Richard M. Nemesson
Director of Marketing
Martin Marietta Data Systems
6301 Ivy Lane
Suite 300
Greenbelt, Md. 20770

8-4 - 47

~,

~,



TRANSACTION LOGGING AND ITS USES

By Dennis Heidner

Boeing Aerospace Company

ABSTRACT

For some time data-base users have been concerned about the
integrity o~ their data-bases and methods to prev€nt them from
baing corrupted. Another concern is performance measurement.
When H-P introduced MIT-1918 1 they also introduced uTransaction
Logging", Transaction logging is intended to provide a means
of repairing data-bases which are either damaged or ar·e suspected
of being so, There are however many additional benefits to be
derived from transaction logging including, automatic audit trails l

historical records of the data-base users, and information on
the .data-base performanc€,
The purpose of the paper is to discuss the basic concepts of
transaction logging l its b€nefits l and its drawbacks,

Various logging sch€mes 1 such as long logical blocks 1 concurrent
transactions, multiple IMAGE data-bases J and user-written
application programs are examined, S~veral different data-base logging
cyclas and H-P recommQnd£d r€covery proc~dur€s are discussed, and
a method of recovering and synchronizing multiple data-bases is
proposed.

Finally the pap€r covers how the transaction log has been used
to monitor the system performance (as seen by the data-base user)}
to validate and debug new user-written application software l and
provide an complete audit trail for futur~ reference.

Monday B-5 - 01



DESIGNING FRIENDLY INTERACTIVE SYSTEMS

A presentation on financial systems design
to be given at the HPGSUG North American
meeting in Orlando, Florida, in April 1981,
by Mr. Jack Damm of The Palo Alto Group.

t40nday 8-6 - 01

.~



DESIGNING FRIENDLY INTERACTIVE SYSTEMS

By Jack Damm t Principal t The Palo Alto GrouPt Sunnyvale, Calif. (408) 735-8490-

Good afternoon. I am going to talk about financial planning on the
HP3000 with the Dollar-Flow planning language. My discussion will focus
on three areas: 1) What financial planning is, and why there is a need for
computerized planning; 2) Design considerations for "friendly" user
oriented applications; and 3) How the language Dollar-Flow is used for
applications like profit planning.

THE NEED FOR FINANCIAL PLANNING

First t let's start with two questions: What is financial planni~g?

And why is it necessary? Financial planning is making dectsions about allo
cating the scarce resources of an organization so as to best achieve its
goals. In the private sector, this usually means how best to allocate money
and people to achieve profitability goals. In the public sector t it may mean
how best to allocate people and dollars to provide a desired level of service.
The main idea here is that the resource is scarce and, as a manager t hard
decisions have to be made about how to use it. More specifically, financial
planning is setting budgets, making pricing decisions, and estimating future
demand for products and services, in order to achieve profit and/or perfor
mance goals.

Why is formal planning necessary? First t of course t because a scarce
resource (typically money) is involved. If we had enough money for everything,
then we could simply raise our salaries and retire early. Secondly, it is very
important to have general agreement within an organization about how goals
are to be achieved. No assumptions should be made without clearly stating
and documenting them. With a good financial plan, trouble signs can be
spotted earlier and corrective action taken sooner. Businesses which fail
to plan effectively are the best illustration of the need for planning.

Let me offer one last reason why planning is important. For many
companies t planning is a necessity because of the complexity of their opera
tions. A typical manufacturing company may purchase thousands of parts for
use in a vast array of products, and assemble them in many different locations.
They cannot wait until there is no money in the till to decide that it's time
to raise prices. And the current rates of inflation make this an even more
important consideration.

THE TYPICAL PLANNING PROCESS

OkaYt let's assume that one accepts the need for financial planning.
So what's the big deal? Well let's look at the typical planning process and
I'll show you.

First t planning involves lots of numbers. And these numbers change
often. Financial planning involves projections into the future and is
a very uncertain process. When you're uncertain t then you have to do contin
gency planning. Play "what if" games. What if sales are 20% higher than
planned? What if the cost estimates are too optimistic? What if our product

ales mix is different? Because of uncertaintYt alternative plans are neces
;arYt increasing the amount of work required to plan several times over.

B-6 - 02



And that's not all. The attempt to reach a targeted objective such as
profit adds to the work. It may take several passes before all of the budgets
combined with the sales estimates, cost estimates, and so forth, sum up to the
desired results. The task soon becomes monumental.
company? Try changing every format statement in the model in an hour. And
add'to that the bother of documentation.

To summarize, manually prepared plans can be flexible, but they take
a long time to do and lots of effort, especially if several passes are done.
They often lack documentation. Planning with traditional programming lan
guages takes too long to set up, is inflexible, and requires the services of
a programmer.

PROBLEM ORIENTED LANGUAGES

Let me digress for a moment. For several decades now, computer scien
tists have been searching for a "universal" programming language. ALGOL?
PL/I? APL? PASCAL? The search goes on. Each has its merits, each its disadvan
tages. But these "procedure oriented" languages have one thing in common: You
have to be a programmer to use them. And it is altogether too easy to include
bugs in even the simplest of programs. As long as there is a programmer acting
as middleman between the user (or analyst) and the computer there are going to
be communication problems. Maintenance problems. Resource and priority problems.

What's the answer? A planning oriented application languag.e which
incorporates the good aspects of traditional programming, but eliminates the
problems. Where plans can be set up and. revised easily, without having to be
a programmer. What I am describing here is one example of another class of
programming languages, "problem oriented" languages. Languages which have be,
designed to provide solutions in a general way to classes of problems. Simpl,.)
enough to be used by non-programmers. Easier to deb~g. Self-documenting. ~

QUERY is an example of a problem oriented language. It provides access to
IMAGE data bases in a fashion simple enough to be used by non-programmers.
Dollar-Flow is a problem oriented language, designed as a tool for non-program
mers who want to set up tabular planning reports.

Financial planning is an area well suited to problem oriented languages.
There is a considerable amount of generality in what planners do, although no
two plans are the same. A financial plan typically involves mathematical
operations on rows and columns of numbers. With well defined rules for the
calculations. And the burden of planning in any other way gives the financial
planner considerable incentive to try new appproaches.

This is a good start. But we still have to get the planner onto the
terminal and communicating with the computer. How is this done? By giving him
an effective tool. One which is both friendly and enables him to get the job
done in a way that he understands.

DESIGNING FRIENDLY SYSTEMS

This leads us to the next point: What makes a system "friendly·'?
How can a system be designed so the novice or non-computer type feels com
fortable with it? lofer here a few of my ideas and techniques for develop-
ing friendly systems. :~

8-6 - 03



SIMPLICITY

Keep the system simple at all cost. Do not let the internal struc-
ture on the computer dictate how a system looks to the user. Let him express
~s ideas in his own terms. For example t the original design for the Dollar
~.~ow language was based on a set of do cumen tat 10 n which I prepared for a group
of accounting types. This documentation described the workings of a particular
customized model on a line by line basis. I figured: What could be a better
set of design specifications for a language than actual documentation? As you
document your model you are also writing your program! Another example.
Dollar-Flow re-orders calculation rules automatically. Thus, line 1 on a report
can reference data on line lOt which, in turn, can reference data on line 20.
Dollar-Flow automatically figures out the proper sequence for calculations
(,..::a'~l1'~"P 10. t-h~n 10. t-hpn 1) without anv intervention bv the user.

The following is not an uncommon occurrence: You worlt many hours pre-
paring budgets ..and -doing sales forecasts. With a board meeting just a few days
awaYt you finish your plan. The company president takes one look at the re
sults of the combined numbers and gives it back, requesting a 15% cut in th~

budget. You prepare a revised budget, repeat all of the calculations, this time
under increasing pressure to get the job done fast. The day before the board
meeting, marketing revises the forecast. All of the budgets must be revised
again. And now it is getting late into the evening the day before the meeting.
The planning process finally ends. With a good plan? No, with exhaustion.
Does this seem like a doomsday tale? It's not. I've seen this happen many
times. No wonder people dread budgeting time.

Combine the sheer effort required to plan effectively with the require
ments for a good plan: It must be TIMELY. In a dynamic, growing company, a
plan must reflect today's expectations, not yesterday's. It must be ERROR FREE.
Late-night, reworked plans suffer from simple calculation errors. Errors due
~ using the wrong set of estimates, because they keep on changing. Imagine
. _fie embarrassment of a summation error. And with all this t the plan must remain
FLEXIBLE. I worked on a profit plan for a company a few years ago which added
an entire product line between iterations of the plan. And finally, when you
are all done, a good plan must be WELL DOCUMENTED. What factors were used for
overhead? What was the basis for the final sales figure? How was a particular
number calculated? All too often, there is little documentation on how a plan
was actually prepared.

To summarize: A typical financial plan involves lots of numbers, which
change often. The need for many iterations makes this process time consuming
and exhausting. At the same time, the plan must be timely, error free, and
well documented. In short, good financial planning is not easy.

WHAT IS THE BEST WAY TO PLAN?

Given that this is the nature of planning, what is the best way to
plan? How can it be done with a minimum of difficulty? Traditionally, there
have been two ways of planning. Planning by hand (and calculator) and planning
using the computer. Let's take a look at both of these methods and evaluate the
pluses and minuses of each.

Preparation of plans manually has several drawbacks. First, because of
the amount of data involved and the number of iterations, it is slow and time
consuming. After many iterations, accuracy becomes a problem. The wrong es
~mates may be used, particularly if they keep changing. Calculation errors
~" ~em to increase with each iteration. And documentation is usually not very
good.

8-6 - 04



On the other hand we have financial planning on the computer using the
traditional programming languages like BASIC, FORTRAN, or COBOL. Once set up,
a model written in one of these languages will run on the computer in a matter
of minutes or seconds. Great! But here's the catch. The model will run very.
quickly once it has been set up, but it may take months to get it developed. '----'
And you need a programmer. Let's see what can happen. You start your plan
well in advance of the next budgeting cycle. With six months lead time you give
a precise set of specifications to an enthusiastic programmer who dutifully sets
about coding your model. At the end of the first three months, he comes back
to you with his first try. You patiently point out where the model is not
consistent with the specifications, settle on a set of revisions, and the
model is reprogrammed to your satisfaction. All set, right? No. As you begin
using the model, the company president starts to change his mind (even though
he reviewed th& original specifications). Add a decimal place here, another
line item there. Why aren't all twelve columns of data on the first page?
Frustration.

What is the moral of our story? Programming a planning application
with the traditional programming languages lacks flexibility. The programmer
needs lead time to set up the application and has difficulty in reacting to
~hnr~ ~~rm rh~nop~. How ~hnllt Rddin~ another division to a multi-divisional

~
Not only should the user be told what his alternatives are, the system '---

should also help him to choose the proper response. Throughout the Dollar-Flow
prompts, the most likely respons~ is shown in brackets as the "default" res
ponse. In some cases, he can use the default response without bothering to
even understand the question! For example, the prompt:

It is important that the application be self documenting. For example,
Dollar-Flow is a menu driven system. At each' step of operation, the user knows
his alternatives. 1'here is little need for a "pocket guide" to the language.
This is not to say that there is no need f~r manuals. A good manual is impor
tant. But it is a fact that few people actually read manuals. The less a sys
tem· forces a user to read the manual, the more usable it will be.

USE STANDARD OVERALL REPORT FORMAT «Y),N,W-WIDE PAGE)?

In one brief prompt, the user can see his options and pick one. A s~mple car
riage return will cause the system to use the default response. And his entire
report format is set up. No PRING USING or FORMAT statements. Very simple.
,And it can be changed easily. As the user becomes more fami·liar with the
language, he can begin to exercise more options. With :an 'N' response, Dol1ar
Flow leads the user through a review of the many formatting alternatives.
Report formatting can even be done on a trial and error basis. Start off with
the standard format, then change the column width or number of decimal places
s~own as needs require.

As I already mentioned, the design for the Dollar-Flow calculation
rules was based on a set of user oriented documentation. Ask a user to describe
how the values on the report are to be calculated in his own terms. With the
addition of a few quote marks here and there, he has already written a program
in the Dollar-Flow language. Self-documenting languages not only save the
effort required for documentation) but make debugging easier as well.

l~

B-6 - 05



One last comment about simplicity. Save the user concerns about
internal structure through structure independent (or data base) approaches
~. data relationships. One of the beauties of QUERY is that the user doesn't
hdve to concern himself with all of the details of the data base to get a sim
ple report. In Dollar-Flow, all reports are programs, all saved programs are
files, and all save files contain reports. To reference data on a saved
Dollar-Flow report, simply indicate the line name and the report save file
name:

MARKETING BUDGET = 'BUDGET' OF 'MKTG';

There is no need for the user to know how the data is stored or even which
1 ine on the 'MKTG' repor t ils the 'BUDGET' Ii ne whic h he is us i ng.

ERROR HANDLING

Okay, so let's say you have implemented a simple system. Does this mean
that users won't make mistakes? Of course not. In fact, the friendlier a
system is, the greater the likelihood that the users will not be computer types.
So, keep in mind that "too err is human, to forgive is good systems design."
Of course, you must edit all inputs. But then use a friendly approach when
the user has made an error. Because Dollar-Flow is menu driven, simple typing
errors cause the system to repeat the prompt. Errors of a more complex nature,
such as where a report is referenced but does not exist, generate intelligible
error messages. Along with each error message give a message number. And
provide a glossary with the documentation which gives even greater detail on
the possible cause of the problem.

At the same time that it is informative, a system should help the user
to work around problems. For example, in the case of an invalid report refer
euce in Dollar-Flow, the user can interactively specify a different report
name, or values, or zeroes. He can also indicate that computation should cease
after a scan for further errors. Again, unlpss a particular error is extremely
ti~l~OUS, \yarn t:ne user alIa proceea \.W1t:n n~s perlIl.l~SJ.Oll). AI10l:ner examp.Le.
As ~ar as the mathematician is concerned, division by zero gives unworkable
results. In Dollar-Flow, division by zero yields 'invalid' numbers (which
print as asterisks), but doesn't stop computation. It's amazing how much more
satisfying a user finds a report filled with asterisks than just a list of
error messages. At least he can look at the format to see if it's to his lik
ing.

If you must tell the user that he has made an error, tell him as early
as possible. One of the most enlightened things done by the MPE operating
system is to edit the job statement when a job is being streamed from an inter
active session. It sure is better to find out right away than waiting for
the job to begin execution to find out that a simple error has been made on
the JOB statement. Report development in Dollar-Flow is completely interactive.
If a user is setting up a report and he enters a calculation rule with invalid
syntax, the system responds with a message immediately, and permits him to edit
his error (not unlike the BASIC interpreter). It is not necessary to go into
the computation step to find many errors.

B-6 - 06



MAINTENANCE AND SUPPORT

Let us assume that as an enlightened designer of friendly systems you ~
have now designed and implemented your masterpiece. Are you done? Of course ,.'
not. This is only the first step. There are two more important aspects which
are critical for good t friendly systems: Continuing improvement and good sup
port. Let me talk about continuing development first. No system is great on
the first try. I am a believer in the iterative approach to systems develop
ment, if you can afford it. I am not talking about sloppy design. I am talking
about the tremendous wealth of ideas that you can get from your users t AFTER
you have implemented a system. Try to be receptive to the suggestions of your
users (even if they are infeasible). Never give a critical user the impression
that you think he has just offered a bad idea. Go out of your way to solicit
ideas from you~ ~sers. If the situation merits it, get involved in several of
their applications. You can learn about ways the system is being used that you
never thought about. Ways in which its use may be awkward. Which messages are
more annoying than useful. Which features are badly needed. I send periodic
questionnaires to my users (some of them even respond). This helps to priori
tize new features. And users group meetings are a great boon to information
flow.

How should this wealth of new ideas be integrated into an already deve
loped system? Carefully. Do not rush a new version of a system out to users
just because they need a particular feature. You must let a new version of a
system be "burned in" first by a test site. Software bugs cost you credibility.
Once lost, credibility is very difficult to reestablish, so reliability is
extremely important. After all, would a user prefer a system with the bells
a n4 whis tIeshe wan t s but doe s n ' two r k, 0 ron e whie h wark s wit h a few 1 e s s f e a.~
tures? "

Speaking of bugs and user suggestions leads me to the question of sup
port. There is nothing more frustrating to a user than to get 95% of the way
to his computer solution only to be stopped by the application package he is
using. For any reason. If you can afford to do it, good support pays great
dividends. Dollar-Flow is supported in an "on-line" fashion. This means that
if .a user has a problem, he picks up the telephone and calls. If his problem
~s with an existing report, we may even log onto his system and take a look at
that report. This kind of support not only helps to find and eliminate system
problems quickly, but we also find out about areas where the documentation may
be confusing (or incorrect). Where another feature might simplify the user's
application. In short, on-line support can be another source of good ideas
from users.

Let me summarize these techniques for creating friendly· systems. First
KEEP IT SIMPLE. Try to think like the user instead of a computer expert. Use
his terms. Assume that he won't read the manual. Try to make it self-explana
tory. Second. be INFORMATIVE but FORGIVING with your error handling. Edit all
inputs

t
but don't bother the user with minor errors. When the appl1catlon

merits, CONTINUING ENHANCEMENT will make a much more usable system. Respond to
user suggestions. But exercise good judgment in the trade-off between adding
new features and degrading SYSTEM RELIABILITY.

8-6 - 07



lIT PLANNING

I am not going to take too much time on the last part of my talk. I
am just going to show you a few sample reports prepared using Dollar-Flow. At
~e risk of violating my agreement not to make a sales pitch, I invite you to
fe',' .sit the PALO ALTO GROUP's booth during the vendor exhibits for a demon
stration of Dollar-Flow in action.

Let me first describe the typical company profit planning cycle
and the environment in which a planning tool like Dollar-Flow is used. The
typical Dollar-Flow user is the accountant or company controller who is respon
sible for preparing the reports. Not a programmer. Most users are working on
in-house HP3000 syste.s. With access to CRT's and a system line printer nearby.
Reports are written interactive.ly, and manual inputs are also entered via the
terminal. Usually, reports are printed on the CRT for review then saved when
the user is satisfied with the report. If hard copy is desired, the repo.rts can
be routed to the line printer. For generating large numbers of reports, the
"batch command mode" is used, where with very little terminal input a large
number of reports can be generated.

Profit planning typically begins with a preliminary sales forecast.
Preliminary. Sales forecasts always change. And at the last minute, too.
Often the sales forecast is done on a product-by-product basis for the first
year or so, then combined with overall dollar sales projections further in the
future. The near term unit forecasts are sometimes adjusted"based on an over
all dollar figure. The forecast is iterated several times. To make a change,
the product manager just runs Dollar-Flow, inputs whichever figures have chang-"
ed, pushes a few buttons, and the new sales forecast is ready. Since many
parts of the profit plan depend on this sales forecast, the typical plan is
usually set up with reports referencing the sales forecast report. If the
~gures are changed on the sales forecast, these changes will be automatically
~eflected on the other reports the next time they are run. Some manufacturing
companies even use a 'multi-level sales forecast step, where a build plan (or
production plan) is generated from the sales forecast.

Meanwhile, departmental budgets are prepared. Some Dollar-Flow users
centralize the budgeting function and only distribute budget worksheets to each
department or location. This is usually done if there are only one or two
budget iterations~ On the other hand, some of our customers distribute the bud
get preparation, with each location setting up its own budget in Dollar-Flow.
In this case, figures can be input to Dollar-Flow, changes can be made, and
s eve r a litera t ions, 0 f t he bud get can bed 0 n e alI ina mat t e r 0 f minute s • An d
budget consolidations are fun! With a few simple commands to Dollar-Flow, a
whole series of budgets can be consolidated into a departmental or divisional
budget. When changes are made to the low level budgets, they automatically are
reflected on the consolidated budget the next time it's run.

Some companies that rely on substantial amounts of debt to finance their
operations combine the profit/loss projection with a cash flow projection.
This is because interest paid (an item of expense on the profit/loss statement)
has an impact on the amount of money required to run the business. This deter-

The profit/loss projection is next. Using the data from the sales fore
cast, the build plan, and the budgets, and adding factors for items like sales
discounts and returns, a pro forma operating statement is prepared. Often, the
bottom line (profit) on this report determines what (if any) changes need to be
made to the budgets. With a flexible tool like Dollar-Flow, a financial execu
tive can even do sensitivity analysis: What if sales are 20% lower then fore
cast? What if our discount schedule is more aggressive and our volume is
larger?

~

8-6 - 08



mines the level of borrowing, which, in turn, affects the amount of interest
which is paid. Dollar-Flow, and most good financial planning languages, can
solve the "simultaneous equations" this circular logic represents, and determir~
a level of debt and debt service which are consistent with each other. This
is far more difficult when done manually.

Another procedure which is laborious when done by hand is the aging of
accounts receivable and accounts payable projections. Using Dollar-Flow t once
the rules for aging have been set up, a change in the s.ales forecast or the
build plan will automatically be reflect~d in new receipts and payables pro
jections.

And t finallYt some companies prepare pro forma balance sheets as the
last step in their profit planning cycle. This is not necessarily the way all
compani~s plan. Or even the way all Dollar-Flow users plan. In fact t many
Dollar-Flow users are not even responsible for profit planning. Instead, the
system is used for a wide variety of ad hoc applications involving calcula
tions on rows and columns of numbers. It is even used as a design tool for
systems which will later be hard-coded in COBOLt FORTRAN t or BASIC.

Some of the other applicatiori~ of Dollar-Flow that I am aware of
include:

Product pricing. Comparing alternative prices for a single product
(the plotting capability is great for comparisons). Or comparing profit per
centage across an entire product line. Financial ratio analysis. Comparing
selected financial ratios against industry standards or company objectives.
Capital budgeting. Rates of return and discounted cash flows can be calculated
easily using built-in financial functions.

Performance reporting. Variance reports showing actual budgets or
profits versus plan. How sales are doing against target. (One Dollar-Flow user
generates 500 graphs every month showing product line sales performance for
every branch of every distributor who markets his products!)

SUMMARY

Let me leave you with a few parting thoughts. Financial planning is
not an easy process. Figures change. The whole approach to a plan may change.
And you need your results yesterday. Traditional systems design and program
ming methods are not going to be effective in this kind of situation. Use a
better approach. With a friendlYt problem oriented planning language like
Dol1ar-Flow t applications nightmares can become applications successes~

8-6 - 09



r.... ·~····
~( .

SOFTWARE CONTRACTS: PREVENTATIVE

MAINTENANCE TO ENSURE SUBSEQUENT

QUALITY SERVICES

BY

WILLIAM F. LEONARD, JR.

Monday B-7 - 01



Software Contracts: Preventative Maintenance
to Ensure Subsequent Quality Services

First time users of a computer system in most instances

tend to be small to medium sized organizations overwhelmed by

the complexity and choice of available options for hardware and

software acquisition. The hardware decisions are usually made

with a great deal of preparation, analysis and comparison.

However, the software issues tend to involve even more diffi-

culties. When an eventual decision has been made, the acqui-

sition typically consists of a single software vendor.

In many cases, a contract is not involved. A simple hand

shake, signifying the importance of trust and good faith, is

considered to be a professional understanding between two organ-

izations. In other instances, the buyer signs a contract

proposed by the vendor and prepared in accordance with the

vendor's best interests. Even when a contract is used, the

buyer may enter into a complex business arrangement without the

benefit of professional advice available from the organization's

legal counsel. It appears totally incongruous that an organi-

zation approaching the acquisition of a complex computer system

in a business-like manner will carefully research the purchase

of hardware but enter into a software commitment without care-

ful preparation and scrutiny. Standard advice implied in the

phrase "caveat emptor," or let the buyer beware, certainly

would appear appropriate in this type of situation. An ancillary

rule would be that unless a written contract is prepared and

signed, an informal understanding is totally worthless.

B-7 - 02



This may sound like a rare harsh piece of advice to offer

for a professional commitment between a software vendor and a

buyer but it is the only solid insurance policy that can be

relied upon when difficult situations develop. As indicated

earlier, many small to medium sized organizations are first

time users of a computer system. As such, they lack any prev

ious experience with a software vendor. This absence of

previous experience or a successful relationship must be off

set with a clear cut definition of the responsibilities for

both parties in the development, implementation and maintenance

phases of a long term commitment. Hence, a contract mutually

developed and approached with the goal to be as comprehensive

as possible is the only satisfactory mechanism for ensuring

success. A perspective emphasizing the characteristics of

pre-planning, mutual understanding, clearly worded documenta

tion, timetables for delivery and legal review represents a

business-like concern for a smooth and orderly project. This

type of "preventative maintenance" approach can only assist

in ensuring a high level of quality services following contract

initiation and at the same time minimizing potential problems.

How should this approach be initiated? What topics

represent the highest priorities for eventual agreement? At

what point does a desire to formulate a comprehensive agree

ment become counter productive in terms of time, effort and

other limited resources? These questions are extremely

important and relevant to a contracting organization, especially

first-time users and small to medium sized firms.

B-7 - 03



In the case of the Alexandria school system, with a

total enrollment of approximately 11,000 students, a first

time user situation applied. The administration determined

that the organization's size was insufficient to justify an

internal software development approach with significant

resources expended for such an undertaking. Therefore a

decision was made to find the most appropriate software pack

age that was available and to plan on customizing it to the

degree .necessary. Unfortunately, such a package could not

be found. The school system decided to enter into a contract

with a new software vendor located in the same metropolitan

area and to develop a system in accordance with a set of

specifications. The contract was developed quickly but was

reviewed by school management, the vendor and legal counsel.

The basic components of the total system are now in place.

The vendor and the school system are continuously refining the

system as would be expected. Some work remains to be completed

but firm plans for doing so are not yet finalized.

In spite of some extensive preparation and the existence

of a contract, problems have and are continuing to occur. Many

areas that ideally should be incorporated in an agreement were

not addressed prior to contract initiation; the absence of"

written understandings in these areas represents the major

explanation for many of the problems that did develop. An

example is hardware availability for development work. In the

initial several months after contract initiation, an extensive ~

B-7 - 04



amount of software development work, out of necessity at the

time, was completed on the user's equipment. Most of the

activity occurred during periods when normal production work

was not involved. However, the lack of a clearly worded clause

in the contract on this matter resulted in occasional situations

where the vendor and user had to work out solutions on a case

by-case basis.

The existence of a "right to modify" clause and an agree

ment pertaining to "final acceptance/completion of project"

have also created some difficulties that could have been

avoided or reduced in magnitude if additional time for review

had been allowed. It is now expected that the vendor and the

school system will soon be entering into negotiations to

address the remaining provisions of the original contract that

have not been fulfilled and at the same time develop a mutually

agreeable contract for on-going maintenance support. Both

parties are interested in doing so and the end product of

these deliberations will hopefully be, an agreement considered

to be satisfactory for a permanent, support relationship.

Alexandria's experience to date has reaffirmed the original

view that a contract was necessary and needed to be as specific

as possible. However, in true hindsight form, this experience

has identified a number of potentially vulnerable areas that

should have been addressed in the contract from the beginning.

Alexandria has learned from its experience but how do

B-7 - 05



other similar organizations adequately approach the task? Is

it absolutely necessary that this invaluable information be

obtained through experience? Certainly not! A number of

approaches are available that could be utilized.

Initially, it is suggested that a potential user carefully

consider some of the broad management-related issues that typi-

cally occur in software acquisition. An example relates to

whether or not the software vendor is new to the business or is

embarking on a new application. In such a situation, the

potential user must be careful to review such decision-influenc-

ing factors as the quality and depth of the vendor's staff as

well as the vendor's computer resources and overall financial

condition·.

The following list of key factors should be considered:

1. Degree of system customization expected.

2. Software vendor's capabilities.

3. Possible effect of hardware upgrades in the future.

4. Management philosophy on single versus multiple

vendors.

5. Existing package or development contract.

6. Degree of eventual independence expected of user

in software operation.

7. Degree of specificity in development and implementa-

tion expected - documentation standards, installation

requirements, programming efficiency, and others.

B-7 - 06



Other factors could easily be added. However, the nature

of the potential concerns should be apparent from the examples

listed. The user's reactions to these factors should indicate

the extent of emphasis to be placed on specific components of

any proposed contract.

With these factors identified, the potential user can

approach a number of available sources for additional informa

tion and advice. Professional colleagues in a users' associa

tion, existing agreements developed by other organizations

and a temporary consultant retained for third party objectivity

and technical assistance represent examples of existing sources.

Regardless of the approach utilized, the most important advice

to a potential user pertains to the need to allow adequate time

for pre-contract planning with the likely vendor and the user's

legal counsel. The provision of adequate time for informal

discussions, negotiations, research and review cannot be easily

substituted.

In this regard, the attached software checklist is offered

as a partial index of questions a potential user could consider

prior to contract initiation. Additional items for the check

list could be identified but in its present form the list

represents a compilation of the most significant areas to be

addressed in an agreement. The potential user, working in

cooperation with legal counsel, is the most appropriate party

for determining the relevance of each item to the particular

organization. The list can assist in identifying those areas

B-7 - 07



that need to be dealt with in greater detail when the contract

is finalized.

When contracting organizations begin to emphasize in

their overall project activities the need for comprehensive

pre-planning and protection through the existence of well

prepared agreements, then the software industry will benefit

from the additional professionalism and good will created.

A "preventative maintenance" perspective, almost defensive in

nature, will assist the users in obtaining a level of service

necessary for long-term success.

B-7 - 08



ITEM
NO. HEADING

SOFTWARE CONTRACT REVIEW

A CHECKLIST APPROACH

CHECKLIST ITEM

I. PLANNING:

Has item been
completed?

YES NO

1

2

3

4

5

Identification of
System Components

Cost of System
Components

Legal Review

Consultant Review

Establishment of
Contract Priorities

Does the contract inciude a section
describing in detail all components
expected from the software system?

Does the contract specify the individual
prices for all components in the
soft\-lare system?

Has the user reviewed the proposed con
tract with the organization's legal
counsel to ensure its best interests?

Has a data processing ·consultant been
retained to assist in negotiations with
the vendor or review the proposed con
tract for possible changes?

Has the user prepared for negotiations
by attaching a priority value to all
required or desired contract provisions
in an effort to obtain agreement on the
most important needs?

B-7 - 09



( (/"
, I

SOFTWARE CONTRACT REVIEW

A CHECKLIST APPROACH

(

ITEfv1
NO.

6

7

8

9

10

11

HEADING

II. PERFORMANC'E

Assignment of
Responsibility

Schedule of Respon
sibility

Documentation and
Related Standards

Installation
Standards

Reproduction of
Documentation

corrections and
Upgrades

CHECKLIST ITEM

Have the vendor and user listed the tasks
to be performed by each to achieve
implementation on time?

Have the vendor and user each prepared
a schedule for determining the com
pletion date for all assigned tasks to
achieve irnpiementation on time?

Does the contract require that com
plete documentation be provided to
the user and are minimal standards
identified for ensuring an acceptable
level of quality?

In the case of software development,
does a requirement exist to guarantee
that the software system will comply
with whatever installation standards
are acceptable to the user?

Has the user received permission to
reproduce any part of the system
documentation with a proviso that it
be used internally for operational
success?

Does the contract indicate that the
user can obtain without charge any
corrections or upgrades to the software
system that are intended to improve
its quality?

B-7 - 10

Has item been
completed?

YES NO



1

SOFTWARE CONTRACT REVIEW

ITEr.1
NO. HEADING

A CHECKLIST APPROACH

CHECKLIST ITEM

Has item been
completed?

YES NO

II. PERForomNcE (Continued):

12

13

14

Source Code
Accessibility

Right to Future
Options

Right to Modify

Has the user obtained access to source code
for the software system?

Does the contract include the right to
obtain future options or changes in the
software system at the same price
offered future users?

Has the user obtained in the contract
the right to modify the software system,
with a waiver of maintenance indicated?

III. INSTALLATION:

15

16

17

Test in Actual
Environment

Acceptance
Criteria

Basis for Criteria
Identification

Has the user stipulated that the final
purchase of the software is conditional
on its acceptable operation in the user's
actual environment?

Have the user and vendor specifically
listed the acceptance criteria needed
to validate the software system?

Have the acceptance criteria been
determined on the basis of the require
ments and specifications section used
for initial system design?

B-7 - 11



(

SOFTWARE CONTRACT REVIEW

(

ITEM
NO. HEADING

A CHECKLIST APPROACH

CHECKLIST ITEM

Has item been
completed?

YES NO

III. INSTALLATION (Continued):

18

19

20

2·1

22

23

Level of Operational
Availability

Run Time
Requirements

Hardware
Requirements

Acceptance Period

Delivery Timetable

Acceptance
Procedures

Has a specific requirement been formulated
which states the level of operational
availability expected of the software
system over a period 'of time?

Have specific expectations been developed
that pertain to the run time requirements
of the software system when fully opera
tional?

Have specific expectations been developed
that indicate the degree'of hardware
requirements to be used by the software
system when fully operational?

Does the contract include a requirement
that a specific acceptance period is
necessary for validating the software
system prior to final purchase?

Has the user specified delivery dates
with an additional reasonable period
of time indicated as a contingency for
unanticipated problems or delays?

Has the user specified the acceptance
and approval mechanism to be utilized
when work products are delivered?

B-7 - 12



SOFTWARE CONTRACT REVIEW

A CHECKLIST APPROACH

ITEr.l
NO. HEADING CHECKLIST ITEM

Has item been
completed?

YES NO

III. INSTALLATIO~1 (Continued):

24

25

26

27

28

29

Software Support

IV. STAFF:

Project Staff
of Vendor

Full-Time Employee
Requirement

Agreement on
Hiring Employees

Hiring Employees
in Termination

Project Staff
Substitutions

Are on-going support requirements after
installation carefully defined and priced?

Prior to contract approval, is the vendor
willing to provide a synopsis of his staff
resources - in terms of size, training,
experience and ability to provide adequate
support services?

Does the contract state that the vendor's
project staff should be full-time employees,
not part-time "moonlighters," and that
they are bonded?

Is there an agreement in the contract that
the vendor and the user will refrain from
hiring away from each other·employees
currently under contract?

Does a agreement exist that permits the
user to hire the employees of the vendor
in the event of business termination?

Does the user have the option of demanding
that sUbstitutions be made in the vendor's
project staff if personnel or work problems
infringing on the project's success indicate
the need to do so?

B-7 - 13



( (

SOFTWARE CONTRACT REVIEW

A CHECKLIST APPROACH

ITEM
NO. HEADING CHECKLIST ITEM

Has item been
completed?

YES NO

IV. STAFF (Continued):

30 Security
Requirements

In the case of software development, espe
cially work on-site, "has the vendor agreed
to comply with the user's internal security
provisions?

v. FINANCIAL CONSIDEPATION~:

31

32

33

34

Recovery of
Progre.ss Payments

Conditional Accept
ance of Hardware

Guarantees on
Price Movement

Delivery of Finished
Product on Partial
Basis

Does the contract provide protection to the
user in the form of recovery of progress
payments from the vendor if an acceptable
software system cannot be developed or
delivered?

Has the user related the final acceptance
of the hardware to the performance of the
software system?

Does the contract protect the user with
specific guarantees on increases and/or
decreases in price, with changes occurring
only when authorized by the user?

If progress payments are made over an
extended period of time, does the contract
require an equivalent portion of finished
product on a phasing basis as a fair
exchange to the user?

B-7 - 14



SOFTWARE CONTRACT REVIEW

ITEM
NO. HEADING

A CHECKLIST APPROACH

CHECKLIST ITEM

Has item been
completed?

YES NO

V. FINANCIAL CONSIDERATIONS (Continued):

35

36

37

38

39

40

Comprehensive
Coverage on Costs

Schedule for
Progress Payments

Hold Back Payment
Provision

Term of License

Business Termination

Vendor's Financial
Condition

Does the -contract identify all possible
charges related to the successful com-
pletion of the project, including per-
sonnel costs, external purchases, use of
machine time, maintenance, training installa
tion support, documentation. and similar items?

Is a specific allocation formula developed
for approaching progress payments?

Is a specific percentage of total payment
withheld by the user until project com
pletion to ensure a successful conclusion
to the contract?

Has adequate attention been focused on
specifying the term of license and a
renewal notification procedure by the
vendor?

Has the user incorporated adequate pro
tection in the contract in the event
that the vendor undergoes business
termination?

Is the vendor obligated to provide a copy
of a current financial statement to the
user at the time of contract approval?

B-7 - 15

_.-



SOFTWARE CONTRACT REVIEW

A CHECKLIST APPROACH

ITEM
NO. HEADING

VI • ~iARRANTIES :

CHECKLIST ITEM

Has item been
completed?

YES NO

41

42

43

44

45

46

Warranty Test

Cancellation
Option

Periodic Progress
Review

Guarantee of
Ownership

Free Maintenance
Durinog ~~arranty

Freedom of Use
Provision

Does the contract state that the software
system will perform in accordance with the
user's specifications?

Does the contract indicate that cancella
tion without penalty to the user exists
as an option if performance guarantees are
not met?

Are the expectations, requirements and
responsibilities contained in the contract
formally identified as the basis to be
used in periodic progress meetings to
determine that all obligations are being
fulfilled?

Is the vendor willing to include a state
ment in the contract guaranteeing owner
ship of the software system and that the
user enjoys "hold harmless" protection from
third parties?

Does the contract protect the user during
the specified warranty period from all
possible maintenance charges?

Does the contract extend freedom of use to
the user as long as the software system is
utilized within the user's organization?

B-7 - 16



DISTRIBUTED CONTROL USING ONE CPU

by

John Beckett

Director of Computer Services
Southern Missionary College

Collegedale, TN 37315

Industry trade journals these days seem to be bristling with

stories of the pros and cons of distributed processing. Central

to these discussions is the assumption that distributed intelligence

risks distributed control, and distributed control will bring chaos.

Our site has only one multi-use computer, an HP 3000 Series I II.

We have chosen to distribute control of our system to the users

because we find it does not compromise anything we find important,

and because we get more out of our computer thereby.

Our implementation of distributed operations uses three fun-

damental concepts:

1. The function of the Computer Center is to provide

(" cOl1lputer I'power" and expertise in harnessing that

~1onda~y B··8 - 01



power. Operational control of the application of that

power is at the clients' discretion.

2. Shared devices such as line printers are operated by

people at the Computer Center. The ONLY reason for

this is the expense of such devices and their op

erators. If a client office could afford its own

line printer, there is no reason they could not run

it themselves.

3. Programming standards are sti 11 maintained by the

central DP department. In our case, this means that

all programmers work for us and are rented out to

clients as they need work done.

4. An oversight committee composed of our users allocates

the computer resources (disc space, CPU time, terminals

and ports) available. This committee meets approx

imately once per month. It provides the DP manager

with policies and guidel ines for day-to-day allocation

decisions. One of the primary functions of the DP man

ager is to report to this committee and to serve them

as a technical consultant. In a larger organization

these two functions might be separated.

What we have done'is to deliberately sacrifice control over our

processing, giving it to our users. We consider ourselves to be

providers of power rather than service. Only in the area of pro

gramming do we get involved in any direct decision making by our

own authority.

A key element in distributing control is providing a meaningful

B-8 - 02



heirarchy of service levels. We have defined the following:

1. Sessions, CS priority. Used for instances where people

are doing small bites (spelled with an "i ll
) of processing

such as data entry or inquiry.

2. Sessions, DS priority. Used where terminal access

requires demands for non-trivial amounts of processing.

Examples include serial searches in QUERY, compiles, etc.

3. Jobs, daytime. Used for timely reports and updates.

4. Jobs, non-daytime. Used for everything possible.

Sessions at CS priority is the processing mode with which

HP users are most familiar. Sessions at DS priority are easy to

accomplish. In this paper I wish to discuss our approach to batch

processing, which has proved to be a key element in our Distributed

Control concept.

Why do we use batch access at all in an interactive system? This

question we researched when our HP 3000 was first acquired in 1977.

We found the reasons alluring:

1. Batch jobs automatically execute at low priority. Thus they

don't impact resonse time as do long programs run from

terminals.

2. Batch jobs are detached from terminals. Nobody has to stay

around to reply to the next request for input, or log off

when they are done.

3. The $STDLIST log is available for later inspection should

anything go wrong.

After seeing the potential, I immediately ordered that every-

B-3 - J3



thing possible be done on our computer by batch jobs. That was in

1977. We have since solved the following problems:

,. You can1t fi le a batch job stream with documentation,

since it contains passwords. I know you can blank them

out, but that gets forgotten.

2. You don't dare change passwords (even though they have

been compromised by a programmer who ran a listing of

a stream file), because for the next business cycle

all jobs will fail unti 1 you get the passwords onto

their stream files, which effort in itself will prob-

ably compromise them, and so on.

3. Job stream files don1t adjust themselves to changing

conditions. Little things like '~e need three copies

this time instead of two" and "please do a rerun using

the OLDTX file; there was a bug I tve fixed now" can

all-too-easily leave you with stream files that won1t

work next business cycle. You have to choose between:

A. Writing programs to take into account every

possible operational exigency, and adjust

automatically ($$$$$!)

B. Trust your operators to use a text editor

to change the stream files each time for

that run (danger! EDITOR has no means of

validating those changes.)

4. Hp1s job stream I'hoppert• is an extremely rudimentary device.

B-8 - Ol!·



It is little better than a card reader, differing mostly

in that you can see its shortcomings better. There is

no way to actually set a specific date and time for a job.

Nor is there any way to schedule a job for execution

every week (or month, quarter, year, or any other

interval).

For a year or so we tried writing little programs here and there,

to combat these problems. Some of the programs became embedded in

applications. Others became utilities used by more than one appli

cation. Then one day we woke up to the fact that we had a class of

problems that could be solved by a single solution: a comprehensive

interface to the :STREAM command in MPE. Hence was born SLS.

SLS got its name from the original name of the program fi le

on our system: STREAM.LIB.SYS. One of our programmers got me to put

in a system UDC with its initials because he was a slow typist. The

first time I contributed it to the library I didn't want to name it

after an MPE command, so just called it SLS. Now it resides in

SLS.SLS.SYS on our system.

SLS got one of its prime characteristics from MPE: friendliness.

For example, it is designed to install itself with almost no effort

on your part.

B-8 - 05



:HELLO MANAGER.SYS

:NEWACCT ORLANDO,MGR;CAP=AM,AL,GL,NO,SF,IA,BA,PH

:HELLO MGR.ORLANDO

:NEWGROUP DATA

: [\JE\~GROUP DOC

:NEWGROUP SOURCE

:NEWGROUP JOB

:FILE TAPE;DEV=TAPE

:RESTORE *TAPEiSLS@.@;SHOW

:FILE STREAMI=SLS.JOB

:RUN SLSl.PUB;PARM=l

PLEASE ENTER PASSWORD FOR MANAGER.SYS <DEFAULT: NONE)? _

PLEASE ENTER PASSWORD FOR SYS ACCOUNT <DEFAULT: NONE)? ~

IN ORDER TO USE THE JSNUM FUNCTION, YOU MUST ALLOW SLS

TO USE PRIVELEGED MODE.

SELECT PRIV OR NOPRIV VERSION?JSNU~1 « ~f,l

SELECT PRIV OR NOPRIV VERSION?NOPRIV

Do YOU WISH TO HAVE THE PROGRAMS COMPILED AS A PART OF

THE INSTALLATION PROCEDURE (YOU MUST HAVE SPL)?~

Do YOU HAVE SLS ON YOUR SYSTEM ALREADY?][L

How MANY COPIES OF THE USER MANUAL SHALL I RUN?~

STREA~~ J XXXA

SLIDE

8-8 - DC



would like you to note at this point some features of SLS:

1. I t produces a batch job, so the work wi 11 not detract

from system response.

2. It obtained several variables from me. In one case my

answer was not appropriate. SLS handled the problem

on-the-spot.

3. When it is done, SLS will have produced for nle the

documentation I wanted. I didn't have to remember to

ask--SLS asked me.
r···-~-----------_·"---_··~--··_---------·"

[

S L S

JXXXA
(TEMP)

I
I

\k

ENVIRONMENT

SLIDE 2

BASIC SLS

8-8 - 07



In the mode illustrated by the installation procedure, SLS op-

erates under control of an initiator (template) file. SLS may

obtain additional information from the computer environment or

from the user. The final result is a configured job stream in a

temporary file which SLS then streams.

I

l
I

S L S

8-8 - 08

ENVIRONMENT

SLIDE 3

SCHEDULltJG A JOB



~
:RUN SLSCHED.SLS.SYS

J

SLS SCHEDULEING QUEUE UTILITY

>S @.ADMIN

JOB DATE TIME USER INITIATOR INPUT FILE

122 03/05/81 2310 ADMREC.ADMIN ROSSLSI.PUB.ADMIN S06410 17 .ADr~REC

127 03/05/81 2310 ADMREC.ADMIN ROSSLSI.PUB.ADMIN 5064 11·19. AD~~REC

106 03/06/81 0100 FINPROG.ADMIN DAYJOBI.FINANCE.ADMIN

111 03/08/81 0330 A900.ADMIN UPDATEI.A900.ADMIN 50071710.A900

OJ I 18 03/09/81 0130 FINPROG.ADMIN AWLETERI.FINANCE.ADMIN
I

00

37 03/10/81 0130 FINPROG.ADMIN VOUCHI.FINANCE.ADMIN
0 1 75~ 03/11/81 0300 DWOMEN.ADMIN PHONDIRI.DWOMEN.ADMIN 5245 1623 . OWO ~·1E N

77 OJ/11/81 0330 DWOMEN.ADMIN ROOMCHKI.DWOMEN.ADMIN S2401458.DWOME~~

108 03/12/81 0130 FINPROG.ADMIN INAUDITI.FINANCE.ADMIN

20 03/15/81 0030 CAFSYS.ADMIN MIDMONI.CAFSYS.ADMIN

25 03/15/81 0040 STAFFPAY.ADMIN INDEXI.STAFFPAY.ADMIN

26 03/15/81 2200 FINPROG.ADMIN SELM018I.FINANCE.ADMIN

27 03/25/81 0400 PAYROLL.ADMIN 5TUWORKI.PAYROLL.ADMIN

29 04/01/81 0015 FINPROG.ADMIN SELMOOaI.FINANCE.ADMIN

30 04/01/81 0030 CAFSYS.ADMIN ENDMONI.CAFSYS.ADMIN

31 04/01/81 0040 CSHOP.ADMIN CSRECAP.I.C5HOP.ADMIN

>EXIT
END OF PROGRAM

SLIDE 4



LSQUEUE

MPE

ENVIRONMENT

ETE ENTRY

.J
1-1

«
~

>m

S L S

SLSCHED

rvtJNITOR JOB

INITIATOR

SDDDHHMM

JOB FILE
'''---·'1-

I

I
I

\V SLIDE 5

MPE "HOPPER" Streaming a

Scheduled Job

In an alternative mode, the job file is discarded. Instead, a

permanent disc file with all terminal input is saved. An entry re-

garding the date and time the job is to run is made in a fi le named

SLSQUEUE.SLS.SYS. At the proper time, a monitor job will find the

entry, run SLS against the initiator specified using the input file

8-8 - 10



saved for parameters, and stream the job.

Before we get any deeper into technical details, letls look at

the seven functions of SLS:

1. Display of information on the user1s terminal. The usual

purpose is prompting. Any information to which SLS has

access may be displayed.

2. Interrogation of user at the terminal, for information to

be used in constructing the job.

3. Interrogation of disc files for information needed in

constructing the job. An excellent application for this

function is passwords. Passwords used in an application

need only be kept in one place, with SLS looking them up

as needed.

4. Interrogation of the operating environment. You can check

for the existence of fi les, check sizes and empty space in

them, and verify that there is sufficient room in a fi Ie

for the data you propose to put in it. You also have

access to many items in the WHO intrinsic. Optionally

(uses priveleged mode), you may have access to the job/session

10 of the perpretrator of the job.

5. Manipulation of information gathered in the steps above.

This can include validation, translation, arithmetic, and

many other functions normally associated with programming

languages.

6. Preparing the actual job stream file. If we are merely

putting it into the SLSQUEUE file, this product will be

8-8 - 11



di scarded.

7. Submitting the job either:

A. Directly, through the programmatic :STREAM comnland.

B. Deferred, by adding to the SLSQUEUE file an entry

specifying the initiator, date/time, and (if any

input was requested of the operator of the terminal)

parameters to be input.

These functions are performed under control of the initiator

file, which is very similar to a computer program. SLS functions

much like a language interpreter.

Now lid like to show you how to use SLS. 11 11 use the quick

est way I know--examples. Letls trace a universal application,

system backup, through the various stages from where most sites

are at to a fully SLS'd job that requires no operator intervention

other than mounting tapes (and authorizing them). First, an

HP-styled job stream:

« CHANGES »

«DATE »o

~EOJ

BACKUPJ.MGR.SYS

!JOB BACKUP,MANAGER/ALPHA.SYS

~ FILE TAPE ;DEV=TAPE

!SYSDUMP *TAPE

NO

SLIDE 6

---'---------------~

8-8 - 12



SLIDE 8

« CHANGES »

«DATE »

The first thing we need to do is get the password out of this

job. So we will create an additional file (IPASS.MGR.SYS) with the

password to MANAGER.SYS on the first line:

IPASS. M<;R. SYS

ALPHA

SLIDE 7

Now we will rewrite the job stream so it will get the password

from t his f i 1e :

BACKUPI.MGR.SYS

« SYSTEM BACKUP INITIATOR VERSION 0.0 6/3/80 »

FILE IPASS.MGR MGRPASS 1 1 8

PRINT :JOB BACKUPtMANAGER/<MGRPASS>.SYS

PRINT !FILE TAPE;DEV=TAPE

PRINT !SYSDUMP *TAPE

PRINT NO

PRINT 0

PRINT !EOJ

B-8 - 13



Note the following differences:

1. The file name ends with I instead of J.

2. Commands to be submitted are preceded with PRINT.

3. The variable MGRPASS is assigned a value by getting it

from the file IPASS, and is referenced by <MGRPASS>.

4. You can give a copy of the initiator to anybody without

fear, because they don1t have your password.

5. Changing all jobs run by MANAGER.SYS for a new password

can be accomplished by changing only the one password file.

Of course, it may be that you don1t always want to do a full

backup. The next version prompts the operator for the date to use:

B-8 - 14



»

»

« CHANGES »

«DATE »

BACKUP.MGR.SYS

« SYSTEM BACKUP INITIATOR VERSION 1.0 6/3/80 »

« 0.0 06/03/80 INITIAL VERSION

« 1.0 06/03/80 ADDED IIDATE 11 PROMPT

FILE IPASS.MGR MGRPASS 1 1 8

3 INPUT DATE ENTER BACKUP DATE (DEFAULT: FULL BACKUP)?

NULL 1

YES 1 SET DATE 0

YES 1 DISPLAY FULL BACKUP HAS BEEN SELECTED

YES 1 GO TO 5

OATECHK MM/OD/YY

NO DISPLAY INVALID DATE. ENTER IN FORMAT MM/DD/YY OR

NO DISPLAY CARRIAGE RETURN ONLY TO THIS PROMPT.

NO GOTO 3

5 PRINT !JOB BACKUP,MANAGER/<MGRPASS>.SYS

PRINT :FILE TAPE;DEV=TAPE

PRINT !SYSDUMP *TAPE

PRINT NO

PRINT <DATE>

PRINT ~EOJ

SLIDE 9

B-8 - 15



Example of use:

:RUN SLS.SLS.SYS

JOB NAME?BACKUP.MGR

ENTER BACKUP DATE (DEFAULTs FULL BACKUP)?OS/21/80

STREAM JXXXA

IIJ28

END OF PROGRAM

SLIDE 10

A nice Ilwrinkle ll might be to add automatic selection of date in

the case of relative backups. This is easy to do, using TODAY

to get the date and FCOPY to put it on a file for subsequent

retrieval by the FILE statement:

8-8 - 16



') .~

BACKUPI.MGR.SYS

« SYSTEM BACKUP INITIATOR VERSION 2.0 6/3/80 »

')

« HISTORY: »

« 0.0 06/03/80 INITIAL VERSION »

« 1.0 06.03.80 ADDED IJDATE 11 PROMPT »

« 2.0 06/03/80 AUTOMATIC DATE FOR RELATIVE »

« FLAG USEAGE:

OJ
I

00

'-J

« 1 RELATIVE BACKUP

« 5 FULL BACKUP

FILE IPASS.MGR MGRPASS 1 1 8

INPUT DATE rNTER BACKUP TYPE: FULL OR REL?

NULL 5

YES 5 SET DATE FULL

MATCH 5 FULL

MATCH REL

»

»

NO 1 NO 5 DISPLAY I NEED DEFAUL T, "FULL", OR "REL II.

NO 1 NO 5 REPEA.T

« SET UP SYSDUMP DATE IN DATE VARIABLE »

NO 5 FILE BACKDATE.MGR DATE 1 1 8

NO 5 DISPLAY I AM INITIATING BACKUP RELATIVE TO <DATE>.

YES 5 SET DATE 0



« CONSTRUCT THE ACTUAL JOB »

PRINT !JOB BACKUP,MANAGER/<MGRPASS>.SYS

PRINT !FILE TAPE;DEV=TAPE

PRINT ~SYSDUMP *TAPE

PRINT NO « CHANGES »

PRINT <DATE> « DATE »

« WE ONLY NEED TO CHANGE THE DATE IN BACKDATE IF WE HAVE »

« ACCOMPLISHED A FULL BACKUP. HENCE, WE WAIT UNTIL THE »

OJ
I

00

« SYSDUMP IS FINISHED (IE, HASN~T ABORTED)

YES 5 PRINT :PURGE BACKDATE.MGR

YES 5 PRINT ~BUILD BACKDATE.MGR;REC=-80,2,F,ASCII;DISC=2

YES 5 PRINT :RUN FCOPY.PUB.SYS

YES 5 PRINT FROM=;TO=BACKDATE.MGR

TODAY THISDATE MM/OD/YY

YES 5 PRINT <THISDATE>

YES 5 PRINT //

PRINT PRINT ! EOJ

»

SLIDE 11



The file BACKDATE.MGR,SYS will be used as a repository of the

last backup date.

Note that as initiators get longer, the need for documentation

increases.

For the final version, we will schedule this job to run every

night at 10 PM. It will do a full backup on Sunday night, and

relative on others. For further interest, weill skip Saturday

nights.

8-8 - 19



BACKUPI.MGR.SYS

« SYSTEM BACKUP INITIATOR VERSION 3.0 6/9/80 » ~

« HISTORY: »

« 0.0 06/03/80 INITIAL VERSION »

« 1 • 0 06/03/80 ADDED IIDATE" PROMPT »

« 2.0 06/03/80 AUTOMATIC DATE FOR RELATIVE »

« 3.0 06/09/80 SCHEDULE NIGHTS EXCEPT SAT »

« FIRST FIGURE OUT WHEN TO RUN NEXT »

DATECNV RUNDATE MM/OD/YY ; ; ; 10

DATECNV RUNDAY WWW; <RUNDATE>;MM/DD/YY

LOAD <RUt~DAY>

MATCH 5 SUN

~~ATCH 1 SAT

« WE WILL NEED TO ADJUST BY 1 DAY»

YES 1 OATECNV RUNOATE MM/DD/YY; <RUNDATE>; MM/DD/YY; 10

SUBMIT <RUNOATE> 22:00

FILE IPASS.MGR MGRPASS 1 1 8

NO 5 FILE BACKDATE.MGR DATE 1 1 8

YES 5 SET DATE 0

PRINT ~JOB BACKUP,MANAGER/<MGRPASS>.SYS

PRINT ~FILE TAPE~DEV=TAPE

PRINT !SYSDUMP *TAPE

« CHANGES »PRINT NO

PRINT <DATE> « DATE »

YES 5 PRINT !PURGE BACKDATE.MGR

YES 5 PRINT !BUILD BACKOATE.MGR;REC=-80,2,F,ASCII;DISC=2

YES 5 PRINT :RUN FCOPY.PUB.SYS

B-8 - 20



YES 5 PRINT FROM=;TO=BACKDATE.MGR

TODAY FULLDUMP MM/OO/YY

YES 5 PRINT <FULLOUMP>

YES 5 PRINT //

YES 5 PRINT EXIT

PRINT !EOJ

SCHEO

NO STOP

8-8 - 21

SLIDE 12



The last two statements bear comment. You don1t want the job to

be streamed when you use SLS to put it into the scheduler queue. So

you use the SCHED statement to check if this execution of SLS is

resulting from a schedule entry in SLSQUE. If not, just STOP to

avoid streaming the job.

There are other capabilities of SLS. It is quite possible, for

instance, to use SLS in an environment where terminals are managed

by process handling. We provide SPL procedures packaged for non-SPL

programmers, which do all the interaction with SLS for you. You

need only code up a simple module in your terminal-handling program,

and you can henceforth implement new job initiators your client can

use without recompiling your program or even taking their process

structure down~

The scheduling mode of SLS can be used for processing Ilun-jobs"

we call events. An event is simply a processing of an SLS initiator

that does things via the COMMAND intrinsic, and never actually streams

a job. Every hour, for instance, we have an SLS event that sends

beeps to a list of users who have requested that they be put on the

Ilbong li 1i st. Another SLS event is used at the end of the month to

produce month-end reports and clear out useage counters.

After over two years of use (only one year with scheduling),

\.vhat have been our resul ts wi th SLS? We th ink it has been very

worthwhi le.

1. No longer do \-.Je forget to run repetitive tasks. \~hen the

student labor clerk comes in to do her payroll on the 25th

of the nlonth, her worksheet is already printed. That job

B-2 - 22

.~



never runs while people are using the computer.

2. Our users are weaned from hovering over terminals from

which they have run critical executions of programs.

They put them into the job stream, then go off and do

something productive.

3. With the reliability that comes from SLS's ability to

check parameters for reasonableness, our clients are more

willing to defer tasks so that they run outside of peak

hours. This has helped our mid-afternoon response time

greatly.

4. Forty percent of CPU time used by our administrative users

in the last six months was done while there was NOBODY

doing operations at the computer center. That, friends,

was a person and associated family we didn't have to feed.

That was a $10 reduction in the per-student cost of attending

our school this year. That is a measurable difference in

our organization's competitive position.

5. SHe has many dedicated workers. Some of them come in at

strange hours during peak periods. once caught the head

of one of our user departments coming in at 3:30 AM. In

former times, they had to have a computer person help if

they were to get much work done. Now, the college benefits

directly from such incidents--SLS preserves their produc

tivity whenever they come in to work. That spreads out the

load on our computer, in turn improving response time.

The results of our Computer Service Users Committee have been

likewise encouraging. This committee started working in the fall of

8-8 - 23



1980, and has already accomplished a number of tasks:

1. Developed a working understanding among responsible people

in our user departments ,0 f events wh i ch a ffect response

time. We have seen substantial efforts in the user depart-

ments as a result, to help us maintain good response time.

2. Given the DP management invaluable help in assigning pri-

orities to pending software projects. This has been a

two-way street. In some cases we have asked their indul-

gence while we delay technically demanding projects in

favor of some less important but achievable.

3. Reallocated certain resources such as terminals, based on

changing needs over our yearly cycle.

4. Begun to lay the groundwork for guaranteeing to the admin-

istration that a second CPU if purchased, would be effect-

ively utilized but not "used up" until its depreciation

cycle is finished.

5. Guided a subcommittee in the development of a resource

allocation plan for students.

Terminal Spoolin9

In the abstract I promised to describe our experiences with

terminal spooling. This topic is closely related to SLS and dis-

tributed operations. The final step in giving control to our users

is giving them each all the visible elements of a computer. By

installing printers in our major client departments, we have com-

pleted the task. The key was finding affordable printers. This

was done by converting existing printing terminals to spooled devices.

11-8 - 24



The only change necessary was in the MPE software. Although this

feature was announced for the Bruno release of MPE, we have been

using it since release 1906. Thereupon hangs a tale ...

One day a programmer at American Management Systems was talking

to an SE about the problem of getting spool files out on terminals.

He asked for some help in using SPOOK to capture spoofles on a print

ing terminal. The SE thought that was a strange way to do it. Why

not just spodl the terminal? That was a very significant question.

I know a few other people who have asked it, with no response from

the MPE lab. This time the right person knew the right thing. The

result was a program, contributed on the San Jose swap tape last

year, called SPOOLTRM.

There was quite some shock in some of our user departments

when we asked if we could fix printing terminals so they couldn1t

be used to log onto the computer. When they found out that the

result was the abi lity to send output from any other terminal to it,

with all the advantages of the spooler~ they tried it. We did learn

several lessons. As HP begins to support spooling of terminals in

the Bruno release, you may wish to take these into account:

1. The payroll people LOVE the fact that they now know that

nobody can snoop at their printouts--which never leave

the office.

2. They LOVE even more, the convenience. Our computer center

is in a building separated by a courtyard from most admin

istrative offices. Now they don1t have to go outside to

get three lousy pages.

8-8 - 25



3. We wish therewere a simple method of limiting spoofle size

to a specific device. But clients can learn pretty fast

when their precious office printer is once tied up a"ll

afternoon, to route things properly. Agair1, SLS helps

with this by reminding them.

4. Don1t let it trouble your conscience if you tell them that

a spooled terminal can only run one kind of paper. They

will think they are really smart when they get it to do

otherwise, and you won1t have to put up with complaints

when they blow it. But PLEASE don't expect most office

workers to be able to understand special forms procedures

in the spooler.

5. There is a price to pay--CPU cycles. It takes more of the

CPUls time to service a request for another character on a

terminal, than it does for that same character on a

parallel-interfaced line printer (ie, 2613-2617-2619-2608).

This factor is a particular problem for Series I I and I I I

users. In these systems, the CPU overhead for character

transmission is higher because the ATC is a "dumber" inter

face than the ADCC used in the series 30/33/44. In a

Series II I running four spooled terminals at 2400 baud,

this could result in a 15% overhead factor for handling

terminal interrupts alone. To this one must add MPE

overhead, swapping, and disc I/O.

Conclusions

Recently, a department which has the idea it is Iiterminal-poor if

B-8 - 26



had to give up one of its terminals for a few months. Their first

reaction was to unspool the printer. After a staff meeting, however,

they elected instead to make one of their CRTls mobile and retain

the spooled state of the printer. They would rather share a CRT

and occasionally have to go across the office for a lookup or update,

than have to run to the computer center for every little printout.

The day of the hard copy is by no means over.

Southern Missionary College, though it has only one CPU, has

chosen to distribute control of the system to its users. We have

done so because we feel there are advantages inherent in such a

system. The DP management IIcontrol" functions are limited to execut

ing procedures and policies set up by users for their mutual benefit,

and packaging the system so that it is understandable to users. We

feel this is the best way to get the most for our DP dollar.

We do not know what implications our experience has for systems

with distributed intelligence. We see several factors that might

encourage us to distribute our processing to multiple CPU·s:

1. Physical lack of proximity. This is not currently a problem

for us. If, for instance, we were to expand to our Orlando

campus, this could be a significant factor.

2. Security. This is currently a prominent driving force

towards acquisition of a second cpu. However efficient

MPE may be in segregating users, it is impossible to assure

our users that mere software can isolate applications as well

as an electrical insulator such as two CPU·s not interconnect

ed would -provide.

B-8 - 27



3. Dissimilarity of resource needs. However much we may prefer

the HP 3000 for our administrative data processing, we are

not convinced that it is necessarily the best system for

academic processing. The 32,132 limit on adressing is a

severe limitation compared to other systems of comparable

cost. If the HP 3000 did not come with IMAGE, it would

very possibly not be in the running.

4. Dissimilarity of useage patterns. Due to the way system

resources are handled in the HP 3000, mixtures of dissim

ilar use can create severe response time degradation if

certain users do certain things (like getting stuck in

program loops). We feel that users who insure that they

will not do such things, should not be subject to delays

because others don't.

5. The HP 3000 can only handle so much of certain things,

period. Examples include: directory limitations and ex

cessive overhead in process creation. If you want over

6,000 sectors in your directory, you have·to buy another system.

As things now stand, we feel that the HP 3000 as we are currently

using it is an effective way of using the financial resources avail

able to us for Data Processing. We have further discovered that a

moderate amount of programming (creating SLS) and management effort

(the Computer Service Users Committee) have resulted in multiplying

its usefulness to our organization.

8-8 - 28



A Tonl for Increase~ Progra~~er Producttvity

[)~l~r'es R. Payne
Froarammer/Analyst
rne fNI Companies

~!~vne E. Po 1 t.
Director, Cot"'put.er Services
l~jhltrnan Col.lf\Qe

Tt\~ fJr!8ndo ~~eet1nq of the HP.JOOO "sers (;rol.lp

Apri 1 19R1

Key ~ordsl StandardS, Coe0L, Pro~ramml"~, productivity

Monday 8-9 - 01



,;

I. Overview

II. TheW,hitman Approach,

I I I. -Co.h·cT us'ions

Supplement. COBOL Coding Standards

Appendix

B-9' .. 02 "



I (:lverv lew

We dre, according to the September special edition ot
Computerworld, ent~r1nq the "Software necade", A deeade that will
~e ~~rk@d by the passage of layered software technol~gles, and
replaced by Int@grated ~ethods th~t vastlY increase productivity
and simplify us~ of t~e computer.

An ~mbltlOijS vision of the future to be sure, In the HP3000
world, precompilers, code.gen~rators, a~.hoc report writers,
proc~dural sub-languaqe$, and th~ like Rre alrea~y appearing on
t~e market. Certainly, this lends credence to the vision of the
1QAO'S. But 15 that era truly Upon us, and will programming as we
know it ~ulckly d1sapp~ar from the face of the eart~? we doubt
it,

All too ofte~, one of the decisions that upper manaqeroent will
dlctatp to th~ OP establishment ts, "T"ou shalt develop all
proorams In XXXXX", where XXXXX Is frequentlY COBOL, PPG, or
PortrA". They do this in a non-spiteful way, since they believe
tha~ they are looking out for the nest 1nter~sts of the company.

After all, COBOL DrOqrammers are, tor instance, "easy" to obtain
on the open ~arket. If ynur software Investment Mas been In
COBOL, then you stan~ a gOOd chance of kee~lng it running with
y,eople ~'ho ~re "otf the street" 1f it real crisis erupts.

AS for the "ne'A' sott,·~are productivity toolS", a treql.lf!nt att.1tude
seems to be, "too new", and, "not as easy ~r productive as tnev
are advprtised to he". ~Ow, we won't debate the ~ertt or spirit
of tnese arguments In this paper. the situation Is a fact, and
Shoul~ b~ coped with IntelllQ~ntly 1f posslbl$. In fact, coping
with this situation 1S nne purpose of thiS caoer,

The title of the paper would h~ve you belteve that a pro~ramMer

productivity tool has been within our gr~sp since the beginning.
That tool 15 the often maligned creature, th~ "proqra~mlnq

standarrl". Almost ~v@ryone ~111 aqref that standards are
import.ant, but few can polnt to a real ln~r leO"entat ion tnat
~ctljt?lllY worked. .In f~ct, mAny will ar9ue t.hat. standards are
1~pos$lble to creat~, m~tntal~, or PQllc~, ~nd are therefor~

counterproductive. ~e t~ke umhraae with this line of re~sonlnq.

As will be eX~lal"e~ 1" Section 11, the situation at Whitman
dlet8ted a serious look at this lssu~. A co~prehenslve, 3n-month
exper1mpnt has led us to the conclusion th~t programmlng
$ta",rl~rds, re9 a rd.less of stYle, '-"1.11.. .t..mprov" (,qality and ~l1ant1ty

nf code, and lower overall costs of develop~pnt.

8-9 - 03



Th~ Whitman College Computer Center has been in operation 81nee
,July of 1971, when the College recogn1zed the n@ed for ~odern data ~

rroce5s1nq 1" bot~ the Academic and Adm!nistrative areas. The .
dectslon ~as not 11gntly considered. ~t that point, one office of
th@ Administration ha~ an NCP lOt that was meagerlY shared w1tn
sever~l other offices and one Acade~lc department ha~ an IBM lt30
thAt also served the sciences 1n a s~all waY.

The HP3000 WdS purchased with the idea of consolidatIng services
and eliminating old eqlJipment. Being a small eollege, with a very
conservattve f1scal po11cy, a ~el1berate effort was made to
control prooram develo~ment from the very beQln~lng.

Ven1or-suppl1ed ~ppllcatton software was judq@d inadequate at that
tim@ ~nd a decision was made to develop a m~jor area of the
Administration "tn.h~Use".

In crrler to neflate tne total overall cost of such a decision, a
variety of techniques were ~dopted to expedite coding and aSSure
quality. The results, as evaluatetj after 30 montt·.s, were even
better than expecte~. In summary, ~ time-honored industry
st~nrlaTd of 4 lines of code Der hour was decimated hy eompar150n
to th~ effPcttve coding rate of 34 lines of e~de per hour that was
aChieved hy our staft,

AS noted, there were several techniaues utilized to achieve this
rate. ~owever, the ~omin~nt factor was tne ~rloptlon, at a v~rv

~ArlY stage, of ft set of programming standards. In the four years
t)f the Center's @x1stance, these standards ha.ve gro~n and matured. ~
In nther ·"()rds, they have Charlged. Yet, thiS cM.:\nge haS not
caus~d the ~evelQPment effort to speed UP or SloW down. Thus our
state~ent to the effect that having standards 1s more important
than W~At is in the standards, As a ~easure of th~ universality
of SUch ~ set of standards, ours are dlstrlbDted to a dozen other
sitest n t:. hepaelf 1. C 1\1 0 r t h west 0 n are (1 U 1Ci r pas ,., 5 •

8-9 - 04



It The ~~1t~an AnprO~Ch

Before details of the project At Whitman can be exolained, a bit
~f MdekqrO~nd O~ the environment ShoUld be related. The Colleqe
Is a four-year, liberal arts lnstitution founded in a very
conservative American tr~dltinn. T~15 cons~rvat1sm Is pervds1v~

fro~T1 flnances to curriculum. Thus, a pro1eet of the rrt1gnltutie
tnat will b~ prese~terl was not un~ertaken liahtlV.

Some of th~ constraints on the pro1@ct are u"ique to the aCBde~lc

envlron~pnt, Salaries, for instance, run 30.40% telow t~e aver~qe

in rnost. n,etropolltan business sectors, The orogr~~rT"ln(7 staff at
the Co~puter Center h~s been characterized as botM younq and
withOlJt e~perte"ce. Tn context, this 1s 8n accurdte 8ssess~ent,

it would be erroneous to deduce that thes~ two Characteristics
imply 8 lac~ of eltner skill or finesse In tne1r c~osen

prof~sstn", however.

For th~ most part, the st~ft ls, 1n fact, fairly untrained w~en

hired by ~he Cnlleqe. fhey ar~ piCKed ~or th~ job based upnn
potent1al r~tner than experlenc~, since the Col1eqe 1s not
co~~etltlve ~lth industry 1n the job rn~r~et and ca~ rarely attraet
experle"ced peoDle. Criteria for selection include above·aver~q~

intelligence, high self-motivation, an" goal or1~nt~t1on. So,
whl1~ the staff may have obvious drawbacks, it nonetheless Is
primed to produce an above.averdqe quality of program code wIthin
minimUm time constraints,

In ~ way, this has been ~n asset ratner than a liahility. Staff
training has little waRted motion, and th@ lnte~rat1on into tne
shnp Is sped by ~avlng no Dre-eoncelved notio~s and n~blts to ee
altered to fit within the College's operatln~ p~11osoPhV. stro"g
standnfds ~a~e SUCh training possible,

In 1973, Datamation pUblished an article, "rhl.f-Programmer Team
for t~e Mew York Times", in ~hlch it was indicated that about 29
lines of cod~ per ~And8Y was an oPtl~u~ rate for CO~OL codlnQ in a
oaten environment. This 1s s!!ghtlY less than 4 lines of code per
manhour. This r~te has been reafflr~ed since the~, but alwaYs In
the h~tCh world.

There ~re no reputabl~ studies for develoDment on interactIve
~dc~lnes, such as tMe HP3000. There are rr4ny issues hl~den 1n the
b I) t c h v s. tnt erac t .1 veenv 1. ronment t hat 11' ~k e () 11 r 5 t u dY .1 n v a 11 d a 5 a
scl~ntif1c experl'r'ertt. Howf.!ver, we will ~tt.empt t.o enumerat.e the
varl~os faet.~rs ~nd let you d~cld~ whiCh 1s the most significant.

8-9 - 05



.,., any ~ ~ t'. n ;1 '-.1 e t h a. s e ~ ewe ti () tl t the r r 0 q r " rr rn ~ r C' a lJ q ht. k: e Ypun c t" 1n g
t'\1s OWij c~rds, reg~r11ess of r,O·11 persuastv~lY t~e prOqrarHmE'!r
arqupd t.r~t "it was f~st.@r to do it tr.yself". "\~e aren't paying
vou t.o k,@VCuf'l~n!" is the usual opening line. However, this
attltud~ just do~sn-t pay whe~ ~drrl~d nv~r to th~ interactive
en v i. r " n·~~ e rl t • 1\ t tlj t~ 1t "' r) n , t hIs ii P P rna c h ~ t~ 5 r e j ec t. e d .1. n f a v 0 rot
h~Ving ~ terTlnal for every person d~velorlnq co~e.

In the b~tCh envtronmpnt, manY sh~rp prOgrdmmers will duplicate
proqra~ car~s 1" order to "cut ~nd paste" ~ew programs qUiCkly.
In tr~e Int~ractlve environment, text editors carry this drt to new
nelqnts. ~ell·~rltte~ progra~s ar~ i~eal tem~lat@s for building
similar ~o~t\t(~r~. Th's not OT"ly increases rroductlv1ty, it also
h~lps traIn "~W pr01ram~ers 1n prorer proqra~~tnq techniques,

T~15 IPAd~ of course to progra~minq standards. If evefYO"e
follows h6s1callv tn@ same rUl~s 1n des1qnlng and bUl1dl"Q
SOftware, then co~munlcatlo~ B~Onq the prnOrR~mers 1s greatlY
facl11t~terl for both tr~lnlnq and maintenance.

Com~unicatlon is a vItal link 1n the development process. A very
lnt~restl~o sttldy in the ~arCh lqao issue of nata~at1on, "Software
~.; an", 0 ~j! f.\ I ens t s : A.~: 0 del ", s tatesthat 0 n e pro q r a rt, 'Tl. P r l~ 0 r K1n g 6 0
r,ours ~ '~eek can complet.~ a project in the S~tte cal~ndar time as ~
t~o oth~rs, but at t~r~e.au~rters the cost. A bold claim, but one
that has 50~e basJ$ in tact. Com~un1catto" between humans Slows
dow" productivity! The more people on a Drnject, the slower @acn
Incre~~nt of orn1ress for each person, Good standards can hr1dge
the 9 ~ p i rl C 0 tr' " \] n 1cat ion s • t f e v ~ r Yoneta 1)( s the samelin gO, the n
the nee d f. 0 r red '.1 n d~ ~ t c t) 'T, mun J. cat ion J.. s eli r 1rt ~ t. ed •

wnttman hAS 1n f~ct also sUbscribed to the "~~rK longer" theOry In
" pro d1,j C t ion mod e • .Th .1 s 1s a f '] r the reo mPIS cat 10 n 1n e val tl a tIn q
the re~so~ f.or rate ~f co~e devel~pment.

In Ftgllt'e 1, ~. nrpa,<"ut is present~d for proqr~n: develoPTnent
bet .~ e en \) u 1V ,. 9 71 an t1 0 e cerr b e r 19 7 q • D \J r 1"q t hat v @ rio d , 2B9
nro~ra~s w~re ~ev~loped In 9595 m~nhours, c~nslsting of 328,305
lines of oroqram code, This IS an average of 34 lines per
manhnur, or 214 lines p~r manrlay. Tne 30 m~nth5 were equlval~nt

to 4.6 !TlanV~ars of effort. Each of tr-AE tent'.1~,l.1es outlined above
were utl11ze~ and contrIbuted to the rates aChieved.

8-9 - 06



Whitman College Computer Services

Software Development July 1977-December 1979

DPROG ~ LI NE~) It 1I0U j·~S

AOlv11 SS IOl\}S OFFICE
1\ I) l\dmissic;ns Sy s ter,l 43 3 3 89 () 980.0

COtv1 PUT r; R CCNrrCR
T) ,., Deucon/GucJrdiun 09 13125 338.5JJ~

Jl\ Job Acco\.1 n ti n:j 09 11210 292 .5
UT uti Ii ties 33 10 693 233.5

It"' I l~ l\NC I !,-,1, AID O.FF ICE
FA Financial Aid 14 195 42 90,1 • 5

F Ii~ANCI AL oEVE LOPt·1 CNT
AIJ 1\ lUr:l ni J\ffflirs 13 18217 428.5
FD Financial Dcv 204.0

~
GR Gif t Records 15 27936 810 .5
ML Central I\1ai li ng 10 10258 229 .0

IlOU S I t\~G OFFICE
SH S t uden t lIou si ng 28 25931 727.0

PROVOS1'S OFFIce
BD B u:1 ge t Stat u,s 10 11065 609.0
Er~ Emploi'e e Records 1017.0

REGI STI1AR
CG Class Grading 22 29199 818.5
CR Class Record s 45 59335 2029.1
SR St uden t H.ecords 29 51013 99 4.0

TREASURERS OFFICE
SC Securi ti es 08 GS 85 tiOG.O

**< TOTAIJ >** 289 328305 9594.6

Figure 1

8-9 - 07



lIt Conclus1ons

The project at Whitman took advantage of several technIques for
increasing programmer productivity, including:

o proqrammers have their own terminal tor online text
edIting of source code,

o cut ~nd paste template techniques were p~rfected within
certain COBOL standards,

o proarammers were encouraged to spend more contiguous
time on projects, and

o comprehens1ve progra~~lnQ standards were established
early tn the project,

Without a doubt, pro9rammlng standards played a vital role 1n the
success of the other three techniques, The st~ndards defined the
boundaries of oroqramrner communication, and set the stage fOT role
models an1 temPlates to he established.

The standardS created for COBOL have been carried over to other
languaqes, suet) as SPIl and Fortran. In the earlY n;onths of the
project, cut ~nd paste models wer~ "whatever could be found" that
~orked out well previouslY, Now, formal standard Skeletons have
been createrl tor all types ·of standard programs. These Skeletons
@MSure that ~ll code Is developed uniformly, and cuts down on
re-inventing proQram~l"g ~etnodS.

'fnese techn1ques can increase productivity in virtually any shop.
They meet the needs ~f those managers who must intone the Qospel
of the "stannard language" to data processing, and assure a more
reasonahle expenditure for co~e qenerated.

When coupled with the new productivity tOOlS, projects developed
in the co~lnq decad@ ~'111 certainly live up to the brlnht promises
written In the current journals, At Whit~an, this marriage Is
occurrino today. tNe continue to rlevelop COROL code tor our
prlmarv ne~ds, hut ma~e stron? us~ of ad-hoc rerort ~r1ters (SUCh
as OUI~) for uniaue user-reqUested reports. small systems of
lImited life afP QUickly developed wltnout rrogram~lnq by creating
d~t~ bases, malntalnlnq them with HPGST1G Contributed software' such
as D~E~TPY, modifying them with ADAGEP as ne~ded, and qeneratlng
rep 0 r t s wit. h (:J UF' R. Y, 0 ~J I 2f ,or REX,

In s~ort, the old adage "use the riQht tool tor the job" will take
on roore ~eanino 1n the future, as mnre to~lS ~re developed to

8-9 - 08



5 er v 1.ceournee d. S • v! e w0 \11 d hop e t h a. ton f:\ 0 f. t tl e tools 5 e 1ec ted
to enhance proqrammer productlVjtv is the creatlo~ of Shop
standards, no matttt what size the ShO~ is. Tt Is one of the roost
,ff@ct1ve means aV~11able, when one real!~@S th~t the cost 15,
simplY, better Planning and More efficient Usaqe of resources,
Tnat 1s a price th~t all shops can afford t~ cay.

8-9 -09



COBOL proqr~mmlnq has always ~~PhBslz~d clarity and ease of
mdlnt e nance, and these Obj~ctt.ves for~ the b~s1s tor ~~st

standards nanual~ 1n the ln~ustry to~ay. Car@ful attention ShDUld
be pal~ In their dev~lopment, however, to aVoid standards that are
too l~x And 'ncnnslstent or too r~str1ctlve an~ InflPxlhle. SUCh
an attemrt has been ~a~e at WhitmAn College ~s the standards
pres~nteo here 8T~ designed to be fl@x!ble 8~d yet InSure some
deqree ot continuIty hetw~en oroqrams.

The fol]o~tnq discussion ~f Whitman COACL Cnding Standards Is
dlV1rle~ into t~o major sections, General StanrlAfdS and standards
bV nlVislon. Those toolcs t~at do not fit within a particular
COBor. division are included as qeneral standards and they are as
fOllows:

• Compilation Techniques
* Mo~el "cut and paste" Skel~tons

* CO~OL COPV LJbr~ry

4 Subsystem Calls
* Common Cod~ Table (CCIl
* trror H~ndling

* Abort processJno
* Co~sole Postl~g

The four major COBOL divisions contain standards that are specific
to a particular division, and they will be Included where
appr"or1ate.

General C080L standards wIll be discussed first, followed by a
presentation of the standards by division. Appendix A includes
AI.. LJ 0 f the ex a rr~ p 1es not e d 1nth1sse c: t 10 n, and '~111 t~ere fer enee d
by thp letter A and a number indicating the page of t~e appendix
cont~lni"a the flqure (EX. s~e paqe A-7). All COBOL examples
used ar~' from a production progra~, CG22B, that was modified to
test the curr~~t set of Droqram~lnq stand~rds, and fro~ t~e V/3000
skeleton program.

B-9 - 10



General standards

r * Compilation Techniques. In many shops, the days of the
interactive ~omp11es are over. The dem4nds on IYste~ resourees
are too qreat to allow programmer. the luxury of 8 "quiCk"
compile to get a new, freSh listing, Th!s 1& prec1selY the
case at Whitman, To help l"sure that compiles are 1n fact
s tr earned, a. new ut 111 ty Pfogram, BA.f\~NER, (lne l,uded 1n tne
Contributed Library), has been develo~ed to process COBOL
compileS. It workS in most other langUaqes as well.

BANNEP must be run 1n a batch mode in order to obtain the
information required on the cover sheet about the source, and
then insure that it be pr1nted with the source listing. The
fl1e equations requIred for BANNER ~ay be set up in a UDC (see
page A-f) to facilitate its use •. It creates a cover sheet with
large block letters indicating the PROGRAM-IO, and many other
pieces of information about the compile including the actual
file na~e used and the User who streamed the jOb (lee page
A-I), ActuallY two identical headers are produced so that cover
Sheets need never be fold~dl The Infor~atlon on this cover
Sheet has also proved invaluable 1n help1ng operators deliver
the source comPile to the proper Individual since in many cases
involving maintenance the person worK!"9 on the program 15 not
the original author.

* Model "cut and past~" Skeletons, In order to assist the
programmers at w~ltm8n College, &Qec!al model programs (knOwn
as Skeletons) have been developed to serve as a base starting
point for all new development (see paqe A-2). Th~ first two
pages of a Skeleton program are included in theapperidlX. Note
the use of special abbreviations and X's to lri~lcate values
that must be entered by the programm$r. These s~eletons are
ciean-corop11ed programs contain1ng eaCh of the four COBOL
n!. v1s 10ns w1th all necessa,ry e.l>ements and COpy 11 b rout tnes
normallY fOijnd in- the particular type of Drogra~ (report,
prompt/answer, V/3000, etc). Consequently no one actually eve~

writes a program from "Scratch." A solid fOUndation Is laid for
the programmer before any attempt at adding the new program
lOQlc 1s made. Th1s helps keep existing e~Ploye~s on top of
the current set ot standards 1n the ShOP, and helps new
employees become familiar w~JlP,'!·~·th.e, .f!cCetltable eodln.Q standards
at a much. faster rate..,:1,'!h;,~,:.:e Sk'eletons may also serv.e as a
gu1de when older progr:·,~s···";Cl'r~~: modified and standardized, and as
a, .q u1de to t t) e ace eptab'1 e level 0 tl' to9 r a fit m1. nQ expected 1nth1s .
ShOP.

* COBOL Copy Library, Whenever possible an~ practleal, COPYLIB
routines are created to standardize a set of common var1ables
In working storage or establish a standard paragraph tor the
procedure division. Sneclal na~lng conventionS ar@ "sed when
namlnq the routine so that it may be easilY Identified (see
page ~·3). Certain standard headings are also requ1red of the
COPYLla routines to insure consistency 1n the COHOL copy

8-9 - 11



library, and tnese fall 1nto several d1fferent categories (see
page A-4) depend1ng on the type of working storage area. To ~

help insure that capYLIS standards are followed and understood,
one lnnlvldual in the Shop 1s alslqned the responsibIl1ty for
tne maintenance of this file. It Is -intended that these Copyllb
routines make the code more consistent and easier to maintain,
and reduce as much duplicate effort as possible by providing
standard procedures for every programmer to use.

* Subsystem Calls. Special attention 18 olven to standardization
of Hp specific software SUbsystems, SUCh as KSAM, V/3000, and
T~AGE:. The reason most obvious 1s that the shoP cannot afford
the time for a "learning curve" for new employees, No matter
ho~ well trained in COBOL, few new emPloyees know HP
subsystems! The cOPYllb, combined w1th tne Skeleton "cut and
~aste" method, enforces standards while propping up
Droduetlvtty,

• KS~M. All ~orklng storage areas for production KSAM flles
are standardized in COBOL ~oPYllb routines. A standard tile
format 1s created for eaeh using proper descriPtive
prefixes, All production programs access at least one ~S~M

flle, the Common Code Table (eeT), to obtain values for
report and screen headings as well as a variety of other
codes, sta~dard lookup procedures have been developed for
this special KSAM tile since It Is so heavily used (see
paQe& ~·12, A-ll). A sample table, 90t (see page A-1t), is ~
inc111ded as an example of the f 11 e content I. A-Il other KSAM
fl1~S' are refere"ced in 4 similar manner, and are built
using the same standard format in worklnQ storaQe,

• -V/30 oo. V/3000 standard screen techniques are heavily used
1n this ShOp. As time per~lts, DEIJ/3000 prOgrams are being
rewritten using the new set of V/3000 standards and all new
screen handling programs -are heln9 built from a skeleton. A
standard V/3000 communications area IS included in the COBOL
Copy lit), and. spec la 1 v I EW-PATA.•B\JrFER s trueture has been
-1~veloped as -ell (see p~qe A-S for a nartlal picture), The
VIEW-OATA-BUrrER has three distinct breakouts. The first
contains the sYstem and office names, a~d the third contains
the tor m name. These three fields must~. numhered 1, 2,
ar,d 3 on eaCh V/3000 screen in order for the standard
headlnQ routines to work properly. That leaves
V[F~J.OATA.BnF'~~ER.2 as -the a.rea for all other screen t lel.ds.
Using this vt~W·DATA.BUFFER, standard procedures get,
display, and read V/3000 screens, Th~ initialization
rautlne Is included in the appendix (see page A-6) to show
how the first screen Is ~roce&Sed. From that pOlnt on,
standard individual proc!dures are called to ~anlpulate the
V/JOOO screens,

• I ,'~ AGF.: •
fairly

(1 ne 0 t t. h e ~ 0 sthea v 11 y use rj HP 5 U. b 5 Ys ternsIs I r,~ AGE.
specific stan1ards h~Ve heen ~stabllshed tor worK1ng

8-9 - 12



storaqe areas as well as procedur~ d1vlsio~ calls since
l~AGg 1s used in many produ~tl0" progra~s. Example& of the
standarn IMAGE working storaqe buffer and th~ list and
bUffer ·areas for two Student dat~ base d&t~ lets are
included In appendix A (see paqes A-7 and A-e) to give You
an idea ot the conventions used.

The IMAGE callI used In the proc@dure division have recently
undergone a ~a1or eMa~qe. In the past t~e practice has o@en
to use ALL-ITEMS as the list item 1" an IMAGE call, When
the most recent set of stan~ards were modIfied, tt'ls
practtee came under scrutiny and to the ~ost part has been
abandoned in favor of the PREVIOUS-LIST option due to
greater processing efficiency and ea$~ of maintenance.

l"ltl~lly the working storaqe areas of the program must ~e

created containing lists of the deslre~ data elements and
the corresponding data buffers. eontAlnlnq the 5~~~ ele~e"ts

(see paqe A-a), ~ach IMAGE list Is then ready for
"initialization", This "ln1tlallzatlo"" involves a s~rlal

re~d of one record in each data set using the actual LIST as
it Is ~eflne~ In work1nQ storage (see page A-g), Care must
h~ taken to properlY process the first record, however,
Should any data set actuallY be r~ad serIallY, All
nec~ssary information Is obtained from the IMAGE: root file
wlth the read of these initial records, and is stored a~ay

for future use. From thiS point on, all IMAGE calls
InvolvlnQ a LIST It@m should use the IMAG~.PREVI0US.LlST

value (see paqe A-7) to avoid the overhead of going to the
root file to obtain the LIST information with each call (see
p~ge A-tO),

Ther~ are tradeoff. between the ALL.ITF~S and PREVIOUS-LIST
options, and they ~ust be considered when dec1dln~ hOW to
besl use IMAGE in a Qlven program. The follo w1"q criteria
may be used as a quide when a new ~ro9ram 1S belnQ developed
Of a proqram 1S beIng modifiedl

t. executton • bV pr!minQ all data sets used with the
proper J~AGE lists (manually selected lists
containing ~nlY the data elements necessary) and
uslnq the PREVIOUS-LTST option mentioned above, t1~e

-will be saved dur1ng program execution since the
root file information 1S only obtalned once,

2, maintenance • by uSing manually prepared 'lists
instead of ALL·tT~MS, onlY prOgr8~s eonta1n1~g

affected data items will require recompl1atlon when
a data base Is rebullt,

B-9 - 13



3. a~dltlons - when recordS are beinQ added to a data
bas ~ , 1t t ak et; 1eIi 5 0 Ver he ad t ~ tl sethe AJ., L • I TEt:~ S
oT" t 1on s .1 nee m0 S t 0 f the da t a 1. t emS are U5 lJ a 11 y
Ineluded 1n an add mode anywaY,

4. worklna storage requirements • only one Copyl1n
routl"e for each data set WOUld be required tor the
A.l.tt~.lTg~lS option, but these ~utfer5 would be the
larqest Dosslble and ftxe1 in size. The
PPEVTOUS.~lST option would necessitate the creat10n
ot more Copyllb areas, hut the buffer sizes 1n the
prOgra~5 would be optImized,

* Common rode T~ble. A sp~clal ~SA~ file h~S been created at
whlt~an College to house cert~!n "Common Codes". This file
co~talnS over fifty tables which house codes from several
d1.ff~rent syste~s. These con~s are unIQue and have the s~me

meaning no ~atter what SYste~ they are fnund in. Some examples
are A~~lsslons Office Test Cod~S, Peqlstrar Student status
Codes, Financial Aid A1justment Cod~s, ~nd U"lte~ states postal
Codes (see page A_tt). This stand6rrl1zat1on of eodes
simplifies ~alntenanc~, and since these are external tables
Chanoes M~ not u$uallY affe~t the programs. The standard
worklnq storage area tor the Common Code Table (CeT) and the ~.'

cotnm~n .routines required tC' obtAin lntor matJ.on frorr thts'")
. "tabl~" are Included in the appendix to show how the CCT Is
norm~11V accessed (see pages A-12 and A-13).

* .Er ror Han.d.11 nq. Another Corr.~on Code Tatll e 15 used oy
programm@rs in the development of error nandllnq procedures.
Th1s Is a tahle Of standard Frror ~essage$ ca partial list is
on paq~ A.14). All progra~s requiring User error messages must
access thl~ table as no progra~.lmbed~e~ error messages are
al1~wed. If a progr~~mer does ne~d a· new error ~essa~e, then
the analyst responsl~le for the Common Cod@ Table ~alntenance

must approve the request and make sure tnat it 1s entered
properlY.

TO helP describe how errors ar@ handled In 8 screen program, a
f~W samPle V/3000 error hand~ing paraqr~phs are located on page
A.-t5 of th.e appendix,·· When an ~rror occurs in a typleal V/3000
proQram, the CCT·~RROR·KrY is primed with the proper error
number, the VIfW·FIELO-NUM 1s primed with the nU~ber of the
f 1e 1 d 1. n e·,r r 0 r, and err 0r h a·n d11nq proc e dlJ r ~ 5 itrepe f' for me d •
screen error handllnq 1s controlled ba51eally from ~araQraph

P625·VIg~·S€CONDARY·EPROR (see page A-IS), J11 rout1nes
required to lookUp the error mess~qe, disPlaY it to the User,
and flas~ the field In error are perfnrmed from this standard
routine, Errors are processed 1n this manner until all have
been corrected, ~

One keY r~ason for the standardizing Of error messages 1s to
fac111t~te User awareness and understand1nq of their particular

B-9 - 14



system. Consistent error messages make it easter for the User
to become fijml11ar with the types of errors and problems that
may oceur, Each error message 1s qlven a unique number to
lncre~se the eaRe of loOkup, and to avoid unnecessary
duPlication. Unique error messages allo Insure prOQram and
proqra~mer consistency with reqard to error handling.

* A~ort. Processing, The same Philosophy of consistency holdS for
abort ~e6sages as well. Standard IMAGE, KSAM, and V/lOOO abort
COPYLIB routines have been developed to standardize abort
~rocedures and messages, pefer to pages A.t6 and A-17 of the
appendiX to find samples of the general abort work1ng storage
area, a tYPical paragraPh calling an abort procedure, and the
abort procedure itself. tn t~ll case an I~AGE abort 1s used to
illustrate the steps reqUired to perform a stan~ard abort. The
abort messages come from the same Common Code Table mentioned
above, and are VI r 1t ten tothe tJ 5 er sser eenor job ex eeut 10 n
re~ort when an abort condition occurs. The messages are
de$lg~ed to helP the proqrammers Pinpoint the actual line
within a particular paragraph that the abort occurred, and g1ve
the Iller some indication Of the problem So that they can no t1fy
the computer center wlth meaningful information. This speeds
the identification of the problem, and hence the solution since
finding out ex~ctlY where snm@thlng went ArOng 15 often oVer

~ half the battle.

In addition to notifyIng the User of an abort condition, each
standar d abor trout lne sends a ve.ry ObV lous mes sage' to the
operator"S console (an entire line of '·l~ozenges) so that t.hey
are ~ade aware of a problem (see paqe A-tAl. T~ls is especiallY
h@lptul when a bate~ jOh aborts since the printer ~aY be bUSY
for hours, thus delaying the printout ot a job execution report
that tellS ·the operator· that the joh "bleW UP". M@Ssages of
this type necessitate the existence of a nard copy conSol~,

however, to lnsure that the abort message Is "heard" and not
lost on a 'screen that "rolled up" And dls~ppear~d. This
instant operator notification 1s another ~eehanls"! deslqned to
1.nsure tt"t.at exception. conditions are noticed as early as
possible so that proper actio~s ~4V be taken to recover.

. ... ~.... ',

* Console Posting, In another effort to assist tne op~r~tor in
day-tn-day activities, a standard set of "TELL" procedures have
been develoP~d and are 1nstalle~ in ~1.1 production programs.
These special procedures lde~tlfV thr~e Dolnts 1n each jOb
process: 1) TELLSTART, 2) TELLFORM and ]) T~LLSTOP. Using a
special su~routl"e, these ~eSsAges are printed 1" columns
Bl-t32 of the operators console to helP distinguish them from
f:''tPrN: "'·ess"(Jes. Ot.her Infofrr.atlon SUCh as the Us~r, the fl1e
nut p lJ t n t.J n1 be r (. 0 ), the for m na Itt@, it n d the 10'-' I s ~ s s 10 n n UIT' b e r
are alSo included in ·· ..these op~rator Messages tr.> help t.hem
readily lrlentltv jobs and form re~ulrement5 (see page A-19).

8-9 - 15



standards by D1vlsion

* IDENTIFICATION DIVISION

The first three P8qes in every source program ShoUld look
fundamentally the same. Special standards have been
established for all three pages so that by the time these pages
have been read specifie P1eces of informat1on about the prooram
will be known in some detail, It 1s too easy to spe~lfY a
PROGRAM-IO and gO onto the ENVIRONMENT DIVISION without the
l~cluslon of any other pertinent information.

To avoid this all too common oceurence, a spec1al Title pagels
i"cluded (see page A-20). Using the STITLE command, the title
of the program 1S printed on tne left side of each compile and
the PROGRAM-tD and revision level are prlnted on the right,
Every sUhSequent page will have the title ann proqram number on
1t Unless overridden by a $PAGE heading. Following this
important piece of information area

PROGRA~~·IO

.OATg.Wp I'lTEN
INSTALLATION
Sf~CtJRITY

program name <revision level>
month, year
Wh1 trtlan Co 11 eqe
Publle, Pestrlcted, or Confidential

To 1dentifY as many of the people involved with a part1eular
proqram as possible, a spect.!l author/analyst section 18 ~

included. It lists the progra~mer(s), systemS analvstCs), and
syste~ deSlgner(s). To complete the title page, a brief sum~ary

of the program's purpose is g1ven, alonQ with all necessarY
file descriptions and non-standard sUbroutine calls,

The seeond paq@ of a COBOL proqram (see pag~ A-2') conta1ns
det~11ed compilation instructions which are especially
imPortant to proqrammers unfamiliar With the program. The
~4XDATA information Is a very important piece of information,
and it should be u~dated properlY so that prOqramS are comP1led
c:·or·reetly. A ma.lntena.nce 10<7 1s als·() included to ident1fY all
of the modifications that have been ~ade and by who~

(initials). This can pe helPful 1n understanding the extent of
mr.)dlf1c~t1.o.ns that have been made to a particular program and'
learn1nq some of its history as well.

O"e o~rtlcular piece of tntormat1on that Is often left to the
l~st minute an.o then left out due to t1rne pressure 1S the
synopsiS of proqram logic (see page A-22). This in reality
should be one of the first things written 1n a prOgram as it
can n@lp oraanlze the programm@r·s logle a"d possibly Pinpo1nt
spe~1al prohlem ~r~as or qlve insight to hetter solutions. At
any TMte, this is a very important standard as it ean really
h~lp a ~~lntenance prOQrammer get a better feel for what 1&
Qolnq on In a ~rogram as well as refresh the me~orY of the ~.~.
duthor who ~ay h~ve written the proqraM some time ago. ~

'ln~llY, this synop.ls should be written In enough detail to

8-9 - 16



give a goOd logic flow of the oroQram, but be s1mple enoUQh so
that someone 'lnfaml11ar with tn~ proQram can derIve a ~aslc

und~rstandlnq from it.

8-9 - 17



* ENVIRnN~ENT DIVISION

This ~lVlS1o" ts ~lways the smallest, ~ut nevert~eless it
contaInS sn~e fundamental information that should not be
overloo1('en (see oage .1\-23). First of illl a $P.AGE: 1s used to
isolate the dl V ls10" ~nd m~ke it easier to find. Some standard
speeial "~mes are used to refer to the consol~ an~ for

. t oP-o t .paqe.

The Input-Output Section contains the select and assign
cl~lJses. A svectal format 1s "sslo"ed to printer flies so that
they are easily rec~qn1zable on the cons~le durloQ ft :5HO~OlJT.

All nther files descrlhed In this d!Vls1nn will r~~ulre MPE
t1l~ et~lJ,~tlon ••

8-9 - 18

".

/



" * DATA DIVISION

The most commo~ problem found in data divisions 1s the
in.ability to f1nd:.t!:'~,:\l,.r1ables without searching the ent1re
wotklnq storaQ~ section. One Of the basic standards used 1&
the SPAGE. It helps delineate partlc~~ar variables or eopyllb
routines .from one another so as to enhance readability, The
file and working storage seet10ns are also separated hy a $PAGE
to further separate them for easier reference.

Another standard developed to increase the abi11ty to find
things 1s the requirement that each Variable in working storage
be assigned a meaningful prefix (suff1xe, are acceptable but
not preferred) to associate it with other common variables,
Each area containing common variables should then b~ preceded
bY a header s t8te~ent (see paqe A-24) descr Ib 1ng Wh:a t kind of
variables are included. some common areas of different1ation
could be FLAGS, HOLD AREAS, TABLES, or other such breakouts.

All working storage copyllb routines USe the prefix notIon 1n
that all variables used 1n these routines should conta1n proper
three-character prefixes, The eopyllb routines tne~selves are
then given a file name that also eo"talns the prefix. All of
these special naming conventions are used to help keep common
var1ables together to enhance readabil.lty, increase.,var1able
location, and make the procedure d1vision logic easter to'
follow with the use of meaninoful data names,

In or der to maJ(;:e the worl< 1. nq s t oraoe sect 1. on eve" eas 1.er' to
read, all COPYll~0~~utlnes and"other ~arlable areas shoUld fall
1n a s 1rn 11ar s e"Q'u'enee. The foIl 0 w1nq q u 1de 11 nes are used.l;:o
the () r de r q 1v en t 0 ar r a~'~;e a11 .w0 r k 1ng s tor age e1em en t S I '

,,<:::;\'/\:'
• a,ll general C,(}'~Y:l·1b routines and general var1.ables'

(flags, counter.:~,~>:\save a,reas),

* communications areas,

* all file descr1.pt,lons (J<SAM, V/3000, lr~AGE),

* all eopyllb report routInes Should .. ' be followed by
':re po r t format areas and be the last ~:.o~n,!t:ent sot w0 r j( 1n9

'~~'.. . .

storage.

A fairly common COBOL standard found in thl~ division 1S the
practice of aligning PICTURE elauses on so~~e predetermined
colum~. The sta~dard used at Whitman stresses that PICTURE
clauses line UP In column 40 whenever possible. In conjunction
with this standard Is the practice of indenting data
hierarchies in units of 4, with even levels b~!ng skiPped.
Indentation beYond the 05 level 1s not necessary.

8-9 - 19



* PROCEDURE DIVISION

At Whitman College, a modular approach to logic coding is used,
~lth heavy emphasis on the PERfORM verb, One major mainline 1s
included at the beglnnlnq of the Procedure Division, and the
logic here controls the rest of the program. In fact, the
progra~ starts, stops, and/or aborts from this sIngle ~a1nl1ne

(see page A-2S,. This approach 11 used to add an extra measure
of control, and to helP orqan1ze the rest of the program aroUnd
one common point.

The loqle sect10ns within the Procedure Division are meaningful
paraqraPh names that are composed of both sequential nu~bers

and titles, The ranqe 1sl

001-099
100-199
200-299
300-399
400-49Q
500-599
600-699
700-799
~OO·899

900-999

Mainline Loqlc
Data File Input
Data File Output
Screen Procedures
Edits and Field Processing
(Program Specific)
Error Procedures
(Program 5~eclflc)

Re~ort Procedures
HousekeeplnQ.

Each of these logic sections shoUld be preceded by a $PAGE and ~

beqln With the three-line standarri header whle~ Indlc~tes what
routines are beIng performed (&~e page A-26).

Major program segments should be kept to a minimum, and the
l~alc s~ould remain In a seqment as lonq as possihle. This 1s
done to reduce the a~ount of swappIng that occurs each tIme a
different s~qment ~as to be ~rou9ht into memory. TraditionallY
a C0801J sort program contains three major segments or sect1ons:
Ma1nl1ne LogIe Section, 50rt SectIon (input procedure), and
Rep~rt Section (output procedure). A data entry program otten
can perform all of Its functions out of one section, the
Mainline.

AS In the Data Division, re~dab111ty Is ot key 1mportance. In
or~er to improve readability of this division, only one logic
st6tement should be coded per line,' Also standard indentations
shOUld be observed in statements with mUltiple verps, ArQuments
in a USING clause are listed on separate lines und~rneath the
first argument to further enhance the code.

Each lOgic ~odule should be organized Into a paragraPh which
has onlY on~ exit and one @ntrance, Each paragraph ShoUld have
an enclosed comment preceding it that summarizes the logic
found 1n that lOgiC ~odule. ~ SPAGE Is used to separate the
paraqrdPh for better readability.

8-9 - 20



The use of GO TO's in ~rogrammlnQ has created muen controversy
a~ong ~roqrammers and proponents of dlftere"t stYles of COBOL
coding. The standards developed at Whitman College allow GO TO
statements to be used, but only with certain restrletio~s:

1. on@ Exit,
2. One Entrance,
3. Intermediate logic leadln~ to 1 ~r "
4. Abort.

NO other lng1c transfers snoul~ take pl~ee. "Fall thrOUQh"
should always transfer bacK to the Mainline. Rampant GO TO's
that 00 to different par~grap~s and even different sections are
not Pfrmltte~. l"stead a controlled use ~f ~o TO statements 1s
proposed to ~r~elUde the use of unnecessary nested IF
stat~ment&, and to make the code simpler and easier to follow.

8-9 - 21



*

l\. PPE:ND I X A

Com p 11 a t 1 0 n If e c h J"\ ! q \1 e 5

BANNER lIne., •••••• e ••• t ••••••••••• , 0 ••••••• A· 1
• BANNER Cov~r Sheet for CG22H •••• 0 ••••••••• A-I

* Model "cut. find raste" fikpleton
Skeleton Title Page ••••••••••••••••••••••• A~2

• Skeleton Second p~qe •••••••••••••••••••••• A-2

*" C{JI30L COPY L1hrdry
Stand~rd Report Format ••••••••••••••• , •••• A-3

• Sa I'T1 n 1e w0 r k. 1 n9 5 tor " q ~ H e a d 1nq s • , • • 0 • • • • • " A • 4

* SUhsystem Calls

V/)OOO Partial ~orklnq StordQe Areas ••••• ~ AoS
V/3000 Initial Display Paraqraph ., •••••••• A-h
IMAGE WorklnQ storaq~ Area ••••••••••• , •••• A-7

• StUdent Data Rase Lists and Areas •••••••• , A-a
• !f'1AGE: I.,1st .In! t 1alizat ion Poutine •••••••• 0 A-9
• Sample [~AG~ C~llS •••••••••••••••••••• q,., A-to

* Common Code Tabl~

Sa rn p 1 e Com ", 0 nCo d eTab 1 e lit q 0 1 .......".., A., 1 1
• CeT Work1nq storage Area t •••• , ••••••••••• , A-12
• crT Input Paraqraphs ., •••• 8 ••••••••••• 0 ••• A-13

* F.:rror Handl1nfl
Partial ceT Error Table • 980 ,.G ••••••• ". A-14
V/3000 stan<1arci Error P~r-aqraDhs •••••••••• A-IS

Abort procedures
• Consolp !\~ort hJorklnq Storage Ar£'d ••• " •••• A-16

IMAGE Paragraph • Calls Ahort Proc~dure .t, Ap 16
I ~1 AGF.: 5 tan rl ;) r rl Ah 0 r t Par a q r Ph •••••••••• , •• A• 17

• ConSole Ahort n1snlay .t •••••••••••• , •••••• A-1H

* Console Posting
Con 5 ole Tf: l.. LSTAP T, TE: I, IJ FOR~}, T F.: T..41, S TOP ••••• A· j 9

TDENTIfICATION DIVISION
• Tit.le Paqe ••••••••••••••••••••••••• , •••••• A-20
• Compilation Tnst and Maintenance Loo ••• ~,. A-21

Plirt1al Synopsis of Proararn Logic , A"22

~NV'IRONM[NT OIVI5TO~

Standard Select C]aus~5 •••••••••• 0e •• 0 •••• A-23

OA.TA DIVISION
st~nrlard Variable N~ming ronvention , •••••• A-24

PRUCEDtJRr DIVISION
Mat n 1 f n e IJ 0 q 1c •• G • • • • • • • • • • t • • 0 • • • • • • • • • ., A.]. 5

• SaMple Pardofaph ••••••••••••••••••••• 0 •••• A-26

8-9 - 22



FIl,E
FILE
FILE
rIr,E

:JOB COMPILE,USER/PASS.ACCT
1FILE COPYLIB=COBOLIA,PUB
:COBBANNER CG22RC
:PURGE CG228
:PREP SOLDPASS,CG22B
:SAVE CG228
:EOJ

COBBANNER TEXT,USL=SN~WPASS,LIST=$STnLI5T,MAST=$NULL,NEW=SNULL

COBTEXT=lTEXT
COBUSI,,= 1USL
C08LIST=lLIST
COBMA5T=1t-1A5T

~~ILE COBNEW:INEW
RUN FJANNER.UTIL.IRIS,PARM:n
RESET COBTEXT

. Rf.:SET C08USL
R~~~ET COBL J 5T
t~f:SET COBr"AS. T
\E.FS~:T COBNEW

'" H
r T 11 A ,.. ': o L L E C E e o r1 P U T E R C E H T e R

UIJ"I' •••• s ... I.".,S' .11 SJIS J •• ,111. t JS' • J J. SI •• " liS
• J 11-' i •••• II '" ••••• II I ••• J'" •••••• I'S. '11' S.I. I' ••• ... 't'I""I' •••
" • 1 •• t' •• •• .S' •• • I •• '" s ••• •• •• '".1 " I' •• 'S f. ••• •• I • •••
U •• ••••• ••• .t, •• I I I.' I ••• II f" t ••

I' tt •• t •• .... ••• ..,.. '" IS' •• .t • I.'
" ... ., I.' ••• •• .1 ••• I" •• .,. f ••

•• " •• •• •• t. •• •• t., •• •••• " ...
•••• s. t." .,........ ....,..... , •• 1 •••,.'

"""'•• 1 SI' ...,., I.' , II'""", •••I.,•• t •• t ••"", IS •••••••• .....,.... IIC",II Sl' •••••• II " ",S •••• .. ~

COBOL Co~p 11. ro": I1AHACER. wees. PUB

NOH. I1AR 2. 'CJ8'. '0 I JCJ AN

Sourc. F11. HA•• ' 1100Ele .PUS. wees

COlllpa1.,. Fi 1. 9ta~.. t.ic. ~ourcc F"i 1. '3"at"~ICI

(08TEXT

C08"A~T

CaSHEW

Act.ual H•••

t100ELC •pue .IICCS

IHEtJPASS

'STOlIST ('STOllST)

'HULl

.HULl

- AN, n. R . C. U.S. PRI)t'tUe T rON -

8-9 - 23

H... I "ODELe.PUB.weeS

LDEY I J

Fil. Li_it. I ttl3

EOF Polnt.,. I "13

Block Size I 12S0 8yle.

Reco,.d Size I 80 Byt ••



*••••••• ~•••••••••••••••••• _. __ ._._---••••_•••••• -_••••*

*•••••••••••• - ••••••••• -_._--_ ••• --._-----~----_.--~---*

••••••••••••••••• -•••••••••••• - ••••__ •• ---.----_•••••••*

« ",F.

ccecece

I SYst.ems DeslQn

"ppppp <RPR>".
XXXXXXXX, XXXX.
'.": ~ JT ~.~ At" CnLL ~ c; 1:: •
SS5S~SS,SSSSS •

t Syst~m5 Analysis

~11e rescrlrtlons:
lJT1451<ot COmrr.Or" Cone Tahle
rFFfWIPF: Pt?pC'rt Print F'11~

SUbrO\ltine calls:
tl or 8 17 n h t ;'11 r, s ,.1 {] P I U8 r R "" ii ~ P

(j T 8 1 ~ COT' S ~ ] e Tel 1. ~- 0 r r'1 H 0 ~J t. 1n l'

» U()TICE r)r cnFY~.IGHT «

( 2 )

( 1 )

ppppp XXXXXXXXXXXXXXYXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxyx~XXXXXXxyXXXXXXXXXXXXXXXXXXX

AAT\AAo

ppppp 1~ ~hltman Collene proprietary soft~dre

Pr oQroamm 1"'9

SU~t1MARY :

*=====================================:================~

*••••_•• N ••_.-.- ••••• -_ ••• _ ••~_.-_•••• _- •• _ •• ••• - ••••

*•••_----- •• ----_••-•• _._---._-_••_•••• ----- ••• ~_._.-.-*

.....__ ._- - _-_ _--.-_..-.- -_ .

o0 1 () 0 'J SCON T R0 t.J tJ ~ L T. f'i 1 T , 5 0 t J PC~~

() 0 t 10 0 S TJ TLE " ) > ••••••••• 1 • • • • • • • • • 2 • • • • ~ • • • • .~ • • • • • • • • • 4
001200S" ppppp <RRR:>"
001300 lDENTIFJ.CATION DlVIstnf"J.
001400 PROGRAM-lD.
001500 DATF.WRITT~N.

o0 t 6 n (J INSTAL LA T tOt,) •
001100 5f.~CURITY.

001800*
nnt90n*
002000*
OO?l()o*
0022()O*
Q02300*
002400
0025°0*
002600*
()O~704)4

fl0280\l*
1)02'QOO*

003000*
0031°0*
003200*
00330{)4
003400*
00350n*
0036 on.
n03700*
003800*
003900*
00400C·.
004100*

PAGf: 0002 ppppp <RPP~ » ••••••••• 1 ••••••••• 2 ••••••••• 3 •••••• ~ •• ~ «

004300
004400*
00450(J*
004600*
0047fll)*
0048°0*
004QOO-
005000*
005100*
005200*
005300*
0054t)O*
005500*
00560/}*
005700*

*••••••••••_-_ ••• -._•••-_._-._.---_._-.---_._-._.-.-~•••
Compilation Instructions:

:ftIJE rfDr-:V=cnr·~J.. p
: r I LEe fJ P YTJ I 14 =C(1 F~ (J I I J f1 • P ff f..\ • P E: v
: Cfl f\ 0 L PP P Ppc. S r'l IJ P CF: • r, F: v , , 4 P
: PH E: P SnIJ [) PAS S , r Pp p p • xXXXXX). X • AD r4 1 '"J , ~.\ AXnAT A=XXXX

••••••••••••--••••••••••••• -_•••• ---"_•••• _••• _••••••••*

*._.__..--._.-_._.__.__.. m __ •• --.-.--.~_.-.-.-__ .- •• - •• *
DATF.: R~:V BY t.-1Al:,JT~·\JA"lCt l.tOG

XX/XX/XX <t.o> XXX Pr1m~TV T~stal1at1on ~f sott~are. ~

•••••••••••• --••••••••• -•••• __.-••••••••••••• _-_••••••• *

8-9 - 24



~
PAGE 00l'} CG22R <1,2> » Senior Rank in Cl~ss Pp<4atf' «

*•••--•••••••••••••••••• ------- ••••••••••••••••••••••• wi

*•••• - G __ ••• ~ ••••••• __ • __ ._- •••• _. • __ • • __ ._ •• 1
standi\rd 'Report Prtnt' Pout tnp COfl'mon ror,.,~t.5

cC1 PY HP T (' 2 1 ~-J S •

VALUF: SPt,CF.:S.
vA[, '..1E 5 PAC J:. S •
VATJ It F: O.
VALTtF 99.
VALUE: 1.
VAIJ fJ EO ..
VALUt~ .SPACF~.

VA [I UE " T ., •

VAI.df ~~ "I ,. 0

V/1. L (J F: Sp. A:: f4~ ~~ •

VALf) r SPA: ES •

VA" Uf: SrAe F: S •
V AL tJ ~: SPA: ~~ s •
VALL' ESP A: ~.~ s •
VALtTE SPi\:ES.
VAJ.JUE SPA:ES.
vAL tJ ~: sp ~ CES •

VA{ltJ~: o.
VAL-,Ur 1..'
vAllU EO.
VAT..J TJ E: 1.
VAI,lJE O.
VA J.Jt' E 1.
V Al,P E'; ().
VA}-J UE 1.
VALur 0,
VALfJF 1.
VA.l,UE~ O.

v AIJ l! E 1.

X(06).
X(Ol)
XCOf».
x( t 3:2 )
X(132)
X(132)
X(t32)
X(132)
X(132)

PIC X(Ol),

PIC X(96)
PIC XC3,,)

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

rIc X(9f,)
PIC X(36)
PIC g(05)
PIC (1(02)
PIC q()'2)

PTe 9(02)
PIC X(01)

•
03 C(lP Y-e ONTR 0 t, -A YTE

RPT.5 TD• TJ 0 G0 ~J •

03 PPT -5TD -SESS 1. ON .~l RP
03 FII,LER
03 ~PT.sTD·~lna.~lRR

RPT ..Sll8-HEAn .. 1
RPT-SUB-HEAQ-2
RPT·S{J~ ..HEAD. 3
RPT -c (1L ..HEAD-1
RPT-COL-HEAD-2
RPT-COL-HEAD-3
R~T -PR T. NT -L Tr'!E -I)'.'" .
03 RPTmNARROW.PRINT-Ll.N~

03 f I LIfER
PPT-HClJ.JD-PRI r'JT-L l~JE.

o3 RPT.,NARR[) w• H0 J, n.. L J ~: E
03 FJIJ1,ER
RPT·P .l\GE -COUNT
RPT .1., J N~ -coo NT
RPT -L I NE·SL,~tt,i

RPT .. HOT... D~SLE \aJ

~.PT·TOP.COD~~

88 RPT.TOP-OF·PAGE.N~[DEn

RPT·S~lITCHES •
03 RPT-SW·.s{J~·l PTC gent)

88 PPT.SUR.H~AD-1·"jf~EJ)Fn

03 RPT.SW-SUB-2 rIc 9(01)
sa RPT·SUB.HEAf)·2-NE:EDf.~1)

03 RPT.SW-SUB-3 PIC Q(Ol)
88 RPT-SUR-HEA[)-3-NEEDEn

03 RPT-sw.COL-1 PTe Q(Ol)
a8 RPT-C 01.1 U~ N • LIN F - 1 .~; ~~~: [) ~~ n

03 RPT ..sw·cnL-2 PIC 9(01)
8 8 RPT.COL U,., N• LIN f: • 7 - N EF': DEC'

03 RPT-SW-COL-3 PIC Q(Ol)
B8 RPT -c OLtJr~ N -L I "1 F: - 3. ,\1 E.:t':nrr

034600 01 RPT·DU~~Y

001000
001100
001200
001300*
001400*
001410 01
001420
')01430
OOJ440
001500 at
001600 ot
001700 01
001800 01
001900 01
n02000 01
O()2100 01
·007200
002300
0024 0 0 01
002500
002600
002100 01
()02a00 01
Of) 29 () 0 0 1
003000 ot
003100 01
003200
003300 01
003400
003500
003600
003700
003800
003900
004000
004\°0
004200
004300
004400
n04500

RPT021WS
RPT021WS
RPT021WS
RPT021WS
~.rT021~S

RPT021WS
RPT021wg
PPT021WS
PPT021WS
RPT021WS
~.PTO 21 WS
RPT021wS
RPT021WS
RPT021WS
RPT021WS
RPT021wS
R~T021WS

~PT021wS

RPT021WS
PPT021WS

~PT021WS

KPT021wS
RPT021WS
RPT021WS
RPT021WS
RPT021WS
RPT021WS
RPT021WS
RPT021WS
PPT021wS
RPTO

l 21 ws
RPT021WS
RPT021WS
RPT021wS
RPT021wS
RPT021wS
RPT021WS
RPT021WS
RPT021WS
RPT021WS

f"'"

8-9 - 25



*e•••••_. __ • __ •• _- •••• -._- __ ~ __ •• -~•••_.-_ ••••• -~-••

*•••••_---. __ ••• _----_ •••------~~-----.~._--••••_"-*
r I J.J E FOP r·1l\. T: UT 1 45 Kf) 1 • • Co", 1"1 on Cn ~ p 5 'fa ..., 1e f 1 1e

CCTOOIWS
CCTOOIWS
CCT001Wg
ccrootwg
cerno 1. ws
CCT001wg
CCT001WS
CCt001WS

0272C'0 01
OO!(')oO
0011 0 0
0012("0*
(l()~300"

0014()c)*
l)O\5')n 01
0016 (I ()

not 70()

CCT. f) U ~~ \i Y

•o3 COP y- CnNTRn I! • HYr ~:

CC T-8 AS TC-Rf:cnp T).

03 CeT-KEY
03 CCT·VAr./t.J~~

( fJ P Y CCToe 1 ~.~ ~:; •

PIC X(Ol).

PTe X(1.5).
p~c xrso).

*.--•.._._._. __ ._.._..._--_.._---~--------_ ..._-_....--*
.----------..--_._.9...._-. - - ---_~

PJe >:'(16) VALUE ., C0 ~ p 0 N • C(" t· l~~ 0 ~: J " •

PIC x(n~) vALU~~ " . ..,

PTC X(1f,) VAI.·JJE .. (J J C- r:,!, s ]'~: R J ..
PIC x.e,") VALUF It l·~ 1 () ... ~ I AS r F: ~ f " •PIC X(16) VAL II ~~ ,. ArT Rr HU l' F - : , AST ~: ~~ tI •

PIC '! ( t 6 ) VALUE "ZIP-CODr~.MASTrR:" •
PTC XCln) VALUr..' It ADD Rrs5 .. 0 ET ~. .t IJ' "
PIC X ( 1~ ) V AIJur "ATTRIBtJr~:·PC}lr··TR.~

PIC X{(11).
•
o 3 C() p y • C() NTP() IJ • ~~ YTr:.

cnH .. C0 ...~ • Di 1 '~ t·~ Y

COH-CO"'1MC1N ..AAsr-r P.Jf"O.
03 CDA.BASE.~~~~

03 C()B.P~SS:"'OPr)

cn~-COMMON.nATA.S~TS.

o3 CDf\ - tJ Ie. ~~ Si
03 CD8.\1/!O.MST
03 cnR.~TTR TRtJ TF.: .\'ST
o) CDR • ZIP -c (1 Dr:. ~.~ ST
03 C()B.AnnHE~s~·nT1,

03 CDB .~. rTR J RUT~: -orr:

{)2R~00 01
001000
001100
001200*
0013(lO*
001400*
001500 01
O()1600
001700
()01~no 01
001900
(lO?OO~'

~02100

002200
002300
002400

CDB001WS
CDB001WS
CT)~OOlWS

CDBOOIWS
CDRl)Ol WS
Cf)t\OOlWS
CDROOIWS
CD~OOlW5

CD8001WS
COR001WS
COBOOIWS
CI)~OOlWS

CDROO 1\tIS
CDR001WS
COBOl) I.WS

*_••••••••••-._-_ •••••• ~ •• ~_._••• -.-._-_•• _._-._._-~--.*
CDB001tJ2 ••• J.,T~T "2

W1D.~4ASTER ~~~st~r ·Pr.lta ~e·t D<3ta na~eCU~!i()N

*_••••_-_ •• _.---.---_._--- •• _-_ •• _••• _-~~-_•• _-_.~-_.--*

02 P '; (l n4

028600*
(' '2 fl7 0 () ..
f)2~~OO*

o2B900*
0290(1) 01
029100
02920f)
029300 01
0294 () 0

CDR001L2-LIST,
03 FILLER

"ID-PREFIX,
CDB001L2-AREA.
OJ CDB"In·PR~fT.X

PIC X(50) VALUE
"

*••••••••• --••••••• 0 ••••••••••• _ •••• - __ ••• __ -- ••• ••• _*

*•••• _- ••••••• - ••• - ••••••• ---._ ••• --_ •• __ ••• - ••• --- •••--.
Renort CG228/f4B' Format Area

0380t:'O*
03~1(ln4

038200*
o3.~ 300 (11
03~40(' 01
0)8500 01
03e600 01
03870('
038BO·0
038900
0)9000 01

F482-SY5TEM
F482-REPORT
F482-PRIVACY
F4~2.TITLF:.'3.

03 F4B2-TITLE-LITERAL,
03 FILLEF..
03 F482-IJITERAL
F4R2-0FJrICE

PIC X(SO).
PIC X(10) VALUE "CG22R/f4R2".
pTe X ( \ 4) VA1., U~ " P. E~ STPIC T ~: D" •

rIC X(.3n).
PIC X(OS) VAl,tJE " tor ".
PIC X(lS) VALUE SPAC~5,

pre X(SO).

8-9 - 26



PAGE 0010 ppppp <PRR> » ••••••••• 1 ••••••••• ] D •••••••• ) ••••••••• 4

VIEW/300n Screen BUffers
*_••••••••••••••••••••• _--_ ••••••••••••••_---------_ ••*

" DIt.

t' / tI •

" ,"• •
'tA" "C"
"A't.
"C" •
"0".

PTe X(50).
PIC X(SO),

PIC X(01).
VALUE
VALUf:
vAJ... UE
V.~LlJE

VAJJOE
PTC X(06).

PIC XCSO).
PTC X(O·1).

VALUE:

*•••••••••• __•••••_-_._-_••••••••_-_ •••_.-••••••••••••*
VIEW-DATA-BUfFER.
02 VI~W.DAT~.BUrFER.1.

03 DATA.SYSTEM-NAME
03 DATA-OFFlcr-NAME

02 VIEW-OATA-aUfFER-2.
03 DATA-ACTION

88 END-elf·JOB
88 VALTn.ACTr{1~J

88 AnD.ACTION
8 B CHAN Gr· ACT I fJ ~j

88 DELETE-ACTI0rJ
03 DATA-IO-CODE

02 VIEW-DATA.RUFFER.3,
o3 0 ATA• FOR ~1 • TIT I., E
03 DATA.VALIDATE

sa DATA·JS-VALID

013QOO
014000*
014100*
014200 01
014300
014400
014500
014600
014700
014900
01491)0
015000
01.5100
015200
01~300

015400
01550n
ot5600
015700

*•••_-••_- •• -._••• __ •• _- ••• _. __ ._•••_•• -••••-._-~••••• ~*
.-.-••_-.-. __ ••••••_------._-------_.~._----_._----_••• *

vre::W/3000 Comrnun1cc:=ations and Par~met.er Area
VfW021WS
VE w021WS
VF:W021WS
VEW021WS
VEW021WS
V~W021WS

VEW021WS
VEW021wS

("'EW021WS
v'fW021WS
VEW021WS
VEW021WS
VEW021WS
VFW021WS
VEW021WS
VEW021WS
VEW021WS
VEW02·1 ws
VEW021WS
V~W021WS

VE\lJ021WS
VEW021wg
V~W021WS

VEW021WS
VEW021W5
VEW021wS
Vft:W021 ws
VEw021WS
VEW021WS
VEWo21WS
VE w021WS
VE W021W5
VE W021WS
VEw021WS

~lEW021WS
VEW021WS
VEW021WS
VEw021wg

n01200*

() 0 t 30 ()
001400*
001500 01
001600
001700
00\800 01
001900 01
002000 01
002100 01
002200 01
00'300 01
002400 01
00'500 01
002600 01
002700 01
002BOO
002900
0030()O
0031no
n03200
003300 01
003400
003500
003600 01
003700 01
003800 01
003900 01
004000 01
004100*
004200 01
00430n
004400
004500
004600
004700
004800
004900

VIEW-ERROR-MSG.
03 VIEW-ERROR-CODE
03 FILLER
VIEW.FIELD·~JtJ~~

VlEW • NEXT ..FLD• N1) ~~

VIEW.ERROR-FIELD.NUM
VIEW·LENwINDnwMSG
VlEW -ACTUAL-IJE'J
VI EW -LENF1,DBtJFF
VI EW -LENOATAA UFf"
VIEW·LENEP.R~SG

VI gw -LENERRBlJFr
VIEW.MESSAGE.B~JF'FER•
03 FILLER

" .x c &a23r20C",
03 VIEW.MSG-fNHANC~MENT

03 VJEW-MSG-BUFf
03 FILLER
VIEW.MESSAGE.BUFf~R-2.

03 VIEW-MSG-ENHANCEt1ENT-2
03 VIEW.MSG-BtTFf.2
VIEW·STANDARD-ENHANCfM~NT

VIEW-ERROR-ENHANCEMENT
VlEW .CLEA R.. E tl HANC F:r~E NT
VI EW -DUM ~1Y .PA RAM
VI E \'J • TER ~1 • NArl; F.:

vr EW -C01.-1-AREA.
03 VJEW-STATLTS

8A VIEw.np.vALtD
03 VJr:W·LAN~UAGF:

03 Vlf:W·COM.A~EA.LENGTH

03 FIIJLER
03 VI~W·CURR~NT.unD~

03 VIEW-LAST.KFY

PIC X(15) VALUE SPACES.
PIC Xe5?) VALUE SPACES.
PIC 89(04) Cf)MP VALf.JE O.
rTC 59(04) COMP VALUE O.
PIC 59(04) COMP VALUE O.
PTe 59(04) COMP VALUE O.
PIt· 59(04) COMP VALUE O.
PIC 59(04) COMP VALUE O.
PIC 59(04) COMP VALU~ O.
PIC 59(04) COMP VALUE Q.
PIC 59(04) Co~p VALU~ C.

PIC XC!3) VALUE

PIC X(04) VALUE SPACES,
PIC X(50) VALUE SPACES.
PIC X(04) VALUE" b W",

PIC X(04) VALUE SPACES.
PIC X(72) VALUE SPACES.
PIC X(04) VAJ... UE n &dJ".
PIC X ( 0 4) V AL U F: ,t &d F' " •
PTe X ( 0 4) VAIJ lJ r: " & r1 (d " •

PIC X(02).
PIC X(09) VALUE "TERt-1INAL".

PIC 59(04) COMP VALUE O.
VAJJtrE O.

PIC 59(04) CO~iP VALue: o.
PIC 59(04) COMP VALUE 60.
PIC S 9 ( 0 4) C(J MP VAL lJ F~ ().
rIC S9(04) COMP VALUF; O.
PTe S 9 ( 0 4) C0 ~1 P VA fJ IJ E: O.

8-9 - 27



OJ6700*-·-.· •••••_.···.*·-·-.-..·._· __ _.-···_·_._~-*-_._ ..- ~

036800*·····.···.·.···.* Screen Procedures *•••••••••••••~.
036900*.··.·····.··.··.*.···.············..---· __··_··*•••__...••... ~. -~

•••••-_••••••••••••••••••-.- ••• - •••••••-------.---_••••• *

•.......-•••........_.......•.........__ ................•
This routine displays the vle w/3000 form to the screen
and performs the initial read of the screen.

037000*
0)7100 Plan-DUMMY. COpy V~~3nOP2.

IF NOT VIEW-UP-VALID
MOVE "925??P300E" TO GEN-AAORT-BREAKOUT,
PERFORM P65S·VIEW.STAND~~n.ERROR THRU P65S-EXIT,
GO TO P099·ARORT.

P300-e;XIT.
EXIT.

0010°0--
not1oo*
001200*
0013°0*
001400*
0016nry P300·VIEW.DISPLAY·fOR~.

00170() CAIJL "VGETf\!EXTF·OR)~" trSI~~G VIFw.CfJM.AREA.
001800 IF NOT VIEW.OP·VAL1D
001900 MOVE "925??P300A~ TO G~N.AAORT·BREAKOUT,

002000 PERFORM P65S-VIEW-STANnARD.ERPOP THRU P65S-gXIT,
002100 GO TO P099·A~ORT,

002200 P300 e INIT-FORM.
0023(1) CALr.J nVINIT~"OR~1" USING VI~\~-ro,.... ARf..;A.
002400 IF NOT VI~w.OP.V~LID

002500 MOVE "925??P300B" TO GF:t-I.ARnRT.B~EAK()UT,

002600 PERFORM P65S.VIEW·STANDARD.ERROR THRIJ P65S-EXIT,
002700 GO TO P09q·ABORT.
002ROil P300-SHOWFORM.
002900 PERFORM P375·Vlf~~J·SCf.<EE:N·TtTt,ES THHU P375-f:XI'f.
o0 :) 0 0 0 CAL L " V5 HOW FOR ~~ " (J 5 I NG VI E\aJ • Cn ~~, • APfA,
003100 IF NOT VIEw-OP.VALID
003200 MOVE "92S??P300C" TO GfN.A~OPT·BREAKOUT,

003300 PERFORM P658·VI~W.5TANDARO.ERpOR TH~U P658-8XIT,
003400 GO TO P099·ABORT.
003500 P300-READ-FORM,
o0 3" 0 0 CAL L " VREA 0 FIE LDS" tJ S I ~'i G V I ~~ La] • CO'" • .A. RE: A•
003700 IF NOT VIEW.OP.VALID
003800 MOVE "925??P300n n TO G~N.ARORT.BREAKOUT,

() 0 39 0n PER FOR M P 6 '3 R• VIE \~ • 5T A~ (1 ARD. ERR CJ R. THR(J P6 5 8 • EXIT,
004000 GO TO P099-ABORT.
004100 P300-GEr-BlJFFER.
004200 CALtJ "VGETBUf~~[R." U5Tf\JG VIF\~,J.crJJ'\vaARE;A

004300 V I~· i-i -D ATA.B UFFE R
004400 VIF:W.L~ENDATAPdJF'F.

004500
004600
004700
00·1800
004900
0050no

VEW300P2
VE w300P2
VEW300P2
VEW300P2
VEW300P2
V~W300P2

VEW300P2
VEW300P2
VEW300P2
VF.:W300P2
VEW300P2
VE~4 3OOP2
VF:W300P2
VF:W300P2
VEW300P2
VEW300P2
VEWJOOP2
V~W300P2

VE\tJ300P2
VE W300P2
VEW300P2
VEW300P2
VEw.100P2
VEW300P2
VE w300P2
VEW300P2
VF.;W300P2
VE W300P2
VEW300P2
VE W300P2
VF:W300P2
VEW300P2
VEW300P2
VEW300P2
VE W300P2
VEW300P2
VEW300P2
VEW300P2
VE W300P2
VEW300P2

8-9 - 28



028200 01 1MAG ~: ..C0 ,'-\ • D,J~.~ ~.~ y rC1py 1 ~1 G02 1. wS •
IMG021WS 001000 •IMG021WS 001100 03 COPY-CONTROL·RYT~ PIC X(Ol).
~021WS 00121)0* *••-.-•••••-.- •• G- •••••••• ____ .~ ••• __ - ___ •••• -_-. __ ._._*
•.G021WS 001300* J~·1AGE/3000 Communications and Pi\rdMeter Area
IMG021WS 001400* *_•••••••••••••••••__ •••••••••••••••••_--- ••• __ ••••••••*
IMG021WS 001500 01 I MAGE -LE NER RB lift PIC SQ(04) USAGE CO\1P,
I~G021WS 001600 01 IMAGE-STATUS,
I ~1G021 WS 001700 03 I MAG E- C(1 NDTTl () r; PIC S9(04) 'J S A.G~: Cn~~p •
IMG021 WS. 0OlAOO as I ~4 " GE.0P • VAIJ I n VAI,Uf: 0,
IMG021WS 00 19(~q 88 I ", h GE- Bfl. ",.PAS s:,. () R[) VAL () r: -21.
I~·1G021WS 0020 (t () as I ~~ AGf!~ • ~~ 0 F VALU~.: \ \ .
IMG021wS 002100 88 I 1-~A GF: .RfC ORD .rJOT -rnr.J r! n VAI,ur 17,
IMG021WS 002200 88 I :~ A(: J::. F: Nl) -0 F -c Ii AI N VALU~ 15 •
IMG021WS ()()2300 SR I~AGE.BEGINNING.Of.CHAIN VAI,Ut: 14.
IMG021WS 002400 03 I MAGE: .WORn 2 J?IC 59(04) USAG~ co;·,p.
I~'G021WS 002500 03 IMAGE.~';OPJ)3·4 PIC .-;9(09) nSAGF: co~p.

IMG021WS 002600 03 IMAGE·wORJJS-6 PIC .59(09) U5AGr~ CO ,",1P.
IMG021WS OO26to 98 1 ~i AGE • NCl • DE: T AI LS - f 0 UN f) VAr.Ju~ o.
I~~G021WS 002700 03 IMAGE.WORD7-e PIC 59(09) lJSAGE COi~P •
IMG021WS 002800 OJ IMAGE.WORC'9-10 PIC 59(09) tJS~GE COMP,
I~iG021WS 002900 01 IMAGE.~10DES.

If-.'(;021 WS 003000 03 1 ~.AGE - \~O DE t PTe S9(04) USAG~ co~~p VAIJnE 1 •
!MG021WS 003100 03 I ~ AGE • ;.~ ODE 2 PTe 59(04) USAGE: COHP VALUE 2.
IMG021WS 003200 03 I ~1 Ar; E• ~, 0 DE: 3 PIC 59(04) tJ SA Gf: COMP VALUE 3 •
I~G021WS 003300 03 I MAGE- ~.~ 0nE4 PIC 89(04) USAGE co~~p VA. LtJE 4,
IMG021WS 003400 03 I~'AGE-MODE5 PIC 59(04) USAGE COMP VALUE 5 •
IMG021WS 003500 03 1 MAGE- '-10 [) E6 PIC 59(04) USAGE COt~P VALUE 6.
~G021WS 003600 03 I MAG E• ~~ 0 DE 7 PIC 59(04) USAGE C()M? VA IJUE 7,
'. j021WS 003700 03 I MAG E• ~~ 0 0r 8 PIC 059(04) USAGE COMP VALUE 8.
IMG021WS 003800 03 I MAGE• ~1 0 [) E9 PIC 59(04) tJSl\GE COMP VALUE 9.
IMG021WS 003900 01 IMAGE-ERROR-MSG PTe X(72).
IMG021WS 004000 01 I MAGE.0UMMY.PAR A ~1 PIC 59(04) USAGt: cor~p.

IMG021WS 004100 01 I MAG E• ALL • I TE ~1 5 PIC X(02) VAIJUE tl (d J " •
IMG021WS 004200 01 I MA GE -NULL- I TE~1S PIC X(02) VA.LUE "0 J " •
IMG021WS 004300 01 I~AGE·PREVIOUS-LIST PIC X(02) VALUf~ " .. J ,t •
I ~'G021 WS 004400 01 IMAGE-OSET-NAMF: PIC X(16) VALUE SPACES.
Ir-1G021WS 0045(lO 01 IMAGE-KEY prc X(16) VALUE SPACES.
IMG021WS 00460r) 01 IMAGE-ARGUMENT PIC X(10) VALUE SPACC:S.

8-9 - 29



*-••----.-.-•••-.-••••••• -- __ • .---_--- __ N .*

*••••••• - ••••••••••••••••••• - •• -_ •••••••••••••• - ••• - ••• *

•

"

Data Base STU

Data Base S1U

X(06),
X(Ot).
X(Ol).
X(30).
X(02).
):(02),
X(02).
9(03) CO~1P.

9(0]) co,~p.

X(OBJ,
X(06).

P ! C 5 9 ( n4) C() MP VA 1., lJ E 1.

PIC X(16)

PIC 9(03) C(1~~p.

P Tr: 9 ( () 2) C0 ~, P e

PIC QV999 CO~~P,

PIC 9(04) CO.~p.

PIC
PIC
PIC
PIC
~IC

rIc
PIC
PTe
PIC
PIC
rIC

STU012L2 ••• LI~T #2
REG-STUDENT-OET Detail DatA Set

ST1.1 0 0RI", 2 ••• J I 1ST ti 2
SE~~·CREDIT.DTL neta11 Data S£\t

*-_._..•._----•....._._---_._._._"----------_..-...-.-.*
STU012L2-LIST.
03 FILLER PIC XCSO) V.l\Lllf

,. WHIT MAN • I 0 , S 'T Un ~: NT. I.J E V ~~ L , N A ~1 E , STU I) ENT. 5 TAT us, PRO J - " •
03 FILLER PIC X(SO) V~LlJE

" GRAD· Ma, PRO J • GR l\ () • YP , CL l\ SS• PAN K , ClJ ASS - S J ZE , l JFnAT F: .. " •
03 f"ILLER PTC X(50) V~l:ltE

"nATE,UPDAT~.TIM~J

STU012L2-AREA.
03 STU-WHITMAN·ln
03 STU·STunENT·LEV~L

03 FILLER
03 STtr.NAMf.:
03 5 Tl) -STUD ~ NT -F. T.A T1.1 5
03 STU.PROJ.G~AD.Mn

03 STU·PRaJ-~RAP·YR

03 STU·CLASS-RA~K

03 STU-CLASS-SIZE
03 STU·UPDATE·OAT~

03 STU·UPDATE·Tt~E

STtJ·~.EG·LOCK·DE5CR IPTO~.

03 STU.REG-LOCK-DESC-NBR
03 STU-REG-LOCK-DESC-l.

05 STU-REG-LnCK-I.JENGTH PJC 59(04) CO~1P VAI"tJ£ 21.
05 STU-REG-LOCK-OSET PIC X(16) VALU~

"REG-STUDENT.OfT,",
05 STlJ-REG-I.,QCK.lTJt:M

"WHITMAN-IO, ".
o5 5 TU• REG • L() CK• REI, 0 P PIC X( 0 2 ) VAL tJ ~ 't = ".
05 STU-REG:aa!.·f)CK.VALUr: prc X(06) VALUE SPAC~:S.

STUOOBL2-LIST,
oJ F 1 JJ L ER PIC X ( r; 0) VALli F.:

"SEMES TER.K f:Y , C1J r1·~~.e RED t TS, elf ~ .GP /1.. , TOTLJ -c RED J T .~:A n" •
03 FILLER PTe X(50) V~LUE

tiN,

5 TlJ 0 0 81,2 • ARF: A •
o3 5 T" • 5 EMEST E~ • Kf: Y
03 STU-CUM-F-CRfnYTS
03 STlJ·curti-GPA
03 STU-TOTL·CREDIT.~ARN

029800*
029900*
030000*
030100*
0302t:'O 01
0)0300
030400
030500
030600
030700 01
030800
030900
031000
0311('\0
031200-
031300*
031400*
031500-
031600 01
031700
031800
031900
032000
032100
032200
032300 01
032400
032500
032600
032700
03280 f)

0329flO
033000
033100
033200
033300
033400
033500 01
033600
033700
033800
033900
034000
0)4100
034200
034300
034400

8-9 - 30



~{'i"
'-

058500* ••••••••••••••••••••••••••••••••••••••••••••••••••__ ••• *
058600* This routIne estab11shes the IMAGE lists for the
058700* following data sets: WID.M~STER, REG-STUDENT.DET, and
058800* SEM-CREDIT-OTI., Tne previous list option Will then
058900* be used In all sUbsequent IMAGE calls,
059000* ••••••••••••••••••••••••••••• __ •••••••••• _•••••••••••• _*
059100 P951-ESTABLISH-IMAGE-tIST5.
059200 CALL "DBGET" USING CDB-SASE-NAME
059300 CDB-wIO.MST
059400 IMAGE-MOOE2
059500 IMAGE-STATUS
059600 CDB001L2-LIST
059700 COBOOIL2-AREA
059800 I~1AGE.D{IMMY.PARA~1.

059900 IF NOT IMAGE.OP.VALID
060000 MOVE "92598P951A" TO GFN-ARORT-BREAKOUT,
060100 GO TO P951-ERROR.OUT,
060200 CALL "DBGET" USING STU-BA5E-NAME
060300 STU-SEM-CRED-UTL
060400 IMAGE-MODE2
060500 IMAGE-STATUS
060600 STU008L2-LTST
060700 STU 0 081, 2 -AREA

.06 0 8 0 0 I MA. GE• f) TJ M~.~ Y• PAR A ~, •
060900 IF NOT IMAGE-OP-VALIO
061000 MOVE "92598P951B" 1'0 GEN-ABOPT-BREAKOtJT,
061100 GO TO P951-ERROR-OUT.
061200 CALL "DBGEr" USING STU-BASE-NAME
06 1300 STU • RE(; • STU D• nT1,
06j400 IMAGE.~QDE2

061500 IMAGE-STATUS
061600 STtJ012L2-YJIST
061700 STU012L2-AREA
061800 I~AGE.DUMMY.PARAM.

061900 IF NOT IMAGE-OP-VALID
062000 MO'VE "92598P951C" TO GEN-.A.BORT-SkEAKOUT,
062100 GO TO P951-ERROR-OUT,
062200 GO TO P951-EXIT.
062300 P951-ERROR-OUT.
062400 PERFORM P645-IMAGE-STANDARD.ERROR THROUGH P64S-EXIT.
062500 GO TO P099.ABORT~

062600 P951-EXIT.
062700 EXIT.

8-9 - 31



080500* .-••••••••••••••••••••••••••• __ ••••••••• _•• - •••••••••• _*
080600* This routine loCkS the STUDENT RECORDS Data Base.
080700* ••••••••••••-_••••••••••••••••••••••• - •••• - ••••_- •••_-.*
080800 P250·LOC~·STU.

080900 CALI4 "DB LOCI<." US I NG STlJ -BASE. NAME
081000 STU·PEG.LUCK-DESCRIPTOP
081100 IMAGE.~nD~5

081200 IMAGE-STATtJS.
081300 P250-EXIT.
081400 EXIT.
081500-
081600* *-••••••••••-•••••••••••••••-•••••• -•• -----•• ------ ••-.*
081700* This routine unlocks the STUDENr RECORDS Data Base.
081800* •••••••••--••••••••••••••••••• - •• --•••••••••••--•••••• -*
081900 P25S-UNLOC K-STU.
082000 CALL "DBUNLOCK" USING STU.PASE.NAME
082100 IMAGE.nUMMY·PARA~

082200 I~AGE.MonEl

082300 IMAGF-$TATUS,
092400 P25S-EXIT.
082500 EXIT.
082600* ~
082700* •••••••••••••••••••••••••• - •••••••• - •••••••••••••••••••*
082800* This routine updates the Cr,ASS-RANK And the CLASS·
082900* SIZE on the REG-STUO-DTL.
083000* *•••••••••--•••-••---•••••••----.-.---•••---------•••• -*
083100 P270-UPDATE.STU.OTL.
083200 CALL "OBUPOAtE" USING STU·BA5E.NAME
0$33300 STU·PEG~STtJD·DTL

083400 IM~GE.·~(Of)El

083500 IMJ\Gf-STATlJ5
083600 IMAGE.P~EVIOUS-LIST

083700 STU012L2-AREA.
083800 P270-EXIT.
093900 EXIT,

B-9 - 32



C:Clf'it'10H CCIC,E T t~~-~\_E ':! (I I
U r. ). t· E: d St..?1 t. I~ ::~ F' ,-;, ':-:" ~. '::1 1 C':.:' d ,': :?

I:E'r'

'j (I 1 ~~t<

9 (I 1 ~~L

') (I \ ~~r;:

'J I) 1 ..~2
901CA
'3 I) 'I C()

(.~01CT

901DC
') 0 1DE
':i (I 1r:L
9 tj 1GA
'3 (t 1HI
'3 (I 1 I ~~

':j I) 1 I (J

') (I 1 I L
9 (I 1 I ~~

9 01 I<!::
':~ I) 11<",
'3 (t 1LA
901NA
901 i'1D
9 (I 1 t'1E
9 (I 1 ~1 I
'3 (I 1 t1~~

9 (I 1~10

'3 (I 1r1S
9 (I 1 f\1T
'3 (J 1 t..fC
9 (I 1 t~CI

':I 0 1t~E

':I (r 1 t~H

'~ (I 1 t,~ .J
901 t~t'l

9 (I 1 t~'yl

9 (I 1 ~~'T'

'3 (I 1CIH
':J I) 1tJI<
'3 I) 1OR
901 PA
901RI
'3 (I 1S(~

901 :3D
901TN
901TX
901 LIT
901 VA
901 'IT
9 (I 11.•.JA
9 (I t I.e.' I
'3 (I 11.•.fV
':J (I 11.rJ·y

Al. t:~ ':; r<. ,'~

(~t .. ,:~ F: :'~! t,t f)

i ~ PI( ~f ~': :~, ~"i '~;

f~~.~ I ::: OHA
(: ~'I L I FOP H I ;4

COL (I k (~ [; Ci
COtH'lEC T TC.UT
[) r ~3 TRIC: T Ui' CCll Ui'1 L: J H
[) ELI~ f. c.I ~~ F~~ E
F L.. 0 r~: I [i ~::,

GEI)F~:G I H
H,::; 1".1 I~ I I
I O!.·.ll~

I () ~~ H(i

rl.. LIt ".: Ct I ~;

I ~'I [) I I:~ ~.~ {~

i< ~'l t~ I:: ~~: S
J< Et ~ rue l< ;'
L. 0 UI ':. I H : i { :
l'l.~1 ~.::: ~; t, CHI,) ~:. ET T ~~':

i'l AR',' LH t,~ 0
~1 ~~ I t·~ E
t'l I C ~-{ I G•.) t,~

~1 I t~~tESOT~~
r1 I :; ::; OIJ~: I
~1 I ~:~ ~:: I ~:: ~:; 1F F }
~10t~TI4HA

t·4 (I f< THe AF: (l LIt ~ .~

r'~ 0 r-;: T H DA )< (f r n
t·4 E BRA ~:; J< ':',
~.~ EhI Hf~ ~1 P SH 1 f;;: E
HEf.~i .JER~:E\·

t·~ ElJ t-1 E ~,~ J CI)

~.~ E 1,/ f~ () A
t~ E 1.,,1 'y' 0 ~' ~.::

OHIO
c! ~~ LA HO ~lA

OREGOH
PEHI..tS... L 'v' ~~ H I l~

P H(r [:r E I::: L ~l t·~ D
:::~ (I IJTHe ~~ ~: UL I Hn
'::: I) lJ TH D.~ k. 0 T ,:4
TE~~tiESSEE

TE::(AS
UTf~ ~~

'i 1 RG I t·l rA
\/ERf'1Ui'~T

l..J~l S HI t'~ CTI) H
f,rJ I SCI) t,~~; I ~~

'.'.1 EST './ IRe 1 t·, I ~',

I..'! IT 0 f·t I ~~ G

8-9 - 33



*_•• __ •• _•• _•••• _-._.--~.---._----_••• _-". __ .---_.-.

*_- ••• _-_ ••••• _-_-- ••• -.-_. - ---_w __ .•
FIIJF.: FOR~·1AT: UT14SK01.··Common Codes Tahle file

~.:..•:' .~

VALUf: SPACE;S

SPACES.

VAT.J LJ E 0 LJ SAG E~ C(1 ~1 P •
VAL Uf: "U T 1 45 K0 1. " •

V AIIUr. n lJ SAG E CfJ MP t

VALUE 2 USAGE COMP.
VAl,UE 0 U~AG~: cor--~p.

15 USA G~: C0 ~~ p •
65 USAGE COMP.

1 USAGE COHP.

PIC X(14),
PIC X( 14) V.A l,lJ t:

PIC XC1S).
PIC X(SO).

pre X( fi l),

r0rY CCT00 1t~S.

PTe !;Q(04)
PIC X(OB)
PTe S9«()4)
PIC S9(04)
pre S 9 ( 0 IJ )

SQ(04) VALUE:
S')(04) VALUE
59(04) VALUE

P J C X ( ) 2) VJ\ 1. U~

924 • r.:rror r--·Sq not in eCT".
P JC X ( 18) VA[, UE:
PIC X(SO),
PIC X(15)

CCT-~1ATCH-KF:Y•
PIC X(08).
PIC X(07).

CCT-~·1ATCH-KEY•
PIC 9(03).
PIC X(02).
PIC X(10).

CCT .. :-.1ATCH.K.~~Y •
pre X(03).
PIC X(04).
PIC X(OS).

,
03 Copy-cor·JTpr)L-HYTf

CCT-BAS.tc·nECf.1PO.
03 CeT-KEY
03 CCT·VAL(J~~

CCT-FILE-TABLF:.
o3 CCT·F I L E • N!1 ~, RR
03 ccr-FIl,F: .. NAME
0] CCT.FIL~·I.n

03 CCT-fILE.~CCESS

03 ccr-FILf·:·PRE:V-OP
CCr-KEY-LFNGTH Ptc
CCT·PEC-LE~GTH PIC
CCT-KEY-IJOCATIU"; PIC
HAPDW IR~~f)-l,OOK ur"fR~~()RS.

o2 CCT ..KSAM. G~~ t·" F.~ R,\ L • ERR 0 R •
o3 F J 1. IJ ER P J C X( .3 4) VALt ! t:

" ERR 0 R 8 0 1 - t< 5 AM F' TL r.: ~ YS T ~~ ,~, F RRCJ R " t

o 3 CCT.KS~ ~~ - F.: RpeR - tJ ~~ R P 1. C 9 ( C4 ) •
a3 F' ILL EH r- I C X( 1 2) VAL() F: SPA C ~., S •

02 TER1~.ACCfSS-~:RPI1P,

() 3 f I JJ LF P pre x ( 34) VALUE
"Err 0 r 7 0 1 - Te T ~n 1na.1 fl. C C e 5 S t~ r r 0 r ".

03 ~RROR~COnE·l PIC -9(04),
o3 F I IJ LEP PIC X( 1 1) VA1, lJ f: SPA CES •

rJ 2 F" 0 Rr~ • F I LE.. EP P P n •
O"l FJLLEP

" Err 0 r 7 0 1 • "
03 fORr·1.fIl..E.t1SG
03 VILLFR

" 1s not a form file
02 F'ILf~.rOR~1.r:~RUR.

o3 F J [J LER PIC X( 2B) VA1., f_i ~~

"Err 0 r 71'} • f" 0 r In P' 1 1err r 0 r ".
03 ~RROR-CODf-2 PIC -9(04).
03 FILLER PIC X(17) VALUE SPACES.

o2 CC'r • E~ f~ RGf: ~J Cy•
03 FILL~f.l

"Error
03 ftLLER

CCT-ERROR ·~'SG

CCT·~ATCH.KEY

CCT-REDEFINE-KEY-t RF:nF:f"I7'lt~S

03 CCT.ERROP~K~Y

03 FILLf.:R
CCT·REDEFINE.K~Y.2 REOEftN~S

03 CCr-TABLE-KEY
03 CCT-2-CHAR-KEY
03 FIl,LER
CCT - RED EFor NE. Kf.: Y• a RF[) EP- I r.J F: s
03 FILLF.:P
03 CCT-4-CHAR-KEY
03 FILIJER

CCT - DtJ~ ~ f-' Y027200 01
l)010CO
0011.0(\
0012°(J*
001300*
00140 f )4

001500 01
001600
00170()
001800 01
00190()
OO,OO'J
002100
002200
002300
002400 01
002500 01
0026(~() 01
00270J 01
()02~OO

002900
0030(10
00310 (J

() 0320 n
003300
00 3 4 (l ()

00350n
003600
003700
003800
0039"0
004000
00410n
00420t)
004300
004400
on4500
00460 fJ
004700
004800
004900
005 (J () 0
005100
005200
0053 0 ') 01
005400 01
005500 01
0056()O
005700
027300 01
027400
027500
027600
027700 01
n27800
02790 f)

0280f}{)

CCT001WS
CCTOOIWS
CcrOOlwS
CCTOOIWS
CCT001WS
CCTOOlwS
CCTOOlwS
CCTOOIWS
CCT001WS
CCTQ01WS·
CCT001WS
CCTOOlwS
CCT001WS
CCT001WS
CCT001WS
CCTOOIWS
CCTOOIWS
CCToOIWS
CCT001WS
CCT001WS
CCTQ01WS
CCTOOIWS
CCT001\-JS
CCTQOIWS
CCTQ01WS
CCTOOlwS
CCTOOlwS
CCTOOlwS
CCT001WS
CCToolWS
CCTOOIWS
CCT001WS
CCT001WS
CCT001WS
CCT001WS
CCToolWS
CCT001WS
CCTQOIWS
CCT001WS
CCT001WS
CCTOOIWS
CCT001WS
CCT001WS
CCT001WS
CCTOOIWS
CCT001WS
CCT001WS
CCT001WS

B-9 - 34



046900*--- •• --_•••_--_ •• INPUT RnUTTNE.:S *--_.._--~._-.----

T (1 G~: N- ~: P Rf) R - F LAG ,
TO CCT-VAIJUF.":.
Tn F'482-TITLE-LITF:RAL,

TO GE~N-ERROR .. fLJ\G,
T(1 CCT-VALtJF:.
T n F' 4 8 ? • () FrIC F~ •
TO CCT·T1\F~LE"KEY.

Tn CCT.~-CHAR.K~Y.

THROUGH P1('\S.f::XIT.

TO GEN.~RROR.fLAG,

TO CCT-VALUE:.
T0 F 4 8 2 • SYST E ~~.•
T0 ccr-TABLE-KEY.
TO CCT-2-CHAR-KEY.

THPfl1JGH P 1 05-t:XIT.

CCTI05P2
CCTI0SP2
CCT105P2
CCT105P2
CCT105P2
CCTI05P2
CCT105P2
CCT105P2
CCT105P2
CCT105P2
CCT10SP2
CCT105P2
CCTt05P2
CCTI05P2
CCT105P2
~Tl05P2
~. r 105P2
CCTI05P2
CCTI0SP2

047000*···.-.-.- ••---.-.----.-•••• ------ --*._. ._.- _
0471°0*
047200* *- ••• -•• --.---.---_- •• -~D._.. -. -._.*
f)4730 t)* This routine will look 1]t) the necessary titles from
04740n* the followln~ Common Code Table: QP3, QRS, and 987.
047500* These titles WIll h~ used to prime the report headlnQs.
0476 0 04 *••-.-••-••D.-.D..__•.._._ .._~---~_-. .-_~ . __ *
f)47700 PI00-PEAD.CCT-TITLF:S.
047800 MOVE 983 Tn CCT-TABLE-KEY,
047900 ~OVE "CG" Tn CCT-2-CHAR-KEY.
048000 PERFORM PI05-CCT.T~JPtrT THRnUGH P10S-F"XlT.
048100 IF GEN.ERROR.roUNn
04R200 MOVE 0
04~300 MOVE SPACES
o48 40 0 :v1 aVEeCT.VAIJ UE
048500 ~OVE 985
04~60{) MOVE "64"
048700 p~RFnRM Pl0S-CCT-INPUT
l.l48 B0 () IF GEN .ERRO~ 9f1 ()UJ..; D
048900 MOVE 0
049000 ~QVF SPACES
0491C~ MOVE CCT-VALUE
049200 MOVE 9g7
049300 MOVE "F482"
049400 PERFORM Pl0S-CCT-liPUT
049500 IF GE~J.ERROR.fPtJ~Jf)

049600 MOVE 0
O~9700 ~OVE SPACES
o49J300 r..10VE CCT-VAJ-JUE
049900 PI00-gXIT.
050000 EXIT.
£) 5 0 1C) 0 p t 05 • DU 11; l~ Y. COP Y CCT 1 ("\ 5 P 2 •
00tonu* 4 •••••------••• __ - • __ ••• __ -_- __ ••• --- ••• _*

001100 4 This routine will read the Common Code Tahle based
001200* on the key fields def1nprl dur1ng data field edits.
001300* *_•••• a •••• __ ._•• •• ----.--- --- ---_*
001400 P10S-CCT-INPUT.
o0 15 0 0 M0 VE ZEROTn GEN- ~~ RRnR • F IJ AG•
o0 1 ~ 0 0 CAl) L " CKREA 0 AYJ< F: '{" uS I ~J Gee T- " r 1., r.• T A f~ Lr
() 0 1 7 () l) KS A ~.' tID r I Lr: - S TAT t lS
001800 crT-BASIC-RFcnRD
001CJOC ('CT-MATCH-Kf:Y
o0 2 0 0 0 CCT. K F.: Y·1.1 0 CAT I (J N
002100 C'CT-REC-rJENGT}~.

002200 MOVE SPACES TO CCT.MATCH.K~Y.

002300 IF N01 KSA 1.1 -5 IJCC ESSftJl,·O PF RAT.r 0 ri

002400 ~~OVE "??1" TO CCT·VALiJF,
002500 ,.10VE 1 TO G~:~·'.ERPop-rt,A(;,

002600 GO TO P10S-FXIT,
002700 PI0S-EXIT.
f)02BOQ EXIT.

8-9 - 35



(E'l

9,'8 I) I) 0 1 (I 1
98000102
98000201
9800020:2
98000203
98000301
9:300030~~

9:3000303
98000401
138000402
98000501
98000502
9:300050-~:

9:3000504
980 I) 0':. 0 1
980 I) O~. 0.2
'38 I) 0 Ot- (1,3

9800100t
9:3001002
98001101
9800250 t
98002701
98002:301
9800290t
'380 032 (I 1
98003202
98003203
98003204
98003205
9:3006001
98006101
98006201
9::: 0062 02
98006203
98006204
'3:300650,
9:3006";' (I 1
'3 :3 0 I) 7 (I (I 1
98007:301
'38007901
9;3 I) o::~ (: (I 1

CONf·1()t·~ COOE THBlE 98 (I

Et··r()f~ Cod.::s

E t·, t~ .:) t-· 0 (I 1 .- l"'\ '.1 S t. b ~ {f 1r' h ~ b~: t. i c

IJ n l~) alp h ·3 b € t.. i ': .: h a rae t -: r' S d r-' €: -3 1 1 ,~t·.: e: ,j ,

Er~r.:>r· 002 - t·l r.Jst. be -31pr\.:tb~t.ic IJr Sp.3C'=' fill
Only alphabetic charact~rs ~r€ al1ow~d~ as well as
spaces (to the right of the alpha dat~ ONLY)
Err 0 r' (I 1).'3 - "IIJ S t. b € a 1. p h .;:1 n '-J mE: ric ,~ r' '5 pac~ - f ill
Alp h a b t:: t· i .= J n '-l rr, E: ria:: J 1:1 t-· ..; p 3 C t::: S -: inc 1 u din 9 t. h 0 s e
~mbed(j ..~d in d at..3 ).~t"'€ .~ 11 Cd.,.r"2"d-·~~O spec i .31 chC'ra(',:ters

Er'ror 004 - t'1 1.J=t. be nl.Jrrt€:''''ic
(I n 1V n U fT) e- r" icc h ·3 r ..~ c t. € " S -3 r 2 all () I...' t? d ,
Er t~ () t' (I I) 5 - t'1 '-l s t ben IJ IT, ~~ t" i C -:. I" Z €: r 0 - f ill
t~ I.; rTf e r i.= cr-. a r ·3 C t. ~ t"' son 1 ~;J.I 1•.1 i t. h t h € €: ::-~ .= .:: p t. ion 0 f
S I='d ,= €S b a::-f or' ~.:. ·3rt d.·..·(),.. :.1 ft.•==. r t. he d -3 t. a 0 n 1 y J t~O T
€ mb ':. d lj .:: d, T fa·} .:;..; .;; spac e ~~ ~ t' €. .:: I~ n ...... ~~ r' t, .:: d t. 0 Z € r 0 S •

Et" r I:') ,... (I (16 - i'1u =- t. b e: n 1.1 mt:": !." i ': I••.' i t. h i n r-' -3 n ';1 ~

On 1 ~;) .a t".3rl'~E: of nurner i·: I,•••.~ 1u~s are "/.31 i d. S€:e t.he
tJ s €: r f'; Ij ide f ,.:' r t his f f~ r" rrf :~ t. f 0 t" f tJt'" t. r. e t" i n for mat. i .~ n
[:r" r l ) I'''' 01 I) - Ho dat.a h.3S bE:€n e.nt.ere:d.
E ~~ TE R h .::' S bee- n pre 5:E e- d.f but. n Q d a t. a )-, ·3 S b ~ € n i n P lJ i:.
Er~ r lJ '''' 0 1 1 - f'i fJ f-i. 1:. b € E: n t € I"' ~: d ·3 ssp ·3 C ~ (.1 t" -

Err' I:' t"' I) 2 ~~ - Cit. ~,.., mU $ t n (: t· b ~1 1~ f t. b 1..=t n k
Err 0 t-· I) 2 ? .- Zip P r-' \! f i ~< 1 n val i d, 5 E: ~ T·3 b 1 € .~ 1 r)

E r' t" () r I) 2 :3 - t'l·3 i 1 F 1 ·3 'J J n '. ,f .~ 1 i d
E r' r () r 02'3 - .~~ tat. e Cod '2 in·.....3 1 i d} s € ~ T ·3 b I €::; 9 I) 1,.,' 9 03
Errc.r 032·- TE:l'~pt-,c:.nE mu~:?t. be:: blank or numeric
T t-H::: 0 n 1 ~:..: '·/·3 1 ide() rTf bin .:j t i :::: n :E () f b 1 .~ r-J K S ·3 n d n urn€;ric s
·3 r € ·3 S f 0 1 1Q :.'.' S ~ b b b - b b b··· b b b b

bbb-nnn-'nnnn
nnn-nnrr-nnnn,

Err 0 r 0 6 0 - ~'i ~ me mu s t not... b .::_ 1 eft. b 1 -3 n k
E r I'"" 0 t' I) Eo 1 - S 'J rna m.~ mI.J s t· be f c· 1 1 () '..J~ ,j by .a .= () mma
Ert.....Jr 062 - H 3me must not:. b ..::.: c.h.:;nl~)2d

Th € rJ ·3 mE: i s u ..:; € d ..3 5 ·3 n I r'~ {.; CF / 3 I) 0 0 s e ·3 I.... ': 1-, i tern
You "'11..1 ~~ T ~~ I) T t.: han 9 e its ~j 1 '.J € 1.,"-, i 1 €: cor r € C tin9
other data on the scr€€n:
Et" r Q r 06 5 - [) .::.t t ..3 i t. emIT! U :: t. ~.~ 0 i b E: C han l~ e d
E r t' 0 r (I t· .~ - Act. ion mu s t. ~.~ I) T b E: C h ·3 n 9 € d
Error 070 - Invalid 1D
Er'ror' 07:3 - t·l.:1j I=,t... Conn~":c t.or" ffitJSt. HCIT b~ b 1.3nk
Err c. t~ I) 7 '9 - r·l.£t j Ij t' Con n E: C t. I) t" m'..1 s t bE; - J ; J () r spa c €

E t... rOt' 0::: (I - ::; ,) cia 1 Sec IJ,.... '1 t. ~:) ~.~ '.1 ITt b e r mtJ S 1:. b ~ n lJ me: ric

8-9 - 36



:W615P2
VEW615P2
VEW615P2
VEW615P2

~VEW615P2
, Vf~W615P2

VEW615P2
VF:W615P2
VEW615P2
V~W615~2

VEW615P2
VEW61SP2

VEW617P2
VEW617P2
VF:W617P2
VEW617P2
V~~w617P2

VEW617P2
VEW617P2
VEW617P2
VEW617P2
VE w617P2
VEW617P2
VEW617P2
VF:W625P2
VEW625P2
VEW625P2
VF:W625P2

,VEW625P2
~V~W625P2

Vf:W625P2
VEW62SP2
VEil625P2
VEW625P2
V~W625P2

Vf:W625P2
VEW625P2
VEW625P2
V~W625P2

vgW625P2
VEW625P2
VEW625P2
VEW625P2
VEW625P2
VEW625P2
VEw625P2
K5M680P2
KSM680P2
KSM680P2
f(SM680P2
KSM690P2
KS~680P2

KSM680P2
KSM680P2

~l<SM680P2
KSM680P2
KSM680P2
KSM680P2
KSM680P2

060400 P615·DUM~Y. COpy V~w~1SP2.

OOlOOO*
00110n* *•••••••••••• w ••••••••••• -. __ •••••••• _.w•.. -.•._....•..•
001200* This routine displdYS the CeT error meSSdQe 1n the
001300* form name box on the WMltman standard View screen,
001400* ••••••• - ••• ---••••---------•••••• - •••••---••••--•••••••*
001600 P61S-0ISPLAY-ERROR.
001700 ~tOVE CCT-VALUE TO VIE"i·~~SG-BTJrF',

o 0 1 ~ 0 0 ~~ 0 VE Vr E\v • ERR fJ R• E ~.; H~ NeE ,." E NT Ta v1 E.: ~j • t·t SG• E: NHANCE t·, ~: NT.
002000 DISPLAY VIEW.MF.:SSAGE.8TJfFER.
n0 3 0 0 0 PF: RFOR M P 3 2 2 • V I F: W• SH[] ',; r f) R'~ THnu P 3 2 2 - EXIT.
003100 P615·~XIT.

003200 EXIT.
060500 P617-0U MMY. COpy VE W617P2.
001000*
00j100* *-•••-•••••-•••••--.-- •••-------- ••---- •••----•• ------ ••
001200* Th1s routine displays the torm title 1n the form
001300* name box on tMe ~hlt~an Sta~dar1 View screen,
001400* *---•......- _- __ .-_.-..---.-- _*
001600 P617-RESET-ERROR.
o0 17 0 0 ~, avE FOR M• TIT I, E TQ VI E \-1 • r..1SG• RtJ F' f •
001800 MOVE VIEW.STANDARD-ENHANCEMENT TO VIEW-MSG.ENHANCEMENT.
002000 DISPLAY VIF:~·Mr:5SAGE.BOFFF:R.

o() 3 10 0 PER FOR M P 32 2 .. V I ~ \4J • SHOw fOP f-1 T l t R U P 3 2 2 • F: X T. T •
003200 P617-EXIT.
003300 EXIT.
nOl100* •••••• - ••••••••-_-•••••• __ •••••• ••••••••• _•••••••••*
001200* This routine flaGs d particular field on the V1ew/3000
00t300* screen with an error condltl~nt 1£ the CCT-ERROP-KEY
001400* 1S not sp~ces, a lOOKUP 15 done to find the proper CCT
001500* error message and displaY it to the User's screen,
001600* *•••••••••••••--•••• --_. •••--- ••••••••_•••_••• ~*
001800 P62S-VIEW-SECONDARY-ERROP,
001900 MOVE .1 TO VIEW·LENERRr~SG.

002000 CALL "VSE:TERROR" USI~G VIF:w.C()~~-AREA

002100 v IfW.FTE:IJO-NUM
002200 vrt~w.nur.~r,·jy.p.ARf.tM

002300 VI~W.LENERRMSG.
002400 IF NOT VIEW.OP.VALID
o0 25 0 0 ~1 0 VE "9 25 ??P6 25A ,t Tn GEN. AAC) RT • B f< E AK0 UT ,
002600 PERFORM P658·VIEw·~TANnARD.ERROR THRU P658.~XIT,
002700 GO TO P099-ABURT,
o(\ 2 8 0 0 I FCC T - F: RRnR.. J< EYE QUA l, TO 5 PAC ~ S
002900 GO TO P62S.FXIT.
o0 3 0 0 0 PER F 0 ~ t·' P6 8 (} ..ERR n1< • IJ (1 0 KUP THPUP 6 8 0 - EX I r •
003100 PERFORM P615.0ISPLAY.EPRon THRU P615-EXIT.
003200 P62S-EXIT.
003300 EXIT.
001000* ••••••• - ••••••••••--•••••-. ••• _•••••• -._••••• - •••*
001100* This routine will lOok UP the ~ppropr1ate error
001200* message on tne CCT ,file (UT145K01) on request.
001300* *-.-.--.--.---.----.-..-.----_.. ~ ---_---.---..-._*
001 ciOO P680-ERROR.Lor)KtJP.
001500 ~10VE 0 TO GErl-ERROR-FLA.G.
001600 PERFORM P\05-CCT-INPUT THROUGH Pl05.r~XIT.

001700 IF GEN-F.:RROR-rOUND
001800 MOVE eeT-EMERGENCY TO CCT-ERROR-MSG,
00'900 GO TO P680-gXIT.
002000 MOVE CCT-VALUE TO CCT.ERROP.MSG.
002100 P680·EXIT.
002200 EXIT.

B-9 - 37



026BOO 01 CON SOL~: -e OP Y-D (j M~A Y cnpy GF.: ~j 0 2 2 wS •
Gf.:N022wS 001000 • ~
GEN022WS 00110Q 03 COPY-CONTROL-RYTE PIC XC(1),
GE N022WS 001200* *•• -••••••• __ •• -••• G ••• -.-_. ___ ._ •• -_._~.__ ••• ________ ••

GEN022WS 001300* Standard A,RORT Format Ar e()

GE~022WS 001500* *- ••••• _g __ •• -- __ - ••__ •• _-. ___ .--~e.------_-.-~..-_---.*
GEN022wS 001600 0\ G~N·ABORT.BREAt<(1UT.

GEN022WS 001700 03 Gf.: Ntill AB()R T "ER ROR PIC X(03).
GEN022WS . 0OlBOQ 03 GEN -ABO R. r .SEC TIn r-J PIC X(02).
GEN022WS 001900 03 GEN-ABORT.PARAGRAPH PIC X(04).
GE~022WS 002000 03 GEN-ABORT.POJNT PIC X ( 0 1 ) •
GEN022WS ()f)2100 0\ GEN ...~ B0 RT • ~1 E5 5 AGE.
GEN022WS 002200 03 FJ1.IJER PIC X(09) VALUE "CKPO!i\JT ( t

GEN022WS 00230f) 0) GEN -ABORT -SEC T I O~, PIC X(02).
GE~022WS 002400 03 FILLER PIC X(O!) V.ALUE " ) .' .
GEti022WS 002500 03 GEN-AAOHT.PARAGRAPH PIC X(04),
GE~022WS 002600 03 FILLER PIC X ( (\ t. ) VALUE "." .
GEN022WS f)O?700 03 G~:f\J -A80PT .PU t NT PIC X(Ol).
Gr::~022WS 002BOO 03 rILLE~ PIC X(02) VALlJfe: ••• "• •
GEN022WS 002900 03 GF.;N -A RiJRT.L I Tt~R AJ.., PIC X (,SO) VALUE SPA.fES,
GgN022WS t)03000 01 GEN-ABnRT-Kf.:Y.
GEN022WS 003100 03 FILLER Ple X(03) VALUE-: "980·f

•

GEN022WS ()O3200 03 GEN.ARnpT.fRROP·KEY PIC X(03).
G~:N022WS 003300 03 F I L,L~R. PIC X(09) v AL1U~: "Ot ~.

095900* *•••••••••_••-••_••-g._...-.._--.-._._~-.-q_._~..-.-._-*
096000* Th1s routine reads the WIDMMST based on the WID-VALUE
09~100* from the STUDENT-DTL.
096200* *••••••• •••••••• e ••• a • __ -.w_-.....-_---.*
096300 P130·REAO.~IOaMST.

096400 MOVE STU.WHITMAN·ID OF 5TU012L2-AR~A

096500 TO CDB-WID-VALUE, STTJ .. wID-VALUE.
()96~OO PERFORM P16S-GET-WID-r"ST THROUGH P1.6S aa F':XIT.
096700 IF IMAGE·RECORD.NOT·FOU~n

OQ6800 MOVE 0 TO CDB.IDuPREFIX,
096900 GO TO P130-EXIT.
097000 If' NOT IMAGE.OP·VALID
0971.00 MOVE "92548P130.A." TO GE:;l·AROHT·BPt~AKOUT,

097200 GO TO P130-ERRnR-OUT,
097300 GO TO P130-gXIT.
097400 P130.ERROR-OUT,
o975 0 0 PERr0RM P6 45 • I ~1 AGE - 5 T A}; 0 ARD. ERR (J P T HP0 UGH P6 4 5 • ~ X1T ,
097600 GO TO P099-hBOBT.
097700 P130-gXIT.
097800 EXTT.

8-9 - 38



IMG645P2
IMG645P2
IHG645P2
IMG645P2
IMG645P2
IMG645P2
IMG645P2
IMG645P2
IMG645P2
IMG645P2
IMG645P2
IMG645P2
IMG645P2
IMG645P2
IMG645P2
IMG645P2
IMG645P2
IMG645P2
IMG645P2
IMG645P2
IMG645P2
IMG645P2
IMG64SP2

~ IMG645P2
. IMG645P2

IMG645P2

K5M680P2
KSM680P2
KSM680P2
KSM680P2
KSM680P2
KSM680P2
KSM690P2
KSM680P2
KSM680P2
KSM680P2
K8M680P2
KSM680P2
KSM680P2

121400 P645 a DUMMY. COpy IMG645P2.
001000* *•••••-•••-- •• -._•• ~_._. ._.__ ._.- __ ••••_••••-.-.*
001100* Standard IHAGE/3000 ABORT routine
001200* *••-••---.-••-••-•• -.---.----_.-_- __ 8 •••• _._ •••••••• ~ ••*
0013~O P64S·IMAGE-STANDARD-ERROR.
001400 MOVE caRR GE~.AROPT-AREAKOUT TO GEN.ABORT-~ESSAG~.

001500 ~OVE GEN-ASnnr-FPROR TO GEN-AAORT-ERRC1R.KEY.
001600 MOVE GEN.ABO~T·KEY TO.CCT-ERPOR-KEY,
001700 PERFORM P680-ERRORaLOOKUP THROUGH P680~EXIT.

001800 MOVE CCT-VALUE TO GEN-ABORT-LITERAL.
(1 0 19 0 0 0 I SPLAY· " X H J '1 •
002000 DISPLAY GEN-ABORT-MESSAGE.
002100 MOVE SPACES TO IMAGE-ERROR-MSG,
002200 CAJJL "DAERROP" USING I.~·'AGE.STATlJS,

002300 IMAGE-ERROR-MSG,
002400 I~~AGE-LENf:R.RBtJF".

002500 CALL "DBEXPLAIN" USING Ir1AGE-STA.TUS.
002600 MOVE IMAGE·ERROR.r~1SG TO GEN-ABORT-LITERA[Jo
002700 MOVE GEN·ABORT-~ES5AGE TO GEN-T~LL.ABORT.MSG.

002800 CALL It TELLABOHT" US J NG GEN -TEIJIJ -JOB.N AME
002900 GEN-TELL-USER,
003000 GEN.TELL.DU~MY,

003100 GEN-TELL-DUMMY,
003200 GEN.TFLL-ABOR1-MSG.
003300 GO TO P64S-EXIT.
003400 P64S.EXIT o
003500 EXIT.
121500 P680-0UMMY, COpy KSM680P2o
001000* *.G••--••-. __ ••_••• •••• ~_-.a-a ~G_~.__ ••••••
001100* This routine will lOOK UP the appropriate error
001200* message on the CCT file (UT145 K01) on request.
001300* *a•••---••_8.~_._ -_.. .._ ~ G._-~..*
001400 P680·ERRO~.LOOKUP.

00\500 MOVE 0 TO GEN.ERRnR-FLAG.
001600 PERFOR~~ Pl05-CCTmINPUT THROUGH P105-F~XIT.

001700 I~ GEN-ERROR-fOUND
001800 MOVE CCT-gMERGENCY TO CCT-ERPOP-MSG,
001900 GO TO P680-EXI1 e
002000 MOVE CCT-VALUE TO CCT·ERROR~MSG.

002100 P680-EXIT.
002200 EXIT.
121600 P999-ENO-SECTION-05.
121100 EXIT.

DATA AREA IS %006303 WORDS.
CPU TIME = 0101106. WALL TIME = 0103135.

END COBOL/3000 COMPILATION. NO ERRORS. NO WARNINGS.

8-9 - 39



i ~cf;30S'02/j 1/81 13: 15:3S:l-----------------------CKELSEY)----:Gr;30S---R Beqin ~\D01l. <2.1) AnOlb
: ::~~US:~2/11/8~ 13:1S:J6~-----------------------CK[LSEY)----~S305---C~:~c;::~r'r~=2c~~~:fa AD016 A 9 0 R T JOB .~~J~~:c~=~~~;~~
t: :: ; :.; 3 nS J 02 / i ~ / fl1 \ 3 : ~ S : 3l..dl - - - - - - - - - - - - - - - - - - - - - - - ( 1< r L~; f '( ) - - - - ·t· S3 U5 - - - i: :: ] : :a :: =.- ~ t , ~ : :! : ~ .:; :: : :: : : ; ADO 1t> A· D 0 R T Jot< f ~ ~ : ;J J :: : : : : :. : : s ; ~

I ~ t , J ~ ~ J nS ; 0~ / \ 1 I ~1 \ ; \ 3 : 1 S : 3 () r ;; :1 ;; a ; [j .: g t ; I ~ t ri t; I Q :i J ;; ;: u, :; :2 :. : ~ Z : i a t2 I: :: CCJ< P 0 .( NT (t} 8 ) P ? 1 S - A: F rH~ 0 R (3 0 1 - K 5 AM F I L E SY S T EHER R0 ROO S2
~If:I;S30S102/11/8jG13:16:0~~-----------------------(KELSEY)----.S305---G B~qin AD016 (2.1) AD016
It:~~:~30S:r,2/~1/Ul~13:l6:0SE-----------------------CK£LSEY)----~S30S---ti:CC=~~~;~~~:~~:~:::;AD016 A BaR T JOB 1~~:;i~::~l:::tC

2 !l : I ;, , ~-;: ~ 0 Co., r; () ~ / j 1 / tJ i :; 1 3 : 1": (}'.j t - - - - - - - - - - - - - - - - - - - - - - - ( KF: L. SEY ) - - - - ~ S3 0 5 - - - m;c ~ ii t :J : :: I: ;: ; ;: ~ &; : : t :; c ~ t: CAD a1 6 A DaR T J 0 Ie I: ; ; ~ ; :i i: ; i: : : ; C:;. : :11
at~I~:)30S.U2/11/D1D1j:16:0SE~Z~~'~~:;::J~;:taDZI;gc:;~2:;:C;~wC&CKPOINT(98)P91S-A: ERROR 801 - KSAM FILE SYSTEM ERROROOS2
13: i/,/~·S30('/22/LtiGOFF
~:~B~~S3C5102/11/U1~13:16:59;-----------------------CKELSEY)----iS30S---1B~gln AD016 (2.1) AD016
13:17/tS3~a/2?/LOGUNFeR: GALPIN,HANAGER,WCCS,PUB ON LDEV ~23

1~_:I.S3CSl02/11/G1:13:20:04~-----------------------(KELSEY)----tS30S---. End AD01b (2.1) AD01b
13:20/1~/STANDARD FORMS ON LDEV~6

13:20/tS280/45/LOGOFF
~13:20/1S/S?:b/I5 ~S300; F969UIDE ON LD£V~6 (YIN)?
13:20:47Ia2/11/8·1~E---------------------------------------------t5300-----&
13:20/tS309/4S/LOGON FOR: OH/PAINE.WCCS , P4 ON LDEV *46
OK
I?E?LY 1S,Y

13:21/tS308/29/LOCOFF

.J )



3;~:=~S100;Qj/02/U1~13:17:2~'-----------------------(POLZIN)----tS100---!

i3:17/~5102/33/LOGOFr

SC

DeV/CL DF'iD JOt<NUI1 F~~AME STATE FRM SPACE RANK PRI tC

COMLP .0206 IJ32 $GTDLIST OPElJED 1024 8 1

CCH1L? -:0241 .~'74 F96';Wl DE OPENED 1024 8 1

CO,~LP t0125 .538 F260SPCL READY F a D 1 1

COML.P :JCJ~42 ~:';94 F222SPCL OPENED F 1024 D 1 1

4 FILES (DISPLAYED):
o ACTIVE"
1 REA~Y; INCLUDING 1 SPOOFLES. 1 DEFERRED
3 OP~NED; INCLUDING 3 SPOOFLES
o LOCK~~; INCLUDING 0 SPOOFLES
4 SPOGFLES: 3000 S~CTons

Ot.;TFEtlC( = b
nt.!T;:C:NCE = 10 FOR LDEV 24

)::I:~S?~I03/02/01C13:23:24C------------------------(COMrORAB)--~S94----1

It~:~~~9~:03/02/8\~13:23:2'lr------------------------(COMFORAB)--*S94----1

13:23/15/STANDARD FORMS ON LDEVtb
1:~I:~S94t03/02/81113:23:2S2------------------------(COMFORAB)--~S94----1

?13:23/1S/SPt6/IS tS94i F969YIDE ON LDEVtb (YIN)?
:ra~::S74C03/02/01~13:23:402------------------------CCOMrORAD)--tS94----~

1~:24/~S103/33/LOGONFOR: DI£TZ,MGR.CONTACT,G3K ON LDEV *45
.1 3 : =.~ S/ 1~ 111 ISS I NG UGER FOR " ~1A TH • CL. ASS, It ON L DE V .. SO·
OK
REPLY 15,Y

1::.:·tS100103/02/81113:26:092-----------------~-----(POLZIN)----*S100---1

13::!b/tJ36/40/LOGO~~FOR: ML107CPL,KELSEY.WCCS,K1 ON LDEV :&=10
13~26/~S1CO/30/LOGOFF

13:271IS10~/31/LOCON FOR: CL40a,NOEL.WCCS,N2 ON LD£V *23
13:20/~13b/40/LOGOFF .
1J:32/~S10S/43/LOGON FOR: RICHMOND,ECON39.CLASS,ECON39 ON LDEV t27
13:32/tJJ7/29/LOCON FOR: CL40BCPL,NOEL.WCCS,N2 ON LDEV t10

B~gln ML70S (1.0) .ML70S

End AD110 <2.2>

~~gln ADiOS (2.0) AD10S

End ML70S (1.0> ML70S

4:0241
t0242

$TD WIDE (---~9b9

8.S X 1~ WHITE (---;:-222



PAGE 0001 HF" ~ L F: TT • PAC KARD 32 2 1 3C • () 2 • n5 COB (1 TJ I 30 () n \' t: 0, til AR 11, 19 AI, q z () 5 P ~1.

l~

4 ••••••• _ ••••••••••••••••••• -------_-••• ••• •••• -··· ••

•.•.•.....•..........--- _--- _ _-_ ---..

*••_._._.~••_•••e_.a••• ~_. __ • __ • __ ••• ~._._•• _ •• _ ••••••••

tt,&«

J Systerrs Design

, WaYne Holt

It CC; '2 2 8 <1 • 2 >" •
,JUNE,lQ79.
iI:HTTMA~~ COLLP:GE.
CONF'IOgNTIAL.

l.n Class Update
CG22R <1.2>"

I D~lore$ Payne

, Systems Analysis

SUbroutine callsz
l.JT817 Obta1.ns JOB/USf~~. Name

File Descr1ptionsl
CG228S16 Parameters for CG228
tJT145KOl Common Code Table
COMMON Data Base Common
STU Studen. t Records Data Rase
f482NARO Report Print f·11e

* STU-STUDENT-LEVEL of 9,
.. STU-STUDEt!T-STATUS of B3, B4, 85, 66,

88, C2, or C3,
* PROJ-GRAD-DATE of PARAM-~INTER·DATE,

PARAM·SPRI~G·DATE,

p A~ A,~ • f ALL • DA. TE •

» NOTlcr OF Cr")PYRIGHT «

(2)

( 1 )

A standard narrow report, F482, 1s produced
of thoSe seniors meetlnq the above criteria
and 1s sorted hy riescendlnQ cumulative. GPA.

CG22B rAnKS qraduatlnq seniors bY Cl.1mul",ti v e
GPA, And UPdates the Reolstrar Student Detail
with their rank and class size when an uprlate
run 1s requested. OnlY sen10rs that s<3t1sfy
the following criteria will be rankedc

CG228 1s Whitman COll~qe propr1etary soft~are

••••••••••••••••••••••• --- •••_•••• _- ••••• -••••••••••••• *

I proQrammlnQ

, Delores Payn~

*••_••_._ ••••D_._. __ ..._.- -_._.• ~ -_- ..._.*

•......- -__ 8_ __ -..__ ._ __ *

4======================================================*

o0 1 0 () q SCON T R0 I~ t.J S LIN IT, S f.1 UPCf4~

001100$TITL~ "» Senior Rank
0012008"
001300 IDENTIFICATION DIVISION.
001400 PROGRA.H-ID.
001500 DATE.WRITTEN.
001600 INSTALLATION,
001700 SECURITY.
001800*
01)1900*
002000*
0021 () 0 *
002200*
002300*
n024no*
002500
002600*
0021()O*
o02Fon*
007900*
0030 n O*
003100*
0032°0*
003300*
003400*
003500*
00360l'*
003700*
003BOO*
00390()4
004000*
004100*
tl04200*
004300*
004400*
0045°0-
004600--
004700*
004800*
004900*
005000*
0051(\0*
00520(l4
(1053no*
005400*
005500*
005600*
005700*

8-9 - 42



005900*
006000*
006100*
006200*
006300*
006400.
006500*
0'06600*
006700
006800*
006900*
007000*
007100*
007200
007300*
007400*
007500*
007600*
007700*
007800*

*•••••••••••_-_••••••••••-••••• -••••••__ •••••_-_••_----*
Compilation Instructions:

:FILE PJDEV=COMLP
I FILE COPYLIB=COBOLIB. PtTB. vJCCS
,COBOL CG228C.SOURCE.I~IS,,*P

:PREP $OLDPAS5,CG22R.REG5TRAR.ADMINJhAXDATA=~OOO

*••_••••••••••••••_•••••_-._. __ ••••••-.~•• _- •••_•••••••*
*••••__••••••••-••••••••••••••• -••••••••• --_•••_-- •••• -*

DATE REV BY MAINTENANCE LOG
6/29/79 <1,0> DRP Primary Installation of software.

6/09/80 <1.1> DRP Added statuses BS and C3 to the list
of valid senior student status codes.

6/12/80 <1,2> DHP Brol1Qht up to proaramm!nQ standards
established May 30, 1980.

*••••••••••••••••••••••••••••••••••••••• - •••• --_•••••-.*

8-9 - 43



008000*.·-----.------ ••--*-..--~--- ..-.-_..- ~_._._*.--- ... __ - --_.*
008100*··------------••• _* SYNOPSIS OF PRnGRAM LflGIC *_~~- ._--__ -. __ *008200*----------------_.*---------....-. __ -- * 0._. ._
(1f)8)OO*
l)O~400*

008500*
008600*
008700*
008800*
008900*
009000*
009100*
009200*
009300
009400*
009500*
OQ9600*
009700*
009800*
009900*
010000*
010100*
010200*
010300*
010400*
01.0500*
010600*
010700*
01.0800*
010900*
011000.
011100*
011200*
011300*
011400*
0115004
011600*
011700*
011800*
011900*
012000*
012100*
012200*
0\2300
012400*
012500*
012600*
012700*
012800*
012900*
013000*
013100*
0132°0*
OJ3300*
013400.
013500*
013600*

l~OGIC DESCRIPTrOt~1

II MAINLINE SECTION,

A. Displays the program number ~nd rev1~lon level.
B. Performs ~ll file opens and initial readS:

1. Parameter file,
2. eeT KSAM file,
3. rM~GE tiles,
4, ~eport files.

C. Performs the TELL·STA~T routine,
D. Performs the LEGEND S~CTION which produces a front

page legend on the report 1nentlty1nQ the para~eters

chosen by the U~er.

E. Performs the SORT-LOGIC SF:C'l'TON,
F. Sorts the studf\nts by descend1ng CtJM-GPA.
G. Performs the REPORT-LOGIC SECTION.
H, Performs tile cl~ses:

1. CCT KSAM files,
2. Parameter file,
3. Report f11~s,

4. IMAGE tiles,
I. Print a last page message on the report, CG228/f482.
J, Per tor m the TEL 1, • f" 0 RM r 0 1J t 1new h 1C h P0 S t 5 a for", s

m@ssage to the system console for ~ STO ~~~ROW RPT,
K. Performs the TE1JI.J-Srop rotJtln~.

L. stops the program.

II, SORT-LOGIC SECTION,

A. SerIally re~ds the Registrar Student Detail on the
STU Data Base (Q~G.STUDENT·Dr:T).

1. Checks tor valid senior STt.J·STUD~NT-LEV~L (9 onlY)
and STU-STUDENT-STATlJ5 (B3-B6,88,C2, and C)).

2, CheCKs for acceptable projected Graduation Dates
input by the tJser in t.he paramater interface:
a, WI~JTER.DATE. Dec~mber Qr~ciuates,

b, SPRING-DATE. Spring araduates,
c. FALL·OAT~ • Fall oraduates.

3. It the student does NOT satisfy the above criteria,
anoth~r REG-STUDENT-DET will be read (return to A).

B. Per tormacale U1ate d rea d 0 l'\ t h~ \1J I 0 - f~ 5 Ton the C0 ~1 f~ (J N
Data Base to obt~ln the ID·FR~fIX tor the WHITMAN-rD.

C. Perform a bacKWards chalnprl read on the SE~·CREDIT·DTL

on the STU Data Base to o~taln the record matching the
input academic term (contains the lastest grade data),

D. If the student does not hAve the correct SF--=,~-CREDIT.. DTL,
an error is flaqged and another student record 1s read
(return to A).

E. The student has passed all edits so the necessary data
Is now moved to the S0RT·R~C, and the record 1s released
to the COBOL SORT,

F, Repeat ste~s A thr~ugh ~ until all students are read.

8-9 - 44



ASS J GN TQ " F 4 8 2 NAR() , {J R , , C(J n IJ P ( CCT lJ ) " •
ASSIGN TO "CG228S16".
f\ S S J G'J T [1 " 5 nRTF' I IJ t: , DA,a •

018700
018800
01890n
019000
019100
019200
019300
019400
019500
o196.00
019700
019800

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOUf' CE.C O~1PUTER•
OAJECr-COMPUTER.
SPEC I AIJ.NAI'~g5.

TOP IS TOp-Or-PAGE,
cO~SOJJE ISM AS! ER.C n~;SOLIE.

INPUT-OUTPUT SECTION.
F I IJ E• CON TRaL•

SELECT PRINT-FILE
SELECT PARAM-FILE
SELECT SORT-FILg

8-9 - "45

HP-3000,
HP-3000.



•..e. ..__ .. __ -.- . -.-..__ ~_. __ --.-_._.... _*

*•• - •• __••••_- ••• -.-_._._-_. __ .--_••• __ ._----~----.-_ ••*

*_·•••-.-•.----_.-------.-e __ --- .. _*

*_._-_ _-.----- _--_._-_..--_._----.---.--- -*

X(06).
X(OS).
X(12),
X(08).
X(04).
X(14).
X(02).
X(70),
q ( 0 3) V,\ I.J tJ E: O.

PIC X(02).
~IC X(02).

PIC X(01),

PIC 9(01) VALUE O.
VALUE: 1.

PIC 9(ot) VAI,t.1E o.
VAJJI.lE O.

PIC ~9(04) COMP.

PIC 9(02).
PIC 9(02).
PIC 9(02).

PIC 9(03).
PIC X(06).
PIC 9(02) VALUE O.

VALUE 0,

PIC 9(03) VALUE O.
PIC 9(Q3) VALUE O.
PIC X(Ol).

VALU~: "(~".

PIC 9V999 COMP.
PIC X(02'.

VALUE "83" "04"
"B5" "86"
"B8" "C2"
"C 3".

PIC X(06).
PIC X(06).
PIC X(06),
PIC X(OS).
PIC X(08).
PIC XCI';).
PIC 59(04) cor--,p sync,

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

coP Y Gr-: N0 2 1 WS •

Hold Area

General Const~nts and Vor1ables
Console Com~unicatton And ~essage Pardmeters

COPY-CONTROL-RYTE
•
03

HOLO-NEW.RANJ(
~OLD·SAME·RANK.

HOLD -STUDENT -LEVErJ
8~ HOLO.vAt,ln·sE.NIOR.L~~VF~T~

HnIJo·cur~.GPA

HOLO-STUDENT-STATUS
RS HOLO.VALID-SENIOR-STATU5

GEN-ERRnR-fLAG
88 GEN-ERROR-FOUND

GEN -E:D I T-rToJA G
88 GEN-NO-DATA-F:f>l T~:I)

GEN"LENGT~

GEN·RlJ1'J-TIME.
03 GEN.Rl.l~.HO'Jn

03 GEN·RlJ~I.MIN

03 GEN-Rt.r~!·SEC

GE N -,10R -SfSS I 0 ~J -1~} faRM AT I fJ~'J •
03 GEN.Jn~·5ESSION-NRR

03 GEN -JOR. 'Jlt"1l3ER .HYP.~

03 GEN .J(lB .. NTJr1J3ER -HII ANK
o3 GEN. J 0 8 • N A ~·1 ~:

03 GEN ..JOP-i.JSER-NAt·~E
o3 GEN.JOB ..en'·, B t NEO. ~J A :~, F:
03 GEN-JOB-T."r)EV

GEN -COfJsrJLE-TF:LL. TNFORMAT ION.
03 GEN -TELLI-"TOB.N ~,..,g

03 GEN-TELL·USER
o3 GEN. TEL IJ • PRO GRA~,

03 GEN-TELL-nUTPUT.NBR
03 GErl·TEIJL-FORr,1.NA~AE

03 GEN·TELL·FORM.~ES5AGF

03 GEN-TELL-nUMMY
o3 GErJ • TE I.t L- A~~ 0 P. T• MS G

GE~ -SORT.C 'ltJNT
GE~; • I~ 0 RK- ~I I D•
03 GEN.wnRK.wIO·PREFIX
03 GEN.WORK.WID·SUFPIX
GEN-FIRST-TIHE-FLAG

88 GEN.FIRRT.TIME

() 2 4 .1 0 0 wop KIN G.. ST (1 RAG E 5 f: CT 1""J •
024400 0 1 GEN-COPy .. J)tJ'--1r~y
001000
001100
001200
00\300*
001400*
001500*
001600 ot
001700
00lB'JO 01
001900
~020l)O 01
002.100 01
002200
002300
0024 n o
002500 01
0026(1)
00270f)
002800
002900
003000
003100
0032(\0
003300 01
003400
003500
0036(lO
003100
0038 (' 0
003900
004000
004100
024500 01
024600 01
024700
024~OO

024900 01
025000
025100*
025200*
025300*
()25400 01
025500 01
025600 01
025700
025BOO 01
tl25900 01
026000
026100
026200
026300
026400 01 HOLD-PROJ-DATE.
f) 2 6 5 0 0 0 3 H0 tJ 0 • PRO J • no
026600 03 HOLO-PROJ·YR

GF:N021wS
GEN021WS
GE N021WS
GE N02\WS
GEN021WS
GEN021WS
GENQ21WS
GEN021WS
GEN021WS
GE N021WS
GE N021WS
GEN021'J1S
Gf:N021WS
GEN021WS
GEN021WS
GE~J021 WS
GE N021WS
GEN021WS
GE N021WS
GE~021WS

GEN021WS
GE N021wg
GE N021WS
GEN021WS
GE N021WS
GEN021WS
GEN021WS
GEN021WS
GEr~021 WS
GEN021WS
GE N021wS
GEN021WS

8-9 - 46



*_•••_--.-.-------_._-_._-._._.----_._-----~.----_.*

*_•••••••••••••••---_•• _-- •• ----_. __ ._---•• ----_ •• _*
SUMMARY: This section of code is designed to be
the MaIn Driver tor ~ll program logic modules, It
contains all major file IIO overhead and general
housekeeping routines, and 1s the primary module.

042900 PROCEDURE DIVISION,
043000* »»»»» ••-----•••• -- ••••• -- ••••••«««««
043100 "~AINLINE SF.:CTION 98,
043200* »»»»» •••••---- •••_--- ••--------«««««
043300*
0431:00*
043500*
043600
043700*
043800*
043900*
044000*
044100 POlS-INITIALIZE.
044200 DISPLAY "CG228 <1,2>".
044300 PERFORM P912·0PEN·PARAM.FrL~ THROUGH P9t2-EXIT.
044400 PERFORM P131-READ.PARAM-FILE THPOUGH P131-fXIT.
044500 PERFORM P91S.0PEN.KSAM·FILES THROUGH P915.~XIT.

044600 PERFORM P100.READ.CCT·TITJ~FS THROUGH PlOO-EXIT,
044100 PERFORM P97S-0PEN.IMAGE-SASES THROUGH PQ7S.EXIT.
044800 PERFORM P951·ESTABLISH-IMAGE-LIST5 THROUGH P951.~XIT.

044900 PERFORM P917-0PEN.REPORT THROUGH P917-EXIT,
045000 PERFOR~1 P99S-TELL.START THROUGH P99S-EXIT.
045100 POlS-MAINLINE.
045200 PERFORM P030-LEGEN{)-DRIVEH THROUGH P999.END .. SECTION-25.
045300 SORT SORT-FILE
045400 ON DESCENDING KEY SORT-CU~~-GPA,

045500 INPUT PROCEDURE IS SORT-l.,llGIC
045600 OUTPUT PROCEDURE IS REPORT.LOGIC.
045700 p090-STOP.
045800 PERFORM P92S-CLOSE-KSA1A.fIIJES THROUGH P925-EXIT.
045900 PERFORM P965-CLOSE-PARA~·FILE THRnUGH P96S.EXIT.
046000 PERFORM P969-CLOSE-REPORT.fILE THROUGH P969-EXIT,
046100 PERFORM P98S-CLOSE·CDB THROUGH P9R5-EXIT.
046200 PERFORM P996-TELL.STOP THROUGH P996-EXIT.
046300 STOP RtJN.
046400 P099-ABnRT.
046500 CALL "ABORTRUN".

8-9 - 47



075300*·--·--- ••••••••••••••••••••••••••• __ ••• -- •• *- __ •• __ •• __ ._••• * ~

075400*-----.-.----- ••-* OUTPUT RnUTINES *---~-.-_._--_._ ..

TO Gr:~-~jORK-wrD.

T0 STU - llJ rr • V1\ 1.J lJ F: •
TO STU-WID-VA~UE.

075S00*.--.-- ••••• - ••••*.-••~._ ••••••••---.-.-••• -.-~-* .•--.... .•..*
075600-
075700* ••• •• • ••••••••••••••••••••••-_-- __ •••••••• _•• _w *
075800* This routIne will upd~te the STU D~ta Base \I.'1th the
015900* rank in class for seniors and the size for that Class.
076000* The data will be put on the REG.STUD-OTL only tor a
076100* live run. Otherwise thiS paragraph will be omitted.
076200* *•••••••-••••••----•••••••••••••-••••••••••-•• __•••• *
076300 P720-UPDATE-RECORD.
076400 MOVE SORT.WIn
076500 MOVE GEN.WORK-ltJID-SUFfIX
076600 MOVE SORT-WID
076700 P220-0BLOCK.
076800 PER~""OR~~ P250.IlOCK.STU THROUGH P250-EXIT.
076900 IF NOT IMAGE-OP.VALID
077000 .MOVF: "92556P220A" TO GF:N-AROHT-BPEAKOUT,
077100 GO TO P220-ERR()R-r1UT.
077200 P220-0BFIND.
0773l'0 PERFORM P160-FIND.STU-DTL THPOt.JGH P160-EXIT.
077400 IF IMAGE.wORDS-6 EQUAL TO 0
077500 GO TO P220-EXIT.
077600 If NOT IMAGE.OP.V~LIO

077700 MOVE "92556P220B" TO GEN-l\R£)RT-8PEAKOUT,
077800 GO TO P220-ERROR-OUT.
077900 P220-DBGET.
078000 PERFORM P16S-REAO.STU-OTL THROUGH P165-EXIT,
078100 IF IMAGE-END.Or-CHAIN
078200 GO TO P220-EXIT.
078300 If NOT IMAGE.OP.VALID
078400 MOVE "92556P220C" TO GEN-.ABORT-BPEA.KOUT,
078500 GO TO P220-ERROR-OUT.
078600 P22n-DBUPDATE.
078700 MnVE HOLO-NEw.RANK TO STU-CLA5S-RANK OF 5TU012L2-AREA.
078800 MOVE GEN.SORT-COUN! TO STU-CLASS-5IZE OF STU012L2-AREA.
078900 PEP,fORM P270-UPDATE-STU.DTL THROUGH P27 a-EXl T.
079000 If NOT IMAGE-OP-VALtD
079100 MOVE "92556P220D" TO GEN-AAOPT-BREAKOUT,
0792(1) GO TO P220-ERROP-OUT.
079300 P220-0BUNIJOCK.
079400 PERFORM P25S-UNLOCK.STU THROUGH P255-EXIT.
079500 IF' NOT IMAGE-OP-VAJJIO
079600 \10VE "92556P220E" TO GE:N.hBORT-BREAKOUT,
079700 GO TO P220-ER~OR·OUT.

079800 GO TO P220-EXIT.
079900 P220-ERROR-OUT.
o8 0 0 0 Q PEP FOR H P6 4 5 • I ;,~ AGE • STAN DAR [) tit E~ RRnR THR0 UGH P6 4 5 • F: XIT.
080100 GO TO P099-ABnRT.
080200 P220-EXIT.
080300 EXTT.

8-9 - 48



ARCHIVE RETRIEVAL SYSTEM

By George McCauley

Grumman Aerospace, Research Dept.

ABSTRACT

Archive retrieval system provides a disc space management system that

is user oriented and convenient for the SM. Files are periodically purged

on a least used basis and a library perasal and retrieval system is

established. User has created in his behalf a stream job that restores

his files for him. AM can restore across groups and SM can restore

across groups and accounts. Handles awkward syntax problems for user

and produces listings of backed up files as well as p~rged files.

Monday B-10 - 01



A DATABASE TEST AND REPAIR
FACILITY

·:BY DUANE SOUDER

MondayB-ll - 01

''''--



A Database Structure Test and Repair Facility

Databases may be corrupted in many ways. However, the most

cammon way for a database to become corrupted is for a System

Failure to occur during a DBPUT or a DBDELETE. IMAGE does not

cause system failures by itself. The operating system will

interrupt the execution of an IMAGE intrinsic for other processes

(usually system processes). During the interruption, the

operating system can encounter a situation from which it cannot

recover. The result of course, is a system failure. There is a

possibility that DBPUT or DBDELETE was doing internal pointer

manipulation. If internal pointers were being changed, you have

a physically corrupted database.

There is no current way to tell if the internal pointers

were being changed at the time of the system failure. When the

machine is restarted, the database is in an unknown state. The

user has only a few choices available:

A) Just continue running and hope that there was no

damage to the internal pointers, or

B) Use a program from the contributed library like

nBCHECK (or DB GROOM , etc.) to try and find any

problems, or

C) Do a DBUNLOAD followed by a DB LOAD.

Today, databases are being built larger and larger to meet

the increasing demands of data processing. DBUNLOAD and DBLOAD

B-11 - 02



are not reasonable solutions unless the database is damaged

beyond the "Point of No Return". This "Point of No Return" has

been a gray area for sometime. This new tool (or utility) called

DBTEST, will attempt to address this gray area and help to define

its boundaries by recommending DBUNLOAD/DBLOAD only if the

problems are severe enough to warrant this action.

DBTEST was designed to examine the internal structures of

the database and if necessary, to repair any damage found.

Database down time will be significantly reduced by not having to

unload and then reload the database. The user does not need to

know anything about IMAGE internals, how chains work or any of

the internal pointers. The user needs only the schema of the

database and some working knowledge of their applications. The

user interface was made simple and there are helping routines

throughout the program to explain situations and aid the user in

making decisions. If internal damage is found, the user does not

have to allow the program to repair the database. The user has

the final word and the program will not modify any internal

structures unless the ok has been obtained from the user.

IMAGE uses a simple data structure called a Doubly Linked

List for building chains in DETAIL data sets and Synonym Chains

in MASTER data sets. Synonym chains are fo~ed in MASTER data

sets when different key values hash to the same location. During

the addition or deletion of data records, the doubly linked lists

are modified to reflect the operation performed on the data. A

B-11 - 03



damaged database is the result of the modifications not being

completed on the doubly linked lists. This is true for MASTER

data sets as well as DETAIL data sets. DBTEST operates in

maintenance mode like the other utility programs and it uses the

IMAGE intrinsics along with privileged mode to examine and repair

the internal chains.

DBTEST's internal pointer checking is

forward. For example, when you request

simple and straight

to check a detail data

set, DBTEST will examine two (2) things:

First, DBTEST will scan what is called the free record list.

This list is a singly linked list of records that were deleted

from the detail data set using DBDELETE. This free record list

is the garbage collection mechanism that ]MAGE uses during a call

to DBPUT. The bit map is tested and the record itself is checked

to be sure that it truly is a free record. Any necessary repairs

to this list are attempted without user intervention. If a

record is found that does not look like a free record, it will be

displayed to the user with an appropriate message so that the

user may recover any data in the record by examining the

appropriate search items. This record will be delinked from the

free chain list (so DBPUT will not use this record). If the free

chain list cannot be repaired, an appropriate message will be

displayed and the user will be given some alternatives based on

the severity of the problem encountered.

B-11 - 04



Secondly, DBTEST will then ask the user to input the search

item name and its value (also called the argument). DBINFO is

then called to find out if the search item is valid. Assuming it

is vaild, DBFIND will verify the argument and return the first

and last record number in the chain along with the number of

entries in the chain. DBTEST will then find out which master set

and internal path is associated with that search item through a

series of calls to DB INFO. (The record in the master set is

obtained with DBGET to verify the internal pointers and the

record number is kept for later access if necessary.) Using calls

to DB GET , the chain is examined by making sure that the current

record points back to the previous record that was examined.

This process is continued until the end of the chain is reached

or until a hole is found. (A hole is nothing more than a pointer

to an invalid record.) While the links are being examined, a

counter is incremented to compare against the master's entry

count. The bit map is tested and the key is compared against the

users input to make sure that a record with a different key value

has not been linked into this chain. If a hole is found, DBTEST

will then start from the bottom of the chain making the same

checks above to insure consistency. The chain will be examined

until another hole is found or the last record is reached while

going forward. (In this case, the user will be told what has

happened and will be asked if the chain should be repaired.) The

counter will be compared against the masters record of the number

B-11 - 05

.~



of entries and if they do not match, the user will be asked if

this should be repaired also. If there was a hole, the user will

be told how many entries were lost/gained based on the master's

record of the number of entries in the chain.

When a MASTER data set is to be examined, OBTEST needs only

to access that data set. The doubly linked lists are used only

for synonym chain construction as described earlier. The master

data set is then read serially until a record is found that

qualifies as a potential primary entry. The count, beginning and

end of the synonym chain are remembered and the synonym chain is

then checked for consistency. (This examination includes bit map

checking, a running count of the entries and backward/forward

pointer checking.) If there are any holes, the user will be told

of the problem and OBTEST will automatically start from the end

of the synonym chain making all consistency checks as described

above until another hole is found or the last record going

forward is reached. Then the user will be asked to allow DBTEST

to repair any damage after an explanation has been given.

DBTEST's synonym count is then compared to the primary's count of

synonyms. The result of this comparision will be displayed to

the user.

These descriptions are the methods used in verification of

DETAIL chains and MASTER synonym chains in IMAGE databases by

DBTEST. The checking is simple and the resultant patches are

seen to be both useful and powerful. DBTEST was originally

B-11 - ~



designed to examine internal chain structures and provide useful

reports for further investigation. When it found internal

problems, it was simple to implement code to fix the broken

chains. This is how DBTEST evolved into a repair facility. With

minor knowledge of IMAGE and a databas·e schema, the user has a

powerful tool which will help repair the database with minimum

down time. This down time will of course be dependent on the

size of the database and the extent of the user's knowledge of

the applications.

There are some slides which show the useage of DBTEST and

its user interface. All error conditions are not presented here

but we feel that a reasonable amount are present to provide the

user with a good idea how this tool may be used to help them

should the situation ever arise.

B-11 - 07

.~



THIS IS

OJ
I
-a
-a

I

o
ex:>



A.03.00 MON, APR. 27, 1981, 1:00 PM

~ DATABASE STRUCTURE (CHECK/REPAIR) TOOL
I

o
'-0

) )



OJ
I
--'
--'

I

--'
o

1

HELP(H) OR WHICH BASE OR 'CRt ? MFG

APPEARS TO BE OK.

DATA BASE MFG...-- WAS BEING ERASED.

WAS BEING MODIFIED WITH
OUTPUT DEFERRED !

OUTPUT TO TERMINAL (YIN)? Y



HELP(H) OR LOOK(L) OR ICRI ? ~

~ HELP(H) OR WHICH DATA SET OR ICR I ? SUP

)



OJ
I

-..I

-..I

I

-..I

N

EXAMINATION OF DETAIL DATA SETS

HELP(H) OR SERIAI.{S) OR CHAINED(C)

READS ON THIS DETAIL? C

HELP(H) OR SEARCH ITEM NAME ? ACCT

HELP(H} OR ARGUMENT? 153405

PRINT OUT ENTRIES IN CHAIN (YIN) ? Y



--'
w

WE COULD NOT GET THE N1TH FORWARD ENTRY IN THE CHAIN.
WE HAVE ENCOUNTERED WHAT APPEARS TO BE A BROKEN

DETAIL CHAIN WHILE USING THE FORWARD POINTERS. WE

SHALL ATTEMPT TO RUN THE BACKWARD POINTERS TO
RETRIEVE ANY OTHER ENTRIES IN THE CHAIN.

lYE COULD NOT GET THE NITH BACKWARD ENTRY IN THE CHAIN.
THE DETAIL CHAIN IS BROKEN IN BOTH DIRECTIONS.

NUMBER OF ENTRIES IN CHAIN ACCORDING TO MASTER :: 10

HELP OR PATCH ENTRY OR DO NOTHING {HIPIN} ? P

I) ') )



to
I
--'
--'

YOU HAVE TWO (2) OPTIONS:
1) DO NOTHING AND CONTINUE SEARCHING
2) PATCH

NOTE: THIS PATCH WIIJ., DO THE FOlJ.,OWING:

a) PATCH ENTRY

FORWARD = LAST GOOD ENTRY (GOING BACKWARD)
b) PATCH ENTRY

BACKWARD = LAST GOOD ENTRY (GOING FORWARD)
c) PATCH PRIMARY

ENTRY COUNT =CURRENT NUMBER OF ENTRIES

WHICH OPTION ? 2----
ARE YOU SURE ? Y--

ENTRY COUNT KEPT IN PRIMARY IS CORRECT.
OR ENTRY COUNT KEPT IN PRIMARY IS BAD.

NUMBER OF ENTRIES GAINED = 1
LOST



o:J
I
--'
--'

I

. --'

01

EXAMINATION OF MASTER DATA SETS

HELP(H) OR CHECK A PARTICULAR ENTRY(PE)
OR CHECK ALL SYNONYM CHAINS(SC)

OR PERFORM SERIAL READ(SR) ? PE

PRINT OUT PRIMARY (YIN) ? Y .. "..

PRINT OUT ALL SYNONYMS (YIN) ? Y

) )



DATABASE THERAPY: A practitioner's experiences

F. Alfredo Rego

Rego Software Pty
Calle del Arco 24
Antigua, GUATEMALA

ABSTRACT

Telephone (502-2) 324336
Telex 4192 TELTRO GU

I will describe my first-hand experiences on some fundamental aspects of data
base therapy:

Prevention: A bit of prevention can save many megabytes worth of reloading.

Periodic checkups: There are procedures to test, diagnose and report database
errors and faults. And your own users may very well be your best detectors.

Treatment: There are good procedures for the correction of da~abase errors and
faults. They are still primitive but can be very effective in those cases they
can now handle. And they are impressively learning to deal with new cases!

Follow-up. You cannot afford to lower your guard. You must follow up. Always.

INTRODUCTION

I have had the privilege to visit hundreds of HP3000 computer installations in
all continents and in many islands. There are "radical" differences in appli
cations, people, software, hardware, and environment. But all of these HP3000
computer installations have the very same purpose: To maintain a bunch of bits.
The specific patterns formed by their pet configurations of such zillions of
bits are as varied as they can be, but our fellow HP3000 users allover the
world are doing exactly the same thing. It is very important to remember this!

A bunch of bits: That is all that we really have in any computer system in
general and in any database in particular. A bunch of bits, some which are sup
posed to be ON and some which are supposed to be OFF.

To be ON, or not to be ON: that is the BIT question!

Who is authorized to decide which bits are supposed to be on or off? Who is
responsible for detecting flip-flopped bits? Who is able to correct runaway
bits? Let's share some thoughts and feelings on these challenging subjects.

Monday B-12 - 01



PREVENTION

A bit of prevention can save many megabytes worth of reloading. My own personal
bias favors PREVENTION ABOVE ANYTHING ELSE. I believe prevention has the
greatest possible payoff, especially when the stakes are high.

Databases face serious health hazards. Let's discuss a few, beginning with the
more innocent-looking ones. And let's see what preventive action you can take.

Sloppy and!or disgruntled people are the worst possible hazard to a database
and to the whole computer system. If you cannot keep these jewels under con
trol, you might as well forget everything that follows.

People can (and do) misuse software. They can use QUERY to find all the en
tries that meet certain criteria and then delete them. They can accomplish
the same (good? bad?) thing with a ten-line BASIC program or with the equiva
lent IOO-line structured-COBOL program. It does not matter HOW tl1ey do it. If
those entries are supposed to be there (according to you), then YOU should
take some preventiye action. For instance:

- Use IMAGE LOGGING and Bob Green's DBAUDIT (see reference 1) to find
out who did what, when, to which entries.

- Use DBUTIL to disable QUERY-B write access. Or assign a password to
QUERY. Or remove QUERY from your system.

- Take advantage of the powerful password-security mechanism provided by
IMAGE to restrict write-access to sensitive items or sets. Change these
passwords every now and then. Be sure to write them down and store them in
a cool, dry place which is NOT accessible to your enemies and!or friends.

- Assign a maintenance word to every database with DBUTIL (at creation
time, or later on). Change this maintenance word periodically. Assign a
password to DBUTIL itself, so people will have a harder time if/when
they decide to ERASE or PURGE your databases.

Innocent-looking application programs, as you well know, are one of the worst
threats to the consistency of a database. Your best strategy is to build a
set of application programs that spend their Iives checking the application
dependent consistency of your database. You will have to face some painful
decisions regarding tradeoffs here. But something and somebody must check
things occasionally just to be sure that obvious errors have not crept in.

Remember that your own applications software is responsible for keeping the
semantic consistency of your database. Nobody else except you and your staff
knows anything about your specific design and implementation. Therefore, you
must make sure that the effect of your applications software is constantly
monitored by your end-users, by your quality-control and auditing staff, and
(last but not least) by your programmers.

Remember also that a database is an integrated entity that has two distinct
elements: the BASE system (IMAGE in our case) and the DATA that Iives there.
The best database management system in the world will be useless if the data

B-12 _. 02



you keep in it has no meaning. And it is the main responsibility of all your
application programs to maintain the validity and usefulness of that data!

People can use ACCOUNT MANAGER capabilities to purge the database's group.
Even worse, they can use SYSTEM MANAGER capabilities to purge the database's
account. You can run LISTDIR2.PUB.SYS to list all the accounts and all the
users in your system, to check their capabilities. To protect yourself, stand
right at the line printer when the printout comes out. Otherwise, somebody
will see it and everybody will know everybody's capabilities! Be sure that no
one has more MPE capabilities than the strict minimum necessary to operate.

Privileged users (and the system operator) can use SYSDUMP, STORE and RE
STORE with IMAGE databases. As long as they know what they are doing and as
long as they store/restore fully-consistent collections of privileged IMAGE
MPE files, everything will be all right. But the moment they make one mistake,
NOTHING will be right! This is why the modules DBSTORE and DBRESTOR were
designed by Hewlett-Packard specifically to store/restore IMAGE databases.
They do some reasonableness checks to increase the probability that you are
backing up or restoring a consistent database. And they mark the database on
disc indicating the backup date and time (an important thing for logging and
recovery purposes). ADAGER's BACKUP module is functionally equivalent to
DBSTORE and DBRESTOR, but it uses just a fraction of their time and tape
resources. As an added preventive measure, ADAGER encrypts the root file as
it backs it up to tape so that nobody can FCOPY it to the line printer to find
out all the user-class passwords. (MORAL: lock up your database backup tapes
just as if they were cash. Never forget that your database may be much more
valuable than cash!)

People can store things on the wrong set of tapes, clobbering whatever data
was on the tapes! And people can restore from the wrong set of tapes, clobber
ing whatever data was on disc! A well-organized tape-library system is a good
investment, especially if it is itself computerized (after all, you are trying,
precisely, to protect yourself from sloppy operators••• )

People can physically keep your backup tapes in a hostile environment, thereby
rendering them useless. I recommend professional handling of your off-site
tape storage. And I recommend that you periodically check the validity of the
tapes kept both on-site and off-site. What would happen if you had to restore
some file from some tape that was physically impossible to read?

People can fail to backup the system at all. Whether they do it intentionally
or innocently is irrelevant: the catastrophic consequences are exactly the
same. How do you know that the tapes that are supposed to contain your full
sysdumps really contain them? Backing things up is a chore. How do you know
that your people are not taking shortcuts? I know a user who has an HP3000
machine dedicated 8 hours a day to just a single purpose: a RELOAD from the
sysdump tapes produced by other computers. If any reload has any difficulties
whatsoever, he takes immediate action to correct the problem while it is
IMPORTANT but not URGENT. Most people wait until a problem is IMPORTANT,
URGENT, and IMPOSSIBLE to solve within the given time/resource constraints.
This user was one of these people. After a near-catastrophe, he learned that
any investment in prevention pays handsome dividends in terms of everyday
health. Both his and his database's.

8-12 - 03



Please keep in mind that computerized databases are not exempt, by any means,
from ENTROPY: Any system degrades to an ultimate state of inert uniformity.
But please also keep in mind that you can delay your database's inevitable
failure and decline. You can keep your database in a good state of repair, ef
ficiency, validity and effectiveness. But you must be willing to invest in
PREVENTIVE MAINTENANCE. Otherwise, you and your database are doomed.

Your problem, as a manager (of the whole universe, of a country, of a company,
of a department, of a computer system, of a program, of even one bit), is al
ways this: You must first choose, out of an unlimited collection of possible
objectives, the ONE goal that you want to reach; and then you must also
choose, out of a very limited collection of resources, those few resources
that will help you reach your goal in a finite time.

These choices are extremely difficult. There is no question about that! But
you can make your life easier if you decrease your collection of possible
goals, if you increase your collection of resources, or if you combine both ap
proaches.

In the specific case of your HP3000 computer system, you are very fortunate.
There are many good people (in the Hewlett-Packard Company, in the HP3000 ven
dor community, in the HP3000 user community and in the directors and staff of
the Users Group). These people have done, are doing and will continue to do
excellent work, whose end result means that you can concentrate a large num
ber of extended resources on YOUR objectives. There are many "possible goals"
that you do NOT have to worry about unless you really want to. If you want an
operating system, a database management system, a report writer, a word proces
sor, an editor, etc., SOMEBODY else has already spent endless hours and lots
of valuable resources to make these things available to you. Likewise, if you
want some warnings about things that you should treat with care and respect,
somebody else has spent endless hours and lots of valuable resources and has
published these warnings for everybody's benefit.

Two recent examples are Gerald W. Davison's article on IMAGE LOCKING and
Application Design (see reference 2) and my article on Design and Maintenance
Criteria for IMAGE Databases (see reference 3). If you want an extended
bibliography and a list of reference materials, please write to me and I will
be happy to send you a printout of my latest computerized information. Rick
Bergquist, the author of DBLOADNG and the User's Group Interface Committe
member for IMAGE would also like to hear from you (see reference 4).

A computer (HP3000 or otherwise) is just as good as the electrical power that
feeds it. My company has only a small Series 30 (Koala) but we have cheerfully
invested in an uninterruptible power supply that costs as much as one disc
drive. I personally authorized that procurement since I firmly believe in the
value of PREVENTION. Instead of having one more disc drive, I prefer to preser
ve whatever we have! I will not accept growth at the expense of reliability.

A computer room is NOT a social club. Keep traffic to a minimum. Do not use
it to store things which may be harmful to your equipment. Make your operators
strictly accountable for everything that moves (and does not move) in the com
puter room, just as if they were bank tellers. After all, your information
may be easily worth millions of Krugerrands.

8-·12 - 04



""".v
Most systems software is amazingly water-tight. Systems software people tend
to be careful to the point of being paranoid. And the good systems software
available for the HP3000 is truly outstanding. Just check the DATAPRO ratings
for Hewlett-Packards systems like IMAGE and for independent systems like QEDIT
and ADAGER or talk to the person sitting next to you. What is not so water
tight is the sloppy or malicious use of systems software.

Take QEDIT as an example. If somebody deletes a few lines from some of your
source programs (especially lines' that contain "IF" statements), your whole
computer system may produce strange results. Nevertheless, QEDIT is completely
innocent. You must develop procedures to decrease the probability of this un
pleasant happening. You may want to use Larry Simonsen's program to compare
source files (see reference 5). And you may want to implement a computerized
system to keep track of changes to your source files. We have IMAGE logging.
We should also have SOURCE-FILE logging.

Take ADAGER as another example. If somebody adds a field to a data set or re
shuffles the fields in a data set without recompiling ALL affected application
programs to update their buffer definitions, your whole computer system may
produce some unusual results also. Nevertheless, ADAGER is totally innocent.
You must also develop procedures to decrease the probability of this occurren
ce. You may want to use ADAGER's SCHEMA and XRAY functions to get periodic
snapshots of your database and to compare them with your reference documents.
Logging ADAGER database changes will help you in this matter. Anyhow, before
diving into'the pool, your applications program should check whether the pool
has any water in it or not! A simple call to DBINFO, for instance, can easily
tell your program that a change in a data set's entry definition has taken
place. If this is the case and if your program is not qualified to handle the
non-standard situation, it should report the discrepancies and quit before it
clobbers anything.

Take DBUNLOAD/DBLOAD as still another example. Both Hewlett-Packard pro
grams handle full entries (see reference 6). If you delete or add field~, if
you redefine items, or if you delete or add sets, the fact that the unload/load
cycle completes successfully does not mean a thing: your database may still be
easily clobbered anyway!

One of the best preventive measures you can take is to establish a standard
DATA DIRECTORY & DICTIONARY system. Tipton Cole is the Users Group Com
mittee Chairman for this project. He would like to hear from you if you are
interested in these ideas (see reference 7~

Logging and recovery are worthy things in themsel ves. But you can never be
protected 10096. For instance, if a system failure happens in the middle of a
logging/recovery cycle, your database may be left in an inconsistent state.
Rick Bergquist has done extensive work in this area and you may want to
contact him for further references (see reference 4). For the time being,
HewlettPackard's recovery system allows only roll-forward. Rick's method
allows also backout recovery.

The Users Group Contributed Library is certainly full of very valuable software
(getting close to two million U.S. Dollars in value). But you must check its
programs carefully to be sure you understand them. And you must maintain these
programs to keep them in step with the times (and the operating system relea-

B-12 - 05



ses!) For instance, if you installed OVERLORD or SOO a couple of years ago,
you will have to change them when you install MPE IV. The Central Contributed
Library Office will send you the Contributed Library Tape with the appropriate
software but YOU still have to install it yourself. If you have any questions
whatsoever, contact Mark Wysoski, the most knowledgeable person regarding the
Contributed Library. He will help you and he will guide you, whether you need
to use a program or contribute a program. He usually knows whether any bugs
are outstanding on a given program that may cause problems in your site. And
all the other members of the group would appreciate it if you would report any
peculiarities that you observe in the contributed programs. This community
wide network is essential for all of us. Please help. (See reference 8).

Even though Hewlett-Packard equipment is very reliable, it may fail, since it
is not exempt from ENTROPY either. The obvious things like printers do not
worry me too much. But the subtle things like CPU chips do worry me. My Cus
tomer Engineer in Guatemala, Johnny Siemon, taught me how to run the CPU diag
nostics. I run them once a day (you can never run too many diagnostics!) If
any test whatsoever fails, I do a few things like resetting the CPU and then
giving the test another try. If it fails again, I pull the plug and call him
immediately, with the exact chip number. He arrives with the right parts and
I am up and running very soon. I would much rather do this bit of HARDW ARE
PREVENTIVE work myself than risk the possibility of "unusual" address calcula
tions on disc for file-write operations, for instance. (Just for the record:
I have only found one bad chip in more than a year of operation. Johnny had
the part shipped from Guatemala City to Antigua and installed while I had
lunch. So, for all practical purposes, our HP3000 has never been down. This
is the best motivation we have to keep our budget for investments in preven
tive measures UP. At any time. All the time. At any cost. It turns out to
be dirt-c~eap in the long term. And our strategy, as a company, is quite bias
ed towards the long term by choice).

I am amazed at the kinds of cruel environments in which the HP3000 computer
survives. Nevertheless, there are a few things that you should watch out for.
Controllable by you (at a cost) are things like smoke, dust, and electrical
power. I would suggest that any investment you make to control these parameters
will pay for itself many times over. Uncontrollable parameters like cosmic
rays, earthquakes, floods, wars, etc., will not affect you as much if you have
previously established a consistent program of backup and recovery, complete
with emergency drills to see how your people behave under pressure. There is a
large amount of literature on this subject and I will be happy to mail you some
references if you wish. I would also like to hear from you if you have any sug
gestions or comments regarding the ways that you have implemented in your site.

B~·12 ~, 06



~.
\

PERIODIC CHECKUPS

Webster defines DIAGNOSIS as the art of identifying a disease from its signs
and symptoms, as an investigation or analysis of the cause or nature of a con
dition, situation or problem.

I have some friends lwho can smell a rat in no time at all. I have other
friends who could easily spend a year testing a system, full time, without
ever finding the errors that do exist in the system. I have decided that the
degree of "education", "training", "certification", etc. associated with suc
cessful diagnosticians seems to be totally irrelevant. A certain amount of
raw gut feeling is in effect here, which defies easy rules and pigeon-holing.
Just like music, poetry, painting, photography, architecture and other crea
tive endeavors, "some people have it and some do not". I have simply decided
that I prefer to invest my time IDENTIFYING good people and then relying on
their judgment rather than to waste my time trying to train untrainable peo
ple. This works out to be to everybody's advantage (there is nothing more pi
tiful than seeing somebody who has NO aptitude whatsoever trying to cope with
concepts or actions which are dramatically beyond that somebody's grasp).

You may have noticed that some of the most "naive" users of your computer sys
tem can detect, immediately, "when, how, and why" something is wrong. Do NOT
underestimate them! Usually they are the very clerks who know "their" data
and information quite intimately. Be sure to include such users in your early
warning system. They may be much more valuable to you than some sophisticated
programmers who spend all of your computer's resources navigating through
masses of data and sailing right past the most obvious problems which, if not
corrected immediately, will cause enormous losses. Do not forget that educa
tion, salary, title, position, age, sex, etc., are utterly irrelevant. If the
Vicepresident in charge of Information Systems and the payroll clerk do not
agree on something, I would always place my bet on the clerk's side (Not on mat
ters of policy but on matters of DETECTING ERRORS, of courseI)

"Errors" are a hard thing to define. We will use the term here in a somewhat
subjective manner related to our "desirability" of certain things. We will say
that an ERRONEOUS SYSTEM, given a set of TRIGGERING CONDITIONS, will cause
a set of UNDESIRABLE EFFECTS. You certainly do NOT want undesirable effects
under any circumstances or conditions whatsoever. Unfortunately, this is an
impossible goal, since you could not even dream up ALL possible sets of
conditions, much less test and certify themI

A good DIAGNOSIS SYSTEM should analyze the behavior of your system under a
meaningful subset of the total CONDITIONS SPACE. This is easier said than
done. Defining this meaningful subset is a very difficult task. Even more,
the fact that a diagnosis system does not uncover undesirable effects under
its subspace of conditions does NOT mean at all that you have a correct
system. You may be just lucky. Your set of tested conditions may be such
that those portions of your system which produce undesirable effects are just
not exercised. But those nasty portions of your system are precisely the ones
you want to discover because they lurk there, ready to jump whenever their set
of conditions happens (according to Murphy, this will happen at the worst pos
sible time).

B- 12 -. 07



A good system of diagnosis goes much beyond just saying "no errors detected".
It devises as many sets of linearly-independent conditions as possible to see ~
how the system reacts. If it detects undesirable effects, it issues appro-
priate messages saying "the system fails with this set of conditions (and des-
cribes them)", "the effects are (and describes them)", "the error(s) probably
reside(s) in such and such part(s) of the system". Instead of just telling
you that something is wrong, it tells you how precisely it is wrong, perhaps
why it got that way so you may avoid it next time, and how you can fix it.

Please notice that a good diagnosis system must be nasty and sadistic by nature.
It has as its primary objective to FIND ERRORS, not to certify a system as being
error-free (there is no such system anywayI) A good diagnosis system must also
be extremely patient and humble, since it will fail many times. Please keep in
mind that there is a psychological inversion in effect here: A good diagnosis
system fails if it does not detect any errors. And most of the time it will not
detect any errors, since we hope and assume that the entity being tested is rea-
sonably error-free. Naturally, if you are testing a "lemon", almost any diag-
nosis system will have a successful run. But that is the trivial case!

It is unrealistic to even attempt to test ALL POSSIBLE sets of conditions. It
is unrealistic to even suggest to test the much smaller subset of ALL PROBABLE
sets of conditions. The challenge for the diagnosis system then is to find the
MAXIMUM number of errors and faults with the MINIMUM investment in diagnosis
tools and test runs.

A large number of diagnosis tools and diagnostic runs may be totally worthless
if they are poorly designed and implemented (they will simply say "end of step ~

154, no errors found" or "error 538 found in step 47, loop 10457"). On the
other hand, a small number of these tools, intelligently put together, may be
very effective in finding elusive errors. Such a system, naturally, is very
difficult to design and implement. We are just now in the threshold of a new
era in software engineering.

It turns out that Zeno's paradox applies equally well to finding errors as it
does to shooting arrows: Finding the first "half" of all errors present in
the system requires some effort; finding half of the remaining errors takes
about the same amount of effort, and so on ad infinitum, with the last dif
ficult bugs taking more time to find than the first (to quote from Brooks'
"The Mythical Man Month"). We have here something akin to a half-life type of
situation for bugs!

For specific programs that you can run now to diagnose IMAGE database'\errors,
please write to me and I will mail you an up-to-the-minute list of references.
In the meantime, here is a partial list:

- DBCHECK (also called STRUKCHK). In the Contributed Library. Distributed
also in the QEDIT and ADAGER tapes•. It cruises through either one or all
data sets in a database. It does a fairly thorough examination of all the
structural parts of the data sets and reports, in great octal detail, those
things that it does not like. A few of those things may not be errors at
all but it always nice to know that the program detected them.

- DBLOADNG. In the Contributed Library, QEDIT and ADAGER tapes also. It ~
also cruises through a database's data sets and produces a summary report

8-12 -. 08



on the general state of the database. It indicates conditions that may
require attention (like master capacities which are not prime numbers, or
master data sets which are more than 80% full, etc.)

-ADAGER'sXRAYandSCHEMAfunctions, as well as QUERY's FORM command, will
give you a fairly good idea of what is really in your database (as opposed
to what you THINK is in your database!)

-DBSTORE/DBRESTOR(orADAGER'sBACKUPfunction)willdosomereasonable
ness checking to make sure that, at least, you have all the MPE privileg
ed files that your database is supposed to have.

8--12 ~. 09



TREATMENT

There are good procedures for the detection and correction of database errors
and faults. They are still primitive but can be very effective in those cases
they can now handle. And they are impressively learning to deal with new cases.

Hewlett-Packard has developed a program which is a Systems-Engineer tool.
Please attend Duane Souder's session ("OBTEST: A database structure test and
repair facility") and please read his paper in these Orlando-81 proceedings.

Rego Software PTY has developed an ADAGER function called NURSE which is cur
rently undergoing pre-release tests. Many ADAGER modules, as a matter of fact,
have already incorporated some of NURSE's functions and have been released sin
ce 1980. NURSE has been developed with the help of many ADAGER users allover
the world. Whether you are an ADAGER user or not, I would appreciate your help
during our ongoing research and development efforts. Please provide us with
samples of database errors so we can analyze them and classify them.

ADAGER's NURSE function is developing in an evolutionary way. It is now a re
cognized expert on those categories of database errors that it has catalogued
in its "vocabulary". And it provides a commented report on those database
errors that it has not (yet) learned to correct. The ADAGER-formatted file
created by NURSE contains enough information to allow us to incorporate a new
linearly-independent vector in NURSE's vector-space base. This way, the cycle
keeps on going: Our friends (and NURSE) report to us new categories; we study
them and incorporate them into NURSE's bag of tricks... and so on!

Wayne Benoit's DBGROOM (in the Contributed library) allows you to directly ma
nipulate structural elements in an IMAGE database. It allows you better ac
cess than if you were using DISKEDIT. But you are still fully responsible for
all that octal thinking! If you blow even one vital root-file bit, nobody
will warn you. This is a great tool if you REALLY know what you are doing (and
Wayne Benoit certainly knows what HE is doing, since his knowledge of the in
ternals of IMAGE is very thorough); but this tool can destroy everything if you
do not know what you are doing.

Hewlett-Packard's PRIVILEGED DEBUG and DISKEDIT allow you unlimited access to
every single bit in memory and on disc. You can fix ANYTHING, in theory, by
means of these tools. But you have to think strictly in terms of bits. Zil
lions of them. Each with a vital meaning. I sincerely do not believe that
anybody can use these tools for reasonably complicated surgical operations on
databases. But they are certainly available anyway to anybody authorized by
your HP3000 System Manager.

8-·12 ~. 10



FOLLOW-UP

You cannot afford to lower your guard. You must follow up. Always. One way
to follow up is to keep up with IMAGE-related research and development. Read
the Users Group Journals and Newsletters. Attend your local Users Groups meet
ings. Call your HP3000 colleagues whenever you have any questions, comments
or suggestions. Contact your Hewlett-Packard Systems Engineer and your in
dependent software suppliers.

Hewlett-Packard's IMAGE is an excellent database management system. It is
simple. It is reliable. It is robust. Hewlett-Packard is committed to its
continued improvement. Rego Software PTY is committed to ADAGER's continued
improvement. Other software vendors are committed to the continued improve
ment of their IMAGE-related products.

If all of us in the world-wide Hewlett-Packard family integrate the use of our
combined resources for the attainment of our common goal, we can all look for
ward to IMAGE's unbounded success. THIS IS OUR COMMON GOAL. Let us all
follow up!

Thank you.

8-12 - 11



REFERENCES

1 - Robert M. Green (604) 943-8021 Telex 04-352848
Robelle Consulting Ltd.
5421 - 10th Avenue, Suite 130
Delta, British Columbia V4M 3T9
Canada

2 - IMAGE LOCKING AND APPLICATION DESIGN
Hewlett-Packard Users Group Journal,
First Quarter 1981 Vol IV No. 1
Gerald W. Davison
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439
U.S.A.

3 - DESIGN AND MAINTENANCE CRITERIA FOR IMAGE/3000
Hewlett-Packard Users Group Journal,
Fourth Quarter 1980 Vol III No. 4
F. Alfredo Rego
Rego Software PTY
Calle del Arco 24
Antigua
Guatemala

4 - OPTIMIZING IMAGE: AN INTRODUCTION
Hewlett-Packard Users Group Journal,
Second Quarter 1980 Vol III No. 2
Rick Bergquist (415) 573-9481
American Management Systems
561 Pilgrim Drive
San Mateo, California 94404
U.S.A.

5 .. Larry Simonsen (801) 489-8611
VALTEK
Mountain Springs Parkway
Springville, Utah 84663
U.S.A.

6 - IMAGE!3000 REFERENCE MANUAL
Hewlett-Packard Company (408) 725-8111
19447 Pruneridge Avenue
Cupertino, California 95014
U.S.A.

7 - Tipton Cole (;12) 452-0247
Cole & Van Sickle
7701 Cameron Road
Austin, Texas 78761
U.S.A.



~
\ 8 - Mark C. Wysoski (509) 527-5360

Manager, Hewlett-Packard Users Group
Contributed Library
Whitman College
Walla Walla, Washington 99362
U.S.A.

~".
\

8'-·12 ~. 13



ANSI COBOL 198X: A SNEAK PREVrlliJ
Greg Gloss

lIe"lett-Packard Information Systems Division

ABS~RACT

The ANSI (American National Standards Institute) X3J4 technical
committee is in the final stages of work on the next version of
the COBOL standard. This paper \d11 discuss some of the major
new features which are expected to be included such as structured
programming constructs together with tl10se items ,mich will no
longer be allowed in the next standard. The standardization
process will also be covered briefly.

BACKGROUND

The current -version of ANSI COBOL 'las adopted in 1974. Since
1977, the At~SI X3J4 committee has been \10rking OLl the next
version of the COBOL standard. Since it is not clear how long
this process will take, I will refer to the next standard as
COBOL '8X.

OVERVIE\~

The next standard will have changes in the following categories:

a. New Features
b. Transitional Features
c. Deleted Features
d. Specification Changes
e. Ne'J Reserved ~~ords

A significant effort has been put into incorporating structured
program~ing constructs into COBOL. In addition, other new
facilities have been added to cake programming in COBOL easier.
Some current features have been flagged for deletion either in
the new standard or in the subsequent standard. Those features
which are in the new standard, but which are not expected to be
in the subsequent standard are called transitional. There have
also been some changes to tlle rules and additional reserved words
included which nay affect existing programs.

STRUCTURED PROGRAMlIING

The new structured progranning constructs which have been defined
for COBOL include Scope Terminators, PERFOID1 statement
enhancements, the EVALUATE statement, and the CONTINUE statement.

Scope Terminators

Under COBOL '74, conditional statements could not be included
with the statement group following a conditional phrase such as

Monday B-14 - 01



~'
AT END or ON SIZE ERROR. New re~erved words have been added such
that any conditional statement can be turned into an imperative
statement and used as part of the conditional statement group.
For example,

READ FILE-IN AT END
ADD A TO B ON SIZE ERROR

PERFORM OVERFLOW-ROUTINE
END-ADD
trOVE SPACES TO REC-IN.

Under COBOL '74, it is not legal to specify the ON SIZE ERROR
phrase in the above example because it turns the ADD statement
into a conditional statement and only imperative statements are
allowed following the AT END phrase. However, with the scope
terminator, Et.-1D-ADD, the ADD statement with the SIZE ERROR option
becomes an imperative statement and is legal in this situation.
The MOVE statement is the second imperative statement to be
executed if the AT END branch is taken and the period terminates
the READ statement. If the READ itself were nested under a
conditional such as an IF, it would be terminated by a END-READ
instead of the period.

PERFOID1 Statement Enhancements

The PERFORM statement has been enhanced to allow a list of
imperative statements to be embedded within the statement instead
of paragraph names and to allow the programner to specify whether
the UNTIL conditions are to be tested before or after the
specified set of statements has been executed.

An example of an in-line PERFORM is shown below:

PERFORM 10 TIMES
ADD A TO B
ADD 1 TO A

END -PERFORM.

The two ADD statements will be executed 10 times.

Under COBOL '74, the m~TIL conditions are always tested before
executing the specified paragraphs. The new specifications will
allow tIle test to be made afterwards. For example,

PERFORif READ-LOOP
~lITH TEST AFTER
Ur-~TIL EOF-FLAG.

Control will always transfer to READ-LOOP at least once. The
test option may also be specified with an in-line PERFORl-1.

8-14 - 02



EVALUATE Statecent

The EVALIJATE statement adds a multi-condition CASE construct to
COBOL. The EVALUATE statement causes a set of subjects to be
evaluated and compared with a set of objects. If the comparisons
are all true, a specified group of statements is executed. For
example,

EVALUATE HOURS-WORKED EXEMPT
WHEN 0 ANY PERFORM NO-PAY
WIlEN 1 THRU 40 ANY PERFORM REG-PAY
WHEN 41 THRU 80 "N" PERFORM OVERTIME-PAY
WHEN 41 THRU 80 "y" PERFORM REG-PAY
WHEN OTHER PERFORM PAY-ERROR.

The above example evaluates two data items, HOURS-WORKED and
EXE11PT. If HOURS-l-lORKED is 0, any value for EXEl1PT will
be true and NO-PAY will be performed. If HOURS~10RKED is between
1 and 40, REG-PAY will be performed. If HOURS~ORKED is between
41 and 80 and EXEMPT contains "N", OVERTIf.1E-PAY will be
performed. If HOURS-WORKED is between 41 and 80 and EXE1·IPT
contains a "Y", REG-PAY is performed. If none of the above
conditions are true, PAY-ERROR is executed.

CONTINUE Statement

The CONTINUE statement is a no operation statement which
indicates that no executable statement is present. It may be
used anywhere a conditional statenent or an imperative statement
may be used. For example,

IF A < B THEN
IF A < C THEN

CONTINUE
ELSE

t10VE ZERO TO A
END-IF
ADD B TO C.

SUBTRACT C FOROI1 D.

The CONTINUE statement allows control to go to the ADD statement
following the IF when A is less than C. If the NEXT SENTENCE
option had been used, control would have transferred to the
SUBTRACT statement instead.

OTHER NE\l FEATURES

There is a long list of other new features which should make the
job of the COBOL programmer easier. The more significant
ones are listed here.

8-14 - 03



Reference tfodification

Reference nodification allows you to reference a portion of
a data ite~ by specifying a leftmost character position and a
length. For example l

MOVE A (3:5) TO B.

will move the third through seventh characters of A to B.

INITIALIZE Statement

The INITIALIZE statenent provides the ability to set selected
types of data fields to predetermined values. Assume RECORD-I
was described as follows:

01 RECORD-I.
05 ElfP-NO PIC 9(6).
05 Er1P-'N~1E PIC X(20) •
05 EI1P-PAY PIC 9(5)V99.
05 JOB-TITLE PIC X(20) •

The follolling INITIALIZE statements in the Procedure Di~lision

could be used to put values into the record:

INITIALIZE RECORD-1 REPLACING NID1ERIC BY ZERO.
INITIALIZE RECORD-I REPLACING ALPHANUt1ERIC BY SPACES.

The effect would be the sacre as:

110VE ZERO TO EMP-NO El1P-PAY.
MOVE SPACES TO EMP-NMfE JOB-TITLE.

De-editing

Under COBOL '74, it is not legal to nove fron an edited field
to a numeric or numeric edited field. The new specifications
will allow moving from a numeric edited item to either a numeric
or numeric edited item. The edited item which is the sending
item will be converted to its numeric value and moved to the
recei-ving field.

REPLACE Statenent

The REPLACE statement function is similar to that of a COPY •••
REPLACING except that the REPLACE statement operates on all
source program text, not just text in libraries. Thus, if one
of the new reserved words is used heavily in an existing
program, you may want to use a REPLACE statement to change it.
For example,

8-14 - 04



REPLACE ==~EST== BY ==TESTT==

will replace all subsequent occurrences of TEST by TESTT in the
source program until another REPLACE statement, a REPLACE OFF
statenent, or the end of the source program.

•
Optional FILLER

The ~..,ord FILLER is nO\l optional for data items which need not
be named.

01 A.
05 13
05

PIC X(5).
PIC X(S) VALUE "NM·1E:".

INITIAL Attribute

The INITIAL clause in the PROGRM1-ID paragraph indicates that
every time tIle prograln is' called, the internal data is
initialized. This function is the same ns the $CONTROL DYNM1IC
option on the HP-3000.

PROGP~~-ID. SUB-PROG INITIAL.

EXTERNAL Attribute

The EXTERNAL clause specifies that a data item or file is
available to every program in the run unit which describes the
data item or file.

FD FILE-l IS EXTERNAL.

S~1BOLIC CHARACTERS Clause

The STI1BOLIC CHARACTERS clause in the SPECIAL-NM.fES paragraph of
tIle En\Tironmellt Di-vision allows the programmer to equate a name
to a specific character. This feature can be useful for
non-printable characters. For example,

S~IBOLIC CHARACTERS BELL IS 7, CARRIAGE-RETURN IS 13.

This clause would a110'1 a l(IOVE statement such as

l-fOVE BELL TO A.

ADD Statement Enhancement

Under COBOL '74, the ADD statement allows either a TO or a
9IVING format, but a statement of the form

B-14 - 05



ADD A TO B GIVING C

is not allowed. The new specifications will allow the TO
before the last operand when the GIVING option is used.

Alphabetic Tests

Two new alphabetic class tests have been defined:

1. ALPHABETIC-UPPER will be true if the data item being
tested contains only A-Z and spaces.

2. ALPHABETIC-LOWER will be true if the data item being
tested contains only a-z and spaces.

TRANSITIONAL CATEGORY

There are some features of the current standard which are
scheduled for a phased deletion. Implementations must still
support these features in the new standard, but not in the
subsequent standard. Certain clauses have been moved from
the file control entry in the Environment Division to the
file description entry in the Data Division and vice versa.
The old locations are specified as transitional elements so
implementations of the new standard must support programs
which contain the clauses in either the old or the new
locations. The following Environment Division clauses are
included in the transitional category:

FILE-STATUS
RECORD KEY
ALTERNATE RECORD KEY
ACCESS MODE

The following Data Divison clauses are included in the
transitional category:

BLOCK CONTAINS
CODE-SET

The Identification Division paragraphs are included in the
transitional category in favor of the more general comnlent
facility (* in colu~n 7).

The INSPECT••• TALLYING••• REPLACING format of the INSPECT
statement is included in the transitional category since
the same function can be accomplished 'lith two separate
INSPECT statements.

8-14 - 06



DELETED FEATURES

The following features are not included in the next standard:

1. The ALTER statement.
2. The ENTER statenent.
3. The MID10RY SIZE clause.

OTHER CHANGES

Nffil status code values for file errors are being defined. These
codes will cover situations which violate the standard but for
which no standard status code \Ias defined. For example, trying
to open an indexed file in a program which declares it to be
a relative file.

The order of the s~eps in a multi-conditional PERFOID1••• VARYING
statement has been changed. Under COBOL '74, the statement

PERFORM PAR-l VARYING I FRO~l 1 BY 1 UNTIL 1>10
AFTER J FRO~l I BY 1 UNTIL J>10

would set I to 1 and vary J from 1 to 10 and then set J to 1,
increment I to 2 and vary J until 10. The new specifications
will increment I to 2 before setting J to I. Thus, on the
second cycle, J will vary from 2 to 10 instead of 1 to 10 as
under COBOL '74.

The new reserved word ALPHABET is required in the alphabet
clause of the SPECIAL-NM1ES paragraph.

ALPHABET ASCII IS STA~IDARD-1.

RESERVED WORDS

The following new reserved words have been added:

ALPHABET
ALPHABETIC-LOWER
ALPHABETIC-UPPER
ALPHANm1ERIC
ALPHANUMERIC-EDITED
ANY
CONTENT
CONTINUE
CONVERSION
CONVERTING
DAY-OF-4vEEK
END-ADD
END-CALL
END-C011PUTE

END-DELETE
END-DIVIDE
END-EVALUATE
END-IF
END-11ULT IPLY
END-PERFORM
END-READ
END-RECEIVE
END-RETURN
END-RElJRITE
END-SEARCH
END-ST.A.RT
EtID-STRING
END-SUBTRACT

8-14 - 07

END-UNSTRING
END-~lRITE

EVALUATE
ExrERNAL
FALSE
INITIALIZE
Nill1ERIC-EDITED
OTHEH.
PADDING
REPLACE
STAIIDARD-2
TEST
TRUE



STANDARDIZATION PROCESS

There are two committees which work on defining COBOL. The
CODASYL COBOL Conmittee has the responsibility of developing the
language. The ANSI X3J4 committee has the responsibility of
standardizing the language. When working on a new standard, X3J4
can adopt specifications from either the previous standard or
fro~ the Journal of Development which reflects the work of the
CODASYL COBOL Committee. If there is a problem with the Jon
specifications, X3J4 must either subset the specifications from
the Jon so that the problem does not appear in the standard or
request that CCC resolve the problem. Both committees have
representatives from implementors, users, and government. X3J4
currently has 23 members and holds six 4-day meetings each year.
The work on the next standard is nearing completion as the
committee is currently processing comments on the formal letter
ballot of its members. Assuming tl1at a t\~o-tllirds' vote in favor
the proposed draft is achieved, the document is forwaded to X3
who, in turn, votes to send it out for an official public comment
period of at least four months. The X3J4 comcittee \nll review
all comments recei-ved during this period. After all negati've
comments have been processed, the X3 committee votes on sending
the draft proposed standard to ANSI to be formally processed as a
new standard.

During the standard revision process, X3J4 has published
information concerning its work in COBOL Information Bulletins.
The latest one was CIB 19 which was published in l'~Y, 1980.
Comments concerning the draft standard will be officially
requested during the public review period; however, comments
may be submitted earlier to:

Chairperson, X3J4
CBEl:1A
1828 L St. N.W.
Washington, D.C. 20036

8-14 - 08



g'uccesswi th Manufacturing -'ppl i cat ions:
Imp le.entation, of "ater:ials"anage.ent/3 GOO

bSf

Beth Eik.enbary
"anura~~u~in9SvstemsOp~ration

'Hewlett-Packa~d Co~

Tuesday c- 1 -01

-.....

I~



Introduction
1. Ob..iective: The purpose of this paper is to describe and

discuss key .elea&nts in~olved in defining the
processes for the imple.entation or Materials
Manage••nt/3GBO. This discussion is not
intended to·bt ·co.plet~ - only descriptive~

depicting-the wide range of activities involed
in the process~o' i_ple.entation. Of
paramount i.portanee throughout this paper is
"user involve.ant". Any successful
implementatin .ust ~ork with the user
community in all phases or the project.

2. Process: The following topics will be discussed in the
body of this paper .

• , Project T_a. Development: Identl~1cat1on o~

'p~oject tea••eMbers and
stracture as an integral part of
the i.ple.~ntation process.

b. Operational Audit: Rnalysis of the current
.anufacturing organization l

iocluding the interfaces to other
cont.ro 1 SSfstells.

c. Develop Implemenation Plan:
-Cene~al Dasign: Define system

objectivesJ develop conceptual
design .odelsi ~nd apply organi
zational constraints to the gen
eral design.

-Detailed Design: Translate general
design into a usable for.at for
customizing "at.rials "anage
.ent/JOOO.

d. Custoaizingt Imple.ent the .odifications
veneratad 'rom
thepr~viou5 step. Verify
these changes as you begin
preparations for user training.

e, User Implementation: Training schedules for
all affected users should b@
established and adhered to.

f. Installation: Perfor. all necessary
testing or the customized Hater
iais Manage.ent~JOOO system J

test interface p~ogra.s and
complete all required user
training. ~ pilot system should
be initiated at tbis time,

9. Completed I.pl ••entation: Full-scale start
up ·or the s,ste. with user
reliance .upon the system.

C-l - 02



h. Hew S9stam ~uditl 8etYeen thr£e and six
aonths .,ter i.pIe.entation of
any .odule, a svst•• audi~

should be conducted to determine
the saccess of the i.pI_entation
process.

3, Structur~: The systems l.p~.entatlon structore should be
people-orianted l taam-oriented, and participa
tive geared to.ard the develop.ent l i_pIe.enta
tion and .onitoring of tha coapany's .anageaent
systems. This stracture l if properly developed
and 5uppo~ted, will not only help avoid the con
fusion and ~rastration that usually accompanies
automation; it will also provide a good balance
between data processing and user organizations.

4. Su••ary: This paper will describe the i.pIe.entation
of the entire.svstem. HoYe~ar, the actual
i.ple.entation process is orten .ada up of aodu
larized i.plementation sequences. Modules of
Materials Manage.ent/3800 .ay be installed in a
variety 0' different sequences. The aodule se
quence is.is dependent upon the specific needs
oT the manufacturing organization involved.
Determining-the i.ple.entation sequence is a
function of the Project Tea. and is acco.plished
during the Design Phase. These gaidelines are
appropriate for i.pIe.entation of each module
cluster as well as.the entire system.

C-l - 03



Project Team Davelop.ent.

1. Objective: To define a project ~ea. within the cOMpany
organization ~hich will o~ersee the implemen
tation process and ensure its success.

2. Process: The success o~ a manufacturing system 1mplem2n
tation is dependent to a large .extant upon the
.rf.cti~eness o~ ~he Projt~t Team designated
to monitor the i.ple.entation. This team
.ust have the authority .nd responsibility for
all phases or i.pIe.entation or "aterials
"anagement/3000. The group should be
composed of working representatives fro. the
affected departments, and should undergo a
continuin; education program in Materials
Planning t.opics.

3. Structure: The following functions should provide the core
(or the·Project Team.

-------------.-_.._--project
manaQer !

I ,.--------~--_.
=------------------:--------------------:•. ..

user
oroup

~------- -----,
•,
•, ,...----.-----~~-.

---------------! sYstems
! administrator !, ,
---------------_.The Project "aDage~ is responsible for

planning, orgranizing, and cont~olling the pro~

ject team. A review or so.e of the tasks in
volved in successful aanagement or the project
team is included here .

• Planning activities, tasks, and end
results

* Coordinating tasks and re50u~ces

* Interfacing between team and aanage.ent
* Effective utilization of systems

and user personnel
* Monitoring project status against plan
* Identifying probl~. areas (both

functionally and technically)
* Solving problems and dealing .frectiv~ly

with· crisis situations

User co.mit.ant is essential to the .accass
or any information svstea i.ple.ena~ion. An
individual should be identified ~s the focal
point for user groap involve.ant in the

C-l - 04



pro~essl The responsibilities of this
position are:

• Represtnt user needs and requirements
* Keep user departments informed or the

project. status
* Ed~cate asers in the conc~pts of for~al

manufacturing concepts
* Train asers on .tfective utilization of

the syst.em

The System ~d.1nlstrator is responsible for
the technical i.ple_entation or Materials
Management/3000. These responsibilities
include:

• Understanding user needs and
including those require_eRts within
the system

* System C~sto.ization

ale Data·, entry and s5'st-e. conyers ion
• Interface 'with related systems
• System ·perforMance

4. Summmary: Directed by the Project "anager, the Project
Team is a key working group in th& i.pIe.entation
process. The exact make-up in personnel of the
Project Team _ill va~y from company to coapanYI
however l it is essential that an individual be
designated and held responsible for the functions
outlined here.

C-l - 05



r'
b.

c.

d.
e.

Ooeratlonal Audit
t. Object1ve: To ensure the custo~pr has a complete understanding of

their manufactur1nq oroanization, as it stands today;
ann to identify informational requlrem~nts of thp system.
Thp purpose here 1s to completp an objective analysis of
the exlstlnQ ~anufnct~rlnq syste~s (manual and automated).
This ~j)'l famj11arizp the oroiect team with the current
pr Oce1ures, the people in th~ user df\partHl~nts and their
functIons, and the interfaces to the present system.

2. Process: a. ldpntlfv existlnQ syste~s flows, i.e. manUAl and
automated -- formal 3nd Intor~al. These systems 1nclune
master sch~dullng, bills of mnterlals (inclUding WOrK
centers, standard routln~ & cost accountinq information),
inventory and ordpr control, orn~r processlnQ, materials
planning. Fxample Of tools e~nloV~d here are system flow
diagrams, dat~ base schema's, decision l~vel nnalys1s,
infOrmation flow anAlysis and input/output analysIs.
Declsio~ level analy~is hr~~Ks ~ system do~rJ into decision
points 'lJhlctl control rE?sourses (both tanqjble and intanql
tble). Fxarrples of resOurces ;)re inventories, employee·
sK111~ and sO forth. These resources are defined and
appropriate dec1sjnn rules ~re f~rrrulated by management.
,.t")~ ~n~lysls d~termines how thp 1nform~tion will be
produced to meet the requlre~~nts of t~pse decision rUles.
Information flow analysis ShowS wllat information 15
reoulr~d, by whom, and from where jt 1s obtained.
lnnllt/outout ana]v5i~ sirnply sho~s t~~ data inputs and
i n for rp a t 1. 0 n 0 u t put 5 C f n S y S t em ·w i thOute 0 n C F.- r n for
necisions rr.ncie frem tt)P outputs.
] rl en t 1 f v un sol ve r.i pro rJ ] e TTl S, e. Cl. r rod uc t 10 n pro b 1ems,
people pro~l€ms, software/hnrdw~re, etc ••
ldentjfv ro]tcl~s, e.<l. lend ti;T1PS, orrl~r poli.r-les
legal, manaoerinl, Accountincr, enqine~rinq, etc ••
Identify exist1no costs.
Peauir~~ents analysis will be done by the systems analyst 1n
the custom~rs oraan1~aticn. There are three Qeneral steps
involved, first th~ annlYst and the user community need to
qenerate 1~eas on what information Is needed by them to
effectively ~o the1r ions. Second, this Intormatjon must be
vall~atpd for relpvnncp an~ then or1or1tlzed. Last, the
~conom1CAl and technoloalc~l feasihjlity ~ust be assessed.

3. structure: An establlshpd project tea~.

4. summary: At this pol~t we have a documenterl stat~ment ot w~ere this
oraanlzat1or.'s curr~nt information systems stands, both it's
strengths And weaknesses.
Studylna the ~xlstjrlQ SystFffi rrov1des the analysis with:
onE', e f fee t i v en e: S $ 0 f t~, e p r ~ 5 ~ 1" t 5 Vs t em: two, res n U rep
Tee 0 q n 1 t Ion , ~. hat 1s a v ii 1 1a t\ ] ~ in t e r rr. S 0 f t I a r d war e and
people: three, conv~rslon knowledae, when the new syst~m

Is Implement~d the analyst has identified whnt tasks are
necessary to bea1n oCfratina the ne~ system and to phase
out t tl ~ old S Ys t e",: and f 0 U r t '"' 1y, h e has a com fT· 0 n s tar t 1n q
po1nt with ~~na~effiPnt, to ~inlmt2e 'resistance' Of the
c tJ a n C'J e 1nthe 0 r Cl Ani Z a t. 1 0 n, t r. e a n a 1v5 tennco n t r a s t the
ne \J: S Ys t t' 'Tt tot he 0 1rl S i' s ten, and oj e rn nns t rat e t hat 1tis n9 t
en t 1 reI y n e I", a n rl 5 P e c- j f 1 c a J 1y 5 tl 0 W P 0 1n t 5 0 f 5 i rT' 1 1 a r i t y
ann dlff~r~nces.

C-l - 06



Gen~ral Design.

1. Objective: To ~efjn~ systeffi objectives: to develop conceptual des1an
~odels: and to apoIV orq~nlzatlonal constraints.

2. Process: Def1ninq sYstem o~1ect1ves results from eva]uatlna requirements
described in the previous ohasp. The qoal 1s obtained by
abstractlnq certaIn cparactpristlcs from nIl t~e intor~atlon

rpau1rements.
Peve] t)pment of conceptual rlesj.fJn mOnels entail s rleveloplnCl
hloh level flow n1~orams which qen~ral1y d~scrlb~ inputs and
outputs of the system, tre~t1nq th~ Syst~~ as n 'b]ac~ bOX'.
Once the mOdel is ~stab]1sherl, the analyst b~gins to praqmatlze
it bV apPIy 1nQ the additionaj syste~s requ1remP~ts (i.e. costs,
performance, r e Jlabjlity, mnlnta1nahl11ty, flexibility, Installatlor
schedule, expected qrowth ootentl~l ann anticipated lite expectancy
and cons1~er1ng the aval1a~le oraan1zational resources.
Aoplylna oraan1zntlonal constraints to thp d~sjan process requires
the ~xtensjv~ use of or~anlzatjonal resources. Many activities
are pursued withjn thf oraanizat1on which also require use of
thes~ resources. Thus, the infor~ation system must vie with these
other act1vitj~s to ohtain npCA~s~rv r~sourcps. Organ1zat1onal
rPsources arP uS\lally allocaterl to those activities which will
prov1de the are~t€st cost/effectiveness to the orqan1zation.
~ summary of b~slc des1an alternatJves 1s demonstrate~ below.

user
reaujr~ments, ,

._----------------
.~--------~---~-.-_._-~-----------~----_.. . .

do
nothlnQ

, I----------------_.
deveJon nell
system with
outsld~ help

, I._---------------.

d~sf.qn new
sYstem, ,

._----------------
neve 1op n~\\'

s 'Y' ~ t e""'
It"-t)ouse

, I.-----------------

modjfy old
systprP

I ,._---------------
p\lrch~sp

s Ys t. ern
fro 'r. 0 U t 5 1d f\, .._--------------.

1'hp analYst \\'111 have tr.ree b,;;sir- deslan Alternatives when
~v~lnatlncJ a set of systerr nnd user rpaulr~ments: (1) no nothing
(2) mo~ify pxistina Systf m enrl (31 ~eslqn npw systpm. When the
deci~lon 15 to riesiqn a new system, the ~nalYst considers the
'm~ke' Or 'hUy' alternat1v~s. In our case the dpcls10n is to buy.

3. Structure~ G.ne~al1y -the HP30GO Industry Specialist
is not actively involved in thesa steps,

4. su~marY: At this tl~e th~ customPT has l~entjfled wh~re they are and
~ n d ~. tl ~ r p t tl P Y ~ n n t t 0 ~ f' • T t1 j S j n for rr a t 1 0 n 1 s t h eo has 1 s
for c- tl S torn 1 z i not t) ~ ,.' ate r ; ~ 1 S ~.1 (-j n ~ 0 P TT, en t / 3 () li 0 •.

C-l - 07

'~



Detailed D~sjqn - rreoaratjon for CustomlZ1nQ.

("1. Objective: 'fO translate the rPQuirpment.s sopclfie~ in the general
conc~ptual desl~n 1nto a for~at wnlch will tacilitate
custo~iz1no Mat~rl~ls Man~aement/3n00: to propose nn
1mpl@ment:at1on str~t.~()y for t.his system: nnrJ to install the
stan~ard ~aterials ~an~a~ment/3000 system. Th~ Purpose j5 to
"! 1n 1m 17. e t t', e tot.::l 1 e 1~ r Spdt 1 ~I P 0 f imp 1(' !T' e n t 1n q a usa b 1e
systElm.

2. Process: The industry specin11st will provide t·h~ customer with aids
~1 h 1 c h wi 1.1 f Cl C tIl tnt p t tl e t nit. i n 1 L \J 5 tom j z ina rea u 1 rem e n t s •
Thesp nre·custo~iz1n~ aids reflect the standard systpm as it
leaves the factory, tney ar~ cont3Jned in th~ Industry specialist
Consulting Vito They are as tollows:
a. Scnema information - rieta11ed dpscr1rtlon of all the data

items, the1r d~ta types, field sizes,
default v~lu~s and the datn sets they
apnE-t1r on.

1"'. Screen dpttn.itions and layonts G

c. ppport layouts.
d. f'Or'T's f11~ listinos - 11st1nqs from VJf.~1 ot the forms tile,

thjs will he done at the customer's
if oossjblp.

The Systerr Administrator's manual descrloinq customlz1nq
cont~1ns all the infor~~tjon yOu will ne~rl to list other
c u s tom 1 z 1n a a j d ~ • T t: e 5 ~ a r f! not n E' C e S S ~ r y a t t his 5 tag e ,
but 1 f for 5 0 rr, eren son the y are n ~ e rj edt he 1n ci \l 5 try S pee 1a 11 s t
will h~ve ~cc~ss to these airls at their office.
Th~ propose" impl~mentation strateay is a nrototvpe development
pIa n G Ttl at 1~, t 0 f j r 5 t h r inc un t h f' S Vs t e ~n as j s, t. ne n
s tar t t P') p c u S t on, j z 1n <1 i n r; t"' -=1 5 e 5 • This p i PC' e me a 1 apr> r 0 a c h w111
net th~ customer up on the svste~ allowinq him to become familiar
with it and to start thp1r testinq. The custo~lZ1ng will be
comPleted in Phases, thUS mtntmjZjnn overall comolexlt~ of the
project, since 1.t 1s easy to r~custorT';ize tht? 5vstf:'rr.

3. St~uctore: The Industry Specialist is ~~~ taki~9 an
active role in the i.ple.e~tatl0n deslgn l

working with the customer in preparing for
system customization.

4. 5 u",mar y: Th 1 soh as e c (') n t. a ins two "' ~ i n ~ v e n t ~ 0 ri e, 1n 5 tal 1 j n Q t. he
standartj systerr· and two, prennrin1 for custorr,lzinq.
8utputs wjll be t~p initial reauire~ modifications of
the s tan dar rl r=' r 0 rl Uct. Trt a t 1 s, ci j S c r ~ pen c 1esIn d a t a 1t ems
an~ data 5ets~ an~ 5cr~pns to he ~odlfled, adderi or rleleted.
preliminarv 1nvestja~tion for the other parts of customizing
will be started no~ ann In1ti~1 custom!z1na will commenc~.

C-l - 08



Custo'1'iz1nq rlo1aterials ~}an~oement/3()OO.

1. 0 b j e c t 1ve: Toe 0 mpIe t e the rea u 1 r f? ci c u s t. 0"' 1z a t 1 0 n 0 f Mat e r 1a 1 s
ManaQement/3000 to fit the needs of the customer: to identify
measures of data base Inteqrjty: to identify and implement
security reoui'rements: ,::jnd to initiate user trainlno. ~

2. Proc(\ss: Thp ne~·1e<i proc-esses y;j]l be t:'ror~n riown jnto functions.
The t 1 rTl 1n r; i s 1. rri p 11 e d hY t rl e Q r de r 0 res e n t ~ d for t ask sa, •~ & c.
~. Oroan1ze the sCr~~ns ~y cate~ory, i.e. ~dd, change, nel~te.

comolet.e VIE.\-. SCTE'en Inyout forms (Apoend1x I), keep them
ordpred by cat~1ory. r,text ~ithpr PllN FOPP.JSPEC or enter
VTE\v v1a the custornjzer. In VIF'/J, the order 1n which you
mOdify the forms file is not jmportnnt, hut it Is best
to dO all adds at one time and so on tor chanq1ng ana
deleting. Remp~bPr to comnl1~ the forrrs tile before ex1t1nQ
VTl::w.

b. The next step 1s the ~~ta 1tew definition within customlzer.
This e r, t ail ~ t h p a rl din (1, d ~ 1 e t 1n ,., and c t-. a n a j n q 0 fda t a i t ems
eXl~tln'J 1~ "~aterjals Maf")aqeirf>nt/3000. 1.1se the Dat::t Items
work Sh~et (AppendIx IT) to or'l-3nize your rnO'iiflcat1ons to
the da t ~ bas e s • l' h j 5 for fTl ,:j 1 1o~: 5 V0 II t () 0 r q ani z e the 5 e
11pdt-ltes by d3ta set. This stleet's lnformntlon can also help
'It'1th assianjrlq tt)e n€\\' data 1trms to dr9ta spts, via the
'ADD flfLDS TO " D~lA SE1' screen.

c. fol]o~lna the def1nition of your rlAta items you can modify
t tl est Mn~ a r d s r P E' n 5 S lJ P P 11e d b V ',1 ate r j a 1s 1101 a na 9 f':\ me rl t / 3000 •
There are two functIons involved In norl1f1na screens in
customjzet, first is scr~pn ~ef.in1tion ~no s~connly

oef1n1na tne scrE>pn layout.. ~otf? that tor ~~~~~IJ Screens you
only nefine ttle screen, thp.re is no l~yout function. ~

lhe Scree~ Wor~shept (Ap~en~ix JII) contains hoth functions. . ~
The top pOTtlon corresnonds to the screen cipfjtion a~d the
bC'ttom. 1s trl~ scr~~n layout. \AJhen enter1nQ this infor rnat1on
on t he s Vs t ~ rn , you S h 0 u ]·d Ii 0 ~ 11 your s r eende f 1n j t Ion s
to'1 P ther and then do nll your SCr~en layouts. The redson for
thjs separatJon js two fold, first th~ scr~en has to te
det1nen hefore you can do the layout ~~d seconrlly these
functions are ser~rated in thp system. Th~rpfore, it 1s
hetter to do t~e scrpen rlefintlons first then rio the
l~yo'Jt s.
NON t h .=3 t Wert a v ~ rr. 0 d i fie d ~ 1] t h p

necessary scr~€ns anrl data sets, ~e CAn ~evelo~ and enter
the oroc~s~lnq sp~clflcat1ons. Tnere spec.'s ~re not the
5 a mea s t t\ eone s r-; e f? n 1 n VJ r ~~ , the y are howe v ern me c han 1 s m
which ~jll enable the> user to oerfor Tr, SOTTle cornputlonal
oPerations on nata at the time the screen is bein9 processed
~y ~~at~r1als M~naoem~nt/3000. Appendix TV contains a
Proces51no Sp~c1ftcat1ons Worksheet, this can he used In
o~Q~n1z1nQ and entering the required op~Tations for the
screens.

d. The above proces.ses are the If.ajn events of customlz1nQ,
the rea r e IT, any 0 t. h ~ T t n 5 k s wh 1c h rr U $ t h p per for me d p r 1 0 r
to the fln~l j~plempnt~tjon of Mater1al~ ManaQpment/3000.
hpre the order js not. i,",oortant. 'fhpSF:' functjons are:

(1) 'ler'f:inal COnfi;:luratton .. - Apoend1x V:
(?) P~port I.ayout Mo(i1fjc~tfons -- Appendix VI: .~
( 3) b a c k 9 rOll n d ,,10 h SCt\ e c:i u ) p .. - 1\. PP~ n d 1 x V TJ J
(4) System V~lues ~- Appendix VI1J:
(5) Custo~1z1nQ ~e~sag~5:

C-l - 09



,.,.
VIE~,

*Ad~, Chanqe, nelete sreens
3nd riata Itpms.

*Verlfy*
I ,

.---~--------------.

- - - - - - - - - - - . - - - - - - - - - - - - -

DATA
ITE~

DEF J "1 ON
, t._-----------------.

DEfINE
SCREEN

, ,._-----------------.

DfflNF
SCQE~N

L~YOUT, ,._----------------_.

PFnCFS5Jt~G

SPECIFICl1.TIONS

, t

._---~-------------.

. . - - - -

Cl'fliER
EVFf\JTS

, ,------------------_.

-- F·lGlJf-J~. 1 --

c-1 - 10

*Ao~, chanQe, delete data items
*AssIQn data 1te~s to nata sets
*V~rj t,,*

*Arl~, Chnnae, delete SCTPen
f'1 f? f 1nit Ion s for ni e n u, ret r 1eval
riT1ti d;ta entry.

*Verify*

*Arl'1ina, ct)~naJ.na screen layout
*~e~uenc1nQ ann rleScriPtion Of
d~ta items on the screen
for retrelval anrl entry only.

*vpr1fy*

*Arl1 computatlon~l features to
the sC'repn~.

*Verify"

*rnnflau~~ti~~ ~f t~rMlnals

*I..ieoort I,dVOllt ~·iO";' f 1cations
*f:<nCk',rour,r; ,.10hS

.-. Sv 5 t ~ rr Vn 1 u e ~ r.! (' ri 1 f f Cot ion 5

.. ,...~ e s S , a e ~ r \l ~ t C' I!~ i z a t 1 0 n
*HPlp ~crepn~ rusto~izat1on

*S~curit.'r'

*nntah~se Generation



(6) Customizing Help Screens:
(7) Security:
(8) Database Generation.

Functions (1) throuQh (4) have associated worksheets provided
1n the appendices to help in organizing, entering and
verlf1ng the results on the system. All these tasKS are
adnrpssed in the System Administrator Manual. Also
security can be done at various lev~ls In this system, at
th~ 'owest level.· data item ,level, at an intermediate
level -- VIEW and at the h1qhest level -- terminal security.

3. structure: A full staff with prOQrammers to design and program the
th~ interfaces between Materials Managment/3000 and the
other fUnctionS of the coropanY (e.g. accounting).

1 Project
Mananer, ,

._----------------

:-------------_.:---_._._-_._---:--_.._-_.._-----:----._--------:

4. Summary:

Eac~ function ho~n in the above c~art has certain duties
to nerfor m, they will vary from company to co~pany.

So~P Tesponslblltles of th~ system analyst would
be th~ initial analyst ~orK Of the materials and
manuf~cturlng departments,analyst work on Materials Manaqement
5yste~, training, manual procedures, fil~ conversion,
conversion fro~ the old system to the new one and desi~n

work On the interface programs. The programmer would be
involved with writIng interface and conversion
procr~ms, file conversion and syste~ testing. The systems
administrator would be involved with customizing, user
train~ng, and some analyst WOrK. Technical support and
hardw~re planing will be supporting and planninq tor the
hardw~re. Finally, the project manaqer ~111 be responsible
for t~~ administration of the entire project. This person
wi1' ~lso be communicating with tor management and other key
~anagers so11c1tlno th~1r support and reporting current
status of the project.

Follow1~q thjs phase we would have completed all
the n~cpssary tasks in customizer and VIEW. we will
have A tully cusom!zed system. The validity of all
the m~11tlcat1ons rests on a complete and precise
validAtion of each task after is completed. The forms
supp11~~ in th~ appendicps provide an effectlvp
means t~ verify your results by comparing them with
the aids supplied by the custo~1zer. These torms
are dPstgned such that they are consistent with the
screens in customlzer and with each other, thereby
minimizing the complexity ot this verification
process. Once the mOdificatIons have he en validated
by th~ ~yste~s ad~lnlstratoT (and even in conjunction
with tho analyst) we are reariy for our initial tests.

C-1 - 11



~ User Implementation

1. Objective: To establish education and training programs
for end-users to ensure achievement of skills
necessary for p~ope~ use or the system.

2, Process: Education and training must translate the
general principles or MRP into th~ specifics of
operations at the company. Education is defined
here as the learning of .anufacturing concepts
and basic operations of th~ system. Training is
the develop of skills in using the particular
tools provided by the system. Education and
training should ba.provided at the appropriate
level of detail and on the appropriat~ portion
Of the system ror all personnel that can have an
effect on -the saccess of the system. A general
ized outline is included here.

1. Hewlett-Packard training courses on
the -HP3000

* Programmer's Introduction
* System Operator
* System Manager
* Image--optional
* V/3000--optional

2. Hewlett-Packard traiaing for Mater~

ials Management/lOGO
• System Ad~inistrator I
* System Administrator II
* These courses are designed to

utrain the trainers"

3. Formal Manufacturing Concapts
* QSI video courses on Managing Pro

duction and Inventories and MRP.
* These·courses should be given to

personnel at all levels of opera
tion including top management.

4, In-house ~ser Training
* Each department is responsible for

training personnel on the specific
Yse'of the computer and the
application.

* Procedures and decoumentations for
wsers l operations, and the system
administrator should be completed
at t.his time .

• Development o~ backup-recovery and
(". disaster plans:.

c- 1 - 12



3. Structure: The Project Team is expanded to includ~

department representatives and training teams.

4, S~mmary: The paople part of an "RP system is fully 80~ of
tbe system, The system will work only when
people uderstand what it is~ how it works l and
what their responsibilities are, For this
reason , education and training are
critical steps in the implementation process.

C-l - 13

~·..·;'?1



~. Installation

1. Objective: To install a pilot start-up system and to
perform .11 ~eqaired system tests which
would insore the integrity of the Materials
"anagemen~/3000 system.

2. Process, Several controlled test .ust be co.pleted prior
to final conge~sion to the new system. A
start-up pilot installation can provide an
axcellent ~orMat tor testing the system.
There are th~ee main areas to test:

1. ~oading progra.s--data base loading)
2, System tests--veritication of custom

ized svstem;
3. Interface.progams--verification or

~ser p~ograms.

A pilot system also gives the ope~ating depa~t

aents an opportunity to learn the new system
functions .hile the daily volu.es are still at
ralatively low levels.

3. S~~ucture: The en~ire p~oject tea. will be in~olved

in tbis phase.

4. Summary: The pilot start-up is a necassary phas~ 0' the
implementation process. The pilot system can
help identify problems and solutions before the
total system is in place. Solutions at this
stage can be more readily implemented than at a
Iate~ point in 59stem cOAversion. Firm time
tables should be established Tor completion of
the .pilot phase J with adequate time for imple
mentation of operating procedu~e changes as
problems are .identified.

C-l - 14



Complet~d I.pIe.entation

1. Objective: To complete system installation and to
establish effective utilization of the
system by the users.

2, Process: At this point in the i_ple.entation, users
have been trained and the system has been
tested. The final steps at this stage are:

1. Load data basesJ
2, Perform test runs 0' batch processes)
3. Initialize and test interface

programsJ
4. Switch over fro. existing systeMs.

Depending upon the complexity of the conversion J

it .ay be advisable to run .odules of Materials
Manage.ent/3000 in parallel ~ith existing
systems until asers have gained complete
confidence in the system.

J. Structure: The entire project team J .5 well as a~~ected

use~sl will be inuolved in this phase.

4. Summary: At this tiae the systeM has been installed
and tested to gser satisfaction. The success of
the application is 'now the responsility of
management, It is exteraely important that users
realize tnatmanagement plans to ran th~ business
based upon ·the svstem. In doing this~ it will
become clea~ that the new system is designed to
be an integral piece in business ope~ations,

C-1 - 15



Hew System Audit

1. Objective: To evaluate the success of the i.plementation
and the 59stem,

2. Process~ Bet~e.n three and six .onths a~tar 1mple.entat1on
of any module of Materials "anageaent/JOOO there
should.be a ~ormal system audit. Questions to be
answered at this step in the i.plamentation
process are:

* Are us~~s effectively utilizing ~he

system capabilities?
• Ara~operating policies being adhired to?
* What proble•• exist ~ith the system?
* What aser requireaents were overlooked?
• Can the system accoaodate these changes?
* How are you prero~.ing against

established .easuremtnt ta~gets?

Any probleas identified in the .audit should be
documented, investigated l and resolved.

3. Structure: The primary p~oject team should be involved
at this time,

4. Summary: A successful imple.entation of Materials Hanage
ment/3000 should take between nine and 12 months,
There are three keys to the success of any
i.plementation:

1. Strong project .anagement;
2, Thoroagh training of users l

systems personnel l and .anageaent;
3, Top management co.mit.ent.

Without these three ingredients~ iMplementation
will slow do~n, frustrations .ount, and users
doubt the Ureality" of the new system, Once
moaentum has.been lost during this process l it
becomes doubly hard to restore,

C-1 - 16



Conclusions

This paper was not intended to be an indepth guide to implem@n
tation OT Materials Manage.ent/3000~ but a document which high
lights the issues and concerns surrounding the i.plamentation
of any manufacturing application. Tha success of any
manufacturing application ultimately resides with the effec
iveness 0' the implementation process. A kay point to remember
is that manufacturing organizations are not staticJ they will
change, These changes will Reed to be reflected in the
organization's information S9st••S. Implementation is a
p~ocess rather than a p~ojectJ when these changes occur l it is
again time to reiterate the analysis and custo.ization of the
Materials Management/3000 system.

Ack not., 1edgement

I would like to recognize the assistance or Tim "ahoney in ~he

design l development, and writing 0' this paper. Without the
"unpublished paper N this 'paper would not exist,

c-1 - 17



Form:
Repeat Option: - [ AnD
Next Foro", Optlon:___ l CHANGE
Next torm: r DELETf:

SCPFf:N LAYOUTr ..********* ..***if*********************_.i1**************************************

Field: _
Num: 1 Len: Name: Pnt): HI __-- Ftype: Dtype:_~

Init Value: ~__------------

*** PROCESS1NG SPEClfIC.l\TJrJr'JS .... *

Field: _
NUITi: t L~n: Niime: Ent'): Hf__-- Ftyoe: ntyoe: -
Init V~ll1e: - _

*** PRO C~: S SIN G S P E.. elF I r 1\ T 1 (1 t! S ** *

Field: _

Num: 1 Len: Nanie: __ - Enh: HI__-- Ftype: Dtype: .Inlt VAlu~: _

*** P~OCESSlr~G SP£CIFICAT.lr.)'\~s 44*

Field: ~_~~~~_~~ _
Num: 1 Len: Na~e: __- Fnh: ~Il rtv~e:_.. --- ntyne: .
Jnit Valu~: - --__- -_~_

*** PRnCF:SSTNG SPErlFr\ATT()~,:5 •• *

C-l - 18



*** PROCESSING SPECIFTC~TIONS ***

Field: _ _ _

Num: 1 Len: Name: - Enh: HI - ftype: DtYpe:_~~~~,<'''~In1t Value:____________________________________________________ ~'7

'- <

Field: - __
Num: 1 Len: Name: ---- Enh: HI Ftype: Otype: ____Inlt Value: _

*** PROCESSING SPFCIFJC~TIONS ***

Field: . ~ _
Num: 1 Len: Name: - Enh: HI __-_ Ftype: Dtype: ___
Inlt Value: - - ------ _

*** PROCESSING SPECIFTC~TIONS ***

Field: _

Num: 1 Len: Name: -- Enh: BI __-- Ftype: Dtype: ___Inlt Value: _

*** PROCESSING SPECIFTC~TIONS ***

Field: _

Nu m: 1 l,e n : Name: - Enh: HI __-- Ftype: Dtype: ___
In1t Value: --- ------------

*** PROCESSING SPECIFTC~TIONS ***

F1e1d: _

,~
'''''---

Hum: t Len: Name: ---- Enh: HI Ftype:~ Dtype: _
Inlt Value: - ---- _

*** PROCESSING SPECIFTCATIONS ***

Field: - ~ _

Num: t Len:
Name: Enh: HI Ftype: Dtype: ____

In1t Value: --__--- ------------

*** PROCESSING SPECIFTC~TIUN5 ***

Field: ---

Num: 1 Len: Name: - Enh: HI - Ftype: Dtype: -

Num: 1 Len:

Inlt Value:~ ----- ~_-~---~----

*** PROCESSING SPECIFTC~TIONS ***

Field: - __
Name: Enh: HI Ftype: Dtype: ~~,~~"""\

Inlt Value: - ------------

*** PROCESS I NG SPEC 1FT C ~ T I ()N 5 * **



DATA ITEMS WO~K SHEET
APO
CHANGE
DEI.ETF:

[

r
[

Onta Type
[

Decimal
Places

[ ]

Item
Length

[ ]

DATA SET [
DATA DEFINITION

Data Item Name
[

~
'. ....._-----------------------------------------------------------....-

1,
•,
•

1
1 Default Value
1 [,
._-----~--~----------~~--------------------------------------------------

Data Type
(

Decimal
Places

[ ]

Item
Lenath

[ ]]

Default Value
[

Data Item Name
[

1,
•
1,
•,
•,
•,
•,
._--------------------------------------------------------------------------

Data Item Name
[

Item
Lenqth

] [ ]

Decimal
Places

r ]
nata Type

[

Default value
[

nata Type
[

Decimal
Places

[ ]

Item
Length

[ ]

Default value
(

Data Item Name
[

1
1,
•
I·

~,---------------------------------------------------------------------------,
•

--~-------------------------------------------------------~---------------

Data Item Name
[

Item
Lenqth

) [ ]

Decimal
Places

[ J
Data Type

[

1 Default Value
1 [ ],
.~---------------~-------------------------------------------------------~

Data Type
[

Decimal
Pl~ces

( ]

Item
Length

[ ]

Default value
[

Data Item Name
(

1,
•
1,
•
I•
1,
.-----------------~--------------------------------------------------------~

APPENOIX II
C-l - 20



----------------------------------------------------------------------------Trans~rt.1oYi Code
r I

ADD SC~~£:}- t~

CHAtJGE. SCPFE~l

SCreen Narr.p
[

Exit Screen tirtn'e

r 1

sc prFrJ ~Jn.Rf< StiFf't'

HP]p Serpen ~R~P

[ )

I D" T A E f·J T PY
] FF·TRTEVAL
J ~: EN tJ

r-text (P~t.al]) S,creen
[ ]

~

t r
5 [

] 2 [
) 6 [

F 1J net ion ". ~ y r, E' t 1n1 t 10 n s

3 L
7 r

4 r
8 [

,
---------------------------------------------------------------------------

sc ~ J:.. ~. ~I LAY nl.f T

-------------------------------------------------------------------------
S C" r e ~ n ~~ ~ "' ~

[

Field Oatn L~nqth nee. R~qu1red

Seq. F 1p 1 ri Na rri e TVpp '11 j n. ~ n x • Places pield
[ 1 r 1 [ ] l J r ) [ ] [ J
[ ) ( ] r J l J ( ] [ ] [ ]

r ) r 1 ( J [ ] ( ] r 1 r J l~
[ J [ 1 [ .J l ) ( .1 ( 1 r 1
[ J r ] r 1 r 1 r 1 r J [ )
[ ] ( J f ] [ ] ( ] ( ] r 1
[ ) [ ) r 1 [ ] [ ] [ ] [ J
[ ] [ J r 1 r 1 r 1 r 1 [ ]
[ 1 ( ] [ J [ ] [ J ( ] [ ]
[ 1 r J r 1 [ 1 ( J [ 1 [ 1
[ ] [ J ( 1 l 1 [ ] [ 1 ( J
[ J [ ] ( 1 [ J [ ) [ J [ )
[ J r 1 ( J ( 1 r J ( ] [ ]
[ ] [ J ( ) ( ] [ J r J ( ]
[ J [ 1 [ 1 [ J [ ] ( ] r ]
( ] [ 1 ( 1 r 1 I ] [ J [ ]
[ J [ I r 1 r ] [ J [ ] r J
[ ] ( 1 r 1 [ 1 r 1 r 1 r ]
[ ] [ 1 r ] [ 1 [ ) r ] [ ]
[ ] [ J { ] ( ] r ) ( 1 [ ]
[ J [ 1 r ] [ 1 r 1 [ 1 [ ]
[ ] r 1 r ) [ ) ( J [ J [ ]
[ ] [ ) r 1 [ J ( 1 ( 1 r ]
[ ] [ ] r J r , , ) f } [ ]
[ ] [ J r 1 [ ) r J [ .1 [ )
[ ] [ 1 ( ] r ] [ J ( ] r )
[ .I [ 1 r 1 [ .1 r J r 1 [ ], [ ] [ J ( 1 [ 1 [ 1 [ ] [ J.

;~,
._--------------------------------------------------------------------------.

11 P PEr r f" or X I I I

C- 1 - 21



Screen
Name

PkOCESSlt\IG SPf:rIFrC1\1Jnf\tS
Sequence
NUrl'l:)~r

t: () PKSHE ET
Frocesslnq
SpeCifications

------------------------------------------------------------------------------.Onpration: _
Operand 1: _
Oper~nn ?: _

Comm~nt: ~ - --

---------_._---------- -~---_.- -----------------------------_._---~---------Operat1on: - _
nppran~ 1: __

npera~d 2: --- __

Com~ent:-------------__-- ----

-----------------~---~-------- -~.-----------------------------------._-----Operatlon: _
nperanrj 1:_- _
nrerand 7: - __

romme~t: --

---------------------- -------- --------------_._------~-~------------------.r1nerat ion : _
nperand 1: _
npprann 2: _

Comm~~t: ___
_________________ 0 __ - .~ ._. - -.---~--------------------

fJperat1on: _
Qnerand 1: _
Orernnd 2: - __

•
Com~ent: - ___

!-------_._-_._-_.~------------ ------._-------------------------------------
n~erat1on:_- _
r.lp~ranr1 1 : _
noprand 2: - _

Co rr. Y'T' e n t. : ~

1···--·_·---------··--- -------- --.-~------------------------------------~---Operat1on: _
rl per a n rl 1: _
noerand 2: -- _

Corn rn en t : __

----------------~------------- --------~--~---------~._-~--------~----~-----operation: _
nperand 1: __
Ooerand 2: __

Comment: ~ _

-_._--------~----.---- -------- --._----.~----~_._---~---------------~~------
Op~r~tion:----------
Oper~nn 1: _
Operand 7: __

Co~~ent: -

-.--------------~----- -------- -------------~----~-------------------------.Operation: _
(1 per a n ci 1: __
OPerand 2: _

Commpnt: ___

--------.--------~---- .------- _.. __ ._------~-----------~--~----------------Oneratjon: _
() p p ran d t: _
Op~rn~d 2: _

Comment: __

!------------~-~------- ------~- --_.-------~---------------------------------APPF nlX TV
C-l 22



TF: P ~~ l NP. L C(J t·, F ] (; tJ ~ AT 1 nN '-I nP K S HF ~. T

Subsystem: _

Terminal
Name

Loq. Scheduled T1fT\e
IJnit# Start ~to~

start
Screen

S~C'ur1 t.~·

T1me .. out
Aux.
LP

------------------------------------------------------------------------------

, I---------------- ----- ------ ---------------------------------- -----------p PP r: ~I n T): V

C-l - 23



~eport Namp:_- _

Field
N;=tme

Start
Position Lenath

End
Pos1.t.1on

Data
Type

Decima
Places

--~---~-----------------------------------------------------------------------

~
'. I·,·I·,·,

•,·,·,·,
•

~,
I, •,·

!_-------------------- ----------_!_--------- ----------- ------------- !_----
APPE~~J)J) Vl

C-l - 24



JOb Name

Descript.1on:
Control File:

Auto ~un Cycle Pun Dav /f.t1ont h Run Tlme/Shl~

-----------------------------------------------------------~------------------.>
Description:

Control 1-·11 ~ :

------------------------------------------------------------------------------.>
Description:

Control rile:

-------------------------------------------------------------------------~~~-->
Description:

Control file:

------------------------------------------------------------------------------>
Description:

Control file:

>
Description:

Control FilE':

------------------------------------------------------------------------------>
Description:

Control File:

>
DescriptIon:

Control flIp:

------------------------------------------------------------------------------>
Description:

Control File:

------------------------------------------------------------------------------>
l' esc r 1p t Ion :

Control File:

------------------------------------------------------------------------------>
Description:

Control File:

------------------------------------------------------------------------------>
Description:

Con t. r 0 1 t-' j 1 ~ :

---------------------~-----------------------~------------------------------->
Oescr1ptlon:

Control File:

------------------------------------------------------------------------------~

APPf:NDl X VI)

C-l 25



Value Name

5 YST f~ ~ Vr.. T.; 1.1 i~ S W() BKSH~.. ET

Data Type* ValuE:'

I~

---------------------------------------------------------------------------

------------------------------------- --------- -------------------------
A PPF tJ r; TX \j j 1 J

C-l - 26



A SUBSYSTEf·l THAT I~1PROVES RESPONSE TIME

FOR APPLICATIONS WITH LARGE NUti1BERS OF TERtv1INALS

RALPH HENNEN and BOYD CARLSON

OHIO STATE UNIVERSITY RESEARCH FOUNDATION
and

SYSTEM RESOURCES GROUP, INC.

Tuesday C-3 - 01



INTRODUCTION

Time-sharing has always plagued users with poor system response
time and relatively high expense, though systems eventually evolved
which alleviated both conditions. Chip processors and. chip memory
added to the attraction of time-sharing and it began to develop as
a system rather than an option to a batch system.

As the systems' became more sophisticated, however, so did the
applications which were run on those systems. Because of this, time
sharing systems frequently frustrated the user.

Distributed systems, too, offered a breakthrough for response
times in large systems. They'allowed more users to access stored
information without excessive response time. Their drawback was
that they only applied to a large data' volume/low transaction en
vironment.

So it seems that there is a third need for improved service in
the system-and-user market: frequent transactions with associated
low volume of data and processing. Though both the time-sharing and
the distributive systems' are overelaborate for this need, their re
sponse to this type of application can still be extremely sluggish.

Applications which belong to this class of fast transaction-
low data are: plant production control, computer auctioning of goods,
security monitoring systems, data entry, data inquiry, and monitor
control. One such design is currently in production on the HP3000.

THE NEED

This design is the result of a research project which required
a CPU to service, with a response time of two seconds or better, at
least 60 terminals. The project budget complicated the order; it ~

would not allow for a large, main frame computer. The salesmen
doubted that it was possible to accomplish a task of this scope, and
the hardware search increased their doubts. But the HP3000 turned
out to have the system tools we needed to develop the required system.
Much of the system design work had been done on what was known as a
"run-time system."

This system was to be used for another almost unheard-of appli
cation: the electronic market. An electronic market facilitates
trading between buyers and sellers over the terminal using the CPU
as auctioneer, bookkeeper, banker, statistician, and marketing infor
mation source. Several markets trade simultaneously. Other users
can do other things during trading, such as getttng detailed informa
tion on the goods to be sold, getting price information for goods
already sold, or even looking at the regional weather forecast.

The user audience in this case was to be diverse. There was no
guarantee that all terminals which might potentially talk to the
system would have identical characteristics. Not only were authorized
buyers and sellers to use the system, but several news services were
interested in tapping into the marketing information for their cus
tomers.

C-3 - 02



Communicating with the users was not going to be a simple task.
We had little control over users who already had a communication net
work and who simply wanted to connect to our system. Our communi
cations would have to accommodate the Bell System as well as several
other vendors. We were to serve both leased line and dial-up users.
Some of the users were on point-to-point lines and asynchronous multi
point lines.

As information flowed into our offices regarding what we_needed
to do to. bring the users unto the system, it becam~ obvious that we
needed all the tools we could find to make the system work. The puzzle
became larger and more difficult daily.

THE RESEARCH

The system design task for the run-time system took about five
months to accomplish. During that period, we evaluated five different
systems with regard to their potential efficiency, programmability,
maintainability, and practicality. In time ~/e developed a design that
seemed potentially compatible with the HP3000 hardware and some of
MPE III.

We designed the system with structured and modular programming
techniques. The modules were separated into two groups: system and
application. The application modules solved a particular problem be-
tween user and data; the system modules connected the hardware to the ~,t

user. The communication modules were coded to be tested apa~t from
the rest of the subsystem. This separation gave them adaptability in
case we had to change them or add other codes. Many field situations
required considerable tuning of the communication modules.

The true application programs were lowest in the hierarchy of
this subsystem because of convenience. The sponsor who had the final
word on how the application programs would run did not always agree
with us about how they should work. Often the s·ponsor could not
foresee future needs to an extent that would allow us to write defini
tive specifications for the application programs. Fortunately, the
application modules had little bearing o~ the system code.

After we attached the application programs to the completed sub
system, we began testing ~n~ tuning. With alteration of some subsystem
paramet~rs and changing of some MPE III ·configuratton parameters, the
run-time system performed much better than our team or anyone else had
expected. For our application, the response time was better than
1.5 seconds. We inserted pauses in the code to slow the ex~cution

so the users could-expect· uniformity of response aRd to let them get
used to the cadence of activities at the terminal.

THE SYSTEM

The system is a collection of processes which are run under MPE
III. These processes are organized to communicate data and to synchronize

C-3 - 03



f"'.
\

conn~ctions between many users and many application programs, as shown
in Figure 1. Much of the work which would be done by MPE in the time
sharing environment is managed under the subsystem. The disadvantage
of this structure is that users do not have the use of the system hard
ware that they \'Joul d have ina time-shari ng envi ronment. To the con
trary, the hardware resources are transparent to the user on the sub
system; they are available through the applications level. This organi
zation is an attempt to relieve the overhead of managing the system
resources to control the I/O to the user.

This subsystem minimizes ·the·movement of data throughout the
processes. Data bound for system I/O' to the user are stored in a
memory buffer. The characteristics of the data are passed through
the subsystem and the data are accessed only at the point where the
application must use them. In the same way, data produced by the
application program are placed in a buffer; they are not moved until
they leave the system.

Figure 2 illustrates the design of the subsystem, showing it
between the MPE environment and the application environment. Figure
3 illustrates in more detail the core processes and programs of the
subsystem. The system is loaded and executed at a terminal which
becomes the run-time console. This console is a session under MPE;
it receives information from both the run-time system and MPE. The
console gives the operator control over the rest of the subsystem.
The operator may create initial conditions of the system. These
conditions may vary, depending upon the application environment the
subsystem is serving. The operator can also monitor certain aspects
of the system and intervene when necessary.

The I/O Controller handles all the corrmunication activities
and problems. This module works closely with the I/O driver pro
vided by MPE to intercept the I/O from external devices. It handles
the communication protocol information that the drivers pass to the
subsystem and checks errors on the communication lineso The I/O
Controller regards the remote I/O device as the primary initiator
of the input. It intercepts input as it comes; when the input is
complete, the data are accounted for and ready for processingo The
I/O Controller then sends a message to the next process on the system.
That message conta ins a11 the .characteri sti cs of the data and inmost
cases also indicates which application program should be used to
process the data. In much the same way, the application program
then returns data through the system and back to the terminal.

The I/O Controller controls several resources within the sub
system. It initializes and maintains ta,bles that. track activi.ty
within the system and maintains and. keeps records.of all I/O activi
ties on all devices. All information collected by the I/O Con
troller can be made available throughout the subsystem.

The I/O Controller distinguishes between clock-dependent acti
vities and those which are not clock-dependent. Clock-dependent
activities may require a specified delay between request and response.
These activities have the highest priority for response in the system.
The attached application programs must then run faster than user-

C-3 - 04



specified response time. Other clock-dependent transactions receive
data at the remote device without solicitation. These transactions
include countdown information, timer processes, pul~e bursts, and
monitor requests. Activities which are not clock-dependent pass
through the other part of the system and may includ~ application
programs with variable execution times between user requests.

These two class~s of .activities .have separate Interrupt Proces
sors. Both processors' queu.e requests that may use the same system
resource or application program. They wake up the application pro
gram appropriate to the reqtiests and issue errors for'bad syntax and
unknown requests. All usable applicat'ions for each generation on the
system are known to the processors. It is necessary to reconstruct
the system before changes in the available programs can be attached.

Generally, each terminal or remote device request will stimu
late a response from some application level program. This trans
action will cause a complete pass through the system (down and back)
and one pass through the application program. In some instances,
the application program level may be in a conversation-like mode
with the user device or terminal: for example, when the user must
choose among the items of a menu produced at the terminal. The
Interrupt Processor must then remember which terminals are in that
mode, and the application program must find the position in the code
to which the transaction must return. This position is stored and
becomes part of the communication structure between the interrupt
process level and the application level. The application program
may tell the Interrupt Processors that the transaction is incomplete
and indicate the code location to begin execution upon further input
from the device. This allows the apPlication program to process
another request while the user (or user device) is deciding which
option to take. Should the user choose not to continue the chain
of activity to the particular application program, the communication
between the I/O Controller and the Interrupt Processors will flag
that case. All pending activity for the device is then cancelled
and the new request becomes a new transaction. This type of
communication allows the subsystem to be somewhat transparent to
the user and gives the user interactive capability within the pro
gram.

Other small system programs db not appear in these generalized
di agrams. They manage some of the common reSQurces·- in the run-time
environment. These resources can be thought of as highly dependent
or shared resources in the subsy~tem. Their use dictates the·re
sults of some transactions. For example, in the~situation~of the
electronic market, each i.tern offered to the marke-t is posted on a
market screen. The transaction that results in an offer is com
pletely- separate from those which play the market, though the two
activities are tied together by the market· screen. The market
screen must have a governor to ensure that all offered items are
advertised to all marketeers, each of whom is interacting with the
market screen uniquely. These management processes tend to change
in character and number as the run-time environ~ent dictates; resource

C-3 - 05



management for an electronic market would not be the same as for a
production control run-time system, for example, or a security moni
toring system.

THE INSTALLATION

This run-t"i"me system can be thought of as an app.lication system.
Since the application environment is usually tailored to a specific
user audience, run-time systems·varYT-Each system is designed to be
installed for each new application environment. The system' is modu
lar, and, though a few core system programs occur in all instances,
the remaining peripheral software can be installed by trained per
sonnel to accommodate the application environment. Not all appli
cations can take advantage of this type of subsystem; programs which
massage a large volume of data or perform large calculations with
few user transactions will receive little value from it.

Existing needs and software should be evaluated regarding their
compatibility with the subsystem before installation, but ideally
the application programs should be written with the subsystem in mind.

Many of the rules for efficient stand-alone programs apply to
this environment. Code written with some consideration of segmen
tation, memory allocation, and possible thrashing problems will, of
course, run more quickly. Code designed in a structured, top-down
fashion with one pass through for each transaction state is ideal.
Programs which use data bases efficiently by limiting the number of
cross datasets searches will run faster. Single programs which do
not try to accommodate every user1s needs at once will be at an
advantage.

The subsystem offers a host of tools which can be used success
fully at the application program level. The library includes I/O
statements for user device accessing, error diagnostics to test for
errors in the operations, error file operations for user-defined
errors, status checking for the transaction condition codes and
data location, and others.

These subsystem monitors also provide tools for the system en
vironment. Files can be allocated to save the monitor information
for inspection at a later time. This log of system activity can be
useful for tuning the system.

A special consideration at installation time should be the
vari ous dev; ces attache.d to the subsystem. The communi cation modules
in the I/O Controller will have to be selected and·installed based
on the communication protocol and. hardware interface for the device.
This will require different consid.erations for different communi
cation subsystems.

THE PERFORt,1ANCE

The run-time system is in production; it has been performing
satisfactorily for over a year with few modifications of the code.

C-3 - 06



The largest production encompasses 55 terminals. Under normal oper
ation, response time has shown no noticeable degradation, even with
increased activity within the run-time system. The main system cur
rently feeds to five time-sharing terminals which are. used for pro
gram development and editing large data sets. They run simultaneously
with the run-time system and 55 terminals. There is no noticeable
degradation in response time .at either the run-time terminals or the
time-sharing terminals, with one exception. There is a slight delay
in the time-sharing terminals when the Clock Interrupt Processor is
sending countdown information every 1.5·seconds ··to 40 or more terminals.

Performance data are being collected from inside the run-time
system as well as .in the time-sharing environment u~derMPE. Inf6r
mation is being collected in·the run-time system as to the average
process time for different types of application programs: those which
are clock dependent, those accessing external file data sets, those
accessing IMAGE data sets, those broadcasting information to more
than one receiving terminal. In the time-sharing environment, data
a~collected as to execution times for a mix of compiles, preps,
edits, data entry and access, and streamed jobs. This is all done
for the stand-along, time-sharing environment; stand-along, run
time environment; and the mixed environment, for the purpose of
comparing the differences among the environments.

Several system configurations under MPE obviously playa sig
nificant part in the response time in the run-time system. The
parameters are time quantum, max extra data segment size, and max
data. These parameters will take on different values for different
configurations of the run-time system. These should be monitored
and tuned before the run-time system is put into production~

CONCLUSION

Many hybrid systems are appearing in the manufacturer and OEM
market. These systems reduce the programming load for the instal
lations who buy the software. It costs less to purchase an accounting
system than it does to construct one in-house.

The run-time system provides more efficient use of a CPU for
installations serving large numbers of transactions with data volume
in standard CRT screen unite (1920 bytes). The added benefit of this
subsystem is the abillty to communicate to a large number of 'termi
nals attached to a single CPU.

C-3 - 07



User·

Figure 1

C-3 - 08



device

Terminal

Subsystem

System
Environment

(MPE)

Run time
environment

Application
Environment

Figure 2

C-3 - 09



System

(MPE)

Console

I/O
Controller

Application

Application

Application

Request
Interrupt
Processor

Clock
Interrupt
Processor

Application

Application

Application

Application Application

Figure 3

C-3 - 10



COMPUTER AIDED LEARNING AT UTC
Dr. Lloyd D. Davis

Introduction

With approximately 8,000 students, 250 plus faculty, and a primarily

undergraduate orientation, the University of Tennessee at Cha~tanooga is

very typical, in terms of mission, role, and scope, to other four year state

colleges and universities. Somewhat unusual are the computer resources de-

dicated to instruction and research at UTC. With both a HP2000 and HP3000

allocated solely to instruction and research t with over eighty terminals

accessing these computers and with a vigorous acquisition program for se-

lccting quality software, UTe has "infused" computing into many areas of

its curriculum including several unusual subjects. Additional computing

via the network approach is also done at UTC for both instruction and re-

search. This presentation will detail these efforts in terms of four areas

- problem solving, data analyses, simulations, and computer-aided instruc-

tion. In addition, the topic of research computing will be discussed in

terms of packages, availability, and general utility. The thrust of this

presentation will be that of detailing the ingredients for establishing a

successful academic computing service and maintaining that service for

students and faculty_

General

The program to promote computer literacy at UTe has been in existence

for six years. Prior to the establishment of Academic Computer Services

student computer programs were run on a local basis on an IBM 360/30 or

remotely for a brief period on an IBM 360/65. There was little or no

Tuesday C-4 - 01



COMPUTER AIDED LEARNING

provision for Computer Aided Learning (CAL).

The Office of Academic Computer Service$ opened on July 1, 1975 with

the objective of providing competent and comprehensive computer facilities

to faculty and students in the areas of instruction and research. For the

past six years, the Academic Computer Center has sought to fulfill this

goal. It was originally staffed by a full-time director and secretary;

since then, another full-time employee has been added and student-programmers

have been hired on a part-time basis. Funded by the University of Chatta

nooga Foundation, an HP2000 was installed in October 1975 and was linked to

thirty-two terminals located in clusters around the campus. In November

1978, a second 'academic system, an HP3000, was installed along with addi

tional terminals.

The six years since 1975 have been spent in consolidating these systems

and acquiring programs suitable for college level usage. During this time,

efforts have been made, using newsletters and workshops, to introduce the

faculty to the facilities available and to encourage them to undertake

authoring projects and research.

Usage

Departments with heavy usage of Academic Computing include Business

Administration, Mathematics, English, Engineering, Computer Science, Psy

chology, Chemistry, Biology and Physics. Moderate usage is experienced in

each of the departments of Economics, Education, Criminal Justice, Political

Science and Sociology. Other departments, such as Music and Home Economics,

C-4 - 02



'COMPUTER AIDED LEARNING

make occasional use of the services.

More impressive is the fact that departments not normally strongly

associated with computer expertise ~ave asked for and received services.

Two examples of this spread of computer knowledge are the Music Department,

which has a terminal for drilling students in music rudiments, and the

English Department, which has a dedicated cluster of terminals for Computer

Aided Instruction (CAl).

Faculty Involvement

At this point, it should be emphasized that the faculty participate not

only by using our facilities but go far beyond that by being strong initia-

tors of new programs. Many of the faculty have devoted endless hours to

writing new packages, creating CAl materials, reading professional journals

for software sources, entreating Academic Computing to purchase materials

of interest, and evaluating these materials once installed.

One of the most important software sources is CONDUIT, which is located

in Iowa City, Iowa on the campus of the University ·of Iowa. CONDUIT's purpose

is to locate quality software appropriate for undergraduate education (which

often includes the high school level), to package it in a form that is widely

and easily transportable, and to market these materials nationally. CONDUIT,

. which has some NSF support as well as other federal funding, has published

three CAl packages authored at UTC and is currently reviewing two more. In

addition, the next issue of the CONDUIT publication, PIPELINE, will contain

a panel discussion authored by UTC faculty and staff, on an English CAl

project at UTC.

C-4 - 03



COMPUTER AIDED LEARNING

Although not a CONDUIT package, a statistical package for the HP3000

has been developed by a psychologist on the faculty. This interactive pack

age is being marketed by the university with profits being shared by the

university, the Psychology Department, Academic Computing, and the author.

Such national recognition is strong motivation for both faculty and

administrators becoming involved in instructional computing and chasing

those scarce resources of time and money necessary to make it successful.

Academic Computing Services

Throughout the year Academic Computing Services offers free short

courses to faculty and staff. These courses cover topics such as author

ing languages, as well as EDITOR, EDIT2, SPSS and the BASIC language. The

typical course covers a five week period and consists of a one hour meeting

per week. In addition, consulting services and portable terminals are made

readily available on a reservation basis for faculty and staff.

In the spring of 1979, we undertook a new procedure. At the request

of the Nursing Department we instituted an intensive two and one-half day

seminar on Instructional Dialogue Facility (IDF), an HP2000 CAl authoring

language. Participants were taught how to use the facility to write and

edit their course material. Each person produced a mini-package containing

four or five multiple choice questions related to the nursing instructor's

area of teaching. This project was well received and successful enough to

encourage us to utilize the same format again.

UTC has obtained a program. from CONDUIT which enables the user to

translate packages written in IDF into BASIC. Thus, it is not necessary

C-4 - 04



COMPUTER AIDED LEARNING

for our faculty authors to learn a computer language in order to produce a

transportable CAl package.

When a package is needed on the HP3000 that is indigenous to a special

computer or authoring language, student progra~ers convert this package

into HP3000 BASIC or FORTRAN.

Documentation is accomplished by producing a quarterly newsletter and

manuals appropriate for local use. Manuals in proquction are Pocket Guide

to the HP3000, HP2000 Users Guide, 'UTe User's Guide to the HP3000, Computer

Assisted Instruction at'UTC, 'Users'Guide to 'IBM 370 System at UT-Knoxville,

and many short pamphlets on miscellaneous subjects such as EDITOR, BASIC,

and COBOL.

Inventory of Courses

Every second year, all departments are contacted and asked to return

a one-page questionnaire on each course within their department which made

use of the computer. These questionnaires ascertain which computer systems

were utilized, how many students were involved and whether the role the

computer played in relation to the course was required, enhancement or

supplementary. Table I, based on data collected 1n these inventories of

courses, shows the increase in computer usage over the period 1976 to 1980.

C-4 - 05



COMPUTER AIDED LEARNING

TABLE I

Inventory of Computer Usage in Courses by Discipline

Number of Courses Utilizing Computing
Department 1976 1978 1980

Art 0 0 2

Biology 0 2 2
Business Administration 8 8 14

Chemistry 7 7 8
Computer Science 10 13 20
Criminal Justice 0 0 3

".., Economics 1 3 0
Education 2 9 3
Engineering 16 15 19
English 0 2 3

Foreign Language 0 0 10

General Science 1 2 4

Interdisciplinary Studies 0 0 1

Health and Physical Education 1 1 1
Home Economics 0 2 4

Mathematics 11 14 11
Music 4 4 5

Nursing 0 0 1

Physics 5 7 3
Political Science 1 1 2
Psychology 8 9 5

Social Work 0 0 3
Sociology 1 1 3,..

Total 76 100 127

C-4 - 06



COMPUTER AIDED LEARNING

These inventories enable Academic Computing to keep, in a centralized

location, instructions on how to utilize the computer materials, the end to

which they are intended, and other pertinent information the instructor deems

appropriate. This is abstracted each year into the form required to update

the CAl manual for UTC.

Focus for Academic Computing

Through surveys, needs analyses, departmental self-studies, and liter

ature research, Academic Computing focuses perceived needs into a five-year

plan that is updated each year and extended for one year. This is present

ed to the Chancellor and his staff for review, critique, and approval. ~len

finalized, it generally becomes a part of the projected capital budget plan.

Hence, the finance officer is able to plan in a consistent, open fashion for

legitimate, required computer expansions.

UTe early opted for the complete separation of academic and administra

tive computing. Each area has its own equipment and each is headed by its

own director. Furthermore, the Director of Administrative Computing reports

to the Vice Chancellor for Administration and the Director of Academic Com

puting reports to the Vice Chancellor for Academic Affairs. These separated

organizational lines are important in keeping Academic Computing's interest

visible, viable, and paramount to the university community. By tying Aca

demic Computing into the instructional side of the university, its success

is ensured in meeting student, faculty and curricular needs. By keeping

Academic Computing free of Administrative Computing's control, the "water

trickling down hill" analogy does not nurish Administrative Computing by

C-4 - 07



COMPUTER AIDED LEARNING

diverting needed resources from the academic side. On any campus, organi

zation and staff are· major ingredients in the success of a successful in

structional/research computing endeavor.

Problem Solving

Problem solving at UTC is defined as the process wherein the student

designs, constructs, tests, and evaluates his/her own program, and is dis

tinguished from other computing by calling it programming. The two domi

nant programming languages at UTe are BASIC and FORTRAN. These account for

well over 90% of programming activity. Surprisingly, BASIC is firmly en

trenched in Engineering and more problem solving is done among engineers in

BASIC than in FORTRAN~ Computer Science, on the other hand, favors FORTRAN

over BASIC and, except in personal computing and service type courses, BASIC

is not used. PASCAL is a major need at this institution since our campus is

about to shift from FORTRAN as the basic Computer Science course to PL/~ on

a remote computer. UTe believes that the imminent HP announcement of PASCAL's

availability on the HP3000 will be attractive and cause UTe to review its

decision to use PL/I.

COBOL or COBOL II, coupled with IMAGE Data Base package, is the resource

used in teaching our data base course. Some use of KSAM may occur in conjunc

tion with this. APL is utilized by an advanced language course but is a dis

appointment in terms of system's load, requirements for special terminals,

and minimal desirability for either Computer Science or Engineering. Although

SPL has been taught once to students in Computer Science, it is neither a

popular language nor a necessary language. St~dents requiring assembl~r

C-4 - 08



COMPUTER AIDED LEARNtNG

language are required to utilize IBM's Assembler at our remote IBM computer.

The growth in all areas of computing, particularly in problem solving,

is indicated by the statistics kept on the three systems available at UTe.

In 1979 and 1980, usage on the HP2000 system was 42,757 hours and 42,810

hours, respectively. On the HP3000 system. installed in 1978, connect time

(in hours) increased from 9t 183 hours in 1979 to 18 t 607lbours in 1980. The

number of jobs submitted via RJE to a remote IBM system increased from 35,924

jobs in 1978 and 39,074 jobs in 1979 to 50,997 jobs in 1980; this is an in-

crease of 42% between 1978 and 1980.

The PLOriO graphics package of Tektronix is widely utilized on the HP

3000 and is accessed by both Tek4010 and 4025 type terminals. PLOTIO is a
,.

set of graphics subroutines callable from FORTRAN. Hence. PLOTIO users

write programs calling these routines, which makes this package also prob-

1em solving. This package has been available from Tektronix at a one time

purchase cost of $500, and 1s vary satisfactory.

The use of terminals to send programs and data to UT at Knoxville,

which has twin IBM 370/3031'8, has accelerated from nearly nothing to sev-

era! hundred per day. Although currently this transfer is performed on the

HP2000, it will be shifted to the HP3000 this summer using MRJE. SPOOK, and

the Robelle editor QED!T. All departments are de~emphas1zing cards and in~

stead focusing on distributed computing via terminals including the HP2621

and others.

MPE III and apparently MPE IV are ekcel1ent operating systems that are

C-4 ~ 09



COMPUTER AIDED LEARNING

both capable and friendly. Problem solving fits well within the system.

PASCAL, when available, will be of major utility. It is needed now. On

the other hand, the HP3000 needs a new ANSI package, FORTRAN 77, on the

software side. On the hardware side, HP limitations on the multiplexor

throughput, response time degradation in a loaded system, and relatively

slow internal speeds, could be alleviated by going to a 32 bit architecture

or providing a floating point hardware box to accelerate such computations.

Data Analysis

Data analysis, a euphemism for statistics, is accomplished largely

with canned packages. UTC utilizes a wide variety of these on both the HP

2000 and the HP3000. Sources vary from proprietary to contributed library
(

to home grown.

On the HP2000, UTe maintains IDA developed at the Unviversity of Chicago,

GUS from the University of Iowa, SPSSHP from DePaul University, and PSY de-

veloped at UTe. IDA and PSY are complimentary packages and each has been

modified to accommodate easy transfer from each to the other. Although many

institutions are familiar with IDA, they may not know about PSY, which pro-

videa inferential tests of statistics in a IDA type environment of commands

and data. Questions concerning SPSSHP must now be forwarded to SPSS, Inc.

as the a~thors are no longer with DePaul University.

On the HP3000, UTe utilizes the very excellent versions of SPSS and

BMDP (BioMedical Data fackage) that are available from McMaster University.

SPSS is the primary package for research, but the many specific models

C-4 -. 10



COMPUTER AIDED LEARNING

available in ANOVA make BMDP a valuable tool within instructional computing.

The previously mentioned packages, BMDP and SPSS t are both for research and

instruction but are batch oriented. A major instruction system at UTC is

QSTAT, which was written locally. It is an extension of the previously men-

tioned PSY and utilizes an IDA approach to commands and data within the

inferential area. It also maintains an extensive HELP command and a very

flexible BACK command to allow users to undo mistakes in commands.

Interactive Statistical Economic Analysis, ISEA, is available from

Dr. John Eaton, London Graduate School of Business. Our economists are

funding this package, which provides the specialized statistical tools re

quired in economics. Instead of depending on remote IBM usage of SAS, our

institution is making extensive use of ISEA.

The use of these statistical packages in instruction varies from be

ginning statistics courses to graduate courses requiring analyses. Although

most usage is in basic statistics courses, educationists, sociologists,

psychologists, economists, and political scientists routinely require com

puter analyses of data bases as part of course requirements.

Many old, but still good, data sets on Sociology and Political Science

are available from CONDUIT. National Opinion Research (NORC) has a major

data base of 9120 cases with 640 variables on sociological issues and trends

for the years 1972 to 1977 available from CONDUIT. Four major historical

demographic data bases are available from the Laboratory of Political Re

search at the Univeristy of Iowa. The U.S. government and its agencies,

such as the Census Bureau, also have many data bases of interest to educators.

C-4 - 11



COMPUTER AIDED LEARNING

Certainly local fac~lty are capable of building important data bases to

support their research. For example, a faculty member is currently ex

amining thousands of pieces of data collected from German cities circa 1600

to determine principal food grains and how the fluctuation in grain prices

related to taxes, inflation, and standard of living.

A somewhat unusual data base and package is a nutrition package, writ

ten in COBOL, acquired from Clarke College, Dubuque Iowa. The package was

modified from a PDP II system to accept KSAM and EDITOR input files. This

program analyzes an individual's diet for a one meal, one day, or several

days, in terms of basic nutritional requirements. It is an unusual data

base in that individuals may select dietary needs from categories such as

lactating mothers, small children, or adults with low sodium diets and have

their diets analyzed in terms of calories, fats, minerals, and vitamins for

hundreds of food items. Such data bases and associated packages are a good

means of introducing computing into departments traditionally not computer

oriented.

Simulations

For many students, especially those in the Natural and Social Sciences,

simulations via the computer offer possibilities otherwise unavailable. Of

course, simulations do not have to be performed on the computer, however, such

simulations offer the speed, interaction, and graphics necessary for viable,

realistic curricular experiences. For UTe the most important simulations

have been those from CONDUIT (see Table II).

C-4 - 12



COMPUTER AIDED LEARNING

TABLE II
CONDUIT SIMUlATION TYPE PACKAGES

BIOLOGY
ANAEROBIC GLYCOLYSIS
COEXIST - Population Growth
COMPETE - Plant Ecology
ECOEXX 1 - Mark Recapture Experiment
ECOEXX 2 - Population Growth Models
ECOLOGICAL MODELING
ENZKIN - Enzyme-Catalyzed Reactions
ENZYME - SEQUEN:

- Enzyme Substrate Interactions
- Amino Acid sequences of proteins

EVOLUT - Evolution Genetics
l..INKOVER - Genetic Mappings
TRIBBLES - Scientific Method

CHEMISTRY
FIRSTLW - First Law Thermodynamics
HAUER - Haber Simulation Ammunia
IDGAME - Qualitative Organic Identification
KSIMS - Kinetic Experiments
NEUTRON - Neutron Activation
NMR - Nuclear Magnetic Resonance
RKINET - Chemical Reaction Kinetics
QUANTUM - Quantum Chemistry
TITRATION - Titration Ionic Equilibria
XRAY - Xray Crystallography

SOCIOI.OGY
CHANGE AGENT
DEMO-GRAPHICS
PROFIS - Introductory Sociology
USPOP - US Population Studies

PSYCHOLOGY
COGNITIVE PSYCHOLOGY
IMPRINTING
SCHIZOPHRENIA

PHYSICS
ENERGY and ENVIRONMENT
GROUP VELOCITY
ICBM I - Computer Based Mechanics
INTERP - Wave Superposition
MECHANICS - Physical Mechanics
NEWTON - Satellite Orbits
QUANTUM MECHANICS
SCATTER - Nuclear Scattering
USING COMPUTERS IN PHYSICS

MANAGEMENT
BUSINESS DECISION SIMULATIONS
BUSINESS - Management Laboratory
COMPUTER MODELS IN OPERATIONS

MANAGEMENT
COMPUTER MODELS IN OPERATIONS

RESEARCH
EXECUTIVE GAME
FINANSIM - Financial Management
MARKETING IN ACTION
SIMQUEUE - Queueing Theory

OTHERS
INS2 - Inter-NationSimulation
CRITICAL INCIDENTS IN EDUCATION
COMPUTER SIMULATIONS MACROECONOMICS
MOnSIM - Economic ModelIng

Several of these from CONDUIT can be used to illustrate the concept of

simulation. Critical Incidents in Education is a set of twenty plus scena-

rios on classroom management problems such as breakage of science equipment,

passing of love notes, and obscene phone calls. This is excellent exposure

for the student teacher before the real classroom experience. Another sim-

ulation is HABER, which involves the synthesis of ammonia commercially.

The actual experiment is lengthy (over six weeks) and so expensive it is

seldom done in the classrooms. Hence, HABER is realistic for collegiate

education since it can be done quickly and at low cost on the computer.

C-4 _. 13



COMPUTER AIDED LEARNING

Another simulation is the NOTRAN (available for the HP3000) simulator

from Notre Dame. This package allows one to construct the equations govern

ing a model and its constraints, to model the system over a speeded-up time

period, and to summarize the results for easier interpretation.

UTe has acquired also simulations from the chemistry departments at

Western Washington State and Illinois Institute Technology, as well as from

the Hewlett Packard 2000 Contributed Library (HPGSUG). A number of other

sources exist, including Lehigh's Economics and Limits to Growth, University

of Wisconsin at Madison's FCHART simulation of a solar dwelling, Hunington

II simulations from DEC, and numerous packages detailed both in Creative

Computing and BYTE magazines.

Although canned programs to find the solution to a specific class of

problems may not be simulations in a literal sense, the inherent model is

there for use by the student. More importantly, they can be adapted from

textbook exercises. As examples, consider the canned programs to calculate

a bond return, worth of a stock portfolio, drawing of random phone numbers

for interviewing, electrical values for a circuit, or the size of structural

members for a building. These valuable programs are available through the

HPGSUG contributed tape library. Good programs can be rented or purchased

from software and engineering firms. Through shared national facilities

such as EDUNET, an individual anywhere can access over twenty major campuses

with extensive software libraries of heterogenous and complimentary holdings

(EDUNET may be contacted directly or through EDUCOM).

C-4 - 14



COMPUTER AIDED LEARNING'

CAl

The largest CAl project at UTe has been one involving basic English

skills. In the spring of 1977 the Administration t the English Department

and the Office of Academic Computing jointly endorsed a proposal to use a

major English CAl package for at least one year. Initial planning called

for this package to be assigned to one third of the freshman class t with

each of the 600 student participants being allocated from nine to twelve

hours of CAl work during the Fall 1977 semester. The package was developed

by the Computer Curriculum Corporation (CCC) of Palo Alto t California.

This firm no longer markets Basic English for Remedial Students as a soft

ware package, but instead includes it with hardware on a turn-key basis.

CCC is a valuable source for other CAl software in the areas of reading and

mathematics. At the conclusion of the first semester of using the English

CAl, a survey established that t of the students using the CAl, 23% felt

that access to these programs had materially altered their grade. At the

end of four years of operation, a new English course was established with

this package as an integral, operating mode of instruction.

Eleven units of descriptive statistics for use in graduate education

courses and nearly twenty units of freshmen chemistry were acquired from

the University of Akron. Although originally in IBM's CW III, they were

converted to HP's CWF and are currently being translated into BASIC.

Two major systems in remedial algebra, drill and practice, have been

authored for our Mathematics Department. In addition, a faculty member in

Sociology has written one dealing with basic sociological terms.

C-4 ~ 15



COMPUTER AIDED LEARNING

A music package covering theory from the Music Department at the Uni

versity of Iowa has had considerable success. With over twenty programs,

it can give students extensive drill and practice in this innovative area.

CONDUIT has two notable CAl packages. The first is DIALOGUE for the

area of English grammer and the other is SPANCOM for the teaching of Spanish.

Another major source for quality CAl is the Association for Development of

Computer Based Instructional materials, (ADCIS), which has many member firms

and individuals who sell, swap, and distribute CAl.

The process of developing CAl is in a continual state of evolution and

development. However, experience has shown us that the usage of CAl is

increasing and has a definite educational value. Our academic departments

are increasingly finding that extending their computer literacy is a worth

while investment of their time.

Sununary

In this paper we have described the sources for the academic software

available to UTC users. This paper thus may provide fledging computer cen

ters or new HP3000 users with a list of places which can be contacted for

academic software. HP users entering the area of instructional computing

frequently call UTe to determine where applicable software can be obtained

or purchased. Although UTe has a small department of Academic Computing

Services, it has been able to provide the faculty with a full range of CAl,

simulations problem solving, and data analysis, in part because of the wide

range of nationally obtainable software.

UTC's Office of Academic Computing is a major strength for the support

C-4 -. ·16



COMPUTER AIDED LEARNING

and effectiveness of computing at UTC. UTe particularly espouses- the en

richment of the curriculum with computer related experiences 0 To that end,

a continu'al and diligent search is made to secure quality educational soft

ware that is relevant to UTC's academic programs.

C-4 - 17



~'

NAME l~DFXING METHOD

FU~ IMAGE DATABASES

Ro~ert B, Garvey

w1tan Inc.
Kansas City, Missouri

Tuesday C-5 - 01



A General1zed Name Index1ng Method for Image Databases
Robert B. Garvey

W1tan, Inc.
RObert L. womaCK, IV

Third Judicial DIstrict Court
ot Kansas

March 13, 1981

1. Name Searching -. The Problem Part 1

Traditional approaches to search1ng 8 list of names usually in

vOlve a KSAM1sh opproach to the data file: I.e. positioning the

program (or a terminal user) at the beginning of a group of names

spelled in like manner, and then performing addit10nal subletting

or processing of the group ot names. KSAM (or ISAM) Is typically

used tor $·uc·h lJ·PPlll·c·atlotls ,·becau:se ot their ab111ty to position

the recora pointer using only a partIal key. IMAGE, on tl1e otner

hand, is seldon~ used for SUCh applications since inquiries must be

made against a complete search item. for applicat10ns in which

inquiry against an existing "people" base Is requ1red, the com-

plete entry ot a name may be at oest redundant and at worst ex·

tremely sUbject to error since ~arlatlons in spelling of a name at

data entry time from that of the master name on file are difficult

to nandle. Criteria for 6 first cut name search algor1thm should

then 1nclude at least toe following:

.rne ability to searctl on a p~rtlal or 1ncolnplete
name

.The ability to operate upon or display to a
termlnal user a group at similar ndmei.

C-S-02



i\!anle Search1rlg -- Problerll Part 2

An additional requirement tor ~any name search applications 1s

the ability to search for names by Phonetic equlvalent, that 1s

names should be selected for analysis based upon how tney sound

rather than ho~ they are spelled. Applications wfllcn must employ

field originated forms are typically in need of sucn capabil1ty.

A second-order name searCh tecnn1que would, therefore, require tne

additional capability ot inquiry by the Phonetic value of a name

rather than (or perhaps, in addition to) the exact spelling or

par t 1a 1 s pe 111 l'lgot a na 111 e • Las t 1Y, i. nor de r t 0 1ncrea sethe

"crash-worthiness" and ease ot maintenance of a name searCh sYS·

t eIn, t tl e per son d a tat)as e s h 0 U1d De a par t of an 0r 9 an 12.a t 1on's

IMAGE data base. The ideal na~e search technique tnen should have

toe followlng attributes:

.The ability to search on a partial or incomplete
name

.The ability to operate uf':on or display to a
terminal user a group of similar names •

• The ablil1ty to searCh oy a phonet1c Key
.Suitability for implementation using IMAGE

Ine rema1noer of this paper will etch out a partial data base,

compare two pnonetlc encrypt10n methods, and suggest an approach

to a name inquiry system wh1ch will satlsty the aDove reQuire-

rrtents.

2. Phonetic Name Searching and IMAGE

Phonetic name encrypt10n gives toe system designer a tool ~h1cn

enaoles the deslgn ot name inquiry systems that meet the tour

cr1teria set out 1n part one of this paper. In th1s section a

partial data ~ase schema to support ndme Indexing wIll be out11ned

C-5-03



and standards for evaluating name encryption algorithms will be

suggested and apPlied. The develorment Of synoflyrt.S is at tt1e

heart ot any Phonetic nan.e encryption fnodulE~ • It nas been 5U9-

qested that two standards should b~ used to evaluate phonet1c name

encryption algorithms: reliability and selectivity (1). In d1s-

cussing ttlese concepts 1n a study ~repared for the New York State

loent1t1catlon and intelligence System, Robert Taft ~eflnes

reliability as , "the prObability thdt tne tecnnique will retrieve

toe correct suspect It, in tact, the suspect 1s in the fIle." (2)

Contlnu1nq tne dnaJ.ysis, Taft states selectivity is,

"tne average percentage ot La) t.ile that the technique
will accept on an average searcn request. It, for ex
ample, a metnod has a selectivity factor ot one percent,
then the metnoa wi!!, on the average, accept one percent
ot tCle file and reject ninety nine percent ••• the ~
selectivity tactor 1s an accurate measure ot the amount
of work the system will have to pertorm." (3)

to these criteria tnls ~riter will add yet a third,: Tne alao-

r 1 t h 01 S h 0 U 1d be 1: a s t 1n e xecut 1 0 n t 1me B 1"\ d r e q u1rea m1n1 Utale 0 de

and aata segment on the HP )000. A s11ll~11e litAAGt: data structure

illi~lied bY tne mecnanlcs of phonetic name transformation tech-

niques 1s stlo"n lJelow 1n F'!gure 1.

r~lgure 1

• • • • • • • • • • • • • •
• Phonetic •

• Code • • •••••••••••••••••••
•(Auto).··················.······>. Name Detail •

• •
• •

• •

p r 11118 r y Key: P(10 net 1c
COde

C-S-04

•
•

•
• • • • • • • • • •

•
•

•



S1nce the object of the encryption algoritnm 1$ to group similar

sound1nQ names 1nto the same group (i.e. assign them the same

search item value), 8 stralgnt-forward representation of th1s 1n a

data base 1s a detail set with a primary Key of the Phonetic name

cOde 1ndexed by an automatic master. The deta11 set allows for

mult1ple recordS wlth the same. search item v~lue, mak1ng the

phonetic key the primary key of the detail set will speed access

by lnsur1nq that records w1th the same phonetic Key wIll be stored

contiguouSly 011 disk atter a DBUNLOAO/DbLOAO cycle. This same set

may be indexed by otner master sets and Should conta1n at a mini

mum the name and name associated information for the entity being

~ lnaexed.

SOUNuEX and NY511S Name Encryption Techniques

In tois section t~o name encryption techniques ~111 be

specified and evaluated using the standards outlined In Section 2.

fhe SUUNOEX algorithm Is an especially common name grouping tech·

nique in use today. Its implementat10n Is extremely straight

forward on tne HP 3000 (see appendix Al. The algorithm upon

which the SPL procedure displayed in Appendix A 1s based 1s given

below in Table 1.

C-5-05



Table 1 • SOUNDEX var1ant 1 Alogr1thm (4)

ixamQJ.e
Original name
ASHCROF'T

1. Remove the letters ·W· and "H" ASCROYT
trom the name

2. Code all letters uS1ng the follow1ng 0226013
table and using "0" for vowels:

8,F,P,V
C,G,J,K,O,S,X,Z
O,T
L
'''i, N
R

:& 1
:I: 2
= 3
= 4
= 5
:; 6

3. Make all multiple d1gits single
4. Remove all zeros atter the first

position of the value
5. Add SUfficient zeros on the r1qnt

hand side to make six digits
6. ~eplace the first digit with tne

first Character of the name

020013
02613

026130

A26130

Taft evaluates the fel1ab111ty of th1s technique at 95.99

~ercent. lts selectivity factor 1s .213 percent, i.e., this

metnod will on th~ average retrieve .213 percent of a file as

matches to a name inQu1ry (5). Tt'le procedure shown in Appendix A

takes 69 C~U seconds to encode 5,524 names on an HP 3000 serIes

Ill. The ~XSIIS name encryption tecnnlque represents an effort to

develop a phonetic coae that is both more selective than SOUNDEX

procedures ana hlore ef feet 1ve at hand 11n~~ the "or thOgraphl C error s

wh1ch occur in the recording ot 'Spanish' and other ~outh ~\1ropean

nam es" ( 6 ) .. Ii heN YS11Salg 0 r 1 t h III 1SOU t 1 i ned in TaD 1e 3, below:

labJ.e 3 -- 't,)e NYSIIS Algorithm (7)

a1.lJ.e
1. If tne f1rst letters of the name are

"MAC" tnen change these letters to "MCC"
"KN" tnen change tnese letters to "NN"
"K" then cnange tnese letters to "C"

C-5-06



/

npH" then change these letters to "FF"
"Pf" then ct,ange tnese letters to "l"F n

"SCH fl tnen change these letters to "SSS"
If tne last letters ot tne name are

"~E" then change these letters to "Y "
tt Ie" the n Ctl a (1gethe s e 1e t t e r s to" Y "
"UT","kT","HD",R~T","NU· then

Change these letters to "0 "
The t1rst Character ot the N~SIlS code is the
first Character ot the name
In the follow!n<.l rules, a scan 1S per-formeci on
toe C h a rae t e r sot the na me. 1'1) i sis a e 5 C r 1bed
in terms of a program loop. A pointer 1s usen
to ~oinl to the current position under
con s 1d e r Q t ion i n t ne na 0' e •
step 4 1s to set the pointer to the second
cnaracter of t ne nanie.
ConSidering the positIon of tne poInter, only
one of the tollo~ln9 statements can be
executed:
It blank then go to rule 7
If the current position 1s a vowel (AEluU)

traen
It equal to HEV" then change to "Af"
otherwise change current position to "A"

If tne curr~nt position is the letter
"y" tnen change tne letter to fiG"
"z" then cnanQe the letter to "SA
"M" tnen change tne letter to "N"

1£ the current posit1on Is the letter "K" then
It the next letter 1s "N" tnen

replace the current pos1tlon by aN"
otherwise

repiace the current posItIon oy ftC"
It the current position points to the letter

str1ng "SCH" then
replace the string with "555"

ott.e r w1 &elf t tl~ cur r e n t PO S 1 t 10 n PO 1n t s to
the letter string "~H" then
replace tne string with "Fr"

It the current poslt1on 1S the letter PH" and
e1ther the proced1ng or following letter is
not a vowel ("At;I()U) then rePlace the current
position with the preceding letter

It the current position 1s the letter "w" ana
the preceding letter 1s a vowel then

replace the current position wltn the
preceding pos1t1on

If none ot these rUles apPlies, then retain
the current position letter value

It the current p051t1on letter Is equal to the
last letter placed 11\ the code tnen

set the pointer to point to the next letter
go to rule 5

C-5-07



7. It toe last cnar'acter ot t.he NYSIIS code is
the letter "S" t~en

remove lt
8. If the last two characters of t~e NYSIIS code

are the letters "A~'" then
replace thern wi tn tne single letter "~ ..

~. It the last Character ot the NYSIlS code 1s the
let ter "A·t then
remove tnts letter

Taft e vit 1 uate s t tlere11 a hill t y 0 f t his tee hn1que is t 9 a•72%•

the selectivity factor of the N~SI]S routine 1s .164* (7). A

proqranJ us log an SPL imp lementa t ton of the N ~ 51 r S algor i ttlftl

developed by the Illinois Law Enforcement Commission (~) tOOk ~6

c~u seconas to encrypt ~424 names.

C-5-08



Deta11ed Comparison

the SOUNDEX and NYSIIS algoritnms were compared using the fol-

low1ng procedure:

1. A f1le of 5424 names was encrypted using each
technlqtle
A sequentia 1 MPE f 11e cor,ta in1 ng the phonetic code
fQ~ each name was generated.

2• l'1 n~1 n9s we rede r 1vedt 0 r both proeel s e &
3. The tiles o~ phonetic codes were sorted in asCending

order
4. oupllcate cOdes 1n eacn tile were elim1natea.

Each code was tagged W1ttl the t1Ulilber syl10ny rns
for that coae that had been generated.

5 • S U fU r.~ a r y s tat 1s tic s we rede r 1ve d us inq S P SS (9).

Toe results of the SPSS runs and other summary measures are given

in Table 4, below:

lable 4 -- SOUNDlX vs. ~YSl1S

Routine CPU Segment " Codes Avg. No. S1'D Max 10lurn NO.

~
Name Time Size Generated Synony.liS I or.: v Synonyn,sl

""
Code Code

NY'SllS bo 10~1 1.&73 2.895 4.644 77
~ lJ lJ Nl) t: X 09 434 147B 3.669 5.992 84

1:ne coropdr1son data aisplayed 1n Tat.~ 1e 4 reveals that tne per-

tormance chdracter1stlcs of tne NYbllS routine are on the average

about twenty percent more eftlc1ent, both In terms of tne number

of entries generated and the average number of synonyms per entry,

than SOUNOlX. It Should be noted, no*ever, that apPlications

using one algorithm as opposeo to the otner will not necessarilY

sho~ equivalent dIfferences in performance. This 1s especially

true tor arp11catlons using IMAG~ databases ~hlch are perodically

LJbUNIJIJAD/DbLOADed. E:rrtplr1cal data at tne Third oistrIct <.:ourt 1n-

dlcate tnat IMAGE will b!OCk maoerate s1zed name detail sets (fOT

~ example, dOubly keyed records *ilt. 50 byte name field, six byte

soundex primary key, tell byte secondary Key ana eight oytes of

C-5-09



miscellaneOU5 data) at from ten to eleven blocks per phys1cal

record. ThUS one disc 1/0 will all matching phonetic entries all

but five to seven percent ot the time, ~ependlng upon the alqo

rlthm selected. If DbUNLOAO/DbLOADS are not done on a periodic

oas1s, then performance difterent1als shoUld approach that found

in the sample aata used in this paper.

C-5-10



Summary

Applicatlo11S uslrlg eltner 01 tiAe pnonetlc enCfyptlOJ1S al-

go r 1 t n r,. 5 d 1 S C Usse a i rj trIll spa ~ e l: 'f- J. ! .1 0 e c,.'1 t.> J. e Los e d l' Cnan a p
propr iatly keyed detdil Set by ptJoJietic Key. dotn metnods

generate fixed length keys. Finally, by doing phonetic searches
or. tne last nan,e ana eXact or welgr.ted n,atcnes on the rerna1nlny

clidrdcter 5 lr~ a ndlfte specitled ot data entry tl[f,e, <=in appllcatlon

p.c ogr ClUi triO i' "0 ttl searcn on an i ncon.i-' J. e te nanlE: and aev e .lop a SUDS e t

v 1 1(, d ten 1 rHJ .10 niest 0 r 1. ur ~ nerar. a1 y s 1 5 •

C-5-11



( 1 ) ~ 0 r: e r t 1.1. l a t t, ., t\J a me Sea ret) l' ec h n i q u. e s , "A. 1 t;. any: Ne Ii ¥0 r K

Stdte ldentificat10r anri Intell1.qence system, undated, PP 37
3~. This paper Is an excellent analysis of tn~ merits and
demerits ot several different name encryption systems.

(2)

(4)

(0)

lb1a. , P. .3 7 •

.1b1g., P. ~ k •

(3)

(5)

(7)

( t> ) r" YS 1 ) S \'; a 5 1 mp 1e Ul e n tedon the HPJ 0 0 () b V \.1. L) a v 1d Cold r en
ana tl1s staff at the 1111.nois Law ~.. ntorCefJlent COfC'fl1ission in
c~~ a y, 1 Y7 "/ •

( 9 ) See lJ 0 r;n it n H. f\: ie, e1,••01., ~tat• .it1ca.L..~aCi;.ilge_.tc~..t~e_S.Q:
~1&1~~~1eQce~.~~Qd~~d1t1QQ.,~e~ York: Me Graw Hill and Com
pdn~, pp 1~4-202 tor an expltinat10n of the FR~QlJ~NCIES proce
dure used to analyze the data r~terenced in this paper.

C-5-12



·C-5-13



MOVE RUSSELL'SOUNDEX:=65("O"),2;
~OVE *:="01230120022455012b2J010202000000012301200224550",2;
MOVE *:="12b23010~02",2;

MOVE *1=133("0");
MOVE NAMESTRING'S:=NAMESTRING'8,(50); « COpy NAME TO WORK AREA »
NAM~STRING'S(50):=" "; « SET TERMINATOR BYTE »
SCAN NAM~5TRING'S UNTIL tI, ",1; « SCAN FOR END OF LAST NAME »
5TRING'LENGTH:=TOS·@~AMESTRING'S+1, «SET STRINGLENGTH »
MOVE STR:=NAMESTRING'S,(STRING'LENGTH); « MOVE LASTNAME INTO 5TH »
FIRST'LETIER:=STR; « SAVE FIRST LETTER OF LAST NAME »
IF INTEG~R(FIRSt'LETTEN»90THEN

F'l RST' LETT f±:R : =8 Y'I'E (I N1fEGE~ l FIRST' LE'l'Il£R)· 32) ;
IF FIRST'LETTER <> ALPrlA THEN

BEGIN
~RRCODE:=l; ~

REl·U.~.N ;
ENO;

C1RANSLATE(O,STR,STR,STRING'LENGTH,RUSSELL'SOUNDEX);
IF < ThE~ BEGl~ « TEST FOR SUCCESSFUL »

ER~COD~:=l; « TRANSLATIUN AND SET »
RETURN; « ERRCODE ACCORDINGLY·»
~~Nr· :

ERRCODf£;=O; « INITIALIZe: F~RRCODE »
FUk 1:=0 STEP 1 UNTIL STRING'LEuGTH-2 DO

B~Glf\f

J:=l;
WHILE SIR (1) =S'l'R (J +1) AND J <=Sl~ lNG' LENGl'H-l DO

b~GIN

STR(J+l):="Of';
J.=J+·l;
END;

~; t\ 0 ;

1s PORSNDX.PUB FRl, MAR 13, 1981,
SCONTROL SUBPROGRAM,LIST,SEGMENi=RUSSELLSOUNOEX
BEGIN
PROCEDURE SOUNOEX(NAMESIRING,SOUNDtX,ERkCODE);
LOGICAL ARRAY NAMESTRING,SOUNDEX;
INtEGE-R ERRCODE;
8EGIN

H\TE ANRAY NAMESTRING'8(*)~NAMESTRING;

BYTE A~RAY SOUNDEX'B(*)=SOUNDEX,
BYTE ARkAY NAMESTRING'S(O:50),STR(O:50);
aYIE ARRAY RUSSELL'SOUNDEXlO:25S);
INl'ErGER I,J;
INTEGEk STklNG'LENGTH;
B\TE FlkST'~E1TER;

INTRINSIC CTRANSLATE;

« PH~FIX SOUNDEX CUDE WITH »

« POSTfIX ZEROS TO MAKE »
« SIX UIGll CODE »~

5133 PM

« SQUEEZE OUT ZEROS »

C-5-14

J:=li
FlJR .L :=1 STt;P 1 uN'l'IL STklNG'l.~NGlltt·l ')0

IF STH(l)(>"O" AND J<6 THEN
t3EGIN
SOUNDEX'b(JJ:;STRC!);
J:=J+l;
E:ND;

If' J<b l'hEN

~~fJR 1 :=J STE:1J 1 U~'llL 5 Dlt
S. (J tJ f\j Df; x' R ( 1 ) : =.. 0 " ;

SOLJi\DEX 't;:=flRST'Lf'~TTt:t<:

Xextf11e
1
2
3
4
5
b
7
8
9

10
11
12
13
14
15
10
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
3~

36
37
3ij
39
40
41
42
43
44
4~

4b
4"1
48
49
~O

51
~2

53
!:t4
5~

~6

57
5&
f)9



END;
Ef'.IO.

C-5-15

« FIRST LETTER OF LAST
« NAME

»
» ..



USING SERIAL AND DEMOUNTABLE DISK VOLUMES
by:

Jim Brand
U.S. Office of Personnel Management

An in-depth discussion of how to create, initialize, use, and change

the demountable disk volume feature of the MPE operating system. The

paper touches on particular environments where demountable volumes

might be applicable, and both the advantages and disadvantages of

using demountable disk. It focuses on a detailed technical discussion

of creating the account structure for, initializing, and maintaining

demountable disk volumes. In particular, this section deals with

the "things HP never told you" about demountable disk software,

how it works, directory structure, and some of the problems you

would be likely to encounter in creating or purging accounts, groups,

and files from demountable volumes.

Backup and file storage on serial disk forms the central concern

of the last section of the paper. This section suggests some uses,

advantages, and flexibility which can be gained by using serial disk

backup. It is concluded that demountable and serial disk can be

very effective in helping to .achieve better utilization of available

disk spindles. There are several problems which should be considered,

however, before its implementation.

Tuesday C-6 - 01



~.r MEASURING TRANSACTION RESPONSE TIMES

Chuck Storla
Hewlett Packard
Rolling Meadows, IL

ABSTRACT: One of the major problems confronting system
managers and progrffinmers trying to improve the performance
of an application is their lack -of knowledge of exactly
where the application is spending its time. This paper dis
cusses a method of "instrunlenting" the user's application
so that precise timings are available to the development
staff. One of the major benefits of this method is that it
may not require any modification or even recompilation of
existing code.

I. Introduction.

An on-line application program typically contains subsystem
calls and code which performs the following functions: ter
minal I/O, file handling and logic/computation. All of the
specific functions of a user's program such as data entry,
inquiry, and error handling, will fall into these three
categories. Many current users of the HP3000 have existing
applications which perforul these respective functions with
V/3000, IMAGE/3000 and a high-level language such as COBOL.
Although the method discussed in this paper has some
general applicability, it will be specifically aimed at the
users in this environment.

Should a user experience perforrnance problems with a par
ticular application, the programming staff needs to deter
mine where the bottlenecks are. This can be accomplished
through intelligent guessing, through consultation with a
Hewlett Packard Performance Specialist or by adding timing
code to the program(s) under suspicion. We will add this
extra code to the program to deterrnine which phase is
taking an unusually large amount of time to execute. If we
can narrow the scope of our investigation to that portion
of the application which takes the most time to perform or
at least takes longer than we feel it should, then we are
much closer to knowing how to solve our performance
problem. We might find, for example, that for a transaction
which takes 20 seconds, the program uses five seconds to
retrieve all of the records we need, 2 seconds to display
the data, but thirteen seconds to format it. We might then
choose to spend our time improving the performance of this

Tuesday C-7 - 01



MEASURING TRANSACTION RESPONSE TIMES

formatting code, rather than on a redesign of the data
base.

This is not meant to imply that the portion of a program
which requires the most time to execute is necessarily the
least efficient or even the cause of the problem. However,
any area in which a program spends a great deal of time
will certainly be of interest to anyone wishing to optimize
its execution.

II. DETERMINING WHAT TO TIME.

If we examine a typical on-line application we might find
that the program had the following structure:

.~

BEGIN
Initialize data, Open files;
Display formatted screen;
WI-IILE NOT DONE 00

BEGIN
Read screen; «for input data »
IF end THEN

done:=TRUE
ELSE

BEGIN
Retrieve data .from files;
Format for output to screen;
Display data;
END;

END;
Clean-up, Close files;
END.

« 1 »
« 2 »

« 3 »

« 4 »
« 5 »
« 6 »

« 7 »

This program is a simplified version of many now in use on
HP3000's. This description does not include any error han
dling and is limited to a single screen, but will serve for
the purposes of this discussion. Our interest in the per
formance of this program would probably center on steps
« 3» through« 6 ». TI1e additional steps (1,2 and 7)
would only be of interest if this program was run many
times and for brief periods. Unless this is true, the
start-up and shut-down functions are probably not as cru
cial to us as the intermediate processing. However, since
file opens can be very high overhead operations, we might
need to consider these steps in other programs.

C-7 ... 02



MEASURING TRANSACTION RESPONSE TIMES

To the terminal operator, the function of this program
would appear as follows:

(a) :run prograln
« wait for 1 & 2 to complete »

(b) enter data, hit ENTER
« wait for 3 through 6 to complete »

(c) look at data and either EXIT or return to step (b)
« if EXIT wait for 3 & 7 to complete »

Obviously, from the terminal user's perspective, the impor
tant timing consideration here is the time he or she must
sit and wait between hitting ENTER and receiving a full
response. Time from the operator's perspective will from
now on be referred to as "wall time" and will be distin
quished from the amount of time the computer system spends
executing instructions on the behalf of this user, which is
known as "cpu time". We are interested in cpu time only as
it pertains to improving the wall time responses we can
provide our terminal user.

It is very important to note that there are many instances
in which our program can require significant amounts of
wall time for a step that requires little cpu time. TI1is
will be especially true when our program must compete for a
resource such as a file or data-base lock or must wait for
the operating system to grant a buffer, sufficient room in
memory or a disc I/O. During the time we are waiting for a
particular resource, our process is said to be impeded.
While in this state, no cpu time will be used by our
process, but many seconds or even minutes of wall time may
go by. This being the case, we are interested in timing
both wall and cpu times.

Returning to our hypothetical program, we see that we might
like to add our timing code just before and just after each
of the major steps, especially «3» through « 6 ».
Given the nature of these steps we might assume that step
three, reading the screen, will not take much cpu time but
due to the operator's typing speed and delays caused by his
or her decision making, our measured wall time will be sig
nificant. The wall time attributed to thinking about what
to enter and actually typing the data is usually referred
to as "think time". The wall time from the point at which
ENTER is hit until the screen is ready to accept new input
will be referred to as "transaction time".

C-7 .. 03



MEASURING TRANSACTION RESPONSE TIMES

III. HOW 1'0 TIME.

There are several intrinsics available to programmers on
the HP3000 to determine both cpu time and ~"all tirne. The
first of these intrinsics are PROCTIME and TIMER, respec
tively.* The PROCTIME intrinsic will return the number of
mtlliseconds that have been "charged" to a process for cpu
usage. The TIMER intrinsic returns the number of mil
liseconds from the last time the system was started, or
since the last automatic reset to zero. This reset occurs
on twenty-four day intervals at midnight.

It should be noted that these intrinsics each have a
resolution of one millisecond and therefore should not be
used to make single measurements in that r~nge. At the ap
plication level in which ~Je are currently interested, most
measurements will result in times greater than a tenth of a
second and often into seconds. Should an investigation
require timings in the millisecond range or beiow, special
methods must be used.

IV. A METHOD OF IMBEDDING TIMING CALLS.

Part of our method then will be to insert into our applica
tion progr am t11e calls to PROCTIME and TIMER so tllat ~Je can
arrive at elapsed times for cpu and wall time. In many
cases however, it may be difficult or undesirable to modify
an existing program to add the" necessary timing calls. If
the calls were imbedded within the source code itself we
would as well need a means of disabling the timing during
normal operation. In looking at our example program and
considering it to be written so that the screen handling is
done through calls to V/3000 intrinsics and the file han
dling is done through calls to IMAGE/3000 intrinsics, we
might modify our pseudo-code as follows:

*These intrinsics are documented in the "MPE
Intrinsics Reference Manual" (30000-90010).

C-7 - 04



MEASURING TRANSACTION RESPONSE TIMES

BEGIN
Initialize data, Open files;
VSHOWFORM; « Display screen »
WHILE NOT DONE DO

BEGIN
VREADFIELDS; « Read screen »
VFIELDEDITSj
IF end THEN

done:=TRUE
ELSE

BEGIN
VGETBUFFERj
« Retrieve data from files »
DBFIND's & DBGET'sj
Format for output to screen;
VPUTBUFFERj
VSHOWFORM; « Display data »
END;

END;
Clean-up, Close files;
END.

« 1 »
« 2 »

« 3 »

« 4 »
« 5 »

« 6 »

« 7 »

We can now see that several of the major steps which we
wish to time become one or more intrinsic calls. If we
could time each of the indivdual intrinsic calls and as
well capture the time between several of the calls we could
get the bulk of the data we need.

The method used by MPE to link a program to external
procedures provides the mechanism we need. At the time a
program is executed with the :RUN command** the MPE LOADER
will try to resolve any unresolved externals by searching
one or more Segmented Libraries. The default is to search
only the SL.PUB.SYS file, while at most three SLs will be
searched. Assuming a program file resides in a group other
than PUB of an account other than 3YS, the command u:RUN
program;LIB:G" will cause the search to proceed as follows:

**or is allocated with the :ALLOCAIIE command or
has a process created with the CREATE
intrinsic.

C-7 - 05



MEASURING TRANSACTION RESPONSE TIMES

SEGMENTED LIBRARY SEARCH ORDER

1) SL.group.account is searched

any externals not resolved or any "new" externals
will cause a search of

2) SL.PUB.account

any externals not resolved or any "new" externals
will cause a search of

3) SL.PUB.SYS

any unresolved externals at this point will cause
the load to abort

The reference to any "new" externals after 1) and 2) refers
to the following situation: Assume a program whic11 has two
unresolved externals, procedures "A" and "B". If we run the
program and specify LIB=G, then SL.group.account will be
searched. Assuming that this SL contains procedure "A", it
will be resolved. When procedure "A", in turn calls "X"
which is not contained in SL.group.account, then "X" is a
new external and it must be resolved at the account or sys
tem SL level.

If the program we wish to time exists in a non-PUB group of
a non-SYS account then it might search for the V/3000 and
IMAGE/3000 intrinsics in the first two groups and, not
finding them, will finally link to those routines in
SL.PUB.SYS. If we wish to "intercept" the calls to a par
ticular intrinsic, we can accomplish this at the group SL
level. To intercept each call to DBGET, for example, to
determine how much time our data-base reads were taking we
could write our own version of DBGET and place it in
SL.group.account. Now all calls to DBGET would execute our
own DBGET routine. This solves the problem of capturing the
calls to DBGET, but to allow the progrffin to operate cor
rectly we need to sorne}10W get from our routine to the
"real" DBGET in SL.PUB.SYS. If our local DBGET makes a
call to DBGET it will simply be recursive on itself.

The solution involves calling another user written routine
w11ich we will call DBGET'. This routine will simply accept

C-7 - 06



MEASURING TRANSACTION RESPONSE TIMES

all of the standard DBGET parameters and use them to call
DBGET. It will be placed into the account SL so that its
call to DBGET will be resolved to the "real" DBGET in the
system SL. Thus, when our program calls DBGET, it executes
our group SL version of DBGET which logs some timing infor
mation and then calls DBGET'. This routine in
SL.PUB.account in turn, calls DBGET in SL.PUB.SYS which ex
ecutes the actual function.

This solution solves several of the problems we discussed
previously. SInce it requires no modification of user or
system code, it is easy to implement and can be used in
some situations where original source code is not available
for modification and recornpilation. It also allows us to
enable and disable the timing code easily. To enable the
timing simply run the program(s) with LIB=G. The default
case is disabled (LIB=S).

v. CONSIDERATIONS.

The following must be considered when evaluating this tech
nique:

- Programs must reside in non-PUB group of non
SYS account.

- If the programs currently use the group SL,
then two versions must be created. One includ
ing timing calls, one without.

- Performance may be minimally affected by the
additional procedure calls ( two per call to a
timed intrinsic ) and the additional timing and
logging code.

- If timing information is being written to a
file, provisions must be made to allow it to be
shared between multiple users.

- Timing of some portions of the program must be
inferred, since only certain procedure calls
are captured.

- No indication is given as to the cause of poor
performance in the case of impedes.

C-7 - 07



MEASURING TRANSACTION RESPONSE TIMES

The method discussed here provides a tool for application
programmers to use in learning more about the behavior of
their systerns. The use of dummy intrinsics in group and ac
count SLs has been used successfully by various Hewlett
Packard personnel as a method of timing the execution of
some routines and as a method of logging all terminal in
teraction to a disc file for later manipulation. Within ttle
limitations of the data gathered and depending upon the
analysis of t11at data it provides a mechanism that is both
easy to implement and is specific to the area in which data
is desired.

C-7 - 08



",.,..' .
I.""

\

DATA BASE NORMALIZATION

By:

Gurdo VanBempt
Jaak VanDamme

Syvas, Inc.

Paper to be presented
at Conference

Tuesday C-8 - 01



THIS PAPER ON THE HEWLETT PACKARD 2680A LASER PRINTING SYSTEM
WAS PREPARED FOR THE HP 3000 USERS GROUP MEETING

APRIL 29 IN ORLANDO FLORIDA

by Jim Langley
HP 2680A 'R&D Project Manager

Tuesday C-9 - 01



Laser Printer Paper, March 16, 1981

Abstract

This paper describes the HP 2680A Laser Printing System from the
perspective of the HP 3000 programmer. The printer hardware is first
described, then its features are explained. Concepts of downloadable
character sets, electronic forms and logical pages are discussed. The
implementation and use of these printer features via the system
software is also covered. The impact of the laser printer in a
distributed computing environment is briefly explored.

Overview

The HP 2680A is Hewlett Packards first page printer. It is based on an
electrophotographic process which was licensed from Canon, a Japanese
firm. The printer was designed and is manufactured by the Boise
division in Boise Idaho.

Several key objectives were established at the start of the program.
Reliability, flexibility, features matched to 3000 user needs, simple
powerfail and paper jam recovery, very low CPU overhead, and the
ability to access the printer and its features from existing programs
without modification became the primary objectives of the development
effort.

From the beginning the printer was designed 8S an extension of MPE, not
an added on peripheral. This tight coupling yielded a fully integrated
printing system that is fully supported by the MPE file system and
spooler. In addition a powerful sUbsystem exists which allows complete
character set and forms design. Flexible page formatting and a full
complement of intrinsics provide access to all printer features.

By fully integrating the printer into the 3000 simple and reliable
power fail and paper jam recovery is realized. All these benefits were
achieved while the CPU overhead to drive the printer was reduced an
order of magnitUde from that required to drive conventional printers at
comparable data rates.

Hardware

The 2680A is approximately ,.5 feet long, 2.5 feet deep and 4 feet
high. It weights about 875 pounds. Power requirements are 4500 watts
when printing. Throughput is 45 8.5 by 11 inch pages per minute. The
equivalent lines per minute speed is 2900 lpm ranging up to 12000 lpm
in reduction mode.

The paper path is short and readily accessible to the operator. It
features a powered paper stacker. The fusing system is radiant,
eliminating any pressure or high temperature rollers. Nothing contacts
the upper side of the paper once the image is transferred from the drum
to the paper, contributing to excellent reliability. The web is pUlled
by a programmable torque motor on the output tractors, and paper motion
is gated by stepper motor driven input tractors. A solenoid powered
retraction mechanism pulls the paper away from the drum when the seam

C-9 - 02



Laser Printer Paper, March 16, 1981

on the drum comes around. The input paper platform acts as a splice
table; a vacuum is used to hold the paper onto the table when splicing
a new box of paper onto the end of the previous box. The paper path
can accomodate various widths up to 12.5 inches and lengths up to 17
inches. A width sensor on the input tractors allows the printer to
energize only the correct width in the preheater section of the fuser.
Paper which is heated produces odors, which are trapped and oxidized in
replacable filter cartridges.

The image forming process is electrophotographic. The heart of the
system is a photoconductive drum about 19 inches in circumference and
14 inches long. The drum is coated with cadmium sulfide and wrapped in
mylar for protection. The drum is uniformly erased and then charged to
several hundred volts at the first station. The laser is then scanned
across the drum perpendicular to the direction of rotation. The beam
is modulated to give 180 dots per inch resolution. There are 2048 dots
in one scan line, giving a printable area 11.38 inches across. The
drum rotation allows the sweeping laser beam to cover an area 17 inches
long. The circular dot is about .008 inches in diameter on a grid
.0055 inches square. When the laser beam hits the drum the voltage is
depleted. Next the drum rotates past a cloud of fine flour-like black
plastic. The plastic toner is attracted to areas of no voltage by
electrostatic forces. The pattern traced by the scanning laser beam is
now visable as a sharp black image on the drum. Finally the paper and
the drum are brought together for about 1 inch of tangential contact.
The paper is correctly charged to firmly attract the toner off the
drum. The small amount of residual toner not deposited on the paper is
then scraped off of the drum by a urethane wiper blade and collected by
a vacuum system. As the drum turns these processes are executed
simUltaneously at different stations around the drum.

In order to achieve high print quality over a wide range of ambient
conditions the HP 2680A has two closed loop control systems. The
electrostatic control system monitors the potentials on the drum just
after the laser station. The voltage is measured both where the laser
exposed the drum and where it did not. The microprocessor taking the
measurements then controls several programmable power supplys to
maintain the correct drum potentials. The readings and ajustments are
made once per drum rotation. The electrostatic closed loop compensates
for variations between replacement drums, drum degradation over time,
humidity, temperature and altitude variations, and toner mixture
fatigue.

A second closed loop system monitors the developed image on the drum to
control print density on the page. By varying the amount of toner in
the developer assembly which brushes the toner mixture across the drum
the amount of toner on the drum and hence the final print darkness on
the paper can be controlled.

The mechanical features of the printer were designed to be simple and
reliable, and the operator functions are easy to learn and execute. A
vacuum system in the printer contribute~ to cleanliness. It is used to
recover toner wiped off the drum. It also is used for the splice table
and to maintain good contact between the preheater pad in the fuser and

C-9 - 03



~
\

Laser Printer Paper, March 16, 1981

the paper. The operator loads a fresh kilogram of toner into the
machine about once every eight hours of printing. Unused toner is
collected with the vacuum system, trapped centrifigally and deposited
in a disposable bottle which is replaced every couple of days. A new
box of paper is loaded every hour. The new box can be conveniently
spliced onto the end of the previous box or the new box can be easily
loaded with the THREAD button.

There are two microprocessors in the HP 2680A. One is a 16 bit HP
proprietary 50S device which controls all machine functions such as the
operator keyboard and alphanumeric display, the paper path, the closed
loop systems and internal diagnostics. The second processor is a high
speed bi-polar bit slice processor Which communicates with the 3000 and
performs all processing on the data stream and Ultimately modulating
the laser beam to form the correct images at the proper place on the
drum. This processor uses 256k bytes of RAM, with a second 256K
available as an option. Approximately 40K bytes of this memory is used
for tables and buffers, the remaining memory is partioned dynamically
during each job for character sets, forms, and page bUffering.

Extensive internal diagnostics constantly monitor the state of the
machine, alerting the operator if a service engineer should be called.
When arriving on site the service engineer can use additional
internally contained di-agnostics to troubleshoot any problems. A very
complete self test program is available which prints many important
parameters on the machine itself. Data such as serial number, drum
rotations since last PM, firmware datecodes, and all operating values
are labeled and printed. The printer contains a limited amount of
nonvolatile memory.

Programming Features

Page printers, even with their inherent benefits of high thruput, low
noise and exceptional print quality are rarely viable as simple print
and space devices because of their higher cost. However the HP 2680A
is a cost effective replacement for many line printers. This is
because of the flexibility and features of the printer. Electronic
forms allows the inventory of costly specialty forms to be eliminated.
Long lead times and form modifiation costs are reduced to a few hours
on a terminal. Definable character sets allows the printer to be used
in 8 wide variety of industries and applications where conventional
printers are useless. In addition the print quality and crispness in
conjunction with the 8.; by 11 inch paper size means HP2680A output
never needs to be copied or reduced before general distribution.

The HP2680A implements a concept called logical pages. A physical page
is a sheet of paper bounded by perforations. A physical page can be
divided into up to 32 rectangular areas called logical pages. Logical
pages can overlap. A programmatic command to page eject moves the
print to the next logical page. If all logical pages have been used,
the printer goes to the first logical page on the next sheet of paper.
Each logical page has several attributes such as an associated vertical
format control (VFC) table, a default line spacing, and one of four
orientations. In addition each logical page can have up to two forms

C-9 - 04



Laser Printer Paper, March 16, 1981

associated with it. When the logical page is printed the forms are
automatically overlaid by the printer. Several logical pages can share
the same form and VFC, the printer will automatically relocate it to
the correct origin for each logical page. Logical pages are a powerful
concept which particularly supports existing programs. By defining the
logical page format an existing job can have its output reduced two to
1 or four to 1 or rotated without even recompiling the job.
Additionally a job which currently uses preprinted forms can be
switched to run on the laser printer without modification. The
existing form is converted to electronic format and then the
corrsponding logical page is defined to use the form. The job is then
printed on the laser printer and the data is merged with the form and
printed.

The electronic forms capability is designed for maximum flexibility.
Each form can contain horizontal and vertical lines of varying
thicknesses, text written with any number of fonts in any of the four
basic directions, plus areas or boxes of variable shading. Form
elements can be positioned anywhere and are not restricted to certain
character positions on the page as a IIdraw set ll is. The printer can
support 32 different forms simUltaneously. Each logical page can use
up to 2 forms as long as the total does not exceed 30. Additionally
each physical page can be overlaid with up to 2 forms. Enough memory
and processing power exists to create a form which is a dot per bit
image of an 8.; by 11 inch sheet of paper. Forms are easily created
for the printer using an interactive program called IDSFORM.

The HP2680A printer accepts user defined character sets. Each
character set contains from 1 to 128 characters. Each character has an
associated cell of a specified size which contains any dot per bit
representation desired. The spacing between characters and between
lines can be set to any value. A character set can print in any of the
four directions. Proportional character sets are supported. In this
case each character has a parameter describing how far to move over
after printing each character. The printer also allows the cells to be
printed in any relationship to the current IIpenll position. This allows
centered symbols, or common base lines so different character sets can
be mixed properly on a single line. When using more than one character
set a primary and secondary set are defined and then selected with
either shift in, shift out control codes or by setting the eigth bit of
the ASCII code. HP supplies a large number of character sets of
various fonts and sizes. In addition character sets and logos can be
created interactively by terminal users via IDSCHAR.

Thirty two user definable VFC's are supported by the printer
simUltaneously. They are easily created with the IFS2680 program.

One additional feature was implemented to allow easy emulation of
mUlti-part forms. When activated each physical page of data will be
repeated up to eight times by the printer. As each copy of the page is
printed, the printer will automatically overlay any two forms on the
page. In this manner the same data can be repeated up to eight times,
but each copy can be individual addressed to shipping, purChasing,
order processing, etc.

C-9 - 05



Laser Printer Paper, March 16, 1981

These basic data structures provide a wide range of user features.
When combined with the ability to place cells anywhere on the page and
overlap at will plus the processing power to handle over 20,000
characters on an 8.5 by 11 inch sheet a truly unique printer results.
The maximum number of cells on any raster scan is 25,. As the cells
get larger, fewer can be printed simultaneously. Character set
switching, forms overlay and other features all occur at speed.

The printer's memory is allocated by a memory manager on a job by job
basis. Approximately 40K bytes are used by the printer, the remaining
memory is allocated to character sets, forms, VFC's and page bUffering.
As much memory as required is allocated to the user's character sets,
forms and VFC's. All remaining memory is used to buffer pages in an
intermediate linked list structure. More page bUffering insures that
pages are printed at speed. Insufficient page bUffering causes a lower
thruput rate. The programmer can add or delete character sets, forms
and VFC's during the job.

Environment Files

All character sets, forms, VFC's and the logical page table and the
multicopy forms table are placed in an environment file by a terminal
user running IFS2680. This file is then sent to the printer at the
'start of a job automatically. This allows the output of a job to
change appearance by changing the environment file or portions of the
environment file. For example if the character set in an environment
file is changed from elite to pica the next job to use the file will
have output printed in pica. By simply changing the logical page
description and SUbstituting a smaller character set a job can be made
to print in a 2 to 1 or 4 to 1 reduction mode. HP supplies several
standard environment files to cover portrait mode pica and elite,
landscape 132 column printer emUlation, two to one and four to one
reduction. The user can easily create additional environment files.

For new application programs the full power of the printer is available
through HP supplied intrinsics. The intrinsics allow features such as
writing 8 string to 8 named field on an electronic form. The form can
be redesigned and rearranged without modification of any programs using
the form. The data will automatically be placed in the correct field
wherever it is on the page. Intrinsics also allow the pen to be moved,
new primary and secondary character sets to be selected, any logical
page to be turned on or off and other similar features.

System Software

Extensive system application
sets, forms, VFC's as well
multicopy forms tables.

software allows creation of character
as the definition of logical pages and

IDSCHAR provides menu driven interactive creation of character sets on
graphic terminals. The program can emulate various shaped dots and
grid spacings. The laser printer has round dots about 8 mils in
diameter on a 5.5 mil grid. IDSCHAR also supports a digitizer to allow

C-9 - 06



Laser Printer Paper, March +6, 1981

easy input of character or logo outlines. The outline can then be
scaled and presented superimposed on the cells grid for easy filling
in. IDSCHAR supports lines, arcs, rectangular area fills plus scaling
and rotation. Special logo files are supported for use on forms. An
experienced graphics designer can create a complex logo in 1 to 4
hours. Generating a high quality character set takes about 40 hours.

IDSFORM provides menu driven interactive forms creation of forms on
graphics terminals. It supports horizontal and vertial lines of 3
different thicknesses. Boxes can be shaded from clear to black.
IDSFORM supports subforms which can be defined and then easily moved
around both on tpe page and between different forms. Windows describe
boxes consisting of headers and data fields. Data fields can be
labelled to allow symbolic access allowing the· form to be changed
around without modifying the program. The 1040 tax form was perfectly
emulated in 14 hours by an experienced user of IDSFORM.

I FS2680 is the formatting program which bundles up different character
sets, forms, VFC's and a logical page table into an environment file.
IFS2680 also is the program which constructs VFC's and the logical page
table for the user. Overall job parameters such as the number of
copies of each page desired and the mUlticopy forms table are specified
via IFS2680. HP supplied standard environments are available from
I FS2680 either as they stand or as a base to begin creating 8 unique
environment for a special job.

A contributed program called TR2680 which interprets commands imbedded
in ASCII files is available. Text editors can be used to prepare memos
and reports with the imbedded commands to utilize HP2680A features such
as mUltiple character sets, forms overlay, pen moves etc.

Once an environment file is created it is specified with a new option
in the file equation :FILE PRINT;DEV~PP;ENV=FOURT01. The environment
file is automatically placed in the spool file before the data. This
allows existing programs to use all of the features accessible via
environment files without modification.

Power fail and jam recovery are very simple and reliable. Non volatile
memory exists in the printer. When power resumes the 3000 retransmits
the job from the beginning at high speed. The printer processes the
data and resumes printing at the correct point in the job. The only
operator invention required is to insure top of form is correctly
aligned and push run. Paper jams are similar. If no paper was damaged
the job can be resumed without system intervention. If the operator
wishes to backup several pages the spooler is suspended, the jam
cleared, and the command :RESUMESPOOL LDEV#; BACK ; PAGES is used.
This allows backing up or skipping forward an arbitrary number of
pages.

Another unique concept introduced with the laser printer is the error
trailer. When a program executes an illegal function such as selecting
a missing character set, moving the pen off of the logical page or
trying to print a character off of the logical page the printer relays
this information to the 3000. This information is then printed out at

C-9 - 07



Laser Printer Paper, March 16, 1981

the end of the job before the trailer is printed. The error trailer
describes the error in english, along with the record number and actual
page number where the error occured.

Distributed Printing

MRJE has been -modified to support HP2680 environment files. If the
device class is PP for page printer and the forms field is not empty
then the forms identifier is used to locate an environment file.

RJE has an option which allows the translator procedure to process each
record when receiVed by the 3000. This allows complete access to the
printers features from a mainframe.

One internal test site is running a Series 30 to front end the laser
printer. They are printing over 130,000 pages per month. One half of
the output is generated by an Amdahl 470 and sent at 9600 baud via
MRJE.

At 2900 lpm the printer taxes the performance of most data
communication systems. System configuration, CPU overhead and data
format determine the printer utilization. The range can be from 10% to
100%. He are currently quantifying printer performance in these areas
and welcome user inputs and insights.

Summary

The HP2680A laser printing system provides a cost effective solution to
many computer output problems for HP3000 users. The reliability and
servicability contribute to its low cost of less than 4 cents per page
at 200K pages per month. The unmatched features provide capabilities
unique in the industry. The complete software appliation package
allows immediate turnkey solutions with no programming. The impact of
the laser printer in the distributed network is significant and allows
non HP systems to utilize the printer as well as enhancing distributed
HP systems.

C-9 - 08

Laser Printer Paper, March 16, 1981

the end of the job before the trailer is printed. The error trailer
describes the error in english, along with the record number and actual
page number where the error occured.

Distributed Printing

MRJE has been -modified to support HP2680 environment files. If the
device class is PP for page printer and the forms field is not empty
then the forms identifier is used to locate an environment file.

RJE has an option which allows the translator procedure to process each
record when receiVed by the 3000. This allows complete access to the
printers features from a mainframe.

One internal test site is running a Series 30 to front end the laser
printer. They are printing over 130,000 pages per month. One half of
the output is generated by an Amdahl 470 and sent at 9600 baud via
MRJE.

At 2900 lpm the printer taxes the performance of most data
communication systems. System configuration, CPU overhead and data
format determine the printer utilization. The range can be from 10% to
100%. He are currently quantifying printer performance in these areas
and welcome user inputs and insights.

Summary

The HP2680A laser printing system provides a cost effective solution to
many computer output problems for HP3000 users. The reliability and
servicability contribute to its low cost of less than 4 cents per page
at 200K pages per month. The unmatched features provide capabilities
unique in the industry. The complete software appliation package
allows immediate turnkey solutions with no programming. The impact of
the laser printer in the distributed network is significant and allows
non HP systems to utilize the printer as well as enhancing distributed
HP systems.

C-9 - 08



** END OF FORMATTING, NO ERRORS
IN=EDITOR HORKFILE, TEXT FROM PAPER
OUT=*LP

C-9 - 09

.~

..... , .. '



BUSINESS COMPUTER GRAPHICS/DECISION MAKING

by: Jutta Kernke
Product Manager
Hewlett-Packard Company
Information Systems Div.
19420 Homestead Road
Cupertino, CA 95014

Business Computer Graphics software offers visual display of information
which is critical to effective business management decision making.

The Human Graphics Processor

The power of visual information has been recognized since cavemen
began drawing pictures on cave walls. Confucius' famous quote about
a picture being worth a thousand words is taking on dramatic significance
today as modern research on information processing in the human brain
shows that a picture is probably worth more than a thousand words. While
computers may be ideally suited for an alpanumeric interface, a study
of neuro-psychology indicates that the human brain may more effectively
utilize a graphical format.

Researchers have found that once a mental visualization of a spatial
object has been formed in our mind, reading a written description of that
object causes the visualization to be "erased. 1I This may explain why
we find it so difficult to visualize trends, patterns and interrelationships
when reading tabulated numeric data." Reviewing the tabulated numbers
to verify a possible pattern tends to further suppress any visualization
that may have been formed.

Presenting the same data in a line graph format, however, makes· trend
and pattern information instantly understandable and it completely avoids
the "interference" problem.

Tuesday C-11 - 01



Improving the Human-Computer Interface

It is the human capability to rapidly process visual information that
makes graphics such an important interface to computers. The use of
pictures and graphs to present data provides concise visual information
on trends and relationships which are not immediately evident from
the numerical data. Interactive graphics allow computers to be used
for design tasks by making it possible for the designer to visualize
the object and then modify it--forming a close user-computer interface.

The power of graphics to improve the human-computer interface has lead
to a great deal of interest in the computer industry.

Advancing technology is bringing more and more powerful computational
tools to applications ranging from inventory control to automated
drafting and beyond. And as these tools become less and less expensive,
they are becoming generally available to a wider variety of users, many
without a background or training in computers. As this process continues,
a simple and efficient interface between the user and the computer ~

becomes increasingly important.

Getting Started ~Iith Business Graphics

Hewlett-Packard's new interactive business graphics system for the
HP 3000 computer family sets high standards for graphics productivity,
flexibility and ease of use. It enables the user to take full advantage
of computer-stored information resources which are already available to
the organization for better understanding and faster interpretation of
data.

HP Decision Support Graphics/3000 (HP DSG/3000) is a data display system
that helps you design, produce, and save business graphs drawn from
numerical information kept in any data file on the computer system.
The graphs can be displayed on any HP graphics terminal or a printed copy
(paper or overhead transparency) can be made on one of the HP multi-color
plotters.

c- 11 - 02



HP 05G/3000 is highly interactive and was designed for the periodic
and one-time user. Chart design is guided ·by simple "fill in the
blanks" menus presented in logical sequence. A "Help" facility which
is built into the system, assists the user upon request. It
requires little knowledge of graphics design and the non-computer
professional can obtain business graphics without waiting for the
development of application programs.

HP DSG/3000 also offers a powerful capability in program development.
Both the interactive user and the programmatic user have access to the
full capabilities of the product.

HP 05G/3000 facilitates the creation of line graphs, horizontal and
vertical bar charts, pie charts, and scattergrams. ·All charts can be
annotated with symbols and texto

C-ll - 03



PE·RIOD EXPENSE CONTROL

12-MONTH MOVING AVERAGE

R&D EXPENSE
HISTORY

SALES
HISTORY

ADMIN EXPENSE
HISTORY

PEROENT OF PREVIOUS 12 MONTHS
140 .--------------------------------------------..

..

, ,.,. ,
" " " " "

,.\
,. \, \, \, \

,.,. \

, "" ., \. ., ~ .
, : \" :, : ~

130 _-----------~r__---~....._------_:"--._.---~--__+,,...:._t---------- .....
I

.1
.. I. .

".A,... I •••"
J .. ' •.,..,.,

~

120 _-~~--+_+_-----~~--.__+_---,.~--'t--------+------------1..--~"'--------., ,.
:: •. •j.' , ~,.

I ,
I ,

I
I

I,,

110 .....----------------------------------------------

n
I
--'
--'

100- 1111111 ~ ..

JFMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASOND

(1977-1980)
THIS IS A REPRODUcnON OF AN ORIGINAL PLOT CREATED

ON AN HP7221 PLOlTER BY HP-DSG/3000 SOF1WARE

PIN: 5953-4075

)



,
EMPLOYEES BY CATEGORY IN ENGINEERING LAB #5

FOR 1979

o
U'1

ENGINEERS

CLERICAL

MODEL MAKERS

ENGR. AIDES

5953-4074

ELECT. TECHS



PS:,;u:nq-'DE,V'IC'ES' "

'by

P':~u.l; Primmer - ,Hewlett-Pac'·ka·rd

Tuesday D-l - 01



ABSTRACT

This paper will explain what a pseudo-device is and how it is

used in Hewlett-Packard data communication products. Since

there are several layers of software on either side of a

pseudo-device, it will be necessary to also explain briefly

CS, DITs, Monitors, and Attachio. There are differences in

the various data communication subsytems and their use of

pseudo-devices so this paper will use DS/3000 for all ex

amples.

0-1 - 02



o
I

--I

I

a
w . PSEUDO-DEVICES

SUDE 1

I'

I

I

I
-- I

I

I
I



SLIDE 1

The objective of this presentation is to give an under

standing of pseudo-devices. Pseudo-devices can not be ex

plained in a standalone fashion. That is, the software they

link to must also be explained as well as some general I/O

concepts. 05/3000 was chosen as an example product to help

explain pseudo-devices but it is important to note that there

are differences between the different data comm. products.

0-1 - 04



PSEUDO-DEVICE

AN EFFICIENT MEANS FOR MULTIPLE PROCESSES 

TO SHARE A NON-SHARABLE DEVICE.

SLIDE 2

0-1 - 05



SLIDE 2

Pseudo-devices are an efficient means for multiple processes

to share a non-sharable device. To properly explain this de

finition of pseudo-devices requires an understanding of some

lower level software and hardware that make up HP's data

corom. products.

0-1 - 06



NON-SHARABLE DEVICES

Intelligent Network Processor - INP

Synchronous Single Line Controller - SSLC

Hardwired Serial Interface - HSI

These three communication devices are

accessed through calls to the Communication

System Intrinsics (CS). CS does an exclusive

open on the above devices similar to an

exclusive file open.

SUDE 3

0-1 - 07



SLIDE 3

Currently there are 3 hardware devices available for syn

chronous data communication: Intelligent .Network Processor 

INP, Synchronous Single Line Controller - SSLC, and the Hard

wired Serial Interface - HSI. All three are accessed by a

set of system intrinsics called CS which stands for Communi

cation System. Like the file system, which provides a common

set of high level intrinsics for access to dis-similar hard

ware (i.e tape, disc, and line printers), CS provides a

common set of calls for accessing these 3 synchronous

devices. In order to use one of these devices a COPEN proce

dure is called which does an exclusive open on the device

making it non-sharableo

0-1 - 08



cs

The Communication System intrinsics are used

by all current HP data comm. products to

provide the Binary Synchronous protocol.

BISYNC:

ENQ--->
<---ACKO

BCC ETX TEXT STX--->
<---ACKl

BCC ETX TEXT STX---> <---NAK

BCC ETX TEXT STX--->
<---ACKO

EOT--->

SUDE 4

0-1 - 09



SLIDE 4

All current HP data comm. products are based on IBM's Binary

Synchronous Communication protocol which was first introduced

in 1966 and has since become the industry de facto standard

for medium and high speed data communication. What BISYNC

offers is an effective protocol for sending blocks of text

and a means of recovering from line errors. This handshaking

~ between stations is accomplished by using special control

characters and a predefined line protocol.

D-1 - 10



DS CONVERSATIONAL BISYNC

ENQ--->
<---ACKO

BCC ETX TEXT STX--->
<---STX TEXT ETX BCC

BCC ETX TEXT STX---> <---NAK

BCC ETX TEXT STX--->
<---STX TEXT ETX BCC

EOT--->

TEXT FOR DS:
HEADER (16 BYTES)

+
APPENDAGE (VARIABLE)

+
DATA (USER DEFINED)

TEXT
0-1 - 11

SUDE 5



SLIDE 5

DS/3000 uses a modified form of BISYNC called conversational.

This conversational form improves efficiency by answering a

correctly sent block of text with text. BISYNC can be

thought of as the transport mechanism for this text block.

For 05/3000 this text block always contains a 16 byte header

which contains information such as: the from PIN, the to PIN,

what type of message, how long a message, and is the data

compressed. In addition to the header, which is always pre

sent, there is an optional appendage section which can be

thought of as a header extension. Finally, there is the

users data. These 3 parts are combined by the upper level OS

intrinsics and passed to the lower level CS for transport

over the data link.

0-1 - 12



COPEN

CCLOSE

CWRITE

CREAD

CCONTROL

CS INTRINSICS

EXCLUSIVE OPEN OF LINE

CLOSES LINE

WRITES DATA TO LINE

READS DATA FROM LINE

ALLOWS VARIOUS CONTROLS OF
THE LINE TO BE PERFORMED

0-1 - 13



SLIDE 6

Rather then writing a special communication protocol for each

data comm. product, a common set of intrinsics were develop

ed. This is analogous to the common set of intrinsics for

the file system. Of particular note is that the COPEN

intrinsic does an exclusive open. Exclusive access is re

quired due to the nature of the communication link which re

quires specific responses at specific times. If this device

were shared among several processes, the result would be

total confusion.

D-1 - 14



tkER PROCESSES
(

?
•

COPEN EXCLUSIVE

?
•

RJE/3000
0-1 - 15

CS LDEV

SUDE 7



SLIDE 7

This exclusive open is evident in the product RJE/3000 which

is nothing more than a large program issuing CS intrinsic

calls. But this scheme would be unacceptable for D5/3000

which allows multiple users at both ends to be using the same

communication link.

0-1 - 16



HOW DO USER PROCESSES
TALK TO MONITOR?????

US~R PROCESSES

?
•

r,

MONITOR CS LDEV

CREAD
C1rRITE

0-1 - 17 SUDE 8



SLIDE 8

A way to overcome this problem is to allow one process to ex

clusively open the communication link and do all the reading

and writing to the line. This process is called the monitor.

More specifically in OS/3000 it is called OSMON and is creat

ed when the operator types "DSCONTROL Idev;OPEN". Now there

is an exclusive owner of the communication device which the

other processes can direct their requests. But there are two

problems with processes talking to this monitor process.

0-1 - 18



INTER-PROCESS COMMUNICATION

PROBLEM #1: INTER-PROCESS COMMUNICATION ONLY
BETWEEN FATHER AND SON PROCESSES.

PROBLEM #2: MONITOR NEEDS TO BE AWAKENED WHEN
EITHER CS LINE I/O COMPLETES OR ~
WHEN A USER PROCESS HAS SOMETHING
FOR THE MONITOR TO DO.
UNDER MPE III, WE CAN WAIT FOR EITHER
I/O COMPLETION OR FOR PROCESS ACTIVATION
BUT NOT BOTH AT THE SAME TIME!

0-1 - 19
SUDE 9



SLIDE 9

In MPE-III only processes in the same family (father/son) can

communicate. Secondly, the monitor process is controlling

the communication line and therefore is in an I/O wait. In

MPE-III, a process can wait for I/O completion or for process

activation but not both at the same time. How then will pro

cesses get the monitors attention?

0-1 - 20



r,
USER PROCESSES

MONITOR

IOINPO
CSSBSCO
CSHBSCO

CS LDEV

CREAD

CWRITE

0-1 - 21

IODSO

MONITOR
PSEUDO-

1--------1 DEVICE ATTACHIO DSMON

SUDE 10



SLIDE 10

By creating a pseudo-device the monitor can issue no-wait I/O

requests to both the CS device and the pseudo-device, and

service the first request to complete. Now user process get

the attention of the monitor by writing their request to the

pseudo-device via calls to ATTACHIO. The data in the write

request becomes the data for the monitor's read request. The

(' monitor is awakened by completion of I/O and discovers that

it is from the pseudo-device so it cancels its' current CS

request and performs the desired I/O. In a normal idle state

the monitor is asleep with a CREAD to the CS device and an

ATTACHIO read to the pseudo device. When either request com

pletes the monitor awakens for service. But who is ATTACHIO?

0-1 - 22



,-.

IOINPO
CSSBSCO
CSHBSCO

CS LDEV

CREAn
ClfRITE

IOQ'S

MONITOR

ATTACHIO DSMON

ATTACHIO IS THE MAIN INTERFACE INTO THE I/O SYSTEM.
IT IS CALLED TO INITIATE AN 10 REQUEST: IT CREATES
AN 10Q ELEMENT FOR THE REQUEST AND ACTNA1£S THE
APPROPRIATE 10 MONITOR (DSIOM FOR OS) FOR THE DEVICE
THROUGH AWAKEIO.

DIT

IODSO

ATTACHIO

MONITOR
PSEUDO
DEVICE

ATTACHIO

0-1 - 23

SUDE 11



SLIDE 11

ATTACHIO is the main interface into the I/O system. For ex

ample, when a user issues a file system intrinsic, that in

trinsic will eventually call ATTACHIO. ATTACHIO will create

an eleven word 10Q element which describes the nature of the

request (i.e read, write, or control), the location of the

buffer, the PIN that made the request, and any miscellaneous

parameters that are device dependent. This IOQ element is in

a common table for all devices, but all requests for the same

device are linked together by one of the eleven words. Every

device configured in the system has a Device Information

Table (DIT) to keep track of what the device is currently do

ing and a pointer back to the rOQ table for all the requests

pending. After ATTACHIO creates the 10Q element, it requests

and activates the appropriate I/O monitor. In the case of

DS/3000 the I/O monitor is named DSIOM. A real device mon

itor at this point would call the appropriate drivers to do

the real physical I/O. DSIOM is the 'nerve center' for OS

I/O and takes care of routing the request to either IODSO or

IODSTRMO. These drivers move the data from the users buffer

(pointed to by the 10Q) into DSMON's stack (pointed to by the

IOQ request it made earlier). Both IOQs are flagged complet

ed; DSMON is awakened and performs the I/O to the CS device.

0-1 - 24



SLAVE SIDE

RJW)

PRINT

RIWJ

PRINT

DEVICE
PSEUDO
DEVICE

IODSTRMO

DEVICE

PSEUDO
DEVICE

IODSTRMO

IODSO

ATTACBlO

MONITOR
___-~_n_~c_Bl_0____4 PSEUDO-t----_ATT_~_C_B1_0-----1

DEVICE

MONITOR

CRIWJ

CWRlTB

CS LDEV

IOINPO
CSSBSCO
CSHBSCO

0-1 - 25

SUOE 12



SLIDE 12

At the slave side the monitor is in a I/O wait state when

its' CREAD completes, and it reads the data into its' stack.

The slave side needs some process to perform the DS request

and rather than writing special code to do this, a C.I. is

created at the slave end. But the C.I. is designed to talk

to an interactive terminal not a monitor, so a pseudo-term-

~. inal device was created which looks and acts just like a real

terminal to the C.l •• When the slave C.l. responds with an

answer it calls the PRINT intrinsic which calls ATTACHIO

which calls DSIOM which invokes IODSTRMO. IODSTRMO moves the

buffer to DSMON's stack and DSMON CWRITES the request to the

CS line.

r
\

0-1 - 26



SUMMARY

A pseudo-device becomes an efficient means for multiple

processes to share a non-sharable device. By using a

pseudo-device a monitor process can use no-wait I/O to act as

a traffic cop to the CS device. Upper level software can use

standard I/O routines (ATTACHIO) to make requests to the

lower level I/O system. By isolating the different functions

a layered software approach can be realized which allows ~

multiple products to share common routines (CS).

??????????????? QUESTIONS ???????????????

0-1 - 27



~
t..

ROBELLE CONSULTING LTD.
#130-5421 10th Avenue

Delta, B.C. V4M 3T9
CANADA

(604) 943-8021
Telex 04-352848

HP 3000/0PTIMIZING BATCH JOBS

Technical Report, February 1981, By

ROBERT M. GREEN

Robelle Consulting Ltd.

Summary

The elapsed time of high-volume, stand-alone tasks can
sometimes be reduced dramatically. This report is a follow-up to
my 1978 paper on optimizing on-line programs. A large number of
techniques for batch optimizing are explained, evaluated by
empirical testing, and, finally, ranked according to their relative
"power". The tests show than some highly-recommended techniques
are of little benefit, while other techniques, often overlooked,
will make some tasks execute 4 to 12 times faster.

Contents

I. Why Bother With Batch?

II. What is "Batch" and How Fast Should it be?

III. How to Verify Proposals for Improving Batch

IV. Possible Techniques for Batch Optimizing

A. Changes to Data Storage
B. Simple Coding Changes
C. Changes to Application Logic

V. Results: What "Actually" Makes Batch Faster?

VI. Consequences for Different People

Appendix: References (Sorted by Author)

Tuesday D-2 - 01



UP 3000/0PTIMIZING BATCH JOBS Robelle Consulting Ltd.

------------------------------------------------------------------ ~,
I

: Section I
I
I

WHY BOTHER WITH BATCH?

In December of 1978, when 1 gave my paper in Denver on
optimizing on-line programs [15J, the techniques that 1 presented
were not common knowledge among users of the HP 3000 (or even among
Hewlett-Packard Systems Engineers). The ideas discussed at the
meeting ("30 disc 1/0s a second" [41J), have spread throughout the
user community as a result of numerous papers and articles [39J
[48J [09J [19J. With hundreds of intelligent professionals pushing
the HP 3000 to support the maximum number of terminals, is it any
surprise that many have succeeded?

In less than ten years, the HP 3000 has grown from 128,000
bytes of main memory to four megabytes, and the power of the
central processor has increased several times. Software has been
rewritten and refined (by Hewlett-Packard and independent vendors)
to incorporate the principles for optimizing on-line programs.
Today, HP 3000 users develop systems which support 20 to 40
terminals without serious difficulty. In 1973, users had trouble
supporting 8 terminals on an HP 3000. The speed of batch jobs,
however, is not much better than it was in 1973.

But what about batch processing? One of the most widely
recommended techniques for improving on-line response time has been
to "dump" big tasks into the batch queue [15J [45J. 'This is a
natural and useful idea; the batch queue is where "batch-type"
operations belong. Unfortunately, as applications mature,
databases grow in size, batch jobs take longer to complete, and new
batch programs are put into production. Eventually, the batch
queue is clogged. For many HP 3000 sites, completion of month-end
and year-end batch jobs is a major irritant.

Slow batch jobs can be very costly. Operator overtime may be
required for a graveyard shift. Extra computers may be needed to
handle the batch load. The batch capability of the HP 3000 is not
an infinite sink into which "problem" tasks can always be dumped.
It is a finite resource that can easily be exhausted.

This report attempts to discover how to complete those
high-volume, stand-alone, batch jobs in less time (i.e., 8 hours
instead of 16). Although I will note the impact on other users of
each optimizing technique, interference with concurrent users will
not be a conclusive argument against any proposal. In addition, my
focus will be on empirical verification of gains in throughput,
with a goal of ranking all optimizing techniques by their relative
"power".

.~
"'~:?

This report is very specialized. You will not learn what to ~
do about a flood of small batch jobs that are swamping your HP
3000. (The techniques needed to solve that problem are the same

D-2 - 02



HP 3000/0PTIMIZING BATCH JOBS Robelle Consulting Ltd.

ones that you would apply to on-line sessions: reduce number of
logons, eliminate UDCs for batch logons, :ALLOCATE program files,
etc.) You will not learn how many batch jobs you should run
concurrently. (The answer to that question may change drastically
when MPE IV is released.) Nor will you discover how to reduce the
impact of batch jobs upon on-line response time. (MPE IV should
give you the tools you need to solve that problem, if you are
willing to degrade your batch throughput [48].) What you will
receive are practical suggestions for improving batch throughput.

This document is the result of an investigation into reducing
elapsed time. Many of the conclusions that you will read here were
surprises to me, only uncovered when theory was put to the test
under controlled conditions. The first three sections of this
document are introductory: purpose, theory and method. The fourth
section contains the bulk of the investigative results and
explanation: thirty proposals for optimizinng. Every technique is
given a thorough treatment (although some techniques were found to
be much more effective than others). Negative knowledge is as
important as positive, if is saves you from wasting time on methods
with little chance of success. The last two sections summarize the
results: ranking the techniques and showing the implications of
the investigation for different readers. Finally, in an appendix,
I have listed alphabetically all of the sources that I referenced,
plus a suggested reading program for those who would like to become
proficient in this subject. The reading list starts with general
survey papers and progresses to the most technical reports.

0-2 - 03



HP 3000/0PTIMIZING BATCH JOBS Robelle Consulting Ltd.

I I
I I

: Section II ;
I I
I I

WHAT IS "BATCH" AND HOW FAST SHOULD IT BE?

The distinguishing characteristic of a batch job is that it
has an extremely "stupid" controlling terminal. An interactive
session is controlled by a terminal with a human operator; the
controlling terminal can tell the session what to do if an unusual
situation arises. Given the primitive job control language of MPE,
a batch job cannot handle many unusual events. Also, the
particular batch jobs that this report addresses are the ones that
process a high volume of transactions.

BATCH VERSUS ON-LINE

How does high-volume, stand-alone processing differ from
on-line, interactive processing? One big difference is that a
batch job does not have a user watching its "response time",
waiting, hitting the RETURN key, losing patience, and telephone the
DP department. If a batch job is slow, no one is likely to
complain, and no one is likely to improve it.

We should be able to use the same general strategy to make all
programs run faster (batch and on-line), but we may have to vary
the specific techniques we use and the areas where we focus our ~
attention. As a start, I would like to review the five "prinicples
for optimizing on-line programs" from my previous paper [15J:

"Make each disc access count" is important to both batch and
on-line. Efficiency of disc usage may be the determining factor in
the speed of batch jobs.

"Maximize the value of each terminal read" is obviously
irrelevant; it was designed to "spread out the load" of many
independent, unpredictable, terminal users. A batch job is one,
continuously heavy demand for resources. All we can do is make
certain that we do not run many batch jobs at the same time.

"Minimize the run-time program size" sounds like a good idea;
but, if a job is run stand-alone, the program size is not likely to
slow it down. In fact, the "tricks" used to reduce the size of a
program may actually increase clock time by a small amount (a loss
that cannot be measured in an on-line program may be quite
noticeable in a batch program).

"Avoid constant demands for execution" is clearly impossible;
that is the definition of a batch job. On-line programs, on the
other hand, should consist of "short" bursts of activity, divided
by long periods of inactivity. If all of the on-line users
demanded the resources of the HP 3000 at the same time, and did not
let them go,' the system would be swamped.

0-2 - 04



HP 3000/0PTIMIZING BATCH JOBS Robelle Consulting Ltd.

"Optimize for the common events" should apply even more to
batch jobs than, it does to on-line programs. The events that are
repeated thousands or millions of times offer the most potential
for reducing overall elapsed time, even if the improvement per
"event" is only a small reduction in CPU time.

GENERAL STRATEGY

In theory, there are four strategies that "should" reduce the
elapsed time of batch jobs [48] [47]:

1. Eliminate some disc transfers completely.
2. Do the same work with fewer disc transfers.
3. Use less CPU time.
4. Overlap a disc transfer with useful CPU work.

One strategy deliberately missing from this list is:
"Minimize the amount of main memory used". Most documents on
performance place a high priority on reducing code/data segment
size [15] [41J [39] [26J [47] [18]. It is implicitly assumed that
you are memory-bound. However, a Series III or Series 44 model of
the HP 3000 with full memory is a very large computer. Without
using "extra data segments" or other advanced programming
techniques, a single program can use only 64,000 bytes of the main
memory for data (that may be a small fraction of the main memory
that is actually available). Techniques will be examined that
trade-off increased code and/or data space for decreased disc
transfers or CPU time.

THEORETICAL SPEED LIMIT

The theoretical limits on the speed of a batch job are the
physical speed of the disc drives [41] and the power of the CPU~

If zero CPU time were needed to process the data (or, if processing
could be exactly overlapped with disc transfers), a batch job could
progress at pure disc speed.

Hewlett-Packard disc drives have the following speed
characteristics [48J [26]:

1. 400 microseconds to transfer a sector of information (256
bytes); 22.2 milliseconds to transfer a full track on the
7925 (16.6 ms. on 7920, 7906, 7905).

2. 11.1 milliseconds average latency on the 7925 (8.3 ms. on
the 7920, 7906, 7905); latency is the time it takes for
the disc to revolve so that the "head" will be located
over the sector where you want to start the next transfer.

3. 5 ms. track-to-track seek time on all drives (25 ms.
average seek, 45 ms. maximum seek from edge to edge).

4. 64 sectors per track on 7925 drive (48 sectors on 7920,
7906, 7905).

D-2 - 05



HP 3000/0PTIMIZING BATCH JOBS Robelle Consulting Ltd.

Since batch processing often involves large sequential scans,
we need a target "best" rate for transferring large chunks of ~
contiguous disc data. Assuming a 7925 disc drive and an average
latency of 11.1 ms, what is the time needed to transfer 1024
sectors (16 tracks)? The answer depends upon the size of each
individual transfer. To understand this point, you need to
calculate the effective data rates, using three different transfer
sizes: 256 bytes (one sector), 8,192 bytes (1/2 track) or 16,384
bytes (a full track). In all three cases, overall seek time will
be about 80 ms., if the data is located in adjacent tracks (5 ms.
times 16 tracks).

The time-per-transfer equals the latency time (spin to proper
sector), plus the actual transfer time (.4 ms. per sector). The
total time to transfer the 1024 sectors of data equals the
time-per-transfer mUltiplied by the number of transfers, plus the
seek time (calculated above to be 80 ms.).

Size-of-Transfer
256 bytes

8,192 bytes
16,384 bytes

Time-per-Transfer Time-for-1024-Sectors
11.5 ms. (x1024+80=) 11.856 seconds
22.2 ms. (x32+80=) 0.790 seconds
33.3 ms. (x16+80=) 0.613 seconds

Why do larger transfers improve the overall data rate" by so
much (15 to 19 times faster)? Because the disc revolves at a
constant rate! If you read one sector at a time, you must still
wait for a full revolution of the disc (22.2 ros.) before you can ~.

read the next sector.

In practice, full-track transfers are not quite as efficient
as they appear above. An application program cannot make use of
every disc revolution; it wastes some of them. After reading the
first track, your program cannot generate a new read request for
the next track before the disc itself has revolved past the
starting sector of the next track. Therefore, the best possible
data rate is closer to that for half-track transfers than
full-track transfers (i.e., .79 seconds per 1024 sectors, not .61
seconds). To this time must be added the unavoidable CPU overhead
of MPE (about 8 ms. per request).

CONCLUSION: A rough estimate of the fastest possible speed
for batch processing is ONE SECOND PER 1000
SECTORS (see :LISTF,2 for the number of sectors
in a file).

0-2 - 06



HP 3000/0PTIMIZING BATCH JOBS Robelle Consulting Ltd.

I I
I I

; Section III :
I I
I I

HOW TO VERIFY PROPOSALS FOR IMPROVING BATCH

MPE and the HP 3000 constitute a very complicated mechanism.
Sometimes, so many factors are at work that an "obvious" truth
turns out to be totally false (or so hedged with qualifications as
to be useless). Wherever possible, I have tested each optimizing
proposal by performing a reproducible experiment, rather than
depending upon intuition, common sense or theoretical "proofs".
Fortunately, stand-alone batch jobs are the easiest computer tasks
to measure.

The key to a good experiment in optimizing is to vary only one
factor each time a test r~n is made. For example, to test the
effect of different blocking factors, I have attempted to run
exactly the same program on exactly the same data, changing only
the blocking factor. This sometimes conflicts with another goal,
that of using "real" programs in tests. Real programs may perform
other operations that vary from run to run and are not exactly
reproducible (i ..e., spooled output may go to different positions on
different discs).

I have focused on reducing the elapsed time of fixed batch
jobs. Normally, the CPU time increases or decreases in tandem with
the elapsed time; so I have only shown the CPU time when it is
exceptional. Unless otherwise noted, all tests were run on a
Series III, under MPE release 2011 ("Athena"), using 7925 discs.

D-2 - 07



HP 3000/0PTIMIZING BATCH JOBS Robelle Consulting Ltd.

I I
I I

: Section IV :
I I
I I

POSSIBLE TECHNIQUES FOR BATCH OPTIMIZING

In order to compile a list of suggestions for optimizing batch
jobs, I searched through past literature on the HP 3000. Although
there are no papers on this exact topic, many papers described
specific techniques that can be applied to batch jobs. I reviewed
all of the HPGSUG publications (journals, newsletters, conference
proceeedings), a large body of Hewlett-Packard documentation (S.E.
notes, support newsletters, manuals, etc.), and many private
reports that I have accumulated in ten years of working on the HP
3000. I reduced the results to a list of about 30 different ideas.

The optimizing techniques were then grouped into three
classes, based upon the degree to which existing applications must
be modified:

A) CHANGES TO DATA STORAGE (easiest),
B) SIMPLE CODING CHANGES, and
C) CHANGES TO APPLICATION DESIGN (hardest).

For each proposed optimizing technique, I attempted to perform
a verifying experiment. When that was not possible, I reported
experiments done by other users. In a few cases, I mention ideas
that have not been verified to my satisfaction. These ideas are .~
carefully noted; you, the reader, are invited to send me the
results of any tests you may do to prove (or disprove) these
suggestions.

A. CHANGES TO DATA STORAGE

If throughput can be increased by changes in the way the data
is stored, this will often be the most economical optimizing
alternative. Since a data storage change does not usually require
any program changes, expensive programmer time is not needed.

A1. INCREASE BUFFERS FOR MPE FILES

MPE disc and tape files are "buffered"; several logical
records are packed into each physical record ("block"). The file
system reads these blocks into buffers that are kept in extra data
segments, then passes individual logical records to/from the
program as requested. When you access a file sequentially, the
file system "pre-reads" the next physical block. Theoretically,
buffering should increase batch throughput, allowing overlap of
useful CPU work with disc transfers. However, tests have shown
that this is not the case.

0-2 - 08



ROBELLE/IMPROVING BATCH/CHANGES TO DATA STORAGE

In a test of file-copies with FORTRAN [09J, two buffers (the
default) was 1.08 to 1.16 times faster than one buffer, but only if
you called FREAD/FWRITE directly (instead of using the FORTRAN I/O
statements). Increasing the buffers beyond two did not improve the
speed at all (:FILE XXX;BUF=4).

The time to copy 1000 records (333 sectors) varied from 10 to
28 seconds. This works out to an effective "data rate" of 15 to 42
seconds per 1000 sectors (666 sectors must be processed in total,
since each sector must be read in and written out). The "ideal"
speed for file copies, as deduced in Section II from the speed of
of the disc hardware, is less than 2 seconds per 1000 sectors.
(Many times faster; certainly room for improvement!)

In another test [38J, sort times were 1004 to 1.07 times
faster with two buffers, instead of one, but only if the blocking
factor was small (the test was done using the pre-1918 sort,
without the benefit of NOBUF). More than two buffers did not
improve sort times. In fact, it sometimes caused a slight increase
in times. I ran my own tests with FCOPY, and verified these
results (BUF=2 is 1.085 times faster than BUF=1, but BUF=4 is not
faster than BUF=2).

Why doesn't buffering work? Another paper [48J explains it
very well. MPE III uses 2.9 milliseconds of CPU time for each
logical transfer (buffer to stack), plus another 8 ms. for each
physical transfer (disc to buffer). For an 80-byte record, blocked
16, the CPU time to read a block is 52.5 ms., but a disc access
only takes 33 ms. MPE III IS CPU-BOUND! The author of [48J
suggests that buffering can help random access files by creating a
"cache" of active logical records! But, the only time I tried this
technique, the program ran slower. These conclusions may change on
the Series 44 (MPE IV), as tests indicate that FCOPY is 2.25 times
faster than on a Series III with MPE III [36J. MPE IV may not be
CPU-bound.

A2. INCREASE KSAM KEY BLOCK BUFFERS

KSAM, an acronym for Keyed Sequential Access Method, is the
Hewlett-Packard equivalent of ISAM. KSAM uses buffers located in
an extra data segment, but differently from the file system. KSAM
always allocates one buffer for the data block and a number of
buffers for the key blocks. It appears that KSAM now allocates
enough key block buffers (in most cases) by taking into account the
number of levels in the B-Trees. However, if the KSAM file is
empty, KSAM may not allocate enough buffers. In one experiment
[10J, the user improved the time to load an empty KSAM file by 2 to
10 times through an increase in buffers. (The key block buffers
are controlled by the 'numcopies' field; :FILE XXX; DEV=, ,13 for 13
buffers.)

D-2 - 09



ROBELLE/IMPROVING BATCH/CHANGES TO DATA STORAGE

A3. INCREASE IMAGE BUFFERS IN DBCB

The IMAGE/3000 database system also uses buffers external to
the user data stack to provide blocking of logical entries into
physical disc blocks. There is a major complication with IMAGE.
Unlil<e KSAM and the file system, IMAGE uses a shared, "global"
buffer pool for each database, with the users of the database
competing for the available buffers. IMAGE allocates an extra data
segment called a DBCB, large enough to hold the number of buffers
that IMAGE thinks will be needed. This number is based upon the
highest number of paths into a detail dataset, and the number of
users who have the base open (i.e., the number of buffers may vary
dynamically during the day). This default number of buffers can be
overridden with the BUFFSPECS command of DBUTIL. What a
tantalizing prospect!

One published test varied the number of buffers while doing a
DBLOAD [49J. When DBLOAD reloads a database from tape, it is
acting like a long batch program that does many DBPUT operations.
The reload time was reduced 1.26 to 2.53 times by progressively
increasing the buffers for one accessor from the default (9) to the
maximum (255). The fastest time occurred between 30 and 100
buffers. That is not surprising, since the actual number of

.buffers that can be allocated is limited by the size of the largest
extra data segment (32,000 words). With a blocksize of 512 words,
the maximum is about 50 buffers (100 buffers for 256 words, 25 for
1024 and only 12 for 2048 words). DBUTIL does NOT give you a
warning if you request more buffers than is possible [07J. I have
contributed a program called LISTDBCB that shows the current size
of the DBCB of any database (some versions of SOO show the DBCB
also) .

The one experiment that I did to verify this technique gave
disappointing results. By doubling the number of buffers, I only
improved the elapsed time (to do 2551 DBPUTs) by 1.03 times.
Perhaps my DSPUT operation was not complex enough to require the
extra buffers that were available; or, doubling the buffers may not
have been enough.

During on-line access to the database, I recommend the default
BUFFSPECS. Due to the algorithm that IMAGE uses to allocate
buffers to users, it is very easy for the entire buffer pool to be
"flushed" [07J. Thus, an increase in the total number of buffers
can actually make your on-line response time worse by increasing
the size of the DBCB that must be swapped. For stand-alone batch
access, it is worth experimenting with increased buffers,
especially if you are doing complex transactions involving puts,
deletes and updates to several datasets, or to datasets with many
paths. I suggest that, for one database accessor, you ask for the
maximum buffers (i.e., set BUFFSPECS to 255 and let IMAGE allocate
as many buffers as it can); there is no point in choosing a
compromise number. Also, both of the tests reported above were run
in "output-deferred" mode (see technique B4 below); the results may ~

not be as good with the default "output-complete" mode.

D-2 - 10



ROBELLE/IMPROVING BATCH/CHANGES TO DATA STORAGE

A4. INCREASE BLOCK SIZE OF MPE FILES

The most well-known maxim of optimizing is: "increase the
block size for batch (serial) access and decrease the block size
for on-line (random) access" [33J. How well does this maxim
actually work on the HP 3000? The block size is determined by the
blocking factor, which is the number of logical records stored in a
single physical block of disc space. A block always starts on a
sector boundary and is the smallest unit that can be transferred
between disc and memory. Since lack of disc transfers is a primary
limitation on throughput, increasing the number of records
retrieved in each physical transfer should increase the speed of
batch programs.

For MPE files, the blocking factor is determined when the file
is created (:BUILD XXX;REC=-80,16,F,ASCII specifies a blocking
factor of 16 and a block size of 1280 bytes). If you do not
specify the blocking factor explicitly, MPE selects a default value
by dividing the record size into 128 words (a sector). If the
record size is over 128 words, MPE uses a value of one. Thus, MPE
chooses the smallest possible block size. Several programs are
available in the contributed library that select an alternate
blocking factor to minimize the disc space allocated. Another way
to choose the blocking factor is to minimize processing time (but,
what block size does optimize for speed?).

A number of published tests have measured the effect of
varying the blocking factor. A test of file copies with FORTRAN
[09] found that increasing the block size above the default
improved speed by 1.25 to 1.53 times, with benefits diminishing
when the block size exceeded 512 words. The improvement was more
marked when I/O was done using the FORTRAN read/write statements
than when FREAD/FWRITE were called directly (perhaps because the
base time was much slower). The test was for 80 byte records,
blocked from 3 (default) to 32. The test also showed that the
default blocking (3 rib) was 1.8 to 2.22 times faster than one
record per block. I reproduced this test using FCOPY instead of
FORTRAN and obtained similar results, except that the improvement
was not as great.

A test of sorts on disc files (before the 1918 release of
NOBUF sorts) showed speed increases of 1.26 to 1.42 times, with no
improvement above a block size of 1000 words [38J. In order to
investigate the impact of actual block size (as opposed to blocking
factor) on performance, I ran some FCOPY comparisons with 150-word
records. I varied the blocking factor from 1 (default) to 10 and
recorded speed increases of 1.17 times (blocked 2) to 1.28 times
(blocked 10), with only a small improvement above 600 words. In no
case did I find a significant increase in buffered access speeds by
increasing the block size from 512 to 1024 words.

I conclude that there is so much CPU overhead in the file
system (and the other general interfaces that sit on top of the
file system), that the best you can expect is an improvement of

0-2 - 11



ROBELLE/IMPROVING BATCH/CHANGES TO DATA STORAGE

1.25 times (if your blocks are small currently). Since very large ~

blocks can have a detrimental impact on terminal users and show no
performance benefit, you should pick the block size between 512 and
1024 words that minimizes disc space. However, it is also possible
to access files in a non-buffered mode (see ideas B2 and B3) for
better performance. I will show that it is possible, with NOBUF
access, to have "the best of both worlds" (big block for batch and
small block for on-line), if you choose your block size correctly.

A5. INCREASE BLOCK SIZES FOR KSAM

In KSAM, there is both a data file blocking factor and a key
file blocking factor [10]. The blocking factor of the data file
should be chosen using the same guidelines as for an MPE "file. The
blocking factor for the key file "should" impact performance
(according to the KSAM manual). I haven't used KSAM enough to
deduce a better method for selecting this number than that used by
KSAM itself.

Each KSAM user has a separate, extra data segment for each
KSAM file opened. Increasing the block size (or the number of key
block buffers) will also increase the size of these extra data
segments, and may have a dramatically bad effect on terminal
response time. (The same thing is true of regular MPE files as
well, but not of IMAGE.)

A6. INCREASE BLOCK SIZE OF IMAGE DATABASE

The dataset blocking factor of an IMAGE dataset is comparable
to the blocking factor for MPE files and KSAM data files [48] [33]
[07]. The largest block size allowed in a database is determined by
the $CONTROL BLOCKMAX command in the schema file, with the default
value being 512 words. Given a "target", IMAGE chooses the
smallest block size within the target that mimimizes the amount of
disc space for the dataset. Some datasets may be assigned a block
size just below 512 words and others a block size just below 384 or
256 words. The buffers that are allocated in the DBCB, however,
are all the size of the largest block in the database. Therefore,
if you have a single dataset with a block size of 2048 words, you
are limited to 12 or 13 DBCB buffers, even if your other blocks are
only 1024 words long. This will not only decimate your terminal
users, but may even degrade batch jobs which perform complex
database transactions.

I did a large number of sequential extract tests on a dataset
with 105,000 records, using a block size of 256 words, 512 words
and 640 words (I wanted 1024, but IMAGE chose 640 instead). The
512-word blocks could be scanned 1.05 to 1.24 times faster than the
256-word blocks. Blocks of 640 words were slightly faster than
512. Given the problems for on-line users, it appears that the
IMAGE default BLOCKMAX is optimum.

In these database extract tests, the "data rate" varied from a
low of 56 seconds per 1000 sectors (using QUERY on 256-word blocks)

D-2 - 12

'~



ROBELLE/IMPROVING BATCH/CHANGES TO DATA STORAGE

to a high of 29 seconds per 1000 sectors (using * field list,
dataset number and 512 word blocks). For a database extract task,
the ideal data rate is 1 second per 1000 sectors. Why was our rate
at least 29 times slower? There are two reasons: IMAGE needs CPU
time to check and execute each intrinsic call, and IMAGE reads only
one data block per revolution of the disc. See topic B2 below for
a method of bypassing the CPU time of IMAGE, and topic B3 for a
method of retrieving several IMAGE disc blocks per disc read (up to
a full track of information).

A7. IMPROVE HASHING OF IMAGE MASTER DATASETS

The topic of "hashing" in IMAGE master datasets is well
covered in other documents [15J [45J [07J [30J [b10J [34J [33J. I
suggest that you run the contributed program DBLOADNG [07J at least
once a month. Look for a higll percentage of "inefficient pointers"
in your master datasets (over 20% means you are often using more
than one disc read to locate a record), and a high "elongation"
(over 1.5 indicates a problem). Any improvement in the hashing of
master datasets will benefit both batch jobs and on-line programs.

What can you do to improve hashing? Either increase the block
size, reduce the record size, or expand the capacity to a higher
prime number. How much will this improve the speed of your batch
jobs? I have not yet run a controlled experiment. However, if you
have a "regular" problem (dataset too full or block size too
small), elimination of this problem "should" improve batch programs
(that do DBFINDs or Mode-7 DBGETs) by about 1.25 times. If you
have a "serious" problem (clustering of records) caused by a bad
choice of key field type (and/or values), solving the problem (by
converting to a different data type and/or restructuring the key
values), will bring a dramatic improvement. I have seen cases
where the elapsed time to do a single DBPUT was between 30 and'60
seconds (due to extensive clustering), when it should have been
less than a second.

AB. DBLOAD DATABASE TO OPTIMIZE PRIMARY PATH

If you have an IMAGE detail dataset with 11 records per block,
and one of the paths has an average of 11 records per chain, how
many disc reads will you need to retrieve the entries on a given
chain (not counting the hash to the master dataset)? Did you say
"one read"? That would only be true if the dataset were perfectly
"organized". In the real world, entries are added to and deleted
from chains in a "random" fashion, creating holes that are reused
for other chains. Over a period of time, the chains in a dataset
tend to become disorganized (assuming puts/deletes). Therefore, it
may take as many as 11 disc reads to retrieve all of the records on
your "average" chain, or as few as one.

The contributed program DBLOADNG reports on the randomness in
the chains of each master-detail path [07J. The last column in the
DBLOADNG report is called "elongation" and is the critical value.
If elongation equals 1.0, the chains for that path are as

0-2 - 13



ROBELLE/IMPROVING BATCH/CHANGES TO DATA STORAGE

well-organized as is possible (given the blocking factor). If
elongation equals 5.0, then those chains are unorganized; they are ~
spread among five times more disc blocks than is theoretically
necessary.

What can you do to reduce "elongation"? Very little, unless
the disorganized path happens to be the PRIMARY PATH for the
dataset. In that case, reloading the database will repack the
entries so that elongation for that path is close to 1.0 [45] [34].
Of course, this only fixes the primary path, not the other paths
into the dataset. Therefore, the primary path for a dataset should
be the actively-used path with the longest average chain length
(you cannot optimize a chain with only one entryl).

In order to "reload" a database, you must DBUNLOAD it to
magnetic tape, erase the database with DBUTIL, and DBLOAD the data
from the tape. I reloaded a database of 75,000 sectors (19.2
megabytes) which had undergone many DBPUTs and DBDELETEs without a
reorganization. DBLOADNG showed that elongation for the largest
dataset (capacity 200,000 entries) was 5.85 (very bad)1 The
DBUNLOAD/DBLOAD took two hours and, as predicted, elongation
dropped to 1.17. The average blocks per chain was reduced from 8.3
to 2.3, over 5 times better.

I reloaded the database again to double the block size; this
further reduced the blocks per chain to 1.6. If chained access is
very frequent, the larger block size, combined with regular ~

reloads, should improve batch speeds (as well as on-line response).
I have not had ti~e, however, to verify this hypothesis on an
actual application.

A9. RELOAD SYSTEM TO REDUCE DISC FRAGMENTATION

Many sources suggest that you keep at least 20% free disc
space (15,000 sectors minimum), and that you not let the number of
entries in the free space tables get too large [23] [39] [41].
This is accomplished through a RELOAD from magnetic tape (a full
backup). I am not convinced that this will make any difference in
the speed of batch tasks. However, my personal experience does
verify that disc fragmentation and lack of free space lead directly
to increased System Failures. Since System Failures obviously
reduce system throughput (on-line and batch) [06J, I have no
hesitation in suggesting that you do frequent RELOADs.

A10. CONTROL FILE PLACEMENT FOR "HEAD LOCALITY"

The favorite strategy in the optimizing literature is called
"head locality" [48] [23J [15] [47J [41J [42] [07J. By placing
files carefully on selected spindles, we ought to be able to keep
the arm from moving back and forth so much. According to this
theory, "head locality" plays a big factor in performance by
reducing the average disc access time. It is frequently suggested, ~

for example, that master datasets should be placed on different ,
drives from their detail datasets, because the two are often

0-2 - 14



ROSELLE/IMPROVING BATCH/CHANGES TO DATA STORAGE

accessed at the "same time".

The only tests of this technique that I have uncovered [38]
[04] do not demonstrate a universal benefit from head locality.
The first test attempted to improve sort performance by placing
SORTSCR on specific drives. Unfortunately, sort times were
actually slightly faster when all three files (input, output,
scratch) were ON THE SAME DRIVE. In the second test, the user
achieved a 6% improvement in his batch jobs after moving datasets
to separate drives. This is not much improvement, considering the
inconvenience and time required to obtain "head locality" (:STORE,
:RESTORE, or copy from disc to disc). In the final test, the user
improved file copies by 1.14 to 2.3 times when he copied from one
drive to another [13]. However, a straight file copy is much
simpler than most actual application programs.

I was concerned that these inconclusive findings might be
"flukes", caused by faults in the experiments. Therefore, I
devised several experiments to prove that "head locality" would pay
big dividends. First, I reproduced the sort experiments referred
to above; the sort times were essentially EQUIVALENT, regardless of
where the input, output and scratch files were located. I tested
file copies, extracting 10,000 records from a file with 100,000
records. When the files were on separate drives, the copy was 1.08
times faster than when they were on the same drive. This was not
very encouraging. Finally, I tested test the effect of separating
masters and details. I read 2000 records from a disc file and
DBPUT them to a detail dataset that was indexed by one master
dataset. When all three files involved were carefully isolated on
three separate drives, the extract task ran slightly SLOWER than
when all three files were moved to the same drive. This was a most
suprising result.

The situation with masters and details may be complicated by
the fact that DBPUT and DBDELETE must update the "userlabel" on
each dataset (to record the number of available entries), and this
label is always located at the beginning of the dataset. Perhaps
the steps involved in achieving "head locality" (:STORE, :RESTORE)
reduce the overall efficiency of the system by fragmenting the free
space. These results show that MPE is seldom as simple as it
seems. "Head locality" deserves more research, especially on MPE
IV. Until that research is completed, I suggest that users
discontinue efforts to obtain head locality.

0-2 - 15



ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

B. SIMPLE CODING CHANGES

A "simple coding change" is one that changes the method of a
program (the "how") without changing the purpose of the program
(the "what"). The techniques proposed here can be implemented by
mechanical changes to programs (i.e., code substitution). In fact,
most of these ideas could easily be provided by the language
subsystems automatically (e.g., by the COBOL compiler). Since the
objectives of the application program are not modified, only
programmer time, not system analyst time, is needed.

B1. USE MORE EFFICIENT PARAMETERS ON IMAGE CALLS

Another technique that is universally recommended is to code
your IMAGE database calls with the "best" parameters [01] [45] [07]
[30] [34] [etc.]. For the field list parameter (which fields
within the dataset to process), the source with the most detailed
testing [01] concluded that write access, plus the "@" list (all
fields) is always the fastest. However, write access, plus a field
list that is subsequently replaced by an "*", is almost as fast.
Tests that I performed (doing DBGET extracts serially from a large
dataset, varying the field list parameter) verified these results.
When there were only four fields in the dataset, @ improved DBGET
speed by 1.34 times, and "field-names-plus-*" improved DBGET by
1.33 times. Since the @ option can lead to program maintenance
problems, I suggest the use of field names (only the fields you
need) followed by an *. I also checked use of the dataset number
in place of the dataset name, and found the improvement to be too
small to be worth the trouble (861 seconds instead of 869).

Using the optimum parameters in IMAGE intrinsic calls improved
the "data rate" for database extracts from 45 seconds per 1000
sectors of data (using field names) to 29 seconds per 1000 sectors
(using *). In order to get closer to the "ideal" data rate of 1
second per 1000 sectors, we must use another approach which is far
faster than any DBGET call: bypass the normal database overhead
completely for high-volume serial access by reading the data
directly using NOBUF. This technique will be explored next.

B2. USE NOBUF ACCESS TO REDUCE CPU TIME

The most powerful technique for making batch jobs faster is
NOBUF access. Normally, files are accessed through intermediate
buffers provided by MPE, KSAM or IMAGE (as described above under
A1-A6). However, in my 1978 paper on optimizing [15], I described
how you can disable buffering using the NOBUF bit (in FOPEN) and
read physical blocks directly into your data stack. When you use
NOBUF, it is your responsibility to "deblock" the logical records
from the physical blocks. At the time, I was discussing the
application of NOBUF to on-line problems; specifically, how to
write a program development editor that would not be a drain on the ~
system. The resulting program, called QEDIT, used NOBUF (and other
techniques) to cut the load of editing at least in half, while

D-2 - 16



ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

still providing editing speeds that were 2 to 12 times faster than
EDIT/3000.

Encouraged by the success of NOBUF in QEDIT, I wrote another
program in 1978, called SUPRSORT, that used NOBUF access for file
copies and file sorts. This program proved to be 2 to 10 times
faster than FCOPY and 2 to 5 times faster than SORT/3000, primarily
due to use of NOBUF (see topic B3 below for more information).
NOBUF works so well because it REDUCES CPU TIME DRAMATICALLY, by
eliminating calls to the file system (or KSAM or IMAGE) and by
replacing the general-purpose "deblocking" code of those systems
with specialized deblocking code written by the user.

Since 1978, the "secret" of NOBUF has spread from user to user
and has been explained in many papers [09J [08J [29J [11J. One of
Hewlett-Packard's System Engineers wrote (and contributed) FASTIO,
a set of general-purpose deblocking routines that allow the COBOL
programmer to benefit from NOBUF easily [44J. Users then reported
results such as a reduction in CPU time from 76 seconds to 10
seconds, a reduction in elapsed time from 7.5 minutes to 1.3
minutes, and scan rates of 60,000 records per second instead of
8500 [03J [02J.

FASTIO was designed to accelerate sequential access to files;
but, an enterprising vendor wrote another set of deblocking
routines (called BREAD [26J), that provides both random and
sequential NOBUF access. BREAD is callable from BASIC, as well as
COBOL, SPL, and FORTRAN and it has better documentation than you
can expect from a contributed routine like FASTIO. Using either
FASTIO or BREAD, a batch application file can access disc files 3
to 20 times faster than by using the standard READ/WRITE statements
provided by the programming language.

With the 1918 release of MPE in 1980, Hewlett-Packard upgraded
SORT/3000 to use NOBUF. (There can be problems with NOBUF if you
are not careful. Witness the failure of the 1918 sort release to
work with card input files or line printer output files.) With
these enhancements, SORT/3000 is now slightly faster than SUPRSORT
at sorting MPE disc files (up to 10%).

A user who ran timing tests on a file of 50,000 records (64
words long, 20 record s per block), found that a NOBUF' ,sort (u sing
either SUPRSORT or the 1918 version of SORT/3000) ran slightly
faster than a simple FCOPY of the same file (he also found that
SUPRSORT copied this file four times faster than FCOPY) [36J. In
other words, the MPE deblocking of 50,000 records took the same
amount of time as a sort of the same records. At another site, a
junior programmer wrote a set of deblocking routines for magnetic
tape blocks (slightly more complicated than disc blocks). After
modifying several report programs that scanned tapes, he was able
to achieve a ten-fold reduction in CPU time and two-tiMes-faster
elapsed times.

0-2 - 17



ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

Since NOBUF works by reducing CPU time, any changes in MPE to
make the file system faster will reduce the "perceived" benefit of ~
NOBUF. This has happened with MPE IV and the Series 44. One of
the test sites for this new Hewlett-Packard product found that
FCOPY runs twice as fast as it did on the Series III with MPE III
[36J. The NOBUF copy was now only 2 times faster than FCOPY, not 4
times.

NOBUF can also be applied to KSAM files, but with some
difficulty (there are problems with deleted records and the
end-of-file). SUPRSORT supports NOBUF access to KSAM files, while
SORT /3000 does not. In a sort of 12,444 records (-80, 16, F,
ASCII; KEY=B,40,20), SUPRSORT took 1.7 minutes and SORT/3000 took
5.6 minutes, an improvement of 3.3 times. Since SORT/3000 uses the
default access to KSAM files, KSAM must use the key file to put the
data records into primary key sequence, after which SORT/3000 sorts
them again, into the final desired order. SUPRSORT reads the
records in chronological sequence, instead of in primary key
sequence. For a KSAM file that has been loaded randomly over time,
primary key sequence can require a great deal of disc head movement
to retrieve the records.

NOBUF access can also be applied to IMAGE datasets, but
SUPRSORT and ADAGER (Adapter/Manager for IMAGE [33J) are the only
software tools that I know of which do this. SUPRSORT, for
example, retrieves records from an IMAGE dataset by reading the
data blocks directly from the disc, rather than calling the DBGET ~

intrinsic for each record. This results in a dramatic savings of
CPU time (and elapsed time).

In 1980, I added a generalized selection capability to
SUPRSORT (i.e., >IF AMOUNT>100000 AND ORDSTAT<>"X" OR DATE>801030 )
and changed the name of the software product to SUPRTOOL. In one
comparison test, I used SUPRTOOL to select 1033 records from a
dataset with 105,504 current entries. When the dataset had
256-word blocks, SUPRTOOL took 222 seconds to do this task, 2.9
times faster than the best SPL program (using DBGET) and 4.8 times
faster than QUERY/3000. The effective data rate in this experiment
was 11.62 seconds per 1000 sectors of data scanned, versus 34
seconds with the best SPL program. This gain is strictly due to
savings in CPU time, since both cases read a single data block per
disc revolution.

When the database was reloaded with 512-word blocks, SUPRTOOL
took only 110 seconds (twice as fast) and was 4.8 times faster than
the SPL program (7.4 times faster than QUERY/3000). The larger
block size improved SUPRTOOL's data rate from 11 seconds per 1000
sectors to 6 seconds. (Warning: before you reload your databases
with larger blocksizes, read the next section! With the IMAGE
database, you can enjoy the benefits of large disc blocks, while
still retaining small blocks for your on-line users.)

0-2 - 18



ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

~ B3. USE NOBUF ACCESS AND TRANSFER SEVERAL BLOCKS AT ONCE

When you open a file with NOBUF, MPE allows you to transfer
one OR MORE blocks on each call. If NOBUF with one block per
transfer is good (see previous section), would several contiguous
blocks per transfer be even better? Sometimes it is, and sometimes
it isn't. I ran a test with SUPRTOOL to demonstrate this
phenomenon. From an IMAGE dataset with 251-word blocks (117 words
per record, two records per block, 15,255 entries in' the dataset),
I extracted all of the entries that contained a customer number
starting with "X". SUPRTOOL read one disc block at a time and the
task took 176 seconds (65 CPU seconds). When I forced SUPRTOOL to
read 16 blocks at a time (using DEBUG), the task took 1.44 times
LONGER (189 seconds), but used less CPU time (only 45 seconds)1

How can 16 blocks per transfer be worse than one block per
transfer? The CPU time was reduced, as we would expect, because
there were 16 times fewer calls to the FREAD intrinsic; but the
elapsed time increased by 1.44 times instead of decreasing. The
answer lies in the BLOCK SIZE: 251 words. Since each block MUST
START ON A SECTOR BOUNDARY, a 251-word block must have 128 data
words in the first sector and 123 data words in the second sector.
That leaves 5 WASTED WORDS at the end of each block. When SUPRTOOL
asked MPE to read 16 contiguous blocks from the disc, MPE had to
remove those 5 extra words at the end of each block. Since the
disc controller is not smart (or fast) enough to perform this
chore, the only way that MPE can remove the words is to issue a
separate read request for every. Thus, a 16-block read takes at
least 15 full revolutions of the disc to complete. When SUPRTOOL
asked for one block at a time, each read request took about
one-half a revolution to complete (depending upon where the head
was when the read occurred). When there are unused words at the
end of a block, reading one block at a time is the fastest method.

However, when there are no wasted words at the end of each
block, multi-block transfers allow serial processing at rates which
reach the theoretical limits of the HP 3000. For example, in
copying a file of 32 word records, with 4 records per block, FCOPY
has a "copy" speed of 57 seconds per 1000 sectors. SUPRTOOL, using
transfers of 4096 words, has a measured copy speed of 1.6 seconds
per 1000 sectors, faster than the hypothetical limit of 2 seconds.
Of the total 1.6 seconds, 1.46 seconds are spent in either the
FREAD or FWRITE intrinsics. The only way that SUPRTOOL can be
faster than the "speed limit", is if the actual latency per
transfer is less than the average (11.1 ms., or 1/2 revolution).
See Section II for the detailed calculations.

Prior to the Athena release of IMAGE (2011), databases were
always created with "odd" block sizes, such as 251 words. But, if
you build (or rebuild and reload) a database under the 2011 release
(or later), IMAGE will round up the block size of each dataset to
the next sector boundary (128 words). This was done to allow the
DBUTIL program to use multi-block writes to erase a database.

D-2 - 19



ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

What are the results if I reload my database under 2011 IMAGE ~
and ask SUPRTOOL to scan the database using varying numbers of .~
blocks at a time? In the previous section, I reported an extract
job that took 222 seconds to perform, reading one 256-word block at
a time from the dataset. Here are the times for the same job,
reading 1 to 32 blocks at a time (block size is exactly 256 words):

Number of Blocks:
Words per Read:
Elapsed Time (s):
Times Faster:

1
256
223

2
512
116
1 • 9

4
1024

115
1 • 9

8
2048

89
2.5

16
4096

75
3.0

32
8192

69
3.2

These times are more like it -- up to 3 times faster. The
conclusion that you should reach is: ALWAYS PICK A COMBINATION OF
RECORDS IZE AND BLOCKING FACTOR WHICH PRODUCES A BLOCK SIZE EVENLY
DIVISIBLE BY 128 WORDS [11J, even if you must "waste" a few words
per record.

If you follow this rUle, you can achieve data processing
speeds that are close to the theoretical hardware limits (1 second
per 1000 sectors). SUPRTOOL, for example, performs selective data
extracts on "even" block sizes at rates up to 3.6 seconds per 1000
sectors. Straight copy operations, without selection, are even
faster: 1.6 seconds per 1000 sectors. When doing selective
extracts, SUPRTOOL spends .75 seconds per 1000 sectors in the FREAD
intrinsic. That is faster than our target speed limit. It shows,
once again, that CPU time has the power to stretch out the elapsed ~
time for any task. SUPRTOOL uses 2.85 seconds per 1000 sectors to
evaluate which records to select (and to move them to output
buffers) and only .75 seconds per 1000 sectors to read and write
the data blocks.

Another advantage of using NOBUF reads of the database (as
SUPRTOOL does), instead of calling DBGET, is that a serial search
does not disturb the shared "buffer pool" in the global DBCB extra
data segment (see topic A3 above). If there are other users
accessing the database, a batch program that makes 100,000 calls to
DBGET in a short time will "flush" the buffers that are allocated
to other users. NOBUF access bypasses these buffers completely.

With an "even" block size, the speed of multi-block NOBUF is
exactly as fast as single-block NOBUF using very large blocks.
Therefore, you can keep your actual block sizes small (but they
must be divisible by 128 words with no remainder) to optimize
on-line access, but not too small (I suggest 512 to 1024 words) to
optimize cases where you choose to use buffered access instead of
NOBUF access. Since IMAGE now rounds up blocks for you
automatically, I suggest that you use the default IMAGE block size
(512 words), except in cases where a record size does not block
well into 512 words (see A3 and A6 above). If you have an existing
database with "odd" block sizes, you can convert to "even" blocks
either by building a new database and reloading from tape (DBLOAD),
or by running the new REBLOCK function of ADAGER/3000. For
magnetic tape files, I suggest a very large block size (4000 to

fJ-2 - 20



ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

8000 words) and NOBUF access, one block at a time. Multi-block
tape transfers seem to crash some releases of MPE.

B4. USE DBCONTROL TO DEFER DISC WRITES BY IMAGE

Normally, after the completion of each IMAGE intrinsic call,
the IMAGE database system flushes all "dirty" blocks in the buffer
pool back to the disc. This is one of the reasons IMAGE data
structures are so reliable: the time window during which they are
inconsistent is very small.

The DBCONTROL intrinsic provides a way of disabling the
automatic posting of dirty blocks. It has been suggested that
DBCONTROL be used to improve large batch jobs [34J. The DBLOAD
utility, for example, uses this feature to accelerate the loading
of databases from tape. However, if the system should crash while
you are in "deferred-output" mode, you must RESTORE your database
from a backup tape. Otherwise, there could be serious logical and
structural inconsistencies in your database.

One user test of DBCONTROL found a reduction in elapsed time
from 21 minutes to 16 minutes for one application, and from 22
minutes to 8 minutes for another [04J. These are improvements of
1.3 times, and 2.75 times, respectively. It is likely that tasks
requiring a large number of puts and deletes (relative to gets and
updates) will show the biggest improvement. Designers are often
encouraged to avoid doing on-line deletes from the database by
flagging "dead" records and deleting them with a batch program
[45J. Such a batch maintenance program is a good candidate for
DBCONTROL, since it can easily be scheduled to run after a database
backup (essential to avoid losing your database without any way to
recover).

When I upgraded my SUPRSORT utility into SUPRTOOL, I added the
ability to write the output records to an IMAGE dataset (i.e., do a
DBPUT). I also included a command to enable "deferred-output" mode
through DBCONTROL. Using these features, I loaded 2551 records
into a detail dataset that had a single key field. In normal mode
("complete-output"), this task took 333 seconds; in deferred mode,
it took 156 seconds, an improvement of 2.13 times. (See topic A3
above for related ideas.)

The dramatic difference between a DBPUT and an FWRITE to a
sequential file can be seen by calculating a "data rate" for DBPUT.
In the test mentioned above, with a single path to update, DBPUT
had a rate of 203 seconds per 1000 sectors of data in
"complete-output" mode (default) and 94 seconds per 1000 sectors in
"deferred-output" mode. This compares with a rate of 1 to 2
seconds per 1000 sectors for NOBUF, multi-block transfers using
FREAD and FWRITE. The reason DBPUT takes so much longer is that it
must do random (i.e., "hashed") reads from the master dataset
(about 1570 reads per 1000 sectors, plus 1570 writes, times .03
seconds per transfer, equals 94 seconds).

0-2 - 21



ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

B5. RECOMPILE COBOL PROGRAMS WITH COBOL II COMPILER

Hewlett-Packard has run a large number of tests to measure the
performance of COBOL II, relative to COBOL/3000 (also known as
COBOL I or COBOL 68). In analyzing their results [22J, I have
noticed a number of interesting points. Batch jobs should run a
bit faster (1.1 to 3.0 times faster), depending upon how much I/O
they do (compute-bound programs are improved the most). On-line
programs use less CPU time, but users do not see any improvement in
response time (since on-line programs spend most of their time in
IMAGE and V/3000).

The big surprise is that data stack sizes are often reduced by
25-60% due to the elimination of RUNNING-PICTURE and
PARAGRAPH-RETURN tables. For on-line users, this "should" mean you
can run more terminals with the same memory (unless you are already
disc-bound). For batch programs, this savings in stack size can be
used to eliminate disc transfers by copying tables (i.e., small
master datasets) from the disc into the stack. The only problem
with COBOL II is getting a version that works right. The "Cheetah"
version appears to have most of the bugs worked out
(HP32233X.00.02C?).

B6. REWRITE SOME CODE IN SPL/3000

Rewriting COBOL programs in SPL is a technique that I have
recommended for several years [17]. However, this does not apply ~
to batch programs. Without proper training materials and
programming guidelines [16J, you could actually make things slower
by rewriting COBOL code in SPL. I can give two examples that I
have seen in actual user sites.

First, by converting to SPL, you lose the built-in data
conversion power of the COBOL lang~age. You you must code explicit
conversions between ASCII and BINARY formats. If you use the
intrinsics provided with MPE to perform this task, your batch tasks
will take longer in SPL than in COBOL. The MPE intrinsics take 3
times longer to execute than substitute routines that I wrote in
SPL. This is probably due to the enabling and disabling of the
error trap mechainisms which must be done in every MPE intrinsic.

Second, since SPL has no "packed decimal" data type, you may
be forced to write (or acquire) SPL subroutines to do
packed-addition, packed-subtract"ion, etc. Because each addition
(subtraction, etc.) now requires a procedure call, these tasks will
take significantly longer than they do in COBOL (which generates
in-line code). These considerations are even more applicable to
COBOL II, because it consumes less CPU time than COBOL 68.

In summary, while it makes sense to rewrite MPE intrinsics
(such as ASCII) in SPL and it may make sense to rewrite high-usage
COBOL subroutines in SPL (i.e., checkdigit, edit validations), it
does not make sense to rewrite batch reports in SPL. SPL should be
reserved for on-line optimization, for specialized support routines

D-2 - 22



ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

(access to MPE capabilities and hardware features), compute-bound
subroutines which are called frequently, and utility software.
Many of the optimizing techniques mentioned in this paper be used
most easily in SPL, but you do not need to hire SPL programmers to
take advantage of them. You can buy the optimizing tools, already
coded, debugged and documented, from a software vendor. (If you
want to develop SPL expertise, see [16J for suggestions.)
Production batch jobs should be written in COBOL II (or RPG or
FORTRAN), unless there is some compelling reason to write them in
SPL.

87. BYPASS THE FORTRAN FORMATTER (ETC.)

Each implementation of a programming language has problems.
In FORTRAN/3000, the notorious trouble spot is the "formatter"
(processing of FORMAT statements) [43J [40J. In a bizarre example
sent to me by a customer [43J, performance of a particular program
varied by a factor of 58 times, depending upon how the READ
statements were coded. The differences were totally a matter of
CPU time spent in the formatter (the program read 4600 records,
2040 bytes each, blocked 4, using default buffering).

Case 1.

Case 2.

Case 3.

4632.8
3

108.91
3

79. 16

CPU seconds (over 1 hour to read 4600 records!)
FORMAT ( 2040 ( A1 ) )
CHARACTER A2040*1(2040)
READ(10,3,END=2) A2040

CPU seconds (42.5 times faster)
FORMAT ( 10 ( A204 ) )
CHARACTER A2040*204(10)
READ(10,3,END=2) A2040

CPU seconds (58.5 times faster, without format)
CHARACTER A2040*1(2040)
READ(10,END=2) A2040

Apparently, the compiler generates 2040 calls to the formatter
for each record in Case 1. Horror stories like this prove that CPU
time matters. In batch processing, a small inefficiency in the
innermost loop can turn into a big increase in elapsed time, when
it is repeated a million times (as above). The programmer should
learn the constructs to avoid in his language, whether it is
FORTRAN, COBOL [22J or RPG [46J.

B8. ELIMINATE UNNEEDED DATA CONVERSIONS

One area where standard programming languages usually have
performance pitfalls is in data types. Standard languages must
"map" their logical data types into the available hardware data
types of the HP 3000. When the types match closely, performance is
good. When they do not match, the compilers must generate "fixup"
code and performance can be bad. In COBOL, for example, numeric
data fields can be either signed (S9(4)) or unsigned (9(4)), but
most of the HP 3000 hardware data types are only signed.
Therefore, according to Hewlett-Packard [22], "using signed instead
of unsigned data avoids the need for computing the absolute value

0-2 - 23



ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

of a result after it is obtained. This affects COMP-3 and DISPLAY
items more than COMP, and can result in a moderate savings in
execution time."

Many implicit data conversions occur in standard programming
languages, especially (but not exclusively) when you mix data types
in expressions. In COBOL 68, it is rumored that COBOL, all COMPUTE
statements are done using packed-decimal arithmetic, regardless of
the original data types. In a benchmark that I read about, a COBOL
68 program was reduced from 10 minutes to 12 seconds by changing
"ADD 5 TO SUM" to "ADD FIVE TO SUM", with "FIVE" defined in the
data division as a numeric field with the same data type as SUM.

In FORTRAN, mixed-mode expressions are discouraged by S.E. 's
[31] [40], because conversions occur. In RPG, users are encouraged
to avoid using numeric display or binary field types, since RPG
must convert them to packed-decimal to perform arithmetic [46].

Saving a few milliseconds may seem like a minor matter. For
ON-LINE programs, it IS minor, because on-line programs seldom use
enough CPU time in an entire day to be justify optimizing them.
But, if something is repeated often enough, the inefficiencies in
CPU time start to add up to a significant amount of elapsed time.
That is why NOBUF (in place of MPE buffering or the interface of
DBGET) makes batch jobs run faster.

In summary, the potential exists in many applications for
major improvements through more detailed knowledge of the
machine-dependent features of programming languages. However, I
strongly suggest that you start the habit of verifying each
suggestion before implementing it. This is not difficult to do.
Start writing test-case programs, with subroutines to measure the
CPU time consumed. In one example that I saw recently [04], the
user had followed advice to convert data items to "binary" (from
what?). Instead of running faster, the elapsed time increased from
21 minutes to 31 minutes. You should not put total faith in
everything you read. Compilers change. MPE changes. Hardware
changes. Keeping up with these changes is a continuing process.

B9. REDUCE NUMBER OF "OPENS"

I once optimized a program that took an entire weekend to
prepare and print monthly bills for 18,000 customers. The user
client needed the program fast enough to produce 400,000 bills per
month. One of the most blatant problems in the program was the
result of last minute specification changes. An "audit" database
was added to the application. The transaction subprogram was
modified to create an audit copy of each transaction. To do so,
the programmer opened the audit database, did a DBPUT, then closed
the database. This meant a minimum of 18,000 extra calls to DBOPEN
and DBCLOSE. I changed the program to open the audit database once
in the mainline, and to pass in the database name to the
transaction subprogram. This one change cut the elapsed time by 15 ~

hours.

0-2 - 24



ROBELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

Sloppiness of this kind often creeps into batch programs when
changes are made at the last minute, and schedule dates are not
extended. Testing seldom catches programming errors of this kind,
because the the volume of test transactions is usually too small.
Other operations that should not be performed 18,000 times are
FOPEN, RENAME and SORT.

As I said in my earlier paper [15J, one method of optimizing
is to focus on the common events. Start with the tasks that are
repeated the most times. Ascertain that they are efficient, before
worrying about tasks that only occur one tenth as often. You can
use the MPE log statistics to detect files which are heavily
accessed (or opened too often) [42J, and to select programs for
review which run often (or for too long).

B10. INCREASE SIZE OF CODE/DATA SEGMENTS

In reading about optimizing, you will see suggestions on
segmenting programs into small (4K word) code segments. Code
segmentation reduces the impact of a program on the rest of the
system, but it DOES NOT MAKE THE PROGRAM RUN FASTER. Since a
"local peAL" (calling a routine in the same code segment) takes 6.1
microseconds, and an "external PCAL" takes at least 14.9
microseconds (34 milliseconds, or more, if the code segment desired
is not present in memory), segmenting your program actually makes
it run slower. Stand-alone batch programs may run slightly faster
with fewer, but larger, code segments. (You should still put
routines that call each other in the same segment). I tested this
hypothesis by calling data conversion routines 64,000 times. When
the routines resided in the same code segment as the calls, the
execution time was 1.06 times faster than when the routines were in
a separate code segment.

My general point is this: avoid being trapped into inflexible
thinking by the constant emphasis upon on-line programming in most
manuals and optimizing documents.

Another common prescription for bad performance is to shrink
your data stack using the ZSIZE intrinsic [15J [39J [22J [18J [32J.
If your stack is larger than necessary for long periods of time, it
impacts the response time of other on-line users. It takes only a
few milliseconds to contract your stack to give back the unneeded
space. But, it takes considerable time to expand your stack again
(which is done automatically when you need the space). Stack
expansion requires a disc write and a disc read [23J. In a batch
program, if you contract your stack after each transaction, you may
have a very slow program, if MPE expands your stack again for the
next transaction.

When an on-line application program is coded to shrink the
stack dynamically, the savings are multiplied by the number of
users running the program (1, 10, or 30). Big improvements in
response time are possible through this technique because large
amounts of main memory are freed for other users. Now many copies

D-2 - 25



ROSELLE/IMPROVING BATCH/SIMPLE CODING CHANGES

of a batch job run at once? Usually only one copy. Reducing the
size of your batch stack does not increase the speed of your batch
program; it only contributes marginally to the response time of
other jobs. Given the rapid increase in main memory capacity of
the HP 3000, I suggest that batch stacks be increased whenever that
will lead to a decrease in CPU time or disc accesses.

For example, consider the practice followed by many HP 3000
programmers of eliminating global data storage by making it local.
Instead of making data "dynamic", consider making more of it
"static" (global, common, own, subprogram). Allocating local
storage "dynamically" each time you enter a subprogram conserves
stack space, but it takes CPU time to do the allocation.

The ideas in this section are controversial, and, until
sufficient tests have been performed to verify their impact on
throug11put, they should be treated as "promising", but unverified,
proposals. Users are encouraged to do their own performance
measurements in this area.

C. CHANGES TO APPLICATION DESIGN

When all possible improvements have been made to data storage
methods and programing efficiency, the only area left for attention
is the logic of the system. Although design changes are the most
expensive to implement, they also provide the greatest potential ~

for gain. If you can eliminate the need to run a certain report,
your percentage gain in throughput is infinite.

C1. USE DATA STACK SPACE INSTEAD OF DISC ACCESS

In the previous discussion (topic B10), I suggested that you
look for ways to trade off a larger data stack for fewer disc
accesses. For example, if a program uses a small temporary file as
a buffer space, the entire "file" could be kept in the stack as a
large array. (This will only improve performance if the file is
accessed many times per transaction.) One of my clients has an
invoicing program that uses a temporary disc file to hold the line
items of each order (after they are copied in from the database).
The number of line items per order varies from 1 to 50, with an
average of 3. According to the contributed program FILERPT [42J,
this file is the second most heavily accessed file on the system.
If I add subroutines to the proiram to simulate the temporary file
using an array in the stack, I should be detect a significant
decrease in elapsed time for a given invoice run.

Another candidate for a place in the data stack is a "lookup
table" for validating data fields. In many batch processing tasks,
each transaction record has one or more fields that must be checked
against a list of valid values in an IMAGE master dataset. If the
number of valid values is small enough, you can move the entire ~

master dataset into your stack (4000 to 16,000 words). This""
strategy would not make sense for an on-line program, because there

D-2 - 26



ROBELLE/IMPROVING BATCH/CHANGES TO APPLICATION DESIGN

are too many copies of the stack that must reside in memory at the
same time. Also, on-line programs seldom do enough table lookups
per minute to justify each user having a copy of the entire dataset
in memory. For a batch task, however, there is only one copy of
the stack, and there may easily be 100,000 table lookups in one
run.

How much time could the in-stack table save? A computed DBGET
takes about 75 milliseconds (including one or two disc reads). For
a batch job to do 100,000 DBGETs, it takes about 7500 seconds or
125 minutes, or 2 hours. Most of this two hours would probabi y be
eliminated by an in-stack table (how much depends upon how long it
takes to search the table in the stack).

C2. USE EXTRA DATA SEGMENTS INSTEAD OF DISC ACCESS

When you have exhausted the 64,000 bytes that are possible in
your data stack (copying tables and temporary files into the stack,
as proposed above in topic C1), there is one more resource that you
can tap before you use a disc file: Extra Data Segments (XDS). An
XDS is a "chunk" of data space that belongs to your program, but is
swapped in and out of memory by MPE, independently of your data
stack. Your program accesses data within the XDS via the DMOVIN
and DMOVOUT intrinsics. The size of an XDS can vary from a few
words (why bother?) to 64,000 bytes (the maximum size is a system
configuration value). Each program can create and access up to 255
XDS (also limited by system configuration).

The HP 3000 has a lot of main memory to work with, so why not
use it all for a stand-alone batch job? If you have one megabyte
of real memory, of which MPE uses 128k and your program needs 256k
(for stack, IMAGE DBCB segments, code segments, etc.), you still
have 655,360 bytes left. If you limit your XDS size to 16,000
bytes (8000 words, an easy size for MPE to swap), you can have 40
XDS and still not be swapped (this is all theory, subject to
experimental verification).

According to one article, an XDS is 25% to 900% faster than a
disc file [24]. Of course, it is not as fast as data in your
stack, so use the stack for the most frequently accessed data.
Access to a subscripted variable in COBOL takes about 60
microseconds, while access to an extra data segment takes 1.3
milliseconds [25]. Access to a buffered MPE file takes 2.9 ms. if
the record you want is in the buffers, and 40 ms. (or more) if a
disc transfer must be done.

In 1980, David Greer of my staff did a research project to
investigate the substitution of main memory resources for disc
access resources [19]: "One answer is a memory file. This is a
file that looks, and is accessed, as if it were on the disc, but
which actually exists in memory. The savings could be great if the
number of disc accesses is very high, but the cost should be low,
since systems are all tending towards more memory as memory costs
continue to drop. The memory file should be implemented with

D-2 - 27



ROBELLE/IMPROVING BATCH/CHANGES TO APPLICATION DESIGN

little or no knowledge of the applications programmer. One way to
do this would be with a special MPE device class (such as MEMORY).
The first time a file with this class is opened, it would be read
into main memory. All accesses to the file from then on would be
memory to memory, rather than disc to memory. When the file is
closed, it would be copied back to the disc. A prototype memory
file system was implemented (for exclusive-access files only),
using a number of extra data segments, including one to hold
control information. All file system calls from the application
program were intercepted by interface routines that emulated the
MPE file system. Test programs showed that the MPE file system was
faster than this double-XDS system UNTIL the MPE file buffers were
exhausted (default = two buffers). After that point, the average
times for MPE files increased 4 times, while the memory file system
times remained steady. The results show that a memory file system
could provide a major improvement over the regular file system, for
small files that are heavily accessed."

The contributed library contains TBPROC [37J, a set of SPL
routines that allows a COBOL program to maintain a table in an XDS
(routines are provided to define a table, add entries to a table,
update entries, sort the table and retrieve entries from the table
by key value or relative index). TBPROC allows you to define the
maximum number of table entries, the byte length of each entry, the
offset of the key value and the byte length of the key value. The
author of TBPROC wrote it to hold small IMAGE master datasets, as
proposed above. He feels that this change reduced the elapsed time
of a large production job by one-third [36J, but cannot be certain
(since other factors were changed at the same time). I would like
to enhance TBPROC to allow for an optional buffer in the stack.
The user-supplied buffer would be used instead of the XDS, when the
table was small enough. If the table overflowed this space, it
would be stored in an XDS and the in-stack srace would be used to
optimize access to the XDS.

Another contribution to the library, ARHND, uses up to 64 XDS
of 16,000 bytes each to provide one megabyte of virtual array space
for a program. Where TBPROC is COBOL-oriented and provides table
lookup by key-value, ARHND is FORTRAN-oriented and provides up to
13 virtual arrays (of single or double integers). The size of the
arrays can be varied dynamically, and they can be one or two
dimensions. Routines are provided to allow the program to emulate
sequential files using a virtual array. Using ARHND, it appears
that a single FORTRAN program could consume the entire resources of
an HP 3000.

There is a certain unavoidable overhead in the DMOVIN and
DMOVOUT intrinsics, because they are part of the MPE operating
system (if MPE had a NOOP intrinsic, it would take at least ONE
millisecond). For maximum speed of access to an XDS, you can use
the hardware instructions that move between data segments [14]. Of
course, this requires privileged mode and careful programming on .~

your part. Another option is to use EXCHANGEDB and operate in
"split-stack" mode. This also requires privileged mode. The

D-2 - 28



ROBELLE/IMPROVING BATCH/CHANGES TO APPLICATION DESIGN

BASIC-callable version of the "BREAD" NOBUF routines uses
"split-stack" [13J, because the BASIC Interpreter claims total
control over data space allocated in the stack. I mention these
options only for .completeness; I have never seen them put to use in
an actual! commercial batch program. They might be very useful,
however, In software products (such as [13J) which are designed to
support and optimize production batch programs.

One thing about XDS usage worries me. An XDS can be swapped
out by MPE if the memory space is required for a higher priority
process. When the program next references the XDS, MPE must swap
it back into memory again. It might be faster to use NOBUF disc
files and manage buffers in your stack (assigning buffers
dynamically to the "active" blocks; that way, you control the level
of swapping that occurs.

When Hewlett-Packard implemented APL on the HP 3000, they
needed a large virtual data area for the APL workspace. Rather
than use XDS, they created a new data structure called a "Virtual
Array". A VIRTUAL ARRAY can be declared in SPL, but requires the
APL firmware at run-time. The APL virtual array is stored on the
disc as a series of fixed-length "pages", and the APL interpreter
allocates a certain amount of in-stack space as a buffer pool (to
hold some of the pages). When the interpeter references a virtual
array, the special firmware instructions check to see if the
required page is in the buffer pool. If it is, the virtual data is
accessed immediately. If it is not, the "least recently used" page
is swapped out and the page containing the desired data is swapped
in.

I would like to see a controlled experiment matching the
ARHND-type of virtual array against a stack-NOBUF-file type of
virtual array. This entire area has tremendous potential for
optimization of batch programs, but needs a great deal more
research.

C3. SAVE DATA OR POINTER FOR RE-USE ONCE RETRIEVED

Having retrieved a specific record(s) from a detail dataset
(using 5-10 IMAGE calls), you should save the record number (found
in the STATUS array) [45J. It can be used for a DIRECTED-GET
later, when you are ready to update or delete the record. Does
each sUbprogram of your COBOL program re-retrieve the
customer-master record from the database when it needs it? You
should only retrieve each customer-master record once, store it in
a global data division, and pass it to the subprograms as a
parameter? Does your program validate transaction fields by doing
lookups in the database? You should save the key value that was
tested for the last transaction in a global place, and check there
before checking the database (or keep a working set). IMAGE adds
entries to unsorted detail-dataset chains in chronological order.
Therefore, if the entries that you need are more likely to be
recent than old, you should read up the chain (mode 6), instead of
down the chain (mode 5).

0-2 - 29



ROBELLE/IMPROVING BATCH/CHANGES TO APPLICATION DESIGN

A program spends most of its time doing "work" to convert
dispersed, raw data into accessible, organized information. Once
the program has converted the data into accessible and/or organized
information, the program should save that information, if there is
any chance that the same information will be needed again soon.
Otherwise, it must repeat the work later.

C4. REPLACE MULTIPLE PUTS/DELETES WITH UPDATES

DBPUT and DBDELETE take 5 to 20 times longer per call than
DBUPDATE, because DBUPDATE is not allowed to change "critical"
fields (search items or sort items). That is, it cannot make
"structural" changes to the data. For each path path into or out
of a dataset, DBPUT and DBDELETE must update the chains that link
entries with the same key value (in a detail dataset) and the chain
heads (in the master datasets). This task requires disc accesses
and CPU time. The more paths there are into an entry, the longer
it takes. That is why optimizing papers often recommend that
on-line programs merely flag "dead" records and let them be deleted
in batch [45]. Similarly, if you are not changing any critical
fields, you should always use DBUPDATE instead of deleting the
entry and adding it again [34].

One way to replace PUT/DELETE with UPDATE is to eliminate
paths (see topic C5 below). Another way is to merge several
independent entries (that must be PUT and DELETEd) into a single ~

ent.ry, with a "column" for each individual piece of data. For
example, instead of creating an entry for each month of the year
(12 PUTs and 12 DELETEs per year), use one entry for the entire
year (1 PUT, 1 DELETE), and UPDATE the entry when you need to
record the value for a particular month (12 UPDATEs).

I tried this approach with one client's application. The
previous consultant had designed a detail dataset to hold billing
transactions, indexed by customer number and sorted by date.
Customers were normally billed once a month, for a recurring fixed
amount (i.e., $5.00 per month). When they paid, another detail
entry was created to show the payment. In order to examine the
status of an account, it was necessary to retrieve all of the
entries on the chain (24 entries minimum for a year). But, the
transactions were predictable (billed $5, paid $5). We replaced
the individual transactions with a single entry that showed the
amount to be billed per month, and had places to be "checked off"
when each month was billed and 'then paid. This replaced 24 PUTs
and 24 DELETEs (you have to get rid of those transactions someday),
with 1 PUT and 24 UPDATEs. The impact on batch throughput (as well
as on-line response) was impressive; and, this approach was
actually closer to the way the company had kept track of its
customers before the computer was installed.

D-2 - 30



ROBELLE/IMPROVING BATCH/CHANGES TO APPLICATION DESIGN

~ C5. CONSIDER SERIAL SEARCH INSTEAD OF CHAINED ACCESS

On-line functions should only do chained (or keyed) reads from
the database. They should never do serial scans of an entire
dataset (unless the dataset is very small). This is what search
items are for: to provide quick response to inquiries.

For a batch program, "response time" (i.e., the time it takes
to retrieve a subset of entries from a dataset) does not have to be
immediate, it only has to be reasonable. An application may
actually run faster (overall) if you eliminate a search item that
is accessed exclusively in batch, and use a serial scan instead
[45]. The time to PUT and DELETE those records will be reduced,
and you may be able to do an UPDATE instead of a DELETE/PUT (if the
field to be updated is the deleted path or the sort item). Some of
the search items that I have eliminated from datasets are "division
number" (where there are only four divisions), "transaction date",
"transaction month", and "salesman" (with only 10 salesmen).

In fact, if a given path has only a few unique chains and each
chain is very long (i.e., only a few values for that field), a
serial scan MAY ACTUALLY BE FASTER than a chained read. This
inversion of logic is most likely to occur in datasets that have
had many DELETEs and PUTs since the last DBLOAD reorganization.
Such activity tends to spread the entries that are on the same
"logical" chain into different physical disc blocks (because IMAGE
reuses deleted space for new entries). Each chained read can,
therefore, require a separate disc read. Serial reads, on the
other hand, only do a disc read once for each N entries
(N:blockfactor).

In one test that I ran, chained reads took 16 milliseconds
each, and serial reads (using DBGET with *) took only 5
milliseconds each. In this case, the chained retrieval will only

. be faster if there are four or more unique key values (each chain
has less than one quarter of the entries). With SUPRTOOL, the time
per serial read is much faster, only .63 milliseconds. As a
result, SUPRTOOL will be faster than chained access for any path
that has less than 25 unique chains.

C6. ISOLATE DATA BY FREQUENCY OF ACCESS

Do you plow through the transactions for an entire year every
night, in order to produce an audit report of the activity for the
day? Why not put the day's work into a separate dataset? After
producing the audit report for the day (which should finish 30 to
400 times faster) and re-validating the transactions (to catch bugs
in the on-line programs), move the entries into a month-to-date
dataset and delete them from the daily dataset. After month-end
closeoff, move the month-to-date entries to the year-to-date
dataset. Another benefit of this approach is that each dataset can
have a different type of access (different number of search items
and sort fields). Finally, after the end of the fiscal year, you
can copy the year-to-date dataset to a disc file (never throwaway

0-2 - 31



ROBELLE/IMPROVING BATCH/CHANGES TO APPLICATION DESIGN

good transactions) and clear out the dataset for the next year.
The archive disc file can easily be reported from, since it has the
same format as the year-to-date dataset. It can also be stored to
tape if there is no immediate call for it. (SUPRTOOL has commands
to perform most of these extract/copy operations, and with
excellent speed.)

In the previous discussion (topic C5), I suggested eliminating
search items that have less than 4 unique values (less than 25, if
you have SUPRTOOL). Now I am suggesting that you create separate
datasets to isolate entries, when the distinguishing field has only
3 to 5 active values (such as range of date = current day, current
month, current year, or other year). "Isolation" reduces the
number of physical entries that your serial search programs must
read. They need only look in the relevant datasets.

C7. KEEP RUNNING TOTALS IN DATABASE - ELIMINATE SEARCH

I have seen many batch applications which must re-scan all of
the transactions for the year (or two years), in order to compute
sub-totals by account number, month, division, etc. Once each
month, they sort all of these transactions in two or three
different ways. Several users have reported to me job times of 20
hours or more. With the availability of the IMAGE database, there
should be few designs of this kind. Once a total has been
calculated, and you know that you will need it again next month, it
should be stored in the database for quick retrieval. The basic ~

principle that I try to follow in disposing of information is:
reduce transactions to summary totals as soon as possible, while
saving the transactions (with their wealth of detail), in case a
question comes up that cannot be answered from the summary
information .

. General ledger packages seem to be the worst offenders of this
rule -- especially the ones that were converted to the HP 3000 from
card-oriented IBM systems. By far the most elegant use of IMAGE
for a general ledger that I have seen is the hierarchical structure
(trees of accounts with sub-totals at each node) that is described
in [32J. Anyone designing a new general ledger system should read
that paper for ideas.

By saving summary totals, you are "depositing" into the
database the CPU time and disc accesses that were used to calculate
them. When you need those totals the next time, you have only to
look in your safe deposit box (instead of taking out a loan to
"buy" the information for a second time).

C8. SORT DATA BEFORE WRITING TO KSAM FILE

Within IMAGE and KSAM, there are "sorted" data structures -
sorted chains for IMAGE and sorted keys for KSAM. The time needed
to add entries to such a structure may be reduced, if the entries
are in sorted sequence initially [45J. (Of course, if there are ~
multiple sorted keys, only one key can be optimized.) I used

0-2 - 32



ROBELLE/IMPROVING BATCH/CHANGES TO APPLICATION DESIGN

SUPRTOOL to test this hypothesis on KSAM. When SUPRTOOL copied
2551 records to an empty KSAM file (with one key, duplicates
allowed), the elapsed time was 92 seconds. KSAMUTIL reported that
2224 key block I/O transfers had been required. SUPRTOOL then
repeated the operation, but sorted the 2551 records before writing
them. The total time was reduced to 46 seconds, including the sort
time (2 times faster), and the number of key block I/O transfers
was reduced to 134 (17 times less).

In the tests that I performed, KSAM obtained a load "data
rate" of 111 seconds per 1000 sectors with unsorted data and 53
seconds per 1000 sectors with sorted data. Compare this with the
rates for DBPUT (203 seconds in default mode and 94 seconds in
"deferred-output" mode, which is the way KSAM operates) and the
rates for NOBUF calls to the file system (1 to 2 seconds per 1000
sectors). The more organization you demand of your data, the lower
the rate at which it can be updated.

C9. SORT ENTRIES BEFORE PUT TO SORTED CHAIN

Since sorting data before writing it to a KSAM file cut the
elapsed time in half, I hoped that the same thing would be true for
IMAGE. There are two major differences, however, between KSAM and
IMAGE. First, the entire KSAM file is sorted by the key field,
while only a single chain is sorted in IMAGE. If the IMAGE chains
are short (average length less than the blocking factor), it may
not take IMAGE very long to put them in order. Second, KSAM always
operates in output-deferred mode (it does not post buffers at the
end of each FWRITE). IMAGE operates in output-complete mode.
Therefore, the disc transfers needed to update the sort sequence
will probably be a larger percentage of the total disc transfers in
KSAM than they are under IMAGE. I have not seen a satisfactory
experiment with these ideas yet.

If you do try this technique, I suggest that you either limit
it to large batch tasks (where you sort an entire dataset before
copying it to another dataset), or that you write your own internal
sort routines. There could be nothing more catastrophic for your
throughput than to do 10,000 seperate sorts, one for each sorted
chain. Each time that you initiate the Hewlett-Packard sort
sUb-system (whether by running SORT.PUB.SYS, or using the SORT VERB
in COBOL, or calling SORTINIT in SPL and FORTRAN), you are causing
a temporary file with 10,000 records to be allocated on the disc.
If you are only sorting 15 to 100 records, this is a tremendous
waste of resources (both disc accesses and CPU time).

C10. COMBINE KSAM WITH IMAGE IF YOU NEED SORTED ACCESS

If sorted chains in IMAGE are bad [45] [34], and invoking the
Hewlett-Packard sort package for each chain of 50 records is also
bad (too much overhead to initiate and terminate the sort), what
else can be done? Sometimes you need sorted access to IMAGE
entries. Sorted access is the easiest way to provide generic

D-2 - 33



ROSELLE/IMPROVING BATCH/CHANGES TO APPLICATION DESIGN

search capability. IMAGE is not always the best answer. Sometimes ~

you should use KSAM.

Here is a suggestion: copy your key values from an IMAGE
master dataset and write them to a KSAM file (single key, no
duplicates) in sorted order. One of the references that I read
[38J found that sorting the key only (instead of the full record)
could save up to 41% of the sort time. My tests (reported above,
C8), found that sorting records before writing them to a KSAM file
would cut the load time in half. Therefore, this IMAGE-to-KSAM
transfer should be very quick. This is one of the tasks that
SUPRTOOL can accomplish (extract and sort keys, write them to a
KSAM file, clearing it first).

If you follow this prescription, you will have an "updatable"
mechanism for sorted access to an IMAGE dataset. If the key field
is "date", and you want to find all entries with dates in the month
of June, you do a FREADBYKEY into the KSAM file and 'use the key
values retrieved to get the actual records from the IMAGE dataset.
If you want your index updated during the day, you must modify your
on-line programs to FWRITE new key values to the KSAM file. Or,
you may be willing to have the sorted access updated only once a
day (after new transactions are validated in batch). In this case,
just run the SUPRTOOL copy operation once every night.

D-2 - 34



HP 3000/0PTIMIZING BATCH JOBS Robelle Consulting Ltd.

~--~-----------------------------------~--------------------------I
I

: Section V
I
I

WHAT "ACTUALLY" MAKES BATCH FASTER?

---~---------------------~---------------------------- ------------

The last section evaluated many possible techniques to make
batch jobs faster; the results are summarized below:

THESE TECHNIQUES WORK (sorted by their "power" to improve)

3x to 300x faster: Isolate data, at design time, by
frequency and type of access.

5x to 50x: Save summary totals in a database.
5x-58x: Bypass the FORTRAN Formatter.
5x-20x: Eliminate unneeded data conversions.
10x: Convert DBDELETE/DBPUT to DBUPDATE.
2x-10x: Use NOBUF with MPE files (see FASTIO, BREAD).
2x-10x: Use NOBUF with KSAM/IMAGE (see SUPRTOOL).
3x: Rewrite some MPE routines in SPL (i.e., ASCII/BINARY).
2x-5x: Use more key block buffers, if a KSAM file is empty.
2x: Sort records before loading them into a KSAM file.
1.5x-2.5x: Use DBCONTROL to defer IMAGE writes, if the

database is backed up to magnetic tape first.
1.3x-3x: Convert from COBOL 68 to COBOL 74 (COBOL II).
1.1x-3x: Increase IMAGE buffers for a single batch job

to the maximum allowed.
1.5x: Keep IMAGE master datasets "clean" (see DBLOADNG).
1.5x: Use "*,, field list, with write access to the dataset.
1.2x-1.5x: Increase the block size of MPE files to 1024

words, and that of IMAGE datasets to 512 words.

THESE TECHNIQUES LOOK GOOD, BUT NEED MORE TESTING

Use DBLOAD occasionally to reorganize your database. Reload
the entire system to reduce disc fragmentation. Rewrite COBOL
subroutines in SPL, if they are called frequently. Increase
the size of code and data segments (the opposite of on-line
optimizing). Use in-stack tables and extra data segments to
eliminate disc accesses. Save pointers and data to eliminate
some disc accesses. Consider serial search in place of
chained and drop the search item. Sort data before DBPUT to a
long sorted chain. Use KSAM with IMAGE to provide sorted
access to IMAGE data.

THESE TECHNIQUES DO NOT WORK AS ADVERTISED

Using more than the default MPE file buffers. Dividing
program code into small code segments (on-line programs only).
Repeatedly contracting the data stack (on-line only). Doing
extensive work to optimize head locality through explicit
placement of files (except for straight file copies).
Increasing IMAGE block sizes above the default (512 words).
Increasing MPE file block sizes above 1024 words.

D-2 - 35



HP 3000/0PTIMIZING BATCH JOBS Robelle Consulting Ltd.

------------------------------------------------------------------ ~
I I
I I

; Section VI ;
I I
I I

CONSEQUENCES FOR DIFFERENT PEOPLE

------~------~---------------------------------------- ------------

The findings of this report have different implications for
the different groups of people associated with an HP 3000
installation.

END-USERS: Ask for summary information and exceptions instead of
mountains of paper; you will get your results faster.

DP MANAGERS: The "stock" HP 3000 may'have to be "souped up" to
handle your batch processing load. Try to acquire optimizing
tools such as SUPRTOOL, BREAD and FASTIO, and give your staff
the time needed to investigate the contributed library.
Establish procedures to measure the resources consumed by each
batch program, and review the results quarterly. Question
changes to specifications at the "last minute" and insist on
adequate time to implement them properly. Invest in staff
development (through training and the users group) to keep up
with the changes in hardware and software. Don't skimp on
disc space. Ask systems analysts to estimate elapsed time for
batch jobs, not just response time of on-line programs, when
they design an application.

OPERATIONS STAFF: Don't spend hours moving files to specific disc
drives. Run DBLOADNG once a month to check master dataset
hashing and detail dataset "randomness". Consider DBLOAD
occasionally.

APPLICATIONS PROGRAMMERS: Eliminate disc accesses wherever
possible, by using DBCONTROL to defer writes in IMAGE, by
copying small master datasets into the data stack, by doing
multi-block NOBUF transfers, and by using extra data segments
to access the main memory that is outside of your data stack.
Save CPU time, especially in modules that are invoked in a
loop, by avoiding inefficient constructs in your programming
language, by switching to COBOL II, by using NOBUF access, by
writing subroutines in SPL, by using the "*,, field list with
write access, and by hand-coding some operations, instead of
using the general-purpose software provided by Hewlett-Packard
(e.g., small sort operations). Measure the throughput of your
programs using alternative methods. Avoid doing the same
"work" twice when you could save the results for re-use later.
Concentrate your efforts on "common events", such as the
functions of a program that are executed the most often.

APPLICATIONS DESIGNERS: Keep record sizes below 256 words and
block sizes between 512 and 1024 words, with the block size
always a mutliple of 128 words. Design the database to hold ~

summary totals, rather than recalculate them from the original
data every time a batch report must be run. Add datasets to

0-2 - 36



HP 3000/0PTIMIZING BATCH JOBS Robelle Consulting Ltd.

isolate records that may have the same fields, but are used
with a different frequency and type of access (serial versus
chained). Eliminate some search items with few values and use
serial scan intead (use SUPRTOOL for maximum speed). Save
search items for on-line access. Combine several records into
one and use DBUPDATE instead of DBDELETE/DBPUT. Select search
items that will hash well (X8 instead of J2). Consider KSAM
for sorted access to IMAGE key values. Identify batch
processing tasks at design time and estimate their execution
times; use these estimates when designing the database.
Develop guidelines, goals, and strategies for setting up job
control commands, just as you would with any other high-level

(

programming language.

SYSTEMS PROGRAMMERS: For COBOL (and other standard languages), add
a built-in deblocking capability and make use of extra data
segments where applicable. For IMAGE, do multi-block reads
when a serial DBGET is requested and the buffers are not
"busy". Improve the job control language of MPE so that jobs
can handle more situations without needing operator
intervention.

SYSTEMS SOFTWARE DESIGNERS: Provide special "paths" for batch
programs so they can avoid slow, general-purpose systems
software (IMAGE, Formatter, file system). Concentrate on
making full use of the existing disc hardware speed. Merge
KSAM capabilities into the IMAGE database.

HARDWARE DESIGNERS: Build a smarter disc controller (on a full
track transfer, begin wherever the heads are located, and
adjust the memory address, instead of waiting for the disc to
rotate to the correct sector). Add CPU instructions to
perform deblocking and database processing. Expand the data
stack size to at least one megabyte. Provide multiple disc
channels. Build a "black box" to do sorts.

D-2 - 37



HP 3000/0PTIMIZING BATCH JOBS Robelle Consulting Ltd.

,
I

; Appendix
I
I

REFERENCES (SORTED BY AUTHOR)

For HP 3000 users who would like a "self-teaching course" on
optimizing, I have listed below the references that I suggest, in a
logical reading sequence. If you belong to the Users Group, you
may already have all but two of these documents: [06J [20J [27J
[15J [25J [33J [34] [07] [09J [44] [29J [18J [41J [26J [21J.

[01J author unknown, "Data Base Retrieval Optimization",
SCRUGLETTER, Vol. III, No.5, 1979.

[02J author unknown, "FASTIO", S.E. newsletter, date unknown.

[03J author unknown, "FASTIO Benchmark Benefits", SCRUGLETTER, Vol.
III, No.5, 1979.

[04J author unknown, "Slides on optimizing" [??J, CCRUG Meeting
minutes, distributed January 1981.

[05J I<eith Baer, "ARHND, Virtual Array liandler", HPGSUG 1980 San
Jose Swap Tape.

[06J John Beckett, "Managers, You Can Control Response Time",
HPGSUG 1980 San Jose Proceedings.

[07J Rick Bergquist, "Optimizing IMAGE: an Introduction", HPGSUG
Journal, Vol. III, No.2, 1980 (reprint from San Jose
meeting).

[08J David Brown, "Disc File Access Optimization Using
Multiple-Record, Non-buffered Data Transfer, SCRUG80
Proceedings.

[09J William F. Burggrabe, Jr., "Disc I/O Comparision Chart",
HPGSUG Journal, Vol. III, No.2, 1980.

[10J Stephen M. Butler, "Faster with Fast KSAM", HPGSUG 1978
Proceedings.

[11J Mike Casteel, "Programming for Multi-terminal Applications",
HPGSUG 1980 San Jose Proceedings.

[12J Jim Dowling, "Performance Management Techniques for the HP
3000 Series III", paper presented to HPGSUG 1980 San Jose
Meeting, not published in proceedings.

[13J EASY Software Company, "Blocked 10 Reference Manual", 1980.

[14] Rick Ehrhart, "Using Extra Data Segments - Safe and
Efficient", HPGSUG 1978 Proceedings.

0-2 - 38



HP 3000/0PTIMIZING BATCH JOBS Robelle Consulting Ltd.

[15] Robert M. Green, "Principles for Optimizing Performance of
On-line Programs", HPGSUG Vol. II, No.2, 1978 (also printed
in Denver meeting proceedings).

[16] Robert M. Green, "SPL/3000 in a Commercial Installation",
training guide published by Robelle Consulting Ltd, 1980.

[17] Robert M. Green, "SPL/3000: Overview and Common Errors",
HPGSUG Journal, Fall 1979.

[18] David Greer, "Checkstack and Controlling COBOL Stacks", HPGSUG
1980 San Jose Proceedings.

[19] David J. Greer, "Memory Files", unpublished paper of Robelle
Consulting Ltd.

[20J Dick Hamilton, "Tips for News Users", HPGSUG 1980 San Jose
Proceedings.

[21] Hewlett-Packard Co., "Application Design and Optimization for
the HP 3000", internal training manual [see your S.E.].

[22] Hewlett-Packard Co. ,
1980.

[23] Hewlett-Packard Co. ,

~ NOWRUG", 1979.

"COBOL/3000 vs. COBOL II Performance",

"Performance and Optimization Seminar for

[24J Marc Hoff, "Using Extra Data Segments", HPGSUG Journal, Vol.
I, No.4, 1977.

[25J Jack Howard, "Extra Data Segments and Process-handling with
COBOL", HPGSUG Journal, Vol. II, No.1, 1978 (reprint from
SCRUG78).

[26J Jack Howard, "System Design and Optimization Techniques and
Tools", HPGSUG Journal, Vol. III, No.3, 1980 (reprin~ from
SCRUG79).

[27J John E. Hulme, "System Performance and Optimization Techniques
for the HP/3000", Applied Cybernetics Inc., 224 Camino del
Cerro, Los Gatos, CA, 95030, 1980.

[28J Steve Kaminsky, "KSAM vs. IMAGE", HPGSUG Journal, Vol. I, No.
6, 1978 (reprint from SCRUG78).

[29J Madeline Lombaerde, "NOBUF/NO-WAIT I/O", HPGSUG 1980 San Jose
Proceedings.

[30J Eugene H. Mitchell, "IIvlAGE Access Timing Test", HPGSUG
Journal, Vol. III, No.2, 1980.

~- [31J Christine Morris, "FORTRAN Optimization", HPGSUG Journal, Vol.
l, No.6, 1978.

0-2 - ~9



HP 3000/0PTIMIZING BATCH JOBS Robelle Consulting Ltd.

[32] Gary B. Nordman, "Using a Hierarchical Data Structure", HPGSUG
1980 San Jose Proceedings.

[33J Alfredo Rego, "Design & Maintenance Criteria for IMAGE/3000",
HPGSUG Journal, Vol. III, No.4, 1980 (reprint from SCRUG80).

[34J Bernadette Reiter, "Performance Optimization for IMAGE",
HPGSUG 1980 San Jose Proceedings.

[35J Robelle Consulting Ltd., "SUPRTOOL User Manual", 1981.

[36J Joe Schneider, conversation with the author regarding MPE
IV/Series 44 experiences and other topics, January 1981.

[37J Joe Schneider, "TBPROC, Table-handling with Extra Data
Segments", HPGSUG Contributed Library Volume 7.

[38J Anil Shenoy, "Sort Performance GUidelines", S.E. Note 170,
October 16" 1979.

[39J Rodney Smith, "Application Design for HP 3000", SCRUG80
Proceedings.

[40J Ed Splinter, "Optimizing FORTRAN", HPGSUG 1977 Proceedings.

[41J Jim Squires and Ed Splinter, "System Performance Measurement
and Optimization", HPGSUG 1978 Proceedings. ~

[42J Chuck Storla, "Determining File Usage", paper presented to
HPGSUG 1980 San Jose Meeting, not pUblished in proceedings.

[43J Mark Terribile, correspondence with the author, January 1981.

[44J Mike Vislosky, "FASTIO", HPGSUG 1980 San Jose Proceedings.

[45] Geoff Walker, "IMAGE Optimization Checklist", HPGSUG Journal,
Vol. II, No.2, 1978.

[46J Dave Walmsley, "RPG/3000 Program Optimization", HPGSUG 1977
Proceedings.

[47] Frederick White, "Improving Performance of IMAGE
Applications", HPGSUG Journal, Vol. II, No.4, 1979 (reprint
from SCRUG79).

[48J Ted Workman and t1ats Jonsson, "The Effect of Disc I/O on
System Performance", unpublished paper presented to HPGSUG
International Meeting in SWitzerland, September 1980.

[49J Lu Yamada, "DBLOAD times with varying BUFFSPECS", S.E.
newsletter, date unknown.

0-2 - 40



DATA BASE DESIGN

Polishinq Your IMAGE

Presented to:

HP General Systems Users Group
1981 Interna~ional Meetinq
Orlando~ Florida
Anri 1 27 - Ma.v 1

B..v:

Karl H. Kiefer
S.ystems Eng; neer
HP - Englewood, Colorado

Tuesday D-3 - 01



Data Base Design - Polishing Your Image

I. Introduction: Context for Data Base Design
Th~ motivation for this essay stems from a perceived lack of understanding

among professional programmers and analysts, including Image/3000 users, con
cerning strategies to adopt, and consequences of choices made, designing
and implementing data base systems. From a theoretical view, data base tech
nology is intended to overcome inherent limitations and unnecessary
costs associated with the use of historically prior file structures and
access methods. Namely, the use of indexed files and flat files resulted
in systems characterized by physical redundancy of stored data,
dependence between programs and data, update and integrity problems,
security problems, and inaccessibility to data for unanticipated requirements.
Data Base technology promised to overcome these maladies by providing
a means by which users would be able to pool their organizations'
information into a centralized, independent structure. Applications
would be implemented through a common interface to this structure:
the data base management system (DBMS). Actual implementation of
data base systems in many, if not most, production shops has fallen far
short of the promise of the technology. There are two generally
related reasons for these develppments.

Systems designers have not yet appreciated the proposition that an
institution~ management of it's information often determines its
ability to react to changes in its environment. Biological evolution
can, in one important aspect, be understood as a progression from simple
to complex forms, and the complexity of these forms can be explained
by the notion of information processing. More complex organisms are
typically characterized by more sophisticated mechanisms involved in the
processing of information. The sophistication of these processes is
typically implemented via complex brains and sense organs. The survival
success of"these· organii!sms. is, in large part, m~de possible by an
efficient means of sensing environmental changes and acting accordingly; of
processing information. Similarly, the evolution of social organizations,
business enterprises and governmental institutions can be understood in
terms of these organizat;ons~ ability to process information. Simply stated,
businesses which fail to manage information efficiently and wisely will,

D-3 - 02

.~."'f.~~



at best, be less profitable or, at worst, become extinct. Governmental organ
izations will be needlessly wasteful and, perhaps, fail to provide the service
which justifies their reasons for being. This is necessarily so because they
lack the capability to act readily according to pertinent changes in
their respective environments.

An appreciation of the potential of data base technology to help provide
this capability is a necessary, but not sufficient, cause for the success of
the technology in realizing its promise. The second reason for its
perceived failure is the costly lack of information and guidan£e from
academia and, especially, vendors, with respect to criteria for good data
base design and factual information with which designers might more ably
evaluate conseauences of their choices.

As a result of this lack of appreciation and/or information, implementors
of data base systems have historically viewed their DBMS as just another file
structure and access method. Typically, an.implementor is charged with the
rpsponsiblity of getting an application up and running and, perhaps, a choice
is made for IMAGE over, say, KSAM acrording to some vague notion of
IIfitness" or performance, but from that point on, the DBMS is just another
tool in the application implementation.

With respect to IMAGE/3000, some information regarding design and programming
choices affecting systems. throughout performanroe has begun to be disseminated
to most users. Very little information however, exists elucidating either the
criteria for design strategies or the impacts of design decisions when made.
This essay, then, is an attempt to provide an outline of design considerations
without claiming to know or state all of the costs or impacts of IMAGE/3000
design decisions. Indeed, it is hoped that if users know first what
questions to ask, more complete answers may be obtained from actual
implementation experiences which, through forums such as this, can supply
valuable, shared information. Moreover, it is hoped that the impact of this
essay will be applicable not just to IMAGE, but to data base design gener
ically. This, it seems, is particularly desirable since, as we all know,
full comprehension of any single product or aspect of our profession is
almost certainly an indication of its obsolescence. By the time any of us
knows all that can be usefully known about IMAGE data bases, we will surely
be rewarded with a completely new DBMS about which we will know next to

D-3 - 03



nothing, and we can start allover again.

II. Data Design ~nd Relationships

Recent literature on desirable analysis techniques (read: structured
analysis) invariably teaches that the first step is a global statement of
the functions or objectives of the system. The same holds true for data
base design. No technical methodology or checklist of analysis considerations·~

can compensate for less than a thorough conceptual understanding of the
functions which are to be implemented using the projected data base. Once
these functions are stated and understood, the designer can proceed with the
initial phases of design. These consist of the identification of the data
items required to process the functions, and an analysis of the relationships
which adhere between them.

Systematically associating data items with their functions can be accomplished
using a function matrix (see the Data Base Design Kit for the HP 9845C,
Hewlett-Packard part #09845-91057) and is a relatively straight-forward task.

Next, it is useful to characterize each item according to two important attr
ibutes. An item's VOLATILITY depends on the relative rate at which its
contents change value. A part number in an inventory system is not volatile
while its on-hand-quantity might be highly volatile. This characterization
will impact decisions on performance, integrity of data and storage cons;dera~

tion. An items STRUCTURAL STABILITY refers to the physical way in which it
is stored in the data base; i.e., its data type, and length. Ignoring or
understating the possibility of structural change can have costly consequences.

The next design decision is fundamental to the success of the data base system.
Grouping of items into entries or records obtains a definite relationship
between the items which physically binds them together for storage and
transfer. Ideally, IMAGE entries should reflect naturally some component
of the function with which the related items are associated. An entry
describing a part in an inventory system, for example, might naturally relate
the following items: part no., description, bin no., quantity on hand, and
quantity on order If we define well-organized data as easily accessed, storaoe
space efficient, and easily restructured, then further evaluations are required
when grouping items into entries.

D-3 - 04



RELATION MATRIX

Data Item
Item
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

V V V ~V V/V / r/V.~V/V/V/VV V~V/V/V'/1
/ /~

2 V V/V V/ V V/ / / '/~V V/V/V/ / 1/V~V~V/ V

~ / ~ /

3 V V~V~V/ V / V/ / V 1/ V~V/v / V/ / / 1//V V/
~

4 V V/V V/V / 7 7 1/V/V/17/V / V/ / V r7~V
~ ~

V V /~V/
v V-/ / V V/V V/ v V/ / V [75 / /~

6 V V/V V/ l7/V/ / V [7~[7~V/ V V/ / V/ /
7 V V~[7~[7/

v V/ / V :/~V V/V/v/ 7/
8 V V/v/v/v/v/ / [7 I/~V~v/v/v/
9 IV [7/V V/

v V/ / 1/ ~/ V/V/
v

/ / /
10 V V~V~V/

v V/ / V V~V V// ~

11 . V V/V V/V/V/ / V ://V~ ~

12 V //V V/V/v/ / l7 l7~

13 V V~V/V/
v V/ / V/

14 V V/V V/V/v7 7
15 / V/v/v/v / v/
16 V V/V/V/

iI'

/
17 V V/V V/

~

18 V V~V
19 l7 [7~
20 :V

LO
o

(Y')

I
o

~ l L



FUNCTION MATRIX

Function Number: 1 2 3 4 5 6 7 8

Function
Description:

Data Item
Item DATA ITEM FUNCTIONS
Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0-3 - 06



The following grouping criteria are not necessarily harmonious; that is, increa
sing the priority of one may decrease the priority of others. Evaluating the
grouping choices made according to these criteria will, however, minimize the
possibility of costly surprises later on.

1. Group naturally. As indicated above, a natural grouping will
simplifY the implementation of the associated function~

2. Minimize redundancy. Saves space but may result in more difficult
access, complex programming, and lower performance.

3. Group according to volatility. Usually a boon to performance.

4. Group according to entry size. Large entries may require less system
I/O but more memory for buffers. Larger entries may obscure the
functions to be performed with them. Large entries may obtain more
on-line contention for sha~d data bases and, hence, lower
performance.

5. Group for variable iterations. A table or other iterated values
such as transactions are perfectly suited to chains. A table might
be grouped into an entry; the trade-off is disc storage and memory
space requirements versus I/O's.

6. Group according to structural stability. If items which have a good
chance of changing structurally are segregated, the impact of change
tends to be less severe.

7'. Group for security. Security checks by IMAGE at the set level are
less costly for performance than item-level checks.

8. Group for multiple views of same data: this may add to redundancy
but is usually consistent with natural grouping.

At this point in the design phase, the designer has a preliminary scheme with
entries defined and manual and detail sets related as to functional requirements.
He may also have discovered that, since IMAGE obtains a network structure, he
may need to implement a three or more level hierarchy through implicit progr-

ammatic relationships. For example, suppose that a typical manufacturing

D-3 - 07



application needs to keep track of a final product1s subassemblies, which could
themselves have subassemblies and so on for several hierarchial levels. This
can quite readily be represented in IMAGE through a recursive structure ~

implemented programmatically. The master set contains entries for each
assembly. The unique assembly number oontains each related subassembly in
a single detail set. The detail entry contains, besides the search item, only
one other item, namely, the assembly number for that subassembly the entry for
which is to be found back in the same parent master! (See figure 3)

Implementing multilevel hierarchical structures not recursive in nature
consists of redundantly adding (typically) an automatic master as the
intermediate link. In a retail accounting system, for example, several stores
can be represented in a master chaining to each department for that store.
The concatenation of the store and department numbers then obtain an implicit,
symbolic pointer to an intermediate, automatic master which holds the
chain heads for individual item entries for that particular department in that
particular store. (See figure 4)

IMAGE is no different from any other DBMS in the sense that it is limited in
the variety of structural relationships which it c-n faithfully represent ~

through its own internal pointer mechanisms. And since we can, if we are
clever enough, represent virtually any desired relationship if we implicitly
design and implement such relationships in our application programs,
the designer must ask and evaluate the response to the question, what
are the trade offs associated with implicit relationships?

lt ;s useful to formally distinguish between explicit relationships and
implicit relationships, the former being those available through the
DBMS while the latter are those maintained solely by application programs.
Further, -it is useful to distinguish between implicit relationships which use
symbolic pointers (as in both figures 3 and 4) and implicit" relationships
which make use of direct pointers. The status array is used by IMAGE to comm
unicate with the user, data descriptive of, among other things, structural
information. Through this mechanism, the user can not only access IMAGE
entries directly, but also use this data in implementing his own implicit
relationships.

The trade-offs associated with IMAGE supported, explicit relationships

0-3 - 08



E:XPc...1C. \T

R..SL..Al 'ON S~, P

~H''''\C.l''

ftE LA"t 'o~~..... P

~ ~o 1tE(06'" t-Jo.

1:,. E M ~~.

DEfT w~.

D-3 - 09



include:

1. Limited design flexibility~ Faithfully representing all of the
organizations' functional relationships may be difficult, if not

impossible.

2. IMAGE overhead. Any software tool designed to be general in srope
and function has to be intelligent to provide that generality.
This translates into overhead and may impact performance (E.G. sorted
ch~;ns).

3. Low knowledge requirements. IMAGE users are not required to have
in-depth structural knowledge. Knowledge is costly.

4. Support utilities. Maintenance of IMAGE data bases is provided by
utilities which act consistently with internal structures.

5. Protection from changes. If IMAGE is modified, the DBMS calls are
modified accordingly.

The trade-offs associated with implicit relationships include:

1. Unlimited flexibility in representing relationships.

2. Performance may be optimized (Or minimized!)

3. All affected users need to know the structure. High level of
knowledge may be required.

4. Structural change to IMAGE may cause unexoected problems.

5. Modifications to and maintenance of user programs tends to be more
complex.

6. User-written utilities may be required.

These, then, are some of the general considerations entailed in the first phase ~

of design: identifying the items and their relationships. The second phase

D-3 - 10



of design investigates the trade-offs associated with optimization for specific
characteristics.

III. Data Base Design for Optimization

Many IMAGE data bases are intended to be central to on-line
applications for which performance, specifically, response time to human
interaction, becomes a primary concern. Since particular iMAGE performance
considerations have been discussed elsewhere, we will not attempt to do more
than relate general performance issues here. By doing so, we do not wish
to minimize the priority of performance as a criterion in data base design.
Indeed, that is not our choice to make. We do, however, wish to emphasize
other areas of optimization, which, if neglected, can be even more damaging
to the success of a data base system.

The pressure of production in the real world obtain, by default if not
consciously, the decision to design a data base in order to optimize
application development time. The benefits derived from such optimization
are, at best, a product to show the end user in a relatively short amount of

~ time. This benefit is almost invariably short term. If design for rapid develop
ment ;s obtained at the cost of other optimizing criteria, it is not long
before catastrophes, constant reprogramming, and general dissatisfaction
ensue. This is not recommended since effective design does not necessarily
preclude quick development. Indeed, the opposite may be a truer consequence.

The relative inexpense of hardware has lessened the demands for optimization
of storage space. It is typically cheaper to buy another disc drive than to
re-design, or require herculean programming efforts in the interests of mass
storage. The disadvantages of optimizing for space usually entail a mini
mization of redundancy. Even though this is a generally recognized goal
of data bases, the realistic anplication gains increased performance due to
more flexible access in the form of, say, redundant search keys in automatic
m~sters. Decreased redunnancy also typically entails larger data entries which
imply grouping of unrelated items and grouping of volatile with static items~

This generally results in larger impacts on application programs if structural
changes are required. One benefit which accrues to smaller data bases ;s

~ by no means negligible, however: the loading and unloading of data bases to
magnetic tape for archival or for recovery ;s a time-consuming task which

D-3 - 11



is directly related to the size and, in the case of structural reloading
(DBLOAD), the organizational complexity of the data base.

Designing a data base with a view towards optimizing performance can be ~tated

as one general rule: Reduce the total amount of work required by the system
to process along the primary paths. For IMAGE/30aa data bases this
translates typically into minimizing I/O's required to process along the
critical paths. Complying with this rule requires, first, that the designer
ident;~y the critical paths. This is accomplished by understanding the flows
of the applications contending for data base and system resources concurrently.
Minimizing I;Q activity becomes, first a matter of deciding who can, in fact
contend. Can an application be batched if it contends with necessary on:line
activity? Setting programming standards may obtain performance gains:
locking strategies and standards; item-list processing; inefficient or
unnecessa ry DBMS ca11 ~ use of internal record numbers for di rected access;
use of implicit relationships. Image or HP300a peculiarities can impact
performance: security settings, synonym chains; sorted paths; multiple paths
into volatile data set dis.c drive ,p·l.ac.ement; primary:patnacontiguity':on djsc~

the number of buffers; the sizes of buffers. The costs of performance
consists primarily in: knowledge level; redundancy of data and, hence ~
increased storage space requirement; complexity of programs; decreased
flexibility in structure resulting in costlier impacts if chanQes are made;
implicit relationships; possible data integrity and update problems due to
redundancy and batching of applications not essential to on-line activity.

An appreciation of flexibility as a data base design criterion is, unfortunately,
almost non-existent. It is unfortunate because the penalties meted out for
failures in this aspect of design are rarely anticipated and often expensive.
While performance of data base systems is a highly visible attribute, an
inflexible data base structure typically displays its weaknesses suddenly and
dramatically. It is usually triggered by an external change in the
environment, perhaps as simple as an account number format (zip codes?)
or as subtly complex as a slight modification to a standard corporate
procedure. The solution may entail a simple organizational unload,
modification of the schema, and reload to accomodate the structural change,
or it_may require many man-days and man-nights of reprogramming, or it may
even force an admission that the change cannot be implemented without a ~
total redesign.

D-3 - 12



A data base is said to be flexible if it is characterized by elastic data
structures and elastic data relationships as opposed to inelastic structures
and relationships. Elasticity is measured in terms of the ability to withstand
change with a minimum of impact.

Redesign for flexiblity, for elasticity, can have significant effects even in
trivial cases. Suppose, as is common, that an IMAGE data set is modified
by adding a new item to the end of the entry. This is perhaps the simplest
of changes to implement. The item is to be used only by a new application so
its effects should be minimized. The data base is unloaded. modified, and
reloaded. That's it! But wait! Suppose twenty or thirty or forty other
programs access that set and, as is likely, for no more reason than programming
ease, each program coded each call to DBPUT and DBGET with an item list
of "@II. Send out for beer and pizza; it will be a late night at the
terminal! chances are fairly good, as well, that one or two bugs will creep
into the system as a result.

Attaining flexibility in data base design is dependent on an understanding of
data bonding and its implications. Bonding of data refers to the relating
of data base components through either explicit or implicit relationships.
Image data base components can be bonded as follows:

1. Items can;ibe bound by grouping into entries.

2. Sets can be bound by paths.

3. Implicit relationships can form virtually any number of bonds,
including those between distinct data bases.

Bonding can be described as tight or loose generally in the order indicated.
The greater the number of items bound into an entry, the higher the probability
that entry will be impacted by external, environmental change. The designer's
first step in incorporating flexibility is minimizing the number of items in
an entry. This choice is generally consistent with the functional definition
of an entry which obtains an abstraction of some particular object of organiza
tional relevance which an occurence of the abstraction describes, such as a
bank account, a product, an oil well, or a transaction. Each item in the
entry typically has a specific relationship to all other items in the entry,
or, more commonly, to a key item in the entry. If an environmental chanQe
impacts the entry, all items in the entry are necessarily impacted na+urally,

0-3 - 13



and programs which process the entry will tend to be impacted naturally by the
change in function. If unrelated items are bound into the same entry, environ-
mental changes will unnecessarily impact these items as well as the programs ~

which process perhaps totally unrelated functions.

Data is by definition inelastic in direct proportion to its redundancy.
Every occurence of the items is impacted by ~elevant environmental change.
If an item is both redundant and grouped with unrelated items, the impact
of change multiplies even more. If a data functionally belongs in more than
one entry, the'designer needs to consider the reasonableness of combining
the entries. Designing for flexibility commands that an item appear in
only one data set and that items which serve to implement logically different
functions should reside in logically different entries. (It should be clear
that while kpy items are a necessary exception to these rules, the
exceptions should be kept to a minimum).

Cor IMAGE this means that, if flexiblity is the design goal, a master/detail
relationship in which the detail contains unrelated data items ought
to be resolved into a master related to two or more d~tails. Stated
differently, each search item in the respective details should be an
abstraction of a different functional object.

In practice these guidelines are not always so straight forward. Suppose,
as in figure 5, a data base is used to maintain cost analyses by product.
A master is related to three details, each containing cost figures for
materials, labor, and transportation, respectively. Since each detail
contains items functionally related to historical costs, a designer might
reasonably combine the cost items into a separate detail set if he knows that
these items are subject to frequent structural change these cost items are
uniform and remain uniform through changes. The cost of doing so is an
additional path and some implicit structures relating the material, labor,
and transportation activity in the new set.

Designing flexibility at the data base level for IMAGE necessarily requires
implicit, non-maintained relationships. The same objectives still apply,
however. Separate data bases are warranted when the items and sets which
comprise them are functionally dissimilar. If subsets of a data base are highly ~

complex in terms of relationships and tightly bound, there is incentive

D-3 - 14



...

(..05 t ~t)-ro..,,,

~A~
fl...

PA~' wo.
oE:S c.

C.os, ... ' s-r~...'I'
~A~

~6..

D-3 - 15



to consider breaking up the subsets into multiple, loosely bound dnta bases
in order to minimize the impact of change.

In general, naturally structured data bases tend to be more flexihle than
data bases structured to easily implement strict user requirements. That is,
natural structures tend to faithfully represent processes abstracted from
the user's environment and changes to the user's environment will tend to follow
naturally, whereas structures created to facilitate particular objectives
will tend to be brittle and of narrow scope. The cnsts for flexibility
are,~not always compatible with performance requirements or desires for
ease of development and the proper balance must always be in the
designer's mind.

IV. Design Review
As in any thoughtful systems work, design and analysis ought to be an

interactive process. In data base design, periodic review with end users,
development personnel, and management is the best method for reaching
the goal of surprise-free implementation.

The reviews ought constantly to reaffirm the design priorities by evaluating
both the reasonableness of the exceptions and, as clearly as can be judged,
the costs in terms of other design criteria. End users should be encouraged
to distinguish what they want from what they need and to understand, again,
the costs associated with sundry features of the system. Analysts and
programmers need to· understand the requirements for standards in implementation
as well as the relative weight of choices to be made during coding and
testing. A detailed analysis may require a measure or count of system
resource usage demanded by contending processes. Man~gement must be
persuaded to consult with DP when considering the adv;seability of changes
which impact the system. After implementation, periodic monitoring of
system usage, performance, and standards enforcement is essential to securing
on-going success.

We hope these remark5 prove useful both in encouraging discussion of these
matters and in prov~ng or disproving their utility in practice. These matters
would be far easier to engage if we lived in a world of perfect information
with which to make informed, intelligent analysis. The fact is that we do not
have anything near to such perfect information and so our task~ are charac
terized by artistry as much as by technical competence. We will always be

D-3 - 16



artists to some evtent, and so we need to appreciate that the success of the
masters depended on skills and knowledge of tools as well as creativity.

0-3 - 17



References

1. Hewlett-Packard Co., Data Base Design Kit for the 9845B, C, 1980
Dart no. 09845-91057.

2. Callinane Corp., IDMS nata Base Dpsign and Definition Guide, 1979.

3. Orland J. Larson, IMAGE Data Base Design and Performance Measurement,
Abstracts and Proceedings of the HPGSUG, 1978.

4. Alfredo Rego, Design and Maintenance C~teria for IMAGE/30aQ. Journal
of the HPGSUG, Vol III, No.4, 1980.

5. Bern; Reiter, Performance Optimization for IMAGE, Abstracts and
Proceedings of the HPGSUG, 1980.

D-3 - 18



VESOF 1" CONSUl.l ANTS
S06 N,PlyMouth Blvd.

Los Angeles, CA 90004
USA

(213) 4l'>S" /4S3

***********************************
* ** ~* Nt' L.X/3 0 00: LI~ FEel' IVE:~ U~;E OF' *
:~ ** MPE: FI1_E_SI:.. T COi'JCE~I"'1 *

* ************************************

By Eugene Volokh, VladiMir Volokh

Presentation to the HPGSUG
1980 International Meeting

Or 1 Q n do, I·: lor ida> USA

This paper will discuss how one can use the concept of IFILlSlTS'
for general applicQtion systeMs developMent; 1t will describe the
way in which i"lPE. suppor"ts file~~c:ts, llnd discuss cer"tain hole~ that
arc pa~ched up by MPEX, a useful utility which greatly e~pQnds this
c(;nc i:lpt.

Tuesday 0-4 - 01



MF' E>~ "::5 () [t 0; F i ], ,~ ':~;. Ii;: teo nc: (~ P t

or h e i'1 P E: (J I~.I '.~ r (1 t Ii. n g ~.., ~J ~:~. t l~ '..··1 ':~> U PP 0 r t fa t h ~~: 1 MP () r t o. n t c () n c: ~~ P t 0 f
·f 1 j t.:: ~:; G. 1: .:~ , t~l! j J. i2 ::~ (: t 1 E:· ,J. )~i t.:.=: (~>.I con l} € n ol ,E; n t wc\ y t 0 cI co=!' S C r' .i. bel"l 0 r €: 1: h II n

(I n ,~ of ,l 1 E. :~ ~l I .:; I .j t J ':~, ton(:. ·i··· .i. 1 '.:.~ r. iOJ n b € i ~~': fer red "t 0 Q 5

i F j: L. E~ , (; j~ t:n..H: I t i::; Lt.: UiJ r ~ .. : 0" b tJ 'i: iJ. n i:i f"h2 ::; iJ c n lJ. ;~. .' {~~. I ~.~. CnJ;'{ I.:: L (;:~d): .: (.1 fl r e fO e r" t 0

lJ n e n t 1 f' ..:.~ ~) to:. .., {)·F ~:. I L. E ~:; ." ".. .i. n T 'h .L :., i n .~ 'j: il n c':..' (111 t h (~: {. J. J '2 ':5 :i. 0 C (1 ... c din
.,: h f: -;.J t 0 i.J P .~; i) U F: C; t: 0 f '.1 C c: (' l.' n.... ...·i F' .~. () r .i ~'..' Q i.J :..: (1. n :.:' IJ ,.) .i {,: P ~:I ~:~ h~ (~ ~';o 'il h .i c: h
i"\ t:.: f.A, n s ) t:l11 'J. h e ·f i ]. '.:.:~ L tho. t ~~ t 1..1. i' °t l.,; .1. t i') ('i f r £1 n d ..::, n d \'! .l t h ~3 F~ C .i j ( t h '1

]. 0 \:J (. :-j {;.f r 0 tol pt..... n d 0. c: C 0 U fi t ~. .

\~ h ':.: n ;J. n 1,1. p ~.' ]. j. c: a ·t .i (j n p r' (. ~~ r I:! i':, i ~5 1,.-.1 (. itt ....~ n > j t U ~; 0 (111 r dot: ;;; n 0 't ':0.' t (J. n d
ij ::. 0 n tEo j J. l' .i ~:' log i t: (1. 11 '/ It i r. to:: ~: cI 't .:) i-••':! n y 0 t h €: t· p ;"' 0 9 i ~ ~.I "'1 ~:: 'I'''' .1. n ~:; h ;:: r"t .l 't

J spar' t 0 f' (.1 S"{~3 'rEjUj 0 ·f· Pf~ (ji:;R j.;;li :~ ... I lA.~i"I'2 r\ .;~ i..t ~., t h t:: s Yt~'l ....:: ....., con c ~ p t ,L~" r.!
v t~.... ~.I 9 lj tJ d ;. j, t t"'! iJ ~~. it:: l:";" (I b .i. .::. iVa ~:: J' \:' t2 t ~1 J. (\'t P 0 (. t rJ n ton ~;: .i E;· t t1 a t 1 t j..~;:.

j. nher en t 1 Y ! J t:j, (" d t 0 r\ 'I (; n j. P lJ :l. ;1 t t:-~ (1 ! I ~~~ n "t .i. f' ~::. :..' y -:;: t (~ {'Ii O~··· Pr· () ~j r' 1'.1 ('/A ~~; • J.. 0 f'

in So .~. ::i n c ~ ." (j. :.: )l (:i U f.,,~tl. ~/ \.Ale 11 k n I) l'.' 0) i: <: ::: tot t: 0 t" f (J. .:~;~) '~~;. t ~:.:: i\'! (i f r~,. 0
Pro 9 r a fvl',! 1 f lJ rOt U "':~ I::' o. ,:: 't" ',' I::' ~"; i'"( i ,., t "1 .:1' ~:·.·I {) r.~ C r q (.-. r···· ; •• ro, "1 I.J " I " t .... , 'r. -:~:

• • -, - ... • - ~ _. I , ., .... _...... '" I . '_. ..... • I ~'. ... ~. . ~ 'I 0...· •• .,.
c e r 't Q J. n 1 y M U c h bet t e r :. ~"i i1 n .;. J. ::. T J ~ i g .;J; ("1 <:: h (j n ~'. (j t.' t h .f:; ':.' (; +J, .t. I.:.: n .011"-:'1 ~::. ~; •

This ·re IJ t ur e, Q 11 0 we don the L 1 ~;'l F.i ~:; "t Dto< 1..;. ('1 n d F~ E~..;.J U:": E. c: () (\1 tV, ill 1d::. i:;~

very handy. f(ut, there are still Many thing';!: to iJ;2 c1.;,~~;:·ltec:' ..... Cf]fi J
list all ~.y sources to the line printer"? Can I fj,nd where in N~v'

SO-prograM systeM I refer to the i teM 'NUM.aEf~-WIDGETS'? J ( I ~
change My COPYLIB or Make SOMe other drQ~tic change to My sy~teM)

con r recoMpile it? Can I copy this systei1 into another group, or
RENAME it ·froM AP@SR(; to ICU@SRC;'? With the curr'ent frlf'E. facilities,
the answe·r to this is unfortunately j\lt).

MPlX

These are the probleMs that confronted us in our application systeM
developMent tasks. We found that after Q substantial QMOunt of
alteration) our systel'l needed a total recoI··.pilationi we f"ound that
when Q new prograMMer arrived, we needed to give hiM a COMplete
lictlng of all the Eources in our sys1€MJ we found that it was
often necessary to find or change all occurences of a string in our
~:~ysteM. We . saw thllt fv1f1E's file~et handling as it is iMpletv'.ented
nOIAI is not tlclt~;quQte find not consistent. MPEX/JOOO reMedies this
un°:-()r·tl}ni.l't~;; j,nad.:!quacy. ,It r.J.llow~ the file~:)et concept to be applied
to ::~(~IJ(~r ill Mr'r,~: C:Of·llj··\(!nds../5lJb~~y·:;~tet't'::~ Thus) you can do Q COBOL COMpile
on 0. foilt=!sJ,~t.; you can do (1 1~E.LI:~(.·iL;t../SEClJRE~ of 1111 entire fileset; you
C il n cI 0 iJ. P '.1 r ~I C~ () f fl n \:~ n t j. r' t~: f.i. ]. €. r:~ e. t J }) () U C IJ. n ...~: Ae c: ute Q nEDI fOR
c: () 1'1; ..... and up v rI Q n \"2 Ii °l ol j'"' e ·r i 1 e s .~" t.~ Y() U c: un f C; 0 P'( ./ I~ J. i'~ {-o, MI:.. IJ n te' 1', t 1 t· €.

f i J. ':;. ~:. e t j ~J G U c: n n 1 i :::. l' a 11 t i". ~~ r- 1. ]. t~~ .~:. 0 r i.l c: tl r '1: I,l iii ·r .i. 1e c: 0 d ..~; ( P f.~~ 'J G; .;
E: 1)'1 C; T .., t2 t c: ,) t h lJ. t ~ A j. ':" "t i nth e f.i.:1. t~ s'~ t .

riP '::.< £ '...i t2 n (")011~) I,...I'~~ ~t G I.J t (j U .~\:.~ t h'2 P 0 ~'.JQ f"' r iJ.1. El:: r ()F ~~L: f~.3; J. I .;;~ .)' y () U C an .~

per' -f' 0 r ,,~ ':1 n (.1 p 8 T' a "l" .i 1J n (j II 5 e v \~~ f' Q 1 of".i 1 € S •.:.~ t S ':I ·i. (1 tiN ..:~ ! ! !

0-4 - 02



I'-,i' E:.;(./::::: () 00 :

F' 0 a'" .i. n ~;; t (! n <.. ~.:: ,'t

f..fP [: :):~ .::: IJ n ,] i" .:) V,;',

the i' (} 11 (} wj. rI .:;J ,OJ' . e :5 0 l It ,:~ () i t h .2 ~~ .i t l.J (J ·i. .L 0 n ~!i. i n :...l! lie h
1: 0 b ':~ 12 n ;2 ~~ ~:~ ~2 n r i. IJ. ]. Pr () \~ I'" ('. 1'1 f~'1 0: i h

; ~~; t () 0 1 .

:~~: I~ J:j u :L j{ ~1 ~. a ;J .. ,p r' Gq t· (1/· ~ :::. YS 'I: t,:.:: 1'1 I.-'.! f) ~•., ~..i (' j. 't t (;' n . I 'I: !Ai i.1 ~:: 't J ! end f.:.~ t \~.. r' FI ai. n .a d
t hat !:,~ CD 1"1 '( L.. :i~:B of .i. J, (~ i". lJ S t t"; (, c: h ;.1 n ~j 'i.:; d / ~1 n .::i 't h iJ ~; i: h f. .:~~ y '::~ t: ..:2 (..If f:) U ::. t b I~·.

r e (: 0 Mp i 1 ):.: \.1 1 0 i~' d .L n (1 r .i :i. Y i ~,J 0 U lo-.' (I tJ :i. d nee d ;", I.J n d 7' t:2 d ::~ 0 .;' t·' F' t:. co ...·', (.; r:J i • c~ .~

to do this. With ~lPE:~X.:. :JOU c·J.n t~JP(, clnc. cOi··,j·"i'J.fid unci pr.:.=.sto! 1:1

j'0 b i s ~~ 1rea"'.edthat wi 11 C 0 flo', Pil e 1.1 n G F!!' I:.~ p n. 11 0; t J1 () ~;~ ~:~ }:.. t· t) (..) i" :;; f"~ i

while you Clln continue productive worl< tl't yo\!;" t\t,:·· .....;j.~ ..I;'J.L I

* It was decided that a c:ertl:.,in data base 1'\\J5t be charl(1ed (e.g.
with Alfredo Reg0 1 s ADAGER/JOOO). It would take about 3 hours to
perforM the actual structural change£} it would take days to
Modify the associated prograMs! With MPEX, you can get Q cOMplete
listing of' your systt~I~; you con find wher'e an altered iteM/set is
referenced} you CQn even autoMatically change the naMe of SOMe
iteM or set in all of your progrQMt} and then, once all the
Modifications are cOMpleted, ·you can qUickly and easily recoMpile
the entire systeM.

* It is often very desirable to get IJ listing 0'(-' the entire systeM
of pr'ograa"v\5. Without MP£X, this task will be very tlMe··..consul~ing
and error~""·prone. With MPEX, ol1e MPEX E:.DIT COf'~MIJnd will create a

11stlng of all those pro.gro.i·\·;.

* It was decided that all the source~ in the systet'l are to be
transferred frOM Q crowded rUB group into the SOURCE group.
Ordinarily, it will 1ake Many hours and Many Mistakes before this
job is finished. With MP~X> one reOPY or RENAME cOMMund will do
thf.~ trick.

* Due ton u1'1 er () U $ S Ys t eMf"1.1i 1 ur e ~J 1 fl. I) n y I::DI '1' (J I~ I< - of' i 1e ~;:. we r e
generated. With MP£X, you can purge all those ~lles in the
entire systeM, in an account, or in Q group} optionally, you can
ensure that you will purge only the flIes you want to by asking
MPEX to perforM the PURGE with YIN verification} i.e. for every
file It will ask you whether you R£ALLY want to purge it.

* The systeM Manager deterMines that disc space is very low beLQUSe
people are building huge, space-wasting data bases. He can do Q

LI~3TF o·f tlll the data·..· bases .in the syst"=::I"~ and see which ones are
necessary and which are not. Conversely, if an installation has
decided to convert to IMAGl frOM KS~M, Q systeM Manager can
insure that nobody is st111 using KSAM files by using MPEX)s
LI ~3TF c o~'I("\(Jnd t 0 fin rJ all the I<SAM file s; in the s y s t eli••

* A set of source files Must be secured against SOMe prograMMers or
Must be released so everyone CAN look at theM. Just run the MPEX

,... RELEASE: or SECURE (:Oioij-lllll,J,

The list can go on and on.

D-4 - 03



MPEX/3000: Fileset Concept

MPE:.X supports (".any dl·rferent COfllf\lands. F·ollowlng are SOMe bY-'ief ~
descriptions: (ALL THESE COMMANDS CAN BE EX~CUTED ONLINE!!!)

COMMAND NAME.

(~(]EtOL

CC)IcOLII

DI:~SCR IP" ION

This cOMMand, siMilar in syntax to the MPE COBOL
cOMMand, will cOMpile and :PREP one fileset (the
source-~~et) into Ilnother (the object·..·1:.t~~t») onl.ine or·
o f ;~ I. i. 11 :~ •

This cOMMand is identical in syntax to the CUBOL
cOMMand except that it uses the COBOLI! cOMpiler.

The 1:.1)1"1' cOt'.,.,.llnd will perforfV}
EDITOR/3000 cOMMand upon Q fileset.

Q spec l·r led

FCOPY

QEDIT

RELEASE

RENAME

I~PG

SECURE

This co,...i1and will copy one ·f·'ileset into Ql10ther" via
FCUPY/3000. This cOMMand also has features that
IJllow it to copy using ~)l.I"'I~SOI~l·/R(Jl:r;'L..LE, IJ pr·oduct
which provides faster file copying than FCOPY.

This cOMMand i~ identical 1n syntax to the COBOL
COMMand except for its use of the FORTRAN c~Mpiler.

MPEX provides an iMproved version of" the : l.lS·fF
cOMMand which allows you to LISTF all the files with
Q certain file code (e •.g. ED1'CT, PI~OG, PI~IV, USL,
etc.) in the specified flleset.

The PURGE COMMand of MPEX lets you purge an entire
set of' files. This operation eeAn be perof9rMed in Q

streaM or ONLINE:.. It i~) suggested that thtr: YIN
verification feature of MPEX (G~E BELOW) be u~ed

with this cOMMand.

This CO~lMQnd will execute any QEDIT/r~OBEL.LE COMfvlt:lnd

on Q specified flleset. QEDI1' is I] ROl:~LLE

Consulting product that is Q fast, €asy-to-use, und
powerful replaceMent for the HP/3000 LDITOR.

This COMMand lets you RELEASE (suspend security
provisions) for a fileset.

RENAME allows you to renaMe Q fileset into another;
this can be useful for renaMing entire groups or
accounts (RENAME @.@.OLD, @.@.NEW).

This cOMMand is like the COUOL and FORTRAN cOMMands,
except that the RPG COMplIer is invoked.

SECURE is the opposite of the RELlASE cOMMand; it
allows you to restore default security provisions to
files that had previously been RELEASld.

0-4 - 04



SPL

I-IEl.P

t#iPEX/3000: t= ileset Concept

The SPL cOMMand is syntQctically and functionally
id\:lntic:ol to th€ CQBOI_) FCJI~TRAN) and RPG CO"')i-iOnds

(except that SPL 15 used).

MPEX -features 'In onlln\=! I'U~LP facility ~;l"'lilt.lr to
that of MPEJ it can be used for getting inforMQtion
on any MPEX COMMands and key fsatureL.

SP or SPOOK All $STOLIST outputs of jobs streQMed by MPEX stay
in the MPE spool€':r, llnd CQn be looked Qt, pr"inted
out, and/or deleted via the spooler (SPOOK.PUB.SYS)

·subsysteM. MPEX allows you to enter the spooler
subsysteM directly using this COMMand.

ED or EDI10R MPEX allows you to enter the EDITOR $ysb~y~teM

dir~.: t I.~.

QE or QEDIT MPI::X allows you to run QEDl"' ,PUB. ROBt.I... L..E directly.

[: ]j-lpe--coMMand E>peclfying 'Joy COMMand other than the ones a!Jove
directs MPEX to execute it as an MPE COMMand} alMost
all MPr;: COMMands (e,g, :r~UN~ :PRE:P, :E~DIT()I~, :BASIC,
etc.) IJre allowed. As Mr'lX uses ~~OMe MI:>[ C()tll~·*Qnd

naMes for its COMMands, SOMe COMMands like PURGE,
LISTF) and others will trigger their MPEX
e q u1 v Q 1en t s • 1" 0 0. V 0 i d (.hvtb 19 u .i t Y) pre Fix t 1·\ \:~ se
COMMands with Q ~:' if you want theM executed as an
MPE C OI·\.··lt\u,1 •

('~DD I "frONAl F I::.('~ TUR E:S [)F· t'iPEX/30 0 0 C;()MMAND~:;.

SOlie other~ things you c:r..\n do with MPE::X c:oMMt.lnds:

Any COMMand prefixed by a 't' is executed ONLINL as opposed to
ot'fllne (in the bacl<ground, the d.~fiJult). J:'" IS N[r"(" SUGGE~3rED

THAT COMr'lLES OF A LARGE NUMBlR OF PROGkAMS BE DUNl ONLINE!

A COMMand prefixed by Q '1> is executed ONLINE with YIN
veri'Plcationi .i.e.) for \~very file selt=.~c.ted thE: nr..l(II\~ of' the flle
is printed) and you are asked to reply YES or NO. If you hit Q

clJY"rilJge return or type IJnythin(.~ oth~~~r than 0. }Y', that f"lle
will NOT b e u ~~ t2 d . '1' h i S~ .i.~:; P r" 11~1 Q f' 11 Y lJ S t="~ f \j 1 wit h the PlJ l~ GE
cot"IMand.

D-4 - 05



MPEX/3000: Flleset Concept

MPlX/30 0 0 AS ('~N ,. OPERA"lING SYS"lL~11 Ot~ ITS (JlA.IN.

With all the above features) plus the capabIlity to run, prep, and
cOMpile prograMs froM MPEX, MP~X can be viewed as Q sel~~contQlned

operating systeMJ it has been found to be possible and beneficial
for' progrQMl"ler's to ) live) in i~I:)EX,. f'unning EDr fO'~~ or QE:DIT when
t h (: Y MUS t (: d 1 t Q pro gr IJ t', , c: 01-1 P11 ~~ ~:) J n g 1e pro ("~ r' 0.,..1 S () r set ~;~ 0 t"
prograMs froM MPEX, go into the spooler to retrieve the res~lts of
t h ~ job s t 7' e Q M S t hat MI ' E. X s t rea 1-\ ~:. 0 f f, etc. M0 reo ver, i ·f you c h 0 0 s e
not to use MPEX in this way, there are special hooks that can be
installed that will allow you to r'un MPEX out o·f f~Dl'''(J~ rt:ltht~~r' than
EDI1'OR out o"f MPEX, thus in l~Dll·[)F~, you can m.ay:

%COBOL AP@SRt;, AP@OBJ", ~:,NULL.

Ilnd the cOMf"~and 'COEt[IL AP@~:;RC> Ar'@OBJ, ~:.·NlJl... L> will b~! execut(~(:' as
i·r you wer'e in ."1:):.::<.

AN EXAMPLE MPEX SESSION:

(all the lines that you type are Marked '«you)}').

«you))

"This is MPE:X/3000 Version i. 0 (~IL~;)(JFT l~on~:~ult(lnts)

For help or in case of probleMs type H£lP

«you}>

[ ? j COBOL sou r c e _. se t , pro g r Ili"'l'-se t , [ 11st·..·se t ] , [ MtJ S t e r ] , [n ew... '~e t ] )
[usl-setl,[prep-tiMe-purMs]

COt1plles COBOL. progrt.1M"3

%F1LE COPYLIB=COPYLIB.SOURCE
A:COr~OL GL@Sr~C, GL@OEcJ, .;<1.1)

:Jt-J'17
See the spooler after 'DON~' MeS~Qge

~

F"F~OM,'J17 USE~r~ • AeC'r/ GL..OO'3SRC COMI'lLE 1::'AILll>!
FROM/J17 USER.ACel/ GL012SRC PREPARE FAILED!
FROM/J17 USlR.ACCT/ CUBOL DONE!

«you»
«~'OU>}

E>P O(JK
SP0 ()J{ If. () () . 0 ,5
> ~~~'IOW

iFILI:~ :ft:J"013
:II: 0:3 If :II:J1 ~l

) "EXT 3·4
> L.IST 100/~:?OO

> E:.XIT

(C) HEWLETT-PACKARD CO'1 1916

I~:' t~ t·~ME S'rAor E I..} t,J i'l :.~ i~

~~STDL.. l~:jl RE('~DY lJ~~EI~ •(~CC"l
« look at spool file 1034 »
« list lines 100/200 »

« the Spooler lists the lines

D-4 - 06

«you»

«yotJ»

<<~, () u >>
«~IOU»

>) ~«you)}



Mj:/EX/3000: F ileset Concept

%ED!T GL@SRC, LIST ALL,OFFLINE « print all files to LP » «you»
iJ19

See the spooler after 'DONE> MeS~Qge

.:~

r: I~ OMIJ'19 USI:.. R, ACe'r / ED 1T D(JNE!

FCO~Y GL@SRC) BU@SRC, NLW « create online backup}) «you»
~.J; ~ t)

See the spooler after >DONE> Message

X::I)(fl}:~ «you»
I'IEXT GL003SI,l; «you»
/« this is the prograM which gave Q cOMpile falled; Modify it })
IKLEP «you»
/ :.:;< ( r
%(.;OBOL GLO 038RC) GLO O~(Jl~J) *I_P <<you)}

1:.1;~ l
See the spooler after 'DONE' Message
.%
FROM/J21 USlR,ACCT/ CUBUL DONE!
RUN GL0030BJ « check it out » «you»

« output froM GL0030BJ »
%?PURGE ·rES1@.JUNI<+TRY(~·,JUNI< «you»
TEST1.JUNK <yIn)? Y « yes, purge (you reply) »
TL.S·rXX.J·UNK (yIn),? N« no, ,'etr.lin (de'flJul-t) »
TRY.JUNK (yin)? Y «yes, purge »
TRY;.:!. JUNI< (yin)? « CON·rROL...··Y pre~:)sed; opertJtion stops })

%~J: II)!.J f (;H·: <<you> )
FR1, DEC 17, 1980, 2:~3 PM
FROM/J20 USER.ACel/ FCOPY DONE!

%LIISTF @.(~.I:~ROD)PRIIJ « typo! »
UNKNOWN COMMAND NAME (CIEI~r~ ')"/';)
%RE.I>O
LI I S r I~" @. (~ • P I~ IJ J) , i):~ .: \)

D
LIS'f r:' @. f~ , P l~ t).O , i):~ (\)

«you)}

«you»

«you»

«you»

ACCOU~ll'= PROl) GROUp:,: ;>1.10

F' I L.ENAME COl>l. .... _ ,. ·_·_··· ..··LOC;]. C(lL I~ [COR 1.) __ ._ -...... ·--···.. ·-Sp (.1 C-; L----
t>IZt: ryp EO I::" LIM! r r·~/'EI SE(;l'C)RS :U:X MX

l·E:~·:.rl

l'E~) f () 1
TE~:;'r02

PI, I'·)
PI~IV

P r~ 1\,.'

21 ~!~.' F'I:~

J33W FB
767W F: Ie

S
;~911 i
35957

S
29111
35957

i
1
:l.

111
5053 :1. 1
7671 1 :1.

%T~LLOP PLEASE PURGE DAfA BASE f£ST,PUB.PROD - DISC WAST£R.«you»
~~EXIT

END OF PROGRAi'v1

0-4 - 07



TECHNICAL ASPECTS OF LARGE GEOGRAPHIC DATABASES ON THE HP3000

By Kenneth Berkun, Penny Evers, Thomas Juhasz

SCS Engineers

ABSTRACT

This paper will present and discuss a number of technical aspects relating to
large (on the order of 150 Megabytes) geographic databases on the HP3000.
Topics to be covered include design considerations, problems that were en
countered and overcome, the use of HP2648 graphics terminals and HP2721
plotters for producing and editing maps, large IMAGE and KSAM file techniques, >~

and the traversal of tree structures using recursive procedures.

SCS Engineers has designed and implemented a hydrologic database covering
the continental United States. The database contains information on surface
water -- rivers, streams, and lakes -- including locational information,
segment names and numbers, and information on industrial dischargers located
on the river segments. In addition, a KSAM file has been created which
contains the complete digitized data for the hydrologic system. This data
is used for producing computerized maps. These maps are first displayed
on interactive CRTls and edited for optimal appearance, then plotted on
a 4 color pen plotter.

During the design and implementation of this system numerous considerations
had to be kept in mind, and many problems were encountered. Some of these
were due to the large amount of data, and others were caused by the problems
with maintaining accuracy while mapping. Several interactive and batch
tools were developed to aid this project.

This database and associated programs are of interest to state, local, and
federal agencies for managing water quality. The special techniques developed
to work with the HP3000 are of interest to a wide range of programmers and
designers.

Tuesday D-5 - 01



T;t-0_R_O_N_T_O_:_(4_1_6)_6_7_8_-1_8_4_1_info-boutique MONTREAL: (514) 337-5007

EXPERTS EN ORDINATEURS - COMPUTER SPECIALISTS

The Obsolessence of Programming - GENASYS/3000.

by: I an Farqu12arson

President - Info-Boutique Ltd.

Tuesday 0-6 - 01



EXPERTS EN ORDINATEURS - COMPUTER SPECIALISTS

Part 1. The Obsolessence of Programming.

T".O_R_O_N_T_O_:{_4_16_}_6_78_._18_4_1__i'nfo·boutique__M_O_N_T_R_EA_L_:_(5_1_4)_3_3_7._5_00.......7

~

In order to conlmence this discussion, we first address two questions

viz:

i) IS IT POSSIBLE? that we can live without programming.

ii) WHAT IS PROGRAMMING?

i) Firstly, we must say that if one does not think it is possible for

programming to become obsolete AND one is not prepared to listen to

persuasion then •••••••• HALT.

Otherwise, let us continue ••••••

ii) After some research into defining "programming", I have come to

the conclusion that the world outside of data processing is pitifully

ignorant still of basics. For example, in one noted dictionary the

following definition is given.

PROGRAMMING: DATA FOR A COMPUTER.

0-6 - 02

~-----------6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1RS -'J



T~O_R_O_N_T_O_:(_41_6_)_67_8_-1_8_4_1__info-boutique MONTREAL: (514) 337-5007

EXPERTS EN ORDINATEURS • COMPUTER SPECIALISTS

As a result, I have attempted to define programming, in a way in which

we !::an relate.

Is it informing the computer a) WHAT you want it to do.

b) HOW to do what you want.

c) Both of the above.

I believe it is c). ie. PROGRAMMING IS INFORMING THE COMPUTER BOTH

WHAT YOU WANT IT TO DO AND HOW TO DO IT, IN A WAY IN WHICH IT CAN

UNDERSTAND.

This is acheived through the use of various 'languages' which, as we

know, ultimately translates down varying levels to the binary notation

of the computer (COBOL, FORTRAN, RPG etc).

Within cOlnputer programs we find both t11e WHAT and HOW of our

definition above.

The WHAT invariably becomes actions such as PUT, GET, DISPLAY, PRINT,

UPDATE etc. The HOW is the logic tl1at pulls together these actions and

other programs to acheive the desired results. IF-THEN-ELSE-(GO TO?)

etc.

Most of us concerned with this discussion will at one time or another,

0- 6 - 03



'spaghetti with meatballs';

EXPERTS EN ORDINATEURS - COMPUTER SPECIALISTS

which resembleprogramsinheritedhave

T~O_R_O_N_T_O_:(_4_16_)_~_8_-_18_4_1__i~f~.~~uti~u~__M_O_N_T_R_~_L_:_~_1_~_3_3_~_5_00~7
~

programs where the actions (meatballs) are interconnected by logic so

messy (spaghetti) that understanding it is 90% of the work and

modifying it only 10%.

I would also like you to give thought to the following, related,

questions:

a) where is most prograruming tiIlle spent?

b) ~vhere are the worst "bugs" found?

c) which "bugs" create the worst problems?

answer any of the following •••••••

Answer 1). Incorrect or invalid actions.

Answer 2). Syntax errors.

Answe.r 3). Logic flaws.

My answer is 3).

With both invalid actions and syntax errors, the results are usually

obvious and fast to resolve especially with an on-line system. In fact

with sylltax errors, the solution is often just to re-colupile.

D-6 - 04

""--------6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1R8---------'



EXPERTS EN ORDINATEURS • COMPUTER SPECIALISTS

T".O_R_O_N_TO_:_(4_1_6_)_67_B_-1_B_4_1__info·boutique MONTREAL: (514) 337-5007

~
With flaws in the programs logic, the symptom is often intermittent.

With spaghetti programs ( & many are!) the time invol ved is

significant.

Also true of logic flaws, is that the larger the program, the more

difficult it is to fix, and the fact that the logic involved is that

of another person and each person thinks in a different way!

We must conclude from the above points that the current status is not

very acceptable and we should look for alternatives.

0-6 - 05

"'- 6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1R8---------'



T..".O_R_O_N_T_O_:(_41_6_)_67_8_-1_8_4_1__info·boutique__M_O_N_TR_E_A_L_:(_5_14_)_3_37_-_50_0~7
EXPERTS EN ORDINATEURS - COMPUTER SPECIALISTS

Alternatives.

1) back to the quill pen.

2) there is no solution and we must live with it.

3) structured programming.

4) program generators.

5) application generators.

6) robotics.

For myself, I believe that ultimately we will see the day when we can

talk to robots and tell them what we want. However, I do not beleive

that the technology is yet ready although it is progressing rapidly. I

therefore select 5) - application generators, as my solution and goal.

Before discussing my reasoning, however, let me first comment on the

other alternatives:

1) & 2). I expect no supporters of these alternatives.

3). Structured progralnming. If one must program computers, then let

them be structured. Unfortunately, too many of us are of an 'old

school' where we have left behind us years of programming to become

D-6 - 06 J
"'-- 6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1R8----------'-



T~O_R_O_N_T_O_:_(4_1_6)_6_7_B-_1_B_41__info·boutique MONTREAL: (514) 337~5007
EXPERTS EN ORDINATEURS • COMPUTER SPECIALISTS

Senior Analysts, DP Managers or Consultants and as a result have

carried forward too many bad habits. We think we understand structured

programming but many of us would have problems knowing where to start.

Fortunately, the Universities and Colleges are now producing people

who do not know any other way to program other than structured.

Structured programming definitely REDUCES logic problems but does not

eliminate them. It is still susceptible to costly conversions with new

machines and languages.

4). Program generators. examples are SL1, GENASYS Inc. NB. this

product is not to be confused with Info-Boutiques product called

GENASYS/3000 which is an application generator.

These products allow us to tell the computer WHAT we want with out.

detailing the logic. The computer reacts by producing COBOL programs

for you which are nicely structured and commented.

Magic you say; wonderful! OR IS IT.

The advantages are obvious, of course, but let us analyse the

disadvantages:-

a) COST•••••• typically $100,000 to $200,000!

0-6 - 07

l....... 6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1R8 ..",



T~O_R_O_N_T_O_:(_41_6_)_67_8_-1_8_4_1__info~boutique MONTREAL: (514) 337-5007

EXPERTS EN ORDINATEURS • COMPUTER SPECIALISTS

b) COBOL..... is usually tIle resul t. You may hate COBOL.

COBOL standards are becoming less and less

compatible with previous versions, and it is

too inflexible for fine actions like string handling.

c) EFFICIENCY COBOL is not necessarily the most efficient language.

d) DATABASE •• there are no database standards in COBOL.

e) PEOPLE•••• you still need people trained to program.

"'- 6303 AIRPORT ROAD, SUITE ::: ~I::ISSAUGA'ONTARIO L4V 1R8 '-'J



EXPERTS EN ORDINATEURS - COMPUTER SPECIALISTS

T~O_R_O_N_TO_:_(4_1_6_) _67_8_-1_8_4_1__info·boutique MONTREAL: (514) 337-5007

J
Application Generators.

Examples of this are our own GENASYS/3000 (Generator of Application

Systems) and APL.

APL is mentionned because it is an attempt to develop systems by

entering specifications and avoiding detailed logic, although most

people think of it as a programming language. Its biggest disadvantage

is that it uses special symbols which bear no resemblance to English.

The CONCEPT is: Tell the computer WHAT you want, NOT HOW to do it.

In other words, avoid time-wasting with logic.

In as simple a form as possible, we should be able to enter

specifications into the computer relating to any new application that

we wish to build (eg. with an on-line EDITOR). END OF STORY.

The computer should then be able to interprate these specifications

and do what we require without any further action on our part.

It is possible and if we look at the following broad spectrum of

0-6 - 09

~-------6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1R8-----__-"



EXPERTS EN ORDINATEURS • COMPUTER SPECIALISTS

T~O_R_O_N_T_O_:(_4_16_}_6_78_-_18_4_1__info-boutique__M_O_N_T_R_EA_L_:_{5_1_4)_3_3_7-_5_00.......7

)
~

programming areas we can assess each individually:

***************
* COMPUTER
* DATABASE

*
************** Documentation

***************
* *
* *
* *
* *

Terminal Batch
oriented reports

""Speech
oriented

The computer can do all of the above without having to write programs.

(except for speech, which is in the near future)

I believe in letting the computer do the work.

It is the last necessary step before we enter the age of robotics. If

we can not just tell the computer WHAT we want, how can we tell a

robot?

0-6 - 10

"--------6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1R8-- ---'



EXPERTS EN ORDINATEURS • COMPUTER SPECIALISTS

T"..O_R_O_N_T_O_:(_4_16_)_6_7_8-_1_84_1__info-boutique MONTREAL: (514) 337-5007

J
PART 2. GENASYS/300D

GENASYS/30DO is an applicat~on generator which was designed and

produced by Info-Boutique Ltd.

Of the three main program categories listed earlier, it currently

satisfies the terminal oriented functions (and would be easily

adaptable to speech) and the documentation. A report-writer is planned

soon, however it will intereact easily with QUERY, QUIZ etc. It is a

database oriented product (ie IMAGE/30aD) although much can also be

accomplished with KSAM/30000.

At this point it would be useful to reiterate point 5) from PART 1.

Tell the computer WHAT you want. ie enter your specifications with an

on-line EDITOR.

Thats exactly what we do. Referred to as a SPECIFICATIONS file (SPECS

file) we use the standard HP EDITOR and enter our system

specifications in a relatively free-format but using key-words.

NB. We can have any number of SPECS files. eg. 1 containing all

0-6 - 11

~------- 6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1R8 --'



EXPERTS EN ORDINATEURS • COMPUTER SPECIALISTS

T".O_R_O_N_T_O_:{_41_6_}_67_8_-1_8_4_1__info·b0 utique__M_O_N_T_R_EA_L_:_{5_1_4}_3_3_7-_5_00-....7

.~
applications or many containg different applications.

The concept is really the same as QUERY but the idea is carried much

farther. eg .• we can create an XEQ file to produce a report with just a

few lines. The traditional approach would have been to write a program

which would have been a few pages of code. We would have depended on

each programmer to use correct logic for such repetetive functions as

numbering pages, printing the date, totalling etc.

GENASYS QUERY

·...... ·......
·...... ·......
·...... SPECS ·...... XEQ

·...... file ·...... file

·...... ·......
·...... ·......

:FILE MENU=specsfilename

:RUN GENASYS.GS.INFOSYS

order entry,

accounts receivable,

file maintenance,

:RUN QUERY.PUB.SYS

>XEQ filename

outstanding orders report.

0-6 - 12
"""""'-- 6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1R8--------



EXPERTS EN ORDINATEURS - COMPUTER SPECIALISTS

T~O_R_O_N_TO_:_(4_1_6_)_67_8_-1_8_4_1 __info-boutique MONTREAL: (514)337-5007

~
accounts payable,

inventory control,

etc, etc.

NB there are no programs to be written in either of the above.

I am sure that most people will agree that QUERY is extremely limited

but for some strange reason HP have never improved it. I believe that

the concept is right and the proof is the wealth of comparable

products on the marketplace. eg ASK, WIZARD, QUIZ, REX, etc. All of

these products use a similar concept to QUERY but succeed in all areas

where QUERY does not. (mainly multiple data-sets.)

There are some points that must be clarified now with respect to

GENASYS/3000:

1) It should NOT be confused with V/3000.

V/3000 maintains forms. You still have to write programs.

0-6 - 13

"'- 6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1R8-- -'



EXPERTS EN ORDINATEURS- COMPUTER SPECIALISTS

T~O_R_O_N_TO_:{_41_6_}_67_8_-1_8_4_1__info-boutique__M_O_N_T_RE_A_L_:_(5_14_}_3_37_-_50_0--.,7

~
2) It should NOT be confused with data-entry programs.

GENASYS/3000 can enter data but it has two way communication with your

database. It does most of the functions that your programs would have

done.

3) You do NOT need either block mode or even HP CRT's.

4) Yes there must be some limitations but very few.

See the following list of features.

Main features:

1) Consistent & compatible with IMAGE, KSAJI etc.

2) Terminal independant.

3) Multilingual.

4) Powerful in-built help feature.

5) Ability to branch out to standard subroutines.

6) Ability to run other programs (interface with packages).

7) User control over batch STREAMS.

8) l~ultiple data-sets per prograln function.

9) Multiple screen forms per program function.

D-6 - 14

""--------6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1R8-------..,



EXPERTS EN ORDINATEURS - COMPUTER SPECIALISTS

T,..O_R_O_N_TO_:_{4_1_6_}_67_8_-1_8_4_1__info-boutique MONTREAL: (514) 337-5007

~
10)multiple screen forms per data-set.

11)Verification option (double-entry) for keypunch.

12)Self-test, self-demo options.

13)STACKED input.

14)MENU control.

15)MENU-Ievel security.

16)SCREEN level security.

17)FIELD level security.

18)Subroutine library included.

After assessing the above features the obvious question that will be

raised is WHAT ABOUT EFFICIENCY?

The fact that the HP3000 automatically makes programs re-entrant~

means that GENASYS/3000 automatically becomes re-entrant. eg. if all

your applications were done with GENASYS only, and let us say for

example you had 50 terminals running 30 different program functions,

there would still be only 1 copy of 1 program in memory - GENASYS!

Bearing this in mind, it is important that GENASYS itself is not

cumbersome. FACTS. •• if GENASYS is cornpletely locked in memory the

total requirements are 35k bytes plus user data-segments.

Alternativley, if it is not to be locked in memory then segments of

D-6 - 15

~------- 6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1R8 -'



EXPERTS EN ORDINATEURS - COMPUTER SPECIALISTS

T~O_R_O_N_T_O_:(_4_16_)_6_78_-_18_4_1__info·boutique__M_O_N_T_R_EA_L_:_(S_1_4)_3_3_7_.S_00--...,7

~
function code are swapped in as required. The largest segment is 4.k

bytes!

GENASYS/3000 is written in SPL.

0-6 - 16

~ 6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1R8--------'''



EXPERTS EN ORDINATEURS • COMPUTER SPECIALISTS

T".O_R_O_N_TO_:_{4_1_6_}_67_8_-1_8_4_1__info-boutique MONTREAL: (514) 337-5007

J
Documentation

Documentation warrants a special section in its own right.

If all your system specifications are in the computer and field

statistics are in the IMAGE root file AND the MODUS OPERANDI is

consistent, THEN it is feasible that the computer can write your

complete system documentation for you!

We have acheived this with an optional GENASYS product called the

DOCUMENTOR.

You don't have to write a word. It will present you with sizeable well

written, consistent documentation in a matter of minutes which is••••

1) Word processed.

2) Table of Contents.

3) Standard Operating procedures.

4) All MENU's used.

5) All SCREEN layouts used.

6) All FIELD specifications.

7) All EDITING rules used.

8) Explanation on operating each function.

0-6 - 17

"---------6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1R8-- ---'



EXPERTS EN ORDINATEURS - COMPUTER SPECIALISTS

T,.O_R_O_N_TO_:_{4_1_6}_6_78_._18_4_1__info·boutique__M_O_NT_R_E_A_L:_{5_1_4_}3_3_7._5_00.......7

~
9) Il.fAGE schema and SPEC's file.

10) Complete cross-index of words.

0-6 - 18

"'- 6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1RS---------'



EXPERTS EN ORDINATEURS • COMPUTER SPECIALISTS

T".O_R_O_N_TO_:_{4_1_6_}_67_8_-1_8_4_1__info-boutique MONTREAL: (514) 337-5007

~
The Bottom Line

Where does this discussion lead us finally?

I think that perhaps a look at one companies experience with an

application generator such as GENASYS is worthy of consideration.

According to the M.I.S. Manager of B.A.S.F. (Canada), Hank Van Leuwen,

the following was true:

B.A.S.F. installed an HP3000 series III in 1979. The mandate given to

DP was an overwhelming amount of new on-line systems and requests

which were growing faster than results could be obtained.

The initial action taken was to hire people and contract much of the

work to outside individuals/companies.

The standard approach was used ie. COBOL with V/3000 and either KSAM

or IMAGE., until the discovery of the GENASYS prototype. After

purchase of GENASYS and a report-writer from Info-Boutique, B.A.S.F.

progressed at an outstanding rate and they concluded the following

after a detailed analysis:-

0-6 - 19

""--------6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1R8 ---"



EXPERTS EN ORDINATEURS • COMPUTER SPECIALISTS

T~O_R_O_N_TO_:{_41_6_}_67_8_-1_8_4_1__info·boutique__M_O_N_T_R_EA_L_:_{5_1_4}_3_3_7-_5_00.........7

~
* 2,500% improvement in development over COBOL & Vj3000 (ie 25 times

faster)

* greater mlc efficiency (purchase of extra memory was delayed after

seeing GENASYS performance).

* immediate cost savings by not contracting out.

* high moral of users, getting action fast from DP.

* high moral of prograrnmers, can now concentrate on interesting

problems and progress to systems design.

* less cost in terminals by switching to HP2621 in many areas.

* documentation & systems standardized and always up to date.

* luxury features available to users at no cost eg HELP (?)

* their projects, which were estimated to take 14 man-years with COBOL

& Vj3000, took just 4 man-years with applications generation.

0-6 - 20

"'--------6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1R8-- --'



T"..O_R_O_N_TO_:{_41_6_}_67_8_-1_8_4_1__info·boutique MONTREAL: (514) 337-5007

EXPERTS EN ORDINATEURS - COMPUTER SPECIALISTS

CONCLUSION.

The obsolessence of computer programming is not a dream about the

future. Neither is it a complex system of COBOL program generation,

only available for hundreds of thousands of dollars on IBM 370'5.

It is a reality, here and now, on your own HP3000 computer.

It's biggest enemy is the closed mind.

0-6 - 21

-------.iiillliiop--- 6303 AIRPORT ROAD, SUITE 300, MISSISSAUGA, ONTARIO L4V 1RS _



DATA CAPTURE ON THE HP 3000

by: Jutta Kernke
Product Manager
Hewlett-Packard Company
Information Systems Div.
19420 Homestead Road
Cupertino, CA 95014

HP 3075A DESKTOP
TERMINAL AND
HP 3076A WALL

MOUNTED TERMINAL

Data Capture on the HP 3000 is performed through VPLUS/3000

which was designed to address the marketplaces from dedicated source

data entry to data entry, data manipulation and terminal management of

a genera1 purpose computi ng ·system. The support of the HP 3075/6

data collection devices extends the capabilities to the end-user without

terminal experience. NO new product needed, NO other rules to learn,

NO additional training--just ONE VPLUS/3000 to manage it all, CRTls

and Data Capture terminals. Data Capture design and data collection

is a natural extension of V/3000!

VPLUS/3000 simplifies the design of terminal applications since

it provides a single, friendly, consistent method for specifying

data entry and validation. VPLUS/3000 manages the interface between

a user program, CRT terminals and the specialized data collection devices,

a forms file (where applicable), the entered data, and, for data entry,

the batch file to which entered data is written. The high-level

procedures take care of reading data from the terminal or data collection

device, transferring data to it, and provide a convenient method of

handling errors that might occur. No programming is needed using the

ENTRY utility for a quick and simple application.

Tuesda.y E- 1 - 01



MEMORY

r WINDOW I
~

C- .......",.,..

""
~

~~,
-

form Image FORMS1\ FILE,~' '--~ENTER

FORM DE FINITION

fIeld

~ enhancement. ERROR FLAGS I

\
-

~ ~
~ """""--
r--......- ~

USER
PROGRAM

BATCH ---- DATA
FILE DATA BUFFER r

~ ",. --
'-- ~ /

FEATURES for Data Capture

• Management and Support of HP 3075/6 Data Capture terminals

• Menu-driven, conversational dialogue to design terminal

screens and specify multiple input/output devices and up to

17 prompting light sequences

• Comprehensive editing without programming

• Operator-terminal interaction

• No programming for simple application and source data collection

• High-level procedures call.able from COBOL, COBOL II, FORTRAN, RPG,

BASIC and SPL 'programs

• ~onvenient and customized error message handling

• Support of three 'connection alternatives, including Factory Data Link

E-l - 02



USER BENEFITS

Design Flexibility:

VPLUS/3000 offers great flexibility through the easy use of

FORMSPEC to configure HP 3075/6 Data Capture devices or design forms

for the 5 inch 0ptional CRT. The designer can, for example, specify

from a single menu which light is to be lit when an error is detected,

specify the device configuration for Multi-function and Bar Code

readers, or specify how a message longer than 24 characters is to be

presented on a single-line display. The configuration command can

be used to determine the input/output devices and prompting lights

for use on the HP 3075/6 terminals.

For example, if the user selects the HP 3075/6 terminals on the

Terminal Selection menu, the Device Specification menu will follow.

On this menu, the user can specify how a message longer than 24 characters

should be presented on a single-line display, or specify which light

is to be lit if an error is detected.

E- 1 - 03



~.

The Field menu is used with the configuration commands to specify

input devices and the use of prompting lights. A simple example is

as follows:

CON FIG

DEVICE printer,keyboard, display,barcode

(this will enable the input media device)

- or -

CONFIG

LIGHT A,B,D,G,N,P

(this specifies which light will be lit during

field presentations.)

Data Verfication

High-level procedures can be used from a user-written program

to verify data immediately against information in an IMAGE data base,

KSAM or MPE files.

User Applications Can Be Customized

Applications may be customized for the terminal features available.

The HP 3075/6 devices support a numeric or alpha-numeric keyboard,

numeric or alpha-numeric display, a compact 5-inch, high resolution

CRT, function keys, punched card and badge readers, magnetic stripe

reader, and a bar-code reader. FOID4SPEC makes it easy to specify

the addressing of any of the terminal options at anyone time.

E-l - 04



HP Data Capture Communications

The HP 3075A and 3076A Data Capture terminals possess identical

data communications capabilities. A choice is available in each

terminal from three data communications modes:

- point-to-point

- multi-terminal daisy-chained

- factory data link

The Factory Data Link is a data communications link used to interface

a computer and a large number of terminals. It is ideally suited for

applications involving the collection of data from a large number of

widely separated sources in the same building.

E-l - 05



ROBELLE CONSULTING LTD.
#130-5421 10th Avenue
Delta, B.C. V4M 3T9

CANADA
(604) 943-8021

Telex 04-352848

Experiences With Pascal

Technical Report, February 1981, By

DAVID J. GREER

Robelle Consulting Ltd.

Summary

This paper reviews the history and possible future of the
Pascal programming language on the HP 3000 computer system. It
reviews some of the currently available compilers, and discusses
the features that are likely to be included in an HP-supported
Pascal compiler. The presentation will cover practical problems
encountered while using Pascal, including problems that arise in
transporting Pascal programs from other machines to the HP 3000.

Contents

1. Introduction

2. Pascal-V

3. Proposed HP Pascal

4. Pascal in Applications

5. Performance of Pascal Programs

6. Appendix I - Making Pascal Portable - Three Examples

7. Appendix II - Implementation Notes on Pascal-V

8. Appendix III - Sample Data From the Sequential Read Test

9. Bibliography

Tuesday E-3 - 01



Experiences With Pascal

Introduction

This paper concentrates on one person's experience using and
implementing the Pascal language on the HP 3000. The information
presented was accumulated during approximately two years of work
with Pascal on the HP 3000 and on an AMDAHL/V6 at the University
of British Columbia. The major points covered by this paper
are: 1) a brief history of Pascal, including implementation on
the HP 3000; 2) the state of the contributed Pascal compilers; 3)
an approximation of what the HP-supported Pascal may look like; 4)
a look at Pascal in applications; what to avoid and what to be
prepared for; and, 5) a preliminary evaluation of Pascal's
performance.

History

Pascal was developed by Niklaus Wirth in Zurich. The
principal aims of Pascal were to provide: 1) a language in which
structured concepts could be taught easily; and, 2) a language
that would be relatively easy to implement on many machines
[18,15,1].

These original aims have direct application to business and
scientific programming. The language provides constructs which
emphasize structured coding concepts. Programs written in Pascal
tend to be structured, which in turn makes them easier to maintain
and understand. Because Standard Pascal has been implemented on
many different machines, including the HP 3000, it is a good
vehicle for writing portable software.

Another reason for the current interest in Pascal is that
many secondary institutions, universities and colleges are now
using Pascal as their principal programming language. As this
trend continues, there will be increasingly more incentiv~ to
write software in Pascal, since the new work force will already be
trained in the language.

Portable Pascal-P4

In order to make Pascal available on many machines, Urs
Ammann, K. Nori, Ch. Jacobi, K. Jensen and H. Nageli wrote the
portable Pascal-P4 compiler, which is itself written in Pascal
[15]. Approximately 80% of the Pascal compilers in the world are
based on this compiler.

The P4 compiler takes Pascal source code and compiles it into
symbolic code for a hypothetical stack machine called a
"P-machine". The individual implementer of Pascal writes an
assembler or interpreter for the "pcode". Later, the source
program of the original compiler is changed to generate the host
machine's object code directly. The following is a schematic
description of how pcode works.

E-3 - 02



Experiences With Pascal

Pascal -----> PCODE -----> Object
Source : : Code

I I
I I

Compiler Assembler or
Interpreter

HP 3000 Pascal-P4

In the HP 3000 contributed library, there is a version of
Pascal developed by Grant Munsey, Jeff Eastman and Bob Fraley.
This compiler is a modified version of the Pascal-P4 compiler; it
fixes several bugs in the original P4 compiler, and provides
extensions to Standard Pascal. Some of the important extensions
are: built-in procedures to do direct access to MPE files, an
"otherwise" label in the case statement

i
, calls to Pascal

procedures which were compiled externally, and calls to procedures
written in other languages.

The process of compiling Pascal programs on the HP 3000 is
slightly different from the one described above. Instead of
assembling pcode into object code, the assembler of the
contributed version assembles pcode into SPL, which is then
compiled into USL files.

Pascal -----> PCODE -----> SPL -----> USL
Source : : :

I I I
I I I

Compiler Assembler SPL
Compiler

While much of the work of implementing Pascal was simplified
because of the P4 compiler, the early work done to transport
Pascal to the HP 3000 was still difficult. Each of the P4 "pcode"
instructions had to be translated into one or more SPL
instructions. Also, the basic Pascal-P4 compiler only allowed for
character constants of ten characters or less a severe
restriction [5J. See Appendix II for more details.

E-3 - 03



Experiences With Pascal

Pascal-V

History

Pascal-V is another version of Pascal for the HP 3000,
developed in Vancouver as a project in compiler design at the
University of British Columbia. This compiler is a modified
version of the one that is available in the contributed library
[3,4,5].

Major Problems

Two of the problems in using the contributed library's Pascal
are: it is somewhat difficult to specify all of the command
sequences for invoking the compiler (although this has been fixed
with UDCs), and, the compiler is very slow. Both of these
problems stem from the long process required to get from Pascal
source code to USL files.

Pascal-V does away with the assembly stage of the compilation
process. Instead, Pascal source code is translated directly into
SPL code. The Pascal compiler then invokes the SPL compiler to
produce the USL file.

Pascal -----> SPL -----> USL
Source; ;

I I
I I

Compiler SPL
Compiler

By eliminating the pcode stage of the process, a 20-40%
savings in elapsed compilation time was realized. Also, by having
all of the compilation stage in the compiler, it was easier to use
the compiler. The SPL stage of the compilation process was not
eliminated, because it was too difficult to work with USL files
directly.

Minor Problems

The original contributed compiler did not print error
messages. The compiler now prints a summary of all of the error
numbers which occurred during compilation, along with their
associated error messages. In addition, a compiler option has
been provided which causes all Pascal reserved words to be
underlined. This greatly enhances the readability of Pascal
programs.

Athena Compatibility

With the Athena MIT release of MPE (2011), all Pascal
programs on the HP 3000 ceased to work, including all of the
contributed versions of Pascal. The cause of this was that, as of
the Athena release of MPE, Qinitial (the initial setting of the
Q-register in the program's data stack) was two words higher in
the stack. Since Pascal made certain assumptions about where ~

Qinitial would be in the stack, Pascal programs stopped working.

E-3 - 04



Experiences With Pascal

Pascal-V fixes this bug by making no assumption about where
Qinitial should be.

~ Standard Pascal

There is a world-wide effort to provide a comprehensive
standard for Pascal. Any compiler which claims to compile
Standard Pascal must compile all parts of the defined standard
correctly. In order to help implementers and users of Pascal find
out whether their particular compiler meets the standard, A. Sale
and R. Freak have written a suite of Pascal programs to test
Pascal compilers.

The suite consists of approximately 300 Pascal programs.
Each program is compiled and executed by the Pascal compiler. The
results of each program are analyzed for errors. If a compiler
meets Standard Pascal completely, there will be no errors from any
program in the suite.

Pascal 2.4-V was tested using this suite. It had as many
errors as other compilers based on the original P4 compiler (that
is, the compiler was average). Several of these errors were fixed
in Pascal 2.5-V and later versions.

Usage

The Vancouver version of Pascal is currently used in about
forty installations around the world. Many installations are also
using Pascal-S (see Appendix I) for teaching Pascal. Two
installations are using Pascal to convert software from other
machines to the HP 3000.

Availability

Because we need a Pascal compiler now to develop programs at
Robelle Consulting, I have been and will be maintaining this
Pascal compiler. It is not a supported Robelle product; but, for
$200 U.S. (to defray costs), we will send a magnetic tape copy of
the latest version to interested users ($100 if you send payment
with your order and do not ask for 800 BPI). As of January 1981,
the latest release was Version 2.8-V. A bug was fixed that did
not allow compiles while logged on as MANAGER.SYS. Enhancements
were made in error messages on file opens, in the use of Control-Y
and in the run-time support (so that all Pascal programs can read
QEDIT-format files). Inquiries can be directed to me at Robelle
Consulting Ltd., #130-5421 10th Ave., Delta, B.C., V4M 3T9,
Canada. Phone: (604) 943-8021. Telex: 04-352848.

Future Enhancements

Three major problems (as well as many minor ones) remain to
be fixed in the compiler, if it is to be used in a commercial
environment. The first is that character strings are stored as
one character per word, rather than one character per byte. This
needs to be fixed, so that variables will use less memory space,
and so that Pascal programs can communicate directly with HP

E-3 - 05



Experiences With Pascal

sUbsystems such as IMAGE.

The second problem has to do with Pascal's definition of ~

parameters to procedures and SPL's definition of parameters to
procedures. SPL is known as a programming language with weak type
checking. This gives the programmer more flexibility, but
provides more opportunity for m~king mistakes. It also allows
IMAGE parameters to be defined very loosely. For example, a d~ta

set can be defined by a character~string oontaining the name of
the data set, or by an integer variable with the set number.
Since Pascal does not allqw such flexibility in parameter pee,ina,
some mechanism must be established to allow procedure oall, to
subsyst~ms such as IMAGE.

The third problem is that Pascal intecers are implemented as
single~word integers. Many subsystems SUQh as IMAGE requir. that
double~word integers be passed as parameters. At the same time,
there must be a way of declaring single~word integers, since other
subsystems require both single~ qnd doubl~~word integers to be
passed as procedure parameters.



Experiences With Pascal

Proposed HP Pascal

Recently, there have been several rumors that HP would
provide a supported Pascal compiler for the HP 3000 some time in
the future. The following is an educated guess as to what this
compiler may look like when, and if, it arrives.

The HP compiler is to be based on an internal HP standard for
Pascal. The HP 1000 Pascal compiler, which was recently
introduced, is also supposed to follow the internal HP Pascal
standard. Any comments I make about Pascal for the HP 3000 are
based on how things are done on the HP 1000 [9].

If Pascal/3000 looks very similar to Pascal/1000, we can look
forward to an excellent implementation of the language.
Pascal/1000 provides features which take advantage of the HP 1000
operating system, yet still retain the "spwirit" of Pascal. Of
special importance is the inclusion of a compiler option which
permits the compilation of Standard Pascal only. By turning this
option on, only Pascal source that followed the standard would
compile.

Storage allocation in Pascal/1000 is done in a very flexible
manner. Two restrictions of the contributed versions of Pascal
are that neither double word-integers, nor sets with greater than
62 elements are allowed. Pascal/1000 permits sets with up to
32767 elements, and only allocates as much storage as is
necessary. Similarly, both single- and double-word integers may
be declared in ~ way that is natural for the Pascal language.

Pascal/1000 also allows character strings to be stored as one
character per byte, instead of just one character per word.
Procedure calls are allowed to external procedures written in
either Pascal or HP 1000 assembler.

Assuming Pascal/3000 will follow the lead of Pascal/1000, it
should be a very successful compiler. The only problem to which
ltve no solution is how Pascal/3000 will permit calls to HP
sUbsystems like IMAGE, while working within the confines of Pascal
type cheoking.

E-3 - 07



Experiences With Pascal

Pascal in Applications

This section attempts to describe some of the common pitfalls
to watch for when using Pascal. It also does a step by step
examination of each of the Pascal types, in the context of their
use in future versions of Pascal and with other subsystems. For
those just learning Pascal, [18,8,17J may be useful. In
particular, [8] gives a complete and readable treatment of Pascal.

Pascal Types

The concept of types in Pascal is one of the most powerful
features of the language. Because so much of Pascal operates from
the concept of types, it is one of the main areas where problems
can occur, especially when dealing with different Pascal
compilers.

Integer

The integer type is one of the simplest and most common types
in Pascal. The defintion of integer is as follows:

integer = -maxint +maxint;

The notation '-maxint +maxint' is called a subrange; it
defines integer to be a type that can take on values from a lower
bound (-maxint) to a higher bound(+maxint). The first question
that one usually asks is just how large is maxint? The answer is ~

that it varies from compiler to compiler. In Pascal-V it is
+32767, but in the future it will likely be +2147483647. In the
first case, storage will be allocated as a single- word integer,
and in the second case, storage will be allocated as a double-word
integer.

Suppose that the compiler used the second value for maxint.
How could you declare a type that only used single-word storage?
It could be done as follows:

int = -32767 .. 32767;

If the compiler is "smart" in storage allocation, int would only
use single-word storage. The int declaration also has the
advantage of telling the reader exactly what range any variables
of type int should have.

Real

The problem of a value range for real numbers (and the amount
of storage to allocate) is similar to the problem of single and
double integers. The main difference is that reals cannot be used
in subrange notation. The storage allocation and size attributes
of reals are left totally up to the implementer of each Pascal ~

E-3 - 08



Experiences With Pascal

compiler.

Since there are many instances where different size reals are
needed, there is a general solution. But, this solution is not
part of Standard Pascal. The predefined type "Real" is usually
taken to mean single precision floating-point numbers, where the
size of single precision floating-point numbers is defined for
each host machine. On the HP 3000, it is a 32-bit number with
approximately seven decimal positions. For larger real numbers,
the predefined type "Longreal" is provided, which is usually taken
to mean double precision floating-point numbers. On the HP 3000,
these would be represented by 64-bit long-real quantities.
Currently, all of the HP 3000 Pascal compilers supply only the
type Real. Since future compilers will probably allow for larger
real numbers, the following declaration could be used to localize
the changes at a later date:

Longreal = Real;

Whenever "Longreal" became available, this type declaration could
be deleted, and the program would just need to be recompiled.

Boolean

Logical values in Pascal are represented by True(1) and
False(O). On the HP 3000, Boolean is implemented as a single-word
integer. The Pascal-V compiler checks for False = 0 (True = not
0) when examining the value of a boolean expression; but, this may
change, and shouldn't be counted on.

Characters

One of the main reasons more people are not using Pascal on
the HP 3000 is that characters are packed one per word, instead of
the regular one per byte. This means that a Pascal array[1 .. n] of
char cannot be passed to procedures in other languages, without
first packing the character array.

The Pascal type packed array[1 .. n] of char will someday have
characters packed one per byte. For this-reason, packed should be
used wherever possible. It also requires less storage. One word
of caution: it is very likely that packed types will not be able
to be passed as var parameters to a procedure or function. To
change a packed array to an unpacked array, the built-in procedure
unpack should be used, and the built-in procedure pack should be
used to convert in the other direction.

Set

Sets are one of the more unique concepts available in Pascal.
By using sets, it is possible to have a single variable take on
more than one value at the same time. This could be very useful
in certain application areas (for example, on a customer status
field, where a customer could be in two different status classes

E-3 - 09



Experiences With Pascal

simultaneously).

Again, there are few guidelines regarding the implementation
of sets. The limiting factor in declaring sets is the number of
distinct elements that can be in one set type. With Pascal-V,
there can be up to 62 elements in a set. Unfortunately, this
rules out the following useful type:

charset = set of char;

With Pascal-V, set types occupy four words of storage, where
each bit in the four words represents one of the values in the
base type. Other versions of Pascal are more likely to allocate
as many words as necessary to represent the base type. This means
that writing out set types to files, or calling procedures in
other languages with parameters of type set is very unwise. At
the very least, such calls should be isolated so that they can be
changed easily.

Many implementations of Pas~al allow only 48 distinct
elements in set types. This should concern anyone who intends to
write Pascal software for other machines. For portable software,
you should use sets with a small number of elements. While this
is unfortunate, it is likely to be the case for many years.

Record

Record structures allow similar things to be grouped together
and optionally given a name. This feature is similar to the COBOL
level structure. With COBOL, a level structure is allocated space
in the order that the various levels are allocated. If we were to
map the following record structure into COBOL it would look like
this:

; integer A ; string B I integer C ; integer DI

01 RECORD.
05 A
05 B
05 C
05 D

PIC 39(4) CaMP.
PIC X(10).
PIC 39(4) CaMP.
PIC 39(4) CaMP.

And the equivalent structure in Pascal-V would be:

int = -32767 .. +32767;
string: .paoked artay[1 .. 10] of char;

cobol record = record
dint;
c : int;

E-3 - 10



b
a

end;

string;
int;

Experiences With Pascal

Note that the Pascal record structure is exactly opposite to
what you would expect. This is because Pascal-V allocates storage
elements in reverse order to their declaration. This is
implementation-defined; other Pascal compilers may do exactly the
opposite, or even something in-between. For this reason, all of
your record structures should be declared in one place, using type
and $include filee (this facilitates changes, when necessary).----

IMAGE/COBOL/Pascal Table

The following table gives equivalences among IMAGE, COBOL and
Pascal types. [10J The table assumes the following Pascal types
are available:

type

int = -32767 .. 32767;
integer = -2147483647 .. 2147483647;
real = real; (* single precision floating-point *)
longreal= longreal; (* double precision floating-point *)

IMAGE COBOL Pascal

J 1 PIC 39(4) CaMP int

~
J2 PIC S9(9) CaMP integer
I 1 PIC 39(4) COMP* int
12 PIC S9(9) COMP* integer
K1 PIC 9(4) COMP* boolean*
K2 PIC 9(9) COMP* integer*
P4 PIC S9(3) COMP-3 packed array[1 .. 2J of char*
P8 PIC S9(7) COMP-3 packed array[1 .. 4J of char*
R2 PIC X(4)* real
R4 PIC X(8)* longreal
Z N PIC 39(N) packed array[1 .. NJ of char*
X N PIC X(N) packed array[1 .. NJ of char

* - Storage is allocated correctly, but the types do not really
correspond to the IMAGE types.

Note that the concept of packed decimal does not exist in Pascal.
The only way to handle packed type data is to have a set of SPL
procedures which do the conversion from packed decimal to some
internal format, and the reverse, as well as providing for the
actual arithmetic. The most likely data type to hold packed
decimal numbers would be a packed array[1 .. NJ of char to hold the
packed decimal numbers.

The COBOL zoned-decimal type is not supported directly in
Pascal. While the numbers can be read in as a packed array, .they
will have to be converted to integer by hand. The last byte of
the zoned-decimal array will contain the digit value, as well as
the sign. For some sample solutions to these problems see [6,7J.

E-3 - 11



Experiences With Pascal

Files

In general, the only type of file that is compatible between ~
Pascal and other HP 3000 languages is:

filetype = file of array[1 .. n] of char;

All other file-types are likely to be incompatible, or at best,
difficult to interpret. While it is certainly possible to declare
a file of the type cobol record above, the results are not what
one expects. In the first place, all of the elements of the
record will be reversed, so that the COBOL and Pascal record
layouts for the file must be reversed. Further, the string that
is part of the record will be packed one character per word with
Pascal-V. (Pascal does not currently pack strings, even if packed
is included in the declaration.) In order to reduce difficulties
with program maintenance, it is recommended that there be one
common input and output interface to an external file from Pascal
programs. These routines should be included in any program that
is to use the file.

IMAGE

All of the problems mentioned above apply even more to IMAGE
and Pascal. The layout of a data set and the layout of the Pascal
record must be reversed with Pascal-V. In addition, there are ~

currently no double-word integers or packed arrays, so calling
IMAGE procedures would be difficult.

As mentioned above, the definition of IMAGE procedures does
not agree with that of Pascal procedures. Until a Pascal compiler
on the HP 3000 recognizes all of the HP intrinsics, it will be
necessary to code calls to IMAGE in some other way. The suggested
solution is to provide one SPL procedure for each data set that is
to be used in Pascal.

Each SPL procedure would have a mode parameter (read,
chainread, write, update, etc.), as well as the other IMAGE
parameters (the base name, the status area and a buffer). It
would make sense for the SPL interface to use the "@" list in all
DBGET calls (as well as assuming the set name). Each interface
routine would transform the IMAGE record structure into the
equivalent Pascal structure (i.e., unpack character arrays,
reverse the order of records, etc.). This is a general solution
which should work for different versions and implementations of
Pascal on the HP 3000.

E-3 - 12



Experiences With Pascal

Performance of Pascal Programs

Introduction

One of the most frequently-asked questions about the
implementation of a programming language is: how fast are the
programs it generates? On a machine like the HP 3000, where many
factors contribute to the performance of a program, it is a
difficult question to answer.

Programs written in the host programming language are
generally the fastest, because the host programming language was
custom-designed for the particular machine. Most of the
constructs in the language translate directly into hardware
instructions. This is true of SPL on the HP 3000. Other
languages (like Pascal or COBOL, designed for use on many
different machines), must translate the language constructs into a
combination of hardware instructions and procedure calls to a
run-time library. Since the procedures in the run-time library
are generally slower than hardware instructions, there are certain
language constructs to watch out for.

What to Watch Out For

Not all high-level language constructs are slow. Many of the
language features will be as fast as a lower-level language like
SPL. On any particular machine there are certain things to watch
out for and avoid, because they are unusually slow. Pascal is no
exception to this rule.

One of the most common operations is to open a file and read
it sequentially from beginning to end. In Pascal, this is often
accomplished by using the built-in procedures reset and read. The
reset procedure opens the file, and the read procedure reads the
file as if it were one long string of characters. Since files are
normally organized into records, it seems obvious that reading the
file one character at a time will be inefficient.

An Example

Pascal provides another built-in procedure, get, which will
read a file one record at a time, if the file is declared
correctly in the Pascal program. In order to test the time
necessary to do a sequential read, the following Pascal
declaration was made:

filetype = file of array[1 .. 80J of char;

The file input was declared to be of this type, and get was used
to read the file sequentially. Figure I and II give a graphic
demonstration of the elapsed and CPU time of four programs which
read a sequential file.

E-3 - 13



10000

9000

8000

7000

6000

Experiences With Pascal

Elasped Time vs. Number of Records Read

20 40 60 80 100 120 140 160 180

10000

9000

8000

7000

6000

Figure I

CPU Time vs. Number of Records Read

20 40 60 80 100

Figure II

120 140 160 180

E-3 - 14



with the
checking

Experiences With Pascal

One program was coded in SPL, using the FREAD intrinsic.
Another was coded using the COBOL read statement. One Pascal
program was coded using get, and another was coded using read. As
expected, the SPL program was the fastest, followed by the COBOL
program. The Pascal program using get was slower than the COBOL
program, but sUbstantially faster than the Pascal program using
read.

Explanation of the Results

SPL was the fastest, because it communicates
operating system directly, doing a FREAD of 80 bytes and
the condition code for end-of-file.

The COBOL program interfaces to FREAD through the COBOL
run-time support. The run-time support is general-purpose; it
must handle all different file types and file sizes and it also
does more error checking. The extra time consumed in the run-time
support routines ma~es the COBOL program slightly slower than the
SPL program.

The Pascal program suffers all of the same problems as the
COBOL program. The Pascal run-time support must be prepared for
all situations. In addition, the buffer that is read for each
record must be unpacked, since the current version of Pascal does
not support packed files. The extra time to do the unpacking
Shows up dramatically in Figure II, where there is a large
difference in CPU time between the COBOL program and the Pascal
program using get.

Finally, the Pascal program using read was much slower than
any of the other programs. The reason for this is that an extra
procedure call is made for every single character in the file.
All of this extra overhead results in a Pascal read being much
slower than a Pascal get. (The only thing that could be slower is
the FORTRAN formatter with a format of 80A1, which calls the
formatter for each character).

The Moral

Each implementation of a high-level programming language has
certain constructs which are inefficient. For example, COBOL
programmers use CaMP variables when the value to be represented is
less than ten digits long, and they avoid the use of the COMPUTE
verb, since it is very slow in COBOL68. Pascal programmers should
be aware of certain Pascal constructs that are slow on the HP
3000. In particular, this example shows that Pascal get should be
preferred over Pascal read, when sequentailly reading a file. See
Appendix II.

E-3 - 15



Experiences With Pascal

Appendix I

Making Pascal Portable - Three Examples

I. Pascal-S

Pascal-S is a subset of standard Pascal. [18,19J The
compiler itself is a complete system which compiles the Pascal
program, and, if there are no errors, executes the program
(interpretively). Pascal-S was written in Pascal by Wirth.

The major problem in getting Pascal-S running on the HP 3000
was the difference between the character set on the CDC series of
machines and the character set of the HP 3000 (ASCII). In the CDC
character set, blanks collate after letters; but, in the ASCII
character set, blanks collate before letters. Also, the internal
numeric representation of characters differs between the CDC and
the HP 3000, and this caused further errors in the compiler.

The lesson to learn from this is that writing portable
programs, even in Pascal, takes some thought and effort. Even
when using Standard Pascal, problems can arise. One tip: make no
assumptions about character sets, as they vary widely from machine
to machine.

II. PROSE

PROSE is a text formatter published in Pascal News No. 15
[16]. It is written entirely in Standard Pascal and pays ~

particular attention to the character sets of different machines.
PROSE stores all text internally using the ASCII conventions, and
each implementation (of PROSE) must have routines to convert from
the external character set to the internal one.

PROSE is approximately 3500 lines long, and is just now being
completed on the HP 3000. The main problems encountered in
implementing PROSE were finding and eliminating typing mistakes,
and understanding the conversion from the external character sets
to the internal set. Even though the external and internal
character sets are the same on the HP 3000, it took some time to
find and change the conversion routines accurately~ The coding of
these routines assumed an understanding of how the CDC character
sets work, since the version of PROSE written in Pascal News
No. 15 was for a CDC computer.

Another problem encountered with PROSE was the definition of
carriage control on output files. Many implementations of Pascal
take the first character written to each line of an output file as
the carriage control character. For example, to write a page
eject, the following Pascal code would be written:

writeln; writeln( '1 ');

The "1" in the second writeln would be interpreted as a carriage
control character, which, on most line printers, causes a page ~
eject. Pascal 2.8-V uses standard built-in procedures to do

E-3 - 16



Experiences With Pascal

carriage control. The procedure page(output) causes a page eject
on the file output. Because PROSE was implemented using the first
method, it was necessary to change each carriage-control write
statement to a similar or equivalent Pascal 2.8-V statement.
While this is relatively straightforward with page ejects, it is
much more difficult with overprint and underlining.

The lesson to learn from this is that the meaning of carriage
control on output files is implementation-defined. In order to
make a Pascal program portable, all carriage control should be
done by a few, easy-to-modify procedures, rather then by any
implementation features. These procedures can then be modified
for each Pascal installation.

III. LISP

LISP is a small implementation of the interpretive language
LISP. It was written at the University of British Columbia using
Pascal/UBC, an extended version of Pascal. There were only two
major problems in getting LISP to work on the HP 3000.

The first was that Pascal/UBC runs on an AMDAHL/V6, using the
EBCDIC character code. On most IBM terminals that use EBCDIC,
there are no n]", n]n or "A" characters. Because of this,
Pascal/USC accepts ,,(.n as "[", ".)" as "J" and "@" as nA". Each
of these character sequences had to be converted to their ASCII
counterparts.

~ The second problem centered around the use of the Pascal
forward declaration. Since LISP is essentially recursive in
nature, all of the procedures of LISP were declared forward to
avoid the mutually recursive problem. The use of forward in
Pascal is not clearly defined; but most implementations of Pascal
require that the parameter list to a forward procedure or function
be declared when the procedure or function is delcared forward,
and that the actual parameter list be left off when the procedure
or function is actually declared.

Pascal/UBC permits an extension whereby the parameter list
may be declared both when the procedure or function is declared
forward and when the actual procedure or function body is
declared. Pascal 2.8-V does not allow this extension, so each
actual declaration of a procedure or function had to have the
parameter list deleted.

The lesson to learn from this is that non-standard Pascal
features must be avoided, if a Pascal program is to be made
portable. Most Pascal compilers have a compiler option which
permits only standard Pascal to be compiled. Before declaring a
Pascal program portable, be certain to turn the standard compiler
option on, recompile and rerun the program, to ensure that it is
free from any non-standard Pascal features.

~'

E-3 - 17



Experiences With Pascal

Appendix II

Implementation Notes on Pascal-V

Introduction

This appendix is intended for the interested reader who
wishes to know more about the actual implementation of Pascal. It
assumes that the reader is already familar with Pascal, the HP
3000 operating system, SPL/3000, and the HP 3000 instruction set
[18,15,5,1,11,12,13].For those interested in compiler design in
general, [20] gives a readable introduction to recursive-descent
compiling, and [2] covers the general topic of compiler design
thoroughly.

Basic Compiler Design

The compiler itself is written in Pascal. It uses
recursive-descent compiling techniques. The original compiler
compiled code for a hypothetical stack machine [15]. The
principal modules and their functions are as follows:

nextsym - reads the input text and returns the next lexical token.
This module is also responsible for output, including error
messages, and all input, as well as $INCLUDE files. If an
identifier is encountered, it also looks up the identifier to see
if it is a reserved word, but it does not check to see if the
identifier was already defined by the user.

table management these routines store all user-defined
identifiers into the various compiler tables, and provide lookup
of identifiers from the same tables. Table storage is organized
as an unbalanced binary tree for each program level [20,14].

block - this is the syntax recognizer of the compiler. It also
generates the "pcode" pseudo-instructions, and handles all parsing
and semantic definition. The structure of block is broken down as
follows:

label label-declaration-part
const constant-declaration-part
type type-declaration-part
var variable-declaration-part
procedure-and-function-declaration-part
statement-part .

The statement-part handles all of the various statements available
in Pascal. The structure of block follows the syntax diagrams in
the User Manual and Report [18].

initialization this module handles all static and dynamic
initialization. This includes the reserved words, input/output
and nextsym variables, as well as the predeclared types and
procedures. Predefined procedures and types are stored just like
regular user identifiers, so that they may be overridden by the ~
Pascal programmer.

E-3 - 18



Experiences With Pascal

SPL code generation these procedures translate the "peode"
statements into valid SPL statements. A combination of regular
SPL, ASSEMBLE and TDS is used in the translation to SPL. Note
that the basic code generation is still based on the "pcode"
machine. However, in Pascal-V the "pcode" translation stage,
which generated an external file and ran the program ASSM, has
been eliminated. The code that is generated still has some of the
basic deficiencies of the "pcode" machine.

Stack Frames

Usually, when implementing Pascal, a major problem is the
provision of the procedure call and return mechanism.
Fortunately, most of the tools required are already available on
the HP 3000, in the form of the PCAL and RETURN statements of the
HP 3000 instruction set.

When a procedure is called using PCAL, a four-word stack
marker is loaded onto the top of the stack before control is
transferred to the new procedure. In SPL, this stack marker is
sufficient to save and restore the entire SPL environment.
However, SPL provides only single-level addressing, while Pascal
provides multiple-level addressing. To implement "up-level"
addressing, each Pascal procedure call loads a five-word "stack
frame" onto the top of the stC:lck, instead of a four-word stack
marker. The stack frame is structured as follows:

Q-4 Address of previous level

Q-3

Q-2

Q-1

Q-O

Index Register

Return Address

Status Register

Delta Q

This is the Pascal stack frame. Words Q-3 through Q-O are loaded
automatically by the PCAL instruction. The DB-relative address of
Q-O of the previous level is placed onto the top of the stack by
the Pascal compiler, before the PCAL is executed.

Since all procedure levels are established at compile time,
it is possible to compute the address of a variable that is
neither local nor global. The Pascal program walks back through
the correct number of stack frames to reach the beginning of the
level where the variable to be used is located. Then the Pascal
program works forward from the computed address to obtain the
actual address of the variable in question.

Parameter Passing

Most parameters are passed to Pascal procedures in the same

E-3 - 19



Experiences With Pascal

way that parameters are passed in SPL. For reference parameters,
the word address of the parameter is loaded onto the top of the
stack before the procedure is called. Once the procedure is
called, it uses Q-indirect addressing to obtain the value of the ~
reference parameter.

Simple scalar value parameters are also passed as in SPL.
The actual value of the parameter is loaded onto the top of the
stack before the procedure is called. Set, record and array value
parameters are permitted in Pascal, but-n0t in SPL. The principle
remains the same: space is reserved on top of the stack for the
value parameter, then the actual value of the set, record or
array is copied into the reServed space. Once the procedure is
called, it uses Q-negative addressing to obtain the value of any
one of the variables.

Each Pascal procedure must know exactly how many words of
storage are taken by both its value and reference parameters.
When the Pascal procedure returns to the invoking routine, it
deletes all of its parameters from the stack:

Function Return

The last problem involved in calling Pascal procedures or
functions is where to leave the result of a function when it
returns. The calling routine reserves enough space for the result
on top of the stack, before loading the parameters or the stack
frame.

Since only scalar, subrange or pointer types may be returned
as functions, the compiler reserves either one or two words on top
of the stack for the function result. Two words in the case of
reals, and a single word in all other cases. Once the function is
called, it uses Q-negative addressing to store the function
result. Upon return, the space for the result is the only space
not deleted from the stack. Therefore, the result is always on
top of the stack after a function call.

Addressing

In general, Pascal uses DB+ addressing for global variables,
Q+ addressing for variables declared at the current level, and
Q-negative addressing for procedure or function parameters. When
a variable from another level, other than global, is needed, the X
register is used.

One problem encountered in Pascal that is not present in SPL
is that Q-relative addressing is only allowed from Q-63 to Q+127.
Since value parameters of unlimited size can be passed in Pascal,
and it is easy to declare a record structure that is more than 128
words long, provision had to be made for larger Q-relative
addresses. In order to work around this problem, Pascal uses a
combination of the Q register and the X register.

Whenever a reference is made to a
address is larger than Q+127, the following

E-3 - 20

local variable whose
algorithm is used.



~.
\

Experiences With Pascal

The nearest multiple of 128 is stored in the X register. The
difference between the address of the variable and the value in
the X register is then used as the Q-relative address. Any
reference instruction then uses combined Q-relative and indexed
addressing. Q-negative addressing is similar, except that the
value stored in the X register is a multiple of 64, because
Q-negative addressing only allows for addresses up to Q-63.

For example, take a variable whose address would be Q+130,
and assume that a single-word load to the top of the stack was to
be done. The following SPL code would do the actual load:

X := 128;
ASSEMBLE(LOAD Q+2,X);

«CLOSEST MULTIPLE OF 128»
«130-128 = 2»

A similar situation exists with DB-relative addressing, but
the limit is DB+255. The same solution is used as in Q-relative
addressing, except that the closest multiple of 256 is loaded into
the X register, and the difference between the desired location
and the X register is used as the DB-relative address. A
combination of DB-relative and indexed addressing is then used to
reference the global variable.

Why Didn't Pascal Work Under Athena?

The contributed Pascal compilers would not run with the
Athena (2011) release of MPE, because Qinitial was two words
higher in the stack. If the Pascal compiler used DB-relative
addressing for all of its global variables, why would it matter
where Qinitial was?

The answer to this question is that IF Pascal always used
DB-relative addressing for global variables, it would not matter.
Unfortunately, over time, and through various changes to the
compiler, some references to global variables became Q-relative.
Since the structure of the initial Pascal stack was precisely
defined, it did not matter whether DB-relative or Q-relative
addressing were used for global variables, so long as the
addresses were computed properly at compile time. As long as
Qinitial was always exactly four words higher in the stack than
secondary DB, there was no problem.

With the Athena MIT of MPE, Qinitial was six words above
secondary DB (or more, if INFO= was used in the :RUN command).
But Pascal continued to use Q-relative addressing on some global
variables, and, under Athena, these were not the correct
variables. The fix to the compiler consisted of tracking down
every global reference and ensuring that it used DB-relative
addressing. Once this was done, Pascal was no longer concerned
with the position of Qinitial, and all Pascal programs could run
on any release of MPE.

Dynamic Memory-Allocation

~ One of the most powerful Pascal features, for both
applications and teaching, is the concept of pointer-variables and

E-3 - 21



Experiences With Pascal

dynamic memory-allocation. Whenever the built-in Pascal procedure
new is used, storage must be allocated for the new variable. The
amount of storage allocated is determined by the type of the
object passed as a parameter to new.

Pascal maintains an area called the heap. The heap is an
area of memory, logically separate from the "stack", which can be
used for dynamic memory-allocation. On the HP 3000, the heap is
implemented as the DL area. A dynamic counter of the current size
of the heap is maintained in every Pascal program. When the
procedure new is used, the counter is incremented, and the
resulting address is stored in the variable passed to new. If the
counter has passed the current limits of the DL area, the DL area
is expanded by 1024 words (using tbe DLSIZE intrinsic).

In order to give the Pascal programmer some control over the
size of the heap, two built-in procedures, mark and release, are
provided. Mark stores the current size of the DL area in the
variable passed to mark. This same variable is passed to the
procedure release, which shrinks the DL area back to that original
size. If the value of the variable used to mark the heap is
changed before the call to release, the DL area will be shrunk by
an unpredictable amount.

Run-Time Libarary

The run-time library gives Pasca~ significant power to deal
with files, and other features of the HP 3000 which are external
to the Pascal program. From a Pascal program, it is a simple task .~

to write out an integer, real or character value, especially when
compared with the effort needed to do the same thing in SPL. The
run-time support allows Pascal this "friendly" type of
communication with files.

The run-time library consists of approximately 1800 lines of
SPL code. The main entry points to the run-time library, and
their functions, are listed below:

PASCAL'FERR
PASCAL'ERROR
PASCAL 'CLOSE
PASCAL'CLOIO
PASCAL'OPEN
PASCAL 'GET

PASCAL'GCH
PASCAL'PUT

PASCAL'PCH
PASCAL'POS
PASCAL'FILE'POS
PASCAL'RESET
PASCAL'REWRITE
PASCAL'CY

Writes out Pascal file error messages.
Writes out general Pascal run-time errors.
Closes an open Pascal file.
Closes the standard files INPUT and OUTPUT.
Opens a Pascal file for either read or write.
Gets the next record from the file. This
procedure is called when the built-in
procedure get is used.
Returns the next character in a file buffer.
Writes out the current file record to the
file. This procedure is called when the
built-in procedure put is used.
Adds a character to the output file buffer.
Positions a file to a particular position.
Returns the current file position.
Equivalent to the built-in procedure reset.
Equivalent to the built-in procedure rewrite.
Pascal Control-Y trap.

E-3 - 22



Experiences With Pascal

PASCAL'GETHEAP
PASCAL'INIT

PASCAL'RDI
PASCAL'RDR
PASCAL'WRI
PASCAL'WRR
PASCAL'WRS
PASCAL'WRB
PASCAL'DATE
PASCAL'TIME

Expands the DL area by 1024 words.
Initializes the Pascal environment and opens
the files INPUT and OUTPUT.
Reads an integer from a text file.
Reads a real from a text file.
Writes an integer to a text file.
Writes a real to a text file.
Writes out a string to a text file.
Writes out a boolean value to a text file.
Obtains and formats today's date.
Obtains and formats today's time.

These functions are stored in the RL file and are copied into
the Pascal program by means of the RL= parameter of the :PREP
command.

File Buffers

Each of the file-handling procedures above is passed a
pointer to an array which acts' as the Pascal file-control block.
The structure of the file-control block is as follows:

Current Character Position in the Buffer

Current Character If TEXT File

MPE File Number

QEDIT Linenumber of Current Line

Carriage ControlControl Bits

Next QEDIT Index

Use

Length of the Buffer

QEDIT File Flags

Next QEDIT Block

Variable Length Buffer

Maximum Record Length of the File

Current Record Length of the Buffer

Word

1

2

~ 3

4

5

6

7

8

9

10

11

12

Size depends on the type of
file. For TEXT files, this
buffer is 128 words long.

E-3 - 23



Experiences With Pascal

When a Pascal program uses a read statement, characters are
not obtained one at a time. Instead, a buffer containing the the
line most recently read from the file is used, along with a ~

character position in the buffer. If all of the characters in the
buffer are read, the next line of the file is read automatically.
Since only 256 bytes are reserved for the file buffer of a text
file, this is the largest record size that the actual MPE file
attached to the text file may have.

When a file is declared in a Pascal program, the local
storage for the file-control block is allocated at the point where
the file is declared. This method doesn't work for the standard
files input and output, since they are predefined automatically in
every Pascal program. To get around this problem, the
file-control blocks for the standard files input and output are
declared in the DL area. When the Pascal program is first run,
these file-control blocks are allocated and initialized. One of
the reasons that a Pascal procedure cannot be called from another
language is that this allocation and initialization of the input
and output files would not be done properly. If the Pascal
program does any reading from input or any writing to output, then
it would fail, due to the lack of the correct file-control blocks.

Summary

The only software more complicated than compilers are
operating systems; yet compilers are vital to our continued use of
computers. Pascal-V is approximately 7500 lines of Pascal, and it
has been modified by at least three different people. Despite
this, many useful programs have been developed using Pascal-V.
The Pascal-V compiler is a reasonably solid and reliable system,
which provides a good base for incremental enhancements in the
future.

E-3 - 24



Experiences With Pascal

Appendix III

Sample Data From the Sequential Read Test
~

----- ----
I . Elasped Times

No. Records SPL COBOL Pascal/Get Pascal/Read

6000 26.34 34.41 39.77 109.44
7000 30.69 40.13 46.31 127.55
8000 35.01 45.78 52.87 145.79
9000 39.36 51.50 59.44 164.03

10000 43.70 57.20 65.99 182 . 15

y-int -70.97 -42.82 -68.36 -14.94
slope 230.47 175.59 152.60 54.97
Corr. 0.9999 0.9999 0.9999 0.9999
Coeff.

II. CPU Times

No. Records SPL COBOL Pascal/Get Pascal/Read

6000 25.34 28.03 38.62 108.03
7000 29.56 32.69 45.01 125.98
8000 33.78 37.35 51.48 144.03
9000 38.00 42.01 57.93 162.11

10000 42.21 46.66 64.35 180.04

~ y-int -8.06 -18.03 4.06 4.56
slope 237.08 214.68 155.33 55.50
Corr. 0.9999 0.9999 0.9999 0.9999
Coeff.

All of the data was compared using a least squares fit of a
linear line. The resulting slopes and y-intercepts are listed.
Notice that all programs had a near perfect correlation
coefficient; this indicates that the file system has a linear
increase in time as the number of records sequentially read
increases.

E-3 - 25



[ 1 ]

[7]

Experiences With Pascal

Bibliography

Addyman, A. M.
"A Draft Proposal for Pascal"
SIGPLAN Notices Vol. 15 No.4, April 1980
Association for Computing Machinery,
1133 Avenue of the Americas, New York, NY 10036

[2] Aho, Alfred; Ullman, Jeffrey
Principles of Compiler Design
Addison-Wesley, Don Mills, Canada, 1977

[3] Earls, John
"Pascal for the HP 3000"
HPGSUG Journal, Vol. 1, No.5

[4] Fraley, Robert
"Pascal-P on the HP 3000"
HPGSUG 1980, San Jose Proceeedings

[5] Fraley, Robert
"The Pascal Programming Language"
HPGSUG 1980, San Jose Proceeedings

[6] Green, Robert M.
SPL Aids, Sofware Package
Robelle Consulting Ltd.

Green, Robert M.
SPL/3000 in a Commercial Installation
Robelle Consulting Ltd.

[8] Grogono, Peter
Programming in Pascal
Addison-Wesley, Don Mills Canda, 1979

[9] Pascal/1000 Programmer's Reference Manual

[10] IMAGE Data Base Management System Reference Manual

[11] SPL/3000 Reference Manual

[12] HP 3000 Machine Instruction Set Reference Manual

[13] MPE Intrinsics Reference Manual

[14] Knuth, D. E.
The Art of Computer Programming, Vol. III
Sorting and Searching
Addison-Wesley, Reading, Mass, 1973

[15] Nori et. ale
The Pascal{P) Compiler: Implementation Notes,
Revised Edition
Order from William Waite
Software Engineering Group

E-3 - 26



Experiences With Pascal

Electrical Engineering Department
University of Colorado
Boulder, Colorado 80309

[16] Pascal News
c/o ~ick Shaw
Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342
Subsrciption rates are $6.00 per year

[17] Pollack, Bary and Greer, David
A Programmer's Introduction to Pascal
Available from Robelle Consulting Ltd.

[18] Wirth, Niklaus; Jensen, Kathleen
Pascal User Manual and Report Second Edition
Springer-Verlag, New York, 1974

[18] Wirth, Niklaus
Pascal-S: A Subset and its Implementation
See order information above

[19] Wirth, Niklaus
Systematic Programming: An Introduction
Prentice-Hall, Englewood-cliffs, New Jersey, 1973

[20] Wirth, Niklaus
Algorithms + Data Structures = Programs
Prentice-Hall, Englewood Cliffs, New Jersey, 1976

E-3 - 27



THE FIELD SOFTWARE COORDINATION PROCESS

by

Brian M. Perkin
Systems Engineer, HP

Over the last few years, growth of the Hewlett-Packard 3000
customer base, through strong sales and successful installations, has
caused substantial growth in Hewlett-Packard manufacturing divisions
and in the field support operations. In addition, Hewlett-Packard has
developed many new and innovative software and hardware products.

With this exciting growth, Hewlett-Packard is still very con
cerned about its customers. We want to be sure that a product will
work correctly and reliably the first time it is installed on a
customer site. Many of these products have complex interactions
with other products, making quality assurance a difficult task. In
order to maintain Hewlett-Packard's high standards of reliability,
a new program has been created in cooperation with the Computer
Support Division.

Field Software Coordinators have been designated for each sales/
support area. Generally, a software coordinator will use local and
factory resources to verify problem solutions, identify potential
problems and weaknesses and to act as a distribution and integration
point for software distribution. Software coordinators also have
responsibility for training and acting as a resource center to other
HP support groups.

FULL TEXT WILL BE DISTRIBUTED AT THE SESSION

Tuesday E-4 - 01



DISTRIBUTED PROCESSING
IN HIGH VOLUME TRANSACTION PROCESSING SYSTEMS

A paper presented to the 10th International Meeting
of

The Hewlett-Packard General Systems Users Group at Orlando, Florida, U.S.A.
April 27 through May 1, 1981

By

Thomas L. Fraser
Systems Research Inc.
2400 Science Parkway

Okemos, Michigan
USA

Tuesday E-5 - 01



I. Introduction

Distributed processing concepts are frequently at the center of the
implementation of transaction processing systems. The strengths of
the HP3000 in these types of systems make it a desirable
alternative from several standpoints. However, limitations of the
HP3000 require that new approaches be used if successful high
volume transaction processing systems are to be implemented.

One innovative solution applies the theory of distribution to the
HP3000 itself. By vertically distributing the processing to be done
on the HP3000, 'it becomes a viable solution to a much broader
range of business problems. Systems Research Incorporated has
effected this vertical distribution through tl)e development of an
HP1OOO-based front-end to the HP3000.

The SRI front-end dramatically expands the power of the HP3000
both in data communcations and data processing. Moreover, it
makes new options available both in on-line linkages to other
processors in distributed systems, and in other areas of da ta
communications and terminals.

II. A Definition of Transaction Processing

A TRANSACTION is a phenomenon of the real world. It is a
logical unit associated with an event or series of events in a system
external to the computer. When one makes an airline or hotel
reservation, a transaction occurs. Invoicing a customer, booking a
suspect into jail, or inquiring on the status of inventory are all
examples of transactions. Many transactions have nothing
whatsoever to do with computers (e.g., buying the morning
newspaper from a vendor on the street).

As can be seen from the examples, transaction processing is nothing
new. Transactions have been occurring since the beginning of
civilization, have been processed manually for thousands of years,
and have been batched and processed on computers for decades.
What is relatively new, is on-line transaction processing on mini
computers. When a system is on-line, transactions are processed
individually as they occur in the real world. One can readily see
that having an airline reservation system on-line is desirable, and
there are many other on-line systems which will provide benefits
that are not possible in batch systems. In the past it has been
impossible or too costly to put most systems on-line. Today the
improvements in hardware and software technology have changed this
a great deal. Specifically, the HP3000 provides an environment
which can be used to develop very high performance and effective
on-line transaction processing systems.

E-5 - 02



,~

III. The Transaction Monitor

A transaction, being an external occurrance, must be input to the
computer s)'stem before it can be processed. In an on-line system
this is usually accomplished through a terminal, frequently a CRT
terminal. A transmission from a terminal to the host computer is
defined a MESSAGE. A transmission to the computer and a
response back to the terminal is a MESSAGE-PAIR. A transaction
may involve one or multiple messages or message-pairs. Most
transactions which are entered from CRT type terminals will involve
multiple messages, and are frequently referred to as interactive.

There are several functions which are common to transactions in
general, and do not depend on the specific application itself.
Therefore, it is possible for these functions to be handled by
software or firmware external to the application program. Examples
of these functions are control and management of the network, data
communications between the terminals and the host computer,
logging of transactions, queueing of messages, routing messages,
controlling access to the computer, handling screen formats, spooling
of output print files, and providing facilities for restart and recovery
in the event of a system failure. Some of these functions may be
performed by the host operating system, but frequently these
functions are grouped in a program (or programs) which is logically
between the terminals and the application program, and is called a
transaction monitor.

IV. Transaction Processing vs. Timesharing

In timesharing while user capabilities can be restricted, in principle
users have broad latitude in what they can do, and the activities of
the others on the system are transparent. The system is user and
terminal oriented and provides an environment where each user can
be simultaneously performing totally different tasks.

In transaction processing user capabilities are pre-defined and very
Ii mi ted. The system is transaction oriented and provides an
environment where several users can perform the same or similar
tasks simultaneously. Our earlier example of the airline reservation
system illustrates; the reservation clerks are executing very similar
transactions and are very restricted in capability (e.g., none of them
can execute a compile or use Query).

E- 5 - 03



The HP3000 uses MPE, a timesharing operating system. MPE
associates a user with a stack. There is a one-to-one
correspondence between users (terminals) and stacks. Each time
another user logs on, another stack and another process provides for
maximum flexibility and power for the users, but severely limits the
number of users (terminals) because of the load that is placed on
the resources of the HP3000.

v. Performance Limitations in the HP3000 Environment

Performance will vary from system to system depending on many
factors such as what needs to be done, how well software is
written, how well data structures are defined, etc. but some general
measures are useful.

There are many ways to measure performance, but in a transaction
processing environment it is the number of transactions which can
be handled per unit time and the number of concurrent users which
can be supported with acceptable response time.

The performance limitations of the HP3000 as measured by these
two means are discussed in the "Hewlett-Packard Performance
Guide"l. An approximation of two charts from that publication are
included for convenience (Figs land 2). Based upon these data,
even a large Series 44 (with 4MB) reaches capacity at a transaction
rate of lO,OOO/hour, and response time gets bad at about the 60
terminal level. For a 2MB Series III with MPE III, these numbers
are about 4,000 transactions per hour and 30 terminals. High
performance is defined for use here as that beyond what the native
mode HP3000 and MPE can yield.

The resources which limit performance can be generally classified as
CPU, memory, datacomm capacity and available disk accesses.
(They are not independent of one another. They are considered
separately here for simplicity as we are only illustrating a point, not
presenting a study on performance). If we are to achieve higher
performance, we must either add to these resources, or make better
use of those already available. As will be seen, the vertical
distribution of some functions to a front-end will accomplish both.

Footnotes:
1 Hewlett-Packard Performance Guide, l\~arch 1981

E- 5 - 04



Figure 1

12000 TRANSACT10toSS/... OoR

6ER\E"$ L11.4 "" MB

MPe: 'v

9000

............. " .. ,
" '

".--."...... -.,-...'
".-,--

2 MB
lV

50

SEttlES '"
MPE

SCR\E,S "l 2. Me
MPt' III:

,--

~o 30 ~o

NUMSER OF' TERM,,,,AL.S
10

.- ",.--------"
.# ",./ "-

" ",. --.~
,,' "",,"" ...... --._----

-' "",.' /'.t""
.' ;'.t"

.;:,~ ----
//

L:;

O..- I1111111- -'" +- -.a.. ........

o

2.000

LiOOO

6000

~ Figure 2

5 0 RESPO,",SE TI tolE (S&:CS)

6050

SE.R,lS:S LfLJ Lf HG ..
MPE IV .-/

,/
.." ,,-. .. ' ._..,.

,,~ - ' .,,,
.,..... --' ., _ .

~o 30 ~o

NUMBER 01: nRMINALS

E-5 - 05

10

O~ ..Ao__ ~ ......... ...L- ___I ---a

o

S£R\ES III 4 M8

t1PE III

10

2.0

30



VI. Vertical Distribution Vehicle

The logical candidates for distribution to the front-end are of course
those functions referred to earlier which are common to most all
transactions. That is precisely what was undertaken.

The HPIOOQ-E was chosen over alternatives because of reliability,
price/performance, vendor quality, and support for user microcoding.
All software and firmware was written specifically to perform the
da tacom m and transaction moni tor functions. In effect, a
specialized and dedicated operating system was written.

The HP 1000 is interfaced to the HP3000 through the Universal
Interface Card for Series III hosts and through HP-IB for Series 30,
33 and 44. Although the mechanics of the two interfaces differ,
both achieve very fast and broad transfer of data between host and
front-end with very little demand on host resources. An HP7906
disk is used by the front-end for large operating system tables and
queue space, but because the HP 1000 has 256KB (or- more) of
memory, queueing is usually done in memory. The datacomm line
controllers complete' the front-end hardware, and since they are also
HP manufactured the entire system can be maintained by HP field
personnel. Up to 240 high speed asynchronous lines or up to 70 high
speed synchronous lines can be supported.

High Speed
Interface

HPIOOO

HP3000

Figure 3: Basic Configuration

E- 5 - 06



VII. Message Flow and Application Structure

When timesharing was discussed earlier, we saw that users and
terminals were associated with processes and stacks. This is neither
desirable nor necessary in a transaction processing environment. It
impedes performance, control, and software development.

The front-end operating system associates transactions with
processes. All executions of a particular transaction type can be
routed to a single (or a small number of identical) process(es). The
front-end treats all messages independently and transmits only data
to the host. All forms, control characters and etc. are stripped off
or inserted by the front-end. Since the application sees only data,
it is as if there were only one terminal of unspecified type in the
network.

A typical transaction will begin with a message from a terminal
which begins with a slash, followed by a transaction mnemonic,
followed by optional data. The front-end will check for transaction
validity, as well as user and terminal authorization. If all checks-
out, routing information is extracted from transaction tables, and
the host process is checked for availabili ty. If necessary the
message is queued. When available, the message (data only) is sent
to a switch program in the HP3000, which moves it to an extra
data segment, and activates the application process. The user and
station are logically linked to the process, and will be until the...
transaction is completed.

For detailed descriptions of structure, refer to the MCS3000
programming manual2•

VIII. Features and Performance

The division of labor and specialization of resources, together with
the addition of resources resulting from the vertical distribution, and
the adoption of a transaction oriented architecture greatly expand
the capacities and capabilities of the HP3000. Moreover, flexibility
is enhanced and many otherwise unavailable features are brought to
the HP3000.

f""\ Footnotes:

2 MCS3000 Programming Manual, Systems Research Incorporated, June 1980

E- 5 - 07



As measured earlier, performance is several times what an HP3000
alone can do. Transaction rates of up to 40,000 per hour have been
achieved on Series Ills with MPE III, and although no Series 44s have
been installed with front-ends at this writing, even higher rates are
likely then•. The maximum number of terminals currently installed
on a single front-end is about 600 (see Appendix 1), but many times
that could be supported.

Other performance limi tations are 250,000 bits per second
throughput, up to four simultaneous hosts (HP3000's or Burroughs
Medium Systems) and up to 500,000 characters per second transfer
between host and front-end.

Front-End Resident Messages Control System - The front-end
message control system offers: Transaction-based message routing
and/or predefined message linkage support; application data-save
areas; a five-level user and terminal security system; front-end
forms files, wi th automatic data-fill; application program control;
and dynamic network management. With the front-end host resources
are directed toward the support of user applications, not data
communications or message control functions.

Protocol Flexibility - Supports most standard data communication
protocols; also, SRI can develop specialized protocols tailored to
specific user requirements. This flexibility allows price and
capability to become the key criteria in selection of terminals and
remote devices. (See Appendix 2.)

Application Independence - The front-end totally insulates application
programs from data communication and message control functions.
The front-end also provides a prototype application handler for
simplified development of new application programs. Together, these
yield efficiencies in application program development and
maintenance.

Device Independence - The front-end control character mapping and
automatic forms-fill features allow device-independence at the
application program level. Specific application programs can be
developed without regard to the characteristics of a given terminal.
Device-independence reduces application program development time;
in addition, changes in terminal hardware no longer obsolete
application programs.

E-5 - 08



Dynamic Network Configuration and Maintenance - With the front
end, the network is defined using on-line transactions. Most network
parameter changes can be made dynamically; network down-time
thus is eliminated for recompilation of front-end or host application
programs. Refer to MCS3000 Reference Manual3•

Other Features - The front end provides: Audit and recovery; on
line forms generation and maintenance; remote print spooling; and
on-line access to summary network statistics.

Multiple Configurations for On-Line Processing

The basic front-end is configured with a single front-end processor
(FEP) interfaced to a single host computer; alternative configurations
include:

- Simultaneous interfaces to as many as four hosts.
- Multiple front-end processors interfaced to a single host.
- Redundant front-end processor configurations for single-

or multi-hosts.

Single FEP to Multiple Host Configurations

The front-end provides an integrated front-end data communication
and message control system for the multiple host environment. Any
combination of HP3000 Systems can be interfaced to a single front
end. Alternatively, one or more Burroughs Medium systems can be
used in conjunction with the HP3000 host(s).

1JITERM. N'U.,ti 111

FEP

I
r I

HOST 1 HOST :l HOST :3 HOST Li

Footnotes:
3 MCS3000 Reference Manual, Systems Research Incorporated, June 1980

E-5 - 09



Multiple FEPs to Single Host Configuration - Where network
requirements dictate discrete front-end processors, multiple FEPs
(limited only by the number of HP host interface slots available) can
be interfaced to a single HP3000 System.

TERM' ~A\..~ TtR.M\NALS

FEP 1

HOST

FEP ~SI-(AREP 1./0FEP 1

Redundant FEPs to Sin Ie Host Confi uration - Redundant front-end
processors, sharing all I 0 interfaces SHARED I/O) to the terminal
network and the host, provide automatically switched front-end
processing in the event of a front-end failure.

TEQ.M\NAL$

HOST

Redundant FEPs to Multiple Host Configuration - Combining the
unique front-end features of redundancy and multiple host support
provides a configuration suitable for the most demanding of
networking requirements.

IIITv;~M,t.lA\.~III
FEP 1 - SWf\kEO I/O --- FEP :l..

I

HOST 1 HOST :t ~ -- I-lOST3 I-IOST Lf

The front-end has been designed to provide maximum flexibility. It
supports the above configurations, but alternative configurations are
available to meet specific networking requirements. For example:

E-5 - 10



Store and Forward - With a data communication link, the front-end
can store and forward messages to remote processors. These
messages can originate from: 1) Terminals interfaced to MCS3000
Model 200; 2) host resident application programs; or 3) other remote
processors.

By utilizing "inverse protocols", the front-end appears to the remote
host processor as a terminal or terminal controller (e.g., IBM 327X,
IBM 2780, Burroughs TD830, etc.). The store-and-forward feature
enables an HP3000 user to interface with a remote (IBM, Burroughs,
etc.) host network.

TERM\NALS

FEP

HO~T

REMOTE HOG,

-----_._'..---------.......

REMOTE HOST

Remote Diagnostics and Maintenance - To enhance SRI technical
support the front-end can provide remote diagnostics and
maintenance which enables SRI technical support personnel to
monitor, isolate and correct front-end code, memory and disk files
remotely, without halting on-line operations.

IX. Summary

The SRI front-end, MCS3000, significantly enhances the HP3000.
The capacity of the HP3000 to do transaction processing is greatly
increased because of the distributing of data communications and
transaction monitor functions to a specialized processor. Moreover,
many options are opened to the implementers of systems, such as
the multiple host configurations, redundant configurations, and the
ability to interface foreign terminals and processors; all new options
for distributed processing with HP3000's.

E- 5 - 11



Appendix I

In August of 1978 a major brokerage firm headquartered in the
midwest began a process to replace its aging communications
system. The company was then communicating with its 200 branch
offices via low speed teletypes. During the inquiry, the firm came
to realize that they might do much more than just replace their
TTYs. Thus in January of 1979 they selected Systems Research of
Okemos Michigan to install an online turnkey computer system and
terminal network which was to handle both communications and data
processing functions.

SRI, working closely with the brokerage firm's staff, began
immediately to design a comprehensive system centered around
MCS3000, SRI's HP 1000 and HP3000 based communications and
transaction processing product. The resulting plan called for a
phased implementation which would have as its first goal the
replacement of the existing "network". Installation of the Hewlett
Packard hardware began in April of 1979.

By the fall of 1979 all of the old teletype equipment and slow
asynchronous lines had been replaced by CRT and printing terminals
multidropped on 2400 baud synchronous lines. By the end of 1980
due to the growth of the firms business, there were over 250 offices
being supported, and the network consisted of more than 600
terminals. Addi tionally, an on-line datacomm link to a non-HP
remote mainframe is supported for accessing a highly volatile and
time-critical data base. The entire network is controlled and
supported from a single HPI000 ·minicomputer with SRI's MCS3000
software. (See figure A).

The HP 1000 is linked through high-speed (400,000 char/sec) HP
interfaces to an HP3000 Series III which handles the data processing
functions. This vertical distribution provides, in effect, a division of
labor which makes possible much higher throughput on the HP3000,
as well as the obvious expanded data communications. The HP1000
is configured with 256KB of memory and 20MB of disk; the HP3000
has 1.5MB of memory and 375MB of disk, as well as a pair of tape
drives and a high speed line printer.

E-5 - 12



Appendix 1 Cont.

There are four major applications' currently being handled by the
system, trades, quotes, research, and branch communications and
administration. Each of the major systems has a single program in
the HP3000 which handles all transactions for that application. The
message volume being processed by the current configuration exceeds
80,000 daily and has reached a level of 15 per second on peak
trading days.

Current development plans include the addition of another HP3000 to
the configuration in 1981 to accommodate between 5 and 10
additional applications. At least three of these applications will
require on-line/realtime computer to computer links with various
securities service organizations. These links will be effected through
the HPI000 front-end. Additionally the number of offices supported
is expected to reach the 350 mark in 1981 demanding a minimum of
750 terminals to be supported by the configuration.

E-5 - 13



Appendix I, Figure A.

~oo HU LTI OROPPE.O C~Ts A"D PA\I-ITC1\S

o

If--- ._-,
, I HPIOOO
I I Loc",-
I I OAT" s"st
I I
, I

: I
I I
I I
I I
I I
t I
I I
: I I
~ I I'-1. ._._,

RIMOTI: F01'.E1Gt-l
P"OtCSSO~

IiP3000o

E-5 - 14



Appendix II.

Name

PTTY
P264X
PBIPP
PBIMP
PBPS
PADM
PBRJE
PBPPCT
PBPPBT
PBPPCV
PNCR270
PTTEL
PAZUR
ptIC
PVSET
PNCR270A
PNCR270B
PNCR796
PNCR796A
PIDEN
PIBM2260
PVTRXI
PVTRXO
PCARD
PBNCR
PCLETS

SRI PROTOCOLS

Description

Character Mode Teletype
Block Mode HP 264X
IBM Bisync Point-to-Point (2780/3780)
IBM Bisync Multi-Point
Burroughs Poll/Select
Lear-Siegler ADM-2
Burroughs Remote Job Entry (761)
Burroughs Point-to-Point/Contention
Burroughs Point-to-Point/Batch
Burroughs Point-to-Point/Conversation
NCR 270 Basic Variant
Bell 407C Transaction Telephone
Azuredata Scorepad Terminal
TI 742 Cassette Station
VUSET device at Pan Am Bank
NCR 270 Variant A
NCR 270 Variant B
NCR 796 Basic Variant
NCR 796 Variant A
IDENTICON Bar Code Reader
IBM 2260
Votrax In
Votrax Out
DATA CARD (IBM 2740 Subset)
Bisync Transparent N.C.R. (3270 var)
California L.E.T.S. (2780.3780 var)

E-5 - 15



INCREASE PROGRAM PRODUCTIVITY/
FULL SCREEN EDITOR

By:

Gurdo VanBempt
Jaak VanDamme

Syvas, Inc.

Paper to be presented
at Conference

Tuesday E-6 - 01



USING HARDWARE MONITOR TO SOLVE,

PROBLEMS ON HP3000 - III

Tuesday F-1 - 01

Ivan Loffler
Senior DP Staff Analyst
GTE Service Corporation
P. O. Box 1548 - F07l
Tampa, FL 33601



I. ABSTRACT

This paper describes a case study concerned with solving a severe

response time problem on an HP3000 large data base system. A major tool

used on this project was the hardware monitor.

The paper states the problem, the objectives, and describes the problem

solution. To arrive at a solution it was necessary to define levels of

utilization of the troubled system, for which the hardware monitor was

used directly. Also, the application of capacity planning guidelines is

described here, especially how the guidelines were used for the

definition of system utilization.

Also, software tools such as: SOO, SHOWME, and Event Monitoring

Facility were used. These tools were calibrated for accuracy (i.e.,

capture ratio) and for overhead by comparison to hardware monitor data.

The results of this project, including conclusions and recommendations

are contained in this paper.

II. INTRODUCTION

This paper describes the problems and the solutions as they occurred in

one of our data centers within GTE. The main problem was an extremely

long response time (up to 30 minutes) experienced by users of a large

data base system, run on a Hewlett-Packard HP3000, Series III

minicomputer.

F-l - 02



The configuration consists of the CPU, multiplexor channel, selector
channel, 1 rnegabyte of main memory, 8 disk drives, 2 tape drives and
about 30 terminals connected via a multiplexor channel. The disk drives
are attached to the system via the selector channell (See Figure 1).

CENTRAL DATA BUS

•
1

MEMORY

lOP BUS

SELECTOR
C11,l\~J ~J EL CPU

l

I
MUX

CHAr~NEL

t

~~ UX CHA~J. BUS

DEVICE
CONTROLLERS

t

1

1

-I
L1.1 ~ ~
CIJ --

DE'JICE
COrJTROLLER

FIGURE 1

ASYNCHRONOUS
TER~~INAL

CONTROLLER

The hardware is controlled by the MPE-III operating system. The data
base is supported by the IMAGE subsystem.

Also provided in this paper is an analysis of the problems and a
discussion on selected diagnostic tools. A description of a major tool
used in this project, the hardware monitor, is also included. The paper
lists solutions designed to rectify the problem.

F-l - 03



III. DEFINITION OF PROBLEMS

The HP3000 data center started to experience a severe degradation of the

response time on its large online data base system. This system has ~

been designed to keep track of the telephone circuits and related

equipment, including trunk and facilities. It provides for such details

as circuit orders and line assignments. The system requires an

interaction with the engineering department, and has to absorb intensive

data entry and frequent inquiries.

The response time delay of up to 30 minutes impaired the productivity of

the operators, clerks, and engineers, who use the system. This resulted

in delays in equipment ordering and could result in delays in service to

telephone company customers.

After the management of the center recognized this as an emergency,

several technical groups were involved and an informal task force was

formed with an objective to improve the service levels of the system.

The group included application development people, vendor's hardware and

software engineers, the data center technical support and a corporate

planning group, of which the author is a member.

This task force divided the investigation into appropriate areas of

interest. The development team looked at the way the application design

might be improved, while the Hewlett-Packard people investigated the

load on the system using the Event Monitoring Facility, a software

measurement tool. The planning group brought in the Tesdata hardware

monitor to measure the hardware components of the system, to compare

thQir utilization against the recently developed capacity guidelines for

minicomputers, to calibrate all software tools used in this project, and

to observe the impact of remedial changes on the investigated system.

F-l - 04



IV. HARDWARE MONITORING2

Since the hardware monitor became a major diagnostic tool in this

project, it deserves more explanation. The hardware monitor is a

measurement device, independent of the monitored system called the host.

It is electrically attached to the host's backplane pins and collects

specific discrete electronic signals. Because it does not interact with

any part of system's software, it is totally independent of host

activities and thus does not impose any overhead on the measured host.

Figure 2 describes the hardware monitor in a block diagram. The

electronic signals, such as CPU Busy, Selector Channel Busy, and Byte

Count are captured by high speed probes and brought to the hardware

monitor's capturing registers via a system of cables and concentrators.

The signals are processed inside the hardware monitor by its internal

Boolean logic circu~try. The hardware monitor's internal minicomputer

organizes the signals into the memory in the form of data. The data are

either displayed online on a CRT or recorded on a magnetic tape or disk

for postprocessing and for printing of reports.

r----------------------------
tLt:\RD\VARE MONJTOR

HOST
(~,'1EASUREO

COrI1PUTER)

FIGURE 2

F-l - 05



Basic information required about the system being measured is called the

System Profile3. It basically consists of:

- CPU Busy

- CPU in Privilege State (Overhead)

- Multiplexor Channel Busy

- Selector Channel Busy

Instruction Count

- Disk Drive Busy

The hardware monitor is the best suited device for capturing this

information, since it does not skew the data by its own processing

overhead, as software monitors do. Also, the Boolean logic of the

hardware monitor allows for composite measures such as CPU/Selector

Overlap, CPU Only, System Busy, and CPU Only (See Figure 3).

CPU BUSY

SELECTOR BUSY

CPU/SEL OVERLAP

CPU ONLY

SYSTEM BUSY

FIGURE 3

SEL ONLY

These measures are available from the hardware monitor only. They are

crucial for the investigation of system performance. For example, the

CPU/Selector Channel Overlap is commonly low on machines operating under

the MPE-III operating system. This results in inefficient operation and

decreases the usable capacity of the system.

F-l - 06



v. ANALYSIS OF PROBLEMS

Analyzing the collected data from all the available tools, such as the

hardware monitor, Event Monitoring Facility, SOD and SHOWME software

monitors, and also from the physical observation of data center

operations, there were several apparent areas for improvement:

1. Over 60% of the disk I/O activity was concentrated on one disk

drive, creating a high amount of conflicts and long queues on this

particular drive. Since this drive also contained a system data

set, the situation was complicated even further by adding to the

response time delay.

2. The system swapping amounted to 7.2 swaps of 8 KBytes per CPU

second. Comparing this number with our Capacity Planning

Guidelines, the swapping (or paging in IBM terminology) should not

exceed 10 pages per second on a comparably sized IBM machine: Since

every HP swap equals to two IBM pages, the maximum paging was

14 per seconds, exceeding the guidelines by 40%.

3. The CPU activity was low, compared to the amount of I/O activity.

This suggests an I/O bound workload. Since some percentage of the

CPU Busy time has to be attributed to the I/O processing, it was

necessary to concentrate the tuning effort on the I/O area.

F-l - 07



4. Some transactions contain up to 71 disk I/O's. This o~viously is a

design and data base deficiency, and it is adding considerably to

the response time delay. There is an obvious correlation between

the amount of I/O processed and the response time. The disk (Model

Number 7920) timings are described in Table 1.

Average Random Seek Time:

Average Rotational Delay:

Data Transfer Time (937.5kB/Sec):

Total per Average 8K Block

TABLE 1

25.0 ms

8.3 ms

8.5 ms

41.8 ms

41.8 ms is the time required to process one I/O within the disk

drive. There are some delays added: the contention for the drive,

controller and channel, the CPU involvment (which may not always be

overlapped with the I/O operation), and the memory contention.

These factors may very well increase the time for processing an I/O

to 1 second.

5. Number of active users was observed at a maximum of 28, which

exceeded the previously recommended maximum of 15 active terminals.

Previous monitoring of the simulated application system by the

hardware monitor determined that on the average, one terminal would

utilize the system at about 6% of its usable capacity.

F-l - 08



6. The HP3000-II1 does not have adequate capacity, using current

versions of utility support software, to reorganize our very large

data base in a timely fashion. A vendor's software engineer

estimated that this task would take about 10 days. Currently,

secondaries account for 30% of the records in portions of the data

base. This fact is resulting in unnecessary disk I/O operations.

Decreasing and maintaining a reasonable amount of secondaries

requires more disk space, which is an area where maximum capacity is

also being approached. If this capability to reorganize remains

unresolved, it will keep the system on a continually degrading

course.

7. Some miscellaneous observations were also made; such as, very long

searches for certain transactions (resulting in a high number of I/O

operations), and inefficient algorithms for resolving synonyms in

the data base (resulting in a 30% level of secondary records).

VI. SOLUTIONS

1. Disk I/O Contention

Table 2 describes the number of disk I/O's on each disk drive at the

beginning of our investigations. These numbers were reported by the

Event Monitoring Facility.

Drive Disk l/Os %

1 6,331 62.0

2 1,056 10.3

3 54 0.5

5 953 9.3

65 200 2.0

66 927 9. 1

67 511 5.0

7 180 1.8--
TOTAL 10,212 100.0

TABLE 2

F-l - 09



The obvious disparity created overutilization of drive 1, resulting

in contention, queues, and long delays on this drive.

This drive contained the system data set plus some application data

sets. The trivial system response time (i.e., pressing the RETURN

key) was about 30 seconds.

Reorganization of disk data sets, with an objective to decrease

contention was recommended and implemented. Drive 1 was dedicated

to the system data set. The result was an immediate response to the

RETURN key. Since the production response time was of a magnitude

higher, the result of this improvement was not measurable.

2. Memory Contention

The contention for space in the main memory leads to swapping. Each

swap results in at least one I/O operation. In the heavily I/O

bound workload the 7.2 swaps per second (measured by the Event

Monitoring Facility) contributes to the I/O load.

The suggested remedy was to increase the size of memory. The

original system had 1 Mbyte of main memory. Thanks to

Hewlett-Packard's cooperation we were able to experiment with two

0.5 Mbyte increases.

F-l - 10



The system with 1.5 Mbyte of memory decreased the amount of swapping

to 22% of the Mbyte swapping level. The second 0.5 MByte

decreased the remaining swapping in half, but since swapping had

already been decreased considerably, the second memory increment

did not provide much improvement in performance.

Also, the hardware monitor utilization measurements supported these

results. Table 3 describes all three steps. The CPU Busy and the

Selector Channel Busy are basic measures. The third measure,

Utilization Leve1 4, is an arithmetic sum of the first two

measures. The Utilization Level was calibrated previously, and it

was found that the maximum laboratory achievable value is 180

(MPE-III). The practical maximum utilization of the system was

found to be 135.

Memory Size CPU Busy Selector Utilization Level

~ Mbyte 61.8% 64.2% 126.0

1.5 Mbyte 49.2 49.2 98.4

2 Mbyte 43.2 45.0 88.2

TABLE 3

Although these comparisons were not based on results of a rigorous

benchmark, an effort was made to compare data taken during periods

of comparable workload execution. The type of transactions and

number of users was comparable, and all measures were made on the

same day, during the same shift.

The memory size testing was performed after some tuning had already

been implemented, thus the original high utilization (over 130) was

not reached.

F-1 - 11



3. I/O Operat i on

The high amount of I/O operation was attributed to the following:

- Disk I/O contention, as discussed previously.

- High swapping rate.

- Very large database operations.

The application design team implemented changes to alleviate the

I/O bound workload. They were:

- Multiple copies duplication was moved from the disk to memory.

- Optional restriction of conditional search to a smaller subset.

- Elimination of unnecessary summary reports displayed on a

terminal.

- Ability of the user to bring less information to the screen.

The results of this effort are shown in Table 4.

Date
SEL/CPU

CPU Busy . Selector Ratio

Jan. 6, 1981 (prior to changes)

Feb. 10, 1981 (after changes)

58.3%

43.9

60.8%

42.8

1.04

0.97

TABLE 4

F- 1 - 12



4. System's Capacity

The capacity of HP3000 was exceeded by the operation of this data

base. Based on previous monitoring on a simulated workload, the

"Utilization Leve1 11 increased 9 units with each added terminal.

This would permit a maximum load of 15 active terminals. It was

observed in actual practice that as many as 28 users were

active.

Having up to 28 active terminals on the system resulted in

contention of all the system's resources (except Multiplexor

Channel), and delays in long search response time of up to 30

minutes.

One of the initial changes, and perhaps the most significant to

date, was to split the workload over 2 shifts. After this

~ change, the number of users on each shift usually do not exceed

15. This decreased the response time for transactions requiring

long search~s to a maximum of 30 seconds (from the original

maximum of 30 minutes). Other types of transactions (those not

requiring long searches) now required only a few seconds.

VII. CALIBRATION MEASUREMENTS

1. MPE-III/MPE-IV Comparison

During the hardware monitoring sessions, we also discovered a

shortcoming of the system which influences its capacity. It is the

lack of the ability of the operating system MPE-III to overlap CPU

and I/O activity. The HP engineers were aware of this problem and

r' claimed that the MPE-IV operating system should rectify it.

F- 1 - 13



Table 5 compares the hardware monitoring measurements of MPE-III and

preliminary released MPE-IV operating systems. A single stream

serial batch benchmark consisting of five steps was used for

comparison. The first step is CPU bound, the second to fourth steps

are CPU and I/O mixed with increasing I/O portion, and the fifth

step is I/O bound.

MPE-III -MIJE-rV
STEP CPU SEL OVERLAP CPU SEL OVERLAP

1 41.54s 8.04s O.OOs 41 .54s 6.70s O.OOs
2 63.65 18.76 9.38 61.64 18.76 10.05
3 50.92 34.84 25.46 48.91 32.83 26.13
4 55.61 50.25 20.77 54.27 48.24 20.77
5 60.97 65.66 28.14 56.95 63.65 29.48

TOTAL 272.69s 177.55s 83.75s 263.31s 170.18s 86.43s

TABLE 5

The same benchmark job consumed 3.5% less CPU time and 4.5% less

selector channel time, when run under the MPE-IV operating system.

However, the most significant improvement is the ability of MPE-IV

to overlap the CPU and the selector channel activities. The formula

(1) describes the method of calculation of the Overlap Factor:

CPU + SEL
OVERLAP = Overlap Factor ( 1)

The improvement of the Overlap Factor under the MPE-IV operating

system was 7.1%. Since the overlap consists of two values (CPU and

Selector) only one half of the Overlap Factor improvement should be

considered for improvement in the system's capacity.

F- 1 - 14



Since this benchmark is serial in nature and does not heavily load

(" the system, the improvement is marginal. Therefore, another

measurement of the system, heavily loaded with a series of

engineering test programs is described in Table 6. This time an

average percentage utilization is described in time samples.

NUMBER OF MPE-III MPE-IV
PROGRAMS C-PU -SEL OVERLAP CPU SEL OVERLAP

1 41% 65% 9% 70% 47% 47%
2 50 66 16 98 57 56
3 50 78 26 99 79 78
4 49 90 41 99 57 56

AVERAGE 48% 75% 23% 92% 60% 59%

TABLE 6

In this case, the system under MPE-IV could provide an average of

24% more capacity, and 39% in an extreme case (3 programs). The

overlap factor calculated by using formula (1) improved by a factor

of 2 above MPE-III.

It should be noted, that all measurements were conducted on a

pre-released version of the MPE-IV operating system using a

benchmark technique. The performance results on the final supported

version in a production environment might be different.

2. "SHOWMEII Calibration4

The CPU time measured by the hardware monitor is considered an

absolute measure. This allows it to calibrate any software

package.

F- 1 - 15



Table 7 describes the CPU times of the hardware monitor (HIM) and

the SHOWME software for both MPE-III and MPE-IV operating systems.

Again all measurements were taken while the above described

benchmark job was executed.

MPE-III MPE-IV
CAPTURE CAPTURE

STEP HIM SHOWME RATIO HIM SHOWME RATIO

1 41.5s 39s 0.94 41.5s 38s 0.92
2 63.6 60 0.94 61.6 57 0.93
3 50.9 45 0.88 48.9 40 0.82
4 55.6 47 0.85 54.3 41 0.76
5 61.0 50 0.82 56.9 42 0.74

TOTAL 272.6s 241s 0.88 262.2s 218s 0.83

TABLE 7

SHOWME has 88% capture ratios under MPE-III and 83% under MPE-IV

operating systems. These factors must be used whenever SHOWME is

used to define the actual CPU utilization.

VI I I. SUMMARY

It is obvious that we did not measure all parts of the system with the

hardware monitor, the main storage and buses for example. This would

require much more effort in installation, operation, and analysis and

additional benefits would be marginal. Also, the urgency of the project

required swift action.

F- 1 - 16



The hardware monitor was not the only tool used in this project. There

were software monitors, accounting data, physical observation and

chiefly the dedication and effort of all personnel involved, which

helped to solve this difficult and complex problem. However, the

hardware monitor did playa major role in pointing out otherwise obscure

bottlenecks and inefficiencies in a timely fashion, and thus saving many

manhours, which would have been used otherwise. It also helped to

calibrate the software monitors so they can be used in the future

instead of the hardware monitor, which is an expensive and labor

intensive tool.

The capacity of the HP3000-III and lMAGE/3000 to maintain the large data

base remains a problem. This problem should be resolved since it has

the potential to become worse with regular operation of the data base.

The effort to improve the service level of the HP3000-III system is not

yet completed. The improvement of response time from the maximum of 30

minutes to 30 seconds was only the first step. The next step will be

capacity planning with an objective to maintain an acceptable service

level as the workload grows. Installation of MPE-IV, further changes in

the application, extension of main memory to 2 Mbytes, and possible

installation of the Model 44 are some of the available actions for

future consideration.

F- 1 - 17



References

(1) Hewlett-Packard:

(2) Tesdata Systems
Corporation:

(3) Buzen, J. P:

(4) Loffl er, I:

(5) Wenig, R. P:

IIOEM Computer Products Catalog; 5922-0151(0),11
November 1980.

IIMS58 Computer Performance Measurement System
Reference Manual", McLean, Va.

IIA Survey of System Tuning Tools and Techniques;
System Tuning", Infotech State-of-the-Art Report,
pp. 229 - 241, Bershire, England, 1977.

IICapacity Planning for Minicomputers", INTELCOM 80,
Los Angeles, Ca., November 1980.

"Effective Use and Application of Minicomputers ll
,

IMS, Inc., Framingham, Ma., 1979.

F- 1 - 18



The Development of a la~ge Appiication System for
the HP3000 Computer

ttanc~J Federman
Robert Steiner
Manufactu~ing Systems Operation

Tuesday F-2 - 01



I t·~TRO[!tUCTI Cit·.

Desi9n~ development J and market analysis are only the initial
steps in 'produc i ng a prof i tab 1e: produc:t. r1anufac:tfJre: of t.he
product is the next step. Do you really know what is involved?
The first step is to specify the tngineeriog data, What is the
stru~ture of the product? You Reed to determine the parts and
subassemblies that comprise the product and the quantities of
each required per unit, Which of these components will you
manufacture? Which will you sub~~ntract out to other
manufacturing companies J and which will you purchase?

Now that you have some of the engineering specifications the
n£>~t step is to determine the manufacturing procedure - how is
th€ product to be ~ade? You ~ill need to decide the manufacturing
operations nec~ssary to constract th@ product and then specif~#

the location in you~ shop where the work will be done
(workstations), The sequence o~ these production stepsi called
the rQuting) plus the labor and material required at each
operation must be detailed.

The product is specified .and tne manufacturing plant and
process ~re established, You are now ready to begin production,
How many products should you build? You need to consider customer
demand) current and ~orecast, as well as the capacity constraints
of the factory. Once your production plan is established you need
to determine your material requirem~nts. How many component parts
do you need to meet your production schedule? You also need to
determine the s~hedule of production for the manufactured
componentSt Wtlen do the purcha~ed parts need to be ordered? You
need to balance the desire to have components alwa~ls available
~fith the economic neLessity o~ keeping inventory levels as low as
possible,

Controls are needed to monitor the flow of materials in the
stockroom ~nd on the ~actory ~loor. When do the component
parts need to be issued to the production lines and what
quantities are required? You will want to monitor the shop floor
~nd track the work in process. How much material is wasted? How
efficient is your work force? When the products are finally
completed )'ou need to keep them in a finished goods inventory and
t·I"···~:?t\=k t.t...,e i. y-. sa 1es •

FinallYJ you will be concerned with calculating the costs 
labo~J matErial and overh~ad. The production c~sts will help you
decide your pricing policies and determine your profitability.

From this brief and simplistic overview 0' a
manufacturing operation it should be clear that there are many
intricate relationships to de~l with. Effectiv~ and efficient
managem£nt of a man~facturing operation is difricult to achiev€
and many neighb~t~hood businesses as well as sophisticated

F-2 - 02



manufacturing companies are turning to computers for help,

MATERIALS MANAGEMENT/3000

Hewlett-Packard is among the vendors providing
application systems for manufactur'ing management - a
manufacturing company of~ering a solution to the problems of
manufacturing companies, Materials Manag~ment/3000 is an
intet~active material planning and control system designed to make
it easier to deal with the complexities or operating a
manufacturing company. It is primarily designed for
manufacturers who build standard products to stock in discrete
manufacturing steps (fabricators and ass~mblers) These companies
have a significant investment in inventory. Materials
Manag€ment/3000 can help them balance th€ir inventory levels with
customer demand for timely ship~ents to optimize their dollar
i rl\.'estment..

The comple~ity of the manufacturing en~ironm€nt can also be
seen in th~ internal complexity of the software pt'oduct which
pt~ovides th€ solutio~, Matarials Management/3eOO consists of over
400~OOO lines of SPL"code which make up 161 transactions
r~ferencing 9 data bas~s, There are 291 screens~ both transaction
screens and menu screens, There are also 168 batch programs, The
.~pplication data bases and s~reens can be customized by the user,
Materials Management/3000 operates on any cf the HP3000 family of
computer's and uses the 264X family of terminals. The system uses
HP/s IMAGE data base management system and HP~s Y/JOOO screen
handl@r' .

M~terials Managernent/3000 provides a solution to the
previously outlined problems of .anuf~cturing companies by
supplying 10 major modules. Their int«r-relation is diagrammed in
Fi';Jure 1 a

Master Production Sch€duling~ MPS is an on-line management
planning and production scheduling tool. It is used by
the master scheduler to generate a production schedule
for the plant~s marke~able products and to set the mix
for the product options, Input to th~ module includes
the cur~ent customer orders) forecast customer orders,
the current production schedule and the current level
of product inventory, The output of the MPS
calculations is 'called the master production schedule.
This schedule contains suggested manufacturing orders
including quantities and starting dates, The schedule
is then input to the Material Requirements Planning
(MRP) module to plan the manufa~tu~e and purchase of
the required component pa~ts. MPS also includes a
"lrJHAT IF" simulation capabilit.y which allo~.#s the user
to gene~ate tentative schedules J and view the impact

F-2 - 03



of modifications on the current schedule,

Rough Cut Re~ource Planning, Rouch c~t r~50urce planning
(RPP) is a management tool used by th€ master
scheduler to compare the resourc€s needed to implement
the master schedule with the available critical
t~esources to help 'produce a realistic master schedule,
The us€r specifies the critical resource requirements
for each master schedule part J and the maximum
capacity of these resources, Examples of critical
resources are labor hours l floor spac€1 dolla~

investment in work in proces~ inventorYJ material
supplies; etc, The RPP r~ports highlight the capacity
constraints and help the user to resolve competing
demands for the critical resources, An on-line RPP
report ~~n also be used 'to help' evaluate simulated
master s~hedules by comparing their resource
requirements to the requirements of the current
schedule,

Material Requirements Planning: MRP simulates the complex
flow of materials required to manufacture products
and gene~ate~ a·m3terial plan. MRP planning starts
with up-to-date information about the current
inventory levels and the planned production
requirements, Using part and bill of material
infor~ation the .aterial requirments for each part
ar~ calculated. The plan is started with the highest
level assemblies and than p~oceeds through the
lowest level parts. MRP will reschedule curr~nt work
and purchas~ ord~rs and suggest new ord~rs as
necessary to meet the .demand, MRP is a reg€nerative
system - a complete m~terial plan is generated
every time MRP is run,

Parts and Bills of Materia11 This module provides on-line
~aintenance of engineering} accounting, and planning
information about each pa~t and product l ahd
information on how the parts relate to one another to
form the product structu~e (bill of material),
Responsibility for maintaining this data will normally
be shared among seve~al departments - account.ing~

engineering specifications, and planning, Part and
structu~e data can b~ reviewed on-line or through
printed reports. The part and structure data is used
by many of the other modules in Materials
Management/3000, including MPS and MRP,

Routings an~ Workcenters: The Bill of Material defines the
parts and subassemblies that comp~ise a product but
doesn~t document how the various components a~e

actually assembl~d. The routings and workcent~r

F-2 - 04



module maintains information that describes the
locations where the products are made (workcenters)
and the proper seqaence of .anufacturing (routings)
This in~ormation is used to genarate cost information
for the Standard-Product Cost module J and to help
develop detailed production schedules. Responsibility
fo~ this data usually resides with manufactu~ing

specifications.

Standard Product Cost: SPC provides manufacturers with the
capability to accurately calculate the standard
costs associated with the manu~acture o~ each
product, All current cost infor~ation may ba
edited and reviewed on-linQ. The standard cost of a
product is determined by accuaulating all relevant
material J labor and overhead costs for the
components of the product as well as the costs
associated with the actual construction of the
finished p~oduct, These standards can be used to
determine product pricing and profitabilityt
Marketing as well as the material manager would use
this data.

Material Issu€s and Receipts: This module helps to control
stockroom inventory by maintain timely and accurate
records o~ all actions that affect inventory
balan~esJ Ths data includes receipts or work orders
or purchase orders} material issues from stock to a
particular work order} filling or a backorder l or an
unplanned issue, All record keeping and updating is
done on-line and a r~cord of all inv2ntory activity
is kept on-line for a user-specified period of time
as an audit trail. Stock room personnel are the
p~imary users of this system.

InventOt~y Balance Managem£nt: Invantory balance management
is a module to aaintain information about inventory
balances and the wa~ehouse locations where the
invento~y is stored, The current inventory status
can be affected by three types of transactions 
m~terial movement, inventory counts, and stock
adjustments, All three types of transactions will
trigger an immedi3te update of the inventory counts
as WQ11 as create an audit trail record, All
udpates are done automatically in an on-line mode.
Current inventory balance data f~om this module is
used by MPS and MRP to determine the next master
schedule and the next material plan. All activity
that affects inventory status can be reviewed
on-line, An inventory value report is also
available. Materials Management/3000 also allows for
multiple stock locations - a separate on-hand

F-2 - 05



balance can be maintained for each stock location in
each warehouse. This svstam also helps with the
actual counting of inventory which is periodically
used to verify the inventory totals.

Work Order Control: A work order 1s an internal 'actory
authorization to build a specified quantity of a
particular subassembly by a specified date. All
work orders require the issue or on-nand in~entory

for~ their completion. Prior reservation of on-han~

invent~ry is the best method or preventing shortages
at the time of issue. Al1ocation l or logical
reserv~tionl of -on-hand inventory will help predict
and prevent these 'shortages, The timely noeification
of exceptions to the material plan can allow
co~rective action befo~Q the results become
disastrous, Th€ output of this tracking systam is
the r€ports noting exception conditions. The
materials manager can then act on these reports, The
actual issuing of parts and work orders l and the
actual ~Qceipt of finished products is accomplished
by using the material issues and receipts module,
MRP is a prime user of information from this system.

Purchase Order Tracking: A purchase order represents a
scheduled receipt fo~ purchased items, Entering a
pu~chase order requires the entry or more
information than that required on a work order ~

- eag: vendor info~mation, shipping information,
price information. It is also possible to group
muItipl~ delivery dates and/or multiple parts on
the same purchase order. Purchase Order Tracking
system monitors these scheduled receipts and also
maintains vendor information, Users can get a
repo~t on the current orders ~or a particular
vendo~~ or the value OT outstanding purshases by
scheduled receipt date4 The purchasing department
and the materials manager would normally us~ this
module,

What distinquishes Materials Management~3eOO from other
materials management systems in the marketplace is not just the
product features but the design and implementation philosophy
behind it, This philosophy evolved from previous experience with
application systerns~ a knowledge Of the cOMpetitive marketplace~

and first-hand experience with manufacturing company operations.
The design philosophy can be summarized as providing a
functionally complete solution which tits the business practices
of the us€r , is friendly and easy to use J and is supportable by
HP.

~
'(1;}

F-2 - 06



APPLICATION STRUCTURE

Materials Management!3000 evolved from a previous product,
rfFG/3aOO~ which was releas~d in December Ot 1977. MFG/3000 began
in the HP3000 manufacturing are~ as a computerized solution to
HP'g internal materials management problems, As the system was
completed and put into us€ it became claar that other Medium to
large manufacturing companies ~€re having the same sorts of
problems. It ~as decided to to turn the home-grown system into
-3 pt"oduct,

MFGIJOOO was sold both as an object code product and a source
code product. A source code product is one in which the actual
comput€r programs are sold to the user, The user then can modify
the code dit'ectly if they wish to implement any modifications. A
source code product is difficult for the fa~torv to enhance and
puts a support burden on the customer. The bug fixes and factory
enhancements· must be sent to the user in SOl!~Ce code format. The
customer must then implement the changes manually. If the
customer has made modifications to the source code th~ changes
from HP may not be compatible, It is also ve~y difficult for the
factory to support a source code product. If the user reports a
bug the source of the error i$ difficult and time-consuming to
d~tect since the fault could be in the original code or in t~e

user-modified code.

An object code product is one in which only the executable
code is sent to the custom~r. The user cannot make any
modifications to this product and so has gained factory support
at th€ price of fl@xibilit~' and local user control. The idea Of
an object. c.,de prl:).js:lct. is a diff·icult. onE! to us€llu to the
customer. The application cannot be tailo~ed to fit the
individual needs of the customer. On the other hand} it is not
possible for the factory to anticipate all the detailed and
distinctive capabilities p€culia~ to any p~rticular customer.

Hpls solution was to develop an object code product that was
user customizable, The big advantage is that HP can fully support
and enhi~nce the product while the user can tailor the application
to suit their individual needs.

Most of MFG/3000 customers had purchased the object code
version. The majority of those c~stomers t~at did purchase the
source coda were interested in ·changing the field edits~ the data
item characteristics J and th€ data items in the reports~ not the
program logic. The implementation strategy was to include
standard and accepted functions in the program cod~ and provide
sot"'tware too 1s to a 11 o~" the customers t.o ta i lor J or II custo. i ze .. "
the system to fit their own individual requirem€nts. So the
program code was separated from the data item charact£ristics~

the screen formats} and the other parameters that characteriza
each par·ticular installation of the product. This would allow

F-2 - 07



the factory to maintain the logic of the programs while the user
could tailor the edits and data item charact~risticsJ as well as
modify the appearance of the application.

The nExt probl€ffi to tackle was to develop an effici€nt
mer=h.:inism t.() II int.erpret. u t.h€ us~r-sllpplied execution-time
parameters. The first design d€cision was to put the
customizable information into tables. A table-driven applic~tion

was chosen over a compiled appli~ation because implementation o~

the latter design meant the development of a new language~ a
challenging task in its~lf. And control o~er the customer use Ot
th€ languagE would be difficult. Dat~ item cus~omization via
t""~~·-.:I:)mpi lat.it:tn of' all the: source code programs ~J.:>uld be
time-consuming and prone to error. The factory would also los~

some control over the int€gritY'of the application onc€ th~

source code was distributed to the customers, A table-driven
.3~'pl(.:iai:.iJJn seemed t.t·,e l.,ise choice.

Exp f: r' i E: t-I C E:~ r.,.. i t ~i 1'1 F G". 3 0 0 0 J ! lA' i t.hit.s r ('J dimen tat' ~.t e. d itt..:)b 1 (~ .'
led to the decision to expand'this table and add to it a data
dictionary which would contain tha struct~Jre 0' the data base)
the specification of the data items itself) ~nd the format of the
screens and r€portsr Now that the contents of th~ tables had be~n

agreed upon ths next problem was to provide efficient
€}(et=ut i on-t i me ·3C.::E:SS to tt-,€ .. dat.:. in the tab 1es •

Tables implement€d in riles or data bases would be too slow
to aC:l:e~:;s .3t. e:>::eJ=f.Jtion time. If the tables were places on t-r,e ~
stack too much memory would be used. Extra Data Segments could
provide efficient execution-time access with good memory
'.Jt iIi zat i ,:.n . rf-l€ ajes i l~n agreed fJpOn put the "source II 'der-s i on of'
the application parameters into a d~ta base~ so the user could
edit them. This data was them ~ompiled into extra data segments
for execution-time access,

The only problem with extra data se9~ents is that they are
not sharable across sessions. ~n important underlying assumption
that the applciation would have many users. So the application
had to be designed to allow for multiple users. The solution was
to develop a control program to manage all the Materials
Managementl3000 user terminals .so that they would app~ar to the
MPE operating system as just one session. This solution ~it in
nicely with the design goal to ha~e a dedi~ated system - the user
would interface with a program that was opti~ized for the
non-computet~ professional inst~ad of with MPE, This control
program would automate some of the standard control functions l

such as scheduling terminals and initiating batch jobs.

SomE of the tools necessary to implement an obj~ct code
user-customizable applciation were already available.
IMAGE/3000 , the data base subsystem, eliminates data redundancy
and reslJlting maintenance problems, V/3000 J the forms data entry

F-2 - 08



subsystem J makes it easy to design and implement a friendly,
consi$tent use~ int~rrace. The MPE message svstem provides a
facility for creating customizable report headings and user error
messages.

To meet our objectives it was necessary to develop two
more tools~ the Application Customizer and the Application
Monitor. The Customizer p~ovides a method for the custo.er to
tailor Materials Management/3000 to fit an individual
environment} and the Monitor automates many of the day-to-day
administrative functions ususally performed by an operations
starf, The Monitor accomplishes its function by starting and
stopping terminals at predetermined times and scheduling
background jobs such as MRP to be run on a ~~gular basis. System
security is controllable because users May not use the
application (i.e,) Materials Management/3000) unless system
administrator has instructed ·the Monitor to start the application
on a specific te~minal, The Monitor also includes review
capability of the application-generated error messages and other
system activitYJ such as the background job schedule or current
terminal activity. To the application program, the Monitor
provides many services no~mal1y associated ~ith operating
systems. The application programs may request services such as
process initiation} interprocess communcation l and resource
allocation for on-linQ terminals and printers. The application
d~signer can concenterate on solving application-oriented
problems and calIon the monitor to provide other functions that
are necessary but not directly involved ~ith materials manag~ment

functions,

The key componenet of a customizable application is the
application data dictionary) which serv«s as a rapository for
application-dependent info~mation such as data item
characteristics 1 data base 'schemas l Y~3000 form descrip
tions~ security passwords J terminal configuration, and
background job schedules. Th~ Application Customizer
was designed to maintain the data dictionary) and it per-
forms two major functions. The first is a facility for custom
ers to alter~or customize the application system using a
simple menu-driven fill-in-tne-blanks sequence of forms,
Since this is the part of the Customizer most visible to the
customer J the bulk Of the design e~fort w~nt into making
customization functions simpl€ and easy to understand by
nonprogrammers, The second function performed by the
Customiz@r is to transform th~ information present in the
data dictionary f~om data structures suitable fer run-time
access by the application programs, These transformed data
structures J collectively kno~n as the run-time application
ta dictionary~ are used by thQ application programs to
d€terminQ the values of all cU$tomizable parameters in the
system.

F-2'- 09



Fig. 2 shows how the Customizer~ the Monitor) IMAGE/JOOa
V/3600 and the application software interact.

CUSTOMIZATION TECHNIQUES

The rest of this article describes some or the methods
used by the design@rs of Materials Managem~nt/3000 to design
programs that can operate efficiently in a customizable
environment, Because Materials Management/3000 is a cus
tomizable applicati~n, the .custome~ has the ability to change
many of th~ chara~teristics of the system by modify-
ing items in the application data dictionarYI rather than
using the traditional time-consuming and error-prone
m€thod of modifying source code and compiling programs.
Designing customizable applications is therefore compli
cated by the fact that many assumptions traditionally made
by application p~og~ammers are not true. Customers may
modify data item ~haracteristicsJ add and delete items J
modify the on-line user interface~ and define additional
processing.

Changing Data Item Characteristics

An assumption traditionally made is that once a data item
is defined J its characteristics ~ill not change. In a c~s

tomizable environment that ·assumption is no longer valid,
Because it is possible for th~ customer to alte~ the length l

type and precision of any field l the application program has
no idea ~hat the characteristics of fields will be until the
program is executing. For example l there are three broad
categories of data type us€d by Materials Management/3000:
alphanumeric $trings~ numeric fields~ and date fields.
An application designer may assume a data item is one of these
three general types; but cannot know the specific
format of the field. Numeric fields may be any of five
numeric dat~ t~pes: display numeric (with explicit sign and
decimal point), zoned numer (with implicit decimal point
and sign overpunch)} packed decimal~ 16-bit integer l and
32-bit integer. Any nume~ic field may be changed to any
other numeric type and the length and the precision
(number of deicmal places) of display num~rici zoned
numeric, and packed deccimal numbers may also be altered
by the .custo~er,

The solution is to place field definitio~s in tables that are
accessed by the application program at execution time.
These tables form the run-time application data dicitonary
g~n€rat€d by th€ Application CU$to~izer and are accessed
only by a set of Application Customizer routines called
intrinsic~, This enables the designer to code th~ application
without specific knowledge of the structure of the tables. As
the Application Customizer is ~nhanc€d! the tables may

F-2 - 10



change; but the application programs will not have to be
modiried because th~ intrinsics insulate the application
from the Application Customizer.

A field may have several occurrences in an application}
each having slightly difre~ent characteristics. For example,
a numeric field may be present on an IMAGE data set, and
also on a data entry screen defined for a transaction that
updates the data set, The .item on th€ screen will be defined
as being display numeric type J with a length of ten digits
including two decimal places l the same item on the data set
will be defined as being packed decimal l with a length of 15
digits including four decimal places, The designer can de
velop custorniz~ble programs without concentrating on
these differences because of the intrinsics provided by the
Application Customizer to handle all arithmetic and data
movement operations.

A table lookup is required every time a data item is
maniputlated by the application. Materials Management/3000
is structuared to provide the the b~st response time for
users who perform the same transaction many times J using
rew or no othe~ transactions. An ~xample is loading dock
personnel who perform"receive stock" transactions almost
exclusively. When a transaction is entered, only that por
tion of the customizer tables that contains data item defiini
tions a~e used by the trasnaction is moved to the program data
area, The data item definitions remain in memory until tne
user bran~h~s to another transaction. With the n€eded data
item d€finitions in program data memory) Customizer in
trinsics may access data definintions with a minimum of
overh€a~d. This conserves memory and provides fast
response time for subsequent executions.

Since there are Customizer intrinsics that perform data
mov€ment and arith~etic operations, instead Of coding
SPL statements to manipulate .d.ta l the application de-
signer codes calls to intrinsics that add~ subtract, multiply)
or divide numeric data items, and aove numeric or al
phanumeric items. These intrinsics refer@nce the data it~m

definition tables, per;orming data validation, decimal point
normalization, data type conveesion, and security check-
ing, If an error prevents proper processing~ the intrinsic
returns an appropriate er~or code l and the user can be
informed,

Modifying Fields

In addition to changing data item characteristics 1 it is
possible for the customer to add and delete some fields
appearing on SC~Qens and data sets. "aterials Hanage
ment/3000 is designed to perform spe~ific inventory control

F-2 - 11



functions; so a working set of dat~ items must be present tor
t.~·te .:lppl iC.9t.ion t.o perf'orul its function propet'ly. These dat.a ~,.

items are defin~d as critical to the application and may not
be delet€d b~~ the custom~r. Other data items in the released
product are included for optional processing and May be
delet€d by th~ customer for reasons of e~ficiency or to pre-
v€nt user confusion, On the other hand) a customer may
want to adapt the application to perform additional func-
tions not anticipated by the application designers, This will
require the addition of data it~ms to data entry scraens and
data sets. A m~thcd must be used to represent the associa-
tion oT data items with screens and data sets to the applica-
t.ior, progralTl:::.

FortunatelYJ much or the processing in Materials Man
agement/3000 and many other data processing applications
involv€s the movement of complete records from place to
~tl.=ace:. For e::<.:imple} "add" transactions simply construct a
record from the data items entered on a data entry screen,
and after appropriate validation edits, move the record to an
I\"t\flGE dat.:'J set., ItChange U transactions retrie.ve a record
from a data set} update it with fields entered from the screen,
and then move the record back to the data set. When
adding or deleting a data item on a data set or screen both
the designer and the customer must associate the item with
a specific t~ecord format. Record formats are nothing more
than collections of data item definitions that correspond to
the fields on a data set or data entry screen record, A data ~
entry s~reen recot'd and the corresponding data set record it
~rill update will contain many of the same data items i al-
though they may have different characterisitics. Since it is
unknown until execution time exa~tly what items will be
present on a given ~ecord, the Application Custo~izer p~o-

vides an intr·insic that moves corresponding data items
from one record to another,

The operation of the MOVE CORRESROROIHG intr'insic is
v€ry simple, The intrinsic is passed the record format
definitions present in the source format, the instrinsic
searches the target format for a corresponding item defini
tion. If a match occurs l the data is moved from the source
to the target record l changing the data type l length} and preci
sion if n€cessary. This process continues until all corre
sponding fields have been Moved from th~ source to the
target record. The MOVE CORRESPOHDIHG intrinsic allows
the designer to think on a record levell not being conerned
with individual data items. This makes it possible for the
customer to add and delete noncritical data itmes at will.

F-2 - 12



Fig, 3 sho~s an example or MOYE CORRESPONDIN oper
ation. Each record is described by a forma~ maintained by
the Application Customizer. Evary item is assigo~d a
unique item number by the CU$tomizer. This item number
is used to identify all occurrences of an item. Each format
consists of a format header, which contains pointers and
info~mat.ion conce~ning other control structures~ and a col
lection of item definitions J organized in ascending item
number o~derl The HOVE CORRESPONDIHG intrinsic per-
forms its function for each item in the source format (in this
cas€ th~ screen format) which has a matching item defini-
tion in the target Tormat (the .data set format), The intrinsic
locates the field and determines its length l type l and preci
sion~ using information stored in the item definition, In this
example} the source ~ield is located at byte 0 and is ten bytes
long, An item type code 0' J indicates that the field is in
display numeric format and the precision is two decimal
places.

The target field is located at byte 54 of the data set record
and is eigth byt~s in length. An item type code of 5 indicates
that the fi€ld is in packed decimal fcrmat J and the precision
is four decimal places. MOVE CORRESPO~DIHC copies the
field from the screen record to the data set recod l changing
the type J length) and precision of the data according to the
item definition.

~ Changing Screens

In addition to changing field and record characteristics J

the customer has the ability to modify the appearance of the
application its€lf. Data entry screen appearance} and even
the sequence of screens may be altered by the customer.

V/30GO provides a relatively simple method for altering
screen appearanc~. Screens aay be radesigned by repaint
ing them using a few control character sequences on HP's
26xx series terminals. This gives the customer the power to
alter screens so they look like forms that are presently in
use J less€ning the technology shock thay ~any us~rs ex
perience. Screen alterations are then entered into the run
time application dictionary via the customizer and trans
lated into updated ~ecord form3t definitions. The applica
tion program is thereby insulated from cosmetic changes to
screens, The MOVE CORRESPONDINC and other CustoMizer
intrinsics handle changes in data field order as easily as
additions and deletions,

In Materials Management/JOOO I screens corresponding to
transactions are at the bottom of a large t~ee of menus, The
26xx terminal series has eight dynamically definable
softkeys, These keys are used by the application as the

F-2 - 13



pt'imary method of moving from screen to scr~en, The top of
each screen in Materials Management/3900 contains eight
labels, each corresponding ·to a data entry screen or a menu.
The user may navigate through the Menu tree by pressing a
softkey that will cause the application to transfer to the
desired transaction l or to a ~menu that will list seven othar
choices. The eighth function key is always labeled EXIT and
takes the user to the screen's .parent.

The customer has the ability to modify these labels
through the Customizer J creating subtrees for different
us€rs. For example, s~curity raasons may require that a
custome~ prevent steck room personnel from altering any
engineering data. By r~moving any labels that identify
transactions dealing with engineering datal it is possible
to ~estrict the stockroom personnel to a closed set of
transactions.

The application determines softkey definitions by look
ing up values in a screen sequence table, which is part of the
run-time application dictionary and is accessed by Cus
tomizer intrinsics, An entry in the sequence table is
associated with @ve~y screent Before displa9ing a screen.
the corresponding entry is moved to the program data area,
If the user presses a so~tkeYI the application looks up the
value that corresponds to the key pressed and transfers
control to the appropriate screen or menu. This allows the
customer to be very flexible in tailoring the system and
t~elieves the design~r of the burden of determining the
screen structure while coding,

An additional feature becomes very powerful for experi-
endced users of Materials Management/3000. A 16-character input
field called the command window is present on all menu screens.
If the function desired by the .user is not dit'Qctly accessible
from a menu, the desired function nam€ may be entered into the
command ~indow and the co~responding screen will be accessed
directly! eliminating the need to navigate through th~ menu tree,
When€ver the application detects an entry in the command window~

a Custornizer intrinsic retrieves the appropriate value l

~ffectively providing a ninth softkey. The command window may be
altered via the customizer and V/3000 to accept only selected
labels. This provides an additional measure of security, while
providing the means for the expe~ienced user to travel rapidly
from scre€n to screen.

P~ocessing logic Customization

It is impossible ~or ~he designers o~ a general-purpose
application to anticipate the nQ~ds of eve~y custom€r. Cus
tomers will almost always want the application to do some
additional processing, beyond the capabilities OT the stan
dard product, With noncustomizabl~ applications l the cus-

F-2 - 14



tomer wouid either have to purchase sourCQ code and mod-
ify it l or live with the standard product. Mate~ials Manage
ment/3000 provides two methods of modification. The first
involves V/3000 and the second involves the Application
Customizer. V~3000 provides a 'set of powe~ful functions J

including; checking for minimum length l data typ£ ch~cksl

range checks J pattern checks l and data formatting, However
these functions apply only to data entered on the screen
records. To allow customer-defined manipulation and
movement of data betwe£n screens and data sets! a set Of
functions called p~ocesgin9 specifications may be
entered using the Customizer.

Processing specifications are defined by the cygtomer for
each transaction where additional processing is desired.
Simple commrn~nds allow th£ .user to add J subtract J multiplYI
divide, and move data items. Th~se commands are com-
pil€d and placed in tables that are accessed by Customizer
intrinsics at execution time. In most of the product l each
transaction is structured so that after all normal processing
o~curs but before any data sets are updated l the processing
specification interpreter is called. This is a Customizer in
trinsic that perform~ the operations indicated by the
customer-entered statements, It is possible to alter almost
any data item on any data set that is to .be updated by a
transaction, This tool allows the custom~r to extend th@
usefulness of the appplication program to areas that were not
originally anticipated by the designer.

Fig, 4 shows how cU$~omer processing specifications
are implemented, The format header of the screen format
contains a pointer to any processing specifications the cus
tomer may have defined for the transaction. All processing
specifications are generated by the Customiz@r and placed
in a processing specification table~ which resides in an extra
data segment, The processing specification interpreter uses
the pointer and length fields in the format header to locate
and mov€ the processing specifications defined for this
transaction to the stack. The C~sto~ize~ generates an in
termediate language in the form of tripies l which consist of
an operation code and two operands. Each operand field is
either a constant J a register, or a format/field number com
bination, In this example, the customer wishes to convert
the value entered in field 135 from pounds to grams and
accumulate the result in field 222 1 which is described in
format 14. This might occur in the situation where the
customer wishes to ~Qcord th€ year-to-date quantity ordered
for management repo~ting. Field 135 1 described in format
22 1 corresponds to the quantity-ordered J wnich is accumulated
on some other record for use in preparing periodic man
agement reports, The normal unit of measure for ordering is
pounds) but for some reason, ~management has decided to

F-2 - 15



accumulate the total quantity in grams. The first triple
mov€s the constant 454 to register 1. The second triple
multiplies the contents of field 135 by the contents of reg
ist€r 1~ and places the result back in th~ register, This
CQnv€rts the value of the field from pounds to grams, The
contents of the register are then added to the contents of field
222 in the third triple, Upon returning from the processing
specification interpreter l the transaction will update all of
th€ effected data sets. This method of implementation allows the
customer to add to or o\lerride the processing specified by
th~ ~pplication designers,

Local languag€s

HP's market for manufacturing applications is
worldwide! The application designer cannot assume that tha users
of an application understand the English language, Materials
Management/3000 is designed to be completely localized to any
language supported by the 26xx ·series terminal without
reprogramming, Localization.may be accomplished by translating
the screens using V/3000, by modifying report headings and error
messages stored in message catalogs~ and modifying other literals
maintained in the application data dictionary. Materials
Management/3000 uses many single-word literals to control
processing, For example~ a .. user may enter engintering information
about a part, such a$ whether it is normally purchased or
fabricated. The English version of Materials Hanagement/3000
codes this information as P or F on the data base. The literals
P and F will have different interpretations in other languag~s.

Therefore the customizer maintains another table containing all
literals defined by the application d~5igner, Wh~n manipulating
literals entered by users J the application .ust first look up the
current value of the literal, The table is loaded into the
pt~ogram data area and accessed by Application Customizer
intrinsics. Because the table is located in the program data
area and accessed directly, the~e is very little additional
overhead. HonEnglish-speaking customers have an application
product that is easily understandable by their users l and the
sUppOt't burden is minimized for HP because only one version of an
application system needs to be suppo~ted instead of one for each
language.

Security Checking

An advantage of manipulating data in an interpretive
mode is that other functions may be added with a minimum
of ~ffo~t by the designer. One example is security checking,
Many auditors demand that security access be carried down
to the data item level. In Materials Management/3000, each
USQr is assigned a password that will grant that user access
to only the data items that he or she is expected to review or
update, The passwo~d is £ntered only once on a special

F-2 - 16



security screen. The user may view only screens that con
tain data items for which that individual has accass J and on
screens that may be accessed l not all data items may be
reviewed or updated. This·al1o~s the aser to see and mani
pulate only the authorized itamst

This typa of security would ~equire a lot of design and
coding effort in a conventional system. In "aterials Han
agement/3000 the Customizer intrinsic5 that manipulate
data also perform a security check. The CustoMizer main
tains a table containing all valid passwords along with a list
of data items to which that pas$wo~d grants access, Each
time a Customizer intrinsic accesses a data item J a table
lookup is pe~rormedr If the user does not have access to the
item l an error message is displagedon the terminal. This
powerful feature is implemented with a minimum of over-
head and design effort.

CONCLUSIONS

Materials Management/3000 is HP~s first uSQr-custo~izable~

factory-supportable application system. The team that designed
and implQmented Materials Management/3000 has verified that an
object code user-customizable product is a good idea and that it
works. The performance of such an application can be acceptable.
As the installed base expands we are gaining a better
understanding of our customer Deeds. In gene~all the customers

~ really like the product. They just want HP to expand its
capabilities. Two examples are .discussed next.

We are looking into providing more .Cu5toMization
features, A frequent request is to allow the user programs
greater access to the application data base, This could be
accomplished by allowing the user access to our customizer
instrinsics. The data base would only be accessed through these
intrinsics and therefore the integrity of the data base could be
insured, Users are also requesting the ability to add data sets l

and gain more flexibility in associating data items, Even with
expanded capabilites, though l some custom@rs will still want more
flexibility. For example J they want to write their own programs
to perform e~pandQd data validation and they want the application
to call these programs, Another feature request is program logic
customization. The user would be able to select among pre-coded
algorithms.

In another a~eaJ the design team is &xploring the
implications of a distributed application. C'JrrentlYI Materials
Management/3000 is a single application system that runs on one
HP3000 machine, A distributed application system would involve
,unctions and data spread out among several aachines. We need to
understand how to distribute the data and how to handle the
customization Of data distributed throughout an application

F-2 - 17



network. These are only two areas of rasearch. There is a lot to
do,

Built on the technology of an application
monitor and an application customizer~ Materials Management/3800
is HP's ~irst step toward providing~a total solution to the
problems of manufacturing companies.

ACKHO~LEDGMENTS

We would li~e to recognize the lab and marketing taams who
spent two and one-half years designiag l implementiog l

documenting l and marketing ·the product. Special thanks go to
Steve Baker J Dick Dolan, Beth EikenbarYI Mike Kalashian~ and Bob
Poulos for their contributions to this article.

F-2 - 18



1------ Inventory Control------.,~ ~E'-------- Material Planning •

Product Data
Management

Customer
Orders,~

Forecast

Fig. 1. Materials Managementl
3000 consists of ten major mod·
ules. It is primarily designed for
manufacturers who buildstandard
products in discrete manufactur·
ing steps.

.~aster Scheduling l
•...• -WSW.-.

I
I

: Manual·
::Update of
,;MRP

_____JSuggestions.

._._---------------.........,.""·....... ~---....._I__-

:i

.,.,
I

N

..:1:':' ..' Cost Monitoring ,~"" . ,



Fig....The designers of Materials
Management/3000 used many
services in designing transac
tions. V/3000 intrinsics (routines)
communicate with the user termi
nal. IMAGEI3000 intrinsics store
and retrieve data. Application
Customizer intrinsics retrieve data
item definitions, screen formats,
data set formats, and customer
added processing specifications.
Customizer intrinsics also manipu
late any data items whose charac
teristics are unknown to the ap
plication desioner and must
be looked up ; .. ~e Customizer
tables. ~

MPE
Operating System

System Administrator

I
Customizer

... Intrinsics ~

Data Movement
and Conversion,
Screen Formats

)

Customizer
Intrinsics

~~--------
Data Movement
and Conversion,

Data Base Formats

Customizer
Intrinsics

~~ ~
Arithmetic Operations,

Data Movement
and Conversion,
logic Choices

IMAGE/3000

User'---
Terminal~

V/3000 Edits
Customizer Intrinsics
Editing and Validation

System Values,
Processing Specs,

Literal Table,
Data Formats

N
o

"IN



Formats:)

item I
Definition

Field
Rem \Item I Field 1 Length Type Item I

Number, Offset \ (bytes) Code. Precision

L135 0 10 3 2
.-

~- "
'~-- ---._--. -----~

Format ---"-- --,----- .~~-Number ......-....-.-. ",."

[ 22
" ,.-...-- ---.---.olI..------.-'. • _.......~1~... Screen

6 27 135 224 ~ Format

Format +Item Definitions
Header, +

i 16 ....-.....----6--.....-2-7----9-2-...'-1-35.......; ...-J.f. 1414 1~::~::t
f J ~ .._f ,..--J.--J
Format '\ \/ ..~~ .. -., ..... , ... \,.

.----- -,~~Number' .---.,- ---',
----~~.. '"------ '--,

r--'-:35 !-__...~~~J 81": 5 I 4 '] ~:~nition
Item Field I Field 'Item I Item I

Number Offset Length 1\. Type Precision;
(bytes) Code

Records:,

l
1'.....~~ .......--.... 4Il'~..

[
., 'V i ...".,.:..~.-.-.,.

12.14 i f • • • Screen

U Record
0' 32

+Byte
t Offset
0 35 48'. 54 62

12.1400 • • .' Dala Set
Record

F-2 ~ 21

Fig.J An example of the operation of the MOVE CORRES
PONDING Customizer intrinsic. See text for details.



Format Header

Format",
Number

22

Processing Processing
Specification Specification

Pointer I Length

I
Operand l'

3;:number of statements

Operand 2

Operation Format Field Format Field
Code Number, Number. Number Number.-.-

I
I

LP 0 -'2 454 ·-1 1

3, '2'i 1'35 -1, 1

'1 -1 1 14 222

Operation
Codes

0' Move
1 Ad-o ~

2 Subtract
3 M~ltip'ly

"4 Divide

Processing Specification Table

Fig. 9 An example showing how customer-specified pro
cessing is implemented. See text for details.

F-2 - 22



MOVING TOWARD INFORMATION MANAGEMENT

IN AN INTEGRATED ENVIRONMENT

Benjamin J. Ventresca, Jr.

Manager

Touche Ross & Co.

Tuesday F-4 -01



Government and business leaders both in cur !Jaticn and in

other nations have been stressing the need for a raised aware

ness to overcome the pressing economic problcm~ of today such

as the steady upward inflatio~ary spiral and the uncontroll~d

drop in productivity. In our own country, the campaigns of

last year's election have helped to raise our awareness of the

need to revitalize America and to increase our productivity.

~he present outcry for economic renewal and for Eound fiscal

policies are perhaps the greatest since the Great Depres~ion.

As we all know, there are no easy solutions to the proble~s

which face us, but a growing concensus points to existing and

future technologies to hold the key. However, technology alone

is not the answer. Today much jcb design i~ the United States

is better suited to rohots than to mature adults because of the

increased use of technology an.d autoIr.ation ~lhicll has made work

more simplified, standardized and routine. In the past, ad-

vances in technology witr their resultant economics, and

greater man.agerial control have increa sed Firoducti vi ty, wh.ich.

in tvr~ haE contributed to a general increase in affluence,

education, and the level of aspirations of Americans.

'As a reEult e,f ttlese renefits many people rig11tly \\'ant jobs

that allow them to make greater l1se of tlleir education ar.ld

skills, end that F:rovide intrinsic \tJcrk satisfaction \r;hil€

affording the opportunity to enjoy the luxuries of our

society. In effect the nation ~ay heve arrived at a point in

F-4 -02



conflict ~Jitll itself and tlie result of this con.flict is tllat

productivity is plummeting to ap all time low.

At the some time, America's leaders, as well as their ccun

terparts in other industrialized nations throughout t~e wcrl~,

are advocating a rene\~ed cor~itroent to the free rn2rket ~ystem.

~heir expectation is that the return of business incentives

will spur greater investwents back in people and pro~ucts

ther€~y helping to increase productivity and jo~ satiEfacticn,

and to reverse the currert inflationary spiral. ~his commit

ment mirrors an international trend towards deregulation anc

tIle elimination of obstacles to entrepreneurial freedom and

corporate growth.

\Ie are all aware of the effect of inflation in our own per

lenal lives and are reminded of this every time we watch the

evening news or return from a trip tc the supermarket. These

effects are also felt in all aspects of tcday's business opera

tions. Increasing material and 1nventory costs, steadily

rising labor costs, and high costs of financing are but a few

of the factorE combining tc add external pressures to our

nation's businesses. These pres~ures affect all induEtries,

but naturally the effect varies with each. Additionally, these

pressures impact a.ll aspects of busi~ess \-Jheth.er tlley be

income-proeucing or revenue-consuming. Traditionally, manage-

ment has invested disproportionately in certain of these

as~ects. During the past ten years, management has increa~-

F-4 -03



ingly turned to ~ata processing to provide moritcrs and con-

trolE over the producticn-oriented functicn~ (such as Inveptory

Control, Order Processing, etc.). Investments in hardware and

software h~ve been heavily justified by projected increa~eE in

sales and by anticipated savings in production. ~his philos-

incoIPe producing funct ions versus typical lIover'P.ead II fU.nc."-

ticns. In tll€ latter, in\lcstIref1t~ have l,een of secondar~l

importance because of an imperceptio~ of the need to Etirnu1ate

ar~d EVPFcrt "\vhite ccIJa.r " activitieE. ~Jc dcu'bt }7ou've seen'

those figures comparing th~ low state of office productivity

\Ali tl. a l~etter record chcllkec ur: ry indt.:stry end agriculture.

They get repe2ted eften in managelT'ent circles and llClve been

verified (with small discrepancies) by a various number of

sources. Basically these figures are as fol]ows:

\t:l1i te Collar \Jorker

Indvetrial Worker

Farm l'1orker

Ca~ital

Investment Per Worker

$ 2,000.00

$25,000.00

$35,000.00

Productivity I~crease

During the Past Years l

4%

90%

185%

~nlil€ these figures are sometimes disputed in terms of

their detailed composition, their value should be viewed on a

broader scale. The challenge for today's executives is to make

1 "Editorial ll
, \t·Jalter A. Kleinscrod, Acrninistrative

Management, October 1980, pg. 23

F-4 -04



the same level of commitment to the administrative and profes

sional functions as it has to the operation functions. ~his

commitment must be ~ade in order to improve the effectiveness

of workers in the office as we heve irnFroved the effectiveness

of workers in industry or on the farm. In order to help ful

fill trli s commi tment we, the II experts II of the informa t ion

industry, must demonstrate the importance cf information in

today's business world. To do this, we reuEt first acquaint

ourselves with the presence of information in various forms

throughout our organizations and understand the role that it

plays in the organization. This means that we must strive to

understand those technologies and applications which tradi

tionally have not been an integral part of rata Processing

(such as ~ext ProcesEing, Telecommunications, Feprographics,

Micrographics, etc.)

The Information Resource

Our primary challenge must ~e to educate ~oth ffia~ageroent

and staff in the value of the Information Resource. ~o do this

effectively it is critical tha.t ~Y'e €stablis11 a commen base of

understal1c3irg arid a common set of expectat.ionE'. 'rhis challenge

is co~pounded by the fact that the Information Fesource is a

concept rather than a tangi~le pro~uct. ~ebster defipes a

resource a~:

F-4 - as



o An available means or property

o Natural advantageE or wealths

o A capacity for finding or adapting means of achieving_

o The pewer of achievement

o A skill or ingenuity in meeting any situation

These cefiniticns really don1t help us descrire the Infor

mation Fesource any more than a few words can properly descriLe

tbe Eix senses. But since the I~forrnation Resource is a con

cept and not an object, it can best be described in terms of

th~ unique environment in which it applies. The Information

Resource is different tc 2 manufacturer than it is to a service

organization. Tllerefore, in order to educete management and

staff in the value of the Information Fesource, we must first

define the scope and breadth of the Information Fescurce within

the incividual organization. O~ce the discreet components of

the Inforffi2tion resource has been identified, itls our chal

lenge to envision the role cf this cohesive base of i~formation

in the organizationls current a~d future operations. To do

this we rnu£t descrihe that role ir terros of its impact on the

firm \f:i tl~ regards to the bus ineE.s environbent, to the crcra t i ng

procedures, and to the botto~ line. To be effective, the

Irl fcrnta t i.on Pesource mus t l~'e perce i ved hy tl)€ f'€ople i.n t.l!C'

organization to ce an extension of theroselves a~d ~houlc help

fester their association with the organization itself. ~his

will result in an improved awareness of their value to the

F-4 -06



~
\

organization and their impact on everyone's success. The ~ey-

stone to the vitality of the Infor~ation feEource i~ its

ability to match the organization's strategy ~pd structure and

to provide a medium for the organization's success in meeting

its ccrporate missions.

Distributed Information Precessing

If we look at the Information Fesource as ~eing a bread

based commodity which serves all a~pects of an organization, we

have to think in technical ter~E of its orientation to a dis-

tributed/integrated infcrrr~ticn processing epvironwent. ~c

many technicia~s distributed data processing simply means a

disfersernent of computer ~ardware and data to multiple site~

around an organi7ation. The shortcoreing of thi~ definition is

tll~.t it overlooks a \1Jice range of non-ccta l")roces~ipg act ivi-

ties and issues that help make information system~ wcrk.

Similarl}·, it does not satisfy the n.eed of arl InforMat.ion

Resource to align itself with an organizationls strategy an~

structure. A broader definition of DDP acknowledgeE that

information processing is an organizational resource composed

of many areas of activity which are perforroed and controlled by

various and diverse individuals. In reality, DDP can only

truly exist in an integrated informatiop environment. By that

we mean that Pistributea Data Processing is the cowposition of

interdependent functions which draw a~d build upon a ccro~on

base of information. ~hese functions can vary from traoitional

F-4 -07



data rrocesBing applications to newer word processing func

ticns, and looking to the not tc distant future, tc extenFive

use of electroric mail and comFuter-based cowwunicaticns. With

tlJiE l:'road€r definition ar~d o!)!:licaticrJ., ttl€ term [;istril'uted

Information Processing becomes core representative.

E.(Jsically, ir; ord(;.r tc c.FJprE'ciate t11e value apd Fctential

of Distriruted Infcrmatio~ Precessing in aL integrated environ

ment W~ rnu~t firEt accept the fact that today's technologies

transcend the traditional Etructures cf business ten years

age. \7i th today IS tec11I:clcg' ies, tl"; ese d:i f fererlt funct iOli f:' ere

con\7ergirig and are eften inc1iE'tinguisharle. ristributed Data

PrcceE'sins cI·:eratioI\S cased on localized n;iniccmputers are

bringirlg t11eir capal:'ili.ties closer to the aCIT'inistrative user,

and are ~ecoffiing a mere reEpcnsive and attractive alternative

for traditional Word Processi~g applications such as text wan-

agen1ent. At the Scni€ time, increase0 list and records manage

ment caparilities of word procesEing invc]ve activities which

'dere or~ce th.e sale aOlt2 i n of da ta process ing. TllC chall eng€:' in

making distrititlted systems \;ork is to desigrl and. i1t'plement sys

t€lTlS Wlli eli tie toget11er the diverse furlct ien. of art organ i z·a t ion

and break down the cowroupications barriers which naturally

exi~t in any organization, thereby providing a more natural use

of informat iorl.

F-4 -08



The objective of this presentation is to identify the value

of integrated information, to surface the major concepts of

integrated information, and to highlight those issues which are

critical to successfully implementing an integrated i~formation

environment.

\fuy ~istributed/Integrated Information Processing?

In order to understand the value of integrated information

in tcday's business environment it is helpful to take a quict

look back at how technology has changed the way we process

information. To do this let's look at toth the eevelOFment cf

traditional data processing and at the development of automa

tion in the modern office. In the mid nineteentr cert~ry the

"modern office ll was graced \A1ith th.e invention. of th.e adding

machine and the manual typewritter. Each of these products

promised. a high potenti.al for increased staff productivity.

DuriIlg the ec..rlier f'art cf the t\'!cntieth century (froIP 1900 to

1940) the main focus of scientists and inventors was in devel

of,ing arlC perfecting IDec]"tanical device£ to irrprov€ en tr~e

adding roachine and the manual typewritter. Generally, little

increase iri productivity was reali2'ed.. Fven tllougrl it \'IClS lS46

when the first electronic co~puter was put into operation, it

\lJ2Sr: 1 t u.ntil 1964, \vllerl IPr--1 introduced the SysterJ/360, a nell.;

concept in coromerical computers, and also introduCEd word pro

cessing in the forre of r~agnetic Ta~e Selectric Typ€writterE

that real i~creases were seen. After this time, in the late

1960 ' s and early 1970·s, the ability to achieve and ~aintai~ a

F-4 -09



high level of productivity was largely dependent on the prudent

use of technology. During that ~eriod, the impact and effec

tiveness of technology in the business environment was gener

ally clearly defined. Computers were used to perform data

manipulation and precessing to improve accounting and manage

ment effectiveness. ~hese computers were maintained in a con

trolled environment Fretty well divorced from the mainstream of

daily office life. From a historical perspective, the ccrnputer

was thought of as a tool (granted more sophisticated than its

earlier counterparts) but a tool none-the-leEs. Meanwhile out

in the office there were other teals - typewritters (some

IDa~ual, soree electric, some with:rnemory), copiers, adding

maclli~eE, file cabinets,· etc. w11ich Ec·ught to increa se s ta f f

Froaucti vi t}7 througlj speed ir~g tIle 1-'rccess of performing their

fu~ctions. Hence, a newer, better typewritter simply replaced

an older, slower typewritter. A bigger filing cabinet replaced

or supplemented a smaller one. If you were to ask someone to

dCEcribe tll€ t~IFical office crLances were that you1d get a list

of Eoroe of the equipment in it. This list wculd probably

include the it~rns mentioned earlier, and most of the~ would

also have been uEed to cescril:,e the "modern" office of 20, 5C,

or even 100 years ago. In reality, businesses, with exception

cf course, really hcon1t changed ~uch in q~ite a while. Elec

tric ty~€writter~ replaced manual ones, celculators replaced

add ir1g roach ines, tel epl10ne swi tcl'lboa rd 5 were automated, 8.n(1

everything locked mere strec~linec rut ~ost tas¥s in the mcdern

F-4 -10



office are performed IDuch the way the have been fer deC?0es.

The focus on using technology never really touched on changing

the way that tasks were done and ~ow information was used.

From a data processing perspective, the ce~trallized rp

environment of the 60's reflected the inage of corporate

thinking tc~ards information procesEing. Information wa~ a

discrete commodity: that which belonged to accounting waE pre

cessed by accourtants and clerks, that which belonged to rna~

agement was processed by administrative support personnel an~

'l'ery rarely did one function interface wi th the ot11€r. ~}-lis

led to ~n increased sense of propriety and helped insulate the

different deF2rtrne~ts within an organization.

Distributed/Integrated Information Processing is a corcept

which has only recently come of age. ~echnolcgical, economic,

and educational developments now allow us to design informati.on

systems that lTlay achieve the otojectives of matc11in.g tl1e organi

zational structure, supporting the business strategy, and re

flecting the character of the organization itself. The effect

of distributing information in an organization is one of

breaking dcwn some barriers, of establishing communication

channels that never existed, and of raieing the awareness of

users in different departments within an organization of w~at

other departments are doing with information. With this aware

ness comes a realizaticn of what information may be availa~le

for mutual use and what benefits might be realized. It's the

recognition of the potential use of inforIDation and the

F-4 -11



acknowledgement of the resultant benefits thro~gh sharing and

c0wmunication that allc\tJs tIle concept of tl'c Infcrn:ation

Resource to becoroe a reality. Without integration, the Infor-

roa t ion r (:=E'ource i E I!~er el:y a cell€ct i O~ c f d i ~crete L·i ts of

inforreation.

\J}la tiE" Il~ vol vee irL
rstablishing the Integrated Information resource?

\Jhen enlt~ark ins uF'on integra t inc; in forIr.2. t i on and developing

t'be i~forIratic)rl resource, \f.t'e rlave tc first sit l:·ccY: anc. lock at

scope of the resource is co~prehensive and change-oriente~.

':'ecl·~nolc:CJiE:.E suel: as I:rccesE centrel, CCmFl1t~rgraFr1icE, laser

print ins, intelligent CC'P:~ling and integr2ted tel€plicr~es and

However, the actus1 or potential need for any of these or other

technclcgie~ could be e deciding factor i~ tlle structure of t~e

Inforrration Fesource i~ terws of the nature of the information

bas~ and the tYre of esuiF~ent GEed to precess and store the

information. Just as in eesigning a eata base it is prudent tc

anticipate and allow for future enhancements and/cr rnocifica-

tions, in planning the Information Fesource it is imperative to

consider and eV21uate future issues. This is ~~~y we must

develop and review long range strategies and ~e aware of trends

in business and technology. Five yeers ago, people plarning an

information system could be content ~ith a~sessing the neecs

anG direction of their o~n organization. Today, however, we

F-4 - 12



must be mindful of external concerns such as inter-company com-

municaticns and information exchange. The impact of advances

in the areas of communications and human system interfaces man-

date a closer, more deliberete look to the future. For exam-

pIe, while the concept of using electronic mail may not be

feasitle for a given organization today, it is our reEponsibil-

ity as the planners and designers of this information resource

to determine the prcbabili ty of tIle need. to tie that capabili ty

in at some future point. Additionally, when defining tfie

nature and extent of integration amongst functions, it is

important to probe into the current roethods of operation, into

the current use of inforwation, and exaroine the effectiveness

of the current approach versus potential alternatives. For

exantI-',le, trends in of fice organizat ion have proIrloted the use of

functional centers and word processing centers as opposed to

individual secretaries. These centers receive work, process

the work an~ return it to the 'originator in the same fashion

that a data center would process work from various users and

sources. Many organizations which cperate under this approach

are presently evaluating the merit of centralized dictaticn

which replaces the dictating equipment on a profes£ional's de~k

with the use of the telephone into a dedicated processor/

storage device. This device digitizes the dictatiou and treats

it like any other stored infcrmation on magnetic n'ledia. Trlis

information can then be manipulated by t~e precessing center or

car). 1:;e shared, ~li th other processing centers in tlle san1e \'lay'

F-4 - 13



that stored information can be manipulated by any data preces-

sor in a more traditional environment. ~fuile this is an indi-

vidual example, the intent is to shew the potential breadth of

applicaticn ana technology which the Informaticn FeEource mDst

address. These actual ane potential needs should be surfacee

during the desisn process (~hich will be briefly discussed

later in this presentation).

Issu~s of Integration

Once the decisio~ tc integrate has been made the next step

is to address the major issues that are associated with inte-

srated informaticn. Eriefly, tho~€ major iEsueE are:

1. ~lanag'ement and Control of tIle InformG.tio~ Fesource

"l
L • The r~ode of Functicnal Integration Fequi red

3. ~he Functionality and Accessibility of the Information

4. ':A:'l .. e Sl~ill and EXJ:;€rience of tIle Varices llsers

~anagement End Cc~trol

As data procesEing matured, t~e organization which housed

data processiLg also matured. In the early stageF, the purpose

of data prccessi~g \laS to provide a~ automatec means of F;er-

for~ing established functions, such as proceEsing payroll,

refortins and maintaining aCCGunt£ receivable inforffiation,

et.c. The rationale for data proce"ssirig \rJas basically to lO~jer

cost az:c tirr€, and to achieve a h.igll€r degree of reliac·ility

and accuracy. To provide these services, t~e data processing

F-4 - 14



finance. ~he LLP manager reported directly to the executive of

finance a~d was norrrally on an crganization~l par with the ccn

troller or assistant controller. In the later stages of data

procEesing developpent, the purFcse exp~nded tc include ~uto

mating the processing of business functions and to prcvi~e corr

pre}lens i ve marjagen1ent ir) forma t icr~. TIlE: dcmc in of data ~Frcces

sing expanded frcm just accounting functions to inccrporcte

bUEiness functions and management reporting a~a control. ~he

rationale for data processing was tc improve efficiency, to

sUEtain reliability, and to increase rrofitatility. In

essence, it also provided a decisicn-support mechanism. To

su~port these new objectives, the cata precessing facility

broke away frem the direct control of the executive of finance

and became an anoffialy of Eorts in that it was toe uniaue tc ce

treated like any other division in the organization. ~~e

director or manager of infor~ation systems was still not per

ceived to businessoriented enough tc merit executive ~tatus or

participate in the corporate planning proce~E. During this

time, this reaturing group began to concern themselves with

infcrmation planning as well BE systems development and sy~tems

operation and \vi tll th.e spreac of cOIPputer support througllcut

the organization, Cferaticns now began tc concern themselves

with issues like communications and user interface. In the

8C I E, the purpose of information processing is to establish and

maintain a base of information which reflects all key aspects

of the organization and which provides a catalyst for continued

F-4 - 15



growth and effectiveness. And in keeping witl! the Informaticn

re~ource ~e have been talkins 2bout, we sec that it in~eed

touches on all aspects cf the crganization. The rationale for

doing this is tha.t it then prC'vides a Iri€l3nE to sl:!stain g-ro\'jth

and effectiveness in all phases of the tusine~s operaticn and

it ~i~imizeE the effect of external contraintE. In order to

sUFPort these o~jectives and to truly be a Fart of the orsani

zatic'r~'E plar, inforInaticI: processins has finally corne of age

and has esta~lished itself as a corpor~te entity i~ its own

rigl.:t. As su.cr~, it nlE'-rits its o\,.·jn executive \tv'ith a rcle in

corporate planning, and h.as a structure \-Jhicl~ spans infortratior.l

f=.ervi<.:es, cor~imLzr.lica.ticns, advanced cffi.ce £}'sternE, ar1c custcmer

services. The key to the success of this structure is that the

I.ic!riageIr.ent of. tIle Ir~fcrIra.ticn Fescurc€ r~lUSt. f'ass to son',ecne \J·;hc ~

can effectively relate \'''ell in all level£" of trle organization

(horizo~tally) as well a~ in all functional areas of the organ

ization (vertically).

One cf the greatest challengEs in managing the Fesource may

arise frem talancing the needs and approaches of the tradi

ticnal r-~IS function \-Jitll tliose of the traciticnal llP function.

~his is due to the idiosyncrasies of each and is compounded by

tIle pIe-esta.l.,li&11ed rr.isgivings between tllCro. Characteris

tically, the ~ajor problems of word precessing have not been i~

tr.le area of tecl~Il01ogy or systeIr.~ desigD. ~l)e mcjori ty of tt.e

problems have reen and co~tinue to ce pecple problern~. Word

procesEing tetally changes the secial structure of an organiza-

F-4 - 16



tion. If it is not tetal or if reanagement's commitment is not

total, there is usually chaos which results in a waste of time,

energy and money. Therefore, the menager of the Information

Fesource must be mere people-aware than the manager of a data

processing facility ever had to be.

Modes of Integraticn

Depending en the type and volume of information being Fro-

cessed throughout the organization, the modes of integration

will vary in each instance. Word processing hardware is were

function-oriented than data processing hardware. Therefore,

the acceptability of one rncdel to an end ~ser is ~uch more

critical in the WP environment than in the DP environment.

':'rtis fact often r:egates the use cf n~ainfrc:.rrle rlarcl\lJarc te per-

forni \lP fun.ct ions there}:.,}" el imina t ing sowe otherwi se cbvious

options. Basically, t1:ere are tllree mode£ of integra.ting data

processing and wcrd processing. They are:

o r~~ltifurJ.ction System - \\7hic11 i.s capable cf storipg al1d
processing information in either a traditional data
processing or word Frocessing sense. ~ypically, thiE
would be a mainframe computer with ca~ability of
interfacin~ tvi tl~ data processing or werd FrcceEsins
eFTs as well as with a wide range of peripherals (fro~

Laser printers tc intelligent copiers) as \Jell aE: with
other processors in either a direct or a rewote sense.

o Shared Fesource - which is a cluster of single or
multifunction systems which have Frimary function£
that \'Jould stlare SOIne cc·mrnon resources such aE'
storage, pr inters, ariC other per ipheral s . Th is i ~

akin to a distributee environment with a series of
minis co~mun- icating in varying degrees cf
compaticility.

o Stallclalc;n.e - Eir:gle functic;n ccrrcputers wittl 110 au.toma
tic interfaces and along which infcrmaticn is inte
grated cn B batch assess and retrieval tasis only.

F-4 - 17



Functionality and ~ccessibility

The thire roajcr issue revolves around the required func

tionality of the system and of the information. ~his touches

on the design of the data~ase as well as the selecticn cf the

particular hardware used to perform various functions, and is

cloEely related to the arove iesue.

Unlike data procesEing, word processing applications ar~

typically pre~rogramed and are function key oriented. This

presentE a major obstacle in retraining support personnel from

one type of equiFment to another. ~herefcr€, in terms of hard

ware functionality, the type and voluIDe of function that is

ceing Ferformeo is of critical concern. The data base Ehoulc

be designed to allow acceSE thrcugh a series of ~aths either

directly or through logical reccrd relationships.

Skill and Lxperience

'I'hc final mcjcr issue revolves aroun.d the skill arld experi

ence of the users t~emEelves. As distributee data precessing

l:ecarr.€ cornrncnplcce in the DP environII1ent, data proce~si~g pro

fessionals have learned to be mere aware of pontechnical people

sue}! aE clerks, managers end executives. T11e I:riorities, ex

pectations, anc neeos which face thiE diverse grouF of u~ers i~

greatly differcDt frc~ thOE€ wbieh face dota processing profes

s iona 1 sand teclln icia ns . For exampl e, Irlost da ta prcces sing

managers don't have tc devote their energieE an~ skills to

th.ree and four cycles of revisions of t\'vO and tll.ree: page memOf:

and \.'ould h~ve 2 hare time irl adjusting tc the cnviromrent 'I'he ~

F-4 - 18



psychology of dealing with the varied demands and responsibil-

ities iE critical to the success of an integrated infcrmation

environment.

~jaturaJ-ly, there are nc ecs:,{ solution.s to tr,ese and t}jere

are other issues and pitfalls that are asscciated witl~ inte-

grating functions an~ inforrraticn in tOday'£ businesE e~viron-

mente These are as varied as the organiz2ticrs themselves.

~he key element is that in launching into SL integration

effort, with functions as well as inforwation being addressee,

it is of critjcs] impcrta~ce tc realize that the requireroents

definition and user review precess and the preFer organiza-

tiona.l plari i~ vital to tIle success tIle entire effcJrt.

An Approach to Creating an Integrated rnvironm~nt

Traditicnall~' in the office environment, ana to a lesEer

extent in a c.ats proceEsirlg environment, users have ):-,een "sold"

someone else's perceFtio~ of a solution to an immediate need;

rather than "buy" a solution which. satisfies their irn~ediat€·

needE and is campa tatle wi tl1 tIle cverall in forma t ion plan of

the organiza.ticn. In order to develcFJ an.d implement suell a

plan it is important to take a multi-phased approach which iE

designed to establish and maintain the common expectations and

objectives of the various ~sers tbroughout the planning,

development and impleme~tation precess. One such approach is

composed of four major pha~es. ~hese are:

o
o
o
o

Planning PhaE:e
Cesign Phase
Cevelopment Phase
Implementation Phase

F-4 - 1~9



Planning Ph2E€

TIle purpcse of thi~ ~l:ase iE tc define tlle infern';atier) c1:'-

jectives, tc formalize operational ccnceptE, to establish co~-

men eXI>ectaticns, and to cetern'ine t}-~e feasibili ty of inte-

grating functions ?~d information. The two major £teps within

this pIloSE ere: an Irlitia] Ir.ivestigaticn and t.1~e F€Jasibility

Study. The IDitial Investigation locks to evaluate general

needs tl;I"cugh.out trie organizatior1 and. tc eEtal~lisrl tIle value of

proceeding with the Feasi~ility Study. The Feasibility Study

~hou10 develcF the concertuol charact.eristics of ar infcr~ation

solution through different alternatives, and to defi~€ the pro-

j ectec"' COEts LE.ne fits for €cch i unct ion lAyi tr).i.~. tl~e organ j. za t ion

for each altern?tiv€ which has been defined.

[:esign Prlase

~he fccus of tl~i£ F-ha.se is to develop t11t cetailec fcupca-

tion for the potential solution. This solution viII be a blend

cf rr,snval anc~ COIr.!iutcrized sl:sten1 proceour'es VJllich sctisfies

the individual users requirements and suppcrt the gaale and

cha.ractel cf tl:te orgar:izaticn aF a \tihole. 'rIle ffi2jcr Ete[:E

within this phase are: Business Analysis, CperetionE anC

Information Analysis, ~echnical Environment Analysis, a Ccn-

ceptual Design, a Systems review and Evaluation, and the Crea-

ticn of the C€velopment Plan.

The Business Analysis is intendEd to identify the corporate

goals and objectives and define how those goals and objectives

F-4 - 20



cascade through the various departments and functions within

the organization. The result cf this analysis is to define the

structure wi thin whicll the information needs of tIle organiza

tion should be viewed. The Operations and Information Analysis

is made up of two major components; the first being an organi

zation survey wllich is intended to define the indjvieual jo~

functions and responsibilities, needs, and work patterns

throughout the crganizaticn and to identify hew these functions

are qualified and how they support the corporate gcals. ~h€

second comronent is a technical survey conducte~ to define the

obj6ctives, functions and inter-relationshiFs of information in

a tecr~rJical senEe (i .e., in terms of s:y"stems and crerations).

7he Technical Environment Analysis is intended to dcterreine the

requirements and constraints of the organization, which will

affect the environment within which the solution mUEt fupction.

The next stef in tris process is the Ccnceptual Desis~ within

which tl1e objecti ves and requ irernents determined above wi 11 ce

addre£Ee~ in the confines of the technical environment defined

previously. ~his design will show how each function ~ill be

pcrforrred anc will generally defjne the interaction level cf

other functions under the new approach. T~e System review an~

Fvaluaticn, w11ic11 looks to iderltify and revieltJ tll€ hard\l\1are ancl

software alternatives, will support the conceptuel design and

will assess each alternative in terms of its satiEfactic~ of

the objectives, constraintE and eXFectation~.

F-4 - 21



Tlle final step ir.l th.i£ phase is to Create the Development

Plan for the implementation of the proposed solution defining

target dates and deliverables through the completion of the

develcprnent precess.

Developwent Phase

Besed on the design developed in the prior phase, the focus

here is to develop the actual system and prepare for implemen-

tation. This is cone throush the following steps: A Manual

Procedures resign, An Application Specifications Development,

User Orientation and ~raining, Imple~entation Planning, and

System Testin.s.

':'lle first step, rv:anuol Procedures Design, leoks to develclp

the detailed manual systems design and to review these with the

u~erE. This design will provide the blueprint for orientation

and training, and for tlJe system testing which follows. The

Eecolld step, Develof\ment cf Application Specificc.tions, Coding

and Testing of the applications themselves look~ to develop the

programs, through module testing, and supporting documenta

tion. The third step, User Crientation and ~raining, is

intended to serve twc purposes. ~he first is to help tpe UEer

understand the integrated information concept, how it relates

to their particwlar responsibilities and hew their effcrts

blend with those of others; and Eecondly tc train the~ in t~e

U£·€ cf the rle\·: S}"Etern. ~lJ.e fourtll Etep, II'flpleroent2.ticn Flan-

n ing, see}:~ to icen t i fy tr'e tes t cr iter ia C.rlG tee t ca ses wh i cll

F-4 - 22



will te used tc validate the acc~racy of the syEtem. Secondly,

tc cJ eve lcp t11e s chea ule fer the i ITlpl €w€pta t ion Ci f triE-' EyE ten:

from system testing through the start cf producticn prcces-

sirs. Tlle final aspect cf trliE step is tc; develop tri.e r;lan fer

t11e conversior_ from current operations to trle new system. "l."'he

last steV in this phase is Eyst€ffiS Te~ting w~ich provi~es a~

integrated test of wanual and computerized sy£tems in a con-

trolled e~vironffient.

Implementation Phase

UForJ. succeE,sfull:}' co~clu(~ing trl€ system testing, t11€

development prcceEs enters i~to thiE phase, w~ich is intended

of the new syEtem. ~~e major steps within this phase are th~

Pha sed Ccnver s ion a.nd IrnFlemen.ta t ion and tl,e :Fe f inement of

Operating Systems.

':'he first step, Phased Conversion arld Irl<plement.atiorl,

brings each function into a production mode according to the

iroplelner)tatioI~ schedule and expands th.e integrated inforJllatiorl

base by its own functionality.

~he seccnd step, the Refinement of Operating Syste~s, is

intended to identify areas of need for modification and fine

tuning and to allow rnanagerrent to prioritize and schedule these

needs for implementation without impacting the progress of the

main developwent effort.

F-4 - 23



~here is an advertising slogan that states, 11 ••• the future

telcnSE tc the efficierlt ••. " \Hlile tl:.€ int.ended thrust of

that ~lc9an is cirectcd toward conservation of energy its merit

flC]CS tru.€ fc:r LusineE~€S oE \'Jell. ~l:e cl~alla.rlge£ tllat face us

both in our cusineE£ erd personal lives \\'ill requirE: our full

und~rEtandi~g and reacticn. Infcrmation will flay an increas

irJgly iIPpcrta~t rcle in llC\J \tJe IT!eet those challe~ges, and we

CC'Dnct aficrc tc~ waEtE: titre and monel' gathering or E;if.tirg

throDsh data in order to set it.

A.~. c rica I E r u s i r~ e S 8 e s are 1:e i n 9 ch a r 9 e d \v i t ham Co n C' ate t hat

requires a comrr:itnlent to imf·rovec l:u~iness effectiveness and

FrciitaLility. ~cw mere t~an ever, t~eir success in ~cing this

will depend on their a~ility in motivating and satisfying their

effiflcyecE an~ extending their skills and experience with the

use of technolog~;. \]E.~ li.cv€ cernonstratea tl1e arility to do thir:

~cll in industry and ~gricultu~e and rrust ccntinue tc do so.

The new cl!cl1E:!nge is te· match tllcse acrlieveIT~E.'rts in the

office. '::."'1'1£ tecl~nclc9~Y to do t~hi~.. is here today and is rcirg

follo\<"ec \-lith iniI;ressive c.cvancements for the n.ear future. ~he

urJderstandiI:9 of flO"! tc UEe these tecllnolcgies and llC\tJ t.o

exploit cur roost abuncant rescurce - Information - is the

Cf'r~ortunity tllat \I~e srlare.

F-4 -24



MICRO-DISTRIBUTED-PROCESSING

By J. Michael Mason

Maryland Computer Services, Inc.

ABSTRACT

Exploring the expanding capabilities of intelligent
per ipherals and micro-processor based computer systems such as the
desktop computers and small business systems, this paper will bring
an awareness to the system analyst and distributed system network
designer of the importance of "THINKING SMAI,L".

Most of us tend to relate distributed processing to the ~1acro

Scale "DISTRIBUTED SYSTEMS" SUC]1 as HP' s DS/3000 and DS/1000. We
should be considering the potential of any form of processing from
the "dull- normal" terminal capable of performing only rudimentary
field editing to the small business systems with sophisticated
operating systems and data-base management software, in any
distributed processing solution.

Application examples of distributed processing solutions that
utilize HP desktop computers, HP 250 systems and HP intelligent
terminals will be presented to illustrate how and where you might
implement these systems as part of your own distributed processing
environment·. Considerations i.n cost, development and tl1e user
environment will be discussed.

Todays technology alld economic environment continue to
challenge those faced with developing data processing solutions.
"Main-Frame-Mel1tality" gave way to mini-compl1ters and distributed
systems in the 70's. The Micro-Processor will have the greatest
impact on systems design through out the 80's.

By examining how the micro-processor can be used i.n torlays
distributed processing environment and bringing an awareness of the
potential impact on system design for tIle future, thi.s paper will
provide an excellent introduction to the Micro-Processor and some
good reasons to "THINK SMALJ.J".

TUCSCG.Y F-7 - 01



The MPE IV Kernel History, Structure and Strategies

John R. Busch
Member of the Technical Staff

Hewlett Packard Corporation
Computer Systems Division

19447 Pruneridge Avenue
Cupertino, California

95014

Abstract

The MPE IV kernel is the result of over three years of research and
development undertaken at Hewlett Packard's HP 3000 R&D lab in
Cupertino. It provides a new high performance, integrated, extensible
foundation for the 3000 operating system, MPE. The project's history
and the kernel's characteristics are described. Project objectives,
investigation approach, implementation methodology, functional charac
teristics, resource management objectives and strategies, and perform
ance results are presented.

1. Introduc tion

The evolution of the HP 3000 family towards large main memories, fast
processors, and large and distributed configurations stressed the
original MPE kernel design and implementation. It became clear that
just supporting the evolution in terms of kernel data structure
extensibility would become a problem. Moreover, the original algorithms
could not be relied upon to exploit the performance potential offered by
the larger configurations.

Project objectives for a new kernel were established. Research into the
growth and p~rformance limitations of the old kernel and into state of
the art approaches to resource management policies was undertaken.
Alternative designs were established, implemented and evaluated.

This process, culminating in the MPE IV C-Mit, is presented in the
following sections.

2. Kernel Project Objectives

The primary project objectives for the MPE IV kernel were to provide

(1). support for the evolution of the HP 3000 family;

(2). maximum performance across the family members;

Tuesday F-9 - 01



",.

(3). high reliability and improved fault detection and recovery;

(4). increased functionality as required by the other system components
of. MPE IV; and

(5). simple extensibility when unforeseen system requirements surface.

3. The Investigation

The 3000 architecture, workload, and evolution were to be matched by the
new kernel.

The investigation would procede by : identifying the characteristics of
the workload; determining the growth limitations and performance prob
lems of the existing kernel; researching and consulting to determine
promising approaches to kernel design; and formulating alternative
designs.

Instrumentation was placed into the old kernel, and the system was
measured under reproducible, representative environments.

Service requirements induced by the workload on the various system
servers were determined. Distributions of segment sizes, processing
requirements, and access requirements to secondary store were observed.

Resource utilization was measured. Disc, main memory and processor
queue lengths, request type distributions, and overall utilization were
determi ned.

Migration among the servers and service delays were characterized. Pro
cess stop type'(eg segment fault, disc I/O, terminal I/O, time sliced,
etc.) distributions and service delays for each stop type were measured.

These measurements were to be used not only in isolating invariant
workload characteristics and performance problems but would also be used
as the base for later comparisons. (The specific growth and performance
limitations of the old kernel are addressed in later sections).

The literature was researched and academicians consulted to ensure that
the lessons of the past and the academic investigations whose results
offered potential were taken into account. Although extensive litera
ture was available on resource management policies, very limited litera
ture was to be found which directly related to the segmented architec
ture of the 3000 family. What was acquired from the research and con
sulting was a set of principles, measures and ideas which could be
incorporated into the design and implementation.

The investigation phase resulted in an understanding of the problems
and limitations of the old kernel, and a set of alternative strategies
which eliminated the limitations and problems and offered potential in
satisfying the overall objectives. Rather than coming up with the

F-9 - 02



eventual design, the investigation came up with a commitment to tryout
the .alternatives and select the best strategies for the architecture and
environment based on measurement rather than intuition.

4. Performance Goals and Strategy

In this paper, a transaction is considered to be a step in an intera
ctive session which begins when carriage return or enter is hit and
terminates when the system is ready to accept further input form the
session.

The global performance indices for the intended application environment
are :

(1). transaction response time;

(2). transaction throughput;

(3) • fairness;

(4). batch throughput.

The desired system behavior is as follows :

- For a given workload and configuration, the system should provide
minimum transaction response time with maximum transaction through
put. Batch performance should be "acceptable."

- Under increasing load, the system should be stable. As the load
increases, transaction response time should degrade gradually and
fairly. System throughput should stay high even under very heavy
loads.

- The system should dYnamically tune itself to optimize performance
for the current workload with the given configuration. However,
explicit control over the relative service between transactions
and between interactive and batch should be available to the
operator and system manager.

It must be kept in mind that the bottom line performance of the system
is measured by the global performance indices and not by the factors
which may influence them. This suggests that the performance strategy
should be directed towards optimizing the global indices and not towards
optimizing indices local to each system component.

The selected overall performance strategy was to achieve maximum system
performance by having the system components cooperate to optimize the
global performance indices. This approach is fundamentally different
from having each system component attempt local optimization and hoping
the result will be good overall performance.

F-9 - 03



Measures and associated instrumentation were defined for the global and
local performance indices and supported by the measurement interface.
With these measures, the effects of alternative strategies could be
understood and evaluated. The measurement interface through perform
ance tools would be made available in the field so that on-site trouble
shooting and tuning could be performed.

5. Implementation Methodology

In order to achieve the desired high reliability and natural extensi
bility, the implementation would have to be highly structured.

Interfaces between system components would be explicit, general, and
adhered to. Access to kernel services and internal information would be
available only through the use of explicit messages or the invocation of
kernel interface intrinsics. An adequate set of interface intrinsics
and a general, efficient internal message system would be required to
support this structured interfacing.

Within the kernel, a structured implementation was absolutely necessary
so that alternative resource management policies could easily be incor
porated, coexist, and eventually be deleted.

Performance considerations at the instruction level would be of secon
dary concern in favor of a structured implementation. The sought after
high level of system performance would be achieved through integrated,
parallel policies rather than by relying on highly optimized code
sequences.

The algorithm selection process and the support of MPE IV performance
tools would require that complete instrumentation and an instrumentation
interface be carefully designed into the new kernel.

6. The Internal Message Facility

A high speed memory resident message facility was defined and imple
mented. The facility is intended for the transmission of operating
system status and control messages. This facility eliminates the need
for supporting multiple ad hoc communication mechanisms.

The message facility associates a message harbor with each process.
Each message harbor contains 32 message ports. Each message port
contains a FIFO queue of messages, where a message is up to 5 words in
length (maximum length is configurable).

Message intrinsics are provided to send a message to any port of any
process, to determine the status of any or all message ports of a
process, and to receive in a destructive or non-destructive manner the
message at the head of a specified message port.

F-9 - 04



Use of the internal message facility is limited to operating system
code. User level inter-process communication is available through MPE
IV message files.

7. The Measurement Interface

In order to evaluate alternative strategies and to support the envi
sioned and yet to be envisioned MPE performance tools, an extensible
measurement interface was designed and implemented.

The existing MPE measurement tools were highly dependent on the kernel
implementation. They were knowledgeable of internal data structures and
called very low level kernel routines or exerted direct control over
resource management. Modifying the tools to support the new kernel
would be an inadequate solution since the tools were inadequate for the
evaluation task at hand, and future changes would create the same
problem over again. The decision was made to attempt to centralize
support of measurement requirements within the kernel itself, and to
make the tools independent of the kernel's implementation.

The basic requirements of the existing and envisioned tools were inves
tigated. An interface was defined which would provide the mechanisms,
support structures, and the access and control intrinsics so that the
information needed would be obtainable through intrinsic calls without
knowledge of internal structures or policies.

The key objectives of the interfa~e were service (provide what's
needed by the current tools); transparency (eliminate dependencies of
performance tools on system internals); extensibility (meet future
requirements by natural extension of the initial specification); and low
overhead (so that use of the interface would minimally effect the per
formance of the system under test).

The resulting measurement interface supports complete system global and
process local statistics gathering, selective measurement class
enabling/disabling intrinsics, statistics class delivery intrinsics, and
complete cleanup upon abnormal termination of a process which had

. enabled statistics gathering. Tools using the measurement interface
require no privileged code so that system reliability is improved and
the sought after independency from the kernel implementation is
achieved.

8. MPE IV Kernel Resource Managers

Each resource manager operates independently through clean interfaces
so that strategy or data structure changes of another resource manager
will not effect him. Each resource manager is built from structured,
general pieces so that alternative strategies can be easily implemented.

F-9 - 05



The management of the disc, main memory, and processor resources has the
primary impact on system performance. The approache~ taken towards
resource management for these key resources is sketched in the remainder
of this sec tion.

8.1 Disc Management

Disc management policies have an extremely sig nificant effec t on system
performance due to the workload characteristics. Transaction processing
applications on the 3000 are characterized by several disc references
per transaction with short processing requirements between references.
In such an environment, good disc management is essential in achieving
good system performance.

The goal of disc management should be to provide maximum disc subsystem
throughput while minimizing the service time for the most important
requests. The selection of policies for the ma~agement of disc space
and the scheduling of accesses to secondary store should be based on
achieving this goal.

The disc management systemi nterfaces with
memory management system when allocating
requests to access secondary store.

the file sy~tem and the
disc space and servicing

The major problems identified with the old
revolved around virtual memory management,
and serial seeking.

disc
disc

management policies
access scheduling,

Disc space for data segments was restricted to a single volume
(i.e. virtual memory limited to the system disc). This restriction has
serious detrimental effects on system growth and performance. The effect
on system growth is the obvious limitation on the amount of disc space
available for data segments by the size of the system disc. The perform
ance impact of this restriction is due to the long queue length created
at the system disc when the system is under memory pressure, and the
resultant service delays for access requests to that volume.

Disc access scheduling did not perform requests in the order of
their urgency. The scheduling policy for disc requests directed at a
device was preemptive for all memory management requests and FIFO for
all other requests.

The memory management replacement policy selected segments deemed not
likely to be needed in the near future. In the case of data segments, a
write to disc of the segment was requested, the motivation being that
the write may complete before the region occupied by the segment was
required so that the delay in fetching the new segment would be reduced.
These "anticipatory writes" were not urgent and often unnecessary,
yet the scheduling policy selected them for service before disc access
requests required for the completion of important transactions. Segment
fetches on behalf of batch jobs were also serviced before transaction

F-9 - 06



related service requests under the old scheduling policy.

The FIFO policy within process initiated disc access requests resulted
in the accesses of less urgent processes being performed before those of
more urgent processes. This increased the service time for the more
urgent processes requests and thereby increased the response time for
the related transactions.

Disc service was entirely serial for each disc sharing a common con
troller (i.e. no ovelapping.) Although the controller supports over
lapped seeks, this feature was not exploited. This resulted in a disc
throughput limitation per controller to one access per (avg cylinder
positioning delay + avg rotational latency + avg transfer time).

MPE IV disc management solves these problems. Additionally, the general
approach to disc management gives broad flexibility in scheduling
policies.

In MPE IV, disc space for data segments can reside on each system
volume. This multi-spindle virtual memory eliminates the limitation on
total virtual disc space, and helps to balance the disc queue lengths.
(Balanced disc queues are required to take advantage of parallelism in
I/O offered by overlapped seeks or multiple controllers).

The MPE IV disc queues are priority ordered. The priority of a disc
request is determined by the priority of the process that requires the
transfer. This holds for segment transfer requests issued by the
memory management system on behalf of a process as well as for file
system initiated transfer requests. Anticipatory writes are given the
worst priority and sit at the back of the queue so that they are per
formed as background activity when the device would be otherwise idle.
This priority queue management integrates the disc management policies
with the goals of the rest of the kernel, since priority assignments
reflect the global performance goal of the system.

The feature of the disc controller which allows a seek command to be
sent to a unit other than the unit owning the controller is exploited in
MPE IV. The seeks for units waiting for the controller are issued
during the execution of the channel program for the unit currently
owning the controller. This results in the heads being in position over
the proper cylinder when the next unit gets the controller. The net
result is a potential maximum disc throughput per controller of 1 access
per (avg rotational latency + avg transfer time). Since the disc 1
access time 1s dominated by the head positioning delay, this overlapping
approximately doubles the maximum throughput per controller. (The over
lapping seek software will only be available for the Series II and III
on the C-MIT).

To achieve this maximum throughput, the disc queues for the units on the
controller must be kept non-empty and balanced. This requires a sus
tained high level of multi-programming and a proper spreading of data
across the volumes. To make response times short, the more urgent disc

F-9 - 07



~.

requests have to be performed first. It can be seen how the inter
relations between memory management, processor management and disc
management impact system performance.

8.2 Memory Management

Memory management requirements for the 3000 architecture consist of free
space allocation, segment replacement, and garbage collection.

Free space allocation is required when a segment fetch is to be per
formed. The free space allocation algorithm selects the hole into which
the segment should be read. Alternative strategies include first fit,
best fit, and buddy schemes.

Segment replacement must be performed when a segment fetch is required
but a hole of adequate size is not available. Alternative strategies
include working set type policies and least recently used type policies.

Garbage collection is required in a segmented system to combine holes
into larger holes. A variable sized allocation policy tends to produce
small, unusable holes scattered throughout memory. This is known as
external fragmentation. Garbage collection attempts to minimize the
external fragmentation by combining the small holes into larger usable
holes.

The major problems identified with the old memory manager were its
serial nature, high fault rate caused by the per program working set
replacement policy, restricted garbage collection performed during cri
tical periods, and an inefficient free space allocation policy.

The old memory manager was entirely serial. Once the memory manager was
started on a process swap-in, he couldn't begin on a second (or more
important) swap-in until all the disc transfers required to finish the
first swap-in completed. This serial memory management service forced
artificial limits on the multiprogramming level. For large main
mem.ories this limitation restricts the system from achieving its poten
tial performance.

The working set per program policy caused processes to release each
others localities resulting in a high fault and recovery rate.

Garbage collection could only be performed locally within a bank, and
performed during allocation time, so that memory management service time
was further increased.

MPE III free space allocation selected the first fit hole causing large
holes to be used up before they were needed. This resulted in excess
invocation of the replacement policy.

The memory management policies were entwined with the rest of the system
so that minor strategy changes would require extensive development.

F-9 - 08



MPE IV memory management solves each of these problems and
presents a general, structured implementation which
strategy changes with minor development effort.

in addition
allows major

Free space allocation is implemented by a best fit policy using size
ordered free lists. This scheme is very fast, and saves the big holes
until they're needed•

.The resulting external fragmentation is eliminated through background
garbage collection. Main memory garbage collection is performed as a
background activity using cpu cycles during which the processor would
have otherwise been idle. Garbage collection attempts to move small
assig ned regions located between large holes into small fragmented
holes. The large holes are combined into even larger holes, and the
small holes are eliminated. This skews the distribution of hole sizes
towards the large holes and eliminates the external fragmentation there
by reducing the frequency of application of the replacement policy. The
garbage collection code is responsiv~ to the system state, and returns
to the dispatcher when more urgent activity becomes pending.

The memory replacement policy is a very low overhead implementation of a
global least recently used (LRU) policy. When a hole of the required
size is not available, segments not needed by the current multipro
gramming set (as determined by a global LRU algorithm) are selected for
replacement on a memory ordered basis. In the segmented architecture of
the 3000 family, this replacement policy proved to be superior to the
working set policies. The memory scanned LRU approach tends to release
unneeded segments in adjacent regions of memory, thereby creating large
holes with few replacements. In contrast, the working set policies were
found to require many more segment replacements to satisfy placement
requests since they freed up space randomly through memory when re
leasing a working set of segments.

Segment fetching is an unblocked parallel operation in which memory
management code invoked directly by the dispatcher sets up the operation
and
the disc management code finishes it off as the required transfers com
plete.

8.3 Processor Ma nagement

Processor management consists primarily of selecting the activity to
which the cpu should be devoted. The major cpu activities include run
ning system and user processes, swapping in processes, and garbage col
lection.

Processor management is implemented by assigning priorities to the
pending ac tivities and giving the cpu over to the activity with the most
urgent priority. This function is performed by t~e dispatcher.

Priority assignnent in the old kernel had a problem with batch jobs.

F-9 - 09

~r ····"i~~1~



Batch jobs would migrate up in priority to compete equally with inter
active processes during busy periods.

Activity selection was restricted in the old kernel due to the memory
manager being serial. The consequence of this limitation was that even
if plenty of free space was available, memory management could not be
performed when needed for a process if a more urgent process was waiting
for disc I/O to complete. It couldn't be risked to swap-in a less urgent
process since the more urgent process might need memory management ser
vice soon and the memory manager would be busy. The dispatcher was
forced to pause the cpu rather than to work on increasing the multi
programming level.

The MPE IV processor management scheme is very flexible. Priority
assig nnenta and ac tivity selec tion are direc ted towards optimizing the
system performance and can be tuned by the operator.

Priority assignments are made to reflect the performance goals of the
system. Each scheduling class (C,D,E) has a base priority and a limit
priority. When a transaction begins or a job is introduced into the
system, the related process gets its class' best priority, the class
base priority. As the process uses more cpu time than that required for
an average member of the class, the process is considered to be less
urgent and its priority drifts towards the class's limit priority. The
limit priority is the worst priority that a process in the class can get
assig ned to it.

The priorities of processes placed in the A or B scheduling classes are
kept static over time. The filtering parameter which determines the
migration rate for a C, D or E scheduled process from its class base to
class limit is dynamically tuned for C scheduled processes only. Bounds
on the filtering parameters for C, D and E classes are set in the :TUNE
command.

This priority assignment scheme enables the dispatcher to apply a
scheduling policy which approximates a "shortest processing time first"
algorithm. This gives maximum system throughput and best response time
for short transactions while slightly delaying the longer transactions.

The C, D, and E classes can be made to overlap so that the processes in
the various classes compete with each other, or they can be made dis
joint. By making them disjoint, D and E processes will always be pre
empted for C processes. This tuning causes batch work to be performed
as background activity between bursts of interactive transactions. This
is the default tuning setting.

The operator or system manager can control the base and limit priorities
of each class, and the rate at which a process' priority moves from the
base to the limit through the :TUNE command.

CPU activity selection procedes by inspecting the priority ordered queue
of processes requiring cpu service. When a process is encountered which

F-9 - 10



is ready to run, the process is launched. If the process requires some
memory scheduling, the swap-in procedure is invoked directly by dis
patcher. If there's nothing better to do, main memory garbage col
lection takes place.

In MPE IV, swapping-in of a process is performed by nested procedures on
the dispatcher's stack. The fetching of a segment on behalf of a pro
cess is a low overhead, unblocked operation which allows an unlimited
degree of parallelism in memory management. The swap-in code is
responsive to the system state, and returns to the dispatcher when a
process more urgent than the one that's being worked-on becomes ready or
requires scheduling attention.

If the queue of ready processes is empty and there are no processes
requiring memory scheduling , or increasing the multi-programming level
has been determined to be dangerous at this time, the dispatcher invokes
the backg round garbage collection code which returns when more urgent
activity becomes pending.

9. Performance

The performance of MPE IV as measured by system transaction throughput
and mean transaction response time is published in the "UP 3000 Perform
ance Guide for Installed Systems." Performance tests were conduc ted
using a standard application workload which represented a general
purpose EDP environment with a mix of online data base and program
development sessions and backg round batch jobs.

The measurement results from these tests indicated that under
light loads relative to system configuration, MPE IV showed slight per
formance improvement over MPE III. This was anticipated, since the MPE
IV kernel seeks its performance improvements through the exploitation of
parallelism, and the potential for parallelism is small under light
loads. As the workloads were increased, MPE IV showed substantial
improvement in both transaction response time and transaction throughput
over MPE III. The performance improvements were realized across the
family under the configura~ions and workloads measured.

The behavior of the system was exactly that which was sought. The sys
tem exhibited stability and good performance across the range of work
loads, processor speeds, memory sizes and system configurations
examined.

10. Conclusions

The approach to kernel design and implementation undertaken by the MPE
IV kernel project resulted in an operating system foundation
which naturally fits the evolving 3000 computer family to the environ
ments it supportso The structured approach permitted alternatives to be
easily implemented, and the measurement interface permitted them to be

F-9 - 11

~,. .., .. r;;~4~j~·;"



thoroughly evaluated. The final implementation consists of integrated
resource managers who cooperate to provide the best performance with the
given system configuration under the current workload. The validity of
the approach taken to kernel design is demonstrated by the resulting
kernel's reliability and performance.

Acknowledgements

Special recognition is due to those who significantly contributed to the
project's success. Professor Wesley Chu of UCLA and Professor Forrest
Baskett of Stanford impacted the process through their valuable consul
tations. Alan Hewer, Howard Morris, and Neil Wilhelm kept things on
course through their careful reviews. Ron Kolb, Ray Ventura and Bruce
Blinn, through their design and development help on seek-ahead, the
measurement interface, and multi-spindle virtual memory respectively,
helped to speed the kernel to completion. Chris Moeller with his tuning
help and Marcia MCConnel and Carl Sassenrath with their debugging
assistence contributed to the system's performance and reliability. Ken
Spalding, through his coordinating function in the late stages, helped
to get the system out the door.

F-9 - 12



THE MPE IV KERNEL: A HIGH PERFORMANCE, INTEGRATED
FOUNDATION FOR MPE - THE DESIGN PROCESS

By:
John Richard Busch

Hewlett-Packard Computer Systems Division

The MPE IV Kernel, available on the C MIT, is the result of over

three years of research and development. It provides a new high

performance, extensible, integrated foundation for MPE. The principal

designer of the kernel describes· the design and implementation process.

Design Objectives, research approach, functional characteristics, algo

rithms, design methodology, and performance results are presented.

Tuesday F-10 - 01



THE ROLE OF PRINTERS IN A OS ENVIRONMENT-

AN ENGINEERING FEEDBACK SESSION

Presentors
Jim Langley, Project Mgr., HP

The author will be soliciting customer input on the following
topics:
1. The quality and features of HP's existing product line.
2. Data Communications requirements for printing in a OS

environment.

Tuesday F-ll - 01



DATA COMMUNICATIONS-

A TECHNICAL ROUNDTABLE

Presentors
Tom Black, Marketing Mgro, HP
Ed Turner, Product Support Mgr., HP
Jim Beetum, Project Mgro, HP

To start off this session, HP will present the future
direction of its data communications program. Following
this, the panel will answer to questions from the audience
the panel expertise varies widely such that virtually any
data comm~ question or concerns can be responded to.

Tuesday F-12 - 01



USER FRIENDLY APPLICATIONS

IN COMMERCIAL REALTIME

DATAPROCESSING

\ \' II I r 'I
" ------------...-......... /

"
"l \

Tuesday G-1 - 01

~ EXPER I ENCES

:) SUGGESTIONS

:) PROBLEMS

JOACHIM GEFFKEN
RECHENZENTRUM
HERBERT SEITZ KG
GRONENSTRASSE 11/12
D-2800 BREMEN
W-GERMANY



~ Introduction

~ User Interlace

~ Application Programs

~ User Training

~ User Documentation

UFS2 RECHENZENTRUM HERBERT SEITZ KG

G-l - 02



The Herbert Seitz Company is ...

~ A REALTIME DATAPROCESSING SERVICE BUREAU

~ AND SOFTWAREHOUSE

~ AND HEWLETT PACKARD OEM

with (:198:1) ...

~ 7 OWN HP 3000 (SERIES III AND 44)
IN OUR BREMEN AND PFORZHEIM BRANCH

~ AND 10 HP 3000 SERIES III IN
ASSOCIATED COMPANIES

~ WITH APPROX. 350 TERMINALS SPREAD
OVER GERMANY CONNECTED VIA HARD
WIRED LEASED LINES/DIALED LINES

Location of:

o own Computers

• Associated Companies

UFS2 RECHENZENTRUM HERBERT SEITZ KG

G-1 - 03



WE PROVIDE OUR SERVICES IN GERMANY AND FRANCE FOR COMMERCIAL
APPLICATIONS LIKE Iii

)I ) ACCOUNT I NG

Jt-i PAYROLL

Jt-i MATERIAL MANAGEMENT

Jt-i SHOP FLOOR CONTROL,
CAPACITY PLANNING

Jt-i TOOLS FOR HP 3000
OPERATION, SOFTWARE-DESIGN
AND DOCUMENTATION

OUR USERS ARE ...

=*> WORKMEN

=*> DATA TYPISTS, CLERKS

=*> MANAGERS

ONLY AFEW OF THEM ".

~ ARE SPEAKING (HP-)ENGLISH

~ HAVE DP EXPERIENCE

~ HAVE SEEN ANY TERMINAL BEFORE

UFS2 RECHENZENTRUM HERBERT SEITZ KG

G-l - 04



for this kind of users we need ...

cr:r A FRIENDLY interface BETWEEN THE USER AND
HIS APPLICATION PROGRAMS

f , ( ,
r cr:r EASY-TO-UNDERSTAND

.-
aPPlication..,..".

~
---..

programs
\

cr:r A user training WITH

REGARD TO THE STANDARD OF
EDUCATION OF ITS PARTICIPANTS

cr:r user documentation MANUALS,

WHICH INVITE TO READ

UFS2 RECHENZENTRUM HERBERT SEITZ KG

G-l - 05



1II1~ KEEP YOUR USERS OUT OF MPE

MPE IS A HIGH LEVEL OPERATING
SYSTEM WITH A LOT OF POWERFUL
COMMANDS, BUT IT IS NOT DESIGNED
FOR THE DIRECT USE OF USERS WE
ARE DISCUSSING ABOUT

1II1~ USE ANY KIND OF MENU-TECHNIQUE

(WE CALL OURS
"USER-PROFILES")

l"'fSYl

UFS2 RECHENZENTRUM HERBERT SEITZ KG

G-l - 06



w
(!J

~
CD
Z

S
>
~,

z
---

0:::
C)
t-......
ffi
:I:.........
X
Q
UJz

C) ....
C ....J «

--J ....
L4J z
::E: .....

~
Q
z Q
<t z
~ «
0 Q
U w....
UJ <C
Q.. UJ
~ 0=:

""' U
C'J ......
~ >

0 ..J
LU ....

l.lJ UJ en
Z «

c....> w
>-<t: ...J en
Z Wu.. b ~

zc:::: UJ UJ
X ~

LLI.... ttz:
~

~.

UFS2 RECHENZENTRUM HERBERT SEITZ KG

G-l - 0 7



d
hj
en
I\J

IN T E R.F ACE (3)

c) THE USER ON~LY CAN DO .THINGS YOU WANT H.IM· TO DO

c)BUT HE CAN.DO ANYTHING POSSIBLE WITH THE HP 3000

G)
t

--t

o
CD

!X'
tzJn=r:
t%J
Z
N
t%J
Z
~
~

~
=r:
t%J

m
~

~
en
trJ
H
8
N

~
G'l

)

QUERY WITH T'ERMIKAL~ }",
OUTPUT '~

QUERY WITH PRINT~OUTPUT

"LISTF" ';OF SOME FILES../""

HARDCOPY SPOOL PRINT
"PURGEH OF ONE FILE
START .OF A JOBSTREAM
SKIP TO ANOTHER MENUE

ECHEHZEHTRUM HERBERT

)



-, '1 )

REFERRING

j •••••••••••• ~••••••~••••••••••

•••••••••••••••••••••••••••••••••I.
~...
•

I N T ER F ACE (4)c::
"%Jen
f\J

~CONTROL OF REQUIRED SEQUENCE OF DIFFERENT MENUE-CHOICES
••••••••••
: ~O TIME, SITUATION'OR KIND OF pATA-ENTRIES· ~• • : ~ INFORM THE USER WHAT THE COMPUTER IS DOING FOR HIM
•••••••••••••••••••••••••••.'••••••••••••.~
~•

::tt
tlj
n
:J:
tIJ
Z
~

tlj
Z
t-3

en I
::tt

I ~.....
:J:

0 I
tzJ

\.0 ~
tIJ
~
t-3

Ul
tIJ
H
t-3
N

~
G"l

I

"YOUR INVOICES ARE READY," ENTER 13 FOR HARDCOPY OR 14 FOR LINE-PRINTER OUTPUT"



en
UJ
U
t-t

0
:I:
U

-I ~
e(
u.....
I-.....
c::::
u
u..
0

z
0.....
l-
e(
~

"...,... a::
Lrt 0
"--' LL

Z
0

l.LJ U
LU

L.) c:::

< a::
0u.. LL

c::: ~

en
LLJ <C

t-
z: 1r.....

UFS2 RECHENZENTRUM HERBERT SEITZ KG

G-l - 10



c::
"IJ
en
I\J

Gln:r:
t%J
2:
N
tzJ
2:
t-3
~

~ I
~
tI:
tzJ

~ I
~
tzJ

~
en
tzJ
H
t-3
N

~
G'l

~ .'1

I NT E R F ACE (6)

AVOID ANY CONFLICTING ACTIVITIES
(AS OTHER AciIVE SESSIONS OR JOBS,
SUCCESSFUL COMPLETION OF OTHER SESSIONS OR JOBS ETC.)

'-'



GENERAL GUIDELINES FOR OUR PROGRAMMERS:

~ ONLY BLOCK MODE PROGRAMS (V/3000)

~ TRY TO DESIGN GOOD READIBLE FORMS

~ AVOID (ENGLISH) ERROR MESSAGES FROM
ANY HP SUBSYSTEM

~ ALWAYS POINT TO WRONG ENTRIES
AND PROVIDE A MEANINGFULL
ERROR MESSAGE

~ ALLOW A REGULAR PROGRAM
TERMINATION OR A CANCELLATION
OF THE LAST ENTRY AT ANY TIME
IN ANY SITUATION VIA THE
F7/F8 KEYS

~ IF POSSIBLE, USE THE FIELDNAMES
IDENTICAL WITH THE ITEM NAMES OF
THE CORRESPONDING DATA BASE

~ USE STANDARD FORMS AND TRANSACTION
CODES IN ALL PROGRAMS AND SYSTEMS

SOME EXAMPLES •••

UFS2 RECHENZENTRUM HERBERT SEITZ KG

G-l - 12



AP P L I CAT I ON PRO GRA.M S (2)

SAME TRANSACTION CODES IN ALL PROGRAMS

RZ HERBERT SEITZ KG.
P'FDRZHEIM - BREMEN

SHOW - IF POSSIBLE - THE AVAILABLE TRANSACTION-CODES

LAGERBESTAHDSFDRTSC"REIBUNG
INPfBFO



G')
I

--'

--'
+=:a

AP P lIe AT ION PRO GRAM S (3)

TELL THE USER WHAT HE IS EXPECTED TO·DO

'HERBERT SEITZ KG.
DRZHEIK - IRDlE

·PLEASE CHECK THE SUGGESTED DELIVERY DATE AND COMPLETE THE ORDER-

) ) )



~ .~ "

AP P LIe AT ION PRO GRAM S (4)

TELL THE USER, IF A TRANSACTION TAKES MORE THAN THE NORMAL RESPONSE TIME

"BILL OF MATERIAL WILL BE COPIED. PLEASE HOLD ON"

rUECKLISTE WIRD KOPIERT. BI~WA. liE .. ~-

G")
I

--'

--'
01



G)
I

-..a

-..a
a..

AP P LIe AT ION PRO GRAM S (5)

PROVIDE INFORMATIONS ABOUT LOCKS AND THEIR REASON

"NO MASTER ITEM CHANGE POSSIBLE. THE TERMINAL 71 HAS EXCLUSICE ACCESS TO THIS ENTRyH

) J )



'-'
AP P LIe AT ION PRO GRAM S (6)

) -)

en
I

--'

--'
'J

FORCE USER TO CHECK HIS ENTRY, WHERE IT MAKES SENSE

Mit f7 koennen Sie stornleren

"PLEASE CHECK THE RESULT OF YOUR ENTRY. IF NECESSARY CANCEL WITH F7"



ALLOWED 1 = FINAL PRODUCT
ENTRIES: 2 = ASSEMBLY

3 = PART OF PURCHASE I TEJ
4 = RAW-MATERIAL

en
I

--'

-'
co

AP P LIe AT ION PRO GRAM S (7)

)J> HELP FACILITY AND FIELD EXPLANATION WITHIN PROGRAMS

DESCRIPTION OF FIELD DISTU
FROM MASTERFILE

I DISPOSITION LEVEL

I FIELDLENGTH 2, 0 DECIMALS,

} CHANGE IS ALLOWED

NUMER

*** OUR EXPER IENCE :

)

THIS FEATURE IS USED VERY SELDOM AND ~T IS VERY EXPENSIVE
TO DESIGN AND MAINTAIN
WE DON'T EMPHASIZE IT IN ALL APPLICATIONS

J )



OUR PRO GRAM

~ INTRODUCTION INTO INTERACTIVE DATA PROCESSING

~ UPDATE TRAINING FOR STANDARD USERS

~ APPLICATION-TRAINING

~ QUERY FOR NON-DP PERSONNEL

~ UPDATE TRAINING FOR QUE.RY U.S.ERS

UFS2 RECHENZENTRUM HERBERT SEITZ KG

G-1 - 19



INTRODUCTION TRAINING

~ 1/2 DAY THEORY, 1/2 DAY LABS

~ TERMINAL USE

~ HARDCOPY-PRINTER USE

[> HOW TO LOG ON

~ HOW TO USE THE MENUES

~ TRY SOME TRANSACTIONS

[> HANDOUTS:

- SLIDE COPIES
- TERMINAL AND HARDCOPY USER MANUAL

(SIMPLIFIED AND TRANSLATED)
~ CHECKLIST FOR TROUBLESHOOTING

UFS2 RECHENZENTRUM HERBERT SEITZ KG

G-1 - 20



UPDATE TRAINING FOR STANDARD·USERS

:) REPEAT INFORMATIONS FROM INTRODUCTION AFTER SOME
WEEKS/MONTH OF PRACTICE WITHIN 1 DAY THEORY

~ HOW MTS WORKS

:) HOW TO IMPROVE RELIABILITY OF DATA
COMMUNICATION

:) STRATEGIES FOR LESS RESOURCE
USAGE AND BETTER RESPONSE TIMES

:) HELPFUL HINTS AND TRICKS
FOR TERMINAL- AND HARDCOPY
USAGE

:) WHAT A COMPUTER HAS TO DO
FOR A "SIMPLE TRANSACTION"
(OR WHY DOES IT TAKE SUCH A
LONG TIME)

:) DIFFERENCES BETWEEN JOBS AND
SESSIONS

~ REASONABLE USE OF QUERY

::> MORE INFORMATIONS ABOUT TROUBLESHOOTING

SOME EXAMPLES •••

UFS2 RECHENZENTRUM HERBERT SEITZ KG

G-1 - 21



RECH~NZENTRUM
BREMEN/PFORZHEIM

HP 3000

SSLC ~OST STAND
'LEI TUNG

\
\

\
\

usw.

UPDATE RECHENZENTRUM HERBERT SEITZ KG

G-l - 22



UPDATE

- DANACH ERFOLGEN EINE REIHE VON
ZUGRIFFEN AUF IHRE DATENBANKEN.
VOR UND NACH JEDEM·ZUGRIFF MUSS
IN EINER TABElLE DIE ENTSPRECHEN
DE KENNZEICHNUNG ERFOLGEN, DIE

KONKURRIERENDE ZUGRIFFE REGELT.
SIE KONNEN SICH DIESEN REGELUNGS
MECHANISMUS WIE EINEN POLIZISTEN
VORSTELLEN, DER DEN VERKEHR AN
EINER VERKEHRSREICHEN KREUZUNG
MIT 20(!) CDER MEHR EINMONDUNGEN
REGELN SOll

RECHENZENTRUM HERBERT SEITZ KG

G-l - 23



LISTEN SELBST GEMACHT - WIE FUNKTIONIERT DAS ??

RECHNER

MIT DEM LISTEN-ABRUF WIRD EINE PLATTENDATEI
ERZEUGT (KEIN PAPIER BEDRUCKT)

ERST DAS UFF-LINE DRUCKEN BRINGT DIE PLATTEN
DATEI AUF PAPIER

UPDATE RECHENZENTRUM HERBERT SEITZ KG

G-l - 24



AP P LIe AT ION T RAI NI NG
•

CLASSROOM-TRAINING OR TRAINING ON THE JOB
(KIND AND TIME DEPENDS ON APPLICATION)

~ "TRAINING COMPANIES" FOR
TEST AND TRAINING IN ALL
APPLICATIONS

~ FREE PHONE IN CONSULTING
FOR ALL USERS

UFS2 RECHENZENTRUM HERBERT SEITZ KG

G-l - 25



QUERY FOR NON-DP-PERSONNEL

c:> 3-4 DAYS WITH 7 LABS

QUERY FOR USERS, ONLY INFORMATION RETRIEVAL
(NO UPDATE AND DELETE)

c:> DATABASE TERMS AND THEORY (VERY LITTLE)

c:> HOW TO USE "HELP, FORM"

c:> SMALL REPORTS WITH
" LI sr"

c:> "FliND" COMMAND

(OR HOW TO TRANSMIT
MR. BOOLE'S MESSAGE)

¢ COMPLEX REPORTS

.•• 0.' ..,', .•.••~ ...... 0
~••c::a a...... --:: •••• - ®(j)••

SOME EXAMPLES •• 1

UFS2 RECHENZENTRUM HERBERT SEITZ KG

G-l - 26



{) BUN G:

Fa
FO PATHS

FORM KDSTAM

FOR KDNR

DATA SET NAME
DATA ITEM NAME
SETS
ITEMS
PATHS

RICHTIG FALseR

FORM

F ITEMS

SETS FORM

FORM ITEMS SETS

FOR KDSTAM

IMAGE / QUERY RECHENZENTRUM HERBERT SEITZ KG

G-l - 27



REPORT BEISPIEL

PROCEDURE: RP01

! lI, ""'-lIILt!,,- ~ftra.r wut-

l L......\A,;f.t~ ""'-fr..,"&Jert it. At-G~

R
H1,"AUFTRAGSUEBERSICHT VOM M ,30
H1,DATE,40
Hi , "SEIlE II ,60
H1,PAGENO,6S,SPACE A1
H2, "AUFTRG",6
H2 , "DATUM II ,13
H2, "KDNR" ,19
H2, "KUNDE II ,26
H2, "MENGE" , 54
H2,"VK-PREIS" ,(35
H2, lt AUFTRGS-WERT",78,SPACE A1
Gl,"ARTIKEL:",8,SPACE Dl,SPACE
G1,ARTNR I 18
G1,ARTKBZ,29
T1,R2
D1,AUFNR,6
Di,AUFDAT,13
D1,KDNR,20
D1,KDKBZ,26
D1,AUFHENGE,S4,E1
El,"ZZZZZZZ9"
D1,ART\lKPR)6S,E2
R1,L,AUFMENGE
R1,M,ARTVKPR
R2,A I Rl
D1,R1,78)E2
E2,"ZZZZZ9.99"
E3, "ZZZZZZZ9. 99'-"
T1,AUFNR,6,CQUNT
T1, "AlJFTRAEGE: II , 16
T1,AUFMENGE,S4,E1,ADD
T1,R2,78,E2
T1,ARTVKPR,6S,E2,AVERAGE
LINES=1S
PAUSE
Sl,ARTNR
END

001
002
003
004
OOS
006
007
008
009
011
012
013
014
01S
016
017
018
019
020
021
022
023
024
025
026
027
028
035
036
037
038
039
040
041
042
043
044
045

I~~AGE/QUERY RECHENZENTRUM HERBERT SEITZ KG

G-l - 28



~> STANDARD DOCUMENTATION FILES
(FOR MANUAL PRINTING) ARE USER ACCESSIBLE

=*> USER MAY SUBMIT HIS ADD ON DOCUMENTATION
INTO THE SAME DOC FILE

UFS2

=9> MANUAL FOLLOWS THE TYPICAL PROGRAM
SEQUENCE

~> ANY NEW INFORMATION ON THE
SCREEN IS DISPLAYED WITH PICTURES

SEE EXAMPLE NEXT PAGE III

RECHENZENTRUM HERBERT SEITZ KG

G-l - 29



ANWENDUNGEI\j

DISPOSITIONSERFASSUNG
------~----~--------~-

WIR HABEN IN UNSERER GRUNnMnSKE WIEDERUM DIE MATERIAL 
NUMMER A UNO DEN VERARREITUNGSSCHLUESSEL 0 FUER DIE
ERFASSUND DER DISPOSITION EINGEGEBEN. ES ERSCHEINT DIE
ABGEBILDETE MASKE.

O-DAT:

FUER DIESES FELD GILT WIEDER DIE BEREITS
GENANNTE REGEL FUER DATUMSERFASSUNG.

t1~NGE : DISPOSITIONSMENGE ( 3 KOMMA STELLEN,
---------------- LOGIK WIE BESCHRIEBEN

IN DIESEM FEl.D .:~A'~'" DER EINZELPREIS EINGEGEBEN
WERDEN. WIRD KEIN WERT EINGEGEBEN SO HOLT DIE
MASCHINE, FUER DIE BEWERTUNG DES AUFTRAGS
BESTANDES , DEN PREIS AUS DEM LAGERSTAMMSATZ.

G-l - 30



---- --1 _

I I ~
t

- C"TL (CONTROL) DIE CONTROL-TASTE WIRD ZUR UMKEHRUNC YOH
NORMALFUHkTIONEH 8ZW. 2U~ STEUERUHC YON
SOHOERFUNkTtONEH VERWANDT. ZUR AUSFUEH
RUNG £I~ER SOLCHEN SOHDERFUHKTION ftUSS
STETS DIE CONTROL-TASTE FESTGEHALTEH
WERDEN UNO EINE WEITERE ANDERE TASTECE
DRUECKT WERDEN. SO 1ST Z.8. DIE COHTROL
TASTE FESTZUHALTEN UND DIE TAB-TASTE'ZU
BETAETIGEH~ WEHN MAN FELDWEISE RUECK
WAERTS SPRINGE" WILL,

- SHIFT-TASTE

- lEER TASTE

- DEL-TASTE

- RETURN-TASTE

MIT DER FESTGEHALTEHEH SHIFT-TASTE KOEH
NEN DIE J£WEILS 1M OBEREN TASTEN8EREICH
ANGEZEICTEt~ ZEICHEH EltlGEGEBEN WEROEN,
1M BEREICH DER BUCHSTA8EN A - Z DIEHT
DIE SHIFT-TASTE WIE DIE 9UCHSTABEH-UM-
SCHALTTASTE BEt SCHREIBMASCH UR AH-
STEUERUNG YOH GROSSeUCHSTABP. O~ EGEL
FALL [ST JEOOCH DURCH DI~ ~, IGU-
RATION <CAPS-LOCK-TASt~ ~~~ SHIFT-
TASTE OER GROSS8UCH~· (,~~<r; It4GESCHAL-
TET. ~O

OlE 8REITE ~S~~ UtfTEREN TASTATUR-
BEREICH D O~ DER SCHREIB"ASCHIHE,
ZUR EIt ~v~ .~RZEICHEN. 01ESE TASTE

~~~T~ ~~~ OH~~~~~IT~~~E~E~UE:E~~~~EM
DRUECK N- UND BEt" LOSLASSEH DER
TASTE WIEDER AUSCESCHALTET WIRD.

HtCHT YERWENDEt~.

DIE RETURH-T~STE HAT NUR UHTER FOLCENDEN
8EDIt~CUHC£t~ DIE FUHKTIOH EINER· SEHDE TASTE
(Zll" RECHNER) I

o DAS TERI'lIt~AL 1ST HICHT IN EINEM
MEHRTERI'I I tlALBETR l EB (MTS) AHGESCHLOS
SEN

o SIE ARBEITEt~ Z,ZT. NICHT IN BILDSCHIRI'1
MASKE~ SOHDERH IN ABFRAGE- ODER
DRUC~PROGR~MMEN <MENUE, QUERY, OFF-
LINE-DRUCK) ~

~

von

01.10,79
l1:t f lJnt I{nlltrollp

-------_..--.

CE-CH ~

r~

PIII_-"-"--_IIP.!!J!l~~""'''~ __lUWt''''''''IIIMIIII8J'''l'J"BI''''_~'''_''' .;~
G-l - 31

ENG LIS H / 3 0 0 0

A NATURAL LANGUAGE ON A MINI-COMPUTER

Doug Peckover
D.P. Concepts Inc.
98 Perodeau
Vaudreui1
Quebec J7V 5V5
(514) 455-1373

(c) D.P. Concepts Inc. 1981

Tuesday G-2 - 01

ENGLISH/3000 SCHEMATIC

Language
Definitions,
Formats

Data
Fi 1e s

Typed
Terminal
Requests

Spoken
Requests
(later)

ENGLISH/300()

Updated
Log

Printed
Reports

G-2 - 02

Di sp1a,yed
Enquiries

WH-AT & WHY?

"Hardware vendors could go a long way toward eliminating the
problem of computer-caused unemployment if the,Y were somehow
able to achieve a technological breakthrou~h in natural computer
languages. Development of a powerful, eas,y-to-use natural lan
guage would make computing systems available for the first time
to a large class of unskilled users who would otherwise find
the s.ystems forever intimidating and inaccessible ll .

Alvin Toffler - author of IIFuture Shock ll

What Mr. Toffler said is equally applicable to the thousands
of "unskilledllmanagers who already have access to computers,
but find them lIintimidating and inaccessible ll

•

There is presently a furious race to produce the world·s first
Voice Recognition Unit (VRU) that would understand our most na
t~ral language - our native tongue. Everyone from the heavies
at the IBM T.J. Watson and Yorktown Heights labs as well as the
Bell labs to fairly small micro and terminal manufacturers are
producing encouraging, but crude VRU·s. The general feeling is
that a fully "unrestricted" VRU is still 8-20 years away. However,
there are many enormous benefits to natural languages that are ~

available right now. ENGLISH/30aa will shortly permit the HP'
3000 users to take the first of three phases to a fully unres-
tricted natural language:

Phase 1

Phase 2

Phase 3

Accept a TYPED terminal command in a NATURAL (unres
tricted) format. Interoret and execute the command.
(IIPLEASE SHOW 'ME ALL FINAL PRODUCTS THAT USE A 56421
BOLT II - this can be abbreviated).

Accept a SPOKEN voice command in an ARTIFICIAL
(restricted) format. Interpret and execute the command.
(IISHOW FINAL PARTS 56421 11

).

~ccept a SPOKEN voice command in a NATURAL format.
Interpret and execute the command. (IIPLEASE SHOW r~E ALL
FINAL PRODUCTS THAT USE A 56421 BOLT II

).

Phase 3 is probably 8-10 years away. Phase 2 is 3-5 years away.
Phase 1 is available now.

G-2 - 03

There are many advantages to simulating VRU·s. These include:

1. User training for enquiries and reports would be
reduced to a minimum. Instead of having to study your
documentation and running your programs, they would
explain what they require just as they would to another
person.

2. Slight variations in how a request is worded could
format the information in many different ways. For
example, IIDisplay the parts list ... 11 and IIDisplay the
costed parts list ... 11 could indicate different
requirements for two separate departments.

3. You will be able to start designing for the second
and third stages that will have the most profound
impact on your organisation. What we learn will not
only prepare you now for VRU·s but will also simplify
the selection criteria for them as they come onto the
market.

When the information requested is ready to print, we need a
powerful report generator to produce terminal enquiries and
printed reports. The benefits provided by ENGLISH/3000
include:

1. Traditional programming costs for most enquiries and
reports would be slashed by up to 90%. The net
increased productivity to your programmin~ staff could
double their output.

2. Your managers and users will be able to write their
own enquiry and report formats. This would remove
much of the load traditionally placed on the data
processing department.

As with all major projects, specific design ~oals were set
for ENGLISH/30DD. The following pages outline some of the
prime considerations that specified the framework on which
the product was developed.

G-2 - 04

EASE OF USE

There can be no easier way to train a manager or user Wow
to use a new system than by permitting him to use his natural
language, whether it be English, French, Spanish, and so on.

1. No matter how complex the data structures are or how in
volved the programs get, when it comes down to a one on
one enquiry, the user can communicate with the computer
on an equal basis. There are no programs to memorize,
no keys to remember, no rules to look up.

2. The training for enquiries and reports becomes the res
ponsibility of the System Manager as he is the one to
determine who needs what. The reduced number of conven
tional enquiries and report programs will make new sys
tems easier to teach. In addition, ENGLISH/30nO could
significantly reduce the sales effort needed by software
OEMS by giving the System Manager these additional cus
tomizing facilities. This ease of use could even lead
to a lower support cost for many installations.

3. The user can mix dependent demands, such as bill of ma
terials with independent demands, such as customer orders,
without the need to understand their relationship or de
pendancy on the data base(s).

4. Special considerations have been taken in desiqninq the
report writer. The assumed technical knowledge of the
System Manager is EDIT/3000 and QUERY/3000. An ENGLISH/
3000 format (or procedure) compiles itself automatically
the first time it is used after a modification has been
made. When you receive each new release of ENGLISH/30aO,
any modifications required to your source code (if any)
will be automatically made and the format will be re
compiled.

5. The formats that drive each request in ENGLISH/30aa are
coded in a non-procedural way. This further reduces the
need for amount of technical training required to code
formats.

6. ENGLISH/3000 allows full comments - both at the heading
and line level. The product will soon have an automatic
flowcharting facility. This will document any format,
showing loops, labels, comments, and so on.

G-2 - 05

SPEED CONSIDERATIONS

Most of the advantages of a natural language would be thrown out
the window if the computer took too much time to process the
request.

1. As a design goal, the average response time required to
accept, interpret and begin executing the command (start
displaying the enquiry or start STREAMING the report)
will be 2 seconds. A tuning aid is provided that will
help you improve the efficiency of your enquiry and
reporting load on the computer.

2. ENGLISH/3000 supports KSAM indices for IMAGE master data
sets. This eliminates the need for a serial read throu~h

the entire data set and the subsequent sort. A utility
for maintaining these indices is included with ENGLISH/
3000.

3. All reports are automatically STREAMed from the terminal.
This not only frees the terminal for the next command
but also permits the system to lower the report priority
and queue the reports if necessary. At the user1s option,
the report can be flagged to only start after hours.

4. The source code used to describe the format is automati
cally compiled and stored when it is first used. All
subsequent requests to the same format result in a much
faster execution time.

5. Most enquiries and reports on your computer (say - 50% of
your ~orkload) would be handled by one single very effi
cient program that can be locked in memory. This would
greatly reduce the system swapping by usinq the re-entrant
facilities in the 3000. System thruput would be increased,
improving response time, not only with ENGLISH/30aa but
also your other application programs. This may reduce
the need for hardware upgrades and possibly reduce the
need for after-hour operations.

G-2 - 06

SECURITY CONSIDERATIONS

If natural languages will enable anyone to communicate freely with
the computer, then a necessary part of our design objectives must
be a complete review of conventional security methods.

1. ENGLISHj3000 comes with security at two levels. The first
is the security provided with IMAGE. The second has been
taken from a system designed for a large military supplier
that had to be very secure. The System Manager identifies
everyone in the company in a tree structure. The ENGLISHj
3000 formats are then assigned to the users on a need-to
know basis. ENGLISHj3000 permits the user or any of his
superiors to have full access to the format. However, no
one below the user in the structure has access to the
format. Invalid attempts to run a format are handled
conversationally by telling the user see the department
head that "owns" the format ("Please see Bob Smith ... ").
The error is also logged for that department head's
attention.

2. If the user makes a specified (default 4) number of
consecutive errors in this manner the terminal is jammed
and must be freed by the operator. This makes the system
secure if dialup terminals are used. ~

3. The System Manager has additional facilities for reports.
He may choose to receive a log of all occurrences of a
certain report, who ran it, when, and for what reason.
He may also have a special security label precede any
report. This will contain CONFIDENTIAL in large letters
as well as the user requesting the report, delivery
instructions, and so on. He may also have a system
generated serial number label each page of the report
and log it's occurance.

4. After a pre-defined period of time, ENGLISHj3000 will do
a timeout and re-request the user identify himself. This
means that a user who has forgotten to sign off will not
leave his terminal in a ready state.

5. As we move closer to VRU's, the user's password will be
needed to identify his speech patterns. Eventually, the
speech patterns themselves will be used to identify the
users.

G-2 - 07

EVENT LOGGING

There are many useful byproducts of ENGLISH/3000 that are
available from the logging facility. These will most likely
be expanded to meet the changing needs of the client base re
quirements.

1. One of today·s trends is to treat computers as profit
centers. Departments, users, clients, and budgets are
charged a portion of the costs on a flat rate or as
use d bas is. T0 f a ci 1ita t e t his, ENG LISH/ 30a0 has a s 0
phisticated logging facility that enables you to charqe
according to the enquiry and reports used. You may
charge by any combination of the following: lines or
pages that are displayed or printed, CPU seconds used,
elapsed time, disk reads and/or copies requested.

2 • Sen sit i verep0 r t s, s uchas p riceli s t s, can bel 0 99e d wit h
their serial number printed at the bottom of each pa~e.

This then enables you to keep a journal of who has what
version of what report.

3. The log can be used to analyse who is using what faci
lities. This will enable you to use the tuning facility
to improve the efficiency of ENGLISH/3~OO.

4. The log can note unsuccessful attempts to run a program
(IiBob Smith tried to run the PRICE LIST and was told to
see Bill Boss lI

). Arrangements can then be made to see
if Bob should have access to this request.

5. ENGLISH/3000 will use the logging facility to note re
quests that it could not interpret. This may be perio
dically analysed so that changes can be made to the lan
guage definitions. Studies indicate that this improves
the chances of ENGLISH/3000 understanding a request on
the first attempt from 90% up to 98% of the time.

6. At a later stage, ENGLISH/3000 can be modified to log
certain data from key reports (such as monthly totals).
These can in turn be reported on by selectively analysing
the log file. These enhancements will be defined by
user response to surveys.

G-2 - 08

DATA STRUCTURES

The usefulness of a natural language facility should not be
limited to crude reports that must be used to output the
information.

1. ENGLISH/3000 will support any combination of IMAGE
data bases (multiple data sets), KSAM and MPE files
as well as remote and local computers.

2. While not specifically aimed at the manufacturing
users, there will be several data structures available
that will be of particular use to manufacturers. Bill
of material and where-used recursive structures to a
specified number of levels will be supported. In
addition, the format can specify that the intermediate
sub-assemblies should not print, and only the final
level should print. This is commonly required to show
the raw materials for a given product or show which
final assemblies use a particular sub-assembly or raw
material.

3. Generic names and keys will be available for record
selection, conditional printing and conditional
branching.

5. Optional data set and file locking will enable the
enquiry or report to be completed without any
unexpected events.

G-2 - 09

PRODUCT SUPPORT

The intent of ENGLISH/30aO is to not only provide you with a
powerful facility now, but to eventually accept requests via
VRU's in a fully unrestricted manner.

1. Normal support is provided to continuously upgrade and
improve ENGLISH/3000 for VRU's as well as to fix bugs
and design oversights. By purchasing ENGLISH/30aO, you
are guaranteed an upward compatible path that will lead
you and your organisation to the world of fully unres
tricted natural languages with VRU's. The newsletter
(described below) will help guide you on the selection
of VRU's as they become available.

2. Extended support will shortly be introduced. This will
provide you with a phone-in consulting service as well
as a revolutionary new service that we believe is new
to the industry. For installations that do not have
programmers or installations that experience peak loads,
we will offer a phone-in programming service. Your en
quiry or report will be designed, coded, tested, and do
cumented on your computer within 24 hours. (The request
must be within the design limitations of ENGLISH/308Q
and we must have access to your computer via a good
dialup line). The request will be billed on a time and
material basis with an agreed to ceiling.

3. D.P. Concepts Inc. will publish a monthly newsletter to
keep you, the user, up-to-date and informed. Featured
will be user tips and recommendations, progress reports
on the VRU developments from the major labs and hardware
vendors with product testing and recommendations, deve
lopments and standards. from the American Association for
Artificial Intelligence, notes on evolving natural languaqe
applications, and user survey forms for proposed enhance
ments. This newsletter will be sent to all ENGLISH/30aO
users with either normal or extended support.

G-2 - 10

SUMMARY

Besides the more obvious reasons for buying a natural language
facility (with a powerful report generator) three more important
reasons exist:

1. A well designed natural language facility can actually
pay for itself and save you money in the following ways:

- reduce training times
- reduce programming times
- reduce documentation times
- reduce lead times for new pro~rams and

modifications
- charge users and departments for resources used

2. In the short term, natural languages will be used mainly
for enquiries and reports. Eventually, the natural
languages will be used to accept input as well. In
addition,development of artificial intelligence on
computers will permit the user to try more powerful
requests, while requiring a reducing knowledge of how
the computer works. ENGLISH/3000 will pursue these
trends.

3. A well designed natural language should be able to
accept input, interpret, and produce enquiries and
reports for virtually any language. The only limi
tati on appears to be whe.ther the 1anguage has a
terminal and printer that supports the character
set for the particular language. Within this limi
tation ENGLISH/3000 can be converted to any other
language.

G-2 - 11

ENGLISH/3000 ExaMPle
~===========~=======

r PLEASE SHOW THE CURRENT LEI./ELS FOR A 1736-80 u

i~E PfJR1·
« En~UlrY Name:
« Af..tthor
« Last Chansed:

I t\il"iE!\iTOR'(LEl"JELS
j'1anual L.abour
23 Jan 81

<<: This F 0 or iTl a t dis pIa }' s the e tt r r e n tin \.J e n t. 0 f' 'i' 1 e t) e 1 s f' 0 or
<-::: the 5 e 1 e c t· e d par t fa U 1)1 b e r b}1 bra n c h Sf The tot a 1 F 0 'f\ a]. 1
<-< bratn (J '" e s i'5 S h 0 'A n .a. t~ the end 0 f .t, h e i~ r t C't U 1. T" ~/ n

« Steps:

..-'"

- Read PART-NO from ITEM-MASTER
- tJse PAF(T-f\IO to set UP STOCK ...·L.El)EL det{:\ils
- Read and print each detail

Use Br-({~f\!Cf-1 t. 0 ::~e t, DESe: in BRANCH-Mf~STER

Print "*H iF 2,Fi'At\!C~'~-MASTER E":i-rl~-rLJS 15 ns!!

IM t1Er-tr'~S I TE,"!-MAE;-rER .:. .::. Au b '!' e \.1 i ate " I -r E 1'~1-- r't ,,:, S TE I~ H

SL MEANS ~:;TOCK -L.Ei·.)EL. -:::-::. Ab b .(. e \) late H ST{JCK -'Lt:~')E:i_ "
E~M l"iE~ll\JS BRAf\JCH -1'1 p~ STER ". .::. f~b I: "f' e t.." :f d t {~ H £3 fi ?") NC; :--{ !1 ni S TEI~ •r

{'i:l 1 if In\} f~ n t () T' t S tat u ~; En i:~ U 1 T' r l ~ 7 :.~ E~ -< ,(ErI <=:t U i T' ~,,, r1 e at (J 1 n £:!

H1 r D(.'\ T E: -·,1' I ~'; E F E3 t3 <<: Set U FI [) <:l t !:, t :i (il 12' -::~ t a f~t r;t

H2 , H Par t '\1 U iTi tJ e r J! T ::? 2 ~ ~~ PAC~ E: ::? 13 <: < (~o 1 U (1) n r-i f:l ~{d :~ rI ~.:i .(0 .~ ' P ;i F? H!," .- I\t f]

;.~:.~ 1 I! rJ n ~1 i}. n d P. .' 5 2
H:'~). n S tat iJ s H , 8 i3). ~3 Pt:\ CE :: ?~

D;~ ~ ~~ L_ v Pf~ f~! 'r - 1\10 <I M z: P{, f~ T- j\l D) ~ DIJ Ivi rt'y'
D2 7 f.?tt"t " DF.?SC (SL " 8Rr.:)i\lCH--,t\~O))' L~ 1
D2 F S,_ D (~U?~ L. TIT Y 1 S2 1 t J Z Z Z~) Q ~l tJ (!

D2 r I;::')· "S '! 1 EQ ~ Bi'~I;a STATl.J~3 7 ~t 'j~ '! ,. t:;~3

-::: < C: a 1 Unit} r1 12 a G j n ~:.{ r {J r' E1 fi! fl !\~ CH·· -l\i Ci
<. <. C: (j 1. U fr) n r1 e ':] r:, 1 n g F () Y' G! Li ;1 ~..~ TIT "'-{
.. r~ D], U t?\ n l-i (:~ .~ (~ j n ~.1 f i) 'f \ S -f {) -r U~l ~:} ~:-:-1

« ~3et (..:hal'fl 'foead ir! ST{JCK.-LE~t)EL

.... FT':i n t DE~3C: f' r-Gt:fj 8!:~r-lj\j(:f"i-t"IPlS-rE:r-\t

':" ':" PrJ n t L] lJ P, r,~'r XT'{ f r () frl ~3 "\- () C f., _. L. E: l,.J E i.
<: <: P·r']. fl t, H -R' If i f ~3T(; -rtJE:: .. '! ~:) '"

<: < F' 0 (j t :t n 9 l:t t t~ O(l d i
';" -:.. P r i n t '1.', () tal Et t t~ n d

1 <4, ,; () ()

G-2 - 12

SYSTEMS LIFE-CYCLE - A FRAMEWORK FOR SUCCESS

By M.B. Foster

M.B. Foster Associates Limited

ABSTRACT

The objective of this talk is to describe the systems 'life-cycle as a

software development plan. It is the author's opinion that a planned

software development project will result in better quality, less costly

and (with luck) on-schedule programs.

The areas which are covered in this talk are the stages of the systems

life-cycle:

1. Conception - everything has to have a beginning

2. Feasibility Study - technical, organizational and economic

3. Functional Specification - what are the business needs

4. Detailed Specification - how are these needs solved technically

5. Programming, Testing and Implementation

6. System Installation

7. Post-Installation Review - an on going process

In each stage the resources (human and-HP3000) required the major

activities and the benchmar~ documents produced are discussed.

The conclusion drawn is that the software development process can use

the systems life-cycle methodology as a framework for successful completion

of the projects, which because of the framework will be better controlled

on time and in-budget.

Tuesday G-4 - 01

SUCCESSFUL CONVERSION FROM
TWO IBM SYSTEM/3 TO A HP3000

by:

Jack McQuillen
Dundee Cement Company

Tuesday G-6 - 01

r H t: P U 1< PuS t:. tJ F T tt 1 S PRE 5 EN r A r 1 (} ('J I S 1 lJ K t. L A 1t r H E t) U I\~ UEtC Er"i t: f~ T
COt\/lPA,'liY EXPtRlt.NCi::. !i~ CtJNVEF<TING FRUr.-1 tHE -IBf"t SrSTEf'.'/3 ;yl0DEL 10 ANU
MOUEL 1~ C0~PUT~RS 10 A HP3000.

~"V t S I 1\ ~ ·f t D ~,; 1 I H 5 0 () t~ PG P f< 0 GRA1"1 S " I i\j I) Ut\j 0 EE -i J'I' I AI~ () 4 0 0 RPG Pk Ll GWAr~ S
I N Hlj L L Y H ILL , Sc. ,,"J 1 Td () hI L Y T r11~ £ E to> t. 0 PLE, ~~ E d 1\ 0 H0 L L Y H ILL RUi~ i~ I NG LI VE
I N 5 IvlLl ,~ rH~ A r.j 0 0 Ui\J l) E t t< lJ I"'J N1 Nl:J L I Vt:: 1 r'J 10 fVl U I\J THS •

UUH r"1AJOR Pk'OGi-~AM;"1II'JG EFFu~T ~A~ ltiE. ON.-LINE Kf.=YPUf\JC~t Vt:.~IFICATll)N

USING V/3000. tJUr< ~ECLlNI) ,vIOST 11~1E CUI~SlJr\tllf'jG EFFOtll wAS TrlE JCL
P Rt: PAR Ar I Uf\J Al\i U J LL l) t ii Ur; G1 :"'oj r; •

I N 1 H I ~ ~ k t:. ~ E \,1 rJ\ , I U c\J THE. ~ Utj J t CTS rOd E CO VE Rt. 0 A i~ t: :
A • I d fvl SY~ TE1") I:i vS '1 P j 0 0 (J t.i Ef\J CH "V', AI~ r<.
b. P~ t.I r; ~~ A ;"1 CUl'J Vt. k ti 1 UN
c. Ct CL T0 .j CLeuNVERS 1Ur\J

U. l) A r 1\ E f~ T ~ Y P ti UJj L Er·'j S
t:. H~ j () U (J Ace UU j\J T 1NG &Tk' UC1 Ut< E
F. (, 0 j"J V t !.(;j 1U 1\1 P L lJ ~ 'f ~\j () YF A~ S

1. HENCht-'tARK

A. I [l'" 11'J GS - 1u0 H(j Ul-l S / 1'''1 U1\1 TH ., (J .5 5 HUUl' S I i"IO N I t1
l~. ~j UlJ l~ Ct L 1;" E i\J lJ ~~1 1.1 t R 1 tJ t NI FIe A rIO N F [) t< Pk 0 Gto(A1'·1 AIi lJ K l S
c. l) t \I 1 Ct. I f,j tJ t P EHUt.:. NeE

2. PR[) l,] RA,·'1 C() NVt k S I 0 i\J

A. rRAN SPi.) R1 S0 lJ " Ct: J U HP 3 () 0 u V I A ;ljl AGNE rIC rAP tOR RJ E b YS YNC
1'1. UE \J 1Ct. C t} !\J VE. k ~ [0 t~ I 1\) ., ri r.. f] l ~ ~ rA'l t: 1"1 E '\, r s
c. I ~ A rvl rut< S A j\;1

o. PACKED '''It:Ln~ lu UNPACKElJ. A~CII

t. UATECI\RdS dY' AP~'LICATll)N

F. t Zf(P6 F lJ ~ P t~ 0 (, RA(\1 CUD I i\J G l N F KEE F UK MAT
C;. Ii Af\J UL I f"J l:j t'1 A L T I i\J [) 1CAT Ut~ 5

·3. UCL "' lJ J CLeu rJ Vt: t~ S I (J ,.~

A. CU i\J VERS .l (t t\J A 1 j) PRUG t< A("I

b. E i< P LIe 1 T lJ t:. F II'J A I 1.0 N l) F t. ACH F I L t:: S TAT E j,.1 Er" r
c. -1 L; "'! S 1.3 ~) LJ K l P t< UGK A'\"
,). u X X" J U!j S

f. ~ r> t,c I AL F U~ !--1 S ~\ L I GNivB:' N T
f". r~ t. !\ lLJ rE ri P 2 6 .3 1 P t< I N r t t< s
~1. J L l.. L J S 1 I t\j G~i 11\1 S P() UK

4. I) AT A E t\l 1 rx Y d t(K f: '(PUf\j CH F lJ f\J ClIO N

A. V / .3 () (, () i\ I\J IJ T ~t t. 1: N Tt< y P~ uGi~ Aivl

H. "~" I P tJ t. to<" A i-J LJ C LJ b 0 L Vt.l< I F leA T JU i'J

c. 1"1 ULlIP L t L I .\J ES (L fJ r; I CAL Rt. CUr~ DS) .., t ~ SeRE t. r\:
o. oS ~ t: l: a) U t- K. E YP Ij t\j CH VSliP 2 6 LJ 5

G-6 - 02

A. G t< U IJP .s d YAP~.}LIe A TILJ N , E It.. PAY t< {J LL , j ALE S S A l' A [~ r {C S
H. 0 ~\ l At. I'J 1 K Y (~ t< UUP
c. JUt) l;~UUP Flll"< JCL
(). S0 LJ i~ Ct l; ~ uUP F {Ji~ PRuG I~ Aj~l 5
E. UdCU l"1tl'J 1 (,~UUP

6. CONVERSIOi"J PLUS l~tJ Yt:AR~

A. dOL L Y h ILL i~ lj I~ 1\1 I N(, L J VE] N :, H(J t~ l H ~ F K0 f"l AN' I atv1 s I 3 ~'llJ nE. L 15
lj. 0 U NDt E t~ LJ I'J I'J 1 :\1 G L 1 vE I j'..J 1 (I ~'i U;'J r tl ~ t= t~ tJ.\1 A~ ·1 d r"i S I 3 -1\;1 UuELi 0
C. to< E1\'10 Tt u RIJ t. K t.: N T~ YIN 2 ,~ "', () I~ 1 H~

D. J\VERAGf: U~£l'<S [~ ld Pt~ l)f\Y

t:. I> ~ TII H P ~~ 0 0 USE RItS .3 ()
F. 5 U S 1\ L f S "'1 t. N U~ 1. i'~ b I) 1 AL UP TU ~\ 1,,1 A10(1\ t: T 1 t\J ti 0 A 1 A fj AS t.
G. UI'\J LINE INVENfUi-<Y DATA tiASt
H. F (J f< Tt< AN CUt'oj \I t, j~ S IlJ ,\J F K U:"1 Af", I ~~ IV1 1 rl tJ (t P to< lJ L t. ~ S L U'''1 PUlE ~ T() HtJ 3 \) U0

G-6 - 03

VTEST/3000 ON-LINE TEST HARNESS - USER VIEW

By:
Peter Byers

Glaxo Operations UK LTD

Glaxo operations UK Limited manufacture Pharmaceuticals at eight

factories and have a network of eleven linked-HP 3000's using VIEW,

IMAGE and DS. They are rapidly developing a large integrated pro

duction planning and inventory control system. They recognized the

need for a test harness which:-

Facilitates repetitive testing of real time view programs:

Tests multi-user database contention:

Provides screen-like hard copy of input and output:

Is streamable in non prime time:

Provides timings.

The package was developed by Wick Hi'll associates with advice from

Glaxo. It reads input from script files held on disc. Results are

written to an MPF file (usually a printer). This permits input and

standard output to be stored on magnetic media, instead of bulky hard

copy.

The programs can be run either as a session from a terminal or streamed

as a batch job. It established one or two sessions which can run any

programs able to be run from a terminal. The only limitations are

that control Y and break cannot be used. The great strength is that

programs using View in block mode can be run.

The paper explores the problems of testing and estimating the response

time of on-line and real-time programs running in a large distributed

network: explains how VTEST works: and illustrates some of the advantages

to be gained from the use of the test harness, e.g.:-

Tuesday G-7 - 01

",.
\

Overnight Testing, thus

- Releasing tenninals i'n p'rilne ti'me

- Improving response in prime time

- Improving utilization of a capital asset:

Better program specs, less program amendments:

- Quicker programming:

- Test data keyed-in once, speeds testing after
modifications;

- Printed results aid user education

G-7 - 02

INTRODUCING THE HP ON-LINE PERFORMANCE TOOL

(OPT/3000)

Robert L. Mead Jr.

Member of Technical Staff

Hewlett-Packard Company

Computer Systems Division

Robin P. Rakusin

Produc t Manager

Hewlett-Packard Company

Computer Systems Division

Tuesday G-9 -01

~.... ".\\,"

INTRODUCTION

The question of whether or not a computer system is being effectively

utilized 1s often difficult, if not impossible, to answer. Equally

difficult can be the identification of a bottleneck when the performance

of a system is less than expected. These difficulties typically arise

due to a lack of information on which to base a judgement or decision.

Even in those situations where information is available, it is often the

case that information is incomplete, or possibly inaccurate or

misleading, thus forcing the analyst to make a "best guess" as to the

true situation. When detailed and complete information is available, it

is frequently difficult to separate the useful information from the vast

amount of data provided. In this paper we describe an interactive

software product designed specifically to aid in the analysis of HP 3000

computer system performance, and which addresses the problems just

described.

This product, the HP On-line Performance Tool (OPT/3000), is Hewlett-

Packard's first performance measurement software product, and can be

used to identify performance problems or bottlenecks, to characterize

the workload on an HP 3000, to collect information required for capacity

planning activities, to analyze system table configurations, and in some

cases, to tune the performance of individual applications. OPT/3000

provides information in 23 separate interactive displays in the

following areas: CPU utilization and memory management activity, memory

usage, I/O traffic, program and process activity, and system table

G-9 - 02

usage. Although each display is designed to be quickly and easily

understood, the assumption is made that the user has been trained on the

internal operation of MPE IV, the newest version of the HP 3000

Multiprogramming Executive operating system. OPT/3000 is designed to

operate in conjunction with MPE IV and can be used on any HP 3000 Series

II, Series III, Series 30, Series 33, or Series 44.

This paper presents an overview of the HP On-Line Performance Tool, and

discusses some intended applications of OPT/3000. The information

reported by OPT/3000 is also reviewed in-depth, as well as the

techniques used to obtain the information.

OVERVIEW OF OPT/3000

The HP On-line Performance Tool is a software product that provides

performance related information in an interactive environment. As

mentioned earlier, OPT/30DO can generate 23 different displays

containing performance related information, in addition to seven menu

displays. These displays are grouped into six categories, called

display contexts, each of .which is associated with a different type of

system resource. The six contexts are: Memory, CPU/Memory Management,

1/0, Process, System Tables, and Global (a little bit of everything).

Within each context, displays are available at successively greater

levels of detail. This structure allows the user to progress from

summary level information to more detailed information as the situation

G-9 - 03

~,

requires. In many cases, the summary level information is sufficient.

Once a display has been generated, it is automatically updated at

periodic intervals, with the length of the time interval under control

of the user. A display can also be updated upon demand, simply by

entering a carriage return. All commands within OPT/3000 consist of a

single ASCII character, and a different set of commands are available in

each display context. Certain global commands are available in all

contexts. In addition, the pound sign character (D) is used as an

escape character to access a set of control operation commands. These

commands perform such operations as changing the current display context

and suspending the updating of the current display. With this simple

user interface, the generation of a different display within the current

context is accomplished via a single keystroke, and the generation of a

new display within a different context with a minimum of three

keystrokes. Menu displays are available within each context, and list

the commands available within that context.

An extensive on-line help facility is also available as an integral part

of OPT/3000o With this facility, documentation explaining any command

or display can be quickly displayed. In many cases, interpretation

guidelines are also provided to aid in the identification of performance

problems.

OPT/3000 utilizes the features of the HP 264x series of terminals to

generate displays with a graphical format, where practical. The

G-9 - 04

terminal features used include the four available video enhancements

(blinking, inverse video, underlining, half-bright), the line drawing

character set, and the cursor addressing capabilities. OPT/3000

automatically checks to verify that an appropriate terminal is being

used, and warns the user 1f an incompatible terminal is in use.

A hard copy of any display can be generated on the line printer (device

class LP) with a single keystroke. The hard copy displays are similar

in layout to the interactive displays, but some reformatting is

necessary to co~ey the same information, due to the lack of video

enhancements on a line printer (e.g. paper cannot blink).

Although the HP On-line Performance Tool is primarily designed for

interactive use, it can be executed in batch mode to collect summary

information about system activity. These summary reports can be used to

provide data for capacity planning activities, and can be generated

interactively as well. Once activated, the summary reports are

generated independent of the interactively generated displays.

There is no limit on the number of copies of OPT/3000 which can be

executing simultaneously. OPT/3000 obtains much of its information via

a new internal measurement interface facility incorporated within MPE

IV. This facility maintains a set of measurement counters accessible by

multiple users. Additional information concerning the measurement

interface, and the techniques used by OPT/3000 to collect information,

will be discussed in a subsequent section.

G-9 - 05

~
~,;;,)

APPLICATIONS OF OPT/3000

There are several anticipated uses for the HP On-line Performance Tool.

Among these uses are the identification of performance problems and

bottlenecks, the analysis of system table configurations,

characterization of the system workload, capacity planning, and

performance tuning of applications. Each of these activities utilizes

some or all of the capabilities of OPT/3000. We will now briefly

discuss each of these application areas before describing in some detail

the information provided by OPT/3000.

The ability to quickly move between displays and the variety of

information available through OPT/3000 facilitates its use in

identifying performance problems and bottlenecks. In particular, it is

expected that a system clearly bottlenecked by CPU, memory, or I/O will

be quickly identified. OPT/3000 can also be used to determine if disc'

accesses are unbalanced between multiple drives. Poorly behaved

application programs can also be identified, in terms of programs which

use excessive numbers of files and extra data segments and those which

waste stack space.

A second application area is that of system table configuration

analysis. Inappropriately configured system tables can degrade system

performance, either by wasting memory if the tables are unnecessarily

large, or by causing processes to delay while waiting for an entry in a

table that 1s configured too small. In the latter case, system failures

G-9 - 06

may also result if the table size is exceeded. OPT/3000 allows the user

to quickly identify those tables which are not properly configured, and

to determine (through utilization statistics) a more appropriate value.

The characteristics of the workload on an HP 3000 can be determined

using OPT/300D. The names of all active or allocated programs on the

system can be easily determined, as well as the users of each program.

The CPU usage, disc I/O rate, and memory usage characteristics of an

individual application can be determined if the application is running

stand-alone on the system.

The summary reports which can be generated by OPT/3000 in either batch

or interactive mode can be used to provide data for capacity planning

activities. These reports indicate the CPU usage of the system, memory

management activity, and the I/O traffic on individual discs, line

printers, and magnetic tapeso The information used to generate the

summary reports can also be logged to.an OPT/3000 log file (disc or

tape), which could be processed to provide input for generating plots.

In this manner, OPT/3000 can gather trending information that can be

used to determine when additional peripherals or systems are needed, or

to detect changes in the day-to-day processing load.

Although OPT/3000 is oriented towards the measurement and analysis of

the system as a whole, it can be of some value when tuning the

performance of individual applications. In particular, OPT/3000 can

provide information relating to an application's usage of files and

G-9 - 07

extra data segments, plus detailed information about the application's

use of its stack. CPU usage information is also available.

INFORMATION PROVIDED BY OPT/3000

As mentioned earlier, the HP On-line Performance Tool provides

information in six different display contexts: global, memory,

CPU/memory management, I/O, process, and system tables. In this section

we describe the types of information available in each context. In

general, the information provided by OPT/3000 can be divided into two

basic classes. The first class of information shows the state of some

aspect of the system at the moment the display update is generated.

Examples of this class of information include the current contents of

main memory and the current list of active programs. The second class

of information summarizes activity within the system during some

interval. CPU utilization and disc I/O rates are examples of this

second class of information. In most cases, this summary class

information is reported for two types of intervals: the interval between

the previous display update and the current display update, and the

interval encompassing all update intervals since the start of OPT/3000

execution. These two intervals are herein referred to as the current

interval and the overall interval, respectively. The user can clear all

totals associated with the overall interval at any time in order to

start a new overall interval. We will now discuss the information

available in each of the display contexts.

G-9 - 08

Global Context

The global context is automatically entered upon execution of OPT/3000,

and it provides summary level information concerning CPU usage, aeMory

utilization, disc I/O rates, and process activity. The gene~at1oa of

summary reports 1s also controlled from the global context. The two

displays in the global context can be used to quickly determine

potential problem areas (e.g. memory bottleneck), and then more detailed

displays in the other contexts used to isolate and verify the problem at

hand. The global context can also be used to monitor general system

activity, in order to detect fluctuations in resource usage. The CPU

and disc I/O information summarizes the activity for both the current

and overall intervals, whereas the memory and process information

describes the situation at the time of the update.

Memory Context

The memory context consists of eight displays, and provides information

related to the usage of main memory and segment sizes. Three of the

displays provide i~formation related to the current contents of memory

and the remaining displays consist of histograms depicting distributions

of segment sizes or free areas in memory. The highest level display

concerned with the contents of memory allows the user to determine the

current percentage of memory containing code segments, stacks, and extra

data segments. Additionally, the user can determine the type of code

and data segments in memory. For example, the user can determine the

percentage of the extra data segment memory usage that is due to

IMAGE/3000, KSAM/3000, the file system, or system tables. Likewise,

G-9 - 09

code segment memory usage is separated into segments originating from

program files, and those from segmented libraries.

The user is also able to generate an image of the current contents of

main memory, either for all of memory or for a single bank (64K words).

This image indicates the type of each segment (e.g. file system data

segment, stack, program file code segment), the approximate size of the

segment (in either lK or 64 word increments), and other miscellaneous

information about the segment (e.g. is it locked or frozen?, is it an

overlay candidate?). These images are generated by utilizing the

display enhancement capabilities of the HP 264x series of terminals, and

consist of a sequence of alternating white and gray rectangles

(generated using inverse video and half-bright). Each rectangle

represents an individual segment.

The histogram displays depict the distribution of segment sizes, in

either lK or 512~ord increments. The highest level display depicts

separate distributions for code, stack, and extra data segments. The

remaining four histogram displays generate higher resolution histograms

for each of the above three segment types, plus one for free areas in

memory. The histograms are generated using the line drawing character

set of the terminal, so as to provide maximum resolution.

CPU/Memory Manager Context

the CPU/memory manager context includes three displays with information

related to CPU usage and memory management activity. The highest level

G-9 - 10

display provides information about both CPU and memory management

activity, while the remaining two displays provide more detailed

information about each of these areas. All information provided in this

context is of the interval summary class, with information for both the

current and overall intervals.

The CPU information provided allows the user to determine the percentage

of time the CPU is in various states, as well as the rate at which

processes are being allowed to execute in the CPU. The reported CPU

states include CPU busy executing processes, CPU time for memory

management, CPU time on backg round memory "garbage collec tion", CPU on

overhead processing (e.g. handling interrupts, dispatcher time), CPU

waiting for user disc I/O to complete, CPU waiting for memory management

I/O to complete, and CPU idle. Infonnation for process launches and

process preemptions is reported as the number of occurrences of the

event per second (i.e. as a rate). Reported rates include the current

interval, the overall interval, and the maximum rate observed in a

single interval since the start of the overall interval. These three

rates are depicted with a one-line bar on the terminal screen, utilizing

inverse video and half-bright inverse video to indicate the current and

maximum rates, plus an asterisk to denote the mean rate over all

intervals.

Event rate information 1s also reported for memory management activity

in this context. The events reported include memory allocation, memory

management disc I/O write, memory management disc I/O read, release code

G-9 - 11

segment from memory, and release data segment from memory. Information

is also available concerning how the memory manager satisfies requests

for absent segments. When a segment absence fault occurs in MPE IV, the

algorithm used by the memory management routines can terminate with one

of five possible outcomes, ranging from recovering the segment from the

list of overlay candidates to temporarily postponing the request to

avoid thrashing. OPT/3000 shows the percentage of memory allocation

attempts terminating with each of the five outcomes. These percentages

are shown for both the current and overall intervals, utilizing a bar

with alternating white and gray areas.

I/O Context

The I/O context provides four displays regarding I/O completion rates

for discs, line printers, and magnetic tapes. The highest level display

indicates the I/O completion rate per second for each type of device,

for both the current and overall intervals. The remaining three

displays provide more detailed information about individual devices

within each device category. These displays indicate the completion

rate for three types of I/O operations (read, write, and control) on

each individual device. This information can be used to determine if

the I/O traffic is balanced between the devices on the system, or to

identify times of peak activity.

Process Context

The process context includes four displays with information concerning

process and program activity on the system at the time the display is

G-9 - 12

updated. The highest level display provides information about all

active or allocated programs. This information includes the fully

qualified program file name. the size of the program file in words, the

number of segments in the program, the number of current users of the

program, and l~ited working set information.

Once the above display has been generated. a second level display can be

used to determine more detailed information about each process sharing a

program file (or for system processes or command interpreter processes).

The more detailed information includes the user name and account of the

user. the process number (PIN), the size of the process stack in words,

the CPU time used by the process, the number of open files and extra

data segments. and the job/session number.

Additional information about a specific process can then be obtained by

generating a third level display. This display contains all of the

information present in the second level display, plus more detailed

information about how the process is utilizing its stack space (e.g. the

size of the DL area, size of the global data area). Also included are

the names of all open files, a list of son processes, and a list of

explicitly obtained extra data segments and their sizes.

Some of the information reported in the second and third level displays

eould be used to circumvent the security aspects of MPE. For this

reason. these two displays cannot be generated by all users of OPT/3000.

The security provisions within OPT/3000 allow a user with either system

G-9 - 13

manager (SM) or operator (OP) capability to generate these two displays

for any program file. Any other user can only generate the displays for

a program file if they are the creator of the file, or are the account

manager for the account in which the program file resides.

The remaining display in the process context provides information about

the number of processes in various states. For example, the total

number of processes waiting for blocked I/O, number of processes waiting

for RINs, and the number of processes in the dispatch queue are

reported. This information indicates the state at the time the display

is updated, and no averages or totals over time are reported.

System Tables Context

The system tables context contains two displays indicating the current

and maximum utilization of configurable system tables. One display

provides only the current and maximum utilizations in a graphical

format, using inverse video and half-bright inverse video bars. For

almost all tables reported, the maximums are for the time since the last

system warmstart. For the remaining tables, the maximum is that

observed by OPT/3000. The second display provides more detailed

information in a tabular format. This detailed information includes the

configured number of entries, entry size, and maximum utilization

observed by OPT/3000, as well as the current and maximum table

utilizations.

G-9 - 14

MEASUREMENT TECHNIQUES

The HP On-line Performance Tool obtains the information used to generate

its displays from two basic sources. The first source is the new

internal measurement interface facility within MPE IV, and the second is

internal MPE data structures and tables. The measurement interface

provides all information related to CPU usage, memory management

activity, and I/O traffic. All other information reported by OPT/30DO

is obtained by examining internal MPE tables and data structures.

The measurement interface facility in MPE IV provides OPT/30DO with a

formal mechanism for accessing instrumentation within MPE IV. When the

facility is enabled by OPT/30DO, the measurement interface obtains an

extra data segment to be used as a set of counters. This segment is

then locked and frozen in memory and its location stored in a global

cell. As events occur, the appropriate counters within the extra data

segment are incremented by code within MPE IV, and accessed in a

consistent manner by OPT/3DDO. The CPU state time information is

maintained in a similar fashion. OPT/30DD determines the activity

during an interval by comparing the current sample to the previous

sample, and computing the change in each counter. A count of the number

of processes that have activated the interface is maintained by ~WE IV.

When the count falls to zero, the extra data segment is released and the

instrumentation disabled. This mechanism allows multiple copies of

OPT/3000 to use the same shared instrumentation. As MPE continues to

evolve, both the measurement interface facility and OPT/30DO will be

G-9 - 15

modified to reflect any changes within MPE.

The overhead within MPE for maintaining the counters has been determined

to be approximately 0.3 to 0.8 percent of available CPU time, depending

upon the amount of activity within the system. OPT/3000 can collect

data from the extra data segment, and update all of its internal totals

with the change in each counter in approximately 40 milliseconds. As

can be seen from this data, the measurement interface facility provides

a very low overhead method for obtaining performance information.

All other information reported by OPT/3000 must be obtained by examining

internal MPE data structures and tables. The information concerned with

the current contents of main memory is obtained by scanning all of

memory, examining each region and sub-region header (these are similar

to the memory links in MPE III). The segment size histograms are

produced by processing the segment tables. The information concerning

program files and processes is obtained by examining the loader segment

table directory, process control block table, and the process control

block extension area in the stack of a process. System table

utilization information is partially obtained by examining information

maintained in the header portion of each table.

The overhead required to gather any of the information just mentioned

varies depending upon the system configuration. In general, the CPU

time required to collect the necessary information and update any

display ranges from 300 to 800 milliseconds, depending upon the display.

G-9 - 16

This normally translates into a total CPU overhead for OPT/3000 ranging

from 1 to 3 percent of available CPU time. depending upon the displays

generated and the frequency of display updates. An update interval of

15 seconds 1s the default used. and results in overhead in the 1 to 2

percent range.

S~RY

The HP On-line Performance Tool is part of Hew1ett-Packard's integrated

approach towards offering HP 3000 users alternatives in performance

measurement analysis. In addition to OPT/3000. the first HP 3000

software performance measurement product. a new System Perfo~ance

Evaluation package and a new MPE Internals and System Performance

Analysis course are being offered for HP 3000 users.

The recently introduced HP 3000 System Performance Evaluation Consulting

package offers an alternative to OPT/3000 for HP 3000 users who want

system performance analysis conducted by HP Performance Specialists.

These Specialists have in-depth training on the intetnel. of MPE aft. on

the performance characteristics of the HP 3000. They also have a number

of HP-supplied software tools at their disposal. sueh 88 OPT/3000.

IOSTAT. and the MPE IV Data Collection Program (MPEDCP). for collecting

and analyzing performance measurement informatiofi on the HP 3000.

G-9 - 17

A new MPE InterQlls aad System Performance Analysis training class is

be1tl8 offered in conjunction with the HP 01l-'line Performance Tool. The

first part of tbe course discusses the areas of MPE IV that are

necessary for understanding the performance measurement information

prelented 18 OPT/3000, tn particular, the new MPE IV memory manager, the

4iepatcRer, ,ehe4uler and I/O areas in MPE IV, and the process

,truct~res. The second part of the course reviews the inter

relationships of the performance measurement variables discussed in the

first part, and presents operational guidelines for OPT/3000. In

addition, case study workshops will be used to share HP Performance

Specialist techniques and experiences with class participants.

G-9 - 18

Hp·s Manufacturing Software:
Engineering Feedback

By:

Barry Kurtz, H.P.
Nancy Federman, H.P.

Bob Steiner, HoP.

Engineers will have a discussion
agenda for the session

Tuesday G-10 - 01

Saving the Precious Resource

b~)'

,..1 i IT. ~::,.-. a cr. e: r·
HP3000 Performance Specialist

Hewlett-Packard Co.
St, Louis, Missouri

I. Introduction

Disc accesses is~ along with CPU and memory~ one of the three
major resources on a computer system.

On a 3000 it is the most likely of the three to be the
critical resource -- the one in short supply. This is b€cause
the 3000 is used primarily for business processing} which is

r' usual1~» I/O int.ensie:.

This paper presents some ways of saving this resource when it
is appropriate to do so.

II. What is a Disc Access

By disc access I mean the entire process of reading a block
of data from disc or writing it to disc, This includes such
activities as so~tware setup) disc head seek to the required
track} wait for the requir€d block to pass b€neath th€ disc head
(latency)) and transfer of data b€tween disc and main memory,

As a rule the longest part of a dl$C access
following figures which pertain to an average
7925 disc drive show why:

is t.he: seek; t.he
·3C.=e:SS e,r', ·3r) HP

SC.f't.l\fat"'e: se:t.up
Se:ak
Lat,E:nc~)"

Tr....3r·,~::f·e:r t, i IT,e:

T I:.t..~ 1

:=:0'•.31], ••.•·a 11.JE:

2~~ • (f rr,s
1 1 I 1 IT,S

1 • 4 rr,sl·ktJ~,.Jt.e

The total of about 40 ms is what leads to the rule of thumb
that the 3000 can maintain an av€rage of about 25 disc accesses
p€r second. It is important to notice the assumptions behind
such a statement J however, One assumption is that only one dISC

Tuesday G-11 - 01

drive .at a time is active~ a sltuatlon that may not hold under
MPE IV for system$ with multiple discs. Another assumption is
that an average access takes takes 40 mS J wher~as the true
average depends on the actual distribution of data and the
sequence in which it is access€d. This assumption is probably
close to being true for a time-sharing multi-user environment
because of the randomness o~ access in such an environm€nt~ but
unlik€ly to be true ~or a stand-alone batch environment.

III. What Resource is Critical

Before any optimization is done to save accessess it should
be determined that accesses is indeed the limiting resource. The
r€ason is that most techniques of saving accesses are trade~offs

their price is the increased use of some other resource
(usually main memory), If that other resource is the limiting
resource then saving accesses may actually undermine performance,

Un~ortunately there is no easy method to determine the
limiting resource other than to purchase per~ormance consulting
from HP. An HP performance specialist has access to measurement
tools which are not normally available to customers. I~ this is
done) great care should be taken to assure that measurements are
taken during a period which is typical of the problem to be
solv€d.

There are some tools available to customers which could
probably be used to do a ~airly reliable diagnosis by someone
experienced in their use, I will mention these tools here l but a
discussion of their use is beyond the scope of this paper.

Some tools are~ the busy lights on the disc drives; the
current instruction register on the Series II II~ and III; th€
status display on the console of Series 30's and 33's) the SHOWQ
command; the contributed program SOD; the log files,

One tool which should be mentioned specifically is the
contributed library program FILERPT written by Chuck Storla J an
SE from the Roll"ing Meadows office, FILERPT can show which files
are being accessed most and therefore where optimization should
begin once it has been decided to optimize for disc accesses.

IV, Some Design Suggestions

A ~ew things should be kept in mind during the design stage
of an application.

Load balancing is often an e~fective way to alleviate
per~ormance problems. The idea is to redistribute the work load
of the computer system to reduce the load during the problem
period,

On€ form
environment lS

load balancing in a
the technique o~ batch

G-11 - 02

transaction processing
updating -- collectlng

transactions into a batch for updating ott the master files at a
later tlme by a batch program. This technique has one major
disadvantage -- the data in the master file is not completely up
to date. Among the many advantages are:

1. The high-overhead posting operations can be done at a
rcc,r.--pe:.3k ~1E:r' i crd I

2. The sharing o~ the master files ~or transaction
proc€ssing is read only a more e~ficient sharing
environment than update (no locking is required),

3 • TJ"'ar",sact i c.r. 1,,:.1;19 i ng .3r·I.:j t-'eCCI\.·et-·~)J is ger-tE:r·.3 J. 1 ~:) ,3 ITll.JC:.r!

s i IT.~, 1e:r' ~:.t"·CIt::, J. .E:lTf •

Another major design consideration is the amount of structure
keys~ sort items, etc. -- to use in files. Structure requires

considerable machine work to establish during the writing of
data, and justifies itself only by the work it saves during
reading. Therefore the file must b€ relatively static J l,e,

there must be rnor€ reading than writing of it} with respect to
whatever structure it has, In terms o~ a catch phrase:

u A ~3t..Eft. i c F i. 1e ~\I.J~fp':Jr·t.s '·'1.:st"'e: ~)t.I·'··UC t.l..Jt-.€" •

Every piece o~ proposed structure should be examined in this
light. Further) when balancing work saved against work expended
it must be considered whether either the expended or saved work
is during a peak period, For example a key intended to save work
during batch reporting may not be justified only because it adds
to the peak load during daytime transaction processing, Or a
sort item may justify itself by speeding up transaction
processing even though it adds significantly to the nightly patch
l;:aad,

v. Increased Blocking

General Discussion

Using a larger blocking factor is a simple and ef~ective

technique ~or reducing accesses i~ access to the ~il€ has
Ugoorj 1oca 1 i t.~~) II) i. e:. i t'" t''''H~ rtE:::<t. I··.. e:cot-·d t"'e:qu i relj is 1 ike 1 ~,.)

to be near within the file to the one just ~etch€dl This is
true when the rile is b€ing accessed sequentially} and rarely
true otherwise. With MPE files it is obvious when access is
physically sequential; we will discuss below when access is
sequential for Image and KSAM,

It is hard to ov€r-ernphasiz€ the importance o~ the
technique of using larger blocks: it is generally very easy
and very ef~ectiv€, The only price paid is increased memory
requirements for buf~ering the larger blocks,

G-l1 - 03

pa~)J i ng
r, u rTf t.E: t-e

n 81.JF= t Ii

tlu·ff·e:r·
f.JS:tJ .31 1 ::.J

:i. ef it,
';It-·€: at.et..·

With MPE files It is usually possible to double the block
size thereby cutting disc accesses in half -- without

a memory price, This is done just by reducing the
clfe t.ufefeeres ferel:.rr, t.le,•.:, -:: t.h€ de:f'aul t.) tee. t:.r-i ..:: b~:-) put.teing

on the fil€ equation, The function of the second
allowing ov€rlap of processing and I/O -- is

obviated by MPE's multiprogramming €nvironment, Even
i :=: r, CI t ..' t,.a 1 "e" i (-. ';I 1:. t~t € fl urn t) E~ tu. Ct f' e::ll= c: ..~~ S ::;:: e S :E: tOo; C' 1.1 l,j t)e: ,3

benefit than the second buf~er,

Examples of Sequential Access

Sequential access is very common, and thus the
.:. f.:' f:1 ()F' t. tJ r; i t. i e: s f' ':. ,.... ·3 ~r~, 1 ~:.J i rUt ';I t. ""1 i s t. e:1= t·f rl i ..~ 1.1 e: a,.-·e: rn e3 n ~l . E)~ ~:t nl J=' 1e s

of sequential access are: most batch applications; sorting)
the text and keep operations of file editing; sourc€ program
compilation; and MPE's reading of UDC files at logon and
~=;EerC:'4-r'=4L'JJ~ t i IT'~F.: ,

I rnat~i=:

Image does not allow control over th€ blocking of each
data set separately -- the BLOCKMAX parameter of DBSCHEMA
sets blocking for all data ~ets, Therefore it may be
difficult to take good advantage of the technique. However
if' i t. is .je:t.et"·ll'. i rJe:d tl-,.:=."t. a Ieat-',;;!,:.:: j:,t"·C'j:'C'I··et. i Clr', c.·f ·3'::C€=;;E:S tee, a
data base is physically sequential~ it may be worthwhile to
increase BLOCKMAX above the d€~ault,

In Image the most important instance of sequential access
i~ backward or forward serial access to a data set, If the
data base has been reorganized b>J doing a chained unload
Followed by a load) then chained access on primary keys is
also sequential, I~ there are a large number o~ secondaries
in a master} then accesses can be reduced by larger blocks;
however it is probably more appropriate to investigate why
the hashing scheme is not working well,

Chronological access to a KSAM file, including addition
of n€w data to the file l is by definition physically
sequential, A very important mode of KSAM access -- key€d
sequential -- will be physically sequ€ntial if the file was
originally loaded in key sequence. B€caus€ of this} accesses
can b€ saved during keyed sequential access by using large
data blocks and loading in key sequence,

G-l1 - 04

KSAM versus Image

If a KSAM file is being used only ~or keyed access) not
keyed sequential, Image should probably be used instead.
This is because Image's hashing techniques generally ~etch a
record in a single access) whereas KSAM~s B-tree technique
requires a search through the multi-level key tree be~ore th€
data can be read, (On the other hand KSAM is very ~ast For
k€yed sequential access which Image cannot do at all),

KSAl'l Ke:~,., F i 1es

KSAM key files can benefit ~rom larger blocks. Perhaps
surprisingly the greatest bene~it is ~or random keyed access
rather than keyed sequential. The reason is that keyed
sequential access is very sparing in its use of the key ~ile

regardless of key blocking,

However the opposite is true ~or random keyed access,
Each fetch of a record by key requires a top to bottom search
through the key tree. This results in H-1 disc accesses}
where H is the height of the tree, (Unl€ss there is locking)
the root block does not have to be read -- it is already in
the: tt\Jfof·e:rs). The f'e:t.ct·f e.f· t.r,E: d,at..3 ""'e:,=r:,,"'d t-·equi·€:s anot.I-.€:t-·
disc access, making H accesses the total number required,

The possible ben€fit of larger key blocks is that the height
of the tree may be reduced. A reduction of tree height from
three to two would save one third of the accesses.

Altough it is possible to calculate whether a larger
block will actually reduce tree height} it is probably just
as simple in most cases to simply try it. The KSAM manual
.j i sct.Jsses I-,c.',•.1 t.e. Sf,:'E:C i f'~)" k e:~:.1 b l.:••=k ·f.2t.=t.•:at-'s,

VI, Increased Buf~ering

General Discussion

Increased buffering is of doubtful value in a sequential
access environment J but can under certain circumstances be
'..,Ier· ~» t".E: 1~)f·l.J 1 i r, .::t ~"'ar"ftj-=,rrt ·3(: t=E: S~': er't ,.' i t"'()nrfl€:r~i t. , , .. t"i€Se:

circumstances are that there are repeated accesses to the
same: blctJ=k~~ of' t.t••::: ·fi I€: arnj t.r.... e:se blc..::ks .=·31'1 tie t·lel.::: ir,
memory, As with increasing block siz€J the price paid for
increasing bu~~ering is main memory,

It some situations it may be possible to use MPE~s

buffering to implement this techniquel Suppose For example
t.h.a.t. ·::in .31='1=,1 i t=at. i .:.r, rn.3k €:s t.h'::"JS,3fl.jS of' a,=ceSSr=:S t.c'r at"' i 1E:

which is only 100 records long, each record being 100 bytes
.l c.rtg , rl-,E: t.e,t..:.l 1 er(gt.J-s clf' t.I-,e: f i 1 E: is carll ~:.J 1 0., (100 ta~)Jt.e::.::,

S i riCE: an 1'1PE t.uf·f·e:t·.. C·3rs f:,e as l,ar't;lE: as 1E.~:~ t:.~,.,ti:.es (:=:~< ~'Jr:lr~·ds:>

G-ll - 05

it is possible to hold the entire file in a buffer. It
doesn~t make too much difference how the file is blocked~ but
it may as well be blocked 100 -- the entire file will be
brought into th€ buffers with a single access~ and that is
the only access required for the entire run,

The above e),ample is an extreme case~ but the principle
applies for less extreme cases as well, Suppose that the
file were 50000 bytes long -- five times as long as the
previous file. Now only about one third o~ the ~ile can be
held in the bu~fers at one time~ but this is still
worthwhile: the chances o~ finding the required block in the
buffers is one out of three J and we reduce our disc accesses
t:1~' or·,E: t."", i tN'd',

In situations where not all the data in each record is
needed, it might be worthwhil€ to creat€ a new ~ile with
smaller records~ just so that a larger percentage o~ the file
can be kept in buf~ers,

It is not necessary to accept MPE's restriction o~ a 16K
buffer segment, A user can do his own buf~ering with extra
data seg~ents and fill as much o~ main memory as desired with
t.la:..=ks f·"'·'':Jrr, r.i~; f'i Ie. l"t'tis r·c.~f:luir·es some SCCF"-Jist.i,=at.ed
programming but it might be the solution to some di~~icult

performance problems,

The Ef~ects of Locking

It is very important to keep in mind that for both MPE
and KSAM files file locking can negate the value of bu~fering

entirely and drastically increase disc access requirements,
TritE; ,...·e:as.:ar. i:::-: t.;-Jat. f·o,...· t.r'lE:s,a f· i 1E; t.~:.J~)e:s ':: t.:.ut. r,c.1:. I rr.a t;1€).' ea.=t-.
user has his own set of file buffers. To assure that all
users have an accurate view o~ the file J it is neccesary that
a ~ile lock cause clearing of the us€r~s bu~~€rs (~orcing him
to go to the file) and that an unlock post any changed blocks
t.,:- t.r-IE: f· i 1e .

It is best to avoid sharing MPE and KSAM files at alI,
unless access is r€ad only for all users, Otherwise locking
is required for proper sharing o~ the file. If a locking
environment cannot be avoided! its harffi~ul e~fects can be
minimized by doing as many operations as possible between
each lock and unlock.

Buffering and Irnag€

Irnag€ performance can be helped by incr&ased buf~ering in
certain circumstances, An example is repeated random access
to a master which is sufficiently small to allow a signficant
part of it to be held in memory, Int~restingly perhaps,
sequential access can also be helped by additional buF~ers iF
they prev€nt the bu~~er containing the sequentially accessed
block from being overwritten by another block,

G-l1 - 06

~. In general it is very difficult to know how many buffers
is II r· i ';1r,t. II t"',:a.'" ,an I 1T'.3'~":::: ,:.pl=.l i cat. i ,:.rJ , Pt... c.t:. at. 1 ~:-J t.r-.E; l:'E:st.
advice is to try di~~erent numbers o~ bu~fers and check the
~ffects on disc accesses by obs€rving the file close log
~"·e:.=Ot"'ds ,

For a batch application the right number is generally the
ma)~ i mUtT, (sJ:'e:c i f·~}J 255) t T~"f i s i r·jct-·e:ase:s t.r,€ rriE:JTI':'t-·~;.)

requirements for the batch job but gets it out of the way
soon~r, In many cas€s batch jobs are run at night when there
is not much competition ~or memory anyway, Batch jobs which
do posting should generally run with buffer posting deferred
<invoked by calling DBCONTROL with mode - 1), This causes
Imag€ to postpone the posting of a block in a buffer until
the buffer is needed for some other block, In many cases th€
r'educt. i cJr, i r, t.l-lE: r,l.Jrr,t.e:r· (:af' d i s,= ·:.ccesse:s is Clt..·.3JTf.3t. i ..-: , l·f t.he:
system should fail during the running of the batch job l the
data base is almost guaranteed to be invalid -- it will be
n€cessary to restore the data base and rerun the job in its
entirety, or course this is the usual tactic ~or any failure
clf' a t:a.::.tCt-, ...i c.t. ,

DBLOAD J by the waYJ will by default run with the maximum
number of bu~fers and with buf~er posting deferred.

~ Buf·f·e:t-·j jig aneJ 1<~;AI'1

The buffers for both the key and data files of a KSAM
file are in a single data s€gment, There is always exactly
one buffer for th€ data file J but the user has control over
the number of key block buffers. KSAM allows as many as 20
key block buffers, but if key blocks are close to the ma~imum

allowed length of 4K bytes) the maximum number of bu~fers

allowed may be less than this -- as ~ew as 15. Please note
that to specify the number of buffers with a file equation J

the DEV= keyword is used; th€ parameter is the one which
specifi€5 number of copies when writing to a spooled device,
rt-,i,JS t,,:. sl=.ec i f·~)J 5 k e~)) t.l.:,ck t.uf't-'e:,.-·s, acf.:I .. J [)EI,,}= I .,5 n t.o ~:,JC'U"'·

file equation, (! kno~ this sounds strange~ but what reason
would I have to lie about it?).

Increased buffering has little if any value for keyed
sequential access but may r€duc€ disc accesses dramatically
~or random keyed access if a significant proportion o~ the
key file can be held in the buffers (assuming no locking, of
course). This can be determined easily ~rom the KEYINFO
command o~ KSAMUTIL, which tells the number o~ blocks in the
~:: e ~)J ·f i 1e: ,

VII, Increasing the Resource

G-l1 - 07

AlI
t···· eC11..1C i rig

I.,.f ':~.: lIt.()
t.:=!k ..:::s t.el

c, f 't. t-i E: .~ t. c' \.' E: S I..IIJ ,;~ E: ::;: t. i Ci f"t ~: t-'.3 \,' e t. c t:~ ri () too. i t=_::: r-i 1:. -=.=; ,j t. CI 1.·,1·3 too. d
the demand for disc accesses, It is often possible as
i rUf (: rOO. e: .3 S € 1:. t-, € :.::: 1...1 ~) t:) 1 ~:... 0 f' t. r-, E: rn .1 t, ~~J t-· ~::: ci '.J ,= i r', t;.J t. J...: t:?': t· in', E: i":.

do them l in particular by reducing seek tima.

The easiest tactic
~n one edge of the
t 0 1;1 E: t. r-. e I'" l t. t··l 'J s t-· e .31..J C i r'l]

is a reload, This consolidates the files
d i ::::1= ·3 J-I d til·..· i nt;Js t.t-,s:: E=;>~i:.Jo:::nt.s (:sf'.:.;, f' i 3. e
average seek times,

Another major tactic is to reduce head movement be avoiding
the situation in which a head is ~orced to move back and ~orth

between two or more ~ilez on the same disc. Here are some
s :..JI~~ ~~:;:::.=.:~ t. i &:1 rlS t).3:=::e i:j elf". t.t~f i. s .a~:,~:·tu.c:, ac:tl :

1 r Avoid putting any frequently
:.::'::P')Ct 1 f'i 1E::=:;) elf", the ::.:~:--,stE.m

~j i ,.... -=,2 c: t. () r' ~:) ·3 r") (j t. t"ll::: :=.: hI .3~:' J:) i n I~

f' t-· IF':; l=i f.J E.: r', t. 1 ~:.,! .=...= C E: S :=~ Eo: cJ .

accessed files (including
Ct i s C:.' 1.\1 ""i i ,= I"', ,= (,) r, t. ·3 i r-. s t. t-i €;

·3r· f:..a., t)()t.t·, cif',t·' i cr', .~t··e

1<. t;.: E:):(t.l-. €:

< i r',e .1'J(i i rig
i r",~) 1.J -1:.

SCli·-·t.~::)

and output files
on sep~rat€ discs,

elf'

"7
....1. 1< to::: ":21=' t-I E: ·a'I," i Is)} .:a .= c: E.: s S €'~ !j ct .-3 t ..:t S E: t. ::

:=':: €~ r·· ·3"" a t. I::' d i. s C' ~~: .' to:::: ::::: ~"; E:: c: j .:~i 1. 1~:-1 i f t.'·-t E: ~:..,

tClg e:t.t-,121·-· ,

·r· r" c. in a (j ·3 t .::J t> .::t S 12 CI rj
i:. t:::: r', cl t. () t) E:: ·3 (~C· .::: S::; E: ci

4, ~::: a::.:: ':;:; f.) :i r-I';I t. t·) c k t::;: ~:) ·EJ r', d rj ·3 t .~ 'r' 1 1 ,.:.::.: () f ·a ~:: ~=; {{ 1\1 ·f i 1 E~ () f·) :5 e f.) .~ t··· '::J t. E:

ejlS'=S'

G-ll - 08

TERMINAL I/O INTERFACE--

AN ENGINEERING FEEDBACK SESSION

Presentors
Jim Beetem, R&D Project Mgro, HP

Hewlett-Packard is currently accessing user needs and problems
in the area of MPE interface to terminals; and is seeking ideas
and suggestions. This area of interest includes any device
interfaced to the HP 3000 through terminal controllers.

In the first part of the session, results of the recent joint
HP/Users Group IIr~embersh; p Quest; onna; res 1981 11 wi 11 be pre
sented for confirmation for additional comment. In the second
half, needs, plus problems not suggested by the questionnaire,
will be solicited. Finally, all suggestions will be prioritized.

Tuesday G-12 - 01

VIP/30ao AND VIP-TNC/3000

by

Earl E•. Colmer, Jr.
Automated Sciences Group, Inc.

Wednesday H-ll - 01

,~
"-- -

',--, .'

Automated Sciences Group, Inc.
700 Roeder Road
Silver Spring, Maryland 20910
301/587-8750

VIEW IMAGE PROCESS 3000

VIP is a completely Screen Driven Multi-Terminal, Multi-Data Base, Multi
Data Set, Multi-Screen View Image 3000 process. VIP needs only a Data Base
Information file and the user defined View Screen, thus paying for itself in
one application, saving you as much as 90% implementation time of your on-line
Data Base Application. VIP was developed to be machine efficient, data and
code stack efficient, and completely user oriented. There are no extensive
forms to fill out, VIP will prompt the user via an interactive Data Base Menu
Screen of the Data Base he/she wishes to access. Once the Data Base has been
established VIP will prompt the user again via an interactive Data Set Menu
Screen of the data set you wish to ADD, DELETE, INQUIRE, or UPDATE.

Data Screen Technicians do not have to spend valuable time editing numeric
data in View/3000, since VIP automatically right justifies numeric data and
makes the necessary numeric data checks (depending upon the Data Base data
type). VIP offers you a choice of editing procedures from the SL of your
choice or program creation and activation of edit programs. Complete Data
Base, Data Set, and Data Item Security is a function of VIP alone with user
option DBLOGGING and momentary DBLOCKING and DBUNLOCKING. VIP allows the user
chain reads, time out serial reads, and implied and's of the entire View Screen.

VIP's Data Base Information File format;

Record 1.
Record 2.
Record 3.
Record 4.
Record 5.
Record 6.

Fully qualified Data Base name.
Fully qualified View File name.
Data Set, Primary Key for this Data Set.
View Form for previous Data set, View Options.
etc. -NEXT DATA SET DESCRIPTION-
etc. -CORRESPONDING VIEW FORM & OPTIONS-

VIEW IMAGE PROCESS/3000 TERMINAL NETWORK CONTROLLER

VIP-TNC is a Terminal Network Controller especially designed to control
VIP. VIP-TNC will open up as many terminals as your application desires,
without logging users on the specified terminals, thus saving system overhead
and virtual memory on each VIP process. It is especially useful for on-line
registrations, order entry, or any other transaction processing applications.
No View Image Process can be 100% efficient for every on-line application, but
due to the Modular Design and SPL Compiler IF Statements VIP can be tailored
to your specific on-line Data Base Application in a matter of minutes, thus
making each process as efficient as possible.

Under ASG's Monthly Maintenance Contract, VIP alterations will be done
for only the cost of a tape, plus postage and handling. Without the Monthly
Maintenance Contract, there will be a minimum charge.

H-ll - 02

REAL-TIME, ON-LINE, DISTRIBUTED
IN THE MANUFACTURING SYSTEMS ENVIRONMENT

Presentors

Lee R. Kneppelt, Vice President, Arista
Jerry L. Sneed, Programmer Analyst, Arista

The terms real-time and on-line have become as popular as MRP within
the manufacturing user community. In many cases, Data Processing will
respond with complex hardware/software solutions to implement manu
facturing application functions in a real-time mode. Often, this is
done with little regard to whether an application function needs to
provide instant turnaround. The manufacturing planning and control
functions can be broken into strategic, tactical and action functiohs
for guidelines on user turnaround requirements.

The approach is to review the major manufacturing systems (Master
Scheduling, Material Requirements Planning, Capacity Requirements
Planning, Manufacturing Standards, Inventory Control, and Shop Floor
Control) with respect to a break out of planning verses control func
tions and their use within the time zones of manufacturing cycle. The
result is a blueprint for what functions are enhanced by real-time pro
cessing as well as what system-wide rules can lead to a distributed
systems approach based on application concepts.

Wednesday 1-1 - 01

.~

ALTER/30ao

QUICK MODIFICATION PROGRAM

by:

Earl E. Colmer, Jr.
Automated Sciences Group, Inc.

Wednesday 1- 2 - 01

Automated Sciences Grou ,Inc.
700 Roeder Road
Silver Spring, Maryland 20910
301/587-8750

ALTER/3000 - QUICK MODIFICATION PROGRAM

ALTER/3000 is a high speed multi-function EDITOR which
can be used to modify existing MPE files. Unlike most
EDITORS, ALTER/3000 (Quick Modification) can be used to
modify any file including IMAGE root files and datasets.
Rather than the standard 'text into workfile' approach,
ALTER/3000 uses direct disc access routines to inquire
or modify files, thereby saving file space and CPU time.
Any MPE file can be accessed in less than 300 milli
seconds, onced OPENED any record can be accessed in
less than 100 milli-seconds.

Unlike EDIT/3000, ALTER/3000 can accommodate files
with record lengths exceeding 256 bytes. When printing
such a file to the printer, no data will be striped off
or lost. ALTER/3000 also contains an optional logging
facility which maintains a record of how many times each
user has accessed ALTER/3000.

Since ALTER/3000 does not check the file code for files,
ALTER can be used to modify files that the EDITOR will not
handle: i.e., program file, VIEW files, and QUERY procedure
files. ALTER has 38 commands in its command interpreter,
including CLOSE, EJECT, REDO, PRINT, and SOFTKEY. ALTER/3000
also supports Editin, Editout/Edit1ist, and Use files,
with one major advantage of an Editin file, if your last
command of an Editin file is 'USE $STDINX', control will
be returned to your terminal instead of program termination.

When ordering ALTER/3000, please specify;

(1) Maximum anticipated record width (in bytes)?

(2) Number of 'LINE' printers on your 'system?

(3) Give 'MANAGERS' the ability to open PRIVILEGED FILES?

(4) Give 'MANAGERS' the ability to run in any SUBQUE?

(5) Enable ALTER/3000 user logging?

(6) Machine HP-?

1-2 - 02

~,

E-ZV THE EASY WAY
TO USE V/3000

By:
David Kalman
Gentry, Inc.

Paper to be presented
at Conference

Wednesday 1-3 - 01

DIALOGUER/3000: FORMS MANAGEMENT FOR EVERY SCREEN

Presentor

Dr. Joseph Vignalou, President, HP

DIALOGUER/3000 extends the forms management concept to virtually
any kind of screen terminal, from smartest to dumbest.
After an overview of the various terminal supported, the presentation
concentrates on the terminal operator aspects - response time, for
matted output, field echo, default values, screen refresh and user
commands - as well as the programming aspects - form and field de
finition, editing routines, form stacking, procedure calls and de
bugging aids.

Wednesday 1-4 - 01

~.~~.~I)'1W'

',~

~
~'-

TRACS 3000
TIME AND RESOURCE ACCOUNTING SYSTEM

by-:

Arthur Sera
Automated Sciences Group, Inc.

Wednesday 1-5 - 01

Automated Sciences Group, Inc.
700 Roeder Road
Silver Spring, Maryland 20910
301/587-8750

TRACS 3000
TIME AND RESOURCE ACCOUNTING SYSTEM

The TRACS system 1s composed of 3 data bases and 17 programs. The TRAeS
system utilizes the system log files, reports command output, and a subque
logging file as input to record resource utilization on the HP 3000.

The SCHED data base is used by the job scheduler subsystem to store job
submission requests. The job scheduling system is a general purpose system
which is capable of submitting jobs: once, daily, weekly, monthly, or yearly.
The TRACS system utilizes this capacity to run the nightly posting of the days
activities and the month end transfer, posting, and reporting programs. The
job scheduling system includes a data entry program to ease use.

The LOGDB data base is used to store the system log file information in a
structure which permits the association of resource utilization with the
originating groups and accounts. The information retained includes CPU and
CONNECT times by logon subque (i.e., BS, CS, DS, ES) distributed between time
consumed during prime vs. non-prime times. Also retained are disc, tape, card,
terminal, and printer I/O's, again, distinguishing prime and non-prime times,
cumulative disc storage, and a variety of memory usage information. Memory ~

usage information ranges from code and data stack words through virtual memory
sectors utilized again recorded as prime and non-prime times usage.

This data base additionally maintains daily summary records of total system
usage and contains the billing rates to be charged for the above mentioned
resources. There are three levels of rate assignments available: (1) system
default rates (used in absence of other explicit rates), (2) account default
rates (used in absence of explicit group rates), and (3) group rates (defined
as rates for particular ACCOUNT.GROUP combinations). The LOGDB data base also
records I/O errors, log errors, console messages, and line closes.

The BILLS data base contains customer information. Included in this are
customer name and addresses, customer/account associations, and the monthly
invoice detail lines. The BILLS data structure allows for simple, straight
forward definition of a customer's account structure for billing purposes.
This makes possible the assignment of one entire account plus only one group
of another account to an individual customer with just two entries.

The invoice posting program runs monthly and posts the detail charges
for total CPU, CONNECT, MEMORY, DISC STORAGE, and I/O charges accumulated
for each individual customer. Additional detail lines for other categories
of charges may be entered with QUERY and will therefore be included in the
printed invoice by the invoice printing program.

1-5 - 02

Budgeting and Profit Planning on the HP 3000

Presentor

Jack Damm, Principal, HP

Budgeting and Profit Planning on the HP 3000 is a presentation
about how the HP 3000 can be used as a powerful tool for company
planning. The. talk focuses on a particular IImodel ll which we ~se

in our consulting business to help companies do their financial
planning. The presentation includes many of the experiences we
have had in 10 years of business planning using the computer.

Wednesday 1-6 - 01

QUASAR, INC.

THE GREAT COMPANION (QUIZ)

BY:

MARSHALL WARWARUK

Paper To Be Presented

At Conference

I-8-01

Implementing Manufacturing Systems/Diffulty of Task

Presentor

Lee R. Kneppelt, Vice President, Arista
Jerry L. Sneed, Programmer Analyst, Arista

A few years ago APICS had a modern-day crusade on MRP which was followed
by a few years with the theme IIback to the basics ll

• Today, the number
of companies attempting to upgrade their manufacturing systems is greater
than ever before. Manufacturing Resource Planning (MRP II) has been
coined as the latest term for systems to support the management Of manu
facturing systems. Yet, the number of successful installations of tech
niques such as planning bills, master production scheduling and MRP still
remains relatively small as compared with the potential.

The problem may be the result of not having a basic understanding of how
to plan and execute a project of the scope of manufacturing systems im
plementation. It does not take long to realize that in implementing
manufacturing systems you are digging around in the very heart and soul
of 'management. The data is really the raw material for management de
cision making and for evaluation of their performance. Taken lightly,
the implementation can be an exceedingly dangerous pastime.

Areas of concern in management of an implementation include objectives,
realism, organization, cost/benefit, transition and training. Excuses
for failure'include changing specifications, user did not know what he
wanted, lack of commitment by top management, v~ndor slippage of soft
ware ana hardware, or we wanted a bicycle and built a Cadillac. What
the excuses really address is the lack of project plan, defined scope,
meaningful reviews, the IInot invented her ll syndrome, and maybe, courage
to change. Often, it i~ the violation of good implementation planning
and execution which negates the impact of sound productiQn and inventory
control techniques.

I

Wednesdgy J-l 01

'.~.

LOGOFF/3000 .

by:

Earl E. Colmer, Jr.
Automated Sciences Group, Inc.

Wednesday ·J-2 - 01

Automated Sciences Group, Inc.
700 Roeder Road
Silver Spring, Maryland 20910
301/587-8750

LOGOFF/3000

Unlike the big mainframes, and many other minis,
Hewlett Packard does not have the capability to logoff
jobs or sessions that have been inactive for a given
period of time. This causes such problems as inaccurate
bills for time sharing customers, Data Processing students
running out of connect time, and of course your favorite
MPE error message 'UNABLE TO OBTAIN VIRTUAL MEMORY.'.

LOGOFF/3000 can be tailored to your individual site
at run time. The Systems Manager can specify the number
of CPU seconds to be checked at every suspend interval.
That is, activate the program once every interval (say in
this case 60 minutes) and check to see if the job or session
has exceeded the check CPU time (in this case 5 seconds).
With these parameters every job or session that has not
exceeded 5 CPU seconds in 60 minutes would be logged off.
LOGOFF/3000 also allows you five entries in an Identification
Tableo One such entry would look like this ',MANAGER.SYS,',
which means do not logoff MANAGER.SYS from the system no
matter what his CPU time might be. Another such entry
would be ',.sys,' which means do not logoff anybody from the
SYS account. All jobs or sessions are checked against the
system, if a process associated with that job or session
has an outstanding request such as UCOP, RIT, etc. that job
or session will not be logged off.

All jobs or sessions logged off will have an entry
put into a log file (ABORTLOG.PUB.SYS). A report program
is provided (LISTALOG.PUB.SYS) to report on all entries
put into this file. Information retrieved from this file
is as follows;

jobname, user, account, group logon date & time,
logoff date & time, last CPU check, this CPU check,
check CPU time, and program suspend time.

LOGOFF/3000 can be run at a session (not advisable),
streamed as a job, or created and activated by a process
handler. System requirements are minimal, the program
runs with an 800 word stack (128 word DL MINUS included!),
and uses approximately .2 of a CPU second every hour,
(assuming that your suspend time is 60 minutes).

J- 2 - 02

REX/3000 AS A PROGRAMMER PRODUCTIVITY TOOL

Lance Carnes

Consultant

Mill Valley, CA

March 1981

ABSTRACT.

Programmer productivity is an important issue today: programming
effort is the single largest factor in the design, implementation and
maintenance of software systems. This paper surveys the major aspects
of productivity: reducing programming effort, increasing program
reliability, providing run-tinle efficiency, and reducing the cost of
software production. Each of these aspects and its relationship to the
others is explored. A unique high-level language, REX/30aO is
recommended as a solution to boosting programmer productivity.
REX/30DO programs are used to illustrate points made.

I. INTRODUCTION.

As the costs of labor and money increase, so do the pressures to
control and reduce operating costs. In data processing departments
programming personnal costs are the single largest cost factor.
Organizations ~hich have dealt with this problem attribute much of
their success to the use of productivity tools (1].

Productivity tools are designed to reduce the time and cost required
to produce software. The project manager can implement software more
economically and with more efficient use of personnel through
appropriate use of these tools. EQually as important is the user
satisfaction with the software product developed using the
productivity tool.

Tha interest in increasing programmer productivity is evident from the
number of articles in trade journals ~nd conference proceedings
dealing witn the subject. Most software departments nave a larger
bacKlog of programming requests than they have staff to do the work.
Of the time spent in programming, typically 60% to 70% is involved
with maintaining existing systems, while only 30% to 40% is utilized
in new development. The cost of a person-month of programming effort
is high and will continue to increase. New hard~are is being developed
faster than the software it will run.

Wednesday J-3 - 01

Ty~ically, productivity tools meet the traditional productivity
requirement: decrease the amount of code required to implement the
system and, therefore, reduce the programming effort. This is an
obvious path to take and has p~oven successful. However, the result is
often that ~ith the reduced effort comes a reduction in the Quality of
the software. These tools are f~eQuently specialized for certain
applications and have limited scopes; once the limits are exceeded,
the application must be redone using a different, usually less
reliable and less productive, method. The system produced with the
productivity tool is often less efficient than the same product
implemented using standard methods.

REX/30De is a high·level language and compiling system designed to
meet the requi~ement$ of increased productivity. It has specialized
constructs for report writing which result in a 50% to 90% reduction
of effo~t over using general-purpose languages. The language was
designed to encourage structured programming and thereby increase
p~ogram reliability and correctness. As a compiling system it
generates efficient program modules. There is sufficient scope in the
range of applications which can be implemented so that it is rare that
programs must be redone using more general-purpose languages.

In Section II the concept of productivity is defined and expanded.
Section III is ~ brief introduction to the REX/3000 language. Section
IV examines productivity quantitatively, i.e. reducing the effort to
produce soft~~re. Section V de~ls with productivity qualitatively,
i.e. maintaining reliability and efficiency. Sectlon VI summarizes the
cost savings realized with reduced quantity and improved quality.
Section VII is a summary of the points made. ~

II. ~HAT IS PRODUCTIVITY?

Traditionally, programmer productivity is the rate of software
production, i.e.

lines of code------_.. _... _..-
person"months

This ratio is derived by taking the total number of lines of code
requirQd to produce a software system and dividing by the total
personnel time used. The total lines of code may refer to the final
cede put into production or it may be all code written, e.g. for
documentation, t~st programs, discarded modules, etc. The total

)

personnel time may ~efer only to actual coding time or may include all
time spant in design, training, travel etc. This ratio can be used for
~redicting the effort ~hich will be required to produce future similar
systelns ..

T~1$ ratio h~s limited usefulness because it indicates only the r~te

of code production and tells us nothing of th~ total time or cost of

J-3 - 02

developing a system. For example, a system ~hich could be developed in
24 months uS1ng 20,000 lines of assembler code h~s the s~me

~ productivity rate as if it were developed in 12 months using 10,000
1inc S 0 feD BaL cod e. ~ h i l.,e the rat e s are the sam e , the tot a 1 tim e and
costs are doubled.

In recent literature, less importance is being given to the quantity
of software produced and mor~ consideration is being given to the
quality of software [2,3]. The aspects of software reliability,
correctness and efficiency are being explored. These aspects are as
important as reducing programming effort, and in fact play an
important part in reducing the maintenance effort. Quality can also be
measured for the purpose of modelling or estimating as

bugs found

/I lines of code

actual efficiency

expected efficiency

The first ratio measures soft~are reliability, ~hich may be required
to fall within a certain tolerance to be considered usable softw~re.

The second ratio measures machine resources used versus the allowable
or avaliable resources, ~nd a minimum tolerance may be specified to
indicate whether the soft~are has been successfully implemented. For
example, the daily production must run within a 24-hour period.

It has become apparent that too much energy has been spent on
increasing productivity rates and not enough on m~intaining or
improving program Quality. One of the main reasons for this is the
dramatic cost reduction in the development phase as a result of
increased productivity. However, the savings are often cancelled when
the cost of maintaining the error-prone code is considered. Therefore,
productivity tools must treat the issue of quality with equal
importance as Quantity.

In the following discussions, we will be concerned with the ~ssue of
quality as well as quantity. The relationship between increased
quality and reduced effort will be covered.

III. WHAT IS REX/3000?

'REX/3000 is a high-level language and compiling system useful for
report writing and general data processing. It ~os designed to boost
productivity significantly through use of a combination of
special-purpose and general purpose language constructs.
Special-purpose constructs, also called non-procedural constructs, are
the heart of the language, allowing programs to be written quickly.
The general-purpose constructs, also called procedural constructs,
build onto the special-purpose program and increase tha flexibility of
the language.

In the following discussion, we will show how the nature of the
~ language promotes productivity. For a more detailed traatment of the
\

J-3 - 03

~EX can be used to develop useful programs quickly. These same
programs can be expanded as requirements grow. The following example
illustrates this point.

« WAREHOUSE PARTS SUMMARY»
DATABASE parts ?ASSWORiJ "ANY" ACCESS 5

DATASET part-stock
REPORT

GET parts. part-stock
LIST i.Uhse AS "WAREHOUSE", &

part# AS "PART"", &
qty AS "QUANTITY" &

SORTED 5Y whse, part# &
SUMMARI::NG Qty ON ~hse, part#

LOOP «end of GET ••• LOOP »
END.

This is a complete ~EX program, which when compiled and run will
produce the report shown in the Appendix.

The sections of the program are ~s follows:

1) DATABASE declaration. This special-purpose construct
performs the following functions:

a) it specifies the database name, password and access
mode to be used.

b) ~t compile time, all attributes of the database,
the datasets indicated, and the items within each of
the dat~sets are known - the programmer need not
redeclare the dat~base layout, provide buffers, etc ••

c) at execution time, the dataoase is opened using the
par~meters from (a).

d) access to the database is available through the
GET construct.

e) at the end of the program the database is closed.

This is a non-procedural construct, that is, it performs
all of the logic necess~ry to access the database.
The programmer is insulated from all mechanics of database
use.

J-3 - 04

2) The REPORT block. This special-purpose construct performs
all of the steps required to produce a sorted, formatted report:

a) The items indicated in the LIST statement are read
from the database and written to an extract file.
The extract file is formatted and maintained by REX.

b) At the end of the input phase, the extract file is
sorted in the given sequence (SORTED BY ••• >.

c) The report is now printed with the column headers
(AS ") and control breaks (ON •••) indicated.

This is a non-procedural construct, since the mechanics of
formatting the extract file, sorting it, setting up column
headers, testing for control breaks, etc. are part of the
REX system.

3) The GET statement. This is a special-purpose construct
which reads data from the dataset and performs the following
function:

a) The dataset mentioned is read entry by entry (serially
in this case, although chained access mode is also
available).

b) As each entry is read, the statements between the GET •••
and LOOP are executed (in this case, the LIST statement).

c) After the last entry is read, transfer is passed to the
statement following the LOOP.

GET is a non-procedural construct in the sense that the
me c hani C S o,f a c c e 5 5 are hi dden f rom the pro 9ram mer.
The programmer does have to place the LOOP in the right place;
if the LOOP is omitted, the compiler assumes the loop
includes all statements up to the END.

This code could be written and running correctly in a matter of
minutes. The user would be pleased with the results for at most two
days, and then, of course, would want to expand the function to
include the following:

1) Print the unit price and total value in stock for each
parti

2) Place an asterisk in the column next to part #'5 for which
the Quantity is zero;

Typically, this is beyond the scope of a non-procedural report writer.
To perform the first requirement, the price will have to be extracted
from a second dataset (PART-MSTR) and multiplied by the quantity. Some
logic will have to be implemented to allow the quantity to be checked
for zero and an asterisk inserted.

These requirements are not beyond the scope of REX, and in fact the
original program may be modified to include the enhancements. The
following is the REX program which will satisfy the above
requirements.

J-3 - 05

»
»
5

« WAREHOUSE PARTS SUMMARY»
« enhanced to print price and value
« will print an asterisk if Qty = 0
DATABASE parts PASSWORD "ANY" ACCeSS

DATASET part-stock
PROGVAR star A1

value PS.2
REPORT

GET parts. part-stock
IF Qty = 0 THEN star = "*" ELSE star =
GET parts.part-master &

WITH part# = parts.part-stock.part#
LIST whse AS "WAREHOUSE", 8.

star, &
partll AS "PART#", &
qty A,S "QUANTITY", &
price AS "PRICe", &
value = price * qty &

AS "VALUE" &
SORTED BY whse, part# &
SUMMARIZING qty ON part#,whse

LOOP «end of GET ••• LOOP »
END.

.. "

~I

The following parts were added to the program:

1) PROGVAR declaration. A program cont~olled variable,
star, was declared which can contain one alphaumeric
character (A1). The variable value is a five-digit
packed-decimal number.

2) IF THEN ELSE statement. This statement checks the
qty for zero and sets the variable star accordingly.

3) GET parts.part-master WITH •••• This statement accesses
the master sat (PART-MSTR) keyed by part# to locate the
price.

4) value = price * qty. This calculation is performed
to compute the total value of parts in stock.

The PRCGVAR declaration, the IF THEN ELSE and the calculation are
procedural constructs, that is, the programmer has to specify the
mechanics of the function.

Notice that the enhancement was made by adding procedural
(general-purpose) constructs into the original non-procedural
(special-purpose) program. With most non-procedural report writers,
the enhancement could not be made, and the application would have to
be recoded using a fully procedural language (e.g. COSOL).

In summary, REX allows the creation of non-procedural programs which
can be coded Quickly and by less experienced staff members. In
addition, enhancements and more complex programs can use the rich set
of procedural constructs. The special-purpose (non-procedural)

J-3 - 06

~. --''-'"''l~i:~'

constructs and the general-purpose (procedural) constructs can be
combined in the same application.

~ IV. REQUCING THE PROGRAMMING EFFORT.

The major emphasis of any prod~ctivity tool is to reduce the effort to
produce $cftw~re. That is, reduce the number of lines of code, and
therefore the time, which would have been required to implement the
system using a general-purpose programming language.

The use of productivity tools has proven effective (1J. The time and
costs for software development have been significantly reduced using
such tools, by ~s much as 50% to 90%.

In practice, productivity t~o~s generallY ~re not versatile enough to
be used exclusivelY. Th~s is the chief drawback to such tools making a
significant impact on the softw~re qevelopment process. Typicallv they
~re designed for a limited scope of applications and wQrk well within
th~se limits. Too often; the limits of the tool have the following
negative effects:

1) Enhancement req~ests which exceed the limits of the tool(
are not done, denying the user timely access to useful 7

information.
2) The corresponding general-purp9se program which includes

the enhancements costs so much to develop that the user
will rationalize that the data is not important enough
to justify the cost.

For example, consid~r the following application written
in QUERY, a useful but limited tool:

DATA-BASE : PARTS
PASSWORD =» ANY
MODE =» 5
FINO ALL PART-STOCK.PART#
REPORT
H1,"WAREHOUSe PARTS REPORT",30
H2,"WAREHOUSE PART# QUANTITY",32
D,WHSE,15
D,PART#,22
O,QTY,30
S"1 , PA RT#
S2,WHSE
END

This code co~ld be put into production in a short time and would
proviQe useful information. However any enh~ncement reQuests must be
looked at with the limitations of QUERY in mind.

For example, if the r~quest$ w~re the same as those in the example in
the previous section, QUERY could not be used:

1) Print the ~nit price and total value in stock for e~ch

p~rt (QUERY can access only one dataset at a time and

J-3 - 07

cannot perform multiplications);
2) Place an asterisk in the column next to part #'5 for which

the quantity is zero (QUERY does not have alphanumeric
variables or conditional statements).

The application would have to be coded in a general-purpose language.

The COBOL program which includes the enhancements is given in the
Appendix; it is in excess of 230 source lines.

The main point here is the great disparity in the sizes of the
programs. QUERY has 13 lines where the same application with two minor
enhancements takes nearly twenty times the number of source lines in
COBOL. The cost of enhancements in this case is much greater than
would be imagined, especially by the user.

REX, however, provides a reasonable solution. The enhancements
mentioned require only seven additional lines of code and a few
minutes of time. Furthermore, the same source code may be built upon,
avoiding a rewrite in a more general-purpose language.

In summary, REX combines the features of QUERY and COBOL. The
programmer can produce simple programs in a short time, and simple or
complex enhancements can be made by building onto the original source.

Two additional benefits result from using productivity tools to reduce
programming effort:

1) Throw-away programs become feasible.
Code can be written for a "what if" inquiry
and then discarded. This would not be possible
with high development costs.

2) Maintenance effort is reduced. The effort, and
therefore the cost, of correcting bugs and making
enhancements is reduced. The maintenance duties
can be performed by a less experienced programmer.
The savings are dramatic when considering the cost of
supporting several systems over an extended period
of time.

v. QUALITY - MAINTAINING OR IMPROVING IT.

In the previous section we noted that a frequent problem with using
productivity tools is their lack of flexibility. Two other problems
are often identified:

J-3 - 08

1) While it is easy to write code, it is difficult
to use structured programming disciplines or other
techniQues ~hich encourage error-free, reliable code.

2) The run-time modules are inefficient, consuming far
more machine resources than the equivalent program
written in a general-purpose language.

These issues arise when dealing with general-purpose languages as
well. The first point concerns the reliability of programs, i.e. how
bug-frae the programs are. The second point concerns the efficiency of
the program, i.e., the amount of machine required to execute the
program.

Specialized productivity tools are generally reliable. They do .not
have the capability of performing complicated sequences, making it
difficult to introduce bugs. The reliability will be lower, however,
when the tool is pressed to its limits - programmers often code
'clever' but difficult to understand programs, or use side-effects of
the system to circumvent the limitations of the language. Where the
language does have some procedural constructs, they are often prone to
the usual logic errors found when using non-structured languages.

Reliability can be increased by 1) training the programmin~ staff in
one of the structured programming techniques and/or 2) using a
programming language ~hich encourages error-free code. The first is a
common technique when a software department {_is committed to using
FORTRAN or COBOL; it is usually necessary to set up careful coding
guidelines and review all code produced. The second ·is less common,
though incressing with the availability of structured languages, e.g.
?ascal, JOVIAL, Ada; these languages, however, are not suited for
commercial applications or report writing.

~ EX was des i 9 ned toe nco ur a 9ere 1 i a b1e cod' i n g. The non - pro c e d u r a 1
constructs perform reliably due to the fact that their function is
well-defined and not alterable by the programmer (e.g. REPORT •••
LIST). The procedural constructs in REX are borrowed from PASCAL, a
structured, high-level language [6]. Coding is done using constructs
such as PROCEDURE and REPORT blocks, IF THEN ELSE, WHILE DO, REPEAT
UNTIL and GET LOOP, etc. REX has no GOTD. In short, the programmer
mus two r k wit h con s t r uc t S Wh. i c hen C 0 u ragere1 i a b lee 0 din 9 ; t nos e
constructs known to be error-prone (e.g. GOTD) are not available.

Efficiency is an important issue, since all programs must eventually
run in production and produce their results in an acceptable amount of
time. A program which is inefficient will not be used and must be
designed and implemented again. A program ~hich is marginally
effic~ent, i.e. runs slowly but within an acceptable range, will be
subject to many costly attempts to speed it up. A program which was
easy to develop but must be tuned constantly once in production has
produced no real savings.

J-3 - 09

While many specialized tools are inefficient at run-time, REX is
actually as efficient or more efficie'nt than general-purposs language
systems. The main difference is that most tools ~re interpretiv~, ~

whereas ~EX is a compiling system. An interpreter is a general-purpose
system which has heavy demands on the machine: it is a large program
~hich has many code segments and uses large data areas. In contrast, a
compiler produces an efficient runtime module: the program and data
area requirements are only a fraction of those needed by an
interpretive system. Reducing code and data memory requirements can
greatly improve performance [7].

REX produces efficient run-time modules, similar to those resulting
fro mag ·9 nera 1- pur p 0 sec 0 mpiIi n9 5 Ys t em. Se 9 men tat ion i 5 don· e
automatically to speed the operation of REPORT blocks - the input
phase code is in one segment while the print phase code is in another.
Segment switching is minimized by generating as much code inline and
avoiding peAls whenever possible. Data segment usage is kept to a
minimum through efficient code generation and the use of local
variables, i.e. avoid global variables (7]. Sinc.e the progrClms run
efficiently, there is seldom a need to optimize, saving maintenance
effort.

Using REX allows high quality code to be generated with little
additional gffort or expense. The resulting programs are easier and
less costly to maintain. The benefits are efficient production
programs without the effort of extensive tuning. Overall, user and
programmer satisfaction will be high.

VI. HOW ARE COSTS CUT?

Whenever there is a reduction of effort, increased program reliability
and dependable machine efficiency, there is ~ correspond1ng cost
savings. These savings may be immediately noticable, e.g. when
reducing development costs. Or they may occur over an extended period
of time, e.g. in the mainten~nce phase ot the software life cycle. In
addition to the savings from reducing effort, costs c~n be cut through
use of less experienced personnel.

These are s.ome of the ways costs are cut using productivity tools such
as REX/3000 which not only reduce programming effort but enco~r~ge

high quality:

1) Higher coding productivity results in fewer person-months
of effort with a direct cost savings.

2) Higher reliability and efficiency reduce the number of
person-hours requ~red for maintenance over the life of the
5 0 f twa res y s t '.J m•

3) Less experienced and therefore lower cost personnel
c~n implement and maint~in software systems. The more experienced
staff mem)ers can devote more time to designing current ~

J-3 - 10

and future software systems without worrying about
whether there will bG time enough for implementation.

VII. SUMMARY AND CONCLUSIONS.

Productivity tools do exactly what they claim - reduce the time and
cost to produce software. Those tools ~hich also increase the quality
of produced code have the additional benefits of reducing maintenance
time and effort. Overall, using a productivity tool allows more
careful design and planning and better personnel allocation, since the
pressure of the great amount of programming effort is relieved.

The quantity of code is reduced through the use of special-purpose
constructs. Where these constructs typically reduce the scope and
flexibility of the language, REX/3000 has met this shortcoming by
allowing general-purpose constructs to be built onto the
special-purpose core of the program.

The quality of code produced by productivity tools typically is not so
high as that produced by general-purpose languages. REX/30DO allows
high-quality coding through the use of structured programming
techniques and efficiently compiled program modules.

The features of these tools are attractive and the wise programming
manager will use them to produce economical, timely systems. Howe~er

those projects implemented using tools in any capacity are few in
number. The overwhelming majority of software systems produced use
general-purpose languages, and overall show low productivity.

The reasons for not using tools are varied: some are legitimate, e.g.
machine portability requirements; most, however, are the result of the
fear of using something "new", or something which appears simplistic.
There is a streak of the old-time wizard in every programmer, and the
fact that the non-data processing user cannot comprehend the nature of
the business is comforting and even protective. Some see the use of
productivity tools as a threat to this mystique. Another common reason
for not using tools is the reluctance to try something other than the
standard methods, unproductive as these are. With the cost of
person-power increasing, the obvious move is towards increased
productivity.

One observer noting the lack of use of productivity tools drew the
following analogy:

[They] are so busy digging ditches with pick and
shovel that they haven't the time to go watch
the bulldozer demonstration (8J.

With the cost of manpower increasing, it is imperative th~t tools be
used in the near future. Those managers ~ho cannot control costs and
time schedules because of low programmer productivity will have to
compete with managers who can make a difference. Productivity tools,

~ like REX/30DO, will playa major role in making that diffe~ence.

J-3 - 11

ACKNOWLEDGEMENTS.

Many thanks to Grace Gentry ~nd Jean Oanver for taking the time to
read this paper and make useful suggestions.

REFERENCES.

1. Government Accounting Office report on data processing costs,
GAO report #FGMSD-80-38, Washington, D.C., 1980.

2. DACS, A Bibliography of Software Engineering Terms,
lIT Research Institute, October 1979.

3. DACS, Quantitative Software Models, lIT Research
Institute, March 1979.

4. REX/3000 USERS MANUAL, Gentry Inc., 1980.

5. Carnes, Lance, "Oesign and implementation of REX/300Q",
HPGSUG Meeting Proceedings, Lyon 1979.

6. Jensen and wirth, Pascal User Manual and Report,
Springer-Verlag, 1974.

7. Green, Robert, "HP3000 I Optimizing On-line Programs",
HPGSUG, Denver, 1978.

8. McClure, 80b in a speech to the Software Underground,
San Francisco, CA, April 1930.

J-3 - 12

APPENDIX.

This section cQntains the database schema and program
source code and output mentioned in the paper:

Listing of the schema for the PARTS database, ~nd the
contents of each dataset.

REX example report.

QUERY example report.

COBOL example report.

J-3 - 13

HP32216A.04.01 QUERY/3000 MON, JUt 28, 1980, 3:59 PM
QUERY/30,OO READY

B-PARTS
PASSWORD ::I

ANY
MODE -
1
FORM

DATA BASE: P.-\RTS

SET NAME:
PART-MSTR,MANUAL

ITEMS:
PART#,
PART-NAME,
PRICE,

Z4
U16
P8

MON, JUt 28, 1980, 4:00 PM

«KEY ITEM»

CAPACITY: 101

SET NAME:
PART-STOCK,DETAIL

ITEMS:
PARTtI,
WSE,
QTY,

CAPACITY: 414

ENTRIES: 3

Z4
U6
Z4

ENTRIES: 7

«SEARCH ITEM»

LIST PART-MSTR

PART Ii P.~T-NAME PRICE
3122 MANUAL #177 275
2142 BRACKET 75
1785 BOLT 1 X 1/4 5

LIST PART-STOCK

PARTI WHSE QTY
1785 101 2000
2142 100 750
3122 100 100
2142 102 250
2142 101 100
1785 100 1000
3122 102 0

Listing of the schema for the PARTS database, and the
contents of each dataset.

J-3 - 14

REX/3000 VERSION A.l.0623
ec) GENTRY, INC. 1980

1 1 1 « YAREBOUSE PARTS SUMMARY»
2 1 1 DATABASE PARTS PASSWORD "READER" ACCESS 5
3 1 1 DATASET PART-STOCK
4 1 2 REPORT
5 2 2 GET PARTS.PART-STOCK
6 2 3 LIST WHSE AS "WAREHOUSE", &
7 2 3 PART' AS "PARTI", &
8 2 3 QTY AS "QUANTITY" &
9 2 3 SORTED BY WHS!, PART' &

10 2 3 SUMMARIZING QTY ON WHSE
11 2 3 LOOP
12 2 2 END « REPORT BLOCK »
13 2 2 END.

~

WAREHOUSE PART' QUANTITY

100 1785 1000
100 2142 750
100 3122 100

1850

101 1785 2000
101 2142 100

2100

102 2142 250
102 3122 0

250

REX exa~le report

r"

J-3 - 15

REX!3000 VERSION A.l.0623
(e) GENTRY, INC. 1980

1 1 1 DAT~ASE PARTS PASS~ORD "READER" ACCESS 5
2 1 1 DATASET PART-MSTR
~ 1 2 PRICE P6.2
4 1 3 DAT.-\SET PART-STOCK ~

512
6 1 2 PROGVAR VALUE P7.2
7 1 1 STAR Al
811
9 1 1 REPORT

10 2 2 GET PARTS.~~T-STOCK

11 2 3 IF QTY - 0 THEN STAR =- U*" ELSE STAR ::a It It

12 2 3 GET PARTS.PART-MSTR WITH PART# 3-PARTS.PART-STOCK.PART#
13 2 3 LIST waSE AS "WAREHOUSE", &
14 2 3 STAR, &
15 2 3 PART# AS "PART0" , &
16 2 3 'QTY AS "QUANTITY", &
17 2 3 PARTSoPART-MSTR.PRICE AS" PRICE", &
18 2 3 VALUE - QTY * PARTS.PART-MSTR.PRICE &
19 2 3 AS" VALUE" &
20 2 3 SORTED BY WHSE, PART# &
21 2 3 SUMMARIZING "SUMMARY ", qry, VALUE &
22 2 4 ON WHSE &
23 2 4 TOTALING "GRAND TOTAL" ,QTY, VALUE
24 2 3 LOOP
25 2 2 END «REPORT BLOCK »
26 2 2 END 0

.~

WAREHOUSE PAP..T!1 QUANTITY PRICE VALUE

100 1785 1000 0.05 50.00
100 2142 750 0.75 562.50
100 3122 100 2.75 275.00

St~fr4.ARY 1850 887.50

101 1785 2000 0.05 100.00
101 2142 100 0.75 75.00

smn·1ARY 2100 175.00

102 2142 250 0.75 187.50
102 * 3122 0 2.75 0.00

SUl~1ARY 250 187.50

GRAND TOTAL 4200 1250.00

REX example report.

J-3 - 16

HP32216A.04.01 QUERY!3000 TOE, JUt 29, 1980, 2:10 PM
QUERY/3000 READY

DATA-BASE • PARTS
PASSWORD •
ANY
MODE •
5
FIND ALL PART-STOCK.PART#
7 ENtRIES' QUALIFIED
REPORT
HI, ''YAREHOUSE PARTS REPORT". 30
H2. "WAREHOUSE PART# QUANTITY" J 32
D,WSE,lS
D,PART#,22
D,QTY.30
Sl,PART#
S2,WHSE
END

~AREHOUSE PARTS REPORT
WAREHOUSE PART# QUANTITY

100 1785 1000
100 2142 750
100 3122 100
101 1785 2000
101 2142 100
102 2142 250
102 3122 0

exit

QUERY example report.

J-3 - 17

3:57 PM (CPAGE 0001 HEWLETT-PACKARD 32213C.02.03 COBOL!3000 MON, JUt 28, 1980,

PIC X(72).

ASSIGN TO "LP ".
ASSIGN TO "SORT,DA".

PIC X(OS) VALUE SPACE.
PIC 9(04) VALUE ZERO.

PIC 9(04) VALUE ZERO.
PIC S9(05)V9(02)

VALUE ZERO.

PIC 59(09) VALUE ZERO.
PIC S9(12)V9(02) COMP-3
VALUE ZERO.

OOlOOO$CONTROL USLINIT
001100 IDENTIFICATION DIVISION.
001200 PROGRAM-ID. PARTeOB.
001300 DA'l'E-COMPlLED.

MON, JUL 28, 1980, 3:57 PM.
001400 REMARKS.
001500 THIS PROGRAM READS THE 'PARTS' DATA BASE
001600 LOOPS THRU MASTERS, GETS ASSOCIATED DETAILS
001700 AND SORTS THEM; IT THEN READS THE SORT FILE,
001800 OUTPUTING THE SORTED RECORDS, GIVING A SUMMARY
001900 OF TOTAL QUANTITY & COST AT EACH CHANGE IN
002000 '~AREHOUSE'

002100 *
002200 PRIMARY SORT KEY - WAREHOUSE
002300 SECONDARY SORT KEY - PART
002400 *
002500 NO PAGE CONTROL PRESENT
002600 *
002700 SET FILE EQUATION :FILE LP-$STDLIST;CCTL
002800 BEFORE EXECUTING
002900 *
003000 ENVIRONMENT DIVISION.
003100 CONFIGURATION SECTION.
003200 SOURCE-COMPOTER. HP3000.
003300 OBJECT-COMPUTER. HP3000.
003400 INPUT-QUTPUT SECTION.
003500 FILE-CONTROL.
003600 SELECT REPORT-FILE
003700 SELECT SORT-FILE
003800 DATA DIVISION.
003900 FILE SECTION.
004000 FD REPORT-FILE
004100 RECORD CONTAINS 72 CHARACTERS
004200 LABEL RECORD IS OMMITTED.
004300 01 REPORT-FILE-REe.
004400 05 REPORT-FILE-REC-LlNE
004500 50 SORT-FILE
004600 RECORD CONTAms 24 CHARACTERS.
004700 01 SORT-FILE-REC.
004800 05 SORT-FILE-REC-KEY.
004900 10 SORT-FILE-REC-WHSE PIC X(OS).
005000 10 SORT-FILE-REC-PAaT PIC 9(04).
005100 10 FILLER PIC X(12).
005200 WORKING-STORAGE SECTION.
005300 01 SORT-RCD.
005400 05 SORT-KEY.
005500 10 SR~SE

005600 10 SR-PARI
005700 05 SORT-DATA.
005800 10 SR-QTY
005900 10 SR~PRICE

006000
0061{)0
006200 ·01 CONTROLS-ANn-SUMS.
006300 05 SUM-QTY
006400 05 scrM-COST
006500

T

/

J-3 - 18

VALUE ".

".

PIC S9(09)V9(02) COMP-3
VALUE ZERO.

PIC 59(04) USAGE COMP SYNC
VALUE ZERO.

PIC 59(04) USAGE COMP SYNC.
PIC 59(04) USAGE COMP SYNC.

PIC XeOl) VALUE SPACE.
PIC X(OS) VALUE SPACE.
PIC X VALUE SPACE.
PIC X(02) VALUE SPACE.
PIC Z(06) VALUE ZERO.
PIC Z(09) VALUE ZERO.
PIC Z(07).9(02) VALUE 0.0.
PIC Z(12).9(02) VALUE 0.0.

PIC 59(09) VALUE ZERO.
PIC S9(12)V9(02) COMP-3
VALUE ZERO.

PIC ·X(16) VALUE "PART-MSTR ".
PIC X(16) VALUE "PART-STOCK ft.

PIC XeOl) VALUE SPACE.
PIC X(l7) VALUE "SUMMARY
PIC Z(09) VALUE ZERO.
PIC X(lO) VALUE SPACE.
PIC Z(12).9(02) VALUE 0.0.
PIC X(72) VALUE SPACE.

PIC 59(04) USAGE COMP SYNC.
PIC 59(04).
PIC 59.(09) USAGE COMP SYNC.
PIC 59(09).
PIC 59(09).
PIC 59(09).

PIC 59(04) USAGE COMP SYNc.
PIC X(16) VALUE" PARTS; It.

PIC X(16) VALUE SPACES.
PIC X(OS) VALUE "READER ,••
PIC S9(04) USAGE COMP SYNC.
PIC X(04) VJ...I.UE n@ It.

PIC X(16) VALUE SPACES.

PIC 9(04) VALUE ZERO.
PIC X(16).
PIC S9(05)V9(02) COMP-3.

PIC 9(04) VALUE ZERO.
PIC X(06) VALUE SPACES.
PIC 9(04) VALUE ZERO.
PIC X(OS) VALUE "PART' ".

PIC X(01) VALUE SPACE.
PIC X(52) VALUE

PART# QUANTITY PRICE

05 TOTAL-QTY
os TOTAL-COST

05 LINE-COUNT

HDR-LlNE.
05 HL-CC
05 FILLER

''YAREHOUSE
DTL-LINE.
05 DL-CC
05 DL-WHSE
05 DL-~ILLER

05 DL-STAR
05 DL-PART
05 DL-QTY
05 DL-PRICE
05 DL-COST
SUM-LINE.
05 SL-CC
05 TEXT-LINE
05 SL-QTY
05 FILLER
05 SL-COST
BLANK-LINE
MISC.
05 COST

05 AT-END-FILE
05 IMAGE-MODE

IMAGE-DATASET-NAMES.
05 IDN-PART-MSTR
05 IDN-PART-STOCK
IMAGE-STATUS-AREA.
05 ISA-COND-WORD
05 ISA-DATA-LENGTH
05 ISA-RECORD
05 ISA-CHAm-LENGTH
05 ISA-ADDRESS-BACK
05 ISA-ADDRESS-FORWARD

IMAGE-GONTROL-WORDSo
05 leW-TEMP
05 ICW-DBNAME
as ICW-DATASET
05 lCW-PASSWORD
05 ICW-MODE
05 ICW-DATALIST
05 ICY-SEARCR-ARG

IDB-PART~lSTR.
05 !DB-PH-PART
OS IDB-PM-NAME
05 !DB-PH-PRICE
IDB-PART-S!~CK.

05 IDB-PS-PART
05 IDB-PS-WRSE
05 IDB-PS-QTY

IMAGE-FIND-ITEM

PARTCOB
006600
006700
006800
006900 01
007000
007100
007200
007300 01
007400
007500
007600
007700
007800
007900
008000
008100
008200 01
008300
008400
008500
008600
008700
008800 01
008900 01
009000
009100
009200
009300
009400
009500
009600 01
009700
009800
009900 01
010000
010100
010200
010300
010400
010500
010600 01
010700
010800
010900
011000
0111Cfo
011200
011300
011400 01
011500
011600
011700
011800 01
011900
012000
012100
012200 01

PAGE 0002

~

~

~

J-3 - 19

PAGE 0003 PARTCOB
012300 PROCEDURE DIVISION.
012400 MAIN-PROCESS-CONTROL SECTION.
012500 PAR-I.
012600 PERFORM OPEN-DB-E.
012700 PERFORM DO-THE-REPORT.
012800 STOP RUN.
012900 DO-THE-REPORT.
013000 SORT SORT-FILE ON ASCENDING KEY SORT-FILE-REC-WHSE,
013100 SORT-FlLE-REC-PART
013200 INPUT PROCEDURE IS 'GET-ENTRIES-LOOP
013300 OUTPUT PROCEDURE IS REPORT-ENTRIES.
013400 GET-ENTRIES-LOOP SECTION 60.
013500 PAR-A.
013600 MOVE "PART-MSTR" TO IeW-DATASET.
013700 MOVE 2 TO ICW~ODE.

013800 CALL ''DBGET'' USING ICW-DBNAME,
013900 ICW-DATASET,
014000 ICW~ODE,

014100 IMAGE-STATUS-AREA,
014200 ICW-DATALIST,
014300 IDB-PART-MSTR,
014400 ICW-SEARCH-ARG.
014500 IF ISA-COND-WORD • ZERO
014600 PERFORM GET-NEXT-MASTER UNTIL AT-END-FILE m +11.
014700 GO TO END-QF-INPUT.
014800
014900 GET-NEXT-MASTER.
015000 PERFORM GET-TEE-DETAILS.
015100 MOVE "PART-MSTRU TO IC'..1-DAT..\SET.
015200 MOVE 2 TO ICW~ODE.

015300 CALL ttDBGET" USING ICW-DBNA.\fE,
015400 leW-DATASET,
015500 ICJ-MODE,
015600 IMAGE-STATUS-AREA,
015700 I~~-DATALIST,

015800 IDB-PART-MSTR,
015900 ICW-SEARCH-ARG.
016000 IF ISA-COND-WORD NOT - ZERO
016100 MOVE +11 TO AT-END-FILE.
016200
016300 GET-THE-DETAILS.
016400 MOVE "PART-S'rOCK" TO lCW-DATASET.
016500 MOVE 1 TO IC~-MODE.

016600 MOVE IDB-PH-PART TO ICW-SEARCH-ARG.
016700 CALL "DBFIND" USING ICJ-DBN)~.E,

016800 lCW-DATASET,
016900 ICW~ODE,

017000 IMAGE-STATUS-AREA,
017100 IMAGE-FI1ID-ITEM,
017200 ICW-SEARCH-A.~G.

017300 IF ISA-COND-WORD A ZERO
017400 MOVE +5 TO ICW-MODE
U17500 PERFO~~ PART-STOCK-LOOP
017600 UNTIL ISA-COND-WORD NOT • ZERO.
017700 P&~T-STOCK-LOOP.

017800 CALL ''DBGET'' USING ICW-DBNAME,
017900 ICW-DATASET,

J-3 - 20

PAGE 0004 PARTeOB
018000 I~~ODEt

018100 IMAGE-STATUS-AREA,
018200 ICW-DATALIST,
018300 IDB-PART-STOCK,
018400 ICW-SEARCH-ARG.
018500 IF ISA-COND-WORD - ZERO THEN
018600 MOVE IDB-PS-WHSE TO SR-WHSE
018700 MOVE IDB-PH-PART TO SR-PART
018800 MOVE IDB-PS-QTY TO SR-QTY
018900 MOVE IDB-PH-PRICE TO SR-PRICE
019000 RELEASE SORT-FILE-REC FROM SORT-RCD.
019100 END-QF-INPUT. EXIT.
019200 REPORT-ENTRIES SECTION 70.
019300 PAR-C.
019400 PERFORM CLOSE-DB-E.
019500 OPEN OUTPUT REPORT-FILE.
019600 MOVE ZERO TO AT-END-FILE.
019700 RETURN SORT-FILE INTO SORT-RCD
019800 AT END DISPLAY fI NO SORT RECORDS"
019900 STOP RUN.
020000 WRITE REPORT-FILE-REC FROM RnR-LINE
020100 AFTER ADVANCING 1 LINES.
020200 WRITE REPORT-FILE-REC FROM BLANK-LINE
020300 AFTER ADVANCING 1 LINES.
020400 MOVE SR-WHSE TO DL-WHSE.
020500 PERFORM YRITE-THE-REPORT UNTIL AT-END-FILE • +99.
020600 MOVE SUM-QTY TO SL-QTY.
020700 MOVE SUM-COST TO SL-COST.
020800 WRITE REPORT-FILE-REC FROM SUM-LINE
020900 AFTER ADVANCING 2 LINES·.
021000 WRITE REPORT-FILE-REC FROM BLANK-LINE
021100 AFTER ADVANCING 1 LINES.
021200 ADD SUM-QTY TO TOTAL-QTY.
021300 ADD SUM-COST TO TOTAL-COST.
021400 MOVE "GRAND TOTAL" TO TEXT-LINE.
021500 MOVE TOTAL-QTY TO SL-QTY.
021600 MOVE TOTAL-COST TO SL-COST.
021700 WRITE REPORT-FIL~-REC FROM SUM-LINE
021800 AFTER ADVMiCING 2 LINES.
021900 WRITE REPORT-FILE-REC FROM BLANK-LINE
022000 AFTER ADVANCING 2 LINES.
022100 GO TO END-QF-REPORT.
022200
022300 WRITX-THE-REPORT.
022400 IF SR-WHSE NOT • DL-WHSE
022500 THEN MOVE SUM-QTY TO SL-QTY
022600 MOVE SUM-COST TO SL~OST

022700 WRITE REPORT-FILE-REC FROM SUM-LINE
022800 AFTER ADVANCING 2 LINES
022900 WRITE REPORT-FILE-REC FROM BLANK-LINE
023000 AFTER ADVANCING 1 LINES
023100 ADD SUM-QTY TO TOTAL-QTY
023200 ADD SUM-COST TO TOTAL-COST
023300 HOVE ZERO TO SUM-QTY, SUM-COST
023400 ADD 3 TO LlNE-COUNT.
023500 IF SR-QTY • ZERO
023600 THEN MOVE "* " TO DL-STAR

J-3 - 21

ELSE MOVE" It TO Dt-STAR.
MOVE SR-WHSE TO DL-WHSE.
MOVE SR-PART TO DL-PART.
MOVE SR-QTY TO DL-QTY.
MOVE SR-PRICE TO DL-PRICE.
MULTIPLY SR-PRICE BY SR-QTY

GIVING COST.
MOVE COST TO DL-COST.
ADD COST TO SUM-COST.
ADD SR-QTY TO SUM-QTY.
WRITE REPORT-FILE-REC FROM DTL-LL~E

AFTER ADVANCING 1 LINES.
ADD 1 TO LlNE-cOUNT.
RETURN SORT-FILE INTO SORT-RCD

AT END MOVE +99 TO AT-END-FILE •.

/-" PAGE 0005 PARTeOB
023700
023800
023900
024000
024100
024200
024300
024400
024500
024600
024700
024800
024900
025000
025100
025200
025300 END-QF-REPORT. EXIT •
025400
025500 SUPPORT-ROUTINES SECTION 80.
025600.0PEN-DB-E.
025700 MOVE 5 TO ICW~ODE.

025800 CALL "DBOPEN" USING ICW-DBNAME,
025900 lCW-PASSWORD,
026000 lCW-MODE,
026100 IMAGE-StATUS-AREA.
026200 IF ISA-COND-WORD NOT • ZERO
026300 THEN DISPLAY "ERROR IN DBOPENrt

,

026400 ISA-COND-WORD
026500 STOP RUN.
026600 CLOSE-DB-E.
026700 MOVE 1 TO ICW-MODE.
026800 CALL ''DBCLOSE'' USING I~..l-DBNAME,

026900 lCW-DATASET,
027000 ICW~ODE,

027100 IMAGE-STATUS-AREA.
027200 IF ISA-COND-WORD NOT - ZERO
027300 THEN DISPLAY "~UOR IN DBCLOSE",
027400 ISA-COND-WORD.

WAREHOUSE PART# QUANTITY PRICE VALUE

100 1785 1000 .05 50.00
100 2142 750 .75 562.50
100 3122 100 2.75 275.00
SUMMARY 1850 887.50

101 1785 2000 .05 100.00
101 2142 100 .75 75.00
SUMMARY 2100 175.00

102 2142 250 .75 187.50
102 * 3122 2.75 .00
SUMMARY 250 187.50

GRAND TOTAL 4200 1250.00 ~

COBOL example report.

J-3 - 22

APPLICATIONS PROGRAM TRANSFORMATIONS

Presentor

Larry Van Sickle, Cole &Van Sickle

The files used by applications programs often need to be changed
to meet changing requirements and to tune the performance of the
applications system. Changes to the file systems - data bases,
KSAM files, MPE files - are usually easy. Changing existing applica
tions programs to work with the changed file systems can be very
difficult. I present principles and specific methods for organizing
applications programs so they are easier to. modify and maintain. I
will also discuss the use of data dictionaries and other automated
system development tools in simplifying applications programs trans
formations.

Wednesday J-4 - 01

THE ALL PURPOSE COMPUTER

Presentor

Roger Hoff, President, HP

Integral Systems, Inc. (lSI) is a proprietary software vendor
specializing in the development and marketing of comprehensive
Payroll/Personnel Systems. In June of 1980, a study was initiated
to determine the feasibility of acquiring a general purpose com
puter to partially replace time··sharing services. The study point
ed out that not only could an installed computer yield substantial
cost savings in the major production effort--system development-
but could also provide lSI the opportunity to further automate
additional functions.

The selection and installation of an HP3000 series III has
served to automate numerous functions in corporate headquarters.
By simultaneously acquiring RJE/3000, Text and Document Processer
3000, and Interactive Mainframe Link software, significant capa~

bilities over stand-alone systems, expedited marketing mailings,
improved system demonstrations for prospective clients, and pro
vided responsive administrative systems to satisfy management
information needs. With the success realized to date, further
extensions of the system are planned to improve communications with
regional offices and provide field demonstration capabilities.

Wednesday J-5 - 01

QCALC/3000

QUICK CALCULATION

by:

Earl E. Colmer, Jr.

Automated Sciences Group, Inc.

Wednesday J-6 - 01

I
---........., -'-.

Automated Sciences Group, Inc. ,
700 Roeder Road
Silver Spring, Maryland 20910

301/587-8750

QCALC/3000 - QUICK CALCULATION

QCALC/3000 is a multi-function ASCII string calculator that displays your
answer in ASCII scientific notation. QCALC consists of two programs: QCALCR,
and QCALCL. QCALCR is accurate to 6.9 decimal places while QCALCL is accurate
to 16.5 decimal places.

QCALCR and QCALCL allow the user 26 registers, known as equate variables
(A-Z) , 7 operators (+, -, *, /, ~, I, 1), hierarchy (), 11 functions (Cosc,
Cosh, Sine, Sinh, Tanc, Tanh, Loge, Logn, Atan, AbBV, Rand), and equation
storage and recall. Command interRreter includes: Redo, Debug (Program Debug),
:Debug (MPE Debug), MPE Commands, Exit. Both programs include an interactive
'FOR' loop which can take a function from the starting value/variable, increment
it by the increment value/variable, and check it against the limit, which can
also be a value or a variable.

Both QCALCR and QCALCL contain an 'ENTRY POINT' which allows the user to
store QCALC commands into a file and have the results written to another file
(default = $STDINX, $STDLIST). This allows either calculator to be created as
a 'SON PROCESS', which can perform calculation after which it reactivates the
father process. This technique is very useful in plotting programs. Your
plot program never needs to be recompiled because your function can be accepted
at run time, and passed to the son calculator.

Source programs may be purchased upon written request, but A.S.G., Inc.
will retain all ,ales rights!

~

Example of EquatG: A=B=C;D=2;E=3;F=~.14E+OO

Example of String:

Example of Eor Loop:
.. c..

«A+B/2.3)-(~j~8E-2)

A*COSC(X=1/B/.5/) [;SHOW]
. .

Example of Equation=; EQUATION=«A+B/2.3)-(~2)*8E-2)

Example qf Equation: EQUATION

J-6 - 02

	Table of Contents
	Foreward
	Acknowledgments
	Introduction to the Proceedings
	Proceedings
	Index to Papers by Topic and Session
	Index to Papers by Classification
	Index to Papers by Author
	A Systems Development Methodology Based Upon an Active Data Dictionary/Directory
	The Technology of the Quad Editor
	Distributed Processing, A Hewlett Packard Solution
	Online Database Start to Finish
	Faculty Perceptions of Computing Facilities
	JOBLIB/3000
	Distributed 6250 BPI Tape
	Software Maintenance and Support in the Distributed Environment
	QUERY - Directions for the 1980's
	Datacom for First Time Users
	Evolutionary Systems Development in a Distributed Environment
	Application System Operation and Control
	Manufacturing Control, Planning and Feedback in a Distributed Processing Environment
	Transaction Logging and Its Uses
	Designing Friendly Interactive Systems
	Software Contracts: Preventive Maintenance to Ensure Subsequent Quality Services
	Distributed Control Using One CPU
	Programming Standards: A Tool for Increased Programmer Productivity
	Archive Retrieval System
	A Database Test and Repair Facility
	Database Therapy: A practitioner's experiences
	ANSI COBOL 198X: A Sneak Preview
	Success with Manufacturing Applications: Implementation of Materials Management/3000
	A Subsystem that Improves Response Time for Applications with Large Numbers of Terminals
	Computer Aided Learning at UTC
	A Generalized Name Indexing Method for IMAGE Databases
	Using Serial and Demountable Disk Volumes
	Measuring Transaction Response Times
	Data Base Normalization
	This Paper on the Hewlett Packard 2680A Laser Printing System Was Prepared for the HP 3000 Users Group Meeting April 29 in Orlando Florida
	Business Computer Graphics/Decision Making
	Pseudo-Devices
	HP 3000/Optimizing Batch Jobs
	Data Base Design: Polishing Your IMAGE
	MPEX/3000: Effective Use of MPE Fileset Concept
	Technical Aspects of Large Geographic Databases on the HP3000
	The Obsolessence of Programming - GENASYS/3000
	Data Capture on the HP 3000
	Experiences with Pascal
	The Field Software Coordination Process
	Distributed Processing in High Volume Transaction Processing Systems
	Increase Program Productivity/Full Screen Editor
	Using Hardware Monitor to Solve Problems on HP3000-III
	The Development of a large Application System for the HP3000 Computer
	Moving Toward Information Management in an Integrated Environment
	Micro-Distributed-Processing
	The MPE IV Kernel: History, Structure and Strategies
	The MPE IV Kernel: A High Performance, Integrated Foundation for MPE - The Design Process
	The Role of Printers in a DS Environment--An Engineering Feedback Session
	Data Communications--A Technical Roundtable
	User Friendly Applications in Commercial Realtime Dataprocessing
	ENGLISH/3000: A Natural Language on a Mini-computer
	Systems Life-Cycle - A Framework for Success
	Successful Conversion from Two IBM System/3 to a HP3000
	VTEST/3000 On-line Test Harness - User View
	Introducing the HP On-line Performance Tool (OPT/3000)
	HP's Manufacturing Software: Engineering Feedback
	Saving the Precious Resource -- Disc Accesses
	Terminal I/O Interface--An Engineering Feedback Session
	VIP/3000 and VIP-TNC/3000
	Real-time, On-line, Distributed in the Manufacturing Systems Environment
	ALTER/3000 Quick Modification Program
	E-ZV The Easy Way to Use V/3000
	DIALOGUER/3000: Forms Management for Every Screen
	TRACS 3000 Time and Resource Accounting System
	Budgeting and Profit Planning on the HP 3000
	The Great Companion (QUIZ)
	Implementing Manufacturing Systems/Diffulty of Task
	LOGOFF/3000
	REX/3000 as a Programmer Productivity Tool
	Applications Program Transformations
	The All Purpose Computer
	QCALC/3000 Quick Calculation

