
13290A/2649A
i

Reference Manual

i
Part Number: 13290-90003

Printed: October 1977

DATA TERMINAL

TECHNICAL INFORMATION
m

HEWLETT M PACKARD

m
Printed in U.S.A.

*

13290A/2649A
Reference Manual

Part Number: 13290-90003
Printed: October 1977

m

m

i
*

'

j

PREFACE

This manual provides overview documentation for the HP 13290 Development/2649 Mainframe
terminals. It serves as a guide to related documentation and contains techniques for modifying or
adding to the basic terminal firmware. It also provides a brief description of the terminal hardware.
Detailed descriptions of the terminal are contained in the Technical Information Package (13255A
for hardware and Option 003 for 2645 firmware) and information on the firmware development
process can be found in the Firmware Support Package (13256A).

The manual assumes that you are familiar with Intel 8080 assembly language or a similar
microcode language. In addition it assumes that you are familiar with HP 2645 terminals and how
they operate. Information on the 8080 Assembly language and the HP 2645 terminal can be found
in the following reference documents:

• Intel 8080 Assembly Language Programming (MCS-482-0275/15K)

• HP 2645A User's Manual (02645-90001)

• HP 2645A Reference Manual (02645-90003)

• HP 2645A Service Manual (02645-90005)

• HP 13255A Technical Information Package (13255-91000)

• HP 2645A Operating System Microcode Listings (13255-90003)

This manual is made up of the following sections and appendices:

Section I - Introduction. This section describes the HP 13290 and 2649 terminals. In addition, a
brief description of HP 2645 terminal architecture and firmware organization is presented. A list of
related documentation is also provided.

Section II - Configuration and Turn-On. This section describes how boards are installed in the
2649A terminal and how to load firmware code into a 13290A terminal.

Section III - Firmware Development. This section describes the various techniques that can be
used to develop custom firmware packages for the terminal.

Section IV - Hardware Development. This section describes briefly the techniques for developing
additional hardware for use with the terminal.

Section V-Support Accessories. This section indicates the purpose and use of the 13291,
13292, 13293, and 13295 accessories.

Section VI - Main Code Module. This section describes the Main Code module and how it is
interfaced.

Section VII - Keyboard Code Module. This section describes the Keyboard Code module and
how it is interfaced.

;

iii
i

I

Section VIII - Standard Device I/O. This section describes how to perform I/O using the GETIO/
PUTIO routines and the standard device drivers (left CTU, right CTU, display, and printer).

Section IX - Alternate I/O. This section describes the Alternate I/O Code Module and how it can be
implemented.

Section X-Data Comm Module. This section describes the Data Communications Code module
and how it is interfaced.

Appendix A - Program Reference Tables. This appendix provides programming reference infor
mation.

iv

CONTENTS

:
:
] Section I

INTRODUCTION
HP 13290/2649 Standard and Optional Assemblies
HP 13290/2649 Accessories....................................
Hardware Organization..

The Processor Board.........
Instruction Set ...
Address Space...
Top vs. Bottom Plane Memory Access
ROM vs. RAM Access...................................
Memory-Mapped I/O.......
Functions of the In/Out Instructions................
Vectored Interrupt

Memory Modules ...
DMA and Display Memory..................................

Firmware Organization ...
Display Memory......... ..
Fast RAM Memory .. .
Entry Vectors ..

Page

I 1-1
1-2

3 1-3*
= 1-3

§ 1-3
1-3:

t 1-3
1-3-
1-4

3 1-5
1-6
1-7
1-9
1-9

1-11
1-14

1 1-15

i
PageSection II

CONFIGURATON AND TURN-ON
2649A Mainframe Terminal...
13290A Development Terminal...................................

Terminal Self-Test ..
Loading Binary Object Code From Cartridge Tape
Loading Binary Object Code From Data Comm ..

..2-1
2-2
2-2
2-2
2-3

PageSection III
FIRMWARE DEVELOPMENT
Existing Code Modules........................
Modifications To Existing Code Modules
New Modules ...

Firmware Development......................

3-1
3-1
3-2
3-2

PageSection IV
HARDWARE DEVELOPMENT
Memory Module Design.........
I/O Interface Design
Cable Design

4-1-
4-1
4-1

PageSection V
SUPPORT ACCESSORIES
13291 4K PROM Board ...
13292 8K WCS Board
13293 Diagnostic Board ...
13295 Keycap Kit

5-1
5-2
5-2
5-2

V

CONTENTS (continued)

PageSection VI
MAIN CODE MODULE
Initialization
Hard Reset
Soft Reset.......................................
The Wait Loop................................
Display Memory Organization.......

Adding A Character To A Line .
Display Memory Links...............
Rolling the Display Up Or Down
Insert/Delete Line......................
Swapping Display Lines

6-1
6-1
6-2
6-2
6-6

6-12
6-15
6-15
6-15
6-15

PageSection VII
KEYBOARD CODE MODULE
Keyboard Subsystem

Keyboard ...
Keyboard Interface..........................
Keyboard Firmware
Monitor ..
Keyboard Input Processor (GTKEY)

7-1
7-2
7-2
7-3
7-3
7-5

Section VIII
STANDARD DEVICE I/O
The I/O Buffers....................

Data (lOUFx)...................
Status Variable (BxSTAT)
Type Variable (BxTYPE) .
Length Variable (BxLEN)

Using GETIO
Using PUTIO........................

Page

8-1
8-1
8-2
8-2
8-2
8-3
8-5

Section IX.
ALTERNATE I/O
Alternate I/O Device Drivers
Device Status....................
SCNVEC and INTVEC
Sample Alternate I/O Driver

Page

9-1
9-2
9-2
9-2

Section X
DATA COMM MODULE
Data Comm/Main Code Interface
General Operation......................

Receiving Data......................
Transmitting Data..................

Page

10-1
10-2
10-2
10-2

PageAppendix A
PROGRAM REFERENCE TABLES A-1

vi

’ ILLUSTRATIONS

PageFigure

I/O Module Addressing...
Overall Memory Map..
Memory Allocation Map...
Firmware Code Modules ...
Display Memory Allocation Map...................................
Effect of Additional Display Memory.......................... ,
Fast RAM Memory Allocation Map
Recommended 2649A Board Order
Binary Loader Format..
ASCII Loader Format ..
Example of Program Formatted for the ASCII Loader
Microcomputer Development System
Wait Loop Flow Chart..
First Block in a Line ..
Remaining Blocks ..
Last Block in a Line ..
First Block in Last Line of Display List.......................
Memory Linkages for an 80 Character Line
Interline Data Links..
Initializing a New Line ...
Adding a New Character to a Block..........................
Adding a New Block..
Line Swapping Example...
Keyboard Subsystem ..
Keyboard Layout ..
State Tables and Transition Buffer................................

1-4
1-8

1-10
1-12
1-13
1-14
1-15

2-1
2-2
2-3
2-4
3-2

! 6-3
6-6
6-6
6-7
6-7
6-8
6-9

6-12
6-13
6-14
6-16

7-1
7-2
7-4

TABLES

PageTable

Standard and Optional Assemblies......................
Accessories...
Mode Latch Bit Definitions.....................................
Hardware Interrupt Addresses
2649A Code Storage Alternatives
2645A Maincode Firmware Code Modules (ROM)
13290A/2649A Hardware Modules........................
Display Enhancement Flags..................................
Software Display Flags...
Keyboard Data Bus Bits...
Translation Tables..
Source and Object Codes.....................................
ASCII-Hex-Octal Conversion.................................
Main Routine Entry Vectors
Keyboard Routine Entry Vectors.......................... .
Keyboard Control Routines (Firmware)
Alternate I/O Entry Vectors.....................................
Data Communications Entry Vectors

1-1
1-2
1-5
1-6
1-7
3-1
4-1

6-10
6-11
7-3
7-6: •
9-3
A-1
A-3
A-4
A-4

? A-5
A-5

i. vii/viii

$
•i•i

Section I. INTRODUCTION
i
1

HP 13290/2649 STANDARD AND OPTIONAL ASSEMBLIES

The HP 13290 terminal is designed to allow you to develop a custom terminal for specific
applications. It uses RAM memory modules which allow you to selectively load and modify terminal
firmware.

The standard and optional assemblies for the HP 13290A and HP 2649A terminals are given in
table 1-1. Note that there is a total of 15 card slots available in both the 13290 and the 2649. The
right hand column of table 1 -1 tells how many slots are used by each assembly. The total card slots
used by all assemblies in one 13290 or 2649 cannot exceed 15.

Table 1-1. Standard and Optional Assemblies

of Slots
UsedAssembly

1313290A Development Terminal
-013 5 Mini cartridges
-015 50 Hz operation

113291A 4K PROM Module
-001 Zero insertion sockets►

13292A 8K Writable Control Store (WCS)
-001 5-Wide top plane connector

1

113293A Diagnostic Module

13294A 5-Day Training Course

13295A Keycap Kit

42649A Terminal
2Dual cartridge tape

Upper case display ROM
Lower case display ROM
2645A Keyboard and interface
Simplified keyboard and interface
24K ROM module
8K ROM, 1K RAM module
16K ROM module
2645A Basic firmware
Diagnostic/loader ROM
2645A Keyboard firmware
Blank keyboard overlay

-007
-100
-101

1-200
1-201
1-400
1-401
1-402

-500
-501
-600
-801

I |
i

t !

1-1

HP 13290/2649 ACCESSORIES

The HP 13290A and HP 2649A terminals can use the same accessories as the standard HP 2645A
terminal. A brief list of accessories is given in table 1-2.

Table 1-2. Accessories

of Slots
UsedAccessory

113231A Display Enhancements
-201 Math set
-202 Line drawing set
-203 Large character set

113234A 4K Byte Memory Module
113238A Duplex Register

13245A PROM Character Set Generation Kit 1

13255A Technical Information Package (T.I.P.)
-001 2640B Source listing
-002 2644A Source listing
-003 2645A Source listing

13256A Firmware Support Package

13260A Standard Asynchronous Communication Interface
-002 Delete ROM/overlay

1

13260B Extended Asynchronous Communication Interface
-002 Delete ROM/overlay

1

13260C Asynchronous Multipoint Communication Interface
-001 Monitor mode
-002 Delete ROMs/overlay

1

13260D Synchronous Multipoint Communication Interface
-001 Monitor mode
-002 Delete ROMs/overlay

1

Once you have developed new firmware or modified the existing firmware to suit your needs, the
HP 2649 terminal can be used to execute the code. The HP 2649 terminal can be ordered in a
variety of configurations. This allows you to use only those modules that are required for your
application.

In addition to the basic HP 2645 terminal documentation (User Manual, Reference Manual, and
Service Manual) the HP 13290 is supported by the following:

• HP 13255A Technical Information Package (T.I.P.)

• Firmware Support Package (F.S.P.)

• Firmware Ustings (HP 2640B, 2644A, 2645A)

The remainder of this section describes the organization of the terminal firmware. The terminal
hardware structure is described here only briefly. If you require more detailed information on
terminal hardware refer to the appropriate terminal Reference Manual and the Technical Informa
tion Package (part number 13255-91000).

1-2

HARDWARE ORGANIZATION

The following topics present a brief general overview of the hardware organization of the 13290/
2649 terminals.

The Processor Board

The processor board of the HP 2641, 2645, and 2648 terminals contains the Intel 8080 mi
croprocessor that controls the operation of the terminal.

INSTRUCTION SET. The instruction set used by the HP 2641,2645, and 2648 terminals is that of
the Intel 8080 microprocessor. For information on the assembly language formats and how to write
8080 assembly language programs refer to the Intel 8080 Assembly Language Programming
Manual (part number MCS-482-0275/15K).

ADDRESS SPACE. Because it uses 16 address lines, the processor can directly address up to
64K bytes of memory. 4K of these bytes are reserved for memory-mapped I/O which is discussed
as a separate topic below.

TOP VS. BOTTOM PLANE MEMORY ACCESS. All of the boards in the terminal share a common
bottom plane bus containing 16 address lines, 8 data lines, and various other signal lines. Access to
the bus is granted on a priority basis. If two or more modules request access to the bus simultane
ously, the module with the highest priority is granted access to it and the lower priority module(s)
must wait.

The priorities are established by the physical location of the boards within the terminal. The one
closest to the power supply has the highest priority and the remaining boards have progressively
lower priorities, with the board furthest from the power supply having the lowest.

Because of the overhead involved in anticipating and resolving multiple requests for the bus, the
average time for fetching an instruction over the bottom plane bus is 800 nanoseconds. This fetch
time, while adequate for many of the modules, is much too slow for the execution of processor
microprograms. For that reason, the terminal also includes a top plane bus that connects the
processor board to the control memory board and three 8K RAM memory boards. The average time
for fetching an instruction over the top plane bus is only 400 nanoseconds because there is no
overhead for resolving priority conflicts.

When the processor board needs to fetch an instruction, it automatically accesses the top plane
bus. If after 120 nanoseconds no acknowledgement signal is received, the processor reissues the
fetch, only this time using the bottom plane bus.

ROM VS. RAM ACCESS. Typically the 13290 has 24K of memory devoted to code plus up to 12K
of display memory.

Using a five-board top plane connector, the 13290 can accommodate the processor board, a
ROM-based control memory board, and three 8K RAM memory boards. The control memory
contains a 2K-byte binary loader ROM for reading microcode from the left cartridge tape unit into
the 24K of RAM. At the conclusion of the loading process, the binary loader automatically disables
the ROM-based control memory board. The contents of the three 8K RAM boards (just read in from
the CTU) thus become the first 24K of the terminal’s memory.

1-3

MEMORY-MAPPED I/O. The memory addresses 32K through 36K (decimal) are reserved for
memory-mapped I/O, an addressing scheme whereby the processor can access any of the I/O
modules residing in the terminal. The format of these addresses is shown in figure 1-1.

Address Format:

15 14 13 12 7 6 5 4 3 2 1 011 10 9 8

10 0 0 SUBCHANNEL ADDRESSMODULE ADDRESS

I/O Module Address Assignments:

0001 : Asynchronous Data Comm Interface

: Keyboard Interface0011

0101 Serial Printer Interface

Display Memory Access

Cartridge Tape Interface

High-Speed Parallel Interface

0111

1011
«

1100

1110 Multi-Point Data Comm Interface

Figure 1-1. I/O Module Addressing

The high-order four bits (15-12) are always set to 1000, bits 11-8 specify the desired module, and
bits 7-0 can be used for addressing specific components, such as individual registers, within the
particular I/O module. Although it does not affect the programmatic use of these addresses, you
should be aware that bits 4 and 8 of these addresses are physically swapped on the bottom plane
address lines (that is, if you take a probe and examine address lines 4 and 8 you will be reading bits
8 and 4, respectively).

For example, when the processor wants to transfer a byte from the keyboard interface to one of its
registers, it issues the appropriate “move” instruction and specifies the hexadecimal address 8300
(1000 0011 0000 0000). By convention this memory address specifies the keyboard interface.

4

1-4

FUNCTIONS OF THE IN/OUT INSTRUCTIONS. The IN and OUT instructions of the 8080 instruc
tion set are not used for transferring data to and from external devices. Instead the OUT instruction
is used for setting the contents of the mode latch and the IN instruction is not used at all.

The mode latch is used for enabling, disabling, and resetting the 10 ms timer and for enabling and
disabling certain interrupts. The mode latch bit definitions are shown in table 1-3.

r
£ *

Table 1-3. Mode Latch Bit Definitions

Mode Bit State Meaning

0 10 Millisecond Timer On

Timer Interrupt Acknowledged
Timer Reset for Next Interrupt

Firmware Interrupt Request

INT20 Interrupt Disabled

Data Comm Interrupts Disabled

Timer Interrupts Disabled

Poll Interrupts

Disable Top Plane ROM

1

01
1

2 1

3 1
; 4 1i

5 1

6 11
7 1

> To disable the timer you issue an OUT instruction to clear bit 0 of the latch, making sure not to alter
the remaining bits in the mode latch.

To reset the 10 ms timer you issue an OUT instruction to first clear bit 1 of the mode latch (i.e., set it
to a zero) and then issue another OUT instruction to set it to a one.

To disable data comm interrupts, for example, you use an OUT instruction to set bit 4 of the mode
latch to a one. In this case the data comm will still issue interrupt requests, but no action is taken as
a result of them.

When setting or clearing a particular bit of the mode latch, care should be taken to ensure that the
other bits in the latch are not disturbed.

| m

J 1-5

VECTORED INTERRUPTS. The memory locations 10B through 70B are used for responding to
interrupts. When an interrupt occurs, control transfers to the appropriate memory location as shown
in table 1-4. The memory location, in turn, passes control to the particular segment of code that is
designed to handle the interrupt. You will notice that the 10 ms timer has its own separate interrupt
address.

Table 1-4. Hardware Interrupt Addresses

Priority Interrupt Address Source

Lowest 10B Firmware

20B (Not used)

30B 10 Millisecond Timer

Data Comm Cards (attention #1)40B

50B CTU Cards (attention #2)

60B (Not used)

Highest 70B Test Point

1-6

I
!

Memory Modules

After you have developed your code using the 13290, you have a variety of memory modules
available for storing the code in a 2649. The various alternatives, along with certain criteria for
choosing one over another, are shown in table 1-5. The overall memory layout of the terminal with
regard to types of memory modules is illustrated in figure 1-2.

Table 1-5. 2649A Code Storage Alternatives

; Non-
Volatile

Minimum
Quantity

Module
Densityi SpeedFlexibility;

Writable
Control
Store
13292A

I High. (Can’t be used
for display storage).

High No8K bytes None

Memory
Module
13234A

NoMaximum Low4K bytes None

PROM
Module
13291A

YesGood. (PROMs can
be reprogrammed)

Low4K bytes None

Fast
High YesROM

2649A-400
-1000 Low24K bytes

I Slow
ROM
2649A-401

8K bytes
(plus 1K
RAM)

Low YesLow-100

i

Slow
ROM
2649A-402

YesLowLow-10016K bytes

f

1-7

i

OK
«

ROM or RAM

32K

I/O Addressing
Space 36K

Second Fast RAM
(Optional)

/

36K+256
First Fast RAM

(Optional)\
ROM or RAM 36K-512

48K

PROM or RAM

60K
<

RAM

64K

Figure 1-2. Overall Memory Map

i
1-8

s

DMA and Display Memory

11 Display memory consists of one to three 4K RAM boards and can be accessed only by way of the
bottom plane bus. Control memory, on the other hand, may consist of any of the following and is
accessed by way of the top plane bus:

• A ROM-based control memory board (containing up to 24K of read-only memory).

• Three 8K RAM boards.

• Two ROM-based control memory boards (each containing up to 24K of read-only memory).

• A ROM-based control memory board (containing up to 24K of read-only memory) and three 8K
RAM boards.

The display memory access (DMA) board fetches data over the bottom plane bus from the display
memory RAM boards to continually refresh the CRT screen. The DMA board contains two
80-character buffers. At any given time one of the buffers is being used for refreshing the CRT
display while the other is being filled with the next line from display memory. When the contents of
the first buffer have been displayed and the second buffer is filled, the two buffers reverse their
roles and the process is repeated.

■ :

When filling one of its buffers from display memory, the DMA board can recognize “end-of-line”
control codes. When it detects such a code the DMA board automatically fills the remainder of the
current buffer with special “fill” codes, thus reducing some of its use of the bottom plane bus.

Display memory begins at the highest address (FFFF or 64K) and proceeds downward. The lower
portion of display memory can be used for storing some of your own microcode or data (i.e., code or
data that is to be used in execution, not displayed). You obtain such access to display memory by
manipulating a “fence”, named DSPBGN, within display memory. If you have 4K of display
memory, DSPBGN is normally located at 60K. If you have 8K of display memory, DSPBGN is
normally located at56K. If you have 12K of display memory, DSPBGN is normally located at52K. If
you move DSPBGN up to 62, 58, or 54K, respectively, you have effectively converted the lower 2K
bytes of display memory into additional code or data storage area.

>

FIRMWARE ORGANIZATION

The processor is capable of directly addressing up to 64K bytes of memory. In general, the first 48K
of memory (0-48K) is used for code, the next 4K (48K-52K) is used for buffer space, and the last
12K (52K-64K) is used to store display data. The existing code takes up 24K and is located on the
Control Memory PCA. The remaining 24K of code space is available for use in special application
terminals (HP 2645S, HP 2641, etc), display memory, or custom terminal firmware. In order to use
this additional code space a second Control Memory PCA can be used. (A RAM memory board can
also be used.) Figure 1-3 provides a map of terminal memory.

i

1-9

0 K

Main
Code

10 K
1 oI/O

Code
18 K

1 oKeyboard
Code

20 K
1 oData Comm

24 K
i oAlternate I/O

26 K
1 oReserved

28 K
1 oForeign Code

30 K
1 oReserved

32 K
I/O Addressing

Space
1 o / 36 K

Second Fast Ram/ 1 o
♦256

First Fast Ram
♦51 2

Alternate I/O \ Reserved
40 K 38 K

Foreign Code 1 o 1 0
42 K

Reserved 1 o
48 K

Buffer Space i o
52 K

1 o

Display Area

64 K
1 o

Figure 1-3. Memory Allocation Map

1-10

I
::

The terminal firmware is organized into modules. Each module is responsible for controlling a major
terminal function. The modules are assigned to a particular block of terminal memory and contain
their own variable storage areas.

• Main Code Module

• Device Support Code Module

• Keyboard Code Module

• Data Communications Code Module

• Alternate I/O Code Module

The modules are oganized as shown in figure 1-4. The standard terminal uses only the first four
modules. The Alternate I/O module is reserved for user defined I/O operations. Each of the
modules is discussed in more detail in later sections.I
In addition to the code modules, a portion of the RAM memory display storage area is used to hold
pointers and variables for the various code modules. Figure 1-5 shows the assignment of display
memory storage.

The standard firmware is divided into 2K partitions. Each partition is stored in a single ROM. This
allows modification of individual partitions of code without affecting all of the ROMs.

Each partition is formatted as follows:

bytes 1 and 2 = code revision and chip #
bytes 3 thru 3774 (octal) = code
bytes 3775 through 3777 = data check characters

The first two bytes are used to identify the code version and to verify that the ROM chip is installed
in the proper location. The first byte contains a value from “P” to (0101 0000 to 0101 1111).
The upper four bits are always 0101 and the lower four bits indicate version 0 to 15. The second
byte is set to the most significant 8 bits of the memory address used to access the chip. This second
byte is checked by the diagnostic to ensure that the ROM has been installed in its proper location.

The last three bytes in each partition (ROM) contain a 16-bit CRC-16 remainder and an 8-bit
checksum for the bit pattern in the partition. The checksum is contained in the last byte.

DISPLAY MEMORY

The Display Memory area is used to store display data, variables, and pointers used by the
firmware. Figure 1-5 shows the organization of display memory.

The upper portion of display memory (FE00-FFFF) contains code variables, the middle (FC00-
FE00) contains I/O device buffers, and the remainder (52K-FC00) is used to hold display data. If
there is no memory installed and configured as the data comm buffer space (48K-52K), the
firmware will automatically allocate data comm buffers from the display area beginning at the lowest
address of the display area. The remaining display area is used to store display data.

1-11I

PT774

Main Code
(10k bytes)

2649A-500

10260

Device Support
Code (8K bytes)

13261 A

KY36C

Keyboard Code
(2K bytes)

2649A-600

DC-1 4F/MPTS2

Data Comm
(2K or 4K bytes)

13260A/B
or

13260C/D

Alternate I/O
(2K bytes)

Figure 1-4. Firmware Code Modules

1-12

:
■

;!

FFFF
(48 bytes)

C176 bytes)

1 £Common Variables
FFDO

Mam Code
Variables

1 £

FF20
(32 bytes)

(128 bytes)

Keyboard Variables 1 £

FFO 0
Data Comm
Variables

i £.

FE80
(24 bytes)

(24 bytes)

1 £I/O Variables
FE68

Alternate I/0
Variab1es

i £

FE50
(80 bytes)i iMessage Buffer

FE00
1 t

Dev ice
I/O Buffers

(512 bytes)
FCO 0

1 £

Display
Storage

(Up to 12K bytes)

DPBGN

Figure 1-5. Display Memory Allocation Map

1-13

i

A minimum of 4K of display memory (60K-64K) is used in the base terminal configuration. Note that
as additional memory is added to the terminal, each succeeding board is configured with a lower
starting address. Figure 1-6 shows how additional display memory is allocated. The display area
must be configured as one contiguous block.

64KFFFF

Minimum
4 K

FCOO

DPBGN
60K

Second
4K

56K

Third
A K

52K

Figure 1-6. Effect of Additional Display Memory

FAST RAM MEMORY

In addition to the code variables stored in the display memory area, the code modules use a small
amount of fast RAM storage for frequently used data. This RAM is called “fast RAM” because it is
accessed by the terminal’s processor over the top plane connector without waiting for the bot-
tomplane bus protocol. The RAM serves as a scratch pad memory.

This RAM storage is located begining at 9100 (base 16) and consists of at least one block of 256
bytes. The first 256 byte block of RAM memory (9100-91FF) is provided on the Control Memory
PCA. Figure 1-7 shows the organization of the first fast RAM memory. If a second Control Memory
PCA is used, its RAM contains addresses 9000-90FF. This second RAM is not used by the
standard terminal code and is available for custom applications.

1-14

9200
i c

Keyboard
Variables

(64 bytes)
;

91 CO
1 fi

Data Comm
Variables

918a
1 fi

Vector
Storage

1. Interrupt5
2. Display Scan
3. Reserved

9160
1 c

Stack
Storage

(96 bytes)

91 00
1 6

Figure 1-7. Fast RAM Memory Allocation Map

ENTRY VECTORS

Entry into each code module is made through vectors stored in the low address portion of the
module. These vectors are usually "jumps” (JMP) to routines within the module.

1-15/1-16

;

I

Section II. CONFIGURATION AND TURN-ON

2649A MAINFRAME TERMINAL

The recommended order of the various boards within a 2649A is shown in figure 2-1.

Top plane connectors

i
“I

l l l
l l l
l l l

Power
Supply

K D D D DV D P C R
T E
U A

E A I S M S S R
Y T A P a Top plane

ROM and/or
D P P Bottom

plane RAM
and/or

PROM

B A E L L L C D! D Y Y Y0 E wcs I // w
F R

C s
I 0 I T EC s
/ M / M N N 0 I
F M F G T H R T

L E
I
/
F

Figure 2-1. Recommended 2649A Board Order

The display timing, display control, DMA, and display enhancements boards must be in contiguous
slots because they are connected to one another by a prefabricated top plane connector. The video
interface board, if present, must be next to the display timing board because the two boards are
joined to one another by a short jumper cable. All top plane memory boards (whether ROM or
WCS) must be installed in contiguous slots immediately to the right of the Processor board because
they are connected to the Processor board by a prefabricated top plane connector. The two CTU
boards must also be in contiguous slots because they, too, are joined to one another by a top plane
connector. They are most often installed in the farthest two slots from the power supply.

2-1

13290A DEVELOPMENT TERMINAL

To turn on the 13290A, first make sure that the various boards and top plane connectors are
properly installed and that all pertinent cable hoods (such as those for the keyboard or a data comm
cable) are connected to the proper boards. Then plug the power cord into both the back of the
power supply and an appropriate electrical outlet and set the power rocker switch on the back of the
power supply to the “ON” position.

At this point the terminal is on, but for all practical purposes it is “dead”. No “TERMINAL READY"
or similar message appears on the screen and none of the alphanumeric, editing, mode control, or
cursor control keys on the keyboard has any effect.

Terminal Self-Test

The single ROM chip on the 13293 diagnostic board contains a binary object program loader, an
ASCII object program loader, and a terminal self-test program. When you press the TEST key this
ROM-resident self-test program begins displaying full screens of characters (24 rows, 80 charac
ters per row). Observe the screen for about 20 to 25 screensful of data and make sure that the
characters seem recognizable and that the cursor is progresssing systematically up the left side of
the display. When you are satisfied that the terminal is working properly, press the RESET
TERMINAL key. The display is cleared and the terminal is back in its "dead" state.

Loading Binary Object Code From Cartridge Tape

The binary loader residing on the 13293 diagnostic board is used to enter programs into the HP
13290A terminal after being powered up. This loader is accesed by pressing the RESET TERMI
NAL key and then the B key. Data on the left cartridge tape is then loaded into the terminal
according to the format shown in figure 2-2.

Record #1:

0-80 bytes of ASCII characters (label)

Record #2 to n:

2 bytes - 377#

2 bytes ■ Starting Address MSB first

128 bytes of binary data
1 byte ■ 0
1 byte ■ checksum of preceding 133 bytes

• FFi.

Record #1

Label (0-80 ASCII characters)

Remaining Records

lFF MSB LSB 128 bytes of data 0 check

Figure 2-2. Binary Loader Format

2-2

!
ii

;

Loading Binary Object Code From Data Comm

The ROM chip on the 13293 diagnostic board also contains an ASCII loader. This ASCII loader can
be used to load programs and data into any RAM location in the 13290A terminal over a data comm
line from a remote computer. If you attempt to load into a ROM location or a non-existent memory
block the data will simply be ignored.

The ASCII loader is accessed by an escape sequence. The program and/or data follows the
escape sequence. The format of the data to be loaded is shown in figure 2-3. The ASCII loader can
be accessed through the terminal keyboard, data comm interface, or from one of the cartridge tape
units. Figure 2-4 contains an example of a program loaded using the ASCII loader.

i

;

.
* b — Accesses the loader and displays LOADER on screen, ('etc performs the same

function without the message.)

a — Causes the preceding octal address to be placed in the address register.

d — Causes the preceding three octal digits to be loaded into the memory location stored
in the address register. The address register is then incremented.

• i.

1
:

c — Causes a checksum to be computed. All characters entered following the loader
escape sequence (^ i b) are included in the checksum. This checksum is com
pared to the octal number preceding the “c”. If the checksum is correct, a bit will be
set in the terminal status. If not, the loader aborts and the terminal is reset.

e — Transfer control to the address contained in the address register.

The loader escape sequence is terminated when an upper case a, c, d, or e is received. The
characters <CR> , <LF> , <DC3> , and <SPACE> are ignored. If any character other than the
above is received, the loader will abort and the terminal will be reset.

;

■;

Remember that your program is being loaded using an escape sequence. The escape processor
sets various flags that may cause problems if your program calls any of the 2645 maincode
routines. It is therefore strongly recommended that one of the first things your program does it to
terminate the escape processor by calling the routine ESCEND.

■:

:'
Figure 2-3. ASCII Loader Format

i i
i

2-3

LOC OBJECT CODE SOURCE STATEMENTS

177700
103440
044551
013701
000015
002225
000000
177000
177003
000000
177006
177011
177014
177015
177020
177021
177023
177026
177031
177034

CURRENT ROW POSITION OF CURSOR
CURSOR ROW ADDRESS
SCAN KEYBOARD ROUTINE
TRANSMIT CHARACTER ROUTINE
CARRIAGE RETURN CODE
END OF ESCAPE SEQUENCE ROUTINE

177700Q
103440Q
044551Q
013701Q
015Q
002225Q
177000Q
CURROW
IOCCRW

CURROW
IOCCRW
GTKEY
XPUTDC

EQU
EQU
EQU
EQU

CR EQU
ESCEND EQU

ORG
072 300 377
062 040 207

LDA
TURN ON DISPLAYSTA

LOOP EQU *
315 151 111
302 000 000

CALL GTKEY
LOOP

SCAN KEYBOARD
CONTINUE SCAN IF NO KEY HIT
SAVE CHARACTER
XMIT CHARACTER
RETRIEVE CHARACTER
IS CHARACTER A CR?
CONTINUE SCANNING IF NOT CR
FLUSH DATACOMM BUFFER
EXIT TO WAIT LOOP

JNZ
365 PUSH

CALL
PSW

315 301 027 XPUTDC
361 POP PSW
376 015
302 000 000
315 330 121
303 225 004

CPI CR
JNZ LOOP

050730Q
ESCEND

CALL
JMP
END

Escape sequence:
<ESC> 4b1 77000a
072d300d377d062d040d207d315d151d111d302d000d000d
365d315d301d027d361d376d015d302d000d000d31Sd330d
121d303d225d0 04d1 77000aE

Figure 2-4. Example of Program Formatted for the ASCII Loader

2-4

Section III. FIRMWARE DEVELOPMENT

This section describes techniques for developing firmware for the terminal. The firmware can be
any combination of the following::

• Existing code modules
• Modifications to existing modules
• New modules

EXISTING CODE MODULES

In order to use the existing code modules simply select the desired code from table 3-1. This code
is available in ROM or in the form of source code on a 9-track NRZ compatible magnetic tape as
part of the 13256A Firmware Support Package. The ROM chips mount in the specified sockets on
the 02640-60136 Control Memory board. The part number of each ROM is imprinted on the top of
the chip.

Table 3-1. 2645A Maincode Firmware Code Modules (ROM)

Part NumberSocket NumberFunction Board Number

1818-0203U1702640-601362645A Maincode
1818-0205U3702640-601362645A Maincode
1818-0206U4702640-601362645A Maincode
1818-0207U1802640-601362645A Maincode
1818-0287U2702640-601362645A Maincode

;

MODIFICATIONS TO EXISTING CODE MODULES

Modifications to the existing code modules can be made by first studying the firmware descriptions
and the code listings and then making the necessary code changes. The HP 2645 source code can
then be assembled together with the changes to obtain the new code. If any of the original modules
are unchanged they can be purchased in ROM from Hewlett-Packard. New blocks of code can be
used in a variety of forms. Table 1-5 in Section I lists some of the considerations in deciding the
form in which to store the new code.

3-1

NEW MODULES

New code modules are generated In the same manner as changed modules. In this case you are
only interested in the interfacing between the new module and any standard modules. Table 1-5
can then be used to select the proper form of code storage for your application.

f

Firmware Development

One possible approach to developing your 13290 code is to use a microcomputer development
system such as the Intellec* Microcomputer Development System. Debugging user-generated
object code requires the use of commercially available tools such as the Intel* ICE-80. This
in-circuit-emulator replaces the 13290's microprocessor chip and allows you to set break points,
examine and modify RAM, and single-step program execution. A typical microcomputer develop
ment system configuration is illustrated in figure 3-1.

NOTE

This manual in no way recommends the Intel* system over any other. It is used
here only as an example of a typical development system.

Dual
Diskette

ICE-80Microcomputer
(32K bytes)

1 3290 A
Development
Terminal

r-------------“i
Line

| Printer |-
13246A/B Pr

i i 2645A
System Console

or
13349A

___ J

Figure 3-1. Microcomputer Development System

‘Registered trademark, Intel Corporation

3-2

Another approach is to use a cross assembler on a conventional computer system. The HP 13256A
Firmware Support Package includes a cross assembler that is compatible with both the RTE
operating system and File Management Package of the HP 1000 Computer System. With this
capability you can prepare, edit, and assemble 13290A source code on the HP 1000. Your terminal
must be either a 2645A or a 13290A (running 2645A object code) because the object code
produced by the cross assembler is output to cartridge tape.

Modification of this cross assembler to run on different systems would primarily involve the EXEC
calls used for controlling input and output.

For information on how to use the cross assembler, refer to the documentation provided with the
13256A Firmware Support Package.

i

!

3-3/3-4

i

Section IV. HARDWARE DEVELOPMENT

The terminal is made up of hardware modules. These modules are listed in table 4-1. Normally only
memory modules, I/O interfaces or special interface cables will need to be designed and fabricated.
It is assumed that such major terminal hardware as the power supply, backplane, case, and display
and control circuitry will seldom require modification.

MEMORY MODULE DESIGN

If it is necessary to design a new type of memory module, refer to the Technical Information
Package for a discussion of bottom and top plane bus protocols and signal specifications. Using an
existing similar module as a model is often helpful.

I/O INTERFACE DESIGN

When designing an I/O interface or special purpose PCA, refer to the Technical Information
Package for a discussion of bottom plane bus protocol and signal specifications. Using an existing
similar module as a model is often helpful.

CABLE DESIGN

If it is necessary to design or build a cable refer to the Technical Information Package for details on
signal levels, propogation times, and material specifications.

Additional information on data communication cables is contained in the 2645A terminal reference
manual.

C

4-1

Table 4-1. 13290A/2649A Hardware Modules

Module
Number 2649A13290AModule Nomenclature

SSBackplane
Power Supply
Keyboard
Processor (8080A-2)
Sweep
Display Controller
Extended DMA
4K UV PROM
Display Expansion
Term Duplex Register
Cartridge Tape Unit
PROM Character
Display Test
+2K Memory
+4K Memory
Simplified Keyboard
CTU Test
Asynch Data Comm
GP Asynch Data Comm
Asynch Multipoint
Synch Multipoint
Comp Video l/F
Extended Kybd l/F
Control Memory (AMD)
Extended CTU l/F
GP Asynch Data Comm

13255-91001
13255-91142
13255-91018
13255-91093
13255-91095
13255-91112
13255-91124
13255-91007
13255-91024
13255-91031
13255-91032
13255-91053
13255-91063
13255-91064
13255-91065
13255-91069
13255-91082
13255-91086
13255-91089
13255-91106
13255-91107
13255-91119
13255-91123
13255-91136
13255-91137
13255-91143

SS
SS
SS
SS
SS
SS

A
AA
AA
OO

A A
K K

AA
ASA
O

K K
S A

AA
AA

A A
AA
OS
OS
OO
AA

LEGEND

A= Accessory 0=Option S= Standard K=Service Kit

4-2

Section V. SUPPORT ACCESSORIES

This section briefly describes the characteristics and use of the 13291, 13292, 13293, and 13295
support accessories.

13291 4K PROM BOARD

The 13291 is a 4K PROM board that contains two separately addressable 2K modules. The two
modules can be configured as consecutive 2K blocks of memory or they can be configured with
widely-separated starting addresses. The 13291 accommodates up to sixteen Intel 1702A UV-
erasable PROMs (up to eight per 2K module) and the content of the PROMs can be accessed only
by way of the bottom plane bus. Either 2K module can be enabled or disabled independently of the
other.

You could use the 13291, for example, to replace a couple of the main code ROM chips with your
own PROM-resident code (without disturbing the other main code ROM chips). To do this, you
remove jumpers on the 02640-60136 Control Memory board to disable the particular ROM chips.
Then you configure the two modules of the 13291 board to the appropriate starting addresses (such
as 12K and 18K, respectively) and install your PROM chips at the start of each module. Thereafter,
whenever a location between 12K and 14K is addressed the code in your first PROM block is
executed instead of the corresponding ROM-resident code. The same is true for locations 18K to
20K and your second PROM.

NOTE

The 02640-60136 Control Memory PCA has two banks of jumper pins in the upper
left comer of the component side (near the PCA label). The pin positions are
labeled 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, +24, and RAM DISAB. When a
jumper is installed in one of the slots labeled 0 through 22, the ROM for the
specified 2K address range is enabled. To disable the 14-16K ROM chip, for
example, remove the jumper from the slot labeled 14.

When the +24 jumper is installed, the ROM addresses are as labeled and lie within
the range 0-24K. If the +24 jumper is removed, the specified ROM addresses are
effectively incremented by 24K and lie within the range 24-48K. The RAM DISAB
jumper is used for enabling or disabling the 256-byte fast RAM on the Control
Memory PCA. When the jumper is installed, the fast RAM is enabled; when it is
removed, the fast RAM is disabled.

The 13291 PCA (02640-60007) also contains two banks of jumper pins. The pin
positions on each bank are labeled 2K, 4K, 8K, 16K, 32K, and DISABLE. When
jumpers are installed in all the numbered slots, the module’s starting address is 0.
When a particular jumper is removed, add the labeled value to the starting address
of the particular PROM module. For example, if you remove the jumpers from the
slots labeled 4K and 8K, the starting address of the module is 12K. When the
jumper is installed in the DISABLE slot, the particular PROM module is disabled;
when it is removed, the module is enabled.

5-1

13292 8K WCS BOARD

The 13292 is a high-speed (400 nanosecond) 8K WCS board that can be accessed only by way of
the top plane bus. If you specify option -001, the 13292 also includes a five-wide top plane
connector. Because it is accessed by way of the top plane bus, the content of the WCS chips is
fetched and executed at the same speed as the standard ROM-based control code of the other
2640-series terminals.

You would typically use three 13292 boards (connected to the Processor board and a 13293
Diagnostic board by a five-wide top plane connector) to house the first 24K of your terminal’s main
code.

NOTE

The 13292 8K WCS board also has a bank of jumper pins. The pin positions on the
bank are labeled 2K, 4K, 8K, 16K, 32K and DISABLE. When jumpers are installed
in all the numbered slots, the board’s starting address is 0. When a particular
jumper is removed, add the labeled value to the board’s starting address. For
example, if you remove the jumpers from the slots labeled 8K and 16K, the starting
address of the board is 24K. When the jumper is installed in the DISABLE slot, the
entire WCS board is disabled; when it is removed, the board is enabled.

13293 DIAGNOSTIC BOARD

The 13293 is a control memory board that contains a single ROM chip: the binary loader. As with
the standard control memory board, it must be connected to the processor board by way of the top
plane bus. It is referred to as a “diagnostic" board because it is meant to be used for loading
standard firmware into 2649 terminals in the field so as to create a known firmware environment
within which terminal malfunctions can more quickly and easily be diagnosed.

13295 KEYCAP KIT

The 13295 is a kit containing approximately 50 key caps (with clear plastic covers and blank key
cap inserts) and a blank keyboard overlay. The keyboard overlay is painted and properly punched
but contains no lettering. With the 13295, users can relabel individual keys and silkscreen their own
lettering on the keyboard overlay to create prototype keyboards for specialized applications.

5-2

Section VI. MAIN CODE MODULE

INITIALIZATION

When the terminal s power is first turned on or when the TERMINAL RESET key is pressed, the
processor performs either a hard or soft reset-

To determine which type of reset to perform, the processor examines the contents of location FFCD
(177715B). If the location contains a JMP instruction to the soft reset ' code, the processor
executes that instruction. If the location contains anything else, the processor passes control to the
“hard reset” code

One of the first things the terminal initialization code does when you turn on the power is to clear the
contents of location FFCD Thus, whenever you turn on the terminal s power the processor
performs a hard reset

One of the last things the ‘hard reset’ code does is to store the proper JMP instruction in location
FFCD, thus making it possible to subsequently perform a soft reset

Pressing the TERMINAL RESET key causes a soft reset because location FFCD contains the
proper JMP instruction Pressing the TERMINAL RESET key twice in quick succession (i.e., within
a half second) automatically clears location FFCD. and thus causes a hard reset.

HARD RESET

A hard reset consists of the following operations

Clear the common variable area in display memory.a.

b. Determine the starting address of display memory (52K, 56K, or 60K). The firmware does this
by first writing a bit pattern to location 63K and then reading the contents of that location. If the
proper bit pattern is read back, the processor knows that there is RAM memory located at
63K-64K. It then does the same for locations 62K, 61K, 60K, and so forth, down to 52K

Determine whether or not there is RAM memory installed for locations 48K-52K This is done in
the same manner as described in step b, above

c.

d Pass control to the initialization routines for the keyboard, data comm interface (if present), and
printer (if present).

Determine if alternate I/O code is present. If it is, pass control to the alternate I/O initialization
routine.

e

f Generate the free blocks list for display memory

Initialize the soft key definitions.9

Reset the keyboard, data comm interface (if present), and CTUs (if present).h.

Enable all interrupts.

6-1

j. Display the message “TERMINAL READY” in the upper left corner of the screen.

k. Store the proper JMP instruction in location FFCD.

I. Go to the wait loop.

SOFT RESET

A soft reset consists of the following operations:

a. Reset the keyboard.

b. Reset the data comm interface (if present).

c. Reset the CTUs (if present). Tape motion, if any, is stopped and the cartridges are rewound to
their load points.

d. Restore the user’s normal display.

e. Enable all interrupts.

f. Go to the wait loop.

THE WAIT LOOP

Whenever the terminal is not actually responding to a keystroke or an interrupt it executes what is
referred to as the wait loop. Essentially this wait loop systematically checks the keyboard to
determine if a key has been pressed and examines the data comm interface to see if one or more
characters have been received from a remote computer or device. It also monitors the cartridge
tape units (if present) to determine whether a cartridge has been inserted or removed.

The functions performed during the wait loop are detailed in figure 6-1 (these same flow charts also
appear in the 13255A Technical Information Package).

6-2

)(WTLOOP

9 GETDC1

S«l 0'Ip««Y

CETOCM

0«i Comm

Z' Procvttinq
Oau Comm Eic
\ $aqv«nC*.

t
Ns

noCVMinf
Soft

Kr
rv«

IQCTMN

G.IN..1
Soh <*y CTU'i

osttcm
^Asy \

Mo..
Char KIM

V« Oi«cfc landing
Bloch TrantlKl

1 lNo

ZGETKY

0

Figure 6-1. Wait Loop Flow Chart

6-3

Claa* Oat*
Comm Input

(DFLGISACO
flm,
M||

ZBELLreSound
K«ybo**d

Taim.njl
m Racai*.

Mo**

Yat

Balt

No

y*t Onp'avASCH
Oala

No
Cod*

7

r*tNo

Imarnai
Tatmmai
Function

8*l< NoY*tF*tlo*m
Function

7>
Y.lNo

ZBELLFCTKEV
Sound
KayOO**d

SoftY.t

Soft <av KtY
Ball7

No
IOCLIN

iC ay bond
I "Out

SatI I "Out
-ESC"to

LOCLIO

P*OC«t
Kryboanl
Incut

-RETURN
No

7

Vat

SoA-ai

Function*Sequent*
Dona

AUTO
IF K*y
Down

.Vat NoNoA

0Kay

Yat■No Yat

Sat Input
to Second
Ota* acta*

Sat Incut
to Nail
Cnaiactt*

Sat Input
10 Lina Faad

l l 6
Figure 6-1. Wait Loop Flow Chart (Continued)

6-4

29A

)I NT AY ion I/O
TO OUTLAY

CNINTO

/ iMTi/r
• CONTROL COOIl mo INCnCMCHT

'‘ISTCOC"
OlSAftL
CNlOC

C SfON

IYiIMFOT • if Vn
CUMAOV

MACUfCV,
COL • riLL

CMA
Ttn

Mo AOVAMCC
cun som

ClDisplay af

FACTIONS OK I

IY*t
YW

ikfut • cn Cl
r

SCI Display
cursor couTlun

AKO * Off l*MA
NUHMuMfl

I
Y«

)(IN^UT• OCJ
fut cot oven
Fill character

t nciLMM x

SCI WRAP f LAC

STORE NCVV
CHARACTER

-^cunntKT^\
XhARACTCM ASCII Cl

I
TLAK OMOAiA
ako iKicnRurrtCLEAR

“AOOC 'fmMARACTf*“
FtAC

©©
/ Nl»T \
CHARACTER ASCII

Yo

J

MO

r HIRT
CHARACTER AM
S. COL ^

ct

I

, Y*t

Figure 6-1. Wait Loop Flow Chart (Continued)

6-5

DISPLAY MEMORY ORGANIZATION

Display memory data is stored in 16-byte blocks. Each line of display data is made up of one or
more of these blocks. The blocks make up a doubly linked list. Each block contains a pointer to the
next sequential block. The first block in a display line contains pointers to the next and previous
lines. The last block in a line contains a pointer to the first block of that line. Figures 6-2 through 6-5
illustrate the blocks used in the linked list.

High AddressLow Address

10 BYTES OF DATA LSB MSB LSB MSBLSB MSB «-
1 11 l i r 1 r i

lL J LI J

Next Line Pointer- Next Block Pointer

Previous Line Pointer

Figure 6-2. First Block in a Line

Low Address High Address

LSB MSB 14 BYTES OF DATA
1 11 1 1 1 i !I I I I 1

J

- Next Block Pointer

Figure 6-3. Remaining Blocks

6-6

DataEnd Of
Line

Fill
Characters

I1 i 1 1 11r 1 i

314 CCEnd Of Line a

1 c8

C3303Fill aa

1 c8

Figure 6-4. Last Block in a Line

MSB0 End Of
Page

LSBData
l l l l l l l

316 CEEnd Of Page a

8 1 6

Figure 6-5. First Block in Last Line of Display List

6-7

When the terminal is turned on or a full reset is performed, the display memory is initialized and all
blocks are returned to a "free list”. As display data is entered into memory new blocks are assigned
and formatted as required. This continues until all of the available free blocks are used. When this
point is reached and additional data is entered, one of three actions is performed:

1. The first blocks in display memory are reassigned as new blocks. This causes the data at the
beginning of the display list to be lost.

2. In Edit or Data Logging Mode the first blocks of display data are transferred to the “TO”
device(s) before the blocks are reassigned.

3. If the terminal is in Memory Lock Mode the keyboard will be locked and the newly entered data
will be lost.

Display memory is scanned by the display hardware in order of decreasing addresses. This is the
reason that the display data is stored in reverse order. The display hardware is capable of using the
points to display each line of data on the screen.

This is an 80-character line of display data. Each line is stored independently.

IFFFE 7B FA J
FA701BF F9 |6E 61 20 73 69 20 73 69 68 54 AB F9 00 FA

5 i h Tin a 5

\
F9B01CF F9 |20 72 65 74 63 61 72 61 68 63 2D 30 38 20

0 8retcarahc
♦

F9C0 EF F9 |61 6C 70 73 69 74 20 66 6F 20 65 6E 69 6C
a 1 p s i d f e n i 1o

I
F9E0 DF F9 6C 20 68 63 61 45 20 2E 61 74 61 64 20 79

h c a E1 t da a y
tF9D0 FF F9 |20 64 65 72 6F 74 73 20 73 69 20 65 6E 69

d e r o t s s i e n i

F9F0 7D FA 2E 79 6C 74 6E 65 64 6E 65 70 65 64 6E 69
• y i t nednepedni

Figure 6-6. Memory Linkages for an 80 Character Line

6-8

Several short lines
are linked
together
in this
manner

FFFE 2B F3 _______
F320 8F E1 68 73 20 6C 61 72 65 76 65 53 | AB E1 [00 F3

1 a r e v e Sh 5

E180 2D F3 C3 C3 03 C3 CC 73 65 6E 69 6C 20 74 72 6F
s e n i 1 t r o

E1A0 5F E1 64 65 6B 6D 69 6C 20 65 72 61 BB E1 2C F3
d e k n i 1 era

E150 AD E1 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 CC
f

E1B0 BD E1 C3 CC 72 65 68 74 65 67 6F 74|6B E1 |AC E1
rehtegot

etc.

Figure 6-7. Interline Data Links

Note that display data characters are limited to values 0-177. This means that the high order bit (bit
6) of a display character is always 0. Included as data are all the ASCII characters and display
enhancement flags. Table 6-1 contains a list of display enhancement flags. Bytes with values
300-317 are interpreted as software flags. A list of software flags is given in table 6-2. Bytes with
values 320-377 are interpreted as the MSB (most significant byte) of a block pointer. The byte
following a MSB is interpreted as the least significant byte of the block pointer.

6-9

Table 6-1. Display Enhancement Flags

Bit 76543210
1 0 c c e e e e

enhancementcharacter set

Character Set (cc) Codes
0 0 - > # - Base set
01 •) A ■ Alternate set #1
10 ■ *c) B ■ Alternate set #2
11 - h) C - Alternate set #3

Enhancement (eeee) Codes

0 - End Enhancement (@)
Blinking (A)

2 - Inverse Video (B)
3 - Blinking, Inverse Video (C)
4 - Underline (D)
5 - Underline, Blinking (E)
6 - Underline, Inverse Video (F)
7 - Underline, Inverse Video, Blinking (G)
8 - Half-Bright (H)
9 - Half-Bright, Blinking (I)

Half-Bright, Inverse Video (J)
B - Half-Bright, Inverse Video, Blinking (K)
C - Half-Bright, Underline (L)
D - Half-Bright, Underline, Blinking (M)
E - Half-Bright, Underline, Inverse Video (N)
F - Half-Bright, Underline, Inverse Video, Blinking (O)

1

A

Examples:

81 ■ Base set, blinking
95 ■ Alternate set #1, underline, blinking
A A - Alternate set #2, half-bright, inverse video
BD - Alternate set #3, half-bright, underline, blinking

6-10

Table 6-2. Software Display Flags

Bit 76543210
1 1 0 0 a 5 5 5

software display code

Software Display (ssss) Codes
0 - End of Unprotected or Transmit Only Field
1 - Begin Unprotected Field
2 - Begin Transmit Only Field
3 - Fill character
4 - Non-displaying Terminator
5 - Alpha Field
6 - Numeric Field
7 - Alphanumeric Field
8 - Soft key attribute field
9 - (not used)
A - (not used)
B - (not used)
C - End of Line
D - (not used)
E - End of Page
F - (not used)

Examples:

C1 ■ Begin unprotected field
C3 ■ Fill character
CC - End of line

NOTE

The hex codes DO through FF are interpreted as the
most significant byte (MSB) of a display memory
pointer. The next higher byte (next byte to the left) is
interpreted as the least signficant byte (LSB) of the
display memory pointer.

The End Of Line (EOL) code is used to indicate that the last display data in a line has been reached.
The EOL code (CC) is followed with fill characters (C3) to fill up any unused bytes in the block.

The End Of Page (EOP) code is used to mark the end of the display list. Note that this is not
necessarily the end of the current screen. The EOP code (CE) is stored in the MSB part of the Next
Line pointer of the last line of the display list.

6-11

Adding A Character To A Line

A new line is started with a single display block. The next block pointer points to the MSB of the next
line pointer. Next and previous line pointers are set as required. The first data byte is an EOL (CC)
followed by nine fill characters (C3). See figure 6-8.

1F320 C3 C3 03 C3 C3 03 03 03 03 CC2D F31 yyyy zz zz

yy yy = r,ex't line pointer

zz = previous line pointerz z

Figure 6-8. Initializing A New Line

6-12

When a character is added to the block an EOL (CC) is first written over the first fill character This
prevents the possibility of displaying a line with no end of line marker. The new character then
replaces the old EOL byte See figure 6-9

(1)

2D F3 C3 C3 C3 ggF320 aa aa aa aa aa aa yy yy zz zz

(2)

F32 0 2D F3 C3 C3 [|g| fg§ aa aa aa aa aa aa yy yy z z z z

C 3)

2D F3 03 C3 g§ §gjF32 0 aa aa aa aa aa aa yy yy ^z zz

aa = existing characters

= character being addedxx

Figure 6-9 Adding A New Character To A Block

6-13

When the current block is full, a new block is allocated from the free block list. The new block is
loaded with an EOL (CC hex) and fill characters (C3 hex) and the next block pointer is copied from
the previous block. The next block pointer of the previous block is updated to point to the beginning
of the new block. The new character is then written over the EOL character in the previous block.
See figure 6-10.

(1)

mjtI 2 Z ZZ

C2)

F320 CC aa aa aa aa aa aa aa aa aa z z z z

Q[j]
E180 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3

(3)

8F ei ggF320 aa aa aa aa aa aa aa aa aa yy yy zz zz

E180 2D F3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 CC

aa = existing characters

xx = character being added

Figure 6-10. Adding a New Block

6-14

When 80 displayable characters have been entered in a line and the last character takes up the last
byte of the display block, no EOL byte is required. The terminal assumes an EOL and begins a new
line.

In addition to the display characters, software flags are also stored as display data. These flags
define special fields and alternate character sets. A maximum of about 100 software flags can be
stored in a line. These are in addition to the 80 displayable characters. This is the maximum that
can be processed by the display hardware during the refresh cycle.

Display Memory Links

The display hardware detects the end of a display block by reading a byte in the range DO-FF.
When such a byte is read it is interpreted as the MSB of a two byte pointer to the next display block.
The standard terminal uses a 16 byte block format. If you have an application where the display
data can be more efficiently stored using a different block size — or no blocks at all, you can do this
by changing the positions of the link pointers.

Rolling the Display Up Or Down

Rolling up or down is done by changing the display start pointer. To roll up, the next line pointer of
the current top display line is copied into the display start pointer (FFFE). To roll down, the previous
line pointer minus one in the current top display line is copied into the display start pointer.

Insert/Delete Line

Inserting a line is done by getting a block from the free list and formatting the block into a new line.
The next line pointer for the new line is copied from the previous line and the previous line pointer
for the new line is copied from the next line. The pointers in the lines preceding and following the
new line are set to point to the new line.

Deleting a line is done by copying the previous line pointer of the line to be deleted into the following
line and the next line pointer of the line to be deleted into the preceding line. The blocks of the
deleted line are then added to the free block list.

Swapping Display Lines

Figure 6-11 contains an example of the code required to perform a line swap. Note the order in
which the block pointers are changed. A variety of similar display manipulations can be performed
in this manner.

6-15

XLINE EQU *
CALL RCADRA
LHLD LSTLIN
MOV E, M
INX H
MOV D,M
INX H
MOV C,M
INX H
MOV B,M

SET DISPLAY CONTEXT TO CURRENT LINE
GET ADDRESS OF CURRENT LINE
PUT ADDRESS OF NEXT LINE IN REGISTERS

D AND E

PUT ADDRESS OF PREVIOUS LINE IN REGISTER
B AND C

*
* B ,C
* D, E = NEXT LINE POINTER VALUE OF CURRENT LINE
* H,L = ADDRESS OF MSB PART OF PREVIOUS LINE POINTER FOR CURRENT LINE

PREVIOUS LINE POINTER VALUE OF CURRENT LINE

♦
XCHG
DC X D SET REGISTERS D AND E TO ADDRESS OF FIRST

CHARACTER IN CURRENT LINEDCX u
DCX D
DCX D
INX H H,L = ADDRESS OF NEXT LINE POINTER IN NEXT LINE

PUT NEXT LINE POINTER VALUE OF CURRENT LINE
INTO NEXT LINE POINTER OF NEXT LINE AND
PUT VALUE OF NEXT LINE POINTER OF NEXT LINE
INTO REGISTERS D AND E

MOV A , M
MOV
MOV

M,E
E / A

INX H
MOV A , M
MOV M,D
MOV D , A
INX H PUT PREVIOUS LINE POINTER VALUE OF CURRENT LINE

INTO PREVIOUS LINE POINTER OF NEXT LINEMOV M,C
INX H
MOV M , B

Figure 6-11. Line Swapping Example

6-16

♦
B,C = PREVIOUS LINE POINTER VALUE OF CURRENT LINE
D,E = ADDRESS OF FIRST CHARACTER IN LINE FOLLOWING NEXT LINE
H, L s A-DDRESS OF MSB PART OF PREVIOUS LINE POINTER FOR NEXT LINE

♦
♦
*
♦

PUT ADDRESS OF FIRST CHARACTER IN NEXT LINE
INTO NEXT LINE POINTER OF PREVIOUS LINE

DCX H
OCX H
DCX H
DCX H
MOV A,L
STAX B
I NX B
MUV A,H
STAX B
MOV B,H
MOV C,L
LHLD LSTLIN

♦
B,C = ADDRESS OF FIRST CHARACTER IN NEXT LINE

ADDRESS OF FIRST CHARACTER IN LINE FOLLOWING NEXT LINE
ADDRESS OF LSB PART OF NEXT LINE POINTER FOR CURRENT LINE

♦
♦ D,E
♦ H, L
♦

SET NEXT LINE POINTER OF CURRENT LINE TO
ADDRESS OF FIRST CHARACTE IN LINE FOLLOWING
NEXT LINE

MOV M,E
I NX H
MOV -M / D
I NX H
I NX B
MOV M,C
I NX H
MOV M,B
XCHG
DCX D
DCX D
DCX D
IN X H
IN X H
I NX H
MOV M,E
I NX H
MOV M,D
MOV L,C
MUV H , B
SHLD LSTLIN
MVI A,80
STA LSTCOL

SET PREVIOUS LINE POINTER OF CURRENT LINE
TO ADDRESS OF LSB PART OF NEXT LINE POINTER
FOR NEXT LINE

SET PREVIOUS LINE POINTER OF LINE FOLLOWING
NEXT LINE TO ADDRESS OF LSB PART OF NEXT
LINE POINTER FOR CURRENT LINE

SET CURRENT LINE POINTER TO ADDRESS OF LSb
PART OF NEXT LINE POINTER FOR NEXT LINE

SET LAST COLUMN PROCESSED TO 80 TO FORCE
LINE RE-SCAN

RETURNRET

Figure 6-11. Line Swapping Example (Continued)

6-17/6-18

Section VII. KEYBOARD CODE MODULE

The keyboard code module controls all keyboard subsystem functions. The module detects key
hits, sets indicators on the keyboard, and performs the alpha and numeric field checking opera
tions. The keyboard code occupies memory locations 4800 to 5000 (base 16).

KEYBOARD SUBSYSTEM

As shown in figure 7-1, the keyboard subsystem consists of the following three sections:

• Keyboard
• Keyboard interface
• Keyboard code module

KEYBOARD KEYBOARD
INTERFACE

KEYBOARD MAIN
<->

CODE CODE

Backplane

Figure 7-1. Keyboard Subsystem

7-1

Keyboard

The keyboard contains most of the operator controls (keys, data communication switches, etc.).
The keyboard is available in several configurations with different key arrangements and labeling. It
accepts the basic mechanical input from the terminal operator. A detailed discussion of the
keyboard together with schematics and signal lists is given in the 13255A Technical Information
Package.

Figure 7-2 shows the layout of the keyboard. Each key (whether present or not) is assigned to a
matrix position. When a key is pressed or released, its row and column positions are sent to the
keyboard interface.

RESET TERMINAL SWITCH IS NOT
PART OF THE KEY MATRIX.

zST LEO 6 • • LEO 7 • LED 6S2 • LED 1

110 I 120 I 130 I 140 I| 050 | 070 | 100 | I 157 | 147 | 137 j 127 I I 117 | 1071
RESET

TERMM&LS3
• LEO 2• LEO 4

I T50 j

• LED 3
nrn| 010 | 020 | 030 | 040 l | 067 | 077 l| 027 | 037 1 047 B 057 1

B [oil 1 1021 ! 1031 I 1041 1 1051 1 |061 1 [o7l| |lQ1 | [l21 | |l3l| |l41 \ jl51 1 [017 | 1007|

| 0021 [012 1 I022I I032I |p421 I0S2I 10621 [o72 1 [103 | I112I |l22 1 11331 [142] 11521

[000] [164J ZJ [_134j [124J [vm] [104] [074J [064J [054] [044J [034] [024J I

1 innnnnnnnnm i12111| 003 | |013 I 1023 | 10331 10431 j 0S31 |073| 1103 j j1131 I 123 | 1133 | | 004 |

s00syy
[oosI [oisl 10361 lo36 1 10461 [o56[

[oosl loisl [o2S 1 lo3S 1 [045] |oSs|

1 135 | [1 ISl 110s| lo7Sj 1065[

063

NOTE; ALL SWITCHES AND LEDS ARE SHOWN
AS THEY ARE LOADED ON THE PCA.

Figure 7-2. Keyboard Layout

Keyboard Interface

The keyboard interface accepts input (key and switch action) from the keyboard for use by the
keyboard code. It also interprets commands from the code and controls the keyboard (sets
indicators, transmits status, rings the bell, etc.).

In addition, the keyboard interface contains 24 switches that can be used by the operator to affect
terminal operation. These switches can be controlled programmatically. Since most terminal
operations use only a few of these switches, they can often be used by special application firmware.

Programming information for the keyboard interface is provided later in this section. Detailed
information on the operation of the keyboard interface PCA is contained in the 13255A Technical
Information Package.

7-2

Keyboard Firmware

The keyboard firmware performs most of its functions using subroutines The 13255A Technical
Information Package (T.l P) contains detailed descriptions of each of the routines and their
parameters You can access these routines to perform most keyboard tasks

The keyboard module provides a flexible structure for creating alternate keyboard layouts or foreign
language terminals. In addition, special functions can be assigned with a minimum of change to the
terminal code The keyboard module is made up of the following sections

• Monitor (KBMON)
• Input processor (GTKEY)
• Subroutines
• Utilities

Monitor

The monitor scans the keyboard for changes in key state For this purpose the keyboard is divided
into a matrix of 14 columns of 8 keys each

The monitor routine maintains the current state of the keyboard in a 14 byte table Each bit
represents the current state of a key (1 = pressed or set, 0 - up or clear) A 40 byte transition buffer
is also used to hold up to 20 state changes Each time the monitor routine is called, it scans two
columns of the keyboard Table 7-1 shows how key information is returned on the bus lines.

If a key transition is detected an entry is made in The transition buffer and the current state table is
updated The formats of the current state table and the transition buffer are shown in figure 7-3

Table 7-1 Keyboard Data Bus Bits

KEYBOARD COLUMNS

Column Data Bus Bit
A3 A2 A1 AO B7 B6 B5 B4 B3 B2 B1 BO

0 0 0 0 007 006 005 004 002
01?

001003 000
0 0 0 017 016 015 0141 013 01 010
0 0 0 027 0251 026 024 023 022 021 020
0 0 1 037 036 0351 034 033 032 031 030

0 1 0 0 047 046 045 044 043 042 041 040
0 1 0 057

067
1 056 055 054 053 052 051 050

0 1 1 0 066 065 064 063 062 061 060
0 1 0771 1 076 075 074 073 072 071 070

01 0 0 107 106 105 104 103 102 101 100
0 0 1171 116 115 114 113 112 110111

1 0 01 127 126 125 124 123 122 121 120
1 0 1 1 137 136 134 133 132 131 130

1 1 0 0 147 144 142 141 140
1 1 0 1 157 154 152 151 150

7-3

Real-Time
State Table

CKBBUF1)

T rans111 on
Buffer

(KEYBUF)

Processed
State Table

CKBBUF2)

0 0001000000000000 00001101 00000000

1 00000001

2 00000001

3 00000000

000000009

000100001 0

0000000011

12 00000000

13 00000000

14 Bytes 40 Bytes
(20 Transitions)

14 Bytes

Figure 7-3. State Tables and Transition Buffer

The transition buffer is made up of 2 bytes for each transition. The first byte contains the column
number in which the transition occurred and the second contains the new state of the column.

7-4

Keyboard Input Processor (GTKEY)

The keyboard input processor takes input from the transition buffer and performs the necessary
action. This may be the return of a character code to the routine that called the input processor or
the performance of an internal function. The keyboard input processor maintains an alternate state
table containing the transitions that have been processed.

The row and column position of a pressed key is used to select an entry from one of two tables. The
table selected depends on the state of the SHIFT keys. Each table entry consists of a single byte. If
the high order bit of the entry is a 0, then the entry is an ASCII character which is simply returned to
the calling routine. Entries with higher values indicate that more complex actions are to be
performed.

Translation Tables (Unshift/Shift)

ASCII character to be returned.
Latching key functions (MEMORY LOCK, etc) returns no character or a character in the
range 260-377.
Reserved for new keyboard functions.
Defined terminal functions (READ, RECORD, etc.).

Reserved for terminal functions.
Generates escape sequences for external functions (Home Up, Home Down, etc.).

Generates sequences for F1-F8 keys. Normally a two byte escape sequence. The
second byte is obtained by masking the high order bit.

Reserved for special functions.
Display Enhancements (CNTL F1).

000-177
200-207

210-227
230-237
240-257
260-357
360-367

370-376
377

7-5

TRANSLATION TABLES

Pointer = (col * 8) + row + Trans Table Base Address

Lower Case Table
(LWRASC)

Upper Case Table
(UPRASC)

0 00 1B 09 00 00 31 34 08 00 1B 09 00 00 31 34 08

1 86 31 71 7A 0D 32 35 5C 86 21 51 5A 0D 32 35 7C

2 83 32 77 78 5D 33 36 F4 83 22 57 58 7D 33 36 F4

3 80 33 65 63 3A C4 D3 F5 80 23 45 43 2A C4 D3 F5

1 3 99 5E 5F 00 61 00 00 F0 99 7E 7F 00 41 00 00 F0

1

7-6

Section VIII. STANDARD DEVICE I/O

Your own firmware can perform input/output operations to and from the display the left or right
cartridge tape unit, a printer device or an alternate I O device by making calls to the routines
GETIO or PUTIO

GETIO which resides at location 40603 (octal) or 4183 (hex) is used tor accepting input from the
display cartridge tape units or an alternate input device

PUTIO. which resides at location 40631 (octal ; or 4199 ihexj. is used for transferring output to the
display the cartridge tape units a printer device or an alternate output device

THE I/O BUFFERS

Data is passed to and from l O devices one recorc at a time fc.a..h uxord is passed via one of the
two I O buffers Each buffer is 256 bytes ionq ana x-,- m.-ee .ar/'Dies (status type and length;
associated with it The locations of the budex a ' ■ ne a-mx ..maples are as follows

Location

Octal Hex Name Description

176000
176377
t 774 72
1 774 71
1 774 7Q

PC 00
fc f r
FF.3A
FF 39
F F 38

bis!A7
6! T

176400 F DOG
FDFF
F r 3 7
F P 36
F F 35

176777
177467
177466
177465

BOsfA 1
B0' v Pt
BOi LN

n.O re-
m >ii i O Duftei

3(1i

[pi .,1’ '

Data (lOBUFx)

One to 256 bytes of data are
firmware (for output) starting at address lOBUFx There are no restrictions on tne data

placed in the butter either oy a device driver (tor input) or Dy your

8-1

£35

Status Variable (BxSTAT)

The five low order bits are assigned to individual devices as follows (note that bits 5-15 are
reserved):

Device Selected
When Bit SetBit

Left cartridge tape unit.
Right cartridge tape unit.
Display.
Printer.
Alternate I/O device.

0
1
2
3
4

A buffer is free if its status is zero; otherwise it is owned by all devices whose bits are set.

Type Variable (BxTYPE)

There are basically three types of records: data records, end-of-file marks, and end-of-data marks.
The content of BxTYPE specifies what type of record has been received (for input) or is to be
transmitted (for output).

Minus one (-1 or 377 octal) specifies a data record, zero specifies an end-of-file mark, and plus
one specifies an end-of-data mark. When reading from the display using GETIO, a BxTYPE of +2
specifies the end of the display page and +3 specifies the end of display memory.

Length Variable (BxLEN)

When transmitting or receiving a data record, the content of BxLEN specifies the number of valid
data bytes in the I/O buffer. Note that a BxLEN of zero specifies a record size of 256 bytes (i.e.,
there are no “zero length" records).

When transmitting or recieving an end-of-file or end-of-data mark, BxLEN has no significance
except when writing an end-of-file mark to one of the CTUs; in that particular case, BxLEN must be
set to +1.

8-2

USING GETIO

To use GETIO you must first load some parameters into the following named locations:

Hex
Address

Octal
AddressName

FF4E
FF47

177516
177507

INPDEV
XFRLIM

INPDEV specifies the input device from which data is to be read, as follows:

Device Selected
When Bit Set(“1” or On)Bit

Left cartridge tape unit.
Right cartridge tape unit.
Display.
Alternate input device.

0
1
2
4

XFRLIM specifies how much data is to be read, as follows:

Value Meaning

Read one record.
Read one file.
Read until end-of-data.

-1
0

+ 1

The only use of XFRLIM is to control double buffering on CTU input. When XFRLIM is set correctly,
the CTU input routine can determine (after reading a record) whether additional records must be
read to satisfy the input request. If XFRLIM is set to 0 or +1 and an end-of-file or end-of-data mark
has not yet been encountered, the CTU driver will start reading the next record from the cartridge
tape to the other I/O buffer (under interrupt control) while your program is processing the current
record.

The significance of XFRLIM when reading from an alternate input device depends entirely on the
design of the particular alternate I/O driver.

Once INPDEV and XFRLIM have been properly set, you issue a call to the GETIO routine. GETIO
obtains one of the I/O buffers and then reads a data record from the specified device into the buffer.

NOTE

If you are reading a record from the display, you should issue a call to the INTDSP
routine before calling GETIO.

8-3

When control returns to your program the Carry flag indicates whether or not a read error occurred.
If Carry is set, an error occurred; if it is reset, the record was transferred from the device to the I/O
buffer successfully.

After testing the Carry flag, your program should check to see what the I/O buffer contains. Upon
return from GETIO, the D and E registers contain a pointer to the first of the three status bytes
associated with the particular buffer.

The first of these bytes (BxSTAT) contains the device parameter supplied via INPDEV; the second
(BxTYPE) contains a record type parameter that specifies whether the buffer contains a valid data
record, an end-of-file mark, or an end-of-data mark; the third (BxLEN) contains a byte count
specifying the length (in bytes) of the record contained in the buffer.

BxTYPE is the byte you should examine first. Decrement the D register, load the contents of the
specified location into the A register, OR the contents of the A register to itself, and then test the A
register for -, 0, or +1. Minus indicates that the I/O buffer contains a valid data record; zero
indicates that it contains an end-of-file mark; plus one indicates that it contains an end-of-data
mark.

If the buffer contains a valid data record, examine the content of BxLEN to determine the size of the
data record and then issue a call to the GETPTR routine. GETPTR uses the address of the status
bytes (still contained in the D and E registers) to determine which I/O buffer is being used and then
returns the address of that buffer to your program via the H and L registers. You then move the data
from the buffer to where you want it stored.

After you have removed the data record from the I/O buffer you must clear BxSTAT (all zeros) to
make the buffer available for other I/O operations.

You perform the above sequence of events once for each valid data record that is transferred from
the specified device to the I/O buffer (note, however, that INPDEV and XFRLIM need to be
initialized only the first time through the loop).

The following code illustrates the use of GETIO to read a file from the right cartridge tape unit.

GETIO
INPDEV
XFRLIM

EQU 40603Q
177516Q
177507Q

EQU
EQU

MV I A,1
STA INPDEV INPDEV - RIGHT CTU
MV I A , 0
STA XFRLIM XFRLIM - TRANSFER ONE FILE

CALL THE GETIO ROUTINE
JUMP TO ERROR ROUTINE IF CARRY SET
SAVE STATUS POINTER
CHECK FOR VALID DATA RECORD, EOF,

OR END-OF-DATA

READ CALL GETIO
ERRORJC

PUSH D
DCX D
LDAX D
ORA A
JZ EOF END-OF-FILE

END-OF-DATA
VALID DATA RECORD - GET BUFFER ADDRESS

JP EOD
CALL GETPTR

(ADDRESS RETURNED IN H,L)

MOVE DATA FROM BUFFER

POP D GET STATUS POINTER
RELEASE THE BUFFERXRA A

STAX D
JMP READ READ NEXT RECORD

8-4

USING PUTIO

To use PUTIO you must first load a parameter into the variable named OUTDEV OUTDEV, which
resides at location 177515 (octal) or FF4D (hex), specifies the output device(s) to which data is to
be sent as follows (note that bits 5 through 15 are reserved)

Device Selected
When Bit Set (‘ 1 or On)Bit

0 Lett cartridge tape unit
Right cartridge tape unit
Display
Printer
Alternate output device

l

3
4

Once OUTDEV has been properly set you issue a can m the G'*IOBO routine GTIOBO locates a
free I O buffer and then returns the address of the vs‘ at me butter s three status bytes (BxSTATj to
your program via the H and L registers

You must then claim the l O buffer by setting Bx$TAT r< > j > ■-' zero va'ue :zero indicates that the
buffer is available tor any program to usei and se’
transmitted and BxLEN to specify the s ze • : . -

T'- specify the type ot record to be
’ me .ecord

BxTYPE specifies what type of eror'1 - r ..e ; .

Value Veering

When writing to the display a BxTYPE * 1 -• as • to effect <BxLEN is aiso ignoredi When writing
to a printer device a BxT YPF ot 0 or 1 . uuses- a form teed iB<lEN is ignored) When writing to an
alternate output device the effect ot BxTYPE and B*i EN depends entirely on the design of the
particular alternate I O driver When writing to an C-T U a BxT vPE ot 0 causes an ena ot file mark to
be written on the particular cartridge tape ;BxLEN must be set to i i and a BxTYPE ot 1 causes an
end-of data mark to oe written on the particular cartridge tape (BxLtN »s ignoredi

NOTE

PUTIO automatically moves the contents ot OUTDEV into BxSTAT When writing
to the display a printer or an alternate output device, you may claim the I O buffer
by setting BxSTAT = OUTDEV Because of the way the CTU interrupt handler
operates however, this practice could cause the butter to be prematurely written to
the tape To be safe it is recommended that you always set BxSTAT to octal 200
when claiming an I O buffer

8-5

Next you must determine the address of the buffer itself. You do this by moving the contents of H
and L to the D and E registers and then issuing a call to the GETPTR routine. GETPTR uses the
address of the status bytes (in D and E) to determine which buffer is being used and then returns
the address of the buffer to your program via the H and L registers. You then use the buffer address
to transfer the record from your program to the I/O buffer.

Once the data record is in the I/O buffer you issue a call to PUTIO. PUTIO, which expects the
address of BxSTAT to be in the D and E registers, transfers the record to the specified output
device(s) and then returns control to your program. Upon return from PUTIO, the Carry flag
specifies whether or not a write error occurred. If Carry is set, an error occurred; if it is clear, the
record was successfully transferred from the I/O buffer to the specified device(s). Note that a write
operation to a cartridge tape will always end successfully unless the tape stalls or is removed.

» IMPORTANT ***

Upon return from PUTIO, your program must ensure that the buffer is freed
(BxSTAT=0). PUTIO automatically clears the device bits (0-4) but will not clear bit
8 which is set by the octal 200 you used in claiming the buffer. If you leave bit 8 set,
the buffer will no longer be available for use by any program.

You perform the above sequence of events once for each data record that is transferred from your
program to the specified device (note, however, that OUTDEV and XFRLIM need be initialized only
the first time through the loop).

The following code illustrates the use of PUTIO to transfer a 72-byte record from your program to
the display.

PUTIO EQU
OUTDEV EQU
XFRLIM EQU

40631Q
177515Q
177507Q

MV I A,4
STA OUTDEV SELECT DISPLAY AS OUTPUT DEVICE

GET A BUFFER
CLAIM IT
SAVE STATUS POINTER

NRITE CALL GTIOBO
M,200QMV I

PUSH H
DCX H
MV I M,377Q SET BxTYPE TO -1
DCX H
MV I M ,72 SET BxLEN TO 72

SNAP H , L AND D,E
GET BUFFER ADDRESS

(ADDRESS RETURNED IN H,L)

XCHG
CALL GETPTR

MOVE DATA RECORD TO BUFFER

POP D RESTORE STATUS POINTER
CALL
XCHG

PUTIO
SNAP H ,L AND D,E
FREE THE BUFFER (BxSTAT-0)
IF NO ERROR, NRITE NEXT RECORD
(ERROR HANDLING CODE)

MV I M, 0
NRITEJNC

8-6
*

Section IX. ALTERNATE I/O

The standard 2645A main code firmware already includes the mechanisms for selecting, either
from the keyboard or programmatically using escape sequences, an input (“from or 5s) device
other than the CTUs or display and an output (“to” or 5d) device other than the CTUs, display, or
printer. These two devices are known as alternate I/O devices.

When you press the gold key followed by the INSERT LINE key, the main code firmware recog
nizes that you have selected the alternate input device as the “from” device. Similarly, when you
press the gold key followed by the INSERT CHAR key, the main code firmware recognizes that you
have selected the alternate output device as the “to" device.

Try it. Press the gold key followed by the INSERT LINE key followed by the DISPLAY key. This
selects the alternate input device as the “from” device and the display as the “to” device. Now
press the READ key The message “NO DEVICE DRIVER” appears on the screen. What does
this mean? It means that the mam code firmware recognized your device selections as being valid,
but that when you tried to read from the “to” input device it branched to a location in memory where
it expected to find the device driver for the alternate input device and found no driver. The capability
is all there.. You just have to write an appropriate device driver and load it into the memory area
where the main code firmware expects to find it.

The same will happen when you use escape sequences. Load the sequence ^ 4 p 5s 3d 4R
into one of the function keys and then press it.

Now let’s select an alternate output device as the “to" device. Press the gold key followed by the
DISPLAY key followed by the INSERT CHAR key. This selects the display as the “from” device and
the alternate output device as the “to” device. Now type something using the alphanumeric keys
and then press the RECORD key. We get the same result: “NO DEVICE DRIVER”. Again the
capability is all there.. We merely have to supply a driver.

Again the same will happen when you use escape sequences. Load the sequence *c & p 3s 5d 4R
into one of the function keys, type something using the alphanumeric keys, and then press the
function key.

ALTERNATE I/O DEVICE DRIVERS

If you’ll think back to the memory map illustrated in figure 1 -3, the area from 24K to 26K (decimal) is
allocated to alternate I/O. When you are supplying alternate I/O code, the first location of this area
(60000 octal) must contain the code for the ASCII character “P" to tell the main code firmware that
a device driver is present. The second location must contain the value 24K/256. This value is used
as an address check by the main code firmware. The next 27 bytes are used as an entry vector
table that allows the main code firmware to pass control to the various routines in your driver. All
access from the main code modules to your driver routines is achieved by CALLs to the appropriate
entry point in this vector table. Control returns from your routines to the main code via subroutine
RETurn calls.

9-1

Each entry in the vector table consists of three bytes. The first byte contains a JMP instruction (303
octal or C3 hex) and the next two bytes contain the address of the particular driver routine. If you do
not need to use a particular routine, you must issue a RETurn instruction instead of a JMP in the
vector table. The main code firmware expects the various entries in the vector table to be as
follows:

Driver RoutineLocation

Initialization Routine
Initialization Continuator
Interrupt Processor
Monitoring Routine
Input Routine
Output Routine
Control Routine
Status Routine
Device Name Message

060002
060005
060010
060013
060016
060021
060024
060027
060032

Descriptions of all of these routines, including the register contents when the routine is called and
the expected register contents when control is returned to the main code, are presented under
alternate I/O in the firmware portion of the 13255A Technical Information Package.

DEVICE STATUS

When you have alternate I/O code loaded into the terminal you can issue a device status escape
sequence for device 5 and receive the status of the alternate I/O device. When you issue the
escape sequence & p 5 A control passes to the Status Routine (location 060027 in the
Alternate I/O entry vector table) and this routine passes back three bytes of status information. As
with the CTU and printer drivers, bits 8 through 5 of each byte always contain 0011. The remaining
four bits of each byte are set at the discretion of the Alternate I/O Status Routine. (Note: The Status
Routine always sets bits 8-5 of each byte to zeros; these bits are automatically set to 0011 by the
terminal’s main code).

SCNVEC AND INTVEC

There are two locations, named SCNVEC (9168 hex) and INTVEC (9165 hex), which are of
particular interest to you when coding an alternate I/O module.

Control passes to SCNVEC from the wait loop. If SCNVEC contains a JMP instruction (303 octal or
C3 hex) to one of your own routines, then your routine will be called once every time the terminal
executes that portion of the wait loop.

Similarly control passes to INTVEC every time any type of interrupt occurs. If INTVEC contains a
JMP instruction to one of your own routines, then your routine will be able to perform its functions
based on the occurrence of a particular interrupt. When control passes to INTVEC, the A-register
contains a code specifying what type of interrupt occurred. When your routine issues a RETurn
instruction, the interrupt is then processed normally.

SAMPLE ALTERNATE I/O DRIVER

The source and object code for two alternate I/O drivers are presented on the next few pages.

9-2

s::8::s:s33S3s::BBSSsSECs:ss::s:csis:t:aces:s33:siB&32SCits33iBssi;cmiitca>l
PAGE 1LOC OBJECT CODF SOURCE STATEMENTSITEM

..:E::c:s::;:sssir
0 0 0 W 0 0
000003

ououoe
020000
OO0O0L
000000
U00G00
000000
000000
^ 00000
000000
0 0 O 0 0 £
000000
030003
0 0 0 n 0 0
110 vj 0 0 0
1 i 0 0 0 0 0
0001*00
G00000
030GCO
03C0CG
000000
t,300CO
000003
1408000
M 3 0 0 0 0
<J00PC1G
0 0 0 0 0 0
0 0 0 0 0 0
000002
0 0 00 0 0
<•1 0 0 0 0 0
000003
000000

ALEX1 ^ BUpFRD IN,OUT,CONTKLASP BIN1 0e
3 *00

3 *e *
ALTERNATE I/O EXERCISE 1:
INPUT AND OUTPUT LINES OF TEXT FROM AN RS-23*
DEVICE AT 9600 BAUD,
THAT MLL ALLOW THE USER TO SEND A STRING OF
ASCII ONE’S TO THE DEVICE,
INTERRUPTS,

WRITE ROUTINES TO4 *ae
5 *aa

ALSO, WRITE A ROUTINE6 *a
7 0 9

DO NOT USE8 *a o
9 *p0

10 99

THIS CODE TALKS TO THE GP ASYNC DATACOM CARD
STRAPPED FOR MODULE 17, 9600 BAUD.

1 1 *00

12 *9 0

13 A9

STRAPPINGS
I A T CLOSED (INHIBIT INTERRUPTS)
all OTHERS OPEN

14 if

15 *8

16 *<?

1 7 *9

THE CONTROL OPERATION IS INVOKED BY
" REMINDING" THE ALTERNATE I/O DEVICE,
OPERATION MAY BE INVOKED VIA ESCAPE SEQUENCE,
I a E o
CP FROM The keyboard,
< I N S E R T C H A R > o
BE SENT MAY BE SPECIFIED AS AN UNSIGNED
PARAMETER IN AN escape sequence, OR MAY BE
SUPPLIED FROm The KEYBOARD IN RESPONSE TO A
PROMPT FROM THE CONTROL ROUTINE,

18 *908

THE19 *»9

20 *
ESC a P 5<J 0C (LOWER-CASE P AND U)

I 0 E 0
21 if

<GPEEN> <REWIND>
THE NUMBER OF ASCII ONE’S TO

22 *c
23 *c c
24 *c
25 i:o 0

20 *c
27 *8

?8 •i

FIRMWARE DOES NOT LIKE RECORDS
WITH A LF,
I/O DEVICE, AND TAPES ARE BEING UStD
FROM THE ALTERNATE I/O TERMINAL,
G, AND H SHOULD BE OPEN ON THE
I/O TERMINAL.

NOTE: THE
BEGINNING
ALTERNATE
FOR INPUT
STRAPS E,
ALTERNATE

29 it

IF A TERMINAL IS THE30 flr

3 1 it
9

32 *
33 ito

1 4 A-

35 *

9-3

SSSrSSSCSSSSSSSSSSSSSSSSSSSXCBSSCSSCSXSSSSSSSSSSBSSSSSgSaSSSSSSSSSXSSXSCSSSSSB

ITEM LOC OBJECT CODE SOURCE STATEMENTS PAGE
i::3:ce::;::::::::{::::&:e::333:i:ss::333SB::a:s3:8:Bs:s:3c&::s:siBss:s3s::

★a**********************************
USEFUL VARIABLES, ENTRY POINTS *

•★•*★****★***★***■*★★★*★***★★★**★*♦★★

37 000000
000000
000000

38 *
39
4CJ 000000 *

I/O BUFFERS4 1 000000
000000
176000
177472
177471
177470
000000
176400
177467
177466
177465
000000
000000
000000
177517
000000
000000
000000
177730
177725
177734
000000
000000
0000CE
000100
177761
00O202
000106
177724
177736
177610
000000
U00000
O00000
044005
044024

+
42 +

I0BUF1 EQU
B1STAT EQU
B 1 TYPE EQU
B1LEN EQU

176000B
1774728
1774718
1774708

43
44
45
46
47 *

176 4008
177467B
177466B
177465B

I0BUF2 EQU
B2STAT EQU
B2TYPE EQU
B2LEN EQU

48
49
50
51
52 *

ERROp RETURN VARIABLE53 *
54 *

IOCERR EQU 177517855
56 *

INFORMATION FOR CONTROL ROUTINE57 *
58 ★

IOCTYP EQU 1777308
IOCCNT EQU 1777258
IOPSGN EQU 1777348

TYPE OF CONTROL OPERATION
PARAMETER VALUE
PARAMETER SIGN

59
60
61
62 *
63 MAIN CODE ROUTINES*
64

DSPMSG EQU 10OB
MSGPT1 EQU 17776 1B
CHINT EQU 202B
DCNUM EQU 1W6B
RADIX EQU 177724B
IODATA EQU 177736S
CHAR EQU 177610B

DISPLAY CHARACTER STRING
POINTER TO STRING

PROCESS CHARACTER
ACCUMULATE NUMERIC INPUT

BASE FOR ACCUMULATION
ACCUMULATOR
NEXT NUMERAL

65
66
67
68
69
70
71
72 *

* KEYBOARD ROUTINES73
74 *

ZGETKY EQU 440058
ZBELL EQU 44024B

GET KEYBOARD INPUT
RING BELL

75
76

9-4

PAGE 3SOURCE STATEMENTSLOC OBJECT CODEITEM :Btss::::xBs:s5=3:sBS3S3s«s;ss8*:sss:»sss:58ss:a3is:5x*i
ORG 6 U 0 0 0 B78

•J60000
060000
060001
U6O002
060005
06C010
060013
060016
O60021
U6B024
060027
O6O032
O60032
060032
060032
060032
O 6 0 f*33
060034
060034
060034
0 6003 4
O60034
0 60035
O60036
O60037
060040
060040
J60040
060040
060040
060041
060041
060041
060041
060P41
060042

ALSTRT EQ'J ★79 * VERSION# CODE PRESENT FLAG*
CODE PRESENT FLAG

INITIALIZATION

120B
ALSTRT/256
INIT
INIT2
intret
RETURN
GETBUF
PUTBUF
CONTRL

DEF12080
DEF1 431
JMP303 043 140

303 032 140
303 034 140
303 940 140
303 16! 140
303 108 140
303 303 140
303 041 140

82 JMP83
NO INTERRUPTS
NO MONITOR
INPUT ROUTINE
OUTPUT ROUTINE
CONTROL
NO STATUS

JMP84
JMP85
JMP86
JMP87
JMP88

DUMMYJMP89
90 *

DUMMY initialization routines91 *
92 *

INIT2 EQU93 *
NC s> NO ERRORORA A94 267

RET31195
96 *#

DUMMY INTRRUPT routine97 *
98 *

INTRET EQU *
POP H
POP PSW

99
341100
361101

El373102
311 PET103

104 *
DUMMY MONITOR105 *

106 *
RETURN EQU *107

RET3111 08
109 *

DUMMY STATUS ROUTINE110 *
111 *

DUMMY EQU *112
C *> SEND ALL 0'SSTC113 067

RET311114

9-5

PAGELUC - OBJECT CODE SOURCE STATEMENTSITEM
iBi8:EBesi&ic3sissaiiiiic3:ca3iB:aBai«ssBiiSB»31SBB3BB::S83SBSBBBIIIB3BSB

116 107440
117 000001 > , .
118 U00002 , • ,
119 107400 t . •
120 107540 , .
121 107500
122 U 6 0 P 4 3 , . ,
123 060043
124 060043 t , ,
125 06U043 * , .
126 060043 f t •
127 060043 , ♦
128 U60043 076 077 ,
129 060045 062 100 217
130 U60050 001 00P 000
131 M60053 311 # .
132 H 6 U 0 5 4
133 060054 § . .
134 060054 , .
135 060054 . * *
136 060054
137 960054
138 060054 t , f
139 960054 0 , ,
140 060054 , . ,
141 06P054 , .
142 060054 , , *
143 960054 U72 040 217
144 060057 346 001
145 060061 31? 054 140
146 ‘160064 07? 300 217
147 060067 311 %
148 060070
149 060070 p .
150 060070
151 U60070 . .
152 060M70 . „
153 060070 „ .
154 060070
155 06O070
156 060070 . ,
157 060070
158 060070 ,
159 060070 365 f
160 060071
161 U60071 07? 040 217
162 U60Q74 346 002
163 O6U076 31? 071 14C
164 06U101 361 # .
165 O60102 06? 14^ 217
166 060105 311

I/O CARD STATUS
DATA PRESENT BIT
READY TO SEND BIT

I/O INPUT ADDRESS
I/O OUTPUT ADDRESS
SET PARITY/ BAUD/ ETC.

IOSTAT EQU 107440B
DATPRS EQU 1
RDYSND EQU 2
IQINPT EQU 107400B
IOOUTP EQU 107540B
IOCNTL EQ'J 107500E3
★

*

INIT - SET UP CARD*
*
INIT EQU *

MV I A/77B
STA IOCNTL

SELECT NO PARITY/ 9600

NO BUFFER NEEDEDLX I D/0
RET

*

*

GETCHR GET ONE CHARACTER FROM THE
ALTERNATE I/O PORT

*
*
*

ENTRY; DON’T CARE*
*

EXIT i A = CHARACTER*
*
GETCHR EQU *

LDA IOSTAT
AHI DATPRS
JZ GETCHR
LDA IOINPT

GET CARD STATUS
DATA PRESENT?
NO - WAIT
YES - GET DATA

RET
*

********************* * * * *
*

PUTCHR - OUTPUT ONE CHARACTER TO THE
ALTERNATE I/O PORT

*
*
*

ENTRY: A ■ CHARACTER*
*

EXIT : NO CHANGES*
*
PUTCHR EQU *

PUSH PSW
PCH010 EQU *

LDA IOSTAT
Alii RDYSND
JZ PCH010
POP PSW
STA IOOUTP

SAVE CHAR

GET CARD STATUS
READY TO SEND?
NO - WAIT
YES - OUTPUT CHAR

RET

9-6

ISC::::::zsSltIS8Xe82e3Biei:B833eBXt3t3C8:atSBBI8l8ZSK68|lll|BSS3flSBSBS3IB|ll|
PAGE 5LOC OBJECT CODE SOURCE STATEMENTSITEM

i::t3:::::::s:cK:eEiiX83SB3ESS3:i:se:n3S3:ssB:2siss::3BiisiB8B8i«iriiisiJ8a>i
168 0 6 01 0 6

6 k3 i 0 6
0601 ('■' 6
060106
060106
060106
0 6 0 1 0 6
060106
060106
060106
J60106
06010b
060106
060106
i60106
060107
060110
C60111
0601 14
U 601 14
J60i 14
060114
060115
06U1 16
060117
060120
060122
060125
060130
1)601 33
06 0133
760133
«1 6 0 13 3
O60' 1 3 3
06t134
0 6 u 1 3 5
.160 \
060 1 4 1
060.144
060 1 4 4
O 6014 4
'.*00144
11 6 0 l 4 4
060145
t'60 1 4 b
060146
060147
06016}
060152
0-60154
060157
O 6 0 160

*
*************************169

1 70 *9

PUTBUF OUTPUT A BUFFER TO THE ALTERNATE
I/O PORT

171 ★9

1 72 *
173 *

D,E -> BUFFER STATUSENTRY;174 *
175 *

D,E -> BUFFER STATUS
ALT I/O BIT C20B) CLEARED IN STATUS
IOCERR = S
NC (NO ERRORS POSSIBLE)

EXIT :1 76 it

177 it9

178 9

1 79 *
180 *

EuU
OCX D
LDAX p
ORA A
JP PTB1J0

PUTBUF181 *6
WHAT TYPE 0f RECORD?

1 => t VD
0 => EOF

182 033
032
267

C JUST RETURN)
(JUST RETURN)

-1 => DATA (OUTPUT DATA)

183
1 34 0

362 146 140185
186 *•
1 87 DATA RECORD - OUTPUT ITit

186 *
OCX p033189 GET uENGTH

1 90 032 L D A X D
‘‘ 0 v191 107 3 r A

A f E
S1LEN
Mf IDB'JF 1
PTB01O
h) I0BUF2

B = COUNTER
GET POINTER TO BUFFER192 173 mqv

CPI
l XI

193 376 07°
041 00n 374
312 1 37 147
0 4 1 00'71 376

1 94
1 95 y 7
196 LX I
197 <■

198 LOOP OUTPUTS EACH CHAR*
199
200
20 1

*
PT8013 EOU *

MG V A,M
I NR L
CAuL Pl'TCHR
OCR 6
JN'Z PTB01O

I7r
Ub4
316 07° 140
00 5
302 133 140

GET C0AR
UPDATE POINTER
OUTPUT IT
LAST CHAR?
no - no next

202
203
204
205
206
20 7
208
209
210
21 1

**
PUFFER FINISHED - CLEAR ALT I/O pit jN ST4TUS
AND RETURN SUCCESS

it

*
*

023 I NX 0
PTB1U3 FO'J *

I NX D
LD A X 0

D fE -> TYPE
(ENTRY POINT FUR EOF, EVD)
D,E -> STATUS212 023

213 332
214 346 357

022
A (41 -1-203 TURN OFF BIT

215 STAX D
M V I A,123B
STA IOCERR
ORA A
RET

216 M76 123
067 117 377

SET IOCERR = S
217

267218 NC «> NO ERROR
311219 9

9-7

ITEM LOC OBJECT CODE SOURCE STATEMENTS PAGE
iss8:::e::::tssis:u:i3i

22 1 060161
060161
060161
060161
M60161
O60I6I
060161
060161
060161
060161
060161
060161
060I61
C 6 v? 16 1
060161
060161
060161
M 6 0 1 6 1
060164
06O167
060171
060174
060174
060174
06017^
O60176
060201
O60202
060203
060203
060203
06O203
060203
O602C6
060207
060212
0-60215
O6022S
060223
060223
060226
C60227
060232
060235
060240
060240
060240
060240
O60240
O60242
U60243
060243

*
222 *-**★★★**★*♦★***★ *********
223

GETDUF - GET A BUFFER OF DATA FROM THE
ALTERNATE I/O PORT

224 *
225 ★9

226 **
DON'T CAREENTRY;227 *

228 *
D,E -> BUFFER STATUS
STATUS a 208 CFOR ALTERNATE I/O)
IOCERR s S
NC (NO ERROR RETURN)

EXIT 5229 **
230 *
231 **
232 *
233 *

GETBUF EGU ♦234
235 **

* SEE WHETHER USER HIT RETURN (USER INTERRUPT)236
237 *#

CALL ZGETKY
JNZ GTB010
CPI 15B
JNZ GETBUF

USER HIT KEY?
NO - FIND BUFFER

IS IT RETURN?
NO - CHECK FOR MORE KEYS

315 005 110
302 203 140
376 015
302 161 140

238
239

YES240
241
242 ♦

USER HIT RETURN - ABORT243 *
244 **

MVI A r 125B
STA IOCERR

SET IOCERR * U076 125
062 117 377

245
246

RETURN C s> ERROR067 STC247
RET248 311

249 *
NO USER INTERRUPT - FIND AN EMPTY BUFFER250 *

25 1 *
GTB010 EQU252 **

IS BUFFER 1 FREE?LDA 313TAT072 072 377
267
30? 223 140
021 07? 377
041 000 374
303 240 140

253
ORA \254

NO - CHECK BUFFER 2
SET DrE -> STATUS

SET Hrl -> FIRST BYTE OF BuF

JNZ GTB020
DrBISTAT YES
HrIOBUFI
GTB03O

255
L XI256
LX I257
JMP258

GTB020 EQU IS BUFFER 2 FREE?259 *
LDA B2STAT072 067 377260
ORA A267261

NO - WAIT
YES - SET Dr E *> STATUS
SET HrL -> FIRST BYTE OF BuF

33? 161 140
021 067 377
041 000 375

JNZ GETBUF
DrB23TAT
HrI0BUF2

262
LX I263
LX I264

265 *
* EMPTY BUFFER FOUND - CLAIM IT266

267 ♦
GTB030 EQ'J *

MVI Ar 205
STAX D

ALTERNATE I/O BIT (20B)
CLAIMS BUFFER

268
076 020269 *
022270

271 *
FILL BUFFER UNTIL 100 CHARS REC1D OR LF REC'D272 *V

9-8

.. ..
PAGE 7ITEM LOC OBJECT CODE SOURCE STATEMENTS

i=::::::sss:sri:src::si«tc::::!3Ss:=:5:is::8:*83Si5««*:a*:ssiias3Sstsxx:c:B**t
273 060243

360243
060243
060246
060247
O6025O
060252
060255
06O256
060260
060263
060263
060263
060263
060263
060264
06O265
060266
060267
060270
060272
060273
060274
060276
060301
060302

*#
GTB100 EQU *

CALL GETCHR
MOV Mf A
INR L
CPI 12B

274
GET A CHARACTER
PUT IN BUFFER
increment POINTER
IS CHARACTER A LINE FEED?
YES •> QUIT
NO ^ 100 CHARS REC’D

275 315 054 140
276 167
277 054

376 012
312 263 140

278
GTB120JZ279

MOV AfL
CPI 100
JNZ GTB100

175280
376 144 #
302 243 140

281
NO - CONTINUE FILLING BUFFtR

SET LENGTH/ TYPE

282
283 ★9

BUFFER FULL284 *
285 *9

GTB12P EQU *
OCX D
ncx d
MOV A,L
STAX D
I NX D

286
287 033

D/E -> LENGTH
STORE LENGTH

288 033
289 175 9
290 022 9
291 023 D/E -> TYPE

-1 ==> DATA292 076 377 MV I A / -1
293 STAX D

I NX D
022

294 023 D/E -> STATUS FOR EXIT
SET IOCERR * S295 076 123

062 117 377
MV I
STA

A, 123R
IOCERR296

297 267 ORA A NC c> NO ERROR
298 311 RET9

9-9

iii8333i:xia3sss::iiiisiiiiiscqi8SBiBsi3a3B33>B«BiiiBaa8B88aq: s z s
ITEM LOC OBJECT CODE SOURCE STATEMENTS PAGE

i3:u8cs;:xiE:ii:ifiXBiBBm::sisitiBBKsa3s:3si>B3BBii::iiaeiBCCiiBXi;:ic83i
300 060303
301 060303
302 060303
303 060303
304 060303
305 060303
306 060303
307 060303
308 060303
309 060303
310 060303
311 060303
312 060303
313 060303 072 330 377
314 060306 267
315 O60307 302 O70 141
316 060312 072 334 377
317 060315 376 200
318 060317 312 053 141
319 060322 .
320 060322
321 060322
322 060322 076 015
323 060324 117
324 060325 315 202 000
325 06033G 076 012
326 060332 117
327 O60333 315 202 00P
328 060336 041 077 141
329 060341 042 361 377
330 060344 267
331 06O345 315 100 000
332 060350 041 00" 000
333 060353 04? 336 377
334 060356 076 01?
335 060360 062 324 377
336 O60363
337 060363
338 060363
339 060363
340 06O363 315 024 HP
341 06O366
34? 060366
343 060371
344 060374
345 060376
346 060401
347 060403
348 060406
'34 9 06O410
350 O604 13
351 O60416

★*
♦ A***********************t
*

CONJRL - HANDLE CONTROL OPERATIONS*
*

IOCTYP a OPERATION TYPE
0 o> OUTPUT <P> 1lS
ANYTHING ELSE => DO NOTHING

ENTRY:»
*
*9

*9

EXIT 8 IOCERR a S
NC CNO ERROR POSSIBLE)

*
*
*
CONTRL EQU *

LDA IOCTYP
ORA A
JNZ CNT200
LDA IOPSGN
CPI 200E3
JZ CNT100

WHAT TYPE OPERATION?
9 9

ANYTHING BUT 0 « QUIT
PARAM SUPPLIED CNO SIGN)?

9

YES - DO OUTPUT
*

GET PARAMETER FROM KEYBOARD*
*t 9

MV I A,15B
MOV C,A
CALL CHINT
MV I A,12B
MOV C tA
CALL CHINT
LXI H# PARMSG
SHLD MSGPT1
ORA A
CALL DSPMSG
LXI H,0
SHLD IODATA
MV I A,10
STA RADIX

SEND CR TO DISPLAY

SEND LF TO DISPLAY
*

DISPLAY PARAMETER REQUEST

ADD TO DISPLAY

CLEAR ACCUMULATOR

SET RADIX FOR DECIMAL
** #

PROCESS NUMERIC INPUT UNTIL CR*
+*
CNT010 EQU *

CALL ZBELL RING BELL
CNT020 EQU *

315 005 1 10
302 366 14p
376 015
31? 033 141
376 060 t
332 363 140
376 072
322 363 140
06? 210 377
315 106 00M

CALL ZGETKY
JNZ CNT020
CPI 15b

KEY HIT?
MO WAIT

IS IT RETURN?
YES - ECHO CR, DO OUTPUT

IS IT LESS THAN ASCII 0?
YES - RING BELL, WAIT

IS IT GREATER THAN ASCII 9V
YES - RING BELL, WAIT

DIGIT RECEIVED •
ACCUMULATE VALUE

JZ CNT040
CPI 608
JC C N T 010
CPI 728
JNC CNT01O
STA CHAR
CALL DCNUM

9-10

na53SS=333=3=333BSSSCBSB=3=C5=OB3B=SBS5SSaaB=*BIS3;5»t5«!J3;3"SEJISlJS!S;SC!!
PAGE 9LOG OBJECT CODE SOURCE STATEMENTSITEM

S838SE35SB«33335!3»BSSG»35333C3;5i;3C5!B5I!SSIEHB

LD A Char
MQV C/A
CALL CHINT
JMP CNT02O

3:s:::3::;:ci::::e3::s:::bi:
ECHO TO DISPLAY
(CHINT WANTS CHAR IN C, A)

377072 210352 060421
060424
060425
O6O430
060433
^604 33
V:i 6 0 4 3 3
060433
060433
0 6 0 4 3 4
060437
u 60 4 4 1
06 0 4 4 2
060445
060445
060445
-0 60 4 4 5
'*60 4 50
060453
060453
360453
J 6 0 4^3
t,6 04 5 3
060456
0- 60457
060461
j6 L' 4 6 1
. 16 L 4 6 4
k 6o465
O60470
0 6 0 4 7 0
v ■ 6 t 4 7 0
060470
f t k 4 7 0

4 6 '/■ 4 7 2
1- i 6 0 h 7 5
■160 4 7 6
160477
060477
Obi-477
0 6 0 4 7 7
'.'00525
O 6 0 5 26
ERRORS FOUND P>

117353
202
36*

000
140

354 315
WAIT FOR MORE INPUT355 303

356 *0p
ECHO CR TO DISPLAY357 *0

358 *
CNTO40 E01J359

3 60
6

CHINT WANTS CHAR IN C AND AMQV C/A
CALL CHINT
M V I A/12B
MG V C/A
CALL CHINT

117
315 202 000
07r. 012

36 1
SEND LF TO DISPLAY362

363 1 17
202 00 2364

365
315

*
M 0 V E ACC!'M"LATOR to PARAMETER LOCATION3 6 6 *

367 *
358 336 377 IODATA

IUCCNT
0 52 LOLD

Q u i_ r325 377369 042
370 Or

371 PARAMETER p F C E I v E D - O''TP'JT 1'SKT

172 *
77 3 CMT10O F-.

I., 0 A
i-

374 3 2 *072 377 1 C C C' - T
B / A
a / o 1 0

uSE LOW BYTE OF IOCCNT
8 IS COUNTER
A = ASCII 1

375 107
076 061376 '•< v I

C N T 1 2 2 E-.a377
378 0 7 '/ 1 4 0315

00*
r A L t. p 011T P IT 1

ALL FINISHED?379 o
380 302 no 1 1 4 1 C ’ - T 1 2 0
381
382 nnp p A T i n>. r imshed - KlTJ k \j SUCCESS*
383 *
3 8 4 CNT2O0 EG'1

M v I
S T A
ORA
PET

385 07 6 123 A, 12 3 p
Il'CERP

SET IOCERR = S
386 117 37706 2
38 7 267 A NC => SUCCESS
338 3 1 1
389 A

390 MSG REQUEST INb PARAMETER: 232B = INVERSE VIDEu£

391 4

392 202
31*

1C*R 116 PaRmsG DC E
. OCR
, E N n

ASSEMbLY CODE ,

2 0 2 8/ 'ENTER NUMBER OF ONES J '
31 6B393 END OF ^F.SSAGE FLAG

394
0

9-11

SYMBOL VALUE REFERENCED ON
rs«a:i::sei8WJssB«sisiixB«i«i*m«««B6»3iai:a«i«iB«sssB8a z

79, 81ALSTRT
3 i LEN
BISTAT
B t TYPE
B2LEN
B2STAT
B2TYPE
CHAR
CHINT
CNT010
CNT020
CNT040
CNT100
CNT120
CNT200
CONTRL
DATPRS
DCNUM
DSPMSG
DUMMY
GETBUF
GETCHR
GTB010
GTB020
GTB030
GTB100
5TB120
INI T
INIT2
INTRET
IOBUF1
IOBUF2
IOCCNT
IOCERR
IOCNTL
IOcTYP
IODATA
101NPT
IOQUTP
IOPSGN
iostat
msgpti
PARMSG
PCH010
PTB010
PTB100
PUTRUF
PUTCHR
RADIX
RDYSND
RETURN
ZKELL
ZGETKY

060000
177470
177472
177471
177465
177467
177466
177610
000202
1360363
060366
0.6 O 4 3 3
060453
ki60461
060470
060303
000001
000106
000100
060041
060161,
060054
O60203
O60223
060240
060243
060263
060043
O60O32
060034
176000
176400
177725
177517
107500
1 77730
177736
107400
107540
177734
1O7440
t 77761
0 6 0 4 7 7
060071
060133
060145
0601O6
060070
177724
000002
060040
044024
044005

46, 193
253, 25644,

45
51

26349, 260,
50

352350,
324,
347,
343,

71,
327, 354, 361, 36467,
349339,

341,
359,
373,
377,
384,
312,
’17,

355
345
318
380
315

88
144
35168,
33165,

89U2,
234,
M2,
252,
259,
268,
274,
286,
127,

241, 262
275

86,
145,
239
255
258
282
279

82
8393,

99, 84
194,
196,
369,
217,

25743,
48, 264

3746 0,
246, 296, 38655,

129121,
59,
70,

119,
1 20,

313
333, 368
146
165
31661,
143, 161116,
32966,

392, 320
1631 60 ,
195, 205200,

211,
181,
1 58,

185
87

203, 378
33569,
1621 18,

107, 85
76, 340

238,75, 342

SYMBOLS, 127 REFERENCES, 2 WORK TRACKS53
9-12

:::rr:s:::::::::s:::c5s:::£::5::8:stsa:3ss33:s:5as5:ss3:s:>ss:35:J*:::::«:;3a:
PAGE iLOG OBJECT CODE SOURCE STATEMENTSITEM

s:s3s::::::::s:::ss:sc83se:;;ss:8s:::ssss:ss:sa:;3«Be::us:::::::::::::::::
ALEX2 - INTERRUPTING INPUTA$B BINO20000

U00P00
000-000
0 E 0 0 P 2

tfPOUFu

0 01/ n t w
**00000
OCC0GO
0G0.0O0
kj 0 e 9 0 o
000000
V300000
000000
U000P0
0 E o n O 2
000000
00*^000
15 0 P 0 0 e>
000000
U000P0
000000
0 0 U POO
000000
000000
00U0OC
000000
000000

1
2 ★
3 *

ALTERNATE I/O EXERCISE 2:
ACCEPT INPUT FROM AN RS-232 PORT AT 9600 BAUD.
USE INTERRUPTS,

WRITE A ROUTINE Tu*4
5 *
6 *
7 *

THIS CODE TALKS TO THE ASYNC MULTIPOINT CARD
STRAPPED FQR MODULE 17, 9600 BAUD.

8 ★
9 *

10
STRAPPINGS

INT CLOSED
PL6 CLOSED
25B CLOSED
ALL OTHER STRAPS OPEN

1 1 ★
(INTERRUPT ON ATN2)
(RESPOND TO POLL ON BIT 6)
CONE STOP BIT)

12 +■

13 *
1 4 ★
15 *
1 6 *

NOTE THAT CHARACTERS ARE NOT SENT TO THE
DISPLAY BY THE INTERRUPT ROUTINE OR THE USUAL
MONITOR ROUTINE CALLED BY THE TIMER INTERRUPT
ROUTINE, EITHER OF THESE SOLUTIONS COULD
CAUSE CHINT TO RE CALLED WHILE AN INTERRUPTED
INVOCATION OF CHINT IS WAITING TO BE RESUMED^
THIS COULD RESULT IN INCORRECT LINKS IN THE
DISPLAY, LOST CHARACTERS, ETC. INSTEAD/ THE
INTERRUPT ROUTINE PUTS CHARACTERS INTO A
CIRCULAR BUFFER. ANOTHER ROUTINE (MON IT R) Is
CALLED BY THE WAIT LOOP VIA SCNVEC TO SEND
CHARACTERS FROM THE BUFFER 10 THE DISPLAY.

17 *
18 *
19 *
20 *
21 *
22 *
23 *
24 •k

25 *
26 *
27 ★
28 *
29

9-13

...
PAGE 2LOC OBJECT CODE SOURCE STATEMENTSITEM

3K8:c:s:3:::ssa::sss:s:s:::33&:isrs3s::3sa:2;:sta;8s:3ii:s
31 O000O0

000000
000000
000000
000000
000660
177517
177761
W00000
000000
000000
000202
026000
000CP0
000300
110550
000030
000000
O00000
177146
177144
177142
000000
000000
000000
107400
127442

a***********************************
* USEFUL VARIABLES, ENTRY POINTS ★
*★4 ************************ *********

32
33
34 *

ERROR RETURN VARIABLE# MESSAGE POINTER35 ★
36 *

IUCERR ECJIJ 177517B
MSGPT1 EQ'J 177761B

37
POINTER TO STRING38

39 +
MAIN CODE ROUTINES40 *

41 *
CHINT EQU 2026 PROCESS CHARACTER42

43 *
* VECTOR CALI ED BY WAIT LOOP44

45 *
SCNVEC EQU 110550046

47 *
ALTERNATE I/O VARIABLES48 4r

49 *
BUFAPR EOU 177146B
FILLPT EQ'J 177144b
EMPTY EQU 177142B

ADDRESS OF CIRCULAR BUFFER
FILL POINTER
EMPTYING POINTER

50
51
52
53 *

ADDRESS FOR ASYNC MULTIPOINT CARD54 *
55 *

IUINPT EQU
IOCMND EQU

1O740CJB
1074408

INPUT DATA
OUTPUT CONTROL

56
57

9-14

aS:3SS5SS:s:3S8IIBSIXKS:iSME38IBIIBB>a3SS3CiaSBBIBIIIBaill8B|lll|IIIIIX6IS|ll|
LQC OBJECT CODE SOURCE STATEMENTSITEM PAGE 3

i:8:3sct:asiz:sBcsiiiiiiEi3i8iE3iims>ai8iica8Bass8i3K3a:iiiB8aiiBiiiBiaiias
ORG 60000B59 000000

060000
060000
060001
060002
060005
060010
060013
060016
060021
060024
e<60027
060032
060C32
060032
060032
060032
060033
060033
060033
060033
060033
060036
060041
060043
060046
060047
060050

*
ALSTRT EQU60 *

120B
Al.STRT/256 CODE PRESENT FLAG

INITIALIZATION

VERSION* CODE PRESENT FLAGSDEF61 120
DEF62 140 *

IN IT
INIT2
INTRPT
RETURN
DUMMY
DUMMY
DUMMY
DUMMY

63 303 101 140
303 105 140
303 141 140
303 032 140
303 033 140
303 033 140
303 033 140
303 033 140

JMP
JMP64

INTERRUPTS
NO MONITOR
NO INPUT ROUTINE
NO OUTPUT ROUTINE
NO CONTROL
NO STATUS

65 JMP
JMP66
JMP67

68 JMP
69 JMP
70 JMP
71 *

DUMMY MONITOR72 ★
73 *
74 RETURN EQU *
75 31 RET
76 *
77 * DUMMY INPUT* OUTPUT* CONTROL* STATUS
78 *

DUMMY EQU *79
80 041 05* 140

042 361 377
076 106
062 117 377

LX I H * NODRVR SET ERROR MESSAGE
SHLD MSGPT1
MV I A * 106B
STA IOC ERR

81
82 SET IOCERR » F
83
84 067 STC C «> ERROR
85 31 1 RET

116 117 04086 NODRVR DEF * NO DEVICE DRIVER ROUT INE'* 3168

9-15

itsi:sss:sssisiss8CSsstsssrEissxssscBS8i3ssss:s:aiesscsxixsas:83xsssss8SBS8SSi
I.OC OBJECT CODE SOURCE STATEMENTSITEM PAGE

tsicsie:s:i::ss3esst3s;sis8:ssi:iscs:es::::ssssssmi
88 ^60101
89 060101
90 060101

060101
92 060)01
93 060101
94 060101
95 060101
96 060101
97 060101
98 060101
99 060104

100 060105
060105

102 060106
103 060111
104 060114
105 06O117
106 060121
107 060124
108 060127
109 060132
110 O60134

060137
112 060140

*
*************************t
*

INIT> INIT2 - INITIALIZATION91 *
*

GET AND INITIALIZE 256-BYTE CIRCULAR BUFFER
SET UP MONITOR ROUTINE

*
*
*
**
IN IT EUU *

LX I B,256 ASK FOR 256-BYTE BUFFER001 00M 001
RET311

INIT2 EQU *
XCHG
SHLD BUFADR
SHLD FJLLPT
SHLD EMPTY
MVI A / 3 0 3 B
STA SCNVEC
LX I MfMOMITR
SHLD SCNVEC+1
MV I A/3778
STA iocmnd
ORA A

*
HfL ■*> BUFFER
SAVE BUFFER ADDRESS
INIT FILL POINTER
INIT EMPTY POINTER
SET UP MONITOR ROUTINE

353101
042 146 376
042 144 376
042 142 376
076 303
062 150 221
041 174 140
042 151 223
076 377
062 040 217

SET BAUD RATE/ PARITY

NC «> NO ERROR267111 §
RET311 *

9-16

JL

a:88|SCBSSSSSS8S3SISlSSIISgBt:|ltlSB8SSaSSSII8aiaSSISI3Bl838IISCSBlS«lS<llSSlB
LOC object code source statements PAGE 5ITEM

ssssESicscamaasasaBiBsisisiXBiisiiBimisisimiiB
060141
060141
060141
060141
060141
O60141
060141
060141
06014]
060141
O60141
060144
060147
U60151
060152
O60153
060156
060157
06O162
060165
O60165
060170
u 6 0 1 7 1
060172
060173

114 ** *************************115
116 *

INTERRUPT ROUTINE117 *9
118 *

ENTRY; PSW, H & L PUSHED1 19 *»
120 *

EXIT 5 INTERRUPT CLEARED, RET FROM INI121 *
122 *

INTRPT EO'J *
LHID FILLPT
LDA IOINPT
ANI 177P
MOV M,A
I NX H
LDA BUFADR
CMP L
JNZ INT020
LHLD BUFADR

INT020 EQU *
SOLD FILLPT
POP H
POP PSW

123
get FILL pointer
GET CHARACTER
CLEAR HIGH BIT
PUT INTO CIRCULAR BUFFER
INCREMENT FILL POINTER
REACHED END OF BUFFER?

052 144 376
072 00<* 217
346 177

124
125
126
127 167
128 043

072 146 376129
275130
302 165 140
05? 146 376

131 NO
YES - POINT TO BEGINNING132

133 *
042 144 37 STORE NEW FILL POINTER

RETURN FROM INTERRUPT
134

341135
361136 t
373137 El
311138 RET

9-17

s ss s
ITEM LOC OBJECT CODE SOURCE STATEMENTS PAGE

I3a«:iixs::ii^cissiaimiitii9a«uii>>iai>sas
060174
060174
060174
060174
060174
060174
060174
060174
060174
060174
060174 052 142 376
060177 072 144 376
060202 ?7b
060203 310
060204 176
060205 117
060206 345
060207 315 202 000
5160212 341
060213 043
060214 072 146 376
•060217 275
O60220 302 226 140
G60223 052 146 376
060226
060226 04? 142 376
060231 303 174 140
060234 B t , END
ERRORS FOUND IN ASSEMBLY CODE .

140 *
Hi *************************
142 **

MONITR * DISPLAY ANY CHARACTERS REC'D143 **
144 *f

ENTRY'S DON'T CARE145 *9
146 *

EXIT 5 EMPTY POINTER » FILL POINTER147 *
148 *

MONITR EQU *
LHID EMPTY
LDA FILLPT
CMP L

149
1.50 GET EMPTY POINTER

SAME AS FILL POINTER?151
152 9
153 RZ YES * QUIT

NO - DISPLAY CHARACTER154 MOV A,M
MOV C/A
PUSH H
CALL CHINT
POP II
INX H
LDA BUFADR
CMP L
JNZ MON020
LHLD BUFADR

MON020 EQ'J *
SHLD EMPTY
JMP MONITR

9
155
156 (SAVE EMPTY POINTER)
157
158 *
159 INCREMENT EMPTY POINTER

HIT END OF BUFFER?
9 9

160
161 9
162
163 YES POINT TO BEGINNING
164 9 9
165 STORE NEW EMPTY POINTER

AND CHECK FOR ANY MORE CHAkS166
167

0

9-18

-Jl

SYMBOL VALUE REFERENCED ON
ix::::sc:js:BizccsnE

060000
177146
000202
060033
177142
177144
060101
060105
060165
060141
177517
107440
1 0 7 id
060226
060174
t 77761
O60050
060032
1 10550

B(3:tl3SSBl|IIEeiS3IISSB83IBaeaismacasSS8IlI8XtI3ll
62ALSTRT

3UFADR
CHINT
DUMMY
EMPTY
FILLPT
I NIT
I N I T 2
INJ020
INTRPT
IOCERR
IOCWND
IOINPT
MON020
MONITR
msgpti
nodrvr
RETURN
SCNVEC

60,
132, 160, 163102, 129,50,

42, 157
69, 7067, 68,79,

165104,
103,

150,
124,

52,
134, 15151,

6397,
64100,

1 33,
123,

131
65
8337,

57, 110
12556,

1 64 ,
1 49,
38,

162
107 166,

81
86, 80
74, 66
46, 136, 108

1 WORK TRACKS53 REFERENCES,19 SYMBOLS,

9-19/9-20

Section X. DATA COMM MODULE

The 2640 Series terminals offer both multi-point and basic point-to-point data communications
capabilities. The data comm firmware is separate from the other mam code modules and normally
resides in locations 20K-24K. This physical independence from the other main code modules
means that you may alter or expand the data comm code without affecting the operation of the
terminal's other main code firmware

Before you consider doing so, however, you should become thoroughly familiar with the existing
data comm capabilities by studying chapter five of the 2645A/S Reference Manual (part number
02645-90005),

DATA COMM/MAIN CODE INTERFACE

If you'll think back to the memory map illustrated in figure 1 -3, the area from 20K to 24K (decimal) is
allocated to data comm code

The first location of this area (50000 octal) must contain the code for the ASCII character :‘P” to tell
the main code firmware that a data comm code module is present.

The second location must contain the value 20K/256, This value is used as an address check by
the main code firmware

The next six locations are used for defining certain control characters (such as the transfer trigger,
record separator, and block separator) and for inhibiting the programmatic alteration of keyboard
l/F jumpers S through Z

The 33 bytes starting at location 050010 (octal) are used as an entry vector table that allows the
main code firmware to pass control to the various routines in the data comm module. All access
from main code to the data comm routines is achieved by CALLs to the appropriate entry point in
this vector table Control returns from the data comm routines to the main code via subroutine
RETurn calls.

Each entry in the vector table consists of three bytes The first byte contains a JMP instruction (303
octal or C3 hex) and the next two bytes contain the address of the particular data comm routine. If a
certain data comm environment does not need to use a particular routine, you must issue a RETurn
instruction instead of a JMP in the vector table. The mam code firmware expects the various entries
in the vector table to be as follows

Octal
Location Data Comm Routine

050010
050013
050016
050021
050024
050027
050032
050035
050040
050043
050046

Initialization Routine
Initialization Continuator
Monitoring Routine
Control Routine
Data Comm Self-Test Routine
Character Input Routine
Character Output Routine
Binary Input Routine
Start Binary Output Routine
End Binary Output Routine
Data Comm Interrupt Handler

10-1

Descriptions of all of these routines, including the register contents when the routine is called and
the expected register contents when control is returned to the main code, are presented under data
communications/main code interface in the firmware portion of the 13255A Technical Information
Package.

GENERAL OPERATION

To give you a general feel for how the existing data comm firmware operates in conjunction with the
other main code modules, let’s look at a typical input (receive) and output (transmit) operation.

Receiving Data

When the data comm interface receives one or more characters from the remote device it causes
an interrupt. In response to the interrupt, the main code passes control to location 40B (refer to
table 1-4 in Section I). This location contains a JMP instruction to location 050046B which is the
entry point for the data comm interrupt handler in the data comm module’s entry vector table. This
interrupt routine accepts the incoming characters directly from the data comm interface board and
stores them in the data comm buffer (updating certain buffer pointers in the process). When all the
incoming characters have been stored, the routine sets a context flag to specify that there is data in
the buffer and then issues a RETurn instruction.

The data comm input routine is called regularly from the wait loop. This routine examines the
context flags to see if there is any incoming data in the data comm buffer yet to be processed. If a
context flag indicates that there is, then the data comm input routine processes the data
appropriately.

The Character Input Routine (entry location 050027B) fetches 8-bit characters from the data comm
buffer, masks out the 8th bit, and passes on a 7-bit character code. The Binary Input Routine (entry
location 050035B) fetches an 8-bit character from the data comm buffer and passes on the full 8-bit
code. Like the interrupt handler routine, these two routines also manipulate the buffer pointers and
context flags appropriately. Each time one of these input routines is called, one character is
removed from the data comm buffer and passed back to the main code. Thus, each time through
the wait loop, one incoming character from the data comm buffer can be processed. When all the
data has been extracted from the data comm buffer, the input routine resets the context flags to
indicate that the buffer is empty.

Transmitting Data

When a main code module wants to transmit a character via the data comm interface, it places the
character in the A-register and transfers control to the Character Output Routine (entry location
050032B). The calling routine uses the Carry Bit to indicate whether or not the character is the last
one in the block. The Character Output Routine extracts the character from the A-register, sends it
directly to the data comm interface board and then issues a RETurn instruction. (If the character
was specified as being the last one in a block, the routine transmits the appropriate record and/or
block separator characters before returning control to main code.)

10-2

Appendix A. PROGRAM REFERENCE
TABLES

ASCII-Hex-Octal Conversion

ASCII HX DCT ASCII HX OCT ASCII HX OCT ASCII HX OCT

HULL 00 000
01 001
02 002
03 003
04 004
05 005
06 006
07 007
08 01 0
09 01 1
OA 012
OB 013
OC 014
OD 01 5
OE 016
OF 017

40 1 00
41 1 01
42 1 02
43 1 03
44 1 04
45 1 05
46 1 06
47 1 07
48 110
49 111
4 A 112
4B 113
4C 114
4D 115
4E 116
4F 117

80 200
81 201
82 202
83 203
84 204
85 205
86 206
87 207
88 21 0
89 21 1
8A 21 2
8B 213
8C 214
8D 215
8E 216
8F 21 7

CO 300
C1 301
C2 302
C3 303
C4 304
C5 30S
C6 306
C7 307
C8 310
C9 31 1
CA 312
CB 313
CC 314
CD 315
CE 316
CF 317

0
STH A
STX B
ETX C
EOT D
ENQ E
ACK F
BELL G
BS H
HT I
LF J
VT K
FF L
CR M
SO H
SI 0

DLE 1 0 020
1 1 021
12 022
13 023
1 4 024
15 025
16 026
1 7 027
18 030
19 031
1 A 032
1 B 033
1C 034
1D 035
1E 036
1F 037

P 50 120
51 121
52 122
53 123
54 124
55 1 25
56 126
57 1 27
58 130
59 131
5A 132
5B 133
5C 134
5D 135
5E 1 36
5F 137

90 220
91 221
92 222
93 223
94 224
95 225
96 226
97 227
98 230
99 231
9A 232
9B 233
9C 234
9D 235
9E 236
9F 237

DO 320
D1 321
D2 322
D3 323
D4 324
D5 325
D6 326
D7 327
D8 330
D9 331
DA 332
DB 333
DC 334
DD 335
DE 336
DF 337

DC1 Q
DC2 R
DC3 S
DC4 T
NACK U
SYN V
ETB W
CAN X
EM Y
SUB Z
ESC [
FS \
GS]
RS A

US

Space 20 040
21 041
22 042
23 043
24 044
25 045
26 046
27 047
28 050
29 051
2 A 052
2B 053
2C 054
2D 055
2E 056
2F 057

60 140
61 1 41
62 142
63 143
64 144
65 145
66 146
67 147
68 150
69 1 51
6A 1 52
6B 153
6C 1 54
6D 155
6E 156
6F 157

AO 240
A1 241
A2 242
A3 243
A4 244
A5 245
A6 246
A 7 247
A8 250
A9 251
AA 252
AB 253
AC 254
AD 255
AE 256
AF 257

EO 340
E1 341
E2 342
E3 343
E4 344
E5 345
E6 346
E7 347
E8 350
E9 351
EA 352
EB 353
EC 354
ED 355
EE 356
EF 357

! a
it b
0 c
$ d
X e

fJr
» 9
C h
) i

J«
k+
1
m
n

/ o

A-1

ASCII HX OCT ASCII HX OCTASCII HX OCTASCII HX OCT

BO 260
B1 261
B2 262
B3 263
B4 264
B5 265
B6 266
B7 267
B8 270
B9 271
BA 272
BB 273
BC 274
BD 275
BE 276
BF 277

FO 360
F1 361
F2 362
F3 363
F4 364
F5 365
F6 366
F7 367
F8 370
F9 371
FA 372
FB 373
FC 374
FD 375
FE 376
FF 377

0 70 160
71 161
72 162
73 163
74 164
75 165
76 166
77 167
78 170
79 171
7A 172
7B 173
7C 174
7D 175
7E 176
7F 177

30 060
31 061
32 062
33 063
34 064
35 065
36 066
37 067
38 070
39 071
3A 072
3B 073
3C 074
3D 075
3E 076
3F 077

P
1 q
2 r
3 9
4 t
5 u
6 v
7 w
8 x
9 y

z:
>

i<
>

> •V

DEL?

A-2

Main Routine Entry Vectors

Entry
LocationDescriptionName

40DSPMSG
RSTDSP
DCNUM
DCPLUS
DCMNUS
ESCEND
CHKLIM
CLBLXF
SBLXFO

Display message
Restore normal display
Accumulate digit for escape sequence
Add plus sign to parameter
Add minus sign to parameter
Terminate escape sequence
Check parameter limits
Clear pending multi-character transfer flag
Set pending flag for escape sequence initiated multi-character

transfer
Set pending flag for non-block mode keyboard initiated multi

character transfer
Initialize for display transmission
Home cursor (exclude transmit-only fields)
Home down cursor
Check number of free display blocks
Add display block to free list
Clear line
Clear display
Set bit in byte
Send block terminator and end transfer
Send block terminator only
Transmit character
Perform terminal self-test
Perform character function
Initialize for display tear-apart
Get next display character for output
Perform Line-Feed
Expand display control byte
Get next display character in display chain
Process data communications input
Locate first unlocked row
Turn off MEMORY LOCK
Hang terminal on fatal error
Pointer to buffer overflow message
Perform data communications self-test
Execute code in optional ROM
Convert 16-bit binary to decimal
Convert 8-bit binary to decimal
Locate current cursor position
Check for page mode

43
46
49
4C
4F
52
55
58

5BSBLXFA

5ESTRTBL
CURPH
CURPHD
FRECNT
PTBLK
CLEARL
CLEARS
FNDTB2
SDTERM
SDTRM1
XPUTDC
TRMTST
CHINTO
INITDO
GETDSP
LNFEED
EXPAND
NXTCHR
GETDCM
MLKSCO
MLKOFO
HANGUO
BUFMSG
DCTEST
IORMGO
BN2DEC
BN2DE0
RCADRA
GIMODE

61
64
67
6A
6D
70
73
76
79
7C
7F
82
85
88
8B
8E
91
94
97
9A
9D
AO
A2
A5
A8
AB
AE
B1

A-3

Keyboard Routine Entry Vectors

Entry
LocationDescriptionName

4802INITKB
GTKEY
KBCTL
KBMON
SETMD1
CLRMD1
BELL
SETXMT
CLRXMT
STJMPR
STLKYS
ALPCHK
NUMCHK

Initialize keyboard
Get keyboard input
Keyboard control
Monitor keyboard
Set terminal Mode 1 flags
Clear terminal Mode 1 flags
Sound the keyboard bell
Turn on the TRANSMIT indicator
Turn off the TRANSMIT indicator
Set the Jumper Escape Sequence processor
Set the Latching Key Escape Sequence processor
Alpha field check
Numeric field check

4805
4808
480B
480E
4811
4814
4817
481A
481D
4820
4823
4826

Keyboard Control Routines (Firmware)

KBCTL (ZKBCTL) A = Control Code

1 = Lock keyboard
2 = Unlock keyboard
3 = Repeat last key
4 = Set permanent block mode
5 = Set Self-Test start mode
6 = End Self-Test start mode
7 = Reset keyboard

8 = Check for I/O key down
9 = Stop key repeat

10 = Check for Break key
11 = Switch character set
12 = Set foreign mode
13 = Set bi-lingual mode
14 = Set foreign mode 1

A-4

Alternate I/O Entry Vectors

Entry
LocationDescriptionName

6002Initialization routine
Initialization continuator
Interrupt processor
Monitoring routine
Input routine
Output routine
Control routine
Status routine
Device name message

IN1 ALT
IN2ALT
ALTINT
ALTMON
ALT2BF
BF2ALT
ALTCTL
STAALT
MSGALT

6005
6008
600B
600E
6011
6014
6017
601A

Data Communications Entry Vectors

Entry
LocationName Description

INITDC
INI2DC
DCMON
DCCTL
DCTST
GETDC
PUTDC
GETBIN
STBIN
ENDBIN
DCINTR

Initialization routine
Initialization continuator
Monitoring routine
Control routine
Self-test routine
Character input routine
Character output routine
Binary input routine
Start binary output routine
End binary output routine
Data comm interrupt handler

5008
500B
500E
5011
5014
5017
501A
501D
5020
5023
5026

A-5/A-6

: ."1

*

1

>. .

- 4.

