
Programming with HP BASIC

rli~ HEWLETT
~~ PACKARD

Edition 1 June 1989

Reorder Number
82301-90015

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

o Copyright 1989, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett -Packard Company. The information con
tained in this document is subject to change without notice.

MS'" -DOS is a registered trademark of Microsoft Corporation.

Corvallis Information Systems
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 June 1989 Mfg. No. 82301-90016

Contents

Introduction

Part I: General Programming Techniques

Chapter 1: Program Structure and Flow
Sequence ... 1-1

Linear Flow .. 1-1
Halting Program Execution ... 1-1
Simple Branching ".. 1-2

Selection ".. 1-4
Conditional Execution of One Segment ... 1-5
Conditional Branching .. 1-5
Multiple-Line Conditional Segments .. 1-6
Choosing One of 1\vo Segments .. 1-7
Choosing One of Many Segments ... 1-7
Using the ON Statement .. 1-9

Repetition ... 1-9
Fixed Number of Iterations .. 1-10
Conditional Number of Iterations ... 1-10
Arbitrary Exit Points ... 1-12

Event-Initiated Branching .. 1-13

Contents 3

Chapter 2: Numeric Computation
Numeric Data 'JYpes .. 2-1

REAL Variables .. 2-1
INTEGER Variables .. 2-2
COMPLEX Variables ... 2-2
Variable Names ... 2-2
Declaring Variables ... 2-3
'JYpe Conversions ... 2-3

R.esident Numerical Functions ... 2-4
Arithmetic Functions .. 2-5
Array Functions ... 2-5
Exponential Functions .. 2-6
Trigonometric Functions .. 2-6
Hyperbolic Functions .. 2-7
Binary Functions .. 2-7
Limit Functions .. 2-8
Rounding Functions .. 2-8
Random Number Function .. 2-8
Complex Functions .. 2-9
Time and Date Functions ... 2-12
Base Conversion Functions .. 2-13
General Functions ... 2-13

Evaluating Scalar Expressions ... 2-14
Strings in Numeric Expressions ... 2-15
Step Functions .. 2-16
Comparing REAL Numbers .. 2-16

Chapter 3: Numeric Arrays
Dimensioning an Array ... 3-1

Some Examples of Arrays .. 3-3
Problems With Implicit Dimensioning ... 3-6

lJ sing Array Elements ... 3-7
Assigning an Individual Array Element .. 3-7
Extracting Single Values From Arrays ... 3-7

Filling Arrays .. 3-7

4 Contents

Assigning Every Element in an Array the Same Value .. 3-8
Using the READ Statement. to Fill an Entire Array .. 3-8
Copying Arrays into Other Arrays .. 3-8

Printing Arrays ... 3-10
Printing an Entire Array ... 3-10
Examples of Formatting Arrays for Display .. 3-10

Passing Entire Arrays .. 3-11
Copying Subarrays ... 3-11

Subarray Specifier ... 3-12
Redimensioning Arrays .. 3-15
Arrays and Arithmetic Operators .. 3-16

Using the MAT Statement ... 3-16
Performing Arithmetic Operations with Complex Arrays ... 3-18
Summing the Elements ill an Array.. 3-19

Boolean Arrays .. 3-19

Chapter 4: String Manipulation
String Storage ... 4-2
String Arrays .. 4-2
Evaluating Expressions Containing Strings .. 4-3

Evaluation Hierarchy .. 4-3
String Concatenation ... 4-3
Relational Operations ... 4-4

Substrings .. 4-4
Single-Subscript Substrings .. 4-5
Double-Subscript Substrings .. 4-5
Special Considerations .. 4-6

String-Related Functions .. 4-6
String Length .. 4-7
Substring Position 4-7
String-to-Numeric Conversion ... 4-7
Numeric-to-String Conversion ... 4-8

String Functions ... 4-8
String Reverse .. 4-8
String Repeat ... 4-8
Trimming a String .. 4-9

Contents 5

Case Conversion .. 4-9
MAT Functions and String Arrays .. 4-9
Number-Base Conversion .. 4-10
Changing the Lexical Order ... 4-11

Chapter 5: Subprograms and User-Defined Functions
Location .. 5-1
Naming .. 5-2
The Difference Between a Function and a Subprogram .. 5-2
Numeric Functions and String Functions ... 5-3
Calling and Executing a Subprogram .. 5-4
Communication .. .5-5

Parameter Lists .. 5-5
OPTIONAL Parameters .. 5-7
COM Blocks ... 5-7
Hints for Using COM Blocks .. 5-8

Context Switching .. 5-10
Variable Initialization .. 5-11
Subprograms and Softkeys ... 5-11
Subprograms and the RECOVER Statement ... 5-11

Calling Subprograms from the Keyboard ... 5-11
Using Subprogram Libraries .. 5-12

Loading Subprograms One at a Time .. 5-12
Loading Several Subprograms at Once ...•.................................... 5-12
Loading Subprograms Prior to Execution .. 5-13
Deleting Subprograms Programmatically .. 5-13
Editing Subprograms .. 5-14
SUBEND and FNEND .. 5-16

Recursion .. 5-16

6 Contents

Chapter 6: Data Storage and Retrieval
Storing Data in Programs ... 6-1

Storing Data in Variables ... 6-2
Data Input by the User ... 6-2
Using DATA and READ statements .. 6-2

File Input and Output (I/O) .. 6-6
Brief Comparison of File Types ... 6-6
Creating Data Files ... 6-8
Overview of File I/O ... 6-8
I/O Paths and File Access .. 6-11

A Closer Look at ASCII Filles .. 6-12
Example of ASCII File I/O ... 6-12
Data Representations in ASCII Ftles ... 6-14
Formatted OUTPUT With ASCII Files ... 6-15
Formatted ENTER With ASCII Files .. 6-16

A Closer Look at BDAT, HP-UX, and DOS Files ... 6-17
Data Representations Available .. 6-17
Random Versus Serial Access ... 6-17
Data Representations Used in BDAT Ftles ... 6-18
Data Representations With HP-UX and DOS Files .. 6-21
BDAT File System Sector .. 6-21
Defined Records .. 6-22
Writing Data to BDAT, HP-UX, and DOS Files .. 6-24
Reading Data From BDAT, HP-UX, and DOS Files .. 6-25

Trapping EOF and EOR Conditions .. 6-28
Extended Access of Directories ... 6-28

Sending Catalogs to External Printers .. 6-29
Cataloging Selected Files .. 6-29
Getting a Count of Selected Files .. 6-30
Skipping Selected Files ... 6-30

Contents 7

Chapter 7: Using a Printer
Fundamentals ... 7-1

Device Selectors ... 7-1
Primary Addresses ... 7-2
Using Device Selectors ... 7-2
Using the External Printer ... 7-3
Control Characters .. 7-4

Formatted Printing .. 7-4
lJsing Images .. 7-6

Numeric Image Specifiers .. 7-7
String Image Specifiers ... 7-9
Additional Image Specifiers ... 7-10

Special Considerations .. 7-10

Chapter 8: The BASIC Clock
Initial Value, Range, and Accuracy ... 8-1
Reading and Setting the BASIC Clock ... 8-2

Reading the Clock Value .. 8-2
Determining Date and Time of Day... 8-2
Setting the Clock Value .. 8-3
Setting the Time .. 8-3
Setting the Date ... 8-4
Day of the Week .. 8-4

Branching on Clock Events .. 8-4
Cycles and Delays .. 8-5
Branching on Time of Day ... 8-6
Priority Restrictions .. 8-7
Branching Restrictions .. 8-8

8 Contents

Chapter 9: Errors and Debugging
Error Handling .. 9-1

Anticipating Operator Errors .. 9-1
Error Trapping ... 9-2

Program Debugging .. 9-6
Using Live Keyboard .. 9-6
Stepping .. 9-8
Tracing .. 9-9
PRINTALL IS .. 9-11
TRACE PAUSE .. 9-11

Part II: Graphics Techniques

Chapter 10: Creating Graphics
Introduction to Your BASIC Graphics System ... 10-1

The CRT Display ... 10-1
Initializing and Clearing the Displays ... 10-2
The Current Position .. 10-3
The XY Plane .. 10-4

Graphics Fundamentals .. 10-7
Drawing Lines .. 10-7
Scaling ... 10-9
Defining a Viewport .. 10-10
Other Ways to Draw or Move ... 10-15
Erasing Lines ... 10-16
Line Attributes ... 10-16
Creating Simple Shapes .. 10-19
Additional Pen Control ... 10-25

Using Graphics Effectively ... 10-30
More on Labelling a Plot .. 10-30
Miscellaneous Graphics Concepts .. 10-36
Data-Driven Plotting ... 10-38
Translating and Rotating a Drawing ... 10-39

Contents 9

Incremental Plotting .. 10-41
Color Graphics ... 10-44

Non-Color Mapped Color .. 10-44
Color Mapped Color ... 10-46
Fill Colors ... 10-48

Chapter 11: External Graphics Displays and Plotters
Specifying a Plotter .. 11-1
lJsing a Shared Printer or Plotter .. 11-2
Dumping Raster Images ... 11-2
HPGL .. 11-4

Controlling Pen Speed .. 11-4
Controlling Pen Force ... 11-5
Selecting Character Sets ... 11-5
Error Detection ... 11-6

Part III: Interfacing Techniques

Chapter 12: Introduction to I/O
Interfacing concepts .. 12-1

Terminology ... 12-1
Why Do You Need an Interface? .. 12-2
Some Standard Interfaces .. 12-3
The I/O Process .. 12-4

Directing Data Flow .. 12-5
Specifying a Resource ... 12-5
Assigning I/O Path Names .. 12-8

10 Contents

Chapter 13: Outputting and Entering Data
Outputting Data ... 13-1

Free-Field Outputs ..••.. 13-1
Using END in Free-Field OUTPUT .. 13-8
Outputs that Use Images .. 13-10
Images ... 13-11
Image Definitions During Outputs ... 13-12
Additional Image Features ... 13-21
END with OUTPUTs that Use Images .. 13-24

Entering Data ...•................. 13-27
Free-Field Enters .. 13-27
Terminating Free-Field ENTER Statements ... 13-33
Enters that Use Images .. 13-36
Images ... 13-36
Image Definitions During Enter ... 13-38
Terminating Enters that Use Images .. 13-44
Additional Image Features ... 13-47

Chapter 14: Advanced InterfaCing Topics
Registers ... 14-1

Interface Registers .. 14-2
I/O Path Registers .. 14-4
Summary of I/O Path Registers .. 14-8

Interrupts and Timeouts ... 14-11
Overview of Event-Initiated Branching .. 14-11
Interface Interrupts ... 14-22
Interface Timeouts .. 14-27

I/O Path Attributes ... 14-28
The FORMAT Attributes .. 14-28
Additional Attributes .. 14-31

Concepts of Unified I/O .. 14-43
I/O Paths and Mass-Storage Files .. 14-44
I/O Operations with String Variables .. 14-49
Unified I/O and Program Design ... 14-55

Contents 11

Chapter 15: Transfers and Buffered I/O
The Purpose of Transfers ... 15-1
Overview of Buffers and Transfers .. 15-1

Inbound and Outbound Trrunsfers ... 15-2
Supported Transfer Sources and Destinations .. 15-3
Examples of Transfer .. 15-4

A Closer Look at Buffers .. 15-5
Types of Buffers ... 15-5
Creating Named Buffers ... 15-5
Assigning I/O Path Names to Named Buffers .. 15-6
Assigning I/O Path Names to Unnamed Buffers .. 15-6
Buffer-Type Registers ... 15-7
Buffer Life Time .. 15-7
Buffer Size Register .. 15-7
Buffer Pointers ... 15-8
Accessing Named Buffers Using Variable Names .. 15-9

A Closer Look at Transfers .. 15-10
Transfer Methods .. 15-11
OUTPUT and ENTER and Buffers ... 15-11
Transfer Formatting .. 15-11
Transfer Termination Branching ... 15-12
Visually Determining Transfer Status ... 15-12

Choosing Transfer Parameters .. 15-12
Continuing Transfers Indefinitely .. 15-12
Waiting for a Transfer to End (Non-Overlapped Transfers) ... 15-13
Continuous Non-Overlapped Transfers .. 15-13
Transferring a Specified Number of Bytes ... 15-14
Delimiter Characters .. 15-14
Using the END Indication with Transfers .. 15-14
Transferring Records .. 15-15
MUltiple Termination Conditions .. 15-15
TRANSFER Records and Termination ... 15-16
Transfer Event-Initiated Branching .. 15-17
Overlapped Nature of TRANSFER ... 15-17

Terminating a Transfer ... 15-18
More Transfer Examples .. 15-20

12 Contents

Special Considerations .. 15-24
Transfer with Care ... 15-24
Statements That Affect Concurrency .. 15-25
Error Reporting ... 15-26
Suspended Transfers ... 15-28

Transfer Performance ... 15-28
Sector Size .. 15-28
Transfer Methods and Rates .. 15-29

Restrictions ... 15-30
Interactions with Other Keywords ... 15-31

Specific Interfaces ... 15-31
Changing Buffer Attributes .. 15-32

Buffer Status and Control Registers ... 15-33

Chapter 16: Techniques for Specific Interfaces
The HP-IB Interface ... 16-1

Initial Installation .. 16-2
Communicating with Devices .. 16-2
General Bus Management ... 16-7
The Computer As a Non-Active Controller .. 16-13
Status Register 3: Controller Status and Address ... 16-13
Status Register 5: Interrupt Enable Mask .. 16-16
HP-IB Control Lines ... 16-20
References .. 16-22

The RS-232 Serial Interface: ... 16-23
Asynchronous Data Communication .. 16-24
Data Transfers Between Computer and Peripheral .. 16-26
Overview of Serial Interface Programming .. 16-26
Initializing the Interconnection .. 16-27
Using Program Control to Override Defaults ... 16-27
Data Transfers ... 16-29

The GPIO Interface .. 16-31
Interface Description .. 16-31
Interface Configuration .. 16-32
Interface Reset ... 16-34
Using OUTPUT and ENTER Through the GPIO .. 16-35

Contents 13

GPIO Timeouts ... 16-37
GPIO Interrupts ...•••••••.. 16-38
Interrupt Enable Register: (ENABLE INTR)••... 16-39
Interrupt Service Routines ... 16-40
Status Register 4: Interface Ready .. 16-40
Status Register 5: Peripheral Status .. 16-40

The HP-IDL Interface .. 16-41
Preview of HP-HIL Devices ... 16-42
Communicating Through the HP-HIL Interface .. 16-43
Supported HP-HIL Devices ... 16-43

Index

14 Contents

Introduction

This manual describes selected HP BASIC programming techniques in three parts:

• Part I, "General Programming Techniques," (chapters 1 through 9) covers general program
ming techniques that you can use for a wide variety of applications.

• Part II, "Graphics Techniques," (chapters 10 and 11) covers graphics programming techniques.
You can use these techniques to present information graphically on the CRT, or on an external
printer or plotter.

• Part III, "Interfacing Techniques," (chapters 12 through 16) covers I/O interfaces and I/O pro
gramming techniques. You can use these techniques to output and enter data, and to control
peripheral devices from your computer.

This manual should be used in conjunction with other HP BASIC manuals:

• For information about installing BASIC in the HP BASIC Language Processor system, and
about the language processor programming environment, refer to Installing and Using HP
BASIC in the MS-DOS Environment.

• For additional information about the syntax of HP BASIC keywords, refer to the keyword dic
tionary in the BASIC Language Reference manual, or to the BASIC Condensed Reference
manual.

This manual covers programming techniques for HP BASIC 5.0/5.1 and later versions of BASIC.
Most of the techniques presented are also applicable to earlier versions of BASIC. However, you
should be aware that there may be some differences.

If you want to learn more about HP BASIC programming techniques, particularly I/O program
ming techniques, an excellent self-paced course is available. The product number is HP 82302A
and the title is Using HP BASIC for Instrument Control, a Self-Study Course.

Example Programs. Several of the example programs used in this manual are provided on disk
for your convenience. For the HP BASIC Language Processor these examples are found in the
DFS directory named "EXAMPLES" on the "Manual Examples and Selected CSUBs" disk.

Conventions. Throughout this manual, when you are asked to "execute" an HP BASIC state
ment, type the statement on the BASIC command line and then press the IEnter! key.

Softkeys are indicated by a dot screen, for example irWmmC.

Examples of BASIC statements and programs are given in a "computer" -style type. If a statement
contains a variable for which you must supply a value, the variable will be in italics, for example:

PEN pen_number

Program EDIT Mode. Press the ifCOIIU; softkey (or type "EDIT") and then press IEnteri to go
into the EDIT mode. You can now enter a program from the keyboard using the editor. Type in
the program lines, pressing IEnterl after each one. The editor will number the program lines
automatically. To exit the EDIT mode, press the IPausel key. To clear a program from memory,
press§;qtE~BirPlfl, followed by IEnter!. For further information, refer to Installing and Using HP
BASIC in the MS-DOS Environment.

Additional References. For additional information about HP BASIC, you may want to refer
to these additional manuals which are available from Hewlett-Packard:

Manual Name Part Number Description
BASIC Programming Techniques 98613-90012 Detailed description of program-

ming in HP BASIC. (Volume 2 pro-
vides information on porting BASIC
programs from earlier versions of
HP Series 200/300 BASIC.)

BASIC Graphics Techniques 98613-90032 Detailed description of graphics
programming techniques.

BASIC Interfacing Techniques 98613-90022 Detailed description of interfaces
and I/O programming techniques.
(Volume 2 provides additional infor-
mation on Series 200/300 inter-
faces.)

Installing and Maintaining the BASIC 98613-90042 Information on installing and main-
System taining HP BASIC on an HP 9000

Series 200/300 system.

Using the BASIC System 98613-90000 Information on using HP BASIC on
an HP 9000 Series 200/300 sys-
tem.

Part I: General Programming Techniques

Chapters 1 through 9 cover general programming techniques that you will find useful for a wide
variety of applications.

1
Program Structure a.nd Flow

There are four general categories of program flow. These are sequence, selection (conditional exe
cution), repetition, and event-initiated branching. This chapter tells you how to use all of these types
of program flow.

Sequence

Sequence is fundamental to program flow - it provides order for what the computer is to do.

Linear Flow

The simplest form of sequence is linear flow. Linear flow allows many program lines to be grouped
together to perform a specific task in a predictable manner. Keep these characteristics of linear
flow in mind:

• Linear flow involves no decision making .

• Linear flow is the default mode of execution. Unless you include a statement that stops or
alters program flow, the computer will always "fall through" to the next higher numbered line
after finishing the line it is on.

Halting Program Execution

There are three statements that can be used to block execution of the next line and halt program
flow.

1. The END statement. The primary purpose of the END statement is to mark the end of the
main program, however when an END statement is executed, program flow stops and the
program moves into the stopped (non-continuable) state.

2. The STOP statement. This acts just like an END statement in that it stops program flow.
You use a STOP statement when you desire program flow to stop at some point other than
the end of the main program.

Program Structure and Flow 1-1

3.. The PAUSE statement. You use the PAUSE statement to temporarily halt program execu
tion, leaving the program variables intact. Execution is halted until you press CONTINUE
on the keyboard.

To demonstrate, type in the following program:

10 Radius = 5
20 Circum = PI*2*Radius
30 PRINT INT(Circum)
40 PAUSE
50 Area = PI*Radius A 2
60 PRINT INT(Area)
70 END

Now run the program by pressing RUN or type "RUN" and press IENTERI. The computer prints 31
on the CRT and the Run Indicator in the lower right corner of the CRT is replaced with a -, indi
catling the program is in a paused state. Now press CONTINUE. The computer prints 78 on the
CRT.

Simple Branching

The simplest form of branching uses the statements GOTO and GOSUB. Both statements cause
an unconditional branch to a specified location in the program.

The GOTO Statement. GOTO causes the program to branch to some line that is not the next
line~ in the program. GOTO can reference the line to branch to either by line number or line label.
(Lune labels are discussed later in this section.) In the following example, both GOTO statements
cause a branch to the PAUSE statement at line 300 (or "Label").

100 GOTO 300

150 GOTO Label

300 Label:
310

PAUSE
END

1-2 Program Structure and Flow

The GOSUB Statement. GOSUB is used to transfer program execution to a subroutine. A
subroutine is a segment of a program that is entered with a GOSUB statement and exited with a
RETURN statement. There are no parameters passed and no local variables are allowed in the
subroutine. The GOSUB statement C&ll specify either the line number or a line label as a desig
nated entry point for the subroutine being called. Here is an example:

100 GOSUB 500

150 GOSUB Subrtn

500 Subrtn: Start of subroutine called "Subrtn".

550 RETURN

Remember that each time a subroutine is called by a GOSUB, control is returned to the line
immediately following the GOSUB when the RETURN is encountered in the subroutine. There
fore you must have a RETURN for each subroutine. Note that if you omit the RETURN, the pro
gram will continue executing beyond the point at which you expected it to return, until it
encounters another RETURN, STOP, or END. Obviously, this could produce surprising results.

Line Labels and Comments. Before we go further, there are two topics that we should cover:
line labels and comments .

• Line labels are used within the program so that the computer can identify a line for branching
purposes. You may want to use a line label instead of a line number in a GOTO or GOSUB
statement because the label won't change, even if you renumber the program. Also, the label
can make it easier for a programmer to "read" the program. Line labels must immediately fol
low the line number and must be followed by a colon (:). Line labels consist of an initial capital
letter followed by lower-case letters. A line label only will affect program execution if referenced
in a GO TO or GOSUB statement.

• Comments never affect program execution. They are included only to clarify the program.
Comments are always preceded by an exclamation point (!) - anything in a program line that
follows an exclamation point is a comment. Many of the examples in this manual include com
ments for clarification of the program steps.

Program Structure and Flow 1-3

Note that a line label precedes the executable statement in a program line, while a commentfollows
the executable statement (if there is one). The following program illustrates the use of both line
labels and comments:

10 Start:
20
30
40
50 Finish:
60
70

! Program begins here.
PRINT "Hello"
GOTO Finish
DISP "Stop"

PRINT "Goodbye"
GOTO Start
END

This line is never executed.
Print = executable statement.

Line 10 includes the line label "Start" and a comment, but no executable statement. Line 50
includes the line label "Finish", the executable PRINT statement, and ends with a comment. If you
were to type in and run this program it would simply print "Hello" and "Goodbye" repeatedly until
you pause the program by pressing IPausel. Normally you will want to avoid such "endless loops."
To do this you can use conditional branching, which is covered in the next section.

Note that you cannot have a program line with only a line label. There must be an executable state
ment or at least a comment. For example:

100 Label:

is not allowed. However, the following line is legal even though the "comment" consists of only the
comment symbol (!).

100 Label:

Selection

The heart of a computer's decision-making power is the category of program flow called selection,
or conditional execution. A certain set of the program either is or is not executed, depending on
the results of a test or condition. This section presents the conditional-execution statements
according to various applications. The following is a summary of these groupings:

1 " Conditional execution of one segment.

2. Conditionally choosing one of two segments.

3. Conditionally choosing one of many segments.

1-J1~ Program Structure and Flow

Conditional Execution of One Segment

The basic decision to execute or not execute a program segment is made by the IF ... THEN state
ment. This statement includes an expression that is evaluated as being either true or false. If true,
the conditional segment is executed. If false, the conditional segment is bypassed. The conditional
segment can be either a single BASIC statement or a program segment containing any number of
statements. The following example shows conditional execution of a single statement:

100 IF Ph > 7.7 THEN PRINT "Ph Value has been exceeded!"

Notice the test (Ph> 7.7) and the conditional statement (PRINT ...) which appear on either side
of the keyword THEN. If the value of Ph is greater than 7.7 the PRINT statement is executed. If
the value of Ph is equal to or less than 7.7 the PRINT statement is not executed. In either case, the
line number immediately following line 100 would be executed next. (Although "pH" is the
correct chemical expression, it is mot valid as an HP BASIC variable name. Thus "Ph" has been
substituted in the example.)

Conditional Branching

Powerful control structures can be developed by using branching statements in an IF ... THEN
statement. Here are some examples:

110 IF Free_space < 100 THEN GOSUB Expand_file
120 !THE LINE AFTER IS ALWAYS EXECUTED

The statement checks the value of a variable called Free space, and if it is less than 100, a subrou
tine called Expand file is executed. If the value is not le~ than 100, the subroutine is not executed.
One important feature of this structure is that the program flow is essentially linear, except for the
conditional "side trip" to a subroutine and back. The conditional GOTO is such a commonly used
technique that the computer allows a special case of syntax to specify it. Assuming that line number
200 is labeled "START", the following statements will cause a branch to line 200 if X is equal to 3:

IF X 3 THEN GOTO 200
IF X 3 THEN GOTO START
IF X 3 THEN 200
IF X 3 THEN START

Program Structure and Flow 1-5

Multiple-line Conditional Segments

If the conditional program segment requires more than one statement, a slightly different structure
is used. For example:

100 IF Ph > 7.7 THEN
110 PRINT "The value of Ph has been exceeded!"
120 PRINT "Ph value is";Ph
130 GOSUB Setup
140 END IF
150 ! Program continues here

If Ph is less than or equal to 7.7, the computer skips all the statements between the IF. .. END IF
statements and continues with the line following the END IF. If the value of Ph is greater than 7.7,
then the statements between the IF. .. END IF are executed before continuing on to the line after
the END IF. Any number of program lines can be placed between an IF. .. END IF statement,
including other IF. .. END IF statements. For example:

100
110
120
130
140
150
160
170

IF Flag THEN
IF End_of_page THEN

FOR I = 1 TO Skip_length
PRINT
Lines

NEXT I
END IF

END IF

Lines + 1

Remember, you can use the INDENT command to improve the readability of your programs.

1-6 Program Structure and Flow

Choosing One of Two Segments

Often you want a program flow that passes through onJy one of two paths depending upon a condi
tion. This type of decision is shown in the following diagram:

Flag = 1

400
410
420
430
440
450
460
470
480
490

IF Flag THEN
R=R+2
Area=PI*R"2

ELSE
Width=Width+l
Length=Length+l
Area=Width*Length

END IF
PRINT "Area =";Area

Program continues

This example has an IF ... THEN ... ELSE structure which makes the one-of-two choice easy and
readable.

Choosing One of Many Segments

The SELECT ... END SELECT is similar to the IF ... THEN ... ELSE ... END IF construct, but
allows several conditional program segments to be defined. Only one segment is executed each
time the construct is entered. Each segment starts after a CASE or CASE ELSE statement, and
ends when the next program line is a CASE, CASE ELSE, or SELECf statement.

Consider the processing of readings from a voltmeter. Readings which contain a function code
have been taken. The function codes identify the type of reading and are shown in the following
table:

Function Code Type of Reading
OV DC Volts
AV ACVoits
01 DC Current
AI AC Current

OM Resistance

Program Structure and Flow 1-7

The following example shows the use of the SELECf construct. The function code is contained in
the variable FunctS.

2000 SELECT Funct$
2010 CASE "DV"
2020 !
2030 ! Processing Statements For DC Volts
2040 !
2050 CASE "AV"
2060
2070 ! Processing Statements For AC Volts
2080 !
2090 CASE "01"
2100 !
2110 ! Processing Statements For DC Current
2120 !
2130 CASE "AI"
2140 !
2150 ! Processing Statements For AC Current
2160 !
2170 CASE "OM"
2180
2190 ! Processing Statements For Resistance
2200 !
2210 CASE ELSE
2220 BEEP
2230 PRINT "Invalid Reading! "
2240 END SELECT
2250 ! Program execution continues here

Notice that the select construct starts with a SELECf statement specifying the variable to be
tested and ends with an END SELECf statement. The anticipated values are placed in CASE
statements. Although this example shows a string tested against simple literals, the SELECf state
ment works for numeric or string variables or expressions. The CASE statements can contain con
stants, variables, expressions, comparison operators, or a range specification. The anticipated
values must be of the same type (numeric or string) as the tested variable.

The CASE ELSE statement is optional. It defines a program segment that is executed if the tested
variable does not match any of the cases. If CASE ELSE is not included and no match is found,
program execution continues with the line following the END SELECf.

1-8 Program Structure and Flow

You should be aware that if an error occurs when the computer tries to evaluate an expression in a
CASE statement, the error is reported for the line containing the SELECf statement. An error
message pointing to the SELECf statement means that there is an error in that line or in one of
the CASE statements following it.

Using the ON Statement

The same type of program flow can be generated with an ON statement and some additional pro
cessing. The ON statement transfers program control to one of several destinations depending on
the value of a pointer. The pointer can be a numeric expression rounded to an integer, but its final
value must be an integer.

100 ON Xl GO TO 150,200,300

In the above example, Xl is the pointer whose value will be evaluated. If the value is 1, program
control will be transferred to line 150; if it is 2, control is transferred to line 200; and if it is 3, con
trol is transferred to line 300. If Xl has a value other than 1, 2, or 3, an error results:

ERROR 19 IN 100 Improper value or out of range

You can also use the ON statement with GOSUB instead of GOTO. In this case, the RETURN
from the GOSUB is to the line following the ON ... GOSUB statement.

100 ON Xl GOSUB FIRST,SECOND,THIRD,LAST
110 PRINT "NEXT STATEMENT"

The variable Xl is evaluated and the subroutine beginning at the line identifier FIRST, SECOND,
THIRD, or LAST, is executed depending on whether Xl is 1, 2, 3, or 4. Control is returned to line
110 regardless of which subroutine is executed. As before, an error results if Xl is not 1, 2, 3, or 4.

Repetition

There are four structures available for creating repetition. The FOR. .. NEXT structure is used for
repeating a program segment a predetermined number of times. Two other structures,
REPEAT ... UNTIL and WHILE, are used for repeating a program segment indefinitely, waiting
for a specified condition to occur. The LOOP ... EXIT IF structure is used to create an iterative
structure that allows multiple exit points at arbitrary locations.

Program Structure and Flow 1-9

Fixed Number of Iterations

The general concept of repetitive program flow can be shown with the FOR ... NEXT structure.
The FOR statement marks the beginning of the repeated segment and establishes the number of
repetitions. The NEXT statement marks the end of the repeated segment. This structure uses a
numeric variable as a loop counter. The following example shows the basic elements of a
FOR ... NEXT loop:

10 FOR X 10 TO 0 STEP -1
20 BEEP
30 PRINT X
40 WAIT 1
50 NEXT X
60 END

In this example, X is the loop counter, 10 is the starting value, 0 is the final value, -1 is the step
size, and the repeated segment is composed of lines 20 through 50. Note that if the step counter is
not specified, a default value of 1 is assumed.

When all the variables involved are integers, the number of iterations of any loop can be predicted
using the formula

(STEP SIZE + FINAL VALUE - STARTING VALUE) -;- STEP SIZE

Thus, the number of iterations in the example above is 11.

The NEXT statement performs an "increment and compare" on the loop counter. This means
that the loop counter is incremented by the step size and then compared to the final value. If the
loop counter has passed the specified value, the loop is exited, otherwise the loop is repeated. Note
that if the number of iterations evaluates to zero or less, the loop is not executed and program exe
cution goes immediately to the line following the NEXT statement.

The loop counter retains the exit value after the loop is finished.

Conditional Number of Iterations

Some applications need a loop that is executed until a certain condition is true, without specifically
stating the number of iterations involved. For example, suppose you want to be able to print the
value of successive powers of two, but only until the value is greater than 1000. The
REPEAT ..• UNTIL is more flexible than the FOR. .. NEXT in this case. Consider the following
example program (found in fIle REPEAT1 on your Manual Examples disk).

1-10 Program Structure and Flow

10 X = 2
20 I = 1
30 PRINT X;
40 REPEAT
50 X = 2A(I + 1)
60 I = I + 1
70 PRINT X;
80 UNTIL X > 1000
90 END

This program will calculate the value of each power of 2 until the value is greater than 1000. If you
ran this program, the results would be:

2 4 8 16 32 64 128 256 512 1024

The WHILE loop is used for the same purpose as the REPEAT loop. The only difference between
the two is the location ofthe test for exiting the loop. The REPEAT loop has its test at the bot
tom. This means that the loop is always executed at least once, regardless of the value of the test
condition. The WHILE loop has its test at the top, therefore it is possible for the loop to be
skipped entirely. The following example (found in file WHILEl on your Manual Examples disk)
shows this.

10 X = 2
20 I = 1
30 PRINT X;
40 WHILE X < 1000
50 X = 2A(I + 1)
60 I = I + 1
70 PRINT X;
80 END WHILE
90 END

The results obtained from this example should be identical to the example using the
REPEAT ... UNTIL loop. Try these examples on your computer, and don't be afraid to experiment
with them. Change them to suit your own needs. This will help you to understand the concepts of
iterative processing.

Program Structure and Flow 1-11

Arbitrary Exit Points

The loop structures discussed so far do not allow for conditional exit points within the program
segment between the top and bottom of the loop. The LOOP ... EXIT IF construct allows you to do
this. It also allows you to have more than one exit point. Also, the EXIT IF statement can be at the
top or bottom of the loop. This means that the LOOP structure can serve the same purposes as the
REPEAT ... UNTIL and WHILE ... END WHILE.

The EXIT IF statement must appear at the same nesting level as the LOOP statement for a given
loop. The following two examples demonstrate this.

In this example, the EXIT IF statement is nested deeper than the LOOP statement because it is
placed in an IF ... THEN structure.

100 LOOP
110 Test = RND -.5
120 IF Test < 0 THEN
130 PRINT "NEGATIVE"
140 ELSE
150 EXIT IF Test> 0.4
160 PRINT "POSITIVE"
170 END IF
180 END LOOP
190 END

Here is the proper structure to use.

100 LOOP
110 Test = RND -.5
120 EXIT IF Test> 0.4
130 IF Test < 0 THEN
140 PRINT "NEGATIVE"
150 ELSE
160 PRINT "POSITIVE"
170 END IF
180 END LOOP
190 END

If you enter the "wrong" example and try to run it, you will get the following error message:

ERROR 347 IN 150 Structures improperly matched

1-12 Program Structure and Flow

Now try the "right" example. The program should print the words "positive" and "negative" a ran
dom number of times, and will stop when the value of the variable TEST is greater than 0.4. In
effect, since the RND function returns a fractional value between 0 and 1, the program stops the
first time RND returns a value greater than 0.9

Event-Initiated Branching

Event-initiated branching is established by the ON-event statements. Here is a list of the state
ments:

ON CYCLE
ONEOR
ON HIL EXT
ON KEY
ON TIME

ON DELAY
ONEOT
ONINTR
ON KNOB
ON TIMEOUT

ON END
ON ERROR
ONKBD
ON SIGNAL

The ON END event is used to detect when the end of a mass storage file is reached. The ON
CYCLE, ON DELAY, and ON TIME events are used to direct program flow using the clock. The
ON ERROR event is used to trap run-time errors and provide for error recovery routines. The
ON KBD, ON KEY, and ON KNOB events pertain to various parts of the keyboard, and are used
to enhance the "human interface" of programs. The ON EOR, ON EOT, ON SIGNAL, ON
INTR, ON HIL EXT, and ON TIMEOUT events pertain to data transfer, interfaces, and I/O
operations.

The best way to understand how event-initiated branches operate in a program is to try a few
examples on your computer. Try the following example (found in file ONKEY1 on your Manual
Examples disk).

10
20
30
40
50
60
70
80
90

ON KEY 1 LABEL "INC" GOSUB Plus
ON KEY 5 LABEL "DEC" GOSUB Minus
I
Spin:DISP X

GOTO Spin
I
P1us:X=X+1

RETURN

100 Minus:X=X-1
110 RETURN
120 END

Program Structure and Flow 1-13

The ON KEY statements are executed only once at the start of the program. Once defined, these
event-initiated branches remain in effect for the rest of the program. The program segment labeled
"Spin" is an infinite loop. If it weren't for interrupts, this program couldn't do anything except
display a zero. However, there is an implied IF..THEN at the end of lines 40 and 50 because of the
ON KEY action. Either the "Plus" or "Minus" subroutines are selected as a result of softkey
presses. If no softkey is pressed, the computer continues to display the value of X. The following
section of pseudocode shows the JProgram flow of the "Spin" segment looks like.

Spin: DISPLAY X
IF KEY 1 THEN GOSUB PLUS
IF KEY 5 THEN GOSUB MINUS
GOTO Spin

Note that the only way to terminate this program is to type "STOP" and press IENTERI.

Now run the sample program you have just entered. Notice that the bottom two lines of the
display screen display an inverse-video label area.

ll~CJCJI=::J ~CJCJCJJ
These labels are arranged to correspond to the layout of the softkeys. The labels are displayed
only when the softkeys are active. Any label which your program has not defined is blank unless
the system defines it. The label areas are defined in the ON KEY statement by using the keyword
"LABEL" followed by a string.

1-14 Program Structure and Flow

2
Numeric Computation

Numeric computations deal exclusively with numeric values. Adding two numbers and finding a
sine or a logarithm are numeric operations, but converting bases or converting numbers to a string
are not.

The most fundamental numeric operation is the assignment operation, achieved with the LET
statement. The LET statement originally required the keyword LET, but the HP BASIC system
makes it optional. Thus, the following statements are equivalent:

LET A - A + 1
A=A+l

Numeric Data Types

There are three numeric data types in BASIC:

• REAL.

• INTEGER.

• COMPLEX.

Any numeric variable that is not declared COMPLEX or INTEGER is a REAL variable.

REAL Variables

The valid range for REAL variables is approximately -1.797 693 134 862 315 x 10J08 through
1.797 693 134 862 315 x 10J08 (or - MAXREAL through + MAXREAL). However, the smallest
non-zero REAL value allowed is approximately ±2.225 073 858 507 202 x 10-308 (or ±MIN
REAL). A REAL variable can also have a value of zero.

Numeric Computation 2-1

INTEGER Variables

An INTEGER variable can be any whole-number value from - 32,768 through + 32,767.

COMPLEX Variables

A COMPLEX number is written as the sum of a real and an imaginary number. An imaginary
number is any real number multiplied byvl""=l, and is expressed by mathematicians in the follow
ingmanner:

a + ib

where i = vI""=l. In the above representation, a is the real part of the complex number, and ib is
the imaginJ part. The i in front of the b forms the imaginaty,!!!!mb;? and is the same as multi
plying b by -1. For example, you would write ~ as ..; -1 "''' 9 or simply 3i. Electrical
engineers use the letter j instead of i, to avoid confusion with the symbol for electric current.
COMPLEX numbers are stored as two REAL variables, thus a COMPLEX number will require
16 bytes of memory.

Variable Names

Variable names can be up to 15 characters long. The first character must be a capital letter. The
rest of the name can consist of lower-case letters, numerals, and the underscore character U, in
any combination. No other characters are allowed in a numeric variable name. *

Here are some examples of valid numeric variable names:

Location 1 a
A1
I
I no 2
Income 1988
Integer_variab1

* String variable names are like numeric variable names, but have an appended dollar sign ($). For example:
"String_ variable$".

2-2 Numeric Computation

Declaring Variables

You can declare variables to be of a particular type by using the COMPLEX, INTEGER, and
REAL statements. For example, the statements

COMPLEX B, C, Phasorl(lO), Phasor2(lO)
INTEGER I, J, Days(S), Weeks(S:17)
REAL X, Y, Voltage(4), Hours(S,8:13)

each declare two scalar and two array variables. A scalar is a variable which can represent a single
value. An array is a subscripted variable, and can contain multiple values accessed by subscripts.
You can specify both the lower and upper bounds of an array, or specify the upper bound only, and
use the existing OPTION BASE statement as the lower bound.You may declare an array using the
DIM statement:

DIM R(4,S)

You may use an ALLOCATE statement to declare REAL, INTEGER, and COMPLEX arrays:

ALLOCATE REAL Coords(2,1:Points), INTEGER Status(l:Points)
ALLOCATE COMPLEX Poles(2,1:Points), REAL Location(2,1:Points)

The ALLOCATE statement allows you to dynamically allocate memory in programs which need
tight control over memory use. Arrays will be discussed in detail in chapter 3, "Numeric Arrays."

Type Conversions

The computer will automatically convert between REAL and INTEGER values in assignment
statements and when parameters are passed by value in program and function calls. When parame
ters are passed by reference the conversion is not made, and a TYPE MISMATCH error will be
reported if the calling parameter and the subprogram parameters are of different types.

When a REAL number is converted to an INTEGER, the fractional part is lost, and the REAL
number is rounded to the closest INTEGER value. Converting the number back to REAL will not
restore the fractional part. Also, because of the difference in ranges between the two types, not all
REAL values can be converted into an equivalent INTEGER value. This problem can generate
INTEGER OVERFLOW errors. The rounding problem does not generate an execution error, but
the range problem can generate an execution error, and you should protect yourself from this pos
sibility. One way to do this is as follows.

Numeric Computation 2-3

200 IF (-32768 <= X) AND (X <= 32767) THEN
210 Y = X
220 ELSE
230 GOSUB Out_of_range
240 END IF

Resident Numerical Functions

The resident functions are the functions that are part of the BASIC language. Your BASIC
language includes numerous functions to make mathematical operations easier. This section covers
these functions by placing them in the following categories:

• Arithmetic Functions.

• Array Functions.

• Exponential Functions.

• Trigonometric Functions.

• Hyperbolic Functions.

• Binary Functions.

• Limit Functions.

• Rounding Functions.

• Random Number Function

• Complex Functions.

• Time and Date Functions.

• Base Conversion Functions.

• General Functions.

2-4 Numeric Computation

Arithmetic Functions

Your BASIC language includes the following arithmetic functions:

ABS

FRACT

INT

MAXREAL

MINREAL

Returns the absolute value of an expression. Takes a REAL, INTEGER, or
COMPLEX number as its argument.

Returns the "fractional" part of the argument.

Returns the greatest integer that is less than or equal to an expression. The
result is of the same type (INTEGER or REAL) as the original number.

Returns the largest positive REAL number available in BASIC. Its value is
approximately 1.797 693134 862 32E+308.

Returns the smallest positive REAL number available in BASIC. Its value is
approximately 2.225 073 858 507 24E - 308.

SQRT (or SQR) Returns the square root of an expression. Takes a REAL, INTEGER, or COM
PLEX number as its argument.

SGN Returns the sign of an expression: 1 if positive, 0 if 0, -1 if negative.

Array Functions

These functions are available when the MAT binary is loaded. They return specific information
about numeric arrays (for example, the number of dimensions in the array, the determinant of an
array, and so forth). For more information on the numeric array functions listed below, refer to
chapter 3, "Numeric Arrays."

BASE

DET

DOT

RANK

SIZE

Returns the lower subscript bound of a dimension of an array.

Returns the determinant of a matrix.

Returns the inner (dot) product of two numeric vectors.

Returns the number of dimensions in an array.

Returns the number of elements in a dimension of an array.

Numeric Computation 2-5

SUM Returns the sum of all elements in a numeric array.

Exponential Functions

This section provides a list of functions used for determining the natural and common logarithms
of an expression. All exponential functions use REAL, INTEGER, or COMPLEX numbers as
their argument.

EXP Raise the Naperian e to a power (e ~ 2.71828182845905).

LGT Returns the base 10 logarithm of the expression.

LOG Returns the natural (Naperian base e) logarithm of an expression.

Trigonometric Functions

Six trigonometric functions and the constant 1r are provided for dealing with angles and angular
measure. Note that all trigonometric functions take REAL, INTEGER, or COMPLEX numbers
as their argument.

ACS

ASN

ATN

COS

SIN

TAN

PI

Returns the arccosine of an expression.

Returns the arcsine of an expression.

Returns the arctangent of an expression.

Returns the cosine of the angle represented by the expression.

Returns the sine of the angle represented by the expression.

Returns the tangent of the angle represented by the expression.

Returns the constant 3.141592 653 589 79, an approximate value for 1r.

The default mode for all angular measure is radians. Degrees can be selected with the DEG state
ment. Radians may be re-selected with the RAD statement. It is a good idea to explicitly set a
mode for any angular calculations, even if you are using the default (radian) mode. This is espe
cially important in writing subprograms since the subprogram inherits the angular mode from the
context that calls it. (The angular mode is part of the calling context. If it is changed in a subpro
gram, it is restored when the calling context is restored.)

2-8 Numeric Computation

Hyperbolic Functions

Six hyperbolic functions are available when the COMPLEX binary is loaded.

SINH

COSH

TANH

ASNH

ACSH

ATNH

Returns the hyperbolic sine of a number.

Returns the hyperbolic cosine of a number.

Returns the hyperbolic tangent of a number.

Returns the hyperbolic arcsine of a number.

Returns the hyperbolic arccosine of a number.

Returns the hyperbolic arctangent of a number.

Binary Functions

All computer operations use the binary number representation. You usually don't see this because
the computer changes decimal numbers that you input into binary representation. The operations
you specify are performed on the binary numbers, and results are changed back into decimal
numbers before displaying or printing them. The following BASIC functions deal with binary
numbers:

BINAND

BINCMP

BINEOR

BINIOR

BIT

ROTATE

SHIFf

Returns the bit-by-bit "logical and" of two arguments.

Returns the bit-by-bit "complement" of two arguments.

Returns the bit-by-bit "exclusive or" of two arguments.

Returns the bit-by-bit "inclusive or" of two arguments.

Returns the state of a specified bit of the argument.

Returns a value obtained by shifting an INTEGER representation of an argu
ment a specific number of bit positions, with wraparound.

Returns a value obtained by shifting an INTEGER representation of an argu
ment a specific number of bit positions, without wraparound.

When any of these operations are used, the arguments are first converted to integer (if they are
not already in integer) and then the specified operation is performed. You should restrict bit
oriented binary operations to declared INTEGER variables. If it is necessary to operate on REAL
variables, be sure to use the precautions described under type conversions in the previous section,

Numeric Computation 2-7

to avoid INTEGER OVERFLOW errors.

Limit Functions

It is sometimes necessary to limit the range of values of a variable. BASIC provides two functions
for this purpose:

MAX

MIN

Returns a value equal to the greatest value in a list of arguments.

Returns a value equal to the least value in a list of arguments.

These functions work with both INTEGER and REAL values and require the MAT binary.

Rounding Functions

Sometimes it is necessary to round a number in a calculation, to eliminate unwanted resolution.
There are two types of rounding, rounding to a total number of decimal digits, and rounding to a
number of decimal places (limiting fractional information).

DROUND

PROUND

Rounds a numeric expression to the specified number of digits. If the specified
number of digits is greater than 15, no rounding takes place. If the number of
digits specified is less than one, zero is returned.

Returns the value of the argument rounded to a specified power of ten.

Random Number Function

The RND function returns a pseudo-random number between 0 and 1. Since many applications
require random numbers with arbitrary ranges, it is necessary to scale the numbers.

100 R=INT(RND*Range)+Offset

The above statement will return an integer between OFFSET and OFFSET + RANGE. Try the
following example. which will simulate ten throws of a die.

10 FOR 1=1 TO 10
20 Die=INT(RND*6)+1
30 PRINT "DIE IS";Die
40 NEXT I
50 END

2-8 Numeric Computation

If you run the above program several times, you will see that the values for the die do not change
from one run to the next. This is because the RND function is using the same seed for each run.
The random number generator is seeded with the value 37480660 at power-on, during pre-run, and
when SCRATCH or SCRATCH A are executed. You can change the seed by using the RAN
DOMIZE statement, which will give a new pattern of numbers. Edit the program above to add a
RANDOMIZE statement as line 05 and see what happens.

Complex Functions

These functions are obtained by loading the COMPLEX binary. Topics which are covered in this
section are:

• Assigning COMPLEX Variables.

• Evaluating COMPLEX Numbers.

• Complex Arguments and the Trigonometric Mode.

• Determining the Parts of Complex Numbers.

• Converting from Rectangular to Polar Coordinates.

Assigning COMPLEX Variables. To assign complex variables, the variables must first be
declared as complex, and one or more of the variables must have already been created using the
CMPLX function. For example, the following program creates a complex variable C and assigns it
to the complex variable B. It then displays the results.

10 COMPLEX B,C
20 REAL Real_part,Imaginary_part
30 Rea1_part=3.s
40 Imaginary_part=.s
50 C=CMPLX(Real_part,Imaginary_part)
60 B=C
70 PRINT C,B
80 END

Executing the above program produces these results:

3.5 .5 3.5 .5

Numeric Computation 2-9

Evaluating COMPLEX Numbers. The BASIC expression evaluation uses two separate rou
tines for dealing with REAL, INTEGER and COMPLEX data types. There is a routine for dealing
with REAL and INTEGER numbers and one for COMPLEX numbers. For example, taking the
square root of a negative INTEGER or REAL number will produce an error. For instance,
SQR(-1) results in

ERROR 30 SQR of negative number

If you have a need to compute the square root of a negative REAL or INTEGER number, assign
the value to the real part of a complex number using the CMPLX function. For instance,
SQR(CMPLX(-1,0» results in

o 1

where "0" is the real part and "1" is the imaginary part of the COMPLEX number.

Complex: Arguments and the Trigonometric Mode. When a trigonometric function call is
made using a complex value as its parameter, BASIC will evaluate that call using the radian mode
regardless of the current trigonometric mode setting (DEG, RAD, or GRAD). After the function
call has been evaluated, the system returns to the current trigonometric mode. For example, enter
and run this program:

10 DEG
20 PRINT SIN(30)
30 PRINT
40 PRINT SIN(CMPLX.(30,0» Always evaluated
50 PRINT
60 PRINT SIN(30)
70 END

The results from executing this program are as follows:

0.5
-.988031624093 0
0.5

(degree mode)
(radian mode)
(degree mode)

in the RAD mode.

Note

Any complex function whose definition includes a sine or cosine function will be
evaluated in the radian mode regardless of the current trigonometric mode (i.e.
RADorDEG).

2-10 Numeric Computation

Determining the Parts of Complex Numbers. In some applications, such as network
design, it is useful to be able to determine the real and imaginary parts of complex numbers, and
the conjugate of a complex number. This section provides the functions necessary for performing
these operations.

REAL(C)

IMAG(C)

CONJG(C)

Returns the real part of a complex number. For example,

DISP REAL(CMPLX(10,-3))

Executing this statement produces:

10

Returns the imaginary part of a complex number. For example,

DISP lMAG(CMPLX(10,-3))

Executing this statement produces:

-3

Returns the complex conjugate of a complex number. This function returns both
the real and imaginary parts of a complex number;however, the imaginary part
is changed to a negative value. For example:

DISP CONJG(CMPLX(lO,-3))

Executing this statement produces the following results:

10 3

Converting from Rectangular to Polar Coordinates. BASIC stores and uses complex
numbers in a representation called rectangular coordinates. Rectangular coordinates locate a point
in the complex plane. The complex plane is similar to the plane formed by the Cartesian coordi
nate system except the X axis represents the real part of the complex number and the Y axis
represents the imaginary part of the complex number. An alternate representation is polar coordi
nates. Polar coordinates consist of a magnitude and an argument (angle). The function used to
obtain the magnitude is ABS(C) and the function used to obtain the argument is ARG(C).

Numeric Computation 2-11

The following program converts the rectangular coordinates 5 and 6 of the complex number 5 + j6
to polar coordinates.

140 RAD
150 PRINT "The magnitude of 5 + j6 is: ";ABS(CMPLX.(5,6»
160 PRINT "The argument of 5 + j6 is: ";ARG(CMPLX.(5,6»
170 END

Executing this program produces the following results in radian mode (RAD):

The magnitude of 5 + j6 is: 7.81024967591
The argument of 5 + j6 is: .876058050598

If you change line 140 above to be:

140 DEG

and run the program again, the results in the degree mode (DEG) are:

The magnitude of 5 + j6 is: 7.81024967591
The argument of 5 + j6 is: 50.1944289077

TIme and Date Functions

The following functions return time/date information in seconds:

DATE

TIME

TIMEDATE

Converts a formatted date string ("DD MMM YYYY") into a numeric value in
seconds.

Converts a formatted time-of-day ("HH:MM:SS") string into a numeric value
of seconds since midnight.

Returns the current BASIC software clock value in Julian seconds; for example,
2. 11404868285E + 11. (If there is no battery-backed real-time clock, the software
clock is set at power-on to 2.08662912E + 11, which represents midnight March
1, 1900. If the computer is connected to an SRM system, the BASIC software
clock is set to the value of the SRM system clock when the SRM binary is
loaded.)

For further information on this subject, refer to chapter 8, "The BASIC Clock." Also included in
chapter 8 are the DATE$ and TIME$ string functions.

2-12 Numeric Computation

Base Conversion Functions

There are two functions you can use to convert binary, octal, decimal, or hexadecimal string values
into a decimal number.

DVAL

IVAL

Returns the whole number value of a binary, octal, decimal, or hexadecimal 32-
bit integer. The first argument is a string and the second argument is the radix
or base to convert from. For example, executing:

DVAL ("11111111111111111111111111111100",2)

returns the value:

-4

Returns the integer value of a binary, octal, decimal, or hexadecimal 16-bit
integer. The first argument is a string and the second argument is the radix or
base to convert from. For example, executing:

IVAL("12740",8)

returns the value:

5600

General Functions

When you are specifying select code and device selector numbers, it is more descriptive to use a
function to represent that device as opposed to a numeric value. For example, the statement

ENTER 2;Numeric_va1ue

allows you to enter a numeric value from the keyboard. The above statement is not as easy to
understand as

ENTER KBD;Numeric_va1ue

where you know the function KBD stands for keyboard. Functions which return a select code or
device selector are as follows.

Numeric Computation 2-13

CRT

KBD

PRT

SC

Returns the INTEGER 1. This is the select code of the internal CRT.

Returns the INTEGER 2. This is the select code of the keyboard.

Returns the INTEGER 701. This is the default (factory set) device selector for
an external HP-IB printer.

Returns the interface select code associated with an I/O path name.

Evaluating Scalar Expressions

The arithmetic operations that you can perform on the system are:

• Addition (+)
• Subtraction (-)

• Multiplication (*)

• Division (/)

• Exponentiation C)
• Integer Division (/ or DIV)

• Modulo (MOD or MODULO)

2-14 Numeric Computation

The following table defines the hierarchy used by the computer in evaluating numeric expressions.

Precedence Operator
Highest Parentheses; they may be used to force any order of operation.

Functions, both useHlefined and machine-resident.

Exponentiation: A

Multiplication and division: *, j, MOD, DIV, and MODULO.

Addition, subtraction, monadic plus and minus: + and -.

Relational operators: =, <, >, < >, < =, and > =.

NOT

AND

Lowest OR, EXOR

When an expression is being evaluated it is read from left to right, and operations are performed
as they are encountered, depending upon the hierarchy. If the computer cannot immediately per
form the operation, it is stacked, and the evaluation continues. Consider the following expression:

The computer will evaluate this expression in the following the manner:

1. Perform the calculations inside the parentheses and multiply by 4.

2. Compute the sine of Y.

3. Multiply the sine of Y by 5.

4. Add the value found in step 1 to the value found in step 3.

Strings in Numeric Expressions

You can include string expressions in numeric expressions if they are separated by comparison
operators. The comparison operators always yield boolean results, which are numeric values in
BASIC.

Numeric Computation 2-15

Step Functions

The comparison operators are useful for conditional branching, but you can also use them for
creating numeric expressions representing step functions. For example, suppose you want to out
put certain values depending on the value, or range of values, of a single variable. This is shown as
follows:

• If variable < 0 then output = o.
• If 0:::; variable < 1 then output = y' A 2 + B2 .

• If variable:;:: 1 then output = 15.

You could achieve the desired result by using a series of IF .. THEN statements, but you could also
use the following expression (where X is the variable and Y is the output):

The boolean expressions each return a 1 or 0 which is then multiplied by the accompanying expres
sion. Expressions not matching the selection return 0 and are not included in the result. The value
assigned to the variable before the expression is evaluated is used to determine the result.

Comparing REAL Numbers

When you compare INTEGER numbers, no special precautions are necessary. When you compare
REAL numbers, especially the results of calculations and functions, it is possible to encounter
problems due to rounding. For example, consider the use of comparison operators in IF .. THEN
statements to check for equality in th.e following:

100 DEG
110 A-25. 3765477
120 IF SIN(A)A2+COS(A)A2=1.0 THEN
130 PRINT "Equal"
140 ELSE
150 PRINT "Not Equal"
160 END IF

You will find that the equality test fails due to rounding errors. A repeating decimal or irrational
number cannot be represented exactly in any finite machine.

2-16 Numeric Computation

Another good example of equality error occurs when multiplying or dividing data values. A product
of two non-integer values nearly always results in more digits beyond the decimal point than exists
in either of the two numbers being multiplied. Any tests for equality must consider the exact vari
able value to its greatest resolution. If you cannot guarantee that all digits beyond the required
resolution are zero, you can use the DROUND function to eliminate unwanted resolution before
comparing results. The following example (found in file DROUNDl on your Manual Examples
disk) shows how you can use DROUND:

10 A-32.50B7
20 B-31.625
30 C=-A*B PRODUCT IS 102B.OB763750
40 D-32.5122
50 E-31.621595509
60 F-D*E ! PRODUCT IS 102B.08763751
70 IF C-F THEN 90
BO PRINT "C is not equal to F."
90 C=DROUND(C,7)
100 F-DROUND(F,7)
110 IF C-F THEN
120 PRINT "C equals F after DROUND."
130 ELSE
140 PRINT "C is not equal to F after DROUND."
150 END IF
160 END

You can experiment with the concept by substituting other values for the variables A, B, D, and E,
and by changing the number of digits specified in the DROUND function.

Numeric Computation 2-17

Numeric Arrays

An array is a multi-dimensioned structure of variables that are given a common name. The array
can have one through six dimensions. Each location in an array can contain one variable value, and
each value has the characteristics of a single variable, depending on whether the array consists of
REAL, INTEGER or COMPLEX values. A one-dimensional array consists of n elements, each
identified by a single sUbscript. A two-dimensional array consists of m times n elements where m
and n are the maximum number of elements in the two respective dimensions. Arrays require a
subscript in each dimension in order to locate a given element of the array. You can specify up to
six dimensions for any array in a program. REAL arrays require eight bytes of memory for each
element, plus overhead, and COMPLEX arrays require 16 bytes of memory for each element, plus
overhead. It is easy to see that large arrays can demand massive memory resources. An undeclared
array is given as many dimensions as it has subscripts in its lowest-numbered occurrence. Each
dimension of an undeclared array has an upper bound of ten. Space for these elements is reserved
whether you use them or not.

Note

Many of the statements that deal with arrays (such as MAT) require the MAT
binary. If you do not have this binary loaded in your system, or you are not sure how
to determine if it is loaded, refer to Installing and Using HP BASIC in the MS-DOS
Environment for more information.

Dimensioning an Array

Before you use an array, you should tell the system how much memory to reserve for it. This is
called "dimensioning" an array. You can dimension arrays with the DIM, COM, ALLOCATE,
INTEGER, REAL or COMPLEX statements. For example,

COMPLEX Array_complex (2 ,4)

Numeric Arrays 3-1

An array is a type of variable and as such follows all rules for variable names. Unless you explicitly
specify INTEGER or COMPLEX type in the dimensioning statement, arrays default to REAL
type. The same array can only be dimensioned once in a context. •

However, as we explain later in this section, you can redimension arrays by using the REDIM
statement.

When you dimension an array, the system reserves space in internal memory for it. The system
also sets up a table which it uses to locate each element in the array. The location of each element
is designated by a unique combination of subscripts, one subscript for each dimension. For exam
ple,

DIM Array(3,4)

dimensions a 3 x 4 two-dimensional array with the first subscript (3) representing three rows and
the second subscript (4) representing four columns. For a four-dimensional array, for instance,
each element is identified by four subscript values. Each unique set of subscript values points to
one, and only one, array element. The actual size of an array is governed by the number of dimen
sions and the subscript range of each dimension. If A is a three-dimensional array with a subscript
range of 1 thru 4 for each dimension,

DIM A(1:4,1:4,1:4)

then its size is 4 x 4 x 4, or 64 elements. Note that 1 on the left side of the colon in the dimension
statement above is the lower bound and 4 on the right is the upper bound. Therefore, when you
dimension an array you must give not only the number of dimensions, but also the subscript range
of each dimension. Subscript ranges can be specified by giving the lower and upper bounds, as
shown above, or by giving just the upper bound. If you give only the upper bound, the lower bound
defaults to the current option base setting. Each context initializes to an option base of 0 (arrays
appearing in COM statements with an (01<) will keep the base with which they were originally
dimensioned). However, you can set the option base to 1 using the OPTION BASE statement. You
can have only one OPTION BASE statement in a context, and it must precede all explicit variable
declarations.

• There is one exception to this rule: If you ALLOCATE an array, and then DEALLOCATE it, you can dimension the
array again.

3-2 Numeric Arrays

Some Examples of Arrays

The following examples illustrate some of the flexibility you have in dimensioning arrays. Unless
specified otherwise, all examples in this section use option base 1.

In the first example the DIM statement is used to dimension a three-dimensional array:

10 DIM A(3,4,0:2)

(1,1,0) (2,1,0) (3,1,0)
c:
0 (1,1,1) (2,1,1) (3,1,1) '00
C
Q) (1,2,0) (1,1,2) (2,2,0) (2,1,2) (3,1,2)
E
i:5 (1,2,1) (2,2,1) (3,2,1)
-0
C

(1,3,0) (1,2,2) (2,3,0) (2,2,2) (3,2,2) C\I

(1,3,1) (2,3,1) (3,3,1)

(1,4,0) (1,3,2) (2,4,0) (2,3,2) (3,4,0) (3,3,2)

(2,4,1) (3,4,1)

(2,4,2) (3,4,2)

1 st Dimension

Size Lower Bound Upper Bound
1 st Dimension 3 1 3
2nd Dimension 4 1 4
3rd Dimension 3 0 2

In this example we portray the first dimension as planes, the second dimension as rows, and the
third dimension as columns. In general, the last two dimensions of any array always refer to rows
and columns, respectively. When we discuss two-dimensional arrays, the first dimension will always
represent rows, and the second dimension will always represent columns. Note also in the above
example that the first two dimensions use the default setting of 1 for the lower bound, while the
third dimension explicitly defines 0 as the lower bound. The numbers in parentheses are the sub
script values for the particular elements. These are the numbers you use to identify each array ele
ment.

Numeric Arrays 3-3

In the following example, COM is used to dimension a two-dimensional array:

10 COM B(1:5,2:6)

(1,2) (1 ,~) (1,4) (1,5) (1,6)
(2,2) (2,3) (2,4) (2,5) (2,6)
(3,2) (3,3) (3,4) (3,5) (3,6)
(4,2) (4,3) (4,4) (4,5) (4,6)
(5,2) (5,3) (5,4) (5,5) (5,6)

Size Lower Bound Upper Bound
1 st Dimension 5 1 5
2nd Dimension 5 2 6

The following is another two-dimensional array, but this time the ALLOCATE statement is used:

10 ALLOCATE INTEGER C(2:4,-2:2)

(2,-2) (2, -1) (2,0) (2,1) (2,2)
(3, -2) (3, -1) (3,0) (3,1) (3,2)
(4, -2) (4, -1) (4,0) (4,1) (4,2)

Size Lower Bound Upper Bound
1 st Dimension 3 2 4
2nd Dimension 5 -2 2

3-4 Numeric Arrays

Now let's look at a three-dimensional array dimensioned with the INTEGER statement, in this
case using OPTION BASE 0:

10 OPTION BASE 0
20 INTEGER D(l,4,-1:2)

(1,0,-1)

(0,0,0) (1,0,0)

(0,0,1) (1,1,-1)

(0,1,0) (0,0,2) (1,0,2)

(0,2,-1) (0,1,1) (1,2,-1)

(0,2,0) (0,1,2) (1,2,0) (1,1,2)

(0,3,-1) (0,2,1) (1,3,-1) (1,2,1)

(0,3,0) (0,2,2) (1,3,0) (1,2,2)

(0,4,-1) (0,3,1) (1,4, -1) (1,3,1)

(0,4,0) (0,3,2) (1,3,2)

(1,4,2)

Size Lower Bound Upper Bound
1 st Dimension 2 0 1
2nd Dimension 5 0 4
3rd Dimension 4 -1 2

Arrays are limited to six dimensions, and the subscript range for each dimension must lie between
- 32767 and 32767. (REDIM and ALLOCATE allow the subscript range to go down to - 32768,
but the total size of each dimension must be less than 32768 elements.) For the most part, we use
only two-dimensional examples since they are easier to illustrate. However, the same principles
apply to arrays of more than two dimensions as well. As an example of a four-dimensional array,
consider a five-story library. On each floor there are 20 stacks, each stack contains 10 shelves, and
each shelf holds 100 books. You can specify the location of a particular book by using the number
ofthe floor, the stack, the shelf, and the particular book on that shelf. You can dimension an array

Numeric Arrays 3-5

for the library with the statement:

DIM Library(5,20,10,100)

This means that there are 100,000 book locations. You identify a particular book by specifying its
subscripts. For example, the statement:

Library(2,12,3,35)

identifies the 35th book on the 3rd shelf of the 12th stack on the 2nd floor. You can imagine
accessing a particular page of a book by using a 5-dimensional array. For example, if we dimension
an array:

DIM Page(5,20,10,100,200)

then

Page(1,7,2,19,130)

designates page 130 of the 19th book on the 2nd shelf of the 7th stack on the 1st floor. You can
specify words on pages by using a 6-dimensional array. Remember that six dimensions is the max
imum, so you cannot specify letters of words. Also, you can dimension more than one array in a
single statement by separating the declarations with a comma. For example

10 DIM A(1,3,4),B(-2:0,2:5),C(2:4,-2:2)

dimensions all three arrays A, B, and C.

Problems With Implicit Dimensioning

In any environment, an array must have a dimensioned size. You can pass this size into an environ
ment through a passed parameter list or a COM statement. You can explicitly dimension the array
by using the COM, INTEGER, REAL, COMPLEX or ALLOCATE statements. You can also
implicitly dimension an array by using a subscripted reference to it in a program statement other
than a MAT or a REDIM statement. If you attempt to use an array that does not have a dimen
sioned size in the current environment in a MAT or REDIM statement, you will get an error. In
other words, MAT and REDIM statements cannot be used to implicitly dimension an array.

3-8 Numeric Arrays

Using Array Elements

This section will show you how to assign and extract values from individual elements within an
array.

Assigning an Individual Array Element

Once an array has been dimensioned, the next step is to fill it with useful values. Every element in
an array is initially set to zero, but there are a number of different ways you can change the values.
The most obvious is to assign a particular value to each element. You do this by specifying the
element's subscripts. For example, the statement:

A(3,4)=13

assigns the value 13 to the element in the third row and fourth column of array A. All subscripts
must lie within the dimensioned range. If you use out-of-range subscripts, the system returns an
error.

Extracting Single Values From Arrays

There are a number of ways you can use to extract values from array elements. To extract the
value of a particular element, simply specify the element's subscripts. For example, the statement:

X-A(3,4,2)

assigns the value of the element occupying the given location in array A to the variable X. The sys
tem will automatically convert variable types. For example, if you assign an element from a COM
PLEX array to an INTEGER variable, the system will perform the necessary rounding and ignore
the imaginary part of the COMPLEX number.

Filling Arrays

This section will provide you with three methods for filling an entire array. The topics covered are
as follows:

• Assigning Every Element in an Array the Same Value.

• Using the READ Statement to Fill an Entire Array.

• Copying Arrays into Other Arrays.

Numeric Arrays 3-7

Assigning Every Element in an Array the Same Value

For some applications, you may want to initialize every element in an array to some particular
value. You can do this by assigning a value to the array name. However, you must precede the
assignment with the MAT keyword. For example:

MAT A=(10)

assigns the value 10 to every element in array A, regardless of A's size. Note that the numeric
expression on the right-hand side of the assignment must be enclosed in parentheses and that this
expression may be INTEGER, REAL or COMPLEX. Let's look at an example of assigning a
COMPLEX value to every element of a COMPLEX array:

MAT C=(CMPLX(1,2»

This statements assigns the complex number 1 + 2i to every element of the complex array C.

Using the READ Statement to Fill an Entire Array

You can assign values to an array by using the READ and DATA statements. The DATA state
ment allows you to create a stream of data items, and the READ statement enables you to enter
the data stream into an array. For example:

10 OPTION BASE 1
20 DIM A(3,3)
30 DATA -4,36,2.3,5,89,17,-6,-12,42
40 READ A(*)
50 END

The asterisk in line 40 is used to designate the entire array rather than a single element. The sys
tem will fill an entire row before going to the next one. The READ jDATA statements are dis
cussed further in chapter 6, "Data Storage and Retrieval."

Copying Arrays into Other Arrays

Another way to fill an array is to copy the elements from one array into another. Suppose, for
example, that you have the two arrays A and B shown below.

[0 0 0] A = 000
000 B = [~ ~]

Note that A is a 3 x 3 array that is filled entirely with O's, while B is a 3 x 2 array filled with non
zero values. To copy B to A, we would execute:

3-8 Numeric Arrays

MAT A=B

Again, you must precede the assignment with MAT. The system will automatically redimension the
resulting array (the one on the left-hand side of the assignment) so that it is the same size as the
"operand array" (the one on the right side of the equation.) There are two restrictions on redimen
sioning an array .

• The two arrays must have the same rank (e.g., the same number of dimensions.)

• The dimensioned size of the result array must be at least as large as the current size of the
operand array.

If the system cannot redimension the result array to the proper size, it will return an error.

Automatic redimensioning of an array will not affect the lower bounds, only the upper bounds.
Therefore, the BASE values of each dimension of the result array will remain the same. Keep in
mind that the size restriction applies to the dimensioned size of the result array and the current
size of the operand array. Suppose we dimension arrays A, Band C to the following sizes:

10 OPTION BASE 1
20 DIM A(3,3),B(2,2),C(2,4)

We can execute the statement

MAT A=B

since A is dimensioned to 9 elements and B is only 4 elements. The copy automatically redimen
sions A to a 2 x 2 array. Nevertheless, we can still execute:

MAT A=C

The reason for this is that the nine elements originally reserved for array A remain available until
the program is scratched. Array A now becomes a 2 x 4 matrix. After

MAT A=C

you could not execute:

MAT B=A or MAT B=C

since in each of these cases, you are trying to copy a larger array into a smaller one. You could exe
cute:

MAT C=A

Numeric Arrays 3-9

after the original MAT A = B assignment, since C's dimensioned size (8) is larger than A's current
size (4).

Printing Arrays

Once an array has been filled with elements, it is nice to know if those elements exist in the array.
The best way to do this is to display them on the screen or printer. This section provides informa
tion on how to perform this task for REAL, INTEGER, and COMPLEX values.

Printing an Entire Array

Certain operations (e.g., PRINT, OUTPUT, ENTER and READ) allow you to access all elements
of an array merely by using an asterisk in place of the sUbscript list. The statement

PRINT A(*);

The, semicolon at the end of the statement is equivalent to putting a semicolon between each ele
ment. When the elements are displayed they will be separated by a space. The default is to place
elements in successive columns.

Examples of Formatting Arrays for Display

You can use the following subprogram, named "Printmat," to display a two-dimensional
INTEGER array:

240 SUB Printmat(Array(*»
250 OPTION BASE 1
260 FOR Row=BASE(Array,l) TO SIZE(Array, l)+BASE (Array , 1)-1
270 FOR Column=BASE(Array,2) TO SIZE(Array,2)+BASE(Array,2)-1
280 PRINT USING "DDDD,XX,ff";Array(Row,Column)
290 NEXT Column
300 PRINT
310 NEXT Row
320 SUBEND

Assuming that the array you intend to display is a five-by-five two-dimensional array, your results
should look similar to this:

3-10 Numeric Arrays

11 12 13 14 151 21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55

In order to use the above subprogram with COMPLEX arrays, you only need to change program
line 240 to the following:

240 SUB Printmat(COMPLEX Array(*))

Each element position in the COMPLEX array will have two values in it one being the real part of
the complex number and the other being the imaginary part. For example, the following array is a
COMPLEX array called Complex_array:

[3 9 -6 1]
-1 5 2 4

where the element Complex_array (1,2) contains the real part of the complex number - 6 and the
imaginary part 1.

Passing Entire Arrays

The asterisk is also used to pass an array as a parameter to a function or subprogram. For instance,
to pass an array A to the Printmat subprogram listed earlier, you would write:

Printmat (A(*))

Copying Subarrays

Topics discussed in this section are as follows:

• Subarray specifier.

• Copying a subarray into an array.

• Rules for copying subarrays.

Dimensions for the arrays covered in the above topics will assume an option base of 1 (OPTION
BASE 1) unless stated differently.

Numeric Arrays 3-11

An earlier section discussed copying the contents of an entire array into another array.

MAT Array55=Array33

Each element of Array33 is copied into .the corresponding element of Array55 which is redimen
sioned if necessary.

Now suppose you would like to copy a portion of one array and place it in a special location within
another array. This process is called copying subarrays.

Subarray Specifier

A subarray is a subset of an array (an array within an array). To specify a subarray, subscripts are
used in parentheses after the array name as follows:

Array_name (subarray_specifier)

The above subarray could take on many "sizes" and "shapes" depending on what you used as
dimensions for the array and the values assigned to the subarray specifier. Note that "size" refers
to the number of elements in the subarray and "shape" refers to the same number of dimensions
and elements in each dimension, respectively (e.g. both of these SUbscript specifiers have the same
shape: (-2:1, -1:10) and (1:4,9:20». Before looking at ways you can express a subarray, let's learn
a few terms related to the subarray specifier.

1. Subscript range is used to specify a set of elements starting with a beginning element position
and ending with a final element position. For example, 5:8 represents a range of four ele
ments starting with element 5 and ending at element 8.

2. Subscript expression is an expression which reduces the RANK of the sub array. For example
if you wanted to select an element from a two-dimensional array which is located in the 2nd
row and 3rd column, you would use the following subarray specifier: (2,3:3). The subscript
expression in this subarray specifier is 2 which represents the whole range of elements in row
2 of the array.

3. Default range is denoted by an asterisk (i.e. (1, *» and represents all of the elements in a
dimension from the dimension's lower bound to its upper bound. For example, suppose you
wanted to copy the entire first column of a two-dimensional array, you would use the follow
ing subarray specifier: (*,1:1), where * represents all the rows in the array and 1:1
represents only the first column.

Some examples of subarray specifiers are as follows:

1. (1,*) a subscript expression and a default range which designate the first row of a two
dimensional array.

3-12 Numeric Array.

2. (1:2) a given subscript range which represents the first two elements of a one-dimensional
array.

3. (*, -1:2) a default range and subscript range which represents all of the elements in the first
four columns of a two-dimensional array.

4. (3,1:2) a subscript expression and subscript range which represent the first two elements in
the third row of a two-dimensional array.

5. (1,*,*) a subscript expression and two default ranges which represent a plane consisting of all
the rows and columns of the first plane in the first dimension.

6. (1,1:2,*) a subscript expression, subscript range and default range which represent the first
two rows in the first plane of the first-dimension.

7. (1,2, *) two subscript expressions and a default range which represent the entire second row
in the first plane of the first -dimension.

8. (1:2,3:4) two subscript ranges which represent elements located in the third and fourth
columns of the first and second rows of a two-dimensional array.

Copying an Array into a Subarray. In order to copy a source array into a subarray of a des
tination array, the destination array's subarray must have the same size and shape as the source
array. A destination and source array are dimensioned as follows:

100 OPTION BASE 1
110 DIM Des_array(-3:1,S),Sor_array(2,3)

Suppose these arrays contain the following integer values:

[

11 12 13 14 15
21 22 23 24 25

Des_array 31 32 33 34 35
41 42 43 44 45
51 52 53 54 55

[11 12 13] Sor _array 21 22 23

You can copy the source array (Sor array) into a subarray of the destination array (Des array) by
using program line 190 given below: -

190 MAT Des_array(-1:0,2:4) = Sor_array

A two-dimensional plane with the following values in it would be the result of executing the above
statement.

Numeric Array. 3-13

11 12 13 14 15]
21 22 23 24 25
31 11 12 13 35
41 21 22 23 45
51 52 53 54 55

RuDes tor Copying Subarrays. This section should help limit the number of syntax and run·
time errors you could make when copying subarrays. A previous section entitled "Subarray
Specifier" provided you with examples of the correct way of writing subarray specifiers for copying
subarrays. In this section, you will be given rules to things you should not do when copying subar
rays. The rules are as follows:

• Subarray specifiers must not contain all subscript expressions (i.e. (1,2,3) is not allowed and it
will produce a syntax error). This rule applies to all subscript specifiers.

• Subarray specifiers must not contain all asterisks (*) or default ranges (i.e. (*, *, *) is not
allowed and it will produce a syntax error). This rule applies to all subscript specifiers.

• If two subarrays are given in a MAT statement, there must be the same number of ranges in
each subarray specifier. For example,

MAT Des_arrayl(1:10,2:3)= Sor_array(S:14,*,3)
iis the correct way of copying a subarray into another subarray provided the default range given
iin the source array (Sor _array) has only two elements in it. Note that the source array is a
three-dimensional array. However, it still meets the criteria of having the same number of
ranges as the destination array because two of its subscripts are ranges and one is an expres
sion.

• If two subarrays are given in a MAT statement, the subscript ranges in the source array must
be the same shape as the subscript ranges in the destination array. For example,

l~T Des_array(l:S,O:l)= Sor_array(3,1:S,6:7)

• is legal; however,

MAT Des_array(O:1,1:5)= Sor_array(l:S,O:l)
• is not legal, because both of its subarray specifiers do not have the same shape (i.e. the rows

and columns in the destination array do not match the rows and columns in the source array).

3-14 Numeric Arrays

Redimensioning Arrays

The system automatically redimensions an array during array assignment, if necessary. BASIC also
allows you to explicitly redimension an array with the REDIM statement. As with automatic redi
mensioning, the following two rules apply to all REDIM statements:

• A REDIMed array must maintain the same number of dimensions .

• You cannot REDIM an array so that it contains more elements than it was originally dimen
sioned to hold.

Suppose A is the 3 x 3 array shown below.

[1 2 3]
A = 456

789

You can redimension it to a 2 x 4 array by executing the following

RED 1M A(2,4)

The new array will look like the figure below:

[1234]
A= 5678

Note that it retains the values of the elements, though not necessarily in the same locations. For
instance, A(2,1) in the original array was 4, whereas in the redimensioned array it equals 5. For
example, if we REDIMed A again, this time to a 2 x 2 array, we would get:

RED1M A(O:l,O:l)

A = [~ ~]

We could then initialize all elements to 0:

MAT A = (0)

A = [~ ~]

Numeric Arrays 3-15

It is also important to realize that elements that are out of range in the REDIMed array still retain
their values. The fifth thru ninth elements in A still equal 5 thru 9 even though they are now inac
cessible. If we REDIM A back to a 3 x 3 array, these values will reappear. For example:

REDIM A(3,3)

resulits in:

[0 0 0]
A = 056

789

One of the major strengths of the REDIM statement is that it allows you to use variables for the
subscript ranges: this is not allowed when you originally dimension an array. In effect, this enables
you to dynamically dimension arrays. This should not be confused with the ALLOCATE statement
which allows you to dynamically reserve memory for arrays. In the example below, for instance, we
enter the dimensions from the keyboard.

10 OPTION BASE 1
20 COMPLEX A(100,100)
30 INPUT "Enter lower and upper bounds of dimensions",Low1,Up1,Low2,Up2
40 IF (Up1-Low1+1)*(Up2-Low2+1»10000 THEN Too_big
50 REIDIM A(Low1:Up1,Low2:Up2)

Line 40 tests to see whether the new dimensions are too big. If so, program control is passed to a
line labelled "Too big". If line 40 were not present, the REDIM statement would return an error if
the dimensions were too large.

Arrays and Arithmetic Operators

BASIC allows you to multiply, divide, add, and subtract scalars to an array, as well as to add, sub
tract, multiply, and divide one array to another. It is also possible for you to add all the elements in
an array to produce a single result. This section covers a function and operations which allow you
to perform these tasks with INTEGER, REAL, and COMPLEX data types.

Using the MAT Statement

All arithmetic functions involving·arrays must be preceded by the MAT keyword. The specified
operation is performed on each individual element in the operand array(s) and the results are
placed in the result array. The result array must be dimensioned to be at least as large as the
current size of the operand array(s). If it is of a different shape than the operand array(s), the sys
tem will redimension it. Given the array A that follows, note how these arithmetic functions are

3-18 Numeric Array.

performed.

[1 2 3]
A = 456

789

To add 3 to each element of array A, you would use the following statement:

MAT B= A+(3)

The result of the above addition is array B below:

[4 5 6]
B = 7 8 9

10 11 12

To divide each element of array B above by 2, you would use the following statement:

MAT C = B/(2)

The result of the above division is array C given below:

[
2 2.5 3]

C = 3.5 4 4.5
5 5.5 6

To multiply each element in array C by a scalar expression, you would use a statement similar to
the following:

MAT C- C*(l+l+l)

The above statement multiplied each element in array C by 3 and placed that result in array C as
shown below:

[
6 7.5 9]

C = 10.5 12 13.5
15 16.5 18

Note that the result array can be the same as the operand array. Also, the scalar must be enclosed
in parentheses. In addition to performing arithmetic operations with scalars, you can also add, sub
tract, divide and multiply two arrays together. Except for multiplication with an asterisk, which is
described later, these functions proceed as follows: Corresponding elements of each operand array
are processed according to the specified operation, and the result is placed in the result array. The
two operand arrays must be exactly the same size though their particular subscript ranges can be
different. For multiplication, use a period rather than an asterisk. Using arrays A and B, the state
ment,

Numeric Array. 3-17

MAT D= A+B

would give the array:

[5 7 9]
D = 11 13 15

17 15 21

The statement,

MAT B=A.B

would give:

[
4 10 18]

B = 28 40 54
70 88 108

Again, the dimensioned size of the result array must be as large as the current size of each operand
array. The two operand arrays must be identical in shape and size, but not necessarily in subscript
rangl~s. For instance, A and B could have been dimensioned:

10 DIM A(1:3,2:4),B(-1:1,0:2)

Performing Arithmetic Operations with Complex Arrays

Remember that each of the operations mentioned in the previous section can be performed with
complex numbers. The resulting array if it is of type COMPLEX will have both a real and ima
ginary part in each element location. For example, you may have a two-dimensional complex alTay
that [ooks like this:

where the dimension statement is given as follows:

COMPLEX Op_array(-1:0,1:2)

The element Op _ array(-1,1) contains the values:

2 4

where 2 is the real part of the complex number and 4 is the imaginary part.

3-18 Numeric Arrays

If you were to multiply each of the complex values in the above matrix by a scalar value of 2, you
would use the following statement:

MAT Complex_result= Op_array*(2)

The previous statement would produce the following complex array:

[4 8 -2 10]
Complex Jesuit = -12 2 18 6

Note that if the resulting array (Complex result) had been of type REAL or INTEGER, the
results in array Complex_result would look like this:

[4 -2]
-12 18

This is due to the automatic type conversion made from COMPLEX to REAL or INTEGER.
Notice that the imaginary parts of the complex numbers in the array were dropped.

Summing the Elements in an Array

The statement that returns the sum of all elements in an array, however, works for arrays of any
dimension. Given the array A below,

[4 2 -1]
A= 3816

-5 2 0

the function, SUM (A) would return 29.

Boolean Arrays

In addition to the arithmetic operators, you can also use relational operators with arrays. The
result is a boolean· array, an array composed entirely of 1's and O's.

Given array B above, suppose you wanted to know how many elements were greater than 50. First
you execute the statement,

• Strictly speaking, these are not really boolean arrays since the values of the elements are not TRUE and FALSE.

Numeric Arrays 3-19

MAT F = B>(SO)

whiciIJ. results in the array:

[0 0 0] F = 001
111

Thelll you execute the statement,

PRINT SUM(F)

which causes the computer to display "4" on the current PRINTER IS device.

Note

The only comparison operators allowed with COMPLEX data types are: = and < >.
The only dyadic operators allowed with COMPLEX data types are: ", +, -, *, /,
< >, and =. The only monadic operators allowed with COMPLEX data types are:
+, -, and NOT.

You can also compare two arrays to each other. For example, if you wanted to compare the two
arrays below,

[1 3 5] [1 3 4] A= 287 B= 207
146 144

you could execute the statement:

MAT C = A=B

By looking at C, you can tell which elements are the same for both A and B.

[1 1 0]
C = 101

110

3-20 Numeric Array.

4
String Manipulation

It is often desirable to store non-numerical information in the computer. You can use any sequence
of characters in a string. Quotation marks are used to delimit the beginning and ending of the
string. The following are valid string assignments:

LET A$="COMPUTER"
Fail$-"The test has failed."
File name$="INVENTORY"
Test$=Fail$[S,8]

The left-hand side of the assignment (the variable name) is equated to the right-hand side of the
assignment (the literal). String variable names are identical to numeric variable names with the
exception of a dollar sign ($) appended to the end of the name.· The length of a string is the
number of characters in the string. In the previous example, the length of A$ is 8 since there are
eight characters in the literal "COMPUTER". BASIC allows the dimensioned length of a string to
range from 1 to 32,767 characters and the current length (number of characters in the string) to
range from zero to the dimensioned length. A string of zero characters is often called a null string
or an empty string. The default dimensioned length of a string is 18 characters. The DIM, COM,
and ALLOCATE statements are used to define string lengths up to the maximum length of 32,767
characters. An error results whenever a string variable is assigned more characters than its dimen
sioned length. A string may contain any character. The only special case is when a quotation mark
needs to be in a string. Two quotes, in succession, will embed a quote within a string:

10 Quote$="The time is ""NOW""."
20 PRINT Quote$
30 END

Produces: The time is "NOW".

• A string variable name can consist of up to 15 alpha-numeric characters plus the dollar sign at the end. As with numeric
variables, the first character must be a capital letter. The rest of the name can consist of lower-case letters, numerals,
and the underscore character U, in any combination.

String Manipulation 4-1

String Storage

Strings whose length exceeds the default length of 18 characters must have space reserved before
assignment. The following statements may be used.

• DIM Long$[400] Reserve space for a 400 character string.

• COM Line$[80] Reserve an 80 character common variable.

• ALLOCATE Search$[Length] Dynamic variable allocation.

The maximum length of any string must not exceed 32,767 characters. A string may also be dimen
sioned to a length less than the default length of 18 characters. The DIM statement reserves
storage for strings:

DIM Part_number$[10),Description$[64),Cost$[5)

The COM statement defmes common variables that can be used by subprograms:

COM Name$[40],Phone$[14]

The ALLOCATE statement allows dynamic allocation of string storage. When the maximum
length of of a string cannot be determined ahead of time, the ALLOCATE statement can be used
to reserve enough memory space for the string without wasting space.

ALU)CATE Line$ [Length]

Strings that have been dimensioned but not assigned return the null string.

String Arrays

Largl~ amounts of text are easily handled in arrays. For example:

DIM File$(lOOO) [80]

This statement reserves storage for 1000 lines of 80 characters per line. Do not confuse the brack
ets, which define the length of the string, with the parentheses which define the number of strings
in the array. Each string in the array can be accessed by an index. For example:

PRINT File$(27)

Prints the 27th element in the array. Since each character in a string uses one byte of memory and
each string in the array requires as many bytes as the length of the string, string arrays can quickly

4-2 String Manipulation

use a lot of memory. A program saved on a disk as an ASCII type file can be entered into a string
array, manipulated, and written back out to the disk.

Evaluating Expressions Containing Strings

This section covers the following topics:

• Evaluation Hierarchy.

• String Concatenation.

• Relational Operations.

Evaluation Hierarchy

Evaluation of string expressions is simpler than evaluation of numerical expressions. The three
allowed operations are extracting a substring, concatenation, and parenthesization.

String Concatenation

You can combine two strings together by using the concatenation operator "&". The following
program demonstrates this feature:

10 One$="WRIST"
20 Two$="WATCH"
30 Concat$=One$&Two$
40 PRINT One$,Two$,Concat$
50 END

When you run the program it will print the following:

WRIST WATCH WRISTWATCH

The concatenation operation, in line 30, appends the second string to the end of the first string.
The result is assigned to a third string. An error results if the concatenation operation produces a
string that is longer than the dimensioned length of the string being assigned.

String Manipulation 4-3

Relational Operations

Most of the relational operators used for numeric expression evaluation can also be used for the
evaluation of strings. The following examples show some of the possible tests.

"ABC" = "ABC" True
"ABC" < "Abc" True
"6" > "7" False
"2" < "12" False
"long" < = "longer" True
"RE-SA VE" > = "RESA VE" False

Any of these relational operators may be used: <, >, < =, > =, =, < >. Testing begins with the
first c;haracter in the string and proceeds, character by character, until the relationship has been
determined. The outcome of a relational test is based on the characters in the strings not on the
length of the strings. For example:

"BRONTOSAURUS" < "CAT"

This :relationship is true since the letter "c" is higher in ASCII value than the letter "B".

Note

When the LEX binary is loaded, the outcome of a string comparison is based on the
character's lexical value rather than the character's ASCII value. See the LEXICAL
ORDER IS statement later in this chapter for more details.

Substrings

You c;an append a subscript to a string variable name to define a substring. A substring may
comprise all or just part of the original string. Brackets enclose the subscript which can be a con
stant,. variable, or numeric expression. For example:

String$[4]

specifies a substring starting with the fourth character of the original string. The subscript must be
within the range from 1 to the current length of the string plus 1. Note that the brackets now indicate
the substring starting position instead of the total length of the string as when reserving storage for
a string. Subscripted strings may appear on either side of the assignment.

4-4 String Manipulation

Single-Subscript Substrings

When a substring is specified with only one numerical expression enclosed with brackets, the
expression is evaluated and rounded to an integer indicating the position of the first character of
the substring within the string. The following examples use the variable A$ which has been
assigned the literal "DICTIONARY".

Statement Output
PRINT A$ DICTIONARY
PRINT A$[O] (error)
PRINT A$[l] DICTIONARY
PRINT A$[S] IONARY
PRINT A$[lO] Y
PRINT A$[ll] (null string)
PRINT A$[12] (error)

When you use a single subscript, it specifies the starting character position, within the string, of the
substring. An error results when the subscript evaluates to zero or greater than the current length
of the string plus 1. A subscript that evaluates to 1 plus the length of the string returns the null
string (" ") but does not produce an error.

DOuble-Subscript Substrings

A substring may have two subscripts, within brackets, to specify a range of characters. When a
comma is used to separate the items within brackets, the first subscript marks the beginning posi
tion of the substring, while the second subscript is the ending position of the substring. For exam
ple:

"JABBERWOCKY"[4,6]

Specifies the substring "BER". When a semicolon is used in place of a comma, the first subscript
again marks the beginning position of the substring, while the second SUbscript is now the length of
the substring. For example:

" JABBERWOCKY" [4;6]

Specifies the substring "BERWOC". In the following examples the variable B$ has been assigned
to the literal "ENLIGHTENMENT".

String Manipulation 4-5

Statement Output
PRINT B$[l,13] ENLIGHTENMENT
PRINT B$[1,9] ENLIGHTEN
PRINT B$[3,7] LIGHT
PRINT B$[3;7] LIGHTEN
B$ [13,26] (error)
PRINT B$[14;1] (null string)

An error results if the second subscript in a comma separated pair is greater than the current
string length plus 1 or if the sum of the subscripts in a semicolon separated pair is greater than the
current string length plus 1. Specifying the position just past the end of a string returns the null
string.

SpE.lCial Considerations

All substring operations allow a subscript to specify the first position past the end of a string. This
allows strings to be concatenated without the concatenation operator. For example:

10 A$="CONCAT"
20 A$[7]="ENATION"
30 PRINT A$
40 END

When you run this program, it will print:

CONCATENATION

The substring assignment is only valid if the substring already has characters up to the specified
position. Access beyond the first position past the end of a string results in the error:

ERROR 18 String ovf1. or substring err

A good practice is to dimension all strings including those shorter than the default length of eigh
teen characters.

String-Related Functions

Several intrinsic functions are available in BASIC for the manipulation of strings. These functions
include conversions between string and numeric values.

4-6 String Manipulation

String Length

The "length" of a string is the number of characters in the string. You can use the LEN function to
return an integer whose value is equal to the string length. The range is from 0 (null string)
through 32,767. For example:

PRINT LEN("HELP ME")

Prints: 7

Substring Position

You can determine the position of a substring within a string by the using the POS function. This
function returns the value of the starting position of the substring, or zero if the entire substring
was not found. For example:

PRINT POS("DISAPPEARANCE", "APPEAR")

Prints: 4

Strlng-to-Numeric Conversion

You can use the VAL function to convert a string expression into a numeric value. The number
returned by the VAL function will be converted to and from scientific notation when necessary.
For example:

PRINT VAL("123.4E3")

Prints: 123400

The string expression must evaluate to a valid number or error 32 will result.

ERROR 32 String is not a valid number

You can use the NUM function to convert a single character into its equivalent numeric value. The
number returned is in the range 0 to 255. For example:

PRINT NUM("A")

Prints: 65

String Manipulation 4-7

NUlmeric-to-String Conversion

You can use the VALS function to convert the value of a numeric expression into a character
string. The string contains the same characters (digits) that appear when the numeric variable is
printed. For example:

PRINT 1000000,VAL$(1000000)

PrmltS: 1. E+6 1. E+6

The CHR$ function converts a number into an ASCII character. The number can be of type
INTEGER or REAL since the value is rounded, and a modulo 255 is performed. For example::

PRINT CHR$(97);CHR$(98);CHR$(99)

Prints: abc

Stlring Functions

Sev(~ral additional string functions are available when the BASIC system has been loaded into the
computer.

String Reverse

The REV$ function returns a string created by reversing the sequence of characters in the given
Strmlg.

PRINT REV$("Snack cans")

Prints: snac kcanS

Strling Repeat

The RPT$ function returns a string created by repeating the specified string a given number of
times.

PRINT RPT$("* *",10)

Prinlts: * ** ** ** ** ** ** ** ** ** *

4-8 String Manipulation

Trimming a String

The TRIM$ function returns a string with all leading and trailing blanks (ASCII spaces) removed.

PRINT "*";TRIM$("1.23");"*"

Prints: *1.23*

TRIM$ is often used to extract fields from data statements or keyboard input.

Case Conversion

The case conversion functions, UPC$ and LWCS, return strings with all characters converted to
the proper case. UPC$ converts all lowercase characters to their corresponding uppercase charac
ters and LWC$ converts any uppercase characters to their corresponding lowercase characters.
Roman Extension characters will be converted according to the current lexical order. See the
LEXICAL ORDER IS statement later in this chapter for the case conversion listings.

The following program demonstrates the case conversion functions:

10 DIM Word$[160]
20 LINPUT "Enter a few characters",Word$
30 PRINT
40 PRINT "You typed: ";Word$
50 PRINT "Uppercase: ";UPC$(Word$)
60 PRINT "Lowercase: ";LWC$(Word$)
70 END

MAT Functions and String Arrays

MAT functions (available with the MAT binary) are commonly used to manipulate data in numeric
arrays. However, several of these functions can be used with string arrays. For example, a string
array is copied into another string array by the following.

MAT Copy$ = Origina1$

Note that only the variable name is necessary. The array specifier "(*)" need not be included when
using the MAT statement.

Every element in a string array will be initialized to a constant value by the following statement.

String Manipulation 4-9

MAT Array$ = (Null$)

The c:onstant value can be a literal or a string expression and is enclosed in parentheses to distilll
guish it from being an array name.

A list of items can be sorted very quickly by the MAT SORT statement. Load and run the follow
ing program from file MATSORT on your Manual Examples disk.

10
20
30
40
50

! Program: SORT_LIST
DIM List$(1:5)[6]
DATA Bread,Milk,Eggs,Bacon,Coffee
READ List$(*)

60 PRINT "original order"
70 PRINT List$(*)
80
90 PRINT "ascending order"
100 MAT SORT List$(*)
110 PRINT List$(*)
120
130 PRINT "descending order"
140 MAT SORT List$(*) DES
150 PRINT List$(*)
160 END

Running this program produces:

original order
Bread Milk Eggs Bacon Coffee
asc4~nding order
Bacon Bread Coffee Eggs Milk
descending order
Milk Eggs Coffee Bread Bacon

Number-Base Conversion

Utility functions are available to simplify the calculations between different number bases. The two
functions IVAL and DVAL convert a binary, octal, decimal, or hexadecimal string value into a
decimal number. The IVAU and DVAU functions convert a decimal number into a binary, oc:tal,
decimal, or hexadecimal string value. Each function has two parameters: the string to be converted
and lthe radix. The radix is limited to the values 2, 8, 10, or 16, and represents the numeric base of

4-1ClI String Manipulation

the string to be converted. The IVAL and IVAL$ functions are restricted to the range of
INTEGER variables (-32,768 thru 32,767). The DVAL and DVAL$ functions allow "double
length" integers and thus allow larger numbers to be converted (-2,147,483,648 thru
2,147,483,647). IVAL and IVAL$ operate on 16-bit values, while DVAL and DVAL$ operate on
32-bit values. The following statements show valid usage of these functions.

PRINT DVAL("FF5900",16)
PRINT IVAL("AA",16)
PRINT DVAL$(lOO,8)
PRINT IVAL$(-1,16)

Changing the Lexical Order

The LEXICAL ORDER IS statement lets you change the collating sequence (sorting order) of the
character set. Changing the lexical order affects the results of all string relational operators and
operations, including the CASE, MAT SEARCH, and MAT SORT statements. In addition to
redefining the collating sequence, the case conversion functions, UPC$ and LWC$, are adjusted to
reflect the current lexical order. The LEXICAL ORDER IS statement is available if the LEX
binary is installed.

You can create lexical orders for special applications. To do this you would create a one
dimensional INTEGER array with at least 257 elements, which specifies the desired lexical order.
(Just list the ASCII characters it:n the desired order.) For example, the statement:

LEXICAL ORDER IS Lex_table(*)

specifies the lexical order contained in the array named Lex_table. (Refer to the BASIC Language
Reference for further information.)

The LEXICAL ORDER IS statement provides the following predefined lexical orders: ASCII
(American Standard Code for Information Interchange), FRENCH, GERMAN, SPANISH,
SWEDISH, and STANDARD. For example:

LEXICAL ORDER IS GERMAN

selects the correct lexical order for the German language.

LEXICAL ORDER IS STANDARD

selects the correct lexical order for the language corresponding to the keyboard connected to the
system. (The STANDARD lexical order is determined by an internal keyboard jumper, which is set
at the factory.)

String Manipulation 4-11

The computer executes a LEXICAL ORDER IS STANDARD statement when the Advanced Pro
gramming Binary is first loaded or after a SCRATCH A is executed. The result will be the correct
lexi<:al order for the language on the keyboard. This can be checked by examining the keyboard
status register in a program (STATUS 2,8;Language), or by either of the following statements.

SYSTEM$("LEXICAL ORDER IS")
SYSTEM$("KEYBOARD LANGUAGE")

The following table shows the language indicated by the value returned by the STATUS statement.
For example, if the value returned indicates a French keyboard, the STANDARD lexical order is
FRENCH. On the other hand, the STANDARD lexical order for the Dutch keyboard is GER
MAN.

Value Keyboard Language lexical Order
0 ASCII ASCII
1 FRENCH FRENCH
2 GERMAN GERMAN
3 SWEDISH SWEDISH
4 SPANISH* SPANISH
5 KATAKANA ASCII
6 CANADIAN ENGLISH ASCII
7 UNITED KINGDOM ASCII
8 CANADIAN FRENCH FRENCH
9 SWISS FRENCH FRENCH
10 ITALIAN FRENCH
11 BELGIAN GERMAN
12 DUTCH GERMAN
13 SWISS GERMAN GERMAN
14 LATINt SPANISH
15 DANISH SWEDISH
16 FINNISH SWEDISH
17 NORWEGIAN SWEDISH
18 SWISS FRENCH FRENCH
19 SWISS GERMAN GERMAN

* European Spanish keyboard.

t Latin Spanish keyboard.

The CHR$ function may be used to produce characters not readily available on the keyboard.

4-U String Manipulation

5
Subprograms and User-De'fined Functions

One of the most powerful constructs available in any language is the subprogram (a user-defined
function is a special form of subprogram). A subprogram can do everything a main program can
do except that it must be invoked or "called" before it is executed, whereas a main program is exe
cuted by pressing RUN or executing the RUN command.

A subprogram has its own "context" or state that is distinct from a main program and aU other
subprograms. This means that every subprogram has its own set of variables, its own softkey
definitions, its own DATA blocks, and its own line labels. There are several benefits to be realized
by taking advantage of subprograms:

• The subprogram allows you to take advantage of the "top-down" method of designing pro
grams.

• The program is much easier to read using subprogram calls.

• By using subprograms and testing each one independently of the others, it is easier to locate
and fix problems.

• You may want to perform the same task from several different areas of your program.

• Finally, libraries of commonlly used subprograms can be assembled for widespread use.

location
A subprogram is located after the body of the main program, following the main program's END
statement. (The END statement must be the last statement in the main program except for com
ments.) Subprograms may not be nested within other subprograms, but are physically delimited
from each other with their heading statements (SUB or DEF FN) and ending statements
(SUBEND or FNEND).

Subprograms and User-Defined Functions 5-1

Naming

A slJlbprogram has a name which may be up to 15 characters long, just as with line labels and vari
able names. Here are some legal subprogram names:

Initialize
Read dvm
Sort_2_d_arry
Plot data

Because up to 15 characters are allowed for naming subprograms, it is easy and convenient to
nam.e subprograms in such a way as to reflect the purpose for which the subprogram was written.

The Difference Between a Function and a Subprogram

A SUB subprogram (as opposed to a function subprogram) is invoked explicitly using the CALL
statement. A function subprogram is called implicitly by using the function name in an expression.
It C<liD. be used in a numeric or string expression the same way a constant would be used, or it c:an
be invoked from the keyboard. A function's purpose is to return a single value (a REAL number, a
COMPLEX number, or a string).

There are several functions such as SIN, SQR, EXP, etc., that are built into the BASIC language
whi(:h can be used to return values.

Y=SIN(X)+Phase
Roo>tl=(-B+SQR(B*B-4*A*C))/(2*A)

Using the capability of defining your own function subprograms, you can essentially extend the
language if you need a feature not provided in BASIC.

X=FNFactorial(N)
Ang;le=FNAtn2 (Y ,X)

A gc~neral rule of thumb for using subprograms is that if you want to take a set of data and analyze
it to generate a single value, then you probably want to implement the subprogram as a function.
On the other hand, if you want to actually change the data itself, generate more than one value as a
resu~t of the subprogram, or perform any sort of I/O activity, it is better to use a SUB subprogram.

5-2 Subprograms and User-Defined Functions

Numeric Functions and String Functions

A function is allowed to return either a REAL or COMPLEX numeric value or a string value. Pre
viously, we saw some examples of functions returning REAL numbers. Let's examine one that
returns a string. There are two primary differences: the first is that a $ must be added to the name
of a function which is to return a string. This is used both in the definition of the function (the
DEF statement) and when the function is invoked. The second difference is that the RETURN
statement in the function returns a string instead of a number.

200

1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790

DEF FNAscii_to_hex$(A$)
Each ASCII byte consists of two hex

digits; pretty formatting indicates that
a space be inserted between every pair
of hex digits. Thus, the output string
will be three times as long as the input
string.

upper four bits
UUUU LLLL
shift 4 bits
0000 UUUU

lower four bits
UUUU LLLL
0000 1111 mask (15)
0000 LLLL final

INTEGER I,Length,Hexupper,Hexlower
Length=LEN(A$)
ALLOCATE Temp$[3*Length]
FOR 1=1 TO Length

Hexupper=SHIFT(NUM(A$[I]),4)
Hexlower-BINAND(NUM(A$[I]),15)
Temp$[3*I-2;1]=FNHex$(Hexupper)
Temp$[3*I-l;I]=FNHex$(Hexlower)
Temp$[3*I;I]=" ,.

NEXT I
RETURN Temp$
FNEND

Subprograms and User-Defined Functions 5-3

1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950

DEF FNHex$(INTEGER X)
Assume 0<=X<=15
Return ASCII representation of the

hex digit represented by the four
bits of X.

If X is between 0 and 9, return
"0" ... "9"

If X > 9, return "A" ... "F"
IF X<=9 THEN

RETURN CHR$(48+X) ASCII 48 through 57

ELSE
RETURN CHR$(55+X)

END IF
FNEND

represent "0" - "9"

ASCII 65 through 70
represent "A" - "F"

Line:s 200, 1740, and 1750 show examples of how to call a string function. Lines 1550 and 1800
show where the two string-function subprograms begin. Notice that the program could be optim
ized slightly by deleting lines 1711) and 1730 and modifying lines 1740 and 1750:

1740 Temp$[3*I-2;1]=FNHex$(SHIFT(NUM(A$[I]),4))
1750 Temp$[3*I-l;I]=FNHex$(BINAND(NUM(A$[I]),15))

Thus, it is perfectly legal to use expressions in the pass parameter list of a subprogram. (By the
way,. such expressions may also invoke function subprograms.)

Caliling and Executing a Subprogram

Subprograms are invoked explicitly using the CALL statement, while functions are invoked impli
citly just by using the name in an expression, an output list, etc. A nuance of SUB subprograms is
that the CALL keyword is optional when invoking a SUB subprogram. The omission of the CALL
keyword when invoking a SUB subprogram is left solely to the discretion of the programmer; some
will find it more aesthetic to omit CALL, others will prefer its inclusion. There are, however, three
instnnces which require the use of CALL when invoking a subprogram:

1. If the subprogram is called from the keyboard.

2. If the subprogram is called after the THEN keyword in an IF statement.

3. In an ON < event> CALL statement.

5004 Subprograms and User-Defined Functions

Communication

As mentioned earlier, there are two ways for a subprogram to communicate with the main pro
gram or with other subprograms: parameter lists, and COM (blank and labeled).

Parameter Lists

The formal parameter list is part of the subprogram's defmition, just like the subprogram's name.
The formal parameter list defines:

• The number of values that may be passed to a subprogram

• The types of those values (string, INTEGER, REAL, or COMPLEX, and whether they are sim
ple or array variables; or I/O path names)

• The variable names the subprogram will use to refer to those values. (This allows the name in
the subprogram to be different from the name used in the calling context.)

The subprogram has the power to demand that the calling context match the types declared in the
formal parameter list - otherwise, an error results. It is perfectly legal for both the formal and
pass parameter lists to be null, or nonexistent.

Here is a sample formal parameter list showing which types each parameter demands:

SUB Read_dvrn(@Dvm,A(*),INTEGER Lower,Upper,Status$,Errflag)

@Dvrn is an I/O path name which may refer to either an I/O device or a mass storage me. Its name
here implies that it is a voltmeter, but it is perfectly legal to redirect I/O to a me just by using a
different ASSIGN with @Dvm.

A (*) is a REAL array. Its size is declared by the calling context. Without MAT, there is no way to
find the size of the array except through information supplied explicitly by the calling context;
hence the parameters Lower and Upper.

Lower and Upper are declared here to be INTEGERs. Thus, when the calling program invokes
this subprogram, it must supply either INTEGER variables or INTEGER expressions, or an error
will occur.

S tatus$ is a simple string which presumably could be used to return the status of the voltmeter
to the main program. The length of the string is defined by the calling context.

Errflag is a REAL number. The declaration of the string Status$ has limited the scope of the
INTEGER keyword which caused Lower and Upper to require INTEGER pass parameters.

Subprograms and User-Defined Functions 5-5

There are two ways for the calling context to send values to a subprogram: pass by value, and pass
by reference. Using pass by value, the calling context supplies a value and nothing more. Using
pass by reference, the calling context actually gives the subprogram access to the calling context's
value area. The distinction is that a subprogram cannot alter the value of data in the calling context
if the data is passed by value, while the subprogram can alter the value of data in the calling con
text if the data is passed by reference.

The: subprogram has no control over whether its parameters are sent using pass by value or pass by
reference. That is determined by the calling context's pass parameter list. In order for a paranleter
to be passed by reference, the pass parameter list (in the calling context) must use a variable for
that: parameter. In order for a parameter to be passed by value, the pass parameter list must use an
expression for that parameter. Note that enclosing a variable in parentheses is sufficient to cn:ate
an (:xpression. Using pass by value, it is possible to pass an INTEGER expression to a REAL for
mal parameter (the INTEGER is converted to its REAL representation) without causing a type
mismatch error. Likewise, it is possible to pass a REAL expression to an INTEGER formal
parameter (the value ofthe expression is rounded to the nearest INTEGER) without causing a
type mismatch error (an integer overflow error is generated if the expression is out of range for an
INTEGER). Let's look at our previous example from the calling program:

CALL Read_dvrn(@Voltmeter,Readings(*),1,400,Status$,Errflag)

@V()l tme te r is the pass parameter which matches the formal parameter @Dvrn in the subpro
gram. I/O path names are always passed by reference, which means the subprogram can close the
I/O path or assign it to a different file or device.

Readings (*) matches the array A(*) in the subprogram's formal parameter list. Arrays, too,
are always passed by reference.

1, l~OO are the values passed to the formal parameters Lower and Upper. Since constants are
classified as expressions rather than variables, these parameters have been passed by value. Tillus,
if the subprogram used either Lower or Upper on the left-hand side of an assignment operator, no
change would take place in the calling context's value area.

S ta tus $ is passed by reference here. If it were enclosed in parentheses, it would be passed by
value. Notice that if it were passed by value, it would be totally useless as a method for returning
the status of the voltmeter to the calling context.

Errflag is passed by reference.

5-6 Subprograms and User-Defined Functions

OPTIONAL Parameters

Another important feature of formal parameter lists is the OPTIONAL keyword. Any formal
parameter list (the one defining the subprogram) may contain the keyword OPTIONAL some
where, although it isn't required to. The OPTIONAL keyword indicates that any parameters that
follow it are not required in the pass parameter list of a calling context - they are optional. On
the other hand, all parameters preceding the OPTIONAL keyword are required. If no
OPTIONAL appears in the subprogram's parameter list, then all the parameters must be
specified, or an error will be generated. The rules requiring matching of parameter types apply to
OPTIONAL parameters as well as to ordinary parameters. There is a standard function called
NP AR which can be used inside the subprogram to find out how many pass parameters the calling
context actually did use. (NP AR will return 0 if used inside the main program, or if no parameters
were passed to a subprogram.)

COM Blocks

Since we've discussed parameter lists in detail, let's turn now to the other method a subprogram
has of communicating with the main program or with other subprograms, the COM block.

There are two types of COM (or common) blocks: blank and labeled. Blank COM is simply a spe
cial case of labeled COM (it is the COM whose name is nothing) with the exception that blank
COM must be declared in the main program, while labeled COM blocks don't have to be declared
in the main program. Both types of COM blocks simply declare blocks of data which are accessible
to any context having matching COM declarations.

A blank COM block might look like this:

10 OPTION BASE 1
20 COM Conditions(lS),INTEGER,Cmin,Cmax,@Nuc1ear_pile,

Pile_status$[20] ,Tolerance

A labeled COM might look like this:

30 COM /Valve/ Main(lO,Subvalves9l0,lS),@Valve_ctrl

A COM block's name, if it has one, will immediately follow the COM keyword, and will be set off
with slashes, as shown above. The same rules used for naming variables and subprograms are used
for naming COM blocks.

Any context need only declare those COM blocks to which it needs to have access. If there are 150
variables declared in 10 COM blocks, it isn't necessary for every context to declare the entire set.
Only those blocks that are necessary to each context need to be declared. COM blocks with match
ing names must have matching defInitions. As in parameter lists, matching COM blocks is done by

Subprograms and User-Defined Functions 5-7

position and type, not by name.

Ther,e are several characteristics of COM blocks which distinguish them from parameter lists as a
means of communications between contexts:

• COM survives pre-run. In general, any numeric variable is set to 0, strings are set to the null
string, and I/O path names are set to undefined when the program is run, or upon entering a
subprogram. This is true of COM the first time the program is run, but after COM block vari
ables are defined, they retain their values until:

1. SCRATCH A or SCRATCH C is executed.

2. A statement declaring a COM block is modified by the user.

3. A new program is brought into memory using the GET or LOAD commands which
doesn't match the declaration of a given COM block, or which doesn't declare a given
COM block at all.

• COM blocks can be arbitrarily large. One limitation on parameter lists (both pass and formal
p.arameter lists) is that they must fit into a single program line along with the line's number,.
possibly a label, the invocation or subprogram header, and possibly (in the case of a functiOlll) a
string or numeric expression. Depending upon the situation, this can impose a restriction OIl

the size of your parameter lists.

COM blocks can take as many statements as necessary. COM statements can be interwoven
with other statements (though this is considered a poor practice). All COM statements within
a context which have the same name will be part of the definition of that COM block.

• COM blocks can be used for communicating between contexts that do not invoke each other.

• COM blocks can be used to communicate between subprograms that are not in memory simul
talDeously.

• COM blocks can be used to retain the value of "local" variables between subprogram calls.

• COM blocks allow subprograms to share data without the intervention of the main program.

Hin1ts for Using COM Blocks

Any COM blocks needed by your program must be resident in memory at pre-run time. Pre-run is
caused by pressing RUN, executing a RUN command, executing LOAD or GET from the pro
gram, or executing a LOAD or GET from the keyboard and specifying a run line. Thus if you want
to cn:ate libraries of subprograms which share their own labeled COM blocks, it is wise to collect
all thl~ COM declarations together in one subprogram to make it easy to append them to the rest
of th{: program for inclusion at prerun time. (The subprogram need not contain anything but the
COM declarations.)

5-8 Subprograms and User-Defined Functions

COM can be used to communicate between programs which overlay each other using LOAD or
GET statements, if you remember a few rules:

1. COM blocks which match each other exactly between the two programs will be preserved
intact. "Matching" requires that the COM blocks are named identically (except blank
COM), and that corresponding blocks have exactly the same number of variables declared,
and that the types and sizes of these variables match.

2. Any COM blocks existing in the old program which are not declared in the new program
(the one being brought in with the LOAD or GET) are destroyed.

3. Any COM blocks which are named identically, but which do not match variables and types
identically, are defined to match the definition of the new program. All values stored in that
COM block under the old program are destroyed.

4. Any new COM blocks declared by the new program (including those mentioned above in
#3) are initialized implicitly. Numeric variables and arrays are set to zero, strings are set to
the null string, and I/O path names are set to undefined.

The first occurrence in memory of a COM block is used to define or set up the block. Subsequent
occurrences of the COM block must match the defining block, both in the number of items, and
the types of the items. In the case of strings and arrays, the actual sizes need be specified only in
the deftning COM blocks. Subsequent occurrences of the COM blocks may either explicitly match
the size specifications by re-declaring the same size, or they may implicitly match the size
specifications. In the case of strings, this is done by not declaring any size, just declaring the string
name. In the case of arrays, this is done by using the (*) specifier for the dimensions of the array
instead of explicitly re-declaring the dimensions.

Consider the following COM block definition:

10 COM /DVID_state/ INTEGER Range,Format,N,REAL
De1ay,Lastdata(1:40),Status$[20]

The following occurrence of the same COM block within a subprogram matches the COM block
explicitly and is legal:

2000 COM /Dvm_stat/ INTEGER Range,Format,N,REAL
De1ay,Lastdata(1:40),Status$[20]

The following block within a different subprogram uses implicit matching and is also legal:

4010 COM /DVID_state/ INTEGER Range,Format,N,REAL
Delay,Lastdata(*),Status$

Subprograms and User-Defined Functions 5-9

Cc»ntext Switching

A subprogram has its own context or state, which is distinct from that of a main program and all
othc~r subprograms. In between the time that a CALL statement is executed (or an FN name is
used) and the time that the first statement in the subprogram gets executed, the computer per
forms a "pre-run" on the subprogram. This "entry" phase is what defines the context of the sub
program. The actions performed at subprogram entry are similar, but not identical, to the actual
prerun performed at the beginning of a program. Here is a summary:

• The calling context has a DATA pointer which points to the next item in the current DATA
block which will be used the next time a READ is executed. This pointer is saved away when
,ever a subprogram is called, and then the DATA pointer is reset to the first DATA statement in
the new subprogram context.

• The RETURN stack for any GOSUBs in the current context is saved and set to the empty
:stack in the new context.

• The system priority of the current context is saved, and the called subprogram inherits this
value. Any change to the system priority which takes place within the subprogram (or any of
the subprograms which it calls in turn) is purely local, since the system priority is restored to its
original value upon subprogram exit.

• Any event-initiated GOTO/GOSUB statements are disabled for the duration of the subpro
gram. If any of the specified events occur, this will be logged, but no action will be taken. Upon
exiting the subprogram, these event-initiated conditions will be restored to active status, and if
;any of these events occurred while the subprogram was being executed, the proper branches
'will be taken.

• Any event-initiated CALL/RECOVER statements are saved away upon entering a subpro
gram, but the subprogram still inherits these ON conditions since CALL/RECOVER are glo
bal in scope. However, it is legal for the subprogram to redefine these conditions, in which case
the original definitions are restored upon subprogram exit.

• The current value of OPTION BASE is saved, and the value for the subprogram (0 or 1, expli
dtly declared or defaulted) is used.

• The current DEG or RAD mode for trigonometric operations and graphics rotations is stored
;away. The subprogram will inherit the current DEG or RAD setting, but if it gets changed
within the subprogram, the original setting will be restored when the subprogram is exited.

5-111) Subprograms and User-Defined Functions

Variable Initialization

Space for all arrays and variables declared is set aside, whether they are declared explicitly (with
DIM, REAL, INTEGER, or COMPLEX) or implicitly Gust by using the variable name). The
entire value area is initialized as part of the subprogram's prerun. All numeric values are set to
zero, all strings are set to the null string, and all I/O path names are set to undefined.

Subprograms and Softkeys

ON KEYs are a special case of the event-initiated conditions that are part of context switching.
They are special because they are the only < event> conditions which give visible evidence of their
existence to the user through the softkey labels at the bottom of the CRT. These key labels are
saved away just as the event conditions are, and the labels get restored to their original state when
the subprogram is exited, regardless of any changes the subprogram made in the softkey
definitions. This means the programmer doesn't have to make any special allowances for re
enabling his keys and their associated labels after calling a subprogram which changes them - the
language system handles this automatically.

Subprograms and the RECOVER Statement

The event-initiated RECOVER statement allows the programmer to cause the program to resume
execution at any given place in the context defining the ON ... RECOVER as a result of a specified
event occurring, regardless of subprogram nesting.

Thus, if a main program executes an ON ... RECOVER statement (for example a softkey or an
external interrupt from the SRQ line on an HP-IB), and then calls a subprogram, which calls a
subprogram, which calls a subprogram, etc., program execution can be caused to immediately
resume within the main program as a result of the specified event happening.

Calling Subprograms from the Keyboard

Functions and subprograms can be called by using FN and CALL at the keyboard. There are some
restrictions:

• Since variables cannot be created by the user from the keyboard (variables can only be defined
by the program), it is legal to use only parameters that already exist in the current context.

• Constants may be used in the pass parameter list.

• When calling a SUB subprogram from the keyboard, the CALL keyword must be used.

Subprograms and User-Defined Functions 5-11

Using Subprogram Libraries

If you have a program which is quite large. along with sizable data arrays. you could run out of
memory in your computer. But the program you're working on just has to remain one program.
and external factors prevent your reducing data array size. What to do? There are several optiolllS
which address this problem.

If you want to load a specific subprogram from a PROG file, you would use the LOADSUB < sub
program name> FROM statement. If you want to load all the subprograms from a specific PROG
file, you would use the LOADSUB ALL FROM statement. And, if you wanted to see which sub
programs are still missing or load all those still needed, you would lUse the LOADSUB FROM
command. Note that this is a command, and not a statement. Therefore, LOADSUB FROM can
not bl~ invoked programmatically.

Loa,ding Subprograms One at a Time

Suppose your program has several options to select from. and each one needs many subprograms
and much data. All the options, however, are mutually exclusive; that is, whichever option you
choose does not need anything that the other options use. This means that you can clean up every
thing you've used when you are finished with that option.

If alll()f your subprograms can be put into one file, you can selectively retrieve them as needed with
this sort of statement:

LOADSUB Subprog_l FROM "SUBFILE"
LOADSUB Subprog_2 FROM "SUBFILE"
LOADSUB FNNwneric fn FROM "SUBFILE"
LOADSUB FNString_function$ FROM "SUBFILE"

Note that only one subprogram per line can be loaded with this form of LOAD SUB. If, for any
program option, you need so many subprograms that this method would be cumbersome, you
could use the following form of the command.

Loading Several Subprograms at Once

For tills method, you store all the subprograms needed for each option in its own file. Then, when
the program's user selects Program Option 1, you could have this line of code execute:

LOADSUB ALL FROM "OPTISUBFL"

5-12 Subprograms and User-Defined Functions

and if the user selects Option 2,

LOADSUB ALL FROM "OP2SUBFL"

and so forth.

There is one other form of LOADSUB, but it cannot be used programmatically. This is covered
next.

Loading Subprograms Prior to Execution

In the LOAD SUB FROM form, for which you need the PDEV binary, neither ALL nor a subpro
gram name is specified in the command. This is used prior to program execution. It looks through
the program in memory, notes which subprograms are needed (referenced) but not loaded, goes to
the specified file and attempts to load all such subprograms. If the subprograms are found in the
file, they are loaded into memory; if they are not, an error message is displayed and a list of the
subprograms still needed but not found in the file is printed.

Deleting Subprograms Programmatically

The utility of the LOADSUB commands would be greatly reduced if one could not delete subpro
grams from memory at will. So, there is a way to delete subprograms during execution of a pro
gram: DELSUB. If you want to delete only selected ones, you could use a program line like this:

100 DELSUB Sort_data,Print_report,FNPo1y_so1ve

If you are sure of the positioning of the subprograms in memory, here is a method of deleting
whole groups of subprograms:

100 DELSUB Print_report TO END

You can combine these methods:

100 DELSUB Sort_data,Print_report,FNGet_name$ TO END

The subprograms to be deleted do not have to be contiguous in memory, nor does the order in
which you specify the subprograms in a DELSUB statement have to be the order in which they
occur in memory. The computer deletes each subprogram before moving on to the next name.

If there are any comments after an FNEND or SUBEND, but before the next SUB or DEF FN,
these will be deleted as well as the rest of the subprogram body.

Subprograms and User-Defined Functions 5-13

If the: computer attempts to delete a nonexistent subprogram, an error occurs, and the DELSUB
statement is terminated. This means that subprograms whose names are listed after the error
causing one will not be deleted.

A subprogram can be deleted only if it is not currently active and if it is not referenced by a
currently active ON RECOVER/CALL statement. This means:

1. A subprogram can not delete itself.

2. A subprogram can not delete the subprogram that called it, either directly or indirectly.
(Otherwise it wouldn't have anywhere to return to when finished!)

Between the time that a subprogram is entered and the time it is exited, the computer keeps track
of an activation record for that subprogram. Thus, if a subprogram calls a subprogram that calls a
subpwgram, etc., none of the subsequently-called subprograms can delete the original one or any
of thl~ ones in between because the system knows from the activation record that control will even
tually need to return to the original calling context. A similar situation exists with active event
initiated CALL/RECOVER statements. As long as the possibility of the specified event occurring
exists, the system will not let the subprogram be deleted. In essence, the system will not let you
execute two mutually-exclusive, contradictory commands simultaneously.

Edi1ting Subprograms

You lcan edit subprograms by inserting, deleting, or merging them.

Inse!rting Subprograms. There are some rules to remember when inserting SUB and DEF FN
statement in the middle of the program. All DEF FN and SUB statements must be appended to
the end of the program. If you want to insert a subprogram in the middle of your program because
your prefer to see it listed in a given order, you must perform the following sequence:

1. STORE the program.

2. Delete all lines above the point where you want to insert your subprogram (refer to the DEL
statement).

3. STORE the remaining segment of the program in a new file.

4. LOAD the original program stored in step 1.

5. Delete all lines below the point where you want to insert your subprogram.

S. Type in the new subprogram.

7. Do a LOADSUB ALL from the new file created in step 3.

5-14 Subprograms and User-Defined Functions

If you have the PDEV binary installed, the job is much easier:

1. Write your new subprogram at the end of the program.

2. Perform a MOVELINES command where:

a. The Starting Line in the MOVELINES command is the line which you want to
immediately follow your new subprogram.

b. The Ending Line in the MOVELINES command is the line immediately prior to the
SUB or DEF FN of the new subprogram.

c. The Destination Line is any line number greater than the highest line number
currently in memory.

In either case there is an optional final step. It is not required that you do a REN to renumber the
program at this point, but often it is desirable to close up the void left in the program line number
ing which resulted from the block of subprograms being moved to the end of memory.

Deleting Subprograms. It is not possible to delete either DEF FN or SUB statements with
DEL LINE unless you first delete all the other lines in the subprogram. This includes any com
ments after the SUBEND or FNEND. Another way to delete DEF FN and SUB statements is to
delete the entire subprogram, up to, but not including, the next SUB or DEF FN line (if any). This
can be done either with the DEL command, or with the DELSUB command.

Merging Subprograms. If you want to merge two subprograms together, first examine the two
subprograms carefully to insure that you don't introduce conflicts with variable usage and logic
flow. If you've convinced yourself that merging the two subprograms is really necessary, here's how
you go about it:

1. SAVE everything in your program after the SUB or DEF FN statement you want to delete.

2. Delete everything in your program from the unwanted SUB statement to the end.

3. GET the program segment you saved in step 1 back into memory, taking care to number the
segment in such a way as not to overlay the part of the program already in memory.

Once again, with PDEV, your job is greatly simplified:

Execute a MOVELINES command in which you move everything from one subprogram -
excluding the SUB/DEF FN and SUBEND/FNEND statements - into the desired position in
the other subprogram. If there are any declarative statements in the moved code, you will probably
want to move those up next to the declarative statements in the receiving code. Don't forget to go
back to the place where the code came from and delete the SUB/DEF FN statement and the
SUBEND /FNEND statements.

Subprograms and User-Defined Functions 5-15

SUEIEND and FNEND

The SUBEND and FNEND statements must be the last statements in a SUB or function subpro
gram" respectively. These statements don't ever have to be executed; SUBEXIT and RETURN are
sufficient for exiting the subprogram. (If SUBEND is executed, it will behave like a SUB EXIT. If
FNEl'll) is executed, it will cause an error.) Rather, SUBEND and FNEND are delimiter state··
ments that indicate to the language system the boundaries between subprograms. The oruy excep
tion to this rule is the comment statements (either REM or I), which are allowed after SUBEND
andFNEND.

Both function subprograms and SUB subprograms are allowed to call themselves. This is known
as recursion. Recursion is a useful technique in several applications.

The simplest example of recursion is the computation of the factorial function. The factorial of a
number N is denoted by N! and is defined to be N x (N-1)! where O! = 1 by definition. Thus N! is
simply the product of all the whole numbers from 1 through N inclusive. A recursive function
which computes N factorial is:

DEF FNFactorial (N)
IF N=O THEN RETURN 1
RETURN N*FNFactorial(N-l)
FNEND

Refelrenees. For further information you may want to refer to one of the following:

1. Wirth, Nildaus, "Program Development by Stepwise Refinement", Communications of the
ACM, April 1971, Vol. 14, No.4, pp. 221-227.

2. Yourdan, Edward, Techniques of Program Structure and Design, (Prentice-Hall, Englewood
Cliffs, NJ, 1975).

3. Dahl, Dijkstra, & Hoare, Structured Programming (Academic Press, New York, 1972).

5-18 Subprograms and User-Defined Functions

6
Data Storage and Retrieval

This chapter describes some useful techniques for storing and retrieving data .

• First we describe how to store and retrieve data that is part of the BASIC program. With this
method, DATA statements specify data to be stored in the memory area used by BASIC pro
grams. Thus, the data is always kept with the program, even when the program is stored in a
mass storage file. The data items can be retrieved by using READ statements to assign the
values to variables. This is a particularly effective technique for small amounts of data that you
want to maintain in a program file.

• For larger amounts of data, and for data that will be generated or modified by the program,
mass storage files are more appropriate. Files provide means of storing data on mass storage
devices. This chapter describes the available file types, how to choose a file type, and how to
access such files.

Storing Data in Programs

This section describes a number of ways you can store values in memory. In general, these tech
niques involve using program variables to store data. The data are kept with the program when it is
stored on a mass storage device (with STORE and SAVE). These techniques allow extremely fast
access to the data. They provide good use of the computer's memory for storing relatively small
amounts of data.

Data Storage and Retrieval 6-1

Storing Data in Variables

Probably the simplest method of storing data is to use a simple assignment, such as the following
LET statements:

100 LET Cm_per_inch=2.54
110 Inch_per_cm=l/Cm_per_inch

The data stored in each variable can then be retrieved simply by specifying the variable's name.
This technique works well when there are only a relatively few items to be stored or when several
data values are to be computed from the value of a few items. The program will execute faster
when. variables are used than when expressions containing constants are used; for instance, using
the variable Inch_per_cm in the preceding example would be faster than using the constant
expression 1/2.54. In addition, it is easier to modify the value of an item when it appears in only
one place (i.e., in the LET statement).

Data Input by the User

You also can assign values to variables at run-time with the INPUT and LINPUT statements as
shown in the following examples:

100 INPUT "Type in the value of X, p1ease.",Id

or

200 DISP "Enter the value of X,Y, and Z."
210 LIN:E!UT "",Response$

Note that with this type of storage, the values assigned to the corresponding variables are not k(:pt
with the program when it is stored; they must be entered each time the program is run. This type
of dalta storage can be used when the data are to be checked or modified by the user each time the
program is run. As with the preceding example, the data stored in each variable can then be
retrieved simply by specifying the variable's name.

Using DATA and READ statements

The DATA and READ statements provide another technique for storing and retrieving data from
the computer's read/write (R/W) memory. The DATA statement allows you to store a stream of
data items in memory, and the READ statement allows you retrieve data items from the stream.

8-2 Data Storage and Retrieval

You can have any number of READ and DATA statements in a program in any order you want.
When you run a program, the system concatenates all DATA statements in the same context into a
single "data stream." Each subprogram has its own data stream. The following DATA statements
distributed in a program would produce the data stream shown.

100 DATA 1,A,50

200 DATA "BB",20,45

300 DATA X,Y,77

Data stream:

I 1 I A I 50 BB 20 45 x y 77

As you can see from the example above, a data stream can contain both numeric and string data
items; however, each item is stored as if it were a string.

Each data item must be separated by a comma and can be enclosed in optional quotes. Strings that
contain a comma, exclamation mark, or quote mark must be enclosed in quotes. In addition, you
must enter two quote marks for every one you want in the string. For example, to enter the string
QUOTE"QUO"TE into a data stream, you would write:

100 DATA "QUOTE""QUO""TE"

To retrieve a data item, assign it to a variable with the READ statement. Syntactically, READ is
analogous to DATA; but instead of a data list, you use a variable list. For instance, the statement:

100 READ X,Y,Z$

would read three data items from the data stream into the three variables. Note that the first two
items are numeric and the third is a string variable.

Data Storage and Retrieval 6-3

Numeric data items can be read into either numeric or string variables. If the numeric data item is
of a different type than the numeric variable, the item is converted (Le., RI~ are converted to
INTEGERs, and INTEGERs to R~). If the conversion cannot be made, an error is returned.
Strings that contain non-numeric characters must be read into string variables. If the string vari
able has not been dimensioned to a size large enough to hold the entire data item, the data item is
truncated.

The system keeps track of which data item to read next by using a "data pointer." Every data
stream has its own data pointer which points to the next data item to be assigned to the next vari
able in a read statement. When you run a program segment, the data pointer is placed initially at
the first item of the data stream. Every time you read an item from the stream, the pointer is
moved to the next data item. If a subprogram is called by a context, the position of the data pointer
is recorded and then restored when you return to the calling context.

Starting from the position of the data pointer, data items are assigned to variables one by one lllntil
all variables in a read statement have been given values. If there are more variables than data
items, the system returns an error, and the data pointer is moved back to the position it occupied
before the READ statement was executed.

The following example shows how data is stored in a data stream and then retrieved. Note that
DA1~ statements can come after READ statements even though they contain the data being read.
This is because DATA statements are linked during program pre-run, whereas READ statements
aren't executed until the program actually runs.

10 DATA November,26
20 READ Month$,Day,Year$
30 DATA 1981,"The date is "
40 READ Str$
50 :I?rint Str$;Month$;" ";Day;", ";Year$;"."
60 END

The date is November 26, 1981.

Sto.·age and Retrieval of Arrays. In addition to using READ to assign values to string and
numl~ric variables, you can also READ data into arrays. The system will match data items with
variables one at a time until it has filled a row. The next data item then becomes the first element
in thl~ neXil: row. You must have enough data items to fill the array or you will get an error. The fol
lowing example shows you how DATA values can be assigned to elements of a 3-by-3 numeric
array.

6-4 Data Storage and Retrieval

10 OPTION BASE 1
20 DIM Example (3,3)
30 DATA 1,2,3,4,5,6,7,8,9,10,11
40 READ Examp1e(*)
50 PRINT USING "3(K,X),/";Examp1e(*)
60 END

[1 2 3]
456
789

The data pointer is left at item 10; thus, items 10 and 11 are saved for the next READ statement.

Moying the Data Pointer. In some programs, you will want to assign the same data items to
different variables. To do this, you have to move the data pointer so that it is pointing at the desired
data item. You can accomplish this with the RESTORE statement. If you don't specify a line
number or label, RESTORE returns the data pointer to the first data item in the data stream. If
you do include a line identifier in the RESTORE statement, the data pointer is moved to the Irrst
data item in the first DATA statement at or after the identified line. The example below illustrates
how to use the RESTORE statement.

DIM Array1(1:3)
DIM Array2(0:4)
DATA 1,2,3,4
DATA 5,6,7
READ A,B,C
READ Array2(*)
DATA 8,9

RESTORE
READ Array1(*)
RESTORE 140
READ D

Dimensions a 3-e1ement array.
Dimensions a 5-e1ement array.
Places 4 items in stream.
Places 3 items in stream.
Reads first 3 items in stream.
Reads next 5 items in stream.
Places 2 items in stream.

Re-positions pointer to first item.
Reads first 3 items in stream.
Moves data pointer to item "8".
Reads "8".

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

PRINT "Array1 contains:";Array1(*);" "
PRINT "Array2 contains:";Array2(*);" "
PRINT "A,B,C,D equa1:";A;B;C;D
END

Array1 contains: 1 2 3
Array2 contains: 4 5 6 7 8
A,B,C,D equal: 1 2 3 8

Data Storage and Retrieval 8-5

File Input and Output (I/O)

The rest of this chapter describes the second general class of data storage and retrieval - that of
using mass storage files.

The sections that follow describe the types of data files, how to choose a file type, and how to
access data files. However, you will also need to be familiar with such mass storage concepts as
volumes and directories. Refer to the following sources:

• For detailed information about LIF, DFS,' and SRM directories for the HP BASIC Language
Processor, refer to the "File Systems and Mass Storage" chapter in Insta/ling and Using HP
BASIC in the MS-DOS Environment.

• For detailed information about LIF, HFS, and SRM directories for the HP 9000 Series 300
computers, refer to the "Mass Storage Concepts" and "Using Directories and Files" chaptelrs
in Using the BASIC System.

Brief Comparison of File Types

You c:an store data in ASCII files, BDAT files, and HP-UX or DOS files. This section describes
each of these file types, and the advantages and disadvantages of each.

File type is essentially independent of volume and directory type. ASCII and BDAT
files can exist in LIF, HFS, DFS, or SRM directories. HP-UX files can exist in LIF,
HFS, or SRM directories (for either an HP 9000 Series 200/300 computer or the HP
BASIC Language Processor). DOS files can exist only in a language processor DFS
directory.

• The HP BASIC Language Processor implements a DOS File System (DFS) that is similar to the Series 300
Hie.rarcbicaJ File System (HFS).

6-6 IData Storage and Retrieval

• ASCII - used for general text and numeric data storage. ASCII files provide fairly compact
storage for string data and are compatible with a wide range of computers. However, ASCII
fIles can be accessed only serially, not randomly. They can be written only in default ASCII for
mat (no formatting is possible and the data cannot be stored in internal representation). ASCII
files containing BASIC program lines can be read with GET and written with SA YE.

• BOAT - provide the most compact and flexible data storage mechanism for HP BASIC.
BDAT files can be accessed either serially or randomly. BDAT files provide greater flexibility in
data formats and access methods, as well as faster transfer rates. They are generally more
space-efficient than ASCII files (except for string data items). BDAT files allow data to be
stored in ASCII format, internal format, or in a custom format (which you can define with
IMAGE specifiers). However, for a BDAT file you must know how the data items were written
(as INTEGER, REAL, or COMPLEX values, strings, etc.) in order to properly read the data
back. Also, BDAT files cannot be interchanged with as many other systems as can ASCII files.

• HP-UX - similar to BDAT files in structure, but also have some of the advantages of ASCII
files. HP-UX files are implemented by HP 9000 Series 300 BASIC systems to provide inter
changeability with other systems using the HFS file system (HP-UX systems and the HP 9000
Series 300 Pascal workstations). Like BDAT files, HP-UX files can be accessed either serially
or randomly, and they can use ASCII, internal, or custom data representations. HP-UX files
containing BASIC program lines can be read with GET and written with RE-SA YE. The HP
BASIC Language Processor implements HP-UX files for the LIF, SRM, and HFS file systems.
However, for the DFS file system the language processor implements the DOS file type, rather
than HP-UX (see below).

• DOS - similar to HP-UX files, but implemented by the HP BASIC Language Processor DFS
binary to provide file compatibility with MS-DOS. The DOS file type can only exist in a DFS
directory.

Data Storage and Retrieval 6-7

Creating Data Files

You can use three BASIC statements to create data files. Use CREATE ASCII to create an ASCII
file, CREATE BDAT to create a BDAT file, or simply CREATE to create an HP-UX or DOS
file.· You can execute any of these statements as a command from the keyboard, or within a lPro
grarn.

For example, the statements:

CRE:ATE ASCII "Text",lOO
CRE:ATE BDAT "File",lOO
CREATE "Data_file",lOO

all create a data file with a length of 100 records (in the current mass storage volume and direc
tory). The file type is ASCII for the first statement, BDAT for the second, and HP-UX or DOS for
the third.

For a BDAT file you can also specify a record size. The default is 256 bytes per record. The state
ment:

CREATE BDAT "File",lOO,128

would create a BDAT file with 100 records of 128 bytes each.

Noh~ that you can use CREATE, CREATE ASCII, and CREATE BDAT to create files within LIP
volumes, HFS volumes, and DFS volumes, as well as within an SRM system. Each of these state
ments contains a file specifier which can include a volume and directory specification. If no volume
or directory is specified, the file is created in the current volume and directory as determined by
the last MASS STORAGE IS statement. For further information about the syntax of these state
ments, refer to your HP BASIC Language Reference manual.

Storiing data in files requires a few simple steps. The following program segment shows a simple
example of placing several items in a data file.

• The CRFATE statement creates a DOS file for the DFS file system. Otherwise, an HP-UX file is created.

6-8 Data Storage and Retrieval

100
110
120

390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

790
800
810
820
830
840
850
860
870
880

REAL Real_arrayl(1:50,1:25),Real_array2(1:50,1:25)
INTEGER Integer_var
DIM String$[lOO]

! Specify default mass storage.
MASS STORAGE IS ":,700,1"
!
! Create BOAT data file with ten (256-byte) records
! on the specified mass storage device (:,700,1).
CREATE BOAT "File_l",lO

! Assign (open) an I/O path name to the file.
ASSIGN @Path_l TO "File_l"
!
! Write various data items into the file.
OUTPUT @Path_l;"Literal"
OUTPUT @Path_l;Real_arrayl(*)
OUTPUT @Path_l;255

! Close the I/O path.
ASSIGN @Path_l TO *

String literal.
REAL array.
Single INTEGER.

! Open another I/O path to the file (assume same default drive).
ASSIGN @F_l TO "File I"
!
! Read data into another
ENTER @F_l;String_var$
ENTER @F_l;Real_array2(*)
ENTER @F_l;Integer_var
!
! Close I/O path.
ASSIGN @F_l TO *

array (same size and type).
Must be same data types
used to write the file.
"Read it like you wrote it."

Data Storage and Retrieval 6-9

Line 400 specifies the default mass storage device, which is to be used whenever a mass storage dev
ice is not explicitly specified during subsequent mass storage operations. The term mass storage
volume specifier (msvs) describes the string expression used to uniquely identify which mass
storage volume (or device) is to be used. In this case, ":,700,1"is the msvs.· This msvs specifies a
LIF volume on an extemal disk drive at select code 7, address 00, unit number 1.

For the HP BASIC Language Processor you can change line 400 to access the internal Vectra PC
(or AT -compatible PC) disk drives. For example:

• The statement MASS STORAGE IS ": DOS ,A" (or MSI ": DOS ,A") specifies aDFS
volume in drive A.

• The statement MASS STORAGE IS ": ,1500,0" (or MSI ": ,1500,0")specifiesaLIF
volume in drive A.

In order to store data in mass storage, a data file must be created (or already exist) on the mass
storage medium. In this case, line 440 creates a BDAT file with 10 defined records of 256 bytes
each. (Defined records and record size are discussed later in this chapter.)

The term file specifier describes the string expression used to uniquely identify the file. In this
example, the file specifier is simply File _1, which is the file's name. If the file is to be created
(or already exists) in a mass storage volume other than the default, the appropriate msvs must be
app1ended to the file name. If that volume has a hierarchical directory format (such as an HFS,
DFS, or SRM volume), you may also have to specify a directory path.

Then, in order to store data in (or retrieve data from) the file, you must assign an I/O path name
to the file. Line 470 shows an example of assigning an I/O path name (also called opening an I/O
path to the file). Lines 500 tlhrough 520 show data items of various types being written into the file
through the I/O path name.

The I/O path name is closed after all data have been sent to the file. In this instance, closing the
I/O path may have been optiona~ because a different I/O path name is assigned to the file later in
the program. (All I/O path names are automatically closed by the system at the end of the pro
gram.) Oosing an I/O path to a file updates the file pointers.

Since these data items are to be retrieved from the file, another ASSIGN statement is executed to
opeJl the file (line 8(0). Notice that a different I/O path name was arbitrarily chosen. Opening this
I/O path name to the file sets the file pointer to the beginning of the file so that the data can be
readl from the beginning. (Re-opening the I/O path name @Path_) would have also reset the file

• Tille full msvs is ":CS80,700,1". However, this can normally be shortened to ":,700,1". (Most Hewlett-Packard LIF
format disk drives use the CS80 mass storage protocol.)

6-1C11 Data Storage and Retrieval

pointer.)

Notice that the msvs is not included with the file name. (The current default mass storage volume
(":,700,1") is assumed.)

The subsequent ENTER statements read the data items into variables. With BDAT files (also
HP-UX and DOS files), the data type of each variable must match the data type of each data item.
On the other hand, with ASCII files you can, for example, read INTEGER items into REAL vari
ables without problems.

I/O Paths and File Access

Before you can access a data file, you must assign an I/O path name to the file. Assigning an I/O
path name to the file sets up a table in computer memory that contains various information
describing the file, such as its type, which mass storage device it is stored on, and its location on the
media. The I/O path name is then used in I/O statements (OUTPUT, ENTER, and TRANSFER)
which move the data to and from the file. I/O path names are also used to transfer data to and
from devices.

Opening an 1/0 Path_ I/O path names are similar to other variable names, except that I/O
path names are preceded by the "@" character. When an I/O path name is used in a statement,
the system looks up the contents of the I/O path name and uses them as required by the situation.

To open an I/O path to a file, assign the I/O path name to a file specifier by using an ASSIGN
statement. For example, executing the following statement:

ASSIGN @Pathl TO "Example"

assigns an I/O path name called @Pathl to the file Example. The file that you open must
already exist and must be a data file. If the file does not satisfy one of these requirements, the sys
tem will return an error. If you do not use an msvs in the file specifier, the system will look for the
file on the cu"ent MASS STORAGE IS device. If you want to access a different device, use the
msvs syntax described earlier. For instance, the statements:

ASSIGN @Path2 TO "Example:CS80,700,O"
ASSIGN @Path3 TO "Example:CS80,l500,O"
ASSIGN @Path4 TO "Examp1e:DOS,A"

all open I/O paths to the file Example, but on different mass storage volumes. (You must
include the protect code if the file has one.) Note that PROTECT is not implemented with DFS.

Data Storage and Retrieval 6-11

Once an I/O path has been opened to a file, you always use the path name to access the file. An
I/O path name is only valid in the context in which it is opened, unless you pass it as a parameter
or l~ut it in the COM area. To place a path name in the COM area, simply specify the path name in
a COM statement before you ASSIGN it. For instance, the two statements below would declare an
I/O path name in an unnamed COM area and then open it:

100 COM @Path3
110 ASSIGN @Path3 TO "File1"

CI41)sing I/O Paths. I/O path names not in the COM area are closed whenever the system
moves into a stopped state (e.g., STOP, END, SCRATCH, EDIT, etc.). I/O path names local to a
context are closed when control is returned to the calling context. Re-ASSIGNing an I/O path
name will also cancel its previous association.

You can also explicitly cancel an I/O path by ASSIGNing the path name to an • (asterisk). For
instance, the statement:

ASSIGN @Path2 TO *
closes @Path2. @Path2 cannot be used again until it is Re-ASSIGNed. You can Re-ASSIGN a
path name to the same file or to a different file.

A Closer Look at ASCII Files

You have already been introduced to general file I/O techniques in the preceding section. Now
let's take a closer look at using ASCII files.

EJ:ample of ASCII File I/O

Storing data in ASCII files requires a few simple steps. The following program segment shows a
simple example of placing several items in an ASCII data file. Note that this example is nearly
idei'ltical to the example given in "Overview of File I/O," except for changes to the CREATE state
ment (line 440) and file name.

8-112 Data Storage and Retrieval

100
110
120

390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

790
800
810
820
830
840
850
860
870
880

REAL Rea1_array1(1:50,1:25),Rea1_array2(1:50,1:25)
INTEGER Integer_var
DIM String$[100]

! Specify default mass storage.
MASS STORAGE IS ": ,700,1"

! Create ASCII data file with ten sectors
! on the default mass storage device.
CREATE ASCII "File_2" , 10
!
! Assign (open) an I/O path name to the file.
ASSIGN @Path_1 TO "File_2"

! Write various data items into the file.
OUTPUT @Path_1; "Literal" String literal.
OUTPUT @Path_1;Rea1_array1(*) REAL array.
OUTPUT @Path_1;255 Single INTEGER.

! Close the I/O path.
ASSIGN @Path_1 TO *

! Open another I/O path to the file (assume same default drive).
ASSIGN @F_1 TO "File 2"
!
! Read data into another
ENTER @F_1;String_var$
ENTER @F_1;Rea1_array2(*)
ENTER @F_1;Integer_var
!
! Close I/O path.
ASSIGN @F_1 TO *

array (same size and type).
! Must be same data types.

Data Storage and Retrieval 6-13

Dalta Representations in ASCII Files

In aiD. ASCII file, every data item, whether string or numeric, is represented by ASCII characters;
one byte represents one ASCII character. Each data item is preceded by a two-byte length header
which indicates how many ASCII characters are in the item. However, there is no "type" field for
each item; data items contain no indication (in the file) as to whether the item was stored as string
or numeric data. For instance, the number 456 would be stored as follows in an ASCII file:

LENGTH
HEADER =
BINARY 4

ASCII
CODES

Note that there is a space at the beginning of the data item. This signifies that the number is posi
tive. If a number is negative, a minus sign precedes the number instead.

If the length of the data item is an odd number of characters, the system "pads" the item with a
space to make it come out even. The string "ABC", for example, would be stored as follows:

I 0 I 3 I A I B I c I (pad) I

LENGTH
HEADER =
BINARY 3

ASCII
CODES

The:re is often a relatively large amount of overhead for numeric data items. For instance, to store
the integer 12 in an ASCII file requires the following six bytes:

1 0 1 3 [11 1 2 1 (pad) 1 ~
• n •

LENGTH ASCII
HEADER = CODES
BINARY 3

6-1,. Data Storage and Retrieval

Similarly, reading numeric data from an ASCII file can be a complex and relatively slow operation.
The numeric characters in an item must be entered and evaluated individually by the system's
"number builder" routine, which derives the number's internal representation. (Keep in mind that
this routine is called automatically when data are entered into a numeric variable.) For example,
suppose that the following item is stored in an ASCII file:

LENGTH
HEADER =
BINARY 10

.
ASCII

CODES

Although it may seem obvious that this is not a numeric data item, the system has no way of know
ing this since there is no type-field stored with the item. Therefore, if you attempt to enter this
item into a numeric variable, the system uses the number-builder routine to strip away all non
numeric characters and spaces and assign the value 123 to the numeric variable. When you add to
this the intricacies of real numbers and exponential notation, the situation becomes more complex.

In general, you should only use ASCII files when you want to transport data between machines.
There may be other instances where you will want to use ASCII files, but you should be aware that
they cause a noticeable performance degradation compared to BDAT files.

Formatted OUTPUT With ASCII Files

As mentioned in the "Brief Comparison of File Types," you cannot format items sent to ASCII
files. That is, you cannot use the following statement with an ASCII file:

OUTPUT @Ascii_file USING "11,DD.D,4X,SA";Number,String$

You can, however, direct the output to a string variable first, and then OUTPUT this formatted
string to an ASCII file:

OUTPUT String_var$ USING "11,DD.D,4X,SA";Number,String$
OUTPUT @Ascii_file;String_var$

When a string variable is specified as the destination of data in an OUTPUT statement, source
items are evaluated individually and placed into the variable according to the free-field rules or the
specified image, depending on which type of OUTPUT statement is used. Thus, item terminators
mayor may not be placed into the variable. The ASCII data representation is always used during
outputs to string variables. In fact, data output to string variables is exactly like that sent to devices
through I/O paths with the FORMAT ON attribute.

Data Storage and Retrieval 6-15

When using OUTPUT to a string, characters are always placed into the variable beginning at the
first position - no other position can be specified. Thus, random access of the infonnation in
string variables is not allowed from OUTPUT and ENTER statements; all data must be accessed
serially. For example, if the characters "1234" are output to a string variable by one OUTPUT
statement, and a subsequent OUTPUT statement outputs the characters "5678" to the same vari
able, the second output does not begin where the first one left off (i.e., at string position five). The
second OUTPUT statement begins placing characters in position one, just as the first OUTPUT
did, overwriting the data initially output to the variable.

The string variable's length header (two bytes) is updated and compared to the dimensioned length
of th,e string as characters are output to the variable. If the string is filled before all items have
been output, an error is reported. However, the string contains the first n characters output (where
n is the dimensioned length of the string).

Formatted ENTER With ASCII Files

Data is entered from string variables in much the same manner as it is output to the variable. For
example:

ENTER @File;String$
ENTER String$;Varl,Var2$

All ENTER statements that use string variables as the data source interpret the data according to
the FORMAT ON attribute. Data is read from the variable beginning at the first string position. If
a subsequent ENTER statement reads characters from the variable, the read also begins at the
first lPosition. If more data is to be entered from the string than is contained in the string, an error
is reported. However, all data entered into the destination variable(s) before the end ofthe string
was (:Dcountered remain in the variable(s) after the error occurs.

Whelrl entering data from a string variable, the computer keeps track of the number of characters
taken from the variable and compares it to the string length. Thus, statement tennination conditions
are not required. The ENTER statement automatically terminates when the last character is read
from the variable. However, item tenninators are still required if the items are to be separated and
the lengths of the items are not known. If the length of each item is known, an image can be used
to sel~arate the items.

6-16 Data Storage and Retrieval

A Closer Look at BOAT, HP-UX, and DOS Files

As mentioned earlier, BOAT, HP-UX, and DOS files are designed for flexibility (random and
serial access, choice of data representations), storage-space efficiency, and speed. Let's take a
closer look at these file types.

Data Representations Available

The data representations available are:

• BASIC internal data formats (allow the fastest data rates and are generally the most space
efficient).

• ASCII format (the most interchangeable).

• Custom formats (design your own data representations using IMAGE specifiers).

The rest of this section gives more details for each type of representation.

Random Versus Serial Access

Random access means that you can directly read from and write to any record within the file.
Serial access only permits you to access the file in order, from the beginning. That is, you must
read records 1, 2, ... , n - 1 before you can read record n. Serial access can waste a lot of time if
you're trying to access data at the end of a file. On the other hand, if you want to access the entire
file sequentially, you are better off using serial access than random access because it generally
requires less programming effort and often uses less file space. BOAT, HP-UX, and DOS files can
be accessed either serially or randomly, while ASCII files can be accessed only serially.

Data Storage and Retrieval 6-17

Data Representations Used in BOAT Files

BDAT files allow you to store and retrieve data using internal format, ASCII format, or user
defined formats.

• With internal format (FORMAT OFF), items are represented with the same format the system
uses to store data in internal computer memory.' (This is the default format for BDAT, HP
UX, and DOS files.)

• With ASCII format (FORMAT ON), items are represented by ASCII characters.

• User-defined formats are implemented with programs that employ OUTPUT and ENTER
statements that reference IMAGE specifiers (items are represented with ASCII characters).

This section describes the details of internal (FORMAT OFF) representations for numeric and
string data. For information about ASCII and user-defined formatting, refer to chapter 13, "Out
putting and Entering Data," and chapter 14, "Advanced Interfacing Topics."

DD~~T Internal Representations (FORMAT OFF). In most applications, you will use inter
nal format for BDAT files. Unless we specify otherwise, you can assume that when we talk about
retrieving and storing data in BDAT files, we are also talking about internal format.

Because BDAT files use almost the same format as internal memory, very little interpretation is
needled to transfer data from the computer to a BDAT file, or vice versa. BDAT files, therefore,
not only save space but also time.

Data stored in internal format in BDAT files require the following number of bytes per item:

INTIEGER

RE'~L

COIWlPLIEX

String

2 bytes.

8 bytes.

16 bytes (same as two REALs).

4-byte llength header, followed by 1 byte per character (plus 1 pad byte if the
string length is an odd number).

• Ac:tually, the format for BDAT files is slightly different than internal format. Instead of us:ing a 2-byte length header for
strings, IBDAT files use a 4-byte length header. Othetwise, the two format.s are identical, so we refer to both as
"illterna~" .

6-18 Data Storage and Retrieval

INTEGER values are represented in BDAT files which have the FORMAT OFF attribute by using
a 16-bit, two's-complement notation, which provides a range of -32,768 through 32,767. If bit 15
(the MSB) is 0, the number is positive. If bit 15 equals 1, the number is negative. The value of the
negative number is obtained by changing all ones to zeros, and all zeros to ones, and then adding
one to the reSUlting value.

Here are some examples:

Binary Decimal
Representation Equivalent

00000000 00010111 23

1111111111101000 -24

10000000 00000000 -32,768

01111111 11111111 32,767

1111111111111111 -1

00000000 00000001 1

REAL values are stored in BDAT files by using their internal format: the IEEE-standard, 64-bit,
floating-point notation. Each REAL number is comprised of two parts: an exponent (11 bits), and
a mantissa (53 bits). The mantissa uses a sign-and-magnitude notation. The sign bit for the
mantissa is not contiguous with the rest of the mantissa bits; it is the most significant bit (MSB) of
the entire eight bytes. The 11-bit exponent is offset by 1023 and occupies the 2nd through the 12th
MSB's. Every REAL number is internally represented by the following equation. (Note that the
mantissa is in binary notation):

_lmantissa sign X 2exponent-1023 X l.mantissa

The real number "1/3" would be stored as follows:

Byte

Decimal value
of character

Binary value
of characters

1

63

j0111111

I'

2

213

11010101

"

mantissa sign exponent

3

85

01010101

4 8

85 85

01010101 01010101 .
mantissa

Data Storage and Retrieval 6-19

COMPLEX values are always stored as two REAL values.

STRING data are stored in FORMAT OFF BDAT files in their internal fmmat.

• A 4-byte length header contains a value that specifies the length of the string.

• Every character in a string is represented by one byte which contains the character's ASCII
code. If the length of the string is odd, a pad character is appended to the string to get an even
nlilmber of characters. However, the length header does not include this pad character.

If stored as a string value, the number "45" would be:

00000000 00000000 00000000 00000010 00110100 00110101
~------------------------------~.~ .

Length = 0002 (binary) ACSII 52 ASCII 53

The string "A" would be stored:

00000000000000000000000000000001 01000001 00100000
• • "'- I L •

Length = 0001 (binary) ASCII 65 ASCII 32

In this case, the space character (ASCII code 32) is used as the pad character; however, not all
operations use the space as the pad character.

ASCII and Custom Data Representations. When using the ASCII data format for BDAT
files, all data items are represented with ASCII characters. With user-defined formats, the image
specifiers referenced by the OUTPUT or ENTER statement are used to determine the data
representation (which is ASCII characters).

OUTPUT @File USING "SDD .DD ,XX, B ,11" ; Nurnber , Binary_value
ENTER @File USING "B,B,40A,%";Bin_vall,Bin_va12,String$

Using both of these formats with BDAT files produce results identical to using them with devices.
Refelr to chapter 13, "Outputting and Entering Data," for further information.

6-20 Data Storage and Retrieval

Data Representations With HP-UX and DOS Files

HP-UX and DOS files are very similar to BDAT files. The only differences are:

• The internal representation (FORMAT OFF) of strings is slightly different. HP-UX and DOS
FORMAT OFF strings have no length header. Instead, they are terminated by a null character,
CHRS(O). (BDAT FORMAT OFF strings have a 4-byte length header.)

• HP-UX and DOS files have afixed record length of 1. (BDAT files allow user-definable record
lengths.)

• HP-UX and DOS files have no system sector like BDAT files have. (The system sector is
covered in the next section.)

The FORMAT ON representations for HP-UX and DOS files are the same as for devices. FOR
MAT attributes are covered in detail in chapter 14, "Advanced Interfacing Topics."

Note

Throughout this section, you may assume that - unless otherwise noted - the
techniques shown will apply to HP-UX and DOS files, as well as BDAT files.

BDAT File System Sector

On the disk, every BDAT file is preceded by a system sector that contains an End-Of-File pointer
and the number of defined records in the file. (See the figure that follows.) All data is placed in
succeeding sectors. You cannot directly access the system sector. However, it is possible to
indirectly change the value of an EOF pointer.

Data Storage and Retrieval 6-21

SECTOR:

.

I 0 1 :2
I

: NUMBER
EOF OF

POINTER: DEFINED
I RECORDS

/L . .
SYSTEM SECTOR DATA

EOF Pointer: • number of sectors from beginning of file
(32-bit binary number)

• number of bytes from beginning of sector
(32-bit binary number)

Number of defined records: See description below
(32-bit binary number)

De1'ined Records

3

...

To alocess a BDAT file randomly, you specify a particular defined record. Records are the smallest
units. in a file directly addressable by a random OUTPUT or ENTER.

• With BDAT files, defined records can be anywhere from 1 through 65,534 bytes long .

• With HP-UX and DOS files, defined records are always 1 byte long.

Specifying Record Size (BOAT Files Only)_ Both the length of the me and the length of
the defined records in it are specified when you create the file. For example, the statement:

CRE.ATE BDAT "Example",7,128

would create a file called Example with 7 defined records, each record being 128 bytes long. If
you don't specify a record length in the CREATE BDAT statement, the sysltem will set each record
to the default length of 256 bytes.

Both the record length and the number of records are rounded to the neare:st integer. Further, the
recolrd length is rounded up to the nearest even integer. For example, the statement:

CREATE BDAT "Odd",3.5,28.7

would create a file with 4 records, each 30 bytes long. On the other hand, the statement:

CREATE BDAT "Odder",3.49,28.3

would create a file with 3 records, each 28 bytes long.

6-22 Data Storage and Retrieval

Once a file is created, you cannot change its length, or the length of its records. You must there
fore calculate the record size and file size required before you create a file.

Choosing a Record Length (BOAT Files Only). Record length is important only for
random-access OUTPUT and ENTER statements. It is not important for serial access. The most
important consideration in selecting a proper record length is the type of data being stored and the
way you want to retrieve it. For optimum performance, the record size should be an even multiple
of the size of the data elements stored in the record - 2 bytes for integers and 8 bytes for real
numbers.

Files that contain string data present a slightly more difficult situation since strings can be of vari
able length. If you have three strings in a row that are 5, 12, and 18 bytes long, respectively, there is
no record length less than 22 that will permit you to randomly access each string. If you select a
record length of 10, for instance, you will be able to randomly access the first string but not the
second and third.

If you want to access strings randomly, therefore, you should make your records long enough to
hold the largest string. Once you've done this, there are two ways to write string data to a BDAT
file. The first, and easiest, is to enter each string in random mode. In other words, select a record
length that will hold the longest string and then write each string into its own record. Suppose, for
example, that you wanted to OUTPUT the following 5 names into a BDAT file and be able to
access each one individually by specifying a record number.

John Smith
Steve Anderson
Mary Martin
Bob Jones
Beth Robinson

The longest name, "Steve Anderson", is 14 characters. To store it in a BDAT file would require 18
bytes, including four bytes for the length header. You could create a file with record length of 18
and then OUTPUT each item into a different record:

100 CREATE BDAT "Names",5,18
110 ASSIGN @File TO "Names"
120 OUTPUT @File,l;"John Smith"
130 OUTPUT @Fi1e,2;"Steve Anderson"
140 OUTPUT @File,3;"Mary Martin"
150 OUTPUT @File,4;"Bob Jones"
160 OUTPUT @File,5;"Beth Robinson"

Create a file.
Open an I/O path.
Write names to successive
records in file.

On the disk, the file "Names" would look like the figure that follows. The four-byte length
headers show the decimal value of the bytes in the header. The data are shown in ASCII charac
ters.

Data Storage and Retrieval 6-23

E) 10 101101 J 10 I h I n I I s 1m I i I t I h I x I x I x I x 10 10 101141 Sit I e I v I e I I A I n I die]
~. Is 10 I n 10 10 10 1111 M I a I r I y I 1M I a I r I t I i In I@I x I x 10 10 10 191 B 10 I b I I J 10]

El I e Is I@I x I x I x I x 10 10 101131 B I e I t I h I I Rio I b I i I n Is 10 In I@I x I x I x I x I x I x]
1 = length header x = whatever data previously resided in that space @ = pad character

The {mused portions of each record contain whatever data previously occupiied that physical space
on th<e disk.

Writing Data to BOAT, HP-UX, and DOS Files

Data is always written to a file with an OUTPUT statement via an I/O path. You can OUTPUT
nume:ric and string variables, numeric and string expressions, and numeric and string arrays. When
you OUTPUT data with the FORMAT OFF, data items are written to the file in internal format
(described earlier).

Therc~ is no limit to the number of data items you can write in a single OUTPUT statement, except
that program statements are limited to two CRT lines. Also, if you try to OUTPUT more data
than Ithe file can hold, or the record can hold (if you are using random access), the system will
retuflll an EOF or EOR condition. If an EOF or EOR condition occurs, the file retains any data
output ahead of the end condition.

Them is also no restriction on mixing different types of data in a single OUTPUT statement. The
system decides which data type each item is before it writes the item to the disk. Any item enclosed
in quotes is a string. Numeric variables and expressions are OUTPUT according to their type (8
bytes for REALs and 2 bytes for INTEGERs). Arrays are written to the file in row major order
(right-most subscript varies quickest).

Each data item in an OUTPUT statement should be separated by either a comma or semicolon.
(There is no operational difference between the two separators with FORMAT OFF.) Ptmctuation
at the: end of an OUTPUT statement is ignored with FORMAT OFF.

Serha. OUTPUT. Data is written sequentially (serially) to BDAT files (or lHP-UX or DOS files)
whenever you do not specify a record number in an OUTPUT statement. When data is written
serially, each data item is stored immediately after the previous item without any type of separator.
Sector and record boundaries are ignored. Data items are written to the file one by one, starting at
the current position of the file pointer. As each item is written, the file pointer is moved to the
next byte. After all of the data items have been OUTPUT, the file pointer points to the first byte
following the last byte just written.

6-24 Data Storage and Retrieval

There are a number of circumstances where it is faster and easier to use serial access instead of
random access. The most obvious case is when you want to access the entire file at once. For
example, if you have a list of data items that you want to store in a file and you know that you will
never want to read any of the items individually, you should write the data serially. The fastest way
to write data serially is to place the data in an array and then OUTPUT the entire array at once.

Another situation where you might want to use serial access is if the file is so small that it can fit
entirely into internal memory at once. In this case, even if you want to change individual items, it
might be easier to treat the entire file as one or more arrays, manipulate as desired, and then write
the entire array(s) back to the file.

Random OUTPUT_Random OUTPUT allows you to write to one record at a time. As with
serial OUTPUT, there are End-Of-File (EOF) and file pointers that are updated after every OUT
PUT. The EOF pointers follow the same rules as in serial access. The file pointer positioning is
also the same, except that it is moved to the beginning of the specified record before the data is
OUTPUT. If you wish to write randomly to a newly created file, use either a CONTROL state
ment to position the EOF in the last record, or start at the beginning of the file and write some
"dummy" data into every record.

If you attempt to write more data to a record than the record will hold, the system will return an
End-Of-Record (EOR) condition. An EOF condition will result if you try to write data more than
one record past the EOF position. EOR conditions are treated by the system just like EOF condi
tions, except that they return Error 60 instead of 59 if they are not trapped by ON END. Data
already written to the file before an EOR condition arises will remain intact.

Reading Data From BOAT, HP-UX, and DOS Files

Data is read from files with the ENTER statement. As with OUTPUT, data is passed along an I/O
path. You can use the same I/O path you used to OUTPUT the data or you can use a different
I/O path.

You can have several variables in a single ENTER statement. Each variable must be separated by
either a comma or semi-colon. It is extremely important to make sure that your variable types
agree with the data types in the file. If you wrote a REAL number to a file, you should ENTER it
into a REAL variable; INTEGERs should be entered into INTEGER variables; and strings into
string variables. The rule to remember is: "Read it the way you wrote it."

When reading data into a string variable, it is important to remember that the system will interpret
the first four bytes after the file pointer as a length header. It will then try to ENTER as many
characters as the length header indicates. If the string has been padded by the system to make its
length even, the pad character is not read into the variable.

Data Storage and Retrieval 6-25

After an ENTER statement has been executed, the file pointer is positionedl to the next unread
byte. If the last data item was a padded string, the file pointer is positioned after the pad. If you use
the snme I/O path name to read and write data to a file, the file pointer will be updated after every
ENTlER and OUTPUT statement. If you use different I/O path names, each. will have its own me
point'er which is independent of the other. However, be aware that each also has its own EOF
point,er and that these pointers may not match, which causes problems.

Entering data does not affect the EOF pointers. However, you cannot read data at or beyond the
byte marked by the EOF pointers. If you attempt to read past an EOF pointer, the system will
return an EOF condition.

In addition to making sure that data types agree, it is also advisable to make sure that access
mode:s agree. If you wrote data serially, you should read it serially. If you wrote it randomly, YOll

should read it randomly. Mixing access modes will often lead to erroneous results unless you are
awarc~ of the precise mechanics of the file system.

Serlall ENTER. When you read data serially, the system enters data into variables starting at the
current position of the file pointer and proceeds, byte by byte, until all of the variables in the
ENTlER statement have been filled. If there is not enough data in the file to fill all of the variables,
the system returns an EOF condition. All variables that have already taken values before the con
dition occurs retain their values.

In th~: program below, we OUTPUT five data items serially, and then retrieve the data items with
a serial ENTER statement.

10 CREATE BDAT "STORAGE",1
20 ASSIGN @Path TO "STORAGE"
30 INTEGER Num,First,Fourth
40 Num=5
50 OUTPUT @Path;Num,"squared"," equa1s",Num*NuDl,".",END
60 ASSIGN @Path TO "STORAGE"
70 ENTER @Path;First,Second$,Third$,Fourth,Fifth$
80 PRINT First;Second$;Third$;Fourth;Fifth$
90 END

5 squared equals 25 .

Note that we re-ASSIGNed the I/O path in line 60. This was done to re-position the file pointer to
the bc~ginning of the file. If we had omitted this statement, the ENTER would have produced an
EOF condition. Note also that the OUTPUT statement includes END, which specifies that the
EOF pointer is to be moved to match the file pointer at statement completion. In this case, the
END is redundant.

6-26 Data Storage and Retrieval

Random ENTER. When you ENTER data in random mode, the system starts reading data at
the beginning of the specified record and continues reading until either all of the variables are
filled or the system reaches the EOR or EOF. If the system comes to the end of the record before
it has filled all of the variables, an EOR condition is returned.

In the following example (found in file OUTPUTl on your Manual Examples disk), data is ran
domly OUTPUT to five successive records, and then ENTERed into an array in reverse order.

10 CREATE BOAT "SCLROOTS",5,2*8
20 ASSIGN @Path TO "SCLROOTS"
30 FOR Inc=l to 5
40 OUTPUT @Path,Inc;Inc,SQR(Inc)
50 NEXT Inc
60 FOR Inc=5 TO 1 STEP -1
70 ENTER @Path,Inc;Num(Inc),Sqroot(Inc)
80 NEXT Inc
90 PRINT "Number","Square Root"
100 FOR Inc=l TO 5
110 PRINT Num(Inc),Sqroot(Inc)
120 NEXT Inc
130 END

Number
1
2
3
4
5

Square Root
1
1. 41421356237
1.73205080757
2
2.2360679775

In this example, there was no need to re-ASSIGN the I/O path because the random ENTER
automatically re-positions the file pointer.

Executing a random ENTER without a variable list has the effect of moving the file pointer to the
beginning of the specified record. This is useful if you want to serially access some data in the mid
dle of a file.

You can define records to be just one byte long. In this case, it doesn't make sense to read or write
one record at a time, since even the shortest data type requires two bytes to store a number.

Random access to one-byte records, therefore, has its own set of rules. When you access a one
byte record, the file pointer is positioned to the specified byte. From there, the access proceeds in
serial mode. Random OUTPUTs write as many bytes as the data item requires, and random
ENTERs read enough bytes to fill the variable.

Data Storage and Retrieval 6-27

Tr'apping EOF and EOR Conditions

An EOF (End-Of-File) condition exists whenever the system attempts to read data at, or beyond,
the byte marked by the EOF pointers. The EOR (End-Of-Record) condition will arise if you
att(~mpt to randomly read or write beyond the particular record specified. If, for example, you try
to randomly OUTPUT a 2O-character string into a IO-byte record, an EOR condition will occur.
EOF conditions will also result whenever you try to read or write beyond the physical end-of-file.

EOF and EOR conditions can be trapped with an ON END statement. ON END is similar to ON
ERROR except that it only traps EOF /EOR conditions and is only applicable to the specified I/O
path. If you do not have an ON END statement in a program, the EOF /EOR condition will pro
duce an error that is trappable by the ON ERROR statement. Encountering a logical or physical
end of file will produce Error 59. Encountering an end of record in random mode produces Error
60.

You can have any number of ON END statements in a program context. ON END statements that
refer to different I/O paths will not interfere with each other, even if the paths go to the same file.
If you have more than one ON END to the same I/O path, the system willi use whichever one it
most recently executes during program flow.

An ON END is canceled by the OFF END statement. OFF END only cancels the ON END
brrunch for the specified I/O path. Re-ASSIGNing an I/O path will also cancel any existing ON
END branch for the particular path.

Elliended Access of Directories

The. BASIC language has several features that allow you to obtain information from the directories
of mass storage media. This section presents several techniques that will help you access this infor
mation.

To get a catalog listing of a directory, use the CAT statement. Executing CAT with no media
spe(:ifier directs the system to get a catalog of the current system mass storage directory:

CAT

6-211 Data Storage and Retrieval

Including a media specifier directs the system to get a catalog of the specified mass storage. Here
are a few examples:

CAT ":,700,0"
CAT" :DOS ,A"
CAT "\BLP\PROJECTS:DOS,A"
CAT ":,1500,0"

All of the preceding statements send catalog listings to the current system printer (specified in the
last PRINTER IS statement). The default system printing device is the CRT.

Sending Catalogs to External Printers

The CAT statement normally directs its output to the current PRINTER IS device. The CAT state
ment can also direct the catalog to a specified device, as shown in the following examples:

CAT TO 11701
CAT TO 1126
CAT TO #Externa1_prtr
CAT TO #Device_se1ector

The parameter following the # is known as a device selector, and is described in chapter 7, "Using
a Printer."

Cataloging Selected Files

The directory entries of files that begin with certain characters can be obtained by using the secon
dary keyword SELECT. Suppose that you want to catalog only files beginning with the letters
"Proj". The following example shows how this may be accomplished.

10 Beginning_chars$="Proj"
20 CAT;SELECT Beginning_chars$
30 END

The directory entries of the files beginning with the letters "Proj" are sent to the PRINTER IS
device.

SELECT may also be used to get the catalog of an individual file entry by selecting the entire file
name, as shown in the following statement:

CAT;SELECT "Chap3"

Data Storage and Retrieval 6-29

Ge'Hing a Count of Selected Files

It is often desirable to determine the total number of files on a disk, or the number that begin with
a certain character or group of characters. The COUNT option directs the computer to return the
number of selected files in the variable that follows the COUNT keyword.

10 CAT;COUNT Files and headr
20 END

10 CAT;SELECT "Data",COUNT Selected files
20 END

The first CAT operation returns a count of all files in the directory (plus the header lines), since
not iincluding SELECT defaults to "select all files." The second operation returns a count of the
specifically selected files (plus the header lines).

Skiipping Selected Files

If there are many files that begin with the same characters, it is often useful to be able to skip some
of the directory entries so that the catalog is not as long. This may be especially useful when using
a driive such as an HP 7912, which has the capability of storing more than 10,000 files.

The following statement shows an example of skipping file entries before sending selected entries
to tbe destination.

CAT;SELECT "BCD",SKIP 5

The first five "selected" files (that begin with the specified characters) are "skipped" (i.e., not sent
with the rest of the catalog information).

It is also important to note the order of options in the CAT statement. This. order is required when
several options are used. If the NO HEADER option is used, it must be thl~ last option in the ilist,
as shown in the following example.

CAT;SELECT "BCD",SKIP 5,COUNT Selected_files,NO HEADER

6-31:1 Data Storage and Retrieval

Using a Printer

BASIC supports a wide range of printers that can be connected to your computer. This chapter
covers the statements commonly used to communicate with external printers.

Fundamentals

7

The PRINT statement normally directs text to the screen of the CRT. Text may be re-directed to
an external printer by using the PRINTER IS statement. The default system printer is the screen
of the CRT. The PRINTER IS statement is used to change the system printer.

Before a printer will print the first character, several steps are required to set up the printer. These
steps are fully documented in the appropriate printer installation manual.

After the printer is switched on and the computer and printer have been connected via an interface
cable, there is only one piece of information needed before printing can begin. The computer
needs to know the correct device selector for the printer. This is analogous to knowing the correct
telephone number before making a call.

Device Selectors

A device selector is a number that uniquely identifies a particular device connected to the com
puter. When only one device is allowed on a given interface, it is uniquely identified by the inter
face select code. In this case, the device selector is the same as the interface select code.

For example, the internal CRT is the only device at the interface whose select code is 1. To direct
the output of PRINT statements to the CRT, use the following statement.

PRINTER IS 1

This statement defines the screen of the CRT to be the system printer. Until changed, the output
of PRINT statements will appear on the screen of the CRT.

Using a Printer 7-1

Primary Addresses

Whl~n more than one device can be connected to an interface, such as the internal HP-IB interface
(intl~rface select code 7), the interface select code no longer uniquely identifies the printer. Extra
information is required. This extra information is the primary address.

Each printer has a set of switches, usually located on the back panel, which set the primary address
of the printer. The primary address, determined by the switch settings, is combined with the inter
face select code to make up the device selector. In the following example, the primary address 01 is
appended to the interface select code 7 to produce the device selector 701.

PRINTER IS 701

This statement tells the computer to use the internal HP-IB interface (select code 7) to communi
cate with a printer whose switches are set to the primary address 01. If the printer's primary
addJress is set to 11, the device selector would be 711.

Usiing Device Selectors

A dl~vice selector is used by several different statements. In each of the following, the numeric con
stant is a device selector.

PRINTER IS 1 specifies the internal CRT (default).

PRINTER IS 701 specifies a printer connected to the internal HP-IB interface (interface select
cod(~ 7) with primary address 01.

PRINTER IS 9 specifies a printer at interface select code 9.

PRINTER IS 26 specifies a printer at interface select code 26. '.

CAT TO /1701 prints a disk directory on the printer at 701 (interface select code 7, primary
address 01).

PRINTALL IS 707 logs information on a printer at interface select code 7 and primary address
07.

• Sc:lect code 26 is used by the HP BASIC Language Processor to access a standard parallel printer at MS-DOS printer
port LPTl.

7-2 Using a Printer

LIST 11701 lists the program currently in memory on the printer at 701 (interface select code 7,
primary address 01).

Most statements allow a device selector to be assigned to a variable. Either INTEGER or REAL
variables may be used.

PRINTER IS Hal
CAT TO #Line_printer

The following three-letter mnemonics have pre-assigned values:

PRT: 701 (the system HP-IB printer).

KBD: 2 (the system keyboard).

CRT: 1 (the system display).

For example, the following statements perform the same action:

PRINTER IS PRT
PRINTER IS 701

The mnemonic may be used anywhere the numeric device selector can be used.

Another method may be used to identify the printer within a program. An I/O path name may be
assigned to the printer; the printer is subsequently referenced to by the I/O path name.

Using the External Printer

Most ASCII characters are printed on an external printer just as they appear on the screen of the
CRT. Depending on your printer, there will be exceptions. Several printers will also support an
alternate character set: either a foreign character set, a graphics character set, or aD. enhanced
character set. If your printer supports an alternate character set, it usually is accessed by sending a
special command to the printer.

Using a Printer 7-3

Co,ntrol Characters

In addition to a "printable" character set, printers usually respond to control characters. These
non-printing characters produce a response from the printer. One way to send control characters
to the printer is the CRR$ function. Execute the following: •

PRINTER IS 701
PRINT CHR$(12)

The printer responds with a formfeed. To resume printing on the internal CRT, execute the follow
ing:

PRINTER IS 1
PRINT "Back to the CRT."

Refler to your printer manual for a complete listing of control characters and their effect on your
printer. Some control characters will only affect the current line of text.

FOlrmatted Printing

For many applications the PRINT statement provides adequate formatting. The simplest method
of print formatting is by specifying a comma or semicolon between printed items.

Whlen the comma is used to separate items, the printer will print the items on field boundaries.
Fields start in column one and occur every ten columns (columns 1,11,21,31, ...). Using the values:
A = 1.1, B = - 22.2, C = 3E + 5, D = 5.1E + 8

PRINT A,B,C,D

Produces: t

1.1 -22.2 300000 S.lE+8
A A A A A A A A ---'. - .. _- ---- ---- ---- ---- ---- ----

• If you want to access a parallel printer (LP'I1) from the HP BASIC Language Processor, use select code 26.

t Fbr your convenience, a rule with "tick" marks is shown to indicate the spacing in several examples in this chapter. Of
course, this rule isn't actually printed.

7-4 Using a Printer

Note the form of numbers in a normal PRINT statement. A positive number has a leading and a
trailing space printed with the number. A negative number uses the leading space position for the
"-" sign. This is why the positive numbers in the previous example appear to print one column to
the right of the field boundaries. The next example shows how this form prevents numeric values
from running together.

PRINT A;B;C;D

Produces:

1.1 -22.2 300000 5.1E+8
A A A A A A A A ---- _ - ---- ---- ---- ---- ---- ----

Using the semicolon as the separator caused the numbers to be printed as closely together as the
"compact" form allows. The compact form always uses one leading space (except when the
number is negative) and one trailing space.

The comma and semicolon are often all that is needed to print a simple table. By using the ability
of the PRINT statement to print the entire contents of an array, the comma or semicolon can be
used to format the output.

If each array element contained the value of its subscript, the statement:

PRINT Array(*);

Produces:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

Another method of aligning items is to use the tabbing ability of the PRINT statement.

PRINT TAB(25);-1.414

Produces:

-1.414
A A A A A A A A ---- ---- ---- ---- ---- ---- ---- ----

While PRINT TAB works with an external printer, PRINT TABXY may not. PRINT TABXY may
be used to specify both the horizontal and vertical position when printing to the internal CRT.

A more powerful formatting technique employs the ability of the PRINT or OUTPUT statement
to allow an image to specify the format.

Using a Printer 7-5

USiing Images

Just as a mold is used for a casting, an image can be used to format printing. An image specifies
how the printed item should appear. The. computer then attempts to print an item according to the
image.

One: way to specify an image is to include it in the PRINT or OUTPUT statement. The image
spec:ifier is enclosed within quotes and consists of one or more field specifiers. A semicolon then
sep.uates the image from the items to be printed.

PRINT USING "D.DDD";PI

This statement prints the value of pi (3.141592659 ...) rounded to three digits to the right of the
decimal point:

3.142

For leach character "D" within the image, one digit is to be printed. Whenever the number contains
morle non-zero digits to the right of the decimal than provided by the field specifier, the last digit is
rounded. If more precision is desired, more characters can be used within the image. For example:

PRINT USING "D.10D";PI

Prodluces:

3.1·H5926536

Inste:ad of typing ten "D" specifiers, one for each digit, a shorter notation is to specify a repeat fac
tor before each field specifier character. The image "DDDDDD" is the same as the image "6D".

The image specifier can be included in the PRINT statement or on its own line. When the specifier
is on a different line, the PRINT statement accesses the image by either the line number or the line
label.

100 Format: IMAGE 6Z.DD
110 PRINT USING Format;A,B,C
120 PRINT USING 100;A,B,C

Both PRINT statements use the image in line 100.

7-6 Using a Printer

Numeric Image Specifiers

Several characters may be used within an image to specify the appearance of the printed value.

Image Purpose Specifier
0 Replace this specifier with one digit of the number to be printed. If the

digit is a leading zero, print a space. If the value is negative. the position
may be used by the negative sign.

Z Same as "Oil except that leading zeros are printed.

E Prints two digits of the exponent after printing the sequence "E + ". This
specifier is equal to "ESZZ". See the BASIC Language Reference for
more detai/s.

K Print the entire number without leading or trailing spaces.

S Print the sign of the number: either a "+ II or " - ".

M Print the sign if the number is negative; if positive, print a space.

Print the decimal point.

H Similar to K. except the number is printed using the European number for-
mat (comma radix). (Requires 10 binary.)

R Print the comma (European radix). (Requires 10 binary.)

* Like Z, except that asterisks are printed instead of leading zeros.
(Requires 10 binary.)

Using a Printer 7-7

To better understand the operation of the image specifiers examine the following examples and
results.

Statement Output
--

PRINT USING ' 'K' , ; 33. 666 33.666
PRINT USING "DD.DDD' ';33.666 33.666
PRINT USING ' 'DC'D. DD' , ; 33. 666 33.67
PRINT USING ' 'ZZZ. DD' , ; 33. 666 033.67

PRINT USING ' 'ZZZ' , ; • 444 000
PRItH USHlG ' 'ZZZ' , ; . 555 001

PRINT USING "SD.3DE' ';6.023E+23 +6. 023E+23
PRINT USING "S3D.3DE' ';6.023E+23 +602. 300E+21

PRHH USI~lG ' 'S5D. 3DE' , ; 6. 023E+23 +6(1230. 000E+19

PRINT USI~lG ' 'H' , ; 3121 • 55 3121,55

PRINT USING ' 'DDRDD' , ; 19. 95 19,95

PRItH USING ' '***' , ; • 555 **1

To specify multiple fields within the image, the field specifiers are separate:d by commas.

E
Statement

Output ~
PRINT USING "K,5D,5D' ';100,200,300 1(10 3 200 30~)

PRI~H USING "DD,ZZ,DD"; 1,2,3 102

If the items to be printed can use the same image, the image need be listed only once. The image
will then be re-used for the subsequent items.

PRINT USING "5D.DD";3.98,5.95,27.50,139.95

Produces:

3.98 5.95 27.50 139.95
A A A A A A A A

---- ---- ---- ---- ---- ---- ---- ----

The image is re-used for each value. An error will result if the number cannot be accurately
prinlted by the field specifier.

7-8 Using a Printer

String Image Specifiers

Similar to the numeric field image characters, several characters are provided for the formatting of
strings.

Image Purpose Specifier
A Print one character of the string. If all characters of the string have been

printed, print a trailing blank.

K Print the entire string without leading or trailing blanks

X Print a space.

"Literal" Print the characters between the quotes.

The following examples show various ways to use string specifiers:

PRINT USING "5X,10A,2X,10A";"Tom","Smith"
Tom Smith

A A A ~ A ~ ~ ~ ---- ---- ---- ---- ---- ---- ---- ----

PRINT USING "5X, ""John· .. ·, 2X, lOA"; "Smith"
John Smith

~ ~ ~ ~ ~ ~ ~ ~ ---- ---- ---- ---- ---- -- .. - ---- - .. --

PRINT USING """PART NUMBER"",2x,10D";9000l234
PART NUMBER 90001234

~ ~ ~ ~ ~ ~ ~ ~

---- ---- ---- ---- ---- ---- ---- ----

Using a Printer 7-9

Adt:titional Image Specifiers

Eacb of the following image specifiers serves a special purpose.

Image Purpose Specifier
B Print the corresponding ASCII character. Tlhis is similar to the CHR$ func-

tion.

Suppress automatic end-ot-line (EOl) sequence;

l Send the current end-ot-line (EOl) sequence; with 10, see the PRINTER IS
statement in the BASIC Language Reference manual tor details on re-
defining the EOl sequence.

/ Send a carriage-return and a lineteed.

@ Send a tormteed.

+ Send a carriage-return as the EOl sequence. (Requires 10 binary.)

- Send a lineteed as the EOl sequence. (Requires 10 binary.)

For example, PRINT US INC "@ .11" outputs a formfeed.

Sp.~cial Considerations

If nothing prints, be sure the printer is ON LINE. When the printer is OFF LINE the computer
and printer can communicate but no printing will occur.

Sending text to a non-existent printer will cause the computer to wait indefinitely for the printer to
respond. ON TIMEOUT may be used within a program to test for the printer. To clear the error
press elr I/O, check the interface cable and switch settings, then try again.

7-10 Using a Printer

8
The BASIC Clock

HP BASIC provides a software clock that is started whenever you boot the BASIC system. You
can set and read this BASIC clock to monitor the time of day and date. The BASIC clock is "vola
tile." That is, it stops keeping time when you tum oflthe computer. However, if your computer has
a battery-backed, non-volatile clock (a "real-time clock"), the BASIC clock will be reset according
to that clock each time you boot the BASIC system. *

This chapter describes using the BASIC clock and the related statements and functions. Many of
the statements described in this chapter require the CLOCK binary. Refer to the BASIC Language
Reference manual for the specific requirements of each statement.

Initial Value, Range, and Accuracy

When you boot the BASIC system, the BASIC software clock is set to an initial value as follows:

• If your computer has a non-volatile real-time clock, the clock value is read from that clock into
the BASIC clock.

• If your computer does not have a non-volatile clock, but it is on a Shared Resource Manage
ment (SRM) system, the clock value is taken from the SRM system. (This occurs provided the
SRM and DCOMM binaries are loaded.)

• If your computer does not have a non-volatile clock and is not on an SRM system, the time is
set to 12:00:00 a.m. (midnight), March 1, 1900.

The range of the BASIC clock is March 1, 1900 through August 4, 2079. The clock maintains time
to within ± 5 seconds per day.

* All HP Vectra PCS, all HP 9000 Series 300 computers, and some HP 9000 Series 200 computers have a battery-backed
real-time clock. To set this clock, refer to your computer owner's documentation.

The BASIC Clock 8-1

RE!ading and SeHing the BASIC Clock

You can use the functions and statements described below to read and set the BASIC clock.

Note

The functions that follow read and set the BASIC software dock. When you set the
BASIC clock on the HP BASIC Language Processor, the Real-Time Clock on the
PC will also be set if you are using MS-DOS version 3.3 or later.

Re;ading the Clock Value

Internally, the BASIC clock maintains the year, month, day, hour, minute, and second as a single
real number. This number is scaled to an arbitrary "dawn of time," thus allowing it to also
represent the Julian date. The current value of the clock is returned by the TIMEDATE function.

PRINT TIMEDATE

While the value returned contains all the information necessary to uniquely specify the date and
time: to the nearest one-hundredth of a second, it needs to be "unpacked" to provide understand
able information.

Determining Da1te and Time of Day

The following functions are available to extract the date and time of day from TIMEDATE.

The DATE$ function extracts the date from the value of TIMEDATE.

PRINT DATE$(TIMEDATE)

The TIME$ function returns the time of day.

PRINT TIME$(TIMEDATE)

8-2 The BASIC Clock

Setting the Clock Value

The SET TIMEDATE statement is used to set the value of the BASIC clock.

SET TIMEDATE DATE("2 OCT 1986") + TIME("8:37:30")

The time of day can be changed without affecting the date by the SET TIME statement.

SET TIME TIME("9:55")

Note that an error is reported if you try to set the clock to a value outside the legal range.

Setting the Time

The time of day is changed by SET TIME X, where X is the number of seconds past midnight. The
value of X must be in the range: 0 through 86399.99 seconds. The TIME function will convert
twenty-four hour formatted time (HH:MM:SS) into the value needed to set the BASIC clock.

The TIME function converts an ASCII string representing a time of day, in twenty-four hour for
mat, into the number of seconds past midnight. For example:

SET TIME TIME("15:30:10")

Is equivalent to:

SET TIME 55810

Either of these statements will set the time of day without changing the date. Use the SET
TIMEDATE statement to change the date.

To display the new time, the TIME$ function formats the clock's value (TIMEDATE) into hours,
minutes, and seconds.

PRINT TIME$(TIMEDATE)

Prints: 15:30:16

Even though TIMEDATE returns a value containing both time of day and the Julian date, TIME$
performs an internal modulo 86400 on the value passed to the function and will always return a
string in the range: 00:00:00 thru 23:59:59.

The BASIC Clock 8-3

Set1ting the Date

The date is changed by SET TlMEDATE X, where X is the Julian date multiplied by the number
of se(:onds in a day (86400). The DATE function converts a formatted date (DD MMM YYYY)
into the value needed to set the clock. Due to the wide range of values allowed by the DATE func
tion, negative years can be specified, but not when using the function to set the clock.

The following statement will set the clock to the proper date.

SET TIMEDATE DATE("l Jun 1984")

When programming without CLOCK, the user-defined function FNDate c~m be used.

SET TIMEDATE FNDate("l Jun 1984")

Both of these statements are equivalent to the following statement.

SET TIMEDATE 2.113216992E+11

The DATE function converts the accompanying string (or string expression) into the numeric value
neede:d to set the clock. To read the clock, the DATE$ function formats the clock's value as the
day, month, and year. For example, the following line will print the date.

PRINT DATE$(TIMEDATE)

Prints,: 1 J un 1984

Day of the Week

An advantage of Julian dates is the simplicity of finding the day of the week. TIMEDATE DIY
86400 MOD 7 returns a number which represents the day of the week. Monday is represented by
zero (0), and the numbering continues through the week to Sunday which is represented by six (6).

Branching on Clock Events

Sever,M additional branching statements, available with CLOCK, allow end-of-statement branches
to be triggered according to the BASIC clock value.

• ON TIME enables a branch to be taken when the clock reaches a specified time of day.

• ON DElAY enables a branch to be taken after a specified number of seconds has elapsed.

• ON CYCLE enables a recurring branch to be taken with each passage of a specified number of
selconds.

8-4 The BASIC Clock

The specified time can range from 0.01 thru 16m2.15 seconds for the ON CYCLE and ON
DElAY statements and 0 thru 86399.99 seconds for ON TIME. The value specified with ON
TIME indicates the time of day (in seconds past midnight) for the branch to occur.

Each of these statements has a corresponding statement to cancel the branch (OFF TIME, OFF
DElAY, and OFF CYCLE). A statement is also canceled by executing another ON TIME, ON
DElAY, or ON CYCLE statement.

All of the statements use the BASIC clock. You should take care to avoid writing programs that
could change the clock's setting during execution. Since only one resource is dedicated to each
statement, certain restrictions apply to the use of these statements.

Cycles and Delays

Both the ON CYCLE and ON DElAY statements enable a branch to be taken as soon as the
specified number of seconds has elapsed. ON CYCLE remains in effect, re-enabling a branch with
each passage of time. For example, load and run the program found in file ONCYCLE on your
Manual Examples disk.

10 ON CYCLE 1 GOSUB Five ! Print 5 random numbers every second.
20 ON DELAY 6 GO TO Quit ! After 6 seconds quit.
30
40 T: DISP TIME$(TIMEDATE) ! Show the time.
50 GOTO T
60
70 Five:FOR 1=1 TO 5
80 PRINT RND
90 NEXT I
100 PRINT
110 RETURN
120
130 Quit: END

The program will print five random numbers every second for six seconds and then stop.

Only one ON CYCLE and one ON DElAY statement can be active in a program context. Execut
ing a second ON CYCLE or ON DElAY statement in the same program context deactivates the
first ON CYCLE or ON DElAY statement. If a branch is missed due to priority restrictions or
execution of a subprogram, the event is logged and the branch will be taken when the restriction is
removed or the original context: is restored. If an active ON CYCLE or ON DElAY statement
gets canceled in an alternate context: (subprogram) the branch is restored when execution returns
to the defining context. (See Branching Restrictions for more information about this).

The BASIC Clock 8-5

Branching on Time of Day

The ON TIME statement allows you to define and enable a branch to be taken when the clock
reaches a specified time of day, where time of day is expressed as seconds past midnight. Using the
TIME function simplifies setting an ON TIME statement by allowing a formatted time of day to
be uSled.

For example:

ON TIME TIME("11:30") GOTO Lunch

'IJpically, the ON TIME statement is used to cause a branch at a specified tiime of day. By adding
an offset to the current clock value, the ON TIME statement can be used as an interval timer. In
the following example (found in me ONDElAY on your Manual Examples disk), both ON
DElAY and ON TIME are used as interval timers.

10 ON DELAY 5 GOSUB Takeoff ! delay 5 seconds
20 Ol~ TIME (TIMEDATE+10) MOD 86400 GOSUB Touchdown delay 10 sE.conds
30 PRINT "STARTING ••• ",TIME$(TIMEDATE)
40 Clock:DISP TIME$(TIMEDATE)
50 GOTO Clock
60
70 Tiakeoff: PRINT "TAKEOFF at .. , TIME$ (TIMEDATE)
80 RUURN
90 T.Juchdown:PRINT "TOUCHDOWN at ", TIME$(TIMEDATE)
100 Rl~TURN
110 Elm

The starting time is printed when the program is executed. Five seconds later the first subroutine is
executed. Ten seconds after the program starts, the second subroutine is executed.

Only one ON TIME statement can be active in a program context. If a branc;h is missed, due to
priority restrictions or execution of a subprogram, the event is logged and the branch will be taken
when the restriction is removed or the original context is restored. If an active ON TIME state
ment gets canceled in an alternate context (subprogram) the branch is restored when execution
returns to the defIning context. (See Branching Restrictions for more information about this).

Due to the "match an exact time" nature of the ON TIME statement, if the specified time occurs
when the statement is temporarily canceled (by an OFF TIME in analternalte context), no branch
will be taken when the defining context is restored.

8-6 The BASIC Clock

Priority Restrictions

A priority can be assigned to the branch defined by ON CYCLE, ON DElAY, and ON TIME. For
example:

ON CYCLE Seconds,Priority GOTO Label

If the system priority is higher than the branch priority at the time specified for the branch, the
event will be logged but the branch will not be taken until the system priority falls below the
branch priority. An example program, found in file PRIORITY on your Manual Examples disk,
follows.

10 COM Start
20 P=O
30 Up:P=P+1
40 IF P>15 THEN Quit ! Priority from 1 thru 15
50 PRINT
60 PRINT "Priority:";P;
70 Start=TlMEDATE ! Save the start-time for subprogram.
80 ON CYCLE 1,P RECOVER Up ! New priority every second if not Busy.
90 ON DELAY .5,6 CALL Busy! DELAY overrides CYCLE until priority
100 ! (P) is greater than 6.
110 W:GOTO W
120 Quit:END
130 !----------------- SUB has priority of 6 ---------------------
140 SUB Busy
150 COM Start
160 PRINT "SUB";
170 WHILE 1<10
180 IF TlMEDATE>Start+1 THEN ! Has ON CYCLE time been exceeded?
190 PRINT "w"; YES (only prints if Priority<7)
200 ELSE
210 PRINT".";! NO
220 END IF
230 1=1+1 ! Loop ten times
240 WAIT.1
250 END WHILE
260 PRINT "DONE";
270 SUBEND

Once the priority assigned to the ON CYCLE statement is greater than the priority assigned to the
ON DElAY statement (6), the subprogram will be interrupted. After running the program,
change line 80 in the above program to the following:

80 ON CYCLE l,P GOTO Up

Running the new version of the program will show that GOTO (or GOSUB) will not interrupt a
subprogram regardless of the assigned priority. The branch will be logged but not taken until exe
cution returns to the main program. If you write a program that makes extensive use of subpro
grams and branching statements, use CALL and RECOVER to insure proper operation.

The BASIC Clock 8-7

Branching Restrictions

Cerltain restrictions apply to the use of ON TIME, ON CYCLE, and ON DElAY because only
one resource is dedicated to each statement. Assuming an active branch has been dermed in the
main program, execution of a subprogram which sets up a new branch will cause the loss of the
original time. When the main program context is restored, the original branch will be restored, but
at the time defined in the subprogram.

8-8 The BASIC Clock

9
Errors and Debugging

This chapter covers error handling and debugging techniques that you can use to ensure that your
program will work correctly.

Error Handling

Most programs are subject to errors happening at run time. There are three courses of action to
take with respect to errors:

1. Try to prevent the error from happening in the first place.

2. Once an error occurs, try to recover from it and continue execution.

3. Do nothing - let the program "roll over and die" if an error happens.

The last alternative, which may seem frivolous at first glance, is certainly the easiest to implement
and is often a feasible choice. Upon encountering a run-time error, the computer will pause pro
gram execution and display a message giving the error number and the line in which the error hap
pened, and the programmer caJll then examine the program in light of this information and fix
things up. The key word here is "programmer." If the person running the program is also the per
son who wrote the program, this approach works fine. If the person running the program did not
write it, or worse yet, does not know how to program, some attempt should be made to prevent
errors from happening in the first place, or to recover from errors and continue running.

Anticipating Operator Errors

When you write a program, you know exactly what the program is expected to do, and what kinds
of inputs make sense for the problem. Sometimes you overlook the possibility that other people
using the program might not understand the boundary conditions. You have no choice but to
assume that every time a user has the opportunity to feed an input to a program, a mistake can be
made and an error can be caused. You should make every effort to make the program foolproof.

Errors and Debugging 9-1

Boundary Conditions. A classic example of anticipating an operator error is the "division by
zero" situation. An INPUT statement is used to get the value for ~l variable" and the variable is
used as a divisor later in the program. If the operator should happen to enter a zero, accidentally
or intentionally, the program crashes with an error 31. It is far betlter if you plan for such an
occurrence. One method is shown in the following example.

100 INPUT "Miles traveled and total hours",Mi1es,HoulCs
110 IF Hours=O THEN
120 BEEP
130 PRINT "Improper value entered for hours."
140 PRINT "Try again!"
150 GOTO 100
160 END IF
170 Mph=Mi1es/Hours

Errlor Trapping

Despite the programmer's best efforts at screening the user's inputs in order to avoid errors, some
times an error will still happen. It is still possible to recover from run-time errors, provided the
programmer predicts the places where errors are most likely to happen.

ON/OFF ERROR. The ON ERROR command sets up a branching condition which will be
takelll any time a recoverable error is encountered at run time. The branching action taken may be
eithe~r GOTO, GOSUB, CALL, or RECOVER. GOTO and GOSUB are purely local in scope -
that is, they are active only within the context in which the ON ERROR is declared. CALL and
RECOVER are global in scope - after the ON ERROR is set up, the CALL or RECOVER will
be executed any time an error occurs, regardless of subprogram environment.

When an ON ERROR statement is executed, the language system will make sure that the
specilfied line or subprogram exists in memory before the program will proc:eed. If ON ERROR
GOTO/GOSUB/RECOVER are specified, then the line identifier must exist in the current con
text. If an ON ERROR CALL is given, then the specified subprogram mus.t currently be in
memory. In either case, if the system can't find the given line, an error 49 is issued.

If you use either ON ERROR GOSUB or ON ERROR CALL and an error occurs, the specified
branch will take place, and when the RETURN or SUBEXIT is executed, then program execution
will resume at the line which caused the error, and an attempt will be made to execute the line
again.

ON ERROR has a priority of 16, which means that it will always take priority over any other ON
< ev€mt > since the highest user-specifiable priority is 15.

9-2 Errors and Debugging

The OFF ERROR statement will cancel the effects of the ON ERROR statement, and no branch
ing will take place if an error is encountered.

The DISABLE statement has no effect on ON ERROR branching.

ERRN/ERRL/ERRM$. ERRN is a function which returns the error number which caused the
branch to be taken. ERRN is a global function, meaning it can be used from the main program or
from any subprogram, and it will always return the number of the most recent error.

ERRM$ is a string function which returns the text of the error which caused the branch to be
taken.

ERRL is a function which is used to find the line in which the error was encountered. ERRL is a
boolean function. The program feeds it a line identifier, and either a 1 or a 0 is returned, depend
ing upon whether or not the specified identifier indicates the line which caused the error. ERRL is
a local function, which means it can only be used in the same environment as the line which caused
the error. This implies that ERRL cannot be used in conjunction with ON ERROR CALL, and
that it can be used with ON ERROR GOTO and ON ERROR GOSUB. ERRL can be used with
ON ERROR RECOVER only if the error did not occur in a subprogram which was called by the
environment which set up the ON ERROR RECOVER.

The ERRL function will accept either a line number or a line label.

1140 DISP ERRL(710)
910 IF ERRL(Compute) THEN Fix_compute

ON ERROR GOSUB. The ON ERROR GOSUB statement should only be used when you can
guarantee that the problem causing the error can be fixed and the line can be re-executed safely.
Remember that if the action taken in the error service routine is not sufficient to correct the prob
lem, the program will dive into an infinite loop. Every time an error occurs, a GOSUB will cause a
branch to the error service routine which will RETURN execution to the line causing the error.

When an error triggers a branch as a result of an ON ERROR GOSUB statement being active,
system priority is set at the highest possible level (16) until the RETURN statement is executed, at
which point the system priority is restored to the value it was when the error happened.

Errors and Debugging 9-3

ON ERROR GOTO. The ON ERROR GOTO statement is generally more useful than ON
ERROR GOSUB, especially if you are trying to service more than one error condition. The only
advantage that ON ERROR GOSUB has over ON ERROR GOTO is that system priority is main
tained at the highest possible level until the error subroutine is finished.

By using the ON ERROR GOTO statement, the same error service routine can be used to service
all the error conditions in a given context. By testing both the ERRN (what went wrong) and the
ERRL (where it went wrong) functions, proper recovery procedures can be taken.

ON ERROR CALL. ON ERROR CALL is global, meaning onc.e it is activated, the specified
subprogram will be called immediately whenever an error is encountered, regardless of the
cun'ent context. System priority is set to level 16 inside the subprogram, and remains that way
until the SUBEXIT is executed, at which time the system priority will be restored to the value it
was when the error happened.

YOul should only use the ON ERROR CALL statement when you can guarantee that the problem
causing the error can be fixed and the line can be re-executed safely. Remember that if the action
taken in the error service routine is not sufficient to correct the problem, the program will dive into
an infinite loop. Every time an error occurs, a CALL will cause a branch to the error service rou
tine which will return execution to the line causing the error when a SUBEXIT statement is exe
cuted.

Remember that an ON ... CALL statement can not pass parameters to the specified subprogram,
so the only way to communicate between the environment in which the error is declared and the
error service routine is through a COM block.

The ERRL function will not work in a different environment than the one iin which the ON
ERROR statement is declared, so when using an ON ERROR CALL, you should set things up in
such a manner that the line number either doesn't matter, or can lbe guaranteed to always be the
same one when the error occurs. This can be accomplished by declaring the ON ERROR immedi
ately before the line in question, and immediately using OFF ERROR after it.

9-4 Error. and Debugging

5010 ON ERROR CALL Fix disk
5020 ASSIGN @File TO "Data file"
5030 OFF ERROR

7020 SUB Fix disk
7030 SELECT ERRN
7040 CASE 80
7050 DISP "Door open -- shut it and press CONT"
7060 PAUSE
7080 CASE 83
7090 DISP "Write protected -- fix and press CONT"
7100 PAUSE
7120 CASE 85
7130 DISP "Disk not initialized -- fix and press CONT"
7140 PAUSE
7160 CASE 56
7170 DISP "Creating Data_file"
7180 CREATE BDAT "Data_file". 20
7190 CASE ELSE
7200 DISP "Unexpected error ";ERRN
7210 PAUSE
7220 SUB END

ON ERROR RECOVER. The ON ERROR RECOVER statement sets up an immediate branch
to the specified line whenever an error occurs. The line specified must be in the context of the
ON ... RECOVER statement. ON ERROR RECOVER is global in scope - it is active not only
in the environment in which it is defined, but also in any subprograms called by the segment in
which it is defined.

If an error is encountered while an ON ERROR RECOVER statement is active, the system will
restore the context of the program segment which actually set up the branch, including its system
priority, and will resume execution at the given line.

Errors and Debugging 9-5

Prc)gram Debugging

The problem of debugging a program is distinct from the issues raised in the "Error Handling'"
section. The "Error Handling" section is based on the premise that you are satisfied that the pro
gram works as it should, and that it then should be made as foolproof as possible. This could be
construed as putting the cart before the horse - before you can make a program foolproof, you
must get it to run correctly in the first place. One of the key characteristics of a "bug" is that it
doesn't necessarily have to cause an error condition to occur - it only has to cause your program
to give a wrong answer. This section deals with the methods available to diagnose problems in logic
and semantics.

Naturally, the ideal way to debug a program is to write it correctly the first time through. Hope
fully, the techniques that have been been discussed in this manual will help you get a little closer to
this goal. The practice of writing self-documenting code and designing progJrams in a top-down
fashion should help immensely.

The wmputer itself has several features which aid in the process of debugging.

Using Live Keyboard

One of the pleasing characteristics of HP BASIC is that the keyboard is "liv,e" during program exe
cution. That is, you can issue commands to the computer while it is running a program the same
way that you issue commands to it while it is idle. For example, you can add two numbers together,
examine the catalogue of the disk currently installed in the drive, list the running program to a
printl~r, scroll the CRT alpha buffer up and down, or output a command to a function generator
over HP-IB. Practically the only thing you can't do from live keyboard while a program is running
is write or modify program lines, or attempt to alter the control structures of the program. (A com
plete list of illegal keyboard operations is given a little later on.)

By way of illustration, key in the following program, press RUN, and then execute the commands
shown underneath the listing.

10 FOR 1=1 TO I.E+S
20 NEXT I
30 END
CAT
2+2
SQR(6"2+17.2"2)
PRINT "THE QUICK BROWN FOX"
TIMEDATE

9-6 Errors and Debugging

This program will take a fair amount oftime to complete (about 18 seconds), so to find out how
far the program has gone, merely type I and press IENTERI. The current value of I will be displayed
at the bottom of the SCl"een. If you don't want to wait for the program to go through all one hun
dred thousand iterations, you can merely change the value of I by executing the command:

1=99999

Thus, we have seen that live keyboard can be used to examine and/or change the contents of the
program's variables.

One aspect of live keyboard you should remember is that the computer will only recognize vari
ables that exist in the current program environment. For example, suppose that we change our
example program to call a subprogram inside the loop.

10 FOR 1=1 TO I.E+5
15 CALL Dummy
20 NEXT I
30 END
40 SUB Dummy
50 FOR J=1 TO 10
60 NEXT J
70 SUB END

While this program is running and you try and test the variable I from the keyboard, chances are
that you will only get a message saying that I doesn't exist in the current context - most of the
time will be spent in the subprogram. On the other hand, if you test the value of J, it is highly likely
that you will get an answer.

Similarly, operations like ASSIGN and ALLOCATE, which are declarative types of statements,
must use variables that are already known to the current environment when they are executed from
the keyboard. For example, it is perfectly legal to perform the operation

ASSIGN @Dvm TO *
from the keyboard, but it is not legal to perform

ASSIGN @File TO "DATA"

from the keyboard.

Live keyboard operations are allowed to use variables already known by the running program. Live
keyboard operations are not allowed to create variables.

Errors and Debugging 9-7

Although the GOTO and GOSUB commands are illegal from the keyboard, it is perfectly legal to
call subprograms from the keyboard. The only restriction on using SUB and function subprograms
from the keyboard is that the parameters that are passed must either be constants or must be vari
ables that exist in the current context.

Here is a list of commands which may not be executed from the keyboard while a program is ruo
ning~ although they may be executed from the keyboard if the computer is iidle:

Stepping

RUN
CONT
EDIT
DEL

SCRATCH
SCRATCH A
SCRATCHC
SCRATCH BIN

GET
LOAD
LOAD BIN

One of the most powerful debugging tools available is the capability of single-stepping a program,
one line at a time. This process allows the programmer to examine the values of his variables and
the sequence in which the program is running at each statement. This is done with the STEP func
tion ..

Thelre are three ways to use STEP:

1. If the program is stopped (i.e., a prerun has to be performed), pressing STEP' will cause
the system to perform a pre-run on the program, but no program line~s will actually be exe
cuted. The first line that will be executed will appear in the system message line at the bot
tom of the screen. Pressing STEP again will cause that line to be exec:uted, and the next line
after that to be executed will appear in the message line. If STEP is pressed causing the next
line to appear in the display, and a live keyboard operation (such as examining the value of a
variable) is performed, the contents of the message line will change. Pressing STEP again
will still cause the line to be executed, even though it is no longer visible in the display line.
After the statement has completed, the next line will appear ..

* TIle exact key to press depends on your keyboard and computer. Refer to your keyboard overlay to find the srEP key.

9-8 Errors and Debugging

2. If the program is in an INPUT or LINPUT statement, pressing STEP is sufficient to tei
minate the operation. Any data entered from the keyboard will be entered into the correct
variables, just as though CONTINUE or IENTERI had been pressed, but program execution
will be PAUSEd, and the statement immediately following the INPUT or LINPUT will
appear in the system message line.

3. If the program is in a PAUSEd state, pressing STEP will cause the next line to be executed.
The program counter willlllot be reset, nor will a prerun be performed. Again, the next line
to be executed will appear in the system message line after the last one has been completed.
A paused state is indicated by a dash in the run light in the lower right-hand corner of the
screen.

Type in the following example and execute it by pressing STEP repeatedly.

10 DIM A(1:5)
20 ! This is an example
30 S=O
40 FOR 1=1 TO 5
50 INPUT "Enter a number",A(I)
60 S=S+A(I)
70 NEXT I
80 PRINT S
90 PRINT A(*);
100 END

Notice that STEP caused every statement to appear in the system message line, one at a time, even
those statements that are not really executed, like DIM and comments.

Tracing

The process of single-stepping, wonderful though it is, can be quite slow, especially if the program
mer has little or no idea which part of his program is causing the bug. An alternative way of exa
mining variable changes and program flow is available in the form of the TRACE ALL statement.

TRACE ALL. When the TRACE ALL command is executed, it causes the system to issue a mes
sage prior to executing every line (this shows the order in which the statements were executed),
and if the statement caused any variables to change value, a message telling the variables involved
and their new values is also issued. The messages are issued to the system message line, and the
most useful way to use the TRACE ALL feature is to turn PRINT ALL on. Press PRINT ALL (as
shown by your keyboard overlay). A message ("Printall on" or "Printall off") will appear on the
screen. The print all mode will cause all information from the DISP line, the keyboard input line,
and the system message line to be logged on the PRINT ALL IS device.)

Errors and Debugging 9-9

Press PRINT ALL to turn on PRINT ALL. Load and run the following example (found in file
TRACEALL on your Manual Examples disk) to see how TRACE ALL works:

10 TRACE ALL
20 FOR 1=1 TO 10
30 PRINT I;
40 IF I MOD 2 THEN
50 PRINT " is odd. "
60 ELSE
70 PRINT " is even. "
80 END IF
90 NEXT I
100 END

There are two optional parameters that can be used with TRACE ALL. Both parameters are line
identifiers (line numbers or line labels). The first parameter tells the system when to start tracing,
and the second one (if it's specified) tells the system when to stop tracing.

It is usually more useful to use the TRACE ALL command from Ithe keyboard rather than from
the]program because a program modification is not necessary if you want to trace a different part
of the program. All that's necessary is to type in a new TRACE ALL command from the keyboard
to override the old one. For example, to trace a loop from lines 30 to 40, type in TRACE ALL
30,40 from the keyboard.

The program will begin tracing at line 30, and keep on tracing until it's ready to execute line 40, at
which time it will terminate the trace messages and will continue executing the program normally.

If the TRACE ALL statement uses a line label instead of a line number, be aware of what happens
if you have more than one occurrence of a given line label in your program" For instance, it is per
fectly legal to have the same line label in two or more different program environments - line
labels are local to subprograms and branching operations addressing a given line label are treated
separately in different subprograms. However, when a TRACE AIL using a line label is executed,
the first line label in memory is the one that gets used, regardless of the environment the program
was in when the TRACE ALL statement was executed. If two line identifiers are used, their loca
tion with respect to each other does not matter. Tracing will start when the line specified first is
encountered, and it will stop when (or if) the second line is encountered.

9-1ClI Errors and Debugging

PRINTALL IS

The PRINT ALL IS command is useful for switching the tracing messages between the CRT and a
hardcopy printer. (Again, to get any record at all of the trace messages, PRINT ALL must be on.)
To cause the trace messages to be logged on the CRT, execute PRINTALL IS CRT. (The CRT is
the default PRINT ALL IS device that the system assumes when it wakes up.) To cause the mes
sages to be logged on a printer, merely change the select code to the appropriate value. •

TRACE PAUSE

The TRACE PAUSE command can be used to set a "break point" in the program. The program
will execute at a reduced speed until the specified line is reached, at which time the program will
pause, and the specified line will be shown in the display line, indicating that the program will exe
cute it when execution is resumed. Execution may be resumed by pressing CONTINUE, or by exe
cuting CONTINUE from the keyboard (the specified line identifier must be located in the current
environment).

By executing the command TRACE PAUSE Printout from the keyboard, the following program
(found in file TRPAUSE on your Manual Examples disk) will pause every time it reaches line 60.

10 DIM A(1:10)
20 FOR I=l TO 10
30 GOSUB Printout
40 NEXT I
50 STOP
60 Printout:
70 FOR J=l TO 10
80 PRINT A(J);",";
90 NEXT J
100 PRINT
110 RETURN
120 END

• For example, use PRINfALL IS 701 for an HP-IB system printer. Use PRINfALL IS 26 for a printer at LPTI on a
Vectra PC with the HP BASIC Language Processor installed.

Errors and Debugging 9-11

Try the following ways of continuing execution:

• Press STEP.

• Press CONTINUE.

• Execute CONT 110 IENTERI.

As with TRACE ALL, a new TRACE PAUSE statement overridles a previous one. The same rules
are applied when a line label is used in a TRACE PAUSE statement as are applied to the TRACE
ALL statement - the first line in memory having that label is used.

TRACE OFF. TRACE OFF cancels the effects of any active TRACE ALL or TRACE PAUSE
statements. The status of Print All and the PRINT ALL IS device will be ultlchanged.

TRACE OFF may be executed either from the program, or from the keyboard.

Tbe CLR I/O Key. The CLEAR I/O key suspends any active][fO operation and pauses the pro
gram in such a way that the suspended statement will restart once CONTINUE or STEP is
pressed. This is useful for operations which appear to "hang" the machine, such as printing to a
printer which isn't turned on.

MOist devices will not respolnd to ENTER requests unless they have first been instructed to
respond. If improper values are sent to a device, it may refuse to respond. Therefore, CLEAR I/O
can help in debugging these situations.

Here are the operations that can be suspended with CLEAR I/O.

PRINT
LIST
CAT
OUTPUT
HP-IB commands

9-12 Error. and Debugging

SEND
PRINT ALL outputs
ENTER
INPUT
DUMP ALPHA

ASSIGN
PURGE
CREATE
DUMP GRAPHICS
External plotter commands

Part II: Graphics Techniques

Chapters 10 and 11 cover programming techniques that you can use to present information graphi
cally on the CRT, or on an external printer or plotter.

10
CrE~ating Graphics
--Your HP BASIC system is an excellent tool for creating graphics. You can use graphics to display
data or to amplify your reports with artistic creations. This chapter covers the basics of computer
graphi1cs design, and gives techniques for using graphics effectively. You may want to try the exam
ples in this chapter on your computer as you read. For further information about the graphics
statements, refer to your BASIC Language Reference manual. Most of the techniques in this
chapter require the GRAPH and GRAPHX binaries.

Intrc)duction to Your BASIC Graphics System

Let's begin with some background information about your graphics system.

The CRT Display

In this chapter you will be using your CRT monitor as a plotter. It is easiest to develop and edit
graphics programs using the CRT. Then, with minor changes, the image can be reproduced on an
external plotter (refer to chapter 11).

Combined Alpha and Graphics Mode. The CRT display can present both alphanumeric
data (the alpha display) and graphics (the graphics display). HP 9000 Series 300 computers and
the HI> 82300C BASIC Language Processor (software version C.OO.OO or higher) normally present
combined alpha and graphics information on the CRT display screen. That is, the default mode is
combulled alpha and graphics. (HP 9000 Series 200 computers and the earlier versions of the
language processor software provide only separate alpha and graphics mode, which is described in
the next section.)

The GRAPHICS ON/OFF and ALPHA ON/OFF statements have no effect in combined mode.
This means that you cannot separately turn the graphics and alpha displays on and off.

For most applications, combined mode is adequate. However, if you want to be able to control the
alpha :md graphics displays separately, you can use the separate mode with most color monitors.

Creating Graphics 10-1

Sep1arate Alpha and Graphics Mode. To enter separate alpha/graphics mode, execute the
following HP BASIC statement:

SEPARATE ALPHA FROM GRAPHICS

If you are using a color monitor that supports separate mode, it will now have two separate
displays, an alpha display and a graphics display, which can be displayed either individually or
simuJtaneously. The alpha display outputs alphanumeric characters such as error messages or
commands, while the graphics display, of course, outputs graphics. If you execute this statement
with a monitor that doesn't support separate mode, you will receive an error message and the display
will remain in combined mode.

In se'parate mode, the alpha display is controlled with the following statements:

ALPHA ON

ALPHA OFF

The graphics display is controlled with the following statements:

GRAPHICS ON

GRAPHICS OFF

You can also use the "Alpha" and "Graphics" keys to turn the two displays on and off.

When you enter separate mode, the alpha display and the graphics display are both on. During
exec1lltion of a graphics program, the alpha display may be turned off, but execution of a command
or sending output to the alpha display turns the alpha display on and leaves it on.

To return to combined mode, execute the following HP BASIC statement:

MERGE ALPHA WITH GRAPHICS

Initializing and Clearing the Displays

To bring the graphics system to a known starting point, execute the command:

GINIT

This initializes the graphics system by resetting all the attributes, viewing operations, plotters, and
other system variables. It is a good idea to include a GINIT statement at the beginning of any
graphics program.

10-2 Cr.ating Graphics

Once GINIT is executed, you want to make it easy to see the graphics display. One problem
encountered is that data in the alpha display covers the graphics display. If you are in separate
mode (refer to the last section), you can solve this problem by executing:

ALPHA OFF

The alpha data is preserved in ml~mory, waiting for the next "ALPHA ON" statement.

If you are in separate mode, you can delete all data in the alpha screen with the statement:

CLEAR SCREEN

or by pressing the "Clear Screen" key. In separate mode, this doesn't affect the graphics display.
However, in combined mode, "CLEAR SCREEN" clears the entire screen, including graphics. You
can also clear the alpha display with a formfeed character, CHR$(12).

To clear the graphics display without affecting the alpha display, execute:

GCLEAR

This works in both separate mode and combined mode. In separate mode, GCLEAR clears the
graphics display with no effect on the alpha display. In combined mode, the alpha display is
"refreshed" from memory once the graphics display is cleared. In either mode, any graphics infor
mation is lost, so be sure that's what you want to do.

If you execute GINIT, any subsequent graphics statement causes any previous graphics to be
cleared from the display before the new graphics are output.

The Current Position

When dealing with graphics output, this manual uses the concept of a cu"ent position. It is the
point relative to which graphics are currently output. Usually you can think of this as the pen's
current location or the location lllt which graphics can be currently output.

The current position is not always where the physical pen is located. For example, if you instruct
the pen to move to a point outside the edge of the plotter, the physical pen only moves to the edge,
but the current position is updated to the point specified.

Although the current position is referred to when discussing where graphics are output, the con
cept of a pen is still important. Knowledge of what the pen type is, and whether it is "up" or
"down," is needed. Thus the pen, on a CRT, is defined as the effect which gives the appearance of
an invisible pen creating lines on the display. On a paper plotter, it is the control arm that holds the
ink pens.

Creating Graphics 10-3

Graphics primitives are output on an imaginary plane known as the XY plane; X is a horizontal
axis and Y is a vertical axis on this plane. Any two-dimensional images which you create are
assigned a position on this plane using XY coordinates. Obviously, this plane cannot be infinite in
size because your system can only process numbers up to a certain size. BASIC graphics uses data
of type SHORT; therefore, the largest absolute value of x or y that can be input is approximately
3.4)< 1038 • That is, you can't plot any coordinates greater than this value.

Think of the display as a window to this plane. You can look at the whole coordinate system or a
very small part of it at any time through this window. When you turn on the computer, the lower
left-hand corner of the display is (0,0). A typical value for the upper right-hand corner is about
(133,100). The exact coordinates of the upper right-hand corner are display dependent. In gen
eral, these coordinates are (RATIO*lOO,lOO). The RATIO statement returns the ratio of the x-axis
hard clip limit to the y-axis hard clip limit for the current PLO'ITER IS device.

Enter and run the following program:

10 GINIT
20 GRAPHICS ON
30 FRAME
40 WAIT 5
50 END

I" Pilote

In combined alpha and graphics mode (the default at power on), the GRAPHICS
ON (line 20) and WAIT (line 40) statements aren't needed because the graphics
display is always on. However, in separate mode, the WAIT statement allows time
for you to view the display. Many of the examples in this chapter contain WAIT
statements for this purpose. If you are using separate mode, you can recall the
graphics screen after the program ends by pressing the "Graphics" key. You can
then return to the alpha mode by pressing any alpha key.

A frame outlined in white will appear on the display. This frame surrounds the entire plotting sur
face, and is smaller than the CRT screen. Any coordinates to which you can actually plot are within
this frame. You can execute graphics output statements that are beyond the edge of the display, but
no primitives are output. Placing a frame around the usable plotting area can help when composing
apkture.

10-4 Creating Graphics

Finding the Current Position. Besides knowing the plotting area that you have to work with,
you need to know where the current position is. This is the point on the display relative to which
subsequent graphics are positioned. To find it, use the WHERE command. Enter and execute the
following program:

10 WHERE X,Y
20 PRINT "X =" ;X, fly :a";Y
30 END

X returns the x coordinate of the current location and Y returns the y coordinate. Right now, X
and Y should equal 0 because whenever GINIT is executed, the current position is (0,0).

Changing the Current Position. The next step is to place the current position where you
want to start drawing. To do this, use the MOVE statement. Execute the command:

MOVE 50,50

Although nothing looks different on the display, you moved the current position to the point
(50,50). Use WHERE to see that the current position has changed.

You can use any expression in the range of SHORT values in MOVE. (In fact, almost all the
graphics statements can work with expressions in the range of SHORT values.) After a GINIT, the
resolution of the CRT is such that coordinates have two significant decimal places. Other plotters
have different resolutions; you have to experiment to determine these. You may want to displace
the current position by a specific amount. In this case, instead of working out the coordinates of
the new position, you can specify an incremental movement. You do this with the IMOVE (Incre
mental MOVE) command. Execute:

IMOVE 10,5

You've moved the current position by 10 units along the X axis and 5 units along the Y axis to the
point (60,55). Again, WHERE can confirm this.

Digitizing the Current Position. Often you can see where you would like to move the current
position, but you can't tell what the exact coordinates of the point are. To determine the coordi
nates of a location on the display, use digitizing.

Here is how to do this.

• Put a crosshair on the display.

• Move the crosshair to the point on the display that you want to be the current position by using
the arrow keys of the keyboard.

• Tell the system to return the coordinates of the crosshair's position.

Creating Graphics 10-5

You 1C8l1 then use these coordinates to move the current position to that point. Execute the com
mancis:

TRACK CRT IS ON
DIGITIZE X,Y

The left and bottom edges of the display have a bright white line. The TRACK. . .IS ON command
sets ~l full-screen crosshair at the point (0,0). TRACK CRT IS ON tells the system that you want to
"track" or mimic the keyboard arrow keys on the internal CRT with a crosslilair.

Use the arrow keys on the keyboard or the optional mouse to move the crosshair to the point you
wish to digitize. Digitize tells the system that you want to digitize or record the arrow key's posi
tion. At this point, you can still move the crosshair around if you wish. DIGITIZE doesn't store the
coordinates until the next time I ENTER I is pressed.

Whelll you have the crosshair positioned at the desired point, press I ENTER I again to get the system
to actually digitize the point and place the coordinate values in the variables X and Y. X has the: x
coordinate and Y has the y coordinate. When the system is waiting for you to press I ENTER I to digi
tize a point, the run light looks like an asterisk.

You can move to the point you've just found by executing the command:

MOVE X,Y

This form of digitizing only works for the internal CRT and keyboard.

The c:rosshair does not disappear after you're done digitizing. You can still move it around and
digitize another point or move the crosshair out of the way.

If your display is generated by a program, you can turn the crosshair off with:

TRACK CRT IS OFF

then execute:

GCLEAR

and then regenerate the display by running the program again without the TRACK CRT IS ON
statement.

10-6 Creating Graphics

Graphics Fundamentals

Now that you are familiar with the BASIC graphics system, let's try some techniques for creating
graphics.

Drawing Lines

At this point, you should be able to move the current position to any point. This section explains
how to draw lines on the CRT.

Execute these commands:

GINIT

MOVE 50,50

DRAW 60,60

You have a line on the display from the point (50,50) to the point (60,60). You can draw any line
by first moving the current position to the starting point and then drawing to the end point. In
addition, the current position is updated to the point (60,60). Use WHERE to see this.

If you want to draw a line of a certain length but you don't want to figure out the coordinates of the
end point, use the IDRAW (Incremental DRAW) command. Execute:

IDRAW 10,10

This command draws a line to a point 10 units along the X axis and 10 units along the Y axis from
the current position. It also updates the current position by the specified increments.

See if you can recreate the following picture using 21 statements. You may use any of the state
ments presented up to this point.

Load and run the file "BOLT" from the Manual Examples disk. You can list the file on your CRT
or printer to compare your version.

Creating Graphics 10-7

As mentioned before, you can plot to points beyond the edge of the display, but they do not
appe,ar. If part of the line is within the display area, that part is output. As an example, load and
execute the file "BIGLINES" from the Manual Examples disk. You should see the figure that fol
lows.

All the graphics output is handled in a similar manner. Those points within the display area are
output. Those points outside the display area are not shown, but the current position is updated.

DRAW, IDRA W, IMOVE and MOVE have an additional effect beyond moving the current posi
tion and drawing a line. They also determine whether the physical pen is up or down (that is,
touching the plotting surface). For a CRT, when the pen is "down," a dot appears. When the pen is
"up," no dot is created.

One way to control whether the pen is up or down on a plotter is to use IMOVE AND IDRA W.

IMOVE 0,0

lifts (the pen, but does not change the current position.

IDRAW 0,0

lowers the pen, but does not change the current position.

Another way to raise the pen is by executing the PENUP statement.

PENUP

The WHERE statement has an additional parameter with which you can determine the status of
the pen. It is a string variable whose contents signals whether the pen is up or down and whether it
is wilthin the display area. The string also returns other information that is explained later. For
example, execute the following program.

10-8 Creating Graphics

10 WHERE X,Y,STATUS$
20 PRINT "X ="; X, "Y ="; Y, "STATUS ="; STATUS$
30 END

STATUS$ is a string which looks like:

1,2

The first digit describes the pen's vertical position (0 = up, 1 = down). The second digit describes
the pen's horiwntal position within the display area (0 = outside of the display area, 1 or 2 =
inside the display area).

When you use a paper plotter make sure that the pen is lifted if it is going to rest in one spot for
very long; otherwise, an ink blot occurs.

Scaling

Some graphics may not show much information. There may not be enough variation in the data as
presented. For example, load and run the me "SCALE" from the Examples disk.

Probably the first reaction you had when looking at the plot was "That doesn't show me any-
thing ... ". That's true; it doesn't show much information. There are two reasons for this. The first is
that there is not enough variation in the curve; it's too straight to show anything. The second is that
it is not centered.

Both of these problems can be remedied by scaling. In this context, scaling could be defined as
"defining the values the computer considers to be at the edges of the plotting surface." By
definition, the left edge is the smaller X, the right edge is the larger X, the bottom is the smaller Y,
and the top is the larger Y. Thus, any point you plot that falls into these ranges will be visible.

There are two statements available to define your own values for the edges of the plotting surface.
The first one we'll deal with is SHOW, which forces X and Y units to be equal. Since the X and Y
units are identical, the SHOW statement centers the specified area in the plotting area. This is
called isotropic scaling, and it is often desirable. For example, when drawing a map, you will prob
ably want one mile in the east-west direction to be the same size as a mile in the north-south direc
tion. Here is an example of SHOW:

SHOW 0,100,16,18

This causes the plotting area to be defined such that there is a rectangle in that plotting area whose
minimum X is 0, maximum X is 100, minimum Y is 16, and maximum Y is 18, using isotropic units.
As mentioned above, isotropic means that one unit in the X direction is equal to one unit in the Y
direction. Hence, if the plotting area were square, the above SHOW statement would define the
minimum X to be 0, maximum X to be 100, minimum Y to be -33 (not 16) and maximum Y to be

Creating Graphics 10-9

67 (not 18). The reason for this is that allowing whatever extra room it needs to insure that that
rectangle is completely contained in the plotting area. There will be extra room in either the X or
Y direction, but not both.

Since you (the user) were defining unit sizes with the SHOW statement, you were working with
User-Defined Units (UDUs). Both the SHOW statement and the WINDOW statement (covered
next) specify user-defined units. Load and run the file "SCALE2".

As you can see, the SHOW statement takes care of centering the curve on the screen, but since the
range of X values is so much larger than the range of Y values (0 to 100 versus 15 to 19), it still
does not give us enough resolution to see what the data is doing. Isotropic scaling is desirable in
many cases. In many other cases, however, it is not. If this example shows the graph of the voltage
from a sensor versus time, it makes no sense to force seconds to be just as "long" as volts. Since
the data types are not equal, it would be better to use unequal, or anisotropic, scaling. You can do
this with the other scaling statement: WINDOW. This will not force X units to be equal to Y units.
Now load and run the file "SCALE3".

This plot looks much better than the last one; you can easily see variations in the data. To test how
the Y axis range 15 -19 affects relative variations in the data, list the program in file "SCALE3"
and change line 30 to WINDOW 0,100,30,50 and change line 50 to PLOT X,RND + 40. Run the
program again and note that the line is less ragged.

There is still one problem, though. You can see relative variations in the data, but what are the
units being used? That is, is the height of the curve signifying differences of microvolts, mi1livolits,
megavolts, dozens of volts, or what? And you probably wouldn't want the text (explaining units,
etc.) to be written in the same area that the curve is in, as it could obstruct part of the curve.
Therefore, you need to be able to specify a subset of the screen for plotting the curve, and put
explanatory notes outside this area. The next section tells you how to do this.

Defining a Viewport

A viewport is a subset of the plotting area. This is called the soft clip area, and it is delimited by the
soft dip limits. Clip, because any line segments which attempt to go outside these limits are cut off
at the edge of the subarea. Soft, because you can override these limits by turning off the clipping
with the CLIP OFF statement (more about this later). There are hard clip limits also, and these
are defined to be the absolute limits of the plotting area. Under no circumstances can a line be
drawn outside of these limits. There is no way to override the hard clip limits, as you could with
soft dip limits.

10-11[) Creating Graphics

GDUs and UDUs. There are two types of units used to define viewport limits. These are UOUs
(User·Oefined Units) and GOUs (Graphics Oisplay Units). In order for viewports to be predict
able, they must always be specified in the same units. Since UOUs are subject to change, you
should use GOUs when specifying the Jjmits of a VIEWPORT statement. GOUs are fixed for the
CRT, so a viewport is associated with the screen, rather than the graphical model used in your pro
gram.

The lower left of the plotting area is always 0,0. The length of a GOU is defined as "One percent
of the shorter edge (the Y axis of a CRT) of the plotting area." Unless you specify otherwise, the
screen (but not necessarily an external plotter) is considered to have the following expanse:

• In the Y axis (the shorter side): 0 through 100 GOUs.

• In the X axis: 0 through RATIO*l00 GOUs.

The RATIO statement returns the ratio of the x-axis hard clip limit to the y-axis hard clip limit for
the current PWTTER IS device. For a typical CRT monitor this ratio is in the range 1.25 to 1.35.
For example, for a VGA monitor used with an HP Vectra PC and HP BASIC Language Processor,
RATIO returns a value of approximately 1.3340. Thus, the X axis has a range of 0 through about
133.40 GOUs. Here are the approximate ranges for several monitors:

• VGA or EGA monitor (Vectra with BASIC Language Processor): 0 through 133.40 GOUs.

• HP Multimode Monitor (Vectra with BASIC Language Processor): 0 through 128.06 GOUs.

• HP 98542A and 98543A monitors: 0 through 128.07 GOUs.

• HP 98544, 98545, 98546, 98547, and 98700 monitors: 0 through 133.38 GOUs.

• HP 9000, Models 216 and 226: 0 through 133.44 GOUs.

• HP 9000, Models 236 and 236C: 0 through 131.36 GOUs.

To find the ratio for your display, type RATIO and press IEnterl (refer to your BASIC Language
Reference manual for further information).

Specifying the Viewport. The VIEWPORT statement defines the extent of the soft clip limits
in GOUs. It specifies a subarea of the plotting surface which acts just like the entire plotting sur
face, except that you can draw outside the subarea if you turn off clipping. Load and list file
"SCALE4" from the Manual Examples disk. The VIEWPORT statement in this program specifies
that the lower left-hand corner of the soft clip area is at 10,15 and the upper right-hand corner is at
120,90. This is the area which the WINDOW statement affects. Also note line 40; the FRAME
statement. This draws a box around the current soft clip limits. It is used in this example so you
can see the area specified by the VIEWPORT statement. Now run the program to see the result.

Creating Graphics 10-11

Labelling a Plot. With the inclusion of the VIEWPORT statement, you have enough room to
include labels on the plot. Typically, in a plot like this, there is a title for the whole plot centered at
the top, a Y-axis title on the left edge, and an X-axis title at the bottom.

You can use the lABEL statement to write text onto the graphics screen. You can position the
labt:l by using a MOVE or PLOT statement to get to the point at which you want the label to be
plac:ed. It is the lower left comer of the label which ends up at the point to which you moved. In
oth(~r words, you move to the position on the screen at which you want the lower left comer of the
text to be placed.

Load and run the file "lABELS" from the Manual Examples disk. Notice that the Y-axis label on
the left edge of the screen is created by writing one letter at a time. You only need to move to the
position of the first character in that label because each label statement automatically terminates
wit.b a call"riage return/linefeed. This causes the pen to go one line down, ready for the next line of
text"

Now you know what you are measuring - voltage vs. time - but you still do not know the units
being used. You need an X-axis and a Y-axis labelled with numbers in appropriate places. YoU! can
use the AXES statement to accomplish this.

Axe!s and Tick Marks. You can use the AXES statement to draw X and Y axes and short lines,
perpendicular to the axes, to indicate the spacing of units. These short lines are called tick marks.
The axes may intersect at any point you desire. The tick marks may be any distance apart, and you
can select the "major tick count" for each axis. The major tick count is the total number of tick
marks drawn for every large one. This makes it convenient to count by fives or tens or whatever
you chose the major tick count to be. And finally, you can specify how long you want the major tick
marks to be. This is measured in GDUs. Enter the following program:

10 GINIT
20 FRAME
30 AXES 5,10,50,50,3,3,3
40 WAIT 5
60 END

10-12 Creating Graphics

When you run this program, you should see the figure below:

5 units between
tick marks

'""'""' I I .
3 spaces between

large tick marks

/'
Large tick marks

3 units long

} 10 units between Uck macks

Intersection at (50,50).

3 spaces between
large tick marks

In the axes statement, the first parameter specifies the distance between tick marks along the hor
izontal (x) axis, and the second parameter specifies the distance along the vertical (y) axis. The
third and fourth parameters specify the intersection point of the axes. The fifth and sixth parame
ters specify the number of spaces between the large tick marks, and the last parameter specifies
the size of the large tick marks. The small tick marks are drawn half the size of the large tick
marks.

Creating Graphics 10-13

Now load the file "LABELS" again, add the AXES statement shown below to this program, and
run it to see the difference.

145 AXES 1,.1,0,15,5,5,3

Grids. You can also create a full grid pattern. Enter and run the following program:

10 GINIT
20 FRAME
30 GRID 5,10,50,50,3,3,3
40 WAIT 5
50 END

Whe:n you run this program you should see the following:

r T T T T TTr T T

~ ++ ++ ++ ++ ++

r ++ ++ ++ ++ + +

~ ++ ++ ++ + + ++

r ++ ++ ++ ++ ++

~ ++ ++ ++ ++ ++

r ++ ++ ++ + + ++

L -L -L .L-L .L.L -L .L -L -L

T T T T T T

++ + + ++

++ ++ ++

++ ++ ++

++ ++ ++

++ ++ ++

++ ++ ++

.L -L .L .L -L .L

Soml~ of the parameters have slightly different meanings in a GRID statement than in an AXES
statement. The first two still represent the distance between tick marks in the horizontal and verti·
cal directions respectively. The next two parameters specify the intersection point of two lines in
the g;rid. The fifth and sixth parameters still specify the number of spaces between large tick marks
for each axis. The last parameter still specifies the length of the tick marks.

Like frames, axes and grids are always parallel to the edges of the display. Axes and grids are
affected by the line type and pen type.

10-14 Creating Graphics

Load and run the file "AXES" from the Manual Examples disk to see various kinds of axes and
grids.

You can stop this program at any time by pressing STOP.

Other Ways to Draw or Move

There are three other ways to draw or move. The first is using the PLOT statement. With this
statement, you specify the point to which the pen moves and also whether the pen is up or down
before or after it is repositioned. Here is a PLOT statement.

PLOT 10,40,2

The first two items in the statement are the x and y coordinates, and the third item is an optional
pen control value. The following table shows how the pen control value affects the output.

Pen Control Value Meaning
Negative and even (- :2, - 4, - 6, ...) Raise the pen before repositioning it.

Non-negative and even (0,2, ...) Raise the pen after repositioning it.

Negative and odd (-1, -3, -5, ...) Lower the pen before repositioning it.

Positive and odd (1, 3, 5, ...) Lower the pen after repositioning it.

If no pen control is specified, 1 is assumed.

IPLOT (Incremental PLOT) is the second way to move or draw. It is similar to PLOT. The
difference is that with IPWT each repositioning is incremental like IMOVE OR IDRA W. The
pen control values cause actions similar to those in PLOT.

RPLOT (Relative PLOT) is the third way to move or draw. It is similar to PLOT in that the
RPLOT parameters are displacements from an origin, but they are displacements from a local ori
gin. A local origin is a temporary origin for all consecutive RPLOT statements. Each coordinate
given in an RPLOT statement is measured from the local origin. The local origin is defined as the
current position when the first RPLOT is executed. When you stop executing consecutive
RPLOTs, that is, when a graphic;s output statement other than an RPLOT statement is executed,
the local origin ceases to exist.

The next program is an example of how RPLOT works. Load the file "STARS" and list the pro
gram. Step through it slowly and determine what happens with each statement before executing it.

Creating Graphics 10-15

Notke how the local origin is set by a MOVE and a series of IMOVEs. The pattern is actually
drawn by repeating the subroutine, Rplot. RPLOT is particularly useful when drawing the same
series of lines in different spots on the CRT.

PLOT, IPLOT, and RPLOT are useful for controlling the pen with a formula or variable. For
instance, you might want to create a variable Pen status. If Pen status equals - 2, no line is drawn,
but the current position is updated. - -

Erasing Lines

Now that you can draw lines, you're probably wondering how to erase them. GCLEAR clears the
entire graphics area of the CRT screen. To eliminate one specific line or portion of a line, use the
PEN statement. The PEN statement has the form:

PEN Pen number

where Pen_number is a numeric expression which specifies the pen to use.

The PEN statement gives a choice of "pen" with which to plot. The default pen type is 1. This is
the pen type that creates the white line you have seen so far.

A pen selection of -1 sets the pen type to erase white. Output statements are then executed with
that c;olor. If the primitive crosses over a point on the display which is white" that point becomes
black.

Note that any output statement using this pen value not only erases lines created by DRAW or
IDRA W, but also erases part of a frame or any other graphics output created with PEN 1. Obvil
ously, a pen type of -1 is only usable with a plotter that can erase part of its display, such as a
CRT. Plotters that output on paper ignore a PEN -1 statement.

Lim! Attributes

What is it about lines that distinguishes them from other lines? The color of a line can set it apart
from other lines; so can the pattern used to draw it (for example, dashed or dotted). These distin
guishing traits are known as attributes of the line. Your system provides a number of attributes for
graphics primitives.

10-141 Creating Graphics

Pen Types. The PEN statement presented in the previous section does not directly create graph·
ics output but does affect the appearance of graphics output. For this reason, it is an "attribute"
statement.

On a monochrome CRT, a pen type> 0 makes the pen color "white". A pen type < 0 makes the
pen color "erase white". A pen type of 0, in effect, disables the pen; no lines or erasures occur
when a DRAW or other output statement is executed. However, it does not disable updating of the
current position; that is, if you execute a DRAW, no line is drawn, but the current position is now·
at the coordinates specified in thf: DRAW.

PEN can also specify other colors if you have a color CRT or other pen stalls on a paper plotter.
The "Color Graphics" section provides more information about these pen types.

Load and run the fIle "PENDEMO" from the Manual Examples disk.

Creating Graphics 10-17

Lin,e Types. To distinguish between lines, use different line types such as dashes or dots. The
LINE TYPE statement gives a number of choices. The pattern of a line is considered an attribute
of that line. Load and run the me "LINETYPE.S" from the Manual Examples disk. The following
Hgure should be drawn, showing the available line types. It also shows how the lines look when
drawn straight or around corners.

_________________________ s----------------------------

_________ J
_________ .1-----------
_____ J

J

10-'18 Creating Graphics

Creating Simple Shapes

BASIC Graphics has specific statements to create many kinds of regular polygons quickly and
easily.

Rectangles. The simplest polygon is probably the rectangle created used the RECTANGLE
statement. Enter and execute the following program:

10 GINIT
20 MOVE 20,20
30 RECTANGLE 10,30
40 WAIT 5
50 END

The first parameter is the width of the rectangle and the second parameter is the height of the rec
tangle. In this case, you've drawn a rectangle 10 units wide and 30 units high.

RECTANGLE is another statement which has, in effect, a local origin. The rectangle is drawn with
the current position (local origin) in the lower-left comer. In the example above, the local origin is
at 20,20. The sides of the box are parallel to the sides of the CRT. This is only the default form.
You can use the PDIR (Plot DIRection) statement to rotate the rectangle to any angle about the Z
axis. Its form is:

PDIRAngle

where Angle is the amount the polygon is rotated in degrees, radians or grads.

Creating Graphics 10-19

As ;an example, load and run the file "PDIRDEMO" from the Manual Examples disk. You should
see the following:

Notice that the rotation is about the local origin (lower-left corner) of the rectangle. This means
that when placing a rectangle on the display, you should note where the lower-left corner should
go, not where the center of the rectangle should go.

1 O-:ZO Creating Graphics

The RECTANGLE statement has two other options. They are FILL and EDGE. If you specify
FILL, the rectangle is filled to create a solid block. If you specify EDGE, the rectangle edge is
drawn with the current pen and line type. Load and run the file "FILLEDGE" from the Manual
Examples disk. You should see the following:

r---I
i I

I I

r---I
I I

I I
I I

I I
I I

I I
L_~

!II
1;1

I I

I I
I '
I I
L_~

FILL AHributes. You can control the shade of the fill color to various degrees of grey using the
AREA COLOR or AREA INTENSITY statements. The following paragraphs tell how to use
these statements with a monochrome display. Refer to the "Color Graphics" section if you are
using a color monitor.

The AREA COLOR statement defines the fill color based on a hue, a saturation and luminosity.
Only the third parameter, the luminosity parameter, has any effect on a monochrome CRT. For
example:

AREA COLOR .1, ,1,.1

AREA COLOR .5, .6,.1

AREA COLOR .7,.2,.1

All specify the same shade of grey. The luminosity parameter specifies the approximate percentage
of pixels to be "on" in the filled area. The previous three statements all turn on 10 percent of the
pixels in the fill area. The range of the luminosity is from 0 through 1.

Creating Graphics 10-21

Th~~ AREA INTENSITY statement defines the fill color based on the largest of the three parame
ters, in the statement. For example:

AREA INTENSITY .1,.3,.4

AREA INTENSITY .4,.2,.01

AREA INTENSITY .2,.4,.03

All specify the same shade of grey. The largest parameter specifies the approximate percentage of
pixds to be "on" in the filled area. The previous three statements all turn on 40 percent of the pix
els in the fill area. Again, the range of the parameters in the statement is 0 through 1.

Pollygons. To create more general polygons use the POLYGON statement. Enter and execute
the following:

10 GINIT
20 GRAPHICS ON
30 MOVE 50,50
40 POLYGON 10,6
50 WAIT 5
60 END

The first parameter of the POLYGON statement is the radius of the polygon and the second is the
nU1J[J.ber of sides. Thus, POLYGON 10,6 creates a six-sided polygon with a radius of 10 centered
about the point (50,SO).

Th(~ polygon is output with the first vertex at an angle of 0 degrees from the X axis.

Th(~ POLYGON statement forces the shape to be a closed polygon as opposed to an open figure.

10··22 Creating Graphics

You may specify the number of edges to draw and the POLYGON statement then closes the
shape. For example, load and run the fIle "POLYGON6" from the Manual Examples disk. You
should see the following:

\
~

/ \

Whether the pen is up or down before the polygon is drawn makes a difference. Load and run the
fIle "POLYGON4" from the Manual Examples disk. You should see the following:

08
()~

Creating Graphics 10-23

H the pen is down when this statement is executed, the first line is from the pen's starting position
out to the fIrst vertex and the last line is from the last vertex back to the pen's original position. H
the pen is up when the statement is executed, the last line is from the last vertex back to the first.
In e:ither case, the current position is unchanged.

POLYGON also has the FILL and EDGE options like RECTANGLE.

Sometimes you don't want a closed polygon. In these cases, use the POLYLINE statement. Load
and run the file "POLYLINE".

/ \
;/ ~ <' \

\ /1 \
\, \ /

<
\\

<
\\

\

You can see that polylines are similar to polygons, but they don't have to be closed.

The~ general rule is: if the pen is down when this statement is executed, the first line is from the
pen's starting position out to the first vertex. H the pen is up when this statement is executed, the
figure starts at the first vertex. The figure always stops at the last vertex. The current position
remains at its original location.

10-:24 Creating Graphics

PDIR also affects polygons and poly lines. The local origin is at the center of the polygon/polyline
so the rotation is about the center of the object. Load and run the file "CIRCLES2" from the
Manual Examples disk to see PDIR's effect.

Additional Pen Control

There are additional pen control values available when using PLOT with an array that can't be
used with PLOT x,y,z. These help you to make more complex drawings than are possible with
PLOT x,y,z. For instance with PLOT x,y,z, a pen control value which is a positive odd integer
lowers the pen after repositioning it. However, when using PLOT with an array, only a pen control
value of 1 causes this. A pen control value of 3 tells the system that the x coordinate value is to be
interpreted as a pen number. Thus, you can switch pens while plotting from an array. Here is a
complete table of all the pen control elements and how they are interpreted.

Creating Graphics 10-25

x Coord. YCoord. ZCoord Pen Control
1:lement Element Element Element

This element is This element is This element is If this element is: Action:
inte!rpreted as: interpreted as: interpreted as:

x coord. y coord. z coord. negative even Raises the pen
number (-2, and then reposi-
-4, -6, ...) tions it.

x coord. ycoord. zcoord. negative odd Lowers the pen
number (-1, and then reposi-
-3, -5, ...) tions it.

x coord. y coord. z coord. o or2 Repositions the
pen and then
raises it.

x coord. y coord. z coord. 1 Repositions the
pen and then
raises it.

pen number nfa nfa 3 Selects this pen.

line type repeat length nfa 4 Selects this line
type and repeat
length.

fill color (see nfa nfa 5 Selects this fill
the following color.
text)

nfa nfa nfa 6 Starts a polygon
with FILL.

nfa nfa nfa 7 End of a polygon.

row number nfa nfa 8 End of plotting
data.

10-26 Creating Graphics

X Coord. Y Coord. ZCoord Pen Control
Element Element Element Element

This element is This element is This element is If this element is: Action:
interpreted as: interpreted as: interpreted as:

nla nla nla 9 Index of End-
of-plotting-data
row

nla nla nla 10 Starts a polygon
with EDGE.

nla nla nla 11 Starts a polygon
with FI LL and
EDGE.

nla nla nla 12 Frames the
current display
area.

nla nla nla >12 Row Ignored.

The fill color gives you the ability to change the color of a filled polygon. Refer to "Color Graph
ics," later in this chapter, for further information.

Creating Graphics 10-27

Now load and list the "SHIP" from the Manual Examples disk. The DATA lines in this program
are treated as an example array. A step-by-step explanation of the data elements as they would be
interpreted in a two-dimensional PLOT is shown in the matrix that follows.

0 0 12 Frames the display.

40 10 -2 Raises the pen and moves it to (40,10).

11 0 5 Selects the fill color defined by the value 11. The
o is ignored.

12 34 11 Signals the start of a polygon that is filled and
has an edge. The values 12 and 34 are ignored.
Every consecutive line from this point on is con-
sidered part of the polygon until the figure is
closed. The current position is still (40,10).

100 10 -1 Lowers the pen and draws a line from (40,10) to
(100,10).

110 20 -1 Keeps the pen down and draws a line from
(100,10) to (110,20).

15 20 -1 Keeps the pen down and draws a line from
(110,20) to (15,20).

40 10 -1 Keeps the pen down and draws a line from
(15,20) back to (40,10). After this line is com-
pleted there is a closed figure so it is filled and
the edge is kept.

° 0 7 Signals the end of the polygon. If this line is not
included and any DRAW actions are included
before a MOVE, those DRAWs are considered
part ,of the polygon. Thus, when a MOVE is exe-
cuted the DRAWs are closed off to create a
polygon.

65 20 -2 Raises the pen and moves it to (65,20).

10-218 Creating Graphics

0 0 6 Signals the start of another polygon with the
FILL attribute. The zeros in the first two
columns are more appropriate than the values
left in the first two elements of row 4.

64 80 -1 Draws a line from (65,20) to (64,80).

63 20 -1 Draws a line from (64,80) to (63,20).

0 0 7 Signals the end of a polygon so the two lines are
closed off to form a triangle and then the
polygon is filled.

64 80 0 Draws a line from (63,20) to (64,80) and then
lifts the pen.

1 0 5 Selects the fill color defined by the value 1.

0 0 6 Signals the start of a polygon with FILL.

50 25 -1 Lowers the pen and draws a line to (15,20).

15 20 -1 Keeps the pen down and draws a line to (15,20).

64 80 -1 Keeps the pen down and draws a line to (64,80).

0 0 7 End of the polygon.

64 75 -2 Moves the pen to (64,75).

0 0 6 Start of another polygon with FILL.

70 25 -1 Lowers the pen and draws a line from (64,75) to
(70,25).

110 20 -1 Keeps the pen down and draws a line to (110,20).

64 75 -1 Keeps the pen down and draws a line to (64,75).

0 0 7 End of the polygon.

Creating Graphics 10-29

Now run the program to see the results:

Using Graphics Effectively

The last section discussed the more elementary graphics operations. This section will present more
detailed information on those statements and introduce several other graphics operations.

Most of the demonstration programs in this section are stored on the Manual Examples disk which
was shipped with HP BASIC. You are encouraged to load and run these programs while you are
readling the manual, as this will make understanding the concepts much easier.

Maire on Labelling a Plot

The:re are three statements that complement the LABEL statement; they expand its capabiliti(~s
greatly.

The first is CSIZE, which means character size. CSIZE has two parameters: character cell height
(in GDUs) and aspect ratio. The height measures the character cell size. A character cell contains
a character and some blank space above, below, left of, and right of the character. This blank space
allows packing character cells together without making the characters illegible. The amount of
blank space depends, of course, on which character is contained in the cell.

The first of these small programs shows how the CSIZE statement changes the size of characters.
You may load this program from file "CSIZE" on the Manual Examples disk.

10-::10 Creating Graphics

When you run the program you should see something like this:

T
h l s

1 sjust 11 ke
thosecute 1 itt 1 echarts

thatyoualwaysseeinyourfriendly

netghborhoodoptometrtstaoropttctansofftce.

The FOR-NEXT loop writes lines of text on the screen with different character sizes. The DATA
statements contain both pieces of information. Incidentally, notice also the WINDOW statement.
It specifies a Ymin larger than the Ymax. This causes the top of the screen to have a lesser Y
value than the bottom. This is perfectly legal.

Creating Graphics 10-31

The next program deals with the relationship between the size of the character, per se, and the size
of the character cell - that rectangle in which the character is placed. This program is on file
"CHAR CELL" on the Manual Examples disk.

Size of Character in Character Cell

·• ••...... H.... ~ . . ·• •....... H.... ~ . .

· -. ~....... · -. ~....... · ~.......

As the diagram shows, a character is drawn inside a rectangle, with some space on all four sides.
The rectangle's height is specified by the CSIZE statement, and is measured in GDUs. The
rectangle's width (also measured in GDUs) is the height multiplied by the aspect ratio. This rec
tangle is subdivided into a grid of 9 wide by 15 high. Characters are drawn in this framework,
called the symbol coordinate system. Of course, the little XS in the plot above are not drawn when
you label a string of text; they are there solely to show the position of the characters within the
character cell.

Again, character cell height is measured in GDUs, and the definition of aspect ratio for a character
is ide;ntical to the definition of aspect ratio for the hard clip limits mentioned earlier: the width
divid,ed by the height. Thus, if you want short, fat letters, use an aspect ratio of 1.5 or larger. If you
want tall, skinny letters, use an aspect ratio less than about 0.5.

10-32 Creating Graphics

CSIZE 3 Cell 3 GDUs high, aspect ratio .6 (default).

CSIZE 6,.3 Cell 6 GDUs high, aspect ratio.3 (tall and skinny).

CS I ZE 1, 2 CellI GDU high, aspect ratio 2 (short and fat).

Note that you do not have to specify a second parameter (the aspect ratio) in the CSIZE state
ment. This defaults to 0.6.

The second statement you need is LORG, which means label origin. This lets you specify which
point on the label ends up at the point moved to before writing the label. You may load the follow
ing program from the file "LORG" on the Manual Examples disk.

TEST
LORG 1 = x

LORG 2 = xTEST

LORG 3 =

TE~rST
LORG 4 = x

LORG 5 = T86T

LORG 6 =

TE~pT
LORG 7 = x

LORG 8 = TESTx

LORG 9 =
TESf

The X's indicate where the pen was moved to before labelling the word "TEST". This diagram
shows that, for example, if LORG I is in effect and you move to 4,5 to write a label, the lower left
of that label would be at 4,5. This automatically compensates for the character size, aspect ratio,
and label length. It makes no difference whether there is an odd or even number of characters in
the label. If LORG 6 had been in effect, and you had moved to 4,5, the center of the top edge of
the label would be at 4,5. You can readily see how useful this statement is in centering labels, both
horizontally and vertically.

Creating Graphics 10-33

The third statement you need to know is LDIR, meaning label direction. This specifies the angle at
which the subsequent labels will be drawn. The angle is specified in the current angular units, and
is either DEG (degrees) or RAD (radians). For example, assuming degrees is the current angular
mode:

LDIR 0 Writes label horizontally to the right.

LDIR 90 Writes label vertically, ascending.

LDIR 14 Writes label ascending a gentle slope, up and right.

LDIR 180 Writes label upside down.

LDIR 270 Writes label vertically, descending.

Load and list the file "LDIR" on the Manual Examples disk. You'll note that LORG 2 was
specified (line 70), and this remained in effect for many LDIRs. Each label is centered on the left
edge (relative to the label, remember). Now run the program and you should see the following::

10-~14 Creating Graphics

The label origin specified by LORG is relative to the labe~ not the plotting surface, and it is
independent of the current label direction. For example, if you have specified

LORG 3
DEG
LDlR 90
MOVE 6,8

and then write the labe~ it is written going straight up, not horizontally. Therefore, it is the upper
left corner of the label which is at point 6,8 relative to the rotated label. Relative to the plotting
device, however, it is the lower left corner of the label which is at 6,8 (in this example) because the
label has been rotated.

Now that the prerequisites have been taken care of, we can discuss the statement which actually
causes labels to be written: lABEL. lABEL takes into account the most recently-specified
CSIZE, LDIR and LORG when it writes a label. You must position the label to get to the point at
which you want the label to be placed. You can use MOVE to accomplish this.

All four statements have been utilized in the following update to our progressive plotting program.
You may load this program from ftle "SINlABEL" on the Manual Examples disk.

" m

"' +'

o
>

VOLTRGE VRRIRNCE

Time (seconds)

Creating Graphics 10-35

Notke that the title of the graph, "VOLTAGE VARIANCE", is now displayed in bold face. This
effect was achieved by plotting the label several times, moving the label origin just slightly each
time .. Notice lines 60 through 90. The loop variable, I, goes from -.3 to .3 by tenths. This is the:
offset in the X direction (in GDUs) of the label origin. •

SinC(: this is being labelled with LORG 6 in effect, the label origin (the point moved to immediately
prior to labelling) represents the center of the top edge of the label. This method can also be used
for offsetting in the Y direction. Or, offset both X and Y. This will give you characters which arl~
thick in a diagonal direction, which makes them look like they are coming out of the page at you.
However, a more typical boldface is produced by offsetting only in the X direction.

Now you know what you're measuring - voltage vs. time - but the units are still not shown.
What i.s needed is an X-axis and a Y-axis, and they need to be labelled with numbers in appropri
ate places.

Miscellaneous Graphics Concepts

Clipping. Something that occurs completely ''behind the scenes" in your computer when drawing
is a process called clipping. Clipping is the process whereby lines that extend over the defined
edges of th.e drawing surface are cut off at those edges. There are two different clipping boundaries
at all times: the soft clip limits and the hard clip limits. The hard clip limits are the absolute boun
daries of the plotting surface" and under no circumstances can the pen go outside these limits. The
soft c;lip limits are user-definable limits, and are defined by the CLIP statement.

CLIP lO,20.5,Ymin,Ymax

This statement defines the soft clip boundaries only; hard clip limits are completely unaffected.
Aftelr this statement has been executed, all lines which attempt to go outside the X limits (in
UDUs) of 10 and 20.5, or the Y limits (in UDUs) of Ymin and Ymax will be truncated at the
appropriate edge. Clipping at the soft clip limits can be turned off by the statement:

CLIP OFF

It can be turned back on, using the same limits, by

CLIP ON

• Technically, a MOVE uses UDUs for its units, but UDUs and GDUs are identical until a SHOW or WINDOW is
ex'~cuted.

10-36 Creating Graphics

If you want the soft clip limits to be somewhere else, use the CLIP statement with four different
limits. Only one set of soft clip limits can be in effect at anyone time. Clipping at the hard clip lim
its cannot be disabled.

The VIEWPORT statement, in addition to defining how WINDOW coordinates map into the
VIEWPORT area, turns on clipping at the specified VIEWPORT edges.

Drawing Modes. On a monochromatic CRT, there are three different drawing modes available.
(For information on selecting pens with a color CRT, refer to "Color Graphics," later in this
chapter.) The three pens perform the following actions:

Number Function
1 Draws lines (turns on pixels).

-1 Erases lines (turns off pixels).

0 Complements lines (changes pixels' state).

A characteristic of drawing with pen -lor pen 1 is that if a line crosses a previously drawn line,
the intersection will be the same "color" as the lines themselves. When drawing with pen 0, and a
line crosses a previously drawn line, the intersection becomes the opposite state from that of the
lines. For example, assume a black background. You select PEN 0 and draw a pair of AXES. When
the first axis is drawn, all pixels are off. Thus, as the line is being drawn all pixels are turned on
along its length. However, as the second axis is drawn all pixels along its length are turned on,
except where it crosses the first axis. At the crossing, the pixels previously turned on are turned off.
Thus, the crossing contrasts with the lines.

Storing and Retrieving Imllges. If a picture on the screen takes a long time to draw, or the
image is used often, it may be advisable to store the image itself - not the commands used to
draw the image - in memory or in a disk file.

This may be done with the GSTORE command. First, you must declare an INTEGER array of
sufficient size to hold all the data in the graphics raster. This array holds the picture itself, and it
doesn't care how the information got to the screen, or in what order the different parts of the pic
ture were produced. You can use GLOAD to restore the picture to the CRT display.

To find the minimum array size for a monochrome display, multiply the number of pixels in the X
direction by the number of pixells in the Y direction and divide by 16 bits per word. Thus, for a 512
by 390 monochrome monitor, the minimum array size is:

512 x 390 7- 16 = 12,480 words

Creating Graphics 10-37

For a. color display you have to multiply the number of pixels by the number of color planes
(tbre1e). Thus, a 512 by 390 color display image requires an array size of 37,440 words. However,
you cannot specify an tm"ay with more than 32, 767 elements in any dimension. To get around this
restriction, make one dimension the number of memory planes (three) and the other dimension
the number of pixels + 16 (12,480). The following statement declares such an array:

INTEGER Image(1:12480,1:3)

If your array is larger than necessary to store an image, GSTORE will fill it only to the point where
the image is exhausted. If your image is larger than the array, GSTORE will fill the array com
pletelly and ignore the rest of the image.

Data-Driven Plotting

When plotting data points, you will often fmd that they do not form a continuous line. You must
have the ability to control the pen's position. Earlier in this chapter, a third parameter in the
PLOT statement was mentioned. This third parameter is the pen-control parameter, and its func
tion is to raise or lower the pen so that many lines can be drawn with one set of data.

When using a single X-position and Y-position in a PLOT statement (as opposed to plotting an
entir(~ array; we'll cover this a little later), the third parameter is defined in the following manner.
Though it need not be of type INTEGER, its value should be an integer. If it is not, it will be
rounded. The third parameter is either positive or negative, and at the same time, either even or
odd. Whether the number is odd or even determines which action will be performed on the pen,
and the sign of the number determines when that action will be performed: before or after the pen
is moved.

The following table shows how the pen control parameter works:

Pen Control Parameter

Even (Up) Odd (Down)
Positive (after) Pen up after move Pen down after move

Negative (before) Pen up before move Pen down before move

The default parameter is + 1 - positive odd - therefore, the pen will drop after moving, and if
the plen is already down, it will remain down, drawing a line. Zero is considered positive.

The program LEM1 (file "LEM1" on Manual Examples disk) is a good example of pen control. It
draws a LEM (Lunar Excursion Module). There are two arrays used: a two-column REAL array
for the X and Y data, and a one-column INTEGER array containing pen-control data. The data is
read from DATA statements. Load and list the program and then run it.

10-3111 Creating Graphics

Having the pen-control parameter in a third column of the data array is generally a good strategy;
it reduces the number of array names you must declare, and when you have the data points for the
picture, you also have the information necessary to draw it. Nevertheless, an array must be entirely
of one type, and usually you'll want the data to be real. So if you're pressed for memory, you may
want to have a two-column data array of type REAL, and a one-column pen-control array of type
INTEGER. Integer numbers take only one-fourth the memory real numbers take to store.

Translating and Rotating a Drawing

Often there is an application where a segment of a drawing must be replicated in many places; the
same SUb-picture needs to be drawn many times. Using the PLOT statement, it is possible but
rather tedious to do. There is another statement called RPLOT, which draws a figure relative to a
point of your choice. RPLOT means Relative PLOT, and it causes a figure to be drawn relative to
a previously-chosen reference point. RPLOT's parameters may be two or three scalars, or a two
column or three-column array; the parameters are identical to those of PLOT.

Creating Graphics 10-39

The picture defined by the data given to an RPLOT statement is drawn relative to a point called
the current relative origin. This is not necessarily the same as the pen position. The current relative
origin is the last point resulting from anyone of the following statements:

AXES

GINIT

!MOVE

MOVE

POLYLINE

DRAW

GRID

IPLOT

PLOT

RECfANGLE

FRAME

IDRAW

LABEL

POLYGON

Typkally, a MOVE is used to position the current relative origin at the desired location, then the
RPLOT is executed to draw the figure. After the RPLOT statement has executed, the pen may be
in a different place, but the current relative origin has not moved. Thus, executing two identical
RPLOT statements, one immediately after the other, results in the figure being drawn precisely on
top of itself.

A fig;ure drawn with RPLOT can be rotated by using the PIVOT statement before the RPLOT.
PIVOT's single parameter is a numeric expression designating the angular distance through which
the figure is to be rotated when drawn. This value is interpreted according to the current angular
mode: either DEG or RAD.

A program using RPLOT can be found on the Manual Examples disk under the file name
"RPLOT". Load and list this file. Various figures are defined with DATA statements: a desk, a
chair, a table, and a bookshelf. The program displays a floor layout. Here again, the "end polygon
mod(~" codes (the 0,0,7s in the desk and chair definitions) are unnecessary; when a polygon mode
starts, any previous one ends by necessity. Now run the program to see the following figure.

10-41[) Creating Graphics

There are two points of interest iin this program. First, notice that you can specify the EDGE
and/or FILL parameters in the RPLOT statement itself (as in lines 230 and 260), or in the array
(as in lines 180 and 210). FILLs and EDGEs are specified in the array by having a 6, a 10, or an 11
in the third column of the array. If FILL and/or EDGE are specified in both the PLOT statement
and in the data, and the instructions differ, the value in the data replaces the FILL or EDGE key
word on the statement.

The second interesting point is that some of the chairs appear to be under the desks and tables;
that is, parts of several chairs are hidden by other pieces of furniture. This is accomplished by
drawing the chair, and then drawing the desk or table partially over the chair, and filling the desk
top or tabletop with its own fill pattern, which may be black.

Incremental Plotting

Incremental plotting is similar to relative plotting, except that the origin - the point considered to
be 0,0 - is moved every point. Every time you move or draw to a point, the origin is immediately
moved to the new point, so the next move or draw will be with respect to that new origin.

There are three incremental plotting statements available: IPLOT, which has the same parameters
as PLOT and RPLOT; and IMOVE and IDRA W, which have the same parameters as MOVE and
DRAW, respectively.

Creating Graphics 10-41

An I~xample program using IPLOTs can be found in the file "FlAX" on the Manual Examples
disk. It reads data from data statements describing the outlines of certain letters of the alphabet,
and then plots them. Load and run this file.

A program which demonstrates the use of POLYGON, POLYLINE, PLOT, RPLOT, polygon
filling, and gray-shading can be found on the file "SCENERY" on the Manual Examples disk.
Load and run this program.

10 '2 Creating Graphics

Points of note in this program:

• The sunrise was created with graduated gray shades in successively smaller "circles" (actually
3O-sided polygons).

• The horizon was created by defining a rough edge on the top half of a polygon which blacked
out the bottom section of the screen. This covered up the bottom of the sun. The white line of
the horizon was simple plotting of the horizon array without the first and last points. We didn't
want the lower corners of the screen to be included.

• The clouds were created by plotting "circles" after having invoked anisotropic units; thus long,
thin ellipses resulted.

• The seagulls were created by drawing two arcs with POLYLINE. An arc is created by defining
an N-sided polygon and drawing less-than-N sides. Note that PIVOT was used to cause the
starting angle of the arcs to be other than straight to the right.

• The trees were created by defining an array whose left side is a mirror image of the right side.
The array is centered around zero in the X direction to allow for scaling of the tree simply by
multiplying the array by a constant. RPLOT was used to place the trees in their various posi
tions.

Creating Graphics 10-43

Ct)lor Graphics

Color can be used for emphasis, clarity, and to present visually pleasing images. Color is a very
powerfull too~ and it follows directly that it is very easy to misuse .. Be careful in using color, and it
will serve as a valuable tool for communication. Misuse it, and it will garble the communication.

The biggest benefit of the color computer is that it makes experimenting with color so easy. With a
bit-mapped frame buffer and a color map, it is easy to test out ideas before you use them. It is also
possible to use the color map for simple animation effects and some just plain impressive images.

The methods for displaying color fall into four categories:

• Background Value. Whenever GCLEAR is executed, all the pixel locations in the display are
set to O. Thus, PEN 0 is the background color.

• Line Value. The PEN statement is used to determine the color written to the display for aU
lines drawn. This includes all lines (including characters created by LABEL) and outlines
specified by the secondary keyword EDGE.

• Fill Value. The AREA PEN statement is used to specify the color written to the display for
filling areas specified by the secondary keyword FILL.

• Dithered Colors. AREA INTENSITY and AREA COLOR can also be used to specify a fill
color.

Th{: PEN, AREA PEN, AREA INTENSITY, and AREA COLOR statements control what rure
ref{:rred to as modal attributes. This means that the value established by one of the statements
stays in effect until it is altered by another statement.

N(lIn-Color Mapped Color

When PLOTTER IS CRT, "INTERNAL" is executed, eight colors are available through the PEN
and AREA PEN statements. The colors provided are:

• Black and white.

• Red, green, and blue (the additive color primaries).

• Cyan, magenta, and yellow (the complements of the additive color primaries).

10-44 Creating Graphics

The colors can be selected with the PEN statement, the same way they are for an external plotter.
The meanings of the different peJil values are shown in the table below. The pen value can cause
either a 1 (draw), a 0 (erase), n/c (no change), or complement (invert) the value in each color
plane.

Non-Color Map Mode

Pen Action Plane 1 Plane 2 Plane 3
Value (red) (green) (blue)

-7 Erase Magenta a n/c a
-6 Erase Blue n/c n/c a
-5 Erase Cyan n/c a a
-4 Erase Green n/c a n/c
-3 Erase Yellow a a n/c
-2 Erase Red a n/c n/c
-1 Erase White a a a
a Complement invert invert invert
1 Draw White 1 1 1
2 Draw Red 1 a a
3 Draw Yellow 1 1 a
4 Draw Green a 1 a
5 Draw Cyan a 1 1
6 Draw Blue a a 1
7 Draw Magenta 1 a 1

If you are in this mode, you can draw lines in the eight colors listed above. The following program
(found in file COLORLIN.E on your Manual Examples disk) shows the colors available.

10 GINIT
20 GRAPHICS ON
30 CLEAR SCREEN
40 MOVE 20,80
50 FOR X=l TO 7
60 PEN X
70 IDRAW 50,0
80 IMOVE -50,-10
90 NEXT X
91 WAIT 5
100 END

Creating Graphics 10-45

Cc)lor Mapped Color

If you are trying to define a complex human interface, you will need more colors and more control
OVf:r the colors. This is possible after you turn on the color map. To do so, execute:

PLOTTER IS CRT,"INTERNAL";COLOR MAP

De!fault Colors. If you do not modify the color map, the colors selected by the PEN and AREA
PEN values depend on the default color map values. These values are shown in the following table:

Default Color Map and Pen Values

Pen Value Color
0 Black
1 White
2 Red
3 Yellow
4 Green
5 Cyan
6 Blue
7 Magenta
8 Black
9 Olive Green
10 Aqua
11 Royal Blue
12 Maroon
13 Brick Red
14 Orange
15 Brown

Pens 0-7 of the default color map are the same as in non-color map mode. The upper 8 colors (8
through 15) were selected by a graphic designer to produce graphs and charts for business applica
tiolils. The colors are:

• Maroon, Brick Red, Orange, and Brown (warm colors) .

• Black, Olive Green, Aqua, Royal Blue (cool colors).

Thlese colors are one designer's idea of appropriate colors for business charts and graphs. They
were chosen to avoid clashing with each other.

10·-46 Creating Graphics

Changing Default Colors. The SET PEN statement is used to customize the color that each
PEN value represents. SET PEN supports two color models, the RGB (Red, Green, Blue) model
and the HSL (Hue, Saturation, Luminosity) model. Since the color models are dynamically interac
tive, it is much easier to understand them"by experimenting with them.

You can think of the RGB model as mixing the output of three light sources (one each for red,
green, and blue). The parameters in the model specify the intensity of each of the light sources.
The RGB model is accessed through the secondary keyword INTENSITY used with the SET PEN
statements. The values are normalized (range from 0 through 1). Thus,

SET PEN 0 INTENSITY 0.7, 0.7, 0.7

sets pen 0 (the background color) to approximately a 70% gray value. Whenever all the guns are
set to the same intensity, a gray value is obtained. The parameters for the INTENSITY mode of
SET PEN are in the same order they appear in the name of the model, red, green, and blue.

When using an EGA system, each primary color (red, green, and blue) can be displayed at four
distinct levels:

• off

• 1/3 on

• 2/3 on

• full on

Therefore, each PEN may be set to one of 64 distinct colors.

The HSL model is closer to the intuitive model of color used by artists, and is very effective for
interactive color selection. The three parameters represent hue (the pure color to be worked with),
saturation (the ratio of the pure color mixed with white), and luminosity (the brightness-per-unit
area). The HSL model is accessed through the SET PEN statement with the secondary keyword
COLOR:

SET PEN Current_Pen COLOR Hue, Saturation, Luminosity

Hue, Saturation, and Luminosity are normalized to values from 0 to 1.

Creating Graphics 10-47

Filii Colors

In either color-mapped or non-color-mapped mode, areas may be filled with a PEN color by first
sele1cting that PEN with an AREA PEN statement. Filling is specified by using the secondary key
word FILL in any of the following statements:

IPLOT

RECTANGLE

PLOT

RPLOT

POLYGON

SYMBOL

It is possible to fill areas with other shades. These tones are achieved through dithering. Dithering
produces different shades by combining dots of the eight colors described earlier. The screen is
divided into 4-by-4 cells, and patterns of dots within the cells are turned on to match, as closely as
poss.ible, the color you specify. Dithered colors are defined with the AREA COLOR and ARFA
INTENSITY statements using the RGB or HSL models described in the previous section.

10""~ Creating Graphics

11
External Graphics Displays and Plotters

Specifying a PloHer

In the previous chapter you saw program listings containing a line with a PLOTTER IS statement:

PLOTTER IS 3,"INTERNAL"

This caused the computer to activate the internal CRT graphics raster as the plotting device, and
thus all subsequent commands were directed to the screen. If you want a plotter to be the output
device, only the PLOTTER IS statement needs to be changed. If your plotter is at interface select
code 7 and address 5 (the factory settings), the modified statement would be:

PLOTTER IS 70S,"HPGL"

"HPGL" stands for Hewlett-Packard Graphics Language, and it is the low-level language which
the plotters actually speak behind the scenes. More about this later.

There are some limitations, though. If you are doing an operation on one plotting device and
attempt to send the plot to another device which does not support that operation, it won't work.

For example: area fills, which are valid operations for the CRT, are not available on plotters. Color
map operations, which are valid for a color display, are not valid on a plotter. Erasing lines can be
done on the CRT, but, naturally, not on a hard-copy plotter. HPGL commands will be interpreted
correctly by a hard-copy plotter, but not by the CRT.

External Graphics Displays and PloU 11-1

Using a Shared Printer or PloHer

Use of special Shared Resource Manager (SRM) directories called spooler directories allows you
to a<:cess a shared plotter. Setting up a spooler directory is explained in the Shared Resource
Management System Manager's Guide. The following examples assume that the spooler directory
PL bas been created at the root of the SRM directory structure.

MSI ":REMOTE"

Include in your plotting program:

CREA.TE BDAT "PL/plot-file", 1
PLOTTER IS "PL/plot-file"

PLOTTER IS 3,"INTERNAL"

The PLOTTER IS statement only works with BDAT files.

Dumping Raster Images

In addition to generating a hard-copy plot with a plotter, as described above, you can dump a
CRT's raster image to a printer. This method is called a graphics dump or screen dump. It is
accomplished by copying data from the frame buffer to a printer to be printed dot for dot.

First, the image must be drawn on a CRT. Since this technique dumps a raster-type image, it prints
only dots. Thus, it cannot draw a line, per se, but only the approximation of a line from the screen,
made! up of dots. The dump device "takes a snapshot" of the graphics screen at some point in time,
and doesn't care how the dots came to be turned on or off. Thus, filled areas can be dumped to the
printer; indeed, all CRT graphics capabilities (except color) are available. •

• You can use the CSUB utility "GDUMP _COLORED" to send raster dumps of color graphics to the HP PaintJet color
printer. Refer to Installing and Using HP BASIC in the MS-DOS Environment for details.

11-2 External Graphics Displays and Plotters

If your printer is an HP 9876, HP 2631G, HP 2671G, HP 2673A, HP LaserJet, HP ThinkJet, HP
PaintJet, or any other printer which conforms to the HP Raster Interface Standard, dumping
graphics images is easy.· For example:

100 DUMP DEVICE IS 26
110 DUMP GRAPHICS

or simply,

100 DUMP GRAPHICS #26

Both of these program segments would take the image in the last specified CRT graphics frame
buffer (the internal CRT by default) and send it to the printer at address 26. If no source device is
specified, the image is taken from the last active CRT, whether internal or external. The default
factory setting for printers is 701. You would probably use the two-statement version in an applica
tion where you wish to specify the destination device once, and have it apply to many different
DUMP GRAPHICS statements. The one-statement version would probably be used where there
are few and isolated DUMP GRAPHICS statements.

DUMP GRAPHICS will also send a graphics display to a printer. If a DUMP DEVICE IS state
ment has not been executed, the dump device is expected to be at address 701.

If a DUMP GRAPHICS operation is aborted with CLR I/O, the printer mayor may not ter
minate its graphics mode. Sending 75 null characters (ASCII code zero) to a printer such as a HP
9876 terminates its graphics mode. For example:

OUTPUT Dump_dev USING "#,K";RPT$(CHR$(0),75)

If you want the image to be twice as large in each dimension as the actual screen size, you can
specify:

100 DUMP DEVICE IS 701,EXPANDED
110 DUMP GRAPHICS

This will cause the dumped image to be four times larger than it would be if EXPANDED had not
been specified. Each dot is represented by a 2 x 2 square of dots, and the resulting image is rotated
900 clockwise to allow more of the resulting image to fit on the page.

• Refer to your printer owner's manual to determine compatibility.

External Graphics Displays and Plotters 11-3

If you have a printer which does not conform to the HP Raster Interface Standard, all is not lost. It
must, however, be capable of printing raster-image bit patterns.

HP'GL
Hewlett-Packard Graphics Language (HPGL) is a low-level language that is understood by all
cum~nt HP hard-copy plotters. When you specify:

PLOTTER IS 705,"HPGL"

the plotter specifier "HPGL" notifies the computer that it will be ~alking with a device which
undt::rstands HPGL. This causes all the user's BASIC statements to be converted into HPGL com
mands and sent to the plotter. HP plotters always receive commands in HPGL.

When you are executing BASIC graphics statements and they are doing operations on an HP
plotter, there is nothing preventing you from interspersing your own HPGL commands between
the BASIC commands. HPGL commands can be sent to the device with OUTPUT statements;;
howc~ver, the preferred way is to use the GSEND statement. HPGL command sequences are tf:r
minated by a linefeed, a semicolon, or an EOI character, which is sent by the HP-IB (Hewlett
Packard Interface Bus) END keyword. Individual commands within a sequence are typically delim
ited by semicolons. Note that the GSEND statement sends a carriage return/line feed after the:
spedfied string.

There are many HPGL commands available, bu~ the exact ones you will be able to use depend on
the device itself. Plotters are not the only devices which use HPGL; digitizers and graphics tablets
do aliso. By their nature, however, they use a different subset of commands than plotters do. Fol
lowing are a few of the more common and useful HPGL commands.

Controlling Pen Speed

If your plotter pens are geUing old, you probably would want to make them draw more slowly to
get a better quality line. (There are other factors which can affect line quality. For example, humi
dity can alter the line qua:lity of a fiber-tipped pen.) To accomplish this, you could have a state
ment:

GSEND "VS10;"

"VS" stands for "Velocity Select" and the "10" specifies centimeters per second. Thus, this state
ment would tell the plotter to draw at a maximum speed of ten centimeters per second. It specifies
a maximum speed rather than an only speed, because on short line segments, the pen does not
have time to accelerate to the specified speed before the midpoint of the line segment is reached

11-4 External Graphics Displays and Plotters

and deceleration must begin. The range and resolution of pen speeds, and default maximum speed
depend on the plotter.

Controlling Pen Force

On the HP 7580 and HP 7585 drafting plotters, you can specify the amount of force pressing the
pen tip to the drawing medium. This is useful when matching a pen type (ball-point, fiber-tip,
drafting pens, etc.) to a drawing medium (paper, vellum, or mylar, etc.). Again, if a pen is partially
dried out, it may help line quality to adjust the pen force.

An example statement is:

GSEND "FS3,6;"

This statement (Force Select) would specify that pen number 6 should be pressed onto the drawing
medium with force number 3. As you can see, the force specifier occurs first, the pen number
second. The reason for this is that if you do not specify a pen number, all pens will be affected.

The force number is translated into a force in grams. If, for example, you have an HP 7580A
plotter, the force number is converted to force as follows:

1 = 10 grams

2 = 18 grams

3 = 26 grams

Selecting Character Sets

4 = 34 grams

5 = 42 grams

6 = 50 grams

7 = 58 grams

8 = 66 grams

Some plotters contain internal character sets which may be much more pleasing to the eye or more
appropriate for your application than the character set provided by the BASIC operating system.
Through HPGL, you can tell the plotter to use these character sets.

GSEND "CSl;"

tells the plotter to use character set 1 until further notice. This means, however, that to actually get
these characters, you cannot use the LABEL statement in BASIC. This is because the BASIC
graphics system generates all its characters as a series of line segments, and the plotter can't tell
when it is told to draw a line segment whether it is going to be part of a character or not. Thus, you
must use the HPGL label command, LB:

GSEND "LBThis is an example string."&CHR$(3)&";"

External Graphics Display. and Plotter. 11-5

CHR$(3) is the End-of-text or ETX character. It is the default terminator for the LB command. H
you wish, you can specify other characters to signal the end of a line of text to label. You use the
Define Terminator command:

GSEND "DT&;"

This statement instructs the plotter to consider the ampersand to be the terminator. Thus, every
LB command must have an ampersand as the final character.

~
Note

When using a printable ASCII character as the terminator, it will be labelled in addi
tion to terminating the LB command. Also, there must be a terminator as the final
character in the string to indicate the end of the text, or all subsequent commands
will be considered text and not commands; that is, they will merely be labelled, not
executed.

Ernlf Detection

When using HPGL commands, there is always a possibility of making an error. When this occurs,
the program should be able to respond in a friendly way, and not just hang then and there. With
HPGL, it is possible to interrogate the plotting device and determine the problem. The following
statements in an error-trapping routine would determine the type of error that occurred:

GSEND "OE;"
ENTER 705;Error

Aftel~ these two statements have executed, the variable Error will contain the number of the most
recent error. What the error code means depends on the particular device being used.

This is not by any means an exhaustive list of HPGL commands, but it serves to acquaint you with
the concept of using the HPGL language, and the amount of control it gives you over the peri
pheral device. A thorough understanding of HPGL can only be gotten by combining information
from the owner's manual of the particular device you have with actual hands-on experience.

11-8 External Graphics Displays and Plotters

Part III: Interfacing Techniques

Chapters 12 through 16 cover I/O interfaces and I/O programming techniques. You can use these
techniques to output and enter data, and to control peripheral devices from your computer.

12
Introduction to I/O

This chapter introduces the functions and requirements of interfaces between your computer and
its resources. If you are familiar with interfacing concepts, you may want to skim through this
chapter and go on to the programming techniques in the chapters that follow.

Interfacing concepts

This section describes the purpose of an I/O interface, gives an overview of some typical inter
faces, and describes the I/O process. Let's begin by deCIDing some terms.

Terminology

In describing interfaces and the I/O process, several terms are used with special meanings. The
term computer is defined as the processor, its support hardware, firmware, and operating system,
and the BASIC language system. Together, these system elements manage all computer resources.
The term computer resource is used to describe all of the "data handling" elements of the system.
Computer resources include internal memory, CRT display, keyboard, disk drive, and any external
devices that are under computer control (printer, plotter, instruments, etc.). These resources are
often referred to as peripheral devices.

The term hardware describes both the electrical connections and the electronic devices that make
up the circuits within the computer. Any piece of hardware is an actual physical device. The term
software describes the user-written, BASIC language programs. Finnware refers to the pre
programmed assembly language programs that are invoked by BASIC language statements and
commands, or assembly language routines of the operating system. You cannot modify firmware.

The term I/O is an acronym for "Input and Output". It refers to the process of copying data to or
from the computer's memory.

Introduction to 1/0 12-1

The, term bus refers to a common group of hardware lines that are used to transmit information
between computer resources. The computer communicates directly with the internal resources
through the data and control busses. The computer backplane is am extension of these internal data
and contml buses. The computer communicates indirectly with the external devices through inter
faces connected to the backplane.

Why Do You Need an Interface?

There are four fundamental requirements that must be met in order for a computer to communi
cate: with a peripheral device. These are: electrical compatibility, mechanical compatibility, data
compatibility, and timing compatibility. The primary function of an interface is to provide compati
bility in these four areas to establish a communication path for data and commands between the
computer and its resources. The following block diagram shows how an interface relates to the
computer and a peripheral.

Computer

r---

Computer
Compatible
Connector

Logic
Level
Matcher

Interface
Logic

---,
Interface

Logic
Level
Matcher

Cab!er1

L--_...J D~
Compatible
Connector

L ___________________ ~

Peripheral
Device

Electrical and Mechanical Compatibility. Electrical compatibility must be ensured before
there is any thought of connecting two devices. The two .devices often have input and output signals
that do not match. If so, the interface serves to match the electrical levels of these signals before
the physical connections are made.

Me(:hanical compatibility simply means that the connector plugs must fit together properly. Most
interfaces have cables available that can be connected directly to the device.

12-:Z Introduction to I/O

Data Compatibility. The computer and the peripheral device must agree upon the form and
meaning of data before communicating it. Some interfaces format data, but most have little
responsibility for matching data formats. The computer must generally make the necessary
changes, if any, so that the receiving device gets meaningful information.

Timing Compatibility. Since all devices do not have standard data transfer rates, nor do they
always agree as to when the transfer will take place, a consensus between the sending and receiving
devices must be made.

If the data transfer is not begun at an agreed upon point in time and at a known rate, the transfer
must proceed one data item at a time with acknowledgement from the receiving device that it has
the data and that the sender can send the next item. This process is known as a "handshake."

Additional Interface Functions. Another feature of some interface cards is to relieve the
computer of low-level tasks such as performing data-transfer handshakes. This distribution of tasks
eases some of the computer's burden and also decreases the otherwise stringent response time
requirements of external devices.

Some Standard Interfaces

There are several interface standards, which specify compatible signals, data formats, and so forth.
Let's look at some typical kinds of interfaces that you will likely encounter. These interfaces are
discussed in greater detail in chapter 16.

The HP-IB Interface. The HP-IB interface is Hewlett-Packard's implementation of the IEEE-
4881978 Standard Digital Interface for Programmable Instrumentation. The acronym HP-IB
stands for "Hewlett-Packard Interface Bus," and is often referred to as the "bus."

The HP-IB interface fulfills all four compatibility requirements (hardware, electrical, data, and
timing) with no additional modification. All you need to do is connect the interface cable to the
desired HP-IB.

The "bus" is somewhat of an independent entity. It is a communication arbitrator that provides an
organized protocol for communications between several devices. The bus can be configured
several ways. The devices on the bus can be configured as senders or receivers of data and control
messages, depending on their capabilities.

The RS-232 Serial Interface. The serial interface changes 8-bit parallel data into 8-bit-serial
information and transmits the data through a two-wire cable. Data is received in this serial format
and is then converted back to parallel data. This use of two-wire cable makes it more economical
to transmit data over long distances than would be the case if eight individual lines were used.

Introduction to 1/0 12-3

Data is t][,ansmitted at several programmable rates using either a simple data handshake or no
handshake at all. The main use of this interface is communicating with simple devices.

Tht! GPIO Interface. The GPIO (General Purpose Input/Output) interface provides the most
flexibility of all the interfaces. It consists of 16 output data lines, 16 input data lines, two handshake
lines, and other assorted control lines. Data is transmitted using programmable handshake conven
tions and logic sense.

The I/O Process

The. I/O process begins when the computer encounters an I/O statement in a program. The com
putc!r first determines the type ofI/O statement to be executed (such as ENTER USING, OUT
PUT, etc.). Once the type of statement is determined, the computer evaluates the statement's
parameters.

Specifying a Resource. Each resource must have a unique specifier that allows it to be
accessed to the exclusion of all other resources connected to the computer. The methods of
uniquely specifying resources are device selectors, string variable names, and path names.

For example, before executing an OUTPUT statement, the computer first evaluates the parameter
which specifies the destination resource. The source parameter of an ENTER statement is
evaluated in the same manner.

OUTPUT Dest_pararneter;Source_itern
ENTER Source_pararneter;Dest_itern

Registers. The computer must often read certain memory locations to determine which
firmware routines will be called to execute the I/O procedure. The contents of these locations,
known as registers, store parameters to be used and the type of interface involved in the operation.

An I~xample of register usage by firmware occurs during output to the CRT. Characters output to
this device are displayed beginning at the current screen coordinates. After the computer has
evaluated the first expression in the source-item list, it must determine where to begin displaying
data on the screen. Two memory locations are dedicated to storing the "X'" and "Y" screen coordi
nate:s. The firmware determines these coordinates and begins copying the data to the correspond
ing llocations in display memory.

Data Handshake. Each byte (or word) of data is transferred with a procedure known as data
transfer handshake. It is the means of moving one byte of data at a time when the two devices are
not in agreement as to the rate of data transfer or as to what point in time the transfer will begin.
The steps of the handshake are as follows:

12-4, Introduction to 1/0

1. The sender signals to get the receiver's attention.

2. The receiver acknowledges that it is ready.

3. A data byte (or word) is placed on the data bus.

4. The receiver acknowledges that it has received the data item and is now busy. No further
data may be sent until the receiver is ready.

5. Repeat these steps if more data is to be transferred.

Directing Data Flow

As described in the previous section, data can be moved between computer memory and several
resources, including:

• Computer memory (string variables in memory).

• Internal and external devices.

• Mass storage files.

• Buffers.

This section describes how string variables and devices are specified in I/O statements.

Specifying a Resourc~~

Each resource must have a specifier that allows it to be accessed to the exclusion of all other
resources. String variables are specified with their names, while devices can be specified with
either their device selector or with a new data type known as an I/O path name. This section
describes how to specify these resources in OUTPUT or ENTER statements.

String-Variable Names. Data is moved to and from string variables by specifying the variable's
name in an OUTPUT or ENTER statement. Examples of each are shown in the following pro·
gram (found in file OUTENTER on your Manual Examples disk).

Introduction to 1/0 12-5

100 DIM To_dest$[80],From_source$[80]
110 DIM Data_out$[80]
120 !
130 From_source$="Source data"
140 Data_out$="OUTPUT data"
150
160 PRINTER IS 1
170 PRINT "To_dest$ before OUTPUT= ";To_dest$
180 PRINT
190
200 OUTPUT To_dest$;Data_out$;
210 PRINT "To_dest$ after OUTPUT= ";To_dest$
220 PRINT
230
240 ENTER From_source$;To_dest$
250 PRINT "To_dest$ after ENTER= ";To_dest$
260 PRINT
270
280 END

Printed results from the program are:

To_dest$ before OUTPUT=
To_dest$ after OUTPUT= OUTPUT data

To_dest$ after ENTER= Source data

Deviice Selectors. Devices include the built-in CRT and keyboard, plus external printers and
instmments, and all other physical entities that can be connected to the computer through an inter
face. Each interface has a unique number by which it is identified, known as its interface select
code. The internal devices are accessed with the following permanently assigned interface seled
codes:

Crt Display 1

Keyboard 2

Built-in HP-IB 7

Other optional interfaces have select codes that you can set by means of switches on the interface
card. These interfaces cannot use select codes 1 through 7; the valid range is 8 through 31. The fol
lowing settings on optional interfaces have been made at the factory, but can be reset to any unique
select code between 8 and 31. Refer to the interface instruction manual for further information.

12-6 Introduction to 1/0

GPI028

SRM21

Examples of using interface select codes to access devices are shown below.

OUTPUT l;"Data to CRT"
ENTER l;Crt_line$

Int sel code=l2
OUTPUT Int_sel_code;String$&"Expression",N~expression
ENTER Int_select_code;Str_variable$,Num_variable

Number=2
ENTER Number+7;Serial_data$
OUTPUT ll-Number;"Data to serial card"

The device selector can be any numeric expression that rounds to an integer in the range 1 through
32 (32 is a pseudo select code used as a device selector for parity, cache, and float registers). If the
interface select code specifies an HP-IB interface, additional information must be specified to
access a particular HP-IB device, since more than one device can be connected to the computer
through HP-IB interfaces.

HP-IB Device Selectors. Each device on the HP-IB interface has a primary address by which
it is uniquely identified. Each address must be unique so that only one device is accessed when an
address is specified. The device selector is therefore a combination of the interface select code and
the devices address. '!\vo examples are shown below.

To access the device on:

Interface select code 7 at primary address 01, use device selector 701.

Interface select code 10 at primary address 13, use device selector 1013.

I/O Path Names. All data entered into and output from the computer is moved through the
"I/O path." An I/O path consists of the hardware and operating system firmware used to carry
out this moving process. When a string variable or device selector is specified in an ENTER or
OUTPUT statement, the operating system first evaluates the expression that specifies a resource,
and then chooses the corresponding default I/O path through which data will be moved.

The I/O paths to devices and mass storage files can be assigned special names; I/O paths to string
variables can only be assigned names if the variable is declared as a buffer. Assigning names to
I/O paths provides improvements in performance and additional capabilities over using device
selectors.

Introduction to 1/0 12-7

Assigning I/O Path Names

An I/O path name is a new data type that can be assigned to either a device or a data file on a
mass storage device. Any valid name preceded by the "@" character can be used.

A name is a combination of 1 to 15 characters, beginning with an upper case alpha
betic character or one of the characters CHR$(161) through CHR$(254) and fol
lowed by up to 14 lower case alphanumeric characters, the underscore character U,
or the characters CHR$(161) through CHR$(254).

The following examples show you how this is done.

ASSIGN @Disp1ay TO 1
ASSIGN @Printer TO 26
ASSIGN @Seria1 TO 9
ASSIGN @Gpio TO 12

Now you could use the I/O path names instead of the device selectors to specify the resource with
which the communication is to take place.

OUTPUT @Disp1ay;"Disp1ay message"
OUTPUT @Printer;"Message to the printer"
ENTER @Seria1;Variab1e,Variab1e$
ENTER @Gpio;Word1,Word2

Since an I/O path name is a data type, a fixed amount of memory is allocated for the variable,
similar to the manner in which memory is allocated to other program variables (integer, real, and
strin~:).

Attempting to use an I/O path name that does not appear in any program line results in error 910
("Identifier not found in this context"). This error message indicates that memory space has not
been allocated for the variable.

Attempting to use an I/O path name that does appear in an ASSIGN statement in the program,
but which has not yet been executed results in error 177 ("Undefined I/O path name"). This error
indicates that memory space has been allocated, but no valid information has been placed into the
variable since the I/O path name has not yet been assigned to a resource.

12-8 Introduction to 1/0

Reassigning I/O Path Names. If an I/O path name already assigned to a resource is to be
reassigned to another resource, the preceding form of the ASSIGN statement is used. The first
action is that the I/O path name to the device is implicitly closed. A new assignment is then made
as though the first never existed.

100 ASSIGN @Printer TO 1 !Initia1 assignment.
110 OUTPUT @Printer;"Data1"
120
130 ASSIGN @Printer TO 701 !2nd ASSIGN closes the 1st
140 OUTPUT @Printer;"Data2" land makes a new assignment.
150 PAUSE
160 END

The result of running the program is that "Datal" is sent to the CRT, and "Data2" is sent to the
HP-IB device 701. Since the program was paused (which maintains the program context), the I/O
path name @Printer can be used in an I/O statement or reassigned to another resource from the
keyboard.

Closing I/O path names. A second use of the ASSIGN statement is to explicitly close the
name assigned to an I/O path. Examples of statements that close path names are as follows.

ASSIGN @Printer TO *
ASSIGN @Seria1 TO *
ASSIGN @Gpio TO *
After executing this statement for a particular I/O path name, the name cannot be used in subse
quent I/O statements until it is reassigned.

Introduction to I/O 12-9

13
OutpuHing and Entering Data

This chapter discusses two very powerful BASIC statements that can be used in a wide variety of
I/O applications. You can use the OUTPUT statement to output data to a peripheral, exercising
considerable control over the data format. The ENTER statement allows you to enter data of
different formats into your computer from a peripheral device.

Outputting Data

There are two general types of output operations. The first type, known as "free-field outputs," use
the computer's default data representations.' The second type provides precise control over each
character sent to a device by allowing you to specify the exact "image" of the ASCII data to be out
put. Let's look at free-field output first.

Free-Field Outputs

Free-field outputs are invoked when the following types of OUTPUT statements are executed.

OUTPUT @Device;3.14*Radius~2

OUTPUT Printer;"String data";Nurn_l

OUTPUT 9;Test,Score,Student$

OUTPUT Escape_code$; CHR$ (27)&"&A1S";

• The ASCII representation described briefly in the preceding chapter is the default data representation used when
communicating with with devices; however, the internal representation can also be used. See the "I/O Path Attributes"
section in chapter 14 for further details.

Outputting and Entering Data 13-1

Tht! Free-Field Convention. The term "free-field" refers to the number of characters used to
represent a data item. During free-field outputs, BASIC does not send a constant number of ASCII
chruracters for each type of data item, as is done during "fixed-field outputs" which use images
(described later in this chapter). Instead, a special set of rules is used that govern the number and
type: of characters sent for each source item. The rules used for determining the characters output
for lnumeric and string data are described in the following paragraphs.

Standard Numeric Format. The default data representation for devices is to use ASCII char
acte,rs to represent numbers. The ASCII representation of the value of each expression in the
sow:ce list is generated during free-field output operations. Even though all REAL numbers have
15 (and INTEGERs can have up to 5) significant decimal digits of accuracy, not all of these digits
are output with free-field OUTPUT statements. Instead, the following rules of the free-field con
venlion are used when generating a number's ASCII representation.

Al1lnumbers between 1E - 5 and 1E + 6 are rounded to 12 significant digits and output in floating
point notation with no leading zeros. If the number is positive, a leading space is output for the
sign; if negative, a leading" ,- " is output. Some examples follow:

32:767
-32:768
12,3456.789012

-.000123456789012

If th.e number is less than 1E - 5 or greater than 1E + 6, it is rounded to 12 significant digits and
output in scientific notation. No leading zeros are output, and the sign character is a space foJ'
positive and "-" for negative numbers. For example:

-1.23456789012E+6
1.23456789012E-5

Standard String Format. In the standard format no leading or trailing spaces are output with
the string's characters. •

String characters.
No leading or trailing spaces.

• This statement describes the FORMAT ON attribute (ASCII data representation). When sending data with the
FORMAT OFF attribute, however, the internal representation of string data is used; for strings, the data consists of a
four-byte length header that contains the number of characters in the string, followed by the string characters .. With
FORMAT ON, there is no length header; only the ASCII string characters are sent.

13-~! Outputting and Entering Data

Item Separators and Terminators. Data items are output one byte (or word) at a time,
beginning with the left-most item in the source list and continuing until all of the source items have
been output. Items in the list must be separated by either a comma or a semicolon. However, items
in the data output mayor may not be separated by item terminators, depending on the use of item
separators in the source lists.

The general sequence of items in the data output is as follows. The end-of-line (EOL) sequence is
discussed in the next section.

optional optional optional

Using a comma separator after an item specifies that the item temlinator (corresponding to the type
of item) will be output after the last character of this item. A carriage-return, CHR$(13), and a
line-feed, CHR$(10), terminate string items.

Note

In the examples in this chapter, "EOL" is used to represent an end-of-line sequence,
"CR" is used for a carriage-return character, and "LF" for a line-feed character.

OUTPUT Device;"Item",-1234

II I t I e I m I CR I LF I - I 2 3 4 I EOl I
(The default EOL sequence is a CR/LF.)

A comma separator specifies that a comma, CHR$(44), terminates numeric items:

OUTPUT Device;-1234,"Item"

1- 1 2 3 4 t e m I EOl I

Outputting and Entering Data 13-3

If a separator follows the last item in the list, the proper item terminator will be output instead of
the EOL sequence.

OUTPUT Device; "Item" ,

[T]tlelmICRILFI
or:

OUTPUT Device;-1234,

Using a semicolon separator suppresses output of the (otherwise automatic) item's terminator.

OUTPUT 1;"Item1";"Item2"

[!] tie I m I 1 I I II tie 1m2 I EOl I
or:

OUTPUT 1;-12;-34

~ [1 I 2 I - I 3 I 4 I EOl I

If a semicolon separator follows the last item in the list, the EOL sequence and item terminators
are suppressed.

OUTPUT 1; "Item1"; "Item2";

[!]tlelmI111ItlelmI21
(Neither of the item terminators nor the EOL sequence are output.)

13-4 Outputting and Entering Data

If the item is an array, the separator following the array name determines what is output after each
array element. (Individual elements are output in row-major order.)

100 OPTION BASE 1
110 DIM Array(2,3)
120 FOR Row=l TO 2
130 FOR Co1umn=1 TO 3
140 Array(Row,Co1umn)=Row*10+Co1umn
150 NEXT Column
160 NEXT Row
170

OUTPUT CRT;Array(*) 180
190
200
210
220
230
240
250

OUTPUT CRT;Array(*),

OUTPUT CRT;Array(*);

OUTPUT CRT; "Done"
END

The following is the resultant oultput:

1 1 1 2 1 3

1 1 1 2 1 3

1 1 1 2 1 3 2

D 0 N E EOL
sequence

No trailing separator.

Trailing comma.

Trailing semi-colon.

2 1 2 2 2 3 EOL I
sequence

2 1 2 2 2 3 . I
1 2 2 2 3

Outputting and Entering Data 13-5

Item separators cause similar action for string arrays.

1001 OPTION BASE 1
1101 DIM Array$(2,3)[2]
1201 FOR Row=l TO 2
1301 FOR Co1umn=1 TO 3
1401 Array$ (Row,Co1umn)=VAL$ (Row*10+Co1umn)
1501 NEXT Column
1601 NEXT Row
1701
1801
1901
2001
2101
2201
230
240
250

OUTPUT CRT;Array$(*) No trailing separator.

OUTPUT CRT;Array$(*) , Trailing comma.

OUTPUT CRT;Array$(*); Trailing semi-colon.

OUTPUT CRT; "Done"
END

The following is the resultant output:

1 1 CR IF 1 2 CR IF 1 I 3 CR IF 2 1 CR IF 2 2 CR IF 2

1 1 CR IF 1 2 CR IF 1 I 3 CR IF 2 1 CR IF 2 2 CR IF 2
i

1 1 1 2 1 3 2 1 2 I 2 2 3

D 0 N E EOl
sequence

3 EOl
sequence

3 EOl
sequence

A pad byte may be sent following the last character of the EOL sequence when using an I/O path
that possesses the WORD attribute. See "I/O Path Attributes" in chapter 14 for further informa
tion.

Chllnging the EOl Sequence (Requires 10). An end-of-line (EOL) sequence is normally
sent following the last item sent with OUTPUT. The default EOL sequence consists of a
carriage-return and line-feed (CR/LF), sent with no interface-dependent END indication. When
the 10 binary is loaded, it is also possible to define your own special EOL sequences that include
sencling special characters, sending an interface-dependent END indication, and delaying a
specified amount of time after sending the EOL sequence.

13-4:5 OutpuHlng and Entering Data

In order to define non-default EOL sequences to be sent by the OUTPUT statement, an I/O path
must be used. The EOL sequence is specified in one of the ASSIGN statements which describe the
I/O path. An example is as follows.

ASSIGN @Device TO 12;EOL CaR$(10)&CHR$(10)&CHR$(13)

The characters following EOL are the new EOL-sequence characters. Any character in the range
CHR$(O) through CHR$(255) may be included in the string expression that defines the EOL char
acters; however, the length of the sequence is limited to eight characters or less. The characters
are put into the output data before any conversion is performed (if CONVERT OUT is in effect).

If END is included in the EOL attribute, an interface-dependent "END" indication is sent with (or
after) the last character of the EOL sequence. However, if no EOL sequence is sent, the END
indication is also suppressed. The following statement shows an example of defining the EOL
sequence to include an END indication.

ASSIGN @Device TO 20;EOL CHR$(13)&CHR$(10) END

With the HP-IB Interface, the END indication is an End-or-Identify message (EOI) sent with the
last EOL character. Refer to "The HP-IB Interface" in chapter 16 for further details.

If DELAY is included, the system delays the specified number of seconds (after sending the last
EOL character and/or END indication) before executing any subsequent BASIC statement.

ASSIGN @Device;EOL CHR$(13)&CHR$(10) DELAY 0.1

This parameter is useful when using slower devices which the computer can "overrun" if data are
sent as rapidly as the computer can send them. For example, a printer connected to the computer
through a serial interface set to operate at 300 baud might require a delay after receiving a CR
character to allow the carriage to return before sending further characters.

The default EOL sequence is a CR and LF sent with no END indication and no delay; this default
can be restored by assigning EOL OFF to the I/O path.

EOL sequences can also be sent by using the "L" image specifier. See "Outputs that Use Images"
for further details.

Outputting and Entering Data 13-7

Usiing END in Free-Field OU"rpUT

The secondary keyword END may be optionally specified following the last source-item expression
in a free-field OUTPUT statement. The result is to suppress the End-oj-Line (EOL) sequence that
would otherwise be output after the last byte of the last source item. If a comma is used to separate
the llast item from the END keyword, the corresponding item terminator will be output as before
(carriage-return and line-feed for string items and comma for numeric items).

Let's look at some examples:

ASSIGN @Gpio TO 12

OUTPUT @Gpio;-10,END

C==I 1 I 0 I ' I
(Item terminator, but no EOL sequence, is sent.)

OUTPUT @Gpio;-10;END
OUTPUT @Gpio;-10 END

C::::I 1 I 0 I
(Neither item terminator nor EOL sequence is sent.)

OUTPUT @Gpio;"AB", END

[!] B I CR I LF I
(Item terminator, but no EOL sequence, is sent.)

OUTPUT @Gpio; "AB"; END
OUTPUT @Gpio;"AB" END

(Neither item terminator nor EOL sequence is sent.)

13-8 OutpuHing and Entering Data

OUTPUT @Gpio

(Only the EOL sequence is sent..)

OUTPUT @Gpio;END
OUTPUT @Gpio; '"' END

(No EOL sequence is sent.)

BASIC defines additional action when END is specified in a free-field OUTPUT
statement directed to the HP-IB interface.

Note

With the HP-IB interface, END has the additional function of sending the End-or-Identify signal
(EOI) with the last data byte of the last source item; however, if no data are sent from the last
source item, EOl is not sent. For further description of the EOI signal, see "The HP-IB Interface"
in chapter 16. Here are some examples:

ASSIGN @Device TO 701

OUTPUT @Device;-10,END

EOI is sent with the last character (numeric item terminator).

OUTPUT @Device; "ABIt; END
OUTPUT @Device; "AB" END

I A I B I
EOI is sent with the last character of the item.

Outputting and Entering Data 13-9

OUTPUT @Device;END
OUTPUT @Device;"" END

Neither EOL sequence nor EOI is sent, since no data is sent.

Ou1tputs that Use Images

The free-field form of the OUTPUT statement is very convenient to use. However, there may be
times when the data output by the free-field convention is not compatible with the data required by
the receiving device.

Several instances for which you might need to format outputs are: special control characters are to
be output; the EOL sequence (carriage-return and line-feed) needs to be suppressed; or the
exponent of a number must have only one digit. This section shows you how to use image specifiers
to create your own, unique data representations for output operations.

The OUTPUT USING Statement. When this form of the OUTPUT statement is used, the
data is output according to the format image referenced by the "USING" secondary keyword. This
image consists of one or more individual image specifiers which describe the type and number of
data bytes (or words) to be output. The image can be either a string literal, a string variable, 01' the
line label or number of an IMAGE statement. Examples of these four possibilities are listed
below.

100 OUTPUT 1 USING "6A,SDDD.DDD,3X";" K= ",123.45

100 Image_str$="6A,SDDD.DDD,3X"
110 OUTPUT CRT US ING Image _ s tr$;" K= "; 123 . 45

100 OUTPUT CRT USING Image_stmt;" K= ";123.45
110 Image_stmt: IMAGE 6A,SDDD.DDD,3X

100 OUTPUT 1 USING 110;" K= "; 123 .45
110 IMAGE 6A,SDDD.DDD,3X

13-110 Outputting and Entering Data

Images

Images are used to specify the format of data during I/O operations. Each image consists of
groups of individual image (or "field") specifiers, such as 6A, SDDD.DDD, and 3X in the preced
ing examples. Each of these field specifiers describe one of the following things:

• It describes the desired format of one item in the source list. (For instance, 6A specifies that a
string item is to be output in a "6-character Alpha" field. SDDD.DDD specifies that a
numeric item is to be output with Sign, 3 Decimal digits preceding the decimal point, followed
by 3 Decimal digits following the decimal point.)

• It specifies that special charader(s) are to be output. (For instance, 3X specifies that 3 spaces
are to be output.) There is no corresponding item in the source list.

Thus, you can think of the image list as either a precise format description or as a procedure. It is
convenient to talk about the image list as a procedure for the purpose of explaining how this type
of OUTPUT statement is executed.

Again, each image list consists of images that describe the format of data items to be output. The
order of images in the list corresponds to the order of data items in the source list. In addition,
image specifiers can be added to output (or to suppress the output of) certain characters. The fol
lowing example steps through exactly how BASIC executes all of the preceding equivalent state
ments.

Example of Using an ImagE!. We will use the first of the four, equivalent output statements
shown above. Don't worry if you don't understand each of the image specifiers used in the image
list; each will be fully described in subsequent sections of this chapter. The main emphasis of this
example is that you will see how an image list is used to govern the type and number of characters
output.

OUTPUT CRT USING "6A, SDDD. DDD, 3X";" K= ",123.45

The data stream output by the computer is as follows:

I 4 5 0

6A S D D D D D D 3X

I CR I IF I
", .
default EOl
sequence

OutpuHing and Entering Data 13-11

The process follows the following steps:

1. The computer evaluates the first image in the list. Generally, each group of specifiers
separated by commas is an "image"; the commas tell the computer that the image is com
plete and that it can be "processed." In general, each group of specifiers is processed before
going on to the next group. In this case, six alphanumeric characters taken from the first item
in the source list are to be output.

2. The computer then evaluates the first item in the source list and begins outputting it, one
byte (or word) at a time. After the 4th character, the first expression has been "exhausted."
In order to satisfy the corresponding specifier, two spaces (alphanumeric "fill" characters)
are output.

3. The computer evaluates the next image (note that this image consists of several different
image specifiers). The "s" specifier requires that a sign character be output for the numbert

the "0" specifiers require digits of a number, and the "." specifies where the decimal point
will be placed. Thus, the number of digits following the decimal point have been specified.
All of these specifiers describe the format of the next item in the source list.

4. The next data item in the source list is evaluated. The resultant number is output one digit
at a time, according to its image specifiers. A trailing zero has been added to the number to
satisfy the "DOD" specifiers following the decimal point.

5. The next image in the list ("3X")is evaluated. This specifier does not "require" data t so the
source list needs no corresponding expression. Three spaces are output by this image.

8. Since the entire image list and source list have been "exhausted", the computer then outputs
the current (or default t if none has been specified) "end-of-line" sequence of characters
(here we assume that a carriage-return and line-feed are the current EOL sequence).

The execution of the statement is now complete. As you can see, the data specified in the source
list must match those specified in the output image in type and in number of items.

Imclge Definitions During Outputs

This section describes the definitions of each of the image specifiers when referenced by OUT·
PUT statements. The specifiers have been categorized by data type. It is suggested that you scan
through the description of each specifier and then look over the examples. You are also highly
encouraged to experiment with the use of these concepts.

13-12 Outputting and Entering Data

Numeric Images. These image specifiers are used to describe the format of numbers.

Sign, DUgit, Radix and Exponent Specifiers

Image Specifier Meaning
S Specifies a "+" for positive and a "-" for negative numbers is

to be output.

M Specifies a leading space for positive and a "-" for negative
numbers is to be output.

0 Specifies one ASCII digit ("a" through "9") is to be output.
Leading spaces and trailing zeros are used as fill characters.
Thl3 sign character, if any, "floats" to the immediate left of the
most-significant digit. If the number is negative and no S or M
is used, one digit specifier will be used for the sign.

Z Same as "0" except that leading zeros are output. This
specifier cannot appear to the right of a radix specifier
(delcimal point or R).

* Like 0, except that asterisks are output as leading fill charac-
ters (instead of spaces). This specifier cannot appear to the
right of a radix specifier (decimal point or R).

Sp'3cifies the position of a decimal point radix-indicator (Ameri-
can radix) within a number. There can be only one radix indica-
tor per numeric image item.

R Specifies the position of a comma radix indicator (European
radix) within a number. There can be only one radix indicator
pel' numeric image item.

E Spl3cifies that the number is to be output using scientific nota-
tion. The "E" must be preceded by at least one digit specifier
(0, Z, or *). The default exponent is a four-character sequence
consisting of an "E", the exponent sign, and two exponent
digits, equivalent to an "ESZZ" image. Since the number is
left-justified in the specified digit field, the image for a negative
number must contain a sign specifier (see the next section).

ESZ Same as "E" but only one exponent digit is output.

ESZZZ Same as "E" but three exponent digits are output.

Outputting and Entering Data 13-13

Sign, Digit, Radix and Exponent Specifiers (continued)

Ilmage Specifier Meaning
K, -K Specifies that the number is to be output in a "compact" for-

mat, similar to the standard numeric forma~; however, neither
leading spaces (that would otherwise replace a "+" sign) nor
item terminators (commas) are output, as would be with the
standard numeric format

H,-H Like K, except tha~ ~he number is to be output using a comma
radix (European radix).

Now let's look at some examples using numeric image specifiers.

OUTPUT @Device USING "DDDD";-123.769

c== 1 1 1 2 1 4 1 EOl 1

OUTPUT @Device USING "4D";-1.2

C 11 1 EOll

OUTPUT @Device USING "ZZ.DD";1.675

6 8 1 EOl 1

OUTPUT @Device USING "Z.D"; .35

~I . 141 EOll

OUTPUT @Device USING "DD.E";12345

~ I 2 1 . 1 E I + 1 0 1 3 1 EOl 1

13-14 OutpuHing and Entering Data

OUTPUT @Device USING "2D.DDE";2E-4

1 2 1 0 1 . 1 0 1 0 1 E 1 - 1 0 1 5 1 EOl 1

OUTPUT @Device USING "K";12.400

11 1 2 1 . I 4 I EOl I

OUTPUT CRT USING "MDD.2D";-12.449

I - I 1 I 2 I . I 4 I 5 I E~

OUTPUT CRT USING "MDD.lDD";2.09

I I I 2 I . I 0 I 9 I EOl I

OUTPUT 1 USING "SZ.DD"; .49

I + I 0 I . I 4 I 9 I EOl I

OUTPUT CRT USING "SDD.lDDE";-2.35

I - I 2 I 3 I . I 5 I 0 I E I - I 0 I 1 I EOl I

OUTPUT @Device USING "**.D";2.6

I * I 2 I . I 6 I EOl I

Outputting and Entering Data 13-15

String Images. These types of image specifiers are used to specify the format of string data
items.

Character Specifiers

Irnage Specifier Meaning
A Specifies that one character is to be output Trailing spaces

are used as fill characters if the string contains less than the
number of characters specified.

"literal" All characters placed in quotes form a string literal, which is
output exactly as is. Literals can be placed in output images
that are part of OUTPUT statements by enclosing them in dou-
ble quotes.

K, -K, H, -H Specifies that the string is to be output in "compact" format,
similar to the standard string format. However, no item termina-
tors are output as with the standard string format.

Hen~ are some examples of OUTPUT statements with string specifiers:

OUTPUT @Device USING "8A";"Characters"

[£:1 h 1 air 1 a 1 cit e 1 EOl 1

OUTPUT @Device USING "K,""Literal""";"AB"

~I B 1 l 1 i 1 tie 1 ria 1 1 EOl 1

OUTPUT @Device USING "K";" Hello "

[]~~_H~e~1 ~~o_I~~~I_E_O~ll

OUTPUT @Device US ING "SA";" Hello "

[] 1 Hie 1 EOl 1

13-116 OutpuHing and Entering Data

Binary Images. These image specifiers are used to output bytes (8-bit data) and words (16-bit
data) to the destination. 'JYpical uses are to output non-ASCII characters or integers in their inter
nal representation.

Binary Specifiers

Image Specifier Meaning
B Specifies that one byte (8 bits) of data is to be output. The

source expression is evaluated, rounded to an integer, and
Interpreted MOD 256. If it is less than -32768, CHR$(O) is out-
put. If is greater than 32 767, CHR$(255) is output.

W Specifies that one word of data (16 bits) are to be sent as a
115-bit, two's-complement integer. The corresponding source
expression is evaluated and rounded to an integer. If it is less
than -32768, then -32768 is sent; if it is greater than 32 767,
then 32 767 is sent.

If either an I/O path name with the BYTE attribute (refer to "I/O
Path Attributes" in chapter 14) or a device selector is used to
access an 8-bit interface, two bytes will be output; the first byte
is most significant. If an I/O path name with the BYTE attribute
is used to access a 16-bit interface, the BYTE attribute is over-
ridden and one 16-bit word is output in a single handshake
operation.

If an I/O path name with the WORD attribute is used to access
a 16-bit interface, a pad byte, CHR$(O), is output whenever
necessary to achieve alignment on a word boundary.

If the destination is a BOAT or HPUX file, string variable, or
buffer, the WORD attribute is ignored and all data are sent as
bytes; however, pad byte(s) will also be output whenever
necessary to achieve alignment on a word boundary. The pad
byte may be changed by using the CONVERT attribute (refer to
"I/O Path Attributes" in chapter 14).

y like W, except that no pad bytes are output to achieve align-
ment on a word boundary. If an I/O path with the BYTE attri-
bute is used to access a 16-bit interface, the attribute is not
overridden (as with the W specifier).

Outputting and Entering Data 13-17

Some binary examples follow:

OUTPUT @Device USING "B,B,B";65,66,67

r:1 B I c I EOl I

OUTPUT @Device USING "B";13

OUTPUT @Device USING "W";256*65+66

~I B I EOl I

For this example, assume that @Device possesses the WORD attribute and that the EOL
sequence consists of the characters "123" with an END indication.

OUTPUT @Device USING "K,W";"Odd",256*65+66

~I did INULI A I B I 1 I 2 I 3 INULI
'-~' 1\ 1\ "

Weird 1 Word 2 Word 3 Word 4 Word 5 END Indication Sent Here

For this example, assume that @Device possesses the WORD attribute and that the EOL
sequence is the default (CR/LF).

OUTPUT @Device USING "K,Y";"Odd",256*65+66

@J did I A I B I CR I LF INULI -----.......-" . . '

Word 1 Word 2 Word 3 Word 4

13-118 Outputting and Entering Data

Special-Character Images,. These specifiers require no corresponding data in the source list.
They can be used to output spaces, end-of-line sequences, and form-feed characters.

Special-Character Specifiers

Image Specifier Meaning
X Specifies that a space character, CHR$(32), is to be output.

I Specifies that a carriage-return character, CHR$(13), and a
line-feed character, CHR$(10), are to be output.

@ Specifies that a form-feed character, CHR$(12), is to be out-
put.

Here are some examples:

OUTPUT @Device USING "A,4X,A"; "M", "A"

I A I E(~

OUTPUT @Device USING "SOX"

(50 spaces) I EOl I

OUTPUT @Device USING "@,/"

I FF I CR I IF I EOl I

OUTPUT @Device USING "/"

I CR I IF I EOl I

Outputting and Entering Data 13-19

Ternllination Images. These specifiers are used to output or suppress thl~ end-of-line sequence
output after the last data item.

Termination Specifiers

Image Specifier Meaning _.
L Specifies that the current end-of-line sequence is to be output"

The default EOL characters are CR and LF; see "Changing the
EOL Sequence" for details on how to re-define these charac-
ters. If the destination is an I/O patlh name with the WORD attrii-
bute, a pad byte will be output after each EOL sequence when
necessary to achieve word alignment.

--
Specifies that the EOL sequence that normally follows the last

item is to be suppressed.

% Is ignored in output images but is allOWed to be compatible
with ENTER images.

+ Specifies that the EOL sequence that normally follows the last
item is to be replaced by a single carriage-return character
(CR).

-- - Specifies that the EOL sequence that normally follows the last
item is to be replaced by a single line-feed character (LF).

--

Let's look at some examples of termination images.

OUTPUT @Device USING "4A,L";"Data"

[E] a I t I a I EOL I EOL I

OUTPUT @Device USING "/I,K";"Data"

13-2') Outputting and Entering Data

OUTPUT @Device USING "II,B";12

(Note that CHR$(12) is the form feed character.)

OUTPUT @Device USING "+,K";"Data"

I 0 I a I t I a I CR I

OUTPUT @Device USING" -, L,K"; "Data"

I EOL I 0 I a I t I a I LFJ

Additional Image Features

Several additional features of outputs which use images are available with the computer. Several of
these features, which have already been shown, will be explained here in detail.

Repeat Factors. Many of the specifiers can be repeated without having to explicitly list the
specifier as many times as it is to be repeated. For instance, to a character field of 15 characters,
you do not need to use "AAAAAAAAAAAAAAA"; instead, you merely specify the number of
times that the specifier is to be repeated in front of the image ("15A"). The following table
identifies which specifiers can be repeated and which cannot.

Repeatable Specifiers Non-Repeatable Specifier.
0, Z, *, A, X, I, @, L S, M,., R, E, K, H, B, W, Y, #, %, +, -

Outputting and Entering Data 13-21

Let's look at some examples using repeat factors:

OUTPUT @Device USING "4Z.3D";32S.03

[!I 3 I 2 I 8 I . I 0 I 3 I 0 I EOl I

OUTPUT @Device USING "6A"; "Data bytes"

[EJ a I t I a I I b I EOl I

OUTPUT @Device USING "5X, 2A"; "Data"

[I.~I ~~~I_D~I_a~I_E_Ol~1

OUTPUT @Device USING "2L,4A";"Data"

I EOL I EOl I D I a I t I a I EOl I

OUTPUT @Device USING "SA, 2@"; "The End"

FF FF I EOl I

OUTPUT @Device USING "2/"

I CR I LF I CR I IF I EOl I

13-2:Z Outputting and Entering Data

Image He-Use. If the number of items in the source list exceeds the number of matching
specifiers in the image list, the computer attempts to re-use the image(s) beginning with the first
image.

110 ASSIGN @Device TO CRT
120 Num 1=1
130 Num 2=2
140
150 OUTPUT @Device USING "K";Num_1,"Data_1",Num_2,"Data_2"
160 OUTPUT @Device USING "K,I";Num_1,"Data_1",Num_2,"Data_2"
170 END

The following output will be displayed:

1Data 12Data 2
1
Data 1
2
Data 2

Since the "K" specifier can be us.ed with both numeric and string data, the above OUTPUT state
ments can re-use the image list for all items in the source list. If any item cannot be output using
the corresponding image item, all error results. In the following example, "Error 100 in 150"
occurs due to data mismatch.

110 ASSIGN @Device TO CRT
120 Num 1=1
130 Num 2=2
140
150 OUTPUT @Device USING "DD.DD";Num_1,Num_2,"Data_1"
160 END

OutpuHing and Entering Data 13-23

Neilted Images. Another convenient capability of images is that they can be nested within
parentheses. The entire image list within the parentheses will be used the number of times
specified by the repeat factor preceding the first parenthesis. The following program is an example
of this feature.

100 ASSIGN @Device TO 701
110
120 OUTPUT @Device USING "3(B),X,DD,X,DD";65,66,67,68,69
130 END

Th€: following output will result:

[!l s lcl16l al 6 9 I EOL I
This nesting with parentheses is made with the same hierarchy as with parenthetical nesting within
mathematical expressions. Only eight levels of nesting are allowed.

END with OUTPUTs that Use Images

Using the optional secondary keyword END in an OUTPUT statement that uses an image pro
duces results which differ from those of using END in a free-field OUTPUT statement. Instead of
always suppressing the EOL sequence, the END keyword only suppresses the EOL sequence when
no data are output from the last source-list expression. Thus, the "#" image specifier generally con
trols the suppression of the otherwise automatic EOL sequence, while the END keyword
suppresses it only in less common usages.

Let's look at some examples:

Device-12

OUTPUT Device USING "K"; "ABC", END
OUTPUT Device USING "K"; "ABC" ; END
OUTPUT Device USING "K"; "ABC" END

[! I B I c I EOL I
(The EOL sequence is not suppressed.)

13·,24 Outputting and Entering Data

OUTPUT Device USING "L,/, ""Litera1'"' ,X,@"

I EOl I CR I IF I l I i I tie I r I a I I I I FF I EOl I

In this case, specifiers that require no source-item expressions are used to generate characters for
the output; there are no source expressions. The EOL sequence is output after all specifiers have
been used to output their respective characters. Compare this action to that shown in the next
example.

OUTPUT Device USING "L,/,""Litera1"",X,@";END

I EOl I CR I IF I l I i I tie I r I a I I I I FF I

The EOL sequence is suppressed because no source items were included in the statement. All
characters output were the result of specifiers which require no corresponding expression in the
source list.

As previously mentioned regardingfree-field OUTPUT, the END secondary keyword has been defined
to produce additional action when included in an OUTPUT statement directed to an HP-IB interface.

With HP-m interfaces, END has the additional function of sending the End-or-Identify signal
(EOI) with the last character of either the last source item or the EOL sequence (if sent). As with
free-field OUTPUT, no EOI is sent if no data is sent from the last source item and the EOL
sequence is suppressed.

Some examples:

ASSIGN @Device TO 701

OUTPUT @Device USING "K";"Data",END
OUTPUT @Device USING "K"; "Data" , '"' , END

I 0 I a I t I a I EOl I

(EOI is sent with last character of the EOL sequence.)

Outputting and Entering Data 13-25

OUTPUT @Device USING "/I,K"; "Data" END

[~]altlal

(EOI is sent with the last character.)

EOI is sent with the last character of the last source item when the EOL sequence is suppressed,
because the last source item contained data which was used in the output.

OUTPUT @Device USING "/I,K"; "Data", "" ,END
OUTPUT @Device USING """Data""";END

[~]altlal

The EOI was not sent in eith.er case, since no data were sent from the last source item and the
EOL sequence was suppressed.

13-:26 Outputting and Entering Data

Entering Data

The ENTER statement lets you enter data from devices into the computer. Many of the concepts
discussed in the previous section regarding the OUTPUT statement are applicable to the ENTER
statement as well. However, entering data can require more programming skill than outputting
data because of the many ways that data can be represented in external devices. The ENTER
statement allows you to covert the data to be entered to a usable format. More about this later.

As with OUTPUT, the ENTER statement allows you to enter data either with a "free-field" for
mat or with precise control using an IMAGE. Let's look at free-field ENTER first.

Free-Field Enters

Executing the free-field form of the ENTER invokes conventions which are the "converse" of
those used with the free-field OUTPUT statement. In other words, data output using the free-field
form of the OUTPUT statement can be readily entered using the free-field ENTER statement; no
explicit image specifiers are required. The following statements exemplify this form of the ENTER
statement.

100 ENTER @Vo1tmeter;Reading

100 ENTER 724;Readings(*)

100 ENTER From_string$;Average,Student_name$

100 ENTER @From_file;Dat:a_code,Str_e1ement$(X,Y)

Item Separators. Destination items in ENTER statements can be separated by either a comma
or a semicolon. Unlike the OUTPUT statement, it makes no difference which is used; data will be
entered into each destination item in a manner independent of the punctuation separating the vari
ables in the list. However, no trailing punctuation is allowed. The first two of the following state
ments are equivalent, but an error is reported when the third statement is executed:

ENTER @From_a_device;N1,N2,N3

ENTER @From_a_device;N1;N2;N3

ENTER @From_a_device;N1,N2,N3,

Enters into three variables.

Equivalent to first statement.

Trailing comma causes an error.

Outputting and Entering Data 13-27

Item Terminators. Unless the receiver knows exactly how many characters are to be sent, each
data item output by the sender must be terminated by special character(s)" When entering ASCII
data with the free-field form of the ENTER statement, the computer does not know how many
characters will be output by the sender.

Item terminators must signal the end of each item so that the computer enters data into the proper
destination variable. The terminator of the last item may also terminate the ENTER statement (in
some cases). The actual character(s) that terminate entry into each type of variable are described
in the next sections.

In addition to the termination characters, each item can be terminated (ouly with selected inter
faoes) by a device-dependent END indication. For instance, some interfaces use a signal known as
EOI (End-or-Identify). The EOI signal is only available with the HP-IB, CRT, and keyboard
intl~rfaces. EOI termination is further described in the next sections.

When using an I/O path that possesses the WORD attribute, an additional byte may be entered
(but ignored). Refer to "I/O Path Attributes" in chapter 14 for further information.

Entering Numeric Data with the Number Builder. When the free-field form of the
EJ'lITER statement is used, numbers are entered by a routine known as the "number builder." This
firmware routine evaluates the incoming ASCII numeric characters and then "builds" the
appropriate internal-representation number. This number builder routine recognizes whether data
being entered is to be placed into an INTEGER or REAL variable and then generates the
appropriate internal representation.

The number builder is designed to be able to enter several formats of numeric data. However, the
general format of numeric data must be as follows to be interpreted properly by the computer.

--

,

Mantissa Mantissa E
sign digit(s)

• " • ~ \

Optional At least one
digit is required

Exponent Exponent Terminator 1
sign digit(s) (character or

END indication)

• . , . ---'

Optional Required

Numeric characters include decimal digits "0" through "9" and the characters ".", "+", "- ", "E",
allLd "e". These last five characters must occur in meaningful positions in the data stream to be
considered numeric characters; if any of them occurs in a position in which it cannot be considered
part of the number, it will be treated as a non-numeric character.

13-28 Outputting and Entering Data

Number Building Rules. The following roles are used by the number builder to construct
numbers from incoming streams of ASCII numeric characters.

Rule 1: All leading non-numerics are ignored; all leading and imbedded spaces are ignored.

For example:

100 ASSIGN @Device TO Device_selector
110 ENTER @Device;Number ! Default is data type REAL.
120 END

N I u m b e I r I 1 2

Ignored Number

Consumed ,....-..,

Terminator (for both
item and statement)

The result of entering the preceding data with the given ENTER statement is that Number
receives a value of 123. The line-feed (statement terminator) is required since Number is the last
item in the destination list.

Rule 2: Trailing non-numeric characters tenninate entry into a numeric variable, and the tenninat
ing characters (of both string and numeric items) are "consumed." (A "consumed" character is used
to terminate an item, but it is not itself entered into the variable. An "ignored" character is entered
but is not used.)

For example:

ENTER @Device;Real_number,String$

Consumed Consumed
,....-..,

I 4 I A I B I C I 0 I\F (or CR/LF) 'I
Ignored Real_number Numeric String$ Terminator (for both

item and statement) item terminator

The result of entering the preceding data with the given ENTER statement is that Real number
receives the value 123.4 and String$ receives the characters "BCD". The "A" was lost when it ter
minated the numeric item; the string-item terminator(s) are also lost. The string-item
terminator(s) also terminate the ENTER statement, since String$ is the last item in the destination
list.

Outputting and Entering Data 13-29

Rule 3: If more than 16 digits are received, only the first 16 are used as significant digits. However,
all Clldditional digits are treated as trailing zeros so that the exponent is built correctly.

For example:

ENTER @Device;Real_nurnber_l

Consumed
,..........,

0=1 2 1 3 1 4 1 5 6 1 7 1 a 1 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 LF 1

'- -'--.,....J

ReaLnumber_1 Terminator (for both
item and statement)

The result of entering the preceding data with the given ENTER statement is that Real_number _1
receives the value 1.234567890123460 E+ 15. In order to see all digits, use a statement like this:
OUTPUT CRT USING "D.1SDESZZ" ; Real_numb er_l.

For example:

ENTER @Device;Real_nurnber_2

Used only to build
the exponent. Consumed

.--"--.....,,..........,
[2J 2 1 3 1 4 5 1 6 1 7 1 a 1 9 0 1 1 2 1 3 1 4 5 6 1 7 1 aJJ:£J
~--------------------~---------------------------~~

Terminator (for both
item and statement)

The result of entering the preceding data with the given ENTER statement is that Real_number _ 2
receives the value 1.234567890123460 E + 17.

13-30 Outputting and Entering Data

Rule 4: Any exponent sent by the source must be preceded by at least one mantissa digit and an
"E" (or "e") character. If no exponent digits follow the "E" (or "e"), no exponent is recognized, but
the number is built accordingly ..

For example:

ENTER @Device;Real_number

E 8 8 5 E 1-
Ignored

Consumed
,..-.....,

2 C 1 0 1 u 1 LF 1

--.,.....'--...... --'/~
Numeric Ignored

item terminator
Terminator

The result of entering the preceding data with the given ENTER statement is that Real_number
receives a value of 8.85 E-12. The character "C" terminates entry into Real number, and the
characters "oul" are entered (but ignored) in search of the required line-feed-statement termina
tor.1f the character "C" is to be entered but not ignored, you must use an image. Using images
with the ENTER statement is described later in this chapter.

Rule 5: If a number evaluates to a value outside the range corresponding to the type of the numeric
variable, an error is reported. If no type has been declared explicitly for the numeric variable, it is
assumed to be REAL.

For example:

ENTER @Device;Real_number

Consumed
,-.......,

2 3 4 E 1 + 3 0 7 1 LF 1 Evaluates to 1 .234 E + 309.

~------------~-------------~/~
The resultant value cannot
be stored in RealJlumber.

Terminator (for both items
and statement)

The data is entered but evaluates to a number outside the range of REAL numbers. Consequently,
error 19 is reported, and the variable Real_number retains its former value.

Rule 6: If the item is the last one ill the list, both the item and the statement need to be properly ter
minated. If the numeric item is terminated by a non-numeric character, the statement will not be
terminated until it either receives a line-feed character or an END indication (such as EOI signal
with a character). Termination of free-field ENTER statements is described later in this chapter.

Outputting and Entering Data 13-31

Entedng String Data. Strings are groups of ASCII characters of varying lengths. Unlike
numbers, almost any character can appear in any position within a string; there is not really any
defin,ed structure of string data. The routine used to enter string data is therefore much simpler
than Ithe number builder. It only needs to keep track of the dimensioned length of the string vari
able and look for string-item terminators (such as CR/LF, LF, or EOI sent with a character).

String-item terminator characters are either a line-feed (LF) or a carriage-return followed by a
line-feed (CR/LF). As with numeric-item terminators characters, these characters are not entered
into the string variable (during free-field enters); they are "lost" when they terminate the entry.
The EOI signal also terminates entry into a string variable, but the variable must be the last item in
the dlestination list (during free-field enters).

All characters received from the source are entered directly into the appropriate string variable
until tmy of the following conditions occurs:

• An item terminator character is received.

• The number of characters entered equals the dimensioned length of the string variable.

• The EOI signal is received.

The following statements and resultant variable contents illustrate the first two conditions; the next
section describes termination by EO!. Assume that the string variables Five __ charS and Ten_charS
are diimensioned to lengths of 5 and 10 characters, respectively.

ENTER @Device;Five_char$

Consumed
~

~ B I C I 0 I E FIG I H I CR I LF I
Ignored Terminator (for both

item and statement)

The 'lariable Five charS only receives the characters "ABCDE", but the characters "FGH" are
enterled (and ignored) in search of the terminating carriage-return/line-feed (or line-feed). This
happc~ns because Five_charS is the last variable at the end of the ENTER statement.

13-3:2 OutpuHing and Entering Data

ENTER @Device;Ten_char$

Consumed
,-"'-,

Consumed
r .,

r-A----'---I -B -'---1 -C -rl-D-,-I-E---,I-F---,I-G----,-I LF] or 1 AlB 1 C 1 DIE 1 FIG 1 CR 1 LF 1

~--------~--------~'~~ I ...

Terminator (for
both item and statement)

Terminator (for both
item and statement)

The result of entering the preceding data with the given ENTER statement is that Ten charS
receives the characters "ABCDEFG" and the terminating LF (or CR/LF) is lost. -

Note

Keep in mind the following points when entering free-field string data:

1. Carriage returns are not consumed unless the line feed would also fit into the
string.

2. No "scan ahead to the terminator" is performed except for the last variable in
an ENTER statement.

To avoid problems, always dimension strings which will be used in this manner to be
at least two characters longer than the longest data item which might be read into
them. This will allow room for the carriage return/line feed sequence to be read
and consumed.

Terminating Free-Field ENTER Statements

Terminating conditions for free-field ENTER statements are as follows.

1. If the last item is terminated by a line-feed or by a character accompanied by EOI, the entire
statement is properly terminated.

2. If an END indication is received while entering data into the last item, the statement is prop
erly terminated. Examples of END indications are encountering the last character of a string
variable while entering data from the variable, or receiving EOI with a character.

3. If one of the preceding statement-tennination conditions has not occurred but entry into the
last item has been terminated, up to 256 additional characters are entered in search of a ter
mination condition. If one is not found, an error occurs.

Outputting and Entering Data 13-33

One case in which this termination condition may not be obvious can occur while entering string
data. If the last variable in the destination list is a string and the dimensioned length of the string
has been reached before a terminator is received, additional characters are entered (but ignored)
until the terminator is found. The reason for this action is that the next characters received are still
part of this data item, as far illS the data sender is concerned. These characters are accepted from
the sl:!nder so that the next enter operation will not receive these "leftover" characters.

Another case involving numeric data can also occur (see the example given with "rule 4" describ
ing the number builder). If a trailing non-numeric character terminates the llast item (which is a
numt:ric variable), additional characters will be entered in search of either a line-feed or a charac
ter ac:companied by EO!. Unless this terminating condition is found before 256 characters have
been entered, an error is reported.

EOI Termination. A termination condition for the HP-IB Interface is the EOI (End-or-Identify)
signal. When this message is sent, it immediately terminates the entire ENTER statement, regard
less of whether or not all variables have been satisfied. However, if all variable items in the desti
nation list have not been satisfied, an error is reported.

For example:

ENTER @Device;String$

~iQ£ I DIE I F I or I A I B I c I DIE I F I LF I or ~I B I c I DIE I F I CR I LF I
'-.-'

Sent with
EOI

'-.-'
Sent with

EOI
Sent with

EOI

The result of entering the preceding data with the given ENTER statement is that StringS receives
the characters "ABCDEF'. The EOI signal being received with either the last character or with
the te,rminator character properly terminates the ENTER statement. If the character accompanied
by EOI is a string character (not a terminator), it is entered into the variable as usual.

13-34 OutpuHing and Entering Data

ENTER @Device;Number

Used to build Number Consumed Consumed
,-.-, ,-.-, ,-.-,

I 1 I 2 I 3 I 4 I 5 I or [1 I 2 3 I 4 I 5 IA I or I 1 I 2 I 3 I 4 I 5 I LF I

'''-"'' '''-"'' ,"-""

Number Sent with Number Sent with Number Sent with
EOI EOI EOI

The result of entering any of the above data streams with the given ENTER statement is that
Number receives the value 12345. If the EOI signal accompanies a numeric character, it is entered
and used to build the number; if the EOI is received with a numeric terminator, the terminator is
lost as usual.

ENTER @Device;Number, S1:ring$

I 1 I 2 3 I 4 151
'----.-------"'''-"''

Number Sent with
EOI

An error is reported
(Error 153 Insufficient data for ENTER).

The result of entering the preceding data with the given statement is that an e"or is reported when
the character "5" accompanied by EOI is received. However, Number receives the value 12345, but
String$ retains its previous value. An error is reported because all variables in the destination list
have not been satisfied when the EOI is received. Thus, the EO! signal is an immediate statement
tenninator duringfree1ield enters. The EOI signal has a different definition during enters that use
images, as described later in this chapter.

The EOI signal is implemented on the HP-IB Interface, described in the "HP-IB Interface" sec
tion of chapter 16.

Outputting and Entering Data 13-35

En1ters that Use Images

The free-field form of the ENTER statement is very convenient to use; the computer automatically
takes care of placing each character into the proper destination item. Howe:ver, there are times
whelrl you need to design your own images that match the format of the data output by sources.
Several instances for which you may need to use this type of enter operations are: the incoming
data does not contain any terminators; the data stream is not followed by a1rl end-of-Iine sequence;
or two consecutive bytes of data are to be entered and interpreted as a two's-complement integer.

The. ENTER USING Statement. The means by which you can specify how the computer will
interpret the incoming data is to reference an image in the ENTER statement. The four general
ways to reference the image in ENTER statements are as follows.

1. 100

2. 100
110

3. 100
110

4. 100
110

Im •• ges

ENTER @Device_x USING "6A,DDD.DD";String_var$,Num_var

Image_str$="6A,DDD.DD"
ENTER @Device_x USING Image_str$;String_var$,Num_var
ENTER @Device USING Image_stmt;String_var$,Num_var
Image_stmt: IMAGE 6A,DDD.DD
ENTER @Devtce USING 110;String_var$,Num_var
IMAGE 6A,DDD.DD

Images are used to specify how data entered from the source is to be interpreted and placed into
variables; each image consists of one or more groups of individual image specifiers that determine
how the computer will interpret the incoming data bytes (or words). Thus, image lists can be
thought of as a description of either:

• the format of the expected data, or

• the procedure that the ENTER statement will use to enter and interpret the incoming data
bytes.

The examples given here treat the image list as aprocedure.

All of the image specifiers used in image lists are valid for both enters and outputs. However, most
of tbe specifiers have a slightly different meaning for each operation. If you plan to use the same
image for output and enter, you must fully understand how both statements will use the image ..

13-:16 OutpuHing and Entering Data

Example of an Enter Using an Image. This example is used to show you exactly how the
computer uses the image to enter incoming data into variables. Look through the example to get a
general feel for how these enter operations work. Afterwards, you should read the descriptions of
the pertinent specifier(s).

Assume that the following stream of data bytes are to be entered into the computer:

Ignored Degrees

'--.,.....-'
Units$

.
Ignored .-l

Assume EO' is sent

''--

with this character

Given the preceding conditions, let's look at how the computer executes the following ENTER
statement that uses the specified IMAGE statement.

300 ENTER @Device USING Image_1;Degrees,Units$
310 Image_1: IMAGE 8X,SDDD.D,A

Step 1: The computer evaluates the first image of the IMAGE statement. It is a special image in
that it does not correspond to a variable in the destination list. It specifies that eight characters of
the incoming data stream are to be ignored. Eight characters, "Temp. = ", are entered and are
ignored (i.e., are not entered into any variable).

Step 2: The computer evaluates the next image. It specifies that the next six characters are to be
used to build a number. Even though the order of the sign, digit, and radix are explicitly stated in
the image, the actual order of these characters in the incoming data stream does not have to match
this specifier exactly. Only the number of numeric specifiers in the image, here six, is all that is
used to specify the data format. When all six characters have been entered, the number builder
attempts to form a number.

Step 3: After the number is built, it is placed into the variable "Degrees". The representation of
the resultant number depends OJ[} the numeric variable type - INTEGER, REAL, or COM
PLEX.-

• The number could be the real or the imaginary part of a COMPLEX value.

Outputting and Entering Data 13-37

SteJt 4: The next image in the IMAGE statement is evaluated. It requires that one character be
entered for the purpose of filling the variable "Units$". One byte is then entered into Units$.

SteJt 5: All images have been satisfied; however, the computer has not yet detected a statement
terminating condition. A line-feed or a character accompanied by EOI must be received to ter
minate the ENTER statement. Characters are then entered, but ignored, in search of one of these
conditions. The statement is terminated when the EOI is sent with the "t". For further explanation,
see "Terminating Enters that Use Images" near the end of this chapter.

The above example should help you to understand how images are used to determine the interpre
tatiOlll of incoming data. The next section will help you to use each specifier to create your desired
images.

Imslge Definitions During Enter

This section describes the individual image specifiers in detail. The specifiers have been categor
ized into data and function type.

Nunleric ImageB. Sign, digit, radix, and exponent specifiers are all used identically in ENTER
images. The number builder can also be used to enter numeric data. The numeric specifiers are
listed in the following table.

13-38 OutpuHing and Entering Data

Numeric Specifiers

Image Specifier Meaning
D Specifies that one byte is to be entered and interpreted as a

numeric character. If the characters is non-numeric (including
leading spaces and item terminators), it will still "consume"
one digit of the image item.

Z * , Same action as D. Keep in mind that A and * can only appear
to the left of the radix indicator (decimal point or R) in a
numeric image item.

S,M Same action as D in that one byte is to be entered and inter-
preted as a numeric character. At least one digit specifier
must follow either of these specifiers in an image item.

Same action as D in that one byte is to be entered and inter-
preted as a numeric character. At least one digit specifier
must accompany this specifier in an image item.

R Same action as D in that one byte is to be entered and inter-
preted as a numeric character; however, when R is used in a
numeric image, it directs the number builder to use the comma
as a radix indicator and the period as a terminator to the
numeric item. At least one digit specifier must accompany this
specifier in the image item.

E Equivalent to 4D, if preceded by at least one digit specifier (Z,
*, or D) in the image item.

Tlhe following specifiers must also be preceded by at least one
digit specifier.

ESZ Equivalent to 3D.

ESZZ Equivalent to 4D.

ESZZZ Equivalent to SD.

K, -K Specifies that a variable number of characters are to be
entered and interpreted according to the rules of the number
builder (same rules as used in "free-field" ENTER operations).

H, -H Like K, except that a comma is used as the radix indicator, and
a period is used as the terminator for the numeric item.

Outputting and Entering Data 13-39

Exalmples of Numeric Images:

ENTER @Device USING "SDD.D";Nurnber
ENTER @Device USING "3D.D";Nurnber
ENTER @Device USING "SD";Nurnber
ENTER @Device USING "DESZZ";Nurnber
ENTER @Device USING "**.DD";Nurnber

ENTER Device USING "K";Nurnber

ENTER @Device USING "DDRDD";Nurnber

ENTER @Device USING "H";Nurnber

13-41D Outputting and Entering Data

(These five are equivalent.)

(Use the rules of the number
builder.)

(Enter five characters, using
comma as radix.)

(Use the rules of the number
builder, but use the comma as
radix and period as tenninator.)

String Images. The following specifiers are used to determine the number of and the interpre
tation of data bytes entered into string variables.

String Specifiers

Image Specifier Meaning
A Specifies that one byte is to be entered and Interpreted as a

string character. Any terminators are entered into the string
when this specifier is used.

K,H Specifies that "free-field" ENTER conventions are to be used
to enter data into a string variable; characters are entered
directly into the variable until a terminating condition is sensed
(such as CR/lF, IF, or an END indication).

-K, -H Like K, except that line-feeds (IF's) do not terminate entry into
the string; instead, they are treated as string characters and
placed in the variable. Receiving an END indication terminates
the image item (for instance, receiving EOI with a character on
an HP-IB interface, encountering an end-of-data, or reaching
the variable's dimensioned length).

L, @ These specifiers are ignored for ENTER operations; however,
they are allowed for compatibility with OUTPUT statements
(that is, so that one image may be used for both ENTER and
OUTPUT statements). Note that it may be necessary to skip
characters (with specifiers such as X or /) when ENTERing
data which has been sent by including these specifiers in an
OUTPUT statement. Even greater care must be given to cases
in which pad bytes may be sent; see "The BYTE and WORD
Attributes" in chapter 14 for further explanation.

Examples of String Images:

ENTER @Device USING "lOA" ; Ten_chars $ (Enter 10 characters.)

ENTER @Device USING "K" ; Any_string$ (Enter usingfree1ield lUles.)

ENTER @Device USING "5A,K";String$,Number$ (Enter two strings.)

Outputting and Entering Data 13-41

ENTER @Device US ING '" SA, K" ; S tring$, Number

ENTER @Device USING '" -K" ; All_chars $

(Enter a string and a number.)

(Enter characters until string is
''full'' or END is received.)

IgnCllring Characters. These specifiers are used when one or more characters are to be ignored
(i.e., entered but not placed into a string variable).

Specifiers Used to Ignore Characters

Image Specifier Meaning
f----.

X Specifies that a character is to be entered but ignored (not
placed into a variable).

f----.
"literal" Specifies that the number of characters in the literal are to be

entered but ignored (not placed into a variable).

/ Specifies that all characters are to be entemd but ignored (not
placed into a variable) until a line-feed is received. EOI is also
ignored until the line-feed is received.

Examples of Ignoring Characters:

ENTER @Device USING "SX,SA";Five_chars$

ENTER @Device USING "SA,4X,10A";S_1$,S_2$

ENTER @Device USING "/,K";String2$

ENTEiR @Device USING ZZIIlI ,AA" ;S_2$

13-42 OutpuHing and Entering Data

(Ignore first five and use second
five characters.)

(Ignore sixth through ninth charac
ters.)

(Ignore first item of unknown
length.)

(Ignore two Icharal':ters.)

Binary Images. These specifiers are used to enter one byte (or word) that will be interpreted as
a number.

Binary Specifiers

Image Specifier Meaning
B Specifies that one byte is to be entered and interpreted as an

integer in the range 0 through 255.

W Specifies that one 16-bit word is to be entered and interpreted
as a 16-bit, two's complement INTEGER. If either an I/O path
name with the BYTE attribute (see "I/O Path Attributes" in
chapter 14) or a device selector is used to access an 8-bit
interface, two bytes will be entered; the first byte entered is
most significant. If an I/O path name with the BYTE attribute is
used to access a 16-bit interface, the BYTE attribute is
overwritten and one word is entered in a single operation. If an
I/O path name with the WORD attribute is used to access a
16-bit interface, one byte is entered and ignored when neces-
sary to achieve alignment on a word boundary. If the source is
a file, string variable, or BUFFER, the WORD attribute is
i!Jnored and a" data are entered as bytes; however, one byte
may still be entered and ignored when necessary to achieve
alignment on a word boundary.

y Like W, except that pad bytes are never entered to achieve
word alignment. If an I/O path name with the BYTE attribute is
used to access a 16-bit interface, the BYTE attribute is not
overwritten (as with the W specifier).

Examples of Binary Imagl!s:

ENTER @Device USING "B,B,B";Nl,N2,N3

ENTER @Device USING "\iT, K" ; N , N$

(Enter three bytes, then look for LF
or END indication.)

(Enter the first two bytes as an
INTEGER, then the rest as string
data.)

Outputting and Entering Data 13-43

Assume that @Device possesses the WORD attribute.

ENTER @Device USING "B,W";Nwn_l,Nwn_2

@Device may possess either BYTE or WORD attribute.

ENTER @Device USING "B,Y";Nwn_l,Nwn_2

Terminating Enters that Use Images

(Enter one byte, ignore one pad
byte, enter one word, then searc:h
for terminator.)

(Enter one byte, enter one word,
then search for terminator.)

This section describes the defaUlt statement-termination conditions for enters that use images (for
devices). The effects of numeric-item and string-item terminators and the end-or-identify (EOI)
signal during these operations are discussed in this section. After reading this section, you will be
able to better understand how enters that use images work and how the default statement
termination conditions are modified by the II, I, +, and - image specifiers.

Default Termination Conditions. The default statement-termination conditions for enters
that use images are very similar to those required to terminate free-field enters. Either of the fol
lowing conditions will properly terminate an ENTER statement that uses an image .

• An END indication (such as the EOI signal or end-of-data) is received with the byte that
satisfies the last image item or within 256 bytes after the byte that satisfied the last image item .

• A line-feed is received as the byte that satisfies the last image item (exceptions are the "B" and
"W" specifiers) or within 256 bytes after the byte that satisfied the last image item.

EOI Re-Definition. It is important to realize that when an enter uses an image (when the secon
dary keyword "USING" is specified), the definition of the Eor signal is automatically modified. If
the EOI signal terminates the last image item, the entire statement is properly terminated, as with
free··field enters. In addition, multiple EOI signals are now allowed and act as item terminators.
However, the EOI must be received with the byte that satisfies each image item. If the EOI is
received before any image is satisfied, it is ignored. Thus, all images must be satisfied, and EOI will
not cause early termination of the ENTER-USING-image statement.

13...,14 OutpuHing and Entering Data

The following table summarizes the definitions of EOI during several types of ENTER statement.
The statement-terminator modifiers are more fully described in the next section.

Effects of EOI During ENTER Statements

Free-Field ENTER ENTER ENTER
ENTER USING USING USING

Statements (without (with #) (with %)
#or%)

Definition of Immediate Item terminator Item terminator Immediate
EOI statement termi- or statement or statement statement termi-

nator terminator terminator nator

Statement Yes Yes No No
Terminator
Required?

Early Termi- No No No Yes
nation
Allowed?

Statement-Termination Modifiers. The table on the following page lists the statement
termination modifiers. These specifiers modify the conditions that terminate enters that use
images. The first one of these specifiers encountered in the image list modifies the termination
conditions for the ENTER statement. If another of these specifiers is encountered in the image
list, it again modifies the terminating conditions for the statement.

OutpuHing and Entering Data 13-45

Image Specifier
_. #

%

+

Statement-Termination Modifier.

Meaning
Specifies that a statement-termination condition is not
required; the ENTER statement is automatically terminated as
soon as the last image item is satisfied.

Also specifies that a statement-termination condition is not
required. In addition, EOI is re-defined to bE! an immediate
statement terminator, allowing early termination of the ENTER
before all image items have been satisfied. IHowever, the state
ment can only be terminated on a "legal item boundary." The
legal boundaries for different specifiers are as follows.

Specifier

K, -K

S, M, D, E
Z, ., A, X
"literal"
B, W

Legal Boundal')'

With any character, since this specifies
a variable-width field of characters.

Only with the last character that satisfies
the image (e.g., with the Sth character
of a "SA" image). If EOI is received
with any other character, it is ignored.

/ Only with the last line-feed character
that satisfies the image (e.g., with the
3rd line-feed of a "3/" image);
otherwise it is ignored.

Specifies that an END indication is required to terminate the
ENTER statement. Line-feeds are ignored as statement termi
nators; however, they will still terminate items (unless a - K or
- H image is used for strings).

-.---------------+-~~~~~--~--~~~--~-7-----~----~--------~
Specifies that a line-feed is required to terminate the state-
ment. EOI is ignored, and other END indications (such as EOF
or end-of-data) cause an error if encountered before the line
feed.

13-4IB Outputting and Entering Data

Examples of Modifying Termination Conditions:

ENTER @Device USING "/I,B";Byte

ENTER @Device USING "/1, \\1''' ; Integer

ENTER @Device USING ",K";Array(*)

ENTER @Device USING "+,K";String$

ENTER @Device USING "-,K";String$

Additional Image Features

(Enter a single byte.)

(Enter a single word.)

(Enter an array, allowing early ter
mination by EO!.)

(Enter characters into StringS until
line{eed received, then continue
entering characters until END
received.)

(Enter characters until line-feed
received; ignore EO!, ifreceived.)

Several additional image features are available with this BASIC language. Some of these features
have already been shown in examples, and all of them resemble the additional features of images
used with OUTPUT statements.

Repeat Factors. Just as with OUTPUT, the ENTER statement allows several image specifiers
to be preceded by an integer that specifies how many times the specifier is to be used.

Repeatable Specifiers5 Non-Repeatable Specifiers
D,Z, *,A,X,/,~,L S, M,., R, E, K, H, B, W, Y, H, %, +,-

Outputting and Entering Data 13-47

Imilge Re-Use. If there are fewer images than items in the destination list, the list will be re
used, beginning with the first item in the image list. If there are more images than there are items,
the additional specifiers will be ignored.

For example:

ENTER @Device USING "/I,B" ;Bl,B2,B3 (The "B" is re-used.)

ENTER @Device USING "2A,2A,W";A$,B$ (The "w" is not used.)

Ne~ated Images. Parentheses can be used to nest images within the image list. The hierarchy is
the same as with mathematical operations; evaluation is from inner to outer sets of parentheses.
Thf: maximum number of levels of nesting is eight.

For example:

ENTER @Source USING "2(B,5A,/),/";Nl,Nl$,N2,N2$

13 ... 118 Outputting and Entering Data

14
Advanced Interfacing Topics

The previous chapter discussed outputting and entering data in detail. However, you may want to
exercise further control over your peripheral device. You may want to monitor the status of an
instrument. Or you may want your program to be interrupted by a peripheral that needs attention.
This chapter covers several advanced techniques that give you greater control over your I/O appli
cation.

Registers

A register is a memory location. Some registers are memory locations on interface cards, while
others are memory locations in the computer which are maintained by BASIC to keep track of
various conditions related to interfaces. Some registers store parameters that describe the opera
tion of an interface, some store information describing the I/O path to a device, and some are in
locations at which interface cards reside (remember that the computer implements "memory
mapped I/O").

Registers are accessed by the computer when executing I/O statements that specify an interface
select code, a device selector, or an I/O path name. Thus, each interface and I/O path has its own
set of registers. The general programming techniques used to access these registers and the
specific definitions of all I/O path registers are given in this section. Refer to chapter 16 and to the
BASIC Language Reference manual for information about the specific interface registers.

There are three levels of register access:

1. Firmware register(s) are automatically accessed by BASIC when an I/O statement is exe
cuted.

OUTPUT @Fi1e;Data$! Changes file pointer registers
ENTER @Buffer;Numeric_item ! Changes buffer pointer registers

2. STATUS and CONTROL (firmware) registers are explicitly accessed by BASIC statements:

100 STATUS CRT,13;Crt_height

110 CONTROL CRT,13;Crt_height+3

Advanced Interlacing Topics 14-1

3. Interface (hardware) registers are directly read or written using the READIO and WRI
TEIO statements. This requires an extensive knowledge of both the bardware registers and
the consequences of writing to these registers. This technique is beyond the scope of this
manual. In most cases you can achieve the same purpose by using STATUS and CONTROL.

Interface Registers

A simple example of an interface register being accessed explicitly by the program and then
automatically by I/O statements is shown in the following program. Register 0 of interface select
codl~ 1 is the "X" screen coordinate at which subsequent characters output to the the CRT will
begiin being displayed; register 1 is the corresponding "Y" coordinate.

1001 STATUS
1101 OUTPUT
1201 OUTPUT
1301 OUTPUT
1401
1501 OUTPUT
160 STATUS
1701 OUTPUT
180 OUTPUT
190 OUTPUT
200 OUTPUT
210
220 END

CRT;Reg __ O,Reg_1 ! Pgrm accessing X & Y coords.
CRT; "Print coordinates before 1st OUTPUT:"
CRT; "X=" ; Reg_O ," Y=" ; Reg_1
CRT

CRT; "1234567";
CRT;Reg_O,Reg_1
CRT

Note " • II , is used to suppress EOL sequence.

CRT;"Print coordinates after OUTPUTs:"
CRT; "X='" ; Reg_O, " Y=" ; Reg_1
CRT;" "

14-::I! Advanced Interfacing Topics

The STATUS Statement. Thl~ contents of a STATUS register can be read with the STATUS
statement. Typical examples are shown below. A complete listing of each interface's registers is
given in the BASIC Language Reference manual. The definitions of I/O path registers are
described later in this section. u:t's look at a few examples.

STATUS register 7 of the interface at select code 2 is read with the following statement. The first
parameter identifies the interfacl~ and the optional second parameter identifies which register is to
be read. The specified numeric variable receives the register's current contents.

Interface select code

J/
STATUS 2 . 7 Reg 7 I _\.

/ '\.
Register number

(optional)
Numeric variable(s) to

receive register(s) contents

STATUS register 0 of the I/O path @Keyboard is read with the following statement. (Note that
this is not the same register as keyboard register 0.) Since the second parameter is optional and
has been omitted in this instance, register 0 is accessed.

100 STATUS @Keyboard;R.eg_O

STATUS registers 4 and 5 of the interface at select code 7 are read with the following statement:

Since two numeric variables are to receive register contents, the next register (5) is accessed. If
more than two variables are specified, successive registers are read.

The CONTROL Statement. When some I/O statements are executed, the contents of some
CONTROL registers are automatically changed. For instance, in the above example registers 0 and
1 were changed whenever the OUTPUT statements to the CRT were executed. The program can
also change some register's contents with the CONTROL statement, as shown in the following
examples. Again, all of the CONTROL register definitions for each interface are given in the
BASIC Language Reference manual.

Advanced Interfacing Topics 14-3

Register 0 of interface select code 1 is modified with the following statement. This register deter
mines the "X" screen coordinate at which subsequent characters output to the CRT display will
appear.

Interface select code

/
CONTROL 1 ; X_pOB

'\
Numeric expression(s) to be sent

to the appropriate register(s)

Re~~ster 1 of interface select code 1 is modified with the following statement. This register's con
tents determine the "Y" screen coordinate at which subsequent characters output to the CRT
display will appear; changing the contents of this register also allows scrolHng the display.

100 CONTROL 1.1;Line_poB

" Register number

I/() Path Registers

At this point you know how to access the registers associated with interfaces and I/O path names,
but you may not know much about the differences or about the interaction between these two types
of registers. Let's first review the definition of an I/O path name.

An I/O path name is a data type that contains a description of an I/O path between the computer
and one of its resources sufficient to allow accessing the resource. You learned in the "Directing
Data Flow" section that the computer uses this information whenever the I/O path name is used in
an KlO statement. Much of this information stored in this I/O-path-name table can be accessed
with the STATUS and CONTROL statements.

When an I/O path name is used to specify a resource in an I/O statement, BASIC accesses the
first table entry (the validity flag) to see if the name is currently assigned. If the I/O path name is
assigned, the computer reads I/O path register 0 which tells the c.omputer the type of resource
involved:

• If the resource is a device, BASIC must also access the registers of the interface specified by
the device selector .

• If the resource is a file, the table contains additional entries that govem how the I/O process is
to be executed.

14-4 Adyanced Interfacing Topics

As you can see, the set of I/O path registers is not the same set of registers associated with an
interface. The following program is an example of using I/O path register 0 to determine the type
of resource to which the I/O path name has been assigned.

700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980

Find_type: STATUS @Resource;Reg_O
!
IF Reg_O=O THEN GOTO Not_assigned
!
IF Reg_O=l THEN GOTO Device
!
IF Reg_0=2 THEN GOTO File
!

PRINT "Resource type unrecognized"
PRINT "Program STOPPED."
STOP

Not_assigned: PRINT "I/O path name not assigned"
GO TO Common exit
!

Device: STATUS @Resource,1;Reg_1
PRINT "@Resource assigned to device"
PRINT "at intf. select code ";Reg_1
GOTO Common exit

File: STATUS @Resource,l;Reg_1,Reg_2,Reg_3

PRINT "File type ";Reg_1
PRINT "Device selector ";Reg_2
PRINT "Number of sectors ";Reg_3

Common exit: Exit point of this routine.

Once the type of resource has been determined, it can be further accessed with the I/O path regis
ters or the interface registers, depending on the resource type .

• If the I/O path name has been assigned to a device, the interface registers should be accessed for
further information.

• If the name has been assigned to a mass storage file, the I/O path registers should be accessed
for further information.

Advanced Interfacing Topics 14-5

I/O path names can be assigned to device selectors, mes, and buffers. The following program
shows an example of determining the interface select code of the resource to which the I/O path
name has been assigned.

100 ! Example of determining select code
110 ! to which an I/O path name is assigned.
120 !
130 Show sc: IMAGE '''@Io_path' assigned to ",K,"; Select code ",D,L
140 !
150 ASSIGN @Io_path TO 701 ! Device selector.
160 Device_selector=FNSc(@Io_path)
1701 OUTPUT CRT USING Show_sc;"device 70l",Device_selector
180 !
1901 ASSIGN @Io_path TO "Datal" ! ASCII file.
200 Device_selector=FNSc(@Io_path)
210 OUTPUT CRT USING Show_sc; "ASCII file", Device_selector
220 !
230 ASSIGN @Io_path TO "Chap!" ! BDAT file.
240 Device_selector=FNSc(@Io_path)
250 OUTPUT CRT USING Show_sc;"BDAT file",Device_selector
260
2701 ASSIGN @Io_path TO BUFFER [1024] ! Buffer.
2801 Device_selector=FNSc(@Io_path)
2901 OUTPUT CRT USING Show_sc;"BUFFER",Device_selector
3001
3101 END
320
330 DEF FNSc(@Io_path) ! *************************************
340 ! Read I/O path register O.
3501 STATUS @Io_path;Resource_code
3601 SELECT Resource code
370 CASE 0 ! Not assigned.
380 RETURN -1 ! Return a select code out of range.
390
400 CASE 1 ! Assigned to a device selector.
410 STATUS @Io_path,l;Select_code
420 RETURN Select code
430

14-U Advanced Interfacing Topics

440 CASE 2 ! Assigned to a file specifier.
450 STATUS @Io_path,2;Device_selector
460 RETURN Device selector MOD 100 ! Remove addressing.
470
480 CASE 3 ! Assigned to a buffer.
490 RETURN 0 ! No error, but cannot determine source
500 ! or destination of transfer to/from buffer.
510 END SELECT
520
530 FNEND ! **

The following printout shows a typical example of the program's output:

'@Io_path' assigned to device 701; Select code 7

'@Io_path' assigned to ASCII file; Select code 7

'@Io_path' assigned to BDAT file; Select code = 7

'@Io_path' assigned to BUFFER; Select code = 0

The user-defined function called FNSc interrogates I/O path registers to find the select code. If
the I/O path name is currently not assigned, the function returns an arbitrary value of -1 (an
invalid value of select code). Since STATUS Register 2 of I/O path names assigned to files con
tains the entire device selector, which may include addressing information, the function removes
any addressing information (Device selector MOD 100).

Notice that buffers have no select code associated with them, since they are a data type resident in
computer memory; thus the function returns a value of o.

The SC function is a feature of the "Main" BASIC system. The following statements show exam
ples of using this function.

Select_code=SC(@Io_path)
IF SC(@File)=4 THEN Device_type$="INTERNAL"

The only difference in this language-resident function and the preceding example is that the SC
function reports an error if the I/O path specified as its argument is not assigned, rather than
returning a select code out of range.

Advanced Interfacing Topics 14-7

Summary of I/O Path Registers

The following list describes the information contained in I/O path STATUS and CONTROL regis
ters. Note that only STATUS register 0 is identical for all types of I/O paths; the rest of the I/O
path registers' contents depend on the type of resource to which the name is assigned.

For J"n I/O Path Names.

Status Register 0 o = Invalid I/O path name
1 = I/O path name assigned to a device
2 = I/O path name assigned to a data file
3 = I/O path name assigned to a buffer

I/O IlJath Names Assigned to a Device.

STA11JS Register 1

STA11JS Register 2

STA11JS Register 3

Interface select code

Number of devices

Address of 1st device

If assigned to more than one device, the addresses of the other devices are available starting in
STATUS Register 4.

I/O Path Names Assigned to an ASCII File.

STATUS Register 1

STA11JS Register 2

STATUS Register 3

STATUS Register 4

STA1US Register 5

STA1US Register 6

File type = 3

Device selector of mass storage device

Number of records

Bytes per record = 256

Current record

Current byte within record

14-8 Advanced Interfacing Topics

1/0 Path Names Assigned to a BDAT File.

STATUS Register 1

STATUS Register 2

STATUS Register 3

STATUS Register 4

STATUS Register 5

CONTROL Register 5

STATUS Register 6

CONTROL Register 6

STATUS Register 7

CONTROL Register 7

File type = 2

Device selector of mass storage device

Number of defined records

Defined record length

Current record

Set record

Current byte within record

St:t current byte within record

EOFrecord

Set EOF record

STATUS Register 8 Byte within EOF record

CONTROL Register 8 Set byte within EOF record

1/0 Path Names Assigned to an HP-UX File.

STATUS Register 1

STATUS Register 2

STATUS Register 3

STATUS Register 4

STATUS Register 5

CONTROL Register 5

STATUS Register 6

FiLle type = 4

Device selector of mass storage device

Number of defined records

Defined record length (fixed record length = 1)

Current record

Set record

Current byte within record

Advanced Interfacing Topics 14-9

CONTROL Register 6

STATUS Register 7

CONTROL Register 7

ST~TUS Register 8

CONTROL Register 8

Set current byte within record

EOFrecord

Set EOF record

Byte within EOF record

Set byte within EOF record

I/O Path Names Assigned to a Buffer. When the status of register 01 indicates a buffer (3),
the status and control registers have the following meanings.

STATUS Register 1

STATUS Register 2

STATUS Register 3

CONTROL Register 3

STKruS Register 4

CONTROL Register 4

STATUS Register 5

CONTROL Register 5

STATUS Register 6

STATUS Register 7

STATUS Register 8

CONTROL Register 8

STATUS Register 9

CONTROL Register 9

Buffer type (l==named, 2== unnamed)

Buffer size in bytes

Current fill pointer

Set fill pointer

Current number of bytes in buffer

Set number of bytes

Current empty pointer

Set empty pointer

Interface select code of inbound TRANSFER

Interface select code of outbound TRANSFER

If non-zero, inbound TRANSFER is continuous

Cancel continuous mode inbound TRANSFER if zero

If non-zero, outbound TRANSFER is continuous

Cancel continuous mode outbound TRANSFER if zero

14-11D Advanced Interfacing Topics

STATUS Register 10

Bit 7 Blt6

0 TRANSFER

Active

value '" 128 value = 64

STATUS Register 11

Bit 7 Blt6

0 TRANSFER

Active

value = 128 value = 64

STATUS Register 12

STATUS Register 13

Tc~rmination status for inbound TRANSFER

Blt5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRANSFER TRANSFER Device Byte Record Match

Aborted Error Termination Count Count Olaracter

Value = 32 Value = 16 Value = 8 Value = 4 value = 2 value = 1

Termination status for outbound TRANSFER

Blt5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRANSFER TRANSFER Device Byte Record 0
Aborted Error Termination Count Count

Value = 32 value = 16 Value = 8 Value = 4 Value = 2 value = 1

Total number of bytes transferred by last inbound TRANSFER

Total number of bytes transferred by last outbound TRANSFER

Interrupts and Timeouts

The computer can sense and respond to the occurrence of several types of interrupt events. This
section describes programming techniques for handling the interface events called "interrupts" and
"timeouts" which can initiate program branches. For more information about event-initiated
branches, refer to chapter 1, "Program Structure and Flow." You may also want to refer to the
keyword descriptions in the BASIC Language Reference manual.

Overview of Event-Initiated Branching

Event-initiated branches are very powerful programming tools. With them, the computer can exe
cute special routines or subprograms whenever a particular event occurs; the program doesn't have
to take time to periodically chec:k for each event's occurrence.

This section describes the general topic of event-initiated branching. Subsequent sections take a
closer look at interrupt events.

Advanced Interfacing Topics 14-11

TYPU8 of Event8. The statements that enable events to initiate branches are summarized as fol
lows: •

ON CDIAL- occurs when one of the nine "knobs" (rotary pulse generators) of an HP 46085 Con
trol Dial Box is turned.

ON I~ND - occurs when the computer encounters the end of a mass storage file while accessing
the me.

ON ERROR - occurs when a program-execution error is sensed.

ON KEY - occurs when a currently defined softkey is pressed.

ON KNOB - occurs when the "knob" (rotary pulse generator) is turned.

ON INTR - occurs when an interrupt is requested by a device or when an ililterrupt condition
occwrs at the interface.

ON lrIMEOUT-occurs when the computer has not detected a handshake response from a device
within a specified amount of time.

A Simple Example. The following program shows how events are serviced by the computer.
Subprograms called "Key 1" and "Key 2" are the service routines for the events of pressing soft
keys I!I1 and (!g] being pi~ssed; the software priorities assigned to these evemts are 3 and 4, respec
tively. Run the program and alternately press these softkeys; the branch to each key's service rou
tine i.s initiated by pressing the key. The system priority is "graphed" on the CRT display.

• nle syntax of each of these statements is covered in the BASIC Language Reference manual. The ON INfR and ON
TIMEOur statements are covered in detail later in this section.

14-12 Advanced Interfacing Topics

150 ON KEY 1,3 CALL Key_1
160 ON KEY 2,4 CALL Key_2
170 !

Set up events and
assign priorities.

180 OUTPUT CRT;" System","Priority"
190 V$=CHR$(8)&CHR$(10) ! BS & LF.
200 OUTPUT CRT;" 4"&V$&"3"&V$&"2"&V$&"1"&V$&"0"
210 !
220 Main: CALL Bar_gralPh(7,"*")
230
240
250
260
270

BEEP 100,.1
FOR Jiffy=l TO
NEXT Jiffy
!

5000

Sys. prior. is
always >= O.
Low tone.

280
290

GOTO Main Main loop.

300 END
310
320 SUB
330

Key_1
CALL Bar_graph (4 , "*")
BEEP 300,.1 340

350
360
370
380
390
400
410
420
430
440
450
460
470

FOR Iota=l TO 2000
NEXT Iota
CALL Bar_graph(4," ")

SUB END

SUB Key_2
CALL Bar_graph (3 , "*")
BEEP 400,.1
FOR Twink1e=1 TO 2000
NEXT Twinkle
CALL Bar_graph(3," ")

SUBEND

Bar_graph(Line,Char$)

Plot priority.
Middle tone.

Erase.

Graph priority.
High tone.

Erase.

480 SUB
490 CONTROL 1,1;Line ! Locate line.
500 OUTPUT l;Char$! Bar-graph character.
510 SUBEND

Advanced Interfacing Topics 14-13

If [!g] is pressed after !!II is pressed, but while the Key 1 routine is being executed, execution of
Key 1 is temporarily interrupted and the Key 2 routine is executed. When Key 2 is finished, execu
tion ~)f Key 1 is resumed at the point where it was temporarily interrupted. This occurs becausf:
1m was assigned a higher software priority than !!II.

System
Priority

"Key _ '" execution pre-empted.

4

3

2 ,
o

Main program's
lines being

executed. I "Key_'" "Key_2" "Key_'"
being being execution

executed. executed. completed.

pressed pressed

Main program's
execution
continued.

Events with Higher Software Priority Take Precedence

On the other hand, if !!II is pressed while [!g] is being serviced, the computer finishes executing
Key _2 before executing Key _1. The event of pressing !!II was "logged" but not processed until
after the routine having higher software priority was completed. This is a very important con
cept when dealing with event-initiated branching. The action of the computer in logging events and
determining assigned software priority is further described in the next section.

System
Priority

4 ~~

3

2 ,
o

y

Main program's
execution
continued. r "Ke;_2"

being executed.

t
k2](k,

pressed pressed

I

y

"Key_'"
being executed.

time ~
)

Main program's
lines being
executed.

An Event with Lower Software Priority Must Wait

14-1-4 Advanced Interfacing Topics

CondHlons Required for Initiating a Branch. In order for any event to initiate a branch,
the following prerequisite conditions must be met. The preceding section showed a simple exam
ple of softkey events, which are similar to interface interrupts. This section describes the addi
tional requirements for servicing interface interrupts. Later sections show more details of meeting
these requirements.

1. The branch must be set up by an ON-event-branch statement, and the service routine must
exist.

100 ON INTR GOSUE. Check device

920 Check_device: ! Service routine for interface interrupts.
The term service routine is any legal branch location for the type of branch specified
(GOSUB, GOTO, CALL,· or RECOVER) and current context.

2. Before an event (which is set up) can initiate a branch, it must first be enabled to do so.
With non-interrupt events (such as ON KEY, and ON KNOB), the event is automatically
enabled when the ON-event statement is executed. However, with ON INTR, you must
explicitly enable the intenupt to initiate its corresponding branch. For example, to enable
the interface at select code 7 to initiate an interrupt branch:

110 ENABLE INTR 7'; Intr_rnask

Refer to "Interface Interrupts" and "Interface Timeouts," later in this section, for further
details on enabling these events.

3. The event must occur and be logged by the BASIC system. (For instance, the HP-IB "Ser
vice Request" signal is selilt from the device to the computer and is logged by the BASIC
operating system.)

4. The software priority assigned to the event must be greater than the current system priority. t

When all of these conditions have been met, the branch is taken.

• Parameters cannot be passed to the service routine in an ON INfR CALL statement; any variables to be used jointly
by the service routine and other contexts must be defined in common.

t Softwue priority is specified in tlle event's set-up statement; the range of priorities that can be specified in this
statement is 0 through 15. Interfaces also have a "hardware" priority which is different from the software priority. The
following sections describe details of hardware and software priority.

Advanced Interfacing Topics 14-15

Logning and Servicing Events. The preceding events may occur at any time; however, the
BASIC program is only "notified" if these events have been "set up" to initiate a branch. An
example of ignoring an event is seen when an undefined softkey is pressed. Since the event has not
been set up, the operating system detects the event, but does not notify the BASIC program. In
this example, the computer beeps. No BASIC service routine is executed, even though the operat
ing system was "aware" of the event. Thus, only when an event is first set up and then occurs does
the BASIC program "service" its occurrence.

Sofhrare Priority: The computer first "logs" the occurrence of an event which is set up. *
After recording that the event occurred, the computer then checks the event's software priority
against that of the routine currently being executed. The priority of the routine currently being exe
cuted is known as system priority. If no service routine is being executed, the system priority is 0;
otherwise the system priority is equal to the assigned software priOJrity of the: routine currently
being; executed. The following table lists the software priority structure of the BASIC system;
priority increases from 0 to 17.

Software Priorities of Events

Slrstem Priority Explanation
0 System priority when no service routine is being executed

(known as the "quiescent level").

1 thru 15 Software-assignable priorities of selrvice routines.

16 Effective software priority of ON ENID and ON TIMEOUT. The
software priorities of these events cannot be changed.

17 Effective software priority of ON ERROR. The software priori-
ties of these events cannot be changed.

In th(~ above example, system priority was 0 before either of the events occurred. When !IT] was
press,ed, the system priority became 3. When [Ig] was subsequently pressed, the system first logged
the event and then checked its priority against the current system priority. Since [Ig] had been
assigned a priority of 4, it pre-empted !IT]'s service routine because of its hig,her software priority.

It is important to note that BASIC only selVices event occurrences when a program line is exited. This
change of lines occurs either:

* Th,~ process of lOgging event occurrences is described in the section called "Hardware Priority."

14-16 Advanced Interfacing Topics

• at the end of execution of a line, or

• when the line is exited when a user-defined function is called.

When the program line is changed, the computer attempts to service all events that have occurred
since the last time a line was exited. The next sections further describe logging and servicing
events.

When execution of Key 2 started, the system priority was set to 4. If any event was to interrupt the
execution of this service-routine, it must have had a software priority of 5 (or greater). When exe
cution of Key 2 completed, the Key 1 service routine had the highest software priority, so its exe
cution was resumed at the point at which it was interrupted.

If [IT] was pressed again while ilts own service routine was being executed, execution of the first
service routine was finished before the service routine was executed again. Thus, if an event occurs
that has the same software priority as the system priority, its service routine will not interrupt the
current routine. The service routine will only be executed if the event's software priority becomes
the highest priority of any event which has been logged (i.e., after all other events of higher
software priority have been serviced).

Changing System Priority: Events are assigned a software priority to allow the computer to
respond to occurrences of events with high software priority before those with lower priorities.
Occasionally, service routines may contain code segments that should not be interrupted once their
execution begins. In such cases, the entire service routine may not require a high software priority,
even though a portion of the routine needs a high priority to ensure that it will not be interrupted
by most other processes.

The SYSTEM PRIORITY statement can be used in these cases to set the system priority to a level
higher than the BASIC system would otherwise set it when the branch to the service routine is
taken. The current system priority can also be determined by calling SYSTEM$("SYSTEM
PRIORITY"), which returns a string value of the current system priority in the range 0 through 15.
Examples are shown in the following program.

100 GINIT ! Use default plotter is CRT.
110 GRAPHICS ON
120 VIEWPORT 0,131,30,100
130 WINDOW 0,2000,0,7
140
150 ON KEY 1 LABEL "Prior.1",1 GOSUB Key_1
160 ON KEY 2 LABEL "Prior.2",2 GOSUB Key_2
170 ON KEY 3 LABEL "Prior.2",3 GOSUB Key_3
180 !
190 Sys_prior$-"SYSTEM PRIORITY" ! Define string for SYSTEM$.
200 !

Advanced Interfacing Topics 14-17

210 Main_program: !
220 DISP "Quiescent system priority level - 0."
230 X=X+l
240 Sys_prior=VAL(SYSTEM$(Sys_prior$))
250 GOSUB Plot_priority
260 GOTO Main_program
270 !
280 Key_I: FOR Iota-I TO 100
290 DISP "Key 1; priority 1."
300 X=X+l
310 Sys_prior=VAL(SYSTEM$(Sys_prior$))
320 GOSUB Plot_priority
330 NEXT Iota
340 RETURN
350
360 Key_2: FOR Twinkle=l TO 100
370 DISP "Key 2; priority 2."
380 X=X+l
390 Sys_prior=VAL(SYSTEM$(Sys_prior$))
400 GOSUB Plot_priority
410 NEXT Twinkle
420 !
430 ! Critical routine raise system priority.
440 SYSTEM PRIORITY 3
450 FOR Split_second=l TO 100
460 DISP "Subroutine set system priority to 3."
470 X=X+l
480 Sys_prior=VAL(SYSTEM$(Sys_prior$))
490 GOSUB Plot_priority
500 NEXT Split_second
510 !
520 ! System priority lowered when finished.
530 SYSTEM PRIORITY 0
540 RETURN
550
560 Key_3: FOR Jiffy=l TO 100
570 DISP "Key 3; priority 3."
580 X=X+l
590 Sys_prior=VAL(SYSTEM$(Sys_prior$))
600 GOSUB Plot_priority
610 NEXT Jiffy
620 RETURN

14-111 Advanced Interfacing Topics

630 !
640 Plot_priority:
650
660
670
680
690
700
710
720
730
740 END

IF X>2000 THEN Draw new plot.
GCLEAR
MOVE 0,0
X=O

END IF
PLOT X,Sys_prior
RETURN

The subroutine called Key 2 raised the system priority from its current level, 2, to level 3 during
the time that the second FOR..NEXT loop was being executed. During this time, pressing lOO will
not interrupt the routine, since a priority of 4 or greater is required to interrupt the Key _2 routine.

By setting the system priority level in this manner, routines can selectively allow and disallow other
routines from being executed; routines with higher software priority are allowed to pre-empt the
routine, while those with the same or lower priority are not. If no other events are to interrupt the
process, system priority can be set to 15. However, keep in mind that END, ERROR, and
TIMEOUT events have effective software priorities higher than 15 and can therefore interrupt the
service routine (if a branch for one of these events is currently set up).

When the "critical" code has been executed, the program returns the system priority to the value
set by the BASIC system when the branch was taken (which was 2 since the Key 2 event was being
serviced). Of course, if an event with higher software priority occurs while the cOde segment is
being executed, its service routine will pre-empt the critical code segment.

This technique can also be used within SUB and FN subprograms. Keep in mind that when pro
gram control is returned from a context, the system priority is returned to the value it had when
the context was called.

Hardware Priority: There is a second event priority, hardware priority, that also influences the
order in which the computer responds to events.

• Hardware priority determines the order in which events are logged by the system (explained in
following paragraphs).

• Software priority determines the order in which events are serviced.

Advanced Interfacing Topics 14-19

The hardware priority of an interface interrupt is determined by the priority-switch setting on the
interface card itself.· Hardware priority is independent of the software priority assigned to the event
by the ON INTR statement.

All c~vents have a hardware priority, but not all have hardware priorities that can be changed. The
following table lists the hardware-priority structure of HP 9000 Series 200/300 computers and the
HP BASIC Language Processor. Only the optional interfaces' hardware priorities can be changed.

Hardware Priorities of Interfaces

Hardware Priority Interfaces and Events at this Priority
0 Quiescent level

(no interface is currently interrupting)

1 System keyboard
(KEY and KNOB events)

3 Built-in HP-IB interface
(INTR and TIMEOUT events)

3-6 Optional interface cards
(INTR and TIMEOUT events)

7 Non-Maskable Interrupts, such as the [RESlm (I Break I) key

In order to fully understand the differences between hardware andl software: priority, it is helpful to
first understand how the computer logs and services events. When any event occurs, the interface
(at which the event has occurred) signals it to the computer. The computer responds by tem
porarily slUspending execution of its current task to poll (interrogate) the currently enabled inter
faces.

When the computer determines which interface is interrupting, it records that it has occurred on
this interface (i.e., logs the event) and disables further interrupts from this intel/ace. This event is
now logged and service by the computer is pending. The computer can then return to its former
task (unless other events have occurred which have not been logged).

• Setting hardware priority on an optional interface is described in the interface's installation manual.

14-20 Advanced Interfacing Topics

If other events have occurred but have not yet been logged, they will be logged in order of descend
ing hardware priority. This OCCurs because events with hardware priority lower than that of the
event currently being logged are ignored until all events with the current hardware priority are
logged.

Servicing Pending Events. If BASIC was interrupted while executing a program line, execu
tion of the line is resumed (after logging all events) and continues until either the line is completely
executed or a user-defined function causes the line to be exited. When the line is exited, BASIC
begins servicing all pending events.

When servicing pending events, the following rules are used to determine the order in which they
are serviced:

1. Highest software priority first, lowest software priority last.

2. If two or more events have the same software priority, the BASIC services the events in
order of descending interface select codes.

3. If events have both the same software priority and interface select code (such as softkeys
with the same software priority), the events are serviced in the order in which they occurred.

The process of logging of events is still taking place while events are being serviced. This con
current action has two major effects.

1. Events of higher hardware priority will interrupt the current activity to be logged by the com·
puter.

2. Events which also have higher software priority will interrupt the computer's present activity
to be serviced.

Thus, events of high hardware and software priority can potentially occur and be serviced many
times between program lines.

For example, suppose that the following events have been set up and enabled to initiate branches.
Assume that the events have the hardware priorities shown in the program's comments.

100
110
120

ON INTR 8,15 CALL Serv_8
ON INTR 7,14 CALL Serv_7
ON KEY 0,5 CALL Serv kO

Hardware priority 6.
Hardware priority 3.
Hardware priority 1.

Advanced Interfacing Topics 14-21

The following diagram shows the INTR event on interface select code 8 occurring and being ser
viced several times after one program line has been exited.

Program line
being

executed.

t t t
~

Line
exited.

I
Ser"Y_B

executed.

These three events
occur and ore logged.

Serv_7
executed.

Serv_8 Serv_k1 Serv_B Serv_k1 Ne:.t line
executed. begun. e:.ecuted. finished. executed.

t t
~-'- ...

INTR on interface INTR on interface
select code 8 select code 8
occurs and occurs and

is logged. is logyed.

INTH Event Servicing

The main function of hardware priority is to keep events of lower priority from being logged so
that more "urgent" events can be serviced quickly. Decreasing the system's response time to these
urgent events may also increase overall system throughput.

IntE!rface Interrupts

All interfaces have a hardware line dedicated to signal to the computer that an interrupt event has
occurred. The source of this signal can be either the device(s) connected to the interface or the
interface hardware itself. These possibilities are shown in the following diagram:

Interrupt ----+--_
from Device

Interrupt
from
Interface
Hardware

Logical OR of the Two Signals

Computer

Both types of interrupts are
signalled to the computer in
the same manner.

Interface Interrupts

14-2:2 Advanced Interfacing Topics

There are two general types of interrupt events:

• One type of event occurs when a device determines that it requires the computer to execute a
special procedure.

• The second type occurs when the interface itself determines that a condition exists or has
occurred that requires the computer's attention.

The first type of interrupt event iis usually called a service request. Service requests originate at the
device. An example is a voltmeter signaling to the computer that it has a reading; another is a
printer generating a service request when it is out of paper. The service routine takes the appropri
ate action, and the program (usually) resumes execution.

The second type of interrupt event is used to inform the computer of a specific condition at the
interface. This type of event originates at the interface. An example of this interrupt event is the
occurrence of a parity error detected by the serial interface. This error usually requires that the
erroneous data just received be re-transmitted. The service routine can often correct this error by
telling the sender to keep sending the data until the error no longer occurs, after which the com
puter can resume its former task.

Enabling Interrupt Events. Before the INTR event can initiate its branch, it must be enabled
to do so. The following examples show how to enable interrupt events to initiate branches.

Enable interrupts occurring at interface select code 7 to initiate the branch set up by an ON
event-branch statement.

ENABLE INTR 7;Mask

The bit pattern of Mask is copied into the "interrupt-enable" register of the specified interface; in
this case, register 4 of the built-in HP-IB interface receives Mask's bit pattern. Individual bits of
the mask are used to enable different types of interrupt events for each interface. Each bit which is
set (i.e., which has a value of 1) in the mask expression enables the corresponding interrupt condi
tion defined for that bit.

For instance, bit 1 of the HP-IB's interrupt-enable register is used to enable and disable service
request interrupts. To enable this event to initiate a branch, bit 1 must be set to a "1". Specifying a
mask parameter of "2" causes a value of 2 to be written into this register, thus enabling only ser
vice requests to initiate branches.

Advanced Interfacing Topics 14-23

ENABLE INTR 7;2

Mo.t Significant Bit - nificant Bit

Bit 15 Bit 14 Bit 3 Bit 2

Oth er interrupt causes -------+---
describe d in subsquent sections

Value = Value =
-32768 16384

Value = 8 Value = 4

HP-IB Interrupt-Enable Register

The mask parameter is optional:

• I[f it is included, the specified value is written into the appropriate register of the specified
interface.

• If this parameter is omitted, the mask specified in the last ENABLE INTR is used. If no
ENABLE INTR statement has been executed for the specified interface, a value of 0 is used
(all interrupt events disabled).

For example, the following statement re-enables a previously enabled intenupt event:

ENABLE INTR 7

Since no interrupt-enable mask is specified, the last mask used to enable interrupts on this inter
face is used.

Service Requests. You can program a service routine to perform any task(s) that is
"requested" by the device that initiated the branch. If this event can occur for only one reason, the
serviice routine just performs the specified action. However, with many devices, the service request
can occur for several different reasons. In this case, the program must hav(~ a means of determin
ingwhich event(s) occurred and then take action.

14-:l!4 Advanced Interfacing Topics

The following program shows an example of using a service routine that can be initiated by only
one cause - a service request from a device at address 22 on the built-in HP-IB interface.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

! Example of service routine for HP-IB service requests.
!
ON INTR 7,5 CALL Intr7

ENABLE INTR 7;2

Loop: GOTO Loop

END

SUB Intr7
Z=SPOLL(722)

ENTER 722;Reading

ENABLE INTR 7

SUB END

Set up interface, priority,
branch type, and location.

Only service requests
(bit 1) are enabled.

Idle loop.

Clear INTR cause first.

Take desired action.

Re-enable service requests.

The program shows the sequence of steps required to set up and enable interrupt events. These
steps are as follows:

1. The interrupt event is set up to be logged, as in line 120. This statement also assigns the
event's software priority; in this case, the priority is 5.

2. The event must be enabled to initiate its branch, as in line 150. The mask value specifies that
only service requests (enabled by setting bit 1) can initiate branches.

3. When the event occurs it is logged. Any further interrupts from this interface are automati
cally disabled until this interrupt event is serviced.

4. Detennine the interrupt's cause. On HP-IB interfaces, a serial poll (line 230) must be per
formed by the service routine, clearing the interrupt-cause register so that the same event
will not cause another branch upon return to the interrupted context. The value obtained
from the serial poll operation can then be used to determine the interrupt's cause. (The
serial poll is particular to the HP-IB interface, but analogous actions can be performed to
determine interrupt causes on other interfaces.)

S. The actual requested action is perfonned (line 250).

Advanced Interfacing Topics 14-25

8. If subsequent events are to also initiate branches, they must be re-enabled before resuming
execution of the previous program segment, as in line 270. Since no interrupt-enable mask is
explicitly specified, the previous mask is used.

Intlltrrupt Conditions. The conditions that can be sensed by each type of interface are different.
All interrupt conditions signal to the computer that either its assistance is required to correct an
error situation or an operating mode of the interface has changed and must be made known to the
computer.

The; following service routine demonstrates typical action taken when a rec:eiver-line status
("RLS") interrupt condition is sensed by the serial interface.

100
110
120
130
140
150

600
6101
620
630
640
650
660
6701
6801
6901
7001
710
720

! Example of interface-condition interrupt event.

ON INTR 9,4 CALL Intr 9

ENABLE INTR 9;4

Main program.

SUB Intr 9

STATUS 9,lO;Intr_cause
!

Set up for iLnterfa.ce select
code 9 and priority of 4.
Bit 2 in mask enables
"RLS"-type interrupts only.

Clear intr.-cause reg.

! Check errors and branch to "fix" routines.

IF BIT(Intr_cause,3)=1
IF BIT(Intr_cause,2)=1
IF BIT(Intr_cause,l)=l
IF BIT(Intr_cause,O)=l
ENABLE INTR 9,4
SUBEXIT

THEN GOTO Framing error
THEN GOTO Parity_error
THEN GOTO CNerrun error
THEN GOTO Recv buf full
Ignore others, re-enable
INTRs, and return.

14-28 Advanced Interfacing Topics

730 Framing_error: ! "Fix" and re-enable.
740 SUBEXIT
750
760 Parity_error: ! "Fix" and re-enable.
770 SUB EXIT
780
790 Overrun_error: ! "Fix" and re-enable.
800 SUB EXIT
810
820 Recv_buf_full: ! "Fix" and re-enable.
830 SUB EXIT
840 SUB END

Interface Timeouts

A "timeout" occurs when the handshake response from any external device takes longer than the
specified amount of time. The time specified for the timeout event is usually the maximum time
that a device can be expected to take to respond to a handshake during an I/O statement.

Setting Up Timeout Events. The ON TIMEOUT statement sets up an event-initiated branch.
The software priority of this event cannot be assigned by the program; it is permanently assigned
priority 15. The maximum time that the computer will wait for a response from the peripheral can
be specified in the statement with a resolution of O.DOl seconds.

For example, the following statement sets up a timeout to occur after the Serial Interface has not
detected a response from the peripheral for O.2DO seconds. A branch to a subroutine called
"Serial_down" then occurs:

ON TIMEOUT 9,.2 GOSUB Serial down

To set up a timeout after 0.060 sl~conds for the interface at select code 8, you could use the follow
ing statement:

ON TIMEOUT 8,.06 GOTO Hp_ib_status

Timeout Limitations. Timeout events cannot be set up for any of the internal interfaces except
the built· in HP-IB.

Event-initiated branches are only executed at certain times during program execution, usually after
a program line has been executed. Consequently, BASIC may wait up to 25 percent longer than
the specified time to detect a timeout event; however, it will always wait at least the specified
amount of time before generating the interrupt.

Advanced Interfacing Topics 14-27

There is no default timeout time parameter. Thus, if no ON TIMEOUT is executed for a specific
inte~face, the computer will wait indefinitely for the device to respond. The only way that the com
pute:r can continue executing the program is for the operator to use the [g.R 1/01 (IBreakl) key.
This key aborts the I/O operation that was left "hanging" by the failure of the device to respond to
and complete the handshake.

The times specified for timeouts are passed to subprograms. Thus, unless the time for a timeout
event is changed in the subprogram, it remains the same as it was in the call1ing routine. If the time
parameter is changed by the subprogram, it is restored to its former value upon return to the cal
ling context.

I/O Pa'th Attributes

I/O path names can be given attributes which control the way that the system handles the data sent
and received through the I/O path. Since these attributes are implicit to the I/O path name, they
are called I/O path attributes. I/O path attributes are available for such pw·poses as controlling
data representations, generating and checking parity, and defining special end-of-line (EOL)
sequences.

Th~e FORMAT Attributes

All][/0 paths used as means to move data have certain attributes, which involve both hardware
and software characteristics. For instance, some interfaces handle~ 8-bit data, while others can han
dle c~ither 8-bit or 16-bit data. Some I/O operations involve sending Ascn data (for "human con
sumption"), while others may involve sending data in an "internal" form (tbat is easier for the
computer to understand). This second characteristic, data representation, is what the FORMAT
attributes control.

All][/0 paths possess one of two available FORMAT attributes:

• lFORMAT ON - means that the data are sent in ASCII representation .

• lFORMAT OFF - means that the data are sent in BASIC internal representation.

Before getting into how to assign these attributes to I/O paths, let's take a brief look at each one.

14-:!B Advanced Interfacing Topics

FORMAT ON. With FORMAT ON, internally represented numeric data must be "formatted"
into its ASCII representation before being sent to the device. Conversely, numeric data being
received from the device must be "unformatted" back into its internal representation. These
operations are shown in the diagram below:

Internal-Form Data ASCII Data

Computer ~ ~ ~ ~ Computer
Memory -vi

"Formatter"
~ ,/ Resource

..... Routine

Numeric Data Transfer with FORMAT ON

For more information about the ASCII data format, refer to chapter 12, "Introduction to I/O."
For more information about how items and I/O statements are terminated, refer to chapter 13,
"Outputting and Entering Data."

FORMAT OFF. With FORMAT OFF, however, no formatting is required. The data items are
merely copied from the source to the destination. This type of I/O operation requires less time,
since fewer steps are involved.

Internal-Form Data

Computer ,/l- 10. Computer
Memory '\.) Resource .. '"

Numeric Data Transfer with FORMAT OFF

The only requirement is that the resource also use the exact same data representations as the
internal BASIC representation.

Here is how each type of data item is represented and sent with FORMAT OFF:

• INTEGER: two-byte (16-bit), two's complement.

• REAL: eight-byte (64-bit) IEEE floating-point standard.

• COMPLEX: same as two REAL values.

• String: four-byte (32-bit) length header, followed by ASCII characters. An additional ASCII
space character, CHRS(32), may be sent and received with strings in order to have an even
number of bytes.

Advanced Interfacing Topics 14-29

Here are the FORMAT OFF rules for OUTPUT and ENTER operations:

• No item terminator and no EOL sequence are sent by OUTPUT.

• No item terminator and no statement-termination conditions are required by ENTER.

• No non-default CONVERT or PARITY attribute may be assigned to the I/O path (discussed
Ilater in this section).

•][f either OUTPUT or ENTER uses an IMAGE (such as with OUTPUT 701 USING "40.0"),
Ithen the FORMAT ON attribute is automatically used.

Assligning DefauH FORMAT AHributes. As discussed in chapter 12, names are assigned to
I/O paths between the computer and devices with the ASSIGN statement. Here is a typical exam
ple:

ASSIGN Any_name TO Device_selector

This assignment fills a "table" in memory with information that describes the I/O path. This
information includes the device selector, the path's FORMAT attribute, and other descriptive
information. When the I/O path name is specified in a subsequent I/O statement (such as OUT
PUT or ENTER), this information is used by the system in complleting the I/O operation.

Oifferent default FORMAT attributes are given to devices and files:

• Devices - since most devices use an ASCII data representation, the default attribute assigned
Ito devices is FORMAT ON. (This is also the default for ASCII files and BUFFERs, as dis
I:ussed later in this chapter and in the next chapter.)

• BDAT and HPUXfiles -- the default for BOAT and HPUX files is FORMAT OFF. (This is
lbecause for numeric quantities, the FORMAT OFF representation requires no translation time
for numeric data; this is possible because humans never see the data patterns written to the
file, and therefore the items do not have to be in ASCII, or humanly readable, form.)

Om: of the most powerful features of this BASIC system is that you can change the attributes of
I/O paths programmatically.

Spt!cifying I/O Path AHributes. There are two ways of specifying attributes for an I/O path:

• Specify the desired attribute(s) when the I/O path name is initially assigned. For example:

100 ASSIGN @Device TO Dev_selector; FORMAT ON
or

100 ASSIGN @Device TO Dev selector

14-::W Advanced Interfacing Topics

Default for devices is
FORMAT ON

• Specify only the attribute(s) in a subsequent ASSIGN statement:

250 ASSIGN @Device; FORMAT OFF ! Change only the attribute

The result of executing this last statement is to modify the entry in the I/O path name table that
describes which FORMAT attribute is currently assigned to this I/O path. The implicit ASSIGN
@Device TO *, which is automatically performed when the "TO ... " portion is included, is not
performed. Also, the I/O path name must currently be assigned (in this context), or an error is
reported.

Restoring the Delaun AHriibutes. If any attribute is specified, the corresponding entry in the
I/O path name table is changed (as above); no other attributes are affected. However, if no attri
bute is assigned (as below), thelll all attributes, except WORD, are restored to their default state
(such as FORMAT ON for devices.)

340 ASSIGN @Device Restores ALL default attributes.

Additional Attributes

The first section discussed the FORMAT attributes of I/O path names. Several other attributes
are available to direct the BASIC system to perform the following operations whenever data are
moved through the I/O path possessing the attribute:

• specify that data are to be sent and received on a byte or word basis

• perform conversions on a character-by-character basis on inbound and/or outbound data

• check for parity on inbound data, and generate parity on outbound data

• re-define the end-of-line sequence normally sent after the last data item in output operations

It is also possible to direct the system to return a numeric code to a variable which describes the
outcome of an attempted ASSIGN operation. This section describes implementing these functions
by using the additional I/O path attributes.

The BYTE and WORD AHrubutes. The HP Series 200/300 computers are capable of handling
data as either 8-bit bytes or 16-bit words when using 16-bit interfaces. This section describes how
to use the BYTE and WORD attributes to determine which way the system will handle data when
using these interfaces.

Unless otherwise specified, the system treats data as bytes during I/O operations. For instance, when
the following I/O statement is executed:

OUTPUT Device_selector;Integer_array(*)

Advanced Interfacing Topics 14-31

the 16-bit INTEGER values are normally sent one byte at a time, with the most significant byte of
each INTEGER sent first. Executing the following statement:

OUTll'UT Device_selector USING "W"; Integer_array(*)

direc:ts the system to send the data as words if the interface has the ability to handle data as words.
With a 16-bit interface, such as a GPIO Interface, the INTEGER data are sent one word at a time
(i.e., one word per handshake cycle). If the interface is not capable of sending one word in a single
operation,. the word is sent as two bytes with the most significant byte first.

When the BYTE attribute is assigned to an I/O path name, the system sends and receives all data
through the I/O path as bytes; one byte is sent (or received) per operation. Thus, BYTE directs the
system to treat a l~bit interface as if it were an 8-bit interface. The following statements showexam
ples of assigning the BYTE attribute to an I/O path:

ASSIGN @Printer TO 701; BYTE
ASSIGN @Device TO 12; BYTE

In the first statement, the BYTE attribute is redundant, because the WORD attribute cannot be
assigned to the HP-IB Interface (since it is an 8-bit interface).

When the I/O path name assigned to an interface possesses the BYTE attribute, the system sends
and receives all subsequent data through the interface one byte per handshake operation. As an
example, executing either of the following statements (when the I/O path possesses the BYTE
attribute):

OUTPUT @Device;Integer_array(*)
OUTPUT @Device USING "W";Integer_array(*)

direc:ts the system to send the data as bytes, even though the interface is capable of sending the
data as words (and in the second example the "W" specifier was used). Stated again, the BYTE
attribute directs the system to treat 16-bit interfaces as if they were 8-bit interfaces. With BYTE,
only the 8 least significant bits of the interface are used to send and receive data; the most
significant bits are always zeros. Keep in mind that the logic sense of the signal lines used to send
and receive these bits is determined by switch settings on the interface card.

14-32 Advanced Interfacing Topics

The WORD attribute specifies that all data sent and received through the I/O path are to be moved
as words. In other words, this attribute directs the system to use a1116 data lines of a 16-bit inteT/ace
for all subsequent I/O operations that use the I/O path name. This attribute is designed to improve
performance in two types of situations (on 16-bit interfaces): when sending and receiving FOR
MAT OFF data, and when sendilllg and receiving INTEGERs with FORMAT ON. The WORD
attribute can also be used under other situations; however, results may show some unexpected
"side effects," which are explained later in this section. The interface to which the I/O path name
is assigned must be capable of handling data words; if not, an error will be reported when the
ASSIGN is executed.

When an I/O path possesses the WORD attribute, an even number of data bytes will always be
sent or received by anyone I/O statement that uses the I/O path. Consequently, when an opera
tion involves an odd number of data bytes, the system will place pad byte(s) in outbound data or
enter (but ignore) additional byte(s) of inbound data. These operations can be thought of as
"aligning data on word boundaril:!s." This is the main side effect that can occur with the WORD
attribute.

With the FORMAT OFF attribute, all data items are represented by an even number of bytes (see
the discussion in "The FORMAT OFF Attributes" earlier in this section for details). Since these
representations use an even number of bytes, no pad bytes are necessary.

When WORD is used with FORMAT ON, the data will be buffered (automatically by the system)
when necessary to allow sending all data as words. Sending INTEGERs does not usually require
this type of buffering, because each INTEGER consists of two bytes of data. However, sending
strings of odd length often requires that the system perform this automatic buffering. The first byte
of each word is placed in a two-character buffer (created by the system); when the second byte is
placed in this buffer, the two bytes are sent as one word, with the most significant eight bits
representing the first byte. If an odd number of data bytes would otherwise be sent, a Null charac
ter, CHR$(O), is placed in the buffer to "flush" the last byte.

The following statements show assigning the WORD attribute and using the I/O path to send data
through the GPIO Interface at select code 12. Remember that the default FORMAT attribute
assigned to I/O paths to devices is FORMAT ON.

110 ASSIGN @Gpio TO 12.;WORD
120 OUTPUT @Gpio;"Odd"
130 OUTPUT @Gpio USING "K,L,K";"Odd","Even"

Advanced InterfaCing Topics 14-33

The following diagrams show the characters that would be sent by the OUTPUT statements in
lines 120 and 130, respectively.

I 0 I did I CR i LF INULI

Word 1 Word 2 Word 3

I 0 I did I CR I LF INULI E I v Ie! n I CR I LF I
'" ''--~

Word 1 Word 2 Word 3 Word 4 Word 5 Word 6

In the first statement, a Null was sent after the EOL characters to flush the buffer and force word
alignment for a subsequent OUTPUT. The second statement shows that a pad byte will be sent
after any EOL sequence when required to achieve word alignment; the Null pad byte was not
needed after the second EOL sequence. In addition, if a buffer or me pointer currently has an odd
ValUl~, a leading pad byte will be output to force word alignment before any data are sent by the
OUTPUT statement.

Whe~n executing an ENTER statement from an I/O path with the WORD attribute, the system
always reads an even number of bytes from the source device, since data arl;l sent as words. In
cases where an odd number of data bytes are sent, such as when an odd nwnber of string charac
ters are sent with an even number of statement-terminator characters, the system enters (but
ignores) the last byte sent (after the statement-terminator characters). The following statements
show an example of entering the data sent by the OUTPUT statements in the preceding example.

ASSIGN @Device TO 12;WORD
ENTER @Device;String_varl$
ENTER @Device;String_var2$
ENTER @Device;String_var3$

The variables receive the following values:

String_varl$="Odd"
String_var2$=="Odd"
S tring_var3 $_" Even"

14-~a4 Advanced Interfacing Topics

Notice that three ENTER statements were used to enter the data sent by the two preceding OUT
PUT statements. This method was used to handle the pad bytes generated by the OUTPUT state
ment. If two ENTER statements would have been used, the pad byte sent after the second "Odd"
and EOL sequence would have to have been skipped by an "X" image specifier. The following
ENTER statements show how this ~ould be done.

ENTER @Device USING "K,X,K";String_var1$,String_var2$
ENTER @Device USING "K";String_var3$

If the "X" specifier would not have been used, a pad byte would have been placed in
String_ var2$. Thus, agenel'al recommendation for entering data OUTPUT through an I/O
path with the WORD and FORMAT ON attributes is to enter only one item per ENTER state
ment.

When the WORD attribute is iJil effect, the "W" image specifier sends data that are always aligned
on word boundaries. For instance, the following statement shows how the system defines "W" with
the WORD attribute during OUTPUT.

OUTPUT @Device USING "B,W";65,256*66+67

I A INULI B I C I CR I LF I
'-__ --"" II

Word 1 Word 2 Word 3

The Null (NUL) pad byte was sent before the "W" image data to align the INTEGER specified by
the "W" on a word boundary.

During ENTER, a pad byte is fmtered (but ignored) when necessary to align the "W" item on a
word boundary. For instance, the following statement would enter the preceding data items in the
same manner as they were sent.

ENTER @Device USING "Ei,W";One_byte,One_word

Keep in mind that these examples have been provided only to show potential problems that can
arise when sending an odd number of data bytes while using the WORD attribute. It would be
more appropriate to use only images that send an even number of bytes when using WORD during
OUTPUT, and it will simplify matters to send only one item per OUTPUT statement. Similarly, it
is generally much simpler if only one item is entered per ENTER statement.

Furthermore, if pad bytes pose a problem when working with INTEGER data (with FORMAT
ON), you can also use the "Y" specifier. During OUTPUT, the "Y" does not force word align
ment by sending a pad byte; during ENTER, the "Y" does not skip a byte to achieve word

Advanced Interfacing Topics 14-35

alignment.

Note also that the Null character pad byte may be converted to another character by using the
CONVERT attribute; see the next section for further details.

The BYTE and WORD attributes affect any ENTER, OUTPUT, or TRANSFER statements that
use the I/O path name. However, only the attribute specified on the non-buffer I/O path end of
the TRANSFER is used; BYTE or WORD is ignored on the buffer end.

Unlike other attributes, the BYTE and WORD attribute cannot be changed once assigned to an
I/O path name. For instance, executing:

ASSIGN @Printer TO 12

implicitly assigns the BYTE attribute to @Printer, since it is the default attribute. Executing the
following statement results in error 600 (Attribute cannot be modified):

ASSIGN @Printer;WORD

The converse situation is true for the WORD attribute: Furthermore, if WORD bas been assigned
to the: I/O path, then BYTE is not restored when ASSIGN @Device is executed; all other
default attributes would be restored. For instance, executing:

ASSIGN @Device TO 12;WORD,FORMAT OFF

assigns the specified non-default attributes to the I/O path name @Device. Executing:

ASSIGN @Device

restores the default attribute of FORMAT ON (and also other default attributes, if currently non
default), but it does not restore the default BYTE attribute.

Com,ertlng Characters. The CONVERT attribute is used to specify a character-conversion
table which is to be used for OUTPUT or ENTER operations. If data are to be converted in both
directions, a separate conversion table must be defined for each direction. Two conversion
methods are available - by index and by pairs. This section shows simple examples of each.

CONVERT ... BY INDEX specifies that each original character's code is used to index a replace
meut character in the specified conversion string. For instance, CHR$(10) is replaced by the 10th
character in the conversion string. The only exception is that CHR$(O) will be replaced by the
256th character in the conversion string. If the string contains less lthan 256 Il:haracters, characters
with c:odes that do not index at conversion-string character will not be converted. If the string con
tains more than 256 characters, error 18 is reported.

14-34S Advanced Interfacing Topics

The following program shows an example of setting up a conversion by index for OUTPUT opera
tions.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

DIM Conv_string$[256]
INTEGER Index val

! Generate conversion string.
FOR Index val-I TO 255

SELECT Index val
CASE NUM("a") TO NUM("Z") ! Change to uppercase.

Conv_string$[Index_val]=UPC$(CHR$(Index_va1))
CASE ELSE ! No conversion.

Conv_string$[Index_va1]=CHR$(Index_va1)
END SELECT

NEXT Index val
Conv_string$[256]=CHR$(0)

! Set up conversions.

256th element has an
effective index of O.

ASSIGN @Device TO l;CONVERT OUT BY INDEX Conv_string$

OUTPUT @Device;"UPPERCASE LETTERS ARE NOT CONVERTED."
OUTPUT @Device;"Lowercase letters are converted."
OUTPUT l;"Conversions are made only II

OUTPUT 1; II when the I/O path is used."

END

The program is designed to convert lowercase characters to uppercase characters. In order to
make the conversion, the program first computes the characters in the conversion string; the char
acters are computed one at a time. If the character's original code is not in the range 97 to 122 ("a"
to "z"), then no change is made" If it is in the range, an uppercase character is placed in the string
at the location indexed by the original (lowercase character's) code.

The example program's output is as follows:

UPPERCASE LETTERS ARE NOT CONVERTED.
LOWERCASE LETTERS ARE CONVERTED.
Conversions are made only
when the I/O path is used.

To perform the lowercase-to-uppercase conversion, it was not necessary to include characters with
codes 123 through 255 in the conversion string, since these characters are not to be converted.

Advanced Interfacing Topics 14-37

They were included to emphasize that the 256th character must be included in the string if
CHRS(O) is to be converted with this method. The CONVERT attribute is then assigned to the
I/O path, and all subsequent data sent through the I/O path (while CONVERT is in effect) will be
converted.

CONVERT ... BY PAIRS specifies that the conversion string contains pairs of characters, each pair
consisting of an original character followed by its replacement character. Before each character is
moved through the interface, the original characters in the conversion string (the odd characters)
are searched for the character's occurrence. If the character is found, it will be replaced by the
succeeding character in the conversion string; if it is not found, no c;onversion takes place. If dupli
cate original characters exist in the conversion string, only the first occurren.ce is used. The string
variable must contain an event number of characters; if not, error 18 is reported.

The following program shows an example of setting up the same conversion as in the preceding
example, except that conversion by pairs is used.

100 DIM Conv_string$[512]
110 !
120 ! Define conversion string.
130 Conv_string$=naAbBcCdDeEfFgGhHiIjJkK1LmMnNoOppn
140 Conv_string$=Conv_string$&" qQrRs StTuUvVwWxXyYzZ "
150 !
160 ! Set up conversions.
170 ASSIGN @Device TO l;CONVERT OUT BY PAIRS Conv_string$
180
190 OUTPUT @Device;"UPPERCASE LETTERS ARE NOT CONVERTED."
200 OUTPUT @Device;; "Lowercase letters are converted."
210 OUTPUT l;"Conversions are made only"
220 OUTPUT 1; "when the I/O path is used."
230
240 END

The pairs method only requires that each character to be replaced (and its replacement) is
included in the conversion string. Note that the frrst character of each pair is the original character
and the second is the replacement. If a character does not appear in the conversion string, it will
not be converted.

Conversion of inbound characters can also be performed with both of these methods. In the
second example, for instance, the conversion is implemented with the following statement.

ASSIGN @Device;CONVERT IN BY PAIRS Conv_string$

14-3l11 Advanced Interfacing Topics

Conversions in both directions will continue until disabled. The following statement could be used
to disable conversions of outbound data.

ASSIGN @Device;CONVERT OUT 'OFF

It is important to note that the conversion string specified in the ASSIGN statement is used for
each OUTPUT or ENTER statement that uses the I/O path while the conversion is enabled. Note
that the conversion string's contents are not contained in the I/O path data type; only a pointer to
the string variable is maintained .. Thus, any changes to the string's value will immediately affect any
subsequent OUTPUT or ENTER that uses that I/O path.

It is also important to note that the string must be defined for at least as long as the I/O path
which references it; this "lifetiml~" requirement has several implications. If the I/O path and
conversion string are defined in different COM blocks, an error will be reported. If the I/O path is
to be used as a formal parameter in a subprogram, the conversion string variable must either
appear in the same formal parameter list or be defined in a COM block accessible to that subpro
gram. If the I/O path name is passed to subprogram(s) by including it as a pass parameter, the
string variable must currently be defined in the context which defined the I/O path.

When CONVERT OUT is in effect, the specified conversions are made after anyend-of-line
(EOL) sequence has been inserted into the data, but before parity generation is performed (with
the PARITY attribute). When CONVERT IN is in effect, conversions are made after parity is
checked (if enabled), but before the data are checked for any item- or statement-termination char
acters.

Keep in mind that no non-default CONVERT attribute can be assigned to an I/O path that
currently possesses the FORMAT OFF attribute, and vice versa.

Changing the EOl Sequence. An end-oE-line (EOL) sequence is normally sent following the
last item sent with free-field OUTPUT statements and when the "L" specifier is used in an OUT
PUT that uses an image. The default EOL characters are carriage-return and line-feed (CR/LF),
sent with no device-dependent END indication.

In order to define non-default EOL sequences to be sent by the OUTPUT statement, an I/O path
must be used. The EOL sequence is specified in one of the ASSIGN statements which describe the
I/O path. An example is as follows.

ASSIGN @Device TO 12;EOL CHR$(lO)&CHR$(lO)&CHR$(13)

The characters following the secondary keyword EOL are the EOL characters. Any character in
the range CHRS(O) through CHRS(255) may be included in the string expression that defines the
EOL characters; however, the length of the sequence is limited to eight characters or less. The
characters are put into the output data before any conversion is performed (if CONVERT OUT is
in effect).

Advanced Interfacing Topics 14-39

If END is included in the EOL attribute, an interface-dependent "END" indication is sent with (or
after) the last character of the EOL sequence. However, if no EOL sequen<:e is sent, the END
indication is also suppressed. The following statement shows an example of defining the EOL
sequence to include an END indication.

ASSIGN @Device TO 20;EOL CHR$(13)&CHR$(10) END

With the HP-IB Interface, the END indication is an End-or-Identify message (EOI) sent with the
last EOL character. Refer to chapter 16 for information on the END indication for other inter"
faces (if implemented).

If DElAY is included, the system delays the specified number of seconds (after sending the last
EOL character and/or END indication) before executing any subsequent BASIC statement.

ASSIGN @Device;EOL CHR$(13)&CHR$(10) DELAY 0.1

This parameter is useful when using slower devices which the computer can "overrun" if data are
sent as rapidly as the computer can send them. For example, a printer connected to the computer
through a serial interface set to operate at 300 baud might require a delay after receiving a CR
character to allow the carriage to return before sending further characters. Note that the DElAY
parallD.eter is not exact; it specifies the minimum amount of delay.

The default EOL sequence is a CR and LF sent with no end indication and no delay; this default
can be restored by using the EOL OFF attribute.

Parity Generation and Checking. Parity is an indication used to help determine whether or
not a quantity of data has been communicated without error. The sending device generates the
pari~y indication, which is then checked against the parity expected by the receiving device. If the
two indications don't agree, a parity error is reported.

With this system, parity may be indicated by the most significant bit of a data byte. The parity bit is
generated (during OUTPUT) or checked (during ENTER) by the system according to the current
PARITY attribute in effect for the I/O path through which the data bytes are being sent or
received.

Unless otherwise specified, the system will not generate or check parity (the: default mode is PAR
ITY OFF). The following optional PARITY attributes are available:

14-41D Advanced Interfacing Topics

Optional PARITY AHributes

Option Effect During ENTER Effect During OUTPUT
OFF No ChE~ck is performed No parity is generated

EVEN Check for even parity Generate even parity

ODD Check for odd parity Generate odd parity

ONE Check for parity bit set (1)

Set parity bit (1)

ZERO Check for parity bit clear (0) Clear parity bit (0)

If PARITY EVEN is specified, the parity bit will be a 1 when required to make the total number
of l's in the byte an even number; for instance, a byte with a value of 1 will have the parity bit set
to 1 with even parity. Conversely, PARITY ODD specifies that the parity bit will be a 1 when
required to make the total number of I's odd. PARITY ONE specifies that the parity bit will
always be 1, while PARITY ZERO specifies that it will always be O. PARITY OFF disables parity
generation and checking, if currently enabled for the I/O path.

To enable parity generation during OUTPUT and ENTER operations, assign a PARITY option to
an I/O path. For example:

ASSIGN @Serial TO 9;PARITY ODD

specifies that all data sent through the I/O path @Serial will use the most significant bit of each
byte for parity. However, only 128 different characters will be available, since one bit of the eight is
not available for data representation.

If the system detects a parity error while executing an ENTER statement, error 152 (Pari ty
error) will be reported. All characters entered up to (but not including) the erroneous byte will
be assigned to the appropriate variable, after which the system will report the error.

If the receiving device detects a parity error, it will be responsible for communicating the error to
the computer. A typical means would be to enable the interface to signal the error by generating
an interrupt. Refer to "Interrupts and Timeouts" earlier in this chapter.

Parity is generated after conversions have been made during OUTPUT and is checked before
conversions during ENTER. After parity is checked on inbound data, the parity bit is cleared; how
ever, when PARITY OFF is in effect, bit 7 is not affected.

Advanced Interfacing Topics 14-41

Disa:bling parity generation and checking is accomplished by assigning the I)ARITY OFF attribute
to the I/O path.

ASSIGN @Serial;PARITY OFF

Parilty is also disabled when an I/O path name is explicitly closed and then fe-assigned, when an
I/O path name is re-assigned without being closed, and when the default attributes are restored
with statements such as ASSIGN @Serial.

KeelP in mind that a non-default PARITY attribute cannot be assigned to an I/O path that
currently possesses the FORMAT OFF attribute, and vice versa.

Det,ermining the Outcome of ASSIGN Statements. Although RETURN is not an attri
bute, including it in the list of attributes directs the system to place a a numeric code that indicates
the outcome of the ASSIGN operation into the specified numeric variable. The following state·
ment shows an example of enabling this error check:

ASSIGN @Device TO l2;RETURN Outcome

• If the operation is successful, a 0 is returned.

• If a non-zero value is returned, it is the error number which otherwise would have been
reported. For instance, if an interface was not present at select code 12, the system would have
placed a value of 163 in Outcome. This value is the error code for I/O interface n()t
present.

The following statement shows a method of determining the Open/Closed status of the I/O path.

ASSIGN @Device;RETURN Closed_status

If @Device is currently Open, then 0 is returned; if it is Closed, then 177 is returned (Undefined
I/O path name). When RETURN is used in this manner, the default attributes are not
restored.

When RETURN is used in this manner, ON ERROR is normally disabled during the ASSIGN
stat(~ment; however, there are certain errors which cannot be trapped by using RETURN in the
ASSIGN statement.

If more than one error occurred during the ASSIGN, there is no assurance that the error number
returned is either the first or the last error.

14-412 Advanced Interfacing Topics

Concepts of Unified I/O

One of the most powerful features of HP BASIC is that by assigning different I/O path names to
various computer resources you can use one set of I/O statements to access all of those resources. For
example, you can use the OUTPUT and ENTER statements, with a different I/O path for each
resource, to access the CRT display, the keyboard, mass storage files, and buffers. This feature,
called unified I/O avoids the need to use a separate set of BASIC statements to access each class
of resources. Unified I/O, is an implicit attribute of I/O path names. •

The reason that unified I/O is so powerful is that it gives you great flexibility in program design.
For example, you may want to design a program that collects data from an instrument, but you
may want to debug the program before connecting the instrument. You can do this by fnst testing
the program using a disk file to simulate the external device. This technique is described in
"Unified I/O and Program Design" later in this section.

The "Directing Data Flow" section of chapter 12 tells how to assign an I/O path name to a device
or mass-storage file. By using I/O path names in OUTPUT and ENTER statements you can com
municate with several system re:sources:

• String variables - You can use ENTER and OUTPUT to move data to and from string vari
ables. Refer to "I/O Operations with String Variables" later in this section.

• Buffers - You can use ENTER and OUTPUT, along with the TRANSFER statement, with
buffers. Refer to chapter 15" "Transfers and Buffered I/O."

• HP-IB peripherals - Refer to "The HP-IB Interface" in chapter 16 for information on how to
use OUTPUT and ENTER to communicate with HP-IB peripheral devices.

• Mass-storage files - You can use OUTPUT and ENTER to move data to and from mass
storage files. A discussion of file I/O follows. Refer to "Unified I/O and Program Design" for
a practical application of this technique.

• Other attributes of I/O path names were covered in the previous section.

Advanced Interfacing Topics 14-43

1/01 Paths and Mass-Storage Files

Before discussing I/O paths to mass storage flles, let's look at some background information con
cerning data representation and file types.

Data Representations and File Types. As you know, the computer supports two general
data representations - the ASCII and internal representations. The following criteria should be
considered in choosing which data representation to use:

a Maximization of the rate at which computations can be made.

a Maximization of the rate at which the computer can move the data between its resources.

a Minimization of the amount of storage space required to store a given amount of data.

a Compatibility with the data representation used by the resources with which the computer is to
communicate.

The internal representations implemented in the computer are designed according to the first three
ofthle above criteria. However, the last criterion must be met if communicaltion with an external
resolllrce is to be achieved. If the resource uses the ASCII representation, this compatibility
requirement takes precedence over the other design criteria. The ASCII representation fulfills this
last c:riterion for most devices and for the computer operator.

There are three types of mass-storage data files: ASCII, BDAT, and HPUX.· Let's consider the
data representations used with these file types:

a Only the ASCII data representation is used with ASCII flles.

a But either the ASCII (FORMAT ON) or the internal (FORMAT OFF) representation can be
used with BDAT and HPUX (or DOS) flles.

• Th,e HP BASIC Language Processor implements the DOS file type rather than HPUX.

14-44 Advanced Interfacing Topics

BDAT and HPUX Files. BDAT (BASIC Data) files and HPUX (or DOS) files have been
designed to maximize performance rather than for compatibility:

• Both numeric and string computations are much faster.

• More data can generally be stored on a disk medium because there is no storage overhead
(there are no "record holders") for numeric items.

• The transfer rates for each data type have also been increased. Numeric output operations are
always much faster because there is no time required for "formatting". Numeric enter opera·
tions are also faster because: the system does not have to search for item· and statement·
termination conditions.

In addition, I/O paths to BDAT and HPUX files can use either the ASCII (FORMAT ON) or the
internal (FORMAT OFF) repn~sentation.

The following program shows a few of the features of BDAT files. The program first outputs an
internal-form string (with FORMAT ON), and then enters the length header and string characters
with FORMAT OFF. (Note that this example is intended only to show how string data items are
preceded by a 4-byte length header. Mixing FORMAT ON and FORMAT OFF data in this
manner is not recommended.)

Advanced Interfacing Topics 14-45

100 OPTION BASE 1
110 DIM Length$[4] ,Data$[256] ,Int_form$[256]
120 !
130 I Create a BDAT file (1 record; 256 bytes/record.)
140 ON ERROR GOTO Already_created
150 CREATE BDAT "B_file",l
160 Already_created: OFF ERROR
170 !
180 ! Use FORMAT ON during output.
190 ASSIGN @Io_path TO "B_file"; FORMAT ON
200 !
210 Length$=CHR$(O)&CHR$(O) ! Create length header.
220 Length$=Length$&CHR$(0)&CHR$(252)
230 !
240 ! Generate 256-character string.
250 Data$="01234567"
260 FOR Doubling=l TO 5
270 Data$=Data$&nata$
280 NEXT Doubling
290 ! Use only 1st 252 characters.
300 Data$=Data$[1,252]
310 !
320 ! Generate internal-form and output.
330 Int_form$=Length$&Data$
340 OUTPUT @Io_path;Int_form$;
350 ASSIGN @Io_path TO *
360 !
370 I Use FORMAT OFF during enter (default).
380 ASSIGN @Io_path TO "B_file"
390 !
400 ! Enter and print data and tI of characters.
410 ENTER Data$
420 PRINT LEN(Data$);"characters entered."
430 PRINT
440 PRINT Data$
450 ASSIGN @Io_path TO * Close I/O path.
460 !
470 END

14-4-8 Advanced Interfacing Topics

ASCII Files. ASCII files are designed for interchangeability with other HP computer systems.
This interchangeability imposes the restriction that the data must be represented with ASCII char
acters. Each data item sent to these files is a special case of FORMAT ON representation, consist
ing of a two-byte length header followed by the ASCII characters. In order to maintain this compati
bility, there are two additional restrictions placed on ASCII files:

• The FORMAT OFF attribute cannot be assigned to an ASCII file

• You cannot use OUTPUT .. USING or ENTER..USING with an ASCII file.

The following program shows the I/O path name @Ioyath being assigned to the ASCII file
named ASC FILE. Notice that the me name is in all uppercase letters; this is also a compatibility
requirement when using this file with some other systems.

The program creates an ASCII file and then outputs program lines to the file. The program then
gets and runs this newly created program. (If you type in and run this program, be sure to save it
on disk, because running the program will load the program it creates, destroying itself in the pro
cess.)

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

DIM Line$(1:3)[100] ! Array to store program.

! Create if not already on disk.
ON ERROR GOTO Already_exists
CREATE ASCII "ASC_FILE",l ! 1 record.

Already_exists: OFF ERROR
!
ASSIGN @Io_path TO "ASC_FILE"
STATUS @Io_path,6;Pointer
PRINT "Initially: file pointer=";Pointer
PRINT

Line$(1)="100 PRINT ""New program.""
Line$(2)-"110 BEEP"
Line$(3)="120 END"

OUTPUT @Io_path;Line$(*)
STATUS @Io_path,6;Pointer

"

PRINT "After OUTPUT: file pointer=";Pointer
PRINT

GET "ASC_FILE" Implicitly closes I/O path.

END

Advanced Interfacing Topics 14-47

Da'ls Representation Summary. The following table summarizes the: control that programs
have on the FORMAT attribute assigned to I/O paths.

Program Control of the FORMAT AHributo

Type of Default FORMAT Can Default FORMAT
Resource AHribute Used AHribute Be Changed?

Devices FORMATON Yes (if an I/O path is used)

EIOATfiles FORMAT OFF Yes

HPUX (or ~OS) files FORMAT OFF Yes

JlISCIl files FORMATON No

String variables FORMATON No

Eluffers FORMATON Yes

Note

FORMAT ON is always used whenever an OUTPUT .. USING or ENTER .. USING
statement is used, regardless of the FORMAT attribute assigned to the I/O path.

The data representation used with ASCII fIles is a special case of the FORMAT ON
representation.

14...418 Advanced Interfacing Topics

I/O Operations with String Variables

This section describes both the details of and several uses of outputting data to and entering data
from string variables using I/O path names.

Outputting Data to String "ariables. When a string variable is specified as the destination
of data in an OUTPUT statement, source items are evaluated individually and placed into the vari
able according to the free-field rules or the specified image, depending on which type of OUTPUT
statement is used. Thus, item terminators mayor may not be placed into the variable. The ASCII
data representation is always used during outputs to string variables; in fact, data output to string
variabks is exactly like that sent to devices through I/O paths with the FORMAT ON attribute.

Characters are always placed into the variable beginning at the frrst position; no other position can
be specified as the beginning position at which data will be placed. Thus, random access of the
infonnation in string variabks is not allowed from OUTPUT and ENTER statements; all data must
be accessed serially. For instanc~~, if the characters "1234"" are output to a string variable by one
OUTPUT statement, and a subsequent OUTPUT statement outputs the characters "5678" to the
same variable, the second output does not begin where the first one left off (i.e., at string position
five). The second OUTPUT statement begins placing characters in position one, just as the first
OUTPUT statement did, overwriting the data initially output to the variable by the first OUTPUT
statement.

The string variable's length header (4 bytes) is updated and compared to the dimensioned length of
the string as characters are output to the variable. If the string is filled before all items have been
output, an error is reported; however, the string contains the first n characters output (where n is
the dimensioned length of the string).

Advanced Interfacing Topics 14-49

The following program outputs string and numeric data items to a string variable and then calls a
subprogram which displays each character, its decimal code, and its position within the variable.

1001
1101
1201
1301
1401
1501
1601
1701
1801
1901
2001
2101
2201
230
240
250
2601
2701
2801
2901
3001
3101
3201
3301
3401
3501
3601
3701
3801
3901
4001
410
420
430

ASSIGN @Crt TO 1 ! CRT is disp. device.
!
OUTPUT Str_var$; 12, "AB", 34
!
CALL Read_string(@Crt,Str_var$)
!
END

SUB Read_string(@Disp,Str_var$)
!
! Table heading.
OUTPUT @Disp;"---------------------"
OUTPUT @Disp;"Character Code Pos."
OUTPUT @Disp;"--------- "
Dsp_img$="2X,4A, 5X, 3D, 2X, 3D"
!
! Now read the string's contents.

FOR Str_pos=l TO LEN(Str_var$)
Code=NUM(Str_var$[Str_pos;l])

IF Code&<32 THEN! Don't disp. CTRL chars.
Char$="CTRL"

ELSE
Char$=Str_var$[Str_pos;l]

END IF
Disp. char.

OUTPUT @Disp USING Dsp_irng$;Char$,C()de,Str_pos
NEXT Str_pos
!
! Finish table.
OUTPUT @Disp;"---------------------"
OUTPUT @Disp ! Blank line.

SUBEND

14-150 Advanced Interfacing Topics

The final display appears as follows:

Character Code Pos.

32 1
1 49 2
2 50 3

44 4
A 65 5
B 66 6
CTRL 13 7
CTRL 10 8

32 9
3 51 10
4 52 11
CTRL 13 12
CTRL 10 13

Outputting data to a string and then examining the string's contents is usually a more convenient
method of examining output data streams than using a mass storage file. The preceding subpro
gram may facilitate the search for control characters, because they are not actually displayed,
which could otherwise interfere with examining the data stream.

The following example program shows how outputs to string variables can be used to reduce the
overhead required in ASCII data files. The first method of outputting data to the file requires as
much media space for overhead as for data storage, due to the two-byte length header that pre
cedes each item sent to an ASCII file. The second method uses more computer memory, but uses
only about half of the storage-media space required by the first method. The second method is
also the only way to custom-format data sent to ASCII data files.

Advanced Interfacing Topics 14-51

100
110
120
1301
1401
1501
160
170
180
190
200
210
220
230
240
250
2601
2701
2801
290
300
3101
3201
3301
3401
3501
360
370
380
390
400
410
420
430
440
450
460
470
480

PRINTER IS CRT

! Create a file 1 record long (=256 bytes).
ON ERROR GOTO File exists
CREATE ASCII "TABLE",l

File exists: OFF ERROR

!
First method outputs 64 items individually ..

ASSIGN @Ascii TO "TABLE"
FOR Item=l TO 64 ! Store 64 2-byte items.

OUTPUT @Ascii;CHR$(Item+3l)&CHR$(64+RND*32)
STATUS @Ascii,5;Rec,Byte
DISP USING Image_l;Item,Rec,Byte

NEXT Item
Image_I: IMAGE "Item", DD, " Record", D, " Byte" I 3D

DISP
Bytes_used=256*(Rec-l)+Byte-l
PRINT Bytes_used;" bytes used with 1st method."
PRINT
PRINT

Second method consolidates items.
DIM Array$(1:64)[2],String$[128]
ASSIGN @Ascii TO "TABLE"

FOR Item=l TO 64
Array$(Item)=CHR$(Item+3l)&CHR$(64+RND*32)

NEXT Item

OUTPUT String$;Array$(*);
OUTPUT @Ascii;String$
!

Consolidate ..
OUTPUT as 1 item.

STATUS @Ascii,5;Rec,Byte
Bytes_used=256*(Rec-l)+Byte-l
PRINT Bytes_used;" bytes used with 2nd method."

END

14-:52 Advanced Interfacing Topics

The program shows many of the features of using ASCII files and string variables. The first
method of outputting the data items shows how the file pointer varies as data are sent to the file.
Note that the file pointer points to the next file position at which a subsequent byte will be placed.
In this case, it is incremented by four by every OUTPUT statement (since each item is a two-byte
quantity preceded by a two-byte length header).

The program could have used a BDAT file, which would have resulted in using slightly less disk
media space; however, using BDAT files usually saves much more disk space than would be saved
in this example.

The program also does not show that ASCII files cannot be accessed randomly. This is one of the
major differences between using ASCII and BDAT files.

Outputs to string variables can also be used to generate the string representation of a number,
rather than using the VAU function (or a user-dermed function subprogram). The main advantage
is that you can explicitly specify the number's image. The following program compares the string
generated by the V AU function to that generated by outputting the number to a string variable.

100 X=12345678
110
120 PRINT VAL$(X)
130
140 OUTPUT Va1$ USING "1" 3D. E";X
150 PRINT Va1$
160
170 END

The results are as follows:

1.2345678E+7
123.E+05

Enteriog Data From String Variables. Data items are entered from string variables in much
the same manner as output to the variable. All ENTER statements that use string variables as the
data source mterpret the data according to the FORMAT ON attribute. Data is read from the
variable beginning at the first string position; if subsequent ENTER statements read characters
from the variable, every read operation also begins at the first position. If there are fewer data
items in the string than in the ENTER statement, an error is reported; however, all data entered
into the destination variable(s) before the end of the string was encountered remain in the
variable(s) after the error occurs.

When entering data from a string variable, the computer keeps track of the number of characters
taken from the variable and compares it to the string length. Thus, statement-tennination condi
tions are not required; the ENTER statement automatically terminates when the last character is

Advanced Interfacing Topics 14-53

read from the variable. However, item tenninators are still required if the items are to be
sepnrated and the lengths of the items are not known. If the length of each item is known, an
image can be used to separate the items.

The following program shows an example of the need for either item termililators or length of each
item. The first item was not properly terminated and caused the second item to not be recognized.

100 OUTPUT String$;"ABC123"; ! OUTPUT wlo GR/LF.
110 !
120 ! Now enter the data.
130 ON ERROR GOTO Try_again
140 !
150 First_try: !
160 ENTER String$;Str$,Num
170 OUTPUT l;"First try results:"
180 OUTPUT l;"Str$- ";Str$,"Num=";Num
190 BEEP ! Report getting this far.
200 STOP
210
220 Try_again: OUTPUT l;"Error";ERRN;" on 1st try"
230 OUTPUT 1; "STR$="; Str$, "Num=" ;Num
240 OUTPUT 1
250 OFF ERROR ! The next one will work.
260
270 ENTER String$ USING "3A,3D";Str$,Num
280 OUTPUT 1; "Second try results:"
290 OUTPUT 1; "Str$= "; Str$, "Num=" ;Num
300
310 END

This technique is convenient when attempting to enter an unknown amount of data or when
numeric and string items within incoming data are not terminated. The data can be entered into a
strj.llg variable and then searched by using images.

14-54 Advanced Interfacing Topics

ENTERs from string variables «:an also be used to generate a number from ASCII numeric char
acters (a recognizable collection of decimal digits, decimal point, and exponent information),
rather than using the VAL function. As with outputs to string variables, images can be used to
interpret the data being entered.

30 Number$="Value= 43.5879E-13"
40 !
50 ENTER Number$;Value
60 PRINT "VALUE-";Value
70 END

Unified I/O and Progrclm Design

This application shows how HP BASIC's unified I/O language structure may help simplify using a
"top-down" programming approach. In this example, a simple algorithm is first designed and then
expanded into a program in a general-to-specific, step-wise manner. The top-down approach
shown here begins with the genl~ral steps and works toward the specific details of each step in an
orderly fashion.

One of the fIrst things you should do when programming computers is to plan the procedure before
actually coding any software. At this point of the design process, you need to have a good under
standing of both the problem and the requirements of the program. The general tasks that the pro
gram is to accomplish must be described before the order of the steps can be chosen. The follow
ing simple example goes through the steps of taking this top-down approach to solving the prob
lem.

The Problem. Our example problem is to write a program to monitor the temperature of an
experimental oven for one hour.

Step 1: Verbally describe what the program must do in the most general tenns. You may want to
make a chart or draw a picture to help visualize what is required of the program.

Initialize the monitoring equipment. Start the timer and turn the oven on. Begin monitoring oven
temperature and measure it every minute thereafter for one hour. Display the current oven tem
perature, and plot the temperatures vs. time on the CRT.

Advanced Interfacing Topics 14-55

Stelll 2: Verbally describe the algorithm. Again, try to keep the steps as general as possible.

This process is often termed writing the "pseudo code." Pseudo code is merely a written descrip
tion of the procedure that the computer will execute. The pseudo code can later be translated into
BASIC-language code.

Setup the equipment.

Set the oven temperature and turn it on.

Initialize the timer.

P(:rform the following tasks every minute for one hour.

Read the oven temperature.

Display the current temperature and elapsed time.

Plot the temperature on the CRT.

Turn the oven and equipment off.

Signal that the experiment is done.

Stepl 3: Begin translating the algorithm into a BASIC-language program.

The following program follows the general flow of the algorithm. As you become more fluent in a
computer language, you may be able to write pseudo code that will translate more directly into the
language. However, avoid the temptation to write the initial algorithm in the: computer language,
because writing the pseudo code is a very important step of this design approach!

100
110
120
130
140
150
160
170
180
190
200
210
220

This program: sets up measuring equipment,
turns an oven on, and initializes a timer.
The oven's temperature is measured every
minute thereafter for one hour. The temp.
readings are displayed and plotted on t:he
CRT.

Rdgs_interva1=60
Test_1ength=60
Minutes=O
Seconds=O

CALL Equip_setup

60 seconds between readings.
Run test for 60 minutes.

14-5tS Advanced Interfacing Topics

230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640

CALL Set_temp
GOSUB Start timer
!
! Keep monitoring
LOOP

GOSUB Timer
!
IF Seconds>=Rdgs_interva1 THEN

Minutes=Minutes+1
CALL Read_temp
CALL Plot_temp

END IF
EXIT IF Minutes>=Test_1ength

END LOOP
CALL Off_equip
PRINT "End of experiment."

STOP

First the subroutines.

Start_timer: Ini1: time=TIMEDATE

Timer:

PRINT "Timer initialized."
PRINT
PRINT
RETURN

Seconds=TIMEDATE-Minutes*60-Init time
DISP USING Time_image;Minutes,Seconds

Time_image: IMAGE "Time: ",DD," min ",DD.D,"
RETURN

END

Now the subprograms.

SUB Equip_setup
PRINT "Equipment setup."
SUB END

sec"

Advanced Interfacing Topic. 14-57

650
660 SUB Set_temp
670 PRINT "Oven temperature set."
680 SUBEND
690 SUB Read_temp
700 PRINT "Temp.= xx degrees F ";
710 SUBEND
720
730 SUB Plot_temp
740 PRINT "(plotted)."
750 PRINT
760 SUB END
770
780 SUB Off_equip
790 PRINT
800 PRINT "Equipment shut down."
810 PRINT
820 SUB END

At this point, you should run the program to verify that the general! program steps are being exe
cuted in the desired sequence. If not, keep refining the program flow until all steps are executed in
the proper sequence. This is also a very important step of your design process; the sooner you can
verify the flow of the main program the better. This approach also relieves you of having to set up
and perform the actual experiment as the first test of the program.

Notke also that some of the program steps use CALLs while others use GOSUBs. The general
convl;:ntion used in this example is that subprograms are used only when a program step is to be
expanded later. GOSUBs are used when the routine called will probably not need further
refinemelllt. As the subprograms are expanded and refined, each can be separately stored and
loaded from disk files, as shown in the next step.

14-58 Advanced Interfacing Topics

Step 4: After the co"ect order of the steps has been verified, you can begin programming and verify
ing the details of each step (known as step-wise refinement).

The computer features a mechanism by which the process of expanding each step can be
simplified. With it, each subprogram can be expanded and refined individually and then stored
separately in a disk file. This facilitates the use of the top-down approach. Each subprogram can
also be tested separately, if desu'ed.

In order to use this mechanism, first STORE or SAVE the main program; for instance, execute:

STORE "MAIN1"

or

SAVE "MAIN1"

Then, isolate the subprogram by deleting all other program lines in memory. In this case, execut
ing:

DEL 10,620

and

DEL 660,900

would delete the lines which are not part of the "Equip_setup" subprogram currently in memory.

620 SUB Equip_setup
630 PRINT "Equipment setup."
640 SUB END
650

At this point, two steps can be taken:

• Write the temperature-measuring device's initialization routine.

• Write a test routine that simulates the device by returning a known set of data.

Advanced Interfacing Topics 14-59

The "Equip setup" subprogram might be expanded as follows to create a disk file and fill it with a
knOVffi set of temperature readings so that the program can be tested witholUt having to write, ver
ify, and refine the routine that will set up the temperature-measuring devicc:~. In fact, you don't
even need the device at this point.

100 CALL Equip_setup(@Temp_meter,Temp)
110 END
120
130 SUB Equip_setup(@Temp_meter,Temp)
140
150 This subroutine will set up a BDAT file as
160 be used to simulate a temperature-measuring
170 device. Refine to set up the actual
180 equipment later.
190
200 ON ERROR GOTO Already
210 CREATE BDAT "Temp_rdgs",l
220 !
230 ! Output fictitious readings.
240 ASSIGN @Temp_meter TO "Temp_rdgs"
250 FOR Reading=l TO 60
260 OUTPUT @Temp_meter;Reading+70
270 NEXT Reading
280 ASSIGN @Temp_meter TO * ! Reset pointer.
290 !
300 Already: OFF ERROR
310 !
320 ASSIGN @Temp_meter TO "Temp_rdgs"
330 !
340 PRINT "Equipment setup."
350 SUBEND

Notice that two pass parameters have been added to the formal parameter list. These parameters
allow the main program (and subprograms to which these parameters are passed) to access this
I/O path and variable. The CALL statements in the main program must be! changed accordingly
before the main program can be run with these subprograms. These parameters can also be
passl:!d to the subprograms by declaring them in variable common (that is, by including the
appropriate COM statements).

14-EiO Advanced Interfacing Topics

After the subprogram has been expanded, tested, and refined, you should store it in a file with the
STORE statement (not SAVE). For instance, execute:

STORE "SETUPl"

When the main program is to b(~ tested again, the "Equip setup" subprogram can be loaded back
into memory by executing: -

LOADSUB ALL FROM "SETUPl"

Since this subprogram names all I/O path which is to be used to simulate the temperature
measuring device, the "Read remp" subprogram can also be expanded at this point. The
"Read temp" subprogram oiiiy needs to enter a reading from the measuring device (in this case,
the disk file which has been set lLlp to simulate the temperature-measuring device.) The following
program shows how this subprogram might be expanded.

660 SUB Read_temp (@Temp_meter,Temp)
661 ENTER @Temp_meter;Temp
670 PRINT "Temp. ="; Temp;" degrees F. "
680 SUBEND

This subprogram can also be stored in a disk file by executing:

STORE "READ_T1"

Now that both of the expanded subprograms have been stored, the main program can be retrieved
and modified as necessary. Execute:

LOAD "MAINl"

or

GET "MAINl"

Add the pass parameters to the appropriate CALL statements (lines 200 and 320). Since the main
program still contains the initial versions of the expanded subprograms, these two subprograms
should be deleted. Executing these two statements:

DELSUB "Equip_setup"

and

DEL SUB "Read_temp

Advanced Interfacing Topics 14-61

will delete only these two subprograms and leave the rest of the program intact.

Now that the main program has been modified to CALL the expanded/refined subprograms, you
may want to store (or save) a copy of the program on the disk. This will relieve you of the effort of
deleting the old subprograms from the main program every time it is retrieved. Execute:

STORE "MAIN2

or

SAVE "MAIN2"

Now load the subprograms into memory by executing:

LOADSUB ALL FROM "SETUP1"

and

LOADSUB ALL FROM "READ Tl"

Running the program "sets up" the device simulation and then ac<:esses the file as it would access
the actual temperature-measuring device.

Corlelusion. As you can see, this approach can be used very easily with HP BASIC. In addition,
the "Read temp" subprogram does not have to be revised to access the real device. Only
"Equip setup" needs to be changed to assign the I/O path name "@Temp meter" to the real dev
ice. This unified I/O scheme makes this system very powerful and reduces-"throw away" code
when using this "top down" approach.

14-82 Advanced Interfacing Topics

15
Transfers and Buffered I/O

This chapter discusses data transfer techniques available with the TRANS binary. While many
applications will not need the specialized techniques presented here, these techniques aid in com
municating with very slow and VI~ry fast devices.

The Purpose of Tral1sfers

When using OUTPUT and ENTER to communicate with peripheral devices, special problems can
arise. Normally, program execution does not leave the statement until all data items are satisfied;
therefore, a very slow device willi keep the computer waiting between each byte or word. A great
amount of time may be wasted while the computer waits for the device to be ready for the next
item. Another problem exists when communicating with a very fast device. The device may
attempt to send data faster than the computer can accept it. To overcome both problems, an alter
nate method of communication has been implemented - the TRANSFER statement.

The TRANSFER statement allows you to exchange information with a device or file through I/O
paths. The most important difference between using TRANSFER and the regular methods of com
munication (OUTPUT and ENTER) is that a transfer can take place concu"ently with continued
program execution. Thus a transfer can be thought of as a "background" process or an "over
lapped" operation. This has far-reaching consequences that affect the behavior of the BASIC sys
tem.

Overview of Buffers and Transfers

Before any transfer takes place, an area of memory is reserved to hold the data being transferred
(examples are shown on the following pages). This area of memory is called a buffer. Defining a
buffer is somewhat analogous to creating a high-speed device inside the computer. Two advantages
are gained by simulating a device in memory:

• The buffer is fast enough to accept incoming data from almost any device.

Transfers and Buffered I/O 15-1

• The actual transfer operation can be handled concurrently with continued program execution
(that is, it is a "background process" which can be "overlapped" with concurrent processing of
other BASIC program lines).

InlJlound and Outbound Transfers

Every transfer will use a buffer as either its source or its destination. From the buffer's point of
view, there are two types of transfers.

An inbound transfer moves data from a device or fIle into the buffer:

device TRANSFER ENTER
or buffer
file PARITY CO

Inbound Transfer

An outbound transfer moves data from the buffer to a device or file:

NVERT
program]
variable

l-_p_ro_g_ra_m~r-________ O_U_T_P_U_T ________ ~Buffer ___ T_R_A_NS_.F_E_R __ ~~L-__ d_~_~_e_~
variable

EOl CONVERT PARITY file

Outbound Transfer

Data logging is the process of combining inbound and outbound transfers:

device
or
file

TRANSFER

15-~! Transfer. and Buffered 1/0

TRANSFEI~

buffer

Data Logging

device]
or
file

Sup ... 'orted Transfer Sources and Destinations

TRANSFER operations are allowed only for certain types of interfaces and files.

Note

A transfer cannot involve a CRT display, a keyboard, a BCD interface, or a parallel
printer interface.

One and only one buffer can be specified in a TRANSFER statement. Transfers
from buffer to buffer or from device to device are not allowed.

Transfers to and from files on volumes with 512-byte sectors (formatting option 2)
are not allowed since volumes with 512-byte sectors are not supported by BASIC.

Further restrictions are listed in the "Restrictions" section of this chapter.

Interfaces. The following table shows which interfaces are supported as TRANSFER sources or
destinations for HP 9000 Series 200 and Series 300 computers and for the HP BASIC Language
Processor:

Supported Interfaces

HP 9000 Series 200/300 HP BASIC Language Processor
HP-IB (built-in, HF' 98624) (built-in, HP 82990, HP 82335)

GPIO (HP 98622) (HP 82306)

Serial (built-in, HP 98626, HP 98644) -

Datacomm (HP 98628) -

Note that the HP BASIC Language Processor does not support transfers through the PC serial
ports, COM1 and COM2.

File Types. BDAT files and HlPUX files (DOS files for the BASIC Language Processor) are
supported sources and destinations for the TRANSFER statement. TRANSFER operations to or
from ASCII files are not supported.

Transfers and Buffered 1/0 15-3

Exllmples of Transfer

Hell~ are two complete programs that show the steps in creating and using buffers. The following
paragraphs describe the individual steps of the programs.

DIM Text$[1025] BUFFER
ASSIGN @Buff TO BUFFER Text$
ASSIGN @Print TO PRT

FOR 1=1 TO 25

'PRT' returns 701 for printer

10
20
30
40
50
60
70
80
90
100
110
120
130
140

OUTPUT @Buff;"How many times do I need to print this?"
NEXT I
I
TRANSFER @Buff TO @Print Start the transfer

Transfer continues as
FOR 1=1 TO 450 a "background" process.

PRINT TABXY(I MOD 15,0);"As many times as it takes."
NEXT I
END

Lin()S 10 and 20 create a named buffer. Line 30 assigns a printer that will be used as the destination
for the transfer. The OUTPUT statement in line 60 fills the buffer with data (25 lines of 41 charac
ters" including the CR/LF EOL sequence). Line 90 contains the TRANSFE.R statement that sends
the data in the buffer to the printer. Running the program shows the overlapped operation of
transfers. Buffered data is being printed on the printer while the program prints on the CRT.

A similar technique can be used for inbound transfers, as shown in the following example program.

10 DIM Text$[256] BUFFER,A$(100)[80]
20 ASSIGN @Buff TO BUFFER Text$
30 ASSIGN @Device TO 12 Some device at select code 12
40
50 TRANSFER @Device TO @Buff;CONT Start the transfer
60
70 FOR 1=1 TO 100
80 ENTER @Buff;A$(I) Enter the it:ems
90 NEXT I
100 ABORTIO @Device Terminate TRANSFER
110
120 END

15-4 Transfer. and Bu.ered 1/0

A named buffer is created in lines 10 and 20. A device is assigned in line 30 that will be used as the
source for the transfer. The buffer is filled by the TRANSFER in line 50 and the ENTER state
ment in line 80 empties the buffl~r.

A Closer Look at Buffers

A buffer is a section of computer memory reserved to hold the data being transferred.

Types of Buffers

Two types of buffers can be created and assigned to I/O path names .

• A named buffer is a string scalar, or an INTEGER, COMPLEX, or REAL array.

100 DIM Num_array(1:512) BUFFER ! Named buffer.
110 ASSIGN @Buff TO BUFFER Num_array

• An unnamed buffer is a section of memory which has no associated variable name.

100 ASSIGN @Buff TO BUFFER [1024] ! Unnamed buffer.

A named buffer can be accessed by its variable name (for instance, by using OUTPUT or assigning
the variable). However, an unnamed buffer can be accessed only by its I/O path name.

Creating Named Buffelrs

Named buffers are buffers which use variables declared in DIM, COM, COMPLEX, REAL, or
INTEGER statements. Note that a buffer cannot be allocated by an ALLOCATE statement.
Named buffers are declared by placing the keyword BUFFER after the variable name. For
instance:

100 DIM A$[256],B$[256] BUFFER,C$

110 COM B1ock(1000),Temp(100) BUFFER, INTEGER X(10,10) BUFFER,Y,Z

120 REAL Foo1s_buff(1000), Rea1_buff(10) BUFFER, No_buff(10)

Only the variable name immediately preceding the keyword BUFFER becomes a buffer. In the
first example statement, B$ is a buffer while AS and C$ are not buffers. Declaring a variable as a
buffer does not prevent it from being used in its normal manner, but care must be taken not to cor
rupt the information in the buffer if it is assigned to an I/O path name.

Transfers and Bu.ared I/O 15-5

Assiigning I/O Path Names to Named Buffers

Oncc~ a named buffer has been declared, an I/O path name can be assigned to it by an ASSIGN
statement. For instance:

ASSIGN @Path TO BUFFER B$

ASSIGN @Buff TO BUFFER X(*)

ASSIGN @Buffer TO BUFFER Real_buff(*)

The I/O path name can now be used to access the buffer. The keyword BUFFER must appear in
both the variable declaration statement and the ASSIGN statement for named buffers.

Assigning I/O Path Names to Unnamed Buffers

Unnamed buffers are created in ASSIGN statements and can be accessed only by their I/O path
names. The following statement shows a typical unnamed buffer assignment.

ASSIGN @Buff to BUFFER [65536]

The value in brackets indicates the number of bytes of memory to be reserved for the buffer. An
unnamed buffer can be larger than the maximum length (32767 bytes) of a string variable. Named
buffers using REAL, COMPLEX, and INTEGER arrays can also be larger than 32 767 bytes.

Using unnamed buffers enswres data integrity since the buffer cannot be acc.essed by a variable
naml~. Closing an I/O path assigned to an unnamed buffer (ASSIGN @Path TO *) releases the
memory reserved for the buffer. This is similar to the behavior of allocated variables.

15-6 Transfers and Buffered 1/0

Bufter-Type Registers

Assigning an I/O path name to a buffer creates a control table. This control table defines STATUS
and CONTROL registers which can monitor and interact with the operation of the buffer.

All I/O path names, including I/O path names assigned to buffers, use register 0 to indicate the
path type.

Status Register 0 o :: Invalid I/O path name
1 :: I/O path name assigned to a device
2 :: I/O path name assigned to a data file
3 = I/O path name assigned to a buffer

Register 0 returns a "3" when the I/O path is associated with a buffer. Register 1 indicates
whether the buffer is named or unnamed.

STATUS Register 1 Buffer type (1 = named, 2= unnamed)

Bufter Life Time

When I/O path names are assigned to buffers, the buffer must exist as long as the I/O path name
is valid. Consider the example of a buffer created locally in a context and then assigned an I/O
path name declared in COM. When execution leaves the local context, the I/O path name would
still be valid but the buffer would no longer exist. If this happens, an error is reported:

ERROR 602 Improper BUFFER lifetime.

This error also occurs if the buffer and the I/O path name being assigned are in different COM
areas.

Bufter Size Register

Once a buffer has been assigned an I/O path name, Status register 2 returns the buffer's capacity
(maximum size, in bytes).

STATUS Register 2 Buffer size in bytes

Transfers and Buffered I/O 15-7

Bu1rfer POinters

In order to understand I/O involving buffers, it is essential to understand how a buffer is set up and
maultained.

Whe:n an ASSIGN statement associates an I/O path name with a buffer, it also creates and initial
izes a buffer control table. Among the entries in the control table are two pointers and a counter
which are used to monitor and control all data transfer to and from the buflfer through the I/O
path.

• The buffer fill pointer points to the next byte of the buffer which can accept data.

• The empty pointer points to the next byte of data which can be read from the buffer.

• The byte count shows the number of bytes currently in the buffer (usuallly equal to
fill pointer - empty pointer).

The current values of the pointers can be checked by using the STATUS statement with the follow
ing registers.

STAnJS Register 3

STAnJS Register 4

STAnJS Register 5

Current fill pointer

Current number of bytes in buffer

Current empty pointer

As data is written into the buffer (OUTPUT or TRANSFER), the fill pointer is advanced as
necc::ssary to point to the next available byte of buffer storage, and the counter is incremented by
the Ilumber of bytes added to the buffer.

(inbound) TRANSFER CDevice TO CBuffer

~ fill pointer

.... ata data data data data data data data data d

i empty pOinter

(outbound) TRANSFER CBuffer to CFile

Simiilarly, when data is read from the buffer (ENTER or TRANSFER), th(: empty pointer is
advanced to point to the ftrst unread byte, and the counter is decremented by the number of bytes
whi(:h have been read.

15~!I Transfers and Buffered 1/0

It is also important to realize that the buffers used with the TRANSFER statement are circular.
This means that when the last byte of buffer storage has been accessed, the system will wrap
around and access the first byte of buffer storage. The only thing which prevents writing more data
into the buffer is the byte count (Register 4) becoming equal to the buffer capacity (Register 2)
which indicates that the buffer is full. Similarly, once the system has read the data from the last
byte of buffer storage, it will next read from the first byte, but reading must cease when the byte
count reaches zero which indicates that the buffer is empty.

A full or empty buffer has the fill pointer and the empty pointer referencing the same byte of
buffer storage~ The system distinguishes between full and empty by examining the byte count. If it
is zero, the buffer is empty. If it is equal to the buffer's capacity, the buffer is full.

It is impossible to perform any operation which would cause the byte count to take on a value less
than zero or greater than the buffer capacity. Attempting to OUTPUT more data into a full buffer
or ENTER data from an empty buffer produces:

ERROR 59 End of file or buffer found

Since fill and empty pointers are updated independently of each other and a TRANSFER can exe
cute concurrently with other statements, it is possible for one TRANSFER to be putting data into
the buffer while another TRANSFER is removing data.

The amount of data which can be moved by a single transfer operation is not limited by the buffer's
capacity. When two TRANSFER statements involving the same buffer are of comparable speed
and execute concurrently, the buffer's fill and empty pointers may never reach the empty or full
state. If the two TRANSFER statements execute at different speeds because of the transfer mode
which must be used or because of the throughput capacity of the devices involved, it is still possible
to keep two TRANSFER statements running concurrently by specifying the CONT parameter on
both (discussed in subsequent sections). CONT directs a transfer not to terminate when the buffer
becomes full or empty. Instead, the transfer "goes to sleep" until the buffer is again ready for the
transfer process to continue.

Accessing Named Buff~ers Using Variable Names

If you plan to transfer data through a buffer without using the I/O path name (such as by using the
string varible's name or numeric array variable's name), it will be necessary to change the values of
the pointers. CONTROL registers 3, 4, and 5 control the positioning of the pointers.

If either the fill or empty pointer is changed the appropriate pointer is modified and no other
action is taken. Assuming no active transfer, if the byte count is changed, the empty pointer is set
to zero and the fill pointer is set to correspond to the length specified. If a transfer is active in both
directions, you cannot change the byte count or either pointer. If an inbound transfer is active, the
empty pointer will be adjusted to set the byte count as specified. Similarly, if an outbound transfer

Transfer. and Buffered I/O 15-9

is active, the fill pointer will be adjusted to match the byte count specified.

When the byte count is set along with either the fill or empty pointer, the pointer is moved to the
position specified and the remaining pointer is adjusted to correspond to the specified length.

If alll three pointers are changed, they must be a consistent set to prevent the following error:

ERROR 19 Improper value or out of range.

If boOth fill and empty pointers are set to the same value, the length must be either zero (buffer
empty) or the maximum buffer length (buffer full).

Attc~mpting to change a pointer used by an active TRANSFER will result in the error:

ERROR 612 Buffer pointer(s) in use

The: fill pointer can be changed during an outbound transfer, but not during an inbound transfer.
Similarly, the empty pointer can be changed during an inbound transfer, but not during an out
bound transfer.

When string variables are used as buffers, the length of the string should not be
changed. Although this does not affect the operation of the buffer, it can prevent
access to the contents of the buffer by the variable name.

A Closer Look at Transfers

Onc:e a buffer has been created and an I/O path name assigned to it, data can be transferred into
or out of the buffer by a TRANSFER statement. Every TRANSFER will need a buffer as either its
source or destination. For example:

TRANSFER @Source TO @Buffer

or

TR}illSFER @Buffer TO @Destination

15-'10 Transfers and Buffered 1/0

From the buffer's point of view, there are two types of transfers: inbound and outbound:

• An inbound transfer will move data from a device or file into the buffer, updating a fill pointer
and byte count as it proceeds.

• An outbound transfer will remove data from the buffer, updating an empty pointer and byte
count as necessary.

For a complete explanation, see the "Closer Look at Buffer Pointers" section near the end of this
chapter.

Transfer Methods

The actual method of transfer is device dependent and is chosen automatically by the BASIC sys
tem (you cannot explicitly choose a method). The three possible transfer methods are:

• DMA (direct memory access).

• PHS (fast handshake).

• INT (interrupt).

Descriptions of each method and how the system chooses one for each TRANSFER are covered in
the section called "Transfer Methods and Rates".

OUTPUT and ENTER and Buffers

The OUTPUT and ENTER statements may be used to interact with the data sent through the
buffer. If the I/O path name of the buffer is used as the source for an ENTER or the destination
for an OUTPUT, the control table (pointers, size, etc.) will be updated automatically.

Accessing the data in a named buffer by using the variable name will not update the buffer
pointers. This could easily lead to corruption of the data in the buffer.

Transfer Formatting

OUTPUT and ENTER statements can format data according to a given IMAGE list and
transform the data according to the attributes specified in the ASSIGN statement. No data format
ting or transformation occurs, however, when data are transferred by a TRANSFER statement.

Transfer. and Buffered 1/0 15-11

Tr~.nsfer Termination Branching

Th(: ON EOT (End Of Transfer) statement allows you to define a branch Ito be taken upon the
completion of a transfer (see the next few pages for details of TRANSFER termination condi
tiOlllS). When the data being transferred has been divided into records, the: ON EOR (End Of
Re(:ord) statement can be used to define a branch to be taken after each rlecord is transferred.

Iljote

An active TRANSFER will not be terminated by stopping or pausing a program.
You may use IResetl (~) or ABORTIO to te,rminate a TRANSFER prema
turely. The IBreakl (ICLR 1/01) key will not terminate a TRANSFER.

Visually Determining Transfer Status

If a TRANSFER is active while a program is paused, the "I/O" indicator (10 or Transfer) is
displayed in the lower-right corner of the CRT instead of the "Pause" indicator (- or Paused).
When the "I/O" indicator is displayed, any action which would make the program non-continuable
(such as GET, LOAD, SCRATCH, entering a program line, etc.) will wait until the transfer com
pletes before executing. This can give the appearance of the system being "hung." Indeed, if the
TRANSFER will not complete, the system is "hung." In this last case, use: IResetl to recover.

Choosing Transfer Parameters

For a standard inbound transfer, data from the device (or file) is placed in the buffer, and the
TRANSFER is terminated when the buffer is full. For an outbound transfer, data is removed from
the buffer, and the TRANSFER is terminated when the buffer is empty.

Ccmtinuing Transfers Indefinitely

To allow a TRANSFER to continue indefinitely, the CONT parameter can be specified. The
TRANSFER will not terminate when the buffer is full or empty.

Tru\NSFER @Source TO @Buffer;CONT

Several interesting things happen when a continuous TRANSFER is specified. Execution cannot
leave the current program context unless the buffer and I/O path name are in COM (or passed as
parameters), and you will not be able to LOAD, GET, or EDIT a program. During program
development, you can terminate a transfer by IRESETI (lResetl) or ABORTIO @Non_buff(use the
I/O path name assigned to either the device or file). ABORTIO can be used in a program or

15·,12 Transfers and Buffered I/O

executed from the keyboard.

A continuous TRANSFER can also be canceled by writing to a CONTROL register (use the I/O
path name assigned to the buffer). Note that the CONTROL register only cancels the continuous
mode. The TRANSFER is still active until the buffer is full or empty.

CONTROL @Buff,8;O

CONTROL @Buff,9;O

(for inbound transfers)

(for outbound transfers)

When the CONT parameter is specified for an inbound transfer, the transfer fills the buffer and is
then suspended while program execution continues. The suspended transfer "sleeps" until another
operation removes some data from the buffer. The transfer then "wakes up" and continues the
transfer operation. When the CONT parameter is specified for an outbound transfer, the transfer
empties the buffer and is then suspended. As soon as more data are available, the transfer ''wakes
up" and continues the transfer operation. This process proceeds until the transfer is terminated
(such as with IResetJ or ABORTIO) or the CONT mode is canceled.

Waiting for a Transfer to End (Non-Overlapped Transfers)

By default, transfers take place concurrently with continued program execution. To defer program
execution until a transfer is complete, use the WAIT parameter. This allows transfers to take place
serially (non-overlapped).

TRANSFER @Source TO @Buffer;WAIT

When the WAIT parameter is sp:!cified, the program statement following the TRANSFER will not
be executed until the transfer has completed.

Continuous Non-Overlcapped Transfers

By combining both the CONT and WAIT parameters, a continuous non-overlapped TRANSFER
can be defined. However, this is only legal if you already have an active TRANSFER for the buffer
in the opposite direction.

TRANSFER @Source TO @Buffer;WAIT,CONT

Transfers and Bulfered 1/0 15-13

Tr~msferring a Specified Number of Bytes

The: COUNT parameter tells a transfer how many bytes are to be transfenred. The following
TRANSFER specifies 32 bytes to be transferred. The transfer will terminate after 32 bytes have
been transferred (or when the buffer becomes full for non-continuous transfers).

TRANSFER @Source TO @Buffer;COUNT 32

De!limiter Characters

The: DELIM parameter can be used to terminate an inbound transfer when a specified character is
recc~ived. The following TRANSFER will terminate when the delimiter (comma) is sent or when
the buffer is full (unless the CONT parameter is specified). The DELIM parameter is not allowed
on outbound transfers or WORD transfers. If the DELIM string is the null string, the DELIM
clause is ignored. This allows programmatic disabling of DELIM checking. An error results if the
DELIM string contains more than one character.

TRANSFER @Source TO @Buffer;DELIM ","

Using the END Indication with Transfers

The: END parameter can also be used to terminate a TRANSFER. On an outbound transfer on an
HP··IB interface, for example, specifying END causes an End-or-Identify (EOI) signal to be sent
with the last character of the transfer.

TRANSFER @Buffer TO @Device;END

Using an END parameter with an inbound transfer causes the transfer to be terminated by an
interface-dependent signal (for devices) or by encountering the current end-of-file (for files).

TRANSFER @Device TO @Buffer;END

The: END parameter is discussed in detail following the introduction of the RECORDS parameter.

15-14 Transfer. and Buttered 1/0

Transferring Records

It is often desirable to divide the data into records. The RECORDS parameter is then used to indi
cate the size of each record.

Whenever RECORDS is used, there must be a parameter which signals the end of a record. The
EOR (End-Of-Record) parameter can use COUNT, DELIM, or END (discussed later) to signify
the end of a record. For example, the following statement specifies 4 records of 15 bytes per record
are to be transferred.

TRANSFER @Source TO @Buffer;RECORDS 4,EOR(COUNT 15)

Multiple Termination Conditions

When multiple termination conditions are specified, the transfer will terminate when anyone of
the conditions occurs.

TRANSFER @Source TO @Buffer;COUNT 128,DELIM ";",END
TRANSFER @Source TO @Buffer;RECORDS 100,EOR(COUNT 15,END)

As in all transfer operations, unless the CONT parameter is specified, the TRANSFER will also
terminate when the buffer is full or empty.

The END parameter specifies an inbound transfer will be terminated by receiving an interface
dependent signal (for devices) 01' by encountering the current end-of-file (for files). Some devices
on the HP-IB send an EOI concurrently with the last byte of data. Unless the END parameter is
specified, receiving an EOI will generate an error. For files, encountering the end-of-file will gen
erate an error unless the END parameter is specified.

Using the END parameter with an outbound transfer on the HP-IB will result in the EOI signal
being sent concurrently with the last byte of the transfer. If EOR(END) is specified, EOI will be
sent with the last byte of each record. For files, END will cause the end-of-fIle pointer to be
updated at the end of the transfer. Using EOR(END) will cause the pointer to be updated at the
end of each record.

Transfers and Butfered I/O 15-15

TRANSFER Records and Termination

Tbe following tables show the different system responses to the END and EOR(END) parameters.

Inbound TRANSFER

Parameter File Device
No END Terminate prematurely. Terminate prematurely.

Bit 3 of Register 10 is set. Bit 3 olf Register 10 is set.
Error 59 waiting. Error 59 waiting.

END Terminate normally. Terminate normally.
Bit 3 of Register 10 is set. Bit 3 Olf Register 10 is set.

EOR(END) Finish current record. Terminate normally.
ON EOR triggered. Bit 3 of Register lOis set.
Start new record.

END,EOR(END) Terminate normally. Terminate normally.

L....-.
Bit 3 of Register lOis set. Bit 3 of Register 10 is set.

An error is logged when a transfer terminates prematurely. For overlapped transfers, this error is
''waiting'' and will be reported the next time the non-buffer I/O path name is referenced (for
example, in an ASSIGN statement). At that time, any ON ERROR or ON TIMEOUT branches
will be triggered. (If the WAIT parameter is specified, the error is reported immediately.) See
"Error Reporting" for further explanation.

An ON END branch will be triggered only if the END parameter is not specified.

Outbound TRANSFER

Parameter File Device
No END No special action. No special action.
END Update EOF pointer after Send an EOI with the last

TRANSFER is finished. byte of each record.

EOR(END) Update EOF pointer after Send an EOI with the last
each record. byte of each record.

END,EOR(END) Update EOF pointer after Send an EOI with the last
each record and when the byte of each record and
TRANSFER is finished. with the last byte of the

TRANSFER.

For an outbound transfer to a device, no special action is taken if the device does not support EOL
The: Serial, patacomm, and GPIO interfaces do not support EOI.

15-16 Transfers and Buffered I/O

Transfer Event-Initiated Branching

Two types of event-initiated branches can be defined for a transfer.

• The ON EOT statement defines and enables a branch to be taken upon completion of a
transfer.

• The ON EOR statement defines and enables a branch to be taken every time a record is
transferred.

ON EaT @Device CALL Process
ON EaR @File GOTO Parse

No ON EOR branches will be triggered unless the EOR parameter is specified in the TRANSFER
statement and an item is transferred which satisfies one of the end-of-record conditions (COUNT,
DEUM, or END).

To ensure that a branch receives service, the transfer must complete before attempting to leave the
context in which the branches are defined. If the I/O path names are local to a program context,
encountering SUBEND, SUBEXIT, or RETURN before the transfer has completed will cause the
context switch to be deferred wltil completion of the transfer. If this happens, any ON EOR or ON
EOT branch will not be serviced.

Overlapped Nature of TRANSFER

Certain statements wait until a transfer is completed before they are executed. A complete list of
these statements is provided later in this chapter. These statements can be used to prevent over
lapped operation or defer a context switch until completion of the transfer. For example, if the fol
lowing I/O path names were used in a TRANSFER, either of the following statements will cause
program execution to wait until the transfer is finished.

AS SIGN @Path TO * (can be a device, file, or buffer)

WAIT FOR EaT @Non_buff (can bea device orfile)

When a TRANSFER is used inside a loop, the entire loop may execute before the transfer has
completed. If this happens, the second execution of the TRANSFER statement will wait until the
completion of the first. Any event-initiated branch defined for the TRANSFER (ON EOT or ON
EOR) will be serviced.

Transfer. and Bu.ered 1/0 15-17

DilUlbling Overlapped TRANSFER Mode. While the WAIT parameter can be specified to
ensure completion of a transfer before proceeding with the next statement (thus ensuring a branch
can be serviced), this defeats any advantage of overlapped operation.

The WAIT FOR statement can be used to allow overlapped operation up to the point where the
WAIT FOR statement is encountered. The WAIT FOR statement ensures the servicing of an
event-initiated branch defined for the end-of·transfer or end-of-record.

Telrminating a Transfer

A transfer is usually terminated by satisfying the conditions specified by the transfer parameters.
There are times, especially during program development, when you may wish to prematurely ter
minate (abort) a transfer.

A transfer can be aborted by pressing the IResetl (lRESETI) key, which will stop the program, close
all I/O paths, and destroy all buffer pointers.

To abort a transfer without stopping the program, the ABORTIO statement can be used from the
program or the keyboard. For example:

ABORTIO @Non_buff

This statement will terminate any active transfer associated with the I/O path. ABORTIO has no
effec:t if a transfer is not in progress. Using ABORTIO does not ensure all data in the buffer is
transferred, but it does leave the buffer pointers and byte count in their conect state.

~" Nlote

If the destination of a TRANSFER is a mass storage file, aborting a TRANSFER
with ABORTIO will not cause data already placed in the disk buffer to be written to
the disk. Up to 255 bytes of data could be lost.

While most transfers are terminated by fulf"illing the conditions specified by the parameters, a con
tinuous TRANSFER (using the CONT parameter) requires a bit more effort to terminate.

To tc~rminate a continuous TRANSFER without leaving data in the buffer, first cancel the continu
ous mode (with CONTROL), then wait for the transfer to complete. Use register 8 for inbound
transfers and register 9 for outbound transfers. The following two methods are the safest ways of
terminating a continuous TRANSFER.

15-18 Transfer. and Buffered I/O

CONTROL @Buff,8;O
YAIT FOR EOT @Path

CONTROL @Buff,8;O
ASSIGN @Path TO *
Remember that the buffer pointers are not reset to the beginning of the buffer when the transfer is
finished. The RESET statement (RESET @Buff) can be used to reset the buffer pointers to the
beginning of the buffer and the byte count to zero.

Transfers are not terminated by pausing the program. The I/O indicator in the lower-right comer
of the CRT will indicate when a transfer is in progress.

While transfers may continue when the computer is in the paused state, all transfers must ter
minate before entering the stopped state. Pressing IReturnl or ~, after editing or adding a
program line, will attempt to put the computer in the stopped state. If a transfer is still in progress,
the computer will "hang" until the transfer is completed. To abort the transfer without performing
a hardware reset, press IBreakl (ICLR 1/01) to clear the I Return I or IENTERI and then execute an
ABORTIO on the non-buffer I/O path name for each active TRANSFER. If a hardware reset can
be tolerated, press IResetl (lRESETI) to terminate the transfer.

Transfers and Buffered 1/0 15-19

Metre Transfer Exam pies

Her1e is a short program which sets up a continuous transfer from a device through the buffer to a
BOAT file. A program of this type is useful when the data being received must be saved for later
analysis.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

Data Logging Example

a multiple of disk sector (256) size. Buffer size should be
ASSIGN @Device TO 717
ASSIGN @Buf TO BUFFER [512]
ASSIGN @File TO "LOG_FILE"

TRANSFER @Device TO @Buf;CONT
TRANSFER @Buf TO @File;CONT

Program execution continues

Assign source device on HPIB
Assign BUFFER
Assign destination file

Continuous TRANSFER
Continuous TRANSFER

Data logging continues as a "background" task ...

PAUSE
END:',

.' . ,~~ :.~

.! ;.~

TRANSFER continues in paused state

The following program creates and fills a BOAT file and then sends its contents to a printer.
Notilce that the OUTPUT statement used to fill the file placed a CR/LF at the end of each record.
The TRANSFER statement (line 90) looks for the carriage-return as a record delimiter.

15-:l0 Transfers and Bu.ered 1/0

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

ON ERROR CALL Makefi1e
ASSIGN @File TO "BDAT FILE"
OFF ERROR
ASSIGN @Buff TO HUFFER [2046]
ASSIGN @Print TO PRT

Cr$-CHR.$(13)
PRINT "Start"

Test for file's existence

Assign buffer
Assign destination

ASCII character for carriage return

TRANSFER @Fi1e TO @Buff;RECORDS 10,END,EOR (DELIM Cr$)

TRANSFER @Buff TO @Print
FOR 1=1 TO 10000

PRINT "TRANSFERS RUNNING",I
STATUS @Buff,l1;Stat
IF NOT BIT(Sta"t, 6) THEN 180

NEXT I

OUTPUT @Print;CHR$(12)
PRINT "File is printed"
END
!
SUB Makefile

OFF ERROR
CREATE BDAT "BDAT_FILE",10,12

ASCII character for formfeed

ASSIGN @File TO "BDAT_FILE";FORMAT ON
FOR 1=1 TO 10

DISP "Writing";I
READ Word$
OUTPUT @Fi1e;Word$

NEXT I
DISP
DATA ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE,TEN

SUB END

The next program continually shows the activity of the buffer. Note that a continuous TRANSFER
is used (line 90). Data is placed in the buffer a few bytes at a time (line 130) and the status is
displayed by the SUB called from line 140. After a few hundred bytes are transferred, the continu
ous mode is canceled (line 180), the program waits for the transfer to finish (line 190), and the
fmal status is displayed.

Transfer. and Bu"ered I/O 15-21

20
30
40
50
60
70
SO
90
100
120
130
140
ISO
160
ISO
190
200
210
230
240
250
260
270
2S0
290
300
310
320
330
340
350
360
370
3S0
390
400
410
420
430
440
450
460

PRINTER IS CRT
PRINT USING "@"
COM @Buff,@Print,B$[47] BUFFER
INTEGER Characters
ASSIGN @Buff TO BUFFER B$
ASSIGN @Print TO PRT
DISP "printer is off line"
TRANSFER @Buff TO @Print;CONT
DISP
REPEAT

OUTPUT @Buff; "AB ";
CALL Buff status
Times=Times+l

UNTIL Times>lOO
CONTROL @Buff,9;0
WAIT FOR EOT @Print
CALL Buff status
END

Clear Screen
Declare variables

Assign I/O path name to buffer
Assign I/O path name to 701
Transfer hangs if no printer
Continuous transfer
Clear display line

Fill buffer with data

Cancel continuous mode
Wait for buffer empty
Show final st:atus

SUB Buff status! ---------------------,------------------------
COM @Buff,@Print,B$ BUFFER
STATUS @Buff;RO
PRINT TABXY(l,l);"Buffer Status: ";
STATUS @Buff,1;Rl,R2,R3,R4,R5,R6,R7,R8,R9,RlO,Rll,R12,R13
IF Rl=l THEN PRINT "Named ";
IF Rl=2 THEN PRINT "Unnamed ";
PRINT "Buffer[";VAL$(R2);"]"
PRINT TABXY(1,3);RPT$(" ",55)
PRINT TABXY(R3,3);"v"
PRINT
PRINT
PRINT
PRINT

TABXY(1,4);"""";B$;""""
TABXY(1,5);RPT$(" ",55)
TABXY(R5,5);"""

PRINT "Fill pointer: ";R3
PRINT "Bytes in use: ";R4
PRINT "Empty pointer: ";R5
PRINT

Show fill pointer position
Show buffer contents

Show empty pointer position

PRINT " inbound/outbound"
PRINT "Select code: ";R6;"/";R7
PRINT "Continuous?: ";RS; "/" ;R9
PRINT "Term" status: ";RlO;"/";Rll
PRINT "Total bytes: " ; R12 ; "/" ; R13

SUB END

15-:22 Transfers and Buffered 1/0

Data currently in the buffer can be reused or ignored by manipulating the pointers (with CON
TROL). When it is necessary to move data through the buffer without using I/O path names, the
CONTROL statement can be used to modify the pointers, thus allowing a TRANSFER to take
place. The next program uses this technique. The array size used in the next program is for the
Model 236; change the array size in lines 50 and 60 for other computer models.

10 GINIT
20 GCLEAR
30 GRAPHICS ON
40 PRINT CHR$(12)
50 INTEGER I,Graph(1:12480) BUFFER
60 Gbytes=2*12480
70 ASSIGN @Buff TO BUFFER Graph(*)
80 ON ERROR GOTO Record
90 ASSIGN @Read TO "PHOTOS"
100 ASSIGN @Read TO *
110 GOTO Playback
120
130 Record:OFF ERROR
140 CREATE BDAT "PHOTOS",5,Gbytes
150 ASSIGN @Write TO "PHOTOS"
160 FOR 1=1 TO 5
170 GRID 1*4,1*4
180 GSTORE Graph(*)
190 GCLEAR
200 DISP "SAVING II"; I
210 CONTROL @Buff,4;Gbytes
220 TRANSFER @Buff TO @Write;WAIT
230 NEXT I
240 ASSIGN @Write TO *
250
260 Playback:OFF ERROR
270 ASSIGN @Read TO "PHOTOS"
280 FOR 1=1 TO 5
290 DISP "LOADING II"; I
300 TRANSFER @Read TO @Buff;WAIT
310 GLOAD Graph(*)
320 CONTROL @Buff,4;0
330 NEXT I
340 DISP "DONE"
350 END

Uses graphics

Clear the screen
(1:7500) FOR 9826/9816
2 * 7500 FOR 9826/9816

Enable ERROR trap
Test if file exists
Close file
If file exists then Playback

5 "PHOTOS" of graphics screen
to be written to the BDAT file

Fill buffer with GSTORE

Tell TRANSFER "The buffer is full"

Tell TRANSFER "The buffer is empty"

Transfer. and Bullered 1/0 15-23

The program creates five "photos" of the graphics raster and writes them to a disk file. The file is
then read and each picture is loaded back into the graphics raster.

Splecial Considerations

Trcnnsfer with Care

Whc!never possible, a transfer will take place concurrently with continued program execution. You
must carefully construct a program using transfers. A poorly designed transfer may take longer to
execute than using OUTPUT and ENTER.

A TRANSFER which uses a local I/O path name must terminate before a SUBEXIT, SUBEND,
or RETURN (from a function) can return execution to the calling context. The system will detect
that such a transfer is in progress and will make the SUBEXIT wait for the transfer to terminate. If
this happens, the system will not process any ON EOT (or ON EOR) branch which had been
defined for the transfer. To allow servicing of the branch, any statement which cannot execute in
overlap with the TRANSFER can be inserted in the subprogram before the SUBEXIT. 1\\'0 of the
most sensible choices are:

WAIT FOR EOT @Non_buff

or

ASS:IGN @Path to *
A TRANSFER which uses only non-local I/O path names can execute in overlap with a
SUBEXIT. One word of caution is necessary; if a local ON EOT (or ON EOR) statement is used
in tbe subprogram, its branch will not be serviced if the SUBEXIT is encOlmtered before termina
tion of the TRANSFER. To ensure the possibility of servicing the branch, insert a statement that
cannot execute in overlap with the TRANSFER. This is essentially the same technique discussed in
the preceding paragraph.

MOIre than one I/O path name can be assigned to a named buffer; however, each path name will
maintain its own set of pointers. Using multiple path names on the same buffer could lead to corr
uption of the data in the buffer.

Spedal care should be taken when using REAL and COMPLEX arrays as buffers, since a device
may send a bit pattern that is not a valid real number. Accessing the data as a REAL or COM
PLEX value may produce an error.

15-24 Transfer. and Bu.ered I/O

Statements That Affect Concurrency

The following statements do not wait for the completion of a TRANSFER statement.

Bufler in Use

STATUS @Buf

CONTROL @Buf

SCRATCH A

Device in Use

STATUS @Dev

ON EOR @Dev

ON EOT @Dev
OFF EOR @Dev
OFF EOT @Dev

Statements which wait for completion of inbound transfers.

OUTPUT @Buf
TRANSFER @Dev TO @Buf

Statements which wait for completion of outbound transfers.

ENTER @Buf
TRANSFER @Buf TO @Dev

Transfers and Buffered 1/0 15-25

Statt:ments which wait for completion of inbound and outbound transfers.

Bumerin Use

ASSIGN @Buf TO *
ASSIGN @Buf TO BUFFER[bytes]

ASSIGN @Buf TO BUFFER B$

ASSIGN @Dev

ASS IGN @Dev; (new attributes)

END

SUB EXIT

SUB END

SCRATCH C

SCRATCH

LOAD "PROG"

GET "PROG"

STOP

Errc)f Reporting

Device in Use

ASSIGN @Dev TO *

ASSIGN @Dev

AS SIGN @Dev; (new attributes)
WAIT FOR EOT @Dev
OUTPUT @Dev
ENTER @Dev
TRANSFER @Buf TO @Dev
TRANSFER @Dev TO @Buf

END

SUBEXIT

SUBEND

SCRATCH C

SCRATCH

LOAD "PROG"

GET "PROG"

STOP

CONTROL @Dev

If an error is encountered during an overlapped transfer, the error is logged in the non-buffer I/O
path name and reported the next time the non-buffer I/O path name is referenced. Thus, the error
line reported will be the most recently executed line containing the I/O path name and usually not
the line containing the TRANSFER statement. For example:

15-21' Transfers and Buffered 1/0

10
20

This program shows delayed error reporting for TRANSFER

30 ON ERROR GOTO Ok
40 PURGE "bdat file"
50 Ok:OFF ERROR
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

CREATE BOAT "bdat_file", 1 !
ASSIGN @Non_buf TO "bdat_file"!
INTEGER B(100) BUFFER
ASSIGN @Buf TO BUFFER B(*)
PRINT

WAIT 2
LIST 150,150
TRANSFER @Non_buf TO @Buf;CONT

WAIT 2
LIST 190,190
STATUS @Buf,10;Status_byte

WAIT 2
LIST 230,230
STATUS @Non_buf;Status_byte
END

Zap file if it already exists

CREATE an empty file
ASSIGN I/O path name to the file
Declare a variable as a buffer
Assign I/O path name to buffer

Error occurs in this line

Error not reported with @Buf

! Error reported with @Non_buf

The error displayed as a result of running the above program is:

ERROR 59 IN 230 End of file or buffer found

which indicates that the error occurred on line 230 of the program. However, the actual error
occurred on line 150. The reason for the error is that the file called bdat_file was empty and
there was no END option used with the TRANSFER statement.

Since a continuous TRANSFER was specified, the error that occurs in line 150 is reported in line
230 when the non buffer I/O path name is referenced. For continuous transfers, the error is
always logged with the non-buffer I/O path name. Referencing the buffer's I/O path name (line
190) does not cause the error to be reported. After running the program, change the CONT
parameter in line 150 to WAIT. The program will now report the error in line 150 since the WAIT
parameter specified a serial TRANSFER.

At the time the error is reported, any ON END (for files), ON TIMEOUT (for devices), or ON
ERROR statements will be triggered. However, ON END is not triggered when the END param
eter is specified.

Transfers and Bu.ered 1/0 15-27

Sus:pended Transfers

When a TRANSFER statement is executed, that transfer is said to be "active". The transfer
procc::eds until either a termination condition is reached, or until there is nothing else the transfer
can do for the time being. An example of the latter is a continuous TRANSI:<"ER, which does not
termiinate when the buffer is full and has not yet met any other termination conditions.

This 'TRANSFER will be "suspended" to give some other TRANSFER operation a chance to
empty the buffer. It will not be reactivated until one of the following occurs:

1. The other TRANSFER operation reaches a record boundary, fills or I~mpties the buffer, ter
minates, or is suspended.

2. An OUTPUT or ENTER operation active in the other direction fills or empties the buffer,
or terminates.

3. A CONTROL statement is executed to change the fill or empty pointers, or buffer's byte
count.

4. A CONTROL statement is executed to cancel continuous mode.

A TRANSFER cannot be suspended unless it has CONT as one of its transfer parameters.

Transfer Performance

Sec:tor Size

For the best performance when transferring BDAT and HP-UX (or DOS) files, the buffer size
shoulld be a multiple of 256 or 1024 bytes (the size of a sector on the disk).· If the buffer is not a
multiple of 256 bytes, the system must do sector buffering; this is handled allltomatically, but
reduc:es the transfer rate.

• DU.ks with 512-byte sectors are not supported by BASIC.

15-2111 Transfers and Buffered 1/0

Transfer Methods and Rates

The BASIC system chooses the fastest possible transfer method when executing a TRANSFER.
You cannot explicitly choose the method.

There are three types of transfers available to the BASIC system.

• DMA (direct memory access).

• FRS (fast handshake).

• INT (interrupt).

DMA Mode. All transfers use DMA mode whenever possible. However, anyone of the following
reasons will prevent a DMA transfer.

• The DMA card is not present.

• Both DMA channels are busy.

• The device involved is not HP-IB or GPIO.

• The DELIM parameter is specified.

If DMA cannot be used with the HP·IB or GPIO interfaces, the FRS mode will be used if the
WAIT parameter was specified and INT mode will be used if the WAIT parameter was not
specified.

INT Mode. The !NT mode will always be used for the Serial and Datacomm interfaces. Note
also that the handshake lines are not used for Serial and Datacomm transfers. Therefore, on
inbound transfers through the Serial interface, it is easy to overrun the l·byte hardware buffer on
the card. The maximum transfer rate with Serial interfaces is hard to specify, because it may be
affected by other operations that attempt to alter the BASIC interrupt-logging structure (state
ments such as ON INTR and ON KEY). In general, using the WAIT parameter will result in a
higher transfer rate, with a lower potential for overrun errors, than other methods. The WAIT
parameter specifies that the TRANSFER is to complete before the next BASIC statement is exe
cuted (that is, it specifies that the transfer is to be performed in non-overlapped mode).

If a very slow device is sending a few bytes at a time, the most efficient method of transfer would
be to interrupt the processor whenever data is ready. Both DMA and INT modes operate in this
way. The DMA hardware "steals" a single memory cycle from the processor to transfer each byte.
The !NT mode must completely interrupt the processor and therefore takes more time.

Either type of interrupt (DMA or INT) can occur at any time and will be handled immediately by
the system. The interrupt doesn't have to wait for a statement to end before it is serviced. This is
not the same as event-initiated b:ranches which are serviced only at the end of a statement.

Transfers and Buttered I/O 15-29

BUlrst Interrupt Mode. The INT transfers implemented on the HP-m and GPIO interfaces use
a specialized "burst interrupt" mode. When an interrupt occurs, the system's interrupt service rou
tine will transfer the byte (or word) then wait approximately 20 ~ for another byte. If the device is
fast enough to accept or generate another byte each 20 ~, the net transfer rate will be much faster
thall if the system must exit the service routine and then re-enter the routine for the next byte.

REtstrictions

All data must be buffered. This means every TRANSFER statement will have one I/O path
ass~gned to a buffer and one I/O path assigned to a device (or file). Additionally, transfers are not
peTTl1itted with:

• The CRT or keyboard.

• The HP 98623 BCD Interface card.

• ASCII type files.

In addition, TRANSFER to or from a mass storage device with hierarchical directories (such as
HFS and SRM volumes) will not operate in overlapped mode (because of the "extensible" nature
of files on these volumes).

A buffer can have only one inbound and one outbound I/O operation (using I/O path names) at
any given time. The I/O operation can use TRANSFER, OUTPUT, or ENTER statements. A
second I/O operation in the same direction must wait until the completion of the current opera
tion. A second I/O operation in the opposite direction does not have to wait.

The HP-m and GPIO interfaces support only one I/O operation at any given time. A second
operation must wait until the completion of the first operation. The Serial and Datacomm inter
faces allow concurrent inbound and outbound transfer operations if each TRANSFER has a
unique I/O path name assigned to the device. An OUTPUT or ENTER must wait until comple
tion of transfers in both directions. Thus, concurrent operation requires using TRANSFER state
melilts and not a mixture of TRANSFER, OUTPUT, and ENTER statements.

The I/O path name assigned to a device can be used in only one I/O operation at a time. How
ever, the path name can be used with OUTPUT, ENTER, and TRANSFER interchangeably. An
OUTPUT or ENTER to the I/O path name will be deferred until completion of any active
TRANSFER for that path name. All file operations (including CAT, CREATE, OUTPUT, and
ENTER) will be deferred until completion of any TRANSFER using the same interface select
cod(~.

Serial transfets are not supported by the HP BASIC Language Processor.

15-30 Transfer. and Bu.ered I/O

Interactions with Other Keywords

The TRANSFER statement restricts some of the interrupts on various devices. If an ON INTR
statement and an ENABLE INTR statement have been executed for an interface, not all possible
ON INTR conditions will be triggered during a transfer.

Specific Interfaces

This section covers interface specific interactions.

HP-IB. For the HP-IB interface, all interrupt conditions are triggered if they occur during a
transfer. However, certain interrupt conditions may occur which will cause the transfer operation
to be prematurely terminated.

With the exception of the Handshake Error, the majority of interrupt conditions only occur when
the HP-IB interface is configured as a non-controller. If any of the following interrupt conditions
are enabled and the given interrupt occurs during a transfer to or from the interface, the user
interrupt will be logged and the TRANSFER will be prematurely terminated.

• Parallel Poll Configuration Change.

• My Talk Address Received.

• My Listen Address Received.

• Talker/Listener Address Change.

• Trigger Received.

• Handshake Error.

• Unrecognized Universal Command.

• Secondary Command While Addressed.

• Clear Received.

• Unrecognized Address Command.

If one of these interrupt conditions occurs and the given interrupt condition has not been enabled,
the interrupt will be ignored and the TRANSFER will not be terminated.

Transfers and BuWered 1/0 15-31

" Nlote

When an abortive interrupt condition is ignored, it is possible for data to be cor
rupted. It is recommended that abortive interrupt conditions be enabled during a
transfer.

---,
The Active Controller and IFC Received interrupt conditions will always prematurely terminate a
TRANSFER, even if they have not been enabled.

GPIO. For the GPIO interface, the PFLG (data ready) interrupt is not triggered during a transfer
that uses the interface. The EIR (External Interrupt Request) interrupt is triggered even if there is
a transfer in progress.

Seriial. For the f'.~rial interface, the Transmitter Holding Register Empty and Receiver Buffer Full
interrupts are not triggered during a transfer that uses the interface. The Receiver Line Status and
Modem Status Change interrupts are triggered even if there is a transfer in progress.

Datacomm. For the Series 200/300 Datacomm interface, all interrupt conditions are triggered
even if a transfer is in progress.

Ch:anglng Buffer Attributes

You can change the I/O path name's attributes without changing the current buffer pointers. Just
execute another ASSIGN statement with the new attributes. For example:

ASSIGN @Path;PARITY OFF

You will not be able to change all possible attributes in this manner. The BYTE and WORD attri
butes cannot be changed once assigned.

By specifying just the I/O path name, the default attributes (except BYTE) can be restored. For
example:

ASSIGN @Path

See the ASSIGN statement in the BASIC Language Reference manual for a complete list of attri.
butes.

15-~12 Transfers and Butfered 1/0

Note

It is possible to assign more than one I/O path name to a single named buffer.
Using two I/O path names on the same buffer could lead to the corruption of the
data in the buffer. Although each path name maintains a separate set of buffer
pointers, they are pointing to the same buffer.

Buffer Status and Control Registers

Status register 0 indicates the resource assigned to an I/O path:

Status Register 0 o =: Invalid I/O path name
1 =: I/O path name assigned to a device
2 =: I/O path name assigned to a data file
3 =: I/O path name assigned to a buffer

When the status of register 0 indicates a buffer (3), the status and control registers have the follow
ing meanings.

STATUS Register 1

STATUS Register 2

STATUS Register 3

CONTROL Register 3

STATUS Register 4

CONTROL Register 4

STATUS Register 5

CONTROL Register 5

STATUS Register 6

Buffer type (1= named, 2=unnamed)

Buffer size in bytes

Current fill pointer

Set fill pointer

Current number of bytes in buffer

Set number of bytes

Current empty pointer

Set empty pointer

Interface select code of inbound TRANSFER

Transfer. and Bullered I/O 15-33

ST~TUS Register 7

ST~TUS Register 8

CONTROL Register 8

S~TUS Register 9

CONTROL Register 9

STATUS Register 10

:tit 7 Bit I

0 TRANSFER
Active

e = 128 Value = 64

STATUS Register 11

:tit 7 Bit I

0 TRANSFER

Active

e = 128 Value = 64

STATUS Register 12

STATUS Register 13

Interface select code of outbound TRANSFER

If non-zero, inbound TRANSFER is continuous

Cancel continuous mode inbound TRANSFER if zero

If non-zero, outbound TRANSFER is continuous

Cancel continuous mode outbound TRANSFER if zero

Termination status for inbound TRANSFER

BitS BI14 BI13 BI12 Bit 1 BIIO

TRANSFER TRANSFER Device Byte Record Match
Aborted Error Termination Count Count Character

Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Termination status for outbound TRANSFER

BIIS BI14 BI13 BI12 Bit 1 Bit 0

TRANSFER TRANSFER Device Byte Record 0
Aborted Error Termination Count Count

Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Total number of bytes transferred by last inbound TRANSFER

Total number of bytes transferred by last outbound TRANSFER

15-:14 Transfers and Buffered 1/0

16
Techniques for Specific Interfaces

This chapter describes HP BASIC programming techniques that are specific to individual inter
faces. The sections that follow cover techniques for the HP-IB, RS-232 serial, GPIO, and HP-HIL
interfaces.

Note

The "Interface Registers" appendix in the BASIC Language Reference manual lists
the Status and Control registers for each of these interfaces. You may want to refer
to that manual for additional information.

The HP-IB Interface

This section describes the techniques necessary for programming the HP-IB interface. It also
describes the specific details of how this interface works and how it is used to communicate with
and control systems consisting of various HP-IB devices. Be sure you have the TRANS and 10
binaries loaded in your system.

The HP-IB (Hewlett-Packard Interface Bus), commonly called the "bus", provides compatibility
between the computer and extemal devices conforming to the IEEE 488-1978 standard. Electrical,
mechanical, and timing compatibility requirements are all satisfied by this interface. The following
block diagram depicts the HP-IIB intedace.

Technique. for Specific Interface. 16-1

Data

8
HP-IB
Interface

Handshake ~ Shielded Cable g
3 0 to Device(s) Q)

Hardware c :> c
System and 0 25 u

Firmware Control c
5 c::: .n

C\I

Logic and Shield
Grounds

8

The HP-m Interface is easy to use and allows great flexibility in communicating data and control
infolrmation between the computer and external devices.

Inlitlal Installation

The built-in HP-IB interface on HP 9000 Series 200/300 computers, or on the HP BASIC
Language Processor, requires no installation. It is pre-configured to hardware interrupt level 3.
However, the hardware interrupt level of an external HP-m interface can be set in the range 3
through 6. Refer to your interface owner's manual for information on installing and configuring an
external interface. Refer to your computer or language processor owner's IIIlanual for information
about changing the hardware configuration of the built-in HP-IB interface.

Communicating with Devices

This section describes programming techniques used to output data to and enter data from HP-m
devices. General bus operation is also briefly described in this section.

16-2 Technique. for Specific Interface.

HP-IB Device Selectors. Since the HP-IB allows the interconnection of several devices, each
device must have a means of beiJo.g uniquely accessed. Specifying just the interface select code of
the HP-IB interface through which a device is connected to the computer is not sufficient to
uniquely identify a specific device on the bus.

Each device on the bus has a primary address by which it is identified. This address must be unique
to allow individual access of each device. Each HP-IB device has a set of switches that are used to
set its address. Thus, when a particular HP-IB device is to be accessed, it must be identified with
both its interface select code and its bus address.

The interface select code is the first part of an HP-IB device selector. The interface select code of
the internal HP-IB is 7. External interfaces can range from 8 through 31. The second part of an
HP-IB device selector is the device's primary address, which can range from 0 through 30. For
example, to specify the device:

On interface select code 7
with primary address 22

On interface select code 10
with primary address 2

Use device selector = 722

Use device selector = 1002

Remember that each device's address must be unique. The procedure for setting the address of an
HP-IB device is given in the installation manual for each device. The HP-IB interface also has an
address. The default address of the internal HP-IB is 21 or 20, depending on whether or not it is a
System Controller, respectively. The addresses of an external HP-IB interface's address can be
determined by reading STATUS register 3 of the appropriate interface select code, and each
interface's address can be changl!d by writing to CONTROL register 3. See "Determining Con
troller Status and Address" and '''Changing the Controller's Address" for further details.

Moving Data Through the liP-lB. Data is output from and entered into the computer
through the HP-IB with the OUTPUT and ENTER statements, respectively. The only difference
between the OUTPUT and ENTER statements for the HP-IB and those for other interfaces is the
addressing iJo.formation within HP-IB device selectors. Some examples of using OUTPUT and
ENTER with the HP-IB follow.

Techniques for Specific Interfaces 16-3

100 Hpib-7
110 Device addr=22
120 Device_se1ector=Hpib*100+Device_addr
130 !
140 OUTPUT Device_selector; "FIR7T2T3"
150 ENTER Device_se1ector;Reading

320 ASSIGN @Hpib_device TO 702
330 OUTPUT @Hpib_device;"Data message"
340 ENTER @Hpib_device;Number

440 OUTPUT 822;"FIR7T2T3"

380 ENTER 724;Readings(*)

Gerleral Structure of the HP-IB. Communications through the HP-IB are made according to
a pn~cisely defined set of rules. These rules help to ensure that only orderly communication may
take place on the bus. For conceptual purposes, the organization of the HP-IB can be compared to
that of a committee. A committee has certain "rules of order" that govern the manner in which
business is to be conducted. For the HP-IB, these rules of order are the IEEE 488-1978 standard.

On the HP-IB, the System Controller corresponds to the committee chairman. The system con
troUer is generally designated by setting a switch on the interface and cannot be changed under
prog;ram control. However, it is possible to designate an "acting chairman" on the HP-IB. On the
HP-IB, this device is called the Active Controller, and may be any device capable of directing HP
IB activities, such as a desktop computer.

Whf:D the System Controller is first turned on or reset, it assumes the role of Active Controller.
Thu:), only one device can be designated System Controller. These responsibilities may be subse
quently passed to another device while the System Controller tends to other business. This ability
to pass control allows more than one computer to be connected to the HP-m at the same time.

In a committee, only one person at a time may speak. It is the chairman's responsibility to "recog
nize" which one member is to speak. Usually, all committee members present always listen; how
ever, this is not always the case on the HP-IB. One of the most powerful features of the bus is Ithe
ability to selectively send data to individual (or groups of) devices. This allows fast talkers to com
municate with fast listeners without having to wait.

Duriing a committee meeting, the current chairman is responsible for telling the committee which
meDlber is to be the talker and which is (are) to be the listener(s). Before these assignments are
givelll, he must get the attention of all members. The talker and listener(s) are then designated. and
the Ilext data message is presented to the listener(s) by the talker. When the talker has finished the
message, the designation process may be repeated.

16~~ Techniques for Specific Interfaces

On the HP-m, the Active Controller takes similar action. When talker and listener(s) are to be
designated, the attention signaliline (ATN) is asserted while the talker and Iistener(s) are being
addressed. ATN is then cleared, signaling that those devices not addressed to listen may ignore all
subsequent data messages. Thus, the ATN line separates data from commands; commands are
accompanied by the ATN line being true, while data messages are sent with the ATN line false.

On the HP-m, devices are addressed to talk and addressed to listen in the following orderly
manner. The Active Controller Jfirst sends a single command which causes all devices to unlisten.
The talker's address is then sent, followed by the address(es) of the listener(s). After all listeners
have been addressed, the data can be sent from the talker to the listener(s). Only device(s)
addressed to listen accept any data that is sent through the bus (until the bus is reconfigured by
subsequent addressing commands).

The data transfer, or data message, allows for the exchange of information between devices on the
HP-m. Our committee conducts business by exchanging ideas and information between the
speaker and those listening to his presentation. On the HP-m, data is transferred from the active
talker to the active Iistener(s) at a rate determined by the slowest active listener on the bus. This
restriction on the transfer rate is necessary to ensure that no data is lost by any device addressed to
listen. The handshake used to transfer each data byte ensures that all data output by the talker is
received by all active listeners.

Examples of Bus Sequenc1es. Most data transfers through the HP-m involve a talker and
only one listener. For example, the following OUTPUT statement could be used (by the Active
Controller) to send data to an HP -m device:

OUTPUT 701;"Data"

The following sequence of cotnmands and data is sent through the bus:

1. The talker's address is sent (here, the address of the computer; "My Talk Address"), which is
also a command.

2. The unlisten command is sent.

3. The listener's address (01) is sent, which is also a command.

4. The data bytes "D", "a", "t", "a", CR, and LF are sent; all bytes are sent using the HP-m's
interlocking handshake to ensure that the listener has received each byte.

Techniques for Specific Interfaces 16-5

Similarly, most ENTER statements involve transferring data from a talker to only one listener. For
instimce, the ENTER statement:

ENTER 722;Voltage

invokes the following sequence of commands and data-transfer operations:

1. The talker's address (22) is sent, which is a command.

2. The unlisten command is sent.

3. The listener's address is sent (here, the computer's address; "My Listen Address"), also a
command

4. The data is sent by device 22 to the computer using the Hp··IB handshake.

Addressing Multiple Listeners. HP-IB allows more than one device to listen simultaneously
to data sent through the bus (even though the data may be accepted at differing rates). The follow
ing ,examples show how the Active Controller can address multiple listeners on the bus.

100 ASSIGN @Listeners TO 701,702,703
110 OUTPUT @Listeners;String$
120 OUTPUT @Listeners USING Image_1;Array$(*)

This capability allows a single OUTPUT statement to send data to several devices simultaneously.
It is however, necessary for all the devices to be on the same interface. When the preceding OUT
pur statement is executed, the unlisten command is sent flrst, followed by the Active Controller's
talk address and then listen addresses 01, 02, and 03. Data is then sent by the controller and
accc~pted by devices at addresses 1, 2, and 3.

If an ENTER statement that uses the same I/O path name is executed by the Active Controller,
the first device is addressed as the talker (the source of data) and all the rest of the devices, includ
ing the Active Controller, are addressed as listeners. The data is then sent from the device at
address 01 to the devices at addresses 02 and 03 and to the Active Controller.

l30 ENTER @Listeners;String$
140 ENTER @Listeners USING Image_2;Array$(*)

Secondary Addressing. Many devices have operating modes which are accessed through the
ext(:ndedl addressing capabilities defined in the bus standard. Extended addressing provides for a
second address parameter in addition to the primary address. Examples of statements that use
extended! addressing are as follows.

18-8 Technique. for Specific Interface.

100 ASSIGN @Device TO 72205
110 OUTPUT @Device;Message:?

200 OUTPUT 72205;Message$

150 ASSIGN @Device TO 7220529
160
170 OUTPUT @Device;Message$

120 OUTPUT 7220529;Message$

22=primary, 05=secondary.

Additional secondary

The range of secondary addresses is 00 through 31; up to six secondary addresses may be specified
(a total of 15 digits including interface select code and primary address). Refer to the device's
operating manual for programming information associated with the extended addressing capability.
The HP-IB interface also has a mechanism for detecting secondary commands.

General Bus Management

The HP-IB standard provides sl~veral mechanisms that allow managing the bus and the devices on
the bus. Here is a summary of the statt~ments that invoke these control mechanisms.

ABORT is used to abruptly terminate all bus activity and reset all devices to power-on states.

CLEAR is used to set all (or only selected) devices to a pre-defined, device-dependent state.

WCAL is used to return all (or select(~d) devices to local (front -panel) control.

WCAL WCKOUT is used to disable all devices' front-panel controls.

PPOLL is used to perform a parallel p<oll on all devices (which are configured and capable of
responding).

PPOLL CONFIGURE is used to setup the parallel poll response of a particular device.

PPOLL UNCONFIGURE is used to disable the parallel poll response of a device (or all devices on
an interface).

REMOTE is used to put all (or selected) devices into their device-dependent, remote modes.

SEND is used to manage the bus by sending explicit command or data messages.

SPOLL is used to perform a serial poUl of the specified device (which must be capable of respond
ing).

Techniques for Specific Interfaces 16-7

TRIGGER is used to send the trigger message to a device (or selected group of devices).

These statements (and functions) are described in the following discussion. However, the actions
that a device takes upon receiving each of the above commands are, in gem:ral, different for each
device. Refer to a particular device's manuals to determine how it will respond.

Renllote Control of Devices. Most HP-IB devices can be controlled either from the front
panel or from the bus. If the device's front panel controls are currently functional, it is in the Local
state .. If it is being controlled through the HP-IB, it is in the Remote state. Pressing the front-panel
"Lo(:al" key will return the device to Local (front-panel) control, lllnless the device is in the Local
Lockout state (described in a subsequent discussion).

The Remote message is automatically sent to all devices whenever the System Controller is
powered on, reset, or sends the Abort message. A device also enters the Remote state automati
cally whenever it is addressed. The REMOTE statement also outputs the Remote message, which
caUSI~S all (or specified) devices on the bus to change from lo<:al control to remote control. The
computer must be the System Controller to execute the REMOTE statement.

Here are some examples:

REMOTE 7

ASSIGN @Device TO 700
REMOTE @Device

REMOTE 700

Loclking OUi Local Control. The Local Lockout message effectively lo<:ks out the "local"
switch present on most HP-IB device front panels, preventing a device's user from interfering with
system operations by pressing buttons and thereby maintaining system integrity. As long as Local
Lockout is in effect, no bus device can be returned to lo<:al control from its front panel.

The lLo<:al Lockout message is sent by executing the LOCAL LOCKOUT statement. This mes
sage is sent to all devices on the specified HP-IB interface, and it can only be sent by the computer
whelll it is the Active Controller.

Here. are some examples:

ASSIGN @Hpib TO 7
LOCAL LOCKOUT @Hpib

LOCAL LOCKOUT 7

16-8 Techniques for Specific Interfaces

The Local Lockout message is cleared when the Local message is sent by executing the WCAL
statement. However, executing the ABORT statement does not cancel the Local Lockout message.

Enabling Local Control. During system operation, it may be necessary for an operator to
interact with one or more devices. For instance, an operator might need to work from the front
panel to make special tests or to troubleshoot. And, in general, it is good systems practice to return
all devices to local control upon conclusion of remote-control operation. Executing the LOCAL
statement returns the specified devices to local (front-panel) control. The computer must be the
Active Controller to send the LOCAL message.

Here are some examples:

ASSIGN @Hpib TO 7
LOCAL @Hpib

ASSIGN @Device TO 700
LOCAL @Device

If primary addressing is specified, the Go-to-Local message is sent only to the specified device(s).
However, if only the interface select code is specified, the Local message is sent to all devices on
the specified HP-IB interface and any previous Local Lockout message (which is still in effect) is
automatically cleared. The computer must be the System Controller to send the Local message (by
specifying only the interface select code).

Triggering HP-IB Devices. The TRIGGER statement sends a Trigger message to a selected
device or group of devices. The purpose of the Trigger message is to initiate some device
dependent action; for example, it can be used to trigger a digital voltmeter to perform its measure
ment cycle. Because the response of a device to a Trigger Message is strictly device-dependent, nei
ther the Trigger message nor the interface indicates what action is initiated by the device.

Here are some examples:

ASSIGN @Hpib TO 7
TRIGGER @Hpib

ASSIGN @Device TO 707
TRIGGER @Device

Specifying only the interface selec:t code outputs a Trigger message to all devices currently
addressed to listen on the bus. Induding device addresses in the statement triggers only those dev
ices addressed by the statement. The computer can also respond to a trigger from another con
troller on the bus.

Techniques for Specific Interfaces 16-9

Clnaring HP-IB Devices. The CLEAR statement provides a means of "initializing" a device to
its predefined, device-dependent state. When the CLEAR statement is executed, the Clear mes
sagle is sent either to all devices or to the specified device(s), depending on the information con
taililed within the device selector. If only the interface select code is specified, all devices on the
specified HP-IB interface are cleared. If primary-address information is specified, the Clear mes
sagle is sent only to the specified device. Only the Active Controller can selild the Clear message.

Helre are some examples:

ASSIGN @Hpib TO 7
CL1&AR. @Hpib

ASSIGN @Device TO 700
CL1&AR. @Device

Aborting Bus Activity. This statement may be used to terminate all activity on the bus and
return all the HP-IB interfaces of all devices to a reset (or power-on) condition. Whether this
affe~cts other modes of the device depends on the device itself. The computer must be either the
actiive or the system controller to perform this function. If the System Controller (which is not the
current Active Controller) executes this statement, it regains active control of the bus. Only the
interface select code may be specified; device selectors which contain primary-addressing informa
tion (such as 724) may not be used.

Helre are some examples:

ASSIGN @Hpib TO 7
ABORT @Hpib

ABORT 7

HP'-IB Service Requests. Most HP-IB devices, such as voltmeter, frequency counters, and
spectrum analyzers, are capable of generating a "service request" when they require the Active
COliltroller to take action. Service requests are generally made after the device has completed a
task (such as making a measurement) or when an error condition exists (such as a printer being
out of paper). The operation and programming manuals for each device describes the device's
capability to request service and conditions under which the device will request service.

To request service, the device sends a Service Request message (SRQ) to the Active Controller.
Thc~ mechanism by which the Active Controller detects these requests is the SRQ interrupt. Inter
rupts allow an efficient use of system resources because the system may be executing a program
until interrupted by an event's occurrence. If enabled, the external event initiates a program branch
to a routine which "services" the event (executes remedial action).

18··10 Technique. for Specific Interface.

Setting Up and Enabling SnQ Interrupts. In order for an HP-m device to be able to ini
tiate a service routine as the Active Controller, two prerequisites must be met: the SRQ interrupt
event must have a service routine defined, and the SRQ interrupt must be enabled to initiate the
branch to the service routine. The following program segment shows an example of setting up and
enabling an SRQ interrupt.

100 Hpib-7
110 ON INTR Hpib GOSUB Service routine
120
130 Mask=2 ! Bit 1 enables SRQ interrupts.
140 ENABLE INTR Hpib;Mask

The value of the mask in the ENABLE INTR statement determines which type(s) of interrupts are
to be enabled. The value of the mask is automatically written into the HP-IB interface's interrupt
enable register (CONTROL register 4) when this statement is executed. Bit 1 is set in the preced
ing example, enabling SRQ interrupts to initiate a program branch. Reading STATUS register 4 at
this point would return a value of 2.

ServiCing SnQ Interrupts. The SRQ is a level-sensitive interrupt; in other words, if an SRQ is
present momentarily but does not remain long enough to be sensed by the computer, the interrupt
will not be generated.

It is important to note that onCl! an interrupt is sensed and logged, the interface cannot generate
another interrupt until the initial interrupt is serviced. The computer disables all subsequent inter
rupts from an interface until a pending interrupt is serviced. For this reason, it was necessary to
re-enable the interrupt to allow for subsequent branching.

Polling HP-IB Devices. The Parallel Poll is the fastest means of gathering device status when
several devices are connected to the bus. Each device (with this capability) can be programmed to
respond with one bit of status when Parallel Polled, making it possible to obtain the status of
several devices in one operation. If a device responds affrrmatively ("I need service") to a Parallel
Poll, more information as to its specific status can be obtained by conducting a Serial Poll of the
device.

Configuring Parallel Polilflesponses. Certain devices can be remotely programmed by the
Active Controller to respond to a Parallel Poll. A device which is currently configured for a Paral
lel Poll responds to the poll by placing its current status on one of the bus data lines. The logic
sense of the response and the data-bit number can be programmed by the PPOLL CONFIGURE
statement. No multiple listeners can be specified in the statement; if more than one device is to
respond on a single bit, each d(:vice must be configured with a separate PPOLL CONFIGURE
statement.

Technique. for Specific Interface. 16-11

Conclucting a Parallel Poll. The PPOLL function returns a single byte (:ontaining up to 8
status bit messages of all devices on the bus capable of responding to the poll. Each bit returned by
the function corresponds to the status bit of the device(s) configured to respond to the parallel
poll. (Recall that one or more devices can respond on a single line.) The PPOLL function can only
be eXf:cuted when the computer is the Active Controller. The following statement conducts a paral
lel poH of the interface at select code 7 (normally, the built-in HP-IB).

Response-PPOLL(7)

DiB8llJling Parallel Poll Responses. The PPOLL UNCONFIGURE statement gives the
complilter (as Active Controller) the capability of disabling the Parallel Poll responses of one or
more devices on the bus.

For eJwople, the following statement disables device 5 only:

PPOLL UNCONFIGURE 705

On the other hand, the following statement disables all devices on interface select code 8 from
respOlilding to a Parallel Poll:

PPOLL UNCONFlGURE 8

If no primary addressing is specified, all bus devices are disabled from responding to a Parallel
Poll. If primary addressing is specified, only the specified devices (which havc~ the Parallel Poll
Confi,gure capability) are disabled.

Conclucting a Serial Poll. A sequential poll of individual devices on the bus is known as a
Serial Poll. One entire byte of status is returned by the specified device in response to a Serial
Poll. This byte is called the Status Byte message and, depending on the device, may indicate an
overload, a request for service, or a printer being out of paper. The particular response of each
device: depends on the device.

The SPOLL function performs a Serial Poll of the specified device; the computer must be the
Activf: Controller.

Here are some examples:

ASSIGN @Device TO 700
Stat'Us_byte=SPOLL(@Device)

Spoll_24=SPOLL(724)

Just as the Parallel Poll is not defined for individual devices, the Serial Poll is meaningless for atll

interface; therefore, primary addressing must be used with the SPOLL function.

18-12: Technique. for Specific Interface.

The Computer As a Non-Active Controller

The section called "General Stmcture of the HP-IB" described how communications take place
through HP-IB Interfaces. The functions of the System Controller and Active Controller were
likened to a "committee chairman" and "acting chairman," respectively, and the functions of each
were described. This section describes how the Active Controller may "pass control" to another
controller and assume the role of a non-Active Controller. This action is analogous to designating
another committee member to take the responsibility of acting chairman and then becoming a
committee member who listens to the acting chairman and speaks when given the floor.

Determining Controller Stlltus and Address_ It is often necessary to determine if an inter
face is the System Controller and to determine whether or not it is the current Active Controller. It
is also often necessary to determine or change the interface's primary address.

Let's look at an example. Executing the following statement reads STATUS register 3 (of the
internal HP-IB) and places the c:urrent value into the variable Stat and addr. Remember that if
the statement is executed from the keyboard, the variable Stat_ anet addr must be defined in the
current context.

Status Register 3: Controller Status and Address

BH7 BH6 Bltl5 Bit 4 I Bit 3 I Bit 2 I BH1 I BHO

System Active 0 Primary Address of Interface
Controller Controller

Value = 128 Value = 64 Value =, 32 Value = 16 I Value = 8 I Value = 4 I Value = 2 I Value = 1

If bit 7 is set ("1"), it signifies that the interface is the System Controller; if clear ("0"), it is not the
System Controller. Only one controller on each HP-IB interface should be configured as the Sys
tem Controller.

If bit 6 is set ("1"), it signifies that the interface is currently the Active Controller; if it is clear
("0"), another controller is currently the Active Controller.

Bits 4 through 0 represent the current value of the interface's primary address, which is in the
range 0 through 30. The power-on default value for the internal HP-IB is 21 (if it is the System
Controller) and 20 (if not the System Controller).

Techniques for Specific Interfaces 16-13

Let's look at an example. Calculate the primary address of the interface from the value previously
read from STATUS register 3.

Intf_addr-Stat_and_addr MOD 32

This numerical value corresponds to the talk (or listen) address sent by the computer when an
OUTPUT (or ENTER) statement containing primary-address information is executed.

Chllnging the Controller's Address. It is possible to use thc~ CONTROL statement to
chanlge an HP-IB interface's address. For example:

CONTROL 7,3;Intf_addr

The value of Intf addr is used to set the address of the HP-IB interface (in this case, the internal
HP-IB). The valid range of addresses is 0 through 30; address 31 ~'i not used. Thus, if a value
greater than 30 is specified, the value MOD 32 is used (for example: 32 MOD 32 equals 0, 33
MOD 32 equals 1, 62 MOD 32 equals 30, and so forth).

Passing Control. The current Active Controller can pass this capability to another computer by
send.ing the Take Control message (TCT). The Active Controller must first address the prospective
new Active Controller to talk, after which the TCT message is sent. If the other controller accepts
the message, it then assumes the role of Active Controller; this computer then assumes the role of
a non-Active Controller.

Passing control can be accomplished in one of two ways: it can be handled by the system, or it can
be handled by the program. The PASS CONTROL statement can be used. For example, the fol
lowilllg statements first define the HP-IB Interface's select code and new Active Controller's pri
mary address and then pass control to that controller.

100 Hp_.ib=7
110 New ac addr-20
120 PASS CONTROL 100*Hp_ib+New_ac_addr

The following statements perform the same functions.

100 Hp_ib=7
110 New_ac_addr=20
120 SEND Hp_ib;TALK New ac addr CMD 9

Oncl~ the new Active Controller has accepted the TCT command, the controller passing control
assu:mes the role of a non-Active Controller (or "HP-IB device") on the specified HP-IB Interface.
The next section describes th.e responsibilities of the computer while it is a lilon-Active Controller.

18-14 Technique. for Specific Interfaces

Interrupts While Non-Actiy~e Controller. When the computer is not an Active Controller, it
must be able to detect and respond to many types of bus messages and events.

The computer (as a non·Active Controller) needs to keep track of the following information.

• It must keep track of itseH bdng addressed as a listener so that it can enter data from the
current active talker.

• It must keep track of itseH bdng addressed as a talker so that it can transmit the information
desired by the active controller.

• It must keep track of being sc!nt a Clear, Trigger, Local, or Local Lockout message so that it
can take appropriate action.

• It must keep track of control being passed from another controller.

One way to do this is to continually monitor the Hp·IB interface by executing the STATUS state
ment and then taking action when the values returned match the values desired. This is obviously a
great waste of computer time if Ihe computer could be performing other tasks. Instead, the inter
face hardware can be enabled to monitor bus activity and then generate interrupts when certain
events take place.

The computer has the ability to keep track of the occurrences of all of the preceding events. In fact,
it can monitor up to 16 different interrupt conditions. STATUS registers 4, 5 and 6 provide access
to the interface state and interrupt information necessary to design very powerful systems with a
great degree of flexibility.

Each individual bit of STATUS register 4 corresponds to the same bit of STATUS register 5.
Register 4 provides information as to which condition caused an interrupt, while register 5 keeps
track of which interrupt conditions are currently enabled. To enable a combination of conditions,
add the decimal values for each 1bit that you want set in the interrupt-enable register. This total is
then used as the mask parameter in an ENABLE INTR statement.

Techniques for Specific Interfaces 16-15

Status Register 5: Interrupt Enable Mask

This is a 16-bit register:

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bite Blta

Parallel

Ac:tive Poll My Talk My Usten EOI SPAS Remote/ Talker/

Conrtroller Configur- Address Address Received Local Ustener

ation Received Received Change Address

Change Change

\m/ue = \m/ue = \m/ue = \m/ue = \m/ue = 'Ai/ue = \m/ue = \m/ue =
32,768 16,384 8,192 4,096 2,048 '1,024 512 256

1l11t7 BitS Blt5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Unrecog- Secondary Unrecog-

Triigger Handshake nized Command Oear nized SAQ IFe

Rec~eived Error Universal While Received Addressed Received Received

Command Addressed Command

Valu4t = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value := 1

Bit 15 enables an interrupt upon becoming the Active Controller. The computer then has the abil
ity to manage bus activities.

Bit 14 enables an interrupt upon detecting a change in Parallel Poll ConfigUlration. (This condition
requires accepting data from the bus and then explicitly releasing the bus.)

Bit 13 enables an interrupt upon being addressed as an active talker by the Active Controller.

Bit 12 enables an interrupt upon being addressed as an active listelller by the Active Controller.

Bit 11 enables an interrupt when an EOI is received during an ENTER operation (the EOI signal
line iis also described in the section "HP-IB Control Lines").

Bit 10 enables an interrupt when the Active Controller performs a Serial Poll on the computer (in
response to its service request).

Bit 9 enables an interrupt upon receiving either the Remote or the Local message from the active
contmller, if addressed to listen. The action taken by the computer is, of course, dependent on the
user .. programmed service routine.

18-18 Technique. for Specific Interfaces

Bit 8 enables an interrupt upon a change in talk or listen address. An interrupt will be generated if
the computer is addressed to listen or talk or "idled" by an Unlisten or Untalk command.

Bit 7 enables an interrupt upon receiving a Trigger message, if the computer is currently addressed
to listen. This interrupt can be used in situations where the computer may be "armed and waiting"
to initiate action; the active contwller sends the Trigger message to the computer to cause it to
begin its task.

Bit 6 enables an interrupt if a bus error occurs during an OUTPUT statement. Particularly, the
error occurs if none of the devices on the bus respond to the HP-IB's interlocking handshake (see
"HP-IB Control Lines"). The error typically indicates that either a device is not connected or that
its power is off.

Bit 5 enables an interrupt upon receiving an unrecognized Universal Command. This interrupt
condition provides the computer with the capability of responding to new definitions that may be
adopted by the IEEE standards committee. (This condition requires accepting data from the bus
and then explicitly releasing the bus.)

Bit 4 enables an interrupt upon receiving a Secondary Command (extended addressing) after the
interface receives either its primary talk address or primary listen address. Again, this interrupt
provides the computer with a way to detect and respond to special messages from another con
troller. (This condition requires accepting data from the bus and then explicitly releasing the bus.)

Bit 3 enables an interrupt on rec.eiving a Clear message. Reception of either a Device Clear mes
sage (addressed to the computer) will cause this type of interrupt. The computer is free to take any
"device-dependent" action, such as setting up all default values again or even restarting the pro
gram, if that is dermed by the programmer to be the "cleared" state of the machine.

Bit 2 enables an interrupt upon receiving an unrecognized Addressed Command, if the computer is
currently addressed to listen. This interrupt is used to intercept and respond to bus commands
which are not defined by the standard. (This condition requires accepting data from the bus and
then explicitly releasing the bus.)

Bit 1 enables an interrupt upon detecting a Service Request.

Bit 0 enables an interrupt upon detecting an Interface Clear (IFC). The interrupt is generated only
when the computer is not the System Controller, as only a System Controller is allowed to set the
Interface Clear signal line. The service routine typically is used to recover from the abrupt termi
nation of an I/O operation caused by another controller sending the IFC message.

Techniques for Specific Interfaces 16-17

Note that most of the conditions are state-sensitive or event-sensitive; the e,xception is the SRQ
event, which is level-sensitive. State or event-sensitive events can never go unnoticed by the com
puter as ('..aD service requests; the event's occurrence is "remembered" by the computer until ser
viced.

For instamce, if the computer is enabled to generate an interrupt on becoming addressed as a
talkc~r, it would interrupt the first time it received its own talk address. Afte:r having responded to
the service request (most likely with some sort of OUTPUT operation), it would not generate
another interrupt, even if it was still left assigned as a talker by the Active Controller. Thus, it
would not generate another interrupt until the event occurred a second time.

An oversimplified example of a service routine that is to respond to multiple conditions might be
as follows. This example can be found in file SER VERl on your Manual Examples disk.

Register 4, the interrupt status register, is a "read-destructive" register; reading the register with a
STATUS statement returns its contents and then clears the registe:r (to a vaJue of 0). If the service
routine's action depends on the contents of STATUS register 4, the variabh: in which it is stored
must not be used for any other purposes before all of the information that it contains has been
used by the service routine.

The computer is automaticallly addressed to talk (by the Active Controller) whenever it is Serially
Polled. If interrupts are concurrently enabled for My Address Change and/or Talker Active, the
ON INTR branch will be initiated due to the reception of the computer's talk address. However,
sincc~ the Serial Poll is automatically finished with the Untalk Command, the computer may no
longer be addressed to talk by the time the interrupt service routine begins execution. See
"Responding to Serial Polls" for further details.

16-16 Technique. for Specific Interface.

Requesting Service. When the computer is a non-Active Controller, it has the capability of
sending an SRQ to the current Active Controller. The following statement is an example of
requesting service from the Active Controller of the HP-IB Interface on select code 7.

CONTROL 7,1;64

The REQUEST statement can be used to perform the same function.

REQUEST 7; 64

Both of the preceding examples place a logic True on the SRQ line. (Note that the line may
already be set True by another device.) Other bits may be set in the Status Byte message, indicating
that other device-dependent conditions exist.

The SRQ line is held True until the Active Controller executes a Serial Poll or this computer exe
cutes a REQUEST with bit 6 equal to o. (Note also that the line may still be held True by another
device.)

Responding to Parallel Polls. Before performing a Parallel Poll of bus devices, the Active
Controller configures selected device(s) to respond on one of the eight data lines. Each device is
directed to respond on a particular data line with a logic True or False; the logic sense of the
response informs the Active Controller either "I do need service" or "I don't need service." The
logic sense of the response is aliso specified by the Active Controller. This response to the Parallel
Poll is known as the Status Bit message.

Responding to Serial Polls. As a non-Active Controller, the response to Serial Polls is
automatically handled by the system. The desired Serial Poll Response Byte is sent to HP-IB
CONTROL Register 1. If bit 6 is set (bit 6 has a value of 64), an SRQ is indicated from this con
troller. All other bits can be considered to be "device-dependent," and can thus be set according to
the program's needs.

The following statement sets up a response with SRQ and bits 1 and 0 set to "1".

CONTROL 7,1;64+2+1

When the Active Controller performs a Serial Poll on this non-Active Controller, the specified byte
is automatically sent to the Active Controller by the system.

Techniques for Specific Interfaces 16-19

HP··IB Control Lines

The HP-IB interface provides eight data lines and eight control lines as shown in the following
figwe.

BUS STRUCTURE
TO OTHER DEVICES

DEVICE A

TALKS, LISTENS ==
AND CONTROLS

(e.g. computer)
(1\ DATA I NPUT OUTPUT

'v (8 signal lines)

~~D~E~V~I~C;E~B~--l=~QQ~=P~~;~
TALKS AND I
LISTENS

(e.g., digital voltmeter!

DEVICE C

LISTENS ONLY
== -

(e.g., signal generatorl (.

DEVICE D

TALKS ONLY

(e .g., tape reader!

NOTE:

== -

1. All signals are low-true.
2. Signals from Devices are

logically ORed.

HANDSHAKE
(Data Tra nsfer!

(3 signal lines)

BUS
MANAGEMENT

(5 signal lines)

!IT: I 0101. .. 8

DAV
NRFD
NDAC

IFC
ATN
SRQ
REN
EOI

HP-IB Control Lines

18-21D Techniques for Specific Interfaces

The preceding figure shows the names given to the eight control lines that make up the HP-m.
These lines are described in the following paragraphs.

Handshake Lines. Three of the eight HP-m control lines are designated as "handshake" lines
and are used to control the timing of data byte exchanges so that the talker does not get ahead of
the listener(s). The three handshake lines are as follows:

DAV

NRFD

NDAC

Data Valid

Not Ready for Data

Not Data Accepted

The HP-IB interlocking handshake uses the lines as follows. All devices currently designated as
active listeners would indicate when they are ready for data by using the NRFD line. A device not
ready would pull this line low (true) to signal that it is not ready for data, while any device that is
ready would let the line float high. Since an active low overrides a passive high, this line will stay
low until all active listeners are ready for data.

When the talker senses that all devices are ready, it places the next data byte on the data lines and
then pulls DAV low (true). This tells the listeners that the information on the data lines is valid
and that they may read it. Each listener then accepts the data and lets the NDAC line float high
(false). As with NRFD, only when all listeners have let NDAC go high will the talker sense that all
listeners have read the data. It can then float DAV (let it go high) and start the entire sequence
over again for the next byte of data.

The AHention Line (ATN). Command messages are encoded on the data lines as 7-bit ASCII
characters, and are distinguished from normal characters by the logic state of the attention line
(ATN). That is, when ATN isfalse, the states of the data lines are interpreted as data. When ATN
is true, the data lines are interpreted as commands. The set of 128 ASCII characters that can be
placed on the data lines during this ATN-true mode are divided into four classes by the states of
data lines DI06 and DI07. Only the Active Controller can set ATN true.

The Interface Clear Line (IIFC). Only the System Controller can set the IFC line true. By
asserting IFC, all bus activity is unconditionally terminated, the System Controller regains the
capability of Active Controller (if it has been passed by another device), and any current talker and
listeners become unaddressed. Normally, this line is only used to terminate all current operations,
or to allow the System Controller to regain control of the bus. It overrides any other activity that is
currently taking place on the bUts.

Techniques for Specific Interfaces 16-21

The Remote Enable Line (REN). This line is used to allow instruments on the bus to be pro
grammed remotely by the Active Controller. Any device that is addressed tiQ listen while REN is
true is placed in the Remote mode of operation.

The End or Identify Line (EOI). Normally, data messages sent over the HP-IB are sent using
the standard Ascn code and are terminated by the Ascn line-feed character, CHR$(10). How
ever, certain devices may wislil to send blocks of information that contain data bytes which have the
bit pattern of the line-feed character, but which are actually part of the data message. Thus, no bit
pattern can be designated as a terminating character since it could occur anywhere in the data
stream. For this reason the EOI line is used to mark the end of the data message.

The EOI line is used as an END indication (ATN false) during ENTER statements and as the
Identify message (ATN true) during an identify sequence (the response to a parallel poll). During
data messages, the EOI line is set true by the talker to signal that the current data byte is the last
one of the data transmission. Generally, when a listener detects that the EOI line is true, it
assumes that the data message is concluded. However, EOI may either be used or ignored by the
computer when entering data with an ENTER statement that uses an image:.

The Service Request Line (SRQ). The Active Controller is always in charge of the order of
events that occur on the HP-IB. If a device on the bus needs the Active Controller's help, it can set
the Service Request line true.. This line sends a request, not a demand, and it is up to the Active
Controller to choose when and how it will service that device. However, the: device will continue to
assert SRQ until it has been "satisfied." Exactly what will satisfy a service CI~quest depends on the
requesting device (refer to the operating manual for the device).

Note

You can determine the current status of all of the bus hardware lines by reading
Status Register 7 with the STATUS statement. Refer to the "Interface Registers'"
appendix in volume 2 of the BASIC Language Reference manual.

For further information, about the HP-IB (IEEE-488) interface you may want to refer to the fol
lowinlg sources:

• 7i~torial Description of the Hewlett-Packard Interface Bus, Hewlett-Packard Company, 1987 (HP
part number 5952-0156) .

• IEEE Standard 488.1-1987, "Digital Interface for Programmablle InstruDilentation," The IEEE,
Inc., 345 East 47th St., New York, NY, June 1987.

16-2:Z Techniques for Specific Interfaces

The R5-232 Serial Interface

The Serial Interface is an RS-232-C compatible interface used for simple asynchronous I/O appli
cations such as driving line printe:rs, terminals, or other peripherals. It uses a UART (Universal
Asynchronous Receiver and TraJJlsmitter) integrated circuit to generate the required async signals.
The computer must provide most control functions because the card does not have its own proces
sor capability. Consequently, there is more interaction between the card and computer than when
you use a more intelligent interface, except for relatively simple applications.

The following block diagram shows the RS-232 serial interface:

System

Parallel Data

Serial
Interface
Hardware

I

Bit-Serial Data

(In)

I Parallel/Serial
Converter

I (UART)
I
I

Grounds

o
tl
Q)
c:
c:
o
U

Shielded Cable
to a Device

The RS-232-C interface standard establishes electrical and mechanical interface requirements, but
does not define the exact function of all the signals that are used by various manufacturers of data
communications equipment and serial I/O devices. Consequently, when you plug your serial inter
face into an RS-232 connector, there is no guarantee the devices can communicate unless you have
configured optional parameters to match the requirements of the device you are connecting to.

Technique. for Specific Interface. 18-23

"ole

RS-232-C is a data communication standard established and published by the Elec
tronic Industries Association (EIA). Copies of the standard are available from the
association at 2001 Eye Street N.W., Washington D.C. 20006. Its equivalent for
European applications is ccrrr V.24.

Asynchronous Data Communication

The terms Asynchronous (Async for short) data communication and Serial I/O refer to a tech
nique of transferring information between two communicating devices by means of bit-serial data
tran.smission. This means that data is sent, one bit at a time, and that characters are not synchron
ized with preceding or subsequent data characters; that is, each character is sent as a complete
entity without relationship to other events, before or after. Characters may be sent in close succes
sion, or they may be sent sporadically as data becomes available. Start and stop bits are used to
identify the beginning and end of each character, with the character data placed between them.

Chllfacler Formal. Each character frame consists of the following elements:

• Start Bit: The start bit signals the receiver that a new character is being sent. Since the receiver
lmows how many bits per second are being transmitted (specified by the baud rate), it can
determine the expected arrival time for all subsequent bits in that character frame. All other
bits in a given frame are synchronized to the start bit.

• :; - 8 Character Data Bits: The next bits are the binary code of the character being transmit
ted, consisting of 5,6, 7, or 8 bits; depending on the application. The parity bit is not included
in the character data bits.

• lParity Bit: The parity bit is optional, included only when parity is enabled.

• Stop Bit(s): One or more stop bits identify the end of each ch'lLfacter. The serial interface has
110 provision for inserting the time gaps between characters.

Here is a simple diagram showing the structure of an asynchronolls character and its relationship
to olther characters in the data stream:

Preceding
Character

Start 0
Bit

o o o
~------ Single Character Frame

Beginning of
Character

18-~!4 Techniques for Specific Interfaces

n ~Sl
1 Parity ~top Start Bit

Bit Bit for Next
Character

End of Character

Parity. The parity bit is used to detect errors as incoming characters are received. If the parity bit
does not match the expected sense, the character is assumed to be incorrectly received. The action
taken when an error is detected depends upon how the interface and your computer program are
configured.

Parity sense is determined by system requirements. * The parity bit may be included or omitted
from each character by enabling or disabling the parity function. If the parity bit is enabled, four
options are available. Parity is checked by the receiver for all parity options including ONE and
ZERO. Parity options include:

• NONE - Parity function is DISABLED, and the parity bit is omitted from each character
frame.

• ODD - Parity bit is SET if there is an EVEN number of ones in the data character. The
receiver performs parity checks on incoming character.

• EVEN - Parity bit is SET if there is an ODD number of ones in the data character. The
receiver performs parity checks on incoming characters.

• ONE - Parity bit is set for all characters. Parity is checked by the receiver on all incoming
characters.

• ZERO - Parity bit is cleared, but present for all characters. Parity is checked by the receiver
on all characters.

Error Detection. Two types olf incoming data errors can be detected by serial receivers:

• Parity errors are signaled when the parity bit does not match the number of ones, including the
parity bit, even or odd as defined by interface configuration. When parity is disabled, no parity
check is made.

• Framing errors are signaled when start and stop bits are not properly received during the
expected time frame. They can be caused by a missing start bit, noise errors near the end of the
character, or by improperly specified character length at the transmitter or receiver.

Two additional error types are detected by the receiver section of the serial interface:

• Overrun errors result when the desktop computer does not consume characters as fast as they
arrive. The card provides only one character of buffer space, so the current character must be
consumed by an ENTER before the next character arrives. Otherwise, the character is lost
when the next character replaces it, and an error is sent to BASIC.

* Parity sense is determined by counting the number of ones in the character including the parity bit Consequently, the
parity sense is reversed from the number of ones in a character without the parity bit

Techniques for Specific Interfaces 16-25

• Received BREAKs are detected as a special type of framing error. They generate the same
type of BASIC error as framing errors.

Data Transfers Between Computer and Peripheral

Four statements are used to transfer information between your computer ~md the interface crurd:

• The CONTROL statement is used to control interface operation and defines such parameters
.as baud rate, character format, or parity.

• The OUTPUT statement sends data to the interface which, in turn, sends the information to
the peripheral device.

• The ENTER statement inputs data from the interface crurd after the interface has received it
from the peripheral device.

• The STATUS statement is used to monitor the interface and obtain information about interface
operation such as buffer status, detected errors, and interrupt enable status.

Sin(:e the interface has no on-board processor, ENTER and OUTPUT statements cause the com
put(:r to wait until the ENTER or OUTPUT operation is complete before continuing to the next
line .. For OUTPUT statements, this means that the computer wailts until the last bit of the last
character has been sent over the serial line before continuing with the next program statement.

Overview of Serial Interface Programming

Serial interface programming techniques are similar to most general I/O applications. The inter
face card is initialized by use of CONTROL statements; STATUS statements evaluate its readiness
for use. Data is transferred between your computer and a peripheral device by OUTPUT and
ENTER statements. In most cases, you can use default configuration switches on the interface
card to eliminate or significantly reduce the need for using CONTROL statements to initialize the
card.

Due: to the asynchronous nature of serial I/O operations, you should take special crure to ensure
that data is not lost by sending to a device before the device is ready to rec(:ive. Modem line
handshaking can be used to help solve this problem. The interface: registers are described in an
appc~ndix of the BASIC Language Reference manual.

16-:!6 Techniques for Specific Interfaces

Initializing the Interconlnection

Before you establish a connection, you must determine what certain interface parameters are.

Determining Operating Parameters. Before you can successfully transfer information to a
device, you must match the operating characteristics of the interface to the corresponding charac
teristics of the peripheral device. This includes matching signal lines and their functions as well as
matching the character format foJ' both devices.

Hardware Parameters. To deltermine hardware operating parameters, you need to know the
answer for each of the following questions about the peripheral device:

• Which of the following signal and control lines are actively used during communication with the
peripheral?

_Data Set Ready (DSR)
_Data Carrier Detect (DCD or CD)
_Clear to Send (CTS)
_Ring Indicator (RI)

• What baud rate (line speed) is expected by the peripheral?

Character Format Parameters. To defme the character format, you must know the require
ments of the peripheral device for the following parameters:

• Character Length: How many data bits are used for each character, excluding start, stop, and
parity bits?

• Parity Enable: Is Parity enabled (included) or disabled (absent) for each character?

• Parity Sense: Is the parity bit, if enabled, ODD, EVEN, always ONE, or always ZERO?

• Stop Bits: How many stop bits are included with each character: 1,1.5, or 2?

Using Interface DefauRs to Simplify Programming. The serial interface maybe
preconfigured with default parameters.

Using Program Control to Override Defaults

You can override some of the interface default configuration options by use of CONTROL state
ments. This not only enables you to guarantee certain parameters, but also provides a means for
changing selected parameters in the course of a running program.

Techniques for SpecifiC Interfaces 18-27

Interface Reset. Whenever an interface is connected to a modem that may still be connected to
a tc~lecommunications link from a previous session, it is good programming practice to reset the
intc!rface to force the modem to disconnect, unless the status of the link and remote connection are
known. When the interface is connected to a line printer or similar peripheral, resetting the inter
faoe is usually unnecessary unless an error condition requires it.

When the interface is reset by use of a CONTROL statement to Control Register 0 with a non
zero value, the interface is restored to its default configuration, except that the current character
format is not altered, whether or not it is the same as the current default c:onfiguration. If you are
not sure of the present settings, or if your application requires changing the configuration during
program operation, you can use CONTROL statements to configure the interface. An example of
wh,en this may be necessary is when several peripherals share a single interface through a manually
opc~rated RS-232 switch such as those used to connect multiple terminals to a single computer port,
or :il single terminal to multiple computers.

Selecting the Baud Rate. In order to successfully transfer information between the interface
card and a peripheral, the interface and peripheral must be set to the same baud rate. A CON
TROL statement to register 3 can be used to set the interface baud rate. To verify the current baud
rate setting, use a STATUS statement addressed to register 3. All rates are in baud (bits/second).

SeHing Character Format and Parity. Control Register 4 overrides the default
configuration that controls parity and character format. To determine the value sent to the register,
add the appropriate values selected from the following table:

Parity Sense Parity Enable Stop Bits Character Length
0 ODD parity 0 Disabled 0 1 stop bit 0 5 bits/char

16 EVEN parity 8 Enabled 4 1.5 stop bits if 1 6 bits/char
5 bits/char, ()r
2 stop bits if
6, 7, or 8 bits/char

32 AJwaysONE 2 7 bits/char

49 Always ZERO 3 8 bits/char

18··28 Techniques for Specific Interfaces

For example, to configure a character format of 8 bits per character, two stop bits, and EVEN par
ity, use the following CONTROL statement:

1200 CONTROL Sc,4;3+4+8+16

or

1200 CONTROL Sc,4;31

To configure a 5-bit character length with 1 stop bit and no parity bit, use the following:

1200 CONTROL Sc,4;0

Data Transfers

The serial interface card is designed for relatively simple serial I/O operations. It is not intended
for sophisticated applications that use ON INTR statements extensively to service the interface.
Limited ON INTR capabilities are provided by the serial interface for error trapping and other
simple tasks.

Program Flow. When the intelrface is properly configured, either by use of default switches or
CONTROL statements, you are ready to begin data transfers. OUTPUT statements are used to
send information to the peripheral; ENTER statements to input information from the external
device. Any valid OUTPUT or ENTER statement and variable(s) list may be used, but you must
be sure that the data format is compatible with the peripheral device. For example, non-ASCII
data sent to an ASCII line printer results in unpredictable behavior.

Various other I/O statements call be used in addition to OUTPUT and ENTER, depending on the
situation. For example, the LIST statement can be used to list programs to an RS-232line printer
PROVIDED the interface is properly configured before the operation begins.

Data Output. To send data to a peripheral, use OUTPUT, OUTPUT USING, or any other simi
lar or equivalent construct. Suppression of end-of-line delimiters and other formatting capabilities
are identical to normal operation in general I/O applications. The OUTPUT statement hangs the
computer until the last bit of the last character in the statement variable list is transmitted by the
interface. When the output operation is complete the computer then continues to the next line in
the program.

Techniques for Specific Interfaces 18-29

Data Entry. To input data from a peripheral, use ENTER, ENTER USING, or an equivalent
statement. Inclusion or elimination of end-of-line delimiters and other information is determined
by tbe formatting specified i.n the ENTER statement. The ENTER statement hangs the computer
until the input variables list is satisfied. To minimize the risk of waiting for another variable that
isn't coming, you may prefer to specify only one variable for each ENTER statement, and analyze
the result before starting the next input operation.

Be sure that the peripheral is not transmitting data to the interface while no ENTER is in pro··
gress. Other me, data may be lost because the card provides buffering for only one character.
Also, interrupts from other XjO devices, or operator inputs to the computer keyboard can cause
delays in computer service to the interface that result in buffer overrun at higher baud rates.

Modem Une Handshaking. Modem line handshaking, when used, is performed automatically
by the computer as part of the OUTPUT or ENTER operation. After a given OUTPUT or
ENTER operation is complete, the program continues execution on the next line.

COIlitrol Register 5 can be used to force selected modem controllilnes to their active state(s). The
Data Rate Select and Secondary Request-to-Send lines are set or cleared by bits 3 and 2 respec
tivdy. Request-to-send and Data Terminal Ready are held in their active states when bits 1 and 0
are true, respectively. If bits 1 and/or 0 are false, the corresponding modem line is toggled during
OUTPUT or ENTER as explained previously.

Inc,oming Data Error Detection and Handling. The serial interface card can generate
seve~ral errors that are caused when certain conditions are encounte::-ed whille receiving data from
the peripheral device. The UART detects a given error condition and sets the corresponding bit in
Status Register 10. The card then generates a pending error to BASIC.

Trapping Serial Interface Errors. Pending BASIC errors can be traplPed by using an ON
ERROR statement in conjunction with an error trapping service routine to evaluate the error con
dition.

16-::10 Techniques for Specific Interfaces

The GPIO Interface

The GPIO Interface is a very flexible parallel interface that allows you to communicate with a
variety of devices. The interface sends and receives up to 16 bits of data with a choice of several
handshake methods. External interrupt and user-definable signal lines are provided for additional
flexibility. The interface is known as the General-Purpose Input/Output (GPIO) Interface for
these reasons. This section describes how to use the interface's features from BASIC Programs.

Because of the flexibility of the GPIO interface, the programmer usually needs to know quite a bit
about the interface hardware. Refer to the manual that came with your GPIO interface for infor
mation about configuring the interface and connecting it to peripheral devices.

Some of the statements and pro8ramming techniques covered in this section require that the TRANS
binary be installed.

Interface Description

The main function of any interface is obviously to transfer data between the computer and a peri
pheral device. This section briefly describes the interface lines and how they function.

The GPIO Interface provides 32 lines for data input and output: 16 for input (DIO-DI15), and 16
for output (DOD-DO IS). The interface is shown in the following block diagram.

Language
Processor

GPIO
Interface
Hardware

Parallel Data Out

16

Parallel Data In

16
"-

Shielded Cable Handshake
0
0 to a DeVice Q)
c:

4 c:
0 u

Special Purpose c:
a:::

6 0
It)

Grounds

7

Techniques for Specific Interfaces 16-31

Threl~ lines are dedicated to handshaking the data from source to destination device. The Peri
pheral Control line (PerL) is controlled by the interface and is used to initiate data transfers. The
Peripheral Flag line (PFLG) is controlled by the peripheral device and is used to signal the
peripheral's readiness to continue the transfer process. The Input/Output line (I/O) is used to
indicate direction of data flow.

One line is used to signal External Interrupt Requests to the computer (EIR). The interface must
be eiliabled to initiate interrupt branches for the interface to detect this request. The state of the
line c:an also be read by the program.

Four general-purpose lines are available for any purpose you desire; two are: controlled by the
computer and sensed by the peripheral (CfLO and erL1), and two are controlled by the peri
phentl device and sensed by the computer (STIO and STI1).

Both Logic Ground and Safety Ground are provided by the interface. Logic Ground provides the
reference point for signals, and Safety Ground provides earth ground for cable shields.

Intetrface Configuration

This section presents a brief summary of selecting the interface's configuration-switch settings. It is
intended to be used as a checklist and to begin to acquaint you with programming the interface.
Refelr to the installation manual for the exact location and setting of each switch.

A sample program (found in file "GPIOCHEC.K" on your Manual Examples disk) checks a few
of these switch settings on a GPIO Interface installed in the computer and displays the settings.
Howl~ver, many of the settings cannot be determined from BASIC programs. If any of the
displayed settings are different than desired, or if any settings are not already known, refer to the
installation manual for switch locations and settings.

Intelilace Select Code. In BASIC, allowable interface select codes rangl;: from 8 through 31;
codes 1 through 7 are already used for built-in interfaces. The GPIO interface has a factory default
settillig of 12. You can change this select code by changing switch settings on the interface. (Refer
to your interface owner's manual.)

Hardware Interrupt Priority. Two switches are provided on the interface to allow selection of
hardware interrupt priority. The switches allow hardware priority level 3 through 6 to be selected.
Hardware priority determines the order in which simultaneously oc:curring interrupt events are
logged, while software priority determines the order in which interrupt events are serviced by the
BASIC program.

16-3:2 Technique. for Specific Interface.

Data Logic Sense. The data lines of the interface are normally low-true; in other words, when
the voltage of a data line is low, the corresponding data bit is interpreted to be a "1". This logic
sense may be changed to high-true with the Option Select Switch. Setting the switch labeled "DIN"
to the "0" position selects high-true logic sense of Data In lines. Conversely, setting the switch
labeled "DOUT" to the "1" position inverts the logic sense of the Data Out lines. The default set
ting is "1" for both.

Data Handshake Methods. As a brief review, a data handshake is a method of synchronizing
the transfer of data from the seuding to the receiving device. In order to use any hand shake
method, the computer and peripheral device must be in agreement as to how and when several
events will occur. With the GPIO Interface, the following events must take place to synchronize
data transfers; the first two are optional.

• The computer may optionaUly be directed to perform a one-time "OK check" of the peripheral
before beginning to transfer any data.

• The computer may also optionally check the peripheral to determine whether or not the peri
pheral is "ready" to transfer data.

• The computer must indicate the direction of transfer and then initiate the transfer.

• During OUTPUT operations, the peripheral must read the data sent from the computer while
valid; similarly, the computer must clock the peripheral's data into the interface's Data In regis
ters while valid during ENTER operations.

• The peripheral must acknowledge that it has received the data.

The GPIO handshakes data with three Signal lines. The Input/Output line, I/O, is
driven by the computer and is used to signal the direction of data transfer. The Peripheral Control
line, PCTL, is also driven by the: computer and is used to initiate all data transfers. The Peripheral
Flag line, PFLG, is driven by the peripheral and is used to acknowledge the computer's requests to
transfer data.

Handshake Logic Sense. Logic senses of the PCTL and PFLG lines are selected with
switches of the same name. The logic sense of the I/O line is High for ENTER operations and
Low for OUTPUT operations; this logic sense cannot be changed. The available choices of
handshake logic sense and handshake modes allow nearly all types of peripheral handshakes to be
accommodated by the GPIO Interface.

Handshake Modes. There are two general handshake modes in which the PCTL and PFLG
lines may be used to synchronize data transfers: Full-Mode and Pulse-Mode Handshakes. If the
peripheral uses pulses to handshake data transfers and meets certain hardware timing require
ments, the Pulse-Mode Handshake may be used. The Full-Mode Handshake should be used if the
peripheral does not meet the Pulse-Mode timing requirements.

Techniques for Specific Interfaces 16-33

The bandshake mode is selected by the position of the "HSHK" switch on the interface, as
described in the installation manual. Both modes are more fully described in subsequent sections.

Data-In Clock Source. Ensuring that the data are valid when read by thc~ receiving device is
slightly different for OUTPUT and ENTER operations. During OUTPUTs, the interface generally
holds data valid while PCTL is in the Set state, so the peripheral must read the data during this
period. During ENTERs, the data must be held valid by the peripheral until the peripheral signals
that tbe data are valid (which clocks the data into interface Data In registers) or until the data ic;
read by the computer. The point at which the data are valid is signaled by a transition of PFLG.
The PFLG transition that is used to signal valid data is selected by the "CLK" switches on the
interface. Subsequent diagrams and text further explain the choices.

OpUonal Peripheral Status Check. Many peripheral devices are equipped with a line which
is used to indicate the device's cunent "OK-or-Not-OK" status. If this line is connected to the
Peripheral Status line (PSTS) of the GPIO Interface, the computer may determine the status of'the
peripheral device by checking the state of the PSTS. The logic sense of this line may be selected by
setting the "PSTS" switch. If the switch is enabled, the computer performs a one-time check of the
Peripheral Status line (PSTS) before initiating any transfers as part of the data-transfer handshake.
IfPSTS indicates "Not OK," Error 172 is reported; otherwise, the transfer proceeds normally. If
this feature is not enabled, this one-time check is never made. This feature is available with both
Full-Mode and Pulse-Mode Handshakes.

Intelrface Reset

The interface should always be reset before use to ensure that it is in a known state. All interfaces
are automatically reset by the computer at certain times: when the computer is powered on, when
RESlET is pressed. The interface may be optionally reset at other times und,er control of BASIC
programs. 1\\'0 examples are as follows:

Gpio-12
CONTROL Gpio,O;l

ResElt-l
CONTROL Gpio;Reset

The following action is invoked whenever the GPIO Interface is reset:

• The Peripheral Reset line (PRESET) is pulsed Low for at least 15 microseconds.

• The PCTL line is placed in the Clear state.

• If the DOUT CLEAR jumper is installed, the Data Out lines are all cleared (set to logic 0).

• The interrupt enable bit is cleared, disabling subsequent interrupts until re-enabled by the pro
!Vam.

18-34 Techniques for Specific Interfaces

The following lines are unchanged by a reset of the GPIO Interface:

• The CfLO and CfLl output lines.

• The I/O line.

• The Data Out lines, if the DOUT CLEAR jumper is not installed.

Using OUTPUT and ENTER Through the GPIO

This section shows you how to use OUTPUT and ENTER through the GPIO Interface. The
actual signals that appear on the data lines depend on three things: the data currently being
transferred, how this data is being represented, and the logic sense of the data lines.

This section gives simple examp~es of how several representations are implemented during OUT
PUTs and ENTERs through the GPIO Interface.

ASCII and Internal Representations. Data normally passes through the GPIO Interface one
byte at a time, with the most significant byte ftrst. This byte-mode transfer is independent of
whether FORMAT ON or FORMAT OFF is the I/O path attribute.

Example Statements UsinSll OUTPUT. The following examples show how you can use the
OUTPUT statement to output data bytes through the GPIO interface.

ASSIGN @Gpio TO 12
OUTPUT @Gpio; "ASCII"

Gpio-12
Number--4
OUTPUT Gpio USING "MD.DD";Number

ASSIGN @Gpio TO 12;FORMAT OFF
String$-"1234"
OUTPUT @Gpio;String$

Techniques for Specific Interfaces 16-35

Example Statements Using ENTER. The following examples show how you can use the
ENTER statement to enter data bytes through the GPIO interfacc:~.

ENTER @Gpio USING "11,Bn ; Byte
DISP "Value Entered = ";Byte

Value Entered = 65

ENTER 12;String$
DISP "String Entered =

String Entered = ruok?

REAL Number
ASSIGN @Gpio TO 12
ENTER @Gpio;Number
DISP "Number = ;∈Nwnber

Number = 2

Example Statements that Output Data Words. Data are automatically sent as words when
using an I/O path with the WORD attribute:

Word-3*256+3
OUTPUT @Gpio USING "11, W" ; Output_word

Output_16_bits=-1
CONTROL Gp_isc,3;Output_16_bits

It is important to note that no output handshake is executed when the CONTROL statement ic;
executed; only the states of the Data Out lines and the I/O lines are affected. Handshake
seqUience, if desired, must be performed by BASIC statements in the program.

18-~~ Technique. for Specific Interface.

Example Statements that Enter Data Words. Data are automatically received as words
when using an I/O path with the WORD attribute:

ENTER 12 USING "11,W";Enter_16_bits
DISP "INTEGER entered ~. "; Enter_16_bi ts

INTEGER entered = 511

STATUS Gp_isc,3;Enter_16_bits
DISP "INTEGER entered ~. "; Enter_16_bits

INTEGER entered = -512

It is important to note that no eIllter handshake is performed when the STATUS statement is exe
cuted. The only actions taken are the I/O lines being placed in the High state and the Data In
registers being read. If an enter bandshake is required, it must be performed by the BASIC pro
gram.

Remember also that the Data In Clock source is solely determined by the switch setting on the
interface card. Thus, when the STATUS statement is used to read the Data In lines, the data on
the lines mayor may not be clocked into the registers when the statement is executed. If the data
are to be clocked in by the STATUS statement, the "READ" clock source must be selected. See
the installation manual for furth~~r details.

GPIO Timeouts

This section explains how the time parameter is measured and describes typical service routines.

Timeout Time Parameter. There are two general time intervals measured and compared to
the specified TIMEOUT time. The first interval is measured between the computer initiating the
first handshake (pCfL=Set) and the peripheral signaling Ready (with the PFLG line). If the peri
pheral does not indicate readiness by the specified TIMEOUT time parameter, a TIMEOUT
event occurs.

The time elapsed during each handshake is also measured and compared to the TIMEOUT time.
The timing begins when the transfer is initiated (PCTL Set by the computer) and, in general, ends
when the peripheral responds OIl the PFLG line.

Techniques for Specific Interfaces 16-37

Kee:p in mind that the TIMEOUT time parameter specifies the minimum !time that the computer
will wait before initiating the ON TIMEOUT branch. However, the computer may occasionally
wait an additional 25 percent of the specified time parameter before initiating the branch. For
instance, if a time of 0.4 seconds is specified, the computer will wait at least 0.4 seconds for the
handshake to be completed, but it may occasionally wait up to 0.5 seconds before initiating the ON
TIMEOUT branch.

Timeout Service Routines. The service routine usually responds by dl~termining if the peri
pheral is functioning properly ("OK") or is down ("not OK"). The simplest action that might be
takf:n by the computer is to read the state of the PSTS signal line, as shown in the following service
routine (found in file GPIOSERV on you Manuals Examples disk).

A TIMEOUT has been set up to occur if the peripheral takes approximately more than .08
seconds to complete its response during a data transfer; how the peripheral completes its response
depends on the handshake mode currently selected. With Pulse-Mode Handshakes, the peripheral
completes its response by using PFLG to Clear PCTL; with Full-Mode HWlldshakes, the response
is complete only after PCTL has been Cleared and PFLG is in the Ready state.

Wh4~n a TIMEOUT occurs, the computer automatically executes an Interface Reset; the PCTL
line is Set and then Cleared, and the PRESET line is pulsed Low. See the section called "Interface
Reset" for further effects. The Service routine checks the PSTS line to see if the peripheral is OK
or Dot OK. If not OK, a message is displayed and the program is paused; if OK, program execution
is re:turned to the line following that in which the TIMEOUT occurred. A service routine may be
programmed to attempt the transfer again, if desired; however, the automatic Reset performed
when the TIMEOUT occurred may make this type of response difficult to implement.

GP'IO Interrupts

This section describes the types of and techniques for using the interrupts available on the GPIO
Interface.

TYllies of Interrupt Events. The GPIO Interface can sense two interrupt events:

• The interface becoming "Ready" for subsequent handshakes .

• The External Interrupt Request Line (EIR) being driven to logic low by the peripheral.

Since both of these events initiate identical computer responses, the service routine must be able to
dete:rmine which of these interrupts has occurred.

16-:18 Techniques for Specific Interfaces

SeHing Up and Enabling Events. When either event occurs, the interrupt is logged by the
operating system. After logging the occurrence, any further interrupts from the GPIO Interface
are automatically disabled until specifically enabled by a program. All further computer responses
to either event depend entirely on the BASIC program currently in memory.

The following program segment shows the steps involved in setting up and enabling Ready Inter
rupts.

100 Gpio-12
110 ON INTR Gpio GOSUB Gpio_serv
120 I
130 Mask-2
140 ENABLE INTR Gpio;Mask

The value of the interrupt mask determines which, if any, of the GPIO interrupt events are to be
enabled to initiate the corresponding branch. Bits of the Interrupt Mask register have the following
definitions.

Interrupt Enable Regisiter: (ENABLE INTR)

BI17 I BitS I BitS I BI14 I BI13 I BI12 Bit 1 Bit 0

Enable Enable

Not Used Interface EIR

Ready Interrupts

Interrupts

Value = 128 I Value = 64 I Value '" 32 I Value = 16 I Value = 8 I Value = 4 Value = 2 Value = 1

Interface Ready. Setting this bit ("1") enables an interrupt to initiate the ON INTR branch
when the interface detects that it is Ready to handshake data. If Full-Mode Handshake is selected
(with the Option Select switch), the Ready event is PCfL=Clear and PFLG = Ready. With Pulse
Mode Handshake, the event is I'CfL= Clear (independent of the state of PFLG).

External Interrupt Request. Setting this bit ("1") enables an interrupt to initiate the ON
INTR branch when the interface senses an External Interrupt Request (EIR line = Low).

Techniques for Specific Interfaces 16-39

IntE!rrupt Service Routines

If bOlth events are enabled, the service routine must be able to differentiate between the two. And,
if both have occurred, the service routine must be able to service both causes. The following regis
ters c:ontain the current state of the Interface Ready flag and EIR signal lines, from which the
interrupt cause(s) may be determined.

Sta1tus Regis1ter 4: In1terface Ready

The interface is ready for a subsequent data transfer; "I" = Ready, "0" = Busy.

Sta1tus Register 5: Peripheral Status

ilt 7 Bill BI15 BI14 BI13 BI12 B81 BIIO

0 0 0 0 PSTS EIR ST11 STIO

OK Une Low Une Low Une Low

= 128 value = 64 value = 32 value = 16 value = 8 Value = 4 value = 2 value = 1

As mentioned in preceding paragraphs, these two interrupt causes are both level-sensitive events,
not edge-triggered events. This fact has two important implications. The first is that, for an event
to be recognized, the corresponding signal line must be held in the interrupting state until the com
puter can interrogate the lin,e's logic state. If the signal line's state is changed before the service
routine checks the line, the interrupt may be "missed". This will happen only if both events are
enabled; if only one event is enabled, determining the cause may not be necessary.

The s,econd implication is that the service routine must be able to acknowledge the request in
order for the peripheral device to remove the request. If the request is not rc~moved after service,
the same request may be serviced more than once.

The program found in file EIRSERV on your Manuals Examples disk shows a simple example of
servicing an External Interrupt Request. Note that only EIR-type interrupts have been enabled and
that the peripheral device provides its own interrupt cause with signals on the STIO and STI1lines.

A slightly different method that peripherals use to communicate the cause olf their interrupt
reque:st is to place the interrupt cause on the data lines concurrent with the interrupt request. The
service routine can determine the cause by reading STATUS register 3 and take the appropriate
action.

Notice that the service routine indicates a likely place for a Ready-interrupt service routine. The
Servic:e routine must check for the Ready condition, acknowledge the interrupt, and then take the
desired action. In this case, no service action has been defmed because Readly interrupts have not
been enabled.

16-4«1 Techniques for Specific Interfaces

The HP-HIL Interface

HP-HIL (Hewlett-Packard Human Interface Link) is an interface capable of supporting up to
seven devices (such as a mouse, keyboard, or digitizer) generally related to human input. The fol
lowing diagram illustrates the basic components of the HP-HIL interface.

HP-HIL initialization occurs when you boot HP BASIC. HP BASIC logs the HP-HIL devices
present on the link. The link can deal with a maximum of seven devices at a time. Any devices
added after the seventh are ignored. If you add a de vice to the link after HP Basic is booted, the
device will not be recognized by the system unless you boot HP BASIC again. Also, if you replace
an HP-HIL device with a diffenmt one, the system may misinterpret data coming from the new
device. Again, you must reboot HP BASIC in order for the system to recognize the new device.

The address of a device is simply its topological order of placement along the link. In the above
diagram, device A has address 1, B has address 2, and C has address 3. This is only a result of their
physical order of connection. If device C had been connected between devices A and B, device A
would still be address 1, but device C would be address 2 and device B address 3. The type of dev
ice has no bearing on the address assigned to it.

Techniques for Specific Interfaces 16-41

After the llink is operational and subsequent link operations, each device looks at the data being
sent down the link. If a device sees that the destination address associated with the data is the same
as its address, that device receives and acts on the data. Otherwise, the data is sent on to the next
devic:e.

Preview of HP-HIL Devices

HP-HIL devices can be divided into a number of different categories. This section provides you
with a table that includes these categories as well as a list of high level and low level statements
that ;apply to each category .

• IP-HIL Device High Level Low Level
Categories BASIC Access BASIC Access

HP·HIL Keyboard Operating system normally handles OIN/OFF KEY
keystrokes. Programs can enter text and ON/OFF KBD
numbers with the INPUT, LlNPUT, and KBD$
ENTER statements.

Relative Positioner Operating system handles as cursor ON/OFF KBD (traps
(mouse, etc.) movement input. Can also be used with movement as arrow

GRAPHICS INPUT IS. keys and also traps
mouse buttons.)
KBD$
ON/OFF KNOB
ON/OFF CDIAl
CIDIAl

Ab~loIute Positioner Can be used with GRAPHICS INPUT liS. Hill SEND
(di~lltlzing tablet, etc.) ON HILEXT

HllBUF$

IDModuie One can be used with HllSEND
SYSTEM$("SERIAl NUMBER"). ON HllEXT

HllBUF$

Other Devices None HILSEND
ON HllEXT
HllBUF$

16-42 Technique. for Specific Interface.

Communicating Through the HP-HIL Interface

This section provides a brief description of the HP-HIL Interface Driver. This driver supports a set
of statements which allow communications between the HP-HIL interface and the HP-HIL devices
connected to it. Refer to the appropriate command listing in the BASIC Language Reference
manual for detailed information on these statements.

HIL SEND
Address;HIL _Command

ON HIL EXT
Address mask Branch

OFF HIL EXT

HILBUF$

Allows you to send HP-HIL commands to an HP~HIL device
(for example, HIL SEND 1; IOD). The basic HP-HIL com
mands are presented in the next section. Address is the loca
tion of the device in the HP~HIL link. Address 1 is as signed to
the first device on the link that is addressable. Subsequent
addresses are assigned in ascending order.

Enables end-of-line interrupts from HP-HIL devices, allowing
you to receive interrupts from up to seven devices on the HP
HIL link. Address mask is a bit -map of the locations of the
device or devices i1i the HP-HIL link. The default value is 254
which allows up to seven devices to send interrupts. Branch
refers to a branch to a program line number, label, subroutine,
or subprogram using the keywords GOTO, GOSUB,
RECOVER or CALL.

This statement disables all previously enabled end-of-line
interrupts for HP-HIL devices. Note that this statement does
not require an address mask.

This is a function used to capture data returned from HP-HIL
devices. This function provides a 256 byte buffer for data to be
stored in after execution of the first two statements listed
above. Once the limit of 256 bytes has been reached, the buffer
will not receive any new data until it has been emptied by a
read. The first byte stored in the buffer tells you how many
bytes of data have been lost. This byte is initially null.

Supported HP-HIL Devices

This section provides a brief description of those devices supported by the HP-HIL Interface
Driver, and the use of a program for identifying all devices on the HP-HIL link.

Techniques for Specific Interfaces 16-43

Identifying All Devices on the HP-HIL Link. Each device in the HP-HIL link has a device
ID that identifies the device and a Describe Record that provides you with device characteristics.
Tlus information can be obtained by executing the HP-HIL command IDD and parsing the string
value returned by using the HILBUF$ function. A program called HIL _ ID on the Manual Exam
ples disk makes use of the IDD command and the HILBUF$ function for the following:

• Determining if a device is recognized as being on the HP-HIL link.

• Identifying the device at a specific address.

• Determining the device's characteristics.

Assume that your HP-HIL link has the following devices:

• Touchscreen located at address 1.

•]lfF keyboard located at address 2.

• Function box located at address 3.

Executing the HIL _ ID program will produce the following output:

HP 25273A (Touchscreen) located at address 1
Describe Record Information

Descriptor Information
Does not support Prompts/Acknowledges 1 thru 7
Supports Proximity Detection
Does not report buttons

X and Y axis information reported
Absolute positioning device
Returns 8 bits/axis

HP 46020/21A (ITF Keyboard) located at address 2
Describe Record Information

No special features

HP 46086A (Function Box) located at address 3
Describe Record Information

I/O Descriptor Information
Recognizes General Prompt and Acknowledge
Does not support Prompts and Acknowledges 1 thru 7
Does not report buttons

Nlo axis information reported

NO llfORE DEVICES

16-44 Technique. for Specific Interface.

The first device is a touchscreen located at address 1 in the HP-HIL link. The Describe Record
provides you with the characteristics of the device. This information is as follows:

• I/O Descriptor Byte information is reported. The information supplied in this byte tells you
that when you touch your finger on the screen or remove it from the screen, it will be detected.
This is called proximity in/out detection.

• It is an absolute positioning device. This means that every coordinate position on the screen is
referenced to the lower left-hand comer of the screen (X coordinate = 0 and Y coordinate =
0).

• X and Y axis information is reported. This tells you that Poll Records received when communi
cating with this device will contain X and Y coordinate information. These are absolute coordi
nate positions.

• Coordinate information is returned as 8 bits per axis. This means that there will be only one
byte of information for each coordinate (X and Y) returned in the poll record.

HP-HIL Keyboards. The following keyboards are supported HP-HIL devices:

• ITF keyboard (HP 46021).

• Integral PC keyboard (modified ITF layout).

• HP98203C.

• Vectra HP-HIL keyboard (lIP BASIC Language Processor only).

To perform interrupt branching with the keyboard keys, you need to use the following statements
and function:

ON/OFF KEY

ON/OFF KBD

KBD$

ON KEY defines and enables an event-initiated branch to be
taken when a soft key is pressed. OFF KEY cancels event
initiated branches previously defined and enabled by and ON
KEY statement.

ON KBD defines and enables an event-initiated branch to be
taken when a key is pressed. OFF KBD cancels event-initiated
branches previously defined and enabled by the ON KBD
statement.

This function returns the contents of the keyboard buffer when
ON KBD is active.

Techniques for Specific Interfaces 16-45

Reilltive Positioners. The following devices are considered to be relative positioners:

• liP 46060A Mouse.

• liP 46083A Rotary Control Knob.

• liP 98203C Keyboard.

• liP 46094A HP-HIL Quadrature Port using HP 46095A Quadrature 3-button Mouse.

These devices support the ON/OFF KBD and KBD$ statements and functions in the same
maru!ler as described in the previous section. In addition, the following statements are also sup
port(~d.

ON/OFF KNOB

DIGITIZE

READ LOCATOR

ON KNOB defmes and enables an eveIllt-initiated branch to be
taken when the relative positioIller is moved. OFF KNOB can
cels event-initiated branches previously defined and enabled by
the ON KNOB statement. Subsequent use of the relative posi
tioner results in normal scroJ1iJllg or cursor movement.

This statement is used when graphics input has been specified
as a relative positioner by the statement

GRAPHICS INPUT IS KBD,"KBD"

It inputs the X and Y coordinates of a digitized point from the
locator specified by the GRAPHICS INPUT IS statement
(KBD in this case).

This statement is used when graphics input has been specified
as a relative positioner by the statement

GRAPHICS INPUT IS KBD,"KBD"

It samples the locator device without waiting for a digitizing
operation.

In addition, the HP 46085A Control Dials is a device with nine knobs. Refer to ON CDIAL, OFF
CDIAL, and CDIAL (n) in the BASIC Language Reference manual for information on accessing
this device.

16-418 Techniques for Specific Interfaces

Absolute Positioners. The following devices are considered absolute positioners:

• HP 35723A HP-HIL Touchscreen.

• HP 46087A A-Size Digitizer.

• HP 46088A B-Size Digitizer.

These devices can generate ON HIL EXT interrupts any time except when the absolute positioner
has been specified as the input graphics device in a GRAPHICS INPUT IS statement:

GRAPHICS INPUT IS KBD,"TABLET"

Using HIL SEND to transmit a command other than IDD to these devices in this situation will
result in an error. Due to the speed with which data is returned from the digitizers, an HP BASIC
program cannot keep up with the~m using ON HIL EXT because HILBUFS overflows. The only
device in this group capable of using the ON HIL EXT statement is the touchscreen.

When these devices are specified as the graphics input device (as above in the GRAPHICS INPUT
IS statement), the statements you may use are:

DIGITIZE X_coord,
Y coord

READ LOCATOR
X_coord,Y_coord

Inputs the X and Y coordinates of a digitized point.

Samples the locator device without waiting for a digitize opera
tion.

Security Device_ The HP 46084A HP-HIL Module is an HP-HIL device that returns an
identification number that identifies you as the computer user. The identification number is unique
to your particular ID module. This allows application programs to use the the ID module to con
trol access to program functions, data bases and networks.

Technique. for Specific Interface. 16-47

Other Devices. The following devices can generate ON HIL EXT interrupts and respond to
various HIL SEND commands.

HP 46086A Function Box - The HP 46086A Function Box provides 32 keys to select software
defined functions. It has an LED that acts as a visual prompt for any purpose you as sign to it. The
HP 46086A Function Box responds to the following HP-HIL commands when sent by the HIt.
SEND statement:

.1PRM

• ACK
.OKA

• EKAl

• EKA2

HP 92916A Bar Code Reader - The HP 92916A Bar Code Reader reads all standard bar codes
using a wand as the input device. It provides you with an effective and relialble alternative to the
tim€:-consuming keyboard for data entry. Note that HP BASIC supports this device in both the
ASCII transmit mode (where the input from the device is ASCII characters), and in the keyboard
mode· where it transmits the same keycodes as an HP 46020/21A Keyboard.

Whc~n the HP 92916A Bar Code Reader is in the ASCII transmit mode, use the following state
menlt:

ON HIL EXT

When it is in the keyboard mode, use the following statements:

ON KBD
ENTER KBD
INPUT
LIN PUT

• When in the keyboard mode, this device retunlS an HP-HIL ID in the same range as an HP 46021 (ITF) Keyboard.

16~18 Techniques for Specific Interfaces

Index

A
ABORT statement, 16-7, 16-10
ABORTIO statement, 15-18
ABS function, 2-5, 2-11
absolute positioners

HP-HIL device type, 16-42, 16-47
ACS function, 2-6
ACSH function, 2-7
active controller, description, 16-4
addresses, primary, 7-2
ALLOCATE statement, 2-3, 3-1, 3-16, 4-2
alpha display, clearing, 10-3
ALPHA key, 10-2
ALPHA OFF statement, 10-1, 10-2
ALPHA ON statement, 10-1, 10-2
AND operator, 2-15
angular measure units, 2-6
anisotropic scaling, 10-10
AREA COLOR statement, 10-21 10-44 , ,

10-48
AREA INTENSITY statement 10-21 10-44 , , ,

10-48
AREA PEN statement, 10-44, 10-48
ARG function, 2-11
arithmetic operations, 2-14, 3-16
array functions, 2-5
arrays, numeric. See numeric arrays
arrays, string. See string arrays
ASCII files

as I/O paths, 14-47
data format, 6-14
description, 6-7

formatted input, 6-16
formatted output, 6-15
input and output, 6-12
I/O paths, 14-8
serial access only, 6-17
string data, 4-3

ASCII files. See above and data files
ASCII lexical order, 4-11
ASN function, 2-6
ASNH function, 2-7
ASSIGN statement, 6-11,12-8,14-30,14-42,

15-6
asynchronous I/O, 16-23, 16-24
ATN function, 2-6
ATNH function, 2-7
attention (A TN) line, 16-5, 16-21
attributes

BYTE, 14-31, 14-32, 14-36
changing, 15-32
CONVERT, 14-36, 14-39
default, 14-31
DELAY, 14-40
description, 14-28
EOL,14-39
FORMAT, 14-28
PARITY, 14-40
RETURN, 14-42
specifying, 14-30
WORD, 14-31, 14-33, 14-36

AXES statement, 10-12
axis lines, graphics, 10-12

Index 1

B
backplane, defined, 12-2
BASE function, 2-6
bas(~-conversion functions, 2-13, 4-10
baud rate, serial I/O, 16-28
BDAT files

as I/O paths, 14-45
as plotter device, 11-2
data formats, 6-18
description, 6-7
I/O paths, 14-9
random access, 6-17
n~cord size, 6-23
serial access, 6-17

BDAT files_ See above and data files
BINAND function, 2-7
binary functions, 2-7
binary numbers

converting base, 2-13, 4-10
binary specifier, 13-17, 13-43
BINCMJP function, 2-7
BINEOR function, 2-7
BINIOR function, 2-7
BIT function, 2-7
boolean arrays, 3-19
boolean expressions, 2-16
branching

conditional, 1-5
event conditions, 14-15
event-initiated, 1-13, 14-11
unconditional, 1-2

break point in program, 9-11
breaks, serial I/O, 16-26
BUFFER keyword, 14-30, 15-5, 15-6
buffer pointers, 15-8
buffer size register, 15-7
buffers

assigning I/O paths to, 15-6
Cilttributes, 15-32
byte count, 15-8
creating, 15-5
empty pointer, 15-8

2 Index

fill pointer, 15-8
named, 15-5
operation, 15-1, 15-5
pointers, 15-8
registers, 15-7, 15-33
size register, 15-7
types, 15-5
unnamed, 15-5
variable names, 15-9
with ENTlER, 15-11
with OUTPUT, 15-11

buffer-type registers, 15-7
bugs, finding, 9-6
burst interrupt mode, 15-30
bus, defined,. 12-2
BYTE attribute, 14-31, 14-32, 14-36
byte count, 15-8

c
CALL statement, 5-2, 5-4, 5-10
case conversion

lexical order, 4-11
operation, 4-9

CASE ELSE statement 1-8 ,
CASE statement, 1-7
CAT statement, 6-28
catalog of files, 6-28
character aspect ratio, setting, 10-32
character length, serial I/O, 16-28
character sets, plotters, 11-5
character size, setting, 10-30
character specifier, 13-16, 13-41
characters

converting, 14-36
getting from numeric values, 4-8
getting numeric values, 4-7
ignoring during input, 13-42
sorting, 4-11

CHR$ function, 4-8, 4-12
CLEAR I/O key, 9-12
CLEAR SCREEN key, 10-3

CLEAR SCREEN statement, 10-3
CLEAR statement, 16-7, 16-10
CLIP OFF statement, 10-10, 10-36
CLIP ON statement, 10-37
CLIP statement, 10-36
clipping graphics, 10-36
clock

description, 8-1
event priorities, 8-7
events, 8-4
functions, 2-12
interaction with PC clock, 8-2
reading, 8-2
setting, 8-3
startup setting, 8-1

CLOCK binary, 8-1
CMPLX function, 2-9
color graphics, 10-44
COLOR keyword, 10-47
color map

changing colors, 10-47
colors, 10-46
default colors, 10-46
turning on, 10-46

COLOR MAP keyword, 10-46
color models, 10-47
color planes, graphics storage, 10-38
colors

color mapped, 10-46
non-color mapped, 10-44

COM statement, 3-1, 4-2, 5-7
combined mode, default graphics mode, 10-1
comma separator, 7-4, 13-3, 13-27
comments in programs, 1-3
common blocks, 5-7

bridge contexts, 5-8
compared with subprogram parameters, 5-8
matching, 5-9
path names in, 6-12
restrictions, 5-9

COMPLEX binary, 2-7, 2-9
complex numbers

as function arguments, 2-10
calculating with, 2-10
coordinates, 2-11
trigonometric mode, 2-10

COMPLEX statement, 2-3, 3-1
complex variables, 2-2

assigning values, 2-9
declaring type, 2-9

complex-numbers, functions, 2-9
concatenating strings, 4-3
concurrency, 15-25
conditional branching, 1-4, 1-5
CONJG function, 2-11
CONT command, 9-11, 9-12
CONT parameter, 15-12, 15-13
contexts

behavior, 5-10
bridged by common blocks, 5-8
data pointer, 6-4
description, 5-1

CONTINUE key, 9-11, 9-12
CONTINUE statement, 1-2
control characters, 7-4
CONTROL statement, 6-25, 14-3, 16-26,

16-27
CONVERT attribute, 14-36
CONVERT IN attribute, 14-39
CONVERT OUT attribute, 14-39
CONVERT ... BY INDEX attribute, 14-36
CONVERT ... BY PAIRS attribute, 14-38
converting real and integer values, 2-3
converting strings into numbers, 4-7
coordinates

current graphics position, 10-5
digitizing, 10-5

COS function, 2-6
COSH function, 2-7
COUNT parameter, 15-14
CREATE ASCII statement, 6-8
CREATE BDAT statement, 6-8
CREATE statement, 6-8
CRT function, 2-14, 7-3

Index 3

CRT. See display
CSIZE statement, 10-30
current position

graphics, 10-3
moving, 10-5
reading, 10-5

D
data

ASCII representation, 14-44
entering, 13-27
in data files, 6-1, 6-6
in program files, 6-1
in variables, 6-2
input by user, 6-2
internal representation, 14-44
outputting, 13-1
retrieving, 6-1
reusing, 6-5
storing, 6-1
terminating input, 13-44

data bits, serial 1/0,16-24
data files

assigned I/O path names, 6-11
creating, 6-8
I/O paths, 6-10
length, 6-8
matching data types, 6-11
mndom input, 6-27
mndom output, 6-25
re.cord size, 6-8, 6-21
retrieving data, 6-6, 6-11, 6-25
sector sizes, 15-28
serial input, 6-26
serial output, 6-24
storing data, 6-6, 6-8, 6-24
system sector, 6-21
types, 6-7

data pointer
moving, 6-5
operation, 6-4

4 Index

DATA statement, 3-8, 6-1, 6-2
data types, matching in data files, b-11
datacomm interface, transfers, 15-32
date

reading, 8-2
setting, 8-3, 8-4

DATE function, 2-12, 8-4
DATE$ function, 8-2 8-4
date functions, 2-12
day of the week, 8-4
DEALLOCATE statement, 3-2
debugging programs, 9-6
decimal numbers

converting to, 2-13, 4-10
DEF FN statement, 5-1, 5-14
DEG statement, 2-6
degree mode" 2-12
DElAY attribute, 14-40
deleting subprograms, 5-13
DELIM parameter, 15-14
DELSUB statement, 5-13, 5-15
DET function, 2-6
device ID, HP-HIL, 16-44
device selectors

description, 7-1
for CRT, 7-1
for HP-IB, 12-7, 16-3
I/O resources, 12-6
purpose, 12-4

device-selection functions, 2-13
DFS binary, 6-7
DFS directories, 6-6, 6-10
digit specifier, 13-13, 13-39
DIGITIZE statement, 10-6, 16-46, 16-47
digitizer, HP-HIL device, 16-47
digitizing positions, 10··5
DIM statement, 3-1, 4··2
dimensioning a numeric array, 3-1
direct-memory access transfers, 15-29
directories, mass storage, 6-6
DISABLE statement, 9-3
disk drives, accessing PC type, 6-10

display
color mapped, 10-46
color planes, 10-38
computer resource, 12-1
initializing, 10-2
non-color mapped, 10-44
plotter device, 10-1
printing images, 11-2
RATIO values, 10-11
retrieving graphics, 10-37
storing graphics, 10-37
with HPGL, 11-1

dithered colors, 10-44, 10-48
DIV operator, 2-15
DMA mode, 15-29
DOS files

data formats, 6-21
description, 6-7
random access, 6-17
serial access, 6-17

DOS files. See above and data filles
DOT function, 2-6
DRAW statement, 10-7, 10-8
DROUND function, 2-8
dump device, for graphics dump, 11-2
DUMP GRAPHICS statement, 11-3
DVAL function, 2-13, 4-11
DVAL$ function, 4-11

E
empty pointer, 15-8
ENABLE INTR statement, 16-11, 16-15
END keyword

free-field output, 13-8, 13-9
image output, 13-24, 13-25

END parameter, 15-14, 15-15, 15-16
END statement, 1-1,5-1
end-of-file condition, 6-24, 6-25, 6-26, 6-28
end-of-file pointer, 6-21
end-of-line (EOL) sequences, 7-10,13-3,13-6,

14-28, 14-39

end-of-record condition, 6-24, 6-25, 6-28
end-of-text character, HPGL, 11-6
End-Or-Identify (EOI) signal, 13-34, 13-44,

16-22
ENTER statement, 3-10, 6-25,13-27,13-36,

15-11, 16-3, 16-26, 16-29, 16-35
ENTER USING statement, 13-36
EOL attribute, 14-39
EOR parameter, 15-16
ERRL function, 9-3
ERRM$ function, 9-3
ERRN function, 9-3
errors

concurrent transfers, 15-26
detecting, 9-2
functions, 9-3
HPGL, 11-6
planning for, 9-1
priorities, 9-2
serial I/O, 16-25, 16-30

event-initiated branching, 1-13, 14-11
events

branching on, 14-11
enabling interrupts, 14-23
logging, 14-16
servicing, 14-15, 14-16, 14-21
timeouts, 14-27
types of, 14-12

EXIT IF statement, 1-12
EXOR operator, 2-15
EXP function, 2-6
exponent specifier, 13-13, 13-39
exponential functions, 2-6
expressions, evaluating, 2-14
extended addressing, 16-6

F
factorial function, 5-16
fast handshake transfers, 15-29
PHS transfers, 15-29
file pointer

Index 5

moving, 6-27
rcmdom input, 6-27
rcmdom output, 6-25
rc~setting, 6-11
Sl~rial input, 6-26
serial output, 6-24

file specifiers
description, 6-10
volumes and directories, 6-8

files
as I/O paths, 14-44
catalog of, 6-28
comparison of types, 14-44
data types, 6-7

files, ASCII. See ASCII files; data files
files, BOAT. See BOAT files; data files
files, OFS. See data files; OFS files
files, HP-UX. See data files; HP-UX files
fill colors, 10-21, 10-44, 10-48
fill pointer, 15-8
filling polygons, 10-24
filling rectangles, 10-21
firmware, defined, 12-1
FNEND statement, 5-1, 5-16
FOR ... NEXT structure, 1-10
FORMAT attributes

default, 14-30
description, 14-28

FORMAT OFF attribute
BOAT files, 6-18
DOS files, 6-21
HP-UX files, 6-21

FORMAT ON attribute
BOAT files, 6-15, 6-18, 6-20
DOS files, 6-21
HP-UX files, 6-21

formatted input, ASCII files, 6-16
formatted output

ASCn files, 6-15
string variables, 6-15

formatted printing, 7-4
formatted transfers, 15-11

6 Index

FRACT function, 2-5
frame buffer, printing, 11-2
FRAME statement, 10-4, 10-11
free-field input, 13-27" 13-33
free-field output, 13-1, 13-2, 13-8
French lexical order, 4-11
Full-Mode handshake, 16-33
functions

array, 2-5
base-conversion, 2-13, 4-10
binary, 2-7
complex-number, 2-9
date, 2-12
device-selection, 2-13
error, 9-3
exponential, 2-6
hyperbolic:, 2-7
limit, 2-8
numeric,2-4
passing arrays to, 3-11
random number, 2-8
rounding, 2-8
step, 2-16
string, 4-6, 4-8
time, 2-12
trigonometric, 2-6

functions. See above and user-defined func
tions

G
GOUs

description, 10-11
for character size, 10-32

German lexical order, 4-11
GET statement, 5-8
GINIT statement, 10·-2
GLOAD statement, 10-37
GOSUB statement, 1-3,5-10
GOTO statement, 1-2, 5-10
GPIO interface

a standard, 12-4

checking peripheral, 16-34, 16-38
control lines, 16-31
data logic sense, 16-33
data transfers, 16-35
enabling interrupts, 16-39
flexible interface, 16-31
handshake logic sense, 16-33
handshake methods, 16-33
handshake modes, 16-33
input lines, 16-31
interface ready register, 16-40
interrupt enable register, 16-39
interrupt events, 16-38
interrupt priority, 16-32
output lines, 16-31
peripheral status register, 16-40
processing interrupts, 16-40
resetting, 16-34
select codes, 16-32
timeouts, 16-37
transfers, 15-32

GRAPH binary, 10-1
graphics

axes, 10-12
changing color map, 10-47
character size, 10-30
clipping, 10-36
color mapped, 10-46
color models, 10-47
colors, 10-44
current position, 10-3, 10-5
default color map, 10-46
digitizing positions, 10-5
drawing, 10-15
drawing lines, 10-7
edging plots, 10-41
edging rectangles, 10-21
erasing lines, 10-16, 11-1
fill color, 10-21
fill colors, 10-44, 10-48
filling, 11-1
filling plots, 10-41

filling polygons, 10-24
filling rectangles, 10-21
grids, 10-14
HPGL, 11-1, 11-4
incremental plotting, 10-41
label colors, 10-44
label direction, 10-34
label origin, 10-35
labeling, 10-12, 10-30
line colors, 10-17
line types, 10-18
local origin, 10-15, 10-40
moving, 10-15
non-color mapped, 10-44
on plotter, 11-1
pen, 10-3
pen control, 10-8, 10-15, 10-25, 10-38
plotting from an array, 10-25, 10-39
polygons, 10-22
positioning labels, 10-35
printing image, 11-2
rectangles, 10-19
relative plotting, 10-15, 10-39
retrieving, 10-37
rotating, 10-19, 10-25, 10-40
scaling, 10-9
storing, 10-37
tick marks, 10-12
viewport, 10-10
XY plane, 10-4

graphics display, clearing, 10-3
Graphics Display Units

description, 10-11
for character size, 10-32

graphics dump, 11-2
GRAPHICS INPUT IS statement, 16-46,

16-47
GRAPHICS key, 10-2
GRAPHICS OFF statement, 10-1, 10-2
GRAPHICS ON statement, 10-1, 10-2
GRAPHXbinary, 10-1
GRID statement, 10-14

Index 7

grids, graphics, 1~14
GSEND statement, 11-4
GSTORE statement, 10-37

H
halting program execution, 1-1
handshake

dl~scription, 12-4
serial I/O, 16-21, 16-30

hard clip limits, 10-4, 10-10, 10-36
hexadecimal numbers

converting base, 2-13, 4-10
HFS directories, 6-6
hierarchical directories, 6-10
HIL SEND statement, 16-43, 16-47
HILBUF$ function, 16-43, 16-44, 16-47
HPGL

detecting errors, 11-6
graphics language, 11-1, 11-4

HP-HIL devices
absolute positioners, 16-47
addresses, 16-41
bar code reader, 16-48
function box, 16-48
II> module, 16-47
identifying, 16-44
relative positioners, 16-46
types, 16-42

HP-HIL interface
addressing, 16-41
human interface, 16-41
identifying devices, 16-44
interrupts, 16-43
keyboard input, 16-45
keyboard interrupts, 16-45
operation, 16-41
sending commands, 16-43

HP-][B control lines, 16-20
HP-][B devices

clearing, 16-10
configuring parallel poll, 16-11

8 Index

initializing, 16-10
local lockout, 16-8
Local mode, 16-8, 16-9
parallel poll, 16-12
Remote mode, 16-8
requesting service, 16-10
serial poll, 16-12
service requests, 16··12
status bytes, 16-12
triggering, 16-9
unconfiguring parallel poll, 16-12

HP -IE interface
a standard, 12-3
aborting operations, 16-10
address, 16-3, 16-13
bus control, 16-7
changing address, 16-14
clearing devices, 16-10
configuring parallel poll, 16-11
control lines, 16-20
controller status, 16 .. 13
controller status and address register, 16-13
data transfers, 16-3
description, 16-2
device selectors, 12-7, 16-3
enabling service requests, 16-11, 16-17
extended addressing, 16-6
interrupt enable mask register, 16-16
interrupt levels, 16-2
interrupt -enable register, 16-11
multiple listeners, 16-6
multiple service requests, 16-11
not active controller, 16-13, 16-14, 16-15
operation, 16-4
parallel poll, 16-12
passing control, 16-14
programming information, 16-1
requesting service, 16-19
response to parallel poll, 16-19
response to serial poll, 16-19
secondary addresses" 16-6
select codes, 16-3

serial poll, 16-12
service request processing, 16-11
setting local lockout, 16-8
transfers, 15-31
triggering devices, 16-9
unconfiguring parallel poll, 16-12

HP-IB references, 16-22
HP-UXfiles

as I/O paths, 14-45
data formats, 6-21
description, 6-7
I/O paths, 14-9
random access, 6-17
serial access, 6-17

HP-UX files. See above and data files
HSL color model, 10-47
hue, 10-47
hyperbolic functions, 2-7

ID module, HP-HIL device, 16-47
IDRAW statement, 10-7, 10-8, 10-41
IEEE 488 standard, 16-4
IF. .. THEN ... ELSE ... ENDIF structure, 1-7
IF ... THEN structure, 1-5
lMAG function, 2-11
image input, 13-36
image output, 13-1, 13-2, 13-10
image specifiers

binary, 13-17, 13-43
character, 13-16, 13-41
description, 13-11, 13-36
digit, 13-13, 13-39
during input, 13-38
during output, 13-12
exponent, 13-13, 13-39
nesting, 13-24, 13-48
numeric, 7-7,13-13,13-39
output, 7-6
radix, 13-13, 13-39
repeat factors, 13-21, 13-47

reusing, 13-23, 13-48
sign, 13-13, 13-39
special, 7-10
special-character, 13-19
string, 7-9, 13-16, 13-41
termination, 13-20, 13-44

images, inputs that use, 13-36
IMOVE statement, 10-5, 10-8, 10-41
incremental drawing, 10-7
incremental movement, 10-5
incremental plotting, 10-15, 10-41
INDENT command, 1-6
INDEX conversion, 14-36
initializing subprogram variables, 5-11
initializing the display, 10-2
input, by user, 6-2
INPUT statement, 6-2
INT function, 2-5
INT mode, 15-29, 15-30
integer numbers, range, 2-2
INTEGER statement, 2-3, 3-1
integer values, converting to real, 2-3
integer variables, 2-2

naming, 2-2
INTENSITY keyword, 10-47
interface registers

reading, 14-3
reference information, 16-1
setting, 14-3

interfaces
defined,12-2
interrupts, 14-22
purposes, 12-2
standards for, 12-3
types, 12-3

interrupt transfers, 15-29, 15-30
interrupts

conditions, 14-26
description, 14-11
enabling, 14-23
GPIO, 16-38
interfaces, 14-22

Index 9

I/O
buffered, 15-1
data flow, 12-5
operation, 12-4
registers, 12-4
unified, 14-43, 14-55

10 binary, 16-1
I/O path, registers, 14-4
I/O paths

alternatives to device selectors, 12-8
ASCII file type, 14-8
attributes, 14-28
BDAT file type, 14-9
closing, 6-10, 6-12, 12-9
de,vice type, 14-8
files, 14-44
for data files, 6-10., 6-11
for data input, 6-25
for data output, 6-24
HP-UX file type, 14-9
I/O resources, 12-7
named buffers, 15-6
naming, 12-8
opening, 6-10., 6-11
registers, 14-8, 15-7
strings, 14-49
tYlPes, 14-8
unnamed buffers, 15-6
with printer, 7-3

IPLOT statement, 10.-15, 10.-41
isotropic scaling, 10.-9
IVAL function, 2-13, 4-11
IVAL$ function, 4-11

K
KBD function, 2-14, 7-3
KBD$ function, 16-45
keyboard

active during execution, 9-6
arrow keys, 10-6
calling subprograms from, 5-11

10 Index

computer resource, 12-1
HP-HIL device type" 16-42, 16-45
live, 9-6

keyboard languages
affect lexicall order, 4-11
list, 4-12

keyboard select code, 2-14
knob, HP-HIL device, 16-46

L
label direction, setting, 10.-34
label origin, setting, 10.-35
label positions, 10.-35
LABEL statement, 10-12, 10-35
labeling graphics, 10.-12, 10.-30.
labels in programs, 1-3
LaserJet printer, dump device, 11-3
LDIR statement, 10.-34-
LEN function, 4-7
LET statement, 2-1, 6-2
LEX binary, 4-4, 4-11
lexical order, 4-11
LEXICAL ORDER IS statement, 4-4, 4-11
LGT function, 2-6
LIF directories, 6-6, 6-10.
limit functions, 2-8
LINE TYPE statement, 10.-18
linear flow, default sequence, 1-1
lines

colors, 10.-17
drawing, 10.-7
types, 10.-18

LINPUT statement, 6-2
LIST statement, 16-29
listeners, mulHple, 16-6
LOAD statement, 5-8
loading subprograms, 5-12
LOADSUB FROM command, 5-12, 5-13
LOADSUB statement, 5-12,14-61
Local Lockout mode, setting, 16-8
LOCAL LOCKOUT statement, 16-7, 16-8

Local mode
setting, 16-8, 16-9

local origin, 10-15, 10-19, 10-40
LOCAL statement, 16-7, 16-9
LOG function, 2-6
LOOP ... EXIT IF ... END LOOP structure,

1-12
LORG statement, 10-35
lowercase letters, converting strings to, 4-9
lowercase letters in variable names, 2-2
LPT1 device, 7-4, 9-11
luminosity, 10-47
LWC$ function, 4-9, 4-11

M
masks

interrupt enable, 16-11, 16-16
mass storage devices

default, 6-10
PC disk drives, 6-10

MASS STORAGE IS statement, 6-8
mass storage. See files
mass storage volume specifiers

catalogs of, 6-29
description, 6-10
for PC disk drives, 6-10

MAT binary, 2-5, 2-8, 3-1, 4-9
MAT keyword, 3-8, 3-17, 4-9
MAT SORT statement, 4-10
mathematical operations, 2-4
MAX function, 2-8
MAXREAL function, 2-5
MAXREAL value, 2-1
MERGE statement, 10-2
MIN function, 2-8
MINREAL function, 2-5
MINREAL value, 2-1
MOD operator, 2-15
MODULO operator, 2-15
mouse, HP-HIL device, 16-46
MOVE statement, 10-5, 10-8

msvs

N

catalogs of, 6-29
description, 6-10
for PC disk drives, 6-10

named buffers
assigning I/O paths to, 15-6
creating, 15-5
description, 15-5
variable names, 15-9

naming variables, 2-2
non-active controller, 16-13, 16-14
NOT operator, 2-15
null string, 4-2, 4-5, 4-6
NUM function, 4-7
number builder, 13-28, 13-34, 13-37, 13-38
numbers

converting bases, 2-13, 4-10
numeric arrays

accessing values, 3-7
arithmetic operations, 3-16
assigning values, 3-7, 6-4
boolean, 3-19
complex operations, 3-18
copying, 3-8
description, 3-1
dimensioning, 3-1
implicit dimensioning, 3-6
matrix operations, 3-17
passing, 3-11
printing, 3-10
rank, 3-9
redimensioning, 3-9, 3-15
relational operations, 3-19
scalar operations, 3-17
six dimensions maximum, 3-6
subarrays, 3-11
sum of elements, 3-19

numeric computation, 2-1
numeric data types, 2-1

Index 11

nume:ric expressions, strings in, 2-15
nume:ric format, standard, 13-2
nume:ric functions, 2-4
nume:ric values, 2-1

converting from strings, 4-7
converting to strings, 4-8

o
octal numbers

converting base, 2-13, 4-10
OFF CYCLE statement, 8-5
OFF DELAY statement, 8-5
OFF END statement, 6-28
OFF ERROR statement, 9-3
OFF HIL EXT statement, 16-43
OFF KBD statement, 16-45
OFF KEY statement, 16-45
OFF KNOB statement, 16-46
OFF TIME statement, 8-5
ON CDIAL statement, 14-12
ON CYCLE statement, 1-13,8-4
ON DELAY statement, 1-13,8-4
ON END statement, 1-13,6-28,14-12
ON EOR statement, 1-13, 15-17
ON EOT statement, 1-13, 15-12, 15-17
ON ERROR statement, 1-13,9-2,14-12
ON HIL EXT statement, 1-13, 16-43
ON INTR statement, 1-13, 14-12
ON KBD statement, 1-13, 16-45
ON KEY statement, 1-13, 5-11, 14-12, 16-45
ON F .• NOB statement, 1-13, 14-12, 16-46
ON SIGNAL statement, 1-13
ON sltatement, 1-9
ON TIME statement, 1-13, 8-4
ON TIMEOUT statement, 1-13,7-10,14-12,

14-28, 16-38
opera.nd array, 3-9
opera.tors, precedence, 2-15
OPTION BASE statement, 2-3, 3-2, 5-10
OPTIONAL keyword, 5-7
optional subprogram parameters, 5-7

12 Index

OR operator, 2-15
OUTPUT statement, 3··10, 6-24,13-1,15-11,

16-3,16-26,16-29, 16-35
OUTPUT USING statement, 13-10

p
PaintJet printer, color graphics dump, 11-2
PAIRS conversion, 14-38
parallel poll, 16-11, 16-19
parallel printers, 7-4
parameters

compared with common blocks, 5-8
subprograms, 5-5

parentheses, precedence, 2-15
parity

I/O paths, 14-40
serial I/O, 16-28

PARITY attribute, 14-40
parity bit

serial I/O, 16-24, 16-25
PASS CONTROL statement, 16-14
passing by reference, 5-6
passing by value, 5-6
passing control, 16-14
path names

assigning, 12-8
for data files, 6-11
for I/O paths, 6-10,12-8
for printer, 7-3
in common block, 6-12
purpose, 12-4
reassigning, 12-9
unassigning, 12-9

paths, with hierarchical directories, 6-10
paths, I/O. See I/O paths
PAUSE statement, 1-2
PC disk drives, accessing, 6-10
PDEV binary, 5-13, 5-15
PDIR statement, 10-19, 10-25
pen

colors, 10-44

control, 10-8, 10-15, 10-25, 10-38
position for polygons, 10-24
reading status, 10-8

pen force, setting, 11-5
pen numbers

colors, 10-17
default color map colors, 10-46
monochrome operation, 10-37
non-color mapped colors, 10--45
setting, 10-16, 10-17, 10-44

pen speed, setting, 11-4
PEN statement, 10-16, 10-17, 10-44, 10-45
PENUP statement, 10-8
peripherals, computer resources, 12-1
PI constant, 2-6
PIVOT statement, 10-40
PLOT statement, 10-15, 10-25, 10-38
PLOTTER IS device, 10-4, 11-Jl
PLOTTER IS statement, 11-1
plotters

computer resources, 12-1
limitations, 11-1
setting character set, 11-5
setting pen force, 11-5
setting pen speed, 11-4
specifying, 11-1

pointers, buffer, 15-8
polar coordinates, 2-11
POLYGON statement, 10-22
polygons

drawing, 10-22
edging, 10-24
filling, 10-24
pen position, 10-24
rotating, 10-25

POLYLINE statement, 10-24
POS function, 4-7
PPOLL CONFIGURE statement, 16-11
PPOLL function, 16-7, 16-12
PPOLL UNCONFIGURE statement, 16-12
precedence, among operators, 2-15
prerun, common blocks, 5-8

primary addresses, setting, 16-3
PRINT ALL key, 9-9
PRINT statement, 3-10, 7-1
PRINT TAB statement, 7-5
PRINT TABXY statement, 7-5
PRINT ALL IS device, 9-9, 9-11
PRINT ALL IS statement, 9-11
PRINTER IS device, 6-29
PRINTER IS statement, 6-29, 7-1
printer select code, 2-14
printers

changing, 7-1
character sets, 7-3
computer resources, 12-1
control characters, 7-4
default, 7-1
formatted printing, 7-4
printing, 7-1
printing a catalog, 6-29
printing displays, 11-2

printing, formatted, 7-4
priorities

changing, 14-17
errors, 9-2
for clock events, 8-7
hardware, 14-19
so~are, 14-14, 14-16

programs
break point in, 9-11
continuing execution, 9-12
debugging, 9-6
halting execution, 1-1
paused, 9-9
single-stepping, 9-8
structure and flow, 1-1
tracing execution, 9-9

PROUND function, 2-8
PRT function, 2-14, 7-3
Pulse-Mode handshake, 16-33

Index 13

R
RAI) statement, 2-6
radian mode, 2-12
radix specifier, 13-13, 13-39
random access, record size, 6-23
random input, from data files, 6-27
random numbers

function, 2-8
generating, 2-9
seeding, 2-9

random output, to data files, 6-25
RA1'iIDOMIZE statement, 2-9
RA1'ifK fimction, 2-6
rank of numeric array, 3-9
raster images, printing, 11-2
RATIO function, 10-4, 10-11
READ LOCATOR statement, 16-46, 16-47
READ statement, 3-8, 3-10, 6-2
REAL function, 2-11
real numbers

equality,2-16
range, 2-1

REAL statement, 2-3, 3-1
real values, converting to integer, 2-3
real variables

default type, 2-1
naming, 2-2

record size
data files, 6-8, 6-21, 6-23
ralildom access, 6-23

records, transferring, 15-15
RECORDS parameter, 15-14, 15-15
RECOVER keyword, 5-10, 5-11
RECTANGLE statement, 10-19
rectangles

drawing, 10-19
edging, 10-21
filling, 10-21
rotating, 10-19

rectangular coordinates, 2-11
recUJrsion, 5-16
REDIM statement, 3-2, 3-15

14 Index

redimensioning numeric arrays, 3-9, 3-15
registers

buffer type, 15-7
description, 14-1
interface, 12-4, 14-2
I/O path, 14-4

relational operators
strings, 4-4
with arrays, 3-19

relative plotting, 10-15, 10-39
relative positioners

HP-HIL device type, 16-42, 16-46
Remote mode, setting, 16-8
REMOTE statement, 16-7, 16-8
repeat factor specifier, 13-21, 13-47
REPEAT ... UNTIL structure, 1-10
repeating strings, 4-8
repetition in programs, 1-9
REQUEST statement, 16-19
RESET statement, 15-19
RESTORE statement, 6-5
result array, 3·9
RETURN attribute, 14-42
RETURN statement, 1-3, 5-3
REV$ function, 4-8
reversing strings, 4-8
RGB color model, 10-47
RND function, 2-8
ROTATE function, 2-7
rounding errors, 2-16
rounding functions, 2-8
RPLOT statement, 10-15, 10-39
RPT$ function, 4-8
RS-232-C interface. See serial interface
RUN command, 5-8

s
saturation, 10-47
scaling graphics, 10-9

anisotropic, 10-10
isotropic, 10-9

screen dump, printing, 11-2
screen. See display
secondary addresses, description, 16-6
sector size, files, 15-28
select codes

functions, 2-13
GPIO interface, 16-32
HP-IB interfaces, 16-3
in device selectors, 7-1, 7-2

SELECT ... END SELECT structure, 1-7
semicolon separator, 3-10, 7-5,13-3,13-4,

13-27
SEND statement, 16-7
separate mode

graphics mode, 10-2
not on all displays, 10-2

SEPARATE statement, 10-2
separator

comma, 7-4, 13-3
semicolon, 3-10, 7-5, 13-3, 13-4

separators
comma, 13-27
semicolon, 13-27

serial input, from data files, 6-26
serial interface

a standard, 12-3
baud rate, 16-28
buffering input, 16-30
character length, 16-28
data transfers, 16-29
default parameters, 16-27
description, 16-23
detecting errors, 16-25
frame format, 16-24, 16-28
handshaking, 16-30
parity, 16-25, 16-28
processing errors, 16-30
programming information, 16-23
resetting, 16-28
setting parameters, 16-27
stop bits, 16-28
transfers, 15-32

serial output, to data files, 6-24
serial poll, 16-19
service request (SRO) line, 16-22
service requests

device status, 16-12
enabling, 16-11, 16-17
from HP-IB interface, 16-19
multiple, 16-11
operation, 16-10
processing, 14-24, 16-11

SET PEN statement, 10-47
SET TIME statement, 8-3
SET TIMEDATE statement, 8-3, 8-4
SGN function, 2-5
Shared Resource Manager, 11-2
SHIFf function, 2-7
SHOW statement, 10-9
sign specifier, 13-13, 13-39
SIN function, 2-6
single-stepping programs, 9-8
SINH function, 2-7
SIZE function, 2-6
soft clip limits, 10-tO, 10-11, 10-36
softkeys

in subprograms, 5-11
interrupts, 16-45

software, defined, 12-1
SORT statement, 4-10
sorting characters, 4-11
Spanish lexical order, 4-11
special-character specifiers, 13-19
SPOLL function, 16-7, 16-12
spooler directories, SRM, 11-2
SORT function, 2-5
SRM directories, 6-6,11-2
start bit, serial I/O, 16-24
STATUS statement, 4-12,14-3,16-18,16-26
STEP function, 9-8
step functions, 2-16
STEP key, 9-8, 9-12
stepping through programs, 9-8
step-wise refinement, 14-59

Index 15

stop bits
serial I/O, 16-24, 16-28

STOP statement, 1-1
string arrays, 4-2

assigning strings, 4-9, 6-4
copying, 4-9
sorting, 4-10

string format, standard, 13-2
string specifier, 13-16, 13-41
string variables, naming, 2-2
strings

as I/O paths, 14-49
concatenating, 4-3
converting from numbers, 4-8
converting to numbers, 2-13, 4-7, 4-10
description, 4-1
entering, 13-32
entering data from, 14-53
evaluating expressions, 4-3
formatted input, 6-16
formatted output, 6-15
from converted numbers, 4-10
functions, 4-6, 4-8
in numeric expressions, 2-15
I/O resources, 12-5
lengths, 4-1, 4-2, 4-7
outputting data to, 14-49
quotes within, 4-1
reJational operations, 4-4
re:peating, 4-8
reversing, 4-8
sorting, 4-10
subscripts, 4-4
substring positions, 4-7
substrings, 4-4
trimming blanks, 4-9
uppercase and lowercase letters, 4-9

SUB statement, 5-1, 5-14
subarrays

copying, 3-11
specifiers, 3-12

SUBEND statement, 5-1, 5-16

16 Index

subprograms
calling from keyboard, 5-11
common blocks, 5-7
communicating between, 5-8
contexts, 5-1
deleting, 5··13
description, 5-1
differ from functions, 5-2
initializing variables, 5-11
inserting in programs, 5-14
invoking, 5-2, 5-4
libraries, 5-12
loading, 5-12
location, 5-1
merging, 5-15
naming, 5-2
nesting, 5-1, 5-11
optional parameters, 5-7
parameter lists, 5-5
passing arrays to, 3-11
recursion, 5-16
removing from programs, 5-15
retaining variables, 5-8
when to use, 5-2
with softkeys, 5-11

subscripts, for strings, 4-4
substrings, 4-·4, 4-7
SUM function, 2-6, 3-JL9
Swedish lexical order, 4-11
system controller

description, 16-4
HP-IB status register, 16-13

SYSTEM PRIORITY statement, 14-17
system sector, data files, 6-21

T
TAN functioIll, 2-6
TANH function, 2-7
termination conditions

input, 13-44, 13-45
termination specifier, 13-3, 13-20, 13-28, 13-44

termination specifiers, 13-45
terminator character, HPGL, 11-6
text

with graphics, 10-12, 10-30
ThinkJet printer, dump device, 11-3
tick marks, graphics, 10-12
time

branching at, 8-6
reading, 8-2
setting, 8-3

TIME function, 2-12, 8-3, 8-6
TIMES function, 8-2
time functions, 2-12
TIMEDATE function, 2-12, 8-2, 8-3
timeouts

description, 14-11
GPIO interface, 16-37
interfaces, 14-27
limitations, 14-27
setting up, 14-27

touchscreen, HP-HIL device, 16-47
TRACE ALL statement, 9-9
TRACE OFF statement, 9-12
TRACE PAUSE command, 9-11
tracing program execution, 9-9
TRACK. .. IS ON statement, 10-6
TRANS binary, 15-1, 16-1, 16-31
TRANSFER statement, 15-1, 15-9, 15-10,

15-16, 15-31
transfer types, 15-29
transfers

branching, 15-17
branching at end, 15-12
concurrent, 15-25
CONT, 15-12, 15-13
continuing indefinitely, 15-12
continuous non-overlapped, ~5-13
COUNT,15-14
DELIM,15-14
delimiter characters, 15-14
destinations, 15-3
DMA type, 15-29

END, 15-14, 15-15, 15-16
EOR, 15-16
fast handshake type, 15-29
formatting, 15-11
input, 15-2
interrupt type, 15-29, 15-30
multiple termination conditions, 15-15
non-overlapped, 15-13
of records, 15-15
operation, 15-1
output, 15-2
parameter~ 15-12
performance, 15-28, 15-29
purpose of, 15-1
RECORDS, 15-14, 15-15
restrictions, 15-30
sources, 15-3
specified number of bytes, 15-14
status, 15-12
suspended, 15-28
terminating, 15-12, 15-16, 15-18
types, 15-11, 15-29
WAIT, 15-13, 15-18

TRIGGER statement, 16-8, 16-9
trigonometric functions, 2-6
TRIM$ function, 4-9
trimming strings, 4-9

U
UART, 16-23
UDUs, 10-36
unified I/O, 14-43, 14-55
unnamed buffers

assigning I/O paths to, 15-6
description, 15-5

UPC$ function, 4-9, 4-11
uppercase letters, converting strings to, 4-9
uppercase letters in variable names, 2-2
user-defined functions

description, 5-1
differ from subprograms, 5-2

Index 17

invoking, 5-2, 5-3
numeric, 5-3
recursion, 5-16
string, 5-3
when to use, 5-2

User-Defined Units, 10-36

v
VAL function, 4-7
V Al..$ function, 4-8
variable naming, 2-2
variables

cbanging during execution, 9-7
declaring types, 2-3
store data, 6-2

viewport
de~scription, 10-10
setting, 10-11
uses GDUs, 10-11

VIEWPORT statement, 10-11, 10-37
volumes, mass storage, 6-6

w
WAIT FOR statement, 15-18
WAIT parameter, 15-13, 15-18
WHERE statement, 10-5, 10-8
WHl[LE ... END WHILE structure, 1-11
WINDOW statement, 10-10, 10-37
WORD attribute, 14-31, 14-33, 14-36

x
XY plane, graphics, 10-4

18 Index

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	01-001
	01-002
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	10-001
	10-002
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	12-001
	12-002
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	13-39
	13-40
	13-41
	13-42
	13-43
	13-44
	13-45
	13-46
	13-47
	13-48
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	14-41
	14-42
	14-43
	14-44
	14-45
	14-46
	14-47
	14-48
	14-49
	14-50
	14-51
	14-52
	14-53
	14-54
	14-55
	14-56
	14-57
	14-58
	14-59
	14-60
	14-61
	14-62
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	16-33
	16-34
	16-35
	16-36
	16-37
	16-38
	16-39
	16-40
	16-41
	16-42
	16-43
	16-44
	16-45
	16-46
	16-47
	16-48
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18

