
PA-RISC 2.0

ential

that is

another

ip and
 folks
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequ
damages in connection with furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
are reserved. No part of this document may be photocopied, reproduced, or translated to
language without the prior written consent of Hewlett-Packard Company.

Copyright © 1995 by HEWLETT-PACKARD COMPANY

Published by Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

Book Design: Suzanne Hayes

Acknowledgements

Special thanks to Martin Whittaker who was the impetus behind this book and provided leadersh
direction at every turn and to Dale Morris and Jim Hall who contributed key sections. Many other
at Hewlett-Packard provided critical information: among them Ruby Lee, and Jerry Huck.

Personal thanks go to the usual suspects: Sean, Kyle, Ambrose, Marcella.

d as a
forms.
ort for
chness,
puters

.

stems,
grown,
cations
ams of
ership

couple
tability
ring the

itecture
ures

e
changes
ication

izing
nging
s and

erative,
 upon

ents for
rs for
enty

em as a

n as
Foreword

“Everything should be made as simple as possible, but not simpler.”
A. Einstein

When the first PA-RISC systems were shipped in 1986, the architecture was clearly recognize
break with the past, with regular, hardware-inspired instructions rather than variable, interpretive
But its simple instructions were somewhat richer than other RISC designs, providing basic supp
operations on strings and other data types prevalent in commercial applications. This semantic ri
unusual in the RISC designs of the time, was a direct result of the breadth of markets for HP com
and the decision to optimize PA-RISC for the full range of technical and commercial applications

In the intervening years, PA-RISC has become the basis of a large family of computer sy
currently spanning a capacity range of over two orders of magnitude. As the product family has
the range of applications has also expanded geometrically. PA-RISC workstations now host appli
which were once the province of supercomputers. Database servers now supply realtime stre
compressed video and audio. And PA-RISC has evolved to meet the demands for lead
performance in these emerging application domains.

The purpose of a processor architecture is to define a stable interface which can efficiently
multiple generations of software investment to successive generations of hardware technology. S
and efficiency are the goals, and the range of software and hardware technologies expected du
architecture’s life determine the scope for which the goals must be achieved.

The desired stability does not rule out change, but it does require that any evolution of the arch
contain the prior definition as a subset. This is the principle of “forward compatibility” which ens
that all prior software will continue to work on all later machinesa straightforward idea whose valu
to users is obvious. Over the last decade, PA-RISC has evolved in response both to significant
in the nature of customer applications and to rapid advances in technology, particularly chip fabr
technology and compiler technology.

Efficiency also has evident value to users, but there is no simple recipe for achieving it. Optim
architectural efficiency is a complex search in a multidimensional space, involving disciplines ra
from device physics and circuit design at the lower levels of abstraction, to compiler optimization
application structure at the upper levels.

Because of the inherent complexity of the problem, the design of processor architecture is an it
heuristic process which depends upon methodical comparison of alternatives (“hill climbing”) and
creative flashes of insight (“peak jumping”), guided by engineering judgement and good taste.

To design an efficient processor architecture, then, one needs excellent tools and measurem
accurate comparisons when “hill climbing,” and the most creative and experienced designe
superior “peak jumping.” At HP, this need is met within a cross-functional team of about tw
designers, each with depth in one or more technologies, all guided by a broad vision of the syst
whole.

Since the inception of PA-RISC, nearly fifty people have contributed directly to its definitio
iiiPA-RISC 2.0 Architecture

in their
esigned
liberated
. It was
t which
members of the architecture team. With the generous support of colleagues and managers
respective organizations, they have made careful measurements of application workloads, d
ingenious tools and methods to analyze data, created novel semantics and encodings, de
intently to hone the best cost-performance design, and crafted clear, unambiguous descriptions
my great privilege and pleasure to lead this team of talented designers, and it is their achievemen
is documented in this book.

 Michael Mahon
Principal Architect

Hewlett-Packard
August, 1995
iv PA-RISC 2.0 Architecture

. . xv
 . . . xv
 . xvii
. . xvii

 . .1-1
. . .1-2
 . .1-2
. . .1-6

 .
 .

. . .2-2
. . .2-7
 . .2

.2-19
.
. . .3-1

 . . .3-6
. . .3-9

 .
 . .5-4

Contents

Figures. ix
Tables . xi
Preface. xv

Compatibility with PA-RISC 1 .
PA-RISC 2.0 Enhancements .
How This Book is Organized .
Conventions Used in This Book .
Instruction Notations .xviii

1 Overview. .1-1
Traditional RISC Characteristics of PA-RISC .
PA-RISC - The Genius is in the Details .
A Critical Calculus: Instruction Pathlength. .
Multimedia Support: The Precision Process Illustrated .
Integrated CPU .1-7
Extensibility and Longevity. ..1-9
System Organization .1-10

2 Processing Resources .2-1
Non-Privileged Software-Accessible Registers.
Privileged Software-Accessible Registers.
Unused Registers and Bits .-17
Data Types. .2-18
Byte Ordering (Big Endian/Little Endian) .

3 Addressing and Access Control .3-1
Physical and Absolute Addressing .
Virtual Addressing. .3-5
Pointers and Address Specification .
Address Resolution and the TLB.
Access Control. .3-11
Page Table Structure .. .3-15
Caches .3-16

4 Control Flow .4-1
Branching. .4-1
Nullification. .4-7
Instruction Execution. .4-7
Instruction Pipelining. .4-9

5 Interruptions .5-1
Interrupt Classes .5-1
Interruption Handling .5-2
Instruction Recoverability .5-3
Masking and Nesting of Interruptions .
Interruption Priorities. .5-4
Return from Interruption .. .5-4
vPA-RISC 2.0 Architecture

 .

 .
.
 . . 6-6
 . 6-12

 . 6-

 . 6-23
 . 6-24

.

 .

. . . 8
 . 8-

.
. . 10-
 . 10-1
 . .
 . 11-1
 . 11-1

. . .C-1
. . .C-3

D-1

. D-8
 . D-
 .

 . . F-3

 . . F
. . F-1
Interruption Descriptions . 5-5
6 Instruction Set Overview . 6-1

Computation Instructions .. 6-1
Multimedia Instructions . . 6-3
Memory Reference Instructions .
Long Immediate Instructions .
Branch Instructions . 6-13
System Control Instructions .17
Assist Instructions. 6-19
Conditions and Control Flow .
Additional Notes on the Instruction Set .

7 Instruction Descriptions . 7-1
8 Floating-point Coprocessor . 8-1

The IEEE Standard . 8-1
The Instruction Set . 8-1
Coprocessor Registers. .. . 8-2
Data Registers . 8-5
Data Formats. 8-6
Floating-Point Status Register . -8
Floating-Point Instruction Set .11

9 Floating-Point Instruction Set . 9-1
10 Floating-Point Exceptions . 10-1

Exception Registers . . 10-1
Interruptions and Exceptions . 4
Saving and Restoring State .3

11 Performance Monitor Coprocessor .11-1
Performance Monitor Instructions .
Performance Monitor Interruptions .
Monitor Units . 11-2

A Glossary . A-1
B Instruction Formats .B-1
C Operation Codes. .C-1

Major Opcode Assignments .
Opcode Extension Assignments .

D Conditions . D-1
Arithmetic/Logical Conditions .
Unit Conditions. D-7
Shift/Extract/Deposit Conditions .
Branch On Bit Conditions. .9

E Instruction Notation Control Structures. .E-1
F TLB and Cache Control . F-1

TLB Control . F-1
TLB Operation Requirements. .
Address Aliasing. F-5
Cache Move-in Restrictions .-7
Cache Coherence with I/O . 1
vi PA-RISC 2.0 Architecture

. F-12

. . G-1
 .
 . . G
 . G-

 . H-1
. . H-9

. .
. . . I-2
 . .
.

 . .
. .

 . . J-1
 . . .
Cache and TLB Coherence in Multiprocessor Systems .
G Memory Ordering Model . G-1

Atomicity of Storage Accesses .
Ordering of References .. G-1
Completion of Accesses .-6
Formal Memory Model .7

H Address Formation Details . H-1
Memory Reference Instruction Address Formation .
Absolute Address Formation .

I Programming Notes . I-1
Privilege Level Changes . . I-1
Testing the Current State of the PSW W-Bit.
Procedure Call and Return. .. I-3
Static Branch Prediction . I-3
Return from Interruption .. . I-5
Trap Handlers . I-5
Reserved-op Exception . I-6
Endian Byte Swapping . I-6

J PA-RISC 2 Instruction Completers
 & Pseudo-Ops . J-1

PA-RISC 2 Instruction Completers .
Pseudo-Op Mnemonics .J-3

Index . IN-1
viiPA-RISC 2.0 Architecture

viii PA-RISC 2.0 Architecture

.
.

. . 2-1

 . . 2-4
. . 2-
.
 . 2-6
 .

 .2-14
 .2-14
 .2-14
. .2
 .2-16
 .2-16

. . 3-2
. . 3-3

 . 3-4
 . 3-5
. . 3-6
.

.

 . 4-2
. . 4-4
 . 4-7
.
 . 6-9
.
 .6-17
 .
 . 7-1
 . 8
Figures

Figure 1-1. PA-RISC Datapath . . 1-6
Figure 1-2. Processor Organization .1-11
Figure 1-3. Memory Hierarchy . .1-12
Figure 2-1. Software Accessible Registers .
Figure 2-2. General Registers . 2-3
Figure 2-3. Example Space Register Usage Convention
Figure 2-4. Instruction Address Queues . 4
Figure 2-5. Branch Target Stack. . 2-6
Figure 2-6. Branch Nomination Register .
Figure 2-7. Processor Status Word . . 2-7
Figure 2-8. Control Registers .2-11
Figure 2-9. Interruption Instruction Address Queues with Wide Virtual Addresses
Figure 2-10. Interruption Instruction Address Queues with Narrow Virtual Addresses
Figure 2-11. Interruption Instruction Address Queues with Absolute Addresses
Figure 2-12. Reforming Space Identifiers . -15
Figure 2-13. Interruption Space and Offset Registers with Virtual Address
Figure 2-14. Interruption Space and Offset Registers with Absolute Address
Figure 2-15. Big Endian Loads . .2-20
Figure 2-16. Little Endian Loads . .2-20
Figure 3-1. 64-bit Physical Address Space .
Figure 3-2. n-bit Physical Address Space Implementation
Figure 3-3. 62-bit Absolute Pointer . . 3-3
Figure 3-4. 32-bit Absolute Pointer . . 3-4
Figure 3-5. Physical Memory Addressing and Storage Units
Figure 3-6. Global Virtual Address Formation .
Figure 3-7. Structure of the Virtual Address Space .
Figure 3-8. Space Identifier Selection . 3-8
Figure 3-9. TLB Fields .3-10
Figure 3-10. Protection ID .3-12
Figure 3-11. Access Rights Field . .3-13
Figure 3-12. Access Control Checks .3-15
Figure 3-13. Page Table Entry .3-16
Figure 4-1. Delayed Branching Illustrated .
Figure 4-2. Updating Instruction Address Queues .
Figure 4-3. Branch in the Delay slot of a Branch . .
Figure 4-4. Interruption Processing . . 4-8
Figure 6-1. Example Address Formation for Memory Reference Instructions
Figure 6-2. Immediate Instructions . .6-13
Figure 6-3. Classification of Branch Instructions . .
Figure 6-4. System Operations . .6-19
Figure 7-1. Instruction Description Example .
Figure 8-1. Single-word Data Format . .-5
ixPA-RISC 2.0 Architecture

. . 8-
 . . 8
 .

 . . 8
. 8-14
 . 8-18
8-19

. 10-2
10-13

. .C-3

. .C-5
 .C-7
. .C-9
C-11

. C-12
C-13

. C-14
C-16

. C-17
 . C-18
C-19

. C-20

. C-22

. C-24

. C-25
 . H
. H-3

H-3
. H-5
. H-7
. H-9
.
. H-11
.
. H-12
 . H-13
Figure 8-2. Double-word Data Format . 5
Figure 8-3. Quad-word Data Format . -6
Figure 8-4. Floating-point Formats. . 8-6
Figure 8-5. Fixed-point Formats . . . 8-8
Figure 8-6. Floating-Point Status Register . -9
Figure 8-7. Single-operation Instruction Formats .
Figure 8-8. Fused-Operation Instruction Format .
Figure 8-9. Multiple-Operation Instruction Format .
Figure 10-1. Floating-Point Exception Register Format .
Figure 10-2. Exception Field Underflow Parameters .
Figure C-1. Format for System Control Instructions .
Figure C-2. Formats for Memory Management Instructions
Figure C-3. Format for Arithmetic/Logical Instructions .
Figure C-4. Formats for Indexed and Short Displacement Load/Store Instructions
Figure C-5. Format for Load/Store Doubleword Instructions
Figure C-6. Format for Load/Store Word Instructions .
Figure C-7. Format for Arithmetic Immediate Instructions
Figure C-8. Formats for Shift, Extract, and Deposit Instructions
Figure C-9. Formats for Multimedia Instructions .
Figure C-10. Formats for Unconditional Branch Instructions
Figure C-11. Formats for Coprocessor Load/Store Instructions
Figure C-12. Formats for Special Function Unit (SFU) Instructions
Figure C-13. Formats for Floating-Point Operations - Major Opcode 0C
Figure C-14. Formats for Floating-Point Operations - Major Opcode 0E
Figure C-15. Format for Floating-Point Fused-Operation Instructions
Figure C-16. Format for Performance Monitor Coprocessor Instructions
Figure H-1. Space Identifier Selection . -2
Figure H-2. Offset computation with long displacement .
Figure H-3. Global Virtual Address Formation. .
Figure H-4. Offset computation with short displacement
Figure H-5. Offset computation for Store Bytes and Store Doubleword Bytes
Figure H-6. Offset computation with indexed addressing
Figure H-7. 62-bit Absolute Pointer . H-10
Figure H-8. 62-bit Absolute Accesses when PSW W-bit is 1
Figure H-9. 32-bit Absolute Pointer . H-11
Figure H-10. 32-bit Absolute Accesses when PSW W-bit is 0
Figure H-11. Physical Address Space Mapping - An Example
x PA-RISC 2.0 Architecture

 . .

. .3-
 . 6-2
 . 6-4
 . . 6
. . 6-5
 . 6-6
 . 6-8
 .6-10
 .6-10
 .6-11
.
 .6-12
 .6-14
 .6-18
 .6-
 .7-37
 .7-47
 .7-51
 .7-57
 .7-61
 .7-9
. 7-131
 . 8-3
 . 8-4
. . 8-7
 . 8-9
.
.8-11
 .8-11
 .8
. .
 .8-15
 .8-16
 .8-16
 .8-18
. .8-
 .8-1
 .8-20
 .8-21
. .10-3
Tables

Table 2-1. Processor Status Word . 2-8
Table 3-1. Page Sizes . .3-11
Table 3-2. Access Rights Interpretation . 14
Table 6-1. Computation Instruction Summary . .
Table 6-2. Multimedia Instruction Summary. .
Table 6-3. Signed Saturation Results . -5
Table 6-4. Unsigned Saturation Results .
Table 6-5. Memory Reference Instruction Summary. .
Table 6-6. Address Formation Options for Memory Reference Instructions.
Table 6-7. Load Instruction Cache Control Hints .
Table 6-8. Store Instruction Cache Control Hints .
Table 6-9. Load And Clear Word Instruction Cache Control Hints
Table 6-10. Data Prefetch Instructions. .6-11
Table 6-11. Immediate Instruction Summary .
Table 6-12. Branch Instruction Summary .
Table 6-13. System Control Instruction Summary. .
Table 6-14. Assist Instruction Summary. .19
Table 7-1. Deposit Instruction Completers . .
Table 7-2. Extract Instruction Completers .
Table 7-3. System Control Instruction Completers. .
Table 7-4. Halfword Arithmetic Completers .
Table 7-5. Halfword Parallel Shift Right Completers .
Table 7-6. Mix Instruction Completers . 2
Table 7-7. Store Bytes Instruction Completers .
Table 8-1. Single-Word Floating-Point Registers .
Table 8-2. Double-Word Floating-Point Registers . .
Table 8-3. Floating-Point Format Parameters .
Table 8-4. Floating-Point Rounding Modes .
Table 8-5. IEEE Exceptions . .8-10
Table 8-6. Floating-Point Instruction Validity .
Table 8-7. Floating-Point Load and Store Instructions . .
Table 8-8. Floating-Point Operations. .-14
Table 8-9. Fixed-Point Operations . 8-15
Table 8-10. Single-Operation Instruction Format Completers.
Table 8-11. Conversion Instruction Format Completers. .
Table 8-12. Floating-Point Compare Instruction Conditions
Table 8-13. Floating-Point Test Instruction Conditions .
Table 8-14. Fused-Operation Instructions . 19
Table 8-15. Multiple-Operation Instructions. . 9
Table 8-16. Multiple-Operation Instruction Format Completers
Table 8-17. Single-Precision Operand Specifier Use in Multi-Operation Instructions
Table 10-1. Floating-Point Exception Codes .
xiPA-RISC 2.0 Architecture

 .
 . 10-7
. 10-9
. 10-9
10-10
10-11
10-12

 . 11-1
. .B-7
 . .C-2
 . .C
. .C-5
. .C-6
 .C-7
 . C-10
. C-11
. C-12
C-13

. C-15
C-15

. C

. C-17
 . C-18
. C-19
. C-20
. C-21
C-21

. C-21

. C-22
. C-23
C-23

. C-23

. C-23
. C-24
 . C-25

D-1

. D-4
D-4
D-5
D-5
D-6
D-6
D-7
D-7
D-8
Table 10-2. Delayed Trap Results .10-6
Table 10-3. Non-trapped Exception Results .
Table 10-4. Overflow Results Causing Unimplemented Exception
Table 10-5. Underflow Results Causing Unimplemented Exception
Table 10-6. Integer Results Causing Invalid Exception .
Table 10-7. Results Causing Overflow Exception .
Table 10-8. Results Causing Tininess .
Table 11-1. Performance Monitor Operations .
Table B-1. Field Names for Instruction Formats .
Table C-1. Major Opcode Assignments .
Table C-2. System Control Instructions . -3
Table C-3. Instruction Memory Management Instructions
Table C-4. Data Memory Management Instructions.
Table C-5. Arithmetic/Logical Instructions .
Table C-6. Indexed and Short Displacement Load/Store Instructions.
Table C-7. Load/Store Doubleword Instructions .
Table C-8. Load/Store Word Instructions .
Table C-9. Arithmetic Immediate Instructions .
Table C-10. Fixed Shift/Extract/Deposit Instructions.
Table C-11. Variable Shift/Extract/Deposit Instructions .
Table C-12. Multimedia Instructions . -16
Table C-13. Unconditional Branch Instructions .
Table C-14. Coprocessor Load and Store Instructions .
Table C-15. Special Function Unit (SFU) Instructions .
Table C-16. Floating-Point Class Zero - Major Opcode 0C Instructions
Table C-17. Floating-Point Class One - Major Opcode 0C Instructions
Table C-18. Floating-Point Class Two - Major Opcode 0C Instructions
Table C-19. Floating-Point Class Three - Major Opcode 0C Instructions
Table C-20. Floating-Point Class Zero - Major Opcode 0E Instructions
Table C-21. Floating-Point Class One - Major Opcode 0E Instructions
Table C-22. Floating-Point Class Two - Major Opcode 0E Instructions
Table C-23. Floating-Point Class Three - Major Opcode 0E Instructions
Table C-24. Fixed-Point Class Three - Major Opcode 0E Instructions.
Table C-25. Floating-Point Fused-Operation Instructions
Table C-26. Performance Monitor Coprocessor Instructions
Table D-1. Arithmetic/Logical Operation Conditions . .
Table D-2. Overflow Results. . D-2
Table D-3. Compare/Subtract Instruction Word Conditions.
Table D-4. Compare/Subtract Instruction Doubleword Conditions
Table D-5. Compare Immediate and Branch Instruction Doubleword Conditions
Table D-6. Add Instruction Word Conditions . .
Table D-7. Add Instruction Doubleword Conditions .
Table D-8. Add and Branch Instruction Conditions when PSW W-bit is 1
Table D-9. Logical Instruction Word Conditions .
Table D-10. Logical Instruction Doubleword Conditions. .
Table D-11. Unit Instruction Word Conditions . .
xii PA-RISC 2.0 Architecture

 . D-8
. D-9
. D-9
 . D-9
 . E-1
. . E-
 . H-4
 . H-6
 . H-8
 . J-1
. . J-3
Table D-12. Unit Instruction Doubleword Conditions .
Table D-13. Shift/Extract/Deposit Word Instruction Conditions.
Table D-14. Shift/Extract/Deposit Doubleword Instruction Conditions
Table D-15. Branch On Bit Instruction Conditions .
Table E-1. Long Calculation Functions. .
Table E-2. Miscellaneous Constructs . 2
Table H-1. Short Displacement Load and Store Instruction Completers
Table H-2. Store Bytes Instruction Completers . .
Table H-3. Indexed Instruction Completers. .
Table J-1. Summary of PA 2.0 Instruction Completers .
Table J-2. 1.x versus 2.0 Mnemonics .
xiiiPA-RISC 2.0 Architecture

xiv PA-RISC 2.0 Architecture

nterim
e most
 PA-
r than 4
ase the

r PA-
r PA-

cation.

ssors

 data,
ate high
pact on
rovide

. In this
path to

plest
4GB).
32 bits
of two,
full 64-
and the

s, and
s, it was
tandard
Preface

Hewlett-Packard’s PA-RISC architecture was first introduced in 1986. Although there have been i
improvements in the intervening years, the PA-RISC 2.0 architecture described in this book is th
significant step in the evolution of the PA-RISC architecture. While the primary motivation for
RISC 2.0 was to add support for 64-bit integers, 64-bit virtual address space offsets, and greate
GB of physical memory, many other more subtle enhancements have been added to incre
performance and functionality of the architecture.

Compatibility with PA-RISC 1

From an unprivileged software perspective, PA-RISC 2.0 is forward compatible with the earlie
RISC 1.0 and PA-RISC 1.1 architectures – all unprivileged software written to the PA-RISC 1.0 o
RISC 1.1 specifications will run unchanged on processors conforming to the PA-RISC 2.0 specifi

However, unprivileged software written to the PA-RISC 2.0 specification will not run on proce
conforming to the PA-RISC 1.0 or PA-RISC 1.1 specifications.

PA-RISC 2.0 Enhancements

PA-RISC 2.0 contains 64-bit extensions, instructions to accelerate processing of multimedia
features to reduce cache miss and branch penalties, and a number of other changes to facilit
performance implementations. The 64-bit extensions have the highest profile and the greatest im
the programming model for both applications and system programs. The paragraphs that follow p
thumbnail sketches of some of the more significant features of PA-RISC 2.0.

64-bit Extensions

PA-RISC has always supported a style of 64-bit addressing known as “segmented” addressing
style, many of the benefits of 64-bit addressing were obtained without requiring the integer data
be larger than 32 bits. While this approach was cost-effective, it did not easily provide the sim
programming model for single data objects (mapped files or arrays) larger than 4 billion bytes (
Support of such objects calls for larger-than-32-bit “flat” addressing, that is, pointers longer than
which can be the subject of larger-than-32-bit indexing operations. Since nature prefers powers
the next step for an integer data path width greater than 32 bits is 64 bits. PA-RISC 2.0 provides
bit support with 64-bit registers and data paths. Most operations use 64-bit data operands
architecture provides a flat 64-bit virtual address space.

Multimedia Extensions

Since multimedia capabilities are rapidly becoming universal in desktop and notebook machine
since general purpose processors are becoming faster than specialized digital signal processor
seen as critical that PA-RISC 2.0 support these multimedia data manipulation operations as a s
feature, thus eliminating the need for external hardware.
xvPA-RISC 2.0 Architecture

of PA-
ns are
r data

ipelined
f memory
data and
s and a
m the

w (or
urprise”
tching

ranch
carded.
e more

 needs
predict

isting
g code
 on all
hereby
lar

-RISC 1
cteristic

neously
of loads
s “weak
rongly
ust be
PA-RISC 2.0 contains a number of features which extend the arithmetic and logical capabilities
RISC to support parallel operations on multiple 16-bit subunits of a 64-bit word. These operatio
especially useful for manipulating video data, color pixels, and audio samples, particularly fo
compression and decompression.

Cache Prefetching

Because processor clock rates are increasing faster than main memory speeds, modern p
processors become more and more dependent upon caches to reduce the average latency o
accesses. However, caches are effective only to the extent that they are able to anticipate the
instructions that are required by the processor. Unanticipated surprises result in a cache mis
consequent processor stall while waiting for the required data or instruction to be obtained fro
much slower main memory.

The key to reducing such effects is to allow optimizing compilers to communicate what they kno
suspect) about a program's future behavior far enough in advance to eliminate or reduce the “s
penalties. PA-RISC 2.0 integrates a mechanism that supports encoding of cache prefe
opportunities in the instruction stream to permit significant reduction of these penalties.

Branch Prediction

A “surprise” also occurs when a conditional branch is mispredicted. In this case, even if the b
target is already in the cache, the falsely predicted instructions already in the pipeline must be dis
In a typical high-speed superscalar processor, this might result in a lost opportunity to execut
than a dozen instructions. This is known as the mispredicted branch penalty.

PA-RISC 2.0 contains several features that help compilers signal future data and likely instruction
to the hardware. An implementation may use this information to anticipate data needs or to
branches more successfully, thus avoiding the penalties associated with surprises.

Some of these signals are in the nature of “hints” which are encoded in “don't care” bits of ex
instructions. These hints are examples of retroactive additions to PA-RISC 1.1, since all existin
will run on newer machines, and newly annotated code will run correctly (but without advantage)
existing machines. The benefit of making such retroactive changes is that compilers are t
permitted to implement the anticipatory hints at will, without “synchronizing” to any particu
hardware release.

Memory Ordering

When cache misses cannot be avoided, it is important to reduce the resultant latencies. The PA
architecture specified that all loads and stores are observed to be performed “in order,” a chara
known as “strong ordering.”

Future processors are expected to support multiple outstanding cache misses while simulta
performing loads and stores to lines already in the cache. In most cases this effective reordering
and stores causes no inconsistency, and permits faster execution. The latter model is known a
ordering,” and it is intended to become the default model in future machines. Of course, st
ordered variants of loads and stores must be defined to handle contexts in which ordering m
preserved – mainly related to synchronization among processors or with I/O activities.
xvi PA-RISC 2.0 Architecture

 model
tageous.
 similar
 can be
such a
 in PA-

asing

tegories
applica-
 and the
n them-
ogram-
he
at have

dices:
ight

hasize,

ls. For

ple:
Coherent I/O

As the popularity and pervasiveness of multiprocessor systems increase, the traditional PA-RISC
of I/O transfers to and from memory without cache coherence checks has become less advan
Multiprocessor systems require that processors support cache coherence protocols. By adding
support to the I/O subsystem, the need to flush caches before and/or after each I/O transfer
eliminated. As disk and network bandwidths increase, there is increasing motivation to move to
cache coherent I/O model. The incremental impact on the processor is small, and is supported
RISC 2.0.

How This Book is Organized

The audience for this book might be divided into the following broad categories (listed in decre
order of probable size – though, one hastens to add, not in any presumed order of importance):

• application programmers

• operating system programmers

• compiler programmers

• hardware/system designers.

The book has been organized to make information easily accessible to each of these audience ca
based on the assumption that each category requires an additional level of detail. For example,
tion programmers are primarily concerned with such things as data types, addressing capabilities,
instruction set. Operating system programmers need all of that information and also must concer
selves with such things as page table structures and cache operations, topics that application pr
mers do not usually need to worry about. Accordingly, chapters are generally structured so that t
information that is of interest to the broadest audience is presented at the beginning, and details th
a more limited audience come later. Similarly, the book contains a rather large number of appen
they are used to provide specialized information which, if included in the main body of the book, m
add unneeded complexity to topics that are otherwise of broad interest.

Conventions Used in This Book

Several typographical and notation conventions are used throughout this book to simplify, emp
and standardize presentation of information.

Fonts

In this book, fonts are used as follows:

Italic is used for instruction fields and arguments. For example: “The completer,compte,
encoded in theu andm fields of the instruction,...”.

Italic is also used for references to other parts of this and other books or manua
example: “As described inChapter 4, Flow Control and...“.

Bold is used for emphasis and the first time a word is defined. For exam
xviiPA-RISC 2.0 Architecture

or less)
n the

: “The

ddresses
 with
lent to

s the C

er of

r all the

 and

ory,
ntegers

 the
 5. If

ber of a
GR[1]”
“Implementations provide seven registers called shadow registers ...“.

UPPER CASE is used for instruction names, instruction mnemonics, short (three characters
register and register field names, and acronyms. For example: “The PL field i
IIAOQ register ...“.

Underbar (_) characters join words in register, variable, and function names. For example
boolean variable cond_satisfied in the Operation section ...“.

Numbers

The standard notation in this book for addresses and data is hexadecimal (base 16). Memory a
and fields within instructions are written in hexadecimal. Where numbers could be confused
decimal notation, hexadecimal numbers are preceded with 0x. For example, 0x2C is equiva
decimal 44.

Instruction Notations

Instruction operation is described in a C-like algorithmic language. This language is the same a
programming language with a few exceptions. These are:

• The characters “{}” are used to denote bit fields.

• The assignment operator used is “←” instead of “=”.

• The functions “cat” (concatenation), and “xor” (logical exclusive OR) take a variable numb
arguments, for which there is no provision in C.

• The switch statement usage is improper because we do not use constant expressions fo
cases.

• The keyword “parallel” may appear before loop control statements such as “for” and “while”
indicates that the loop iterations are independent and may execute in parallel.

Bit Ranges

A range of bits within a larger unit, is denoted by “unit{range}”, where unit is the notation for mem
a register, a temporary, or a constant; range is a single integer to denote one bit, or two i
separated by “..” to denote a range of bits.

For example, “GR[1]{0}” denotes the leftmost bit of general register 1, “CR[24]{59..63}” denotes
rightmost five bits of control register 24, and “5{0..6}” denotes a 7-bit field containing the number
m > n, then {m..n} denotes the null range.

Registers

In general, a register name consists of two or three uppercase letters. The name of a mem
register array consists of a register name followed by an index in square brackets. For example, “
denotes general register 1.

The named registers and register arrays are:
xviii PA-RISC 2.0 Architecture

” and
gister
 by the
W[C/

equires
ational
h of the
 first

he

ibed in
The Processor Status Word and the Interruption Processor Status Word, denoted by “PSW
“IPSW”, are treated as a series of 1-bit and multiple-bit fields. A field of either is denoted by the re
name followed by a field name in square brackets, and bit ranges within such fields are denoted
usual notation. For example, PSW[C/B] denotes the 16-bit carry/borrow field of the PSW and PS
B]{0} denotes bit 0 of that field.

Temporaries

A temporary name comprises three or more lowercase letters and denotes a quantity which r
naming, either for clarity, or because of limitations imposed by the sequential nature of the oper
notation. It may or may not represent an actual processing resource in the hardware. The lengt
quantity denoted by a temporary is implicitly determined and is equal to that of the quantity
assigned to it in an operational description.

Operators

The operators used and their meanings are as follows:

All operators are binary, except that “∼” is unary and “–” is both binary and unary, depending on t
context.

Control Structures and Functions

The control structures used in the instruction notation are relatively standard and are descr
Appendix E, “Instruction Notation Control Structures”.

Register Range Description

GR[t] t = 0..31 General registers
SHR[t] t = 0..6 Shadow registers
SR[t] t = 0..7 Space registers
CR[t] t = 0, 8..31 Control registers
CPR[uid][t] t = 0..31 Coprocessor “uid” registers
FPR[t] t = 0..31 Floating-point coprocessor registers

← assignment | bitwise or
+ addition == equal to
– subtraction < less than
* multiplication > greater than
~ bitwise complement != not equal to
&& logical and <= less than or equal to
& bitwise and >= greater than or equal to
|| logical or
xixPA-RISC 2.0 Architecture

xx PA-RISC 2.0 Architecture

tion Set
re and
rsally

t”- are
hod of
general
es such
rtainly

ription
be the
on the

t RISC

speed
hines

 the
of the

t, long

are no
emory

d the

et for
n one
 assist
1 Overview

In the mid 1980s, there was much heated discussion on the subject of the RISC (Reduced Instruc
Computer) versus CISC (Complex Instruction Set Computer) approach to computer architectu
design. Those arguments have mostly been put to rest and the viability of RISC is unive
acknowledged. Now, the argument is usually RISC versus RISC and often, “who is RISC-iest?”

During these more recent arguments, the first three letters of RISC - “Reduced Instruction Se
sometimes given undo emphasis when evaluating architectures. This rather simplistic met
evaluating an architecture (how many different instructions does a machine support) does a
disservice to the concept of RISC and can especially distort the value of mature RISC architectur
as PA-RISC. Although it has not yet caught on as a buzzword in the way that RISC has, it can ce
be argued that the term “Precision Architecture” - as in PA-RISC - is actually a much better desc
of what the design technique known as RISC is all about. This overview chapter will briefly descri
traditional RISC characteristics that are shared by PA-RISC and then provide some detail
differences between the precision PA-RISC approach and other RISC architectures.

Traditional RISC Characteristics of PA-RISC

There are number of specific characteristics that have come to be associated with mos
architectures. PA-RISC supports the following traditional RISC features:

• Direct hardware implementation of instruction set — The instruction set can be hardwired to
instruction execution. No microcode is needed for single cycle execution. Conventional mac
require several cycles to perform even simple instructions.

• Fixed instruction size — All instructions are one word (32-bits) in length. This simplifies
instruction fetch mechanism since the location of instruction boundaries is not a function
instruction type.

• Small number of addressing modes — The instruction set uses only short displacemen
displacement, and indexed modes to access memory.

• Reduced memory access — Only load and store instructions access memory. There
computational instructions that access memory; load/store instructions operate between m
and a register. This simplifies control hardware and minimizes the machine cycle time.

• Ease of pipelining — The instructions are designed to be easily divisible into parts. This an
fixed size of the instructions allow the instructions to be easily pipelined.

• Optimizing compilers — The PA-RISC instruction set is designed to be an excellent targ
optimizing compilers and is optimized for simple, frequently used instructions that execute i
CPU cycle. Implementation of more complex functions is assigned to system software or to
processors such as the floating-point coprocessor.

• A floating-point coprocessor for IEEE floating-point operations.
1-1PA-RISC 2.0 Architecture Overview

 other
tion of
ence of
rations

lly, in
nt and
e about
 between

allow
of one
ns than
impler

e task as
f RISC

ing
uent
. These
ime or

in two
n reduce
ograms
use of
PA-RISC - The Genius is in the Details

There is no single aspect of PA-RISC that can be pointed to as making it radically different from
RISC architectures. However, there are a myriad of details that combine to enable implementa
PA-RISC machines that are significantly more efficient than competing RISC machines. The ess
the “precision” approach is that the architecture should be designed precisely to support the ope
of applications that will run on a given machine in the most efficient possible manner. Additiona
order to keep pace with evolving demands, that architecture must also be simple to impleme
manufacture. Although it could be argued that these same “essential” statements could be mad
other architectures, there are three general categories of features that define the key differences
PA-RISC and other RISC architectures:

• Pathlength reduction features

• Integrated CPU features

• Extensibility and longevity features

The sections that follow will provide details for each of these feature categories.

A Critical Calculus: Instruction Pathlength

All RISC architectures strive to enhance performance by including only those features that
simple, pipelined implementations with very short cycle times and an instruction execution rate
per CPU cycle. However, since RISC machines provide a simpler and less varied set of instructio
CISC machines, they are often criticized for instruction pathlength expansion: since fewer and s
instructions are supported, more of these instructions must be executed to accomplish the sam
compared to a CISC machine. This effect mitigates some of the performance advantages o
machines and can also increase memory requirements and, therefore, system costs.

Most RISC architectures, including PA-RISC, combat this valid criticism by using optimiz
compilers. PA-RISC goes further, however, by providing efficient instruction-level parallelism: freq
operations are combined into single instructions and sub-word data are operated on in parallel
techniques enable PA-RISC to reduce instruction pathlength without impacting either the cycle t
the cycles-per-instruction goals of RISC architectures.

Reducing the number of instructions required to perform a given function benefits applications
ways. First, less code space is required which reduces memory requirements and therefore ca
the hardware cost of complete systems. Second, reducing the number of instructions in pr
provides higher performance or lets the system run at a lower frequency, thus permitting the
cheaper components.

PA-RISC achieves reductions in instruction pathlength in four different areas:

• Memory accessing instructions

• Functional operation instructions

• Instruction sequencing techniques

• Simple hardware requirements
1-2 Overview PA-RISC 2.0 Architecture

emory
ons are
e the

uction
riefly
d.

se and
e
 a

o

ta
c-

ster.

 3

ce of

ire

-

st

ion
The sections that follow provide more details on these mechanisms.

Memory Accessing Features for Pathlength Reduction

Like most RISC architectures, PA-RISC is a load-store architecture. Therefore, making these m
access operations efficient is critical in reducing the instruction pathlength since these operati
performed so frequently. The following table highlights some of the features provided to optimiz
load-store operations.

Functional Operation Features for Pathlength Reduction

Some critical or frequently performed functional operations that often require more than one instr
are combined in PA-RISC, often by judicious use of existing hardware. The following table b
describes some of the functional operations where pathlength reduction features are implemente

Feature Discussion

Indexed Loads The most common addressing mode for loads adds the contents of a ba
index register to obtain the effective address. Most RISC machines requir
two instructions for this operation. PA-RISC implements indexed loads with
single instruction.

Scaled-Indexed
Loads

A single PA-RISC instruction provides index scaling into a data structure t
easily accommodate loading of bytes, halfwords, words, or doublewords -
operations typically requiring three instructions in other RISC machines.

Address Updates Operations that repetitively access every nth item in an array or other da
structure are quite common and in most RISC machines require two instru
tions - one to load the data and a second to update the base address regi
PA-RISC performs this operation with a single load or store instruction.

32-bit Static Dis-
placements

A 2-instruction sequence in PA-RISC permits specification of a full 32-bit
static displacement from a base address. This sequence typically requires
instructions in other RISC machines.

Feature Discussion

Shift and Add Integer multiplication by a constant can be accomplished using a sequen
a shift left instruction and an add instruction. PA-RISC combines these two
operations into a single shift-left-and-add instruction for the most common
cases - shift by 1, 2, or 3 bit positions. Other RISC machines typically requ
two instructions for the shift-and-add operation. Some RISC machines
(including PA-RISC) provide an integer multiply instruction, but this instruc
tion typically has a longer latency than shift-and-add.

Bit-Field
Instructions

Bit-field operations can be unwieldy and require multiple instructions in mo
RISC machines. PA-RISC provides a powerful set of bit-field instructions
such as the Extract and Deposit instructions which combine a shift operat
with a mask or merge operation. Additionally, a double shift instruction
which simplifies dealing with operands that cross word boundaries is pro-
vided and conditional branches based on a single bit are also supported.
1-3PA-RISC 2.0 Architecture Overview

th flow
act of
able

d
s.
-

s,
 do

fi-

-
a

l
es
 a
-
es
le
Conditional Instruction Sequencing Features for Pathlength Reduction

Control flow instructions are very common in most programs, and complicate the desired smoo
of instructions through the pipeline. PA-RISC provides a number of features that mitigate the imp
control flow instructions and result in requiring execution of fewer instructions. The following t
summarizes the pathlength reduction features provided for conditional instruction sequencing.

Floating-Point
Multiply and Fused
Add

Within the large class of applications that make significant use of floating-
point arithmetic, the most frequent floating-point operations are multiply an
add (or subtract) which require two separate instructions in most machine
PA-RISC combines these operations into a single multiply-add or multiply
subtract instruction.

Parallel Subword
Operations

Although applications frequently operate on a mix of 4-bit decimal number
8-bit characters, and 16-bit international characters, most RISC machines
not use their data path efficiently for these subword operations. PA-RISC,
however, samples carry out bits at 4-bit boundaries of the data path. This
allows parallel operation on subword data and can result in requiring signi
cantly fewer instructions to operate on characters and BCD numbers.

Multimedia Audio
and Video

Processing multimedia data requires arithmetic operations and flexible
manipulation of subword data. PA-RISC provides a compact set of instruc
tions with minimal architectural impact to support processing of multimedi
data in single instruction operations.

Feature Discussion

Combined
Operation and
Conditional Branch

A significant percentage of dynamic instruction paths consist of conditiona
branch instructions - many with short branch distances. Most RISC machin
require two instructions for this operation: a functional operation which sets
condition code and a conditional branch based on that code. PA-RISC pro
vides eight conditional branch instructions covering the most frequent cas
which combine the functional operation and the conditional branch in a sing
instruction.

Feature Discussion
1-4 Overview PA-RISC 2.0 Architecture

mented
 the
lexity.
length
d to the

”
e-
n

es
f
-

hat
of
 to
le,

lcu-

,

y
it
e

e

al-
s the
Simple Hardware Required to Enable Pathlength Reduction Features

Many of the pathlength reduction features described in the preceding paragraphs could be imple
in other RISC machines - by adding significant amounts of silicon and complexity. A key to
efficiency of PA-RISC is that these features are enabled with minimal additional hardware comp
The following table briefly describes the simple hardware used to implement some of the path
reduction features. In each case, the additional hardware requirements are minimal compare
improved performance that is obtained. Figure 1-1 illustrates the PA-RISC datapath.

Branches with
Conditional
Nullification

Many RISC machines require that the delay slot of a conditional branch
instruction be filled with a NOP instruction - needlessly increasing path-
length. In PA-RISC, each conditional branch instruction contains a “nullify
bit that selects whether the next instruction (in the delay slot) is always ex
cuted or conditionally executed. This approach ensures that delay slots ca
always be filled with useful operations.

Operation with Con-
ditional
Nullification

PA-RISC arithmetic, logical, and bit-manipulation instructions also include
the mechanism for conditionally nullifying the next instruction. The condi-
tion is evaluated in the same cycle as the data operation and, if true, caus
the following instruction to be skipped. This technique allows generation o
“in-line” conditional execution without the pipeline penalties normally asso
ciated with conditional branching, thus allowing optimal operation of the
instruction pipelining and prefetch mechanisms.

Operation and
Conditional Trap

High-level languages often require a range-checking capability to ensure t
addresses are within set boundaries. PA-RISC provides trapping variants
Add, Subtract, and Shift-and-Add instructions which cause a software trap
occur on overflow or a condition being met. These instructions allow simp
compact implementation of such operations as range-checking.

Feature Discussion

Scaled Indexing &
Shift-and-Add

Typical RISC processors require an adder unit to perform basic address ca
lations such as base+displacement for loads and stores. Both of these
enhanced features are accommodated in PA-RISC by simply widening the
multiplexor in front of one port to the ALU that performs a shift of one, two
or three bits.

Parallel Subword
Operations

These single-instruction-multiple-data type of instructions are supported b
just sampling the ALU carry-out bits at intervals of 4 bits. Since many 32-b
ALUs are designed by replicating 4-bit ALU slices, this has no impact on th
speed or complexity of the ALU.

Combined
Operation and
Conditional Branch

Typical RISC processors include a separate branch adder, in addition to th
ALU, to quickly calculate target addresses for better pipeline architecture.
PA-RISC makes additional use of this already available branch adder to c
culate program-counter relative branch addresses during the same cycle a
functional operation is being performed.

Feature Discussion
1-5PA-RISC 2.0 Architecture Overview

 the
need –
ts these
phical
xt-based
ge and

f what

s

-

ns
rbi-

 of
Figure 1-1. PA-RISC Datapath

Multimedia Support: The Precision Process Illustrated

PA-RISC’s implementation of multimedia support provides an excellent illustration of how
precision architecture approach works. The process begins with the recognition of a significant
that is, a need that is deemed to be long-lasting and broad-based. Multimedia support mee
criteria since it is becoming obvious that scalable multimedia interfaces will replace current gra
interfaces, and multimedia communications and databases are already beginning to replace te
systems. Soon, most systems will be expected to handle the ubiquitous transmission, stora
processing of different information media such as audio, video, images, graphics and text.

When this significant need was identified, the PA-RISC team began a thorough investigation o

Bit-Field Operations In typical RISC machines, a multiplexor is provided at the output of the
shifter used for sign extension for right shifts. Support for bit-field operation
is obtained simply by slightly widening the multiplexor already provided to
perform a masking operation for extracts and deposits.

Floating-Point
Multiply and Add

Since floating-point units typically have separate multiplier and adder func
tional units, adding a dual-operation multiply-and-add instructions requires
only two extra ports on the floating-point register.

Address Updates on
Loads

Since loads have a longer latency than ALU operations, typical RISC desig
use a dedicated general register write port to avoid the complications of a
trating with ALU operations for the port. This typically leaves the normal
write port unused on loads. PA-RISC exploits this situation and makes use
this unused write port for address updates.

Feature Discussion

Program
Counter

General

Registers
Complementer Pre-Shifter

ALU

Cache

Shifter

Instruction
Register

Mask/
Merge
1-6 Overview PA-RISC 2.0 Architecture

dware
 the time
than an
rds and
ed by

 video
metic to
d that
anges
to be

e most
ware

ily
sing a

 new
lfword

 being
ns (as
ulted in

 utilize
range
Since
e team

lexity.
t of
d with
l 4-to-1

s with

grams,
pment
would be required to provide efficient multimedia support. Although separate specialized har
units had been previously used to support such operations as video compression, it seemed that
was right to make efficient support of multimedia a standard feature in the microprocessor rather
optional hardware feature tacked on with additional cost. Further, the fact that multimedia standa
algorithms are continually changing argued for flexible hardware primitives that could be us
software.

Next, it was determined that the most computation-intensive algorithms are based on such
decompression standards as MPEG and JPEG. These standards needed halfword (16-bit) arith
provide sufficient dynamic range for internal pixel computations but further investigation suggeste
they did not usually require byte arithmetic. This latter fact was used to minimize hardware ch
since the implementation would be simpler if not all possible subword sizes needed
accommodated.

The final stage of the process was to determine what instructions were needed to provide th
efficient support and how to implement these instructions with minimum impact on existing hard
resources. Of the multimedia algorithms studied, the most common operations on pixels wereADD,
SUBTRACT, AVERAGE, andMULTIPLY of two numbers. The first three operations could be read
implemented using the existing ALU datapath to operate on two pairs of halfwords in parallel u
single instruction in a single cycle. Thus, theHADD, HSUB, and HAVG instructions were easily
provided.

Halfword multiplication could not be implemented in a single cycle and would have required
datapaths separate from the ALU datapath. The solution was to provide partial support using ha
multiplication by constants with parallel Halfword-Shift-and-Add instructions (HSHLADD and
HSHRADD.) These instructions could be implemented using existing hardware that was already
used for scaled indexing, word and doubleword shift-and-add, and parallel subword operatio
described in the previous section) and, when used as primitives to do constant multiplication, res
efficient support for the key compression algorithms.

The architecture team then went one step further. Their investigations made it clear that to fully
halfword parallel arithmetic instructions in a 64-bit architecture, it is desirable to be able to rear
halfwords in registers without incurring the overhead of memory load and store instructions.
processing of multimedia data often requires rearrangement of packed pixel data structures, th
determined that they could provide support for these operations at very little cost in comp
Accordingly, thePERMH, MIXH, MIXW instructions were implemented to support rearrangemen
words and halfwords in registers with no memory load/store overhead. This support was provide
minimal hardware changes since the existing shift-merge-unit datapath already handled a genera
MUX for each result halfword with some restrictions.

The end result of this process was significant performance gains for critical multimedia algorithm
only small changes being required to the existing datapaths.

Integrated CPU

In addition to the instruction set features which reduce the execution time and pathlength of pro
PA-RISC integrates the following features into the CPU which reduce the hardware and develo
costs of a system:
1-7PA-RISC 2.0 Architecture Overview

s. PA-
ritical

RISC
elayed
nguish

C

,
e
l 3.

e in

ro-
ith

This
t
ost

A-

lect
• Security and protection

• Uniquely powerful interrupt system

• Debugging aids

Security and Protection Features

Controlling access to data in a multi-user environment is an essential requirement in most system
RISC provides a comprehensive set of protection and security features to simplify these c
requirements.

Interrupt System Features

The PA-RISC interrupt system is simpler yet more flexible than those provided in most other
machines. It provides fast, single-cycle context switching and precise interruptions even with d
branching. The following table describes several interrupt system features that particularly disti
PA-RISC.

Feature Discussion

Four Privilege Lev-
els

Most architectures have two privilege levels - user and supervisor. PA-RIS
defines four distinct privilege levels to enable implementation of multiple
hierarchical rings of security in very secure environments. This would allow
for example, an operating system microkernel to run at privilege level 0, th
surrounding system services at levels 1 and 2, and user processes at leve

Access Rights on a
Per-Page Basis

Access rights determine the privileges needed to read, write or execute a
memory page. In PA-RISC, these rights are embedded for each virtual pag
the page directory and TLB entry which contain the Access Rights and
Access ID for that page. The Access ID, which is enabled by a bit in the P
cessor Status Word, is compared against four Protection IDs associated w
the current process to determine if access should be allowed.

Gateway
Instruction

This instruction performs a branch and promotes the privilege level of the
current process to that specified in the access ID for the destination page.
provides an efficient mechanism to perform operating system calls withou
the need for a software interrupt, process switch, or passing through the m
privileged level.

Feature Discussion

Software Control of
Interrupt Groups

Most architectures set interrupt priorities in special purpose hardware. In P
RISC, software can independently disable one or more interrupt groups,
delaying their processing to a more convenient time. Software can also se
the order, and hence the priority, in which it services unmasked interrupts.

Logging of Low-
priority Interrupts

Most architectures interlock low-priority devices while higher priority inter-
rupts are being handled thus requiring low-priority devices to continue
requesting interrupts until they are recognized. PA-RISC logs low-priority
interrupts even while higher priority interrupts are being handled.
1-8 Overview PA-RISC 2.0 Architecture

udes a

 is also
hought
ctural
nsions.
unit and
re briefly

ause
ns-
or
s-

o
d.

y.
rd-

n any

on-
Debugging Features

A significant portion of any software development project is the debugging process. PA-RISC incl
unique set of features to aid in system-level debugging.

Extensibility and Longevity

An architecture that can not be extended has a limited life and is a technological dead end. It
critical that extensibility be an inherent part of the architecture - attempts to tack it on as an aftert
inevitably result in inefficient jury rigs. PA-RISC has, from the outset, incorporated several archite
features to ensure that this architecture will have a long life and enable future growth and exte
These features include an assist architecture that supports incorporation of the special function
coprocessor interfaces, and the large, scalable virtual physical address space. These features a

Feature Discussion

Program Tracing
Assistance

The Processor Status Word (PSW) contains three bits that can be set to c
a trap on any taken branch, on transfers to a higher privilege level, or a tra
fer to a lower privilege. This permits program flow to be traced and allows f
auditing of the interface between programs and more privileged code in sy
tem calls.

Specialized
Breakpoint Support

The Recovery Counter is a special mechanism that can be programmed t
produce a trap after a specified number of instructions have been execute
This is useful for breaking at a particular point in execution, as opposed to
when a particular instruction address is reached.

Breakpoint Support TheBREAK instruction can be used for straightforward breakpoint capabilit
The instruction also contains a parameter field, which is ignored by the ha
ware, and lets it be used as a fast Supervisor Call instruction.

Trapping on Page
Accesses

Each page in the virtual address space can be tagged to enable traps whe
references are made to the page or only when the page is modified.

Special Diagnostic
Instructions

TheDIAGNOSE instruction provides access to processor state not normally
directly accessible to software. The instruction has a parameter field to
encode implementation-dependent operations relating to initialization, rec
figuration, or diagnostics.
1-9PA-RISC 2.0 Architecture Overview

emory
 a high-
ter set,
ffective

essing,
solute

ardware
ctively,
provided
.

.

-

 and
ces-

 (via
s.
ces-
dy

emory
le

e.
e

l

d the
 the
described in the following table.

System Organization

The PA-RISC processor is only one element of a complete system. A system also includes m
arrays, I/O adapters, and interconnecting busses. The processor module is organized to provide
performance computation machine. The Central Processing Unit (CPU) includes a general regis
virtual address registers and machine state registers. A cache is optional, but it is such a cost-e
component that nearly all processors incorporate this hardware. To support virtual memory addr
a hardware translation lookaside buffer (TLB) is included on processors to provide virtual to ab
address translations.

Any processor may include Special Function Units (SFUs) and coprocessors. These dedicated h
units substantially increase performance when executing selected hardware algorithms. Colle
SFUs and coprocessors are called assist processors. For example, floating-point functions are
by a coprocessor, while a signal processing algorithm could be enhanced with a specialized SFU

Figure 1-2 shows a typical processor module with a cache, a TLB, one coprocessor and one SFU

Feature Discussion

Assist Architecture PA-RISC includes instructions to invoke special, optional, hardware func
tions provided by two types of processor assists: Special Function Units
(SFUs) and Coprocessors. SFUs are tightly coupled to the main processor
use its general registers as the operands and targets of operations. Copro
sors are less tightly coupled to the main processor and use either memory
the cache) or their own registers for the operands and targets of operation
PA-RISC supports up to eight each of SFUs and coprocessors. Two copro
sors, the Floating-point and Performance Monitor coprocessors, are alrea
defined.

Address Space Virtual address space requirements have been increasing unpaced as m
demands of software systems accelerate. PA-RISC accommodates scalab
virtual memory systems ranging from 64 to 96 bits of virtual address spac
The smaller virtual address spaces permit lower cost processors. The sam
address space image is presented to a program independent of the virtua
address space supported by a particular system.
Physical address spaces ranging from 32 to 64 bits are accommodated an
same image and the same image is presented to software independent of
physical space supported by a particular system.
1-10 Overview PA-RISC 2.0 Architecture

etween
peration

ze the
les to

cture
isible

vel with
y from
 access
een the
Figure 1-2. Processor Organization

Register-intensive computation is central to the architecture. Calculations are performed only b
high-speed CPU registers or between registers and immediate constants. Register-intensive o
simplifies data and control paths thereby improving processor performance.

Load and store instructions are the only instructions that reference main memory. To minimi
number of memory references, optimizing compilers allocate the most frequently used variab
general-purpose registers.

Storage System

The PA-RISC storage system is an explicit hierarchy that is visible to software. The archite
provides for buffering of information to and from main memory in high-speed storage units (v
caches).

The memory hierarchy achieves nearly the speed of the highest (fastest and smallest) memory le
the capacity of the lowest (largest and slowest) memory level. The levels of this memory hierarch
highest to lowest are the general registers, caches (if implemented), main memory and direct
storage devices such as disks. Figure 1-3 illustrates the hierarchical speed/size relationship betw
various elements of a typical memory system.

CPUSFU

CacheTLB Coprocessor

Central Bus

PROCESSOR
1-11PA-RISC 2.0 Architecture Overview

quently
 have a
d cache

kaside
 TLB
n used
e TLB
ccess is
or data

s. The
upplied
LB when
physical

ween 4
ariable

ached
e these

e-level
can be
Figure 1-3. Memory Hierarchy
A cache system, when implemented, is an integral part of the processor. Caches hold fre
accessed data and instructions in order to minimize access time to main memory. A system may
separate instruction cache (I-cache) and data cache (D-cache), or may have a single, combine
that holds both instructions and data.

System support of virtual addressing is provided by a hardware feature called the Translation Loo
Buffer (TLB) which performs translations from virtual addresses to absolute addresses. The
contains translations for recently accessed virtual pages. Each TLB entry also contains informatio
to determine valid access to that memory page and the type of access permitted. While th
determines the proper translation of the virtual address, access information is checked and a
either granted or denied. TLBs may be split on a processor, one for instructions (ITLB) and one f
(DTLB).

Virtual Addressing

A generalized virtual memory system is an integral part of the architecture on all PA-RISC system
virtual memory system supports virtual addresses between 64 and 96 bits wide. Program-s
addresses are treated as logical addresses and translated to absolute addresses by the T
memory is referenced. Address translations are made at the page level. Direct access to
memory locations is also supported in the instruction set.

The global virtual memory is organized as a set of linear spaces with each space being bet
Gbytes and 16 Exabytes long. Each space is specified with a space identifier and divided into v
sized pages with each page being between 4 Kbytes and 64 Mbytes in size.

Input/Output Organization

The PA-RISC I/O architecture is memory-mapped, which means that complete control of all att
modules is exercised by the execution of memory read and write commands. Processors invok
operations by executing load and store instructions to either virtual or absolute addresses.

This approach permits I/O drivers to be written in high-level languages. Since the usual pag
protection mechanism is applied during virtual-to-absolute address translation, user programs
granted direct control over particular I/O modules without compromising system integrity.

General
Cache

Main
MemoryRegisters Disk

fastest

smallest

largest

slowestspeed

size
1-12 Overview PA-RISC 2.0 Architecture

 local
uctions
ectly by

 to or
itialized
dation
ysical

ance its
hed by

emory
ugh the

 caches.
ormance
dware
-point
mance

cture.
tion of
nce in
f a single
ifying
ory and
aphore
Direct I/O is the simplest and least costly type of system I/O interface because it has little or no
state and is controlled entirely by software. Since direct I/O responds only to load and store instr
and never generates memory addresses, it may be mapped into virtual space and controlled dir
user programs.

Direct Memory Access (DMA) I/O adapters contain sufficient state to control the transfer of data
from a contiguous range of absolute addresses and to perform data chaining. This state is in
prior to the start of a transfer by a privileged driver which is responsible for the mapping and vali
of virtual addresses. During the transfer, the virtual page(s) involved must be locked in ph
memory and protected from conflicting accesses through software.

Assist Processors

Assist processors are hardware units that can be added to the basic PA-RISC system to enh
performance or functionality. Two categories of assist processors are defined and are distinguis
the level at which they interface with the memory hierarchy.

The first type of assist processor is the special function unit (SFU) which interfaces to the m
hierarchy at the general register level. This acts as an alternate ALU or as an alternate path thro
execution unit of the main processor. It may have its own internal state.

The second type of assist processor is the coprocessor, which shares the main processor
Coprocessors are typically used to enhance performance of special operations such as high-perf
floating-point calculations. Coprocessors generally have their own internal state and har
evaluation mechanism. The floating-point coprocessor is defined in Chapter 8, “Floating
Coprocessor”, and the performance monitor coprocessor is defined in Chapter 11, “Perfor
Monitor Coprocessor”.

Multiprocessor Systems

Multiprocessor support for various types of multiprocessor systems is built into the archite
Multiprocessors can be configured to provide incremental performance improvement via distribu
the system workload over multiple CPUs, or can be configured redundantly to provide fault-tolera
the system. In systems sharing a single virtual address space, the architecture defines a model o
consistent cache and TLB. Software is still responsible for maintaining coherence for mod
instructions, and for virtual address mapping. Systems may choose to only share physical mem
form more loosely-coupled configurations. All multiprocessor systems synchronize using a sem
lock in shared main memory.
1-13PA-RISC 2.0 Architecture Overview

s the

sys-
em-

ory

ical
 the
a-

ic
te-
d

 are

e
to
ost

s
im-
Instruction Set Overview

PA-RISC provides a compact, yet full-functioned instruction set. The following table summarize
capabilities provided by the various categories of instructions.

Category Discussion

Memory Reference
Instructions

Transfer data between the general registers and main memory or the I/O
tem. Load and store instructions are the only instructions that reference m
ory. Operands required for a given operation are first brought into a CPU
register from memory with a load instruction. The result of the operation is
explicitly saved to memory with a store instruction. There are two primary
addressing modes for memory accesses: base relative and indexed. Mem
references can be specified by either virtual or absolute addressing.
System I/O is memory-mapped: that is, I/O modules are mapped into phys
pages which are not part of the main memory, but which are addressed in
same way. This provides the same flexibility, security, and protection mech
nisms for I/O operations as are provided for main memory.

Arithmetic and
Logical Instructions

Provide a simple but powerful set of functions. Besides the usual arithmet
and logical operations, there are shift-and-add instructions to accelerate in
ger multiplication, extract and deposit instructions for bit manipulations, an
several instructions to provide support for packed and unpacked decimal
arithmetic.

Special Arithmeti-
cal and Logical
Instructions

These include saturating arithmetic, averaging, shifting, and permuting,
which operate on packed 16-bit integers four at a time. These instructions
particularly valuable in multimedia applications such as video decompres-
sion.

Multiple-precision
Arithmetic

Carry-sensitive instructions support multi-precision arithmetic. More com-
plex arithmetic functions (including packed, unpacked and zoned decimal
operations) are supported by language compilers through execution of a
sequence of simple instructions.

Program Control
Flow Instructions

Branch instructions and instructions that conditionally skip the following
instruction affect the control flow of a program. The condition resulting from
an operation can immediately determine whether or not a branch should b
taken. Unconditional branch and procedure call instructions are provided
alter control flow. The need for some branch sequences is eliminated as m
computational instructions can specify skipping of the next instruction. Thi
permits such common functions as range checking to be performed in a s
ple, non-branching instruction sequence.
1-14 Overview PA-RISC 2.0 Architecture

e
he
,

th

lti-

ss
hes,
Multimedia Instruc-
tions

Provide efficient support for the most frequent multimedia operations sinc
these operations are assuming greater importance in many applications. T
multimedia instructions in PA-RISC perform multiple parallel computations
with each of the results being tested and forced to the appropriate value if
necessary, in a single cycle. The result is a sizeable reduction in pathleng
and fewer disruptive breaks in control flow in multimedia algorithms.

Floating-point
Instructions

Support the defined IEEE standard operations of addition, subtraction, mu
plication, division, square root, conversions, and round-to-integer.

System Control
Instructions

Provide the support needed to implement an operating system including:
returning from interruptions, executing instruction breaks and probing acce
rights. They also control the Processor Status Word, special registers, cac
and translation lookaside buffers.

Category Discussion
1-15PA-RISC 2.0 Architecture Overview

1-16 Overview PA-RISC 2.0 Architecture

s

onents

 system

nized

ory and

 within a
control
ement.
s and
ions that
ided in
2 Processing Resource

The PA-RISC instruction set is only one aspect of the processor architecture; the following comp
are also specified:

• Processing Resources — what registers and register sets are available to the user and to
software

• Data Types — how data is organized and what data types are available to the user

• Memory and I/O Addressing — how system memory and the input/output facilities are orga
and accessed.

This chapter describes the processing resources and data types in a PA-RISC system. The mem
I/O addressing aspects are described in Chapter 3, “Addressing and Access Control”.

The software-accessible registers (that is, the processing resources) are the storage elements
processor that are manipulated by the instructions. These resources participate in instruction
flow, computations, interruption processing, protection mechanisms, and virtual memory manag
The software-accessible registers can be divided into two groups: non-privileged register
privileged registers. Privileged registers are those that generally can be accessed using instruct
can be executed only when at the most privileged level. Figure 2-1 illustrates the registers prov
the PA-RISC architecture.

Figure 2-1. Software Accessible Registers

General Registers Control Registers

Space Registers

Shadow Registers
GR0

GR31

CR0

CR31

SHR0

SHR6

SR7

SR0

Instruction Address
Queues

IAOQ

IASQ

Program Status Word

PSW

Coprocessor Registers Special Function

privileged
non-privileged

Unit Registers
2-1PA-RISC 2.0 Architecture Processing Resources

level and

.

ation, the

al call

re call

 may at
Non-Privileged Software-Accessible Registers

These registers can be accessed by any program at any time, regardless of the current privilege
include those typically needed by application software (as opposed to system software.)

• General Registers (GR 0..GR 31)

• Space Registers (SR 0..SR 7 - SR5-SR7 are privileged.)

• Instruction Address Queues

• Coprocessor Registers

• Special Function Unit Registers

• subset of Control Registers (Timer, SAR, CR26,27))

General Registers

Thirty-two 64-bit general registers provide the central resource for all computation (Figure 2-2).
They are numbered GR 0 through GR 31, and are available to all programs at all privilege levels

GR 0, GR 1, GR2, and GR 31 have special functions.

• GR 0, when referenced as a source operand, delivers zeros. When GR 0 is used as a destin
result is discarded.

• GR 1 is the implicit target of theADD IMMEDIATE LEFT instruction.

• GR 2 is the instruction address offset link register for the long displacement form of the norm
instruction (BRANCH AND LINK).

• GR 31 is the instruction address offset link register for the base-relative interspace procedu
instruction [BRANCH EXTERNAL instruction with the (optional)L (for link) completer].

GR 1, GR2, and GR 31 can also be used as general registers; however, software conventions
times restrict their use.
2-2 Processing Resources PA-RISC 2.0 Architecture

n space
on or

 0 is the
ruction
fy

ed by
roups.

) space
a space
s, and SR
tes this
Space Registers

A PA-RISC system provides eight space registers, numbered SR 0 through SR 7, which contai
IDs for virtual addressing. Instructions specify space registers either directly in the instructi
indirectly through general register contents.

Instruction addresses, computed by branch instructions, may use any of the space registers. SR
instruction address space link register for the base-relative interspace procedure call inst
[BRANCH EXTERNAL instruction with the (optional)L (for link) completer]. Data operands can speci
SR 1 through SR 3 explicitly, and SR 4 through SR 7 indirectly, via general registers.

SR 1 through SR 7 have no special functions; however, their use will normally be constrain
software conventions. For example, the following convention supports non-overlapping process g
SR 1 through SR 3 provide general-use virtual pointers. SR 4 tracks the instruction address (IA
and provides access to literal data contained in the current code segment. SR 5 points to
containing process private data, SR 6 to a space containing data shared by a group of processe
7 to a space containing the operating system’s public code, literals, and data. Figure 2-3 illustra
convention.

SRs 5 through 7 can be modified only by code executing at the most privileged level.

0 63

GR 0 Permanent zero

GR 1 Target for ADDIL or General use

GR 2 Target for long displacement form of B,L or General use

GR 3 General use

•

•

•

GR 30 General use

GR 31 Link register for BLE or General use

Figure 2-2. General Registers
2-3PA-RISC 2.0 Architecture Processing Resources

etween

address
tion.

 These
nts are

-order
, 1, 2,

lowing
 when
alue.

of the
ntain

ntained
Space registers, as well as IASQ, IIASQ, and ISR which are described later, may be any size b
32 bits and 64 bits to support a virtual address size between 64 and 96 bits.

Instruction Address Queues

The Instruction Address Queues hold the address of the currently executing instruction and the
of the instruction that will be executed after the current instruction, termed the following instruc
Note that the following instruction is not necessarily the next instruction in the linear code space.
two queues are each two elements deep. The Instruction Address Offset Queue (IAOQ) eleme
each 64 bits wide. The high-order 62 bits contain the word offset of the instruction while the 2 low
bits maintain the privilege level of the corresponding instruction. There are four privilege levels: 0
and 3 with 0 being the most privileged level.

The Instruction Address Space Queue (IASQ) contains the space ID of the current and fol
instructions. The IASQ may be from 32 to 64 bits in size. The space ID of the current instruction,
executing without instruction address translation enabled, is not specified and may contain any v

The front elements of the two queues (IASQ_Front and IAOQ_Front) form the virtual address
current instruction while the back elements of the two queues (IASQ_Back and IAOQ_Back) co
the address of the following instruction. Figure 2-4 shows this structure. Two addresses are mai
to support the delayed branching capability (See “Concept of Delayed Branching” on page 4-1).

SR 0 Link code space ID

SR 1 General use

SR 2 General use

SR 3 General use

SR 4 Tracks IA space

SR 5 Process private data

SR 6 Shared data

SR 7 Operating system’s public code, literals, and data

Figure 2-3. Example Space Register Usage Convention

0
6
1

6
3

IAOQ
Offset PL

Offset PL

0 63

IASQ
Space Identifier

Space Identifier

Figure 2-4. Instruction Address Queues
2-4 Processing Resources PA-RISC 2.0 Architecture

 Shift
y time

tract,
d. The

64-bit
tween
turns
 value
er and
is set to
 Status
timer
e EIER

 S-bit
, it can

r need
 at the

te”, the
 Timer

 at any

 “Assist
ter 8,
hapter
Control Registers (non-privileged)

Although most of the Control Registers can be accessed only by privileged instructions, the
Amount Register (SAR), Interval Timer, and temporary registers CR26,27 are accessible at an
and are described in the paragraphs that follow.

Shift Amount Register

The Shift Amount Register or SAR (CR 11), is a 6-bit register used by the variable shift, ex
deposit, and branch on bit instructions. It specifies the number of bits a quantity is to be shifte
remaining 58 bits are ignored bits.

Interval Timer

The Interval Timer (CR 16) consists of two internal registers. One of the internal registers is a
counter which continually counts up by 1 at a rate which is implementation-dependent and be
twice the “peak instruction rate” and half the “peak instruction rate”. Reading the Interval Timer re
the value of this internal 64-bit register. The other internal register contains a 32-bit comparison
and is set by writing to the Interval Timer. When the least significant 32 bits of the counter regist
the comparison register contain identical values, a bit in the External Interrupt Request Register
1. This causes an external interrupt, if not masked. The W bit (Wide enable) in the Processor
Word (PSW - see Table 2-1) determines which bit of the EIRR is set. If the W bit is 0, the
comparison causes bit 32 to be set to 1. If the W bit is 1, the timer comparison causes bit 0 of th
to be set to 1.

The Interval Timer can only be written by code executing at the most privileged level. If the PSW
is 1, the Interval Timer can only be read by code executing at the most privileged level; otherwise
be read by code executing at any privilege level.

In a multiprocessor system, each processor must have its own Interval Timer. Each Interval Time
not be synchronized with the other Interval Timers in the system, nor do they need to be clocked
same frequency.

If, as part of a power-saving mode, the processor clock is reduced below the “peak instruction ra
Interval Timer continues to count at its peak rate. If the processor clock is stopped, the Interval
may also stop.

Temporary Registers

Two of the eight 64-bit temporary registers (CRs 26 and 27) are readable by code executing
privilege level and writable only by code executing at the most privileged level.

Coprocessor Registers

Each coprocessor may have its own register set. The coprocessor mechanism is described in
Instructions” on page 6-19. The floating-point coprocessor registers are described in Chap
“Floating-point Coprocessor”. The performance monitor coprocessor registers are described in C
11, “Performance Monitor Coprocessor”.
2-5PA-RISC 2.0 Architecture Processing Resources

“Assist

elerate
rs which
 in the

tation
 BTS is

register,
nto the

dress is
 entry is
eneral
ottom of

so has
ction,
de).

e, so
SFU Registers

Each special function unit may have its own register set. The SFU mechanism is described in
Instructions” on page 6-19.

Branch Target Stack

The Branch Target Stack (or BTS) is an optional processing resource which is used to acc
indirect branches, such as subroutine returns. The BTS is managed by software, and in processo
implement it, can provide the branch target address in place of the general register specified
branch instruction.

Conceptually, the BTS is a stack of 63-bit registers. The number of registers is implemen
dependent, and can be 0. Each register holds an instruction address plus a valid bit. Although the
not directly readable, it can be thought of as being laid out as in Figure 2-5.

Certain instructions push an address onto the top of the stack, forcing all other entries down one
with the old value of the last register (bottom of stack) being discarded. When a value is pushed o
stack, the valid bit is set to 1 for that entry.

Other operations pop an address from the top of the stack. If the valid bit associated with the ad
1, the address may be used as a branch target, to decrease the latency of the branch. If the
invalid, it is ignored, and the branch target is calculated the normal way (using the specified g
register). When the stack is popped, each entry moves up one register, and the register at the b
the stack is marked invalid.

The Branch Nomination Register (or BNR) is a register which holds one instruction address. It al
a valid bit associated with it. The BNR allows software to make use of the BTS in a called fun
even though the caller function does not attempt to use the stack (perhaps because it is older co

Implementation of the BTS is optional. Hardware may invalidate entries in the stack at any tim
software may not rely on entries remaining valid.

0 6162

Top of stack target address v

•

•

•

Bottom of stack

Figure 2-5. Branch Target Stack

0 6162

target address v

Figure 2-6. Branch Nomination Register
2-6 Processing Resources PA-RISC 2.0 Architecture

 intended

hen an
s Word
2-7.

 to an

its, with
uctions
control
 is an

ble bits.
For more details, see the related instruction pages.

Privileged Software-Accessible Registers

These registers can be accessed only when the processor is in the most privileged mode and are
for use by system software.

• Processor Status Word (PSW)

• Shadow Registers (SHR 0..SHR 6)

• Control Registers (CR 0..CR 31)

Processor Status Word (PSW)

Processor state is encoded in a 64-bit register called the Processor Status Word (PSW). W
interruption occurs, the current value of the PSW is saved in the Interruption Processor Statu
(IPSW) and usually all defined PSW bits are set to 0. The format of the PSW is shown in Figure

The PSW is set to the contents of the IPSW by theRETURN FROM INTERRUPTION instruction. The
interruption handler may restore the original PSW, modify selected bits, or may change the PSW
entirely new value.

The E, O, W, F, R, Q, P, D, and I bits of the PSW are known as the system mask. Each of these b
the exception of the Q-bit, may be set to 1, set to 0, written, and read by the system control instr
that manipulate the system mask. The Q-bit is specially defined. It can be set to 0 by system
instructions that manipulate the system mask, but setting it to 1 when the current value is 0
undefined operation. The only instruction that can set the Q-bit to 1 is theRETURN FROM
INTERRUPTION instruction.

Some of the PSW bits are termed mask/unmask bits whereas others are termed disable/ena
Interruptions that are masked remain pending whereas those that are disabled are ignored.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1 2 3 4 56 7 8 9

4
0 1 2 3 4 5 6 7 8 9

5
0 1 2 3 4 5 6 7 8 9

6
0 1 2 3

rv C/B rv WESTHLNXBCVM C/B Or
v

FRQPDI

Figure 2-7. Processor Status Word
2-7PA-RISC 2.0 Architecture Processing Resources

C

hen
t

 the
rivi-

 trap.

en-

n-

 data

e.

ated

p-
The PSW fields are described in Table 2-1.

Table 2-1. Processor Status Word

Field Description

rv Reserved bits.

W Wide 64-bit address formation enable. When 1, full 64-bit-offset addressing is enabled.
When 0, addresses are truncated to 32-bit offsets, for compatibility with existing PA-RIS
1.0 and 1.1 applications.

E Little endian memory access enable. When 0, all memory references are big endian. W
1, all memory references are little endian. Implementation of this bit is optional. If it is no
implemented, all memory references are big endian and this bit is a reserved bit.

S Secure Interval Timer. When 1, the Interval Timer is readable only by code executing at
most privileged level. When 0, the Interval Timer is readable by code executing at any p
lege level.

T Taken branch trap enable. When 1, any taken branch is terminated with a taken branch

H Higher-privilege transfer trap enable. When 1, a higher-privilege transfer trap occurs wh
ever the following instruction is of a higher privilege.

L Lower-privilege transfer trap enable. When 1, a lower-privilege transfer trap occurs whe
ever the following instruction is of a lower privilege.

N Nullify. The current instruction is nullified when this bit is 1. This bit is set to 1 by an
instruction that nullifies the following instruction.

X Data memory break disable. The X-bit is set to 0 after the execution of each instruction,
except for theRETURN FROM INTERRUPTION instruction which may set it to 1. When 1,
data memory break traps are disabled. This bit allows a simple mechanism to trap on a
store and then proceed past the trapping instruction.

B Taken branch. The B-bit is set to 1 by any taken branch instruction and set to 0 otherwis
This is used to ensure that theBRANCH instruction with the ,GATE completer (the privilege
increasing instruction) cannot be used to compromise system security.

C Code (instruction) address translation enable. When 1, instruction addresses are transl
and access rights checked.

V Divide step correction. TheDIVIDE STEP (integer division primitive) instruction records
intermediate status in this bit to provide a non-restoring divide primitive.

M High-priority machine check mask. When 1, high-priority machine checks (HPMCs) are
masked. Normally 0, this bit is set to 1 after an HPMC and set to 0 after all other interru
tions.
2-8 Processing Resources PA-RISC 2.0 Architecture

ding
rrow
ar-
r

g
nces

ma-

le-
per-
d

ess-
ter-

 D-

hts

en 0,
C/B Carry/borrow bits. The following instructions update the PSW carry/borrow bits from the
corresponding carry/borrow outputs of the 4-bit digits of the ALU:

ADD* ADDI DS
SHLADD* SUB SUBI

The instructions marked with an asterisk set the carry/borrow bits only if the ,L (logical)
completer is not specified.

After an add which sets them, each bit is set to 1 if a carry occurred out of its correspon
digit, and set to 0 otherwise. After a subtract which sets them, each bit is set to 0 if a bo
occurred into its corresponding digit, and set to 1 otherwise. Bits {24..31} hold the digit c
ries from the upper half of the ALU, and bits {48..55} hold the digit carries from the lowe
half.

O Ordered references. When 1, virtual memory references to pages with the correspondin
TLB O-bit 1, and all absolute memory references, are ordered. When 0, memory refere
(except those explicitly marked as ordered or strongly ordered) may be weakly ordered.
Note that references to I/O address space, references to pages with the TLB U-bit 1, se
phore instructions, and TLB purge instructions are always strongly ordered.

F Performance monitor interrupt unmask. When 1, the performance monitor interrupt is
unmasked and can cause an interruption. When 0, the interruption is held pending. Imp
mentation of this bit is required only if the performance monitor is implemented and the
formance monitor has the ability to interrupt. If it is not implemented, this bit is a reserve
bit.

R Recovery Counter enable. When 1, recovery counter traps occur if bit 0 of the recovery
counter is a 1. This bit also enables decrementing of the Recovery Counter.

Q Interruption state collection enable. When 1, interruption state is collected. Used in proc
ing the interruption and returning to the interrupted code, this state is recorded in the In
ruption Instruction Address Queue (IIAQ), the Interruption Instruction Register (IIR), the
Interruption Space Register (ISR), and the Interruption Offset Register (IOR).

P Protection identifier validation enable. When this bit and the C-bit are both equal to 1,
instruction references check for valid protection identifiers (PIDs). When this bit and the
bit are both equal to 1, data references check for valid PIDs. When this bit is 1, probe
instructions check for valid PIDs.

D Data address translation enable. When 1, data addresses are translated and access rig
checked.

I External interrupt, power failure interrupt, and low-priority machine check interruption
unmask. When 1, these interruptions are unmasked and can cause an interruption. Wh
the interruptions are held pending.

Table 2-1. Processor Status Word (Continued)
2-9PA-RISC 2.0 Architecture Processing Resources

tents of
ectively.
d. The

which

ontrol
“Control

ts of a
Shadow Registers

There are seven registers shadow registers. Upon interruption, if the PSW Q-bit was 1, the con
GRs 1, 8, 9, 16, 17, 24, and 25 are copied into shadow registers SHR 0, 1, 2, 3, 4, 5, and 6, resp
If an interruption is taken with the PSW Q-bit equal to 0, the shadow registers are unchange
contents of these general registers are restored from their shadow registers when aRETURN FROM
INTERRUPTIONinstruction with the (optional)R (for restore) completer is executed.

Control Registers

There are twenty-five defined control registers, numbered CR 0, and CR 8 through CR 31,
contain system state information.

The control registers are shown in Figure 2-8 and described in the following sections. (The c
registers that can be accessed in the non-privileged state are described earlier in the section
Registers (non-privileged)” on page 2-5.) Moving the contents of a control register to a general
register copies the register contents right aligned into the general register. Moving the conten
general register to a control register copies the entire general register into the control register.

Control registers 1 through 7 are reserved registers.
2-10 Processing Resources PA-RISC 2.0 Architecture

ery of
 counts
 The
 (see
r trap
e value
Recovery Counter

The Recovery Counter (CR 0) is a 32-bit counter that can be used to provide software recov
hardware faults in fault-tolerant systems, and can also be used for debugging purposes. CR 0
down by 1 during the execution of each non-nullified instruction for which the PSW R-bit is 1.
Recovery Counter is restored if the instruction terminates with a group 1, 2, or 3 interruption
Chapter 4, “Control Flow”). When the leftmost bit of the Recovery Counter is 1, a recovery counte
occurs. The trap and the decrement operation can be disabled by setting the PSW R-bit to 0. Th

0 31 32 63

CR 0 nonexistent Recovery Counter

reserved

CR 8 Protection ID 1 WD Protection ID 2 WD

CR 9 Protection ID 3 WD Protection ID 4 WD

CR 10 reserved SCR CCR

CR 11 ignored SAR

CR 12 Protection ID 5 WD Protection ID 6 WD

CR 13 Protection ID 7 WD Protection ID 8 WD

CR 14 Interruption Vector Address reserved

CR 15 External Interrupt Enable Mask

CR 16 Interval Timer

CR 17 Interruption Instruction Address Space Queue

CR 18 Interruption Instruction Address Offset Queue

CR 19 reserved Interruption Instruction Register

CR 20 Interruption Space Register

CR 21 Interruption Offset Register

CR 22 Interruption Processor Status Word

CR 23 External Interrupt Request Register

CR 24 Temporary Register

•

•

•

CR 31 Temporary Register

Figure 2-8. Control Registers
2-11PA-RISC 2.0 Architecture Processing Resources

covery
written
 is an

 the

t

cessible
(PIDs)
ontrol”

 WD-
 to have
 access

ining

which
 7, and

g-point
st bit of
0. The
resent,

nd the
ified in
nables

ponding
e of a
to 0 and
it causes
g to a

ds the
7, and
es bit

10, and
of the Recovery Counter may be read reliably only when the PSW R-bit is 0. (Reading the Re
Counter when the PSW R-bit is 1 returns an undefined result.) The Recovery Counter may be
reliably only when the PSW R-bit is 0. (Writing the Recovery Counter when the PSW R-bit is 1
undefined operation.) If the PSW R-bit is set to 0 by either theRESET SYSTEM MASK or theMOVE TO
SYSTEM MASK instruction, the Recovery Counter may not be read or written reliably prior to
execution of the eighth instruction after theRESET SYSTEM MASK or theMOVE TO SYSTEM MASK
instruction. An interruption, or aRETURN FROM INTERRUPTION instruction which sets the PSW R-bi
to 0, does not have this restriction.

Protection Identifiers

The protection identifiers (CRs 8, 9, 12, 13) designate up to eight groups of pages which are ac
to the currently executing process. When translation is enabled, the eight protection identifiers
are compared with a page access identifier in the TLB entry to validate an access. (See “Access C
on page 3-11.) The rightmost bit of each of the eight PIDs is the write disable (WD) bit. When the
bit is 1, that PID cannot be used to grant write access. This allows each process sharing memory
different access rights to the memory without the overhead of changing the access identifier and
rights in the TLB. When the PSW P-bit is 0, the PIDs, including the WD-bits, are ignored.

Each of the 8 PID registers can be from 16 to 32 bits wide (including the WD bit), with the rema
bits being reserved bits. The length of the PIDs is implementation dependent.

Coprocessor Configuration Register (CCR)

The Coprocessor Configuration Register or CCR (bits 56..63 of CR 10) is an 8-bit register
records the presence and usability of coprocessors. The bit positions are numbered 0 through
correspond to a coprocessor with the same unit identifier. Bits 0 and 1 correspond to the floatin
coprocessor, and bit 2 corresponds to the performance monitor coprocessor. Bit 7 is the rightmo
the CCR. It receives bit 63 from a general register when a general register is written to CR 1
upper 48 bits of CR 10, and bits within the CCR corresponding to coprocessors which are not p
are reserved bits.

The behavior of the floating-point coprocessor with respect to the state of CCR bits 0 and 1 a
behavior of the performance monitor coprocessor with respect to the state of CCR bit 2, are spec
“Coprocessor Instructions” on page 6-22. For other coprocessors, setting a bit in the CCR to 1 e
the use of the corresponding coprocessor, if present and operational. If a CCR bit is 0, the corres
coprocessor, if present, is logically decoupled. This decoupling must ensure that the stat
coprocessor does not change as long as its corresponding CCR bit is 0. When a CCR bit is set
an attempt is made to execute an instruction which references the corresponding coprocessor,
an assist emulation trap. It is an undefined operation to set to 1 any CCR bit correspondin
coprocessor which is not present.

SFU Configuration Register (SCR)

The SFU Configuration Register or SCR (bits 48..55 of CR 10), is an 8-bit register which recor
presence and usability of special function units. The bit positions are numbered 0 through
correspond to an SFU with the same unit identifier. Bit 7 is the rightmost bit of the SCR. It receiv
55 from a general register when a general register is written to CR 10. The upper 48 bits of CR
bits within the SCR corresponding to SFUs which are not present, are reserved bits.
2-12 Processing Resources PA-RISC 2.0 Architecture

ent and
 This
CR bit is
ces the
ponding
20. It

rray of
served
an 64
ss bits

ch of
hat bit

ction
ss or

use in
 queues
 offset
m 32

ruption
ation

format
pper
 was

)

For all SFUs, setting a bit in the SCR to 1 enables the use of the corresponding SFU, if pres
operational. If an SCR bit is 0, the corresponding SFU, if present, is logically decoupled.
decoupling must ensure that the state of an SFU does not change as long as its corresponding S
0. When an SCR bit is set to 0 and an attempt is made to execute an instruction which referen
corresponding SFU, it causes an assist emulation trap. The operation of an SFU when its corres
SCR bit is 0 is explained in more detail in “Special Function Unit (SFU) Instructions” on page 6-
is an undefined operation to set to 1 any SCR bit corresponding to an SFU which is not present.

Interruption Vector Address (IVA)

The Interruption Vector Address or IVA (CR 14) contains the absolute address of the base of an a
service procedures assigned to the interruption classes. The lower 11 bits of the IVA are re
Therefore, the address written to it must be a multiple of 2048. For implementations with fewer th
bits of physical address, the upper bits of the IVA corresponding to unimplemented physical addre
are reserved. The array of interruption service procedures is indexed by the interruption numbers
given in Chapter 4, “Control Flow”.

External Interrupt Enable Mask (EIEM)

The External Interrupt Enable Mask or EIEM (CR 15), is a 64-bit register containing a bit for ea
the 64 external interrupts. Each 0 bit in the EIEM masks external interrupts corresponding to t
position.

Interruption Instruction Address Queues

The Interruption Instruction Address Space Queue or IIASQ (CR 17) and the Interruption Instru
Address Offset Queue or IIAOQ (CR 18) are collectively termed the interruption instruction addre
IIA queues. They are used to save the Instruction Address and privilege level information for
processing interruptions. The registers are arranged as two two-element deep queues. The
generally contain the addresses (including the privilege level field in the rightmost two bits of the
part) of the two instructions in the IA queues at the time of the interruption. The IIASQ may be fro
to 64 bits wide.

The IIA queues are continually updated whenever the PSW Q-bit is 1 and are frozen by an inter
(PSW Q-bit becomes 0). After such an interruption, the IIA queues contain copies of the inform
from the IA queues. The IIAOQ contains the address offsets of the interruption point in the same
as the IAOQ. The IIASQ has a different format from that of the IASQ. The IIASQ contains the u
portion of the GVA (global virtual address) of the interruption point, if code address translation
enabled. (Note that if the PSW W-bit was 0, the upper portion of the GVA is simply the space ID.
2-13PA-RISC 2.0 Architecture Processing Resources

ns the
it was
 space

for the
rmed

 AND
n the
If code address translation was disabled at the time of the interruption, then the IIAOQ contai
absolute offsets of the interruption point, and the IIASQ contains zeros. (Note that if the PSW W-b
0, the absolute offsets in the IIAOQ may be truncated to only those bits of the physical address
that are implemented, and the upper bits forced to zeros.)

On a return from interruption, the values in the IIA queues are used to reform the IA queues
return point. The values in the IIAOQ are copied to the IAOQ. The new values for the IASQ are fo
as follows (see also Figure 2-12): the lower 30 bits of the IASQ are formed by taking the bitwise
of the lower 30 bits of the values in the IIASQ with the complement of bits {2..31} of the values i

0
3
1

6
1

6
3

IIAOQ
Offset PL

Offset PL

0
6
3

IIASQ
Global Virtual Address {0..63}

Global Virtual Address {0..63}

Figure 2-9. Interruption Instruction Address Queues with Wide Virtual Addresses

0
3
1

6
1

6
3

IIAOQ
0 Offset PL

0 Offset PL

0
6
3

IIASQ
Space Identifier

Space Identifier

Figure 2-10. Interruption Instruction Address Queues with Narrow Virtual Addresses

0
3
1

6
1

6
3

IIAOQ
Offset PL

Offset PL

0
6
3

IIASQ
0

0

Figure 2-11. Interruption Instruction Address Queues with Absolute Addresses
2-14 Processing Resources PA-RISC 2.0 Architecture

f the
eforms

ns of
and
IIASQ
iting
of the
fined

0. If an

ss to an
R (CR
. They
in these
 set (or
4 bits

g the
rm the
 {0..1}
 base
IIAOQ. Bits {32..33} of the IIASQ are copied to the same bits in the IASQ. The upper 32 bits o
IIASQ (or as many as are implemented) are copied to the corresponding bits of the IASQ. This r
the original space identifiers.

Reading the IIAOQ (CR 18) while the PSW Q-bit is 0 retrieves the offset and privilege level portio
the front element in the IIAOQ. Writing into IIAOQ while the PSW Q-bit is 0 advances the IIAOQ
then sets the offset and privilege level portions of the back element of the IIAOQ. Reading the
(CR 17) while the PSW Q-bit is 0 retrieves the GVA portion of the front element of the IIASQ. Wr
into IIASQ while the PSW Q-bit is 0 advances the IIASQ and then writes into the back element
IIASQ. The effect of reading or writing either queue register while the PSW Q-bit is 1 is an unde
operation.

The state contained in the IIA queues is undefined when aRETURN FROM INTERRUPTION instruction
sets the PSW Q-bit to 0, or when system control instructions are used to set the PSW Q-bit to
interruption is taken with the PSW Q-bit equal to 0, the IIA queues are unchanged.

Interruption Parameter Registers (IPRs)

The Interruption Parameter Registers (IPRs) are used to pass an instruction and a virtual addre
interruption handler. Three registers comprise the IPRs: the Interruption Instruction Register or II
19), Interruption Space Register or ISR (CR 20), and Interruption Offset Register or IOR (CR 21)
are used to pass an instruction and a virtual address to an interruption handler. The values
registers for each interruption class are specified in Chapter 4, “Control Flow”. These values are
frozen) at the time of the interruption whenever the PSW Q-bit is 1. The ISR may be from 32 to 6
wide.

The value loaded into the IOR is the lower 32 bits of the virtual address offset without truncatin
rightmost bits or setting them to 0, plus the 2 bits of the base register which was used to fo
address. If the PSW W-bit was 1, the upper 2 bits of the IOR (called the b field) are equal to bits
from the base register. If the PSW W-bit was 0, the b field is equal to bits {32..33} from the
register. The other bits of the IOR are forced to 0.

Figure 2-12. Reforming Space Identifiers

GVA

Offset

Space Identifier

AND

Complement

IIAOQ

IIASQ

Restored IASQ value
2-15PA-RISC 2.0 Architecture Processing Resources

 (Note

 of the
r bits in
. If the

t is 0.
lt.) The

 If an

en an
flects
 in the

en the
hen a

trol

r each
nding
The value loaded into the ISR is the upper portion of the GVA, if data translation was enabled.
that if the PSW W-bit was 0, the upper portion of the GVA is simply the space ID.)

If data translation was disabled at the time of the interruption, the IOR contains the lower 32 bits
absolute offset. The upper 2 bits of the IOR are undefined, and may be set to any value. The othe
the IOR are forced to 0. The ISR contains the upper portion of the absolute offset, zero-extended
PSW W-bit was 0 as well, the ISR contains 0.

The interruption parameter registers can be read or written reliably only when the PSW Q-bi
(Reading an interruption parameter register when the PSW Q-bit is 1 returns an undefined resu
state contained in the IPRs is undefined when aRETURN FROM INTERRUPTION instruction sets the
PSW Q-bit to 0, or when system control instructions are used to set the PSW Q-bit to 0.
interruption is taken with the PSW Q-bit equal to 0, the IPRs are unchanged.

Interruption Processor Status Word (IPSW)

The Interruption Processor Status Word or IPSW (CR 22) receives the value of the PSW wh
interruption occurs. The format of the IPSW is identical to that of the PSW. The IPSW always re
the state of the machine at the point of interruption, regardless of the state of the PSW Q-bit. As
PSW, the unnamed bits are reserved bits.

The IPSW can be read or written reliably only when the PSW Q-bit is 0. (Reading the IPSW wh
PSW Q-bit is 1 returns an undefined result.) The state contained in the IPSW is undefined w
RETURN FROM INTERRUPTION instruction sets the PSW Q-bit to 0, or when system con
instructions are used to set the PSW Q-bit to 0.

External Interrupt Request Register (EIRR)

The External Interrupt Request register or EIRR (CR 23) is a 64-bit register containing a bit fo
external interrupt. When 1, a bit designates that an interruption is pending for the correspo

0 2
3
1

6
3

IOR b 0 Offset {32..64}

0
6
3

ISR Global Virtual Address

Figure 2-13. Interruption Space and Offset Registers with Virtual Address

0 2
3
1

6
3

IOR un 0 Absolute Offset {32..64}

0
6
3

ISR 0 0 Absolute Offset {2..31}

Figure 2-14. Interruption Space and Offset Registers with Absolute Address
2-16 Processing Resources PA-RISC 2.0 Architecture

rity
k (CR

nt
lt in CR

IO_EIR
rites to

s Word
register.
IR are
hen the
s 6-bit

uting at
ers for

ge level

nction

tion is
ust be
se bits

 may
 effect

 value
ystem

 read
nality.

RITE
external interrupt. Both the PSW I-bit (external interrupt, power failure interrupt, and low-prio
machine check unmask) and the corresponding bit position in the External Interrupt Enable Mas
15) must be 1 for an interruption to occur.

A MOVE TO CONTROL REGISTER instruction with CR 23 as its target bitwise ANDs the compleme
of the contents of the source register with the previous contents of CR 23, and places this resu
23. Thus the processor can only set the EIR register bits to 0.

A processor’s EIR register is also memory mapped into the physical address space as the I
register to enable other processors and I/O modules to interrupt the processor. When a module w
it, the bit specified by the value written is set to 1. The W bit (Wide enable) in the Processor Statu
(PSW - see Table 2-1) determines whether the EIRR operates as a 32-bit register or a 64-bit
When the W bit is 0, the EIRR operates effectively as a 32-bit register. Values written to the IO_E
interpreted as 5-bit numbers, which cause one of the bits in the range {32..63} to be set to 1. W
W bit is 1, the EIRR operates as a 64-bit register. Values written to the IO_EIR are interpreted a
numbers, which cause one of the bits in the range {0..63} to be set to 1.

Temporary Registers

Six of the eight 64-bit temporary registers (CRs 24, 25, 28..31) are accessible only by code exec
the most privileged level. They provide space to save the contents of the general regist
interruption handlers in the operating system kernel.

The other two temporary registers (CRs 26 and 27) are readable by code executing at any privile
and writable only by code executing at the most privileged level.

Unused Registers and Bits

Currently, there are several registers and bit-fields within registers that do not have any fu
assigned to them. All such processing resources are classified into four categories:

1. Reserved bits — Currently unused bits, but reserved for possible future use. A READ opera
legal, and the value read back is all zeros. A WRITE operation is legal but the value written m
all zeros. Writing ones is an undefined operation. (For example, writing ones may cause the
to no longer read as zeros.)

2. Nonexistent bits — Architecturally these bits do not exist. A READ operation is legal and
return zeros or what was last written. A WRITE operation is also legal but does not have any
on system functionality.

3. Undefined bits — Architecturally these bits are undefined. A READ operation is legal and the
read is undefined. A WRITE operation is also legal but does not have any effect on s
functionality.

4. Ignored bits — Architecturally these bits are ignored. A READ operation is legal and the value
is all zeroes. A WRITE operation is also legal but does not have any effect on system functio

5. Reserved registers — A register that is numbered but currently unused. Both READ and W
operations are undefined operations.
2-17PA-RISC 2.0 Architecture Processing Resources

rs, and
sed by

rt is

 value
5, an
Data Types

The fundamental data types that are recognized are bits, bytes, integers, floating-point numbe
decimal numbers. Their formats are described briefly in this section. Each item of data is addres
its lowest-numbered byte.

Bits Memory is not addressed to the resolution of bits; however, efficient suppo
provided to manipulate and test individual bits in the general registers.

Bytes Bytes are signed or unsigned 8-bit quantities:

Bytes are packed four to a word and may represent a two’s complement signed
in the range -128 through +127, an unsigned value in the range 0 through 25
arbitrary collection of eight bits, or an ASCII character.

Integers Integers may be 16, 32, or 64 bits wide, signed or unsigned:

Signed Byte

s value

1 7

Unsigned Byte

value

8

Signed Halfword

s value

1 15

Unsigned Halfword

value

16

Signed Word
s value
1 31

Unsigned Word
value

32

Signed Doubleword
s value
1 63
2-18 Processing Resources PA-RISC 2.0 Architecture

d in
visible

54-
ord

ries.
word
n on

23, or
0x9,

ll be
is not

n byte
lower-
 is 1, all
pond to

e E-bit.

oftware
r 1 on
endian
” on

ndian
Signed integers are in two’s complement form. Halfword integers can be store
memory only at even byte addresses, word integers only at addresses evenly di
by four, and doubleword integers only at addresses evenly divisible by eight.

Floating-Point Numbers

The binary floating-point number representation conforms to the ANSI/IEEE 7
1985 standards. Single-word (32-bit), double-word (64-bit), and quadruple-w
(128-bit) binary formats are supported.

Single-precision floating-point numbers must be aligned on word bounda
Double-precision and quad-precision numbers must be aligned on double
boundaries. See Chapter 8, “Floating-point Coprocessor”, for detailed informatio
the floating-point formats.

Packed Decimal Numbers

Packed decimal data is always aligned on a word boundary. It consists of 7, 15,
31 BCD digits, each four bits wide and having a value in the range of 0x0 to
followed by a 4-bit sign as shown in the following figure:

The standard sign for a positive number is 0xC, but any value except 0xD wi
interpreted as positive. 0xD indicates a minus sign for a negative number. 0xB
supported as an alternative minus sign.

Byte Ordering (Big Endian/Little Endian)

The optional E-bit in the PSW controls whether loads and stores use big endian or little endia
ordering. When the E-bit is 0, all larger-than-byte loads and stores are big endian — the
addressed bytes in memory correspond to the higher-order bytes in the register. When the E-bit
larger-than-byte loads and stores are little endian — the lower-addressed bytes in memory corres
the lower-order bytes in the register. Load byte and store byte instructions are not affected by th
The E-bit also affects instruction fetch.

Processors which implement the PSW E-bit must also provide an implementation-dependent, s
writable default endian bit. The default endian bit controls whether the PSW E-bit is set to 0 o
interruptions and also controls whether data in the page table is interpreted in big endian or little
format by the hardware TLB miss handler, if implemented (See “Hardware TLB Miss Handling
page F-3).

Figure 2-15 shows various loads in big endian format. Figure 2-16 shows various loads in little e

Unsigned Doubleword
value

64

MSD • • • LSD sign

4 4 4 4
2-19PA-RISC 2.0 Architecture Processing Resources

ower-
bit is 1,
-order
format. Stores are not shown but behave similarly.

The E-bit also affects instruction fetch. When the E-bit is 0, instruction fetch is big endian — the l
addressed bytes in memory correspond to the higher-order bytes in the instruction. When the E-
instruction fetch is little endian — the lower-addressed bytes in memory correspond to the lower
bytes in the instruction.

Figure 2-15. Big Endian Loads

Figure 2-16. Little Endian Loads

a

b

c

d

e

f

g

h

0 b0 0

e hf ga db c

0 31

0 d0 c

0 31

e hf g

0 31

0 63

0

1

2

3

4

5

6

7

LDBS 1(0,0),t

LDHS 2(0,0),t

LDWS 4(0,0),t

FLDDS 0(0,0),t

0 7

Memory Registers

a

b

c

d

e

f

g

h

0 b0 0

d ac bh eg f

0 31

0 c0 d

0 31

h eg f

0 31

0 63

0

1

2

3

4

5

6

7

LDBS 1(0,0),t

LDHS 2(0,0),t

LDWS 4(0,0),t

FLDDS 0(0,0),t

0 7

Memory Registers
2-20 Processing Resources PA-RISC 2.0 Architecture

reli

re
Architecturally, the instruction byte swapping can occur either when a cache line is moved into the
instruction cache (I-cache) or as instructions are fetched from the I-cache into the pipeline.

Processors must support running code with either endian form from the same cache line. This eves
software of the responsibility of keeping track of what might have been brought in under different
forms.

Engineering Note
For processors which swap instructions on I-cache move-in, one way to meet this requirement
is to implement endian tag bits and force a miss if the tag does not match the current value of
PSW[E].

Processors which swap instructions as they are fetched from the I-cache do not need to do
anything extra to meet this requirement.

Since the PSW E-bit is an instruction fetch resource (see “Instruction Pipelining” on page4-9), SET
SYSTEM MASK, RESET SYSTEM MASK or MOVE TO SYSTEM MASK instructions which change the
PSW E-bit must be followed by seven palindromic NOP instructions — that is, instructions which a
NOPs when interpreted in either big or little endian order

Programming Note
One example of a palindromic NOP instruction is LDI 26,0 (opcode 0x34000034)
2-21PA-RISC 2.0 Architecture Processing Resources

2-22 Processing Resources PA-RISC 2.0 Architecture

ol

gisters are
t hold
called

gh not
al pages
 an I/O
el and

e given

the I/O
resses are
accesses
ectly, no
are called

y), and
nerate

hanisms.
values

can be
e physical
esses are

:

ce 15

FFFFF
esents 1/

F can
esent
3 Addressing and Access Contr

Data storage is organized as a storage hierarchy based on speed of access: user-accessible re
at the highest level followed by the memory system which consists of high-speed buffers tha
recently referenced instructions and/or data, and main memory. The high-speed buffers,
instruction and/or data caches, reduce the effective access time to main memory.

The I/O system is memory-mapped with I/O modules mapped into physical pages that, althou
part of the main memory, are addressed in the same way. With virtual pages mapped into physic
and I/O registers represented by words in a page, communication between a processor and
module can be performed with load and store instructions to virtual addresses. The privilege lev
access rights of such a page provide versatile protection. Non-privileged code may therefore b
direct access to some I/O modules without compromising system security.

PA-RISC processors use byte addressing to fetch instructions and data from main memory or
registers. The byte addresses may be either virtual addresses or absolute addresses. Virtual add
translated to absolute addresses and undergo protection and access rights checking. Memory
using virtual addresses are called virtual accesses. When absolute addresses are used dir
protection or access rights checks are performed. Memory accesses using absolute addresses
absolute accesses.

The instructions that reference memory are load (memory-to-register), store (register-to-memor
semaphore instructions. Additionally, several system control and cache-related instructions ge
addresses that use the address translation, protection, and access rights checking mec
Computation instructions do not reference memory, but perform data transformations by using
obtained from general registers and returning results to these registers.

Physical and Absolute Addressing

Objects in the main memory and I/O system reside in a 64-bit physical address space and
accessed using byte addresses which may be either virtual addresses or absolute addresses. Th
address space and absolute accesses are described in the paragraphs that follow. Virtual acc
described later in this chapter.

Physical Address Space

The Physical Address Space is 64 bits in size as shown in Figure 3-1 and has three components

• Memory Address Space - Addresses 0 through 0xEFFFFFFF FFFFFFFF can referen
Exabytes of memory. This space represents 15/16ths of the Physical Address Space.

• PDC Address Space - Addresses 0xF0000000 00000000 through 0xF0FFFFFF FFF
reference Processor Dependent Code (PDC) and it associated resources. This space repr
256th of the Physical Address Space.

• I/O Address Space - Addresses 0xF1000000 00000000 through 0xFFFFFFFF FFFFFFF
reference nearly 1 Exabyte of I/O registers. The I/O and PDC Address Spaces together repr
1/16th of the Physical Address Space.
3-1PA-RISC 2.0 Architecture Addressing and Access Control

e only
 bits of

f the

 most
dress
64-bit
Although software views the Physical Address Space as being 64 bits in size, implementations ar
required to support physical address spaces between 32 and 64 bits in size. If less than 64
physical address space are supported, the following rules must be observed:

• The Memory, PDC, and I/O Address Spaces must each occupy the same fraction o
implemented physical address space as they do in the 64-bit physical address space, as shown in
Figure3-2.

• In an n-bit physical address space implementation, implementations must ignore the
significant 64-n bits of a 64-bit physical address for references to the Memory and I/O Ad
Spaces. For references to the PDC Address Space, implementations may transform a
physical address into an n-bit physical address in a processor-specific fashion provided the eight
most significant bits of both addresses are identical.

Figure 3-1. 64-bit Physical Address Space

PDC Address
Space

Memory
Address Space

0xF000000 0 00000000

0xF100000 0 00000000

0xFFFFFFFF FFFFFFFF

0x0000000 0 00000000

I/O Address
Space

15
16

1
256

1
16

3-2 Addressing and Access Control PA-RISC 2.0 Architecture

is 0 for

of the
 lowest-
Absolute Accesses

Accesses made withLOAD WORD ABSOLUTE andSTORE WORD ABSOLUTE instructions, or when
virtual address translation is disabled (the PSW D-bit is 0 for data accesses or the PSW C-bit
instruction accesses) are called absolute accesses.

Absolute Accesses when PSW W-bit is 1

When the PSW W-bit is 1 (see “Processor Status Word (PSW)” on page 2-7 for the definition
PSW W-bit), an absolute address is a 62-bit unsigned integer whose value is the address of the
addressed byte of the operand it designates (see Figure 3-3).

Figure 3-2. n-bit Physical Address Space Implementation

ne Absolute Byte Address

2 62

Figure 3-3. 62-bit Absolute Pointer

PDC Address
Space

Memory
Address Space

2n-2 n-4

2n-2 n-4 +2n-8

2n-1

0

I/O Address
Space

15
16

1
256

1
16

3-3PA-RISC 2.0 Architecture Addressing and Access Control

on for

dress of

on for

ugh the
ords (2
own in

 at any
iples of 4,
 is used,

ccessed
Refer to “Absolute Accesses when PSW W-bit is 1” on page H-10 for details on address formati
these accesses.

Absolute Accesses when PSW W-bit is 0

When the PSW W-bit is 0, an absolute address is a 32-bit unsigned integer whose value is the ad
the lowest-addressed byte of the operand it designates (see Figure 3-4)

Refer to “Absolute Accesses when PSW W-bit is 0” on page H-11 for details on address formati
these accesses.

Memory Addressable Units and Alignment

Memory is always referenced with byte addresses, starting with address 0 and extending thro
largest defined non-I/O address (0xEFFFFFFF FFFFFFFF). Addressable units are bytes, halfw
bytes), words (4 bytes), and doublewords (8 bytes). A comparison of the addressable units is sh
Figure 3-5 with the relative byte numbers indicated inside the blocks.

All addressable units must be stored on their naturally aligned boundaries. A byte may appear
address, halfwords must begin at even addresses, words must begin at addresses that are mult
and doublewords must begin at addresses that are multiples of 8. If an unaligned virtual address
an interruption occurs.

Bits within larger units are always numbered from 0 starting with the most significant bit.

I/O address space is referenced in doublewords, words, halfwords, and bytes. I/O registers are a
using the normal load and store instructions.

non-existent Absolute Byte Address

32 32

Figure 3-4. 32-bit Absolute Pointer

Figure 3-5. Physical Memory Addressing and Storage Units

0

0 4

0 2 4 6

0 1 2 3 4 5 6 7Bytes

Halfwords

Words

Doublewords

increasing byte

addresses
3-4 Addressing and Access Control PA-RISC 2.0 Architecture

entifier
space
 of the
r 34

hen
e GVA
cated,

t. The
er the
.)

TLBs),
for a
ss may

ize. User
s with

 address
nd 62 bits
ith 32-
2-bit
or a 96-
iently
Virtual Addressing

Virtual memory is organized into linear spaces. These spaces can range in size from 232 bytes each to
264 bytes each. The object within the space is specified by a 32-bit to 64-bit offset. The space id
is combined with the offset to form a complete global virtual address (GVA.) The offset and
portions are aligned as shown, and bits 34..63 of the space are ORed together with bits 2..31
offset to form the GVA. The lower 32 bits of the GVA come directly from the offset, and the uppe
bits come directly from the space.

A bit in the Processor Status Word (PSW[W]) provides compatibility with older programs. W
PSW[W] is 0, offsets are truncated to 32 bits (the upper 32 bits of the offset are forced to 0). Th
is then formed in the same way, by ORing the offset with the space. Since the offset is trun
though, this is simply equivalent to concatenating the space with the lower 32 bits of the offset.

Implementations also provide an implementation-dependent, software-writable default width bi
default width bit controls whether the PSW W-bit is set to 0 or 1 on interruptions, and also wheth
EIRR is treated as a 32-bit or a 64-bit register. (See “Processor Status Word (PSW)” on page 2-7

Translation from virtual to absolute addresses is accomplished by translation lookaside buffers (
which are described in Chapter 3, “Addressing and Access Control”. Fields in the TLB entry
particular page permit control of access to the page for reading, writing or execution. Such acce
be restricted to a single process, or a set of processes, or may be permitted to all processes.

To a user application, the virtual address space appears to be flatly addressable and 64 bits in s
applications are concerned only with the 64-bit address offset. Full support for 32-bit application
32-bit pointers is also provided.

To Operating System software, the address space can be thought of as consisting of a set of
spaces, each with its own space identifier, and where each address space can be between 32 a
in size, depending on the needs of the individual application. For example, an implementation w
bit space identifiers would allow for 4 billion 32-bit spaces, or 1 million 44-bit spaces, or 4 6
spaces, or any combinations of these. Space identifiers can range up to 64 bits in size, allowing f
bit virtual address. The virtual address model in PA-RISC provides a powerful means for effic
managing a large address space.

0 2
3
1

6
1

6
3

offset a A B

0
3
2

3
4

6
3

space C d D

GVA C d A | D B

Figure 3-6. Global Virtual Address Formation
3-5PA-RISC 2.0 Architecture Addressing and Access Control

of which
 by the
ates the

truction
cess to
 offset,

gle 64-
dress.

ly, the
 control

maphore
and data
egister
For memory management purposes, the address space is logically subdivided into pages, each
can range in size from 4 Kbytes to 64 Mbytes in length. The byte offset into the page is specified
least significant 12 to 26 bits of the virtual address, depending on the page size. Figure 3-7 illustr
structure of spaces, pages, and offsets.

Pointers and Address Specification

For virtual accesses, addresses can be specified two different ways. With explicit pointers, an ins
computes an address offset and explicitly specifies a space identifier. This provides efficient ac
the entire global virtual address space. With implicit pointers, an instruction computes an address
and this offset calculation implicitly specifies a space ID. This provides the appearance of a sin
bit (or 32-bit) flat address space. The offset and space ID are combined to form the full virtual ad

Eight Space Registers hold space identifiers used in forming virtual addresses. Additional
Instruction Address Space Queue holds the space ID for the current instruction address, and two
registers are used to hold space ID information after interruptions.

Data Addresses

Data addresses are computed for regular memory reference instructions (load, store, and se
instructions) and for system instructions used in managing the address space (access probe,
cache and data TLB control instructions). A 64-bit offset is calculated by adding a 64-bit base r

Figure 3-7. Structure of the Virtual Address Space

Space ID

Offset

Virtual Memory

4 KB - 64 MB Pages296 Bytes

Virtual Address

OR
3-6 Addressing and Access Control PA-RISC 2.0 Architecture

isters is
 the

ence and

ough 7.
implicit
virtual

 branch
anaging

e byte
urrent
uction

ress (as
m one
isters 4

.

plus a 64-bit index register or a sign-extended immediate displacement. One of the Space Reg
selected, either implicitly, by the top two bits of the base register, or explicitly, by a field in
instruction. The space ID is then logically ORed with the offset of form the virtual address.

The space identifier is selected from Space Registers 1 through 7 as follows, based on the pres
value of the 2-bits field in the memory reference instruction.

• If the instruction does not have ans field, or if the value of thes field is zero, space ID selection is
implicit. The top two bits of the base register are used to select one of Space Registers 4 thr
This permits the addressing of four distinct spaces selected by program data, and is called
pointer addressing, since a regular 64-bit value specifies the offset and space ID for a full
address.

• If the instruction does have ans field, and the value of thes field is non-zero, the s-field explicitly
selects one of Space Registers 1, 2 or 3. Figure 3-8 illustrates space identifier selection.

Instruction Addresses

Instruction addresses for instruction fetch are computed from the IA queues and as a result of
target calculations. Instruction addresses are also computed for system instructions used in m
the address space (instruction cache and instruction TLB control instructions).

The current instruction address (IA) consists of a space identifier and a 64-bit byte offset. Th
offset is a word-aligned address and contains, in its least significant two bit positions, the c
privilege level. This privilege level controls both instruction and data references. The current instr
address is maintained in the front elements of the Instruction Address Queues (IA queues).

In forming instruction addresses, the space ID can either remain unchanged from the last add
with in-line instruction fetching and with intraspace branches), or the space ID can be selected fro
of the Space Registers. The selection of the Space Register is either implicit (one of Space Reg
through 7 selected by the top two bits of the base register), explicit with a 2-bits field, like data
addressing (one of SRs 1, 2 or 3 selected by the instruction), or explicit with a 3-bits field (one of SRs 0
through 7 selected by the instruction). See Figure 3-8.

As with data addresses, the space ID is logically ORed with the offset to form the virtual address

Executing or branching beyond the end of the current space is undefined.
3-7PA-RISC 2.0 Architecture Addressing and Access Control

 Status
offset
. Space
as in

address
is formed
s offset
to a 32-

 PA-

d from the
ss space
f not all
e, and the
32-bit Addresses

Programs which use 32-bit data and 32-bit pointers are fully supported. A bit in the Processor
Word (PSW W-bit) is used to control address formation. For 32-bit programs, address
calculations are done just as for 64-bit programs, but then the offset is truncated to a 32-bit value
identifier selection for implicit pointers is done with the upper two bits of the lower 32-bits, just
PA-RISC 1.1.

For 32-bit PA-RISC 1.1 programs that directly manipulate space identifiers to gain access to an
space larger than 32 bits, Space Registers appear to be 32 bits in size, and the virtual address
just as in PA-RISC 1.1. (The space identifier is concatenated with the lower 32-bits of the addres
to form the virtual address. This happens automatically as a result of the offset being truncated
bit value.)

In brief, the addressing model of PA-RISC 2.0 is fully compatible with 32-bit programs written for
RISC 1.1.

Absolute Addresses

For absolute accesses, the space identifiers are unused, and the absolute address is calculate
offset alone. If the most significant 4 bits of the offset are 1, the address accesses the I/O addre
and the absolute address is simply equal to the offset. (See “Absolute Accesses” on page 3-3.) I
of the most significant 4 bits of the offset are 1, the address accesses the memory address spac

Figure 3-8. Space Identifier Selection

SR[1]

SR[2]

SR[3]

Space Registers
s-field

Space ID

SR[0]

SR[1]

SR[2]

SR[3]

SR[4]

SR[5]

SR[6]

SR[7]

Space Registers

SR[4]

SR[5]

SR[6]

SR[7]

Space ID

Space Registers

2

4

GR[b]

Space ID

s-field

3

2 3

Implicit pointer
addressing

Explicit pointer
addressing

with 2-bit s-field

Explicit pointer
addressing

with 3-bit s-field
3-8 Addressing and Access Control PA-RISC 2.0 Architecture

space
ress.

anslation
ysical
 for
 may

es in
ed, from
entry.
slation

ber. If
enated
form a
 miss

 the
starts
ed to

d the
rts the
urs in
ve or due
oftware

lation.
support
absolute address is formed by taking the offset and forcing the most significant 2 bits to 0.

This way of forming absolute address for memory allows software more flexibility in address
layout. Note that this has no impact on machine implementing fewer than 62 bits of physical add

Address Resolution and the TLB

Virtual addresses are translated to absolute addresses using a hardware structure called the Tr
Lookaside Buffer (TLB). A TLB accepts a Virtual Page Number and returns the corresponding Ph
Page Number. The TLB is organized as two parts. The instruction TLB (ITLB) is only used
instruction references, while the data TLB (DTLB) is only used for data references. A system
implement a combined TLB which is used for both instruction and data references.

A TLB is typically not large enough to hold all the current translations. Translations for all pag
memory are stored in a memory structure called the Page Table. Multiple page sizes are support
4 Kbytes to 64 Mbytes. This allows large contiguous regions to be mapped with a single TLB
This increases the virtual address range of the TLB, thereby minimizing the virtual address tran
overhead.

Given a virtual address, the selected TLB is searched for an entry matching the Virtual Page Num
the entry exists, the 38 to 52-bit Physical Page Number (contained in the TLB entry) is concat
with the original 12 to 26-bit page offset (depending on the page size in the matching entry) to
64-bit absolute address. If no such entry exists, the TLB is updated by either software TLB
handling or hardware TLB miss handling.

In systems with software TLB miss handling, a TLB miss fault interruption routine performs
translation, explicitly inserts the translation and protection fields into the appropriate TLB, and re
the interrupted instruction. To insure the completion of instructions, the TLBs must be organiz
simultaneously hold all necessary translations.

In implementations that provide hardware for TLB miss handling, the hardware attempts to fin
virtual to physical page translation in the Page Table. If the hardware is successful, it inse
translation and protection fields into the appropriate instruction or data TLB. No interruption occ
this case. If hardware is not successful, due to a search of the Page Table that was not exhausti
to the appropriate translation not existing in the Page Table, an interruption occurs so that the s
can complete the process.

The translation lookaside buffer performs other functions in addition to the basic address trans
The other functions include access control, program debugging support and operating system
for virtual memory. Figure 3-9 summarizes the information maintained for each TLB entry.
3-9PA-RISC 2.0 Architecture Addressing and Access Control

plicitly
] bit is
es” on

 moved
address
p to the
here I/O
 line.
 is an
” on

eference

o trap
e been

phore
 if

 static
ed on
 as a

 in the
The following describes the function of each of the 1-bit fields.

O Ordered. When 0, data memory references using this translation (except those ex
marked as ordered or strongly ordered) may be weakly ordered. When 1 and the PSW[O
1, data memory references using this translation are ordered. See “Ordering of Referenc
page G-1.

U Uncacheable. When 0, data references to a page from memory address space may be
into the cache. When 1, data references to a page from I/O address space or memory
space must not be moved into the cache. The U-bit must be set to 1 for pages which ma
I/O address space, and is commonly set to 1 for pages in the memory address space w
module written data and processor written data must co-exist within the same cache
Referencing a page which maps to the I/O address space and for which the U-bit is 0
undefined operation. Implementation of the U-bit is optional. See “Data Cache Move-In
page F-8 for additional details.

T Page Reference Trap. When 1, data references using this translation cause a page r
trap. The T-bit is most commonly used for program debugging.

D Dirty. When 0, store and semaphore instructions cause a TLB dirty bit trap. When 1, n
occurs. The D-bit may be used by the operating system to determine which pages hav
modified.

B Break. When 1, instructions that could modify data using this translation (store and sema
instructions, and thePURGE DATA CACHE instruction) cause a data memory break trap,
enabled. The B-bit is most commonly used for program debugging.

P Prediction method for branching. When 0, branch prediction is performed based on
prediction hints encoded in the instructions. When 1, branch prediction is performed bas
dynamic prediction hardware, on implementations so equipped. This bit functions solely
performance hint. Implementation of the P-bit is optional.

Since the ITLB is not used for data operands, the O, U, T, D, and B bits are only implemented

Virtual Page Number

52 to 84 bits

Physical Page Number

52 bits

Page Size

4 bits

Access Rights

7 bits

Access ID

15 to 31 bits

O U T D B P Single-Bit Flags

Figure 3-9. TLB Fields
3-10 Addressing and Access Control PA-RISC 2.0 Architecture

nted

ght into
dware
s with
 TLB

trol

re and

age is
B with
 a page

tecture’s
nd TLB
ailable

d. If the
 is not
ported
th data
ave the
DTLB or a combined TLB. Similarly, since the P-bit controls branch prediction, it is only impleme
in the ITLB or combined TLB.

The TLB is managed by a mixture of hardware and software mechanisms. Translations are brou
the TLB by either hardware or software when a TLB miss occurs. In systems which provide har
for TLB miss handling, the Page Table holds the information needed for the TLB. For system
software TLB miss handling, and for explicit insertion of a translation by systems with hardware
miss handling, TLB management instructions provide the TLB with this information. TheINSERT
INSTRUCTION TLB TRANSLATION instruction places the complete translation and access con
information into the ITLB. A similar instruction (INSERT DATA TLB TRANSLATION) places the
complete translation and access control information and also initializes the system softwa
debugging support bit fields in the DTLB.

TLB miss traps do not occur on nullified instructions.

Page Size

The TLBs support a range of page sizes, in multiples of four, from 4 Kbytes to 64 Mbytes. Each p
aligned to an address which is an integer multiple of its size. The page size is inserted into the TL
each translation, and is encoded as shown in Table 3-1. TLB purge instructions can also specify
size, allowing a large contiguous address range to be purged in a single instruction.

Access Control

User processes can be provided with a secure and protected environment via a part of the archi
address translation mechanism. Processor resources, including the PSW, Control Registers, a
entries, contain information used to determine the allowed use of a page. Access control is av
only when address translation is enabled, and is done on a per-page basis.

An access is validated if the check of the access rights and the protection identifiers both succee
access is validated, the instruction reference or data reference is completed. If the access
validated, the instruction is terminated with a protection trap. Instruction access violations are re
with instruction memory protection traps. Data read and write access violations are reported wi
memory access rights or data memory protection ID traps. Probe instructions are special; they s

Table 3-1. Page Sizes

Encoding Page size

0 4 KB
1 16 KB
2 64 KB
3 256 KB
4 1 MB
5 4 MB
6 16 MB
7 64 MB
8-15 Reserved
3-11PA-RISC 2.0 Architecture Addressing and Access Control

ss rights
 check
 within

e of the
ss by the
of the

ed 0,
ast
Q).

ivilege
ege

 probe
 probe

s. Note
ds. An

ction
e used
 bit of
atch
 ID.

data
dress

hen
ses the
result of the access validation in a General Register and do not cause a protection trap. An acce
check is based on the type of access and the current privilege level. The protection identifier
compares the Protection ID Registers with a page-based access identifier in the TLB. State bits
the PSW determine when these checks are enabled.

Process Attributes

The type of access, privilege level, the current values in the Protection ID Registers, and the stat
PSW completely describes the access to the TLB. These resources are managed for each proce
operating system and collectively termed the process attributes. The following defines each
process attributes.

Privilege Level (PL)

Every instruction is fetched and executed at one of four privilege levels (number
1, 2, 3) with 0 being the most privileged. The privilege level is kept in the le
significant two bits of the current instruction’s address (the front element of IAO
For all accesses, except the probe instructions, the privilege check uses the pr
level of the current instruction. The probe instructions explicitly specify the privil
level to be used in the access rights check.

Access type

The access type is either read, write, or execute. Load, semaphore, and read
instructions make read accesses to their operands. Store, semaphore and write
instructions and cache purge operations make write accesses to their operand
that semaphore instructions make both read and write accesses to their operan
execute access occurs when an instruction is fetched for execution.

Protection IDs

The four Control Registers CR 8, CR 9, CR 12, and CR 13 contain the prote
identifiers associated with the current process (Figure 3-10). These registers ar
to allow several different protection groups to be accessed. The least significant
each protection ID is the write-disable (WD) bit. When 0, write accesses that m
that protection ID are allowed. The remaining 15 to 31 bits hold the protection
Figure 3-10 depicts the maximum width of the protection identifier.

PSW access attributes

The PSW protection validation (P-bit), code address translation (C-bit), and
address translation (D-bit) bits further qualify the process attributes. When ad
translation is enabled and the P-bit is 1, the protection ID check is performed. W
0, the protection ID check is always considered successful. An execute access u

0 30 31

Protection ID WD

31 1

Figure 3-10. Protection ID
3-12 Addressing and Access Control PA-RISC 2.0 Architecture

hen 1,
hen 0,

d write
dress

e state

allowed.
on ID
 of the

 needed
ay be
d PL2
access
ute, or
ub-field

e TLB
privilege
d probe

pe field

o more
ss. The

heck
tches this
. This

e level

ith the
C-bit to determine if address translation and access rights check are enabled. W
address translation is performed and execute access rights checks are made. W
no address translation is performed and the access is always allowed. Read an
accesses use the D-bit in an equivalent manner. For probe instructions, ad
translation is performed, and access rights checks are made independent of th
of the PSW D-bit.

Access ID and Access Rights

For each entry in the TLB, the access ID and the access rights fields determine if an access is
The access ID is a 15- to 31-bit field in the TLB that is used with the protection IDs in the protecti
check. The length of the access ID is implementation dependent but must match the length
protection ID (excluding the WD bit).

The access rights field (Figure 3-11) is a 7-bit field that encodes the allowed access types and the
privilege levels. In some cases a minimum privilege is specified, while other access types m
specified with an upper and a lower bound. The three sub-fields type, PL1 (privilege level 1), an
(privilege level 2) combine to form the access rights field. The type sub-field defines the type of
that can be made to this page. Any of read-only, read/write, read/execute, read/write/exec
execute-only is allowed. The PL1 sub-field qualifies read and execute accesses. The PL2 s
qualifies write and execute accesses.

The access rights check compares the current privilege level with the appropriate sub-field of th
access rights field and checks if the type of access is allowed. For a read access, the current
level must be at least as privileged as PL1 and the type field must allow read access. The rea
instructions explicitly specify the privilege level.

For a write access, the current privilege level must be at least as privileged as PL2 and the ty
must allow write access. The write probe instructions explicitly specify the privilege level.

For an execute access, the current privilege level must be at least as privileged as PL1 and n
privileged than PL2. PL1 and PL2 are a lower and an upper bound, respectively, for execute acce
type field must also allow execute access.

For thePURGE DATA CACHE instruction, if implemented as a purge operation, the access rights c
has a special case. The access rights check is done normally, except that if the access rights ma
binary pattern: “111 0X 1X” (where each X stands for either a 1 or a 0), then access is allowed
facilitates cache management. See “Cache Flushing” on page F-10. IfPURGE DATA CACHE is
implemented as a flush operation, then no access rights check is performed.

The type field is also used by theBRANCH instruction with the ,GATE (for gateway) completer to
specify the new privilege level. When the type value is 4 or greater and the encoded new privileg
is of greater privilege, then promotion occurs at the target of the branch.

Table 3-2 defines the type encodings and the necessary conditions of the PL1 and PL2 fields w

Type PL1 PL2

3 2 2

Figure 3-11. Access Rights Field
3-13PA-RISC 2.0 Architecture Addressing and Access Control

 level

ccess
ID. In
be zero
lic page
heck is
allowed.

 check
 access

 the
current privilege level (PL). This table uses the actual binary encoding when doing the privilege
comparison.

The protection identifier check compares the eight Protection ID Registers with the TLB entry’s a
ID. This check is validated if one or more of the protection IDs compare equal with the access
case of a write access, the write disable bit of at least one of the matching protection IDs must
for the check to be validated. An access ID of zero is special and specifies a public page. A pub
always satisfies a protection ID check for any type of access and only an access rights c
performed. If no match occurs and a public page is not being referenced, then the access is not

The PSW P-bit determines whether the protection ID check is performed. When 0, no protection
occurs and only the access rights check is performed. Figure 3-12 on page 3-15 illustrates the
rights and protection ID checks and the processor resources that participate.

*Change of privilege level only occurs if the indicated new value is of higher privilege than
current privilege level; otherwise the target of theBRANCH instruction with the ,GATE
completer executes at the same privilege as theBRANCH itself.

Table 3-2. Access Rights Interpretation

Type value
(in binary)

Allowed access types
andB,GATE promotion Privilege check

000 Read-only: data page
read: PL≤ PL1
write: Not allowed
execute: Not allowed

001 Read/Write: dynamic data page
read: PL≤ PL1
write: PL≤ PL2
execute: Not allowed

010 Read/Execute: normal code page
read: PL≤ PL1
write: Not allowed
execute: PL2≤ PL ≤ PL1

011 Read/Write/Execute: dynamic code page
read: PL≤ PL1
write: PL≤ PL2
execute: PL2≤ PL ≤ PL1

100 Execute: promote to privilege level 0*
read: Not allowed
write: Not allowed
execute: PL2≤ PL ≤ PL1

101 Execute: promote to privilege level 1*
read: Not allowed
write: Not allowed
execute: PL2≤ PL ≤ PL1

110 Execute: promote to privilege level 2*
read: Not allowed
write: Not allowed
execute: PL2≤ PL ≤ PL1

111 Execute: remain at privilege level 3*
read: Not allowed
write: Not allowed
execute: PL2≤ PL ≤ PL1
3-14 Addressing and Access Control PA-RISC 2.0 Architecture

of these
cribed in

s after a
rward
Page Table Structure

Address translations are stored in memory in a structure called the Page Table. The exact form
tables is a software convention, but many aspects of the page tables are common and are des
this section.

The most common use of the Page Table is to translate a virtual address to a physical addres
TLB miss. The virtual address space is quite large, and a traditional approach of a multi-level fo

Figure 3-12. Access Control Checks

Protection
ID 8

Protection
ID 7

Protection
ID 3

Protection
ID 4

Control Registers

Access
Allowed?

8

9

12

13

TLB

Access ID

Access Rights

Protection
Check?

Access Rights
Check?

Type of
Access

(read/write/execute)

PSW
IA queues

P

YesYes

Yes

PL

Protection
ID 1

Protection
ID 2

Protection
ID 5

Protection
ID 6
3-15PA-RISC 2.0 Architecture Addressing and Access Control

o many

 virtual
uniform
ultiple

 or some

e entry

rocessor

 valid

s (see

ons and
mapped table, where each level is directly indexed by a portion of the virtual address, requires to
memory accesses and hence is an inefficient way to provide virtual to physical translations.

A better approach is to index the Page Table using the result of a hash function applied to the
address. The purpose of the hash function is to translate virtual addresses to a smaller, more
name space. The particular function used is implementation dependent. Collisions created by m
addresses hashing to the same entry can be resolved using a sequentially searched linked list
other structure.

The number of entries in the Page Table is typically a power of two. One possible format of a tabl
is shown in Figure 3-13.

The fields are:

V is the valid bit. If V = 1, this entry represents a valid translation.

Tag is a unique key used to identify the virtual address that this entry translates.

R is the reference bit. If R = 1, the page has been accessed (read, write, or execute) by a p
since the bit was last cleared to 0.

Physical Page Number

is the physical page number corresponding to the virtual address, provided this entry is
and the virtual address matches the tag.

Size is the page size, encoded as in Table 3-1 on page 3-11.

Next Page Table Entry

is an index/pointer to perhaps another structure containing overflow page table entries.

0 is a reserved bit field.

s is a bit field reserved for operating system use.

The O, U, T, D, B, P, Access Rights, and Access ID fields correspond to those for TLB entrie
“Address Resolution and the TLB” on page 3-9).

Caches

Caches are high-speed intermediate storage buffers which contain recently accessed instructi
data. The caches are visible to software due to the fact that:

• The architecture supports virtually-indexed caches

V Tag (Virtual Page Number) (63)

0 0 TDB Acc R (7) UOP 0 (3)s(3) R s (10) Access ID (31) s

s 0 (5) Physical Page Number (52) 0 Siz(4)

Next Page Table Entry (64)

Figure 3-13. Page Table Entry
3-16 Addressing and Access Control PA-RISC 2.0 Architecture

s.

nally,
ons of
 of non-
 of the

rely on

 cache
d into”
uch a

emory
inging
ation is
ed in.
ctions

tions to
ove-in

ddress
and pages
from an
le page to
of the U-
he.
• Hardware does not maintain coherence between the instruction cache and the data cache

• In some systems, hardware does not maintain coherence between I/O and processor cache

For these reasons, the caches are managed by software in certain circumstances.

System software can control which portions of memory may be brought into cache. Additio
software can explicitly remove items from the cache. As a result, software can control which porti
memory may be present in the cache. In some situations, such as self-modifying code, the use
equivalent address aliasing, and coordination with non-coherent I/O, software uses this control
caches to effect coherence.

Items in the cache may be removed by hardware at any time. Software may therefore not
particular items remaining in the cache.

A consistent software view of cache operation requires that implementations never write a clean
line back to memory. (A cache line can be 16, 32, or 64 bytes in length.) Clean means “not store
as opposed to “not changed”. Dirty means “stored into”. A cache line which was stored into in s
way that it was unchanged is considered to be dirty.

To insure memory system coherence, and to minimize cache flushing, instructions and data in m
may be brought into the caches only under certain circumstances. This operation of br
information from memory into a cache is referred to as move-in. In general, when address transl
enabled, any data or instructions for which there is a valid translation in the TLB may be mov
When translation is disabled, generally only data or instructions referenced by executed instru
may be moved in. Software may use reference bits and other mechanisms controlled by interrup
determine when lines are potentially in the instruction cache, data cache, or both. See “Cache M
Restrictions” on page F-7.

The U (uncacheable) bit in the data TLB entry also affects caching. A page from the memory a
space which has its U-bit set to 0 is called a cacheable page. Pages from the I/O address space
which have their U-bit set to 1 are called uncacheable pages. It is possible for data cache lines
uncacheable page to exist in a data cache. This case may be caused by changing a cacheab
uncacheable after references to this page were moved into the data cache. Changing the state
bit for a page has no effect on the data cache lines from that page which already exist in the cac
3-17PA-RISC 2.0 Architecture Addressing and Access Control

3-18 Addressing and Access Control PA-RISC 2.0 Architecture

uential
s, or
e order
ction

uction
an be

itional
ecified
e, add,

ranch
. As a
n) is
delayed

” bit
4 Control Flow

The PA-RISC architecture defines a model in which the flow of control passes to the next seq
instruction in memory unless directed otherwise by branch instructions, nullification of instruction
interruptions. The architecture requires that a CPU program appear to execute instructions in th
in which they occur in memory although in reality the order may be changed internally. The instru
execution model described in this chapter provides a logical view of the steps involved in instr
execution. The sections on nullification, branching, and interruptions show how flow control c
altered during the course of program execution.

Branching

Branches alter the control flow during program execution. The architecture provides both uncond
and conditional branch instructions. Unconditional branch instructions always branch to the sp
target. Conditional branch instructions first perform some operation (for example, move, compar
or bit test) and then branch if the outcome of the specified condition is met.

Concept of Delayed Branching

All branch instructions exhibit the delayed branch behavior; that is, the major effect of the b
instruction, the actual transfer of control, occurs one instruction after the execution of the branch
result, the instruction following the branch (located in the delay slot of the branch instructio
executed before control passes to the branch destination. Figure 4-1 illustrates the concept of
branching.

Execution of the delay slot instruction, however, may be skipped (“nullified”) by setting the “nullify
in the branch instruction to 1.
4-1PA-RISC 2.0 Architecture Control Flow

any test
e of a
 the test
s taken.

 branch
ranches.

 offset.

pace ID
 one of
 current
 a base
tion, it
, and is

er, and is
plicitly
Conditional and Unconditional Branches

There are two kinds of branches: unconditional branches are not dependent on the outcome of
operation while conditional branches provide a mechanism to branch based on the outcom
specified test. When the test is successful, the conditional branch is said to be taken, and, when
is unsuccessful, the conditional branch is said to be not-taken. Unconditional branches are alway

Branching and Spaces

Certain branch instructions can only branch to a location within the same space, while others can
to another space. Branches within the same space are referred to as intraspace or local b
Branches to another space are referred to as interspace or external branches.

Target Address Computation

The target of a branch instruction, just like any instruction address, consists of a space ID and an

The space ID of the target of an intraspace branch is not changed by the branch instruction. A s
calculation is performed for interspace branches. The offset portion of the address is computed in
several ways based on the particular branch instruction. When a displacement is added to the
instruction address offset, the branch is called IA-relative. When a general register is used as
offset, it is called base-relative. Also, if the displacement is a fixed value that is known at compila
is known as static displacement. If the value is computed during the course of program execution
read from a general register, it is known as dynamic displacement.

For interspace branches, the space ID of the target address is always specified in a space regist
copied into the IASQ when the branch is performed. The space register used can either be ex

PROGRAM SEGMENT

Location Instruction Comment
100 STW r3, 0(r6) ; non-branch instruction
104 BLR r8, r0 ; branch to location 200
108 ADD r7,r2, r3 ; instruction in delay slot
10C OR r6,r5, r9 ; next instruction in linear code sequence
 . .
 . .
 . .
200 LDW 0(r3), r4 ; target of branch instruction

EXECUTION SEQUENCE

Location Instruction Comment

100 STW r3, 0(r6) ;

104 BLR r8, r0 ;

108 ADD r7,r2, r3 ; delay slot instruction is executed before

200 LDW 0(r3), r4 ; execution of target instruction

Figure 4-1. Delayed Branching Illustrated
4-2 Control Flow PA-RISC 2.0 Architecture

xplicit
ment to
note the
word
nches,
htmost
ranches

e target,
t, a 12-
uction
 in the
r base-

 left by

ion by
d if it is
target
ruction
g the

return
y the
point

 the

aspace
xplicit
 of the
lways

ds on
s.

ard
lified
n is
specified in the instruction or implicitly specified by the upper 2 bits of the base register. For e
interspace branches, the offset of the target is computed by adding a 17-bit signed word displace
the base register specified in a general register. The two rightmost bits in the base register de
new privilege level and are ignored during the offset computation. Also, the 17-bit signed
displacement is shifted left by two before adding to the base register. For implicit interspace bra
the offset of the target is directly specified by the base register with no displacement. The two rig
bits in the base register denote the new privilege level and are not part of the offset. Interspace b
are always base-relative.

In the case of intraspace branches, the space ID is not changed by the branch. The offset of th
however, can be computed in one of three ways. For IA-relative branches with static displacemen
bit, 17-bit, or 22-bit signed word displacement is shifted left by two and added to the current instr
address offset plus eight. For IA-relative branches with dynamic displacement, the value specified
index register is shifted left by three and added to current instruction address offset plus eight. Fo
relative branches with dynamic displacement, the value specified in the index register is shifted
three and added to the value in the specified base register.

It should be noted that for IA-relative branches, the target is computed from the current instruct
adding a displacement or an index value. Since the instruction in the delay slot must be execute
not nullified, an additional value of eight is added in the offset computation to arrive at the
correctly. This is done to ensure that a branch with a displacement of zero will branch to the inst
following the delayed instruction. Also, this helps users build case tables immediately followin
delay slot instruction.

Linkage

Linkage is provided in certain branch instructions to allow a return path for procedure calls. The
point is four bytes after the following instruction. Since the execution of all branches is followed b
execution of the instruction in the delay slot (or null if nullified), it should be noted that the return
is always specified as four bytes after the following instruction and not eight bytes after theBRANCH
instruction. When the following instruction is not spatially sequential, then four bytes after
following instruction is not the same as eight bytes after theBRANCH instruction.

The linkage mechanism is available for both intraspace and interspace branches. For intr
branches, the offset of the return point is saved in the specified target register GR t. For e
interspace branches, the offset of the return point is always saved in GR 31, and the space ID
return point is saved in SR 0. For implicit interspace branches, the offset of the return point is a
saved in GR 2.

Conditional Branching and Nullification

When nullification is specified by a conditional branch instruction, the effect of nullification depen
the direction of the branch. This maximizes useful work done during loops and “if-then” construct

For a backward conditional branch, the following instruction is nullified only when the backw
conditional branch is not taken. For forward conditional branches, the following instruction is nul
only when the forward conditional branch is taken. For unconditional branches, if nullificatio
specified, the following instruction is nullified independent of the direction of branch.
4-3PA-RISC 2.0 Architecture Control Flow

 a pair
e back

pace
queues
come the

he word
et. For
 back
pace ID.
es are

ay slot
tion, I3,
r I3. The
be a
t of its

 the
rrently
cified

, and
Branching and Address Queues

The concept of delayed branching makes it necessary to maintain the instruction address (IA) in
of two element queues. The front elements point to the currently executing instruction and th
elements point to the following instruction that will be executed. The term next refers to the S
Identifier and the offset of the next instruction address, which will enter the back elements of the
when the queues are updated. The queues are said to be updated when the back elements be
front and next become the back elements.

For taken branches, the IA queues get updated with the address of the branch target. Both t
offset and the privilege level are updated. IAOQ_Next receives the value of the branch target offs
not-taken branches, IAOQ_Next gets IAOQ_Back + 4. The privilege level is obtained from the
element of the queue. For interspace branches, IASQ_Next gets the value of the branch target S
Otherwise, IASQ_Next receives the content of IASQ_Back. Figure 4-2 shows how the IA queu
updated, using a pseudo-code representation.

Figure 4-2. Updating Instruction Address Queues

Consider the situation shown in Figure 4-3; a taken branch instruction, I2, is executed in the del
of a preceding taken branch, I1. When this occurs, the first branch I1 schedules its target instruc
to execute after I2, and the second branch, I2, schedules its target instruction, I4, to execute afte
net effect is the out-of-line execution of I3, followed by the execution of I4. Also, if I3 were to
taken branch, its target, I5, would execute after I4, and I4 would also have been executed ou
spatial context.

Note that if nullification is specified in the instruction currently executing, the nullification affects
instruction to be executed next, regardless of whether that instruction immediately follows the cu
executing instruction in the linear code sequence. For example, if the instruction, I2, spe
nullification of the next instruction, then I3 would have no effect except that the PSW X-bit, N-bit
B-bit would be set to 0.

Instruction Address Offset Queue (IAOQ)

IAOQ_Front ← IAOQ_Back;
IAOQ_Back ← IAOQ_Next;
if (taken branch)

IAOQ_Next ← Branch target offset;
else

IAOQ_Next ← IAOQ_Back + 4;

Instruction Address Space Queue (IASQ)

IASQ_Front ← IASQ_Back;
IASQ_Back ← IASQ_Next;
if (interspace branch)

IASQ_Next ← Branch target Space ID;
else

IASQ_Next ← IASQ_Back;
4-4 Control Flow PA-RISC 2.0 Architecture

. Since
dress,

 target
ivilege
pace or
lower
,
 that
hich

target

an
ect.

ive
h
e
e
d)

,
e

Privilege Level Changes

Branch instructions may change the privilege level depending on the type of branch performed
privilege levels are determined by the two rightmost bits in the offset part of the instruction ad
privilege level changes are a function of the offset computation.

Unconditional branches can be IA-relative or base-relative. IA-relative branches compute the
address relative to their own IA value, and since the two rightmost bits are unchanged, the pr
level of the branch instruction and the target are the same. base-relative branches (intras
interspace) may lower the privilege level if the two rightmost bits in the base register are of a
privilege level. TheGATE completer of theBRANCH instruction performs an IA-relative branch
however, it behaves differently for privilege computation. It can promote the privilege level to
specified by the two rightmost bits of the type field, located in the TLB entry for the page from w
theBRANCH-with-GATE instruction is fetched.

Conditional branch instructions always perform IA-relative branches and the privilege level of the
instruction and the branch instruction is the same.

The change of privilege level always takes effect at the target instruction.

Programming Note
Since a branch instruction may be executed in the delay slot of another branch instruction,
interesting case arises because of the way the privilege level changes are defined to take eff

Consider the case where a taken IA-relative branch is placed in the delay slot of a base-relat
branch that lowers the privilege level of its target instruction. First, the base-relative branc
will execute and schedule change of privilege level for its target. Then, in the delay slot, th
IA-relative branch will execute and it will schedule its target to execute at the same privileg
level as its own. Then, the target of the base-relative branch will execute at the new (demote
privileged level. The next instruction, however, which is the target of the IA-relative branch
will have the same privilege level as that of the IA-relative branch, and thus will cause th
privilege level to be restored to the original (higher) value as shown in the following:

PROGRAM SEGMENT

Location Instruction Comment

100 STW r7, 0(r8) ; non-branch instruction

104 BV r0(r7) ; branch vectored to 200 and change priv -> 2

108 BLR r4, r0 ; IA-relative branch to location 400

10C ADD r2,r6, r9 ; next instruction in linear code sequence

 . .

 . .

 . .

200 LDW 0(r3), r11 ; target of branch vectored instruction

 . .

 . .

 . .
4-5PA-RISC 2.0 Architecture Control Flow

, and a
g. If the
r trap
ilege

ch
ken, the
Traps Associated with Branches

Branch instructions may cause various traps based on the value of PSW bits. If the PSW T-bit is 1
branch is taken, a taken branch trap occurs. This trap may be used for the purposes of debuggin
PSW H-bit is 1, and a branch instruction raises the privilege level, a higher-privilege transfe
occurs. If the PSW L-bit is 1, and a branch instruction lowers the privilege level, a lower-priv
transfer trap occurs.

Restrictions in Branching

It is illegal for a BRANCH with GATE instruction to execute in the delay slot of a taken bran
instruction. The PSW B-bit ensures that this sequence is not permitted. Whenever a branch is ta
PSW B-bit is set to 1 and, if the next instruction is aBRANCH with GATE, an illegal instruction trap
occurs.

400 LDW 0(r15), r4 ; target of IA-relative branch instruction

404 STW r4, 0(r18)

EXECUTION SEQUENCE

Location Instruction Comment

100 STW r7, 0(r8) ; priv = 0

104 BV r0(r7) ; priv = 0

108 BLR r4, r0 ; priv = 0

200 LDW 0(r3), r11 ; priv = 2 decreased by branch vectored instr

400 LDW 0(r15), r4 ; priv = 0 changed back by IA-relative branch

404 STW r4, 0(r18) ; priv = 0

PROGRAM SEGMENT

Location Instruction Comment
100 STW r7, 0(r8) ; non-branch instruction
104 BV r0(r7) ; branch vectored to location 200 I1
108 BLR r4, r0 ; IA-relative branch to location 400 I2
10C ADD r2,r6, r9 ; next instruction in linear code sequence
 . .
 . .
 . .
200 LDW 0(r3), r11 ; target of branch vectored instruction I3
204 ADD r11,r12, r14 ;
 . .

PROGRAM SEGMENT
4-6 Control Flow PA-RISC 2.0 Architecture

except
covery
up 3

wing
 of

t.

oding,
 below
m may

on that
hanges
ion is

most-

PSW
Figure 4-3. Branch in the Delay slot of a Branch

Nullification

A nullified instruction is an instruction that is skipped over. It has no effect on the machine state (
that the IA queues advance and the X-bit, N-bit, and B-bit in the PSW are set to 0). The re
counter is not decremented for a nullified instruction. Nullified instructions do not take gro
interruptions (although they may take group 1, 2, or 4 interruptions).

All branch instructions and most computational instructions can nullify the execution of the follo
instruction. For branch instructions, nullification can be specified explicitly. In the case
computational instructions, nullification is performed conditionally based on the outcome of a tes

Instruction Execution

Instruction flow involves calculating the address of the current instruction and then fetching, dec
and executing that instruction. This process involves performing the sequence of events listed
regardless of the instruction type. (Although these events are listed in sequence, many of the
occur in parallel. It is only necessary that they appear to be logically sequential.) In the descripti
follows, the values of the PSW bits are the values that exist before the instruction is executed. C
to the PSW bits only affect instructions after the current instruction. This flow of instruction execut
shown in Figure 4-4.

1. If the PSW M-bit is 0, then high priority machine checks (HPMCs) may occur.

2. The processor checks for group 2 interruptions:

a. A power failure interrupt that is not masked by the PSW I-bit.

b. A recovery counter trap. This trap is enabled when the PSW R-bit) is 1 and the
significant bit of the recovery counter is 1.

c. An external interrupt or low-priority machine check, both of which are unmasked by the
I-bit.

 . .
 . .
400 LDW 0(r15), r4 ; target of IA-relative branch instruction I4
404 STW r4, 0(r18) ; I5

EXECUTION SEQUENCE

Location Instruction Comment
100 STW r7, 0(r8) ;
104 BV r0(r7) ; schedules execution at 200 after delay instr I1
108 BLR r4, r0 ; schedules execution at 400 after delay instr I2
200 LDW 0(r3), r11 ; target of first branch executes out of context I3
400 LDW 0(r15), r4 ; target of second branch (is a non-branch) I4
404 STW r4, 0(r18) ; next instruction is in linear code sequence I5
4-7PA-RISC 2.0 Architecture Control Flow

t be
d. A performance monitor interrupt that is not masked by the PSW F-bit.

3. Depending on the state of the PSW N-bit, one of two events occur:

a. If the current instruction is nullified (the PSW N-bit is 1), group 3 interruptions must no

Figure 4-4. Interruption Processing

RFI

RFI

YESNO

YESNO

RFI RFI

Note: the solid
line represents

the normal
execution path.

Dotted line
boxes describe

software
activities.

Fetch current
instruction, perform
current instruction,
advance IA Queue

and Recovery
Counter, update

PSW.

group 3
interruption
pending?

group 4
interruption
pending?

group 2
interruption
pending?

vector to highest-
priority pending

group 4 interruption

process all pending
group 4

interruptions

vector to highest
priority pending

group 2 interruption

vector to highest-
priority pending

group 3 interruption

back out effect of
current instruction;
backup recovery

counter, PSW, and
IA queues.

process interruption

process interruption

YESNO
4-8 Control Flow PA-RISC 2.0 Architecture

ith the
W X-

hed
ccurs
g the
ion of
a split
f the

r an

on is
N-bit
depends

ueue is
 the

k of the
ilege
it is set

cuted

n that
aken.
H-bit
ilege

 T-bit

luding
which
nclude
affects

fect the
taken. The instruction address queue is advanced and the back of the queue is written w
new front element + 4. The privilege level is the same as the new front element. The PS
bit, N-bit, and B-bit are set to 0.

b. If the current instruction is not nullified (the PSW N-bit is 0), then the instruction is fetc
using the front elements of the instruction address (IA) queues. If a group 3 interruption o
during execution, the processor rolls back the effect of the current instruction by restorin
beginning state and takes the interruption. If the PSW C-bit is 1, virtual address translat
the instruction address is performed. The PSW P-bit enables protection checking. On
TLB system, the instruction TLB is used for instruction address translation. The fetching o
current instruction may result in an instruction TLB miss fault/instruction page fault o
instruction memory protection trap.

The Recovery Counter is decremented if the PSW R-bit is 1. The current instructi
executed and the PSW X-bit is set to 0. If the next instruction is to be nullified, the PSW
is set to 1, and the instruction address queues are updated. The nature of that update
on whether the current instruction is a taken branch:

• For a taken branch: the instruction address queues are advanced, the back of the q
loaded with the target address including the privilege level which is computed by
branch instruction, and the PSW B-bit is set to 1.

• For a branch that is not taken: the instruction address queues are advanced, the bac
instruction address offset queue is written with the new front element + 4, the priv
level of the back element is set the same as the new front element, and the PSW B-b
to 0.

• If the current instruction is aRETURN FROM INTERRUPTION instruction, the IA queues
and the PSW are updated with the new values and the following instruction is exe
based on these new values.

4. Group 4 traps are handled after execution is complete. If the new privilege level is lower tha
of the just completed instruction and the PSW L-bit was 1, a lower-privilege transfer trap is t
If the new privilege level is higher than that of the just completed instruction and the PSW
was 1, a higher-privilege transfer trap is taken. The term “new privilege” level refers to the priv
level at which the following instruction executes.

If neither transfer trap is taken, the instruction just completed is a taken branch, and the PSW
was 1, then a taken branch trap occurs.

Instruction Pipelining

The architecture permits implementations to prefetch up to seven instructions from the cache (inc
branch prediction) beyond the instruction currently executing. Instructions may modify resources
affect instruction fetch on the machine they are executing on. Instruction fetch resources i
protection identifier registers, the PSW, and TLB entries. When such an event takes place, it
instructions that are fetched 8 instructions later (at the latest), or after the nextRETURN FROM
INTERRUPTION instruction, whichever occurs first.

Instructions may also modify resources on other processors in a multiprocessor system, which af
4-9PA-RISC 2.0 Architecture Control Flow

 of the
ter they

essors,
omplete
oval.

fter the

ove-

 is in the
instruction fetch of the target processors. When such an event takes place (the modification
resource is acknowledged), it affects instructions that are fetched, on the target processors, af
have finished executing 8 instructions (at the latest) except as noted below.

When a processor executes an instruction which purges an instruction TLB entry in other proc
the target processors must acknowledge completing the purge. The target processors may not c
a move-in, which was initiated using the purged translation, after acknowledging the rem
Acknowledgment of a data TLB purge request from another processor must not be made until a
purge has logically been performed.

Modification of code, while discouraged, may be performed using the following protocol:

1. Modify the code in the data cache.

2. Flush the modified code from the data cache.

3. Issue aSYNCHRONIZE CACHES instruction to ensure the flush is completed and subsequent m
in will observe the memory version.

4. Flush the location of the modified code from the instruction cache.

5. Issue aSYNCHRONIZE CACHES instruction to ensure the flush is completed.

6. Delay at least an additional seven instructions or execute aRETURN FROM INTERRUPTION
instruction.

In a multiprocessor system, software must ensure that no other processor is executing code that
process of being modified.
4-10 Control Flow PA-RISC 2.0 Architecture

control
cessor

errupted

d. That
ised by
on.

 during

due to
ystem

s are

rrent
d by

clude
with
not
 Traps

tion.

either

to four
5 Interruptions

Interruptions are anomalies that occur during instruction processing, causing transfer of the flow
to an interruption handling routine. In the process, the hardware automatically saves certain pro
state. Upon completion of interruption processing, aRETURN FROM INTERRUPTION instruction is
executed, which restores the saved processor state, and the execution proceeds with the int
instruction.

From the viewpoint of response to interruptions, the processor behaves as if it were not pipeline
is, it behaves as if a single instruction is fetched and executed, and any interruption conditions ra
that instruction are handled at that time. If there are none, the next instruction is fetched, and so

Interrupt Classes

Faults, traps, interrupts, and checks are the different classes of interruptions that may happen
instruction processing. Definitions of the four classes of interruptions are as follows:

Fault The current instruction requests a legitimate action which cannot be carried out
a system problem, such as the absence of a page from main memory. After the s
problem has been corrected, the faulting instruction will execute normally. Fault
synchronous with respect to the instruction stream.

Trap Traps include two sorts of possibilities: either the function requested by the cu
instruction cannot or should not be carried out, or system intervention is desire
the user before or after the instruction is executed. Examples of the first type in
arithmetic operations that result in signed overflow and instructions executed
insufficient privilege for their intended function. Such instructions are normally
re-executed. Examples of the second type include the debugging support traps.
are synchronous with respect to the instruction stream.

Interrupt An external entity (for example, an I/O device or the power supply) requires atten
Interrupts are asynchronous with respect to the instruction stream.

Check The processor has detected an internal malfunction. Checks can be
synchronous or asynchronous with respect to the instruction stream.

All four classes of interruptions are handled in the same way. The interruptions are categorized in
groups based on their priorities:

Group 1: 1 High-priority machine check

Group 2: 2 Power failure interrupt

3 Recovery counter trap

4 External interrupt

5 Low-priority machine check

29 Performance monitor interrupt
5-1PA-RISC 2.0 Architecture Interruptions

which
ticular
ns are
eous

plete

nd 3
ptions,
The interruption numbers in the above list are the individual vector numbers that determine
interruption handler is invoked for each interruption. The group numbers determine when the par
interruption will be processed during the course of instruction execution. The order the interruptio
listed within each group (not the interruption numbers) determines the priority of simultan
interruptions (from highest to lowest).

Interruption Handling

Interruption handling is implemented as a fast context switch (which is much simpler than a com
process swap). When an interruption occurs, the hardware takes the following actions:

1. The PSW in effect at the time of the interruption is saved in the IPSW. For group 2 a
interruptions, the saved PSW is the value at the beginning of execution. For group 4 interru
the saved PSW is the value after the execution of the instruction.

2. The defined bits in the PSW are set as follows:

W Set to the value of the default width bit.

E Set to the value of the default endian bit.

Group 3: 6 Instruction TLB miss fault/Instruction page fault

7 Instruction memory protection trap

8 Illegal instruction trap

9 Break instruction trap

10 Privileged operation trap

11 Privileged register trap

12 Overflow trap

13 Conditional trap

14 Assist exception trap

15 Data TLB miss fault/Data page fault

16 Non-access instruction TLB miss fault

17 Non-access data TLB miss fault/Non-access data page fault

26 Data memory access rights trap

27 Data memory protection ID trap

28 Unaligned data reference trap

18 Data memory protection trap/Unaligned data reference trap

19 Data memory break trap

20 TLB dirty bit trap

21 Page reference trap

22 Assist emulation trap

Group 4: 23 Higher-privilege transfer trap

24 Lower-privilege transfer trap

25 Taken branch trap
5-2 Interruptions PA-RISC 2.0 Architecture

0.

tep 2

st two
g from
 have
queues
n, the
ues may

isters
s are

eful in
9). If
ce and

eter

-bit was
.

toring
y this
ption
ed on

al

 saved
cessing
r other
tion is
M Set to 1 if the interruption is a high-priority machine check; otherwise, set to

all other bits Set to 0 (interrupts are masked, absolute accesses are enabled, etc.).

3. IA information in the IIA queues is frozen (as a result of setting the PSW Q-bit to 0 in s
above).

In order to enable restarting of instructions in the presence of delayed branching, at lea
addresses must be saved, pointing to the next two instructions to be executed after returnin
the interruption. The hardware, therefore, maintains IIA Space and IIA Offset queues, which
two elements and contain the addresses and privilege levels of these instructions. The IIA
are kept up-to-date whenever the Q-bit in the PSW is 1. When an interruption is take
addresses of the pending instructions are preserved in the queues. The elements of the que
be obtained by reading the IIASQ and IIAOQ registers (CRs 17 and 18, respectively).

4. The current privilege level is set to the highest privilege level (zero).

5. Information about the interrupting instruction is saved in the Interruption Parameter Reg
(IPRs) if the PSW Q-bit was 1 at the time of the interruption. If the PSW Q-bit was 0, the IPR
unchanged. If the details of an instruction associated with the interruption are potentially us
processing it, the instruction is loaded into the Interruption Instruction Register (IIR or CR 1
there is an address associated with the interruption, it is loaded into the Interruption Spa
Interruption Offset registers (ISR or CR 20, and IOR or CR 21). See “Interruption Param
Registers (IPRs)” on page 2-15 for a description of the format of these registers.

6. General registers 1, 8, 9, 16, 17, 24, and 25 are copied to the shadow registers if the PSW Q
1 at the time of the interruption. If the PSW Q-bit was 0, the shadow registers are unchanged

7. Execution begins at the address given by:

Interruption Vector Address + (32 * interruption_number)

Interruption_number is the unique integer value assigned to that particular interruption. Vec
is accomplished by performing an indexed branch into the Interruption Vector Table indexed b
integer. The Interruption Vector Table contains the first eight instructions of each of the interru
handling routines. The value in the Interruption Vector Address register (CR 14) must be align
a 2 Kbyte boundary.

Programming Note
It is the responsibility of interruption handlers to unmask external interrupts (by setting the
PSW I-bit to 1) as soon as possible, so as to minimize the worst-case latency of extern
interrupts.

Instruction Recoverability

When execution of instructions is interrupted, the minimal processor state that is required to be
and restored is that necessary to correctly continue execution of the instruction stream after pro
of the interruption. Processor state is defined to include any register contents, PSW bits, o
information that may affect the operation performed by an instruction. For example, if an interrup
5-3PA-RISC 2.0 Architecture Interruptions

ister

ed. It
uption

le to

s, and
tate in

enerally
s been

s within

. They
re than

ltiple
 several
us with

 before

 either
out to

xternal
ents of

es. If
are re-
 be set
taken immediately before anADD instruction, its source registers must be restored, but its target reg
need not be (unless it is also one of the source registers).

Masking and Nesting of Interruptions

Disabling an interruption prevents it from occurring. The interruption does not wait until re-enabl
is not kept pending. Masking an interruption does not prevent the recognition of a pending interr
condition, but delays the occurrence of the interruption until it is “unmasked”.

The IA state is collected in the IIA queues only while the PSW Q-bit is 1; it is usually not possib
resume execution after an interruption which is taken while the PSW Q-bit is 0.

The machine state is saved in registers rather than memory when an interruption occur
interruption handlers must leave interruptions disabled until they have saved the machine s
memory. Once the machine state is saved, nested interrupts can be allowed.

Since it is desirable to catch hardware faults as soon as possible, interruption handlers should g
not mask high-priority machine checks. If a machine check occurs before the machine state ha
saved, the interrupted process may need to be aborted. The occurrence of traps and fault
interruption handlers can be avoided by careful writing of the handlers.

Interruption Priorities

High-priority machine checks (which belong to Group 1) may occur and be processed at any time
may be synchronous or asynchronous with instruction processing, may be associated with mo
one instruction, and their precise meaning and processing is implementation dependent.

All interruptions other than high-priority machine checks are taken between instructions. Mu
simultaneous interruptions may occur because a number of instructions are capable of raising
synchronous interruptions simultaneously, and because certain interruptions are asynchrono
respect to the instruction stream.

Group 2 interruptions occur asynchronously with respect to the instruction stream.

Group 3 interruptions are synchronous with respect to the instruction stream and are signalled
completion of the instruction that produces them.

Group 4 interruptions are synchronous with respect to the instruction stream and are signalled
after completion of the instruction that causes them, or when a change in privilege level is ab
happen.

Relative priorities are not assigned to the 64 external interrupts by the hardware. When multiple e
interrupts occur simultaneously, software may select their order of service, based on the cont
EIR.

Return from Interruption

TheRETURN FROM INTERRUPTION instruction restores the PSW and the instruction address queu
the old PSW stored in IPSW (CR 22) has interruptions enabled (or unmasked), interruptions
enabled before execution of the first of the continuation instructions. The PSW Q-bit may reliably
5-4 Interruptions PA-RISC 2.0 Architecture

 a

 the

0

)

nd
 at

RISC

ntinue

 of the
lt the
to 1 only by aRETURN FROM INTERRUPTION instruction. An attempt to set the PSW Q-bit to 1 with
SET SYSTEM MASK or MOVE TO SYSTEM MASK instruction is an undefined operation.

Adding the “,R” (restore) completer to theRETURN FROM INTERRUPTIONinstruction does everything
that a normalRETURN FROM INTERRUPTION instruction does, and in addition causes the values in
shadow registers to be copied to GRs 1, 8, 9, 16, 17, 24, and 25. Execution of aRETURN FROM
INTERRUPTION with the “,R” completer leaves the contents of the shadow registers undefined.

Executing aRETURN FROM INTERRUPTION instruction with the PSW Q-bit 0 and the IPSW Q-bit
leaves the IPRs unchanged.

Programming Note
Only those interruptions which are themselves uninterruptible (they leave the PSW Q-bit 0
may return from the interruption using theRFI,R instruction. Interruption handling code which
is interruptible (they set the PSW Q-bit to 1) must return from the interruption using theRFI
instruction.

Fast interruption handling is achieved using shadow registers, since GRs 1, 8, 9, 16, 17, 24, a
25 are copied to the shadow registers on interruptions. In this example, it is assumed that
most seven general registers need to be used in the interruption handling routine.

Interruption Descriptions

The sections that follow provide descriptions of each of the interrupts defined in the PA-
architecture.

Group 1 Interruptions

High-priority Machine Check (1)

Cause: A hardware error has been detected that must be handled before processing can co

Parameters: Implementation dependent

IIA Queue: Front – Implementation dependent
Back – Implementation dependent

Notes: The actions taken when a hardware error is detected depend on the seriousness
error. Damage extensive enough to prevent proper execution of instructions will ha

Using RFI Using RFI,R

interrupt interrupt

save GRs <no save>

[process interrupt] [process interrupt]

restore GRs <no restore>

RFI RFI,R
5-5PA-RISC 2.0 Architecture Interruptions

mage
tes a

to 1,
uses of
s of

nd to

equal

nable
 23).

value
 the
 bit 5
f the
, an
machine and generate an external indication of the occurrence of the check. Da
which allows a subset of the instructions to execute (e.g., inoperative TLB) genera
high-priority machine check interruption. This is maskable by setting the PSW M-bit
so that machine checks within the machine check handler can be prevented. The ca
high-priority machine checks are implementation dependent, as is the mean
controlling their reporting.

Group 2 Interruptions

Power Failure Interrupt (2)

Cause: The machine is about to lose power

Parameters: none

IIA Queue: Front – Address of the instruction to be executed at the time of the interruption
Back – Address of the following instruction

Notes: This interruption is masked and kept pending when the PSW I-bit is 0.

Recovery Counter Trap (3)

Cause: Bit 0 of the recovery counter is 1 and the PSW R-bit is 1

Parameters: none

IIA Queue: Front – Address of the instruction to be executed at the time of the interruption
Back – Address of the following instruction

Notes: The recovery counter can be used to log interruptions during normal operation a
simulate interruptions during recovery from a fault.

External Interrupt (4)

Cause: A module writes to the processor’s IO_EIR register, or the interval timer compares
to its associated comparison register

Parameters: none

IIA Queue: Front – Address of the instruction to be executed at the time of the interruption
Back – Address of the following instruction

Notes: Each external interrupt level has associated with it one bit in the External Interrupt E
Mask Register (CR 15) and one bit in the External Interrupt Request Register (CR
When a module writes into the EIR register, the bit position corresponding to the
written is set to 1. If the default width bit is 1, the bit to set directly corresponds to
value; if 0, the bit to set is the value + 32. For example if the value 5 is written, then
of the EIR register is set to 1 if the default width bit is 1, and bit 37 of the EIR is set i
default width bit is 0. If the corresponding bit in CR 15 is 1 and the PSW I-bit is 1
external interrupt is taken; otherwise, the interrupt is masked, and is kept pending.

Interrupt handling software sets bits in the EIR to 0 by executing aMOVE TO CONTROL
5-6 Interruptions PA-RISC 2.0 Architecture

e to

ediate

t that
chine
t is 0.
means

essor

TLB
slation

or an
d the
REGISTER instruction with the appropriate mask.

If multiple sources can set the same interrupt, it is the responsibility of softwar
correctly respond to all of the interrupting sources.

Low-priority Machine Check (5)

Cause: A hardware error has been detected which is recoverable and does not require imm
handling

Parameters: Implementation dependent

IIA Queue: Front – Address of the instruction to be executed at the time of the interruption
Back – Address of the following instruction

Notes: Errors which have been detected and recovered from by hardware to the poin
operation can continue in a degraded fashion are reported via the low-priority ma
check interruption. This interruption is masked and kept pending when the PSW I-bi
The causes of low-priority machine checks are implementation dependent, as is the
of controlling their reporting.

Performance Monitor Interrupt (29)

Cause: An implementation-dependent event related to the performance monitor coproc
requires software intervention

Parameters: Implementation dependent

IIA Queue: Front – Address of the instruction to be executed at the time of the interruption
Back – Address of the following instruction

Notes: This interruption is masked and kept pending when the PSW F-bit is 0.

Group 3 Interruptions

Instruction Tlb Miss Fault/instruction Page Fault (6)

Cause: The instruction TLB entry needed by instruction fetch is absent, and if instruction
misses are handled by hardware, the hardware miss handler could not find the tran
in the Page Table

Parameters: none

IIA Queue: Front – Address of the instruction causing the fault
Back – Address of the following instruction

Notes: Only if an instruction is to be executed can an instruction TLB miss fault occur.

Instruction Memory Protection Trap (7)

Cause: Instruction address translation is enabled and the access rights check fails f
instruction fetch or instruction address translation is enabled, the PSW P-bit is 1, an
protection identifier checks fails for an instruction fetch
5-7PA-RISC 2.0 Architecture Interruptions

es are
p). On

most

ileged
Parameters: none

IIA Queue: Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes: This interruption does not occur for absolute accesses.

Illegal Instruction Trap (8)

Cause: An attempt is being made to execute an illegal instruction or to execute aBRANCH with
GATE instruction with the PSW B-bit equal to 1

Parameters: IIR – The illegal instruction causing the trap

IIA Queue: Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes: Illegal instructions are the unassigned major opcodes. Unassigned sub-opcod
undefined operations (undefined sub-opcodes may cause the illegal instruction tra
some implementations,DIAGNOSE may be an illegal instruction.

Break Instruction Trap (9)

Cause: An attempt is made to execute aBREAK instruction

Parameters: IIR – TheBREAK instruction causing the trap

IIA Queue: Front – Address of the instruction causing the trap
Back – Address of the following instruction

Privileged Operation Trap (10)

Cause: An attempt is being made to execute a privileged instruction without being at the
privileged level (priv= 0)

Parameters: IIR – The privileged instruction causing the trap

IIA Queue: Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes: The list of privileged instructions is:DIAG, IDTLBT, IITLBT, LCI, LDDA, LDWA, LPA,
MTSM, PDTLB, PDTLBE, PITLB, PITLBE, RFI, RSM, SSM, STDA, STWA.

Privileged Register Trap (11)

Cause: An attempt is being made to write to a privileged space register or access a priv
control register without being at the most privileged level (priv= 0)

Parameters: IIR – The instruction causing the trap

IIA Queue: Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes: This interruption may be caused by theMOVE TO SPACE REGISTER, MOVE TO CONTROL
REGISTER, or MOVE FROM CONTROL REGISTER instructions.
5-8 Interruptions PA-RISC 2.0 Architecture

ation.

en an
g the

essor.

ction is
r could

 miss
Overflow Trap (12)

Cause: A signed overflow is detected in an instruction which traps on overflow

Parameters: IIR – The instruction causing the trap

IIA Queue: Front – Address of the instruction causing the trap
Back – Address of the following instruction

Conditional Trap (13)

Cause: The condition succeeds in an instruction which traps on condition

Parameters: IIR – The instruction causing the trap

IIA Queue: Front – Address of the instruction causing the trap
Back – Address of the following instruction

Assist Exception Trap (14)

Cause: A coprocessor or special function unit has detected an exceptional condition or oper
An exceptional operation may include unimplemented operations or operands.

Parameters: IIR – For immediate traps, the SFU or coprocessor instruction that was executing wh
exception is reported with a trap. It may or may not be related to the condition causin
exception. For delayed traps, any instruction corresponding to the SFU or coproc
See “Interruptions and Exceptions” on page 10-4.

IIA Queue: Front – Address of the instruction causing the trap
Back – Address of the following instruction

Data Tlb Miss Fault/data Page Fault (15)

Cause: The data TLB entry needed by operand access of a load, store, or semaphore instru
absent, and if data TLB misses are handled by hardware, the hardware miss handle
not find the translation in the Page Table

Parameters: ISR – space identifier of data address
IOR – offset of data address
IIR – The instruction causing the fault

IIA Queue: Front – Address of the instruction causing the fault
Back – Address of the following instruction

Notes: This interruption does not occur for absolute accesses.

Non-access Instruction Tlb Miss Fault (16)

Cause: The instruction TLB entry needed for the target of aFLUSH INSTRUCTION CACHE
instruction is absent, and if TLB misses are handled by hardware, the hardware
handler could not find the translation in the Page Table

Parameters: ISR – space identifier of virtual address to be flushed
IOR – offset of virtual address to be flushed
5-9PA-RISC 2.0 Architecture Interruptions

 fault
ccur

, the

e fault
ccur

perand

 check
 purge
IIR – The instruction causing the fault

IIA Queue: Front – Address of the instruction causing the fault
Back – Address of the following instruction

Notes: This interruption source is distinguished from other TLB misses because a page
should not result in reading the faulting page from disk. This interruption does not o
for absolute accesses.

Non-access Data Tlb Miss Fault/non-access Data Page Fault (17)

Cause: The data TLB entry needed by aLOAD PHYSICAL ADDRESS, PROBE ACCESS, PROBE
ACCESS IMMEDIATE, FLUSH INSTRUCTION CACHE, PURGE DATA CACHE, or aFLUSH
DATA CACHE instruction is not present, and if TLB misses are handled by hardware
hardware miss handler could not find the translation in the Page Table

Parameters: ISR – space identifier of virtual address
IOR – offset of virtual address
IIR – The instruction causing the fault

IIA Queue: Front – Address of the instruction causing the fault
Back – Address of the following instruction

Notes: These interruption sources are distinguished from other TLB misses because a pag
should not result in reading the faulting page from disk. This interruption does not o
for absolute accesses.

Data Memory Access Rights Trap (26)

Cause: Data address translation is enabled, and an access rights check fails on an o
reference for a load, store, or semaphore instruction, or a cache purge operation

Parameters: ISR – space identifier of the virtual address
IOR – offset of the virtual address
IIR – The instruction causing the trap

IIA Queue: Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes: This interruption does not occur for absolute accesses.

Data Memory Protection Id Trap (27)

Cause: Data address translation is enabled, the PSW P-bit is 1, and a protection identifier
fails on an operand reference for a load, store, or semaphore instruction, or a cache
operation

Parameters: ISR – space identifier of the virtual address
IOR – offset of the virtual address
IIR – The instruction causing the trap

IIA Queue: Front – Address of the instruction causing the trap
Back – Address of the following instruction
5-10 Interruptions PA-RISC 2.0 Architecture

 to an

aphore
 and
ligned

entifier
 cache

s with
aphore

mory
ith the
 (16

 PA-
and 28

bit 1 in
Notes: This interruption does not occur for absolute accesses.

Unaligned Data Reference Trap (28)

Cause: Data address translation is enabled, and a load or store instruction is attempted
unaligned address

Parameters: ISR – space identifier of the virtual address
IOR – offset of the virtual address
IIR – The instruction causing the trap

IIA Queue: Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes: Unaligned data reference traps are not detected for absolute accesses or sem
instructions – they are undefined operations. Only unaligned virtual memory loads
stores (including coprocessor loads and stores) are defined to terminate with the una
data reference trap.

Data Memory Protection Trap/unaligned Data Reference Trap (18)

Cause: Data address translation is enabled, and an access rights check or a protection id
check fails on an operand reference for a load, store, or semaphore instruction, or a
purge operation; a load or store instruction is attempted to an unaligned addres
virtual address translation enabled (unaligned absolute references and sem
instructions are undefined operations)

Parameters: ISR – space identifier of the virtual address
IOR – offset of the virtual address
IIR – The instruction causing the trap

IIA Queue: Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes: This interruption does not occur for absolute accesses. Only unaligned virtual me
loads and stores (including coprocessor loads and stores) are defined to terminate w
data memory protection trap. Execution of a semaphore instruction with unaligned
byte boundaries) addresses is an undefined operation.

This trap is retained for compatibility with the earlier revisions of the architecture. In
RISC 1.1 (Second Edition) and later revisions, processors must use traps 26, 27,
which provide equivalent functionality.

Data Memory Break Trap (19)

Cause: Store and semaphore instructions or cache purge operations to a page with the B-
the data TLB entry

Parameters: ISR – space identifier of the virtual address
IOR – offset of the virtual address
IIR – The instruction causing the trap
5-11PA-RISC 2.0 Architecture Interruptions

lute

. This

nding
ction
gister
IIA Queue: Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes: This trap is disabled if the PSW X-bit is 1. This interruption does not occur for abso
accesses.

Tlb Dirty Bit Trap (20)

Cause: Store and semaphore instructions to a page with the D-bit 0 in the data TLB entry

Parameters: ISR – space identifier of the data address
IOR – offset of the data address
IIR – The instruction causing the trap

IIA Queue: Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes: Software is invoked to update the dirty bit in the data TLB entry and the Page Table
interruption does not occur for absolute accesses.

Page Reference Trap (21)

Cause: Load, store,and semaphoreinstructions to a page with the T-bit 1 in its data TLB entry

Parameters: ISR – space identifier of the virtual address
IOR – offset of the virtual address
IIR – The instruction causing the trap

IIA Queue: Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes: This interruption does not occur for absolute accesses.

Assist Emulation Trap (22)

Cause: An attempt is being made to execute an SFU instruction for an SFU whose correspo
bit in the SFU Configuration Register (SCR) is 0 or to execute a coprocessor instru
for a coprocessor whose corresponding bit in the Coprocessor Configuration Re
(CCR) is 0

Parameters: ISR – space identifier of the data address
IOR – offset of the data address
IIR – The instruction causing the trap

IIA Queue: Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes: ISR and IOR contain valid data only if the instruction is a coprocessor load or store.
5-12 Interruptions PA-RISC 2.0 Architecture

 just

 just

ss of
 is the
d, this
Group 4 Interruptions

Higher-privilege Transfer Trap (23)

Cause: An instruction is about to be executed at a higher privilege level than the instruction
completed and the PSW H-bit is 1

Parameters: none

IIA Queue: Front – Address of the instruction with the higher privilege level
Back – Address of the following instruction

Lower-privilege Transfer Trap (24)

Cause: An instruction is about to be executed at a lower privilege level than the instruction
completed and the PSW L-bit is 1

Parameters: none

IIA Queue: Front – Address of the instruction with the lower privilege level
Back – Address of the following instruction

Taken Branch Trap (25)

Cause: A taken branch was executed, and the PSW T-bit is 1

Parameters: none

IIA Queue: Front – Address of the instruction to be executed after the branch
Back – Address of the branch target

Notes: This interruption occurs after the execution of the branch instruction, and the addre
the branch instruction itself is not available. The address at the front of the IIA queue
address of the instruction to be executed next. If the branch has nullification specifie
is the address of the nullified instruction (the PSW N-bit is 1 in this case).
5-13PA-RISC 2.0 Architecture Interruptions

5-14 Interruptions PA-RISC 2.0 Architecture

d into

cusses
, their
n detail
n, the
rrative

 cases,

isters,
ters, if
der of
itional

ctions
pecify
6 Instruction Set Overview

This chapter provides an overview of the PA-RISC instruction set. The instructions can be divide
the following functional groups:

• Computation instructions.

• Multimedia instructions.

• Memory Reference instructions.

• Long Immediate instructions.

• Branch instructions.

• System Control instructions.

• Assist instructions.

The instruction set consists of defined, undefined, illegal, and null instructions. This chapter dis
the concepts of undefined and null instructions and includes descriptions of the conditions
completers, and the notation used in the instruction descriptions. Each instruction is described i
in Chapter 7, “Instruction Descriptions”. Each description includes the full name of the instructio
assembly language mnemonic and syntax format, machine instruction format, purpose, a na
description, an operational description, exceptions, and notes concerning usage. In some
programming notes are included for additional guidance to programmers.

Instructions are always 32 bits in width. A 6-bit major opcode is always the first field. Source reg
if specified, are often the next two 5-bit fields and are always in the same place. Target regis
specified, are not fixed in any particular 5-bit field. Depending on the major opcode, the remain
the instruction word is divided into fields that specify immediate values, space registers, add
opcode extensions, conditions, and nullification.

Computation Instructions

Computation instructions are comprised of the arithmetic, logical, shift, extract, and deposit instru
which operate on the general registers. The two 5-bit fields following the 6-bit opcode field can s
the following combinations:

1. Two source registers.

2. A source register and a target register.

3. A source register and a 5-bit immediate.

4. A target register and a 5-bit immediate.

Table 6-1 summarizes the computation instructions that are provided.
6-1PA-RISC 2.0 Architecture Instruction Set Overview

eneral
er. The

bits or
e field
te is
g the

 The
ed on

rs and
itional
ns are

nd the
trap on

-

Table 6-1. Computation Instruction Summary

The three-register arithmetic and logical instructions take two source arguments from two g
registers. These source registers are specified by the two 5-bit fields following the opcode specifi
rightmost 5-bit field specifies the target register.

Some of the computation instructions have a signed immediate argument which is either five
eleven bits in length. The 5-bit immediate is encoded in the second 5-bit field following the opcod
and the target specifier in the first 5-bit field following the opcode field. The 11-bit immedia
encoded in the rightmost 11-bit field, and the target specifier in the second 5-bit field followin
opcode specifier.

Many computation instructions may nullify the instruction following, given the correct conditions.
instruction condition completers are used to determine if the instruction following is nullified, bas
the contents of the source operands and the operation performed.

Three-Register Arithmetic and Logical Instructions

These instructions perform arithmetic and logical operations between two operands in registe
store the result into a register. Each arithmetic/logical instruction also specifies the cond
occurrence of either a skip or a trap, based on its opcode and the condition field. Not all optio
available on every instruction. Only those operations and options considered useful are defined.

Immediate Arithmetic Instructions

The immediate arithmetic instructions operate between a sign-extended 11-bit immediate a
contents of a register. The result is placed in a register. Immediate operations may optionally
overflow. In addition, immediate adds may trap on a specific condition.

3-Register Arithmetic & Logical Instructions

ADD, SHLADD, SUB,
OR, XOR, AND, ANDCM,
UADDCM,UXOR,
DS, CMPCLR, DCOR

Perform arithmetic and logical operations with two operands
in registers and store the result in a third register.

Immediate Arithmetic Instructions

ADDI, SUBI,
CMPICLR

Perform arithmetic operations between a sign-extended imme
diate and the contents of a register. The result is placed in a
register.

Shift Pair, Extract & Deposit Instructions

SHRPD, SHRPW,

EXTRD, EXTRW,

DEPD, DEPDI, DEPW, DEPWI

The shift pair operations allow for a concatenation of two reg-
isters followed by a shift of 0 to 63 bit positions.
Extract instructions take a field from a source register and
insert it right-justified into the target register.
Deposits either set the target to zero or leave it unchanged
(merge operation). The deposit instructions then take a right-
justified field from a source and deposit it into any portion of
the target.
6-2 Instruction Set Overview PA-RISC 2.0 Architecture

l

e

e
t

hese

etic.
 a
 the

o force

ll load/

t
ntations

a

The 11-bit immediate field has the sign bit in the rightmost position, but the other 10 bits are in the usua
order. The 1-bit opcode extension field determines whether overflow causes a trap.

Shift Pair, Extract, and Deposit Instructions

The shift pair operations allow for a concatenation of two registers followed by a shift of 0 to 63 bit
positions. The rightmost 64 bits are placed in a general register. Depending on the choice of the sourc
registers, this operation allows the user to perform right or left shifts, rotates, bit field extractions when
the bit field crosses word boundaries, unaligned byte moves, and so on.

Extract instructions take a field from a source register and insert it right-justified into the target register.
This field is either zero extended or sign extended. This way, the extract instructions support both
logical and arithmetic shift operations.

The deposit instructions either set the target to zero or leave it unchanged (merge operation) and then
take a right-justified field from a source and deposit it into any portion of the target. The source can be
either a register or a 5-bit signed immediate value. The 5-bit immediate field has the sign bit in th
rightmost position, but the other 4 bits are in the usual order. Deposit instructions support left shif
operations and simple multiplication by powers of two.

Multimedia Instructions

PA-RISC provides efficient support for the most frequent multimedia operations because t
operations are assuming greater importance in many applications. Instructions in this category perform
multiple parallel operations in a single cycle.

In multimedia workloads, a large portion of the arithmetic can be thought of as saturation arithm
This means that if the result of a calculation would be too large in magnitude to be represented in
given format, the calculation delivers the largest representable number (as opposed to wrapping to
other end of the representable range, as with modular arithmetic). Commonly, this must be implemented
by testing each result (twice, for signed results), and performing conditional branches or skips t
the result to a maximum value. The multimedia instructions in PA-RISC perform multiple parallel
computations, with each of the results being tested and forced to the appropriate value if necessary, in a
single cycle. The result is a sizeable reduction in pathlength and fewer disruptive breaks in control flow
in multimedia algorithms.

Re-arrangement instructions provide efficient support for packed pixel data structures in memory, allow
algorithms to make full use of the parallel computation instructions, and enable the use of the fu
store bandwidth of the processor in accessing pixel data.

The multimedia instructions are comprised of halfword arithmetic, halfword shift, and rearrangemen
instructions. The instructions operate on 16-bit signed or unsigned numbers. The signed represe

are two's complement numbers in the range –215 to 215–1. Table6-2 summarizes the multimedi
instructions provided.
6-3PA-RISC 2.0 Architecture Instruction Set Overview

Errata
Previously, the 16-bit signed number range incorrectly read:2^15 - 1 to 2^15

raging

esults,

-add

sed as

ormal
ccurs
sented
imum
egister)
r these

 term

, both
sult with
 number

-

Table 6-2. Multimedia Instruction Summary

Parallel Halfword Arithmetic Instructions

In multimedia applications, the most common operations on pixels are addition, subtraction, ave
and multiplication (especially multiplication by constants).

The HALFWORD ADD, HALFWORD SUBTRACTand HALFWORD AVERAGE instructions operate on
two 64-bit general registers, each containing four 16-bit operands, and produce four 16-bit r
delivered to a general register. Saturation can be optionally performed. For theHALFWORD AVERAGE
instruction, unbiased rounding is performed, to reduce the accumulation of rounding errors.

Halfword multiplication and division by constants is supported through parallel halfword shift-and
instructions. TheHALFWORD SHIFT LEFT AND ADD and HALFWORD SHIFT RIGHT AND ADD
instructions perform four parallel halfword shift and add operations. These instructions are u
primitive operations in performing halfword integer multiplication and division by a constant.

Saturation

The halfword addition, subtraction, and shift-and-add instructions can be performed with n
modular arithmetic or with signed saturation or unsigned saturation. Saturation arithmetic o
frequently in multimedia algorithms. When an intermediate result of an operation cannot be repre
in the target register, saturation is said to occur and the result is forced to a maximum or min
value. Thus, when a result is out of range (too large or too small to be represented in the target r
the saturation result is automatically delivered and no extra instructions are required to test fo
boundary conditions. Saturation is performed independently on each of the 16-bit results.

Optional saturation is specified via instruction completers. In the instruction descriptions, the
cmplt is used to denote the completer field which encodes thesat field. If no completer is specified, the
operands are added or subtracted with modular arithmetic. If signed saturation is specified
operands are treated as signed numbers and are added or subtracted producing a signed re
signed saturation. If unsigned saturation is specified, the first operand is treated as an unsigned

Parallel Halfword Arithmetic Instructions

HADD, HSUB, HAVG Parallel halfword add, subtract, and average instructions oper
ate on two 64-bit registers, each containing four 16-bit oper-
ands.

Parallel Halfword Shift Instructions

HSHLADD, HSHRADD,
HSHL, HSHR

Parallel halfword shift instructions allow multiple halfword
shifts with the shift amount encoded in the instruction. Bits are
blocked from being shifted across halfword boundaries. The
parallel halfword shift-and-add instructions support halfword
multiplication and division by constants.

Rearrangement Instructions

PERMH, MIXH, MIXW These instructions allow full utilization of halfword parallel
instructions by supporting rearrangement of words and half-
words in registers with no memory load/store overhead.
6-4 Instruction Set Overview PA-RISC 2.0 Architecture

 with

 in
nerally
he

r
d in

ll

e

and the second as a signed number. These are added or subtracted producing an unsigned result
unsigned saturation.

The results for maximum saturation and minimum saturation are defined for halfword arithmetic
instructions in the following tables. Signed saturation results are defined in Table6-3 and unsigned
saturation results are defined in Table6-4.

Table 6-3. Signed Saturation Results

Table 6-4. Unsigned Saturation Results

Parallel Halfword Shift Instructions

The halfword shift instructions allow multiple parallel halfword shifts. The shift amount is encoded
the instruction and shifting can be done by any amount, from 0 to 15 bits. These instructions ge
use the main shifter, except that they block any bits from being shifted across halfword boundaries. T
HALFWORD SHIFT LEFT instruction allows multiplication by 2n in a single instruction. The
HALFWORD SHIFT RIGHT instruction allows division by 2n and the shift can be either signed o
unsigned. The completer, cmplt, determines which type of shift to perform. The completer is encode
these field of the instruction.

Rearrangement Instructions

The PERMUTE HALFWORDS, MIX HALFWORDS, and MIX WORDS instructions allow full utilization of
the halfword parallel arithmetic instructions by supporting the rearrangement of words and halfwords in
registers without incurring the overhead of memory load and store instructions. These instructions aow
arbitrary permutations and combinations of words and halfwords in a register.

The PERMUTE HALFWORDS instruction can generate any arbitrary combination or permutation of th

Instructions Maximum Saturation Minimum Saturation

HADD, HSUB,
HSHRADD

Intermediate result of an operation is

greater than 215–1. The result is forced

to 215–1.

Intermediate result of an operation is

less than –215. The result is forced to

–215.
HSHLADD Intermediate result of an operation is

greater than 215–1. The result is forced

to 215–1. In addition, the result is also

forced to 215–1 if the leftmost bit of
the first operand is 0, and one or more
of the bits shifted out differs from the
leftmost bit following the shift.

Intermediate result of an operation is

less than –215. The result is forced to

–215. In addition, the result is also

forced to –215 if the leftmost bit of the
first operand is 1, and one or more of
the bits shifted out differs from the
leftmost bit following the shift.

Instructions Maximum Saturation Minimum Saturation

HADD, HSUB Intermediate result of an operation is

greater than 216–1. The result is forced

to 216–1.

Intermediate result of an operation is
less than 0. The result is forced to 0.
6-5PA-RISC 2.0 Architecture Instruction Set Overview

wo

ond
he

ble 6-5

so can
struction
 from a
er, but
“System

nt, and
ex. The
ith data
nce trap.

resses.
four halfwords from its source operand.

In the MIX HALFWORDS instruction, two halfwords from the first operand are merged with t
halfwords from the second operand to produce the result. The completer,cmplt, determines which
halfwords are selected. The completer is encoded in theea field of the instruction.

In theMIX WORDS instruction, a word from the first operand is merged with a word from the sec
operand to produce the result. The completer,cmplt, determines which words are selected. T
completer is encoded in theea field of the instruction.

Memory Reference Instructions

Memory reference instructions load values into and store values from the general registers. Ta
summarizes the memory reference instructions.

Table 6-5. Memory Reference Instruction Summary

Memory reference instructions work directly between the registers and main memory. They al
operate between the registers and the data cache on implementations so equipped. A load in
loads a general register with data from the data cache. A store instruction stores a data value
general register into the data cache. Normally this distinction is transparent to the programm
provisions are made for cache and TLB operations requiring cognizance of the data cache (see
Control Instructions” on page 6-17).

The address formation mechanisms supported include: short displacement, long displaceme
indexed. It is possible to modify the base value in a general register by the displacement or ind
rightmost bits of computed addresses are not ignored. Unaligned load and store instructions w
address translation enabled to halfwords, words, or doublewords cause an unaligned data refere
Semaphore operations and absolute accesses to unaligned data are undefined operations.

Program synchronization can be done using theLOAD AND CLEAR instructions, which perform
indivisible semaphore operations. These instructions are required to use 16-byte aligned add

Load/Store

LDB/STB, LDH/
STH, LDW/STW,
LDD/STD

Load/Store a byte, halfword, word, or doubleword
using a memory address formed using short or long
displacement or indexed.

Load/Store Absolute

LDWA/STWA,
LDDA/STDA

Load/Store a word or doubleword using an absolute
memory address formed using short or long displace-
ment or indexed.

Load and Clear

LDCW, LDCD Read (load) and lock a word or doubleword sema-
phore in main memory.

Store Bytes/DoubleWord Bytes

STBY, STDBY Implement fast byte moves (stores) to unaligned
word or doubleword destination.
6-6 Instruction Set Overview PA-RISC 2.0 Architecture

 in the
e line as

ructions
is 0, or

 (when

ace and
cription

n
f
at
y

er

aphore,
SW X-
When using semaphores to synchronize with I/O, care must be taken in placing other information
same cache line as the semaphore. Data which is writable, can only be placed in the same cach
a semaphore if access to write the data is controlled by the semaphore.

Depending on the state of the PSW D-bit (data address translation bit), most load and store inst
perform virtual accesses (when the PSW D-bit is 1) or physical accesses (when the PSW D-bit
when executingLOAD ABSOLUTE, STORE ABSOLUTE instructions).

The state of the PSW E-bit determines whether the data which is loaded or stored is big endian
the PSW E-bit is 0) or little endian (when the PSW E-bit is 1).

Memory is accessed using the following procedures:

mem_load(space,offset,low,high,hint)
{

if (PSW[D] == 0)
return(phys_mem_load(offset,low,high,hint));

else
return(virt_mem_load(space,offset,low,high,hint));

}

mem_store(space,offset,low,high,hint,data)
{

if (PSW[D] == 0)
phys_mem_store(offset,low,high,hint,data);

else
virt_mem_store(space,offset,low,high,hint,data);

}

There are some restrictions on which instructions can be used for referencing the I/O address sp
uncacheable memory. See “Operations Defined for I/O Address Space” on page F-12. For a des
of memory reference atomicity, see “Atomicity of Storage Accesses” on page G-1.

LOAD OFFSET, LOAD IMMEDIATE LEFT, LOAD PHYSICAL ADDRESS, LOAD COHERENCE INDEX,
andLOAD SPACE IDENTIFIER are not memory reference instructions.

Programming Note
Execution may be faster if software avoids dependence on register interlocks. Instructio
scheduling to avoid the need for interlocking is recommended. A register interlock will occur i
an instruction attempts to use a register which is the target of a previous load instruction th
has not yet completed. This does not restrict the length of the delay a load instruction ma
incur in a particular system to a single execution cycle; in fact, the delay may be much long
for a cache miss, a TLB miss, or a page fault.

Debugging is facilitated by the data memory break trap. This trap occurs whenever a store, a sem
or a purge data cache operation is performed to a page with the B-bit 1 in its TLB entry and the P
bit is 0.
6-7PA-RISC 2.0 Architecture Instruction Set Overview

 may be
a short
6-1 on
emory
ailable

le 6-6

gister
ing the

ing the
s known
Address Formation

Addresses are formed by the combination of a Space ID and an address Offset. Address Offsets
formed as the sum of a base register and any one of the following: a long displacement,
displacement (which leaves more instruction bits for other functions), or an index register. Figure
page 6-9 illustrates typical examples of the various methods of forming addresses for the m
reference instructions. For detailed illustrations of address calculations for each of the av
addressing methods refer to “Memory Reference Instruction Address Formation” on page H-1.

Not all address formation methods are available with every memory reference instruction. Tab
summarizes the address formation methods and the instructions where each is available.

Table 6-6. Address Formation Options for Memory Reference Instructions

Base Register Modification

All of the address formation methods provide the option of modifying the contents of the Base Re
either before or after the address calculation is performed. The address can be formed by us
contents of Base Register before it is modified (sometimes known as post-increment) or by us
contents of the Base Register after it has been modified by the displacement or index (sometime
as pre-increment.)

Instructions

Indexed
Short

Displacement
Long

Displacement

Base
Register

Modification

LDD, LDW, LDH, LDB X X X X
STD, STW, STH, STB X X X
LDDA, LDWA, LDCD, LDCW X X X
STDA, STWA, STBY, STDBY X X
6-8 Instruction Set Overview PA-RISC 2.0 Architecture

 without

, store
ol hints
Cache Control

Some memory reference instruction formats contain a 2-bit cache control field,cc, which provides a
hint to the processor on how to resolve cache coherence. The processor may disregard the hint
compromising system integrity, but performance may be enhanced by following the hint.

There are three different categories of cache control hints: load instruction cache control hints
instruction cache control hints, and semaphore instruction cache control hints. The cache contr
are specified by thecc completer to the instruction and encoded in thecc field of the instruction.

Figure 6-1. Example Address Formation for Memory Reference Instructions

Offset

General Registers
0

Base

Offset

64

31

64

64

General Registers
0

Base
64

31

64

64

Index

Indexed Address Formation

0

31

Base
64

+

64

64

Displacement

Low Sign
Extend

General Registers

Offset

Displacement Address Formation

left

Indexed with Post-modify

General Registers
0

Base

Shifted

Offset

64

31

Index
shift

64

64

Index 0-3

Displacement

Low Sign
Extend

Displacement with Pre-modify

Space IDSpace ID

Space ID Space ID
6-9PA-RISC 2.0 Architecture Instruction Set Overview

s by a
hint had

ressed
 spatial

s by a
hint had

ressed
pecified
hen the
ocessor
uction
r must

cache
ressed

he
cessor
ed, the
The cache control hints for load instructions are shown in Table 6-7. Implementation of the hint
processor is optional, but the processor must treat unimplemented and Reserved hints as if no
been specified.

The Spatial Locality cache control hint is a recommendation to the processor to fetch the add
cache line from memory but to not displace any existing cache data because there is good
locality but poor temporal locality.

The cache control hints for store instructions are shown in Table 6-8. Implementation of the hint
processor is optional, but the processor must treat unimplemented and Reserved hints as if no
been specified.

The Block Copy cache control hint is a recommendation to the processor not to fetch the add
cache line if it is not found in the cache. Instead, the processor may create a cache line for the s
address and perform the store instruction on the created line. If the cache line is not fetched t
processor must zero the rest of the created cache line if the privilege level is 1, 2, or 3. The pr
may optionally zero the rest of created the cache line if the privilege level is 0. If the store instr
with the Block Copy hint does not store into at least the first byte of the cache line, the processo
perform the store as if the cache control hint had not been specified.

The Block Copy cache control hint is a way for software to indicate that it intends to store a full
line worth of data. Note that this hint should only be used if the rest of the memory in the add
cache line is no longer needed.

The cache control hints for theLOAD AND CLEAR semaphore instructions are shown in Table 6-9. T
implementation of the hints by the processor is optional. If no hints are implemented, the pro
must treat all hints as if no hint had been specified. If the Coherent Operation hint is implement

Table 6-7. Load Instruction Cache Control Hints

Completer Description cc

<none> No hint 00

Reserved 01

SL Spatial Locality 10

Reserved 11

Table 6-8. Store Instruction Cache Control Hints

Completer Description cc

<none> No hint 00

BC Block Copy 01

SL Spatial Locality 10

Reserved 11
6-10 Instruction Set Overview PA-RISC 2.0 Architecture

dressed

trol hint.

e before
ten

/data
rap) are

ification

ile
shed in
processor must treat Reserved hints as if the Coherent Operation hint had been specified.

The Coherent Operation cache control hint is a recommendation to the processor that, if the ad
data is already in the cache, it can operate on the addressed data in the cache rather than having to
update memory.

All software users of a semaphore must access the semaphore using the same cache con
Sharing a semaphore using different cache control hints is undefined.

Data Prefetch Instructions

Data prefetch instructions are used to initiate a prefetch of the addressed data into the data cach
it is required by later memory reference instructions, thus hiding some or all of the cache-miss lacy.

Data prefetch instructions are encoded as normal load instructions with a target register of GR0. All of
the normal load addressing modes (long displacement, short displacement, and indexed), base register
modification, and cache hints are available. The prefetch address is never unaligned — the low-order
address bits are ignored and the cache line containing the address is fetched.

All interruptions normally associated with memory reference instructions (Data TLB miss fault
page fault, Data memory access rights trap, Data memory protection ID trap, Page reference t
suppressed for data prefetch instructions. If one of these exceptions would occur, the prefetch is simply
ignored, but any base register modification specified by the instruction still occurs.

There are four data prefetch instructions, corresponding to targeting GR0 for each of the four load
instruction data sizes, as shown in Table6-10. The two reserved encodings do not perform any prefetch,
but otherwise operate as described in this section (e.g., interruptions are suppressed, base mod
still occurs).

Prefetch for read indicates that the cache line is likely to be used in a subsequent load operation wh
prefetch for write indicates that a subsequent store will use the cache line. These are distingui

Table 6-9. Load And Clear Word Instruction Cache Control Hints

Completer Description cc

<none> No hint 00

CO Coherent Operation 01

Reserved 10

Reserved 11

Table 6-10. Data Prefetch Instructions

Instruction Description

LDD Prefetch cache line for write

LDW Prefetch cache line for read

LDH Reserved

LDB Reserved
6-11PA-RISC 2.0 Architecture Instruction Set Overview

Errata
Previously, Table 6-10 incorrectly showed:LDD Prefetch cache line for readLDW Prefetch cache line for write

 case
eak and

sed to
y

es
ations.

e H-2).
n in

H-3 on

r to the

shifted
 base
r. These
order to allow the line to be brought into the cache in the correct state.

A prefetch for write is allowed to bring the cache line into the cache in the modified state, in which
the instruction must check access rights as if it was a store and check for the Data memory br
TLB dirty bit traps and suppress the prefetch if any of these checks fails.

A LOAD AND CLEAR instruction with a target register of GR0 may be implemented as a normalLOAD
AND CLEAR, which clears the data in memory and discards the original contents, or may be alia
the equivalent-size load instruction (LDCD to LDD, LDCW to LDW), in which case it behaves exactl
like that prefetch instruction and does not clear the data in memory.

Store Bytes Instructions

STORE BYTES and STORE DOUBLEWORD BYTESprovide the means for doing unaligned byte mov
efficiently. These instructions use a short 5-bit displacement to store bytes to unaligned destin
The short displacement field is in two’s complement notation with the sign bit as its rightmost bit.

The space identifier is computed like any other data memory reference (see Figure H-1 on pag
The calculation of the offset portion of the effective address for different completers is show
Figure H-5. Space and offset are combined like any other data memory reference (see Figure
page H-3).

The actual offset and modified address involves some alignment and other considerations. Refe
instruction description pages for an exact definition.

Long Immediate Instructions

The long immediate instructions do not reference memory. They compute values either from a
long immediate (21 bits long), from a shifted long immediate and a source register, or from a
register plus a 16-bit displacement. This computed value is then stored in another general registe
instructions are typically used to compute the addresses of data items. TheLOAD OFFSET instruction
can also be used to simply load a 16-bit immediate into a register.

Table 6-11. Immediate Instruction Summary

Figure 6-2 on page 6-13 illustrates the operation of the immediate instructions.

Immediate Instructions

LDO, LDIL, ADDIL, The three immediate instructions load a computed value into a
register or add an immediate value into a register.
6-12 Instruction Set Overview PA-RISC 2.0 Architecture

ches,
 is sub-
ved, and

ry. The
ailed in
 the
Branch Instructions

Branch instructions are classified into three major categories: unconditional local bran
unconditional external branches, and conditional local branches. Within these categories there
classification based on how the target address is computed, whether or not a return address is sa
whether or not privilege changes can occur. Not all of the options are available for each catego
following sections describe the types of branches. The operation of each branch instruction is det
the instruction description in Chapter 7, “Instruction Descriptions”. Table 6-12 summarizes
categories of branch instructions.

Figure 6-2. Immediate Instructions

0

31

Base

General
Registers

32
+

32

Left Shift
11 bits

ADDIL

GR[1]

0

31

General
Registers

LDIL

LDO

Left Shift
11 bits

32

Long
Immediate

im 21

0

31

Base

General
Registers

32
+

32

Low Sign
Extend

32

Long
Immediate

im 21

Immediate
Displacement

im 16

Target

Target
6-13PA-RISC 2.0 Architecture Instruction Set Overview

e calls,

22-bit
bytes

ister.

 shifted

anch

ch
17-bit
places
bytes

e
static

the

cement.

dure
privilege

.

Table 6-12. Branch Instruction Summary

Unconditional Local Branches

The unconditional local branch instructions are used for intraspace control transfers, procedur
and procedure returns. Three types of relative addressing are provided:

1. IA-relative branches with static displacement use the IAOQ_Front plus either a 17-bit or
signed word displacement. This allows a branch target range of up to plus or minus 8 M
within a space.

2. IA-relative branches with dynamic displacement use the IAOQ_Front plus a shifted index reg

3. Base-relative branches with dynamic displacement use the value in a base register plus a
index register.

The BRANCH instruction satisfies most of the requirements for unconditional branching. The br
target is IA relative with a 17-bit static displacement.

A BRANCH instruction with the optional ,L (for link) completer is used for procedure calls. The bran
target is IA relative with a 22-bit displacement if GR 2 is specified as the link register, and with a
displacement if any other general register is specified. In addition, this variant of the instruction
the offset of the return point (or link) in the specified GR. The return point is the location four
beyond the address of the instruction which executes after theBRANCH.

A BRANCH instruction with the optional ,GATE (for gateway) completer is used for intraspac
branching with a process privilege level promotion. The branch target is IA relative with a 17-bit
displacement.

The BRANCH AND LINK REGISTER instruction is used for intraspace procedure calls in which
branch target is outside the range for aBRANCH instruction with the ,L completer, or when a dynamic
target displacement is needed. The branch target address is base relative with a dynamic displa
Link handling is performed the same way as for aBRANCH instruction with the ,L completer.

TheBRANCH VECTORED instruction is used for intraspace branching through a table and for proce
returns. The branch target address is base relative with a dynamic displacement. The process
level may be demoted.

Unconditional Local Branches

B, BLR, BV Branch, branch and link, or branch vectored unconditionally
within the current space using IA- or base-relative addressing

Unconditional External Branches

BE, BVE Branch or branch vectored unconditionally to another space
using base-relative addressing.

Conditional Local Branches

ADDB, ADDIB, BB, CMPB,
CMPIB, MOVB, MOVIB

Branch within the current space if the specified condition is
satisfied using IA-relative addressing. Categories include:
move and branch, compare and branch, add and branch, and
branch on bit.
6-14 Instruction Set Overview PA-RISC 2.0 Architecture

re calls,
ing and

d word
 space

 an SR

re
n point

and

e
n four

 if the
 with
 word

re and
 true or
 5-bit

elerate
rs which
 in the
Unconditional External Branches

The unconditional external branch instructions are used for interspace control transfers, procedu
and procedure returns. All unconditional external branch instructions use base-relative address
may demote the process privilege level based on the rightmost bits of the base register.

Two types of base-relative addressing are provided:

• Base-relative branches with static displacements use a base register plus a 17-bit signe
displacement. This allows a branch target range of up to plus or minus 256 Kbytes across
boundaries. The target space comes from a Space Register which is specified explicitly.

• Base-relative branches with no displacement or index value. The target space comes from
which is specified implicitly by the base register.

The BRANCH EXTERNAL instruction is used for interspace branching and procedure returns.

A BRANCH EXTERNAL instruction with the optional ,L completer is used for interspace procedu
calls. It places the offset of the return point in GR 31 and copies the space ID into SR 0. The retur
is the location four bytes beyond the address of the instruction which executes after the branch.

The BRANCH VECTORED EXTERNAL instruction is used for interspace branching through a table
for procedure returns. The target space is specified implicitly by the base register.

A BRANCH VECTORED EXTERNAL instruction with the optional ,L completer is used for interspac
procedure calls. It places the offset of the return point in GR 2. The return point is the locatio
bytes beyond the address of the instruction which executes after the branch.

Conditional Local Branches

The conditional local branch instructions are used to perform an operation and then branch
condition specified is satisfied. All conditional local branch instructions use IA-relative addressing
static displacements. The target address is the current IAOQ_Front plus a 12-bit signed
displacement. This allows a branch target range of up to plus or minus 8 Kbytes within a space.

There are four categories of conditional local branch instructions: move and branch, compa
branch, add and branch, and branch on bit. The branch may be taken if the condition specified is
false. There are two forms of each instruction, the two-register form and the register plus
immediate form. The 5-bit immediate operand provides data values in the range from -16 to +15.

Branch Target Stack

The Branch Target Stack (or BTS) is an optional processing resource which is used to acc
indirect branches, such as subroutine returns. The BTS is managed by software, and in processo
implement it, can provide the branch target address in place of the general register specified
branch instruction.

Operations which push an address onto the stack:

• B,L,PUSH - Used for normal function calls.

• BVE,L,PUSH - Used for intra-space calls, such as calls to library functions.
6-15PA-RISC 2.0 Architecture Instruction Set Overview

nch.

er did

dress.

r stack

; this
JMP in

to a

his is

ter on
 callee

enario is

e branch
• PUSHBTS - Used to push a value from a GR onto the stack, in preparation for a dynamic bra

• PUSHNOM - Pushes the value in BNR onto the stack; used in the called function if the call
not push the return address on the stack.

Operations which pop an address from the stack:

• BVE,POP - An address is popped from the stack, and if valid, it is used as the target ad
Otherwise, the BVE branches to an address given by a GR.

• POPBTS - Pops a specified number of entries from the stack and discards them; used fo
unwinding.

• CLEARBTS - Pops all entries from the stack, discarding them all and leaving the stack invalid
is used in situations where the sequence of calls and returns is reset, such as with LONG
Unix systems.

All branch-and-link instructions nominate their link value. That is, the link value which is written
GR is also copied into BNR.

So, for call/return acceleration, one of these two scenarios is used:

• The caller uses a B,L,PUSH or BVE,L,PUSH to call. The callee uses a BVE,POP to return. (T
the normal scenario.)

• The caller does not explicitly push a value onto the stack (it does not specify a ,PUSH comple
the branch used to call). The callee does a PUSHNOM to push the link onto the stack. The
uses a BVE,POP to return.

For dynamic branches (such as may be generated by C-language switch statements), this sc
used:

• A PUSHBTS is done as soon as the target address has been calculated. Then, at the point th
is done, a BVE,POP is done.

Branch Characteristics

Figure 6-3 categorizes the characteristics of the branch instructions.
6-16 Instruction Set Overview PA-RISC 2.0 Architecture

 from
endent
System Control Instructions

The system control instructions provide special register moves, system mask control, return
interruption, probe access rights, memory management operations, and implementation-dep
functions. Table 6-13 summarizes the System Control instructions that are provided.

Figure 6-3. Classification of Branch Instructions

BVE BVE,LBE,LBEBV

Branch

Unconditional Conditional

Local External

IA
Relative

Base
Relative

Static
Disp.

Dynamic
Disp.

No Link

Local

Base
Relative

IA
Relative

Dynamic
Disp.

Static
Disp.

Static
Disp.

Link Link No Link No Link Link No Link

No PL
change

PL
promotion

No PL
change

PL
demotion

No PL
change

MOVB
MOVIB

CMPB
CMPIB

ADDB
ADDIB

BB

B,L B,GATE BLR

No
Disp.

No Link Link

PL
demotion

PL
demotion

Explicit Implicit

B

No Link
6-17PA-RISC 2.0 Architecture Instruction Set Overview

ation is
never

wn in
.

ss
Table 6-13. System Control Instruction Summary

The memory management instructions generate instruction and data addresses. Address form
similar to that of the indexed load instructions. The only difference is that the index register is
shifted before adding to the base register. .

Memory management instructions select a space identifier either implicitly or explicitly as sho
Figure 3-8 on page 3-8. The calculation of the offset portion of the address is shown in Figure 6-4

Special Register Move Instructions

LDSID, MTSP, MFSP,
MTCTL, MFCTL, MTSARCM,
MFIA,

These instructions move values to and from the space regis-
ters, control registers, the shift amount, and instruction
address register.

System Mask Control Instructions

SSM, RSM, MTSM These instructions set, reset, and move values to the system
mask portion of the PSW.

Return From Interrupt & Break Instructions

RFI, BREAK Restore state and restart interrupted instruction stream or
cause a break for debugging purposes.

Memory Management Instructions
SYNC, SYNCDMA,
PROBE, PROBEI, LPA, LCI,
PDTLB, PITLB, PDTLBE,
PITLBE,
IDTLBT, IITLBT,
PDC, FDC, FIC, FDCE, FICE

These instructions synchronize memory operations, probe
addresses to determine access rights, load a physical addre
or a coherence index, purge or insert TLB entries or transla-
tions, and purge or flush data or instruction caches or cache
entries.

Implementation-Dependent Instruction
DIAG Provide implementation-dependent operations for diagnostic

purposes.
6-18 Instruction Set Overview PA-RISC 2.0 Architecture

n cost-
icating
on the
ditional

tions to
Special
hat are

r

Assist Instructions

The PA-RISC design generally conforms to the concept of a simple instruction set implemented i
effective hardware. Certain algorithms can benefit from substantial performance gains by ded
specialized hardware to execute specialized instructions. Since few algorithms rely solely up
specialized hardware alone, it is usually advantageous to combine the central processor with ad
assist processors closely coupled to it.

In addition to the instructions executed by a central processor, the instruction set contains instruc
invoke the special, optional, hardware functions provided by the two types of assist processors:
Function Units (SFUs) and coprocessors. Table 6-14 summarizes the assist instructions t
provided for SFUs and coprocessors.

Table 6-14. Assist Instruction Summary

Figure 6-4. System Operations

Special Function Instructions

SPOP0, SPOP1, SPOP2,
SPOP3

These instructions invoke SFU operations, copy SFU register
or result to a general register, and perform a parameterized
SFU operation.

Coprocessor Instructions

COPR, CLDD, CLDW,
CSTD, CSTW

These instructions invoke a coprocessor operation and load o
store words or doublewords to or from a coprocessor register.

0

31

Base

General
Registers

32
+

32

32

Index

Space ID Offset

Effective Address

,M Completer

0

31

Base

General
Registers

+

32Index

Space ID Offset

3232

Effective Address

No Completer Specified

32
6-19PA-RISC 2.0 Architecture Instruction Set Overview

 to the

perands
d so are
units.
emory.

eneral

ptional
ts PA-
e is not
tion in

 in a
tive to

efined
rdware,
traps to
 without
permit

uch as
tion-

uctions.
 by the
 Some

rations
ade. An
 or the

 used to

o that
ulation
Special function units are closely coupled to the central processor and provide extensions
instruction set. They use the general registers as operands and targets of operations.

Coprocessors provide functions that use either memory locations or coprocessor registers as o
and targets of operations. Coprocessors are less closely coupled to the central processor, an
more easily provided as configuration options for an implementation than special function
Coprocessors may also directly pass doubleword quantities to and from the coprocessor and m
This is suited to the manipulation of quantities that are too large to be directly handled in g
registers.

The special function unit and coprocessor instructions are intended to encapsulate all of the o
hardware features used for non-system-level code. An emulation facility is provided that permi
RISC family members to execute code using the standard instruction set when optional hardwar
present. The emulation facility is provided by the assist emulation trap, which passes informa
control registers, substantially reducing the instruction path length for emulation.

The assist exception trap permits partial implementations of standard “hardware” functions
combination of hardware and software. This handles functions that are difficult or not cost-effec
implement fully in hardware.

Compatibility Among Implementations

The standard PA-RISC instruction set contains all defined instructions, including those for all d
assist processors. Particular implementations may choose to implement these instructions in ha
software, or some combination of the two, using assist emulation traps and/or assist exception
complete the implementation. Thus, these instructions can be used by compilers and assemblers
sacrificing object-code portability. Software emulation of the extended functions is also used to
execution of the object code in a degraded mode for high-availability systems.

Special Function Unit (SFU) Instructions

The SFU mechanism is intended for certain architecturally defined instruction extensions, s
hardware fixed-point binary multiply/divide or encryption hardware, as well as for implementa
specific extensions, such as emulation assist processors or direct I/O controller connections.

SFUs are connected to the general register interface and are invoked by special operation instr
These instructions cause the execution unit to perform any of several operations (determined
opcode extension), which may use the contents of registers, or may write back a result.
instructions conditionally nullify the following instruction.

Some special function operations overlap their execution with succeeding instructions. These ope
require that the special function unit’s state be saved and restored when a context switch is m
interlock occurs if a special function result is requested before the operation has completed,
special function unit is busy.

An SFU is not required to hold its state in addressable registers. Instead, SFU operations are
save and restore the state, as well as to pass it operands and receive results from it.

Defined special function units will conform to the requirements of the defined SFU instructions, s
they may be implemented either as built-in or interfaced special function units. The assist em
6-20 Instruction Set Overview PA-RISC 2.0 Architecture

levels
e of the
 SFU

 in the

t

hat is
 in the
sition,

assed
se the
ed to

R bit

at the
inated
 uid i

 state
does
 SFU
tate in
id i is

 assist

nds on
priority

rt

nd
trap permits software implementation of any defined special operation instruction.

The processor must also provide the current privilege level to special function units. Privilege
could be broadcast each time they change or could be transmitted with each SFU operation. Us
privilege level by the SFU is specific to each of the units. The operation paragraph of each
instruction description specifies the necessary information that must be available to the SFU
sfu_operation function.

There is one SFU instruction, theIDENTIFY SFU (SPOP1) instruction, that is defined for all SFUs. I
must be implemented.

SFU Configuration Register

The SCR (SFU Configuration Register) is an 8-bit control register (within CR 10 bits 16..23) t
used to indicate the presence and usability of a hardware implementation of an SFU. For all bits
SCR, SCR{i} corresponds to an undefined SFU with a unit identifier that is the same as the bit po
that is the SFU with uid i.

When SCR{i} is 1, the SFU with uid i is implied to be present and usable. SFU instructions are p
to the SFU and the defined operation occurs. Exceptions resulting from the operation cau
instruction to be terminated with an assist exception trap. Assist emulation traps are not allow
occur for the SFU with uid i when SCR{i} is 1. It is an undefined operation to set to 1 the SC
corresponding to a nonexistent SFU.

When SCR{i} is 0, it is not implied that the SFU with uid i is absent from the system, but rather th
SFU, if present, is not currently being used. When the SCR bit is 0, the SFU instruction is term
with an assist emulation trap. Assist exception traps are not allowed to occur for the SFU with
when SCR{i} is 0.

Setting the SCR{i} bit to 0 must logically decouple the SFU with uid i. This must ensure that the
of the SFU with uid i is frozen just prior to the transition of SCR{i} from 1 to 0 and that the state
not change as long as SCR{i} is 0. When SCR{i} is 0, the SFU with uid i must not respond to any
operations for the SFU with uid i. The frozen state of an SFU, for example, could also be a s
which the SFU is left “armed” to trap any subsequent operations. For example, if the SFU with u
in an “armed-to-trap” state and SCR{i} is 0, any operation involving that SFU must not cause an
exception trap.

The precedence of the interruptions that are applicable to operations for the SFU with uid i depe
the state of SCR{i}. The assist exception trap and assist emulation trap are always taken in the
order as described in “Interruption Priorities” on page 5-4.

NOTE
Logical decoupling may be accomplished in a variety of ways. Processors may use abo
signals or other schemes to notify SFUs that the current instruction is to be ignored.

When the SCR bit is 0, logical decoupling suppresses any exception traps from an SFU a
causes the emulation trap to occur (if it is the highest priority).
6-21PA-RISC 2.0 Architecture Instruction Set Overview

 handle
n set
data
tions can
uctions
dware is

 systems
ocessors
cessor’s

rom the
 from a
cessor’s

eeding
 is able

cessor
eep their
 to save

erations
dditional

rmation

ave a

e

4..31)
r. Bits 0
s to the
efined
Coprocessor Instructions

The coprocessor mechanism is intended for special-purpose data manipulations, for example to
data larger than will fit in a general register. The interconnection method allows for instructio
extensions with minimal effect on the instruction execution rate, while maintaining short
communication paths between the coprocessors and the rest of the system. Coprocessor instruc
be executed by the coprocessor hardware or emulated by software. Combinations of instr
implemented in hardware and emulated by software are possible even when the coprocessor har
present in a system.

When caches are implemented, coprocessors are connected to the CPU-cache interface. For
that do not have a cache, coprocessors are connected to the CPU-memory bus interface. Copr
manipulate data in their own register sets, but use the data cache or memory bus and central pro
address generation logic. Under control of the CPU, coprocessor load instructions pass data f
data cache or memory bus to a coprocessor, and coprocessor store instructions pass data
coprocessor to the data cache or memory bus. Coprocessor operations use only the copro
registers. Some coprocessor operations may nullify the following instruction.

Coprocessor operation, load, and store instructions may overlap their execution with succ
instructions. An interlock occurs if a coprocessor operation is requested before the coprocessor
to perform it, and for loads and stores involving busy coprocessor registers.

The coprocessor load and store instructions contain a 5-bit field which normally specifies a copro
register, but may also be interpreted by coprocessors as a sub-operation field. Coprocessors k
state in their registers, so that storing the coprocessor registers and reloading them is sufficient
and restore the state of a coprocessor.

Some coprocessors are capable of supporting doubleword load and store operations. These op
are implemented on all systems that support such coprocessors, even though they may require a
cycles for some machines. Coprocessor load and store operations must be atomic.

The operation section of each coprocessor instruction description specifies the necessary info
that must be available to the coprocessor in thecoprocessor_op andsend_to_copr functions. There is
one coprocessor instruction, theIDENTIFY COPROCESSOR (COPR,uid,0) instruction, that is defined for
coprocessors with unit identifiers 4 through 7. Coprocessors with unit identifiers 0 and 3 h
mechanism to identify themselves that is individually defined.

NOTE
An unaligned data reference trap is taken if the appropriate number of rightmost bits of th
effective virtual address are not zeros for theCOPROCESSOR LOAD WORD, COPROCESSOR
LOAD DOUBLEWORD, COPROCESSOR STORE WORD, and COPROCESSOR STORE
DOUBLEWORD instructions. Absolute accesses to unaligned data are undefined operations.

Coprocessor Configuration Register

The CCR (Coprocessor Configuration Register) is an 8-bit control register (within CR 10 bits 2
that is used to indicate the presence and usability of a hardware implementation of a coprocesso
and 1 in the CCR correspond to the floating-point coprocessor and bit 2 in the CCR correspond
performance monitor coprocessor. For all other bits in the CCR, CCR{i} corresponds to an und
6-22 Instruction Set Overview PA-RISC 2.0 Architecture

 uid i.

s an
) with

essor
ing from
on traps
ion to

ather
cessor
 occur

at the
t the
st not
ocessor,
equent
 is 0,

h uid i
taken in

rt

sor

ration

f sixteen
coprocessor with a unit identifier that is the same as the bit position, that is the coprocessor with

Execution of any floating-point instruction with CCR{0} and CCR{1} not set to the same value i
undefined operation. Execution of a coprocessor operation instruction (major opcode 0x0C
CCR{0}, CCR{1}, and the uid field in the instruction all set to 1 is an undefined operation.

When CCR{i} is 1, the coprocessor with uid i is implied to be present and usable. Coproc
instructions are passed to the coprocessor and the defined operation occurs. Exceptions result
the operation cause the instruction to be terminated with an assist exception trap. Assist emulati
are not allowed to occur for the coprocessor with uid i when CCR{i} is 1. It is an undefined operat
set to 1 the CCR bit corresponding to a nonexistent coprocessor.

When CCR{i} is 0, it is not implied that the coprocessor with uid i is absent from the system, but r
that the coprocessor, if present, is not currently being used. When the CCR bit is 0, the copro
instruction is terminated with an assist emulation trap. Assist exception traps are not allowed to
for the coprocessor with uid i when CCR{i} is 0.

Setting the CCR{i} bit to 0 must logically decouple the coprocessor with uid i. This must ensure th
state of the coprocessor with uid i is frozen just prior to the transition of CCR{i} from 1 to 0 and tha
state does not change as long as CCR{i} is 0. When CCR{i} is 0, the coprocessor with uid i mu
respond to any coprocessor operations for the coprocessor with uid i. The frozen state of a copr
for example, could also be a state in which the coprocessor is left “armed” to trap any subs
operations. For example, if the coprocessor with uid i is in an “armed-to-trap” state and CCR{i}
any operation involving that coprocessor must not cause an assist exception trap.

The precedence of the interruptions that are applicable to operations for the coprocessor wit
depends on the state of CCR{i}. The assist exception trap and assist emulation trap are always
the priority order as described in “Interruption Priorities” on page 5-4.

NOTE
Logical decoupling may be accomplished in a variety of ways. Processors may use abo
signals or other schemes to notify coprocessors that the current instruction is to be ignored.

When the CCR bit is 0, logical decoupling suppresses any exception traps from a coproces
and causes the emulation trap to occur (if it is the highest priority).

Conditions and Control Flow

Many instructions utilize conditions derived from the values of the operators and the ope
performed. The architecture defines several sets of conditions that affect control flow:

• Arithmetic/Logical Conditions.

• Unit Conditions.

• Shift/Extract/Deposit Conditions.

• Branch On Bit Conditions.

Every instruction that tests conditions uses one of these sets. Each set contains a maximum o
6-23PA-RISC 2.0 Architecture Instruction Set Overview

lect the

s a
ll the

lled by

s:

ceeds

defined,

. (See
code
 trap.

se are
grity is
a given
uence of
 could

ns but

n trap or

avoid
erved
separate conditions and their negations. Most instructions that use conditions may also se
negation of a condition.

The condition completer field,cond, in the assembly language form of the instructions specifie
condition or the negation of a condition. This field expands in the machine language form to fi
condition field,c, (normally 3 bits wide), the 1-bit negation field,f, and the 1-bit doubleword field,d, as
required. For some instructions, the negation or doubleword attributes of the condition are contro
the opcode.

The result of an operation and the specified condition can affect control flow in the following way

• Branching – the result determines whether or not the branch is taken.

• Nullifying – the result determines whether or not the next instruction is nullified.

• Trapping – the result determines whether a conditional trap is taken or execution pro
normally.

Additional Notes on the Instruction Set

This section defines how the architecture and instruction notation handles such details as un
illegal, null, and unimplemented instructions.

Undefined and Illegal Instructions

Not all of the 64 possible major opcodes of the instruction set are defined as valid instructions
Appendix C, “Operation Codes”, for a list of the valid instruction opcodes.) An undefined major op
is considered an illegal instruction. Execution of an illegal instruction causes an illegal instruction

Within each major opcode, there may be undefined opcode extensions and modifiers (the
undefined instructions). Interpretation of these opcodes is left to the implementor, but system inte
not compromised. An undefined instruction, or sequence of undefined instructions, executed at
privilege level has no effect on system state other than what would have been produced by a seq
defined instructions running at the same privilege level. This limits the possible side-effects that
result from undefined instructions.

Undefined operations are equivalently specified. These result from normally defined instructio
with operands or specifiers that are explicitly disallowed.

Executing an optional special operation or coprocessor instruction may cause an assist exceptio
an action that depends on the definition of the specific special function unit or coprocessor.

Reserved Instruction Fields

In the Format section of the instruction description pages in Chapter 7, instruction fields markedrv are
Reserved instruction fields. These fields are reserved for future architectural definition. To
incompatibility with future revisions of the architecture, software must provide zeros in all Res
fields. When decoding instructions, processors must ignore Reserved instruction fields.
6-24 Instruction Set Overview PA-RISC 2.0 Architecture

avoid
alues.
 specific

ect of a
nted.

B-bit, N-
Reserved Values of an Instruction Field

Certain values of some instruction fields are Reserved for future architectural definition. To
incompatibility with future revisions of the architecture, software must not use the Reserved v
When decoding instructions, processors must treat the Reserved values as described for the
field.

Null Instructions

Null instructions occur when unimplemented features of the architecture are accessed. The eff
null instruction is identical to a nullified instruction except that the Recovery Counter is decreme
There is no effect on the machine state except that the IA queues are advanced and the PSW
bit, X-bit, Y-bit, and Z-bit are set to 0.
6-25PA-RISC 2.0 Architecture Instruction Set Overview

6-26 Instruction Set Overview PA-RISC 2.0 Architecture

which
cture.

ation
7 Instruction Descriptions

This chapter provides a description of each of the instructions (except floating-point instructions
are described in Chapter 9, “Floating-Point Instruction Set”) supported by the PA-RISC archite
The instructions are listed in alphabetical order, according to the instruction’s mnemonic.

Figure 7-1 illustrates the information presented in each of the instruction descriptions. The inform
presented in this figure is for illustrative purposes only and does not represent a valid instruction.

Figure 7-1. Instruction Description Example

DO OPERATION DO

Format: DO,cond r1,r2,t

(3)

Purpose: To perform a 32-bit, bitwise DO operation.

Description: GRr1 and GRr2 are DOed and the result is placed in GRt. The
following instruction is nullified if the values DOed satisfy the
specified condition,cond. The condition is encoded in thec andf
fields of the instruction.

Conditions: The condition is any of the 32-bit logical conditions shown in
Table I on page I-1. When a condition completer is not specified,
the “never” condition is used. The boolean variable
“cond_satisfied” in the operation section is set when the values
DOed satisfy the specified condition.

Operation: GR[t]← GR[r1] DO GR[r2];
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

Restrictions: None

Notes: The DOIT pseudo-operation allows for the transformation of data
from one register to another by generating the instruction DO r,0,t.
The DONT pseudo-operation generates the instruction DO 0,0,0.

Op r2 r1 c f 12 t
6 5 5 3 1 7 5

Instruction mnemonic
 and descriptive name

Assembly language
source statement syntax

Opcode and fields of
the instruction format

Short description of
instruction operation

Full description of
instruction operation

Equations that describe
instruction operation

Defined conditions that
could cause an interruption

General restrictions on
instruction usage

General notes on
implementation

Condition codes that are
valid for the instruction

7-98 Instruction Set Description PA-RISC 1.1 Architec-

The number of the format as
defined in Appendix B,

“Instruction Formats”
7-1PA-RISC 2.0 Architecture Instruction Descriptions

 add
/
. The
ry

ion,

gned

/

ther a

d

r any
leter
d” in
Add ADD

Format: ADD,cmplt,carry,cond r1,r2,t

(8)

Purpose: To do 64-bit integer addition and conditionally nullify the following instruction.

Description: GR r1 and GRr2 are added. If no trap occurs, the result is placed in GRt. The variable
“carry_borrows” in the operation section captures the 4-bit carries resulting from the
operation. The completer,cmplt, encoded in thee1 field, specifies whether the carry
borrow bits in the PSW are updated and whether a trap is taken on signed overflow
completer,carry, encoded in thee2 field, specifies whether the addition is done with car
in.

The following instruction is nullified if the values added satisfy the specified condit
cond. The condition is encoded in thec, d, and f fields of the instruction. The boolean
variable "overflow" in the operation section is set if the operation results in a 32-bit si
overflow (d=0) or a 64-bit signed overflow (d=1.) For addition with carry in, thed field
encodes whether the word carry (PSW C/B{8},d=0), or the doubleword carry (PSW C
B{0}, d=1) is used.

Thee1 field encodes whether the carry/borrow bits in the PSW are updated and whe
trap is taken on overflow (e1=1: carries updated, no trap,e1=2: carries not updated, no
trap,e1=3: carries updated, trap on overflow.) Thee2 field encodes whether addition with
carry in is performed (e2=0: no carry in,e2=1: addition performed with carry in.) The
combination e1=2, e2=1 is not defined. The following table shows the allowe
combinations:

Conditions: The condition is any of the 32-bit add conditions shown in Table D-6 on page D-5 o
of the 64-bit add conditions shown in Table D-7 on page D-6. When a condition comp
is not specified, the “never” condition is used. The boolean variable “cond_satisfie
the operation section is set when the values added satisfy the specified condition.

02 r2 r1 c f e1 1 e2 0 d t

6 5 5 3 1 2 1 1 2 1 5

Completer Description e1 e2

<none> Add 1 0
C or DC Add with carry/doubleword carry 1 1
L Add logical 2 0
TSV Add and trap on signed overflow 3 0
C,TSV or DC,TSV Add with carry/doubleword carry

and trap on signed overflow
3 1
7-2 Instruction Descriptions PA-RISC 2.0 Architecture

 ,DC
Operation: switch (carry) {
case C: res← GR[r1] + GR[r2] + PSW[C/B]{8};

break;
case DC: res← GR[r1] + GR[r2] + PSW[C/B]{0};

break;
default: res← GR[r1] + GR[r2];

break;
}
if (cmplt == TSV && overflow)

overflow_trap;
else {

GR[t] ← res;
if (cmplt != ’L’)

PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

}

Exceptions: Overflow trap

Notes: When the ,C completer is specified, only 32-bit conditions are available. When the
completer is specified, only 64-bit conditions are available.
7-3PA-RISC 2.0 Architecture Instruction Descriptions

alues

target

is
ch is
.

-5
nd is
e
 add
ated
f the

gated
ated
fied,
tion
t to 0
Add and Branch ADDB

Format: ADDB,cond,n r1,r2,target

(17)

Purpose: To add two values and perform an IA-relative branch conditionally based on the v
added.

Description: GR r1 and GRr2 are added and the result is placed in GRr2. If the values added satisfy
the specified condition,cond, the word displacement is assembled from thew and w1
fields, sign extended, and added to the current instruction offset plus 8 to form the
offset. The branch target,target, in the assembly language format is encoded in thew and
w1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification
specified, the instruction following a taken forward branch or a failing backward bran
nullified. The ,N completer, encoded in then field of the instruction, specifies nullification

Conditions: The condition,cond, is any of the 32-bit add conditions shown in Table D-6 on page D
or any of the 64-bit add and branch conditions shown in Table D-8 on page D-6 a
encoded in thec andopcode fields of the instruction. When the PSW W-bit is 0, only th
32-bit conditions are available. Opcode 28 is used for the 32-bit non-negated
conditions (those with f = 0 in Table D-6) and opcode 2A is used for the 32-bit neg
add conditions (those with f = 1 in Table D-6.) When the PSW W-bit is 1, a subset o
32-bit and 64-bit conditions are available. Opcode 28 is used for the non-ne
conditions (those with f = 0 in Table D-8) and opcode 2A is used for the neg
conditions (those with f = 1 in Table D-8.) When a condition completer is not speci
the “never” condition is used. The boolean variable “cond_satisfied” in the opera
section is set to 1 when the values added satisfy the specified condition and se
otherwise.

Operation: GR[r2] ← GR[r1] + GR[r2];
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← !cond_satisfied;

else
PSW[N] ← cond_satisfied;

Exceptions: Taken branch trap

28/2A r2 r1 c w1 n w

6 5 5 3 11 1 1
7-4 Instruction Descriptions PA-RISC 2.0 Architecture

ion.

ue is
n

bit
r,
satisfy
 table

the

 in a

hen
riable
ecified
Add to Immediate ADDI

Format: ADDI,cmplt,trapc,cond i,r,t

(9)

Purpose: To add an immediate value to a register and conditionally nullify the following instruct

Description: The sign-extended immediate valuei is added to GRr. If no trap occurs, the result is
placed in GRt and the carry/borrow bits in the PSW are updated. The immediate val
encoded into theim11 field. The variable “carry_borrows” in the operation sectio
captures the 4-bit carries resulting from the add operation.

The completer,cmplt, encoded in thee1field, specifies whether a trap is taken on a 32-
signed overflow (e1=0: no trap,e1=1: trap on 32-bit signed overflow.) The complete
trapc, encoded in the opcode, specifies whether a trap is taken if the values added
the condition specified (no trap for opcode 2D, trap on condition for opcode 2C.) The
below shows thecmplt andtrapc combinations.

For opcode 2D, the following instruction is nullified if the values added satisfy
specified condition,cond. The condition is encoded in thec andf fields of the instruction.
The boolean variable “overflow” in the operation section is set if the operation results
32-bit signed overflow.

Conditions: The condition is any of the 32-bit add conditions shown in Table D-6 on page D-5. W
a condition completer is not specified, the “never” condition is used. The boolean va
“cond_satisfied” in the operation section is set when the values added satisfy the sp
condition.

Operation: res ← low_sign_ext(im11,11) + GR[r];
if (cmplt == TSV && overflow)

overflow_trap;
else if (trapc == TC && cond_satisfied)

conditional_trap;
else {

GR[t] ← res;
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

}

Exceptions: Overflow trap Conditional trap

2C/2D r t c f e1 im11

6 5 5 3 1 1 11

Completer Description Opcode e1

<none> Add to immediate 2D 0
TSV Add to immediate and trap on signed overflow 2D 1
TC Add to immediate and trap on condition 2C 0
TSV, TC Add to immediate and trap on signed overflow

or condition
2C 1
7-5PA-RISC 2.0 Architecture Instruction Descriptions

alues

tion

is
ch is
.

-5
nd is
e
 add
ated
f the

gated
ated
fied,
tion
t to 0
Add Immediate and Branch ADDIB

Format: ADDIB,cond,n i,r,target

(17)

Purpose: To add two values and perform an IA-relative branch conditionally based on the v
added.

Description: The sign-extended immediate valueim5 is added to GRr and the result is placed in GRr.
If the values added satisfy the specified condition,cond, the word displacement is
assembled from thew andw1 fields, sign extended, and added to the current instruc
offset plus 8 to form the target offset. The branch target,target, in the assembly language
format is encoded in thew andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification
specified, the instruction following a taken forward branch or a failing backward bran
nullified. The ,N completer, encoded in then field of the instruction, specifies nullification

Conditions: The condition,cond, is any of the 32-bit add conditions shown in Table D-6 on page D
or any of the 64-bit add and branch conditions shown in Table D-8 on page D-6 a
encoded in thec andopcode fields of the instruction. When the PSW W-bit is 0, only th
32-bit conditions are available. Opcode 29 is used for the 32-bit non-negated
conditions (those with f = 0 in Table D-6) and opcode 2B is used for the 32-bit neg
add conditions (those with f = 1 in Table D-6.) When the PSW W-bit is 1, a subset o
32-bit and 64-bit conditions are available. Opcode 29 is used for the non-ne
conditions (those with f = 0 in Table D-8) and opcode 2B is used for the neg
conditions (those with f = 1 in Table D-8.) When a condition completer is not speci
the “never” condition is used. The boolean variable “cond_satisfied” in the opera
section is set to 1 when the values added satisfy the specified condition and se
otherwise.

Operation: GR[r] ← low_sign_ext(im5,5) + GR[r];
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← !cond_satisfied;

else
PSW[N] ← cond_satisfied;

Exceptions: Taken branch trap

29/2B r im5 c w1 n w

6 5 5 3 11 1 1
7-6 Instruction Descriptions PA-RISC 2.0 Architecture

to
Add Immediate Left ADDIL

Format: ADDIL i,r,r1

(7)

Purpose: To add the upper portion of a 32-bit immediate value to a general register.

Description: The 21-bit immediate value,i, is assembled, shifted left 11 bits, sign extended, added
GR r and placed in GR1. Overflow, if it occurs, is ignored.

Operation: GR[1] ← sign_ext(lshift(assemble_21(im21),11),32) + GR[r];

Exceptions: None

Programming Note
ADD IMMEDIATE LEFT can be used to perform a load or store with a 32-bit displacement. For
example, to load a word from memory into general registert with a 32-bit displacement, the
following sequence of assembly language code could be used:

0A r im21

6 5 21

ADDIL l%literal,GRb

LDW r%literal(0,GR1),GRt
7-7PA-RISC 2.0 Architecture Instruction Descriptions

7 or
ition
iable
 the
AND AND

Format: AND,cond r1,r2,t

(8)

Purpose: To do a 64-bit, bitwise AND.

Description: GR r1 and GRr2 are ANDed and the result is placed in GRt. The following instruction is
nullified if the values ANDed satisfy the specified condition,cond. The condition is
encoded in thec, d, andf fields of the instruction.

Conditions: The condition is any of the 32-bit logical conditions shown in Table D-9 on page D-
any of the 64-bit logical conditions shown in Table D-10 on page D-7. When a cond
completer is not specified, the "never" condition is used. The boolean var
"cond_satisfied" in the operation section is set when the values ANDed satisfy
specified condition.

Operation: GR[t] ← GR[r1] & GR[r2];
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 0 1 0 0 d t

6 5 5 3 1 2 1 1 2 1 5
7-8 Instruction Descriptions PA-RISC 2.0 Architecture

7 or
ition
iable
 the
AND Complement ANDCM

Format: ANDCM,cond r1,r2,t

(8)

Purpose: To do a 64-bit bitwise AND with complement.

Description: GR r1 is ANDed with the one’s complement of GRr2 and the result is placed in GRt. The
following instruction is nullified if the values ANDed satisfy the specified condition,cond.
The condition is encoded in thec, d, andf fields of the instruction.

Conditions: The condition is any of the 32-bit logical conditions shown in Table D-9 on page D-
any of the 64-bit logical conditions shown in Table D-10 on page D-7. When a cond
completer is not specified, the "never" condition is used. The boolean var
"cond_satisfied" in the operation section is set when the values ANDed satisfy
specified condition.

Operation: GR[t] ← GR[r1] & ∼GR[r2];
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 0 0 0 0 d t

6 5 5 3 1 2 1 1 2 1 5
7-9PA-RISC 2.0 Architecture Instruction Descriptions

ith a

is
 form

 the

arget
ecutes

ge-
f
g

ged
hen

used

if a

d.

 the
3-14.

is
Branch B

Format: B,cmplt,stack,n target,t

(20)

Purpose: To do IA-relative branches with optional privilege level change and procedure calls w
static displacement.

Description: The word displacement is assembled from thew, w1, w2,and (when the ,L completer is
specified with GR 2 as the link register)w3 fields in the instruction. The displacement
sign extended, and the result plus 8 is added to the offset of the current instruction to
the target offset.

The completer,stack, specifies whether the offset of the return point is pushed onto
branch target stack. If the ,L completer is specified and the ,PUSH completer is specified,
either the offset of the return point or an “invalid” value is pushed onto the branch t
stack. On machines that do not implement the branch target stack, the instruction ex
the same as if the ,PUSH completer had not been specified.

The completer,cmplt, specifies whether a return link is saved, or whether a privile
increasingGATEWAY function is performed. If the ,L completer is specified, the offset o
the return point is placed in GRt. The return point is 4 bytes beyond the followin
instruction.

If the ,GATE completer is specified and the PSW C-bit is 1, the privilege level is chan
to that given by the two rightmost bits of the type field in the TLB entry for the page (w
the type field is greater than 3) from which theBRANCH instruction is fetched if that
results in a higher privilege. If privilege is not increased, then the current privilege is
at the target. In all cases, the privilege level of theBRANCH instruction is deposited into
bits 62..63 of GRt. The privilege change occurs at the target of theBRANCH. If the PSW
C-bit is 0, the privilege level is changed to 0. An illegal instruction trap is taken
BRANCH instruction is attempted with the ,GATE completer and the PSW B-bit is 1.

If the ,GATE completer is specified, sub-opcode 1 is used. If the ,L completer is specified
and the target register is GR 2, sub-opcode 5 is used. If the ,L completer is specified, the
target register is GR 2, and the ,PUSH completer is specified, sub-opcode 4 is use
Otherwise, sub-opcode 0 is used.

The variable “page_type” is set to the value of the access rights field, bits {0..2}, from
translation used to fetch the instruction. See “Access Rights Interpretation” on page

The following instruction is nullified if the ,N completer is specified. The completer
encoded in then field of the instruction. The branch target,target, in the assembly
language format is encoded in thew, w1, w2, and (when GR 2 is the link register) w3
fields.

3A t/w3 w1 0/1/4/5 w2 n w

6 5 5 3 11 1 1
7-10 Instruction Descriptions PA-RISC 2.0 Architecture

hen
f the

ation

rform

target
Operation: if (cmplt == ‘GATE’ && PSW[B])
illegal_instruction_trap;

else {
if (cmplt == ‘L’ && t == GR2) {

disp ← lshift(sign_ext(assemble_22(w3,w1,w2,w),22),2)
if(stack == ‘PUSH’)

push_onto_BTS((IAOQ_Back + 4){0..61});
}
else

disp ← lshift(sign_ext(assemble_17(w1,w2,w),17),2);
if (cmplt == ‘GATE’) {

GR[t] ← cat(GR[t]{0..61},IAOQ_Front{62..63});
if (PSW[C]) {

if (page_type <= 3)
priv ← IAOQ_Front{62..63};

else
priv ← min(IAOQ_Front{62..63}, page_type{1..2});

} else
priv ← 0;

else
priv ← IAOQ_Front{62..63};

IAOQ_Next{0..61} ← (IAOQ_Front + disp + 8){0..61};
IAOQ_Next{62..63} ← priv;
if (cmplt == ‘L’) {

GR[t] ← IAOQ_Back + 4;
BNR ← (IAOQ_Back + 4){0..61};

}
if (n) PSW[N] ← 1;

}

Exceptions: Illegal instruction trap
Taken branch trap

Notes: When the ,GATE completer is specified, the privilege information must be captured w
the TLB is read for instruction fetch and that information kept for the determination o
new execution privilege.

To perform an unconditional branch without saving a link, the B,n target pseudo-oper
generates a a B,L,n target,%R0 instruction with GR0 as the link register.

The CALL,n target pseudo-operation generates a B,L,n target,%R2 instruction to pe
a procedure call with GR2 specified as the link register.

Restrictions: The ,PUSH completer can be used only if the ,L completer is specified and the
register is GR2.
7-11PA-RISC 2.0 Architecture Instruction Descriptions

e,

el.
Programming Note
It is possible for aBRANCH to promote the privilege level so that the process cannot continue
executing on that page (because it violates PL2 of the TLB access rights field.) In that cas
software should ensure that theBRANCH nullifies execution of the following instruction and its
target should be on a page whose range of execute levels includes the new privilege lev
Otherwise, an instruction memory protection trap may result.
7-12 Instruction Descriptions PA-RISC 2.0 Architecture

r.

the

 be

< or
 word
r

f

r
 bits.

ord

is
ch is
.

-9.
e bit
Branch on Bit BB

Format: BB,cond,n r,pos,target

(18)

Purpose: To perform an IA-relative branch conditionally based on the value of a bit in a registe

Description: If the bit in GRr specified bypos satisfies the condition,cond, the word displacement is
assembled from thew andw1 fields of the instruction, sign extended, and added to
current instruction offset plus 8 to form the target offset. The branch target,target, in the
assembly language format is encoded in thew andw1 fields.

The bit position,pos, can either be a constant (fixed bit position, opcode 31), or can
SAR, the Shift Amount Register (CR 11) (variable bit position, opcode 30.)

With a fixed bit position, thep field encodes the lower 5 bits ofpos, and thed field encodes
either 0 or the complement of the upper bit. If a word condition is specified (either
>=), pos may take on the values 0..31, and the bit tested is one of the bits in the lower
of GRr. For word conditions, thed field is 0. If a doubleword condition is specified (eithe
*< or *>=), pos may take on the values 0..63, and the complement of the upper bit opos
is encoded in thed field. Any bit in the doubleword in GRr may be tested.

With a variable bit position, thep field is 0. If a word condition is specified (either < o
>=), the leftmost bit of the SAR is ignored, and 32 is added to the value in the lower 5
Thus, the bit tested is one of the bits in the lower word of GRr. If a doubleword condition
is specified (either *< or *>=), the full value of the SAR is used. Any bit in the doublew
in GRr may be tested. For word conditions, thed field is 0; for doubleword conditions, the
d field is 1.

If nullification is not specified, the following instruction is not nullified. If nullification
specified, the instruction following a taken forward branch or a failing backward bran
nullified. The ,N completer, encoded in then field of the instruction, specifies nullification

Conditions: The condition,cond, is any of the branch on bit conditions from Table D-15 on page D
The boolean variable “cond_satisfied” in the operation section is set to 1 when th
tested satisfies the specified condition and set to 0 otherwise.

30/31 p r c 1 d w1 n w

6 5 5 1 1 1 11 1 1
7-13PA-RISC 2.0 Architecture Instruction Descriptions

Operation: if (variable_bit_position)
if (cond == < || cond == >=) /* word conditions */

shamt← CR[11]{1..5} + 32;
else /* doubleword conditions */

shamt← CR[11];
else

shamt← cat(~cp,p);
lshift(GR[r],shamt);
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← !cond_satisfied;

else
PSW[N] ← cond_satisfied;

Exceptions: Taken branch trap
7-14 Instruction Descriptions PA-RISC 2.0 Architecture

 the
d the
ode

nt
its of

tion

is
Branch External BE

Format: BE,n wd(sr,b)
BE,L,n wd(sr,b),sr0,r31

(19)

Purpose: To do procedure calls, branches and returns to another space.

Description: The word displacement,wd, is assembled from thew, w1, andw2 fields in the instruction.
The displacement is sign extended and added to GRb to form the target offset. SRsr
(which is assembled from thes field of the instruction) becomes the target space.

If the ,L completer is specified, the offset of the return point is placed in GR 31 and
space of the return point is placed in SR 0. The return point is 4 bytes beyon
following instruction. If the ,L completer is specified, opcode 39 is used; otherwise opc
38 is used.

If the two rightmost bits of GRb designate a lower privileged level than the curre
instruction, the privilege level of the target is set to that specified by the rightmost b
GR b. The decrease in privilege level takes effect at the branch target.

When aBRANCH EXTERNAL is executed with the PSW C-bit 0 (code address transla
is disabled) the effect on IASQ (and SR 0 if the ,L completer is specified) is not defined.

The following instruction is nullified if the ,N completer is specified. The completer
encoded in then field of the instruction.

Operation: disp ← lshift(sign_ext(assemble_17(w1,w2,w),17),2);
IAOQ_Next{0..61} ← (GR[b] + disp){0..61};
if (IAOQ_Front{62..63} < GR[b]{62..63})

IAOQ_Next{62..63} ← GR[b]{62..63};
else

IAOQ_Next{62..63} ← IAOQ_Front{62..63};
IASQ_Next ← SR[assemble_3(s)];
if (cmplt == L) {

GR[31] ← IAOQ_Back + 4;
SR[0] ← IASQ_Back;

}
if (n) PSW[N] ← 1;

Exceptions: Taken branch trap

38/39 b w1 s w2 n w

6 5 5 3 11 1 1
7-15PA-RISC 2.0 Architecture Instruction Descriptions

w

Programming Note
If a taken local branch is executed following aBRANCH EXTERNAL instruction, the target’s
address is computed based on the value of the IASQ set by theBRANCH EXTERNAL
instruction. This results in a transfer of control to possibly a meaningless location in the ne
space.
7-16 Instruction Descriptions PA-RISC 2.0 Architecture

 the
R

is

is
Branch and Link Register BLR

Format: BLR,n x,t

(21)

Purpose: To do IA-relative branches with a dynamic displacement and store a return link.

Description: The index from GRx is shifted left 3 bits and the result plus 8 is added to the offset of
current instruction to form the target offset. The offset of the return point is placed in Gt.
The return point is 4 bytes beyond the following instruction.

The following instruction is nullified if the ,N completer is specified. The completer
encoded in then field of the instruction.

Operation: IAOQ_Next ← IAOQ_Front + lshift(GR[x],3) + 8;
GR[t] ← IAOQ_Back + 4;
if (n) PSW[N] ← 1;

Exceptions: Taken branch trap

Programming Note
BRANCH AND LINK REGISTER with GR 0 as the link register does a IA-relative branch
without saving a link. Jump tables based on the index value can be constructed using th
instruction. When the jump table begins at the instruction which is located at theBLR plus 8
bytes, an index value of 0 can be used to branch to the first entry of the table.

3A t x 2 0 n 0

6 5 5 3 11 1 1
7-17PA-RISC 2.0 Architecture Instruction Descriptions

Break BREAK

Format: BREAK im5,im13

(27)

Purpose: To cause a break instruction trap for debugging purposes.

Description: A break instruction trap occurs when this instruction is executed.

Operation: break_instruction_trap;

Exceptions: None

Notes: im5 andim13 can be used as parameters to the "BREAK" processing code.

00 im13 00 im5

6 13 8 5
7-18 Instruction Descriptions PA-RISC 2.0 Architecture

is

nt
t bits
Branch Vectored BV

Format: BV,n x(b)

(21)

Purpose: To do base-relative branches with a dynamic displacement in the same space.

Description: The index from GRx is shifted left 3 bits and the result is added to GRb to form the target
offset.

The following instruction is nullified if the ,N completer is specified. The completer
encoded in then field of the instruction.

If the two rightmost bits of GRb designate a lower privilege level than the curre
privilege level, the privilege level of the target is set to that specified by the rightmos
of GRb. The decrease in privilege level takes effect at the branch target.

Operation: IAOQ_Next{0..61} ← (GR[b] + lshift(GR[x],3)){0..61};
if (IAOQ_Front{62..63} < GR[b]{62..63})

IAOQ_Next{62..63} ← GR[b]{62..63};
else

IAOQ_Next{62..63} ← IAOQ_Front{62..63};
if (n) PSW[N] ← 1;

Exceptions: Taken branch trap

3A b x 6 0 n 0

6 5 5 3 11 1 1
7-19PA-RISC 2.0 Architecture Instruction Descriptions

If no
 not

e top

get
get
es

f
hines
s if the

turn
sub-
n is

is

nt
most

ss
Branch Vectored External BVE

Format: BVE,stack,n (b)
BVE,L,stack,n (b),r2

(22)

Purpose: To do base-relative branches and procedure calls to another space.

Description: Either GRb or the branch target stack provides the offset of the target instruction.

The completer,stack, specifies whether a branch target stack operation is performed.
completer is specified, GRb provides the target offset and the branch target stack is
changed.

If the ,POP completer is specified and if the branch target stack is non-empty and th
entry is valid, the target offset can be provided by either GRb or the top entry of the
branch target stack. If the ,POP completer is specified, the top entry of the branch tar
stack is popped. If the ,POP completer is specified and the top entry of the branch tar
stack is valid and does not equal the value in GRb, the results are undefined. On machin
that do not implement the branch target stack, GRb provides the target offset.

If the ,L completer is specified and the ,PUSH completer is specified, either the offset o
the return point or an “invalid” value is pushed onto the branch target stack. On mac
that do not implement the branch target stack, the instruction executes the same a
,PUSH completer had not been specified.

If a stack completer is specified, thep field is 1. Otherwise thep field is 0.

If the ,L completer is specified, the offset of the return point is placed in GR 2. The re
point is 4 bytes beyond the following instruction. The completer is encoded in the
opcode field of the instruction (6: no link, 7: link.) The space of the target instructio
specified implicitly by the base register. The upper two bits of GRb are added to 4 to
select a space register which gives the target space.

The following instruction is nullified if the ,N completer is specified. The completer
encoded in then field of the instruction.

If the two rightmost bits of GRb designate a lower privilege level than the curre
privilege level, then the privilege level of the target is set to that specified by the right
bits of GRb. The decrease in privilege level takes effect at the branch target.

When aBRANCH VECTORED EXTERNAL is executed with the PSW C-bit 0 (code addre
translation is disabled) the effects on IASQ are not defined.

3A b 0 6/7 1 rv n p

6 5 5 3 1 10 1 1
7-20 Instruction Descriptions PA-RISC 2.0 Architecture

m an

edure
Operation: if (stack == ‘POP’) {
tmp ← pop_from_BTS();
valid ← tmp{62};
if (valid)

IAOQ_Next{0..61} ← tmp{0..61};
else

IAOQ_Next{0..61} ← GR[b]{0..61};
}
if (IAOQ_Front{62..63} < GR[b]{62..63})

IAOQ_Next{62..63} ← GR[b]{62..63};
else

IAOQ_Next{62..63} ← IAOQ_Front{62..63};
if (cmplt == L) {

GR[2] ← IAOQ_Back + 4;
BNR ← (IAOQ_Back + 4){0..61};
if (stack == ‘PUSH’)

push_onto_BTS((IAOQ_Back + 4){0..61});
}
IASQ_Next← space_select(0, GR[b],LONG_DISP);
if (n) PSW[N] ← 1;

Exceptions: Taken branch trap.

Notes: The CALL,n (b) pseudo-operation generates a BVE,L,n (b),%R2 instruction to perfor
indirect procedure call with GR2 specified as the link register.

The RET,n pseudo-operation generates a BVE,n (%R2) instruction to perform a proc
return.
7-21PA-RISC 2.0 Architecture Instruction Descriptions

o

base
egister
3 on
nics.)
Coprocessor Load Doubleword CLDD

Format: CLDD,uid,cmplt,cc d(s,b),t

(41)

(39)

Purpose: To load a doubleword into a coprocessor register.

Description: The aligned doubleword at the effective address is loaded into registert of the coprocessor
identified byuid. The offset is formed as the sum of a base register,b, and either an index
register,x (Format 39), or a displacementd (Format 41.) The displacement is encoded int
the immediate field. Optional base modification can also be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. The completer also specifies base r
modification, optional index prescaling, and ordering constraints (see Table H-
page H-8, and Table H-1 on page H-4 for the assembly language completer mnemo
The completer,cc, specifies the cache control hint (see Table 6-7 on page 6-10.)

For short displacements, a one in them field specifies base modification, and thea field
encodes whether pre-modification (a=1), or post-modification (a=0) is performed. For
indexed loads, a one in them field specifies base modification, and a one in theu field
specifies index prescaling.

0B b im5 s a 1 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5

0B b x s u 0 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5
7-22 Instruction Descriptions PA-RISC 2.0 Architecture

Operation: if (indexed_load) /* indexed (Format 39)*/
switch (cmplt) {

case S:
case SM: dx← lshift(GR[x],3);

break;
case M:
default: dx← GR[x];

break;
}

} else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 41) */

space← space_select(s,GR[b],format);
switch (cmplt) {

case MB: offset← GR[b] + dx;
GR[b] ← GR[b] + dx;
break;

case MA:
case M:
case SM: offset← GR[b];

GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
break;

}
send_to_copr(uid,t);
CPR[uid][t] ← mem_load(space,offset,0,63,cc);
if (cmplt == O)

enforce_ordered_load;

Exceptions: Assist exception trap Unaligned data reference trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Data memory protection ID trap
Assist emulation trap

Restrictions: If the completerO is specified, the displacement must be 0.
7-23PA-RISC 2.0 Architecture Instruction Descriptions

o

base
egister
3 on
nics.)
Coprocessor Load Word CLDW

Format: CLDW,uid,cmplt,cc x|d(s,b),t

(41)

(39)

Purpose: To load a word into a coprocessor register.

Description: The aligned word at the effective address is loaded into registert of the coprocessor
identified byuid. The offset is formed as the sum of a base register,b, and either an index
register,x (Format 39), or a displacementd (Format 41.) The displacement is encoded int
the immediate field. Optional base modification can also be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. The completer also specifies base r
modification, optional index prescaling, and ordering constraints (see Table H-
page H-8, and Table H-1 on page H-4 for the assembly language completer mnemo
The completer,cc, specifies the cache control hint (see Table 6-7 on page 6-10.)

For short displacements, a one in them field specifies base modification, and thea field
encodes whether pre-modification (a=1), or post-modification (a=0) is performed. For
indexed loads, a one in them field specifies base modification, and a one in theu field
specifies index prescaling.

09 b im5 s a 1 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5

09 b x s u 0 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5
7-24 Instruction Descriptions PA-RISC 2.0 Architecture

Operation: if (indexed_load) /* indexed (Format 39)*/
switch (cmplt) {

case S:
case SM: dx← lshift(GR[x],2);

break;
case M:
default: dx← GR[x];

break;
}

} else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 41) */

space← space_select(s,GR[b],format);
switch (cmplt) {

case MB: offset← GR[b] + dx;
GR[b] ← GR[b] + dx;
break;

case MA:
case M:
case SM: offset← GR[b];

GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
break;

}
send_to_copr(uid,t);
CPR[uid][t] ← mem_load(space,offset,0,31,cc);
if (cmplt == O)

enforce_ordered_load;

Exceptions: Assist exception trap Unaligned data reference trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Assist emulation trap
Data memory protection ID trap

Restrictions: If the completerO is specified, the displacement must be 0.
7-25PA-RISC 2.0 Architecture Instruction Descriptions

tries.

get
Clear Branch Target Stack CLRBTS

Format: CLRBTS

(23)

Purpose: To clear the branch target stack.

Description: The branch target stack is cleared, either by making it empty or by invalidating all en

If this instruction is nullified, the results are undefined.

This instruction is executed as aNOP on machines that do not implement the branch tar
stack.

Operation: clear_BTS();

Exceptions: none

3A 0 0 2 0 0 1 0 1

6 5 5 3 1 9 1 1 1
7-26 Instruction Descriptions PA-RISC 2.0 Architecture

 the

n,

arget,

is
ch is
.

n in
n in

D-3),
7 for
r the
er is
n the
n and
Compare and Branch CMPB

Format: CMPB,cond,n r1,r2,target

(17)

Purpose: To compare two values and perform an IA-relative branch conditionally based on
values compared.

Description: GR r1 is compared with GRr2. If the values compared satisfy the specified conditio
cond, the word displacement is assembled from thew andw1 fields, sign extended, and
added to the current instruction offset plus 8 to form the target offset. The branch t
target, in the assembly language format is encoded in thew andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification
specified, the instruction following a taken forward branch or a failing backward bran
nullified. The ,N completer, encoded in then field of the instruction, specifies nullification

Conditions: The condition,cond, can be any of the 32-bit compare or subtract conditions show
Table D-3 on page D-4 or any of the 64-bit compare or subtract conditions show
Table D-4 on page D-4 and is encoded in thec and opcode fields of the instruction.
Opcode 20 is used for the 32-bit non-negated conditions (those with f = 0 in Table
opcode 22 for the 32-bit negated conditions (those with f = 1 in Table D-3), opcode 2
the 64-bit non-negated conditions (those with f = 0 in Table D-4), and opcode 2F fo
64-bit negated conditions (those with f = 1in Table D-4.) When a condition complet
not specified, the “never” condition is used. The boolean variable “cond_satisfied” i
operation section is set to 1 when the values compared satisfy the specified conditio
set to 0 otherwise.

Operation: GR[r1] + ∼GR[r2] + 1;
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← !cond_satisfied;

else
PSW[N] ← cond_satisfied;

Exceptions: Taken branch trap

20/22/27/2F r2 r1 c w1 n w

6 5 5 3 11 1 1
7-27PA-RISC 2.0 Architecture Instruction Descriptions

ing

3 on
4 on
. The
pared

et
Compare and Clear CMPCLR

Format: CMPCLR,cond r1,r2,t

(8)

Purpose: To compare two registers, set a register to 0, and conditionally nullify the follow
instruction, based on the result of the comparison.

Description: GR r1 and GRr2 are compared and GRt is set to zero. The following instruction is
nullified if the values compared satisfy the specified condition,cond. The condition is
encoded in thec, d, andf fields of the instruction.

Conditions: The condition is any of the 32-bit compare or subtract conditions shown in Table D-
page D-4 or any of the 64-bit compare or subtract conditions shown in Table D-
page D-4. When a condition completer is not specified, the "never" condition is used
boolean variable "cond_satisfied" in the operation section is set when the values com
satisfy the specified condition.

Operation: GR[r1] + ∼GR[r2] + 1;
GR[t] ← 0;
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

Programming Note
COMPARE AND CLEAR can be used to produce the logical value of the result of a comparison
(assuming false is represented by 0 and true by 1) in a register. The following example will s
ra to 1 if rb andrc are equal, and to 0 if they are not equal:

02 r2 r1 c f 2 0 0 2 d t

6 5 5 3 1 2 1 1 2 1 5

CMPCLR,<> rb,rc,ra
LDO 1(0),ra
7-28 Instruction Descriptions PA-RISC 2.0 Architecture

 the

 the
the

is
ch is
.

n in
itions

 0 in
1 in
en a
iable
fy the
Compare Immediate and Branch CMPIB

Format: CMPIB,cond,n i,r,target

(17)

Purpose: To compare two values and perform an IA-relative branch conditionally based on
values compared.

Description: The sign-extended immediate valueim5 is compared with GRr. If the values compared
satisfy the specified condition,cond, the word displacement is assembled from thew and
w1 fields, sign extended, and added to the current instruction offset plus 8 to form
target offset. The branch target,target, in the assembly language format is encoded in
w andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification
specified, the instruction following a taken forward branch or a failing backward bran
nullified. The ,N completer, encoded in then field of the instruction, specifies nullification

Conditions: The condition,cond, can be any of the 32-bit compare or subtract conditions show
Table D-3 on page D-4 or any of the 64-bit compare immediate and branch cond
shown in Table D-5 on page D-5 and is encoded in thec and opcode fields of the
instruction. Opcode 21 is used for the 32-bit non-negated conditions (those with f =
Table D-3), opcode 23 is used for the 32-bit negated conditions (those with f =
Table D-3), and opcode 3B is used for the 64-bit conditions (those in Table D-5.) Wh
condition completer is not specified, the “never” condition is used. The boolean var
“cond_satisfied” in the operation section is set to 1 when the values compared satis
specified condition and set to 0 otherwise.

Operation: low_sign_ext(im5,5) +∼GR[r] + 1;
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← !cond_satisfied;

else
PSW[N] ← cond_satisfied;

Exceptions: Taken branch trap

21/23/3B r im5 c w1 n w

6 5 5 3 11 1 1
7-29PA-RISC 2.0 Architecture Instruction Descriptions

0, and

3 on
4 on
. The
pared
Compare Immediate and Clear CMPICLR

Format: CMPICLR,cond i,r,t

(9)

Purpose: To compare an immediate value with the contents of a register, set a register to
conditionally nullify the following instruction.

Description: The sign-extended immediate and GRr are compared and GRt is set to zero. The
immediate value is encoded into theim11 field. The following instruction is nullified if the
values compared satisfy the specified condition,cond. The condition is encoded in thec,
d, andf fields of the instruction.

Conditions: The condition is any of the 32-bit compare or subtract conditions shown in Table D-
page D-4 or any of the 64-bit compare or subtract conditions shown in Table D-
page D-4. When a condition completer is not specified, the "never" condition is used
boolean variable "cond_satisfied" in the operation section is set when the values com
satisfy the specified condition.

Operation: low_sign_ext(im11,11) +∼GR[r] + 1;
GR[t] ← 0;
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

24 r t c f d im11

6 5 5 3 1 1 11
7-30 Instruction Descriptions PA-RISC 2.0 Architecture

n
ified.

rom
dent

ion of
 trap is

 unit
in the

ed in
Coprocessor Operation COPR

Format: COPR,uid,sop,n

(38)

Purpose: To invoke a coprocessor unit operation.

Description: The coprocessor operation codesop (assembled from thesop1 andsop2 fields) is sent to
the coprocessor identified byuid and the indicated operation is performed. If nullificatio
is specified and the coprocessor condition is satisfied, the following instruction is null

Operation: sop ← cat(sop1,sop2);
coprocessor_op(uid,sop,n,IAOQ_Front{30..31});
if (n && coprocessor_condition(uid,sop,n))

PSW[N] ← 1;

Exceptions: Assist emulation trap Assist exception trap

Notes: The COPROCESSOR OPERATION instruction is used to implement theIDENTIFY
COPROCESSOR pseudo-operation. This operation places an identification number f
the coprocessoruid into coprocessor register 0. This value is implementation depen
and is useful for configuration, diagnostic, and error recovery.

Each implementation must choose an identification number that identifies the vers
the coprocessor. The values all zeros and all ones are reserved. An assist exception
not allowed and this instruction must be implemented by all coprocessors with
identifiers 4 through 7. Unit identifiers 0 and 2 have a uid-specific sequence to obta
identification number.

The format of the identification number for the floating-point coprocessor is describ
“Floating-Point Status Register” on page 8-8.

TheIDENTIFY COPROCESSOR pseudo-operation is coded as follows:COPR,uid,0

0C sop1 uid n sop2

6 17 3 1 5
7-31PA-RISC 2.0 Architecture Instruction Descriptions

e

to

base
egister
3 on
nics.)
Coprocessor Store Doubleword CSTD

Format: CSTD,uid,cmplt,cc r,x|d(s,b)

(42)

(40)

Purpose: To store a doubleword from a coprocessor register.

Description: Registerr of the coprocessor identified byuid is stored in the aligned doubleword at th
effective address. The offset is formed as the sum of a base register,b, and either an index
register,x (Format 40), or a displacementd (Format 42.) The displacement is encoded in
the immediate field. Optional base modification can also be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. The completer also specifies base r
modification, optional index prescaling, and ordering constraints (see Table H-
page H-8, and Table H-1 on page H-4 for the assembly language completer mnemo
The completer,cc, specifies the cache control hint (see Table 6-8 on page 6-10.)

For short displacements, a one in them field specifies base modification, and thea field
encodes whether pre-modification (a=1), or post-modification (a=0) is performed. For
indexed stores, a one in them field specifies base modification, and a one in theu field
specifies index prescaling.

0B b im5 s a 1 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5

0B b x s u 0 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5
7-32 Instruction Descriptions PA-RISC 2.0 Architecture

Operation: if (indexed_store) /* indexed (Format 40)*/
switch (cmplt) {

case S:
case SM: dx← lshift(GR[x],3);

break;
case M:
default: dx← GR[x];

break;
}

} else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 42) */

space← space_select(s,GR[b],format);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB: offset← GR[b] + dx;
GR[b] ← GR[b] + dx;
break;

case MA:
case M:
case SM: offset← GR[b];

GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
break;

}
send_to_copr(uid,r);
 mem_store(space,offset,0,63,cc,CPR[uid][r]);

Exceptions: Assist exception trap TLB dirty bit trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Unaligned data reference trap
Data memory protection ID trap Assist emulation trap

Restrictions: If the completerO is specified, the displacement must be 0.
7-33PA-RISC 2.0 Architecture Instruction Descriptions

e

he

base
egister
3 on
nics.)
Coprocessor Store Word CSTW

Format: CSTW,uid,cmplt,cc r,x|d(s,b)

(42)

(40)

Purpose: To store a word from a coprocessor register.

Description: Registerr of the coprocessor identified byuid is stored in the aligned word at the effectiv
address. The offset is formed as the sum of a base register,b, and either an index register,x
(Format 40), or a displacementd (Format 42.) The displacement is encoded into t
immediate field. Optional base modification can also be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. The completer also specifies base r
modification, optional index prescaling, and ordering constraints (see Table H-
page H-8, and Table H-1 on page H-4 for the assembly language completer mnemo
The completer,cc, specifies the cache control hint (see Table 6-8 on page 6-10.)

For short displacements, a one in them field specifies base modification, and thea field
encodes whether pre-modification (a=1), or post-modification (a=0) is performed. For
indexed stores, a one in them field specifies base modification, and a one in theu field
specifies index prescaling.

09 b im5 s a 1 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5

09 b x s u 0 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5
7-34 Instruction Descriptions PA-RISC 2.0 Architecture

Operation: if (indexed_store) /* indexed (Format 40)*/
switch (cmplt) {

case S:
case SM: dx← lshift(GR[x],2);

break;
case M:
default: dx← GR[x];

break;
}

} else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 42) */

space← space_select(s,GR[b],format);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB: offset← GR[b] + dx;
GR[b] ← GR[b] + dx;
break;

case MA:
case M:
case SM: offset← GR[b];

GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
break;

}
send_to_copr(uid,r);
 mem_store(space,offset,0,31,cc,CPR[uid][r]);

Exceptions: Assist exception trap TLB dirty bit trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Unaligned data reference trap
Data memory protection ID trap Assist emulation trap

Restrictions: If the completerO is specified, the displacement must be 0.
7-35PA-RISC 2.0 Architecture Instruction Descriptions

s, is
n
al

ified

-8
ition
iable
es the
Decimal Correct DCOR

Format: DCOR,cmplt,cond r,t

(8)

Purpose: To separately correct the 16 BCD digits of the result of an addition or subtraction.

Description: A decimal correction value, computed from the 4-bit carries in the PSW C/B bit
combined with GRr, and the result is placed in GRt. The correction can be either a
intermediate correction (cmplt == I), which leaves the result pre-biased, or a fin
correction (nocmplt), which removes the pre-bias. This is encoded in thee1 field (e1=3
for intermediate correction,e1=2 for final correction.)

For intermediate correction, every digit of GRr corresponding to a bit which is 1 in the
PSW C/B-bits has 6 added to it. For final correction, every digit of GRr corresponding to
a bit which is 0 in the PSW C/B-bits has 6 subtracted from it.

The following instruction is nullified if the result of the operation satisfies the spec
conditioncond. The condition is encoded in thec, d, andf fields of the instruction.

Conditions: The conditioncond is any of the 32-bit unit conditions shown in Table D-11 on page D
or any of the 64-bit unit conditions shown in Table D-12 on page D-8. When a cond
completer is not specified, the "never" condition is used. The boolean var
"cond_satisfied" in the operation section is set when the result of the operation satisfi
specified condition.

02 r 0 c f 2 1 1 e1 d t

6 5 5 3 1 2 1 1 2 1 5
7-36 Instruction Descriptions PA-RISC 2.0 Architecture

Operation: if (cmplt == I)
GR[t] ← GR[r] + cat(

0x6*PSW[C/B]{0}, 0x6*PSW[C/B]{1},
0x6*PSW[C/B]{2}, 0x6*PSW[C/B]{3},
0x6*PSW[C/B]{4}, 0x6*PSW[C/B]{5},
0x6*PSW[C/B]{6}, 0x6*PSW[C/B]{7},
0x6*PSW[C/B]{8}, 0x6*PSW[C/B]{9},
0x6*PSW[C/B]{10}, 0x6*PSW[C/B]{11},
0x6*PSW[C/B]{12}, 0x6*PSW[C/B]{13},
0x6*PSW[C/B]{14}, 0x6*PSW[C/B]{15});

else
GR[t] ← GR[r] - cat(

0x6*(1 - PSW[C/B]{0}), 0x6*(1 - PSW[C/B]{1}),
0x6*(1 - PSW[C/B]{2}), 0x6*(1 - PSW[C/B]{3}),
0x6*(1 - PSW[C/B]{4}), 0x6*(1 - PSW[C/B]{5}),
0x6*(1 - PSW[C/B]{6}), 0x6*(1 - PSW[C/B]{7}),
0x6*(1 - PSW[C/B]{8}), 0x6*(1 - PSW[C/B]{9}),
0x6*(1 - PSW[C/B]{10}), 0x6*(1 - PSW[C/B]{11}),
0x6*(1 - PSW[C/B]{12}), 0x6*(1 - PSW[C/B]{13}),
0x6*(1 - PSW[C/B]{14}), 0x6*(1 - PSW[C/B]{15}));

if (cond_satisfied) PSW[N]← 1;

Exceptions: None

Programming Note
DECIMAL CORRECT can be used to take the sum of 64-bit BCD values.ra, rb, rc, andrd each
contain a 64-bit BCD value andrt will hold the result at the end of the sequence. TheUADDCM
operation is used to pre-bias the value inra in order to perform BCD arithmetic. TheDCOR,I
operations between theADD operations are used to re-adjust the BCD bias of the result. The
final DCOR operation is used to remove the bias and leave the value inrt in BCD format. For
the following example, the registernines contains the value 0x99999999 99999999.

UADDCM ra,nines,rt ; pre-bias first operand
ADD rt,rb,rt ; add in the next value
DCOR,I rt,rt ; correct result, retaining bias
ADD rt,rc,rt ; add in the next value
DCOR,I rt,rt ; correct result, retaining bias
ADD rt,rd,rt ; add in the next value
DCOR rt,rt ; final correction
7-37PA-RISC 2.0 Architecture Instruction Descriptions

ullify

AR,
d for
if the
s are
d the

 the
nics.)
is

The

 by
Deposit Doubleword DEPD

Format: DEPD,cmplt,cond r,pos,len,t

(13)

(16)

Purpose: To deposit a value into a register at a fixed or variable position, and conditionally n
the following instruction.

Description: A right-justified field from GRr is deposited (merged) into GRt. The field begins at the
bit position given bypos and extendslen bits to the left. The remainder of GRt is
optionally zeroed or left unchanged.

The bit position,pos, can either be a constant (specifying a fixed deposit), or can be S
the Shift Amount Register (CR 11) (specifying a variable deposit.) Format 13 is use
variable deposits; Format 16 is used for fixed deposits. For variable deposits,
deposited field extends beyond the leftmost bit, it is truncated and the higher bit
ignored. For fixed deposits, it is an undefined operation for the field to extend beyon
leftmost bit.

The completer,cmplt, determines whether or not the target register is zeroed before
field is deposited into it. (Table 7-1 defines the assembly language completer mnemo
This is encoded in thenz field of the instruction, with 0 indicating that the register
zeroed and 1indicating that it is not.

The following diagram illustrates a fixed deposit of a 50-bit field at bit position 56.
instruction is: DEPD r,56,50,t.

The lengthlen in the assembly language format is encoded into thecl andclen fields. For
fixed deposits, the bit positionpos in the assembly language format is represented

35 t r c 0 nz 1 cl 0 clen

6 5 5 3 2 1 1 1 3 5

3C t r c cl cpnz cpos clen

6 5 5 3 1 1 1 5 5

Table 7-1. Deposit Instruction Completers

cmplt Description nz

<none> value is deposited into the old value of the target register 1

Z value is deposited into a field of zeros 0

7 56

6314

63

GR r:

GR t:

0

0

7-38 Instruction Descriptions PA-RISC 2.0 Architecture

ified

 on
. The
of the

/

4-sa,t
cat(cp,cpos) in the machine instruction, whose value is 63–pos.

The following instruction is nullified if the result of the operation satisfies the spec
condition,cond. The condition is encoded in thec field of the instruction.

Conditions: The condition is any of the 64-bit extract/deposit conditions shown in Table D-14
page D-9. When a condition completer is not specified, the "never" condition is used
boolean variable "cond_satisfied" in the operation section is set when the result
operation satisfies the specified condition.

Operation: len ← assemble_6(cl,clen)
if (fixed_deposit) { /* (Format 16) */

if (pos >= len–1)
tpos ← pos;

else
undefined;

} else /* (Format 13) */
tpos ← CR[11];

if (cmplt == Z) /* nz=0 */
GR[t] ← 0;

if (tpos–len+1< 0) /* field extends beyond leftmost bit *
GR[t]{0..tpos} ← GR[r]{63–tpos..63};

else
GR[t]{tpos–len+1..tpos}← GR[r]{64–len..63};

if (cond_satisfied) PSW[N]← 1;

Exceptions: None

Restrictions: Since for fixed deposits, the deposited field is fully specified bylen and pos, it is an
undefined operation if the field extends beyond the leftmost bit.

Notes: The SHLD,cond r,sa,t pseudo-operation generates a DEPD,Z,cond r,63-sa,6
instruction to perform a shift left by sa bits on the doubleword in general register r.
7-39PA-RISC 2.0 Architecture Instruction Descriptions

 and

AR,
d for
if the
s are
d the

 the
pleter

t bit

 by

ified

 on
Deposit Doubleword Immediate DEPDI

Format: DEPDI,cmplt,cond i,pos,len,t

(13)

(16)

Purpose: To deposit an immediate value into a register at a fixed or variable position,
conditionally nullify the following instruction.

Description: A right-justified field from the sign-extended immediatei is deposited (merged) into GRt.
The field begins at the bit position given bypos and extendslen bits to the left. The
remainder of GRt is optionally zeroed or left unchanged.

The bit position,pos, can either be a constant (specifying a fixed deposit), or can be S
the Shift Amount Register (CR 11) (specifying a variable deposit.) Format 13 is use
variable deposits; Format 16 is used for fixed deposits. For variable deposits,
deposited field extends beyond the leftmost bit, it is truncated and the higher bit
ignored. For fixed deposits, it is an undefined operation for the field to extend beyon
leftmost bit.

The completer,cmplt, determines whether or not the target register is zeroed before
field is deposited into it (see Table 7-1 on page 7-38 for the assembly language com
mnemonics.) This is encoded in thenz field of the instruction, with 0 indicating that the
register is zeroed and 1indicating that it is not.

The following diagram illustrates a fixed deposit of the value 0x9 into a 50-bit field a
position 56. The instruction is: DEPDI 0x9,56,50,t.

The lengthlen in the assembly language format is encoded into thecl andclen fields. For
fixed deposits, the bit positionpos in the assembly language format is represented
cat(cp,cpos) in the machine instruction, whose value is 63–pos. The immediate is encoded
in theim5 field of the instruction.

The following instruction is nullified if the result of the operation satisfies the spec
condition,cond. The condition is encoded in thec field of the instruction.

Conditions: The condition is any of the 64-bit extract/deposit conditions shown in Table D-14

35 t im5 c 2 nz 1 cl 0 clen

6 5 5 3 2 1 1 1 3 5

3D t im5 c cl cpnz cpos clen

6 5 5 3 1 1 1 5 5

7 56

6314

63

i:

GR t:

0

0

0x9

0x9
7-40 Instruction Descriptions PA-RISC 2.0 Architecture

. The
of the

/

page D-9. When a condition completer is not specified, the "never" condition is used
boolean variable "cond_satisfied" in the operation section is set when the result
operation satisfies the specified condition.

Operation: len ← assemble_6(cl,clen)
ival ← low_sign_ext(im5,5);
if (fixed_deposit) { /* (Format 16) */

if (pos >= len–1)
tpos ← pos;

else
undefined;

} else /* (Format 13) */
tpos ← CR[11];

if (cmplt == Z) /* nz=0 */
GR[t] ← 0;

if (tpos–len+1< 0) /* field extends beyond leftmost bit *
GR[t]{0..tpos} ← ival{63–tpos..63};

else
GR[t]{tpos–len+1..tpos}← ival{64–len..63};

if (cond_satisfied) PSW[N]← 1;

Exceptions: None

Restrictions: Since for fixed deposits, the deposited field is fully specified bylen and pos, it is an
undefined operation if the field extends beyond the leftmost bit.
7-41PA-RISC 2.0 Architecture Instruction Descriptions

, and

AR,
d for
ftmost
fixed
e
d the
ld to

 the
pleter

unt

ified
Deposit Word DEPW

Format: DEPW,cmplt,cond r,pos,len,t

(13)

(16)

Purpose: To deposit a value into the rightmost 32 bits of a register at a fixed or variable position
conditionally nullify the following instruction.

Description: A right-justified field from GRr is deposited (merged) into the rightmost 32 bits of GRt.
The field begins at the bit position given bypos+32 and extendslen bits to the left. The
remainder of GRt is optionally zeroed or left unchanged. The leftmost 32 bits of GRt are
undefined.

The bit position,pos, can either be a constant (specifying a fixed deposit), or can be S
the Shift Amount Register (CR 11) (specifying a variable deposit.) Format 13 is use
variable deposits; Format 16 is used for fixed deposits. For variable deposits, the le
bit of the SAR is ignored, and 32 is added to the value in the lower 5 bits. For
deposits, 32 is added to thepos value in the instruction. For variable deposits, if th
deposited field extends beyond the leftmost bit (of the rightmost 32), it is truncated an
higher bits are ignored. For fixed deposits, it is an undefined operation for the fie
extend beyond the leftmost bit (of the rightmost 32.)

The completer,cmplt, determines whether or not the target register is zeroed before
field is deposited into it (see Table 7-1 on page 7-38 for the assembly language com
mnemonics.) This is encoded in thenz field of the instruction, with 0 indicating that the
register is zeroed and 1indicating that it is not.

The following diagram illustrates a deposit of a 10-bit field when the Shift Amo
Register contains the value 24. The instruction is: DEPW r,sar,10,t.

The lengthlen in the assembly language format is encoded into theclen field. For fixed
deposits, the bit positionpos in the assembly language format is represented bycpos in the
machine instruction, whose value is 31–pos.

The following instruction is nullified if the result of the operation satisfies the spec

35 t r c 0 nz 0 0 0 clen

6 5 5 3 2 1 1 1 3 5

35 t r c 0 1 nz cpos clen

6 5 5 3 1 1 1 5 5

32

47 56

63

32

54

63

GR r:

GR t:

0

0

undefined
7-42 Instruction Descriptions PA-RISC 2.0 Architecture

 on
. The
of the

/

2-sa,t
condition,cond. The condition is encoded in thec field of the instruction.

Conditions: The condition is any of the 32-bit extract/deposit conditions shown in Table D-13
page D-9. When a condition completer is not specified, the "never" condition is used
boolean variable "cond_satisfied" in the operation section is set when the result
operation satisfies the specified condition.

Operation: len ← assemble_6(0,clen);
if (fixed_deposit) { /* (Format 16) */

if (pos >= len–1)
tpos ← pos + 32;

else
undefined;

} else /* (Format 13) */
tpos ← CR[11]{1..5} + 32;

if (cmplt == Z) /* nz=0 */
GR[t]{32..63} ← 0;

if (tpos–len+1< 32) /* field extends beyond leftmost bit *
GR[t]{32..tpos} ← GR[r]{95–tpos..63};

else
GR[t]{tpos–len+1..tpos}← GR[r]{64–len..63};

GR[t]{0..31} ← undefined;
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

Restrictions: Since for fixed deposits, the deposited field is fully specified bylen and pos, it is an
undefined operation if the field extends beyond the leftmost bit (of the rightmost 32.)

Notes: The SHLW,cond r,sa,t pseudo-operation generates a DEPW,Z,cond r,31-sa,3
instruction to perform a shift left by sa bits on the word in general register r.
7-43PA-RISC 2.0 Architecture Instruction Descriptions

riable

e

AR,
d for
ftmost
fixed
e
d the
ld to

 the
pleter

 the
,t.
Deposit Word Immediate DEPWI

Format: DEPWI,cmplt,cond i,pos,len,t

(13)

(16)

Purpose: To deposit an immediate value into the rightmost 32 bits of a register at a fixed or va
position, and conditionally nullify the following instruction.

Description: A right-justified field from the sign-extended immediatei is deposited (merged) into the
rightmost 32 bits of GRt. The field begins at the bit position given bypos+32 and extends
len bits to the left. The remainder of GRt is optionally zeroed or left unchanged. Th
leftmost 32 bits of GRt are undefined.

The bit position,pos, can either be a constant (specifying a fixed deposit), or can be S
the Shift Amount Register (CR 11) (specifying a variable deposit.) Format 13 is use
variable deposits; Format 16 is used for fixed deposits. For variable deposits, the le
bit of the SAR is ignored, and 32 is added to the value in the lower 5 bits. For
deposits, 32 is added to thepos value in the instruction. For variable deposits, if th
deposited field extends beyond the leftmost bit (of the rightmost 32), it is truncated an
higher bits are ignored. For fixed deposits, it is an undefined operation for the fie
extend beyond the leftmost bit (of the rightmost 32.)

The completer,cmplt, determines whether or not the target register is zeroed before
field is deposited into it (Table 7-1 on page 7-38 for the assembly language com
mnemonics.) This is encoded in thenz field of the instruction, with 0 indicating that the
register is zeroed and 1indicating that it is not.

The following diagram illustrates a deposit of the value 0x9 into a 10-bit field when
Shift Amount Register contains the value 24. The instruction is: DEPWI 0x9,sar,10

The lengthlen in the assembly language format is encoded into theclen field. For fixed
deposits, the bit positionpos in the assembly language format is represented bycpos in the
machine instruction, whose value is 31–pos. The immediate is encoded in theim5 field of
the instruction.

35 t im5 c 2 nz 0 0 0 clen

6 5 5 3 2 1 1 1 3 5

35 t im5 c 1 1 nz cpos clen

6 5 5 3 1 1 1 5 5

32

47 56

63

32

54

63

GR r:

GR t:

0

0

undefined

0x9

0x9
7-44 Instruction Descriptions PA-RISC 2.0 Architecture

ified

 on
. The
of the

/

The following instruction is nullified if the result of the operation satisfies the spec
condition,cond. The condition is encoded in thec field of the instruction.

Conditions: The condition is any of the 32-bit extract/deposit conditions shown in Table D-13
page D-9. When a condition completer is not specified, the "never" condition is used
boolean variable "cond_satisfied" in the operation section is set when the result
operation satisfies the specified condition.

Operation: len ← assemble_6(0,clen);
ival ← low_sign_ext(im5,5);
if (fixed_deposit) { /* (Format 16) */

if (pos >= len–1)
tpos ← pos + 32;

else
undefined;

} else /* (Format 13) */
tpos ← CR[11]{1..5} + 32;

if (cmplt == Z) /* nz=0 */
GR[t]{32..63} ← 0;

if (tpos–len+1< 32) /* field extends beyond leftmost bit *
GR[t]{32..tpos} ← ival{95–tpos..63};

else
GR[t]{tpos–len+1..tpos}← ival{64–len..63};

GR[t]{0..31} ← undefined;
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

Restrictions: Since for fixed deposits, the deposited field is fully specified bylen and pos, it is an
undefined operation if the field extends beyond the leftmost bit (of the rightmost 32.)
7-45PA-RISC 2.0 Architecture Instruction Descriptions

cular

m
r
ged
Diagnose DIAG

Format: DIAG i

(28)

Purpose: To provide implementation-dependent operations for system initialization,
reconfiguration, and diagnostic purposes.

Description: The immediate value in the assembly language is encoded in theim26 field of the
instruction. Refer to the hardware reference manual for the definition on a parti
machine implementation.

Operation: if (priv != 0)
privileged_operation_trap;

else
implementation_dependent;

Exceptions: Privileged operation trap
Implementation-dependent.

Restrictions: This instruction may be executed only at the most privileged level.

Notes: Since theDIAG instruction is privileged, a privileged operation trap will result fro
unprivileged diagnostic software executingDIAG. The trap could invoke an emulato
which would allow the unprivileged software access to the required unprivile
implementation-dependent resources.

05 im26

6 26
7-46 Instruction Descriptions PA-RISC 2.0 Architecture

 result

" in
ivide

ified

ower
ary
flow
igned
ecial

3 on
. The
of the
Divide Step DS

Format: DS,cond r1,r2,t

(8)

Purpose: To provide the primitive operation for integer division.

Description: This instruction performs a single-bit non-restoring divide step and produces a set of
conditions. It calculates one bit of the quotient when a 32-bit value in GRr1 is divided by
a 32-bit value in GRr2 and leaves the partial remainder in GRt. The quotient bit is PSW
C/B{8}. The carry/borrow bits in the PSW are updated. The variable "carry_borrows
the operation section captures the 4-bit carries resulting from the single-bit d
operation.

The following instruction is nullified if the result of the operation satisfies the spec
condition,cond. The condition is encoded in thec andf fields of the instruction.

For this instruction, signed overflow condition means that the bit shifted out of the l
32 bits differs from the leftmost bit of the lower 32 bits following the shift or an ordin
32-bit signed overflow occurred during the addition or subtraction. Unsigned over
means that the bit shifted out of the lower 32 bits is 1 or that an ordinary 32-bit uns
overflow occurred during the addition or subtraction. The conditions take on sp
interpretations since the shift operation participates in overflow determination.

Conditions: The condition is any of the 32-bit compare or subtract conditions shown in Table D-
page D-4. When a condition completer is not specified, the "never" condition is used
boolean variable "cond_satisfied" in the operation section is set when the result
operation satisfies the specified condition.

Operation: if (PSW[V])
GR[t] ← cat(lshift(GR[r1],1),PSW[C/B]{8}) +∼GR[r2] + 1;

else
GR[t] ← cat(lshift(GR[r1],1),PSW[C/B]{8}) + GR[r2];

PSW[C/B] ← carry_borrows;
PSW[V] ← xor(carry_borrows{8},GR[r2]{32});
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 1 0 0 1 0 t

6 5 5 3 1 2 1 1 2 1 5
7-47PA-RISC 2.0 Architecture Instruction Descriptions

ally

AR,
d for
racted
 is an

sign
his is
ing

The

the
Extract Doubleword EXTRD

Format: EXTRD,cmplt,cond r,pos,len,t

(12)

(15)

Purpose: To extract any 64-bit or shorter field from a fixed or variable position, and condition
nullify the following instruction.

Description: A field is extracted from GRr, zero or sign extended and placed right-justified in GRt.
The field begins at the bit position given bypos and extendslen bits to the left.

The bit position,pos, can either be a constant (specifying a fixed extract), or can be S
the Shift Amount Register (CR 11) (specifying a variable extract.) Format 12 is use
variable extracts; Format 15 is used for fixed extracts. For variable extracts, if the ext
field extends beyond the leftmost bit, it is zero or sign extended. For fixed extracts, it
undefined operation for the field to extend beyond the leftmost bit.

The completer,cmplt, determines whether the extracted field is zero extended or
extended. (Table 7-2 defines the assembly language completer mnemonics.) T
encoded in these field of the instruction, with 1 indicating sign extension and 0 indicat
zero extension.

The following diagram illustrates a fixed extract of a 50-bit field at bit position 56.
instruction is: EXTRD,U r,56,50,t.

The lengthlen in the assembly language format is encoded into thecl andclen fields. For
fixed extracts, the bit positionpos in the assembly language format is represented in
machine instruction by cat(p,pos.)

34 r t c 2 se 1 cl 0 clen

6 5 5 3 2 1 1 1 3 5

36 r t c cl p se pos clen

6 5 5 3 1 1 1 5 5

Table 7-2. Extract Instruction Completers

cmplt Description se

<none> or S extracted value is sign extended 1

U extracted value is zero extended 0

7 56 63

14 63

GR r:

GR t:

0

0

7-48 Instruction Descriptions PA-RISC 2.0 Architecture

fied

f the
The following instruction is nullified if the result of the operation satisfies the speci
condition, cond. The condition is encoded in thec field of the instruction.

Conditions: The condition is any of the 64-bit extract/deposit conditions shown in TableD-14 on
pageD-9. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the result o
operation satisfies the specified condition.

Operation: len ← assemble_6(cl,clen)
if (variable_extract) { /* (Format 12) */

pos ← CR[11];
shamt ← 63 – pos;
if (pos >= len–1)

tlen ← len;
else

if (variable_extract) /* (Format 12) */
tlen ← pos + 1;

else /* (Format 15) */
undefined;

if (cmplt == U) /* se=0 */
GR[t] ← zero_ext(rshift(GR[r],shamt),tlen);

else /* se=1 */
GR[t] ← sign_ext(rshift(GR[r],shamt),tlen);

if (cond_satisfied) PSW[N] ← 1;

Exceptions: None

Restrictions: Since for fixed extracts, the extracted field is fully specified by len and pos, it is an
undefined operation if the field extends beyond the leftmost bit.

Programming Note
An arithmetic right shift of a 64-bit value in GR r by a variable amount contained in GR p
leaving the result in GR t may be done by the following sequence:

Notes: The SHRD,S,cond r,sa,t pseudo-operation generates a EXTRD,S,cond r,63-sa,64-sa,t
instruction to perform a signed shift right by sa bits on the doubleword in general register
r.

The SHRD,U,cond r,sa,t pseudo-operation generates a EXTRD,U,cond r,63-sa,64-sa,t
instruction to perform an unsigned shift right by sa bits on the doubleword in general
register r.

MTSARCM p
EXTRD,S r,sar,64,t
7-49PA-RISC 2.0 Architecture Instruction Descriptions

Errata
Previously, the Notes incorrecly read:The SHRD,U... generates a EXTRD,S...

ally

d

AR,
d for
tmost
fixed
e
sign

nd the

sign
onics.)
 0

hift

ified
Extract Word EXTRW

Format: EXTRW,cmplt,cond r,pos,len,t

(12)

(15)

Purpose: To extract any 32-bit or shorter field from a fixed or variable position, and condition
nullify the following instruction.

Description: A field is extracted from the rightmost 32 bits of GRr, zero or sign extended and place
right-justified in GRt. The field begins at the bit position given bypos+32 and extendslen
bits to the left. The leftmost 32 bits of GRt are undefined.

The bit position,pos, can either be a constant (specifying a fixed extract), or can be S
the Shift Amount Register (CR 11) (specifying a variable extract.) Format 12 is use
variable extracts; Format 15 is used for fixed extracts. For variable extracts, the lef
bit of the SAR is ignored, and 32 is added to the value in the lower 5 bits. For
extracts, 32 is added to thepos value in the instruction. For variable extracts, if th
extracted field extends beyond the leftmost bit (of the rightmost 32), it is zero or
extended. For fixed extracts, it is an undefined operation for the field to extend beyo
leftmost bit (of the rightmost 32.)

The completer,cmplt, determines whether the extracted field is zero extended or
extended (see Table 7-2 on page 7-48 for the assembly language completer mnem
This is encoded in these field of the instruction, with 1 indicating sign extension and
indicating zero extension.

The following diagram illustrates a variable extract of a 10-bit field when the S
Amount Register contains the value 24. The instruction is: EXTRW,U r,sar,10,t.

The lengthlen in the assembly language format is encoded into theclen field.

The following instruction is nullified if the result of the operation satisfies the spec
condition,cond. The condition is encoded in thec field of the instruction.

34 r t c 2 se 0 0 0 clen

6 5 5 3 2 1 1 1 3 5

34 r t c 1 1 se pos clen

6 5 5 3 1 1 1 5 5

32 47 56 63

32 54 63

GR r:

GR t:

0

0

undefined
7-50 Instruction Descriptions PA-RISC 2.0 Architecture

f the
Conditions: The condition is any of the 32-bit extract/deposit conditions shown in TableD-13 on
pageD-9. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the result o
operation satisfies the specified condition.

Operation: len ← assemble_6(0,clen);
if (variable_extract) { /* (Format 12) */

pos ← CR[11]{1..5};
shamt ← 31 – pos;
if (pos >= len–1)

tlen ← len;
else

if (variable_extract) /* (Format 12) */
tlen ← pos + 1;

else /* (Format 15) */
undefined;

if (cmplt == U) /* se=0 */
GR[t]{32..63} ← zero_ext(rshift(GR[r],shamt),tlen){32..63};

else /* se=1 */
GR[t]{32..63} ← sign_ext(rshift(GR[r],shamt),tlen){32..63};

GR[t]{0..31} ← undefined;
if (cond_satisfied) PSW[N] ← 1;

Exceptions: None

Restrictions: Since for fixed extracts, the extracted field is fully specified by len and pos, it is an
undefined operation if the field extends beyond the leftmost bit (of the rightmost 32.)

Programming Note
An arithmetic right shift of a 32-bit value in GR r by a variable amount contained in GR p
leaving the result in GR t may be done by the following sequence:

Notes: The SHRW,S,cond r,sa,t pseudo-operation generates a EXTRW,S,cond r,31-sa,32-sa,t
instruction to perform a signed shift right by sa bits on the word in general register r.

The SHRW,U,cond r,sa,t pseudo-operation generates a EXTRW,U,cond r,31-sa,32-sa,t
instruction to perform an unsigned shift right by sa bits on the word in general register r.

MTSARCM p
EXTRW,S r,sar,32,t
7-51PA-RISC 2.0 Architecture Instruction Descriptions

Errata
Previously, the Notes incorrectly read:The SHRW,S... generates a EXTRD,s...and:The SHRW,U... generates a EXTRD,S...

y the
om

to
.

base

embly

solute

ory

ches.
Flush Data Cache FDC

Format: FDC,cmplt x(s,b)
FDC d(s,b)

(24)

(25)

Purpose: To invalidate a data cache line and write it back to memory if it is dirty.

Description: The data cache line (if present) specified by the effective address generated b
instruction is written back to memory, if and only if it is dirty, and then invalidated fr
the data cache. The offset is formed as the sum of a base register,b, and either an index
register,x (Format 24), or a displacementd (Format 25.) The displacement is encoded in
the im5 field. Optional base modification can also be performed with the indexed form

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. The completer, encoded in them-field of
the instruction, also specifies base register modification. (Table 7-3 defines the ass
language completer mnemonics.)

Table 7-3. System Control Instruction Completers

The PSW D-bit (Data address translation enable) determines whether a virtual or ab
address is used.

A cache line is calleddirty if any byte has been written to since it was read from mem
or if a STBY,E to the leftmost byte of a word has been performed.

In a multiprocessor system, a flush request is broadcast to all data and combined ca

Operation: space← space_select(s,GR[b],format);
if (indexed_load) /* indexed (Format 24)*/

switch (cmplt) {
case M: offset← GR[b];

GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x];
break;

}

01 b x s 4A m rv

6 5 5 2 8 1 5

01 b im5 s CA 0 rv

6 5 5 2 8 1 5

cmplt Description m

<none> don’t modify base register 0
M Modify base register 1
7-52 Instruction Descriptions PA-RISC 2.0 Architecture

/

ta and

ering
ons
else /* short displacement (Format 25)*
offset← GR[b] + low_sign_ext(im5,5); /* (new) */

Dcache_flush(space,offset);

Exceptions: Non-access data TLB miss fault

Notes: For systems that do not have a cache, this instruction executes as a null instruction.

In systems with a combined cache, this instruction may be used to flush both da
instruction lines from the cache.

This instruction may be executed out of sequence but must satisfy the instruction ord
constraints. TheSYNC instruction enforces program order with respect to the instructi
following theSYNC.

It is an undefined operation to execute anFDC with a nonzeros-field at a nonzero privilege
level when the PSW W-bit is 1.
7-53PA-RISC 2.0 Architecture Instruction Descriptions

cache

f the
 are

ress
pleter

 data

. This
Flush Data Cache Entry FDCE

Format: FDCE,cmplt x(s,b)

(24)

Purpose: To provide for flushing the entire data or combined cache by causing zero or more
lines to be invalidated.

Description: Zero or more cache lines specified by an implementation-dependent function o
effective address are written back to main memory, if and only if they are dirty, and
invalidated in the data or combined cache. The completer,cmplt, determines if the offset is
the base register,b, or the base register plus the index registerx. The completer, encoded
in the m-field of the instruction, specifies base register modification. No add
translation is performed (see Table 7-3 on page 7-52 for the assembly language com
mnemonics.)

When this instruction is used in an architecturally defined cache flush loop, the entire
or combined cache will be flushed upon completion of the loop.

Operation: space← space_select(s,GR[b],INDEXED);
switch (cmplt) {

case M: offset← GR[b]; /*m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
break;

}
Dcache_flush_entries(space,offset);

Exceptions: None

Notes: In a multiprocessor system, this instruction is not broadcast to other processors
instruction does not necessarily flush the entry specified by “space” and “offset”.

For systems that do not have a cache, this instruction executes as a null instruction.

It is an undefined operation to execute anFDCE with a nonzeros-field at a nonzero
privilege level when the PSW W-bit is 1.

01 b x s 4B m rv

6 5 5 2 8 1 5
7-54 Instruction Descriptions PA-RISC 2.0 Architecture

y the

see

solute

lation
sing a

bined

ction
Flush Instruction Cache FIC

Format: FIC,cmplt x(s|sr,b)

(26)

(24)

Purpose: To invalidate an instruction cache line.

Description: The instruction cache line (if any) specified by the effective address generated b
instruction is invalidated in the instruction cache.The completer,cmplt, determines if the
offset is the base register,b, or the base register plus the index registerx. The completer,
encoded in them-field of the instruction, also specifies base register modification (
Table 7-3 on page 7-52 for the assembly language completer mnemonics.)

The space register,sr, is explicitly encoded in the 3-bits field of the instruction (Format
26) or is implicitly specified by the 2-bits field of the instruction (Format 24.)

The PSW D-bit (Data address translation enable) determines whether a virtual or ab
address is used.

Either the instruction TLB or the data TLB can be used to perform the address trans
for the address to be flushed. If the data TLB is used, a TLB miss fault is reported u
non-access data TLB miss fault.

In a multiprocessor system, a flush request is broadcast to all instruction and com
caches.

Operation: if (explicit_pointer) /*(Format 26)*/
space← SR[assemble_3(s)];

else /*(Format 24)*/
space← space_select(s,GR[b],INDEXED);

switch (cmplt) {
case M: offset← GR[b]; /*m=1*/

GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
break;

}
Icache_flush(space,offset);

Exceptions: Non-access instruction TLB miss fault Non-access data TLB miss fault

Notes: For systems that do not have a cache, this instruction executes as a null instruction.

In systems with a combined cache, this instruction may be used to flush both instru

01 b x s 0A m rv

6 5 5 3 7 1 5

01 b x s 4F m 0

6 5 5 2 8 1 5
7-55PA-RISC 2.0 Architecture Instruction Descriptions

 are

ering
ons
and data lines from the cache, including writing them back to main memory, if they
dirty.

This instruction may be executed out of sequence but must satisfy the instruction ord
constraints. TheSYNC instruction enforces program order with respect to the instructi
following theSYNC.

It is an undefined operation to execute an implicit-pointerFIC with a nonzeros-field at a
nonzero privilege level when the PSW W-bit is 1.
7-56 Instruction Descriptions PA-RISC 2.0 Architecture

more

f the
For

mory,

ress
pleter

ntire
 the
 flush

. This

n.
Flush Instruction Cache Entry FICE

Format: FICE,cmplt x(sr,b)

(26)

Purpose: To provide for flushing the entire instruction or combined cache by causing zero or
cache lines to be invalidated.

Description: Zero or more cache lines specified by an implementation-dependent function o
effective address are invalidated in the instruction or combined cache.
implementations with a combined cache, the cache lines are written back to main me
if and only if they are dirty, and are invalidated. The completer,cmplt, determines if the
offset is the base register,b, or the base register plus the index registerx. The completer,
encoded in them-field of the instruction, specifies base register modification. No add
translation is performed (see Table 7-3 on page 7-52 for the assembly language com
mnemonics.) The space register,sr, is encoded in thes field of the instruction.

When this instruction is used in an architecturally defined cache flush loop, the e
instruction or combined cache will be flushed upon completion of the loop (all
contents of the instruction cache, except the loop itself, prior to the beginning of the
loop must be flushed.)

Operation: switch (cmplt) {
case M: offset← GR[b]; /*m=1*/

GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
break;

}
space← SR[assemble_3(s)];
Icache_flush_entries(space,offset);

Exceptions: None

Notes: In a multiprocessor system, this instruction is not broadcast to other processors
instruction does not necessarily flush the entry specified by “space” and “offset”.

For systems which do not have a cache, this instruction executes as a null instructio

01 b x s 0B m rv

6 5 5 3 7 1 5
7-57PA-RISC 2.0 Architecture Instruction Descriptions

l
r the

. The

ed-

igned
umbers.
s,
 are
Halfword Parallel Add HADD

Format: HADD,cmplt r1,r2,t

(8)

Purpose: To add multiple halfwords in parallel with optional saturation.

Description: The corresponding halfwords of GRr1 and GRr2 are added together in parallel. Optiona
saturation is performed, which forces each halfword result to either the maximum o
minimum value, if the result would have been out of the range of the target format
halfword results are placed in GRt.

The completer,cmplt, determines whether modular, signed-saturation, or unsign
saturation arithmetic is performed. The completer is encoded in thesat field of the
instruction. (Table 7-4 defines the assembly language completer mnemonics.) For s
saturation, all operands are treated as signed numbers, and the results are signed n
For unsigned saturation, the first operands, from GRr1, are treated as unsigned number
the second operands, from GRr2, are treated as signed numbers, and the results
unsigned numbers.

Operation: parallel for (start← 0; start <= 48; start += 16) {
end← start + 15;
GR[t]{start..end} ← (GR[r1]{start..end} + GR[r2]{start..end});
switch (cmplt) {

case SS: if (maximum_signed_saturation) /*sat=1*/
GR[t]{start..end}← 0x7FFF;

else if(minimum_signed_saturation)
GR[t]{start..end}← 0x8000;

break;
case US: if (maximum_unsigned_saturation) /*sat=0*/

GR[t]{start..end}← 0xFFFF;
else if(minimum_unsigned_saturation)

GR[t]{start..end}← 0x0000;
break;

default: /*sat=3*/
break;

}
}

Exceptions: None.

02 r2 r1 0 0 0 1 1 sat 0 t

6 5 5 3 1 2 1 1 2 1 5

Table 7-4. Halfword Arithmetic Completers

cmplt Description sat
<none> modular arithmetic 3
SS Signed Saturation 1
US Unsigned Saturation 0
7-58 Instruction Descriptions PA-RISC 2.0 Architecture

 is
bit, to
 the

nding
Halfword Parallel Average HAVG

Format: HAVG r1,r2,t

(8)

Purpose: To average multiple halfwords in parallel.

Description: The corresponding halfwords of GRr1 and GRr2 are averaged in parallel. The average
obtained by adding the corresponding halfwords, and shifting the result right by one
perform a divide by 2, with the halfword carry bit from the addition shifted back into
leftmost position of each result. The halfword results are placed in GRt.

Unbiased rounding is performed on the results to reduce the accumulation of rou
errors with cascaded operations.

Operation: parallel for (start← 0; start <= 48; start += 16){
end ← start + 15;
sum← GR[r1]{start..end} + GR[r2]{start..end};
new_lsb← sum{14} | sum{15}; /*unbiased rounding*/
GR[t]{start..end}← cat(carry,sum{0..13},new_lsb);

}

Exceptions: None

02 r2 r1 0 0 0 1 0 3 0 t

6 5 5 3 1 2 1 1 2 1 5
7-59PA-RISC 2.0 Architecture Instruction Descriptions

5,
Halfword Parallel Shift Left HSHL

Format: HSHL r,sa,t

(10)

Purpose: To perform multiple parallel halfword shift left operations.

Description: Each of the halfwords in GRr is shifted leftsa bits. The shift amount is between 0 and 1
and is encoded in thesa field in the instruction. The halfword results are placed in GRt.

Operation: parallel for (start← 0; start <= 48; start += 16) {
end← start + 15;
GR[t]{start..end}← lshift(GR[r1]{start..end},sa);

}

Exceptions: None.

3E 0 r 1 0 0 2 sa 0 t

6 5 5 1 2 1 2 4 1 5
7-60 Instruction Descriptions PA-RISC 2.0 Architecture

ng
lt to
. The
 in

 Signed

e add
igned

ble in
Halfword Parallel Shift Left and Add HSHLADD

Format: HSHLADD r1,sa,r2,t

(8)

Purpose: To perform multiple halfword shift left and add operations in parallel with saturation.

Description: Each halfword of GRr1 is shifted left bysa bits, and then added to the correspondi
halfword of GRr2. Signed saturation is performed, which forces each halfword resu
either the maximum or the minimum value, if the result would have been out of range
halfword results are placed in GRt. The shift amount is either 1, 2, or 3, and is encoded
thesa field of the instruction.

All operands are treated as signed numbers, and the results are signed numbers.
saturation is performed.

For this instruction, signed saturation is based both on the shift operation and th
operation. That is, if the result of the shift operation is not representable in 16 bits, s
saturation occurs. If GRr1 was positive, maximum saturation occurs. If GRr2 was
negative, minimum saturation occurs. If the result of the shift operation is representa
16 bits, then saturation is determined by the add operation in the normal fashion.

Operation: parallel for (start← 0; start <= 48; start += 16) {
end← start + 15;
GR[t]{start..end}← lshift(GR[r1]{start..end},sa) + GR[r2]{start..end};
if (maximum_signed_saturation)

GR[t]{start..end}← 0x7FFF;
else if(minimum_signed_saturation)

GR[t]{start..end}← 0x8000;
}

Exceptions: None

02 r2 r1 0 0 1 1 1 sa 0 t

6 5 5 3 1 2 1 1 2 1 5
7-61PA-RISC 2.0 Architecture Instruction Descriptions

.) The
Halfword Parallel Shift Right HSHR

Format: HSHR,cmplt r,sa,t

(10)

Purpose: To perform multiple parallel halfword signed or unsigned shift right operations.

Description: Each of the halfwords in GRr is shifted rightsa bits. The completer,cmplt, determines
whether a signed or unsigned shift is performed. The completer is encoded in these field
of the instruction. (Table 7-5 defines the assembly language completer mnemonics
shift amount is between 0 and 15, and is encoded in thesa field in the instruction. The
halfword results are placed in GRt.

Operation: parallel for (start← 0; start <= 48; start += 16) {
end← start + 15;
if (cmplt == U) /*se=2 (unsigned)*/

GR[t]{start..end}← rshift(GR[r1]{start..end},sa);
else /*se=3 (signed)*/

GR[t]{start..end}← sign_ext_16(rshift(GR[r1]{start..end},sa),16–sa);
}

Exceptions: None.

3E r 0 1 2 0 se sa 0 t

6 5 5 1 2 1 2 4 1 5

Table 7-5. Halfword Parallel Shift Right Completers

cmplt Description se

U Unsigned Shift 2

<none> or S Signed Shift 3
7-62 Instruction Descriptions PA-RISC 2.0 Architecture

.

ng
ed
r the
 are

 Signed
Halfword Parallel Shift Right and Add HSHRADD

Format: HSHRADD r1,sa,r2,t

(8)

Purpose: To perform multiple halfword shift right and add operations in parallel with saturation

Description: Each halfword of GRr1 is shifted right bysa bits, and then added to the correspondi
halfword of GR r2. The bits shifted in equal the sign bit for each halfword. Sign
saturation is performed, which forces each halfword result to either the maximum o
minimum value, if the result would have been out of range. The halfword results
placed in GRt. The shift amount is either 1, 2, or 3, and is encoded in thesa field of the
instruction.

All operands are treated as signed numbers, and the results are signed numbers.
saturation is performed.

Operation: parallel for (start← 0; start <= 48; start += 16) {
end← start + 15;
GR[t]{start..end}← sign_ext_16(rshift(GR[r1]{start..end},sa),16–sa) +

GR[r2]{start..end};
if (maximum_signed_saturation)

GR[t]{start..end}← 0x7FFF;
else if(minimum_signed_saturation)

GR[t]{start..end}← 0x8000;
}

Exceptions: None.

02 r2 r1 0 0 1 0 1 sa 0 t

6 5 5 3 1 2 1 1 2 1 5
7-63PA-RISC 2.0 Architecture Instruction Descriptions

r the
f the

ed-

onics.)
ults are

nd
Halfword Parallel Subtract HSUB

Format: HSUB,cmplt r1,r2,t

(8)

Purpose: To subtract multiple halfwords in parallel with optional saturation.

Description: The corresponding halfwords of GRr2 are subtracted from the halfwords of GRr1 in
parallel. Optional saturation is performed, which forces each halfword result to eithe
maximum or the minimum value, if the result would have been out of the range o
target format. The halfword results are placed in GRt.

The completer,cmplt, determines whether modular, signed-saturation, or unsign
saturation arithmetic is performed. The completer is encoded in thesat field of the
instruction (see Table 7-4 on page 7-58 for the assembly language completer mnem
For signed saturation, all operands are treated as signed numbers, and the res
signed numbers. For unsigned saturation, the first operands, from GRr1, are treated as
unsigned numbers, the second operands, from GRr2, are treated as signed numbers, a
the results are unsigned numbers.

Operation: parallel for (start ← 0; start <= 48; start += 16) {
end← start + 15;
GR[t]{start..end} ← (GR[r1]{start..end} + ~GR[r2]{start..end} + 1);
switch (cmplt) {

case SS: if (maximum_signed_saturation) /*sat=1*/
GR[t]{start..end}← 0x7FFF;

else if(minimum_signed_saturation)
GR[t]{start..end}← 0x8000;

break;
case US: if (maximum_unsigned_saturation) /*sat=0*/

GR[t]{start..end}← 0xFFFF;
else if(minimum_unsigned_saturation)

GR[t]{start..end}← 0x0000;
break;

default: /*sat=3*/
break;

}
}

Exceptions: None.

02 r2 r1 0 0 0 0 1 sat 0 t

6 5 5 3 1 2 1 1 2 1 5
7-64 Instruction Descriptions PA-RISC 2.0 Architecture

ranges

er
Insert Data TLB Translation IDTLBT

Format: IDTLBT r1,r2

(26)

Purpose: To add an entry to the data TLB.

Description: A slot is found in the data or combined TLB and the new translation is placed there. If the
data or combined TLB already contains one or more entries whose virtual address
overlap the virtual address range of the new translation, the old entries are removed. The
virtual address is specified by the IOR and ISR control registers. The contents of the ISR
are concatenated with the lower 32 bits of the IOR to form the virtual address. The upp
32-bits of the IOR are ignored.

The physical address and the page size for the translation are specified by GR r1. The flags
and access control bits are specified by GR r2.

Operation: if (priv != 0)
privileged_operation_trap;

else {
space ← ISR;
offset ← cat(ISR{32..63},IOR{32..63});
page_size ← 4096 << (2 * GR[r1]{60..63});
for (i ← 0; i < page_size/4096; i++) {

if (entry ← DTLB_search(space, offset + i*4096))
DTLB_purge_local(entry);

}
entry ← DTLB_alloc(space,offset);
DTLB[entry].VIRTUAL_ADDR ← (space<<32) | (offset);
DTLB[entry].PHY_PAGE_NO ← GR[r1]{7..58};
DTLB[entry].PAGE_SIZE ← GR[r1]{60..63};
DTLB[entry].ACCESS_RIGHTS ← GR[r2]{5..11};
DTLB[entry].ACCESS_ID ← GR[r2]{32..62};
DTLB[entry].T ← GR[r2]{2}
DTLB[entry].D ← GR[r2]{3}
DTLB[entry].B ← GR[r2]{4}
DTLB[entry].U ← GR[r2]{12}
DTLB[entry].O ← GR[r2]{13}
if (combined_TLB) {

ITLB[entry].P ← GR[r2]{14}
}

}

Exceptions: Privileged operation trap

01 r2 r1 0 60 0 0

6 5 5 3 7 1 5
7-65PA-RISC 2.0 Architecture Instruction Descriptions

Errata
Previously, the page_size computation incorrectly read:page_size = (GR[r1]{60..63} + 1) * 4096;

into a

ueue

f the
Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to insert both instruction entries and data entries
combined TLB. The P bit is set to the appropriate bit of GRr in that case.

Note that no OR function is performed in creating the virtual address, since the IIA q
already contains a global address.

If smaller than 31-bit access IDs are implemented, only the appropriate number o
rightmost bits of GR[r]{32..62} are stored in the TLB.
7-66 Instruction Descriptions PA-RISC 2.0 Architecture

.
rtual

tents
Insert Instruction TLB Translation IITLBT

Format: IITLBT r1,r2

(26)

Purpose: To add an entry to the instruction TLB.

Description: A slot is found in the instruction or combined TLB and the new translation is placed there
If the instruction or combined TLB already contains one or more entries whose vi
address ranges overlap the virtual address range of the new translation, the old entries are
removed. The virtual address is specified by the front entry in the IIA queue. The con
of the front element of the IIASQ are concatenated with the lower 32 bits of the front
element of the IIAOQ to form the virtual address. The upper 32-bits of the IIAOQ are
ignored.

The physical address and the page size for the translation are specified by GR r1. The flags
and access control bits are specified by GR r2.

Operation: if (priv != 0)
privileged_operation_trap;

else {
space ← IIASQ_Front;
offset ← cat(IIASQ_Front{32..63},IIAOQ_Front{32..63});
page_size ← 4096 << (2 * GR[r1]{60..63});
for (i ← 0; i < page_size/4096; i++) {

if (entry ← ITLB_search(space, offset + i*4096))
ITLB_purge_local(entry);

}
entry ← ITLB_alloc(space,offset);
ITLB[entry].VIRTUAL_ADDR ← (space<<32) | (offset);
ITLB[entry].PHY_PAGE_NO ← GR[r1]{7..58};
ITLB[entry].PAGE_SIZE ← GR[r1]{60..63};
ITLB[entry].ACCESS_RIGHTS ← GR[r2]{5..11};
ITLB[entry].ACCESS_ID ← GR[r2]{32..62};
ITLB[entry].P ← GR[r2]{14}

if (combined_TLB) {
ITLB[entry].T ← GR[r2]{2}
ITLB[entry].D ← GR[r2]{3}
ITLB[entry].B ← GR[r2]{4}
ITLB[entry].U ← GR[r2]{12}
ITLB[entry].O ← GR[r2]{13}

}
}

Exceptions: Privileged operation trap

01 r2 r1 0 20 0 0

6 5 5 3 7 1 5
7-67PA-RISC 2.0 Architecture Instruction Descriptions

Errata
Previously, the page_size computation incorrectly read:page_size = (GR[r1]{60..63} + 1) * 4096;

into a

ueue

f the
Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to insert both instruction entries and data entries
combined TLB. The T, D, B, U, and O bits are set to the appropriate bits of GRr in that
case.

Note that no OR function is performed in creating the virtual address, since the IIA q
already contains a global address.

If smaller than 31-bit access IDs are implemented, only the appropriate number o
rightmost bits of GR[r]{32..62} are stored in the TLB.
7-68 Instruction Descriptions PA-RISC 2.0 Architecture

the

d from

ed by
I/O
ing the
 be an

 unless

e.
Load Coherence Index LCI

Format: LCI x(s,b),t

(24)

Purpose: To determine the coherence index corresponding to a virtual address.

Description: The effective address is calculated. GRt receives the coherence index corresponding to
given virtual address.

In systems with separate data and instruction caches, the coherence index is obtaine
the data cache.

The coherence index function is independent of the state of the PSW D-bit.

Operation: if (priv != 0)
privileged_operation_trap;

else {
space← space_select(s,GR[b],INDEXED);
offset ← GR[b] + GR[x];
GR[t] ← coherence_index(space,offset);

}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: All addresses within a page have the same coherence index.

The coherence index corresponding to a physical address can be determin
performingLCI on the equivalently-mapped virtual address. Also, in order to allow
modules to have coherent access to equivalently-mapped addresses without know
coherence index, the coherence index for equivalently-mapped addresses must
implementation-defined function of the physical address bits only.

Two virtual addresses having the same coherence index are not guaranteed to alias
they also meet the virtual aliasing rules.

For systems that do not have a cache, the target register receives an undefined valu

For system that do not support coherent I/O, this instruction is undefined.

01 b x s 4C 0 t

6 5 5 2 8 1 5
7-69PA-RISC 2.0 Architecture Instruction Descriptions

 The
lso be

base
egister
1 on
nics.)

e

Load Byte LDB

Format: LDB,cmplt,cc x|d(s,b),t

(1)

(5)

(4)

Purpose: To load a byte into a general register.

Description: The byte at the effective address is zero-extended and loaded into GRt. The offset is
formed as the sum of a base register,b, and either an index register,x (Format 4), or a
displacementd. The displacement can be either long (Format 1) or short (Format 5.)
displacement is encoded into the immediate field. Optional base modification can a
performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. The completer also specifies base r
modification, optional index prescaling, and ordering constraints (see Table H-
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemo
The completer,cc, specifies the cache control hint (see Table 6-7 on page 6-10.)

For short displacements, a one in them field specifies base modification, and thea field
encodes whether pre-modification (a=1), or post-modification (a=0) is performed. For
indexed loads, a one in them field specifies base modification, and a one in theu field
specifies index prescaling.

If base register modification is specified andb = t, GR t receives the aligned byte at th
effective address.

10 b t s im14

6 5 5 2 14

03 b im5 s a 1 cc 0 m t

6 5 5 2 1 1 2 4 1 5

03 b x s u 0 cc 0 m t

6 5 5 2 1 1 2 4 1 5
7-70 Instruction Descriptions PA-RISC 2.0 Architecture

/
*/
Operation: if (indexed_load) /* indexed (Format 4)*/
dx ← GR[x];

else if (d > 15 || d < -16) { /* long displacement *
dx ← sign_ext(assemble_16(s,im14),16); /* (Format 1)
cc ← NO_HINT;

} else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 5) */

space← space_select(s,GR[b],format);
switch (cmplt) {

case MB: offset← GR[b] + dx;
GR[b] ← GR[b] + dx;
break;

case MA:
case M:
case SM: offset← GR[b];

GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
break;

}
GR[t] ← zero_ext(mem_load(space,offset,0,17,cc),8);
if (cmplt == O)

enforce_ordered_load;

Exceptions: Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap
Data memory protection ID trap

Restrictions: If the completerO is specified, the displacement must be 0.
7-71PA-RISC 2.0 Architecture Instruction Descriptions

ster,

lso be

base
egister
-3 on

of the

The

 or is
, the
e

irty, or
ove or

 cache
d into

leared
Load and Clear Doubleword LDCD

Format: LDCD,cmplt,cc x|d(s,b),t

(5)

(4)

Purpose: To read and lock a doubleword semaphore in main memory.

Description: The effective address is calculated. The offset is formed as the sum of a base regib,
and either an index register,x (Format 4), or a displacementd (Format 5.) The
displacement is encoded into the immediate field. Optional base modification can a
performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. The completer also specifies base r
modification, and optional index prescaling‘(see Table H-1 on page H-4, and Table H
page H-8 for the assembly language completer mnemonics.) The completer,cc, specifies
the cache control hint (see Table 6-9 on page 6-11.)

For short displacements, a one in them field specifies base modification, and thea field
encodes whether pre-modification (a=1), or post-modification (a=0) is performed. For
indexed loads, a one in them field specifies base modification, and a one in theu field
specifies index prescaling. If base register modification is specified andb = t, the value
loaded is the aligned doubleword at the effective address.

The address must be 16-byte aligned. If the address is unaligned, the operation
instruction is undefined.

The remaining steps of the instruction are indivisible and non-interruptible.
semaphore operation is strongly ordered.

If a cache control hint is not specified, the instruction is performed as follows:

• If the cache line containing the effective address is not present in the cache
present but not dirty, and the system is not fully coherent, the line is flushed
addressed doubleword is copied into GRt, and then set to zero in memory. If the lin
is retained in the cache, it must not be marked as dirty.

• If the cache line containing the effective address is present in the cache and is d
the system is fully coherent, the semaphore operation may be handled as ab
may be optimized by copying the addressed doubleword into GRt and then setting
the addressed doubleword to zero in the cache.

If a cache control hint is specified, the semaphore operation may be handled as if a
control hint had not been specified, or, preferably, the addressed doubleword is copie
GR t and then the addressed doubleword is set to zero in the cache. The c

03 b im5 s a 1 cc 5 m t

6 5 5 2 1 1 2 4 1 5

03 b x s u 0 cc 5 m t

6 5 5 2 1 1 2 4 1 5
7-72 Instruction Descriptions PA-RISC 2.0 Architecture

 cache
doubleword need not be flushed to memory.

Operation: if (indexed_load) /* indexed (Format 4)*/
switch (cmplt) {

case S:
case SM: dx← lshift(GR[x],3);

break;
case M:
default: dx← GR[x];

break;
}

else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 5) */

space← space_select(s,GR[b],format);
switch (cmplt) {

case MB: offset← GR[b] + dx;
GR[b] ← GR[b] + dx;
break;

case MA:
case M:
case SM: offset← GR[b];

GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
break;

}
(indivisible)

Exceptions: Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap
Data memory break trap

Restrictions: All software users of a semaphore must access the semaphore using the same
control hint. Sharing a semaphore using different cache control hints is undefined.

if (cache line is present and dirty || coherent_system || cc != 0) {
 GR[t] ← mem_load(space,offset,0,63,NO_HINT);
 mem_store(space,offset,0,63,NO_HINT,0);
} else {
 Dcache_flush(space, offset);
 GR[t] ← mem_load(space,offset,0,63,NO_HINT);
 store_in_memory(space,offset,0,63,NO_HINT,0);
}

7-73PA-RISC 2.0 Architecture Instruction Descriptions

ster,

lso be

base
egister
-3 on

of the

The

 or is
, the

irty, or
ove or

 cache
ed and
 word
Load and Clear Word LDCW

Format: LDCW,cmplt,cc x|d(s,b),t

(5)

(4)

Purpose: To read and lock a word semaphore in main memory.

Description: The effective address is calculated. The offset is formed as the sum of a base regib,
and either an index register,x (Format 4), or a displacementd (Format 5.) The
displacement is encoded into the immediate field. Optional base modification can a
performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. The completer also specifies base r
modification, and optional index prescaling (see Table H-1 on page H-4, and Table H
page H-8 for the assembly language completer mnemonics.) The completer,cc, specifies
the cache control hint (see Table 6-9 on page 6-11.)

For short displacements, a one in them field specifies base modification, and thea field
encodes whether pre-modification (a=1), or post-modification (a=0) is performed. For
indexed loads, a one in them field specifies base modification, and a one in theu field
specifies index prescaling. If base register modification is specified andb = t, the value
loaded is the aligned word at the effective address.

The address must be 16-byte aligned. If the address is unaligned, the operation
instruction is undefined.

The remaining steps of the instruction are indivisible and non-interruptible.
semaphore operation is strongly ordered.

If a cache control hint is not specified, the instruction is performed as follows:

• If the cache line containing the effective address is not present in the cache
present but not dirty, and the system is not fully coherent, the line is flushed
addressed word is zero extended and copied into GRt, and then set to zero in
memory. If the line is retained in the cache, it must not be marked as dirty.

• If the cache line containing the effective address is present in the cache and is d
the system is fully coherent, the semaphore operation may be handled as ab
may be optimized by copying the addressed word into GRt (zero extended) and then
setting the addressed word to zero in the cache.

If a cache control hint is specified, the semaphore operation may be handled as if a
control hint had not been specified, or, preferably, the addressed word is zero extend
copied into GRt and then the addressed word is set to zero in the cache. The cleared

03 b im5 s a 1 cc 7 m t

6 5 5 2 1 1 2 4 1 5

03 b x s u 0 cc 7 m t

6 5 5 2 1 1 2 4 1 5
7-74 Instruction Descriptions PA-RISC 2.0 Architecture

 cache
need not be flushed to memory.

Operation: if (indexed_load) /* indexed (Format 4)*/
switch (cmplt) {

case S:
case SM: dx← lshift(GR[x],3);

break;
case M:
default: dx← GR[x];

break;
}

else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 5) */

space← space_select(s,GR[b],format);
switch (cmplt) {

case MB: offset← GR[b] + dx;
GR[b] ← GR[b] + dx;
break;

case MA:
case M:
case SM: offset← GR[b];

GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
break;

}
(indivisible)

Exceptions: Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap
Data memory break trap

Restrictions: All software users of a semaphore must access the semaphore using the same
control hint. Sharing a semaphore using different cache control hints is undefined.

Notes: Note that the “index shift” option for this instruction shifts by three, not two.

if (cache line is present and dirty || coherent_system || cc != 0) {
 GR[t] ← zero_ext(mem_load(space,offset,0,31,NO_HINT),32);
 mem_store(space,offset,0,31,NO_HINT,0);
} else {
 Dcache_flush(space, offset);
 GR[t] ← zero_ext(mem_load(space,offset,0,31,NO_HINT),32);
 store_in_memory(space,offset,0,31,NO_HINT,0);
}

7-75PA-RISC 2.0 Architecture Instruction Descriptions

ort
base

base
egister
1 on
nics.)

e

t

Load Doubleword LDD

Format: LDD,cmplt,cc x|d(s,b),t

(3)

(5)

(4)

Purpose: To load a doubleword into a general register.

Description: The aligned doubleword, at the effective address, is loaded into GRt from the effective
address. The offset is formed as the sum of a base register,b, and either an index register,x
(Format 4), or a displacementd. The displacement can be either long (Format 3) or sh
(Format 5.) The displacement is encoded into the immediate field. Optional
modification can also be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. The completer also specifies base r
modification, optional index prescaling, and ordering constraints (see Table H-
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemo
The completer,cc, specifies the cache control hint (see Table 6-7 on page 6-10.)

For long and short displacements, a one in them field specifies base modification, and th
a field encodes whether pre-modification (a=1), or post-modification (a=0) is performed.
For indexed loads, a one in them field specifies base modification, and a one in theu field
specifies index prescaling.

If base register modification is specified andb = t, GRt receives the aligned doubleword a
the effective address.

14 b t s im10a m a 0 i

6 5 5 2 10 1 1 1 1

03 b im5 s a 1 cc 3 m t

6 5 5 2 1 1 2 4 1 5

03 b x s u 0 cc 3 m t

6 5 5 2 1 1 2 4 1 5
7-76 Instruction Descriptions PA-RISC 2.0 Architecture

/
) */

 may
Operation: if (indexed_load) /* indexed (Format 4)*/
switch (cmplt) {

case S:
case SM: dx← lshift(GR[x],3);

break;
case M:
default: dx← GR[x];

break;
}

else if (d > 15 || d < -16) { /* long displacement *
dx ← sign_ext(assemble_16a(s,cat(im10a,0),i),16); /* (Format 3
cc ← NO_HINT;

} else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 5) */

space← space_select(s,GR[b],format);
switch (cmplt) {

case MB: offset← GR[b] + dx;
GR[b] ← GR[b] + dx;
break;

case MA:
case M:
case SM: offset← GR[b];

GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
break;

}
GR[t] ← mem_load(space,offset,0,63,cc);
if (cmplt == O)

enforce_ordered_load;

Exceptions: Data TLB miss fault/data page fault Unaligned data reference trap
Data memory access rights trap Page reference trap
Data memory protection ID trap

Restrictions: For long displacements (Format 3), only displacements which are multiples of eight
be used.

If the completer O is specified, the displacement must be 0.
7-77PA-RISC 2.0 Architecture Instruction Descriptions

eld.

base
egister
1 on
nics.)

t
. This
Load Doubleword Absolute LDDA

Format: LDDA,cmplt,cc x|d(b),t

(5)

(4)

Purpose: To load a doubleword into a general register from an absolute address.

Description: The aligned doubleword at the effective absolute address is loaded into GRt. The offset is
formed as the sum of a base register,b, and either an index register,x (Format 4), or a
displacementd (Format 5.) The displacement is encoded into the immediate fi
Optional base modification can also be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. The completer also specifies base r
modification, optional index prescaling, and ordering constraints (see Table H-
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemo
The completer,cc, specifies the cache control hint (see Table 6-7 on page 6-10.)

For short displacements, a one in them field specifies base modification, and thea field
encodes whether pre-modification (a=1), or post-modification (a=0) is performed. For
indexed loads, a one in them field specifies base modification, and a one in theu field
specifies index prescaling.

If base register modification is specified andb = t, GRt receives the aligned doubleword a
the effective address. Protection is not checked when this instruction is executed
operation is only defined if the address is aligned on an 8-byte boundary.

03 b im5 0 a 1 cc 4 m t

6 5 5 2 1 1 2 4 1 5

03 b x 0 u 0 cc 4 m t

6 5 5 2 1 1 2 4 1 5
7-78 Instruction Descriptions PA-RISC 2.0 Architecture

Operation: if (priv != 0)
privileged_operation_trap;

else {
if (indexed_load) /* indexed (Format 4)*/

switch (cmplt) {
case S:
case SM: dx← lshift(GR[x],3);

break;
case M:
default: dx← GR[x];

break;
}

else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 5) */

switch (cmplt) {
case MB: offset← GR[b] + dx;

GR[b] ← GR[b] + dx;
break;

case MA:
case M:
case SM: offset← GR[b];

GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
break;

}
GR[t] ← phys_mem_load(offset,0,63,cc);
if (cmplt == O)

enforce_ordered_load;
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level. If the completerO is
specified, the displacement must be 0.
7-79PA-RISC 2.0 Architecture Instruction Descriptions

g
field.

base
egister
1 on
nics.)

t

Load Halfword LDH

Format: LDH,cmplt,cc x|d(s,b),t

(1)

(5)

(4)

Purpose: To load a halfword into a general register.

Description: The aligned halfword, at the effective address, is zero-extended and loaded into GRt from
the effective address. The offset is formed as the sum of a base register,b, and either an
index register,x (Format 4), or a displacementd. The displacement can be either lon
(Format 1) or short (Format 5.) The displacement is encoded into the immediate
Optional base modification can also be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. The completer also specifies base r
modification, optional index prescaling, and ordering constraints (see Table H-
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemo
The completer,cc, specifies the cache control hint (see Table 6-7 on page 6-10.)

For short displacements, a one in them field specifies base modification, and thea field
encodes whether pre-modification (a=1), or post-modification (a=0) is performed. For
indexed loads, a one in them field specifies base modification, and a one in theu field
specifies index prescaling.

If base register modification is specified andb = t, GR t receives the aligned halfword a
the effective address.

11 b t s im14

6 5 5 2 14

03 b im5 s a 1 cc 1 m t

6 5 5 2 1 1 2 4 1 5

03 b x s u 0 cc 1 m t

6 5 5 2 1 1 2 4 1 5
7-80 Instruction Descriptions PA-RISC 2.0 Architecture

/
*/
Operation: if (indexed_load) /* indexed (Format 4)*/
switch (cmplt) {

case S:
case SM: dx← lshift(GR[x],1);

break;
case M:
default: dx← GR[x];

break;
}

else if (d > 15 || d < -16) { /* long displacement *
dx ← sign_ext(assemble_16(s,im14),16); /* (Format 1)
cc ← NO_HINT;

} else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 5) */

space← space_select(s,GR[b],format);
switch (cmplt) {

case MB: offset← GR[b] + dx;
GR[b] ← GR[b] + dx;
break;

case MA:
case M:
case SM: offset← GR[b];

GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
break;

}
GR[t] ← zero_ext(mem_load(space,offset,0,15,cc),16);
if (cmplt == O)

enforce_ordered_load;

Exceptions: Data TLB miss fault/data page fault Unaligned data reference trap
Data memory access rights trap Page reference trap
Data memory protection ID trap

Restrictions: If the completerO is specified, the displacement must be 0.
7-81PA-RISC 2.0 Architecture Instruction Descriptions

ced

r

Load Immediate Left LDIL

Format: LDIL i,t

(7)

Purpose: To load the upper portion of a 32-bit immediate value into a general register.

Description: The 21-bit immediate value,i, is assembled, shifted left 11 bits, sign extended, and pla
in GR t.

Operation: GR[t] ← sign_ext(lshift(assemble_21(im21),11),32);

Exceptions: None

Notes: Memory is not referenced.

Programming Note
LOAD IMMEDIATE LEFT can be used to generate a 32-bit literal in an arbitrary general registe
t by the following sequence of assembly language code:

08 t im21

6 5 21

LDIL l%literal,GRt

LDO r%literal(GRt),GRt
7-82 Instruction Descriptions PA-RISC 2.0 Architecture

other
Load Offset LDO

Format: LDO d(b),t

(1)

Purpose: To load an offset into a general register.

Description: The effective address is calculated, and its offset part is loaded into GRt. The
displacementd is encoded into the immediate field.

Operation: GR[t] ← GR[b] + sign_ext(assemble_16(i,im14),16);

Exceptions: None

Notes: Memory is not referenced.

The LDI i,t pseudo-operation generates anLDO i(0),t instruction to load an immediate
value into a register.

TheCOPY pseudo-operation allows for the movement of data from one register to an
by generating the instructionLDO 0(r),t.

0D b t i im14

6 5 5 2 14
7-83PA-RISC 2.0 Architecture Instruction Descriptions

y the

ating
Load Space Identifier LDSID

Format: LDSID (s,b),t

(30)

Purpose: To calculate the space register number referenced by an implicit pointer and cop
space register into a general register.

Description: If s is zero, the space identifier referenced by GRb is copied into GRt. If s is not zero, SR
s is copied into GRt.

Operation: GR[t] ← space_select(s,GR[b],INDEXED);

Exceptions: None

Notes: Unimplemented space register bits must read as zero.

The target register receives an undefined value ifLDSID with a nonzeros-field is executed
at a nonzero privilege level when the PSW W-bit is 1.

This instruction provides no useful function when the PSW W-bit is 1, since the oper
system is free to change the space register contents at any time.

00 b rv s 0 85 t

6 5 5 2 1 8 5
7-84 Instruction Descriptions PA-RISC 2.0 Architecture

 1
tional

base
egister
1 on
nics.)

13) is
d. For

e

Load Word LDW

Format: LDW,cmplt,cc x|d(s,b),t

(1)

(2)

(5)

(4)

Purpose: To load a word into a general register.

Description: The aligned word, at the effective address, is zero-extended and loaded into GRt from the
effective address. The offset is formed as the sum of a base register,b, and either an index
register,x (Format 4), or a displacementd. The displacement can be either long (Formats
and 2) or short (Format 5.) The displacement is encoded into the immediate field. Op
base modification can also be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. The completer also specifies base r
modification, optional index prescaling, and ordering constraints (see Table H-
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemo
The completer,cc, specifies the cache control hint (see Table 6-7 on page 6-10.)

For long displacements with pre-decrement or post-increment, Format 1 (opcode
used. For long displacements with post-decrement or pre-increment, Format 2 is use
long displacements with no base modification, Format 1 (opcode 12) is used.

For short displacements, a one in them field specifies base modification, and thea field
encodes whether pre-modification (a=1), or post-modification (a=0) is performed. For
indexed loads, a one in them field specifies base modification, and a one in theu field
specifies index prescaling.

If base register modification is specified andb = t, GR t receives the aligned word at th
effective address.

12/13 b t s im14

6 5 5 2 14

17 b t s im11a 2 i

6 5 5 2 11 2 1

03 b im5 s a 1 cc 2 m t

6 5 5 2 1 1 2 4 1 5

03 b x s u 0 cc 2 m t

6 5 5 2 1 1 2 4 1 5
7-85PA-RISC 2.0 Architecture Instruction Descriptions

/

 */

*/

only
Operation: if (indexed_load) /* indexed (Format 4)*/
switch (cmplt) {

case S:
case SM: dx← lshift(GR[x],2);

break;
case M:
default: dx← GR[x];

break;
}

else if (d > 15 || d < -16) { /* long displacement *
if ((cmplt == MB && d >= 0) || (cmplt == MA && d < 0))

dx ← sign_ext(assemble_16a(s,im11a,i),16); /* (Format 2)
else

dx ← sign_ext(assemble_16(s,im14),16); /* (Format 1)
cc ← NO_HINT;

} else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 5) */

space← space_select(s,GR[b],format);
switch (cmplt) {

case MB: offset← GR[b] + dx;
GR[b] ← GR[b] + dx;
break;

case MA:
case M:
case SM: offset← GR[b];

GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
break;

}
GR[t] ← zero_ext(mem_load(space,offset,0,31,cc),32);
if (cmplt == O)

enforce_ordered_load;

Exceptions: Data TLB miss fault/data page fault Unaligned data reference trap
Data memory access rights trap Page reference trap
Data memory protection ID trap

Restrictions: For post-decrement and pre-increment with long displacements (Format 2),
displacements which are multiples of four may be used.

If the completerO is specified, the displacement must be 0.
7-86 Instruction Descriptions PA-RISC 2.0 Architecture

 GR

eld.

base
egister
1 on
nics.)

e
 This
Load Word Absolute LDWA

Format: LDWA,cmplt,cc x|d(b),t

(5)

(4)

Purpose: To load a word into a general register from an absolute address.

Description: The aligned word at the effective absolute address is zero-extended and loaded intot.
The offset is formed as the sum of a base register,b, and either an index register,x (Format
4), or a displacementd (Format 5.) The displacement is encoded into the immediate fi
Optional base modification can also be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. The completer also specifies base r
modification, optional index prescaling, and ordering constraints (see Table H-
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemo
The completer,cc, specifies the cache control hint (see Table 6-7 on page 6-10.)

For short displacements, a one in them field specifies base modification, and thea field
encodes whether pre-modification (a=1), or post-modification (a=0) is performed. For
indexed loads, a one in them field specifies base modification, and a one in theu field
specifies index prescaling.

If base register modification is specified andb = t, GR t receives the aligned word at th
effective address. Protection is not checked when this instruction is executed.
operation is only defined if the address is aligned on a 4-byte boundary.

03 b im5 0 a 1 cc 6 m t

6 5 5 2 1 1 2 4 1 5

03 b x 0 u 0 cc 6 m t

6 5 5 2 1 1 2 4 1 5
7-87PA-RISC 2.0 Architecture Instruction Descriptions

Operation: if (priv != 0)
privileged_operation_trap;

else {
if (indexed_load) /* indexed (Format 4)*/

switch (cmplt) {
case S:
case SM: dx← lshift(GR[x],2);

break;
case M:
default: dx← GR[x];

break;
}

else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 5) */

switch (cmplt) {
case MB: offset← GR[b] + dx;

GR[b] ← GR[b] + dx;
break;

case MA:
case M:
case SM: offset← GR[b];

GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
break;

}
GR[t] ← zero_ext(phys_mem_load(offset,0,31,cc),32);
if (cmplt == O)

enforce_ordered_load;
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level. If the completerO is
specified, the displacement must be 0.
7-88 Instruction Descriptions PA-RISC 2.0 Architecture

3 on

ault is
ecified
ctive

d from
tate of

 This

ult, the
ess. If
f not
et the
Load Physical Address LPA

Format: LPA,cmplt x(s,b),t

(24)

Purpose: To determine the absolute address of a mapped virtual page.

Description: The effective address is calculated. The completer,cmplt, determines if the offset is the
base register,b, or the base register plus index registerx. The completer, encoded in them
field of the instruction, also specifies base register modification (see Table 7-
page 7-52 for the assembly language completer mnemonics.) GRt receives the absolute
address corresponding to the given virtual address. If the page is not present, a f
taken and software sets the target register to 0. If base register modification is sp
andb = t, the value loaded is the absolute address of the item indicated by the effe
address.

In systems with separate data and instruction TLBs, the absolute address is obtaine
the data TLB. This instruction performs data address translation regardless of the s
the PSW D-bit.

Operation: if (priv != 0)
privileged_operation_trap;

else {
space← space_select(s,GR[b],INDEXED);
switch (cmplt) {

case M: offset← GR[b]; /*m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
break;

}
if (DTLB_search(space,offset))

GR[t] ← absolute_address(space,offset);
else

non-access_data_TLB_miss_fault();
}

Exceptions: Non-access data TLB miss fault Privileged operation trap

Restrictions: The result ofLPA is ambiguous for an address which maps to absolute address 0.
instruction may be executed only at the most privileged level.

Notes: If this instruction causes a non-access data TLB miss fault/non-access data page fa
operating system’s handler is required to search its page tables for the given addr
found, it does the appropriate TLB insert and returns to the interrupting instruction. I
found, the handler must decode the target field of the instruction, set that GR to 0, s

01 b x s 4D m t

6 5 5 2 8 1 5
7-89PA-RISC 2.0 Architecture Instruction Descriptions

IPSW[N] bit to 1, and return to the interrupting instruction.
7-90 Instruction Descriptions PA-RISC 2.0 Architecture

imer
 most
 may
 read
s 17
uption
Move From Control Register MFCTL

Format: MFCTL r,t
MFCTL,W cr11,t

(32)

Purpose: To move a value to a general register from a control register.

Description: CR r is copied into GRt.

Operation: if (r >= 1 && r <= 7)
undefined;

else if (priv != 0 && !(r == 11 || r == 26 || r == 27 || (r == 16 && !PSW[S])))
privileged_register_trap;

else if (r >= 17 && r <= 22)
if (PSW[Q])

undefined;
else

GR[t] ← CR[r]; /* IA Queues, IPRs */
else if (r == 0)

if (PSW[R])
undefined;

else
GR[t] ← CR[r]; /* Recovery Counter */

else if (r == 11)
if (cmplt == W) /*e=1*/

GR[t] ← CR[r];
else /*e=0*/

GR[t] ← CR[r]{1..5}; /* SAR */
else if (r >= 8)

GR[t] ← CR[r]; /* other control registers */

Exceptions: Privileged register trap

Restrictions: System control registers other than the Shift Amount Register (CR 11), the Interval T
(CR 16), and temporary registers CR 26 and CR 27, may be read only at the
privileged level. CR 11, CR 26, and CR 27 may be read at any privilege level. CR 16
be read at any privilege level only if the PSW S-bit is 0; otherwise, CR 16 may be
only at the most privileged level. The Interruption Instruction Address Queues (CR
and 18) and Interruption Parameter Registers (CRs 19, 20, and 21) and the Interr
Processor Status Word (CR 22) may be read reliably only when the PSW[Q] bit is 0.

If the completerW is specified, the control register source must specify CR11 (SAR.)

00 r 0 rv e rv 45 t

6 5 5 1 1 1 8 5
7-91PA-RISC 2.0 Architecture Instruction Descriptions

Move From Instruction Address MFIA

Format: MFIA t

(32)

Purpose: To move the current instruction address to a general register.

Description: IAOQ_FRONT is copied into GRt. The rightmost two bits of GRt, corresponding to the
privilege level are zeroed.

Operation: GR[t] ← cat(IAOQ_FRONT{0..61},0{62..63});

Exceptions: None

00 rv 0 rv A5 t

6 5 5 3 8 5
7-92 Instruction Descriptions PA-RISC 2.0 Architecture

Move From Space Register MFSP

Format: MFSP sr,t

(29)

Purpose: To move a value to a general register from a space register.

Description: SRsr (which is assembled from thes field in the instruction) is copied into GRt.

Operation: sr ← assemble_3(s);
GR[t] ← SR[sr];

Exceptions: None

Notes: Unimplemented space register bits must read as zero.

00 rv 0 s 25 t

6 5 5 3 8 5
7-93PA-RISC 2.0 Architecture Instruction Descriptions

ister.

ded
leter

ult.
ult.
Mix Halfwords MIXH

Format: MIXH,cmplt r1,r2,t

(10)

Purpose: To combine four halfwords from two source registers, and merge them in a result reg

Description: Two halfwords from GRr1 are merged with two halfwords from GRr2 and the result is
placed in GRt.

The completer,cmplt, determines which halfwords are selected. The completer is enco
in the ea field of the instruction. (Table 7-6 defines the assembly language comp
mnemonics.)

If cmplt is “L”, the left halfword of each of the four input words is merged into the res
If cmplt is “R”, the right halfword of each of the four input words is merged into the res
The two cases are shown in the following diagram:

Operation: switch (cmplt) {
case L: GR[t]← cat(GR[r1]{0..15},GR[r2]{0..15}, /*ea=0*/

GR[r1]{32..47},GR[r2]{32..47});
break;

case R: GR[t]← cat(GR[r1]{16..31},GR[r2]{16..31}, /*ea=2*/
GR[r1]{48..63}, GR[r2]{48..63});

break;
}

Exceptions: None.

3E r2 r1 1 ea 0 1 0 0 t

6 5 5 1 2 1 2 4 1 5

Table 7-6. Mix Instruction Completers

cmplt Description ea

L Left Halfwords/Words are combined 0

R Right Halfwords/Words are combined 2

MIXH,L

r1

t

r2 ge f hda b c

a e c g

MIXH,R

r1

t

r2 ge f hda b c

b f d h
7-94 Instruction Descriptions PA-RISC 2.0 Architecture

r.

d in
uage
s
t
ram:
Mix Words MIXW

Format: MIXW,cmplt r1,r2,t

(10)

Purpose: To combine two words from two source registers, and merge them in a result registe

Description: A word from GRr1 is merged with a word from GRr2 and the result is placed in GRt.

The completer,cmplt, determines which words are selected. The completer is encode
the ea field of the instruction (see Table 7-6 on page 7-94 for the assembly lang
completer mnemonics.) Ifcmplt is “L”, the left word of each of the two input doubleword
is merged into the result. Ifcmplt is “R”, the right word of each of the two inpu
doublewords is merged into the result. The two cases are shown in the following diag

Operation: switch (cmplt) {
case L: GR[t]← cat(GR[r1]{0..31},GR[r2]{0..31}); /*ea=0*/

break;
case R: GR[t]← cat(GR[r1]{32..63},GR[r2]{32..63}); /*ea=2*/

break;
}

Exceptions: None.

3E r2 r1 1 ea 0 0 0 0 t

6 5 5 1 2 1 2 4 1 5

MIXW,L

r1

t

r2

MIXW,R

r1

t

r2

a db c

ca

a b c d

b d
7-95PA-RISC 2.0 Architecture Instruction Descriptions

ed on

e
the
s

is
ch is
.

-13
 not
 the
nd set
Move and Branch MOVB

Format: MOVB,cond,n r1,r2,target

(17)

Purpose: To copy one register to another and perform an IA-relative branch conditionally bas
the value moved.

Description: GR r1 is copied into GRr2. If the value moved satisfies the specified condition,cond, the
word displacement is assembled from thew andw1 fields, sign extended, and added to th
current instruction offset plus 8 to form the target offset. The condition is encoded in c
field of the instruction. The branch target,target, in the assembly language format i
encoded in thew andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification
specified, the instruction following a taken forward branch or a failing backward bran
nullified. The ,N completer, encoded in then field of the instruction, specifies nullification

Conditions: The condition,cond, is any of the extract/deposit 32-bit conditions shown in Table D
on page D-9 (never, =, <, OD, TR, <>, >=, EV.) When a condition completer is
specified, the “never” condition is used. The boolean variable “cond_satisfied” in
operation section is set to 1 when the value moved satisfies the specified condition a
to 0 otherwise.

Operation: GR[r2] ← GR[r1];
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← !cond_satisfied;

else
PSW[N] ← cond_satisfied;

Exceptions: Taken branch trap

32 r2 r1 c w1 n w

6 5 5 3 11 1 1
7-96 Instruction Descriptions PA-RISC 2.0 Architecture

nch

 the
t,

is
ch is
.

-13
 not
 the
nd set
Move Immediate and Branch MOVIB

Format: MOVIB,cond,n i,r,target

(17)

Purpose: To copy an immediate value into a register and perform an IA-relative bra
conditionally based on the value moved.

Description: The immediate valueim5 is sign extended and copied into GRr. If the value moved
satisfies the specified condition,cond, the word displacement is assembled from thew and
w1 fields, sign extended, and added to the current instruction offset plus 8 to form
target offset. The condition is encoded in thec field of the instruction. The branch targe
target, in the assembly language format is encoded in thew andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification
specified, the instruction following a taken forward branch or a failing backward bran
nullified. The ,N completer, encoded in then field of the instruction, specifies nullification

Conditions: The condition,cond, is any of the extract/deposit 32-bit conditions shown in Table D
on page D-9 (never, =, <, OD, TR, <>, >=, EV.) When a condition completer is
specified, the “never” condition is used. The boolean variable “cond_satisfied” in
operation section is set to 1 when the value moved satisfies the specified condition a
to 0 otherwise.

Operation: GR[r] ← low_sign_ext(im5,5);
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← !cond_satisfied;

else
PSW[N] ← cond_satisfied;

Exceptions: Taken branch trap

Programming Note
Since i is known at the time aMOVE IMMEDIATE AND BRANCH instruction is written,
conditions other than always and never (the ,TR and <none> completers) are of no use.

33 r im5 c w1 n w

6 5 5 3 11 1 1
7-97PA-RISC 2.0 Architecture Instruction Descriptions

and

y a
Move To Control Register MTCTL

Format: MTCTL r,t

(31)

Purpose: To move a value from a general register to a control register.

Description: GR r is copied into CRt. If CR 23 is specified, then the value is first complemented
ANDed with the original value.

Notes: The MTSAR r pseudo-operation generates an MTCTL r,%SAR instruction to cop
general register to the Shift Amount Register.

00 t r rv C2 0

6 5 5 3 8 5
7-98 Instruction Descriptions PA-RISC 2.0 Architecture

ritten
The
ting
 into
essor
pace

o

Operation: if (t >= 1 && t <= 7)
undefined;

else if (t != 11 && priv != 0)
privileged_register_trap;

else
switch(t) {

case 0: if (PSW[R])
undefined;

else
CR[t] ← GR[r]{32..63}; /* Recovery Counter */

break;
case 14: case 15: case 16: case 24: case 25: case 26:
case 27: case 28: case 29: case 30: case 31:

CR[t] ← GR[r]; /* other control registers */
break;

case 17: case 18: case 20: case 21: case 22:
if (PSW[Q])

undefined;
else

CR[t] ← GR[r]; /* IIA Queues, IOR, ISR */
break;

case 23: CR[23]← CR[23] & ∼GR[r]; /* EIRR */
break;

case 10: CR[10]← GR[r]{48..63}; /* CCR, SCR */
break;

case 11: CR[11]← GR[r]{26..31}; /* SAR */
break;

case 8: case 9: case 12: case 13:
CR[t] ← GR[r]; /* Protection Identifiers */
break;

case 19:
undefined; /* IIR */
break;

}

Exceptions: Privileged register trap

Restrictions: System control registers other than the Shift Amount Register (CR 11) may be w
only at the most privileged level. CR 11 may be written at any privilege level.
Recovery Counter (CR 0) may be written reliably only when the PSW[R] bit is 0. Wri
into the Interruption Instruction Register (CR 19) is an undefined operation. Writing
the Interruption Instruction Address Queues (CRs 17 and 18), the Interruption Proc
Status Word (CR 22), the Interruption Offset Register (CR 21) or the Interruption S
Register (CR 20) when the PSW[Q] bit is 1 is an undefined operation.

Notes: The MTSAR pseudo-operation generates anMTCTL r,CR11 to copy a general register t
the Shift Amount Register (CR 11.)
7-99PA-RISC 2.0 Architecture Instruction Descriptions

 Shift

SAR
or the
y a
Move To Shift Amount Register Complement MTSARCM

Format: MTSARCM r

(31)

Purpose: To take the one’s complement of a value from a general register and move it to the
Amount Register (CR11.)

Description: The one’s complement of GRr is copied into CR[11].

Operation: CR[11] ← ~ GR[r]{26..31};

Exceptions: None.

Notes: The upper bits of the SAR are non-existent and so on a MFCTL instruction with the
as the specified register, hardware can return either 0’s or what was last written f
upper 58 bits. If hardware returns what was last written, the value written b
MTSARCM instruction must be the complement of GR[r].

00 B r rv C6 0

6 5 5 3 8 5
7-100 Instruction Descriptions PA-RISC 2.0 Architecture

the
ned

 used
Move To System Mask MTSM

Format: MTSM r

(33)

Purpose: To set PSW system mask bits to a value from a register.

Description: Bits 36, 37 and 56..63 of GRr replace the system mask, PSW{36,37,56..63}. Setting
PSW Q-bit, PSW{60}, to 1 with this instruction, if it was not already 1, is an undefi
operation.

Operation: if (priv != 0)
privileged_operation_trap;

else {
if ((PSW[Q] == 0) && (GR[r]{60} == 1))

undefined;
else {

PSW[W]← GR[r]{36};
PSW[E]← GR[r]{37};
PSW[O]← GR[r]{56};
PSW[G]← GR[r]{57};
PSW[F] ← GR[r]{58};
PSW[R]← GR[r]{59};
PSW[Q]← GR[r]{60};
PSW[P]← GR[r]{61};
PSW[D]← GR[r]{62};
PSW[I] ← GR[r]{63};

}
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: The state of the IPRs, IIA queues, and the IPSW is undefined when this instruction is
to set the Q-bit to 0, if it was not already 0.

00 0 r 0 C3 0

6 5 5 3 8 5
7-101PA-RISC 2.0 Architecture Instruction Descriptions

l.

tion if
Move To Space Register MTSP

Format: MTSP r,sr

(29)

Purpose: To move a value from a general register to a space register.

Description: GR r is copied into SRsr (which is assembled from thes field in the instruction.)

Operation: sr ← assemble_3(s);
if (sr >= 5 && priv != 0)

privileged_register_trap;
else

if (PSW[W])
SR[sr] ← GR[r];

else
SR[sr]{32..63}← GR[r]{32..63};

Exceptions: Privileged register trap

Restrictions: SRs 5, 6 and 7 may be changed only by software running at the most privileged leve

Notes: The values written to unimplemented space register bits must be ignored.

Bits 0..31 of the target space register, if implemented, are unchanged by this instruc
the PSW W-bit is 0.

00 rv r s C1 0

6 5 5 3 8 5
7-102 Instruction Descriptions PA-RISC 2.0 Architecture

7 or
ition
iable
ecified
Inclusive OR OR

Format: OR,cond r1,r2,t

(8)

Purpose: To do a 64-bit, bitwise inclusive OR.

Description: GR r1 and GRr2 are ORed and the result is placed in GRt. The following instruction is
nullified if the values ORed satisfy the specified condition,cond. The condition is encoded
in thec, d, andf fields of the instruction.

Conditions: The condition is any of the 32-bit logical conditions shown in Table D-9 on page D-
any of the 64-bit logical conditions shown in Table D-10 on page D-7. When a cond
completer is not specified, the "never" condition is used. The boolean var
"cond_satisfied" in the operation section is set when the values ORed satisfy the sp
condition.

Operation: GR[t] ← GR[r1] | GR[r2];
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

Notes: TheNOP pseudo-operation generates the instructionOR 0,0,0.

02 r2 r1 c f 0 1 0 1 d t

6 5 5 3 1 2 1 1 2 1 5
7-103PA-RISC 2.0 Architecture Instruction Descriptions

tion is
 dirty
 and
.

guage

special
 D-bit
is used.

bined

e for

ering
Purge Data Cache PDC

Format: PDC,cmplt x(s,b)

(24)

Purpose: To invalidate a data cache line.

Description: The cache line (if present) specified by the effective address generated by the instruc
invalidated from the data cache. If the privilege level is non-zero and the cache line is
then it is written back to memory before being invalidated. If the privilege level is zero
the line is dirty then the implementation may optionally write back the line to memory

The completer,cmplt, determines if the offset is the base register,b, or the base register
plus the index registerx. The completer, encoded in them field of the instruction, specifies
base register modification (see Table 7-3 on page 7-52 for the assembly lan
completer mnemonics.)

If a cache purge operation is performed, write access to the data is required and a
access rights check is performed. See “Access Control” on page 3-11. The PSW
(Data address translation enable) determines whether a virtual or absolute address

In a multiprocessor system, a purge or flush request is broadcast to all data and com
caches.

Operation: space← space_select(s,GR[b],INDEXED);
switch (cmplt) {

case M: offset← GR[b]; /*m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
break;

}
if (priv != 0)

Dcache_flush(space,offset);
else

Dcache_flush_or_purge(space,offset);

Exceptions: Non-access data TLB miss fault Data memory break trap
Data memory access rights trap
Data memory protection ID trap

Notes: For systems that do not have a cache, this instruction executes as a null instruction.

At privilege level zero, implementations are encouraged to purge the cache lin
performance reasons.

This instruction may be executed out of sequence but must satisfy the instruction ord

01 b x s 4E m 0

6 5 5 2 8 1 5
7-104 Instruction Descriptions PA-RISC 2.0 Architecture

ons
constraints. TheSYNC instruction enforces program order with respect to the instructi
following theSYNC.

It is an undefined operation to execute aPDC with a nonzeros-field at a nonzero privilege
level when the PSW W-bit is 1.
7-105PA-RISC 2.0 Architecture Instruction Descriptions

y

or

e

s must

 a
Purge Data TLB PDTLB

Format: PDTLB,scope,cmplt x(s,b)

(24)

Purpose: To invalidate a data TLB entry.

Description: The data or combined TLB entries (if any) which match the effective address generated b
the instruction are removed. The completer, scope, encoded in the e1 field of the
instruction, specifies whether the purge is global to all processors in a multiprocess
system (no completer, e1=0) or limited to the local processor (,L completer, e1=1.) The
completer, cmplt, encoded in the m field of the instruction, determines if the offset is the
base register, b, or the base register plus index register, x, and whether base register
modification is performed (see Table7-3 on page7-52 for the assembly languag
completer mnemonics.)

TLB purges are strongly ordered. In a multiprocessor system, a global TLB purge causes a
purge request to be broadcast to all data and combined TLBs. The other processor
remove all matching entries before the issuing processor continues.

Operation: if (priv != 0)
privileged_operation_trap;

else {
space ← space_select(s,GR[b],INDEXED);
switch (cmplt) {

case M: offset ← GR[b]; /*m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset ← GR[b] + GR[x]; /*m=0*/
break;

}
page_size ← 4096 << (2 * GR[b]{60..63});
for (i ← 0; i < page_size/4096; i++) {

if (entry ← DTLB_search(space, offset + i*4096))
DTLB_purge_local(entry);

}
if (scope != L)

DTLB_purge_broadcast(space,offset,page_size);
}

Exceptions: Privileged operation trap.

Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to purge both instruction entries and data entries from
combined TLB.

01 b x s 2 e1 8 m rv

6 5 5 2 3 1 4 1 5
7-106 Instruction Descriptions PA-RISC 2.0 Architecture

Errata
Previously, the page_size computation incorrectly read:page_size = (GR[b]{60..63} + 1) * 4096;

dent
lds of
validate
e

52 for

e data
 a

om a
ace”
Purge Data TLB Entry PDTLBE

Format: PDTLBE,cmplt x(s,b)

(24)

Purpose: To invalidate a data TLB entry without matching the address portion.

Description: The data or combined TLB entries (if any) specified by an implementation-depen
function of the effective address generated by the instruction are removed. All the fie
these entries may be changed to arbitrary values as long as these entries do not
any subsequent accesses. The completer,cmplt, determines if the offset is the bas
register,b, or the base register plus the index registerx. The completer, encoded in them
field of the instruction, specifies base register modification (see Table 7-3 on page 7-
the assembly language completer mnemonics.)

This is an implementation-dependent instruction that can be used to purge the entir
TLB without knowing the translations in the TLB. No broadcast occurs in
multiprocessor system.

Operation: if (priv != 0)
privileged_operation_trap;

else {
space← space_select(s,GR[b],INDEXED);
switch (cmplt) {

case M: offset← GR[b]; /*m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
break;

}
DTLB_purge_entries(space,offset);

}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to purge both instruction entries and data entries fr
combined TLB. This instruction does not necessarily purge the entry specified by “sp
and “offset”.

01 b x s 49 m rv

6 5 5 2 8 1 5
7-107PA-RISC 2.0 Architecture Instruction Descriptions

 that

ed,
 one

ter
 digit
at the
elects

-

ter

the
Permute Halfwords PERMH

Format: PERMH,c r,t

(10)

Purpose: To select any combination of four halfwords from a source register, and place
combination in a result register.

Description: The source register, GRr, is treated as four 16-bit fields. A 64-bit result is generat
consisting of four 16-bit fields. Each field in the result is independently selected from
of the fields in GRr. The result is placed in GRt.

The choice of which fields are selected for each result field is specified by the complec,
which is given as a four-digit number, where each digit is either 0, 1, 2, or 3. Each
controls the selection for one result field. For example, a digit value of 0 specifies th
result field receives the value from the leftmost source field, and a digit value of 2 s
the next-to-rightmost source field.c is encoded in thec0, c1, c2, andc3 fields of the
instruction.c0 encodes the first digit,c1 the second, etc. Thus,c0 encodes which source
field will appear in the leftmost result field,c1 which source field will appear in the next
to-leftmost result field, etc.

The array of boolean variables “c[]” in the operation section represent the complec.
The variable “c[0]” represents the first digit inc, “c[1]” the second digit inc, etc.

Any combination or permutation of the four source fields can be generated.

Operation: parallel for (i← 0; i <= 3; i++) {
start← 16 * i;
end← start + 15;
field_select← c[i];
switch (field_select) {

case 0: GR[t]{start..end}← GR[r]{0..15};
break;

case 1: GR[t]{start..end}← GR[r]{16..31};
break;

case 2: GR[t]{start..end}← GR[r]{32..47};
break;

case 3: GR[t]{start..end}← GR[r]{48..63};
break;

}
}

Exceptions: None.

Notes: The source register specifier,r, must appear in both source operand fields of
instruction, as shown in the format. If it does not, the operation is undefined.

3E r r 0 c0 0 c1 c2 c3 0 t

6 5 5 1 2 1 2 2 2 1 5
7-108 Instruction Descriptions PA-RISC 2.0 Architecture

e

Programming Note

The following figures illustrate examples of how the source fields are specified and how th
result is generated.

c= 0000

a dr

a at a a

c= 2031

a dr

c bt a d

b c

b c

c= 3210

a dr

d at c b

b c

0 1 2 3

0 1 2 3

0 1 2 3
7-109PA-RISC 2.0 Architecture Instruction Descriptions

essors

 a
Purge Instruction TLB PITLB

Format: PITLB,scope,cmplt x(sr,b)

(26)

Purpose: To invalidate an instruction TLB entry.

Description: The instruction or combined TLB entry (if any) for the page specified by the effective
address generated by the instruction is removed. The completer, scope, encoded in the e1
field of the instruction, specifies whether the purge is global to all processors in a
multiprocessor system (no completer, e1=0) or limited to the local processor (,L
completer, e1=1.) The completer, cmplt, encoded in the m field of the instruction,
determines if the offset is the base register, b, or the base register plus index register, x, and
whether base register modification is performed (see Table7-3 on page7-52 for the
assembly language completer mnemonics.)

TLB purges are strongly ordered. In a multiprocessor system, a global TLB purge causes a
purge request to be broadcast to all instruction and combined TLBs. The other proc
must remove the entry before the issuing processor continues.

Operation: if (priv != 0)
privileged_operation_trap;

else {
space ← SR[assemble_3(s)];
switch (cmplt) {

case M: offset ← GR[b]; /*m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset ← GR[b] + GR[x]; /*m=0*/
break;

}
page_size ← 4096 << (2 * GR[b]{60..63});
for (i ← 0; i < page_size/4096; i++) {

if (entry ← ITLB_search(space, offset + i*4096))
ITLB_purge_local(entry);

}
if (scope != L)

ITLB_purge_broadcast(space,offset,page_size);
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to purge both instruction entries and data entries from
combined TLB.

01 b x s 0 e1 8 m rv

6 5 5 3 2 1 4 1 5
7-110 Instruction Descriptions PA-RISC 2.0 Architecture

Errata
Previously, the page_size computation incorrectly read:page_size = (GR[b]{60..63} + 1) * 4096;

ion-
d. All

s do not
e

52 for

entire
in a

om a
ace”
Purge Instruction TLB Entry PITLBE

Format: PITLBE,cmplt x(sr,b)

(26)

Purpose: To invalidate an instruction TLB entry without matching the address portion.

Description: The instruction or combined TLB entries (if any) specified by an implementat
dependent function of the effective address generated by the instruction are remove
the fields of these entries may be changed to arbitrary values as long as these entrie
validate any subsequent accesses. The completer,cmplt, determines if the offset is the bas
register,b, or the base register plus the index registerx. The completer, encoded in them
field of the instruction, specifies base register modification (see Table 7-3 on page 7-
the assembly language completer mnemonics.) The space register,sr, is encoded in thes
field of the instruction.

This is an implementation-dependent instruction that can be used to purge the
instruction TLB without knowing the translations in the TLB. No broadcast occurs
multiprocessor system.

Operation: if (priv != 0)
privileged_operation_trap;

else {
space← SR[assemble_3(s)];
switch (cmplt) {

case M: offset← GR[b]; /*m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
break;

}
ITLB_purge_entries(space,offset);

}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to purge both instruction entries and data entries fr
combined TLB. This instruction does not necessarily purge the entry specified by “sp
and “offset”.

01 b x s 09 m rv

6 5 5 3 7 1 5
7-111PA-RISC 2.0 Architecture Instruction Descriptions

get
Pop Branch Target Stack POPBTS

Format: POPBTS i

(23)

Purpose: To pop one or more entries off the branch target stack.

Description: The top i entries of the branch target stack are popped.

If this instruction is nullified, the results are undefined.

This instruction is executed as aNOP on machines that do not implement the branch tar
stack.

Operation: for (j=i; j>0; j--) {
pop_from_BTS();

}

Exceptions: None

3A 0 0 2 0 i 1 0 1

6 5 5 3 1 9 1 1 1
7-112 Instruction Descriptions PA-RISC 2.0 Architecture

tion is

also
 of the

*/

*/

ult, the
ess. If
f not
et the
Probe Access PROBE

Format: PROBE,cmplt (s,b),r,t

(24)

Purpose: To determine whether read or write access to a given address is allowed.

Description: A test is performed to determine if access to the address computed by the instruc
permitted at the privilege level given by the two rightmost bits of the GRr. GRt is set to 1
if the test succeeds and 0 otherwise.

The completer,cmplt, encoded in the sub-operation fielde1, specifies whether the
instruction checks for read (cmplt ==R) or write (cmplt ==W) access (e1=0: check for read
access,e1=1: check for write access.) If the PSW P-bit is 1, the protection IDs are
checked. The instruction performs data address translation regardless of the state
PSW D-bit.

Operation: space← space_select(s,GR[b],INDEXED);
offset ← GR[b];
if (DTLB_search(space,offset))

switch (cmplt) {
case W: if (write_access_allowed(space,offset,GR[r])) /*e1=1

GR[t] ← 1;
else

GR[t] ← 0;
break;

case R:
default: if (read_access_allowed(space,offset,GR[r])) /*e1=0

GR[t] ← 1;
else

GR[t] ← 0;
break;

}
else

non-access_data_TLB_miss_fault();

Exceptions: Non-access data TLB miss fault/non-access data page fault

Notes: If this instruction causes a non-access data TLB miss fault/non-access data page fa
operating system’s handler is required to search its page tables for the given addr
found, it does the appropriate TLB insert and returns to the interrupting instruction. I
found, the handler must decode the target field of the instruction, set that GR to 0, s
IPSW[N] bit to 1, and return to the interrupting instruction.

It is an undefined operation to execute aPROBE with a nonzeros-field at a nonzero
privilege level when the PSW W-bit is 1.

01 b r s 23 e1 0 t

6 5 5 2 7 1 1 5
7-113PA-RISC 2.0 Architecture Instruction Descriptions

I

tion is
ue

also
 of the

*/

*/

ult, the
ess. If
f not
et the
Probe Access Immediate PROBE

Format: PROBEI,cmplt (s,b),i,t

(24)

Purpose: To determine whether read or write access to a given address is allowed.

Description: A test is performed to determine if access to the address computed by the instruc
permitted at the privilege level given by the two rightmost bits of the immediate vali.
GR t is set to 1 if the test succeeds and 0 otherwise.

The completer,cmplt, encoded in the sub-operation fielde1, specifies whether the
instruction checks for read (cmplt ==R) or write (cmplt ==W) access (e1=0: check for read
access,e1=1: check for write access.) If the PSW P-bit is 1, the protection IDs are
checked. This instruction performs data address translation regardless of the state
PSW D-bit.

Operation: space← space_select(s,GR[b],INDEXED);
offset ← GR[b];
if (DTLB_search(space,offset))

switch (cmplt) {
case W: if (write_access_allowed(space,offset,i)) /*e1=1

GR[t] ← 1;
else

GR[t] ← 0;
break;

case R:
default: if (read_access_allowed(space,offset,i)) /*e1=0

GR[t] ← 1;
else

GR[t] ← 0;
break;

}
else

non-access_data_TLB_miss_fault();

Exceptions: Non-access data TLB miss fault/non-access data page fault

Notes: If this instruction causes a non-access data TLB miss fault/non-access data page fa
operating system’s handler is required to search its page tables for the given addr
found, it does the appropriate TLB insert and returns to the interrupting instruction. I
found, the handler must decode the target field of the instruction, set that GR to 0, s
IPSW[N] bit to 1, and return to the interrupting instruction.

It is an undefined operation to execute aPROBEI with a nonzeros-field at a nonzero
privilege level when the PSW W-bit is 1.

01 b i s 63 e1 0 t

6 5 5 2 7 1 1 5
7-114 Instruction Descriptions PA-RISC 2.0 Architecture

get
Push Branch Target Stack PUSHBTS

Format: PUSHBTS r

(23)

Purpose: To push a value from a GR onto the branch target stack.

Description: Either the value in GRr, or an “invalid” value is pushed onto the branch target stack.

If this instruction is nullified, the results are undefined.

This instruction is executed as aNOP on machines that do not implement the branch tar
stack.

Operation: push_onto_BTS(GR[b]{0..61});

Exceptions: None.

3A 0 r 2 0 0 0 0 1

6 5 5 3 1 9 1 1 1
7-115PA-RISC 2.0 Architecture Instruction Descriptions

rwise,

get
Push Nominated PUSHNOM

Format: PUSHNOM

(23)

Purpose: To push the currently nominated address onto the branch target stack.

Description: If there is a current nominated value, it is pushed onto the branch target stack. Othe
an “invalid” value is pushed.

If this instruction is nullified, the results are undefined.

This instruction is executed as aNOP on machines that do not implement the branch tar
stack.

Operation: push_onto_BTS(BNR);

Exceptions: None.

3A 0 0 2 0 0 0 0 1

6 5 5 3 1 9 1 1 1
7-116 Instruction Descriptions PA-RISC 2.0 Architecture

m and

ed by
es at

s

tents of

 the
le for

 of an
ilege
Return From Interruption RFI

Format: RFI,cmplt

(33)

Purpose: To restore processor state and restart execution of an interrupted instruction strea
optionally restore GRs 1, 8, 9, 16, 17, 24, and 25 from the shadow registers.

Description: The PSW register contents are restored from the IPSW register but are not modifi
this instruction. The IA queues are restored from the IIA queues. Execution continu
the locations loaded into the IA queues.

The completer,cmplt, encoded in the sub-operation fielde1, specifies whether the content
of GRs 1, 8, 9, 16, 17, 24, and 25 are restored from the shadow registers (e1=5: restore
from shadow registers,e1=0: GRs are unchanged.) Execution of anRFI with the ,R
completer when the contents of the shadow registers are undefined leaves the con
GRs 1, 8, 9, 16, 17, 24, and 25 undefined. After execution of anRFI with the ,R completer,
the SHRs are undefined.

Execution of anRFI with the IPSW Q-bit equal to 0 returns to the location specified by
IIA queues, but leaves the IIAOQ, IIASQ, and IPRs undefined. Software is responsib
avoiding interruptions during the execution of anRFI. Execution of anRFI instruction
when any of the PSW Q, I, or R bits are ones is an undefined operation. Execution
RFI instruction when the PSW L-bit is a one is an undefined operation if the new priv
level after execution of theRFI is non zero.

00 rv rv rv 6 e1 0

6 5 5 3 4 4 5
7-117PA-RISC 2.0 Architecture Instruction Descriptions

le for
of any
W B-
tion of
avoid

 with

el, a
Operation: if (priv != 0)
privileged_operation_trap;

else {
if (cmplt == R) {

GR[1] ← SHR[0]; /*e1=5*/
GR[8] ← SHR[1];
GR[9] ← SHR[2];
GR[16] ← SHR[3];
GR[17] ← SHR[4];
GR[24] ← SHR[5];
GR[25] ← SHR[6];

} else
; /* do nothing */ /*e1=0*/

PSW ← IPSW;
IAOQ_Back ← IIAOQ_Back;
IAOQ_Front ← IIAOQ_Front;
if (!level_0) {

IASQ_Back ← IIASQ_Back & ~zero_ext(IIAOQ_Back{0..31},32);
IASQ_Front← IIASQ_Front & ~zero_ext(IIAOQ_Front{0..31},32);

}
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Because this instruction restores the state of the execution pipeline, it is possib
software to place the processor in states which could not result from the execution
sequence of instructions not involving interruptions. For example, it could set the PS
bit to 0 even though the addresses in the IA queues are not contiguous. The opera
the machine is undefined in such cases, and it is the responsibility of software to
them.

To avoid improper processor states, software must not set the PSW B-bit to 0
different privilege levels in the IAOQ.

Notes: When this instruction returns to an instruction which executes at a lower privilege lev
lower-privilege transfer trap is not taken.

This instruction is the only instruction that can set the PSW Q-bit to 1.
7-118 Instruction Descriptions PA-RISC 2.0 Architecture

 used
Reset System Mask RSM

Format: RSM i,t

(33)

Purpose: To selectively reset bits in the system mask to 0.

Description: The current value of the system mask, PSW{36,37,56..63}, is saved in GRt and then the
complement of the immediate valuei is ANDed with the system mask.

Operation: if (priv != 0)
privileged_operation_trap;

else {
GR[t] ← 0;
GR[t]{36} ← PSW[W];
GR[t]{37} ← PSW[E];
GR[t]{56} ← PSW[O];
GR[t]{57} ← PSW[G];
GR[t]{58} ← PSW[F];
GR[t]{59} ← PSW[R];
GR[t]{60} ← PSW[Q];
GR[t]{61} ← PSW[P];
GR[t]{62} ← PSW[D];
GR[t]{63} ← PSW[I];
PSW[W]← PSW[W] & (~i{0});
PSW[E]← PSW[E] & (~i{1});
PSW[O]← PSW[O] & (~i{2});
PSW[G]← PSW[G] & (~i{3});
PSW[F] ← PSW[F] & (~i{4});
PSW[R]← PSW[R] & (~i{5});
PSW[Q]← PSW[Q] & (~i{6});
PSW[P]← PSW[P] & (~i{7});
PSW[D]← PSW[D] & (~i{8});
PSW[I] ← PSW[I] & (~i{9});

}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: The state of the IPRs, IIA queues, and the IPSW is undefined when this instruction is
to set the Q-bit to 0, if it was not already 0.

00 i 0 73 t

6 10 3 8 5
7-119PA-RISC 2.0 Architecture Instruction Descriptions

-bit

 taken
and is

ion,

gned

/

 out
red
ut are
, it is
ecial

ther a

r any
leter
in the
Shift Left and Add SHLADD

Format: SHLADD,cmplt,cond r1,sa,r2,t

(8)

Purpose: To provide a primitive operation for multiplication.

Description: GR r1 is shifted leftsa bit positions and added to GRr2. If no trap occurs, the result is
placed in GRt. The variable "carry_borrows" in the operation section captures the 4
carries resulting from the add operation. The completer,cmplt, encoded in thee1 field,
specifies whether the carry/borrow bits in the PSW are updated and whether a trap is
on signed overflow as shown in the table below. The shift amount is either 1, 2, or 3,
encoded in thesa field of the instruction.

The following instruction is nullified if the values added satisfy the specified condit
cond. The condition is encoded in thec, d, and f fields of the instruction. The boolean
variable "overflow" in the operation section is set if the operation results in a 32-bit si
overflow (d=0) or a 64-bit signed overflow (d=1.) For addition with carry in, thed field
encodes whether the word carry (PSW C/B{8},d=0), or the doubleword carry (PSW C
B{0}, d=1) is used.

For this instruction, signed overflow condition means that either the bit(s) shifted
differ from the leftmost bit following the shift or an ordinary signed overflow occur
during the addition. Unsigned overflow means that one or more of the bit(s) shifted o
1 or an ordinary unsigned overflow occurred during the addition. For 32-bit overflows
the bits shifted out of the lower word that are checked. The conditions take on sp
interpretations since the shift operation participates in overflow determination.

Thee1 field encodes whether the carry/borrow bits in the PSW are updated and whe
trap is taken on overflow (e1=1: carries updated, no trap,e1=2: carries not updated, no
trap,e1=3: carries updated, trap on overflow.)

Conditions: The condition is any of the 32-bit add conditions shown in Table D-6 on page D-5 o
of the 64-bit add conditions shown in Table D-7 on page D-6. When a condition comp
is not specified, the "never" condition is used. The boolean variable "cond_satisfied"
operation section is set when the values added satisfy the specified condition.

02 r2 r1 c f e1 1 0 sa d t

6 5 5 3 1 2 1 1 2 1 5

Completer Description e1

<none> Shift left and add 1
L Shift left and add logical 2
TSV Shift left and add and trap on signed overflow 3
7-120 Instruction Descriptions PA-RISC 2.0 Architecture

Operation: res← lshift(GR[r1],sa) + GR[r2];
if (cmplt == TSV && overflow)

overflow_trap;
else {

GR[t] ← res;
if (cmplt != ’L’)

PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

}

Exceptions: Overflow trap

Notes: When the ,L completer is specified, no trapping on overflow is available.
7-121PA-RISC 2.0 Architecture Instruction Descriptions

the

t

, the
iable

ified

 on
. The
of the
Shift Right Pair Doubleword SHRPD

Format: SHRPD,cond r1,r2,sa,t

(11)

(14)

Purpose: To shift a pair of registers by a fixed or variable amount and conditionally nullify
following instruction.

Description: The rightmost 63 bits of GRr1 are concatenated with the 64 bits of GRr2 and shifted
right the number of bits given by the shift amount,sa. The rightmost 64 bits of the resul
are placed in GRt.

The shift amount,sa, can either be a constant (specifying a fixed shift), or can be SAR
Shift Amount Register (CR 11) (specifying a variable shift.) Format 11 is used for var
shifts; Format 14 is used for fixed shifts. For fixed shifts, the shift amountsa in the
assembly language format is represented by cat(cp,cpos) in the machine instruction,
whose value is 63–sa.

The following instruction is nullified if the result of the operation satisfies the spec
condition,cond. The condition is encoded in thec field of the instruction.

Conditions: The condition is any of the 64-bit extract/deposit conditions shown in Table D-14
page D-9. When a condition completer is not specified, the "never" condition is used
boolean variable "cond_satisfied" in the operation section is set when the result
operation satisfies the specified condition.

Operation: if (fixed_shift) /* (Format 14) */
shamt← sa;

else /* (Format 11) */
shamt← CR[11];

GR[t] ← rshift(cat(GR[r1]{1..63},GR[r2]),shamt){63..126};
if (cond_satisfied) PSW[N]← 1;

Exceptions: None.

34 r2 r1 c 0 0 1 0 t

6 5 5 3 2 1 1 4 5

34 r2 r1 c 0 cp 1 cpos t

6 5 5 3 1 1 1 5 5
7-122 Instruction Descriptions PA-RISC 2.0 Architecture

Programming Note
A logical right shift of GRr by a variable amount contained in GRp leaving the result in GRt
may be done by the following sequence:

An arithmetic right shift can be done with an extract instruction. SeeEXTRACT
DOUBLEWORD for an example.

If r1 andr2 name the same register, its contents are rotated and placed in GRt. For example,
the following rotates the contents ofra right by 8 bits:

MTSAR p
SHRPD 0,r,sar,t

SHRPD ra,ra,8,ra
7-123PA-RISC 2.0 Architecture Instruction Descriptions

 and

, the
iable
R is

ified

 on
. The
of the
Shift Right Pair Word SHRPW

Format: SHRPW,cond r1,r2,sa,t

(11)

(14)

Purpose: To shift the rightmost 32 bits of a pair of registers by a fixed or variable amount
conditionally nullify the following instruction.

Description: The rightmost 31 bits of GRr1 are concatenated with the rightmost 32 bits of GRr2 and
shifted right the number of bits given by the shift amount,sa. The rightmost 32 bits of the
result are placed in GRt. The leftmost 32 bits of GRt are undefined.

The shift amount,sa, can either be a constant (specifying a fixed shift), or can be SAR
Shift Amount Register (CR 11) (specifying a variable shift.) Format 11 is used for var
shifts; Format 14 is used for fixed shifts. For variable shifts, the leftmost bit of the SA
ignored, so the shift amount is between 0 and 31. For fixed shifts, the shift amountsa in
the assembly language format is represented bycpos in the machine instruction, whose
value is 31–sa.

The following instruction is nullified if the result of the operation satisfies the spec
condition,cond. The condition is encoded in thec field of the instruction.

Conditions: The condition is any of the 32-bit extract/deposit conditions shown in Table D-13
page D-9. When a condition completer is not specified, the "never" condition is used
boolean variable "cond_satisfied" in the operation section is set when the result
operation satisfies the specified condition.

Operation: if (fixed_shift) /* (Format 14) */
shamt← sa;

else /* (Format 11) */
shamt← CR[11]{1..5};

GR[t]{32..63} ← rshift(cat(GR[r1]{33..63},GR[r2]{32..63}),shamt){31..62};
GR[t]{0..31} ← undefined;
if (cond_satisfied) PSW[N]← 1;

Exceptions: None.

34 r2 r1 c 0 0 0 0 t

6 5 5 3 2 1 1 4 5

34 r2 r1 c 0 1 0 cpos t

6 5 5 3 1 1 1 5 5
7-124 Instruction Descriptions PA-RISC 2.0 Architecture

Programming Note
A logical right shift of GRr by a variable amount contained in GRp leaving the result in GRt
may be done by the following sequence:

An arithmetic right shift can be done with an extract instruction. SeeEXTRACT WORD for an
example.

If r1 andr2 name the same register, its contents are rotated and placed in GRt. For example,
the following rotates the contents ofra right by 8 bits:

MTSAR p
SHRPW 0,r,sar,t

SHRPW ra,ra,8,ra
7-125PA-RISC 2.0 Architecture Instruction Descriptions

ion
that
Special Operation Zero SPOP0

Format: SPOP0,sfu,sop,n

(34)

Purpose: To invoke a special function unit operation.

Description: The SFU identified bysfu is directed to perform the operation specified by the informat
supplied to it. If nullification is specified, the SFU also computes a 1-bit condition
causes the following instruction to be nullified if the condition is satisfied.

Thesop field in the assembly language format is the concatenation of thesop1 andsop2
fields in the machine instruction, sop = cat(sop1,sop2.)

Operation: sfu_operation0(cat(sop1,sfu,n,sop2),IAOQ_Front{30..31});
if (n && sfu_condition0(cat(sop1,sfu,n,sop2),IAOQ_Front{30..31}))

PSW[N] ← 1;

Exceptions: Assist emulation trap Assist exception trap

04 sop1 0 sfu n sop2

6 15 2 3 1 5
7-126 Instruction Descriptions PA-RISC 2.0 Architecture

l
ation
ction

ecial
nd
U is

ion of
handler
d and
Special Operation One SPOP1

Format: SPOP1,sfu,sop,n t

(35)

Purpose: To copy a special function unit register or a result to a general register.

Description: A single word is sent from the SFU identified bysfu to GR t. The SFU uses its interna
state and the instruction fields supplied to it to compute or select the result. If nullific
is specified, the SFU also computes a 1-bit condition that causes the following instru
to be nullified if the condition is satisfied.

Operation: GR[t] ← sfu_operation1(cat(sop,sfu,n),IAOQ_Front{30..31});
if (n && sfu_condition1(cat(sop,sfu,n),IAOQ_Front{30..31}))

PSW[N] ← 1;

Exceptions: Assist emulation trap Assist exception trap

Notes: The SPECIAL OPERATION ONE instruction is used to implement theIDENTIFY SFU
pseudo-operation. This operation returns a 32-bit identification number from the sp
function unitsfu to general registert. The value returned is implementation dependent a
is useful for configuration, diagnostics, and error recovery. The state of the SF
undefined after this instruction.

Each implementation must choose an identification number that identifies the vers
the SFU. The values all zeros and all ones are reserved. The assist emulation trap
returns zero when executing this instruction. An assist exception trap is not allowe
this instruction must be implemented by all SFUs. TheIDENTIFY SFU pseudo-operation is
coded as:SPOP1,sfu,0 t

04 sop 1 sfu n t

6 15 2 3 1 5
7-127PA-RISC 2.0 Architecture Instruction Descriptions

 of
n is

ion to
Special Operation Two SPOP2

Format: SPOP2,sfu,sop,n r

(36)

Purpose: To perform a parameterized special function unit operation.

Description: GR r is passed to the SFU identified bysfu. The SFU uses its internal state, the contents
the register, and the instruction fields supplied to it to compute a result. If nullificatio
specified, the SFU also computes a 1-bit condition that causes the following instruct
be nullified if the condition is satisfied.

Thesop field in the assembly language format is the concatenation of thesop1 andsop2
fields in the machine instruction, sop = cat(sop1,sop2.)

Operation: sfu_operation2(cat(sop1,sfu,n,sop2),IAOQ_Front{30..31},GR[r]);
if (n && sfu_condition2(cat(sop1,sfu,n,sop2),IAOQ_Front{30..31},GR[r]))

PSW[N] ← 1;

Exceptions: Assist emulation trap Assist exception trap

04 r sop1 2 sfu n sop2

6 5 10 2 3 1 5
7-128 Instruction Descriptions PA-RISC 2.0 Architecture

,
ute a
s the
Special Operation Three SPOP3

Format: SPOP3,sfu,sop,n r1,r2

(37)

Purpose: To perform a parameterized special function unit operation.

Description: GR r1 and GRr2 are passed to the SFU identified bysfu. The SFU uses its internal state
the contents of the two registers, and the instruction fields supplied to it to comp
result. If nullification is specified, the SFU also computes a 1-bit condition that cause
following instruction to be nullified if the condition is satisfied.

Thesop field in the assembly language format is the concatenation of thesop1 andsop2
fields in the machine instruction, sop = cat(sop1,sop2.)

Operation: sfu_operation3(cat(sop1,sfu,n,sop2),IAOQ_Front{30..31},GR[r1],GR[r2]);
if (n && sfu_condition3(cat(sop1,sfu,n,sop2),IAOQ_Front{30..31},GR[r1],GR[r2]))

PSW[N] ← 1;

Exceptions: Assist emulation trap Assist exception trap

04 r2 r1 sop1 3 sfu n sop2

6 5 5 5 2 3 1 5
7-129PA-RISC 2.0 Architecture Instruction Descriptions

o 1
Set System Mask SSM

Format: SSM i,t

(33)

Purpose: To selectively set bits in the system mask to 1.

Description: The current value of the system mask, PSW{36,37,56..63}, is saved in GRt and then the
immediate valuei is ORed with the system mask. Setting the PSW Q-bit, PSW{60}, t
with this instruction, if it was not already 1, is an undefined operation.

Operation: if (priv != 0)
privileged_operation_trap;

else {
if ((PSW[Q] == 0) && (i{6}))

undefined;
else {

GR[t] ← 0;
GR[t]{36} ← PSW[W];
GR[t]{37} ← PSW[E];
GR[t]{56} ← PSW[O];
GR[t]{57} ← PSW[G];
GR[t]{58} ← PSW[F];
GR[t]{59} ← PSW[R];
GR[t]{60} ← PSW[Q];
GR[t]{61} ← PSW[P];
GR[t]{62} ← PSW[D];
GR[t]{63} ← PSW[I];
PSW[W]← PSW[W] | i{0};
PSW[E]← PSW[E] | i{1};
PSW[O]← PSW[O] | i{2};
PSW[G]← PSW[G] | i{3};
PSW[F] ← PSW[F] | i{4};
PSW[R]← PSW[R] | i{5};
PSW[P]← PSW[P] | i{7};
PSW[D]← PSW[D] | i{8};
PSW[I] ← PSW[I] | i{9};

}
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

00 i 0 6B t

6 10 3 8 5
7-130 Instruction Descriptions PA-RISC 2.0 Architecture

ffset

 the

base
on and
r the
l

ss
Store Byte STB

Format: STB,cmplt,cc r,d(s,b)

(1)

(6)

Purpose: To store a byte from a general register.

Description: The rightmost byte in GRr is stored in the aligned byte at the effective address. The o
is formed as the sum of a base register,b, and a displacementd. The displacement can be
either long (Format 1) or short (Format 6.) The displacement is encoded into
immediate field. Optional base modification can also be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the displacement. The completer also specifies base register modificati
ordering constraints (see Table H-1 on page H-4, and Table H-3 on page H-8 fo
assembly language completer mnemonics.) The completer,cc, specifies the cache contro
hint (see Table 6-8 on page 6-10.)

For short displacements, a one in them field specifies base modification, and thea field
encodes whether pre-modification (a=1), or post-modification (a=0) is performed.

If base register modification is specified andb = r, the value stored at the effective addre
is the byte from the source register before modification.

18 b r s im14

6 5 5 2 14

03 b r s a 1 cc 8 m im5

6 5 5 2 1 1 2 4 1 5
7-131PA-RISC 2.0 Architecture Instruction Descriptions

*/

Operation: if (d > 15 || d < -16) { /* long displacement */

dx ← sign_ext(assemble_16(s,im14),16); /* (Format 1)
cc ← NO_HINT;

} else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 6) */

space← space_select(s,GR[b],format);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB: offset← GR[b] + dx;
mem_store(space,offset,0,7,cc,GR[r]{56..63});
GR[b] ← GR[b] + dx;
break;

case MA: offset← GR[b];
mem_store(space,offset,0,7,cc,GR[r]{56..63});
GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
mem_store(space,offset,0,7,cc,GR[r]{56..63});
break;

}

Exceptions: Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap
Data memory break trap

Restrictions: If the completerO is specified, the displacement must be 0.
7-132 Instruction Descriptions PA-RISC 2.0 Architecture

igned

iven
word

st
ding)
es the
line is

te
ient to

ord
byte
byte in

pleter

 first
re as if
Store Bytes STBY

Format: STBY,cmplt,cc r,d(s,b)

(6)

Purpose: To implement the beginning, middle, and ending cases for fast byte moves with unal
sources and destinations.

Description: If the PSW E-bit is 0 and begin (modifier ",B" corresponding toa = 0) is specified, the
rightmost bytes of GRr are stored in memory starting at the byte whose address is g
by the effective address. The number of bytes stored is sufficient to fill out the
containing the byte addressed by the effective address.

If the PSW E-bit is 0 and end (modifier ",E" corresponding toa = 1) is specified, the
leftmost bytes of the rightmost word of GRr are stored in memory starting at the leftmo
byte in the word specified by the effective address, and continuing until (but not inclu
the byte specified by the effective address. When the effective address specifi
leftmost byte in a word, nothing is stored, but protection is checked and the cache
marked asdirty.

If the PSW E-bit is 1 and begin (modifier ",B" corresponding toa = 0) is specified, the
leftmost bytes of the rightmost word of GRr are stored in memory starting at the by
whose address is given by the effective address. The number of bytes stored is suffic
fill out the word containing the byte addressed by the effective address.

If the PSW E-bit is 1 and end (modifier ",E" corresponding toa = 1) is specified, the
rightmost bytes of GRr are stored in memory starting at the leftmost byte in the w
specified by the effective address, and continuing until (but not including) the
specified by the effective address. When the effective address specifies the leftmost
a word, nothing is stored, but protection is checked and the cache line is marked asdirty.

If base register modification is specified through completer ",M", GRb is updated and then
truncated to a word address. (Table 7-7 defines the assembly language com
mnemonics.) If base register modification is specified andb = r, the value stored at the
effective address is the bytes from the source register before modification.

Table 7-7. Store Bytes Instruction Completers

The completer,cc, specifies the cache control hint (see Table 6-8 on page 6-10.) If the
byte of the addressed cache line is not written to, the processor must perform the sto

03 b r s a 1 cc C m im5

6 5 5 2 1 1 2 4 1 5

cmplt Description a m

<none> or B Beginning case, don’t modify base register 0 0
B,M Beginning case, Modify base register 0 1
E Ending case, don’t modify base register 1 0
E,M Ending case, Modify base register 1 1
7-133PA-RISC 2.0 Architecture Instruction Descriptions

tion

ring
the cache control hint had not been specified.

Operation: space← space_select(s,GR[b],format);
dx ← low_sign_ext(im5,5);
if (cmplt == B,M) /*a=0, m=1*/

offset ← GR[b];
else

offset ← GR[b] + dx;
pos ← 8*(offset & 0x3);
offset ← offset & ~0x3; /* word aligned */
switch (cmplt) {

case B: /*a=0, m=0*/
if (PSW[E] == 0)

mem_store(space,offset,pos,31,cc,GR[r]{pos+32..63});
else

mem_store(space,offset,pos,31,cc,GR[r]{32..63-pos});
break;

case E: /*a=1, m=0*/
if (PSW[E] == 0)

mem_store(space,offset,0,pos-1,cc,GR[r]{32..pos+31});
else

mem_store(space,offset,0,pos-1,cc,GR[r]{64-pos..63});
break;

case B,M: /*a=0, m=1*/
if (PSW[E] == 0)

mem_store(space,offset,pos,31,cc,GR[r]{pos+32..63});
else

mem_store(space,offset,pos,31,cc,GR[r]{32..63-pos});
GR[b] ← (GR[b] + dx) & ~0x3;
break;

case E,M: /*a=1, m=1*/
if (PSW[E] == 0)

mem_store(space,offset,0,pos-1,cc,GR[r]{32..pos+31});
else

mem_store(space,offset,0,pos-1,cc,GR[r]{64-pos..63});
GR[b] ← (GR[b] + dx) & ~0x3;
break;

}

Exceptions: Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data memory break trap

Notes: All bits of the original virtual offset are saved, unmasked, to IOR (CR21) if this instruc
traps.

For this instruction, the low 2 bits of the virtual offset are masked to 0 when compa
7-134 Instruction Descriptions PA-RISC 2.0 Architecture

le
against the contents of the data breakpoint address offset registers.

Programming Note
TheSTBY instruction with the ’,E’ completer and the effective address specifying the leftmost
byte of the word may be used to implement a memory scrubbing operation. This is possib
because the line is markeddirty but the contents are not modified.
7-135PA-RISC 2.0 Architecture Instruction Descriptions

ed as
g
field.

base
on and
r the
l

e

ss
Store Doubleword STD

Format: STD,cmplt,cc r,d(s,b)

(3)

(6)

Purpose: To store a doubleword from a general register.

Description: GR r is stored in the aligned doubleword at the effective address. The offset is form
the sum of a base register,b, and a displacementd. The displacement can be either lon
(Format 3) or short (Format 6.) The displacement is encoded into the immediate
Optional base modification can also be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the displacement. The completer also specifies base register modificati
ordering constraints (see Table H-1 on page H-4, and Table H-3 on page H-8 fo
assembly language completer mnemonics.) The completer,cc, specifies the cache contro
hint (see Table 6-8 on page 6-10.)

For long and short displacements, a one in them field specifies base modification, and th
a field encodes whether pre-modification (a=1), or post-modification (a=0) is performed.

If base register modification is specified andb = r, the value stored at the effective addre
is the word from the source register before modification.

1C b r s im10a m a 0 i

6 5 5 2 10 1 1 1 1

03 b r s a 1 cc B m im5

6 5 5 2 1 1 2 4 1 5
7-136 Instruction Descriptions PA-RISC 2.0 Architecture

) */

 may
Operation: if (d > 15 || d < -16) { /* long displacement */
dx ← sign_ext(assemble_16a(s,cat(im10a,0),i),16); /* (Format 3
cc ← NO_HINT;

} else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 6) */

space← space_select(s,GR[b],format);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB: offset← GR[b] + dx;
mem_store(space,offset,0,63,cc,GR[r]);
GR[b] ← GR[b] + dx;
break;

case MA: offset← GR[b];
mem_store(space,offset,0,63,cc,GR[r]);
GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
mem_store(space,offset,0,63,cc,GR[r]);
break;

}

Exceptions: Data TLB miss fault/data page fault Data memory break trap
Data memory access rights trap TLB dirty bit trap
Data memory protection ID trap Page reference trap
Unaligned data reference trap

Restrictions: For long displacements (Format 3), only displacements which are multiples of eight
be used.

If the completerO is specified, the displacement must be 0.
7-137PA-RISC 2.0 Architecture Instruction Descriptions

set is
d

base
on and
pleter
on

ss
cked

igned
Store Doubleword Absolute STDA

Format: STDA,cmplt,cc r,d(b)

(6)

Purpose: To store a doubleword from a general register to an absolute address.

Description: GR r is stored in the aligned doubleword at the effective absolute address. The off
formed as the sum of a base register,b, and a displacementd. The displacement is encode
into the immediate field. Optional base modification can also be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the displacement. The completer also specifies base register modificati
ordering constraints (see Table H-1 on page H-4 for the assembly language com
mnemonics.) The completer,cc, specifies the cache control hint (see Table 6-8
page 6-10.)

If base register modification is specified andb = r, the value stored at the effective addre
is the doubleword from the source register before modification. Protection is not che
when this instruction is executed. This operation is only defined if the address is al
on an 8-byte boundary.

Operation: if (priv != 0)
privileged_operation_trap;

else {
dx ← low_sign_ext(im5,5);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB: offset← GR[b] + dx;
phys_mem_store(offset,0,63,cc,GR[r]);
GR[b] ← GR[b] + dx;
break;

case MA: offset← GR[b];
phys_mem_store(offset,0,63,cc,GR[r]);
GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
phys_mem_store(offset,0,63,cc,GR[r]);
break;

}
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level. If the completerO is
specified, the displacement must be 0.

03 b r 0 a 1 cc F m im5

6 5 5 2 1 1 2 4 1 5
7-138 Instruction Descriptions PA-RISC 2.0 Architecture

igned

iven
word

he
) the
ftmost
line is

n by
word

he
) the
ftmost
line is

nguage

 first
re as if
Store Doubleword Bytes STDBY

Format: STDBY,cmplt,cc r,d(s,b)

(6)

Purpose: To implement the beginning, middle, and ending cases for fast byte moves with unal
sources and destinations.

Description: If the PSW E-bit is 0 and begin (modifier ",B" corresponding toa = 0) is specified, the
rightmost bytes of GRr are stored in memory starting at the byte whose address is g
by the effective address. The number of bytes stored is sufficient to fill out the double
containing the byte addressed by the effective address.

If the PSW E-bit is 0 and end (modifier ",E" corresponding toa = 1) is specified, the
leftmost bytes of GRr are stored in memory starting at the leftmost byte in t
doubleword specified by the effective address, and continuing until (but not including
byte specified by the effective address. When the effective address specifies the le
byte in a doubleword, nothing is stored, but protection is checked and the cache
marked asdirty.

If the PSW E-bit is 1 and begin (modifier ",B" corresponding toa = 0) is specified, the
leftmost bytes of GRr are stored in memory starting at the byte whose address is give
the effective address. The number of bytes stored is sufficient to fill out the double
containing the byte addressed by the effective address.

If the PSW E-bit is 1 and end (modifier ",E" corresponding toa = 1) is specified, the
rightmost bytes of GRr are stored in memory starting at the leftmost byte in t
doubleword specified by the effective address, and continuing until (but not including
byte specified by the effective address. When the effective address specifies the le
byte in a doubleword, nothing is stored, but protection is checked and the cache
marked asdirty.

If base register modification is specified through completer ",M", GRb is updated and then
truncated to a doubleword address (see Table 7-7 on page 7-133 for the assembly la
completer mnemonics.) If base register modification is specified andb = r, the value stored
at the effective address is the bytes from the source register before modification.

The completer,cc, specifies the cache control hint (see Table 6-8 on page 6-10.) If the
byte of the addressed cache line is not written to, the processor must perform the sto
the cache control hint had not been specified.

03 b r s a 1 cc D m im5

6 5 5 2 1 1 2 4 1 5
7-139PA-RISC 2.0 Architecture Instruction Descriptions

tion

ring
Operation: space← space_select(s,GR[b],format);
dx ← low_sign_ext(im5,5);
if (cmplt == B,M) /*a=0, m=1*/

offset ← GR[b];
else

offset ← GR[b] + dx;
pos ← 8*(offset & 0x7);
offset ← offset & ~0x7; /* doubleword aligned */
switch (cmplt) {

case B: /*a=0, m=0*/
if (PSW[E] == 0)

mem_store(space,offset,pos,63,cc,GR[r]{pos..63});
else

mem_store(space,offset,pos,63,cc,GR[r]{0..63-pos});
break;

case E: /*a=1, m=0*/
if (PSW[E] == 0)

mem_store(space,offset,0,pos-1,cc,GR[r]{0..pos-1});
else

mem_store(space,offset,0,pos-1,cc,GR[r]{64-pos..63});
break;

case B,M: /*a=0, m=1*/
if (PSW[E] == 0)

mem_store(space,offset,pos,63,cc,GR[r]{pos..63});
else

mem_store(space,offset,pos,63,cc,GR[r]{0..63-pos});
GR[b] ← (GR[b] + dx) & ~0x7;
break;

case E,M: /*a=1, m=1*/
if (PSW[E] == 0)

mem_store(space,offset,0,pos-1,cc,GR[r]{0..pos-1});
else

mem_store(space,offset,0,pos-1,cc,GR[r]{64-pos..63});
GR[b] ← (GR[b] + dx) & ~0x7;
break;

}

Exceptions: Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap
Data memory break trap

Notes: All bits of the original virtual offset are saved, unmasked, to IOR (CR21) if this instruc
traps.

For this instruction, the low 3 bits of the virtual offset are masked to 0 when compa
against the contents of the data breakpoint address offset registers.
7-140 Instruction Descriptions PA-RISC 2.0 Architecture

n.
Programming Note
The STDBY instruction with the ’,E’ completer and the effective address specifying the
leftmost byte of the doubleword may be used to implement a memory scrubbing operatio
This is possible because the line is markeddirty but the contents are not modified.
7-141PA-RISC 2.0 Architecture Instruction Descriptions

ss.

ent is
.

base
on and
r the
l

ss
Store Halfword STH

Format: STH,cmplt,cc r,d(s,b)

(1)

(6)

Purpose: To store a halfword from a general register.

Description: The rightmost halfword in GRr is stored in the aligned halfword at the effective addre
The offset is formed as the sum of a base register,b, and a displacementd. The
displacement can be either long (Format 1) or short (Format 6.) The displacem
encoded into the immediate field. Optional base modification can also be performed

The completer,cmplt, determines whether the offset is the base register, or the
register plus the displacement. The completer also specifies base register modificati
ordering constraints (see Table H-1 on page H-4, and Table H-3 on page H-8 fo
assembly language completer mnemonics.) The completer,cc, specifies the cache contro
hint (see Table 6-8 on page 6-10.)

For short displacements, a one in them field specifies base modification, and thea field
encodes whether pre-modification (a=1), or post-modification (a=0) is performed.

If base register modification is specified andb = r, the value stored at the effective addre
is the halfword from the source register before modification.

19 b r s im14

6 5 5 2 14

03 b r s a 1 cc 9 m im5

6 5 5 2 1 1 2 4 1 5
7-142 Instruction Descriptions PA-RISC 2.0 Architecture

*/

Operation: if (d > 15 || d < -16) { /* long displacement */

dx ← sign_ext(assemble_16(s,im14),16); /* (Format 1)
cc ← NO_HINT;

} else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 6) */

space← space_select(s,GR[b],format);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB: offset← GR[b] + dx;
mem_store(space,offset,0,15,cc,GR[r]{48..63});
GR[b] ← GR[b] + dx;
break;

case MA: offset← GR[b];
mem_store(space,offset,0,15,cc,GR[r]{48..63});
GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
mem_store(space,offset,0,15,cc,GR[r]{48..63});
break;

}

Exceptions: Data TLB miss fault/data page fault Data memory break trap
Data memory access rights trap TLB dirty bit trap
Data memory protection ID trap Page reference trap
Unaligned data reference trap

Restrictions: If the completerO is specified, the displacement must be 0.
7-143PA-RISC 2.0 Architecture Instruction Descriptions

he

ed into

base
on and
r the
l

B) is
d. For

ss
Store Word STW

Format: STW,cmplt,cc r,d(s,b)

(1)

(2)

(6)

Purpose: To store a word from a general register.

Description: The rightmost word in GRr is stored in the aligned word at the effective address. T
offset is formed as the sum of a base register,b, and a displacementd. The displacement
can be either long (Formats 1 and 2) or short (Format 6.) The displacement is encod
the immediate field. Optional base modification can also be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the displacement. The completer also specifies base register modificati
ordering constraints (see Table H-1 on page H-4, and Table H-3 on page H-8 fo
assembly language completer mnemonics.) The completer,cc, specifies the cache contro
hint (see Table 6-8 on page 6-10.)

For long displacements with pre-decrement or post-increment, Format 1 (opcode 1
used. For long displacements with post-decrement or pre-increment, Format 2 is use
long displacements with no base modification, Format 1 (opcode 1A) is used.

For short displacements, a one in them field specifies base modification, and thea field
encodes whether pre-modification (a=1), or post-modification (a=0) is performed.

If base register modification is specified andb = r, the value stored at the effective addre
is the word from the source register before modification.

1A/1B b r s im14

6 5 5 2 14

1F b r s im11a 2 i

6 5 5 2 11 2 1

03 b r s a 1 cc A m im5

6 5 5 2 1 1 2 4 1 5
7-144 Instruction Descriptions PA-RISC 2.0 Architecture

 */

*/

only
Operation: if (d > 15 || d < -16) { /* long displacement */
if ((cmplt==MB && d>=0) || (cmplt==MA && d<0))

dx ← sign_ext(assemble_16a(s,im11a,i),16); /* (Format 2)
else

dx ← sign_ext(assemble_16(s,im14),16); /* (Format 1)
cc ← NO_HINT;

} else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 6) */

space← space_select(s,GR[b],format);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB: offset← GR[b] + dx;
mem_store(space,offset,0,31,cc,GR[r]{32..63});
GR[b] ← GR[b] + dx;
break;

case MA: offset← GR[b];
mem_store(space,offset,0,31,cc,GR[r]{32..63});
GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
mem_store(space,offset,0,31,cc,GR[r]{32..63});
break;

}

Exceptions: Data TLB miss fault/data page fault Data memory break trap
Data memory access rights trap TLB dirty bit trap
Data memory protection ID trap Page reference trap
Unaligned data reference trap

Restrictions: For post-decrement and pre-increment with long displacements (Format 2),
displacements which are multiples of four may be used.

If the completerO is specified, the displacement must be 0.
7-145PA-RISC 2.0 Architecture Instruction Descriptions

ess.

lso be

base
on and
pleter
on

ss
when
n a 4-
Store Word Absolute STWA

Format: STWA,cmplt,cc r,d(b)

(6)

Purpose: To store a word from a general register to an absolute address.

Description: The rightmost word in GRr is stored in the aligned word at the effective absolute addr
The offset is formed as the sum of a base register,b, and a displacementd. The
displacement is encoded into the immediate field. Optional base modification can a
performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the displacement. The completer also specifies base register modificati
ordering constraints (see Table H-1 on page H-4 for the assembly language com
mnemonics.) The completer,cc, specifies the cache control hint (see Table 6-8
page 6-10.)

If base register modification is specified andb = r, the value stored at the effective addre
is the word from the source register before modification. Protection is not checked
this instruction is executed. This operation is only defined if the address is aligned o
byte boundary.

Operation: if (priv != 0)
privileged_operation_trap;

else {
dx ← low_sign_ext(im5,5);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB: offset← GR[b] + dx;
phys_mem_store(offset,0,31,cc,GR[r]{32..63});
GR[b] ← GR[b] + dx;
break;

case MA: offset← GR[b];
phys_mem_store(offset,0,31,cc,GR[r]{32..63});
GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
phys_mem_store(offset,0,31,cc,GR[r]{32..63});
break;

}
}

Exceptions: Privileged operation trap

03 b r 0 a 1 cc E m im5

6 5 5 2 1 1 2 4 1 5
7-146 Instruction Descriptions PA-RISC 2.0 Architecture

Restrictions: This instruction may be executed only at the most privileged level. If the completerO is
specified, the displacement must be 0.
7-147PA-RISC 2.0 Architecture Instruction Descriptions

ation
leter,
he

ith
if

fied

a 32-

f

3 on
4 on
. The
alues
Subtract SUB

Format: SUB,cmplt,borrow,trapc,cond r1,r2,t

(8)

Purpose: To do 64-bit integer subtraction, and conditionally nullify the following instruction.

Description: GR r2 is subtracted from GRr1. If no trap occurs, the result is placed in GRt and the
carry/borrow bits in the PSW are updated. The variable "carry_borrows" in the oper
section captures the 4-bit carries resulting from the subtract operation. The comp
cmplt, encoded in thee1 field, specifies whether a trap is taken on signed overflow. T
completer,borrow, encoded in thee2 field, specifies whether the subtraction is done w
borrow. The completer,trapc, encoded in thee3field, specifies whether a trap is taken
the values subtracted satisfy the condition specified.

The following instruction is nullified if the values subtracted satisfy the speci
condition,cond. The condition is encoded in thec, d, andf fields of the instruction. The
boolean variable "overflow" in the operation section is set if the operation results in
bit signed overflow (d=0) or a 64-bit signed overflow (d=1.) For subtraction with borrow,
the d field encodes whether the word borrow (PSW C/B{8},d=0), or the doubleword
borrow (PSW C/B{0},d=1) is used.

Thee1 field encodes whether the a trap is taken on overflow (e1=1: no trap,e1=3: trap on
overflow.) Thee2 field encodes whether subtraction with borrow in is performed (e2=0: no
borrow,e2=1: subtraction performed with borrow.) Thee3 field encodes whether to trap i
the values subtracted satisfy the specified condition (e3=0: no trap,e3=3: trap on
condition.) The following table shows the allowed combinations:

Conditions: The condition is any of the 32-bit compare or subtract conditions shown in Table D-
page D-4 or any of the 64-bit compare or subtract conditions shown in Table D-
page D-4. When a condition completer is not specified, the "never" condition is used
boolean variable "cond_satisfied" in the operation section is set when the v
subtracted satisfy the specified condition.

02 r2 r1 c f e1 0 e2 e3 d t

6 5 5 3 1 2 1 1 2 1 5

Completer Description e1 e2 e3

<none> Subtract 1 0 0
TC Subtract and trap on condition 1 0 3
B or DB Subtract with borrow/doubleword borrow 1 1 0
TSV Subtract and trap on signed overflow 3 0 0
TSV,TC Subtract and trap on signed overflow or

condition
3 0 3

B,TSV or DB,TSV Subtract with borrow/doubleword bor-
row and trap on signed overflow

3 1 0
7-148 Instruction Descriptions PA-RISC 2.0 Architecture

 ,DB
Operation: switch (borrow) {
case B: res← GR[r1] +∼GR[r2] + PSW[C/B]{8};

break;
case DB: res← GR[r1] +∼GR[r2] + PSW[C/B]{0};

break;
default: res← GR[r1] +∼GR[r2] + 1;

break;
}
if (cmplt == TSV && overflow)

overflow_trap;
else if (trapc == TC && cond_satisfied)

conditional_trap;
else {

GR[t] ← res;
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

}

Exceptions: Overflow trap
Conditional trap

Notes: When the ,B completer is specified, only 32-bit conditions are available. When the
completer is specified, only 64-bit conditions are available.
7-149PA-RISC 2.0 Architecture Instruction Descriptions

ing

ue is
on

bit

fied

a 32-

3 on
. The
alues
Subtract from Immediate SUBI

Format: SUBI,cmplt,cond i,r,t

(9)

Purpose: To subtract a register from an immediate value and conditionally nullify the follow
instruction.

Description: GR r is subtracted from the sign-extended immediate valuei. If no trap occurs, the result is
placed in GRt and the carry/borrow bits in the PSW are updated. The immediate val
encoded into theim11 field. The variable "carry_borrows" in the operation secti
captures the 4-bit carries resulting from the subtract operation.

The completer,cmplt, encoded in thee1field, specifies whether a trap is taken on a 32-
signed overflow (e1=0: no trap, nocmplt, e1=1: trap on 32-bit signed overflow,
cmplt==TSV.)

The following instruction is nullified if the values subtracted satisfy the speci
condition, cond. The condition is encoded in thec and f fields of the instruction. The
boolean variable "overflow" in the operation section is set if the operation results in
bit signed overflow.

Conditions: The condition is any of the 32-bit compare or subtract conditions shown in Table D-
page D-4. When a condition completer is not specified, the "never" condition is used
boolean variable "cond_satisfied" in the operation section is set when the v
subtracted satisfy the specified condition.

Operation: res ← low_sign_ext(im11,11) +∼GR[r] + 1;
if (cmplt == TSV && overflow)

overflow_trap;
else {

GR[t] ← res;
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

}

Exceptions: Overflow trap

Programming Note
SUBTRACT FROM IMMEDIATE can be used to perform a logical NOT operation when coded
as follows:

25 r t c f e1 im11

6 5 5 3 1 1 11

SUBI -1,r,t /* GR[t] ← ∼GR[r]
 all PSW[C/B] are set to ones */
7-150 Instruction Descriptions PA-RISC 2.0 Architecture

t of

ction

 be

ust
Synchronize Caches SYNC

Format: SYNC

(33)

Purpose: To enforce program order of instruction execution.

Description: Any load, store, semaphore, cache flush, or cache purge instructions that follow theSYNC
instruction get executed only after all such instructions prior to theSYNC instruction have
completed executing. On implementations which execute such instructions ou
sequence, this instruction enforces program ordering.

Operation: Enforce program order of memory references

Exceptions: None

Notes: In systems in which all memory references are performed in order, this instru
executes as a null instruction.

Programming Note
The minimum spacing that is guaranteed to work for "self-modifying code" is shown in the
code segment below. Since instruction prefetching is permitted, any data cache flushes must
separated from any instruction cache flushes by aSYNC. This will ensure that the "new"
instruction will be written to memory prior to any attempts at prefetching it as an instruction.

This sequence assumes a uniprocessor system. In a multiprocessor system, software m
ensure no processor is executing code which is in the process of being modified.

00 rv 0 rv 0 20 0

6 5 1 4 3 8 5

LDIL l%newinstr,rnew
LDW r%newinstr(0,rnew),temp
LDIL l%instr,rinstr
STW temp,r%instr(0,rinstr)
FDC r%instr(0,rinstr)
SYNC
FIC r%instr(rinstr)
SYNC

(at least seven instructions)
instr . . .
7-151PA-RISC 2.0 Architecture Instruction Descriptions

che
h are
e next

utes
Synchronize DMA SYNCDMA

Format: SYNCDMA

(33)

Purpose: To enforce DMA completion order.

Description: On implementations which can signal DMA completion prior to achieving ca
coherence, this instruction enforces ordering. All cache coherence actions whic
outstanding as a consequence of prior DMA operations must be completed before th
memory access is performed.

Operation: Enforce DMA completion order

Exceptions: None

Notes: In systems in which all DMA operations are performed in order, this instruction exec
as a null instruction.

00 rv 1 rv 0 20 0

6 5 1 4 3 8 5
7-152 Instruction Descriptions PA-RISC 2.0 Architecture

n or

n
ed

-8
ition
iable
ecified
Unit Add Complement UADDCM

Format: UADDCM,trapc,cond r1,r2,t

(8)

Purpose: To individually compare corresponding sub-units of a doubleword for a greater-tha
less-than-or-equal a relation.

Description: GR r1 is added to the one’s complement of GRr2. If no trap occurs, the result is placed i
GR t. The following instruction is nullified if the values added satisfy the specifi
condition,cond. The completer,trapc, encoded in thee1field, specifies whether a trap is
taken if the condition,cond, is satisfied by the values added (e1=2: no trap, nocmplt,
e1=3: trap on condition,cmplt==TC.) The condition is encoded in thec, d, andf fields of
the instruction.

Conditions: The conditioncond is any of the 32-bit unit conditions shown in Table D-11 on page D
or any of the 64-bit conditions shown in Table D-12 on page D-8. When a cond
completer is not specified, the "never" condition is used. The boolean var
"cond_satisfied" in the operation section is set when the values added satisfy the sp
condition.

Operation: res← GR[r1] +∼GR[r2];
if (trapc == TC && cond_satisfied)

conditional_trap;
else {

GR[t] ← res;
if (cond_satisfied) PSW[N]← 1;

}

Exceptions: Conditional trap

Programming Note
UNIT ADD COMPLEMENT can be used to perform a logical NOT operation when coded as
follows:

UNIT ADD COMPLEMENT with the TC (Trap on Condition) completer can be used to check
decimal validity and to pre-bias decimal numbers.ra contains the number to be checked andrt

02 r2 r1 c f 2 0 1 e1 d t

6 5 5 3 1 2 1 1 2 1 5

UADDCM 0,r,t /* GR[t] ← ∼GR[r] */
7-153PA-RISC 2.0 Architecture Instruction Descriptions

will contain the number plus the bias as result of theUADDCM operation.

NINES .equ X’99999999
LDIL l%NINES,nines
LDO r%NINES(nines),nines
UADDCM,TC,SDC ra,nines,rt
7-154 Instruction Descriptions PA-RISC 2.0 Architecture

n

in
nit
Z,
e

tion is
Unit XOR UXOR

Format: UXOR,cond r1,r2,t

(8)

Purpose: To individually compare corresponding sub-units of two doublewords for equality.

Description: GR r1 and GRr2 are XORed and the result is placed in GRt. This instruction generates
unit conditions unlikeXOR which generates logical conditions. The following instructio
is nullified if the values XORed satisfy the specified condition,cond. The condition is
encoded in thec, d, andf fields of the instruction.

Conditions: The condition,cond, is any of the 32-bit unit conditions not involving carries shown
Table D-11 on page D-8 ("never", SBZ, SHZ, TR, NBZ, NHZ) or any of the 64-bit u
conditions not involving carries shown in Table D-12 on page D-8 (*, *SBZ, *SH
*SWZ, *TR, *NBZ, *NHZ, *NWZ.) When a condition completer is not specified, th
"never" condition is used. The boolean variable "cond_satisfied" in the operation sec
set when the values XORed satisfy the specified condition.

Operation: GR[t] ← xor(GR[r1], GR[r2]);
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 0 1 1 2 d t

6 5 5 3 1 2 1 1 2 1 5
7-155PA-RISC 2.0 Architecture Instruction Descriptions

7 or
lean
fy the
Exclusive OR XOR

Format: XOR,cond r1,r2,t

(8)

Purpose: To do a 64-bit, bitwise exclusive OR.

Description: GR r1 and GRr2 are XORed and the result is placed in GRt. The following instruction is
nullified if the values XORed satisfy the specified condition,cond. The condition is
encoded in thec, d, andf fields of the instruction.

Conditions: The condition is any of the 32-bit logical conditions shown in Table D-9 on page D-
any of the 64-bit logical conditions shown in Table D-10 on page D-7. The boo
variable "cond_satisfied" in the operation section is set when the values XORed satis
specified condition.

Operation: GR[t] ← xor(GR[r1], GR[r2]);
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 0 1 0 2 d t

6 5 5 3 1 2 1 1 2 1 5
7-156 Instruction Descriptions PA-RISC 2.0 Architecture

r

rove the
egister
ecutes
n the
tions,

scribed
s to

cessor
 any one
s of this
nding
cessor

-point
tes the

ndard is
erence to
 of this
 and the

-point
nd the
 copy

bers,
t. Each
alized
gn bit,
8 Floating-point Coprocesso

The PA-RISC floating-point coprocessor is an assist processor that is added to a system to imp
system’s performance on floating-point operations. The floating-point coprocessor contains a r
file which is independent of the processor’s register file. The floating-point coprocessor ex
floating-point instructions to perform arithmetic on this register file and to move data betwee
register file and memory. The architecture permits pipelined execution of floating-point instruc
further increasing the system’s performance.

Floating-point instructions are implementations of the more general coprocessor instructions de
previously in Chapter 6, “Instruction Set Overview”. The floating-point coprocessor respond
coprocessor instructions with a coprocessor id equal to 0 and 1.

While the floating-point coprocessor is not required to execute instructions sequentially, the copro
and processor must ensure that the instructions appear sequentially executed to the software. At
time, the processor and coprocessor may be operating on a number of instructions. For purpose
chapter, the current instruction is the instruction pointed to by the IA queues. The term pe
instructions refers to instructions which have entered and left the IA queues, but which the copro
is still executing.

The IEEE Standard

When used in this chapter, the term IEEE standard or simply the standard, refers to theIEEE Standard
for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985. PA-RISC fully conforms to the
requirements of the IEEE floating-point standard and permits implementation of all IEEE floating
recommendations. Where hardware is unable to fully implement the standard, software comple
implementation.

Though this chapter uses quotes from the IEEE standard as architecture, knowledge of the sta
not necessary to understand the architecture. Whenever a quote of the standard contains a ref
another part of the standard, the quote also contains an equivalent reference to a section
document. In these quotes, a reference to the IEEE standard is enclosed in parentheses,
equivalent reference to this document is enclosed in square brackets.

The Instruction Set

The floating-point instruction set consists of load and store instructions, and operations. Floating
load and store instructions copy both single-word and double-word data between memory a
floating-point registers. Floating-point operations do arithmetic on the floating-point registers and
data between floating-point registers.

The floating-point coprocessor operates on single-word and double-word IEEE floating-point num
as well as quad-word numbers, which are an implementation of the IEEE double-extended forma
type of floating-point number may represent one of the following: a normalized number, a denorm
number, a zero, an infinity, or a NaN (Not a Number). These floating-point formats consist of a si
8-1PA-RISC 2.0 Architecture Floating-point Coprocessor

umbers
d two’s
 a 64-

be used
 level

tire 64-
 or the

f the
 use

onal.
 either
. The

cation
an exponent, and a fraction.

The instruction set also has operations that convert among the three formats of floating-point n
and between floating-point numbers and single-word, double-word, and quad-word unsigned an
complement integers, as well as an instruction which multiplies two 32-bit unsigned integers with
bit unsigned integer result.

Coprocessor Registers

The coprocessor contains thirty-two 64-bit floating-point registers. These same 32 locations can
as sixty-four 32-bit locations or as sixteen 128-bit locations. Instructions executing at any privilege
may read or write the floating-point registers. Double-word load/store operations access the en
bit register; single-word load/stores access either the left portion of a 64-bit register, bits 0 to 31,
right portion of a 64-bit register, bits 32 to 63.

By convention, a 32-bit floating-point register is identified by appending a suffix to the identifier o
64-bit register within which it is contained. The suffix for the left hand side 32-bit register is ‘L’; the
of this suffix is optional. The suffix for the right hand side 32-bit register is ‘R’; its use is not opti
Thus, for example, the left half of double-word register 13 (bits 0 to 31) would be referred to as
13 or 13L; the right half of double-word register 13 (bits 32 to 63) would be referred to as 13R
specification ‘L’ or ‘R’ for each register is encoded in the instructions that access these registers.

Table 8-1 illustrates the specification of single-word registers and Table 8-2 illustrates the specifi
of double-word registers.
8-2 Floating-point Coprocessor PA-RISC 2.0 Architecture

Table 8-1. Single-Word Floating-Point Registers

Register Purpose

0 Status Register Undefined

1 Undefined Undefined

2 Undefined Undefined

3 Undefined Undefined

4 Floating-point register 4L Floating-point register 4R

5 Floating-point register 5L Floating-point register 5R

6 Floating-point register 6L Floating-point register 6R

7 Floating-point register 7L Floating-point register 7R

8 Floating-point register 8L Floating-point register 8R

9 Floating-point register 9L Floating-point register 9R

10 Floating-point register 10L Floating-point register 10R

11 Floating-point register 11L Floating-point register 11R

12 Floating-point register 12L Floating-point register 12R

13 Floating-point register 13L Floating-point register 13R

14 Floating-point register 14L Floating-point register 14R

15 Floating-point register 15L Floating-point register 15R

16 Floating-point register 16L Floating-point register 16R

17 Floating-point register 17L Floating-point register 17R

18 Floating-point register 18L Floating-point register 18R

19 Floating-point register 19L Floating-point register 19R

20 Floating-point register 20L Floating-point register 20R

21 Floating-point register 21L Floating-point register 21R

22 Floating-point register 22L Floating-point register 22R

23 Floating-point register 23L Floating-point register 23R

24 Floating-point register 24L Floating-point register 24R

25 Floating-point register 25L Floating-point register 25R

26 Floating-point register 26L Floating-point register 26R

27 Floating-point register 27L Floating-point register 27R

28 Floating-point register 28L Floating-point register 28R

29 Floating-point register 29L Floating-point register 29R

30 Floating-point register 30L Floating-point register 30R

31 Floating-point register 31L Floating-point register 31R
8-3PA-RISC 2.0 Architecture Floating-point Coprocessor

 Status
 - 31R

ontain
 63 of
Single-word register 0 contains the Status Register. Double-word registers 0 - 3 contain the
Register and the Exception Registers. Double-word registers 4 - 31 and single-word registers 4R
and 4L - 31L are data registers.

Registers 0 - 3 are partitioned into eight 32-bit registers. Bits 0 to 31 of double-word register 0 c
the Status Register, which holds information on rounding, compares, and exceptions. Bits 32 to

Table 8-2. Double-Word Floating-Point Registers

Register Purpose

0 Status Register Exception Register 1

1 Exception Register 2 Exception Register 3

2 Exception Register 4 Exception Register 5

3 Exception Register 6 Exception Register 7

4 Floating-point register 4

5 Floating-point register 5

6 Floating-point register 6

7 Floating-point register 7

8 Floating-point register 8

9 Floating-point register 9

10 Floating-point register 10

11 Floating-point register 11

12 Floating-point register 12

13 Floating-point register 13

14 Floating-point register 14

15 Floating-point register 15

16 Floating-point register 16

17 Floating-point register 17

18 Floating-point register 18

19 Floating-point register 19

20 Floating-point register 20

21 Floating-point register 21

22 Floating-point register 22

23 Floating-point register 23

24 Floating-point register 24

25 Floating-point register 25

26 Floating-point register 26

27 Floating-point register 27

28 Floating-point register 28

29 Floating-point register 29

30 Floating-point register 30

31 Floating-point register 31
8-4 Floating-point Coprocessor PA-RISC 2.0 Architecture

 non-
n used

 form a
ption.

rd loads
a source

 entire
g and
d other

rands.
.

 these
 do not

 63,

 which
peration
. Quad
double-word register 0 contain Exception Register 1. Specifying Floating-point Register 0 in a
load/store operation encodes a floating-point +0 or a fixed-point 0, whichever is appropriate, whe
as a source and is an undefined operation when used as a destination.

Double-word registers 1 to 3 contain the remaining exception registers. The exception registers
queue of instructions which could not normally complete and thus complete with a trapping exce
The exception registers are accessed using double-word load and store instructions. Single-wo
and stores of exception registers are undefined operations. Specifying an exception register as
or destination of a non-load/store operation is undefined.

The entire state of the floating-point coprocessor is contained in the register file. Saving the
register file is sufficient for a context switch. A special instruction sequence allows the savin
restoring of this state without an interruption. This sequence ensures that context switches an
operations which affect the state of the coprocessor do not affect a process.

Data Registers

Floating-point registers 4 - 31 contain the 64-bit data registers which instructions use as ope
Software may access these registers with single-word or double-word load and store instructions

Each of the floating-point data registers may contain values in a number of formats. The fields in
formats are packed into words, double-words, or quad-words so that load and store operations
require field-shuffling or tag bits.

Single-word formats occupy either the left half (bits 0 to 31, suffix ’L’), or the right half (bits 32 to
suffix ’R’) of a register as shown in Figure 8-1.

Double-word formats fill one register as shown in Figure 8-2.

Quad-word formats (128 bits) are packed into adjacent even-odd pairs of registers. An instruction
references a register containing a quad-word value must name an even numbered register. An o
which specifies an odd numbered register for a quad-word format is an undefined operation
formats are assembled in register pairs as shown in Figure 8-3.

0 31 32 63

single-word number (suffix L) single-word number (suffix R)

32 32

Figure 8-1. Single-word Data Format

double-word format

64

Figure 8-2. Double-word Data Format
8-5PA-RISC 2.0 Architecture Floating-point Coprocessor

 fixed-

ds:

er of

umber,
ust one
ine the
Data Formats

Two data types are defined for floating-point coprocessor operations: floating-point formats and
point formats.

Floating-point Formats

Numbers in the single, double, and quad binary floating-point formats are composed of three fiel

1. A 1-bit sign,s.

2. A biased exponent, .

3. A fraction, .

Note that adding thebias to the unbiased exponentE produces the biased exponente. The numbere is
always non-negative. Also,p is the precision of the number, and is equal to one plus the numb
fraction bits. Figure 8-4 shows the positions of these fields in the registers.

Single Binary Floating-point

Double Binary Floating-point

Quad Binary Floating-point

For each floating-point format, a number may either be a normalized number, a denormalized n
an infinity, a zero, or a NaN (Not a Number). Each representable nonzero numerical value has j
encoding. Use the format parameters listed in Table 8-3 and the equations which follow to determ
representation and value,v, of a floating-point number.

even # register most significant bits

odd # register least significant bits

64

Figure 8-3. Quad-word Data Format

s e fraction

1 8 23

s e fraction

1 11 52

s e high fraction

1 15 48

low fraction

64

Figure 8-4. Floating-point Formats

e E bias+=

f .b1b2…bp 1–=
8-6 Floating-point Coprocessor PA-RISC 2.0 Architecture

aN is
Zero: If and , then .

Denormalized: If and , then .

Normalized: If , then .

Infinity: If and , then .

NaN: If and , thenv is a NaN, regardless ofs.

If the number is a NaN, then the leftmost bit in the fraction, , determines whether the N
signaling or quiet. If is 1, the NaN is a signaling NaN. If is 0, it is a quiet NaN.

NaNs are not ordered; neither the fraction nor the sign bits have any significance.

Fixed-Point Formats

Fixed-point values are held in the formats shown in Figure 8-5.

Table 8-3. Floating-Point Format Parameters

Parameter
Format

Single Double Quad

p (precision) 24 53 113

+127 +1023 +16383

−126 −1022 −16382

exponentbias +127 +1023 +16383

under/overflowbias-adjustment 192 1536 24576

exponent width in bits 8 11 15

format width in bits 32 64 128

E Emin 1–= f 0= v 1–()s
0=

E Emin 1–= f 0≠ v 1–()s
2

Emin 0. f()=

Emin E Emax≤ ≤ v 1–()s
2

E
1. f()=

E Emax 1+= f 0= v 1–()s∞=

E Emax 1+= f 0≠

b1
b1 b1

Emax
Emin
8-7PA-RISC 2.0 Architecture Floating-point Coprocessor

dicates
identify
g-point
-word

r 0 in a
, when

eue

. The

 store
of the
Single Binary Fixed-point

Double Binary Fixed-point

Quad Binary Fixed-point

Floating-Point Status Register

The Status Register controls the arithmetic rounding mode, enables user-level traps, in
exceptions that have occurred, indicates the results of comparisons, and contains information to
the implementation of the coprocessor. The Status Register is located in bits 0 to 31 of Floatin
Register 0, and is accessed by specifying Floating-point Register 0 with single-word or double
load and store instructions.

Non-load/store instructions do not access the Status Register. Specifying Floating-point Registe
non-load/store operation, encodes a floating-point +0 or a fixed-point 0, whichever is appropriate
used as a source and is an undefined operation when used as a destination.

Figure 8-6 shows the three formats of the Status Register. The first format is valid when theFLOATING-
POINT COMPARE andFLOATING-POINT TEST instructions are being used to generate and test a qu
of comparison results. The second format is valid whenthe FLOATING-POINT COMPARE and
FLOATING-POINT TEST instructions are being used to generate and test individual comparison bits
third format is only valid immediately after the execution of aFLOATING-POINT IDENTIFY instruction.
This format remains valid until a floating-point instruction is executed which is not a double-word
of Floating-point Register 0. The first or second format is valid thereafter. See the description
FLOATING-POINT IDENTIFY instruction on page 9-9 for more information.

two’s complement integer

32

unsigned integer

32

two’s complement integer

64

unsigned integer

64

high two’s complement integer

low two’s complement integer

64

Figure 8-5. Fixed-point Formats
8-8 Floating-point Coprocessor PA-RISC 2.0 Architecture

each

hen an
ith a

ble bit
ts the
ented
ion”
ble 8-5

or sets
rap. An
eption
Field Description

RM The rounding mode for all floating-point operations. The values corresponding to
rounding mode are listed in Table 8-4.

Enables The exception trap enables. An enable bit is associated with each IEEE exception. W
enable bit equals 1, the corresponding trap is enabled. An instruction completes w
delayed trap when the instruction causes an exception whose corresponding ena
equals 1. If an enable bit equals 0, the corresponding IEEE exception usually se
corresponding exception flag to 1 instead of causing a trap. However, see “Unimplem
Exception” on page 10-8, “Overflow Exception” on page 10-11, and “Underflow Except
on page 10-12 for cases when a trap is taken even when the trap is not enabled. Ta
lists the bits that correspond to each IEEE exception.

Flags The exception flags. A flag bit is associated with each IEEE exception. The coprocess
an exception flag to 1 when the corresponding exception occurs but does not cause a t
implementation may also choose to set a flag bit to 1 when the corresponding exc

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

V Z O U I C un CQ RM un T D V Z O U I

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

V Z O U I un CA un RM un T D V Z O U I

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

un model revision un

Figure 8-6. Floating-Point Status Register

Table 8-4. Floating-Point Rounding Modes

Rounding mode Description

0 Round to nearest

1 Round toward zero

2 Round toward +∞
3 Round toward−∞

Flags Enables

Flags Enables
8-9PA-RISC 2.0 Architecture Floating-point Coprocessor

pare
nd 0 if
re

queued

t bit)
is

of

d 0 if
re

e
to

rd

e

s

efore

ts an

s and
occurs and causes a trap. An exception flag is never set to 0 as a side effect of floating-point
operations, but it may be set to either 1 or 0 by a load instruction. Table8-5 lists the bits that
correspond to each IEEE exception.

C The Compare bit. The C-bit contains the result of the most recent queued com
instruction. This bit is set to 1 if the result of the most recent queued compare is true, a
false. The C-bit is undefined following a targeted compare. No other non-load/sto
instruction affects this bit, but it may be set to 1 or 0 by load instructions.

CQ The Compare Queue. The CQ field contains the results of the second-most recent
compare (in CQ{0}) through the twelfth-most recent queued compare (in CQ{10}). Every
queued compare instruction shifts the CQ field right by one bit (discarding the rightmos
and the C-bit from the previous queued compare is copied into CQ{0}. The CQ field
undefined following a targeted compare. No other non-load/store instruction affects this
field, but it may be set to any value by load instructions.

CA The Compare Array. The CA field is an array of seven independent compare bits, each
which contains the result of the most recent compare instruction targeting that bit. Any
compare targeting a particular bit sets that bit to 1 if the result of the compare is true, an
false. The CA field is undefined following a queued compare. No other non-load/sto
instruction affects this field, but it may be set to any value by load instructions.

T The Delayed Trap bit. The coprocessor sets this bit to 1 when an IEEE exception occurs that
is signalled with a trap or when an unimplemented exception occurs. When this bit is 1, th
coprocessor is armed to trap, and the next floating-point instruction forces the processor
take an assist exception trap. No non-load/store instructions affect this bit, but load
instructions may set this bit to 1 or 0, and double-word stores of the Status Register set this
bit to 0 after completion of the store. Also, save and restore software uses this bit to reco
the state of traps. See “Saving and Restoring State” on page 10-13 for information on state
swapping and “Interruptions and Exceptions” on page 10-4 for a detailed discussion of th
T-bit’s operation.

D The Denormalized As Zero bit. The D-bit provides the arithmetic floating-point instruction
a “fast mode” handling of denormalized operands and tiny results. When the D-bit is 1, any
of these instructions may optionally produce a correctly signed zero when the result, b
or after rounding, lies between , and may optionally treat any denormalized operand
as an equivalently signed zero. When the D-bit is 1, and an arithmetic instruction trea
operand as a zero, or produces a zero result as described above, the values of the Underflow
and Inexact flags become undefined. When the D-bit is 0, all denormalized operand

Table 8-5. IEEE Exceptions

Bit Name Description

V Invalid operation

Z Division-by-zero

O Overflow

U Underflow

I Inexact result

2
Emin±
8-10 Floating-point Coprocessor PA-RISC 2.0 Architecture

for the

ations.
cifies a
o the
 32-bit
oint

ssist

ad and
oating-

. These
tiny results must be handled as described in the remainder of this chapter.

Implementation of the D-bit is optional; if not implemented, it is a nonexistent bit.

model The implementation-dependent model number. Model number zero (0) is reserved
software emulation routines.

revision The implementation-dependent revision number.

un Undefined bits.

Floating-Point Instruction Set

The floating-point instruction set consists of load and store instructions, and floating-point oper
All these instructions are part of the PA-RISC standard instruction set. When the instruction spe
register for double precision and 64-bit fixed-point values, a 5-bit encoding maps directly int
associated floating-point register. When the instruction specifies a register for single-precision or
fixed-point values, a 6-bit encoding maps into the appropriate ‘L’ or ‘R’ single-word floating-p
register.

Instruction Validity

Table 8-6 shows which floating-point instructions are defined, undefined, or will take an A
Emulation Trap for various values of the uid field and the Coprocessor Configuration Register.

Load and Store Instructions

The floating-point load and store instructions are implementations of the PA-RISC coprocessor lo
store instructions described in “Coprocessor Instructions” on page 6-22. Table 8-7 shows the fl
point load and store instructions.

The load and store instructions transfer data between the floating-point registers and memory

Table 8-6. Floating-Point Instruction Validity

Opcode
CCR{0..1}

0 1, 2 3

0B/0C trap undefined uid=0: defined
uid=1: undefined

06/09/0E/26 trap undefined defined

Table 8-7. Floating-Point Load and Store Instructions

Mnemonic Description

FLDW Load word
FLDD Load doubleword
FSTW Store word
FSTD Store doubleword
8-11PA-RISC 2.0 Architecture Floating-point Coprocessor

 a base
n index
 control

 of a
of the
es an

oating-
.

 load or

sor to
hose
to all

set the

ithmetic

tegory
uctions

-point
opcode

-point
s of the

hmetic
instructions transfer aligned words or aligned double-words, and form an effective address using
register plus either a short displacement value, a long displacement value, or the value of a
register. They also have completers that specify base register modification, ordering, and cache
hints.

Single-word loads and stores access either bits 0 to 31 (suffix ‘L’) or bits 32 to 63 (suffix ‘R’)
register. The ability to specify more than 32 locations is accomplished by the use of bit 25
instruction. A 0 in this bit specifies an access of bits 0 to 31 (left half of the register); a 1 specifi
access of bits 32 to 63 (the right half of the register). However, single-word loads and stores of fl
point registers 0R (the right half of floating-point register 0), 1, 2, and 3 are undefined operations

Double-word loads and stores can access any of the floating-point registers and may be used to
store a pair of single-word values in the left and right halves of a register.

A single-word or double-word load or store of Floating-point Register 0 forces the coproces
complete all pending floating-point instructions and signal all floating-point exceptions for t
instructions. Additionally, a double-word store of Floating-point Register 0 cancels traps due
previous instructions and, after completion of the store, sets the Status Register T-bit to 0.

Single-word stores of register 0 do not cancel traps. Also, single-word loads of register 0 that
Status Register T-bit to 1 are undefined operations.

Load and store instructions may cause a number of memory reference traps. They are not ar
instructions and do not cause IEEE exceptions.

Load and store instructions that access the I/O address space are defined operations.

Floating-point Operations

There are three categories of floating-point operation instructions. Each instruction in the first ca
performs a single operation. Instructions in the second category perform fused operations. Instr
in the third category perform multiple operations.

Single-operation Instructions

This section describes the single-operation floating-point instructions. Single-operation floating
instructions are encoded using two major opcodes - 0C and 0E. Most of the functions in the 0C
are also duplicated in the 0E opcode with the following exceptions:

• Instructions using the 0E opcode can address both the left and right halves of the floating
register set whereas the instructions using the 0C opcode can only address the left halve
floating-point register set.

• TheFLOATING-POINT IDENTIFY andFLOATING-POINT TEST instructions are available only in the
0C opcode.

• The format completer for the quad-word data type is available only in the 0C opcode.

• TheFIXED-POINT MULTIPLY UNSIGNED instruction is available only in the 0E opcode.

There are four classes of operations:

• Class 0 contains single source, single destination operations and includes the non-arit
8-12 Floating-point Coprocessor PA-RISC 2.0 Architecture

al 0.

at
operations.

• Class 1 consists of the conversion operations.

• Class 2 operations provide mechanisms to compare two operands.

• Class 3 consists of the arithmetic operations with two sources and one destination.

Figure 8-7 shows the format of these operations.

Floating-point operation class zero: 1 source, 1 destination*

Floating-point operation class one: 1 source, 1 destination

Floating-point operation class two: 2 sources, no destination*

Floating-point operation class three: 2 sources, 1 destination†

* The FLOATING-POINT IDENTIFY andFLOATING-POINT TEST instructions have no source
or destination operands, and no format specifiers, so the register and format fields equ

† TheFIXED-POINT MULTIPLY UNSIGNED instruction has no format specifier, so the form
field equals 0.

0C r 0 sub fmt 0 0 0 t

6 5 5 3 2 2 3 1 5

0E r 0 sub 0 f 0 0 r t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

0C r 0 sub df sf 1 0 0 t

6 5 3 3 2 2 2 3 1 5

0E r 0 sub 0 df 0 sf 1 0 r t 0 t

6 5 3 3 1 1 1 1 2 1 1 1 1 5

0C r1 r2 sub fmt 2 0 n c

6 5 5 3 2 2 3 1 5

0E r1 r2 sub r2 f 2 0 r1 0 0 c

6 5 5 3 1 1 2 1 1 1 1 5

0C r1 r2 sub fmt 3 0 0 t

6 5 5 3 2 2 3 1 5

0E r1 r2 sub r2 f 3 x r1 t 0 t

6 5 5 3 1 1 2 1 1 1 1 5
8-13PA-RISC 2.0 Architecture Floating-point Coprocessor

single-
en

ssor is
Figure 8-7. Single-operation Instruction Formats

Whenever single-precision operands are specified for the 0E opcode, thet at bit position 25 of class
zero, one, and three instructions represents a sixth bit of thet field, and ther or r1 at bit position 24
represents a sixth bit of ther or r1 field. Similarly, ther2 at bit position 19 represents a sixth bit of ther2
field. These bits specify the left side single-word register, bits 0 to 31, when 0, and the right side
word register, bits 32 to 63, when 1. Thex at bit position 23 of a class three instruction indicates, wh
1, that the sub-opcode is to be interpreted as a fixed-point operation.

Table 8-8 shows the floating-point operations, their mnemonics, classes, and sub-opcodes.

While the coprocessor may simultaneously operate on more than one instruction, the coproce

Table 8-8. Floating-Point Operations

Opcode Sub-op Class Mnemonic Operation

0C 0

0

FID Identify coprocessor
0E 0 undefined

0C/0E 1 undefined
0C/0E 2 FCPY Copy
0C/0E 3 FABS Absolute value
0C/0E 4 FSQRT Square root
0C/0E 5 FRND Round to integer
0C/0E 6 FNEG Negate
0C/0E 7 FNEGABS Negate absolute value
0C/0E 0

1 FCNV

Convert from floating-point to floating-point
0C/0E 1 Convert from fixed-point to floating-point
0C/0E 2 Convert from floating-point to fixed-point
0C/0E 3 Convert from floating-point to fixed-point with explicit

round to zero rounding
0C/0E 4 undefined
0C/0E 5 Convert from unsigned fixed-point to floating-point
0C/0E 6 Convert from floating-point to unsigned fixed-point
0C/0E 7 Convert from floating-point to unsigned fixed-point

with explicit round to zero rounding
0C/0E y

2
FCMP Arithmetic compare (n = 0)

0C y FTEST Test condition bit (n = 1)
0C/0E 0

3

FADD Add
0C/0E 1 FSUB Subtract
0C/0E 2 FMPY Multiply (x = 0)
0C/0E 3 FDIV Divide

0C 4 reserved
0E 4 undefined

0C/0E 5-6 reserved
0C/0E 7 undefined
8-14 Floating-point Coprocessor PA-RISC 2.0 Architecture

-point

ctions

ver

ept for

 using.

and 0E

e of a

source
ingle-
, in the
nnot be
 their
restricted by the number of exception registers to executing no more than seven floating
operations at one time.

All the operations which have at least one floating-point operand are considered arithmetic instru
and will generate an invalid exception when operating on a signaling NaN, except for theFLOATING-
POINT NEGATE, FLOATING-POINT NEGATE ABSOLUTE VALUE, FLOATING-POINT COPY, and
FLOATING-POINT ABSOLUTE VALUE instructions, which are considered non-arithmetic and ne
generate any IEEE exceptions.

TheFLOATING-POINT IDENTIFY andFLOATING-POINT TEST instructions do not cause exceptions.

Table 8-9 shows the only fixed-point operation, its mnemonic, class and sub-opcode.

Operand Format Completers

For class 0, 2 and 3 operations, except forFIXED-POINT MULTIPLY UNSIGNED, the source and
destination widths are the same and the instructions operate only on floating-point numbers. Exc
the FLOATING-POINT IDENTIFY, FLOATING-POINT TEST, andFIXED-POINT MULTIPLY UNSIGNED
operations, each has an accompanying completer which specifies the data width the operation is

Table 8-10 shows the instruction completers and their corresponding format codes for the 0C
opcodes.

The Code field above indicates the encoding corresponding to each completer. The absenc
completer specifies a single-word number. An operation with aCode value of 2 is an undefined
operation. In the 0E opcode, onlyCode values 0 and 1 can be specified.

The operations in class 1 (the conversion instructions) have two completers which specify the
and destination formats independently. However, the floating-point to floating-point conversions s
to-single and double-to-double in the 0C and 0E opcodes are undefined operations; In addition
0C opcode, quad-to-quad floating-point conversion is an undefined operation (quad precision ca
specified in the 0E opcode). Table 8-11 shows the conversion instruction completers and

Table 8-9. Fixed-Point Operations

Opcode Sub-op x-bit Class Mnemonic Operation

0E 2 1 3 XMPYU Fixed-point Multiply Unsigned

Table 8-10. Single-Operation Instruction Format Completers

Opcode Mnemonic Code Description Data Size

0C/0E <none> 0 single-word number 32 bits
0C/0E SGL 0 single-word number 32 bits
0C/0E DBL 1 double-word number 64 bits

0C QUAD 3 quad-word number 128 bits
0C 2 undefined
8-15PA-RISC 2.0 Architecture Floating-point Coprocessor

 the
E

tion
corresponding format codes.

TheCode field above indicates the encoding corresponding to each completer, which appears insf
anddf fields of the instruction. An operation with aCode value of 2 is an undefined operation. In the 0
opcode, onlyCode values 0 and 1 can be specified.

Comparison Conditions

TheFLOATING-POINT COMPARE instruction has an additional completer which indicates the condi
being tested. These conditions are listed in Table 8-12 which is derived from the IEEE standard.

Table 8-11. Conversion Instruction Format Completers

Opcode Mnemonic Code Description Data Size

0C/0E
SGL

0
single-word floating-point

32 bitsW single-word signed integer
UW single-word unsigned integer

0C/0E
DBL

1
double-word floating-point

64 bitsDW double-word signed integer
UDW double-word unsigned integer

0C
QUAD

3
quad-word floating-point

128 bitsQW quad-word signed integer
UQW quad-word unsigned integer

0C 2 undefined

Table 8-12. Floating-Point Compare Instruction Conditions

Condition
Relations

Code Condition
Relations

Code
> < = unordered > < = unordered

false? F F F F 0 !?<= T F F F 16

false F F F F * 1 > T F F F * 17

? F F F T 2 ?> T F F T 18

!<=> F F F T * 3 !<= T F F T * 19

= F F T F 4 !?< T F T F 20

=T F F T F * 5 >= T F T F * 21

?= F F T T 6 ?>= T F T T 22

!<> F F T T * 7 !< T F T T * 23

!?>= F T F F 8 !?= T T F F 24

< F T F F * 9 <> T T F F * 25

?< F T F T 10 != T T F T 26

!>= F T F T * 11 !=T T T F T * 27

!?> F T T F 12 !? T T T F 28

<= F T T F * 13 <=> T T T F * 29

?<= F T T T 14 true? T T T T 30

!> F T T T * 15 true T T T T * 31
8-16 Floating-point Coprocessor PA-RISC 2.0 Architecture

of four
st case
perand,

pares.

tatus
uction

(see the
hifted
it in
 a true

ds are
 causes

gister
 1, the

-point
 has an
ted in
Comparisons are exact and neither overflow or underflow. Between any two operands, one
mutually exclusive relations is possible: less than, equal, greater than, and unordered. The la
arises when at least one operand is a NaN. Every NaN compares unordered with every o
including itself. Comparisons ignore the sign of zero, so +0 is equal to -0.

In the table above,Condition is the condition mnemonic used in the assembly language andCode is the
machine language encoding.

There are two types of floating-point compare instructions – targeted compares and queued com

• A targeted compare targets a specific bit of the compare array (CA) in the floating-point S
Register (see the second format in Figure 8-6 on page 8-9). The CA-bit specified by the instr
is set to the result in the appropriate relations column, 1 for a true result, 0 for false.

• A queued compare updates the compare queue (CQ) in the floating-point Status Register
first format in Figure 8-6 on page 8-9). The CQ field in the floating-point Status Register is s
right by one bit (discarding the rightmost bit) and the C-bit is copied into CQ{0}. Then, the C-b
the floating-point Status Register is set to the result in the appropriate relations column, 1 for
result, 0 for false.

The asterisk (*) indicates that the instruction causes an invalid operation exception if its operan
unordered. However, if at least one operand is a signaling NaN, the compare instruction always
an invalid operation exception.

Test Conditions

There are two types ofFLOATING-POINT TEST instructions – targeted tests and queue tests.

• A targeted test tests a specific bit of the compare array (CA) in the floating-point Status Re
(see the second format in Figure 8-6 on page 8-9). If the CA-bit specified by the instruction is
PSW[N] bit is set to 1. No condition may be specified for a targeted test.

• A queue test tests for a specific condition in the C-bit and compare queue (CQ) in the floating
Status Register (see the first format in Figure 8-6 on page 8-9). Each queue test instruction
additional completer which indicates the condition being tested. These conditions are lis
Table 8-13. If the condition being tested is true, the PSW[N] bit is set to 1.
8-17PA-RISC 2.0 Architecture Floating-point Coprocessor

ltiply
a two-
 input

rand
ands of
dd

n the
Fused-Operation Instructions

The floating-point instruction set includes instructions which perform a fused floating-point mu
and add operation. Fused-operation instructions are four-operand instructions which perform
input multiply whose intermediate result is optionally negated and is then added to the third
operand. This final result is then rounded and placed in the destination register. That is: dest← ±(op1 *
op2) + op3. These instructions are encoded using the 2E opcode.

The format of the fused-operation instructions is as follows:

Therm1, rm2, andt fields specify the two source operands for the multiply and the destination ope
for the final result. These fields occupy the same positions within the instruction word as the oper
a class 3 single-operation floating-point instruction. Thera field specifies the source operand for the a
operation.

Table 8-14 lists the two fused-operation instructions, their mnemonics and sub-ops (encoded ie

Table 8-13. Floating-Point Test Instruction Conditions

Completer Description Condition Code

<none> Simple Test C == 1 0
ACC Graphics (12-bit) Trivial Accept C == 0 && CQ{0..10} == 0 1
ACC8 Graphics 8-bit Trivial Accept C == 0 && CQ{0..6} == 0 5
ACC6 Graphics 6-bit Trivial Accept C == 0 && CQ{0..4} == 0 9
ACC4 Graphics 4-bit Trivial Accept C == 0 && CQ{0..2} == 0 13
ACC2 Graphics 2-bit Trivial Accept C == 0 && CQ{0} == 0 17
REJ Graphics (12-bit) Trivial Reject C == 1 && CQ{5} == 1 ||

CQ{0} == 1 && CQ{6} == 1 ||
CQ{1} == 1 && CQ{7} == 1 ||
CQ{2} == 1 && CQ{8} == 1 ||
CQ{3} == 1 && CQ{9} == 1 ||
CQ{4} == 1 && CQ{10} == 1

2

REJ8 Graphics 8-bit Trivial Reject C == 1 && CQ{3} == 1 ||
CQ{0} == 1 && CQ{4} == 1 ||
CQ{1} == 1 && CQ{5} == 1 ||
CQ{2} == 1 && CQ{6} == 1

6

2E rm1 rm2 ra r2 f ra r1 t e t

6 5 5 3 1 1 3 1 1 1 5

Figure 8-8. Fused-Operation Instruction Format
8-18 Floating-point Coprocessor PA-RISC 2.0 Architecture

Only
 is the

ndent
ine a

r the
erands

o

Only
 given
field).

The f field in the floating-point fused-operation instructions is the operand format completer.
single-word and double-word formats are supported. The interpretation of the format completer
same as for the single-operation 0E opcode instructions as given in Table 8-10 on page 8-15.

Multiple-Operation Instructions

The floating-point instruction set includes instructions which perform more than one indepe
floating-point operation. Multiple-operation instructions are five-operand instructions which comb
three-operand multiply with a two-operand operation (ADD or SUB) of the form: dest← dest <op>
source. These instructions are encoded using the 06 and 26 opcodes.

The format of the multiple-operation instructions is as follows:

The rm1, rm2, and tm fields specify the two source operands and the destination operand fo
multiply operation. These fields occupy the same positions within the instruction word as the op
of a class 3 single-operation floating-point instruction. Thera and ta fields specify source and
destination operands for the ALU operation.

The behavior of the multiple-operation instructions is undefined ifra specifies the same register astm,
or if ta specifies the same register as any ofrm1, rm2, or tm. The behavior of these instructions is als
undefined ifra specifies double-precision register 0 or single-precision register 16L.

Table 8-15 lists the two multiple-operation instructions, their mnemonics and opcodes.

The f field in the floating-point multiple-operation instructions is the operand format completer.
single-word and double-word formats are supported. The interpretation of the format completer is

Table 8-14. Fused-Operation Instructions

Sub-op Mnemonic Operation

0 FMPYFADD Multiply Fused Add
1 FMPYNFADD Multiply Negate Fused Add

op rm1 rm2 ta ra f tm

6 5 5 5 5 1 5

Figure 8-9. Multiple-Operation Instruction Format

Table 8-15. Multiple-Operation Instructions

Opcode Mnemonic Operation

06 FMPYADD Multiply/Add
26 FMPYSUB Multiply/Subtract
8-19PA-RISC 2.0 Architecture Floating-point Coprocessor

t

 these
 When
e single-
 top 16
uction
in Table 8-16.

NOTE
Note that the instruction format completers for the multiple-operation instructions do no
follow the same pattern as those for the single-operation and fused-operation instructions.

Because the floating-point multiple-operation instructions have only five-bit operand specifiers,
instructions operate on only 32 locations, even when the single-word data format is specified.
double-word data is specified, the interpretation of these operand specifiers is the same as for th
operation instructions. For single-word data, however, the operand specifiers are restricted to the
registers (32 locations). The details of the interpretation of the operand specifier field in the instr
are shown in Table 8-17.

Table 8-16. Multiple-Operation Instruction Format Completers

Mnemonic Code Description Data Size

<none> or SGL 1 single-word number 32 bits
DBL 0 double-word number 64 bits
8-20 Floating-point Coprocessor PA-RISC 2.0 Architecture

Table 8-17. Single-Precision Operand Specifier Use in Multi-Operation Instructions

Register specifier
field in instruction

Register selected

0 16L*

16 16R

1 17L

17 17R

2 18L

18 18R

3 19L

19 19R

4 20L

20 20R

5 21L

21 21R

6 22L

22 22R

7 23L

23 23R

8 24L

24 24R

9 25L

25 25R

10 26L

26 26R

11 27L

27 27R

12 28L

28 28R

13 29L

29 29R

14 30L

30 30R

15 31L

31 31R

*not allowed
8-21PA-RISC 2.0 Architecture Floating-point Coprocessor

in
”
d

”
te
he

es
e

as
ise
ith

]

e

NOTE

The L/R Select bit in the single-word format specifies the suffix ‘L’ single-word register, bits 0
to 31, when 0, and the suffix ‘R’ single-word register, bits 32 to 63, when 1.

Rounding

The specification for the rounding operation from the IEEE standard is:

Rounding takes a number regarded as infinitely precise and, if necessary, modifies it to fit
the destination’s format while signaling the inexact exception (7.5) [see “Inexact Exception
on page 10-10]. Except for binary-decimal conversion (whose weaker conditions are specifie
in 5.6 [not included]), every operation specified in Section 5 [see “Floating-point Operations
on page 8-12] shall be performed as if it first produced an intermediate result correct to infini
precision and with unbounded range, and then rounded that result according to one of t
modes in this section.

The rounding modes affect all arithmetic operations except comparison. The rounding mod
may affect the signs of zero sums (6.3) [see “Sign Bit” on page 8-24], and do affect th
thresholds beyond which overflow (7.3) [see “Overflow Exception” on page 10-11] and
underflow (7.4) [see “Underflow Exception” on page 10-12] may be signaled.

[§]4.1 Round to nearest. An implementation of this standard shall provide round to nearest
the default rounding mode. In this mode the representable value nearest to the infinitely prec
result shall be delivered; if the two nearest representable values are equally near, the one w
its least-significant bit zero shall be delivered. However, an infinitely precise result with

magnitude at least shall round to∞ with no change in sign; here and

p are determined by the destination format (§3) [see “Floating-point Formats” on page 8-6
unless overridden by a rounding precision mode (4.3) [not possible in PA-RISC].

[§]4.2 Directed Roundings. An implementation shall also provide three user-selectabl
directed rounding modes: round toward +∞, round toward−∞, and round toward 0. When
rounding toward +∞, the result shall be the format’s value (possibly +∞) closest to and no less
than the infinitely precise result. When rounding toward−∞, the result shall be the format’s

Double-word Format

n n n n n

Operand Specifier

n n n n n

Register File Address

Single-word Format

n n n n n

Operand Specifier

1 n n n n

Register File Address

L/R Select

(assumed) 1

2
Emax 2 2

p–
–() Emax
8-22 Floating-point Coprocessor PA-RISC 2.0 Architecture

he

return a

ented
ption

t
r’s

d
s.

nd the
n if an

urns a
a quiet

 invalid
eration

 0. If
nd bit
option
 in the
value (possibly−∞) closest to and no greater than the infinitely precise result. When rounding
toward 0, the result shall be the format’s value closest to and no greater in magnitude than t
infinitely precise result.

TheRM field in the Status Register determines the rounding mode.

While the above IEEE quote describes the process of rounding, an operation does not always
rounded result. The result of an operation may be affected if the operation causes an exception.

Infinity Arithmetic

From the standard:

[§]6.1 Infinity Arithmetic. Infinity arithmetic shall be construed as the limiting case of real
arithmetic with operands of arbitrarily large magnitude, when such a limit exists. Infinities
shall be interpreted in the affine sense, that is:

Arithmetic with an infinite operand is always exact and can only signal invalid and unimplem
exceptions. An infinite result is created from finite operands only by a non-trapping overflow exce
or a non-trapping division-by-zero exception.

Operations With NaNs

From the standard:

[§]6.2 Operations with NaNs. Two different kinds of NaN, signaling and quiet, shall be
supported in all operations. Signaling NaNs afford values for uninitialized variables and
arithmetic-like enhancements (such as complex-affine infinities or extremely wide range) tha
are not the subject of the standard. Quiet NaNs should, by means left to the implemento
discretion, afford retrospective diagnostic information inherited from invalid or unavailable
data and results. Propagation of the diagnostic information requires that information containe
in the NaNs be preserved through arithmetic operations and floating-point format conversion

An operation causes an invalid exception when at least one operand is a signaling NaN a
operation is any arithmetic operation. Also, certain compare operations cause an invalid exceptio
operand is a quiet NaN. See “Comparison Conditions” on page 8-16 for more detail.

Converting either a quiet or a signaling NaN to an integer format causes an invalid exception.

A NaN is created in two ways. Any operation that causes a non-trapping invalid exception ret
quiet NaN. Otherwise, an operation returns a quiet NaN when at least one of its operands is
NaN, and the operation is any arithmetic operation.

An operation converts a signaling NaN to a quiet NaN when the operation causes a non-trapping
exception and one of its operands is a signaling NaN. If both operands are signaling NaNs, the op
converts the contents of the first operand (ther1 register).

An operation which converts a signaling NaN to a quiet NaN sets the first bit of the fraction () to
the remaining bits in the fraction are all zeros (), the operation must set the seco
in the fraction to 1. Otherwise, if the remainder of the fraction is not 0, an implementation has the
of setting the second bit in the fraction to 1, or leaving it unchanged. Only the first and second bits

∞– every finite number() +∞< <

b1
b2…bp 1– 0=
8-23PA-RISC 2.0 Architecture Floating-point Coprocessor

its are

 copies

nd sets

-point
if the
o 1 to
erts a
aller

 a
f a
.

e
s

fraction may change when creating a quiet NaN from a signaling NaN. The remaining fraction b
copied from the signaling NaN.

When one of its operands is a quiet NaN, but neither operand is a signaling NaN, an operation
the quiet NaN to the destination. If both operands are quiet NaNs, ther1 register is copied to the
destination.

The creation of a quiet NaN when neither input is a NaN sets the second fraction bit () to 1 a
each of the remaining fraction bits to 0.

A conversion operation which does not trap, and which converts a NaN to a smaller floating
format, preserves the most-significant portion of the fraction while returning a quiet NaN. But
most-significant portion of the fraction is all zeros, the second bit of the fraction must be set t
prevent the number from becoming an infinity. A conversion which does not trap, and which conv
NaN to a larger floating-point format, augments the fraction with zeros to the right of the sm
fraction while returning a quiet NaN.

Load and store instructions, as well as theFLOATING-POINT NEGATE, FLOATING-POINT NEGATE
ABSOLUTE VALUE, FLOATING-POINT COPY, andFLOATING-POINT ABSOLUTE VALUE instructions,
are not arithmetic and do not signal an invalid operation exception.

Sign Bit

From the standard:

[§]6.3 The sign bit. This standard does not interpret the sign of a NaN. Otherwise the sign of
product or quotient is the exclusive OR of the operands’ signs; and the sign of the sum, or o
difference regarded as a sum , differs from at most one of the addends’ signs
These rules shall apply even when operands or results are zero or infinite.

When the sum of two operands with opposite signs (or the difference of two operands with lik
signs) is exactly zero, the sign of that sum (or difference) shall be "+" in all rounding mode
except round toward−∞, in which mode the sign shall be "−". However,
retains the same sign asx even whenx is zero.

Except that shall be "−0", every valid square root shall have positive sign.

b2

x y– x y–()+

x x+ x x–()–=

0–
8-24 Floating-point Coprocessor PA-RISC 2.0 Architecture

t

oint
 -

oint

ont of

or the
ated in
9 Floating-Point Instruction Se

This chapter provides a description of each of the instructions supported by the floating-p
coprocessor. The instructions are listed in alphabetical order, according to the name of the instruction
as opposed to the instruction mnemonic.

The Description section of each non-load/store instruction contains a list of the Floating-P
Exceptions which the instruction may cause. Each instruction description has an Exceptions section
which lists the processor interruptions that may occur while the instruction is pointed to by the fr
the IA queues.

In the following pages, the notation, FPR, refers to floating-point coprocessor registers 0 through 31.
FPSR refers to the Floating-point Status Register. Refer to “Instruction Notations” on page xviii f
explanation of the operation section. The mem_load and the mem_store descriptions are loc
“Memory Reference Instructions” on page6-6.
9-1PA-RISC 2.0 Architecture Floating-Point Instruction Set

d
e an
Floating-Point Absolute Value FABS

Format: FABS,fmt r,t

(49)

(45)

Purpose: To perform a floating-point absolute value.

Description: The floating-point register specified byr is copied to the floating-point register specifie
by t with the sign bit set to 0. This instruction is non-arithmetic and does not caus
invalid operation exception when the sign of a NaN is set to 0.

Floating-point exceptions:

• Unimplemented

Operation: FPR[t]{all_bits_except_sign}← FPR[r]{all_bits_except_sign};
FPR[t]{sign_bit} ← 0;

Exceptions: Assist emulation trap
Assist exception trap

0E r 0 3 0 f 0 0 r t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

0C r 0 3 fmt 0 0 0 t

6 5 5 3 2 2 3 1 5
9-2 Floating-Point Instruction Set PA-RISC 2.0 Architecture

t
ed to
in the
Floating-Point Add FADD

Format: FADD,fmt r1,r2,t

(52)

(48)

Purpose: To perform a floating-point addition.

Description: The floating-point registers specified byr1 andr2 are interpreted in the specified forma
and arithmetically added. The result is calculated to infinite precision and then round
the specified format according to the current rounding mode. The result is placed
floating-point register specified byt.

Floating-point exceptions:

• Unimplemented

• Invalid operation

• Overflow

• Underflow

• Inexact

Operation: FPR[t] ← FPR[r1] + FPR[r2];

Exceptions: Assist emulation trap
Assist exception trap

0E r1 r2 0 r2 f 3 0 r1 t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

0C r1 r2 0 fmt 3 0 0 t

6 5 5 3 2 2 3 1 5
9-3PA-RISC 2.0 Architecture Floating-Point Instruction Set

/
/

t
d the

 and

ting-
A-bit
The

tatus
itting
t by
the
to 1,

N and

d CA

cified
he

sive
Floating-Point Compare FCMP

Format: FCMP,fmt,cond r1,r2,cbit /*targeted compare*
FCMP,fmt,cond r1,r2 /*queued compare*

(51)

(47)

Purpose: To perform a floating-point comparison.

Description: The floating-point registers specified byr1 andr2 are interpreted in the specified forma
and arithmetically compared. A result is determined based on the comparison an
condition,cond. The condition is encoded in thec field of the instruction.

There are two types of floating-point compare instructions – targeted compares
queued compares.

• A targeted compare targets a specific bit of the compare array (CA) in the floa
point Status Register (see the second format in Figure 8-6 on page 8-9.) The C
specified bycbit is set to 1 if the comparison result is true, or set to 0 otherwise.
CA-bit to set is encoded in they field of the instruction ascbit + 1.

• A queued compare updates the compare queue (CQ) in the floating-point S
Register (see the first format in Figure 8-6 on page 8-9) and is specified by om
thecbit operand. The CQ field in the floating-point Status Register is shifted righ
one bit (discarding the rightmost bit) and the C-bit is copied into CQ{0}. Then, if
comparison result is true, the C-bit in the floating-point Status Register is set
otherwise the C-bit is set to 0. A queued compare is encoded with ay field of 0.

If at least one of the values is a signaling NaN, or if at least one of the values is a Na
the low-order bit of the condition is 1, an invalid operation exception is signaled.

For unimplemented and trapped invalid operation exceptions, the state of the C-bit an
field is unchanged, and the CQ field is not shifted.

For untrapped invalid operation exceptions, the state of the C-bit, or the CA-bit spe
by the instruction is the AND of the unordered relation (which is true) and bit 3 of tc
field.

Comparisons are exact and neither overflow nor underflow. Four mutually exclu
relations are possible results:less than, equal, greater than, andunordered. The last case
arises when at least one operand is a NaN. Every NaN comparesunordered with
everything, including itself. Comparisons ignore the sign of zero, so .

0E r1 r2 y r2 f 2 0 r1 0 0 c

6 5 5 3 1 1 2 1 1 1 1 5

0C r1 r2 y fmt 2 0 0 c

6 5 5 3 2 2 3 1 5

+0 0–=
9-4 Floating-Point Instruction Set PA-RISC 2.0 Architecture

Floating-point exceptions:

• Unimplemented

• Invalid operation

Operation: if (NaN(FPR[r1]) || NaN(FPR[r2]))
if (c{4})

invalid_operation_exception;
else {

greater_than← false;
less_than← false;
equal_to← false;
unordered← true;

}
else {

greater_than← FPR[r1] > FPR[r2];
less_than← FPR[r1] < FPR[r2];
equal_to← FPR[r1] = FPR[r2];
unordered← false;

}
if (y) { /*targeted compare*/

FPSR[CA{y–1}] ← (((c{0} == 1) && greater_than) ||
((c{1} == 1) && less_than) ||
((c{2} == 1) && equal_to) ||
((c{3} == 1) && unordered));

} else { /*queued compare*/
FPSR[CQ] ← rshift(FPSR[CQ],1);
FPSR[CQ{0}] ← FPSR[C];
FPSR[C] ← (((c{0} == 1) && greater_than) ||

((c{1} == 1) && less_than) ||
((c{2} == 1) && equal_to) ||
((c{3} == 1) && unordered));

}

Exceptions: Assist emulation trap
Assist exception trap
9-5PA-RISC 2.0 Architecture Floating-Point Instruction Set

e and

d the
ently

.

Floating-Point Convert FCNV

Format: FCNV,sf,df r,t
FCNV,t,sf,df r,t

(50)

(46)

Purpose: To change the value in a floating-point register from one format to a different format.

Description: The floating-point register specified byr is interpreted in the specified source format,sf,
and arithmetically converted to the specified destination format,df. The result is placed in
the floating-point register specified byt.

Thesf anddf completers specify both the type of conversion and the size of the sourc
destination formats, and are encoded in thesub, sf, anddf fields of the instruction (see
Table 8-8 on page 8-14 and Table 8-11 on page 8-16.)

If the “,t” (truncate) completer is specified, the current rounding mode is ignored an
result is rounded toward zero. Otherwise, rounding occurs according to the curr
specified rounding mode.

Floating-point exceptions:

• Unimplemented

• Invalid operation

• Overflow*

• Underflow*

• Inexact
* Not reported unless both source and destination formats are floating-point formats

Operation: if (truncate)
FPR[t] ← convert(FPR[r],sf,df,ROUND_TOWARD_ZERO);

else
FPR[t] ← convert(FPR[r],sf,df,FPSR[RM]);

Exceptions: Assist emulation trap
Assist exception trap

Restrictions: The“,t” completer may only be specified with a fixed-point destination format.

Specifying the same source and destination format is an undefined operation.

Specifying any quadword format in the 0E opcode is an undefined operation.

0E r 0 sub 0 df 0 sf 1 0 r t 0 t

6 5 3 3 1 1 1 1 2 1 1 1 1 5

0C r 0 sub df sf 1 0 0 t

6 5 3 3 2 2 2 3 1 5
9-6 Floating-Point Instruction Set PA-RISC 2.0 Architecture

d
ption
Floating-Point Copy FCPY

Format: FCPY,fmt r,t

(49)

(45)

Purpose: To copy a floating-point value to another floating-point register.

Description: The floating-point register specified byr is copied into the floating-point register specifie
by t. This operation is non-arithmetic and does not cause an invalid operation exce
when a NaN is copied.

Floating-point exceptions:

• Unimplemented

Operation: FPR[t] ← FPR[r];

Exceptions: Assist emulation trap
Assist exception trap

0E r 0 2 0 f 0 0 r t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

0C r 0 2 fmt 0 0 0 t

6 5 5 3 2 2 3 1 5
9-7PA-RISC 2.0 Architecture Floating-Point Instruction Set

t
nded
 in the
Floating-Point Divide FDIV

Format: FDIV,fmt r1,r2,t

(52)

(48)

Purpose: To perform a floating-point division.

Description: The floating-point registers specified byr1 andr2 are interpreted in the specified forma
and arithmetically divided. The result is calculated to infinite precision and then rou
to the specified format according to the current rounding mode. The result is placed
floating-point register specified byt.

Floating-point exceptions:

• Unimplemented

• Invalid operation

• Division-by-zero

• Overflow

• Underflow

• Inexact

Operation: FPR[t] ← FPR[r1] / FPR[r2];

Exceptions: Assist emulation trap
Assist exception trap

0E r1 r2 3 r2 f 3 0 r1 t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

0C r1 r2 3 fmt 3 0 0 t

6 5 5 3 2 2 3 1 5
9-8 Floating-Point Instruction Set PA-RISC 2.0 Architecture

f the
. The

ed

btain

ly
 not,

ccurs
d
l trap)
Floating-Point Identify FID

Format: FID

(45)

Purpose: To validate fields in the Status Register which identify the floating-point coprocessor.

Description: Themodel andrevision fields in the Status Register become defined. The contents o
other fields in the Status Register are undefined after the execution of this instruction
model and revision fields remain defined until a floating-point instruction is execut
which is not a double-word store of register 0.

Floating-point exceptions:

• None

Operation: FPSR[model]← implementation-dependent model number;
FPSR[revision]← implementation-dependent revision number;

Exceptions: Assist emulation trap

Notes: This instruction must be implemented. Software may use the following sequence to o
themodel andrevision fields in the Status Register:

For the FID instruction to work correctly, the floating-point instructions immediate
preceding and following it must be double-word stores of Floating-Point Register 0. If
the instruction is an undefined operation.

The sequence described will work in user mode. For example, if a context switch o
just prior toFID but after the firstFSTD 0,0(2) instruction, the floating-point state save an
state restore sequence will restore the state of the Status Register ("T" bit off, cance
just prior to the execution ofFID.

0C 0 0 0 0 0 0 0 0

6 5 5 3 2 2 3 1 5

.CODE

LDIL L%fpreg0,r2 ; load address of
LDO R%fpreg0(r2),r2 ; fp reg0 save area
FSTD fr0,0(r2) ; save fp reg0, cancel exception traps

FID ; identify coprocessor

LDIL L%version,r2 ; load address of
LDO R%version(r2),r2 ; model/rev save area
FSTD fr0,0(r2) ; store coprocessor id, cancel

; exception traps

.DATA

fpreg0 .DOUBLE 0
version .DOUBLE 0
9-9PA-RISC 2.0 Architecture Floating-Point Instruction Set

 41.)
n also

base
egister
1 on
nics.)

e

vious
Floating-Point Load Doubleword FLDD

Format: FLDD,cmplt,cc x|d(s,b),t

(3)

(41)

(39)

Purpose: To load a doubleword into a floating-point coprocessor register.

Description: The aligned doubleword at the effective address is loaded into floating-point registert. The
offset is formed as the sum of a base register,b, and either an index register,x (Format 39),
or a displacementd. The displacement can be either long (Format 3) or short (Format
The displacement is encoded into the immediate field. Optional base modification ca
be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. The completer also specifies base r
modification, optional index prescaling, and ordering constraints (see Table H-
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemo
The completer,cc, specifies the cache control hint (see Table 6-7 on page 6-10.)

For long and short displacements, a one in them field specifies base modification, and th
a field encodes whether pre-modification (a=1), or post-modification (a=0) is performed.
For indexed loads, a one in them field specifies base modification, and a one in theu field
specifies index prescaling.

Specifying Floating-Point Register 0 forces the coprocessor to complete all pre
floating-point instructions.

14 b t s im10a m a 1 i

6 5 5 2 10 1 1 1 1

0B b im5 s a 1 cc 0 0 0 m t

6 5 5 2 1 1 2 1 2 1 1 5

0B b x s u 0 cc 0 0 0 m t

6 5 5 2 1 1 2 1 2 1 1 5
9-10 Floating-Point Instruction Set PA-RISC 2.0 Architecture

/
) */

es of
Operation: if (indexed_load) /* indexed (Format 39)*/
switch (cmplt) {

case S:
case SM: dx← lshift(GR[x],3);

break;
case M:
default: dx← GR[x];

break;
}

else if (d > 15 || d < -16) { /* long displacement *
dx ← sign_ext(assemble_16a(s,cat(im10a,0),i),16); /* (Format 3
cc ← NO_HINT;

} else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 41) */

space← space_select(s,GR[b],format);
switch (cmplt) {

case MB: offset← GR[b] + dx;
GR[b] ← GR[b] + dx;
break;

case MA:
case M:
case SM: offset← GR[b];

GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
break;

}
FPR[t] ← mem_load(space,offset,0,63,cc);
if (cmplt == O)

enforce_ordered_load;

Exceptions: Assist exception trap Unaligned data reference trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Assist emulation trap
Data memory protection ID trap

Restrictions: For loads with long displacements (Format 3), only displacements which are multipl
eight may be used.

If the completerO is specified, the displacement must be 0.
9-11PA-RISC 2.0 Architecture Floating-Point Instruction Set

rmat
n can

base
egister
1 on
nics.)

ned
te all
th a
Floating-Point Load Word FLDW

Format: FLDW,cmplt,cc x|d(s,b),t

(43)

(44)

(41)

(39)

Purpose: To load a word into a floating-point coprocessor register.

Description: The aligned word at the effective address is loaded into floating-point registert. The offset
is formed as the sum of a base register,b, and either an index register,x (Format 39), or a
displacementd. The displacement can be either long (Formats 43 and 44) or short (Fo
41.) The displacement is encoded into the immediate field. Optional base modificatio
also be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. This completer also specifies base r
modification, optional index prescaling, and ordering constraints (see Table H-
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemo
The completer,cc, specifies the cache control hint (see Table 6-7 on page 6-10.)

For long displacements with base modification, Format 44 is used, and thea field encodes
whether pre-modification (a=1), or post-modification (a=0) is performed. For long
displacements with no base modification, Format 43 is used.

For short displacements, a one in them field specifies base modification, and thea field
encodes whether pre-modification (a=1), or post-modification (a=0) is performed. For
indexed loads, a one in them field specifies base modification, and a one in theu field
specifies index prescaling.

Specifying floating-point registers 0R, 1L, 1R, 2L, 2R, 3L, or 3R is an undefi
operation. Specifying Floating-Point Register 0L forces the coprocessor to comple
previous floating-point instructions. However, loading Floating-Point Register 0L wi
value that sets the Status Register T-bit to 1 is an undefined operation.

17 b t s im11a 0 t i

6 5 5 2 11 1 1 1

16 b t s im11a a t i

6 5 5 2 11 1 1 1

09 b im5 s a 1 cc 0 0 t m t

6 5 5 2 1 1 2 1 2 1 1 5

09 b x s u 0 cc 0 0 t m t

6 5 5 2 1 1 2 1 2 1 1 5
9-12 Floating-Point Instruction Set PA-RISC 2.0 Architecture

/
) */

h are
Operation: if (indexed_load) /* indexed (Format 39)*/
switch (cmplt) {

case S:
case SM: dx← lshift(GR[x],2);

break;
case M:
default: dx← GR[x];

break;
}

else if (d > 15 || d < -16) { /* long displacement *
dx ← sign_ext(assemble_16a(s,im11a,i),16); /* (Formats 43 and 44
cc ← NO_HINT;

} else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 41) */

space← space_select(s,GR[b],format);
switch (cmplt) {

case MB: offset← GR[b] + dx;
GR[b] ← GR[b] + dx;
break;

case MA:
case M:
case SM: offset← GR[b];

GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
break;

}
FPR[t] ← mem_load(space,offset,0,31,cc);
if (cmplt == O)

enforce_ordered_load;

Exceptions: Assist exception trap Unaligned data reference trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Assist emulation trap
Data memory protection ID trap

Restrictions: For loads with long displacements (Formats 43 and 44), only displacements whic
multiples of four may be used.

If the completerO is specified, the displacement must be 0.
9-13PA-RISC 2.0 Architecture Floating-Point Instruction Set

t
hen
ult is
Floating-Point Multiply FMPY

Format: FMPY,fmt r1,r2,t

(52)

(48)

Purpose: To perform a floating-point multiply.

Description: The floating-point registers specified byr1 andr2 are interpreted in the specified forma
and arithmetically multiplied. The result is calculated to infinite precision and t
rounded to the specified format according to the current rounding mode. The res
placed in the floating-point register specified byt.

Floating-point exceptions:

• Unimplemented

• Invalid operation

• Overflow

• Underflow

• Inexact

Operation: FPR[t] ← FPR[r1] * FPR[r2];

Exceptions: Assist emulation trap
Assist exception trap

0E r1 r2 2 r2 f 3 0 r1 t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

0C r1 r2 2 fmt 3 0 0 t

6 5 5 3 2 2 3 1 5
9-14 Floating-Point Instruction Set PA-RISC 2.0 Architecture

then
ult is

t
ed to
in the
Floating-Point Multiply/Add FMPYADD

Format: FMPYADD,fmt rm1,rm2,tm,ra,ta

(53)

Purpose: To perform a floating-point multiply and a floating-point add.

Description: The floating-point registers specified by rm1 and rm2 are interpreted in the specified
format and arithmetically multiplied. The result is calculated to infinite precision and
rounded to the specified format according to the current rounding mode. The res
placed in the floating-point register specified by tm.

The floating-point registers specified by ta and ra are interpreted in the specified forma
and arithmetically added. The result is calculated to infinite precision and then round
the specified format according to the current rounding mode. The result is placed
floating-point register specified by ta.

The behavior of this instruction is undefined if ra specifies the same register as tm, or if ta
specifies the same register as any of rm1, rm2, or tm. The behavior of this instruction is
also undefined if ra specifies double-precision register 0 or single-precision register 16L.

Floating-point exceptions:

• Unimplemented

• Invalid operation (see Notes)

• Overflow (see Notes)

• Underflow (see Notes)

• Inexact (see Notes)

Operation: FPR[tm] ← FPR[rm1] * FPR[rm2];
FPR[ta] ← FPR[ta] + FPR[ra];

Exceptions: Assist emulation trap
Assist exception trap

Notes: When operating on single-precision operands, each register field specifies one of registers
16L through 31L, or one of 16R through 31R. See Table8-17 on page8-21 for the register
specifier encodings.

This instruction can be decomposed into FMPY and FADD and then the full set of
floating-point exceptions can be reported (see "Exception Registers" on page 10-1).

06 rm1 rm2 ta ra f tm

6 5 5 5 5 1 5
9-15PA-RISC 2.0 Architecture Floating-Point Instruction Set

Errata
Previously, the "see Notes" and the pointer to page 10-1 in the Notes section were missing.

nite

sult
ing to
Floating-Point Multiply Fused Add FMPYFADD

Format: FMPYFADD,fmt rm1,rm2,ra,t

(54)

Purpose: To perform a floating-point multiply and fused add.

Description: The floating-point registers specified by rm1 and rm2 are interpreted in the specified
format and arithmetically multiplied. The intermediate result is calculated to infi
precision with an unbounded exponent (and is not rounded.) The floating-point register
specified by ra is interpreted in the specified format, arithmetically added to the re
obtained by the multiply operation and then rounded to the specified format accord
the current rounding mode. The result is placed in the floating-point register specified by t.

Floating-point exceptions:

• Unimplemented

Operation: FPR[t] ← (FPR[rm1] * FPR[rm2]) + FPR[ra];

Exceptions: Assist emulation trap
Assist exception trap

2E rm1 rm2 ra r2 f ra r1 t 0 t

6 5 5 3 1 1 3 1 1 1 5
9-16 Floating-Point Instruction Set PA-RISC 2.0 Architecture

Errata
Previously, Invalid operation, Overflow, Underflow, and Inexact, were listed as possible exceptions, but these cannot be reported on this instruction. See "Exception Registers" on page 10-1 for details.

nite

rmat
gister
Floating-Point Multiply Negate Fused Add FMPYNFADD

Format: FMPYNFADD,fmt rm1,rm2,ra,t

(54)

Purpose: To perform a floating-point multiply, negate, and fused add.

Description: The floating-point registers specified by rm1 and rm2 are interpreted in the specified
format and arithmetically multiplied. The intermediate result is calculated to infi
precision with an unbounded exponent (and is not rounded.) The floating-point register
specified by ra is interpreted in the specified format, arithmetically added to the negated
result obtained by the multiply operation and then rounded to the specified fo
according to the current rounding mode. The result is placed in the floating-point re
specified by t.

Floating-point exceptions:

• Unimplemented

Operation: FPR[t] ← −(FPR[rm1] * FPR[rm2]) + FPR[ra];

Exceptions: Assist emulation trap
Assist exception trap

2E rm1 rm2 ra r2 f ra r1 t 1 t

6 5 5 3 1 1 3 1 1 1 5
9-17PA-RISC 2.0 Architecture Floating-Point Instruction Set

Errata
Previously, Invalid operation, Overflow, Underflow, and Inexact, were listed as possible exceptions, but these cannot be reported on this instruction. See "Exception Registers" on page 10-1 for details

then
ult is

t
then
ult is

et of
Floating-Point Multiply/Subtract FMPYSUB

Format: FMPYSUB,fmt rm1,rm2,tm,ra,ta

(53)

Purpose: To perform a floating-point multiply and a floating-point subtract.

Description: The floating-point registers specified by rm1 and rm2 are interpreted in the specified
format and arithmetically multiplied. The result is calculated to infinite precision and
rounded to the specified format according to the current rounding mode. The res
placed in the floating-point register specified by tm.

The floating-point registers specified by ta and ra are interpreted in the specified forma
and arithmetically subtracted. The result is calculated to infinite precision and
rounded to the specified format according to the current rounding mode. The res
placed in the floating-point register specified by ta.

The behavior of this instruction is undefined if ra specifies the same register as tm, or if ta
specifies the same register as any of rm1, rm2, or tm. The behavior of this instruction is
also undefined if ra specifies double-precision register 0 or single-precision register 16L.

Floating-point exceptions:

• Unimplemented

• Invalid operation (see Notes)

• Overflow (see Notes)

• Underflow (see Notes)

• Inexact (see Notes)

Operation: FPR[tm] ← FPR[rm1] * FPR[rm2];
FPR[ta] ← FPR[ta] - FPR[ra];

Exceptions: Assist emulation trap
Assist exception trap

Notes: When operating on single-precision operands, each register field specifies one of registers
16L through 31L, or one of 16R through 31R. See Table8-17 on page8-21 for the register
specifier encodings.

This instruction can be decomposed into FMPY and FSUB and then the full s
floating-point exceptions can be reported (see "Exception Registers" on page 10-1).

26 rm1 rm2 ta ra f tm

6 5 5 5 5 1 5
9-18 Floating-Point Instruction Set PA-RISC 2.0 Architecture

Errata
Previously, the "see Notes" and the pointer to page 10-1 in the Notes section were missing.

d
ration
Floating-Point Negate FNEG

Format: FNEG,fmt r,t

(49)

(45)

Purpose: To negate a floating-point value.

Description: The floating-point register specified byr is copied into the floating-point register specifie
by t and negated. This operation is non-arithmetic and does not cause an invalid ope
exception when a NaN is negated.

Floating-point exceptions:

• Unimplemented

Operation: FPR[t]{all_bits_except_sign}← FPR[r]{all_bits_except_sign};
FPR[t]{sign_bit} ← ∼FPR[r]{sign_bit};

Exceptions: Assist emulation trap
Assist exception trap

0E r 0 6 0 f 0 0 r t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

0C r 0 6 fmt 0 0 0 t

6 5 5 3 2 2 3 1 5
9-19PA-RISC 2.0 Architecture Floating-Point Instruction Set

d
e an
Floating-Point Negate Absolute Value FNEGABS

Format: FNEGABS,fmt r,t

(49)

(45)

Purpose: To negate a floating-point absolute value.

Description: The floating-point register specified byr is copied into the floating-point register specifie
by t with the sign bit set to 1. This operation is non-arithmetic and does not caus
invalid operation exception when the sign of a NaN is set to 1.

Floating-point exceptions:

• Unimplemented

Operation: FPR[t]{all_bits_except_sign}← FPR[r]{all_bits_except_sign};
FPR[t]{sign_bit} ← 1;

Exceptions: Assist emulation trap
Assist exception trap

0E r 0 7 0 f 0 0 r t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

0C r 0 7 fmt 0 0 0 t

6 5 5 3 2 2 3 1 5
9-20 Floating-Point Instruction Set PA-RISC 2.0 Architecture

d
ber.
when
unded
ating-
rce
Floating-Point Round to Integer FRND

Format: FRND,fmt r,t

(49)

(45)

Purpose: To round a floating-point value to an integral value.

Description: The floating-point register specified byr is interpreted in the specified format an
arithmetically rounded to an integral value. This result remains a floating-point num
Results are rounded according to the current rounding mode with the proviso that
rounding to nearest, if the difference between the unrounded operand and the ro
result is exactly one half, the rounded result is even. The result is placed in the flo
point register specified byt. An inexact exception is signaled when the result and sou
are not the same.

Floating-point exceptions:

• Unimplemented

• Invalid operation

• Inexact

Operation: FPR[t] ← floating_point_round(FPR[r]);

Exceptions: Assist emulation trap
Assist exception trap

0E r 0 5 0 f 0 0 r t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

0C r 0 5 fmt 0 0 0 t

6 5 5 3 2 2 3 1 5
9-21PA-RISC 2.0 Architecture Floating-Point Instruction Set

e
 and
ource
oint
Floating-Point Square Root FSQRT

Format: FSQRT,fmt r,t

(49)

(45)

Purpose: To perform a floating-point square root.

Description: The floating-point register specified byr is interpreted in the specified format and th
positive arithmetic square root is taken. The result is calculated to infinite precision
then rounded to the specified format according to the current rounding mode. If the s
register contains , the result will be . The result is placed in the floating-p
register specified byt.

Floating-point exceptions:

• Unimplemented

• Invalid operation

• Inexact

Operation: FPR[t] ← square_root(FPR[r]);

Exceptions: Assist emulation trap
Assist exception trap

0E r 0 4 0 f 0 0 r t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

0C r 0 4 fmt 0 0 0 t

6 5 5 3 2 2 3 1 5

0– 0–
9-22 Floating-Point Instruction Set PA-RISC 2.0 Architecture

The

 42.)
n also

base
egister
1 on
nics.)

e

vious
n of
Floating-Point Store Doubleword FSTD

Format: FSTD,cmplt,cc r,x|d(s,b)

(3)

(42)

(40)

Purpose: To store a doubleword from a floating-point coprocessor register.

Description: Floating-point registerr is stored in the aligned doubleword at the effective address.
offset is formed as the sum of a base register,b, and either an index register,x (Format 40),
or a displacementd. The displacement can be either long (Format 3) or short (Format
The displacement is encoded into the immediate field. Optional base modification ca
be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. This completer also specifies base r
modification, optional index prescaling, and ordering constraints (see Table H-
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemo
The completer,cc, specifies the cache control hint (see Table 6-8 on page 6-10.)

For long and short displacements, a one in them field specifies base modification, and th
a field encodes whether pre-modification (a=1), or post-modification (a=0) is performed.
For indexed stores, a one in them field specifies base modification, and a one in theu field
specifies index prescaling.

Specifying Floating-Point Register 0 forces the coprocessor to complete all pre
floating-point instructions and sets the Status Register T-bit to 0 following completio
the store.

1C b t s im10a m a 1 i

6 5 5 2 10 1 1 1 1

0B b im5 s a 1 cc 1 0 0 m r

6 5 5 2 1 1 2 1 2 1 1 5

0B b x s u 0 cc 1 0 0 m r

6 5 5 2 1 1 2 1 2 1 1 5
9-23PA-RISC 2.0 Architecture Floating-Point Instruction Set

/
) */

les of
Operation: if (indexed_store) /* indexed (Format 40)*/
switch (cmplt) {

case S:
case SM: dx← lshift(GR[x],3);

break;
case M:
default: dx← GR[x];

break;
}

else if (d > 15 || d < -16) { /* long displacement *
dx ← sign_ext(assemble_16a(s,cat(im10a,0),i),16); /* (Format 3
cc ← NO_HINT;

} else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 42) */

space← space_select(s,GR[b],format);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB: offset← GR[b] + dx;
GR[b] ← GR[b] + dx;
break;

case MA:
case M:
case SM: offset← GR[b];

GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
break;

}
mem_store(space,offset,0,63,cc,FPR[r]);

Exceptions: Assist exception trap Data memory break trap
Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Assist emulation trap
Unaligned data reference trap

Restrictions: For stores with long displacements (Format 3), only displacements which are multip
eight may be used.

If the completerO is specified, the displacement must be 0.
9-24 Floating-Point Instruction Set PA-RISC 2.0 Architecture

et is

rmat
n can

base
egister
1 on
nics.)

ned
te all
Floating-Point Store Word FSTW

Format: FSTW,cmplt,cc r,x|d(s,b)

(43)

(44)

(42)

(40)

Purpose: To store a word from a floating-point coprocessor register.

Description: Floating-point registerr is stored in the aligned word at the effective address. The offs
formed as the sum of a base register,b, and either an index register,x (Format 40), or a
displacementd. The displacement can be either long (Formats 43 and 44) or short (Fo
42.) The displacement is encoded into the immediate field. Optional base modificatio
also be performed.

The completer,cmplt, determines whether the offset is the base register, or the
register plus the index register or displacement. This completer also specifies base r
modification, optional index prescaling, and ordering constraints (see Table H-
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemo
The completer,cc, specifies the cache control hint (see Table 6-8 on page 6-10.)

For long displacements with base modification, Format 44 is used, and thea field encodes
whether pre-modification (a=1), or post-modification (a=0) is performed. For long
displacements with no base modification, Format 43 is used.

For short displacements, a one in them field specifies base modification, and thea field
encodes whether pre-modification (a=1), or post-modification (a=0) is performed. For
indexed stores, a one in them field specifies base modification, and a one in theu field
specifies index prescaling.

Specifying floating-point registers 0R, 1L, 1R, 2L, 2R, 3L, or 3R is an undefi
operation. Specifying Floating-Point Register 0L forces the coprocessor to comple
previous floating-point instructions.

1F b r s im11a 0 r i

6 5 5 2 11 1 1 1

1E b r s im11a a r i

6 5 5 2 11 1 1 1

09 b im5 s a 1 cc 1 0 r m r

6 5 5 2 1 1 2 1 2 1 1 5

09 b x s u 0 cc 1 0 r m r

6 5 5 2 1 1 2 1 2 1 1 5
9-25PA-RISC 2.0 Architecture Floating-Point Instruction Set

/
) */

h are
Operation: if (indexed_store) /* indexed (Format 40)*/
switch (cmplt) {

case S:
case SM: dx← lshift(GR[x],2);

break;
case M:
default: dx← GR[x];

break;
}

else if (d > 15 || d < -16) { /* long displacement *
dx ← sign_ext(assemble_16a(s,im11a,i),16); /* (Formats 43 and 44
cc ← NO_HINT;

} else /* short displacement */
dx ← low_sign_ext(im5,5); /* (Format 42) */

space← space_select(s,GR[b],format);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB: offset← GR[b] + dx;
GR[b] ← GR[b] + dx;
break;

case MA:
case M:
case SM: offset← GR[b];

GR[b] ← GR[b] + dx;
break;

default: offset← GR[b] + dx;
break;

}
mem_store(space,offset,0,31,cc,FPR[r]);

Exceptions: Assist exception trap Data memory break trap
Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Assist emulation trap
Unaligned data reference trap

Restrictions: For stores with long displacements (Formats 43 and 44), only displacements whic
multiples of four may be used.

If the completerO is specified, the displacement must be 0.
9-26 Floating-Point Instruction Set PA-RISC 2.0 Architecture

t
then
ult is
Floating-Point Subtract FSUB

Format: FSUB,fmt r1,r2,t

(52)

(48)

Purpose: To perform a floating-point subtraction.

Description: The floating-point registers specified byr1 andr2 are interpreted in the specified forma
and arithmetically subtracted. The result is calculated to infinite precision and
rounded to the specified format according to the current rounding mode. The res
placed in the floating-point register specified byt.

Floating-point exceptions:

• Unimplemented

• Invalid operation

• Overflow

• Underflow

• Inexact

Operation: FPR[t] ← FPR[r1]− FPR[r2];

Exceptions: Assist emulation trap
Assist exception trap

0E r1 r2 1 r2 f 3 0 r1 t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

0C r1 r2 1 fmt 3 0 0 t

6 5 5 3 2 2 3 1 5
9-27PA-RISC 2.0 Architecture Floating-Point Instruction Set

ng

ts.

oint
A-bit
e
d

in the
nd is

any of
s not
ble

ed.

ued
e

Floating-Point Test FTEST

Format: FTEST cbit /*targeted test*/
FTEST,cond /*queue test*/

(47)

Purpose: To test the results of one or more earlier comparisons.

Description: The specified condition in the floating-point Status Register is tested. The condition,cond,
is encoded in thec field of the instruction. If the condition is satisfied, then the followi
instruction is nullified.

There are two types of floating-point test instructions – targeted tests and queue tes

• A targeted test tests a specific bit of the compare array (CA) in the floating-p
Status Register (see the second format in Figure 8-6 on page 8-9.) If the C
specified bycbit is 1, the PSW[N] bit is set to 1. The CA-bit to test is encoded in thy
field of the instruction as xor(cbit+1,1.) No condition may be specified for a targete
test and thec field must be 0.

• A queue test tests for a specific condition in the C-bit and compare queue (CQ)
floating-point Status Register (see the first format in Figure 8-6 on page 8-9) a
specified by omitting thecbit operand. A queue test is encoded with ay field of 1.

Floating-point exceptions:

• None

Conditions: For targeted tests, no condition may be specified. For queue tests, the condition is
the conditions shown in Table 8-13 on page 8-18. When a condition completer i
specified, the “Simple Test” (C == 1) condition is used. The boolean varia
“cond_satisfied” in the operation section is set when the specified condition is satisfi

Operation: if (y == 1) { /*queue test*/
if (cond_satisfied)

PSW[N] ← 1;
} else { /*targeted test*/

if (FPSR[CA{xor(y,1)–1}]) { /*test CA{cbit}*/
PSW[N] ← 1

}

Exceptions: Assist emulation trap
Assist exception trap

Restrictions: It is an undefined operation to mix targetedFCMP instructions with queueFTEST
instructions or to mix queueFCMPs with targetedFTESTs. For a targetedFTEST to be
defined, anFCMP to the same CA bit must precede it without any intervening que
FCMP. For a queueFTEST to be defined, enough queuedFCMPs must be executed to defin

0C 0 0 y 0 2 0 1 c

6 5 5 3 2 2 3 1 5
9-28 Floating-Point Instruction Set PA-RISC 2.0 Architecture

 assist
s may
the CQ bits being tested without any intervening targetedFCMPs. AnyFTEST may follow
a load of the FPSR, because the load defines all of the C-, CA-, and CQ-bits.

Notes: This instruction must be implemented, may not be queued and may not cause any
exception traps. However, any assist exception traps caused by previous instruction
be taken while this instruction is in the IA queue.
9-29PA-RISC 2.0 Architecture Floating-Point Instruction Set

it
ting-
Fixed-point Multiply Unsigned XMPYU

Format: XMPYU r1,r2,t

(52)

Purpose: To perform unsigned fixed-point multiplication.

Description: The floating-point registers specified byr1 and r2 are interpreted as unsigned 32-b
integers and arithmetically multiplied. The unsigned 64-bit result is placed in the floa
point register specified byt.

Floating-point exceptions:

• Unimplemented

Operation: FPR[t] ← FPR[r1] * FPR[r2];

Exceptions: Assist emulation trap
Assist exception trap

0E r1 r2 2 r2 0 3 1 r1 0 0 t

6 5 5 3 1 1 2 1 1 1 1 5
9-30 Floating-Point Instruction Set PA-RISC 2.0 Architecture

s

cessor,
sor to
r may

pter, an

pping
apping
 when
gnal an
elayed
ction is

sabled.

e other
 Status
 invalid

cution
vided for
tate.

d loads
ister as

epting
opcode
om the

the
s would
ion. The
ented

 state
10 Floating-Point Exception

Floating-point instructions may cause an interruption in the processor, an exception in the copro
or both. Interruptions are described in Chapter 5, “Interruptions” and always force the proces
branch to a location in the Interruption Vector Table. Floating-point coprocessor exceptions may o
not force the processor to trap (that is, force the processor to take an interruption). In this cha
instruction which causes a floating-point exception is called an excepting instruction.

Floating-point exceptions are divided into immediate trapping exceptions and delayed tra
exceptions. Immediate trapping exceptions always force the processor to trap. Delayed tr
exceptions are further divided into exceptions that always trap, and exceptions that will trap only
the corresponding trap is enabled. An immediate trapping exception forces the processor to si
assist exception trap when the excepting instruction is the current instruction being executed. A d
trapping exception forces the processor to signal an assist exception trap when the current instru
a floating-point instruction, and the excepting instruction is a pending instruction.

The only immediate trapping exception is the reserved-op exception. This exception cannot be di

The only delayed trapping exception that cannot be disabled is the unimplemented exception. Th
delayed trapping exceptions are the IEEE exceptions. Each has a corresponding bit in the
Register which enables and disables the delayed trap. The IEEE exceptions are the following:
operation, division-by-zero, overflow, underflow, and inexact.

Exception Registers

The exception registers contain information on floating-point operations that have completed exe
and have caused a delayed trapping exception. All the registers must be present and storage pro
loads and stores even if an implementation never uses a particular register to record exception s

The exception registers are accessed with double-word load and store instructions. Single-wor
and stores of registers 0R, 1L, 1R, 2L, 2R, 3L, and 3R are undefined. Specifying an exception reg
a source or destination of a non-load/store operation is undefined.

For single-operation instructions, an exception register contains a modified copy of an exc
instruction that traps. The coprocessor replaces the field that normally contains the instruction
with a code that indicates the type of exception detected. The remaining fields are duplicates fr
original instruction.

The fused-operation instructions (FLOATING-POINT MULTIPLY FUSED ADD and FLOATING-POINT
MULTIPLY NEGATE FUSED ADD) cannot directly cause trapping IEEE exceptions, because
exception state cannot be represented in the exception registers. When one of these instruction
cause a trapping IEEE exception, the implementation causes, instead, an unimplemented except
fused-operation instruction is placed in an exception register along with the appropriate unimplem
exception code.

The multiple-operation instructions (FLOATING-POINT MULTIPLY/ADD and FLOATING-POINT
MULTIPLY/SUBTRACT) cannot directly cause trapping IEEE exceptions, because the exception
10-1PA-RISC 2.0 Architecture Floating-Point Exceptions

 trapping

 in an

 case,
pping
e
eption
ally. If

ed and
ts with
e next

d in the

e 10-1.
cannot be represented in the exception registers. When one of these instructions would cause a
IEEE exception, the implementation does one of the following:

• Cause, instead, an unimplemented exception. The multiple-operation instruction is placed
exception register along with the appropriate unimplemented exception code. Or,

• Treat the multiple-operation instruction as two separate single-operation instructions. In this
an instruction pattern is fabricated for the portion of the instruction that caused the tra
exception (e.g., the instruction pattern for aFLOATING-POINT ADD if the add operation caused th
exception), and this pattern, along with the appropriate exception code, is placed in an exc
register. The other operation, if it does not also cause a trapping exception, completes norm
both operations cause trapping IEEE exceptions, then two instruction patterns are fabricat
placed in two exception registers. These two instructions have the same ordering constrain
respect to other instructions as for other single-operation instructions as described in th
section.

Figure 10-1 shows the format of the exception registers.The exception and ei fields are explaine
paragraphs that follow.

exception The exception code corresponding to the exception detected as shown in Tabl
Exception codes not listed are reserved.

exception ei

6 26

Figure 10-1. Floating-Point Exception Register Format
10-2 Floating-Point Exceptions PA-RISC 2.0 Architecture

the
 for a

ld is

pping
des. In
ster and

ception
 other
tions).
 as the

t must be
 record
The two bits labeled ‘pp’ in the exception code contain information regarding
parameters for the underflow exceptions. See “Underflow Exception” on page 10-12
detailed description of this field.

ei All bits other than the major opcode, copied from the excepting instruction. This fie
undefined if the exception code is set to ‘no exception’.

Exception Register Operation

When all pending instructions are forced to complete, all operations which complete with a tra
exception are placed in the exception registers together with their corresponding exception co
order to complete an operation, the coprocessor may place the operation in an exception regi
mark it with an unimplemented exception.

The coprocessor places the excepting instruction that first entered the IA queues in any of Ex
Registers 1 through 7. Other instructions which complete with a trap are placed in any of the
available Exception Registers (those which are not already occupied by excepting instruc
Excepting instructions may be placed in the Exception Registers 1 through 7 in any order as long
data dependencies are preserved (the order need not be the order in which they were fetched bu
ordered for the data dependencies). If an instruction completes without a trapping exception, no

Table 10-1. Floating-Point Exception Codes

Exception code Opcode Description

000000 0C/0E No exception

100000 0C/0E Invalid operation

010000 0C/0E Division-by-zero

001000 0C/0E Overflow

pp0100 0C/0E Underflow

000010 0C/0E Inexact

000001 0C/0E Unimplemented

001010 0C/0E Inexact & Overflow

pp0110 0C/0E Inexact & Underflow

001001 0C Unimplemented

001011 0E Unimplemented

000011 06 Unimplemented

100011 26 Unimplemented

101011 2E Unimplemented

pp1100 2E Underflow

010010 2E Inexact

pp1110 2E Underflow and Inexact

011000 2E Overflow

011010 2E Overflow and Inexact

110000 2E Invalid
10-3PA-RISC 2.0 Architecture Floating-Point Exceptions

 setting

ption",

sor, or
apping
rapping

ps may

 is 1, the
 taken.
re the
 always

mory
rapping
 to the

lem, a
erence
re the
of that instruction appears in the exception registers. The exception queue need not be packed.

Once software has processed the exception registers, it must clear the exception registers by
them all to zeros before non-load/store instructions can be executed.

If the T-bit equals 0 and any exception register has an exception field not equal to "no exce
execution of any non-load/store floating-point instruction is an undefined operation.

Interruptions and Exceptions

Floating-point instructions may cause interruptions in the processor, exceptions in the coproces
both. Coprocessor exceptions are divided into immediate trapping exceptions and delayed tr
exceptions. The only immediate trapping exception is the reserved-op exception. The delayed t
exceptions consist of the unimplemented exception and the IEEE exceptions.

The IEEE exceptions are the following:

• invalid operation

• division-by-zero

• inexact

• overflow

• underflow

While the unimplemented and reserved-op exceptions must always trap, the IEEE exception tra
be disabled.

Each IEEE exception has a corresponding enable bit in the Status Register. When an enable bit
corresponding trap is enabled, and if the corresponding exception occurs, a delayed trap is
However, on the overflow and underflow exceptions, an implementation may choose to igno
enable bit and always trap on the exception. In such implementations, the corresponding trap is
enabled.

Immediate Trapping

Floating-point instructions may cause three types of immediate trapping interruptions: me
reference interruptions, the assist emulation trap, and the reserved-op exception. Immediate t
exceptions and interruptions always cause a trap or fault when the front of the IA queues points
interrupting instruction. An interrupting instruction must not alter its operands.

As described in Chapter 4, “Control Flow”, when the processor detects a memory reference prob
memory reference fault or trap occurs. Only load and store instructions cause memory ref
interruptions. The memory reference interruptions associated with floating-point instructions a
following:

• Data TLB miss fault/Data page fault

• Data memory access rights trap

• Data memory protection ID trap
10-4 Floating-Point Exceptions PA-RISC 2.0 Architecture

ration
ister to
cessor

ception

 not in
 take a
 an assist
ter 0,

take the

ating-

d, and

tore of

nding

pping

or an

apping
• Unaligned data reference trap

• Data memory break trap

• TLB dirty bit trap

• Page reference trap

• Data debug trap

As described in “Coprocessor Configuration Register” on page 6-22, the Coprocessor Configu
Register (CCR) in the processor controls the assist emulation trap. Software may set this reg
force an assist emulation trap on every occurrence of a floating-point instruction. See “Copro
Instructions” on page 6-22 for more information.

Finally, attempting an instruction with a reserved sub-opcode may cause an immediate assist ex
trap. See “Reserved-op Exception” on page 10-8 for details.

Delayed Trapping

Delayed traps report an exception when the excepting instruction is a pending instruction but is
the IA queues. The following descriptions indicate when the processor and coprocessor may
delayed trap and must take a delayed trap. Normally, a delayed trap forces the processor to take
exception trap. However, if the current instruction is a double-word store of Floating-point Regis
all the floating-point registers are set normally as if a trap occurred, but the processor does not
assist exception trap.

The coprocessor may signal a delayed trap when at least one of the following occurs:

• A pending instruction caused an unimplemented exception and the current instruction is a flo
point instruction, or

• A pending instruction caused an IEEE exception, the corresponding exception trap is enable
the current instruction is a floating-point instruction.

A delayed trap must occur when at least one of the following conditions exist:

• The T-bit is 1 and the current instruction is any floating-point instruction.

• The exception queue is full and the current instruction is any floating-point instruction.

• A pending instruction causes a trapping exception and the current instruction is a load or s
Floating-point Register 0.

• The current instruction is a load or store of an exception register that will be set by a pe
instruction.

• The current instruction is a load or store of the destination register of a pending, tra
instruction or an operation which depends on a pending, trapping instruction.

• The current instruction is a load of the source register of a pending, trapping instruction
operation which depends on a pending, trapping instruction.

• The current instruction is aFLOATING-POINT TEST instruction and the previousFLOATING-POINT
COMPARE either is pending and caused a trapping exception or depends on a pending, tr
10-5PA-RISC 2.0 Architecture Floating-Point Exceptions

ion to
truction
 queue
s on all

ion” on

nding

ting-
ction is
it is set

ith an

auses a
tination

d bias-
ng (in
t,
.

ets the
instruction.

An instruction depends on a previous instruction whenever it must wait for the previous instruct
complete in order to ensure that the instructions appear sequentially executed to software. Ins
dependency is transitive. For example, if the exception queue is full, and every instruction in the
depends on the instruction immediately preceding it, then each instruction in the queue depend
the instructions preceding it.

When a delayed trap occurs, the following happens:

1. The coprocessor completes all pending floating-point instructions.

2. The coprocessor sets the exception registers as described in “Exception Register Operat
page 10-3.

3. The coprocessor sets the Status Register T-bit to 1.

4. For each pending instruction that completes with a trapping IEEE exception, the correspo
exception flag may either be set to 1, or left unchanged, but cannot be set to 0.

5. If the current instruction is any floating-point instruction except a double-word store of Floa
point Register 0, the processor takes an assist exception trap. Otherwise, if the current instru
a double-word store of Floating-point Register 0, the store completes, no trap occurs, the T-b
to 0 and execution proceeds normally.

Any pending instruction which depends on a pending, trapping instruction must complete w
unimplemented exception.

Table 10-2 specifies the status of the source and destination registers when an instruction c
delayed trap. When the table indicates the original operand values are preserved, and if the des
register is not one of the source registers, the contents of the destination register are undefined.

As indicated in the table, trapping overflow exceptions and underflow exceptions return a rounde
adjusted result. A bias-adjusted result is obtained by dividing (in the case of overflow) or multiplyi
the case of underflow) the infinitely precise result by and then rounding. The bias adjustmena, is
192 for single-word numbers, 1536 for double-word numbers, and 24576 for quad-word numbers

Non-trapping Exceptions

If an IEEE exception occurs, but the corresponding trap is disabled, then the coprocessor s

Table 10-2. Delayed Trap Results

Exception type Trapped result

Invalid operation original operand values preserved

Division-by-zero original operand values preserved

Overflow rounded bias-adjusted result in destination

Underflow rounded bias-adjusted result in destination

Inexact rounded result in destination

Unimplemented original operand values preserved

2
a

10-6 Floating-Point Exceptions PA-RISC 2.0 Architecture

eration

signals a
ries the

:

may set
sets the
ptions

sets the
n may

d. The

esult is

ny
ge

ust
n

corresponding flag bit in the Status Register to 1. Table 10-3 lists the results returned by an op
which completes with a non-trapping exception with a floating point destination format.

Multiple Exceptions

If the current instruction causes a reserved-op exception, and at the same time the coprocessor
delayed trap caused by a previous exception, the delayed trap occurs. Software then ret
instruction to handle the reserved-op exception.

The only other exceptions which may both occur on the same instruction are one of the following

• inexact and overflow exceptions

• inexact and underflow exceptions

When one of these two cases occur, the action taken is as follows:

1. If both traps are enabled when the coprocessor takes a delayed trap, the implementation
either or both corresponding status flags to 1, or leave them unchanged. The coprocessor
exception field in the corresponding exception register to the value that indicates both exce
occurred.

2. If only one trap is enabled when the coprocessor takes a delayed trap, the coprocessor
corresponding exception field to the value that indicates the enabled trap. The implementatio
either set the flag bit that corresponds to the enabled trap to 1, or leave it unchange
coprocessor sets the flag bit that corresponds to the disabled trap to 1.

3. If neither trap is enabled, the coprocessor sets both corresponding status flags to 1.

If the overflow or underflow exception caused a trap on the instruction, a rounded bias-adjusted r
returned. Otherwise, a rounded result is returned.

Trap Handlers

Programming Note
The IEEE standard strongly recommends that users be allowed to specify a trap handler for a
of the five standard exceptions. The mechanisms to accomplish this are programming langua
and operating system dependent.

Since the coprocessor continues to trap if the Status Register T-bit is 1, the trap handler m
first set the bit to 0 by executing a double-word store of register 0. The trap handler may the

Table 10-3. Non-trapped Exception Results

Exception type Non-trapped result

Invalid operation quiet NaN in destination

Division-by-zero properly signed∞ in destination

Overflow rounded result in destination

Underflow rounded result in destination

Inexact rounded result in destination
10-7PA-RISC 2.0 Architecture Floating-Point Exceptions

to
s.

ced
as
e
p

the
p
n.

ither a

. It does
egister.

us
on.
he

ented
-point

on-load/
ither an

pt the

ay put

 result
verflow
emulate any of the instructions in the exception queue beginning with the instruction in
Exception Register 1 and proceeding sequentially to the end.

The trap handler must clear all the exception registers. If the trap handler chooses not
emulate all the instructions, it must reset the T-bit to 1 before returning to the trapped proces

To emulate an instruction, the trap handler computes or specifies a substitute result to be pla
in the destination register of the operation. The trap handler may determine what operation w
being performed and what exceptions occurred during the operation by examining th
corresponding exception register. On overflow, underflow, and inexact exceptions, the tra
handler has access to the correctly rounded result by examining the destination register of
operation. On unimplemented, invalid operation, and divide-by-zero exceptions, the tra
handler has access to the operand values by examining the source registers of the instructio

Reserved-op Exception

When a non-load/store instruction has a reserved sub-opcode, an implementation signals e
reserved-op exception or an unimplemented exception.

A reserved-op exception always forces the processor to take an immediate assist exception trap
not set the exception registers or the T-bit, and does not change any of the flag bits in the Status R
The reserved-op exception cannot be disabled.

Programming Note
Trapping is immediate for reserved-op exceptions. The trap handler must check for a Stat
Register T-bit equal to 0 to determine that the trap was caused by a reserved-op excepti
When a reserved-op exception occurs, software interprets the contents of the IIR, nullifies t
instruction pointed to by the front of the IIA queues, and returns control to the trapping
process.

Unimplemented Exception

If an implementation chooses not to execute an instruction, the instruction signals an unimplem
exception. An unimplemented exception always causes a delayed trap on a later floating
instruction. It does not change the Status Register Flag bits and cannot be disabled. When a n
store floating-point operation references a reserved sub-opcode, an implementation signals e
unimplemented exception or a reserved-op exception.

An implementation may signal an unimplemented exception on any floating-point instruction exce
FLOATING-POINT TEST instruction, theFLOATING-POINT IDENTIFY instruction, a load instruction, or
a store instruction.

When a trap forces the coprocessor to complete all pending instructions, implementations m
uncompleted instructions in the exception registers and set the correspondingexception field to the
appropriate unimplemented exception code.

A conversion to a floating-point format always causes an unimplemented exception when the
overflows, the result lies too far outside the range for the exponent to be bias-adjusted, and the o
10-8 Floating-Point Exceptions PA-RISC 2.0 Architecture

at that
 trap is
ented

ler the
derflow

 integer
to an

to be
ivered,
hen the
riately
trap is enabled. Table 10-4 shows the result values which produce an unimplemented exception;a is the
bias-adjustment value for the destination format,p is the precision, andv is the source value.

Similarly, an unimplemented exception is always caused by a conversion to a floating-point form
underflows, lies too far outside the range for the exponent to be bias-adjusted, and the underflow
enabled. Table 10-5 shows the floating-point underflow results which cause an unimplem
exception;a is the bias-adjustment value for the destination format,p is the precision, andv is the
source value.

Reporting these overflows and underflows as unimplemented exceptions allows a trap hand
ability to inspect the source operands. Source operands are not preserved on overflow or un
trapping exceptions.

Finally, the unimplemented exception is always signaled when the operand of a conversion to an
format is a NaN. Low-level trap handlers may choose to silently deliver a result or convert it
invalid exception.

Invalid Operation Exception

An instruction signals the invalid operation exception if an operand is invalid for the operation
performed. When the exception occurs without a trap and a floating-point formated result is del
the coprocessor delivers a quiet NaN to the destination register. If an integer result is delivered, t
closest integer is delivered. For example, a signed conversion of an infinity will deliver the approp
signed largest integer. Unsigned conversions will deliver either a zero or the maximum integer.

Table 10-4. Overflow Results Causing Unimplemented Exception

Rounding Mode Ranges

nearest

to 0

to +∞

to

Table 10-5. Underflow Results Causing Unimplemented Exception

Rounding Mode Range

nearest

to 0

to +∞

to

∞– v 2–
Emax a+()

2 2
p–

–()≤< 2
Emax a+()

2 2
p–

–() v +∞<≤

∞– v 2–
Emax a 1+ +()

≤< 2
Emax a 1+ +()

v +∞<≤

∞– v 2–
Emax a 1+ +()

≤< 2
Emax a+()

2 2
p 1–()–

–() v +∞< <

∞– ∞– v 2–
Emax a+()

2 2
p 1–()–

–()< < 2
Emax a 1+ +()

v +∞<≤

2–
Emin a–()

1 2
p 1+()–

–() v 2
Emin a–()

1 2
p 1+()–

–()< <

2–
Emin a–()

v 2
Emin a–()

< <

2–
Emin a–()

v 2
Emin a–()

1 2
p–

–()≤<

∞– 2–
Emin a–()

1 2
p–

–() v 2
Emin a–()

<≤
10-9PA-RISC 2.0 Architecture Floating-Point Exceptions

e"
.

ults
ble by

e, an
 mode

ed

lt
If the exception causes a trap, the coprocessor leaves the operands unchanged.

The invalid operations are:

1. Any arithmetic operation on a signaling NaN except for conversions to integer formats.

2. Magnitude subtraction of infinities like or ;

3. The multiplication of 0 and∞;

4. The division operations and ;

5. Square root if the operand is less than zero;

6. Comparison using conditions involving a "T" or conditions involving "<", ">", "true", or "fals
without a "?", when the operands are unordered. See “Comparison Conditions” on page 8-16

7. Conversion to an integer format of an∞, or when the result overflows. Table 10-6 shows the res
which produce an integer overflow. In the table, is the most positive integer representa
the destination format, is the most negative (zero for unsigned integers), andv is the source
value.

Integer overflow is determined after rounding as if the result has infinite width. For exampl
unsigned conversion of -0.25 is zero (and inexact) in all rounding modes except . In rounding

, the operation results in an invalid exception.

Division-by-zero Exception

From the standard:

[§]7.2 Division by zero. If the divisor is zero and the dividend is a finite nonzero number, then
the division by zero exception is signaled. The result, when no trap occurs, is a correctly sign
∞ (6.3) [see “Sign Bit” on page 8-24].

When a trap occurs, the operands must be left unchanged.

Inexact Exception

From the standard:

[§]7.5 Inexact. If the rounded result of an operation is not exact or if it overflows without an
overflow trap, then the inexact exception shall be signaled. The rounded or overflowed resu

Table 10-6. Integer Results Causing Invalid Exception

Rounding Mode Ranges

nearest

to 0

to +∞

to

+∞() ∞–()+ +∞() +∞()–

0 0⁄ ∞ ∞⁄

I max
I min

v Imin 1 2⁄–< v Imax 1 2⁄+≥

v Imin 1–≤ v Imax 1+≥

v Imin 1–≤ v Imax>

∞– v Imin< v Imax 1+≥

∞–
∞–
10-10 Floating-Point Exceptions PA-RISC 2.0 Architecture

e

ct.

 had the
. On all
 of this
rations,
 trap is

.

 is the

rmat,
10-8.

ign.

rries

and

er to the

rflows
shall be delivered to the destination or, if an inexact trap occurs, to the trap handler [th
destination register in this architecture].

A conversion to a fixed-point format also signals the inexact exception when the result is not exa

Overflow Exception

To determine overflow on an operation, the coprocessor uses the result that would have occurred
result been computed and rounded as if the destination’s exponent range were unbounded
operations except converts, the coprocessor signals an overflow exception when the magnitude
result exceeds the destination format’s largest finite number. The same is true of conversion ope
except that when this result is beyond the range of bias-adjusted numbers and the overflow
enabled, the instruction causes an unimplemented exception.

An instruction cannot cause an overflow exception when at least one operand is a NaN or infinity

Table 10-7 summarizes the result values that cause an overflow exception. In the table,
maximum exponent value for the destination format,p is the precision of the format, andv is the value
of the exact result before rounding.

* When the overflow trap is enabled and the operation is a conversion to a floating-point fo
this bound is limited to bias-adjusted numbers. See “Unimplemented Exception” on page

When no trap occurs, the result of an overflow exception is one of the following:

1. Round to nearest carries all overflows to∞ with no change in sign.

2. Round toward 0 carries all overflows to the format’s largest finite number with no change in s

3. Round toward−∞ carries positive overflows to the format’s largest finite number, and ca
negative overflows to−∞.

4. Round toward +∞ carries negative overflows to the format’s most negative finite number,
carries positive overflows to +∞.

When an overflow exception causes a trap, the excepting operation returns a bias-adjusted numb
destination register.

The overflow exception is not signaled for integer results. The coprocessor signals integer ove
with an unimplemented exception.

Table 10-7. Results Causing Overflow Exception

Rounding Mode Ranges

nearest

to 0

to +∞

to

Emax

2
Emax 2 2

p–
–() v +∞*<≤ ∞–

*
v 2

Emax 2 2
p–

–()–≤<

2
Emax 1+()

v +∞*<≤ ∞–
*

v 2
Emax 1+()

–≤<

2
Emax 2 2

p 1–()–
–() v +∞*< < ∞–

*
v 2

Emax 1+()
–≤<

∞– 2
Emax 1+()

v +∞*<≤ ∞–
*

v 2
Emax 2 2

p 1–()–
–()–< <
10-11PA-RISC 2.0 Architecture Floating-Point Exceptions

y

ter
e

unded
ding to
on even

 is

ed after
 and

occurs.
tininess

alized

tination
 result
ption is

perand
and.

leftmost
Underflow Exception

From the standard:

[§]7.4 Underflow. Two correlated events contribute to underflow. One is the creation of a tin

nonzero result between which, because it is tiny, may cause some other exception la
such as overflow upon division. The other is extraordinary loss of accuracy during th
approximation of such tiny numbers by denormalized numbers.

Tininess is detected on a nonzero result which lies strictly between , when the result is ro
as if the exponent range were unbounded. Note that rounding for detection of tininess and roun
determine a result are distinct. In certain cases, the coprocessor signals an underflow excepti
though it returns a normalized result to the destination register.

Table 10-8 shows the range of exact results which will cause detection of tininess. In the table,
the minimum exponent value for the destination format,p is the precision of the format, andv is the
value of the exact result before rounding.

Loss of accuracy occurs when the coprocessor detects an inexact result, where the result return
rounding differs from what the result would have been if the destination had infinite precision
unbounded range.

An instruction causes an underflow exception when the underflow trap is enabled and tininess
An instruction also causes an underflow exception when the underflow trap is disabled and both
and loss of accuracy occur.

An operation which causes a non-trapping underflow exception may return a zero, denorm

number, or .

Trapped underflows on all operations except conversions deliver a bias-adjusted result to the des
register. Trapped underflow on conversions to a floating-point format delivers a bias-adjusted
when the result can be represented by a bias-adjusted number. If not, an unimplemented exce
signaled instead of an underflow exception.

Conversion to an integer format cannot underflow. The result when the magnitude of the source o
is less than 1 is either 0, +1, or−1 depending on the rounding mode and the sign of the source oper

When an instruction causes a trapping underflow exception and the trap enable bit equals 0, the

Table 10-8. Results Causing Tininess

Rounding Mode Range

nearest

to 0

to +∞

to

2
Emin±

2
Emin±

Emin

2
Emin 1 2

p 1+()–
–()– v 2

Emin 1 2
p 1+()–

–()< <

2
Emin– v 2

Emin< <

2
Emin– v 2

Emin 1 2
p–

–()≤<

∞– 2
Emin 1 2

p–
–()– v 2

Emin<≤

2
Emin±
10-12 Floating-Point Exceptions PA-RISC 2.0 Architecture

st
ro. The
nitely
 caused

ores of
t a later
ating-

vious
-bit to 0.
 Status
re lets
e the IIA

ouble-
entire
egister
-word
two bits in the corresponding exception register’sexception field are set (see Figure 10-2). The fir
parameter bit, the round away (RA) bit, is set to 1 whenever the result is rounded away from ze
second is the inexact (I) bit which is set to 1 if the rounded bias-adjusted result is not the infi
precise result. The trap handler uses this information to denormalize the result and prevent errors
by rounding twice.

Saving and Restoring State

To save state, software first performs a double-word store of register 0, then double-word st
registers 1, 2, and 3, and a sufficient number of double-word stores to save registers needed a
time. Thirty-two double-word coprocessor stores are sufficient to save the entire state of the flo
point coprocessor.

A double-word store of register 0 cancels all pending traps, forces the completion of all pre
instructions, suppresses any ensuing trap, completes the store, and sets the Status Register T
When the store cancels a trap, the value written to memory has the bit corresponding to the
Register T-bit set to 1; otherwise, this bit is set to 0. This special treatment of a double-word sto
the save routine be nested, does not require the assistance of a trap handler, and need not hav
queues enabled.

To restore state, software performs double-word loads of all required registers, followed by a d
word load of Floating-point Register 0. Thirty-two double-word loads are sufficient to restore the
state of the coprocessor. A double-word load of Floating-point Register 0 which sets the Status R
T-bit to 1 re-arms a trap. The next floating-point instruction will cause a trap (apart from a double
store of Floating-point Register 0).

The following sequences save and restore the entire state of the coprocessor.

RA I 0 1 0/1 0

1 1 1 1 1 1

Figure 10-2. Exception Field Underflow Parameters

; enter with SaveAreaPtr pointing at the first double-word of the save area
Instruction Comment

SAVEFPU
FSTD,MA FPR0,8(SaveAreaPtr) ;quiescent, cancel trap
FSTD,MA FPR1,8(SaveAreaPtr) ;save exception register
FSTD,MA FPR2,8(SaveAreaPtr) ;save exception register
FSTD,MA FPR3,8(SaveAreaPtr) ;save exception register
FSTD,MA FPR4,8(SaveAreaPtr) ;save data register
FSTD,MA FPR5,8(SaveAreaPtr) ;save data register

•
•
•

FSTD,MA FPR30,8(SaveAreaPtr) ;save data register
FSTD FPR31,0(SaveAreaPtr) ;save last data register
10-13PA-RISC 2.0 Architecture Floating-Point Exceptions

first and
The only required ordering in these sequences is that Floating-point Register 0 must be saved
restored last.

; enter with SaveAreaPtr pointing at the last double-word of the save area.
RSTFPU Instruction Comment

FLDD 0(SaveAreaPtr),FPR31 ;restore data register
FLDD,MB -8(SaveAreaPtr),FPR30 ;restore data register

•
•
•

FLDD,MB -8(SaveAreaPtr),FPR4 ;restore data register
FLDD,MB -8(SaveAreaPtr),FPR3 ;restore exception register
FLDD,MB -8(SaveAreaPtr),FPR2 ;restore exception register
FLDD,MB -8(SaveAreaPtr),FPR1 ;restore exception register
FLDD,MB -8(SaveAreaPtr),FPR0 ;restore exception register

;potentially re-arm trap
10-14 Floating-Point Exceptions PA-RISC 2.0 Architecture

or

 which
onitor

tures.

s, their

cessor
 if the

nitor
or. The
apter 5,

entation
11 Performance Monitor Coprocess

The performance monitor coprocessor is an optional, implementation-dependent coprocessor
provides a minimal common software interface to implementation-dependent performance m
hardware.

The performance monitor coprocessor responds to coprocessor instructions with auid equal to 2.

Performance Monitor Instructions

The performance monitor instruction set consists of two instructions,PERFORMANCE MONITOR
ENABLE (PMENB) and PERFORMANCE MONITOR DISABLE (PMDIS), which provide a common
software interface to enable and disable the implementation-dependent performance monitor fea

The following figure shows the format of these operations and Table 11-1 shows the operation
mnemonics, and sub-opcodes:

The performance monitor coprocessor instructions are described at the end of this chapter.

When a performance monitor coprocessor instruction is executed and CCR{2} is 0, the copro
instruction causes an assist emulation trap. It is an undefined operation to set CCR{2} to 1
performance monitor coprocessor is nonexistent.

Performance Monitor Interruptions

Interruption vector number 29 in interruption group 2 is defined as the performance mo
coprocessor interrupt for implementation-dependent use by the performance monitor coprocess
interrupt is unmasked when the PSW F-bit is 1, and is masked when the PSW F-bit is 0. See Ch
“Interruptions” for additional details.

Reserved Sub-Opcode Exception

When a performance monitor coprocessor instruction has a reserved sub-opcode, the implem
must signal a reserved-op exception by taking an assist exception trap.

0C rv sub 2 n rv

6 12 5 3 1 5

Table 11-1. Performance Monitor Operations

Opcode Sub-op Mnemonic Operation

0C 1 PMDIS Disable performance monitor
0C 3 PMENB Enable performance monitor
0C 0,2,4..F undefined
0C 10..1F reserved
11-1PA-RISC 2.0 Architecture Performance Monitor Coprocessor

mance
dent.

erflow
set by

ers
Monitor Units

The monitor units are hardware units used to collect the necessary information during perfor
monitoring. The number of the monitor units and their hardware types are implementation depen

If a monitor unit provides counters, the most significant bit of the counter is required to be an ov
indicator. The bit must be set when the counter overflows and must remain set until explicitly re
software. When the overflow indicator is set the remaining bits of the counter are undefined.

NOTE
If counters are used to implement the measurement units, it is recommended that the count
be at least 32 bits wide.
11-2 Performance Monitor Coprocessor PA-RISC 2.0 Architecture

 and

n is
ter is
Performance Monitor Disable PMDIS

Format: PMDIS,n

(55)

Purpose: To disable the implementation-dependent performance monitor coprocessor,
conditionally nullify the following instruction.

Description: Disable all measurement units, after the current instruction. The following instructio
nullified if measurement is enabled and the ,N completer is specified. The comple
encoded in then field of the instruction.

Operation: if (n && measurement_enabled)
PSW[N] ← 1;

measurement_enabled← 0;

Exceptions: Assist emulation trap

0C rv 1 2 n rv

6 12 5 3 1 5
11-3PA-RISC 2.0 Architecture Performance Monitor Coprocessor

Performance Monitor Enable PMENB

Format: PMENB

(55)

Purpose: To enable the implementation-dependent performance monitor coprocessor.

Description: Enable the measurement units, starting with the next instruction.

Operation: measurement_enabled← 1;

Exceptions: Assist emulation trap

0C rv 3 2 0 rv

6 12 5 3 1 5
11-4 Performance Monitor Coprocessor PA-RISC 2.0 Architecture

 levels
ed to
) page
d (2) the
 PID

 virtual
e low-
ntifiers;
ich are

ta or

resses

sical
 TLB

ntation
all the

puts,
A Glossary

Absolute Address

See Physical Address.

Access Rights

A function of virtual address translation that controls access to each page through privilege
for read, write, execute, and gateway. The TLB contains, within each entry, information us
determine who may have access to that page. This information is divided into two groups: (1
access (access ID) which is used to determine if a process or user may access a page; an
access rights field that is combined with the user’s privilege level and the WD bit of the
register to determine if the type of access the user is requesting will be allowed.

Address

PA-RISC is a byte-addressable system which uses both virtual and absolute addresses. A
address can be split into two parts: the high-order bits which are the space identifier and th
order bits that give the offset within the space. Absolute addresses do not have space ide
only a 64-bit offset. Doublewords, words, and halfwords are always located at addresses wh
aligned to their size (in bytes). Quadwords are aligned on doubleword boundaries.

Address Translation

For a virtual memory system, the process whereby the virtual (logical) address of da
instructions is translated to its absolute address in physical memory.

Aliasing

The condition when the same physical memory location is accessed by different virtual add
or by both an absolute and a virtual address.

Alter

The action of setting the E-bit of a TLB entry to 0 and modifying some portion of the phy
page number field. Altered entries in the TLB are still visible to software through the insert
protection instructions.

Architecture

Refers to the time-independent functional appearance of a computer system. An impleme
of an architecture is an ensemble of hardware, firmware, and software that provides
functions as defined in the architecture.

Arithmetic and Logical Unit (ALU)

The part of a PA-RISC processor that performs arithmetic and logic operations on its in
producing output and status information.
A-1PA-RISC 2.0 Architecture Glossary

nce or
lized
emory

resses.

 is called

.

ge.

m.

s is to

ted to
 makes

etrieved
eparate
Assist Processor

A processor which may be added to the basic PA-RISC system to enhance performa
functionality for algorithms which experience substantial gains from the use of specia
hardware. Assist processors are differentiated by the level at which they interface with the m
hierarchy. (See special function units and coprocessors).

B-bit (Taken Branch in Previous Cycle)

A bit in the PSW that is 1 if the previous instruction was a taken branch.

Base Register

A register that holds the numeric value that is used as a base value in the calculation of add
Displacements or index values are added to this base value.

Base-Relative Branch

When a general register is used as the base offset to obtain the target address, the branch
base relative.

Biased Exponent

The exponent field for a floating-point number. It consists of the true exponent plus the bias

Binary Floating-point Number

A number format consisting of the three components: sign, exponent, and significand.

Block TLB

A block TLB provides fixed address translations which map address ranges larger than a pa

Byte

A group of eight contiguous bits which is the smallest addressable unit on a PA-RISC syste

C-bit (Code Address Translation Enable)

A bit in the PSW that specifies whether virtual address translation of the instruction addres
be performed.

Cache

A high-speed buffer unit between main memory and the CPU. The cache is continually upda
contain recently accessed contents of main memory to reduce access time. When a program
a memory request, the CPU first checks to see if the data is in the cache so that it can be r
without accessing memory. There may be one cache for both instructions and data or s
caches for each.
A-2 Glossary PA-RISC 2.0 Architecture

ages.
age of

n how
system

ested by

ding

hecks

 data

e. PA-
ation

dress
ermine
Cache Coherence

The property of multiple caches whereby they provide identical shared memory im
Processors in a multiprocessor system are said to be cache coherent if they provide the im
single cache.

Cache Control Hint

A 2-bit field in some memory reference instructions which provides a hint to the processor o
to resolve cache coherence. The processor may disregard the hint without compromising
integrity, but performance may be enhanced by following the hint.

Cache Miss

A cache miss occurs when the cache does not contain a copy of the cache line being requ
the address. The cache is updated with data and re-accessed.

Carry/Borrow Bits

A 16-bit field in the PSW that indicates if a carry or borrow occurred from the correspon
nibble (4 bits) as a result of the previous arithmetic operation.

Central Processing Unit (CPU)

The part of a PA-RISC processor that fetches and executes instructions.

Check

The interruption condition when the processor detects an internal or external malfunction. C
may be either synchronous or asynchronous with respect to the instruction stream.

Coherence Check

An action taken by hardware to insure coherence.

Combined TLB

Some systems have a TLB which provides address translation for both instruction and
references.

Compatibility

The ability for software developed for one machine type to execute on another machine typ
RISC provides compatible execution of application programs written for earlier-gener
Hewlett-Packard computer systems.

Completer

A machine instruction field used to specify instruction options. Typical options include ad
modification, address indexing, precision of operands, and conditions to be tested to det
whether to nullify the following instruction.
A-3PA-RISC 2.0 Architecture Glossary

ction is

ction,
ontrol

cache.
cialized
lly have

ssors.
a bit in
al. If a

mpt to

Q and

 to be

ed from
he) and

rs are
lied
Condition

The state of a value or a relationship between values used in determining whether an instru
to branch, nullify, or trap.

Control Register (CR)

A register which contains system state information used for memory access prote
interruption control, and processor state control. A PA-RISC processor contains 25 c
registers (7 more are reserved).

Coprocessor

A type of assist processor which interfaces to the memory hierarchy at the level of the
Coprocessors are special purpose units that work with the main processor to speed up spe
operations such as floating-point arithmetic and graphics processing. Coprocessors genera
their own internal state and hardware evaluation mechanism.

Coprocessor Configuration Register (CCR)

The CCR (in CR 10) is an 8-bit register which records the presence and usability of coproce
Each bit position (0-7) corresponds to the coprocessor with the same unit number. Setting
the CCR to 1 enables the use of the corresponding coprocessor, if present and operation
CCR bit is 0, the corresponding coprocessor, if present, is logically decoupled and an atte
reference the coprocessor causes an assist emulation trap.

Current Instruction

The instruction whose address is in the front element of the instruction address queues (IAS
IAOQ).

D-bit (Data Address Translation Enable)

A bit in the PSW that specifies whether virtual address translation of data addresses is
performed.

Data Cache (D-cache)

A high-speed storage device which contains data items that have been recently access
main memory. The D-cache can be accessed independently of the instruction cache (I-cac
no synchronization is performed.

Data TLB (DTLB)

A separate TLB which does address translation only for data memory references.

Denormalized Numbers

Any non-zero floating-point number with the exponent field all zeros. Denormalized numbe
distinguished from normal numbers in that the value of the “hidden” bit to the left of the imp
binary point is zero.
A-4 Glossary PA-RISC 2.0 Architecture

 to as

abled

tion.

tained

endian

dress

he two
bits in
s: Space

 two

n. The
Dirty

A block of memory (commonly a cache line or a page) which has been written to is referred
dirty.

Disabling an Interrupt

A disabled interrupt is prevented from occurring. The interruption does not wait until re-en
and it is not kept pending.

Displacement

The amount that is added to a base register to form an offset in the virtual address computa

Dynamic Displacement

If the displacement value is computed during the course of program execution and is ob
from a general register, it is called dynamic.

E-bit (Little Endian Memory Access Enable)

A bit in the PSW which determines whether memory references assume big endian or little
byte ordering.

Effective Address

The address of the operand for the current instruction, derived by applying specific ad
building rules.

Equivalently Aliased

A condition when two virtual addresses map to the same physical address, and where t
addresses are identical in the following bits: Offset bits 12 through 31. If the use of space
generating the cache index is enabled, the addresses must also be identical in these bit
Identifier bits 36 through 39, 44 through 47, and 52 through 63.

Equivalently Mapped

A condition when a virtual address is equal to its absolute address.

Exponent

The part of a binary floating-point number that normally signifies the integer power to which
is raised in determining the value of the represented number.

External Branch Instructions

The target of these instructions may lie in a different address space than that of the instructio
external branch instructions are:BE andBLE.
A-5PA-RISC 2.0 Architecture Glossary

hen
ing to

When
upt.

annot
fter the

onous

ating-
m and
oating-
lso be

SQ and
 not

st of
ally

 highest
d hold
External Interrupt Enable Mask (EIEM)

The EIEM (CR 15) is a 64-bit register containing one bit for each external interrupt class. W
set to 0, bits in the EIEM mask interruptions pending for the external interrupts correspond
those bit positions.

External Interrupt Request Register (EIR)

The EIR register (CR 23) is a 64-bit register containing one bit for each external interrupt.
set to 1, a bit designates that an interruption is pending for the corresponding external interr

F-bit (Performance Monitor Interruption Unmask)

A bit in the PSW used to unmask the performance monitor interruption.

Fault

The interruption condition when the current instruction requests a legitimate action which c
be carried out due to a system problem such as the absence of a main memory page. A
system problem is cleared, the faulting instruction will execute normally. Faults are synchr
with respect to the instruction stream.

Floating-point Register (FPR)

A storage unit which constitutes the basic resource of the floating-point coprocessor. Flo
point registers are at the highest level of memory hierarchy and are used to load data fro
store data to memory and hold operands and results of the floating-point coprocessor. The fl
point coprocessor contains 32 double-precision (64-bit) floating-point registers which may a
accessed as 64 single-precision (32-bit), or 16 quad-precision (128-bit) registers.

Following Instruction

The instruction whose address is in the back element of the instruction address queues (IA
IAOQ). This instruction will be executed after the current instruction. This instruction is
necessarily the next instruction in the linear code space.

Fraction

The portion of the significand explicitly contained in a binary floating-point number. The re
the significand is the “hidden” bit to the left of the implied binary point. The “hidden” bit norm
has the value one.

G-bit (Debug Trap Enable)

A bit in the PSW used to enable data and instruction debug traps.

General Register (GR)

A storage unit which constitutes the basic resource of the CPU. General registers are at the
level of memory hierarchy and are used to load data from and store data to memory an
operands and results from the ALU. A PA-RISC processor contains 32 general registers.
A-6 Glossary PA-RISC 2.0 Architecture

 at a

ediate

iority

t (IA
 The

in the

 space
. The

for use

ace for

ction.

m main
and no
H-bit (Higher Privilege Transfer Trap Enable)

A bit in the PSW that enables an interruption whenever the following instruction will execute
higher privilege level.

High-Priority Machine Check (HPMC)

An interruption which occurs when a hardware error has been detected which requires imm
attention.

I-bit (External, Power Failure, and LPMC Interruption Unmask)

A bit in the PSW used to unmask external interrupts, power failure interrupts, and low-pr
machine check interruptions.

IAOQ (Instruction Address Offset Queue)

A two-element queue of 64-bit registers that is used to hold the Instruction Address offse
offset). The first element is IAOQ_Front and holds the IA offset of the current instruction.
other element is IAOQ_Back and holds the IA offset of the following instruction.

IA-Relative Branches

When a displacement is added to the current Instruction Address offset (IA offset) to obta
target address, the branch is called IA relative.

IASQ (Instruction Address Space Queue)

A two-element queue of up to 64-bit registers that is used to hold the Instruction Address
(IA space). The first element is IASQ_Front and holds the IA space of the current instruction
other element is IASQ_Back and holds the IA space of the following instruction.

IIAOQ (Interruption Instruction Address Offset Queue)

A two-element queue of 64-bit registers that is used to save the Instruction Address offset
in processing interruptions.

IIASQ (Interruption Instruction Address Space Queue)

A two-element queue of up to 64-bit registers that is used to save the Instruction Address sp
use in processing interruptions.

Infinity

The binary floating-point numbers that have all ones in the exponent and all zeros in the fra
The values of these two numbers are distinguished only by the sign. Thus, they are +∞ and− ∞.

Instruction Cache (I-cache)

A high-speed storage device that contains instructions that have been recently accessed fro
memory. The I-cache can be accessed independently of the data cache (D-cache)
synchronization is performed.
A-7PA-RISC 2.0 Architecture Glossary

pply)

 traps,

 or the

of an
pe of

 20),
meter
s to an
en the
ved in

out of
int of

 of an
pe of

ned to
Instruction TLB (ITLB)

A separate TLB which does address translation only for instructions.

Interrupt

The interruption condition when an external entity (such as an I/O device or the power su
requires attention. Interrupts are asynchronous with respect to the instruction stream.

Interruption

An event that changes the instruction stream to handle exceptional conditions including
checks, faults, and interrupts.

Interruption Instruction Register (IIR)

The IIR (CR 19) is used by the hardware to store the instruction that caused the interruption
instruction that was in progress at the time the interruption occurred.

Interruption Offset Register (IOR)

The IOR (CR 21) receives a copy of the offset portion of a virtual address at the time
interruption whenever the PSW Q-bit is 1. The value copied is dependent upon the ty
interruption.

Interruption Parameter Registers (IPRs)

The Interruption Instruction Register or IIR (CR 19), Interruption Space Register or ISR (CR
and Interruption Offset Register or IOR (CR 21) are collectively termed the Interruption Para
Registers or IPRs. They are used to pass the interrupted instruction and a virtual addres
interruption handler. These registers are set (or frozen) at the time of an interruption wh
PSW Q-bit is 1. The IPRs can be read reliably only when the PSW Q-bit is 0. The values sa
these registers are dependent upon the type of interruption.

Interruption Processor Status Word (IPSW)

The IPSW (CR 22) receives the value of the PSW when an interruption occurs. The lay
IPSW is identical to that of PSW and it always reflects the machine state at the po
interruption.

Interruption Space Register (ISR)

The ISR (CR 20) receives a copy of the space portion of a virtual address at the time
interruption whenever the PSW Q-bit is 1. The value copied is dependent upon the ty
interruption.

Interruption Vector Address (IVA)

The IVA (CR 14) contains the absolute address of an array of service procedures assig
interruptions.
A-8 Glossary PA-RISC 2.0 Architecture

ion, it is

ion, it is

mer is

ysical
ough

 at a

on.

efore
d, and
 read
 range

rupt is
Interspace Branches

When the target of the branch lies in a different address space as that of the branch instruct
referred to as an interspace branch.

Intraspace Branches

When the target of the branch lies in the same address space as that of the branch instruct
referred to as an intraspace branch.

Interval Timer

Two internal registers which are both accessed through Control Register 16. The Interval Ti
a free-running counter that signals an interruption when equal to a comparison value.

Invalidate

The action of setting the E-bit of a TLB entry to a 0, leaving the virtual page number and ph
page number fields unchanged. Invalid entries in the TLB are still visible to software thr
insert TLB protection instructions.

L-bit (Lower Privilege Transfer Trap Enable)

A bit in the PSW that enables an interruption whenever the following instruction will execute
lower privilege level.

Local Branch Instructions

The target of these instructions always lie in the same address space as that of the instructi

Low-Priority Machine Check (LPMC)

An interruption which occurs when a recoverable hardware error has been detected.

M-bit (High-Priority Machine Check Mask)

A bit in the PSW that disables the recognition of an HPMC.

Many-Reader/One-Writer Non-Equivalent Aliasing

A condition where multiple virtual addresses are non-equivalent aliases. Generally, b
enabling a write-capable translation, any non-equivalent read-only aliases must be disable
the affected address range flushed from the cache. Similarly, before re-enabling the
translation(s), the write-capable translation must be disabled, and the affected address
flushed from the cache.

Masking an Interrupt

A masked interrupt can still be recognized as a pending event but occurrence of the inter
delayed until it is unmasked.
A-9PA-RISC 2.0 Architecture Glossary

 to

0000000

sical

. NaN
. The
t bit in

eet the

has
, and Z

, the

alled
Memory

A device capable of storing information in binary form. The term “memory” typically refers
main memory.

Memory Address Space

The memory address space consists of absolute addresses in the range 0x000000000
through 0xEFFFFFFFFFFFFFFF.

Memory-mapped I/O

Control of input and output through load and store instructions to particular virtual or phy
addresses.

Move-in

The action of bringing data or instructions into a cache.

Multiprocessor

A computer with multiple processors.

NaN

The binary floating-point numbers that have all ones in the exponent and a non-zero fraction
is the term used for a binary floating-point number that has no value (i.e., “Not a Number”)
two types of NaNs, quiet and signaling, are distinguished by the value of the most significan
the fraction field. A zero indicates a quiet NaN and a one indicates a signaling NaN.

Non-Equivalently Aliased

A condition when two virtual addresses map to the same physical address, but do not m
requirements for equivalently aliased addresses. (See “Equivalently Aliased” on page A-5.)

Nullify

To nullify an instruction is equivalent to skipping over that instruction. A nullified instruction
no effect on the machine state (except that the IA queues advance and the PSW B, N, X, Y
bits are set to 0). The current instruction is nullified when the PSW N-bit is 1.

P-bit (Protection Identifier Validation Enable)

A bit in the PSW that is used as a protection identifier validation enable bit. If the P-bit is 1
Protection Identifiers in control registers 8, 9, 12, and 13 are used to enforce protection.

Page

Virtual memory is partitioned into pages which can be resident in matching size blocks (c
page frames) in memory. The smallest page size is 4096 bytes (4 Kbytes).

Page Group

Eight contiguous pages, with the first of these pages beginning on a 32-Kbyte boundary.
A-10 Glossary PA-RISC 2.0 Architecture

nslated.
hysical

 0 to 3,
nt of

tant of

overy

re each

ction

for

ting at

pecial
mber.
ational.
pt to
Physical Address

The address that is the result of the virtual address translation or any address that is not tra
A physical address is the concatenation of the physical page number and the offset. P
addresses are also referred to as absolute addresses.

Privilege Level

The PA-RISC access control mechanisms are based on 4 privilege levels numbered from
with 0 being the most privileged. The current privilege level is maintained in the front eleme
the Instruction Address Offset Queue (IAOQ_Front).

Processor Status Word (PSW)

A 64-bit register which contains information about the processor state.

Q-bit (Interruption State Collection Enable)

A bit in the PSW that, when set to 1, enables collection of the machine state at the ins
interruption (IIASQ, IIAOQ, IIR, ISR, and IOR).

R-bit (Recovery Counter Enable)

A bit in the PSW that enables recovery counter trapping and decrementing of the Rec
Counter.

Read-Only Non-Equivalent Aliasing

A condition where multiple virtual addresses map to the same physical address, and whe
virtual address has a read-only translation.

Recovery Counter

The Recovery Counter (CR 0) counts down by 1 during execution of each non-nullified instru
for which the PSW R-bit is 1.

Remove

The action of taking a TLB entry out of the TLB. Insertion of translations into the TLB,
example, causes other entries to be removed.

S-bit (Secure Interval Timer)

A bit in the PSW that, when set to 1, allows the Interval Timer to be read only by code execu
the most privileged level.

SFU Configuration Register (SCR)

The SCR (in CR 10) is an 8-bit register which records the presence and usability of SFUs (S
Function Units), Each bit position (0-7) corresponds to the SFU with the same unit nu
Setting a bit in the SCR to 1 enables the use of the corresponding SFU if present and oper
If a SCR bit is 0, the corresponding SFU if present, is logically decoupled and an attem
reference the SFU causes an assist emulation trap.
A-11PA-RISC 2.0 Architecture Glossary

-RISC
24, and

ns. It
ted or

en”)

tual

essor

evel. It

e done in
 given

 done in

f these
ystem
Shadow Register (SHR)

A register into which the contents of a general register are copied upon interruptions. A PA
processor contains 7 shadow registers which receive the contents of GRs 1, 8, 9, 16, 17,
25. The contents of the shadow registers are copied back to these GRs by theRETURN FROM
INTERRUPTION AND RESTORE instruction.

Shift Amount Register (SAR)

The SAR (CR 11) is used by the variable shift, extract, deposit, and branch on bit instructio
specifies the number of bits or the ending bit position of a quantity that is to be shifted, extrac
deposited.

Sign

A one bit field in which one indicates a negative value and zero indicates a positive value.

Significand

The component of a binary floating-point number that consists of the implicit (or “hidd
leading bit to the left of the implied binary point together with the fraction field to its right.

Space Identifier (Space ID)

An up to 64-bit value which combines with the offset to form the upper portion of a vir
address.

Space Register (SR)

A register used to specify the space identifier for virtual addressing. A PA-RISC proc
contains 8 space registers.

Special Function Unit (SFU)

A type of assist processor which interfaces to the memory hierarchy at the general register l
acts as an alternate ALU for the main processor and may have its own internal state.

Static Displacement

If the displacement is a fixed value that is known at compile time, it is called static.

Strong Ordering

The property that accesses to storage, such as loads and stores, appear to software to b
program order. In multiprocessing systems, strong ordering means that accesses by a
processor appear to that processor as well as to all other processors in the system, to be
program order.

System Mask

The W, E, O, G, F, R, Q, P, D, and I bits of the PSW are known as the system mask. Each o
bits, with the exception of the Q-bit, may be set to 1, set to 0, written, and read by the s
control instructions that manipulate the system mask.
A-12 Glossary PA-RISC 2.0 Architecture

itional

LB.
ores) or

g the

n this

hen a
he TLB
ts, the
m the

annot
fter the

mory.
absolute

e use
T-bit (Taken Branch Trap Enable)

A bit in the PSW that enables the taken branch trap.

Taken Branch

Conditional branches are considered to be “taken” if the specified condition is met. Uncond
branches are always “taken”.

TLB Entry

A virtual to physical address translation, either valid or invalid, which is present in the T
Entries are visible to software through either references (such as loads, stores, and semaph
insert TLB protection instructions (IITLBP andIDTLBP).

TLB Miss Handling

The action taken, either by hardware or software, on a TLB miss. This involves insertin
missing translation into the proper TLB.

TLB Miss

The condition when there is no entry in the TLB matching the current virtual page number. I
case, the TLB is updated either by software or by hardware.

TLB Slot

A hardware resource in the TLB which holds a TLB entry.

Translation Lookaside Buffer (TLB)

A hardware unit which serves as a cache for virtual-to-absolute memory address mapping. W
memory reference is made to a given virtual address, the virtual page number is passed to t
and the TLB is searched for an entry matching the virtual page number. If the entry exis
absolute page number (contained in the entry) is concatenated with the page offset fro
original virtual address to form an absolute address.

Trap

The interruption condition when either (1) the function requested by the current instruction c
or should not be carried out, or (2) system intervention is requested by the user before or a
instruction is executed.

Virtual Addressing

A capability that eliminates the need to assign programs to fixed locations in main me
Addresses supplied by a program are treated as logical addresses which are translated to
addresses when physical memory is addressed.

Write Disable (WD) Bit

The low-order bit of each of the four protection identifiers (PIDs) which, when 1, disables th
of that PID for validating write accesses.
A-13PA-RISC 2.0 Architecture Glossary

k trap

ns if a

 trap
 enabled
X-bit (Data Memory Break Disable)

A bit in the PSW that disables the data memory break trap if equal to 1. A data memory brea
happens if a write is attempted to a page whose TLB B-bit is 1.

Y-bit (Data Debug Trap Disable)

A bit in the PSW that disables the data debug trap if equal to 1. A data debug trap happe
memory reference is performed to an address which matches an enabled data breakpoint.

Z-bit (Instruction Debug Trap Disable)

A bit in the PSW that disables the instruction debug trap if equal to 1. An instruction debug
happens if an attempt is made to execute an instruction at an address which matches an
instruction breakpoint.
A-14 Glossary PA-RISC 2.0 Architecture

given.
 of the
sed in
B Instruction Formats

The PA-RISC instruction formats are shown below. The most general form of each format is
Individual instructions in each class may have reserved or zero fields in place of one or more
fields shown. Refer to Table B-1 at the end of this appendix for a description of the field names u
the following instruction formats.

1. Loads and Stores, Load and Store Word Modify, Load Offset

2. Load and Store Word Modify (Complement)

3. Load and Store Doubleword

4. Indexed Loads

5. Short Displacement Loads

6. Short Displacement Stores

7. Long Immediates

8. Arithmetic/Logical

op b t/r s im14

6 5 5 2 14

op b t/r s im11a 2 i

6 5 5 2 11 2 1

op b t/r s im10a m a e i

6 5 5 2 10 1 1 1 1

op b x s u 0 cc ext4 m t

6 5 5 2 1 1 2 4 1 5

op b im5 s a 1 cc ext4 m t

6 5 5 2 1 1 2 4 1 5

op b r s a 1 cc ext4 m im5

6 5 5 2 1 1 2 4 1 5

op t/r im21

6 5 21

op r2 r1 c f ea ebec ed d t

6 5 5 3 1 2 1 1 2 1 5
B-1PA-RISC 2.0 Architecture Instruction Formats

9. Arithmetic Immediate

10.Rearrangement/Halfword Shift

11.Variable Shift Pair

12.Variable Extract

13.Variable Deposit

14.Fixed Shift Pair

15.Fixed Extract

16.Fixed Deposit

17.Conditional Branch

18.Branch on Bit

op r t c f e1 im11

6 5 5 3 1 1 11

op r2 r1 e ea 0 eb sa 0 t

6 5 5 1 2 1 2 4 1 5

op r2 r1 c ext2 0 d 0 t

6 5 5 3 2 1 1 4 5

op r t c ext2se d cl 0 clen

6 5 5 3 2 1 1 1 3 5

op t r/im5 c ext2nz d cl 0 clen

6 5 5 3 2 1 1 1 3 5

op r2 r1 c 0 cp d cpos t

6 5 5 3 1 1 1 5 5

op r t c cl p se pos clen

6 5 5 3 1 1 1 5 5

op t r/im5 c cl cpnz cpos clen

6 5 5 3 1 1 1 5 5

op r/r2 r1/im5 c w1 n w

6 5 5 3 11 1 1

op p r c cp w1 n w

6 5 5 3 1 11 1 1
B-2 Instruction Formats PA-RISC 2.0 Architecture

19.Branch External

20.Branch, Branch and Link

21.Branch and Link Register, Branch Vectored

22.Branch Vectored External

23.Branch Target Stack

24.Data Memory Management, Probe

25.Short Displacement, Flush Data Cache

26.Instruction Memory Management

27.Break

28.Diagnose

op b w1 s w2 n w

6 5 5 3 11 1 1

op t/w3 w1 ext3 w2 n w

6 5 5 3 11 1 1

op t/b x ext3 0 n 0

6 5 5 3 11 1 1

op b 0 ext3 1 0 n p

6 5 5 3 1 10 1 1

op 0 r ext3 0 i e 0 1

6 5 5 3 1 9 1 1 1

op b r/x s ext8 m t

6 5 5 2 8 1 5

op b im5 s ext8 m t

6 5 5 2 8 1 5

op b r/x/im5 s ext7 m 0

6 5 5 3 7 1 5

op im13 ext8 im5

6 13 8 5

op im26

6 26
B-3PA-RISC 2.0 Architecture Instruction Formats

29.Move to/from Space Register

30.Load Space ID

31.Move to Control Register

32.Move from Control Register

33.System Control

34.Special Operation Zero

35.Special Operation One

36.Special Operation Two

37.Special Operation Three

38.Coprocessor Operation

op rv r s ext8 t

6 5 5 3 8 5

op b rv s 0 ext8 t

6 5 5 2 1 8 5

op t r rv ext8 0

6 5 5 3 8 5

op r 0 rv e rv ext8 t

6 5 5 1 1 1 8 5

op b/im5 r/im5 0 ext8 t

6 5 5 3 8 5

op sop1 0 sfu n sop2

6 15 2 3 1 5

op sop 1 sfu n t

6 15 2 3 1 5

op r sop1 2 sfu n sop2

6 5 10 2 3 1 5

op r2 r1 sop1 3 sfu n sop2

6 5 5 5 2 3 1 5

op sop1 uid n sop2

6 17 3 1 5
B-4 Instruction Formats PA-RISC 2.0 Architecture

39.Coprocessor Indexed Loads

40.Coprocessor Indexed Stores

41.Coprocessor Short Displacement Loads

42.Coprocessor Short Displacement Stores

43.Floating-point Load and Store Word

44.Floating-point Load and Store Word Modify

45.Floating-point Operation Zero, Major Opcode 0C

46.Floating-point Operation One, Major Opcode 0C

47.Floating-point Operation Two, Major Opcode 0C

48.Floating-point Operation Three, Major Opcode 0C

op b x s u 0 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5

op b x s u 0 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5

op b im5 s a 1 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5

op b im5 s a 1 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5

op b t/r s im11a e h i

6 5 5 2 11 1 1 1

op b t/r s im11a a h i

6 5 5 2 11 1 1 1

op r 0 sop fmt 0 0 0 t

6 5 5 3 2 2 3 1 5

op r 0 sop df sf 1 0 0 t

6 5 3 3 2 2 2 3 1 5

op r1 r2 sop fmt 2 0 n c

6 5 5 3 2 2 3 1 5

op r1 r2 sop fmt 3 0 0 t

6 5 5 3 2 2 3 1 5
B-5PA-RISC 2.0 Architecture Instruction Formats

49.Floating-point Operation Zero, Major Opcode 0E

50.Floating-point Operation One, Major Opcode 0E

51.Floating-point Operation Two, Major Opcode 0E

52.Floating-point Operation Three, Major Opcode 0E

53.Floating-point Multiple-operation

54.Floating-point Fused-operation

55.Performance Monitor

op r 0 sop 0 f 0 0 r t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

op r 0 sop 0 df 0 sf 1 0 r t 0 t

6 5 3 3 1 1 1 1 2 1 1 1 1 5

op r1 r2 sop r2 f 2 0 r1 0 0 c

6 5 5 3 1 1 2 1 1 1 1 5

op r1 r2 sop r2 f 3 x r1 t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

op rm1 rm2 ta ra f tm

6 5 5 5 5 1 5

op rm1 rm2 ra r2 f ra r1 t e t

6 5 5 3 1 1 3 1 1 1 5

op rv sub 2 n rv

6 12 5 3 1 5
B-6 Instruction Formats PA-RISC 2.0 Architecture

 of the
. An

es,
The field names used in the previous instruction format layouts are described in Table B-1. Some
field names may be followed by one or two digits. Those digits indicate the length of the field
example of a field name may beim5 which indicates the field is a 5-bit immediate value. But nam
B-7PA-RISC 2.0 Architecture Instruction Formats

such asr1, which refers to the first source register field, are the actual field names.

Table B-1. Field Names for Instruction Formats

Field Description

a modify before/after bit

b base register

c condition specifier

cc cache control hint

cl, clen complement of extract/deposit length

cp, cpos complement of deposit/shift bit position

d word/doubleword bit

df floating-point destination format

e, ea, eb, ec, ed, or
ext

operation code extension

f condition negation bit

f or fmt floating-point data format

h floating-point register half

im immediate value

m modify bit

n nullify bit

nz deposit zero/not zero bit

op operation code

p extract/deposit/shift bit position

pos extract bit position

r, r1, or r2 source register

ra, rm1, or rm2 floating-point source register

rv reserved instruction field

s 2 or 3 bit space register

sa shift amount

se extract sign-extend bit

sf floating-point source format

sfu special function unit number

sop, sop1, or sop2 special function unit or coprocessor operation

t, ta, or tm target register

u shift index bit

uid coprocessor unit identifier

w, w1, w2, or w3 word offset/word offset part

x index register
B-8 Instruction Formats PA-RISC 2.0 Architecture

es.

truction
, where
 shown
C Operation Codes

This appendix provides a complete description of all of the PA-RISC 2.0 instruction operation cod

Major Opcode Assignments

The major opcode assignments are listed in Table C-1. Instructions are shown in uppercase. Ins
classes are capitalized. Extensions of the major opcodes can be found in the tables indicated
applicable. In the following discussions of opcode extensions the major opcode class names are
in parentheses.
C-1PA-RISC 2.0 Architecture Operation Codes

Table C-1. Major Opcode Assignments

bits 2:5
bits 0:1

0 1 2 3

0
System_op
(Table C-2)

LDB CMPB (true) BB (sar)

1
Mem_Mgmt

(Tables C-3 and
C-4)

LDH CMPIB (true) BB

2
Arith/Log

(Table C-5)
LDW CMPB (false) MOVB

3
Index_Mem
(Table C-6)

LDW (mod) CMPIB (false) MOVIB

4
SPOPn

(Table C-15)
Load_dw

(Table C-7)
CMPICLR

Sh_Ex_Dep
(Tables C-10

and C-11)

5 DIAG —
Subi

(Table C-9)

Sh_Ex_Dep
(Tables C-10

and C-11)

6 FMPYADD FLDW (mod) FMPYSUB
Sh_Ex_Dep
(Table C-10)

7 —
Load_w

(Table C-8)
CMPB

(dw true)
—

8 LDIL STB
ADDB
(true)

BE

9
Copr_w

(Table C-14)
STH

ADDIB
(true)

BE,L

A ADDIL STW
ADDB
(false)

Branch
(Table C-13)

B
Copr_dw

(Table C-14)
STW (mod)

ADDIB
(false)

CMPIB (dw)

C COPR
Store_dw

(Table C-7)
Addi

(Table C-9)
Sh_Ex_Dep
(Table C-10)

D LDO —
Addi

(Table C-9)
Sh_Ex_Dep
(Table C-10)

E
Float

(Tables C-20
through C-24)

FSTW (mod)
Fp_fused

(Table C-25)
Multimedia
(Table C-12)

F
Product
 Specific

Store_w
(Table C-8)

CMPB
(dw false)

—

C-2 Operation Codes PA-RISC 2.0 Architecture

d. The

-2 lists
ode the
Opcode Extension Assignments

Many instructions require both a major opcode and an opcode extension to be uniquely identifie
extension can be one to nine bits, depending on the major opcode.

System Control Instructions (System_op)

Figure C-1 shows the format of the system control instructions (major opcode 00) and Table C
the opcode extensions. Bits 19:21 encode the source of the operation and bits 24:26 enc
destination.

0
5 19 26

00 b/r/ext5 ext5 0/s ext8 t

6 5 5 3 8 5

Figure C-1. Format for System Control Instructions

Table C-2. System Control Instructions

Instruction

Opcode Extension

hex binary hex

bits
0:5

bit
17

bits
19:21

bits
22:23

bits
24:26

bits
19:26

bits
11:15

BREAK 00 – 000 00 000 00 im5
SYNC 00 0 001 00 000 20 0
SYNCDMA 00 0 001 00 000 20 10
RFI 00 rv 011 00 000 60 rv
RFI,R 00 rv 011 00 101 65 rv
SSM 00 0 011 01 011 6B i
RSM 00 0 011 10 011 73 i
MTSM 00 0 110 00 011 C3 r
LDSID 00 – 100 00 101 85 rv
MTSP 00 – 110 00 001 C1 r
MFSP 00 – 001 00 101 25 0
MFIA 00 rv 101 00 101 A5 0
MTCTL 00 rv 110 00 010 C2 r
MTSARCM 00 rv 110 00 110 C6 r
MFCTL 00 0 010 00 101 45 0
MFCTL,W 00 1 010 00 101 45 0
C-3PA-RISC 2.0 Architecture Operation Codes

Bits Value Description

19:21 / 24:26 000 no source / no destination
001 system resource
010 control register
011 PSW system mask
100 space register
101 general register destination
110 general register source

22:23 01 encodes SSM
10 encodes RSM
C-4 Operation Codes PA-RISC 2.0 Architecture

opcode
. The

C-4 on
aches.
Memory Management Instructions (Mem_Mgmt)

Figure C-2 shows the format of the memory management instructions (major opcode 01). The
extensions (bits 19:26) for instruction memory management instructions are listed in Table C-3
opcode extensions (bits 18:26) for data memory management instructions are listed in Table
page C-6. This group includes instructions that access the translation lookaside buffers and the c

Instruction Memory Management

0
5 19 25 27 31

01 b r/x/im5 s ext7 m ext5

6 5 5 3 7 1 5

Data Memory Management, Probe

0
5 18 25 27 31

01 b r/x/im5 s ext8 m ext5

6 5 5 2 8 1 5

Figure C-2. Formats for Memory Management Instructions

Table C-3. Instruction Memory Management Instructions

Instruction

Opcode Extension Modify

hex binary hex binary

bits
0:5

bit
19

bits
20:21

bits
22:24

bit
25

bits
19:25

bits
27:31

bit
26

IITLBT 01 0 10 000 0 20 0 0
PITLB 01 0 00 100 0 08 rv m
PITLBE 01 0 00 100 1 09 rv m
PITLB,L 01 0 01 100 0 18 rv m
FIC,0A 01 0 00 101 0 0A rv m
FICE 01 0 00 101 1 0B rv m

Bits Value Description

19 0 instruction memory management
22:24 000 insert instruction

100 purge TLB instruction
101 flush instruction

22 1 modify (bit 26) enable
24 1 nonprivileged instruction
26 m modification is allowed for this instruction
C-5PA-RISC 2.0 Architecture Operation Codes

Table C-4. Data Memory Management Instructions

Instruction

Opcode Extension Modify

hex binary hex binary

bits
0:5

bit
18

bit
19

bits
20:21

bits
22:24

bit
25

bits
18:25

bits
27:31

bit
26

IDTLBT 01 0 1 10 000 0 60 0 0
PDTLB 01 0 1 00 100 0 48 rv m
PDTLBE 01 0 1 00 100 1 49 rv m
PDTLB,L 01 0 1 01 100 0 58 rv m
FDC (index) 01 0 1 00 101 0 4A rv m
FDC (imm) 01 1 1 00 101 0 CA rv 0
FDCE 01 0 1 00 101 1 4B rv m
PDC 01 0 1 00 111 0 4E 0 m
FIC,4F 01 0 1 00 111 1 4F 0 m
PROBE,R 01 0 1 00 011 0 46 t 0
PROBEI,R 01 1 1 00 011 0 C6 t 0
PROBE,W 01 0 1 00 011 1 47 t 0
PROBEI,W 01 1 1 00 011 1 C7 t 0
LPA 01 0 1 00 110 1 4D t m
LCI 01 0 1 00 110 0 4C t 0

Bits Value Description

18 0 non-immediate value
1 immediate value

19 1 data memory management
22:24 000 insert instruction

011 probe instruction
100 purge TLB instruction
101 flush instruction
110 load instruction
111 purge cache instruction

22 1 modify (bit 26) enable
23 1 store result
24 1 nonprivileged instruction
26 m modification is allowed for this instruction
C-6 Operation Codes PA-RISC 2.0 Architecture

r the
Arithmetic/Logical Instructions (Arith/Log)

Figure C-3 shows the format of the arithmetic/logical instructions. The opcode extensions fo
arithmetic/logical instructions (major opcode 02) are listed in Table C-5.

0
5 20 25

02 r2 r1 c f ext6 d t

6 5 5 3 1 6 1 5

Figure C-3. Format for Arithmetic/Logical Instructions

Table C-5. Arithmetic/Logical Instructions

Instruction

Opcode Extension

hex binary hex

bits
0:5

bits
20:21

bits
22:25

bits
20:25

ADD 02 01 1000 18
ADD,L 02 10 1000 28
ADD,TSV 02 11 1000 38
ADD,C 02 01 1100 1C
ADD,C,TSV 02 11 1100 3C
SHLADD (1) 02 01 1001 19
SHLADD,L (1) 02 10 1001 29
SHLADD,TSV (1) 02 11 1001 39
SHLADD (2) 02 01 1010 1A
SHLADD,L (2) 02 10 1010 2A
SHLADD,TSV (2) 02 11 1010 3A
SHLADD (3) 02 01 1011 1B
SHLADD,L (3) 02 10 1011 2B
SHLADD,TSV (3) 02 11 1011 3B
SUB 02 01 0000 10
SUB,TSV 02 11 0000 30
SUB,TC 02 01 0011 13
SUB,TSV,TC 02 11 0011 33
SUB,B 02 01 0100 14
SUB,B,TSV 02 11 0100 34
DS 02 01 0001 11
ANDCM 02 00 0000 00
AND 02 00 1000 08
OR 02 00 1001 09
XOR 02 00 1010 0A
UXOR 02 00 1110 0E
CMPCLR 02 10 0010 22
UADDCM 02 10 0110 26
C-7PA-RISC 2.0 Architecture Operation Codes

UADDCM,TC 02 10 0111 27
DCOR 02 10 1110 2E
DCOR,I 02 10 1111 2F
HADD 02 00 1111 0F
HADD,SS 02 00 1101 0D
HADD,US 02 00 1100 0C
HSUB 02 00 0111 07
HSUB,SS 02 00 0101 05
HSUB,US 02 00 0100 04
HAVG 02 00 1011 0B
HSHLADD (1) 02 01 1101 1D
HSHLADD (2) 02 01 1110 1E
HSHLADD (3) 02 01 1111 1F
HSHRADD (1) 02 01 0101 15
HSHRADD (2) 02 01 0110 16
HSHRADD (3) 02 01 0111 17

Bits Value Description

20:21 00 unit/logical; do not set carry/borrow bits.
01 arithmetic; set carry/borrow bits; do not trap.
10 unit/logical; do not set carry/borrow bits.
11 arithmetic; set carry/borrow bits; trap on overflow.

Table C-5. Arithmetic/Logical Instructions (Continued)

Instruction

Opcode Extension

hex binary hex

bits
0:5

bits
20:21

bits
22:25

bits
20:25
C-8 Operation Codes PA-RISC 2.0 Architecture

ns. The
uctions
m the
Indexed and Short Displacement Load/Store Instructions (Index_Mem)

Figure C-4 shows the formats of the indexed and short displacement load and store instructio
opcode extensions (bits 22:25) for indexed and short displacement memory reference instr
(major opcode 03) are listed in Table C-6. The short displacement forms are distinguished fro
indexed instructions by bit 19 (0=indexed, 1=short).

Indexed Loads

0
5 19 22 25

03 b x s u 0 cc ext4 m t

6 5 5 2 1 1 2 4 1 5

Short Displacement Loads

0
5 19 22 25

03 b im5 s a 1 cc ext4 m t

6 5 5 2 1 1 2 4 1 5

Short Displacement Stores, Store Bytes Short

0
5 19 22 25

03 b r s a 1 cc ext4 m im5

6 5 5 2 1 1 2 4 1 5

Figure C-4. Formats for Indexed and Short Displacement Load/Store Instructions
C-9PA-RISC 2.0 Architecture Operation Codes

Table C-6. Indexed and Short Displacement Load/Store Instructions

Instruction

Opcode Extension

hex binary hex

bits
0:5

bit
19

bits
22:23

bits
24:25

bits
22:25

LDB (index) 03 0 00 00 0
LDH (index) 03 0 00 01 1
LDW (index) 03 0 00 10 2
LDD (index) 03 0 00 11 3
LDDA (index) 03 0 01 00 4
LDCD (index) 03 0 01 01 5
LDWA (index) 03 0 01 10 6
LDCW (index) 03 0 01 11 7
LDB (short) 03 1 00 00 0
LDH (short) 03 1 00 01 1
LDW (short) 03 1 00 10 2
LDD (short) 03 1 00 11 3
LDDA (short) 03 1 01 00 4
LDCD (short) 03 1 01 01 5
LDWA (short) 03 1 01 10 6
LDCW (short) 03 1 01 11 7
STB (short) 03 1 10 00 8
STH (short) 03 1 10 01 9
STW (short) 03 1 10 10 A
STD (short) 03 1 10 11 B
STBY (short) 03 1 11 00 C
STDBY (short) 03 1 11 01 D
STWA (short) 03 1 11 10 E
STDA (short) 03 1 11 11 F
C-10 Operation Codes PA-RISC 2.0 Architecture

s. The
(major
Load/Store Doubleword Instructions (Load_dw and Store_dw)

Figure C-5 shows the formats of the long displacement load and store doubleword instruction
opcode extensions (bit 30) for long displacement load and store doubleword instructions
opcodes 14 and 1C) are listed in Table C-7.

0
5 30

op b t/r s im10a m a e i

6 5 5 2 10 1 1 1 1

Figure C-5. Format for Load/Store Doubleword Instructions

Table C-7. Load/Store Doubleword Instructions

Instruction

Opcode Extension

hex binary

bits
0:5

bit
30

LDD (long) 14 0
STD (long) 1C 0
FLDD (long) 14 1
FSTD (long) 1C 1
C-11PA-RISC 2.0 Architecture Operation Codes

pcode
nd 1F)
Load/Store Word Instructions (Load_w and Store_w)

Figure C-6 shows the formats of the long displacement load and store word instructions. The o
extensions (bit 29) for long displacement load and store word instructions (major opcodes 17 a
are listed in Table C-8.

Floating-Point Load/Store Word

0
5 29

op b t/r s im11a e h i

6 5 5 2 11 1 1 1

Load/Store Word and Modify (Complement)

0
5 29

op b t/r s im11a e 0 i

6 5 5 2 11 1 1 1

Figure C-6. Format for Load/Store Word Instructions

Table C-8. Load/Store Word Instructions

Instruction

Opcode Extension

hex binary

bits
0:5

bit
29

FLDW (long) 17 0
FSTW (long) 1F 0
LDW (mod comp) 17 1
STW (mod comp) 1F 1
C-12 Operation Codes PA-RISC 2.0 Architecture

bit 20)
9. The
Arithmetic Immediate Instructions (Addi, Subi)

Figure C-7 shows the format of the arithmetic immediate instructions. The opcode extensions (
for the arithmetic immediate instructions (major opcodes 25, 2C, and 2D) are listed in Table C-
extension field,e, determines whether or not the instruction traps on overflow.

0
5 20

op r t c f e1 im11

6 5 5 3 1 1 11

Figure C-7. Format for Arithmetic Immediate Instructions

Table C-9. Arithmetic Immediate Instructions

Instruction

Opcode Extension

hex binary

bits
0:5

bit
20

ADDI 2D 0
ADDI,TC 2C 0
SUBI 25 0
ADDI,TSV 2D 1
ADDI,TSV,TC 2C 1
SUBI,TSV 25 1
C-13PA-RISC 2.0 Architecture Operation Codes

ns (bits
D) are
eposit
Shift, Extract, and Deposit Instructions (Sh_Ex_Dep)

Figure C-8 shows the formats of the shift, extract, and deposit instructions. The opcode extensio
19:21) for the fixed shift, extract, and deposit instructions (major opcodes 34, 35, 36, 3C, and 3
listed in Table C-10. The opcode extensions (bits 19:22) for the variable shift, extract, and d
instructions (major opcodes 34 and 35) are listed in Table C-11.

Variable Shift Pair

0
5 19:20 22

op r2 r1 c ext2 0 d 0 t

6 5 5 3 2 1 1 4 5

Variable Extract

0
5 19:20 22

op r t c ext2se d cl 0 clen

6 5 5 3 2 1 1 1 3 5

Variable Deposit

0
5 19:20 22

op t r/im5 c ext2nz d cl 0 clen

6 5 5 3 2 1 1 1 3 5

Fixed Shift Pair

0
5 21

op r2 r1 c 0 cp d cpos t

6 5 5 3 1 1 1 5 5

Fixed Extract

0
5 21

op r t c cl p se pos clen

6 5 5 3 1 1 1 5 5

Fixed Deposit

0
5 21

op t r/im5 c cl cpnz cpos clen

6 5 5 3 1 1 1 5 5

Figure C-8. Formats for Shift, Extract, and Deposit Instructions
C-14 Operation Codes PA-RISC 2.0 Architecture

Table C-10. Fixed Shift/Extract/Deposit Instructions

Instruction

Opcode Extension

hex binary binary binary

bits
0:5

bit
19

bit
20

bit
21

SHRPD 34 0 p 1
SHRPW 34 0 1 0
EXTRD 36 cl p se
EXTRW 34 1 1 se
DEPD 3C cl cp nz
DEPDI 3D cl cp nz
DEPW 35 0 1 nz
DEPWI 35 1 1 nz

Table C-11. Variable Shift/Extract/Deposit Instructions

Instruction

Opcode Extension

hex binary hex binary binary

bits
0:5

bits
19:20

bits
19:20

bit
21

bit
22

SHRPD 34 00 0 0 1
SHRPW 34 00 0 0 0
EXTRD 34 10 2 se 1
EXTRW 34 10 2 se 0
DEPD 35 00 0 nz 1
DEPDI 35 10 2 nz 1
DEPW 35 00 0 nz 0
DEPWI 35 10 2 nz 0
C-15PA-RISC 2.0 Architecture Operation Codes

17:18,
Multimedia Instructions (Multimedia)

Figure C-9 shows the formats of the multimedia instructions. The opcode extensions (bits 16,
and 20:21) for the multimedia instructions (major opcode 3E) are listed in Table C-12

Halfword Permute

0
5 16 20:21

3E r r 0 c0 0 c1 c2 c3 0 t

6 5 5 1 2 1 2 2 2 1 5

Halfword Shifts

0
5 16 20:21

3E 0/r r/0 1 ea 0 eb sa 0 t

6 5 5 1 2 1 2 4 1 5

Halfword Mix

0
5 16 20:21

3E r2 r1 1 ea 0 eb 0 0 t

6 5 5 1 2 1 2 4 1 5

Figure C-9. Formats for Multimedia Instructions

Table C-12. Multimedia Instructions

Instruction

Opcode Extension

hex binary hex

bits
0:5

bit
16

bits
17:18

bits
20:21

bits
17:18

bits
20:21

PERMH 3E 0 – – – –
HSHL 3E 1 00 10 0 2
HSHR,U 3E 1 10 10 2 2
HSHR,S 3E 1 10 11 2 3
MIXW,L 3E 1 00 00 0 0
MIXW,R 3E 1 10 00 2 0
MIXH,L 3E 1 00 01 0 1
MIXH,R 3E 1 10 01 2 1
C-16 Operation Codes PA-RISC 2.0 Architecture

s (bits
3.
Unconditional Branch Instructions (Branch)

Figure C-10 shows the formats of the unconditional branch instructions. The opcode extension
16:18 and 31) for the unconditional branch instructions (major opcode 3A) are listed in Table C-1

Branch

0
5 16 18 31

3A t/w3 w1 ext3 w2 n w

6 5 5 3 11 1 1

Branch Vectored External

0
5 16 18 31

3A b 0 ext3 1 rv n rv

6 5 5 3 1 10 1 1

Branch and Link Register, Branch Vectored

0
5 16 18 31

3A t/b 0/x ext3 0 rv n rv

6 5 5 3 1 10 1 1

Figure C-10. Formats for Unconditional Branch Instructions

Table C-13. Unconditional Branch Instructions

Instruction

Opcode Extension

hex binary hex binary

bits
0:5

bits
16:18

bits
16:18

bit
19

B,L 3A 000 0 –
B,GATE 3A 001 1 –
B,L,PUSH 3A 100 4 –
B,L (long) 3A 101 5 –
BLR 3A 010 2 0
BV 3A 110 6 0
BVE 3A 110 6 1
BVE,L 3A 111 7 1
C-17PA-RISC 2.0 Architecture Operation Codes

ensions
e C-14.
es the
uished
 (0 =
Coprocessor Loads and Stores (Copr_w and Copr_dw)

Figure C-11 shows the formats of the coprocessor load and store instructions. The opcode ext
for the coprocessor memory reference instructions (major opcodes 09 and 0B) are listed in Tabl
Opcode 09 indicates the instruction operates on word data (Copr_w). Opcode 0B indicat
instruction operates on doubleword data (Copr_dw). The short displacement forms are disting
from the indexed instructions by bit 19 (0 = indexed; 1 = short) and loads from stores by bit 22
load; 1 = store).

Coprocessor Indexed Loads

0
5 19 22

op b x s u 0 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5

Coprocessor Indexed Stores

0
5 19 22

op b x s u 0 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5

Coprocessor Short Loads

0
5 19 22

op b im5 s a 1 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5

Coprocessor Short Stores

0
5 19 22

op b im5 s a 1 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5

Figure C-11. Formats for Coprocessor Load/Store Instructions
C-18 Operation Codes PA-RISC 2.0 Architecture

Table C-14. Coprocessor Load and Store Instructions

Instruction

Opcode Extension

hex binary

bits
0:5

bit
19

bit
22

CLDW (index) 09 0 0
CLDD (index) 0B 0 0
CSTW (index) 09 0 1
CSTD (index) 0B 0 1
CLDW (short) 09 1 0
CLDD (short) 0B 1 0
CSTW (short) 09 1 1
CSTD (short) 0B 1 1
C-19PA-RISC 2.0 Architecture Operation Codes

for the
Special Function Unit Instructions

Figure C-12 shows the formats of the special function unit instructions. The opcode extensions
special function unit instructions (major opcode 04) are listed in Table C-15.

Special Operation Zero

0
5 21:22

04 sop1 0 sfu n sop2

6 15 2 3 1 5

Special Operation One

0
5 21:22

04 sop 1 sfu n t

6 15 2 3 1 5

Special Operation Two

0
5 21:22

04 r sop1 2 sfu n sop2

6 5 10 2 3 1 5

Special Operation Three

0
5 21:22

04 r1 r2 sop1 3 sfu n sop2

6 5 5 5 2 3 1 5

Figure C-12. Formats for Special Function Unit (SFU) Instructions

Table C-15. Special Function Unit (SFU) Instructions

Instruction

Opcode Extension

hex binary hex

bits
0:5

bits
21:22

bits
21:22

SPOP0 04 00 0
SPOP1 04 01 1
SPOP2 04 10 2
SPOP3 04 11 3
C-20 Operation Codes PA-RISC 2.0 Architecture

ctions.
0C, uid
Floating-Point Coprocessor Operation Instructions

Figures C-13, C-14, and C-15 show the formats of the floating-point coprocessor operation instru
The opcode extensions for the floating-point coprocessor operation instructions (major opcode
0, major opcode 0E, and major opcode 2E) are listed in Tables C-16 through C-24.

Major Opcode 0C

Floating-Point Operation Zero

0
5 16 18 21:22 26

0C r 0 sub fmt 0 0 0 t

6 5 5 3 2 2 3 1 5

Floating-Point Operation One

0
5 14 16 21:22 26

0C r 0 sub df sf 1 0 0 t

6 5 3 3 2 2 2 3 1 5

Floating-Point Operation Two

0
5 16 18 21:22 26

0C r1 r2 sub fmt 2 0 n c

6 5 5 3 2 2 3 1 5

Floating-Point Operation Three

0
5 16 18 21:22 26

0C r1 r2 sub fmt 3 0 0 t

6 5 5 3 2 2 3 1 5

Figure C-13. Formats for Floating-Point Operations - Major Opcode 0C
C-21PA-RISC 2.0 Architecture Operation Codes

Table C-16. Floating-Point Class Zero - Major Opcode 0C Instructions

Instruction

Opcode Uid Class Sub-Op Cond/Targ Nullify

hex hex hex hex hex binary

bits
0:5

bits
23:25

bits
21:2

2

bits
16:18

bits
27:31

bit
26

FID 0C 0 0 0 0 0
FCPY 0C 0 0 2 t 0
FABS 0C 0 0 3 t 0
FSQRT 0C 0 0 4 t 0
FRND 0C 0 0 5 t 0
FNEG 0C 0 0 6 t 0
FNEGABS 0C 0 0 7 t 0

Table C-17. Floating-Point Class One - Major Opcode 0C Instructions

Instruction

Opcode Uid Class Sub-Op Cond/Targ Nullify

hex hex hex hex hex binary

bits
0:5

bits
23:25

bits
21:2

2

bits
14:16

bits
27:31

bit
26

FCNV (float/float) 0C 0 1 0 t 0
FCNV (int/float) 0C 0 1 1 t 0
FCNV (float/int) 0C 0 1 2 t 0
FCNV,T (float/int) 0C 0 1 3 t 0
FCNV (uint/float) 0C 0 1 5 t 0
FCNV (float/uint) 0C 0 1 6 t 0
FCNV,T (float/uint) 0C 0 1 7 t 0

Table C-18. Floating-Point Class Two - Major Opcode 0C Instructions

Instruction

Opcode Uid Class Sub-Op Cond/Targ Nullify

hex hex hex hex hex binary

bits
0:5

bits
23:25

bits
21:2

2

bits
16:18

bits
27:31

bit
26

FCMP 0C 0 2 y c 0
FTEST 0C 0 2 y c 1
C-22 Operation Codes PA-RISC 2.0 Architecture

Table C-19. Floating-Point Class Three - Major Opcode 0C Instructions

Instruction

Opcode Uid Class Sub-Op Cond/Targ Nullify

hex hex hex hex hex binary

bits
0:5

bits
23:25

bits
21:2

2

bits
16:18

bits
27:31

bit
26

FADD 0C 0 3 0 t 0
FSUB 0C 0 3 1 t 0
FMPY 0C 0 3 2 t 0
FDIV 0C 0 3 3 t 0
Reserved 0C 0 3 4-6 – 0
Undefined 0C 0 3 7 – 0
C-23PA-RISC 2.0 Architecture Operation Codes

Major Opcode 0E (Float)

Floating-Point Operation Zero

0
5 16 18 21:22 26

0E r 0 sub 0 f 0 0 r t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

Floating-Point Operation One

0
5 14 16 21:22 26

0E r 0 sub 0 df 0 sf 1 0 r t 0 t

6 5 3 3 1 1 1 1 2 1 1 1 1 5

Floating-Point Operation Two

0
5 16 18 21:22 26

0E r1 r2 sub r2 f 2 0 r1 0 0 c

6 5 5 3 1 1 2 1 1 1 1 5

Floating-Point Operation Three

0
5 16 18 21:22 26

0E r1 r2 sub r2 f 3 0 r1 t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

Fixed-Point Operation Three

0
5 16 18 21:22 26

0E r1 r2 sub r2 f 3 1 r1 t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

Figure C-14. Formats for Floating-Point Operations - Major Opcode 0E
C-24 Operation Codes PA-RISC 2.0 Architecture

Table C-20. Floating-Point Class Zero - Major Opcode 0E Instructions

Instruction

Opcode Class Sub-Op Fixed Nullify Format Cond/Targ

hex hex hex binary binary hex hex

bits
0:5

bits
21:2

2

bits
16:18

bit
23

bit
26

bits
19:20

bits
25,27:31

FCPY 0E 0 2 0 0 fmt t
FABS 0E 0 3 0 0 fmt t
FSQRT 0E 0 4 0 0 fmt t
FRND 0E 0 5 0 0 fmt t
FNEG 0E 0 6 0 0 fmt t
FNEGABS 0E 0 7 0 0 fmt t

Table C-21. Floating-Point Class One - Major Opcode 0E Instructions

Instruction

Opcode Class Sub-Op Fixed Nullify Format Cond/Targ

hex hex hex binary binary hex hex

bits
0:5

bits
21:2

2

bits
14:16

bit
23

bit
26

bits
17:20

bits
25,27:31

FCNV (float/float) 0E 1 0 0 0 df,sf t
FCNV (int/float) 0E 1 1 0 0 df,sf t
FCNV (float/int) 0E 1 2 0 0 df,sf t
FCNV,T (float/int) 0E 1 3 0 0 df,sf t
FCNV (uint/float) 0E 1 5 0 0 df,sf t
FCNV (float/uint) 0E 1 6 0 0 df,sf t
FCNV,T (float/uint) 0E 1 7 0 0 df,sf t

Table C-22. Floating-Point Class Two - Major Opcode 0E Instructions

Instruction

Opcode Class Sub-Op Fixed Nullify Format Cond/Targ

hex hex hex binary binary binary hex

bits
0:5

bits
21:2

2

bits
16:18

bit
23

bit
26

bit
20

bits
25,27:31

FCMP 0E 2 y 0 0 f 0,c
C-25PA-RISC 2.0 Architecture Operation Codes

Table C-23. Floating-Point Class Three - Major Opcode 0E Instructions

Instruction

Opcode Class Sub-Op Fixed Nullify Format Cond/Targ

hex hex hex binary binary binary hex

bits
0:5

bits
21:2

2

bits
16:18

bit
23

bit
26

bit
20

bits
25,27:31

FADD 0E 3 0 0 0 f t
FSUB 0E 3 1 0 0 f t
FMPY 0E 3 2 0 0 f t
FDIV 0E 3 3 0 0 f t
Undefined 0E 3 4 0 0 – –
Reserved 0E 3 5-6 0 0 – –
Undefined 0E 3 7 0 0 – –

Table C-24. Fixed-Point Class Three - Major Opcode 0E Instructions

Instruction

Opcode Class Sub-Op Fixed Nullify Format Cond/Targ

hex hex hex binary binary binary hex

bits
0:5

bits
21:2

2

bits
16:18

bit
23

bit
26

bit
20

bits
25,27:31

XMPYU 0E 3 2 1 0 0 t
C-26 Operation Codes PA-RISC 2.0 Architecture

Major Opcode 2E (Fp_fused)

0
5 20 26

2E r1 r2 r3 r2 f r3 r1 t s t

6 5 5 3 1 1 3 1 1 1 5

Figure C-15. Format for Floating-Point Fused-Operation Instructions

Table C-25. Floating-Point Fused-Operation Instructions

Instruction

Opcode Sub-Op Format

hex binary binary

bits
0:5

bit
26

bit
20

FMPYFADD 2E 0 f
FMPYNFADD 2E 1 f
C-27PA-RISC 2.0 Architecture Operation Codes

s. The
 2) are
Performance Monitor Coprocessor Instructions

Figure C-16 shows the format of the performance monitor coprocessor operation instruction
opcode extensions for the performance monitor coprocessor instructions (major opcode 0C, uid
listed in Table C-26.

0
5 18 22 26

0C rv sub 2 n rv

6 12 5 3 1 5

Figure C-16. Format for Performance Monitor Coprocessor Instructions

Table C-26. Performance Monitor Coprocessor Instructions

Instruction

Opcode Uid Sub-Op Nullify

hex hex hex binary

bits
0:5

bits
23:25

bits
18:22

bit
26

PMDIS 0C 2 1 n
PMENB 0C 2 3 0
Undefined 0C 2 0,2,4..F –
Reserved 0C 2 10..1F –
C-28 Operation Codes PA-RISC 2.0 Architecture

s a
ll the

lled by

erflow
he
word
 64-bit
Word
hmetic

ns in
D Conditions

The condition completer field,cond, in the assembly language form of an instruction specifie
condition or the negation of a condition. This field expands in the machine language form to fi
condition field,c, (normally 3 bits wide), the 1-bit negation field,f, and the 1-bit doubleword field,d, as
required. For some instructions, the negation or doubleword attributes of the condition are contro
the opcode.

This appendix defines all conditions for the instruction set.

Arithmetic/Logical Conditions

The arithmetic/logical operations generate the set of conditions as shown in Table D-1. No ov
conditions result from logical operations. In the table,c is the machine language encoding indicating t
condition. While most instructions perform only doubleword arithmetic/logical operations, both
and doubleword conditions are available. Doubleword conditions are computed based on the
result of the arithmetic operation, the (leftmost) carry bit of the result, and the overflow indication.
conditions are computed based on the least significant 32 bits of the 64-bit result of the arit
operation, and the carry bit and overflow indication out of bit 32 of the doubleword result.

The terms signed overflow and unsigned overflow are defined for the arithmetic instructio
Table D-2.

Table D-1. Arithmetic/Logical Operation Conditions

c Description

0 never; nothing
1 all bits are 0
2 (leftmost bit is 1) xor signed overflow
3 all bits are 0 or (leftmost bit is 1 xor signed overflow)

adds subtracts/compares
4 no unsigned overflow unsigned overflow
5 all bits are 0 or no unsigned overflow all bits are 0 or unsigned overflow
6 signed overflow
7 rightmost bit is 1
D-1PA-RISC 2.0 Architecture Conditions

e pre-
hmetic

 is not

d

When implementing theDIVIDE STEP and SHIFT AND ADD instructions, the overflow condition
XORed into conditions 2 and 3 may optionally include the overflow that is generated during th
shift operation. The only overflow that must be included is the one actually generated by the arit
operation.

If a signed overflow occurs during the shift operation of aDIVIDE STEP or SHIFT AND ADD instruction,
conditions 2 and 3 are not meaningful; therefore, the result of a condition 2 or condition 3 test
predictable.

Table D-2. Overflow Results

Instructions Unsigned Overflow Signed Overflow

Adds The result of an unsigned addition
is greater than

 (carry == 1).
wheresize is the operand size
(either 32 or 64).

The result of signed addition is not
representable in two’s complement notation
(both source operands have the same sign an
the sign of the result is different)

Subtracts
and
Compares

The result of an unsigned
subtraction is less than 0 (i.e.,b is
greater thana in the operationc = a
- b; borrow == 0).

The result of signed subtraction is not
representable in two’s complement notation
(both the source operands have different signs
and the sign of the result differs from the sign
of the first operand; i.e.,a has a different sign
thanb andc in the operationc = a - b).

Divide Step
and Shift
and Adds

One or more of the bits shifted out
is 1, or the result of the operation is
not in the range 0 through

wheresize is the operand size
(either 32 or 64).

One or more of the bits shifted out differs
from the leftmost bit following the shift, or the
result of the operation is not representable in
two’s complement notation.

2
size

1–

2
size

1–
D-2 Conditions PA-RISC 2.0 Architecture

n
ve

f

. The
-3 and

.
nguage
 less
Programming Note
The figure below shows signed number addition and indicates the signed overflow conditio
when both operands are small positive numbers, large positive numbers, large negati
numbers, or small negative numbers.

Signed overflow can occur only when adding numbers with the same sign. Addition o
numbers with unlike signs will always result with a “no overflow” condition.

The interpretation of the arithmetic/logical conditions varies according to the operation performed
interpretation for all the subtracts and the register forms of comparisons are shown in Tables D
D-4. The interpretation for the immediate form of comparisons are shown in Table D-5.

In these tables,cond is in assembly language format andc, f, andd are in machine language format
opd1 denotes operand 1 (an immediate value or a register’s contents) in the assembly la
instruction format andopd2 denotes operand 2 (a register’s contents). The condition, <<, “opd1 is
than opd2 (unsigned)” is equivalent to unsigned overflow in Table D-1.

GR[r1]

GR[r2]

GR[t]

small
positive
numbers

large
positive
numbers

large
negative
numbers

small
negative
numbers

0 0

sign

0 1

sign

1 0

sign

1 1

sign

0 0 0 1 1 0 1 1

0
no

overflow 1 overflow 0 overflow 1
no

overflow
D-3PA-RISC 2.0 Architecture Conditions

0
0

0
0

0

0
0

0
0
0

1
1
1

1

1
1
1

Table D-3. Compare/Subtract Instruction Word Conditions

cond Description c f d

never 0 0 0
= opd1 is equal to opd2 (word) 1 0 0
< opd1 is less than opd2 (signed word) 2 0

<= opd1 is less than or equal to opd2 (signed word) 3 0
<< opd1 is less than opd2 (unsigned word) 4 0

<<= opd1 is less than or equal to opd2 (unsigned word) 5 0
SV opd1 minus opd2 overflows (signed word) 6 0
OD opd1 minus opd2 is odd 7 0 0
TR always 0 1 0
<> opd1 is not equal to opd2 (word) 1 1 0
>= opd1 is greater than or equal to opd2 (signed word) 2 1
> opd1 is greater than opd2 (signed word) 3 1

>>= opd1 is greater than or equal to opd2 (unsigned word) 4 1
>> opd1 is greater than opd2 (unsigned word) 5 1

NSV opd1 minus opd2 does not overflow (signed word) 6 1
EV opd1 minus opd2 is even 7 1 0

Table D-4. Compare/Subtract Instruction Doubleword Conditions

cond Description c f d

* never 0 0 1
*= opd1 is equal to opd2 (doubleword) 1 0 1
*< opd1 is less than opd2 (signed doubleword) 2 0 1

*<= opd1 is less than or equal to opd2 (signed doubleword) 3 0
*<< opd1 is less than opd2 (unsigned doubleword) 4 0

*<<= opd1 is less than or equal to opd2 (unsigned doubleword) 5 0
*SV opd1 minus opd2 overflows (signed doubleword) 6 0 1
*OD opd1 minus opd2 is odd 7 0 1
*TR always 0 1 1
*<> opd1 is not equal to opd2 (doubleword) 1 1 1
*>= opd1 is greater than or equal to opd2 (signed doubleword) 2 1
*> opd1 is greater than opd2 (signed doubleword) 3 1 1

*>>= opd1 is greater than or equal to opd2 (unsigned doubleword) 4 1
*>> opd1 is greater than opd2 (unsigned doubleword) 5 1

*NSV opd1 minus opd2 does not overflow (signed doubleword) 6 1
*EV opd1 minus opd2 is even 7 1 1
D-4 Conditions PA-RISC 2.0 Architecture

ion for

0

0

0

The interpretation for the register form of adds are shown in Tables D-6 and D-7. The interpretat
the immediate form of adds are shown in Table D-6.

Cond is in assembly language format andc, f, andd are in machine language format.

Table D-5. Compare Immediate and Branch Instruction Doubleword Conditions

cond Description c

*<< opd1 is less than opd2 (unsigned doubleword) 0
*= opd1 is equal to opd2 (doubleword) 1
*< opd1 is less than opd2 (signed doubleword) 2

*<= opd1 is less than or equal to opd2 (signed doubleword) 3
*>>= opd1 is greater than or equal to opd2 (unsigned doubleword) 4
*<> opd1 is not equal to opd2 (doubleword) 5
*>= opd1 is greater than or equal to opd2 (signed doubleword) 6
*> opd1 is greater than opd2 (signed doubleword) 7

Table D-6. Add Instruction Word Conditions

cond Description c f d

never 0 0 0
= opd1 is equal to negative of opd2 (word) 1 0 0
< opd1 is less than negative of opd2 (signed word) 2 0 0

<= opd1 is less than or equal to negative of opd2 (signed word) 3 0
NUV opd1 plus opd2 does not overflow (unsigned word) 4 0 0
ZNV opd1 plus opd2 is zero or no overflow (unsigned word) 5 0 0
SV opd1 plus opd2 overflows (signed word) 6 0 0
OD opd1 plus opd2 is odd 7 0 0
TR always 0 1 0
<> opd1 is not equal to negative of opd2 (word) 1 1 0
>= opd1 is greater than or equal to negative of opd2 (signed word) 2 1
> opd1 is greater than negative of opd2 (signed word) 3 1 0

UV opd1 plus opd2 overflows (unsigned word) 4 1 0
VNZ opd1 plus opd2 is nonzero and overflows (unsigned word) 5 1
NSV opd1 plus opd2 does not overflow (signed word) 6 1 0
EV opd1 plus opd2 is even 7 1 0
D-5PA-RISC 2.0 Architecture Conditions

,

w in

1
1

1
1

1
1

1
1

The interpretation of the condition completers for theSHIFT AND ADD instructions is similar to the
ADD instructions (Tables D-6 and D-7). If no overflow occurs,opd1 is the shifted value. For example
the completer “=” implies that the shiftedopd1 equals the negative ofopd2. If overflow occurs, the
interpretations in Tables D-6 and D-7 do not apply. Table D-1 and the definition of overflo
Table D-2 can be used to determine if the condition is satisfied.

The interpretation of the condition completers for theDIVIDE STEP instruction are similar to the

Table D-7. Add Instruction Doubleword Conditions

cond Description c f d

* never 0 0 1
*= opd1 is equal to negative of opd2 (doubleword) 1 0 1
*< opd1 is less than negative of opd2 (signed doubleword) 2 0

*<= opd1 is less than or equal to negative of opd2 (signed doubleword) 3 0
*NUV opd1 plus opd2 does not overflow (unsigned doubleword) 4 0
*ZNV opd1 plus opd2 is zero or no overflow (unsigned doubleword) 5 0
*SV opd1 plus opd2 overflows (signed doubleword) 6 0 1
*OD opd1 plus opd2 is odd (doubleword) 7 0 1
*TR always 0 1 1
*<> opd1 is not equal to negative of opd2 (doubleword) 1 1 1
*>= opd1 is greater than or equal to negative of opd2 (signed doubleword) 2 1
*> opd1 is greater than negative of opd2 (signed doubleword) 3 1

*UV opd1 plus opd2 overflows (unsigned doubleword) 4 1 1
*VNZ opd1 plus opd2 is nonzero and overflows (unsigned doubleword) 5 1
*NSV opd1 plus opd2 does not overflow (signed doubleword) 6 1
*EV opd1 plus opd2 is even 7 1 1

Table D-8. Add and Branch Instruction Conditions when PSW W-bit is 1

cond Description c f

never 0 0
= opd1 is equal to negative of opd2 (word) 1 0
< opd1 is less than negative of opd2 (signed word) 2 0

<= opd1 is less than or equal to negative of opd2 (signed word) 3 0
NUV opd1 plus opd2 does not overflow (unsigned word) 4 0
*= opd1 is equal to negative of opd2 (doubleword) 5 0
*< opd1 is less than negative of opd2 (signed doubleword) 6 0

*<= opd1 is less than or equal to negative of opd2 (signed doubleword) 7 0
TR always 0 1
<> opd1 is not equal to negative of opd2 (word) 1 1
>= opd1 is greater than or equal to negative of opd2 (signed word) 2 1
> opd1 is greater than negative of opd2 (signed word) 3 1

UV opd1 plus opd2 overflows (unsigned word) 4 1
*<> opd1 is not equal to negative of opd2 (doubleword) 5 1
*>= opd1 is greater than or equal to negative of opd2 (signed doubleword) 6 1
*> opd1 is greater than negative of opd2 (signed doubleword) 7 1
D-6 Conditions PA-RISC 2.0 Architecture

gain,

 of the
bles,
he

s D-11
 sixteen
subtract or add conditions, depending on the state of the PSW V-bit. If no overflow occurs, thenopd1 is
the shifted value. If overflow occurs, the interpretations in Tables D-3 and D-6 do not apply. A
Tables D-1 and D-2 can be used to determine if the condition is satisfied.

For logical operations, the conditions are computed based only on the result. The interpretation
arithmetic/logical conditions for logical instructions is shown in Tables D-9 and D-10. In these ta
cond is in assembly language format andc, f, andd are in machine language format. Other values of t
condition field are undefined for the logical operations.

Unit Conditions

The operations concerned with sub-units of a doubleword generate the conditions shown in Table
and D-12. The conditions are computed based on the 64-bit result of the unit operation and the
4-bit carries. In these tables,cond is in assembly language format andc, f, and d are in machine
language format.

Table D-9. Logical Instruction Word Conditions

cond Description c f d

never 0 0 0
= all bits in word are 0 1 0 0
< leftmost bit in word is 1 2 0 0

<= leftmost bit in word is 1 or all bits in word are 0 3 0 0
OD rightmost bit is 1 7 0 0
TR always 0 1 0
<> some bits in word are 1 1 1 0
>= leftmost bit in word is 0 2 1 0
> leftmost bit in word is 0, some bits in word are 1 3 1 0

EV rightmost bit is 0 7 1 0

Table D-10. Logical Instruction Doubleword Conditions

cond Description c f d

* never 0 0 1
*= all bits in doubleword are 0 1 0 1
*< leftmost bit in doubleword is 1 2 0 1

*<= leftmost bit in doubleword is 1 or all bits in doubleword are 0 3 0 1
*OD rightmost bit is 1 7 0 1
*TR always 0 1 1
*<> some bits in doubleword are 1 1 1 1
*>= leftmost bit in doubleword is 0 2 1 1
*> leftmost bit in doubleword is 0, some bits in doubleword are 1 3 1 1

*EV rightmost bit is 0 7 1 1
D-7PA-RISC 2.0 Architecture Conditions

14. The
Shift/Extract/Deposit Conditions

The shift, extract, and deposit operations generate the conditions shown in Tables D-13 and D-
conditions are computed based on the result of the operation. In these tables,cond is in assembly
language format andc andd are in machine language format. TheMOVE AND BRANCH andMOVE
IMMEDIATE AND BRANCH instructions also use the extract/deposit conditions.

Table D-11. Unit Instruction Word Conditions

cond Description c f d

never 0 0 0
undefined 1 0 0

SBZ Some Byte in word Zero 2 0 0
SHZ Some Halfword Zero 3 0 0
SDC Some Digit in word Carry 4 0 0

undefined 5 0 0
SBC Some Byte in word Carry 6 0 0
SHC Some Halfword Carry 7 0 0
TR always 0 1 0

undefined 1 1 0
NBZ No Bytes in word Zero 2 1 0
NHZ No Halfwords Zero 3 1 0
NDC No Digit in word Carries 4 1 0

undefined 5 1 0
NBC No Byte in word Carries 6 1 0
NHC No Halfword Carries 7 1 0

Table D-12. Unit Instruction Doubleword Conditions

cond Description c f d

* never 0 0 1
*SWZ Some Word in doubleword Zero 1 0 1
*SBZ Some Byte in doubleword Zero 2 0 1
*SHZ Some Halfword in doubleword Zero 3 0 1
*SDC Some Digit in doubleword Carry 4 0 1
*SWC Some Word in doubleword Carry 5 0 1
*SBC Some Byte in doubleword Carry 6 0 1
*SHC Some Halfword in doubleword Carry 7 0 1
*TR always 0 1 1

*NWZ No Words in doubleword Zero 1 1 1
*NBZ No Bytes in doubleword Zero 2 1 1
*NHZ No Halfwords in doubleword Zero 3 1 1
*NDC No Digit in doubleword Carries 4 1 1
*NWC No Words in doubleword Carry 5 1 1
*NBC No Byte in doubleword Carries 6 1 1
*NHC No Halfword in doubleword Carries 7 1 1
D-8 Conditions PA-RISC 2.0 Architecture

Branch On Bit Conditions

The branch on bit operations generate the conditions shown in Table D-15. In this table,cond is in
assembly language format andc andd are in machine language format.

Table D-13. Shift/Extract/Deposit Word Instruction Conditions

cond Description c d

never 0 0
= all bits in word are 0 1 0
< leftmost bit in word is 1 2 0

OD rightmost bit is 1 3 0
TR always 4 0
<> some bits in word are 1 5 0
>= leftmost bit of word is 0 6 0
EV rightmost bit is 0 7 0

Table D-14. Shift/Extract/Deposit Doubleword Instruction Conditions

cond Description c d

* never 0 1
*= all bits in doubleword are 0 1 1
*< leftmost bit in doubleword is 1 2 1

*OD rightmost bit is 1 3 1
*TR always 4 1
*<> some bits in doubleword are 1 5 1
*>= leftmost bit in doubleword is 0 6 1
*EV rightmost bit is 0 7 1

Table D-15. Branch On Bit Instruction Conditions

cond Description c d

< leftmost bit in word is 1 0 0
>= leftmost bit in word is 0 1 0
*< leftmost bit in doubleword is 1 0 1

*>= leftmost bit in doubleword is 0 1 1
D-9PA-RISC 2.0 Architecture Conditions

D-10 Conditions PA-RISC 2.0 Architecture

s

” and
cribe a

alue of
sed in
E Instruction Notation Control Structure

The control structures used in the instruction notation in Chapter 7, “Instruction Descriptions
Chapter 9, “Floating-Point Instruction Set” are relatively standard. The expression statements des
computation performed by the ALU or some other hardware for its side effects rather than the v
the computation. The functions listed Table E-1 are used to localize long calculations that are u
several places.

Table E-1. Long Calculation Functions

Function Description

assemble_3(x) Assembles a 3-bit space register number:
return(cat(x{2},x{0..1}))

assemble_6(x,y) Assembles a 6-bit extract/deposit length specifier:
return(32 * x + 32 – y)

assemble_12(x,y) Assembles a 12-bit immediate:
return(cat(y,x{10},x{0..9}))

assemble_16(x,y) Assembles a 16-bit immediate in one of two ways, depending on the
PSW W-bit:

if (PSW[W])
return(cat(y{13},xor(y{13},x{0}),xor(y{13},x{1}),y{0..12}))

else
return(cat(y{13},y{13},y{13},y{0..12}))

assemble_16a(x,y,z) Assembles a word-aligned 16-bit immediate in one of two ways,
depending on the PSW W-bit:

if (PSW[W])
return(cat(z,xor(z,x{0}),xor(z,x{1}),y,0{0..1}))

else
return(cat(z,z,z,y,0{0..1}))

assemble_17(x,y,z) Assembles a 17-bit immediate:
return(cat(z,x,y{10},y{0..9}))

assemble_21(x) Assembles a 21-bit immediate:
return(cat(x{20},x{9..19},x{5..6},x{0..4},x{7..8}))

assemble_22(a,b,c,d) Assembles a 22-bit immediate:
return(cat(d,a,b,c{10},c{0..9}))

cat(x1, ..., xn) Concatenates the passed arguments,x1 throughxn.

low_sign_ext(x,len) Removes the rightmost bit ofx and extends the field to the left with that
bit to form a 64-bit quantity. The field is of sizelen:

return(sign_ext(cat(x{len-1},x{0..len-2}),len))

lshift(arg1,arg2) arg1 is logically shifted left by the number of bits specified inarg2. The
size of the result is determined by the size ofarg1.

mem_load See “Memory Reference Instructions” on page 6-6.
E-1PA-RISC 2.0 Architecture Instruction Notation Control Structures

t of the
nt than

y

ng to

g to
e

ly

ed
of

ed
of
Miscellaneous Constructs

Numerous mnemonic constructs are used to represent things that do not fit easily into the res
notation described in the previous table or whose details are more implementation-depende
defined. Table E-2 defines these constructs.

mem_store See “Memory Reference Instructions” on page 6-6.

rshift(arg1,arg2) arg1 is logically shifted right byarg2 bits. The size of the result is
determined by the size ofarg1.

send_to_copr(u,t) Sends the 5-bit valuet to coprocessor unitu.

sign_ext(x,len) Extendsx on the left with sign bits to form a 64-bit quantity, taking the
leftmost bit for the field of sizelen as the sign bit.

sign_ext_16(x,len) Extendsx on the left with sign bits to form a 16-bit quantity, taking the
leftmost bit for the field of sizelen as the sign bit.

store_in_memory(space,offset,low,high,hint,data)

The function store_in_memory is identical to mem_store except that it
forces the data to be stored into main memory. The data may optionall
remain in the cache.

xor(x1, ..., xn) Produces the bitwise exclusive or of the passed arguments.

zero_ext(x,len) Extendsx on the left, for the field of sizelen, with zeros to form a 64-bit
quantity.

Table E-2. Miscellaneous Constructs

Function Description

absolute_address(space,offset) Returns the absolute address correspondi
the passed virtual address.

clear_BTS() Sets the valid bit in every entry of the Branch
Target Stack to 0.

coherence_index(space,offset) Returns the coherence index correspondin
the passed effective address. See “Cach
Coherence with I/O” on page F-11.

coherent_system Boolean; the value is 1 if the system is ful
coherent; the value is 0 if the system is partially
or completely non-coherent.

coprocessor_condition(id,opcode,n) A coprocessor specific condition is return
based on the arguments and the current state
the coprocessor.

coprocessor_op(id,opcode,n,priv) A coprocessor specific operation is perform
based on the arguments and the current state
the coprocessor.

Table E-1. Long Calculation Functions (Continued)

Function Description
E-2 Instruction Notation Control Structures PA-RISC 2.0 Architecture

e
r

ssors
r

l

he
n

s

e

se
e

ess

an

e

s
d

tive

ess
DTLB_alloc(space,offset) Allocates a slot in the data TLB based on th
space and offset arguments, and returns a pointe
to the slot.

DTLB_purge_broadcast(space,offset,page_size) In a multiprocessor system, the other proce
are made to search their data TLBs for one o
more entries which match the address range
specified by space, offset, and page_size. Al
matching entries are removed.

DTLB_purge_entries(space,offset) Removes one or more data TLB entries. T
entries to be removed are selected based o
some implementation-dependent function of the
arguments space and offset. No addres
matching is done. If there are entries which
would match space and offset, these need not b
among the entries removed.

DTLB_purge_local(space,offset) Removes the specified TLB entry.

DTLB_search(space,offset) Searches the data TLB for a valid entry who
virtual address range encompasses the pag
including the virtual address specified by space
and offset, and returns a pointer to the slot
containing the entry if one is found. If no
matching entry is found, NULL is returned.

Dcache_flush(space,offset) If the cache line containing the effective addr
is present, it is invalidated. If the line is dirty it is
written back to main memory.

Dcache_flush_entries(space,offset) Zero or more cache lines specified by
implementation-dependent function of the
address are invalidated. If any of these lines ar
dirty, they are written back to main memory. No
address matching is done. If there are entrie
which would match space and offset, these nee
not be among the entries invalidated.

Dcache_flush_or_purge(space,offset) If the cache line specified by the effec
address is present, it is invalidated. If the line is
dirty, it may optionally be written back to
memory.

Icache_flush(space,offset) If the cache line containing the effective addr
is present, it is invalidated. If the line is dirty, it
is written back to main memory.

Table E-2. Miscellaneous Constructs (Continued)

Function Description
E-3PA-RISC 2.0 Architecture Instruction Notation Control Structures

an

e

s

e

is

at the

the

he

he

nce

ing

,

,

e

Icache_flush_entries(space,offset) Zero or more cache lines specified by
implementation-dependent function of the
address are invalidated. If any of these lines ar
dirty, they are written back to main memory
(only possible in a combined cache.) No addres
matching is done. If there are entries which
would match space and offset, these need not b
among the entries invalidated.

ITLB_alloc(space,offset) Same as DTLB_alloc except that a new slot
allocated in the instruction TLB.

ITLB_purge_broadcast(space,offset,page_size) Same as DTLB_purge_broadcast except th
instruction TLB is purged.

ITLB_purge_entries(space,offset) Same as DTLB_purge_entries except that
instruction TLB is purged.

ITLB_purge_local(space,offset) Same as DTLB_purge_local except that t
instruction TLB is purged.

ITLB_search(space,offset) Same as DTLB_search except that t
instruction TLB is searched.

measurement_enabled Boolean; when the value is 1, the performa
monitor coprocessor is enabled to make
measurements; when the value is 0, the
measurements are disabled. This condition is
independent of the state of CCR bit 2.

phys_mem_load(addr,low,high,hint) Returns the data in physical memory (consist
of memory and the cache) starting at the low’th
bit beyond the beginning of the byte at address
addr, and ending at the high’th bit beyond the
beginning of the byte at address, addr. If the
PSW E-bit is 1, the data bytes are swapped
before they are returned. The cache control hint
hint, is a recommendation to the processor on
how to resolve cache coherence. See “Cach
Control” on page 6-9. This function is used for
absolute accesses to memory.

Table E-2. Miscellaneous Constructs (Continued)

Function Description
E-4 Instruction Notation Control Structures PA-RISC 2.0 Architecture

ting

,

,

e

d

cess

hich

hich
phys_mem_store(addr,low,high,hint,data) Stores the data in physical memory (consis
of memory and the cache) starting at the low’th
bit beyond the beginning of the byte at address
addr, and ending at the high’th bit beyond the
beginning of the byte at address, addr. If the
PSW E-bit is 1, the data bytes are swapped
before they are stored. The cache control hint
hint, is a recommendation to the processor on
how to resolve cache coherence. See “Cach
Control” on page 6-9. This function is used for
absolute accesses to memory.

pop_from_BTS() Removes the top entry from the Branch Target
Stack. All other entries are moved up one
register, and the entry at the bottom of stack is
marked invalid. The entry which was removed
from the top of stack is returned. The valid bit is
returned as bit {62} of the return value.

push_onto_BTS(offset) All entries in the Branch Target Stack are move
down one register. The value which was at the
bottom of stack is discarded. The argument is
placed in the top of stack entry, and the valid bit
for the top of stack entry is set to 1.

read_access_allowed(space,offset,x) In non-Level 0 systems, returns 1 if read ac
is allowed to the effective address at the
privilege level given by the two rightmost bits of
x. Returns 0 otherwise. Always returns 1 in
Level 0 systems.

select_data_cache_entries(space,offset) An implementation-dependent function w
returns a list of zero or more entries.

select_instruction_cache_entries(space,offset) An implementation-dependent function w
returns a list of zero or more entries.

sfu_condition0(opcode,priv)
sfu_condition1(opcode,priv)
sfu_condition2(opcode,priv,r)
sfu_condition3(opcode,priv,r1,r2)

An SFU specific condition is returned based on
the SFU instruction format, the arguments, and
the current state of the special function unit.

sfu_operation0(opcode,priv)
sfu_operation1(opcode,priv)
sfu_operation2(opcode,priv,r)
sfu_operation3(opcode,priv,r1,r2)

An SFU specific operation is performed based
on SFU instruction format, the arguments, and
the current state of the special function unit.

Table E-2. Miscellaneous Constructs (Continued)

Function Description
E-5PA-RISC 2.0 Architecture Instruction Notation Control Structures

ld of
s

ing

,

e

.

space_select(s_field,base,format) Returns the space ID selected by the s-fie
the instruction and the base register value a
follows:

if (PSW[W])
if (format == LONG_DISP)

return(SR[base{0..1} + 4]);
else /* short or indexed */

if (s_field == 0)
return(SR[base{0..1} + 4]);

else if (priv == 0)
return(SR[s_field]);

else
undefined;

else /* PSW[W] == 0 */
if (s_field == 0)

return(SR[base{32..33} + 4]);
else

return(SR[s_field]);

virt_mem_load(space,offset,low,high,hint) Returns the data in virtual memory (consist
of memory and the cache) starting at the low’th
bit beyond the beginning of the byte at address
space,offset and ending at the high’th bit beyond
the beginning of the byte at address,
space,offset. If the PSW E-bit is 1, the data bytes
are swapped before they are returned. The cach
control hint, hint, is a recommendation to the
processor on how to resolve cache coherence
See “Cache Control” on page 6-9. This function
is used for virtual accesses to memory.

Table E-2. Miscellaneous Constructs (Continued)

Function Description
E-6 Instruction Notation Control Structures PA-RISC 2.0 Architecture

g of

,

e

.

ess
virt_mem_store(space,offset,low,high,hint,data) Stores the data in virtual memory (consistin
memory and the cache) starting at the low’th bit
beyond the beginning of the byte at address
space,offset and ending at the high’th bit beyond
the beginning of the byte at address,
space,offset. If the PSW E-bit is 1, the data bytes
are swapped before they are stored. The cach
control hint, hint, is a recommendation to the
processor on how to resolve cache coherence
See “Cache Control” on page 6-9. This function
is used for virtual accesses to memory.

write_access_allowed(space,offset,x) In non-Level 0 systems, returns 1 if write acc
is allowed to the effective address at the
privilege level given by the two rightmost bits of
x. Returns 0 otherwise. Always returns 1 in
Level 0 systems.

Table E-2. Miscellaneous Constructs (Continued)

Function Description
E-7PA-RISC 2.0 Architecture Instruction Notation Control Structures

E-8 Instruction Notation Control Structures PA-RISC 2.0 Architecture

l

aside
e TLB
ents of

ddress
erency

escribe

isible
ctions,

.

 be

 of
to

DTLB.
irtual
size may

 the

 the
ar the

y not, in
F TLB and Cache Contro

This appendix provides detailed information relating to operation of the TLB (Translation Look
Buffer) and cache in a PA-RISC system. It describes how software can control the contents of th
under various conditions such as TLB miss handling and also specifies the operation requirem
the TLB.

The appendix also describes the responsibilities of system software in regards to handling a
aliasing as well as cache move-in rules. Finally, a brief summary of the guidelines relating to coh
in multiprocessor systems is provided.

TLB Control

TLBs function as buffers for the most frequently used address translations. Terms used to d
TLBs are given below.

Entry The term entry refers to a translation which is present in the TLB. Entries are v
to software through references (such as load, store, and semaphore instru
access rights probes, and theLOAD PHYSICAL ADDRESS instruction).

Slot Hardware resources in the TLB which hold entries are referred to as slots.

Remove An entry is removed when some action causes it to be inaccessible to software

Insertion of translations into the TLB, for example, causes other entries to
removed. Entries can be explicitly removed by purging them.

NOTE
From a hardware perspective, a translation is removed when it is displaced by the insertion
another translation. If each slot has an associated valid bit which causes that slot not
participate in TLB lookup, then a translation is removed if the slot that contains it is marked
invalid. This would be one way of implementing TLB purges.

Several mechanisms can be used by software to remove a specific translation from the ITLB or
First, when a new translation is inserted into the TLB, any old translations which overlap the v
address range of the new translation are removed. Second, a specific virtual address and page
be used to purge (remove) the associated translations from the TLB. ThePURGE INSTRUCTION TLB
andPURGE DATA TLB instructions perform this function. These instructions also optionally cause
translation to be removed from the TLBs of other processors in a multiprocessor system.

Translations may also be removed from the TLB using thePURGE INSTRUCTION TLB ENTRY and the
PURGE DATA TLB ENTRY instructions. These purge some machine-specific number of entries in
TLB without regard for the translation. These instructions are used by system software to cle
entire instruction or data TLB.

Because the TLB is managed by a mixture of hardware and software mechanisms, software ma
F-1PA-RISC 2.0 Architecture TLB and Cache Control

e TLB
ever, in
make
re is

These

B miss

t the

 to the

. The

 to the

pply:

. The

 to the
general, rely on the existence of translations in the TLB and hardware may, in general, remov
entries at any time, provided that forward progress is assured. There are limited situations, how
which software may rely on a translation existing in the TLB. This means that software may
virtual accesses using this relied-upon translation, and no TLB miss fault will occur. Hardwa
required to retain this TLB entry as long as the constraints of the limited situation are met.
situations are described in “TLB Operation Requirements” on page F-3.

NOTE
As a result, the following hardware actions are allowed, except in the defined limited
situations.

• A TLB miss fault may be taken even though the translation exists in the TLB.

• In the event of a TLB error, one or more entries may be removed.

Note also that software may not rely on the existence of any translations in the TLB
immediately after any group 1, 2, or 4 interruption.

Software TLB Miss Handling

In order to insure forward progress, some restrictions are placed on software which performs TL
handling.

For instruction TLB miss handling, the following restrictions apply:

• Software can insert multiple instruction address translations into the ITLB, provided tha
translation which caused the trap is inserted last.

• Software must not execute a purge TLB instruction using the virtual address corresponding
data address translation needed for the execution of the trapping instruction.

• Software must not insert translations into the DTLB.

For non-access instruction TLB miss handling, the following restrictions apply:

• Software can only insert into the ITLB up to all of the eight translations for the page group
translation which caused the trap must be inserted last.

• Software must not execute a purge TLB instruction using the virtual address corresponding
data address translation needed for the execution of the trapping instruction.

• Software must not insert translations into the DTLB.

For data TLB miss handling and non-access data TLB miss handling, the following restrictions a

• Software can only insert into the DTLB up to all of the eight translations for the page group
translation which caused the trap must be inserted last.

• Software must not execute a purge TLB instruction using the virtual address corresponding
instruction address translation needed for the execution of the trapping instruction.

The following restrictions apply to all four TLB miss handlers:
F-2 TLB and Cache Control PA-RISC 2.0 Architecture

 how
ler, if

ded as
ords in

es an

. The
lation

ng the

slation

r on
lowing

 relied-

llified,
 to the
• Software must not make any virtual references.

• Software must not execute anyPURGE DATA TLB ENTRY or PURGE INSTRUCTION TLB ENTRY
instructions.

Hardware TLB Miss Handling

The default endian bit (see “Byte Ordering (Big Endian/Little Endian)” on page 2-19) determines
data from the hardware-visible page table is interpreted by the hardware TLB miss hand
implemented. If the default endian bit is 0, the hardware-visible page table entries are loa
doublewords in big-endian format; if the default endian bit is 1, the entries are loaded as doublew
little-endian format.

If a data prefetch instruction (described in “Data Prefetch Instructions” on page 6-11) referenc
address which misses in the data TLB, the hardware TLB miss handler should not be invoked.

TLB Operation Requirements

Software may rely on the existence of particular translations in the TLB only in certain situations
following describes the situations in which software may rely upon the fact that a specific trans
will continue to exist in the TLB. In these situations, software may make virtual accesses usi
relied-upon translation, and no TLB miss fault will occur (including non-access TLB miss faults).

1. When an instruction takes one of the following interruptions, the associated data address tran
will remain in the DTLB, and is termed the relied-upon translation.

The translation will continue to remain in the DTLB, meaning no data TLB miss fault will occu
virtual data accesses which use this translation, for as long as software meets the fol
constraints:

• No virtual data references are made to pages other than the page corresponding to the
upon translation.

• The execution stream does not contain nullified instructions which, had they not been nu
would have made virtual data references to pages other than the page corresponding
relied-upon translation.

• No memory management instructions other thanLPA are executed. (See “Memory

Intr. No. Interruption

18 data memory protection/unaligned data reference trap
19 data memory break trap
20 TLB dirty bit trap
21 page reference trap
22 assist emulation trap
26 data memory access rights trap
27 data memory protection ID trap
28 unaligned data reference trap
F-3PA-RISC 2.0 Architecture TLB and Cache Control

ent

d by

ual

of

 miss
tware

it,

s, or

irtual

” for a

d by
Management Instructions (Mem_Mgmt)” on page C-5 for a list of memory managem
instructions.)

• No purge TLB instructions which would purge the relied-upon translation are execute
other processors in a multiprocessor system.

• No virtual instruction references are made.

• No DIAGNOSE instructions are executed.

• No attempt is made to execute undefined instructions.

Programming Note
Software may rely upon this translation in order to improve performance in handling the
above-mentioned traps. For example, the absolute address which corresponds to the virt
address used in the trapping instruction can be determined by using this code sequence:

LPA x(s,b),t

Because no TLB miss fault can occur, the interruption handler need not incur the overhead
making itself interruptible.

2. If the PSW Q-bit is 1, and is set to 0 by aRESET SYSTEM MASK or MOVE TO SYSTEM MASK
instruction, the instruction address translation used to fetch theRSM or MTSM instruction will
continue to remain in the ITLB, and is termed the relied-upon translation. No instruction TLB
fault will occur on virtual instruction accesses which use this translation for as long as sof
meets the following constraints:

• TheRSM or MTSM instruction which sets the PSW Q-bit to 0 (the clearingRSM or MTSM) is
preceded by anotherRSM, SSM, or MTSM instruction which does not affect the PSW Q-b
and which appears at least 8 instructions prior.

• The instructions between the initialRSM, SSM, or MTSM instruction and the clearingRSM or
MTSM do not include any memory management instructions, virtual data reference
instruction references to pages other than the code page containing the clearingRSM or MTSM
instruction.

• The clearingRSM or MTSM instruction is not within 8 instructions of a page boundary.

• No virtual data references are made.

• The execution stream does not contain nullified instructions which would have made v
data references had they not been nullified.

• No FLUSH INSTRUCTION CACHE instructions are executed with the PSW D-bit equal to 1.

• No memory management instructions are executed. (See Appendix C, “Operation Codes
list of memory management instructions.)

• No purge TLB instructions which would purge the relied-upon translation are execute
other processors in a multiprocessor system.
F-4 TLB and Cache Control PA-RISC 2.0 Architecture

clearing

on, a
e

s

of
is

-bit

nsibility

te and a
is said to
ote that
eed not
• No instruction references are made to pages other than the code page containing the
RSM or MTSM instruction.

• No DIAGNOSE instructions are executed.

• No undefined instructions are attempted to be executed.

• No instructions are executed which are followed, within 8 words, by a branch instructi
memory management instruction, aDIAGNOSE instruction, an undefined instruction, or a pag
boundary.

Programming Note
Software may rely upon this instruction translation in order to improve performance in proces
dispatch. For example, in this code sequence:

SSM 0,gr0 ; initial RSM, SSM or MTSM
LDW ; set up process state
. ; must be at least 7 instructions
. ; between the system mask instructions
.
LDW
RSM 8,gr0 ; set PSW Q-bit to 0
MTCTL reg1,cr20; set up IIASQ
MTCTL reg2,cr20
MTCTL reg3,cr21; set up IIAOQ
MTCTL reg4,cr21
LDW ; set up last of process state
.
.
.
LDW
RFI ; dispatch process

Because no TLB miss fault can occur, the interruption handler need not incur the overhead
disabling code translation just prior to process dispatch. Note that the LDW instructions in th
sequence must use absolute addresses. (Use absolute loads, or do these with the PSW D
equal to 0.)

Address Aliasing

Normally, a virtual address does not translate to two different absolute addresses. It is the respo
of memory management software to avoid the ambiguity such occurrences would create.

Caches are required to permit a physical memory location to be accessed by both an absolu
virtual address when the virtual address is equal to the absolute address. Such a virtual address
be equivalently-mapped. For equivalently-mapped addresses in the memory address space, n
since the upper 2 bits of the offset are not used in forming the absolute address, these bits n
F-5PA-RISC 2.0 Architecture TLB and Cache Control

is being

d 47.

space

gh

s,
ays

e
al

ses are
s

ere

l
ly non-
match the corresponding bits in the virtual address for the two addresses to be equivalently-mapped.

The instruction and data caches are required to detect that the same physical memory location
accessed by two virtual addresses that satisfy all the following requirements:

1. The two virtual addresses map to the same absolute address.

2. Offset bits 44 through 63 are the same in both virtual addresses.

3. If the use of space bits in generating the cache index is enabled, the two virtual addresses have the
same values for the following space identifier bits: 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, an

Processors must provide an implementation-dependent mechanism to enable/disable the use of
bits in generating the cache index.

NOTE
Implementations are encouraged to provide a mechanism to enable/disable the three
contiguous groups of 4 space bits (bits 36 through 39, bits 40 through 43, and bits 44 throu
47) independently.

When space bits are enabled for use in generating the cache index, for each space bit that participate
the corresponding offset bit which gets ORed with it in the generation of virtual addresses is alw
forced by hardware to 0 for address generation purposes.

These rules provide offset aliasing on 16 Mbyte boundaries, with optional support for offset aliasing on
smaller power of two sized boundaries, and either restricted or unlimited space aliasing.

Two virtual addresses that satisfy all of the above requirements are called equivalent aliases of each
other. Virtual addresses that satisfy rule 1 but violate rule 2 or 3 are non-equivalent aliases, and are mor
restricted in their use. For non-equivalent aliases, read-only aliasing is supported with minim
restrictions, and many-reader/one-writer aliasing is supported with more significant restrictions.

Generally, if system software must use multiple addresses for the same data, these addres
equivalent aliases (or are an absolute address and an equivalently-mapped virtual address). Thi
description of non-equivalent aliasing, and the restrictions on software only apply in rare situations
when non-equivalent aliasing is necessary.

For the purposes of supporting non-equivalent aliasing, a read-only translation is defined as one wh
the TLB and page table both meet at least one of the following conditions:

• The page type in the access rights field is 0, 2, 4, 5, 6, or 7. (See “Access Control” on page3-11.)

• The D-bit (dirty bit) is 0.

A translation not meeting this requirement is termed a write-capable translation.

Software is allowed to have any number of read-only non-equivalently aliased translations to a physica
page, as long as there are no other translations to the page. This is referred to as read-on
equivalent aliasing.

Before a write-capable translation is enabled, all non-equivalently-aliased translations must be removed
F-6 TLB and Cache Control PA-RISC 2.0 Architecture

Errata
Previously, this incorrectly read:These rules provide offset aliasing on 1 Mbyte boundaries ...

d at this
 Before
ge (the

he page
nabled
slation
quired if
as many-

ed read-
ny write-
flush the

lently
achine

es. It is
above.

ccess by

s by its

cess by

h-

atly
l

py

s. Two
bsolute
from the page table and purged from the TLB. (Note that the caches are not required to be flushe
time.) The write-capable translation may then be used to read and/or modify data on that page.
any non-equivalent aliased translation is re-enabled, the virtual address range for the writable pa
entire page) must be flushed from the cache, and the write-capable translation removed from t
table and purged from the TLB. If an old read-only translation is re-enabled, or a translation is e
that is equivalently-aliased to an old translation, the virtual address range for the re-enabled tran
must be flushed from the cache before accesses are made to the page. (This flushing is only re
the re-enabled virtual page has not been flushed since it was last accessed.) This is referred to
reader/one-writer non-equivalent aliasing.

Absolute read accesses can be made to a page which is mapped with a non-equivalently-mapp
only translation, as long as the absolute address range accessed is flushed before enabling a
capable translation. Since absolute accesses do not cause prefetching, it is not necessary to
entire page - only the accessed range need be flushed.

All other uses of non-equivalent aliasing (including simultaneously enabling multiple non-equiva
aliased translations where one or more allow for write access) are prohibited, and can cause m
checks or silent data corruption, including data corruption of unrelated memory on unrelated pag
the responsibility of privileged software to avoid non-equivalent aliasing, except as described
This requires flushing the affected address range from the caches prior to any of the following:

• Changing the address mapping in the TLBs.

• Making an absolute access to a location which might reside in the caches as a result of an a
a virtual address that was not equivalently mapped.

• Making a virtual access to a location which might reside in the caches as a result of an acces
absolute address that was not equivalently mapped.

• Making a virtual access to a location which may reside in the caches as a result of an ac
another virtual address that was not equivalently aliased.

NOTE
The restrictions on non-equivalent aliases are necessary to allow the design of hig
performance caches and memory interconnect, including multi-level caches (including victim
or miss caches) and directory-based coherency structures. Coherency schemes are gre
simplified by allowing the assumption that there is at most a single private copy of a physica
line at any time. The read-only translation informs hardware to request a shared or public co
of the line.

Cache Move-in Restrictions

Data and instructions from memory can be brought into cache only under certain circumstance
different schemes are used for controlling cacheability – one for virtual accesses and one for a
accesses.
F-7PA-RISC 2.0 Architecture TLB and Cache Control

ly, if a
nto the
ove-in.
es, but

R-bit
trolling

lly, only
efinition

y cause

t not as

 as data,
 in “Data

hether
nce is
 spaces,
erences

ddress

(access

pt where
llowing

 listed
Virtual Accesses

For virtual accesses, cache move-in is controlled by a mapping-based approach. General
translation exists in the TLB that permits access, the memory on that page may be brought i
cache. The access information in the TLB entry must meet a simple check, however, to permit m
This is required in order to allow for translations which can be used for cache flushing purpos
which do not enable move-in. This is described in detail in following sections.

Since TLB miss handling may insert into the TLB any entry in the page table for which the
(Reference bit) is 1, system software should consider the page table as the main tool for con
cacheability of memory.

Absolute Accesses

For absolute accesses, cache move-in is controlled by a reference-based approach. Genera
instructions and data referenced by executed instructions may be brought into the cache. The d
of “reference” is somewhat loose to permit instruction prefetching and instruction pipelining.

No data reference may cause a move-in to the instruction cache and no instruction reference ma
a move-in to the data cache. This means that the execution of aFLUSH DATA CACHE or PURGE DATA
CACHE instruction guarantees that the addressed line, if it has been referenced as data bu
instructions, is no longer present in the cache system. Similarly, only aFLUSH INSTRUCTION CACHE
instruction is required to guarantee that a line which has been referenced as instructions but not
is no longer present in the cache system. The actions which constitute a reference are described
Cache Move-In” on page F-8 and “Instruction Cache Move-In” on page F-9.

If implemented, the U (Uncacheable) bit is found in the data TLB entry associated with a page. W
or not the U-bit is implemented, the state of this bit if implemented, whether the memory refere
virtual or absolute, and whether the reference is made from a page in the memory or I/O address
determine if the reference may be moved into the data cache. The detailed rules for moving ref
into the data cache are specified in “Data Cache Move-In” on page F-8.

Data Cache Move-In

For virtual accesses, cache move-in is permitted only if there is a translation for the virtual a
which meets both of these conditions:

• The page type field in the access rights for the entry contains a value in the range 0 to 3
rights allow read access).

• The T-bit in the entry is 0.

For absolute accesses, data lines are brought into the cache only as a result of references. Exce
noted, a data reference may move in all of the lines on the page containing the reference. The fo
actions constitute a data reference, and may cause move-in to the data cache:

• Execution of a load, store, or semaphore instruction

• Interruption of a load, store, or semaphore instruction by any interruption except the ones
F-8 TLB and Cache Control PA-RISC 2.0 Architecture

ch

 prior
taken

ion are

nce
ons can

ddress

(access

ach X

ata and
y move
uential

to the

aining

ch to be

 by an
below:

NOTE
Because protection is checked (interruption 10), the reference cannot bring in any data whi
could not have been accessed.

• A load or store instruction which is left at the front of the interruption queues because of a
instruction which took a group 4 interruption, provided that the load or store would not have
any of the above interruptions (6, 7, 8, 10).

Data items which would have been referenced by a nullified load, store, or semaphore instruct
not moved in.

The instructionsLDWA, LDDA, STWA, and STDAare exceptions to the general rule that a data refere
may cause all of the lines in the page containing the reference to be moved in. These instructi
cause only the referenced line to be moved into the data cache.

Instruction Cache Move-In

For virtual accesses, cache move-in is permitted only if there is a translation for the virtual a
which meets both of these conditions:

• The page type field in the access rights for the entry contains a value in the range 2 to 7
rights allow execute access).

• The access rights for the entry does not match this binary pattern: “111 0X 1X”, where e
stands for either a 1 or a 0 (execute-only page where PL2≤ PL ≤ PL1 but PL2 > PL1).

For absolute accesses, instructions are brought into the instruction cache, or combined d
instruction cache, only as a result of references. Except where noted, an instruction reference ma
in all of the lines on the page containing the reference, as well as all of the lines on the next seq
page. The following actions constitute an instruction reference, and may cause move-in
instruction cache:

• Execution of an instruction

• Execution of a nullified instruction. This action can cause only those lines on the page cont
the instruction to be moved in

• Execution of a branch can cause all of the lines on the page containing the target of the bran
moved in.

• Execution of a branch to a target instruction which is the last instruction on a page, followed

Intr. No. Interruption

6 instruction TLB miss fault
7 instruction memory protection trap
8 illegal instruction trap
10 privileged operation trap
F-9PA-RISC 2.0 Architecture TLB and Cache Control

taining

 page

 in.

ge
ust
the

sses that

 to be
move-in

s to that
 the new

ubsequent
 system,
 another

line has

es not

ry

y other
ed (for
instruction which traps (in the branch delay slot), can cause all of the lines on the page con
the target instruction, as well as all of the lines on the next sequential page to be moved in.

• Interruption of an instruction by any interruption

• A branch instruction which takes a group 4 interruption can cause all of the lines on the
containing the instruction which would have been branched to, to be moved in.

Instructions which would have been branched to by nullified or untaken branches are not moved

Programming Note
If a data page immediately follows an instruction page, it is possible that the entire data pa
may have been moved into the instruction cache because of these move-in rules. Software m
be aware of this fact and flush both the instruction and the data caches in order to remove
data page from the cache.

I/O Addresses and Uncacheable Memory

Accesses to the I/O address space, whether through absolute accesses or through virtual acce
map to the I/O address space, are never cached.

Virtual accesses for which the U-bit in the TLB entry is 1 are not cached.

Cache Flushing

Cache control instructions have two effects on caching. One is that they force particular lines
removed from the cache. The other is that, for absolute accesses, they disable further cache
from the affected memory range until further references to that range are made.

For virtual accesses, a purge TLB instruction stops (disables) any subsequent move-in operation
page. Subsequent accesses must trigger a TLB miss, and then may move into the cache only if
translation from the page table allows it.

For absolute accesses, a flush cache or purge cache instruction to a page stops (disables) any s
move-in operations to that page until another reference to that page is made. In a multiprocessor
these instructions stop any subsequent move-in operations to that page on all processors until
reference to that page is made.

Once a line could have been brought into a cache, the only way software can insure that the
been removed from the cache is to

• Purge the translation from the TLB and insure that the corresponding page table entry do
allow cache move-in (if the cached memory was brought in due to a virtual access), and

• Flush or purge the line and execute aSYNC instruction, or flush the entire cache with flush-ent
instructions and execute aSYNC instruction.

Once a line has been made cacheable, even if it is subsequently forced out of the cache b
accesses, the cache system can move it in again at will, until the enabling translation is remov
virtual accesses) or until the line is flushed (for absolute accesses).
F-10 TLB and Cache Control PA-RISC 2.0 Architecture

om the
n:

1 (this

ents D-
 move-

or data

eneral
ata it is
 that,

he by the

rent I/O
oherent
n where
t write
es in

ushing

cessor

t (e.g.,

condary

 cache
he I/O
System software can create translations which allow a virtual address range to be flushed fr
caches, but which do not enable cache move-in. There are two ways of creating such a translatio

• Create a translation in which the page type field in the access rights has the value 0 or
prevents I-cache move-in), and has the T-bit 1 (this prevents D-cache move-in), or

• Create a translation in which the page type field in the access rights has the value 7 (this prev
cache move-in), and has the special access rights pattern “111 0X 1X” (this prevents I-cache
in).

Cache Coherence with I/O

Accesses to memory by I/O modules may be either coherent or non-coherent with process
caches.

Coherent I/O

Processors in systems with coherent I/O modules must implement theLOAD COHERENCE INDEX
instruction, which loads the coherence index corresponding to a given virtual address into a g
Register. Coherent I/O modules provide the coherence index along with the absolute address of d
reading from or writing to memory. The coherence index must provide enough information such
together with the absolute address, the processor can find data that was brought into its data cac
original virtual address.

Software need not flush or purge data from the data cache when sharing the data with a cohe
module. For I/O output (e.g., memory to secondary storage), the coherent I/O module performs c
read operations which will read the data from memory or a processor’s data cache depending o
the most up-to-date copy is located. For I/O input, the coherent I/O module performs coheren
operations which will write the data to memory and also update or invalidate matching lin
processor data caches.

Coherent I/O operations are not coherent with instruction caches. Software is responsible for fl
the appropriate instruction cache lines before or after the I/O operation.

Non-coherent I/O

Non-coherent I/O modules process data in memory; this data can be non-coherent with pro
caches. Software is required to insure that:

1. The contents of the appropriate caches are flushed to main memory prior to an I/O outpu
memory to secondary storage) operation.

2. The contents of the appropriate caches are purged or flushed prior to an I/O input (e.g., se
storage to memory) operation.

3. The contents of the appropriate caches are purged following an I/O input operation, if the
move-in rules would have allowed the processor to move the data into the cache during t
operation.
F-11PA-RISC 2.0 Architecture TLB and Cache Control

tionally,
pace for

ce.

space for
pt that
 device.

ically a
rrogate

flushes
cations

ith the
is design

 must be
 since the
 that was
 if it was

in order

ecks.

truction

in a
nating
ts, local
ther
Operations Defined for I/O Address Space

Semaphore instructions are undefined if the address maps to the I/O address space. Addi
semaphore instructions are undefined if the address maps to a page in the memory address s
which the TLB U-bit is 1.

Cache flush and purge instructions execute as NOPs if the address maps to the I/O address spa

Data prefetch instructions directed to the I/O address space or to a page in the memory address
which the TLB U-bit is 1 behave as described in “Data Prefetch Instructions” on page 6-11 exce
they must not affect the cache state and may optionally generate a transaction to the addressed

All accesses other than those listed above are defined to the I/O address space.

Cache and TLB Coherence in Multiprocessor Systems

Multiprocessor systems may include PA-RISC processors as well as other processors.

The cache-coherent part of a multiprocessor system is required to behave as if there were log
single D-cache and a single I-cache. If there are multiple physical D-caches, they must cross-inte
for current data and must broadcast purge and flush operations except forFDCE andFICE. Purge and
flush operations do not cause TLB faults on other processors. Multiple I-caches require only that
be broadcast. The I-cache is read-only, and software is responsible for coherence when modifi
are made to the instruction stream.

The non-cache-coherent part of a multiprocessor system (if any) may either cross-interrogate w
caches in the cache-coherent part of the system, or may have an independent cache system. Th
decision is generally based on the frequency of data sharing.

In the cache-coherent part of a multiprocessor system, all data references to cacheable pages
satisfied by data that was obtained using cache coherence checks, and has remained coherent
data was moved in. Data references to uncacheable pages do not need to be satisfied by data
obtained using cache coherence checks. Data from an uncacheable page could be in a cache
moved in when that page was marked cacheable, but the page is now marked uncacheable.

Implementations with write buffers must also check buffer contents on cache coherence checks,
to insure proper ordering of storage accesses.

Instruction references need not be satisfied by data that was obtained using cache coherence ch

Instruction caches are read-only. In the case of a separate instruction cache implementation, ins
cache lines must never be written back to main memory.

Each processor in a multiprocessor system must have its own TLB system. All TLBs
multiprocessor system are required to broadcast global purges to all other TLBs. The origi
processor’s purge instruction suspends until all target processors complete the purge. TLB inser
purges and thePDTLBE andPITLBE instructions are not broadcast and do not affect translation on o
processors.
F-12 TLB and Cache Control PA-RISC 2.0 Architecture

l

ted by
tion is

lly. For
-word
tire old

y
o execute
or may

aphore
om the
t order

ssor A

ves that

ocessor

 referred
onsidered
G Memory Ordering Mode

This appendix begins with a description of the memory ordering model that must be implemen
PA-RISC systems to ensure proper operation in multiprocessor systems. The informal descrip
followed by a formal model which describes the behavior of any correct implementation.

Atomicity of Storage Accesses

All load, store, and semaphore instructions (with one exception below) access storage atomica
example, a double-word load instruction executing on one processor concurrently with a double
store instruction to the same address executing on another processor will receive either the en
value or the entire new value.

The STORE BYTES and STORE DOUBLEWORD BYTESinstructions, when referencing the memor
address space are atomic, but when referencing the I/O address space, are not guaranteed t
atomically. Doubleword load and store instructions which reference the I/O address space may
not be atomic, depending on the capabilities of the bus.

Ordering of References

References to the address space (both to memory and I/O) through load, store, and sem
instructions always appear to the executing processor to be done in program order. However, fr
viewpoint of a second processor in a multiprocessor system or from an I/O module, the apparen
of memory references may be different in certain situations.

Ordering Definitions

A processor (or I/O module) A is said to have observed a store by another processor B if proce
executes a load instruction and receives the value stored by processor B.

A store is said to be performed by a processor when another processor or I/O module obser
store.

A load is said to be performed by a processor A if there are no unobserved stores from any pr
that could affect the value of that load.

References to the address space through load, store, semaphore, and TLB purge instructions are
to as accesses. Cache flush and purge operations are discussed separately and are not c
accesses. All accesses can be classified as either strongly ordered, ordered, or weakly ordered.

The following accesses are termed strongly ordered:

• Accesses to the I/O address space.

• Accesses to any page for which the TLB U-bit is 1.

• The semaphore instructions (LDCW, LDCD).
G-1PA-RISC 2.0 Architecture Memory Ordering Model

-bit is

esses are
ed.

y order,
ads and

 these
quence

r must,
ormed

rved by
ctions

o

• TheSYNC instruction forces ordering as though it were a strongly ordered access.

• The TLB purge instructions (PITLB, PDTLB).

The following accesses are termedordered:

• Certain loads and stores, when used with a special ordered completer,O.

• Virtual accesses made when the PSW[O] bit is 1, to an address in a page for which the TLB O
1.

• Absolute accesses made when the PSW[O] bit is 1.

Accesses which are neither strongly ordered nor ordered are termedweakly ordered.

Ordering Requirements

An access which is strongly ordered is guaranteed to be performed before any subsequent acc
performed and is guaranteed not to be performed until after all prior accesses have been perform

An ordered load is guaranteed to be performed before any subsequent accesses are performed.

All prior accesses are guaranteed to be performed before an ordered store is performed.

An ordered store is guaranteed to be performed before any subsequent ordered load.

Weakly ordered accesses may appear to another processor or I/O module to be performed in an
provided that they meet the constraints of other strongly ordered accesses and of other ordered lo
ordered stores.

The effect of these ordering constraints is transitive. That is,

if a sequence of memory accesses initiated by a first processor must, according to
rules, be observed by a second processor to have been performed prior to a se
of memory accesses initiated by this second processor,

and if the same sequence of memory accesses initiated by the second processo
according to these rules, be observed by a third processor to have been perf
prior to a sequence of memory accesses initiated by this third processor,

then the sequence of memory accesses initiated by the first processor must be obse
the third processor to have been performed prior to the sequence of transa
initiated by the third processor.

NOTE
An example of the observability of the ordering of accesses can be seen by considering tw
processes, A and B, running concurrently on a multiprocessor system.

process A process B

load x load y

store y store x
G-2 Memory Ordering Model PA-RISC 2.0 Architecture

cess

, and a
ever, on

ses to

peration

rations.

pending,
nstraints,

sses to

s of any

essary.
efore

by the

re must
If process B observes A’s store to y, and the references to y are ordered accesses, then pro
B may rely on the fact that its store to x will not affect the value seen by process A.

Cache flush operations are weakly ordered. Flush operations may be delayed or held pending
sequence of flush operations may be executed in any order. There are some constraints, how
their ordering:

• A flush data cache operation is guaranteed not to be performed until after all prior acces
addresses within the same cache line have been performed.

• A flush data cache operation is guaranteed to be performed before any subsequent purge o
to the same cache line, to prevent loss of data.

If a combined cache is implemented, these same constraints apply to flush instruction cache ope

Cache purge operations are weakly ordered. Cache purge operations may be delayed or held
and a sequence of cache purge operations may be executed in any order. There are some co
however, on their ordering:

• A purge data cache operation is guaranteed not to be performed until after all prior acce
addresses within the same cache line have been performed.

• A purge data cache operation is guaranteed to be performed before any subsequent acces
address within the same cache line, to prevent loss of data.

TheSYNC instruction is used to ensure ordering of cache flush and purge operations, when nec
After executing aSYNC instruction, any pending flush and purge operations are completed b
performing any subsequent load, store, semaphore, flush, or purge instructions.

The SYNC instruction enforces the ordering of only those flush and purge operations caused
instructions executed on the same processor which executes theSYNC instruction.

In multiprocessor systems, to allow non-privileged code to do cache management, system softwa
execute aSYNC instruction when switching processes.
G-3PA-RISC 2.0 Architecture Memory Ordering Model

use
.

gram

rupts

a data
ly been
.

Programming Note
It is important to be aware of the delayed nature of cache flush and purge operations, and to
SYNC instructions to force completion where necessary. The following example illustrates this

Consider two processes sharing a memory locationx which is protected by a semaphores.

In the absence of the SYNC instruction, it would be possible for process B’s store tox to
complete before the purge ofx is completed (since the purge may have been delayed). The
purge ofx could then destroy the new value.

MTCTL and MFCTL instructions involving the EIR and the EIEM must appear to preserve pro
order.

Interrupts must be masked immediately following a MTCTL to the EIEM register that masks inter
or an RSM or MTSM that sets the PSW I-bit to 0.

Modification of resources which affect data access take effect immediately. Acknowledgment of
TLB purge request from another processor must not be made until after the purge has logical
performed. Data access resources include Protection Identifier Registers, PSW, and TLB entries

process A on Processor 1 process B on Processor 2 note

LDCW s A acquires semaphore

PDC x A executes purge

SYNC Force completion of purge

STW s A releases semaphore

LDCW s B acquires semaphore

STW x
G-4 Memory Ordering Model PA-RISC 2.0 Architecture

program

rces

ed to an

operation
d, then
n cache

peration
lly any
t purge
The following table summarizes these ordering requirements.

Sequences marked with O must appear to other processors and I/O modules to be performed in
order.

Notes:

1. The SYNC instruction is different from other strongly ordered accesses in that it also fo
ordering with respect to cache flush and purge operations.

2. A purge operation is guaranteed to be performed before any subsequent access is perform
address within the same cache line.

3. Any access is guaranteed to be performed before a subsequent flush data cache or purge
is performed to an address within the same cache line. If a combined cache is implemente
additionally any access is guaranteed to be performed before a subsequent flush instructio
operation is performed to an address within the same cache line.

4. Any flush data cache operation is guaranteed to be performed before a subsequent purge o
is performed to the same cache line. If a combined cache is implemented, then additiona
flush instruction cache operation is guaranteed to be performed before a subsequen
operation is performed to the same cache line.

First
Reference

Second Reference

Strongly
Ordered
Access

Ordered
Load

Ordered
Store

Weakly
Ordered

Load

Weakly
Ordered

Store

Cache
Flush/
Purge

Strongly
Ordered
Access

O O O O O –1,3

Ordered
Load

O O O O O –3

Ordered
Store

O O O – – –3

Weakly
Ordered

Load
O – O – – –3

Weakly
Ordered

Store
O – O – – –3

Cache
Flush/
Purge

–1,2 –2 –2 –2 –2 –4
G-5PA-RISC 2.0 Architecture Memory Ordering Model

ing for
d only
ts which
ogress

ich an

eam

s to I/O
ecution.
uences
e code

’ is not
A’ has

’ is not
B’ has
Completion of Accesses

PA-RISC processors are inherently asynchronous and software may not rely on instruction tim
correct operation. Implementations are permitted to execute instructions out of order and nee
preserve the appearance of sequential execution. For example, in the absence of other constrain
would force execution, flush and purge operations may be indefinitely delayed. To insure that pr
is made, however, the following requirements must be met.

• Instruction streams must make forward progress. This means that any operation, on wh
instruction stream is dependent, must be performed in some finite period.

• All load and store operations to the I/O space must be performed in some finite period.

• Execution of aSYNC instruction forces all prior flush operations from the same instruction str
to be performed in some finite period.

For performance and testability reasons, it is occasionally necessary to know when an acces
space has completed. This would not normally be possible due to the asynchronous nature of ex
In order to provide this capability, the following two special sequences are defined. These seq
place additional requirements on implementations for the completion of accesses. When thes
sequences are used, the additional completion requirements hold.

When this code sequence is executed, the instruction labeled ‘access A completed on bus
executed, and the source registers not read until after the LDW (or STW) labeled ‘access
completed on the bus.

When this code sequence is executed, the instruction labeled ‘access B completed on module
executed, and the source registers not read until after the STW instruction labeled ‘access
completed on the I/O module.

LDW (or STW) from (to) I/O space ; access A

SYNC

LDW from I/O space, but not to GR 0

(at least seven instructions)

Instruction ; access A completed on bus

STW to I/O space ; access B

LDW from the same I/O space module

SYNC

LDW from I/O space, but not to GR 0

(at least seven instructions)

Instruction ; access B completed on module
G-6 Memory Ordering Model PA-RISC 2.0 Architecture

Load
gram,
must
y this
mory

etical
ith the
 Trace
 rules.
 Store
rations.
 imply
ation is

Model
address,
o non-
A and

soning

ng in a
 state.
te of
ry. The
fined to
all PA
nd non-
f every

emory
every
pendix.

l phases
rds no

ave an
tion on
ystem,
Formal Memory Model

The purpose of this Memory Model is to define the values which may be returned by the
instructions within any program. Any correct system implementation must, for every possible pro
return only the Load values permitted by this Memory Model. Likewise, any correct program
behave according to its specification for all combinations of Load return values permitted b
Memory Model. The Model therefore represents the full range of behaviors allowed in the me
system, including all caches and interconnect.

The Model accepts as input an “Execution Trace” (a description of the behavior of a hypoth
program running on a hypothetical machine) and determines whether the behavior is consistent w
rules governing the memory system. The strategy used by the Model is to include the Execution
with hardware-generated cache control operations in a “Memory Trace” which must obey certain
Each cache line in memory is modelled as a Finite State Machine which takes values from
operations in the Execution Trace and determines what values can be returned to Load ope
Although the Model may mimic the mechanisms used by some implementations, this does not
that these are the only acceptable mechanisms for enforcing memory ordering; any implement
acceptable if it always produces only Load values that are permitted by this Model.

This Model makes some simplifications in order to remain small enough to be useful. First, the
assumes a static page table. That is, mappings for virtual pages must not change physical
permissions, or cacheability during the interval studied by the Model. Second, there must be n
equivalent aliasing of virtual addresses. Third, the move-in restrictions which are specific to STW
LDWA instructions are not modelled.

This Memory Model is expressed both in natural language and in Formal syntax to facilitate rea
about memory properties and the verification of new designs.

The Execution Trace

The Execution Trace is defined to represent all software-controlled memory operations executi
system during some interval. The interval may begin with power-up or some appropriate initial
This Memory Model is concerned with the behavior of Memory rather than with the internal sta
processors or other modules, so the Execution Trace includes only operations which affect memo
system may include any number of processors and I/O devices, and the Execution Trace is de
include the memory operations executed by all these modules. These operations include
instructions executing on processors, as well as all memory references sourced by I/O devices a
PA processors. The Execution Trace therefore includes the memory-related instruction stream o
module in the system.

The Execution Trace is analogous to a hardware logic analyzer trace which monitors the m
activity of every module in the system, with two differences. First, the Execution Trace records
memory operation as if it were instantaneous and atomic, as described at the beginning of this ap
A real hardware logic analyzer might observe that each operation progresses through severa
which might be pipelined or overlapped with other operations. Second, the Execution Trace reco
ordering information between different modules. A real hardware logic analyzer would at least h
approximate notion of whether an operation on one module occurred before or after an opera
another module. The Execution Trace is therefore consistent with software’s limited view of the s
G-7PA-RISC 2.0 Architecture Memory Ordering Model

essor.

emory

a Store.
that any
cation,

nce are

 be less
maphore
trength
ere, but

ta value
emory
sistent

ists).
.

where a program executing on one processor cannot directly observe the activity of another proc

We represent an Execution Trace as a partially-ordered set of memory references. These m
references are a collection of the following:

A Semaphore (e.g. a LDCW instruction) is represented as an atomic combination of a Load and
There is no cache Purge operation in this list, because this model takes advantage of the fact
cache Purge is allowed to be treated as a Flush. All known HP implementations use this simplifi
so this Model does, too.

Each memory reference in the Execution Trace may have the following attributes:

The last six attributes are all modeled as non-negative integers. The attributes of a memory refere
accessed in this model using extractor functions. For example, “Page(x)” is the physical page number
addressed by reference “x”, and “Type(x)” is “Load” when “x” is any Load reference.

There are many restrictions on the values of these attributes. For example, the Line offset must
than the page size, the Byte offset plus the Size of a reference must not exceed the line size, se
operations must be properly aligned, the Byte of a TLB_Purge operation is undefined, and the S
of a TLB_Purge is always Strong. For the sake of brevity, these restrictions are not described h
they should be obvious from other chapters.

In this Model, each Load reference in the Execution Trace has a Value. This represents the da
returned to that Load in the single run represented by the Execution Trace. The goal of this M
Model is to determine whether the Load Values included in any given Execution Trace are con
with the allowed behavior of a memory system.

Reference Description

Load Data or Instruction fetch
Store Data store
Flush Request to remove a line from cache
Sync Synchronize caches
TLB_Purge Remove TLB entry

Attribute Description

Type Load, Store, TLB_Purge, Flush, or Sync.
Strength Strong, Ordered, or Weak.
Coherent T or F. Distinguishes between Coherent and Non-coherent access.
Virtual T or F. Distinguishes between Virtual and Absolute addressing.
Icache T or F. Determines whether a reference will use the I-cache or D-cache (if one ex
SemaLd T or F. Indicates this Load is part of a Semaphore. The Store follows immediately
Value The sequence of bytes stored or loaded by the reference.
Size The number of bytes stored or loaded (the length of the Value sequence).
Page The physical memory page addressed by the reference.
Line The line offset addressed within the page.
Byte The byte offset addressed within the line.
Source The module which originated the reference.
RefNum A consecutive numbering of memory references from each Source.
G-8 Memory Ordering Model PA-RISC 2.0 Architecture

Order
dule.

 Trace,
erences
), while

dicates
 of the
rm an

. The

.” This

ce of

Order
f the

Load

 main
es state
Instruction Order

The ordering of memory references within an Execution Trace is described by the Instruction
relationship. Instruction Order is determined by the code or internal behavior of each mo
Instruction Order is a partial order over the complete set of memory references in an Execution
but it is a total order over the set of references sourced by any single module. That is, any two ref
from a single processor have an explicit order (as given in the code executing on that processor
two references from different modules are not related by Instruction Order.

Every memory reference in an Execution Trace is assigned a numeric reference index which in
its position in its source module’s instruction stream. For any given module, the index numbers
references in its instruction stream increase monotonically with time. Two operations which fo
atomic semaphore must be consecutively numbered.

The Instruction Order relationship is represented by the overloaded binary infix operator “<”
expression “ref1 < ref2” should be read “ref1 precedes ref2 in some module’s instruction stream
also implies that ref1 and ref2 are both references in the Execution Trace.

Many properties follow directly from the fact that Instruction Order is represented by a sequen
integers. The following are only examples:

The Execution Trace, then, is specified as a set of memory references with its Instruction
relationship. The Execution Trace is the only input to the Memory Model, and the only output o
Model will be a binary value to indicate whether the given Execution Trace (with its included
values) is possible in a correct memory system.

Line States

This Memory Model is concerned with the possible values that each cache line may have in
memory and in the cache system. Each line is modelled as a Finite State Machine which includ
representing the line’s value and its status in the cache system.

Assume that all cache lines containn bytes. A line valuew is then a sequence ofn bytesw0 , ... ,wn-1.
We define two functions Get and Put to extract and modify bytes within a line. Ifoffset is a byte offset
within a cache line,size is a positive integer such thatoffset + size≤ n, andval is a sequence ofsize
bytes, then:

Relation Abbreviation for

(x < y) (Source(x)=Source(y) and RefNum(x)<RefNum(y))

Theorem Note

(x < y) and (y < z) ⇒ (x < z) Order is transitive
(x < y) ⇒ ~(y < x) Order is antisymmetric
(Source(x)=Source(y)) ⇒ (x < y) or (y < x) or (x = y) Trichotomy
G-9PA-RISC 2.0 Architecture Memory Ordering Model

hared by
che may
ence of
ses, non-
tates of

d a D-
ches and
exist in

 any
n valid
 line, or
r other

nt

nt

nt
A cache-coherent system must behave as if it contains a single D-cache and a single I-cache, s
all modules. A data cache may consist of data-only and combined caches, and an instruction ca
consist of instruction-only and combined caches. Software must be aware of the possible exist
these different kinds of caches, because of possible interference between coherent data acces
coherent instruction accesses, and DMA. Likewise, this Model must be aware of the possible s
these caches.

A physical system might include multiple processor modules, each of which has an I-cache an
cache consisting of several levels. The system is free to transfer data lines between these ca
levels in order to satisfy coherent Load requests. At any given time, several copies of a line may
various parts of the cache structure.

The Model allows multiple copies of any line to be moved into the cache system. A Load from
module may then access any of these multiple copies. All of these multiple copies may remai
simultaneously in cache until a Flush is executed, a coherent Store requires a private copy of a
hardware spontaneously chooses to invalidate one or more copies of the line to make room fo
data in the cache.

The states of a given line in the memory system consists of the following five components:

Function Definition

Get(w,offset,size) Returns the sequencewoffset , ... ,woffset+size-1
Put(w,offset,val) Returnsw′, the sequence ofn bytes identical tow, except

thatw′offset=val0 , ... ,w′offset+size-1=valsize-1

Component Meaning Description
MemVal(s) Memory Value Value of the line in memory.
Status(s) Data Cache Status One of: PrivClean (private clean), PrivDirty (pri-

vate dirty), or Public (shared or not present in any
data cache).

DonlyCVs(s) Data-only Cache Values Set of distinct values of copies of the line prese
in data-only caches.

IonlyCVs(s) Instruction-only Cache Values Set of distinct values of copies of the line prese
in instruction-only caches.

CombCVs(s) Combined Cache Values Set of distinct values of copies of the line prese
in combined caches.
G-10 Memory Ordering Model PA-RISC 2.0 Architecture

 some
emory
 Trace
trol, but

may also
ns have
e of the

eration.

 Store,
rmal

ions

ations
ings of
odule;

emory
ut they

e

In addition to these components we define the following shorthand:

The Memory Trace

The Memory Trace, like the Execution Trace, is a set of memory operations which includes
ordering information. The Memory Trace is a super-set of the Execution Trace, so every m
reference in the Execution Trace also appears in the Memory Trace. In addition, the Memory
includes cache management operations and a Memory Order which are not under program con
rather are controlled by the hardware.

The cache management operations may transfer data lines between cache and memory, and
modify the data cache status. Like the memory references in the Execution Trace, these operatio
a Type attribute and some additional attributes. A cache management operation must have on
following five types, with the listed attributes in addition to its Type attribute:

Implementations often combine several of these conceptual operations into a single hardware op

The Memory Trace is then a uniform set of operations, the Type of each operation being Load,
Flush, Sync, TLB_Purge, MoveIn, MakePrivate, CopyOut, MakePublic, or Invalidate. In all the fo
notation in this Model, the variablesx, y, andz are assumed to be members of the set of operat
defined by the Memory Trace.

Memory Order

The Memory Trace includes a Memory Order relation that determines the order in which all oper
“appear” to be executed by the memory system. This ordering interleaves the instruction order
the modules while allowing some specific reordering of the memory references issued by each m
in addition, it incorporates the cache management operations listed above.

The Memory Order relationship is a total ordering over the complete set of operations in the M
Trace. Two operations in a given Memory Trace may be completely independent of each other, b

Notation Abbreviation for Description
DataCVs(s) CombCVs(s) ∪ DonlyCVs(s) Set of distinct values of copies of the line present

in data caches, including both data-only and com-
bined caches.

InstCVs(s) CombCVs(s) ∪ IonlyCVs(s) Set of distinct values of copies of the line present
in instruction caches, including both instruction-
only and combined caches.

AllCVs(s) CombCVs(s) ∪ DonlyCVs(s)
∪ IonlyCVs(s)

Set of distinct values of copies of the line present
in caches of any kind.

Type Description Attributes

MoveIn Move a line into cache. This operation takes a “snap-shot”
of a line in memory and copies it into I-cache or D-cache.

Icache, Page, Line

MakePrivate Change the data cache status from Public to PrivClean. Page, Line
CopyOut Copy a dirty line to memory, leaving a clean copy in cache. Page, Line
MakePublic Change the data cache status from PrivClean to Public. Page, Line
Invalidate Remove a copy of a line from I-cache or D-cache. Icache, Page, Lin
G-11PA-RISC 2.0 Architecture Memory Ordering Model

tate of

ment
re stated

rations.
 Load
 Trace
ce as
herence

re will
nstead
t
e,

e

ver
o not
are still given an explicit (though arbitrary) ordering in the Memory Order relationship. We write Oi for
the i-th operation in this total ordering. The indexi is in the range 0≤ i < NumOpns, where NumOpns is
the number of operations in the Memory Trace. The operations in the Memory Trace affect the s
the memory system. Thus the sequence of operations Oi results in a sequence of states State(p,l,i), 0 ≤ i
< NumOpns, for every line with page addressp and line offsetl within p, the initial state of the line
being State(p,l,0). For a given Execution Trace, the Memory Order and the cache manage
operations are constrained by a set of ordering rules, coherence rules and move-in rules that a
later.

Final Goal

The behavior of the memory system is observed through the values returned by the Load ope
Hence the ultimate goal of this Memory Model is to determine whether the values returned by the
operations in a given Execution Trace are permissible in a correct memory system. An Execution
is said to be “OK in PA” if and only if there exists a Memory Trace that extends the Execution Tra
described above (and therefore includes its load values), and also satisfies the ordering rules, co
rules, and move-in rules given in the following sections.

We now define the order, coherence, and move-in rules. For clarity, the formal notation given he
avoid passing ExecutionTrace and MemTrace as parameters into every function, and will i
assume that the relationship “<” and the function Oi are globally defined to match the curren
ExecutionTrace and MemTrace. Oi, Oj, and Ok are arbitrary operations within the current MemTrac
unless otherwise specified. (Formally, free occurrences of the variables i, j, k are to be considered
universally quantified over the range 0≤ i,j,k < NumOpns.) To simplify the notations, we define som
more shorthand:

Note that Before(i) and After(i) refer implicitly to a specific line, the one that Oi is concerned with, and
that this line changes from one operation Oi to the next. These notations are well-defined whene
Type(Oi) ∉ {Sync, TLB_Purge}, since Sync and TLB_Purge operations are the only ones that d
have both Page and Line attributes.

Function Definition

Oi The i-th operation in the Memory Trace.
State(p,l,i) The states of the linel on pagep immediately prior to the

execution of operation Oi.

Definition

OK_in_PA(ExecutionTrace) =
there exists MemTrace such that

((MemTrace extends ExecutionTrace) and
ObeysRule1(ExecutionTrace,MemTrace) and
ObeysRule2(ExecutionTrace,MemTrace) and ...

)

Notation Abbreviation for Description
Before(i) State(Page(Oi),Line(Oi),i) The state of a linebefore it is operated on by Oi
After(i) State(Page(Oi),Line(Oi),i+1) The state of a lineafter it is operated on by Oi
G-12 Memory Ordering Model PA-RISC 2.0 Architecture

om the
nship
tem. In
at all
function

 Order
Order Rules

We define a relationship called OrderSensitive which represents the ordering requirements fr
informal description at the beginning of this appendix. Pairs of operations for which this relatio
holds are required to retain their relative ordering as they are processed by the memory sys
addition to the explicit rules stated in the informal description, there is the implicit requirement th
accesses from a single source to a single line are OrderSensitive. Note that the OrderSensitive
is neither symmetric nor transitive. Thus, OrderSensitive(x,y) does not necessarily imply
OrderSensitive(y,x).

Rule 1 is obeyed when the Memory Order relationship of MemTrace preserves the Instruction
relationship of ExecutionTrace for all memory references which are considered OrderSensitive:

Definition

IsAccess(x) = (Type(x)=Load or Type(x)=Store or Type(x)=TLB_Purge)
IsLdOrSt(x) = (Type(x)=Load or Type(x)=Store)

StronglyOrdered(x,y) =
(IsAccess(x) and IsAccess(y)) and
(Strength(x)=Strong or Strength(y)=Strong)

Ordered(x,y) =
(Type(x)=Load and Strength(x)=Ordered and IsAccess(y)) or
(IsAccess(x) and Type(y)=Store and Strength(y)=Ordered) or
(Type(x)=Store and Strength(x)=Ordered and Type(y)=Load and Strength(y)=Ordered)

FlushOrdered(x,y) =
(IsLdOrSt(x) and Type(y)=Flush and Page(x)=Page(y) and Line(x)=Line(y)) or
(Type(x)=TLB_Purge and Type(y)=Flush and Page(x)=Page(y))

SyncOrdered(x,y) =
(Type(x)=Sync) or
(Type(y)=Sync)

AccessOrdered(x,y) =
(IsLdOrSt(x) and IsLdOrSt(y) and Source(x)=Source(y) and

Page(x)=Page(y) and Line(x)=Line(y))

OrderSensitive(x,y) =
(StronglyOrdered(x,y) or

Ordered(x,y) or
FlushOrdered(x,y) or
SyncOrdered(x,y) or
AccessOrdered(x,y)

)

Rule 1 (Required ordering)

If OrderSensitive(Oi,Oj) and (Oi < Oj)
then (i < j).
G-13PA-RISC 2.0 Architecture Memory Ordering Model

tes that

change
ing the
that an
ncs and

ction
 data-
 kind,
ruction
sent in

l rules
If two operations are atomically linked as a semaphore in the Instruction Order, then Rule 2 sta
they must be consecutive in the Memory Order:

Coherence and Move-in Rules

The first rule in this section specifies that loads, flushes, syncs and TLB purges do not directly
the state of the memory system. (Flushes, however, change the state indirectly, by instruct
hardware to initiate cache line invalidations, as we shall see later.) The rule also specifies
operation that concerns a specific line does not change the state of any other line. Note that sy
TLB purges are the only operations that do not have a Line attribute.

The following few rules concern move-ins. The Icache attribute of a move-in operation Oi specifies
whether the operation is an instruction cache move-in (Icache(Oi)=T) or a data cache move-in
(Icache(Oi)=F). The Value attribute gives the value of the cache line that is moved in. An instru
move-in may bring a copy of a line into an instruction-only or a combined cache, but not into a
only cache. The copy of the line may be obtained from memory or from another cache of any
including a data-only cache. If the data cache status is private clean or private dirty, then an inst
move-in cannot result in an additional line value being added to the set of line values already pre
the combined caches.

(Note that, although we mention line copies in the informal descriptions of the rules, the forma
are concerned withvalues of line copies, rather than with the copies themselves.)

Rule 2 (Semaphore atomicity)

If
Source(Oi) = Source(Oj) and
SemaLd(Oi) and
RefNum(Oi)+1 = RefNum(Oj)

then (i+1 = j).

Rule 3 (Stability)

For everyp, l, if
Type(Oi) ∈ {Load, Flush, Sync, TLB_Purge} or
(Type(Oi) ∉ {Sync, TLB_Purge} and Page(Oi) ≠ p) or
(Type(Oi) ∉ {Sync, TLB_Purge} and Line(Oi) ≠ l)

then
State(p,l,i+1) = State(p,l,i).
G-14 Memory Ordering Model PA-RISC 2.0 Architecture

tus for
e, but
cache

an be

its lines
page is
solute
ge (in the
se of an
sh, or

vening
A move-in operation to the data caches for a given line is only allowed when the data cache sta
that line is Public. A data move-in may bring a copy of a line into a data-only or a combined cach
not into an instruction-only cache. The copy of the line may be obtained from memory or from a
other than an instruction-only cache.

The following move-in rules are a simplified version of what appears in Appendix F. Full details c
found there.

Move-ins are allowed or disallowed on a per-page basis. If a physical page belongs to I/O space,
cannot be moved in. Otherwise they can be moved in under two circumstances: (i) the physical
the translation of a virtual page that is mapped cacheable, or (ii) the move-in is justified by an ab
reference. In the latter case, the absolute reference must be a store or data load to the same pa
case of a data move-in), or an instruction load to the same or to the preceding page (in the ca
instruction move-in). Furthermore, the reference must precede the move-in with no intervening flu
else the move-in must immediately precede the memory reference (with perhaps an inter
MakePrivate operation, since MakePrivate is separate from MoveIn in the Memory Model).

Rule 4 (Move-in to instruction caches)

If Type(Oi)=MoveIn and Icache(Oi)=T
then

MemVal(After(i)) = MemVal(Before(i)) and
Status(After(i)) = Status(Before(i)) and
Value(Oi) ∈ AllCVs(Before(i)) ∪ {MemVal(Before(i))} and
InstCVs(After(i)) = InstCVs(Before(i)) ∪ {Value(Oi)} and
DonlyCVs(After(i)) = DonlyCVs(Before(i)) and
if Status(Before(i)) ∈ {PrivClean, PrivDirty}
then CombCVs(After(i)) = CombCVs(Before(i)).

Rule 5 (Move-in to data caches)

If
Type(Oi) = MoveIn and
Icache(Oi) = F

then
Status(Before(i)) = Public and
Status(After(i)) = Public and
MemVal(After(i)) = MemVal(Before(i)) and
IonlyCVs(After(i)) = IonlyCVs(Before(i)) and
Value(Oi) ∈ DataCVs(Before(i)) ∪ {MemVal(Before(i))} and
DataCVs(After(i)) = DataCVs(Before(i)) ∪ {Value(Oi)}.
G-15PA-RISC 2.0 Architecture Memory Ordering Model

 Public
re than
Private
rdware
A MakePrivate operation on a given line may take place when the data cache status for the line is
and there is only one distinct line value in the data-only and combined caches. (If there are mo
one, hardware may use invalidations to reduce the number to one prior to executing the Make
operation; MakePrivate and those preceding invalidations are usually combined into a single ha

Rule 6 (Allowable instruction move-ins)

If
Type(Oi) = MoveIn and
Icache(Oi) = T

then
Page(Oi) ∉ IO_Space and
(MappedCacheable(Page(Oi)) or
there existsj < NumOpns such that
Virtual(Oj) = F and
Type(Oj) = Load and
Icache(Oj) = T and
Page(Oj) ∈ {Page(Oi), Page(Oi)-1} and
(j = i+1 or

(j < i and there is nok such that
j < k < i and
Type(Ok) = Flush and
Icache(Ok) = T and
Page(Ok) = Page(Oi)
))).

Rule 7 (Allowable data move-ins)

If
Type(Oi) = MoveIn and
Icache(Oi) = F

then
Page(Oi) ∉ IO_Space and
(MappedCacheable(Page(Oi)) or
there existsj < NumOpns such that
Virtual(Oj) = F and
Type(Oj) ∈ {Load, Store} and
Icache(Oj) = F and
Page(Oj) = Page(Oi) and
(j = i+1 or
(j = i+2 and Type(Oi+1) = MakePrivate) or
(j < i and there is nok such that
j < k < i and
Type(Ok) = Flush and
Icache(Ok) = F and
Page(Ok) = Page(Oi)
))).
G-16 Memory Ordering Model PA-RISC 2.0 Architecture

ivDirty,
ter the
tion. In
 is not
 of the

for that

lidate
operation.)

A CopyOut operation on a given line may take place when the data cache status for the line is Pr
the resulting status being PrivClean. The rule asserts that the value of the line in memory af
operation is one of the values of the line in the data-only or combined caches before the opera
fact, when the data cache status is private (clean or dirty), there is only one such value; this
asserted by any one rule, but it follows globally from the set of rules, as we shall see at the end
section (cf. Theorem 1).

A MakePublic operation for a given line may take place when the data cache status is PrivClean
line.

Hardware is allowed to perform invalidations at any time. The intended meaning of an Inva

Rule 8 (MakePrivate)

If
Type(Oi) = MakePrivate

then
Status(Before(i)) = Public and
(there existsw such that DataCVs(Before(i)) = {w}) and
Status(After(i)) = PrivClean and
MemVal(After(i)) = MemVal(Before(i)) and
IonlyCVs(After(i)) = IonlyCVs(Before(i)) and
CombCVs(After(i)) = CombCVs(Before(i)) and
DonlyCVs(After(i)) = DonlyCVs(Before(i)).

Rule 9 (CopyOut)

If
Type(Oi) = CopyOut

then
Status(Before(i)) = PrivDirty and
Status(After(i)) = PrivClean and
MemVal(After(i)) ∈ DataCVs(Before(i)) and
IonlyCVs(After(i)) = IonlyCVs(Before(i)) and
CombCVs(After(i)) = CombCVs(Before(i)) and
DonlyCVs(After(i)) = DonlyCVs(Before(i)).

Rule 10 (MakePublic)
If

Type(Oi) = MakePublic
then

Status(Before(i)) = PrivClean and
Status(After(i)) = Public and
MemVal(After(i)) = MemVal(Before(i)) and
IonlyCVs(After(i)) = IonlyCVs(Before(i)) and
CombCVs(After(i)) = CombCVs(Before(i)) and
DonlyCVs(After(i)) = DonlyCVs(Before(i)).
G-17PA-RISC 2.0 Architecture Memory Ordering Model

e
an be

an
nly

 public.
rty, an
 these

tructs
ation,
ined
, in the
e caches
operation is the removal ofone copy rather thanall copies. Removing all copies from the cach
structure, or from the instruction-only caches, combined caches, or data-only caches, c
accomplished by multiple invalidations, but it is not an atomic hardware operation.

If Oi is an Invalidate operation, then Icache(Oi) = T is used to indicate that the invalidation occurs in
instruction-only cache, while Icache(Oi) = F is used to indicate that it occurs in a combined or data-o
cache.

In the case of a data or combined cache, an invalidation is allowed only if the data cache status is
If the status is private clean, a MakePublic must be done first, and if the status is private di
invalidation must be preceded by a CopyOut and a MakePublic. Hardware often combines
conceptual operations into a single hardware transaction.

A flush operation Oi for a given line causes no immediate change in the state of the line, but it ins
the hardware to perform a series of invalidations of copies of the line. An instruction flush oper
indicated by Icache(Oi) = T, is a request to invalidate all copies in the instruction-only and comb
caches. A subsequent Sync operation must wait for these invalidations to be completed. Thus
state before the Sync, any copies of the line in those caches must be new copies, brought into th
by move-ins following the Flush.

Rule 11 (Invalidate copy in an instruction-only
cache)
If

Type(Oi) = Invalidate and
Icache(Oi) = T

then
Status(After(i)) = Status(Before(i)) and
MemVal(After(i)) = MemVal(Before(i)) and
IonlyCVs(After(i)) ⊆ IonlyCVs(Before(i)) and
CombCVs(After(i)) = CombCVs(Before(i)) and
DonlyCVs(After(i)) = DonlyCVs(Before(i)).

Rule 12 (Invalidate copy in a data or combined cache)

If
Type(Oi) = Invalidate and
Icache(Oi) = F

then
Status(Before(i)) = Public and
Status(After(i)) = Public and
MemVal(After(i)) = MemVal(Before(i)) and
IonlyCVs(After(i)) = IonlyCVs(Before(i)) and
CombCVs(After(i)) ⊆ CombCVs(Before(i)) and
DonlyCVs(After(i)) ⊆ DonlyCVs(Before(i)).
G-18 Memory Ordering Model PA-RISC 2.0 Architecture

nly
pleted.

 brought
A data flush operation, indicated by Icache(Oi) = F, is a request to invalidate all copies in the data-o
and combined caches. A subsequent Sync operation must wait for these invalidations to be com
Thus, in the state before the Sync, any copies of the line in those caches must be new copies,
into the caches by move-ins following the Flush.

A non-coherent store to a given line modifies the memory copy of the line.

Rule 13 (Flush instruction cache)

If
Type(Oi) = Flush and
Icache(Oi) = T and
Type(Ok) = Sync and
Oi < Ok

then
for everyw ∈ InstCVs(State(Page(Oi),Line(Oi),k))
there existsj in the rangei < j < k such that
Type(Oj) = MoveIn and
Page(Oj) = Page(Oi) and
Line(Oj) = Line(Oi) and
Value(Oj) = w.

Rule 14 (Flush data cache)

If
Type(Oi) = Flush and
Icache(Oi) = F and
Type(Ok) = Sync and
Oi < Ok

then
for everyw ∈ DataCVs(State(Page(Oi),Line(Oi),k))
there existsj in the rangei < j < k such that
Type(Oj) = MoveIn and
Page(Oj) = Page(Oi) and
Line(Oj) = Line(Oi) and
Value(Oj) = w.

Rule 15 (Non-coherent store)

If
Type(Oi) = Store and
Coherent(Oi) = F

then
Status(After(i)) = Status(Before(i)) and
MemVal(After(i)) = Put(MemVal(Before(i)),Byte(Oi),Value(Oi)) and
IonlyCVs(After(i)) = IonlyCVs(Before(i)) and
CombCVs(After(i)) = CombCVs(Before(i)) and
DonlyCVs(After(i)) = DonlyCVs(Before(i)).
G-19PA-RISC 2.0 Architecture Memory Ordering Model

e copy
rty.

lid copy
 later, it
ata or
oherent
If the data cache status of a given line is private (clean or dirty), then a coherent store modifies th
or copies of the line present in the data or combined caches, the resulting status being private di

Even though the status is private, there may be multiple copies: for example, there could be a va
in a level-1 cache and a valid copy in the corresponding level-2 cache. However, as we shall see
follows globally from the set of rules that there must be only one distinct value for the line in the d
combined caches. Thus, if there are multiple valid copies, they must have the same value. A c
store modifies this unique value in each of those copies.
G-20 Memory Ordering Model PA-RISC 2.0 Architecture

only if
s a non-
ness. It
rs do.)

in an
If the data cache status is public, a coherent store is allowed to write directly to memory, but
there are no copies of the line in the data-only or combined caches. It then has the same effect a
coherent store. (The concept of a coherent store to memory is included for the sake of complete
may be useful in implementations where some of the processors have no data cache, while othe

An instruction load from a given line may get its value from memory or from any copy of the line
instruction or combined cache.

Rule 16 (Coherent store to cache)

If
Type(Oi)=Store and
Coherent(Oi) = T and
Status(Before(i)) ∈ {PrivClean, PrivDirty}

then
Status(After(i)) = PrivDirty and
MemVal(After(i)) = MemVal(Before(i)) and
IonlyCVs(After(i)) = IonlyCVs(Before(i)) and
for everyw
(if CombCVs(Before(i)) = {w} then CombCVs(After(i)) = {Put(w,Byte(Oi),Value(Oi))}) and
(if CombCVs(Before(i)) = ∅ then CombCVs(After(i)) = ∅) and
(if DonlyCVs(Before(i)) = {w} then DonlyCVs(After(i)) = {Put(w,Byte(Oi),Value(Oi))}) and
(if DonlyCVs(Before(i)) = ∅ then DonlyCVs(After(i)) = ∅).

Rule 17 (Coherent store to memory)

If
Type(Oi) = Store and
Coherent(Oi) = T and
Status(Before(i)) = Public

then
DataCVs(Before(i)) = ∅ and
Status(After(i)) = Public and
MemVal(After(i)) = Put(MemVal(Before(i)),Byte(Oi),Value(Oi)) and
IonlyCVs(After(i)) = IonlyCVs(Before(i)) and
DataCVs(After(i)) = ∅.

Rule 18 (Value returned by instruction load)

If
Type(Oi) = Load and
Icache(Oi) = T

then
there existsw ∈ {MemVal(Before(i))} ∪ InstCVs(Before(i)) such that
Value(Oi) = Get(w,Byte(Oi),Size(Oi)).
G-21PA-RISC 2.0 Architecture Memory Ordering Model

cache.

e in a
ne in a
es that

gical
A non-coherent data-load is allowed to obtain its value from memory or a data-only or combined

A coherent data load from a given line may get its value from memory or from any copy of the lin
data-only or combined cache. However, if the data cache status is PrivDirty, then a copy of the li
data or combined cache must be used. As mentioned earlier, it follows from the global set of rul
there is only one distinct value of the line in the data-only and combined caches.

In the initial state, all caches must be empty, and the data cache status must be public.

This ends the rules of the Memory Model. Additional architectural rules are derivable as lo
consequences of these rules. As an example, the next section proves a sample theorem.

Rule 19 (Value returned by non-coherent data load)

If
Type(Oi) = Load and
Icache(Oi) = F and
Coherent(Oi) = F

then
there existsw ∈ {MemVal(Before(i))} ∪ DataCVs(Before(i)) such that
Value(Oi) = Get(w,Byte(Oi),Size(Oi)).

Rule 20 (Value returned by coherent data load)

If
Type(Oi) = Load and
Icache(Oi) = F and
Coherent(Oi) = T

then
there existsw such that
Value(Oi) = Get(w,Byte(Oi),Size(Oi)).

and
if Status(Before(i)) = PrivDirty
thenw ∈ DataCVs(Before(i))
elsew ∈ DataCVs(Before(i)) ∪ {MemVal(Before(i))}.

Rule 21 (Initial State)

For everyp, l,
Status(State(p,l,0)) = Public and
IonlyCVs(State(p,l,0)) =∅ and
CombCVs(State(p,l,0)) =∅ and
DonlyCVs(State(p,l,0)) =∅.
G-22 Memory Ordering Model PA-RISC 2.0 Architecture

on
 the
che
for

s

le 4
t

Proof of Coherence for Private Lines

PROOF. For arbitraryp andl, we prove by induction oni the invariant: ifs = Status(p,l,i), then either
Status(s) = Public or DataCVs(s) has one element.

The invariant holds for the initial state, since

Status(State(p,l,0)) = Public.

Assume that it holds fori < NumOpns and lets’ = State(p,l,i+1). We reason by cases on the operati
Oi. If s’ = s, then the invariant holds fori+1; hence we need only consider operations that change
state of the line addressed byp and l. By Rule 3 such an operation must be a store or a ca
management operation concerning the line. We check now that in every case the invariant holds i+1.

By Rule 15, if Oi is a non-coherent store, then Status(s’) = Status(s) and DataCVs(s’) = DataCVs(s),
Hence, since the invariant holds fori by induction hypothesis, it holds fori+1.

By Rule 16, if Oi is a coherent store to cache, then Status(s) ∈ {PrivClean, PrivDirty}. In that case, by
the induction hypothesis, DataCVs(s) has one element. This means that either

DonlyCVs(s) = CombCVs(s) = {w} or

(DonlyCVs(s) = {w} and CombCVs(s) = ∅) or

(DonlyCVs(s) = ∅ and CombCVs(s) = {w})

for some line valuew. Then, again by Rule 16, we have

DonlyCVs(s) = CombCVs(s) = {w’} or

(DonlyCVs(s) = {w’} and CombCVs(s) = ∅) or

(DonlyCVs(s) = ∅ and CombCVs(s) = {w’})

respectively, with

w’ = Put(w,Byte(Oi),Value(Oi)).

Hence DataCVs(s’) has one element, and the invariant holds fori+1.

By Rule 17, if Oi is a coherent store to memory, then Status(s’) = Public, and hence the invariant hold
for i+1.

By Rule 4, if Oi is a move-in to the instruction caches, Status(s) = Status(s’). Hence if Status(s) =
Public, then Status(s’) = Public, and the invariant holds fori+1. If, on the other hand, Status(s) ∈
{PrivClean, PrivDirty}, then DataCVs(s) must have one element by induction hypothesis, and Ru
specifies in this case that CombCVs(s’) = CombCVs(s), in addition to the requirement tha
DonlyCVs(s) = DonlyCVs(s’) which applies to any status. Thus DataCVs(s’) coincides with
DataCVs(s) and therefore has one element.

Theorem 1 (Coherence of private lines)

If a memory trace obeys the coherence and move-in rules, then for everyi < NumOpns,
for every physical page addressp, and for every line offsetl, if s = State(p,l,i) and Sta-
tus(s) ∈ {PrivClean, PrivDirty}, then the set DataCVs(s) has exactly one element.
G-23PA-RISC 2.0 Architecture Memory Ordering Model

s

,

By Rule 5, if Oi is a move-in to the data caches, then Status(s’) = Public, and hence the invariant hold
for i+1.

By Rule 8, if Oi is a MakePrivate operation, then DataCVs(s) has one element, and DataCVs(s’) =
DataCVs(s). Hence DataCVs(s’) has one element and the invariant is satisfied fori+1.

By Rule 9, if Oi is a CopyOut operation, then Status(s) = PrivDirty. Hence, by induction hypothesis
DataCVs(s) must have one element. But, by Rule 9 again, DataCVs(s’) coincides with DataCVs(s).
Thus DataCVs(s’) has one element, and the invariant holds fori+1.

By Rule 10, if Oi is a MakePublic operation, then Status(s’) = Public and the invariant holds fori+1.

By Rule 11, if Oi is an invalidation in an instruction-only cache, then

Status(s’) = Status(s) and

DataCVs(s’) = DataCVs(s).

Hence, since the invariant holds fori by induction hypothesis, it holds fori+1.

Finally, by Rule 12, if Oi is an invalidation in a data or combined cache, then Status(s’) = Public and the
invariant holds fori+1.

We have now examined all cases, and thus completed the induction step and the proof.
G-24 Memory Ordering Model PA-RISC 2.0 Architecture

s

es are

 may be
a short

mory
he entity

nt. The
ruction

32-bit
t user
rograms
s, all
d the s-
en the
o. allow
H Address Formation Detail

This appendix provides detailed descriptions and illustrations of how various types of address
formed in a PA-RISC processor.

Memory Reference Instruction Address Formation

Addresses are formed by the combination of a Space ID and an address Offset. Address Offsets
formed as the sum of a base register and any one of the following: a long displacement,
displacement (which leaves more instruction bits for other functions), or an index register.

Long Displacement Addressing

Memory reference instruction formats that have long displacements form the effective me
reference address by adding a displacement to a base value specified through the instruction. T
being transferred can be a doubleword, word, halfword, or a byte.

The displacement can be any of the following:

• a 16-bit byte displacement (restricted to 14 bits when PSW W-bit =0)

• a 12-bit word displacement for word loads and stores

• an 11-bit doubleword displacement for doubleword loads and stores.

The opcode specifies the particular data transfer to be performed and the form of the displaceme
displacements are encoded in two’s complement notation with the sign bit always placed in inst
bit 31. The formats for long displacement instructions are:

Space selection is done differently for 64-bit programs (when the PSW W-bit is 1) than it is for
programs (when the PSW W-bit is 0). For 64-bit programs, there is little need for providing direc
program access to an address space larger than 64 bits. Therefore, it is anticipated that most p
(other than system software) will use only implicit pointers. For this reason, for 64-bit program
long displacement loads and stores inherently compute their addresses as implicit pointers, an
field is used to extend the displacement by 2 bits, providing an effective 16-bit displacement. Wh
s-field is used to encode more displacement bits, they are encoded in a special fashion in order t

op b t/r s im14

6 5 5 2 14

op b t/r s im11a op i

6 5 5 2 11 2 1

op b t/r s im10a m op i

6 5 5 2 10 1 2 1
H-1PA-RISC 2.0 Architecture Address Formation Details

 for 32-
ntrol
ecifies

ter. If the
ctly by
s the

space

ddress.

 space
 ORed,
the encoding for displacements which do not require the additional 2 bits of range to be the same
bit and for 64-bit programs. (See the function “assemble_16” in “Instruction Notation Co
Structures” on page E-1 for more details on encoding.) For 32-bit programs, the s-field simply sp
the space register.

When data translation is enabled, the effective space ID is the contents of a selected space regis
PSW W-bit is 0 (a 32-bit program), and the s-field is non-zero, the space register is selected dire
the s-field (explicit pointer). If the PSW W-bit is 0 and the s-field is 0, the effective space ID i
contents of the space register whose number is the sum of 4 plus bits 32..33 of GRb (implicit 32-bit
pointer). If the PSW W-bit is 1 (a 64-bit program), the effective space ID is the contents of the
register whose number is the sum of 4 plus bits 0..1 of GRb (implicit 64-bit pointer). When data
translation is disabled, no space register selection is done and the offset is used directly as the a

The effective offset is the sum of the contents of GRb and the sign-extended displacementd. For 32-bit
programs, the offset is truncated to 32 bits (the upper 32 bits are forced to 0).

The address calculation is shown in Figure H-1 and Figure H-2 in three parts: Figure H-1 shows
identifier selection, and Figure H-2 shows offset computation. Space and offset are then bit-wise
as shown in Figure H-3 to form the full virtual address.

Figure H-1. Space Identifier Selection

GR[b]

Space Registers

Data
Reference

s-field

2

Space Registers

Data
Reference

implicit pointer

2

3

4

SR[4]

SR[5]

SR[6]

SR[7]

SR[1]

SR[2]

SR[3]

Space ID Space ID

explicit pointer

PSW W-bit
H-2 Address Formation Details PA-RISC 2.0 Architecture

e offset
e case

erence
 in the
two’s
e.
Base register modification can be optionally performed, and can either be done before or after th
calculation, as shown in Figure H-2. Base register modification is specified by the opcode, or in th
of doubleword loads and stores, by the m-field.

Short Displacement Addressing

This section describes memory reference instruction formats, where the effective memory ref
address is formed by the addition of a short 5-bit displacement to a base value specified
instruction. The sign bit of the short displacement is the rightmost bit of the 5-bit field, which is in
complement notation. The entity being transferred can be a doubleword, word, halfword, or a byt

Figure H-2. Offset computation with long displacement

0 2
3
1

6
1

6
3

offset a A B

0
3
2

3
4

6
3

space C d D

GVA C d A | D B

Figure H-3. Global Virtual Address Formation

Displacement

Offset Computation

General Registers
0

Base

Low Sign

Offset

64

31

Extend

64

64

Displacement

Offset Computation

General Registers
0

Base

Low Sign

Offset

64

31

Extend

64

64

Pre-modify Post-modify
H-3PA-RISC 2.0 Architecture Address Formation Details

0, and

nd the

he

e H-2).
n in

H-3 on
The format of the short displacement load instructions is:

and that of the short displacement stores is:

Theext4 field in the instruction format above specifies a load or a store and the data size. Thea andm
fields specify the following functions:

a = 0 modify after if m = 1.
= 1 modify before if m = 1.

m = 0 no address modification.
= 1 address modification.

In addition the combinationa = 0,m = 1, andim5 = 0 specifies an ordered load or store.

The cc field specifies the cache control hint (see Table 6-7 on page 6-10, Table 6-8 on page 6-1
Table 6-9 on page 6-11).

In the instruction descriptions that follow, some information is coded into the instruction names a
remainder is coded in the completer field (denoted bycmplt in the descriptions). Table H-1 lists the
assembly language syntax of the completer, the functions performed, and the values coded into ta, m,
andim5 bit fields of the instruction.

In the above table,cmplt is in assembly language format anda, m, andim5 are in machine language
format.

The space identifier is computed like any other data memory reference (see Figure H-1 on pag
The calculation of the offset portion of the effective address for different completers is show
Figure H-4. Space and offset are combined like any other data memory reference (see Figure
page H-3).

03 b im5 s a 1 cc ext4 m t

6 5 5 2 1 1 2 4 1 5

03 b r s a 1 cc ext4 m im5

6 5 5 2 1 1 2 4 1 5

Table H-1. Short Displacement Load and Store Instruction Completers

cmplt Description a m im5

<none> don’t modify base register x 0 x
MA Modify base register After 0 1 ≠0
MB Modify base register Before 1 1 x
O Ordered access 0 1 0
Notes: x indicates don’t care.
H-4 Address Formation Details PA-RISC 2.0 Architecture

Figure H-4. Offset computation with short displacement

0

31

Base

General
Registers

64
+

64

64

64

Short
Displacement

im5

Offset

Low Sign
Extend

Offset Computation

,MB Completer

0

31

Base

General
Registers

64
+

64

64

64

Short
Displacement

im5

Offset

Low Sign
Extend

0

31

Base

General
Registers

64
+

64

64

Short
Displacement

im5

Offset

Low Sign
Extend

Offset Computation

,MA Completer

Offset Computation

No Completer Specified
H-5PA-RISC 2.0 Architecture Address Formation Details

es
ations.

ord.

nd the

to the

e H-2).
n in

H-3 on

r to the
Store Bytes Instructions

STORE BYTES and STORE DOUBLEWORD BYTESprovide the means for doing unaligned byte mov
efficiently. These instructions use a short 5-bit displacement to store bytes to unaligned destin
The short displacement field is in two’s complement notation with the sign bit as its rightmost bit.

The format of theSTORE BYTES and STORE DOUBLEWORD BYTESinstructions is:

The ext4 field in the instruction format above specifies the data size. Thea andm fields specify the
following functions:

a = 0 store bytes beginning at the effective byte address in the word
or doubleword.

= 1 store bytes ending at the effective byte address in the word or doublew

m = 0 no address modification.
= 1 address modification.

Thecc field specifies the cache control hint (see Table H-2 on page H-6).

In the instruction descriptions that follow, some information is coded into the instruction names a
remainder is coded in the completer field (denoted bycmplt in the descriptions). Table H-2 lists the
assembly language syntax of the completer, the functions performed, and the values coded ina
andm fields of the instruction.

In the above table,cmplt is in assembly language format anda andm are in machine language format.

The space identifier is computed like any other data memory reference (see Figure H-1 on pag
The calculation of the offset portion of the effective address for different completers is show
Figure H-5. Space and offset are combined like any other data memory reference (see Figure
page H-3).

The actual offset and modified address involves some alignment and other considerations. Refe
instruction description pages for an exact definition.

03 b r s a 1 cc ext4 m im5

6 5 5 2 1 1 2 4 1 5

Table H-2. Store Bytes Instruction Completers

cmplt Description a m

<none> or B Beginning case, don’t modify base register 0 0
B,M Beginning case, Modify base register 0 1
E Ending case, don’t modify base register 1 0
E,M Ending case, Modify base register 1 1
H-6 Address Formation Details PA-RISC 2.0 Architecture

Figure H-5. Offset computation for Store Bytes and Store Doubleword Bytes

0

31

Base

General
Registers

64
+

64

64

64

Short
Displacement

im5

Offset

Low Sign
Extend

Offset Computation

,E,M Completer

0

31

Base

General
Registers

64
+

64

64

64

Short
Displacement

im5

Offset

Low Sign
Extend

0

31

Base

General
Registers

64
+

64

64

Short
Displacement

im5

Offset

Low Sign
Extend

Offset Computation

,B,M Completer

Offset Computation

,B or ,E or No Completer Specified
H-7PA-RISC 2.0 Architecture Address Formation Details

erence
n. The

word
sults in

-11).

e
ar in

e H-2).
n in

H-3 on
Indexed Addressing

This section describes memory reference instruction formats, where the effective memory ref
address is formed by the addition of an index value to a base value specified in the instructio
entity being transferred can be a doubleword, word, halfword, or a byte.

The format for indexed instructions is:

Theu field specifies is the index register is shifted by the data size specified in theext4 field and them
field specifies if base register modification is performed.

Index shift by data size means that the index value (contents of GRx) is multiplied by the size of the
data item being referenced - 1 if it is a byte, 2 for a halfword, 4 for a word, and 8 for a double
(these correspond to shifts by 0, 1, 2, and 3 bits, respectively). Base register modification also re
the contents of GRb being replaced by the sum of the index value and the previous contents of GRb.

Thecc field specifies the cache control hint (see Table 6-7 on page 6-10 and Table 6-9 on page 6

In the instruction descriptions, the termcmplt is used to denote the completer which is encoded in thu
and m fields. The list of completers and the address formation functions they specify appe
Table H-3.

In the above table,cmplt is in assembly language format andu andm are in machine language format.

The space identifier is computed like any other data memory reference (see Figure H-1 on pag
The calculation of the offset portion of the effective address for different completers is show
Figure H-6. Space and offset are combined like any other data memory reference (see Figure
page H-3).

03 b x s u 0 cc ext4 m t

6 5 5 2 1 1 2 4 1 5

Table H-3. Indexed Instruction Completers

cmplt Description u m

<none> no index shift, don’t modify base register 0 0

M no index shift, Modify base register 0 1

S Shift index by data size, don’t modify base register 1 0

SM or S,M Shift index by data size, Modify base register 1 1
H-8 Address Formation Details PA-RISC 2.0 Architecture

pecifies
C 1.0
Absolute Address Formation

The formation of absolute addresses varies depending on the setting of the PSW W-bit which s
whether the system is to support full 64-bit offsets or the 32-bit offsets compatible with PA-RIS
and 1.1 systems.

Figure H-6. Offset computation with indexed addressing

Offset ComputationOffset Computation

,S Completer ,M Completer

Offset Computation

Offset

left

Offset Computation

General Registers
0

Base

Shifted

Offset

64

31

Indexshift

64

64

,SM or ,S,M Completer No Completer Specified

Index

General Registers
0

Base
64

31

64

64

Index

Offset

left

General Registers
0

Base

Shifted

64

31

Indexshift

64

64

Index

Offset

General Registers
0

Base
64

31

64

Index

64
H-9PA-RISC 2.0 Architecture Address Formation Details

of the
 lowest-

are

-8 and

 to

re
Absolute Accesses when PSW W-bit is 1

When the PSW W-bit is 1 (see “Processor Status Word (PSW)” on page 2-7 for the definition
PSW W-bit), an absolute address is a 62-bit unsigned integer whose value is the address of the
addressed byte of the operand it designates (see Figure H-7).

The 2-bit ne field is a non-existent field (i.e., software may write any value, but hardw
implementations must ignore them).

A 64-bit physical address is formed by extending a 62-bit absolute address as shown in Figure H
described by the following pseudo-code:

if (abs_addr{2..9} != 0xF0) { /* if not in PDC Address Space */
phys_addr{2..63}← abs_addr{2..63};
if (abs_addr{2..5} == 0xF) /* if I/O Address Space */

phys_addr{0..1}← 0x3;
else /* if Memory Address Space */

phys_addr{0..1}← 0x0;
} else { /* if PDC Address Space */

phys_addr{0..7}← 0xF0;
phys_addr{8..9}← processor-specific;
phys_addr{10..63}← abs_addr{10..63};

}

NOTE
Restricting absolute addresses when the PSW W-bit is 1 to 62 bits in size enables software
access any objects in a quarter of the 64-bit Physical Address Space by two means:

• Using a 62-bit absolute address

• Using a virtual address which implicitly uses any of Space Registers 4 through 7.

Maintaining a 64-bit virtual address space enables software to virtually access hardwa
subsystems such as I/O busses which define 64 bit physical addresses.

ne Absolute Byte Address

2 62

Figure H-7. 62-bit Absolute Pointer
H-10 Address Formation Details PA-RISC 2.0 Architecture

dress of

H-10
Absolute Accesses when PSW W-bit is 0

When the PSW W-bit is 0, an absolute address is a 32-bit unsigned integer whose value is the ad
the lowest-addressed byte of the operand it designates (see Figure H-9)

A 64-bit physical address is formed by extending the 32-bit Absolute Address as shown in Figure
and described by the following pseudo-code:

Figure H-8. 62-bit Absolute Accesses when PSW W-bit is 1

non-existent Absolute Byte Address

32 32

Figure H-9. 32-bit Absolute Pointer

PDC Address
Space

0xF0000000 00000000

0xF1000000 00000000

0xFFFFFFFF FFFFFFFF

0x00000000 00000000

Memory
Address Space

0x3C000000 00000000

0xFC400000 00000000

Memory
Address Space

PDC Add. Sp.

I/O Address
Space

0x00000000 00000000

0x3C000000 00000000

0x3C400000 00000000

0x3FFFFFFF FFFFFFFF

62-bit Absolute
Accesses with
PSW W-bit = 1

64 bit Physical
Address Space

I/O Address
Space

Bits 0 and 1 of
absolute address are

non-existent and
must be ignored by

hardware
implementations
H-11PA-RISC 2.0 Architecture Address Formation Details

if (abs_addr{32..39} != 0xF0) { /* if not in PDC Address Space */
phys_addr{32..63}← abs_addr{32..63};
if (abs_addr{32..35} == 0xF) /* if I/O Address Space */

phys_addr{0..31}← 0xFFFFFFFF;
else /* if Memory Address Space */

phys_addr{0..31}← 0x00000000;
} else { /* if PDC Address Space */

phys_addr{0..7}← 0xF0;
phys_addr{8..39}← processor-specific;
phys_addr{40..63}← abs_addr{40..63};

}

Figure H-10. 32-bit Absolute Accesses when PSW W-bit is 0

PDC Address
Space

0xF0000000 00000000

0xF1000000 00000000

0xFFFFFFFF FFFFFFFF

0x00000000 00000000

I/O Address
Space

Memory
Address Space

0x00000000 F0000000

0xFFFFFFFF F1000000

Memory
Address Space

PDC Add. Sp.

I/O Add. Sp.

0x00000000

0xF0000000

0xF1000000

0xFFFFFFFF

32-bit Absolute
Accesses with
PSW W-bit = 0

64 bit Physical
Address Space
H-12 Address Formation Details PA-RISC 2.0 Architecture

ccesses
Figure H-11 illustrates the relationship between the 64-bit Physical Address Space, absolute a
when the PSW W-bit is 0, and an example, 40-bit, implemented physical address space.

.

Figure H-11. Physical Address Space Mapping - An Example

PDC Add. Sp.

I/O Add. Sp.

Memory
Address Space

PDC Address
Space

PDC Address
Space

0xF0000000 00000000

0xF1000000 00000000

0xFFFFFFFF FFFFFFFF

0x00000000 00000000

Memory
Address Space

0x00 00000000

0x00 EFFFFFFF

0xF0 00000000

0xFF FFFFFFFF

0x000000EF FFFFFFFF

0xFFFFFFF1 00000000

0x00000000

0xF0000000

0xF1000000

0xFFFFFFFFI/O Address
Space

I/O Address
Space

Absolute
Accesses with
PSW W-bit = 0

40-bit Physical
Address Space
Implementation

64-bit Physical
Address Space

Memory
Address Space
H-13PA-RISC 2.0 Architecture Address Formation Details

H-14 Address Formation Details PA-RISC 2.0 Architecture

ow to

. Since
dress,

resting

 branch
e and
h will
arget of
ction,

the IA
lue as
I Programming Notes

This appendix is a collection of programming tips and notes that provide brief examples of h
effectively use the PA-RISC instruction set to accomplish commonly needed operations.

The following topics are covered:

• privilege level changes

• testing the current state of the PSW[W] bit

• branching

• static branch prediction

• returning from interruption

• trap handlers

• reserved op exception

• endian byte swapping

• halfword byte swap

• word byte swap

• doubleword byte swap

Privilege Level Changes

Branch instructions may change the privilege level depending on the type of branch performed
privilege levels are determined by the two rightmost bits in the offset part of the instruction ad
privilege level changes are a function of the offset computation.

Since a branch instruction may be executed in the delay slot of another branch instruction, an inte
case arises because of the way the privilege level changes are defined to take effect.

Consider the case where a taken IA relative branch is placed in the delay slot of a base relative
that lowers the privilege level of its target instruction. First, the base relative branch will execut
schedule change of privilege level for its target. Then, in the delay slot, the IA relative branc
execute and it will schedule its target to execute at the same privilege level as its own. Then, the t
the base relative branch will execute at the new (demoted) privileged level. The next instru
however, which is the target of the IA relative branch, will have the same privilege level as that of
relative branch, and thus will cause the privilege level to be restored to the original (higher) va
I-1PA-RISC 2.0 Architecture Programming Notes

ation is
shown in the following:

Testing the Current State of the PSW W-Bit

Some code may wish to be callable from code which may be running with either narrow or wide
addressing.

The following instruction sequence can be used to determine whether wide 64-bit address gener
enabled. The value of PSW[W] is returned in register r28 (0=narrow, 1=wide).

PROGRAM SEGMENT

Location Instruction Comment

100 STW r7, 0(r8) ; non-branch instruction

104 BV r0(r7) ; branch vectored to 200 and change priv -> 2

108 BLR r4, r0 ; IA relative branch to location 400

10C ADD r2,r6, r9 ; next instruction in linear code sequence

 . .

 . .

 . .

200 LDW 0(r3), r11 ; target of branch vectored instruction

 . .

 . .

 . .

400 LDW 0(r15), r4 ; target of IA relative branch instruction

404 STW r4, 0(r18)

EXECUTION SEQUENCE

Location Instruction Comment

100 STW r7, 0(r8) ; priv = 0

104 BV r0(r7) ; priv = 0

108 BLR r4, r0 ; priv = 0

200 LDW 0(r3), r11 ; priv = 2 decreased by branch vectored instr

400 LDW 0(r15), r4 ; priv = 0 changed back by IA relative branch

404 STW r4, 0(r18) ; priv = 0

PROGRAM SEGMENT

Location Instruction Comment

100 ADDB,*>,N %r0,%r0,label ; branch if narrow addressing

104 BV 0(2) ; return
I-2 Programming Notes PA-RISC 2.0 Architecture

Errata
Previously, location 100 incorrectly read:ADDB,*=,N %r0,%r0,%label

 below.
that of
hat the

ntions
or not
tion).
 of the

ortant
 has been
hese
Procedure Call and Return

Example instruction sequences which perform the different types of procedure calls are shown
The following examples illustrate ways to use offsets of different lengths. The simplest case is
intraspace calls which can be done by any of the following code sequences, assuming t
convention that SR 4 tracks IASQ is observed:

Making interspace calls which might decrease privilege level is shown below:

Static Branch Prediction

Branch prediction is quite important to overall performance. PA-RISC includes a set of conve
which allow the programmer to indicate whether a particular branch is more likely to be taken
taken (based on static information, or on information obtained from feedback-directed compila
The way this information is encoded in the branch instructions does not change the semantics
instructions, but only provides hints to improve the success in predicting branch outcomes.

The static prediction hints are encoded by utilizing the fact that there are, in many of the imp
cases, two ways of specifying the same branching operation. For such cases, one of these ways
defined to carry the static hint of ‘likely taken’, and the other, the static hint of ‘likely not taken’. T

108 LDI 1,%r28 ; return a 1

label:

10C BV 0(2) ; return

110 LDI 0,%r28 ; return a 0

call: B,L target,rp or LDIL l%target,rp

<delay slot> BE,L r%target(SR4,rp),SR0,GR31

COPY GR31,rp ;delay slot

return: BV 0(rp) or BE 0(SR0,rp)

<delay slot> <delay slot>

call: LDW space_id,GR1 or LDIL l%target, rp

MTSP GR1,SR4 LDO r%target, rp, rp

LDIL l%target,rp BVE,L (rp),rp

BE,L r%target(SR4,rp),SR0,GR31 <delay slot>

COPY GR31,rp ;delay slot

return: BE 0(SR0,rp) or BVE (rp)

<delay slot> <delay slot>

PROGRAM SEGMENT
I-3PA-RISC 2.0 Architecture Programming Notes

en’.

lways
ds on
ost of

 the

he two
f the r1
ranches
int is

r the

ruction
on an
itional

ys be
rward or
hints also take into account whether the branch is backward or forward.

All of the unconditional branches (B, BLR, BV, BE, BVE) are defined to carry the hint of ‘likely tak

For the conditional branches, the hint is defined as follows. If the ,TR completer is specified (a
taken), then the hint is defined to be ‘likely taken’. For other branch conditions, the hint depen
whether the branch is forward (positive displacement) or backward (negative displacement). For m
the conditional branches (ADDB, ADDIB, BB, CMPIB, MOVB, MOVIB), backward branches have
hint ‘likely taken’ and forward branches have the hint ‘likely not taken’.

For CMPB, there is additional flexibility. Since the same comparison can be made by swapping t
operands and choosing the opposite condition, this can be used to encode the branch hint. I
register specifier is a lower-numbered register than the r2 register specifier, then backward b
have the hint ‘likely taken’ and forward branches have the hint ‘likely not taken’, otherwise the h
the opposite.

These branch hints are summarized in the following table.

Additionally, if a branch is executed in the shadow of a ‘likely taken’ branch, then the prediction fo
second branch is ‘likely not taken’, regardless of the above table.

There are situations where it is desirable to code a branching sequence as a nullifying inst
followed by an unconditional branch. An example would be if one wanted to branch based
extract/deposit condition. In such cases, if the branch is likely taken, then a normal uncond
branch can be used.

If the branch is likely not taken, this can be achieved by using a conditional branch which will alwa
taken, and which has the desired hint. The branch to use depends on whether the target is fo
back. The two cases are shown below.

STATIC BRANCH PREDICTION HINTS

Unconditional Conditional

B, BLR, BV,
BE, BVE

,TR condition other conditions

ADDB, ADDIB,
BB, CMPIB,

MOVB, MOVIB,
CMPB

ADDB, ADDIB,
BB, CMPIB,

MOVB, MOVIB,
CMPB with r1<r2 CMPB with r1>=r2

taken taken backward: taken
forward: not taken

backward: not taken
forward: taken

EXECUTION SEQUENCE

Location Instruction Comment

100 EXTR,= r4,15,16,r0 ; if bit field is not zero

104 B target ; then branch (predicted taken)
I-4 Programming Notes PA-RISC 2.0 Architecture

ctively
ely not

MB is
e table

 return
ey

d 25 are
 general

y of the
perating

t set the
If the target of the branch is forward, then we can use the following sequence. The COMIB is effe
an unconditional branch. Since the branch is forward, the above table shows the COMIB to be lik
taken.

If the target of the branch is backward, then we can use this sequence. Here again, the CO
effectively an unconditional branch. Since the branch is backward, and since r1 = r2, the abov
shows the COMB to be likely not taken.

Return from Interruption

Only those interruptions which are themselves uninterruptible (they leave the PSW Q-bit 0) may
from the interruption using theRFI,R instruction. Interruption handling code which is interruptible (th
set the PSW Q-bit to 1) must return from the interruption using theRFI instruction.

Fast interruption handling is achieved using shadow registers, since GRs 1, 8, 9, 16, 17, 24, an
copied to the shadow registers on interruptions. In this example, it is assumed that at most seven
registers need to be used in the interruption handling routine.

Trap Handlers

The IEEE standard strongly recommends that users be allowed to specify a trap handler for an
five standard exceptions. The mechanisms to accomplish this are programming language and o
system dependent.

Since the coprocessor continues to trap if the Status Register T-bit is 1, the trap handler must firs

EXECUTION SEQUENCE

Location Instruction Comment

100 EXTR,= r4,15,16,r0 ; if bit field is not zero

104 COMIB,<> 1,r0,forward_target ; then branch (predicted not taken)

EXECUTION SEQUENCE

Location Instruction Comment

100 EXTR,= r4,15,16,r0 ; if bit field is not zero

104 COMB,= r0,r0,backward_target ; then branch (predicted not taken)

using RFI using RFI,R

interrupt interrupt

save GRs <no save>

[process interrupt] [process interrupt]

restore GRs <no restore>

RFI RFI,R
I-5PA-RISC 2.0 Architecture Programming Notes

te the
 and

. If the
 to the

d in the
 being
nding

s to the
ented,
lues by

ither a

. It does
egister.

ister T-
rved-op

by the

 versa
 byte

n r26.
bit to 0 by executing a double-word store of register 0. The trap handler may then emula
instructions in the exception queue beginning with the instruction in Exception Register 1
proceeding sequentially to the end.

The trap handler must clear all the exception registers before returning with the T-bit cleared to 0
trap handler chooses not to emulate all the instructions, it must set the T-bit to 1 before returning
trapped process to trap immediately again.

To emulate an instruction, the trap handler computes or specifies a substitute result to be place
destination register of the operation. The trap handler may determine what operation was
performed and what exceptions occurred during the operation by examining the correspo
exception register. On overflow, underflow, and inexact exceptions, the trap handler has acces
correctly rounded result by examining the destination register of the operation. On unimplem
invalid operation, and divide-by-zero exceptions, the trap handler has access to the operand va
examining the source registers of the instruction.

Reserved-op Exception

When a non-load/store instruction has a reserved sub-opcode, an implementation signals e
reserved-op exception or an unimplemented exception.

A reserved-op exception always forces the processor to take an immediate assist exception trap
not set the exception registers or the T-bit, and does not change any of the flag bits in the Status R
The reserved-op exception cannot be disabled.

Trapping is immediate for reserved-op exceptions. The trap handler must check for a Status Reg
bit equal to 0 to determine that the trap was caused by a reserved-op exception. When a rese
exception occurs, software interprets the contents of the IIR, nullifies the instruction pointed to
front of the IIA queues, and returns control to the trapping process.

Endian Byte Swapping

Rearranging bytes within halfwords, words or doublewords from little endian to big endian or vice
can be accomplished with just a few instructions. The three examples that follow illustrate
swapping for the common cases.

Halfword Byte Swap

The following instruction sequence returns in register r28 the byte-reversed halfword value held i

PROGRAM SEGMENT

Location Instruction Comment

100 EXTRW,U %r26,23,8,%r28 ; extract instruction

104 BV 0(2) ; return

108 DEPW %r26,23,8,%r28 ; deposit instruction
I-6 Programming Notes PA-RISC 2.0 Architecture

6.

eld in
The following figure illustrates how the bytes are manipulated during this instruction sequence

Word Byte Swap

The following instruction sequence returns in register r28 the byte-reversed word value held in r2

The following figure illustrates how the bytes are manipulated during this instruction sequence

Doubleword Byte Swap

The following instruction sequence returns in register r28 the byte-reversed doubleword value h

PROGRAM SEGMENT

Location Instruction Comment

100 SHRPW %r26,%r26,16,%r28 ; shift right instruction

104 DEPW %r28,15,8,%r28 ; deposit instruction

108 BV 0(2) ; return

10C SHRPW %r26,%r28,8,%r28 ;shift right

r26 r28

b0 0 a EXTRW,U r26, 23, 8, r28 a0 0 0

Inputs OutputInstruction

r26

b0 0 a

r28

a0 0 bDEPW r26, 23, 8, r28

r28

a0 0 0

r26 r28

da b c SHRPW r26, r26, 16, r28

r26

da b c bc d a

Inputs OutputInstruction

r28

bc d a

r26

da b c

r28

bc b a

r28

bc b aDEPW r28, 15, 8, r28

SHRPW r26, r28, 8, r28

r28

ad c b
I-7PA-RISC 2.0 Architecture Programming Notes

r26. The original value in r26 is destroyed.

The following figure illustrates how the bytes are manipulated during this instruction sequence:

PROGRAM SEGMENT

Location Instruction Comment

100 PERMH,321
0

%r26,%r26 ;permute instruction

104 HSHL %r26,8,%r28 ; shift

108 HSHR,U %r26,8,%r26 ; shift

10C BV 0(%r2) ;return

202 OR %r28,%r26,%r28 ;OR the shifted registers

PERMH,3210 r26, r26

Inputs OutputInstruction

r26

da b c

HSHL r26, 8, r28

he f g

r26

fg h e bc d a

r26

0h 0 f 0d 0 b

r26

e0 g 0 a0 c 0

r28

eh g f ad c b

r28

0h 0 f 0d 0 b

r26

e0 g 0 a0 c 0

r26

fg h e bc d a

r26

fg h e bc d a HSHR,U r26, 8, r26

OR r28, r26, r28
I-8 Programming Notes PA-RISC 2.0 Architecture

rs

some
ndix is
d may
lly, the

easily
pleters

 related

a “*”

 how to
leters
s all of
J PA-RISC 2 Instruction Complete
 & Pseudo-Ops

The instruction set descriptions provided in this book use instruction mnemonics that differ in
subtle (and not so subtle) ways from the earlier PA-RISC instruction set descriptions. This appe
intended as an aid to those who were familiar with the 1.0 and 1.1 instruction mnemonics an
wonder where their favorite instructions that they remember from the old days have gone. Genera
answer is that those instructions have simply been given a new, sleeker identity.

The motivation behind this renaming/reorganizing effort was to present a simpler, more
understood view of the PA-RISC instruction set. The major changes involve the use of more com
and the introduction of a number of new pseudo-op mnemonics .

PA-RISC 2 Instruction Completers

The 2.0 instruction mnemonics use more completers instead of separate instructions for closely
functions. For example, the 1.x read and write versions of thePROBE instruction were replaced in 2.0 by
a singlePROBE instruction with two completers,R andW. All 64-bit conditions on the arithmetic and
logical instructions provide new condition completers using the existing 32-bit symbols but with
prepended.

One problem which occurs when multiple encodings are compressed into a single mnemonic is
force a particular encoding if you really care (for example, when writing test code). New comp
have been added in 2.0 to allow the programmer to force the desired encoding. Table J-1 show
the completers that can be used with PA-RISC 2.0.

Table J-1. Summary of PA 2.0 Instruction Completers

Completer Meaning

B borrow
C carry
CA0 – CA6 floating-point condition array bits 0 – 6
DB doubleword borrow
DC doubleword carry
DW doubleword
GATE gateway
I intermediate
L logical

local
link
left

NWC no word carries
NWZ no words zero
POP pop branch target stack
J-1PA-RISC 2.0 Architecture PA-RISC 2 Instruction Completers & Pseudo-Ops

PUSH push branch target stack
QW quadword
R read

restore
right

S signed
SWC some word carry
SWZ some word zero
T truncate
TC trap on condition
TSV trap on signed overflow
U unsigned
UDW unsigned doubleword
UQW unsigned quadword
UW unsigned word
W wide

word
write

Z zero
* 64-bit never condition
*= 64-bit equal condition
*< 64-bit less than condition
*<= 64-bit less than or equal to condition
*<< 64-bit unsigned less than condition
*<<= 64-bit unsigned less than or equal-to condition
*SV 64-bit signed overflow condition
*OD 64-bit odd condition
*TR 64-bit always condition
*<> 64-bit not equal condition
*>= 64-bit greater than or equal to condition
*> 64-bit greater than condition
*>>= 64-bit unsigned greater than or equal to condition
*>> 64-bit unsigned greater than condition
*NSV 64-bit no signed overflow condition
*EV 64-bit even condition
*NUV 64-bit no unsigned overflow condition
*ZNV 64-bit zero or no unsigned overflow condition
*UV 64-bit unsigned overflow condition
*VNZ 64-bit nonzero and unsigned overflow condition
*NBC 64-bit no byte carries condition
*NBZ 64-bit no bytes zero condition
*NDC 64-bit no digit carries condition
*NHC 64-bit no halfword carries condition

Table J-1. Summary of PA 2.0 Instruction Completers (Continued)

Completer Meaning
J-2 PA-RISC 2 Instruction Completers & Pseudo-Ops PA-RISC 2.0 Architecture

le J-2.
Pseudo-Op Mnemonics

All 1.x instruction mnemonics are supported either directly or via 2.0 pseudo-ops as listed in Tab
Note that only 1.x instructions whose mnemonics changed are listed in Table J-2.

*NHZ 64-bit no halfwords zero condition
*NWC 64-bit no word carries condition
*NWZ 64-bit no words zero condition
*SBC 64-bit some byte carry condition
*SBZ 64-bit some byte zero condition
*SDC 64-bit some digit carry condition
*SHC 64-bit some halfword carry condition
*SHZ 64-bit some halfword zero condition
*SWC 64-bit some word carry condition
*SWZ 64-bit some word zero condition
LDISP force long-displacement encoding for loads, stores, branches
SDISP force short-displacement encoding for loads, stores, branches
0C force 0C encoding for floating-point
0E force 0E encoding for floating-point
0A force 0A encoding forFIC
4F force 4F encoding forFIC

Table J-2. 1.x versus 2.0 Mnemonics

1.x Instruction 2.0 Instruction

ADDBF,cond,n r1,r2,target ADDB,cond,n r1,r2,target

ADDBT,cond,n r1,r2,target ADDB,cond,n r1,r2,target

ADDC,cond r1,r2,t ADD,C,cond r1,r2,t

ADDCO,cond r1,r2,t ADD,C,TSV,cond r1,r2,t

ADDIBF,cond,n i,r,target ADDIB,cond,n i,r,target

ADDIBT,cond,n i,r,target ADDIB,cond,n i,r,target

ADDIL i,r ADDIL i,r,%R1

ADDIO,cond i,r,t ADDI,TSV,cond i,r,t

ADDIT,cond i,r,t ADDI,TC,cond i,r,t

ADDITO,cond i,r,t ADDI,TSV,TC,cond i,r,t

ADDL,cond r1,r2,t ADD,L,cond r1,r2,t

ADDO,cond r1,r2,t ADD,TSV,cond r1,r2,t

BL,n target,t B,L,n target,t

BLE,n wd(sr,b) BE,L,n wd(sr,b),%SR0,%R31

BVB,cond,n r,target BB,cond,n r,%SAR,target

CLDDS,uid,cmplt,cc d(s,b),t CLDD,uid,cmplt,cc d(s,b),t

Table J-1. Summary of PA 2.0 Instruction Completers (Continued)

Completer Meaning
J-3PA-RISC 2.0 Architecture PA-RISC 2 Instruction Completers & Pseudo-Ops

CLDDX,uid,cmplt,cc x(s,b),t CLDD,uid,cmplt,cc x(s,b),t

CLDWS,uid,cmplt,cc d(s,b),t CLDW,uid,cmplt,cc d(s,b),t

CLDWX,uid,cmplt,cc x(s,b),t CLDW,uid,cmplt,cc x(s,b),t

COMBF,cond,n r1,r2,target CMPB,cond,n r1,r2,target

COMBT,cond,n r1,r2,target CMPB,cond,n r1,r2,target

COMIBF,cond,n i,r,target CMPIB,cond,n i,r,target

COMIBT,cond,n i,r,target CMPIB,cond,n i,r,target

COMICLR,cond i,r,t CMPICLR,cond i,r,t

CSTDS,uid,cmplt,cc r,d(s,b) CSTD,uid,cmplt,cc r,d(s,b)

CSTDX,uid,cmplt,cc r,x(s,b) CSTD,uid,cmplt,cc r,x(s,b)

CSTWS,uid,cmplt,cc r,d(s,b) CSTW,uid,cmplt,cc r,d(s,b)

CSTWX,uid,cmplt,cc r,x(s,b) CSTW,uid,cmplt,cc r,x(s,b)

DEP,cond r,p,len,t DEPW,cond r,p,len,t

DEPI,cond i,p,len,t DEPWI,cond i,p,len,t

EXTRS,cond r,p,len,t EXTRW,S,cond r,p,len,t

EXTRU,cond r,p,len,t EXTRW,U,cond r,p,len,t

FCNVFF,sf,df r,t FCNV,sf,df r,t

FCNVFX,sf,df r,t FCNV,sf,df r,t

FCNVFXT,sf,df r,t FCNV,T,sf,df r,t

FCNVXF,sf,df r,t FCNV,sf,df r,t

FLDDS,cmplt,cc d(s,b),t FLDD,cmplt,cc d(s,b),t

FLDDX,cmplt,cc x(s,b),t FLDD,cmplt,cc x(s,b),t

FLDWS,cmplt,cc d(s,b),t FLDW,cmplt,cc d(s,b),t

FLDWX,cmplt,cc x(s,b),t FLDW,cmplt,cc x(s,b),t

FSTDS,cmplt,cc r,d(s,b) FSTD,cmplt,cc r,d(s,b)

FSTDX,cmplt,cc r,x(s,b) FSTD,cmplt,cc r,x(s,b)

FSTWS,cmplt,cc r,d(s,b) FSTW,cmplt,cc r,d(s,b)

FSTWX,cmplt,cc r,x(s,b) FSTW,cmplt,cc r,x(s,b)

GATE,n target,t B,GATE,n target,t

IDCOR,cond r,t DCOR,I,cond r,t

LDBS,cmplt,cc d(s,b),t LDB,cmplt,cc d(s,b),t

LDBX,cmplt,cc x(s,b),t LDB,cmplt,cc x(s,b),t

LDCWS,cmplt,cc d(s,b),t LDCW,cmplt,cc d(s,b),t

LDCWX,cmplt,cc x(s,b),t LDCW,cmplt,cc x(s,b),t

LDHS,cmplt,cc d(s,b),t LDH,cmplt,cc d(s,b),t

LDHX,cmplt,cc x(s,b),t LDH,cmplt,cc x(s,b),t

LDWAS,cmplt,cc d(b),t LDWA,cmplt,cc d(b),t

Table J-2. 1.x versus 2.0 Mnemonics (Continued)

1.x Instruction 2.0 Instruction
J-4 PA-RISC 2 Instruction Completers & Pseudo-Ops PA-RISC 2.0 Architecture

LDWAX,cmplt,cc x(b),t LDWA,cmplt,cc x(b),t

LDWM d(s,b),t LDW,cmplt ld(s,b),t

LDWS,cmplt,cc d(s,b),t LDW,cmplt,cc d(s,b),t

LDWX,cmplt,cc x(s,b),t LDW,cmplt,cc x(s,b),t

PROBER (s,b),r,t PROBE,R (s,b),r,t

PROBERI (s,b),i,t PROBEI,R (s,b),i,t

PROBEW (s,b),r,t PROBE,W (s,b),r,t

PROBEWI (s,b),i,t PROBEI,W (s,b),i,t

RFIR RFI,R

SH1ADD,cond r1,r2,t SHLADD,cond r1,1,r2,t

SH1ADDL,cond r1,r2,t SHLADD,L,cond r1,1,r2,t

SH1ADDO,cond r1,r2,t SHLADD,TSV,cond r1,1,r2,t

SH2ADD,cond r1,r2,t SHLADD,cond r1,2,r2,t

SH2ADDL,cond r1,r2,t SHLADD,L,cond r1,2,r2,t

SH2ADDO,cond r1,r2,t SHLADD,TSV,cond r1,2,r2,t

SH3ADD,cond r1,r2,t SHLADD,cond r1,3,r2,t

SH3ADDL,cond r1,r2,t SHLADD,L,cond r1,3,r2,t

SH3ADDO,cond r1,r2,t SHLADD,TSV,cond r1,3,r2,t

SHD,cond r1,r2,p,t SHRPW,cond r1,r2,p,t

STBS,cmplt,cc r,d(s,b) STB,cmplt,cc r,d(s,b)

STBYS,cmplt,cc r,d(s,b) STBY,cmplt,cc r,d(s,b)

STHS,cmplt,cc r,d(s,b) STH,cmplt,cc r,d(s,b)

STWAS,cmplt,cc r,d(b) STWA,cmplt,cc r,d(b)

STWM r,d(s,b) STW,cmplt r,ld(s,b)

STWS,cmplt,cc r,d(s,b) STW,cmplt,cc r,d(s,b)

SUBB,cond r1,r2,t SUB,B,cond r1,r2,t

SUBBO,cond r1,r2,t SUB,B,TSV,cond r1,r2,t

SUBIO,cond i,r,t SUBI,TSV,cond i,r,t

SUBO,cond r1,r2,t SUB,TSV,cond r1,r2,t

SUBT,cond r1,r2,t SUB,TC,cond r1,r2,t

SUBTO,cond r1,r2,t SUB,TSV,TC,cond r1,r2,t

UADDCMT,cond r1,r2,t UADDCM,TC,cond r1,r2,t

VDEP,cond r,len,t DEPW,cond r,%SAR,len,t

VDEPI,cond i,len,t DEPWI,cond i,%SAR,len,t

VEXTRS,cond r,len,t EXTRW,S,cond r,%SAR,len,t

VEXTRU,cond r,len,t EXTRW,U,cond r,%SAR,len,t

Table J-2. 1.x versus 2.0 Mnemonics (Continued)

1.x Instruction 2.0 Instruction
J-5PA-RISC 2.0 Architecture PA-RISC 2 Instruction Completers & Pseudo-Ops

Errata
Previously, the text in the 2.0 Instruction column for the 1.x instruction "STBS,cmplt,cc" incorrectly read:STB,,cmpltcc r,d(s,b)

VSHD,cond r1,r2,t SHRPW,cond r1,r2,%SAR,t

ZDEP,cond r,p,len,t DEPW,Z,cond r,p,len,t

ZDEPI,cond i,p,len,t DEPWI,Z,cond i,p,len,t

ZVDEP,cond r,len,t DEPW,Z,cond r,%SAR,len,t

ZVDEPI,cond i,len,t DEPWI,Z,cond i,%SAR,len,t

Table J-2. 1.x versus 2.0 Mnemonics (Continued)

1.x Instruction 2.0 Instruction
J-6 PA-RISC 2 Instruction Completers & Pseudo-Ops PA-RISC 2.0 Architecture

Errata
Previously, the text in the 2.0 Instruction column for the 1.x instruction "ZVDEPI,cond" incorrectly read:DEPW,Z,cond i,%SAR,len,t

Index
A
absolute accesses3-1, G-2
absolute_address()E-2
access ID 3-13
access rights 3-13
access type

execute 3-12
read 3-12
write 3-12

ADD 7-2
ADD (seeADD)
ADD AND BRANCH 7-4
ADD IMMEDIATE AND BRANCH 7-6
ADD IMMEDIATE LEFT 7-7
ADD TO IMMEDIATE 7-5
ADDB (seeADD AND BRANCH)
ADDI (seeADD TO IMMEDIATE)
ADDIB (seeADD IMMEDIATE AND BRANCH)
ADDIL (seeADD IMMEDIATE LEFT)
address aliasingF-5

equivalent aliasesF-6
many-reader/one-writerF-6
non-equivalent aliasesF-6
read-only F-6

AND 7-8
AND (seeAND)
AND COMPLEMENT 7-9
ANDCM (seeAND COMPLEMENT)
assemble_12()E-1
assemble_16()E-1
assemble_16a()E-1
assemble_17()E-1
assemble_21()E-1
assemble_22()E-1
assemble_3() E-1
assemble_6() E-1
assist emulation trap5-12
assist exception trap5-9
assist processor1-13

atomicity G-1

B
B (seeBRANCH)
BB (seeBRANCH ON BIT)
BCD, (seebinary coded decimal)
BE (seeBRANCH EXTERNAL)
binary coded decimal7-35
binary coded decimal data type2-19
bit data type 2-18
bits

ignored 2-17
nonexistent 2-17
reserved 2-17
undefined 2-17

Block Copy cache control hint6-10
BLR (seeBRANCH AND LINK REGISTER)
BRANCH 2-8, 6-14, 7-10
BRANCH AND LINK REGISTER 6-14, 7-16
BRANCH EXTERNAL 6-15, 7-15
BRANCH ON BIT 7-13
BRANCH VECTORED 6-14, 7-18
BRANCH VECTORED EXTERNAL 6-15, 7-19
branches 4-1

base relative 4-2
conditional 4-2, 6-15
delay slot 4-1
delayed 4-1
dynamic displacement4-2
external 6-15
IA relative 4-2
interspace 6-15
intraspace 6-14
local 6-14
not-taken 4-2
static displacment 4-2
taken 4-2
unconditional 4-2, 6-14

BREAK 7-17
IN-1PA-RISC 2.0 Architecture Index

r-
BREAK instruction trap 5-8
BV (seeBRANCH VECTORED)
BVE (seeBRANCH VECTORED EXTERNAL)
byte data type 2-18

C
cache

clean 3-17
dirty 3-17
move-in F-8

cache control hints6-9
Block Copy 6-10
Coherent Operation6-11
load 6-10
semaphore 6-10
Spacial Locality 6-10
store 6-10

CALL 7-11
cat() E-1
CCR (see Coprocessor Configuration Register)
check 5-1
CLDD (see COPROCESSOR LOAD DOUBLE-

WORD)
CLDW (seeCOPROCESSOR LOAD WORD)
CLEAR BRANCH TARGET STACK 7-25
CLRBTS (seeCLEAR BRANCH TARGET STACK)
CMPB (seeCOMPARE AND BRANCH)
CMPCLR (seeCOMPARE AND CLEAR)
CMPIB (see COMPARE IMMEDIATE AND

BRANCH)
CMPICLR (see COMPARE IMMEDIATE AND

CLEAR)
coherence_index()E-2
coherent input/ouputF-11
Coherent Operation cache control hint6-11
coherent_systemE-2
COMPARE AND BRANCH 7-26
COMPARE AND CLEAR 7-27
COMPARE IMMEDIATE AND BRANCH 7-28
COMPARE IMMEDIATE AND CLEAR 7-29
conditional trap 5-9
conditions

arithmetic/logical D-1
floating-point compare 8-16
floating-point test 8-17
shift/extract/deposit D-8

unit D-7
control registers 2-10
COPR (seeCOPROCESSOR OPERATION)
COPR,0,0 (seeIDENTIFY COPROCESSOR)
coprocessor 1-13, 6-22
Coprocessor Configuration Register2-12, 6-22
COPROCESSOR LOAD DOUBLEWORD 7-21
COPROCESSOR LOAD WORD 7-23
COPROCESSOR OPERATION 7-30
COPROCESSOR STORE DOUBLEWORD 7-31
COPROCESSOR STORE WORD 7-33
coprocessor_condition()E-2
coprocessor_op()E-2
COPY 7-82
CRs (see control registers)
CSTD (see COPROCESSOR STORE DOUBLE-

WORD)
CSTW (seeCOPROCESSOR STORE WORD)

D
data memory access rights trap5-10
data memory break trap5-11
data memory protection ID trap5-10
data memory protection trap/unaligned data refe

ence trap 5-11
data TLB miss fault/data page fault5-9
data types

binary coded decimal2-19
bit 2-18
byte 2-18
double-precision floating-point2-19, 8-6
integer 2-18
quad-precision floating-point8-6
signed halfword 2-18
signed word 2-18
single-precision floating-point2-19, 8-6
unsigned halfword 2-18
unsigned word 2-19

Dcache_flush() E-3
Dcache_flush_entries()E-3
Dcache_flush_or_purge()E-3
DCOR (seeDECIMAL CORRECT)
DECIMAL CORRECT 7-35
DEPD (seeDEPOSIT DOUBLEWORD)
DEPDI (see DEPOSIT DOUBLEWORD IMMEDI-

ATE)
IN-2 Index PA-RISC 2.0 Architecture

DEPOSIT DOUBLEWORD 7-37
DEPOSIT DOUBLEWORD IMMEDIATE 7-39
DEPOSIT WORD 7-41
DEPOSIT WORD IMMEDIATE 7-43
DEPW (seeDEPOSIT WORD)
DEPWI (seeDEPOSIT WORD IMMEDIATE)
DIAG (seeDIAGNOSE)
DIAGNOSE 7-45
Direct I/O 1-13
Direct Memory Access I/O 1-13
DIVIDE STEP 2-8, 7-46
double-precision floating-point data type 2-19
DS (seeDIVIDE STEP)
DTLB_alloc() E-3
DTLB_purge_broadcast() E-3
DTLB_purge_entries() E-3
DTLB_purge_local() E-3
DTLB_search() E-3

E
EIEM (see External Interrupt Enable Mask)
EIRR (see External Interrupt Request Register)
endian bit 2-19
equivalent aliases F-6
equivalently-mapped F-5
excepting instruction 10-1
EXCLUSIVE OR 7-154
external interrupt 5-6
External Interrupt Enable Mask 2-13
External Interrupt Request Register 2-16
EXTRACT DOUBLEWORD 7-47
EXTRACT WORD 7-49
EXTRD (seeEXTRACT DOUBLEWORD)
EXTRW (seeEXTRACT WORD)

F
FABS (seeFLOATING-POINT ABSOLUTE VALUE)
FADD (seeFLOATING-POINT ADD)
fault 5-1
FCMP (seeFLOATING-POINT COMPARE)
FCNV (seeFLOATING-POINT CONVERT)
FCPY (seeFLOATING-POINT COPY)
FDC (seeFLUSH DATA CACHE)
FDCE (seeFLUSH DATA CACHE ENTRY)
FDIV (seeFLOATING-POINT DIVIDE)

FIC (seeFLUSH INSTRUCTION CACHE)
FICE (seeFLUSH INSTRUCTION CACHE ENTRY)
FID (seeFLOATING-POINT IDENTIFY)
FIXED-POINT MULTIPLY UNSIGNED 9-30
FLDD (see FLOATING-POINT LOAD DOUBLE-

WORD)
FLDW (seeFLOATING-POINT LOAD WORD)
floating-point

DBL format completer 8-15
delayed trapping 10-5
exception registers 10-1
exceptions 10-4

division by zero 10-10
invalid operation 10-9
non-trapping 10-6
overflow 10-11
reserved operation 10-8, I-6
unimplemented 10-8

immediate trapping 10-4
interruptions 10-4
Not a Number 8-7, 8-23
QUAD format completer 8-15
registers 8-2
rounding 8-22
SGL format completer 8-15

FLOATING-POINT ABSOLUTE VALUE 9-2
FLOATING-POINT ADD 9-3
FLOATING-POINT COMPARE 9-4
FLOATING-POINT COPY 9-7
FLOATING-POINT DIVIDE 9-8
FLOATING-POINT IDENTIFY 9-9
FLOATING-POINT LOAD DOUBLEWORD 9-10
FLOATING-POINT LOAD WORD 9-12
FLOATING-POINT MULTIPLY 9-14
FLOATING-POINT MULTIPLY FUSED ADD 9-16
FLOATING-POINT MULTIPLY NEGATE FUSED

ADD 9-17
FLOATING-POINT MULTIPLY/ADD 9-15
FLOATING-POINT MULTIPLY/SUBTRACT 9-18

FLOATING-POINT NEGATE ABSOLUTE VALUE
9-20

FLOATING-POINT ROUND TO INTEGER 9-21
FLOATING-POINT SQUARE ROOT 9-22
Floating-Point Status Register 8-8

C-bit 8-10
IN-3PA-RISC 2.0 Architecture Index

Errata
The index should contain these additional entries:FLOATING-POINT CONVERT 9-6FLOATING-POINT NEGATE 9-19

CQ field 8-10
D-bit 8-10
Enables field 8-9
Flags field 8-9
I bits 8-10
model field 8-11
O bits 8-10
revision field 8-11
RM field 8-9
T-bit 8-10
U bits 8-10
V bits 8-10
Z bits 8-10

FLOATING-POINT STORE DOUBLEWORD 9-23
FLOATING-POINT STORE WORD 9-25
FLOATING-POINT SUBTRACT 9-27
FLOATING-POINT TEST 9-28
FLUSH DATA CACHE 7-51
FLUSH DATA CACHE ENTRY 7-53
FLUSH INSTRUCTION CACHE 7-54
FLUSH INSTRUCTION CACHE ENTRY 7-56
FMPY (seeFLOATING-POINT MULTIPLY)
FMPYADD (see FLOATING-POINT MULTIPLY/

ADD)
FMPYFADD (see FLOATING-POINT MULTIPLY

FUSED ADD)
FMPYNFADD (seeFLOATING-POINT MULTIPLY

NEGATE FUSED ADD)
FMPYSUB (see FLOATING-POINT MULTIPLY/

SUBTRACT)
FNEG (seeFLOATING-POINT NEGATE)
FNEGABS (seeFLOATING-POINT NEGATE ABSO-

LUTE VALUE)
FPSR (see Floating-Point Status Register)
FRND (seeFLOATING-POINT ROUND TO INTE-

GER)
FSQRT (seeFLOATING-POINT SQUARE ROOT)
FSTD (see FLOATING-POINT STORE DOUBLE-

WORD)
FSTW (seeFLOATING-POINT STORE WORD)
FSUB (seeFLOATING-POINT SUBTRACT)
FTEST (seeFLOATING-POINT TEST)

G
general registers2-2
GRs (see general registers)

H
HADD (seeHALFWORD PARALLEL ADD)
HALFWORD PARALLEL ADD 7-57
HALFWORD PARALLEL AVERAGE 7-58
HALFWORD PARALLEL SHIFT LEFT 7-59
HALFWORD PARALLEL SHIFT LEFT AND ADD

7-60
HALFWORD PARALLEL SHIFT RIGHT 7-61
HALFWORD PARALLEL SHIFT RIGHT AND ADD

7-59, 7-62
HALFWORD PARALLEL SUBTRACT 7-63
HAVG (seeHALFWORD PARALLEL AVERAGE)
higher-privilege transfer trap5-13
high-priority machine check5-5
HSHL(seeHALFWORD PARALLEL SHIFT LEFT)
HSHLADD (see HALFWORD PARALLEL SHIFT

LEFT AND ADD)
HSHR(seeHALFWORD PARALLEL SHIFT RIGHT)
HSHRADD (see HALFWORD PARALLEL SHIFT

RIGHT AND ADD)
HSUB (seeHALFWORD PARALLEL SUBTRACT)

I
I/O (see input/output)
IAOQ (see Instruction Address Offset Queue)
IAQs (see Instruction Address Queues)
IASQ (see Instruction Address Space Queue)
Icache_flush() E-3
Icache_flush_entries()E-4
IDENTIFY COPROCESSOR 6-22, 7-30
IDENTIFY SFU 6-21, 7-125
IDTLBT (seeINSERT DATA TLB TRANSLATION)
IEEE 754 8-1
ignored

bits 2-17
IIAOQ (see Interruption Instruction Address Off-

set Queue)
IIAQs (see Interruption Instruction Address

Queues)
IIASQ (see Interruption Instruction Address

Space Queue)
IIR (see Interruption Instruction Register)
IITLBT (seeINSERT INSTRUCTION TLB TRANS-

LATION)
illegal instruction 6-24
IN-4 Index PA-RISC 2.0 Architecture

illegal instruction trap 5-8
INCLUSIVE OR 7-101
INDIRECT CALL 7-20
input/output 1-12
INSERT DATA TLB TRANSLATION 7-64
INSERT INSTRUCTION TLB TRANSLATION 7-66
Instruction Address Offset Queue2-4
Instruction Address Queues2-4
Instruction Address Space Queue2-4
instruction memory protection trap5-7
instruction TLB miss fault/instruction page fault

5-7
instructions

immediate 6-12
integer data type2-18
interrupt 5-1
Interruption Instruction Address Offset Queue2-

13
Interruption Instruction Address Queues2-13
Interruption Instruction Address Space Queue2-

13
Interruption Instruction Register2-15
Interruption Offset Register2-15
Interruption Parameter Registers2-15
Interruption Processor Status Word2-16
Interruption Space Register2-15
Interruption Vector Address2-13
interruptions

disabling 5-4
floating-point 10-4
group 1 5-5
group 2 4-7, 5-6
group 3 4-8, 5-7
group 4 4-9, 5-13
masking 5-4
performance monitor 11-1
priorities 5-4

Interval Timer 2-5
IO_EIR 2-17
IOR (see Interruption Offset Register)
IPRs (see Interruption Parameter Registers)
IPSW (see Interruption Processor Status Word)
ISR (see Interruption Space Register)
ITLB_alloc() E-4
ITLB_purge_broadcast()E-4
ITLB_purge_entries() E-4

ITLB_purge_local() E-4
ITLB_search() E-4
IVA (see Interruption Vector Address)

L
LCI (seeLOAD COHERENCE INDEX)
LDB (seeLOAD BYTE)
LDCD (seeLOAD AND CLEAR DOUBLEWORD)
LDCW (seeLOAD AND CLEAR WORD)
LDD (seeLOAD DOUBLEWORD)
LDDA (seeLOAD DOUBLEWORD ABSOLUTE)
LDH (seeLOAD HALFWORD)
LDI (seeLOAD IMMEDIATE)
LDIL (seeLOAD IMMEDIATE LEFT)
LDO (seeLOAD OFFSET)
LDSID (seeLOAD SPACE IDENTIFIER)
LDW (seeLOAD WORD)
LDWA (seeLOAD WORD ABSOLUTE)
LOAD AND CLEAR DOUBLEWORD 7-71
LOAD AND CLEAR WORD 7-73
LOAD BYTE 7-69
LOAD COHERENCE INDEX 7-68
LOAD DOUBLEWORD 7-75
LOAD DOUBLEWORD ABSOLUTE 7-77
LOAD HALFWORD 7-79
LOAD IMMEDIATE 7-82
LOAD IMMEDIATE LEFT 7-81
LOAD OFFSET 7-82
LOAD PHYSICAL ADDRESS 7-88
LOAD SPACE IDENTIFIER 7-83
LOAD WORD 7-84
LOAD WORD ABSOLUTE 7-86
low_sign_ext() E-1
lower-privilege transfer trap5-13
low-priority machine check 5-7
LPA (seeLOAD PHYSICAL ADDRESS)
lshift() E-1

M
many-reader/one-writer aliasingF-6
mask

system 2-7
measurement_enabledE-4
mem_load() 6-7
mem_store() 6-7
IN-5PA-RISC 2.0 Architecture Index

memory-mapped input/ouput1-12
MFCTL (seeMOVE FROM CONTROL REGISTER)
MFIA (see MOVE FROM INSTRUCTION AD-

DRESS)
MFSP (seeMOVE FROM SPACE REGISTER)
MIX HALFWORDS 7-92
MIX WORDS 7-93
MIXH(seeMIX HALFWORDS)
MIXW(seeMIX WORDS)
MOVB (seeMOVE AND BRANCH)
MOVE AND BRANCH 7-94
MOVE FROM CONTROL REGISTER 7-89
MOVE FROM INSTRUCTION ADDRESS 7-90
MOVE FROM SPACE REGISTER 7-91
MOVE IMMEDIATE AND BRANCH 7-95
MOVE TO CONTROL REGISTER 7-96
MOVE TO SHIFT AMOUNT REGISTER 7-96
MOVE TO SPACE REGISTER 7-100
MOVE TO SYSTEM MASK 7-99
move-in

data cache F-8
instruction cache F-9

MOVIB (seeMOVE IMMEDIATE AND BRANCH)
MTCTL (seeMOVE TO CONTROL REGISTER)
MTSAR (seeMOVE TO SHIFT AMOUNT REGIS-

TER)
MTSARCM (seeMOVE TO SHIFT AMOUNT REG-

ISTER COMPLEMENT)
MTSM (seeMOVE TO SYSTEM MASK)
MTSP (seeMOVE TO SPACE REGISTER)
Multimedia Instructions 6-3
multiprocessor systemsF-12

N
NaN (see floating-point,Not a Number)
NO OPERATION 7-101
non-access data TLB miss fault/non-access data

page fault 5-10
non-access instruction TLB miss fault5-9
non-equivalent aliasesF-6
nonexistent

bits 2-17
NOP (seeNO OPERATION)
null instructions 6-25
nullification 4-7

O
observed G-1
operation

undefined 6-24
OR (seeINCLUSIVE OR)
ordered G-1
ordering G-1
overflow

signed D-2
unsigned D-2

overflow trap 5-9

P
page

cacheable 3-17
uncacheable 3-17

page reference trap5-12
page table 3-15
PDC (seePURGE DATA CACHE)
PDTLB (seePURGE DATA TLB)
PDTLBE (seePURGE DATA TLB ENTRY)
performance monitor

interruptions 11-1
PERFORMANCE MONITOR DISABLE 11-3
PERFORMANCE MONITOR ENABLE 11-4
performance monitor interrupt5-7
performed G-1
PERMH(seePERMUTE HALFWORDS)
PERMUTE HALFWORDS 7-106
phys_mem_load() E-4
phys_mem_store()E-5
PIDs (see Protection Identifiers)
PITLB (seePURGE INSTRUCTION TLB)
PITLBE (seePURGE INSTRUCTION TLB ENTRY)
PMDIS (see PERFORMANCE MONITOR DIS-

ABLE)
PMENB (see PERFORMANCE MONITOR EN-

ABLE)
POP BRANCH TARGET STACK 7-110
POPBTS (seePOP BRANCH TARGET STACK)
power failure interrupt 5-6
Priveleged Software-Accessible Registers2-7
privilege level 3-12

changing 4-5, I-1
privileged operation trap5-8
IN-6 Index PA-RISC 2.0 Architecture

privileged register trap5-8
PROBE ACCESS 7-111
PROBE ACCESS IMMEDIATE 7-112
PROBE(seePROBE ACCESS)
PROBEI (seePROBE ACCESS IMMEDIATE)
Processor 2-7
Processor Status Word2-7

B-bit 2-8, 4-7, 4-9
C/B bits 2-9
C-bit 2-8
D-bit 2-9
E-bit 2-8, 2-19, 5-2
F-bit 2-9
H-bit 2-8, 4-9
I-bit 2-9
L-bit 2-8, 4-9
M-bit 2-8, 4-7, 5-3
N-bit 2-8, 4-7, 4-9
O-bit 2-9
P-bit 2-9
Q-bit 2-9
R-bit 2-9, 2-11, 4-9
S-bit 2-8
T-bit 2-8
V-bit 2-8
W-bit 5-2
X-bit 2-8, 4-7, 4-9

Protection Identifiers 2-12, 3-12
PSW (see Processor Status Word)
PURGE DATA CACHE 7-102
PURGE DATA TLB 7-104
PURGE DATA TLB ENTRY 7-105
PURGE INSTRUCTION TLB ENTRY 7-109
PUSH BRANCH TARGET STACK 7-113
PUSH NOMINATED 7-114
PUSHBTS (seePUSH BRANCH TARGET STACK)
PUSHNOM (seePUSH NOMINATED)

R
read_access_allowed()E-5
read-only aliasing F-6
read-only translation F-6
Recovery Counter 2-11, 4-9
recovery counter trap5-6
registers

control 2-10

floating-point 8-2
floating-point exception 10-1
general 2-2
reserved 2-17
shadow 2-9
space 2-3

relied-upon translationF-2
reserved

bits 2-17
instruction field values 6-25
instruction fields 6-24
registers 2-17

RESET SYSTEM MASK 7-117
RET (seeRETURN)
RETURN 7-20
RETURN FROM INTERRUPTION 5-4, 7-115
RFI (seeRETURN FROM INTERRUPTION)
rounding,floating-point 8-22
rshift() E-2
RSM (seeRESET SYSTEM MASK)

S
SAR (see Shift Amount Register)
SCR (see SFU Configuration Register)
send_to_copr() E-2
SET SYSTEM MASK 7-128
SFU Configuration Register2-12, 6-21
SFU Registers 2-6
sfu_condition0() E-5
sfu_condition1() E-5
sfu_condition2() E-5
sfu_condition3() E-5
sfu_operation0() E-5
sfu_operation1() E-5
sfu_operation2() E-5
sfu_operation3() E-5
shadow registers2-9, 7-115
Shift Amount Register 2-5
SHIFT LEFT AND ADD 7-118
SHIFT LEFT DOUBLEWORD 7-38
SHIFT LEFT WORD 7-42
SHIFT RIGHT DOUBLEWORD 7-48
SHIFT RIGHT PAIR DOUBLEWORD 7-120
SHIFT RIGHT PAIR WORD 7-122
SHIFT RIGHT WORD 7-50
SHLADD (seeSHIFT LEFT AND ADD)
IN-7PA-RISC 2.0 Architecture Index

SHLD (seeSHIFT LEFT DOUBLEWORD)
SHLW (seeSHIFT LEFT WORD)
SHRD (seeSHIFT RIGHT DOUBLEWORD)
SHRPD (seeSHIFT RIGHT PAIR DOUBLEWORD)
SHRPW (seeSHIFT RIGHT PAIR WORD)
SHRs (see shadow registers)
SHRW (seeSHIFT RIGHT WORD)
sign_ext() E-2
sign_ext_16() E-2
signed halfword data type2-18
signed overflow D-2
signed word data type2-18
single-precision floating-point data type2-19
space registers2-3
space_select()E-6
Spacial Locality cache control hint6-10
special function unit 1-13, 6-20
SPECIAL OPERATION ONE 7-125
SPECIAL OPERATION THREE 7-127
SPECIAL OPERATION TWO 7-126
SPECIAL OPERATION ZERO 7-124
SPOP0 (seeSPECIAL OPERATION ZERO)
SPOP1 (seeSPECIAL OPERATION ONE)
SPOP1,sfu,0 (seeIDENTIFY SFU)
SPOP2 (seeSPECIAL OPERATION TWO)
SPOP3 (seeSPECIAL OPERATION THREE)
SRs (see space registers)
SSM (seeSET SYSTEM MASK)
STB (seeSTORE BYTE)
STBY (seeSTORE BYTES)
STD (seeSTORE DOUBLEWORD)
STDA (seeSTORE DOUBLEWORD ABSOLUTE)
STDBY (seeSTORE DOUBLEWORD BYTES)
STH (seeSTORE HALFWORD)
STORE BYTE 7-129
STORE BYTES 7-131
STORE BYTES SHORT 6-12, G-1, H-6
STORE DOUBLEWORD 7-134
STORE DOUBLEWORD ABSOLUTE 7-136
STORE DOUBLEWORD BYTES 7-137
STORE HALFWORD 7-140
STORE WORD 7-142
STORE WORD ABSOLUTE 7-144
store_in_memory() E-2
strongly ordered G-1
STW (seeSTORE WORD)

STWA (seeSTORE WORD ABSOLUTE)
SUB (seeSUBTRACT)
SUBI (seeSUBTRACT FROM IMMEDIATE)
SUBTRACT 7-146
SUBTRACT FROM IMMEDIATE 7-148
SYNC (seeSYNCHRONIZE CACHES)
SYNCDMA (seeSYNCHRONIZE DMA)
SYNCHRONIZE CACHES 7-149
SYNCHRONIZE DMA 7-150
system mask 2-7

T
taken branch trap5-13
temporary registers2-17
TLB (see Translation Lookaside Buffer)
TLB dirty bit trap 5-12
translation

read-only F-6
write-capable F-6

Translation Lookaside Buffer3-9
access identifier (ID) 3-13
access rights 3-13
B-bit 3-10
combined 3-9
D-bit 3-10
entry F-1
hardware miss hndlingF-3
O-bit 3-10
relied-upon translationF-2
slot F-1
software miss handlingF-2
T-bit 3-10
U-bit 3-10

trap 5-1
TRs (see temporary registers)

U
UADDCM (seeUNIT ADD COMPLEMENT)
unaligned data reference trap5-11
undefined

bits 2-17
instruction 6-24

undefined operation6-24
UNIT ADD COMPLEMENT 7-151
UNIT XOR 7-153
IN-8 Index PA-RISC 2.0 Architecture

unsigned halfword data type2-18
unsigned overflow D-2
unsigned word data type2-19
UXOR (seeUNIT XOR)

V
virt_mem_load() E-6
virt_mem_store() E-7
virtual accesses3-1

W
WD bit 2-12
weakly ordered G-1
write_access_allowed()E-7
write-capable translationF-6

X
XMPYU (see FIXED-POINT MULTIPLY UN-

SIGNED)
XOR (seeEXCLUSIVE OR)
xor() E-2

Z
zero_ext() E-2
IN-9PA-RISC 2.0 Architecture Index

IN-10 Index PA-RISC 2.0 Architecture

	Contents
	Figures
	Tables
	Preface
	Compatibility with PA-RISC 1
	PA-RISC 2.0 Enhancements
	64-bit Extensions
	Multimedia Extensions
	Cache Prefetching
	Branch Prediction
	Memory Ordering
	Coherent I/O

	How This Book is Organized
	Conventions Used in This Book
	Fonts
	Numbers

	Instruction Notations
	Bit Ranges
	Registers
	Temporaries
	Operators
	Control Structures and Functions

	1 Overview
	Traditional RISC Characteristics of PA-RISC
	PA-RISC - The Genius is in the Details
	A Critical Calculus: Instruction Pathlength
	Memory Accessing Features for Pathlength Reduction...
	Functional Operation Features for Pathlength Reduc...
	Conditional Instruction Sequencing Features for Pa...
	Simple Hardware Required to Enable Pathlength Redu...

	Multimedia Support: The Precision Process Illustra...
	Integrated CPU
	Security and Protection Features
	Interrupt System Features
	Debugging Features

	Extensibility and Longevity
	System Organization
	Storage System
	Virtual Addressing
	Input/Output Organization
	Assist Processors
	Multiprocessor Systems
	Instruction Set Overview

	2 Processing Resources
	Non-Privileged Software-Accessible Registers
	General Registers
	Space Registers
	Instruction Address Queues
	Control Registers (non-privileged)
	Shift Amount Register
	Interval Timer
	Temporary Registers

	Coprocessor Registers
	SFU Registers
	Branch Target Stack

	Privileged Software-Accessible Registers
	Processor Status Word (PSW)
	Shadow Registers
	Control Registers
	Recovery Counter
	Protection Identifiers
	Coprocessor Configuration Register (CCR)
	SFU Configuration Register (SCR)
	Interruption Vector Address (IVA)
	External Interrupt Enable Mask (EIEM)
	Interruption Instruction Address Queues
	Interruption Parameter Registers (IPRs)
	Interruption Processor Status Word (IPSW)
	External Interrupt Request Register (EIRR)
	Temporary Registers

	Unused Registers and Bits
	Data Types
	Byte Ordering (Big Endian/Little Endian)

	3 Addressing and Access Control
	Physical and Absolute Addressing
	Physical Address Space
	Absolute Accesses
	Absolute Accesses when PSW W-bit is 1
	Absolute Accesses when PSW W-bit is 0

	Memory Addressable Units and Alignment

	Virtual Addressing
	Pointers and Address Specification
	Data Addresses
	Instruction Addresses
	32-bit Addresses
	Absolute Addresses

	Address Resolution and the TLB
	Page Size

	Access Control
	Process Attributes
	Access ID and Access Rights

	Page Table Structure
	Caches

	4 Control Flow
	Branching
	Concept of Delayed Branching
	Conditional and Unconditional Branches
	Branching and Spaces
	Target Address Computation
	Linkage
	Conditional Branching and Nullification
	Branching and Address Queues
	Privilege Level Changes
	Traps Associated with Branches
	Restrictions in Branching

	Nullification
	Instruction Execution
	Instruction Pipelining

	5 Interruptions
	Interrupt Classes
	Interruption Handling
	Instruction Recoverability
	Masking and Nesting of Interruptions
	Interruption Priorities
	Return from Interruption
	Interruption Descriptions
	Group 1 Interruptions
	High-priority Machine Check (1)

	Group 2 Interruptions
	Power Failure Interrupt (2)
	Recovery Counter Trap (3)
	External Interrupt (4)
	Low-priority Machine Check (5)
	Performance Monitor Interrupt (29)

	Group 3 Interruptions
	Instruction Tlb Miss Fault/instruction Page Fault ...
	Instruction Memory Protection Trap (7)
	Illegal Instruction Trap (8)
	Break Instruction Trap (9)
	Privileged Operation Trap (10)
	Privileged Register Trap (11)
	Overflow Trap (12)
	Conditional Trap (13)
	Assist Exception Trap (14)
	Data Tlb Miss Fault/data Page Fault (15)
	Non-access Instruction Tlb Miss Fault (16)
	Non-access Data Tlb Miss Fault/non-access Data Pag...
	Data Memory Access Rights Trap (26)
	Data Memory Protection Id Trap (27)
	Unaligned Data Reference Trap (28)
	Data Memory Protection Trap/unaligned Data Referen...
	Data Memory Break Trap (19)
	Tlb Dirty Bit Trap (20)
	Page Reference Trap (21)
	Assist Emulation Trap (22)

	Group 4 Interruptions
	Higher-privilege Transfer Trap (23)
	Lower-privilege Transfer Trap (24)
	Taken Branch Trap (25)

	6 Instruction Set Overview
	Computation Instructions
	Three-Register Arithmetic and Logical Instructions...
	Immediate Arithmetic Instructions
	Shift Pair, Extract, and Deposit Instructions

	Multimedia Instructions
	Parallel Halfword Arithmetic Instructions
	Saturation
	Parallel Halfword Shift Instructions
	Rearrangement Instructions

	Memory Reference Instructions
	Address Formation
	Base Register Modification

	Cache Control
	Data Prefetch Instructions
	Store Bytes Instructions

	Long Immediate Instructions
	Branch Instructions
	Unconditional Local Branches
	Unconditional External Branches
	Conditional Local Branches
	Branch Target Stack
	Branch Characteristics

	System Control Instructions
	Assist Instructions
	Compatibility Among Implementations
	Special Function Unit (SFU) Instructions
	SFU Configuration Register

	Coprocessor Instructions
	Coprocessor Configuration Register

	Conditions and Control Flow
	Additional Notes on the Instruction Set
	Undefined and Illegal Instructions
	Reserved Instruction Fields
	Reserved Values of an Instruction Field
	Null Instructions

	7 Instruction Descriptions
	DO OPERATION DO
	Add ADD
	Add and Branch ADDB
	Add to Immediate ADDI
	Add Immediate and Branch ADDIB
	Add Immediate Left ADDIL
	AND AND
	AND Complement ANDCM
	Branch B
	Branch on Bit BB
	Branch External BE
	Branch and Link Register BLR
	Break BREAK
	Branch Vectored BV
	Branch Vectored External BVE
	Coprocessor Load Doubleword CLDD
	Coprocessor Load Word CLDW
	Clear Branch Target Stack CLRBTS
	Compare and Branch CMPB
	Compare and Clear CMPCLR
	Compare Immediate and Branch CMPIB
	Compare Immediate and Clear CMPICLR
	Coprocessor Operation COPR
	Coprocessor Store Doubleword CSTD
	Coprocessor Store Word CSTW
	Decimal Correct DCOR
	Deposit Doubleword DEPD
	Deposit Doubleword Immediate DEPDI
	Deposit Word DEPW
	Deposit Word Immediate DEPWI
	Diagnose DIAG
	Divide Step DS
	Extract Doubleword EXTRD
	Extract Word EXTRW
	Flush Data Cache FDC
	Flush Data Cache Entry FDCE
	Flush Instruction Cache FIC
	Flush Instruction Cache Entry FICE
	Halfword Parallel Add HADD
	Halfword Parallel Average HAVG
	Halfword Parallel Shift Left HSHL
	Halfword Parallel Shift Left and Add HSHLADD
	Halfword Parallel Shift Right HSHR
	Halfword Parallel Shift Right and Add HSHRADD
	Halfword Parallel Subtract HSUB
	Insert Data TLB Translation IDTLBT
	Insert Instruction TLB Translation IITLBT
	Load Coherence Index LCI
	Load Byte LDB
	Load and Clear Doubleword LDCD
	Load and Clear Word LDCW
	Load Doubleword LDD
	Load Doubleword Absolute LDDA
	Load Halfword LDH
	Load Immediate Left LDIL
	Load Offset LDO
	Load Space Identifier LDSID
	Load Word LDW
	Load Word Absolute LDWA
	Load Physical Address LPA
	Move From Control Register MFCTL
	Move From Instruction Address MFIA
	Move From Space Register MFSP
	Mix Halfwords MIXH
	Mix Words MIXW
	Move and Branch MOVB
	Move Immediate and Branch MOVIB
	Move To Control Register MTCTL
	Move To Shift Amount Register Complement MTSARCM
	Move To System Mask MTSM
	Move To Space Register MTSP
	Inclusive OR OR
	Purge Data Cache PDC
	Purge Data TLB PDTLB
	Purge Data TLB Entry PDTLBE
	Permute Halfwords PERMH
	Purge Instruction TLB PITLB
	Purge Instruction TLB Entry PITLBE
	Pop Branch Target Stack POPBTS
	Probe Access PROBE
	Probe Access Immediate PROBEI
	Push Branch Target Stack PUSHBTS
	Push Nominated PUSHNOM
	Return From Interruption RFI
	Reset System Mask RSM
	Shift Left and Add SHLADD
	Shift Right Pair Doubleword SHRPD
	Shift Right Pair Word SHRPW
	Special Operation Zero SPOP0
	Special Operation One SPOP1
	Special Operation Two SPOP2
	Special Operation Three SPOP3
	Set System Mask SSM
	Store Byte STB
	Store Bytes STBY
	Store Doubleword STD
	Store Doubleword Absolute STDA
	Store Doubleword Bytes STDBY
	Store Halfword STH
	Store Word STW
	Store Word Absolute STWA
	Subtract SUB
	Subtract from Immediate SUBI
	Synchronize Caches SYNC
	Synchronize DMA SYNCDMA
	Unit Add Complement UADDCM
	Unit XOR UXOR
	Exclusive OR XOR

	8 Floating-point Coprocessor
	The IEEE Standard
	The Instruction Set
	Coprocessor Registers
	Data Registers
	Data Formats
	Floating-point Formats
	Fixed-Point Formats

	Floating-Point Status Register
	Floating-Point Instruction Set
	Instruction Validity
	Load and Store Instructions
	Floating-point Operations
	Single-operation Instructions
	Operand Format Completers
	Comparison Conditions
	Test Conditions
	Fused-Operation Instructions
	Multiple-Operation Instructions
	Rounding
	Infinity Arithmetic
	Operations With NaNs
	Sign Bit

	9 Floating-Point Instruction Set
	Floating-Point Absolute Value FABS
	Floating-Point Add FADD
	Floating-Point Compare FCMP
	Floating-Point Convert FCNV
	Floating-Point Copy FCPY
	Floating-Point Divide FDIV
	Floating-Point Identify FID
	Floating-Point Load Doubleword FLDD
	Floating-Point Load Word FLDW
	Floating-Point Multiply FMPY
	Floating-Point Multiply/Add FMPYADD
	Floating-Point Multiply Fused Add FMPYFADD
	Floating-Point Multiply Negate Fused Add FMPYNFADD...
	Floating-Point Multiply/Subtract FMPYSUB
	Floating-Point Negate FNEG
	Floating-Point Negate Absolute Value FNEGABS
	Floating-Point Round to Integer FRND
	Floating-Point Square Root FSQRT
	Floating-Point Store Doubleword FSTD
	Floating-Point Store Word FSTW
	Floating-Point Subtract FSUB
	Floating-Point Test FTEST
	Fixed-point Multiply Unsigned XMPYU

	10 Floating-Point Exceptions
	Exception Registers
	Exception Register Operation

	Interruptions and Exceptions
	Immediate Trapping
	Delayed Trapping
	Non-trapping Exceptions
	Multiple Exceptions
	Trap Handlers
	Reserved-op Exception
	Unimplemented Exception
	Invalid Operation Exception
	Division-by-zero Exception
	Inexact Exception
	Overflow Exception
	Underflow Exception

	Saving and Restoring State

	11 Performance Monitor Coprocessor
	Performance Monitor Instructions
	Performance Monitor Interruptions
	Reserved Sub-Opcode Exception

	Monitor Units
	Performance Monitor Disable PMDIS
	Performance Monitor Enable PMENB

	A Glossary
	B Instruction Formats
	C Operation Codes
	Major Opcode Assignments
	Opcode Extension Assignments
	System Control Instructions (System_op)
	Memory Management Instructions (Mem_Mgmt)
	Arithmetic/Logical Instructions (Arith/Log)
	Indexed and Short Displacement Load/Store Instruct...
	Load/Store Doubleword Instructions (Load_dw and St...
	Load/Store Word Instructions (Load_w and Store_w)
	Arithmetic Immediate Instructions (Addi, Subi)
	Shift, Extract, and Deposit Instructions (Sh_Ex_De...
	Multimedia Instructions (Multimedia)
	Unconditional Branch Instructions (Branch)
	Coprocessor Loads and Stores (Copr_w and Copr_dw)
	Special Function Unit Instructions
	Floating-Point Coprocessor Operation Instructions
	Major Opcode 0C
	Major Opcode 0E (Float)
	Major Opcode 2E (Fp_fused)

	Performance Monitor Coprocessor Instructions

	D Conditions
	Arithmetic/Logical Conditions
	Unit Conditions
	Shift/Extract/Deposit Conditions
	Branch On Bit Conditions

	E Instruction Notation Control Structures
	Miscellaneous Constructs

	F TLB and Cache Control
	TLB Control
	Software TLB Miss Handling
	Hardware TLB Miss Handling

	TLB Operation Requirements
	Address Aliasing
	Cache Move-in Restrictions
	Virtual Accesses
	Absolute Accesses
	Data Cache Move-In
	Instruction Cache Move-In
	I/O Addresses and Uncacheable Memory
	Cache Flushing

	Cache Coherence with I/O
	Coherent I/O
	Non-coherent I/O
	Operations Defined for I/O Address Space

	Cache and TLB Coherence in Multiprocessor Systems

	G Memory Ordering Model
	Atomicity of Storage Accesses
	Ordering of References
	Ordering Definitions
	Ordering Requirements

	Completion of Accesses
	Formal Memory Model
	The Execution Trace
	Instruction Order
	Line States
	The Memory Trace
	Memory Order
	Final Goal
	Order Rules
	Coherence and Move-in Rules
	Proof of Coherence for Private Lines

	H Address Formation Details
	Memory Reference Instruction Address Formation
	Long Displacement Addressing
	Short Displacement Addressing
	Store Bytes Instructions
	Indexed Addressing

	Absolute Address Formation
	Absolute Accesses when PSW W-bit is 1
	Absolute Accesses when PSW W-bit is 0

	I Programming Notes
	Privilege Level Changes
	Testing the Current State of the PSW W-Bit
	Procedure Call and Return
	Static Branch Prediction
	Return from Interruption
	Trap Handlers
	Reserved-op Exception
	Endian Byte Swapping
	Halfword Byte Swap
	Word Byte Swap
	Doubleword Byte Swap

	J PA-RISC 2 Instruction Completers & Pseudo-Ops
	PA-RISC 2 Instruction Completers
	Pseudo-Op Mnemonics

	Index

