

Ter al
IAIII

HEWLETT it PACKARD

HEWLETT-PACKARD COMPANY
19400 HOMESTEAD ROAD, CUPERTINO, CALIFORNIA, 95014

PART NO. 02647-90005 Printed in U.S.p.. 4/79

ii

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER
IAL, I~CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
;-';0 part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1979 by HEWLETI-PACKARD COMPANY

PREFACE

This manual provides detailed programming information for Intelligent Terminal BASIC. It is written to
provide the information needed to use the BASIC interpreter to develop application programs to run on the
terminal.

This manual assumes that you are familiar with the use of the terminal. Operating and programming
information for the terminal is given in the HP 2647 User's Manual (02647-90001) and the HP 2647
Reference Manual (02647-90002).

If you are not familiar with programming or the BASIC language, you should refer to a tutorial manual
explaining the BASIC language and the elements of programming. Manuals explaining BASIC are available
in most book stores. Note that the version of BASIC used with the terminal is slightly different than that
described in most tutorial manuals.

HOW TO USE THIS MANUAL

This manual describes the BASIC interpreter used in Hewlett-Packard Intelligent Terminals. The various
functional statement groups such as strings, arrays, and files are described in separate sections. If you are
already familiar with the BASIC programming language, you can refer to Section 12 which contains the
detailed syntax of the various BASIC commands and statements. Section 10 contains many unique state
ments that allow you to directly access or modify the terminal operating syst'lm.

This manual is made up of the following sections and appendices:

Section I. Introduction - This section provides a brief overview of the BASIC interpreter and describes how
it is loaded and accessed.

Section II. Data - this section describes the various data structures and formats used by the BASIC
interpreter.

Section III. Operators, Functions, and Expressions - This section describes the arithmetic and string
operators as well as the various functions available in the interpreter.

Section IV. Statements - This section provides a brief tutorial description of some of the BASIC statements.
Section V. Formatted Output - This section describes how to produce specially formatted output from your
BASIC program.

Section VI. Arrays - This section describes how to access and modify array data.

Section VII. Strings - This section describes how to access and modify string or textual data.

Section VIII. Subprograms - This section describes how to write subprograms.

Section IX. Files - This section describes how to store and access data stored in terminal device files such as
cartridge tape.

Section X. Terminal Operations - This section describes the special statements and functions that allow you
to access the terminal's operating system from your BASIC program.

Section XI. A Graphics Language (AGL) - This section describes a special set of statements that allow you
to perform graphics output to the terminal display or a graphics peripheral.

Section XII. BASIC Syntax - This section provides the detailed syntax for the BASIC commands and
statements.

iii

iv

Appendix A. ASCII Character Set -This appendix lists the characters available in the ASCII character set
together with their numeric code values.

Appendix B. Compatibility - This appendix describes the differences between Terminal BASIC and other
BASIC languages.

Appendix C. Reserved Words - This appendix lists letter groups that cannot be used as variable names.

Appendix D. Summary of BASIC - This appendix lists the commands and statements available in the
interpreter.

Appendix E. Error Messages - this appendix lists all of the error messages generated by the terminal
together with a description of the error.

TERMS AND CONVENTIONS

The descriptions in this manual use the following conventions:

[] - The right and left bracket are used to enclose a parameter that is optional. The brackets themselves
should not be entered.

Example: The RUN command is shown as RUN [line number]. This means that a line number is optional.
To RUN a program at line 100, enter RUN 100.

< > - The less than and greater than signs are used to set off parameters. The less than and greater than
signs themselves should not be entered.

Example: The SET command is shown as SET <condition>. This means that one of the <condition
parameters, SHORT, LONG, etc. should be used. To set the default data type to LONG, enter SET LONG.

Control Characters are indicated in three ways. They may be shown as a character with a superscript "C"
(AC), the word control followed by a letter (CONTROL-A), or as a two letter graphic symbol (EC). The
graphic symbols are listed in Appendix A.

CONTENTS

Section 1 Page Section 4 Page

INTRODUCTION STATEMENTS

What is BASIC for Terminals? 1-1 REM Statement 4-1
How Do You Use BASIC? 1-1 LET Statement 4-1

Commands and Statements 1-2 Multiple Assignment 4-2
Workspace 1-3 Relational Tests for Equality 4-2
Programs 1-4 INPUT Statement 4-3
Entering Programs 1-5 LINPUT Statement 4-4
Multiple Statements 1-5 READ and DATA Statements4-4
Loading Programs Using the READ Key 1-6 Interaction Between READ and DATA Statements 4-4
Editing Programs 1-7 RESTORE Statement 4-5
Running Programs 1-7 PRINT Statement 4-6
Saving Programs 1-7 Print Functions 4-8.

Using an Execute File 1-7 GO TO and ON ... GO TO Statements 4-9
Remote Operation 1-8 IF ... THEN ... ELSE Statement4-9
Sample Program Session 1-8 FOR and NEXT Statements4-10
Exiting BASIC 1-9 Multiple Loops4-11
Direct Computation 1-9 For Loop Cautions4-12
Partial List Of BASIC Commands and Statements .1-10 GOSUB and RETURN Statements 4-13
Is That All There Is? 1-11 ON ... GOSUB Statement4-14

In-Line Subroutine Nesting4-14
Section 2 Page STOP and END 4-15

DATA
Section 5 Page

Constants 2-1
Numeric Data 2-2 FORMATTED OUTPUT

INTEGERS 2-2
SHORT 2-2
LONG 2-2
E-notation 2-3
Octal and Hexadecimal Data 2-3

String Data 2-3
Variables 2-3

Numeric Variables 2-4
Type Declaration Statements 2-4
String Variables 2-5
DIM Statement 2-5

Arrays and Subscripted Variables 2-6
Files .. 2-6

PRINT USING and IMAGE Statements 5-1
Format Symbols 5-2

Separators 5-2
Literal Specifications 5-2

Formatting Strings 5-3
Formatting Numbers 5-3

Digit Symbols 5-3
Digit Separators 5-3
Radix Symbols 5-3
Sign Symbols 5-4
Floating Specifiers 5-4

Format Replication , 5-4
Compressed Formatting 5-4

Section 3 Page
Carriage Control 5-5
Reusing the Format String 5-5

OPERATOR, FUNCTIONS, AND EXPRESSIONS
Field Overflow 5-5
Programming Considerations 5-5

Operators 3-1
Arithmetic Operators 3-1
String Operators 3-2
Relational Operators 3-2
Logical Operators 3-3

Functions 3-4
Numeric Functions 3-4
Random Numbers 3-5
String Functions 3-5

v

Section 6 Page Disabling All Key Interrupts 10-5
Disabling Interrupt Keys 10-5

ARRAYS Interrupting on Specific Keys 10-5

Dimensioning Arrays 6-1
DIM Statement 6-1
Type Declaration Statements 6-2

Directly Acting on Keyboard Input 10-5
Processing Key Functions 10-6
Redefining the Keyboard 10-7

Data Communications 10-9
Using Arrays 6-2

Entering Data Into an Array 6-2
Printing Array Data 6-3
Substrings as Array Elements 6-4

Enabling Data Communications Functions 10-9
Single Byte Transfers 10-9

Program Control 10-11
Terminal and Resource Functions 10-11

Array Functions 6-4
Setting an Array to Zero or Other Constant 6-4
Setting an Array to an Identity Array 6-4
Transposing Arrays 6-4

Memory Space Available 10-11
Error Handling 10-11
Suspending BASIC 10-13

Inverting an Array 6-4
Section 11 Page

Section 7 Page A GRAPHICS LANGUAGE (AGL)

STRINGS Introduction 11-1

Substrings 7-1
What Is "A Graphics Language"? 11-1

AGL Terminology 11-2
Regions 11-2

Section 8 Page Clipping 11-4
Effect of AGL Commands on Regions 11-5

SUBPROGRAMS Units 11-5
Other Terms 11-6

SUB and SUBEND statements 8-1 Function Groups 11-7
Pass-by-reference/Pass-by-value 8-3 Function Syntax 11-7
Local Variables 8-4 Set-Up Functions 11-8
Referencing Files 8-6 PLOTR 11-8

GPON 11-8

Section 9 Page
SETAR 11-9
LIMIT 11-9

FILES
GCLR 11-10
LOCATE 11-10

ASSIGN Statement 9-1
PRINT # Statement 9-1
READ # Statement 9-2
LINPUT # Statement 9-2
RESTORE # Statement 9-2
ON END # Statement 9-2
Closing a File 9-3
File Error Variables 9-3
Output to Terminals and Printers 9-3
Formatted Output to Devices 9-3

MARGIN 11-11
SCALE 11-12
SHOW 11-12
MSCALE 11-13
CLIP 11-13
CLIPOFF/ON 11-13
SETGU/SETUU 11-13

Axis and Labeling Functions 11-14
XAXIS 11-14
YAXIS 11-15
LXAXIS 11-15
LYAXIS 11-16

Section 10 Page AXES 11-16
LAXES 11-17

TERMINAL OPERATIONS GRID 11-18
LGRID 11-18

Display Operations 10-1 FRAME 11-18
Cursor Sensing 10-1 FXD 11-19
Absolute Sensing 10-2 LORG 11-19
Screen Relative Sensing 10-2 LDIR 11-20
Cursor Positioning 10-2 CSIZE 11-20
Absolute Cursor Positioning 10-2 Plotting Functions 11-21
Relative Cursor Positioning 10-2 PENUP/PENDN 11-21
Screen Relative Cursor Positioning 10-2 PEN 11-21
Direct Display Input 10-2 LINE 11-22

Keyboard Input and Control 10-4 PLOT 11-22

vi

MOVE 11-23 ON ... GOTO 12-11
DRAW 11-23 ON ERROR 12-12
RPLOT 11-23 ON KEY# 12-12
IPLOT 11-23 PRINT 12-12
PRINT #0 11-23 PRINT# 12-13
PDIR 11-24 PRINT USING 12-13
PORG 11-24 READ 12-14

Interactive Functions 11-24 READ# 12-14
WHERE 11-24 REMARK 12-14
POINT 11-24 RESTORE 12-14
CURSOR 11-24 RESTORE# 12-14
DIGITIZE 11-25 RESUME 12-14
GPMM 11-26 RETURN 12-15
DSIZE 11-26 SHORT 12-15
DSTAT 11-26 SLEEP 12-15
GSTAT 11-26 STOP 12-15

SUB 12-16
SUBEND 12-16

Section 12 Page WAKEUP 12-16
FUNCTIONS 12-16

BASIC SYNTAX

Commands 12-1
AUTO 12-1
CSAVE 12-1
DELETE 12-1
EXIT 12-1 Appendix A

GET 12-2
GO ... 12-2

ASCII CHARACTER SET

LIST 12-2
MERGE 12-2 Appendix B
REMOVE 12-3
RENUM 12-3 COMPATIBILITY
RUN .. 12-4
SAVE 12-4
SCRATCH 12-4 Appendix C

SET .. 12-4
Statements 12-5 RESERVED WORDS

ASSIGN 12-5
CALL 12-6 Appendix D
COMMAND 12-6
DATA 12-6 SUMMARY OF BASIC
DIM 12-6
END .. 12-6
ERROR 12-7 AppendixE

FOR ... NEXT 12-7
GETDCM ON/OFF 12-7 ERROR MESSAGES

GETKBD ON/OFF 12-7
GOSUB 12-7 Index
GOTO 12-8
IF ... THEN ... ELSE 12-8
IMAGE12-8
INPUT 12-8
INTEGER 12-8
KEYCDE 12-8
LET 12-10
LINPUT 12-10
LINPUT#•............................ 12-10
LONG ; 12-10
NEXT 12-11
OFF KEY# 12-11
ON END # 12-11
ON ... GOSUB 12-11

vii/viii

I iUii!.!i'
'----_________ 1 N_TR_O_DU_C_TIO_N----l.I I I

This section provides an overview of BASIC programming
on the terminaL It briefly describes selected commands and
statements used in elementary BASIC programming. Sam
ple programming sessions will show you how to create, edit,
run, and save BASIC programs. Specialized topics such as
arrays, strings, files, formatted output, and graphics are dis
cussed as separate topics in other sections. Section XII
contains detailed descriptions of each of the BASIC com
mands and statements.

What Is BASIC For Terminals?
BASIC for Terminals is a powerful version of the BASIC
programming language. It allows you to write and execute
application programs on your terminaL These programs can
interact with programs on a host computer or run indepen
dently with the terminal offline.

Terminal BASIC contains most of the standard BASIC
statements together with special statements that allow you
to monitor and control terminal operation. In addition, a
complete set of AGL (A Graphics Language) statements are
included. These statements provide a high level language for
controlling the terminal's graphic functions. AGL state
ments are used in the same way as normal BASIC state
ments.

COMPUTER

BASIC program statements present in the terminal's mem
ory are executed by a BASIC interpreter. This interpreter
allows your program to interact with the terminal's input/
output file system. The file system gives your program ac
cess to printers, plotters, and other devices connected to the
terminaL This is in addition to the terminal's own keyboard,
display, cartridge tapes, and data communications capabili
ties (see figure 1-1).

How Do You Use BASIC?
To use BASIC the interpreter must be present (loaded) in
the terminaL Normally it will not be necessary to reload the
interpreter unless the terminal has been turned off. (The
interpreter is lost when the terminal is turned off.)

The normal procedure for using BASIC is to request the
BASIC interpreter using the COMMAND channel, type in a
program from the keyboard or read a program from a car
tridge tape, and then run the program.

Start the terminal by setting the power switch to ON.
After about 20 seconds the display will appear as shown
below:

TERMIHAL READY

/
~RIDGETAPE

9872 PLOTTER

Figure 1-1. Terminal Network Capabilities

1-1

Before you can enter a BASIC program, the BASIC in
terpreter must be present in memory. If the BASIC in
terpreter is already loaded you can start it by pressing the
COMMAND key and entering BASIC ... The terminal
will display the available workspace and the BASIC
prompt character (">"). If the terminal responds with the
message:

PROGRAM NOT FOUND or CHECKSUM ERROR r N BAS I C

The BASIC interpreter is not present and must be loaded.
(The error message can be cleared by pressing the ..
key.) The procedure for loading the BASIC interpreter is
as follows:

Step 1. Place the Terminal BASIC/MUL TIP LOT tape in
the left tape drive.

Step 2. Make sure that the REMOTE key is in the "up"
position. (The terminal must be set for local operation.)

Step 3. Press the READ key. This will cause the following
display to appear on the screen:

BASIC/MULTIPUlT

(e) HEWLETT-PACKARD CO 1918

02641 13301
Rev 8-1901-42

• If BASIC i5 not loaded pre'!!!'!!! "fa- key.

Select MULTI PLOT "f1"-"f6-, or re5tore norMl operation "f7",

• MULTI PLOT pedorm5 is "Remove STDX". relllovlng CAll and PIHHT USING

1- - - - - ---- - - --- ---------PlUl TI Pl[JT - -- -------- ------ -------- ---I I-BASI c- -:
Figure 1-2. How To Load BASIC

Step 4. Press the F8 key. The BASIC interpreter will be
loaded.

Note: If you want to use one of the Multiplot programs,
press the appropriate key (F1-F6). Refer to the terminal
User's Manual for instructions for running Multiplot.

Once loaded, the interpreter will begin immediately by dis
playing the amount of workspace available for your pro
gram, followed by the BASIC prompt character" > ".

1-2

TERMINAL READY

HP TERMINAL BASIC REV. B-1901-42

7967 BYTES DISPLAY MEMORY

9798 BYTES WORK SPACE

>-

You can now begin entering your BASIC program. Pres
sing F7 will clear the display. If you want to return to
normal terminal operation, enter "EX IT "". Note that
if the terminal is subsequently turned off, BASIC must be
reloaded using steps 1 through 4.

Once you are in the BASIC interpreter you can use a wide
selection of commands and editing features to aid you in
program preparation.

Commands and Statements

The BASIC Interpreter accepts commands and state
ments. BASIC commands instruct the interpreter to per
form some action on your program or modify the workspace
or interpreter operation. Commands differ from BASIC
statements in both purpose and form. A command causes
the interpreter to perform some action immediately. A
statement is an instruction to perform a particular function
only when the program containing it is run. A statement
must always have a line number while a command does not.
Commands can be entered at any time except when the
current program is executing. Commands are either execut
ed immediately or rejected with an appropriate error mes
sage. Additional information on statements is given under
"Programming".

Each command is a single word. Some commands also have
optional or required parameters following them. If param
eters are used, they are separated from the command by a
space. Multiple parameters are separated from each other
by commas, slashes (" / ") or hyphens (" - "). Command entry
is terminated by pressing the II1II key. If the command is
misspelled or otherwise unrecognized, the interpreter will
respond with the message "SYNTAX ERROR ".

Many of the commands will not produce a response on the
display. Their completion is indicated by the prompt (" > ")
character. Others display one or more lines of information.
In these cases you can stop command operation with the
Break character (normally Control-A). The appearence of
the ">" prompt indicates that the interpreter is ready to
accept another command or statement.

The following paragraphs describe some of the commands
used to manipulate programs in the BASIC workspace. Sec
tion 12 contains a full description of all BASIC commands.

Work Space

The interpreter has a workspace of about 10,000 bytes. (A
byte is one character.) Whenever you load the BASIC inter
preter, this space is cleared. During program preparation,
you enter program statements into this workspace. The
workspace holds your program and all of the variables used
in your program. If your program uses no variables, there is
room for about 1500 lines of program. If your program uses
many variables, there may be room for only a few program
statements. For example, one of the largest arrays that can
be held in the normal workspace is A(100,33). This is 100 x
33 or 3300 variables, normally about 13,200 bytes. Note that
there are many combinations of arrays and variables that
can be used to fill the workspace. Example:

10 DIM A(100,33) or 10 DIM A(100), B(200), C(3000)
20 PRINT "HI"

Attempting to run the above program with 10 DIM A (100,34)
will result in an "OUT OF MEMORY" message. If you
require additional program or variable storage you can ad
just the size ofthe workspace using the SET SIZE command
(refer to Section 12).

You can control the workspace in a variety of ways. You can
change, display, save, delete, or renumber program state
ments. You can even change the values of variables using
direct computation. To illustrate these capabilities, enter
the following statements:

10 REM ... FIND THE PRODUCT
20 PRINT "ENTER TWO NUMBERS"
30 INPUT B,C
40 LET A-B*C
50 PRINT A
60 END

This is a complete program. You can run the program as
soon as it is entered, modify the program, or list it on the
display. To change line 20, simply re-enter the line:

20 PRINT "ENTER TWO NUMBERS SEPARATED BY A COMMA"

To list the changed program, enter the LIST command:

LIST III
10 REM ... FIND THE PRODUCT
20 PRINT "ENTER TWO NUMBERS SEPARATED BY A COMMA"
30 INPUT B,C
40 LET A=B*C
50 PRINT A
60 END

Note that when you enter program statements, spaces are
not required except within quoted text. You can omit spaces
from the BASIC statements or put in more than one space.
When the program is listed, the interpreter shifts all BASIC
statements to upper case (only the first letter in variable
names) and uses a standard spacing between terms. Also if
you have entered statements out of order, the interpreter
will always list them in numeric order.

To add lines, you can insert them by using line numbers
between those already used. For example, to insert a state
ment between lines 50 and 60:

55 IF A>O THEN 70

At least one statement must now be added at line 70:

70 LET X·A/2
71 PRINT "A DIVIDED BY 2 IS";X
72 END

The RENUM command allows you to renumber lines in the
workspace. When no parameters are used, this command
renumbers each line starting at 10 and incrementing each
line by 10. It will automatically adjust any line number
references used in program statements to the new line num
bers. Renumber and list the edited program. Note that the
line entered as 55 is now line 60 and references line 80.

>RENUM III
LIST III
10 REM ... FIND THE PRODUCT
20 PRINT "ENTER TWO NUMBERS SEPARATED BY A COMMA"
30 INPUT B,C
40 LET A-B*C
50 PRINT A
60 IF A>O THEN 80
70 END
80 LET X=A/2
90 PRINT "A DIVIDED BY 2 IS";X
100 END

You can renumber lines starting at a line number other than
10 and using any increment you want. For example, to start
with line number 1 and increment by 5, enter:

RENUM...l.l5 III
LIST ...

1 REM ... FIND THE PRODUCT
6 PRINT "ENTER TWO NUMBERS SEPARATED BY A COMMA"
11 INPUT B,C
16 LET A=B*C
21 PRINT A
26 IF A>O THEN 36
31 END
36 LET X=A/2
41 PRINT "A DIVIDED BY 2 IS";X
46 END

You can also renumber only a portion of your program.
Refer to Section 13 for additional RENUM parameters that
provide this feature.

You can delete any line from your program by entering the
line number and a RETURN. If you want to delete a group
of lines, you can use the DELETE command. For example,
to delete lines 26 through 41, enter:

DELETE 26-41 III

If the last line number to be deleted is also the last line in
the program, you need only enter the starting line number to
be deleted, followed by a dash. The DELETE command will
then delete all lines from the starting line specified to the
end of the program. If you now renumber your program and
list it, you will be back to the version of the program that you
originally entered.

RENUM III
L1ST_

10 REM ... FIND THE PRODUCT
20 PRINT "ENTER TWO NUMBERS SEPARATED BY A COMMA"
30 INPUT B,C
40 LET A-B*C
50 PRINT A
60 END

1-3

So far the LIST command has been used to list the entire
program. It can also be used to list selected portions of the
program by specifying the first and last lines to be listed. If
only one number is entered following the LIST command,
only that single line will be listed.

Example: List lines 30 through 50.

LIST 30-50 _

30 ItiPUT B,C
40 LET A=B*C
50 PRltiT A

Example: List only line 30.

LIST 30 _

30 ItiPUT B,C

At any time when you are preparing a program, you can run
it to check for problems. This is done by entering the RUN
command. Your program will begin executing with the first
line number.

RUti_

EtiTER TWO tiUMBERS SEPARATED BY A COMMA
?375,4 _
1500

An executed program will remain in the work space and can
be run again as desired until it is either removed using the
DELETE or SCRATCH commands or until a new program
is loaded. The program will be lost if the terminal is turned
off or if BASIC is reloaded.

You can save a program on a cartridge tape using the SAVE
command. The SAVE command writes a copy of the pro
gram in the work space onto a specified cartridge tape. The
program can then be reloaded from the cartridge tape at a
later time using the GET command.

The GET command reads a program from a specified car
tridge tape and enters it into the workspace. The GET com
mand clears any program that is in the workspace before
entering the new program from tape. Procedures for saving
and loading programs are described elsewhere in this sec
tion.

The MERGE command can be used to combine two pro
grams. The first program is loaded into the workspace. The
second program is then loaded from tape using the MERGE
command. The second program is added to the lines already
in the workspace just as if it was entered from the keyboard.
Note that if any of the line numbers in the program on tape
are the same as those in the workspace, the line on tape will
replace the one in the workspace.

1-4

The MERGE command is useful for incorporating standard
subroutines into a program being developed in the work
space. The RENUM command can be used to adjust line
numbers so that the program segments can be easily
merged.

The SCRATCH command is used to clear the workspace.
You can enter SCR or SCRATCH. You should use the
SCRATCH command to delete programs from the work
space before entering a new program from the keyboard. If
you do not, a few lines from the earlier program may remain
and cause program errors.

Programs

Programs control the operations that you want performed.
They can perform arithmetic functions, manipulate text
data, or control devices.

A BASIC program is a sequence of BASIC language state
ments. The lines containing statements are numbered to
indicate the order in which the statements are to be execut
ed. Line numbers also allow one statement to reference an
other. The following BASIC statements make up a simple
program that calculates a salary given the hours worked and
an hourly wage. The program stops when the number of
hours given is O.

10 PRltiT "WEEKLY PAY CALCULATOR"
20 ItiPUT Hours,Wage
30 IF Hour~ = 0 THEti STOP
40 LET Pay = Hours • Wage
50 PRltiT Hours;"hours at $";Wage;"per hour: $";Pay
60 GOm 20

When this program is executed, it prompts you for values for
the Hours and the Wage by displaying a question mark
("?") on the screen. If you enter 40 for the Hours and 3.00
for the Wage, the output is:

40 hours at $ 3 per hour = $120

The lines can be entered in any order. A good practice is to
number them by tens so that in the future additional lines
can be inserted easily. The computer puts the lines in nu
merical order no matter how they are entered. For example,
if lines are entered in the sequence 10,40,30,50,20; the BA
SIC Interpreter arranges them in the order 10,20,30,40,50.
Line numbers can range from 1 through 9999.

Entering Programs

Once BASIC is loaded and enabled you can do one of the
following:

• Enter a program from the keyboard.
• Enter a program from tape or remote computer.
• Return to normal terminal operation.

Entering Programs From The Keyboard

The terminal should be set for local operation (REMOTE
key up) during program generation. Otherwise keyboard
input will be sent to the host computer as well as the inter
preter.

BASIC does not process input until theCIIIII key is pressed.
This allows you to edit the line before sending it to the
interpreter. When theCIIIII key is pressed, the line containing
the cursor is read by the interpreter. If the BASIC state
ment is entered without a line number it will be executed
immediately. (Refer to Direct Computation.) If the state
ment has a line number it will be stored in memory.

When data is input to a program from the keyboard, BASIC
does not process the data until theCIIIII key is pressed. When
thea key is pressed, the display line that contains the
cursor is processed. You are free to edit the data in any way
you wish before pressing theCIIIII key. This means that if you
enter data and then move the cursor to another line before
pressing theCIIIII key, the wrong data will be entered. Refer to
the descriptions of the INPUT and LINPUT statements for
additional information on keyboard input.

Line numbers can be automatically generated using the
AUTO command. You may change a line number by moving
the cursor to the line number and typing over the number.
Remember that this does not delete the original line.

Example: Write a program that adds up the cost of items
purchased and calculates a 6 % sales tax on the total.

Step 1. If you are not already in the BASIC interpreter, call
it as described under Loading and Using BASIC.

Step 2. Enter the following program from the keyboard.

10 REM Add up the cost of items sold
20 REM and then compute sales tax
30 INPUT "Enter item cost $",Item
40 Price=Price+Item
50 IF Item)O THEN 30
60 TAX=INT(6*Price)/100
70 PRINT LIN(1);"Cost =$";Price
80 PRINT "Tax = $ ";Tax
90 PRINT LIN(l);"Total = $";Price+Tax

Step 3. Type "RUN CIIIII".
The program will output a message. Enter the values:

95.96 CIIIII
33.00 CIIIII
17.95 CIIIII
o CIIIII

You should see the following display:

>run CIIIII

Enter item cost
Enter item cost
Enter item cost
Enter item cost

Cost
Tax

Total
>-

$ 146.91
$ 8.81

155.72

$95.96
$33.00
$17.95
$0

Step 4. Type "RUN CIIIII" again and enter your own values.
Enter a "0" to total your entries and end the program. (Note
that this simple program will not print trailing zeros after
the decimal point.)

Multiple StateIIlents

You can assign more than one statement for a single line
number by separating statements on a line with the backs
lash ("\") character.

Example:

10 DIM A$[801, B$[80] \ A$~"HI" \ B$="BYE" \ PRINTA$;B$

Entering Programs from Cartridge Tape

A program stored on a cartridge tape can be entered by
placing the tape in the left drive and typing GETCIIIII. This
causes the current file on the tape to be loaded into memory.
If your program is not in the first file on the tape, position
the tape to the proper file before entering the GET com
mand.

Example: Load a program stored on file 3 of a cartridge tape.

COMMAND, F7, F7, 3, F7, CIIIII
GET a

You can also load programs from the right tape drive. The
left tape is selected unless you tell BASIC to read from the
right tape drive. Entering GET "RT APE" would cause the
program to be loaded from the right tape drive.

If you select the wrong tape drive you will get a NO TAPE
error message if there is no tape in the selected drive. If
there is a tape present, whatever is on the tape will be loaded
as if it were your program.

Refer to the terminal User's Manual for additional informa
tion on locating files and selecting tape drives.

1-5

Example: Write a program to compute and plot SIN(X)/X
for values of X ranging from 0 to 40. Store and retreive the
program using a cartridge tape.

Step 1. Insert a tape in the right tape slot. Make sure the tab
on the tape cartridge is set to the RECORD position.

Step 2. Enter the BASIC interpreter. Type SCR ... This
will clear anny old programs from the BASIC workspace.
Enter the following program statements:

>10 REM Plot SIN(XJ/X
>20 PLOTR
30 LOCATE (100,180,50,100)
40 SCALE (0,50,-1,1)
50 FXD (2,2)
60 LGRID (5,.2,0,0,2,2)
70 FOR X=.01 to 40 STEP .1
80 PLOT (X,SIN(X)/X)
90 NEXT X

Step 3. Record the program on the right tape by entering
SAVE' 'R' , ... Press:

COMMAND, REWIND, RTAPE, ..

This will place a file mark on the tape and postion it at the
beginning of the program. Press the COMMAND key.

Step 4. Type "SCR"" to clear the SIN(X)/X program from
the terminal. Type LIST" to show that the program is no
longer present.

Step 5. Load the SIN(X)/X program by entering GET "R"
... The program will be read into the workspace.

Step 6. Type "RUN "". The program will execute and give
the following display:

0.80

(1.40

0.00

-0.4[1

-0.80

1-6

e;,
~I

e;,
e;,

e;,

~I

~

CI
(.J

~ 1::;:1 1:::-
(';;I e;, e;,

I~ e;, ~
('! V W,

Loading Programs Using the READ key

Programs can also be read from a tape to the display using
the READ key Of COpy command. When this is done the
program is not automatically entered as a program. To enter
the program you must position the cursor in each line and
press". This will cause the current line to be entered as a
pfogram line. This technique is normally used only to make
patches to existing programs.

Entering Programs From A Computer

Programs can be transfered from a computer to the termi
nal's BASIC interpreter either directly or indirectly. To
transfer programs directly, simply access the terminal's BA
SIC interpreter and then have the computer list the pro
gram to the terminal. The exact procedure will vary depend
ing on your computer system but it will be similar to the
following:

1. Log onto your computer system.

2. Run the program or utility that is to transfer the program
listing. This may be an editor, file transfer program, or a
BASIC interpreter.

3. Enter the command that will cause the transfer or listing
to take place, but do not enter in the final carriage return or
other terminating character. This will keep your command
from executing.

4. Release the REMOTE key. This will return the terminal
to LOCAL operation .

5. Access the terminal's BASIC interpreter. (COMMAND, BA

SIC".)

6. Enter the SCR command to clear the terminal workspace.

7. Press the REMOTE key down and enter the carriage
return or other terminating character to complete your com
puter command. This will cause your program to be listed to
the terminal screen and to be entered into the terminal's
BASIC workspace.

You can then release the REMOTE key (LOCAL oper
ation), and exit terminal BASIC. Once the terminal has
been returned to normal operation, again press the RE
MOTE key and log off of the computer system. Your pro
gram is still present in your terminal. You can run the pro
gram by accessing terminal BASIC and entering the RUN
command.

Programs can also be loaded indirectly by using a computer
editor, utility program, Of BASIC interpreter to list the pro
gram after placing the terminal in "Data Logging" mode.
This will cause the program to be recorded onto a cartridge
tape. The tape can then be entered using the procedures
explained under "Entering A Program From A Cartridge
Tape". Refer to the Terminal User's Manual for an explain
ation of Data Logging.

Editing Programs

It is very easy to make changes to a program stored in the
terminal. You can use any of the normal terminal editing
features:

• character delete • line delete
• character insert • line insert
• character overstrike • line replace

To change a statement, simply make the needed modifica
tions to the statement on the display and press the. key.
The new line will be entered, replacing the old line. (If you
wish to retype the entire line you can do this as well.)

Remember that when you press the. key the entire line is
read. Make sure that the line you enter contains only those
characters that you want read. If there are any extra charac
ters displayed in the line, they will be read also and may
cause an error.

Example: Using the plot SIN(X)/X program, change the
step size to .4.

Step 1. List the program and move the cursor to the line
containing statement 70.

Step 2. Move the cursor to the step size (.1). The cursor
should be under the "I".

>70 FOR X=.01 TO 40 STEP .1

Step 3. Overstrike the "I" with a "4". The line should now
appear as follows:

>70 FOR X=.01 TO 40 STEP .4

Step 4. Press the. key. This will cause the edited line to be
entered, replacing the old statement 70. You can now rerun
the program with the new step size by typing RUN •.

Running Programs

To run a program, enter "RUN" followed by •. Syntax and
other programming errors are checked at the time a program
is run. If an error is detected in your program, a message will
be displayed to inform you of the cause of the error. A list of
error messages is given in Appendix E.

If the terminal is set for local operation (REMOTE key
the BASIC program cannot request input from, or print
data to, the datacomm line using the terminal's file system
(PRINT ft, LlNPUT ft, etc.).

If the terminal is set for remote operation, the BASIC pro
gram can interact with the host computer, requesting input
and sending output.

A running BASIC program can be halted by entering the
terminal break character (normally CONTROL A). This
causes a program break. You can then display and make
changes to the values of variables using "direct mode" tech
niques. You can resume program execution from the point
at which the break occurred by entering the GO command.

When a program finishes execution (STOP or END state
ment), the final values assigned to program variables are
available for direct computation. The values for these varia
bles are lost when you enter the next RUN command or
modify a program statement.

Saving Programs

After generating or modifying your program, you can save it
on a cartridge tape. The SAVE command is used to store a
copy of the current BASIC program on the destination de
vice.

Step 1. Insert a cartridge tape in either tape slot. Make sure
the tab on the cartridge is in the record position.

Step 2. Assign the tape as the destination device.

COMMAND, ASSIGN, D:LTAPE or D:RTAPE, •

Step 3. Type "SAVE" followed by •. Your program will be
stored on the cartridge tape. Since the program is copied
from your workspace and not from the display, you do not
need to list your program or modify the display before sav
ing your program.

Using An Execute File
You can control the loading and execution of a BASIC pro
gram using a terminal Execute File. The Execute File can
contain terminal and BASIC commands as well as a BASIC
program. (Additional information on Execute Files is given
in the terminal User's Manual, part number 02647-90001.)
The following is a simple example of an Execute File.

Step 1. Record the following on a tape cartridge in the left
tape slot:

BASIC
GET "L"
10 COMMAND "SUSPEND COMMAND FILE"
20 INPUT I
30 IF 1=0 THEN 60
40 PRINT SQR(J)
50 GOTO 20
60 COMMAND "RESUME COMMAND FILE"
70 END
RUN
EX IT

Step 2. Rewind the tape.

3. Press the COMMAND key and enter "EXECUTE L
III". This will cause the terminal command "BASIC" to be
read from the left tape. The commands that follow are then
acted on by the BASIC interpreter. The GET "L" command
causes BASIC to load the program from the left tape. The
RUN command starts program execution. The "SUS
PEND" in statement 10 turns off the command file execu
tion while the BASIC program is running. You can now
enter any positive number and the program will print the
square root of the number.

Step 4. To end the program, enter O. This causes statement
60 to be executed. Statement 60 turns on the command file
and reads the EXIT command from the tape. You then
leave BASIC and return to normal terminal operation.

1-7

Remote Operation
Refer to the description ofthe ASSIGN statement for infor
mation on remote operation.

Sample Program Session
The following paragraphs will show you how to enter and
run BASIC programs. These examples do not cover all of the
terminal's programming features, nor do they teach you how
to write a BASIC program. You should have read the termi
nal User's Manual and be familiar with the terminal key
board.

The remainder of this manual assumes that you have exper
ience with a high level programming language such as BA
SIC or FORTRAN. If you were able to read and understand
the programsJisted above, then you will be able to under
stand the following program. If not, you should probably
first read a manual or text intended for beginning BASIC
programmers.

Following the examples is a list of some of the BASIC state
ments and functions. If you are an experienced BASIC pro
grammer and are developing fairly simple programs, this
first section may contain all the information that you need.
Refer to other sections of this manual for more detailed
explanations of all of the BASIC commands, statements,
and functions available in the terminal.

Access BASIC and clear the work area with the SCR com
mand.

COMMAND, BASIC III
SCR III

Enter the "Weekly Pay Calculator" program shown earlier
in this section under "Programs". Figure 1-3 shows how the
display should appear after the sample program has been
entered.

HP TERMINAL BASIC -- REV. A-1850-42
7967 BYTES DISPLAY MEMORY
9798 BYTES WORK SPACE

>SCR
10 PRINT "WEEKLY PAY CALCULATOR"
20 INPUT Hours,Wage
30 IF Hours = 0 THEN STOP
40 LET Pay • Hours * Wage
50 PRINT Hours;"hours at $";Wage;"per hour
>60 GOTO 20

Figure 1-3. Weekly Pay Calculator Program.

1-8

$";Pay

Once you have loaded the sample program, enter "RUN III".
This will cause the program to be executed. If you have
entered the sample "Weekly Pay Calculator" program prop
erly, the screen will appear as shown:

>run III
WEEKLY PAY CALCULATOR
?

Enter 40 for the number of hours worked and 3.00 for the
hourly wage.

? 40,3 III
40 hours at $ 3 per hour c $ 120

?

Figure 1-4 shows how the screen might look after execution
of the sample program. The number of hours entered first
was 40 and the hourly wage was 3.00. The second time
around use 20 for the number of hours and an hourly wage of
3.25.

? 20,3.25 III
20 hours at $ 3.25 per hour = $ 65

?

If you enter 0 as the number of hours, the program will stop
and control will return to the BASIC interpreter.

?O,O III
>

The program that just executed is displayed at the top of the
screen. The program dialog is on the next few lines and the
BASIC prompt ("> ") is in the last line.

If your program has run successfully:

1) Place a scratch or blank tape in the right tape drive. Make
sure that the record tab on the tape is set to the left. 2) Enter
SA VEIli. This will record a copy of your program. 3) Enter
COMMAND, REWIND, R TAPE, III. This writes a file
mark and rewinds the tape.

4) Enter COMMAND to close the Command channel and
then Enter EXITIll. This wili end the BASIC Interpreter
and return the terminal to normal operation.

This takes you back to figure 1-2. The program is now
stored and may be loaded again with the GET command. If
you do not want to rerun this program, you can clear the
program copy in terminal memory by entering the command
SCRATCH while you are in the BASIC Interpreter. If you
do not clear the program, it will still be in the workspace the
next time you enter BASIC. This may interfere with any
new program you might want to run.

Exiting BASIC
To return to normal terminal operation, type "E X IT _".

Pressing RESET, RESET (a full reset) will also return the
terminal to normal operation.

If a single RESET (soft reset) is used, you will enter the
command mode of BASIC. If you have entered a BASIC
program, it will remain in the BASIC workspace but all
program variables will be set to zero.

If you enter a program and then leave BASIC without
scratching or deleting the program, it will still be there if you
re-enter BASIC at a later time. If you turn the terminal off,
your program will be lost along with the BASIC interpreter.

Direct Computation
Terminal BASIC can be used for direct computation with
out the need for a program. Numeric operations can be
performed by entering a "?" followed by a numeric expres
sion. Entering most BASIC expressions or statements with
out a statement number will cause the operation to be ex
ecuted as soon as the_ key is pressed.

Example: Calculate (2*(4+2):1).

?2*(4+2)A3 _
432

Example: Set X=3, Y=-8*X, and print the absolute value
ofX*Y.

LET X=3 _
LET Y=-S*X _
PRINT ABS(X*Y) _
72

The following statements cannot be used in direct computa
tion:

CALL
DATA
FOR
GOSUB
GOTO

IMAGE
ON
NEXT
READ
RESTORE

RESUME
RETURN
SUB
SUBEND
WAKEUP

Note that when variables are assigned values using the LET
statement, the values are not displayed. Only a PRINT
statement or expression evaluation causes the output to be
displayed. Statements or expressions entered without line
numbers are not stored. Values assigned to variables are lost
if a program is subsequently run or if BASIC is exited.

You can pass direct computation values to your program by
using the GO command to resume execution of a program
that has been interupted by the break character or a STOP
statement.

This allows you to run a program, interrupt the program,
print out program variable values, change the values of the
variables, and then resume program execution with the new
variable values.

You cannot assign a value to a variable using direct compu
tation and pass it to a program run afterward (using the
RUN command).

Partial List of BASIC Statements

Table 1-1 contains a list of some of the BASIC statements
and functions.

1-9

1-10

Table 1-1. Summary of Elementary BASIC Statements and Functions.

DATA

DIM

END

FOR ... NEXT

GOSUB

GOTO

IF ... THEN ... ELSE

IMAGE

INPUT

LET

LINPUT

ON ... GOSUB

ON ... GOTO

PRINT

PRINT USING

READ

REM

RESTORE

RETURN

STOP

Stores data to be read by READ statements.

Specifies length of strings and dimensions of
arrays.

10 DATA 5, -1.004, 7E55,' 'Mary"

10DIMAH25J,N(10,2)

Terminates execution of a program. 10 END

Allows repetition of the group of statements be-
tween FOR and NEXT. 10 FOR I = 1 TO 5

100NEXTI

Transfers to the subroutine specified by the line
number. 10 GOSUB 300

Transfers to the specified statement label. 10 GOTO 90

Evaluates a conditional expression and specifies
the action(s) to be taken if the condition is true.
Optionally you can specify the action(s) to be
taken if the condition is false. 10 I FA = B THEN PR I NT "DONE' ,

Provides format specification for PRINT US-
ING statements. 10 I MAGE" JANUARY" / / / xc 3A), "$" DD. DD

Requests data input from the keyboard. 10 INPUT X, Y$, Z

Assigns a value to a variable. 10 LET X = 9999

Requests a line of input from the keyboard and
assigns it to a string variable. 10 L I NP UT A $

Multiple branch to subroutines. 10 ON X + 1'1 GOSUB 3000,4000 ,5000

Multiple branch to statements. 10 ON X + 1'1 GOTO 300,350

Prints output to the terminal screen. 1 0 P R I NT X, Y $, Z

Prints output to the terminal screen using a a
specified format. 10 PRINT USING "3A,3X,3A" ;A$,B$

Reads data from DATA statements. 10 READ X, Y$,Z

Allows you to place remarks within a program
listing. 10 REM anythi ng you want

Resets data pointer to the specified DATA
statement. 10 RESTORE 1

Returns control from a subroutine to the state-
ment immediately following the GOSUB. 10 RETURN

Stops program. 10 STOP

Functions

ABS(X)

ATN(X)

COS (X)

EXP(X)

INT(X)

LOG (X)

RND

SGN(X)

SIN(X)

SQR(X)

TAN(X)

Absolute value of X.

Arctangent of X in radians.

Cosine of X in radians.

E raised to the power X.

Largest integer < = X.

Natural logarithm of X; X>O.

The next pseudo-random number between 0
and 1.

The sign of X; -1 if X <0,0 if X=O, and + 1 if
XO.

The sine of X in radians.

The positive square root of X.

The tangent of X in radians.

Operations: + - * / A = MOD DIV

Relations: < > <= = <> =

Is That All There Is?
This section has discussed only a few of the features avail
able in Terminal BASIC. The remainder of this manual
explains the many other capabilities available.

10 FOR 1=1 TO 11
20 READ Ke , Code
30 KEYCDE(2,Ke ,Code)
40 NEXT 1
50 DATA 86,46,78,48,6,49,14,50,22,51,7,52
60 DATA 15,53,23,54,95,55,87,56,79,57 • You can for instance, reconfigure the keyboard so that one

or all of the keys will generate a different character. As an
example, you can change the graphics control keys
(ZOOM, CURSOR FAST, etc.) to a numeric keypad
(0-9,.) with the following statements;

When this routine is executed, the graphics keys will gener
ate the same characters as a numeric keypad whenever the
right shift key is pressed at the same time as a graphic
control key.

1-11

• You can control all of the graphics capabilities of the
terminal with a high level graphics language. For exam
ple, the single statement LGRID (5,5,0,0,2,2) can be used
to generate a labled grid.

LGRID (5,5,0,0,2,2)

• You can directly access peripheral equipment such as a
graphics digitizer to allow you to input coordinate data
or a graphic plotter to output data. The following pro
gram generates a bar code pattern on a printer.

10 ASSIGN "HP-IBI4" TO 11
20 FOR 1 .. 1 TO 50

38

28

18

9

-19

-29

-39

30 PRINT 11;"Ec~b10W";RPT$(CHR$(90).10);
40 NEXT I

• You can put your program to "sleep" and resume normal
terminal operation until a special key is struck at which
time your program will "wakeup", perform some function,
and then go back to "sleep".

1-12

. ,

.

.

. ,

'! ..

I
III 1,1

I ''''Mil
L..---___________ D_AT_A----J.I II I

The statements in Terminal BASIC use data in the form of
decimal numbers, character strings, and logical values. Any
of these types of data can be combined into expressions. The
data can be a specific value or constant. It may also be
referred to by name as a variable. A constant has only one
value while a variable can be assigned different values at
different times.

CONSTANTS

Terminal BASIC programs can be used in a variety of appli
cations such as data entry and retrieval, scientific and busi
ness calculations, and data display. Each application has its
own requirements for the data it uses. Some programs work
only with numeric data while others use only alphabetic
data. Some programs perform calculations on very large
numbers, while others use small numbers with many digits
of precision. In the Terminal BASIC language, you can
specify the types of data you are going to use in a program or
you can simply let the program use the standard (default)
types. The purpose of this section is to describe the types of
data that can be processed by BASIC and to introduce files
and arrays, two features of BASIC designed to help organize
and manipulate large sets of data.

BASIC uses two major classes of data:

• numeric data
• string data

A numeric data item can be any number between 10-38 and
10+38, such as: 34, -22.999, 897564, and .0000001. Numbers
that exceed 10+38 are not accepted. Numbers that are small
er than 10-38 are converted to O. The precision of numbers is
6 digits for numbers of type short and 16 digits for numbers
of type long. Numbers that exceed the available precision
are rounded. A description of number types is given in the
following paragraphs.

A string data item is a sequence of characters, such as:

THIS IS A STRING
246 Washington Blvd.
#X!* JULY 4, 2076

The digits 0, 1, ... 9 are included in the list. The difference
between the numeric digits 0, 1, ... 9 and the corresponding
ASCII characters is that arithmetic calculations can be per
formed only on the numeric digits. Arithmetic calculations
cannot be performed on digits that are a part of strings.
Typical data items that contain digits that are not used in
arithmetic calculations are addresses, zip codes, part num
bers, and dates. Note that it is easy to convert strings of
numeric characters to numeric data using the VAL function
(see Section 12).

The characters used by the terminal consist of the 128
ASCII (American Standard Code for Information Inter-
change) characters. The ASCII character set is made up of
both printing and control characters. Table 2-1 contains a
list of the ASCII characters. Note that a space" "is a valid
character.

Table 2-1. List of ASCII Characters

ttl @ \

\ A a
~ .. B b
fx I C c
Er $ D d
~ X E e
4,.: & F f
I). I G 9
~ (H h
'\) I i
'-F I- J j
~ + K k
FF L 1
~ M m
~ N n
~ I 0 0

't 0 P P
°1 1 Q q
11 i) R r '-

~ 3 S 5

~ 4 T t
'1.: 5 U u
!i,- 6 V v
Fa 7 W w
Ii. 8 X x
~ 9 y Y
Sa Z z
Fr [{
FS < \
'\ =] }

Is } A
"-

~ ? •
2-1

NUMERIC DATA
BASIC uses three types of numeric values: INTEGER,
SHORT, and LONG. The types used in a program affect the
speed of execution, the precision of the results, and the
amount of space needed to store the values. If you do not
specify the type(s), then SHORT values are assumed. Arith
metic with LONG values provides the maximum possible
range of values and allows up to 16 decimal places, but
execution speed is slower than for SHORT values. Also,
LONG values occupy more storage space than INTEGER or
SHORT values.

The following paragraphs describe characteristics of the
various numeric data types to help you determine the types
most appropriate for your application. Once you have de
cided, you can use type declaration statements to specify the
data types in your program.

r-------- CAUTION ----------,
When operators or numeric functions other
than +, -, I, or * are used, the operands are
converted to type Short before the calculation
is made. This may cause the result to vary
from Long precision results.

Integers

Range: -32768 through 32767 (including 0)
Precision: not applicable
Size: 2 bytes

INTEGERS are positive or negative whole numbers and can
range from -32768 to 32767 including O. They do not allow
the use of a decimal point or a comma. If you enter a decimal
number (i.e. 10.3) in response to a program request for an
INTEGER, the input will be rounded to an INTEGER.
When INTEGER values are required in a program calcula
tion, BASIC will automatically round the data to the nearest
integer value before performing the calculation.

The following are INTEGER values:
5600 -78 32767

The following are not INTEGER values because they in
clude decimal positions:
5.25 -7.999999 1.0 0.00001 -0.175

The following are not INTEGER values because they are
outside the range of INTEGER values:
-32769 32768 100000 -40000

INTEGER values are generally used in programs that in
volve counting such as keeping track of the number uf items
in inventory or assigning employee numbers. The execution
speed of arithmetic operations is faster with INTEGER val
ues than with any other numeric data type.

Note that when values exceed 1000, commas CAN NOT be
used to separate groups of three digits. For instance, the
value ten thousand must be entered as 10000 rather than
10,000. Commas are used to separate one data item from
another, so 10,000 would be read by BASIC as two values: 10
and 000.

2-2

Short

Range: 10.38 to 1038 (including 0)
Precision: 6 Significant Digits
Size: 4 bytes

Examples

The following are SHORT values:

0.1 -103.75 9.12345

32123.9 1.000000

-0.222333

3000000000

The following are not SHORT values because they require
more than six significant digits:

9.1234567 -0.2223334 2.0000001

The following are not SHORT values because they are out
side the range of SHORT values:

1.6E92 2.13E-41

SHORT values provide a much greater range than INTE
GER values and also allow for six significant digits of accu
racy in calculations. All values included in the ranges of
INTEGERs are also included in the range of SHORT val
ues. Arithmetic with SHORT values is somewhat slower
than with INTEGERs. SHORT values are useful for any
arithmetic calculations that require just a few decimal
places of accuracy.

Long

Range: 10-38 to 1038

Precision: 16 Significant Digits
Size: 8 bytes

LONG values offer much greater precision than SHORT
values. They also occupy twice as much storage space, and
execution speed with LONG values is considerably slower.
Note that SHORT values are included in the range of
LONGs.

The following can be LONG values:

0.1 -103.75 9.12345 9.1234567

-0.2223334 3000000000 3.14159

The following are not LONG values because they use more
decimal places than the LONG values allow (extra digit
postions will be rounded off):

1.12345678901234567 -255.000000000000000001

The following are not LONG values because they are out
side the range available for LONG values:

1.6E92 2.13E-41

E-Notation

BASIC represents very large and very small numbers in E
notation (similar to scientific notation). Numbers are
printed using E-notation when the number of digits needed
exceeds 16. Numeric values that exceed 16 digits of preci
sion or values of 10E38 or greater are represented as
9.999 ... E38. Values smaller than 1E-38 are represented as O.

Rather than print 17,000,000,000,000,000

You should use: 17E15 (17 x 1015)

Long Hand
Scientific Notation E-Notation

400,000,000,000,000,000,000,000 4 x 1023 4E23

0.0000000000000000235 2.35 x 10-17 2.35E-17

An implied 1 is not allowed, since E9 is a valid variable
name. Instead use 1E9.

Octal and Hexadecimal Data

The terminal will accept octal or hexadecimal data as input.
The data must be in the form ###Q or ###H. The input will
be automatically converted to a decimal equivalent before
being passed to your program.

Example: 377Q - OFFH = 255

This means that if your input data contains a "Q" or "H"
following the numeric value, you will not receive an error
message, and the data will not be interpreted as a decimal
number.

Example:

> 10 INPUT N
>20 PRINT N
>30 GOTO 10
>RUN ?10 _

10 ?10Q _
8
?10H _
16

Note that hexadecimal numbers must begin with a numeric
digit (eg. OFFH). If you attempt to enter a hexidecimal num
ber that begins with a letter, it will be seen as a variable
name (ABH • Abh).

STRING DATA
A string can be from 0 to 255 ASCII characters long. When
you use a string in a BASIC program, you must always
enclose it in quotation marks. The quotation marks around
the string are not considered part of the string. Any ASCII
character except for the double quotation mark and the
carriage return can be enclosed in quotation marks. To in
clude quotation marks or carriage returns in a string you
must use the CHR$ function (refer to Section 3). A detailed
description of strings is given in Section 7.

Examples

"THIS IS A STRING"

II,.X_!"

THIS IS A STRING

#X-!"

"Quote i5

"12.95"

Notes

This string is 16 characters long.

This string is 4 characters long.

This is a string of 4 blanks or space
characters.

This is the null string. The null
string has no characters. Its length
is O.

Invalid. Quotes are missing.

Invalid. End quotes are missing.

Invalid. Beginning quotes are
missing

Invalid. String cannot use a quote
character.

This string contains digits. It can
be converted to the equivalent nu
meric data 12.95 using the VAL
function. As shown it is a string of
five characters.

BASIC requires that all quote marks must occur in pairs,
even if they are in a REM statement or comment. If individ
ual quotes are required, the CHR$ function can be used to
generate a quote character.

VARIABLES
Variable names are used to represent numeric or string val
ues in a program. For instance, in the statement

10 LET Limit-999

"Limit" is the name of a variable and 999 is the value to be
assigned to Limit. Numeric values are represented by nu
meric variables; strings are represented by string variables.
Unlike constants, the value associated with a variable can
change during program execution. When referencing a vari
able the program will always use the current value of the
variable.

2-3

Numeric Variables

A numeric variable name is composed of an upper case let
ter, A through Z, which may be followed by any combination
of up to 14 digits, lower case letters, and the symbol "_"
(underscore). You may enter characters in upper or lower
case. BASIC will automatically convert them to the variable
name format (the first character uppercase and the remain
der lowercase). The variable name cannot start with a string
of characters used by BASIC to identify commands, state
ments, or functions (i.e. RUN, END, COS, etc.). A list of
these "reserved words" is given in table 2-2.

Examples

x

V2

A12345678901234

9X

Valid.

Valid.

Valid.

Valid.

Invalid. Digit must follow
letter.

If you use a numeric variable name that is longer than 15
characters, the extra characters are ignored. For instance,
the variables

are equivalent since only the first 15 characters of each are
retained.

Variable names are terminated by a blank or any disallowed
character (#, %, etc.).

Note: Array names and subscripted variables are special
kinds of variables. They are discussed in this section under
Arrays.

Numeric variables are set to 0 each time the RUN command is
executed.

Type Declaration Statements

A numeric variable is assumed to refer to a value in the
REAL range unless it appears in a type declaration state
ment. There are three forms of the type declaration state
ment corresponding to the three types of numeric variables.
These statements specify the range that a variable may
represent.

Example

10 INTEGER N,C

30 SHORT S,Tltle

40 LONG X,V,Z

2-4

Notes

Declares that the variables N
and C will have values in the
INTEGER range.

The variables S and Title are
type SHORT.

X,Y, and Z are type LONG.

Note that statement 30 is not necessary since any numeric
variables that do not appear in a type declaration statement
are assumed to be type SHORT. However, for documenta
tion purposes, it is recommended that all numeric variables
that are used in a program appear in type declaration
statements.

Type declaration statements are executable statements. If a
variable in a type declaration statement has been listed in a
previously executed type declaration statement or was used
in any previously executed statement, a REDECLARED
VARIABLE error will occur. This error will also occur if the
same type declaration statement is re-executed.

It may be helpful to use the program listed below to become
familiar with the different types of numeric data. Enter the
program by following the same steps used to enter the sam
ple program in Section 1. This program calculates the sum
(Sum) and the mean (Mean) of five numbers (A,B,C,D, and
E). When you enter RUN _, the program will execute.

A "? " character will be displayed and the program will wait
for you to enter the five numbers. If the values you provide
are not in the SHORT range, they are automatically con
verted to SHORT values before any calculations are per
formed, and the results are SHORT values.

Sample Program

10 REM THIS PROGRAM CALCULATES THE SUM AND
20 REM THE MEAN OF FIVE NUMBERS (A,B,C,D,E)
30 INPUT A,B,C,D,E
40 LET Sum=A+B+C+D+E
50 LET Mean = Sum/5
60 PRINT A,B,C,D,E
70 PRINT "SUM -";Sum
80 PRINT "MEAN -";Mean

RUN _

? 98,94,82,86,78
98 94

SUM • 438
MEAN· 87.6

RUN _

82 85

?1.234567,2.345678,3.456789,4.567890,5.678901

78

1.23457 2.34568 3.45679 4.56789 5.6789

SUM = 17.2838
MEAN = 3.45677

Now change the program by inserting a type declaration
statement as statement 25. For instance, what is the result if
you add this statement?

25 INTEGER A,B,C,D,E,Sum,Mean

Does the result change if statement 25 is

25 INTEGER Sum, Mean?

String Variables

A string variable name is formed by including a dollar sign
("$ ") as the last character of a valid numeric variable name.
String variable names are limited to 14 characters followed
by a "$". If more than 14 characters are used, BASIC will use
the first 14 characters and the "$ ". This means that "s t r i n g
number _ 11 $" and "s t r i ng_ number_ 12$" are both equiv
alent to "String_number$".

Examples

X$

Y8$

Stringvariable$

$X

String_variableS

Notes

Valid.

Valid.

Valid.

Valid.

Invalid. $ must come last.

Valid, but exceeds 15 charac
ter limit. Extra characters ig
nored, therefore this is the
same asString_variabl$.

Although string variable names are very similar to numeric
variable names, these two variable types are completely in
dependent of each other. For instance, the variable names
X8 and X8$ would both be allowed in the same program.
Section VII contains a detailed description of strings and
string functions.

DIM Statement

For string variables which will contain strings longer thar(i~)
characters, you must specify the string variable name and
the maximum length of the string, in brackets, in a DIM
statement.

Example

string

names~

10 DIM S$(251,C$(351
'y-""

maXlmum

length

This statement reserves data
space for a 25 character string
S$ and a 35 character string
C$.

A string variable defined by a DIM statement can contain a
string shorter than the length specified. However, if a string
is longer than the specified length, all extra characters to the
right are ignored (truncated).

Sample Program

10 DIM S$(251
20 S$ - "THIS STRING IS LONGER THAN 25 CHAR
ACTERS"
30 PRINT S$
40 END

RUN _

THIS STRING IS LONGER THA

A string variable that does not appear in a DIM statement is
assumed to have a maximum length of 18 characters. Thus,
string variables that will always contain strings shorter than
19 characters do not have to be dimensioned. For documen
tation purposes, however, it is recommended that you di
mension all string variables.

Sample Program

10 DIM A$(121 ,B$(51
20 LET AS-"STRING"
30 LET BS"STRING"
40 LET C$"STRING"
50 PRINT A$
60 PRINT
70 PRINT
80 END

RUN _

STRING
STRIN
STRING

B$
CS

Notes

Statement 10 reserves space
for a 12 character string A$
and a 5 character string B$.
The string C$, by default, has
a maximum length of 18
characters.

Notice that because the string
"STRING" is longer than the
5 character maximum speci
fied for B$, only the first five
characters of "STRING" are
printed.

DIM statements are executable statements. If a variable in a
DIM statement was used in a previously executed state
ment, a REDECLARED VARIABLE error will occur when
the DIM statement is executed. This error will also occur if
the DIM statement is re-executed.

2-5

ARRAYS AND SUBSCRIPTED
VARIABLES
Variable names can also refer to arrays of data. An array is
generally used for processing an entire set of data rather
than a single data item, but you can access an individual
data item within an array. The individual data items in
arrays are called array elements. Subscripted variables are
used to refer to individual array elements.

An array may have from 1 to 32 dimensions. Below are
examples of 1-, 2-, and 3-dimensional arrays. Arrays of four
or more dimensions are not so conveniently represented on
paper but they can be set up and manipulated easily in a
BASIC program. The complete description of how to use
arrays is in Section 6.

Examples

One-dimensional array:

1.5 2.3 3.4 4.7 10.7 .8 3.5 4.6 2.0 1.1 2.3

Two-dimensional array:

12.95
3.95

.80

12.95
3.50

.80

11. 50
3.50

.80

Two-dimensional array:

McConnol1
Stearne
Allan
Spencer
Wilson
Greene
Underwood
Olsen

Pat
Bi 11
Walter
Dave
Ed
Dave
Doug
Mary

11 .50
3.50

.80

11.50
3.50

.80

123-4577
890-2345
678-9023
456-7890
134-5788
901-2456
789-0123
456-7890

Three-dimensional array A(3,3,3):

2-6

123
456
789

012
345
678

987
654
321

11.50
3.00

.80

Palo Alto
Santa Clara
Saratoga
Cupertino
San Jose
Mountain View
Los Altos
Menlo Park

Subscripted variables are used to refer to individual ele
ments in an array. Elements in 2-dimensional and larger
arrays are identified by 2 or more subscripts, separated by
commas. For instance, A(2,3) is a subscripted variable that
refers to the element in row 2, column 3 of array A. The
subscripts can be numeric expressions, numeric variables,
or constants. The subscript is rounded to an integer if neces
sary.

String variables can also be subscripted. In this case the
subscripts select character positions from within the string.
For example, if A$="MORNING", then A$[5;1] ="1". Addi
tional information on strings and subscripted strings is giv
en in Section 7.

FILES
You will want to store large sets of data in files. Files allow
you to organize and store data in a manner that provides
access to individual items. The data in a file can be of a
single type or the file can contain many data types. The
amount of data that can be stored in a file is not limited by
BASIC. It is limited only by the amount of storage space
available on the system. A data file may be stored on a
cartridge tape or on a remote computer. Section 7 describes
the way files are created and accessed in BASIC.

Logical Values

When a variable or numeric expression is used as a logical
value, the variable or expression is evaluated as true if it is
non-zero and false if it is O. This means that -.1 for example
would evaluate to true.

Example:

10 FOR I = -3 TO 2
20 IF I THEN 50
30 PRINT "1=";1;" IS FALSE"
40 GOTO 60
50 PRINT "1=";1;" IS TRUE"
o NEXT I
RUN II1II
1=-3 IS TRUE
1=-2 IS TRUE
1=-1 IS TRUE
1= 0 IS FALSE
1= 1 I S TRUE
1= 2 I S TRUE

Note that if a noninteger data type is used, round off errors
may prevent you from obtaining exact values for variables.
In the above example, if a step size of .2 is used, round off
errors will produce a value for I of 3.8743E-07 instead of
zero. To avoid this type of error you should check for a range
of values that can serve as your 0". For example:

20 IF ABS(I».001 THEN 50

IBi't.lt' Operators, Functions and Expressions
'----____________ 1 III I

This section describes the various operations and functions
that can be performed on BASIC numeric and string data. It
includes four types of operators and five types of functions.
These operators and functions can be used to create expres
sions. Expressions are evaluated to obtain numbers, strings,
or logical values. Most applications will use only a small
subset of the available operators and functions.

Operators Functions

• Arithmetic • Numeric
• Relational • String
• Logical • Print
• String • Input/Output

• Other

OPERATORS
An operator indicates a mathematical or logical operation to
be performed on one or two values (operands) resulting in a
single value. The combination of one or two operands with
an operator is called an expression.

expre55ion

L10 + 5

operand I op~
operator

Expressions in BASIC are similar in form to normal algebra
ic expressions. This allows most arithmetic operations to be
programmed directly without changing their form.

The term operand can refer to a number, a string, or a
variable. Generally, an operator is between two operands
but an operator can also precede a single operand. For in
stance, the minus sign is an operator which indicates sub
traction when it appears between two operands (e.g., 512 -
88) and negation when it appears before a single operand
(e.g., -1).

Operators may be divided into four classes depending on the
kind of operation performed: arithmetic, string, relational,
and logical (Boolean).

r-------- CAUTION --------,
When operators or numeric functions other
than +, -, I, or * are used, the operands are
converted to type Short before the calculation
is made. This may cause the result to vary
from Long precision results.

Expressions

A - B
X + 1

-1

+ 2. 14

2.14

1'1$

"STRING"

(P+5)/27

(N-(R+5»-T

Notes

Strings or string variables can also be
considered expressions

P is a variable that must have been pre
viously assigned a value. 5 and 27 are con
stants. The slash is the divide operator.
Parentheses group the portions of the ex
pression to be evaluated first. Suppose
that the current value of P is 49. The ex
pression is then (49+5)/27 and evaluates
to 2.

N, R, and T are all numeric variables that
must have been previously assigned val
ues. The innermost parentheses are eval
uated first. Suppose that N is 20, R is 10,
and T is 5. The expression is (20-(10+5»-
5 and evaluates to 0.

Arithmetic Operators

The arithmetic operators are:

Operators Operations

add
subtract, negate

multiply
floating point divide

exponentiate
D I V integer divide

MOD modulo;
A MOD B= A -(B * INT(A/B))

Examples

10 + 5 = 15
10 - 5 = 5
-2

10 * 5 = 50
15/10 = 1.5
83 = 256
15 DIV 10 = 1
-15 DIV 10 = -1
38 MOD 8 = 6
-13 MOD 2 = -1
-13 MOD -2 = -1

Note that, unlike algebraic notation, implied multiplication
does not exist in BASIC. Thus, A x B must be written as
A * B rather than just AB. The operation of raising a num
ber to a power also requires an explicit operator. Thus AB is
written as A .. B.

3-1

There are two division operators: "I" and DIV. Division with
the "I" operator (called floating point division) results in a
value in the LONG range if either of the operands is type
LONG. Otherwise, the result will be a SHORT value. When
the DIV operator is used (integer division), the result is an
INTEGER value.

The operands for MOD and DIV are rounded to integers
before the operations are performed. This means that MOD
and DIV can only be used on numbers in the INTEGER
range of values.

Examples

3/2 - 1 .5
3 DIV 2 - 1

-10/5=-2.0
-10 DIV 5--2

9.999999999/1 • 9.999999999
9 • 999999999 D I V 1 - 1 0

The function INT(X) which is used to calculate A MOD B
returns the greatest integer less than or equal to X. So, using
the formula A MOD B = A - B * INT(AIB), we have:

38 MOD 6 38 - 6 • INT(38/6)
38 6· 6

- 38 - 36
- 2

-13 MOD 2 - -13 - 2 • INT(-13/2)
- -13 - 2 • -7
= -13 - (-14>
• 1

-13 MOD -2 - -13 - (-2) • INT(-13/-2)
-13 - (-2) • 6

- -13 - (-12)
= -1

Expressions with more than two values are evaluated ac
cording to the following hierarchy of operators:

A (highest)
Unary +,-
*, I
DIV
MOD
+, - (lowest)

Examples

5 + 6 • 7 - 5 + 42 - 47
5 • 6 + 7 - 30 + 7 - 37

If operators are at the same level, the order is from left to
right in the expression.

Examples

30 - 40 + 100 - -10 + 100 = 90
2 + 3-2 - 1 = 2 + 9 - 1 - 11 -

3-2

10

String Operators

The string operator "&" is used to combine two strings into
one. This is called string concatenation. For example, if A$
= "ABC" and B$ = "DEF", then A$ & B$ = "ABCDEF".
The characters in B$ immediately follow the characters in
A$.

Example:

10 AS-"TEST OF TERMINAL"
20 BS="COMPUTER"
30 CS-A$[1,8J&B$&" SYSTEM"
40 PRINT C$
RUN
TEST OF COMPUTER SYSTEM

Relational Operators

The relational operators are:

Operator Operations

< less than
) greater than

<- less than or equal to
)= greater than or equal to

equals
() not equal to

Example

A<B
A>B
A<=B
A>=B
A=B
A<>B

When relational operators are used in a numeric expression,
the value 1 is returned if the relation is found to be true; the
value 0 is returned if the relation is false. For instance, A =
B is evaluated as 1 if A and B are equal in value, or as 0 if
they are not equal. If A = I, B = 2, and C = 3, then (A * B) <
(A - C/3) is evaluated as 0 (false) because A * B = 2 which is
not less than A - C/3 (=0).

Parentheses can be used to override this order.

Examples

30 - (40 + 100) = 30 - 140 - -110
2 + 3.(2 - 1) = 2 + 3.(1) - 2 + 3 5
5 + 6 * 7 - 5 + 42 - 47
(5 + 6) * 7 - 11 • 7 - 77
14/7 • 614 = 2 • 6/4 • 12/4 • 3
14/(7 * 6)/4 • 14/42/4 • • 333 .•• /4 •. 083

When parentheses are nested, operations within the inner
most pair are performed first.

Examples

100/(4 + 6) • 2) • 100/(10 • 2) • 100/20 • 5
2 • ((3 + 4) - 5)16 • 2 • (7 - 5)/6 • 2 • 216 • 4/6 •. 6666.

If the two operands are of different numeric types, the oper
and with the lower type is converted to the higher type, the
operation is performed, and the result is in the range of the
higher type. The hierarchy of numeric types is:

LONG (highest)
SHORT
INTEGER (lowest)

Sample Program

10 INPUT A,B,C
20 Logic . CA * B) < C
30 IF Logic THEN 60
40 PRINT "CA * B) < C is false -logic";Logic
50 GOTO 70
60 PRINT "CA * B) < C is true -logic";Logic
70 END

RUN _

??3,4,5
CA * B) < C is false -logic 0

Relational operators are also used to compare strings.
Strings are compared according to their associated numeric
values in the ASCII code (see Appendix A). The strings are
compared character by character until a difference is found,
or until the end of a string is reached. If the ends of both
strings are found at the same time, the strings are equal. If
the end of one string is reached, then that string is an initial
substring of the other, and is considered to be less than the
other.

Examples Notes

"ABC" < "ABC" "ABC" is an initial substring of "ABC ".

"ABS" < "AB*"

"B" has a higher numeric equivalent
than" A" in the ASCII code.

"$" has a lower numeric equivalent than
"*" in the ASCII code.

The null string (....) is always less than every other string and
equal only to another null string.

More information on substrings is presented at the end of this
section.

Logical Operators

The logical operators (sometimes called Boolean operators)
are:

• AND
• OR
• NOT
• XOR
• CMP

These operators are most frequently used as part of an
IF ... THEN statement. The operands used with logical oper
ators are converted to type INTEGER before the logical
operators are used. If the operand is outside of the range of
INTEGERS (-32,768 to 32,776) an error will result.

The expressions that the logical operators compare can be
either relational or non-relational. If the expression is rela
tional (like A < B), whether it is true or false is determined
by the relation of the operands. If the expression is non
relational (like A), it is true if its arithmetic value is not zero
and false if its arithmetic value is zero.

The AND, OR, XOR, and CMP operators act on the oper
ands bit by bit. The operands are made up of a sign bit and
15 binary bits.

AND

AND compares two operands. The operands can be either
INTEGER expressions or relational expressions. The result
has both a numeric and a logical value. The numeric value of
the comparison is obtained by comparing the values of the
two operands, bit by bit. If both bits are 1 the resulting bit is
1. If either bit is 0 then the resulting bit is o. For example, if
operand A = 5 and operand B = 3, then A AND B = 1.

A = 5 = 0 0 0 0 0 000 0 0 0 0 0 1 0 1
B = 3 • 0 0 0 0 0 000 0 0 0 000 1 1

A AND B o 000 0 000 000 0 000 1 = 1

The logical value of the comparison is the same as all other
logical values, false (0) if the result is zero, and true (1) if the
result is non-zero.

OR

OR compares two operands. The operands can be either
INTEGER expressions or relational expressions. The result
has both a numeric and a logical value. The numeric value is
obtained by comparing the operands, bit by bit. If either bit
is 1 then the resulting bit is 1. If neither bit is 1 then the
resulting bit is O. For example, if A = 3 and B = 4, then A OR
B = 7.

A = 3 000 0 0 0 0 0 0 0 000 0 1 1
B = 4 ·00 000 0 0 0 0 0 0 0 0 1 0 0

A OR B • 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 • 7

The logical value of the comparison is the same as all other
logical values, false (0) if the result is zero, and true (1) if the
result is non-zero.

NOT

NOT changes only the logical value of an expression. If the
expression is true, NOT changes its logical value to false (0).
If the expression is false, NOT changes its logical value to
true (1). The NOT operator does not have a numeric value
as a result.

3-3

XOR

The XOR operator performs an exclusive OR of the oper
ands. The operation is applied bit by bit. If both bits are 1,
or if both bits are 0, the result is O. If the bits are not equal,
the result is 1. For example, if A = 7 and B = 2, then A XOR
B = 5.

A = 7
B = 2

A XoR B

0000000000000111
0000000000000010

0000000000000101=5

The logical value of the comparison is the same as all other
logical values, false (0) if the result is zero, and true (1) if the
result is non-zero.

CMP

The CMP operator complements the operand. The oper
ation is applied bit by bit. If a bit is 1, it results in O. If a bit is
0, it results in 1. For example, if A = 5, then CMP 5 = -6.

A 5 0000000000000101

CMP A 1111111111111010 -6

Examples:

Assume A = 0, B = 2, C = 4, and D = 4.

A < BAND C

A AND C D

BAND C

A OR B

NOT A

NOT B OR NOT C

D True because both relational expres
sions A < Band C = D are true.

False because the arithmetic value of
A equals zero (false).

False because Band C do not have
any common bits.

True because the arithmetic value of
B is not zero (so B is true).

Since A is zero (false), NOT A IS

true.

False. NOT B is false and NOT C is
false.

When arithmetic, relational, and logical operators appear in
a single numeric equation, the operations are performed
according to the following hierarchy:

" (highest)
unary +,
*,/
DIV
MOD
arithmetic +, - and & (string concatenation)
Relational (=,<,>,<=,>=,<»
NOT
CMP
AND
OR
XOR (lowest)

3-4

FUNCTIONS
A function is a routine that manipulates numeric or string
data and produces a numeric or string value as a result.
Some of the commonly used functions, such as the one to
compute the square root of a number are supplied as a part
of BASIC. A function is identified by a three or four charac
ter name followed by optional operands in parentheses.
Since a function results in a single value, it can be used in an
expression wherever a constant or_variable would be used.
Some common functions are:

SQRCX)

ABSCX)

Where X is a numeric expression that results in
a value or 0. When called the function returns
the positive square root of X. For example, if
N=2, SQR(N+2)=2.

Where X is a numeric expression. When called,
the function returns the absolute value of X.
For example, ABS(-33)=33.

Numeric Functions

Numeric functions return a numeric value as a result. The
standard functions are listed in table 3-3.

Table 3-3. Numeric Functions

Function

ABSCX)

ATN(x)

COSO)

EXPO)

INTO)

LOGO>

LONGO)

SGN<X)

SHORTeX>

SINO)

SQR(x)

TAN(X>

Description

Absolute value of X.

Arctangent of X; result expressed in radians.

Cosine of X; X expressed in radians.

E raised to the power X.

Largest integer < = X.

Natural logarithm; X>O.

X converted to LONG representation.

The sign of X; -1 if X <0, ° if X=O, and +1 if
X>O.

X converted to SHORT representation.

Sine of X; X expressed in radians.

The positive square root of X.

Tangent of X; X expressed in radians.

Each numeric function consists of a function name followed
by one parameter. The parameter may be a number (as in
statement 10 below), a numeric variable (statement 20), or a
numeric expression (statement 30). Since the result of a
numeric function is always a single value, a numeric func
tion can be used as an operand in an expression (statement
40), or as a parameter of a numeric function (statement 50).

Examples:

10 LET A = COS(O)

20 LET B ABS(A)

30 LET C SQR(A + B)

40 LET D

50 LET E ABS(SItHO»

A equals the cosine
of 0 = 1.

B equals the abso
lute value of 1 = 1.

C equals the square
root of (1 + 1)
1.414214.

D equals the sum of
COS (A) squared
plus SIN (A)
squared.

SIN(O) = 0; absolute
value of 0 = 0; there
fore E = O.

Other functions are used to manipulate strings or arrays and
to control the format of program output. A complete list of
the functions available in BASIC is given in Appendix D at
the back of this manual.

RANDOM NUMBERS

A pseudo random number generator, the RND function, is
provided for programs that perform simulations. Each time
the RND function is called, a random number between 0.0
and 1.0 is returned. The RND function is called a pseudo
random number generator because the same sequence of
random numbers ill generated each time the BASIC inter
preter is loaded.

Sample Program

5 DIM A(10)
10 FOR N = 1 TO 10
20 A(N) = RND
30 PRINT A(N)
40 NEXT N

RUN _

.8970581

.779265

.35281

.757005

.8578032

.7452424

.7903184

.507

. 11975

.859175

STRING FUNCTIONS

BASIC provides the following string functions:

,,cHR$(X)

RPT$(S$, Xl

TRIM$(S$)

UPCH5$)

VAL$(X)

Returns the ASCII character equivalent
of the numeric expression X. The value of
X must be between 0 and 255.
CHR$(65) = "A".

Repeats S$ X times.

Returns a string which is equal to S$ with
all leading and trailing blanks stripped
off.

Returns a string equivalent to S$ with
each of the characters shifted to upper
case.

Converts the value of the numeric expres
sion X to its corresponding string of AS
CII digits. VALH65} = "65".

The following set of functions have numeric function names
because the result of each is a number, not a string. They are
included here because they are used to process string data.

LEN(S$)

NUM(S$)

POS(SH ,S2$)

VAUS$)
~

Examples

Returns the number of ASCII characters
in the string S$.

Returns a numeric value between 0 and
255 corresponding to the first character of
thestringS$.NUM("l"} = 49.

Searches the string Sl$ for the first
occurrence of the string S2$. Returns
the starting index if found, otherwise
returns o.

Changes a string of ASCII digits (not
characters) to its corresponding numeric
representation. S$ may include a decimal
point.vAu"l") = 1.

RP'l'$, TRIM$, LEN, and POS are used to manipulate and
create strings:

10 LET 5$ = "REPEAT"
20 PRINT RPH(S$,3}

10 LET AS = " AB C
20 LET B$ = TRIM$(AO
30 PRINT B$

10 DIM AH201
20 LET A$ = "ABCD"
30 PRINT LEN(A$)

10 LET T$ = "Television"
20 LET V$ = "vision"
30 LET C = POS(T$,V$)

Output is:
REPEATREPEATREPEAT

Prints AB C (no leading or
trailing blanks)

Prints the number 4

C=5

3-5

NUM and CHR$ are used to go back and forth between an
ASCII character and its ASCII code value:

10 LET AS: CHRH 13)

20 PRINT A$;

10 LET A$: CHRH69)

20 PRINT A$

PRINT statement will
execute a carriage
return

Prints the letter E

10 PRINT "QUOTE";CHRH34);"MARK" Prints QUOTE"
MARK

10 PRINT NUMC"Egg")

1 0 B$: "Payroll"
20 PRINT NUM(B$[2J)

3-6

Prints the number 69
(ASCII numeric equiv
alent of capital E)

Prints the number 97.

V AL$ and VAL are used to go back and forth between
strings of ASCn digits (" 1234") and numeric values:

10 LET B$ = VAL$(COS(PI»

20 PRINT B$

5 LET PayS = "127.99"

10 LET D=VALCPay$)

10 LET T$ VALS(128)

Prints -1

D = 127.99

T$="128"

Statements 1
11111[,11.

~ __________ ---,.I IV I

This section introduces program statements and describes
some of the fundamental statement types. All programs are
made up of numbered statements. These statements are
executed by the BASIC Interpreter in numeric sequence to
perform the program task.

The statements presented in this section are:

REM
LET
INPUT
LINPUT
READ
DATA

RESTORE
PRINT
GOTO
ON ... GOTO
IF ... THEN

FOR and NEXT
GOSUB
RETURN
ON ... GOSUB
STOP and END

The REM statement and comments are useful for program
documentation. All programs should be carefully document
ed to make them easier to debug, use, and maintain. The
LET, INPUT, LINPUT, READ, DATA, and RESTORE
statements supply data for a program. The PRINT state
ment prints program results. The rest of the statements
described here are used to control the flow of a program by
branching, looping, and calling subroutines. Statements
that apply to more advanced programming techniques such
as formatted output, string operations, file operations, and
subprogramming are covered in separate sections.

The discussion of each statement begins with a description
of what the statement is used for and a few examples to
demonstrate how it can (or cannot) be used. In most cases,
this will be sufficient explanation to begin using the state
ment in your programs. The remainder of each discussion
describes the statement in more detail, often illustrating
special uses with more examples and sample programs.

REM Statement
The REM statement allows you to insert helpful notes and
messages in your program. These statements do not affect
the execution of the program (but they do take up storage
space). The name and purpose of the program, how to use it,
how certain parts of the program work, and expected results
are useful information to include in a program for documen
tation. If control is passed to the REM statement, execution
continues with the statement following the REM statement.
Examples:

10 REM YOU CAN SAY
20 REM --- ANYTHING YOU WANT
30 REM: TNAW UOY YAW YNA
40 REM IN A $&#*(@ REM STATEMENT

The message itself can contain any printable characters.

The exclamation mark (!) enables you to put comments on
the same line as a statement.

Examples:

10 LET A= BA2 ! SET A EQUAL TO B SQUARED
20 PRINT A ! PRINT THE VALUE, OF A
30 ! THE REMAINING STATEMENTS COMPUTE THE SIN FUNC

Any printable character may follow the letters REM in a
REM statement or the exclamation mark in other state
ments. Note that you cannot execute statements or func
tions that follow an exclamation mark ("!") in a line.

If quotes are used in the REM statement, they must be used
in pairs. You cannot use unmatched quotes in REM state
ments.

REM statements and comments following exclamation
marks are part of a BASIC program and are output when the
program is listed, displayed, saved, or recorded but they
have no effect on program execution.

LET Statement
The LET statement assigns a value to one or more variables.
The value can be an expression, constant, function, or an
other variable.

Examples:

\variable

\ va17

10 LET A = 0
20LETB=A
30 LET M$ = 1$

40 LET R = SIN(T)A2

SOLETX=X$

60 LET X $ = x

Sets A to O.
Sets B to the value of A.
Sets M$ to the value of T$.
Computes the value of the ex
pression SIN(T) A 2 and as
signs that value to R.
INVALID. Cannot assign a
string value to a numeric
variable.
INV ALID. Cannot assign a
numenc value to a string
variable.

Notice that the equals sign does not indicate equality, but is
a signal that the value on the right is to be assigned to the
variable on the left.

4-1

If the numeric type ofthe value on the right ofthe equal sign
is different than the numeric type of the variable on the left,
then when the value is assigned to the variable it is convert
ed to the same type as the variable. SHORT and LONG
values are rounded to the nearest whole number when being
converted to INTEGER.

Examples:

10 IIHEGER
20 LONG X
30 LET X 1.998

40 LET I = X
X has the LONG value 1.998.
The value of X is still 1.998
but the value assigned to I is
the INTEGER 2, that is,
1.998 converted to an
INTEGER.

For convenience LET may be omitted from the statement.
This is the only statement in the Basic language in which the
statement name is optional.

Examples:

10 A = 0
20 B = A
30 M$ = T$
40 R = SIN(T),,2

Multiple Assignment

Same
Same
Same
Same

as:
as:
as:
as:

10 LET A = 0
20 LET B = A
30 LET M$ = T$
40 LET R = SIN (T),,2

Multiple assignment allows you to assign a value to several
variables in a single LET statement. For example, the state
ment

30 LET A,B,C = 12

assigns the value 12 to the variables A, B, and C. The follow
ing two sets of statements are equivalent:

5 Pi=3.14 5 Pi=3.14
10 INTEGER I, J 10 INTEGER I, J
20 LET I = 0 20 LET I, J = 0
30 LET J = 0 30 X,J,Y = Pi
40 X Pi
50 J Pi
60 Y = Pi

Variables used in multiple assignment statements are as
signed values from left to right. This is very important when
using subscripted variables, particularly if the subscript
contains a variable that is assigned a new value in the same
statement.

Examples:

10 N=5
20 A(N),A(N+1>=7

30 N=3
40 A(N)=6
50 A(A(N» ,ACN)=7

4-2

Array element A(5) is as
signed the value 7 and then
element A(6) is assigned the
value 7.

Array element A(6) is set to 7
and then element A(3) is set
to 7.

Example:

10 N=2
20 A(N),N,A(N)=3
30PRINTA(2), N, A(3)

>RUN_

3 3 3

Relational Tests for Equality

The statement30 LET A = B = C is a relational test for equality
that sets the value of A to either 1 or 0 depending on whether
B = Cor B<>C. (See 'Relational Operators', Section 3.) A
conflict between multiple assignment and a relational test
for equality cannot occur since the multiple assignment
statement uses commas to separate variables. The examples
below illustrate multiple assignment statements and rela
tional tests for equality.

Examples:

10 A,B = C

20 A = B$ • C$

30 B$,C$ = D$

40A,B=C=D

50B$=A=B

Multiple assignment: B=C
and A=C.

Relational test for equality:
Does B$ = C$?

If YES, then A = 1;
if NO, then A = o.

This is not multiple assign
ment because a string value
cannot be assigned to a nu
meric variable.

Multiple assignment: C$=D$
and B$=D$.

Combination: Does C = D?
If YES, then B=l and A=l;
if NO, then B=O and A=O.

INV ALID. This cannot be
multiple assignment because
the numeric value of B cannot
be assigned to the string vari
able B$; nor can this be a rela
tional test for equality:

Does A = B?
If YES, ·then B$=l;

Invalid
if NO, then B$=O.

INPUT Statement
The INPUT statement allows you to enter data in a pro
gram while the program is running. The variables to be
input are listed in the INPUT statement, separated by com
mas. When an INPUT statement is executed, a question
mark (?) appears as a prompt on the display screen and the
program waits for you to type your input data. If more than
one data item is requested by a single INPUT statement,
the items must be input separated by commas. When you
have finished typing the input data, press theB key. If you
enter too many items, the message EXTRA'IGNORED will
be displayed in the message window. If you do not enter
enough items, a double question mark (??) will be displayed
as a prompt. You can then simply continue entering data.

If you enter string data when numeric data was requested,
or numeric data when string data was requested in the IN
PUT list, the message "REDO FROM START" will be dis
played. You must then re-enter all of the data items in the
INPUT list.

Examples:

100

110

varl~

INPUT A -~ ~./
INPUT C,D,S$

RUN B

45 B

1,2,CaliforniaB

A now equals 45.

C equals 1, D equals 2, and S$
equals California.

When data is read in, the input is taken from the line con
taining the cursor. All characters, including non-displaying
control characters, to the right of the "?" prompt are input.
This means that if additional characters are present on the
input line, perhaps from some previous operation, they will
also be input. These extra characters will probably result in
an error.

An INPUT statement causes the variables in the variable
list to be assigned, in order, to the values supplied from the
terminal during execution of the program.

Numeric values must be supplied for numeric variables; any
values are acceptable for string variables; numbers are read
as ASCII characters. Numeric data is automatically convert
ed to match the type of the variable to which it is assigned.

Example:

5 LONG S
10 INPUT I,N$,S,L$
20 PRINT III=";I,IIN$=u;NS,IIS=II;S,IIL$=";L$

RUN B

2236,JIM SoBEL,44,NEBRASKA B

1=2236 N$=JIM SOBEL S=44 l$=NEBRASKA

Strings may either be quoted or unquoted when supplied for
an INPUT statement. A quoted string may contain any
printable ASCII characters except the quote mark itself. An
unquoted string may contain any printable ASCII charac
ters except a quote mark, or a comma. Leading blanks are
ignored in an un quoted string. For example, using the'same
3-line program listed above, respond to the input prompt as
follows:

7, 6,,6, 44 , 00001

1=7 S=44 L$=00001

In this case, 6" 6 and 00001 are both unquoted strings.

You can have a message printed instead of the "?" prompt
by adding a quoted text string as the first item in the IN
PUT list. This can be used to tell the user what kind of data
is required. Also, if you wish to display no prompt at all, you
can do so by entering a null string ("") as the quoted mes
sage.

Rather than respond to a program requesting input, you can
enter the break character (normally Control-A) to inter
rupt (or terminate) the program.

Examples: 10 INPUT "Enter two numbers", A,B
20 PRINT "Their sum is";A+B

RUN B

Enter two numbers 2.5, 5 B
Their sum is 7.5

5 INTEGER X,L
10 INPUT "NO. OF CoPIES?",X
15 INPUT "NO. OF LINES?",L
20 PRINT X; "COPIES AT ";L;" LINES EACH WILL BE ";X*L;" LINES."

RUN B

NO. OF CoPIES?30 B
NO. OF LINES?700 B
30 COPIES AT 700 LINES EACH WILL BE 21000 LINES.

4-3

LINPUT Statement
The LINPUT statement reads an entire line of input from
the screen. When the LINPUT statement is executed, a
question mark (?) is displayed on the display screen and the
program waits for you to enter a line of characters. The line
is then assigned to a specified string variable. Any ASCII
character may be used including quotes and blanks.

Example:

string

variable --40 LINPUT Name$

50 LINPUTCode$(12,2)

Reads a line of input and as
signs it to the string variable
Name$.

Reads a line of input and as
signs it to the subscripted
string variable Code$(12,2)

You may have a special prompt printed on the input device
by inserting the prompt in quotes after the keyword LIN
PUT. The prompt and the string variable must be separated
by a comma.

Example:

prompt

~
70 LINPUT "Address: " , A$ Prints the prompt Ad-

dress: on the terminal
screen. When a line of
characters is entered,
those characters are as
signed to A$.

The string variable should be dimensioned large enough to
accept the expected line of input.

If extra characters are entered, they are ignored (truncated).
Sample Program

10 DIM A$[20], B$[5] A$ has a maximum length
of 20 characters; B$ has a
maxImum length of 5
characters.

20 LINPUT "Type 20 characters:

30 LINPUT "Type 5 characters:

40 PRINT A$

A$

B$

50 PRINT B$

RUNIIII!II

Type 20 characters: 123456789012345678901111!11

Type 5 characters: 12345678901111!11

12345678901234567890

12345

4-4

The last five characters in
put for B$ are ignored.

READ and DATA Statements
The READ statement reads data from DATA statements
and assigns the data to variables in a variable list. The
values in the variable list must be separated by commas.

Examples:

varia~

10 READ A

20 READ 1'1$

30READA,N$,T

Reads a new value for A.
Reads a new value for N$.
Reads values for A,N$, and T.

DATA statements contain both string and numeric data for
the READ statements. The values in the data list must be
separated by commas.

Examples:

data /

40 DATA 10

50 DATA "CALIFORNIA"

60 DATA 405, OREGON

Holds one numeric value, 10,
or one string value, "10".

Holds one string value,
"CALIFORNIA".

Holds two values, one nu
meric (405) and one string
("OREGON") or two string
values, "405" and
"OREGON".

Strings in DATA statements may be quoted or unquoted
except when the exclamation mark (!), comma (,), ASCII
control character, or non-ASCII character is used. Leading
spaces in an unquoted string are ignored. Because BASIC
treats anything following an exclamation mark as a com
ment, to use an exclamation mark as part of a string in a
DATA statement, the entire data item must be enclosed in
quotes. The comma, ASCII control characters, and non
ASCII characters can also be used by surrounding them
with quotes.

Example:

10 DATA 53, HELLO, GOODBYE ! TH I SIS A COMMENT
20 DATA 53, HELLO, GOODBYE,"!THIS IS NOT A COMMENT"

Statement 10 contains three data items: 53, "HELLO", and
"GOODBYE"; statement 20 contains a fourth item, the
string "!THIS IS NOT A COMMENT".

Interaction Between READ and DATA Statements

DATA statements may appear anywhere in a program.
They need not come before or after the READ statement
that references them. All of the data from every DATA
statement in a program is linked together to form a single
data list which acts effectively as an extended DATA state
ment. READ statements read data starting at the beginning
of this extended DATA statement.

At the beginning of program execution, the data pointer is
set to the beginning of the program. The first READ state
ment reads one data item for each variable in the read list.
As data items are assigned, the pointer is advanced through
the data list. The next READ statement begins reading data
where the previous READ statement left off. It is important
to have enough data in DATA statements to supply all the
variables in READ statements, otherwise an OUT OF
DATA message will be printed and the program will halt.
Extra data is ignored.

When DATA statements are used in subprograms, each sub
program maintains its own data pointer. This means that a
READ statement in the main program or subprogram will
only affect the data pointer in its own program unit. The
data pointer for a subprogram is reset to the first data item
each time the subprogram is entered. Additional informa
tion on subprograms is given in Section 8.

The following examples illustrate how READ and DATA
statements work.

Examples:

10 DATA 3,5,7
20 READ A,B,C
30 PRIt-IT A;B;C

RUt-la

3 5 7

5 It-ITEGER A,C
10 DATA 100
20 DATA FLORIDA
30 DATA 300
40 READ A,B$,C
50 PRIt-IT A,B$,C
60 READ D

RUt-la

100 FLORIDA 300
Et-ID OF DATA I t-I LINE 60 There is no data left for the

variable D.

It is also important that each variable in the READ state
ment be the same type as the corresponding value in the
data list. Any data is valid for a string variable; only numeric
data is valid for numeric variables.

5 SHORT A
10 DATA "1.0E20"
20 READ A
30 PRlt-IT A

RUt-la

TYPE MISMATCH It-I L1t-1E 20

5 LOt-lG A

1 ODATA 1. OE20, 1. OE20
20 READ A,A$
30 PRlt-IT A,A$
RUt-la

1E+20 1.0E20

A is a numeric variable, but
the only data item is a string.

The two data items appear
identical, however, the first is
read as a number and the sec
ond as a string of six
characters.

RESTORE Statement
The RESTORE statement is used to select the DATA state
ment that is to be read by the next READ statement. In its
simpler form, the RESTORE statement causes the next
data read to be the first value of the first DATA statement
in the program. The RESTORE statement restores or resets
a pointer to the next data item to be read by BASIC. It
affects only the data input using the READ statement. The
pointer position is unchanged by INPUT, LINPUT, LIN
PUT tt, or READ tt statements.

The RESTORE statement allows you to reread the same set
of data over and over again. It can also be used to change the
order in which DATA statements are accessed. You can
select the DATA statement to be used depending on a test
made by your program.

Example:

5 It-ITEGER A,B,C,D,X,Y,Z
10 DATA 1,2
20 DATA 3,4
30 READ A,B,C,D

40 RESTORE
50READX,Y,Z

60 PR I t-IT A; B; C; D; X; Y; Z

RUt-la

1234123

Statement 30 starts reading
at statement 10.

Statement 50 starts reading
at statement 10. If statement
40 were omitted, statement 50
would cause an END OF
DATA error.

Optionally you can specify a DATA statement line number
so that the next READ statement starts reading at the first
data item of the specified DATA statement. If the line num
ber referenced in the RESTORE statement is not a DATA
statement, the data pointer is advanced to the next DATA
statement in the program.

Example:

5 I~TEGER A,B,C,D,E,F,G
10 DATA 1,2
20 DATA 3,4
30 DATA 5,6
40 READ A,B,C Statement 40 starts reading

50 RESTORE 20

60 READ D

70 RESTORE 10

80 READ E, F ,G

90 PRlt-IT A;B;C;D;E;F;G

RUt-la

1233123

at statement 10.

Statement 60 starts reading
at statement 20.

Statement 80 starts reading
at statement 10.

4-5

Notice that in this example the statement

70 RESTORE 10

is equivalent to

70 RESTORE

because statement 10 is the first DATA statement in the
program.

A general program can be used and new data can be supplied
each time the program is run. This can be done by simply
typing in new data statements. In the following program,
statements 100 and 110 contain the data.

Example:
10 REM Average 6 numbers
20 FOR 1=1 TO 6
30 READ 1'1
40 S=S+N
50 NEXT I
60 PRINT "Average is ";5/6
70 RESTORE
80 READ A,B,C
90 PRINT "Average of the first 3 numbers is "l(A+B+C)/3
100 DATA 5.5,3.46,52
110 DATA 77.3,.89,50

>RUN _

Average is 31.525
Average of the first 3 numbers is 20.32

New data can be added as follows:

>100 DATA 17.6,.009,305.67
>110 DATA 59.75,175.6,33.59

When executed the following averages will be calculated:

>RUN _

Average is 98.7032
Average of the first 3 numbers is 107.76
>

PRINT Statement
The PRINT statement is used to display the results of a
program. Normally, results are displayed on the screen. If
you want to have data printed on another device, such as a
line printer or tape, you must use the ASSIGN and PRINT
statements described later in this manual.

Examples:

10 PRINT Prints a blank line.

20 PRINT A,B Prints the value of A, then the value of

30 PRINT A*B/6 Prints the value of the

40 PRINT "HELLO"lNS Prints HELLO followed by

The results to be displayed are specified in a print list. The
print list consists of expressions separated by commas or
semicolons. The items in the print list are printed in order
from left to right.

4-6

expression A*B/6.

the value of 1'1$ •

B.

When a comma separates two expressions, their values are
printed spaced across the screen (or page) in fields of 15
spaces each. When an item is longer than 15 characters the
extra characters are printed in the next field. Each line of
output has five 15 character fields.

When a semicolon separates two expressions in the print
list, the values are printed immediately adjacent to each
other on the output device. Print list items can be formatted
to output data in almost any configuration. Refer to the
PRINT USING and PRINT # USING statements for addi
tional information (Section 5).

Numbers are always printed with one trailing blank. Posi
tive numbers are printed with a leading blank.

Sample Program

10 PRINT "THIS","LINE","USES","COMMAS"
20 PRINT "THIS";"LINE";"USES";"SEMI-COLONS"
30 PRINT "THIS ";"LINE ";"ALSO ";"USES ";"SEMI-COLONS"
40 PRINT "SEMICOLONS";1;2;3
50 PRINT "COMMAS",1,2,3

RUN _

THIS LINE USES
THISLINEUSESSEMI-COLONS
THIS LINE ALSO USES SEMI-COLONS
SEMICOLONS 1 2 3
COMMAS 1 2

If there is not enough space to print all the items on one line,
remaining items are printed on the following line.

COMMAS

3

10 PRINT "USING ";"SEMIS ";"THIS ";"LINE ";"FITS ";"ON ";"ONE ";"LINE"
20 PRINT "USING ","COMMAS ", "THIS ","LINE ","WILL ","NOT ","FIT"

RUN _

USING SEMIS THIS LINE FITS ON ONE LINE
USING COMMAS THIS
NOT FIT
THIS LINE ALSO USES SEMI-COLONS
SEMICOLONS 1 2 3
COMMAS 1 2

If the last character in a PRINT statement is a comma or a
semicolon, the next PRINT statement continues printing on
that same line. Otherwise, the next PRINT statement be
gins a new line.

Sample Program

10 PRINT 1,2,3,
20 PRINT 4,5,6
30 PRINT 7,8,9;
40 PRINT 10,11,12

RUN _

1
6
7

2

8

3

9 10

LINE WILL

3

4 5

11 12

4-7

Print Functions

Any of the following print functions can be included in a
print list to control the format of a program's output:

• TAB
• SPA
• LIN

A print function is used in the print list just like a print list
item. Print functions can be used only in the PRINT state
ment. They cannot be used in IMAGE or PRINT USING
statements or in format specifications. (Refer to Section 5
for additional information on formatting output.)

In addition to the TAB, SPA, and LIN functions there are
several special terminal functions that allow you to position
the cursor. These MOVC functions are not present in most
BASIC interpreters and can only be used with the terminal's
display. The MOVC functions are described in Section 10.

TAB <X) - The TAB function prints spaces up to column X.

Example:

X must be a positive number or a numeric expres
sion that can be evaluated and then rounded to a
positive integer between a and 80. Values between
81 and 255 will be reduced to 80 if the TAB func
tion is used in a PRINT statement. If used ~n a
PRINT # statement the limit for X is 255. Values
greater than 255 or less than 0 will result in an
error.

10 PRINT TAB(25);"Mr. Ben Friedlander"

RUN _

Mr. Ben Friedlander

10 PRINT TAB(90);"Mr. Ben Friedlander"
20 PRINT TAB(180);"Mr. Ben Friedlander"

RUN _

r. Ben Friedlander

r. Ben Friedlander

M

M

If the value of X is less. than the current print position, the
TAB function is ignored.

SPA C X) - Blanks are printed for the number of spaces indi
cated by the numeric expression X. If the number
of spaces will not fit on the current line, the re
maining spaces are sent to the beginning of the
next line. For example, 10 PRINT A; SPA(10); B
prints the value of A, prints 10 additional blanks
and then prints the value of B.

4-8

Example:

5 REM: This program prints a 20 by 20 asterisk box
10 PRINT 11********************11
20 FOR I = 1 TO 18
30 PRINT "*";SPA(18);"*"
40 NEXT I
SO PRINT 11********************"

RUN _

*

*

*

*
*

*

*

>

LIN C X) - The number of lines specified by the numeric ex
pression X are advanced and the print position
returns to the left margin. If X is negative, then
ABS(X) lines are advanced but the horizontal
print position remains the same (the column re
mains the same instead of returning to the left
margin). Note that +0 and -0 both result in a
carriage return with no line feed.

Examples:

10 LET S$ = "SAN FRANCISCO"
20 PRINT S$,LIN(1),S$,LINC-1),S$,LINC-10),S$

RUN _

SAN FRANCISCO
SAN FRANCISCO

SAN FRANCISCO

SAN FRANCISCO

A typical use of the three print functions is to provide head
er information for a report:

40 PRINT TAB(10),"SUMMARY REPORT",::;PA(15),"PAGE 1"
50 PRINT LIN(3), "DETAIL LINES"

You can specify more or fewer digits, or delete the trailing
spaces after numbers, or otherwise overcome print conven
tions with the PRINT USING statement and the IMAGE
statement. Refer to Section 5 for the discussions of these
statements and for more information on formatted output.

GOTO and
ON ... GOTO STATEMENTS

The GOTO and ON ... GOTO statements are used to override
the normal sequential order of processing statements by
transfering control to a specified line number. The GOTO
statement can transfer control (branch) to a single line num
ber.

The ON<expression>GOTO<linelist> form of the GOTO
statement allows you to branch to one of several line num
bers. When the statement is executed, the expression (which
must be numeric) is evaluated and rounded to an integer.
This integer is used to select one of the line numbers from
the line list. A "I" selects the first line number in the line
list, a "2" selects the second line number, and so on. If the
expression evaluates to less than one or to greater than the
number of lines in the line list, control passes to the state
ment following the ON GOTO statement.

Examples:

label7

100 GOTO 10

110 GOTO 20

~expression -120 ON A*B GOTO 60,50,75

Transfers control to line num
ber 10.

Transfers control to line num
ber 20.

This is called a "computed
GOTO". The expression A *B
is evaluated and rounded to
the nearest integer. If the re
sulting value is 1, control is
transferred to line number 60;
if the value of A *B is 2, con
trol is transferred to line
number 50; if the value is 3,
control is transferred to line
number 75. If the value of the
expression is Jess than 1 or
greater than the number of
items in the line list, then pro
cessing continues with the fol
lowing line.

This example shows a simple GOTO in line 200 and a multi
branch, or computed GOTO in line 600.

100 LET I = 0
200 GOTO 600
300 PRINT I
400 REMARK THE VALUE OF I IS ZERO
500 LET I = 1+1
600 ON 1+1 GOTO 300,500,800
700 REM THE FINAL VALUE OF I IS 2
800 PRINT I

This program prints the initial value of I (0) and and the
final value of I (2).

If the GOTO statement references a non-existent line num
ber, an error will be displayed, and the program will halt. If
the GOTO statement references a non-executable state
ment such as REM, execution will continue with the state
ment following the non-executable statement.

Sample Program

10 FOR 1=0 TO 5 STEP .4
20 PRINT .. I = II 1 I ;
30 ON I GOTO 60,70,80
35 PRINT "I 15 too large or too small il

40 NEXT I
50 END
60 PRINT "
70 PRINT "
SO PRINT "

>RUN l1li
I = 0 I is
1= .4 I is
1= .8 Went
1= 1.2 Went
I = 1.6 Went
1= 2 Went
1= 2.4 Went
1= 2.S Went
1= 3.2 Went
I = 3.6 I is
1= 4 is
1= 4.4 is
1= 4.S is
>

Went
Went
Went

too
too
to 1
to 1
to 2
to 2
to 2
to 3
to 3
too
too
too
too

to 1"\GOTO 40
to 2"\GOTO 40
to 3"\GOTO 40

large
large

large
large
large
large

or too small
or too small

or too small
or too small
or too small
or too small

IF ... THEN ... ELSE Statement
The IF ... THEN statement allows you to branch on a condi
tion. When an IF ... THEN statement is executed, a logical
expression is tested. If the expression is TRUE (non-zero),
the program transfers control to a statement specified by
the line number or executes the specified statement.

Examples:

expr~ ~ label

20 IF~THEN 10 If the expression A=B is
TRUE, then control passes to
statement 10.

30IFA-B+CTHENA=B --
statement /

\\ -----40IFATHENPRINTB

If the expression A-B+C is
TRUE, then the value of B is
assigned to A. (Note: A-B+C
is a logical expression. See
Section 3.)

If A is TRUE, then the value
of B is printed.

If the expression following IF is FALSE, control passes to
the next sequential statement and the statement following
THEN is ignored.

The IF ... THEN ... ELSE form of the statement allows you to
select alternate statements based on a condition. If the con
dition is true, the statement following THEN is executed. If
the condition is false, the statement following ELSE is ex
ecuted.

4-9

All statements following the IF ... THEN statement in the
line are assumed to be a part of the IF ... THEN statement or
its conditions. A multiple statement following the THEN
will be executed only if the condition is true. A multiple
statement following the ELSE will be executed only if the
condition is false.

Example:

10 IF A+l>3 THEN PRINT 10 Y=2 ELSE PRINT 20 X=3
40 PRINT "DONE"

will execute as if it were written as follows:

10 IF A+l>3 THEN 30
20 PRINT 20 \ X=3 \ GOTO 40
30 PRINT 10 \ Y=2
40 PRINT "DONE"

The following BASIC statements should not be used in the
THEN or ELSE part of an IF statement:

DATA
IMAGE

REM
SUB

SUBEND
type declaration statements

The SUB statement will cause a program error and the
others may produce unanticipated results elsewhere in the
program.

Example:

10 INTEGER Hours,Over
20 LONG Pay

100 INPUT "Hours worked?";Hours
110 IF Hours >40 THEN 300
120 IF Hours = 0 THEN 330
130 PRINT "NO OVERTIME RETURNED"
140 GO TO 100

300 Over = Hours - 40
310 PRINT "OVERTIME PAY ="; Over*Pay*1.5
320 GOTO 100
330 REM - continue program

4-10

FOR and NEXT Statements
The FOR and NEXT statements allow you to cause a sec
tion of your program to execute more than once. The FOR
statement indicates the beginning of the group of state
ments that is to be repeated and the number of times to
repeat that group. The NEXT statement indicates the end
of the group. A group of statements bounded by a FOR
statement and its corresponding NEXT statement is called
a FOR loop. Although the IF and GOTO statements can
usually be used to perform the same type of looping as the
FOR and NEXT statements, the FOR and NEXT state
ments are normally easier to use and understand.

The start, end, and step size values can be expressions.

FOR loop

~
IOOP variable

~~:~tial
'" ~ue

10 FOR I = 1 TO

rfinal
value ~step value

N STEP 10

~IOOP variable

100 NEXT I

The FOR statement and the corresponding NEXT state
ment are linked together by the loop variable. The loop
variable must be a SHORT or INTEGER simple variable.
When the FOR loop is first executed, the loop variable is set
to an initial value. The loop is then executed. At the end of
the FOR loop, the loop variable is modified by a step value
and the value of the loop variable is tested against the final
value. The FOR loop repeats until the value of the loop
variable exceeds the final value. When the step value is
negative, the loop terminates when the loop variable is less
than the final value.

Note that the FOR loop is always executed at least once.

In the example above, the loop variable is I, and the initial
value of the loop variable is 1. After each execution of the
FOR loop, the value of the loop variable I is incremented by
the step value of 10. When the value of I becomes greater
than the final value, N, execution of the FOR loop ends. IfN
is less than the initial value, 1, the FOR loop executes only
once.

Example:

10 FOR J=N TO 1 STEP -1

100 NEXT J

In this example, the loop variable is being decremented, so
execution of the FOR loop ceases when the loop variable J
becomes less than 1.

The initial value, final value, and step value can be any valid
numeric expressions. When the FOR loop is first encoun
tered during program execution, the initial value, final val
ue, and step value are calculated and those values are used
throughout the execution of the FOR loop. For example,
assume that Y=10. The following FOR loop will execute 10
times, not 20 times.

100 FOR 1=1 TO Y STEP 1
110 Y=20
120 NEXT I

The value of the loop variable, however, can be changed
inside the loop. The following FOR loop will execute 1 time,
not 10.

100 FOR 1=1 TO 10 STEP 1
1101=10
120 NEXT I

The step value may be omitted in which case it is assumed to
be 1. For instance, the statement

100 FOR 1=1 TO 10 STEP 1

is equivalent to

100 FOR 1=1 TO 10

The following program uses a FOR. .. NEXT loop to calcu
late and print cumulative savings over a 10 year period on an
initial deposit of $lOOO at 4-1/2 j" interest compounded
annually.

Sample Program

20 LONG T,D
30 1=.045
40 T,D=1000
50 FOR Y=1 TO 10

T=I*T+T 60
70
80

PRINT "AFTER";Y;"YEARCS), TOTAL
NEXT Y

II;T

RUN _

AFTER 1 YEARCS), TOTAL 1044.999998062849
AFTER 2 YEARCS) , TOTAL 1092.024995951355
AFTER 3 YEARCS), TOTAL 1141.166118653748
AFTER 4 YEARCS}, TOTAL 1192.518591782556
AFTER 5 YEARCS), TOTAL 1246.181926102682
AFTER 6 YEARCS), TOTAL 1302.260110363261
AFTER 7 YEARCS), TOTAL 1360.861812806933
AFTER 8 YEARCS), TOTAL 1422.10059174705
AFTER 9 YEARCS), TOTAL 1486.095115620844
AFTER 10 YEARCS), TOTAL = 1552.969392944991
>

Multiple Loops

It is possible to have more than one FOR loop in a program.
If this is the case, the FOR loops must either be disjoint
(completely separated) or one must be nested within the
other. Following is an example of two disjoint FOR loops.

Sample Program

10 FOR 1=1 TO 5
20 PRINT I;
30 NEXT I
40 FOR 1=10 TO 100 STEP 20

50 PRINT I;
60 NEXT I

RUN _

2 3 4 5 10 30 50 70 90

Notice that the variable I is the loop variable in both of the
above FOR loops. When FOR loops are disjoint, identical
loop variables may be used. This next example shows a
nested FOR loop.

Sample Program

10 FOR 1=1 TO 5
20 FOR J=10 TO 100 STEP 20
30 PRINT I;J;
40 NEXT J
45 PRINT
50 NEXT I
RUN _

10 30 50 70 90

2 10 2 30 2 50 2 70 2 90

3 10 3 30 3 50 3 70 3 90

4 10 4 30 4 50 4 70 4 90

5 10 5 30 5 50 5 70 5 90

When FOR loops are nested one within the other, different
loop variables must be used. The J FOR loop here is nested
within the I FOR loop.

FOR loops that overlap are not permitted. The following is
an example of an overlapping FOR loop.

{

10 FOR 1=1 TO 10
20 FOR J=10 TO 100

INVALID 30 PRINT I
40 NEXT I
50 PRINT J
60 NEXT J

The J FOR loop begins inside the I FOR loop but ends
outside the I FOR loop, so the J FOR loop overlaps the I
FOR loop.

4-11

The following program uses multiple loops to calculate and
print the cumulative savings over a 10 year period on initial
deposits of $100 to $1000 at 4-1/2 ~'(' interest per year.

Sample Program

10 LET 1=.045
20 FOR D=100 TO 1000 STEP 100
30 PRINT "FOR AN INITIAL DEPOSIT OF $";D
40 LET T=D
50 FOR Y=1 TO 10

LET T=I*T+T 60
70
80
90

PRINT "AFTER";Y;"YEARCS). TOTAL =";T
NEXT Y

NEXT D

RUN III

FOR AN INITIAL DEPOSIT OF $ 100
AFTER 1 YEAR(S), TOTAL 104.5
AFTER 2 YEAR(S), TOTAL 109.203
AFTER 3 YEAR(S). TOTAL 114.117
AFTER 4 YEAR(S), TOTAL 119.252
AFTER 5 YEAR(S). TOTAL 124.618
AFTER 6 YEAR(S). TOTAL 130.226
AFTER 7 YEAR(S), TOTAL 136.086
AFTER 8 YEAR(S). TOTAL 142.21
AFTER 9 YEAR(S). TOTAL 148.61
AFTER 10 YEAR(S), TOTAL = 155.297

FOR AN INITIAL DEPOSIT OF $ 1000
AFTER 1 YEAR(S), TOTAL 1045
AFTER 2 YEAR(S), TOTAL 1092.03
AFTER 3 YEAR(S), TOTAL 1141.17
AFTER 4 YEAR(S). TOTAL 1192.52
AFTER 5 YEAR(S). TOTAL 1246.18
AFTER 6 YEAR(S), TOTAL 1302.26
AFTER 7 YEAR(S). TOTAL 1360.86
AFTER 8 YEAR(S), TOTAL 1422.1
AFTER 9 YEAR(S>. TOTAL 1486.1
AFTER 10 YEAR(S). TOTAL = 1552.97
>

FOR Loop Cautions

FOR loops must always be entered from the top of the loop,
that is, starting with the FOR statement. Never write a
program that contains a statement which branches into the
middle of a FOR loop. You may begin a FOR loop, branch
out of the loop, and come back. However, if you do you must
be sure that the loop variable has not been modified outside
of the loop. If it has, it will affect the operation of the loop. A
clever programmer may wish to take advantage of this fea
ture, but it is extremely difficult to debug clever programs.

For instance, in the following example, the loop variable is I
and there is also a variable I outside the loop at statement
200. Statement 200 will cause the program to loop indefi
nitely.

4-12

Example:

40 LET K=3
50 FOR 1=1 TO 10
60 IF I=K THEN 200 When I becomes 3, branch to

statement 200. Statement 200
changes the value of I to 2
then the program branches
back to statement 70. The
value of I becomes 3, state-
ment 60 branches to state-
ment 200 and the cycle re-
peats .,. and repeats ... and
repeats ...

70 NEXT
80 STOP

200 LET I = 1-1
210 GOTO 70

The best approach is to reserve loop variables for use within
the loops only, and not reference these variables outside of
the loop.

You can terminate a FOR loop by branching out of the loop
with a transfer statement such as GOTO or IF ... THEN. For
example, the following program is terminated as soon as the
value of T is greater than or equal to 1000. This program
finds the smallest amount, in multiples of $100, that must
be deposited if a person wants to have $1000 within 10 years.
Sample Program

10 LET 1=.045
20 FOR D=100 TO 1000 STEP 100
30 LET T-D
40 FOR Y=1 TO 10
50
60
70
80
85
90

LET T=I*T+T
IF T)=1000 THEN 85

NEXT Y
NEXT D
PRINT "FOR AN INITIAL DEPOSIT OF";D
PRINT "AFTER";Y;"YEAR(S), TOTAL=";T

RUN III

FOR AN INITIAL DEPOSIT OF

AFTER 9 YEAR(S), TOTAL= 1040.26

When you are using FOR loops, be careful to avoid endless
loops. An endless loop occurs when a statement within the
FOR loop causes the value of the loop variable to always be
smaller than the final value. The following is an example of a
FOR loop that will never end.

10 FOR X=1 TO 10
20 X=1
30 NEXT X

X is always reset to 1 in statement 20, so the loop will never
end.

GOSUB and

RETURN Statements
You may want to perform the same sequence of instructions
in many different places within the same program. Instead
of typing this block of statements every time you want to use
it, you can write it once as a subroutine and use GOSUB
statements to call the subroutine whenever you need it. (For
a long sequence of instructions, you should write a subpro
gram. See Section 8.) Figure 4-1 illustrates the general
structure of a program with a subroutine.

Since BASIC subroutines are simply a collection of state
ments, it is a good idea to place them where they will not be
executed accidentally. If you place a subroutine in the mid
dle of your program for example, you will need to use a
GOTO statement or some other technique to route the ex
ecution of your program around the subroutine. It is also
helpful to clearly describe the purpose of the subroutine
together with any parameters in REM statements at the
beginning of the subroutine. If the RETURN statement is
not the last statement in the subroutine it is also helpful to
indicate the last statement of the subroutine with a com
ment or remark.

subroutine

10
20
30
40
50 GDSUB 200

90 GDSUB 200

140 GDSUB 200

GDTD 310

300 RETURN
310

line number corresponding
to first statement of subrou
tine.

Figure A-I. Structure of a Program with a Subroutine

The GOSUB statement specifies the line number of the first
statement ofthe subroutine. The RETURN statement indi
cates the end of the subroutine. When a subroutine is fin
ished processing, control returns to the first statement fol
lowing the GOSUB statement. Note that the subroutine in
Figure 4-1 is preceded by a GOTO statement; a subroutine
should only be entered with GOSUB statements.

Example:

40 GOSUB 500 Transfers to subroutine at
statement 500.

50

500 REM,BEGIN SUBROUTINE

590 RETURN Transfers ,to statement 50
(the first statement following
the GOSUB statement).

The following program asks for the time of day. It uses a
subroutine to input the data values and to check if they are
valid. Note that the values used to check for valid input are
different for hours and minutes and are set before entering
the subroutine.

10 REM ... Set hour limit
12 Ulimit=23
14 PRINT "Enter Hour of Day"
16 GDSUB 44
18 Hours=R
20 REM ... Set min/sec limit
22 Ulimit=59
24 PRINT "Enter minutes"
26 GDSUB 44
28 Minutes=R
30 PRINT "Enter seconds"
32 GOSUB 44
34 Seconds=R
36 PRINT "Hours=";Hours,"Minutes=";Minutes,
38 PRINT "Seconds=";Seconds
40 END
42 REM
44 REM ... Input/checking subroutine
46 REM
48 INPUT R
50 IF R<O OR R>Ulimit THEN S4
52 RETURN
54 PRINT "Impossible value, enter another value"
56 GDTD 48
58 REM ... End of Subroutine

>RUN RETURN
Enter Hour of Day
? 25
Impossible value, enter another value
? 12
Enter minutes
? 70
Impossible value, enter another value
? 1
Enter seconds
? 33
Hours= 12
>

Minutes= 1 Seconds= 33

4-13

A subroutine can be recursive; that is, it can call itself. When
you use a recursive subroutine be sure to include some way
to end the recursion. This is called nesting. When a RE
TURN is executed, it transfers control to the statement
following the last executed GOSUB. Care should be taken
when nesting subroutines since you will not return to the
statement following the first executed GOSUB until all of
the intervening RETURN statements have been executed.
You can always use GOTO or IF statements to transfer into
or out of a subroutine at any point.

10 IIHEGER N
15 Nfactorial-1
20 INPUT N
25 IF N>O THEN 40
30 PRINT "Enter a value greater than 0"
35 GOTO 20
40 GOSUB 55
45 PRINT "N Factorial =";Nfactorial
50 GOTO 15
55 REM Factorial Routine
60 Nfactorial=Nfactorial*N
65 N=N-1
70 ON N>1 GOSUB 55
75 RETURN

RUN _

? 1
N Factorial =
? 2
N Factorial = 2
? 5
N Factorial - 120
? 4
N Factorial 24
? 3
N Factorial 6

ON ... GOSUB Statement
You can select one of several subroutines in the same man
ner as the ON ... GOTO statement described earlier. When
the ON <expression> GOSUB <line list form of the state
ment is used, the numeric expression is evaluated and
rounded to an integer to select a line number from the line
list. If the expression evaluates to less than one or to a value
greater than the number of lines in the line list, the next
statement following the ON ... GOSUB statement will be ex
ecuted.

Example:

expression statement labels
~ A

10 ON X + Y/3 GOSUB ~00,500,300,40,10~

The expression is evaluated and rounded to the nearest
integer. If the resulting value is 1, control is transferred to
statement 100; if the value is 2, control is transferred to
statement 500; etc.

4-14

If the expression evaluates to less than 1, or to greater than
the number of line numbers specified, control passes to the
statement following the ON ... GOSUB. When a RETURN
statement is executed, control returns to the statement fol
lowing the ON ... GOSUB statement.

Sample Program

10 FOR X-O TO 2
20 ON X+l GOSUB 200,300,400
30 NEXT X
100 REM ... CONTROL WILL REACH HERE ONLY WHEN THE
105 REM ... FOR LOOP IS FINISHED
110 PRINT "FOR LOOP IS FINISHED"
120 STOP
200 PRINT X;SIN(X)
210 RETURN
300 PRINT X;2*X;COS(X)
310 RETURN
400 PRINT X;3*X;TAN(X)
410 RETURN
500 END

RUN RETURN

o 0
1 2.5403022
2 6 -2.185034
FOR LOOP IS FINISHED

In-line Subroutine Nesting

A transfer to another statement may occur within the block
of statements constituting a subroutine. For instance, in the
following program, the subroutine beginning at statement
50 contains a statement (90) that transfers control to an
other subroutine.

Sample Program

10 INPUT X
20 ON SGN(X)+2 GOSUB 50,120,170
30 GOTO 10
40 REM **.***** ••••• ** ••••••••
50 REM X<O
60 REM
70 PRINT "X NEGATIVE"
80 LET X--X
90 GOSUB 170
100 RETURN
110 REM ** ••••••••••••• *** ••••
120 REM X-O
130 REM
140 PRINT "X=O"
150 RETURN
160 REM ********** ••• ********.
170 REM X>O
180 REM
190 !'_'UNT "Square Root =";SQR(x)
200 RETURN

RUN _

? 4
Square Root = 2
? 3
Square Root 1.73205
? 2
Square Root = 1.41421
? 16
Square Root 4
? 36
Square Root 6
?

STOP and END
The STOP and END statements are used to terminate a
program. If a program contains a subprogram (see Section
8), the END statement must precede the first subprogram.
STOP statements may appear anywhere in a program.
When a program halts as a result of a STOP statement, the
effect is the same as that of a program BREAK. The pro
gram can be resumed by entering the GO command. Execu
tion continues with the statement following the STOP
statement that was used to halt the program.

Examples:

10 INPUT A
20 IF A=O THEN STOP

30 PRINTA, .06S*A
40GOT010

10 HIPUT A
20IFA=OTHENGOTOSO

30 PRINTA, .06S*A
40GOT010
50 END

Statement 20 causes this pro
gram to stop when a 0 is input
for A.

When a 0 is input for A in this
program, statement 20 passes
control to statement 50 and
the program terminates.

Sample Program

10 REM: This program asks for a name and address,
20 REM: then prints it out in mailing format.
30 DIM Name$[301,Street$[301,City$[201,Zip$[Sl
40 PRINT "Please type the name. Type an X to stop."
50 INPUT Name$
60 IF (Name$="X" OR Name$="x") THEN 140
70 PRINT "Now type the street address, city, and zip code."
80 PRINT "Separate them with commas.";LIN(1)
90 INPUT Street$,City$,Zip$
100 PRINT SPA(20),Name$
110 PRINT SPA(20),Street$
120 PRINT SPA(20),City$;", California ";Zip$;LIN(1)
130 GOTO 40
140 END

>RUN _
Please type the name. Type an X to stop.
? Mary Ann Oullette
Now type the street address, city, and zip code.
Separate them with commas.

? 1 Grove Place,Cupertino,99999
Mary Ann Oullette
1 Grove Place
Cupertino, California 99999

Please type the name. Type an X to stop.
? X

4-15/4-16

j
lUllI'lil ~ ___________________ FO_rm_a_tt_ed_o_u_tP_ut~.1 V I

Some programs require output to be printed in a complex
format. The PRINT USING and IMAGE statements allow
you to specify, with more flexibility than the simple PRINT
statement, the format in which program results will be dis
played or printed.

Recall from Section 4 that in the PRINT statement:

• When commas are used as item separators, results are
printed in evenly spaced fields across the screen or page.

• When semicolons are used as item separators, results are
printed close together.

• Each numeric value is printed with a leading blank if
positive, and a trailing blank.

• The TAB function moves the print position to a specified
column.

• The LIN function generates a specified number of blank
lines.

• The SPA function moves the print position a specified
number of columns to the right.

PRINT USING and
IMAGE Statements

The PRINT USING statement extends your control of the
output format to include the following capabilities:

• You can eliminate leading and trailing blanks in numeric
output.

• You can insert periods and commas in numeric output.

• You can specify placement of plus and minus signs.

• You can designate precisely where on the page (screen)
you want each data item printed.

Sample Program

5 INTEGER Day,Year
10 INPUT WeekdayS, MonthS, Day, Year
20 PRINT WeekdayS, MonthS, Day, Year
30 PRINT WeekdayS, MonthS; Day, Year

The PRINT USING statement consists of a list of items to
be printed (the print list) and a format string that describes
how these items are to be printed. The format string is
separated from the print list by a semicolon. The format
string can be specified in one of four ways as illustrated in
the following examples and explained below:

Examples:

A. The format string IS included in the PRINT USING
statement:

format string print list

.-"-... --20 PRINT USING "3A,3X,2D,2X,4D";A$,B,C

B. The format string is represented by a string variable in
the PRINT USING statement:

format string .----..
10 P$="3A,3X,2D,2X,4D"

string variable

\ P~ist
20 PRINT USING P$;A$,B,C

C. The format string is specified in an IMAGE statement.
The PRINT USING statement references the IMAGE
statement line number:

IMAGE statement
~abel

" ~list
20 PRINT USING 30;A$,B,C

format string
.-"-...

30 IMAGE 3A,3X,2D,2X,4D

format specification

Note that the IMAGE statement does not use quote marks
around the format specification. Also the IMAGE statement
must be the only statement used in the line.

40 PRINT SPA(19); WeekdayS, LIN(l); TAB(SO);MonthS;Day,SPA(3);Year

RUN _

Monday,March,13,1978 _
Monday March
Monday March 13

Monday

13
1978

March 13

1978

1978

5-1

D. The format string is represented by a string expression in
the PRINT USING statment:

10 DIM A$1801
20 AS-"THIS IS HOW YOU GET A"
30 PRINT USING "22A"&CHR$(34)&"QUOTED LITERAL"&CHR$(34);A$

run.

THIS IS HOW YOU GET A "QUOTED LITERAL"

The print list can include quoted strings, variables, and
expressions. In the first three examples, the print list in
cludes three variables: A$, B, and C. The items in the print
list are separated by commas or semicolons. The commas
and semicolons in PRINT USING statements are interpret
ed only as item separators and do not affect the format of
the output.

Format Symbols
A format consists of a series of format symbols. The format
symbols specify how each item in the print list is to be
formatted and how the items are to be arranged on the page.
Commas separate individual format specifications in the
format string. The five specifications in the format string
"3A,3X,2D,2X,4D" indicate that the values of A$, B, and C
are to be printed as three ASCII characters (3A) followed by
three blank spaces (3X), two decimal digits (2D), two more
blank spaces (2X), and four more decimal digits (4D). There
must be a format specification for every variable in the print
list. Additional specifications may be used to insert spaces
and control carriage returns and linefeeds.

Sample program:

10 INTEGER B,C
20 LET AS: "JUNE"
30 LET B=14
40 C=1976
50 PR~NT USING 60;A$,B,C
60 IMAGE 4X,4A,2X,2D,2X,4D

RUN _

JUNE 14 1976

The first step in preparing formatted output is usually to
make a sketch of how you want the results arranged on the
page or screen. Then build the format string using the sym
bols presented in Table 5-1. The following pages describe
how these symbols are used to format string and numeric
output.

Separators

Three symbols are used to separate specifications:

A comma is used only to separate two specifications.

/ A slash separates two specifications and begins a new
line if writing to a lineprinter or a new record if writing
to a file.

@ The @ sign separates two specifications and, on line
printer output, begins a new page.

5-2

Table 5-1 Format Symbols

Symbol Description Example

Strings
A ASCII Character AAA
K Compressed format K

Blanks
X Blank space XXX

Separators
Separator only AA,DD

/ Separates specifications and AA/DD
begins a new line or a new
record if writing to a file.

@ Separates specifications and, AA@DD
on lineprinter output, begins
a new page.

Carriage Characters (used at the end
Control of the print list)

+ Suppress linefeed

Suppress carriage return

Suppress both linefeed and
carriage return

Replicators
n Single replicator 3A

n() Group replicator 3(3A,2X)

Numeric
Specifications

S Sign character (+ or -) SDD
M Minus sign MDD
D Numeric digit, blank fill DDD

Decimal point (.) DDD.DD
R European Decimal point (,) DDDRDD
C Comma DDCDOD
P Period (European comma) DDPDDD
K Compressed format "ONL Y",XKX,

"ITEMS"

/ and @ can also be used as specifications by themselves;
that is, they can be separated from other specifications by a
comma. Only the / can be directly replicated, however, as
explained later.

Literal Specifications

Literal specifications can be included in the format specifi
cation in two ways:

• nX specifies n blank spaces (x specifies a single blank).

• "" can be used to enclose any ASCII data.

Literal specifications can be used with format specifications
for any print list item. You should not use commas to sepa
rate literal specifications from other specifications for a giv
en print list item. This is because output for the PRINT
USING statement is terminated by the end of the print list
or a separator in the format specification.

Examples:

10 A=5
20 PRINT USING 40;A
30 PRINT USING 50;A
40 IMAGE "LIST OF",DD," ITEMS"
50 IMAGE "LIST OF"DD" ITEMS"

run _

LIST OF 5
LI ST OF 5 ITEMS

Formatting Strings
Strings can be specified in two ways:

""

A

A literal specification is a string enclosed in quotes.
Literals may be included in any specification.

The character A is used to specify a single string charac
ter. nA specifies n characters.

Examples:

Each of these sequences causes the same output:

30 Res$: "RESTART"
40 IMAGE "***"4X7A4X"***"
50 PRINT USING 40; Res$

60 PRINT USING "3A4X7A4X3A";"***RESTART***"

RUN _
*** RESTART ***
*** RESTART ***

If the string item in the print list is longer than the number
of characters specified, the string is truncated. For example,
the statement

70 PRINT USING "4A";"RESTART"

will only print the first four characters of "REST ART":

REST

If the item is shorter, the rest of the field is filled with blanks
on the right.

Formatting Numbers
Numeric specifications can be made up of digit symbols,
sign symbols, radix symbols, separator symbols and an ex
ponent symbol.

Digit Symbols

D Specifies a digit position. nD specifies n digit positions.
Leading zeros are replaced with blank spaces as fill charac
ters.

Example:

10 PRINT USING "DDDDD,2X,DD";250,45

RUN _

250 45

Digit Separators

Digit separators are used to break large numbers into groups
of digits (generally three digits per group) for easier reading.
In the United States, the comma is customarily used; in
Europe, the period is commonly used. Note that C and P
cannot both be used in the specification for the same print
list item.

C Specifies a comma as a separator in the specified
position.

P Specifies a period as a separator in the specified
position.

The digit separator symbol is output only if a digit in that
item has already been output; the separator must appear
between two digits.

Examples:

10 N12345.67
20 PRINT USING "DDDDD.DD";N
30 PRINT USING "DDCDDD.DD";N
40 PRINT USING "2DC3D.2D";N
50 PRINT USING "2DP3D";N

RUN _

12345.67
12,345.67
12,345.67
12.346

R,adix Symbols

A radix symbol separates the integer part of a number from
the fractional part. In the United States, this is customarily
the decimal point, as in 34.7. In Europe, this is frequently
the comma, as in 34,7. No more than one radix symbol can
appear in a numeric specification.

Specifies a decimal point in that position.

R Specifies a comma in that position.

Examples:

10 PRINT USING
"DDD.DD,2X,DDD.DDD,2X,DDDRDD";123.4,56.789,98,7

20 IMAGE DDD.DDD,4X,DDD.DD
30 PRINT USING 20;.111,22.33

RUN _

123.40 56.789 98,00 7.00
0.111 22.33

5-3

Sign Symbols

Two sign symbols control the output of the sign characters
+ and -. Only one sign symbol can appear in each numeric
specification.

S Specifies output of a + sign if the number is positive, -
if the number is negative.

M Specifies output of a - sign if it is negative, a blank if it
is positive.

If the sign symbol appears before the first significant digit of
output it floats to the left of the leftmost significant digit.

When no sign symbol is specified and the only value to be
output is negative, one of the digit positions will be used for
the sign.

Example:

10 PRINT USING
"MDD.DD,2X,DDSD.DD,DDDD";-34.5,-67,-10

-34.50 '6-7.00 -10

Floating Specifiers

The sign specifications Sand M in a numeric specification
will "float" past blanks to the left most digit of a number or
to the radix indicator. Sign symbols that are imbedded be
tween significant digits do not float. The following examples
show floating and non- floating specifications for two input
values: -17 and +17.

Specification Output for -17 Output for + 17

M4D
S4D
DMDD
DDMD
DDDDS

-17
-17
-17

1-7
17-

Format Replication

17
+17

17
1 7
17+

Many of the symbols used to make up format specifications
can be replicated (repeated) by placing an integer (from 1
thru 255) in front of the symbol. For instance, the following
IMAGE statements specify the same format:

30 IMAGE DDDDDD.DD
40 IMAGE 2DD3D.2D
50 IMAGE 6D.2D

Placing an integer before a symbol works exactly like having
multiple adjacent characters. The X, D, A, and; symbols
can be replicated directly.

Example:

20 PRINT USING "5DX";1,2,3,4,5

RUN _

2 3 4 5

5-4

In addition to symbol replication, an entire specification or
group of specifications can be replicated by enclosing it in
parentheses and placing an integer before the parentheses.

Example:

10 IMAGE 3(K,)
20 IMAGE DD.D,6(DDD.DD,)D3(CDDD).DD
30 IMAGE D.D,2(DDD.DD,),3(D.DDD,)
40 IMAGE D,4(4X,DD.DD,"LABEL2",2X,DD)

The symbols K and @ can also be repeated:

80 IMAGE 4(K,)2(8)

Note the use of the" ," character in the above examples. If a
format is repeated for several items in a print list, a comma
must be included in the parentheses to indicate that addi
tional print list items are to follow. For example, if there are
three print list items, a simple numeric format might be
3(DD,). This is equivalent to DD,DD,DD,. If the comma is
not included the result would be DDDDDD and could be
used only with the first print list item.

Examples:

10 PR I NT US I NG 20; "ABCDEFGH", "abcdefgh", "xxxx", "YYYY"
20 IMAGE 3(AA)
run
ABCDEFabcdefxxxx YYYY

)

10 PR I NT US I NG 20; "ABCDEFGH", "abcdefgh", "xxxx", "YYYY"
20 IMAGE 3(AA,)
run
ABabxxYY

)

10 PR I NT US I NG 20; "ABCDEFGH", "abcdefgh", "xxxx", "YYYY"
15 PRINT "END"
20 IMAGE '3(AAAAAA,)
run
ABCDEFabcdefxxxx YVVV END

Compacted Formatting
A single symbol, K, is used to define an entire specification
for either numeric or string output. If the corresponding
print item is a string, the entire string is output. If it is a
number, it is output in standard form. K outputs no leading
or trailing blanks in numeric fields.

Example:

90 IMAGE K,2X,K,K,K .
100 PRINT USING 90;"ABC",123,"DEF",456

RUN _

ABC 123DEF456

Carriage Control
The carriage return and linefeed normally output at the end
of the list can be altered by using a carriage control symbol
as the first item in a format string.

Suppresses both the carriage return and linefeed.

+ Suppresses the linefeed.

Suppresses the carriage return.

Example:

30 IMAGE #,4(A2X,)
40 IMAGE K
50 PRINT USING 30;"A","B","C","D"
60 PRINT USING 40; .. ••• ..

RUN _

ABC D···
Notice that PRINT USING "+" is equivalent to PRINT
LIN(O); and PRINT USING "-" is equivalent to PRINT
LIN(-l).

Reusing the Format String
A format string is reused from the beginning if it is exhaust
ed before the print list. The carriage return and linefeed are
not normally output until the print list is exhausted.

Example:

70 PRINT USING "DDD.DD";25.11,99,9

RUN _

25.11 99.00 9.00

Field Overflow
If a numeric item requires more digits than the field specifi
cation provides, an overflow condition occurs. When this
happens, the item which causes the overflow is replaced
with a field of $s. Then the rest of the print list is output.

Example:

105 IMAGE 3(DD.D)
110 PRINT USING 105; 111 ,2,33.3
120 PRINT USING 105;12.3,123.4,1234.56
130 PRINT USING 105;12.3,-1.2,-12.3

RUN _

$$U 2.033.3
12.3$$$$$$$$
12.3-1.2$$$$

Programming Considerations
One factor that must be taken into account when creating
formatted output with PRINT USING is the number of
columns in the output device. When printing numeric out
put, you should specify a format that will not cause a line of
output characters to exceed the number of characters per
line of the output device (display or printer).

5-5/5-6

I i1iii[.jJ'
L--_____________ A_rr_ay_s--1.1 VI I

This section describes the statements available to organize
and use data in arrays. The statements presented are those
used to reserve storage space for the array data:

-DIM
- INTEGER
-LONG
-SHORT

Techniques used to enter and print array data are also de
scribed.

The discussion is initially limited to one and two-dimen
sional arrays. However, many of the statements can also be
used with arrays of up to 32 dimensions. The general case of
multi-dimensional arrays is covered in the final pages of
this section.

DIMENSIONING ARRAYS
DIM Statement

The DIM statement is used to reserve storage space for the
data in an array of SHORT or string data. (Type SHORT is
the normal default data type. This can be changed using the
SET command.) In order to use arrays of LONG or INTE
GER data, use a type declaration statement (refer to the
description of the DIM statement). A DIM statement speci
fies the array name and the size (number of elements) of the
array. Size is indicated by specifying an upper bound for
each dimension. For example, a one-dimensional array,
Weight, that contains 25 LONG values is dimensioned:

array
name7

10 LONG Weight(24)

Individual elements are then referenced with subscripted
variables as Weight(O), Weight(l), etc., through Weight(24).

The statement

20 LONG ZC2S)

dimensions a LONG one-dimensional array of 26 elements:
Z(O), Z(l), Z(2), etc., through Z(25). The statement

maximum
1eng7

30 DIM Job$CSO)(201

dimensions a one-dimensional array of 51 string values. In
addition to the keyword, the array name, and the upper
bound, you may also specify the maximum length (maxi
mum number of characters per string). You must specify a
maximum length for all string arrays that will contain
strings longer than 18 characters.
It is recommended that you specify the maximum length
even when all strings will be shorter than 18 characters. This
makes the program easier for yourself and others to read.

For two-dimensional arrays, the upper bounds for both
dimensions must be specified. 0 is the lower bound for each
dimension.

upper bounds

----10 DIM InvCS,3)

dimensions a two-dimensional array of SHORT values
with 6 rows and 4 columns. Individual elements are then
referenced as:

InvCO,O) InvCO,1> InvCO,2) InvCO,3)
InvC1,0) InvC1,1) InvC1,2) invC1,3)
invC2,O) invC2,1> invC2,2) invC2,3)
invC3,O) invC3,1> invC3,2) invC3,3)
invC4,0) invC4,1> invC4,2) invC4,3)
InvCS,O) invCS,1> invCS,2) invCS,3)

For example, Inv(I,3) is a subscripted variable that refers to
the value in the first row and third column of Inv. Note that
Inv(O,3) refers to the value in the zero row and third column.

6-1

The statement

20 DIM Prod$C2,39)I2S1

dimensions a two-dimensional array of string values with 3
rows and 40 columns. Each string in the array has a maxi
mum length of 25 characters.

Type Declaration Statements

Type declaration statements are used to dimension arrays
that contain numeric data. An array of SHORT values can
also be dimensioned with a DIM statement. (Numeric data
types are explained in Section 2.) A type declaration state
ment for numeric arrays consists of a numeric type, an array
name, and the size of the array. Multiple arrays can be
included in a single type declaration statement. The nu
meric type applies to all arrays named in the statement.

Examples:

numeric array
t yp e 7 f'.::.ame 5

10 INTEGER A~10),BC4,4)

20 SHORT B1(20)

30 LONG CCS),DC39)

20 DIM AC1S),BC4)

30 DIM C$(S,3)[201

40 DIM GC19,4)

6-2

Declares a one-dimen
sional array A with 11 IN
TEGERS, and a two-di
mensional size array B
with 25 INTEGERS.

Declares a one-dimen
sional array Bl with 21
SHORT values. The
statem.en.t
20 DIM B 1 C 2 0) has the
identical effect.

Declares a one-dimen
sional array C with six
LONG values, a one-di
mensional array D with
40 LONG values.

The array A contains 16
SHORT values and the
array B contains 5
SHORT values.

The two-dimensional ar
ray C$ has 6 rows and 4
columns of string values.

The two-dimensional ar
ray G contains 20 rows
and 5 columns of SHORT
values.

An array which appears in a type declaration statement may
not appear in a DIM statement. If it does, the program will
halt and an error message will be displayed. You cannot
redimension arrays within a program. Attempting to ex
ecute the same dimension statement again or to execute
another dimension statement with the same variables and
parameters will cause a REDECLARED VARIABLE error.

It is possible (but not recommended) to use an array in a
program without first using a DIM statement or a type
declaration statement to set aside storage space for the data.
In this case, the number of dimensions is assumed from the
first program statement executed which references the ar
ray. If the dimensions of a one-dimensional array are not
specified, the array is assumed to have an upper bound of 10
(ie. 11 elements). If the dimensions of a two-dimensional
array are not specified, both dimensions are assumed to
have an upper bound of 10 (ie. 11 rows and 11 columns). This
provides a total of 121 elements.

If the actual array is larger, the program will halt and the
error message "SUBSCR I PT OUT OF RANGE IN LINE xxx"

will be displayed.

The DIM statement and the type declaration statements
specify a maximum number of elements for each array.

You may not exceed or change this maximum within the
program. If you attempt to do so, an error occurs and pro
gram execution stops.

USING ARRA VS

Entering Data Into An Array

Data may be entered into an array element by element as
shown in the examples below.

Example:

(One-dimensional array)

10 DIM A(25)
20 FOR 1=0 TO 25
30 INPUT ACl)
40 NEXT I

RUN _

1 _

22 _
36 _

ACO)
AC 1)

A(2)

1
22
36

You need not reference the 0 row or column in an array. All
elements in arrays are initialized to 0 when the program is
run. String array elements are initialized to null strings.

Example:

(Two-dimensional array)

10 FOR 1=1 TO 3
20 FOR J=1 TO 5
30 INPUT M<I,J)
40 NEXT J
50 NEXT I

RUN lID

?2.511D ?1.7 _

?4.211D

etc

Samp le Program

10 DIM Price (5,3)

M 2.5 1.7 4.2
4.9 32. 4.7
8.9 9.8 1.1

0.2 1.0
5.6 7.2
2.2 3.3

20 DATA 1,0,2.95,2,0,4.95,3,6,5.50,4,2,12.00,5,1,2.00
30 FOR 1=1 to 5

Printing Array Data

40 READ Price(I,1),Price(I,2),Price(I,3)
50 LET Total=O
60 FOR 1=1 TO 5 Price 1 0
70 LET Total=Total+Price(I,3) 2 0
80 NEXT I 3 6
90 PRINT "TOTAL=";Total 4 2

5 1

RUN lID

TOTAL= 27.40

100 PRINT A(1), LIN(2)
101 PRINT A(2), LIN(2)
102 PRINT A(3), LIN(2)
103 PRINT
104 PRINT B(1,1),B(1,2),LIN(2),B(2,1),B(2,2),LIN(2)
105 PRINT

Examples:

10 PRINT A(1),LIN(2),A(2),LIN(2),A(3),LIN(2),LIN(2),SPA(10),
11 PRINT B(1,1),B(1,2),LIN(2)
20 PRINT B(2,1),B(2,2),LIN(2),LIN(1)

200 PRINT A(1),LIN(2),
201 PRINT A(2),LIN(2),
202 PRINT A(3),LIN(2),
204 PRINT B(1,1);B(1,2);LIN(2);B(2,1);B(2,2);LIN(2),LIN(1)

2.95
4.95
5.50

12.00
2.00

6-3

Substrings as Array Elements

It is possible to reference strings or substrings as array ele
ments. (Refer to Section 7 for a discussion of strings and
substrings.) The substring designator immediately follows
the array element name and is enclosed in parentheses.

Example

Assume

10 DIM A$(3)[8],B$(2,2)[7]

and

A$(1)="ABC", A$(2)="DEF", A$(3)="GHI"
B$(1,1)="123", B$(1,2)="456"
B$(2,1)="789", B$(2,2)=""

then

A$(1)[2,2]="B"
A$(1)[2;1]="B"
B$ (2, 1) [2 , 2] = "8"
B$(2, 1)[2; 1]="8"

Example: It is often convenient to store character data in an
array in order to reference groups of items.

Assume that you must store the names, addresses, and zip
codes for 10 companies. Each of the items can be up to 20
characters long. They can be stored in a 2-dimensional
string array. The declaration would be as follows:

10 DIM A$(10,3)[20]

You can now address any of the elements for any of the
companies directly. The row number gives the data entries
for a specific company while the column number selects the
name, address, or zip code.

Data="AJAX1","100 River Drive","99990"
"AJAX2","110 River Drive","99991"

"AJAX10","190 River Drive","99999"

The address of the 7th company would be accessed as
A$(7,2).

6-4

ARRAY FUNCTIONS
There are no built-in matrix or array functions in BASIC.
Most array functions can be easily provided with subrou
tines or subprograms. Examples are given for the following
functions:

e Zero
e Constant
e Identity
e· Transpose

Setting an Array to Zero or Other Constant

One of the most common array functions is the initializing
of arrays or array elements. All array elements are set to zero
when the array is declared. This eliminates the need to
assign the value of zero to each array element at the begin
ning of a program. If the array must be set to zero at some
point later in the program or if the initial value is other than
zero, you can use the following technique:

Example: Set the array Balance(5,1O) to a value of 10.

10 FOR I = 1 TO 5
20 FOR J = 1 TO 10
30 Balance(I,J) = 10
40 NEXT J
50 NEXT I

Setting an Array to an Identity Array

An array can be set to the identity array using the following
technique:

Example: Set the array Ident(8,8) to an identity. Array ele
ments on the major diagonal (I=J) having a value of 1, all
others having a value of zero.

10 FOR I = 1 TO 8
20 FOR J = 1 TO 8
30 IdentCI,J) I AND J
40 NEXT J
50 NEXT I

Transposing Arrays

You can transpose an array using the following technique:

Example: Assign the array Trans(3,4) to the transposition
values of array Normal(4,3).

10 FOR I = 1 TO 4
20 FOR J = 1 TO 3
30 TransCJ,I) NormalCI,J)
40 NEXT J
50 NEXT I

Strings are groups of ASCII characters. They allow you to
manipulate textual data and to provide printed output. In
addition, strings allow you to perform interactive dialog
with the program user. Allowing you to use strings and
string functions makes it relatively easy to develop applica
tion programs to control text. (Refer to Section 2 for a dis
cussion of string data.)

BASIC provides a variety of special string functions. These
functions are described in Section 12. Most string functions
are used to act on only a portion of a string at a time. For
example, the text string that makes up a sentance might be
scanned a few characters at a time to detect words. The
remainder of this section describes how to access the data
contained in strings.

SUBSTRINGS
A substring is a portion of a string rather than the entire
string. Normally, a reference to a string variable refers to the
entire string. For instance, if A$ = "ABC123" then after the
statement

50 LET B$ = A$

B$ = "ABC123".

However, sometimes it is necessary to reference only a por
tion of a string. Suppose B$ is to be set equal only to the last
three characters of A$. This can be done using the substring
designator. Again assume that A$ = "ABC123". The state
ment

50 LET B$ = A$[4,61

setsB$ = "123", not "ABC123".

There are three ways to designate a substring. The first
method is to indicate the starting index (position) of the
substring, followed by a comma (" ,"), followed by the ending
index of the substring.

Examples:

HA$ = "ABC123+-*I", then

starting ending
i nde~ ri ndex

A$[1,31 = "ABC"
A$[4,61 = "123"
A$[7,101 "+-*1"
A$[1,101 = "ABC123+-*I"

. I iUiIi.!i' Strings I VII I

Notice that A$[l,lO] is effectively the same as just plain A$.
The second method of designating a substring is to give the
position of the first character, followed by a semicolon (";"),
followed by an expression indicating the length of the
substring. Continuing the above example:

starting
index \ength

A~1;31 = "ABC"
A$[4;31 = "123"
A$[7;41 = "+-*1"
A$[1; 101 = "ABC123+-*I"

Notice that A$[1;10] is effectively the same as just plain A$.

The third method of designating a substring is to give the
starting index of the substring only. This is really a special
case of method 1, in which the ending index is assumed to be
the length of the string. Continuing the example above:

starting
inde7

A$[11 = "ABC123+-*I"
A$[S1 = "23+-*1"
A$[101 = "I"

Notice that A$[l] is effectively the same as just plain A$.

Regardless of which method is used, the first position indi
cator, the second position indicator, and the length indica
tor may be any numeric expression with a value of 1 to 255.
Any expression used as a substring designator which has a
SHORT or LONG value is rounded to the nearest integer.

Examples:

A$[H,M1
A$[F;LJ
A$[H + SQR(Z);L - 11
A$[A(J),A(J)1
A$[CADAE;CADAE + Q1
In the special case of the null string, a null substring is
always extracted as long as the substring designator is valid.

7-1

Substrings are frequently used to insert or change charac
ters in a string without affecting the rest of that string.

If the item being assigned is too long for the substring, the
item is truncated from the right until it fits.

If the starting index is greater than the length of the string,
the null string is assumed.

If the specified starting index is less than 1, the ending index
is less than 1, or the starting index is greater than the ending
index, an error message will be displayed and the program
will be terminated.

7-2

Example:

10 DIM HeadingU25] The string Heading$
has maximum length
of 25 characters.

20 LET Headi ngS z "School of" Initially, Heading$ is
the 10 character string
"School of"

30 LET BS = "Business"
40 LET Ed •• "Education"
50 LET EnS • "Engineering"
60 LET LS • "Law"
70 LET MS = "Medicine"

1050 LET HeadingSIll] • B$

1055 PRINT HeadingS

3000 LET HeadingSIll] • EnS

3010 PRINT HeadingS

5500 LET HeadingSIll] • LS

5510 PRINT HeadingS

The string B$ is in
serted into the string
Heading$ beginning
at the 11th character
of Heading$.

Prints: School of
Business

The string En$ is in
serted into the string
Heading$ beginning
at the 11th character
of Heading$.

Prints: School of
Engineering

The string L$ IS In

serted into the string
Heading$ beginning
at the 11th character
of Heading$.

Prints: School of Law

I
'B@.!!'

L--___________ SU_b_pr_og_r_am_s---' I VIII I

Programs developed for business or engineering applica
tions can easily contain hundreds of statements. A large
program is easier to develop, debug, and document if it is
divided into several program units. Each of the program
units can then perform a single task. In BASIC, the term
program unit can refer to a main program or a subprogram.

Study the diagram in figure 8-1. It illustrates how a large
program might be broken up and re-organized using subpro
grams. A main program links the program units together.

Main Program 15t Subprogram 2nd Subprogram

10 ,eM Mo," ~' ••
SUB Pro1 300 SUB Pro2

20

/ 30

260 CALL Pro2 .
60 CALL Pro1 270 "': 70

--290 SUBEND 390 SUBEND

3rd Subprogram

100 CALL pro3/400 SUB Pro3
110

"'4~0 SUBEND

Figure 8-1. Subprogram Example.

The arrows indicate where control is transferred from one
program unit to another. For instance, at main program
statement 60, control passes to the first subprogram. When
the first subprogram is finished processing, the main pro
gram resumes at statement 70. Notice how, before the first
subprogram ends, control passes to the second subprogram,
and from there back to the first subprogram.

The main program can call subprograms. Subprograms can
call other subprograms and they can call themselves.

Listed following is a BASIC program that calculates a per
son's weekly salary including overtime pay (statements 10 to
110), and then calls on a subprogram, Dduct, first (at state
ment 190) to calculate a tax deduction, then (at statement
210) to calculate a deduction for an automatic savings de
posit, and a third time (at statement 230) to calculate a
deduction for an insurance payment.

SUB and SUBEND Statements
A subprogram always begins with a SUB statement and
ends with a SUBEND statement. The occurence of the first
SUB statement terminates the main program. In the exam
ple in figure 8-2 the SUB statement is:

\

subProgram
name

A formal parameters

~------~ ,
300 SUB Dduct (Category$,Salary,Percent,

Takehome,Tded>

A subprogram name is composed of an upper case letter of
the alphabet, A through Z, which may be followed by any
combination of digits, lower case letters, or the underscore
symbol "_".

The SUB statement must be the first statement in a line and
the SUBEND statement must be the only entry in a line.

A formal parameter can be a simple string or numeric vari
able, or an entire numeric or string array or a logical file
number. When the subprogram is executed, values are
passed to the formal parameters from the actual parameters
in the CALL statement. For instance, in Figure 8-2, the
first CALL statement is:

actual parameter~ \

subProgram
name
~ ______ ~A~ ____ __

190 CALL Dduct (~$,Salary,Percent,Ttal,Tde~

At this point in the program, the values of the actual param
eters are:

D$
Salary 139.65
Percent 10
Ttal 139.65
Tded 13.97

The values of the parameters in the CALL statement are
passed to the parameters in the SUB statement according to
their position in the parameter list; that is, the value of the
first actual parameter is passed to the first formal param
eter; the value of the second actual parameter is passed to
the second formal parameter; and so on. Thus, when the
subprogram Dduct is called by statement 190, the values
assigned to the formal parameters are:

Category$
Salary
Percent
Takehome
Tded

IITax"
139.65
1 0
139.65
13.97

8-1

8-2

10 PRINT SPA(12);"Weekly Pay Calculator";L1N(l)
20 READ Hours,Wage
30 DATA 40,2.85,6
40 Pay:Hours*Wage
45 IMAGE 4X,3D.2D,16A,D.2D,4A,3D.2D
50 PRINT USING 45;Hours;" standard hrs @";Wage;"
60 REM ** This section computes overtime pay **
80 READ Ovtime
900vpay:Ovtime*Wage*1.5
100 Ttal:Pay+Ovpay

$";Pay

110 PRINT USING 45;Ovtime;" overtime hrs @ ",Wage*1.5,": $";Ovpay
112 PRINT SPA(34);" ______ "
115 PRINT USING "12X,18A,4A,3D.2D2/";"Total pay";" : $";Ttal
120 REM ** This section CALLs Dduct to compute deductions **
130 Salary:Ttal
140 D$:"Tax"
150 Temp:l0
160 IF Ttal>160 THEN Temp:15
170 IF Ttal>195 THEN Temp:20
180 IF Ttal:240 THEN Temp=25
190 CALL Dduct(D$,Salary,Temp,Ttal,Tded)
200 D$="Savings"
210 CALL Dduct(D$,Salary,Temp/2,Ttal,Tded)
220 D$="Insurance"
230 CALL DductCD$,Salary,3,Ttal,Tded)
235 PRINT SPA(34);" ______ "
240 PRINT USING 260;"Total deductions
250 PRINT USING 260;"NET (takehome) PAY
260 IMAGE 112X,22A,3D.2DI
270 END

$";Tded
S";Ttal

300 SUB Dduct(Category$,Salary,Percent,Takehome,Tded)
310 REM ** This subprogram makes payroll deductions **
320 Temp=Salary*Percent*.Ol
330 PRINT USING "10X,21A,3A,3D.2D";Category$&" deduction ";'" $";Temp
340 Takehome=Takehome-Temp
350 Tded=Tded+Temp
360 SUBEND

RUN RETURN
Weekly Pay Calculator

40.00 standard hrs @ 2.85
6.00 overtime hrs @ 4.28

Total pay

Tax deduction
Savings deduction
Insurance deduction

Total deductions

NET (takehome) PAY

$114.00
$ 25.65

$]39.65

$ 13.97
$ 6.98
$ 4.19

$ 25.14

$114.51

Figure 8-2. Payroll Deduction Subprogram

Note that the variable names of the corresponding param
eters are not the same. The values are assigned according to
their position in the parameter list. An actual parameter can
be a numeric or string variable, numeric or string expres
sion, an array, or a logical file number.

The null subscript notation is used to specify an array in
subprogram formal and actual parameter lists. There are
two forms of the null subscript notation as illustrated below.
When commas are used to indicate the number of dimen
sions in the array, BASIC checks to insure that the number
of subscripts in the actual and formal parameters match.

Examples:

Salary(

Salary(,)

Names$(, ,)

Examples:

Specifies a one-dimensional nu
meric array named Salary.

Specifies a two-dimensional nu
meric array named Salary. The
number of dimensions is indi
cated by the number of com
mas. n commas indicate an n +
1 dimensional array.

Specifies a 3-dimensional string
array named Names$.
The formal and actual param
eters must correspond in type
(i.e., string or numeric, single
value or array or logical file
number) and number (i.e., if
there are 3 actual parameters in
the CALL statement, there
must be exactly 3 formal pa
rameters in the corresponding
SUB statement).

A. 10 CALL Route(D$,L$,M) Valid.

99 SUB Route(Driver$,License$,Mileage)

B. 10 CALL Order<X + 1, N' Y,Z) Valid.

99 SUB Order(Number,Quantity,Price)

C. 10 CALL Reg(Number,Name$)

50 SUB Reg(Number,Name$,Date)

INVALID. The
number of actual
parameters must
equal the number
of formal param
eters.

D. 10 CALL Report<N$,D$,A12$) INVALID. Third
actual parameter
in the SUB state
ment is a string but
third formal pa
rameter is a nu
meric variable.

50 SUB Report<Q$,RS,Code) Code should be
Code$.

Numeric variables in parameter lists are assumed to be type
SHORT unless specified otherwise.

Examples:

100 SUB Sample (A(,) ,B) The subprogram
Samp 1 e has two
SHORT param
eters: the array A,
and B.

200 SUB Samp 1 e_2 (S(,), INTEGER T> The subprogram
Sample_2 has the
SHORT array pa
rameter S (,) and
the INTEGER pa
rameter T.

300 SUB Sample_3 (LONG X(,),Y) The subprogram
Samp 1 e_3 has the
LONG array pa
rameter X(,) and
the SHORT pa
rameter Y.

Notice that when a numeric type is specified in a parameter
list, the type applies only to the immediately following
variable.

Pass-by-reference /
Pass-by-value

Subprogram parameters can be passed-by-reference or
passed-by-value. Passed-by-reference means that the actual
and formal parameters have the same location in memory.
Thus, when the value of the formal parameter is changed in
a subprogram, the value of the actual parameter is also
changed.

Example:

10 x 0
20 Y = 99

30 CALL Formula(X,Y)

120 SUB Formula (A,B)
130 A = A + 3
140 B = B + 1
150 SUBEND

Actual parameters X and Y
are passed-by-reference to
formal parameters A and B.
Any changes to A and B in
the subprogram will also af
fect X and Y.

A
A
B

o ; B
3 ; X
100

99
3

Y = 100

Actual parameters that are variables are always passed-by
reference unless the variable is enclosed in parentheses. Ar
rays must always be passed-by-reference. When numeric
parameters are passed by reference, the formal parameter is
changed to the same type as the actual (passed) parameter.
If the formal parameter is declared to be of a specified type
then the passed parameter must be of the same type.

8-3

When the actual parameter is a constant, an expression, or a
variable in parentheses, it is passed-by-value. When a pa
rameter is passed-by-value, the actual and formal param
eters have different locations in memory. Initially the two
locations have the same value, but if the value of one is
changed, the value of the other is not affected.
Example:

10 M • 0
20 N = 21
30 CALL Calc(3,(M),N+4)

120 SUB Calc(Al,A2,A3)
130 Al A1AA2
140 A2 A2 + 2
150 A3 A3AA2

These actual parameters are
all passed-by-value to the
formal parameters AI, A2,
and A3. Any changes to AI,
A2, and A3 in the subpro
gram have no effect on the
actual parameters.

Al
Al
A2
A3

0; A3
1
2
625

25

The examples in figure 8-3 illustrate the distinction between
pass-by-reference and pass-by-value. The four examples are all
the same except that the fourth parameter is passed-by-refer
ence in example A and passed-by-value in examples B, C, and
D.

A. The fourth actual parameter is a variable, hence when the
value of the fourth formal parameter is changed by the
subprogram (statement 340), the value of the actual param
eter also changes.

B. The fourth actual parameter is a variable enclosed in paren
theses, hence when the value of the fourth formal parameter
is changed in the subprogram (statement 340), the value of
the actual parameter is unaffected.

C. The fourth actual parameter is an expression, hence when
the value of the fourth formal parameter is changed in the
subprogram (340), the value of the actual parameter is unaf
fected.

D. The fourth actual parameter is a constant, hence when the
value of the fourth formal parameter is changed in the sub
program (340), the value ofthe corresponding actual param
eter is unaffected.

Local Variables
Variables within a subprogram that are not contained in the
list of formal parameters in the SUB statement are local to
that subprogram. This means that the variables in a pro
gram which calls a subprogram are distinct from variables
with the same name within the called subprogram.

8-4

Examples:

A. 10 I NTEGER A
20 LET A 100

70 CALL Calc (X,Y,Z)

80 PRINT A

Values of X,Y, and Z are
passed (by reference) to
the formal parameters
Height, Weight, and Age.
Subprogram Calc begins.

Prints the value of the IN
TEGER A (lOO, not 8.95).

400 SUB CalcCHeight ,Weight ,Age) Height, Weight,
and Age are as
signed the values of
X,Y, and Z.

410 LONG A

490 LET A 8.95

500 PRINT A

510 SUBEND

B. 10 LONG B
20 LET B = 47

70 CALL Result (B)

80 PRINT B

300 SUB Result (X)

320 LET X = X + 2

340 PRINT X

350 SUBEND

Declares a LONG variable
A that is distinct from the
INTEGER A in the calling
program unit.

Assigns the value 8.95 to
the local LONG variable
A. This does not affect the
value of the INTEGER A
in the calling program
unit.

Prints 8.95.

Returns to the calling pro
gram unit at statement 80.

The value of B is passed
(by reference) to the vari
able X in statement 300.
Any changes to X in the
subprogram will also
change the value of B in
this calling program unit.

Prints 49.

X is assigned the value of
B.

Changes the value of the
formal parameter X. Also
changes the value of B in
the calling program unit
(passed-by-reference).

Prints 49.

Returns to calling program
unit at statement 70.

fourth actual parameter (Variable)~

190 CALL Dduct(DS,Salary,Percent,Ttal,Tded)

fourth formal parameter

300 SUB Dduct(CategoryS,Salary,Percent,Takehome,Tded)
340 LET Takehome = Takehome - (Salary * Percent * .01
350 SUBEHD

A. Variable Parameter

variable in parentheses~

190 CALL Dduct(DS,Salary,Percent,(Ttal),Tded)

300 SUB Dduct(CategoryS,Salary,Percent,Takehome,Tded)
340 LET Takehome = Takehome - (Salary * Percent * .01
350 SUBEHD

B. Parameter Enclosed in Parentheses

(expression) \ --190 CALL Dduct(DS,Salary,Percent,4*Ttal,Tded)

300 SUB Dduct(CategoryS,Salary,Percent,Takehome,Tded)
340 LET Takehome = Takehome - (Salary * Percent * .01
350 SUBEHD

C. Parameter is an Expression

(constant)---------------------7~

190 CALL Dduct(DS,Salary,Percent,240,Tded)

300 SUB Dduct(CategoryS,Salary,Percent,Takehome,Tded)
340 LET Takehome = Takehome - (Salary * Percent * .01
350 SUBEHD

D. Parameter is a Constant

Figure 8-3. Parameter Passing

8-5

All DATA, IMAGE, GOTO, ON END, ON ERROR, ON
KEY, OFF KEY, GOSUB, ON ... GOTO, ON ... GOSUB, RE
STORE, and RESUME statements in a program unit are
local to that program unit. They can only reference line
numbers and interrupt keys for that program unit.

Referencing Files
A file in a calling program may be referenced in a subpro
gram by passing its file number as a parameter.

Example:

20 ASSIGN "AFILE" TO #2 AFILE is opened as #2.

80 CALL Sprog1(N,N$,#2) When the subprogram is
called, #2 is passed as the
third parameter.

200 SUB Sprog1(Number,Name$,#10)

250 READ #10;A$

8-6

This statement reads a val
ue for A$ from the file
"AFILE" which is file #2 in
the main program and file
#10 in the subprogram
Sprogl.

In the CALL statement, the file number parameter must be
a number or a numeric expression. The numeric expression
is evaluated and rounded to the nearest integer at the time
of the call. In the SUB statement, the file number must be
an INTEGER value. File numbers that are not passed as
parameters are local to the subprogram in which they ap
pear. Any ON END # statement is local to the subprogram.

Example:

20 X = 1
30 CALL Closef(#X)

200 SUB Closef(#3)
210 ASSIGN • TO #3
220 SUBEND

When a file is closed in a subprogram with the ASSIGN *
statement, all references to the originally passed file are
deleted and any subsequent assignment to the formal file
parameter in the subprogram will be local to that subpro
gram. If you want to reassign a file in a subprogram, use the
ASSIGN filename statement to close the passed file. This
will establish a new reference to the file which can be used
locally as well as in other program units.

I iMMW'
~ ____________ F_il_eS---,.1 IX I

Files are used to store collections of data that 1) are too large
to be contained conveniently in DATA statements in your
program; or 2) must be stored independently because the
data is going to be used by more than one program.

The use of files involves the following operations which are
explained in detail in this section:

• Open files. - This gives your program access to the file
and assigns a file number to that file. The file number is
then used throughout the rest of your program to refer to
that particular file.

• Write to files. - You can write on the file (put data into
the file from your program).

• Read from files. - Read data on the file and copy data
from the file to variables in your program.

• Close files. - Closing a file indicates that your program is
finished using the file. The data remains on the file for
future use.

ASSIGN Statement
Before a program can read from or write to a file, that file
must be opened by using an ASSIGN statement. Opening a
file causes that file to be associated with a file number. The
file pointer is set to the current position of the selected file.
the terminal file system maintains the position of the file
pointer from this point on. No special file positioning is
performed such as rewinding cartridge tapes or homing the
display cursor. Once a file is open, all references to it are
through its file number.

Examples:

10 ASSIGN
20 ASSIGN
30 ASSIGN

r filename /file number

"AFILE" TO #1/
"PAYFILE" TO #2
"CFILE" TO #5.8 AssociatesCFILEwithfile

#6 (the closest integer to
5.8).

40 ASSIGN "DFILE" TO #1 Closes AFILE and associ
ates file #1 with DFILE.

SO ASSIGN "F4" TO #(s*R) Evaluates the expression
in parentheses to the near
est integer, then associates
that value (file number)
with F4.

60 ASSIGN "PAYFILE" TO #8 PAYFILE has already
been associated with file
#2 in statement 20. PAY
FILE can now be refer
enced as either file #2 or
file #8.

The filename can be a standard name that the terminal file
system uses. Standard filenames are RTA P E, DIS P LAY,
HP - I B#4, etc. You can also use the Terminal ASSIGN com
mand (COMMAND Channel) to establish special filenames
by equating your filename to a standard terminal file name.
For example, AFILE can be equated to the right cartridge
tape.

COMMAND, ASSIGN NAME AFILE TO RTAPE, III

When an ASSIGN statement is executed, the program is
given access to read from and write to the file. If the file
cannot be opened, an error message is displayed and the
program will halt. If another file is already associated with
the file number specified in the ASSIGN statement, that file
is closed and the specified one is opened.

Assigning a file to the display equates the file to the contents
of the terminal display memory, not the terminal keyboard.

Serial PRINT # Statement
The serial PRINT # statement writes data items on a file
starting at the current position of the pointer. The items
may be numeric or string expressions.

Examples:

'\.file number

\ P~li5t

100 PR I NT #2; X, Y , Z Prints the values of the three nu
meric variables X,Y, and Z on file
#2.

300 PRINT #1 A serial PRINT # statement with
no print list will generate a record
with only a carriage return and a
line feed character.

The items in the print list are separated by commas or
semicolons. Each item in the print list is written on the file
in the order it appears in the print list. The items are written
starting at the current position of the file pointer, overwrit
ing whatever data may be in that position on the file. When
a file is opened, the pointer is set to the current file position
(not the beginning of the file).

If you want to suppress the carriage return and linefeed at
the end of a file record, terminate the file print statement
with a comma or semicolon following the print list. A record
will be sent to the file each time the end of the print list is
reached and each time a linefeed character is generated.
This allows a single print statement to generate multiple
records if you include linefeed characters (CHR$(10» as
print list items.

10 PRINT #2; AS,CHR$(10),B$,CHRS(10),C$

9-1

READ # Statement
The READ # statement reads data items from a specified
file into numeric or string variables.

Examples:

file variable

nUmber\ ~5t

100 READ #3; A, B, C Reads three values from file #3
into the numeric variables A,B,
and C.

200 READ #2;N$,P Reads from file #2, a string value
for N$ and a numeric value for P.

The first item read is the item following the current position
of the pointer; i.e., the item immediately following the last
item accessed. Record boundaries are ignored. Numeric val
ues can be assigned only to numeric variables, and string
values to string variables. Otherwise an error message is
generated. If a numeric value is not the same data type as
the variable, conversion with rounding is performed. If an
attempt is made to read beyond the end of data in the file,
an error message is displayed and the program stops. Data
items in the file must be separated by commas.

LINPUT # Statement
The LINPUT # statement reads the entire contents of the
next available record from the file and assigns the contents
to a specified string variable. If the record contains a car
riage return and line feed at the end, these characters will
not be removed and will be assigned to the string variable
along with the other characters. If the record contains nu
meric values, the numbers are read as ASCII characters.

Example: If i 1 e number

100 Ll NPUT #3; A $ Reads the next available re
cord from file #3 and assigns
the contents to A$.

The string variable should be dimensioned large enough to
accept the entire record. If the record is too long to fit in the
string variable, it is truncated.

RESTORE # Statement
The RESTORE # statement repositions the file pointer to
the beginning of the file specified. This statement is effec
tive only for tapes and some HP-IB devices. It does not
affect the display.

Example:

30 RESTORE

9-2

/file number

#4 Repositions the file pointer #4
to the beginning of file #4.

ON END # Statement
The ON END # statement sets a flag for a specified file so
that if and when an end-of-file is encountered in reading
or writing on that file, control is transferred to another
statement in that program. There are three forms of the ON
END # statement:

ON END ••• GOTO
ON END .•• GOSUB
ON END .•• CALL

Examples:

10 ON END

line number7

#2 GOTO 120 When an end-of-file is en
countered in file #2, the pro
gram branches to line 120.

~ile number

"" ~ne number

20 ON END #3 GOSUB 200 When an end-of-file is en
countered in file #3, the pro
gram branches to the subrou
tine at line 200.

file numbz

30 ON END #4 CALL Sbl

,/
subprogram

name

When an end-of-file is en
countered in file #4, the pro
gram calls subprogram SBl.
Subprograms and the CALL
statement are discussed in
Section 8.

ON END ... GOSUB and ON END ... CALL cause the speci
fied subroutine or subprogram to be executed. When the
subroutine or subprogram returns control, the file input
statement that generated the ON END condition will be
reexecuted. The entire item list will be input (not just the
items following the item that caused the end-of-file condi
tion). This means that the subroutine or subprogram must
do something to eliminate the end-of-file condition (eg. re
wind the tape or reassign the file) before returning. If this is
not done you will simply loop until the program is manuallly
aborted.

If no ON END # statement is used and an end-of-file is
encountered, an error message is displayed and the program
stops.

Closing a File
When a program ends, all files that were opened in that
program are automatically closed. '

There are two ways to close a file before the end of the
program. You may use an ASSIGN statement in which the
filename is replaced with an asterisk (*):

Examples:

10 ASSIGN • TO #2
20 ASSIGN· TO #4

Closes file #2.
Closes file #4.

If the ASSIGN * statement is used in a subprogram, refer
ences to the file number are deleted in all program units.
Additional information on subprograms is given in Section
8.

You can also close a file by assigning that file's file number
to another file:

Examples:

1 0 ASS I G N "F I L E 1" T 0 # 3 Opens FILEI.
2 0 ASS I G N "F I L E 2" T 0 # 3 Closes FILE 1

and opens FILE2.

This method of closing files affects only the current program
unit. It does not close the file in other program units. If you
attempt to close a file that is not open, nothing will happen.

File Error Variables
File errors can be acted on within your program by using the
ON ERROR statement. You can test the error number to
determine the type of the file error and take the appropriate
action. A list of file errors is given in Appendix E.

Output to Printers and Terminals
You can list data to a lineprinter or a terminal by assigning a
file number to the device with any ASSIGN statement.

Examples:

device name

50 ASSIGN "LP1" TO #4 Assigns file number 4 to the
lineprinter named LPI.

60 ASSIGN "TE#4" TO #5 Assigns file number to the
terminal named TE#4.

70 ASSIGN "T" TO #3 Assigns file number to the
device named T.

,
Each lineprinter and terminal that is connected to your
terminal has a device name which was assigned when the
device was attached to the terminal. If you do not know a
particular device name, use the terminal SHOW command.
You can use the terminal command channel to equate any
convenient name to a logical device. For additional informa
tion refer to the Terminal User manual.

Once a file number has been assigned, you can use that file
number in a PRINT statement as shown in the following
examples.

Examples:

80 PRINT #4;X,Y,Z

90 PRINT #6;A$;N

Prints the values ofX,Y, and
Z to file #4 which was as
signed to the lineprinter
LPI.

Prints the values of A$ and N
to file #6 which was assigned
to the device T.

The spacing rules that apply to commas, semicolons, and
the TAB, SPA, and LIN functions in a simple PRINT state
ment (Section 4) also apply when printing to files

Formatted Output to Devices
Output to a device file such as a line printer can be format
ted with the PRINT # USING statement.

Examples:

120 PRINT #4 USING 121;A,B,C
121 IMAGE 3X,2D,3X,2D,3X,2D Prints the values of

A,B, and C to file #4 which was as
signed to LPI. The output is formatted
using the format specified in the IM
AGE statement at line 121.

The rules for specifying the format are the same as those
described in Section 5. The file number in a PRINT #
USING statement must be assigned to a file name with the
ASSIGN statement.

9-3/9-4

I
'H;I[.':I Terminal Operations _ 11-

L---.. _________ ----JI X I

This section describes some of the special features available
in Terminal BASIC that allow your program to interact with
the terminal's display, keyboard, and data communications
capabilities. These features are not normally found in a
BASIC interpreter. You should review these capabilities be
fore writing your application program.

Note: Operation of the terminal's cartridge tape, file, and
graphics functions are described in the Files, and AGL
sections of this manual.

The terminal functions are used in the same manner as
other BASIC functions and statements. The operations use
string and numeric arguments and may return string, nu
meric, or logical values or perform some terminal operation.
Terminal operations are divided into the following categor
Ies:

• Display

• Keyboard

• Data Communications

• Program Control

Table 10-1 contains a list of terminal operations that can be
accessed using Terminal BASIC. (Note that all terminal
features can be accessed by using the appropriate escape
sequence in a PRINT statement.) The following paragraphs
describe each of the terminal operation types.

DISPLAY OPERATIONS
The display operations allow you to sense the position of the
alphanumeric cursor, position the alphanumeric cursor, and
input data directly from the alphanumeric display memory.

Cursor SenSing

The cursor sensing functions return the position of the al
phanumeric cursor and the current display workspace num
ber. The alphanumeric memory is made up of rows of 80
characters. The display can contain from 1 to 255 rows of
characters. The display window number can range from 1 to
4. The cursor positions can be requested in absolute or
screen relative coordinates. The coordinates refer to the
current display workspace. Additional information on cur
sor addressing is given in the terminal reference manual.

Table 10-1. Terminal Operations

10-1

Absolute Sensing

The CSENA(R,C) function returns the absolute cursor posi
tion. The function parameters must be numeric variables.
The first variable specified is set to the row number (I to
255) and the second to the column number (1 to 80). The
value of the function is set to the number of the current
display workspace (1 to 4).

Examples:

10 A=CSENACPCI),QCJ»
20 Window=CSENACR,C)

Screen Relative Sensing

The CSENS(R,C) function returns the screen relative cur
sor position. The function parameters must be numeric var
iables. The first variable specified is set to the row number
and the second variable is set to the column number. The
value of the function is set to the number of the current
display workspace.

Examples:

10 B=CSENSCA(1),BCI»
20 W=CSENSCR,C)

Cursor Positioning

The alphanumeric cursor can be positioned in the current
display workspace using absolute, screen relative, or cursor
relative coordinates. The cursor positioning functions are
used only in PRINT statements and do not return a value.

Absolute Cursor Positioning

The MOVCA(R,C) function can be used to position the
alphanumeric cursor to any character position in the current
display workspace. R defines the destination row and C
defines the destination column. Both Rand C must be nu
meric expressions and are rounded to integers before being
used. The range of valid values for R will vary with the size
of the workspace but will normally be between 1 and 255.
Values for C should always be between 1 and 80.

Example: Position the cursor to row 5 and a column position
given by C=4*Y.

10 PRINT MDVCACS,4*Y);

Relative Cursor Positioning

The MOVCR(R,C) function can be used to position the
alphanumeric cursor to any character position relative to
the current cursor position. R defines the relative row posi
tion and C defines the relative cursor position. Both Rand C
must be numeric expressions and are rounded to integers
before being used. The destination cursor position can be
anywhere in the current display workspace. The values for R
can range from -255 and +255. The values for C can range
from -79 to +79.

Example: Position the cursor 3 rows down and 2*Z columns
to the left.

10 PRINT MDVCRC3,-2*Z);

10-2

Screen Relative Cursor Positioning

The MOVCS(R,C) function can be used to position the al
phanumeric cursor to any character position on the current
ly displayed screen of 24 lines. R gives the screen row posi
tion and C gives the screen column position. Both Rand C
must be numeric expressions. The values can be between 1
and 24 for Rand 1 and 80 for C.

Example: Position the cursor to row 5 and column P A 2.

10 PRINT MDVCSCS,PA2);

Direct Display Input

You can input string data directly from the terminal screen.
You do not have to enter data from the keyboard in order for
your program to access it. The DSPIN$(L,X) function al
lows you to read data stored anywhere in the current display
workspace.

The DSPIN$(L,X) function reads string data beginning at
the current alphanumeric cursor position. L is the number
of characters to be read (length ofthe string). If L is positive,
the display codes used by the terminal to indicate alternate
character sets, display enhancements, and data fields are
expanded into their equivalent escape sequences. A brief
table of expanded codes is given in table 10-2. Detailed
information on display memory functions is given in the
Terminal Reference manual. If L is negative, the display
codes will be ignored.

Examples:

10 A$=DSPINSC-10,X)
30 B$=DSPINSC10,X)

Table 10-2. Terminal Display Codes.

Example: Run the sample program below. It will print a test
string and then input the string using the DSPIN$ function.
It will then input the string again, this time checking for
display codes. Note the added display control characters in
the second string.

10 DIM A$[361,B$[361
20 PRINT MOVCS(20,1);
30 PRINT "This is a test for "t:6Alpha"t:8 fields!";MOVCS(20,1>;

40 A$=DSPIN$(-36,X)
50 PRINT
60 FOR 1=1 TO LEN(A$)
70 PRINT USING 150;NUM(A$[I,II)
80 NEXT I
90 PRINT MOVCS(20,1);
100 B$=DSPIN$(36,X)
110 PRINT MOVCS(23,1)
120 FOR 1=1 TO LEN(B$)
130 PRINT USING 150;NUM(B$[I,II)
140 NEXT I
150 IMAGE #(3DX,)

This is a test for Alpha fields!

84 104 105 115 32 105 115 32 97 32 116 101 115 116 32 102 111 114 32
65

108 112 104 97 32 102 105 101 108 100 115 33

84 104 105 115 32 105
• 65 108 112 104 97
>

97 32 116 101 115 116 32 102 111 114 32
32 102 105 101 108 100 115 33

Note that only the specified number of characters are re
turned and that control characters ("t etc.) count as input
characters. This means that you could input the same dis
play and get two different sets of characters depending on
whether the length parameter is positive or negative. For
example, if the string length were 21 in the previous exam
ple, the results would have been as follows:

L=-21
84 104 105 115 32 105 115 32 97 32 116 101 115 116 32 102 111 114 32
65

L=21
84 104 105 115 32 105 115 32 97 32 116 101 115 116 32 102 111 114 32 27

10-3

The X parameter is a return variable and is used to let you
know if the end of the display line or end of display memory
was reached before the required nt:lmber of characters could
be input. The X parameter will be set to "0" if the required
characters were input without reaching a display boundary
(end of line or display memory). X will be set to "1" if the
end of a data field or the end of the current line is encoun
tered before the required number of characters are input. X
will be set to "-1" if the end of display memory is reached.

If the terminal is in format mode and the field is larger than
the input string specified in the DSPIN$ function, only the
specified number of characters will be input and X will be
set to O.

In the previous example, the value of X returned with A$
would be "0" since no field boundary was encountered. The
value of X returned with B$ would be "1" since the end of
the display line was reached.

Figure 10-1 contains an example illustrating use of the
return variable in the DSPIN$ function.

Example illustrating the values of the return variable.

10 D1S=CHRS(217) Display Functions On
20 D2S=CHRS(154) ! Display Functions Off
22 F1S=CHRS(215) ! Format Mode On
24 F2S=CHRS(216) ! Format Mode Off
30 PRINT MOVCA(10,l);"r.:[1234567r.:6ABCr.:lDEr.:81234567"
40 PRINT "r.:[This is a test."
50 PRINT "r.:[This is the end!";
60 FOR 1=1 TO 3
70 PRINT MOVCA(9+I,6);
80 AS=DSPIN$(12,X)
90 PRINT Fl$;MOVCA(9+i,6);
100 BS=DSPINS(-12,Y)
110 PRINT F2S;MOVCA(I*2,-10);
120 PRINT Dl$;A$;"*";TAB(30);"X=";X;D2$
130 PRINT Dl$;BS;"*";TAB(30);"X=";Y,D2$
140 NEXT I

ru n II!II
6 7r.:6ABCr.: lDEr.:*
67ABC*
is a test.*
is a test.
is the end!*
is the end! *

[1234567 6ABC IDE 81234567
[This is a test.
[This is the end!

X= 0
X=-l
X=-l
X= 0
X= 1
X= 0

KEYBOARD INPUT
AND CONTROL

Terminal BASIC allows you to control keyboard operation
from your BASIC program. The ways that you can control
the keyboard are as follows:

The operation of the terminal keyboard can be controlled
from your BASIC program. The ways that you can control
the keyboard are as follows:

• Disable all key interrupts - (GETKBD ON/OFF)

• Disable specific key interrupts - (OFF KEY #)

• Interrupt on specific keys - (ON KEY #)

• Direct process keyboard input - (GETKBD)

• Process key functions - (CHR$ and PROC$)

• Redefine the keyboard - (KEYCDE)

12345AB CD E 12345 • ____ END OF FIELD

THIS IS A TEST. • ____ END OF LINE

THIS IS THE END. • ----END OF DISPLAY

Figure 10-1. Display Input Conditions

10-4

Disabling All Key Interrupts

The GETKBD ON and GETKBD OFF statements allow
you to enable and disable the GETKBD function. They also
disable and enable all keyboard interrupts from the pro
gram break character (normally CONTROL-A) or from
keys specified in ON KEY # statements. (Interrupt charac
ters received over the data communications line including
characters being echoed from the keyboard, are not affect
ed.)

The GETKBD ON and GETKBD OFF statements can be
used to temporarily disable special keyboard input process
ing or re-enable it with a single statement.

Example:

10 REM Set up interrupts
20 FOR 1'1=0 TO 9
30 ON KEY #1'1 GOSUE 200
40 NEXT 1'1
SO REM Disable interrupts
60 GETKED ON

100 REM Enable interrupts
110 GETKED OFF

(resume)

Disabling Interrupt Keys

You can selectively disable interrupt keys using the OFF
KEY # statement. Executing OFF KEY #N (where N is the
code of the desired key) will disable any program interrupt
that has been set up with an ON KEY #N statement. A list
of key codes is given in tables 10-3 and 12-1.

Example: Enable and then disable interrupts from the_
key.

10 ON KEY #13 GOTO 100
20 OFF KEY #13

Interrupting On Specific Keys

You can cause your program to interrupt and branch when a
selected key on the keyboard is pressed. If your program is
dormant due to a SLEEP statement, it will resume execu
tion of your program when the selected key is pressed. You
can then perform any special processing and return to the
sleep state or use the WAKEUP statement and continue
executing your program.

Example: Set up an interrupt for the characters A, B, and C.
Branch to addresses 100, 200, and 300 respectively.

10 ON KEY #65 GOTO 100
20 ON KEY #66 GOTO 200
30 ON KEY #67 GOTO 300

Directly Acting On Keyboard Input

You can intercept input from the terminal keyboard and
process the characters yourself. This is done with the
GETKBD(X) function. When this technique is used, the
characters are not automatically displayed on the terminal
screen when the keys are pressed. This means that they are
not entered into the terminal's display memory. Control
keys such as BACKSPACE, CURSOR LEFT, etc. are not
executed. You can use the CHR$ function to directly force
their execution.

Before the GETKBD(X) function can be used, it must be
enabled with the GETKBD ON statement. This causes key
board input to be held in a buffer instead of being procesed
normally. Each time that you execute the GETKBD(X)
function X will be set to the code of the next sequential
character in the buffer. The function itself will be set to a
value of "1" if a character was present in the buffer or "0" if
the buffer was empty.

BUFFER

GOOD CHAR?

YES PROCCESS

NO GET ANOTHER

KEYBOARD GETKBD OFF

10-5

Example: Perform direct keyboard input and convert all
digits to their word equivalents.

10 DIM A$[SOl
20 AS-"zero one two threefour five six
30 GETKBD ON

seveneightnine II DISPLAY

40 IF GETKBD(X)=O THEN 40
50 IF 47<X AND X<5S THEN 90
60 IF X=239 THEN PRINT
70 PRINT CHR$(X);
SO GO TO 40
90 PRINT TRIMS(A$[5*(X-4S)+1;51);

100 GO TO 40

KEYBOARD INPUT

ADD 2 CUPS SUGAR TO
1 CUP OF FLOUR

Processing Key Functions

You can process key codes that have been intercepted with
the GETKBD(X) function or generated by your program.
This is done with the CHR$(X) function in a PRINT state
ment. This will ha~e the same effect as if the keycode speci
fied by X had been input from the keyboard normally. For
example, PRINT CHR$(8); would have the same effect as
pressing the BACKSPACE key.

Example: Ensure that the first letter of a sentence is a cap
ital. Assume that the beginning of a sentence is defined as ". "
followed by a letter.

10 GETKBD ON
20 IF GETKBD(X)=O THEN 20
30 [F X=46 THEN Sent=l,GOTO 70
40 IF X=32 AND Sent=l THEN Sent=2~GOTO 70
50 IF 96<X AND X<123 AND Sent=2 THEN X=X-32
60 Sent=O
70 PRINT CHR$(X);
SO IF X=239 THEN PRINT
90 GOTO 20

10-6

KEYBOARD INPUT

This is short. this is not much
longer than the last. only a short
test. but better than none.

ADD TWO CUPS SUGAR
TO ONE CUP OF FLOUR

The PROC$(X) function is used to expand special key func
tions into their equivalent escape or control sequence. The
cursor right key (#46) has a keycode of 195. When this
keycode is used in the PROC$ function it is translated into a
two character sequence Ei: C. This allows you to easily write
control sequences to a tape file for example.

DISPLAY

This is short. This is not much
longer than the last. Only a short
test. But better than none·

The statements PRINT CHR$(205) and PRINT
PROC$(205) will both have the same result since the desti
nation is the terminal. The CHR$(205) will pass a byte with
a value of 205 to the terminal. The terminal uses 205 to
indicate a delete line function. The PROC$(205) will be
translated into Ei; M which is the terminal escape sequence
for DELETE LINE. However, if the PRINT was a PRINT
#1 where file #1 was assigned to the left tape, CHR$(205)
would have caused a byte with the value 205 to be recorded.
The PROC$(205) would have caused two bytes Ei; and M to
be recorded.

Redefining the Keyboard

You may want to redefine keys so that they generate differ
ent codes or you may want to move existing keys to different
locations on the keyboard. The KEYCDE(X,N,C) state
ment allows you to set the code generated by each physical
key location on the keyboard. You can select up to three
different codes that can be generated by each key, depend
ing on whether or not a shift key is being pressed.

Each physical key location on the keyboard is assigned a
number. A figure showing the key number assignments is
given in section 12 (figure 12-1). A list of the keys given in
key number order is given in table 12-1. The terminal
maintains a table linking key number to a character code.
This code is usually the ASCII code for the particular char
acter. For instance, the SPACE key is physical key number
52 (see figure 12-1) and generates the decimal code 32 (see
table 12-1).

Keys are "changed" by assigning a new character code to the
physical key location. You can then remove the keycaps and
reinstall them in a different location on the keyboard and
the result would be a keyboard customized for your applica
tion. You can even assign codes outside of the 0-127 range.
This may be of use if you are using an extended ASCII
character set. You can use character codes with values be
tween 0 and 255. Table 10-3 contains a list of the character
codes and keys ordered by code value.

The left and right shift keys, CNTL, AUTO LF, BLOCK
MODE, CAPS LOCK, REMOTE, and RESET keys cannot
be changed.

The X parameter is used to select one of four possible code
tables to be used when a key is pressed. The values are as
follows:

X = 0 U nshifted keys
1 Left shift key down
2 Right shift key down
3 Either shift key down

If you use X=3 to define a code table, the right and left shift
keys will generate the same character code. This means that
you have access to one unshifted character code and one
shifted character code. This is the normal mode of oper
ation. If you want you can use values of X=l and X=2 to
define two possible character codes for each shifted charac
ter. If the left shift key is used with a character key one code
will be generated, and if the right shift key is used, a differ
ent character code will be sent.

Note that shifted and unshifted character codes need not be
related to each other. For example, an unshifted "A" could
generate the code for a lowercase "a" and the shifted "A"
could generate an "@".

A simple application of this feature would be to allow you to
access an extended character set without using any special
coding. For example, some text processing systems use as
many as four types of "-". The single ASCII character may
have to be translated into a hyphen, a minus, or a dash. On
the computer system only one graphic character is normally
used. By moving the "=" sign to the "+" key you can have
three possible minus characters on the "-" key.

Example:

1 0 REM Let the 11=" sign be a left shi ft ";11 key
15 KEYCDE(1,37,61>
20 REM Let the 11+" Sign be a right shift n;1I key
25 KEYCDE<2,37,43)
30 REM Let a minus sign be the unshifted "_II key
35 KEYCDE(0,98,45)
40 REM Let a hyphen be a left shi ft " - " key
45 KEYCDE(1,98,167>
50 REM Let a dash be a right shi ft " -" key
55 KEYCDE(2,98,168)

The character codes 167 and 168 were chosen for the two
new characters since they are the first two unused character
codes in table 10-3. The computer can be programmed to
accept the new character codes and convert them to what
ever the required code is. If you perform direct keyboard
input so that your program is handling all keyboard input,
you can simply change the terminal key codes to match the
computer's character codes.

10-7

Table 10-3. Character Codes and Key Numbers

Code Key tt Char Code Key tt Char Code Key tt Char Code Key tt Char

0 91 Null 64 91 @ 128 * 192 X One Second Delay
1 109 SOH 65 109 A 129 * 193 39 Cursor Up
2 44 STX 66 44 B 130 * 194 62 Cursor Down
3 28 ETX 67 28 C 131 * 195 46 Cursor Right
4 93 EOT 68 93 D 132 * 196 30 Cursor Left
5 27 ENQ 69 27 E 133 * 197 Hard Reset
6 85 ACK 70 85 F 134 * 198 38 Home Down
7 77 BEL 71 77 G 135 15 Stop 199 X Cursor Return
8 69 BS 72 69 H 136 79 G Cursor 200 X Home To Xmit-Only
9 67 HT 73 67 I 137 87 Rb Ln 201 3 Cursor Tab

10 , 61 LF 74 61 J 138 78 Zoom 202 55 Clear Display
11 53 VT 75 53 K 139 6 Zoom In 203 55 Clear To End-Of-Line
12 45 FF 76 45 L 140 22 Zoom Out 204 80 Insert Line
13 68 CR 77 68 M 141 06 Clear 205 72 Delete Line
14 60 SO 78 60 N 142 79 G Dsp 206 56 Control- Insert Char (Wrap)
15 75 SI 79 75 0 143 15 ADSP 207 64 Control-Delete Char (Wrap)
16 83 DLE 80 83 P 144 7 Draw 208 64 Delete Char
17 11 DCl 81 11 Q 145 23 Move 209 56 Insert Char On
18 35 DC2 82 35 R 146 86 Multiplot Menu 210 56 Insert Char Off
19 101 DC3 83 101 S 147 95 Multiplot 211 31 Roll Up
20 43 DC4 84 43 T 148 95 Axes 212 70 Roll Down
21 59 NAK 85 59 U 149 78 Text 213 47 Next Page
22 36 SYN 86 36 V 150 14 TAng 214 54 Prev Page
23 19 ETB 87 19 W 151 22 T sze 215 X Format Mode On
24 20 CAN 88 20 X 152 74 Enter 216 X Format Mode Off
25 51 EM 89 51 Y 153 105 Break 217 57 Display Functions On
26 12 SUB 90 12 Z 154 57 Display Functions Off 218 *
27 2 ESC 91 99 [155 24 Command 219 X Start Unprotected Field
28 99 FS 92 92 /

/ 156 32 Read 220 *
29 16 GS 93 21 1" 157 40 Record 221 X End Unprotected Field
30 21 RS 94 106 158 48 Softkeys 222 X Send Terminal Status
31 106 US 95 107 159 41 Control-Test 223 X Non-Displaying Terminator
32 52 SP 96 91 160 32 Control-Read 224 X Relative Cursor Sense
33 10 ! 97 109 a 161 54 Control-Pre v Page 225 X Absolute Cursor Sense
34 18 " 98 44 b 162 87 G. Up Arrow 226 X Enable Keyboard
35 26 tt 99 28 c 163 2:3 G. Right Arrow 227 X Disable Keyboard
36 34 $ 100 93 d 164 14 G. Down Arrow 228 X Send Display
37 42 % 101 27 e 165 7 G. Left Arrow 229 X Fast Binary Read
38 50 & 102 85 f 166 86 Cursor Fast 230 X Disconnect Modem
39 58 103 77 g 167 * 231 X Soft Reset
40 66 (104 69 h 168 * 232 38 Home To Protected Field
41 82) 105 67 i 169 * 233 3 Back Tab
42 29 * 106 61 j 170 * 234 47 Display Softkey Menu
43 37 + 107 53 k 171 * 235 47 Return Normal Display
44 76 108 45 I 172 * 236 25 Memory Lock On
45 98 - 109 68 m 173 * 237 25 Memory Lock Off
46 84 110 60 n 174 * 238 *
47 92 / III 75 0 175 * 239 X Soft Carriage Return
48 90 0 112 83 p 176 * 240 73 Fl
49 10 1 ll3 II q 177 63 Set Tab 241 81 1"2
50 18 2 ll4 35 r 178 71 Clear Tab 242 89 F3
51 26 3 ll5 101 s 179 71 Control-Clear Tab 243 97 F4
52 34 4 116 43 t 180 30 Control-Left Cursor 244 ll2 F5
53 42 5 ll7 59 u 181 46 Control-Right Cursor 245]04 F6
54 50 6 ll8 36 v 182 X Alpha Only Field 246 96 F7
55 58 7 119 19 w 183 X Numeric Only Field 247 88 F8
56 66 8 120 20 x 184 X Alphanumeric Field 248 X Data Comm Self-Test
57 82 9 121 51 y 185 * 249 X Monitor Mode On
58 29 : 122 12 z 186 * 250 41 Terminal Self-Test
59 37 ; 123 99 f 187 * 251 X Start Xmit-Only Field
60 76 < 124 16 : 188 * 252 *
61 98 = 125 21 I 189 * 253 *
62 84 > 126 106 - 190 * 254 *
63 92 ? 127 107 I 191 * 255 X Display Enhancement Indicator

Notes:

X = Not accessible from the keyboard

* = Not used

10-8

DATA COMMUNICATIONS

Enabling the Data Communications Functions

The GETDCM ON statement is used to enable direct data
comm input. This allows your program to monitor the data
comm input buffer directly rather than through the termi
nal file system.

Note that if a GETDCM ON statement has been executed
and you execute a SLEEP statement without executing a
GETDCM OFF statement first, datacomm input will not be
echoed to BASIC. This means that your program will not
interrupt on selected characters (ON KEY statement). You
should always execute a GETDCM OFF statement before
executing a SLEEP statement. This means that you may
have to re-execute a GETDCM ON statement on return to
the program from a slept condition.

THIS IS A

Also, if you have left datacomm assigned to a file number
(ASSIGN "DATACOMM" TO #1) without de assigning
the file (ASSIGN * TO #1 or ASSIGN "OTHERFILE"
TO #1), the datacomm input will not be echoed to the
BASIC interpreter.

Single Byte Transfers

Two built-in functions are used to bypass normal data
comm handshakes, such as DC1 and DC2, to allow you to
establish your own handshake protocal. These functions are:

• GETDCM(character)

• PUTDCM(character)

GETDCM is also useful for scanning datacomm input char
acter by character since it returns only one character to the
user. Similarly, PUTDCM sends only one character to the
datacomm.

BUFFER

GETDCMOFF

GOOD CHAR?

YES PROCESS

NO GET ANOTHER

10-9

The following terminal program assumes a simple program
is available to run on a remote CPU. This example is not
intended as a guide to datacomm programming. It is intend
ed to illustrate the mechanics of interacting with a host
CPU. The exact techniques used will depend on whether or
not you are using full duplex, the protocol used by the host
computer, and other factors.

COMPUTER

nn
»CTE::n

10 INPUT N
20 IF N=O THEN
30 PRINT N**;':~
40 GOTO 10
SO END

DIALOG

CPU

0(

~: D, ..

'"
HELLO: ", ...

0(

", ..
'"

) ", ..
'"

) ", ..
'"

? ", ..
'"

", ..
etc

10-10

TERMINAL
DISPLAY

r' un
? ~~

J*J=9
? l{

J*J=16

J*J=25
? 6
J*J=36
? .., . '

TERMINAL

~

HELLO 'it

." ; 'it

BASIC 'it

GET DCTEST 'it

RUt-! 'it

Keyboard Input 'it

TERMINAL PROGRAM

to DIM A'[80]
20 REM Define control COMMands
30 Eof$=CHR$(27'&";"&CHRI(13'
40 Eon$=CHR$(27'&":"&CHR$(i3'
SO RMote$=CHRS(27)&"&klR"
60 Locl$=CHR$(27'&"&kOR"
70 REM *************************************
80 REM Put terMinal in reMote for assign
90 PRINT RMote$;
100 ASSIGN "DA" TO 11
140 REM ************************************
ISO REM Log on CPU
160 PRINT tl,CHR$(13';
170 GOSUB 370
180 PRINT tll"HELLO ME.MKTG"&CHR$(13);
181 GOSUB 370
Hl2
184
190
200
210
220
230
240
250
2S2
2S4
260
270
280
290
29':>
300
310
320
330
340
3'50
360
370
3130
390
400
410
415
420
430
431
432
434
436
438
440
4S0

REM Turn off echo
PRINT tl;Eof$;
GOSUB 370
REM Call test prograM
PRINT tl;"BASIC"&CHRS(13';
GOSUB 370
REM Run test prograM on CPU
PRINT tl;"GET DCTEST"&CHR$(13);
GOSUB 370
PRINT tl;"RUN"&CHR$(13';
GOSUB 370
REM Get keyboard input
PRINT Locl$;\ INPUT J\ PRINT RMote$;
REM Send input to CPU
PRINT tl;J;CHRS(13);
IF J=O THEN 41S
REM Get squared nUMber frOM CPU
READ tl;Q$
REM Print unswer
PRINT "J*J=";Q$
GOTO 250
REM **************************************
REM wait for DCI character
GETDCM ON \D$=""
IF GETDCM(DS)=O OR D.<>CHR$(17) THEN 380
GETDCM OFF \ PRINT CHR$(17);
RETURN
REM Cleanup ******************************
GOSUB 31'0
REM Restore echo
PRINT U;Eon.;
GOSUB 370
REM Log off CPU
PRINT tl;"EXIT"&CHR$(13);
GOSUB 370
PRINT tl;"BYE"&CHR$(13';
PRINT Loc1$
END

PROGRAM CONTROL
The program control functions available in BASIC are made
up of the following functional groups:

• Terminal and resource functions (COMMAND and
FRE)

• Error handling functions (ERROR, ON ERROR,
ERRL, ERRN, RESUME)

• BASIC suspend (SLEEP and WAKEUP)

Terminal and Resource Functions

The COMMAND statement allows your program to access
the standard terminal functions to control cartridge tapes,
assign I/O source and destination devices, enable or disable
edit mode, make direct data transfers, or to request the time
from the terminal's internal clock. A complete list of termi
nal commands is given in the Terminal User's Manual.

The COMMAND statement executes a terminal command
just as if it had been entered into the terminal's command
channel. The format of the COMMAND statement is as
follows:

COMMAND (command string) [,variable)

The <command string> is the terminal command. It may
be the command in quotes or a string variable containing the
command. If the return variable is used, it will be set to "0"
if the statement executed properly, if the statement did not
execute properly, the variable will be set to an error code. A
list of error codes is given in Appendix E. If a return variable
is not specified and an error occurs, the BASIC program will
halt.

Example: Rewind the left tape, select the display as the
source device and enable Edit Mode.

10 COMMAND "RE R" , X Rewind the right tape
20 IF X>O THEN 90 Process errors
30 COMMAND "A S DI" , X Make source assignment
40 IF X>O THEN 90 Process any errors
SO COMMAND "E E" , X Enable Edit
60 IF X>O THEN 90 Process any errors

An alternate program would be as follows:

10 A$="RE R A S DIE E "! Command strings
20 FOR 1=1 TO 13 STEP 6
30 COMMAND A$[I;6),X Output Command
40 IF X>O THEN 90 Process Errors
SO NEXT I

Error handling routines are described elsewhere in this sec
tion.

Memory Space Available

The FRE function can be used to determine the amount of
program or variable storage remaining. The function has
the following form:

FRE(expression)

If the expression is numeric (i.e. N, 5, TAN(X)) the value
returned is the amount of unused program and numeric
variable space (bytes) remaining. If the expression is a string
expression (i.e. A$, "MEMORY") the value returned is the
amount of string variable space (bytes) remaining.

The FRE function is useful to determine the amount of
terminal memory required for a given program application.
It can be used together with the REMOVE or SET SIZE
commands to obtain the proper amount of memory space for
your program.

Error Handling

BASIC provides a complete error handling capability which
allows you to detect program errors and provide for auto
matic recovery without halting your program. You can even
define your own error conditions complete with your own
error code and message.

The technique of error processing is to use an ON ERROR
statement to cause a branch to your error handling routine
whenever BASIC detects an error condition. Once you are in
your error handling routine you can check the error varia
bles ERRN and ERRL to determine the type of error and
where in your program that it occurred. ERRN contains the
code value of the error. ERRL contains the line number of
the statement that caused the error.

In many cases it may be possible to correct the error condi
tion programmatically or to indicate to an operator how
they can correct the error condition.

At the end of the error handling routine you can use a
RESUME statement to cause BASIC to continue executing
the program at a specified line number. If you detect an
error that you cannot recover from, you can use the ON
ERROR GOTO 0 statement. This will cause the program to
halt and print out the error information.

Note that to be effective, the ON ERROR GOTO statement
that you use to branch to your recovery routine must be
executed before an error occurs. If an error occurs before the
branch statement has been executed, the program will halt.

10-11

Example: Assume that the terminal is placed in Edit Mode
from the BASIC program. The program does not know if a
source tape will be used in the edit process. If you enter Edit
Mode with the terminal's default source and destination
devices and there is no left tape present, an error will be
generated by the ENABLE EDIT command. The following
program recovers from this error. It will also check to see
that the destination tape is present and "unprotected".

10 REM Arm error recovery routine
11 OH ERROR GOTO 16
12 REM Turn on Edit Mode
13 COMMAHD "E E"
14 EHD
15 !**
16 REM Error Handlinq Routine
17 IF ERRH-262 GOTO 36
18 IF ERRH-293 GO TO 36
19 IF ERRH-307 GO TO 23,27
20 REM Can't recover
21 OH ERROR GO TO 0
22 !**********.***
23 REM Protected Tape
24 PRIHT "Unprotect right tape, reinsert, and press RETURN1,,;

25 GO TO 31
26 !**
27 REM Ho tape on right drive
28 PRIHT "Insert a tape on right drive and press RETURN'~_
29 !***--*
30 REM Wait for operator and clean up screen
31 LIHPUT AS ! Wait for operator
32 PRIHT CHRS(193);CHR$(205); ! Clear program message
33 PRIHT CHRS(13); ! Clear terminal message
34 RESUME
35 !**
36 REM Reassign display as source
37 COMMAHD "A S DI",X
38 REM If assign error can't recover
39 IF X=O THEH 33
40 PRIHT "Recovery error";
41 EHD

You can define your own special error conditions or change
the message and error code produced by an existing termi
nal error, condition. The ERROR statement allows you to set
an error code and an optional error message. The statement
then forces the error condition. If an ON ERROR statement
has not been executed, the error code or optional message
will be displayed immediately. If the ON ERROR statement
has been executed, the specified error code will be passed to
the error handling routine as ERRN. The line number of the
ERROR statement will be passed as ERRL.

Example: The following program changes the error message
for error code 1027.

10 OH ERROR GOTO 100
20 REM Generate Loop Error
30 HEXT I

90 EHD
100 REM Error code=1027
110 IF ERRH(>1027 GOTO 150
120 REM Change message
130 ERROR 1027 , "Incomplete Loop"
150 OH ERROR GO TO 0

10-12

After the error handling is complete the RESUME state
ment should be used to continue program execution. The
RESUME statement reenables the ON ERROR statement
restoring the error trapping function. If the RESUME state
ment is not used after processing an error, the next error
that occurs will cause the program to halt.

The RESUME statement can use one of the following
forms:

RESUME
RESUME HEXT
RESUME line number

When RESUME alone is used, the program statement that
caused the error will be reexecuted. RESUME NEXT
causes execution to continue with the statement following
the statement where the error was detected. If a line number
is specified, execution will continue at the new line number.
The specified line number must be within the current pro
gram unit.

Example: The following program detects errors and then
resumes execution at different points in the program de
pending on the error code. If the error code is 1040, the
program will resume at the line following the statement that
caused the error. If the error code is 1041, the program will
resume at statement 20. If any other error code is detected,
the program will attempt to re-execute the statement that
caused the error. (Note that this will cause the program to
loop forever.)

10 ON ERROR GOTO 50
20 INPUT "Enter a number",N
30 PRINT "100/";N;"-";100/N
40 GOTO 20
50 REM ERROR ROUTINE
60 ON ERRN-1039 GOTO 80,90
70 RESUME
80 REM Result too big
82 PRINT "BIG"
84 RESUME NEXT
90 REM Division by zero
92 N-N+.000001
94 RESUME 20

Suspending BASIC

You can suspend BASIC causing the terminal to return to
normal operation. This is done using the SLEEP statement.
The difference between suspending BASIC and using the
EXIT command is that the terminal can be programmed to
return to BASIC when a particular key is pressed. This
feature can be used to perform special processing on data or
perform some device control operations and then return to a
suspend state. It allows the application program to be acti
vated automatically from the keyboard without the operator
even being aware that BASIC has been called. Note that this
is not the same as the terminal "SUSPEND" command
described in the Terminal User's manual.

There are two ways that can be used to return to BASIC:

• Press the BASIC Break key (normally CONTROL-A)
• Press a key whose keycode has been used in an ON KEY

statement

If BASIC is awakened using the Break key, the program is
interrupted at the last executed SLEEP statement and a
Break message is displayed.

If BASIC is reentered by pressing a keycode that has been
used in an ON KEY statement, the program will resume
execution as specified in the ON KEY statement. If the
GOTO form of the ON KEY statement was used, the pro
gram will continue executing normally until another SLEEP
statement is executed. If the GOSUB or CALL forms of the
ON KEY statement were used, BASIC will sleep again auto
matically when the RETURN or SUBEND statements are
executed. The sleep can be prevented if a WAKEUP state
ment is executed in the specified subroutine or subprogram.

Note that while BASIC is sleeping, interrupt keys are en
abled regardless of a previously executed GETKBD ON
statement.

The WAKEUP statement cancels the effect of the SLEEP
statement and returns the program to normal execution.

The following examples use the programs described ear
lier under Keyboard Input. This time the ON KEY state
ment will be used instead of direct keyboard input. The
BASIC program will run only when one of the selected
keys is pressed.

Example: Perform direct keyboard input and convert all
digits to their word equivalents.

10 DIM A$[801
20 A$-"zero one two threefour five six seveneightnine"
30 ON KEY #48 GOSUB 150
40 ON KEY #49 GOSUB 160
50 ON KEY #50 GOSUB 170
60 ON KEY #51 GOSUB 180
70 ON KEY #52 GOSUB 190
80 ON KEY #53 GOSUB 200
90 ON KEY #54 GOSUB 210
100 ON KEY #55 GOSUB 220
110 ON KEY #56 GOSUB 230
120 ON KEY #57 GOSUB 240
130 X-57
140 SLEEP
150 X-X-1
160 X-X-1
170 X-X-1
180 X-X-1
190 X-X-1
200 X-X-1
210 X-X-1
220 X-X-1
230 X-X-1
240 PRINT TRIM$(A$[5'(X-48)+1;51);
250 X-57
260 RETURN

Note that it is necessary to arm each key separately. This is
to allow you to determine which key has been pressed. When
the ON KEY # statement is used you cannot use GETKBD
to get the key that caused the interrupt. By using different
entry points (lines 150-240) the interrupting key can be
determined. The program is longer than when GETKBD
was used but the BASIC program is only active when the
0-9 keys are pressed. This allows the terminal to process
alpha characters faster and makes it easier to interface to a
remote CPU.

Example: Ensure that the first letter of a sentence is a cap
ital. Assume that the beginning of a sentence is defined as a
"." followed by a letter.

10 REM ***** arm and" .. keys *****
15 ON KEY #46 GOSUB 40
20 ON KEY #32 GOSUB 45
25 SLEEP
30 REM
35 REM ***** process ".11 and II .. ******
40 PRINT "."; \ Sent-1 \ RETURN
45 PRINT" "; \ If Sent=O THEN RETURN
50 REM
55 REM ••••••• monitor keyboard •••••••
60 GETKBD ON
65 IF GETKBD(X)=O THEN 65
70 IF 96<X AND X<123 THEN X=X-32
75 IF X=239 THEN PRINT
80 GETKBD OFF\Sent=O
85 PRINT CHR$(X);\ RETURN

10-13/10-14

1

I'IIIJIlii
~ __________ A_G_R_A_PH_IC_S_LA_N_GU_A_G_E(_AG_L~)I XI I

INTRODUCTION

What is "A Graphics Language" (AGL)?

AGL is an extension to BASIC that provides easy to use
graphics commands. If you have an HP 2647 A Graphics
Terminal, you can perform these additional graphics oper
ations. These graphics operations are a subset of the AGL
functions available on other Hewlett-Packard graphics
systems.

AGL consists of powerful graphics functions that allow you
to perform graphics operations with a minimum of program
ming.

For example, to draw a labeled grid it would take the
following individual escape sequences:

10 REM DRAW AND LABEL GRID
20 PRINT "ENTER XMIN, XMAX, AND XINTERVAL"
30 INPUT X1,X2,X3
40 PRINT "ENTER YMIN, YMAX, AND YINTERVAL"
50 INPUT Y1,Y2,Y3
60 REM DRAW X/V LABELS
70 PRINT CHR$(27)&"*m";X1;Y1;"J"
80 FOR I=X1 TO X2 STEP X3
90 I $=VAU(I)

100 PRINT CHRSC27>&"*1"&I$
110 NEXT I
120 REM SAME FOR Y LABELS

130 REM DRAW GRID
140 REM SELECT DOTTED LINE
150 PRINT CHRSC27>&"*m7B"
160 FOR I=X1 TO X2 STEP X3
170 PRINT CHRS(27)&"*pa";I;Y1;"b";1+5;Y2;"A"
180 NEXT I
190 REM SAME FOR Y GRID

200 REM RESTORE LINE TYPE
210 PRINT CHRS(27)&"*m1B"
220 REM DRAW AXIS

240 REM DRAW MAJOR AND MINOR TICS

250 END

In AGL the same operation could be performed as follows:

) 5 PLOTR
)10 LOCATE (20,60,20,60)
)20 SCALE (-30,30,-30,30)
)30 LGRID (5,5,0,0,2,2)
)RUH

38

28

18 : ~ ~ ...

8

-18

-28

-38

. '\._

AGL requires fewer statements, no control characters, and
English -like BASIC commands. In other words, its easier to
use for high level graphics operations.

The rest of this section describes the AGL functions
available in the HP 2647A Graphics Terminal and gives
examples of their use.

11-1

A Graphics Language

AGL TERMINOLOGY
Regions

There are several types of graphics regions used by AGL (see
figure 11-1). These regions include the following:

• Logical Address Space (A1,A2)
• Mechanical Space (Limits) (M1,M2)
• Graph Limits (Pl,P2)
• Graphic Display Space (GDU) (Gl,G2)
• Region of Interest (Viewport) (V1,V2)

1_16,384 16,3831 116,383 16.3831

1-16,384 -16.3841

c::::=.:J LOGICAL. ADDRESS SPACE

MECHANICAL LIMITS

w/1#///,0'#!/!, GRAPHIC DISPLAY SPACE

Figure 11-1. AGL Regions

116,383 -16,3841

The following paragraphs describe how these regions apply
to the HP 2647A Graphics Terminal.

AGL can be used with several plotter devices. Refer to the
appropriate plotter documentation for AGL operation.

Logical Address Space (A1,A2)

The Logical Address Space is the range of data values which
may be referenced by the terminal or plotter. This is the
"logical" plotting area and it may be larger than the
mechanical limits described below (see figure 11-1). The
logical limits for X and Y values on the HP 2647A are
-16,384 < X,V < +16,383.

11-2

Mechanical Limits (M1,M2)

The mechanical limits define the physical display area
(device limits) of the terminal or plotter. The mechanical
limits of the terminal correspond to points in the range 0,0
to 719,359 (see figure 11-1).

Graph Limits (P1,P2)

The graph limits define the desired display area. This area is
within the terminal's mechanical limits. The graph limits
(P1,P2) are set to default values by the GPON command or
to user values by the LIMIT command. Note that these
values can also be set with the front panel controls on a
plotter (refer to the appropriate plotter manual). Whenever
these points are redefined or read by AGL, the following
regions are set to the graph limits (P1,P2):

• Graphic Display Space (GDU) (G1,G2)
• Region of Interest (V1,V2)
• Hard Clip Limits (H1,H2)
• Soft Clip Limits (Sl,S2)

These points may be set at the beginning of a program to
specify an area on the display where all plotting will be done.

Graphic Display Space (GDU) (G1,G2)

The available display in the terminal consists of an area 200
x 100 graphic display units (GDU's) in size. These units are
used to refer to a logical display space (see figure 11-2).

0,100 200,100

0,0 200,0

a.) Available Display

·10, 10 10,10

·10, ·10 10, ·10

b.) Scaled (.10,10,·10,10)

Figure 11-2. Graphic Display Space

A Graphics Language

GDU's are used in the LOCATE command to describe the
display, independent of the data values displayed.

Example:

> 5 PLOTR

>10 LOCATE (10,70,20,70)

>20 SCALE (-10,10,-10,10)

>30 FRAME

>RUH

The values of H1 and H2 define the limits of GDU space. H1
and H2 specify the hard clip region to which all plotting is
confined. This space is defined such that the point 0,0 in
GDU's is mapped to HI. This point is referred to as GI.
Thus, each time H1 and H2 are changed, GDU space is
redefined and the new G 1,G2 points (limits) are set equal to
H1 and H2.

AGL maintains the points G1,G2 and the scaling necessary
to map GDU's to the display automatically. When using
AGL, you will always plot using GDU's or UDU's (user
defined units).

Region of Interest (Viewport) (V1,V2)

This is a rectangular area into which your data is plotted.
You can define this region of interest with the LOCATE or
MARGIN commands. Whenever points V1,V2 are changed,
the soft clipping limits are also set (S1=V1 and S2=V2). See
"Soft Clip Limits (S1,S2)."

11-3

A Graphics Language

Once this region has been defined, you can map data to this
rectangle with the SCALE or SHOW commands. This
region is useful when you wish to plot data in your own units
and confine the plot to a specific region in the display. In
this case, the LOCATE command is used in conjunction
with SCALE or SHOW to allow plotting in user units. AGL
automatically maps user units to plotter units so you need
only concern yourself with units meaningful to you. Note
whenever this region of interest is changed, AGL updates
the soft clip limits to the new values of VI and V2.

11-4

Clipping

Clipping eliminates that portion of the plotted data that lies
outside of the specified graphic display area. There are two
types of clipping limits: (1) Hard Clip Limits (H1,H2) and
(2) Soft Clip Limits (Sl,S2). Once these limits are set, only
data that falls inside these limits is plotted.

Hard Clip Limits (H1,H2)

The Hard Clip Limits define the rectangular area within the
graph limits (P1,P2) in which plotting can be done. No
marks can be made outside this region. AGL automatically
stops plotting at the current hard clip limits.

The hard clip limits can be changed with LIMIT and
SET AR commands. The LIMIT command sets the graph
limits (P1,P2) and then sets the hard clip limits (Hl,H2)
equal to P1,P2. The SETAR command reads the graph
limits, calculates the proper aspect ratio, and then sets the
resulting hard clip limits.

Hard clip limits are intended to clip both vectors and labels.
In plotter devices, AGL maps points G1,G2 in GDU's to
points Hl,H2 which are in plotter units. This results in
scaling factors used to map GDU's to plotter units. Not all
plotter devices can change their hard clip limits. This results
in some labels being made outside the designated display
area.

80ft Clip Limits (81,82)

80ft clipping allows you to redefine the clipping area within
the hard clip region. Only vectors (not labels) are affected by
the soft clip limits. This allows plotted data to be clipped
within the soft clip boundaries, while allowing labels and
titles to be outside these boundaries. The soft clip limits can
be changed and redefined at many points throughout an
application program. 81 and 82 must lie within (or coincide
with) the hard clip limits H1,H2. If you try to place 81 or 82
outside the hard clip region, the intersection of these regions
is stored by AGL as the soft clip region. If the hard and soft
clip regions do not intersect or these regions intersect as a
line, an error message will be printed and no plotting will
appear on the graphic device.

The Effect Of AGL Commands On Graphic Regions

Table 11-1 contains a list of AGL commands and their
effect on the various regions described previously. Each
command affects the regions in a different way.

A Graphics Language

Units

AGL has the capability to use three unit systems:

• User Defined Units (UDU's)
• Graphic Display Units (GDU's)
• Metric Units

User Defined Units (UDU's)

This system defines the units used in your application.
These units are automatically scaled and translated to
machine units by AGL. You can switch between unit
systems at different points in your application program.
This allows .. you to plot in units that you understand.

11-5

A Graphics Language

Table 11-1. The Effect Of AGL Commands On The
Graphic Regions

OMMAHDS
GPQN(1) LIMIT GPOH(2) SETAR GPON(3) lOCATE CLIP

REGIONS MARGIN

MECHAN 1-
CAL

("'1,M2)

GRAPH SETS
(P1,P2) SETS USER READS FROM

DEFAUl T SPEC DEVI CE

HARDCLIP SETS COMPUTE
(H1,H2) H1-P1 H1.H2
(NOTE 1) H2-P2 USING

P1,P2

GRAPH I C SETS
DISPLAY G1-H1
(G1.G2) G2-H2
(NOTE 2)

REGION
of SETS SETS

INTEREST V1-G1 V1.V2
<V1,V2) V2-G2 TO USER

SPEC

SOFT
CLIP SETS SETS Sl. S2

(51.52) 51-V1 51-V1 TO USER
(NOTE 3) S2-V2 S2-V2 SPEC

SOFT son
CLIP CLIP

ON ON

NOTES:
1- ThedeviCI!! drlVe,. tries to !let the device hard clip Ilm-

i t5 to H1 .H2.
2. GDU !lpace i!l mapped to G1 • G2 by compu t 1"9 appropr 1a te

!lea Ie fee t or !I to be used by AGL 1 n GDU plot t.l"9' The!!ll!!
!Icale factor!!! transfer-mGDU's to dl!vicl!! dependent ma-
chine units.

3. Sof tel iPpi"9 occurs onl y when !lof t c I1pp i n9 he!!! been
turned on.

11-6

Graphic Display Units (GDU's)

Graphic Display Units (GDU's) are defined as being one
percent of the length of the shortest side of the space
bounded by the hard clip limits (H1,H2). Thus the short
side is 100 GDU's in length, and the long side is

(100 GDU'5)*(Long side Ishort side).

Once the hard clip limits have been established with the
LIMIT or SETAR commands, the GDU system is automati
cally scaled to the hard clip boundaries. Figure 11-3 shows
the drawing area defined in the GDU system.

~~dO:t = 100 GDUs { ~;"ea defined ~bYLIMIT
" ,., v

Long Side = 100·
Long Side

Short Side

Figure 11-3. Graphic Display Units (GDU's)

Metric Units

The basic unit of distance in the METRIC mode is the
millimeter. This mode defines user units so that functions
plotted are scaled to millimeters. This mode is useful in
drafting applications to plot physically scaled drawings.
Metric units are turned on by the MSCALE command.
When plotting to the terminal display, drawings may be
distorted slightly due to round off errors.

Other Terms

Additional terms are defined where used in the command
descriptions that follow.

FUNCTION GROUPS
The AGL functions can be separated into four groups:

• Set-Up Functions
• Plotting Functions
• Axis and Labeling Functions
• Interactive Functions

Table 11-2 contains a list of the AGL functions. The
remaining paragraphs in this section provide detailed de
scriptions of the functions.

Note: The AGL functions are described for the HP 2647A
Graphics Terminal. Functions whose operations vary on
other graphic devices are also noted.

FUNCTION SYNTAX
The general form for all functions is:

keyword (P1,P2,P3, ... Pn)

Where keyword = Function name

Pn = Numeric expressions or varia-
bles

Parameters are read left to right. Missing parameters are
assigned default values where possible. Refer to the function
descriptions for the default values for the various functions.
Arrays and strings cannot be used as parameters.

Examples:

>10 X 3

>20 Y -10

>30 Hpen = 2

>40 PLOT (X,Y,Hpen)

This would read the X coordinate as 3, the Y coordinate as
-10, and the pen parameter as 2 (lift after the plot).

>10 PLOT (5,10)

This would read X coordinate as 5, Y coordinate as 10, and
assign the default value for the pen position. The pen
default for the PLOT function is 1 (move and then put pen
down). Therefore PLOT(5,1O)=PLOT(5,1O,1).

A Graphics Language

Table 11-2. AGL FUNCTIONS

FUNCTJ ON

SETUP
PLOTR
GPON
SETAR
LIMIT
GCLR
LOCATE
MARGIN
SCALE
SHOW
MSCALE
CLIP
CLI POFF
CLI PON
SETGU/SETUU

AXIS/LABELING
XAXIS
YAXIS
LXAXIS
LYAXIS
AXES
LAXES
GRID
LGRID
FRAME
FXD
LORG
LDIR
CSIZE

PLOTTING
PENUP/PENDN
PEN
LINE
PLOT
MOVE
DRAW
RPLOT
IPLOT
PDIR

PORG

INTERACTIVE
WHERE
POINT
CURSOR
DIGITIZE
GPMM
DSIZE
DSTAT
GSTAT

DESCRIPTION

S .. l .. ct and Initlallz ..
Power On Re!iet Plotter
S .. t A.p .. ct Ratio
S .. t Hard Clip liml t
CI .. ar DI.play
D .. fln .. Plotting Ar
D .. fin .. Plotting Ar .. a
D .. f I n .. U ... r Unl to
D .. fi n .. U ... r Unl to
S .. t Up M .. trlc Scaling
Move Soft Clip liml t
Su.p .. nd Soft Clip
R ... tor .. Soft Clip
S .. l .. ct GDU'./U ... r Unl t.

Draw Linear X Ax!!!
Drl!!lw Linear Y Axl!5
Dra", Lab .. l .. d X Axl.
Dra", L"b .. l .. d Y Axl.
Drew Linear AXI!!:!!5
Dr .. ", and L .. b .. l Ax ...
Draw Linear Grid
Dr .. ", and L .. b .. l Gr I d
Out lin .. Soft Clip Ar
S .. t Labe I Forma t
S .. t Lab .. l Origin Mode
S .. t L .. b .. l Direction
S .. t Char .. cter Size

Lift/Drop IIPen"
Select a uPen"
S .. lect D ... h Pattern
Ab.olute Plotting
Ab.olut .. Move
Ab.olute Dra",
Rel .. tive Plotting
Increment .. l Plot
Plot Dlr .. ction (for RPLOT .. nd
IPLOT>
S .. t R .. loc .. t .. bl" Origin

R d P .. n Po.ltlon
Set CUr50r Po.itlon
Read Cur 501" PO!!! t i on
Re .. d Cur.or ",I th W .. I t
mm to GDU Conver!i 1 on
R .. turn Size to Dat ..
D1.play St .. tu.
Graphic, Pack .. ge St .. tu.

11-7

A Graphics Language

SET-UP FUNCTIONS

PLOTR
PLOTR [(LU# [, action [, HPIB [, LOGLU]]])]

Where: LU# = the logical unit number of the plotting
device. Default is 0 which is the terminal.

action = one of five possible device operations described
below. Default is 1 which selects and initializes the new
plotting device.

HPIB = the address of the output (plotting) device. Default
is equalled to the assigned LU#. If LU# is 0, then HPIB is
ignored.

LOGLU = the logical unit number of the Log device.
Default is 0 which ignores the Log device assignment. IF the
LU# is 0 then the LOGLU# is ignored.

The PLOTR statement must be used to initialize AGL.
PLOTR selects and initializes the plotting or display device
to be used. The default units are GDU's. This can be
changed using the SETUU, SCALE, SHOW, or MSCALE
statements. iYou can select one of five device operations by
specifying one of the following actions:

0: Terminates use of device.
1: Default. Selects new device and initializes Oevel2A of

GPON). A clear operation (GCLR) is not performed.
No buffering.

2: Resumes use of device (no initialize).
3: Suspends device.
4: Same as action 1 above. On other plotting devices this

may select a device with data buffering.

The HPIB parameter is the HP-IB address of the output
device. This parameter is ignored ifthe LU# is O. If an LU#
has not previously been assigned, the HPIB parameter will
be assigned to the logical unit number.

The LOGLU parameter selects the Log (write only) device.
This parameter is only used when the LU# is not o.

The default values for the parameters are:

LU# = 0 (Display)
ACTION = 1
HPIB = 0 if LU# 0 else HPIB LU#
LOGLU = 0

Example:

>10 PLOTR (1,0)
>20 PLOTR (A,L)
>30 PLOTR (A+B,C-I)

11-8

GPON
GPON [(<level>)]

The GPON function is defined as the "Power-On" reset
level of the plotting device, where level is one of the
following:

Levell: Sets Graph Limits PI,P2 to the (device-depen
dent) default values and performs all Level 2 and 3
operations.

Level 2: Clears display (paper-moving devices do not
advance paper). If the level is not specified, GPON(2) IS

used.

Level 2A: Reads the hardware Graph Limits (PI,P2) in
MU's. This level is used by the PLOTR and SETAR
statements when no parameters are given.

Level 2B: Sets the hard clip limits HI,H2 equal to PI,P2.
This level is used by the LIMIT statement.

Level 2C: Sets the hard clip limits HI,H2 independent of
PI,P2. Calculates GDU to machine unit scale factors by
mapping G I,G2 to HI,H2. Also, sets the hard clip limits of
the device to HI,H2. PI and P2 are not affected. This level is
used by SETAR when parameters are given.
Selects Pen 1
Puts the pen up at the HOME (0,0 GDU) position.
Updating of the relocatable origin is enabled (see PORG).
Sets relocatable origin to (0,0) GDU's.
Performs all Level 3 operations.

Level 3: Gets address space information needed by
plotting package.
Sets SI= VI= (0,0) GDU's, and S2= V2= "G2" in GDU's.
Sets user units = GDU's (i.e., UI = VI; U2= V2).
Puts the "pen" up, without moving it.
Selects solid lines. This does not affect the device line flag.
Selects standard character set.
Selects LORG (1) (left-justified labeling).
Sets labeling direction to left-to-right (LDIR (0».
Clears any error conditions.
CSIZE is set to the device default value.
FXD(O,O) is executed.
Current units are set to GDU's.
Sets PDIR argument to zero degrees.
On devices with only one pen, the "linetype called" flag is
reset.
The "soft clipping" flag is set (turns clipping on).

Note: The levels 2A, 2B, and 2C above are not attainable by
a parameter in the GPON statement. They are used by the
PLOTR, SET AR, and LIMIT commands.

Examples:

10 GPOI'I
20 GPOI'I (3)
30 GPOI'I (1'1)

SETAR
SET AR [«aspect ratio>)]

The set aspect ratio (SETAR) function maintains the height
and width ratio of the plotted data from one device to
another. The hard clip limits H1,H2 and GDU limits are
reset so that GDU space will have the desired aspect ratio.
This redefined GDU space is made as large as possible
within the original Graph Limits P1,P2.

The Graph Limits are read, the hard clip limits H1,H2 are
calculated, and the GDU to MU scale factors are defined.

When a ratio is given, the hard clip limits H1,H2 are
calculated and a call to GPON (2C) is made. If no ratio is
given a call to GPON (2A) is made (see GPON).

Examples:

10 SETAR
20 SETAR (2)
30 SETAR (Y/X)

A Graphics Language

LIMIT
LIMIT [(<x1>,<x2>, <y1>,<y2>)]

Where X1,Y1 defines coordinate G1 and X2,Y2 defines
coordinate G2. Both coordinates are in millimeter units and
their origin begins at the lower-left corner (mechanical
limits).

The LIMIT function specifies the display space available
for plotting data on a terminal or plotting device.

If no coordinates are supplied, AGL will execute the
DIGITIZE twice to allow you to input the values with the
graphics cursor. A message will appear in the message
window giving the cursor location in MM's (even though
UDU's may be indicated in the message). (See the DIGI
TIZE statement.) The points may be entered in any order.
The lower left point will define G 1, and the upper right G2.

The LIMIT statement sets P1,P2 to the user specification.
It then calls GPON (2B) to reset the Hard Clip limits,
redefines GDU space, and restores default conditions. The
units for LIMIT are millimeters.

Example:

>10 LIMIT (0,200,0,100)

>20 FRAME

Gl

0,0

200, 100

G2

11-9

A Graphics Language

GCLR
GCLR [(paperfeed)]

The GCLR function clears the plotted display on the
terminal or plotting device and positions the pen at 0,0 (in
GDU's).

The optional paperfeed parameter is interpreted as follows:

>0 - form feed (default = 1).
=0 - no action.
<0 - previous page.

GPON should normally be used between plots, possibly
with GCLR, since it restores the default conditions.

Note: The terminal and most plotting devices cannot
advance paper. If the optional distance parameter is used
with these devices, it will be ignored.

Examples:

10 GCLR
20 GCLR(-1)
30 GCLRctD

11-10

LOCATE
LOCATE [(<x1>,<x2>, <y1>,<y2>)

Where Xl,Yl defines coordinate VI and X2,Y2 defines
coordinate V2. All parameters are type REAL, in GDU's.

The LOCATE function defines the rectangle on the plotting
device onto which SCALE will map, or SHOW will fill, and
also (re)sets the default clipping boundary.

LOCATE sets the values of VI and V2, and also the default
"soft" clipping limits SI and S2. VI is the lower left corner,
and V2 is the upper right corner of the rectangle. LOCATE
thus specifies a rectangle which will contain the data
transformed from User Units. These limits can be overrid
den by a call to CLIP (or CLIPOFF). CLIP may be used to
separate the clipping rectangle from the mapping rectangle.
LOCA TE turns clipping on.

If LOCATE is to be used, it must be called before SCALE or
SHOW. If no coordinates are given, the DIGITIZE function
will be used to allow you to input values using the graphics
cursor.

Examples:

>10 LOCATE (0,200,0,100)

>20 FRAME

Vl

0,0

200,100

V2

> 5 PLOTR
>10 LOCATE (100,200,50,100)

>20 FRAME

200,100

r-1
~

100,50

A Graphics Language

MARGIN
MARGIN (left, right, bottom, top [, units])

MARGIN specifies the LOCATE rectangle relative to the
hard-clip boundary (in characters or GDU's).

All parameters are type REAL.
Units are Character-Cell Spacings or GDU's in a direction
"inward" from the appropriate hard-clip limit.
When <units> is 0 (default), the spacings are in character
-cells. Values >0 imply upright characters (i.e., <bottom>
and <top> are in linefeeds, <left> and <right> are in spaces,
while values <0 imply sideways characters. When <units> is
not 0, the parameters are interpreted as spacings in GDU's
(signs not significant).

MARGIN allows the user to specify the number of charac
ters to be allowed between the hard and soft clip limits. The
character size in effect at the time of the MARGIN call will
be assumed.

Example:

30 MARGIN (10,10,5,5)

11-11

A Graphics Language

SCALE
SCALE (<x1>,<x2>, <y1>,<y2>)

Where Xl,Yl defines coordinate Ul and X2,Y2 defines
coordinate U2.

SCALE specifies a rectangle of user space which is to be
mapped exactly onto the plotter space defined in the
LOCATE statement. Typically the units and scale factors
will be different for X and Y. The values used for Xl,Yl and
X2,Y2 are in user units.

The scaling equation is computed using the current values
of VI and V2 such that Ul maps onto VI and U2 maps onto
V2; then Ul and U2 are discarded.

SCALE sets current units to User Units (see SETUU).

If LOCATE is to be used, it must be called prior to SCALE.

Example:

>10 SCALE (0,200,0,100)

>20 FRAME

U1

0,0

11-12

200,100

U2

SHOW
SHOW (<x1>,<x2>, <y1>,<y2>)

Where Xl,Yl defines the coordinate U3 and X2,Y2 defines
coordinate U4. The units are always in user units.

SHOW specifies a rectangle of user space which is to be
mapped into the plotter-space rectangle defined by LO
CATE, in such a way that all of the rectangle U3,U4 is
shown centered within the rectangle Vl,V2, as large as
possible, and with no stretching.

The scaling equation is computed using the current values
of VI and V2; then U3 and U4 are discarded. SHOW sets
current units to User units (calls SETUU). The same user
units normally apply in both X and Y (as is the case in
drafting or other geometric applications). SHOW ensures
that X and Y scaling factors are matched, thus eliminating
distortions.

In practice, SHOW will cause a larger user-space rectangle
Ul,U2 to be mapped onto VI, V2. CLIP may be used to
restrict the visible data to the same values used by SHOW, if
desired.

If LOCATE is to be used,it must be called prior to SHOW.

Example:

> 5 PLOTR

>10 LOCATE (10,45,20,60)

>25 CLIP (20,45,20,60)

>20 SHOW (20,,45,20,60)

>15 FRAME

>30 FRAME

>RUN

U1
v 1

X 1 , Y 1

X2 , Y2
V2

U2

MSCALE
MSCALE « x reference>, <y reference>)

The MSCALE function causes AGL to accept X,Y values in
millimeters. The origin (0,0) is offset from the hard clip
corner G 1 by the x and y reference values. The reference
point need not be inside the G 1,G2 rectangle. The X and Y
parameter values must be in millimeters.

CLIP
CLIP (X1,X2,Y1,Y2)

CLIP redefines the soft clip limits. X1,Y1 defines point Sl
and X2,Y2 defines point S2 in current units. The CLIP
statement also turns on the soft clipping operation (see
CLIPON).

Example: A sequence of pen down plots to points PI,
P2, ... P5 would leave the plot as shown below:

>10 LOCATE (10,60,20,60)
>20 FRAME
>RUN

HARD CUP
LIMIT

G1

SOFT CLIP LlMIT_

/
/

/
/

• P1

.P2

I
I
I
I
I 'P5

I I
I I
I I
I I

'P4

·P3

~

S2

I
I

If part of the soft-clip region falls outside the hard-clip
limit, the soft-clip limits will be redefined to correspond to
the intersection of the regions. If there is no intersection
between the regions, an error will occur.

CLIPOFF / CLIPON
CLiPOFF
or
CLiPON

A Graphics Language

CLIPOFF turns off soft-clipping, but retains the limit
values. This allows positioning the "pen" anywhere in the
display space defined by Gland G2 while in user-defined
units.

CLIPON restores soft clipping.

Clipping is also restored by executing PLOTR, LIMIT,
LOCATE, GPON(3), or CLIP. SCALE and SHOW do not
affect clipping.

SETGU/SETUU
SETGU
or
SETUU

SETGU selects graphic display units (GDU's) and SETUU
selects user-defined units (UDU's). Several graphic func
tions interpret their parameters based on the units current
ly selected. These two functions provide the mechanism for
setting the current mode.

Graphic Display Units (GDU's) are primarily intended as a
device-independent coordinate system used for positioning
items on the display. Simple programs can leave the mode
set to "user".

11-13

A Graphics Language

AXIS AND LABELING
FUNCTIONS

XAXIS
XAXIS [«x tic-spacing>[,<x ongm>,<y origin>

[, <x major count>[, <tic size>]]])]

Where "x tic-spacing" is interpreted in the current units
mode. The sign is ignored. Default of 0=> no tics.

The "origins" are in current units. This allows proper
placement of axis and tics. The "y origin" specifies the
placement of the X axis and the major Y tics while the "x
origin" specifies the placement of major X tics and grid
lines. The default origin is 0,0.

The "x major count" is a unitless integer value which
specifies the intervals between "major" tic marks as num
bers of "minor" tics. The signs are ignored. The default is 1
=> all major tics. 0 => all minor tics.

The "tic size" specifies the length of the minor tics (end to
end; tics are symmetric about the axis). Signs are ignored for
minor tics. If the sign is positive the major tics are twice as
long as minor tics. If the parameter is negative, the major
tics become grid lines which extend from one LOCATE
boundary to the other. The default tic size is +2 GDU's. The
parameter is type REAL interpreted in GDU's.

XAXIS generates an X axis at y = y origin. Tic marks are
positioned along the axis such that a major tic mark falls on
the origin (whether visible or not); the origin may lie outside
the current soft clipping region. Tic marks mayor may not
coincide with the edge of the clipping boundary.

Examples:

) 5 PLOTR
)10 XAXIS (2,10,40,5,-2)
)20 FRAME
)RUH

I I

I I I

I

11-14

I I
! !

) 5 PLOTR
)10 XAXIS (2,10,40,5,2)
)RUH

111111"111""1"111

YAXIS
fAXIS [«y tic spacing>[,<x ongm>,<y origin>

[, <y major count>[, <tic size>]]])]

Where all YAXIS parameters are defined as in XAXIS,
except in the Y (vertical) direction.

YAXIS generates a Y axis at x = x origin. All parameters are
interpreted as in XAXIS except that now all concern the
drawing of a Y axis.

It is useful to note that a call to XAXIS followed by a call to
Y AXIS will generate a pair of perpendicular axes which
specify a Cartesian Coordinate System in the current units
mode.

Example:

> 5 PLOTR
>10 VAXIS (2,100,40,5,2)
)20 FRAME
>RUH

A Graphics Language

LXAXIS
LXAXIS [(<tic spacing>[,<x ongm>,<y origin>

[,<major count>[,<tic size>[,<label loc>]]]])]

Where the "tic spacing" is used to determine the orientation
of labels: + for perpendicular to the corresponding axis; -
for parallel. Otherwise, the tic spacing, origins, major count,
and the tic size are all interpreted as in XAXIS. The "label
loc" parameter is used to place the label relative to the axis.
Use one of four label locations:

0: label below and outside the current vector clipping
limits.

1: label immediately below the axis about two GDU'S
from the corresponding tic.

2: label immediately above the axis about two GDU's
from the corresponding tic.

3: label above and outside the current vector clipping
limits.

LXAXIS draws and labels the X axis in current units mode.

Example:

>10 PLOTR

>20 SETUU

>30 LOCATE (10,50,0,100)

>40 LXAXIS (2,10,40,5,2,1>

>RUN

111111"111"111"111

11-15

A Graphics Language

LYAXIS
LYAXIS [«tic spacing>[,<x ongm>,<y origin>

[,<major count>[,<tic size>[,<label loc>]]]])]

Where L Y AXIS parameters are the same as LXAXIS,
except in the Y (vertical) direction and the label locations.
The label locations are as follows:

0: label on the left side, just outside of the current
vector clipping limits.

1: label to the immediate left of the axis, about two
GDU's from the corresponding tic.

2: label to the immediate right of the axis, about two
GDU's from the corresponding tic.

3: label on the right side, just outside of the current
vector clipping limits.

L YAXIS draws and labels the Y-axis.

Example:

>10 PLOTR

>20 SETUU

>30 LOCATE (0,200,1·0,50)

>40 LYAXIS (2,100,40,5,2,1>

>RUN

50 -~

40 -~

30 -~

11-16

AXES
AXES (<x tic-spacing>, <y tic-spacing>

[, <x origin>, <y origin>
[, <x major count>, <y major count>

[, <minor-tic size>]]])]

Where "tic-spacings" are REAL values in current units.
The signs are ignored. Default or 0 => no tics.

The origins are also REAL values in current units. Default is
(0,0).

The X and Y "major counts" are unitless integer values
which specify the intervals between "major" tic-marks as
numbers of "minor" tics. The signs are ignored. Default is 1
(i.e., all "major tics").

The "tic size" specifies the length of the minor tics
(end-to-end; tics are symmetric about the axes). Major tics
are always twice as long as minor tics. The size is type
REAL, in GDU's. Default size is approximately 2 GDU's.

AXES generates an X axis at y=y origin, and aY -axis at x=
x origin, assuming that these values are within (or on) the
current user-units clipping limit. The axes will extend
across that same clipping region. Tic-marks will be clipped
at the clipping limit.

Tic marks are positioned along each axis such that a major
tic-mark falls on the origin (whether visible or not). Tic
marks mayor may not coincide with the edge of the clipping
boundary.

Axes and tic marks will be drawn using solid lines and the
current "pen" (however, note that selecting solid lines on
some displays is equivalent to selecting pen 1).

Example:

The following two calls would generate the axes shown
within the plotting region specified by LOCATE (or the
default plotting region). Labels in parentheses are for
reference only.

>SCALE (-5.,20., .8, 1.5)

>AXES (2.0, .1,0.0, 1.0,5,2)
\ I \ I \ I
tics origin major interval

--

I
I 1

t

A Graphics Language

LAXES
LAXES (<x tic-spacing>, <y tic-spacing>

[, <x origin>, <y origin>
[, <x major count>, <y major count>

[, <minor tic size>]]])]

The LAXES parameters are the same as the AXES func
tions, except the signs of the tic-spacings determine the
orientation of the labels: + for perpendicular to the corre
sponding axis, and - for parallel.

Each major tic is labeled. All tics are considered major tics if
no "major count" is specified. Labels perpendicular to the
X -axis will be lettered bottom-to-top (right-justified
along the bottom border). Labels are placed outside the
clipping limit, and are limited to a maximum of seven visible
characters.

Example: The following three calls would generate the axes
shown within the plotting region specified by LOCATE
(Not the default plotting region). Labels are outside this
plotting region.

>10 PLOTR

>20 LOCATE (20,80,20,80)

>30 SCALE (-5, 20, .2, 5)

>40 FRAME

>50 LAXES (2, .5, 0, 1 , 5, 2)

>RUN

r;

I + I !

4 - ~
!

';. - l-

I

-J

-:. -~ '-

1 1 j
I

J
0 10 20

11-17

A Graphics Language

GRID
GRID (<x tic-spacing>, <y tic-spacing>

[, <x origin>, <y origin>
[, <x major count>, <y major count>

[, <minor tic size>]]])]

GRID may be used as an alternative to AXES when a full
grid is desired. Heavy lines (LINE(O» are used for the axes.
Lighter lines are used for minor divisions. All the lines
extend throughout the current soft clipping region. GRID
function parameters are the same as AXES, except that
light cross-lines replace the tic-length indications.

Example:

>10 PLOTR

>20 LOCATE (0,60,10,60>

>30 GRID (2,10,100,50,5,1,2>

>RUti

................................. _ · .

.......... : :
·

................ , , · .
·

11-18

LGRID
LGRID (<x tic-spacing>, <y tic-spacing>

[, <x origin>, <y origin>
[, <x major count>, <y major count>

[,minor tic size]]])]

LGRID draws a labeled grid and its characteristics are the
same as for GRID, except that as in LAXES the signs of X
and Y tic-spacings are used to specify the label orienta
tions. LGRID uses units in the number range set up by the
SCALE statement.

FRAME
FRAME

The FRAME function draws a "box" around the current
vector-clipping region using the current pen and linetype
characteristics .

Example:

>FRAME

FXD
FXD [(X digits [,[V digits]]))

Where "digits" is a positive integer. FXD selects the
Axis-labeling format. Using FXD(n) causes the labels
generated by LAXES and LGRID to be printed in F7.n
format. Leading zeros are suppressed; if the number will not
fit in the space to the left of the decimal point, the decimal
will be moved to the right; when that is insufficient or the
number underflows, E7.0 format will be used. The default
value for X digits is 0, the default value for Y digits is the X
digits value. The maximum number of digits that can be
used is 5.

LORG
LORG (mode)

Where mode is a number in the range 0-9. If the number is
not selected, LORG defaults to 1.

LORG selects the label-origin position and determines how
subsequent labels will be placed relative to where the pen is
when each label is received. Labels can be automatically
right or left justified, or centered about a specified point.
LORG 0-9 indicates the origin (justification and base line)
for characters with respect to the current pen position.
Labels are output using the PRINT #0 statement.

A carriage return (CR) causes the pen to be returned to its
original position, and a linefeed (LF) causes the pen position
to move in the expected direction.

If a label is to be left justified, the current pen position is the
left margin. Center causes the label to be centered on the
pen position. Right justify selects the pen position as the
right margin. Bottom, middle, and top select the base line
for the labeling string.

In the following illustration, each number shows the initial
position of the pen relative to the label when LORG selects a
number from 0 through 9. For example, if the label was to be
right justified and set with a base line on top of the normal
character position, the number "9" would be used.

A Graphics Language

LEFT CENTER RIGHT
3 6 9 TOP

@ @@@@@ @@@@@ @@@@
@ @ @ @ @ @ @
@ @ @ @ @ @

2 @ @ @ 5 @@@@@ @ 8 MIDDLE
@ @ @ @ @ @ @@
@ @ @ @ @ @ @

~ O@@@@ @@@@@ @ @ @@@@

4 7 BOTTOM

Label positioning is done by the plotting device. When
centering or right justification is used, the labeling string is
buffered (stored) until all of the characters in the string
have been received. The string end is detected and dis
played by a CR or LF. The maximum length of a string when
centering or right justifying is 80 characters (blanks are
included but CR or LF is not). In all cases, data written
beyond the edge of the screen is lost. There is no automatic
RETURN when the screen boundary is reached.

The positioning of labels in the various modes should be
such that the following two sequences would receive the
same result:

LORG (5)
MOVE (A,B)
PRINT #0; "ABCD"

LORG (8)
MOVE (A,B)
PRINT #0; "AB"
MOVE (A,B)
LORG (2)
PRINT #0; "CD"

Example:

The period (.) represents the initial pen position; the circle
(0) represents the final position.

LORG (1)

A = 3.14
PRINT #0; "X= ";A
PRINT #0; "x-axis"

LORG (7)

PRINT #0; "RIGHT"
PRINT #0; "JUSTIFY"

. X= 3.14
x-axis

o

RIGHT.
JUSTIFY
o

11-19

A Graphics Language

LDIR
LDIR (<angle>)
or
LDIR (<run>, <rise>)

LDIR sets the lettering direction of labels. In general each
device will use the available angle which is closest to the
requested angle. Angles are measured in radians.

Since many devices cannot letter at angles other than
multiples of pi/4 (90 degrees), programs which use other
angles may not run acceptably on all devices.

For angles in the range -90 to +90 degrees, (<rise> / <run>)
= TAN «angle».

Parameter interpretation depends on number of param
eters. If only one parameter is supplied, it is assumed to be
the counter-clockwise angle from the normal lettering
direction (0 => towards 3 o'clock, 90 degrees => towards 12
o'clock, etc).

If two parameters are supplied, the angle used is that of an
incremental vector plotted with arguments X increment =
run, and Y increment = rise with X and Y in current units.

Example:

40 LDIR (5,8)
50 LDIR (90)

11-20

CSIZE
CSIZE (<height> [, <ratio> [, <slant>]])

The character size (CSIZE) function specifies the size and
aspect ratio of the alphanumerics or symbols to be drawn for
labels. In general, if the requested size is not possible, the
next smaller size (if any) should be used.

"Height" is the character cell height in GDU's. Default
height is device-dependent.

"Ratio" is the aspect ratio of the character cell, defined as
width/height. Default varies with device.

"Slant" specifies the clockwise rotation (in radians) of the
character relative to its normal position. Horizontal lines are
not affected. The character cell becomes a parallelogram
(i.e., 20 degrees of slant gives an italic like character). Units
are current angle-specifying units for the system. Default
slant is 0 degrees.

Note that many devices are incapable of drawing characters
with arbitrary sizes and aspect ratios. The minimum charac
ter height may be of the order of 4 or 5 GDU's, aspect ratio
may be fixed (e.g., 5x7 or 7x9 dot matrix), and slanting may
not be possible at all. You may request size, etc, with this
command, but you should then use the CSIZE call to
determine the actual sizes for purposes such as computing
margins.

Width of character <height> * <ratio>

Example:

400 CSIZE (10,2,45)

PLOTTING FUNCTIONS

PENUP/PENDN
PENUP
or
PENON

Where there are no parameters.

PENUP lifts the "pen" and PENDN lowers the "pen."
PENUP declares that the following set of PLOT commands
describe an object not to be connected to what has been
drawn before. Typical use is to do a PENUP before a loop
containing PLOT commands. A call to PENDN followed by
a PENUP leaves a mark.

Examples:

30 PENUP
40 MOVE (100,200)
50 PENON

A Graphics Language

PEN
PEN (<pen number>)

Where "pen number" is an integer in the range -2 to 4.

The PEN function selects anyone of the pens found on the
plotting device. This provides you with a convenient way of
asking for one of four line types without knowing details of
the device used.

PEN "0" selects a "blank" pen (returns all physical pens to
holder, or selects a "NOP" mode in a CRT).

Pens 1 -4 may be physical pens (presumably of several
colors) or may be simulated by using line-types 0,2,3, or 4
(see "LINE") on a device without actual pens. If LINE has
been called since the last call to GPON(2), the PEN
statement is ignored. If a pen number greater than 4 is used,
it will be interpreted modulo 4 (ie. 5=1, 6=2, etc.).

A device with "m" pens will interpret the <pen number>
modulo m.

Negative pen numbers are used for certain device depen
dent functions as on the terminal:

• PEN (0) is a blank pen.
• PEN (-1) is an "eraser" or clear mode.
• PEN (-2) complements the image along its path, such

that a second complementing would restore
the original display.

PEN(l)
PEN(2)
PEN(3)
PEN(4)

LINE(O)
LlNE(2)
LlNE(3)
LlNE(4)

When a negative pen number is used on a plotter, this is
interpreted as a request for a blank pen (PEN(O».

Example:

30 PEN(3)

11-21

A Graphics Language

LINE
LINE [(<linetype> [,<length>])]

LINE selects one of 8 (0-7) predefined line types. "Length"
is a pattern repeat distance in GDU's. The default line type
is solid (0). If a line type greater than 7 is used, it will be
interpreted modulo 7 (ie. 8=1, 9=2, etc.). Default length
may depend on device and selected pattern, values in the
range of 4-10 GDU's are typical for plotters. On the
terminal the length is 8 display dots.
• LINE 0 is always solid lines.
• LINE 1 is always "fainter" than type 0, for example,

short or low duty-cycle dashes.
• LINE 0 or 2-4 are all distinct; additional distinct types

may also be supplied by some devices.
• LINE types less than zero should not be used.

LINE patterns used by the terminal (3 cycles are shown):

o.

1.

2.

3.

4.

5.

1 length
(------)

6. - - --- - - --- - -

7.

(solid)

(dim)

<short dash)

<long dash)

(centerline)

(end points)

LINE 0 and the standard "fainter" LINE 1 can be used for
drawing major and minor grid lines. LINE 0 and 2-4 are
used to simulate the four "pens" on devices without color or
physical pens.

Devices which support only types 0-6 should map larger
type numbers onto standard types 0-6. Since not all devices
can allow arbitrary lengths, the device should use the best
available length. In some devices the pattern length will also
vary line angle (e.g., by a factor of 1.414 for 45 degrees).
Typically, pen plotters cannot support dim lines, so a
request for LINE 1 results in use of LINE 0 or solid lines.

Note that GSTAT (9,1) will return the pattern repeat
distance. If this value is 0, the device dependent default is
being used.

11-22

PLOT
PLOT (<x coord> , <y coord> [,<pen cntl>])

Where x and y coordinates are type REAL and are inter
preted according to the current "units" mode. The pen
-control parameter is an integer, and defaults to 1 (moves,
then drops). The pen control parameter is interpreted as
follows:

EVEN: lift pen (pen-up)
ODD: drop pen (pen-down)
+: pen change after motion
-: pen change before motion

Examples:

+ 1 move or draw, then drop pen
2 move or draw, then 1 i ft pen
0 move or draw, then lift pen

- 1 lower pen, then DRAW
-2 1 ift pen, then MOVE

if up (defaul t>
if down
if down

The PLOT function provides absolute data plotting with
pen control. PLOT is the preferred pen moving command
for automatically generated data, because the pen is under
direct program control.

Pen motions will be clipped as shown under CLIP. PLOT
commands will be affected by the current vector clipping
limits (see CLIP). Clipping allows plotted data to be clipped
at the plot boundary ("soft" clip), but to allow labels to be
positioned outside the boundary, typically in GDU's.

In the typical case, a PENUP command is executed at the
start of a program segment, and the default pen control
mode is used in a subsequent plotting loop. The first data
point plotted will then be isolated from any prior drawing.

Examples:

30 PLaTeS, 10)
40 PLOT (Ox,Oy,Spen)

MOVE
MOVE (<x coord>, <y coord>)

Where X and Y coordinates are interpreted according to the
current units used. A MOVE (X,Y) is equivalent to a PLOT
(X,Y,-2).

The MOVE function lifts the pen and moves it to the
absolute X,Y coordinate. MOVE is allowed to define a
logical pen position beyond the normal clipping limits. If the
pen is off-page to the left and a label is started, the first few
characters are invisible until the pen moves back within the
hard-clipped region. Then the remaining characters are
drawn normally.

Example:

50 MOVE (5,10)

DRAW
DRAW (<x coord>, <y coord>)

Where X and Y coordinates are interpreted according to the
current units used. A DRAW (X,Y) is equivalent to a PLOT
(X,Y,-I).

The DRAW function drops the pen and moves it (within the
soft clip region) to the absolute X,Y coordinate. DRAW
allows an easy way of drawing a line from the current pen
location to a new location without regard to whether the pen
is up or down.

Example:

60 DRAW (30,30)

A Graphics Language

RPLOT
RPLOT (<x coord>, <y coord> [,<pen cntl>])

RPLOT provides relative plotting capability with pen
control from the last plotted point. RPLOT interprets its
coordinate values as being relative to a relocatable origin,
whose location is the last point addressed by an absolute
PLOT, IPLOT, MOVE, or DRAW, except if PORG has
been executed (see PORG). This relocatable coordinate
system may also be rotated about this origin relative to the
master coordinate system by means of a plot direction
(PDIR).

Example:

200 RPLOT (10,20,2)

IPLOT
IPLOT (<x incr>, <y incr> [,<pen cntl>])

The IPLOT function provides incremental plotting capabil
ity with pen control. IPLOT plots incrementally from the
current pen position. IPLOT causes the relocatable origin to
be updated unless the PORG statement has been used. (See
PORG.)

Example:

30 IPLOT (5,-5,3)

PRINT #0
PRINT #0; text

The PRINT #0 statement is used to perform graphics
labeling. The current graphics character size, slant, and
origin is used. Appending a ";" (semi-colon) will not
suppress a carriage return linefeed in the text line.

A ";" should be used to terminate text to prevent a CR/LF
from being sent to the terminal display. If the text contains
a CR/LF, it will be sent to the terminal's alphanumeric
display. If the text contains a null character, output will be
terminated by the null.

Example:

60 PRINT 10; "This is the X-axis";

11-23

A Graphics Language

PDIR
PDIR (<angle>)
oor
PDIR (<x component> , <y component>)

The plotting direction (PDIR) function sets the angle of
rotation for relative (RPLOT) and incremental (IPLOT)
plotting. PDIR sets the orientation of the local coordinate
system explicitly or by supplying a direction vector for the
local X axis.

• If only one parameter is supplied, it is assumed to be the
counter-clockwise angle in radians from the "right
horizontal" direction (0 => towards 3 o'clock, 90 degrees
=> towards 12 o'clock, etc). Angles are measured in
whatever units would be expected by the trigonometric
functions of the system at the time of the call.

• If two parameters are supplied, the angle used is that of
an incremental vector plotted with X equal to the run
and Y equal to the rise in current units.

Example:

60 PDIR (5,4)

PORG
PORG [«x coord>,<y coord>)]

PORG defines the local origin for relative plotting
(RPLOT). The X and Y coordinates specify a point where
the relocatable origin is to be placed. The values are real and
are interpreted in the current units mode. Default values are
zero for both. The coordinates given override any previously
defined points.

When the PORG statement is executed, it prevents the
relocatable origin from being updated by MOVE, DRAW,
and PLOT statements. Executing a GPON(2) statement
will enable the updating of the relocatable origin by a
MOVE, DRAW, or PLOT statement ..

Example:

50 PORG (50,100)

11-24

INTERACTIVE FUNCTIONS

WHERE
WHERE (<x var.>, <y var.> [,<pen var>])

The WHERE function returns the pen location to the last
plotted point. WHERE also determines the logical pen
location and whether it is up or down. If the pen is up, pen
status will be a 0; if it is down, it will be a 1.

This function can be used to allow an "isolated" software
module to determine the pen position. The coordinates are
type REAL and are in the current units mode. The pen
status is an integer with a value of 1 or O.

Example:

70 WHERE (x1,y1,p1)

POINT
POINT (<x coord>, <y coord>)

The POINT function positions the cursor under program
control at the specified absolute location and specifies the
cursor type. The X and Y coordinates are type REAL and
are in the current units mode.

Example:

90 POINT (90,75)

CURSOR
CURSOR (<x var.>, <y var.> [<"z" var.>])

The CURSOR function reads the cursor position without
waiting for operator input. The X, Y coordinates are REAL
values in current units. The X, Y coordinates are the same as
for the POINT function. The Z coordinate is a binary valued
integer: 1 = pendown and 0 = penup.

Example:

400 CURSOR (X3,Y3,Z)

DIGITIZE
DIGITIZE «x var.>, <y var.> ,<Z var.>)

DIGITIZE waits for a user response and then reads the
coordinates of the cursor. the X and Y coordinates as well as
the pen state (plotters) or key pressed (terminals) are
returned in the digitize variables. The coordinates are in the
current units system. If a user prompt is desired it must be
output using a PRINT statement.

The terminal message line will display the cursor coordi
nates. The coordinates are updated each time the cursor
control keys are used. The display is initially in current
units. Pressing Control-G.CURSOR will cause the units to
be displayed in machine units. Pressing Control-G.CUR
SOR again will cause the message line to be cleared.

If a terminal is used as the input device, the graphics cursor
will be turned on indicating the current pen position. You
can then position the cursor using the graphics cursor keys.

Once the cursor is positioned, press any of the ASCII
character keys. This will cause the cursor position to be read
and returned in the x and y variables. The ASCII code value
(0-127) for the key pressed will be returned in the z variable.

If a plotter is used as the input device, the plotter's ENTER
key is used to indicate that the pen has been positioned. The
x and y variables are set to the pen's coordinates and the z
variable will be set to a "0" if the pen is up and "1" is the pen
is down.

>1 PLOTR
>2 LDCATE(0,200,0,100)
>3 SCALE(0,719,0,359)
>5 INTEGER X,Y,P
>10 DIGITIZE(X,Y,P)
>20 PLDTeX, Y ,-2)
>26 READ X,Y
>27 IF (X=O AND Y=O) THEN 46
>28 IPLDT(X,Y,-l)
>29 GOTD 26
>30 DATA 5,0,0,5,-5,0,0,-5,0,0
>46 RESTORE
>60 GOTD 10
>RUN

A Graphics Language

0

0 o

0

0 + o

0

11-25

A Graphics Language

GPMM
<variable> = GPMM (<millimeter value>)

GPMM (GDU's per millimeter) converts millimeters to
GDU's. GPMM is a function which returns the number of
GDU's corresponding to the number of millimeters speci
fied by the argument. For CRT-like devices, the conversion
is typically only an approximation.

GPMM may be imbedded in functions such as CSIZE to
allow specifications in millimeters, or may be called once
with an argument of 1 to get a multiplier to be used in
similar situations. In the latter form it may also be used as a
divisor to convert GDU's to mm.

Example:

20 H • GPMM (220)

DSIZE
DSIZE (<GDU X Iimit>,<GDU Y limit>

[,<cell height>,<cell aspect ratio>
[,<X resolution>, <Y resolution>]])

The DSIZE function defines the display size available for
the plotting device.

The X,Y limits define G2 in GDU's and G 1 is assumed set at
0,0. This is the available display space in GDU's. The
character cell dimensions give the height in GDU's and the
aspect ratio of the current character. The X,Y resolution
parameters in GDU's represent the minimum availabe
step-size in each direction.

Example:

10 DSIZE (20,20,h,Retio)

DSTAT
< string variable > = DST AT

The DST A T function returns a string containing the ID of
the plotting device. If the device is not available, the
DSTAT function returns a null string.

Example:

20 A$=DSTAT

11-26

GSTAT
< variable> = GSTAT [« Index> [,< Subscript >])]

The GST AT function specifies the graphics display status
of the plotting device. Index specifies a group from 1-14
and Subscript specifies an element within the group from
0-5. The default parameters are 0 for Index and 0 for
Subscript. The table below shows the relationship between
the Index and Subscript parameters.

Example:

40 H • GSTAT (1,5)

INDEX

o

2

3

4

5

6

7

e
9

Ie
II

12

13

14

SUBSCRIPT

13
I

o
I

o
I
2
3

o
I
2
3

e
1
2
3

o
1
2
3

o
1
2
3

e
1
e

e
1
iii

e
1

iii
1

e
1

DESCRIPTION

Pen Pos it; orl
X Pen Position in MU~s
Y Pen Position in MU~s

Pen State (0=up; l=down)
Pen Number .

GDU Space Limits
GXI (MU's) low value
GX2 (MU's) high value
GYI (MU's) low value
GY2 (MU-s) high value

Locate Mapping Points
'1XI (CU's)
VM2 (CU's)
V'll (CU's)
VY2 (CU's)

Soft Clip Limits
SMI (CU's)
SX2 (CU ... ::.)
SYI (CU' •.)
5'l2 (CU's)

User to Machine Scale Factors
A
B
C
D

GDU to Machine Scale Factors
A
B
C
II

Millimeter to Machine Scale Factors
A
C

Current Units Mode (0=GDU's; I=UDU
Line Type Information

Lin~ Type Argument
Pattern Repeat Distance (GDU"'s)

LORG Argument
LD I R Ar·gu .. o!nt

Run
Rise

F'DIR ArgulYutnt
Run
Rise

FXD Argument.
X
y

RelocAtable Origin
e X (CU's)
1 Y (CU's)

I "ii1H':' ~ ___________________ BA_S_IC_S_yn_ta_x~.[XIl I

This section provides the detailed description of BASIC
commands and statements. Refer to Section 11 for descrip
tions of the AGL statements.

COMMANDS
Commands can be entered whenever a program is not
executing. Some commands can be used in a BASIC
program. The commands that can be used in a program are
EXIT, and SET. The SET SIZE version of the SET
command cannot be used in a program. The BASIC
commands allow you to load and store program files,
manipulate program listings, establish default parameters
for the BASIC Interpreter, execute programs, and to return
to normal terminal operation. The available BASIC com
mands are:

• AUTO • GET • RENUM
• CSAVE • GO • RUN
• DELETE • LIST • SAVE
• EXIT • MERGE • SCRATCH
• EXTEND • REMOVE • SET

AUTO
AUTO [starting line [,[increment)]]

The AUTO command causes the Interpreter to generate line
numbers automatically as the program is entered. The
numbering will begin with the starting line number given in
the command. If no starting line number is given, the
numbering will begin with line "10". If an increment is
given, the line numbers will be stepped by this value. If no
increment is given, the line numbers will be stepped by 10. If
only the comma is entered, (with or without a starting line
number), the program will be stepped using the last
increment used by the AUTO command. (This value is set
to 10 whenever BASIC is reloaded.)

If the AUTO command is used during program modification
and generates a line number already present in the program,
an error message is generated and AUTO is terminated.
Entering a Control-A will turn off the autonumbering
feature.

Example:

AUTO _
10

AUTO 5,1_
5

CSAVE
CSAVE [range] [[TO] filename] [,SECURE]

The CSA VE command is similar to the SAVE command
except that it causes a condensed version of the program to
be kept. If SECURE is used, the kept program can be loaded
but not listed by subsequent users.

Example:

CSAVE "RIGHT TAPE", SECURE_

DELETE
DELETE [range]

The DELETE command allows you to delete lines from
your program. The range gives the line numbers to be
deleted.

<range> = first line to be deleted - last line to be deleted

If the last line number is not used, only the one indicated
line will be deleted. If a starting line number is followed by a
dash only, lines are deleted from the starting line to the end
of the program.

Example: In the program resulting from the last RENUM
example, a command of DELETE 15-35 _ would result in:

10 LET X-O
40 END

The same result could be achieved by DELETE 11-39_.

EXIT
EXIT

The EXIT command ends the BASIC Interpreter and
restores normal terminal operation.

12-1

BASIC Syntax

GET

GET [filename]

The GET command reads in a copy of a program from a file.
If the file is not specified, the program is loaded from the
last specified source device. The initial default source device
is the left tape.

Examples:

GET_
GET "RIGHT TAPE" _

GO
GO [linenumber]

The GO command causes program execution to resume
after the break character (normally a CONTROL-A) has
been entered from the keyboard or a STOP statement has
been executed. Execution resumes at the statement after
the break occurred or following the STOP statement. If the
terminal is waiting for input when a break occurs, the
program will again request input. The input prompt (?) or
string will also be reprinted.

The GO command is useful in debugging. It will allow you to
interrupt an infinite loop, use direct computation state
ments to display or change variable values and then resume
execution using the GO command.

Note that you cannot modify the program while the
program is stopped and then resume execution. If state
ments are changed, you must rerun the program.

12-2

LIST

LIST [range] [[TO] filename]

The LIST command displays the current program in line
number order. The range parameter can be used to list a
sequential block of lines. If no range is specified, the entire
program will be listed. The range parameter is of the
following format:

<range> = first line to be listed - last line

The last line number is optional. If the last line number is
not used, only the single specified line will be listed. If the
first line is followed by a dash only, the program will be
listed from the starting line to the end of the program.

Example:

LIST 30-50

MERGE

MERGE [filename

The MERGE command loads a copy of the specified file
into the BASIC workspace. The new program is merged
with any existing program. If there are conflicting line
numbers, the old lines are replaced by the new ones. If a
filename is not specified, the program is loaded from the
current source device.

Example:

MERGE "LEFT TAPE" _

REMOVE

REMOVE STD
or
REMOVE STDX

The REMOVE command IS used to remove from the
Interpreter any commands or statements that have been
added using the EXTEND command. REMOVE STD
removes the extensions prepared by Hewlett-Packard.

REMOVE STDX removes the PRINT USING, PRINT #
USING, IMAGE, CALL, SUB, SUBEND, and HP-IB
statements from the BASIC Interpreter. The statements
removed with REMOVE STDX provide an additional 5K
bytes of user workspace.

Examples:

REMOVE STD ..

RENUM

RENUM [new starting line[,increment
[,old starting line [,old ending line]]]]

The RENUM command allows you to change or rearrange
the line numbers in your program. If the starting line
number is not given, the first line will be numbered 10. The
increment is optional and specifies the increment between
line numbers. If no increment is given, a value of 10 will be
used. Line numbers less than the old starting line number
will not be renumbered. If the old starting line number is not
specified, the program will be renumbered beginning with
the first line. If an old ending line is specified, the renumber
process will continue until the specified point in the
program is reached. Line numbers after the old ending line
are unchanged.

Note that the RENUM command is not used to move lines
from one position to another. All that it does is renumber
lines, it does not change their order.

BASIC Syntax

Example: Assume that the following program is present:

10 LET Y=O
11 LET x=o
17 INPUT X,Y
70 LET Z=X+Y
71 PRINT X,Y,Z
90 GOTO 17
999 END

Entering RENUM .. will cause the program to be renum
bered to the following:

10 LET Y=O
20 LET X=O
30 INPUT X, Y
40 LET Z=X+Y
SO PRINT X,Y,Z
60 GoTo 30
70 END

Note that line numbers used in GOTO or GOSUB state
ments are automatically changed to the new line numbers.

Using the same program, RENUM 100 .. would cause the
following:

100 LET X'O
110 LET Y=O
120 INPUT X,Y
130 LET Z=X+Y
140 PRINT X,Y,Z
150 GoTo 120
160 END

Specifying a statement increment, RENUM, 5" would
result in the following:

10 LET X=O
15 LET Y=O
20 I NPUT X, Y
25 LET Z=X+Y
30 PRINT X,Y,Z
35 GO TO 20
40 END

12-3

BASIC Syntax

RUN
RUN [linenumber]
or
RUN filename [, linenumber]

The RUN command is used to execute your program. If the
optional line number is not used, the program will begin
executing from the first statement. If a line number is
specified, program execution will begin with the indicated
line.

When a filename is used, the program will first be loaded
from the indicated file and then run. If no file name is
specified and there is no program in the workspace, a
program will be loaded from the current source file and then
run.

Example: Execute the first program shown under the
RENUM command beginning at the statement INPUT
X,Y.

RUN 17"

SAVE
SAVE [range] [[TO] filename] [,BASIC]

The SA VE command stores a copy of the current program
on a file. If the file is not specified, the program is stored on
the last specified destination device. The initial destination
file is the right tape.

The BASIC option is used to save a copy of the current
BASIC interpreter. This is useful when the interpreter has
been modified using the EXTEND command. The range
option can not be used with the BASIC option.

Examples:

SAVE ..
SAVE "RIGHT TAPE", BASIC"

SCRATCH
SCRATCH [string space]

The SCRATCH command deletes the current program and
variables from the workspace. SCRATCH can be abbreviat
ed SCR. If the string space parameter is used, the memory
space used to store string data is set to string space + 1
(string space must be an INTEGER expression).

Example:

SCRATCH ..

12-4

SET
SET <condition>

where <condition> is one of:
• MULTIPLE
• SINGLE
• SHORT
• LONG
• INTEGER
• PROMPT
• KEY
• SIZE

The SET command allows you to select the default modes of
operation for the Interpreter. Only one condition can be
used in a SET command. You cannot, for example, enter
SET SINGLE, LONG.

The SET MULTIPLE command tells the BASIC inter
preter whether or not to allow multiple statements per line
number. The SET SINGLE command disables the inter
preter's ability to use multiple statements in a line. The
multiple statement capability can be reestablished with the
SET MULTIPLE command or by reloading BASIC.

When the SET MULTIPLE command is entered, the
interpreter will accept more than one statement in the same
line. The statements must be separated by a ''\'' (back
slash). The line has only a single line number at the left
margin as for a normal statement. Multiple statements are
executed in order from left to right. The multiple statment
capability is initially on.

100 READ A
200 PRINT A \ READ B \ PRINT B
300 FOR 1=1 TO N \ ACI)=I A 2 \ NEXT

The main advantage of multiple statements is that you can
save program storage space by not numbering each state
ment.

Example:

SET MULTIPLE ..

[f multiple statements are entered and the multiple state
ment capability is not turned on, the entire line is rejected
and an error message is displayed.

The SET SHORT, SET LONG, and SET INTEGER
commands are used to set the default data type for numeric
variables. The last default data type used continues in effect
until changed. If BASIC is reloaded, the default type is set
to SHORT.

Examples:

SET IIHEGER
SET LONG

The SET PROMPT command allows you to change the
prompt character. The default character is ">". Note that
only a single character can be used.

Example:

SET PROMPT ="#"

The SET KEY command allows you to select the control
character to be used as a local "break" character (a letter
A-Z). Entering the "break" character will cause execution
of the local BASIC program to stop. The default "break"
character is CONTROL-A.

Example:

SET KEY ="B"

The SET SIZE command allows you to allocate terminal
memory resources between the terminal display and the
BASIC workspace. Decreasing the size of the display
memory will increase the amount of memory available to
your BASIC program. <size> is the number of bytes to be
allocated to the workspace.

Note that the SET SIZE command cannot be executed from
a BASIC program.

Example:

SET SIZE 21000

BASIC Syntax

STATEMENTS
This section contains descriptions of the statements avail
able in Terminal BASIC. The statements are listed in
alphabetic order. Each statement is shown with statement
syntax, a brief description, and statement examples. Most
statements can be used in direct computation mode. Some
cannot. Refer to the BASIC Reference manual for addition
al information on direct computation mode.

Items in uppercase type must be included whenever the
statement is used. The letters "LET" in the LET statement
are an exception.

An ellipsis (" ... ") indicates items that can repeat indefinite
ly.

Lists consist of one or more of the items specified. Items
within lists are separated by commas unless otherwise
specified.

All punctuation marks (quotes, commas, colons, and semi
colons) must be included.

ASSIGN

ASSIGN filename TO # filenumber
or
ASSIGN . TO # filenumber

The ASSIGN statement allows you to equate a filename to a
logical filenumber. The filename can be a string or string
expression. The filenumber is used by BASIC statements to
select the file to be used in a file operation. This means that
your program is independant of the name used for a data
file. The file number must be between 1 and 127.

You can reuse the program with a different filename simply
by changing the filename used in the ASSIGN statement.
The ASSIGN statement allows you to reassign files while
the program is running so that several files can be acted on
. .
In successiOn.

200 ASSIGN "DATA1" TO #3
300 ASSIGN "LEFT TAPE" TO #1
400 ASSIGN * TO #2
500 ASSIGN "TE*10" TO #1
SOO ASSIGN "H#S" TO #2

12-5

BASIC Syntax

CALL

CALL <subprogram name> [«parameters>)]

The CALL statement is used to transfer control to a
subprogram. The parameters can be numeric or string
variables or expressions, or they can be logical file numbers.
When a CALL statement is executed, the values of the
CALL parameters are equated to similar variables in the
SUB statement. (A SUB statement must be the first
statement in the CALLed program.) Note that the variables
in both the CALL statement and the SUB statement must
be of the same type and order. Refer to the SUB statement
for additional information.

10 FOR 1-1 TO 10
20 INPUT A$
30 CALL TEXT(I,AS)
40 NEXT I

100 SUB TEXT(J,BS)
110 PRINT "LINE#";J;TAB(10);B$
120 SUBEND

COMMAND

COMMAND commandstring [, variable]

The COMMAND statement allows you to execute terminal
commands from your BASIC program. If a variable is
specified, the execution status of the command is returned
in the variable. If the return variable is not used and the
command does not execute properly, your program will be
terminated. If the variable is used and the command
executes properly, the variable will be set to zero before
execution of the next program statement. On failure of the
command the variable will be set to one of several error
codes depending on the nature of the error. Refer to the
BASIC manual for a description of the error codes.

If a quote is required within the command string, use the
apostrophe character (') as required.

Examples:

10 COMMAND "RE L"
20 COMMAND AS

12-6

REWIND THE LEFT TAPE

DATA

DATA data list

Provides data to be read by READ statements. DATA
statements may be located anywhere in the program; all
DATA statements in a program are considered part of a
single continuous list of data for that program. Data items
may be numeric or string constants.

10 DATA 10
20 DATA "CALIFORNIA"
30 DATA 405,"OREGON",999

DIM

DIM itemlist [arraysize and/or string length]

Specifies the maximum length of strings and the maximum
array size of numeric or string variables. String lengths are
enclosed in brackets; array dimensions in parentheses.
Numeric arrays declared in DIM statements assume the
default numeric type. (Refer to LONG, INTEGER, and
SHORT for additional information.)

70 DIM As[251
90 DIM K(1B)
130 DIM P$(11,11)[251

END

END

Terminates execution of the program. The END statement
can be placed anywhere in a program except following a
SUBEND statement.

90 END

ERROR

ERROR errornumber [, message]

This statement causes an immediate branch to the error
handling routine. The error code placed in ERRN is the
integer value of the errornumber parameter. Errornumber
can be any integer expression. The ERROR statement can
be used to cause application error conditions to be acted on
by the same routines that would normally handle program
ming errors. Make sure that the error numbers that you use
are different from any of the BASIC or terminal system
errors. If they are not different, you will not be able to tell an
application error from a programming error. (See the ON
ERROR statement for a list of error numbers.) If no
message exists for the error, a special message will be
printed to indicate that there is no standard error message.

The optional message can be any string expression. If the
message parameter is used, the user defined message will be
displayed, replacing any standard message.

100 ERROR 1'1+40

FOR ... NEXT
FOR variable = initial TO final [STEP size]

NEXT variable

The FOR. .. NEXT statements allow repetition of a group of
statements between FOR and NEXT. The number of
repetitions is determined by the initial and final values of a
loop variable, and by an optional STEP size. The loop
variable cannot be an array element or of type LONG.

110 FOR 1=1 TO 5
120 FOR J=1 TO -3 STEP -1
130 PRINT J
140 NEXT J
150 NEXT I

GETDCM ON/OFF
GETDCM ON
or
GETDCM OFF

BASIC Syntax

The GETDCM statement enables and disables the oper
ation of the GETDCM function. GETDCM ON enables the
GETDCM function (described later in this manual) and
disables interrupts from interrupt characters received from
the host computer over the terminal's data communications
port. Note that interrupts from the terminal's keyboard are
not affected. (Refer to SET KEY and ON KEY for
additional information on interrupt keys.) GETDCM OFF
disables the GETDCM function and enables data communi
cations interrupts.

10 GETDCM ON

GETKBD ON/OFF
GETKBD ON
or
GETKBD OFF

The GETKBD statement enables and disables the oper
ation of the GETKBD function. GETKBD ON enables the
GETKBD function and disables program interrupts from
the keyboard. (Refer to SET KEY and ON KEY for
additional information.) GETKBD OFF disables the
GETKBD function and enables the keyboard interrupt
keys. Note that GETKBD ON/OFF does not affect program
interrupts received through the data communications port.

20 GETKBD ON

GOSUB
GOSUB line number

Transfers control to the specified statement. The line
number must refer to the first statement of a subroutine
within the current program unit. A RETURN statement is
required in the subroutine to return control to the state
ment following the GOSUB statement.

The GOSUB statement differs from the CALL statement in
that the GOSUB statement can not pass parameters to the
subroutine.

80 GOSUB 1000
90 REM CONTINUE PROCESSING

1000 REM: START OF SUBROUTINE
1010 RETURN

12-7

BASIC Syntax

GOTO

GOTO line number

Transfers control to the specified statement in the current
program unit.

160 GOTO 200

IF ... THEN ... ELSE

IF expression THEN statement [ELSE statement]

Evaluates a conditional expression and specifies an action to
be taken if the condition is true. A conditional expression is
considered true if its value is non-zero, false if its value is
zero. The action may be a transfer to a line number or one or
more executable statements.

180 IF A<O THEN 400
190 IF A=B THEN PRINT B

IMAGE

IMAGE formatstring

The IMAGE statement provides format specifications to be
used in a PRINT USING statement. The PRINT USING
statement must reference the line number of the IMAGE
statement to be used. The IMAGE statement cannot be
used in a multistatement line and cannot contain com
ments.

200 PRINT USING 300; A$,B,C$
300 IMAGE "MONTH",3A,DD.DD,4A

INPUT

INPUT [' 'message" ,] variablelist

The INPUT statement requests input to one or more
variables by displaying a "?" prompt. The program will then
accept string or numeric data from the keyboard. (See also
KEY CODE.) If an optional message is used, the message
replaces the "?" prompt.

10 INPUT A$,B
20 input "ENTER TIME",T

12-8

INTEGER

INTEGER itemlist (arraysize)

Declares that the variables in the itemlist are type INTE
GER. If arraysize is specified, the maximum size for the
array is also set. Integers must be in the range -32768 to
+32767.

20 INTEGER B(20)

KEYCDE

KEYCDE (X, keynumber, new keycode)

KEYCDE assigns the code values to be used for decoding
the keyboard. Each of the keys on the keyboard is mapped
to a code value (normally ASCII). The keys are numbered
according to the diagram shown in figure 12·1 . When a key is
pressed, its location number is returned to the terminal. The
number is used to select the proper ASCII code out of a
table. For example, key number 109 would normally be the
"A" key. Element U(109) would be equal to 65 (the ASCII
decimal code for A).

The valid key numbers are 0-112. Keycodes can be between
o and 255. The left and right shift keys, CNTL, AUTO LF,
BLOCK MODE, CAPS LOCK, REMOTE, and RESET
keys cannot be redefined.

There are three possible code tables from which the keycode
can be obtained. The X parameter in the statement is used
to indicate which one of the tables is being defined with the
current array. X selects the keycode table as follows:

X = 0 Unshift character codes
1 Left shift key characters
2 Right shift key characters
3 Left and right shift characters (defines both shift

tables)

When the left shift key (#4 in figure 12-1) is pressed in
addition to the character key, the left shift array will be used
to select the character code. The right shift key (#5 in figure
12·1) will cause the character to be selected from the right
shift table. Table 12·1 lists the default values for the
keycode tables.

BASIC Syntax

Table 12-1. Default Keyboard Codes

Key UNSHIFT SHIFT Key UNSHIFT SHIFT

Code Key Code Key Code Key Code Key

1 0 • same same 57 129 III same same

2 27 • same same 58 55 7 39
3 9 • same same 59 117 u 85 U

4 0
L_

same same 60 110 n 78 N

5 0
R_

same same 61 106 j 74 J
6 139 II 141 - 62 194 • same same

7 165 a 144 - 63 177 II same same

8 8 fill same same 64 208 .. same same

9 134 ... same same 65 133 I!II same same

10 49 1 33 ! 66 56 8 40 (
11 113 q 81 Q 67 105 i 73 I

12 122 z 90 Z 68 109 m 77 M

13 239 - same same 69 104 h 72 H

14 164 D 150 - 70 212 • same same

15 135 • 143 - 71 178 • same same

16 92 " 124 I 72 205 .. same same

17 131 .. same same 73 240 - same same

18 50 2 34 II 74 152 .. same same

19 119 w 87 W 75 111 a 79 0
20 120 x 88 X 76 44 60 <
21 93 1 125 } 77 103 9 71 G
22 140 III 151 - 78 138 III 149 -23 163 a 145 - 79 136 - 142 -24 155 - same same 80 204 - same same

25 128 .. same same 81 241 .. same same

26 51 3 35 # 82 57 9 41)

27 101 e 69 E 83 112 P 80 P

28 99 c 67 C 84 46 62 >
29 58 42 * 85 102 f 70 F
30 196 • same same 86 166 - 146 ..
31 211 • same same 87 162 a 137 -32 156 - same same 88 247 IEII same same

33 132 - same same 89 242 .. same same

34 52 4 36 $ 90 48 0 same same

35 114 r 82 R 91 64 @ 96
36 118 v 86 V 92 47 I 63 ?
37 59 43 + 93 100 d 68 0
38 232 • same same 94 0 (not used)

39 193 • same same 95 147 • 148 -40 157 - same same 96 246 .. same same

41 250 .. same same 97 243 .. same same

42 53 5 37 % 98 45 - 61 =

43 116 t 84 T 99 91 [123 {

44 98 b 66 B 100 0 (not used)

45 108 I 76 L 101 115 s 83 S
46 195 • same same 102 0 (not used)

47 213 • same same 103 0 (not used)

48 158 - same same 104 245 .. same same

49 0 (not used) 105 153 - same same

50 54 6 38 & 106 94 " 126 ~

51 121 Y 89 Y 107 95 - 127 •
52 32 SPACE same same 108 0 (not used)

53 107 k 75 K 109 97 a 65 A
54 214 • same same 110 0 (not used)

55 202 • same same 111 0 (not used)

56 130 - same same 112 244 .. same same

12-9

BASIC Syntax

UNUSED KEYNUMBERS: 49 94 100 102 103 108 110 111

Figure 12-1. Terminal Keyboard Layout

LET

LET variablelist = expression

The let statement assigns a value to a variable. The keyword
LET may be omitted. Multiple variables can be assigned a
common value by using a comma to separate the variables.

10 LET X = 10
20 Y=20
30 X,Y = 30

LINPUT

lINPUT ["message" ,] stringvariable

An entire line of input is accepted as a single string. The
data can be assigned to a string or substring. Extra
characters are truncated if the destination string is not large
enough. If the optional message is used, the message will be
printed on the display in place of the prompt.

30 LINPUT H$
90 LINPUT "Name:", 1'1$

12-10

LINPUT #
lINPUT # filenumber [BYTE count]; stringvariable

The LINPUT # statement is similar to LINPUT except
that the line of input data is read from the file specified by
the file number. File numbers are assigned using the
ASSIGN statement.

If the optional byte count is used, only the number of bytes
(characters) specified will be read into the string variable. If
a byte count of 0 is given, the length of the string as
determined from dimension or data type declarations will
be used to determine the number of characters to be input.

10 LINPUT #3;B$
20 LINPUT #4 BYTE 30; A$

LONG

LONG item list (arraysize)

The LONG statement is used to declare the variables in the
itemlist to be of type LONG.

600 LONG A,B(4,4)

NEXT(See FOR ... NEXT)

OFF KEY #
OFF KEY # keycode

Disables any interrupt associated with the indicated key.
The keycodes are shown in table 12-1 (see KEYCDE). Refer
to ON KEY# for additional information.

10 OFF KEY # 32

ON END #
ON END # filenumber CALL subprogram
or
ON END # filenumber GOSUB linenumber
or
ON END # filenumber GOTO linenumber

The ON END statement causes a transfer of control to the
specified statement or subprogram when an end of file
condition is detected. Note that the transfer will occur for
the specified file only. The ON END statement must be
executed prior to the end of file condition in order to be
effective. Subsequent ON END statements can change the
destination subprogram or linenumber. (Refer to the ON
ERROR statement for additional information.)

The ON END # statement has effect only within the
current program unit. It will not affect operation of a
subsequently called subprogram. A new ON END # state
ment must be executed in each subprogram.

If an end of file condition is reached and an ON END
statement has not been previously executed for the file, the
program will be terminated with an error.

10 ON END # 1 CALL Help
20 ON END # 2 GOSUB 300
30 ON END # 3 GOTO 500

110 PRINT #1;X,Y
120 READ #2;A$
130 PRINT #3;A$,X,Y

700 SUB Help
710 PRINT "NEED BIGGER FILE";
720 SUBEND

BASIC Syntax

ON ... GOSUB

ON expression GOSUB linelist

Causes the program to execute a subroutine at one of several
line numbers. The expression is evaluated and rounded to
an integer. This integer selects the first, second, or nth line
number from the line list. If the integer is less than 1 or
greater than the number of lines in the linelist, the state
ment following the ON ... GOSUB statement is executed
instead.

Upon return from the selected subroutine the program will
continue execution with the statement following the ON
... GOSUB statement.

10 ON N+M GOSUB 300,400,500,600,700

ON ... GOTO

ON expression GOTO linelist

Causes a branch to one of several statements. The expres
sion is evaluated and rounded to an integer. The integer is
then used to select a statement from the linelist in the same
manner as the ON ... GOSUB statement. If the integer is less
than 1 or exceeds the number of line numbers in the line list,
the statement following the ON ... GOTO statement will be
executed.

400 ON N+2 GO TO 100,200,300

12-11

BASIC Syntax

ON ERROR

ON ERROR GOTO linen umber

When an error is detected by the Interpreter, a branch to
the indicated linenumber will occur. The type of error can
then be examined and the appropriate action taken. The
RESUME statement should always be used to continue
program execution following the error handling routine.

Once an ON ERROR statement has been executed, all
errors will cause a branch to the indicated error handling
routine. If the linen umber given is not valid, a special error
message will be generated.

10 ON ERROR GO TO 1000

If you specify a linen umber of 0, the ON ERROR branch is
disabled and subsequent errors will cause the program to
halt and an error message to be printed. If the ON ERROR
GOTO ° statement is contained in the error handling
routine itself, it will cause the program to stop and print the
error message. You should use ON ERROR GOTO 0 in error
handling routines when there is no recovery procedure for a
particular error.

If an error occurs within the error handling routine, the
program will halt and an error message for the error
occuring in the error handling routine will be printed. You
cannot trap errors that occur within the error handling
routine.

The ON ERROR GOTO statement must be executed before
the error occurs. You can test for the type and location of the
error using the error variables ERRL and ERRN. ERRL
contains the line number in which the error occurred. If
there is no error, ERRL will be O. In Direct Computation
mode ERRL will always be 65535. ERRN contains the code
number of the error. If there is no error ERRN will be O.

ERRL and ERRN cannot be used on the left side of the" ="
sign in a LET or assignment statement.

A list of error types and messages is given at the back of this
manual.

The following example shows how a simple error handling
routine would work.

200 ON ERROR GOTO 400
210 INPUT "WHAT ARE THE VALUES TO DIVIDE?";X,Y
220 Z=X/Y
230 PRINT "THE QUOTIENT IS ";Z
240 GOTO 210
400 IF ERRN=1034 AND ERRL=220 THEN 420
410 ON ERROR GO TO 0
420 PRINT "DIVIDE BY ZERO ERROR"
430 RESUME 210

12-12

ON KEY #
ON KEY # keycode CALL subprogram
or
ON KEY # keycode GOSUB linenumber
or
ON KEY # keycode GOTO linenumber

The ON KEY # statement provides a program interrupt
when the indicated key is pressed. The default key codes are
listed in table 12-1(see KEYCDE). When the selected key is
pressed, the program will perform the specified transfer as
soon as the current statement has completed execution. The
RETURN from the GOSUB will return the program to the
statement following the point where the key interrupt
occurred. Interrupt keys are not detected if they are entered
as part of the response to an input or linput statement.

10 ON KEY # 27 CALL Gotcha
20 ON KEY # 32 GOSUB 400
30 ON KEY # 12 GOTO 100

PRINT

PRINT printlist

Prints the values of a list of expressions on the terminal
screen. Items in the list may be separated by commas or
semicolons. Commas space output in 15-character fields.
Semicolons cause output to be printed without extra spaces.
A comma or semicolon at the end of the print list suppresses
the final carriage return and linefeed. The print list may also
include print functions to control output format.

480 PRINT A,S,8/E;B$[4J&C$&"Q=9*",
490 PRINT ''NAME'',SPA(3);''ADDRESS''

PRINT #
PRINT # filenumber [BYTE count]; printlist
or
PRINT # filenumber [BYTE count] USING format;
printlist

PRINT # writes values of expressions in the printlist
serially to the specified file. A record is sent to the file each
time a line feed character is encountered in the printlist
(unless the BYTE option is used) and at the end of the
printlist. If the printlist is ended with a comma or semicolon
the data is sent to the specified file without carriage return
and line feed characters at the end of the record.

The filenumber parameter is normally an integer between 1
and 127. If a filenumber of 0 is used the operation will be
interpreted as an AGL operation. Refer to the AGL (A
Graphics Language) description later in this manual for a
description of PRINT #0.

Note that if you attempt to print 256 or more consecutive
characters to a given file, a buffer overflow error will result.

If the optional byte count is used, BASIC will transfer the
specified number of bytes to the file. This allows the
transfer of 8-bit data and suppresses transmission of
records upon encountering the line feed character. If a byte
count of 0 is given, the actual byte count will be determined
from the printlist items.

The PRINT # USING statement allows you to format data
as it is written to the file. Refer to the PRINT USING
statement.

10 PRINT #3; AS,R
30 PRINT #N; "HELLO"
40 PRINT #1 BYTE 24; AS,BS
50 PRINT #1 BYTE 80 USING 200; A,B,CS

PRINT USING

PRINT USING format ; printlist
or
PRINT USING image line ; printlist

The PRINT USING statement prints the values of the
items in the printlist according to the specification given in
the formatstring or in the referenced IMAGE statement. If
the end of the format string is reached before all of the items
in the printlist have been output, the format string is
repeated.

BASIC Syntax

The examples below show three ways of referencing format
strings. The first (530) contains the format string in the
PRINT USING statement itself. The second (540) uses a
string variable to reference the format string. The third
refers to an IMAGE statement containing the format string.

530 PRINT USING "3A,3A";AS,"ABC"
540 PRINT USING FS;N,M,CS
550 PRINT USING 200;A,B,D

Format Symbols

The format string used in PRINT USING and IMAGE
statements is made up of the following format control
characters:

Format "Symbols

Symbol Description Example

Strings
A ASCII Character AAA
K Compressed format K

Blanks
X Blank space XXX

Separators
Separator only AA,DD

/ Separates specifications and AA/DD
begins a new line or a new
record if writing to a file.

@ Separates specifications and, AA@DD
on lineprinter output, begins
a new page.

Carriage Characters (used at the end
Control of the print list)

+ Suppress linefeed

Suppress carriage return

Suppress both linefeed and
carriage return

Replicators
n Single replicator 3A

n() Group replicator 3(3A,2X)

Numeric
Specifications

S Sign character (+ or -) SDD
M Minus sign MDD
D Numeric digit, blank fill DDD

Decimal point (.) DDD.DD
R European Decimal point (,) DDDRDD
C Comma DDDCDD
P Period (European comma) DDPDDD
K Compressed format "ONL Y",XKX,

"ITEMS"

12-13

BASIC Syntax

READ
READ variable list

The READ statement assigns numbers and strings from one
or more DATA statements to the variables specified in the
variable list.

570 READ X,A$,B$,Y
575 READ A(N,M),B(N,M)

READ #

READ # filenumber; variablelist

The READ # statement assigns numbers and strings from
the specified file to the variables in the variable list. Reads
the file serially beginning at the current position of the file
pointer. The file is read until the variable list is exhausted.
The read may cross record boundaries. Data entries in the
file must be separated by commas.

580 READ #5; A, B$
595 READ #1; A(N,M)

REMARK
REM comments

Allows you to place remarks within program listing. Any
characters may be used. Note that the "!" character can be
used following a statement in a line to indicate that the
remaining characters on the line are comments. The "!"
form of comment cannot be used in IMAGE or SUBEND
statements.

640 REM ---ANY TEXT---

12-14

RESTORE
RESTORE [Iinenumber]

The RESTORE statement resets the data pointer to the
specified DATA statement. If the linen umber is omitted,
the pointer is reset to the lowest numbered DATA state
ment in the current program unit.

650 RESTORE 60

RESTORE #
RESTORE # filenumber

Repositions the file pointer to the beginning of the specified
file.

660 RESTORE #2

RESUME
RESUME [Iinenumber]
or
RESUME NEXT

Causes the program to continue execution after an error
recovery routine (ON ERROR) has been executed. You can
resume execution at one of the following points:

• the statement that caused the error (no linen umber)
• the statement following the error (NEXT)
• some specified line number

To continue execution at the statement causing the error
use the following statement:

40 RESUME

To continue execution at the statement following the error
use the following statement:

40 RESUME NEXT

To continue execution at a specified line number use the
following statement:

40 RESUME 500

Note that the linenumber parameter must be a valid line
number (>0). Refer to the ON ERROR statement for
additional information.

RETURN
RETURN

Returns control from a subroutine to the statement immedi
ately following the most recently executed GOSUB state
ment.

SHORT
SHORT item list (arraysize)

Declares the variables in the itemlist to be type SHORT. If
arraysize is specified, the maximum size for the array is also
set.

730 SHORT A,B(4,4)

BASIC Syntax

SLEEP
SLEEP

The SLEEP statement allows you to place the Interpreter
into a dormant state. Execution of the BASIC program is
suspended and the terminal returns to normal operation.
The BASIC Interpreter will continue to monitor the data
comm and keyboard input however. The terminal will
remain in the normal mode of operation until either the
"break" key is entered (normally a CONTROL-A) or a key
is pressed for which an ON KEY statement was executed in
the suspended program. If the "break" key is used to return
to the BASIC Interpreter, the suspended program will
resume at the statement following the SLEEP statement.

If a keycode interrupt is used to return to BASIC, the
suspended program will execute the statement(s) specified
in the ON KEY statement. If the ON KEY ... GOSUB or the
ON KEY ... CALL forms were used, the indicated subrou
tine or subprogram is executed and then the program will
return to the SLEEP state. If the ON KEY ... GOTO form of
statement was used, the program will not return to the
SLEEP state unless a SLEEP statement is again executed.

The WAKEUP statement can also be used in an ON KEY
subroutine or subprogram to cancel the current SLEEP
statement.

Examples:

20 ON KEY # 160 GOSUB 200
30 ON KEY # 170 CALL Sbproga
40 ON KEY # 180 GOTO 300
50 SLEEP

200 PRINT "TEST1"
210 RETURN
300 STOP

400 SUB Sbproga
410 PR I NT-"IL!>f2"
420 WAKEUP
430 SUBEND

STOP
STOP

The STOP statement terminates program execution. The
program can be resumed with the GO command.

740 STOP

12-15

BASIC Syntax

SUB

SUB subprogramname [(parameters)]

The SUB statement must be the first statement ill a
subprogram. It provides the name of the subprogram and
marks the entry point for the main or calling program. The
SUB statement also lists any parameters that are to be
passed between the calling program and the subprogram.
The last statement in the subprogram must be a SUBEND
statement.

300 READ #1 ;A$
400 C=NUM(A$[1,ll)
410 IF C>48 AND C<57 THEN 440
420 CALL Alpha (C)
430 GOTO 300
440 CALL Numeric (C)

500 SUB Alpha (N)
502 PRINT CHR$(N);
504 SUBEND
600 SUB Numeric (N)
602 K=K*10+N
604 SUBEND

SUBEND

SUBEND

The SUBEND statement is used to indicate the end of a
subprogram. Refer to the SUB statement for additional
information.

The SUBEND statement must be the only statement on the
line. It cannot be used in multi statement lines or with the
"!" form of comments or with the REMARK statement. The
only statement that can follow the SUBEND statement is a
SUB statement beginning another subprogram. If any other
statement type is used, the message MISSING SUB will be
displayed and the program will be halted.

10 SUB Test (N,K,A$)

50 SUBEND

WAKEUP

WAKEUP

The WAKEUP statement cancels the effect of the last
executed SLEEP statement.

Example:

400 WAKEUP

12-16

BUILT -IN FUNCTIONS

The following paragraphs describe the built-in functions
available in BASIC. The functions are divided into the
following categories:

• Numeric • Print
• Trigonometric • Input/Output
• String • Other

Within each category, the functions are listed in alphabetic
order. The letter which appears after most function names
specifies the type of result that is returned by the function.
These letters are interpreted as follows:

S - short
I - integer
L - long
ST- string
T - same type as X

Numeric Functions

Function Type Description

ABS(X) T Absolute value of X.

10 A ABS(2}! A = 2
20 B = ABS(-2)! B = 2

CSENA(R,C) I Returns the absolute row and column
position of the cursor in Rand C. C is 1 to 80 and R is 1 to
528. The function value is set to the number of the current
user window (1-4).

10 A = CSENA(P,Q)

CSENS(R,C) I Returns the screen relative row and column
position of the cursor in Rand C. C is 1 to 80 and R is 1 to 24.
The function value is set to the number of the current user
window (1-4).

10 B = CSENS(A(1),B(1»

EXP(X) S The natural log e raised to the X power (ErX).

70 G-EXP(2) ! G = EA2 = 7.39

INT(X) I Largest integer <= X.

80 H=INT(6.999)! H=6

LOG(X) S Natural logarithm X>O

100 J=LOG(2)

LONG(X) L Returns the LONG value of X.

120 R=LONG(y)

RND S The next pseudo-random number in a standard
sequence of numbers >= 0 and <1.

130 M=RND

SGN(X) I The sign of X; -1 ifX<O, 0 ifX=O, and + 1 ifX>O.

140 N=SGN(J)

SHORT(X) S X rounded to SHORT representation.

145 M=SHORHN)

SQR(X) S The positive square root of X.

160 Q = SQR(169)

Trigonometric Functions

ATN(X) S Returns the arctangent of X III radians.

200 E = ATN(y)

COS (X) S Returns the cosine of X where X is in radians.

300 X = R*COS(A)

SIN(X) S Returns the sine of X where X is in radians.

400 Y = R*SIN(A)

TAN (X) S Returns the tangent of X where X is in radians.

500 T = TAN(A)

BASIC Syntax

String Functions

CHR$(X) ST Returns a string character with the value of
the numeric expression X. The value of X must be between
o and 255.

10 LET T$=CHR$(32) ! T$ = " " (blank)

LEN(S$) I Returns the number of ASCII characters in the
string S$.

10 DIM A$(20]
20 LET A$ "1234"
30 LET B = LEN(A$)! B = 4

NUM(S$) I Returns a numeric value between 0 and 255
corresponding to the first character of the string S$. S$
cannot be the null string "".

10 LET T$ = "Payroll"
20 LET B = NUM(T$[2;1])! B = 97

POS(Sl$,S2$) I Searches the string Sl$ for the first
occurrence of the string S2$. Returns the starting index if
found, otherwise returns o.

10 LET T$="Television"
20 LET V$ = "vision"
30 LET C = POS(T$,V$) C = 5

v AL(S$) * Returns the numeric equivalent of the string S$.
* - The data type returned may be integer, short, or long as
required.

200 N = VAL(N$)+I

v AL$(X) ST Returns the value of the numeric expression X
expressed as a string of ASCII digits.

10 LET T$ = VALH128+34) ! T$ = "162"

RPT$(S$,X) ST Repeats the string in S$ X times.

10 LET T$ = "Ring!"
20 LET E$ = RPT$(T$,3)
EI = "Ring!Ring!Ring"

12-17

BASIC Syntax

TRIM$(S$) ST Returns a string which is equal to S$ with all
leading and trailing blanks stripped off.

10 LET T$." Pay roll
20 LET F$ = TRIMCT)
FS • "Pay roll"

UPC$(S$) ST Returns a string made up of the uppercase
equivalents of each of the characters in S$.

PROC$(X) ST Returns the string representation of the key
with a code value of X. If the key is a function key, the
appropriate escape sequence is returned. PROC$ cannot
process all of the terminal keycodes.

Print Functions

The following functions can only be used in a PRINT
statement. If they are used in a PRINT USING statement
they will cause your program to end with an error. The
MOVC functions do not return a function value and will
cause an error if used in PRINT # statements. The LIN,
SPA, and TAB functions will affect the selected file when
used in the PRINT # statement.

LlN(N) Skips N lines in the alphanumeric display (current
window).

SP A(N) Prints N blanks III the alphanumeric display
(currrent window).

T AB(N) Prints blanks up to column N in the alphanumeric
display (current window).

MOVCS(R,C) Moves the cursor to row R, column C. Rand
C are screen relative coordinates (1,1 to 24,80).

MOVCA(R,C) Moves the cursor to row R, column C. Rand
C are absolute display memory addresses (1,1 to 255,80).

MOVCR(R,C) Moves the cursor to the current row plus R
and the current column plus C. Rand C can be positive or
negative.

12-18

Input/Output Functions

GETKBD(X) I Returns in X the keycode associated with
the next key struck. The function value is 1 if a keycode is
returned and 0 if no keycode was found. This function can
only be executed if the GETKBD flag is set (see GETKBD
ON).

DSPIN$(L,X) ST Returns a string from the display, start
ing at the current cursor position. The absolute value of L is
the length of the returned string. If format mode is on, the
text returned will be limited to the current unprotected
field. If L is negative, character values in the range 128-255
are ignored. IfL is positive, characters in the 128-255 range
are expanded to their representative escape sequences. In
the terminal, characters with values greater than 127 are
used to indicate display enhancements, field types, etc.
Additional information on these character values is given in
the BASIC for Terminals reference manual.

X must be a numeric variable and will be set to 0 if the
end of a terminal data field, the end of the current line, or
the end of the display is not encountered before the
specified number of characters is read. If the end of a data
field or the end of the current line is encountered, X will be
set to -1. If the end of the display is reached, X will be set to
1.

GETDCM(S$) I Returns one character from the da:tacomm
without wait. The character is stored in S$. The value of the
function is 1 if a character was returned and 0 if there was no
character. This function can only be executed if the
GETDCM flag is set (see GETDCM ON).

PUTDCM(S$) I Sends the first character in S$ to the
datacomm. The function value is 1 if the transfer was
successful, 0 if the transfer was unsuccessful, and -1 if the
datacomm was busy.

Other

ERRL I Returns the line number in which the last error
occurred. See ON ERROR.

ERRN I Returns the error code of the last error. See ON
ERROR.

FRE(expression) I Returns the amount of available memory
space. If the expression is numeric, the returned value is the
amount of remaining program and variable storage. If the
expression is a string, the returned value is the amount of
remaining string storage space.

I lnl~III[1 ~ ____________ A_SC_I_I_C_HA_R_A_C_T_E_R_S_E_T~.I A I

Table A-l. ASCII Character Set

DECIMAL ALTERNATE DECIMAL
VALUE GRAPHIC COMMENTS CHARACTER VALUE GRAPHIC COMMENTS

0 't. Null (a' 64 (a Commercial at
1 'j, Start of heading A' 65 A Uppercase A
2 'ic Start of text B" 66 B Uppercase B
3 "x End of text C' 67 C Uppercase C
4 "r End of transmission D" 68 D Uppercase D
5 ." Enquiry E" 69 E Uppercase E
6 'Ie Acknowledge F" 70 F Uppercase F
7 " Bell G" 71 G Uppercase G
8 '!; Backspace H" 72 H Uppercase H
9 "r Horizontal tabulation I'" 73 I Uppercase I

10 L,
Line feed J" 74 J Uppercase J

11 "r Vertical tabulation K" 75 K Uppercase K
12 " Form feed U 76 L Uppercase L
13

q.
Carriage return M' 77 M Uppercase M

14 '\, Shift out N" 78 N Uppercase N
15 " Shift in 0" 79 0 Uppercase 0
16 It Data link escape P' 80 P Uppercase P
17 D, Device control 1 (X-ON) Q' 81 Q Uppercase Q
18 0, Device control 2 R'" 82 R Uppercase R
19 '" Device control 3 (X-OFF) S' 83 S Uppercase S
20 ~ Device control 4 T' 84 T Uppercase T
21 '1< Negative acknowledge U" 85 U Uppercase U
22 s,. Synchronous idle V" 86 V Uppercase V
23 .. End of transmission block W, 87 W Uppercase W
24 '" Cancel X" 88 X Uppercase X
25

...,
End of medium Y" 89 Y Uppercase Y

26 .. Substitute z,· 90 Z Uppercase Z
27 'i: Escape I"~ 91 [()pening bracket
28 '. File separator \'. 92 \ Reverse slant
29 ~ Group separator I" 93 I Closing bracket
30 .. Record separator ,," 94 " Circumflex
31 4,; Unit separator

,.
95 Underscore - -

32 Space (Blank) 96 Grave accent
33 ! Exclamation point 97 a Lowercase a
34 " Quotation mark 98 b Lowercase b
35 # Number sign 99 c Lowercase c
36 $ Dollar sign 100 d Lowercase d
37 0/, Percent sign 101 e Lowercase e
38 & Ampersand 102 f Lowercase f
39 Apostrophe 103 g Lowercase g
40 (()pening parenthesis 104 h Lowercase h
41) Closing parenthesis 105 i Lowercase i
42 * Asterisk 106 j Lowercase j
43 + Plus 107 k Lowercase k
44 Comma 108 I Lowercase I
45 Hyphen (Minus) 109 m Lowercase m
46 Period (Decima!) 110 n Lowercase n
47 I Slant 111 0 Lowercase 0

48 0 Zero 112 p Lowercase p
49 1 One 113 q Lowercase q
50 2 Two 114 r Lowercase r
51 3 Three 115 s Lowercase s
52 4 Four 116 t Lowercase t
53 5 Five 117 u Lowercase u
54 6 Six 118 v Lowercase v
55 7 Seven 119 w Lowercase w
56 8 Eight 120 x Lowercase x
57 9 Nine 121 y Lowercase y
58 Colon 122 z Lowercase z
59 Semicolon 123 { ()pening (left) brace
60 < Less than 124 I Vertical line
61 = Equals 125 } Closing (right) brace
62 > Greater than 126 - Tilde
63 ? Question mark 127 • Delete

A-I

Table A-2. ASCII (7-Bit) Character Codes

GRAPHIC DEC OCT HEX GRAPHIC DEC OCT HEX

NUL 0 0 0 @ 64 100 40
SOH 1 1 1 A 65 1 01 41
STX 2 2 2 8 66 102 42
ETX 3 3 3 C 67 103 43
EDT 4 4 4 0 68 104 44
ENG 5 5 5 E 69 105 45
ACK 6 6 6 F 70 106 46
BEL 7. 7 7 G 71 107 47
8S 8 10 8 H 72 1 1 0 48
HT 9 11 9 1 73 111 49
LF 10 12 A J 74 112 4A
VT 11 13 8 K 75 113 48
FF 12 14 C L 76 114 4C
CR 13 15 0 M 77 115 40
SO 14 16 E N 78 116 4£
SI 15 17 F 0 79 111 4F

OLE 16 20 10 p 80 120 50
OC1 17 21 11 Q 81 121 51
OC2 18 22 12 R 82 122 52
OC3 19 23 13 S 83 123 53
OC4 20 24 14 T 84 124 54
NAK 21 25 15 U 85 125 55
SYN 22 26 16 V 86 126 56
ETB 23 27 17 W 87 127 57
CAN 24 30 18 X 88 130 58
EM 25 31 19 Y 89 131 59

SU8 26 32 1A Z 90 132 SA
ESC 27 33 18 [91 133 58
FS 28 34 1C \ 92 134 5C
GS 29 35 10 1 93 135 50
RS 30 36 1£ .. 94 136 5£
US 31 37 1F - 95 137 SF
SP 32 40 20 , 96 140 60
! 33 41 21 a 97 141 61
II 34 42 22 b 98 142 62
35 43 23 c 99 143 63
$ 36 44 24 d 100 144 64
% 37 45 25 e 101 145 65

" 38 46 26 f 102 146 66 , 39 47. 27 9 103 147 67
(40 50 28 h 104 150 68
) 41 51 29 i 105 151 69

* 42 52 2A j 106 152 6A
+ 43 53 28 Ie 107 153 68

• 44 54 2C 1 108 154 6C
- 45 55 20 m 109 155 60

46 56 2E n 110 156 6E
I 47 57 2F 0 111 157 6F
0 48 60 30 P 112 160 70
1 49 61 31 q 113 161 71
2 50 62 32 r 114 162 72
3 51 63 33 5 115 163 73
4 52 64 34 t 116 164 74
5 53 . 65 35 u 117 165 75
6 54 66 36 v 118 166 76
7 55 67 37 w 119 167 77
8 56 70 38 x 120 170 78
9 57 71 39 Y 121 171 79
: 58 72 3A z 122 172 7A
; 59 73 38 { 123 173 78
< 60 74 3C I 124 174 7C
= 61 75 30 } 125 175 70
) 62 76 3E '" 126 176 7E
? 63 77 3F I 127 177 7F

A-2

I iJijijWHt:i
~ _____________________ c_om_p_at_ib_ili_tY~_1 B I

This appendix lists some of the differences between the
BASIC language interpreter used in the terminal and the
ANSII standard for minimal BASIC as well as other BASIC
interpreters offered by Hewlett-Packard.

• FOR. .. NEXT loops

• Arithmetic operator hierarchy

• Reserved words

• Default data type

• User defined functions

• RANDOMIZE

• OPTION BASE

FOR ... NEXT Loops
Terminal BASIC tests the loop variable after the loop has
been executed. This means that all FOR. .. NEXT loops will
be executed at least once, even if the loop variable is initially
larger than the loop limit value. The ANSII standard speci
fies that the loop variable will be tested before the loop is
executed.

Arithmetic Operator Hierarchy
The ANSII standard does not specify an operator hierarchy.
Some BASIC interpreters do define the order in which oper
ators are executed. The hierarchy used by Terminal BASIC
is given in Section 3.

Reserved Words
Terminal BASIC has several "reserved words". These are
letter combinations that cannot be used for variable or sub
program names. A list of reserved words is given in Appen
dix C.

Default Data Type
ANSII standard BASIC does not specify different data
types. Terminal BASIC uses SHORT as the default data
type. If you do not specify the data type of a numeric vari
able, it will be treated as SHORT. Other BASIC interpreters
may use type LONG as the default data type. Data types are
discussed in Section 2.

User Defined Functions
Terminal BASIC does not allow user defined functions.
These are functions which are defined using a DEF state
ment to create extensions to BASIC.

RANDOMIZE
Terminal BASIC does not have a RANDOMIZE statement.
The RANDOMIZE statement is used to select a new "seed"
or starting point for a series of random numbers. Refer to
Section 3 for a description of the random number function
(RND).

OPTION BASE
Terminal BASIC does not have an OPTION BASE state
ment. This statement is used to set the starting point for
array indexes to "0" or "1". Terminal BASIC uses "0" as the
first element in an array.

B-1/B-2

liiw"li
~ ___________________ R_eS_e_rV_e_d_W_O_r_dS~.1 C I

When the BASIC interpreter is analyzing a newly entered
line of program text, it first attempts to determine whether
it can recognize keywords. Since a variable name may con
tain any number of characters (with only the first 15 being
significant), variable names cannot contain a keyword in the
leading characters of the name. The BASIC interpreter as
sists you in determining whether a keyword has accidently
crept into the leading characters of a variable name. All text
is formatted by the BASIC interpreter such that:

• keywords (also called reserved words) are converted to all
uppercase letters.

• variable names are converted to an uppercase letter for
the initial letter and all successive letters are forced to
lowercase.

Upon listing a program, all unquoted text appears with this
format. If an intended variable name appears with more
than one uppercase letter at its head, then it contains a
keyword in its leading characters. A variable name may
contain any keyword within its characters as long as the
leading characters do not form a keyword.

Table C-l. List of Reserved Words

ABORT! 0
ABS
AND
ASSIGN
AUTO
BASIC
BYTE
CALL
CHR$
CMP
COMMAND
CSAVE
CSENA
CSENS
DATA
DELETE
DIM
DIV
DSPIH$
ELSE
END
ENTER
ERRL
ERRN
ERROR
EXIT
EXTEND
FOR
FRE
GET
GETDCM
GETKBD
GO
GO TO
GOSUB
GOTO
IF
IMAGE
INPUT

INT
INTEGER
KEY
KEYCDE
LEN
LET
LIN
LINPUT
LIST
LOCAL
LOCKOUT
LONG
MERGE
MOD
MOVCA
MOVCR
MOVCS
MUL TIPLE
NEXT
NOT
NUM
OFF
ON
OR
OUTPUT
PASS CONTROL
POS
PPOLL
PRINT
PROC$
PROMPT
PUTDCM
READ
REM
REMOTE
REMOVE
RENUM
RESET
RESTORE

RESUME
RETURN
RND
RPH
RUN
SAVE
SCR
SCRATCH
SECURE
SENDBUS
SET
SGN
SHORT
SINGLE
SIZE
SLEEP
SLOAD
SPA
SQR
STATUS
STD
STEP
STOP
SUB
SUBEND
TAB
THEN
TIMEOUT
TO
TRIGGER
TRIM$
UPC$
USER
USING
VAL
VAL$
WAKEUP
XOR

Additional keywords in some versions of BASIC:

ATN
AXES
CLIP
CLIPOFF
CLIPON
COS
CSIZE
CURSOR
DIGITIZE
DRAW
DSIZE
DSTAT
EXP
FRAME
FXD
GCLR
GPON

GPMM
GRID
GSTAT
IPLOT
LA XES
LDIR
LGRID
LIMIT
LI'NE
LOCATE
LOG
LXAXIS
LYAXIS
MARGIN
MOVE
MSCALE
PDIR

PEN
PENDN
PENUP
PLOT
PLOTR
POINT
RPLOT
SCALE
SETAR
SETGU
SETUU
SHOW
SIN
TAN
WHERE
XAXIS
YAXIS

C-1/C-2

J

lmMu Summary of BASIC I D I

D-l

D-2

I
a;~mlll

L---_________ E_r_rO_r _M_e_ss_a_oe_s---,.I E I

A BASIC program executing in the terminal may gener
ate BASIC, AGL, or command execution errors. These
errors will normally cause your program to halt and dis
play an error message. If you use the ON ERROR state
ment, you can create your own error handling routine.

All errors have a decimal code. Table E-l contains a list of
the error codes. The error code number, error message,
and a description is given for each error. Refer to Section
10 for a description of error handling.

Table E-l. Terminal Error Codes

CODE

00257

00258

00259

00260

00261

00262

00263

00264

00265

00266

00267

00268

00269

00270

00271

00272

00273

00274

00275

00276

MESSAGE

COMMAND
INVALID DEVICE SPECIFIED

INVALID F ILE-lD

INVALID FILE ACCESS

ACTIVE FILE TABLE FULL

DUPLICATE DEVICES SPECIFIED

"SOURCE" = "DESTINATION"

TOO MANY DEVICES SPECIFIED

CONFLICTING 110

DIFF. LENGTH RECORDS

DIFF. IN BYTE x RECORD Y
FILE z

DIFFERENCE IN RECORD TYPE

ILLEGAL PARAMETER IN COMMAND

EXTRANEOUS PARAMETER IN

MISSING PARAMETER IN COMMAND

NON-NUMERIC PARAMETER IN

EXCESSIVE NUMERIC PARAMETER
IN COMMAND

ASSIGN TABLE FULL

NAME NOT IN ASSIGN TABLE

RE-ASSIGNMENT NOT ALLOWED

ILLEGAL ASSIGN NAME

EXPLANATION

Incorrectly spelling a device name; correct spelling.

File-id passed to F/S intrinsics is incorrect; program error.

Reading a write only file or writing to read only file.

No more files can be opened until another file is closed first.

More than one of the same device name in multiple device
string specification; delete one.

Trying to read and write to the same device; change one of
them.

Can't have more than one source device; can't have more
than one destination device for a compare operation.

A write to display from I/O buffer is occurring during a GET
operation.
Record lengths on source and destination devices are dif
ferent on a compare operation.

A mismatch on a byte on a compare operation.

Record types did not agree from source and destination
devices.

Unrecognized keyword in command parameter list.

Too many keywords in command parameter list.

Expected keyword in command parameter list not found.

Illegal numeric digit found in command parameter list.

Numeric digit too large in command parameter list.

Can't fit new assignment into assign table; delete another
entry to make room.

Name requested wasn't found in assign table.

Devices cannot be reassigned in Edit Mode or Data Logging
Mode. To reassign devices, disable Edit or Data Logging
Mode, reassign, then enable the mode.

Incorrect character used in assign name. Names are trun
cated to 11 characters.

E-1

CODE

00277

00278

00279

00280

00281

00288

00289

00290

00291

00292

00293

00294

00295

00296

00297

00298

00299

00304

00305

00306

00307

00308

00309

00310

00311

00312

00313

00314

00315

E-2

Table E-l. Terminal Error Codes (Continued)

MESSAGE

COMMAND
PROGRAM NOT FOUND

UNRECOGNIZED COMMAND

APPLICATION NOT FOUND

EXECUTE FILE NOT FOUND

VOLUME TABLE FULL

CARTRIDGE TAPE
RUNOFF - ON LEFT DRIVE

ABORTED ON LEFT DRIVE

END OF TAPE ON LEFT DRIVE

END OF DATA ON L~FT DRIVE

PROTECTED ON LEFT DRIVE

NO TAPE ON LEFT DRIVE

STALL ON LEFT DRIVE

READ FAIL ON LEFT DRIVE

WRITE FAIL ON LEFT DRIVE

FAIL ON LEFT DRIVE

END OF FILE ON LEFT DRIVE

FILE MISSING ON LEFT DRIVE

RUNOFF - ON RIGHT TAPE

ABORTED ON RIGHT DRIVE

END OF TAPE ON RIGHT DRIVE

END OF DATA ON RIGHT DRIVE

PROTECTED ON RIGHT DRIVE

NO TAPE ON RIGHT DRIVE

STALL ON RIGHT DRIVE

READ FAIL ON RIGHT DRIVE

WRITE FAIL ON RIGHT DRIVE

FAIL ON RIGHT DRIVE

END OF FILE ON RIGHT DRIVE

FILE MISSING ON RIGHT DRIVE

EXPLANATION

Unable to find program with name specified in command
channel.

Unable to find command to match command specified in
command channel.

Unable to find a running application program.

Unable to find an active execute file.

Too many devices currently active. De-activate one of the
devices.

Tape ran off; remove tape and rethread it.

Tape operation aborted; remove tape.

No more room on tape.

End of valid data found on tape.

Tape write protected; replace write enable tab.

Tape not inserted.

Tape stalled; remove tape.

Unable to read record from tape after nine retries.

Unable to write to tape while in verify mode.

Tape failed during a CTU test.

End of file reached on tape during file compare operation.

Missing file mark found during a SKIP or FIND file command.

Tape ran off; remove tape and rethread it.

Tape operation aborted; remove tape.

No more room on tape.

End of valid data found on tape.

Tape write protected; replace write enable tab.

Tape not inserted.

Tape stalled; remove tape.

Unable to read record from tape after nine retries.

Unable to write to tape while in verify mode.

Tape failed during a CTU test.

End of file reached on tape during file compare operation.

Missing file mark found during SKIP or FIND file command.

CODE

00336

00337

00338

00368

00369

00370
00371

00352

00353

00384

00385

00386

00387

00388

00389

00390

00391

00392

00400

Table E-l. Terminal Error Codes (Continued)

PRINTER
PRINT FAIL

MESSAGE

NO PAPER ON EXTERNAL PRINTER

NO EXTERNAL PRINTER

NO SHARED PRINTER

PRINTER IS BUSY, RETRY

NO READ FROM PRINTER
NO PP

DATACOMM
TERMINAL NOT IN REMOTE

DATACOMM ERROR

HP-IB
HP-IB TIME-OUT

NO HP-IB PCA

ILLEGAL HP-IB ADDR

HP-IB DEV BUSY, RETRY
COMMAND WHEN FREE

NO HP-IB CONTROLLER

HP-IB TEST FAIL xx

HP-IB TEST NOT ATTEMPTED,
ADDR=x, SYSCTL=YES or NO,
CIC=YES or NO

NOT HP-IB TALKER
in BASIC.

NOT HP-IB SYSTEM CONTROLLER

HPIB TEl x TO TEly TEST FAIL

EXPLANATION

General extemal printer fail; unspecific.

Paper out; resupply paper.

No printer connected, or no PCA board.

No shared printer connected to HP-IB.

Shared printer is currently being used; wait until free.

Can't read from shared printer.
Printer did not respond in time.

Terminal remote switch not down.

Unspecific datacomm transmit or receive error.

Data transfer didn't complete before allotted time.

No HP-IB PCA in terminal.

HP-IB address specified did not exist.

Shared HP-IB device currently busy; wait until free.

No terminal on the HP-IB has responded to a request for
control.

Self test of HP-IB failed.

Self-test of HP-IB cannot be performed under current condi
tions or configuration.

Terminal not addressed to talk during a SENDBUS command

HP-IB protocol violated; REN and IFC control lines may only
be accessed by system controller.

Transfer from terminal to terminal failed over HP-IB.

E-3

CODE

01026

01027

01028

01029

01030

01031

01032

01033

01034

01035

01036

01037

01038

01039

E-4

Table E-l. Terminal Error Codes (Continued)

MESSAGE

BASIC
CHECKSUM ERROR IN BASIC

NEXT WITHOUT FOR

LOOP VARIABLE CAN'T BE LONG

RETURN WITHOUT GOSUB

NO RETURN

RESUME WITHOUT ERROR

NO RESUME

SUB WITHOUT SUBEND

MISSING SUB

SUBPROGRAM NOT FOUND

MISMATCHED QUOTES

MISMATCHED ELSE

SYNTAX ERROR

MISSING OPERAND

EXPLANATION

Something has caused the BASIC interpreter code to be
altered. Reload the BASIC interpreter.

A NEXT statement is encountered and the corresponding
FOR statement is missing or some intervening loop used
the same loop variable. Add the appropriate FOR statement
or change the loop variable in the intervening loop.

A FOR statement must specify a simple variable of type
INTEGER or SHORT. Declare the loop variable to be of
type INTEGER or SHORT.

A RETURN statement is encountered and no GOSUB is
currently active. Change the program to avoid accidentally
falling into a subroutine or remove the offending RETURN.

The end of program text is encountered while executing a
subroutine. Add a RETURN statement.

A RESUME statement is encountered while no error handling
routine is being executed. Remove the RESUME statement.

The end of program text is encountered while executing
the error handling routine (see ON ERROR. Add a RESUME
statement.

Two SUB statements exist with no intervening SUBEND
statement; or a SUB statement exists with no SUBEND
statement prior to the end of program text. Add an appro
priate SUBEND statement.

A SUBEND statement occurs prior to any SUB statement.
Add the appropriate SUB statement.

A subprogram is referenced in a CALL statement but no
corresponding SUB statement is found. Change the CALL
or supply the subprogram text.

A statement or input response or data record for READ #
contains a quoted string which is not enclosed in matched
quotes. Re-enter the statement or input response; or correct
the data record. '

More ELSE's occur in a statement than IF ... THEN's.
Correct the program logic.

The statement syntax does not match the program text.
Typically, the error occurs because a keyword is mispelled,
a comma (or some other punctuation) is inappropriately used
or omitted, parentheses are mismatched in an expression, a
function call contains extra parameters, etc. Check the
manual for the specific syntax for the statement.

A function or subprogram call requires more parameters;
or an expression terminates with an operator; or a READ #
statement has no semicolon and/or variable list; or a
PRINT # statement has a semicolon and no print list.
Co rrect the syntax in the statement with the erro r.

CODE

01040

01041

01042

01043

01044

01045

01046

01047

01048

01049

01050

Table E-l. Terminal Error Codes (Continued)

MESSAGE

NUMERIC OVERFLOW

DIVISION BY ZERO

UNDEFINED LINE NUMBER

LINE ALREADY EXISTS

STATEMENT MUST HAVE LINE

STATEMENT MUST BE DIRECT

SUBSCRIPT OUT OF RANGE

DIMENSION MISMATCH

REDECLARED VARIABLE

TYPE MISMATCH

STRING TOO LONG

EXPLANATION

A hex or octal constant exceeds the integer value range;
or the results of an arithmetic calculation exceed the allowed
value range. Correct the hex or octal constant; or change
the program logic to prevent exceeding the appropriate value
range.

A division operation has a zero divisor. Change program
logic to prevent zero divisors.

A RESTORE, GOTO, GOSUB, or RESUME statement
references a line number which does not exist in the current
program unit. The GOTO or GOSUB may be invoked by the
ON END, ON ERROR or ON KEY statements. Supply
the missing line number or correct an erroneous line
number specification.

The AUTO command is attempting to overwrite a program
line which already exists. Specify the AUTO command so
that it does not overwrite already existent program text, or
delete the program lines which would be overwritten prior to
initiating the AUTO command.

A statement which can be executed only as part of a pro
gram has been attempted as an unnumbered command.
Execute that statement only as part of a program.

Execution of a command which is disallowed in a program
has been attempted. Remove the command from the pro
gram text.

A subscript value exceeds the limits of an array dimension
(which were established upon first reference to that array).
Explicitly declare the array with appropriate dimensions, or
change the array declaration, or change program logic to
avoid exceedinQ the dimension limits.

The number of dimensions in an array reference does not
match the number of dimensions specified in the first
reference to that array; or the number of dimensions in an
array passed to a subprogram as an actual parameter does
not match the number of dimensions for the corresponding
formal parameter. Change any array references which specify
an incorrect number of dimensions.

A declaration statement (DIM, INTEGER, SHORT c,r LONG)
is executed more than once; or a variable occurs in more
than one declaration statement. Change program logiC to
avoid executing declaration statements more than once; or
remove extraneous declarations or a variable.

An attempt is made to assign a string value to a numeric
variable or a numeric value to a string variable; or the value
or variable passed to a function or subprogram is not of the
required type. Change the variable specification; or change
the program to pass the correct type of value or variable to
a function or subprogram.

A string expression results in a string longer than 255 char
acters. Change program logic.

E-5

CODE

01051

01052

01053

01054

01055

01056

01057

01058

01059

01060

E-6

Table E-l. Terminal Error Codes (Continued)

MESSAGE

STRING FORMULA TOO COMPLEX

NONCONTIGUOUS STRING

SUBSTRING DESIGNATOR ERROR

VALUE OUT OF RANGE

VARIABLE/NAME REQUIRED

FUNCTION USAGE ERROR

BUFFER NOT AVAILABLE

BUFFER OVERFLOW

LOADER FORMAT ERROR

UNASSIGNED/DISALLOWED FILE
NUMBER

EXPLANATION

The evaluation of a string expression requires more inter
mediate results than the BASIC Interpreter allows. Break the
string expression evaluation down so that you provide your
own intermediate results.

The character position preceding a substring (to which a value
is being assigned by a LET statement or a function) is
undefined. Prevent assignments to substrings which are not
immediately preceded by defined characters.

The last character position in a substring speCification
precedes the first character position; or the last character
position in a substring specification exceeds 255. Change the
substring speCification.

A value specified for a command or function parameter
lies outside the permitted range, or an octal constant digit
is greater than 7. The value may be a line number, a specific
type of character (e.g., letter as versus punctuation mark),
an integer (frequently positive and less than 256), have a
required relationship to another value, etc. For example,
the NUM function returns this error if the string argument
is null; and the DELETE command returns this error if the
last line in the line number range precedes the first line
number. Correct the command or function parameter.

The syntax requires a variable name (as versus a constant)
in a function call; or a statement must start with a variable
name if it does not start with some recognized statement
initiator (ie., an implied LET statement is the default state
ment type); or a subprogram name must follow CALL or
SUB. Change the statement to provide variable or subpro
gram names as required.

A function invocation occurs in a disallowed context; eg., as
the first action in a statement, or a cursor movement function
in a PRINT # statement, or a GETKBD function call prior to
executing GETKBD ON. See the manual for the proper con
text for the function usage and correct the context.

Two different files are being accessed by READ # or ENTER
statements which have not used all the contents of the last
record read for each file and an attempt is made to access a
third file through a READ # or ENTER statement. Restructure
the file contents of the input files or change the program so
that no more than two input files are actively using buffers
at the same time.

The maximum record size of 255 characters in a PRINT #
statement was exceeded. Change program logic to prevent
records containing more than 255 characters.

A record which is supposed to be in the format for the
terminal's binary loader fails to match that format. Recreate
the file in the binary loader format.

A READ #, LlNPUT #, or PRINT # statement is attempted
for a file which has not been specified in an ASSIGN
statement; or the file number in an ASSIGN statement is
less than 1 or greater than 255. Add an ASSIGN statement
for the file number; or change the file number.

CODE

01061

01062

01063

01064

01065

01066

01067

01068

01069

Table E-l. Terminal Error Codes (Continued)

MESSAGE

DATA INPUT MISSING

DATA ERROR

OUT OF DATA

OUT OF MEMORY

FORMAT ERROR

NOT IN PROGRAM BREAK

MULTIPLE STATEMENTS
DISALLOWED

FEATURE NOT PRESENT

NO MESSAGE FOR ERROR CODE

EXPLANATION

A READ, READ # or ENTER statement encounters con
secutive commas in the OAT A statement or the input data
or the DATA statement or input data record ends with a
comma. Correct the DATA statement or the input data record
so that they do not end in commas and that consecutive
commas do not occur.

The data in a DATA statement or in an input buffer does
not match the requirements of an item in the read list of
a READ, READ #, or ENTER statement. Change the data
or change the read list so that the data requirements match.

A READ is executed and all DATA statements have already
been used; or a READ # statement is executed and end of
file is encountered for a file for which no ON END statement
was executed in the current program unit. Supply the appro
priate DATA or ON END statement.

Insufficient memory exists to store the program text and all
variables. Use SET SIZE to obtain more BASIC workspace
or shorten the program or change the program structure to
require less variable storage.

A format specification is non-existent, or an edit symbol
is undefined, or a simple replicator is used with an invalid
edit symbol, or a simple replicator exceeds 255, or paren
theses are mismatched, or parentheses contain no edit
symbols, or a disallowed combination of edit symbols is used
for one print list item. Check the edit symbol specifications
in the manual and correct any misuses.

GO is attempted when program execution was not halted
by a STOP statement or a CONTROL break (default
CONTROL-A) or when the program text was altered after
being halted by a STOP statement or a CONTROL break.
Restart the program.

The initial entry (ie., not through GET or MERGE) of a line
containing multiple statements is attempted after the SET
SINGLE command has disallowed multiple statements per
line. Enter the line as separate lines or specify SET
MULTIPLE.

A statement, command, or function is referenced and the
current version of BASIC does not support that operation.
This may occur when trying to run a program which was
saved by one version of BASIC (eg., a version of BASIC
for which REMOVE STDX has not been specified) with a
different version of BASIC (eg., a version of BASIC for which
REMOVE STDX has been specified) which does not support
the statement, command, or function referenced. Load the
appropriate version of BASIC prior to loading and/or execu
ting any BASIC operations.

The error message routine is invoked (probably by the
ERROR statement) and no error message text exists for the
specified error code. Issue the direct statement PRINT
ERRN, ERRL to determine which error code and program
line caused this error message to be displayed. Add custom
error message text to the ERROR statement or change the
error code which is specified.

E-7

E-8

CODE

1070

1071

01281

01282

01283

01284

01285

01286

01287

01288

01289

01290

01291

01292

01293

01294

01295

01296

01297
(0511)

01298

Table E-l. Terminal Error Codes (Continued)

MESSAGE

NESTING EXCEEDS LIMIT

NOT ALLOWED W/SECURE PGM

AGL
AGL ERROR 1281

AGL ERROR 1282

AGL ERROR 1283

AGL ERROR 1284

AGL ERROR 1285

AGL ERROR 1286

AGL ERROR 1287

AGL ERROR 1288

AGL ERROR 1289

AGL ERROR 1290

AGL ERROR 1291

2647 DRIVER ERROR 1292

PLOTTER
PLOTTER DRIVER ERROR 1293

PLOTTER DRIVER ERROR 1294

PLOTTER DRIVER ERROR 1295

PLOTTER DRIVER ERROR 1296

PLOTTER DRIVERERROR 1297

PLOTTER DRIVER ERROR 1298

EXPLANATION

More than 255 levels of subprograms are currently active.

Secured programs can not be I isted or saved without
the SECURE option.

Syntax error.

Too many parameters.

Cannot default parameter.

Driver not present.

Parameter out of range.

Illegal action request.

Cannot open new device without closing old device.

No devices on.

Wrong number of parameters.

Null area specified.

Scaling values are equal.

Attempt to plot beyond limits of logical address space.

Instruction not recognized.

Wrong number of parameters.

Bad parameter.

Illegal character.

Unknown character set.

Position overflow.

INDEX

ABS(X) 3-4,12-16 CSAVE 12-1
absolute sensing 10-2 CSENA(R,C) 10-2
adding statements 1-3 CSENS(R,C) 10-2,12-16
AGL ... 11-1 CSIZE 11-20
AGL functions 11-7 CURSOR 11-24
AGL terminology 11-2 cursor positioning 10-2
AGL, definition of 11-1 cursor positioning, absolute 10-2
AND .. 3-3 cursor positioning, relative 10-2
arithmetic operator hierarchy B-1 cursor positioning, screen relative 10-2
arithmetic operators 3-1 cursor sensing 10-1
array functions 6-4 cursor sensing, absolute 10-2
arrays 2-6,6-1 cursor sensing, screen relative 10-2
arrays, dimensioning 6-1
arrays, entering data into 6-2
arrays, inverting 6-4 DATA ... 1-9

arrays, printing 6-3 data .. 2-1

arrays, setting to an identity array 6-4 DATA 4-4,12-6

arrays, setting to zero or constant 6-4 data communications 10-9
arrays, transposing 6-4 data type, default B-1

arrays, using 6-2 data, numeric 2-1

ASCII (7-bit) Character Codes table A-2 data, string 2-1

ASCII Character Set table A-I default data type B-1

ASCII characters, list of 2-1 DELETE 1-3,12-1

ASSIGN 9-3,9-1,12-5 deleting lines

ATN(X) 3-4,12-17 digit separators 5-3

AUTO 12-1 digit symbols 5-3

AXES 11-16 DIGITIZE 11-25
DIM ., 1-3,2-5,6-1, 12-6

BASIC commands and statements, summary of D-l dimensioning arrays 6-1
BASIC statements, summary of 1-10 direct computation 1-9
BASIC syntax 12-1 display input conditions 10-4
BASIC workspace 1-3 display operations 10-1
BASIC, exiting 1-9 DIV ... 3-2
BASIC, how to load , 1-2 DRAW 11-23
BASIC, how to use 1-1 DSIZE 11-26
BASIC, suspending 10-13 DSPIN$(L,X) 12-18
BASIC, what is 1-1 DSPIN(L,X) 10-2
byte transfers 10-9 DSTAT 11-26

CALL 1-9, 8-1,12-6
carriage control 5-5 E-Notation 2-3
character codes 10-8 editing programs 1-7
CHR$(X) 3-5,12-17 END 4-15,12-6
CLIP 11-13 entering programs 1-5
CLIPOFF/CLIPON 11-13 entering programs from cartridge tape 1-5
clipping 11-4 equality, relational tests for 4-2
CMP .. 3-4 ERRL 10-11,12-18
codes, character and key .. 10-8 ERRN 10-11,12-18
codes, error . E-l ERROR 12-7
COMMAND 10-11,12-6 error codes E-l
commands 1-2 error handling 10-11
compacted formatting 5-4 error messages E-l
compatibility B-1 execute file, using 1-7
computation, direct 1-9 EXIT 1-7,12-1
constants 2-1 exiting BASIC 1-9
COS(X) 3-4,12-17 EXP(X) 3-4,12-16

1-1

field overflow 5-5 key interrupts, disabling 10-5
file error variables 9-3 key numbers 10-8
files 2-6, 9-1 keyboard codes, default 12-9
files, closing 9-3 keyboard input and control 10-4
files, equating to printers and terminals 9-3 keyboard input, acting on 10-5
files, referencing in subprograms 8-6 keyboard layout with keynumbers 12-8
floating specifiers 5-4 keyboard,reconfiguring 1-11
FOR 1-9,4-10 keyboard, redefining 10-4
FOR .. NEXT 12-7 keyboard, redefining of 10-7
FOR .. NEXT loops B-1 KEYCDE 12-9
FOR loop cautions 4-12 KEYCDE(X,N,C) 10-7
format replication 5-4
format string, reusing 5-5 LAXES 11-17
format symbols 5-2 LDIR 11-20
formatted output 5-1
formatted output to devices 9-3
formatting numbers 5-3

LEN(S$) 3-5,12-17
LET 4-1,12-10
LGRID 11-18

formatting strings 5-3 LIMIT 11-9
formatting, compacted 5-4
FRAME 11-18
FRE 10-11,12-18

LIN(N) 12-18
LIN(X) 4-8
LINE 11-22

functions 3-4
functions, built-in 12-16
functions, user-defined B-1
FXD 11-19

LINPUT 4-4,12-10
LINPUT # 9-2,12-10
LIST 1-3,12-2
literal specifications 5-2
loading programs using the READ key 1-6

GCLR 11-10 LOCATE 11-10
GDU ... 11-2 LOG(X) 3-4,12-17
GET 1-4,12-2 logical address space 11-2
GETDCM ON/OFF 10-9,12-7 logical address space (Al,A2) 11-2
GETDCM(S$) 12-18 logical operators 3-3
GETKBD ON/OFF 10-5,12-7 logical values 2-6
GETKBD(X) 10-5,12-18 LONG 12-10
GO 1-9,12-2 long values 2-2
GOSUB 1-9,4-13,12-7. LONG(X) 3-4,12-17
GOTO 1-9, 4-9,12-8 LORG 11-19
GPMM 11-26 LXAXIS 11-15
GPON 11-8 LYAXIS 11-16
graph limits (Pl,P2) 11-2
graphic display space 11-2
graphic display units (GDU's) 11-6
GRID 11-18
GSTAT 11-26

MARGIN 11-11
mechanical limits (Ml,M2) 11-2
MERGE 1-4,12-2
messages, error E-l

hard clip limits (Hl,H2) 11-4
hexidecimal data 2-3
hierarchy of operations 2-4

metric units 11-6
MOD ... 3-2
MOVCA(R,C) 10-2,12-18
MOVCR(R,C) 10-2,12-18

IF .. THEN .. ELSE 4-9,12-8
IMAGE 1-9, 5-1,12-8
INPUT 4-3,12-8
input from keyboard, acting on 10-5
input/output functions 12-18
inputting data directly from screen 10-2

MOVCS(R,C) 10-2,12-18
MOVE 11-23
MSCALE 11-13
multiple assignment 4-2
multiple loops 4-11
multiple statements 1-5

INT(X) 3-4, 3-2,12-17
INTEGER 12-8 nesting, in-line subroutine 4-14
integers 2-2 NEXT 1-9,4-10,12-11
interrupting on specific keys 10-5 NOT .. 3-3
IPLOT 11-23 NUM(S$) 3-5,12-17

numeric data 2-2, 2-1
key codes 10-8 numeric functions 3-4,12-16
key functions, processing 10-6 numeric variables 2-4

1-2

octal data 2-3 reserved words B-1, C-l
OFF KEY # 12-11 RESET, full 1-9
ON ... 1-9 RESET, soft 1-9
ON .. GOSUB 4-14,12-11 RESTORE 1-9,4-5,12-14
ON .. GOTO 4-9,12-11 RESTORE # 9-2,12-14
ON END # 9-2,12-11 RESUME 1-9,10-12,12-14
ON ERROR 10-11,12-12 RETURN 1-9,4-13,12-15
ON KEY # 10-5,12-12 RND S ., 12-17
operators 3-1 RPLOT 11-23
operators, arithmetic . 3-1 RPT$(S$,X) 12-17
operators, logical 3-3 RUN ... 12-4
operators, relational 3-2 running programs 1-7
operators, string 3-2
OPTION BASE B-1 sample program session 1-8
OR ... 3-3 SA VE 1-4,12-4
OUT OF MEMORY 1-3 saving programs 1-7

SCALE 11-12
parameters, passing of 8-5 SCRATCH 1-4,12-4
pass-by-reference 8-3 screen relative sensing 10-2
pass-by-value 8-3 sensing, absolute 10-2
passing parameters 8-5 separators, print specifications 5-2
PDIR 11-24 SET ... 12-4
PEN 11-21 SETAR 11-9
PENUP!PENDN 11-21 SETGU!SETUU 11-13
PLOT " 11-22 SGN(X) 3-4,12-17
PLOTR 11-8 SHORT 12-15
POINT 11-24 short values 2-2
PORG 11-24 SHORT(X) 3-4,12-17
POS(SI$,S2$) 3-5,12-17 SHOW 11-11
PRINT 4-6,12-12 sign symbols 5-4
PRINT # 9-3,9-1,12-13 SIN (X) , 3-4,12-17
PRINT # USING 9-3 SLEEP 10-9,10-13,12-15
PRINT #0 11-23 soft clip limits (SI,S2) 11-5
print functions 4-8,12-18 SPA(N) 12-18
PRINT USING 5-1,12-13 SPA (X) 4-8
PROC$(X) 10-6,12-18 SQR(X) 3-4,12-17
program control 10-11 statements 1-2,4-1
programming considerations 5-5 statements, summary of 1-10
programs, editing 1-;-7 status, graphics device 11-26
programs, entering from the computer 1-6 STOP 1-9,4-15,12-15
programs, loading " 1-6 string data 2-3, 2-1
programs, loading from cartridge tape 1-5 string functions 3-5,12-17
programs, running 1-7 string operators 3-2
programs, sample session 1-8 string variables . 2-5
programs, saving 1-7 strings .. 7-1
PUTDCM 10-9 SUB 1-9,8-1,12-16
PUTDCM(S$) 12-18 SUBEND 1-9,8-1,12-16

subprograms 8-1
radix symbols 5-3 subscripted variables 2-6
random numbers 3-5 substrings 7-1
RANDOMIZE B-1 substrings as array elements 6-4
READ 1-9,4-4,12-14 SUSPEND 1-7
READ # 9-2,12-14 syntax, BASIC 12-1
REDECLARED VARIABLE error 2-5
region of interest (viewport) (Vl,V2) 11-3 TAB(N) 12-18
regions 11-2 TAB(X) 4-8
relational operators 3-2 TAN (X) 3-4,12-17
relational tests for equality 4-2 terminal display codes 10-2
REM .. 4-1 terminal operations 10-1
REMARK 12-14 tests for equality 4-2
remote operation 1-8 trigon orne tic functions 12-17
REMOVE 10-11,12-3 TRIM$(S$) 3-5,12-18
RENUM 1-3,12-3 Type Declaration Statments 2-4

1-3

unit systems, AGL 11-5
UPC$(S$) 3-5,12-18
user defined units (UDU's) 11-5
user-defined functions B-1

VAL$(X) 3-5,12-17
VAL(S$) 3-5,12-17
variables 2-3
variables, local 8-4
variables, losing 1-9
variables, numeric 2-4
variables, string 2-5
variables, subscripted 2-6

WAKEUP 1-9,10-13,12-16
WHERE 11-24
workspace 1-3

XAXIS 11-14
XOR .. 3-4

YAXIS 11-15

1-4

