
·
..

F
~
b
.

26-28,
1975

M
iam

i,
F

lorida

~

)
:2:
<

~'"

~C"J
<

.--......

'-L.
~~~:z:-:x:C>::3
0~:x:~:z:0- ~<::s::
~

(
0'-L.
:z:-



\.

~\'C ~

~.'Z J.

TABLE OF CONTENTS

THE UTILIZA TION OF THE HP 3000 AT

PROMON - A BRAZILIAN ENGINEERING

!
CONSULTING COMPANY

SOFTWA RE OPTIMIZA TION THROUGH·

RESEGMENTATION

BASIC FOR INSTRUCTIONA.L USE

DATA COMMUNICATIONS

Section I

Section II

Section III

Section IV



~\
~)

SECTION I



HP/3000 USERS GROUP MEETING

MIAMI, FLORIDA

FEB.RUARY, 1975

THE UTILIZATION OF THE HP/3000 AT

P,ROMON - A BRAZILIAN· ENGINEERING

CONSULTING COMPANY.

DENIS F LEITE
PROMQN
BRAZIL



ABSTRACT

PROMON was not the fi rs t company to have ins ta 11 ed an
HP/3000 but it is surely one of the first to consider
it for installation.

The environment where the HP/3000 is located is described.
PROMON's characteristics: organizetional structure, size,

"its ~ain projects, etc. are mentioned as well as its
computing past.

A description was made of th~ characteristics of its
work and how a hypothetical computer, to best fit
fROMON's needs, was derived, based on past experience.

The difficult decision process of buying the HP/3000,
how well it fit the profile and the purpose of its
usage.

The work being developed since it was installed, in
August/74, the accomplishments and drawbacks, both in
Engineering and Administrative Aplications.

The computing future at PROMON after six months of
experience with the HP/3000.

"



1

CONTENTS

PROMON'S ENVIRONMENT ..................... 1

2 PROMON'S COMPUTING SERVICES .............. 6

3 CHARACTERISTICS OF PROMON'S WORK ••••••••• 11

4 SPECIFICATION OF A HYPOTHETICAL COMPUTER. 14

•
5 DECISION ON BUYING THE HP/3000 ••••••.••••• 22

6 WORK IN DEVELOPMENT •••••••••••••••••••••• 24

7 ACCOMPLISHNENTS AND DRAWBACKS ••.•••••••••• 27

8 FUTURE .•.•.•••••.•••••.•••••••••••••••••• 31



/

HP/3000 USER'S GROUP

1

PROHON'S ENVIRONMENT

Organized in 1960, PROMON is today a leading consulting
engineering firm in Brazil t with a multidisciplinary
staff that numbers' some 1700 people, in'cluding some
600 professionals, offering a wide range of services
in many areas for the economy.

PROMON is wholly owned by its staff and acts as a
fully independent firm.

PROMON has been experiencing significant growth in .
the past few years. Approximately 2,000,000 hours ·of
engineering and architectural work were produced
for over 70 major clients in 1974.

Development

In view of its a:tivities, the structure of its ownership
and its market, PROMON can be considered not only as
a consulting firm but also as as technological
development center.

./ .

1



2

In effect, its activities include conception, study and
development of engineering techniques applicable to a
wide range of problems. PROMON's development is,
therefore, closely dependent upon the technological
capability of its professionals. The broader their
knowledge and skills, the more significant will be the
contribution of the company in the projecis in which
it participates.

Because o~ the structure of its ownersh~p PROMON is
really a community of professional people. It belongs

-exclusively to its staff members, with ~pproximately

400 s to ckhold ersat presen t, whose i n'd i vi dua1
participation does not exceed 8~.

PROMON's market encompasses, basically, those companies 
in Brazil and abroad - which are in a position to invest
in large scale projects. As a consulting engineering
firm, PROMON shares many common points with them, acting
often as an extention of the client's organization.

Offering technology as its end product and operating
in a market where government companies prevail, it is
only natural that PROMON's objectives should approach
those of technological centers and institutes. In this
respect, it should be noted that, at present, some 50
PROMON staff members teach in Brazilian Universities.

The firm's technological capabilities, which make possible,
its participation in projects such as Brazil's first
Nuclear Power Plant at Angra dos Reis, are largely due
to its long-standing policy of setting aside substantial
funds for technological advancement.

. I .
:".. .. ' ...~.'....---



Operations

From·approx~mately 160 projects conducted by the company
during 1974, the following deserve special mention:

Furn,s Centrais E1itricas S/A - Continuation of w~rk ~n

the design of the Nuclear Power Plant of Angra (626 MW)
. .

and of the hydroelectric power plant of Marimbondo
(1,400 MW), the latter in association with Chas.T.Main,
Inc.

Centrais Eletricas de Sao Paulo S/A - CESP - The detail
design for the hydroelectric power plant of ~gua

Vermelha (1,380 MW), in association with Thema~ Engenharia
Ltda.

Telecomunica90es Brasileiras S/A - TELEBR~S - Master Plan
of Telecommunications for the States of Sao Paulo, Piau{
and Maranhao.

Telecomunica9~es do Estado de Sao Paulo S/A - TELESP 
Master plan and basic design for the main
telecommunications system of the State of Sao Paulo
metropolitan area and design of the telecommunications
system for the Baixada Santista.

Companhia de Telecomunica90es do Estado de Sao Paulo 
COTESP - Design and project management of the
telecommunications system in the area under COTESP's
jurisdiction.

Petroleo Brasilairo S/A - PETROBR~S - Design of the
Marine Terminal of the Baia da Ilha Grande in Angra dos
Reis and of the cold storage and handling facilities
for petroleum gases, as well as of the electrical
design for Santa Catarina-Parana pipeline stations.

3

./ .



Petrocoque S/A - Industria e Comercio - Continuation of
work 'on the design and installation of the petroleum
coke calcining plant, in Cubatio, Sao Paulo.

Companhia Petroquimica Brasileira - COPEBRAS - Design
of a substantial part of a fertilizer complex in Cubatio,
Sao Paulo.

Companhia Vale do Rio Dace - Several design and inspection
services, specially for the iron ore fines concentration
.p 1ant i nItabira, Min as ~ Gera is.

Companhia do Metropo1itano de Sao Paulo - METRO 
Continuation of work on the detail design of Section 3
of the Sao Paulo Rapid Transit System; it should be noted
that PROMON has participated since 1967 in the studies
for the construction of the rapid transit system in Sao
Paulo.

Ford Brasil S/A - Design of the foundry and engine plant
in Taubate, Sao Paulo.

Fi nance

The company's net revenue in 1974 totaled CR$ 190.000,OOO~OO

representing an increase of 108% over the previous year.

The great expansior, of the year when the total staff grew
from 1000 to over 1700 people, was financed with the
company's own funds.

./ .

4



Concl.usions

Market prospects for PROMON are very favorable. Present
backlog, as shown in the Financial Statements, totals
CR$ 220,000,000.00 assuring the company of continuous
development and growth.

5



6

2

PROMON'S COMPUTING SERVICES

Basic Decisions

Following is a summary of Promon's present data processing
activities after 7 years of systematic use of batch .
machines in service bureaux, for administrative tasks as
well as for engineering applications.

During the year of 1967/1968. the first isolated initiatives
to use data processing services were made. Thus, the BULL/GE
bureau was requested to process the payroll and produce
reports on man-hour control and project cost allocation.
The bureau was responsible for the analysis, programming,
testing and operation of these jobs. Engineering applications
were initiated upon request of a few interested users, as
piping engineers, who needed a program for pipe stress
analysis, using matrix inversion techniques. By the end of
1968. a systems analyst was hired to centralize all effort
for the development.of a computer program library for
internal use.

Data processing services at PROMON started, therefore, with
the more typical and widespread computer applications:
payroll and matrix inversion.

Two basic points were emphasized in our approach:

a) the existance of a centralized work-team
b) the absence of an in-house machine.

The fact that this working team was centralized allowed a
global idea of company wide needs, in engineering as well
as in management.

../ ..



The absence of an in-house computer, on the other hand,
permitted our personnel to think in terms of company
needs~ not machine needs. Avoiding hardware acquisitions
was a deliberate policy made to avoid a commitment that
would have been premature because of our limited
experience and of the small volume of work being done.

During these years, our competitors acquired their first
computers, all based on the IBM 1130 system. Ar first
sight, PROMON was placed in a disavantageous position.
What was really at stake was a deep-set belief that the
choice of a computer should be the conse~uence of knowledge
gained from direct experience.

There is, however, a great difference on how the
development of a data processing department is regarded
within the company depending on whether it has its own
machine or not. In the first case, it is common belief
that this development will be achieved through an increase
on existing facilities (a typical example would be to
expand from ~n IBM 1130 to an IBM/370-l35). The existing
sys~em imposes const~aints that inhibit consideration
of alternatives. This frequently results from the great
initial effort spent in making the first equipment
operational; pride of achievement and the status obtained
by the team in charge encourages a rigidity in outlook that
makes it very difficult for the same team to abandon an
on-going process and start on an entirely different one.
Therefure, the first installed computer determines, to a great
extent, the futl·e develop~ent of data processing activities
in the company; and its selection should then be handle
.with extreme care.

This selection can be done under the most favorable conditions
by those that have chosen the bureau as their learning method,
as long as their amb~tion is not simply to reproduce a bureau
in their own center.

./ .

7



Administrative Area

Up to the end of 1969, the only administrative computer
. servi'ces were those offered by the BULL/GE bureau, and

even at that time those services were not satisfactory;
at the BULL system ~tart-up, the company had only about
150 employees and one standard way of invoicing; in
December 69 the number of employees exceeded 400 and
many other ways of invoicing had become necessary,
making the reports produced by the bureau practically
useless. As the services had been introduced assuming
the existence of rigid processing rules, it soon became
inadequate and modifications were almost impossible.

Another problem regarding bureau use was to keep under
control response time and processing quality, since
PROMON did not directly participate in the operation.
The computer used, GAMMA 10, could not accomodate any
development and backup was nonexistent for practical.
purposes.

From this first experience, it was necessary to establish
new guidelines for developing applications for the
administrative area. Three decisions were taken:

- to transfer the responsibility for program development,
implementation and operation to PROMONls EDP group 
the company should have its own personnel and only rent
computer time from the bureau;

- deflnition of more flexible programs - which would,
therefore, bE: more stable and would make changes in the
final products possible, thus being able to follow the
growth and to accomodate new needs of the company
without heavy maintenance requirements.

- to use IBH/360 series in DOS, because of availability
and backup considerations.

8

./ .



.~

From de end of 1969 until 1972 that had been the 'approach
taken, which resulted in a working team, consisting of
2 analysts, 2 programmers, one operator and two key-punch
operators.

The permanent files in use are all sequential and updated
monthly: Personnel, Financial, Time Sheet, Cost/Revenue and
Forecast.

Based on those' files, the following services were being
performed using COBOL and ASSEMBLER programs: Payroll,

.Invojcing, Project/Production Control, Queries and Foreca~t.,

All these services, in a certain way, were bas~d on the
BULL services, and, although they hav~ given origin to more
sophisticated files and computer programs, they were not
based on new conce~ts. The benefits have originated more
from the availability of the new bureau computer than from
any general idea regarding services to be rendered.
Essentially, we kept on considering the whole company
as inflexible and cyclic system. The programs, presently
more resourceful, allowed important variations on processing
results, but call for more time of high-cost personnel for
the preparation of tables and parameters to guide its
execution.

We found out that even for the administrative data processing,
batch machines were not apropriate.

a) they are not suitable for data aquisition, and their
processing power is of little relevance since the volume
of data is relatively small;

b) they lack resources for the implementation of a query
system. In PROMON, this activity is at least as
significant as the basic cyclic processing.

9

. I ·



Engineering Area

The c~mputer was first used for engineering problems in
1962, using canned programs. The first programs developed
in house, in 1969, helped solve very complex problems
where there was no alternative but to use the computer.
These jobs were concentrated in the civil engineering
area.

Having thus made available the more critical programs, a
more systematic effort was started in mid-1970 to identify

.and ~stablish priorities for new applications~ The
organiz~tion of the group (3 engineers and a programmer)
in 1972, and of the existing program library reflects the
following decision taken at this time: to work in
"closed shop", whenever possible; use canned applications:
to work in a vertical basis; to assign liaison engineers
in the production areas.

The existing library was formed by 3 types of program:
PROMON's Programs, Packages and Adapted Programs.

Initially the library was physically located in the same
bureau where administrative applications were being
performed. As its initial use was infrequent, being
restricted to complex programs only, the response time was
not too critical. However, once the frequency of small
programs started to increase and the average number of
runs per day reached 3 or 4, the time lag between filling
out the forms ~ld getting the printouts became critical.
It was necessary to transfer the library to another bureau
that did not work in block time only, and that allowed
immediate response. Thus, programs are today available
at a /360 - mod. 65 in an IBM bureau, operating in as.

10



11

3

CHARACTERISTICS OF PROMON'S WORK

Besides the conventional use of computers in the
~echanization of administrative routines and the solution

- complex scientific problems, there are some other
:portant aspects in Promon's environment:

- projects tend to be non-repetitive, of short duration and
frequently require new skills. Consequently, the entire
company organization must have characteristics of great

~ mobility, making it difficult to define and maintain
procedures; thus, the use of computer within the
conventional framework of mechanization of cootines would
result in severe limitations of its potential: first, the
services would be limited to only some tasks such as payroll,
accounting, and general control reports; second, the
maintenance costs caused by frequent changes in the company
would be high if compared to the small amounts of data
to be processed;

- projects start and finish at random dates, generate data
~ in random dates and require control information also in

!andom dates. This suggests a data entry/data retrieval
system independent of time cycles, with characteristics
~imilar to those of real-time processing. However, the
8pplications generally implemented in batch machines are
, (I uti nes r e1a t r d t 0 cYc1i cal admin i s t rat i ve pro cessin g,

:1311y in a monthly basis, thus presuming data collection
reporting in the same cycle;

ojects in Promon are of variable nature and importance.
This means that not all of them require the same control
procedures. However, in batch processing it is extremely
convenient that the company be treated as a whole; thus
a single error in a' relatively unimportant area may delay
the \'/ hole pro ces s. The pro ces sin 9 its elf i s fa s t but
preparation of files is slow and difficult. The company
loses rcponsiveness and reports are systematically late;



12

- projects are performed .in separate physical locations.
This requires the estab'lishment of direct communication

. .

m~ans between each location and the data processing
center, since the EDP facilities must be available for
the whole company. If the EDP center uses batch machines,
its physical zone of influence will be restricted to
only the adjacent areas, or at best, to areas located
in the same city.

- projects ·require only a small ·amount. of complex calculations.
The use of the computer for some calculations is

. " .
~ ~ndispensab1e, but this does not mean a full utilization

of computer in a project. The use of the computer for
complex calculations reveals in fact a discQntinuity in
the computing aids available for the engineer; on one
side, the slide rule and the desk calculators, ·on the
other, a computer of high performance but of difficult
access (not only physically but technically).

Traditional data processing centers do not meet then the
needs of medium and small-sized calculations; for this
kind of computations, ease of access to the computing
facilities is more important than the actual processing
capacity of the facilities. It is also very important to
recognize the conversational nature of many problems,
impossible to satisfy when using batch machines. At present,
engineering applications satisfy only a small number of .
users, in a small number of projects within a short space
of time. The attempts to extend use of the computer to
some simpler and more frequent applications have not
succeeded in many cases. The delay in getting answers has
caused the engineers to abandon the use of several programs.

If these points are ignored, the processing center must
become restricted to a marginal role in the company, and
its existence and development are limited to a narrow range

." ./ .



13

of uses. Cost displacement analysis becomes the only
cr;t~rion for the choice of computer application~, and
break even calculations would indicate when to switch
from service bureaus to an in-house machine.

In a company like PROMON, this narrow concept of data
processing activities was thought, in the long run, to
be harmful, and was replaced by the definition of the
computer as a generalized information processing machine
and as new communications medium. Significant progress is
being made today in the, use of compute~ system using this

"new approach and we are"convinced that far-reaching
benefits can be expected from-a made of operation that
stresses man-machine interaction.

It is within this framework that hardware choices were
considered in PROMON leading toward time-sharing oriented
machines, and not toward batch-oriented machines.

It is also in this context that two long range goals.
should guide the data processing center activities:

- the implementation of a management information system;
- the development of the company·s ability to use advanced

computer-aided design techniques.

"Information Systems" are today a rather controversial
subject.

Although an irtegrated information system may appear to be
a distant objective, the set up of a MIS Project seems to
be the best approach to develop data processing services
in the management area.

In the same sense, the engineers do not yet use displays.
to produce drawings, but should start getting acquainted,
through the use of terminals, with computer potentialities,
thus preparing themselves to more advan~ed ways of
computer utilization. .1.



4

SPECIFICATION OF A HYPOTHETICAL COMPUTER

Applications

It is possible to identify a wider group of applications
for a terminal-oriented computer system than it would
be possible if only mechanization of routines or the
solution of complex engineering problems were being
considered.

f~ese applications cover 'such a ja~ge array of processi~g

techniques and require such varied machine characteristics
that the difficulty of keeping the cost/performance ratio
at adequate levels for all applications in a single
equipment soon becomes evident.

One feasible solution would be a combination of a small
in-house machine and a large machine in a service bureau.
The problems exceeding the capacity of the in-house system
could be transferred to the bureau. Even in these cases,
PROMONls machine could be used for data preparation and
for listing of results. The transfer of the job to the
bureau could be made either by physical transportation
of tapes or by the use of some kind of int~r-machine.

communication system. We could eventually arrive at a
type of solution in which the user would not know where
his processing is being made.

The integrated combination of two machines depends however
on the interest that the bureaus might have in this kind
of service and on the availability of good telephone
communications. In Sao Paulo, this combination of machines
is difficult presently, and also would represent a degree
of sophistication that is initially unnecessary. The
transfer of jobs and results through tapes, as a first
solution, was deemed satisfactory.

14

./ .



15

As to administrative tasks~ it is our intention to reach
a high degree of integration, including the data collection,
file updating, processing and data retrieval phases. In
some of these phases, the machine would have to operate in
the time-sharing mode and in others it would be used for
batch processing. Total compatibility between files created
in both modes is then required. Also, the two systems should
be available simultaneously so as to avoid schedules and
set-ups that would tend to reduce the system throughput, as
well as to avoid undue interference in the services being
entered via terminal. The connection of the batch and
time-sharing modes in the same machine is also important.

. .

Tor engineering services. Many of the programs that are
being used nowadays and others still to be developed are
large and need not be conversational. Therefore, they can
be processed in the batch mode, but the user can still use
the terminal to place his job in the batch queue.

The variety of applications requires also a corresponding
variety of hardware and software, particularly for
terminals, languages and file access methods.

Finally, as a continuous increase in the volume of services
is· expected, equipment performance should be maintaifted
through the installation of additional capacity without

~

having to resort to equipment substitution. Therefore, in
order to reach a reasonably lasting solution, the computer
must be modular and have a maximum capacity well beyond.
the needs anticipated today.

All the above ;haracteristics are necessary so that
applications such as those listed below can be executed
concurrently in the same machine:

cyclical processing
- engineering and economic calculations
- data entry and retrieval
- ,text editing and material takeoffs

. I ·



Ib

Cyclical Processing

This refers to the basic monthly routines. It involves
payroll, invoicing, accounting and project and personnel
control reports. Associated to this processing we have
the core of PROMONls control systems, the manpower
a11 0 cat i on and con t r 0 1 sys t em. At firs t s i 91 t, itseems
to be a typical application of the batch mode.

However it takes 4 or 6 working dayss to gather and check
all the data originating from various. sources, at different
dates. The use of display terminals for data entry and
eventually for the maintenance of some files to be kept
on-line and the reduction of the time span between
periodical data collection - time span need not to be
monthly nor must it be the same for all types of data 
will improve the process.

Engineering and Economic Calculations

Thi s refers both to engi neeri ng· computati ons executed by
project personnel and to administrative computations.
The basic difference is. that the computations relating
to administrative applications, such as cash flow, budget,
statistics, vacation pay, severance pay, break even
analyses, etc. are relatively straightforward. These
calculations are very frequent for middle management,
.although they are also sometimes performed by senior
staff persqnnel.

Small time-sharing programs, would solve these problems
well, and it would even better if general files (such as
information on personnel, manhour estimates, accounting
entries, etc.) could be consulted. As to engineering
computations they can be devided into "conversational",
and"non-conversational ll ones. The former should be
processed in time-sharing, and the latter in batch mode

. I ·



either in the in-house machine or in a bureau. In any
case. the engineer would always use the same terminal
for both types of applications. If communication with
the bureau is through the physical transportation of
the tape the user statements in the terminal should
enable the generation of the corresponding job stream.
For the engineer, the availability of such a terminal.
plus a desk calculator would define a continuum o~

facilities:

- desk calculator;
- time-sharing terminal;
- in-house batch processing;
- batch processing in the bureau.

Data Entry and Retrieval

These are applications generated by the need for special
information (based on the latest available data) at
random dates. These applications are important to PROMON
and can not be obtained through the cyclical processing.
Thus, in several cases, data acq~isition would be more
frequent than necessary for monthly processing only.

Data retrieval is oriented to the following basic systems
and to combinations thereof:

- man-hour a1-location system
- financial and accounting system
- manhour forpcast system
- technical itformation system

personnel system
- marketing system

The data retrieval imagined for PROMON would be made in
two levels: the first one would consult small files and
would produce simpre reports, "lith a small amount of

17

./ .



printed information and not requlrlng elaborate output
formats. Searches in large files, searches requiring
use of data from several files or reports requiring
specially formatted printouts would be part of the
second level of retrieval. In the first case, the files
could be kept on-line and the data retrieval could be
made in the time-sharing mode. Second level data
retrieval could be made in the batch-mode.

In addition to the basic software to support the
development of application programs. it will be ne~essary. .

, to rrave special file access methods to make data retrieval
efficient.

Text Editing and Material T~keoffs

Included here are 'the typing of long texts requlrlng
frequent modifications. that can be assembled from standard
paragraphs used as building blocks, such as proposals.
contracts, and major equipment specifications. Also
included are material takeoffs from detailed drawings
for the preparation of material requisitions. These tasks
are typical time-sharing applications, requiring only a
terminal or printer with good printing quality having
both lower and upper case letters, since the output will
be considered as final document. The material takeoff
programs can also be used to prepare, as a byproduct,
preliminary material cost estimates.

Characterist;ts Required

18

We can now proceed to analyse these uses as a function of
the following basic variables:

Volume to be processed

Time required for results

Degree of planning necessary for use ./ .



Man-machine interaction

Number of direct users

These variables, when considered in terms of batch or
time sharing operating systems are not independent.
Figure 1 shows the type of the qualitative dependence:
the volume being processed, time for results and degree
of planning are considered large when in batch systems
and very small in time-sharing. Inversely, a large
number of direct users and a strong interaction with
t~~ c~mputer are characteristics of· time-sharing only.
AO batch system is not designed for these purposes. The
shaded areas in the right hand side of Figure 1 indicates
the most suitable solution for each of the above mentioned
applications. From Figure 1, it is obvious that a computer
for PROMON should be able to operate on both time-sharing
as well as on batch basis.

Following the idea explained under item 4, the PROMON .
computer would itself be the terminal of a larger machine.

The.trade-off point between a PROMON machine and the use
of the bureau has to be displaced to medium size batch
uses, leaving to the bureau only the very large processing
tasks such as for example, calculations of structures by
finite elements, or again, the use of packages such as
ICES.

How~ver, since it has been stated that the best solution
for the problew ~ould involve a combination of in-house
hardware capabilities and use of bureaus, it will be
necessary for the in-house machine to have tapes compatible
with IBM equipment, and furthermore that it b~ compatible
with IBM systems for Remote Job Entry.

19

./ .



Another important feature, as mentioned above, is the
possibility of modular expansion. This would increase
the system useful life, by making it possible to
acommodate future needs.

The main core capacity, assuming an efficiency similar
to IBM machines, should be at least 64 kbytes (a /360
model operating in DOS with this size core is sUffic~ent

for all engineering and business applications developed
to date). Naturally, this estimate may prove inadequate,
depending on the space taken up by the operating system,
on the efficiency of the object code, or on the performance
"requirements for time-sharing operation~

For time-sharing it is important that .three types of
terminals be considered as standard: teletype (for
engineering and queries), display (for data acquisition)
and "hard copy" terminals with upper and lower case letters
and good printing quality (text editing).

For batch processing, the usual peripheral equipment would
be necessary: 2 tap~s, 1600 or 800 bpi (compatible with
IBM) card reader and printer (132 columns). The card reader
and the printer would not have to be very fast (at present,
in the bureau, 60.000 cards are read and 1.300.000 lines
are printed monthly). However, as their performance is not
high, it would be interesting if multi-programming in batch
and the possibility of using spooling techniques were
available. Disks with fixed heads because of construction
or for convenip.nce.

The software needs are:

Accounting routines - to appropriate computer usage to the
several projects and the internal accounts of the company.

High level 1anguages.- FORTRAN, COBOL, and BASIC, all with
advanced features.

./ .

20



Machine-oriented language.

Conventional utility programs for time-sharing, such as
text-editing and routines for statistical calc~lations.

Conventional utility programs for batch applications,
such as SORT/MERGE.

Basic supporting software for the information system
(of a nature similar to the IMS - Information Management
System of IBM).

Ex te ns i·veli bra ry 0 f app1; cat ion pro9rams •

•

21



. ~.

5

DECISION ON BUYING THE HP/3000

Based on our profile, described earlier, we started
looking for the closest fit, in the market, to our
hypothetical computer.

The main companies marketing computers in Brazil in 1972
were by order of size: IBM;Burrough~, UNIVAC, Honeywe11
Bull, HP, NCR~ Siemens (Germany) and C.I.I. (France) •

We had our first contact with the "HP/3000 through a copy
of a preliminary external spec}fication in the 3rd quarter
of 1972.

It is easy to understand our excitement since it was almost
a perfect match to our profile.

From then on we stopped looking for others and started
studying the HP/3000 move deeply •.

In Brazil, the selling of the idea and taking of a decision,
in this matter, is not an easy task. IBM holds about 60% of
the market and Burroughs 30%. The last 10% were divided
among the other companies.

We submitted a preliminary order based on a preliminary
proposal. The pl,:r s were to start the HP/3000 project in
1973 and have it installed in January 1974.

In february 1973 we received an advanced word that the
HP/3000 had project delays and that it would not be
marketed in Brazil in the foreseeable future.

22

./ .



The following events developed next:

Feb-May/73 - look for an alternative and comparison of
the considered systems.

- June/73 - Issuing of a report recommending the PDP-ll/45
with RSTS/E and RSX-ll.D

- June/73 - Visit to several PDP/ll installations in USA.

- A~g~st/73 - Acceptance of "DEC ~roposal and issuing of a
draft contract.

- November/73 - HP/3000 back to Brazilian market with a
concrete proposal.

December/73 - Visit to HP in USA.

- January/74 - Contract signed with HP.

- July/74 - HP/3000 installed.

23



6

WORK IN DEVELOPMENT

Administrative

In this area we are developing the first phase of the
project which should be running in July/75.

~ It is essentially a "conversion" of the Bureau applications,
i •~ •.' ~e are go i ng to have ·e sse nt i a·11 y the same services :in'
the HP /3000, hopefully, much better s'ervi ces, on 1i ne and
with an enlarged Data Base. The applications in the Bureau
are all batch with sequential files. In the HP/30aO we are
using IMAGE with many more data items.

In this first phase we still keep some programs in the
Bureau mainly the heaviest batch ones. Communication will be
done by tapes.

~The HP/3000 will do all data collection and validation.
Validated files will go to Bureau processing on tapes, and
results on tapes will be fed back to HP/3000 for report and
consultation .

.The first phase should be ready by mid 75. Our plans are
to have all Administrative Systems run in the HP/3000 by
the end of 1976.

This will be possible because the data processing problem
in Promon is bounded more by dinamic changes in the system
and also by response time than by large volumes of data.

24

,iIJ



Engineering

In~this area the work is being developed'in three fronts:

1•
Conversion of Bureau Programs to run on the HP/3000:

. 1• 1

In batch with no changes besides the ones required for
conversion.

1.,2

With small I/O changes to make the program conversational.

1.3
With complete redesign to incorporate the capabilities of
on-line processing.

2.
Design of Medium and Small Size Programs

With the experience of use in the Bureau we concluded that
only very large and complex applications were done in
computer. The response time to run small and medium size
applications was prohibitive. A batch system in-house would
have helped but not mUCh. The idea is to develop a core of
day to day engineering application and let the project
groups themselves develop new ones as they arise.

25



3.
Engineering Training

There are courses being run to train Engineers and.
Technicians in the Engineering Areas to do their own
development and use of programs. The expectation is that
in the long range small and medium size programs ~ill ·be
developed by the engineers (users) themselves and only the
large programs that require computer expertise will be

~ left to the Computing Department. The courses are:

Basic for Beginners
Advanced Basic
MPE for Beginners
Advanced MPE
Fortran Refresher
HP/3000 Subsystems and Programs

To avoid duplication of work and coordination in the
development, there is a commitee c9mposed of members

~ representing one or more related areas of engineering to
decide on polices and also audit the work being developed.

26



7

ACCOMPLISHMENTS -AND DRAWBACKS

The strongest features of the HP/3000 are well advertised

by HP and according to our view the following are really

proved:

Versatility
Capability

- Simplicity ~f·use

Hardware reliability

Project (Hard/Software) Integration

Price/performance

Although it may sound strange to you the weakest points

exist because of its nicest features.

One which is, by now, well known, specially by HP t is a

sof~ware, too powerful for its hardware. We are counting

on a better CPU and more real memory. Since the capabilities

~re there, people tend to use tham and, at this point,

all feel a lack of more processing power.

Cobol and Sort under version 8 are extremely slowtrelatively

speaking. We have indications that Sort was improved a lot

under version C. We expected a much better Cobol compiler and

it came slower. If itt at least t would not degrade the over

all system performance as much as the old version it will be

acceptable. We do not have indications on that as yet.

There are some inconsistencies in the'System that are hard

to believe in such arl Integrated System:

./ .
t

..

27



- Use of a Data Base restrict~d to the specific account
and group where it was created. This completely breaks
the accounting capabilities. No way of charging different
users without loosing some .of the account security.

- A data file created by Star is incompatible with the
Editor.

- Integer in Fortran on a single word. One of the more
frequent conversion problems.•

. ~ - L9gic~1 records in unformatted reads or writes are
incompatible with IBM Systems; This 'is specially bad when
using BACKSPACE.

~ntrinsics incompatible with Cobol and Fortran due to
addressing. problems parameters.

- Lack of spooling and capability of freeing the terminal on
long sessions (available on version C).

~ We have not run into any big problem conversion, except for
a few, more or less easily detected, mainly in syntax
differences compatibility in parameter passing, lack of
entry points in Fortran, dificulty in finding detailed
·information in manuals, - when not missing - , segmentation
and file conversion.

We think the commercial features can and should be improved.

Manuals should also be improved specially, Fortran, Cobol
and Image. Perhaps there is a manual, missing, in the set,
for use of the subs·/stems. Something of the kind of IBM
Programmer's Guide that explains how to.use the system when
you already know a langu~ge and do not want to read the big
MPE manual.

./ .



Error messages and debugging aids at run time should also
be improved. This is specially true in Cobol where,
together with the slowness of the compiler, you almost loose
the conversational capabilities of the HP/3000.

Special Problems:

In Brazil, due to our pioneer installation, for which
even HP Brazil was not quite prepared, we had three major

.,... probl.ems: internal trainning, so.ftware and SPL programming.•.
.'

1 •
The backgrounds of most of the Brazilian computer
professionals are developeQ on IBM machines running DOS and
using Cobol and Assembler. It was not easy to convey some
of the different concepts of the HP/3000.

It took about 3 months of actual use for them to get
confidence and we spent a great deal of· man power in

,... t r a i ni ng. HP ran 0 n1yone co ur se 0 f Sys t emU t ;·1 i zat; 0 n, i n·
English, when the,machine was not installed yet and most
of the appreciation for the course was lost.

2.
We did not plan to have our own software specialist from
the very beginning since we were the only installation
and we would have one software specialist from HP. However,
this did not work. In the day to day operation, many times,
we felt the need for a handy software specialist to quickly
gi ve ananswe r to 1 use r who was not sure abo ut, the rea.son
of his problem, whether misuse or software problems.

. I ·

29



3.

We did not foresee at the beginning so much SPL programming.

Actually we did not plan for any SPL programming. Our

intention was to use Cobol all the way and use SPL later

for optimization. This was not possible due to the

complexity of the project and also slowness of Cobol which

would become prohibitive in some instances. To teach SPl

was also difficult. Algol and PL/I like languages are not

very much used yet.

Nevertheless it was SPL that made it possible seriously

to start using Structured Programming. We even derived our

own rules for making Structured P~ogramming also possible

in Basic, Fortran and Cobol. We are having great success

using this technique.

In the Engineering Area we are done with conversion and

running on schedule with new developments.

The administrative project is also on schedule with"no

major problems due to HP/3000 besides the ones already

pointed.

30



8

FUTURE

So far we are very happy with our decision on buying the
HP/3000.

.
We are convinced it is presentely the machine that best
fits our profile. We are counting on its own future with
improvements in performance. We know hnwever, that when
they come they may already b~ somewhat. late for us.

31

We foresee a future where we would have a dual HP/3000, one
backing up the other, doing all internal admi·n1strative
processing and all medium and small size engineering programs.
For large programs we would belinked, through the HP/3000,
to larger machines doing remote job entry or even working
as a front end computer to a time-sharing Bureau.

All branches of PROMON nationwide will be linked through
portable terminals to our computer.

All indications are that all this will be possible in the
near future.



1
I N
i C")
I

,

'.

· .
:: -:':-:-:.

::,j :.
· :et', '
"~·-- __ "4

\1)
"" '

'~

:~

· \ij '.
.: ~.,

" «'"-~-

<:f
~

_'M

APPLICArlONS ()F

PArA PROCESSING

IN PROI1()1{
CHARACTERISTICSMACHINEr/ME-SHARIN~

. .-..... --. - - - - ~-- - - --:- ... - - _.- .. - - - - --- - ...--~~ .... -~-~~ - ......... .-
MAN-MACHINE NcJMBER. OF .
·'NTEIlACr/ON J)/Il.ECT U5EIlS



33
JlP30()O

fAJITIAI. CON~/GVRATIOJV ;:o,q, PReMO"

MGNORY
~()J)lIJ.E

{~KW

M4H()~Y

M(JOCl~E

I~~ W

MGIitIOlty
/ttfOJ)lI~

,.~ K·W .

MENDI:Y
/t10DlJd

l~kW

NVLrIP~.x£~

eHANN££
'ISo K6yrer

/J~" reeo" q

. ~

CENTRAL ~ArA sus·

C~Nr/?AL .
PR.oceSSOR.

AJtIJ)

rio P~()ce$$OR

Controller

ontroller

246KB/s

3l2KB/s .

4S'~$
~frClck

{6~O D)J$

o",'rJ!~ll..£~ L-/NG PJU,vTb!.
400 /pM

96· clwl"~c •

~/$PJ.A. Y VI/Irs
J:o!l.

J)47"A .cHr~y

~.t-------u t(\

~
~

T£J(;1/NAl.
. ca.¥TRO'l.E~

(VI' to "
('ermln;ls)

AS~ -a3 AN./)

1)/SPJ..A Y til{ I r
FOR.

D EVeL ()P,"1EN""

••••
~
:



.~

~CTroN IT



~..

SOFTWARE OPTIMIZATION

THROUGH RESEGMENTATION

by

MIKE CLARKSON

presented to:

HP- 3000 USERS GROUP MEETING

in

MIA MI~ FLORIDA

February 27 ~ 1975



Section I-I

1. INTRODUCTION

During the past couple of years, we at Data Base Management

Systems, Inc., have developed quite a few large, sophisticated soft-

ware packages. These packages tax quite heavily the resources of

the HP- 3000 and tend to exercise the machine, both hardware and

software, to its limits. In order to keep our program development

from overwhelming the 3000, we have developed methods for efficiently

maintaining our source code and for optimizing the execution of our

programs. It is extremely important to have the most efficient

software possible when dealing with a computer such as the 3000,

which is very sophisticated, but yet has such small memory limita-

tions. The 3000 ~an perform very well if the programmer will take

time to optimize his software so that it complements the 3000' s

resource management. This paper will outline several areas for

program optimization and will expound on the area of program

resegmentation.

.....:~ .-.:'.



Section 11-1

II. SOFTWARE OPTIMIZATION

The need for program optimization should be intuitively

obvious, since it is very unlikely that a program will exist in its

most optimal form when it is first written. Since most sophisticated

programs will require optimizing before they will run at all, pro

grammers will make a "first approximation" before the program is

even run for the first time. From the initial run on, the programmer

will continuously learn new short cuts as well as observe his program's

running characteristics; thus, there is the continuing need for program

optimization. There are many areas available that the programmer

can attack in order to make his programs more efficient. Following

are several examples:

Since MPE is a relatively unknown factor to most programmers,

one should avoid calls to MPE as much as possible. If a call to MPE

r' is unavoidable, one should attempt to call the lowest level intrinsic

available in order to avoid unnecessary overhead, even if it means

making the call in privileged mode. Privileged Il?-ode execution need

not be avoided as long as one is very careful of each instruction that

is executed while in privileged mode. The higher level, user mode

MPE intrinsics have a lot of overhead determining if the user has the

capability to perform the desired operations.



11- 2

Another area for consideration is minimizing disc accesses.

If small scratch files are necessary, one should weigh the advantages

of a local dynamic array or an "OWN" array as opposed to a disc

file (keep in mind, however, that a larger stack could cause more

disc accessing by memory management), Also, we have found that

it is much more effie ient to have our own buffer manage r which uses

r' direct access disc files with " no buffering" option, rather than de

pending on the file system to optimize our disc accesses.

Another area which is not in the scope of this pape r, but is

well worth mention, is modular, structured programming with clean

paragraphing in order to minimize program maintenance time. 1

Finally, but not exhaustively, is the area of program re

segmentation which is discussed in detail in subsequent sections.



Section III-I

III. RESEGMENTATION

We have found that one of the best and yet simple methods of

program optimization is resegmentation. Since the memory size of

the 3000 is limited to a maximum of 64K words and many SPL pro

grams require more code than available memory, the programme r is

able to group his code into segments by using the SPL command

II $CONTROL SEGMENT=name". This is called segmenting the code.

One should attempt to gather into a segment, procedures which call

each other since there is additional run time overhead involved when

one procedure calls a second procedure that is in a different segment.

If a relatively small procedure is called very often by some other

procedure, and the small procedure is in a different segment and can

not be moved, then it is useful to make a copy of the small procedure

and make it a subroutine inside the calling procedure. This eliminates

both overhead of PCAL execution and segment swapping. We have

found that an optimal code segment size is around 2000{octal) words.

Reasonable limits are from 1400{octal) to 3000{octal) words. Procedures

which are called infrequently such as initialization, termination, and

error handling procedures should be grouped into larger segments.

One should use as many segments as necessary to make his program run

efficiently, but at the same time, should be frugal with segments, since

there is a hardware limitation of 256 segments which can be active at any

one time.



II1- 2

Not only is it advisable to segment one's code optimally, but

at times one should also segment his data, the latter being slightly

more complicated. For example, say a program needs a 4000 word

buffer at various times during its execution, but it is undesirable

to incorporate the buffer into the normal stack, then an extra data

segment can be utilized. The intrinsic GETDSEG can be called,

giving it the desired buffer size and it will return the DST number

~ of the extra data segment. Then, during further execution whenever

it is necessary to access the buffer, call the intrinsic EXCHANGEDB(DST#)

and the DB register will then point to the extra data. segment and it

can be accessed just like normal DB storage. Remembe r that the

regular storage normally accessed via the DB register and the extra data

segment cannot be accessed simultaneously. In order to switch back

to the regular DB storage, call EXCHANGEDB(O) and the DB register

will be returned to its original value. Many extra data segments can

be maintained in one program, but it is the responsibility of the program

to keep track of each extra data segment's DST number. When the pro

gram is through with its processing, it is necessary to release each

obtained extra data segment back to MPE by calling the intrinsic

RELDSEG(DST#). The program must be in privileged mode in order to

call any of these intrinsics. It is important to release all extra data

segments back to MPE, or they will be lost until the system is COLDSTARTED

(or COOLSTARTED).



III-3

Once a program is segmented, it can be run along with one

of the available monitoring programs such as TRACE (described

in subsequent sections) which will produce statistics describing

segment swapping, et cetera. The program can then be reseg-

mented by either recompiling after moving the "$:CONTROL SEGMENT"

cards or by using the SEGMENTER command NEWSEG. The pro

duced statistics will indicate which procedures call which other

procedures in other segments, and using this information, the

programmer can regroup procedures which call each other most

often. The resegmenting, monitoring process can be performed

repeatedly until the most optimal segmentation is achieved.



Section IV -1

. IV. AVAILABLE PROGRAMATIC ASSISTANCE

Presently" there are three packages available to aid the

systems programmer in optimizing his software. They are

(1) SA MPLER; (2) AUTOSEG; and (3) TRACE. SAMPLER is a

software sampling system used for measuring the relative time

spent executing various sections of code. SA MPLER requires

an extra clock/ TTY interface board to be installed in the system

before it can run. The SAMPLER documentation in the appendix

completely describes all necessary steps. Be sure to read the

complete documentation before attempting to use SAMPLER.

AUTOSEG is a performance enhancement tool which provides for

the automatic resegmentation of programs based on data gathered

under actual program operation. AUTOSEG in its present form is

not very useful because it is not quite smart enough to resegment

a USL file any more optimally than could casually be done by a

programmer. Sketchy documentation does exist in the appendix

describing the three functions of AUTOSEG. AUTOSEG does prompt

the user for the necessary information. TRACE uses the hardware

"trace" facility to collect data pertaining to processes at the time

of intersegment transfers caused by PCAL's and EXIT's. This

package is very useful in helping the programmer resegment his



IV-2

programs by hand. The following section describes TRACE in

detail and additional information is located in the appendix.



Section V-I

V. TRACE

This section will discuss in detail the software monitoring

package TRACE which analyzes procedure calls external to a seg

ment, showing caller, callee, presence of the called segment and

frequency. In order to use TRACE, a new version of MPE must

be generated and the produced tape must be COLDSTARTED. The

version of TRACE to be discussed runs under MPE32000B. 00. 09.

It is important to note that TRACE periodically halts the machine

and should therefore be run only when a program is to be TRACEd

and the regular operating system should be reloaded before any

normal machine usage is resumed.

Following are the steps necessary to generate a TRACE cold

load tape:

1. Restore all files from the distribution tape which belong

in group/account "OUR. SYS. II

2. Patch INITIAL to obtain a data segment for TRACE by

changing an "IF FALSE THEN" to an "IF TRUE THEN".

The octal instruction to be changed is 25001 which is

found around address 2244(octal). Enter the following

command sequence:

:RUN PATCH

FILE=? INITIAL

.:? M, ~ , 2244

25001, ·0600

? E



V-2

3. Execute the following jobstream to generate the TRACE

version of MPE:

:JOB MANAGER. SYS, OUR
:PURGE ININ
:SPL MIOMOOOB, , $NULL, SIOSOOOB, NEWMl.OM
:SPL ININY", NEWMIOM
:PREP $OLDPASS, ININ;CAP=PM
:SAVE ININ
:PURGE NEWMIOM
:PURGE EXIN
:SPL lVIllMOOOB, , $NULL, SllSOOOB, NEWMll M
:SPL EXINX", NEWM11 M
:SAVE $OLDPASS, EXIN
:PURGE NEWMIIM
:EOJ·
:JOB MANAGER. SYS
:FILE SYSTAPE;DEV=TAPE
:TELLOP MOUNT BLANK TAPE ON TAPE DRIVE UNIT
:SYSDUMP ::~SYSTAPE

YES
HB

« BLANK CARD»
NO
NO
NO
NO
NO
NO
NO
YES
ININ, ININ. OUR

EXIN, EXIN. OUR

NO

:EOD
:EOJ

« SYSTEM PROGRA M CHANGES):>

«BLANK CARD»

«BLANK CARD»



V-3

4. Note that EXIN is a USL file and ININ is a PROG file.

5. The tape produced by SYSDUMP should be loaded with

the COLDSTART option.

Once a TRACE cold start tape has been generated and a

program is ready to be traced, perform the following steps to ob-

tain printer output describing the program's segment activity:

1. CCLDSTART the TRACE version of MPE.

2. Run the program to be TRACEd from a terminal,

generating an LMA P on the line printer. If the CSTs

are not allocated contiguously, abort the program and

run it 'again until the CSTs are contiguous. Make sure

the program does not terminate until after step # 3.

3. From the console :ALLOCATE the running program.

4. Allow running program to terminate.

5. Fr'om console :RUN TRACE. OUR. SYS - respond to

prompts as follows:

'? INIT 0

'? THACE %n/%m

where n is the first CST number on LMAP
and Tn is last CST number on LMAP

?RUN

If the system is equipped with an extra clock/TTY inter-

face boa rd, rathe r than ente ring 0 with INIT, ente r the



V-4

decimal DRT number of the clock board (eg. ?INIT 12).

6. Hang sc ratch tape on tape unit #7 with w rite ring in.

7. From the terminal run the program to be TRACEd with

valid input, output, etc.

8. When the program terminates on the terminal:

From console continue responding to TRACE prompts

as follows:

?EOF
?STOP
? CLEAR %n/%m
?EXIT

[see above]

9. From console :RUN TRACERED. OUR. SYS

10. Respond to TRACERED prompt with:

?SEGMENT CALLER EXIT

11. Statistics will be printed on line printer.

(Note: If the machine halts during execution of the program being

TRACEd, merely hit the RUN/HALT switch and the machine will

continue executing. The halts are caused,by such things as no

write ring in tape or printer being used by another process. Also

make sure that the program to be TRACEd is the only program run-

ning on the system [ie. besides TRACE. OUR. SYS] ).

The next page is an example of one page of the output

genei-ated by TRACERED.



V-5

1 100.0

1 100.0

-r·100.0
1 100.0

1 100.0
7' "36.8--'

12 63.2

45 100.0

'256 '100.0
256 100.0

8 2.3------4 ---1.2-
266 77.8

64 18.7

133 00621' 44 . 37.0--
134 00735 4 3.4
136 0313b 2 1.7
136 03215' -----69 58.0 .. -
133 00272 2 100.0
133 00216 40 100.0
134 00774·-------4 "100.0'--

ll2 00222 1 100.0
153 00066 .-- 1 20.0'--
1~7 00006 1 20.0
160 00044 1 20.0
161 00106··-----1 .. 20.0----
163 00124 1 - 20.0
122 00731 9 100.0

026 133 00227

026 135 0133'+

.32

.00···· 026 131 00642 0

-----. 1 100.0-

.00--026- 133"00250
~OO 026 133 00252

.00.00

.00

.00

1.398.9

5.8 ,47 .04 026 122 007b7
._._. -------- --- 026 . 134 00773

026 135 01111
026 136 03421

100.0 .16 .01 026 130 02041 21t
70.8 .24 .00 026 130 020bO 24
66.7 "u

o
"_,,. 30 -.L- o

• 28 .- 026 133 00364·----- 6
100.0 .27 .04 026 133 00356 6

026 13b 03337 5
100.0 .._. 0

._- .12 ---.00 ---'026 133 00346 ·5
100.0 .19 .00 02b 133 00331 1

.0 .00 .00 02b 133 00342 1

4

a "', .Q

20

-.. 0 - --_ ..~ 0'----.'00 _.

135 _. 52.7 '--1".21--·-'-.21"--' 026 133 00173
150 58.6 1.11 .15 026 133 00151

.._-_... -_.._.----_.- .. ----- -

1 100.0

2S6-50~0

256 50.0

001

0011 100.0

40 88.9

A8SENCEs i'JABS. STT ENTRY ·CNT. ~SEGE TIMED ENT • 'STTE T1HE/C SDEVT/C PIN S£G OELTP CALLS 'ISTTE-----..... - ._- ._ .....__ ...... __ ... --- - _. -- ........... - - .

73 12.9 001 ~.~~-!OO~O
,

76.6 .28 .13 026 144 00234 S64 100.0._!__~~2 -- ._-_. - .•. .' .. _--- ._-_.. .__._ .. n.__

I 50.0 001 1 50.0 0 .0 .00 .00 026 136 00402 • 1 100.0
002 1 50.0 0 .0 .00 .00 026 136 00375 1 100.0.. _- O' _ ------ .....

HPJOOO SEGMENT TRACE DATA'REDUCTION PROGRAM

2

45

PAGE 1

SEG ENTRY CNT.

\6

17

:9 jo 512 6r-"1~9-001

~
t_.. :~..I'-_--=:-w-- ,_____ 002

r- 131 2 2"0'0-;'0-006--------1-50-;cr·----
010 1 50.0

f~1

127..

(~i
~ 12~1 564r;r-. - ---
~ 122

~t---._----------t1
!~~ 126 72 13 18.1 001 24 ~3.3 24 100.0
""_ 002 24 33.3 17 100.0r- 003··----- 6"-" 8.3 ._- .-..--- 4 1.00.0--

~
~2.~~i------------------ 004 11 15.3 11 ~::~

005 - --5-.- 6.9 5 100 • 0--
'.. 006 1 1.4 1 100.0
~5 __~.~!:_ 1 1_••,!: .. _.0. ._ .._.__. _. _._ _. ~.O_O~~_

45 100.0

137 1

i4'O is 31--' 88.6-' .. 001 .

141 20 12 60,0 001 1 5.0 1 100.0 .38 .00 020 147 00043
.....Et+·----.;~;;....---~-------=~---- --002-----19-·9S~0------9·-· 47.4 ----1.42 _ ..._..•44-' "026 "147 00100

tj"-- .o_.. . ~.._, .••.•_. ~........... ..~. . ... _~ ..... _ .._.~~.~_ ~4~ •.•O_~.~~~

E~! 13"2 1 1·-l00~·0-·001 1-100.-0
.~

.....~'+-_....;1;;..,;3;;...3;...-. .;;..3_4_2 ...:1:...:7__5~_.:...:.0__OO 1:- 3_4_2 100,0 ,
~~

~
~....t----------.-------.- --- .... ~fJ 134 1 1 100.0 U01. 1 100.0 0.0 .00 .00 026 135 00467

1f-__
13

_'5 1_6_S 3()~~_1_8_-;_2---:-:: ._'_._1_:=7;;,, U;__~::-~-:------~:: -----~::-m
~~ 003 40 24.2 0.0 .00 .00 026
~-t"1------------------010·-----4-·---2.4·-----3'- ',5.0 h. 24 ---.01"-- 026

~ 136 15 5 33.3 006 1 6.7 0.0 .00 .0.0 026
~i---~~-----.:..-.-- .'''-'' - ---'010' --.----S·--3j.3-oo-----S-100.0-- --.09--'-",00-'026
~ 026
~ 020

~f-----_':'-_--_o_------------012 9 60.0 -7-;;.-~---.:~--~~~---m

-I .- .---- -----.--0-------
8
~......



V-6

There are sixteen columns of values, four of which are non- zero

because there was an extra clock/TTY interface board in the sys

tem when the program was TRACEd.

Following is a desc ription of each of the sixteen columns

of information on the TRACE reduction printout (the first eleven

columns comprise the called segment statistics and the last five

columns comprise the caller statistics):

1. three digit octal CST (code segment table) number of

the segment

2. total PCAL entries to the segment

3. number of PCA L absences only (EXIT absences cannot

be traced)

4. absences as a percentage of total entries

5. three digit octal STT (segment transfer table) entry number

6. total calls to that STT entry

7. STT entries as a percentage of the total entries

8. number of timed STT entries (total number of STT

entries on which it was possible to gather timing information)

9. number of timed entries as a percentage of the total STT

entry count

10. average time per STT call in milliseconds with all TRACE

over head removed (this time is the time spent in this segment

less the. time spent in other segments which were being traced

and were called by th is segment)



V-7

11. . standard deviation of the time per call in milliseconds

12. three digit octal process identification number of caller

13. three digit octal CST number of caller

14. five digit octal delta P (ie. offset into calling segment to

PCAL made to called segment)

15. total calls made to this STT by the calle r from this

delta P

16. number of calls as a pe rcentage of the STT entries

An example of how to recognize potential optimizations is as

follows: Notice that the segment at CST #140 was called 35 times

which caused 31 disc accesses or 88.60/0 of the total. This is a very

high percentage to have causing disc accesses. The only entry point

in the segment which was called was STT #001 and it was called from

only one place, which was 421(octal) words into the segment at CST #133.

Now one would look at the LMAP describing these segments and

determine which relative segments within the program were loaded at

CST entries 140 and 133. Then looking at the PMAP of the traced pro

gram, one would analyze the present size of the segment corresponding

to CST #133 to see if it has room to add the code of the RBM located

at STT #001 of the segment corresponding to CST #140. If there is room

in the segment, 'he RBM can be m~ved by using the SEGMENTER



V-8

command NEWSEG or by changing the appropriate "$CONTROL

SEGMENT" card in the SPL source and re-compiling the procedure.

This one optimization would save 31 disc accesses. It is important

to also determine if there are any other procedures in the CST #140

segment which make internal segment calls to the STT #001 procedure;

since they could make more than 35 callE; the expected optimization

could cause a degradation.

The timing information found on the TRACE reduction print-

out is also useful. Through close observation of the timing statis

tics, one can learn where in the code a major portion of execution

time is being spent. For example, two entry point's (STT #001 and

STT #002) in the segment loaded at CST #130 were each called 256

times. Note from column ten of the TRACE reduction printout that

each call to these entry points ave raged 1. 21 milliseconds and 1. 11

milliseconds respectively in duration. This time factor is somewhat

high relative to most of the other TRACEd STT entries. Given this

fact, one should analyze the code of the procedures which correspond

to these STT entries and determine if any code optimization could be

performed in order to help these procedures execute more quickly.

Following are some helpful hints for using TRACE that should

be utilized. In 0 'c'er to get good timings for every RBM of the program"



V-9

the USL file should first be run through AUTOSEG' s NICRSP processor

to generate worst case segmentation so no internal segment PCALs

are executed. This is done by (1) make a copy of the USL file;

(2) :RUN NICRSP. OUR. SYS and give it the name of the USL copy;

(3) then prepare the resegmented USL copy and run it through TRACE.

There are two things to keep in mind when using TRACE: (1) TRACE.

OUR. SYS runs in privileged mode so the user needs privileged and

account capabilities; (2) TRACE. OUR. SYS uses its own tape driver

for I/O so MPE must not be allowed to use any other tape drive on

the same controller that TRACE is using. An extra clock/TTY inter

face board may be easily added to the system by assigning the extra

board an unused DRT number and plugging the board into the system.

MPE need not be reconfigured to recognize the new DRT.



Section VI-l

VI. CONCLUSIONS

We hope that the reader has gained an appreciation for pro

gram optimization, especially through resegmentation. We at

DBMS have enjoyed performance improvements of as much as 400%

to 5000/0, using resegmentation alone. Resegmentation is an easy

first pass to make before getting into the optimizations that require

such things as changing existing code. The software monitoring

packages described in this paper will be released on the contributions

tape and are sto red in the group I account "OUR. SYS" . If any system

anomalies occur during the use of TRACE, it should be assumed that

they are attributable to that usage and, therefore, no problem

reports should be submitted to Hewlett- Packard. The appendix

contains a description of the contents of OUR. SYS which will be on the

tape that is distributed to the users. If there are any questions con

cerning the software monitoring packages, please direct them to me

at the following address:

Mike Clarkson, Vice President

Data Base Management Systems, Inc.

12100 N. E. 16th Avenue

North Miami, Florida 33161



REFERENCES

1. HP- 3000 Users Group Proceedings, May 10, 1974, p.69,

PROGRAM PERFORMANCE, by Stephen Sontz



1Jt"..,..., ..'.'l '

APPENDIX .



CONTENTS OF GROUP OUR.SYS

I. SAMPLE
2. SAMPLES « SOURCE '»

3. SAMPLING
.,' 4. SA MPLINS ~tSOURCE'»

5. DRS
6. DRSS «SOURCE»
7. SYSGEN «OBSOLETE»
8. MIOMOOOB «PATCH DECK»

~ 9. MIIMOOOB <~PATCH DECK~:;>

10. SIOSOOOB ,('SOURCE 'j:.'

II. SllSOOOB ,: SOURCE :,.)
12. EXINX «PATCH DECK':»
13. ININX /~'PATCH DECK":~

14. ININY ·:'(·PATCH DECK .:;,;-
15. TRACE
16. TRACES <.:(SOURCE»
17. TRACERED
18. TRREDS «SOURCE ;S>
19. NICRSP
20. NICRSS <:'SOURCE /:'
21. ORSP
22. ORSS ' ~/SOURCE»

r 23. ORTDRP
24. ORTDRS '.,.SOURCE '-':'.'



•
• •

..

-

-.



'.

Contents

B. Hard','la re Requi r'el:ients for Sampler • • • • • • • • • • • •
C. Sampler Operation and Format •••••••••••••••
D•. Setting up the Sampler ••••••••••••••••••
E. The Data Reduction Program • • • • ,. • • • • • • • • • • •
F. A Case Study •••••••••••••••••••••••

•..

• >-

•

....



~"

•

A. Introduction

The Soft\'/are Sar.lpling System is a useful tool for measuring the relative

time spent executing ~arious sections of code. The system consists of

three parts:

1. The Sampler interrupts the CPU at a preselected frequency a~d records

on tape the fol1o'l/ing information for any' number of selected code

segments:
1. Ilumber of code segment interrupted.

2.' Relative P in that code seg~~nt prior'to the interrupt ..

3. Approxi~ate size of the stack.

All user interaction with the sampler is done via the Setup program.,

,II. There is a setup program with provision for initializing the sampler,

selecting seg!i:~nts to be sar.1pled and setting the sampl ing interval.

III. A Data Reduction Proqram is available to process the data tape. This
.... ._.._.. --_...._. .- ... .-

program \'1111 provloe the Toiio\·ling n'is'cograms:

1. Relative time spent in each segf:';ent sampled.

2. Relative 2ctivity \'lithin selected segm~nts.

3". ' Size of stack from DB to S for' each sample .

-1··

•..

.",



,,'

•

A. !!!k.0duct i on

The Soft\'/are Sar:lpling System is a useful tool for measuring the relative

time spent executing various sections of code. The system consists of

three parts:

I. The Sampler interrupts the CPU at a preselected frequency a~d records

on tape the following information for any· number of selected code

segments:
1. Uumber of code segment interrupted.

2." Relative P in that code seg~~nt prior' to the interrupt •.

3. Approxicnte size of the stack.

All user interaction with the sampler is done via the Setup program.,

.II. There is a setup program with provision for initializing the sample~,

selecting scg!i:~nts to be sacpled and setting the sampl ing interval.

III. A Data RQd~ction Proqram is available to process the data tape. This
'... . -_..-....__....._. .- _. . -

program Wlll provlcie the following histogran~:

1. Relative time spent in ea~h segment sampled.

2. Relative activity \',ithin selected segm~nts.

3'. Size of stack from D3 to S fol" each sample •

-1··

•..

.~



w

~:.~:~~·s; ..

f °

B. Hard\Olilre Rcau11"em':!nts for SutnPl~

To run the Sampler in its present form requires the fol10\O,109 harth'lare:
1. A 3000 "Sys tern \'/hi ch "/111 run r·1PE and °for \'sh1ch the matS;lmum DRI nurnfJ~r

has been set to 70 greater than reQu'i red by any dey; ce.

2. An extra clock/TTY board with a known distinct device number.
3. ~ dedicated tap~ drive and controller.
4. An extra term; na1 fror.l \o/hi ch to run the setup program.

-2-

•·4

..,



c. Sampler Operation and Form~t

The sampler is an interrupt handler \'/hich resides in. the uptJer ORT table
together \'/fth its buffcr. This interrupt handler is activated by timer
interrupts fror:t the extra clock/TTY interface board.

. .
The sampler then traces stack markers backwaras to determine which code
segment was executing prior to the interrupt. This code segment number
is used to index into an internal segm~nt bit-table \·thich determines
\·lhether this segment' s data shoul d be recorded. If the segment has been
selected the contents of its status register is en~ercd in the sampler's

. buffer togathel" \:tith the relative location (\-lithin that segment) of the ne>:t
instruction to be executed. The relative value of the top of the stack is
also entered and a us~r stack/interrupt control stack bit is set.

If the buffer is full interrupts are disabled· ~nd the buffer is \·/ritten
directly onto tape. If constant timing interval has· been specified at
s~tUiJ t"ilU~ Lht: l.UUIIl.. n:yi~tt:r' of th£: tiUi:::t' is ,it:iireJ just ..,,.."iu;" tu t;;~·i~.

HO\'lever, if the randomized jitter has been specified on the timing interval, .
a pseudo-random number bet\'lecn 0 and 255 ; s loadetl into the count reg; stel".

The switch register is used as one of the parameters of the random nunber
generator to all 0','1 the oper-a.tol" to i nfl uence the sequence gcneril ted ....

Tape records produced by the sampler are 128 words in length consisting of
16 logical records of 8 words each. The contents of each logical record
is as fo1) Ol;/S:

..,

"lord o.
"lord 1.

"lord 2.

Status word of interrupted procedure.
Relative location of next instruction to be executed within th~t

procedul"e.
S-OO if on ;ntcl"rupt contl"ol stack and (lJ8-5) if on usel~ stack.

Note that bit 0 indic~tes ICS/Uscr Stack.
\~ord 3.

Uord 4•

-3-

I ~ •

•-1.,.
t

Hords

Unused at present.
. Record typ~. Bit 0 is 1 to indicate that the record was produc~d

by the $an".plcl".
5, G, 1. LJl'l:s<.:d at p)'cs~nt.

I i .,
•

. .........



D.. Setting up the Sampler

Before star'ting-up r·1PE ensure that the extra clock/TTY interface board...ll. ..-

!!,serted in the highest priority polled I/O slot. Coolstart '·irE and rl~2ly .
"Ylr to the qw:stion "A;~Y CHf,iIGES?U Hilen the qup.stion "HIGHEST ORT NU:·inER

I: XX.1" is printed rgv)" "jjth a nun!ber which is ;0 greater ttlan the highest

ORr used by the system. Uo other changes are requi red. r-tount a tape fi tted

with a write ring and selzct unit o. When the system is up log on and
:RUN SETUP1. The machine repl ies ItTR/,CER/SAf.iPLER" and prompts for c~r:~!!1and:;

"lith "?". The first corti!li3.nd to be entered must be II$LOf,D" (as des,cribed

belo\'/) to initial ize the sampler after \'/hieh sarr.pler commands may be entered
in any ot'der.

Commands specifically affecting the sarr.plel" are stl'"ings of length less than

7 having liS" as the first character. The second character determines the

command. and follo~'ring characters are optional. All parameters al'e in
standard 3000 form (n~ .. prefi x for octal numhers).-- .. .')

$lOAD <timer device number>. <starting drt nUi.i~er>

••• .. • • • ~".' t. .... • • 4It • • .- • • • • .I w • I

'Ul~ luau::. "'lie: ~Clll~H::r III'-U '-lie:: UI'" "'QLlIt: ~"'QI "'III~ "' ... '::''-'''' "'&II~ "" '"

number> (which must be at least one greater than the highe~t drt

. entry used by the sys tern). The <tim~r device number> is the devi cc

number of the extra clock/TTY interface.

I
$TII·IE <count> <quantum>

This (;O~:il~and sets the tir.1e bet\'/ean completion of one sClr:1ple and
start of the next.

<quantum> is "Uti =micl'oscconds

"M" =milliseconds
or' liS II = seconds

<count> is an intcser less than G4K. The timer is set-up sc th~t

the pr'ccision of :'~!I~~ling interval is better than 0.1;;. This cOi:~mnd

also halt:; the' sai::plcr if it "/dS running.

$:'{J',iiD ,This co::::~~nd intr'nduces il r'indf'm jitter to the sm,:pl in; ;ntcl'V~JJ.

The pUrp(l~~ of tids jitl~r is to ~1void the pos!".ibil"'ty of the ~;~;::plir,~'

intervals tH!c\."\!I\iil~1 r.ynchrJnizt:1d \·Jith th~ s~l!lplcd cod~. Tha s\Jltch
..4..

•
:':.'



..

register is used as one of the parameters for the random number •
generator. ~tatistical tests have $110'·'0 that ;176523 is a good nu~ber

to set in the switch register. Zero in the switch register resets
the $RAND command.

$SET <segr.~nt range list>

This com~and specifies the segments to be sam~led. <segment range
1i.st> is a l1st of ranges of segiTi~nt nurrbel"'s separated by- cor.:;.,as t

,-,here a range is a segrr.~nt number or fi rst segment nur:!ber/l as t segment
number. *

$CLEAR <segment range list>

This command inhibits sampling for all segments in the. ranges of the
<segment range 1ist~*. .

$GO Starts the Sar.iplel'. (At least a "$LOf\D IJ and a "$TIf'~EII cor::r.~and should

hgv~ Ut:l-:n "1 ~::'iJ~J ~h~vi u~s ly. )

$HALT Halts the sar:Jpler. ..

The follo\-ring general conimands arc also useful.

EOF Write an end of file mark on the tape.

DEBUG Enter debug •.

EXIT Terminate the setup program.

There ar~ various self-explanator'y el'ror r.lessages. fto~'!evert ut pres~nt

thcl'e is no error che :'··,i n9 on the pare.I:~~tcl' va1u~s of ~he .. SLO.'\Dtl
C0::1::1~nd"

Since th~ progr"m runs in privileged J:J·)de car'e must be exercised uhen

ente)'i ng the $L.O:'O cOIii:iJand to ilvoi d erash i ng r·!PE.

-5- •



. E. !he Data Rcduction-Pro~~

Aprogram is availab~ to process the' data tape produced by the sampler.

" Output is in the form of histograms of segment usage and relative activity

within each segment.

The data reduction program is activated by the following sequence of

corlililands:

: FIl.E FTN~9; DEV = lP ; CCll
I I r ~ ~o" I

: FI LE FTlIP7; DEV = TAPE; REC = 128, 1, F. BIHAR'(; t~ 0 -rr.(... .0;" .!-

:RUit --Tflf8+ \APC"S

r:' The pr~gram makes. a first pass through the tape, processing all records,
if ·any, pr'oduced by the old (no~'l obsolete) trace routine and obtaining

normalizing information c:bout ~arr.p1er records. At the end of tha first
pass the total nu=nber of records on the tape is pr'i ntad on the 1i ne pri ntel'".

AssumOing all rect'l"ds were produced by the sa,~pler UEIlTEHti~G DAT.f\ P.E.DlICT1C~l

rt'\c rlltt~1 r."n .:~ ~~':"4-,..,t ,..'" ('~T""I1T ':",,\""" .~,( Lo., .. _ ........ : &ro_ .. ~- .: ...• v •• ~, .. h , 6W"" ••• -... 4 ",__ 'Wtt.lV" ew.,,,,,' ".I "" .w~w ta#v ."" :; "",

r'.

for o\·;hich an internal histogram is desi'red. Enter these in the free

f014mat <segnum>. <p ; ntel"va1> fo11 owed by ca ..'ri age )"eturn \·there <se~jnll!n>

is the number of th~ segr.1ent and <p 'interval> is the tl\·lidth" of the bars

of the histogr.am. If <p interval> is zero th~ program chooses a bar ,·:ldth
. .

such that .tha histog'''um for that segment \'li11 fit on a sin:;le p~ge. Of
course, if ~p interva1~ is 1 the histogram will show the nu~ber of s~n~les

which hit e~ch individual instruction.

Pl"efix acta1 nun~bc'4s lIi ttl 1.1%11. If <segnum> is a va1i d nu:;!ber for a sesr:~ent

-but no sc1!11;.les intel"l"upt~d that s!.:gmant the muchine rep1 ies IIBAD SEGr·:c:;:r o

r{Ui·,BER". To termi nate the 1i st of segmeut nl!mbel" entc14 a .<segnuJn> greatel"
than 255.

A response of ny" to th~ quest;{Hl uCOi·jPlETE PLOT OF STACI:SIZE?" \·1i11
.p140duct a histo{:)4a1q oOf the value of S-DB for e'ler"y sample. This hist0£ram.-

. .
A second p~.;~ t.hrough th~ tapn i5 then tlc\d.~!, nftcl" \:hich th(t histo~!l°·ill!o.~

r'eqll:;:st~<.! earlier' a."c pl"intec on t.t:C,1 lin:, p,"·i:.tcr •. The 'h.m:b~r of ~'hc Sa{l!i!o::l'::
1"

•



is sho~'/n at the top of each histogram. Each bar in an' internal histogl"'lm'
represents the nUOi!lcr of s~r,lplcs \'/hich hi t the range of code locations
sho~'ln at the left of the bar.' The actual number of samples 'is sho\'/n at. the
right. Bar lengths are normalized separately for each segment to emphasize
the hig!'l-usage sections of code "/ithin a scgr.lent•

.
The machine then prompts "SEGi'~£NT HISTOGRA;·1?1I on SSTOOUT. A reply "Y"

will cause a histogram of scgm~nt usage to be printed on the line printer.
This scg;::ent histc~ram sho','ls the numbel" of sar,lples '·lhich hit each segment.
For each seg~ent ~hich was sa~?led at least once a bar appears in the
histograr.l sho\·ling at .the 1eft, the segn:ent number and t at the ri ght, the
number of sai;.ples \'lhich hit that segn:ent. Once again the bar lengths are
nonnalized so that/the longest bar spans the page.

The machine then prompts "EXIT?" on $STDOUT. A reply "Y II t.erminates the

program, \·,hereas IIN II re~'/inds the tape i·n preparation fC?r repeating the
second pass.

-7-

•
c.

.",



FeTtle S"rnpling System in Action: A Case Study

This section describes an eX(1li;ple of the use of the sofb'/are sarr.pling

sys tCr.l to im?rova the perfot'r.iDnce of a speci fi c program. nar.t~ ly the data
r~duction program de~cribed in section E (henceforth referred to as DRS.)

DRS was written in Fortran and run original1y-6n the HP 2100 and DOS-M.
When transferred to HP 3000 Fortran and run under r'~PE execution time ,becar.1e
distressingly lar~e. In (In iltter:1pt to improve this the sampler \'/CiS run

while pRS \'/aS executing. The fol10,'/ing is a description of the procedure

used.

The system \"/as st~l..ted up ,o/i th. the extra ORT space (maximu~ ORT s~t to lOi)

and \otith the extra clock/noV interface board (C:evicc nember ~~13 = 11)

-inserted in a pollcd I/O slot. T\-:o term'inals \':ere requ.it"ed for the measure

ment. a running termi,nal and a sampling, terminal. ·Since the' only tape
controller available would be required by the sampler it was not possible·

t':' run t'RS '.·:ith 'i!i:-,'.!t fr~~ t~.::e. The t!~i1it,j' ~~~~~~~~ F!t~'=0~\:' ~.'~~ ~!:~~ t~

COpY. a data tapa (from a previous sampling session) ·to a disc file called

DATAS) an~ DRS \'/as run using VATAS as the ir.put file.

I

Before running Dns ft"om the running terminal the folloi·/ing sequen~e of .

commands \'las entercd-from the i:i2asuring terminal (system outpl:t underl ined):

l.RUN SETUPl

TRACERISAi~PJER

1. $LOAD ~~13 t 31

1 SSET 0/255
1. STU-iE 4 H

1 $Rl\ND

(%176523 set in the switch register~)

1 $CLEAR. ~~1 07

(%107 ''las segment nu:r.ber of the di s·patch~r. )

At this point th~ sal:~~lcr is £~t up to ·illtp.rrupt at " mil1isC!ccr.d intc."v:.ls
\'/ith r"ndom jitter' {i.e. tilic bet\·/~en S~if,i:>les is randollily chosen in tlea l",tra~r'

-8- .
•....



".
3.75 to 4 milliseconds). All segments are set to be sampled except the
~ispatcll(~r (thus no tape tlil1 be t/rittc.n \'/hilc the system is paused \'/aiting

. for input) •.

At this time DRS \'/as started on the running terminal. As soon as DRS

started executing the co~mand

1 $GO

\'las entered on the measuring terminal to start the sampler. \'lhen DRS,
terminated" the sequence of con~ands

1 SHALT
? EOF-
1 EXIT

tlaS entered on the measuring terminal to stop the samplel't \'/ri,te an end of

file mark on the tape and then terminate the setup program.

, "

The d~til tn!'lP. \'J;)~ thp.n mrllil,,:i 11y rf;l\':ound ~nd DnS ,.rne; run ...,; ttl thp rl;.1" ~ t ~:'G

" as input to produce the histogram of segment activity shO\°ln in Fi gur'c 1.

This ,histograr.1 irr.mediately indicates that the Fonnatter conswn::s mOl"C t~~"n

b·l;ce·the CPU time that the actu.al DRS code does. To deter;iline exactly

\'there in the fo.rmatter this time \'/as spent histogl~ams of activity \'lithin
segment 132 \':ere produccd (during sUbsequent repeti tions of the second

pass). One such hist(\gram is shm'/n in Figure 2. Checking the high uS;~~J~

sections of code suggests that formatter time could be l'educed ccnsic~r~bly

by changi~g SOi1i~ data definitions, and by "modifying the stat~in~nt \·,hich

reads from t~pe .(from a do-implied list to an ar1"ay read) t thet'cby reducing

the number of calls to the formatter.

Th~se changes were made to DRS and the above measurement procedure was

repeated. The resulting histogram of segment usage is sho\'m in Figure 3••
O~ote that; n thi s m~as.l'r al~;:!nt the di spatchel" \'/as ~amp1ed a1so. ) This
~ho~o:n that the relative forJ:~~tter tim~ has been reduced to less ttwn one

qual'ter of its previous vallic. In fact total execution tir.~~ of DRS \'Ie\S

\"('duced 5f,·~.

..9-
•

•



,'.

3.75 to 4 milliseconds). All segments are set to be sampl~d except the
~ispatch~r (thus no tape will be writt~n while the system is paused waiting

. for input) •.

At this time DRS \'/aS started on the running terminal. As soon as DRS
started executing the co~nand

1 $GO

\'Ias entered on the measuring terminal to start the sampler. Hhen DRS,
terminated,. the sequence of cori'T.1ands

1. SHALT
? EOF-
1 EXIT

was entered on the measuring terminal to stop the sampler, write an end of. ,

file mark on the tape and then terminate the setup program.

The ditta tnpP. \'/il~ thp.n m~lit.l~' 11y rf?\':ollnd (tnd DRS Nn~ rlln ~ti th th~ rl"'f'~ t ~~G

, as input to produce the histogram of segment activ'ity ShO\'ln in Figur"c 1.
This hi stogra~ immedi ate ly i ndi cates that the Fonnatter consum::s mo}~e t~~an

b'/ice'the CPU time that the actu,al DRS code does. To detel";iline exactly

~lhere in the fO.t"matter thi s time \'/as spent hi stog}~ams of act; vi ty \./i th in
segment 132 \':erc produced (duri ng subsequent repeti ti ons of the second
pass). One such hi stC\gram ; s shm'/n in Fi gure 2. Check; n9 the hi gh us ;~~j~

sections of code suggests that formatter t-ime could be reduced ccnsic!~rc:blj'

by changi~g som~ data definitions, and bY'I:l0difying the statmn~nt \'Jhich
reads from tupe( from a do-implied list to an arr"ay re'1d}, thet"cby reduci n9
the number of calls to the formatter.

Th~se changes were made to DRS and the above ~easurcment procedure was
repeated. The resulting histogram of segment usage is sho\tm in Figure 3••
(r~ote that in this m~aS,l'r~l~~nt the dispiltchel~ \'/(15 ~ampled also.) This

~ho~':n tha t the re1ati ve fOl"J:~~tter t im~ has been reduced to 1ess ttwn one
qual~ter of its pr~vious value. In f(lct total execution tir.~~ of DRS \'/ClS

''',"duced 5r.·~.

..9-
•

•



..

" ..

~::r~t~
~ .. ' __ "'1
: ....... C·

, ~. ,.. •• .. 1e. .. L .. ""oO
:"".. ~ ...
~ ~ I • .,

e -~.:: ~

:: ;. ~; ~:.,

, ... ,...... -.. .. ".... - ~ ...
,.. . ..
~ ... " "" '..... .. ...
...... L _ ...

" .- ..-' .,- ..- . " . -.
I .. •

:. a.","

~.c:·-
,.. . ....
". ~ C .. ~
IJ'. • .

- ~ '., 'II!

.- .. - .
" c.
.. .... t.'... , .....

{ ~ ,.:. ;' :
... .. ··.e" . --... ".- ... - ' ._ .. -= 0"
". .. -. .. ,
'- ......... :..
C :.: .. :. ~
.. . ... ...
.. _ L .. _ '"

(l ~ • .-•
.... - .... J

.';::t~

s::~. " ~'\r.'!ER
C::tZi4 -. ·C.·t~·------
~~i;Zsoa.OGO~~ 191~.!~

~~=~Z~ 1~C3
c~t::::~'~ .----...----.-------- .---- ... 3~2.te -------
~~~~:~ l~~e

~;~~~2~~O~ 11~.~e

; ••••..= .. 7. 0 ._.•_- 'SG1 ..te ------
-:"::":'l 2~7~·tC

~~~~~l l~ct
l~a;::::3 .- .-------.-.-.--. - .. ·-------r-·-·----· ... -~ - .-.---- --_._.--.-..- .-------.. l .."Z
~ '0;; ; -:', • .3.·2e
~ ~.:;: 7.,6••0.. 163J .·CO
~ ~ .. .::~ .;stGo .. , ...e .---- - -. -.-.-.------------.--.-.-- _._._---_. ISlE .\!~

~.''':~~ . . () 1.~:
~~". ~ :: 7 " ~ ..cU
\:~:. ;;17 ..------ •.-.--.---.---------.------------- --_.... .l,.~"

~~:J~2 l1e.~~

t~t:i~ 1~C2
.:::::11l ..•• e•• .-.---...•.- ..---- _..... ---._-•._.__.•. -_._._-._-_. .----.-.-- ·1363.·£e -------
• ~,113~· 4~5.£e

~v~!J5 6J.C~
i:r~!17 .- ...•--.----.-. --_.__.._----- ._- -~•.-.__.-._--.-.-...JS ..~~
C~~12~ .e9~e;

::~ .. 1~ J ·Ie .-1;
C·:':li'''' •... ----.----.--- -.---- _.- 1 ..~~ -~----
~:.·::i~l···e.~ ....o~e.o~ftCfeo-ooft4t '. r:-~jt'.~A,_rC. ~S"65.rO "tI/., .
~~~1~2o.ftft~o."o.o.ooo.*o~oo*oo.o~~o••c.oe.o.o••o•••o••o•••e.ooeo~•••~•••a ••••••••o••••a.~o.o••~••••••••• '2242~..t~ ~~" •
CC: 1JJeu.o-e.IfOC'ftetoCf ClO.O.O.Ofl •••OO••~O.* ~·I·~ $ 0 ... -- - ._-••• _ •• -_...._ •••••••••• - .._-. • •• • -- •• -.-_.-. ••• 8 7S~ .,re . ,,\.,-,-:----

.~

,
, '.
;
;. •

Figure 1. Histogram of segment usage (excludin~ the dispatcher) for original version of DRS.

i .: :. .. 7;; C';.:.=t ~:: . . •. ." .. - .••C~~~~~ ~;~(:·;~~~.~0004~OO*O.0600.QO.60000.~ooooooo.o.a••oo.o•••Ooloio.e••••••oo.oo.oo.oo.o.~o.o••oo.oo.~o••••ooo.'~~~~i C~~~4J'~~·~~
,

~U!".FER
.,te·
.ct
.c:e.._- ..__.---- - --_... .fe

·~:!9=.~r.
~:!~.~z.----.-----.----------. 274.Z~ -----
3;~.CZ

13t;l.~:

27.,:~

I:! 1;,~. ~ ~

221.e~

-_._-----'~----

.._-....': ." '.,.. I' \f·, ..• -. ,

.- .-.- ...- _.--_..-------------_.._-_. ----_.-_.--_.

. ••.••. e, _. .__~_

-.. ..,....,; ...
\: ,:-. 21 J
,~:: ~=~A~o~~OO~GO~••oo.~~O~"O~o~e*~ooo••ooooooo••ooooooo••~.OIO.oO•••••O~O~.O~.O.O~~:~~:~~~a~o~~'~o~ooo~~oo.

C .:·• .: .• ~~!'o.,,,.,,"

\.~ " ~:.) (1 -: r 0 4 .. et 0011

~~:.1~··o~~oo-ooooo.o~ooa040.00GO••O•• O.ft008*OCO.

. - - --.... ..;. :

., .. :.
-- ... -_ 4. _4
~ .~ "'.. •.. ..O' . .:.
C: i: ~.;.:; ;. ... ~ ~:.,.-.... ," .. " 4" ;
,. .. -.
-. • la I: • &.I

r t." ~:...

, - ... - .; ..

.....-. -
I;.:. ~

~ .. ~~~;
~.: .;:. ~ !

,.: ,. ~ '. I. \' ... ---.- " ",

1 • ~:\: ..; / ;., :,;.,:.;;~;1
1• ~ ~(~~;~Z ~~::1~~oGca~~ft9~~Oo~~,.OG~--OOOo~oooo~on"~Qo.oDoo~oo~oo.qO.~tO••• OGOO••OAOOOOOOOOOooofto*e.o.oo•••••06.... I~1~Z.e3

C~:,,15 ~~!·'.;ir,CiC't..t'OOQ~GQft4lfDOitODDOO4tOO - - -•... -_. - ._.. -._--. ;f.~.~e·t;l:~C ~~!12Z

Zl~C~~,1!E3 ~,:l~S

2~.:~
~ .• 1 ~ !"~ '.'; ~.:::.; , I

.- ..---- .-- - . !.!c • ~ ..:i ::i~: ~:12JJ~t'G ••o~o~o.~a~eo~o~ooooooo-~oooooooo~~~oooo.~oDcO".O•••••~OOO~O*OOO.O.OOOOOO~OOOO.O.OO.OOOO••O ~r~~.ZJ':1~;~ r~~J~~~~aoo"opo~~v~OOO~OOQOO~o~Oooonoooo~oonoo'aC'tDo~o~~OD~eO·.OODO.O"~~.§ftOoo*.oo
~J5~.~~

~::::7 .. .;It.~l~,Q<:
- .•. ---- ••.•------ It;,j.''~C: i 4~' 2 t: ~ 1'.',4

,3 .'~"~~1~~3 ~~!S~7

1.C~
=~::: 1!; .:\;! ~~~ ~ .. - __ _-_. - - _._. ".._ ----- .- - -. -.... --- - .. - ..•........ ,-_ _ ...•..- ------.....----... .-CC -----~ ;:::;:: ~::~.;~~

.2C,.:~~:~; ::.·t~'-,~

·6 .. tt:~~;~:'! ..;~:~.;i:.J _._ .. , -.~ ... _--._._ ..-.. ...__•... -.---...--.- ..---------.-- .--.-.-.--.----.------..--.--.---.- ..CC -----r::l~4 ~~:~~~

.cc~~!757 C~~~]l

.c~
C~ I. '::!;.' ':.:,,;: 7!,- - .._.._•••._.__-_.- _....-----..--.----.-.- .. --.- ._._- -. --.--------._-.--- --_.- .._-- --_. ·Sti .i:~c.~;;s ~:~lJl

~.t~.£~.::.:.~ ';':;'::.'~2

1 ..££i.~c2~:! £':1:(:.:.5
-12.·lZ~~27~~ r~2::~

.~ct:~~:! ~;~:~3no,.o

1~2 ..:Cc\:;..,;:.:· :~''''l!)o.ftO~''o~oo ----------.-------.
-'·31'«;.'::(;~'11 ~tc~~l··.···o

244.:0~~~~~l ~~~~Z4

11~e~E'~~25 C~~~~l··

. ·71 ..~C£t~:7C ~~2b:l

27.20LC~~)1 {~2~7S

l~.~e
~ ;.;.:!- a:,:,';',J --:-.-----:--......... - •.--.---.--.-

.5.~:

. . --_._----.-._ .._.._-----_ _ _.. __._. __.__._~---- _._----- ------_.__._.

.- ';;t 1

- .; ;'"
(,&./
~. .:2~

(~~S

" C~·;

:.: ~
'.: 2Z~;

:: .:~ :.! J
&.l~~- ... !:
c~)lil.o.e-o.o ••oo••••oooao.~~.oo.o•••••~.v~~*o•••eo••D.e~e.tfO~••••
~JJ!~~~~Oft.oo•••••ooG~non.oo.~c.*••••oe.o••o
C~':Z17~""o

~':Ji:~'.
cc: .:,;:<,~

\7·:';JI:'-

---_.-.. ----_ .. -_.
tfi .C~
,~ ..ez--------:-·-----1965.• Z:5

• lZ2~.~"
Ilt~.t':

·~z .2~
"2.·2C

- .-----.... ···Figura 2.,_ .. Histogram ·of ~ctivity· "/~ tl'in ·Fonnatte~(original-DRS}·.--------

NUy.eER
1093.00

• 133'Y.CO
3.CO

5819.CO·
'IllO.CU
4~~b.OO .
22~0.~U

3.00
11741.00

2.00
30;'S.OO
143,..00

3.00
4.~!)

2.00
9393.00

lSOfS6.00

."..._.- -.. : .
S~'j It

~'~':?~~.~.f1••
~!)·.i:<319c,0.oo••

I)'j!; tit. 4:
G~~:M~~ •• ~.O ••~~•••••O••••••O•••••••••••••••

(.I t,;: Ij.J~ DO 00000' ,.••••••0 •••• 0 "' 0 00•••••4•••••••

Ou~~~lo.o•• o0.0 ••••00.00••ooe •• 4 ••••

~ ~.. :. .! "; 1• 0 .0 • 0 o.4lt 000.00

~·~:.!~l
r.t~l~~•• o••••ooooo.ooo••o •••••oo.o•••••••••••o••••••••••••0 ••••••••••••••••••••••••

\1C~l~b

r.~~11~···o•••4.o••••• oo•••
':,:! III o ••• o •• 4t~

!I~(11::

C~,jU~

~ :.. ::~,.) ~

~',; ~ i '; ~

t:(··'':r t:
(,'''J~~')

C'." ~':'. ':.'
:, ~ ,,' ~ ••: C
t: :.' ~ ..,.:
:.:;.: -;.j ~

C~'::t:~

c:~~\)~

!I ~ f~ 'J -; ';..... -." ... '"
J .- .- J -• .J

c:· ~ j :;~

!;o ~ .: , ~.: ~ ~ ~ ~. 1 : 6
~~v~~O ~:~!~~o ••• 04t•••oo••••••••o o ••••••••••••••••••••••• &~•••••• F.D~nrr£~ . ~
OO;O~O OGOl)lA~••••••o.o~.o.o.ooo•••oo••~•••o•••••o.roo•••••o.o.o.c.~oo••••••o•••••••••••••~•••••••••••••••~.~••

...,

Fi Qure 3•

•

J

Although the formatter time ":es reduced it \':as still- significant. To .~

detcrmi na \'/hethel" this caul d b~ reduced any further hi s tcgrams \':ere produced
sho\'ling activity "lithin the forr.1atter. f.'igure 4~: the default histogrClm
",ith bi'f ,·/idth of ;~43 (ohtain~d by enter'ing "~'130, .0" \·/hen prompted for
segment number of DRS). Clearly most of the formattcl" tirr.e is spent in

the section of code between ~~~O and %472. T9 examine this in more detail
a his togl"am "las produced \'/1 th uni t bar \t/i dth .(by enterfng "%130 s ," \-/hen

prompted for segment number) shc~'/in9 th~ relative usage of each instruction.
figure 5~~~ a portion of this detailed histogram. It was interesti~g
to note that the instructions in locations 467, 470 ~nd 471 account for
75% of the fon:latter til;}e and iD% of the total execution time! Examining
the formatter code shm'ls that these instructions compl"ise the inner loop
of a FOR statement used to fill a buffer \·lith blanks.

Rather than attenlpting to modi fy the formattet:', a t.ape reading l"outine \'/ClS

written in SPL using file syste:a instinsics and linked into DRS thereby
bypassing the fon:latt~r. This vel'"sion of DRS \tlas JrrOl"e thdll three times

iast~r ~han the original version. its segment usage histogram is shown
in Fi 9ur'o 6.

Th~ sam?ling s~stcc could dou~tlessly be used to improve the performance
of DRS still furthcr'.l.>y concentrating no\'1 on the program itself. and pO~$ibly

the fire system.

-10-

•
,~ ..

• " I ... P &. • • • •• • • __ • • _ .'

..

NUMtJER
.00
.~o

.00

.00
64~CO
10.00
9.00

69.~1)

719C.00
16i.OO

10{,Z.CO
88.00
5.00
t).OO

10J.CO
1.00

91.ClO
8Z.!)0

16b.00
4U.<lO
35.00
2.00

.00

.00

.00

.00

.00

.00

.00

.00
1.00

.00

.00
2.CO

.00
6.00
6.ClO
4.~0

1.00
3. CO
1.UO
.• 00

.00

.00
1.00

11.CJO
.00

64.00
.00

Ito.oo
54.00!=igure 4. Activity within the formatter for DRS \11th improved Formatter calls.

~';2~J1
~" ~:J '4

~~::~!-2

~',,~~..:-;

~::):·1!)

C;j~:HO

c: c3~~
OU~"l~

t'~2"'>1

!'~2::~4

:::::.:~ ~<lt13

:~:c/', .;:>::.~!)

:. .. ; .! ~ 1 (, ~ , 4 ;) 1

;::::':~~ 0·:0427
.~.~!. {~~~72••A.~e.o••••O.004••0000o.o.o.o.oo••••••••••••o.o*•••OO.O•••~••8 •••0•••0••••••••0.~••••••••••••O•••••

•~ to ~ ..:,!:
'::'~fJ~:J ::(.'')';42

·=~·.... ·~3 v!.::'l~~
.:~.::.~ ::'':1150
:'~·J;~l C':'~c:lJ

: :.'. .: 1't .) ~ 'i ,. ~ ~
.. : . ~ ~ 1 ~J tJ'; ~ (: 1
:·.'.:;~2 '::,j~j!.4

., :. : to :: i.. ~';!" .. 4

.:: :, fe ~ t: fJ 1~ ~. 1
;. ~ .:.: U :.1 C1=,=,2
:: :=.:;,"; ~':t~':'lS

: .:' l~ r;:;:~!,:;

.'.' ~·jl C\>: 7~3

.:'i;c·4 ~':.17!:~

:.J~;~ (~~~~~.~••~AOO••O.oo

'. :. :.:' i j ~; J I J 4 3.
.." . -4J". ~ 'j ~ 'J i u!,
:'j"i"l :'1';~1~1

• .<# • :';, l C'; l !; 14 0

':.:.~;) ~~l~~7

:'~l:'::": ::·:.-::c~·

~:,":.::!

'. 01 . ~!t.
'. : .. 7., ,

l~.. . .
::'-:1

.' ;: .~.;..
.. "J:J

.:'. ..~ ::

~ .: ;. :'dj C~ (0 ' ..~ ~

-:.c.~';3 C'J"i:7S
·~!.;'t.:;.J ~~i!740

: i ... "i 1 ': ~ :; 'J :;)

(!~::'" 4(,

~~:S~11
(:OJ: ~/.

~C~~l7

:. ..~.:.:.~
-,.,:"~: 1.
#;i ... :::. ..
:':'.~": 1
!- ~~/. ~ l
~:: -:,

7119

>10X of tot
execution
tir.:e.

•• J
.(1)

2.00
3.00
2.00
1.00
2.~0

2.00
.OQ
.00

26Y6.0U~
63S.0U

37tStS.00
~o. ocr
1,).00

1.CO
3.0!l
6.0'
l~.~O

2.00
1.UI)

.00
13.00

·14.00
.to

9.00
16.00
20.00
7.00

.00

.00
• (;0

.00

.00
.00
.00
.uo
.00
.00
.00·
.00
.00
.00
.00

9.00
H.OO

10.00
9.00
9.00
3.00

.00

.00
!>.oo
1.00

.00

.00
I.CO
.00
.C~

.co

130Ad rcss Histogral. /0" Scgrnant Numb·

Figure 5. Octa11 of F01i11;:tter p.eti vi:l (eolllj)are ri gure 4).

~r. ~;'.)'J ~

~~ ':'.,!; 7
!':~ 'I~ l'J
tC·;-.,11
~:~ ~ r", ~ ~

:: i'",~13
'; ~ ~:,! I.

J~:';.Jl~

\:r: :;4 ff,
~ 'rJ4 , r
C': ';':,:'U
o'i1: ';) tj 1
'J ~ ';:'·1 ~
fI:~·~~:.:3

\I" '. ': ~ '.
:;~J ''';·J(..5

~:;c~l~

t l ~~ ~ 11
I)~ '",~~~

f)~:'~!!l

O~~:>22

~ "" ~~3
~ \, ';~~4
t::,c~;-~

~~~.1~~6

'J 'i rJ~..21
~cu~~~

{-::;~..~z
~~~:..~33

'.t ;. •..,.0 !:I.

~f:' ... ~~
~ •• : f••":'.)

';~~~~lc~~••ee ••".ooeo•••••••••••~••oo•••o.~*•••••o*••••••••••••••••••••••••••
~~~~1~OO~~06•• 0000ftOO.
tu~~/lc.OO.O.OOG.GOOOO.O•••••O.OO.**••••••••••~O••••O~o••••o •••~~•••••e ••••••oo••••••OO&•••••••~•••••••••~~; !: .. 1 i! '.
!J U :: l' I :J
~} ~.,. 't llf
~.:~ !;:. I ~

'C".~L;~ ~·::~I

~ ",:: =~ ~: ~ I, ~.~
~',."!:J! C~::',~7
~ ") .: ': '!.~ ,,;.~ ~: .'. ~ ,
~ :. '. ~ ., 1 . C'. ~I '. ') 1

-.,...• '•• ·J:.7

.• I '. -...1 'J

. '.' '.., 11

'. " '. ~;;,
.... '.~ .. '

'. ~' :, :.' 1
:;'::,.~t!

:.: • 'I:' J~

~ :.:: ~. ,. '.:

:. .~ ~ i. I'!,
: ., '. I. ,I.
!., I., • ,~

:. '; 't 11
I. ~ ... :. ,.~

'.0 ':'.a'~J

": ". 'J .'; ;

\. •. ~. j J
~ I•• ~.:.4

:;, •., !.1 :. J.. t:: ~ , ~,.

~ : :.~.:~ (!~,)~)S

:, ';.::~" i):ii.t;,3~

~~::,=:>1 ~~fJ~)7

t : ~ =.:'"J c· :- :; 5'; "
:::':·~"l t·~~.. S/.l
'" " " :,,:,,: ~~. ~ .~ it ~
", .' :... :? l Cf :,; I. )

~ '. ~ ").:. (. ~ ~: .) '...
".' "; • ~ .. ~ f~:t". ~I·. S

: ~.: _:"€.J
~ - "0 ~~ ..

~~ .~,.-'

~"i. ;,~/.;,

~·~.I~1

~".; 'J~:'U
\: .....:~ ~ 1
:", .. :' ~~

.. ~ •. ~·:;1~
:':~·~~l

( '" 0' :.,:~
',:: .. ~I" ~

:: .:. t: t!

• ~·.. ';.I;

t.. :•.•~ ~ ~,

'; ' . ...,:~ ~ ~.-";"'/



~.

,~~

tt·~~---,. '.•~'

1/.' ':~-----

'211'"1 ~~

'~',~"~;r--

----- --------------

,Nl;.,t!!:R
---- ....--.- .-----...--------. --···-····---------13C;:..1.~ ------,

--------- -------.--------_._- ._-~._...._---_._._----- ..
~'~~'; ;:,
-=&';;~3J

, •. # •• , • ",... \, .. -.

\" ~ ~ .' 4:; . ;:OIL '!O~."J
~ • ~ .; ... ~~ fI •• 0411.00•• '>"c._....O~oOottf'0.f'a006ttOOOO~~1) ---- ..•._ --- _..._- _.-
,'''.~' •. :.,~.; •. ~. ' ,,,, ,.-£ ", . 't 0 I,'f"" ,.r,,~
~;::~~c.OG.O~ooonooao.ooa.attOOoott~a.oooo.Oo~oo~oaooooo00000

~~ •. : i I--t; .0000 0••• 000 ••••000.. t: ~~CJrl1J;: .- .• - --...-.---- - ----

14" ': ~. 12 oJ Q •• 00 • a 0004; 0" c;.. "" f1 ~ i!',~ C""
\ •.~~\.:; . P/ ·• '~r"'I;:-;e., _ .. _ ----.. -- --- -- -_ - - .-.--
~~~:~100~G..O~OOO~OOGO~OOG~OOf'UOOOO~~.00040.000*o.oo.eooo~ooo.o.e~ttooo.o.a*.oooooooo.o.oaOOOttOo. .

z.~~

1.~e

1.C~ .
1.r.~

·c.c~

-----..•.---•.--.. ---------.-.. 62~1.:"~

6"~.~~
e1~2. r.~~

'3"13. £0
Z54~.~"

.,. • \!\~

JP.\';'
13S\:t .\"~

.e;. ~e
..... ~ J 11 .. ·GCOO••OO.llttOOOtu••• J:t:)MD'~ /<.0 . _ ..•_ _.__•..•..• - _ •• ; -.-- - ---- --•.----.-"----- - •. _••. - .-----..--- 3~4~ .~~

~ ::. .: 11:. .e; • C"
,\~lJl 1.V~

,··:.;tJ~ :" 1(.., •. .. -.- _ - .., . . . • - i:>~-S _.- 7e ••·,,~
,·:~~Jl~GO~ttO ••••• ~.O~.~.04••••oo.no~o.o.e••••oftOo.o.ft.OO••~O'.GOlOQeo.oo~.o.oo••ooo.o••o ••oo.o.oo.o~eo.o•• lS1~5.~O

........ ~ .
~. ..'

.... . - ".
e' • __ .

eo .

.
~ .. : Co, "

:. :. ':.0; e:.......
~ .. ' . , ..

...... '" , .0, ...
~' to. .o. 'I' -.:':
,. • ~"",.4 •

« "'", • If. to"

;. .: .. ' :,:~..:,
.... ,-~;

." .
Io ... , .

.~..:. ... :..~~••~t ..'.: .. ~".e.".,~oe••o •...•. . ._ __ ••._

.
to ... e•• II

'I., •• ,.:

L :- ,;

e: .. ".,: ..~V- .. , -,,

~ ... _..... . . .~.

Figure 6• Segment usage of DRS using direct file system ·intrinsics.

•

G. Miscellaneous Ccm~~nts

It'must be appreciated that the sampler ~oes disturb the system. At least

the tir.ler interrupt \·lil1 cause an extra .dispatch if the CPU is operating on

the user st~ck. If the sampling interval is made too small the sampl~r

might be measuring the effects of its own perturbations. A sampling int~rval

of greater than 3 milliseconds has been found" to 'yield accurate measurements.

Ho\':ever, \·:hen meas uri ng events of short .durati on shorter s~ap1i ng i nterva1s

may be necessary. In such cases it is important that the sampler- does not

'interrupt the d~spatch \'!hich it causes.' To prevent this the sa~pling

intervul should .neve.," be less than 350 r.:icr'oseconds. If the sa:r.pler does

interrupt its own dispatch the CPU will be locked up in an infinite loop.

To terminate this loop the sampler can be manually disabled by setting bit

~. . 0 to 1 in the word at absolute location

4* <starting drt numb~r> +3.

The samplir.g interval selected by means of the STINE comir.and ;s the tir.~e

hl'l"",., ,...,..; ... ~""""" ... 10." C"::>r...... 'n ::>",J. ... ""'" r ,.')"' .. ,.." .;,., n""""..... 4· "'~"';~'t of·,.. +h ...
................~ .., •• w ••• w •• _ ~ •••r' .-.. "' ..,., .,--_ -'r'" • ---- ••• "'J ...

.~

sampler. Thus ~he time spent in the sampler itself is excluded and the
only perturbation is the possible extra dispatch (approxlr;lately 300 rnicl'oseconds).

HO\':ever, relative timing of other I/O operations is disturbed. Hhen

measuring programs \'ljth high I/O activity longer sampling intervctls an1

recommended.

Overhead \!hen samp1i n9 all segments at 3 mi 11 i second i nterva1s causes

approximately 20~~ ciegradation in throughput.

In order to mcasu\"e activity in 5cgrr.ent zcr'o (external illtcrl"l!pts) it is

necessary to ensure that the extra clock/TTY interrace is polled for highest

priority. This \·lill also guarantee the precision of the samplina interval.

HO':lever, unless preci.;(sampling inte~"vals are specifically desir~d it is

st)"pngly recon:l~~nc.!~d .that the \"~HH.fcf,lizing optiun ($r~r~D) be used. \·:hen·

'using constant SiHllpling lntervals the resultfint laistogr'orl~s havo be~n 5ccn

to c,Xh ~ hi t !o puri QlIS spi kes due to sYl1chron i z(\ t ion of tl~e 5i\l:i:)1cr and t.ba

sc.:~!plcd pr'ogt'al!l. The)'nlldoi:1i:!in~J option has pr\.)duccd rel;i~blc data in (:11

cases ..
-11- •

• ... • • "It. __ •

The sampling system is not particularly elegant and mtlny ir.1provemcnts could

be made in its operation. Ho\',ever it is a useful tool for determining

",hich sc~tions of code consume the most proc~ssing time. These results
are so~etir.1es surpri $ i ng even to the prograr.::I~!!r \·,ho \-,rote the code. Opti

mization of soft\'lar~ can certainly be accelerated if it ~s possible to
identify the "'0% of code \'/hich conSUi:ies 90~ ~f CPU time".

-12-
•

.0 .. • -. .••••. It' # ".0 __••••••• _._ ..•.

".

•

TO Measurement Distribution

CUI

Sl;8J£e,

May 1 ~ 1973

Modifications to The Softwa!e Sampling
System

The original sampler used the s~/itch register to provide a parameter to the
random number generator for the randomized timing interval option. To free
the switch register this paramter is now fi~ed and resides in the sampler's
data area. A U$FIX" command has been adqed to reset the "$RANDUconunand.
The default is a consta~t sampling interval; uSRANO" introduces randomized
jitter and U$FIX" resets the sampling interval to be constant.

The magnitude of the raridomize~ jitter has been doubled by using a random number
.~. bet\'leen O. and 511 to load ·the count register of the extra clock/TIV board.. This
.:~ requires that randomization should not be used for sampling intervals less than

600 microseconds. Ho~evcr, the greater rando~ness of the samples improves the
validity of results. For most measurements a sampling interval of 11 milliseconds
with randomized jitter will produce reliable results. In this case the sampling
interval will vary randomly from 6 to 11 milliseconds ensuring that dispatches
caused by the sampler are not sampled.

To conserve tape and reduce the overhead caused by the sampler the output record
format has been modified. Two word records are now produced with a blocking
factor of 64. The first word of each record contains the status register of the
interrupted segment aqd the second word contains its P register. The data re
duction program has been modified to handle the new format. Of course. stack
size statistics are no longer available but could be resurrected if necessary.

The new sampler can be set up using the program SETUP9 and the associated data
reduction program is TAPE9.

....

,.'
Overhead caused by sampling all segments with a randomized sampling interval of
11 mil1isecon~s is 7~. The Central limit Theorem predicts that 25,000 samples
produce results accurate to 1% of total number of samples with 99.9% confidence.
Indeed. experimer.ts have sho\o/n that segment histograms produced by the sampler

. agree to this extent with measurements made using the SUM hardware monitor.
These figures do not account for artifacts caused by disabling interrupts.

It should be noted that if interrupts are enabled just prior to an exit the
sampler can only interrupt after the exit instruction has executed. This can
produce spikes in the histograms of segments calling procedures \'lhich disable
interrupts. The aberration will be avoided if there is at ·least one instruction
between the enable and the exit.

•

DAf(May 14. 1974

SIJIUU" Program Sampl ing

The 3000 System Section has a program, SAMPLER, which determines relative time
spent in the various portions of a program. SAMPLER is very useful in
optimizing program code by determining what sections of a program is most
heavily used. Unfortunatel SAMPLER re uires hardware and software modi ·
to a 3QOO system to rllc. A new verSl0n 0 ca e 1S now available
~hich requires no hardware changes and only a minimal software change. Specific
ally about seven lines of SPL code must be added to procedure rIPe of EXIN. Some

. capabilities have been lost in SAMPLE that was available in SAMPLER. However
the lost capabilities only affect users who are sampling system code segments.
For user code segments SAMPLE is fully as capable as SAMPLER. SAMPLE is available
for internal use from the 3000 System Section. A\'/rite up on SAMPLE has been
enclosed for evaluation.

DL/kg

•

eo

INTRODUCTION

SAMPLER 1.s a package of three programs for use in measuring the relative time
spent within various portions of a program. The three programs are:

SAMPLE which the user runs to initiate the sampling of the program code,
SAMPLING which performs the actual sampling and
DRS which reduces the data generated by SAMPLING to a user readable fonm.

OPERATING INSTRUCTIONS .
.. • t.

1. Load the program to be sampled and obtain the CST numbers of the segments
to be sampled.

2. .R~n SAMPLE.
3. Run DRS to reduce the data tape creat~d by SAMPLE.

SAMPLE writes the sample data on a file called SAMTAPE which js assumed to be
a magnetic tape but can be a disk file. DRS reads the sample data from a file
called DRSTAPE, also assumed to be a magnetic tape and lists the output on a file ..
called DRSLIST, assumed to be a line printer.

MESSAGES

MACHINE ID? From SN~PLING. Type in name of 3000 that test is being run on.

SAMPLE ID? From S~lPLING. Type in identification for sample run.

SAMPLING INTERVAL = 50 MS? From SAMPLING. Type ny" if a sampling interval of
50 milliseconds is to be used, else type the number of milliseconds between samples.
The minimum interval is 10 milliseconds and the maximum interval is 1000 milli
seconds. The shorter the interval the greater the number of samples that will
be obtained in a given time span. The larger the number of samples, the more
valid the results ~/ill be. However a short sampling interval will result in
considerable degradation of system performance. At 10 milliseconds the system
can be expected to run 70 percent slower, at 50 milliseconds degradation will
be about 15 percent. A minimum of 7 percent degradation is to be expected.

CST D's? Fronl SAMPLING. Type in a list of CST numbers of segments to be sampled.
The numbers are assumed to be octal and are typed in the following format

<CST 1ist>::=<number range> I
<number range>,<CST list>

<number range>::=<CST number> I .
<CST number l>/~CST number 2>

<CST number 1> should be less than <CST number 2> and specifies that all segments
with CST nunlbers between <CST number 1> and <CST number 2> inclusive is to be
sampled. <CST list> can be continued onto a second line by.typing an &.

•

'.

,.
Example:

231. 240/243. &
277

Indicates that segments 231, 240, 241, 242, 243 and 277 are to be sampled.
PRINT 'CSTAB{*}? From SAr~PLING. Type Ity" to get a listing of CST numbers thatwill be sampled else hit carriage return.

TYPE 'STOP' TO STOP: From SAMPLE. Type "STOP" at any time to stop sampling.
UNABLE TO CREATE SAMPLING PROGRAM From SAMPLE.Possible causes are
1. SAMPLE do not have. PH capability.
2. User or account does not have 85 prjorjty,
3. SAMPLING exists in ,another group pr account.
START =<CST number 1> > STOP =<CST number 2>,from SN~PLING. Self-explanatory. If this error occurs, check CSTAB(*) afterwards.
*** BAD NUMBER *** From SAMPLING. A bad CST number was inputed.This messagewill be preceded by <CST list> up to and including the errant number but notbeyond. Most likely cause is typing in decimal CST numbers or extraneous %preceding CST numbers. If this error occurs~ check CSTABl*l afterwards.
UNABLE TO OPEN SAMTAPE .. From SAMPLING. Will be followed by file error information.
UNABLE TO WRITE HEADER From SAMPLING. Will be followed by file error information.
QUIT P=ll This is a MPE message. SAMPLING QUITs with P=11 when an error oc~urson SAMTAPE.

DRS OUTPUT

DRS prints:
1. A header page which is self-explanatory.
2. A summary histogram showing relative time spent in each segment that wassampled.
3. Detail histograms of each segment that ~as sampled.
The summary histogram consists of:
1. The CST "umber of the segment.
2. The histogram.
3. The number of samples taken from the segment t percentage of total sampl~sthe numbers represents and cumulative percentages.

•

The user will be prompted·for how detail he wants the detail histograms to be.The prompt is
SEG # <CST number> «number of samples>SAMPLES)?

Hit carriage return to omit the histogram .of this segment. Type zero to get aone page histogram. DRS will scale the histogram to fit in one page. Type an·integer n to get a his~ogram \t/here the interval are n \'Jords wide., The detailhistograms consists of:
1. Segment CST. number.
2. Two PB relative addresses in octal specifying the beginning and end of eachinterval.. .
3. The histogram.
4. The number of samples in the interval.
S. The percentage the number is of the total number of samples for thissegment.
6. Cumulate percentage.

DRS contains a restart facility and will ask the user if he wishes to restart.'Type nyu or IIN" as desired.

NOTES:

SAMPLE and SAMPLING require PH and PN capability.
,_, . _. ' . ,_. • , .. d

S~PLING requires AS priority.
Wi .._...._.... __..4 §

•...

e.

,.'..

AUTOMATI~PROGRAMRESEGMENTATION

•

•

DATE: February 1 J 1974

SUBJECT: Automatic Program Resegmentation on the
Hp 3000

A new performance enhancement tool has been developed. This tool provides for
the resegmentation of programs based on data gathered under actual program
operation. The resegmentation system will be discussed first, follo~ed by a
case ~tudy.

The resegmentation system consists of three programs, and utilizes the segment
trace facility to gather the data necessary for resegmentation. See Figure 1
for an overall view of the operation. Only two items are needed to start the
prqcess. These are a USL file of the program requiring resegmentation, and an
adequate test case to exercise the program when segment trace is performed.

The first program (NICRSP) takes the USL file and resegments it such that no
procedure in a segment calls any other procedure in that segment. This elim
ination of internal segment calls is necessary for segment trace since internal
procedure calls cannot be traced. The resultant USL file is then prepared into
a program file. The program file is run and the segment trace data gathered.
Then this USL file and the trace tape are input to program two (ORTDRP). This
program reduces the.:race data into a usable form for the thir~ program and
puts the data in a disk file. Finally, the resegmentation program is run (ORSP)
using the file built by program two and the USL file. The output is the re- .
segmented USL file.

It is a good idea to use a copy of the USL for resegmentation. Then the.
original can be kept in case another resegmentation is desired with a different

c·

..
segment size. The maximum segment size is kept in OB+~ of· both'program one
and three. This location may be modified by calling debug when the program
is started. This may be done by starting the pro~ram at its secondary entry
point CBG. Note that program's one and three .require privileged mode and
process handling capability. Another requirement is that when the program is
traced. the segment numbers are assigned in a linear order. This may be
verified by running the program with the LMAP option. This assignment order
can be insured. by starting immediately after cold load.

•

2

..

USL
FILE

...

PREPARE

PROGRAM
ONE

(NICRSP)

USL
FILE

NO INTERNAL
PROCEDURE CALLS

PROGRAM
FILE

I

· SEG~1ENT '>

- -> I..-_T_RA_C_E__--~7

REFERENCE
FILE

•

PROGRAr~

THREE
(ORSP)

<;----1
USL

FILE FCOPY

<E-----..

USL
FILE

Figure 1
Rese]r1entation Procedure

3 •

c .
,f

'~

A Case Study - COBOL
The COBOL compiler was chosen as a test case because it is one of the largest
subsys terns and its authors had already carefully·. segmented the code by hand •
.Thus, it would test the program's ability to resegment a large system,. and the
results could be directly compared to the original compiler. Four different
tests were conducted. The first test consisted of resegmenting the compiler
based on the results of tracing one compile. This same compile was then tested
against the original compiler. The following three tests were conducted on a
version of the compilation of nine differentsourc~ files. Tests were made on three
over the compile of nine different source files. Tests were made on three .
modes of operation; stand-alone, multiprogramming against itself (code sharing)
and multiprogranuning against another large subsystem. The results of each
test are shown in tables one through four.

Each test was conducted on four different maximum segment sizes; ~ne thousand
through four thousand word segments in multi?les of one 'thousa~d words.

PROGRAM Number of Elapsed Code Segment
Segments Time Faults •

COBOL 28 147 587
4K ~eseg·. 20 206 1423
3K Reseg. 28 195 1376
2K Reseg. 39 162 949
lK Reseg. 56 132 451

Table 1 - One program traced &.run alone

PROGRAf4 Number of Elapsed Code Segment
Segments Time Faul ts

COBOL 28 336 1069
4K Reseg. 23 484 2874
3K Reseg. 28 342 992
2K Reseg. 34 397 2078
1K Reseg. 52 325 859

Table 2 - Cobol run alone (4 Compiles)

4 •

PROGRAM Elapsed CPU Run Code Segment
Time Time Faults

. COBOL 197 83 1915
4K Reseg. 178 77 1414
3K Reseg. 167 73 1450
2K Reseg. 165 71 1680
1K Reseg 153 71 1631

Table 3 - Cobol multiprogrammed against itself (one compile)

PROGRAM . Elapsed CPU Run Code Segm~nt

Time Time Faults

COBOL 206 85 1807
4K Reseg. 225 82 2023
3K Reseg. 189 80 1589
2K Reseg. 201 83 1857
1K Reseg. 225 94 2321

Table 4 - Cobol mu1tiprogrammed against another large subsystem
(one compile)

•

An examination of the tables shows that programmatic resegment~tion can do
about as well as a human. Different segment sizes yield much different results,
so some experimentation must be done to pick a good segment size. For this
experiment, the 3K segment size appears to be about the best of the four sizes

r' used.

•
5

c '

~.

SEGMENT TRACE SYSTEM

•

Seqment Trace System· •

The Se~li1er.t Trace Syste:n (515) uses th:: hard\·:;,\rc Dtrat:e" facility to
col1~ct c.:ata per't3inir..,; to pr-or.esc;es at the t;r:~ of inter~r::g:;".::nt trll!"tsfcrs
calJs~d by peAL's and EXITls. Suff"lcient infon::..:1~ion 'is available to 9at-:er'stiltistics {'In both ccd~ ~nd data of Pl'OC~SSS$, Or' t~ c~arr:ine ~n inciivid~i::l
seg~ent. D~ta arc tcllected on unit ~ of the syst~m magn~tic tape unit(ORT 6) and redur;ed offl\ne on the 3000 by ti dJt~ rF:diJctjo:~ Pl'O~t'am.·BecCluse of the ctr.~ount of code executed fo}' each trc:1:;fel" traco.d and the
non-overl~ppcd tape T/O, tracing lurg.: n~ii:lbers of SF.£:i'icnts ~"t~il caU5e sc:veresyster.l perforn:~r.ce degradation. The t~"ace scg~;ent has b~~n m;:de an integral'pat"t of the op~rating $y~tem to re;ducc the ~rcb1e:ta cf intJrpora~:n:J it aftc:'each NfJE upd~tc a:ld to make it available en every c!~velop;:i~nt system.

CO~STITU[NTS OF STS

STS consists of the following three software components:

1. An r·:PE system containing a special version of the HUrl code segment

and a 300 word data seg~ent.

2. Aprogram to cQntrol the tracing process (rcp).
"3. A data reducticn program.

STS is inert ":hen no trace bit4 are set and ~hould· cause flO noticeable

loss of system perfor~ance.

USIitG STS

COL~

1. ~ load a copy of MPE cuntaining the trace segm~nt.

2. Ready a mag tape on unit p.

3. Run the rep program from a session.
~ .. ~.,.

~I\J.I

Use the 'coiili;!and sequence (exp1ai ned 11

~e~~~l ')!1 ::'~:~ ? .

SET
RUN

STOP
CLEAR
EOF
EXIT

4. Re~ind and dismount tape.

set tr'ace bi ts
tr.acing begins

tracing ceases

Clear trace bits
writes EOF ON TAPE
terminates rep

5. Process t~pe using reduction pl"ogram.

STS - TrJ\CE

Scg,,~ent tr'~ce da ~r. ar'c collected by a segrllent i1dde~ to sc£':~·:r.t HUN

in NPE. This SC9i;:~:1t is c~11eG from the ilbsence lrup segr::ent (~·;14) and

tha tl'tlCC ~ l"~~ $~,~~~eJ't (:~16) \,hen thes'a se~men ts !:av~ dctermi n!!d t.ha. t tr<lc; ng

is to h~ .:':nc. The tr:lCC tr,~r, S~9!.~ent. pr0cess(4$ th.:~ n.'cok and CCJntrol -
Y .~r.." ': ", (;\.!: ~ fl' ,'C" s,' ."., .\'''~ t.i~· .. t .. e \"1"11 r. ,·n._~II·P'" :\ flOe"!"';: III 4"":''''e, To c.~,. (a'..... \,. '" ;) I~. ;\,.,' VII' (Ill; "... ,""'-;"," t: .;l ~I.I._ '" C....-. L\

undt~r:)t"rl~~in~ of the capc!hi I~t;r~ und li!:litutions 0;- trnCC t a dcscri?tio~l

of 'i"l&(: !·,:~:"d,·li.\r\!. tl"L:r.~ fpai'lre follo',,:s,

~l-
•

A procedure call to a segment will cause a trap to the trace segment
if bit 2 of the first \'/ord of that segment's CST entry is set to one and
bit 0 is not set to one (absence).

r-J~e bit

~Length I.

P B AddresJ . I
Figure 1 CST Entry

Trace and absence traps due to peAL's are identical in their effect
on the stack. The l"esult is tV10 stack markers and an exter'nal label.

.'

'. return mur'kcH' for' ca11 i ng segi:i~nt

1dU~mY return mal'kcl' fOlO ca11 cdJs~gm:lnt created by PCflL

L_.__EX_T~!~~~

I

.

lX

A P
I
!.

STATUS I

JA Q
~

X

Ii P = -1

STATUS.
~-.

]A Q ~ 4
--

, ': l;' f" I\n-

Q -..

s 00)

Figur'c 2 - StJck Aftcr' f\(,!~L Trace or A')~cnse Trap
~ -2-

•
«.

The external label is a copy of the one referenced by the peAL in the
calling scgm~nt. With this label. the trace routine can calculate the
correct delta P in the dummy marker to enter the called segment.

An EXIT-trace occurs if bit 0 of delta P in the return marker is a one
and an EXIT instruction is executed using tha~ marker. The marker is left
on the s tack and control is passed to the trace trap segment. The va1ue U
from the

bit 0 =1 -to

"..~ r~

X·

A P

STATUS

A Q

...
1\

Figure 3 - Stack After EXIT Trace Trap

EXIT U of the c~11 ed segn:ent is pushed on the stack so the t ra ce trapr" processor can XEQ the correct EXIT Uoff the stack at the completion of
the trace process. The trace routine mu~i reset delta P to the correct,. . .
value before the EXIT is ~xccuted. Currently) bit 1 of delta P determines
if it is a trace trap (bit 1=1) or a break trap and.the Trace Segment (S16)
takes the appropriate action.

The hard~·lal"e trace fuci1ity has some limitations •. peAL's C'nd EXIT's
'·/i thi fa a segl:lent CClnnot" be tl",!ccd, nor can in tcrrLipts be tl"accd. I\nothcl'
il:tportilnt exception is a PCf,L of a scgtr.ent to itself via an cxte'''nill label.
The PCi',L can be trt,cc:d) but t:1~ cOl'respondi 119 EXIT cannut. The: trt~ce !>~~r:~~!lt
,-till Sttpr'css tt"cing such EXITls.

-3-
•

.". _... -".,

The tra<;c data collection segment \'/orks as .follo\'/s. Hilen the trace
segMent is called, the trace options word in th~ syst~m global area (SYSrC +

245){flgurc 4) is chec~~cd. If. bit 1=" then the trace segment \'/i11 exit to the

caller \·lith condition code set to less than. This means that no tracing is .,.
being done. If bif 2 = ~. the trace request will exit without' collecting
any data. This bit is used to start and·stop the physical collection of
data. If bit 3 =1 and the trace was from a PCAl, delta P of the return
segment will be set so the corresponding EXIT can ,be traced if.a segment
is not calling itself via an external label •• If the Clock ORT is non-zero,
timing measurements will be made.

o 1 2 3 4 .5 8 - 15

t·:ORD 0

1

~ 2

3

4

5

6

7

8

9

~ 10

11

~_=~I~~lAITlolc I I PIlJ

LABEL (PCAl) or N (EXIT)

CALLER STATUS

, CALLER DELTA P

.STJ\CK DB (Q I -' 4)

rm

DL

Q. t
z

-- STACK OST <CPCB (2»

EXTHA OST <cpcn (3»

TIf'IE

\'/hel"e R = Recor'd T.ype ~ = Trace Record
1 = H~FO'm1AT lOi'. RECORD

1 = Interrupt Bit - on interrupt occurred betwe~n this record and the
pre,i:>us record.

A :.:. Absence - the ca1~ for' th'i s l'ecord came fr'otll the ai,):;nncc trap.
T =extra cloc~ beihg u~ed.

o = t il~~()l" ovcl"flo\'1 bit (18th lJ it) .

C = tim~" cnrt',Y bit (17th bit).

.. - __ _- _ - --

Fi gurc 'I - Trace Rec:o,"d Form3t

-4-
•

SYSOB ... 245

SYSDB + 246

o 1 2 3 8 15

o I.T IA i E I , Cl ock D~T

SYSDB relative data segment pointer

where 0 =dispatch bit (set to one each time the di~patcher is executed)
T = trace bit (set to one while tracing is active)

A= arm bit (if this bit is a ones trace tr~p will be processed, else they
will be ignored)

E =exit bit (if this bit is a ones the trace processor will set the EXIT
"marker to invoke" a tl"ace trap each time a peAL trace is processed)

Figure 5 - Trace Control Format in System Global Area

Record Index

Record Ccunt
- Record Lir.tit

SID PReS InDEX I,
HAG T.~FE SID <r-=

PR03~;~ft

--
Record 1 <J--

__9

Record U
--:--

Figure 6 - Tl"ace Data Scgm~rlt Format

-5-
•

" ,.... '.' " .

After the options check, the trace tape record is built. Word ~

contains ,6 bits of stCltus information and the process identification number
as shown in Figure 4. Word 1 contains the label if a peAL is traced or N
if an EXIT" is traced. Words 2 and 3 contain the status and delta P as
they appear in the calling segment stack marker. Hord 4 contains the current
process stack DB located in Ql - 4. Words 5 tnrough 8 contain the values
of the process stack registers. Words 9 and 10 ccntain the stack OST ~nd

extra dClta segm:;nt DST located in the current process control block. If
timing measurements are being made, wo~d 11 will contain a current ti~~

stamp.

An extra clock board pr'ovides the time base for timing measurct'!ents.
The clock is read at the beginning of each trace, and this value is loaded
back into the clock at the ~o~pletion of the trace, so that ~he trace
overhead is removed from the measurement. The LR = CR and LR = CR overflO\,/
bits of the clock are used to extend the clock period to 18 hits instc~d .

counting intervc!l t 1.9 seconds of time can el a;,se before r:~=aSUi~el!:ent oV~i4flo~'!

occurs. This cannot happer. since ti~~ of day u~d~tes occur once each
second in ~PE and timing analysis will not be done through interrupts.

Trace Control Proara~

The Jr'ace Contl~ol Program (TCP) provides the user \-lith a convenient
~eans of setting and clearing trace bits, and initializing and controlling

the tr'ucc operation. TCP must run in priviledged r:~ode so that user account
capability is needed.
~ ,

The commands to TCP may be input fr"o," a termi n31 (Tep prompts \"li til a
"1") or cal~d reader', dcp\:nding on th~ mod~ (session or 'job). COI:::nands

are cntct'ed one per line {ca)4o}. Terl:lilHl1 input is tcrmin(:ted \·:ith a
cclrri~gc return. SCI!~~ cXJn~;)les "of C(!r:l:~~Jnd sYI~tax are sho",'::1 in Figure 7.

-6-
•

•• 0 ' ~ .. ~..... " ••••• _ _ ••• • ..

A b1anJ~ or cOr.'J11a nJilY be used as a data i tern separator, but blanks are

ot~er"1ise ignored. Uumbers may be ei ther octa1 or dec; ma1, \'li th a "';"

character p·receding an octal number. A ",n bet\'/een t\'/O numbers indicates

a range.

·~

JrUT I)

TRACE
RUN
STOP

CLEAR

EXIT

£ 10
45. %27/41 %102

%20/130

.~

Figure 7 - TBC Command Examples

TSC features a comprehensi ve set of di agnos ti cs • All but the .fo110\·;1 ng

t\'/o abort the current command:

RAn CST rJIIMp.~ R X {X <%20 or too 1arge)

'UNASSIGiiED CST X (This CST not used)

If~occur"s \'/ithin a <range>, ex~c'ution of the <range> cont-inues .
.r'--1k~~ .

The 1SC program itself is divided into thr'ee parts, \'lhich al'"e the
SCilnner) the i nt(~rprete r", and the rna i i1 prJgt"aUl. Tha scanner" pi cks Itto;~cns II

f""om the currcnt 1inc, 1eavi n9 the ASCI I r~prcscJitati on in the byte iH''t'ily

TOKEN, a 't:~'pe indicator in T, and the valuc:, if nUI;leric,- in V. The main
procedure of the scanner" is NEXT. A token is dcfi ned to be a CO~I';la (", It)

il. slash("/"), a carriage return, or a st,"ing of alphame,"ics not including
blanks J COm!iiaS J slashes, or carl'"1 age r'eturns.

The rna in program fetches nm-l 1i nes I tequcs ts the fi rs t token (by

calling UeXT) and uttc:n;)ts to inte .."prct it as it ~o~iinand. If this is success

ful, contl"ol passes to a procedure in tha ir~tel"rretel" \'Jhich execlItcs the

-7-
•

One can add nc\,/ con~nands sir.lply by adding an equate for the II type II of ..

the cOfi'Jnand, enlarging the case statemct:lt in the main program t and inserting
an IF clause in procedure CO:'~:{!\;:D to detect it. An actual procedure
must be put in th~ interpreter section to perform the actual execution.

<cor.lo1land> :: = TRACE <t 1ist>

CLEAR <t list>
slim·: <addr>
STORE <addr>, <value>
HUT <drt>

RUN I
STOP .J

EOF I
EXIT

<T list>:: = <t element>, <t list>
<t e'~lIlent>:: = <nur:i>I<:range>
<range>:: = <1o\'!(:r bound> r <LIpper bound>

<lower bound>:: = <nurn>
<upper bound>:: - <nurn>

oC\addr'>:: = <num>

<value>:: = <nurn>
<drt>:: = <num>
<num>:: .. Octal nlimber < 1777i'7

(leading D's ignored)

Fi gure 8 - TaC CCt:t~land Syntex

TRACE/CLEAR <t list>

Trace bits urc set/clear~d in CST entries described bv <t list>. If. .
a <runge> is specified, t.he tr~ce bits in <lo',','er bound> thr'otJsh <upper

boulld~ inclus ive c~re affected. <lCJ\':el" bound> l:lUSt be ~ <upper' bound>.

-8-
•

. . - .,. "t , I •• , _ _._•• _ •••..-._ •••

UUT <drt>
All ncccssa ry in it i (11 i za t ion i s p~rfor'med» <drt> ; s the ORT index

of the extra clock board. This command must be' issued before any

RUN's.

RUN

Tracing beings.

STOP
Tracing ceases; it can be restarted \·lith a Rlhf.

EOF
An end-of-file mark is \'lritten on the trace tape.

EXIT
TBS terminates (cannot be tracing \·:hen this command is executed.

t i yure ; - IUC CUI:tillu,'l(j Seman i. i cs

Data Reduction Pro~ram

The data l"eduction program \·lill be capable of presenting the datu

~ither by process 01" by code scgr.1ents. The scgm~nt st~ltisti\;~ sho~ld be'

useful for analyzing library rO:Jtines and other scgr.;ents \·,here onlY infor'matioil

about those pin'ticular sC?glllents are of interest. Proccss statistics can

he used to examine both the code and data behavior of soft\'/arc sub-

systems.

Segwent statistics inclucb both li:easur'eltl~nts of tir.lc and statistics

cone~rni ng i nfonnat i on about th~ scoments \':/1 i eh c311 the tr'accd SCCI~ent.
~ ~ J

Timing olJta includ:.'s the total time spent 'in the seg:~~~nt» the aVel"ftge

.tin~c and stand~rd deviation of all the calls to that SC£lilcnt. Thc calls

\'!i 11 be br'uken dm·tn' b~' STT nU;:ibct's, ca11 i n.g sc~mcnt numbers, and procc5s
nUliibci"~.

-9-
•

.

:.
Process statistics will exa~ine the minimum and maximum stack size;

the nu:r.bcr of times the stack is added to; the size of the user"s O\';n area,
and hOt,'l many times t:,at size is changed. Extra datasegli1!!nt use can also
be determined. The ~lm'l of program control can be shm'/n by sho\'ling the
segrrents used, \,tho called them) and ho'," r.1any times they \'/ere called.

-10-

•

. .'. . --11" ." . • '4°••Y,.. '•.• -_t..•.' . ••_. • e. _ •• -'III ••••••••••••

• p

•

C'",.._......... T _
..... '-;2u........ .• \.6111w'-

n -I •• -. : -. __
""',, ... "''''' ."' .. ft __

• • ~';:t' "'"'

A program is available tc process the tape produced by the STS-TRACE program. .
(For a description of STS-TRACE, consult prior memo dated March 20. 1973.)
Output is in the form of entry, caller, and timing statistics for each segment
traced.

The data reduction program file name is TRACERED and is activated using the
MPE Run commancl. The program may be run from batch or interactive access. If
inter~ctive access is used, the program prompts with a "1". Currently the pio
gram will recognize three com~ands, as shown:

SEGMENT - causes the program to precess a trace tape and produce segment
statistics. This command. may be executed once only per line.

CALL - in addition to' the segm~nt statistics. above, this,option causes the
processi~g of a trac~ t~~e to. include the caller statistics, and the caller
statistics to be iricluced in the output. Note that this cor.-mand rnu5t be

.
issued each time the segment command is issued if caller statistics are desired.

EXIT - caus.es the reduction program to terminate after other commands included
in this line have been executed.

The cowmands may be input in any order. Any non-alpha character may be used
for delimiting cowmands. Any alpha in~ut other than the above will ~ause an
error message to be emitted, but will otherwise be ignored. After input, the
commands will be executed and, if no EXIT command was included, will request.
the next command.

All statistical output from the program is directed to the line printer. The
following is an explanation of each column of data. 'Please refer to Fig. 1.

The first eleven columns comprise the called segment statistics. The first
column is a three digit octal segment number. Toe second column is the total
peAL entries to that segment.

The tii'ircl ":uluaiili t~ "iae OC(;Ut'Tanc~ of PCAL aus~Il(;~S oniy: EXii absences cannot

be traced, and therefore cannot be displayed. The fourth column is absences as
a percentage of the total entries~ Column 5 is a three digit octal segment trans
fer table "(SIT) entry number. Column 6 is the total calls to that srT. Column
7 is STT entries as a percentage of the total entries. Column 8 is the number
of timed SrT entries. This is the total number of SrT entries on which it was
possible to gather timing information. Column 9 is the number of timed entries
as a percentage of the total STT entry count. Column 10 is the average time per
STT call in milliseconds with all trace overhead removed. Note that this time is
the time spent in this segment less the time spent in other segments which were
being traced and were called by this segment. ·Column· 11 is the standard deviation
of the time per call in milliseconds.

Columns twelve through sixteen comprise the caller s~atistics. Columns twelve
, through fourteen contain the caller 10, that ;s the process identification' nUtnber.

the segment number ar.d delta P value of the calling segment. All three are rep
resented in octal. Col'Jrnn fifteen is the total calls made to this segment by

the caller. and Co'lumn $',xteen is the number of calls as a percent~ge of the S1T
entries.

:..
•

... :- ,.. ~ _. o ' ",_. .. : , ".- '_- ,," 1#. ,,................................. • •

Segment Trace In Action - A Case Study

This section describes an example of the use of the software trace system. A
calibration program has been written in order t~ calibrate the constants in the

. trace data reduction program which removes ·the tracing overhead from segment
timings. All ~ystem output is underlined.

First, the trace control program is brought up and initialized.

:RUN TRACE

HP300Q·TRACE CONTROL PROGRAM

? INIT 15

Next, the calibration program is started with the Lr~p op~ion to find out which
segments the program would use. The segments use~ were %123 through %137. The

calibration program requests the number of passes to make, and at t~is point,
the following trace commands are issued.

1 TRACE %123/%137
? RUN

Now trace is ready to operate, so 100 is issued to the calibration program. Trac
ing proceeds until the calibration program has run to completion. Next, the follow
ing cOffmands are given to the trace control program.

? STOP
? EOF
1 EXIT

. 'This terminates the program execut10n. Note that the CLEAR co~~and was not necessary
since the CST entries were deallocated when the calibration program terminated.

After the trace operation is complete, the data is reduced. Two reductions were
made with and without caller·statistics are shown in Figures 2 and 3•

•

.t RUN TRACERED

HP3000 TRACE TAPE REDUCTION-PROGRAM"

l SEGl-1ENT

? SEGMENT CAll EXIT

Note that the measured time for an EXIT only is .02 milliseconds are shown in
segments %131, %132, and %137; whereas a PCAl, EXIT pair is .05 milliseconds
as sho~/n in segments ~124, %125, %133, and %134. These are approximate since
an exit takes 2).7 microseconds, and both a PCAl and EXIT take 50.4 micro
seconds. They are not in exact agreement since the trace system only receives
one clock count each 10 microseconds. Therefore the error could be as large
as 10 microseconds for each segment traced •

. ~

'.

.... ~ ..- ,., _ .0 __ ...-... ...-••.•~ _. __ ~ -....-.._ ~ _.., _ ._ ••• .. .

'-STYE. . ..•CALLS

81 .. Pl.8 .05 .•..• 00..._.027.123 00041. __._. .99 ·100.0._... . __.9'1 100.0

99 10U.0 fj5 f!h9 .O~ .00 027 lC!/t 00001 99 100.0
. . ----.-...-.-_.... .__.. ._._-_.-

y~ 100.0 tJ2 ')2.9 .02 .UO u27 l~c) oOUOl 99 10u.0

.':19 100.0 __.__'_,_, CJ!t _ CjI).O. __ .• 06. __ • 00 ___ .0~7 1~6 OUOOI __ .__ .. 99 100.0 ... _-.:___..

h~30~O SEGMlNT T~AC~ OATA k(OUCTl~N P~OG~AH

STT EhTkY CNT. ~Stbl Tl~~U ENT. ~STTE Tl~E/C. SOEVT/C .. PIN ~EG UELTP

1~5

•
:L' 1~'i:6 '19 1 '1 ••0 U01

• .127 CJ~ 1_·_1.0. ClOl .
I'

,-- SEC,..ENTRY Cr4T •._AbSENCES. 'tAfjS •.
II

"; .
:l.-1~~ 9Y .•.._. 1_... 1.0 ' .. Oul

99 1 1.0 001

0.

1 100.0

100 100.0

021 l:tJ 00001"·--100 100.0----·---··

027 llJ 00U20.uO

.00

.00

.00 . 027 l~J 00030 .

.uO

.08

.os

.U

--------------_.._~._._-_ .._--_._._------- .

----------- --~------

61.0 -_. '.05 ._- ~oo

u

SCJ 59.0

16~ 81.~

1 100.0

100 100.0

20U 100.0

100 100.0 ~l

100 100.0 61

. 1 100.0 .__ .. 1.HJO.0.__.• 0~._.__ .• 00.__ .. 027 123 00017 .. -.1 100.0 ..: . ..

.. --_. __ ' -_.- ..
1 1UO.0 1 100.0

. a 27 1J 1\ 0Ua01 . '. .__._ 100 100• 0 _. _..__

021 13~ OOOor 100 ~O.o
0?7 1J!J 00002 .100 50.0 _

400 100.0 3u~ 97.2 .02 .00 027 136 00001 200 ~U.O
_ _.• . _ .._ •. 92·(_tJ6_.()00 02 200__~Q. 0. _

1 100.0 .UOI
-_ --_.

1 100.U OUI

1.•.10 u.O 001

1 1.0 OU1

i--1~0' .. u01

,-1.0 001

1 .5 uOl

1 '.• 3 001

1 _

1

100

100

130

1::3
II

.• 1~6

II

If

It

"1134-
!It I

I
·l_!3~ .1t10.~ _
.:

4!00

I'
II:J31
..I
I'~ 13ll..-.-. _

II

",,..-------
hi! 137

":t'---------------,.

::,---------------_._---.... -_.- -_._- ------
J!~l . _

I'.,
'·Ir--------------------··
.",,.1''-------- ------------.;

-_._-_._--

n

:1
., I.. ' '-----------------------
" •

"i
.. I

,·1L- _

..

-- ---_._._--_._----------------"---------

"
;.;------- -....._. _.. --_.....-_..._.. _---_._._--_._. -_._----- .--------- •.. _--- .

~. :..------_._------------_.

, PA{,~ 1 HP3000 SE~MENT TMACE DATA M~OUCTION PROGHAM
. -

81.0 .._.__ ..• 05 __._. O.q __.. _99 100.0 ...__. ,81001

r-_.SE(".Et:.TRY_.C'4T._._A{jSF;NC~.S._~AUS•..... ~TT EhTWY CNT. C£SEt,E, Tl""t::O ENT t.S-.TE _lIf04EJC uSDf.\fT/C PIN. St:G.DELTP. CALLS .'STTt _
".!
'1
'L_.J2~ . ~~ .1. J.O
•

.00

.00

.00
..__._---_._--

.00

.05

.00

.05

.0

f) 1• a .•..---•05

o

1 1at. O !I 02 _. OO. !- _

110'0.0

99 100.0

100 100.0 61

100 100.0

001

001 ._. __1.l00.p _

001

001

001

0" 1 _.. _...._100 10 0.0.. .61._ 61. ~ .oa__•~o . _

1.0

1.0

1 100.0

1

1

____1 JOO.O

125 99

'n~b 99
t;

I

'L-l~'" ~.?-
"
n 130 1
'r
!J[1:ii 1
"I
" 132 1\--
•

133 '';' 100
.1

"r1:f4---- i 00·------(-.. 1. o'
;', .
"L135 100_. _1.• 0
" .00.08

97.z" ----..02 ----.00..·---- --.----....

163 01.~

~OO 10u.0 389

200 100.0001.s1

'-1---;3' 001

~OO

400

136

!'''---137
1,"

"t~I ----------------

.,

":j----
'I .

12 •.'~ ----------- .._. -..._- _. -- ----------_._---
--- -----_._-------- ._-------

.,,...----------------_........ --_. -...-.----------~- --.-..-~-,__-- -.,..._.--...--_........
~ i·

'---------_._------------- , .. __._------ -------_.__._.-

----_._--

___________. E_Lg_'L~_C. d, _
" -lJ
:1

i.;
...._-----

---. -.... _- -'L-- -.---------.- --_.
••• ••• ••_ ... ••.• _ - •• • __ - - • h • •• • _. __ • •

.'
~P3000 SE6MENT TPAC~ DATA ~EOUCTI0N PROGRAM

99 100.0

99 100.0

027 124 00001

027 123 000~0

021 123 000)0

_____ 100.100.0 _

.00 07.1 1)~ 00001 100 ~O.O

.027.. ..1 35 00002 100_ 50.9, _

200 50.0
._. 200 50.0 _

.00

.00

.00

.00

005

.08

.0

81.~

o

&S 85.9

_'15 __ .«;". ()__.• 06 _.__ • 00_.0~1 . 1~6 .. 00 0 01'- -J99__100.0 _

1 100.0

1 ioo~o

J.. J QiJ.0__.,0~ !00_921.J23 .0001.7 Ll 00. 0 _

100 100.0

ioo-lo'O~O

59 Sl.0

163

389 91.2 .02 .00 027 13~ 0000:
_•.. _. ._. ~?7 lJb 0000,'

. _...... 81 . AI. 8 .__.__• 0S. .__.00 __ O? 7 123 00041. ..99 ..100 • 0

1 100.0

9'1 100.0

99 100.0

200 100.0

100 1uU.0

100 100.0.61 __ ~1~U_._.Ufj .~00._ 02'1 134 00001

400 100.0

STT t::"'T~Y CNT. 'll~lbt:. .TIMt:O ENT. ~,STTE TIM~/C .SOEYT/C .. PIN SEG l>£l.TP ...• CALLS ._.9.5TTE ._

001

001

001

001

001

1.0

1.0

1. O.... 001

1

1 100.0 .UOI

1 .1.0

1

1 .5

1 .3

____ J_.1.0.u.~.__ OU1_. .. 1 .. 100.0 _

____-J1'-_1.0 __J/01 .. .99.100.0 _

---------_._- ._--_. __... - .. -...-.._----
,-------_

400

100

'100'

1:33

,-- S~CJ .ENTRY CNT. . Af.tSENCe:S "AfJ~.

"
")L_l~4 9Y ..._.__ ... 1 1.0
•

lZS 99

:fl~6 99

'L-J27 9'1.:,
I' 130 1

t·

"

"
";-1:;4
ri

I
~L13~ 1C1 0•. 1

»136 ~OO

"

r.-.-----
..! 137

I
"L-
Po -----

I1IT31------1-----1~10-0;O-·oOl-----i-·l00.0
1,1 •

"U3~ 1'.

"

....... _.__ ---- --_......._ ••••• -......_. _.__..... - . .s.-..._ ..
to

....------------------ --- '-'. _..... ---_.- ----t',
'q
II~'---------_._------

._--------------------

"• ------------_._------------------

:j
"1----------,----------- ----_.-- ------------

oj

·i
",'-------

....-.... -_. -.-._-. ---_. - .._--_ .. -----_.- ----------_. --_.- -- - - _.__._---_.._--------

.........- ,-_., '-' -".- .-.._....-- _... ----_..__.._-----------_._--. -_._--------_. ------

.---------- ------_._._-- .

~-----_._._--------

L· ..-......"-..... - .-'"-.- ._.. _.. _. ---·L .-__... -'- - ..._--
. -. --_._- --_._----.-_._---_._----. - --------_..-_.__._-- --- .--.---.-.- --- _..

•

: 4'£ Hay 15. 1973

Changes to the Segment Trace System
~

cc: Measurement Distribution

The following two changes have been made to the STS trace 'segment. The first
involves the trace record format, and the record involves the operation of the
trace code segment.

The following changes have been made to the output record format of the trace
segment. Refer to Figure 1. The positions of OS and DL within the record have
been reversed. Bite six and s~ven of the first word are now b~ing used as
indicators. Bite six indicates an end-of-data conditlon, that is, that this
record and all subsequent records are invalid. Bit seven indicates that this
r°t!cord \'/aS not oenel"a tcd as the resu 1t of a tracp. or ~ h.c::pnr:~ ; nt~rr'''rf:. !:,I.'i:

was gcnerated as the resuit of a direct procedure all to the EXTRACE segment.

~lord Use
o 1 2 3 4 56 7 8 15

R I I , A' Tl I

C , LIE Iot,
LABEL (peAL) or r: (EXIT)

CALLER STATUS·

CALLER DELTA?

STACK DB <QI-4>

DL

DB

Q

Z

STACK OST «PCB (2»-
EXiRA OST ,CPCS (3)~

__0

TIro~E

,
where R = Record Type

I c Interrupt
A =Absence
T c Segment timing
o =Timer Overflow
C = Timer Carry
L =last Record
E=External Call

The time segment now has the capability of recovering from a tape write error.
If the. error occurs, the program will stop with a HALT 1. The tape controll~r

status will be displayed in RA so that the source of trouble can be deter~ined.

Press run, and the program will issue a backspace and gap to the tape drive.
If this is successful, the operation will continue in a normal manner. If
unsuccessful, the program will stop with a HALT 2•. Pr~ssing run will allow
tracing to continue, but the tape will contain an error which will probably
inhibit the data reduction program from reading the tape past that point. This
m~~n~ th~t it ;s h~~t to terminate th~ tracin9 operati0n ~nd r~start ~ith ~

different tape mounted ..

..

- ,. --- _ "- "' --, - _.-........ .., _,-,~ •......_ - .

SECTION III

BAS I C FOR INS T Rue T ION AL USE

by

James P. Schwar 1...

. Computer Center
·L404yezze College

Ea6zon, Penn~ylvan~a

February, 1975

ABSTRACT

3000 BASIC serves as the introductory programming.

language for the arts, sciences and engine~ring at

Lafayette College. The self-teaching (interpretive)

nature of the language, coupled with its power and versa

tility makes BASIC a natural choice for the fi~st pro

gramming course. The tutor programs, upgraded and ex

panded from 2000 BASIC, are an integral part of.the

course. Two, three-credit courses are offered in intro-

ductory programming, one for engineers, the other for

science and liberal arts students. The HP-3000, through

terminal access, provides "hands-on" experience for each

student. A minimum of four programming problems are re

quired from each participant in the courses, with com

puter-output mandated for each assignment. Course syl

labi are included.

,

INTRODUCTION

An introductory course in computer programming

should

1.. .. acquaint the student with the fundamentals of

computer programming,

2. instill an appreciation of computing and com

puting applications,

3. direct the student toward a logical solution

of problems via flow-charting and programming,

4. reinforce the above concepts through the writing

of computer programs.

BASIC (Beginners All-Purpose Symbolic Instruction

Code) was selected as the primary programming language

due to its interpretive nature. The ability to interact

through the language is invaluable in an instructional

environment. This benefit more than offsets the slow

execution of interpreted programs. Experience has also

shown that the BASIC interpreter does not generate the

machine loading that results from a compiler (such as

Fortran). This would not necessarily be the case in a

production environment. The 3000 BASIC language is in

itself a very powerful superset of Dartmouth BASIC and

is equal to if not superior to Fortran for programming

capability.

-2-

COURSE ORGANIZATION

Two distinct student types must be instructed in pro

gramming. The engineering and the science/liberal arts

student.. Programming for the engineer is incorporated

within a 3 credit, second semester engineering science

course. This course is divided into three, I-credit

parts: two-dimensional statics, programming (figure 1),

and vector statics. Three programs are assigned for the

programming section with a fourth program on vector

statics given during the last part of the course (figure

2). Each part of the course consists of 15 periods, in

cluding an examination. The vector statics programming

assignment attempts to demonstrate the application of the

computer to the solution of an 'engineering' problem.

The science/liberal arts course, also an engineering

science course, is a three-credit offering. It meets for

two lectures per week and one drill period per week. Six

quizzes are held approximately every other drill period

(see figure 3) with a quiz average computed from the five

highest quiz grades. There are five programming problems

assigned. Each problem must be run on the computer. The

required format for problem submission and the grading

criteria is g~ven in a hand-out -- Good Programming De

mands that ... (figure 4). The course grade is computed

-3-

-4-

based on the following schedule:

Quizzes•..........••• 80%

Programming problems ..•.• 20%

Students are encouraged to proceed at their own pace

through the course material. A brief introduction to

Fortran is included at the end of course, as many appli

cation 'programs are written in this language. The cover

age of Fortran is more of a survey, although a program

ming assignment is required, with parallels drawn to BASIC

whenever possible. Compilation and execution of a Fortran

program quickly demonstrates to the student the differ

ences between an interpreter and a compiler.

Preparation of a BASIC source program via the text

editor is encouraged toward the end of the BASIC program

ming section of the course. For the science/liberal arts

student a working knowledge of the editor is critical dur

ing his brief introduction to Fortran. For the engineer

ing student later use of library programs require the

editor when building data files. In either case, BASIC

serves as a starting point for an introduction to the

text editor with a 5-10 minute discussion of this sub

system incorporated in the classroom lecture over a two

week period. This (editor) material is presented con

currently with BASIC programming concepts.

TUTORIAL BASIC

An integral part of a student's experience in the

introductory courses is the tutorial BASIC series. This

series serves as a very important adjunct to the class

room lecture. It not only drills the student on the

fundamentals of the BASIC language, but through terminal

access acquaints the student with log-in and log-out pro

cedures, simple MPE commands, BASIC commands an4 state

ments, typing and keyboard layout, etc.

The tutor series presently consists of five lessons

(figure 5) in BASIC. Each lesson is approximately 30-40

minutes in length. All input is character oriented and

response to correct and incorrect answers generates a

randomly selected typed output. The areas currently cov

ered by the tutor series are:

introduction to BASIC

array, looping and control

functions and subroutines

strings

formatting

Topics to be added are matrix operators and file handling.

-5-

GENERAL CONSIDERATIONS

For the freshman engineering student, the brief

introduction to BASIC in the second semester engineering

science course is but a building block for computer ap

plications in later courses. In the sophomore year ad

vanced mechanics courses, circuits and a numerical math

course require problem solutions via Basic programming.

In the junior/senior level courses, while programming

continues to be used, some emphasis is placed on using

library programs (figure 6) such as COGO, ECAP and LEANS

as well as programs developed strictly for departmental

use. Fortran is occasionally the programming language

for a few problems and Fortran is also the language for

many library programs.

The science/liberal art student schedules the 3

credit-engineering science course any time during his

undergraduate stay at Lafayette. The course is offered

each semester. After completing engineering science 24,

future programming efforts are at the discretion of the

departments in which he is taking courses. Most depart

ments (e.g. psychology, physics, mathematics, education)

have developed their own programs, particularly statist~cal

routines. Litrary programs are also available for use

(figure 6).

-6-

-7-

An advanced computer course dealing with the 3000

system (file structure and intrinsics, segmenter, etc.)

is offered in alternate years. The 3 credit engineering

science 24 course or its equivalent is a prerequisite.

Fortran, rather than BASIC, is 'the' programming language

for the course.

Basic Programming by Murrill and Smith

LAFAYETTE COLLEGE
Department of Engineering Science

Spring 1975E. S. 26

Text:

Part II:

Period

16

17

18,19

~
20,21

22,23

24

25,26,27

28,29

30

Computer Programming

Topic

Introduction

. Ari thmetic, Input -Output

Control

Loops

Arrays

More on Input-Output

Intra. to MAT operators

Functions and Subroutines

Exam I I

Pages

1 - 11

11 - 28

29 - 52

53 - 72

73 - 94

95 - 115

123 - 127

116 - 122

A due date for each problem will be set by your instructor.

All programming problems must include:

(1) log-in

(2) program listing

(3) run with sample data

(4) log-off

All programs should be documented and all computer output

must contain suitable headings.

Figure 1. {ntroductory Progra~ing for Engineers

-8-

IBASIC

BASIC 3.'
.G!T STATICS/SCM
~IST

STATICS
18 RE" SOLUTION 0' VECTOR STATICS PROBLEM
28 REM LOADS AR! A. B C
38 RlM LOADS CANNOT !~!!D 6011
40 R!M LOADS MUST BE COMPRESSIVE
58 RE" X , Z ARE TABLE DJ~ENSIONS
61 PRINT
70 PRJ NT • X t A 8 C·
88 FOR X=l TO 6
'8 FOR %=1 TO ..

~108 R!M EQUILIBRIUM EQUATIONS FOLLOW
'118 C:3,eB/X.A:(2800-C*Z)/~,B:1211-"C
128 IF Ace OR A.608 THEN 16.
139 l' Bel OR S.600 THEN 168
148 JF Cc8 OR C~600 THIN 168
1'1 PRIRT USIN8 18B;X.Z,A.B,C
168 NEXT Z .
178 ff[XT X
J88 IMAGE 2(D.DD~)o~(X'D)
I" PRINT LIN(I'. CPU TIME :~JCPU(')
~UI .
STATiCS

x ·z A B C

6.'''' 1.81 "I 5. CI'C.,,,, 2.118 411 288 eee
~.I" 3.88 2'8 35. see

'.11 4.8e 188 511 "'"
CPU TIME: .4"
~

Figure 2. Vector Statics Program

-9-

Spring 1975

LAFAYETTE COLLEGE

Department of Engineering Science

E.S. 2·4 Syllabus

Week of: Topic Reading

1/20 Introduction pp. 1-5

1/27 simple programs 6-28

*2/3 . transfer of control 29-52

2/10 loops 53-72

~
*2/17 arrays 73-94

.;"-

2/24 input-output 95-115

*3/3 functions and 116-122
subroutines

3/10 more on input-output (95.-115)

*3/17 strings (102-104)

4/7 MAT operators 123-133

4/14 intro. to·Fortran N

*4/21 intro. to Fortran 0

r 4/28 Fortran T

*5/5 applications E

5/12 review S

*Friday quiz scheduled for this week

Text: Basic Programming
by Murrill and Smith

Ref: HP-3000 BASIC INTERPRETER Manual
HP-3000 FORTRAN manual

Figure 3. Introductory Programming for Science/Liberal
Arts Students

-10-

1. Remarks are included in the program to title the pr,oqram and to

explain steps.

2. All programs have labeled output.

3. Handwritten programs use valid BASIC statements (i.e., a statement

number followed by a BASIC instruction. Remember that instruction

words in BASIC are written in capital letters.

4. A check for a final data value is included if appropriate (i.e.,

the program does not end on an OOT-OF-DATA error or by typinq con

trol Y in response to an INPUT statement.

S. Counters or indexes are used where appropriate.

6. SUfficient and appropriate data is supplied in a DATA statement.

7. Functions are used rather than aritlunetic statements (i. e., such

things as using SQR(X) rather than xt.S).

8. Programs to hand in include log-in, log-out and a correct final

listing of the program.

9. A READ statement is used when data is indicated to be read and an

INPUT statement used where data is indicated to be inputted.

10. The statement referred to in an IF••• THEN statement is not a GO TO

statement.

11. All arrays are DIMed.

12. GO TO's are minimized.

Grading starts @90. Points added for excellence in programming but points

subtracted if any of above violated or specific program requirements not met.

Figure 4. I~{)od Programming Demands that

-11-

~UN TUTOR.PUB
TUTOR

·TUTOR IS A COLLECTION OF PROGRAMS DESIGNED TO INTRODUCE
YOU TO THE FUNDAMENTAL CONCEPTS OF THE BASIC PROGRAM"ING
LANGUAGE. BASIC (BEGINNERS ALL-PURPOSE SYMBOLIC INSTRUCTIOI
CODE) IS A COMPUTER PROGRAMMING LANGUAGE FOR COMPUTATIONAL
AUALYSIS. TEXT EDITIf~G. COMPUTER AIDED INSTRUCTION. AND
MANY OTHER APPLICATIONS.
ALL PROGRAMMING LANGUAGES COtSIST OF A SET OF ORDERED
INSTRUCTIOIJS TO mE COMPUTER THAT PERPIIT.

ARITHMETIC CALCULATIONS
CONTROL OF PROGRAM LOGIC
INPUT OF DATA
OUTPUT OF RESULTS
SPECIFIcAtIons AND FUNCTION DEFINITION.

tHIS .ORDERED SET OF INSTRUCTIONS IS YOUR COR'UTER PROGRAM.

mERE ARE SEVERAL LESSONS 1M THIS SERIES.
(MEY ARE. . .

. LESSOR I - rUTII.PUB • IUTRODUCTION TO THE #BASIC# LANGUAGE•
. LESSON 2 • TUT02ePUB - ARRAYS. LOOPI.G~ AND CONDITionAL STATEMENTS.

LESSOII 3 • TUT03.PUB • FU"'CTlors AND SuBROUTINES.
LESSOPf .. - TUT04.PUB • STRINGS.
LESSON' • 1UT"'.'OI - FORMATTING.

TO BEGI N YOUR TUTOR LESS OIS. TYPE
RUN TUNI.PUB

FOLLOVIIG THE • SYMBOL•

. -RUM TUTlI.PUB
TUTel

TUTOR/3""" LESSON I

~OME TO THE FIRST -BASIC ~ LESSON.·

BEFORE WE CAN WRITE A PROGRAM WE NEED TO REVIEW THE SYIIBOLS
AVAILABLE.

I ** - • + ()

WHICH OF THE SYMBOLS IS USED FOR ADDITION!+
NICE GOING

WHICH OF THE SYMBOLS IS USED FOR SUBTRACTIOI2
'OT 8AD. YOU-R RIGHT

.WHICH 0' THE SYM!OLS IS USED FOR MULTIPLICATION7

Figure S. Tutor Series

-12-

PROGRAM

BASIC
COBOL
COGO
CPUTIME
CUFIT

CURFIT
ECAP
EDITOR

. FCOPY
FORTRAN
LEANS
LINPRO
MULTREG
PLOT
POLAR
POLRT
RAND
ROOTS
SIMSQ
SIMUL
SORT/MERGE
SPL
STAR
TUTOR
XYPLOT

PROGRAM TYP E

SUBSYSTEM
SUBSYSTEM
FORTRAN PROGRAM
FORTRAN SUBPROG
FORTRAN PROGRAM

BAS I C PROGRAM
FORTRAN PROGRAM
SUBSYSTEM
SPL PROGRAM
SUBSYSTEM
FORTRAN PROGRAM
BASI C PROGRAM
BASIC PROGRAM
FORTRAN SUBPROG
BASIC PROGRAM
FORTRAN SUBPROG

FORTRAN SUBPROG
FORTRAN PROGRAM
FORTRAN SUBPROG
BASIC PROGRAM
SPL PROGRAMS
SUBSYSTEM
SUBSYSTEM
BASIC PROGRAM
BASIC PROGRAM

DESCRIPTION

BASIC INTERPRETER
COBOL COMP I LER
COORDINATE GEOMETRY
COMPUTES CPU TIME IN SECONDS
POLYNOMIAL CURVE FITTING

LEAST SQUARES CURVE FITTING
ELECTRONIC CIRCUIT ANALYSIS PROGRAM
TEXT EDITOR
FILE COP I ER
FORTRAN COMPILER
ANALOG SIMULATOR
LINEAR PROGRAMMING
MULTIPLE LINEAR REGRESSION

PRINTER PLOTTING ROUTINES
POLAR FUNCTION PLOTTING ROUTINE
REAL AND COMPLEX ROOTS OF ·A POLYNOMIAL

RANDOM NUMBER GENERATOR
REAL AND COMPLEX ROOTS OF A POLYNOMIAL
SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS
SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS
FILE SORT/MERGE UTILITIES
SYSTEMS PROGRAMMING LANGUAGE COMPILER
STATISTICAL ANALYSIS ROUTINES
BASIC TUTORIAL SERIES
X-Y FUNCTION PLOTTING ROUTINE

Fil~Hre 6. Library Programs

-13-

REFERENCES

1.. BASIC Programming, Murrill and Smith, Intext (1971).

2. BASIC For Self-Study or Classroom Use, Albrecht,

Finkel and Brown, Wiley (1973).

3. Bas.ic BASIC Programming Se1f-Inst"ruction Manual and

Text, Peluso, Bauer and DeBruzzi, Addison-Wesley

(1972).

4. LEANS (Lehigh Analog Simulator), IBM 1130 Contributed

Program Library, 11.1.001.

5. IBM Electronic Circuit Analysis Program, Jensen and

Lieberman, Prentice-Hall (1968).

6. Civil Engineering Coordinate Geometry (COGO) for

IBM 1130 Model II, application Description, GH20-0143 .

. 14.

".•.,

~

SECTION IV

r~\':".~"""."""~~~.'.'~. .M.. ~_.~'.~_'''''.#U\~.:-",t .."(.-:o-'·~·'·,':'.·.::~~ If." -~... t .. e~:(.C·t·. n·._ri3·~.:' 4;.US"'=;;:54·,,:I.. "..•.. t .• •

. •......... ,. . .

i

ti (~~~.~.....~,.:J:~n.H··~Al~\
, I t~ '." '.
• : ••• J'.. \" :;.' "

: ;:,/) """ ~.~..... -1
~ ~r . ,.r '._ .. ' .,..If' !..."... 1...,"
:.

I(((Olh\;/'ffM\\f lJJf~' l.tejfi~~Wl··lra.-,.• l}/Ii1!.f!
t ',-/,";--- /./ : /' / ,,' <",-,," :,' i_'.f ,-.7../ \..... J,]~! 1)LV
,
j
i,.
I
r:t'

L.. ;,-.;. .. __ e Z .

·ClfAtlr~ELS
1 2

0 .0SIMPLEX

1 2

0 0HALF DUPLEX

1 2

a 0FULL DUPLEX
ITCP·2

(ASYNCHRONOUS)

• 1m

8

S II
T

• 0
p

sca
T
AR A

T
SEnlAL SYNCH_ _ RONOUS

Ed •

A B

PAHALLEL

m _

•
A

•
III

B

•••
c

ITCP 3

· ,

e ADVANTAGES

·DIRECT DIGITAL TRANSMISSION

MAXIMUM DATA RATE

TOTAL CONTROL OF IYIEDIA (CABLE)

LOW COST

e DISADVANTAGES

."

· I rc~, .

SynCHROnous ,(HARDWIRED)

~ ADVANTAGES

DIRECT DIGITAL TRANSMISSION

TOTAL CONTROL OF MEDIA (CABLE)

CABLE LENGTH> PARALLEL

L» DI~ADVANTAGES
PARALLEL TO SERIAL CONVERSION

DATA RATE < PARALLEL

•

." LIMITED CABLE LENGTH

~. L'

SltN(]Ilf()~()US

. (, ·() l.f:l~ (;It1\I)I~)

CD ADVANTAGES

UNLIMITED DISTANCE

SWITCHED OR LEASED CONNECTION

_ DISADVANTAGES

MORE COMPLEX AND COSTLY EQUIPMENT

DATA RATE LIMITED BY BANDWIDTH

COMMON CARRIER TRANSMISSION 1\1EDIA

NOT DIRECT DIGITAL TRANSMISSION

~.

fTCP·6

ASYNCHRONOUS
(VOICE GRADE)

~ ADVANTAGES
IRREGULAR INPUT (TERMINALS)

LOW COST

A DISADVANTAGES
SLOW DATA RATE

MINIMAL ERROR CHECKING
ITCP-1

o
1

SERIAL 0 DATA
CONVERTER 0 SINK

1
1

~

I
I
I
I

DEI\"ODULATOR

p c ---0 A 0 r-1 R N
a A v V¥L r..10DULATORDATA E

SOURCE a L
R

1 L
T IE,

L E
R

tTrp 3

L L

SYNCHRONOUS
MODEMS

201A 2000 BPS HALF-DUPLEX ON SWITCHED LINE

2400 BPS HALF DUPLEX ON 2-WIRE PRIVATE LINE

2400 BPS HALF'DUPLEX ON SWITCHED OR 2-WIRE
PRIVATE LINE

4800 BPS HALF DUPLEX 4-WIRE PRIVATE LINE

4800 BPS HALF DUPLEX ON SWITCHED LINES

L

~ ,/
- ../

ITCP·9

MODE·M
(HALF DUPLEX)

TIME REQUIRED TO REVERSE THE DIRECTION OF
TRANSMISSION FROM SEND TO RECEIVE OR VICE VERSA.

150-200 ms
•

send

acknowledge

send

•

..)
...._-----a-c-k-n-o-w-l-e-d-ge------ 150-200 ms•

150-200 ms

ITep 10

L

SWITCHED· vs LEASED
SWITCHED* LINE CONNECTED BY PUBLIC EXCHANGE* LESS EXPENSIVE FOR SHORTER PERIODS

* MOBILITY

LEASED* CONNECTED PERMANENTLY OR SEMI-PERMANENTLY
BETWEEN MACHINES (NON-SWITCHED)

* HIGHER TRANSMISSION SPEED CAN BE OBTAINED

* LESS EXPENSIVE FOR LONG PERIODS OF TIME

* CAN BE TREATED FOR DISTORTION (CONDITIONING)

* WIDEBAND FACILITIES ARE AVAILABLE
'Tep·11

Cu"'O"E~'1 ./
¥.~~ of"'J' , '

f·l~ ,•. , {f _

; .
...1' e BAUDOT

I'· 0 ASCII

() BCD

o EBCDIC

,o EXCESS-3

L

~
rt.'fff

l" ,'"
.....
-.,,"\..

" \

. ,

L

./

BAUDOT CODE
La-st 3

'1
1241

DI]its
Fir st

000 001 010 o1 1 100 101 1 1 0 1112Diqits

2° 2' .

00 ~ ~~ 5 9 -¥,at:}. , •a.;"\ blank cr space -Hu..~
it

00 LC T 0 H l\J ~ ~Jblank c r space . ~.\ ,~.

iJ J.

01' UC LF) 4 & 8 • • Izero , ,
0 1 lC LF l R G 1 P C V
1 0 IUC 3 " $? bell 6

,.
/.. •

1 0 LC E Z D B 5 y F X
1 1 !UC - - ,

figuu~s 7 1 (letters
~

I I

1 1 Lei A VII • ; U Q ! t(IIPttPISI ,", i "" i hyurei
l i .._--..l..____.. l 1 .._...___.--l.._..L-__

Irep-13

BIT POSITIONS O. 1,2. J

BIT 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 J 1100 1101 1110 1111
POSITIONS

. \ .
4,5.6.7 HEX 0 1 \ 2 3 4 5 6 7 8 9 A B

,
C 0 E F

0000 0 I NULL OLE SP 0 @ P p
;

0001 1 SOH DCl I 1 A Q a q !
: i

0010 2 STX DC2 II 2 B R b r ~ 1 •
I

0011 3 ETX DC3 = 3 C S c s I 1

0100 I S
I

4 EOT OC4 4 0 T d I t i I
I

T I0101 5 I ENQ NAK % 5 E U I e u
I

I
I

0110 6 ACK SYN & ! 6 I F V
I

f v

0111 7 BEL ETB
I

7 G W I r
i , 9 i w I i

1000 8 IBS CAN , ! 8
;

H X h r ! I I, X
i

1001 9 t HT EM) I 9 : I Y I I y !i

1010 A LF SUB j
I

J Z I i I• I J 1
I i

I I I
,

1011 B VT ESC + ! I K I k

1100 C FF FS
, I

L I
!

I i !

1101 0 CR GS = M) m !
1110 E SO RS N n i-~

1111 F SI US I) 0 - 0 i OEL
I

ITCP-14

CHARACTER BCD CODE CHARACTER BCD CODE CHARACTER BCD CODE

0 00 F 26 a 50
1 01 G 27 R 51
2 02 H 30 $ 53
3 03 I 31 * 54
4 04 33 (blank) 60
5 05) 34 I 61
6 06 = 35 S 62
7 07 " "36 T 63
8 10 40 U 64
9 11 .J 41 V 65
+ 20 K 42 W 66
A 21 L 43 X 67
B 22 M 44 V 70
C 23 N 45 Z 71
0 24 0 46 , 73
E 25 P 41 (14

L ITCP-15

BIT POSITIONS O. 1.2.3 EBCDIC
BIT 0000 0001, 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

POSITIONS
4,5,6.7 HEX 0 1 2 ·3 4 5 6 7 8 9 A B C D E F

0000 0 NUL OLE OS SP 8t \ 0

0001 1 SOH DCl 80S a j - A J 1

0010 2 STX DC2 FS SYN b k s B K • S 2

0011 3 FTX DC3 c I t C l T 3

0100 4 PF RES BYP PN d m u 0 M U 4

0101 5 HT Nl IF RS e n v E N V 5

~0110 6 lC as UC f 0 w F 0 W 6
ETB

Z0111 7 DEL Il EOT 9 P x G P X 7
ESC

1000 8 CAN h q Y H Q Y 8

1001 9 RLF EM \ , r z I R Z 9

1010 A SMM CC SM

-
!

1011 B VT . S

1100 C FF IFS DC4 .- • %

1101 D CA ICS ENQ NAK () -
1110 E so IRS ACK + , >
1111 F SI IUS BEL SUB ? ..

4.
'-'

ITCP-16

Excess...5
OCTAL CHARACTER OCTAL CHARACTER OCTAL CHARACTERCODE \ . CODE CODE

00-. 26 C 53 Q

01 SPACE 27 D 54 R
02 30 E 55 $
03 0 31 F 56 ..
04 1 32 G 57 ...
05 2 33 ·H 60 .".,

06 3 34 [61 ~

07 4 35 # 62 . .
•

10 5 36 ~ 63
11 6 37 ,....- 64 I
12 7 40 ~ 65 S
13 8 41 ~ 66 T
14 9 42 ~ 67 U
15 , 43) 70 V
16 8r 44 J 71 W
'17 (45 K 72 X
20 ~ 46 L 73 y
21 , 47 M 74 Z
22 • 50 N· 75 %
23 • 51 0 76 ~,
24 A 52 P 77 ,,--

ITCP·17
25 B

L ~

CPU

CPU

__ .MULTI
POINT

ITCP·18

•
•

.J • • • •

• ••• •••

DEVICE ADDRESSING NOT REQUIRED

INVOLVED ONLY 2 DEVICES.

COST PER TERMINAL CONSTANT

•
•

•
• • -..• •

•a

• ••• •
•

.'•-
•

•••

TYPICALLY USED IN CONTENTION MODE

SIMPLE LINE CONNECTION.

GUARANTEED ACCESS

•••
•

•••
•

•
•• •••

•• ••••

• ••

ITCP·19

·n t~ VIe L }-\DDR t SSI NG

I ~\ 'l :() nAH Y LC)C }«()UT 1\1/\Y OCCUR

c ()ST Pr: n TEn:\11 Nl\ L ON SLID II'J G SC;\ L E

TYrlC~,L\ L L Y

tJ>~..... '(

I' ..Fe ': '-If
~~-'f .£ . ./. ':

(.c:i:' •.,.J \
,.' . ! '0 ~.t -~

._ ;' (• 'o~ .""'- ~
t' _I ;.: o. • c..' ,~l ('., :~

. :; " ,,.' 4- ~ ' ',' - '.'. .iJ
--:... _, ~o • ~ ,; ... , • r

,.,..... 0 -. • _ _

PC) LLLl)

MASTERc
o
~.. "'~'.J:" \.
~ .. :':

T

MASTER

•

SLAVE

¥"
. .---..-_.- . .

~ ~._... _.~

.: '"'---_ ...

MASTER

T
I
o
r-J

L

LINE PROTOCOL
"

anything to send a....
--------~

~ yes
~------

send it a....
----~".

LINE PROTOCOL USED TO:

DISTINGUISH SENDER FROM RECEIVER

ALLOW ORDERLY TRANSFER OF DATA

PERMITS ERROR DETECTION AND RETRY

~.

ITCP-22

ITCP·23

• TRANSPARENT-TEXT MODE

~. CONTROL CHARACTERISTICS

~ MESSAGE BLOCKS AND SYNCHRONIZATION

r:\ BLOCK CHECK CHARACTER ~

@~

~@ .

.---

,
I .

E
T
.~{

... ()

r

I
TT

X

('
,)

T
X

s
/

-~----------..---
~

":
.. I

,"

f ~

'''-'-' -------~

~t) 1\ (/" l: n " :1 uTe '{ T f~ l I '('" Kr-\ I \ ,-' ;., I' " r 1 C I) _ \~. ."

(.; ~ 'I ~ (': I ~J T f: r) ".'" f· f"\ I " 1'r: [" l DC K,) •.•..• , .. l. I . ,1,1 1,)\ I..) •.

~1.. \
J

,)

. "

; I

. '

,- .:.-,
"

.'- .-

- .--...._.__._---
:. " ,, I .\ ~. "~

..i -.: , oj
; '. ~ i ,

mmrn rn illl HEADER- ·1 rn I__-.ll,,-T_EX_TB_LOC_K--a.-l ImUI

mm~ m~l HEADER- ImINTERMEDIATE ~T:
WWL;J WlE.J W TEXT BLOCK WW

.~\

\~ -mark . aI .s option portions

.------.
rfIlNTERMEDIATE ~m
~ TeXT BLOCK WW

J......----.mINTERMEDIATE mmli.J TEXT BLOCK WljJ
ITCP·25

PARITY OPTions
CRC CYCLIC REDUNDANCY CHECKING

Discard Quotient

Constant J Character

Constant X Quotient

Rer11ainder + nex t character

Constant X Quotient

Rernainder + nex t character

Constant X Quotient

Ren7ainder + nex t character

Constant X Quotient

Check cha;acter at any tin1e ETB, ETX, or US is recognized -- Remainder

Cyclic Redundancy Checking

used when not ASCII non-transparent

'TCP·2/

\
\

\

'"

.
VRC/LRC

VERTICAL REDUNDANCY CHECKING

7 BIT ASCII AND 000 PARITY BIT

LONGITUDINAL REDUNDANCY CHECKING

EXCLUSIVE OR OF ALL ASCII CHARACTERS AND
OWN 000 PARITY BIT .

USED WITH NON-TRANSPARENT ASCII

ITCP-28

HALF OR FULL DUPLEX

tt POINT..;.TO-POINT OR MULTI-POINT

LOOP

tt COMPREHENSIVE ERROR"DETECTION/RECOVERY

tt MINIMIZES LINE DELAYS

tt TRANSMITS DATA IN BIT STREAM AND IS INDEPENDENT
OF CONTROL CHARACTERS

tt TRANSMITS DATA IN BIT STREAM AND IS INDEPENDENT OF CONTROL CHARACTERS

(SDLC)
·ITCP-29

SDLC TRANMISSION FRAME
...-------------....:.--FRAME---~---------- ...

ENDING
F

01111118
FCSCA

BEGINNING
F

1 1 111 1 0

I

I FLAG ADDRESS I 'CONTROl I Variable I CHECK FIELD I FLAG I
I I I I Length I r I

Information
I t.--8 BITS-I I Field 14 16 BITS .1 I

I I (may JJe I I

I~ 16 BITS .1 absent) I I
I I I

I~ SPAN OF CRC AND ZERO INSERTION .I

I I

I I

ITCP-30

ERO NSERTION
SOLC'S METHOD OF ACHIEVING TRANSPARENCY

A BINARY ZERO IS INSERTED AFTER ANY SUCCESSION OF FIVE CONTIGOUS I's

.
TRANSMITTER

101 111 1 1 10000 1 111 1 0

t t
RECEIVER 0 0

101 111 101 10000 1 1 1 1 1 0 0

+ + ITCP-31

~ ~

• HALF OR FULL DUPLEX

• POINT-TO-POINT OR MULTI-POINT

• SYNCHRONOUS AND ASYNCHRONOUS MODES

e SERIAL OR PARALLEL TRANSMISSION FACILITIES

• REQUIRES NO SPECIAL CHARACTER SCANS

• ALLOWS BOOTSTRAP STARTUP OF REMOTE TERMINALS

o RUNS ON EXISTING HARDWARE

ITCP·32

FIELD

DDCMP
.

SOH COUNT F RESPONSE FIELD ADDRESS CRC DATA CRC

I I 'I~I FIELD ,NUMBER
G I

I I I I I
BITSI- 8 + 14 +2t 8 +. 8 + 8 +16+

DATA MESSAGE FORMAT
ITep-33

l.·

/

	Table of Contents
	Section I
	The Utilization of the HP/3000 at PROMON - A Brazilian Engineering Consulting Company
	Section II
	Software Optimization through Resegmentation
	Section III
	BASIC for Instructional Use
	Section IV

