
Integrating HP BASIC with
MS-DOS Applications

r;,ow HEWLETT
~~ PACKARD

Edition 1 June 1989

Reorder Number
82301-90022

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

~ Copyright 1989, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett -Packard Company. The information con
tained in this document is subject to change without notice.

MS-DOS" and Microsoft .. are U.S. registered trademarks of Microsoft Corporation.

Lotus" and 1-2-3 It are U.S. registered trademarks of Lotus Development Corporation.

Corvallis Information Systems
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 June 1989 Mfg. No. 82301-90023

Contents

Chapter 1: Introduction to the Multi-Com Capability
Introduction .. 1-1
What is Multi-Com? .. 1-2
How Does Multi-Com Work? .. 1-2
How Do You Use Multi-Com? .. 1-3

For Beginners ... 1-3
For Users Who Want More Direct Control of Communication 1-3
For Users Who Want Full Control .. 1-3
For Users Who Want to Use Multi-Com with Lotus 1-2-3 ... 1-4
For All Multi-Com Users ... 1-4

Chapter 2: Software Installation
Using the MCINSTAL Program .. 2-2
Manually Installing the Multi-Com Files .. 2-3
HP BASIC Statements You Will Need to Use with Multi-Com ... 2-4

Chapter 3: The POPCOM Window
A Typical POPCOM Window .. 3-1
Interpreting Status Displays ... 3-4

"Processor status" Line .. 3-4
"Input is enabled from" Line ... 3-5
"Input is locked by' Line .. 3-6
"Buffer status" Line .. 3-6
"Trigger key" Line ... 3-7

Contents 3

Chapter 4: Multiple Language Processor Considerations
Overview.............. 4-1
Gaining Exclusive Access to MS-DOS or another BASIC Language Processor 4-1
Releasing Exclusive Access .. 4-2
Waiting .. 4-2
Exclusive Access with the POPLIB Functions and Subprograms ... 4-3
Grouping Several Multi-Com Operations .. 4-3
Memory Considerations ... 4-3

Chapter 5: Using the Library POPUB

Chapter 6: Using the BASIC Communication Library, BLPUB

Chapter 7: Using the Advanced Communication Library, ADVUB

Chapter 8: Using the Lotus 1-2-3 Library, 123UB

Chapter 9: A Sample Program Using the Pop-Up Communications Window
The Sample Program .. 9-1
Explanation ... 9-3

Appendix A: Error Codes

4 Contents

Appendix B: Keyboard Scancodes
PC Scancodes ... B-1
HP BASIC Keycodes .. B-4

Appendix C: Technical Information About How Multi-Com Works
Introduction .. C-1
Theory of Operation .. C-4

Working with MS-DOS Applications .. C-4
Interrupting BASIC from MS-DOS or Another BLP .. C-5
Using Multi-Com with Multiple BLPs .. C-5
Communicating Between BLPs ... C-5

The Registers ... C-6
The SYSTEM STATUS Register .. C-8
The BLP1 STATUS, BLP2 STATUS, BLP3 STATUS, and
MYBLP STATUS1 Registers .. C-9
The MYBLP STATUS2 Register .. C-12
The SET CONTROL Register .. C-12
The CLR CONTROL Register ... C-14
The DOS IDLE LIMIT Register .. C-15
The MYBLP BUFFER DATA Register .. C-16
The TRIGGER CODE Register .. C-16
The DATA TO DOS BUFFER ... C-17
The DATA TO BLPx Buffers .. C-18

Contents 5

1
Introduction to the Multi-Com Capability

Introduction

When you install an HP BASIC Language Processor in your computer, you install more than the
ability to use HP BASIC-you install a powerful microprocessor similar to the one that runs your
personal computer. Until Multi-Com software was developed, it was difficult to use both
microprocessors simultaneously, to make both of the computers inside your computer run at the
same time.

Background mode - the mode that allows your HP BASIC program to run while you use the MS
DOS operating system to run a second program - is a feature of the HP BASIC Language Proces
sor. Multi-Com software uses this feature and a special communication channel between the
BASIC Language Processor and MS-DOS. If you are working in the MS-DOS environment, you
can interact with a BASIC program that is running in background mode. You can type in data to
be sent to a BASIC program from the MS-DOS environment, or look at data displayed by the
BASIC program while it is running in background mode. You may not even need to exit whatever
MS-DOS application program you are using to be able to interact with a BASIC program. If you
are using Lotus 1-2-3, you can even have your BASIC program send data to the spreadsheet that
you are working on!

The communication channel can be used for communication between two or three BASIC
Language Processors in the same PC, too. Since up to three language processors can be installed
in one PC, a BASIC program running on one language processor can communicate with a BASIC
program running on another language processor.

Introduction to the Multi-Com Capability 1-1

What is Multi-Com?

Multi-Com is a collection of HP BASIC Compiled Subprograms (CSUBs) and one special MS
DOS program that is used for messages. The Multi-Com software is on the "Manual Examples
and Selected CSUBs" disk. We'll describe what these CSUBs do in more detail in later chapters,
and for a discussion of how CSUBs are used, you should refer to chapter 5 ("Subprograms and
User-Defined Functions") of the manual Programming with HP BASIC. For now, it is enough to
know that the CSUBs included in the Multi-Com software can be called from BASIC programs for
the purpose of using the communication channel between one or more BASIC Language Proces
sors and the MS-DOS operating system.

An important feature of the Multi-Com software is the POPCOM window, a window created by an
MS-DOS program called POPCOM.COM. This window may be "popped up" or displayed while
an MS-DOS application is running, provided the user's display is in alphanumeric (not graphics)
mode. The window is used to send information to an HP BASIC program running in background,
and to display messages from an HP BASIC program running in background. Although Multi
Com can be used without the POP COM window, the window allows you to interact with a BASIC
program without exiting your MS-DOS application.

The POPCOM window is described in detail in chapter 3.

How Does Multi-Com Work?

The Multi-Com software creates data buffers in an area of memory that is easily accessible by all
three BASIC Language Processors and by MS-DOS. These data buffers are, in effect, "mail
boxes" that are filled with data that can only be read by a particular BASIC Language Processor or
by MS-DOS. The data sent can be ASCII data or codes that are normally associated with the
pressing of keys. This means that when you are working in the MS-DOS environment, data sent to
your BASIC program can "look" like the pressing of keys. The same is true if you send this type of
data from a BASIC program to the MS-DOS environment - it can "look" as if keys on the key
board were being pressed. There is one "mailbox" for the MS-DOS operating system, and one
each for each BASIC Language Processor that is installed.

Full details on how the Multi-Com software works are included in appendix c to this manual.

1-2 Introduction to the Multi-Com Capability

How Do You Use Multi-Com?

First you must install the Multi-Com software, using the instructions in chapter 2. Next, you
should learn all about the POPCOM window by reading chapter 3. If you plan to use more than
one BASIC Language Processor, read chapter 4 to learn about mUltiple language processor con
siderations.

How you use the Multi-Com software after that depends on your sophistication as an HP BASIC
programmer, and on your sense of adventure. Of the four libraries of HP BASIC Compiled Sub
programs (CSUBs), one is for beginners, two are for more adventurous programmers, and one is
specifically for users of Lotus 1-2-3.

For Beginners

The "POPCOM" Library, called POPLIB, makes the simplest use of the "pop-up" window created
by POPCOM.COM. It is described in chapter 5.

For Users Who Want More Direct Control of Communication

The BASIC Communication Library, called BLPLIB, offers more flexibility and control than
POPLIB. Principally, the CSUBs in this library are used to send and receive information without
the POPCOM window. They are also used to avoid contention for shared resources. Users of
BLPLIB must be mindful of multi-task conflicts (described in chapter 4) that may arise. BLPLIB
is described in chapter 6.

For Users Who Want Full Control

The Advanced Communication Library, called ADVLIB, offers even more flexibility and control
than BLPLIB. The subprograms and functions of this library can be used to control the way the
POPCOM window is used, and how the window looks. ADVLIB is described in chapter 7.

Introduction to the Multi-Com Capability 1-3

For Users Who Want to Use Multi-Com with Lotus 1-2-3

The Lotus 1-2-3 Library, called 123LIB, is included as an example of the way Multi-Com can be
used with a specific application. Multi-Com can be used to communicate with many MS-DOS pro
grams, and it can also be used to write custom subprograms, specifically tailored to an MS-DOS
application.

123LIB is a library of such custom subprograms. 123LIB provides a convenient way to send com
mands to Lotus 1-2-3 from HP BASIC, and to move the cell pointer around the 1-2-3 spreadsheet.
A source code version of this library is included on the "Manual Examples and Selected CSUBs"
disk in a file called S123. It may be used as an example of how you can create custom subpro
grams for use with Lotus 1-2-3 or other MS-DOS application programs.

For All Multi-Com Users

Chapter 9 contains a sample program that illustrates the way that many of the Multi-Com subpro
grams and functions can be used.

1-4 Introduction to the Multi-Com Capability

2
Software Installation

The ability to integrate HP BASIC programs with MS-DOS applications is made available through
the Multi-Com files, which are on the "Manual Examples and Selected CSUBs" disk. This section
describes how to install these files for use with your applications.

Two types of files provide these capabilities. POPLIB, BLPLIB, ADVLIB, and 123LIB are files
that contain HP BASIC Compiled Subprograms (CSUBS). These CSUBS are a library of subpro
grams and functions, which you may include in your HP BASIC program. For convenience, these
files should be located in the same directory as your HP BASIC software.

The file POPCOM.COM is an MS-DOS program that allows the use of a "pop-up" window for
communicating with HP BASIC. In addition to being located in a convenient directory,
POPCOM.COM must also be executed once to allow "pop-up" window operation. This execution
can be done manually when needed or it can be automatically executed at system start-up.

--Note

You must have an HP BASIC Language Processor installed in your PC and have
already installed the HP BASIC software before continuing! Refer to chapter 2 of
the manual Installing and Using HP BASIC in the MS-DOS Environment for instruc
tions.

Software Installation 2-1

Using the MCINSTAL Program

The easiest method of installation is to use the automatic MCINSTAL program. This program will
copy all necessary files and configure your system so that POPCOM.COM is executed each time
you boot your computer.

Note

The automatic installation procedure will modify your AUTOEXEC.BAT file by
adding a line something like:

C:\BLP\POPCOM.COM

If you do not wish to have your AUTOEXEC.BAT file modified automatically, skip
this section and go on to the next, "Manually Installing the Multi-Com Files."

1. Place the "Manual Examples and Selected CSUBs" disk in drive A.

2. Select drive A as the current default drive.

3. When you have the A> prompt, type:

MCINSTAL (Enter!.

4. Follow the instructions on the display. This procedure is very similar to the procedure used
when you installed HP BASIC, but simpler. The only information you will need to supply is
the directory where you would like the files installed. This should be the same directory you
used for the HP BASIC installation.

2-2 Software Installation

Manually Installing the Multi-Com Files

You can install all of the Multi-Com files manually using MS-DOS, but you must edit your
AUTOEXEC.BAT file if you wish to have the file POPCOM.COM executed when you start your
Pc. Use the procedure that follows.

1. Use the MS-DOS copy command to copy the following files to the directory (we will assume
you named your directory C:\BLP) where you installed HP BASIC:

• POPLIB

• BLPLIB

• ADVLIB

• 123LIB

• POP COM. COM

As an example,

COPY A:POPLIB C:\BLP

copies POPLIB from a floppy disk to the directory C:\BLP on a hard disk.

Copy all of the files to place the libraries of CSUBs and the file POPCOM.COM into the
same directory as BASIC.EXE.

'II
Note

You may choose not to modify your AUTOEXEC.BAT file at all. However, in that
case, remember that you must explicitly execute the file POPCOM.COM from the
keyboard before you can take advantage of Multi-Corn's capabilities.

2. Change to the root directory to modify the AUTOEXEC.BAT file used by your computer.
You can use any convenient MS-DOS editor program capable of storing an MS-DOS ASCII
file, including Executive MemoMaker, Microsoft Word, and EDLIN. The following line
should be added to your AUTOEXEC.BAT file:

C:\BLP\POPCOM.COM

AUTOEXEC.BAT must be re-saved as an ASCII file.

3. Reboot your computer or type AUTOEXEC to make sure that the file POPCOM.COM has
been executed to allow "pop-up" window operation. You now have all the files you need for
Multi-Com capability.

Software Installation 2-3

HP BASIC Statements You Will Need to Use with Multi-Com

When you write an HP BASIC program to use Multi-Com, it is helpful to be familiar with the
background mode of operation. As is explained in chapter 4 of Installing and Using HP BASIC in
the MS-DOS Environment, you can place your BASIC Language Processor into background mode
by executing the statement:

OUTPUT 19;"BACKGROUND"

within your program.

You may want to incorporate a particular CSUB or a whole library into your program using a
LOADSUB statement. As is explained in chapter 5 ("Subprograms and User-Defined Functions")
of Programming with HP BASIC, a LOADSUB statement can be used to load one of the CSUBs in
a library, or the whole library. For example, the statement:

LOADSUB Pop_output FROM "POPLIB"

loads the subprogram Pop_output from the library POPUB. The statement:

LOADSUB ALL FROM "POPLIB"

loads all of the subprograms from POPUB. You could then "RE-STORE" the program, thereby
incorporating all of the CSUBs of POPUB into your program.

A third usage of the LOADSUB statement is:

LOAD SUB FROM "POPLIB"

which loads only those CSUBs actually used in your program. Refer to the discussion of LOAD
SUB in the HP BASIC Language Reference for more information on how this keyword is used.

2-4 Software Installation

3

The POPCOM Window

The POPCOM window is your window into BASIC from the MS-DOS environment while your
BASIC program is running in background. Multi-Com software allows your BASIC program to
control the appearance of the window and the way the window is used.

The window itself is created by the MS-DOS program POPCOM.COM. If the file
POPCOM.COM is loaded, you can call up the window by pressing the keys
I Shift II Ctrlll Backspace I.

Ii
Note

If your MS-DOS application program uses the display in graphics mode as opposed
to alphanumeric mode, the POPCOM window cannot be displayed while you are
running that MS-DOS program.

If no BASIC program is running in background mode, the window will be displayed, but there can
be no communication with BASIC. If a BASIC program that uses the Multi-Com capability hap
pens to be running in background mode, you can use the window to send data to the program from
the MS-DOS environment or you can interact with your BASIC program. You may not even have
to exit your MS-DOS application to communicate with your BASIC program!

A Typical POPCOM Window

Multi-Com software allows you to change the appearance of the window, but a typical window
looks something like this.

The POPCOM Window 3-1

/ "\

C:\BLP>

This is the INPUT line of the window.

BLP1$ BLP2$ BLP3$

This is the MESSAGE area.

\.... ./

The top line of the window is always the input line. It is used to send information to HP BASIC.
When BASIC asks a question, this is where you type a response.

The second line of the window is the BLP identification line. Since up to three BASIC Language
Processors (BLPs) can be installed in one PC, this line allows you to choose the BLP you want to
use. Simply use the cursor keys to select a different BLP.

'II If other BLPs are not installed, you cannot select them.

Note

The bottom area is the message area. The size and appearance of this area can be manipulated
from a BASIC program to be as small as one line are as large as 18 lines.

3-2 The POPCOM Window

When the window is displayed, the following keys have a special meaning:

IEsel Hides the POPCOM window.

10eil Hides the POPCOM window and removes POPCOM.COM from
memory. (This only works if there are no BLPs currently in back
ground mode-you must have exited BASIC using ICtrll[IF101 or the
BLPs must not be booted. Also, you may not be able to remove
POPCOM.COM from memory if you have loaded another
memory-resident program since POPCOM.COM was loaded.)

[EIJ Displays a summary of BLP status.

The POPCOM Window 3-3

Interpreting Status Displays

The screen that follows shows a typical status display that might be shown as the result of pressing
[ITJ.

C:\BLP>

POPCOM A.OO.OO DOS BLPl BLP2 BLP3
processor status Present Background Absent Absent

input is enabled from D D
input is locked by D

buffer status Empty Not empty
trigger key Bl1B

"Processor status" Line

This line reports one of five conditions for each BLP and for MS-DOS: present, absent, back
ground, not booted, or exited.

3-4 The POPCOM Window

"Input is enabled from" line

This line provides an indication of which language processors have enabled input from other
language processors or DOS. As shown in the screen below, a "D 2" in the BPI column means
that BLPI will accept information only from DOS and BLP2, but not from BLP3. The "DI" in the
DOS column means that DOS will only accept input from itself and BLPI, not from BLP2 or
BLP3. The BASIC Language Processors can have input enabled from multiple sources; DOS can
have input enabled from itself and, at most, one BLP at a time.

C:\BLP>

POPCOM A.DD.DD DOS BLPl BLP2 BLP3

processor status Present Background Not Booted Absent
input is enabled from Dl D 2 D

input is locked by Dl
buffer status Empty Empty Empty

trigger key BllB BllB

The POPCOM Window 3-5

"Input is locked by" line

This line provides an indication of which language processors have exclusive access to other
language processors or MS-DOS. As shown in the screen below, a" 1" in the BLP2 column
means that BLP1 has exclusive access to BLP2. No other language processor may lock BLP2 until
BLP1 releases it. The "D1" in the DOS column means that DOS is locked by itself and BLPl.
BLP2 and BLP3 will be prevented from accessing DOS. DOS can be locked by itself and one BLP.
BLPs can be locked by, at most, one other language processor at a time. For more information
about locking and unlocking, refer to chapter 4, "Multiple Language Processor Considerations,"
and to the descriptions of the function FNBlp _lock and the subprogram Blp _unlock in chapter 6.

C:\BLP>

POPCOM A.OO.OO DOS BLPl BLP2 BLP3
processor status Present Background Background Absent

input is enabled from Dl D 2 Dl
input is locked by Dl 1

buffer status Empty Empty Empty
trigger key BllB BllB

"Buffer status" line

This line reports whether the buffer for that BLP or for the MS-DOS operating system is empty or
not empty.

3-6 The POPCOM Window

"Trigger key" Line

This line reports a hexadecimal number representing the HP BASIC keycode that may be sent to
the BASIC program if the buffer for that BLP receives data. If the BLP is in ASCII data mode
(ready to receive ASCII data rather than keyboard scancodes) and the buffer starts out empty, a
trigger keycode will be sent to the BASIC program upon receipt of the first character in the buffer.
A trigger keycode is always sent to your BASIC program under these conditions, and your pro
gram will respond just as if a key had actually been pressed.

The default trigger keycode is BUB, a hexadecimal value that corresponds to the function key [IT].
When data arrives in a BLP's buffer, the trigger keycode is sent as if you had pressed the key [IT].
If your program does not contain a line with the statement ON KEY 1, BASIC will still interpret
the trigger keycode as the [IT] key, and display the typing aid "Edit." No key is actually pressed,
but the BASIC program is notified by the trigger keycode that data is in the buffer. No trigger key
code can be used for the DOS buffer, so none is reported in this display.

The POPCOM Window 3-7

4

Multiple Language Processor Considerations

Overview

Up to three language processors may be installed in one PC. If your configuration has (or may
have in the future) more than one HP BASIC Language Processor, you need to be aware of the
considerations described in this chapter. Even if you have only one BASIC Language Processor,
you still need to be familiar with requesting exclusive access to MS-DOS using the function
FNBlp _lock and releasing it with the subprogram Blp _unlock.

Language processors communicate with each other and with MS-DOS using a special channel.
The channel is a resource that is shared. Because of this, you must avoid having two (or more)
language processors "talking" to (sending data to) a single destination at the same time. Multi
Com manages this contention by allowing a language processor to gain "exclusive access" to a
shared resource.

Gaining Exclusive Access to MS-DOS or another BASIC
Language Processor

In order for a language processor to communicate with MS-DOS or another language processor, it
must have exclusive access. This is to prevent overlap of information resulting from two or more
language processors trying to send data over the channel at once. When one language processor
has exclusive access to a resource, other language processors are prevented from gaining access to
the same resource. This ensures that only one language processor will be able to "talk" at a time.

If your use of Multi-Com is limited to the six POPUB functions and subprograms, gaining
exclusive access is handled automatically for you. If, on the other hand, you intend to use the func
tions and subprograms in BLPUB and/or ADVUB, your program will have to explicitly gain
exclusive access by using the function FNBlp lock. Even if you have only one language processor,
it may not "talk" to MS-DOS unless your program has called FNBlp lock first. (See the descrip
tion of FNBlp lock in chapter 6.)

Multiple Language Processor Considerations 4-1

Releasing Exclusive Access

If your language processor has gained exclusive access to a resource using FNBlp lock, you should
release this resource as soon as you finish sending data to it. This should be don; so that another
language processor will be able to gain access. Releasing exclusive access is accomplished by cal
ling the subprogram Blp _unlock. (See the description of Blp _unlock in chapter 6.)

Waiting

To attempt to gain exclusive access to a resource, use FNBlp lock. This function returns with a
value of 1 if the resource is available and your language proc~ssor is successful in locking it. If, on
the other hand, the resource is already locked by another language processor, FNBlp lock will nor
mally WAIT until it can successfully gain access. As soon as the other language processor releases
the resource, FNBlp lock will perform the lock and return with a value of 1. This is called per
forming the lock WITH WAIT.

As an option, you can also call FNBlp lock WITHOUT WAIT. When FNBlp lock is called
WITHOUT WAIT, FNBlp lock retur-;;s immediately, whether the lock was successful or not. If
the BASIC Language Processor is successful in gaining exclusive access, FNBlp lock returns with a
value of 1. If the resource is already locked by another language processor, your language proces
sor will not be granted access and the function will return with a value of O.

Calling FNlp lock WITH WAIT has the effect of suspending your HP BASIC program until the
resource you; language processor is trying to "talk" to is available for exclusive use. Calling
FNBlp lock WITHOUT WAIT allows your program to test a resource for availability but then to
continue doing useful work if it's not available. Of course, the program will have to test again with
FNBlp _lock in order to actually send data to this resource.

If you have more than one BASIC Language Processor, it is to your advantage to release a
resource as soon as possible to avoid prolonged waiting by other language processors. Remember,
you must call the subprogram Blp _unlock to release any resources that you gained exclusive access
to with FNBlp _lock.

As you look through the descriptions of the various functions and subprograms in the following
chapters, you will notice several of them can be performed WITH or WITHOUT WAIT. The
behavior of these other routines, with regard to Waiting, is exactly the same as it is for FNBlp _lock.

4-2 Multiple Language Processor Considerations

Exclusive Access with the POPLIB Functions and Subpro
grams

As was mentioned before, the POPLIB routines handle exclusive access requests for you automati
cally. They do this by temporarily locking the resource they want to "talk" to. When they are
finished, they automatically return the exclusive access state to what it was prior to their execution.
This means that if your language processor locked a resource using FNBlp _lock prior to a POPLIB
operation, it will remain locked. Similarly, if the resource was not locked prior to calling a
POPLIB function or subprogram, it will be unlocked once the POPLIB operation is complete.

Grouping Several Multi-Com Operations

If you have more than one language processor, there may be times when you want to insure that a
sequence of several Multi-Com functions or subprograms will execute without interruption from
the second language processor. You may use FNBlp lock before the first statement in the
sequence and Blp _unlock after the last. In this way, you will prevent another language processor
form gaining access to the resource until the entire sequence has been performed.

Memory Considerations

In order to operate in background mode, each BASIC Language Processor needs to have its own
memory-resident copy of its operating software. Each copy of this memory-resident program takes
up about lOOK bytes of PC RAM. If you have more than one language processor installed in your
PC, this memory utilization must be considered when determining what PC applications will run
concurrently.

Multiple Language Processor Considerations 4-3

5

Using the Library POPLIB

This section documents the POPLIB subprograms and functions that make use of the window
created by the MS-DOS file POPCOM.COM. These are the easiest routines of the Multi-Com
collection to use. By using these capabilities, the programmer can accomplish two-way communi
cation between the HP BASIC program running in background and a user running a PC applica
tion.

" Note

If you have more than one BASIC Language Processor, the POPLIB subprograms
will protect you from most of the problems associated with sharing resources by
automatically locking and unlocking the communication channel.

The functions and subprograms are:

Subprogram Pop_clear Clears any information in the POPCOM message area

Subprogram Pop_down Hides the POPCOM window

Function FNPop _ enter$ Reads current MS-DOS buffer contents

Function FNPop _input$ Pauses and waits for input from the POPCOM window

Function FNPop _open Determines if POPCOM.COM is loaded and initializes

Subprogram Pop_output Sends an ASCII string to POPCOM window

Error codes returned by these functions and subprograms are summarized in appendix A.

Using the Library POPUB 5-1

Pop_clear

Purpose

This subprogram clears any information in the POPCOM message area.

Usage

[CALL] Pop_Clear ([,nowait[,error]])

Parameters

nowait OPTIONAL a == WAIT for exclusive window access (default)
1 == Do NOT wait for window access

error OPTIONAL numeric variable for error return

Return Variables

none

Example

10 CALL Pop_clear
10 CALL Pop_clear (l,Errn)

In the first example, Pop clear waits for exclusive access to MS-DOS. When exclusive access is
obtained, information in the window will be erased.

In the second example, Pop clear does not wait for exclusive access. An error number is returned
if exclusive access is not available.

Comments

When more than one BASIC Language Processor is installed in a single PC, the user will need to
consider exclusive access and waiting. The default condition is for Pop_output to be performed
WITH Wait.

5-2 Using the Library POPUB

... Pop_clear

If Wait is not specified, program execution will not be suspended. If access is not available, the
Pop_output operation will simply be ignored, and the error return variable will be set to 1.

Successful execution of Pop clear will cause text in the message area of the POPCOM window to
be erased. -

Execution of Pop_clear will temporarily lock MS-DOS to the language processor. Upon comple
tion of this operation, the lock/unlock condition will be restored to its previous state. If MS-DOS
was locked prior to executing Pop clear, it will remain locked when the Pop clear is finished, and
if MS-DOS was unlocked prior to-executing Pop clear, it will remain unlock~d. See chapter 4,
"Multiple Language Processor Considerations," for more information.

Using the Library POPLIB 5-3

Pop_down

Purpose

This subprogram hides the POPCOM window.

Usage

[CALL] Pop_down[nowait[,error]]

Parameters

nowait OPTIONAL

error OPTIONAL

Return Variables

o = WAIT for exclusive window access (default)
1 = Do NOT wait for window access

numeric variable for error return

Error codes are summarized in appendix A.

Example

10 CALL Pop_down

In this example, the POPCOM window will be hidden if exclusive access to MS-DOS is obtained.
If exclusive access is not available, the program will wait until it is obtained.

Comments

When more than one BASIC Language Processor is installed in a single PC, the user will need to
consider exclusive access and waiting. The default condition is for Pop_down to be performed
WITH Wait.

When Wait is specified, program execution is suspended until exclusive access to MS-DOS is avail
able. Access is NOT AVAILABLE if another language processor is performing a POPLIB opera
tion, or MS-DOS has been programmatically locked by another language processor.

5-4 Using the Library POPUB

... Pop_down

Execution will continue as soon as the second language processor completes its POPLIB operation
or the program unlocks MS-DOS.

If Wait is not specified, program execution will not be suspended. If access is not available, the
operation will simply be ignored and the error return variable will be set to 1.

Execution of Pop down will temporarily lock MS-DOS to the language processor. Upon comple
tion of this operation, the lock/unlock condition will be restored to its previous state. If MS-DOS
was locked prior to executing Pop down, it will remain locked when the Pop down is finished, and
if MS-DOS was unlocked prior to-executing Pop down, it will remain unlocked. See chapter 4,
"Multiple Language Processor Considerations," for more information.

Using the Library POPUB 5-5

FNPop _ enterS

Purpose

This function reads the current contents of the MS-DOS data buffer.

Usage

suS = FNPop_enter$

Parameters

none

Return Variables

str$ = contents of the data buffer

Example

10 DIM A$ [77]
20 ON KEY 1 GOSUB 80
30
40 LOOP
50 GOSUB Useful work
60 END LOOP
70
80 A$ = FNPop_enter$
90 PRINT A$
100 RETURN
llO END

In the example above, lines 40 through 60 are executed repeatedly until Softkey 1 causes the
branch specified in line 20. Softkey 1 is the default "trigger key," which is sent to BASIC whenever
the MS-DOS buffer has data ready to be read. In this manner, BASIC can do useful work until the
user interrupts with a request.

5-6 Using the library POPUB

... FNPop _ enterS

Comments

When FNPop enterS is called, the current contents of the data buffer is read. FNPop enterS does
NOT wait for the user to type anything, and no test is performed for existence of data in the buffer.

FNPop enterS does not take into consideration any of exclusive access issues of multiple language
process~r configurations. If FNPop enterS is unable to gain exclusive access, it will simply return
a null string. Furthermore, FNPop ~nter$ makes no changes to the current locking status of the
language processor. See chapter ("Multiple Language Processor Considerations," for more
information.

Using the Library POPUB 5-7

Purpose

This function is used to request and receive input from the keyboard.

Usage

str$ = FNPop_input$

Parameters

none

Return Variables

str$ = Data sent from MS-DOS

Example

10 DIM A$ [77]
20 A$=FNPop input$
30 DISP A$
40 END

Comments

When FNPop input$ is called, the program is suspended, pending an entry from the user. Data is
read, and proit"am execution continues when the user presses the (Enter! key.

5-8 Using the library POPUS

FNPop_open

Purpose

This function allows the user to determine if POPCOM.COM is loaded and initializes the channel.

Usage

variable - FNPop_open [nowait[,error]]

Parameters

nowait OPTIONAL o = WAIT for exclusive window access (default)
1 = Do NOT wait for window access

error OPTIONAL numeric variable for error return

Return Variables

variable =

Example

o if POPCOM.COM is NOT present
1 if POP COM. COM IS present

10 IF FNPop_open THEN
20 DISP "POPCOM is loaded and ready."
30 ELSE
40 DISP "POPCOM is nowhere to be found. Please exit HP BASIC and load POPCOM."
50 END IF

In this example, FNPop _open is being used to see if POPCOM.COM is currently loaded into the
PC's memory. If POPCOM.COM is loaded, the value of FNPop open is not zero, so the IF condi
tion is met. If POPCOM.COM is not loaded, the ELSE conditio"ii will be met.

Using the Library POPUB 5-9

... FNPop _open

Comments

FNPop _open should be called at least once prior to using any other POPLIB function or subpro
gram. This is the only way to insure the presence of required MS-DOS software. Unexpected
results may be seen if POPCOM.COM is not loaded when calls are made. The default condition is
to perform FNPop _open with Wait.

Execution of FNPop open will temporarily lock MS-DOS to the language processor. Upon com
pletion of this operation, the lock/unlock condition will be restored to its previous state. If MS
DOS was locked prior to executing FNPop _open, it will remain locked when the FNPop _open is
finished, and if MS-DOS was unlocked prior to executing FNPop _open, it will remain unlocked.
See chapter 4, "Multiple Language Processor Considerations," for more information.

5-10 Using the Library POPUS

Pop_output

Purpose

This subprogram causes the POPCOM window to be displayed and a character string to be sent to
the message area of the window.

Usage

[CALL 1 Pop _ ou tpu t (str$ [,line [,highlight [,nowait [, error llll)

Parameters

str$ String expression to be displayed

line OPTIONAL

highlight OPTIONAL

nowait OPTIONAL

error OPTIONAL

numeric expression indicating on which line in message area
the string will be displayed

o = Input line

1 = first message line (default)

n = nth message line. If n is greater than the maximum
number of message lines, the line number will be calculated
using the expression:
line = «n-l) modulo maxlines)+l

o = Normal Text (default)
1 = Inverse Video

0= WAIT for exclusive window access (default)
1 = Do NOT wait for window access

numeric variable for error return (below)

Using the Library POPUS 5-11

.. . Pop_output

Return Variables

error = o if operation was successful
non-zero error codes are summarized in appendix A

Examples

10 CALL Pop_output("Hello World")
10 CALL Pop_output("Hello World",2,1,1,error)

In the first example, the message "Hello World" will be displayed on the first line of the POP
COM window's message area. The message will be displayed without highlight, and Pop output
will wait for exclusive access. -

In the second example, the message will be displayed on the second line of the message area, in
inverse video. Pop output will not wait for exclusive access, and an error will be returned if the
operation fails. -

Comments

When more than one BASIC Language Processor is installed in a single PC, the user will need to
consider exclusive access and waiting. The default condition is for Pop_output to be performed
WITH Wait.

When Wait is specified, program execution is suspended until exclusive access to MS-DOS is avail
able. Access is NOT AVAILABLE if another language processor is performing a POPLIB opera
tion, or MS-DOS has been programmatically locked by another language processor.

Execution will continue as soon as the second language processor completes its POPLIB operation
or the program unlocks MS-DOS.

If Wait is not specified, program execution will not be suspended. If access is not available, the
operation will simply be ignored and the error return variable will be set to 1.

Execution of Pop output will temporarily lock MS-DOS to the language processor. Upon comple
tion of this operation, the lock/unlock condition will be restored to its previous state. If MS-DOS
was locked prior to executing Pop_output, it will remain locked when the Pop_output is finished,
and if MS-DOS was unlocked prior to executing Pop output, it will remain unlocked. See
chapter 4, "Multiple Language Processor Considerations," for more information.

5-12 Using the Library POPUB

Using the BASIC Communication Library,
BLPLIB

6

The BLPLIB CSUBs provide the HP BASIC programmer a great deal of flexibility. Using these
subprograms and functions, the programmer can share HP BASIC data directly with a running
MS-DOS application such as spreadsheets or word processor. Users with more than one language
processor can use these routines to synchronize control and share data between independent HP
BASIC tasks.

The subprograms and functions are:

Function FNBlp _background

Function FNBlp _disable

Subprogram Blp _enable

Function FNBlp _ enter$

Function FNBlp _id

Function FNBlp _input$

Function FNBlp _lock

Function FNBlp _locked_by

Function FNBlp _more_data

Tests to see if the language processor is running in back
ground.

Disables input from a BLP or MS-DOS.

Enables input from a BLP or MS-DOS.

Reads current buffer contents.

Identifies your language processor.

Waits for the user to enter information, then reads the
buffer contents.

Locks MS-DOS or another BLP for input.

Identifies the language processor that has locked your
language processor.

Checks to see if the input buffer is empty.

Using the BASIC Communication Library. BLPLIB 6-1

Function FNBlp _present

Subprogram B1p _send

Subprogram Blp _unlock

Checks for presence of a BLP.

Sends message to MS-DOS or another BLP.

Removes any exclusive input lock.

Error codes returned by these functions and subprograms are summarized in appendix A.

6-2 Using the BASIC Communication Library, BLPLIB

FNBlp _background

Purpose

This function tests to see if the language processor is running in background.

Usage

variable = FNBlp_background

Parameters

none

Return Variables

variable = numeric variable 0 if in foreground
1 if in background

Example

10
20 WHILE FNB1p_background
30 GOSUB Do_something
40 END WHILE
50 END

In this example, FNBlp _background is used with a WHILE to allow a GOSUB to "do something"
only when BASIC is in background mode.

Using the BASIC Communication Library. BLPLIB 6-3

FNBlp _ disable

Purpose

This function disables input from another language processor or MS-DOS.

Usage

variable = FNBlp disable (BLP# [,nowait[,error]])

Parameters

BLP#

nowait

error

0= MS-DOS
1 = BASIC Language Processor 1
2 = BASIC Language Processor 2
3 = BASIC Language Processor 3

OPTIONAL

OPTIONAL

o = WAIT for exclusive window access (default)
1 = Do NOT wait for window access

numeric variable for error return

Return Variables

variable =

Example

10

o if disable was successful (default)

20 GOSUB Useful stuff
30 DISP "I'm done doing useful stuff."
40 FNBlp_disable(O)
50 END

6-4 Using the BASIC Communication Library, BLPLIB

... FNBlp _ disable

Comments

A language processor must be explicitly enabled for input from another language processor or
from MS-DOS. Executing FNBlp disable prevents a designated source from gaining exclusive
access with FNBlp lock. -

If no Wait is specified, FNBlp disable WILL FAIL if your language processor is locked by any
other language processor. If Wait is specified, this function will wait for the lock to be removed.
Waiting is discussed in chapter 4, "Multiple Language Processor Considerations."

Using the BASIC Communication Library, BLPLIB 6-5

Purpose

This subprogram enables input from another language processor or MS-DOS and flushes the input
buffer.

Usage

[CALL] Blp_enable(BLP#[,error])

Parameters

BLP# 0= MS-DOS
1 = BASIC Language Processor 1
2 = BASIC Language Processor 2
3 = BASIC Language Processor 3

error OPTIONAL

Return Variables

none

Example

10 Blp_enab1e(0)
20 GOSUB Useful stuff
30 END

numeric variable for error return

In this example, Blp _enable is used to allow input to the language processor from MS-DOS.

6-6 Using the BASIC Communication Library. BLPLIB

... Blp _ enable

Comments

Input must be enabled before any data can be transferred from the designated language processor
or from MS-DOS. Input from more than one source can be enabled simultaneously. For example
BLP! could enable input from MS-DOS and BLP2 at the same time. Attempted input from a
source that is not enabled will be ignored.

Using the BASIC Communication Library, BLPLIB 6-7

FNBlp _ enterS

Purpose

This function reads the contents of the input buffer.

Usage

str$ = FNB1p_enter$

Parameters

none

Return Variables

str$ = string variable containing the data returned

Example

10 DIM A$[77]
20 A$=FNB1p_enter$
30 DISP A$
40 END

In this example, FNBlp _ enter$ transfers the contents of the buffer to the string variable A$.

Comments

This function is very similar to FNPop enter$, which is described in the POPLIB documentation.
It simply reads the current contents of the buffer. It does not wait for input from the user. It also
pays no attention to locking or unlocking issues.

6-8 Using the BASIC Communication Library. BLPLIB

Purpose

This function identifies your language processor.

Usage

myid = FNBlp_id

Parameters

none

Return Variables

myid = Numeric variable for language processor number

Example

10
20 X=FNBlp_id
30 Drsp "Hello! r am language processor "&VAL$(X)
40
50 END

FNBlp_id

Using the BASIC Communication Library, BLPLIB 6-9

Purpose

This function is used to request and receive input from the user.

Usage

str$ = FNB1p _ input$

Parameters

none

Return Variables

str$ = Data sent from MS-DOS

Example

10 DIM A$[77]
20 A$=FNB1p_input$
30 DISP A$
40 END

In this example, FNBlp _input$ transfers the contents of the buffer to the string variable A$. The
program will wait on line 20 until a carriage return character is found.

Comments

The function FNBlp _input is similar to FNBlp _ enter$, in that it is used to transfer data to the HP
BASIC program. It differs from FNBlp enter$, however, since it does not immediately return the
input buffer contents. Instead, it waits u"'ittil a carriage return character is encountered.

This function is useful when transferring information from applications such as Lotus 1-2-3 that
use a carriage return to indicate the end of a spreadsheet row. Be aware, however, that in this
situation, it is likely that additional data will be in your input buffer beyond the carriage return.
When this happens, the trigger keycode is not re-sent because the buffer never became empty.

6-10 Using the BASIC Communication Library, BLPLIB

... FNBlp _inputS

In order to ensure that all data is received, FNBlp more data should be used in conjunction with
FNBlp _ input$. See the description of FNBlp _more_data in this chapter.

Using the BASIC Communication Library, BLPLIB 6-11

Purpose

This function is used to exclusively lock a language processor or MS-DOS for input from the cal
ling language processor.

Usage

variable = FNB1p_1ock(BLP# [,nowait[,error]])

Parameters

BLP#

nowait

error

0= MS-DOS
1 = BASIC Language Processor 1
2 = BASIC Language Processor 2
3 = BASIC Language Processor 3

OPTIONAL

OPTIONAL

o = Wait until lock is successful (default)
1 = do not wait

numeric variable for error return

Return Variables

variable = 1 if lock is successful

Example

10 x = FNB1p_1ock(0)
20 B1p send(O, "This is a message.")
30 PRINT "I just sent a message to MS-DOS."
40 END

or

6-12 Using the BASIC Communication Library. BLPLIB

... FNBlp _lock

10 IF FNBlp_lock(O,l) THEN
20 CALL Useful stuff
30 ELSE
40 DISP "Sorry, I can't seem to lock MS-DOS."
50 END IF
60 END

In the first example, FNBlp lock attempts to lock input from MS-DOS. If MS-DOS is already
locked to another language processor, the program will wait until that lock is released. It can then
be locked to this language processor and program execution can continue. It is not necessary to
check the return value of the function in this case, as it will only return if the lock is successful.

In the second example, FNBlp lock is used without Wait. If the lock attempt is successful, the
return value of the function is 1, which satisfies the IF condition. If the lock attempt is not success
ful, the return value of the function is 0, which results in the ELSE condition being met.

Comments

The function FNBlp Jock is used to exclusively lock MS-DOS or another language processor for
input from you. It can be invoked with or without Wait. The default is with Wait. A lock request
will not be granted if another language processor has the resource currently locked.

If Wait is specified, program execution will be suspended until the lock can be granted. The lock
will be granted as soon as no other language processor has the resource locked. The return value
of the function will be set to 1.

If Wait is not specified (nowait= 1), execution will not be suspended if the lock is unsuccessful. If
unsuccessful the return value of the function will be set to 0.

Using the BASIC Communication Library, BLPLIB 6-13

FNBlp _locked _ by

Purpose

This function identifies the language processor that has locked your language processor.

Usage

Parameters

none

Return Variables

BLP# = Numeric variable for return of locking BLP number

Example

10
20 X=FNBlp_locked_by
30 DISP "Oh no! I'm currently locked by "&VAL$(X)
40
50 END

6-14 Using the BASIC Communication Library, BLPLIB

FNBlp _ more _ data

Purpose

This function checks to see whether the input buffer is empty.

Usage

Parameters

none

Return Variables

variable = Numeric variable 0 = Buffer empty
1 = Buffer not empty

Example

10 DIM A$[77]
20 WHILE FNB1p_ffiore_data
30 A$=FNB1p_input$
40 END WHILE
50 END

In this example, FNBlp _more_data is used with a WHILE block to re-execute FNBlp _ input$ until
all the data has been transferred from the buffer.

Using the BASIC Communication Library. BLPLIB 6-15

FNBlp _present

Purpose

This function tests to see if a certain number language processor is installed.

Usage

variable = FNBlp _present (BLP# [,error])

Parameters

BLP#

error

1 = BASIC Language Processor 1
2 = BASIC Language Processor 2
3 = BASIC Language Processor 3

OPTIONAL numeric variable for error return

Return Variables

variable =

Example

o if specified language processor is NOT installed (default)
1 if specified language processor IS installed

10 IF FNBlp_present(2) THEN
20 GOSUB Useful stuff
30 END IF
40 END

In this example, FNBlp _present checks to see if BLP2 is installed.

6-16 Using the BASIC Communication Library, BLPLIB

... FNBlp _present

Comments

FNBlp yresent is useful as an automatic configuration check and to insure the presence of a
language processor.

Using the BASIC Communication Library. BLPLIB 6-17

Purpose

This subprogram sends a character string to MS-DOS or another language processor.

Usage

[CALL] Blp_send(BLP# ,str$[,error])

Parameters

BLP# 0= MS-DOS
1 = BASIC Language Processor 1
2 = BASIC Language Processor 2
3 = BASIC Language Processor 3

error OPTIONAL numeric variable for error return

Return Variables

none

Example

10
20 CALL Blp_send(O,"This is a message for MS-DOS")
30 CALL Blp_send(2, "This is a message for BLP 2")
40 END

In this example, lines 20 and 30 send ASCII character strings to MS-DOS and to BLP2, respec
tively.

6-18 Using the BASIC Communication Library. BLPLIB

... Blp _send

Comments

9
Note

You must have the destination locked before attempting a Blp send. This is true
even if you only have one BLP installed. If you are sending information to another
language processor, that language processor must have explicitly enabled input from
your language processor. See chapter 4, "Multiple Language Processor Considera
tions," for more information about locking.

Using the BASIC Communication Library, BLPLIB 6-19

Purpose

This subprogram relinquishes exclusive input control over a language processor or MS-DOS.

Usage

[CALL] Blp_unlock(BLP#[,error])

Parameters

BLP# 0= MS-DOS
1 = BASIC Language Processor 1
2 = BASIC Language Processor 2
3 = BASIC Language Processor 3

error OPTIONAL numeric variable for error return

Return Variables

none

Example

10 CALL Something_useful
20 Blp_unlock(O)
30 END

In this example, Blp _unlock is used to release the lock on MS-DOS.

Comments

Blp unlock is used to relinquish exclusive access to MS-DOS or another language processor. The
lock is explicitly cleared without consideration of its state. No Wait is performed.

6-20 Using the BASIC Communication Library, BLPLIB

Using the Advanced Communication Library,
ADVLIB

7

ADVLIB is for the BASIC software developer who wishes to take greater control over the appear
ance and actions of the POPCOM window.

The routines included in this section are:

Subprogram BIp _ data_mode

Function FNBIp _ dos_idle

Subprogram BIp _send_key

Subprogram BIp _trigger_key

Function FNPop _ blp

Subprogram Pop_lock

Function FNPop _read _ buf$

Subprogram Pop_row

Sets the BLP to ASCII data input mode.

Tests to see if MS-DOS is idle or busy.

Sets BLP to keyboard scancode mode.

Sends a keyboard scan code to MS-DOS or a BLP.

Sets the MS-DOS idle limit.

Changes default trigger key.

Tells which BLP the window points to.

Locks the window up or down.

Sets the color of the subsequent message.

Returns the number of message lines available.

Reads the input buffer.

Positions the top of the POPCOM window on the
display.

Using the Advanced Communication Library. ADVLlB 7-1

Subprogram Pop_send _ buf

Subprogram Pop _set_input

Subprogram Pop_set_lines

Function FNPop _stat

Subprogram Pop_up

Subprogram Pop_unlock

Sends an ASCII string to the POPCOM window.

Sets the number of bytes in user input.

Set the number of message lines.

Returns the display and lock status.

Displays the POP COM window.

Releases the up/down lock.

Error codes returned by these functions and subprograms are summarized in appendix A.

7-2 Using the Advanced Communication Library, ADVLlB

Blp _ data _mode

Purpose

This subprogram sets the input mode of the language processor to expect ASCII data in the buffer.

Usage

Parameters

none

Return Variables

none

Example

10
20 CALL B1p_data_mode
30
40 END

Comments

The language processor is capable of accepting input through its buffer as either ASCII data or
keyboard scancodes. This routine sets the language processor for ASCII data mode.

Using the Advanced Communication Library, ADVLlB 7-3

FNBlp _ dos _idle

Purpose

This function tests to see if MS-DOS is idle or busy.

Usage

Parameters

none

Return Variables

variable =

Example

10

Numeric variable

20 WHILE FNB1p_dos_id1e

o if MS-DOS is busy
1 if MS-DOS is idle

30 DISP "MS-DOS is not busy"
40 GOSUB Do_something
50 END WHILE
60 END

In the example above, the statements on lines 30 and 4Q will be executed as long as DOS is idle.
As soon as DOS is busy, the value of the function FNBlp _ dos_idle becomes 0, and execution halts.

7-4 Using the Advanced Communication Library, ADVLlB

... FNBlp _ dos_idle

Comments

The BASIC Language Processor monitors MS-DOS to find out whether it is idle or busy. The
level of "idleness" is quantified as a number. The more "idle" (available) DOS is, the higher the
number is. The subprogram Blp set idle allows the user to specify a level of "idleness" to use as a
means of deciding whether DOS is idie or busy. The function FNBlp _ dos_idle then returns a 0 or
a 1, depending on whether the "idleness" reading is greater than or less than the limit set by
Blp _set_idle. A 0 indicates that DOS is busy, and a 1 indicates that DOS is idle. Under the same
circumstances, different computers will have different levels of "idleness," due to different CPU
speeds, RAM speeds, etc.

Using the Advanced Communication Library, ADVLlB 7-5

Purpose

This subprogram sets the input mode of the language processor to expect keyboard scancodes (see
appendix B) in the buffer.

Usage

Parameters

none

Return Variables

none

Example

10
20 CALL B1p_key_mode
30
40 END

Comments

The language processor is capable of accepting input through its buffer as either ASCII data or
keyboard scancodes. This routine sets the language processor for keyboard scancode mode.

7-6 Using the Advanced Communication Library, ADVLlB

Purpose

This subprogram sends a keyboard scancode to MS-DOS or another language processor.

Usage

[CALL] B1p_send_key(BLP# , key [,error])

Parameters

BLP# 0= MS-DOS
1 = BASIC Language Processor 1
2 = BASIC Language Processor 2
3 = BASIC Language Processor 3

key Decimal representation of a keyboard scancode (see appendix B)
error OPTIONAL numeric variable for error return

Return Variables

none

Example

10
20
30

CALL B1p_send_key(O,13)
END

Comments

Sends RETURN key to MS-DOS

This function sends keyboard scancodes to the destination. The result is that the destination pro
gram thinks that a user typed them on the keyboard.

If you are sending a keyboard scancode to MS-DOS, refer to the list of PC scancodes in the first
section of appendix B; if you are sending a message to HP BASIC, refer to the list of HP BASIC
keycodes in the second section of appendix B.

Using the Advanced Communication Library, ADVLlB 7-7

... Blp send_key

No check is made as to the success of this operation. Remember, you must have the destination
locked before attempting a Blp send. Other language processors must have explicitly enabled
input from your BLP. -

" Note

If you have more than one BLP, unexpected results may occur if this operation is
attempted without the destination having been locked beforehand. FNBlp lock
should be used before this subprogram is called. -

7-8 Using the Advanced Communication Library, ADVLlB

Purpose

This subprogram sets the value used to determine if MS-DOS is idle or busy.

Usage

Parameters

limit Numeric expression of idle limit (default = 8)

Return Variables

none

Example

10
20 CALL B1p_set_id1e(10)
30 OUTPUT 19; "BACKGROUND"
40 WHILE NOT FNB1p_dos_id1e
50 END WHILE
60 B1p_send(0,"123")
70 END

Comments

The BASIC Language Processor monitors MS-DOS to find out whether it is idle or busy. The
level of "idleness" is quantified as a number. The more "idle" (available) DOS is, the higher the
number is. The subprogram Hlp set idle allows the user to specify a level of "idleness" to use as a
means of deciding whether DOS is idie or busy. The function FNBlp dos idle then returns a 0 or
a 1, depending on whether the "idleness" reading is greater than or less than the limit set by
Blp_set_idle. A 0 indicates that DOS is busy, and a 1 indicates that DOS is idle.

Using the Advanced Communication Library, ADVLlB 7-9

... Blp _set_idle

Under the same circumstances, different computers will have different levels of "idleness," due to
different CPU speeds, RAM speeds, etc. The default limit of 8 seems to work for many PCs. If
this value does not produce the desired results, you can try limit values between 2 (for a slow
machine) and 20 (for a fast machine).

7-10 Using the Advanced Communication Library, ADVLlB

Blp _ trigger _ key

Purpose

This subprogram changes the character code of the trigger keycode included with input data.

Usage

[CALL] B1p_trigger_key(keycode)

Parameters

keycode HP BASIC keycode (see appendix B)

Return Variables

none

Example

10
20 CALL B1p_trigger_key(F2)
30 !
40 END

Comments

Each time data is sent to a language processor, a trigger keycode is sent along with it. This trigger
keycode is passed directly to BASIC as an HP BASIC keycode (the decimal value is used) - it is
not included in the buffer data. The purpose of the trigger keycode is to allow BASIC to perform
interrupt branching when a message is received. The default value for the trigger keycode is func
tion key [fJ]. This allows the user to set up an ON KEY 1 interrupt branch to detect incoming
messages.

Using the Advanced Communication Library, ADVLlB 7-11

FNPOp_blp

Purpose

This function returns the number of the BASIC Language Processor to which the POPCOM win
dow is currently pointing.

Usage

blpid = FNPop_b1p

Parameters
.:-'-.
none

Return Variables

blpid Numeric variable containing the ID number of the
language processor to which POPCOM is "attached"

Example

10
20 B1pid = FNPop_b1p
30 Drsp "POPCOM is pointing at BLP If "&VAL$(B1pid)
40 END

Comments

W
Note

If you have more than one BLP, unexpected results may occur if this operation is
attempted without the destination having been locked beforehand. FNBlp_lock
should be used before this function is used.

7-12 Using the Advanced Communication Library, ADVLlB

Pop_lock

Purpose

This subprogram causes the POPCOM window to be locked up or down.

Usage

[CALL] Pop_lock

Parameters

none

Return Variables

none

Example

10
20 CALL Pop_lock
30 GOSUB Useful work
40 END

Using the Advanced Communication Library, ADVLlB 7-13

... Pop_loCk

Comments

Pop_lock prevents the user from displaying or hiding the POPCOM window from the keyboard. If
the window is locked up, neither the IEsel nor IEnterl key will hide the window. If the window is
locked down, the user is prevented from bringing it up with the IShiftllCtrlllBaekspaeel keys.

Note

If you have more than one BLP, unexpected results may occur if this operation is
attempted without the destination having been locked beforehand. FNBlp _lock
should be used before this subprogram is called.

7-14 Using the Advanced Communication Library, ADVLlB

Pop _ mS9_ color

Purpose

This subprogram allows the user to set the color of the message lines that follow.

Usage

[CALL] Pop_msg_co1or(co/or$)

Parameters

co/or$ String expression indicating the attribute bits of the mes
sage characters.

Return Variables

none

Example

10
20 CALL Pop_msg_co1or("00011111")
30 DISP "The following messages will be bright white on blue."
40 END

Comments

" Note

If you have more than one BLP, unexpected results may occur if this operation is
attempted without the destination having been locked beforehand. FNBlp lock
should be used before this subprogram is called. -

Using the Advanced Communication Library, ADVLlB 7-15

... Pop _ mSQ_ color

The attribute bits are:

Bit
a foreground (text) blue
1 foreground (text) green
2 foreground (text) red
3 foreground intensity
4 background blue
5 background green
6 background red
7 blinking text

Combinations ofthe three RGB (red, green, blue) bits result in these colors:

Without Intensity With Intensity
000 black gray
001 blue light blue
010 green light green
011 cyan light cyan
100 red light red
101 magenta light magenta
110 brown yellow
111 white bright white

7-16 Using the Advanced Communication Library, ADVLlB

FNPop _ mS9_lines

Purpose

This function returns the number of lines available for text in the current POPCOM window.

Usage

Parameters

none

Return Variables

lines = Number of lines (rows)

Example

10
20 Lines = FNPop_msg_lines
30 DISP "I can display up to "&VAL$(Lines)&" lines."
40 END

Comments

" Note

If you have more than one ELP, unexpected results may occur if this operation is
attempted without the destination having been locked beforehand. FNBlp lock
should be used before this function is used. -

Using the Advanced Communication Library. ADVLlB 7-17

FNPop _read _ buf$

Purpose

This function reads the user input buffer without regard to message termination.

Usage

str$ = FNPop _read _ buf$

Parameters

none

Return Variables

str$ = String variable containing buffer contents

Example

10
20 %%str$%% = FNPop_read_buf$
30 DISP %%str$%%
40 END

7-18 Using the Advanced Communication Library. ADVLlB

... FNPop _read buf$

Comments

Unlike the other routines available for input from the POP COM window, this routine does not
wait for the user to complete the input line. Bytes are returned as soon as they become available
in the buffer. This can be useful for single character input (such as Y or N) or for selectively echo
ing user input. The message bytes are not removed from the buffer.

Note

If you have more than one BLP, unexpected results may occur if this operation is
attempted without the destination having been locked beforehand. FNBlp lock
should be used before this function is used. -

Using the Advanced Communication Library. ADVLlB 7-19

Purpose

This subprogram positions the top of the POP COM window on the PC display.

Usage

[CALL] Pop_row(row)

Parameters

line Line number from the top of the PC display.

Return Variables

none

Example

10
20 CALL Pop_row(7)
30 GOSUB Useful work
40 END

Comments

'i
Note

If you have more than one BLP, unexpected results may occur if this operation is
attempted without the destination having been locked beforehand. FNBlp _lock
should be used before this subprogram is called.

7-20 Using the Advanced Communication Library. ADVLlB

Pop _ send _ buf

Purpose

This subprogram allows the user to write an ASCII string to the POPCOM window message area.

Usage

[CALL] Pop_s end (line ,msg$,highlight)

Parameters

line

msg$

highlight

Numeric expression indicating which line in the message
area the string is to be displayed (0 = message displayed
on user input line).

String expression containing message to be sent

Message highlight 0 = normal
1 = inverse video

Return Variables

none

Example

10
20 CALL Pop_send_buf("Hello wor1d.",3,1)
30 END

Comments

This routine is similar to Pop output but at a lower level. No checks are made for exclusive access
message line parameters being within range.

Using the Advanced Communication Library. ADVLlB 7-21

... Pop _send _ buf

" Note

If you have more than one BLP, unexpected results may occur if this operation is
attempted without the destination having been locked beforehand. FNBlp lock
should be used before this subprogram is called. -

7-22 Using the Advanced Communication Library. ADVLlB

Pop _set_input

Purpose

This subprogram allows the user to set the maximum number of bytes allowed during each POP
COM input operation.

Usage

Parameters

bytes Numeric expression indicating maximum number of characters the
MS-DOS user is allowed to input during one operation.

Return Variables

none

Example

10
20 CALL Pop_set_input(30)
30 Drsp "The user can now input up to 30 characters."
40 END

Using the Advanced Communication Library, ADVLlB 7-23

... Pop set_input

Comments

The default input length is 77 bytes. This is also the maximum allowable input length.

Note

If you have more than one BLP, unexpected results may occur if this operation is
attempted without the destination having been locked beforehand. FNBlp }ock
should be used before this subprogram is called.

7-24 Using the Advanced Communication Library. ADVLlB

Purpose

This subprogram allows the user to set the maximum number of lines available for text in POP
COM window.

Usage

Parameters

lines Numeric expression indicating number of lines

Return Variables

none

Example

10
20 CALL Pop_set_lines(4)
30 DISP "I can now display 4 lines to POPCOM windows."
40 END

Comments

The absolute maximum number of lines available for text is 18.

9
Note

If you have more than one BLP, unexpected results may occur if this operation is
attempted without the destination having been locked beforehand. FNBlp lock
should be used before this subprogram is called. -

Using the Advanced Communication Library, ADVLlB 7-25

FNPop_stat

Purpose

This function returns the display and lock status of the POPCOM window.

Usage

stat = FNPop_stat

Parameters

none

Return Variables

stat =

Example

10

Window status bits

o = Window displayed
1 = Window Hidden
2 = Locked up
3 = Locked down

20 Stat = FNPop_stat
30 IF BIT(Stat,O) THEN DISP "Window is displayed."
40 END

Comments

Obviously the window is either displayed or hidden, not both. Consequently the use of bits 0 and 1
is redundant. It is possible for the window to be locked up but be hidden. This means that if and
when the window is displayed, the user is prevented from removing it.

7-26 Using the Advanced Communication Library, ADVLlB

'i
Note

... FNPop _stat

If you have more than one BLP, unexpected results may occur if this operation is
attempted without the destination having been locked beforehand. FNBlp lock
should be used before this function is used. -

Using the Advanced Communication Library, ADVLlB 7-27

Pop_unlock

Purpose

This subprogram allows the user to show or hide the POPCOM window from the keyboard.

Usage

[CALL] Pop_unlock

Parameters

none

Return Variables

none

Example

10
20 CALL Pop_unlock
30 GOSUB Useful work
40 END

Comments

This subprogram has the reverse effect of the subprogram Pop_lock.

9
Note

If you have more than one BLP, unexpected results may occur if this operation is
attempted without the destination having been locked beforehand. FNBlp _lock
should be used before this subprogram is called.

7-28 Using the Advanced Communication Library. ADVLlB

Pop_up

Purpose

This subprogram causes the POP COM window to be displayed.

Usage

[CALL] Pop_up

Parameters

none

Return Variables

none

Example

10
20 CALL Pop_up
30 GOSUB Useful work
40 END

Comments

Pop up simply causes the POP COM window to be displayed. No messages are sent, and there is
no test for exclusive access. If MS-DOS is locked by another language processor, the request is
ignored.

" Note

If you have more than one BLP, unexpected results may occur if this operation is
attempted without the destination having been locked beforehand. FNBlp lock
should be used before this subprogram is called. -

Using the Advanced Communication Library, ADVLlB 7-29

8
Using the Lotus 1-2-3 Library, 123LIB

123LIB allows the user to easily send to Lotus 1-2-3 the correct character codes to move the cursor
around the display and to gain access to the 1-2-3 command line.

Subprogram Command Sends a 1-2-3 command

Subprogram Down Moves the cell pointer down

Subprogram Left Moves the cell pointer left

Subprogram Right Moves the cell pointer right

Subprogram Up Moves the cell pointer up

Error codes returned by these functions and subprograms are summarized in appendix A.

" Note

These subprograms require Lotus 1-2-3 to be running and in the "READY" mode.
Refer to the documentation that came with your copy of Lotus 1-2-3 for an explana
tion of "READY" mode as well as for other operating instructions.

Using the Lotus 1-2-3 Library. 123L1B 8-1

Command

Purpose

This subprogram sends a command string to Lotus 1-2-3.

Usage

[CALL] Command (Cmd$)

Parameters

Cmd$ = Command string sent to Lotus 1-2-3

Return Variables

none

Example

10
20 CALL Cornrnand("/ppoouqg")
30 GOSUB Useful work
40 END

Comments

This subprogram is similar to Blp send, except that it can only send data to MS-DOS, not another
language processor. -

8-2 Using the Lotus 1-2-3 Library, 123UB

Down

Purpose

This subprogram moves the Lotus 1-2-3 spreadsheet pointer down.

Usage

[CALL] Down(n)

Parameters

n = Number of rows to move

Return Variables

none

Example

10
20 Down(3)
30
40 END

Comments

No check is made to see if Lotus 1-2-3 is running. This routine simply issues the keycodes for mov
ing the cursor.

Using the Lotus 1-2-3 Library, 123L1B 8-3

Left

Purpose

This subprogram moves the Lotus 1-2-3 spreadsheet pointer to the left.

Usage

[CALL] Left(n)

Parameters

n = Number of columns to move

Return Variables

none

Example

10
20 Left(3)
30
40 END

Comments

No check is made to see if Lotus 1-2-3 is running. This routine simply issues the keycodes for mov
ing the cursor.

8-4 Using the Lotus 1-2-3 Library. 123L1B

Right

Purpose

This subprogram moves the Lotus 1-2-3 spreadsheet pointer to the right.

Usage

[CALL] Right(n)

Parameters

n = Number of columns to move

Return Variables

none

Example

10
20 Right(3)
30
40 END

Comments

No check is made to see if Lotus 1-2-3 is running. This routine simply issues the keycodes for mov
ing the cursor.

Using the Lotus 1-2-3 Library, 123L1B 8-5

Up

Purpose

This subprogram moves the Lotus 1-2-3 spreadsheet pointer up.

Usage

[CALL] Up(n)

Parameters

n = Number of rows to move

Return Variables

none

Example

10
20 Up(3)
30
40 END

Comments

No check is made to see if Lotus 1-2-3 is running. This routine simply issues the keycodes for mov
ing the cursor.

8-6 Using the Lotus 1-2-3 Library. 123L1B

A Sample Program Using the Pop-Up Com
munications Window

The Sample Program

9

A Sample Program Using the Pop-Up Communications Window 9-1

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310 A:
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470

DIM A$[256] .M$[256]

IF NOT FNPop_open(l) THEN
DISP "POPCOM is not loaded. Exit to DOS and type POPCOM."

ELSE
'" OUTPUT 19; "BACKGROUND"

WAIT 1
M$="Would you like to continue with the demo? Please type Yes or No."

REPEAT
Pop_output (M$.1)
BEEP 2000 •. 25
A$=FNPop inputS
A$=UPC$(A$)
M$="You typed: "&A$&". I said Yes or No. Please type Yes or No."

UNTIL POS(A$. "Y") OR POS(A$."N")

IF POS(A$. "Y") THEN
Pop_clear
Pop_output("After the window goes away. bring it back and type something 1)
BEEP 2000 •. 25
WAIT 3
Pop_clear
Pop_down
ON KEY 1 GOTO A

LOOP
FOR 1=1 TO 20000
NEXT I

END LOOP

OFF KEY 1
A$=FNPop_enter$
Pop_output("You typed: "&TRIM$(A$) .1)

ELSE
PRINT "DEMO ABORTED"

END IF

END IF

END
CDEF FNPop_open(OPTIONAL Nowait.Ecode)
CSUB Pop output(S$.OPTIONAL Lin.Hlgt.Nowait.Ecode)
CDEF FNP~p_enter$
CDEF FNPop_input$(OPTIONAL T)
CSUB Pop_down(OPTIONAL Nowait.Ecode)
CSUB Pop_clear(OPTIONAL Nowait.Ecode)

9-2 A Sample Program Using the Pop-Up Communications Window

Explanation

1000 DIM A$[256],M$[256]
1010

The first thing we do is use FNPop open to see if POPCOM.COM is loaded. In this case we are
calling FNPop open without Wait and checking the value of the return variable. If the value is 0,
we display the message that POPCOM is not loaded. If the value is one, execution continues on
line 1050.

1020 IF NOT FNPop_open(l) THEN
1030 DISP "POPCOM is not loaded. Exit to DOS and type POPCOM."
1040 ELSE
1050 OUTPUT 19;"BACKGROUND"

BASIC is now running in background. The following WAIT statement simulates the BASIC pro
gram doing some useful work until it needs to get the attention of the user. Line 1070 sets up a
message string which will be sent to the user.

1060 WAIT 1
1070 M$="Would you like to continue with the demo? Please type Yes or No."
1080
1090 REPEAT

Pop_output is used to send the message in M$ to the POPCOM window.

1100 Pop_output(M$,l)
1110 BEEP 2000,.25

FNPop _ inputS allows the user to type a response to the message. It waits for the user to press the
ENTER key before it transfers the text into the string AS.

1120 A$=FNPop_input$

A$ is forced to all upper case letters and an error message string is prepared in M$ should our test
for yes or no on line 1150 fail.

1130 A$=UPC$(A$)
1140 M$="You typed: "&A$Ii". I said Yes or No. Please type Yes or No."

A Sample Program Using the Pop-Up Communications Window 9-3

If the user's response in A$ does not contain either a "Y" or a "N", the condition tested in line
1150 will not be true. This results in the REPEAT/UNTIL block being re-executed. It will con
tinue to be executed until the user types Y or N.

1150 UNTIL POS (A$, "Y") OR POS (A$, "N")
1160
1170 IF POS(A$,"Y") THEN

Pop_clear is called to erase the contents of the window.

1180

Pop_output displays a message, we beep, and wait 3 seconds.

1190 Pop_outputC"After the window goes away, bring it back and type something.",l)
1200 BEEP 2000, .25
1210 WAIT 3
1220 Pop_clear

Pop_clear erases the information in the window and Pop_down removes the window from the PC
display.

1230 Pop_down

The ON KEY 1 interrupt condition is established so that BASIC can go on to doing something
useful but be alerted when the user types something in the POPCOM window input line. Soft Key
1 is the default trigger keycode for Multi-Com.

1240
1250

ON KEY 1 GOTO A

This loop simulates some useful work being done by the BASIC program. It will continue looping
until the user types something on the POPCOM input line and presses IEnteri.

1260
1270
1280
1290
1300
1310 A:

LOOP
FOR 1=1 TO 20000
NEXT I

END LOOP

When the user presses the IEnter! key, the program senses the interrupt and continues execution at
this point. We turn off the ON KEY interrupt ability and use FNPop _ enter$ to transfer the con
tents of the input buffer to the string A$. Pop output is then used to echo what the user typed
back to the POPCOM window.

9-4 A Sample Program Using the Pop-Up Communications Window

1320 OFF KEY 1
1330 A$=FNPop_enter$
1340 Pop_output("You typed: "&TRIM$(A$) ,1)
1350 ELSE
1360 PRINT "DEMO ABORTED"
1370 END IF
1380
1390 END IF
1400
1410 END

The following CSUBS are from the library POPLIB:

1420 CDEF FNPop_open(OPTIONAL Nowait,Ecode)
1430 CSUB Pop_output(S$,OPTIONAL Lin,H1gt,Nowait,Ecode)
1440 CDEF FNPop_enter$
1450 CDEF FNPop_input$(OPTIONAL T)
1460 CSUB Pop_down(OPTIONAL Nowait,Ecode)
1470 CSUB Pop_c1ear(OPTIONAL Nowait,Ecode)

A Sample Program Using the Pop-Up Communications Window 9-5

A
Error Codes

The following error codes are returned from BLPLIB and ADVLIB subprograms and functions:

101 Invalid BLP number (Le., not 0, 1, 2, or 3).
102 BLP requested is not installed.
103 Attempting to write to a destination without exclusive access.

The following error codes are returned from BLPLIB and ADVLIB subprograms and functions:

201 Invalid BLP number (i.e., not 0, 1, 2, or 3).
202 POPCOM.COM is not loaded.
203 Attempting to write to MS-DOS without exclusive access.

Error Codes A-1

B
Keyboard Scan codes

PC Scancodes

To simulate the "normal" typewriter keystrokes in a MS-DOS application, a background BLP sim
ply writes the desired ASCII code to the DOS data buffer (using a byte access). To simulate the
non-typewriter keystrokes (i.e., the softkeys, the cursor keys, etc.), the background BLP must write
appropriate scancodes using a word access.

The following table shows the PC scancodes that a BLP must write to the DOS data buffer (using a
word access) in order to simulate specific keystrokes. These are listed in ascending numerical
order, and are determined by the conventions set by IBM in their ROM BIOS. Any scan code not
listed in this table is not supported by the BIOS and, if sent, may cause unexpected results in the
MS-DOS application that receives it.

~
Note

Decimal values of the scancodes are used with subprograms Blp send and
Blp _trigger_key. -

If you are using Blp _send to send a keyboard scancode to MS-DOS, refer to the list of PC scan
codes first section of this appendix; if you are using BIP send to send a message to HP BASIC,
refer to the list of HP BASIC keycodes in the second se~tion of this appendix.

Keyboard Scancodes 8-1

PC Scancode Keystroke PC Scancode Keystroke
hex dec hex dec

03 03 ICtrll @ 3b 59 [IT]
3c 60 [g]

10 16 IAltl [Q] 3d 61 lrn
11 17 IAltl~ 3e 62 [H]
12 18 IAltl [gJ 3f 63 [EID
13 19 IAltl lID 40 64 lEID
14 20 IAltl IT] 41 65 [EI]
15 21 IAltl [Y] 42 66 lrn
16 22 IAltl [Q] 43 67 [ru
17 23 IAltl rn 44 68 IFtol
18 24 IAltl [Q]
19 25 IAltl [El 47 71 IHomel

48 72 up cursor
1c 28 IEnted 49 73 ~

1e 30 IAltl [AJ 4b 75 left cursor
1£ 31 IAltl ffi]
20 32 IAltl [Q] 4d 77 right cursor
21 33 IAltl [EJ
22 34 IAltl [Q) 4f 79 IEndl
23 35 IAltl [HJ 50 80 down cursor
24 36 IAltl Q] 51 81 IpgOnl
25 37 IAltl [KJ 52 82 !lnsl
26 38 IAltl nJ 53 83 I Dell

54 84 IShiftl [IT]
2c 44 IAltl ~ 55 85 IShiftl [g]
2d 45 IAltloo 56 86 IShiftllrn
2e 46 IAltl [9 57 87 IShiftl [H]
2f 47 IAltl [y] 58 88 IShiftl [EID
30 48 IAltl ffi] 59 89 IShiftllEID
31 49 IAltl [ffi 5a 90 IShift I [EI]
32 50 IAltl [MJ

8-2 Keyboard Scancodes

PC Scancode Keystroke PC Scancode Keystroke
hex dec

5b 91
5c 92
5d 93
5e 94
5f 95
60 96
61 97
62 98
63 99
64 100
65 101
66 102
67 103
68 104
69 105
6a 106
6b 107
6c 108
6d 109
6e 110
6f 111

NOTE

Note

hex dec

IShiftl [ill 70 112 IAltl (fID
IShiftl (fID 71 113 IAltllF101
IShiftllF101 72 114 I Ctrll numeric pad *
ICtrlllITJ 73 115 I Ctrllieft cursor

ICtr" [g) 74 116 ICtrll right cursor

ICtrll ~ 75 117 I Ctrll I End 1

ICtr" [H) 76 118 ICtrlllpgDnl

ICtrll ~ 77 119 ICtrlllHomel

ICtr" rrn 78 120 IAltl ill
ICtr" [Ef) 79 121 IAltl [g)
ICtrll [ill 7a 122 IAltl lID
ICtr11 ~ 7b 123 IAltlm
ICtrlllF 1 01 7c 124 IAltl [ID
IAltllITJ 7d 125 IAltl[§]
IAltl [g) 7e 126 IAltl[1]
IAltl~ 7f 127 IAltl lID
IAltl [H) 80 128 IAltl lID
IAltl~ 81 129 IAltl [Q]
IAltl rrn 82 130 IAltl Q
IAltl [Ef) 83 131 IAltl0
IAltl rEID 84 132 ICtrll ~

Writing a byte value of 13 (decimal) to the DOS buffer will generate a "keystroke"
of I Ctrll [M) - this is accomplished by sending a CHR$(13) with the subprogram
Blp send. Writing a word value of 28 (decimal) will generate a "keystroke" of
I Ent~r 1-this is accomplished by calling the subprogram Blp send key with a key
parameter of 28. Both of these have an ASCII code value 0(13, b~t have different
scancodes. Some MS-DOS applications will accept both ICtrll[M) and IEnterl as car
riage return keys, since they only look at the ASCII code portion of the keycode.
Others will ONLY accept (Enter! as a carriage return key, since they look at the
scancode as well. Because of this, you should ALWAYS use the (Enter! code (a word
write of 28) to send a carriage return, unless you specifically want to emulate the
pressing of ICtrll[M).

Keyboard Scan codes 8-3

HP BASIC Keycodes

The following table contains the HP BASIC keycodes that are used as trigger keycodes and as the
codes that get written to BLP data buffers when the BLP is in KEYCODE mode (as opposed to
the default DATA mode).

Keycode Function
hex dec

00 0 unused
01 1 ' / ~ (single quote and tilde)
02 2 I / \ (pipe and backslash)
03 3 esc / del
04 4 unused
05 5 break / reset
06 6 stop
07 7 select
08 8 numeric pad enter
09 9 numeric pad tab
Oa 10 numeric pad kO (blankl)
Ob 11 numeric pad kl (blank2)
Oc 12 numeric pad k2 (blank3)
Od 13 numeric pad k3 (blank4)
Oe 14 home arrow
Of 15 prey
10 16 next
11 17 enter / print
12 18 left extend
13 19 right extend
14 20 system / user
15 21 menu
16 22 elr line
17 23 elr disp
18 24 caps lock
19 25 tab

8-4 Keyboard Scancodes

Keycode Function
hex dec

1a 26 kO
1b 27 k1 (f1)
1c 28 k2 (f2)
1d 29 k5 (f5)
1e 30 k6 (f6)
1f 31 k7 (f7)
20 32 k3 (f3)
21 33 k4 (f4)
22 34 down arrow
23 35 up arrow
24 36 k8 (f8)
25 37 k9
26 38 left arrow
27 39 right arrow
28 40 insert line
29 41 delete line
2a 42 recall
2b 43 insert char
2c 44 delete char
2d 45 elear->end
2e 46 backspace
2f 47 run
30 48 edit / display functions
31 49 alpha / dump alpha
32 50 graphics / dump graph
33 51 step / any char
34 52 clr line / elear screen
35 53 result / set tab
36 54 prt all / elr tab
37 55 elr io / stop
38 56 pause / reset
39 57 enter (return)
3a 58 continue
3b 59 execute

Keyboard Scan codes 8-5

Keycode Function
hex dec

3c 60 numeric pad 0
3d 61 numeric pad. (period)
3e 62 numeric pad, (comma)
3f 63 numeric pad +
40 64 numeric pad 1
41 65 numeric pad 2
42 66 numeric pad 3
43 67 numeric pad -
44 68 numeric pad 4
45 69 numeric pad 5
46 70 numeric pad 6
47 71 numeric pad *
48 72 numeric pad 7
49 73 numeric pad 8
4a 74 numeric pad 9
4b 75 numeric pad /
4c 76 numeric pad E
4d 77 numeric pad (
4e 78 numeric pad)
4f 79 numeric pad "-
50 80 1
51 81 2
52 82 3
53 83 4
54 84 5
55 85 6
56 86 7
57 87 8
58 88 9
59 89 0
5a 90
5b 91
5c 92

8-6 Keyboard Scan codes

Keycode Function
hex dec

5d 93]
5e 94 ; (semi-colon)
Sf 95 ' (apostrophe)
60 96 , (comma)
61 97 . (period)
62 98 / (slash)
63 99 space
64 100 a
65 101 P
66 102 K
67 103 L
68 104 Q

69 105 W
6a 106 E
6b 107 R
6c 108 T
6d 109 Y
6e 110 U
6f 111 I
70 112 A
71 113 S
72 114 D
73 115 F
74 116 G
75 117 H
76 118 J
n 119 M
78 120 Z
79 121 X
7a 122 C
7b 123 V
7c 124 B
7d 125 N
7e 126 left meta
7f 127 right meta

Keyboard Scancodes 8-7

Technical Information About How Multi-Com
Works

Introduction

c

To understand the use of the Multi-Com capability, you should be familiar with the structure and
operation of the BASIC Language Processor (Revision II) itself. The files used by this version of
BASIC are:

HPBLP.SYS

BASIC.EXE

The device driver for the BLP system. This contains usual device
driver code, plus three data areas (called "shared memory" or
"sharmem," for short), one for each of the three possible BLPs.
These shared memory areas provide common storage areas for
all of the other system components. Since they are in the device
driver, they remain in MS-DOS RAM until the computer is re
booted or turned off, and they are also easily accessible from any
of the other programs.

The main control program, which decides what other programs to
run, in what order. It contains all of the code necessary for the
BACKGROUND mode of operation, and becomes a TSR pro
gram (a program that terminates, but stays resident) when you
put BASIC into background mode. It has the code that imple
ments the DFS mass storage, the keyboard, timers, Multi-Com,
the background "alpha" video, as well as what might be termed
the "system control" code.

Technical Information About How Multi-Com Works C-1

Bl.EXE

B2.EXE

B3.EXE

BLP.MSG

BLP.CON

ACTDISP

DLIFONT

SYSBA513

The program that boots the operating system into the BLP when
"old" boot ROMs are present on the BLP. This is its sole func
tion and it only remains in memory for the duration of the boot
process.

The program that boots the operating system into the BLP when
"new" boot ROMs (PC300 BOOTROM) are present on the BLP.
This is its sole function and it only remains in memory for the
duration of the boot process.

The "foreground" portion of the BLP software, which contains all
of the code necessary to do video (alpha and graphics), HPWLIF
mass storage emulation for select code 15, the I/O emulation for
PC serial, HP-IB, and GPIO interfaces, and a few other miscel
laneous things.

An ASCII file containing most of the messages and ASCII strings
used in the programs. CAREFUL editing of this file allows
translation of most of the BLP messages into localized languages.

An ASCII file containing some configuration records for modify
ing the behavior of the BLP system. This file is edited by the
CONF.EXE utility.

The low-level code for the specific display interface in the com
puter. This file gets loaded by B3.EXE during B3's initialization.

The file that contains the font used by ACTDISP for the alpha
characters. It contains a font for an HP-ROMAN8 character set.

The BASIC operating system code that gets "booted" into the
MC68000's memory on the BLP by either Bl.EXE or B2.EXE.

The Multi-Com files include a special DOS file that opens a window to DOS:

POPCOM.COM A TSR program (a program that terminates but stays resident)
that works in conjunction with the device driver (HPBLP.SYS)
and BASIC.EXE when in background mode, to provide some of
the Multi-Com capabilities.

C-2 Technical Information About How Multi-Com Works

When you turn on your computer, HPBLP.SYS gets loaded into RAM, because of the line in
CONFIG.SYS that says something like:

DRIVER = C: \HPBLP.SYS

At this time, the driver initializes itself and causes the boot ROMs on the BLP to begin executing a
self test.

Later, when BASIC.EXE is run, it opens the device driver in order to access the shared memory,
reads its messages out of BLP.MSG, and then, based upon the state of the computer, the BLP, and
the command line arguments, runs either B1.EXE, B2.EXE, or B3.EXE. If BI or B2 is run and
completes successfully, then B3 is run, which "boots" BASIC. BI, B2, and B3 are each responsible
for reading their own messages from BLP.MSG, as well as reading any of the other files necessary
to function.

If you EXIT from BASIC (by pressing CfRL-FIO or executing OUTPUT 19;"EXIT"), then B3
exits back to BASIC.EXE, which then exits back to DOS. If you go into BACKGROUND (by
pressing CTRL-F9 or executing OUTPUT 19;"BACKGROUND"), B3 does a little cleanup,
passes some information back to BASIC.EXE (about switching into background mode and saving
the alpha video contents) and then exits back to BASIC.EXE. BASIC.EXE does a little more
cleanup of its own, and then exits back to DOS through the TSR call, so that it stays in memory,
using approximately lOOK of memory. It's at this point, while BASIC is in background, that the
Multi-Com portions become active and particularly useful for communicating with DOS. If
Multi-Com is being used to communicate between two or three BLPs, then one of them can be in
foreground, with the other(s) in background. But when your BASIC program is communicating
with DOS, it has to be in background mode, since DOS is busy running BASIC when BASIC is in
foreground mode.

Given that very brief overview of the BLP system, the Multi-Com portion works like this: there is
one data buffer, or queue, in the shared memory areas in the device driver for each of the three
possible BLPs and one for DOS - a total of four buffers in all. Added to each buffer are a few
words of control/status information. Each buffer is used as a transfer area for data that is
intended for the associated BLP or DOS. DOS and any BLP can write into any of the buffers
(given proper permission), but ONLY the BLP or DOS that is associated with that buffer can read
the data from the buffer. So, the buffers act as "mailboxes" for each BLP and DOS. Anyone can
put mail in, but only the owner can take it out.

Technical Information About How MUlti-Com Works C-3

Theory of Operation

,
Caution

As soon as you start dealing with more than one BLP in a computer at the same
time, you run the risk of encountering a deadlock (with respect to the Multi-Com
interface). It is because of this that we recommend that the BASIC user stay at
the high-level interface to Multi-Com (using the provided CSUBs) if at all possi
ble. You can't harm your computer while using Multi-Com, but you can lock up
your computer, requiring a re-boot or power-cycle, resulting in lost data.

Working with MS-DOS Applications

In order to work with most MS-DOS applications, and in order to allow those applications to both
send and receive information, it was necessary to implement most of Multi-Com through hooks
that were already in MS-DOS. Most DOS programs can write or print to a file, and most pro
grams read input from the keyboard. Since MS-DOS allows you to write to a device driver through
the exact same calls as writing to a file, Multi-Com uses already established communication paths.

If a program writes to the device driver, the driver passes that information on to the background
BASIC.EXE. BASIC.EXE then inserts the information into the BLP's buffer in the shared
memory in the driver, from which a BASIC program can read it (actually, the BASIC program
requests it, and BASIC.EXE fetches it from the buffer and passes it "in" to the BASIC program).
This allows most MS-DOS applications to send information to a BASIC program. If the BASIC
program wants to send information to a MS-DOS application, it sends the information to
BASIC.EXE, which puts it in the shared memory buffer in the driver. The driver (at initialization)
hooks into INT 16H, the BIOS keyboard function. The next time a request for a key is made
through INT 16H by a DOS application, the device driver:

• Gets control before the BIOS does, sees that there is data in the buffer for DOS, then

• Calls BASIC.EXE, which fetches the next character from the buffer, converts it to an INT 16H
format scancode, passes it back to the driver, which passes it back to the calling DOS applica
tion.

Thus, the data written by the BASIC program looks just like key presses to the DOS application.
This is how a BASIC program can send data to almost any MS-DOS application (including
COMMAND.COM which is, after all, just another DOS application).

C-4 Technical Information About How Multi-Com Works

Interrupting BASIC from MS-DOS or Another BlP

When data is written into the buffer for a BLP, it would be useful to have the BASIC program
interrupted, to notify it that data is waiting in the buffer. This would keep the BASIC program
from constantly polling the buffer. To implement this, we developed the concept of a "trigger key
code". The trigger keycode is a low-level keycode or knobcode that gets sent to BASIC Gust as if
it were a real key press or knob motion) whenever the buffer goes from an empty state to a not
empty state (i.e., when the first character of data gets written into an empty buffer). If the pro
gram has previously executed an appropriate ON KEY, ON KBD, or ON KNOB statement, this
will cause a program branch to the specified statement. The trigger keycode is modifiable from
the BASIC program, but the default is softkey [IT).

Using Multi-Com with Multiple BlPs

If you have mUltiple BLPs, you don't want more than one BLP writing to DOS (or to a third BLP)
at the same time, or you would end up with gibberish, with the characters of the two messages
interwoven with each other. So, we added the concept of "locking." In order for a BLP to send
information to DOS, it must first "lock" DOS. Only one BLP can lock DOS at a time. In order
for one BLP to send information to a second BLP, the second BLP must have already "enabled for
input" the first BLP. Once the first BLP has been enabled-for-input by the second, the first may
send information with or without locking the second. This is up to the programmer, and the pro
grammer should beware.

Communicating Between BlPs

One last feature is the ability for one BLP to write keycodes into another BLP's buffer, rather than
ASCII characters. These keycodes will then be fed into the second BLP just as if someone were
typing from the keyboard. Each BLP determines whether its buffer is receiving keycodes or data
characters. It should be obvious that, in a multi-BLP system, using Multi-Com requires a "smart"
program on each card, programs that expect their counterparts to be doing specific things and
behaving in expected ways.

Technical Information About How Multi-Com Works C-5

The Registers

The Multi-Com files make use of BASIC's capability to read and write to absolute memory
addresses. These reads and writes can take place in four ways.

The BASIC statement

READIO (9826, address)

performs a byte read of the specified address.

The statement

READIO (-9826, address)

performs a word read of the specified address.

The statement

WRITEIO 9826, address; data_byte

writes a byte of data to the specified address.

The statement

WRITEIO -9826, address; data_word

writes a word of data to the specified address.

Refer to the discussions of READIO and WRITEIO in the HP BASIC Language Reference for
more information on these two keywords.

C-6 Technical Information About How Multi-Com Works

The table that follows summarizes the READIO/WRITEIO addresses used by the Multi-Com
software.

READIO Address WRITEIO

SYSTEM STATUS 4358160 DATA TO DOS BUFFER

BLP1 STATUS 4358162 DATA TO BLP1 BUFFER

BLP2 STATUS 4358164 DATA TO BLP2 BUFFER

BLP3 STATUS 4358166 DATA TO BLP3 BUFFER

MYBLP STATUS1 4358168 SET CONTROL

MYBLP STATUS2 4358170 CLRCONTROL

DOS IDLE LIMIT 4358172 DOS IDLE LIMIT

MYBLP BUFFER DATA 4358174 reserved

MYBLP TRIGGER CODE 4358176 MYBLP TRIGGER CODE

¥
Note

The DOS-IDLE-LIMIT register, the buffer data registers, and bits 0 through 7 of
MYBLP-TRIGGER-CODE are all numeric values that are read as an entire byte or
word.

Technical Information About How Multi-Com Works C-7

The SYSTEM STATUS Register

The contents of this status register are summarized in the table that follows.

READIO 4358160 SYSTEM STATUS Register

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

BLP31s BLP21s BLP11s Reserved BLP3 Has BLP2 Has BLP1 Has Reserved

Present Present Present DOS Locked DOS Locked DOS Locked

Value = Value = Value = Value = Value = Value = Value = Value =

32,768 16,384 8,192 4,096 2,048 1,024 512 256

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DOS Is DOS Buff Has DOS Buffer DOS Buffer DOS Input DOS Input DOS Input Reserved

Idle Room for Key Is Full Is Empty Is Enabled Is Enabled Is Enabled

from BLP3 from BLP2 from BLP1

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

This status register uses word reads only; byte reads are ignored. The upper three bits are used to
determine which BLPs are present (not necessarily running). Only one of the DOS-LOCKED bits
will be set at a time.

DOS-IDLE-LIMIT is another register in the Multi-Com interface; it stores a value representing
the limit of the number of times the keyboard will be checked. The DOS-IS-IDLE bit is true any
time there are more than DOS-IDLE-LIMIT checks of the keyboard within one ten millisecond
period.

The purpose of this bit is illustrated in this scenario: the BASIC program goes into background,
runs Lotus 1-2-3 (by sending characters to the DOS keyboard through Multi-Com), sends some
data to 1-2-3 (again, through the Multi-Com keyboard interface), then exits 1-2-3. Once back at
the DOS prompt, it brings BASIC back to the foreground (by sending "BASIC" to the DOS key
board). The problem is that even after the program tells 1-2-3 to exit, 1-2-3 is still madly buffering
the keyboard and will "eat" the first few characters of the "BASIC" command, unless the BASIC
program waits a little bit for 1-2-3 to exit. How long? The DOS-IS-IDLE bit serves that purpose.
The difficulty lies in discovering the appropriate value to store into DOS-IDLE-LIMIT. This will
vary from machine to machine, with different CPU speeds. The default value is 8, but the useful
range is from about 5 to 25 - use trial and error to determine the best value for your computer. In
the above example, we used 1-2-3 for illustration purposes only. The DOS-IS-IDLE bit is not
expected to be used a great deal.

C-8 Technical Information About How Multi-Com Works

The DOS-BUFFER-HAS-ROOM-FOR-KEY bit is used to determine if the DOS buffer has room
for a PC scancode. The BASIC program can place both ASCII characters and PC scancodes into
the DOS buffer. The ASCII characters take one byte of storage in the buffer, but the scancodes
require two. Since these can be intermixed, it's possible for the buffer not to be full, yet for there
to be insufficient room for a scancode (Le., only one empty byte in the buffer). When sending
ASCII data to the DOS buffer, the DOS-BUFFER-IS-FULL bit is checked before attempting to
write the character to the buffer. But when writing scancodes to the buffer, the DOS-BUFFER
HAS-ROOM-FOR-KEY bit must be checked instead.

The DOS-INPUT-IS-ENABLED-FROM bits are redundant, since they always reflect the state of
the DOS-LOCKED bits, but are included for symmetry with the BLP STATUS registers, which
can have input enabled without being locked.

The BLP1 STATUS, BLP2 STATUS, BLP3 STATUS, and MYBLP
STATUS1 Registers

The contents of these status registers are summarized in the tables that follow.

READIO 4358162 BLP1 STATUS Register

Bit lS Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9

0 0 BLP1 1 = Key Mode BLP3 Has BLP2 Has BLP1 Has

Present O=Data Mode BLP11nput BLP11nput BLP11nput

Locked Locked Locked

Value = Value = Value = Value = Value = Value = Value =

32,768 16,384 8,192 4,096 2,048 1,024 512

Bit7 Bit6 Bit S Bit 4 Bit 3 Bit2 Bit 1

BLP1 Is In BLP1 Is In BLP1 Buffer BLP1 Buffer BLP1 Input BLP1 Input BLP1 Input

Background Foreground Is Full Is Empty Is Enabled Is Enabled Is Enabled

from BLP3 from BLP2 from BLP1

Value = 128 Value = 64 Value = 32 value = 16 value = 8 value = 4 Value = 2

BitS

Reserved

Value =

256

Bit 0

BLP1 Input

Is Enabled

from DOS

Value = 1

Technical Information About How Multi-Com Works C-9

READIO 4358164 BLP2 STATUS Register

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit I

0 BLP2 Present 0 1 =Key Mode BLP3 Has BLP2 Has BLP1 Has Reserved

0= Data Mode BLP21nput BLP21nput BLP21nput

Locked Locked Locked

Value = Value = Value = Value = Value = Value = Value = Value =

32,768 16,384 8,192 4,096 2,048 1,024 512 256

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

BLP21s In BLP21sln BLP2 Buffer BLP2 Buffer BLP21nput BLP21nput BLP21nput BLP21nput

Background Foreground Is Full Is Empty Is Enabled Is Enabled Is Enabled Is Enabled

from BLP3 from BLP2 from BLP1 from DOS

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

READIO 4358166 BLP3 STATUS Register

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit I

BLP3 Present 0 0 1 = Key Mode BLP3 Has BLP2 Has BLP1 Has Reserved

0= Data Mode BLP31nput Input BLP3 Input BLP3

Locked Locked Locked

Value = Value = Value = Value = Value = Value = Value = Value =

32,768 16,384 8,192 4,096 2,048 1,024 512 256

Bit7 Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 Bit 0

BLP31s In BLP31s In BLP3 Buffer BLP3 Buffer BLP31nput BLP31nput BLP31nput BLP31nput

Background Foreground Is Full Is Empty Is Enabled Is Enabled Is Enabled Is Enabled

from BLP3 from BLP2 from BLP1 from DOS

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

C-10 Technical Information About How Multi-Com Works

READIO 4358168 MYBLP STATUS1 Register

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit I

I Am BLP3 I Am BLP2 I Am BLP1 1 = Key Mode BLP3 Has My BLP2 Has My BLP1 Has My Reserved

0= Data Mode Input Locked Input Locked Input Locked

Value = value = value = value = value = Value = value = Value =
32,768 16,384 8,192 4,096 2,048 1,024 512 256

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

MYBLPls In MYBLP Is In MYBLP MYBLP My Input My Input My Input My Input

Background Foreground Buffer Is Buffer Is Is Enabled Is Enabled Is Enabled Is Enabled

Full Empty from BLP3 from BLP2 from BLP1 from DOS

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

These registers use word reads only; byte reads are ignored. MYBLP STATUSl is exactly the
same as one of the first three. If the program is running on BLPl, then MYBLP STATUSl will be
exactly the same as BLPl STATUS. The same is true for BLP2 and BLP3. This provides a way for
a program to be written generically enough (in most instances) to be able to work on any of three
cards without having to worry about which card it's actually running on.

The I-AM-BLPx bits tell you which BLP your BASIC program is executing on, and (when properly
shifted and masked) can provide a mask for testing the LOCKED and ENABLED-FaR-INPUT
bits in other status registers in a generic way.

KEY/DATA-MODE tells you which mode your buffer is in; the default is DATA. When in DATA
mode, only ASCII characters can be written to the buffer. When in KEY mode, only HP BASIC
keycodes can be written to the buffer. The default mode is DATA MODE.

If one BLP (let's call it BLP-A) has a second BLP (let's call it BLP-B) locked, BLP-B cannot dis
able input from BLP-A. If BLP-B hasn't enabled BLP-A for input, BLP-A cannot lock BLP-B.

Either the BACKGROUND bit or the FOREGROUND bit will always be set, but never both, as
BASIC.EXE must be running in order for this read to succeed without suspending the 68000
processor's execution.

The default for the INPUT-ENABLE bits is for all BLP inputs to be disabled, and DOS input to
be enabled.

Technical Information About How Multi-Com Works C-"

The MYBLP STATUS2 Register

The contents of this status register are summarized in the table that follows.

READIO 4358170 MYBLP STATUS2 Register

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 BitS Bit a
Reserved Reserved Reserved Reserved I Have BLP3 I Have BLP2 I Have BLP1 I Have DOS

Input Locked Input Locked Input Locked Input Locked

Value = Value = Value = Value = Value = Value = Value = Value =
32,768 16,384 8,192 4,096 2,048 1,024 512 256

Bit 7 Bit I Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Reserved I Am Enabled I Am Enabled I Am Enabled I Am Enabled

for Input for Input for Input for Input

to BLP3 to BLP2 to BLP1 to DOS

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

This register uses word reads only; byte reads are ignored. These bits are all redundant, as they
occur in the other status words for the individual BLPs and DOS. However, this word pulls them
all together in one easy location to save the BASIC programmer some work.

The SET CONTROL Register

The contents of this status register are summarized in the table that follows.

C-12 Technical Information About How Multi-Com Works

WRITEIO 4358168 SET CONTROL Register

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Send Trigger Send Trigger Send Trigger Set Key Try to Lock Try to Lock Try to Lock Try to Lock

to BLP3 to BLP2 to BLP1 Mode BLP3 Open BLP20pen BLP10pen DOS Open

Value = Value = Value = Value = Value = Value = Value = Value =
32,768 16,384 8,192 4,096 2,048 1,024 512 256

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 BitO

Reserved Reserved Flush DOS Flush MYBLP Enable Input Enable Input Enable Input Enable Input

Buffer Buffer from BLP3 from BLP2 From BLP1 From DOS

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

This register uses word writes only; byte writes are ignored. These bits are all active when a 1 is
written to them; no action occurs if a 0 is written.

The TRIGGER bits allow one BLP to cause a second BLP's trigger keycode to be sent to the
second BLP without actually sending data to its buffer.

In order to lock another BLP or DOS, you must write SET CONTROL with the appropriate bit(s)
set to 1. This does not ensure that you will be successful with the lock, however, so a read of
MYBLP STATUS2 should be performed to check if you were successful. Once you are successful
at locking another BLP or DOS, it will stay locked until you write a 1 in the appropriate location of
the CLR CONTROL register.

In order to FLUSH the DOS buffer, you must first LOCK DOS. This can all be accomplished
with a single write to SET CONTROL if both the LOCK-DOS and FLUSH-DOS-BUFFER bits
are set (LOCK gets done before the FLUSH bit gets checked). However, if the LOCK fails, the
flush will not occur.

" Note

We discourage use of the FLUSH DOS buffer command, as a general practice since,
in most cases, you will be throwing away something that someone wanted to send to
DOS.

Technical Information About How Multi-Com Works C-13

" Note

You can FLUSH a BLP buffer at any time, although this, too, can be a dangerous
thing to do (you may lose data).

The ENABLE-FOR-INPUT bits MUST be set before DOS or another BLP can send you data.
DOS is enabled by default, other BLPs are not.

The CLR CONTROL Register

The contents of this status register are summarized in the table that follows.

WRITEIO 4358170 CLR CONTROL Register

Bit 1S Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 BitS

Reserved Reserved Reserved Set Data Unlock Unlock Unlock Unlock

Mode BLP3 BLP2 BLP1 DOS

Value = Value = Value = Value = Value = Value = Value = Value =

32,768 16,384 8,192 4,096 2,048 1,024 512 256

Bit7 Bit 6 BitS Bit4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Reserved Disable Disable Disable Disable

Input from Input from Input from Input from

BLP3 BLP2 BLP1 DOS

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

This register uses word writes only; byte writes are ignored. These bits are all active when a 1 is
written to them; no action occurs if a 0 is written.

You can write an UNLOCK command to all BLPs and DOS, even if they're not locked, with no ill
effects. If they are locked by you, a write of the UNLOCK bit will ALWAYS unlock them.

You can write a DISABLE-INPUT command to all BLPs and DOS, even if they are not enabled,
with no ill effects. If they are enabled for input to you, a write of the DISABLE-INPUT bit will
only have an effect if you are NOT locked by that BLP. If you are locked by that BLP, your
INPUT-ENABLED status will remain true for that BLP.

C-14 Technical Information About How Multi-Com Works

The DOS IDLE LIMIT Register

READIO/WRITEIO 4358172 DOS IDLE LIMIT Register. This register uses word reads and
writes only; byte reads and writes are ignored. This register has meaning as a single value, rather
than as individual bits.

DOS-IDLE-LIMIT stores a value representing the limit of the number of times the keyboard will
be checked. The DOS-IS-IDLE bit in the SYSTEM STATUS register is true anytime there are
more than DOS-IDLE-LIMIT checks of the keyboard within one ten millisecond period.

The purpose of this bit is illustrated in this scenario: the BASIC program goes into background,
runs Lotus 1-2-3 (by sending characters to the DOS keyboard through Multi-Com), sends some
data to 1-2-3 (again, through the Multi-Com keyboard interface), then exits 1-2-3. Once back at
the DOS prompt, it brings BASIC back to the foreground (by sending "BASIC" to the DOS key
board). The problem is that even after the program tells 1-2-3 to exit, 1-2-3 is still madly buffering
the keyboard and will "eat" the first few characters of the "BASIC" command, unless the BASIC
program waits a little bit for 1-2-3 to exit. How long? The DOS-IS-IDLE bit serves that purpose.
The difficulty lies in discovering the appropriate value to store into DOS-IDLE-LIMIT. This will
vary from machine to machine, with different CPU speeds. The default value is 8, but the useful
range is from about 5 to 25-use trial and error to determine the best value for your computer. In
the above example, we used 1-2-3 for illustration purposes only. The DOS-IS-IDLE bit is not
expected to be used a great deal.

Technical Information About How Multi-Com Works C-15

The MYBLP BUFFER DATA Register

The contents of this status register are summarized in the table that follows.

READIO 4358174 MYBLP BUFFER DATA Register

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bita

0 0 0 0 0 0 0 0

Value = Value = Value = Value = Value = Value = Value = Value =
32,768 16,384 8,192 4,096 2,048 1,024 512 256

Bit7 I Bit6 I Bit 5 I Bit 4 I Blt3 I Bit2 I Bit 1 I Bit 0

ASCII CODE

Value = 128 I Value = 64 I Value = 32 I Value = 16 I Value = 8 I Value = 4 I Value = 2 I Value = 1

This register is ignored if MYBLP is in KEYS mode. If it is in DATA mode, a word read will
return the next character in the buffer without removing it from the buffer, and a byte read will
return the next character from the buffer as well as remove it from the buffer. In other words, a
word read is a non-destructive read, a byte read is a destructive read. The word read allows a
one-character look-ahead in your data buffer.

The TRIGGER CODE Register

The contents of this status register are summarized in the table that follows.

C-16 Technical Information About How Multi-Com Works

READIO/WRITEIO 4358176 TRIGGER CODE Register

Bit 1S Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit9 Bit I

1 0= Keycode O=Ctrl O=Shift 0 0 0 1

1 = Knob Value 1 =No Ctrl 1 =No Shift

Value = Value = Value = Value = Value = Value = Value = Value =

32,768 16,384 8,192 4,096 2,048 1,024 512 256

Bit7 I Bit 6 I BitS I Bit 4 I Bit3 l Bit 2 1 Bit 1 I Bit 0

HP BASIC KEYCODE OR KNOB ROTATION VALUE

Value = 128 I Value = 64 I Value = 32 1 Value = 16 I Value = 8 I Value = 4 I Value = 2 I Value = 1

This register uses word reads and writes only; byte reads and writes are ignored. The programmer
should BEWARE of using the trigger keycode. The upper bits that are specified as 1 or 0 MUST
be ALWAYS written as that value, or the performance of the system may be disrupted. If the
KEYCODE/KNOBVAL bit is set to KEYCODE (0), then the lower byte contains an HP BASIC
scancode (from the attached table), and the SHIFT and CTRL bits specify the state of those
modifier keys when the scancode is sent in to BASIC, If the KEYCODE/ KNOBVAL bit is set to
KNOBVAL (1), then the lower byte contains a knob rotation count that is readable by KNOBX or
KNOBY, based upon the state of the SHIFT and CTRL bits.

If in KEYCODE mode, then the BASIC program must execute an ON KEY or ON KBD state
ment in order for the trigger keycode to work. If in KNOBVAL mode, then the BASIC program
must execute an ON KNOB statement in order for the trigger keycode to work. Refer to the list
ing of HP BASIC keycodes in appendix B.

The DATA TO DOS BUFFER

WRITEIO 4358160 Register. Byte writes to this register send a one-byte ASCII code to the
DOS buffer. Word writes send a PC scancode to the DOS buffer. The actual scancode that shows
up in INT 16H for the ASCII code is what a DOS program would expect; BASIC,EXE uses the
ASCII code to look up the scancode in a table, and then passes the two along in the AX register as
is normal for INT 16H. When a scancode is written to the DOS buffer, it serves as the value to be
placed in the AH register, and a 0 is placed in the AL register before this is returned as the AX
value in INT 16H. Refer to your computer's technical reference manual, or to books about the PC
BIOS for more information about INT16H. PC scancodes are listed in appendix B.

Technical Information About How Multi-Com Works C-17

The DATA TO BLPx Buffers

WRITEIO 4358162 DATA TO BLP1 Buffer
WRITEIO 4358164 DATA TO BLP2 Buffer
WRITEIO 4358166 DATA TO BLP3 Buffer

If BLPx is in DATA mode, then word writes are ignored and byte writes are ASCII data. If BLPx
is in KEY mode, then byte writes are ignored, and word writes are keycodes which must conform
to the format described for TRIGGER CODE (above).

C-18 Technical Information About How Multi-Com Works

Index

1
123LIB, 1-4,2-1,2-3,8-1

A
addresses used by Multi-Com software, C-7
ADVLIB, 1-3,2-1,2-3,7-1
ASCII data mode, 3-7, 7-3

B
background mode, 1-1,2-4,3-1,4-3,5-1,6-3,

C-l
Blp data mode, 7-3
Blp =enable, 6-6
Blp _key_mode, 7-6
BLPLIB, 1-3,2-1,2-3,6-1
Blp _send, 6-18
Blp send key, 7-7
Blp -set idle, 7-9
Blp -trigger key, 7-11
Blp = unlock~ 4-2,6-20
buffer status, 3-6

c
Command, 8-2
Compiled Subprograms (CSUBs), 1-2,2-4

D
data buffers, 1-2
Down, 8-3

E
error codes, 5-1, A-l
exclusive access, 3-6, 4-1, 4-3, 5-2, 5-4, 5-12,

6-5,6-20, 7-21

F
flushing the BLP buffer, C-14
flushing the DOS buffer, C-13
FNBlp _background, 6-3
FNBlp _disable, 6-4
FNBlp dos idle, 7-4
FNBlp - ent~$, 6-8
FNBlp _id, 6-9
FNBlp _input$, 6-10
FNBlp_Iock, 4-1, 6-12
FNBlp_locked_by, 6-14
FNBlp _ more_data, 6-15
FNBlp _present, 6-16
FNPop blp, 7-12
FNPop - enter$, 5-6
FNPop -input$, 5-8
FNPop _ msg_lines, 7-17
FNPop _ open, 5-9
FNPop Jead _ buf$, 7-18
FNPop _stat, 7-26

Index 1

H
HP BASIC keycodes, 3-7, 7-7, 7-11, B-4
HP BASIC statements you will need to use

with Multi-Com, 2-4

installation of software, 2~2
interrupting BASIC from MS-DOS or another

BLP, C-5

K
keyboard scancode mode, 7-3, 7-6, 7-7
keyboard scan codes, B-1
keycodes, 7-7, B-4, C-5

l
Left, 8-4
LOADSUB statement, 2-4
locking, 4-1, 4-3, C-5
locking with Wait, 4-2
locking without Wait, 4-2
Lotus 1-2-3, 1-1, 1-4,6-10,8-1

M
MCINSTAL Program, 2-2
memory considerations, 4-3
MS-DOS

application programs, 1-1
operating system, 1-1

multiple language processor considerations,
4-1

multiple language processors, 1-1, 1-3,3-5,
3-6,5-3,5-5,5-7,5-10,5-12, C-4, C-5

2 Index

o
OUTPUT 19; statement, 2-4, C-3

p

PC scan codes, 7-7, B-1
Pop_clear, 5-2
POPCOM window, 1-2, 1-3, 3-1, 5-1, 7-1

BLP identification line, 3-2
input line, 3-2
message area, 3-2
status display, 3-3, 3-4

POPCOM.COM, C-2
Pop_down, 5-4
POPLIB, 1-3,2-1,2-3,2-4,5-1,6-8,9-5
Pop_lock,7-13
Pop _ msg_ color, 7-15
Pop_output, 5-11
Pop row, 7-20
Pop-send buf,7-21
Pop _set_input, 7-23
Pop set lines, 7-25
Pop-uniOck, 7-28
Pop_up, 7-29

R
READIO statement, C-6
resource sharing, 4-1, 4-3
RE-STORING a program, 2-4
Right, 8-5

s
scan codes, 7-7, B-1
shared memory, C-1
status display

POPCOM window, 3-3, 3-4
status registers, C-6
subprograms, 1-2,2-4

T
technical information about how Multi-Com

works, C-1
trigger keycode, 3-7, 5-6, 9-4, 7-11, C-5, C-17

u
unlocking, 4-1, 4-3, C-5
Up, 8-6
user-defined functions, 1-2,2-4

w
Waiting, 4-2, 5-2, 5-4, 5-10, 5-12, 6-5, 6-13, 9-3
WRITEIO statement, C-6

Index 3

	0001
	0002
	0003
	0004
	0005
	0006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	I-01
	I-02
	I-03

