
PA-RISC 1.1 Architecture and
Instruction Set Reference Manual

HP Part Number: 09740-90039

Printed in U.S.A. February 1994

Third Edition

Notice
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1986 – 1994 by HEWLETT-PACKARD COMPANY

Printing History
The printing date will change when a new edition is printed. The manual part number will change when
extensive changes are made.

First Edition . November 1990
Second Edition. September 1992
Third Edition . February 1994

iiiPA-RISC 1.1 Architecture Contents

Contents

Contents . iii
Preface. . ix

1 Overview . 1-1
Introduction. . 1-1
System Features . 1-2
PA-RISC 1.1 Enhancements . 1-2
System Organization . 1-4

2 System Organization . 2-1
Introduction. . 2-1
Memory and I/O Addressing . 2-2
Byte Ordering (Big Endian/Little Endian) . 2-3
Levels of PA-RISC. . 2-5
Data Types . 2-5
Processing Resources. . 2-7

3 Addressing and Access Control . 3-1
Introduction. . 3-1
Pointers and Address Specification . 3-2
Address Resolution and the TLB. . 3-3
Access Control . .3-10
Page Table Structure . .3-14
Caches .3-15
The Synchronization Primitive . .3-16
Cache Coherence with I/O . .3-17
Cache Coherence in Multiprocessor Systems .3-17
TLB Coherence in Multiprocessor Systems . .3-18
TLB Operation Requirements .3-18
Data Cache Move-In . .3-21
Instruction Cache Move-In . .3-22

4 Flow Control and Interruptions . 4-1
Introduction. . 4-1
Instruction Execution. . 4-1
Atomicity of Storage Accesses. . 4-3
Ordering of Accesses. . 4-3
Completion of Accesses . 4-5
Instruction Pipelining. . 4-6
Nullification . 4-7
Branching. . 4-7
Interruptions .4-13

5 Instruction Set . 5-1
Introduction. . 5-1
Undefined and Illegal Instructions . 5-1
Reserved Instruction Fields . 5-2
Reserved Values of an Instruction Field . 5-2

iv Contents PA-RISC 1.1 Architecture

Null Instructions. . 5-2
Conditions and Control Flow . 5-2
Instruction Notations . 5-7
Instruction Descriptions. .5-14
Memory Reference Instructions. . 5-15
Immediate Instructions .5-54
Branch Instructions . 5-58
Computation Instructions . 5-81
System Control Instructions. . 5-136
Assist Instructions. . 5-176

6 Floating-point Coprocessor . 6-1
Introduction . 6-1
Data Registers . 6-5
Data Formats . 6-6
Status Register . 6-9
Instruction Set . 6-12
Exception Registers . 6-23
Interruptions and Exceptions . 6-26
Saving and Restoring State . 6-35
Instruction Set Description . 6-36

7 Performance Monitor Coprocessor . 7-1
Introduction . 7-1
The Instruction Set . 7-1
Interruptions. . 7-1
Monitor Units . 7-2
Instruction Set Description . 7-2

8 Debug Special Function Unit . 8-1
Introduction . 8-1
Debug Registers . 8-1
The Instruction Set . 8-3
Interruptions. . 8-4
Instruction Set Description . 8-5

A Glossary . A-1
B Instruction Index . .B-1
C Instruction Formats .C-1
D Operation Codes . D-1

Major Opcode Assignments. . D-1
Opcode Extension Assignments . D-3

E Level 0 Summary .E-1
I Index . I-1

vPA-RISC 1.1 Architecture

Figures

Figure 1-1. System Organization . 1-4
Figure 1-2. Processor Organization . 1-5
Figure 2-1. Absolute Pointer. . 2-2
Figure 2-2. Memory and I/O Addresses . 2-2
Figure 2-3. Physical Memory Addressing and Storage Units 2-3
Figure 2-4. Big Endian Loads . 2-4
Figure 2-5. Little Endian Loads . 2-4
Figure 2-6. General Registers . 2-8
Figure 2-7. Space Registers . 2-9
Figure 2-8. Width of SRs, IASQ, IIASQ, and ISR in Different Levels 2-9
Figure 2-9. Processor Status Word . 2-9
Figure 2-10. Instruction Address Queues . .2-12
Figure 2-11. Control Registers .2-14
Figure 2-12. Interruption Instruction Address Queues . .2-17
Figure 3-1. Structure of Spaces, Pages, and Offsets. . 3-2
Figure 3-2. Space Identifier Selection . 3-3
Figure 3-3. TLB Fields . 3-5
Figure 3-4. Protection ID .3-11
Figure 3-5. Access Rights Field . .3-12
Figure 3-6. Access Control Checks .3-14
Figure 3-7. Page Table Entry .3-15
Figure 4-1. Interruption Processing . 4-2
Figure 4-2. Delayed Branching . 4-8
Figure 4-3. Updating Instruction Address Queues .4-12
Figure 4-4. Branch in the Delay slot of a Branch . .4-13
Figure 5-1. Instruction Description Example .5-14
Figure 5-2. Space Identifier Selection . .5-19
Figure 5-3. Loads and Stores .5-20
Figure 5-4. Load and Store Word Modify . .5-21
Figure 5-5. Indexed Loads. .5-23
Figure 5-6. Short Displacement Loads and Stores .5-25
Figure 5-7. Store Bytes Short .5-27
Figure 5-8. Immediate Instructions .5-54
Figure 5-9. Classification of Branch Instructions . .5-60
Figure 5-10. Space Identifier Selection . 5-137
Figure 5-11. System Operations . 5-137
Figure 6-1. Single-word Data Format . 6-6
Figure 6-2. Double-word Data Format . 6-6
Figure 6-3. Quad-word Data Format . 6-6
Figure 6-4. Floating-point Formats . 6-7
Figure 6-5. Fixed-point Formats. . 6-9
Figure 6-6. Status Register .6-10
Figure 6-7. Single-operation Instruction Formats . .6-14

vi PA-RISC 1.1 Architecture

Figure 6-8. Multiple-Operation Instruction Format . 6-18
Figure 6-9. Exception Register Format. . 6-24
Figure 6-10. Exception Field Underflow Parameters . 6-34
Figure 7-1. Performance Monitor Operation Format. . 7-1
Figure 8-1. Data and Instruction Breakpoint Address Offset Registers 8-1
Figure 8-2. Data Breakpoint Address Mask Registers . 8-2
Figure 8-3. Instruction Breakpoint Address Mask Registers. 8-3
Figure 8-4. Debug SFU Instruction Formats . 8-3
Figure D-1. Format for System Control Instructions . D-3
Figure D-2. Formats for Memory Management Instructions D-5
Figure D-3. Format for Arithmetic/Logical Instructions . D-7
Figure D-4. Formats for Indexed and Short Displacement Load/Store Instructions D-9
Figure D-5. Format for Arithmetic Immediate Instructions D-11
Figure D-6. Formats for Extract and Deposit Instructions . D-12
Figure D-7. Formats for Unconditional Branch Instructions D-13
Figure D-8. Formats for Coprocessor Load/Store Instructions D-14
Figure D-9. Formats for Special Function Unit (SFU) Instructions D-16
Figure D-10. Formats for Floating-Point Operations - Major Opcode 0C D-17
Figure D-11. Formats for Floating-Point Operations - Major Opcode 0E D-19
Figure D-12. Format for Performance Monitor Coprocessor Instructions D-21
Figure D-13. Debug SFU Instruction Formats . D-22

viiPA-RISC 1.1 Architecture

Tables

Table 3-1. Access Rights Interpretation .3-13
Table 3-2. Data Cache Move-In Rules . .3-22
Table 5-1. Arithmetic/Logical Operation Conditions . 5-3
Table 5-2. Overflow Results . 5-3
Table 5-3. Compare/Subtract Instruction Conditions. . 5-5
Table 5-4. Add Instruction Conditions . 5-5
Table 5-5. Logical Instruction Conditions . 5-6
Table 5-6. Unit Instruction Conditions . 5-6
Table 5-7. Shift/Extract/Deposit Instruction Conditions . 5-7
Table 5-8. Load Instruction Cache Control Hints .5-17
Table 5-9. Store Instruction Cache Control Hints .5-18
Table 5-10. Load And Clear Word Instruction Cache Control Hints 5-18
Table 5-11. Indexed Load Completers . .5-22
Table 5-12. Short Displacement Load and Store Completers 5-24
Table 5-13. Store Bytes Short Completers. .5-26
Table 5-14. System Control Completers . 5-136
Table 6-1. Single-Word Floating-Point Registers . 6-3
Table 6-2. Double-Word Floating-Point Registers . 6-4
Table 6-3. Floating-Point Format Parameters . 6-7
Table 6-4. Hexadecimal Ranges of Floating-Point Representations 6-8
Table 6-5. Rounding Modes .6-10
Table 6-6. IEEE Exceptions .6-11
Table 6-7. Floating-Point Instruction Validity .6-12
Table 6-8. Floating-Point Load and Store Instructions . .6-12
Table 6-9. Floating-Point Operations. .6-15
Table 6-10. Fixed-Point Operations .6-16
Table 6-11. Floating-Point Operand Format Completers (0C opcode) 6-16
Table 6-12. Floating-Point Operand Format Completers (0E opcode) 6-16
Table 6-13. Floating-Point Compare Conditions .6-17
Table 6-14. Floating-Point Test Conditions . .6-18
Table 6-15. Multiple-Operation Instructions. .6-19
Table 6-16. Multiple-Operation Instruction Format Completers 6-19
Table 6-17. Single-Precision Operand Specifier Use in Multi-Operation Instructions 6-20
Table 6-18. Exception Codes .6-25
Table 6-19. Delayed Trap Results . .6-28
Table 6-20. Non-trapped Exception Results . .6-29
Table 6-21. Overflow Results Causing Unimplemented Exception6-31
Table 6-22. Underflow Results Causing Unimplemented Exception 6-31
Table 6-23. Integer Results Causing Unimplemented Exception 6-31
Table 6-24. Results Causing Overflow Exception . .6-33
Table 6-25. Results Causing Tininess .6-34
Table 7-1. Performance Monitor Operations . 7-1
Table 8-1. Debug SFU Instructions. . 8-4

viii PA-RISC 1.1 Architecture

Table D-1. Major Opcode Assignments . D-2
Table D-2. System Control Instructions . D-3
Table D-3. Instruction Memory Management Instructions D-5
Table D-4. Data Memory Management Instructions. . D-6
Table D-5. Arithmetic/Logical Instructions . D-7
Table D-6. Indexed and Short Displacement Load/Store Instructions. D-10
Table D-7. Arithmetic Immediate Instructions . D-11
Table D-8. Extract and Deposit Instructions . D-12
Table D-9. Unconditional Branch Instructions . D-13
Table D-10. Coprocessor Load and Store Instructions . D-15
Table D-11. Special Function Unit (SFU) Instructions . D-16
Table D-12. Floating-Point Class Zero - Major Opcode 0C Instructions D-17
Table D-13. Floating-Point Class One - Major Opcode 0C Instructions D-18
Table D-14. Floating-Point Class Two - Major Opcode 0C Instructions D-18
Table D-15. Floating-Point Class Three - Major Opcode 0C Instructions D-18
Table D-16. Floating-Point Class Zero - Major Opcode 0E Instructions D-19
Table D-17. Floating-Point Class One - Major Opcode 0E Instructions D-20
Table D-18. Floating-Point Class Two - Major Opcode 0E Instructions D-20
Table D-19. Floating-Point Class Three - Major Opcode 0E Instructions D-20
Table D-20. Fixed-Point Class Three - Major Opcode 0E Instructions. D-20
Table D-21. Performance Monitor Coprocessor Instructions D-21
Table D-22. Debug SFU Instructions . D-22

ixPA-RISC 1.1 Architecture Preface

Preface

This manual is the Third Edition of the PA-RISC 1.1 Architecture and Instruction Set Reference Manual
and it supersedes the Second Edition (published in September 1992) and the First Edition (published in
November 1990). The Third Edition includes complete specifications for all the architectural
enhancements defined since the Second Edition was published, in addition to all the material presented
in the First and Second Editions.

From an unprivileged software perspective, this revised PA-RISC 1.1 specification is forward and
backward compatible with the original PA-RISC 1.1 specification and forward compatible with the PA-
RISC 1.0 specification:

• All unprivileged software written to the PA-RISC 1.0 specification or the First or Second Editions
of the PA-RISC 1.1 specification will run unchanged on processors conforming to the Third Edition
of the PA-RISC 1.1 specification.

• With operating system support, almost all software written to the Third Edition of the PA-RISC 1.1
specification will run unchanged on processors conforming to the First or Second Editions of the
PA-RISC 1.1 specification. The only exception to this rule is that software which relies on the new
PSW E-bit to access little endian data must not be executed on earlier processors.

The architectural enhancements included in the Third Edition enable higher performance and greater
functionality, especially in the I/O arena:

• Mixed Endian

An optional E-bit in the Processor Status Word enables memory references to data and instructions
to have either big or little endian byte ordering. Previously, only big endian byte ordering was
provided.

The mixed endian capability enables the PA-RISC architecture to be compatible with systems
which offer little endian as well as systems which provide big endian byte orderings.

• Cache Coherent I/O

Two instructions (LOAD COHERENCE INDEX and SYNCHRONIZE DMA) have been added to
enable cache coherent memory references by I/O modules. Previously, responsibility for cache
coherence between the processor and I/O modules lay with software, which had to use a sequence
of flush and purge operations to ensure coherence.

While software cache coherence for I/O is still attractive in uniprocessor systems because of the
lower hardware cost, hardware cache coherence for I/O has a relatively low incremental cost in
multiprocessor systems.

• Uncacheable Memory

An optional U (Uncacheable) bit has been added to each data TLB entry which controls cache
move-in for the corresponding page. When the U-bit is set, new lines must not be moved in to the
data cache, although existing lines may remain resident in the cache. This forces all references to
non-resident lines to cause transactions to memory and enables better support of industry standard
I/O busses where byte and word transactions to memory are sometimes required to communicate

x Preface PA-RISC 1.1 Architecture

with I/O devices.

• Wider Protection Identifiers

The maximum size of Protection Identifiers (PIDs) and Access Identifiers (Access IDs) has been
increased to 18 bits (the minimum remains 15 bits) to better support larger multi-user systems with
a very large number of processes.

• A Spatial Locality Cache Control Hint for Load and Store Instructions

A Spatial Locality (SL) cache control hint has been added to load and store instructions. The hint is
a recommendation to the processor to fetch the addressed cache line from memory, but not to
displace any existing cache data, because there is good spatial locality, but poor temporal locality.

For example, this hint might be used by software to sequentially initialize a series of small data
items which will not be accessed again for a while.

• Floating-point Graphics Clip Tests

A queue of condition bits, changes to theFLOATING-POINT COMPARE instruction, and new
FLOATING-POINT TEST variants have been added to the floating-point unit to provide higher
performance when doing graphics clip tests.

• Performance Monitor Coprocessor

An optional performance monitor coprocessor has been defined to provide hardware assistance for
performance analysis. Two instructions (PERFORMANCE MONITOR ENABLE andPERFORMANCE
MONITOR DISABLE) have been defined to control the measurement of sections of code. Details of
what is measured and how the measurement results are accessed by software are implementation
dependent.

• Debug SFU

An optional debug special function unit has been defined for Level 0 processors. The SFU consists
of a set of registers and instructions which allow unprivileged software to set instruction and data
breakpoints on ranges of addresses. New interruptions and PSW bits provide simple mechanisms
for privileged software to manage the breakpoint traps.

Change bars have been added to the text referring to any of these architectural enhancements to assist
readers familiar with the Second Edition of the PA-RISC 1.1 specification.

In addition, all known errors in the Second Edition of the PA-RISC 1.1 specification have been
corrected and the text has been clarified in many places. These changes are not marked with change
bars.

xiPA-RISC 1.1 Architecture Preface

Conventions

Fonts
In this manual, fonts are used as follows:

Italic is used for instruction fields and arguments. For example: "The completer,cmplt,
encoded in theu andm fields of the instruction, ...".

Italic is also used for references to other parts of this and other manuals. For example:
"As described inChapter 4, Flow Control and Interruptions, ...".

Bold is used for emphasis and the first time a word is defined. For example:
"Implementations must provide seven registers calledshadow registers ...".

UPPER CASE is used for instruction names, instruction mnemonics, short (three characters or less)
register and register field names, and acronyms. For example: "The PL field in the
IIAOQ register ...".

Underbar (_) characters join words in register, variable, and function names. For example: "The
boolean variable cond_satisfied in the Operation section ...".

Numbers
The standard notation in this document for addresses and data is hexadecimal (base 16). Memory
addresses and fields within instructions are written in hexadecimal. Where numbers could be confused
with decimal notation, hexadecimal numbers are preceded with 0x. For example, 0x2C is equivalent to
decimal 44.

xii Preface PA-RISC 1.1 Architecture

1-1PA-RISC 1.1 Architecture Overview

1 Overview

Introduction
PA-RISC is an extension of the architecture principles of the Reduced Instruction Set Computer (RISC).
The simple design provides exceptional performance and is ideal for use in a broad family of cost-
effective, compatible systems. Some typical applications include: commercial data processing,
computation-intensive scientific and engineering applications, and real-time control.

Computer architectures developed in the 1960s and 1970s have evolved towards increasing system
complexity. These architectures, loosely called Complex Instruction Set Computers (CISCs), have large
instruction sets containing many specialized instructions. CISCs typically use microcoded control
programs (i.e., microcode) to provide support for complex functions and high-level languages.

Extensive research into patterns of computer usage reveals that general-purpose computers spend up to
80% of their time executing simple instructions such as load, store, and branch. The more complex
instructions are used infrequently. Unfortunately, while these complex instructions add functionality,
they also add overhead for additional instruction decoding, microcode, and longer cycle times. The
extra overhead reduces the performance of the simple, often-executed instructions and negates any
advantages of implementing complex instructions. These findings led to the concept of the Reduced
Instruction Set Computer.

PA-RISC processors implement a controlled evolution of processor architecture which is carefully
designed to preserve a customer’s software investment. Forward compatibility of object code is
guaranteed. This allows software written for one processor to execute on any other processor without
modification. The instruction set is designed to be an excellent target for optimizing compilers and is
optimized for simple, often used instructions that execute in one CPU cycle. Implementation of more
complex functions is assigned to system software or to assist processors such as the floating-point
coprocessor. The instruction set is also very regular; all instructions are fixed-length (32-bits) and major
opcodes and register fields always appear in the same locations.

The Input/Output (I/O) system is memory-mapped and accessed through load and store instructions for
simplicity, flexibility, and speed. It is optimized for I/O intensive commercial data processing
environments as well as for real-time control applications.

Addressing capabilities are far more powerful than those found in typical 32-bit systems. The use of 48-
bit, 56-bit, or 64-bit virtual addresses is supported with full compatibility over the entire family of
systems. Also supported are multiple virtual address spaces and very large data structures (up to 4
Gbytes). A powerful protection mechanism supports secure and structured operating systems.

PA-RISC is designed to support both high-performance and fault-tolerant multiprocessor systems and is
an ideal platform for AI applications. The architecture can take immediate advantage of evolving
hardware and software technologies with the high performance of advanced optimizing compilers.

1-2 Overview PA-RISC 1.1 Architecture

System Features
The RISC features provided by PA-RISC include:

• Direct hardware implementation of instruction set — The instruction set can be hardwired to speed
instruction execution. No microcode is needed for single cycle execution. Conventional machines
require several cycles to perform even simple instructions.

• Fixed instruction size — All instructions are one word (32-bits) in length. This simplifies the
instruction fetch mechanism since the location of instruction boundaries is not a function of the
instruction type.

• Small number of addressing modes — The instruction set uses short displacement, long
displacement and indexed modes to access memory.

• Reduced memory access — Only load and store instructions access memory. There are no
computational instructions that access memory; load/store instructions operate between memory
and a register. Control hardware is simplified and the machine cycle time is minimized.

• Ease of pipelining — The instructions were designed to be easily divisible into parts. This and the
fixed size of the instructions allow the instructions to be easily piped.

PA-RISC provides a flexible and expandable architecture that maximizes performance from any given
semiconductor technology. PA-RISC includes extensions to RISC concepts that help achieve given
levels of performance at significantly lower cost than other systems.

The major extensions are summarized below:

• Very high performance cache systems and support for virtually addressed caches

• Multiprocessor systems for fault-tolerance or increased performance

• A floating-point coprocessor for IEEE floating-point operations

• A Performance Monitor Coprocessor for performance measurement

• A Debug Special Function Unit to assist in software debugging

• Extremely large and efficient virtual memory system with 48-bit, 56-bit, or 64-bit addressing

• Demand-paged memory management

• Memory access protection through a hardware Translation Lookaside Buffer (TLB)

• Memory-mapped I/O

• Optimizing compilers

• Extendable instruction set for product specific requirements

PA-RISC 1.1 Enhancements
PA-RISC 1.1 includes the following enhancements to the PA-RISC 1.0 architecture which are designed
to improve performance and future extensibility:

1-3PA-RISC 1.1 Architecture Overview

• An optional E-bit in the Processor Status Word which enables memory references to instructions
and data with big or little endian byte ordering.

• Two instructions (LOAD COHERENCE INDEX andSYNCHRONIZE DMA) to enable cache coherent
memory references by I/O modules.

• An optional U-bit in the TLB entry for each data page which controls cache move-in, and can be
used to provide uncached access to data in the memory address space.

• Protection Identifiers (PIDs) and Access Identifiers (Access IDs) may be up to 18 bits wide. The
minimum width remains 15 bits.

• Cache control hints for quicker and more efficient memory reference instructions.

• An optional performance monitor coprocessor which provides hardware assistance for performance
analysis.

• A queue of condition bits, changes to theFLOATING-POINT COMPARE instruction, and new
FLOATING-POINT TEST variants provide higher performance when doing graphics clip tests.

• An optional debug special function unit which provides instruction and data breakpoint support for
Level 0 processors.

• Space and offset address aliasing between virtual and physical addresses to provide better support
for process forks, message passing and memory mapped files.

• Three separate traps to accelerate trap handling, in place of the combined data memory protection/
unaligned data reference trap.

• An increase in the alignment of the Interrupt Vector Address table to 2 Kbytes to allow for the
future definition of other interruptions.

• A change to control registers 26 and 27 to make them readable at any privilege level so that
operating systems can provide user-visible per-process or per-thread identifiers.

• A Denormalized as Zero bit in the Floating-Point Status Register which is a hint to the processor
that it may treat denormalized sources and/or results as zero to accelerate calculations using
numbers which tend to zero.

• Two floating-point multiple-operation instructions:FLOATING-POINT MULTIPLY/ADD
(FMPYADD) andFLOATING-POINT MULTIPLY/SUBTRACT (FMPYSUB).

• A fixed-point unsigned multiply instruction:FIXED-POINT MULTIPLY UNSIGNED (XMPYU).

• 16 additional floating-point registers, increasing the number of floating-point registers to 32.

• The capability to address the registers in the floating-point register file either as 64 single-precision
(32-bit) floating-point registers or as 32 double-precision (64-bit) floating-point registers.

• An increase in the page size from 2 Kbytes to 4 Kbytes.

• Block TLB translations to allow the mapping of a large virtually continuous space to a continuous
portion of physical memory without using several TLB entries.

• Shadow registers and aRETURN FROM INTERRUPTION AND RESTORE instruction to reduce the
state save and restore time by eliminating the need for general register (GR) saves and restores in

1-4 Overview PA-RISC 1.1 Architecture

interruption handlers.

System Organization
The PA-RISC processor is only one element of a complete system. A system also includes memory
arrays, I/O adapters, and interconnecting busses. Figure 1-1 shows a typical multiprocessor system with
a high-speed central bus and two connections to lower-speed busses. The processors reference main
memory on the central bus and I/O adapters on the remote busses. The processors are modules on the
bus and may be the target of transactions such as external interrupts and system resets.

The processor module is organized to provide a high performance computation machine. The Central
Processing Unit (CPU) includes a general register set, virtual address registers and machine state
registers. A cache is optional, but it is such a cost-effective component that nearly all processors
incorporate this hardware. On processors that support virtual memory addressing, a hardware
translation lookaside buffer (TLB) is included to provide virtual to absolute address translations.

Figure 1-1. System Organization

Central Bus

Native Bus Foreign Bus

.

Native
Processor

Native
Processor

Main
Memory

Main
Memory

I/O

Bus
Converter

Bus
Adapter

High-Speed
I/O

I/OI/OI/O

1-5PA-RISC 1.1 Architecture Overview

Any processor may include Special Function Units (SFUs) and coprocessors. These dedicated hardware
units substantially increase performance when executing selected hardware algorithms. Collectively,
SFUs and coprocessors are calledassist processors. Floating-point functions are provided by a
coprocessor, while a signal processing algorithm could be enhanced with a specialized SFU.

I/O adapters with high bandwidth demands are connected to the higher performance central bus, while
slower devices can be connected to more cost-effective remote busses.

Figure 1-2 shows a typical processor module with a cache, a TLB, one coprocessor and one SFU.

Register-intensive computation is central to the architecture. Calculations are performed only between
high-speed CPU registers or between registers and immediate constants. Register-intensive operation
simplifies data and control paths thereby improving processor performance.

Load and store instructions are the only instructions that reference main memory. To minimize the
number of memory references, optimizing compilers allocate the most frequently used variables to
general-purpose registers.

Storage System
The PA-RISC storage system is an explicit hierarchy that is visible to software. The architecture
provides for buffering of information to and from main memory in high-speed storage units (visible
caches).

The memory hierarchy achieves nearly the speed of the highest (fastest and smallest) memory level
with the capacity of the lowest (largest and slowest) memory level. The levels of this memory hierarchy

Figure 1-2. Processor Organization

CPUSFU

CacheTLB Coprocessor

Central Bus

PROCESSOR

1-6 Overview PA-RISC 1.1 Architecture

from highest to lowest are the general registers, caches (if implemented), main memory and direct
access storage devices such as disks.

A cache system, when implemented, is an integral part of the processor. Caches hold frequently
accessed data and instructions in order to minimize access time to main memory. A system may have a
separate instruction cache (I-cache) and data cache (D-cache), or may have a single, combined cache
that holds both instructions and data.

In systems which support virtual addressing, to perform translations from virtual addresses to absolute
addresses, a hardware feature called the Translation Lookaside Buffer (TLB) is included. The TLB
contains translations for recently accessed virtual pages. Each TLB entry also contains information used
to determine valid access to that memory page and the type of access permitted. While the TLB
determines the proper translation of the virtual address, access information is checked and access is
either granted or denied. TLBs may be split on a processor, one for instructions (ITLB) and one for data
(DTLB).

Virtual Addressing
A generalized virtual memory system is an integral part of the architecture on all but the smallest PA-
RISC systems. The virtual memory system supports 48-bit, 56-bit, or 64-bit virtual addresses. Program-
supplied addresses are treated as logical addresses and translated to absolute addresses by the TLB
when memory is referenced. Address translations are made at the page level. In systems without virtual
addressing, the absolute address and virtual address are the same. Direct access to physical memory
locations is also supported in the instruction set.

The global virtual memory is organized as a set of linear spaces with each space being 4 Gbytes (232

bytes) long. Each space is specified with a space identifier and divided into fixed-length 4 Kbyte pages.

Data Types
PA-RISC supports the following data types:

• 8-bit ASCII characters (values 0 through 127)

• HP’s 8-bit extended Roman-8 characters (values 128 through 255)

• Signed and unsigned 16-bit integers

• Signed and unsigned 32-bit integers

• Unsigned 64-bit integers

• Packed decimal; 7, 15, 23, or 31 BCD (Binary Coded Decimal) digits

• Unpacked decimal; one or more bytes

• Single-word (32-bit) IEEE floating-point

• Double-word (64-bit) IEEE floating-point

• Quadruple-word (128-bit) IEEE floating-point

1-7PA-RISC 1.1 Architecture Overview

Instruction Set
There are two primary addressing modes for memory accesses: base relative and indexed. Memory
references can be specified by either virtual or absolute addressing.

Memory Reference Instructions transfer data between the general registers and main memory or the I/O
system. Load and store instructions are the only instructions that reference memory. Operands required
for a given operation are first brought into a CPU register from memory with a load instruction. The
result of the operation is explicitly saved to memory with a store instruction.

Instructions access system I/O in a similar way to main memory. System I/O is memory-mapped such
that I/O modules are mapped into physical pages which are not part of the main memory, but which are
addressed in the same way. This provides the same flexibility, security, and protection mechanisms
provided for main memory.

Arithmetic and logical instructions provide a simple but powerful set of functions. Besides the usual
arithmetic and logical operations, there are shift-and-add instructions to accelerate integer
multiplication, extract and deposit instructions for bit manipulations, and several instructions to provide
support for packed and unpacked decimal arithmetic.

Multiple-precision arithmetic is supported with carry-sensitive instructions. More complex arithmetic
functions (including packed, unpacked and zoned decimal operations) are supported by language
compilers through execution of a sequence of simple instructions.

The control flow of a program is affected by branch instructions and by instructions that skip the
following instruction. The condition resulting from an operation can immediately determine whether or
not a branch should be taken. Unconditional branch and procedure call instructions are provided to alter
control flow. The need for some branch sequences is eliminated as most computational instructions can
specify skipping of the next instruction. This permits such common functions as range checking to be
performed in a simple, non-branching instruction sequence.

Floating-point instructions support the defined IEEE standard operations of addition, subtraction,
multiplication, division, square root, conversions, and round-to-integer.

System control instructions provide the support needed to implement an operating system including:
returning from interruptions, executing instruction breaks and probing access rights. They also control
the Processor Status Word, special registers, caches, and translation lookaside buffers.

Input/Output Organization
The PA-RISC I/O architecture ismemory-mapped, which means that complete control of all attached
modules is exercised by the execution of memory read and write commands. Processors invoke these
operations by executing load and store instructions to either virtual or absolute addresses.

This approach permits I/O drivers to be written in high-level languages. Since the usual page-level
protection mechanism is applied during virtual-to-absolute address translation, user programs can be
granted direct control over particular I/O modules without compromising system integrity.

Direct I/O is the simplest and least costly type of system I/O interface because it has little or no local
state and is controlled entirely by software. Since direct I/O responds only to load and store instructions
and never generates memory addresses, it may be mapped into virtual space and controlled directly by

1-8 Overview PA-RISC 1.1 Architecture

user programs.

Direct Memory Access (DMA) I/O adapters contain sufficient state to control the transfer of data to or
from a contiguous range of absolute addresses and to perform data chaining. This state is initialized
prior to the start of a transfer by a privileged driver which is responsible for the mapping and validation
of virtual addresses. During the transfer, the virtual page(s) involved must be locked in physical
memory and protected from conflicting accesses through software.

Assist Processors
Assist processors are hardware units that can be added to the basic PA-RISC system to enhance its
performance or functionality. Two categories of assist processors are defined and are distinguished by
the level at which they interface with the memory hierarchy.

The first type of assist processor is thespecial function unit (SFU) which interfaces to the memory
hierarchy at the general register level. This acts as an alternate ALU or as an alternate path through the
execution unit of the main processor. It may have its own internal state.

The second type of assist processor is thecoprocessor, which shares the main processor caches.
Coprocessors are typically used to enhance performance of special operations such as high-performance
floating-point calculations. Coprocessors generally have their own internal state and hardware
evaluation mechanism.

Multiprocessor Systems
Multiprocessor support for various types of multiprocessor systems is built into the architecture.
Multiprocessors can be configured to provide incremental performance improvement via distribution of
the system workload over multiple CPUs, or can be configured redundantly to provide fault-tolerance in
the system. In systems sharing a single virtual address space, the architecture defines a model of a single
consistent cache and TLB. Software is still responsible for maintaining coherence for modifying
instructions, and for virtual address mapping. Systems may choose to only share physical memory and
form more loosely-coupled configurations. All multiprocessor systems synchronize using a semaphore
lock in shared main memory.

2-1PA-RISC 1.1 Architecture System Organization

2 System Organization

Introduction
The PA-RISC instruction set is only one aspect of the processor architecture; the following components
are also specified:

• Memory and I/O Addressing — how system memory and the input and output facilities are
organized and accessed

• Data Types — how data is organized and what data types are available to the user

• Processing Resources — what registers and register sets are available to the user

Data storage is organized as a storage hierarchy with user-accessible registers as the highest level. This
is followed by the memory system which consists of high-speed buffers that hold recently referenced
instructions and/or data, and main memory. These buffers, calledinstruction and/ordata caches,
reduce the effective access time to main memory.

The I/O system is memory-mapped. I/O modules are mapped into physical pages that are not part of the
main memory, but are addressed in the same way. With virtual pages mapped into physical pages and
I/O registers represented by words in a page, communication between a processor and an I/O module
can be performed with load and store instructions to virtual addresses. The privilege level and access
rights of such a page provide versatile protection. Non-privileged code may therefore be given direct
access to some I/O modules without compromising system security.

The software-accessible registers (i.e., the processing resources) are the storage elements within a
processor that are manipulated by the instructions. These resources participate in instruction control
flow, computations, interruption processing, protection mechanisms, and virtual memory management.
The processing resources available to software are listed below:

• General Registers (GR 0..GR 31)

• Shadow Registers (SHR 0..SHR 6)

• Space Registers (SR 0..SR 7)

• Processor Status Word (PSW)

• Instruction Address Queues

• Control Registers (CR 0..CR 31)

• Special Function Unit Registers

• Coprocessor Registers

• Floating-point Registers (FPR 0..FPR 31)

All of these resources are described in this chapter, with the exception of the floating-point registers
which are described in Chapter 6, “Floating-point Coprocessor”.

2-2 System Organization PA-RISC 1.1 Architecture

Memory and I/O Addressing
Objects in the main memory and I/O system are addressed using 32-bit absolute addresses. An absolute
address is a 32-bit unsigned integer whose value is the address of the lowest-addressed byte of the
operand it designates (see Figure 2-1).

Figure 2-2 illustrates the relationship of the I/O address space to the main memory address space.
Addresses 0 through 0xEFFFFFFF reference memory. Addresses 0xF0000000 through 0xFFFFFFFF
reference I/O registers. This structure gives nearly 4 Gbytes of memory address space and 256 Mbytes
of I/O address space.

Memory is always referenced with byte addresses, starting with address 0 and extending through the
largest defined non-I/O address (0xEFFFFFFF). Addressable units are bytes, halfwords (2 bytes), words
(4 bytes), and doublewords (8 bytes). A comparison of the addressable units is shown in Figure 2-3 with
the relative byte numbers indicated inside the blocks.

Absolute Byte Address

32

Figure 2-1. Absolute Pointer

Figure 2-2. Memory and I/O Addresses

I/O
Address
Space

Memory
Address
Space 0xF0000000

0xFFFFFFFF

0x00000000

0xFFFFFFFF

2-3PA-RISC 1.1 Architecture System Organization

All addressable units must be stored on their naturally aligned boundaries. A byte may appear at any
address, halfwords must begin at even addresses, words must begin at addresses that are multiples of 4,
and doublewords begin at addresses that are multiples of 8. If an unaligned virtual address is used, an
interruption occurs.

Bits within larger units are always numbered from 0 starting with the most significant bit.

I/O address space is referenced in words, halfwords, and bytes. I/O registers are accessed using the
normal load and store instructions.

Virtual memory is organized into linear spaces of 232 = 4,294,967,296 bytes each. Each space is
designated by a space identifier orspace ID. The object within the space is specified by a 32-bitoffset.
The concatenation of a space identifier and this offset forms a complete virtual address.

Translation from virtual to absolute addresses is accomplished by translation lookaside buffers (TLBs),
which are described in Chapter 3, “Addressing and Access Control”. Fields in the TLB entry for a
particular page permit control of access to the page for reading, writing or execution. Such access may
be restricted to a single process, or a set of processes, or may be permitted to all processes.

Byte Ordering (Big Endian/Little Endian)
The optional E-bit in the PSW controls whether loads and stores use big endian or little endian byte
ordering. When the E-bit is 0, all larger-than-byte loads and stores are big endian — the lower-
addressed bytes in memory correspond to the higher-order bytes in the register. When the E-bit is 1, all
larger-than-byte loads and stores are little endian — the lower-addressed bytes in memory correspond to
the lower-order bytes in the register. Load byte and store byte instructions are not affected by the E-bit.
The E-bit also affects instruction fetch.

Processors which implement the PSW E-bit must also provide an implementation-dependent, software
writable default endian bit. The default endian bit controls whether the PSW E-bit is set to 0 or 1 on
interruptions and also controls whether data in the page table is interpreted in big endian or little endian

Figure 2-3. Physical Memory Addressing and Storage Units

0

0 4

0 2 4 6

0 1 2 3 4 5 6 7Bytes

Halfwords

Words

Doublewords

increasing byte

addresses

2-4 System Organization PA-RISC 1.1 Architecture

format by the hardware TLB miss handler (if implemented).

Figure 2-4 shows various loads in big endian format. Figure 2-5 shows various loads in little endian
format. Stores are not shown but behave similarly.

The E-bit also affects instruction fetch. When the E-bit is 0, instruction fetch is big endian — the lower-

Figure 2-4. Big Endian Loads

Figure 2-5. Little Endian Loads

a

b

c

d

e

f

g

h

0 b0 0

e hf ga db c

0 31

0 d0 c

0 31

e hf g

0 31

0 63

0

1

2

3

4

5

6

7

LDBS 1(0,0),t

LDHS 2(0,0),t

LDWS 4(0,0),t

FLDDS 0(0,0),t

0 7

Memory Registers

a

b

c

d

e

f

g

h

0 b0 0

d ac bh eg f

0 31

0 c0 d

0 31

h eg f

0 31

0 63

0

1

2

3

4

5

6

7

LDBS 1(0,0),t

LDHS 2(0,0),t

LDWS 4(0,0),t

FLDDS 0(0,0),t

0 7

Memory Registers

2-5PA-RISC 1.1 Architecture System Organization

addressed bytes in memory correspond to the higher-order bytes in the instruction. When the E-bit is 1,
instruction fetch is little endian — the lower-addressed bytes in memory correspond to the lower-order
bytes in the instruction.

Architecturally, the instruction byte swapping can occur either when a cache line is moved into the
instruction cache or as instructions are fetched from the I-cache into the pipeline.

Because processors are allowed to swap instructions as they are moved into the I-cache, software is
required to keep track of which pages might have been brought into the I-cache in big endian form and
in little endian form, given the cache move-in rules, and before executing the code, flush all lines on any
page that might have been moved in with the wrong form. Note that the move-in rules allow all lines on
a page, plus the next sequential page, to be moved in, so guard pages (that will never be executed) must
be used between code pages which will execute with opposite endian form.

Levels of PA-RISC
Four levels of the processor architecture have been defined:0, 1, 1.5, and2. Level 0 systems support
absolute memory addressing only; virtual memory is not supported, and so space identifiers are not
used. Level 1, 1.5, and 2 systems have virtual addressing and differ only in the number of significant
bits in their space identifiers. They have 216, 224, and 232 virtual spaces, respectively. To provide for
growth to larger systems, each higher level processor has a superset of the capabilities of the lower level
processors.

Data Types
The fundamental data types that are recognized are bits, bytes, integers, floating-point numbers, and
decimal numbers. Their formats are described briefly in this section. Each item of data is addressed by
its lowest-numbered byte.

Bits Memory is not addressed to the resolution of bits; however, efficient support is
provided to manipulate and test individual bits in the general registers.

Bytes Bytes are signed or unsigned 8-bit quantities:

Bytes are packed four to a word and may represent a signed value in the range -128
through +127, an unsigned value in the range 0 through 255, an arbitrary collection of
eight bits, or an ASCII character.

Signed Byte

s value

1 7

Unsigned Byte

value

8

2-6 System Organization PA-RISC 1.1 Architecture

The character codes conform to the ASCII standard for byte values in the range 0
through 127 and to HP’s 8-bit extended Roman-8 character set for byte values in the
range 128 through 255.

Integers Integers may be 16 or 32 bits wide, signed or unsigned, or 64 bits wide, unsigned
only:

Signed integers are in two’s complement form. Halfword integers can be stored in
memory only at even byte addresses, word integers only at addresses evenly divisible
by four, and doubleword integers only at addresses evenly divisible by eight.

Floating-Point Numbers

The binary floating-point number representation conforms to the ANSI/IEEE 754-
1985 standards. Single-word (32-bit), double-word (64-bit), and quadruple-word
(128-bit) binary formats are supported.

Single-precision floating-point numbers must be aligned on word boundaries.
Double-precision and quad-precision numbers must be aligned on doubleword
boundaries. See Chapter 6, “Floating-point Coprocessor”, for detailed information on
the floating-point formats.

Packed Decimal Numbers

Packed decimal data is always aligned on a word boundary. It consists of 7, 15, 23, or
31 BCD digits, each four bits wide and having a value in the range of 0x0 to 0x9,
followed by a 4-bit sign as shown in the following figure:

Signed Halfword
s value
1 15

Unsigned Halfword
value

16

Signed Word
s value
1 31

Unsigned Word
value

32

Unsigned Doubleword
value (high word)

32

value (low word)
32

2-7PA-RISC 1.1 Architecture System Organization

The standard sign for a positive number is 0xC, but any value except 0xD will be
interpreted as positive. 0xD indicates a minus sign for a negative number. 0xB is not
supported as an alternative minus sign.

Processing Resources
The architecture provides registers, state information, and protocols for computation, addressing, and
control of execution and interruptions. Some of these resources are described below.

Unused Registers and Bits
Currently, there are several registers and bit-fields within registers that do not have any function
assigned to them. All such processing resources are classified into five categories:

1. Reserved bits — Currently unused bits, but reserved for possible future use. A READ operation is
legal, and the value read back is all zeros. A WRITE operation is legal but the value written must
be all zeros. Writing ones is an undefined operation. (For example, writing ones may cause these
bits to no longer read as zeros.)

2. Nonexistent bits — Architecturally these bits do not exist. A READ operation is legal and may
return zeros or what was last written. A WRITE operation is also legal, but does not have any effect
on system functionality.

3. Undefined bits — Architecturally these bits are undefined. A READ operation is legal and the
value read is undefined. A WRITE operation is also legal, but does not have any effect on system
functionality.

4. Reserved registers — A register that is numbered but currently unused. Both READ and WRITE
operations are undefined operations.

5. Nonexistent registers — A register that does not exist in Level 0 systems. A READ operation
returns zeros. A WRITE operation has no effect (executes as a null instruction).

General Registers
Thirty-two 32-bitgeneral registers provide the central resource for all computation (Figure 2-6). They
are numbered GR 0 through GR 31, and are available to all programs at all privilege levels.

GR 0, GR 1, and GR 31 have special functions. GR 0, when referenced as a source operand, delivers
zeros. When GR 0 is used as a destination, the result is discarded. GR 1 is the implied target of theADD
IMMEDIATE LEFT instruction. GR 31 is the instruction address offset link register for the base-relative
interspace procedure call instruction (BRANCH AND LINK EXTERNAL). GR 1 and GR 31 can also be
used as general registers; however, software conventions may at times restrict their use.

MSD • • • LSD sign

4 4 4 4

2-8 System Organization PA-RISC 1.1 Architecture

Shadow Registers
Implementations must provide seven registers calledshadow registers, numbered SHR 0 through SHR
6, into which the contents of GRs 1, 8, 9, 16, 17, 24, and 25 are copied upon interruptions. The contents
of these general registers are restored from their shadow registers when aRETURN FROM
INTERRUPTION AND RESTORE instruction is executed.

Space Registers
In systems which support virtual memory, eightspace registers, numbered SR 0 through SR 7, contain
space identifiers for virtual addressing. Instructions specify space registers either directly in the
instruction or indirectly through general register contents.

Instruction addresses, computed by branch instructions, may use any of the space registers. SR 0 is the
instruction address space link register for the base-relative interspace procedure call instruction
(BRANCH AND LINK EXTERNAL). Data operands can specify SR 1 through SR 3 explicitly, and SR 4
through SR 7 indirectly, via general registers.

SR 1 through SR 7 have no special functions; however, their use will normally be constrained by
software conventions. For example, the following convention supports non-overlapping process groups.
SR 1 through SR 3 provide general-use virtual pointers. SR 4 tracks the instruction address (IA) space
and provides access to literal data contained in the current code segment. SR 5 points to a space
containing process private data, SR 6 to a space containing data shared by a group of processes, and SR
7 to a space containing the operating system’s public code, literals, and data. Figure 2-7 illustrates this
convention.

SRs 5 through 7 can be modified only by code executing at the most privileged level.

0 31

GR 0 Permanent zero

GR 1 Target for ADDIL or General use

GR 2 General use

•

•

•

GR 30 General use

GR 31 Link register for BLE or General use

Figure 2-6. General Registers

2-9PA-RISC 1.1 Architecture System Organization

Space registers, as well as IASQ, IIASQ, and ISR which are described later, may be nonexistent, 16, 24,
or 32 bits wide, as shown in Figure 2-8.

Processor Status Word (PSW)
Processor state is encoded in a 32-bit register called the Processor Status Word (PSW). When an
interruption occurs, the old value of the PSW is saved in the Interruption Processor Status Word (IPSW)
and usually all defined PSW bits are set to 0. The format of the PSW is shown in Figure 2-9.

The PSW is set to the contents of the IPSW by theRETURN FROM INTERRUPTION and RETURN
FROM INTERRUPTION AND RESTORE instructions. The interruption handler may restore the original
PSW, modify selected bits, or may change the PSW to an entirely new value.

The G, F, R, Q, P, D, and I bits of the PSW are known as the system mask. Each of these bits, with the
exception of the Q-bit, may be set to 1, set to 0, written, and read by the system control instructions that
manipulate the system mask. The Q-bit is specially defined. It can be set to 0 by system control

SR 0 Link code space ID

SR 1 General use

SR 2 General use

SR 3 General use

SR 4 Tracks IA space

SR 5 Process private data

SR 6 Shared data

SR 7 Operating system’s public code, literals, and data

Figure 2-7. Space Registers

0 7 15 23 31

Level 0 nonexistent register

Level 1 nonexistent bits defined

Level 1.5 nonexistent bits defined

Level 2 defined

Figure 2-8. Width of SRs, IASQ, IIASQ, and ISR in Different Levels

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Y Z rv E S T H L N X B C V M C/B rv G F R Q P D I

Figure 2-9. Processor Status Word

2-10 System Organization PA-RISC 1.1 Architecture

instructions that manipulate the system mask, but setting it to 1 when the current value is 0 is an
undefined operation. The only instructions that can set the Q-bit to 1 are theRETURN FROM
INTERRUPTION andRETURN FROM INTERRUPTION AND RESTORE instructions.

Some of the PSW bits are termedmask/unmask bits whereas others are termeddisable/enable bits.
Interruptions that are masked remain pending whereas those that are disabled are ignored.

The PSW fields are described below:

Field Description

rv Reserved bits.

Y Data debug trap disable. The Y-bit is set to 0 after the execution of each instruction,
except for theRETURN FROM INTERRUPTION andRETURN FROM INTERRUPTION
AND RESTORE instructions which may set it to 1. When 1, data debug traps are
disabled. This bit allows a simple mechanism to trap on a data access and then
proceed past the trapping instruction. Implementation of this bit is required only if the
data debug trap is implemented. If it is not implemented, this bit is a reserved bit.

Z Instruction debug trap disable. The Z-bit is set to 0 after the execution of each
instruction, except for theRETURN FROM INTERRUPTION and RETURN FROM
INTERRUPTION AND RESTORE instructions which may set it to 1. When 1,
instruction debug traps are disabled. This bit allows a simple mechanism to trap on an
instruction access and then proceed past the trapping instruction. Implementation of
this bit is required only if the instruction debug trap is implemented. If it is not
implemented, this bit is a reserved bit.

E Little endian memory access enable. When 0, all memory references are big endian.
When 1, all memory references are little endian. Implementation of this bit is
optional. If it is not implemented, all memory references are big endian and this bit is
a reserved bit.

S Secure Interval Timer. When 1, the Interval Timer is readable only by code executing
at the most privileged level. When 0, the Interval Timer is readable by code executing
at any privilege level.

T Taken branch trap enable. When 1, any taken branch is terminated with a taken
branch trap.

H Higher-privilege transfer trap enable. When 1, a higher privilege transfer trap occurs
whenever the following instruction is of a higher privilege.

L Lower-privilege transfer trap enable. When 1, a lower privilege transfer trap occurs
whenever the following instruction is of a lower privilege.

N Nullify. The current instruction is nullified when this bit is 1. This bit is set to 1 by an
instruction that nullifies the following instruction.

X Data memory break disable. The X-bit is set to 0 after the execution of each
instruction, except for theRETURN FROM INTERRUPTION and RETURN FROM
INTERRUPTION AND RESTORE instructions which may set it to 1. When 1, data
memory break traps are disabled. This bit allows a simple mechanism to trap on all

2-11PA-RISC 1.1 Architecture System Organization

data stores and proceed past them.

B Taken branch. The B-bit is set to 1 by any taken branch instruction and set to 0
otherwise. This is used to ensure that the privilege increasing instruction does not
compromise system security.

C Code (instruction) address translation enable. When 1, instruction addresses are
translated and access rights checked.

V Divide step correction. The integer division primitive instruction records intermediate
status in this bit to provide a non-restoring divide primitive.

M High-priority machine check mask. When 1, High Priority Machine Checks (HPMCs)
are masked. Normally 0, this bit is set to 1 after an HPMC and set to 0 after all other
interruptions.

C/B Carry/borrow bits. The following instructions update the PSW carry/borrow bits from
the corresponding carry/borrow outputs of the 4-bit digits of the ALU:

The instructions marked with an asterisk set the carry/borrow bits only if the
instruction does not cause an overflow trap.

After an add which sets them, each bit is set to 1 if a carry occurred out of its
corresponding digit, and set to 0 otherwise. After a subtract which sets them, each bit
is set to 0 if a borrow occurred into its corresponding digit, and set to 1 otherwise.

G Debug trap enable. When 1, the data debug trap and the instruction debug trap are
enabled and can cause an interruption. When 0, the traps are disabled. If the debug
SFU is not implemented, this bit is a reserved bit.

F Performance monitor interrupt unmask. When 1, the performance monitor interrupt is
unmasked and can cause an interruption. When 0, the interruption is held pending. If
the performance monitor is not implemented or never interrupts, this bit is a reserved
bit.

R Recovery Counter enable. When 1, recovery counter traps occur if bit 0 of the
recovery counter is a 1. This bit also enables decrementing of the recovery counter.

Q Interruption state collection enable. When 1, interruption state is collected. Used in
processing the interruption and returning to the interrupted code, this state is recorded
in the Interruption Instruction Address Queue (IIAQ), the Interruption Instruction
Register (IIR), the Interruption Space Register (ISR), and the Interruption Offset
Register (IOR).

ADDIT ADDI SUBI SUB

ADDITO* ADDIO* SUBIO* SUBO*

ADD SH1ADD SH2ADD SH3ADD

ADDO* SH1ADDO* SH2ADDO* SH3ADDO*

ADDC SUBB SUBT DS

ADDCO* SUBBO* SUBTO*

2-12 System Organization PA-RISC 1.1 Architecture

P Protection identifier validation enable. When this bit and the C-bit are both equal to 1,
instruction references check for valid protection identifiers (PIDs). When this bit and
the D-bit are both equal to 1, data references check for valid PIDs. When this bit is 1,
probe instructions check for valid PIDs.

D Data address translation enable. When 1, data addresses are translated and access
rights checked.

I External interrupt, power failure interrupt, and low-priority machine check
interruption unmask. When 1, these interruptions are unmasked and can cause an
interruption. When 0, the interruptions are held pending.

In Level 0 systems, the X, C, P, and D bits are nonexistent bits. In non-Level 0 systems, the Y, Z, and G
bits are reserved bits.

Instruction Address Queues
The Instruction Address Queues hold the instruction address of the currently executing instruction and
the address of the instruction that will be executed after the current instruction, termed thefollowing
instruction. Note that the following instruction is not necessarily the next instruction in the linear code
space. These two queues are each two elements deep. The Instruction Address Offset Queue (IAOQ)
elements are each 32 bits wide. The high-order 30 bits contain the word offset of the instruction while
the 2 low-order bits maintain theprivilege level of the corresponding instruction. There are four
privilege levels: 0, 1, 2, and 3 with 0 being the most privileged level. In Level 0 systems, there are only
two distinct privilege levels - 0 and nonzero; privilege levels 1, 2, and 3 are equivalent.

The Instruction Address Space Queue (IASQ) contains the space ID of the current and following
instructions. The IASQ may be nonexistent, 16, 24, or 32 bits wide, as shown in Figure 2-8 on page 2-9.
The space ID of the current instruction, when executing without instruction address translation enabled,
is not specified and may contain any value.

The front elements of the two queues (IASQ_Front and IAOQ_Front) form the virtual address of the
current instruction while the back elements of the two queues (IASQ_Back and IAOQ_Back) contain
the address of the following instruction. Figure 2-10 shows this structure. Two addresses are maintained
to support the delayed branching capability.

IASQ
Space Identifier

Space Identifier

(nonexistent, 16, 24, or 32 bits)

0 29 31

IAOQ
Offset PL

Offset PL

Figure 2-10. Instruction Address Queues

2-13PA-RISC 1.1 Architecture System Organization

Control Registers
There are twenty-five definedcontrol registers, numbered CR 0, and CR 8 through CR 31, which
contain system state information.

CR 11, the Shift Amount Register, is readable and writable by code executing at any privilege level. CR
16, the Interval Timer, is readable and writable only by privileged software, unless the PSW S-bit is 0,
in which case it is readable by code executing at any privilege level. CR 26 and CR 27, two of the
temporary registers, are readable by code executing at any privilege level and writable only by code
executing at the most privileged level. All other defined control registers are accessible only by code
executing at the most privileged level.

The control registers are shown in Figure 2-11 and described in the following sections. Moving from
control registers into general registers copies the register right aligned into the general register. Moving
to control registers from general registers copies the entire general register into the control register.

Control registers 1 through 7 are reserved registers, and the unused bit positions of the PIDs and the
Coprocessor Configuration Register are reserved bits. The unused bits of the Shift Amount Register are
nonexistent bits.

In Level 0 systems, CRs 8, 9, 12, 13, 17, and 20 are nonexistent registers.

Recovery Counter

The Recovery Counter (CR 0) is a 32-bit counter that can be used to provide software recovery of
hardware faults in fault-tolerant systems, and can also be used for debugging purposes. CR 0 counts
down by 1 during the execution of each non-nullified instruction for which the PSW R-bit is 1. The
recovery counter is restored if the instruction terminates with a group 1, 2, or 3 interruption (see Chapter
4, “Flow Control and Interruptions”). When the leftmost bit of the Recovery Counter is 1, a recovery
counter trap occurs. The trap and the decrement operation can be disabled by setting the PSW R-bit to 0.
The value of the Recovery Counter may be read reliably only when the PSW R-bit is 0. The Recovery
Counter may be written reliably only when the PSW R-bit is 0. Otherwise, writing the Recovery
Counter is an undefined operation. If the PSW R-bit is set to 0 by either theRESET SYSTEM MASK or
theMOVE TO SYSTEM MASK instruction, the recovery counter may not be read or written reliably prior
to the execution of the eighth instruction after theRESET SYSTEM MASK or theMOVE TO SYSTEM
MASK instruction. An interruption, or aRETURN FROM INTERRUPTION or RETURN FROM
INTERRUPTION AND RESTORE instruction which sets the PSW R-bit to 0, does not have this
restriction.

Protection Identifiers

The protection identifiers (CRs 8, 9, 12, 13) designate up to four groups of pages which are accessible to
the currently executing process. When translation is enabled, the four protection identifiers (PIDs) are
compared with a page access identifier in the TLB entry to validate an access. The rightmost bit of each
of the four PIDs is the write disable (WD) bit. When the WD-bit is 1, that PID cannot be used to grant
write access. This allows each process sharing memory to have different access rights to the memory
without the overhead of changing the access identifier and access rights in the TLB. When the PSW P-
bit is 0, the PIDs, including the WD-bits, are ignored.

2-14 System Organization PA-RISC 1.1 Architecture

The PID registers are defined to be from 16 to 19 bit registers (including the WD bit), with the
remaining bits being reserved bits. The length of the PID registers is implementation-dependent. In
Level 0 systems, CRs 8, 9, 12, and 13 are nonexistent registers.

Coprocessor Configuration Register

The Coprocessor Configuration Register or CCR (bits 24..31 of CR 10), is an 8-bit register which
records the presence and usability of coprocessors. The bit positions are numbered 0 through 7, and
correspond to a coprocessor with the same unit identifier. Bits 0 and 1 correspond to the floating-point

0 31

CR 0 Recovery Counter (32 bits)

reserved

CR 8 reserved Protection ID 1 WD (16-19 bits)

CR 9 reserved Protection ID 2 WD (16-19 bits)

CR 10 reserved SCR CCR (16 bits)

CR 11 nonexistent SAR (5 bits)

CR 12 reserved Protection ID 3 WD (16-19 bits)

CR 13 reserved Protection ID 4 WD (16-19 bits)

CR 14 Interruption Vector Address reserved (21 bits)

CR 15 External Interrupt Enable Mask (32 bits)

CR 16 Interval Timer (32 bits)

CR 17 Interruption Instruction Address Space Queue (16, 24, or 32 bits)

CR 18 Interruption Instruction Address Offset Queue (32 bits)

CR 19 Interruption Instruction Register (32 bits)

CR 20 Interruption Space Register (16, 24, or 32 bits)

CR 21 Interruption Offset Register (32 bits)

CR 22 Interruption Processor Status Word (32 bits)

CR 23 External Interrupt Request Register (32 bits)

CR 24 Temporary Register (32 bits)

•

•

•

CR 31 Temporary Register (32 bits)

Figure 2-11. Control Registers

2-15PA-RISC 1.1 Architecture System Organization

coprocessor, and bit 2 corresponds to the performance monitor coprocessor. Bit 7 is the rightmost bit of
the CCR. It receives bit 31 from a general register when a general register is written to CR 10. The
upper 16 bits of CR 10, and bits within the CCR corresponding to coprocessors which are not present,
are reserved bits.

The behavior of the floating-point coprocessor with respect to the state of CCR bits 0 and 1 and the
behavior of the performance monitor coprocessor with respect to the state of CCR bit 2, are specified in
“Coprocessor Instructions” on page 5-178. For other coprocessors, setting a bit in the CCR to 1 enables
the use of the corresponding coprocessor, if present and operational. If a CCR bit is 0, the corresponding
coprocessor, if present, is logically decoupled. This decoupling must ensure that the state of a
coprocessor does not change as long as its corresponding CCR bit is 0. When a CCR bit is set to 0 and
an attempt is made to execute an instruction which references the corresponding coprocessor, it causes
an assist emulation trap. The operation of a coprocessor when its corresponding CCR bit is 0 is
explained in more detail in “Coprocessor Instructions” on page 5-178. It is an undefined operation to set
to 1 any CCR bit corresponding to a coprocessor which is not present.

SFU Configuration Register

The SFU Configuration Register or SCR (bits 16..23 of CR 10), is an 8-bit register which records the
presence and usability of special function units. The bit positions are numbered 0 through 7, and
correspond to an SFU with the same unit identifier. Bit 1 corresponds to the debug SFU. Bit 7 is the
rightmost bit of the SCR. It receives bit 23 from a general register when a general register is written to
CR 10. The upper 16 bits of CR 10, and bits within the SCR corresponding to SFUs which are not
present, are reserved bits.

For all SFUs, setting a bit in the SCR to 1 enables the use of the corresponding SFU, if present and
operational. If an SCR bit is 0, the corresponding SFU, if present, is logically decoupled. This
decoupling must ensure that the state of an SFU does not change as long as its corresponding SCR bit is
0. When an SCR bit is set to 0 and an attempt is made to execute an instruction which references the
corresponding SFU, it causes an assist emulation trap. The operation of an SFU when its corresponding
SCR bit is 0 is explained in more detail in “Special Function Unit (SFU) Instructions” on page 5-177. It
is an undefined operation to set to 1 any SCR bit corresponding to an SFU which is not present.

Shift Amount Register

The Shift Amount Register or SAR (CR 11), is a 5-bit register used by the variable shift, extract,
deposit, and branch on bit instructions. It specifies the number of bits a quantity is to be shifted. The
remaining 27 bits are nonexistent bits and any value can be safely written in those positions.

Interruption Vector Address

The Interruption Vector Address or IVA (CR 14) contains the absolute address of the base of an array of
service procedures assigned to the interruption classes. This address must be a multiple of 2048. This is
because the lower 11 bits are reserved bits. Use of an unaligned address is an undefined operation. The
array of interruption service procedures is indexed by the interruption numbers given in Chapter 4,
“Flow Control and Interruptions”.

2-16 System Organization PA-RISC 1.1 Architecture

External Interrupt Enable Mask

The External Interrupt Enable Mask or EIEM (CR 15), is a 32-bit register containing a bit for each of
the 32 external interrupts. When 0, bits in the EIEM mask interruptions pending for the external
interrupts corresponding to those bit positions.

Interval Timer

The Interval Timer (CR 16) consists of two internal registers. One of the internal registers is continually
counting up by 1 at a rate which is implementation-dependent and between twice the "peak instruction
rate" and half the "peak instruction rate". Reading the Interval Timer returns the value of this internal
register. The other internal register contains a comparison value and is set by writing to the Interval
Timer. When the counter register and the comparison register contain identical values, bit 0 of the
External Interrupt Request Register is set to 1. This causes an external interrupt, if enabled.

The Interval Timer can only be written by code executing at the most privileged level. If the PSW S-bit
is 1, the Interval Timer can only be read by code executing at the most privileged level; otherwise, it can
be read by code running at any privilege level.

In a multiprocessor system, each processor must have its own interval timer. Each interval timer need
not be synchronized with the other interval timers in the system, nor do they need to be clocked at the
same frequency.

If, as part of a power-saving mode, the processor clock is reduced below the "peak instruction rate", the
Interval Timer continues to count at its peak rate. If the processor clock is stopped, the Interval Timer
may also stop.

Interruption Instruction Address Queues

The Interruption Instruction Address Space Queue or IIASQ (CR 17) and the Interruption Instruction
Address Offset Queue or IIAOQ (CR 18) are collectively termed the interruption instruction address or
IIA queues. They are used to save the Instruction Address and privilege level information for use in
processing interruptions. The registers are arranged as two two-element deep queues. The queues
generally contain the addresses (including the privilege level field in the rightmost two bits of the offset
part) of the two instructions in the IA queues at the time of the interruption. The IIASQ may be
nonexistent, 16, 24, or 32 bits wide, as shown in Figure 2-8 on page 2-9.

The IIA queues are continually updated whenever the PSW Q-bit is 1 and are frozen by an interruption
(PSW Q-bit becomes 0). After such an interruption, the IIA queues contain copies of the IA queues.
Reading the IIAOQ (CR 18) while the PSW Q-bit is 0 retrieves the offset and privilege level portions of
the front element in the IIAOQ. Writing into IIAOQ while the PSW Q-bit is 0 advances the IIAOQ and
then sets the offset and privilege level portions of the back element of the IIAOQ. Reading the IIASQ
(CR 17) while the PSW Q-bit is 0 retrieves the space portion of the front element of the IIASQ. Writing
into IIASQ while the PSW Q-bit is 0 advances the IIASQ and then writes into the back element of the
IIASQ. The effect of reading or writing either queue register while the PSW Q-bit is 1 is an undefined
operation. The Interruption Instruction Address Queues are shown in Figure 2-12.

The state contained in the IIA queues is undefined when aRETURN FROM INTERRUPTION or RETURN
FROM INTERRUPTION AND RESTORE instruction sets the PSW Q-bit to 0, or when system control

2-17PA-RISC 1.1 Architecture System Organization

instructions are used to set the PSW Q-bit to 0. If an interruption is taken with the PSW Q-bit equal to 0,
the IIA queues are unchanged.

Interruption Parameter Registers

The Interruption Instruction Register or IIR (CR 19), Interruption Space Register or ISR (CR 20), and
Interruption Offset Register or IOR (CR 21) are collectively termed the interruption parameter registers
or IPRs. They are used to pass an instruction and a virtual address to an interruption handler. The values
in these registers for each interruption class are specified in Chapter 4, “Flow Control and
Interruptions”. These values are set (or frozen) at the time of the interruption whenever the PSW Q-bit
is 1. The ISR may be nonexistent, 16, 24, or 32 bits wide, as shown in Figure 2-8 on page 2-9.

The value loaded into the IOR is the full 32-bit offset of the virtual address without truncating the
rightmost bits or setting them to 0. Writing into the interruption parameter registers is an undefined
operation.

The values contained in the interruption parameter registers can be read reliably only when the PSW Q-
bit is 0. The state contained in the IPRs is undefined when aRETURN FROM INTERRUPTION or
RETURN FROM INTERRUPTION AND RESTORE instruction sets the PSW Q-bit to 0, or when system
control instructions are used to set the PSW Q-bit to 0. If an interruption is taken with the PSW Q-bit
equal to 0, the IPRs are unchanged.

Interruption Processor Status Word

The Interruption Processor Status Word or IPSW (CR 22) receives the value of the PSW when an
interruption occurs. The layout of IPSW is identical to that of the PSW. The IPSW always reflects the
state of the machine at the point of interruption, regardless of whether the PSW Q-bit was 1 or not. As in
the PSW, the unnamed bits are reserved bits. In Level 0 systems, the X, C, P, and D bits of IPSW are
nonexistent bits.

The value contained in the IPSW can be read or written reliably only when the PSW Q-bit is 0. The
state contained in the IPSW is undefined when aRETURN FROM INTERRUPTION or RETURN FROM
INTERRUPTION AND RESTORE instruction sets the PSW Q-bit to 0, or when system control
instructions are used to set the PSW Q-bit to 0.

IIASQ
Space Identifier

Space Identifier

(nonexistent, 16, 24, or 32 bits)

0 29 31

IIAOQ
Offset PL

Offset PL

Figure 2-12. Interruption Instruction Address Queues

2-18 System Organization PA-RISC 1.1 Architecture

External Interrupt Request Register

The External Interrupt Request register or EIRR (CR 23) is a 32-bit register containing a bit for each
external interrupt. When 1, a bit designates that an interruption is pending for the corresponding
external interrupt. Both the PSW I-bit (external interrupt, power failure interrupt, and low-priority
machine check unmask) and the corresponding bit position in the External Interrupt Enable Mask (CR
15) must be 1 for an interruption to occur.

A MOVE TO CONTROL REGISTER instruction with CR 23 as its target bitwise ANDs the complement
of the contents of the source register with the previous contents of CR 23, and places this result in CR
23. Thus the processor can only set the EIR register bits to 0.

The IO_EIR register, which is part of the I/O subsystem, is the external name for the EIR register. When
a module writes to it, the bit specified by the value written is set to 1.

Temporary Registers

Six of the eight 32-bit temporary registers (CRs 24, 25, 28 .. 31) are accessible only by code executing
at the most privileged level. They provide space to save the contents of the general registers for
interruption handlers in the operating system kernel.

The other two temporary registers (CRs 26 and 27) are readable by code executing at any privilege level
and writable only by code executing at the most privileged level.

Coprocessor Registers
Each coprocessor may have its own register set. The coprocessor mechanism is described in “Assist
Instructions” on page 5-176. The floating-point coprocessor registers are described in Chapter 6,
“Floating-point Coprocessor”. The performance monitor coprocessor registers are described in Chapter
7, “Performance Monitor Coprocessor”.

SFU Registers
Each special function unit may have its own register set. The SFU mechanism is described in “Assist
Instructions” on page 5-176. The debug SFU registers are described in Chapter 8, “Debug Special
Function Unit”.

3-1PA-RISC 1.1 Architecture Addressing and Access Control

3 Addressing and Access Control

Introduction
PA-RISC processors use byte addressing to fetch instructions and data from main memory or the I/O
registers. The byte addresses may be either absolute addresses or virtual addresses. When absolute
addresses are used directly, no protection or access rights checks are performed. Memory accesses using
absolute addresses are calledabsolute accesses. Virtual addresses are translated to absolute addresses
and undergo protection and access rights checking. Memory accesses using virtual addresses are called
virtual accesses.

The instructions that reference memory are load (memory-to-register), store (register-to-memory), and
semaphore instructions. Several system control and cache-related instructions generate addresses that
use the address translation, protection, and access rights checking mechanisms. Computation
instructions do not reference memory, but perform data transformations by using values obtained from
general registers and returning results to these registers.

Four Levels of the processor architecture have been defined:0, 1, 1.5, and2. Level 0 systems are
fundamentally different from Level 1, 1.5, and 2 systems. Level 0 systems support only absolute
addressing and have no Space Registers. Level 1, 1.5, and 2 systems provide virtual addressing through
the use of 16-bit, 24-bit, and 32-bit Space Registers, respectively.

Virtual memory is structured as a set of virtual spaces, each containing 232 bytes (4 gigabytes). Level 1
processors have 216 address spaces, Level 1.5 processors have 224 address spaces, and Level 2
processors have 232 address spaces.

During virtual address translation, a space is selected by aspace identifier contained in the upper
portion of the virtual address. The byteoffset within the space is specified by the lower 32 bits of the
virtual address.

For memory management purposes, the address space is logically subdivided intopages, each 4 Kbytes
in length. The byte offset into the page is specified by the least significant 12 bits of the virtual address.
Figure 3-1 illustrates the structure of spaces, pages, and offsets.

Support is provided for the emulation of larger page sizes. Eight contiguous pages, with the first of these
pages beginning on a 32K byte boundary, are referred to as apage group.

3-2 Addressing and Access Control PA-RISC 1.1 Architecture

Pointers and Address Specification
In systems which support virtual addressing, the eight Space Registers, the Instruction Address Space
Queue, and two of the Control Registers are used to maintain space identifiers. They are used in virtual
address calculations for both instructions and data. In Level 0 systems, the Space Registers, IASQ, and
CRs 17 and 20 are nonexistent registers.

The Space Registers are used to compute instruction addresses for instruction cache flush, instruction
TLB instructions, and for some branch target calculations. Addresses for instruction fetch and some
branch target calculations are generated from the IA queues. When an instruction address is computed
for an external branch target, the 3-bit s-field in the instruction selects the Space Register to be used.
Instruction addresses are aligned on word boundaries and the least significant two bits of the offset are
used to hold the privilege level.

The current instruction address (IA) consists of a space identifier and a 32-bit byte offset. The byte

Figure 3-1. Structure of Spaces, Pages, and Offsets

Space ID Offset

Virtual Space

Virtual Space 1

Virtual Space 0

232-1, 224-1, or 216-1

4K Byte Pages232 Bytes
per Space

3-3PA-RISC 1.1 Architecture Addressing and Access Control

offset is a word-aligned address and contains, in its least significant two bit positions, the current
privilege level. This privilege level controls both instruction and data references. The current instruction
address is maintained in the front elements of the Instruction Address Queues.

Data addresses are computed for load, store, semaphore, data cache, probe, and data TLB instructions.
The 32-bit offset within the virtual address space is the sum of all 32 bits of the base register plus the
32-bit index register or a sign-extended displacement.

The space identifier, for data references, is selected from Space Registers 1 through 7 by the following
procedure. The 2-bit s-field of the instruction, when nonzero, selects corresponding Space Registers 1,
2, or 3. When the s-field is zero, four is added to the two most significant bits of the base register to
select one of the Space Registers 4 through 7. Figure 3-2 illustrates space identifier selection. Data
references with the s-field equal to zero permit addressing of four distinct spaces selected by program
data. This is called short pointer addressing since a 32-bit value is an offset and selects a Space Register.
Only one fourth of the space is directly addressable by the base register with short pointers and
corresponds to the quadrant selected by the upper two bits. For example, if a base register contains the
value 0x40001000 and the s-field is zero, Space Register 5 is used as the space identifier and the second
quadrant of the space is directly addressable.

In Level 0 systems or when data translation is disabled (PSW D-bit is 0), the s-field of the instruction is
ignored and the 32-bit offset is directly used as the address.

Address Resolution and the TLB
Virtual addresses are translated to absolute addresses using a hardware structure called theTranslation

Figure 3-2. Space Identifier Selection

SR[1]

SR[2]

SR[3]

Space Registers
s-field

Space ID

Data
Reference
s-field≠ 0

SR[0]

SR[1]

SR[2]

SR[3]

SR[4]

SR[5]

SR[6]

SR[7]

Space Registers

SR[4]

SR[5]

SR[6]

SR[7]

Space ID

Space Registers

Data
Reference

2

s-field = 0

4

GR[b]

Space ID

Instruction
Reference

s-field

3

2 3

3-4 Addressing and Access Control PA-RISC 1.1 Architecture

Lookaside Buffer (TLB). A TLB accepts a Virtual Page Number and returns the corresponding
Physical Page Number. Since all references in Level 0 systems are absolute accesses, these systems do
not have TLBs. A TLB is typically not large enough to hold all the current translations. Translations for
all pages in memory are stored in a memory structure called thePage Table. The TLB is organized as
two parts. The instruction TLB (ITLB) is only used for instruction references, while the data TLB
(DTLB) is only used for data references. A system may implement acombined TLB which is used for
both instruction and data references.

Additionally, translations are supported for large address ranges. Such translations are calledblock
translations and are stored in a block TLB. Block translations map address ranges larger than a page.
Block translations are useful in mapping virtual address ranges which do not get paged in and out.
These block translations increase the virtual address range of the TLB thereby minimizing the virtual
address translation overhead.

Given a virtual address, the selected TLB is searched for an entry matching the Virtual Page Number. If
the entry exists, the 20-bit Physical Page Number (contained in the TLB entry) is concatenated with the
original 12-bit page offset to form a 32-bit absolute address. If no such entry exists, the TLB is updated
by either software TLB miss handling or hardware TLB miss handling.

In systems with software TLB miss handling, a TLB miss fault interruption routine performs the
translation, explicitly inserts the translation and protection fields into the appropriate instruction TLB or
data TLB, and restarts the interrupted instruction. To insure the completion of instructions, the TLB
must be organized to simultaneously hold all necessary translations.

NOTE
To fulfill the requirement of holding all the translations simultaneously, it is necessary to have
either split instruction and data TLBs, or a two or greater way set associative combined TLB.
In a system with hardware TLB miss handling, the machine need only insure forward progress.
Normally, at most only one instruction and one data address translation are needed. TheFIC
instruction is special. Its definition allows using the DTLB for the translation of the target’s
address.

In implementations that provide hardware for TLB miss handling, the hardware attempts to find the
virtual to physical page translation in the Page Table. If the hardware is successful, it inserts the
translation and protection fields into the appropriate instruction or data TLB. No interruption occurs in
this case. If hardware is not successful, due to a search of the Page Table that was not exhaustive or due
to the appropriate translation not existing in the Page Table, an interruption occurs so that the software
can complete the process.

The translation lookaside buffer performs other functions in addition to the basic address translation.
The other functions include access control, program debugging support and operating system support
for virtual memory. Figure 3-3 summarizes the information maintained for each TLB entry.

3-5PA-RISC 1.1 Architecture Addressing and Access Control

The following describes the function of each of the 1-bit fields.

E Entry Valid. When 1, the translation is valid.

U Uncacheable. When 0, memory references to a page from memory address space may be
moved into the cache. When 1, memory references to a page from I/O address space or
memory address space must not be moved into the cache. The U-bit must be set to 1 for pages
which map to the I/O address space, and is commonly set to 1 for pages in the memory address
space where I/O module written data and processor written data must co-exist within the same
cache line. Implementation of the U-bit is optional. See “Data Cache Move-In” on page 3-21
for additional details.

T Page Reference Trap. When 1, data references using this translation cause a page reference
trap. The T-bit is most commonly used for program debugging.

D Dirty. When 0, store and semaphore instructions cause a TLB dirty bit trap. When 1, no trap
occurs. The D-bit may be used by the operating system to determine which pages have been
modified.

B Break. When 1, instructions that could modify data using this translation cause a data memory
break trap, if enabled. Store instructions, thePURGE DATA CACHE instruction, and semaphore
instructions are the only instructions that potentially modify data. The B-bit is most commonly
used for program debugging.

Since the ITLB is not used for data operands, the U, T, D, and B bits are only implemented in the DTLB
or a combined TLB. The translation lookaside buffer is managed by a mixture of hardware and software
mechanisms. Translations are brought into the TLB by either hardware or software when a TLB miss
occurs. In systems which provide hardware for TLB miss handling, the Page Table holds the
information needed for the TLB. For systems with software TLB miss handling, and for explicit
insertion of a translation by systems with hardware TLB miss handling, a pair of TLB management
instructions provide the TLB with this information. TheINSERT INSTRUCTION TLB ADDRESS and
INSERT INSTRUCTION TLB PROTECTION instructions place the complete translation and access
control information into the ITLB. A similar pair (IDTLBA , IDTLBP) places the complete translation
and access control information and also initializes the system software and debugging support bit fields
in the DTLB.

Virtual Page Number

36, 44, or 52 bits

Physical Page Number

20 bits

Access Rights

7 bits

Access ID

15 to 18 bits

E U T D B Single Bit Flags

Figure 3-3. TLB Fields

3-6 Addressing and Access Control PA-RISC 1.1 Architecture

Software can be written to operate with a logical page size of 4, 8, 16, or 32 Kbytes. When performing
TLB miss handling for a given page, up to all of the eight translations for the page group containing that
page may be inserted into the TLB, provided that the translation for the given page is inserted last.

On systems with software TLB miss handling, TLB miss traps do not occur on nullified instructions.

Address Aliasing
Normally, a virtual address does not translate to two different absolute addresses. It is the responsibility
of memory management software to avoid the ambiguity such occurrences would create.

Caches are required to permit a physical memory location to be accessed by both an absolute and a
virtual address when the virtual address is equal to the absolute address. Such a virtual address is said to
beequivalently-mapped.

The instruction and data caches are required to detect that the same physical memory location is being
accessed by two virtual addresses that satisfy all the following requirements:

1. The two virtual addresses map to the same absolute address.

2. Offset bits 12 through 31 are the same in both virtual addresses.

3. If the use of space bits in generating the cache index is enabled, the two virtual addresses differ
only in the following space identifier bits: 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, and 19.

Processors must provide an implementation-dependent mechanism to enable/disable the use of space
bits in generating the cache index.

These rules provide offset aliasing on 1 Mbyte boundaries, with optional support for offset aliasing on
smaller power of two sized boundaries, and either restricted or unlimited space aliasing.

Two virtual addresses that satisfy all of the above requirements are calledequivalent aliases of each
other. Virtual addresses that satisfy rule 1 but violate rule 2 or 3 arenon-equivalent aliases, and are
more restricted in their use. For non-equivalent aliases,read-only aliasing is supported with minimal
restrictions, andmany-reader/one-writer aliasing is supported with more significant restrictions.

Generally, if system software must use multiple addresses for the same data, these addresses are
equivalent aliases (or are an absolute address and an equivalently-mapped virtual address). This
description of non-equivalent aliasing, and the restrictions on software only apply in rare situations
when non-equivalent aliasing is necessary.

For the purposes of supporting non-equivalent aliasing, aread-only translation is defined as one where
the TLB and page table both meet at least one of the following conditions:

• The page type in the access rights field is 0, 2, 4, 5, 6, or 7. (See “Access Control” on page 3-10.)

• The D-bit (dirty bit) is 0.

A translation not meeting this requirement is termed awrite-capable translation.

Software is allowed to have any number of read-only non-equivalently aliased translations to a physical
page, as long as there are no other translations to the page. This is refered to asread-only non-
equivalent aliasing.

3-7PA-RISC 1.1 Architecture Addressing and Access Control

Before a write-capable translation is enabled,all non-equivalently-aliased translations must be removed
from the page table and purged from the TLB. (Note that the caches are not required to be flushed at this
time.) The write-capable translation may then be used to read and/or modify data on that page. Before
any non-equivalent aliased translation is re-enabled, the virtual address range for the writable page (the
entire page) must be flushed from the cache, and the write-capable translation removed from the page
table and purged from the TLB. If an old read-only translation is re-enabled, or a translation is enabled
that is equivalently-aliased to an old translation, the virtual address range for the re-enabled translation
must be flushed from the cache before accesses are made to the page. (This flushing is only required if
the re-enabled virtual page has not been flushed since it was last accessed.) This is refered to asmany-
reader/one-writer non-equivalent aliasing.

Absolute read accesses can be made to a page which is mapped with a non-equivalently-mapped read-
only transaltion, as long as the absolute address range accessed is flushed before enabling any write-
capable translation. Since absolute accesses do not cause prefetching, it is not necessary to flush the
entire page - only the accessed range need be flushed.

All other uses of non-equivalent aliasing (including simultaneously enabling multiple non-equivalently
aliased translations where one or more allow for write access) are prohibited, and can cause machine
checks or silent data corruption, including data corruption of unrelated memory on unrelated pages. It is
the responsibility of privileged software to avoid non-equivalent aliasing, except as described above.
This requires flushing the affected address range from the caches prior to any of the following:

• Changing the address mapping in the TLBs.

• Making an absolute access to a location which might reside in the caches as a result of an access by
a virtual address that was not equivalently mapped.

• Making a virtual access to a location which might reside in the caches as a result of an access by its
absolute address that was not equivalently mapped.

• Making a virtual access to a location which may reside in the caches as a result of an access by
another virtual address that was not equivalently aliased.

NOTE
The restrictions on non-equivalent aliases are necessary to allow the design of high-
performance caches and memory interconnect, including multi-level caches (including victim
or miss caches) and directory-based coherency structures. Coherency schemes are greatly
simplified by allowing the assumption that there is at most a single private copy of a physical
line at any time. The read-only translation informs hardware to request a shared or public copy
of the line.

TLB Control
TLBs function as buffers for the most frequently used address translations. Terms used to describe
TLBs are given below.

Entry The termentry refers to a translation, either valid or invalid, which is present in the
TLB. Entries are visible to software through either references (such as load, store, and

3-8 Addressing and Access Control PA-RISC 1.1 Architecture

semaphore instructions, access rights probes, and theLOAD PHYSICAL ADDRESS
instruction) or insert TLB protection instructions (IITLBP andIDTLBP).

Slot Hardware resources in the TLB which hold entries are referred to asslots.

Invalidate An entry isinvalidated when its E-bit is set to 0 leaving the Virtual Page Number and
Physical Page Number fields unchanged. Invalid entries in the TLB are still visible to
software through insert TLB protection instructions.

Remove An entry isremoved when some action causes it to be inaccessible to software.

Insertion of translations into the TLB, for example, causes other entries to be
removed. TLB systems can also remove an entry by logically decoupling from the
TLB the slot which contained the entry.

NOTE
In a two-level TLB, moving a translation from the second level to the first level can cause a
translation to disappear from the TLB (because the level 1 TLB need not be a proper subset of
the level 2 TLB). This is an example of removal.

Alter An entry isaltered when its E-bit is set to 0, and the Physical Page Number field is
modified, but the Virtual Page Number field is left unchanged. Altered entries in the
TLB are still visible to software through the insert TLB protection instructions.

Several mechanisms can be used by software to invalidate or remove a specific translation from the
ITLB or DTLB. First, when a new translation is inserted into the TLB, the old translation for the same
Virtual Page Number (if present) is removed. Second, a specific virtual address may be used to purge
(invalidate or remove) the associated translation from the TLB. ThePURGE INSTRUCTION TLB and
PURGE DATA TLB instructions perform this function. These instructions also cause the translation to be
invalidated or removed from the TLBs of other processors in a multiprocessor system. There is no
instruction to purge a translation from both the instruction and data TLBs simultaneously.

Translations may also be invalidated or removed from the TLB using thePURGE INSTRUCTION TLB
ENTRY and thePURGE DATA TLB ENTRY instructions. These purge zero or more machine specific
entries in the TLB without regard for the translation. These instructions are used by system software to
clear the entire instruction or data TLB.

Because the TLB is managed by a mixture of hardware and software mechanisms, software may not, in
general, rely on the existence of translations in the TLB and hardware may, in general, invalidate or
remove TLB entries at any time, provided that forward progress is assured. There are limited situations,
however, in which software may rely on a translation existing in the TLB. This means that software may
make virtual accesses using thisrelied-upon translation, and no TLB miss fault will occur. Hardware
is required to retain this TLB entry as long as the constraints of the limited situation are met. These
situations are described in “TLB Operation Requirements” on page 3-18.

3-9PA-RISC 1.1 Architecture Addressing and Access Control

NOTE
As a result, the following hardware actions are allowed, except in the defined limited
situations.

• A TLB miss fault may be taken even though the translation exists in the TLB.

• In the event of a TLB error, one or more entries may be invalidated or removed.

Note also that software may not rely on the existence of any translations in the TLB
immediately after any group 1, 2, or 4 interruption.

The following are the only ways in which TLB entries may exist which are visible to software and
which were not inserted into the TLB by software.

1. When a TLB entry is inserted by a hardware TLB miss handler.

2. When a valid TLB entry is invalidated by a purge TLB instruction, the TLB entry may be altered.

3. When a valid TLB entry is invalidated by a purge TLB instruction executed on another processor in
a multiprocessor system, the TLB entry may be altered.

4. The PURGE INSTRUCTION TLB ENTRY andPURGE DATA TLB ENTRY instructions, as well as
initialization and power failure can cause all fields but the E-bit to be set to arbitrary values in some
or all of the TLB entries. The E-bit is set to 0 in all entries modified by these instructions.

Software must manage the virtual to absolute address mappings with the knowledge that purge TLB
instructions can alter translations in other processors and that initialization, power failure, and purge
TLB entry instructions leave the TLB with arbitrary invalid translations.

Software TLB Miss Handling
In order to insure forward progress, some restrictions are placed on software which performs TLB miss
handling.

For instruction TLB miss handling, the following restrictions apply:

• Software can insert multiple instruction address translations into the ITLB, usingINSERT
INSTRUCTION TLB ADDRESS and INSERT INSTRUCTION TLB PROTECTION instructions,
provided that the translation which caused the trap is inserted last.

• Software must not execute a purge TLB instruction using the virtual address corresponding to the
data address translation needed for the execution of the trapping instruction.

• Software must not insert translations into the DTLB.

For non-access instruction TLB miss handling, the following restrictions apply:

• Software can only insert into the ITLB up to all of the eight translations for the page group. The
translation which caused the trap must be inserted last.

• Software must not execute a purge TLB instruction using the virtual address corresponding to the
data address translation needed for the execution of the trapping instruction.

3-10 Addressing and Access Control PA-RISC 1.1 Architecture

• Software must not insert translations into the DTLB.

For data TLB miss handling, the following restrictions apply:

• Software can only insert into the DTLB up to all of the eight translations for the page group. The
translation which caused the trap must be inserted last.

• Software must not execute a purge TLB instruction using the virtual address corresponding to the
instruction address translation needed for the execution of the trapping instruction.

For non-access data TLB miss handling, the following restrictions apply:

• Software can only insert into the DTLB up to all of the eight translations for the page group. The
translation which caused the trap must be inserted last.

• Software must not execute a purge TLB instruction using the virtual address corresponding to the
instruction address translation needed for the execution of the trapping instruction.

The following restrictions apply to all four TLB miss handlers:

• Software must not make any virtual references.

• Software must not execute anyPURGE DATA TLB ENTRY or PURGE INSTRUCTION TLB ENTRY
instructions.

Hardware TLB Miss Handling
The default endian bit (see “Byte Ordering (Big Endian/Little Endian)” on page 2-3) determines how
data from the hardware-visible page table is interpreted by the hardware TLB miss handler, if
implemented. If the default endian bit is 0, the hardware-visible page table entries are loaded as words
in big-endian format; if the default endian bit is 1, the entries are loaded as words in little-endian format.

Access Control
A set of mechanisms is available to system software to provide a secure and protected environment for
user processes. These mechanisms are collectively known as access control and are provided as a part of
the address translation mechanism. Processor resources, including the PSW, Control Registers, and
TLB entries, contain information used to determine the allowed use of a page. Access control is
available only when address translation is enabled, and is done on a per-page basis. Access control is
not available in Level 0 systems.

An access is validated if the check of the access rights and the protection identifiers both succeed. If the
access is validated, the instruction reference or data reference is completed. If the access is not
validated, the instruction is terminated with a protection trap. Instruction access violations are reported
with instruction memory protection traps. Data read and write access violations are reported with data
memory access rights or data memory protection ID traps. Probe instructions are special; they save the
result of the access validation in a General Register and do not cause a protection trap. An access rights
check is based on the type of access and the current privilege level. The protection identifier check
compares the Protection ID Registers with a page-based access identifier in the TLB. State bits within
the PSW determine when these checks are enabled.

3-11PA-RISC 1.1 Architecture Addressing and Access Control

The type of access, privilege level, the current values in the Protection ID Registers, and the state of the
PSW completely describes the access to the TLB. These resources are managed for each process by the
operating system and collectively termed theprocess attributes. The following defines each of the
process attributes.

Privilege Level (PL)

Every instruction is fetched and executed at one of four privilege levels (numbered 0,
1, 2, 3) with 0 being the most privileged. In Level 0 systems, there are only two
distinct privilege levels - 0 and non-zero; 1, 2, and 3 are equivalent. The privilege
level is kept in bits 30 and 31 of the current instruction’s address (the front element of
IAOQ). For all accesses, except the probe instructions, the privilege check uses the
privilege level of the current instruction. The probe instructions explicitly specify the
privilege level to be used in the access rights check.

Access type

The access type is either read, write, or execute. Load, semaphore, and read probe
instructions makeread accesses to their operands. Store, semaphore and write probe
instructions and cache purge operations makewrite accesses to their operands. Note
that semaphore instructions make both read and write accesses to their operands. The
only execute access occurs when the current instruction is fetched for execution.

Protection IDs

The four Control Registers CR 8, CR 9, CR 12, and CR 13 contain the protection
identifiers associated with the current process (Figure 3-4). These registers are used to
allow several different protection groups to be accessed. The least significant bit is the
write-disable (WD) bit. When 0, write accesses that match that protection ID are
allowed. The remaining 15 to 18 bits hold the protection ID. Figure 3-4 depicts the
maximum width of the protection identifier.

PSW access attributes

The PSW protection validation (P-bit), code address translation (C-bit), and data
address translation (D-bit) bits further qualify the process attributes. When address
translation is enabled and the P-bit is 1, the protection ID check is performed. When
0, the protection ID check is always considered successful. An execute access uses
the C-bit to determine if address translation and access rights check are enabled.
When 1, address translation is performed and execute access rights checks are made.
When 0, no address translation is performed and the access is always allowed. Read
and write accesses use the D-bit in an equivalent manner. For probe instructions,
address translation is performed, and access rights checks are made independent of
the state of the PSW C and D-bits.

0 17 18

Protection ID WD

18 1

Figure 3-4. Protection ID

3-12 Addressing and Access Control PA-RISC 1.1 Architecture

For each entry in the TLB, theaccess ID and theaccess rights fields determine if an access is allowed.
The access ID is a 15- to 18-bit field in the TLB that is used with the protection IDs in the protection ID
check. The length of the access ID is implementation dependent but must match the length of the
protection ID (excluding the WD bit).

The access rights field (Figure 3-5) is a 7-bit field that encodes the allowed access types and the needed
privilege levels. In some cases a minimum privilege is specified, while other access types may be
specified with an upper and a lower bound. The three sub-fieldstype, PL1 (privilege level 1), andPL2
(privilege level 2) combine to form the access rights field. The type sub-field defines the type of access
that can be made to this page. Any of read-only, read/write, read/execute, read/write/execute, or
execute-only is allowed. The PL1 sub-field qualifies read and execute accesses. The PL2 sub-field
qualifies write and execute accesses.

The access rights check compares the current privilege level with the appropriate sub-field of the TLB
access rights field and checks if the type of access is allowed. For a read access, the current privilege
level must be at least as privileged as PL1 and the type field must allow read access. The read probe
instructions explicitly specify the privilege level.

For a write access, the current privilege level must be at least as privileged as PL2 and the type field
must allow write access. The write probe instructions explicitly specify the privilege level.

For an execute access, the current privilege level must be at least as privileged as PL1 and no more
privileged than PL2. PL1 and PL2 are a lower and an upper bound, respectively, for execute access. The
type field must also allow execute access.

The type field is also used by theGATEWAY instruction to specify the new privilege level. When the
type value is 4 or greater and the encoded new privilege level is of greater privilege, then promotion
occurs at the target of the branch. Promotion may occur at the instruction following theGATEWAY
instruction for some implementations. Software cannot depend on the privilege level of the instruction
following theGATEWAY instruction.

Table 3-1 defines the type encodings and the necessary conditions of the PL1 and PL2 fields with the
current privilege level (PL). This table uses the actual binary encoding when doing the privilege level
comparison.

The protection identifier check compares the four Protection ID Registers with the TLB entry’s access
ID. This check is validated if one or more of the protection IDs compare equal with the access ID. In
case of a write access, the write disable bit of at least one of the matching protection IDs must be zero
for the check to be validated. An access ID of zero is special and specifies a public page. A public page
always satisfies a protection ID check for any type of access and only an access rights check is
performed. If no match occurs and a public page is not being referenced, then the access is not allowed.

The PSW P-bit determines whether the protection ID check is performed. When 0, no protection check
occurs and only the access rights check is performed. Figure 3-6 on page 3-14 illustrates the access
rights and protection ID checks and the processor resources that participate.

Type PL1 PL2

3 2 2

Figure 3-5. Access Rights Field

3-13PA-RISC 1.1 Architecture Addressing and Access Control

* Change of privilege level only occurs if the indicated new value is of higher privilege than the
current privilege level; otherwise the target of theGATEWAY executes at the same privilege as
theGATEWAY itself.

Table 3-1. Access Rights Interpretation

Type value
(in binary)

Allowed access types
andGATEWAY promotion Privilege check

000 Read-only: data page
read: PL≤ PL1
write: Not allowed
execute: Not allowed

001 Read/Write: dynamic data page
read: PL≤ PL1
write: PL≤ PL2
execute: Not allowed

010 Read/Execute: normal code page
read: PL≤ PL1
write: Not allowed
execute: PL2≤ PL ≤ PL1

011 Read/Write/Execute: dynamic code page
read: PL≤ PL1
write: PL≤ PL2
execute: PL2≤ PL ≤ PL1

100 Execute: promote to privilege level 0*
read: Not allowed
write: Not allowed
execute: PL2≤ PL ≤ PL1

101 Execute: promote to privilege level 1*
read: Not allowed
write: Not allowed
execute: PL2≤ PL ≤ PL1

110 Execute: promote to privilege level 2*
read: Not allowed
write: Not allowed
execute: PL2≤ PL ≤ PL1

111 Execute: remain at privilege level 3*
read: Not allowed
write: Not allowed
execute: PL2≤ PL ≤ PL1

3-14 Addressing and Access Control PA-RISC 1.1 Architecture

Page Table Structure
Address translations are stored in memory in a structure called thePage Table. The exact form of these
tables is a software convention, but many aspects of the page tables are common.

The most common use of the Page Table is to translate a virtual address to a physical address after a
TLB miss. The virtual address space is quite large, and a traditional approach of a multi-level forward

Figure 3-6. Access Control Checks

Protection ID 1

Control Registers

Access
Allowed?

Protection ID 2

Protection ID 3

Protection ID 4

8

9

12

13

TLB

Access ID

Access Rights

Protection
Check?

Access Rights
Check?

Type of
Access

(read/write/execute)

PSW
IA queues

P

YesYes

Yes

PL

3-15PA-RISC 1.1 Architecture Addressing and Access Control

mapped table, where each level is directly indexed by a portion of the virtual address, requires too many
memory accesses and hence is an inefficient way to provide virtual to physical translations.

A better approach is to index the Page Table using the result of a hash function applied to the virtual
address. The purpose of the hash function is to translate virtual addresses to a smaller, more uniform
name space. The particular function used is implementation dependent. Collisions created by multiple
addresses hashing to the same entry can be resolved using a sequentially searched linked list or some
other structure.

The number of entries in the Page Table is typically a power of two. One possible format of a table entry
is shown in Figure 3-7.

The fields are:

V is the valid bit. If V = 1, this entry represents a valid translation.

Tag is a unique key used to identify the virtual address that this entry translates.

R is the reference bit. If R = 1, the page has been accessed (read, write, or execute) by a
processor since the bit was last cleared to 0.

Physical Page Number

is the physical page number corresponding to the virtual address, provided this entry
is valid and the virtual address matches the tag.

Next Page Table Entry

is an index/pointer to perhaps another structure containing overflow page table
entries.

0 is a reserved bit field.

S is a bit field reserved for operating system use.

The U, T, D, B, Access Rights, and Access ID fields correspond to those for TLB entries (see “Address
Resolution and the TLB” on page 3-3).

Caches
Cache memories are high-speed intermediate storage buffers which contain recently accessed
instructions and data. These caches need not remain coherent with memory and I/O. Storage items may
be brought into the cache, only as a result of references made by the instruction stream. Software can
explicitly remove items from the cache. As a result, software can control which portions of memory

V Tag (31)

R S T D B Access Rights (7) U Access ID (15, 16, 17, or 18) S

S (3) 0 (4) Physical Page Number (20) S (2) 0 (3)

Next Page Table Entry (32)

Figure 3-7. Page Table Entry

3-16 Addressing and Access Control PA-RISC 1.1 Architecture

may be present in the cache. Items in the cache may be removed by hardware at any time. Software may
therefore not rely on particular items remaining in the cache.

A consistent software view of cache operation requires that implementations never write a clean cache
line back to memory.Clean means "not stored into" as opposed to "not changed".Dirty means "stored
into". A cache line which was stored into in such a way that it was unchanged is considered to be dirty.

To insure memory system coherence, and to minimize cache flushing, instructions and data in memory
may be brought into the caches only under certain circumstances. This operation of bringing
information from memory into a cache is referred to asmove-in. In general, only instructions and data
referenced by executed instructions may be moved in. Software may use reference bits and other
mechanisms controlled by interruptions to determine when lines are potentially in the instruction cache,
data cache, or both.

No data reference may cause a move-in to the instruction cache and no instruction reference may cause
a move-in to the data cache. This means that the execution of aFLUSH DATA CACHE or PURGE DATA
CACHE instruction guarantees that the addressed line, if it has been referenced as data but not as
instructions, is no longer present in the cache system. Similarly, only aFLUSH INSTRUCTION CACHE
instruction is required to guarantee that a line which has been referenced as instructions but not as data,
is no longer present in the cache system. The actions which constitute a reference are described in “Data
Cache Move-In” on page 3-21 and “Instruction Cache Move-In” on page 3-22.

If implemented, the U (Uncacheable) bit is found in the data TLB entry associated with a page. Whether
or not the U-bit is implemented, the state of this bit if implemented, whether the memory reference is
virtual or absolute, and whether the reference is made from a page in the memory or I/O address spaces
determine if the reference may be moved into the data cache. The detailed rules for moving references
into the data cache are specified in “Data Cache Move-In” on page 3-21.

Software must set the U-bit associated with all pages in the I/O address space to 1. Referencing a page
in the I/O address space for which the U-bit is 0 is an undefined operation.

Changing the state of the U-bit for a page has no effect on the data cache lines from that page which
already exist in the cache. A page from the memory address space which has its U-bit set to 0 is called a
cacheable page. Pages from the I/O address space and pages which have their U-bit set to 1 are called
uncacheable pages. It is possible for data cache lines from an uncacheable page to exist in a data cache.
This case may be caused by changing a cacheable page to uncacheable after references to this page were
moved into the data cache.

The Synchronization Primitive
Program synchronization can be done using theLOAD AND CLEAR WORD instructions, which perform
indivisible semaphore operations. These instructions are required to use 16-byte aligned addresses.
When using semaphores to synchronize with I/O, care must be taken in placing other information in the
same cache line as the semaphore. Data which is writable, can only be placed in the same cache line as
a semaphore if access to write the data is controlled by the semaphore.

3-17PA-RISC 1.1 Architecture Addressing and Access Control

Cache Coherence with I/O
Accesses to memory by I/O modules may be either coherent or non-coherent with processor data
caches.

Coherent I/O
Processors in systems with coherent I/O modules must implement theLOAD COHERENCE INDEX
instruction, which loads the coherence index corresponding to a given virtual address into a General
Register. Coherent I/O modules provide the coherence index along with the absolute address of data it is
reading from or writing to memory. The coherence index must provide enough information such that,
together with the absolute address, the processor can find data that was brought into its data cache by
the original virtual address.

Software need not flush or purge data from the data cache when sharing the data with a coherent I/O
module. For I/O output (e.g., memory to secondary storage), the coherent I/O module performs coherent
read operations which will read the data from memory or a processor’s data cache depending on where
the most up-to-date copy is located. For I/O input, the coherent I/O module performs coherent write
operations which will write the data to memory and also update or invalidate matching lines in
processor data caches.

Coherent I/O operations are not coherent with instruction caches. Software is responsible for flushing
the appropriate instruction cache lines before or after the I/O operation.

Non-coherent I/O
Non-coherent I/O modules process data in memory; this data can be non-coherent with processor
caches. Software is required to insure that:

1. The contents of the appropriate caches are flushed to main memory prior to an I/O output (e.g.,
memory to secondary storage) operation.

2. The contents of the appropriate caches are purged or flushed prior to an I/O input (e.g., secondary
storage to memory) operation.

3. The contents of the appropriate caches are purged following an I/O input operation, if the cache
move-in rules would have allowed the processor to move the data into the cache during the I/O
operation.

Cache Coherence in Multiprocessor Systems
Multiprocessor systems may include PA-RISC processors as well as other processors.

The cache-coherent part of a multiprocessor system is required to behave as if there were logically a
single D-cache and a single I-cache. If there are multiple physical D-caches, they must cross-interrogate
for current data and must broadcast purge and flush operations except forFDCE andFICE. Purge and
flush operations do not cause TLB faults on other processors. Multiple I-caches require only that flushes
be broadcast. The I-cache is read-only, and software is responsible for modifications to the instruction

3-18 Addressing and Access Control PA-RISC 1.1 Architecture

stream.

The non-cache-coherent part of a multiprocessor system (if any) may either cross-interrogate with the
caches in the cache-coherent part of the system, or may have an independent cache system. This design
decision is generally based on the frequency of data sharing.

In the cache-coherent part of a multiprocessor system, all data references to cacheable pages must be
satisfied by data that was obtained using cache coherence checks, and has remained coherent since the
data was moved in. Data references to uncacheable pages do not need to be satisfied by data that was
obtained using cache coherence checks. Data from an uncacheable page could be in a cache if it was
moved in when that page was marked cacheable, but the page is now marked uncacheable.

Implementations with write buffers must also check buffer contents on cache coherence checks, in order
to insure proper ordering of storage accesses.

Instruction references need not be satisfied by data that was obtained using cache coherence checks.

Instruction caches are read-only. In the case of a separate instruction cache implementation, instruction
cache lines must never be written back to main memory.

TLB Coherence in Multiprocessor Systems
The cache-coherent part of a multiprocessor system is required to behave as if there were logically a
single DTLB and a single ITLB.

All TLBs in a multiprocessor system are required to broadcast purges, exceptPDTLBE andPITLBE, to
all other TLBs. The originating processor’s purge instruction suspends until all target processors
complete the purge.

TLB Operation Requirements
Software may rely on the existence of particular translations in the TLB only in certain situations. The
following describes the situations in which software may rely upon the fact that a specific translation
will continue to exist in the TLB. In these situations, software may make virtual accesses using the
relied-upon translation, and no TLB miss fault will occur (including non-access TLB miss faults).

1. When an instruction takes one of the following interruptions, the associated data address translation

3-19PA-RISC 1.1 Architecture Addressing and Access Control

will remain in the DTLB, and is termed the relied-upon translation.

The translation will continue to remain in the DTLB, meaning no data TLB miss fault will occur on
virtual data accesses which use this translation, for as long as software meets the following
constraints:

• No virtual data references are made to pages other than the page corresponding to the relied-
upon translation.

• The execution stream does not contain nullified instructions which, had they not been nullified,
would have made virtual data references to pages other than the page corresponding to the
relied-upon translation.

• No memory management instructions other thanLPA are executed. (See “Memory
Management Instructions (Mem_Mgmt)” on page D-5 for a list of memory management
instructions.)

• No purge TLB instructions which would purge the relied-upon translation are executed by
other processors in a multiprocessor system.

• No virtual instruction references are made.

• No DIAGNOSE instructions are executed.

• No attempt is made to execute undefined instructions.

PROGRAMMING NOTE
Software may rely upon this translation in order to improve performance in handling the
above-mentioned traps. For example, the absolute address which corresponds to the virtual
address used in the trapping instruction can be determined by using this code sequence:

LPA x(s,b),t

Because no TLB miss fault can occur, the interruption handler need not incur the overhead of
making itself interruptible.

2. If the PSW Q-bit is 1, and is set to 0 by a RESET SYSTEM MASK orMOVE TO SYSTEM MASK

Intr. No. Interruption

18 data memory protection/unaligned data reference trap

19 data memory break trap

20 TLB dirty bit trap

21 page reference trap

22 assist emulation trap

26 data memory access rights trap

27 data memory protection ID trap

28 unaligned data reference trap

3-20 Addressing and Access Control PA-RISC 1.1 Architecture

instruction, the instruction address translation used to fetch theRSM or MTSM instruction will
continue to remain in the ITLB, and is termed the relied-upon translation. No instruction TLB miss
fault will occur on virtual instruction accesses which use this translation for as long as software
meets the following constraints:

• TheRSM or MTSM instruction which sets the PSW Q-bit to 0 (theclearing RSM or MTSM) is
preceded by anotherRSM, SSM, or MTSM instruction which does not affect the PSW Q-bit,
and which appears at least 8 instructions prior.

• The instructions between the initialRSM, SSM, or MTSM instruction and the clearingRSM or
MTSM do not include any memory management instructions, virtual data references, or
instruction references to pages other than the code page containing the clearingRSM or MTSM
instruction.

• The clearingRSM or MTSM instruction is not within 8 instructions of a page boundary.

• No virtual data references are made.

• The execution stream does not contain nullified instructions which would have made virtual
data references had they not been nullified.

• No FLUSH INSTRUCTION CACHE instructions are executed with the PSW D-bit equal to 1.

• No memory management instructions are executed. (See Appendix D, “Operation Codes” for a
list of memory management instructions.)

• No purge TLB instructions which would purge the relied-upon translation are executed by
other processors in a multiprocessor system.

• No instruction references are made to pages other than the code page containing the clearing
RSM or MTSM instruction.

• No DIAGNOSE instructions are executed.

• No undefined instructions are attempted to be executed.

• No instructions are executed which are followed, within 8 words, by a branch instruction, a
memory management instruction, aDIAGNOSE instruction, an undefined instruction, or a page
boundary.

PROGRAMMING NOTE
Software may rely upon this instruction translation in order to improve performance in process
dispatch. For example, in this code sequence:

SSM 0,gr0 ; initial RSM, SSM or MTSM
LDW ; set up process state
. ; must be at least 7 instructions
. ; between the system mask instrs
.
LDW
RSM 8,gr0 ; set PSW Q-bit to 0
MTCTL reg1,cr20; set up IIASQ

3-21PA-RISC 1.1 Architecture Addressing and Access Control

MTCTL reg2,cr20
MTCTL reg3,cr21; set up IIAOQ
MTCTL reg4,cr21
LDW ; set up last of process state
.
.
.
LDW
RFI ; dispatch process

Because no TLB miss fault can occur, the interruption handler need not incur the overhead of
disabling code translation just prior to process dispatch. Note that the LDW instructions in this
sequence must use absolute addresses. (Use absolute loads, or do these with the PSW D-bit
equal to 0.)

Data Cache Move-In
Data lines are brought into the cache only as a result of references, and only if the page containing the
reference is cacheable. Except where noted, a data reference may move in all of the lines on the
cacheable page containing the reference. The following actions constitute a data reference, and may
cause move-in to the data cache:

• Execution of a load, store, or semaphore instruction

• Interruption of a load, store, or semaphore instruction by any interruption except the ones listed
below:

Intr. No. Interruption

6 instruction TLB miss fault

7 instruction memory protection trap

8 illegal instruction trap

10 privileged operation trap

15 data TLB miss fault

18 data memory protection/unaligned data reference trap

19 data memory break trap

20 TLB dirty bit trap

21 page reference trap

26 data memory access rights trap

27 data memory protection ID trap

28 unaligned data reference trap

3-22 Addressing and Access Control PA-RISC 1.1 Architecture

NOTE
Because protection is checked (interruptions 10, 18, 26, and 27), the reference cannot bring in
any data which could not have been accessed. This does not apply, however, to absolute
accesses.

• A load or store instruction which is left at the front of the interruption queues because of a prior
instruction which took a group 4 interruption, provided that the load or store would not have taken
any of the above interruptions (6, 7, 8, 10, 15, 18, 19, 20, 21, 26, 27, 28).

Data items which would have been referenced by a nullified load, store, or semaphore instruction are
not moved in.

The instructionsLDWAX , LDWAS, andSTWAS are exceptions to the general rule that a data reference
may cause all of the lines in the page containing the reference to be moved in. These instructions can
cause only the referenced line to be moved into the data cache.

In addition to the above rules, the following properties determine if the cache line associated with a
memory reference may be moved into the data cache or a combined data and instruction cache:

• Whether the memory reference is virtual or absolute.

• Whether or not the optional TLB U (Uncacheable) bit is implemented.

• The state of the U-bit, if implemented.

• Whether the reference is made to a page in the memory or the I/O address space.

Table 3-2 specifies the rules under which the above properties determine if a memory reference may be
moved into the data cache.

Instruction Cache Move-In
Instructions are brought into the instruction cache, or combined data and instruction cache, only as a
result of references. Except where noted, an instruction reference may move in all of the lines on the
page containing the reference, as well as all of the lines on the next sequential page, provided access and

TLB U-bit

absolute access virtual access

memory
address space

I/O
address space

memory
address space

I/O
address space

not
implemented

line may be
moved in

line must not
be moved in

line may be
moved in

line must not
be moved in

0
line may be
moved in

line must not
be moved in

line may be
moved in

undefined
operation

1
line may be
moved in

line must not
be moved in

line must not
be moved in

line must not
be moved in

Table 3-2. Data Cache Move-In Rules

3-23PA-RISC 1.1 Architecture Addressing and Access Control

protection check requirements are met for each page. (If the PSW C-bit is 0, then the next sequential
page is the next sequential physical page. Otherwise, if the PSW C-bit is 1, then it is the next sequential
virtual page.) The following actions constitute an instruction reference, and may cause move-in to the
instruction cache:

• Execution of an instruction

• Execution of a nullified instruction which would not have taken any of the following interruptions
had it not been nullified. This action can cause only those lines on the page containing the
instruction to be moved in

NOTE
Because protection is checked (interruption 7) the reference cannot bring in any instructions
which could not be executed. This does not apply, however, to absolute accesses.

• Execution of a branch can cause all of the lines on the page containing the target of the branch to be
moved in.

• Execution of a branch to a target instruction which is the last instruction on a page, followed by an
instruction which traps (in the branch delay slot), can cause all of the lines on the page containing
the target instruction, as well as all of the lines on the next sequential page to be moved in.

• Interruption of an instruction by any interruption except for the ones listed below:

• A branch instruction which takes a group 4 interruption can cause all of the lines on the page
containing the instruction which would have been branched to, to be moved in.

Instructions which would have been branched to by nullified or untaken branches are not moved in.

If lines on the next sequential page are to be moved in, that page must meet the normal access and
protection check requirements.

PROGRAMMING NOTE
If a data page immediately follows an instruction page, it is possible that the entire data page
may have been moved into the instruction cache because of these move-in rules. Software
must be aware of this fact and flushboth the instruction and the data caches in order to
remove the data page from the cache.

Intr. No. Interruption

6 instruction TLB miss fault

7 instruction memory protection trap

Intr. No. Interruption

6 instruction TLB miss fault

7 instruction memory protection trap

3-24 Addressing and Access Control PA-RISC 1.1 Architecture

To insure that lines from a particular data page are not moved into the instruction cache,
software must not make absolute instruction references to the immediately preceding physical
page, and must prevent virtual instruction references to the data page. This latter can be
accomplished by not assigning execute access rights to the data page. If, however, the data
page is assigned execute access rights, and virtual instruction references are prevented by some
other means, then software must also prevent virtual instruction references to the immediately
preceding page.

In addition to the above rules, the following properties determine if the cache line associated with a
instruction reference may be moved into the instruction cache or a combined data and instruction cache:

• If the reference is made to a page in the memory address space, the referenced line may be moved
into the cache.

• If the reference is made to a page in the I/O address space, the referenced line must not be moved
into the cache.

• If there is a combined instruction and data TLB, then an instruction fetch from a page with its U-bit
1 is undefined.

Flushing
A flush cache, purge cache, or purge TLB instruction to a page stops (disables) any subsequent move-in
operations to that page until another reference to that page is made. In a multiprocessor system, these
instructions stop any subsequent move-in operations to that page on all processors until another
reference to that page is made.

Once a reference has been made, and a line could have been brought into a cache, the only way software
can insure that the line has been removed from the cache is to flush or purge it and execute aSYNC
instruction, or to flush the entire cache with flush-entry instructions and execute aSYNC instruction.
Once a line is referenced, even if it is subsequently forced out of the cache by other references, the
cache system can move it in again without another reference, until the line is flushed.

4-1PA-RISC 1.1 Architecture Flow Control and Interruptions

4 Flow Control and Interruptions

Introduction
The architecture defines a model in which the flow of control passes to the next sequential instruction in
memory unless directed otherwise by branch instructions, nullification of instructions, or interruptions.
The architecture requires that a CPU program appear to execute instructions in the order in which they
appear although in reality the order may be changed internally. The instruction execution model
described in this chapter provides a logical view of the steps involved in instruction execution. The
sections on nullification, branching, and interruptions show how flow control can be altered during the
course of program execution.

Instruction Execution
Instruction flow involves calculating the address of the current instruction and then fetching, decoding,
and executing that instruction. This process involves performing the sequence of events listed below
regardless of the instruction type. (Although these events are listed in sequence, many of them may
occur in parallel. It is only necessary that they appear to be logically sequential.) In the description that
follows, the values of the PSW bits are the values that exist before the instruction is executed. Changes
to the PSW bits only affect instructions after the current instruction. This flow of instruction execution
is shown in Figure 4-1.

1. If the PSW M-bit is 0, then high priority machine checks (HPMCs) may occur.

2. The processor checks for group 2 interruptions:

a. A power failure interrupt that is not masked by the PSW I-bit .

b. A recovery counter trap. This trap is enabled when the PSW R-bit is 1 and the most significant
bit of the recovery counter is 1.

c. An external interrupt or low-priority machine check, both of which are unmasked by the PSW
I-bit.

d. A performance monitor interrupt that is not masked by the PSW F-bit.

3. Depending on the state of the PSW N-bit, one of two events occur:

a. If the current instruction isnullified (the PSW N-bit is 1), group 3 interruptions must not be
taken. The instruction address queue is advanced and the back of the queue is written with the
new front element + 4. The privilege level is the same as the new front element. The PSW X-
bit, Y-bit, Z-bit, N-bit, and B-bit are set to 0.

b. If the current instruction is not nullified (the PSW N-bit is 0), then the instruction is fetched
using the front elements of the instruction address (IA) queues. If a group 3 interruption occurs
during execution, the processor rolls back the effect of the current instruction by restoring the
beginning state and takes the interruption. If the PSW C-bit is 1, virtual address translation of

4-2 Flow Control and Interruptions PA-RISC 1.1 Architecture

the instruction address is performed. The PSW P-bit enables protection checking. On a split
TLB system, the instruction TLB is used for instruction address translation. The fetching of the
current instruction may result in an instruction TLB miss fault/instruction page fault or an
instruction memory protection trap.

Figure 4-1. Interruption Processing

RFI

RFI

YESNO

YESNO

RFI RFI

Note: the solid
line represents

the normal
execution path.

Dotted line
boxes describe

software
activities.

Fetch current
instruction, perform
current instruction,
advance IA Queue

and Recovery
Counter, update

PSW.

group 3
interruption
pending?

group 4
interruption
pending?

group 2
interruption
pending?

vector to highest-
priority pending

group 4 interruption

process all pending
group 4

interruptions

vector to highest
priority pending

group 2 interruption

vector to highest-
priority pending

group 3 interruption

back out effect of
current instruction;
backup recovery

counter, PSW, and
IA queues.

process interruption

process interruption

YESNO

4-3PA-RISC 1.1 Architecture Flow Control and Interruptions

The Recovery Counter is decremented if the PSW R-bit is 1. The current instruction is
executed and the PSW X-bit, Y-bit, and Z-bit are set to 0. If the next instruction is to be
nullified, the PSW N-bit is set to 1, and the instruction address queues are updated. The nature
of that update depends on whether the current instruction is a taken branch:

• For a taken branch: the instruction address queues are advanced, the back of the queue is
loaded with the target address including the privilege level which is computed by the
branch instruction, and the PSW B-bit is set to 1.

• For a branch that is not taken: the instruction address queues are advanced, the back of the
instruction address offset queue is written with the new front element + 4, the privilege
level of the back element is set the same as the new front element, and the PSW B-bit is
set to 0.

• If the current instruction is aRETURN FROM INTERRUPTION or RETURN FROM
INTERRUPTION AND RESTORE instruction, the IA queues and the PSW are updated with
the new values and the following instruction is executed based on these new values.

4. Group 4 traps are handled after execution is complete. If the new privilege level is lower than that
of the just completed instruction and the PSW L-bit was 1, a lower-privilege transfer trap is taken.
If the new privilege level is higher than that of the just completed instruction and the PSW H-bit
was 1, a higher-privilege transfer trap is taken. The term "new privilege" level refers to the
privilege level at which the following instruction executes.

If neither transfer trap is taken, the instruction just completed is a taken branch, and the PSW T-bit
was 1, then a taken branch trap occurs.

Atomicity of Storage Accesses
All load and semaphore instructions access storage atomically. All store instructions, exceptSTORE
BYTES SHORT when accessing the I/O address space, access storage atomically. For example, a double-
word load instruction executing on one processor concurrently with a double-word store instruction to
the same address executing on another processor will receive either the entire old value or the entire
new value.

Ordering of Accesses
Accesses to the address space (both to memory and I/O) through load, store, and semaphore instructions
are strongly ordered. This means that accesses appear to software to be done in program order. In
multiprocessor systems, accesses by a given processor must appear to that processor, as well as to all
other processors in the system, to be done in program order.

If processor A executes a load instruction and receives the value stored by a store instruction executed
on processor B, then processor A is said to haveobserved the store by processor B.

If a store by a processor is observed by another processor or by an I/O module, then the store is said to
beperformed.

4-4 Flow Control and Interruptions PA-RISC 1.1 Architecture

NOTE
An example of the observability of the ordering of accesses can be seen by considering two
processes, A and B, running concurrently on a multiprocessor system.

If process B observes A’s store to y, then process B may rely on the fact that its store to x will
not affect the value seen by process A.

This strong ordering applies to I/O accesses as well. For example, the sequence of an I/O access
followed by a memory access appears to be performed in program order.

Cache flush operations are, however, not strongly ordered. Flush operations may be delayed or held
pending, and a sequence of flush operations may be executed in any order. TheSYNC instruction is used
to ensure ordering. TheSYNC instruction enforces the ordering of only those accesses caused by the
instructions executed on the same processor which executes theSYNC instruction. After executing a
SYNC instruction, any pending flush operations are completed before performing any subsequent load,
store, semaphore, flush, or purge instructions. Flush operations do get performed, however, prior to a
subsequent purge operation to the same cache line, to prevent loss of data. In multiprocessor systems, to
allow non-privileged code to do cache management, system software must execute aSYNC instruction
when switching processes.

Cache purge operations are strongly ordered, but only with respect to accesses to the same cache line. A
SYNC instruction ensures ordering with respect to subsequent accesses.

PROGRAMMING NOTE
Software which executes Purge Data Cache instructions to memory locations which are shared
with other processes must be aware of a potential problem. Consider two processes sharing a
memory locationx which is protected by a semaphores.

In the absence of the SYNC instruction, it is possible that process B stores tox before the purge
is actually completed.

process A process B

load x load y

store y store x

process A on Processor 1 process B on Processor 2 note

LDCW s A acquires semaphore

PDC x A executes purge

SYNC Force completion of purge

STW s A releases semaphore

LDCW s B acquires semaphore

STW x

4-5PA-RISC 1.1 Architecture Flow Control and Interruptions

MTCTL and MFCTL instructions involving the EIR and the EIEM must appear to preserve program
order.

Modification of resources which affect data access take effect immediately. Acknowledgement of a data
TLB purge request from another processor must not be made until after the purge has logically been
performed. Data access resources include Protection Identifier Registers, PSW, and TLB entries.

Interrupts must be masked immediately following a MTCTL to the EIEM register that masks interrupts
or an RSM or MTSM that sets the PSW I-bit to 0.

Completion of Accesses
PA-RISC processors are inherently asynchronous and software may not rely on instruction timing for
correct operation. Implementations are permitted to execute instructions out of order and need only
preserve the appearance of sequential execution. For example, in the absence of other constraints which
would force execution, flush and purge operations may be indefinitely delayed. To insure that progress
is made, however, the following requirements must be met.

• Instruction streams must make forward progress. This means that any operation, on which an
instruction stream is dependent, must be performed in some finite period.

• All load and store operations to the I/O space must be performed in some finite period.

• Execution of aSYNC instruction forces all prior flush operations from the same instruction stream
to be performed in some finite period.

For performance and testability reasons, it is occasionally necessary to know when an access to I/O
space has completed. This would not normally be possible due to the asynchronous nature of execution.
In order to provide this capability, the following two special sequences are defined. These sequences
place additional requirements on implementations for the completion of accesses. When these code
sequences are used, the additional completion requirements hold.

When this code sequence is executed, the instruction labeled ‘access A completed on bus’ is not
executed, and the source registers not read until after the LDW (or STW) labeled ‘access A’ has
completed on the bus.

When this code sequence is executed, the instruction labeled ‘access B completed on module’ is not
executed, and the source registers not read until after the STW instruction labeled ‘access B’ has
completed on the I/O module.

LDW (or STW) from (to) I/O space ; access A

SYNC

LDW from I/O space, but not to GR 0

(at least seven instructions)

Instruction ; access A completed on bus

4-6 Flow Control and Interruptions PA-RISC 1.1 Architecture

Instruction Pipelining
The architecture permits implementations to prefetch up to seven instructions from the cache (including
branch prediction) beyond the instruction currently executing. Instructions may modify resources which
affect instruction fetch on the machine they are executing on. Instruction fetch resources include
protection identifier registers, the PSW, and TLB entries. When such an event takes place, it affects
instructions that are fetched 8 instructions later (at the latest), or after the nextRETURN FROM
INTERRUPTION or RETURN FROM INTERRUPTION AND RESTORE instruction, whichever occurs first.

Instructions may also modify resources on other processors in a multiprocessor system, which affect the
instruction fetch of the target processors. When such an event takes place (the modification of the
resource is acknowledged), it affects instructions that are fetched, on the target processors, after they
have finished executing 8 instructions (at the latest) except as noted below.

When a processor executes an instruction which purges an instruction TLB entry in other processors,
the target processors must acknowledge completing the purge. The target processors may not complete
a move-in, which was initiated using the purged translation, after acknowledging the removal.
Acknowledgement of a data TLB purge request from another processor must not be made until after the
purge has logically been performed.

Modification of code, while discouraged, may be performed using the following protocol:

1. Modify the code in the data cache.

2. Flush the modified code from the data cache.

3. Issue aSYNCHRONIZE CACHES instruction to ensure the flush is completed and subsequent move-
in will observe the memory version.

4. Flush the location of the modified code from the instruction cache.

5. Issue aSYNCHRONIZE CACHES instruction to ensure the flush is completed.

6. Delay at least an additional seven instructions or execute aRETURN FROM INTERRUPTION or
RETURN FROM INTERRUPTION AND RESTORE instruction.

In a multiprocessor system, software must ensure that no other processor is executing code that is in the
process of being modified.

STW to I/O space ; access B

LDW from the same I/O space module

SYNC

LDW from I/O space, but not to GR 0

(at least seven instructions)

Instruction ; access B completed on module

4-7PA-RISC 1.1 Architecture Flow Control and Interruptions

Nullification
A nullified instruction is an instruction that is skipped over. It has no effect on the machine state (except
that the IA queues advance and the B-bit, N-bit, X-bit, Y-bit, and Z-bit in the PSW are set to 0). The
recovery counteris not decremented for a nullified instruction. Nullified instructions do not take group
3 interruptions (although they may take group 1, 2, or 4 interruptions).

All branch instructions and computational instructions can nullify the execution of the following
instruction. For branch instructions, nullification can be specified explicitly. In the case of
computational instructions, nullification is performed conditionally based on the outcome of a test.

Branching
Branches are another way of altering the flow during program execution. The architecture provides both
unconditional and conditional branch instructions. Unconditional branch instructions always branch to
the specified target. Conditional branch instructions first perform some operation (move, compare, add,
or bit test) and then branch if the outcome of the specified condition is met.

Concept of Delayed Branching
All branch instructions exhibit the delayed branch feature. This implies that the major effect of the
branch instruction, the actual transfer of control, occurs one instruction after the execution of the
branch. As a result, the instruction following the branch (located in thedelay slot of the branch
instruction) is executed before control passes to the branch destination. The concept of delayed
branching is illustrated in Figure 4-2.

Execution of the delay slot instruction, however, may be skipped ("nullified") by setting the "nullify" bit
in the branch instruction to 1.

4-8 Flow Control and Interruptions PA-RISC 1.1 Architecture

Conditional and Unconditional Branches
There are two kinds of branches -unconditional branches, andconditional branches.Unconditional
branches are not dependent on the outcome of any test operation.Conditional branches provide a
mechanism to branch based on the outcome of a specified test. When the test is successful, the
conditional branch is said to betaken, and, when the test is unsuccessful, the conditional branch is said
to benot-taken. Unconditional branches are alwaystaken.

Branching and Spaces
Certain branch instructions can only branch to a location within the same space, while others can branch
to another space. Branches within the same space are referred to asintraspace or local branches.
Branches to another space are referred to asinterspace or external branches.

Target Address Computation
In systems which support virtual addressing, the target of a branch instruction, just like any instruction
address, consists of a space ID and an offset. In Level 0 systems, the target of a branch instruction
consists of an offset only.

The space ID of the target of an intraspace branch is not changed by the branch instruction. A space ID
calculation is performed for interspace branches. The offset portion of the address is computed in one of
several ways based on the particular branch instruction. When a displacement is added to the current

PROGRAM SEGMENT

Location Instruction Comment

100 STW r3, 0(r6) ; non-branch instruction

104 BLR r8, r0 ; branch to location 200

108 ADD r7,r2, r3 ; instruction in delay slot

10C OR r6,r5, r9 ; next instruction in linear code sequence

 . .

 . .

 . .

200 LDW 0(r3), r4 ; target of branch instruction

EXECUTION SEQUENCE

Location Instruction Comment

100 STW r3, 0(r6) ;

104 BLR r8, r0 ;

108 ADD r7,r2, r3 ; delay slot instruction is executed before

200 LDW 0(r3), r4 ; execution of target instruction

Figure 4-2. Delayed Branching

4-9PA-RISC 1.1 Architecture Flow Control and Interruptions

instruction address offset, the branch is calledIA relative . When a general register is used as a base
offset, it is calledbase relative. Also, if the displacement is a fixed value that is known at compilation,
it is known asstatic displacement. If the value is computed during the course of program execution, and
is read from a general register, it is known asdynamic displacement.

For interspace branches, the space ID of the target address is always specified in a space register, and is
copied into the IASQ when the branch is performed. The offset of the target is computed by adding a
17-bit signed word displacement to the base register specified in a general register. The two rightmost
bits in the base register denote the new privilege level and are ignored during the offset computation.
Also, the 17-bit signed word displacement is shifted left by two before adding to the base register.
Interspace branches are always base relative.

In the case of intraspace branches, the space ID is not changed by the branch. The offset of the target,
however, can be computed in one of three ways. For IA relative branches with static displacement, a 12-
bit or 17-bit signed word displacement is shifted left by two and added to the current instruction address
offset plus eight. For IA relative branches with dynamic displacement, the value specified in the index
register is shifted left by three and added to current instruction address offset plus eight. For base
relative branches with dynamic displacement, the value specified in the index register is shifted left by
three and added to the value in the specified base register.

It should be noted that for IA relative branches, the target is computed from the current instruction by
adding a displacement or an index value. Since the instruction in the delay slot must be executed if it is
not nullified, an additional value of eight is added in the offset computation to arrive at the target
correctly. This is done to ensure that a branch with a displacement of zero will branch to the instruction
following the delayed instruction. Also, this helps users build case tables immediately following the
delay slot instruction.

Privilege Level Changes
Branch instructions may change the privilege level depending on the type of branch performed. Since
privilege levels are determined by the two rightmost bits in the offset part of the instruction address,
privilege level changes are a function of the offset computation.

Unconditional branches can be IA relative or base relative. IA relative branches compute the target
address relative to their own IA value, and since the two rightmost bits are unchanged, the privilege
level of the branch instruction and the target are the same. Base relative branches (intraspace or
interspace) may lower the privilege level if the two rightmost bits in the base register are of a lower
privilege level. TheGATEWAY instruction is an IA relative branch, however, it behaves differently for
privilege computation. It can promote the privilege level to that specified by the two rightmost bits of
thetype field, located in the TLB entry for the page from which theGATEWAY instruction is fetched. In
Level 0 systems, execution of aGATEWAY instruction causes the privilege level to be promoted to 0.

Conditional branch instructions always perform IA relative branches and the privilege level of the target
instruction and the branch instruction is the same.

The change of privilege level takes effect at the target instruction except in the case of theGATEWAY.
Change of privilege level for aGATEWAY instruction can occur either at the delay slot or the target
instruction.

4-10 Flow Control and Interruptions PA-RISC 1.1 Architecture

PROGRAMMING NOTE
Since a branch instruction may be executed in the delay slot of another branch instruction, an
interesting case arises because of the way the privilege level changes are defined to take effect.

Consider the case where a taken IA relative branch is placed in the delay slot of a base relative
branch that lowers the privilege level of its target instruction. First, the base relative branch
will execute and schedule change of privilege level for its target. Then, in the delay slot, the IA
relative branch will execute and it will schedule its target to execute at the same privilege level
as its own. Then, the target of the base relative branch will execute at the new (demoted)
privileged level. The next instruction, however, which is the target of the IA relative branch,
will have the same privilege level as that of the IA relative branch, and thus will cause the
privilege level to be restored to the original (higher) value as shown in the following:

PROGRAM SEGMENT

Location Instruction Comment

100 STW r7, 0(r8) ; non-branch instruction

104 BV r0(r7) ; branch vectored to 200 and change priv -> 2

108 BLR r4, r0 ; IA relative branch to location 400

10C ADD r2,r6, r9 ; next instruction in linear code sequence

 . .

 . .

 . .

200 LDW 0(r3), r11 ; target of branch vectored instruction

 . .

 . .

 . .

400 LDW 0(r15), r4 ; target of IA relative branch instruction

404 STW r4, 0(r18)

EXECUTION SEQUENCE

Location Instruction Comment

100 STW r7, 0(r8) ; priv = 0

104 BV r0(r7) ; priv = 0

108 BLR r4, r0 ; priv = 0

200 LDW 0(r3), r11 ; priv = 2 decreased by branch vectored instr

400 LDW 0(r15), r4 ; priv = 0 changed back by IA relative branch

404 STW r4, 0(r18) ; priv = 0

4-11PA-RISC 1.1 Architecture Flow Control and Interruptions

Linkage
Linkage is provided in certain branch instructions to allow a return path for procedure calls. The return
point is four bytes after the following instruction. Since the execution of all branches is followed by the
execution of the instruction in the delay slot (or null if nullified), it should be noted that the return point
is always specified as four bytes after the following instruction andnot eight bytes after theBRANCH
AND LINK instruction. When the following instruction is not spatially sequential, then four bytes after
the following instruction is not the same as eight bytes after theBRANCH AND LINK instruction.

The linkage mechanism is available for both intraspace and interspace branches. For intraspace
branches, the offset of the return point is saved in the specified target register GR t. For interspace
branches, the offset of the return point is always saved in GR 31, and the space ID of the return point is
saved in SR 0 (except in Level 0 systems where SR 0 is nonexistent).

Conditional Branching and Nullification
When nullification is specified by a conditional branch instruction, the effect of nullification depends on
the direction of the branch. This maximizes useful work done during loops and "if-then" constructs.

For a backward conditional branch, the following instruction is nullified only when the backward
conditional branch isnot taken. For forward conditional branches, the following instruction is nullified
only when the forward conditional branchis taken. For unconditional branches, if nullification is
specified, the following instruction is nullifiedindependent of the direction of branch.

Branching and Address Queues
The concept of delayed branching makes it necessary to maintain the instruction address (IA) in a pair
of two element queues. Thefront elements point to the currently executing instruction and theback
elements point to the following instruction that will be executed. The termnext refers to the Space
Identifier and the offset of the next instruction address, which will enter the back elements of the queues
when the queues are updated. The queues are said to be updated when theback elements become the
front andnext become theback elements.

For taken branches, the IA queues get updated with the address of the branch target. Both the word
offset and the privilege level are updated. IAOQ_Next receives the value of the branch target offset. For
not-taken branches, IAOQ_Next gets IAOQ_Back + 4. The privilege level is obtained from the back
element of the queue. For external branches (BE and BLE), IASQ_Next gets the value of the branch
target Space ID. Otherwise, IASQ_Next receives the content of IASQ_Back. Figure 4-3 shows how the
IA queues are updated, using a pseudo-code representation.

4-12 Flow Control and Interruptions PA-RISC 1.1 Architecture

Figure 4-3. Updating Instruction Address Queues

Consider the situation shown in Figure 4-4; a taken branch instruction, I2, is executed in the delay slot
of a preceding taken branch, I1. When this occurs, the first branch I1 schedules its target instruction, I3,
to execute after I2, and the second branch, I2, schedules its target instruction, I4, to execute after I3. The
net effect is the out-of-line execution of I3, followed by the execution of I4. Also, if I3 were to be a
taken branch, its target, I5, would execute after I4, and I4 would also have been executed out of its
spatial context.

Note that if nullification is specified in the instruction currently executing, the nullification affects the
instruction to be executed next, regardless of whether that instruction immediately follows the currently
executing instruction in the linear code sequence. For example, if the instruction, I2, specified
nullification of the next instruction, then I3 would have no effect except that the PSW X-bit, Y-bit, Z-
bit, N-bit, and B-bit would be set to 0.

Traps Associated with Branches
Branch instructions may cause various traps based on the value of PSW bits. If the PSW T-bit is 1, and
a branch is taken, a taken branch trap occurs. This trap may be used for the purposes of debugging. If
the PSW H-bit is 1, and a branch instruction raises the privilege level, a higher-privilege transfer trap
occurs. If the PSW L-bit is 1, and a branch instruction lowers the privilege level, a lower-privilege
transfer trap occurs.

Restrictions in Branching
It is illegal for aGATEWAY instruction to execute in the delay slot of a taken branch instruction. The
PSW B-bit ensures that this sequence is not permitted. Whenever a branch is taken, the PSW B-bit is
set to 1 and, if the next instruction is aGATEWAY, an illegal instruction trap occurs.

Instruction Address Offset Queue (IAOQ)

IAOQ_Front ← IAOQ_Back;

IAOQ_Back ← IAOQ_Next;

if (taken branch)

IAOQ_Next ← Branch target offset;

else

IAOQ_Next ← IAOQ_Back + 4;

Instruction Address Space Queue (IASQ)

IASQ_Front ← IASQ_Back;

IASQ_Back ← IASQ_Next;

if (BE or BLE)

IASQ_Next ← Branch target Space ID;

else

IASQ_Next ← IASQ_Back;

4-13PA-RISC 1.1 Architecture Flow Control and Interruptions

Figure 4-4. Branch in the Delay slot of a Branch

Interruptions
Interruptions are anomalies that occur during instruction processing, causing the flow control to be
passed to an interruption handling routine. In the process, certain processor state is saved automatically
by the hardware. Upon completion of interruption processing, aRETURN FROM INTERRUPTION or
RETURN FROM INTERRUPTION AND RESTORE instruction is executed, which restores the saved
processor state, and the execution proceeds with the interrupted instruction.

From the viewpoint of response to interruptions, the processor behaves as if it were not pipelined. That
is, it behaves as if a single instruction is fetched and executed, and any interruption conditions raised by
that instruction are handled at that time. If there are none, the next instruction is fetched, and so on.

Faults, traps, interrupts, andchecks are the different classes of interruptions that may happen during
instruction processing. Definitions of the four classes of interruptions are as follows:

PROGRAM SEGMENT

Location Instruction Comment

100 STW r7, 0(r8) ; non-branch instruction

104 BV r0(r7) ; branch vectored to location 200 I1

108 BLR r4, r0 ; IA relative branch to location 400 I2

10C ADD r2,r6, r9 ; next instruction in linear code sequence

 . .

 . .

 . .

200 LDW 0(r3), r11 ; target of branch vectored instruction I3

204 ADD r11,r12, r14 ;

 . .

 . .

 . .

400 LDW 0(r15), r4 ; target of IA relative branch instruction I4

404 STW r4, 0(r18) ; I5

EXECUTION SEQUENCE

Location Instruction Comment

100 STW r7, 0(r8) ;

104 BV r0(r7) ; schedules execution at 200 after delay instr I1

108 BLR r4, r0 ; schedules execution at 400 after delay instr I2

200 LDW 0(r3), r11 ; target of first branch executes out of context I3

400 LDW 0(r15), r4 ; target of second branch (is a non-branch) I4

404 STW r4, 0(r18) ; next instruction is in linear code sequence I5

4-14 Flow Control and Interruptions PA-RISC 1.1 Architecture

Fault The current instruction requests a legitimate action which cannot be carried out due to
a system problem, such as the absence of a page from main memory. After the system
problem has been corrected, the faulting instruction will execute normally. Faults are
synchronous with respect to the instruction stream.

Trap Traps include two sorts of possibilities: either the function requested by the current
instruction cannot or should not be carried out, or system intervention is desired by
the user before or after the instruction is executed. Examples of the first type include
arithmetic operations that result in signed overflow and instructions executed with
insufficient privilege for their intended function. Such instructions are normally not
re-executed. Examples of the second type include the debugging support traps. Traps
are synchronous with respect to the instruction stream.

Interrupt An external entity (e.g., an I/O device or the power supply) requires attention.
Interrupts are asynchronous with respect to the instruction stream.

Check The processor has detected an internal malfunction. Checks can be either
synchronous or asynchronous with respect to the instruction stream.

All four classes of interruptions are handled in the same way. The interruptions are categorized into four
groups based on their priorities:

Group 1: 1 High-priority machine check

Group 2: 2 Power failure interrupt

3 Recovery counter trap

4 External interrupt

5 Low-priority machine check

29 Performance monitor interrupt

Group 3: 6 Instruction TLB miss fault/Instruction page fault

7 Instruction memory protection trap

30 Instruction debug trap

8 Illegal instruction trap

9 Break instruction trap

10 Privileged operation trap

11 Privileged register trap

12 Overflow trap

13 Conditional trap

14 Assist exception trap

15 Data TLB miss fault/Data page fault

16 Non-access instruction TLB miss fault

17 Non-access data TLB miss fault/Non-access data page fault

26 Data memory access rights trap

27 Data memory protection ID trap

28 Unaligned data reference trap

4-15PA-RISC 1.1 Architecture Flow Control and Interruptions

The interruption numbers in the above list are the individual vector numbers that determine which
interruption handler is invoked for each interruption. The group numbers determine when the particular
interruption will be processed during the course of instruction execution. The order the interruptions are
listed within each group (not the interruption numbers) determines the priority of simultaneous
interruptions (from highest to lowest).

Interruption Handling
Interruption handling is implemented as a fast context switch (much simpler than a complete process
swap). When an interruption occurs, the hardware takes the following actions:

1. The PSW in effect at the time of the interruption is saved in the IPSW. For group 2 and 3
interruptions, the saved PSW is the value at the beginning of execution. For group 4 interruptions,
the saved PSW is the value after the execution of the instruction.

2. The defined bits in the PSW are set as follows:

E Set to the value of the default endian bit.

M Set to 1 if the interruption is a high-priority machine check; otherwise, set to 0.

all other bits Set to 0 (interrupts are masked, absolute accesses are enabled, etc.).

3. IA information in the IIA queues is frozen (as a result of setting the PSW Q-bit to 0 in step 2
above).

In order to enable restarting of instructions in the presence of delayed branching, at least two
addresses must be saved, pointing to the next two instructions to be executed after returning from
the interruption. The hardware, therefore, maintains IIA Space and IIA Offset queues, which have
two elements and contain the addresses and privilege levels of these instructions. The IIA queues
are kept up-to-date whenever the Q-bit in the PSW is 1. When an interruption is taken, the
addresses of the pending instructions are preserved in the queues. The elements of the queues may
be obtained by reading the IIASQ and IIAOQ registers (CRs 17 and 18, respectively).

4. The current privilege level is set to the highest privilege level (zero).

5. Information about the interrupting instruction is saved in the IPRs if the PSW Q-bit was 1 at the
time of the interruption. If the PSW Q-bit was 0, the IPRs are unchanged. If the details of an
instruction associated with the interruption are potentially useful in processing it, the instruction is

18 Data memory protection trap/Unaligned data reference trap

19 Data memory break trap

20 TLB dirty bit trap

21 Page reference trap

31 Data debug trap

22 Assist emulation trap

Group 4: 23 Higher-privilege transfer trap

24 Lower-privilege transfer trap

25 Taken branch trap

4-16 Flow Control and Interruptions PA-RISC 1.1 Architecture

loaded into the Interruption Instruction Register (IIR or CR 19). If there is an address associated
with the interruption, it is loaded into the Interruption Space and Interruption Offset registers (ISR
or CR 20, and IOR or CR 21). When data address translation is not enabled, the ISRs contents are
undefined. The value loaded into the IOR includes all 32 bits of the offset.

6. General registers 1, 8, 9, 16, 17, 24, and 25 are copied to the shadow registers.

7. Execution begins at the address given by:

Interruption Vector Address + (32 * interruption_number)

Interruption_number is the unique integer value assigned to that particular interruption. Vectoring
is accomplished by performing an indexed branch into the Interruption Vector Table indexed by
this integer. The Interruption Vector Table contains the starting points of execution of the
interruption handling routines. The value in the Interruption Vector Address register (CR 14) must
be aligned on a 2 Kbyte boundary.

PROGRAMMING NOTE
It is the responsibility of interruption handlers to unmask external interrupts (by setting the
PSW I-bit to 1) as soon as possible, so as to minimize the worst-case latency of external
interrupts.

Instruction Recoverability
When execution of instructions is interrupted, the minimal processor state that is required to be saved
and restored is that necessary to correctly continue execution of the instruction stream following
processing of the interruption. Processor state is defined to include any register contents, PSW bits, or
other information that may affect the operation performed by an instruction. For example, if an
interruption is taken immediately before anADD instruction, its source registers must be restored, but
its target register need not be (unless it is also one of the source registers).

Masking and Nesting of Interruptions
Disabling an interruption prevents it from occurring. The interruption does not wait until re-enabled. It
is not kept pending.Masking an interruption does not prevent the recognition of a pending interruption
condition, but delays the occurrence of the interruption until it is "unmasked".

The IA state is collected in the IIA queues only while the PSW Q-bit is 1; it is usually not possible to
resume execution after an interruption which is taken while the PSW Q-bit is 0.

The machine state is saved in registers rather than memory when an interruption occurs, and
interruption handlers must leave interruptions disabled until they have saved the machine state in
memory. Once the machine state is saved, nested interrupts can be allowed.

Since it is desirable to catch hardware faults as soon as possible, interruption handlers should generally
not mask high-priority machine checks. If a machine check occurs before the machine state has been
saved, the interrupted process may need to be aborted. The occurrence of traps and faults within
interruption handlers can be avoided by careful writing of the handlers.

4-17PA-RISC 1.1 Architecture Flow Control and Interruptions

Interruption Priorities
High-priority machine checks (which belong to Group 1) may occur and be processed at any time. They
may be synchronous or asynchronous with instruction processing, may be associated with more than
one instruction, and their precise meaning and processing is implementation dependent.

All interruptions other than high-priority machine checks are taken between instructions. Multiple
simultaneous interruptions may occur because a number of instructions are capable of raising several
synchronous interruptions simultaneously, and because certain interruptions are asynchronous with
respect to the instruction stream.

Group 2 interruptions occur asynchronously with respect to the instruction stream.

Group 3 interruptions are synchronous with respect to the instruction stream and are signalled before
completion of the instruction that produces them.

Group 4 interruptions are synchronous with respect to the instruction stream and are signalled either
after completion of the instruction that causes them, or when a change in privilege level is about to
happen.

Relative priorities are not assigned to the 32 external interrupts by the hardware. When multiple
external interrupts occur simultaneously, software may select their order of service, based on the
contents of EIR.

Return from Interruption
TheRETURN FROM INTERRUPTION andRETURN FROM INTERRUPTION AND RESTORE instructions
restore the PSW and instruction address queues. If the old PSW stored in IPSW (CR 22) has
interruptions enabled (or unmasked), interruptions are re-enabled before execution of the first of the
continuation instructions. The PSW Q-bit may be set to 1 reliably only by aRETURN FROM
INTERRUPTION or RETURN FROM INTERRUPTION AND RESTORE instruction. An attempt to set the
PSW Q-bit to 1 with aSET SYSTEM MASK or MOVE TO SYSTEM MASK instruction is an undefined
operation.

The RETURN FROM INTERRUPTION AND RESTORE instruction does everything that theRETURN
FROM INTERRUPTION instruction does, and in addition causes the values in the shadow registers to be
copied to GRs 1, 8, 9, 16, 17, 24, and 25. Execution of aRETURN FROM INTERRUPTION AND
RESTORE instruction leaves the contents of the shadow registers undefined.

Executing aRETURN FROM INTERRUPTION or a RETURN FROM INTERRUPTION AND RESTORE
instruction with the PSW Q-bit 0 and the IPSW Q-bit 0 leaves the IPRs unchanged.

PROGRAMMING NOTE
Only those interruptions which are themselves uninterruptible may return from the interruption
using theRFIR instruction. Interruption handling code which is interruptible must return from
the interruption using theRFI instruction.

Fast interruption handling is achieved using shadow registers, since GRs 1, 8, 9, 16, 17, 24,
and 25 are copied to the shadow registers on interruptions. In this example, it is assumed that at
most seven general registers need to be used in the interruption handling routine.

4-18 Flow Control and Interruptions PA-RISC 1.1 Architecture

Descriptions of Interruptions

Group 1 Interruptions

Name High-priority machine check (1)

Cause A hardware error has been detected that must be handled before processing can
continue

Parameters Implementation dependent

IIA Queue Front – Implementation dependent
Back – Implementation dependent

Notes The actions taken when a hardware error is detected depend on the seriousness of the
error. Damage extensive enough to prevent proper execution of instructions will halt
the machine and generate an external indication of the occurrence of the check.
Damage which allows a subset of the instructions to execute (e.g., inoperative TLB)
generates a high-priority machine check interruption. This is maskable by setting the
PSW M-bit to 1, so that machine checks within the machine check handler can be
prevented. The causes of high-priority machine checks are implementation
dependent, as is the means of controlling their reporting.

Group 2 Interruptions

Name Power failure interrupt (2)

Cause The machine is about to lose power

Parameters none

IIA Queue Front – Address of the instruction to be executed at the time of the interruption
Back – Address of the following instruction

Notes This interruption is masked and kept pending when the PSW I-bit is 0.

Name Recovery counter trap (3)

Cause Bit 0 of the recovery counter is 1 and the PSW R-bit is 1

using RFI using RFIR

interrupt interrupt

save GRs <no save>

[process interrupt] [process interrupt]

restore GRs <no restore>

RFI RFIR

4-19PA-RISC 1.1 Architecture Flow Control and Interruptions

Parameters none

IIA Queue Front – Address of the instruction to be executed at the time of the interruption
Back – Address of the following instruction

Notes The recovery counter can be used to log interruptions during normal operation and to
simulate interruptions during recovery from a fault.

Name External interrupt (4)

Cause A module writes to the processor’s IO_EIR or to the broadcast IO_EIR register, or the
interval timer compares equal to its associated comparison register

Parameters none

IIA Queue Front – Address of the instruction to be executed at the time of the interruption
Back – Address of the following instruction

Notes Each external interrupt level has associated with it one bit in the External Interrupt
Enable Mask Register (CR 15) and one bit in the External Interrupt Request Register
(CR 23). When a module writes into the EIR register, the bit position corresponding
to the value written is set to 1. For example if the value 5 is written, then bit 5 of the
EIR register is set to 1. If the corresponding bit in CR 15 is 1 and the PSW I-bit is 1,
an external interrupt is taken; otherwise, the interrupt is masked, and is kept pending.

Interrupt handling software sets bits in the EIR to 0 by executing aMOVE TO
CONTROL REGISTER instruction with the appropriate mask.

If multiple sources can set the same interrupt, it is the responsibility of software to
correctly respond to all of the interrupting sources.

Name Low-priority machine check (5)

Cause A hardware error has been detected which is recoverable and does not require
immediate handling

Parameters Implementation dependent

IIA Queue Front – Address of the instruction to be executed at the time of the interruption
Back – Address of the following instruction

Notes Errors which have been detected and recovered from by hardware to the point that
operation can continue in a degraded fashion are reported via the low-priority
machine check interruption. This interruption is masked and kept pending when the
PSW I-bit is 0. The causes of low-priority machine checks are implementation
dependent, as is the means of controlling their reporting.

Name Performance monitor interrupt (29)

Cause An implementation-dependent event related to the performance monitor coprocessor
requires software intervention

Parameters Implementation dependent

4-20 Flow Control and Interruptions PA-RISC 1.1 Architecture

IIA Queue Front – Address of the instruction to be executed at the time of the interruption
Back – Address of the following instruction

Notes This interruption is masked and kept pending when the PSW F-bit is 0.

Group 3 Interruptions

Name Instruction TLB miss fault/Instruction page fault (6)

Cause The instruction TLB entry needed by instruction fetch is absent, and if instruction
TLB misses are handled by hardware, the hardware miss handler could not find the
translation in the Page Table

Parameters none

IIA Queue Front – Address of the instruction causing the fault
Back – Address of the following instruction

Notes Only if an instruction is to be executed can an instruction TLB miss fault occur. This
interruption does not occur in Level 0 systems.

Name Instruction memory protection trap (7)

Cause Instruction address translation is enabled and the access rights check fails for an
instruction fetch or instruction address translation is enabled, the PSW P-bit is 1, and
the protection identifier checks fails for an instruction fetch

Parameters none

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes This interruption does not occur for absolute accesses.

Name Instruction debug trap (30)

Cause The debug SFU has detected that the instruction address matches the parameters set
up in the SFU

Parameters none

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes This trap is disabled if the PSW G-bit is 0 or if the PSW Z-bit is 1. It does not occur if
the debug SFU is not implemented.

Name Illegal instruction trap (8)

Cause An attempt is being made to execute an illegal instruction or to execute aGATEWAY
instruction with the PSW B-bit equal to 1

4-21PA-RISC 1.1 Architecture Flow Control and Interruptions

Parameters IIR – The illegal instruction causing the trap

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes Illegal instructions are the unassigned major opcodes. Unassigned sub-opcodes are
undefined operations (undefined sub-opcodes may cause the illegal instruction trap).
On some implementations,DIAGNOSE may be an illegal instruction.

Name BREAK instruction trap (9)

Cause An attempt is made to execute aBREAK instruction

Parameters IIR – TheBREAK instruction causing the trap

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

Name Privileged operation trap (10)

Cause An attempt is being made to execute a privileged instruction without being at the
most privileged level (priv= 0)

Parameters IIR – The privileged instruction causing the trap

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes The list of privileged instructions is:IDTLBA, IDTLBP, IITLBA, IITLBP, PDTLB,
PDTLBE, PITLB, PITLBE, MTSM, SSM, RSM, RFI, RFIR, LDWAX, LDWAS, STWAS,
DIAG, LPA, LCI.

Name Privileged register trap (11)

Cause An attempt is being made to write to a privileged space register or access a privileged
control register without being at the most privileged level (priv= 0)

Parameters IIR – The instruction causing the trap

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes This interruption may be caused by theMOVE TO SPACE REGISTER, MOVE TO
CONTROL REGISTER, or MOVE FROM CONTROL REGISTER instructions.

Name Overflow trap (12)

Cause A signed overflow is detected in an instruction which traps on overflow

Parameters IIR – The instruction causing the trap

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

4-22 Flow Control and Interruptions PA-RISC 1.1 Architecture

Name Conditional trap (13)

Cause The condition succeeds in an instruction which traps on condition

Parameters IIR – The instruction causing the trap

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

Name Assist exception trap (14)

Cause A coprocessor or special function unit has detected an exceptional condition or
operation. An exceptional operation may include unimplemented operations or
operands.

Parameters IIR – For immediate traps, the SFU or coprocessor instruction that was executing
when an exception is reported with a trap. It may or may not be related to the
condition causing the exception. For delayed traps, any instruction corresponding to
the SFU or coprocessor. See “Interruptions and Exceptions” on page 6-26.

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

Name Data TLB miss fault/Data page fault (15)

Cause The data TLB entry needed by operand access of a load, store, or semaphore
instruction is absent, and if data TLB misses are handled by hardware, the hardware
miss handler could not find the translation in the Page Table

Parameters ISR – space identifier of data address
IOR – offset of data address
IIR – The instruction causing the fault

IIA Queue Front – Address of the instruction causing the fault
Back – Address of the following instruction

Notes This interruption does not occur for absolute accesses.

Name Non-access instruction TLB miss fault (16)

Cause The instruction TLB entry needed for the target of aFLUSH INSTRUCTION CACHE
instruction is absent, and if TLB misses are handled by hardware, the hardware miss
handler could not find the translation in the Page Table

Parameters ISR – space identifier of virtual address to be flushed
IOR – offset of virtual address to be flushed
IIR – The instruction causing the fault

IIA Queue Front – Address of the instruction causing the fault
Back – Address of the following instruction

Notes This interruption source is distinguished from other TLB misses because a page fault

4-23PA-RISC 1.1 Architecture Flow Control and Interruptions

should not result in reading the faulting page from disk. This interruption does not
occur for absolute accesses.

Name Non-access data TLB miss fault/Non-access data page fault (17)

Cause The data TLB entry needed by aLOAD PHYSICAL ADDRESS, PROBE READ
ACCESS, PROBE READ ACCESS IMMEDIATE, PROBE WRITE ACCESS, PROBE
WRITE ACCESS IMMEDIATE, FLUSH INSTRUCTION CACHE, PURGE DATA CACHE,
or aFLUSH DATA CACHE instruction is not present, and if TLB misses are handled by
hardware, the hardware miss handler could not find the translation in the Page Table

Parameters ISR – space identifier of virtual address
IOR – offset of virtual address
IIR – The instruction causing the fault

IIA Queue Front – Address of the instruction causing the fault
Back – Address of the following instruction

Notes These interruption sources are distinguished from other TLB misses because a page
fault should not result in reading the faulting page from disk. This interruption does
not occur for absolute accesses.

Name Data memory access rights trap (26)

Cause Data address translation is enabled, and an access rights check fails on an operand
reference for a load, store, or semaphore instruction, or a cache purge operation

Parameters ISR – space identifier of the virtual address
IOR – offset of the virtual address
IIR – The instruction causing the trap

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes This interruption does not occur for absolute accesses.

Name Data memory protection ID trap (27)

Cause Data address translation is enabled, the PSW P-bit is 1, and a protection identifier
check fails on an operand reference for a load, store, or semaphore instruction, or
cache purge operation

Parameters ISR – space identifier of the virtual address
IOR – offset of the virtual address
IIR – The instruction causing the trap

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes This interruption does not occur for absolute accesses.

4-24 Flow Control and Interruptions PA-RISC 1.1 Architecture

Name Unaligned data reference trap (28)

Cause Data address translation is enabled, and a load or store instruction is attempted to an
unaligned address

Parameters ISR – space identifier of the virtual address
IOR – offset of the virtual address
IIR – The instruction causing the trap

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes Unaligned data reference traps are not detected for absolute accesses or semaphore
instructions – they are undefined operations. Only unaligned virtual memory loads
and stores (including coprocessor loads and stores) are defined to terminate with the
unaligned data reference trap.

Name Data memory protection trap/Unaligned data reference trap (18)

Cause Data address translation is enabled, and an access rights check or a protection
identifier check fails on an operand reference for a load, store, or semaphore
instruction, or a cache purge operation; a load or store instruction is attempted to an
unaligned address with virtual address translation enabled (unaligned absolute
references and semaphore instructions are undefined operations)

Parameters ISR – space identifier of the virtual address
IOR – offset of the virtual address
IIR – The instruction causing the trap

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes This interruption does not occur for absolute accesses. Only unaligned virtual
memory loads and stores (including coprocessor loads and stores) are defined to
terminate with the data memory protection trap. Execution of a semaphore instruction
with unaligned (16 byte boundaries) addresses is an undefined operation.

This trap is retained for compatibility with the earlier revisions of the architecture. In
PA-RISC 1.1 (Second Edition) and later revisions, processors must use traps 26, 27,
and 28 which provide equivalent functionality.

Name Data memory break trap (19)

Cause Store and semaphore instructions or cache purge operations to a page with the TLB
B-bit 1 in the data TLB entry

Parameters ISR – space identifier of the virtual address
IOR – offset of the virtual address
IIR – The instruction causing the trap

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

4-25PA-RISC 1.1 Architecture Flow Control and Interruptions

Notes This trap is disabled if the PSW X-bit is 1. This interruption does not occur for
absolute accesses.

Name TLB dirty bit trap (20)

Cause Store and semaphore instructions to a page with the D-bit 0 in the data TLB entry

Parameters ISR – space identifier of the data address
IOR – offset of the data address
IIR – The instruction causing the trap

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes Software is invoked to update the dirty bit in the data TLB entry and the Page Table.
This interruption does not occur for absolute accesses.

Name Page reference trap (21)

Cause Load, store, and semaphore instructions to a page with the T-bit 1 in its data TLB
entry

Parameters ISR – space identifier of the virtual address
IOR – offset of the virtual address
IIR – The instruction causing the trap

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes This interruption does not occur for absolute accesses.

Name Data debug trap (31)

Cause The debug SFU has detected that the data address of a load, store, or semaphore
instruction, or a cache purge operation matches the parameters set up in the SFU

Parameters ISR – space identifier of the virtual address
IOR – offset of the virtual address
IIR – The instruction causing the trap

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes This trap is disabled if the PSW G-bit is 0 or if the PSW Y-bit is 1. It does not occur if
the debug SFU is not implemented.

Name Assist emulation trap (22)

Cause An attempt is being made to execute an SFU instruction for an SFU whose
corresponding bit in the SFU Configuration Register (SCR) is 0 or to execute a
coprocessor instruction for a coprocessor whose corresponding bit in the Coprocessor
Configuration Register (CCR) is 0

4-26 Flow Control and Interruptions PA-RISC 1.1 Architecture

Parameters ISR – space identifier of the data address
IOR – offset of the data address
IIR – The instruction causing the trap

IIA Queue Front – Address of the instruction causing the trap
Back – Address of the following instruction

Notes ISR and IOR contain valid data only if the instruction is a coprocessor load or store.

Group 4 Interruptions

Name Higher-privilege transfer trap (23)

Cause An instruction is about to be executed at a higher privilege level than the instruction
just completed and the PSW H-bit is 1

Parameters none

IIA Queue Front – Address of the instruction with the higher privilege level
Back – Address of the following instruction

Name Lower-privilege transfer trap (24)

Cause An instruction is about to be executed at a lower privilege level than the instruction
just completed and the PSW L-bit is 1

Parameters none

IIA Queue Front – Address of the instruction with the lower privilege level
Back – Address of the following instruction

Name Taken branch trap (25)

Cause A taken branch was executed, and the PSW T-bit is 1

Parameters none

IIA Queue Front – Address of the instruction to be executed after the branch
Back – Address of the branch target

Notes This interruption occurs after the execution of the branch instruction, and the address
of the branch instruction itself is not available. The address at the front of the IIA
queue is the address of the instruction to be executed next. If the branch has
nullification specified, this is the address of the nullified instruction (the PSW N-bit is
1 in this case).

5-1PA-RISC 1.1 Architecture Instruction Set

5 Instruction Set

Introduction
The PA-RISC instruction set consists of defined, undefined, illegal, and null instructions. This chapter
discusses the concepts of undefined and null instructions and contains a detailed description of each
defined instruction. Also included are descriptions of the conditions, their completers, and the notation
used in the instruction descriptions.

The instruction descriptions are divided into the following functional groups:

1. Memory Reference instructions.

2. Branch instructions.

3. Long Immediate instructions.

4. Computation instructions.

5. System Control instructions.

6. Assist instructions.

Instructions are always 32 bits in width. A 6-bit major opcode is always the first field. Source registers,
if specified, are often the next two 5-bit fields. Target registers, if specified, are not fixed in any
particular 5-bit field. Depending on the major opcode, the remainder of the instruction word is divided
into fields that specify immediate values, space registers, additional opcode extensions, conditions, and
nullification.

Undefined and Illegal Instructions
Not all of the 64 possible major opcodes of the instruction set are defined as valid instructions. (See
Appendix D, “Operation Codes”, for a list of the valid instruction opcodes.) An undefined major opcode
is considered anillegal instruction. Execution of an illegal instruction causes an illegal instruction trap.

Within each major opcode, there may be undefined opcode extensions and modifiers (these are
undefined instructions). Interpretation of these opcodes is left to the implementor, but system integrity
is not compromised. An undefined instruction, or sequence of undefined instructions, executed at a
given privilege level has no effect on system state other than what would have been produced by a
sequence of defined instructions running at the same privilege level. This limits the possible side-effects
that could result from undefined instructions.

Undefined operations are equivalently specified. These result from normally defined instructions but
with operands or specifiers that are explicitly disallowed.

Executing an optional special operation or coprocessor instruction may cause an assist exception trap or
an action that depends on the definition of the specific special function unit or coprocessor.

5-2 Instruction Set PA-RISC 1.1 Architecture

Reserved Instruction Fields
In the Format section of the instruction pages, instruction fields markedrv are Reserved instruction
fields. These fields are reserved for future architectural definition. To avoid incompatibility with future
revisions of the architecture, software must provide zeros in all Reserved fields. When decoding
instructions, processors must ignore Reserved instruction fields.

Reserved Values of an Instruction Field
Certain values of some instruction fields are Reserved. These values are reserved for future architectural
definition. To avoid incompatibility with future revisions of the architecture, software must not use the
Reserved values. When decoding instructions, processors must treat the Reserved values as described
for the specific field.

Null Instructions
Null instructions occur when unimplemented features of the architecture are accessed. The effect of a
null instruction is identical to a nullified instruction except that the Recovery Counter is decremented.
There is no effect on the machine state except that the IA queues are advanced and the PSW B-bit, N-
bit, X-bit, Y-bit, and Z-bit are set to 0. Null instructions most commonly occur in Level 0 systems. For
example, in a Level 0 system, the instruction that writes values into space registers is a null instruction.

Conditions and Control Flow
Many instructions utilize conditions derived from the values of the operators and the operation
performed. The architecture defines three distinct sets of conditions that affect control flow:

1. Arithmetic/Logical Conditions.

2. Unit Conditions.

3. Shift/Extract/Deposit Conditions.

Every instruction that tests conditions uses one of these sets. Each set contains a maximum of eight
separate conditions and their negations. Most instructions that use conditions may also select the
negation of a condition. Exceptions are the instructions that use the extract/deposit conditions (shift,
extract, deposit, and branch on bit instructions). The location of the bit specifying negation depends on
the instruction format. The conditional local branch instructions have the negation controlled by the
opcode.

The condition completer field,cond, in the assembly language form of the instructions specifies a
condition or the negation of a condition. This field expands in the machine language form to fill both the
3-bit condition field,c, and the 1-bit negation field,f, as required.

Control flow is affected by checking the results of the operation performed by the current instruction.
The ways that control flow can be affected are:

1. Branching – the result determines whether or not the branch is taken.

5-3PA-RISC 1.1 Architecture Instruction Set

2. Nullifying – the result determines whether or not the next instruction is nullified.

3. Trapping – the result determines whether a conditional trap is taken or execution proceeds
normally.

Arithmetic/Logical Conditions
The 32-bit arithmetic/logical operations generate the set of conditions as shown in Table 5-1. No
overflow conditions result from logical operations. In the table,c is the machine language encoding
indicating the condition. The conditions are computed based on the 32-bit result of the arithmetic
operation, the (leftmost) carry bit of the result, and the overflow indication. The termssigned overflow
andunsigned overflow are defined for the arithmetic instructions in Table 5-2.

When implementing theDIVIDE STEP and SHIFT AND ADD instructions, the overflow condition
XORed into conditions 2 and 3 may optionally include the overflow that is generated during the pre-
shift operation. The only overflow that must be included is the one actually generated by the arithmetic

Table 5-1. Arithmetic/Logical Operation Conditions

c Description

0 never; nothing
1 all bits are 0
2 (leftmost bit is 1) xor signed overflow
3 all bits are 0 or (leftmost bit is 1 xor signed overflow)

adds subtracts/compares
4 no unsigned overflow unsigned overflow
5 all bits are 0 or no unsigned overflow all bits are 0 or unsigned overflow
6 signed overflow
7 rightmost bit is 1

Table 5-2. Overflow Results

Instructions Unsigned Overflow Signed Overflow

Adds The result of an unsigned
addition is greater than
(carry == 1).

The result of signed addition is not representable
in 32-bit two’s complement notation (both
source operands have the same sign and the sign
of the 32-bit result is different)

Subtracts
and
Compares

The result of an unsigned
subtraction is less than 0 (i.e.,b
is greater thana in the
operationc = a - b; borrow ==
0).

The result of signed subtraction is not
representable in 32-bit two’s complement
notation (both the source operands have different
signs and the sign of the 32-bit result differs
from the sign of the first operand; i.e.,a has a
different sign thanb andc in the operationc = a -
b).

Divide Step
and Shift and
Adds

One or more of the bits shifted
out is 1, or the result of the
operation is not in the range 0
through .

One or more of the bits shifted out differs from
the leftmost bit following the shift, or the result
of the operation is not representable in 32-bit
two’s complement notation.

2
32

1–

2
32

1–

5-4 Instruction Set PA-RISC 1.1 Architecture

operation.

If a signed overflow occurs during the shift operation of aDIVIDE STEP or SHIFT AND ADD instruction,
conditions 2 and 3 are not meaningful; therefore, the result of a condition 2 or condition 3 test is not
predictable.

PROGRAMMING NOTE
The figure below shows signed number addition and indicates the signed overflow condition
when both operands are small positive numbers, large positive numbers, large negative
numbers, or small negative numbers.

Signed overflow can occur only when adding numbers with the same sign. Addition of
numbers with unlike signs will always result with a "no overflow" condition.

The interpretation of the arithmetic/logical conditions varies according to the operation performed. The
interpretation for comparisons and subtracts is shown in Table 5-3. In this table,cond is in assembly
language format andc andf are in machine language format.opd1 denotes operand 1 (an immediate
value or a register’s contents) in the assembly language instruction format andopd2 denotes operand 2
(a register’s contents). The condition, <<, "opd1 is less than opd2 (unsigned)" is equivalent to unsigned
overflow in Table 5-1.

GR[r1]

GR[r2]

GR[t]

small
positive
numbers

large
positive
numbers

large
negative
numbers

small
negative
numbers

0 0

sign

0 1

sign

1 0

sign

1 1

sign

0 0 0 1 1 0 1 1

0
no

overflow 1 overflow 0 overflow 1
no

overflow

5-5PA-RISC 1.1 Architecture Instruction Set

The interpretation for adds is shown in Table 5-4.Cond is in assembly language format andc andf are
in machine language format.

The interpretation of the condition completers for theSHIFT AND ADD instructions is similar to the
ADD instructions (Table 5-4). If no overflow occurs,opd1 is the shifted value. For example, the
completer "=" implies that the shiftedopd1 equals the negative ofopd2. If overflow occurs, the
interpretations in Table 5-4 do not apply. Table 5-1 and the definition of overflow in Table 5-2 can be

Table 5-3. Compare/Subtract Instruction Conditions

cond Description c f

never 0 0
= opd1 is equal to opd2 1 0
< opd1 is less than opd2 (signed) 2 0

<= opd1 is less than or equal to opd2 (signed) 3 0
<< opd1 is less than opd2 (unsigned) 4 0

<<= opd1 is less than or equal to opd2 (unsigned) 5 0
SV opd1 minus opd2 overflows (signed) 6 0
OD opd1 minus opd2 is odd 7 0
TR always 0 1
<> opd1 is not equal to opd2 1 1
>= opd1 is greater than or equal to opd2 (signed) 2 1
> opd1 is greater than opd2 (signed) 3 1

>>= opd1 is greater than or equal to opd2 (unsigned) 4 1
>> opd1 is greater than opd2 (unsigned) 5 1

NSV opd1 minus opd2 does not overflow (signed) 6 1
EV opd1 minus opd2 is even 7 1

Table 5-4. Add Instruction Conditions

cond Description c f

never 0 0
= opd1 is equal to negative of opd2 1 0
< opd1 is less than negative of opd2 (signed) 2 0

<= opd1 is less than or equal to negative of opd2 (signed) 3 0
NUV opd1 plus opd2 does not overflow (unsigned) 4 0
ZNV opd1 plus opd2 is zero or no overflow (unsigned) 5 0
SV opd1 plus opd2 overflows (signed) 6 0
OD opd1 plus opd2 is odd 7 0
TR always 0 1
<> opd1 is not equal to negative of opd2 1 1
>= opd1 is greater than or equal to negative of opd2 (signed) 2 1
> opd1 is greater than negative of opd2 (signed) 3 1

UV opd1 plus opd2 overflows (unsigned) 4 1
VNZ opd1 plus opd2 is nonzero and overflows (unsigned) 5 1
NSV opd1 plus opd2 does not overflow (signed) 6 1
EV opd1 plus opd2 is even 7 1

5-6 Instruction Set PA-RISC 1.1 Architecture

used to determine if the condition is satisfied.

The interpretation of the condition completers for theDIVIDE STEP instruction are similar to the
subtract or add conditions, depending on the state of the PSW V-bit. If no overflow occurs, thenopd1 is
the shifted value. If overflow occurs, the interpretations in Tables 5-3 and 5-4 do not apply. Again,
Tables 5-1 and 5-2 can be used to determine if the condition is satisfied.

For logical operations, the conditions are computed based only on the result. The interpretation of the
arithmetic/logical conditions for logical instructions is shown in Table 5-5. In this table,cond is in
assembly language format andc and f are in machine language format. The unlisted values of the
condition field are undefined for the logical operations.

Unit Conditions
The operations concerned with sub-units of a word generate the conditions shown in Table 5-6. The
conditions are computed based on the 32-bit result of the unit operation and the eight 4-bit carries. In
this table,cond is in assembly language format andc andf are in machine language format. The unlisted
values of the condition field are undefined for the unit operations.

Table 5-5. Logical Instruction Conditions

cond Description c f

never 0 0
= all bits are 0 1 0
< leftmost bit is 1 2 0

<= leftmost bit is 1 or all bits are 0 3 0
OD rightmost bit is 1 7 0
TR always 0 1
<> some bits are 1 1 1
>= leftmost bit is 0 2 1
> leftmost bit is 0, some bits are 1 3 1

EV rightmost bit is 0 7 1

Table 5-6. Unit Instruction Conditions

cond Description c f

never 0 0
SBZ Some Byte Zero 2 0
SHZ Some Halfword Zero 3 0
SDC Some Digit Carry 4 0
SBC Some Byte Carry 6 0
SHC Some Halfword Carry 7 0
TR always 0 1

NBZ No Bytes Zero 2 1
NHZ No Halfwords Zero 3 1
NDC No Digit Carries 4 1
NBC No Byte Carries 6 1
NHC No Halfword Carries 7 1

5-7PA-RISC 1.1 Architecture Instruction Set

Shift/Extract/Deposit Conditions
The shift, extract, and deposit operations generate the conditions shown in Table 5-7. The conditions are
computed based on the 32-bit result of the operation. In this table,cond is in assembly language format
andc is in machine language format. TheBRANCH ON BIT instructions use only the "<" (leftmost bit is
1) and ">=" (leftmost bit is 0) conditions. TheMOVE AND BRANCH instructions also use the extract/
deposit conditions.

Instruction Notations
Each instruction is described in detail in the following pages. Each description includes the full name of
the instruction, the assembly language mnemonic and syntax format, machine instruction format,
purpose, a narrative description, an operational description, exceptions, and notes concerning usage. In
some cases, programming notes are included for additional guidance to programmers. The instruction’s
operation is described in a C-like algorithmic language. This language is the same as the C
programming language with a few exceptions. These are:

1. The characters "{}" are used to denote bit fields.

2. The assignment operator used is "←" instead of "=".

3. The functions "cat" (concatenation), and "xor" (logical exclusive OR) take a variable number of
arguments, for which there is no provision in C.

4. The switch statement usage is improper because we do not use constant expressions for all the
cases.

For the complete syntax and other considerations used in writing assembly language programs, please
refer to theAssembly Language Reference Manual.

Bit Ranges
A range of bits within a larger unit, is denoted by "unit{range}", where unit is the notation for memory,
a register, a temporary, or a constant; range is a single integer to denote one bit, or two integers
separated by ".." to denote a range of bits.

For example, "GR[1]{0}" denotes the leftmost bit of general register 1, "CR[24]{27..31}" denotes the

Table 5-7. Shift/Extract/Deposit Instruction Conditions

cond Description c

never 0
= all bits are 0 1
< leftmost bit is 1 2

OD rightmost bit is 1 3
TR always 4
<> some bits are 1 5
>= leftmost bit is 0 6
EV rightmost bit is 0 7

5-8 Instruction Set PA-RISC 1.1 Architecture

rightmost five bits of control register 24, and "5{0..6}" denotes a 7-bit field containing the number 5. If
m > n, then {m..n} denotes the null range.

Registers
In general, a register name consists of two or three uppercase letters. The name of a member of a
register array consists of a register name followed by an index in square brackets. For example, "GR[1]"
denotes general register 1.

The named registers and register arrays used in the operational descriptions are:

The Processor Status Word and the Interruption Processor Status Word, denoted by "PSW" and "IPSW",
are treated as a series of 1-bit and multiple-bit fields. A field of either is denoted by the register name
followed by a field name in square brackets, and bit ranges within such fields are denoted by the usual
notation. For example, PSW[C/B] denotes the 8-bit carry/borrow field of the PSW and PSW[C/B]{0}
denotes bit 0 of that field.

Temporaries
A temporary name comprises three or more lowercase letters and denotes a quantity which requires
naming, either for clarity, or because of limitations imposed by the sequentiality of the operational
notation. It may or may not represent an actual processing resource in the hardware. The length of the
quantity denoted by a temporary is implicitly determined and is equal to that of the quantity first
assigned to it in an operational description.

Operators
The operators used and their meanings are as follows:

All operators are binary, except that “∼” is unary and “–” is both binary and unary, depending on the

Register Range Description

GR[t] t = 0..31 General registers
SHR[t] t = 0..6 Shadow registers
SR[t] t = 0..7 Space registers
CR[t] t = 0, 8..31 Control registers
CPR[uid][t] t = 0..31 Coprocessor "uid" registers
FPR[t] t = 0..31 Floating-point coprocessor registers

← assignment | bitwise or
+ addition == equal to
– subtraction < less than
* multiplication > greater than
~ bitwise complement != not equal to
&& logical and <= less than or equal to
& bitwise and >= greater than or equal to
|| logical or

5-9PA-RISC 1.1 Architecture Instruction Set

context.

Control Structures and Functions
The control structures used in the notation are relatively standard. The expression statements describe a
computation performed by the ALU or some other hardware for its side effects rather than the value of
the computation. The functions listed below are used to localize long calculations that are used in
several places. Semicolons separate the statements.

Function Description
assemble_3(x) Assembles a 3-bit space register number:

return(cat(x{2},x{0..1}))

assemble_12(x,y) Assembles a 12-bit immediate:
return(cat(y,x{10},x{0..9}))

assemble_17(x,y,z) Assembles a 17-bit immediate:
return(cat(z,x,y{10},y{0..9}))

assemble_21(x) Assembles a 21-bit immediate:
return(cat(x{20},x{9..19},x{5..6},x{0..4},x{7..8}))

cat(x1, ..., xn) Concatenates the passed arguments,x1 throughxn.

low_sign_ext(x,len) Removes the rightmost bit ofx and extends the field to the left with that
bit to form a 32-bit quantity. The field is of sizelen:

return(sign_ext(cat(x{len-1},x{0..len-2}),len))

lshift(arg1,arg2) arg1 is logically shifted left by the number of bits specified inarg2.

mem_load See “Memory Reference Instructions” on page 5-15.

mem_store See “Memory Reference Instructions” on page 5-15.

rshift(arg1,arg2) arg1 is logically shifted right byarg2 bits.

send_to_copr(u,t) Sends the 5-bit valuet to coprocessor unitu.

sign_ext(x,len) Extendsx on the left with sign bits to form a 32-bit quantity, taking the
leftmost bit for the field of sizelen as the sign bit.

sign_ext_64(x,len) Identical to sign_ext(x,len) except that it extends the value to 64 bits:
sign_ext_64(x,len)
{

if (x{0} == 1)
return(cat(-1{0..31},sign_ext(x,len));

else
return(cat(0{0..31},sign_ext(x,len));

}

store_in_memory(space,offset,low,high,hint,data)

The function store_in_memory is identical to mem_store except that it
forces the data to be stored into main memory. The data may optionally
remain in the cache.

5-10 Instruction Set PA-RISC 1.1 Architecture

Miscellaneous Constructs
Numerous mnemonic constructs are used to represent things that do not fit easily into the rest of the
notation described above or whose details are more implementation-dependent than defined.

xor(x1, ..., xn) Produces the bitwise exclusive or of the passed arguments.

zero_ext(x,len) Extendsx on the left, for the field of sizelen, with zeros to form a 32-bit
quantity.

zero_ext_64(x,len) Identical to zero_ext(x,len) except that it extends the value to 64 bits:
return(cat(0{0..31},zero_ext(x,len)))

Function Description
absolute_address(space,offset) Returns the absolute address corresponding to the

passed virtual address.

alloc_DTLB(space,offset,entry) Allocates a slot in the data TLB based on the space
and offset arguments. The position of the slot is
returned through the pointer called entry.

alloc_ITLB(space,offset,entry) Same as alloc_DTLB, except that a new slot is
allocated in the instruction TLB.

broadcast_purge_DTLB(space,offset) In a multiprocessor system, the other processors
are made to search their data TLBs for a
translation matching the specified virtual address.
If found, they invalidate, remove, or alter the
matching entries.

broadcast_purge_ITLB(space,offset) In a multiprocessor system, the other processors
are made to search their instruction TLBs for a
translation matching the specified virtual address.
If found, they invalidate, remove, or alter the
matching entries.

coherence_index(space,offset) Returns the coherence index corresponding to the
passed effective address. See “Cache Coherence
with I/O” on page 3-17.

coherent_system Boolean; the value is 1 if the system is fully
coherent; the value is 0 if the system is partially or
completely non-coherent.

coprocessor_condition(id,opcode,n) A coprocessor specific condition is returned based
on the arguments and the current state of the
coprocessor.

coprocessor_op(id,opcode,n,priv) A coprocessor specific operation is performed
based on the arguments and the current state of the
coprocessor.

Function Description

5-11PA-RISC 1.1 Architecture Instruction Set

flush_data_cache(space,offset) If the cache line containing the effective address is
present, it is invalidated. If the line is dirty, it is
written back to main memory.

flush_data_cache_entry(space,offset) Zero or more cache lines specified by an
implementation-dependent function of the address
are invalidated. If any of these lines are dirty, they
are written back to main memory.

flush_instruction_cache(space,offset) If the cache line containing the effective address is
present, it is invalidated. If the line is dirty it is
written back to main memory.

flush_instruction_cache_entry(space,offset) Zero or more cache lines specified by an
implementation-dependent function of the address
are invalidated. If any of these lines are dirty, they
are written back to main memory.

level_0 Boolean; the value is 1 if the processor
architecture is Level 0.

measurement_enabled Boolean; when the value is 1, the performance
monitor coprocessor is enabled to make
measurements; when the value is 0, the
measurements are disabled. This condition is
independent of the state of CCR bit 2.

phys_mem_load(addr,low,high,hint) Returns the data in physical memory (consisting
of memory and the cache) starting at the low’th bit
beyond the beginning of the byte at address, addr,
and ending at the high’th bit beyond the beginning
of the byte at address, addr. If the PSW E-bit is 1,
the data bytes are swapped before they are
returned. The cache control hint, hint, is a
recommendation to the processor on how to
resolve cache coherence. See “Cache Control” on
page 5-17. This function is used for absolute
accesses to memory.

phys_mem_store(addr,low,high,hint,data) Stores the data in physical memory (consisting of
memory and the cache) starting at the low’th bit
beyond the beginning of the byte at address, addr,
and ending at the high’th bit beyond the beginning
of the byte at address, addr. If the PSW E-bit is 1,
the data bytes are swapped before they are stored.
The cache control hint, hint, is a recommendation
to the processor on how to resolve cache
coherence. See “Cache Control” on page 5-17.
This function is used for absolute accesses to
memory.

Function Description

5-12 Instruction Set PA-RISC 1.1 Architecture

purge_DTLB(entry) The specified TLB entry is invalidated, removed,
or altered.

purge_DTLB_entry(entries) The E-bit(s) of the zero or more data TLB entries
specified are set to 0. All other fields of these TLB
entries are undefined.

purge_ITLB(entry) The specified TLB entry is invalidated, removed,
or altered.

purge_ITLB_entry(entries) The E-bit(s) of the zero or more instruction TLB
entries specified are set to 0. All other fields of
these TLB entries are undefined.

purge_or_flush_data_cache(space,offset) If the cache line specified by the effective address
is present, it is invalidated. If the line is dirty, it
may optionally be written back to memory.

read_access_allowed(space,offset,x) In non-Level 0 systems, returns 1 if read access is
allowed to the effective address at the privilege
level given by the two rightmost bits ofx. Returns
0 otherwise. Always returns 1 in Level 0 systems.

search_DTLB(space,offset,entry) Searches the data TLB for an entry (valid or
invalid) whose virtual address matches the virtual
address passed to it, and returns true if it finds one.
As a side effect, if such a translation is found, the
variable entry is set to point to the TLB slot
containing this translation.

search_ITLB(space,offset,entry) Same as search_DTLB, except that the instruction
TLB is searched.

select_data_cache_entries(space,offset) An implementation-dependent function which
returns a list of zero or more entries.

select_instruction_cache_entries(space,offset) An implementation-dependent function which
returns a list of zero or more entries.

select_DTLB_entries(space, offset) An implementation-dependent function which
returns a list of zero or more entries.

select_ITLB_entries(space, offset) An implementation-dependent function which
returns a list of zero or more entries.

sfu_condition0(opcode,priv)
sfu_condition1(opcode,priv)
sfu_condition2(opcode,priv,r)
sfu_condition3(opcode,priv,r1,r2)

An SFU specific condition is returned based on the
SFU instruction format, the arguments, and the
current state of the special function unit.

sfu_operation0(opcode,priv)
sfu_operation1(opcode,priv)
sfu_operation2(opcode,priv,r)
sfu_operation3(opcode,priv,r1,r2)

An SFU specific operation is performed based on
SFU instruction format, the arguments, and the
current state of the special function unit.

Function Description

5-13PA-RISC 1.1 Architecture Instruction Set

space_select(s_field,base) Returns the space ID selected by the s-field of the
instruction and the base register value as follows:

space_select(s_field,base)
{

if (level_0)
return(0);

if (s_field == 0)
return(SR[base{0..1} + 4]);

else
return(SR[s_field]);

}

virt_mem_load(addr,low,high,hint) Returns the data in virtual memory (consisting of
memory and the cache) starting at the low’th bit
beyond the beginning of the byte at address, addr,
and ending at the high’th bit beyond the beginning
of the byte at address, addr. If the PSW E-bit is 1,
the data bytes are swapped before they are
returned. The cache control hint, hint, is a
recommendation to the processor on how to
resolve cache coherence. See “Cache Control” on
page 5-17. This function is used for virtual
accesses to memory.

virt_mem_store(addr,low,high,hint,data) Stores the data in virtual memory (consisting of
memory and the cache) starting at the low’th bit
beyond the beginning of the byte at address, addr,
and ending at the high’th bit beyond the beginning
of the byte at address, addr. If the PSW E-bit is 1,
the data bytes are swapped before they are stored.
The cache control hint, hint, is a recommendation
to the processor on how to resolve cache
coherence. See “Cache Control” on page 5-17.
This function is used for virtual accesses to
memory.

write_access_allowed(space,offset,x) In non-Level 0 systems, returns 1 if write access is
allowed to the effective address at the privilege
level given by the two rightmost bits ofx. Returns
0 otherwise. Always returns 1 in Level 0 systems.

Function Description

5-14 Instruction Set PA-RISC 1.1 Architecture

Instruction Descriptions
Figure 5-1 illustrates the information presented in each of the instruction descriptions. The information
presented in this figure is for illustrative purposes only and does not represent a valid instruction.

Figure 5-1. Instruction Description Example

DO OPERATION DO

Format: DO,cond r1,r2,t

Purpose: To perform a 32-bit, bitwise DO operation.

Description: GR r1 and GRr2 are DOed and the result is placed in GRt. The
following instruction is nullified if the values DOed satisfy the
specified condition,cond. The condition is encoded in thec and f
fields of the instruction.

Conditions: The condition is any of the logical conditions (Table 5-5 on
page 5-6). When a condition completer is not specified, then the
"never" condition is used. The boolean variable "cond_satisfied" in
the operation section is set to 1 when the values DOed satisfy the
specified condition.

Operation: GR[t] ← GR[r1] DO GR[r2];
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

Restrictions: None

Notes: The DOIT pseudo-operation allows for the transformation of data
from one register to another by generating the instruction DO r,0,t.
The DONT pseudo-operation generates the instruction DO 0,0,0.

Level 0: No restrictions.

Op r2 r1 c f 12 t

6 5 5 3 1 7 5

Instruction mnemonic
 and descriptive name

Assembly language
source statement syntax

Opcode and fields of
the instruction format

Short description of
instruction operation

Full description of
instruction operation

Equations that describe
instruction operation

Defined conditions that
could cause an interruption

General restrictions on
instruction usage

General notes on
implementation

Level 0
restructions

Condition codes that are
valid for the instruction

5-98 Instruction Set PA-RISC 1.1 Architecture

5-15PA-RISC 1.1 Architecture Instruction Set

5Instruction Set

Memory Reference Instructions
Memory reference instructions load values into and store values from the general registers. The types
included are: short displacement, long displacement, and indexed. It is possible to modify the base value
in a general register by the displacement or index.

The rightmost bits of computed addresses are not ignored. Unaligned load and store instructions with
data address translation enabled to halfwords, words, or doublewords cause an unaligned data reference
trap. Semaphore operations and absolute accesses to unaligned data are undefined operations.

Memory reference instructions work directly between the registers and main memory. They also can
operate between the registers and the data cache on implementations so equipped. A load instruction
loads a general register with data from the data cache. A store instruction stores a data value from a
general register into the data cache. Normally this distinction is transparent to the programmer, but
provisions are made for cache and TLB operations requiring cognizance of the data cache (see “System
Control Instructions” on page 5-136). A cache line can be 16, 32, or 64 bytes in length.

Depending on the state of the PSW D-bit (data address translation bit), all load and store instructions
perform virtual accesses (when the PSW D-bit is 1) or physical accesses (when the PSW D-bit is 0). In
Level 0 systems or when data translation is disabled (PSW D-bit is 0), the s-field of the instruction is
ignored and the 32-bit offset is directly used as the absolute address.LOAD WORD ABSOLUTE
INDEXED, LOAD WORD ABSOLUTE SHORT, STORE WORD ABSOLUTE SHORT, and all loads and
stores in Level 0 systems always perform absolute accesses.

The state of the PSW E-bit determines whether the data which is loaded or stored is big endian (when
the PSW E-bit is 0) or little endian (when the PSW E-bit is 1).

Memory is accessed using the following procedures:

mem_load(space,offset,low,high,hint)
{

addr ← cat(space, offset);
if (PSW[D] == 0 || level_0)

return(phys_mem_load(addr,low,high,hint));
else

return(virt_mem_load(addr,low,high,hint));
}

mem_store(space,offset,low,high,hint,data)
{

addr ← cat(space, offset);
if (PSW[D] == 0 || level_0)

phys_mem_store(addr,low,high,hint,data);
else

virt_mem_store(addr,low,high,hint,data);
}

In order to determine if a memory reference instruction is defined or undefined and whether it is
executed in an atomic or non-atomic fashion, the following must be considered:

5-16 Instruction Set PA-RISC 1.1 Architecture

1. Whether the memory reference is virtual or absolute.

2. Whether or not the optional U (Uncacheable) bit is implemented.

3. The state of the U-bit, if implemented.

4. Whether the reference is made to a page in the memory or the I/O address space.

The following paragraphs specify the rules under which the above considerations determine if an
instruction is defined or undefined and if it is executed in an atomic or non-atomic fashion.

If the absolute or virtual reference is made to a page in the memory address space then:

• the load and store instructions operating on bytes, halfwords, and words are defined and atomic.

• the coprocessor load and store instructions operating on words and doublewords are defined and
atomic.

• theSTBYS instruction is defined and atomic.

• the flush and purge instructions are also defined and atomic.

• the LDCW instruction is defined, except if there is a virtual access to a page with its U-bit 1, in
which case it is undefined.

If the reference is made to a page in the I/O address space and:

• the access is absolute, or

• the access is virtual and the U-bit is not implemented, or

• the access is virtual and the U-bit is implemented and is 1, then:

• the load and store instructions operating on bytes, halfwords, and words are defined and
atomic.

• theSTBYS instruction is defined but performed in a non-atomic fashion.

• the coprocessor load and store instructions operating on words and doublewords are undefined.

• theLDCW instruction is undefined.

• the flush and purge instructions are undefined.

All virtual accesses to a page in the I/O address space with its U-bit 0 are undefined.

LOAD OFFSET, LOAD IMMEDIATE LEFT, LOAD PHYSICAL ADDRESS, LOAD COHERENCE INDEX,
andLOAD SPACE IDENTIFIER are not memory reference instructions.

5-17PA-RISC 1.1 Architecture Instruction Set

PROGRAMMING NOTE
Execution may be faster if software avoids dependence on register interlocks. Instruction
scheduling to avoid the need for interlocking is recommended. A register interlock will occur
if an instruction attempts to use a register which is the target of a previous load instruction that
has not yet completed. This does not restrict the length of the delay a load instruction may
incur in a particular system to a single execution cycle; in fact, the delay may be much longer
for a cache miss, a TLB miss, or a page fault.

Debugging is facilitated by the data memory break trap. This trap occurs whenever a store (other than
STORE WORD ABSOLUTE SHORT), a LOAD AND CLEAR WORD INDEXED, a LOAD AND CLEAR
WORD SHORT, or a purge data cache operation is performed to a page with the B-bit 1 in its TLB entry
and the PSW X-bit is 0.

Cache Control
Some memory reference instructions contain a 2-bit cache control field,cc, which provides a hint to the
processor on how to resolve cache coherence. The processor may disregard the hint without
compromising system integrity, but performance may be enhanced by following the hint.

There are three different categories of cache control hints: load instruction cache control hints, store
instruction cache control hints, and load and clear word instruction cache control hints. The cache
control hints are specified by thecc completer to the instruction and encoded in thecc field of the
instruction.

The cache control hints for indexed load, coprocessor indexed load, and short displacement load
instructions are shown in Table 5-8. Implementation of the hints by a processor is optional, but the
processor must treat unimplemented and Reserved hints as if no hint had been specified.

The Spatial Locality cache control hint is a recommendation to the processor to fetch the addressed
cache line from memory but to not displace any existing cache data because there is good spatial
locality but poor temporal locality.

The cache control hints for short displacement store,STORE BYTES SHORT, and coprocessor indexed
store instructions are shown in Table 5-9. Implementation of the hints by a processor is optional, but the
processor must treat unimplemented and Reserved hints as if no hint had been specified.

The Block Copy cache control hint is a recommendation to the processor not to fetch the addressed
cache line if it is not found in the cache. Instead, the processor may create a cache line for the specified

Table 5-8. Load Instruction Cache Control Hints

Completer Description cc

<none> No hint 00

Reserved 01

SL Spatial Locality 10

Reserved 11

5-18 Instruction Set PA-RISC 1.1 Architecture

address and perform the store instruction on the created line. If the cache line is not fetched then the
processor must zero the rest of the created cache line if the privilege level is 1, 2, or 3. The processor
may optionally zero the rest of created the cache line if the privilege level is 0. If the store instruction
with the Block Copy hint does not store into at least the first byte of the cache line, the processor must
perform the store as if the cache control hint had not been specified.

The Spatial Locality cache control hint is a recommendation to the processor to fetch the addressed
cache line from memory but to not displace any existing cache data because there is good spatial
locality but poor temporal locality.

The cache control hints for theLOAD AND CLEAR WORD INDEXED andLOAD AND CLEAR WORD
SHORT semaphore instructions are shown in Table 5-10. The implementation of the hints by the
processor is optional. If no hints are implemented, the processor must treat all hints as if no hint had
been specified. If the Coherent Operation hint is implemented, the processor must treat Reserved hints
as if the Coherent Operation hint had been specified.

The Coherent Operation cache control hint is a recommendation to the processor, that if the addressed
data is already in the cache, it can operate on the addressed data in the cache rather than having to
update memory.

All software users of a semaphore must access the semaphore using the same cache control hint.
Sharing a semaphore using different cache control hints is undefined.

Loads and Stores
This section describes memory load and store instructions that have long displacements but which do
not modify the base register. This class of instructions loads data from memory into the general register
denoted by thet field and stores data from the general register denoted by ther field to memory. The
effective memory reference address is formed by the addition of a displacement to a base value
specified through the instruction. The entity being transferred can be a word, halfword, or a byte. The
14-bit byte displacement is in two’s complement notation with the sign bit as its rightmost bit denoted

Table 5-9. Store Instruction Cache Control Hints

Completer Description cc

<none> No hint 00

BC Block Copy 01

SL Spatial Locality 10

Reserved 11

Table 5-10. Load And Clear Word Instruction Cache Control Hints

Completer Description cc

<none> No hint 00

CO Coherent Operation 01

Reserved 10

Reserved 11

5-19PA-RISC 1.1 Architecture Instruction Set

by theim14 field. The opcode specifies the particular data transfer to be performed.

The format of the load and store instructions is:

When data translation is enabled, the effective space ID is the contents of the space register indicated by
the s-field if the s-field is nonzero. If the s-field is 0, the effective space ID is the contents of the space
register whose number is the sum of 4 and the two leftmost bits of GRb. In Level 0 systems or when
data translation is disabled, the s-field of the instruction is ignored and the offset is directly used as the
address.

The effective offset is the sum of the contents of GRb and the sign-extended displacementd.

The address calculation is shown in Figure 5-2 and Figure 5-3 in two parts: Figure 5-2 shows space
identifier selection, while Figure 5-3 shows offset computation. In systems which support virtual
addressing, the effective address is formed by the concatenation of the space identifier and the offset.

op b t/r s im14

6 5 5 2 14

Figure 5-2. Space Identifier Selection

GR[b]

Space Registers

Data
Reference

s-field

s-field = 0

2

Space Registers

Data
Reference
s-field = 0

2

3

4

SR[4]

SR[5]

SR[6]

SR[7]

SR[1]

SR[2]

SR[3]

Space ID Space ID

5-20 Instruction Set PA-RISC 1.1 Architecture

Loads and Stores with Base Register Modification
This class of instructions loads data from memory into the general register denoted by thet field and
stores data from the general register denoted by ther field to memory. The effective memory reference
address is formed by the addition of an immediate displacement to a base value. The entity being loaded
is a word. The 14-bit byte displacement is in two’s complement notation with the sign bit as its
rightmost bit denoted by theim14 field. In these instructions, base register modification always takes
place.

The format of these instructions is:

The calculation of the effective space ID for these instructions is the same as for the loads and stores
described in the previous section. The effective offset, however, depends on the sign of the
displacementd.

• Pre-decrement - ifd is negative, its sign-extended value is added to GRb and the result is stored in
GR b. The effective offset is the value stored in GRb.

• Post-increment - ifd is positive, the effective offset is the original contents of GRb. The sum of the
contents of GRb and the sign-extended value ofd is stored in GRb.

The space identifier is computed like any other data memory reference (see Figure 5-2 on page 5-19).
The calculation of the offset portion of the effective address for different completers is shown in
Figure 5-4.

Figure 5-3. Loads and Stores

op b t/r s im14

6 5 5 2 14

Displacement

Effective Address

Space ID

General Registers
0

Base

Low Sign

Offset

32

31

Extend

im14

32

32

5-21PA-RISC 1.1 Architecture Instruction Set

Indexed Loads
This class of instructions loads data from memory into a general register, specified in the instruction,
where the effective memory reference address is formed by the addition of an index value to a base
value specified in the instruction. The entity being loaded can be a word, halfword, or a byte. This class
also includes theLOAD AND CLEAR WORD INDEXED instruction.

The format of the indexed load instructions is:

Theu andm fields specify the actual function as follows:

u = 0 index register.
= 1 index register shifted by data size.

m = 0 no base register modification.
= 1 base register modification.

Index shift by data size means that the index value (contents of general registerx) is multiplied by the
size of the data item being loaded - 1 if it is a byte load, 2 for a halfword load, and 4 for a word load
(these correspond to shifts by 0, 1, and 2 bits, respectively). Base register modification also results in the
contents of GRb being replaced by the sum of the index value and the previous contents of GRb.

Thecc field specifies the cache control hint (see Table 5-8 on page 5-17 and Table 5-10 on page 5-18).

In the instruction descriptions on the following pages, the termcmplt is used to denote the completer

Figure 5-4. Load and Store Word Modify

03 b x s u 0 cc ext4 m t

6 5 5 2 1 1 2 4 1 5

Displacement

Effective Address

Space ID

General Registers
0

Base

Low Sign

Offset

32

31

Extend

im14

32

32

Displacement

Effective Address

Space ID

General Registers
0

Base

Low Sign

Offset

32

31

Extend

im14

32

32

Displacement < 0 Displacement> 0

5-22 Instruction Set PA-RISC 1.1 Architecture

field which encodes theu andm fields. The list of completers and the address formation functions they
specify appear in Table 5-11.

In the above table,cmplt is in assembly language format andu andm are in machine language format.

The space identifier is computed like any other data memory reference (see Figure 5-2 on page 5-19).
The calculation of the offset portion of the effective address for different completers is shown in
Figure 5-5.

Table 5-11. Indexed Load Completers

cmplt Description u m

<none> no index shift, don’t modify base register 0 0

M no index shift, modify base register 0 1

S Shift index by data size, don’t modify base register 1 0

SM or S,M Shift index by data size, modify base register 1 1

5-23PA-RISC 1.1 Architecture Instruction Set

Short Displacement Loads and Stores
This set of instructions uses a short 5-bit displacement to load and store data values from and to
memory. The effective address is formed by the addition of the low sign extended displacement to a
base register. The sign bit of the short displacement is the rightmost bit of the 5-bit field, which is in
two’s complement notation. The entities being loaded or stored can be words, halfwords, or bytes. This

Figure 5-5. Indexed Loads

Effective AddressEffective Address

,S Completer ,M Completer

Effective Address

Space ID Offset

left

Effective Address

Space ID

General Registers
0

Base

Shifted

Offset

32

31

Indexshift

32

32

,SM or ,S,M Completer No Completer Specified

Index

General Registers
0

Base
32

31

32

32

Index

Space ID Offset

left

General Registers
0

Base

Shifted

32

31

Indexshift

32

32

Index

Space ID Offset

General Registers
0

Base
32

31

32

Index

32

5-24 Instruction Set PA-RISC 1.1 Architecture

class also includes theLOAD AND CLEAR WORD SHORT instruction.

The format of the short displacement load instructions is:

and that of the short displacement stores is:

Theext4 field in the instruction format above specifies a load or a store and the data size. Thea andm
fields specify the following functions:

a = 0 modify after if m = 1.
= 1 modify before if m = 1.

m = 0 no address modification.
= 1 address modification.

The cc field specifies the cache control hint (see Table 5-8 on page 5-17, Table 5-9 on page 5-18, and
Table 5-10 on page 5-18).

In the instruction descriptions that follow, some information is coded into the instruction names and the
remainder is coded in the completer field (denoted bycmplt in the descriptions). Table 5-12 lists the
assembly language syntax of the completer, the functions performed, and the values coded into thea
andm bit fields of the instruction.

In the above table,cmplt is in assembly language format anda andm are in machine language format.

The space identifier is computed like any other data memory reference (see Figure 5-2 on page 5-19).
The calculation of the offset portion of the address for different completers is shown in Figure 5-6.

03 b im5 s a 1 cc ext4 m t

6 5 5 2 1 1 2 4 1 5

03 b r s a 1 cc ext4 m im5

6 5 5 2 1 1 2 4 1 5

Table 5-12. Short Displacement Load and Store Completers

cmplt Description a m

<none> don’t modify base register x 0

MA Modify base register After 0 1

MB Modify base register Before 1 1

Notes: x indicates don’t care.

5-25PA-RISC 1.1 Architecture Instruction Set

Figure 5-6. Short Displacement Loads and Stores

0

31

Base

General
Registers

32
+

32

32

32

Short
Displacement

im5

Space ID Offset

Low Sign
Extend

Effective Address

,MB Completer

0

31

Base

General
Registers

32
+

32

32

32

Short
Displacement

im5

Space ID Offset

Low Sign
Extend

0

31

Base

General
Registers

32
+

32

32

Short
Displacement

im5

Space ID Offset

Low Sign
Extend

Effective Address

,MA Completer

Effective Address

No Completer Specified

5-26 Instruction Set PA-RISC 1.1 Architecture

Store Bytes Short Instruction
STORE BYTES SHORT provides the means for doing unaligned byte moves efficiently. It uses a short 5-
bit displacement to store bytes to unaligned destinations. The short displacement field is in two’s
complement notation. The sign bit is the rightmost bit of the field; the remaining bits are in the usual
order.

The format of theSTORE BYTES SHORT instruction is:

Thea andm fields specify the following functions:

a = 0 store bytes beginning at the effective byte address in the word.
= 1 store bytes ending at the effective byte address in the word.

m = 0 no address modification.
= 1 address modification.

Thecc field specifies the cache control hint (see Table 5-9 on page 5-18).

In the instruction descriptions that follow, some information is coded into the instruction names and the
remainder is coded in the completer field (denoted bycmplt in the descriptions). Table 5-13 lists the
assembly language syntax of the completer, the functions performed, and the values coded into thea
andm bit fields of the instruction.

In the above table,cmplt is in assembly language format anda andm are in machine language format.

The space identifier is computed like any other data memory reference (see Figure 5-2 on page 5-19).
The calculation of the offset portion of the address for different completers is shown in Figure 5-7.

The actual offset and modified address involves some alignment and other considerations. Refer to the
instruction description pages for an exact definition.

03 b r s a 1 cc C m im5

6 5 5 2 1 1 2 4 1 5

Table 5-13. Store Bytes Short Completers

cmplt Description a m

<none> or B Beginning case, don’t modify base register 0 0

B,M Beginning case, Modify base register 0 1

E Ending case, don’t modify base register 1 0

E,M Ending case, Modify base register 1 1

5-27PA-RISC 1.1 Architecture Instruction Set

Figure 5-7. Store Bytes Short

0

31

Base

General
Registers

32
+

32

32

32

Short
Displacement

im5

Space ID Offset

Low Sign
Extend

Effective Address

,E,M Completer

0

31

Base

General
Registers

32
+

32

32

32

Short
Displacement

im5

Space ID Offset

Low Sign
Extend

0

31

Base

General
Registers

32
+

32

32

Short
Displacement

im5

Space ID Offset

Low Sign
Extend

Effective Address

,B,M Completer

Effective Address

,B or ,E or No Completer Specified

5-28 Instruction Set PA-RISC 1.1 Architecture

LOAD WORD LDW

Format: LDW d(s,b),t

Purpose: To load a word into a general register.

Description: The aligned word at the effective address is loaded into GRt from the effective address.
The base register,b, plus displacement,d, forms the offset. The displacement is encoded
into theim14 field.

Operation: offset ← GR[b] + low_sign_ext(im14,14);
space← space_select(s,GR[b]);
GR[t] ← mem_load(space,offset,0,31,NO_HINT);

Exceptions: Data TLB miss fault/data page fault Unaligned data reference trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap

12 b t s im14

6 5 5 2 14

5-29PA-RISC 1.1 Architecture Instruction Set

LOAD HALFWORD LDH

Format: LDH d(s,b),t

Purpose: To load a halfword into a general register.

Description: The aligned halfword at the effective address is zero-extended and loaded into GRt from
the effective address. The base register,b, plus displacement,d, forms the offset. The
displacement is encoded into theim14 field.

Operation: offset ← GR[b] + low_sign_ext(im14,14);
space← space_select(s,GR[b]);
GR[t] ← zero_ext(mem_load(space,offset,0,15,NO_HINT),16);

Exceptions: Data TLB miss fault/data page fault Unaligned data reference trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap

11 b t s im14

6 5 5 2 14

5-30 Instruction Set PA-RISC 1.1 Architecture

LOAD BYTE LDB

Format: LDB d(s,b),t

Purpose: To load a byte into a general register.

Description: The byte at the effective address is zero-extended and loaded into GRt. The base register,
b, plus displacement,d, forms the offset. The displacement is encoded into theim14 field.

Operation: offset ← GR[b] + low_sign_ext(im14,14);
space← space_select(s,GR[b]);
GR[t] ← zero_ext(mem_load(space,offset,0,7,NO_HINT),8);

Exceptions: Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Data debug trap
Data memory protection ID trap

10 b t s im14

6 5 5 2 14

5-31PA-RISC 1.1 Architecture Instruction Set

STORE WORD STW

Format: STW r,d(s,b)

Purpose: To store a word from a general register.

Description: GR r is stored in the aligned word at the effective address. The base register,b, plus
displacement,d, forms the offset. The displacement is encoded into theim14 field.

Operation: offset ← GR[b] + low_sign_ext(im14,14);
space← space_select(s,GR[b]);
mem_store(space,offset,0,31,NO_HINT,GR[r]);

Exceptions: Data TLB miss fault/data page fault Data memory break trap
Data memory access rights trap TLB dirty bit trap
Data memory protection ID trap Page reference trap
Unaligned data reference trap Data debug trap

1A b r s im14

6 5 5 2 14

5-32 Instruction Set PA-RISC 1.1 Architecture

STORE HALFWORD STH

Format: STH r,d(s,b)

Purpose: To store a halfword from a general register.

Description: The right half of GRr is stored in the aligned halfword at the effective address. The base
register,b, plus displacement,d, forms the offset. The displacement is encoded into the
im14 field.

Operation: offset ← GR[b] + low_sign_ext(im14,14);
space← space_select(s,GR[b]);
mem_store(space,offset,0,15,NO_HINT,GR[r]{16..31});

Exceptions: Data TLB miss fault/data page fault Data memory break trap
Data memory access rights trap TLB dirty bit trap
Data memory protection ID trap Page reference trap
Unaligned data reference trap Data debug trap

19 b r s im14

6 5 5 2 14

5-33PA-RISC 1.1 Architecture Instruction Set

STORE BYTE STB

Format: STB r,d(s,b)

Purpose: To store a byte from a general register.

Description: The rightmost byte of GRr is stored in the byte at the effective address. The base register,
b, plus displacement,d, forms the offset. The displacement is encoded into theim14 field.

Operation: offset ← GR[b] + low_sign_ext(im14,14);
space← space_select(s,GR[b]);
mem_store(space,offset,0,7,NO_HINT,GR[r]{24..31})

Exceptions: Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap
Data memory break trap

18 b r s im14

6 5 5 2 14

5-34 Instruction Set PA-RISC 1.1 Architecture

LOAD WORD AND MODIFY LDWM

Format: LDWM d(s,b),t

Purpose: To load a word into a general register and perform base register modification.

Description: The aligned word at the effective address is loaded into GRt from the effective address.
The offset is either the base register,b, (positive displacement) or the base register plus the
displacement,d, (negative displacement). The displacement is encoded into theim14 field.
Base register modification always occurs. Ifb = t, the value loaded is the aligned word at
the effective address.

Operation: if (low_sign_ext(im14,14) < 0)
offset ← GR[b] + low_sign_ext(im14,14);

else
offset ← GR[b];

space← space_select(s,GR[b]);
GR[b] ← GR[b] + low_sign_ext(im14,14);
GR[t] ← mem_load(space,offset,0,31,NO_HINT);

Exceptions: Data TLB miss fault/data page fault Unaligned data reference trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap

13 b t s im14

6 5 5 2 14

5-35PA-RISC 1.1 Architecture Instruction Set

STORE WORD AND MODIFY STWM

Format: STWM r,d(s,b)

Purpose: To store a word from a general register and perform base register modification.

Description: GR r is stored in the aligned word at the effective address. The offset is either the base
register,b, (positive displacement) or the base register plus the displacement,d, (negative
displacement). The displacement is encoded into theim14 field. Base register modification
always occurs. Ifb = r, the value stored at the effective address is the word from the source
register before modification.

Operation: if (low_sign_ext(im14,14) < 0)
offset ← GR[b] + low_sign_ext(im14,14);

else
offset ← GR[b];

space← space_select(s,GR[b]);
mem_store(space,offset,0,31,NO_HINT,GR[r]);
GR[b] ← GR[b] + low_sign_ext(im14,14);

Exceptions: Data TLB miss fault/data page fault Data memory break trap
Data memory access rights trap TLB dirty bit trap
Data memory protection ID trap Page reference trap
Unaligned data reference trap Data debug trap

1B b r s im14

6 5 5 2 14

5-36 Instruction Set PA-RISC 1.1 Architecture

LOAD WORD INDEXED LDWX

Format: LDWX,cmplt,cc x(s,b),t

Purpose: To load a word into a general register.

Description: The aligned word at the effective address is loaded into GRt. The base register,b, and the
index register,x, are combined to form the address offset. The completer,cmplt,
determines if the offset is the base register, the base register plus the index register, or the
base register plus the index register shifted by 2. This completer, encoded in theu andm
fields of the instruction, also specifies base register modification. (See Table 5-11 on
page 5-22 for the assembly language completer mnemonics.) If base register modification
is specified andb = t, the value loaded is the aligned word at the effective address.

The completer,cc, specifies the cache control hint (see Table 5-8 on page 5-17).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case S: offset← GR[b] + lshift(GR[x],2); /*u=1, m=0*/
break;

case M: offset← GR[b]; /*u=0, m=1*/
GR[b] ← GR[b] + GR[x];
break;

case SM: offset← GR[b]; /*u=1, m=1*/
GR[b] ← GR[b] + lshift(GR[x],2);
break;

default: offset← GR[b] + GR[x]; /*u=0, m=0*/
break;

}
GR[t] ← mem_load(space,offset,0,31,cc);

Exceptions: Data TLB miss fault/data page fault Unaligned data reference trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap

03 b x s u 0 cc 2 m t

6 5 5 2 1 1 2 4 1 5

5-37PA-RISC 1.1 Architecture Instruction Set

LOAD HALFWORD INDEXED LDHX

Format: LDHX,cmplt,cc x(s,b),t

Purpose: To load a halfword into a general register.

Description: The aligned halfword at the effective address is zero-extended and loaded into GRt. The
base register,b, and the index register,x, are combined to form the address offset. The
completer,cmplt, determines if the offset is the base register, the base register plus the
index register, or the base register plus the index register shifted by 1. This completer,
encoded in theu andm fields of the instruction, also specifies base register modification.
(See Table 5-11 on page 5-22 for the assembly language completer mnemonics.) If base
register modification is specified andb = t, the value loaded is the aligned halfword at the
effective address.

The completer,cc, specifies the cache control hint (see Table 5-8 on page 5-17).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case S: offset← GR[b] + lshift(GR[x],1); /*u=1, m=0*/
break;

case M: offset← GR[b]; /*u=0, m=1*/
GR[b] ← GR[b] + GR[x];
break;

case SM: offset← GR[b]; /*u=1, m=1*/
GR[b] ← GR[b] + lshift(GR[x],1);
break;

default: offset← GR[b] + GR[x]; /*u=0, m=0*/
break;

}
GR[t] ← zero_ext(mem_load(space,offset,0,15,cc),16);

Exceptions: Data TLB miss fault/data page fault Unaligned data reference trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap

03 b x s u 0 cc 1 m t

6 5 5 2 1 1 2 4 1 5

5-38 Instruction Set PA-RISC 1.1 Architecture

LOAD BYTE INDEXED LDBX

Format: LDBX,cmplt,cc x(s,b),t

Purpose: To load a byte into a general register.

Description: The byte at the effective address is zero-extended and loaded into GRt. The base register,
b, and the index register,x, are combined to form the address offset. The completer,cmplt,
determines if the offset is the base register or the base register plus the index register. This
completer, encoded in theu andm fields of the instruction, also specifies base register
modification. (See Table 5-11 on page 5-22 for the assembly language completer
mnemonics.) If base register modification is specified andb = t, the value loaded is the
byte at the effective address.

The completer,cc, specifies the cache control hint (see Table 5-8 on page 5-17).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case S: offset← GR[b] + GR[x]; /*u=1, m=0*/
break;

case M: offset← GR[b]; /*u=0, m=1*/
GR[b] ← GR[b] + GR[x];
break;

case SM: offset← GR[b]; /*u=1, m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*u=0, m=0*/
break;

}
GR[t] ← zero_ext(mem_load(space,offset,0,7,cc),8);

Exceptions: Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Data debug trap
Data memory protection ID trap

03 b x s u 0 cc 0 m t

6 5 5 2 1 1 2 4 1 5

5-39PA-RISC 1.1 Architecture Instruction Set

LOAD WORD ABSOLUTE INDEXED LDWAX

Format: LDWAX,cmplt,cc x(b),t

Purpose: To load a word into a general register from an absolute address.

Description: The aligned word at the effective absolute address is loaded into GRt from the effective
absolute address. The base register,b, and the index register,x, are combined to form the
address offset. The completer,cmplt, determines if the offset is the base register, the base
register plus the index register, or the base register plus the index register shifted by 2.
This completer, encoded in theu andm fields of the instruction, also specifies base register
modification. This operation is only defined if the address is aligned on a 4 byte boundary.
(See Table 5-11 on page 5-22 for the assembly language completer mnemonics.) If base
register modification is specified andb = t, the value loaded is the aligned word at the
effective address.

The completer,cc, specifies the cache control hint (see Table 5-8 on page 5-17).

Protection is not checked when this instruction is executed.

Operation: if (priv != 0)
privileged_operation_trap;

else {
switch (cmplt) {

case S: offset← GR[b] + lshift(GR[x],2); /*u=1, m=0*/
break;

case M: offset← GR[b]; /*u=0, m=1*/
GR[b] ← GR[b] + GR[x];
break;

case SM: offset← GR[b]; /*u=1, m=1*/
GR[b] ← GR[b] + lshift(GR[x],2);
break;

default: offset← GR[b] + GR[x]; /*u=0, m=0*/
break;

}
GR[t] ← phys_mem_load(offset,0,31,cc);

}

Exceptions: Privileged operation trap Data debug trap

Restrictions: This instruction may be executed only at the most privileged level.

Level 0: Except for the privilege level restriction, this instruction functions identically toLOAD
WORD INDEXED.

03 b x 0 u 0 cc 6 m t

6 5 5 2 1 1 2 4 1 5

5-40 Instruction Set PA-RISC 1.1 Architecture

LOAD AND CLEAR WORD INDEXED LDCWX

Format: LDCWX,cmplt,cc x(s,b),t

Purpose: To read and lock a semaphore in main memory.

Description: The effective address is calculated. The base register,b, and the index register,x, are
combined to form the address offset. The completer,cmplt, determines if the offset is the
base register, the base register plus the index register, or the base register plus the index
register shifted by 3. This completer, encoded in theu andm fields of the instruction, also
specifies base register modification. (See Table 5-11 on page 5-22 for the assembly
language completer mnemonics.) If base register modification is specified andb = t, the
value loaded is the aligned word at the effective address.

The completer,cc, specifies the cache control hint (see Table 5-10 on page 5-18).

The address must be 16-byte aligned. If the address is unaligned, the operation of the
instruction is undefined.

The remaining steps of the instruction are indivisible and non-interruptible. If a cache
control hint is not specified, the instruction is performed as follows:

• If the cache line containing the effective address is not present in the cache or is
present but not dirty, and the system is not fully coherent, the line is flushed, the
addressed word is copied into GRt, and then set to zero in memory. If the line is
retained in the cache, it must not be marked as dirty.

• If the cache line containing the effective address is present in the cache and is dirty, or
the system is fully coherent, the semaphore operation may be handled as above or
may be optimized by copying the addressed word into GRt and then setting the
addressed word to zero in the cache.

If a cache control hint is specified, the semaphore operation may be handled as if a cache
control hint had not been specified, or, preferably, the addressed word is copied into GRt
and then the addressed word is set to zero in the cache. The cleared word need not be
flushed to memory.

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case S: offset← GR[b] + lshift(GR[x],3); /*u=1, m=0*/
break;

case M: offset← GR[b]; /*u=0, m=1*/
GR[b] ← GR[b] + GR[x];
break;

case SM: offset← GR[b]; /*u=1, m=1*/
GR[b] ← GR[b] + lshift(GR[x],3);

03 b x s u 0 cc 7 m t

6 5 5 2 1 1 2 4 1 5

5-41PA-RISC 1.1 Architecture Instruction Set

break;
default: offset← GR[b] + GR[x]; /*u=0, m=0*/

break;
}
(indivisible)

Exceptions: Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap
Data memory break trap

Restrictions: All software users of a semaphore must access the semaphore using the same cache
control hint. Sharing a semaphore using different cache control hints is undefined.

Notes: Note that the “index shift” option for this instruction shifts by three, not two.

if (cache line is present and dirty || coherent_system || cc != 0) {
 GR[t] ← mem_load(space,offset,0,31,NO_HINT);
 mem_store(space,offset,0,31,NO_HINT,0);
} else {
 flush_data_cache(space, offset);
 GR[t] ← mem_load(space,offset,0,31,NO_HINT);
 store_in_memory(space,offset,0,31,NO_HINT,0);
}

5-42 Instruction Set PA-RISC 1.1 Architecture

LOAD WORD SHORT LDWS

Format: LDWS,cmplt,cc d(s,b),t

Purpose: To load a word into a general register.

Description: The aligned word at the effective address is loaded into GRt. The completer,cmplt,
determines if the offset is the base register,b, or the base register plus the short
displacement,d. The displacement is encoded in theim5 field. The completer, encoded in
the a and m fields of the instruction, also specifies base register modification. (See
Table 5-12 on page 5-24 for the assembly language completer mnemonics.) If base
register modification is specified andb = t, the value loaded is the aligned word at the
effective address.

The completer,cc, specifies the cache control hint (see Table 5-8 on page 5-17).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
break;

}
GR[t] ← mem_load(space,offset,0,31,cc);

Exceptions: Data TLB miss fault/data page fault Unaligned data reference trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap

03 b im5 s a 1 cc 2 m t

6 5 5 2 1 1 2 4 1 5

5-43PA-RISC 1.1 Architecture Instruction Set

LOAD HALFWORD SHORT LDHS

Format: LDHS,cmplt,cc d(s,b),t

Purpose: To load a halfword into a general register.

Description: The aligned halfword at the effective address is zero-extended and loaded into GRt. The
completer,cmplt, determines if the offset is the base register,b, or the base register plus
the short displacement,d. The displacement is encoded in theim5 field. The completer,
encoded in thea andm fields of the instruction, also specifies base register modification.
(See Table 5-12 on page 5-24 for the assembly language completer mnemonics.) If base
register modification is specified andb = t, the value loaded is the aligned halfword at the
effective address.

The completer,cc, specifies the cache control hint (see Table 5-8 on page 5-17).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
break;

}
GR[t] ← zero_ext(mem_load(space,offset,0,15,cc),16);

Exceptions: Data TLB miss fault/data page fault Unaligned data reference trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap

03 b im5 s a 1 cc 1 m t

6 5 5 2 1 1 2 4 1 5

5-44 Instruction Set PA-RISC 1.1 Architecture

LOAD BYTE SHORT LDBS

Format: LDBS,cmplt,cc d(s,b),t

Purpose: To load a byte into a general register.

Description: The byte at the effective address is zero-extended and loaded into GRt. The completer,
cmplt, determines if the offset is the base register,b, or the base register plus the short
displacement,d. The displacement is encoded in theim5 field. The completer, encoded in
the a and m fields of the instruction, also specifies base register modification. (See
Table 5-12 on page 5-24 for the assembly language completer mnemonics.) If base
register modification is specified andb = t, the value loaded is the byte at the effective
address.

The completer,cc, specifies the cache control hint (see Table 5-8 on page 5-17).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
break;

}
GR[t] ← zero_ext(mem_load(space,offset,0,7,cc),8);

Exceptions: Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Data debug trap
Data memory protection ID trap

03 b im5 s a 1 cc 0 m t

6 5 5 2 1 1 2 4 1 5

5-45PA-RISC 1.1 Architecture Instruction Set

LOAD WORD ABSOLUTE SHORT LDWAS

Format: LDWAS,cmplt,cc d(b),t

Purpose: To load a word into a general register from an absolute address.

Description: The aligned word at the effective absolute address is loaded into GRt. The completer,
cmplt, determines if the offset is the base register,b, or the base register plus the short
displacement,d. The displacement is encoded in theim5 field. The completer, encoded in
the a and m fields of the instruction, also specifies base register modification. The
operation is only defined if the address is aligned on a 4-byte boundary. (See Table 5-12
on page 5-24 for the assembly language completer mnemonics.) If base register
modification is specified andb = t, the value loaded is the aligned word at the effective
address.

The completer,cc, specifies the cache control hint (see Table 5-8 on page 5-17).

Protection is not checked when this instruction is executed.

Operation: if (priv != 0)
privileged_operation_trap;

else {
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
break;

}
GR[t] ← phys_mem_load(offset,0,31,cc);

}

Exceptions: Privileged operation trap Data debug trap

Restrictions: This instruction may be executed only at the most privileged level.

Level 0: Except for the privilege level restriction, this instruction functions identically toLOAD
WORD SHORT.

03 b im5 0 a 1 cc 6 m t

6 5 5 2 1 1 2 4 1 5

5-46 Instruction Set PA-RISC 1.1 Architecture

LOAD AND CLEAR WORD SHORT LDCWS

Format: LDCWS,cmplt,cc d(s,b),t

Purpose: To read and lock a semaphore in main memory.

Description: The effective address is calculated. The completer,cmplt, determines if the offset is the
base register,b, or the base register plus the short displacement,d. The displacement is
encoded in theim5 field. This completer, encoded in thea andm fields of the instruction,
also specifies base register modification. (See Table 5-12 on page 5-24 for the assembly
language completer mnemonics.) If base register modification is specified andb = t, the
value loaded is the aligned word at the effective address.

The completer,cc, specifies the cache control hint (see Table 5-10 on page 5-18).

The address must be 16-byte aligned. If the address is unaligned, the operation of the
instruction is undefined.

The remaining steps of the instruction are indivisible and non-interruptible. If a cache
control hint is not specified, the instruction is performed as follows:

• If the cache line containing the effective address is not present in the cache or is
present but not dirty, and the system is not fully coherent, the line is flushed, the
addressed word is copied into GRt, and then set to zero in memory. If the line is
retained in the cache, it must not be marked as dirty.

• If the cache line containing the effective address is present in the cache and is dirty, or
the system is fully coherent, the semaphore operation may be handled as above or
may be optimized by copying the addressed word into GRt and then setting the
addressed word to zero in the cache.

If a cache control hint is specified, the semaphore operation may be handled as if a cache
control hint had not been specified, or, preferably, the addressed word is copied into GRt
and then the addressed word is set to zero in the cache. The cleared word need not be
flushed to memory.

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
break;

03 b im5 s a 1 cc 7 m t

6 5 5 2 1 1 2 4 1 5

5-47PA-RISC 1.1 Architecture Instruction Set

}
(indivisible)

Exceptions: Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap
Data memory break trap

Restrictions: All software users of a semaphore must access the semaphore using the same cache
control hint. Sharing a semaphore using different cache control hints is undefined.

if (cache line is present and dirty || coherent_system || cc != 0) {
 GR[t] ← mem_load(space,offset,0,31,NO_HINT);
 mem_store(space,offset,0,31,NO_HINT,0);
} else {
 flush_data_cache(space, offset);
 GR[t] ← mem_load(space,offset,0,31,NO_HINT);
 store_in_memory(space,offset,0,31,NO_HINT,0);
}

5-48 Instruction Set PA-RISC 1.1 Architecture

STORE WORD SHORT STWS

Format: STWS,cmplt,cc r,d(s,b)

Purpose: To store a word from a general register.

Description: GR r is stored in the aligned word at the effective address. The completer,cmplt,
determines if the offset is the base register,b, or the base register plus the short
displacement,d. The displacement is encoded in theim5 field. The completer, encoded in
the a and m fields of the instruction, also specifies base register modification. (See
Table 5-12 on page 5-24 for the assembly language completer mnemonics.) If base
register modification is specified andb = r, the value stored at the effective address is the
word from the source register before modification.

The completer,cc, specifies the cache control hint (see Table 5-9 on page 5-18).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
mem_store(space,offset,0,31,cc,GR[r]);
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
mem_store(space,offset,0,31,cc,GR[r]);
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
mem_store(space,offset,0,31,cc,GR[r]);
break;

}

Exceptions: Data TLB miss fault/data page fault Data memory break trap
Data memory access rights trap TLB dirty bit trap
Data memory protection ID trap Page reference trap
Unaligned data reference trap Data debug trap

03 b r s a 1 cc A m im5

6 5 5 2 1 1 2 4 1 5

5-49PA-RISC 1.1 Architecture Instruction Set

STORE HALFWORD SHORT STHS

Format: STHS,cmplt,cc r,d(s,b)

Purpose: To store a halfword from a general register.

Description: The right half of GRr is stored in the aligned halfword at the effective address. The
completer,cmplt, determines if the offset is the base register,b, or the base register plus
the short displacement,d. The displacement is encoded in theim5 field. The completer,
encoded in thea andm fields of the instruction, also specifies base register modification.
(See Table 5-12 on page 5-24 for the assembly language completer mnemonics.) If base
register modification is specified andb = r, the value stored at the effective address is the
rightmost halfword from the source register before modification.

The completer,cc, specifies the cache control hint (see Table 5-9 on page 5-18).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
mem_store(space,offset,0,15,cc,GR[r]{16..31});
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
mem_store(space,offset,0,15,cc,GR[r]{16..31});
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
mem_store(space,offset,0,15,cc,GR[r]{16..31});
break;

}

Exceptions: Data TLB miss fault/data page fault Data memory break trap
Data memory access rights trap TLB dirty bit trap
Data memory protection ID trap Page reference trap
Unaligned data reference trap Data debug trap

03 b r s a 1 cc 9 m im5

6 5 5 2 1 1 2 4 1 5

5-50 Instruction Set PA-RISC 1.1 Architecture

STORE BYTE SHORT STBS

Format: STBS,cmplt,cc r,d(s,b)

Purpose: To store a byte from a general register.

Description: The rightmost byte of GRr is stored in the byte at the effective address. The completer,
cmplt, determines if the offset is the base register,b, or the base register plus the short
displacement,d. The displacement is encoded in theim5 field. The completer, encoded in
the a and m fields of the instruction, also specifies base register modification. (See
Table 5-12 on page 5-24 for the assembly language completer mnemonics.) If base
register modification is specified andb = r, the value stored at the effective address is the
rightmost byte from the source register before modification.

The completer,cc, specifies the cache control hint (see Table 5-9 on page 5-18).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
mem_store(space,offset,0,7,cc,GR[r]{24..31});
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
mem_store(space,offset,0,7,cc,GR[r]{24..31});
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
mem_store(space,offset,0,7,cc,GR[r]{24..31});
break;

}

Exceptions: Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap
Data memory break trap

03 b r s a 1 cc 8 m im5

6 5 5 2 1 1 2 4 1 5

5-51PA-RISC 1.1 Architecture Instruction Set

STORE WORD ABSOLUTE SHORT STWAS

Format: STWAS,cmplt,cc r,d(b)

Purpose: To store a word from a general register to an absolute address.

Description: GR r is stored in the aligned word at the effective absolute address. The completer,cmplt,
determines if the offset is the base register,b, or the base register plus the short
displacement,d. The displacement is encoded in theim5 field. The completer, encoded in
the a and m fields of the instruction, also specifies base register modification. The
operation is only defined if the address is aligned on a 4-byte boundary. (See Table 5-12
on page 5-24 for the assembly language completer mnemonics.) If base register
modification is specified andb = r, the value stored at the effective address is the word
from the source register before modification.

The completer,cc, specifies the cache control hint (see Table 5-9 on page 5-18).

Protection is not checked when this instruction is executed.

Operation: if (priv != 0)
privileged_operation_trap;

else {
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
phys_mem_store(offset,0,31,cc,GR[r]);
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
phys_mem_store(offset,0,31,cc,GR[r]);
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
phys_mem_store(offset,0,31,cc,GR[r]);
break;

}
}

Exceptions: Privileged operation trap Data debug trap

Restrictions: This instruction may be executed only at the most privileged level.

Level 0: Except for the privilege level restriction, this instruction functions identically toSTORE
WORD SHORT.

03 b r 0 a 1 cc E m im5

6 5 5 2 1 1 2 4 1 5

5-52 Instruction Set PA-RISC 1.1 Architecture

STORE BYTES SHORT STBYS

Format: STBYS,cmplt,cc r,d(s,b)

Purpose: To implement the beginning, middle, and ending cases for fast byte moves with unaligned
sources and destinations.

Description: If the PSW[E] bit is 0 and begin (modifier ",B" corresponding toa = 0) is specified, the
rightmost bytes of GRr are stored in memory starting at the byte whose address is given
by the effective address. The number of bytes stored is sufficient to fill out the word
containing the byte addressed by the effective address.

If the PSW[E] bit is 0 and end (modifier ",E" corresponding toa = 1) is specified, the
leftmost bytes of GRr are stored in memory starting at the leftmost byte in the word
specified by the effective address, and continuing until (but not including) the byte
specified by the effective address. When the effective address specifies the leftmost byte in
a word, nothing is stored, but protection is checked and the cache line is marked asdirty.

If the PSW[E] bit is 1 and begin (modifier ",B" corresponding toa = 0) is specified, the
leftmost bytes of GRr are stored in memory starting at the byte whose address is given by
the effective address. The number of bytes stored is sufficient to fill out the word
containing the byte addressed by the effective address.

If the PSW[E] bit is 1 and end (modifier ",E" corresponding toa = 1) is specified, the
rightmost bytes of GRr are stored in memory starting at the leftmost byte in the word
specified by the effective address, and continuing until (but not including) the byte
specified by the effective address. When the effective address specifies the leftmost byte in
a word, nothing is stored, but protection is checked and the cache line is marked asdirty.

If base register modification is specified through completer ",M", GRb is updated and then
truncated to a word address. (See Table 5-13 on page 5-26 for the assembly language
completer mnemonics.) If base register modification is specified andb = r, the value
stored at the effective address is the bytes from the source register before modification.

The completer,cc, specifies the cache control hint (see Table 5-9 on page 5-18). If the first
byte of the addressed cache line is not written to, the processor must perform the store as if
the cache control hint had not been specified.

Operation: space← space_select(s,GR[b]);
if (cmplt == B,M) /*a=0, m=1*/

offset ← GR[b];
else

offset ← GR[b] + low_sign_ext(im5,5);
pos ← 8*(offset & 0x3);
offset ← offset & 0xFFFFFFFC;

03 b r s a 1 cc C m im5

6 5 5 2 1 1 2 4 1 5

5-53PA-RISC 1.1 Architecture Instruction Set

switch (cmplt) {
case B: /*a=0, m=0*/

if (PSW[E] == 0)
mem_store(space,offset,pos,31,cc,GR[r]{pos..31});

else
mem_store(space,offset,pos,31,cc,GR[r]{0..31-pos});

break;
case E: /*a=1, m=0*/

if (PSW[E] == 0)
mem_store(space,offset,0,pos-1,cc,GR[r]{0..pos-1});

else
mem_store(space,offset,0,pos-1,cc,GR[r]{32-pos..31});

break;
case B,M: /*a=0, m=1*/

if (PSW[E] == 0)
mem_store(space,offset,pos,31,cc,GR[r]{pos..31});

else
mem_store(space,offset,pos,31,cc,GR[r]{0..31-pos});

GR[b] ← (GR[b] + low_sign_ext(im5,5)) & 0xFFFFFFFC;
break;

case E,M: /*a=1, m=1*/
if (PSW[E] == 0)

mem_store(space,offset,0,pos-1,cc,GR[r]{0..pos-1});
else

mem_store(space,offset,0,pos-1,cc,GR[r]{32-pos..31});
GR[b] ← (GR[b] + low_sign_ext(im5,5)) & 0xFFFFFFFC;
break;

}

Exceptions: Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap
Data memory break trap

Notes: All 32 bits of the original virtual offset are saved to IOR (CR21) if this instruction traps.

For this instruction, the low 2 bits of the virtual offset are masked to 0 when comparing
against the contents of the data breakpoint address offset registers.

PROGRAMMING NOTE
The STBYS instruction with the ’,E’ completer and the effective address specifying the
leftmost byte of the word may be used to implement a memory scrubbing operation. This is
possible because the line is markeddirty but the contents are not modified.

5-54 Instruction Set PA-RISC 1.1 Architecture

5Instruction Set

Immediate Instructions
The immediate instructions do not reference memory. They compute values either from a shifted long
immediate (21 bits long), from a shifted long immediate and a source register, or from a base register
plus a 14-bit displacement. This computed value is then stored in another general register. These
instructions are typically used to compute the values of addresses of data items. TheLOAD OFFSET
instruction can also be used to simply load a 14-bit immediate into a register.

Figure 5-8. Immediate Instructions

0

31

Base

General
Registers

32
+

32

Left Shift
11 bits

ADDIL

GR[1]

0

31

General
Registers

LDIL

LDO

Left Shift
11 bits

32

Long
Immediate

im 21

0

31

Base

General
Registers

32
+

32

Immediate
Displacement

im 14

Low Sign
Extend

32

Long
Immediate

im 21

5-55PA-RISC 1.1 Architecture Instruction Set

LOAD OFFSET LDO

Format: LDO d(b),t

Purpose: To load an offset into a general register.

Description: The effective address is calculated, and its offset part is loaded into GRt. The
displacementd is encoded into theim14 field.

Operation: GR[t] ← GR[b] + low_sign_ext(im14,14);

Exceptions: None

Notes: Memory is not referenced. TheLDI i,t pseudo-operation generates anLDO i(0),t
instruction to load a 14-bit immediate value into a register.

0D b t rv im14

6 5 5 2 14

5-56 Instruction Set PA-RISC 1.1 Architecture

LOAD IMMEDIATE LEFT LDIL

Format: LDIL i,t

Purpose: To load an immediate value into the left part of a general register.

Description: The 21-bit immediate value,i, is assembled, padded on the right with 11 zero bits, and
loaded into GRt.

Operation: GR[t] ← lshift(assemble_21(im21),11);

Exceptions: None

Notes: Memory is not referenced.

PROGRAMMING NOTE
LOAD IMMEDIATE LEFT can be used to generate a 32-bit literal in an arbitrary general register
t by the following sequence of assembly language code:

08 t im21

6 5 21

LDIL l%literal,GRt

LDO r%literal(GRt),GRt

5-57PA-RISC 1.1 Architecture Instruction Set

ADD IMMEDIATE LEFT ADDIL

Format: ADDIL i,r

Purpose: To add the left part of a long displacement to a general register.

Description: The 21-bit immediate value,i, from im21 is assembled, padded on the right with 11 zero
bits, and added to GRr. The result is placed in GR 1. Overflow, if it occurs, is ignored.
The immediate value is encoded into theim21 field.

Operation: GR[1] ← lshift(assemble_21(im21),11) + GR[r];

Exceptions: None

PROGRAMMING NOTE
ADD IMMEDIATE LEFT can be used to perform a load or store with a 32-bit displacement. For
example, to load a word from memory into general registert with a 32-bit displacement, the
following sequence of assembly language code could be used:

0A r im21

6 5 21

ADDIL l%literal,GRb

LDW r%literal(0,GR1),GRt

5-58 Instruction Set PA-RISC 1.1 Architecture

5Instruction Set

Branch Instructions
Branch instructions are classified into three major categories: unconditional local branches,
unconditional external branches, and conditional local branches. Within these categories there is sub-
classification based on how the target address is computed, whether or not a return address is saved, and
whether or not privilege changes can occur. Not all of the options are available for each category. The
following sections describe the types of branches. The operation of each branch instruction is detailed in
the instruction description sections in this chapter.

Unconditional Local Branches
The unconditional local branch instructions are used for intraspace control transfers, procedure calls,
and procedure returns. Three types of relative addressing are provided:

1. IA relative branches with static displacement use the IAOQ_Front plus a 17-bit signed word
displacement. This allows a branch target range of up to plus or minus 256 Kbytes within a space.

2. IA relative branches with dynamic displacement use the IAOQ_Front plus a shifted index register.

3. Base relative branches with dynamic displacement use the value in a base register plus a shifted
index register.

BRANCH AND LINK is used for procedure calls. The branch target address is IA relative with a static
displacement. It places the offset of the return point in the specified GR. The return point is the location
four bytes beyond the address of the instruction which executes after theBRANCH AND LINK. BRANCH
AND LINK also satisfies most requirements for unconditional branching when GR 0 is specified as the
link register.

GATEWAY is used for intraspace branching with a process privilege level promotion. The branch target
address is IA relative with a static displacement.

BRANCH AND LINK REGISTER is used for intraspace procedure calls in which the branch target is
outside the range forBRANCH AND LINK or when a dynamic target displacement is needed. The branch
target address is IA relative with a dynamic displacement. Link handling is performed the same way as
for theBRANCH AND LINK instruction.

BRANCH VECTORED is used for intraspace branching through a table and for procedure returns. The
branch target is base relative with a dynamic displacement. The process privilege level may be
demoted.

Unconditional External Branches
The unconditional external branch instructions are used for interspace control transfers, procedure calls,
and procedure returns. All unconditional external branch instructions use base-relative addressing with
static displacements and may demote the process privilege level based on the rightmost bits of the base
register. The target address is the value in a base register plus a 17-bit signed word displacement. This
allows for a plus or minus 256 Kbyte branch range across space boundaries.

BRANCH AND LINK EXTERNAL is used for interspace procedure calls. It places the offset of the return
point in GR 31 and copies the space ID into SR 0. The return point is the location four bytes beyond the

5-59PA-RISC 1.1 Architecture Instruction Set

address of the instruction which executes after the branch.

BRANCH EXTERNAL is used for interspace branching and procedure returns. The return address is not
saved in this instruction.

In Level 0 systems, unconditional external branch instructions are executed as in non-Level 0 systems,
except that the IASQ and SR 0 are nonexistent registers and updating them has no effect.

Conditional Local Branches
The conditional local branch instructions are used to perform an operation and then branch if the
condition specified is satisfied. All conditional local branch instructions use IA relative addresses with
static displacements. The target address is the current IAOQ_Front plus a 12-bit signed word
displacement. This allows for a plus or minus 8-Kbyte branch target range within a space.

There are four categories of conditional local branch instructions: move and branch, compare and
branch, add and branch, and branch on bits. The branch may be taken if the condition specified is true or
false. There are two forms of each instruction, the two-register form and the register plus 5-bit
immediate form. The 5-bit immediate operand provides data values in the range from -16 to +15.

Branch Characteristics
Figure 5-9 categorizes the characteristics of the branch instructions.

5-60 Instruction Set PA-RISC 1.1 Architecture

Figure 5-9. Classification of Branch Instructions

BLEBEBV

Branch

Unconditional Conditional

Local External

IA
Relative

Base
Relative

Static
Disp.

Dynamic
Disp.

No Link

Local

Base
Relative

IA
Relative

Dynamic
Disp.

Static
Disp.

Static
Disp.

Link Link No Link No Link Link No Link

No PL
change

PL
change

No PL
change

PL
change

PL
change

PL
change

No PL
change

MOVB
MOVIB

COMBx
COMIBx

ADDBx
ADDIBx

BB
BBV

BL GATE BLR

5-61PA-RISC 1.1 Architecture Instruction Set

PROGRAMMING NOTE
Example instruction sequences which perform the different types of procedure calls are shown
below. The examples illustrate ways to use offsets of different lengths. The simplest case is
that of intraspace calls which can be done by any of the following code sequences, assuming
that the convention that SR 4 tracks IASQ is observed:

Making interspace calls which might decrease privilege level is shown below:

Calling a procedure which must run with less privilege than the caller requires setting the
desired privilege level in the two rightmost bits of the base register used in theBRANCH AND
LINK EXTERNAL. Returning to the more-privileged routine will succeed only if the return
point is aGATEWAY instruction.

call: BL target,rp or LDIL l%target,rp

BLE r%target(SR4,rp)

OR GR31,0,rp

return: BV 0(rp) or BE 0(SR0,rp)

call: LDW space_id,GR1 ; space id for target

MTSP GR1,SR4

LDIL l%target,rp

BLE target(SR4,rp)

OR GR31,0,rp

return: BE 0(SR0,rp)

5-62 Instruction Set PA-RISC 1.1 Architecture

BRANCH AND LINK BL

Format: BL,n target,t

Purpose: To do IA relative branches and procedure calls with a static displacement.

Description: The word displacement is assembled from thew, w1, andw2 fields in the instruction. The
displacement is sign extended, and the result plus 8 is added to the offset of the current
instruction to form the target offset. The offset of the return point is placed in GRt. The
return point is 4 bytes beyond the following instruction.

The instruction following theBRANCH AND LINK will be executed unless nullification is
requested. The branch target,target, in the assembly language format is used by the
assembler to derive thew, w1, andw2 fields.

Operation: disp ← lshift(sign_ext(assemble_17(w1,w2,w),17),2);
IAOQ_Next ← IAOQ_Front + disp + 8;
GR[t] ← IAOQ_Back + 4;
if (n) PSW[N] ← 1;

Exceptions: Taken branch trap

Notes: To perform an unconditional branch without saving a link, theB pseudo-operation allows
the coding ofBRANCH AND LINK with GR 0 as the link register.

3A t w1 0 w2 n w

6 5 5 3 11 1 1

5-63PA-RISC 1.1 Architecture Instruction Set

GATEWAY GATE

Format: GATE,n target,t

Purpose: To change privilege level and do an IA relative branch with a static displacement.

Description: The word displacement is assembled from thew, w1, andw2 fields in the instruction. The
displacement is sign extended and the result plus 8 is added to the offset of the current
instruction to form the target offset. The instruction following theGATEWAY instruction
will be executed unless nullification is requested. The branch target,target, in the
assembly language format is used by the assembler to derive thew, w1, w2 fields.

If the PSW C-bit is 1, the privilege level is changed to that given by the two rightmost bits
of the type field in the TLB entry for the page (when the type field is greater than 3) from
which theGATEWAY instruction is fetched if that results in a higher privilege. If privilege
is not increased, then the current privilege is used at the target. In all cases, the privilege
level of theGATEWAY instruction is deposited into bits 30..31 of GRt. The privilege
change must occur for the target of theGATEWAY, but the delay slot may be fetched and/or
executed at either privilege. If the PSW C-bit is 0, the privilege level is changed to 0.

An illegal instruction trap is taken if aGATEWAY instruction is attempted and the PSW B-
bit is 1.

Operation: if (PSW[B])
illegal_instruction_trap;

else {
disp ← lshift(sign_ext(assemble_17(w1,w2,w),17),2);
GR[t] ← cat(GR[t]{0..29},IAOQ_Front{30..31});
if (PSW[C] && !level_0) {

search_ITLB(IASQ_Front,IAOQ_Front,&entry);
if (ITLB[entry].ACC_RIGHTS{0..2} <= 3)

priv ← IAOQ_Front{30..31};
else

priv ← min(IAOQ_Front{30..31},
ITLB[entry].ACC_RIGHTS{1..2});

} else
priv ← 0;

IAOQ_Next{0..29} ← (IAOQ_Front + disp + 8){0..29};
IAOQ_Next{30..31} ← priv;
if (n) PSW[N] ← 1;

}

Exceptions: Illegal instruction trap
Taken branch trap

3A t w1 1 w2 n w

6 5 5 3 11 1 1

5-64 Instruction Set PA-RISC 1.1 Architecture

Notes: The privilege information must be captured when the TLB is read for instruction fetch and
that information kept for the determination of the new execution privilege.

PROGRAMMING NOTE
The privilege level checking for fetching and executing the instruction following aGATEWAY
(which might be in a different page from theGATEWAY itself) may be done against either the
old or the new privilege level. Software should ensure that both checks are equally valid.

It is possible for aGATEWAY to promote the privilege level so that the process cannot continue
executing on that page (because it violates PL2 of the TLB access rights field). In that case,
software should ensure that theGATEWAY nullifies execution of the following instruction and
its target should be on a page whose range of execute levels includes the new privilege level.
Otherwise, an instruction memory protection trap may result.

Level 0: This instruction promotes the privilege level to 0.

5-65PA-RISC 1.1 Architecture Instruction Set

BRANCH AND LINK REGISTER BLR

Format: BLR,n x,t

Purpose: To do IA relative branches with a dynamic displacement and store a return link.

Description: The index from GRx is shifted left 3 bits and the result plus 8 is added to the offset of the
current instruction to form the target offset. The offset of the return point is placed in GRt.
The return point is 4 bytes beyond the following instruction.

The instruction following theBRANCH AND LINK REGISTER instruction will be executed
unless nullification is requested.

Operation: IAOQ_Next ← IAOQ_Front + lshift(GR[x],3) + 8;
GR[t] ← IAOQ_Back + 4;
if (n) PSW[N] ← 1;

Exceptions: Taken branch trap

PROGRAMMING NOTE
BRANCH AND LINK REGISTER with GR 0 as the link register does a IA relative branch
without saving a link. Jump tables based on the index value can be constructed using this
instruction. When the jump table begins at the instruction which is located at theBLR plus 8
bytes, an index value of 0 can be used to branch to the first entry of the table.

3A t x 2 0 n 0

6 5 5 3 11 1 1

5-66 Instruction Set PA-RISC 1.1 Architecture

BRANCH VECTORED BV

Format: BV,n x(b)

Purpose: To do base-relative branches with a dynamic displacement in the same space.

Description: The index from GRx is shifted left by 3 bits. The result is added to GRb and the sum
becomes the new offset of the target instruction.

The instruction following theBRANCH VECTORED instruction will be executed unless
nullification is specified.

If the two rightmost bits of GRb designate a lower privilege level than the current
privilege level, then the privilege level of the target is set to that specified by the rightmost
bits of GRb. The decrease in privilege level takes effect at the branch target, not for the
instruction in the delay slot.

Operation: IAOQ_Next{0..29} ← (GR[b] + lshift(GR[x],3)){0..29};
if (IAOQ_Front{30..31} < GR[b]{30..31})

IAOQ_Next{30..31} ← GR[b]{30..31};
else

IAOQ_Next{30..31} ← IAOQ_Front{30..31};
if (n) PSW[N] ← 1;

Exceptions: Taken branch trap

Level 0: This instruction demotes the privilege level to any nonzero value, if it changes it.

3A b x 6 0 n 0

6 5 5 3 11 1 1

5-67PA-RISC 1.1 Architecture Instruction Set

BRANCH EXTERNAL BE

Format: BE,n wd(sr,b)

Purpose: To do branches and returns to another space.

Description: The word displacement,wd, is assembled from thew, w1, andw2 fields in the instruction
and sign extended. The result is added to GRb and the sum becomes the offset of the
target instruction. SRsr (which is assembled from thes field of the instruction) becomes
the space of the target instruction.

If the two rightmost bits of GRb designate a less privileged level than the current
instruction, the privilege level of the target is set to that specified by the rightmost bits of
GR b. The decrease in privilege level takes effect at the branch target, not for the
instruction in the delay slot. When aBRANCH EXTERNAL is executed with the PSW C-bit
0 (code address translation is disabled) the effect on IASQ is not defined.

Operation: disp ← lshift(sign_ext(assemble_17(w1,w2,w),17),2);
IAOQ_Next{0..29} ← (GR[b] + disp){0..29};
if (IAOQ_Front{30..31} < GR[b]{30..31})

IAOQ_Next{30..31} ← GR[b]{30..31};
else

IAOQ_Next{30..31} ← IAOQ_Front{30..31};
IASQ_Next ← SR[assemble_3(s)];
if (n) PSW[N] ← 1;

Exceptions: Taken branch trap

Level 0: This instruction executes as usual, except that the IASQ is a nonexistent register and
updating it has no effect. Also, the privilege level is demoted to any nonzero value, if the
instruction changes it.

PROGRAMMING NOTE
If a taken local branch is executed following aBRANCH EXTERNAL instruction, the target’s
address is computed based on the value of the IASQ set by theBRANCH EXTERNAL
instruction. This results in a transfer of control to possibly a meaningless location in the new
space.

38 b w1 s w2 n w

6 5 5 3 11 1 1

5-68 Instruction Set PA-RISC 1.1 Architecture

BRANCH AND LINK EXTERNAL BLE

Format: BLE,n wd(sr,b)

Purpose: To do procedure calls to another space.

Description: The word displacement,wd, is assembled from thew, w1, andw2 fields in the instruction
and sign extended. The result is added to GRb and the sum becomes the offset of the
target instruction. SRsr (which is assembled from thes field of the instruction) becomes
the space of the target instruction. The offset of the return point is placed in GR 31 and the
space portion of the following instruction’s address is placed in SR 0. The return point is 4
bytes beyond the following instruction.

If the two rightmost bits of GRb designate a less privileged level than the current
instruction, the privilege level of the target is set to that specified by the rightmost bits of
GR b. The decrease in privilege level takes effect at the branch target, not for the
instruction in the delay slot. When aBRANCH AND LINK EXTERNAL is executed with the
PSW C-bit 0 (code address translation is disabled) the effects on IASQ and SR 0 is not
defined.

Operation: disp ← lshift(sign_ext(assemble_17(w1,w2,w),17),2);
IAOQ_Next{0..29} ← (GR[b] + disp){0..29};
if (IAOQ_Front{30..31} < GR[b]{30..31})

IAOQ_Next{30..31} ← GR[b]{30..31};
else

IAOQ_Next{30..31} ← IAOQ_Front{30..31};
IASQ_Next ← SR[assemble_3(s)];
GR[31] ← IAOQ_Back + 4;
SR[0] ← IASQ_Back;
if (n) PSW[N] ← 1;

Exceptions: Taken branch trap

Level 0: This instruction executes as usual, except that the IASQ and SR 0 are nonexistent registers
and updating them has no effect. Also, the privilege level is demoted to any nonzero value,
if the instruction changes it.

39 b w1 s w2 n w

6 5 5 3 11 1 1

5-69PA-RISC 1.1 Architecture Instruction Set

MOVE AND BRANCH MOVB

Format: MOVB,cond,n r1,r2,target

Purpose: To copy one register to another and perform an IA relative branch conditionally based on
the value moved.

Description: GR r1 is copied into GRr2. The condition,cond, is encoded in thec field of the
instruction. If the condition is satisfied by the value moved, the word displacement is
assembled from thew andw1 fields, sign extended, and added to the current instruction
offset plus 8 to form the target offset. The branch target,target, in the assembly language
format is used by the assembler to derive thew andw1 fields.

If nullification is not specified, then the following instruction is not nullified. If
nullification is specified, then the instruction following a taken forward branch or a failing
backward branch is nullified. The ",n" completer, encoded in then field of the instruction,
specifies nullification.

Conditions: The condition,cond, is any of the extract/deposit conditions shown in Table 5-7 on
page 5-7 (never, =, <, OD, TR, <>, >=, EV). When a condition completer is not specified,
then the "never" condition is used. The boolean variable "cond_satisfied" in the operation
section is set to 1 when the value moved satisfies the specified condition and set to 0
otherwise.

Operation: GR[r2] ← GR[r1];
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← !cond_satisfied;

else
PSW[N] ← cond_satisfied;

Exceptions: Taken branch trap

32 r2 r1 c w1 n w

6 5 5 3 11 1 1

5-70 Instruction Set PA-RISC 1.1 Architecture

MOVE IMMEDIATE AND BRANCH MOVIB

Format: MOVIB,cond,n i,r,target

Purpose: To copy an immediate value into a register and perform an IA relative branch
conditionally based on the value moved.

Description: The immediate valueim5 is sign extended and copied into GRr. The condition,cond, is
encoded in thec field of the instruction. If the condition is satisfied by the value moved,
the word displacement is assembled from thew andw1 fields, sign extended, and added to
the current instruction offset plus 8 to form the target offset. The branch target,target, in
the assembly language format is used by the assembler to derive thew andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The ",n" completer, encoded in then field of the instruction, specifies
nullification.

Conditions: The condition,cond, is any of the extract/deposit conditions shown in Table 5-7 on
page 5-7 (never, =, <, OD, TR, <>, >=, EV). When a condition completer is not specified,
the "never" condition is used. The boolean variable "cond_satisfied" in the operation
section is set to 1 when the value moved satisfies the specified condition and set to 0
otherwise.

Operation: GR[r] ← low_sign_ext(im5,5);
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← !cond_satisfied;

else
PSW[N] ← cond_satisfied;

Exceptions: Taken branch trap

PROGRAMMING NOTE
Since i is known at the time aMOVE IMMEDIATE AND BRANCH instruction is written,
conditions other than always and never (the ",TR" and <none> completers) are of no use.

33 r im5 c w1 n w

6 5 5 3 11 1 1

5-71PA-RISC 1.1 Architecture Instruction Set

COMPARE AND BRANCH IF TRUE COMBT

Format: COMBT,cond,n r1,r2,target

Purpose: To compare two values and perform an IA relative branch conditionally based on the
values compared.

Description: GR r1 is compared with GRr2. The condition,cond, is encoded in thec field of the
instruction. If the condition is satisfied by the values compared, the word displacement is
assembled from thew andw1 fields, sign extended, and added to the current instruction
offset plus 8 to form the target offset. The branch target,target, in the assembly language
format is used by the assembler to derive thew andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The ",n" completer, encoded in then field of the instruction, specifies
nullification.

Conditions: The condition,cond, is any of the non-negated compare or subtract conditions shown in
Table 5-3 on page 5-5 (never, =, <, <=, <<, <<=, SV, OD). When a condition completer is
not specified, the "never" condition is used. The boolean variable "cond_satisfied" in the
operation section is set to 1 when the values compared satisfy the specified condition and
set to 0 otherwise.

Operation: GR[r1] + ∼GR[r2] + 1;
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← !cond_satisfied;

else
PSW[N] ← cond_satisfied;

Exceptions: Taken branch trap

Notes: The COMB pseudo-operation allows the coding of both true and false conditions and
generates either aCOMBT or COMBF instruction.

20 r2 r1 c w1 n w

6 5 5 3 11 1 1

5-72 Instruction Set PA-RISC 1.1 Architecture

COMPARE AND BRANCH IF FALSE COMBF

Format: COMBF,cond,n r1,r2,target

Purpose: To compare two values and perform an IA relative branch conditionally based on the
values compared.

Description: GR r1 is compared with GRr2. The condition,cond, is encoded in thec field of the
instruction. If the condition is not satisfied by the values compared, the word displacement
is assembled from thew andw1 fields, sign extended, and added to the current instruction
offset plus 8 to form the target offset. The branch target,target, in the assembly language
format is used by the assembler to derive thew andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The ",n" completer, encoded in then field of the instruction, specifies
nullification.

Conditions: The condition,cond, is any of the non-negated compare or subtract conditions shown in
Table 5-3 on page 5-5 (never, =, <, <=, <<, <<=, SV, OD). When a condition completer is
not specified, the "never" condition is used. The boolean variable "cond_satisfied" in the
operation section is set to 1 when the values compared satisfy the specified condition and
set to 0 otherwise.

Operation: GR[r1] + ∼GR[r2] + 1;
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (!cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← cond_satisfied;

else
PSW[N] ← !cond_satisfied;

Exceptions: Taken branch trap

Notes: The COMB pseudo-operation allows the coding of both true and false conditions and
generates either aCOMBT or COMBF instruction.

22 r2 r1 c w1 n w

6 5 5 3 11 1 1

5-73PA-RISC 1.1 Architecture Instruction Set

COMPARE IMMEDIATE AND BRANCH IF TRUE COMIBT

Format: COMIBT,cond,n i,r,target

Purpose: To compare two values and perform an IA relative branch conditionally based on the
values compared.

Description: The sign-extended immediate valueim5 is compared with GRr. The condition,cond, is
encoded in thec field of the instruction. If the condition is satisfied by the values
compared, the word displacement is assembled from thew andw1 fields, sign extended,
and added to the current instruction offset plus 8 to form the target offset. The branch
target,target, in the assembly language format is used by the assembler to derive thew
andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The ",n" completer, encoded in then field of the instruction, specifies
nullification.

Conditions: The condition,cond, is any of the non-negated compare or subtract conditions shown in
Table 5-3 on page 5-5 (never, =, <, <=, <<, <<=, SV, OD). When a condition completer is
not specified, the "never" condition is used. The boolean variable "cond_satisfied" in the
operation section is set to 1 when the values compared satisfy the specified condition and
set to 0 otherwise.

Operation: low_sign_ext(im5,5) +∼GR[r] + 1;
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← !cond_satisfied;

else
PSW[N] ← cond_satisfied;

Exceptions: Taken branch trap

Notes: The COMIB pseudo-operation allows the coding of both true and false conditions and
generates either aCOMIBT or COMIBF instruction.

21 r im5 c w1 n w

6 5 5 3 11 1 1

5-74 Instruction Set PA-RISC 1.1 Architecture

COMPARE IMMEDIATE AND BRANCH IF FALSE COMIBF

Format: COMIBF,cond,n i,r,target

Purpose: To compare two values and perform an IA relative branch conditionally based on the
values compared.

Description: The sign-extended immediate valueim5 is compared with GRr. The condition,cond, is
encoded in thec field of the instruction. If the condition is not satisfied by the values
compared, the word displacement is assembled from thew andw1 fields, sign extended,
and added to the current instruction offset plus 8 to form the target offset. The branch
target,target, in the assembly language format is used by the assembler to derive thew
andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The ",n" completer, encoded in then field of the instruction, specifies
nullification.

Conditions: The condition,cond, is any of the non-negated compare or subtract conditions shown in
Table 5-3 on page 5-5 (never, =, <, <=, <<, <<=, SV, OD). When a condition completer is
not specified, the "never" condition is used. The boolean variable "cond_satisfied" in the
operation section is set to 1 when the values compared satisfy the specified condition and
set to 0 otherwise.

Operation: low_sign_ext(im5,5) +∼GR[r] + 1;
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (!cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← cond_satisfied;

else
PSW[N] ← !cond_satisfied;

Exceptions: Taken branch trap

Notes: The COMIB pseudo-operation allows the coding of both true and false conditions and
generates either aCOMIBT or COMIBF instruction.

23 r im5 c w1 n w

6 5 5 3 11 1 1

5-75PA-RISC 1.1 Architecture Instruction Set

ADD AND BRANCH IF TRUE ADDBT

Format: ADDBT,cond,n r1,r2,target

Purpose: To add two values and perform an IA relative branch conditionally based on the values
added.

Description: GR r1 and GRr2 are added and the result is stored in GRr2. The condition,cond, is
encoded in thec field of the instruction. If the condition is satisfied by the values added,
the word displacement is assembled from thew andw1 fields, sign extended, and added to
the current instruction offset plus 8 to form the target offset. The branch target,target, in
the assembly language format is used by the assembler to derive thew andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The ",n" completer, encoded in then field of the instruction, specifies
nullification.

Conditions: The condition,cond, is any of the non-negated add conditions shown in Table 5-4 on
page 5-5 (never, =, <, <=, NUV, ZNV, SV, OD). When a condition completer is not
specified, the "never" condition is used. The boolean variable "cond_satisfied" in the
operation section is set to 1 when the values added satisfy the specified condition and set
to 0 otherwise.

Operation: GR[r2] ← GR[r1] + GR[r2];
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← !cond_satisfied;

else
PSW[N] ← cond_satisfied;

Exceptions: Taken branch trap

Notes: The ADDB pseudo-operation allows the coding of both true and false conditions and
generates either aADDBT or ADDBF instruction.

28 r2 r1 c w1 n w

6 5 5 3 11 1 1

5-76 Instruction Set PA-RISC 1.1 Architecture

ADD AND BRANCH IF FALSE ADDBF

Format: ADDBF,cond,n r1,r2,target

Purpose: To add two values and perform an IA relative branch conditionally based on the values
added.

Description: GR r1 and GRr2 are added and the result is stored in GRr2. The condition,cond, is
encoded in thec field of the instruction. If the condition is not satisfied by the values
added, the word displacement is assembled from thew andw1 fields, sign extended, and
added to the current instruction offset plus 8 to form the target offset. The branch target,
target, in the assembly language format is used by the assembler to derive thew andw1
fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The ",n" completer, encoded in then field of the instruction, specifies
nullification.

Conditions: The condition,cond, is any of the non-negated add conditions shown in Table 5-4 on
page 5-5 (never, =, <, <=, NUV, ZNV, SV, OD). When a condition completer is not
specified, the "never" condition is used. The boolean variable "cond_satisfied" in the
operation section is set to 1 when the values compared satisfy the specified condition and
set to 0 otherwise.

Operation: GR[r2] ← GR[r1] + GR[r2];
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (!cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← cond_satisfied;

else
PSW[N] ← !cond_satisfied;

Exceptions: Taken branch trap

Notes: The ADDB pseudo-operation allows the coding of both true and false conditions and
generates either aADDBT or ADDBF instruction.

2A r2 r1 c w1 n w

6 5 5 3 11 1 1

5-77PA-RISC 1.1 Architecture Instruction Set

ADD IMMEDIATE AND BRANCH IF TRUE ADDIBT

Format: ADDIBT,cond,n i,r,target

Purpose: To add two values and perform an IA relative branch conditionally based on the values
added.

Description: The sign-extended immediate valueim5 is added to GRr. The condition,cond, is encoded
in thec field of the instruction. If the condition is satisfied by the values added, the word
displacement is assembled from thew and w1 fields, sign extended, and added to the
current instruction offset plus 8 to form the target offset. The branch target,target, in the
assembly language format is used by the assembler to derive thew andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The ",n" completer, encoded in then field of the instruction, specifies
nullification.

Conditions: The condition,cond, is any of the non-negated add conditions shown in Table 5-4 on
page 5-5 (never,=, <, <=, NUV, ZNV, SV, OD). When a condition completer is not
specified, the "never" condition is used. The boolean variable "cond_satisfied" in the
operation section is set to 1 when the values added satisfy the specified condition and set
to 0 otherwise.

Operation: GR[r] ← low_sign_ext(im5,5) + GR[r];
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← !cond_satisfied;

else
PSW[N] ← cond_satisfied;

Exceptions: Taken branch trap

Notes: The ADDIB pseudo-operation allows the coding of both true and false conditions and
generates either aADDIBT or ADDIBF instruction.

29 r im5 c w1 n w

6 5 5 3 11 1 1

5-78 Instruction Set PA-RISC 1.1 Architecture

ADD IMMEDIATE AND BRANCH IF FALSE ADDIBF

Format: ADDIBF,cond,n i,r,target

Purpose: To add two values and perform an IA relative branch conditionally based on the values
added.

Description: The sign-extended immediate valueim5 is added to GRr. The condition,cond, is encoded
in thec field of the instruction. If the condition is not satisfied by the values added, the
word displacement is assembled from thew andw1 fields, sign extended, and added to the
current instruction offset plus 8 to form the target offset. The branch target,target, in the
assembly language format is used by the assembler to derive thew andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The ",n" completer, encoded in then field of the instruction, specifies
nullification.

Conditions: The condition,cond, is any of the non-negated add conditions shown in Table 5-4 on
page 5-5 (never, =, <, <=, NUV, ZNV, SV, OD). When a condition completer is not
specified, the "never" condition is used. The boolean variable "cond_satisfied" in the
operation section is set to 1 when the values compared satisfy the specified condition and
set to 0 otherwise.

Operation: GR[r] ← low_sign_ext(im5,5) + GR[r];
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (!cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← cond_satisfied;

else
PSW[N] ← !cond_satisfied;

Exceptions: Taken branch trap

Notes: The ADDIB pseudo-operation allows the coding of both true and false conditions and
generates either aADDIBT or ADDIBF instruction.

2B r im5 c w1 n w

6 5 5 3 11 1 1

5-79PA-RISC 1.1 Architecture Instruction Set

BRANCH ON VARIABLE BIT BVB

Format: BVB,cond,n r,target

Purpose: To test a bit at a variable position in a register and perform an IA relative branch if the
condition is satisfied.

Description: If the bit in GRr, specified by the Shift Amount Register (CR 11), satisfies the condition,
cond, the word displacement is assembled from thew andw1 fields of the instruction, sign
extended, and added to the current instruction offset plus 8 to form the target offset. The
branch target,target, in the assembly language format is used by the assembler to derive
thew andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The ",n" completer, encoded in then field of the instruction, specifies
nullification.

Conditions: The condition,cond, is either "<" (bit is 1), or ">=" (bit is 0) from the extract/deposit
conditions (Table 5-7 on page 5-7). Use of other conditions is an undefined operation. The
boolean variable "cond_satisfied" in the operation section is set to 1 when the bit tested
satisfies the specified condition and set to 0 otherwise.

Operation: lshift(GR[r], CR[11]);
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← !cond_satisfied;

else
PSW[N] ← cond_satisfied;

Exceptions: Taken branch trap

30 0 r c w1 n w

6 5 5 3 11 1 1

5-80 Instruction Set PA-RISC 1.1 Architecture

BRANCH ON BIT BB

Format: BB,cond,n r,p,target

Purpose: To test a bit at a fixed position in a register and perform an IA relative branch if the test
condition is satisfied.

Description: If the bit in GRr specified byp satisfies the condition,cond, the word displacement is
assembled from thew andw1 fields of the instruction, sign extended, and added to the
current instruction offset plus 8 to form the target offset. The branch target,target, in the
assembly language format is used by the assembler to derive thew andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The ",n" completer, encoded in then field of the instruction, specifies
nullification.

Conditions: The condition,cond, is either "<" (bit is 1), or ">=" (bit is 0) from the extract/deposit
conditions (Table 5-7 on page 5-7). Use of other conditions is an undefined operation. The
boolean variable "cond_satisfied" in the operation section is set to 1 when the bit tested
satisfies the specified condition and set to 0 otherwise.

Operation: lshift(GR[r],p);
disp ← lshift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)

IAOQ_Next ← IAOQ_Front + disp + 8;
if (n)

if (disp < 0)
PSW[N] ← !cond_satisfied;

else
PSW[N] ← cond_satisfied;

Exceptions: Taken branch trap

31 p r c w1 n w

6 5 5 3 11 1 1

5-81PA-RISC 1.1 Architecture Instruction Set

5Instruction Set

Computation Instructions
Computation instructions are comprised of the arithmetic, logical, shift, extract, and deposit
instructions. The two 5-bit fields following the 6-bit opcode field could consist of the following
combinations:

1. Two source registers.

2. A source register and a target register.

3. A source register and a 5-bit immediate.

4. A target register and a 5-bit immediate.

The three register arithmetic and logical instructions take two source arguments from two general
registers. These source registers are specified by the two 5-bit fields following the opcode specifier. The
rightmost 5-bit field specifies the target register.

Some of the computation instructions have a signed immediate argument which is either five bits or
eleven bits in length. The 5-bit immediate is encoded in the second 5-bit field following the opcode field
and the target specifier in the first 5-bit field following the opcode field. The 11-bit immediate is
encoded in the rightmost 11-bit field, and the target specifier in the second 5-bit field following the
opcode specifier.

Any computation instruction may nullify the instruction following, given the correct conditions. Most
computation instructions encode the condition completers in the 3-bitc-field and 1-bitf-field of the
instructions. The exceptions are the instructions that use the extract/deposit conditions. The
computation instructions that use the extract/deposit conditions encode the condition completers in only
the 3-bitc-field. The condition completers are used to determine if the instruction following is nullified,
based on the contents of the source operands and the operation performed.

Three-Register Arithmetic and Logical Instructions
These instructions perform arithmetic and logical operations between two operands in registers and
store the result into a register. Each arithmetic/logical instruction also specifies the conditional
occurrence of either a skip or a trap, based on its opcode and the condition field. Not all options are
available on every instruction. Only those operations and options considered useful are defined.

Immediate Arithmetic Operations
The immediate arithmetic instructions operate between a sign-extended 11-bit immediate and the
contents of a register. The result is stored in a register. Immediate operations may optionally trap on
overflow. In addition, immediate adds may trap on a specific condition.

The 11-bit immediate field has the sign bit in the rightmost position, but the other 10 bits are in the usual
order. The 1-bit opcode extension field determines whether overflow causes a trap.

Shift Double, Extract, and Deposit Instructions
The double shift operations allow for a concatenation of two registers followed by a shift of 0 to 31 bit

5-82 Instruction Set PA-RISC 1.1 Architecture

positions. The rightmost 32 bits are stored in a general register. Depending on the choice of the source
registers, this operation allows the user to perform right or left shifts, rotates, bit field extractions when
the bit field crosses word boundaries, unaligned byte moves, and so on.

Extract instructions take a field from a source register and insert it right-justified into the target register.
This field is either zero extended or sign extended. This way, the extract instructions support both
logical and arithmetic shift operations.

Deposits either set the target to zero or leave it unchanged (merge operation). The deposit instructions
then take a right-justified field from a source and deposit it into any portion of the target. The source can
be either a register or a 5-bit signed immediate value. The 5-bit immediate field has the sign bit in the
rightmost position, but the other 4 bits are in the usual order. Deposit instructions support left shift
operations and simple multiplication by powers of two.

5-83PA-RISC 1.1 Architecture Instruction Set

ADD ADD

Format: ADD,cond r1,r2,t

Purpose: To do 32-bit integer addition and conditionally nullify the following instruction.

Description: GR r1 and GRr2 are added and the result is placed in GRt. The carry/borrow bits in the
PSW are updated. The variable "carry_borrows" in the operation section captures the 4-bit
carries resulting from the add operation.

The following instruction is nullified if the values added satisfy the specified condition,
cond. The condition is encoded in thec andf fields of the instruction.

Conditions: The condition is any of the add conditions (Table 5-4 on page 5-5). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: GR[t] ← GR[r1] + GR[r2];
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 18 0 t

6 5 5 3 1 6 1 5

5-84 Instruction Set PA-RISC 1.1 Architecture

ADD LOGICAL ADDL

Format: ADDL,cond r1,r2,t

Purpose: To do 32-bit integer addition without affecting the PSW C/B-bits and conditionally nullify
the following instruction.

Description: GR r1 and GRr2 are added and the result is placed in GRt. The carry/borrow bits in the
PSW are not updated.

The following instruction is nullified if the values added satisfy the specified condition,
cond. The condition is encoded in thec andf fields of the instruction.

Conditions: The condition is any of the add conditions (Table 5-4 on page 5-5). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: GR[t] ← GR[r1] + GR[r2];
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 28 0 t

6 5 5 3 1 6 1 5

5-85PA-RISC 1.1 Architecture Instruction Set

ADD AND TRAP ON OVERFLOW ADDO

Format: ADDO,cond r1,r2,t

Purpose: To do 32-bit integer addition, conditionally nullify the next instruction, and trap on
overflow.

Description: GR r1 and GRr2 are added. If signed overflow does not occur, the results are placed in
GR t and the carry/borrow bits in the PSW are updated; if signed overflow occurs, an
overflow trap is taken. The variable "carry_borrows" in the operation section captures the
4-bit carries resulting from the add operation. The following instruction is nullified if the
values added satisfy the specified condition,cond. The condition is encoded in thec andf
fields of the instruction.

The following instruction is nullified if the values added satisfy the specified condition,
cond. The condition is encoded in the c and f fields of the instruction. The boolean
variable "overflow" in the operation section is set if the operation results in a signed
overflow.

Conditions: The condition is any of the add conditions (Table 5-4 on page 5-5). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: res ← GR[r1] + GR[r2];
if (overflow)

overflow_trap;
else {

GR[t] ← res;
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

}

Exceptions: Overflow trap

02 r2 r1 c f 38 0 t

6 5 5 3 1 6 1 5

5-86 Instruction Set PA-RISC 1.1 Architecture

ADD WITH CARRY ADDC

Format: ADDC,cond r1,r2,t

Purpose: To do 32-bit integer addition with carry and conditionally nullify the following
instruction.

Description: GR r1 and GRr2 are added with the leftmost carry/borrow bit from the PSW and the
result is placed in GRt. The carry/borrow bits in the PSW are updated. The variable
"carry_borrows" in the operation section captures the 4-bit carries resulting from the add
operation.

The following instruction is nullified if the values added satisfy the specified condition,
cond. The condition is encoded in thec andf fields of the instruction.

Conditions: The condition is any of the add conditions (Table 5-4 on page 5-5). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: GR[t] ← GR[r1] + GR[r2] + PSW[C/B]{0};
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 1C 0 t

6 5 5 3 1 6 1 5

5-87PA-RISC 1.1 Architecture Instruction Set

ADD WITH CARRY AND TRAP ON OVERFLOW ADDCO

Format: ADDCO,cond r1,r2,t

Purpose: To do 32-bit integer addition with carry, conditionally nullify the following instruction,
and trap on overflow.

Description: GR r1 and GRr2 are added with the leftmost carry/borrow bit from the PSW. If signed
overflow does not occur, the result is placed in GRt; if signed overflow occurs, an
overflow trap is taken instead. The carry/borrow bits in the PSW are updated. The variable
"carry_borrows" in the operation section captures the 4-bit carries resulting from the add
operation.

The following instruction is nullified if the values added satisfy the specified condition,
cond. The condition is encoded in thec andf fields of the instruction. The boolean variable
"overflow" in the operation section is set if the operation results in a signed overflow.

Conditions: The condition is any of the add conditions (Table 5-4 on page 5-5). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: res ← GR[r1] + GR[r2] + PSW[C/B]{0};
if (overflow)

overflow_trap;
else {

GR[t] ← res;
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

}

Exceptions: Overflow trap

02 r2 r1 c f 3C 0 t

6 5 5 3 1 6 1 5

5-88 Instruction Set PA-RISC 1.1 Architecture

SHIFT ONE AND ADD SH1ADD

Format: SH1ADD,cond r1,r2,t

Purpose: To provide a primitive operation for multiplication.

Description: GR r1 is shifted left one bit position and added to GRr2. The result is placed in GRt and
the carry/borrow bits in the PSW are updated. The variable "carry_borrows" in the
operation section captures the 4-bit carries resulting from the add operation. The following
instruction is nullified if the values added satisfy the specified condition,cond. The
condition is encoded in thec andf fields of the instruction.

For this instruction, signed overflow condition means that either the bit shifted out differs
from the leftmost bit following the shift or an ordinary signed overflow occurred during
the addition. Unsigned overflow means that the bit shifted out is 1 or an ordinary unsigned
overflow occurred during the addition. The conditions take on special interpretations since
the shift operation participates in overflow determination.

Conditions: The condition is any of the add conditions (Table 5-4 on page 5-5). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: GR[t] ← lshift(GR[r1], 1) + GR[r2];
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 19 0 t

6 5 5 3 1 6 1 5

5-89PA-RISC 1.1 Architecture Instruction Set

SHIFT ONE AND ADD LOGICAL SH1ADDL

Format: SH1ADDL,cond r1,r2,t

Purpose: To provide a primitive operation for multiplication without affecting the carry/borrow bits.

Description: GR r1 is shifted left one bit position and added to GRr2. The result is placed in GRt. The
carry/borrow bits in the PSW are not affected. The following instruction is nullified if the
values added satisfy the specified condition,cond. The condition is encoded in thec andf
fields of the instruction.

For this instruction, signed overflow condition means that either the bit shifted out differs
from the leftmost bit following the shift or an ordinary signed overflow occurred during
the addition. Unsigned overflow means that the bit shifted out is 1 or that an ordinary
unsigned overflow occurred during the addition. The conditions take on special
interpretations since the shift operation participates in overflow determination.

Conditions: The condition is any of the add conditions (Table 5-4 on page 5-5). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: GR[t] ← lshift(GR[r1], 1) + GR[r2];
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 29 0 t

6 5 5 3 1 6 1 5

5-90 Instruction Set PA-RISC 1.1 Architecture

SHIFT ONE, ADD AND TRAP ON OVERFLOW SH1ADDO

Format: SH1ADDO,cond r1,r2,t

Purpose: To provide a primitive operation for multiplication and trap on overflow.

Description: GR r1 is shifted left one bit position and added to GRr2. If signed overflow does not
occur, the result is placed in GRt; if signed overflow occurs, an overflow trap is taken
instead. The carry/borrow bits in the PSW are updated. The variable "carry_borrows" in
the operation section captures the 4-bit carries resulting from the add operation. The
following instruction is nullified if the values added satisfy the specified condition,cond.
The condition is encoded in thec and f fields of the instruction. The boolean variable
"overflow" in the operation section is set if the operation results in a signed overflow.

For this instruction, signed overflow condition means that either the bit shifted out differs
from the leftmost bit following the shift or an ordinary signed overflow occurred during
the addition. Unsigned overflow means that the bit shifted out is 1 or that an ordinary
unsigned overflow occurred during the addition. The conditions take on special
interpretations since the shift operation participates in overflow determination.

Conditions: The condition is any of the add conditions (Table 5-7 on page 5-7). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: res ← lshift(GR[r1], 1) + GR[r2];
if (overflow)

overflow_trap;
else {

GR[t] ← res;
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

}

Exceptions: Overflow trap

02 r2 r1 c f 39 0 t

6 5 5 3 1 6 1 5

5-91PA-RISC 1.1 Architecture Instruction Set

SHIFT TWO AND ADD SH2ADD

Format: SH2ADD,cond r1,r2,t

Purpose: To provide a primitive operation for multiplication.

Description: GR r1 is shifted left two bit positions and added to GRr2. The result is placed in GRt and
the carry/borrow bits in the PSW are updated. The variable "carry_borrows" in the
operation section captures the 4-bit carries resulting from the add operation. The following
instruction is nullified if the values added satisfy the specified condition,cond. The
condition is encoded in thec andf fields of the instruction.

For this instruction, signed overflow condition means that any of the bits shifted out
differs from the leftmost bit following the shift or an ordinary signed overflow occurred
during the addition. Unsigned overflow means that at least one of the bits shifted out is 1
or an ordinary unsigned overflow occurred during the addition. The conditions take on
special interpretations since the shift operation participates in overflow determination.

Conditions: The condition is any of the add conditions (Table 5-7 on page 5-7). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: GR[t] ← lshift(GR[r1],2) + GR[r2];
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 1A 0 t

6 5 5 3 1 6 1 5

5-92 Instruction Set PA-RISC 1.1 Architecture

SHIFT TWO AND ADD LOGICAL SH2ADDL

Format: SH2ADDL,cond r1,r2,t

Purpose: To provide a primitive operation multiplication without affecting the carry/borrow bits.

Description: GR r1 is shifted left two bit positions and added to GRr2. The result is placed in GRt.
The carry/borrow bits in the PSW are not updated. The following instruction is nullified if
the values added satisfy the specified condition,cond. The condition is encoded in thec
andf fields of the instruction.

For this instruction, signed overflow condition means that any of the bits shifted out
differs from the leftmost bit following the shift or an ordinary signed overflow occurred
during the addition. Unsigned overflow means that at least one of the bits shifted out is 1
or that an ordinary unsigned overflow occurred during the addition. The conditions take
on special interpretations since the shift operation participates in overflow determination.

Conditions: The condition is any of the add conditions (Table 5-4 on page 5-5). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: GR[t] ← lshift(GR[r1],2) + GR[r2];
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 2A 0 t

6 5 5 3 1 6 1 5

5-93PA-RISC 1.1 Architecture Instruction Set

SHIFT TWO, ADD AND TRAP ON OVERFLOW SH2ADDO

Format: SH2ADDO,cond r1,r2,t

Purpose: To provide a primitive operation multiplication and trap on overflow.

Description: GR r1 is shifted left two bit positions and added to GRr2. If signed overflow does not
occur, the result is placed in GRt; if signed overflow occurs, an overflow trap is taken
instead. The carry/borrow bits in the PSW are updated. The variable "carry_borrows" in
the operation section captures the 4-bit carries resulting from the add operation. The
following instruction is nullified if the values added satisfy the specified condition,cond.
The condition is encoded in thec and f fields of the instruction. The boolean variable
"overflow" in the operation section is set if the operation results in a signed overflow.

For this instruction, signed overflow condition means that any of the bits shifted out
differs from the leftmost bit following the shift or an ordinary signed overflow occurred
during the addition. Unsigned overflow means that at least one of the bits shifted out is 1
or that an ordinary unsigned overflow occurred during the addition. The conditions take
on special interpretations since the shift operation participates in overflow determination.

Conditions: The condition is any of the add conditions (Table 5-4 on page 5-5). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: res ← lshift(GR[r1],2) + GR[r2];
if (overflow)

overflow_trap;
else {

GR[t] ← res;
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

}

Exceptions: Overflow trap

02 r2 r1 c f 3A 0 t

6 5 5 3 1 6 1 5

5-94 Instruction Set PA-RISC 1.1 Architecture

SHIFT THREE AND ADD SH3ADD

Format: SH3ADD,cond r1,r2,t

Purpose: To provide a primitive operation for multiplication.

Description: GR r1 is shifted left 3 bit positions and added to GRr2. The result is placed in GRt and
the carry/borrow bits in the PSW are updated. The variable "carry_borrows" in the
operation section captures the 4-bit carries resulting from the add operation. The following
instruction is nullified if the values added satisfy the specified condition,cond. The
condition is encoded in thec andf fields of the instruction.

For this instruction, signed overflow condition means that any of the bits shifted out
differs from the leftmost bit following the shift or an ordinary signed overflow occurred
during the addition. Unsigned overflow means that at least one of the bits shifted out is 1
or that an ordinary unsigned overflow occurred during the addition. The conditions take
on special interpretations since the shift operation participates in overflow determination.

Conditions: The condition is any of the add conditions (Table 5-4 on page 5-5). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: GR[t] ← lshift(GR[r1],3) + GR[r2];
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 1B 0 t

6 5 5 3 1 6 1 5

5-95PA-RISC 1.1 Architecture Instruction Set

SHIFT THREE AND ADD LOGICAL SH3ADDL

Format: SH3ADDL,cond r1,r2,t

Purpose: To provide a primitive operation for multiplication.

Description: GR r1 is shifted left 3 bit positions and added to GRr2. The result is placed in GRt. The
carry/borrow bits in the PSW are not updated. The following instruction is nullified if the
values added satisfy the specified condition,cond. The condition is encoded in thec andf
fields of the instruction.

For this instruction, signed overflow condition means that any of the bits shifted out
differs from the leftmost bit following the shift or an ordinary signed overflow occurred
during the addition. Unsigned overflow means that at least one of the bits shifted out is 1
or that an ordinary unsigned overflow occurred during the addition. The conditions take
on special interpretations since the shift operation participates in overflow determination.

Conditions: The condition is any of the add conditions (Table 5-4 on page 5-5). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: GR[t] ← lshift(GR[r1],3) + GR[r2];
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 2B 0 t

6 5 5 3 1 6 1 5

5-96 Instruction Set PA-RISC 1.1 Architecture

SHIFT THREE, ADD AND TRAP ON OVERFLOW SH3ADDO

Format: SH3ADDO,cond r1,r2,t

Purpose: To provide a primitive operation for multiplication and trap on overflow.

Description: GR r1 is shifted left 3 bit positions and added to GRr2. If signed overflow does not occur,
the result is placed in GRt; if signed overflow occurs, an overflow trap is taken instead.
The carry/borrow bits in the PSW are updated. The variable "carry_borrows" in the
operation section captures the 4-bit carries resulting from the add operation. The following
instruction is nullified if the values added satisfy the specified condition,cond. The
condition is encoded in thec and f fields of the instruction. The boolean variable
"overflow" in the operation section is set if the operation results in a signed overflow.

For this instruction, signed overflow condition means that any of the bits shifted out
differs from the leftmost bit following the shift or an ordinary signed overflow occurred
during the addition. Unsigned overflow means that at least one of the bits shifted out is 1
or that an ordinary unsigned overflow occurred during the addition. The conditions take
on special interpretations since the shift operation participates in overflow determination.

Conditions: The condition is any of the add conditions (Table 5-4 on page 5-5). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: res ← lshift(GR[r1],3) + GR[r2];
if (overflow)

overflow_trap;
else {

GR[t] ← res;
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

}

Exceptions: Overflow trap

02 r2 r1 c f 3B 0 t

6 5 5 3 1 6 1 5

5-97PA-RISC 1.1 Architecture Instruction Set

SUBTRACT SUB

Format: SUB,cond r1,r2,t

Purpose: To do 32-bit integer subtraction, and conditionally nullify the following instruction.

Description: GR r2 is subtracted from GRr1 and the result is placed in GRt. The carry/borrow bits in
the PSW are updated. The variable "carry_borrows" in the operation section captures the
4-bit borrows resulting from the subtract operation.

The following instruction is nullified if the values subtracted satisfy the specified
condition,cond. The condition is encoded in thec andf fields of the instruction.

Conditions: The condition is any of the compare or subtract conditions shown in Table 5-3 on
page 5-5. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the values
subtracted satisfy the specified condition.

Operation: GR[t] ← GR[r1] +∼GR[r2] + 1;
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 10 0 t

6 5 5 3 1 6 1 5

5-98 Instruction Set PA-RISC 1.1 Architecture

SUBTRACT AND TRAP ON OVERFLOW SUBO

Format: SUBO,cond r1,r2,t

Purpose: To do 32-bit integer subtraction, conditionally nullify the following instruction, and trap
on overflow.

Description: GR r2 is subtracted from GRr1. If signed overflow does not occur, the result is placed in
GR t; if signed overflow occurs, an overflow trap is taken instead. The carry/borrow bits in
the PSW are updated. The variable "carry_borrows" in the operation section captures the
4-bit borrows resulting from the subtract operation.

The following instruction is nullified if the values subtracted satisfy the specified
condition, cond. The condition is encoded in thec and f fields of the instruction. The
boolean variable "overflow" in the operation section is set if the operation results in a
signed overflow.

Conditions: The condition is any of the compare or subtract conditions shown in Table 5-3 on
page 5-5. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the values
subtracted satisfy the specified condition.

Operation: res ← GR[r1] +∼GR[r2] + 1;
if (overflow)

overflow_trap;
else {

GR[t] ← res;
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

}

Exceptions: Overflow trap

02 r2 r1 c f 30 0 t

6 5 5 3 1 6 1 5

5-99PA-RISC 1.1 Architecture Instruction Set

SUBTRACT WITH BORROW SUBB

Format: SUBB,cond r1,r2,t

Purpose: To do 32-bit integer subtraction with borrow and conditionally nullify the following
instruction.

Description: GR r2 is subtracted from GRr1 with the leftmost carry/borrow bit from the PSW and the
result is placed in GRt. The carry/borrow bits in the PSW are updated. The variable
"carry_borrows" in the operation section captures the 4-bit borrows resulting from the
subtract operation.

The following instruction is nullified if the values subtracted satisfy the specified
condition,cond. The condition is encoded in thec andf fields of the instruction.

Conditions: The condition is any of the compare or subtract conditions shown in Table 5-3 on
page 5-5. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the values
subtracted satisfy the specified condition.

Operation: GR[t] ← GR[r1] +∼GR[r2] + PSW[C/B]{0};
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 14 0 t

6 5 5 3 1 6 1 5

5-100 Instruction Set PA-RISC 1.1 Architecture

SUBTRACT WITH BORROW AND SUBBO
TRAP ON OVERFLOW

Format: SUBBO,cond r1,r2,t

Purpose: To do 32-bit integer subtraction with borrow, conditionally nullify the following
instruction, and trap on overflow.

Description: GR r2 is subtracted from GRr1 with the leftmost carry/borrow bit from the PSW. If
signed overflow does not occur, the result is placed in GRt. If signed overflow occurs, an
overflow trap is taken instead. The carry/borrow bits in the PSW are updated. The variable
"carry_borrows" in the operation section captures the 4-bit borrows resulting from the
subtract operation.

The following instruction is nullified if the values subtracted satisfy the specified
condition, cond. The condition is encoded in thec and f fields of the instruction. The
boolean variable "overflow" in the operation section is set if the operation results in a
signed overflow.

Conditions: The condition is any of the compare or subtract conditions shown in Table 5-3 on
page 5-5. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the values
subtracted satisfy the specified condition.

Operation: res ← GR[r1] +∼GR[r2] + PSW[C/B]{0};
if (overflow)

overflow_trap;
else {

GR[t] ← res;
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

}

Exceptions: Overflow trap

02 r2 r1 c f 34 0 t

6 5 5 3 1 6 1 5

5-101PA-RISC 1.1 Architecture Instruction Set

SUBTRACT AND TRAP ON CONDITION SUBT

Format: SUBT,cond r1,r2,t

Purpose: To do 32-bit integer subtraction and trap on a condition.

Description: GR r2 is subtracted from GRr1. If the values subtracted do not satisfy the condition
specified, the result is placed in GRt. If the values subtracted satisfy the condition
specified, a conditional trap is taken. The carry/borrow bits in the PSW are updated. The
variable "carry_borrows" in the operation section captures the 4-bit borrows resulting
from the subtract operation. The condition,cond, is encoded in thec and f fields of the
instruction.

Conditions: The condition is any of the compare or subtract conditions shown in Table 5-3 on
page 5-5. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the values
subtracted satisfy the specified condition.

Operation: res ← GR[r1] +∼GR[r2] + 1;
if (cond_satisfied)

conditional_trap;
else {

GR[t] ← res;
PSW[C/B] ← carry_borrows;

}

Exceptions: Conditional trap

02 r2 r1 c f 13 0 t

6 5 5 3 1 6 1 5

5-102 Instruction Set PA-RISC 1.1 Architecture

SUBTRACT AND TRAP SUBTO
ON CONDITION OR OVERFLOW

Format: SUBTO,cond r1,r2,t

Purpose: To do 32-bit integer subtraction and trap on a condition or on overflow.

Description: GR r2 is subtracted from GRr1. If signed overflow occurs, an overflow trap is taken; if
signed overflow does not occur and the condition specified is satisfied, a conditional trap
occurs. If neither trap occurs, the result is stored in GRt.

The carry/borrow bits in the PSW are updated. The variable "carry_borrows" in the
operation section captures the 4-bit borrows resulting from the subtract operation.

The condition,cond, is encoded in thec and f fields of the instruction. The boolean
variable "overflow" in the operation section is set if the operation results in a signed
overflow.

Conditions: The condition is any of the compare or subtract conditions (Table 5-3 on page 5-5). When
a condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values subtracted satisfy the
specified condition.

Operation: res ← GR[r1] +∼GR[r2] + 1;
if (overflow)

overflow_trap;
else if (cond_satisfied)

conditional_trap;
else {

GR[t] ← res;
PSW[C/B] ← carry_borrows;

}

Exceptions: Overflow trap
Conditional trap

02 r2 r1 c f 33 0 t

6 5 5 3 1 6 1 5

5-103PA-RISC 1.1 Architecture Instruction Set

DIVIDE STEP DS

Format: DS,cond r1,r2,t

Purpose: To provide the primitive operation for integer division.

Description: This instruction performs a single-bit non-restoring divide step and produces a set of result
conditions. It calculates one bit of the quotient when GRr1 is divided by GRr2 and leaves
the partial remainder in GRt. The quotient bit is the leftmost carry/borrow bit of the PSW.
The carry/borrow bits in the PSW are updated. The variable "carry_borrows" in the
operation section captures the 4-bit carries resulting from the single-bit divide operation.

The following instruction is nullified if the result of the operation satisfies the specified
condition,cond. The condition is encoded in thec andf fields of the instruction.

For this instruction, signed overflow condition means that the bit shifted out differs from
the leftmost bit following the shift or an ordinary signed overflow occurred during the
addition or subtraction. Unsigned overflow means that the bit shifted out is 1 or that an
ordinary unsigned overflow occurred during the addition or subtraction. The conditions
take on special interpretations since the shift operation participates in overflow
determination.

Conditions: The condition is any of the compare or subtract conditions (Table 5-3 on page 5-5). When
a condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.

Operation: if (PSW[V])
GR[t] ← cat(lshift(GR[r1],1),PSW[C/B]{0}) +∼GR[r2] + 1;

else
GR[t] ← cat(lshift(GR[r1],1),PSW[C/B]{0}) + GR[r2];

PSW[C/B] ← carry_borrows;
PSW[V] ← xor(carry_borrows{0},GR[r2]{0});
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 11 0 t

6 5 5 3 1 6 1 5

5-104 Instruction Set PA-RISC 1.1 Architecture

COMPARE AND CLEAR COMCLR

Format: COMCLR,cond r1,r2,t

Purpose: To compare two registers, set a register to 0, and conditionally nullify the following
instruction, based on the result of the comparison.

Description: GR r1 and GRr2 are compared and GRt is set to zero. The carry/borrow bits in the PSW
are not updated.

The following instruction is nullified if the values compared satisfy the specified
condition,cond. The condition is encoded in thec andf fields of the instruction.

Conditions: The condition is any of the compare or subtract conditions (Table 5-3 on page 5-5). When
a condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values compared satisfy the
specified condition.

Operation: GR[r1] + ∼GR[r2] + 1;
GR[t] ← 0;
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

PROGRAMMING NOTE
COMPARE AND CLEAR can be used to produce the logical value of the result of a comparison
(assuming false is represented by 0 and true by 1) in a register. The following example will set
ra to 1 if rb andrc are equal, and to 0 if they are not equal:

02 r2 r1 c f 22 0 t

6 5 5 3 1 6 1 5

COMCLR,<> rb,rc,ra
LDO 1(0),ra

5-105PA-RISC 1.1 Architecture Instruction Set

INCLUSIVE OR OR

Format: OR,cond r1,r2,t

Purpose: To do a 32-bit, bitwise inclusive OR.

Description: GR r1 and GRr2 are ORed and the result is placed in GRt. The following instruction is
nullified if the values ORed satisfy the specified condition,cond. The condition is encoded
in thec andf fields of the instruction.

Conditions: The condition is any of the logical conditions (Table 5-5 on page 5-6). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values ORed satisfy the specified
condition.

Operation: GR[t] ← GR[r1] | GR[r2];
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

Notes: TheCOPY pseudo-operation allows for the movement of data from one register to another
by generating the instructionOR r,0,t. TheNOP pseudo-operation generates the instruction
OR 0,0,0.

02 r2 r1 c f 09 0 t

6 5 5 3 1 6 1 5

5-106 Instruction Set PA-RISC 1.1 Architecture

EXCLUSIVE OR XOR

Format: XOR,cond r1,r2,t

Purpose: To do a 32-bit, bitwise exclusive OR.

Description: GR r1 and GRr2 are XORed and the result is placed in GRt. The following instruction is
nullified if the values XORed satisfy the specified condition,cond. The condition is
encoded in thec andf fields of the instruction.

Conditions: The condition is any of the logical conditions (Table 5-5 on page 5-6). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values XORed satisfy the
specified condition.

Operation: GR[t] ← xor(GR[r1], GR[r2]);
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 0A 0 t

6 5 5 3 1 6 1 5

5-107PA-RISC 1.1 Architecture Instruction Set

AND AND

Format: AND,cond r1,r2,t

Purpose: To do a 32-bit, bitwise AND.

Description: GR r1 and GRr2 are ANDed and the result is placed in GRt. The following instruction is
nullified if the values ANDed satisfy the specified condition,cond. The condition is
encoded in thec andf fields of the instruction.

Conditions: The condition is any of the logical conditions (Table 5-5 on page 5-6). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values ANDed satisfy the
specified condition.

Operation: GR[t] ← GR[r1] & GR[r2];
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 08 0 t

6 5 5 3 1 6 1 5

5-108 Instruction Set PA-RISC 1.1 Architecture

AND COMPLEMENT ANDCM

Format: ANDCM,cond r1,r2,t

Purpose: To do a 32-bit bitwise AND with complement.

Description: GR r1 is ANDed with the one’s complement of GRr2 and the result is placed in GRt. The
following instruction is nullified if the values ANDed satisfy the specified condition,cond.
The condition is encoded in thec andf fields of the instruction.

Conditions: The condition is any of the logical conditions (Table 5-5 on page 5-6). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values ANDed satisfy the
specified condition.

Operation: GR[t] ← GR[r1] & ∼GR[r2];
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 00 0 t

6 5 5 3 1 6 1 5

5-109PA-RISC 1.1 Architecture Instruction Set

UNIT XOR UXOR

Format: UXOR,cond r1,r2,t

Purpose: To individually compare corresponding sub-units of two words for equality.

Description: GR r1 and GRr2 are XORed and the result is placed in GRt. This instruction generates
unit conditions unlikeXOR which generates logical conditions. The following instruction
is nullified if the values XORed satisfy the specified condition,cond. The condition is
encoded in thec andf fields of the instruction.

Conditions: The condition,cond, is any of the unit conditions not involving carries shown in Table 5-6
on page 5-6 ("never", SBZ, SHZ, TR, NBZ, NHZ). When a condition completer is not
specified, the "never" condition is used. The boolean variable "cond_satisfied" in the
operation section is set when the values XORed satisfy the specified condition.

Operation: GR[t] ← xor(GR[r1], GR[r2]);
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r2 r1 c f 0E 0 t

6 5 5 3 1 6 1 5

5-110 Instruction Set PA-RISC 1.1 Architecture

UNIT ADD COMPLEMENT UADDCM

Format: UADDCM,cond r1,r2,t

Purpose: To individually compare corresponding sub-units of a word for a greater-than or less-than-
or-equal relation and to prepare for decimal operations.

Description: GR r1 is added to the one’s complemented of GRr2 and the result is stored in GRt. The
following instruction is nullified if the values added satisfy the specified condition,cond.
The condition is encoded in thec andf fields of the instruction.

Conditions: The conditioncond is any of the unit conditions (Table 5-6 on page 5-6). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: GR[t] ← GR[r1] +∼GR[r2];
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

PROGRAMMING NOTE
UNIT ADD COMPLEMENT can be used to perform a logical NOT operation when coded as
follows:

02 r2 r1 c f 26 0 t

6 5 5 3 1 6 1 5

UADDCM 0,r,t /* GR[t] ← ∼GR[r] */

5-111PA-RISC 1.1 Architecture Instruction Set

UNIT ADD COMPLEMENT AND UADDCMT
TRAP ON CONDITION

Format: UADDCMT,cond r1,r2,t

Purpose: To individually compare corresponding sub-units of a word for a greater-than or less-than-
or-equal a relation and trap if the specified condition is satisfied by any sub-unit.

Description: GR r1 is added to the one’s complement of GRr2. If the condition,cond, is satisfied by
the values added a conditional trap is taken; otherwise the result is stored in GRt. The
condition is encoded in thec andf fields of the instruction.

Conditions: The conditioncond is any of the unit conditions (Table 5-6 on page 5-6). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: res ← GR[r1] +∼GR[r2];
if (cond_satisfied)

conditional_trap;
else

GR[t] ← res;

Exceptions: Conditional trap

PROGRAMMING NOTE
UNIT ADD COMPLEMENT AND TRAP ON CONDITION can be used to check decimal validity
and to pre-bias decimal numbers.ra contains the number to be checked andrt will contain the
number plus the bias as result of theUADDCMT operation.

02 r2 r1 c f 27 0 t

6 5 5 3 1 6 1 5

NINES .equ X’99999999
LDIL l%NINES,nines
LDO r%NINES(nines),nines
UADDCMT,SDC ra,nines,rt

5-112 Instruction Set PA-RISC 1.1 Architecture

DECIMAL CORRECT DCOR

Format: DCOR,cond r,t

Purpose: To separately correct the eight BCD digits of the result of an addition or subtraction.

Description: Every digit of GRr corresponding to a bit which is 0 in PSW C/B-bits has 6 subtracted
from it. The result is stored in GRt. The following instruction is nullified if the result of
the operation satisfies the specified conditioncond. The condition is encoded in thec andf
fields of the instruction.

Conditions: The conditioncond is any of the unit conditions (Table 5-6 on page 5-6). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.

Operation: GR[t] ← GR[r] - cat(
0x6*(1 - PSW[C/B]{0}), 0x6*(1 - PSW[C/B]{1}),
0x6*(1 - PSW[C/B]{2}), 0x6*(1 - PSW[C/B]{3}),
0x6*(1 - PSW[C/B]{4}), 0x6*(1 - PSW[C/B]{5}),
0x6*(1 - PSW[C/B]{6}), 0x6*(1 - PSW[C/B]{7}));

if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r 0 c f 2E 0 t

6 5 5 3 1 6 1 5

5-113PA-RISC 1.1 Architecture Instruction Set

PROGRAMMING NOTE
DECIMAL CORRECT can be used to take the sum of 32-bit BCD values.ra, rb, rc, andrd each
contain a 32-bit BCD value andrt will hold the result at the end of the sequence. The
UADDCM operation is used to pre-bias the value inra in order to perform BCD arithmetic. The
IDCOR operations between theADD operations are used to re-adjust the BCD bias of the result.
The finalDCOR operation is used to remove the bias and leave the value inrt in BCD format.

NINES .equ 0x99999999
LDIL l%NINES,nines
LDO r%NINES(nines),nines
UADDCM ra,nines,rt ; pre-bias first operand
ADD rt,rb,rt ; add in the next value
IDCOR rt,rt ; correct result, retaining bias
ADD rt,rc,rt ; add in the next value
IDCOR rt,rt ; correct result, retaining bias
ADD rt,rd,rt ; add in the next value
DCOR rt,rt ; final correction

5-114 Instruction Set PA-RISC 1.1 Architecture

INTERMEDIATE DECIMAL CORRECT IDCOR

Format: IDCOR,cond r,t

Purpose: To separately correct the eight BCD digits of the result of an addition or subtraction.

Description: Every digit of GRr corresponding to a bit which is on in PSW C/B-bits has 6 added to it.
The result is stored in GRt. The following instruction is nullified if the result of the
operation satisfies the specified conditioncond. The condition is encoded in thec and f
fields of the instruction.

Conditions: The conditioncond is any of the unit conditions (Table 5-6 on page 5-6). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.

Operation: GR[t] ← GR[r] + cat(
0x6*PSW[C/B]{0}, 0x6*PSW[C/B]{1},
0x6*PSW[C/B]{2}, 0x6*PSW[C/B]{3},
0x6*PSW[C/B]{4}, 0x6*PSW[C/B]{5},
0x6*PSW[C/B]{6}, 0x6*PSW[C/B]{7});

if (cond_satisfied) PSW[N]← 1;

Exceptions: None

02 r 0 c f 2F 0 t

6 5 5 3 1 6 1 5

5-115PA-RISC 1.1 Architecture Instruction Set

ADD TO IMMEDIATE ADDI

Format: ADDI,cond i,r,t

Purpose: To add an immediate value to a register and conditionally nullify the following instruction.

Description: The sign-extended immediate valuei is added to GRr and the result is stored in GRt. The
immediate value is encoded into theim11 field. The carry/borrow bits in the PSW are
updated. The variable "carry_borrows" in the operation section captures the 4-bit carries
resulting from the add operation.

The following instruction is nullified if the values added satisfy the specified condition,
cond. The condition is encoded in thec andf fields of the instruction.

Conditions: The condition is any of the add conditions (Table 5-4 on page 5-5). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: GR[t] ← low_sign_ext(im11,11) + GR[r];
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

2D r t c f 0 im11

6 5 5 3 1 1 11

5-116 Instruction Set PA-RISC 1.1 Architecture

ADD TO IMMEDIATE AND TRAP ON OVERFLOW ADDIO

Format: ADDIO,cond i,r,t

Purpose: To add an immediate value to a register, conditionally nullify the following instruction,
and trap on overflow.

Description: The sign-extended immediate valuei and GR r are added. The immediate value is
encoded into theim11 field. If signed overflow does not occur, the result is stored in GRt,
and the carry/borrow bits in the PSW are updated. If signed overflow occurs, an overflow
trap is taken instead. The variable "carry_borrows" in the operation section captures the 4-
bit carries resulting from the add operation.

The following instruction is nullified if the values added satisfy the specified condition,
cond. The condition is encoded in thec andf fields of the instruction. The boolean variable
"overflow" in the operation section is set if the operation results in a signed overflow.

Conditions: The condition is any of the add conditions (Table 5-4 on page 5-5). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: res ← low_sign_ext(im11,11) + GR[r];
if (overflow)

overflow_trap;
else {

GR[t] ← res;
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

}

Exceptions: Overflow trap

2D r t c f 1 im11

6 5 5 3 1 1 11

5-117PA-RISC 1.1 Architecture Instruction Set

ADD TO IMMEDIATE AND TRAP ON CONDITION ADDIT

Format: ADDIT,cond i,r,t

Purpose: To add an immediate value to a register and trap on a condition.

Description: The sign-extended immediate valuei and GR r are added. The immediate value is
encoded into theim11 field. If the specified condition,cond, is satisfied by the values
added, a conditional trap occurs; otherwise, the result is stored in GRt and the carry/
borrow bits in the PSW are updated. The variable "carry_borrows" in the operation section
captures the 4-bit carries resulting from the add operation. The condition is encoded in the
c andf fields of the instruction.

Conditions: The condition is any of the add conditions (Table 5-4 on page 5-5). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: res ← low_sign_ext(im11,11) + GR[r];
if (cond_satisfied)

conditional_trap;
else {

GR[t] ← res;
PSW[C/B] ← carry_borrows;

}

Exceptions: Conditional trap

2C r t c f 0 im11

6 5 5 3 1 1 11

5-118 Instruction Set PA-RISC 1.1 Architecture

ADD TO IMMEDIATE AND ADDITO
TRAP ON CONDITION OR OVERFLOW

Format: ADDITO,cond i,r,t

Purpose: To add an immediate value to a register and trap on a condition or on overflow.

Description: The sign-extended immediate valuei and GR r are added. The immediate value is
encoded into theim11 field. If signed overflow occurs, an overflow trap is taken. If signed
overflow does not occur and the specified condition,cond, is satisfied, a conditional trap
occurs. If overflow does not occur and the specified condition is not satisfied, the result is
stored in GRt, and the carry/borrow bits in the PSW are updated.

The variable "carry_borrows" in the operation section captures the 4-bit carries resulting
from the add operation. The boolean variable "overflow" in the operation section is set if
the operation results in a signed overflow.

Conditions: The condition is any of the add conditions (Table 5-4 on page 5-5). When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: res ← low_sign_ext(im11,11) + GR[r];
if (overflow)

overflow_trap;
else if (cond_satisfied)

conditional_trap;
else {

GR[t] ← res;
PSW[C/B] ← carry_borrows;

}

Exceptions: Overflow trap
Conditional trap

2C r t c f 1 im11

6 5 5 3 1 1 11

5-119PA-RISC 1.1 Architecture Instruction Set

SUBTRACT FROM IMMEDIATE SUBI

Format: SUBI,cond i,r,t

Purpose: To subtract a register from an immediate value and conditionally nullify the following
instruction.

Description: GR r is subtracted from the sign-extended immediate valuei and the result is stored in GR
t. The immediate value is encoded into theim11 field. The carry/borrow bits in the PSW
are updated. The variable "carry_borrows" in the operation section captures the 4-bit
carries resulting from the subtract operation. The following instruction is nullified if the
values subtracted satisfy the specified condition,cond. The condition is encoded in thec
andf fields of the instruction.

Conditions: The condition is any of the compare or subtract conditions (Table 5-3 on page 5-5). When
a condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values subtracted satisfy the
specified condition.

Operation: GR[t] ← low_sign_ext(im11,11) +∼GR[r] + 1;
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

PROGRAMMING NOTE
SUBTRACT FROM IMMEDIATE can be used to perform a logical NOT operation when coded
as follows:

25 r t c f 0 im11

6 5 5 3 1 1 11

SUBI -1,r,t /* GR[t] ← ∼GR[r]
 all PSW[C/B] are set to ones */

5-120 Instruction Set PA-RISC 1.1 Architecture

SUBTRACT FROM IMMEDIATE AND SUBIO
TRAP ON OVERFLOW

Format: SUBIO,cond i,r,t

Purpose: To subtract a register from an immediate value, conditionally nullify the following
instruction, and trap on overflow.

Description: GR r is subtracted from the sign-extended immediate valuei. The immediate value is
encoded into theim11 field. If signed overflow does not occur, the result is stored in GRt,
and the carry/borrow bits in the PSW are updated. If signed overflow occurs, an overflow
trap is taken instead. The variable "carry_borrows" in the operation section captures the 4-
bit carries resulting from the subtract operation. The following instruction is nullified if
the values subtracted satisfy the specified condition,cond. The condition is encoded in the
c andf fields of the instruction.

Conditions: The condition is any of the compare or subtract conditions (Table 5-3 on page 5-5). When
a condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values subtracted satisfy the
specified condition.

Operation: res ← low_sign_ext(im11,11) +∼GR[r] + 1;
if (overflow)

overflow_trap;
else {

GR[t] ← res;
PSW[C/B] ← carry_borrows;
if (cond_satisfied) PSW[N]← 1;

}

Exceptions: Overflow trap

25 r t c f 1 im11

6 5 5 3 1 1 11

5-121PA-RISC 1.1 Architecture Instruction Set

COMPARE IMMEDIATE AND CLEAR COMICLR

Format: COMICLR,cond i,r,t

Purpose: To compare an immediate value with the contents of a register, set a register to 0, and
conditionally nullify the following instruction.

Description: The sign-extended immediate and GRr are compared and GRt is set to zero. The
immediate value is encoded into theim11 field. The following instruction is nullified if the
values compared satisfy the specified condition,cond. The condition is encoded in thec
andf fields of the instruction.

Conditions: The condition is any of the compare or subtract conditions (Table 5-3 on page 5-5). When
a condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values compared satisfy the
specified condition.

Operation: low_sign_ext(im11,11) +∼GR[r] + 1;
GR[t] ← 0;
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

24 r t c f 0 im11

6 5 5 3 1 1 11

5-122 Instruction Set PA-RISC 1.1 Architecture

VARIABLE SHIFT DOUBLE VSHD

Format: VSHD,cond r1,r2,t

Purpose: To shift a pair of registers by a variable amount and conditionally nullify the following
instructions.

Description: The rightmost 31 bits of GRr1 are concatenated with the 32 bits of GRr2 and shifted
right the number of bits given by the Shift Amount Register (CR 11). The rightmost 32
bits of the result are stored in GRt. The following instruction is nullified if the result of the
operation satisfies the specified condition,cond. The condition is encoded in thec field of
the instruction.

Conditions: The condition is any of the extract/deposit conditions (Table 5-7 on page 5-7). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.

Operation: GR[t] ← rshift(cat(GR[r1]{1..31},GR[r2]),CR[11]){32..63};
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

PROGRAMMING NOTE
A logical right shift of GRr by a variable amount contained in GRp leaving the result in GRt
may be done by the following sequence:

An arithmetic right shift can be done with an extract instruction. SeeVARIABLE EXTRACT
SIGNED on page 5-125 for an example.

If r1 andr2 name the same register, its contents are rotated and placed in GRt. SeeSHIFT
DOUBLE on page 5-123 for an example.

34 r2 r1 c 0 0 t

6 5 5 3 3 5 5

MTSAR p
VSHD 0,r,t

5-123PA-RISC 1.1 Architecture Instruction Set

SHIFT DOUBLE SHD

Format: SHD,cond r1,r2,p,t

Purpose: To shift a pair of registers by a fixed amount and conditionally nullify the following
instruction.

Description: The rightmost 31 bits of GRr1 are concatenated with the 32 bits of GRr2 and shifted
right p bits. The rightmost 32 bits of the result are stored in GRt. The following
instruction is nullified if the result of the operation satisfies the specified condition,cond.
The condition is encoded in thec field of the instruction.

The shift countp in the assembly language format is represented bycp in the machine
instruction, whose value is 31-p.

Conditions: The condition is any of the extract/deposit conditions (Table 5-7 on page 5-7). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
condition.

Operation: GR[t] ← rshift(cat(GR[r1]{1..31},GR[r2]),p){32..63};
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

PROGRAMMING NOTE
A rotate operation is possible if the two source registers are the same. For example, the
following rotates the contents ofra right by 8 bits:

34 r2 r1 c 2 cp t

6 5 5 3 3 5 5

SHD ra,ra,8,ra

5-124 Instruction Set PA-RISC 1.1 Architecture

VARIABLE EXTRACT UNSIGNED VEXTRU

Format: VEXTRU,cond r,len,t

Purpose: To extract any 32-bit or shorter field from a variable position, and conditionally nullify the
following instruction.

Description: A field is extracted, from GRr, zero extended and placed right-justified in GRt. This field
is of lengthlen. It begins at the bit position given by the Shift Amount Register (CR 11)
and extends to the left. If the field extends beyond the leftmost bit, it is zero extended. The
following diagram illustrates an extract of a 10-bit field when the Shift Amount Register
contains the value 24.

The instruction is: VEXTRU r,10,t.

The following instruction is nullified if the result of the operation satisfies the specified
condition,cond. The condition is encoded in thec field of the instruction.

The lengthlen in the assembly language format is represented in the machine instruction
by clen, whose value is 32-len.

Conditions: The condition is any of the extract/deposit conditions (Table 5-7 on page 5-7). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.

Operation: shct ← 1 + CR[11];
tmp ← lshift(zero_ext_64(GR[r],32),shct){0..31};
GR[t] ← zero_ext(tmp{32-len..31},len);
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

34 r t c 4 0 clen

6 5 5 3 3 5 5

0 15 24 31

0 22 31

GR r:

GR t:

5-125PA-RISC 1.1 Architecture Instruction Set

VARIABLE EXTRACT SIGNED VEXTRS

Format: VEXTRS,cond r,len,t

Purpose: To extract any signed 32-bit or shorter field from a variable position, and conditionally
nullify the following instruction.

Description: A field is extracted, from GRr, sign extended and placed right-justified in GRt. This field
is of lengthlen. It begins at the bit position given by the Shift Amount Register (CR 11)
and extends to the left. If the field extends beyond the leftmost bit, it is sign extended. The
following instruction is nullified if the result of the operation satisfies the specified
condition,cond. The condition is encoded in thec field of the instruction.

The lengthlen in the assembly language format is represented in the machine instruction
by clen, whose value is 32-len.

Conditions: The condition is any of the extract/deposit conditions (Table 5-7 on page 5-7). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.

Operation: shct ← 1 + CR[11];
tmp ← lshift(sign_ext_64(GR[r],32), shct){0..31};
GR[t] ← sign_ext(tmp{32-len..31},len);
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

PROGRAMMING NOTE
An arithmetic right shift of GRr by a variable amount contained in GRp leaving the result in
GR t may be done by the following sequence:

34 r t c 5 0 clen

6 5 5 3 3 5 5

SUBI 31,p,t
MTSAR t
VEXTRS r,32,t

5-126 Instruction Set PA-RISC 1.1 Architecture

EXTRACT UNSIGNED EXTRU

Format: EXTRU,cond r,p,len,t

Purpose: To extract any 32-bit or shorter field, and conditionally nullify the following instruction.

Description: A field is extracted, from GRr, zero extended and placed right-justified in GRt. This field
is of lengthlen. It begins at bit positionp and extends to the left. Since the field is fully
specified by the instruction, it cannot extend beyond the leftmost bit. Doing so is an
undefined operation. The following instruction is nullified if the result of the operation
satisfies the specified condition,cond. The condition is encoded in thec field of the
instruction.

The lengthlen in the assembly language format is represented in the machine instruction
by clen, whose value is 32-len.

Conditions: The condition is any of the extract/deposit conditions (Table 5-7 on page 5-7). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.

Operation: if (p >= len-1) {
tmp ← lshift(zero_ext_64(GR[r],32),(1+p)){0..31};
GR[t] ← zero_ext(tmp{32-len..31},len);
if (cond_satisfied) PSW[N]← 1;

} else
undefined;

Exceptions: None

34 r t c 6 p clen

6 5 5 3 3 5 5

5-127PA-RISC 1.1 Architecture Instruction Set

EXTRACT SIGNED EXTRS

Format: EXTRS,cond r,p,len,t

Purpose: To extract any signed 32-bit or shorter field, and conditionally nullify the following
instruction.

Description: A field is extracted, from GRr, sign extended, and placed right-justified in GRt. This field
is of lengthlen. It begins at bit positionp and extends to the left. Since the field is fully
specified by the instruction, it cannot extend beyond the leftmost bit. Doing so is an
undefined operation. The following instruction is nullified if the result of the operation
satisfies the specified condition,cond. The condition is encoded in thec field of the
instruction.

The lengthlen in the assembly language format is represented in the machine instruction
by clen, whose value is 32-len.

Conditions: The condition is any of the extract/deposit conditions (Table 5-7 on page 5-7). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.

Operation: if (p >= len-1) {
tmp ← lshift(sign_ext_64(GR[r],32),(1+p)){0..31};
GR[t] ← sign_ext(tmp{32-len..31},len);
if (cond_satisfied) PSW[N]← 1;

} else
undefined;

Exceptions: None

34 r t c 7 p clen

6 5 5 3 3 5 5

5-128 Instruction Set PA-RISC 1.1 Architecture

VARIABLE DEPOSIT VDEP

Format: VDEP,cond r,len,t

Purpose: To deposit a value into a register at a variable position, and conditionally nullify the
following instruction.

Description: A right-justified field from GRr is deposited (merged) in GRt. This field is of lengthlen.
It begins at the bit position given by the Shift Amount Register (CR 11) and extends to the
left. If the field extends beyond the leftmost bit, the field is truncated and the higher bits
are ignored. The remainder of GRt is unchanged. The following diagram illustrates a
deposit of a 10-bit field when the Shift Amount Register contains the value 24.

The instruction is: VDEP r,10,t.

The following instruction is nullified if the result of the operation satisfies the specified
condition,cond. The condition is encoded in thec field of the instruction. The lengthlen
in the assembly language format is represented in the machine instruction byclen, whose
value is 32-len.

Conditions: The condition is any of the extract/deposit conditions (Table 5-7 on page 5-7). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.

Operation: tpos ← CR[11];
if (tpos < len-1)

GR[t]{0..tpos} ← GR[r]{31-tpos..31};
else

GR[t]{tpos-len+1..tpos}← GR[r]{32-len..31};
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

35 t r c 1 0 clen

6 5 5 3 3 5 5

0

15 24

31

0

22

31

GR t:

GR r:

5-129PA-RISC 1.1 Architecture Instruction Set

DEPOSIT DEP

Format: DEP,cond r,p,len,t

Purpose: To deposit a value into a register at a constant position, and conditionally nullify the
following instruction.

Description: A right-justified field from GRr is deposited (merged) in GRt. This field is of lengthlen.
It begins at the bit positionp and extends to the left. Since the field is fully specified by the
instruction, it cannot extend beyond the leftmost bit. Doing so is an undefined operation.
The remainder of GRt is unchanged. The following diagram illustrates a deposit of a 10-
bit field whenp specifies the value 24.

The instruction is: DEP r,24,10,t.

The following instruction is nullified if the result of the operation satisfies the specified
condition,cond. The condition is encoded in thec field of the instruction. The lengthlen
in the assembly language format is represented in the machine instruction byclen, whose
value is 32-len. The bit positionp in the assembly language format is represented bycp in
the machine instruction, whose value is 31-p.

Conditions: The condition is any of the extract/deposit conditions (Table 5-7 on page 5-7). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.

Operation: if (p >= len-1) {
GR[t]{p-len+1..p} ← GR[r]{32-len..31};
if (cond_satisfied) PSW[N]← 1;

} else
undefined;

Exceptions: None

35 t r c 3 cp clen

6 5 5 3 3 5 5

0

15 24

31

0

22

31
GR t:

GR r:

5-130 Instruction Set PA-RISC 1.1 Architecture

VARIABLE DEPOSIT IMMEDIATE VDEPI

Format: VDEPI,cond i,len,t

Purpose: To deposit an immediate value into a register at a variable position, and conditionally
nullify the following instruction.

Description: A right-justified field from the sign-extended immediatei is deposited (merged) in GRt.
This field is of lengthlen. It begins at the bit position given by the Shift Amount Register
(CR 11), and extends to the left. If the field extends beyond the leftmost bit, the field is
truncated and the higher bits are ignored. The remainder of GRt is unchanged. The
following instruction is nullified if the result of the operation satisfies the specified
condition,cond. The condition is encoded in thec field of the instruction. The immediate
is encoded in theim5 field of the instruction.

The lengthlen in the assembly language format is represented in the machine instruction
by clen, whose value is 32-len.

Conditions: The condition is any of the extract/deposit conditions (Table 5-7 on page 5-7). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.

Operation: tpos ← CR[11];
ival ← low_sign_ext(im5,5);
if (tpos < len-1)

GR[t] ← cat(ival{31-tpos..31},GR[t]{tpos+1..31});
else

GR[t] ← cat(GR[t]{0..tpos-len},ival{32-len..31},GR[t]{tpos+1..31});
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

35 t im5 c 5 0 clen

6 5 5 3 3 5 5

5-131PA-RISC 1.1 Architecture Instruction Set

DEPOSIT IMMEDIATE DEPI

Format: DEPI,cond i,p,len,t

Purpose: To deposit an immediate value into a register at a constant position, and conditionally
nullify the following instruction.

Description: A right-justified field from the sign-extended immediatei is deposited (merged) in GRt.
This field is of lengthlen. It begins at the bit position p and extends to the left. Since the
field is fully specified by the instruction, it cannot extend beyond the leftmost bit. Doing
so is an undefined operation. The remainder of GRt is unchanged. The following
instruction is nullified if the result of the operation satisfies the specified condition,cond.
The condition is encoded in thec field of the instruction. The immediate is encoded in the
im5 field of the instruction.

The lengthlen in the assembly language format is represented in the machine instruction
by clen, whose value is 32-len. The bit positionp in the assembly language format is
represented bycp in the machine instruction, whose value is 31-p.

Conditions: The condition is any of the extract/deposit conditions (Table 5-7 on page 5-7). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.

Operation: ival ← low_sign_ext(im5,5);
if (p >= len-1) {

GR[t] ← cat(GR[t]{0..p-len},ival{32-len..31},GR[t]{p+1..31});
if (cond_satisfied) PSW[N]← 1;

} else
undefined;

Exceptions: None

35 t im5 c 7 cp clen

6 5 5 3 3 5 5

5-132 Instruction Set PA-RISC 1.1 Architecture

ZERO AND VARIABLE DEPOSIT ZVDEP

Format: ZVDEP,cond r,len,t

Purpose: To set a register to zero, deposit a value into it at a variable position, and conditionally
nullify the following instruction.

Description: GR t is set to zero and a right-justified field from GRr is deposited in it. This field is of
length len. It begins at the bit position given by the Shift Amount Register (CR 11), and
extends to the left. If the field extends beyond the leftmost bit, the field is truncated and the
higher bits are ignored. The following instruction is nullified if the result of the operation
satisfies the specified condition,cond. The condition is encoded in thec field of the
instruction.

The lengthlen in the assembly language format is represented in the machine instruction
by clen, whose value is 32-len.

Conditions: The condition is any of the extract/deposit conditions (Table 5-7 on page 5-7). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.

Operation: tpos ← CR[11];
if (tpos < len-1)

GR[t] ← cat(GR[r]{31-tpos..31},0{tpos+1..31});
else

GR[t] ← cat(0{0..tpos-len},GR[r]{32-len..31},0{tpos+1..31});
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

PROGRAMMING NOTE
This sequence left shifts the value inra by a variable amount given bycount leaving the result
in rt. Note that this provides no indication of a possible overflow.

35 t r c 0 0 clen

6 5 5 3 3 5 5

SUBI 31,count,rt ; adjust the shift count
MTCTL rt,%sar ; move shift amount to SAR
ZVDEP ra,32,rt ; deposit all 32 bits ofra

5-133PA-RISC 1.1 Architecture Instruction Set

ZERO AND DEPOSIT ZDEP

Format: ZDEP,cond r,p,len,t

Purpose: To set a register to zero and deposit a value into it at a constant position.

Description: GR t is set to zero and a right-justified field from GRr is deposited in it. This field is of
length len. It begins at the bit positionp and extends to the left. Since the field is fully
specified by the instruction, it cannot extend beyond the leftmost bit. Doing so is an
undefined operation. The following instruction is nullified if the result of the operation
satisfies the specified condition,cond. The condition is encoded in thec field of the
instruction.

The lengthlen in the assembly language format is represented in the machine instruction
by clen, whose value is 32-len. The bit positionp in the assembly language format is
represented bycp in the machine instruction, whose value is 31-p.

Conditions: The condition is any of the extract/deposit conditions (Table 5-7 on page 5-7). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.

Operation: if (p >= len-1) {
GR[t] ← cat(0{0..p-len},GR[r]{32-len..31},0{p+1..31});
if (cond_satisfied) PSW[N]← 1;

} else
undefined;

Exceptions: None

35 t r c 2 cp clen

6 5 5 3 3 5 5

5-134 Instruction Set PA-RISC 1.1 Architecture

ZERO AND VARIABLE DEPOSIT IMMEDIATE ZVDEPI

Format: ZVDEPI,cond i,len,t

Purpose: To set a register to zero and deposit an immediate value into it at a variable position.

Description: GR t is set to zero and a right-justified field from the sign-extended immediatei is
deposited in it. This field is of lengthlen. It begins at the bit position given by the Shift
Amount Register (CR 11), and extends to the left. If the field extends beyond the leftmost
bit, the field is truncated and the higher bits are ignored. The following instruction is
nullified if the result of the condition satisfies the specified condition,cond. The condition
is encoded in thec field of the instruction. The immediate is encoded in theim5 field of the
instruction.

The lengthlen in the assembly language format is represented in the machine instruction
by clen, whose value is 32-len.

Conditions: The condition is any of the extract/deposit conditions (Table 5-7 on page 5-7). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.

Operation: tpos ← CR[11];
ival ← low_sign_ext(im5,5);
if (tpos < len-1)

GR[t] ← cat(ival{31-tpos..31},0{tpos+1..31});
else

GR[t] ← cat(0{0..tpos-len},ival{32-len..31},0{tpos+1..31});
if (cond_satisfied) PSW[N]← 1;

Exceptions: None

35 t im5 c 4 0 clen

6 5 5 3 3 5 5

5-135PA-RISC 1.1 Architecture Instruction Set

ZERO AND DEPOSIT IMMEDIATE ZDEPI

Format: ZDEPI,cond i,p,len,t

Purpose: To set a register to zero and deposit an immediate value into it at a constant position.

Description: GR t is set to zero and a right-justified field from the sign-extended immediatei is
deposited in it. This field is of lengthlen. It begins at the bit positionp and extends to the
left. Since the field is fully specified by the instruction, it cannot extend beyond the
leftmost bit. Doing so is an undefined operation. The following instruction is nullified if
the result of the condition satisfies the specified condition,cond. The condition is encoded
in the c field of the instruction. The immediate is encoded in theim5 field of the
instruction.

The lengthlen in the assembly language format is represented in the machine instruction
by clen, whose value is 32-len. The bit positionp in the assembly language format is
represented bycp in the machine instruction, whose value is 31-p.

Conditions: The condition is any of the extract/deposit conditions (Table 5-7 on page 5-7). When a
condition completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.

Operation: ival ← low_sign_ext(im5,5);
if (p >= len-1) {

GR[t] ← cat(0{0..p-len},ival{32-len..31},0{p+1..31});
if (cond_satisfied) PSW[N]← 1;

} else
undefined;

Exceptions: None

35 t im5 c 6 cp clen

6 5 5 3 3 5 5

5-136 Instruction Set PA-RISC 1.1 Architecture

5Instruction Set

System Control Instructions
The system control instructions provide special register moves, system mask control, return from
interruption, probe access rights, memory management operations, and implementation-dependent
functions.

Memory management instructions generate instruction and data addresses. Address formation is similar
to that of the indexed load instructions. The only difference is that the index register is never shifted
before adding to the base register. The address formation, the completers, and the bit field encodings are
shown in Table 5-14.

In the above table,cmplt is in assembly language format andm is in machine language format. The
effective address computation for the insert TLB address and insert TLB protection instructions
concatenates a space register with a general register.

The probe instructions use the two rightmost bits of the index value or immediate to indicate the
privilege level for which access is to be validated. The probe instructions do not perform address
modification.

Memory management instructions behave either as data reference instructions or instruction reference
instructions in terms of space identifier selection as shown in Figure 5-10. The calculation of the offset
portion of the address is shown in Figure 5-11.

Table 5-14. System Control Completers

cmplt Description m

<none> don’t modify base register 0

M Modify base register 1

5-137PA-RISC 1.1 Architecture Instruction Set

Figure 5-10. Space Identifier Selection

Figure 5-11. System Operations

SR[1]

SR[2]

SR[3]

Space Registers
s-field

Space ID

Data
Reference
s-field≠ 0

SR[0]

SR[1]

SR[2]

SR[3]

SR[4]

SR[5]

SR[6]

SR[7]

SR[4]

SR[5]

SR[6]

SR[7]

Space ID

Space Registers

Data
Reference

2

s-field = 0

4

Space ID

Instruction
Reference

s-field

3

2 3

Space Registers
GR[b]

0

31

Base

General
Registers

32
+

32

32

Index

Space ID Offset

Effective Address

,M Completer

0

31

Base

General
Registers

+

32Index

Space ID Offset

3232

Effective Address

No Completer Specified

32

5-138 Instruction Set PA-RISC 1.1 Architecture

BREAK BREAK

Format: BREAK im5,im13

Purpose: To cause a break instruction trap for debugging purposes.

Description: A break instruction trap occurs when this instruction is executed.

Operation: break_instruction_trap;

Exceptions: None

Notes: im5 andim13 can be used as parameters to the "BREAK" processing code.

00 im13 00 im5

6 13 8 5

5-139PA-RISC 1.1 Architecture Instruction Set

RETURN FROM INTERRUPTION RFI

Format: RFI

Purpose: To restore processor state and restart execution of an interrupted instruction stream.

Description: The PSW register contents are restored from the IPSW register but are not modified by
this instruction. The IA queues are restored from the IIA queues. Execution continues at
the locations loaded into the IA queues.

Execution of anRFI with the IPSW Q-bit equal to 0 returns to the location specified by the
IIA queues, but leaves the IIAOQ, IIASQ, and IPRs undefined. Software is responsible for
avoiding interruptions during the execution of anRFI. Execution of anRFI instruction
when any of the PSW Q, I, or R bits are ones is an undefined operation. Execution of an
RFI instruction when the PSW L bit is a one is an undefined operation if the new privilege
level after execution of theRFI is non-zero. This instruction and theRFIR instruction are
the only instructions that can set the PSW Q-bit to 1.

Operation: if (priv != 0)
privileged_operation_trap;

else {
PSW ← IPSW;
IAOQ_Back ← IIAOQ_Back; /* CR[18] */
IAOQ_Front ← IIAOQ_Front; /* CR[18] */
if (!level_0) {

IASQ_Back ← IIASQ_Back; /* CR[17] */
IASQ_Front← IIASQ_Front; /* CR[17] */

}
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Because this instruction restores the state of the execution pipeline, it is possible for
software to place the processor in states which could not result from the execution of any
sequence of instructions not involving interruptions. For example, it could set the PSW B-
bit to 0 even though the addresses in the IA queues are not contiguous. The operation of
the machine is undefined in such cases, and it is the responsibility of software to avoid
them.

Some machines promote privilege at the target of a GATEWAY instruction. To avoid
improper processor states, software must not set the PSW B-bit to 0 with different
privilege levels in the IAOQ unless the executing processor promotes privilege in the
delay slot of a GATEWAY.

00 rv rv rv 60 0

6 5 5 3 8 5

5-140 Instruction Set PA-RISC 1.1 Architecture

Notes: When this instruction returns to an instruction which executes at a lower privilege level, a
lower-privilege transfer trap is not taken.

Level 0: This instruction executes as usual except that the IASQ is nonexistent and updating it has
no effect.

5-141PA-RISC 1.1 Architecture Instruction Set

RETURN FROM INTERRUPTION AND RESTORE RFIR

Format: RFIR

Purpose: To restore processor state, restore GRs 1, 8, 9, 16, 17, 24, and 25 from the shadow
registers, and restart execution of an interrupted instruction stream.

Description: The contents of GRs 1, 8, 9, 16, 17, 24, and 25 are restored from their shadow registers.
The PSW register contents are restored from the IPSW register but are not modified by
this instruction. The IA queues are restored from the IIA queues. Execution continues at
the locations loaded into the IA queues.

Execution of anRFIR with the IPSW Q-bit equal to 0 returns to the location specified by
the IIA queues, but leaves the IIAOQ, IIASQ and IPRs undefined. Software is responsible
for avoiding interruptions during the execution of anRFIR. Execution of anRFIR
instruction when any of the PSW Q, I, or R bits are ones is an undefined operation.
Execution of anRFIR instruction when the PSW L bit is a one is an undefined operation if
the new privilege level after execution of theRFIR is non-zero. This instruction and the
RFI instruction are the only instructions that can set the PSW Q-bit to 1.

Execution of anRFIR instruction when the contents of the shadow registers are undefined
leaves the contents of GRs 1, 8, 9, 16, 17, 24, and 25 undefined. After execution of an
RFIR instruction, the SHRs are undefined.

Operation: if (priv != 0)
privileged_operation_trap;

else {
GR[1] ← SHR[0];
GR[8] ← SHR[1];
GR[9] ← SHR[2];
GR[16] ← SHR[3];
GR[17] ← SHR[4];
GR[24] ← SHR[5];
GR[25] ← SHR[6];
PSW ← IPSW;
IAOQ_Back ← IIAOQ_Back; /* CR[18] */
IAOQ_Front ← IIAOQ_Front; /* CR[18] */
if (!level_0) {

IASQ_Front← IIASQ_Front; /* CR[17] */
IASQ_Back ← IIASQ_Back; /* CR[17] */

}
}

Exceptions: Privileged operation trap

00 rv rv rv 65 0

6 5 5 3 8 5

5-142 Instruction Set PA-RISC 1.1 Architecture

Restrictions: This instruction may be executed only at the most privileged level.

Because this instruction restores the state of the execution pipeline, it is possible for
software to place the processor in states which could not result from the execution of any
sequence of instructions not involving interruptions. For example, it could set the PSW B-
bit to 0 even though the addresses in the IA queues are not contiguous. The operation of
the machine is undefined in such cases, and it is the responsibility of software to avoid
them.

Some machines promote privilege at the target of a GATEWAY instruction. To avoid
improper processor states, software must not set the PSW B-bit to 0 with different
privilege levels in the IAOQ unless the executing processor promotes privilege in the
delay slot of a GATEWAY.

Notes: When this instruction returns to an instruction which executes at a lower privilege level, a
lower-privilege transfer trap is not taken.

Level 0: This instruction executes as usual except that the IASQ is nonexistent and updating it has
no effect.

5-143PA-RISC 1.1 Architecture Instruction Set

SET SYSTEM MASK SSM

Format: SSM i,t

Purpose: To selectively set bits in the system mask to 1.

Description: The current value of the system mask, PSW{25..31}, is saved in GRt and then the
immediate valuei is ORed with the system mask. Setting the PSW Q-bit, PSW{28}, to 1
with this instruction, if it was not already 1, is an undefined operation.

Operation: if (priv != 0)
privileged_operation_trap;

else {
if ((PSW[Q] == 0) && (i{3}))

undefined;
else {

GR[t] ← cat(0{0..24},PSW{25..31});
PSW[G]← PSW[G] | i{0};
PSW[F] ← PSW[F] | i{1};
PSW[R]← PSW[R] | i{2};
PSW[P]← PSW[P] | i{4};
PSW[D]← PSW[D] | i{5};
PSW[I] ← PSW[I] | i{6};

}
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

00 rv i 0 6B t

6 3 7 3 8 5

5-144 Instruction Set PA-RISC 1.1 Architecture

RESET SYSTEM MASK RSM

Format: RSM i,t

Purpose: To selectively reset bits in the system mask to 0.

Description: The current value of the system mask, PSW{25..31}, is saved in GRt and then the
complement of the immediate valuei is ANDed with the system mask.

Operation: if (priv != 0)
privileged_operation_trap;

else {
GR[t] ← cat(0{0..24},PSW{25..31});
PSW[G]← PSW[G] & (∼i{0});
PSW[F] ← PSW[F] & (∼i{1});
PSW[R]← PSW[R] & (∼i{2});
PSW[Q]← PSW[Q] & (∼i{3});
PSW[P]← PSW[P] & (∼i{4});
PSW[D]← PSW[D] & (∼i{5});
PSW[I] ← PSW[I] & (∼i{6});

}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: The state of the IPRs, IIA queues, and the IPSW is undefined when this instruction is used
to set the Q-bit to 0, if it was not already 0.

00 rv i 0 73 t

6 3 7 3 8 5

5-145PA-RISC 1.1 Architecture Instruction Set

MOVE TO SYSTEM MASK MTSM

Format: MTSM r

Purpose: To set PSW system mask bits to a value from a register.

Description: The seven rightmost bits of GRr replace the system mask, PSW{25..31}. Setting the PSW
Q-bit, PSW{28}, to 1 with this instruction, if it was not already 1, is an undefined
operation.

Operation: if (priv != 0)
privileged_operation_trap;

else {
if ((PSW[Q] == 0) && (GR[r]{28} == 1))

undefined;
else {

PSW[G]← GR[r]{25};
PSW[F] ← GR[r]{26};
PSW[R]← GR[r]{27};
PSW[Q]← GR[r]{28};
PSW[P]← GR[r]{29};
PSW[D]← GR[r]{30};
PSW[I] ← GR[r]{31};

}
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: The state of the IPRs, IIA queues, and the IPSW is undefined when this instruction is used
to set the Q-bit to 0, if it was not already 0.

00 0 r 0 C3 0

6 5 5 3 8 5

5-146 Instruction Set PA-RISC 1.1 Architecture

LOAD SPACE IDENTIFIER LDSID

Format: LDSID (s,b),t

Purpose: To calculate the space register number referenced by a short pointer and copy the space
register into a general register.

Description: If s is zero, the space identifier referenced by the leftmost two bits of GRb is copied into
GR t. If s is not zero, SRs is copied into GRt.

Operation: GR[t] ← space_select(s,GR[b]);

Exceptions: None

Notes: In Level 1 systems, this instruction may set the leftmost 16 bits of the specified GR either
to zeros or to the leftmost 16 bits of the value last moved into the specified SR.

In Level 1.5 systems, this instruction may set the leftmost 8 bits of the specified GR either
to zeros or to the leftmost 8 bits of the value last moved into the specified SR.

Level 0: The value 0 is written into the specified GR.

00 b rv s 0 85 t

6 5 5 2 1 8 5

5-147PA-RISC 1.1 Architecture Instruction Set

MOVE TO SPACE REGISTER MTSP

Format: MTSP r,sr

Purpose: To move a value from a general register to a space register.

Description: GR r is copied into SRsr (which is assembled from thes field in the instruction).

Operation: if (!level_0) {
sr ← assemble_3(s);
if (sr >= 5 && priv != 0)

privileged_register_trap;
else

SR[sr] ← GR[r];
}

Exceptions: Privileged register trap

Restrictions: SRs 5, 6 and 7 may be changed only by software running at the most privileged level.

Notes: In Level 1 systems, the leftmost 16 bits are nonexistent bits.

In Level 1.5 systems, the leftmost 8 bits are nonexistent bits.

Level 0: This instruction executes as a null instruction.

00 rv r s C1 0

6 5 5 3 8 5

5-148 Instruction Set PA-RISC 1.1 Architecture

MOVE TO CONTROL REGISTER MTCTL

Format: MTCTL r,t

Purpose: To move a value from a general register to a control register.

Description: GR r is copied into CRt. If CR 23 is specified, then the value is first complemented and
ANDed with the original value.

Operation: if (t >= 1 && t <= 7)
undefined;

else if (level_0 && (t == 8 || t == 9 || t == 12 || t == 13 || t == 17 || t == 20))
; /* null instruction */

else if (t != 11 && priv != 0)
privileged_register_trap;

else
switch(t) {

case 0: if (PSW[R])
undefined;

else
CR[t] ← GR[r];

break;
case 14: case 15: case 16: case 24: case 25: case 26:
case 27: case 28: case 29: case 30: case 31:

CR[t] ← GR[r];
break;

case 17: case 18: case 22:
if (PSW[Q])

undefined;
else

CR[t] ← GR[r];
break;

case 23:CR[23]← CR[23] & ∼GR[r];
break;

case 10:CR[10]← GR[r]{16..31};
break;

case 11:CR[11]← GR[r]{27..31};
break;

case 8: case 9: case 12: case 13:
CR[t] ← GR[r]{16..31};
break;

case 19: case 20: case 21:
undefined;

00 t r rv C2 0

6 5 5 3 8 5

5-149PA-RISC 1.1 Architecture Instruction Set

break;
}

Exceptions: Privileged register trap

Restrictions: System control registers other than the Shift Amount Register (CR 11) may be written
only at the most privileged level. CR 11 may be written at any privilege level. The
Recovery Counter (CR 0) may be written reliably only when the PSW[R] bit is 0. Writing
into the Interruption Parameter Registers (CRs 19, 20, and 21) is an undefined operation.
Writing into the Interruption Instruction Address Queues (CRs 17 and 18) and Interruption
Processor Status Word (CR 22) when the PSW[Q] bit is 1 is an undefined operation.

Notes: The MTSAR pseudo-operation generates anMTCTL r,CR11 to copy a general register to
the Shift Amount Register (CR 11).

Level 0: If the target control register is CR 8, 9, 12, 13, 17, or 20, this instruction executes as a null
instruction.

5-150 Instruction Set PA-RISC 1.1 Architecture

MOVE FROM SPACE REGISTER MFSP

Format: MFSP sr,t

Purpose: To move a value to a general register from a space register.

Description: SRsr (which is assembled from thes field in the instruction) is copied into GRt.

Operation: if (level_0)
GR[t] ← 0;

else {
sr ← assemble_3(s);
GR[t] ← SR[sr];

}

Exceptions: None

Notes: In Level 1 systems, this instruction may set the leftmost 16 bits of the specified general
register either to zeros or to the leftmost 16 bits of the value last moved into the specified
space register.

In Level 1.5 systems, this instruction may set the leftmost 8 bits of the specified general
register either to zeros or to the leftmost 8 bits of the value last moved into the specified
space register.

Level 0: The value 0 is written into the specified general register.

00 rv 0 s 25 t

6 5 5 3 8 5

5-151PA-RISC 1.1 Architecture Instruction Set

MOVE FROM CONTROL REGISTER MFCTL

Format: MFCTL r,t

Purpose: To move a value to a general register from a control register.

Description: CR r is copied into GRt.

Operation: if (r >= 1 && r <= 7)
undefined;

else if (level_0 &&(r == 8 || r == 9 || r == 12 || r == 13 || r == 17 || r == 20))
GR[t] ← 0;

else if (priv != 0 &&!(r == 11 || r == 26 || r == 27 || (r == 16 && !PSW[S])))
privileged_register_trap;

else if (r >= 17 && r <= 22)
if (PSW[Q])

undefined;
else

GR[t] ← CR[r];
else if (r == 0)

if (PSW[R])
undefined;

else
GR[t] ← CR[r];

else if (r >= 8)
GR[t] ← CR[r];

Exceptions: Privileged register trap

Restrictions: System control registers other than the Shift Amount Register (CR 11), the Interval Timer
(CR 16), and temporary registers CR 26 and CR27, may be read only at the most
privileged level. CR 11, CR 26, and CR 27 may be read at any privilege level. CR 16 may
be read at any privilege level only if the PSW S-bit is 0; otherwise, CR 16 may be read
only at the most privileged level. The Interruption Instruction Address Queues (CRs 17
and 18) and Interruption Parameter Registers (CRs 19, 20, and 21) and the Interruption
Processor Status Word (CR 22) may be read reliably only when PSW[Q] bit is 0.

Level 0: If the source control register is CR 8, 9, 12, 13, 17, or 20, a 0 is written into the specified
general register.

00 r 0 rv 45 t

6 5 5 3 8 5

5-152 Instruction Set PA-RISC 1.1 Architecture

SYNCHRONIZE CACHES SYNC

Format: SYNC

Purpose: To enforce program order of instruction execution.

Description: Any load, store, semaphore, cache flush, or cache purge instructions that follow theSYNC
instruction get executed only after all such instructions prior to theSYNC instruction have
completed executing. On implementations which execute such instructions out of
sequence, this instruction enforces program ordering.

Operation: Enforce program order of memory references

Exceptions: None

Notes: In systems in which all memory references are performed in order, this instruction
executes as a null instruction.

PROGRAMMING NOTE
The minimum spacing that is guaranteed to work for "self-modifying code" is shown in the
code segment below. Since instruction prefetching is permitted, any data cache flushes must be
separated from any instruction cache flushes by aSYNC. This will ensure that the "new"
instruction will be written to memory prior to any attempts at prefetching it as an instruction.

This sequence assumes a uniprocessor system. In a multiprocessor system, software must
ensure no processor is executing code which is in the process of being modified.

00 rv 0 rv 0 20 0

6 5 1 4 3 8 5

LDIL l%newinstr,rnew
LDW r%newinstr(0,rnew),temp
LDIL l%instr,rinstr
STW temp,r%instr(0,rinstr)
FDC r%instr(0,rinstr)
SYNC
FIC r%instr(0,rinstr)
SYNC

(at least seven instructions)
instr . . .

5-153PA-RISC 1.1 Architecture Instruction Set

SYNCHRONIZE DMA SYNCDMA

Format: SYNCDMA

Purpose: To enforce DMA completion order.

Description: On implementations which can signal DMA completion prior to achieving cache
coherence, this instruction enforces ordering. All cache coherence actions which are
outstanding as a consequence of prior DMA operations must be completed before the next
memory access is performed.

Operation: Enforce DMA completion order

Exceptions: None

Notes: In systems in which all DMA operations are performed in order, this instruction executes
as a null instruction.

00 rv 1 rv 0 20 0

6 5 1 4 3 8 5

5-154 Instruction Set PA-RISC 1.1 Architecture

PROBE READ ACCESS PROBER

Format: PROBER (s,b),r,t

Purpose: To determine whether read access to a given address is allowed.

Description: A test is performed to determine if read access to the address computed by the instruction
is permitted at the privilege level given by the two rightmost bits of the GRr. GRt is set to
1 if the test succeeds and 0 otherwise.

This instruction checks the read access rights for the page. If the PSW P-bit is 1, the
protection IDs are also checked. The instruction performs data address translation
regardless of the state of the PSW D-bit.

Operation: space← space_select(s,GR[b]);
offset ← GR[b];
if (search_DTLB(space,offset,&entry))

if (read_access_allowed(space,offset,GR[r]))
GR[t] ← 1;

else
GR[t] ← 0;

else
non-access_data_TLB_miss_fault();

Exceptions: Non-access data TLB miss fault/non-access data page fault

Notes: If this instruction causes a non-access data TLB miss fault/non-access data page fault, the
operating system’s handler is required to search its page tables for the given address. If
found, it does the appropriate TLB insert and returns to the interrupting instruction. If not
found, the handler must decode the target field of the instruction, set that GR to 0, set the
IPSW[N] bit to 1, and return to the interrupting instruction.

Level 0: This instruction always sets the target general register to 1.

01 b r s 46 0 t

6 5 5 2 8 1 5

5-155PA-RISC 1.1 Architecture Instruction Set

PROBE READ ACCESS IMMEDIATE PROBERI

Format: PROBERI (s,b),i,t

Purpose: To determine whether read access to a given address is allowed.

Description: A test is performed to determine if read access to the address computed by the instruction
is permitted at the privilege level given by the two rightmost bits of the immediate valuei.
GR t is set to 1 if the test succeeds and 0 otherwise.

This instruction checks the read access rights for the page. If the PSW P-bit is 1, the
protection IDs are also checked. This instruction performs data address translation
regardless of the state of the PSW D-bit.

Operation: space← space_select(s,GR[b]);
offset ← GR[b];
if (search_DTLB(space,offset,&entry))

if (read_access_allowed(space,offset,i))
GR[t] ← 1;

else
GR[t] ← 0;

else
non-access_data_TLB_miss_fault();

Exceptions: Non-access data TLB miss fault/non-access data page fault

Notes: If this instruction causes a non-access data TLB miss fault/non-access data page fault, the
operating system’s handler is required to search its page tables for the given address. If
found, it does the appropriate TLB insert and returns to the interrupting instruction. If not
found, the handler must decode the target field of the instruction, set that GR to 0, set the
IPSW[N] bit to 1, and return to the interrupting instruction.

Level 0: This instruction always sets the target general register to 1.

01 b i s C6 0 t

6 5 5 2 8 1 5

5-156 Instruction Set PA-RISC 1.1 Architecture

PROBE WRITE ACCESS PROBEW

Format: PROBEW (s,b),r,t

Purpose: To determine whether write access to a given address is allowed.

Description: A test is performed to determine if write access to the address computed by the instruction
is permitted at the privilege level given by the two rightmost bits of the GRr. GRt is set to
1 if the test succeeds and 0 otherwise.

This instruction checks the write access rights for the page. If the PSW P-bit is 1, the
protection IDs are also checked. This instruction performs data address translation
regardless of the state of the PSW D-bit.

Operation: space← space_select(s,GR[b]);
offset ← GR[b];
if (search_DTLB(space,offset,&entry))

if (write_access_allowed(space,offset,GR[r]))
GR[t] ← 1;

else
GR[t] ← 0;

else
non-access_data_TLB_miss_fault();

Exceptions: Non-access data TLB miss fault/non-access data page fault

Notes: If this instruction causes a non-access data TLB miss fault/non-access data page fault, the
operating system’s handler is required to search its page tables for the given address. If
found, it does the appropriate TLB insert and returns to the interrupting instruction. If not
found, the handler must decode the target field of the instruction, set that GR to 0, set the
IPSW[N] bit to 1, and return to the interrupting instruction.

Level 0: This instruction always sets the target general register to 1.

01 b r s 47 0 t

6 5 5 2 8 1 5

5-157PA-RISC 1.1 Architecture Instruction Set

PROBE WRITE ACCESS IMMEDIATE PROBEWI

Format: PROBEWI (s,b),i,t

Purpose: To determine whether write access to a given address is allowed.

Description: A test is performed to determine if write access to the address computed by the instruction
is permitted at the privilege level given by the two rightmost bits of the immediate valuei.
GR t is set to 1 if the test succeeds and 0 otherwise.

This instruction checks the write access rights for the page. If the PSW P-bit is set, the
protection IDs are also checked. This instruction performs data address translation
regardless of the state of the PSW D-bit.

Operation: space← space_select(s,GR[b]);
offset ← GR[b];
if (search_DTLB(space,offset,&entry))

if (write_access_allowed(space,offset,i))
GR[t] ← 1;

else
GR[t] ← 0;

else
non-access_data_TLB_miss_fault();

Exceptions: Non-access data TLB miss fault/non-access data page fault

Notes: If this instruction causes a non-access data TLB miss fault/non-access data page fault, the
operating system’s handler is required to search its page tables for the given address. If
found, it does the appropriate TLB insert and returns to the interrupting instruction. If not
found, the handler must decode the target field of the instruction, set that GR to 0, set the
IPSW[N] bit to 1, and return to the interrupting instruction.

Level 0: This instruction always sets the target general register to 1.

01 b i s C7 0 t

6 5 5 2 8 1 5

5-158 Instruction Set PA-RISC 1.1 Architecture

LOAD PHYSICAL ADDRESS LPA

Format: LPA,cmplt x(s,b),t

Purpose: To determine the absolute address of a mapped virtual page.

Description: The effective address is calculated. The completer,cmplt, determines if the offset is the
base register,b, or the base register plus index registerx. The completer, encoded in them
field of the instruction, also specifies base register modification. (See Table 5-11 on
page 5-22 for the assembly language completer mnemonics.) GRt receives the absolute
address corresponding to the given virtual address. If the page is not present, GRt is set to
0. If base register modification is specified andb = t, the value loaded is the absolute
address of the item indicated by the effective address.

In systems with separate data and instruction TLBs, the absolute address is obtained from
the data TLB. This instruction performs data address translation regardless of the state of
the PSW D-bit.

Operation: if (priv != 0)
privileged_operation_trap;

else {
space← space_select(s,GR[b]);
switch (cmplt) {

case M: offset← GR[b]; /*m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
}
if (search_DTLB(space,offset,&entry))

GR[t] ← absolute_address(space,offset);
else

non-access_data_TLB_miss_fault();
}

Exceptions: Non-access data TLB miss fault Privileged operation trap

Restrictions: The result ofLPA is ambiguous for an address which maps to absolute address 0.

This instruction may be executed only at the most privileged level.

Notes: If this instruction causes a non-access data TLB miss fault/non-access data page fault, the
operating system’s handler is required to search its page tables for the given address. If
found, it does the appropriate TLB insert and returns to the interrupting instruction. If not
found, the handler must decode the target field of the instruction, set that GR to 0, set the

01 b x s 4D m t

6 5 5 2 8 1 5

5-159PA-RISC 1.1 Architecture Instruction Set

IPSW[N] bit to 1, and return to the interrupting instruction.

Level 0: This instruction is an undefined operation.

5-160 Instruction Set PA-RISC 1.1 Architecture

LOAD COHERENCE INDEX LCI

Format: LCI x(s,b),t

Purpose: To determine the coherence index corresponding to a virtual address.

Description: The effective address is calculated. GRt receives the coherence index corresponding to
the given virtual address.

In systems with separate data and instruction caches, the coherence index is obtained from
the data cache.

The coherence index function is independent of the state of the PSW D-bit.

Operation: if (priv != 0)
privileged_operation_trap;

else {
space← space_select(s,GR[b]);
offset ← GR[b] + GR[x];
GR[t] ← coherence_index(space,offset);

}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: All addresses within a page have the same coherence index.

The coherence index corresponding to a physical address can be determined by
performingLCI on the equivalently-mapped virtual address. Also, in order to allow I/O
modules to have coherent access to equivalently-mapped addresses without knowing the
coherence index, the coherence index for equivalently-mapped addresses must be an
implementation-defined function of the physical address bits only.

Two virtual addresses having the same coherence index are not guaranteed to alias unless
they also meet the virtual aliasing rules.

For systems that do not have a cache, the target register receives an undefined value.

For system that do not support coherent I/O, this instruction is undefined.

Level 0: This instruction is an undefined operation.

01 b x s 4C 0 t

6 5 5 2 8 1 5

5-161PA-RISC 1.1 Architecture Instruction Set

PURGE DATA TLB PDTLB

Format: PDTLB,cmplt x(s,b)

Purpose: To invalidate a data TLB entry.

Description: The data or combined TLB entry (if any) for the page specified by the effective address
generated by the instruction is invalidated, removed, or altered. The completer,cmplt,
determines if the offset is the base register,b, or the base register plus index registerx. The
completer, encoded in them field of the instruction, specifies base register modification.
(See Table 5-11 on page 5-22 for the assembly language completer mnemonics.)

 In a multiprocessor system, a purge request is broadcast to all data and combined TLBs.
The other processors must invalidate, remove, or alter the entry before the issuing
processor continues.

Operation: if (!level_0) {
if (priv != 0)

privileged_operation_trap;
else {

space← space_select(s,GR[b]);
switch (cmplt) {

case M: offset← GR[b]; /*m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
}
if (search_DTLB(space, offset{0..19},&entry))

purge_DTLB(entry);
broadcast_purge_DTLB(space,offset);

}
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to purge both instruction entries and data entries from a
combined TLB.

Level 0: This instruction executes as a null instruction.

01 b x s 48 m rv

6 5 5 2 8 1 5

5-162 Instruction Set PA-RISC 1.1 Architecture

PURGE INSTRUCTION TLB PITLB

Format: PITLB,cmplt x(sr,b)

Purpose: To invalidate an instruction TLB entry.

Description: The instruction or combined TLB entry (if any) for the page specified by the effective
address generated by the instruction is invalidated, removed, or altered. The completer,
cmplt, determines if the offset is the base register,b, or the base register plus the index
registerx. The completer, encoded in them field of the instruction, also specifies base
register modification. (See Table 5-11 on page 5-22 for the assembly language completer
mnemonics.)

 In a multiprocessor system, a purge request is broadcast to all instruction and combined
TLBs. The other processors must invalidate, remove, or alter the entry before the issuing
processor continues.

Operation: if (!level_0) {
if (priv != 0)

privileged_operation_trap;
else {

space← SR[assemble_3(s)];
switch (cmplt) {

case M: offset← GR[b]; /*m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
}
if (search_ITLB(space,offset{0..19},&entry))

purge_ITLB(entry);
broadcast_purge_ITLB(space,offset);

}
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to purge both instruction entries and data entries from a
combined TLB.

Level 0: This instruction executes as a null instruction.

01 b x s 08 m rv

6 5 5 3 7 1 5

5-163PA-RISC 1.1 Architecture Instruction Set

PURGE DATA TLB ENTRY PDTLBE

Format: PDTLBE,cmplt x(s,b)

Purpose: To invalidate a data TLB entry without matching the address portion.

Description: The data or combined TLB entries (if any) specified by an implementation-dependent
function of the effective address generated by the instruction are invalidated or removed.
All the fields of these entries may be changed to arbitrary values as long as these entries do
not validate any subsequent accesses. The completer,cmplt, determines if the offset is the
base register,b, or the base register plus the index registerx. The completer, encoded in
the m field of the instruction, specifies base register modification. (See Table 5-11 on
page 5-22 for the assembly language completer mnemonics.)

This is an implementation-dependent instruction that can be used to purge the entire data
TLB without knowing the translations in the TLB. No broadcast occurs in a
multiprocessor system.

Operation: if (!level_0) {
if (priv != 0)

privileged_operation_trap;
else {

space← space_select(s,GR[b]);
switch (cmplt) {

case M: offset← GR[b]; /*m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
}
entries ← select_DTLB_entries(space,offset);
purge_DTLB_entry(entries);

}
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to purge both instruction entries and data entries from a
combined TLB. This instruction does not necessarily purge the entry specified by “space”
and “offset”.

Level 0: This instruction executes as a null instruction.

01 b x s 49 m rv

6 5 5 2 8 1 5

5-164 Instruction Set PA-RISC 1.1 Architecture

PURGE INSTRUCTION TLB ENTRY PITLBE

Format: PITLBE,cmplt x(sr,b)

Purpose: To invalidate an instruction TLB entry without matching the address portion.

Description: The instruction or combined TLB entries (if any) specified by an implementation-
dependent function of the effective address generated by the instruction are invalidated or
removed. All the fields of these entries may be changed to arbitrary values as long as these
entries do not validate any subsequent accesses. The completer,cmplt, determines if the
offset is the base register,b, or the base register plus the index registerx. The completer,
encoded in them field of the instruction, specifies base register modification. (See
Table 5-11 on page 5-22 for the assembly language completer mnemonics.) The space
register,sr, is encoded in thes field of the instruction.

This is an implementation-dependent instruction that can be used to purge the entire
instruction TLB without knowing the translations in the TLB. No broadcast occurs in a
multiprocessor system.

Operation: if (!level_0) {
if (priv != 0)

privileged_operation_trap;
else {

space← SR[assemble_3(s)];
switch (cmplt) {

case M: offset← GR[b]; /*m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
}
entries ← select_ITLB_entries(space,offset);
purge_ITLB_entry(entries);

}
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to purge both instruction entries and data entries from a
combined TLB. This instruction does not necessarily purge the entry specified by “space”
and “offset”.

Level 0: This instruction executes as a null instruction.

01 b x s 09 m rv

6 5 5 3 7 1 5

5-165PA-RISC 1.1 Architecture Instruction Set

INSERT DATA TLB ADDRESS IDTLBA

Format: IDTLBA r,(s,b)

Purpose: To begin adding an entry to the data TLB (INSERT DATA TLB PROTECTION completes the
process).

Description: A slot is found in the data or combined TLB and the new translation is placed there in the
invalid state. If the data or combined TLB already contains an entry with the virtual page
number of the new translation, the entry must be removed. The base register,b, forms the
offset portion of the address. The TLB tag and translation (constructed from the effective
address and GRr) are loaded into that slot. The physical page number is obtained from
GR r.

Operation: if (!level_0) {
if (priv != 0)

privileged_operation_trap;
else {

space← space_select(s,GR[b]);
offset ← GR[b];
if (!search_DTLB(space,offset,&entry))

alloc_DTLB(space,offset,&entry);
DTLB[entry].ENTRY_VALID ← false;
DTLB[entry].VIRTUAL_ADDR ← cat(space,offset{0..19});
DTLB[entry].PHY_PAGE_NO← GR[r]{7..26};

}
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to insert both instruction entries and data entries into a
combined TLB.

Level 0: This instruction executes as a null instruction.

01 b r s 41 0 0

6 5 5 2 8 1 5

5-166 Instruction Set PA-RISC 1.1 Architecture

INSERT INSTRUCTION TLB ADDRESS IITLBA

Format: IITLBA r,(sr,b)

Purpose: To begin adding an entry to the instruction TLB (INSERT INSTRUCTION TLB
PROTECTION completes the process).

Description: A slot is found in the instruction or combined TLB and the new translation is placed there
in the invalid state. If the instruction or combined TLB already contains an entry with the
virtual page number of the new translation, the entry must be removed. The base register,
b, forms the offset portion of the address. The TLB tag and translation (constructed from
the effective address and GRr) are loaded into that slot. The physical page number is
obtained from GRr. The space register,sr, is encoded in thes field of the instruction.

Operation: if (!level_0) {
if (priv != 0)

privileged_operation_trap;
else {

space← SR[assemble_3(s)];
offset ← GR[b];
if (!search_ITLB(space,offset,&entry))

alloc_ITLB(space,offset,&entry);
ITLB[entry].ENTRY_VALID ← false;
ITLB[entry].VIRTUAL_ADDR ← cat(space,offset{0..19});
ITLB[entry].PHY_PAGE_NO ← GR[r]{7..26};

}
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to insert both instruction entries and data entries into a
combined TLB.

Level 0: This instruction executes as a null instruction.

01 b r s 01 0 0

6 5 5 3 7 1 5

5-167PA-RISC 1.1 Architecture Instruction Set

INSERT DATA TLB PROTECTION IDTLBP

Format: IDTLBP r,(s,b)

Purpose: To finish adding an entry to the data TLB (INSERT DATA TLB ADDRESS begins the
process).

Description: The virtual page number computed from the instruction is checked for a match against
entries in the data or combined TLB. The base register,b, forms the offset portion of the
address. If a match is found, GRr is loaded into the TLB entry as the flags and access
control, and the entry is marked valid. Otherwise, this instruction executes as a null
instruction.

Operation: if (!level_0) {
if (priv != 0)

privileged_operation_trap;
else {

space← space_select(s,GR[b]);
offset ← GR[b];
if (search_DTLB(space,offset,&entry)) {

DTLB[entry].U ← GR[r]{12};
DTLB[entry].T ← GR[r]{2};
DTLB[entry].D ← GR[r]{3};
DTLB[entry].B ← GR[r]{4};
DTLB[entry].ACCESS_RIGHTS← GR[r]{5..11};
DTLB[entry].ACCESS_ID ← GR[r]{13..30};
DTLB[entry].ENTRY_VALID ← true;

}
}

}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to insert both instruction entries and data entries into a
combined TLB.

If smaller than 18-bit access IDs are implemented, only the appropriate number of the
rightmost bits of GR[r]{13..30} are stored in the TLB.

Level 0: This instruction executes as a null instruction.

01 b r s 40 0 0

6 5 5 2 8 1 5

5-168 Instruction Set PA-RISC 1.1 Architecture

INSERT INSTRUCTION TLB PROTECTION IITLBP

Format: IITLBP r,(sr,b)

Purpose: To finish adding an entry to the instruction TLB (INSERT INSTRUCTION TLB ADDRESS
begins the process).

Description: The virtual page number computed from the instruction is checked for a match against
entries in the instruction or combined TLB. The base register,b, forms the offset portion
of the address. If a match is found, GRr is loaded into the TLB entry as the flags and
access control, and the entry is marked valid. Otherwise, this instruction executes as a null
instruction. The space register,sr, is encoded in thes field of the instruction.

Operation: if (!level_0) {
if (priv != 0)

privileged_operation_trap;
else {

space← SR[assemble_3(s)];
offset ← GR[b];
if (search_ITLB(space,offset,&entry)) {

if (combined_TLB) {
ITLB[entry].U ← GR[r]{12};
ITLB[entry].T ← GR[r]{2};
ITLB[entry].D ← GR[r]{3};
ITLB[entry].B ← GR[r]{4};

}
ITLB[entry].ACCESS_RIGHTS← GR[r]{5..11};
ITLB[entry].ACCESS_ID ← GR[r]{13..30};
ITLB[entry].ENTRY_VALID ← true;

}
}

}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to insert both instruction entries and data entries into a
combined TLB. The U, T, D, and B bits are set to the appropriate bits of GRr in that case.

If smaller than 18-bit access IDs are implemented, only the appropriate number of
rightmost bits of GR[r]{13..30} are stored in the TLB.

Level 0: This instruction executes as a null instruction.

01 b r s 00 0 0

6 5 5 3 7 1 5

5-169PA-RISC 1.1 Architecture Instruction Set

PURGE DATA CACHE PDC

Format: PDC,cmplt x(s,b)

Purpose: To invalidate a data cache line.

Description: The cache line (if present) specified by the effective address generated by the instruction is
invalidated from the data cache. If the privilege level is non-zero and the cache line is
dirty then it is written back to memory before being invalidated. If the privilege level is
zero and the line is dirty then the implementation may optionally write back the line to
memory.

The completer,cmplt, determines if the offset is the base register,b, or the base register
plus the index registerx. The completer, encoded in them field of the instruction, specifies
base register modification. (See Table 5-11 on page 5-22 for the assembly language
completer mnemonics.)

If a cache purge operation is performed, write access to the data is required. The PSW D-
bit (Data address translation enable) determines whether a virtual or absolute address is
used.

In a multiprocessor system, a purge or flush request is broadcast to all data and combined
caches.

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case M: offset← GR[b]; /*m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
}
if (priv != 0)

flush_data_cache(space,offset);
else

purge_or_flush_data_cache(space,offset);

Exceptions: Non-access data TLB miss fault Data memory break trap
Data memory access rights trap Data debug trap
Data memory protection ID trap

Notes: For systems that do not have a cache, this instruction executes as a null instruction.

At privilege level zero, implementations are encouraged to purge the cache line for
performance reasons.

This instruction may be executed out of sequence but must satisfy the instruction ordering

01 b x s 4E m 0

6 5 5 2 8 1 5

5-170 Instruction Set PA-RISC 1.1 Architecture

constraints. TheSYNC instruction enforces program order with respect to the instructions
following theSYNC.

A data debug trap is not taken if aPDC causes a cache flush operation; the trap is taken
only if a cache purge operation is performed to an address matching a data breakpoint with
its w (write access) bit enabled..

5-171PA-RISC 1.1 Architecture Instruction Set

FLUSH DATA CACHE FDC

Format: FDC,cmplt x(s,b)

Purpose: To invalidate a data cache line and write it back to memory if it is dirty.

Description: The data cache line (if present) specified by the effective address generated by the
instruction is written back to memory, if and only if it is dirty, and then invalidated from
the data cache. The completer,cmplt, determines if the offset is the base register,b, or the
base register plus the index registerx. The completer, encoded in them-field of the
instruction, specifies base register modification. (See Table 5-11 on page 5-22 for the
assembly language completer mnemonics.) The PSW D-bit (Data address translation
enable) determines whether a virtual or absolute address is used.

A cache line is calleddirty if any byte has been written to since it was read from memory
or if a STBYS,E to the leftmost byte of a word has been performed.

In a multiprocessor system, a flush request is broadcast to all data and combined caches.

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case M: offset← GR[b]; /*m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
}
flush_data_cache(space,offset);

Exceptions: Non-access data TLB miss fault

Notes: For systems that do not have a cache, this instruction executes as a null instruction.

In systems with a combined cache, this instruction may be used to flush both data and
instruction lines from the cache.

This instruction may be executed out of sequence but must satisfy the instruction ordering
constraints. TheSYNC instruction enforces program order with respect to the instructions
following theSYNC.

01 b x s 4A m rv

6 5 5 2 8 1 5

5-172 Instruction Set PA-RISC 1.1 Architecture

FLUSH INSTRUCTION CACHE FIC

Format: FIC,cmplt x(sr,b)

Purpose: To invalidate an instruction cache line.

Description: The instruction cache line (if any) specified by the effective address generated by the
instruction is invalidated in the instruction cache. The completer,cmplt, determines if the
offset is the base register,b, or the base register plus the index registerx. The completer,
encoded in them-field of the instruction, specifies base register modification. (See
Table 5-11 on page 5-22 for the assembly language completer mnemonics.) The space
register,sr, is encoded in thes field of the instruction. The PSW D-bit (Data address
translation enable) determines whether a virtual or absolute address is used.

Either the instruction TLB or the data TLB can be used to perform the address translation
for the address to be flushed. If the data TLB is used, a TLB miss fault is reported using a
non-access data TLB miss fault.

In a multiprocessor system, a flush request is broadcast to all instruction and combined
caches.

Operation: space← SR[assemble_3(s)];
switch (cmplt) {

case M: offset← GR[b]; /*m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
}
flush_instruction_cache(space,offset);

Exceptions: Non-access instruction TLB miss fault
Non-access data TLB miss fault

Notes: For systems that do not have a cache, this instruction executes as a null instruction.

In systems with a combined cache, this instruction may be used to flush both instruction
and data lines from the cache, including writing them back to main memory, if they are
dirty.

This instruction may be executed out of sequence but must satisfy the instruction ordering
constraints. TheSYNC instruction enforces program order with respect to the instructions
following theSYNC.

01 b x s 0A m rv

6 5 5 3 7 1 5

5-173PA-RISC 1.1 Architecture Instruction Set

FLUSH DATA CACHE ENTRY FDCE

Format: FDCE,cmplt x(s,b)

Purpose: To provide for flushing the entire data or combined cache by causing zero or more cache
lines to be invalidated.

Description: Zero or more cache lines specified by an implementation-dependent function of the
effective address are written back to main memory, if and only if they are dirty, and are
invalidated in the data or combined cache. The completer,cmplt, determines if the offset is
the base register,b, or the base register plus the index registerx. The completer, encoded
in the m-field of the instruction, specifies base register modification. No address
translation is performed. (See Table 5-11 on page 5-22 for the assembly language
completer mnemonics.)

When this instruction is used in an architecturally defined cache flush loop, the entire data
or combined cache will be flushed upon completion of the loop.

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case M: offset← GR[b]; /*m=1*/
GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
}
entries ← select_data_cache_entries(space,offset);
flush_data_cache_entry(entries);

Exceptions: None

Notes: In a multiprocessor system, this instruction is not broadcast to other processors. This
instruction does not necessarily flush the entry specified by “space” and “offset”.

For systems that do not have a cache, this instruction executes as a null instruction.

01 b x s 4B m rv

6 5 5 2 8 1 5

5-174 Instruction Set PA-RISC 1.1 Architecture

FLUSH INSTRUCTION CACHE ENTRY FICE

Format: FICE,cmplt x(sr,b)

Purpose: To provide for flushing the entire instruction or combined cache by causing zero or more
cache lines to be invalidated.

Description: Zero or more cache lines specified by an implementation-dependent function of the
effective address are invalidated in the instruction or combined cache. For
implementations with a combined cache, the cache lines are written back to main memory,
if and only if they are dirty, and are invalidated. The completer,cmplt, determines if the
offset is the base register,b, or the base register plus the index registerx. The completer,
encoded in them-field of the instruction, specifies base register modification. No address
translation is performed. (See Table 5-11 on page 5-22 for the assembly language
completer mnemonics.) The space register,sr, is encoded in thes field of the instruction.

When this instruction is used in an architecturally defined cache flush loop, the entire
instruction or combined cache will be flushed upon completion of the loop (all the
contents of the instruction cache, except the loop itself, prior to the beginning of the flush
loop must be flushed).

Operation: switch (cmplt) {
case M: offset← GR[b]; /*m=1*/

GR[b] ← GR[b] + GR[x];
break;

default: offset← GR[b] + GR[x]; /*m=0*/
}
space← SR[assemble_3(s)];
entries ← select_instruction_cache_entries(space,offset);
flush_instruction_cache_entry(entries);

Exceptions: None

Notes: In a multiprocessor system, this instruction is not broadcast to other processors. This
instruction does not necessarily flush the entry specified by “space” and “offset”.

For systems which do not have a cache, this instruction executes as a null instruction.

01 b x s 0B m rv

6 5 5 3 7 1 5

5-175PA-RISC 1.1 Architecture Instruction Set

DIAGNOSE DIAG

Format: DIAG i

Purpose: To provide implementation-dependent operations for system initialization,
reconfiguration, and diagnostic purposes.

Description: The immediate value in the assembly language is encoded in theim26 field of the
instruction. Refer to the hardware reference manual for the definition on a particular
machine implementation.

Operation: if (priv != 0)
privileged_operation_trap;

else
implementation_dependent;

Exceptions: Privileged operation trap
Implementation-dependent.

Restrictions: This instruction may be executed only at the most privileged level.

Notes: Since theDIAG instruction is privileged, a privileged operation trap will result from
unprivileged diagnostic software executingDIAG. The trap could invoke an emulator
which would allow the unprivileged software access to the required unprivileged
implementation-dependent resources.

05 im26

6 26

5-176 Instruction Set PA-RISC 1.1 Architecture

5Instruction Set

Assist Instructions
The PA-RISC design generally conforms to the concept of a simple instruction set implemented in cost
effective hardware. Certain algorithms can benefit from substantial performance gains by dedicating
specialized hardware to execute specialized instructions. Few algorithms rely solely upon the
specialized hardware alone and it is advantageous to combine the processor with additional assist
processors closely coupled to it.

In addition to the instructions executed by a central processor, the instruction set contains instructions to
invoke the special, optional, hardware functions provided by the two types of assist processors: Special
Function Units (SFUs) and coprocessors.

Special function units are closely coupled to the central processor and provide extensions to the
instruction set. They use the general registers as operands and targets of operations.

Coprocessors provide functions that use either memory locations or coprocessor registers as operands
and targets of operations. Coprocessors are less closely coupled to the central processor, and so, are
more easily provided as configuration options for an implementation than special function units.
Coprocessors may also directly pass double-word quantities to and from the coprocessor and memory.
This is suited to the manipulation of quantities that are too large to be directly handled in general
registers.

The special function unit and coprocessor instructions are intended to encapsulate all of the optional
hardware features used for non-system level code. An emulation facility is provided that permits PA-
RISC family members to execute code using the standard instruction set when optional hardware is not
present. The emulation facility is provided by the assist emulation trap, which passes information in
control registers, substantially reducing the instruction path length for emulation.

The assist exception trap permits partial implementations of standard "hardware" functions in a
combination of hardware and software. This handles functions that are difficult or not cost-effective to
implement fully in hardware.

Compatibility Among Implementations
The standard PA-RISC instruction set contains all defined instructions, including those for all defined
assist processors. Particular implementations may choose to implement these instructions in hardware,
software, or some combination of the two, using assist emulation traps and/or assist exception traps to
complete the implementation. Thus, these instructions can be used by compilers and assemblers without
sacrificing object-code portability. Software emulation of the extended functions is also used to permit
execution of the object code in a degraded mode for high-availability systems.

Architecturally Defined Assist Processors
Some assist processors are defined and compilers are capable of generating instructions for them. Trap
handlers can emulate these instructions if the hardware is nonexistent or incomplete.

These assist processors are standardized for software portability because most implementations will
include them as either standard or optional hardware.

5-177PA-RISC 1.1 Architecture Instruction Set

Special Function Unit (SFU) Instructions
The SFU mechanism is intended for certain architecturally defined instruction extensions, such as
hardware fixed-point binary multiply/divide or encryption hardware, as well as for implementation-
specific extensions, such as emulation assist processors or direct I/O controller connections.

SFUs are connected to the general register interface and are invoked by special operation instructions.
These instructions cause the execution unit to perform any of several operations (determined by the
opcode extension), which may use the contents of registers, or may write back a result. Some
instructions conditionally nullify the next instruction.

Some special function operations overlap their execution with succeeding instructions. These
operations require that the special function unit’s state be saved and restored when a context switch is
made. An interlock occurs if a special function result is requested before the operation has completed,
or the special function unit is busy.

An SFU is not required to hold its state in addressable registers. Instead, SFU operations are used to
save and restore the state, as well as to pass it operands and receive results from it.

Defined special function units will conform to the requirements of the defined SFU instructions, so that
they may be implemented either as built-in or interfaced special function units. The assist emulation
trap permits software implementation of any defined special operation instruction.

The processor must also provide the current privilege level to special function units. Privilege levels
could be broadcast each time they change or could be transmitted with each SFU operation. Use of the
privilege level by the SFU is specific to each of the units. The operation paragraph of each SFU
instruction description specifies the necessary information that must be available to the SFU in the
"sfu_operation" function.

There is one SFU instruction, theIDENTIFY SFU (SPOP1) instruction, that is defined for all SFUs. It
must be implemented.

There are four instruction formats for the special function unit instructions as given below. The major
opcode is 0x04 for SFU operations.

1. Special Operation Zero

2. Special Operation One

3. Special Operation Two

04 sop1 0 sfu n sop2

6 15 2 3 1 5

04 sop 1 sfu n t

6 15 2 3 1 5

04 r sop1 2 sfu n sop2

6 5 10 2 3 1 5

5-178 Instruction Set PA-RISC 1.1 Architecture

4. Special Operation Three

The SCR (SFU Configuration Register) is an 8-bit control register, in CR 10 bits 16..23, that is used to
indicate the presence and usability of a hardware implementation of an SFU. Bit 1 in the SCR
corresponds to the debug SFU. For all other bits in the SCR, SCR{i} corresponds to an undefined SFU
with a unit identifier that is the same as the bit position, that is the SFU with uid i.

When SCR{i} is 1, the SFU with uid i is implied to be present and usable. SFU instructions are passed
to the SFU and the defined operation occurs. Exceptions resulting from the operation cause the
instruction to be terminated with an assist exception trap. Assist emulation traps are not allowed to
occur for the SFU with uid i when SCR{i} is 1. It is an undefined operation to set to 1 the SCR bit
corresponding to a nonexistent SFU.

When SCR{i} is 0, it is not implied that the SFU with uid i is absent from the system, but rather that the
SFU, if present, is not currently being used. When the SCR bit is 0, the SFU instruction is terminated
with an assist emulation trap. Assist exception traps are not allowed to occur for the SFU with uid i
when SCR{i} is 0.

Setting the SCR{i} bit to 0 must logically decouple the SFU with uid i. This must ensure that the state
of the SFU with uid i is frozen just prior to the transition of SCR{i} from 1 to 0 and that the state does
not change as long as SCR{i} is 0. When SCR{i} is 0, the SFU with uid i must not respond to any SFU
operations for the SFU with uid i. The frozen state of an SFU, for example, could also be a state in
which the SFU is left "armed" to trap any subsequent operations. For example, if the coprocessor with
uid i is in an "armed-to-trap" state and SCR{i} is 0, any operation involving that SFU must not cause an
assist exception trap.

The precedence of the interruptions that are applicable to operations for the SFU with uid i depends on
the state of SCR{i}. The assist exception trap and assist emulation trap are always taken in the priority
order as described in “Interruptions” on page 4-13.

NOTE
Logical decoupling may be accomplished in a variety of ways. Processors may use abort
signals or other schemes to notify SFUs that the current instruction is to be ignored.

When the SCR bit is 0, logical decoupling suppresses any exception traps from a SFU and
causes the emulation trap to occur (if it is the highest priority).

Coprocessor Instructions
The coprocessor mechanism is intended for special-purpose data manipulations, especially those which
handle data larger than single words. The interconnection method allows for instruction set extensions
with minimal effect on the instruction execution rate, while maintaining short data communication
paths between the coprocessors and the rest of the system. Coprocessor instructions can be executed by
the coprocessor hardware or emulated by software. Combinations of instructions implemented in
hardware and emulated by software are possible even when the coprocessor hardware is present in a

04 r2 r1 sop1 3 sfu n sop2

6 5 5 5 2 3 1 5

5-179PA-RISC 1.1 Architecture Instruction Set

system.

When caches are implemented, coprocessors are connected to the CPU-cache interface. For systems
that do not have a cache, coprocessors are connected to the CPU-memory bus interface. Coprocessors
manipulate data in their own register sets, but use the data cache or memory bus and central processor’s
address generation logic. Under control of the CPU, coprocessor load instructions pass data from the
data cache or memory bus to a coprocessor, and coprocessor store instructions from a coprocessor to the
data cache or memory bus. Coprocessor operations use only the coprocessor’s registers. Some
coprocessor operations may nullify the next instruction.

Coprocessor operation, load, and store instructions may overlap their execution with following
instructions. An interlock occurs if a coprocessor operation is requested before the coprocessor is able
to perform it, and for loads and stores involving busy coprocessor registers.

The coprocessor load and store instructions contain a 5-bit field which normally specifies a coprocessor
register, but may also be interpreted by coprocessors as a sub-operation field. Coprocessors keep their
state in their registers, so that storing the coprocessor registers and reloading them is sufficient to save
and restore the state of a coprocessor.

Some coprocessors are capable of supporting double-word load and store operations. These operations
are implemented on all systems that support such coprocessors, even though they may require
additional cycles for some machines. Coprocessor load and store instructions to I/O address spaces are
undefined. Coprocessor load and store operations must be atomic.

The operation section of each coprocessor instruction description specifies the necessary information
that must be available to the coprocessor in thecoprocessor_op andsend_to_copr functions. There is
one coprocessor instruction, theIDENTIFY COPROCESSOR (COPR,0,0) instruction, that is defined for
coprocessors with unit identifiers 4 through 7. Coprocessors with unit identifiers 0 and 3 have a
mechanism to identify themselves that is individually defined.

There are five instruction formats for the coprocessor instructions, as given below. The major opcodes
are 0x0C for coprocessor operations, 0x09 for single word loads and stores, and 0x0B for double word
loads and stores.

1. Coprocessor Operation

2. Coprocessor Indexed Loads

3. Coprocessor Indexed Stores

0C sop1 uid n sop2

6 17 3 1 5

09/0B b x s u 0 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5

09/0B b x s u 0 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5

5-180 Instruction Set PA-RISC 1.1 Architecture

4. Coprocessor Short Displacement Loads

5. Coprocessor Short Displacement Stores

NOTE
An unaligned data reference trap is taken if the appropriate number of rightmost bits of the
effective virtual address are not zeros for theCOPROCESSOR LOAD WORD INDEXED,
COPROCESSOR LOAD DOUBLEWORD INDEXED, COPROCESSOR STORE WORD INDEXED,
COPROCESSOR STORE DOUBLEWORD INDEXED, COPROCESSOR LOAD WORD SHORT,
COPROCESSOR LOAD DOUBLEWORD SHORT, COPROCESSOR STORE WORD SHORT, and
COPROCESSOR STORE DOUBLEWORD SHORT instructions. Absolute accesses to unaligned
data are undefined operations.

The CCR (Coprocessor Configuration Register) is an 8-bit control register, in CR 10 bits 24..31, that is
used to indicate the presence and usability of a hardware implementation of a coprocessor. Bits 0 and 1
in the CCR correspond to the floating-point coprocessor and Bit 2 in the CCR corresponds to the
performance monitor coprocessor. For all other bits in the CCR, CCR{i} corresponds to an undefined
coprocessor with a unit identifier that is the same as the bit position, that is the coprocessor with uid i.

Execution of any floating-point instruction with CCR{0} and CCR{1} not set to the same value is an
undefined operation. Execution of a coprocessor operation instruction (major opcode 0x0C) with
CCR{0}, CCR{1}, and the uid field in the instruction all set to 1 is an undefined operation.

When CCR{i} is 1, the coprocessor with uid i is implied to be present and usable. Coprocessor
instructions are passed to the coprocessor and the defined operation occurs. Exceptions resulting from
the operation cause the instruction to be terminated with an assist exception trap. Assist emulation traps
are not allowed to occur for the coprocessor with uid i when CCR{i} is 1. It is an undefined operation to
set to 1 the CCR bit corresponding to a nonexistent coprocessor.

When CCR{i} is 0, it is not implied that the coprocessor with uid i is absent from the system, but rather
that the coprocessor, if present, is not currently being used. When the CCR bit is 0, the coprocessor
instruction is terminated with an assist emulation trap. Assist exception traps are not allowed to occur
for the coprocessor with uid i when CCR{i} is 0.

Setting the CCR{i} bit to 0 must logically decouple the coprocessor with uid i. This must ensure that the
state of the coprocessor with uid i is frozen just prior to the transition of CCR{i} from 1 to 0 and that the
state does not change as long as CCR{i} is 0. When CCR{i} is 0, the coprocessor with uid i must not
respond to any coprocessor operations for the coprocessor with uid i. The frozen state of a coprocessor,
for example, could also be a state in which the coprocessor is left "armed" to trap any subsequent
operations. For example, if the coprocessor with uid i is in an "armed-to-trap" state and CCR{i} is 0,
any operation involving that coprocessor must not cause an assist exception trap.

09/0B b im5 s a 1 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5

09/0B b im5 s a 1 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5

5-181PA-RISC 1.1 Architecture Instruction Set

The precedence of the interruptions that are applicable to operations for the coprocessor with uid i
depends on the state of CCR{i}. The assist exception trap and assist emulation trap are always taken in
the priority order as described in “Interruptions” on page 4-13.

NOTE
Logical decoupling may be accomplished in a variety of ways. Processors may use abort
signals or other schemes to notify coprocessors that the current instruction is to be ignored.

When the CCR bit is 0, logical decoupling suppresses any exception traps from a coprocessor
and causes the emulation trap to occur (if it is the highest priority).

5-182 Instruction Set PA-RISC 1.1 Architecture

SPECIAL OPERATION ZERO SPOP0

Format: SPOP0,sfu,sop,n

Purpose: To invoke a special function unit operation.

Description: The SFU identified bysfu is directed to perform the operation specified by the information
supplied to it. If nullification is specified in the instruction, the SFU also computes a 1-bit
condition that causes the following instruction to be nullified if the condition is satisfied.

Thesop field in the assembly language format is the concatenation of thesop1 andsop2
fields in the machine instruction, sop = cat(sop1,sop2).

Operation: sfu_operation0(cat(sop1,sfu,n,sop2),IAOQ_Front{30..31});
if (n && sfu_condition0(cat(sop1,sfu,n,sop2),IAOQ_Front{30..31}))

PSW[N] ← 1;

Exceptions: Assist emulation trap
Assist exception trap

04 sop1 0 sfu n sop2

6 15 2 3 1 5

5-183PA-RISC 1.1 Architecture Instruction Set

SPECIAL OPERATION ONE SPOP1

Format: SPOP1,sfu,sop,n t

Purpose: To copy a special function unit register or a result to a general register.

Description: A single word is sent from the SFU identified bysfu to GR t. The SFU uses its internal
state and the instruction fields supplied to it to compute or select the result. If nullification
is specified in the instruction, the SFU also computes a 1-bit condition that causes the
following instruction to be nullified if the condition is satisfied.

Operation: GR[t] ← sfu_operation1(cat(sop,sfu,n),IAOQ_Front{30..31});
if (n && sfu_condition1(cat(sop,sfu,n),IAOQ_Front{30..31}))

PSW[N] ← 1;

Exceptions: Assist emulation trap
Assist exception trap

Notes: The SPECIAL OPERATION ONE instruction is used to implement theIDENTIFY SFU
pseudo-operation. This operation returns a 32-bit identification number from the special
function unitsfu to general registert. The value returned is implementation dependent and
is useful for configuration, diagnostics, and error recovery. The state of the SFU is
undefined after this instruction.

Each implementation must choose an identification number that identifies the version of
the SFU. The values all zeros and all ones are reserved. The assist emulation trap handler
returns zero when executing this instruction. An assist exception trap is not allowed and
this instruction must be implemented by all SFUs. TheIDENTIFY SFU pseudo-operation is
coded as:SPOP1,sfu,0 t

04 sop 1 sfu n t

6 15 2 3 1 5

5-184 Instruction Set PA-RISC 1.1 Architecture

SPECIAL OPERATION TWO SPOP2

Format: SPOP2,sfu,sop,n r

Purpose: To perform a parameterized special function unit operation.

Description: GR r is passed to the SFU identified bysfu. The SFU uses its internal state, the contents of
the register, and the instruction fields supplied to it to compute a result. If nullification is
specified, the SFU also computes a 1-bit condition that causes the following instruction to
be nullified if the condition is satisfied.

Thesop field in the assembly language format is the concatenation of thesop1 andsop2
fields in the machine instruction, sop = cat(sop1,sop2).

Operation: sfu_operation2(cat(sop1,sfu,n,sop2),IAOQ_Front{30..31},GR[r]);
if (n && sfu_condition2(cat(sop1,sfu,n,sop2),IAOQ_Front{30..31},GR[r]))

PSW[N] ← 1;

Exceptions: Assist emulation trap
Assist exception trap

04 r sop1 2 sfu n sop2

6 5 10 2 3 1 5

5-185PA-RISC 1.1 Architecture Instruction Set

SPECIAL OPERATION THREE SPOP3

Format: SPOP3,sfu,sop,n r1,r2

Purpose: To perform a parameterized special function unit operation.

Description: GR r1 and GRr2 are passed to the SFU identified bysfu. The SFU uses its internal state,
the contents of the two registers, and the instruction fields supplied to it to compute a
result. If nullification is specified, the SFU also computes a 1-bit condition that causes the
following instruction to be nullified if the condition is satisfied.

Thesop field in the assembly language format is the concatenation of thesop1 andsop2
fields in the machine instruction, sop = cat(sop1,sop2).

Operation: sfu_operation3(cat(sop1,sfu,n,sop2),IAOQ_Front{30..31},GR[r1],GR[r2]);
if (n && sfu_condition3(cat(sop1,sfu,n,sop2),

IAOQ_Front{30..31},GR[r1],GR[r2]))
PSW[N] ← 1;

Exceptions: Assist emulation trap
Assist exception trap

04 r2 r1 sop1 3 sfu n sop2

6 5 5 5 2 3 1 5

5-186 Instruction Set PA-RISC 1.1 Architecture

COPROCESSOR OPERATION COPR

Format: COPR,uid,sop,n

Purpose: To invoke a coprocessor unit operation.

Description: The coprocessor operation codesop (assembled from thesop1 andsop2 fields) is sent to
the coprocessor identified byuid and the indicated operation is performed. If nullification
is specified and the coprocessor condition is satisfied, the following instruction is nullified.

Operation: sop ← cat(sop1,sop2);
coprocessor_op(uid,sop,n,IAOQ_Front{30..31});
if (n && coprocessor_condition(uid,sop,n))

PSW[N] ← 1;

Exceptions: Assist emulation trap Assist exception trap

Notes: The COPROCESSOR OPERATION instruction is used to implement theIDENTIFY
COPROCESSOR pseudo-operation. This operation places a identification number from the
coprocessor uid into coprocessor register 0. This value is implementation dependent and is
useful for configuration, diagnostic, and error recovery.

Each implementation must choose an identification number that identifies the version of
the coprocessor. The values all zeros and all ones are reserved. An assist exception trap is
not allowed and this instruction must be implemented by all coprocessors with unit
identifiers 4 through 7. Unit identifiers 0 and 2 have a uid-specific sequence to obtain the
identification number.

The format of the identification number for the floating-point coprocessor is described in
“Status Register” on page 6-9.

TheIDENTIFY COPROCESSOR pseudo-operation is coded as follows:COPR,uid,0

0C sop1 uid n sop2

6 17 3 1 5

5-187PA-RISC 1.1 Architecture Instruction Set

COPROCESSOR LOAD WORD INDEXED CLDWX

Format: CLDWX,uid,cmplt,cc x(s,b),t

Purpose: To load a word into a coprocessor register.

Description: The aligned word, at the effective address, is loaded into registert of the coprocessor
identified byuid. The base register,b, and the index register,x, are combined to form an
address offset. The completer,cmplt, determines if the offset is the base register, the base
register plus the index register, or the base register plus the index register shifted by 2. The
completer, encoded in theu andm fields of the instruction, also specifies base register
modification. (See Table 5-11 on page 5-22 for the assembly language completer
mnemonics.)

The completer,cc, specifies the cache control hint (see Table 5-8 on page 5-17).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case S: offset← GR[b] + lshift(GR[x],2); /*u=1, m=0*/
break;

case M: offset← GR[b]; /*u=0, m=1*/
GR[b] ← GR[b] + GR[x];
break;

case SM: offset← GR[b]; /*u=1, m=1*/
GR[b] ← GR[b] + lshift(GR[x],2);
break;

default: offset← GR[b] + GR[x]; /*u=0, m=0*/
}
send_to_copr(uid,t);
CPR[uid][t] ← mem_load(space,offset,0,31,cc);

Exceptions: Assist exception trap Unaligned data reference trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Data debug trap
Data memory protection ID trap Assist emulation trap

09 b x s u 0 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5

5-188 Instruction Set PA-RISC 1.1 Architecture

COPROCESSOR LOAD DOUBLEWORD INDEXED CLDDX

Format: CLDDX,uid,cmplt,cc x(s,b),t

Purpose: To load a double word into a coprocessor register.

Description: The aligned double word, at the effective address, is loaded into registert of the
coprocessor identified byuid. The base register,b, and the index register,x, are combined
to form an address offset. The completer,cmplt, determines if the offset is the base
register, the base register plus the index register, or the base register plus the index register
shifted by 3. The completer, encoded in theu andm fields of the instruction, also specifies
base register modification. (See Table 5-11 on page 5-22 for the assembly language
completer mnemonics.)

The completer,cc, specifies the cache control hint (see Table 5-8 on page 5-17).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case S: offset← GR[b] + lshift(GR[x],3); /*u=1, m=0*/
break;

case M: offset← GR[b]; /*u=0, m=1*/
GR[b] ← GR[b] + GR[x];
break;

case SM: offset← GR[b]; /*u=1, m=1*/
GR[b] ← GR[b] + lshift(GR[x],3);
break;

default: offset← GR[b] + GR[x]; /*u=0, m=0*/
}
send_to_copr(uid,t);
CPR[uid][t] ← mem_load(space,offset,0,63,cc);

Exceptions: Assist exception trap Unaligned data reference trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Data debug trap
Data memory protection ID trap Assist emulation trap

0B b x s u 0 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5

5-189PA-RISC 1.1 Architecture Instruction Set

COPROCESSOR STORE WORD INDEXED CSTWX

Format: CSTWX,uid,cmplt,cc r,x(s,b)

Purpose: To store a word from a coprocessor register.

Description: Registerr, of the coprocessor identified byuid, is stored in the aligned word at the
effective address. The base register,b, and the index register,x, are combined to form an
address offset. The completer,cmplt, determines if the offset is the base register, the base
register plus the index register, or the base register plus the index register shifted by 2. The
completer, encoded in theu andm fields of the instruction, also specifies base register
modification. (See Table 5-11 on page 5-22 for the assembly language completer
mnemonics.)

The completer,cc, specifies the cache control hint (see Table 5-9 on page 5-18).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case S: offset← GR[b] + lshift(GR[x],2); /*u=1, m=0*/
break;

case M: offset← GR[b] /*u=0, m=1*/
GR[b] ← GR[b] + GR[x];
break;

case SM: offset← GR[b]; /*u=1, m=1*/
GR[b] ← GR[b] + lshift(GR[x],2);
break;

default: offset← GR[b] + GR[x]; /*u=0, m=0*/
}
send_to_copr(uid,r);
mem_store(space,offset,0,31,cc,CPR[uid][r])

Exceptions: Assist exception trap Data memory break trap
Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap
Unaligned data reference trap Assist emulation trap

09 b x s u 0 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5

5-190 Instruction Set PA-RISC 1.1 Architecture

COPROCESSOR STORE DOUBLEWORD INDEXED CSTDX

Format: CSTDX,uid,cmplt,cc r,x(s,b)

Purpose: To store a double word from a coprocessor register.

Description: Registerr, of the coprocessor identified byuid, is stored in the aligned double word at the
effective address. The base register,b, and the index register,x, are combined to form an
address offset. The completer,cmplt, determines if the offset is the base register, the base
register plus the index register, or the base register plus the index register shifted by 3. The
completer, encoded in theu andm fields of the instruction, also specifies base register
modification. (See Table 5-11 on page 5-22 for the assembly language completer
mnemonics.)

The completer,cc, specifies the cache control hint (see Table 5-9 on page 5-18).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case S: offset← GR[b] + lshift(GR[x],3); /*u=1, m=0*/
break;

case M: offset← GR[b]; /*u=0, m=1*/
GR[b] ← GR[b] + GR[x];
break;

case SM: offset← GR[b]; /*u=1, m=1*/
GR[b] ← GR[b] + lshift(GR[x],3);
break;

default: offset← GR[b] + GR[x]; /*u=0, m=0*/
}
send_to_copr(uid,r);
mem_store(space,offset,0,63,cc,CPR[uid][r]);

Exceptions: Assist exception trap Data memory break trap
Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap
Unaligned data reference trap Assist emulation trap

0B b x s u 0 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5

5-191PA-RISC 1.1 Architecture Instruction Set

COPROCESSOR LOAD WORD SHORT CLDWS

Format: CLDWS,uid,cmplt,cc d(s,b),t

Purpose: To load a word into a coprocessor register.

Description: The aligned word is loaded, from the effective address, into registert of the coprocessor
identified byuid. The completer,cmplt, determines if the offset is the base register,b, or
the base register plus the short displacement,d. The displacement is encoded in theim5
field. The completer, encoded in thea andm fields of the instruction, also specifies base
register modification. (See Table 5-12 on page 5-24 for the assembly language completer
mnemonics.)

The completer,cc, specifies the cache control hint (see Table 5-8 on page 5-17).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
}
send_to_copr(uid,t);
CPR[uid][t] ← mem_load(space,offset,0,31,cc);

Exceptions: Assist exception trap Unaligned data reference trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Data debug trap
Data memory protection ID trap Assist emulation trap

09 b im5 s a 1 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5

5-192 Instruction Set PA-RISC 1.1 Architecture

COPROCESSOR LOAD DOUBLEWORD SHORT CLDDS

Format: CLDDS,uid,cmplt,cc i(s,b),t

Purpose: To load a double word into a coprocessor register.

Description: The aligned double word is loaded, from the effective address, into registert of the
coprocessor identified byuid. The completer,cmplt, determines if the offset is the base
register,b, or the base register plus the short displacement,d. The displacement is encoded
in the im5 field. The completer, encoded in thea and m fields of the instruction, also
specifies base register modification. (See Table 5-12 on page 5-24 for the assembly
language completer mnemonics.)

The completer,cc, specifies the cache control hint (see Table 5-8 on page 5-17).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
}
send_to_copr(uid,t);
CPR[uid][t] ← mem_load(space,offset,0,63,cc);

Exceptions: Assist exception trap Unaligned data reference trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Data debug trap
Data memory protection ID trap Assist emulation trap

0B b im5 s a 1 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5

5-193PA-RISC 1.1 Architecture Instruction Set

COPROCESSOR STORE WORD SHORT CSTWS

Format: CSTWS,uid,cmplt,cc r,d(s,b)

Purpose: To store a word from a coprocessor register.

Description: Registerr, of the coprocessor identified byuid, is stored in the aligned word at the
effective address. The completer,cmplt, determines if the offset is the base register,b, or
the base register plus the short displacement,d. The displacement is encoded in theim5
field. The completer, encoded in thea andm fields of the instruction, also specifies base
register modification. (See Table 5-12 on page 5-24 for the assembly language completer
mnemonics.)

The completer,cc, specifies the cache control hint (see Table 5-9 on page 5-18).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
}
send_to_copr(uid,r);
mem_store(space,offset,0,31,cc,CPR[uid][r]);

Exceptions: Assist exception trap Data memory break trap
Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap
Unaligned data reference trap Assist emulation trap

09 b im5 s a 1 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5

5-194 Instruction Set PA-RISC 1.1 Architecture

COPROCESSOR STORE DOUBLEWORD SHORT CSTDS

Format: CSTDS,uid,cmplt,cc r,d(s,b)

Purpose: To store a double word from a coprocessor register.

Description: Registerr, of the coprocessor identified byuid, is stored in the aligned double word at the
effective address. The completer,cmplt, determines if the offset is the base register,b, or
the base register plus the short displacement,d. The displacement is encoded in theim5
field. The completer, encoded in thea andm fields of the instruction, also specifies base
register modification. (See Table 5-12 on page 5-24 for the assembly language completer
mnemonics.)

The completer,cc, specifies the cache control hint (see Table 5-9 on page 5-18).

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
}
send_to_copr(uid,r);
mem_store(space,offset,0,31,cc,CPR[uid][r]);

Exceptions: Assist exception trap Data memory break trap
Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap
Unaligned data reference trap Assist emulation trap

0B b im5 s a 1 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5

6-1PA-RISC 1.1 Architecture Floating-point Coprocessor

6 Floating-point Coprocessor

Introduction
This chapter describes the architecture for the floating-point coprocessor.

The PA-RISC floating-point coprocessor is an assist processor that is added to a system to improve the
system’s performance on floating-point operations. The floating-point coprocessor contains a register
file which is independent of the processor’s register file. The floating-point coprocessor executes
floating-point instructions to perform arithmetic on this register file and to move data between the
register file and memory. The architecture permits pipelined execution of floating-point instructions,
further increasing the system’s performance.

Floating-point instructions are implementations of the more general coprocessor instructions described
previously in Chapter 5, “Instruction Set”. The floating-point coprocessor responds to coprocessor
instructions with a coprocessor id equal to 0 and 1.

While the floating-point coprocessor is not required to execute instructions sequentially, the coprocessor
and processor must ensure that the instructions appear sequentially executed to the software. At any one
time, the processor and coprocessor may be operating on a number of instructions. For purposes of this
chapter, thecurrent instruction is the instruction pointed to by the IA queues. The termpending
instructions refers to instructions which have entered and left the IA queues, but which the coprocessor
is still executing.

The IEEE Standard

When used in this chapter, the termIEEE standard or simply the standard, refers to theIEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985. PA-RISC fully conforms to
the requirements of the IEEE floating-point standard and permits implementation of all IEEE floating-
point recommendations. Where hardware is unable to fully implement the standard, software completes
the implementation.

Though this chapter uses quotes from the IEEE standard as architecture, knowledge of the standard is
not necessary to understand the architecture. Whenever a quote of the standard contains a reference to
another part of the standard, the quote also contains an equivalent reference to a section of this
document. In these quotes, a reference to the IEEE standard is enclosed in parentheses, and the
equivalent reference to this document is enclosed in square brackets.

The Instruction Set

The floating-point instruction set consists of load and store instructions, and operations. Floating-point
load and store instructions copy both single-word and double-word data between memory and the
floating-point registers. Floating-point operations do arithmetic on the floating-point registers and copy
data between floating-point registers.

The floating-point coprocessor operates on single-word and double-word IEEE floating-point numbers,

6-2 Floating-point Coprocessor PA-RISC 1.1 Architecture

as well as quad-word numbers, which are an implementation of the IEEE double-extended format. Each
type of floating-point number may represent one of the following: a normalized number, a denormalized
number, a zero, an infinity, or a NaN (Not a Number). These floating-point formats consist of a sign bit,
an exponent, and a fraction.

The instruction set also has operations that convert among the three formats of floating-point numbers
and between floating-point numbers and single-word, double-word, and quad-word two’s complement
integers, as well as an instruction which multiplies two 32-bit unsigned integers with a 64-bit unsigned
integer result.

Coprocessor Registers

The coprocessor contains thirty-two 64-bit floating-point registers. These same 32 locations can be used
as sixty-four 32-bit locations or as sixteen 128-bit locations. Instructions executing at any privilege
level may read or write the floating-point registers. Double-word load/store operations access the entire
64-bit register; single-word load/stores access either the left portion of a 64-bit register, bits 0 to 31, or
the right portion of a 64-bit register, bits 32 to 63.

By convention, a 32-bit floating-point register is identified by appending a suffix to the identifier of the
64-bit register within which it is contained. The suffix for the left hand side 32-bit register is ‘L’; the use
of this suffix is optional. The suffix for the right hand side 32-bit register is ‘R’; its use isnot optional.
Thus, for example, the left half of double-word register 13 (bits 0 to 31) would be referred to as either
13 or 13L; the right half of double-word register 13 (bits 32 to 63) would be referred to as 13R. The
specification ‘L’ or ‘R’ for each register is encoded in the instructions that access these registers.

Table 6-1 illustrates the specification of single-word registers and Table 6-2 illustrates the specification
of double-word registers.

6-3PA-RISC 1.1 Architecture Floating-point Coprocessor

Table 6-1. Single-Word Floating-Point Registers

Register Purpose

0 Status Register Undefined

1 Undefined Undefined

2 Undefined Undefined

3 Undefined Undefined

4 Floating-point register 4L Floating-point register 4R

5 Floating-point register 5L Floating-point register 5R

6 Floating-point register 6L Floating-point register 6R

7 Floating-point register 7L Floating-point register 7R

8 Floating-point register 8L Floating-point register 8R

9 Floating-point register 9L Floating-point register 9R

10 Floating-point register 10L Floating-point register 10R

11 Floating-point register 11L Floating-point register 11R

12 Floating-point register 12L Floating-point register 12R

13 Floating-point register 13L Floating-point register 13R

14 Floating-point register 14L Floating-point register 14R

15 Floating-point register 15L Floating-point register 15R

16 Floating-point register 16L Floating-point register 16R

17 Floating-point register 17L Floating-point register 17R

18 Floating-point register 18L Floating-point register 18R

19 Floating-point register 19L Floating-point register 19R

20 Floating-point register 20L Floating-point register 20R

21 Floating-point register 21L Floating-point register 21R

22 Floating-point register 22L Floating-point register 22R

23 Floating-point register 23L Floating-point register 23R

24 Floating-point register 24L Floating-point register 24R

25 Floating-point register 25L Floating-point register 25R

26 Floating-point register 26L Floating-point register 26R

27 Floating-point register 27L Floating-point register 27R

28 Floating-point register 28L Floating-point register 28R

29 Floating-point register 29L Floating-point register 29R

30 Floating-point register 30L Floating-point register 30R

31 Floating-point register 31L Floating-point register 31R

6-4 Floating-point Coprocessor PA-RISC 1.1 Architecture

Single-word register 0 contains the Status Register. Double-word registers 0 - 3 contain the Status
Register and the Exception Registers. Double-word registers 4 - 31 and single-word registers 4R - 31R
and 4L - 31L are data registers.

Registers 0 - 3 are partitioned into eight 32-bit registers. Bits 0 to 31 of double-word register 0 contain
the Status Register, which holds information on rounding, compares, and exceptions. Bits 32 to 63 of

Table 6-2. Double-Word Floating-Point Registers

Register Purpose

0 Status Register Exception Register 1

1 Exception Register 2 Exception Register 3

2 Exception Register 4 Exception Register 5

3 Exception Register 6 Exception Register 7

4 Floating-point register 4

5 Floating-point register 5

6 Floating-point register 6

7 Floating-point register 7

8 Floating-point register 8

9 Floating-point register 9

10 Floating-point register 10

11 Floating-point register 11

12 Floating-point register 12

13 Floating-point register 13

14 Floating-point register 14

15 Floating-point register 15

16 Floating-point register 16

17 Floating-point register 17

18 Floating-point register 18

19 Floating-point register 19

20 Floating-point register 20

21 Floating-point register 21

22 Floating-point register 22

23 Floating-point register 23

24 Floating-point register 24

25 Floating-point register 25

26 Floating-point register 26

27 Floating-point register 27

28 Floating-point register 28

29 Floating-point register 29

30 Floating-point register 30

31 Floating-point register 31

6-5PA-RISC 1.1 Architecture Floating-point Coprocessor

double-word register 0 contain Exception Register 1. Specifying Floating-point Register 0 in a non-
load/store operation encodes a floating-point +0 or a fixed-point 0, whichever is appropriate, when used
as a source and is an undefined operation when used as a destination.

Double-word registers 1 to 3 contain the remaining exception registers. The exception registers form a
queue of instructions which could not normally complete and thus complete with a trapping exception.
The exception registers are accessed using double-word load and store instructions. Single-word loads
and stores of exception registers are undefined operations. Specifying an exception register as a source
or destination of a non-load/store operation is undefined.

A special instruction sequence saves and restores the state of the coprocessor. This sequence ensures
that context switches and other operations which affect the state of the coprocessor do not affect a
process.

Exceptions
Floating-point instructions may cause an interruption in the processor, an exception in the coprocessor,
or both. Interruptions are described in Chapter 4, “Flow Control and Interruptions” and always force the
processor to branch to a location in the Interruption Vector Table. Floating-point coprocessor exceptions
may or may not force the processor to trap (that is, force the processor to take an interruption). In this
chapter, an instruction which causes a floating-point exception is called anexcepting instruction.

Floating-point exceptions are divided into immediate trapping exceptions and delayed trapping
exceptions. Immediate trapping exceptions always force the processor to trap. Delayed trapping
exceptions are further divided into exceptions that always trap, and exceptions that will trap only when
the corresponding trap is enabled. An immediate trapping exception forces the processor to signal an
assist exception trap when the excepting instruction is the current instruction being executed. A delayed
trapping exception forces the processor to signal an assist exception trap when the current instruction is
a floating-point instruction, but the excepting instruction is a pending instruction.

The only immediate trapping exception is the reserved-op exception. This exception cannot be disabled.

The only delayed trapping exception that cannot be disabled is the unimplemented exception. The other
delayed trapping exceptions are the IEEE exceptions. Each has a corresponding bit in the Status
Register which enables and disables the delayed trap. The IEEE exceptions are the following: invalid
operation, division-by-zero, overflow, underflow, and inexact.

Data Registers
Floating-point registers 4 - 31 contain the 64-bit data registers which instructions use as operands.
Software may access these registers with single-word or double-word load and store instructions.

Each of the floating-point data registers may contain values in a number of formats. The fields in these
formats are packed into words, double-words, or quad-words so that load and store operations do not
require field-shuffling or tag bits.

Single-word formats occupy either the left half (bits 0 to 31, suffix ’L’), or the right half (bits 32 to 63,
suffix ’R’) of a register as shown in Figure 6-1.

6-6 Floating-point Coprocessor PA-RISC 1.1 Architecture

Double-word formats fill one register as shown in Figure 6-2.

Quad-word formats (128 bits) are packed into adjacent even-odd pairs of registers. An instruction which
references a register containing a quad-word value must name an even numbered register. An operation
which specifies an odd numbered register for a quad-word format is an undefined operation. Quad
formats are assembled in register pairs as shown in Figure 6-3.

Data Formats
Two data types are defined: floating-point formats and fixed-point formats.

Floating-point Formats
Numbers in the single, double, and quad binary floating-point formats are composed of three fields:

1. A 1-bit sign,s.

2. A biased exponent, .

3. A fraction, .

Note that adding thebias to the unbiased exponentE produces the biased exponente. The numbere is
always non-negative. Also,p is the precision of the number, and is equal to one plus the number of
fraction bits. Figure 6-4 shows the positions of these fields in the registers.

0 31 32 63

single-word number (suffix L) single-word number (suffix R)

32 32

Figure 6-1. Single-word Data Format

double-word format

64

Figure 6-2. Double-word Data Format

even # register most significant bits

odd # register least significant bits

64

Figure 6-3. Quad-word Data Format

e E bias+=

f .b1b2…bp 1–=

6-7PA-RISC 1.1 Architecture Floating-point Coprocessor

Single Binary Floating-point

Double Binary Floating-point

Quad Binary Floating-point

For each floating-point format, a number may either be a normalized number, a denormalized number,
an infinity, a zero, or a NaN (Not a Number). Each representable nonzero numerical value has just one
encoding. Use the format parameters listed in Table 6-3 and the equations which follow to determine
the representation and value,v, of a floating-point number.

Zero: If and , then .

Denormalized: If and , then .

Normalized: If , then .

Infinity: If and , then .

NaN: If and , thenv is a NaN, regardless ofs.

If the number is a NaN, then the leftmost bit in the fraction, , determines whether the NaN is
signaling or quiet. If is 1, the NaN is a signaling NaN. If is 0, it is a quiet NaN.

s e fraction

1 8 23

s e fraction

1 11 52

s e high fraction

1 15 48

low fraction

64

Figure 6-4. Floating-point Formats

Table 6-3. Floating-Point Format Parameters

Parameter
Format

Single Double Quad

p (precision) 24 53 113

+127 +1023 +16383

−126 −1022 −16382

exponentbias +127 +1023 +16383

under/overflowbias-adjustment 192 1536 24576

exponent width in bits 8 11 15

format width in bits 32 64 128

E Emin 1–= f 0= v 1–() s
0=

E Emin 1–= f 0≠ v 1–() s
2

Emin
0.f()=

Emin E Emax≤ ≤ v 1–() s
2

E
1.f()=

E Emax 1+= f 0= v 1–() s∞=

E Emax 1+= f 0≠

b1
b1 b1

Emax
Emin

6-8 Floating-point Coprocessor PA-RISC 1.1 Architecture

Table 6-4 shows the hexadecimal ranges of floating-point numbers.

NaNs are not ordered; neither the fraction nor the sign bits have any significance.

Fixed-Point Formats
Fixed-point values are held in the formats shown in Figure 6-5.

Table 6-4. Hexadecimal Ranges of Floating-Point Representations

Type Sign Single Double Quad

Signaling
NaN

none

7FFFFFFF -
7FC00000

7FFFFFFF FFFFFFFF -
7FF80000 00000000

7FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF -
7FF80000 00000000 00000000 00000000

Quiet
NaN

7FBFFFFF -
7F800001

7FF7FFFF FFFFFFFF -
7FF00000 00000001

7FFF7FFF FFFFFFFF FFFFFFFF FFFFFFFF -
7FFF0000 00000000 00000000 00000001

Infinity

+

7F800000 7FF00000 00000000 7FFF0000 00000000 00000000 00000000

Normalized 7F7FFFFF -
00800000

7FEFFFFF FFFFFFFF -
00100000 00000000

7FFEFFFF FFFFFFFF FFFFFFFF FFFFFFFF -
00010000 00000000 00000000 00000000

Denorm 007FFFFF -
00000001

000FFFFF FFFFFFFF -
00000000 00000001

0000FFFF FFFFFFFF FFFFFFFF FFFFFFFF -
00000000 00000000 00000000 00000001

Zero 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Zero

–

80000000 80000000 00000000 80000000 00000000 00000000 00000000

Denorm 80000001 -
807FFFFF

80000000 00000001 -
800FFFFF FFFFFFFF

80000000 00000000 00000000 00000001 -
8000FFFF FFFFFFFF FFFFFFFF FFFFFFFF

Normalized 80800000 -
FF7FFFFF

80100000 00000000 -
FFEFFFFF FFFFFFFF

80010000 00000000 00000000 00000000 -
FFFEFFFF FFFFFFFF FFFFFFFF FFFFFFFF

Infinity FF800000 FFF00000 00000000 FFFF0000 00000000 00000000 00000000

Quiet
NaN

none

FF800001 -
FFBFFFFF

FFF00000 00000001 -
FFF7FFFF FFFFFFFF

FFFF0000 00000000 00000000 00000001 -
FFFF7FFF FFFFFFFF FFFFFFFF FFFFFFFF

Signaling
NaN

FFC00000 -
FFFFFFFF

FFF80000 00000000 -
FFFFFFFF FFFFFFFF

FFFF8000 00000000 00000000 00000000 -
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

6-9PA-RISC 1.1 Architecture Floating-point Coprocessor

Single Binary Fixed-point

Double Binary Fixed-point

Quad Binary Fixed-point

Status Register
The Status Register controls the arithmetic rounding mode, enables user-level traps, indicates
exceptions that have occurred, indicates the results of comparisons, and contains information to identify
the implementation of the coprocessor. The Status Register is located in bits 0 to 31 of Floating-point
Register 0, and is accessed by specifying Floating-point Register 0 with single-word or double-word
load and store instructions.

Non-load/store instructions do not access the Status Register. Specifying Floating-point Register 0 in a
non-load/store operation, encodes a floating-point +0 or a fixed-point 0, whichever is appropriate, when
used as a source and is an undefined operation when used as a destination.

Figure 6-6 shows the two formats of the Status Register. The first format is valid most of the time. The
second format is only valid immediately after the execution of aFLOATING-POINT IDENTIFY
instruction. This format remains valid until a floating-point instruction is executed which is not a
double-word store of Floating-point Register 0. The first format is valid thereafter. See the description
of theFLOATING-POINT IDENTIFY instruction on page 6-63 for more information.

two’s complement integer

32

unsigned integer

32

two’s complement integer

64

unsigned integer

64

high two’s complement integer

low two’s complement integer

64

Figure 6-5. Fixed-point Formats

6-10 Floating-point Coprocessor PA-RISC 1.1 Architecture

Field Description

RM The rounding mode for all floating-point operations. The values corresponding to each
rounding mode are listed in Table 6-5.

Enables The exception trap enables. An enable bit is associated with each IEEE exception. When an
enable bit equals 1, the corresponding trap is enabled. An instruction completes with a
delayed trap when the instruction causes an exception whose corresponding enable bit
equals 1. If an enable bit equals 0, the corresponding IEEE exception usually sets the
corresponding exception flag to 1 instead of causing a trap. However, see “Unimplemented
Exception” on page 6-30, “Overflow Exception” on page 6-32, and “Underflow Exception”
on page 6-33 for cases when a trap is taken even when the trap is not enabled. Table 6-6 lists
the bits that correspond to each IEEE exception.

Flags The exception flags. A flag bit is associated with each IEEE exception. The coprocessor sets
an exception flag to 1 when the corresponding exception occurs but does not cause a trap. An
implementation may also choose to set a flag bit to 1 when the corresponding exception
occurs and causes a trap. An exception flag is never set to 0 as a side effect of floating-point
operations, but it may be set to either 1 or 0 by a load instruction. Table 6-6 lists the bits that
correspond to each IEEE exception.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

V Z O U I C un CQ RM un T D V Z O U I

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

un model revision un

Figure 6-6. Status Register

Table 6-5. Rounding Modes

Rounding mode Description

0 Round to nearest

1 Round toward zero

2 Round toward +∞
3 Round toward−∞

Flags Enables

6-11PA-RISC 1.1 Architecture Floating-point Coprocessor

C The Compare bit. The C-bit contains the result of the most recent compare instruction. This
bit is set to 1 if the result of the most recent compare is true, and 0 if false. No other non-
load/store instruction affects this bit, but it may be set to 1 or 0 by load instructions.

CQ The Compare Queue. The CQ field contains the results of the second-most recent compare
(in CQ{0}) through the twelfth-most recent compare (in CQ{10}). Every compare
instruction shifts the CQ field right by one bit (discarding the rightmost bit) and the C-bit
from the previous compare is copied into CQ{0}. No other non-load/store instruction affects
this field, but it may be set to any value by load instructions.

T The Delayed Trap bit. The coprocessor sets this bit to 1 when it takes a trap on an
unimplemented exception or an IEEE exception. When software sets this bit to 1, the
coprocessor is armed to trap, and the next floating-point instruction forces the processor to
take an assist exception trap. No non-load/store instructions affect this bit, but load
instructions may set this bit to 1 or 0, and double-word stores of the Status Register set this
bit to 0 after completion of the store. Also, save and restore software uses this bit to record
the state of traps. See “Saving and Restoring State” on page 6-35 for information on state
swapping and “Interruptions and Exceptions” on page 6-26 for a detailed discussion of the
T-bit’s operation.

D The Denormalized As Zero bit. The D-bit provides the arithmetic floating-point instructions
a “fast mode” handling of denormalized operands and tiny results. When the D-bit is 1, any
of these instructions may optionally produce a correctly signed zero when the result, before

or after rounding, lies between , and may optionally treat any denormalized operand
as an equivalently signed zero. When the D-bit is 1, and an arithmetic instruction treats an
operand as a zero, or produces a zero result as described above, the values of the Underflow
and Inexact flags become undefined. When the D-bit is 0, all denormalized operands and
tiny results must be handled as described in the remainder of this chapter.

Implementation of the D-bit is optional; if not implemented, it is a nonexistent bit.

model The implementation-dependent model number. Model number zero (0) is reserved for the
software emulation routines.

revision The implementation-dependent revision number.

un Undefined bits.

Table 6-6. IEEE Exceptions

Bit Name Description

V Invalid operation

Z Division-by-zero

O Overflow

U Underflow

I Inexact result

2
Emin±

6-12 Floating-point Coprocessor PA-RISC 1.1 Architecture

Instruction Set
The floating-point instruction set consists of load and store instructions, and floating-point operations.
All these instructions are part of the PA-RISC standard instruction set. When the instruction specifies a
register for double precision and 64-bit fixed-point values, a 5-bit encoding maps directly into the
associated floating-point register. When the instruction specifies a register for single-precision or 32-bit
fixed-point values, a 6-bit encoding maps into the appropriate ‘L’ or ‘R’ single-word floating-point
register.

Instruction Validity
Table 6-7 shows which floating-point instructions are defined, undefined, or will take an Assist
Emulation Trap for various values of the uid field and the Coprocessor Configuration Register.

Load and Store Instructions
The floating-point load and store instructions are implementations of the PA-RISC coprocessor load and
store instructions described in “Coprocessor Instructions” on page 5-178. Table 6-8 shows the floating-
point load and store instructions.

The load and store instructions transfer data between the floating-point registers and memory. These
instructions transfer aligned words or aligned double-words, and use either a short displacement value
or the value of an index register. They also have completers that specify base register modification and
cache control hints.

Table 6-7. Floating-Point Instruction Validity

Opcode
CCR{0..1}

0 1, 2 3

0B/0C trap undefined uid=0: defined
uid=1: undefined

06/09/0E/26 trap undefined defined

Table 6-8. Floating-Point Load and Store Instructions

Mnemonic Description

FLDWX Load word using index register

FLDDX Load doubleword using index register

FSTWX Store word using index register

FSTDX Store doubleword using index register

FLDWS Load word using short displacement

FLDDS Load doubleword using short displacement

FSTWS Store word using short displacement

FSTDS Store doubleword using short displacement

6-13PA-RISC 1.1 Architecture Floating-point Coprocessor

Single-word loads and stores access either bits 0 to 31 (suffix ‘L’) or bits 32 to 63 (suffix ‘R’) of a
register. The ability to specify more than 32 locations is accomplished by the use of bit 25 of the
instruction. A 0 in this bit specifies an access of bits 0 to 31 (left half of the register); a 1 specifies an
access of bits 32 to 63 (the right half of the register). However, single-word loads and stores of floating-
point registers 0R (the right half of floating-point register 0), 1, 2, and 3 are undefined operations.

Double-word loads and stores can access any of the floating-point registers and may be used to load or
store a pair of single-word values in the left and right halves of a register.

A single-word or double-word load or store of Floating-point Register 0 forces the coprocessor to
complete all pending floating-point instructions and signal all floating-point exceptions for those
instructions. Additionally, a double-word store of Floating-point Register 0 cancels traps due to all
previous instructions and, after completion of the store, sets the Status Register T-bit to 0.

Single-word stores of register 0 do not cancel traps. Also, single-word loads of register 0 that set the
Status Register T-bit to 1 are undefined operations.

A double-word load or store of registers 1, 2 or 3 forces the floating-point coprocessor to complete all
previous instructions that may update the specified exception register.

Load and store instructions may cause a number of memory reference traps. They are not arithmetic
instructions and do not cause IEEE exceptions.

Load and store instructions that access the I/O address space are undefined operations.

Floating-point Operations
There are two categories of floating-point operation instructions. Each instruction in the first category
performs a single operation. Instructions in the second category perform multiple operations.

Single-operation Instructions

This section describes the single-operation floating-point instructions. Single-operation floating-point
instructions are encoded using two major opcodes - 0C and 0E. Most of the functions in the 0C opcode
are also duplicated in the 0E opcode with the following exceptions:

• Instructions using the 0E opcode can address both the left and right halves of the floating-point
register set whereas the instructions using the 0C opcode can only address the left halves of the
floating-point register set.

• TheCOPR,0,0 andFTEST instructions are available only in the 0C opcode.

• The format completer for the quad-word data type cannot be specified for the 0E opcode.

• TheXMPYU instruction is available only in the 0E opcode.

There are four classes of operations:

• Class 0 contains single source, single destination operations and includes the non-arithmetic
operations.

• Class 1 consists of the conversion operations.

6-14 Floating-point Coprocessor PA-RISC 1.1 Architecture

• Class 2 operations provide mechanisms to compare two operands.

• Class 3 consists of the arithmetic operations with two sources and one destination.

Figure 6-7 shows the format of these operations.

Floating-point operation class zero: 1 source, 1 destination*

Floating-point operation class one: 1 source, 1 destination

Floating-point operation class two: 2 sources, no destination*

Floating-point operation class three: 2 sources, 1 destination†

* The FLOATING-POINT IDENTIFY and FLOATING-POINT TEST instructions have no source or
destination operands, and no format specifiers, so the register and format fields equal 0.

† The FIXED-POINT MULTIPLY UNSIGNED instruction has no format specifier, so the format field
equals 0.

Figure 6-7. Single-operation Instruction Formats

0C r 0 sub fmt 0 0 0 t

6 5 5 3 2 2 3 1 5

0E r 0 sub fmt 0 0 r t 0 t

6 5 5 3 2 2 1 1 1 1 5

0C r 0 sub df sf 1 0 0 t

6 5 4 2 2 2 2 3 1 5

0E r 0 sub df sf 1 0 r t 0 t

6 5 4 2 2 2 2 1 1 1 1 5

0C r1 r2 sub fmt 2 0 n c

6 5 5 3 2 2 3 1 5

0E r1 r2 sub r2 f 2 0 r1 0 0 c

6 5 5 3 1 1 2 1 1 1 1 5

0C r1 r2 sub fmt 3 0 0 t

6 5 5 3 2 2 3 1 5

0E r1 r2 sub r2 f 3 x r1 t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

6-15PA-RISC 1.1 Architecture Floating-point Coprocessor

Whenever single-precision operands are specified for the 0E opcode, thet at bit position 25 of class
zero, one, and three instructions represents a sixth bit of thet field, and ther or r1 at bit position 24
represents a sixth bit of ther or r1 field. Similarly, ther2 at bit position 19 represents a sixth bit of ther2
field. These bits specify the left side single-word register, bits 0 to 31, when 0, and the right side single-
word register, bits 32 to 63, when 1. Thex at bit position 23 of a class three instruction indicates, when
1, that the sub-opcode is to be interpreted as a fixed-point operation.

Table 6-9 shows the floating-point operations, their mnemonics, classes, and sub-opcodes.

While the coprocessor may simultaneously operate on more than one instruction, the coprocessor is
restricted by the number of exception registers to executing no more than seven floating-point
operations at one time.

Except for theFLOATING-POINT COPY andFLOATING-POINT ABSOLUTE VALUE instructions, all the
operations which have at least one floating-point operand are considered arithmetic instructions and will
generate an invalid exception when operating on a signaling NaN.

Table 6-9. Floating-Point Operations

Opcode Sub-op Class Mnemonic Operation

0C 0

0

COPR,0,0 Identify coprocessor
0E 0 undefined

0C/0E 1 undefined
0C/0E 2 FCPY Copy
0C/0E 3 FABS Absolute value
0C/0E 4 FSQRT Square root
0C/0E 5 FRND Round to integer
0C/0E 6-7 reserved
0C/0E 0

1

FCNVFF Convert from floating-point to floating-point
0C/0E 1 FCNVXF Convert from fixed-point to floating-point
0C/0E 2 FCNVFX Convert from floating-point to fixed-point
0C/0E 3 FCNVFXT Convert from floating-point to fixed-point with

explicit round to zero rounding
0C/0E 0

2

FCMP Arithmetic compare
0C 1 FTEST Test condition bit
0E 1 undefined

0C/0E 2-7 undefined
0C/0E 0

3

FADD Add
0C/0E 1 FSUB Subtract
0C/0E 2 FMPY Multiply (x = 0)
0C/0E 3 FDIV Divide

0C 4 reserved
0E 4 undefined

0C/0E 5-6 reserved
0C/0E 7 undefined

6-16 Floating-point Coprocessor PA-RISC 1.1 Architecture

TheFLOATING-POINT IDENTIFY andFLOATING-POINT TEST instructions do not cause exceptions.

Table 6-10 shows the only fixed-point operation, its mnemonic, class and sub-opcode.

Operand Format Completers

For class 0, 2 and 3 operations, except forFIXED-POINT MULTIPLY UNSIGNED, the source and
destination widths are the same and the instructions operate only on floating-point numbers. Except for
the FLOATING-POINT IDENTIFY, FLOATING-POINT TEST, andFIXED-POINT MULTIPLY UNSIGNED
operations, each has an accompanying completer which specifies the data width the operation is using.

The operations in class 1 (the conversion instructions) have two completers which specify the source
and destination widths independently. However, the floating-point to floating-point conversions single-
to-single and double-to-double in the 0C and 0E opcodes are undefined operations; In addition, in the
0C opcode, quad-to-quad floating-point conversion is an undefined operation (quad precision cannot be
specified in the 0E opcode).

Table 6-11 indicates the instruction completers and their corresponding format codes for the 0C opcode.

TheCode field above indicates the two-bit encoding corresponding to each mnemonic. The absence of a
completer specifies a single-word number. An operation with aCode value of 10 is an undefined
operation.

Table 6-12 indicates the instruction completers and their corresponding format codes for the 0E opcode.

TheCode field above indicates the two-bit encoding corresponding to each mnemonic. The absence of a

Table 6-10. Fixed-Point Operations

Opcode Sub-op x-bit Class Mnemonic Operation

0E 2 1 3 XMPYU Fixed-point Multiply Unsigned

Table 6-11. Floating-Point Operand Format Completers (0C opcode)

Opcode Mnemonic Code Description

0C <none> 00 single-word number (32 bits)

0C SGL 00 single-word number (32 bits)

0C DBL 01 double-word number (64 bits)

0C QUAD 11 quad-word number (128 bits)

0C 10 undefined

Table 6-12. Floating-Point Operand Format Completers (0E opcode)

Opcode Mnemonic Code Description

0E <none> r0 single-word number (32 bits)

0E SGL r0 single-word number (32 bits)

0E DBL 01 double-word number (64 bits)

0E 11 undefined

6-17PA-RISC 1.1 Architecture Floating-point Coprocessor

completer specifies a single-word number. For the single-word format, the left bit of theCode value is
used as the sixth, low-order bit of ther2 specifier for operations in classes 2 and 3, and is zero in classes
0 and 1. An operation with aCode value of 11 is a undefined operation.

Comparison Conditions

TheFLOATING-POINT COMPARE instruction has an additional completer which indicates the condition
being tested. These conditions are listed in Table 6-13 which is derived from the IEEE standard.

Comparisons are exact and neither overflow or underflow. Between any two operands, one of four
mutually exclusive relations is possible:less than, equal, greater than, andunordered. The last case
arises when at least one operand is a NaN. Every NaN compares unordered with every operand,
including itself. Comparisons ignore the sign of zero, so +0 is equal to -0.

In the table above,Condition is the condition mnemonic used in the assembly language andCode is the
machine language encoding. The floating-point coprocessor sets the Status Register C-bit to the result
indicated in the appropriate relations column, 1 for a true result, 0 for false. The asterisk (*) indicates
that the instruction causes an invalid operation exception if its operands are unordered. However, if at
least one operand is a signaling NaN, the compare instruction always causes an invalid operation
exception.

Test Conditions

The FLOATING-POINT TEST instruction has an additional completer which indicates the condition
being tested. These conditions are listed in Table 6-14.

Table 6-13. Floating-Point Compare Conditions

Condition
Relations

Code Condition
Relations

Code
> < = unordered > < = unordered

false? F F F F 0 !?<= T F F F 16

false F F F F * 1 > T F F F * 17

? F F F T 2 ?> T F F T 18

!<=> F F F T * 3 !<= T F F T * 19

= F F T F 4 !?< T F T F 20

=T F F T F * 5 >= T F T F * 21

?= F F T T 6 ?>= T F T T 22

!<> F F T T * 7 !< T F T T * 23

!?>= F T F F 8 !?= T T F F 24

< F T F F * 9 <> T T F F * 25

?< F T F T 10 != T T F T 26

!>= F T F T * 11 !=T T T F T * 27

!?> F T T F 12 !? T T T F 28

<= F T T F * 13 <=> T T T F * 29

?<= F T T T 14 true? T T T T 30

!> F T T T * 15 true T T T T * 31

6-18 Floating-point Coprocessor PA-RISC 1.1 Architecture

Multiple-Operation Instructions

The floating-point instruction set includes instructions which perform more than one floating-point
operation. These instructions are encoded using the 06 and 26 opcodes. Multiple-operation instructions
are five-operand instructions which combine a three-operand multiply with a two-operand operation
(ADD or SUB) of the form: dest← dest <op> source.

The format of the multiple-operation instructions is as follows:

The rm1, rm2, and tm fields specify the two source operands and the destination operand for the
multiply operation. These fields occupy the same positions within the instruction word as the operands
of a class 3 single-operation floating-point instruction. Thera and ta fields specify source and
destination operands for the alu operation.

The behavior of the multiple-operation instructions is undefined ifra specifies the same register astm,
or if ta specifies the same register as any ofrm1, rm2, or tm. The behavior of these instructions is also
undefined ifra specifies double-precision register 0 or single-precision register 16L.

Table 6-14. Floating-Point Test Conditions

Completer Description Condition Code

<none> Simple Test C == 1 0

ACC Graphics (12-bit) Trivial Accept C == 0 && CQ{0..10} == 0 1

ACC8 Graphics 8-bit Trivial Accept C == 0 && CQ{0..6} == 0 5

ACC6 Graphics 6-bit Trivial Accept C == 0 && CQ{0..4} == 0 9

ACC4 Graphics 4-bit Trivial Accept C == 0 && CQ{0..2} == 0 13

ACC2 Graphics 2-bit Trivial Accept C == 0 && CQ{0} == 0 17

REJ Graphics (12-bit) Trivial Reject C == 1 && CQ{5} == 1 ||
CQ{0} == 1 && CQ{6} == 1 ||
CQ{1} == 1 && CQ{7} == 1 ||
CQ{2} == 1 && CQ{8} == 1 ||
CQ{3} == 1 && CQ{9} == 1 ||
CQ{4} == 1 && CQ{10} == 1

2

REJ8 Graphics 8-bit Trivial Reject C == 1 && CQ{3} == 1 ||
CQ{0} == 1 && CQ{4} == 1 ||
CQ{1} == 1 && CQ{5} == 1 ||
CQ{2} == 1 && CQ{6} == 1

6

op rm1 rm2 ta ra f tm

6 5 5 5 5 1 5

Figure 6-8. Multiple-Operation Instruction Format

6-19PA-RISC 1.1 Architecture Floating-point Coprocessor

Table 6-15 lists the different multiple-operation instructions, their mnemonics and opcodes.

The f field in the floating-point multiple-operation instructions is an operand format completer, similar
to the fmt field of the single-operation instructions. Only single-word and double-word formats are
supported. The interpretation of the format completer is given in Table 6-16.

NOTE
Note that the instruction format completers for the multiple-operation instructions do not
follow the same pattern as those for the single-operation instructions.

Because the floating-point multiple-operation instructions have only five-bit operand specifiers, these
instructions operate on only 32 locations, even when the single-word data format is specified. When
double-word data is specified, the interpretation of these operand specifiers is the same as for the single-
operation instructions. For single-word data, however, the operand specifiers are restricted to the top 16
registers (32 locations). The details of the interpretation of the operand specifier field in the instruction
are shown in Table 6-17.

Table 6-15. Multiple-Operation Instructions

Opcode Mnemonic Operation

06 FMPYADD Multiply/Add

26 FMPYSUB Multiply/Subtract

Table 6-16. Multiple-Operation Instruction Format Completers

Mnemonic Code Description

<none> 1 single-word number (32 bits)

SGL 1 single-word number (32 bits)

DBL 0 double-word number (64 bits)

6-20 Floating-point Coprocessor PA-RISC 1.1 Architecture

Table 6-17. Single-Precision Operand Specifier Use in Multi-Operation Instructions

Register specifier
field in instruction

Register selected

0 16L

16 16R

1 17L

17 17R

2 18L

18 18R

3 19L

19 19R

4 20L

20 20R

5 21L

21 21R

6 22L

22 22R

7 23L

23 23R

8 24L

24 24R

9 25L

25 25R

10 26L

26 26R

11 27L

27 27R

12 28L

28 28R

13 29L

29 29R

14 30L

30 30R

15 31L

31 31R

6-21PA-RISC 1.1 Architecture Floating-point Coprocessor

NOTE

The L/R Select bit in the single-word format specifies the suffix ‘L’ single-word register, bits 0
to 31, when 0, and the suffix ‘R’ single-word register, bits 32 to 63, when 1.

Rounding

The specification for the rounding operation from the IEEE standard is:

Rounding takes a number regarded as infinitely precise and, if necessary, modifies it to fit in
the destination’s format while signaling the inexact exception (7.5) [see “Inexact Exception”
on page 6-32]. Except for binary-decimal conversion (whose weaker conditions are specified
in 5.6 [not included]), every operation specified in Section 5 [see “Floating-point Operations”
on page 6-13] shall be performed as if it first produced an intermediate result correct to infinite
precision and with unbounded range, and then rounded that result according to one of the
modes in this section.

The rounding modes affect all arithmetic operations except comparison. The rounding modes
may affect the signs of zero sums (6.3) [see “Sign Bit” on page 6-23], and do affect the
thresholds beyond which overflow (7.3) [see “Overflow Exception” on page 6-32] and
underflow (7.4) [see “Underflow Exception” on page 6-33] may be signaled.

[§]4.1 Round to nearest. An implementation of this standard shall provide round to nearest as
the default rounding mode. In this mode the representable value nearest to the infinitely precise
result shall be delivered; if the two nearest representable values are equally near, the one with
its least-significant bit zero shall be delivered. However, an infinitely precise result with

magnitude at least shall round to∞ with no change in sign; here and

p are determined by the destination format (§3) [see “Floating-point Formats” on page 6-6]
unless overridden by a rounding precision mode (4.3) [not possible in PA-RISC].

[§]4.2 Directed Roundings. An implementation shall also provide three user-selectable
directed rounding modes: round toward +∞, round toward−∞, and round toward 0. When
rounding toward +∞, the result shall be the format’s value (possibly +∞) closest to and no less
than the infinitely precise result. When rounding toward−∞, the result shall be the format’s

Double-word Format

n n n n n

Operand Specifier

n n n n n

Register File Address

Single-word Format

n n n n n

Operand Specifier

1 n n n n

Register File Address

L/R Select

(assumed) 1

2
Emax

2 2
p–

–

Emax

6-22 Floating-point Coprocessor PA-RISC 1.1 Architecture

value (possibly−∞) closest to and no greater than the infinitely precise result. When rounding
toward 0, the result shall be the format’s value closest to and no greater in magnitude than the
infinitely precise result.

TheRM field in the Status Register determines the rounding mode.

While the above IEEE quote describes the process of rounding, an operation does not always return a
rounded result. The result of an operation may be affected if the operation causes an exception.

Infinity Arithmetic

From the standard:

[§]6.1 Infinity Arithmetic. Infinity arithmetic shall be construed as the limiting case of real
arithmetic with operands of arbitrarily large magnitude, when such a limit exists. Infinities
shall be interpreted in the affine sense, that is:

Arithmetic with an infinite operand is always exact and can only signal invalid and unimplemented
exceptions. An infinite result is created from finite operands only by a non-trapping overflow exception
or a non-trapping division-by-zero exception.

Operations With NaNs

From the standard:

[§]6.2 Operations with NaNs. Two different kinds of NaN, signaling and quiet, shall be
supported in all operations. Signaling NaNs afford values for uninitialized variables and
arithmetic-like enhancements (such as complex-affine infinities or extremely wide range) that
are not the subject of the standard. Quiet NaNs should, by means left to the implementor’s
discretion, afford retrospective diagnostic information inherited from invalid or unavailable
data and results. Propagation of the diagnostic information requires that information contained
in the NaNs be preserved through arithmetic operations and floating-point format conversions.

An operation causes an invalid exception when at least one operand is a signaling NaN and the
operation is any arithmetic operation except a convert to an integer format. Also, certain compare
operations cause an invalid exception if an operand is a quiet NaN. See “Comparison Conditions” on
page 6-17 for more detail.

Converting either a quiet or a signaling NaN to an integer format causes an unimplemented exception.

A NaN is created in two ways. Any operation that causes a non-trapping invalid exception returns a
quiet NaN. Otherwise, an operation returns a quiet NaN when at least one of its operands is a quiet
NaN, and the operation is any arithmetic operation except a conversion to an integer format.

An operation converts a signaling NaN to a quiet NaN when the operation causes a non-trapping invalid
exception and one of its operands is a signaling NaN. If both operands are signaling NaNs, the operation
converts the contents of the first operand (ther1 register).

An operation which converts a signaling NaN to a quiet NaN sets the first bit of the fraction () to 0. If
the remaining bits in the fraction are all zeros (), the operation must set the second bit in

∞– every finite number() +∞< <

b1
b2…bp 1– 0=

6-23PA-RISC 1.1 Architecture Floating-point Coprocessor

the fraction to 1. Otherwise, if the remainder of the fraction is not 0, an implementation has the option
of setting the second bit in the fraction to 1, or leaving it unchanged. Only the first and second bits in the
fraction may change when creating a quiet NaN from a signaling NaN. The remaining fraction bits are
copied from the signaling NaN.

When one of its operands is a quiet NaN, but neither operand is a signaling NaN, an operation copies
the quiet NaN to the destination. If both operands are quiet NaNs, ther1 register is copied to the
destination.

The creation of a quiet NaN when neither input is a NaN sets the second fraction bit () to 1 and sets
each of the remaining fraction bits to 0.

A conversion operation which does not trap, and which converts a NaN to a smaller floating-point
format, preserves the most-significant portion of the fraction while returning a quiet NaN. But if the
most-significant portion of the fraction is all zeros, the second bit of the fraction must be set to 1 to
prevent the number from becoming an infinity. A conversion which does not trap, and which converts a
NaN to a larger floating-point format, augments the fraction with zeros to the right of the smaller
fraction while returning a quiet NaN.

Load and store instructions, as well as theFLOATING-POINT COPY andFLOATING-POINT ABSOLUTE
VALUE instructions, are not arithmetic and do not signal an invalid operation exception.

Sign Bit

From the standard:

[§]6.3 The sign bit. This standard does not interpret the sign of a NaN. Otherwise the sign of
a product or quotient is the exclusive OR of the operands’ signs; and the sign of the sum, or of
a difference regarded as a sum , differs from at most one of the addends’ signs.
These rules shall apply even when operands or results are zero or infinite.

When the sum of two operands with opposite signs (or the difference of two operands with like
signs) is exactly zero, the sign of that sum (or difference) shall be "+" in all rounding modes
except round toward−∞, in which mode the sign shall be "−". However,
retains the same sign asx even whenx is zero.

Except that shall be "−0", every valid square root shall have positive sign.

Exception Registers
The exception registers contain information on floating-point operations that have completed execution
and have caused a delayed trapping exception. All the registers must be present and storage provided for
loads and stores even if an implementation never uses a particular register to record exception state.

The exception registers are accessed with double-word load and store instructions. Single-word loads
and stores of registers 0R, 1L, 1R, 2L, 2R, 3L, and 3R are undefined. Specifying an exception register
as a source or destination of a non-load/store operation is undefined.

For single-operation instructions, an exception register contains a modified copy of an excepting
instruction that traps. The coprocessor replaces the field that normally contains the instruction opcode

b2

x y– x y–()+

x x+ x x–()–=

0–

6-24 Floating-point Coprocessor PA-RISC 1.1 Architecture

with a code that indicates the type of exception detected. The remaining bits are duplicates from the
original instruction.

The multiple-operation instructions (FLOATING-POINT MULTIPLY/ADD and FLOATING-POINT
MULTIPLY/SUBTRACT) cannot directly cause trapping IEEE exceptions, because the exception state
cannot be represented in the exception registers. When one of these instructions would cause a trapping
IEEE exception, the implementation does one of the following:

• Cause, instead, an unimplemented exception. The multiple-operation instruction is placed in an
exception register along with the appropriate unimplemented exception code. Or,

• Treat the multiple-operation instruction as two separate single-operation instructions. In this case,
an instruction pattern is fabricated for the portion of the instruction that caused the trapping
exception (e.g., the instruction pattern for aFLOATING-POINT ADD if the add operation caused the
exception), and this pattern, along with the appropriate exception code, is placed in an exception
register. The other operation, if it does not also cause a trapping exception, completes normally. If
both operations cause trapping IEEE exceptions, then two instruction patterns are fabricated and
placed in two exception registers. These two instructions have the same ordering constraints with
respect to other instructions as for other single-operation instructions as described in the next
section.

Figure 6-9 shows the format of the exception registers.

Field Description

exception The exception code corresponding to the exception detected as shown in Table 6-18.
Exception codes not listed are reserved.

exception ei

6 26

Figure 6-9. Exception Register Format

6-25PA-RISC 1.1 Architecture Floating-point Coprocessor

The two bits labeled ‘pp’ in the exception code contain information regarding the
parameters for the underflow exceptions. See “Underflow Exception” on page 6-33 for a
detailed description of this field.

ei All bits other than the major opcode, copied from the excepting instruction. This field is
undefined if the exception code is set to ‘no exception’.

Exception Register Operation
When all pending instructions are forced to complete, all operations which complete with a trapping
exception are placed in the exception registers together with their corresponding exception codes. In
order to complete an operation, the coprocessor may place the operation in an exception register and
mark it with an unimplemented exception.

The coprocessor places the excepting instruction that first entered the IA queues in any of Exception
Registers 1 through 7. Other instructions which complete with a trap are placed in any of the other
available Exception Registers (those which are not already occupied by excepting instructions).
Excepting instructions may be placed in the Exception Registers 1 through 7 in any order as long as the
data dependencies are preserved (the order need not be the order in which they were fetched). If an
instruction completes without a trapping exception, no record of that instruction appears in the
exception registers. The exception queue need not be packed.

Once software has processed the exception registers, it must clear the exception registers by setting
them all to zeros before non-load/store instructions can be executed.

If the T-bit equals 0 and any exception register has an exception field not equal to "no exception",
execution of any non-load/store floating-point instruction is an undefined operation.

Table 6-18. Exception Codes

Exception code Opcode Description

000000 0C/0E No exception

100000 0C/0E Invalid operation

010000 0C/0E Division-by-zero

001000 0C/0E Overflow

pp0100 0C/0E Underflow

000010 0C/0E Inexact

000001 0C/0E Unimplemented

001010 0C/0E Inexact & Overflow

pp0110 0C/0E Inexact & Underflow

001001 0C Unimplemented

001011 0E Unimplemented

000011 06 Unimplemented

100011 26 Unimplemented

6-26 Floating-point Coprocessor PA-RISC 1.1 Architecture

Interruptions and Exceptions
Floating-point instructions may cause interruptions in the processor, exceptions in the coprocessor, or
both. Coprocessor exceptions are divided into immediate trapping exceptions and delayed trapping
exceptions. The only immediate trapping exception is the reserved-op exception. The delayed trapping
exceptions consist of the unimplemented exception and the IEEE exceptions.

The IEEE exceptions are the following:

• invalid operation

• division-by-zero

• inexact

• overflow

• underflow

While the unimplemented and reserved-op exceptions must always trap, the IEEE exception traps may
be disabled.

Each IEEE exception has a corresponding enable bit in the Status Register. When an enable bit is 1, the
corresponding trap is enabled, and if the corresponding exception occurs, a delayed trap is taken.
However, on the overflow and underflow exceptions, an implementation may choose to ignore the
enable bit and always trap on the exception. In such implementations, the corresponding trap is always
enabled.

Immediate Trapping
Floating-point instructions may cause three types of immediate trapping interruptions: memory
reference interruptions, the assist emulation trap, and the reserved-op exception. Immediate trapping
exceptions and interruptions always cause a trap or fault when the front of the IA queues points to the
interrupting instruction. An interrupting instruction must not alter its operands.

As described in Chapter 4, “Flow Control and Interruptions”, when the processor detects a memory
reference problem, a memory reference fault or trap occurs. Only load and store instructions cause
memory reference interruptions. The memory reference interruptions associated with floating-point
instructions are the following:

• Data TLB miss fault/Data page fault

• Data memory access rights trap

• Data memory protection ID trap

• Unaligned data reference trap

• Data memory break trap

• TLB dirty bit trap

• Page reference trap

• Data debug trap

6-27PA-RISC 1.1 Architecture Floating-point Coprocessor

As described in Chapter 5, “Instruction Set”, the Coprocessor Configuration Register (CCR) in the
processor controls the assist emulation trap. Software may set this register to force an assist emulation
trap on every occurrence of a floating-point instruction. See “Coprocessor Instructions” on page 5-178
for more information.

Finally, attempting an instruction with a reserved sub-opcode may cause an immediate assist exception
trap. See “Reserved-op Exception” on page 6-30 for details.

Delayed Trapping
Delayed traps report an exception when the excepting instruction is a pending instruction but is not in
the IA queues. The following descriptions indicate when the processor and coprocessor may take a
delayed trap and must take a delayed trap. Normally, a delayed trap forces the processor to take an assist
exception trap. However, if the current instruction is a double-word store of Floating-point Register 0,
all the floating-point registers are set normally as if a trap occurred, but the processor does not take the
assist exception trap.

The coprocessor may signal a delayed trap when at least one of the following occurs:

• A pending instruction caused an unimplemented exception and the current instruction is a floating-
point instruction, or

• A pending instruction caused an IEEE exception, the corresponding exception trap is enabled, and
the current instruction is a floating-point instruction.

A delayed trap must occur when at least one of the following conditions exist:

• The T-bit is 1 and the current instruction is any floating-point instruction.

• The exception queue is full.

• A pending instruction causes a trapping exception and the current instruction is a load or store of
Floating-point Register 0.

• The current instruction is a load or store of an exception register that will be set by a pending
instruction.

• The current instruction is a load or store of the destination register of a pending, trapping
instruction or an operation which depends on a pending, trapping instruction.

• The current instruction is a load of the source register of a pending, trapping instruction or an
operation which depends on a pending, trapping instruction.

• The current instruction is aFLOATING-POINT TEST instruction and the previousFLOATING-POINT
COMPARE either is pending and caused a trapping exception or depends on a pending, trapping
instruction.

An instruction depends on a previous instruction whenever it must wait for the previous instruction to
complete in order to ensure that the instructions appear sequentially executed to software. Instruction
dependency is transitive. For example, if the exception queue is full, and every instruction in the queue
depends on the instruction immediately preceding it, then each instruction in the queue depends on all
the instructions preceding it.

6-28 Floating-point Coprocessor PA-RISC 1.1 Architecture

When a delayed trap occurs, the following happens:

1. The coprocessor completes all pending floating-point instructions.

2. The coprocessor sets the exception registers as described in “Exception Register Operation” on
page 6-25.

3. The coprocessor sets the Status Register T-bit to 1.

4. For each pending instruction that completes with a trapping IEEE exception, the corresponding
exception flag may either be set to 1, or left unchanged, but cannot be set to 0.

5. If the current instruction is any floating-point instruction except a double-word store of Floating-
point Register 0, the processor takes an assist exception trap. Otherwise, if the current instruction is
a double-word store of Floating-point Register 0, the store completes, no trap occurs, the T-bit is set
to 0 and execution proceeds normally.

Any pending instruction which depends on a pending, trapping instruction must complete with an
unimplemented exception.

Table 6-19 specifies the status of the source and destination registers when an instruction causes a
delayed trap. When the table indicates the original operand values are preserved, and if the destination
register is not one of the source registers, the contents of the destination register are undefined.

As indicated in the table, trapping overflow exceptions and underflow exceptions return a rounded bias-
adjusted result. A bias-adjusted result is obtained by dividing (in the case of overflow) or multiplying
(in the case of underflow) the infinitely precise result by and then rounding. The bias adjustment,a,
is 192 for single-word numbers, 1536 for double-word numbers, and 24576 for quad-word numbers.

Non-trapping Exceptions
If an IEEE exception occurs, but the corresponding trap is disabled, then the coprocessor sets the
corresponding flag bit in the Status Register to 1. Table 6-20 lists the results returned by an operation
which completes with a non-trapping exception.

Table 6-19. Delayed Trap Results

Exception type Trapped result

Invalid operation original operand values preserved

Division-by-zero original operand values preserved

Overflow rounded bias-adjusted result in destination

Underflow rounded bias-adjusted result in destination

Inexact rounded result in destination

Unimplemented original operand values preserved

2
a

6-29PA-RISC 1.1 Architecture Floating-point Coprocessor

Multiple Exceptions
If the current instruction causes a reserved-op exception, and at the same time the coprocessor signals a
delayed trap caused by a previous exception, the delayed trap occurs. Software then retries the
instruction to handle the reserved-op exception.

The only other exceptions which may both occur on the same instruction are one of the following:

• inexact and overflow exceptions

• inexact and underflow exceptions

When one of these two cases occur, the action taken is as follows:

1. If both traps are enabled when the coprocessor takes a delayed trap, the implementation may set
either or both corresponding status flags to 1, or leave them unchanged. The coprocessor sets the
exception field in the corresponding exception register to the value that indicates both exceptions
occurred.

2. If only one trap is enabled when the coprocessor takes a delayed trap, the coprocessor sets the
corresponding exception field to the value that indicates the enabled trap. The implementation may
either set the flag bit that corresponds to the enabled trap to 1, or leave it unchanged. The
coprocessor sets the flag bit that corresponds to the disabled trap to 1.

3. If neither trap is enabled, the coprocessor sets both corresponding status flags to 1.

If the overflow or underflow exception caused a trap on the instruction, a rounded-bias adjusted result is
returned. Otherwise, a rounded result is returned.

Trap Handlers

PROGRAMMING NOTE
The IEEE standard strongly recommends that users be allowed to specify a trap handler for
any of the five standard exceptions. The mechanisms to accomplish this are programming
language and operating system dependent.

Since the coprocessor continues to trap if the Status Register T-bit is 1, the trap handler must
first set the bit to 0 by executing a double-word store of register 0. The trap handler may then
emulate any of the instructions in the exception queue beginning with the instruction in
Exception Register 1 and proceeding sequentially to the end.

Table 6-20. Non-trapped Exception Results

Exception type Non-trapped result

Invalid operation quiet NaN to destination

Division-by-zero properly signed∞ to destination

Overflow rounded result to destination

Underflow rounded result to destination

Inexact rounded result to destination

6-30 Floating-point Coprocessor PA-RISC 1.1 Architecture

The trap handler must clear all the exception registers. If the trap handler chooses not to
emulate all the instructions, it must reset the T-bit to 1 before returning to the trapped process.

To emulate an instruction, the trap handler computes or specifies a substitute result to be placed
in the destination register of the operation. The trap handler may determine what operation was
being performed and what exceptions occurred during the operation by examining the
corresponding exception register. On overflow, underflow, and inexact exceptions, the trap
handler has access to the correctly rounded result by examining the destination register of the
operation. On unimplemented, invalid operation, and divide-by-zero exceptions, the trap
handler has access to the operand values by examining the source registers of the instruction.

Reserved-op Exception
When a non-load/store instruction has a reserved sub-opcode, an implementation signals either a
reserved-op exception or an unimplemented exception.

A reserved-op exception always forces the processor to take an immediate assist exception trap. It does
not set the exception registers or the T-bit, and does not change any of the flag bits in the Status
Register. The reserved-op exception cannot be disabled.

PROGRAMMING NOTE
Trapping is immediate for reserved-op exceptions. The trap handler must check for a Status
Register T-bit equal to 0 to determine that the trap was caused by a reserved-op exception.
When a reserved-op exception occurs, software interprets the contents of the IIR, nullifies the
instruction pointed to by the front of the IIA queues, and returns control to the trapping
process.

Unimplemented Exception
If an implementation chooses not to execute an instruction, the instruction signals an unimplemented
exception. An unimplemented exception always causes a delayed trap on a later floating-point
instruction. It does not change the Status Register Flag bits and cannot be disabled. When a non-load/
store floating-point operation references a reserved sub-opcode, an implementation signals either an
unimplemented exception or a reserved-op exception.

An implementation may signal an unimplemented exception on any floating-point instruction except the
FLOATING-POINT TEST instruction, theFLOATING-POINT IDENTIFY instruction, a load instruction, or
a store instruction.

When a trap forces the coprocessor to complete all pending instructions, implementations may put
uncompleted instructions in the exception registers and set the correspondingexception field to the
appropriate unimplemented exception code.

A conversion to a floating-point format always causes an unimplemented exception when the result
overflows, the result lies too far outside the range for the exponent to be bias-adjusted, and the overflow
trap is enabled. Table 6-21 shows the result values which produce an unimplemented exception;a is the
bias-adjustment value for the destination format,p is the precision, andv is the source value.

6-31PA-RISC 1.1 Architecture Floating-point Coprocessor

Similarly, an unimplemented exception is always caused by a conversion to a floating-point format that
underflows, lies too far outside the range for the exponent to be bias-adjusted, and the underflow trap is
enabled. Table 6-22 shows the floating-point underflow results which cause an unimplemented
exception;a is the bias-adjustment value for the destination format,p is the precision, andv is the
source value.

Finally, the unimplemented exception is always signaled when the operand of a conversion to an integer
format is a NaN or an∞, or when the result overflows. Table 6-23 shows the results which produce an
integer overflow. In the table, is the most positive integer representable by the destination format,

 is the most negative, andv is the source value.

Table 6-21. Overflow Results Causing Unimplemented Exception

Rounding Mode Ranges

nearest

to 0

to +∞

to

Table 6-22. Underflow Results Causing Unimplemented Exception

Rounding Mode Range

nearest

to 0

to +∞

to

Table 6-23. Integer Results Causing Unimplemented Exception

Rounding Mode Ranges

nearest

to 0

to +∞

to

∞– v 2–
Emax a+()

2 2
p–

–

≤< 2
Emax a+()

2 2
p–

–

v +∞<≤

∞– v 2–
Emax a 1+ +()

≤< 2
Emax a 1+ +()

v +∞<≤

∞– v 2–
Emax a 1+ +()

≤< 2
Emax a+()

2 2
p 1–()–

–

v +∞< <

∞– ∞– v 2–
Emax a+()

2 2
p 1–()–

–

< < 2
Emax a 1+ +()

v +∞<≤

2–
Emin a–()

1 2
p 1+()–

–

v 2
Emin a–()

1 2
p 1+()–

–

< <

2–
Emin a–()

v 2
Emin a–()

< <

2–
Emin a–()

v 2
Emin a–()

1 2
p–

–

≤<

∞– 2–
Emin a–()

1 2
p–

–

v 2
Emin a–()

<≤

Imax
Imin

v Imin 1 2⁄–< v Imax 1 2⁄+≥

v Imin 1–≤ v Imax 1+≥

v Imin 1–≤ v Imax>

∞– v Imin< v Imax 1+≥

6-32 Floating-point Coprocessor PA-RISC 1.1 Architecture

Invalid Operation Exception
An instruction signals the invalid operation exception if an operand is invalid for the operation to be
performed. When the exception occurs without a trap, the coprocessor delivers a quiet NaN to the
destination register. If the exception causes a trap, the coprocessor leaves the operands unchanged.

The invalid operations are:

1. Any arithmetic operation on a signaling NaN except for conversions to integer formats.

2. Magnitude subtraction of infinities like or ;

3. The multiplication of 0 and∞;

4. The division operations and ;

5. Square root if the operand is less than zero;

6. Comparison using conditions involving a "T" or conditions involving "<", ">", "true", or "false"
without a "?", when the operands are unordered. See “Comparison Conditions” on page 6-17.

Division-by-zero Exception
From the standard:

[§]7.2 Division by zero. If the divisor is zero and the dividend is a finite nonzero number, then
the division by zero exception is signaled. The result, when no trap occurs, is a correctly signed
∞ (6.3) [see “Sign Bit” on page 6-23].

When a trap occurs, the operands must be left unchanged.

Inexact Exception
From the standard:

[§]7.5 Inexact. If the rounded result of an operation is not exact or if it overflows without an
overflow trap, then the inexact exception shall be signaled. The rounded or overflowed result
shall be delivered to the destination or, if an inexact trap occurs, to the trap handler [the
destination register in this architecture].

A conversion to a fixed-point format also signals the inexact exception when the result is not exact.

Overflow Exception
To determine overflow on an operation, the coprocessor uses the result that would have occurred had the
result been computed and rounded as if the destination’s exponent range were unbounded. On all
operations except converts, the coprocessor signals an overflow exception when the magnitude of this
result exceeds the destination format’s largest finite number. The same is true of conversion operations,
except that when this result is beyond the range of bias-adjusted numbers and the overflow trap is
enabled, the instruction causes an unimplemented exception.

An instruction cannot cause an overflow exception when at least one operand is a NaN or infinity.

+∞() ∞–()+ +∞() +∞()–

0 0⁄ ∞ ∞⁄

6-33PA-RISC 1.1 Architecture Floating-point Coprocessor

Table 6-24 summarizes the result values that cause an overflow exception. In the table, is the
maximum exponent value for the destination format,p is the precision of the format, andv is the value
of the exact result before rounding.

* When the overflow trap is enabled and the operation is a conversion to a floating-point format,
this bound is limited to bias-adjusted numbers. See “Unimplemented Exception” on page 6-30.

When no trap occurs, the result of an overflow exception is one of the following:

1. Round to nearest carries all overflows to∞ with no change in sign.

2. Round toward 0 carries all overflows to the format’s largest finite number with no change in sign.

3. Round toward−∞ carries positive overflows to the format’s largest finite number, and carries
negative overflows to−∞.

4. Round toward +∞ carries negative overflows to the format’s most negative finite number, and
carries positive overflows to +∞.

When an overflow exception causes a trap, the excepting operation returns a bias-adjusted number to
the destination register.

The overflow exception is not signaled for integer results. The coprocessor signals integer overflows
with an unimplemented exception.

Underflow Exception
From the standard:

[§]7.4 Underflow. Two correlated events contribute to underflow. One is the creation of a tiny

nonzero result between which, because it is tiny, may cause some other exception later
such as overflow upon division. The other is extraordinary loss of accuracy during the
approximation of such tiny numbers by denormalized numbers.

Tininess is detected on a nonzero result which lies strictly between , when the result is rounded
as if the exponent range were unbounded. Note that rounding for detection of tininess and rounding to
determine a result are distinct. In certain cases, the coprocessor signals an underflow exception even
though it returns a normalized result to the destination register.

Table 6-24. Results Causing Overflow Exception

Rounding Mode Ranges

nearest

to 0

to +∞

to

Emax

2
Emax

2 2
p–

–

v +∞*<≤ ∞–
*

v 2
Emax

2 2
p–

–

–≤<

2
Emax 1+()

v +∞*<≤ ∞–
*

v 2
Emax 1+()

–≤<

2
Emax

2 2
p 1–()–

–

v +∞*< < ∞–
*

v 2
Emax 1+()

–≤<

∞– 2
Emax 1+()

v +∞*<≤ ∞–
*

v 2
Emax

2 2
p 1–()–

–

–< <

2
Emin±

2
Emin±

6-34 Floating-point Coprocessor PA-RISC 1.1 Architecture

Table 6-25 shows the range of exact results which will cause detection of tininess. In the table, is
the minimum exponent value for the destination format,p is the precision of the format, andv is the
value of the exact result before rounding.

Loss of accuracy occurs when the coprocessor detects an inexact result, where the result returned after
rounding differs from what the result would have been if the destination had infinite precision and
unbounded range.

An instruction causes an underflow exception when the underflow trap is enabled and tininess occurs.
An instruction also causes an underflow exception when the underflow trap is disabled and both tininess
and loss of accuracy occur.

An operation which causes a non-trapping underflow exception may return a zero, denormalized

number, or .

Trapped underflows on all operations except conversions deliver a bias-adjusted result to the destination
register. Trapped underflow on conversions to a floating-point format delivers a bias-adjusted result
when the result can be represented by a bias-adjusted number. If not, an unimplemented exception is
signaled instead of an underflow exception.

Conversion to an integer format cannot underflow. The result when the magnitude of the source operand
is less than 1 is either 0, +1, or−1 depending on the rounding mode and the sign of the source operand.

When an instruction causes a trapping underflow exception and the trap enable bit equals 0, the leftmost
two bits in the corresponding exception register’sexception field are set (see Figure 6-10). The first
parameter bit, the round away (RA) bit, is set to 1 whenever the result is rounded away from zero. The
second is the inexact (I) bit which is set to 1 if the rounded bias-adjusted result is not the infinitely
precise result. The trap handler uses this information to denormalize the result and prevent errors caused
by rounding twice.

Table 6-25. Results Causing Tininess

Rounding Mode Range

nearest

to 0

to +∞

to

RA I 0 1 0/1 0

1 1 1 1 1 1

Figure 6-10. Exception Field Underflow Parameters

Emin

2
Emin

1 2
p 1+()–

–

– v 2
Emin

1 2
p 1+()–

–

< <

2
Emin

– v 2
Emin< <

2
Emin

– v 2
Emin

1 2
p–

–

≤<

∞– 2
Emin

1 2
p–

–

– v 2
Emin<≤

2
Emin±

6-35PA-RISC 1.1 Architecture Floating-point Coprocessor

Saving and Restoring State
To save state, software first performs a double-word store of register 0, then double-word stores of
registers 1, 2, and 3, and a sufficient number of double-word stores to save registers needed at a later
time. Thirty-two double-word coprocessor stores are sufficient to save the entire state of the floating-
point coprocessor.

A double-word store of register 0 cancels all pending traps, forces the completion of all previous
instructions, suppresses any ensuing trap, completes the store, and sets the Status Register T-bit to 0.
When the store cancels a trap, the value written to memory has the bit corresponding to the Status
Register T-bit set to 1; otherwise, this bit is set to 0. This special treatment of a double-word store lets
the save routine be nested, does not require the assistance of a trap handler, and need not have the IIA
queues enabled.

To restore state, software performs double-word loads of all required registers, followed by a double-
word load of Floating-point Register 0. Thirty-two double-word loads are sufficient to restore the entire
state of the coprocessor. A double-word load of Floating-point Register 0 which sets the Status Register
T-bit to 1 re-arms a trap. The next floating-point instruction will cause a trap (apart from a double-word
store of Floating-point Register 0).

The following sequences save and restore the entire state of the coprocessor.

; enter with SaveAreaPtr pointing at the first double-word of the save area
SAVEFPU

FSTDS,MA FPR0,8(SaveAreaPtr) ;quiescent,cancel trap
FSTDS,MA FPR1,8(SaveAreaPtr) ;save exception register
FSTDS,MA FPR2,8(SaveAreaPtr) ;save exception register
FSTDS,MA FPR3,8(SaveAreaPtr) ;save exception register
FSTDS,MA FPR4,8(SaveAreaPtr) ;save data register
FSTDS,MA FPR5,8(SaveAreaPtr) ;save data register

•
•
•

FSTDS,MA FPR30,8(SaveAreaPtr) ;save data register
FSTDS FPR31,0(SaveAreaPtr) ;save last data register

6-36 Floating-point Coprocessor PA-RISC 1.1 Architecture

The only required ordering in these sequences is that Floating-point Register 0 must be saved first and
restored last.

Instruction Set Description
The following pages contain descriptions of each instruction.

The Description section of each non-load/store instruction contains a list of the Floating-Point
Exceptions which the instruction may cause. Each instruction description has anExceptions section
which lists the processor interruptions that may occur while the instruction is pointed to by the front of
the IA queues.

In the following pages, the notation, FPR, refers to floating-point coprocessor registers 0 through 31.
FPSR refers to the Floating-point Status Register. Refer to “Instruction Notations” on page 5-7 for the
explanation of the operation section. The mem_load and the mem_store descriptions are located in
“Memory Reference Instructions” on page 5-15.

; enter with SaveAreaPtr pointing at the last double-word of the save area.
RSTFPU

FLDDS 0(SaveAreaPtr),FPR31 ;restore data register
FLDDS,MB -8(SaveAreaPtr),FPR30 ;restore data register

•
•
•

FLDDS,MB -8(SaveAreaPtr),FPR4 ;restore data register
FLDDS,MB -8(SaveAreaPtr),FPR3 ;restore exception register
FLDDS,MB -8(SaveAreaPtr),FPR2 ;restore exception register
FLDDS,MB -8(SaveAreaPtr),FPR1 ;restore exception register
FLDDS,MB -8(SaveAreaPtr),FPR0 ;restore exception register

;potentially re-arm trap

6-37PA-RISC 1.1 Architecture Floating-point Coprocessor

6Floating-point Coprocessor
FLOATING-POINT LOAD WORD INDEXED FLDWX

Format: FLDWX,cmplt,cc x(s,b),t

Purpose: To load a word into a floating-point coprocessor register.

Description: The aligned word at the effective address is loaded into floating-point registert. The base
register, b, and the index register,x, are combined to form an address offset. The
completer,cmplt, determines if the offset is the base register, the base register plus the
index register, or the base register plus the index register shifted by 2. The completer,
encoded in theu andm fields of the instruction, also specifies base register modification.
(See Table 5-11 on page 5-22 for the assembly language completer mnemonics.)

The completer,cc, specifies the cache control hint (see Table 5-8 on page 5-17).

Specifying floating-point registers 0R, 1L, 1R, 2L, 2R, 3L, or 3R is an undefined
operation. Specifying Floating-point Register 0L forces the coprocessor to complete all
previous floating-point instructions. However, loading Floating-point Register 0L with a
value that sets the Status Register T-bit to 1 is an undefined operation.

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case S: offset← GR[b] + lshift(GR[x],2); /*u=1, m=0*/
break;

case M: offset← GR[b]; /*u=0, m=1*/
GR[b] ← GR[b] + GR[x];
break;

case SM: offset← GR[b]; /*u=1, m=1*/
GR[b] ← GR[b] + lshift(GR[x],2);
break;

default: offset← GR[b] + GR[x]; /*u=0, m=0*/
break;

}
FPR[t] ← mem_load(space,offset,0,31,cc);

Exceptions: Assist exception trap Unaligned data reference trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Data debug trap
Data memory protection ID trap Assist emulation trap

09 b x s u 0 cc 0 0 t m t

6 5 5 2 1 1 2 1 2 1 1 5

6-38 Floating-point Coprocessor PA-RISC 1.1 Architecture

FLOATING-POINT LOAD DOUBLEWORD INDEXED FLDDX

Format: FLDDX,cmplt,cc x(s,b),t

Purpose: To load a doubleword into a floating-point coprocessor register.

Description: The aligned doubleword at the effective address is loaded into floating-point registert.
The base register,b, and the index register,x, are combined to form an address offset. The
completer,cmplt, determines if the offset is the base register, the base register plus the
index register, or the base register plus the index register shifted by 3. The completer,
encoded in theu andm fields of the instruction, also specifies base register modification.
(See Table 5-11 on page 5-22 for the assembly language completer mnemonics.)

The completer,cc, specifies the cache control hint (see Table 5-8 on page 5-17).

Specifying Floating-point Register 0 forces the coprocessor to complete all previous
floating-point instructions.

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case S: offset← GR[b] + lshift(GR[x],3); /*u=1, m=0*/
break;

case M: offset← GR[b]; /*u=0, m=1*/
GR[b] ← GR[b] + GR[x];
break;

case SM: offset← GR[b]; /*u=1, m=1*/
GR[b] ← GR[b] + lshift(GR[x],3);
break;

default: offset← GR[b] + GR[x]; /*u=0, m=0*/
break;

}
FPR[t] ← mem_load(space,offset,0,63,cc);

Exceptions: Assist exception trap Unaligned data reference trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Data debug trap
Data memory protection ID trap Assist emulation trap

0B b x s u 0 cc 0 0 m t

6 5 5 2 1 1 2 1 3 1 5

6-39PA-RISC 1.1 Architecture Floating-point Coprocessor

FLOATING-POINT STORE WORD INDEXED FSTWX

Format: FSTWX,cmplt,cc r,x(s,b)

Purpose: To store a word from a floating-point coprocessor register.

Description: Floating-point registerr is stored in the aligned word at the effective address. The base
register, b, and the index register,x, are combined to form an address offset. The
completer,cmplt, determines if the offset is the base register, the base register plus the
index register, or the base register plus the index register shifted by 2. The completer,
encoded in theu andm fields of the instruction, also specifies base register modification.
(See Table 5-11 on page 5-22 for the assembly language completer mnemonics.)

The completer,cc, specifies the cache control hint (see Table 5-9 on page 5-18).

Specifying floating-point registers 0R, 1L, 1R, 2L, 2R, 3L, or 3R is an undefined
operation. Specifying Floating-point Register 0L forces the coprocessor to complete all
previous floating-point instructions.

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case S: offset← GR[b] + lshift(GR[x],2); /*u=1, m=0*/
break;

case M: offset← GR[b]; /*u=0, m=1*/
GR[b] ← GR[b] + GR[x];
break;

case SM: offset← GR[b]; /*u=1, m=1*/
GR[b] ← GR[b] + lshift(GR[x],2);
break;

default: offset← GR[b] + GR[x]; /*u=0, m=0*/
break;

}
mem_store(space,offset,0,31,cc,FPR[r]);

Exceptions: Assist exception trap Data memory break trap
Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap
Unaligned data reference trap Assist emulation trap

09 b x s u 0 cc 1 0 r m r

6 5 5 2 1 1 2 1 2 1 1 5

6-40 Floating-point Coprocessor PA-RISC 1.1 Architecture

FLOATING-POINT STORE DOUBLEWORD INDEXED FSTDX

Format: FSTDX,cmplt,cc r,x(s,b)

Purpose: To store a doubleword from a floating-point coprocessor register.

Description: Floating-point registerr is stored in the aligned doubleword at the effective address. The
base register,b, and the index register,x, are combined to form an address offset. The
completer,cmplt, determines if the offset is the base register, the base register plus the
index register, or the base register plus the index register shifted by 3. The completer,
encoded in theu andm fields of the instruction, also specifies base register modification.
(See Table 5-11 on page 5-22 for the assembly language completer mnemonics.)

The completer,cc, specifies the cache control hint (see Table 5-9 on page 5-18).

Specifying Floating-point Register 0 forces the coprocessor to complete all previous
floating-point instructions and sets the Status Register T-bit to 0 following completion of
the store.

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case S: offset← GR[b] + lshift(GR[x],3); /*u=1, m=0*/
break;

case M: offset← GR[b]; /*u=0, m=1*/
GR[b] ← GR[b] + GR[x];
break;

case SM: offset← GR[b]; /*u=1, m=1*/
GR[b] ← GR[b] + lshift(GR[x],3);
break;

default: offset← GR[b] + GR[x]; /*u=0, m=0*/
break;

}
mem_store(space,offset,0,63,cc,FPR[r]);
if (r == 0)

FPSR[T] ← 0;

Exceptions: Assist exception trap Data memory break trap
Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap
Unaligned data reference trap Assist emulation trap

0B b x s u 0 cc 1 0 m r

6 5 5 2 1 1 2 1 3 1 5

6-41PA-RISC 1.1 Architecture Floating-point Coprocessor

FLOATING-POINT LOAD WORD SHORT FLDWS

Format: FLDWS,cmplt,cc d(s,b),t

Purpose: To load a word into a floating-point coprocessor register.

Description: The aligned word at the effective address is loaded into floating-point registert. The
completer,cmplt, determines if the offset is the base register,b, or the base register plus
the short displacement,d. The displacement is encoded in theim5 field. The completer,
encoded in thea andm fields of the instruction, also specifies base register modification.
(See Table 5-12 on page 5-24 for the assembly language completer mnemonics.)

The completer,cc, specifies the cache control hint (see Table 5-8 on page 5-17).

Specifying floating-point registers 0R, 1L, 1R, 2L, 2R, 3L, or 3R is an undefined
operation. Specifying Floating-point Register 0L forces the coprocessor to complete all
previous floating-point instructions. However, loading Floating-point Register 0L with a
value that sets the Status Register T-bit to 1 is an undefined operation.

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
break;

}
FPR[t] ← mem_load(space,offset,0,31,cc);

Exceptions: Assist exception trap Unaligned data reference trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Data debug trap
Data memory protection ID trap Assist emulation trap

09 b im5 s a 1 cc 0 0 t m t

6 5 5 2 1 1 2 1 2 1 1 5

6-42 Floating-point Coprocessor PA-RISC 1.1 Architecture

FLOATING-POINT LOAD DOUBLEWORD SHORT FLDDS

Format: FLDDS,cmplt,cc d(s,b),t

Purpose: To load a doubleword into a floating-point coprocessor register.

Description: The aligned doubleword at the effective address is loaded into floating-point registert.
The completer,cmplt, determines if the offset is the base register,b, or the base register
plus the short displacement,d. The displacement is encoded in theim5 field. The
completer, encoded in thea andm fields of the instruction, also specifies base register
modification. (See Table 5-12 on page 5-24 for the assembly language completer
mnemonics.)

The completer,cc, specifies the cache control hint (see Table 5-8 on page 5-17).

Specifying Floating-point Register 0 forces the coprocessor to complete all previous
floating-point instructions.

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
break;

}
FPR[t] ← mem_load(space,offset,0,63,cc);

Exceptions: Assist exception trap Unaligned data reference trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Data debug trap
Data memory protection ID trap Assist emulation trap

0B b im5 s a 1 cc 0 0 m t

6 5 5 2 1 1 2 1 3 1 5

6-43PA-RISC 1.1 Architecture Floating-point Coprocessor

FLOATING-POINT STORE WORD SHORT FSTWS

Format: FSTWS,cmplt,cc r,d(s,b)

Purpose: To store a word from a floating-point coprocessor register.

Description: Floating-point registerr is stored in the aligned word at the effective address. The
completer,cmplt, determines if the offset is the base register,b, or the base register plus
the short displacement,d. The displacement is encoded in theim5 field. The completer,
encoded in thea andm fields of the instruction, also specifies base register modification.
(See Table 5-12 on page 5-24 for the assembly language completer mnemonics.)

The completer,cc, specifies the cache control hint (see Table 5-9 on page 5-18).

Specifying floating-point registers 0R, 1L, 1R, 2L, 2R, 3L, or 3R is an undefined
operation. Specifying Floating-point Register 0L forces the coprocessor to complete all
previous floating-point instructions.

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
break;

}
mem_store(space,offset,0,31,cc,FPR[r]);

Exceptions: Assist exception trap Data memory break trap
Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap
Unaligned data reference trap Assist emulation trap

09 b im5 s a 1 cc 1 0 r m r

6 5 5 2 1 1 2 1 2 1 1 5

6-44 Floating-point Coprocessor PA-RISC 1.1 Architecture

FLOATING-POINT STORE DOUBLEWORD SHORT FSTDS

Format: FSTDS,cmplt,cc r,d(s,b)

Purpose: To store a doubleword from a floating-point coprocessor register.

Description: Floating-point registerr is stored in the aligned doubleword at the effective address. The
completer,cmplt, determines if the offset is the base register,b, or the base register plus
the short displacement,d. The displacement is encoded in theim5 field. The completer,
encoded in thea andm fields of the instruction, also specifies base register modification.
(See Table 5-12 on page 5-24 for the assembly language completer mnemonics.)

The completer,cc, specifies the cache control hint (see Table 5-9 on page 5-18).

Specifying Floating-point Register 0 forces the coprocessor to complete all previous
floating-point instructions and sets the Status Register T-bit to 0 following completion of
the store.

Operation: space← space_select(s,GR[b]);
switch (cmplt) {

case MB: offset← GR[b] + low_sign_ext(im5,5); /*a=1, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

case MA: offset← GR[b]; /*a=0, m=1*/
GR[b] ← GR[b] + low_sign_ext(im5,5);
break;

default: offset← GR[b] + low_sign_ext(im5,5); /*m=0*/
break;

}
mem_store(space,offset,0,63,cc,FPR[r]);
if (r == 0)

FPSR[T] ← 0;

Exceptions: Assist exception trap Data memory break trap
Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data debug trap
Unaligned data reference trap Assist emulation trap

0B b im5 s a 1 cc 1 0 m r

6 5 5 2 1 1 2 1 3 1 5

6-45PA-RISC 1.1 Architecture Floating-point Coprocessor

6Floating-point Coprocessor
FLOATING-POINT CONVERT FROM FCNVFF
FLOATING-POINT TO FLOATING-POINT

Format: FCNVFF,sf,df r,t

Purpose: To change a floating-point value of one format to a floating-point value of a different
format.

Description: The appropriate side of the floating-point register, the entire floating-point register, or the
register pair specified byr is interpreted in the specified source format,sf, and
arithmetically converted to the specified destination format,df. The result is placed in the
appropriate side of the floating-point register, the entire floating-point register, or the
register pair specified byt.

Rounding occurs according to the currently specified rounding mode.

Floating-point exceptions:

• Unimplemented

• Invalid operation

• Overflow

• Underflow

• Inexact

Operation: FPR[t] ← convert_float_to_float(FPR[r],sf,df,FPSR[RM]);

Exceptions: Assist emulation trap
Assist exception trap

0E r 0 0 df sf 1 0 r t 0 t

6 5 4 2 2 2 2 1 1 1 1 5

0C r 0 0 df sf 1 0 0 t

6 5 4 2 2 2 2 3 1 5

6-46 Floating-point Coprocessor PA-RISC 1.1 Architecture

FLOATING-POINT CONVERT FROM FCNVXF
FIXED-POINT TO FLOATING-POINT

Format: FCNVXF,sf,df r,t

Purpose: To change the format of a fixed-point value to a floating-point value.

Description: The appropriate side of the floating-point register, the entire floating-point register, or the
register pair specified byr is interpreted as a signed fixed-point number in the specified
source format,sf, and arithmetically converted to the specified destination format,df, as a
floating-point number. The result is placed in the appropriate side of the floating-point
register, the entire floating-point register, or the register pair specified byt.

Rounding occurs according to the currently specified rounding mode.

Floating-point exceptions:

• Unimplemented

• Inexact

Operation: FPR[t] ← convert_fixed_to_float(FPR[r],sf,df,FPSR[RM]);

Exceptions: Assist emulation trap
Assist exception trap

0E r 0 1 df sf 1 0 r t 0 t

6 5 4 2 2 2 2 1 1 1 1 5

0C r 0 1 df sf 1 0 0 t

6 5 4 2 2 2 2 3 1 5

6-47PA-RISC 1.1 Architecture Floating-point Coprocessor

FLOATING-POINT CONVERT FROM FCNVFX
FLOATING-POINT TO FIXED-POINT

Format: FCNVFX,sf,df r,t

Purpose: To change the format of a floating-point value to a fixed-point value.

Description: The appropriate side of the floating-point register, the entire floating-point register, or the
register pair specified byr is interpreted as a floating-point number in the specified source
format, sf, and arithmetically converted to a signed fixed-point number in the specified
destination format,df. The result is placed in the appropriate side of the floating-point
register, the entire floating-point register, or the register pair specified byt.

Rounding occurs according to the currently specified rounding mode.

Floating-point exceptions:

• Unimplemented

• Inexact

Operation: FPR[t] ← convert_float_to_fixed(FPR[r],sf,df,FPSR[RM]);

Exceptions: Assist emulation trap
Assist exception trap

0E r 0 2 df sf 1 0 r t 0 t

6 5 4 2 2 2 2 1 1 1 1 5

0C r 0 2 df sf 1 0 0 t

6 5 4 2 2 2 2 3 1 5

6-48 Floating-point Coprocessor PA-RISC 1.1 Architecture

FLOATING-POINT CONVERT FROM FCNVFXT
FLOATING-POINT TO FIXED-POINT AND TRUNCATE

Format: FCNVFXT,sf,df r,t

Purpose: To change the format of a floating-point value to a fixed-point value.

Description: The appropriate side of the floating-point register, the entire floating-point register, or the
register pair specified byr is interpreted as a floating-point number in the specified source
format, sf, and arithmetically converted to a signed fixed-point number in the specified
destination format,df. The result is placed in the appropriate side of the floating-point
register, the entire floating-point register, or the register pair specified byt.

The current rounding mode is ignored and the result is rounded toward zero.

Floating-point exceptions:

• Unimplemented

• Inexact

Operation: FPR[t] ← convert_float_to_fixed(FPR[r],sf,df,ROUND_TOWARD_ZERO);

Exceptions: Assist emulation trap
Assist exception trap

0E r 0 3 df sf 1 0 r t 0 t

6 5 4 2 2 2 2 1 1 1 1 5

0C r 0 3 df sf 1 0 0 t

6 5 4 2 2 2 2 3 1 5

6-49PA-RISC 1.1 Architecture Floating-point Coprocessor

6Floating-point Coprocessor
FLOATING-POINT COPY FCPY

Format: FCPY,fmt r,t

Purpose: To copy a floating-point value to another floating-point register.

Description: The appropriate side of the floating-point register, the entire floating-point register, or the
register pair specified byr is copied into the appropriate side of the floating-point register,
the entire floating-point register, or the register pair specified byt. This operation is non-
arithmetic and does not cause an invalid operation exception when a NaN is copied.

Floating-point exceptions:

• Unimplemented

Operation: FPR[t] ← FPR[r];

Exceptions: Assist emulation trap
Assist exception trap

0E r 0 2 fmt 0 0 r t 0 t

6 5 5 3 2 2 1 1 1 1 5

0C r 0 2 fmt 0 0 0 t

6 5 5 3 2 2 3 1 5

6-50 Floating-point Coprocessor PA-RISC 1.1 Architecture

FLOATING-POINT ABSOLUTE VALUE FABS

Format: FABS,fmt r,t

Purpose: To perform a floating-point absolute value.

Description: The appropriate side of the floating-point register, the entire floating-point register, or the
register pair specified byr is copied to the appropriate side of the floating-point register,
the entire floating-point register, or the register pair specified byt with the sign bit set to 0.
This instruction is non-arithmetic and does not cause an invalid operation exception when
the sign of a NaN is set to 0.

Floating-point exceptions:

• Unimplemented

Operation: FPR[t]{all_bits_except_sign}← FPR[r]{all_bits_except_sign};
FPR[t]{sign_bit} ← 0;

Exceptions: Assist emulation trap
Assist exception trap

0E r 0 3 fmt 0 0 r t 0 t

6 5 5 3 2 2 1 1 1 1 5

0C r 0 3 fmt 0 0 0 t

6 5 5 3 2 2 3 1 5

6-51PA-RISC 1.1 Architecture Floating-point Coprocessor

FLOATING-POINT SQUARE ROOT FSQRT

Format: FSQRT,fmt r,t

Purpose: To perform a floating-point square root.

Description: The appropriate side of the floating-point register, the entire floating-point register, or the
register pair specified byr is interpreted in the specified format and the positive arithmetic
square root is taken. The result is calculated to infinite precision and then rounded to the
specified format according to the current rounding mode. If the source register contains

, the result will be . The result is placed in the appropriate side of the floating-point
register, the entire the floating-point register, or the register pair specified byt.

Floating-point exceptions:

• Unimplemented

• Invalid operation

• Inexact

Operation: FPR[t] ← square_root(FPR[r]);

Exceptions: Assist emulation trap
Assist exception trap

0E r 0 4 fmt 0 0 r t 0 t

6 5 5 3 2 2 1 1 1 1 5

0C r 0 4 fmt 0 0 0 t

6 5 5 3 2 2 3 1 5

0– 0–

6-52 Floating-point Coprocessor PA-RISC 1.1 Architecture

FLOATING-POINT ROUND TO INTEGER FRND

Format: FRND,fmt r,t

Purpose: To round a floating-point value to an integral value.

Description: The appropriate side of the floating-point register, the entire floating-point register, or the
register pair specified byr is interpreted in the specified format and arithmetically rounded
to an integral value. This result remains a floating-point number. Results are rounded
according to the current rounding mode with the proviso that when rounding to nearest, if
the difference between the unrounded operand and the rounded result is exactly one half,
the rounded result is even. The result is placed in the appropriate side of the floating-point
register, the entire floating-point register, or the register pair specified byt. An inexact
exception is signaled when the result and source are not the same.

Floating-point exceptions:

• Unimplemented

• Invalid operation

• Inexact

Operation: FPR[t] ← floating_point_round(FPR[r]);

Exceptions: Assist emulation trap
Assist exception trap

0E r 0 5 fmt 0 0 r t 0 t

6 5 5 3 2 2 1 1 1 1 5

0C r 0 5 fmt 0 0 0 t

6 5 5 3 2 2 3 1 5

6-53PA-RISC 1.1 Architecture Floating-point Coprocessor

FLOATING-POINT ADD FADD

Format: FADD,fmt r1,r2,t

Purpose: To perform a floating-point addition.

Description: The appropriate sides of floating-point registers, entire floating-point registers, or register
pairs specified byr1 and r2 are interpreted in the specified format and arithmetically
added. The result is calculated to infinite precision and then rounded to the specified
format according to the current rounding mode. The result is placed in the appropriate side
of the floating-point register, the entire floating-point register, or the register pair specified
by t.

Floating-point exceptions:

• Unimplemented

• Invalid operation

• Overflow

• Underflow

• Inexact

Operation: FPR[t] ← FPR[r1] + FPR[r2];

Exceptions: Assist emulation trap
Assist exception trap

0E r1 r2 0 r2 f 3 0 r1 t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

0C r1 r2 0 fmt 3 0 0 t

6 5 5 3 2 2 3 1 5

6-54 Floating-point Coprocessor PA-RISC 1.1 Architecture

FLOATING-POINT SUBTRACT FSUB

Format: FSUB,fmt r1,r2,t

Purpose: To perform a floating-point subtraction.

Description: The appropriate sides of floating-point registers, entire floating-point registers, or register
pairs specified byr1 and r2 are interpreted in the specified format and arithmetically
subtracted. The result is calculated to infinite precision and then rounded to the specified
format according to the current rounding mode. The result is placed in the appropriate side
of the floating-point register, the entire floating-point register, or the register pair specified
by t.

Floating-point exceptions:

• Unimplemented

• Invalid operation

• Overflow

• Underflow

• Inexact

Operation: FPR[t] ← FPR[r1]− FPR[r2];

Exceptions: Assist emulation trap
Assist exception trap

0E r1 r2 1 r2 f 3 0 r1 t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

0C r1 r2 1 fmt 3 0 0 t

6 5 5 3 2 2 3 1 5

6-55PA-RISC 1.1 Architecture Floating-point Coprocessor

FLOATING-POINT MULTIPLY FMPY

Format: FMPY,fmt r1,r2,t

Purpose: To perform a floating-point multiply.

Description: The appropriate sides of floating-point registers, entire floating-point registers, or register
pairs specified byr1 and r2 are interpreted in the specified format and arithmetically
multiplied. The result is calculated to infinite precision and then rounded to the specified
format according to the current rounding mode. The result is placed in the appropriate side
of the floating-point register, the entire floating-point register, or the register pair specified
by t.

Floating-point exceptions:

• Unimplemented

• Invalid operation

• Overflow

• Underflow

• Inexact

Operation: FPR[t] ← FPR[r1] * FPR[r2];

Exceptions: Assist emulation trap
Assist exception trap

0E r1 r2 2 r2 f 3 0 r1 t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

0C r1 r2 2 fmt 3 0 0 t

6 5 5 3 2 2 3 1 5

6-56 Floating-point Coprocessor PA-RISC 1.1 Architecture

FLOATING-POINT DIVIDE FDIV

Format: FDIV,fmt r1,r2,t

Purpose: To perform a floating-point division.

Description: The appropriate sides of floating-point registers, entire floating-point registers, or register
pairs specified byr1 and r2 are interpreted in the specified format and arithmetically
divided. The result is calculated to infinite precision and then rounded to the specified
format according to the current rounding mode. The result is placed in the appropriate side
of the floating-point register, the entire floating-point register, or the register pair specified
by t.

Floating-point exceptions:

• Unimplemented

• Invalid operation

• Division-by-zero

• Overflow

• Underflow

• Inexact

Operation: FPR[t] ← FPR[r1] / FPR[r2];

Exceptions: Assist emulation trap
Assist exception trap

0E r1 r2 3 r2 f 3 0 r1 t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

0C r1 r2 3 fmt 3 0 0 t

6 5 5 3 2 2 3 1 5

6-57PA-RISC 1.1 Architecture Floating-point Coprocessor

FLOATING-POINT MULTIPLY/ADD FMPYADD

Format: FMPYADD,fmt rm1,rm2,tm,ra,ta

Purpose: To perform a floating-point multiply and a floating-point add.

Description: The appropriate sides of floating-point registers or entire floating-point registers specified
by rm1 andrm2 are interpreted in the specified format and arithmetically multiplied. The
result is calculated to infinite precision and then rounded to the specified format according
to the current rounding mode. The result is placed in the appropriate side of the floating-
point register or the entire floating-point register specified bytm.

The appropriate sides of floating-point registers or entire floating-point registers specified
by ta andra are interpreted in the specified format and arithmetically added. The result is
calculated to infinite precision and then rounded to the specified format according to the
current rounding mode. The result is placed in the appropriate side of the floating-point
register or the entire floating-point register specified byta.

The behavior of this instruction is undefined ifra specifies the same register astm, or if ta
specifies the same register as any ofrm1, rm2, or tm. The behavior of this instruction is
also undefined ifra specifies double-precision register 0 or single-precision register 16L.

Floating-point exceptions:

• Unimplemented

• Invalid operation

• Overflow

• Underflow

• Inexact

Operation: FPR[tm]← FPR[rm1] * FPR[rm2];
FPR[ta]← FPR[ta] + FPR[ra];

Exceptions: Assist emulation trap
Assist exception trap

Notes: When operating on single-precision operands, each register field specifies one of registers
16L through 31L, or one of 16R through 31R. See Table 6-17 on page 6-20 for the register
specifier encodings.

This instruction can be decomposed into FMPY and FADD and then the full set of
floating-point exceptions can be reported.

06 rm1 rm2 ta ra f tm

6 5 5 5 5 1 5

6-58 Floating-point Coprocessor PA-RISC 1.1 Architecture

FLOATING-POINT MULTIPLY/SUBTRACT FMPYSUB

Format: FMPYSUB,fmt rm1,rm2,tm,ra,ta

Purpose: To perform a floating-point multiply and a floating-point subtract.

Description: The appropriate sides of floating-point registers or entire floating-point registers specified
by rm1 andrm2 are interpreted in the specified format and arithmetically multiplied. The
result is calculated to infinite precision and then rounded to the specified format according
to the current rounding mode. The result is placed in the appropriate side of the floating-
point register or the entire floating-point register specified bytm.

The appropriate sides of floating-point registers or entire floating-point registers specified
by ta and ra are interpreted in the specified format and arithmetically subtracted. The
result is calculated to infinite precision and then rounded to the specified format according
to the current rounding mode. The result is placed in the appropriate side of the floating-
point register or the entire floating-point register specified byta.

The behavior of this instruction is undefined ifra specifies the same register astm, or if ta
specifies the same register as any ofrm1, rm2, or tm. The behavior of this instruction is
also undefined ifra specifies double-precision register 0 or single-precision register 16L.

Floating-point exceptions:

• Unimplemented

• Invalid operation

• Overflow

• Underflow

• Inexact

Operation: FPR[tm]← FPR[rm1] * FPR[rm2];
FPR[ta]← FPR[ta] - FPR[ra];

Exceptions: Assist emulation trap
Assist exception trap

Notes: When operating on single-precision operands, each register field specifies one of registers
16L through 31L, or one of 16R through 31R. See Table 6-17 on page 6-20 for the register
specifier encodings.

This instruction can be decomposed into FMPY and FSUB and then the full set of
floating-point exceptions can be reported.

26 rm1 rm2 ta ra f tm

6 5 5 5 5 1 5

6-59PA-RISC 1.1 Architecture Floating-point Coprocessor

FIXED-POINT MULTIPLY UNSIGNED XMPYU

Format: XMPYU r1,r2,t

Purpose: To perform unsigned fixed-point multiplication.

Description: The floating-point registers specified byr1 and r2 are interpreted as unsigned 32-bit
integers and arithmetically multiplied. The unsigned 64-bit result is placed in the floating-
point register specified byt.

Floating-point exceptions:

• Unimplemented

Operation: FPR[t] ← FPR[r1] * FPR[r2];

Exceptions: Assist emulation trap
Assist exception trap

0E r1 r2 2 r2 0 3 1 r1 0 0 t

6 5 5 3 1 1 2 1 1 1 1 5

6-60 Floating-point Coprocessor PA-RISC 1.1 Architecture

6Floating-point Coprocessor
FLOATING-POINT COMPARE FCMP

Format: FCMP,fmt,cond r1,r2

Purpose: To perform a floating-point comparison.

Description: The appropriate sides of floating-point registers, entire floating-point registers, or register
pairs specified byr1 and r2 are interpreted in the specified format and arithmetically
compared. A result is determined based on the comparison and the condition,cond. The
condition is encoded in thec field of the instruction.

The CQ field in the floating-point Status Register is shifted right by one bit (discarding the
rightmost bit) and the C-bit is copied into CQ{0}. Then, if the comparison result is true,
the C-bit in the floating-point Status Register is set to 1, otherwise the C-bit is set to 0.

If at least one of the values is a signaling NaN, or if at least one of the values is a NaN and
the low-order bit of the condition is 1, an invalid operation exception is signaled.

For unimplemented and trapped invalid operation exceptions, the state of the C-bit is
unchanged, and the CQ field is not shifted.

For untrapped invalid operation exceptions, the state of the C-bit is the AND of the
unordered relation (which is true) and bit 3 of thec field.

Comparisons are exact and neither overflow nor underflow. Four mutually exclusive
relations are possible results:less than, equal, greater than, andunordered. The last case
arises when at least one operand is a NaN. Every NaN comparesunordered with
everything, including itself. Comparisons ignore the sign of zero, so .

Floating-point exceptions:

• Unimplemented

• Invalid operation

Operation: if (NaN(FPR[r1]) || NaN(FPR[r2]))
if (c{4})

invalid_operation_exception;
else {

greater_than← false;
less_than← false;
equal_to← false;
unordered← true;

}

0E r1 r2 0 r2 f 2 0 r1 0 0 c

6 5 5 3 1 1 2 1 1 1 1 5

0C r1 r2 0 fmt 2 0 0 c

6 5 5 3 2 2 3 1 5

+0 0–=

6-61PA-RISC 1.1 Architecture Floating-point Coprocessor

else {
greater_than← FPR[r1] > FPR[r2];
less_than← FPR[r1] < FPR[r2];
equal_to← FPR[r1] = FPR[r2];
unordered← false;

}
FPSR[CQ] ← rshift(FPSR[CQ],1);
FPSR[CQ{0}] ← FPSR[C];
FPSR[C] ← (((c{0} == 1) && greater_than) ||

((c{1} == 1) && less_than) ||
((c{2} == 1) && equal_to) ||
((c{3} == 1) && unordered));

Exceptions: Assist emulation trap
Assist exception trap

6-62 Floating-point Coprocessor PA-RISC 1.1 Architecture

FLOATING-POINT TEST FTEST

Format: FTEST,cond

Purpose: To test the results of one or more earlier comparisons.

Description: The specified condition in the floating-point Status Register is tested. The condition,cond,
is encoded in thec field of the instruction. If the condition is satisfied, then the following
instruction is nullified.

Floating-point exceptions:

• None

Conditions: The condition is any of the conditions shown in Table 6-14 on page 6-18. When a
condition completer is not specified, the “Simple Test” (C == 1) condition is used. The
boolean variable “cond_satisfied” in the operation section is set when the specified
condition is satisfied.

Operation: if (cond_satisfied)
PSW[N] ← 1;

Exceptions: Assist emulation trap
Assist exception trap

Notes: This instruction must be implemented, may not be queued and may not cause any assist
exception traps. However, any assist exception traps caused by previous instructions may
be taken while this instruction is in the IA queue.

0C 0 0 1 0 2 0 1 c

6 5 5 3 2 2 3 1 5

6-63PA-RISC 1.1 Architecture Floating-point Coprocessor

6Floating-point Coprocessor
FLOATING-POINT IDENTIFY COPR,0,0

Format: COPR,0,0

Purpose: To validate fields in the Status Register which identify the floating-point coprocessor.

Description: Themodel andrevision fields in the Status Register become defined. The contents of the
other fields in the Status Register are undefined after the execution of this instruction. The
model and revision fields remain defined until a floating-point instruction is executed
which is not a double-word store of register 0.

Floating-point exceptions:

• None

Operation: FPSR[model]← implementation-dependent model number;
FPSR[revision]← implementation-dependent revision number;

Exceptions: Assist emulation trap

Notes: This instruction must be implemented. Software may use the following sequence to obtain
themodel andrevision fields in the Status Register:

For theCOPR,0,0 instruction to work correctly, the floating-point instructions immediately
preceding and following it must be double-word stores of Floating-point Register 0. If not,
the instruction is an undefined operation.

The sequence described will work in user mode. For example, if a context switch occurs
just prior toCOPR,0,0 but after the firstFSTDS 0,0(2) instruction, the floating-point state
save and state restore sequence will restore the state of the Status Register ("T" bit off,
cancel trap) just prior to the execution ofCOPR,0,0.

0C 0

6 26

.CODE

LDIL L%fpreg0,r2 ; load address of
LDO R%fpreg0(r2),r2 ; fp reg0 save area
FSTDS fr0,0(r2) ; save fp reg0, cancel exception traps

COPR,0,0 ; identify coprocessor

LDIL L%version,r2 ; load address of
LDO R%version(r2),r2 ; model/rev save area
FSTDS fr0,0(r2) ; store coprocessor id, cancel

; exception traps

.DATA

fpreg0 .DOUBLE 0
version .DOUBLE 0

6-64 Floating-point Coprocessor PA-RISC 1.1 Architecture

7-1PA-RISC 1.1 Architecture Performance Monitor Coprocessor

7 Performance Monitor Coprocessor

Introduction
This chapter describes the architecture for the performance monitor coprocessor.

The performance monitor coprocessor is an optional, implementation-dependent coprocessor which
provides a minimal common software interface to implementation-dependent performance monitor
hardware.

The performance monitor coprocessor responds to coprocessor instructions with a uid equal to 2.

The Instruction Set
The performance monitor instruction set consists of two instructions,PERFORMANCE MONITOR
ENABLE (PMENB) and PERFORMANCE MONITOR DISABLE (PMDIS), which provide a common
software interface to enable and disable the implementation-dependent performance monitor features.

Figure 7-1 shows the format of these operations and Table 7-1 shows the operations, their mnemonics,
and sub-opcodes:

Interruptions

Performance Monitor Interruption
Interruption vector number 29 in interruption group 2 is defined as the performance monitor
coprocessor interrupt for implementation-dependent use by the performance monitor coprocessor. The
interrupt is unmasked when the PSW F-bit is 1, and is masked when the PSW F-bit is 0. See
“Interruptions” on page 4-13 for additional details.

0C rv sub 2 n rv

6 12 5 3 1 5

Figure 7-1. Performance Monitor Operation Format

Table 7-1. Performance Monitor Operations

Opcode Sub-op Mnemonic Operation

0C 1 PMDIS Disable performance monitor
0C 3 PMENB Enable performance monitor
0C 0,2,4..1F undefined

7-2 Performance Monitor Coprocessor PA-RISC 1.1 Architecture

Monitor Units
The monitor units are hardware units used to collect the necessary information during performance
monitoring. The number of the monitor units and their hardware types are implementation dependent.

If a monitor unit provides counters, the most significant bit of the counter is required to be an overflow
indicator. The bit must be set when the counter overflows and must remain set until explicitly reset by
software. When the overflow indicator is set the remaining bits of the counter are undefined.

NOTE
If counters are used to implement the measurement units, it is recommended that the counters
be at least 32 bits wide.

Instruction Set Description
The following pages describe the performance monitor coprocessor instructions.

When a performance monitor coprocessor instruction is executed and CCR{2} is 0, the coprocessor
instruction causes an assist emulation trap. It is an undefined operation to set CCR{2} to 1 if the
performance monitor coprocessor is nonexistent.

7-3PA-RISC 1.1 Architecture Performance Monitor Coprocessor

PERFORMANCE MONITOR ENABLE PMENB

Format: PMENB

Purpose: To enable the implementation-dependent performance monitor coprocessor.

Description: Enable the measurement units, starting with the next instruction.

Operation: measurement_enabled← 1;

Exceptions: Assist emulation trap

0C rv 3 2 0 rv

6 12 5 3 1 5

7-4 Performance Monitor Coprocessor PA-RISC 1.1 Architecture

PERFORMANCE MONITOR DISABLE PMDIS

Format: PMDIS,n

Purpose: To disable the implementation-dependent performance monitor coprocessor.

Description: Disable all measurement units, after the current instruction.

Operation: measurement_enabled← 0;

Exceptions: Assist emulation trap

0C rv 1 2 0 rv

6 12 5 3 1 5

8-1PA-RISC 1.1 Architecture Debug Special Function Unit

8 Debug Special Function Unit

Introduction
This chapter describes the architecture for the debug special function unit.

The debug special function unit is an optional, architected SFU which provides hardware assistance for
software debugging using breakpoints. The debug SFU is currently defined only for Level 0 processors.

The debug special function unit responds to SFU instructions with an SFU id equal to 1.

Debug Registers
The debug SFU supports separate register sets for data breakpoints and instruction breakpoints.

For both data breakpoints and instruction breakpoints, there are two types of registers – address offset
registers and address mask registers. The address offset and address mask registers are implemented in
pairs – each offset register has a corresponding mask register. There are between 0 and 31 of each type
of register. The number of registers is implementation dependent, but the implemented registers must be
contiguous starting with register 0. The number of instruction register pairs and the number of data
register pairs that exist in each processor are returned by theIDENTIFY DEBUG SFU instruction.

NOTE
The maximum number of registers that can be implemented in each register set is 31, not 32,
because theIDENTIFY DEBUG SFU instruction only contains a five-bit field to return the
number of implemented registers, and 0 indicates that no registers of that type exist.

The data and instruction breakpoint address offset registers (DBAORs and IBAORs) have the same
format and are shown in Figure 8-1.

The breakpoint address offset registers (DBAORs and IBAORs) contain the absolute addresses of the

0 31

DBAOR/IBAOR 0 address offset

DBAOR/IBAOR 1 address offset

DBAOR/IBAOR 2 address offset

•
•
•

DBAOR/IBAOR 29 address offset

DBAOR/IBAOR 30 address offset

Figure 8-1. Data and Instruction Breakpoint Address Offset Registers

8-2 Debug Special Function Unit PA-RISC 1.1 Architecture

breakpoints.

The data breakpoint address mask registers (DBAMRs) contain access-type enable bits and address
mask bits for the breakpoints, as shown in Figure 8-2.

Ther andw bits in each DBAMR determine the type of access this data breakpoint is enabled for. If the
r bit is 1, any non-nullified load or semaphore instruction to an address matching the corresponding
DBAOR will cause a data debug trap (if enabled in the PSW). If thew bit is 1, any non-nullified store or
semaphore instruction or cache purge operation to an address matching the corresponding DBAOR will
cause a data debug trap (if enabled in the PSW). If ther andw bits are both 0, that data breakpoint is
disabled. The data address breakpoint facility does not apply to the flush, probe, insert TLB, purge TLB,
LPA, or LCI instructions, nor to cache purge instructions which perform a flush operation.

Themask field in each DBAMR determines which of the address bits in the corresponding DBAOR will
be compared to determine if there is a match. Each address bit whose correspondingmask bit is 0 must
match for the breakpoint to be signalled. Each address bit whose correspondingmask bit is 1 is ignored
in the comparison. Themask field may contain between 0 and 24 bits. Each implementation may choose
the number ofmask bits to implement – the number that exist in each processor is returned by the SFU
identify instruction. Themask bits that are implemented must be contiguous and begin at bit position
31. Themask bits that are not implemented, as well as the bits markedrv in the mask registers are
reserved bits. Address bits for which there are no correspondingmask bits are always compared. If the
mask field of a mask register has any 1 bits, the corresponding address register must have a 0 in those bit
positions – not doing so is an undefined operation. For example, amask value of 0 means that all 32 bits
of the address are compared whilemask value of 0xFFF causes all addresses within the specified 4KB
page to match.

The instruction breakpoint address mask registers are shown in Figure 8-3.

0 1 2 7 8 31

DBAMR 0 r w rv mask

DBAMR 1 r w rv mask

DBAMR 2 r w rv mask

•
•
•

DBAMR 29 r w rv mask

DBAMR 30 r w rv mask

Figure 8-2. Data Breakpoint Address Mask Registers

8-3PA-RISC 1.1 Architecture Debug Special Function Unit

Thee bit in each IBAMR determines whether this instruction breakpoint is enabled. If thee bit is 1, any
attempt to execute a non-nullified instruction at an address matching the corresponding IBAOR will
cause an instruction debug trap (if enabled in the PSW). Note that all 32 bits (including the privilege
level bits) are included in the instruction address comparison, unless masked as described below. If the
e bit is 0, that instruction breakpoint is disabled.

Themask field in each IBAMR determines which of the address bits in the corresponding IBAOR will
be compared to determine if there is a match. Themask field operates exactly as described earlier for the
mask field in the DBAMRs.

The Instruction Set
The debug SFU instructions are implemented within the generic SFU instruction framework described
in “Special Function Unit (SFU) Instructions” on page 5-177. Eight debug SFU instructions allow
unprivileged access to the debug SFU registers. A ninth new instruction provides the required
IDENTIFY SFU operation which includes fields identifying the version of the debug SFU, the number of
data breakpoint address offset registers (and thus also the number of data mask registers), the number of
instruction breakpoint address offset registers (and thus also the number of instruction mask registers),
and the width of themask field in each mask register, that the processor implements. All nine
instructions must be implemented if the debug SFU is implemented.

Figure 8-4 shows the formats of the debug SFU instructions. The description, operation, mnemonics,
and encodings of the debug SFU instructions are summarized in Table 8-1.

0 1 7 8 31

IBAMR 0 e rv mask

IBAMR 1 e rv mask

IBAMR 2 e rv mask

•
•
•

IBAMR 29 e rv mask

IBAMR 30 e rv mask

Figure 8-3. Instruction Breakpoint Address Mask Registers

Debug Operation One: 1 debug register source, 1 general register destination

04 r rv sub 1 1 0 t

6 5 7 3 2 3 1 5

Debug Operation Two: 1 general register source, 1 debug register destination

04 r rv sub 2 1 0 t

6 5 7 3 2 3 1 5

Figure 8-4. Debug SFU Instruction Formats

8-4 Debug Special Function Unit PA-RISC 1.1 Architecture

When a debug SFU instruction is executed and SCR{1} is 0, the instruction causes an assist emulation
trap. It is an undefined operation to set SCR{1} to 1 if the debug SFU is nonexistent.

Interruptions
Two interruptions are associated with the debug SFU. The instruction debug trap is triggered whenever
the instruction address matches the parameters set up in the debug SFU, the PSW G-bit is 1, and the
PSW Z-bit is 0. The data debug trap is triggered whenever the data address of a load, store, or
semaphore instruction, or a cache purge operation, matches the parameters set up in the debug SFU, the
PSW G-bit is 1, and the PSW Y-bit is 0. See “Interruptions” on page 4-13 for additional details.

Changes to the debug SFU state are not always required to affect whether the immediately following
instructions will trap or not. If the state change affects whether a subsequent instruction would take a
data debug trap, then the change is required to affect the immediately following instruction. However, if
the change affects whether a subsequent instruction would take an instruction debug trap, the change is
not required to affect any instructions until the 8th instruction following theMTIBAO or MTIBAM which
changed the state.

Changes to the PSW G-bit are also not always required to affect whether the immediately following
instructions will trap or not. If the change is made via the system mask instructions, and it affects
whether a subsequent instruction would take an instruction debug trap, the change is not required to
affect any instructions until the 8th instruction following the system mask instruction which changed
the state. Changes to the G-bit due to interruptions or return from interruption instructions, and changes
which affect data debug traps are required to affect the immediately following instruction.

All changes to the PSW Y-bit and PSW Z-bit (due to interruptions or return from interruption

Table 8-1. Debug SFU Instructions

Opcode Format Sub-op Mnemonic Description Operation

04 1

0 DEBUGID Identify debug SFU GR[t]← id number
4 MFDBAO Move from data breakpoint

address offset register
GR[t] ← DBAOR[r]

5 MFDBAM Move from data breakpoint
address mask register

GR[t] ← DBAMR[r]

6 MFIBAO Move from instruction break-
point address offset register

GR[t] ← IBAOR[r]

7 MFIBAM Move from instruction break-
point address mask register

GR[t] ← IBAMR[r]

04 2

4 MTDBAO Move to data breakpoint
address offset register

DBAOR[t] ← GR[r]

5 MTDBAM Move to data breakpoint
address mask register

DBAMR[t] ← GR[r]

6 MTIBAO Move to instruction break-
point address offset register

IBAOR[t] ← GR[r]

7 MTIBAM Move to instruction break-
point address mask register

IBAMR[t] ← GR[r]

8-5PA-RISC 1.1 Architecture Debug Special Function Unit

instructions) are required to affect the immediately following instructions.

Instruction Set Description
The following pages describe the debug SFU instructions.

8-6 Debug Special Function Unit PA-RISC 1.1 Architecture

IDENTIFY DEBUG SFU DEBUGID

Format: DEBUGID t

Purpose: To identify the particular implementation of the debug SFU and its capabilities.

Description: The SFU id number is copied into GRt. The format of the id number is shown below.

The model field returns the implementation-dependent model number. Therevision field
returns the implementation-dependent revision number. Thever field returns the version
of the debug SFU architecture to which this implementation conforms. The only value of
ver currently defined is 0. Theireg field returns the number of instruction breakpoint
address offset registers that have been implemented. Thedreg field returns the number of
data breakpoint address offset registers that have been implemented. Eitherireg or dreg
can be 0 indicating that none of that type of register has been implemented. Themask field
returns the width of the implemented address masks. Amask value of 0 indicates that
address masking is not supported.

If the debug SFU is not present, an assist emulation trap occurs. The assist emulation trap
handler is required to return 0 as the identification number.

Operation: GR[t] ← id number;

Exceptions: Assist emulation trap

Notes: The DEBUGID pseudo operation generates aSPOP1,1,0 t instruction.

04 0 0 0 1 1 0 t

6 5 7 3 2 3 1 5

model revision rv ver ireg dreg mask

6 5 3 3 5 5 5

8-7PA-RISC 1.1 Architecture Debug Special Function Unit

MOVE FROM DATA BREAKPOINT MFDBAM
ADDRESS MASK REGISTER

Format: MFDBAM r,t

Purpose: To move a value to a general register from a data breakpoint address mask register.

Description: DBAMR r is copied into GRt.

If the debug SFU is not present, an assist emulation trap occurs.

Accessing a DBAMR beyond the number implemented is an undefined operation.

Operation: GR[t] ← DBAMR[r];

Exceptions: Assist emulation trap

04 r rv 5 1 1 0 t

6 5 7 3 2 3 1 5

8-8 Debug Special Function Unit PA-RISC 1.1 Architecture

MOVE FROM DATA BREAKPOINT MFDBAO
ADDRESS OFFSET REGISTER

Format: MFDBAO r,t

Purpose: To move a value to a general register from a data breakpoint address offset register.

Description: DBAOR r is copied into GRt.

If the debug SFU is not present, an assist emulation trap occurs.

Accessing a DBAOR beyond the number implemented is an undefined operation.

Operation: GR[t] ← DBAOR[r];

Exceptions: Assist emulation trap

04 r rv 4 1 1 0 t

6 5 7 3 2 3 1 5

8-9PA-RISC 1.1 Architecture Debug Special Function Unit

MOVE FROM INSTRUCTION BREAKPOINT MFIBAM
ADDRESS MASK REGISTER

Format: MFIBAM r,t

Purpose: To move a value to a general register from an instruction breakpoint address mask register.

Description: IBAMR r is copied into GRt.

If the debug SFU is not present, an assist emulation trap occurs.

Accessing an IBAMR beyond the number implemented is an undefined operation.

Operation: GR[t] ← IBAMR[r];

Exceptions: Assist emulation trap

04 r rv 7 1 1 0 t

6 5 7 3 2 3 1 5

8-10 Debug Special Function Unit PA-RISC 1.1 Architecture

MOVE FROM INSTRUCTION BREAKPOINT MFIBAO
ADDRESS OFFSET REGISTER

Format: MFIBAO r,t

Purpose: To move a value to a general register from an instruction breakpoint address offset
register.

Description: IBAOR r is copied into GRt.

If the debug SFU is not present, an assist emulation trap occurs.

Accessing an IBAOR beyond the number implemented is an undefined operation.

Operation: GR[t] ← IBAOR[r];

Exceptions: Assist emulation trap

04 r rv 6 1 1 0 t

6 5 7 3 2 3 1 5

8-11PA-RISC 1.1 Architecture Debug Special Function Unit

MOVE TO DATA BREAKPOINT MTDBAM
ADDRESS MASK REGISTER

Format: MTDBAM r,t

Purpose: To move a value from a general register to a data breakpoint address mask register.

Description: GR r is copied into DBAMRt.

If the debug SFU is not present, an assist emulation trap occurs.

Accessing a DBAMR beyond the number implemented is an undefined operation.

Operation: DBAMR[t] ← GR[r];

Exceptions: Assist emulation trap

04 r rv 5 2 1 0 t

6 5 7 3 2 3 1 5

8-12 Debug Special Function Unit PA-RISC 1.1 Architecture

MOVE TO DATA BREAKPOINT MTDBAO
ADDRESS OFFSET REGISTER

Format: MTDBAO r,t

Purpose: To move a value from a general register to a data breakpoint address offset register.

Description: GR r is copied into DBAORt.

If the debug SFU is not present, an assist emulation trap occurs.

Accessing a DBAOR beyond the number implemented is an undefined operation.

Operation: DBAOR[t] ← GR[r];

Exceptions: Assist emulation trap

04 r rv 4 2 1 0 t

6 5 7 3 2 3 1 5

8-13PA-RISC 1.1 Architecture Debug Special Function Unit

MOVE TO INSTRUCTION BREAKPOINT MTIBAM
ADDRESS MASK REGISTER

Format: MTIBAM r,t

Purpose: To move a value from a general register to an instruction breakpoint address mask register.

Description: GR r is copied into IBAMRt.

If the debug SFU is not present, an assist emulation trap occurs.

Accessing an IBAMR beyond the number implemented is an undefined operation.

Operation: IBAMR[t] ← GR[r];

Exceptions: Assist emulation trap

04 r rv 7 2 1 0 t

6 5 7 3 2 3 1 5

8-14 Debug Special Function Unit PA-RISC 1.1 Architecture

MOVE TO INSTRUCTION BREAKPOINT MTIBAO
ADDRESS OFFSET REGISTER

Format: MTIBAO r,t

Purpose: To move a value from a general register to an instruction breakpoint address offset
register.

Description: GR r is copied into IBAORt.

If the debug SFU is not present, an assist emulation trap occurs.

Accessing an IBAOR beyond the number implemented is an undefined operation.

Operation: IBAOR[t] ← GR[r];

Exceptions: Assist emulation trap

04 r rv 6 2 1 0 t

6 5 7 3 2 3 1 5

A-1PA-RISC 1.1 Architecture Glossary

A Glossary

Absolute Address

See Physical Address.

Access Rights

A function of virtual address translation that controls access to each page through privilege levels
for read, write, execute, and gateway. The TLB contains, within each entry, information used to
determine who may have access to that page. This information is divided into two groups: (1) page
access (access ID) which is used to determine if a process or user may access a page; and (2) the
access rights field that is combined with the user’s privilege level to determine if the type of access
the user is requesting will be allowed.

Address

PA-RISC is a byte-addressable system which uses both virtual and absolute addresses. A virtual
address can be split into two parts: the high-order bits which are the space identifier and the 32
low-order bits that give the offset within the space. Absolute addresses do not have space
identifiers; only a 32-bit offset. Doublewords, words, and halfwords are always located at
addresses which are aligned to their size (in bytes). Quadwords are aligned on doubleword
boundaries.

Address Translation

For a virtual memory system, the process whereby the virtual (logical) address of data or
instructions is translated to its absolute address in physical memory.

Aliasing

The condition when the same physical memory location is accessed by different virtual addresses
or by both an absolute and a virtual address.

Alter

The action of setting the E-bit of a TLB entry to 0 and modifying some portion of the physical
page number field. Altered entries in the TLB are still visible to software through the insert TLB
protection instructions.

Architecture

Refers to the time independent functional appearance of a computer system. An implementation of
an architecture is an ensemble of hardware, firmware, and software that provides all the functions
as defined in the architecture.

A-2 Glossary PA-RISC 1.1 Architecture

Arithmetic and Logical Unit (ALU)

The part of a PA-RISC processor that performs arithmetic and logic operations on its inputs,
producing output and status information.

Assist Processor

A processor which may be added to the basic PA-RISC system to enhance performance or
functionality for algorithms which experience substantial gains from the use of specialized
hardware. Assist processors are differentiated by the level at which they interface with the
memory hierarchy. (See special function units and coprocessors).

B-bit (Taken Branch in Previous Cycle)

A bit in the PSW that is 1 if the previous instruction was a taken branch.

Base Register

A register that holds the numeric value that is used as a base value in the calculation of addresses.
Displacements or index values are added to this base value.

Base-Relative Branch

When a general register is used as the base offset to obtain the target address, the branch is called
base relative.

Biased Exponent

The exponent field for a floating-point number. It consists of the exponent plus the bias.

Binary Floating-point Number

A number format consisting of the three components: sign, exponent, and significand.

Block TLB

A block TLB provides address translations which map address ranges larger than a page.

Byte

A group of eight contiguous bits which is the smallest addressable unit on a PA-RISC system.

C-bit (Code Address Translation Enable)

A bit in the PSW that specifies whether virtual address translation of the instruction address is to
be performed.

Cache

A high-speed buffer unit between main memory and the CPU. The cache is continually updated to
contain recently accessed contents of main memory to reduce access time. When a program makes
a memory request, the CPU first checks to see if the data is in the cache so that it can be retrieved
without accessing memory. There may be one cache for both instructions and data or separate
caches for each.

A-3PA-RISC 1.1 Architecture Glossary

Cache Coherence

The property of multiple caches whereby they provide identical shared memory images.
Processors in a multiprocessor system are said to be cache coherent if they provide the image of
single cache.

Cache Control Hint

A 2-bit field in some memory reference instructions which provides a hint to the processor on how
to resolve cache coherence. The processor may disregard the hint without compromising system
integrity, but performance may be enhanced by following the hint.

Cache Miss

A cache miss occurs when the cache does not contain a copy of the cache line being requested by
the address. The cache is updated with data and re-accessed.

Carry/Borrow Bits

An 8-bit field in the PSW that indicates if a carry or borrow occurred from the corresponding
nibble (4 bits) as a result of the previous arithmetic operation.

Central Processing Unit (CPU)

The part of a PA-RISC processor that fetches and executes instructions.

Check

The interruption condition when the processor detects an internal or external malfunction. Checks
may be either synchronous or asynchronous with respect to the instruction stream.

Coherence Check

An action taken by hardware to insure coherence.

Combined TLB

Some systems have a combined TLB which provides address translation for both instruction and
data references.

Compatibility

The ability for software developed for one machine type to execute on another machine type. PA-
RISC provides compatible execution of application programs written for earlier-generation
Hewlett-Packard computer systems.

Completer

A machine instruction field used to specify instruction options. Typical options include address
modification, address indexing, precision of operands, and conditions to be tested to determine
whether to nullify the following instruction.

A-4 Glossary PA-RISC 1.1 Architecture

Condition

The state of a value or a relationship between values used in determining whether an instruction is
to branch, nullify, or trap.

Control Register (CR)

A register which contains system state information used for memory access protection,
interruption control, and processor state control. A PA-RISC processor contains 25 control
registers (7 more are reserved).

Coprocessor

A type of assist processor which interfaces to the memory hierarchy at the level of the cache.
Coprocessors are special purpose units that work with the main processor to speed up specialized
operations such as floating-point arithmetic and graphics processing. Coprocessors generally have
their own internal state and hardware evaluation mechanism.

Coprocessor Configuration Register (CCR)

The CCR (in CR 10) is an 8-bit register which records the presence and usability of coprocessors.
Each bit position (0-7) corresponds to the coprocessor with the same unit number. Setting a bit in
the CCR to 1 enables the use of the corresponding coprocessor, if present and operational. If a
CCR bit is 0, the corresponding coprocessor, if present, is logically decoupled and an attempt to
reference the coprocessor causes an assist emulation trap.

Current Instruction

The instruction whose address is in the front element of the instruction address queues (IASQ and
IAOQ).

D-bit (Data Address Translation Enable)

A bit in the PSW that specifies whether virtual address translation of data addresses is to be
performed.

Data Cache (D-cache)

A high-speed storage device which contains data items that have been recently accessed from
main memory. The D-cache can be accessed independently of the instruction cache (I-cache) and
no synchronization is performed.

Data TLB (DTLB)

A separate TLB which does address translation only for data.

Denormalized Numbers

Any non-zero floating-point number with the exponent field all zeros. Denormalized numbers are
distinguished from normal numbers in that the value of the "hidden" bit to the left of the implied
binary point is zero.

A-5PA-RISC 1.1 Architecture Glossary

Dirty

A block of memory (commonly a cache line or a page) which has been written to is referred to as
dirty.

Displacement

The amount that is added to a base register to form an offset in the virtual address computation.

Dynamic Displacement

If the displacement value is computed during the course of program execution and is obtained
from a general register, it is called dynamic.

E-bit (Little Endian Memory Access Enable)

A bit in the PSW which determines whether memory references assume big endian or little endian
byte ordering.

Effective Address

The address of the operand for the current instruction, derived by applying specific address
building rules.

Equivalently Aliased

A condition when two virtual addresses map to the same physical address, and where the two
addresses are identical in the following bits: Offset bits 12 through 31. If the use of space bits in
generating the cache index is enabled, the addresses must also be identical in these bits: Space
Identifier bits 4 through 7, 12 through 15, and 20 through 31.

Equivalently Mapped

A condition when a virtual address is equal to its absolute address.

Exponent

The part of a binary floating-point number that normally signifies the integer power to which two
is raised in determining the value of the represented number.

External Branch Instructions

The target of these instructions may lie in a different address space than that of the instruction. The
external branch instructions are:BE andBLE.

External Interrupt Enable Mask (EIEM)

The EIEM (CR 15) is a 32-bit register containing one bit for each external interrupt class. When
set to 0, bits in the EIEM mask interruptions pending for the external interrupts corresponding to
those bit positions.

A-6 Glossary PA-RISC 1.1 Architecture

External Interrupt Request Register (EIR)

The EIR register (CR 23) is a 32-bit register containing one bit for each external interrupt. When
set to 1, a bit designates that an interruption is pending for the corresponding external interrupt.

F-bit (Performance Monitor Interruption Unmask)

A bit in the PSW used to unmask the performance monitor interruption.

Fault

The interruption condition when the current instruction requests a legitimate action which cannot
be carried out due to a system problem such as the absence of a main memory page. After the
system problem is cleared, the faulting instruction will execute normally. Faults are synchronous
with respect to the instruction stream.

Floating-point Register (FPR)

A storage unit which constitutes the basic resource of the floating-point coprocessor. Floating-
point registers are at the highest level of memory hierarchy and are used to load data from and
store data to memory and hold operands and results of the floating-point coprocessor. The floating-
point coprocessor contains 32 double-precision (64-bit) floating-point registers which may also be
accessed as 64 single-precision (32-bit), or 16 quad-precision (128-bit) registers.

Following Instruction

The instruction whose address is in the back element of the instruction address queues (IASQ and
IAOQ). This instruction will be executed after the current instruction. This instruction is not
necessarily the next instruction in the linear code space.

Fraction

The portion of the significand explicitly contained in a binary floating-point number. The rest of
the significand is the "hidden" bit to the left of the implied binary point. The "hidden" bit normally
has the value one.

G-bit (Debug Trap Enable)

A bit in the PSW used to enable data and instruction debug traps.

General Register (GR)

A storage unit which constitutes the basic resource of the CPU. General registers are at the highest
level of memory hierarchy and are used to load data from and store data to memory and hold
operands and results from the ALU. A PA-RISC processor contains 32 general registers.

H-bit (Higher Privilege Transfer Trap Enable)

A bit in the PSW that enables an interruption whenever the following instruction will execute at a
higher privilege level.

A-7PA-RISC 1.1 Architecture Glossary

High-Priority Machine Check (HPMC)

An interruption which occurs when a hardware error has been detected which requires immediate
attention.

I-bit (External, Power Failure, and LPMC Interruption Unmask)

A bit in the PSW used to unmask external interrupts, power failure interrupts, and low-priority
machine check interruptions.

IAOQ (Instruction Address Offset Queue)

A two-element queue of 32-bit registers that is used to hold the Instruction Address offset (IA
offset). The first element is IAOQ_Front and holds the IA offset of the current instruction. The
other element is IAOQ_Back and holds the IA offset of the following instruction.

IA-Relative Branches

When a displacement is added to the current Instruction Address offset (IA offset) to obtain the
target address, the branch is called IA relative.

IASQ (Instruction Address Space Queue)

A two-element queue of 16-, 24-, or 32-bit registers that is used to hold the Instruction Address
space (IA space). The first element is IASQ_Front and holds the IA space of the current
instruction. The other element is IASQ_Back and holds the IA space of the following instruction.

IIAOQ (Interruption Instruction Address Offset Queue)

A two-element queue of 32-bit registers that is used to save the Instruction Address offset for use
in processing interruptions.

IIASQ (Interruption Instruction Address Space Queue)

A two-element queue of 16-, 24-, or 32-bit registers that is used to save the Instruction Address
space for use in processing interruptions.

Infinity

The binary floating-point numbers that have all ones in the exponent and all zeros in the fraction.
The values of these two numbers are distinguished only by the sign. Thus, they are +∞ and− ∞.

Instruction Cache (I-cache)

A high-speed storage device that contains instructions that have been recently accessed from main
memory. The I-cache can be accessed independently of the data cache (D-cache) and no
synchronization is performed.

Instruction TLB (ITLB)

A separate TLB which does address translation only for instructions.

A-8 Glossary PA-RISC 1.1 Architecture

Interrupt

The interruption condition when an external entity (such as an I/O device or the power supply)
requires attention. Interrupts are asynchronous with respect to the instruction stream.

Interruption

An event that changes the instruction stream to handle exceptional conditions including traps,
checks, faults, and interrupts.

Interruption Instruction Register (IIR)

The IIR (CR 19) is used by the hardware to store the instruction that caused the interruption or the
instruction that was in progress at the time the interruption occurred.

Interruption Offset Register (IOR)

The IOR (CR 21) receives a copy of the offset portion of a virtual address at the time of an
interruption whenever the PSW Q-bit is 1. The value copied is dependent upon the type of
interruption.

Interruption Parameter Registers (IPRs)

The Interruption Instruction Register or IIR (CR 19), Interruption Space Register or ISR (CR 20),
and Interruption Offset Register or IOR (CR 21) are collectively termed the Interruption Parameter
Registers or IPRs. They are used to pass the interrupted instruction and a virtual address to an
interruption handler. These registers are set (or frozen) at the time of an interruption when the
PSW Q-bit is 1. The IPRs can be read reliably only when the PSW Q-bit is 0. The values saved in
these registers are dependent upon the type of interruption.

Interruption Processor Status Word (IPSW)

The IPSW (CR 22) receives the value of the PSW when an interruption occurs. The layout of
IPSW is identical to that of PSW and it always reflects the machine state at the point of
interruption.

Interruption Space Register (ISR)

The ISR (CR 20) receives a copy of the space portion of a virtual address at the time of an
interruption whenever the PSW Q-bit is 1. The value copied is dependent upon the type of
interruption.

Interruption Vector Address (IVA)

The IVA (CR 14) contains the absolute address of an array of service procedures assigned to
interruptions.

Interspace Branches

When the target of the branch lies in a different address space as that of the branch instruction, it is
referred to as an interspace branch.

A-9PA-RISC 1.1 Architecture Glossary

Intraspace Branches

When the target of the branch lies in the same address space as that of the branch instruction, it is
referred to as an intraspace branch.

Interval Timer

Two internal registers which are both accessed through Control Register 16. The Interval Timer is
a free-running counter that signals an interruption when equal to a comparison value.

Invalidate

The action of setting the E-bit of a TLB entry to a 0, leaving the virtual page number and physical
page number fields unchanged. Invalid entries in the TLB are still visible to software through
insert TLB protection instructions.

L-bit (Lower Privilege Transfer Trap Enable)

A bit in the PSW that enables an interruption whenever the following instruction will execute at a
lower privilege level.

Levels of Processor Architecture

Four levels of the processor architecture have been defined: 0, 1, 1.5, and 2. Level 0 systems
support absolute memory addressing only; virtual memory is not supported, and so space
identifiers are not used. Level 1, 1.5, and 2 systems have virtual addressing and differ only in the
number of significant bits in their space identifiers. They have 216, 224, and 232 virtual spaces,
respectively.

Local Branch Instructions

The target of these instructions always lie in the same address space as that of the instruction. The
local branch instructions are:BL, GATE, BLR, BV, MOVB, MOVIB, COMBT, COMBF, COMIBT,
COMIBF, ADDBT, ADDBF, ADDIBT, ADDIBF, BB, andBVB.

Long Pointer

A virtual pointer which is made up of a space identifier and a 32-bit byte offset within the virtual
space.

Low-Priority Machine Check (LPMC)

An interruption which occurs when a recoverable hardware error has been detected.

M-bit (High-Priority Machine Check Mask)

A bit in the PSW that disables the recognition of an HPMC.

Many-Reader/One-Writer Non-Equivalent Aliasing

A condition where multiple virtual addresses are non-equivalent aliases. Generally, before
enabling a write-capable translation, any non-equivalent read-only aliases must be disabled, and
the affected address range flushed from the cache. Similarly, before re-enabling the read

A-10 Glossary PA-RISC 1.1 Architecture

translation(s), the write-capable translation must be disabled, and the affected address range
flushed from the cache.

Memory

A device capable of storing information in binary form. The term "memory" typically refers to
main memory.

Memory Address Space

The memory address space consists of absolute addresses in the range 0x00000000 through
0xEFFFFFFF.

Memory-mapped I/O

Control of input and output through load and store instructions to particular virtual or physical
addresses.

Move-in

The action of bringing data or instructions into a cache.

Multiprocessor

A computer with multiple processors.

NaN

The binary floating-point numbers that have all ones in the exponent and a non-zero fraction. NaN
is the term used for a binary floating-point number that has no value (i.e., "Not a Number"). The
two types of NaNs, quiet and signaling, are distinguished by the value of the most significant bit in
the fraction field. A zero indicates a quiet NaN and a one indicates a signaling NaN.

Non-Equivalently Aliased

A condition when two virtual addresses map to the same physical address, but do not meet the
requirements for equivalently aliased addresses. (See “Equivalently Aliased” on page A-5.)

Nullify

To nullify an instruction is equivalent to skipping over that instruction. A nullified instruction has
no effect on the machine state (except that the IA queues advance and the PSW B, N, X, Y, and Z
bits are set to 0). The current instruction is nullified when the PSW N-bit is 1.

P-bit (Protection Identifier Validation Enable)

A bit in the PSW that is used as a protection identifier validation enable bit. If the P-bit is 1, the
Protection Identifiers in control registers 8, 9, 12, and 13 are used to enforce protection.

Page

Virtual memory is partitioned into pages which can be resident in matching size blocks (called
page frames) in memory. The page size is 4096 bytes (4 Kbytes).

A-11PA-RISC 1.1 Architecture Glossary

Page Group

Eight contiguous pages, with the first of these pages beginning on a 32-Kbyte boundary.

Physical Address

The address that is the result of the virtual address translation or any address that is not translated.
A physical address is the concatenation of the physical page number and the offset. Physical
addresses are also referred to as absolute addresses.

Physical Page Directory (PDIR)

A table which is used to perform virtual address translations. The PDIR contains virtual address
translations that either the TLB miss software or hardware will load into the TLB.

Privilege Level

The PA-RISC access control mechanisms are based on 4 privilege levels numbered from 0 to 3,
with 0 being the most privileged. The current privilege level is maintained in the front element of
the Instruction Address Offset Queue (IAOQ_Front).

Processor Status Word (PSW)

A 32-bit register which contains information about the processor state.

Q-bit (Interruption State Collection Enable)

A bit in the PSW that, when set to 1, enables collection of the machine state at the instant of
interruption (IIASQ, IIAOQ, IIR, ISR, and IOR).

R-bit (Recovery Counter Enable)

A bit in the PSW that enables recovery counter trapping and decrementing of the Recovery
Counter.

Read-Only Non-Equivalent Aliasing

A condition where multiple virtual addresses map to the same physical address, and where each
virtual address has a read-only translation.

Read-Only Translation

A virtual address translation for which either the D-bit is equal to 0, or the page type in the access
rights field is 0, 2, 4, 5, 6, or 7, in both the TLB and the page table. (See “Equivalently Aliased” on
page A-5.)

Recovery Counter

The Recovery Counter (CR 0) counts down by 1 during execution of each non-nullified instruction
for which the PSW R-bit is 1.

A-12 Glossary PA-RISC 1.1 Architecture

Remove

The action of taking a TLB entry out of the TLB. Insertion of translations into the TLB, for
example, causes other entries to be removed.

S-bit (Secure Interval Timer)

A bit in the PSW that, when set to 1, allows the Interval Timer to be read only by code executing at
the most privileged level.

SFU Configuration Register (SCR)

The SCR (in CR 10) is an 8-bit register which records the presence and usability of SFUs (Special
Function Units), Each bit position (0-7) corresponds to the SFU with the same unit number.
Setting a bit in the SCR to 1 enables the use of the corresponding SFU if present and operational.
If a SCR bit is 0, the corresponding SFU if present, is logically decoupled and an attempt to
reference the SFU causes an assist emulation trap.

Shadow Register (SHR)

A register into which the contents of a general register are copied upon interruptions. A PA-RISC
processor contains 7 shadow registers which receive the contents of GRs 1, 8, 9, 16, 17, 24, and
25. The contents of the shadow registers are copied back to these GRs by theRETURN FROM
INTERRUPTION AND RESTORE instruction.

Shift Amount Register (SAR)

The SAR (CR 11) is used by the variable shift, extract, deposit, and branch on bit instructions. It
specifies the number of bits or the ending bit position of a quantity that is to be shifted, extracted
or deposited.

Short Pointer

A 32-bit pointer used in virtual addressing. The two high-order bits point to one of four virtual
address spaces. Following the determination of the virtual address space, all 32 bits are used to
specify the byte offset within that space.

Sign

A one bit field in which one indicates a negative value and zero indicates a positive value.

Significand

The component of a binary floating-point number that consists of the implicit (or "hidden")
leading bit to the left of the implied binary point together with the fraction field to its right.

Space Identifier (Space ID)

A 16-, 24-, or 32-bit value which occupies the upper portion of a virtual address and specifies the
virtual space portion of the virtual address.

A-13PA-RISC 1.1 Architecture Glossary

Space Register (SR)

A register used to specify the space identifier for virtual addressing. A PA-RISC processor
contains 8 space registers.

Special Function Unit (SFU)

A type of assist processor which interfaces to the memory hierarchy at the general register level. It
acts as an alternate ALU for the main processor and may have its own internal state.

Static Displacement

If the displacement is a fixed value that is known at compile time, it is called static.

Strong Ordering

The property that accesses to storage, such as loads and stores, appear to software to be done in
program order. In multiprocessing systems, strong ordering means that accesses by a given
processor appear to that processor as well as to all other processors in the system, to be done in
program order.

System Mask

The G, F, R, Q, P, D, and I bits of the PSW are known as the system mask. Each of these bits, with
the exception of the Q-bit, may be set to 1, set to 0, written, and read by the system control
instructions that manipulate the system mask.

T-bit (Taken Branch Trap Enable)

A bit in the PSW that enables the taken branch trap.

Taken Branch

Conditional branches are considered to be "taken" if the specified condition is met. Unconditional
branches are always "taken".

TLB Entry

A virtual to physical address translation, either valid or invalid, which is present in the TLB.
Entries are visible to software through either references (such as loads, stores, and semaphores) or
insert TLB protection instructions (IITLBP andIDTLBP).

TLB Miss Handling

The action taken, either by hardware or software, on a TLB miss. This involves inserting the
missing translation into the proper TLB.

TLB Miss

The condition when there is no entry in the TLB matching the current virtual page number. In this
case, the TLB is updated either by software or by hardware.

A-14 Glossary PA-RISC 1.1 Architecture

TLB Slot

A hardware resource in the TLB which holds a TLB entry.

Translation Lookaside Buffer (TLB)

A hardware unit which serves as a cache for virtual-to-absolute memory address mapping. When a
memory reference is made to a given virtual address, the virtual page number is passed to the TLB
and the TLB is searched for an entry matching the virtual page number. If the entry exists, the 20-
bit absolute page number (contained in the entry) is concatenated with the 12-bit page offset from
the original virtual address to form a 32-bit absolute address.

Trap

The interruption condition when either (1) the function requested by the current instruction cannot
or should not be carried out, or (2) system intervention is requested by the user before or after the
instruction is executed.

Virtual Addressing

A capability that eliminates the need to assign programs to fixed locations in main memory.
Addresses supplied by a program are treated as logical addresses which are translated to absolute
addresses when physical memory is addressed.

Write-Capable Translation

A translation which does not meet the requirement of a read-only translation. (See “Read-Only
Translation” on page A-11.)

Write Disable (WD) Bit

The low-order bit of each of the four protection identifiers (PIDs) which, when 1, disables the use
of that PID for validating write accesses.

X-bit (Data Memory Break Disable)

A bit in the PSW that disables the data memory break trap if equal to 1. A data memory break trap
happens if a write is attempted to a page whose TLB B-bit is 1.

Y-bit (Data Debug Trap Disable)

A bit in the PSW that disables the data debug trap if equal to 1. A data debug trap happens if a
memory reference is performed to an address which matches an enabled data breakpoint.

Z-bit (Instruction Debug Trap Disable)

A bit in the PSW that disables the instruction debug trap if equal to 1. An instruction debug trap
happens if an attempt is made to execute an instruction at an address which matches an enabled
instruction breakpoint.

B-1PA-RISC 1.1 Architecture Instruction Index

B Instruction Index

ADD (ADD) . .5-83
ADD AND BRANCH (ADDB). .5-75
ADD AND BRANCH IF FALSE (ADDBF). .5-76
ADD AND BRANCH IF TRUE (ADDBT) . .5-75
ADD AND TRAP ON OVERFLOW (ADDO) .5-85
ADD IMMEDIATE AND BRANCH (ADDIB) .5-77
ADD IMMEDIATE AND BRANCH IF FALSE (ADDIBF) .5-78
ADD IMMEDIATE AND BRANCH IF TRUE (ADDIBT) . .5-77
ADD IMMEDIATE LEFT (ADDIL) .5-57
ADD LOGICAL (ADDL) .5-84
ADD TO IMMEDIATE (ADDI) . 5-115
ADD TO IMMEDIATE AND TRAP ON CONDITION (ADDIT) . 5-117
ADD TO IMMEDIATE AND TRAP ON CONDITION OR OVERFLOW (ADDITO). 5-118
ADD TO IMMEDIATE AND TRAP ON OVERFLOW (ADDIO) . 5-116
ADD WITH CARRY (ADDC) . .5-86
ADD WITH CARRY AND TRAP ON OVERFLOW (ADDCO) . .5-87
AND (AND) . 5-107
AND COMPLEMENT (ANDCM) . 5-108
BRANCH (B) . .5-62
BRANCH AND LINK (BL) .5-62
BRANCH AND LINK EXTERNAL (BLE) . .5-68
BRANCH AND LINK REGISTER (BLR) .5-65
BRANCH EXTERNAL (BE). .5-67
BRANCH ON BIT (BB) . .5-80
BRANCH ON VARIABLE BIT (BVB) . .5-79
BRANCH VECTORED (BV) .5-66
BREAK (BREAK). .5-138
COMPARE AND BRANCH (COMB) .5-71
COMPARE AND BRANCH IF FALSE (COMBF) .5-72
COMPARE AND BRANCH IF TRUE (COMBT) . .5-71
COMPARE AND CLEAR (COMCLR) . 5-104
COMPARE IMMEDIATE AND BRANCH (COMIB) . .5-73
COMPARE IMMEDIATE AND BRANCH IF FALSE (COMIBF) . .5-74
COMPARE IMMEDIATE AND BRANCH IF TRUE (COMIBT) .5-73
COMPARE IMMEDIATE AND CLEAR (COMICLR) . 5-121
COPROCESSOR LOAD DOUBLEWORD INDEXED (CLDDX) . 5-188
COPROCESSOR LOAD DOUBLEWORD SHORT (CLDDS). . 5-192
COPROCESSOR LOAD WORD INDEXED (CLDWX). . 5-187
COPROCESSOR LOAD WORD SHORT (CLDWS) . 5-191
COPROCESSOR OPERATION (COPR) . 5-186
COPROCESSOR STORE DOUBLEWORD INDEXED (CSTDX). 5-190
COPROCESSOR STORE DOUBLEWORD SHORT (CSTDS) . 5-194
COPROCESSOR STORE WORD INDEXED (CSTWX) . 5-189
COPROCESSOR STORE WORD SHORT (CSTWS) . 5-193
COPY (COPY) . 5-105

B-2 Instruction Index PA-RISC 1.1 Architecture

DECIMAL CORRECT (DCOR). .5-112
DEPOSIT (DEP) . 5-129
DEPOSIT IMMEDIATE (DEPI). . 5-131
DIAGNOSE (DIAG) . 5-175
DIVIDE STEP (DS) . 5-103
EXCLUSIVE OR (XOR) . 5-106
EXTRACT SIGNED (EXTRS) . 5-127
EXTRACT UNSIGNED (EXTRU) . 5-126
FIXED-POINT MULTIPLY UNSIGNED (XMPYU) . 6-59
FLOATING-POINT ABSOLUTE VALUE (FABS). . 6-50
FLOATING-POINT ADD (FADD) . 6-53
FLOATING-POINT COMPARE (FCMP) . 6-60
FLOATING-POINT CONVERT FROM FIXED-POINT TO FLOATING-POINT (FCNVXF) 6-46
FLOATING-POINT CONVERT FROM FLOATING-POINT TO FIXED-POINT (FCNVFX) 6-47
FLOATING-POINT CONVERT FROM FLOATING-POINT TO FIXED-POINT AND TRUNCATE (FCNVFXT)

6-48
FLOATING-POINT CONVERT FROM FLOATING-POINT TO FLOATING-POINT (FCNVFF) 6-45
FLOATING-POINT COPY (FCPY) . 6-49
FLOATING-POINT DIVIDE (FDIV) . 6-56
FLOATING-POINT IDENTIFY (COPR,0,0). . 6-63
FLOATING-POINT LOAD DOUBLEWORD INDEXED (FLDDX) 6-38
FLOATING-POINT LOAD DOUBLEWORD SHORT (FLDDS) . 6-42
FLOATING-POINT LOAD WORD INDEXED (FLDWX) . 6-37
FLOATING-POINT LOAD WORD SHORT (FLDWS). . 6-41
FLOATING-POINT MULTIPLY (FMPY) . 6-55
FLOATING-POINT MULTIPLY/ADD (FMPYADD) . 6-57
FLOATING-POINT MULTIPLY/SUBTRACT (FMPYSUB) . 6-58
FLOATING-POINT ROUND TO INTEGER (FRND) . 6-52
FLOATING-POINT SQUARE ROOT (FSQRT) . 6-51
FLOATING-POINT STORE DOUBLEWORD INDEXED (FSTDX) 6-40
FLOATING-POINT STORE DOUBLEWORD SHORT (FSTDS). . 6-44
FLOATING-POINT STORE WORD INDEXED (FSTWX). . 6-39
FLOATING-POINT STORE WORD SHORT (FSTWS) . 6-43
FLOATING-POINT SUBTRACT (FSUB) . 6-54
FLOATING-POINT TEST (FTEST). . 6-62
FLUSH DATA CACHE (FDC) . 5-171
FLUSH DATA CACHE ENTRY (FDCE) . 5-173
FLUSH INSTRUCTION CACHE (FIC) . 5-172
FLUSH INSTRUCTION CACHE ENTRY (FICE) . 5-174
GATEWAY (GATE) . 5-63
IDENTIFY COPROCESSOR (COPR,0,0) . 5-186
IDENTIFY DEBUG SFU (DEBUGID) . 8-6
IDENTIFY SFU (SPOP1,sfu,0) . 5-183
INCLUSIVE OR (OR) . 5-105
INSERT DATA TLB ADDRESS (IDTLBA) . 5-165
INSERT DATA TLB PROTECTION (IDTLBP) . 5-167
INSERT INSTRUCTION TLB ADDRESS (IITLBA). . 5-166
INSERT INSTRUCTION TLB PROTECTION (IITLBP). . 5-168
INTERMEDIATE DECIMAL CORRECT (IDCOR) . .5-114
LOAD AND CLEAR WORD INDEXED (LDCWX). . 5-40

B-3PA-RISC 1.1 Architecture Instruction Index

LOAD AND CLEAR WORD SHORT (LDCWS) . .5-46
LOAD BYTE (LDB) . .5-30
LOAD BYTE INDEXED (LDBX) .5-38
LOAD BYTE SHORT (LDBS). .5-44
LOAD COHERENCE INDEX (LCI) . 5-160
LOAD HALFWORD (LDH) . .5-29
LOAD HALFWORD INDEXED (LDHX) .5-37
LOAD HALFWORD SHORT (LDHS) . .5-43
LOAD IMMEDIATE (LDI) .5-55
LOAD IMMEDIATE LEFT (LDIL) . .5-56
LOAD OFFSET (LDO) .5-55
LOAD PHYSICAL ADDRESS (LPA) . 5-158
LOAD SPACE IDENTIFIER (LDSID) . 5-146
LOAD WORD (LDW) . .5-28
LOAD WORD ABSOLUTE INDEXED (LDWAX) . .5-39
LOAD WORD ABSOLUTE SHORT (LDWAS). .5-45
LOAD WORD AND MODIFY (LDWM) . .5-34
LOAD WORD INDEXED (LDWX) .5-36
LOAD WORD SHORT (LDWS) . .5-42
MOVE AND BRANCH (MOVB) .5-69
MOVE FROM CONTROL REGISTER (MFCTL). . 5-151
MOVE FROM DATA BREAKPOINT ADDRESS MASK REGISTER (MFDBAM) 8-7
MOVE FROM DATA BREAKPOINT ADDRESS OFFSET REGISTER (MFDBAO). 8-8
MOVE FROM INSTRUCTION BREAKPOINT ADDRESS MASK REGISTER (MFIBAM) 8-9
MOVE FROM INSTRUCTION BREAKPOINT ADDRESS OFFSET REGISTER (MFIBAO) 8-10
MOVE FROM SPACE REGISTER (MFSP). . 5-150
MOVE IMMEDIATE AND BRANCH (MOVIB) .5-70
MOVE TO CONTROL REGISTER (MTCTL) . 5-148
MOVE TO DATA BREAKPOINT ADDRESS MASK REGISTER (MTDBAM)8-11
MOVE TO DATA BREAKPOINT ADDRESS OFFSET REGISTER (MTDBAO) 8-12
MOVE TO INSTRUCTION BREAKPOINT ADDRESS MASK REGISTER (MTIBAM). 8-13
MOVE TO INSTRUCTION BREAKPOINT ADDRESS OFFSET REGISTER (MTIBAO)8-14
MOVE TO SHIFT AMOUNT REGISTER (MTSAR) . 5-149
MOVE TO SPACE REGISTER (MTSP) . 5-147
MOVE TO SYSTEM MASK (MTSM) . 5-145
NO OPERATION (NOP). . 5-105
PERFORMANCE MONITOR DISABLE (PMDIS) . 7-4
PERFORMANCE MONITOR ENABLE (PMENB) . 7-3
PROBE READ ACCESS (PROBER) . 5-154
PROBE READ ACCESS IMMEDIATE (PROBERI) . 5-155
PROBE WRITE ACCESS (PROBEW) . 5-156
PROBE WRITE ACCESS IMMEDIATE (PROBEWI). . 5-157
PURGE DATA CACHE (PDC). . 5-169
PURGE DATA TLB (PDTLB) . 5-161
PURGE DATA TLB ENTRY (PDTLBE) . 5-163
PURGE INSTRUCTION TLB (PITLB). . 5-162
PURGE INSTRUCTION TLB ENTRY (PITLBE). . 5-164
RESET SYSTEM MASK (RSM). . 5-144
RETURN FROM INTERRUPTION (RFI) . 5-139
RETURN FROM INTERRUPTION AND RESTORE (RFIR) . 5-141

B-4 Instruction Index PA-RISC 1.1 Architecture

SET SYSTEM MASK (SSM) . 5-143
SHIFT DOUBLE (SHD) . 5-123
SHIFT ONE AND ADD (SH1ADD). . 5-88
SHIFT ONE AND ADD LOGICAL (SH1ADDL) . 5-89
SHIFT ONE, ADD AND TRAP ON OVERFLOW (SH1ADDO) . 5-90
SHIFT THREE AND ADD (SH3ADD) . 5-94
SHIFT THREE AND ADD LOGICAL (SH3ADDL) . 5-95
SHIFT THREE, ADD AND TRAP ON OVERFLOW (SH3ADDO). 5-96
SHIFT TWO AND ADD (SH2ADD) . 5-91
SHIFT TWO AND ADD LOGICAL (SH2ADDL) . 5-92
SHIFT TWO, ADD AND TRAP ON OVERFLOW (SH2ADDO). . 5-93
SPECIAL OPERATION ONE (SPOP1) . 5-183
SPECIAL OPERATION THREE (SPOP3). . 5-185
SPECIAL OPERATION TWO (SPOP2) . 5-184
SPECIAL OPERATION ZERO (SPOP0) . 5-182
STORE BYTE (STB). . 5-33
STORE BYTE SHORT (STBS) . 5-50
STORE BYTES SHORT (STBYS) . 5-52
STORE HALFWORD (STH) . 5-32
STORE HALFWORD SHORT (STHS) . 5-49
STORE WORD (STW) . 5-31
STORE WORD ABSOLUTE SHORT (STWAS). . 5-51
STORE WORD AND MODIFY (STWM) . 5-35
STORE WORD SHORT (STWS) . 5-48
SUBTRACT (SUB). .5-97
SUBTRACT AND TRAP ON CONDITION (SUBT). . 5-101
SUBTRACT AND TRAP ON CONDITION OR OVERFLOW (SUBTO). 5-102
SUBTRACT AND TRAP ON OVERFLOW (SUBO) . 5-98
SUBTRACT FROM IMMEDIATE (SUBI) .5-119
SUBTRACT FROM IMMEDIATE AND TRAP ON OVERFLOW (SUBIO) 5-120
SUBTRACT WITH BORROW (SUBB). . 5-99
SUBTRACT WITH BORROW AND TRAP ON OVERFLOW (SUBBO). 5-100
SYNCHRONIZE CACHES (SYNC). . 5-152
SYNCHRONIZE DMA (SYNCDMA). . 5-153
UNIT ADD COMPLEMENT (UADDCM). .5-110
UNIT ADD COMPLEMENT AND TRAP ON CONDITION (UADDCMT). 5-111
UNIT XOR (UXOR) . 5-109
VARIABLE DEPOSIT (VDEP) . 5-128
VARIABLE DEPOSIT IMMEDIATE (VDEPI) . 5-130
VARIABLE EXTRACT SIGNED (VEXTRS) . 5-125
VARIABLE EXTRACT UNSIGNED (VEXTRU) . 5-124
VARIABLE SHIFT DOUBLE (VSHD) . 5-122
ZERO AND DEPOSIT (ZDEP) . 5-133
ZERO AND DEPOSIT IMMEDIATE (ZDEPI). . 5-135
ZERO AND VARIABLE DEPOSIT (ZVDEP) . 5-132
ZERO AND VARIABLE DEPOSIT IMMEDIATE (ZVDEPI) . 5-134

C-1PA-RISC 1.1 Architecture Instruction Formats

C Instruction Formats

The PA-RISC instruction formats are shown below. The most general form of each format is given.
Individual instructions in each class may have reserved or zero fields in place of one or more of the
fields shown.

1. Loads and Stores, Load and Store Word Modify, Load Offset

2. Indexed Loads

3. Short Displacement Loads

4. Short Displacement Stores, Store Bytes Short

5. Long Immediates

6. Arithmetic/Logical

7. Arithmetic Immediate

8. Extract

op b t/r s im14

6 5 5 2 14

op b x s u 0 cc ext4 m t

6 5 5 2 1 1 2 4 1 5

op b im5 s a 1 cc ext4 m t

6 5 5 2 1 1 2 4 1 5

op b r s a 1 cc ext4 m im5

6 5 5 2 1 1 2 4 1 5

op t/r im21

6 5 21

op r2 r1 c f ext6 0 t

6 5 5 3 1 6 1 5

op r t c f e im11

6 5 5 3 1 1 11

op r t c ext3 p clen

6 5 5 3 3 5 5

C-2 Instruction Formats PA-RISC 1.1 Architecture

9. Deposit

10.Shift

11.Conditional Branch

12.Branch External, Branch and Link External

13.Branch and Link, Gateway

14.Branch and Link Register, Branch Vectored

15.Data Memory Management, Probe

16.Instruction Memory Management

17.Break

18.Diagnose

op t r/im5 c ext3 cp clen

6 5 5 3 3 5 5

op r2 r1 c ext3 cp t

6 5 5 3 3 5 5

op r2/p r1/im5 c w1 n w

6 5 5 3 11 1 1

op b w1 s w2 n w

6 5 5 3 11 1 1

op t w1 ext3 w2 n w

6 5 5 3 11 1 1

op t/b x ext3 0 n 0

6 5 5 3 11 1 1

op b r/x/im5 s ext8 m t

6 5 5 2 8 1 5

op b r/x/im5 s ext7 m 0

6 5 5 3 7 1 5

op im13 ext8 im5

6 13 8 5

op im26

6 26

C-3PA-RISC 1.1 Architecture Instruction Formats

19.Move to/from Space Register

20.Load Space ID

21.Move to Control Register

22.Move from Control Register

23.System Control

24.Special Operation Zero

25.Special Operation One

26.Special Operation Two

27.Special Operation Three

28.Coprocessor Operation

op rv r s ext8 t

6 5 5 3 8 5

op b rv s 0 ext8 t

6 5 5 2 1 8 5

op t r rv ext8 0

6 5 5 3 8 5

op r 0 rv ext8 t

6 5 5 3 8 5

op b r/im5 0 ext8 t

6 5 5 3 8 5

op sop1 0 sfu n sop2

6 15 2 3 1 5

op sop 1 sfu n t

6 15 2 3 1 5

op r sop1 2 sfu n sop2

6 5 10 2 3 1 5

op r2 r1 sop1 3 sfu n sop2

6 5 5 5 2 3 1 5

op sop1 uid n sop2

6 17 3 1 5

C-4 Instruction Formats PA-RISC 1.1 Architecture

29.Coprocessor Indexed Loads

30.Coprocessor Indexed Stores

31.Coprocessor Short Displacement Loads

32.Coprocessor Short Displacement Stores

33.Floating-point Operation Zero, Major Opcode 0C

34.Floating-point Operation One, Major Opcode 0C

35.Floating-point Operation Two, Major Opcode 0C

36.Floating-point Operation Three, Major Opcode 0C

37.Floating-point Operation Zero, Major Opcode 0E

38.Floating-point Operation One, Major Opcode 0E

op b x s u 0 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5

op b x s u 0 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5

op b im5 s a 1 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5

op b im5 s a 1 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5

op r 0 sop fmt 0 0 0 t

6 5 5 3 2 2 3 1 5

op r 0 sop df sf 1 0 0 t

6 5 4 2 2 2 2 3 1 5

op r1 r2 sop fmt 2 0 n c

6 5 5 3 2 2 3 1 5

op r1 r2 sop fmt 3 0 0 t

6 5 5 3 2 2 3 1 5

op r 0 sop fmt 0 0 r t 0 t

6 5 5 3 2 2 1 1 1 1 5

op r 0 sop df sf 1 0 r t 0 t

6 5 4 2 2 2 2 1 1 1 1 5

C-5PA-RISC 1.1 Architecture Instruction Formats

39.Floating-point Operation Two, Major Opcode 0E

40.Floating-point Operation Three, Major Opcode 0E

41.Floating-point Multiple-operation

op r1 r2 sop r2 f 2 0 r1 0 0 c

6 5 5 3 1 1 2 1 1 1 1 5

op r1 r2 sop r2 f 3 x r1 t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

op rm1 rm2 ta ra f tm

6 5 5 5 5 1 5

C-6 Instruction Formats PA-RISC 1.1 Architecture

The field names used in the previous instruction format layouts are described in the following table.
Some of the field names may be followed by one or two digits. Those digits indicate the length of the
field. An example of a field name may beim5 which indicates the field is a 5-bit immediate value. But
names, such asr1, which refers to the first source register field, are the actual field names.

Field Description

a modify before/after bit

b base register

c condition specifier

cc cache control hint

clen 31 - extract/deposit length

cp 31 - bit position

df floating-point destination format

e or ext operation code extension

f condition negation bit

f or fmt floating-point data format

im immediate value

m modify bit

n nullify bit

op operation code

p extract/deposit/shift bit position

r, r1, or r2 source register

ra, rm1, or rm2 floating-point multiple-operation source register

rv reserved instruction field

s 2 or 3 bit space register

sf floating-point source format

sfu special function unit number

sop, sop1, or sop2 special function unit or coprocessor operation

t, ta, or tm target register

u shift index bit

uid coprocessor unit identifier

w, w1, or w2 word offset/word offset part

x index register

D-1PA-RISC 1.1 Architecture Operation Codes

D Operation Codes

Major Opcode Assignments
The major opcode assignments are listed in Table D-1. Instructions are shown in uppercase. Instruction
classes are capitalized. Extensions of the major opcodes can be found in the tables indicated, where
applicable. In the following discussions of opcode extensions the major opcode class names are shown
in parentheses.

D-2 Operation Codes PA-RISC 1.1 Architecture

Table D-1. Major Opcode Assignments

bits 2:5
bits 0:1

0 1 2 3

0
System_op
(Table D-2)

LDB COMBT BVB

1
Mem_Mgmt
(Tables D-3

and D-4)
LDH COMIBT BB

2
Arith/Log

(Table D-5)
LDW COMBF MOVB

3
Index_Mem
(Table D-6)

LDWM COMIBF MOVIB

4
SPOPn

(Table D-11)
— COMICLR

Extract
(Table D-8)

5 DIAG —
Subi

(Table D-7)
Deposit

(Table D-8)

6 FMPYADD — FMPYSUB —

7 — — — —

8 LDIL STB ADDBT BE

9
Copr_w

(Table D-10)
STH ADDIBT BLE

A ADDIL STW ADDBF
Branch

(Table D-9)

B
Copr_dw

(Table D-10)
STWM ADDIBF —

C COPR —
Addit

(Table D-7)
—

D LDO —
Addi

(Table D-7)
—

E
Float

(Tables D-16
through D-20)

— — —

F
Product
 Specific

— — —

D-3PA-RISC 1.1 Architecture Operation Codes

Opcode Extension Assignments
Many instructions require both a major opcode and an opcode extension to be uniquely identified. The
extension can be one to nine bits, depending on the major opcode.

System Control Instructions (System_op)
Figure D-1 shows the format of the system control instructions (major opcode 00) and Table D-2 lists
the opcode extensions. Bits 19:21 encode the source of the operation and bits 24:26 encode the
destination.

0 5 19 26

00 b/r ext5 0/s ext8 t

6 5 5 3 8 5

Figure D-1. Format for System Control Instructions

Table D-2. System Control Instructions

Instruction

Opcode Extension

hex binary hex

bits
0:5

bits
19:21

bits
22:23

bits
24:26

bits
19:26

bits
11:15

BREAK 00 000 00 000 00 im5
SYNC 00 001 00 000 20 0
SYNCDMA 00 001 00 000 20 10
RFI 00 011 00 000 60 rv
RFIR 00 011 00 101 65 rv
SSM 00 011 01 011 6B i
RSM 00 011 10 011 73 i
MTSM 00 110 00 011 C3 r
LDSID 00 100 00 101 85 rv
MTSP 00 110 00 001 C1 r
MFSP 00 001 00 101 25 0
MTCTL 00 110 00 010 C2 r
MFCTL 00 010 00 101 45 0

D-4 Operation Codes PA-RISC 1.1 Architecture

Bits Value Description
19:21 / 24:26 000 no source / no destination

001 system resource
010 control register
011 PSW system mask
100 space register
101 general register destination
110 general register source

22:23 01 encodes SSM
10 encodes RSM

D-5PA-RISC 1.1 Architecture Operation Codes

Memory Management Instructions (Mem_Mgmt)
Figure D-2 shows the format of the memory management instructions (major opcode 01). The opcode
extensions (bits 19:26) for instruction memory management instructions are listed in Table D-3. The
opcode extensions (bits 18:26) for data memory management instructions are listed in Table D-4 on
page D-6. This group includes instructions that access the translation lookaside buffers and the caches.

Instruction Memory Management

0 5 19 25 27 31

01 b r/x/im5 s ext7 m ext5

6 5 5 3 7 1 5

Data Memory Management, Probe

0 5 18 25 27 31

01 b r/x/im5 s ext8 m ext5

6 5 5 2 8 1 5

Figure D-2. Formats for Memory Management Instructions

Table D-3. Instruction Memory Management Instructions

Instruction

Opcode Extension Modify

hex binary hex binary

bits
0:5

bit
19

bits
20:21

bits
22:24

bit
25

bits
19:25

bits
27:31

bit
26

IITLBA 01 0 00 000 1 01 0 0
IITLBP 01 0 00 000 0 00 0 0
PITLB 01 0 00 100 0 08 rv m
PITLBE 01 0 00 100 1 09 rv m
FIC 01 0 00 101 0 0A rv m
FICE 01 0 00 101 1 0B rv m

Bits Value Description
19 0 instruction memory management

22:24 000 insert instruction
100 purge TLB instruction
101 flush instruction

22 1 modify (bit 26) enable
24 1 nonprivileged instruction
26 m modification is allowed for this instruction

D-6 Operation Codes PA-RISC 1.1 Architecture

Table D-4. Data Memory Management Instructions

Instruction

Opcode Extension Modify

hex binary hex binary

bits
0:5

bit
18

bit
19

bits
20:21

bits
22:24

bit
25

bits
18:25

bits
27:31

bit
26

IDTLBA 01 0 1 00 000 1 41 0 0
IDTLBP 01 0 1 00 000 0 40 0 0
PDTLB 01 0 1 00 100 0 48 rv m
PDTLBE 01 0 1 00 100 1 49 rv m
FDC 01 0 1 00 101 0 4A rv m
FDCE 01 0 1 00 101 1 4B rv m
PDC 01 0 1 00 111 0 4E 0 m
PROBER 01 0 1 00 011 0 46 t 0
PROBERI 01 1 1 00 011 0 C6 t 0
PROBEW 01 0 1 00 011 1 47 t 0
PROBEWI 01 1 1 00 011 1 C7 t 0
LPA 01 0 1 00 110 1 4D t m
LCI 01 0 1 00 110 0 4C t 0

Bits Value Description
18 0 non-immediate value

1 immediate value
19 1 data memory management

22:24 000 insert instruction
011 probe instruction
100 purge TLB instruction
101 flush instruction
110 load instruction
111 purge cache instruction

22 1 modify (bit 26) enable
23 1 store result
24 1 nonprivileged instruction
26 m modification is allowed for this instruction

D-7PA-RISC 1.1 Architecture Operation Codes

Arithmetic/Logical Instructions (Arith/Log)
Figure D-3 shows the format of the arithmetic/logical instructions. The opcode extensions for the
arithmetic/logical instructions (major opcode 02) are listed in Table D-5.

0 5 20 25

02 r2 r1 c f ext6 0 t

6 5 5 3 1 6 1 5

Figure D-3. Format for Arithmetic/Logical Instructions

Table D-5. Arithmetic/Logical Instructions

Instruction

Opcode Extension

hex binary hex

bits
0:5

bits
20:21

bits
22:25

bits
20:25

ADD 02 01 1000 18
ADDO 02 11 1000 38
ADDC 02 01 1100 1C
ADDCO 02 11 1100 3C
SH1ADD 02 01 1001 19
SH1ADDO 02 11 1001 39
SH2ADD 02 01 1010 1A
SH2ADDO 02 11 1010 3A
SH3ADD 02 01 1011 1B
SH3ADDO 02 11 1011 3B
SUB 02 01 0000 10
SUBO 02 11 0000 30
SUBT 02 01 0011 13
SUBTO 02 11 0011 33
SUBB 02 01 0100 14
SUBBO 02 11 0100 34
DS 02 01 0001 11
ANDCM 02 00 0000 00
AND 02 00 1000 08
OR 02 00 1001 09
XOR 02 00 1010 0A
UXOR 02 00 1110 0E
COMCLR 02 10 0010 22
UADDCM 02 10 0110 26
UADDCMT 02 10 0111 27
ADDL 02 10 1000 28

D-8 Operation Codes PA-RISC 1.1 Architecture

SH1ADDL 02 10 1001 29
SH2ADDL 02 10 1010 2A
SH3ADDL 02 10 1011 2B
DCOR 02 10 1110 2E
IDCOR 02 10 1111 2F

Bits Value Description
20:21 00 unit/logical; do not set carry/borrow bits.

01 arithmetic; set carry/borrow bits; do not trap.
10 unit/logical; do not set carry/borrow bits.
11 arithmetic; set carry/borrow bits; trap on overflow.

Table D-5. Arithmetic/Logical Instructions (Continued)

Instruction

Opcode Extension

hex binary hex

bits
0:5

bits
20:21

bits
22:25

bits
20:25

D-9PA-RISC 1.1 Architecture Operation Codes

Indexed and Short Displacement Load/Store Instructions
(Index_Mem)
Figure D-4 shows the formats of the indexed and short displacement load and store instructions. The
opcode extensions (bits 22:25) for indexed and short displacement memory reference instructions
(major opcode 03) are listed in Table D-6. The short displacement forms are distinguished from the
indexed instructions by bit 19 (0=indexed, 1=short).

Indexed Loads

0 5 19 22 25

03 b x s u 0 cc ext4 m t

6 5 5 2 1 1 2 4 1 5

Short Displacement Loads

0 5 19 22 25

03 b im5 s a 1 cc ext4 m t

6 5 5 2 1 1 2 4 1 5

Short Displacement Stores, Store Bytes Short

0 5 19 22 25

03 b r s a 1 cc ext4 m im5

6 5 5 2 1 1 2 4 1 5

Figure D-4. Formats for Indexed and Short Displacement Load/Store Instructions

D-10 Operation Codes PA-RISC 1.1 Architecture

Table D-6. Indexed and Short Displacement Load/Store Instructions

Instruction

Opcode Extension

hex binary hex

bits
0:5

bit
19

bits
22:23

bits
24:25

bits
22:25

LDBX 03 0 00 00 0
LDHX 03 0 00 01 1
LDWX 03 0 00 10 2
LDWAX 03 0 01 10 6
LDCWX 03 0 01 11 7
LDBS 03 1 00 00 0
LDHS 03 1 00 01 1
LDWS 03 1 00 10 2
LDWAS 03 1 01 10 6
LDCWS 03 1 01 11 7
STBS 03 1 10 00 8
STHS 03 1 10 01 9
STWS 03 1 10 10 A
STBYS 03 1 11 00 C
STWAS 03 1 11 10 E

D-11PA-RISC 1.1 Architecture Operation Codes

Arithmetic Immediate Instructions (Addit, Addi, Subi)
Figure D-5 shows the format of the arithmetic immediate instructions. The opcode extensions (bit 20)
for the arithmetic immediate instructions (major opcodes 25, 2C, and 2D) are listed in Table D-7. The
extension field,e, determines whether or not the instruction traps on overflow.

0 5 20

op r t c f e im11

6 5 5 3 1 1 11

Figure D-5. Format for Arithmetic Immediate Instructions

Table D-7. Arithmetic Immediate Instructions

Instruction

Opcode Extension

hex binary

bits
0:5

bit
20

ADDI 2D 0
ADDIT 2C 0
SUBI 25 0
ADDIO 2D 1
ADDITO 2C 1
SUBIO 25 1

D-12 Operation Codes PA-RISC 1.1 Architecture

Extract and Deposit Instructions (Extract and Deposit)
Figure D-6 shows the formats of the extract and deposit instructions. The opcode extensions (bits
19:21) for the extract and deposit instructions (major opcodes 34 and 35) are listed in Table D-8.

Extract

0 5 19 21

34 r2 t/r1 c ext3 ext5 clen/t

6 5 5 3 3 5 5

Deposit

0 5 19 21

35 t r/im5 c ext3 ext5 clen

6 5 5 3 3 5 5

Figure D-6. Formats for Extract and Deposit Instructions

Table D-8. Extract and Deposit Instructions

Instruction

Opcode Extension

hex binary hex binary

bits
0:5

bits
19:21

bits
19:21

bits
22:26

VSHD 34 000 0 00000
SHD 34 010 2 cp
VEXTRU 34 100 4 00000
VEXTRS 34 101 5 00000
EXTRU 34 110 6 p
EXTRS 34 111 7 p
ZVDEP 35 000 0 00000
VDEP 35 001 1 00000
ZDEP 35 010 2 cp
DEP 35 011 3 cp
ZVDEPI 35 100 4 00000
VDEPI 35 101 5 00000
ZDEPI 35 110 6 cp
DEPI 35 111 7 cp

D-13PA-RISC 1.1 Architecture Operation Codes

Unconditional Branch Instructions (Branch)
Figure D-7 shows the formats of the unconditional branch instructions. The opcode extensions (bits
16:18) for the unconditional branch instructions (major opcode 3A) are listed in Table D-9.

Branch and Link, Gateway

0 5 16 18

3A t w1 ext3 w2 n w

6 5 5 3 11 1 1

Branch and Link Register, Branch Vectored

0 5 16 18

3A t/b x ext3 0 n 0

6 5 5 3 11 1 1

Figure D-7. Formats for Unconditional Branch Instructions

Table D-9. Unconditional Branch Instructions

Instruction

Opcode Extension

hex binary hex

bits
0:5

bits
16:18

bits
16:18

BL 3A 000 0
BLR 3A 010 2
BV 3A 110 6
GATE 3A 001 1

D-14 Operation Codes PA-RISC 1.1 Architecture

Coprocessor Loads and Stores (Copr_w and Copr_dw)
Figure D-8 shows the formats of the coprocessor load and store instructions. The opcode extensions for
the coprocessor memory reference instructions (major opcodes 09 and 0B) are listed in Table D-10.
Opcode 09 indicates the instruction operates on word data (Copr_w). Opcode 0B indicates the
instruction operates on doubleword data (Copr_dw). The short displacement forms are distinguished
from the indexed instructions by bit 19 (0 = indexed; 1 = short) and loads from stores by bit 22 (0 =
load; 1 = store).

Coprocessor Indexed Loads

0 5 19 22

op b x s u 0 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5

Coprocessor Indexed Stores

0 5 19 22

op b x s u 0 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5

Coprocessor Short Loads

0 5 19 22

op b im5 s a 1 cc 0 uid m t

6 5 5 2 1 1 2 1 3 1 5

Coprocessor Short Stores

0 5 19 22

op b im5 s a 1 cc 1 uid m r

6 5 5 2 1 1 2 1 3 1 5

Figure D-8. Formats for Coprocessor Load/Store Instructions

D-15PA-RISC 1.1 Architecture Operation Codes

Table D-10. Coprocessor Load and Store Instructions

Instruction

Opcode Extension

hex binary

bits
0:5

bit
19

bit
22

CLDWX 09 0 0
CLDDX 0B 0 0
CSTWX 09 0 1
CSTDX 0B 0 1
CLDWS 09 1 0
CLDDS 0B 1 0
CSTWS 09 1 1
CSTDS 0B 1 1

D-16 Operation Codes PA-RISC 1.1 Architecture

Special Function Unit Instructions
Figure D-9 shows the formats of the special function unit instructions. The opcode extensions for the
special function unit instructions (major opcode 04) are listed in Table D-11.

Special Operation Zero

0 5 21:22

04 sop1 0 sfu n sop2

6 15 2 3 1 5

Special Operation One

0 5 21:22

04 sop 1 sfu n t

6 15 2 3 1 5

Special Operation Two

0 5 21:22

04 r sop1 2 sfu n sop2

6 5 10 2 3 1 5

Special Operation Three

0 5 21:22

04 r1 r2 sop1 3 sfu n sop2

6 5 5 5 2 3 1 5

Figure D-9. Formats for Special Function Unit (SFU) Instructions

Table D-11. Special Function Unit (SFU) Instructions

Instruction

Opcode Extension

hex binary hex

bits
0:5

bits
21:22

bits
21:22

SPOP0 04 00 0
SPOP1 04 01 1
SPOP2 04 10 2
SPOP3 04 11 3

D-17PA-RISC 1.1 Architecture Operation Codes

Floating-Point Coprocessor Operation Instructions
Figures D-10 and D-11 show the formats of the floating-point coprocessor operation instructions. The
opcode extensions for the floating-point coprocessor operation instructions (major opcode 0C, uid 0 and
major opcode 0E) are listed in Tables D-12 through D-20.

Major Opcode 0C

Floating-Point Operation Zero

0 5 16 18 21:22 26

0C r 0 sub fmt 0 0 0 t

6 5 5 3 2 2 3 1 5

Floating-Point Operation One

0 5 15:16 21:22 26

0C r 0 sub df sf 1 0 0 t

6 5 4 2 2 2 2 3 1 5

Floating-Point Operation Two

0 5 16 18 21:22 26

0C r1 r2 sub fmt 2 0 n c

6 5 5 3 2 2 3 1 5

Floating-Point Operation Three

0 5 16 18 21:22 26

0C r1 r2 sub fmt 3 0 0 t

6 5 5 3 2 2 3 1 5

Figure D-10. Formats for Floating-Point Operations - Major Opcode 0C

Table D-12. Floating-Point Class Zero - Major Opcode 0C Instructions

Instruction

Opcode Uid Class Sub-Op Cond/Targ Nullify

hex hex hex hex hex binary

bits
0:5

bits
23:25

bits
21:22

bits
16:18

bits
27:31

bit
26

COPR,0,0 0C 0 0 0 0 0
FCPY 0C 0 0 2 t 0
FABS 0C 0 0 3 t 0
FSQRT 0C 0 0 4 t 0
FRND 0C 0 0 5 t 0
Reserved 0C 0 0 6,7 – 0

D-18 Operation Codes PA-RISC 1.1 Architecture

Table D-13. Floating-Point Class One - Major Opcode 0C Instructions

Instruction

Opcode Uid Class Sub-Op Cond/Targ Nullify

hex hex hex hex hex binary

bits
0:5

bits
23:25

bits
21:22

bits
15:16

bits
27:31

bit
26

FCNVFF 0C 0 1 0 t 0
FCNVXF 0C 0 1 1 t 0
FCNVFX 0C 0 1 2 t 0
FCNVFXT 0C 0 1 3 t 0

Table D-14. Floating-Point Class Two - Major Opcode 0C Instructions

Instruction

Opcode Uid Class Sub-Op Cond/Targ Nullify

hex hex hex hex hex binary

bits
0:5

bits
23:25

bits
21:22

bits
16:18

bits
27:31

bit
26

FCMP 0C 0 2 0 c 0
FTEST 0C 0 2 1 c 1
Undefined 0C 0 2 2-7 – 0

Table D-15. Floating-Point Class Three - Major Opcode 0C Instructions

Instruction

Opcode Uid Class Sub-Op Cond/Targ Nullify

hex hex hex hex hex binary

bits
0:5

bits
23:25

bits
21:22

bits
16:18

bits
27:31

bit
26

FADD 0C 0 3 0 t 0
FSUB 0C 0 3 1 t 0
FMPY 0C 0 3 2 t 0
FDIV 0C 0 3 3 t 0
Reserved 0C 0 3 4-6 – 0
Undefined 0C 0 3 7 – 0

D-19PA-RISC 1.1 Architecture Operation Codes

Major Opcode 0E (Float)

Floating-Point Operation Zero

0 5 16 18 21:22 26

0E r 0 sub fmt 0 0 r t 0 t

6 5 5 3 2 2 1 1 1 1 5

Floating-Point Operation One

0 5 15:16 21:22 26

0E r 0 sub df sf 1 0 r t 0 t

6 5 4 2 2 2 2 1 1 1 1 5

Floating-Point Operation Two

0 5 16 18 21:22 26

0E r1 r2 sub r2 f 2 0 r1 0 0 c

6 5 5 3 1 1 2 1 1 1 1 5

Floating-Point Operation Three

0 5 16 18 21:22 26

0E r1 r2 sub r2 f 3 0 r1 t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

Fixed-Point Operation Three

0 5 16 18 21:22 26

0E r1 r2 sub r2 m 3 1 r1 t 0 t

6 5 5 3 1 1 2 1 1 1 1 5

Figure D-11. Formats for Floating-Point Operations - Major Opcode 0E

Table D-16. Floating-Point Class Zero - Major Opcode 0E Instructions

Instruction

Opcode Class Sub-Op Fixed Nullify Format Cond/Targ

hex hex hex binary binary hex hex

bits
0:5

bits
21:22

bits
16:18

bit
23

bit
26

bits
19:20

bits
25,27:31

Undefined 0E 0 0,1 0 0 – –
FCPY 0E 0 2 0 0 fmt t
FABS 0E 0 3 0 0 fmt t
FSQRT 0E 0 4 0 0 fmt t
FRND 0E 0 5 0 0 fmt t
Reserved 0E 0 6,7 0 0 – –

D-20 Operation Codes PA-RISC 1.1 Architecture

Table D-17. Floating-Point Class One - Major Opcode 0E Instructions

Instruction

Opcode Class Sub-Op Fixed Nullify Format Cond/Targ

hex hex hex binary binary hex hex

bits
0:5

bits
21:22

bits
15:16

bit
23

bit
26

bits
17:20

bits
25,27:31

FCNVFF 0E 1 0 0 0 df,sf t
FCNVXF 0E 1 1 0 0 df,sf t
FCNVFX 0E 1 2 0 0 df,sf t
FCNVFXT 0E 1 3 0 0 df,sf t

Table D-18. Floating-Point Class Two - Major Opcode 0E Instructions

Instruction

Opcode Class Sub-Op Fixed Nullify Format Cond/Targ

hex hex hex binary binary binary hex

bits
0:5

bits
21:22

bits
16:18

bit
23

bit
26

bit
20

bits
25,27:31

FCMP 0E 2 0 0 0 f 0,c
Undefined 0E 2 1-7 – 0 – –

Table D-19. Floating-Point Class Three - Major Opcode 0E Instructions

Instruction

Opcode Class Sub-Op Fixed Nullify Format Cond/Targ

hex hex hex binary binary binary hex

bits
0:5

bits
21:22

bits
16:18

bit
23

bit
26

bit
20

bits
25,27:31

FADD 0E 3 0 0 0 f t
FSUB 0E 3 1 0 0 f t
FMPY 0E 3 2 0 0 f t
FDIV 0E 3 3 0 0 f t
Undefined 0E 3 4 0 0 – –
Reserved 0E 3 5-6 0 0 – –
Undefined 0E 3 7 0 0 – –

Table D-20. Fixed-Point Class Three - Major Opcode 0E Instructions

Instruction

Opcode Class Sub-Op Fixed Nullify Format Cond/Targ

hex hex hex binary binary binary hex

bits
0:5

bits
21:22

bits
16:18

bit
23

bit
26

bit
20

bits
25,27:31

XMPYU 0E 3 2 1 0 0 t

D-21PA-RISC 1.1 Architecture Operation Codes

Performance Monitor Coprocessor Instructions
Figure D-12 shows the format of the performance monitor coprocessor operation instructions. The
opcode extensions for the performance monitor coprocessor instructions (major opcode 0C, uid 2) are
listed in Table D-21.

0 5 18 22 26

0C rv sub 2 n rv

6 12 5 3 1 5

Figure D-12. Format for Performance Monitor Coprocessor Instructions

Table D-21. Performance Monitor Coprocessor Instructions

Instruction

Opcode Uid Sub-Op Nullify

hex hex hex binary

bits
0:5

bits
23:25

bits
18:22

bit
26

PMDIS 0C 2 1 0
PMENB 0C 2 3 0
Undefined 0C 2 0,2,4..1F –

D-22 Operation Codes PA-RISC 1.1 Architecture

Debug SFU Instructions
Figure D-13 shows the format of the debug special function unit instructions. The opcode extensions for
the debug SFU instructions (major opcode 04, uid 1) are listed in Table D-22.

Debug Operation One

0 5 18 20 23 25

04 r rv sub 1 1 0 t

6 5 7 3 2 3 1 5

Debug Operation Two

0 5 18 20 23 25

04 r rv sub 2 1 0 t

6 5 7 3 2 3 1 5

Figure D-13. Debug SFU Instruction Formats

Table D-22. Debug SFU Instructions

Instruction

Opcode Uid Class Sub-Op

hex hex hex hex

bits
0:5

bits
23:25

bits
21:22

bits
18:20

MTDBAO 04 1 1 4
MTDBAM 04 1 1 5
MTIBAO 04 1 1 6
MTIBAM 04 1 1 7
DEBUGID 04 1 2 0
MFDBAO 04 1 2 4
MFDBAM 04 1 2 5
MFIBAO 04 1 2 6
MFIBAM 04 1 2 7

E-1PA-RISC 1.1 Architecture Level 0 Summary

E Level 0 Summary

The following list summarizes the differences between Level 0 and non-Level 0 processors.

• Only absolute memory addressing is supported; virtual memory is not supported, and so space
identifiers are not used and Space Registers are nonexistent registers.

• PID Registers (CRs 8, 9, 12, and 13), IIASQ (CR 17), and ISR (CR 20) are nonexistent registers.

• The X, C, P, and D bits of the PSW and the IPSW are nonexistent bits.

• There are only two distinct privilege levels - 0 and non-zero; privilege levels 1, 2, and 3 are
equivalent.

• There are no TLBs.

• The s-fields of all instructions are ignored.

• The debug SFU, PSW G-bit, PSW Y-bit, PSW Z-bit, data debug trap, and instruction debug trap are
defined only for Level 0 systems.

• The following TLB related instructions are executed as null instructions at all privilege levels:

• The following interruptions do not occur.

PURGE DATA TLB (PDTLB)

PURGE INSTRUCTION TLB (PITLB)

PURGE DATA TLB ENTRY (PDTLBE)

PURGE INSTRUCTION TLB ENTRY (PITLBE)

INSERT DATA TLB ADDRESS (IDTLBA)

INSERT INSTRUCTION TLB ADDRESS (IITLBA)

INSERT DATA TLB PROTECTION (IDTLBP)

INSERT INSTRUCTION TLB PROTECTION (IITLBP)

Interruption Name Number

Instruction TLB miss fault/instruction page fault 6

Instruction memory protection trap 7

Data TLB miss fault/Data page fault 15

Non-access instruction TLB miss fault 16

Non-access data TLB miss fault/non-access data page fault 17

Data memory access rights trap 26

Data memory protection ID trap 27

Unaligned data reference trap 28

Data memory protection trap/Unaligned data reference trap 18

E-2 Level 0 Summary PA-RISC 1.1 Architecture

• The results of executing the following instructions are different; see the corresponding instruction
page for details.

Data memory break trap 19

TLB dirty bit trap 20

Page reference trap 21

Instruction Difference

LOAD PHYSICAL ADDRESS (LPA) Undefined instruction
LOAD COHERENCE INDEX (LCI) Undefined instruction
LOAD WORD ABSOLUTE INDEXED (LDWAX) Same asLDWX if priv == 0
LOAD WORD ABSOLUTE SHORT (LDWAS) Same asLDWS if priv == 0
STORE WORD ABSOLUTE SHORT (STWAS) Same asSTWS if priv == 0
GATEWAY (GATE) Always promotes priv to 0
BRANCH VECTORED (BV) Demotes priv to any nonzero value
BRANCH EXTERNAL (BE) Demotes priv to any nonzero value,

IASQ is nonexistent
BRANCH AND LINK EXTERNAL (BLE) Demotes priv to any nonzero value,

IASQ and SR0 are nonexistent
RETURN FROM INTERRUPTION (RFI) IASQ is nonexistent
RETURN FROM INTERRUPTION AND RESTORE (RFIR) IASQ is nonexistent
LOAD SPACE IDENTIFIER (LDSID) 0 is written into specified GR
MOVE TO SPACE REGISTER (MTSP) Executed as null instruction
MOVE TO CONTROL REGISTER (MTCTL) Executed as null instruction if target is

CR 8, 9, 12, 13, 17 or 20
MOVE FROM SPACE REGISTER (MFSP) 0 is written into specified GR
MOVE FROM CONTROL REGISTER (MFCTL) 0 is written into specified GR if source

is CR 8, 9, 12, 13, 17 or 20
PROBE READ ACCESS (PROBER) Always sets target GR to 1
PROBE READ ACCESS IMMEDIATE (PROBERI) Always sets target GR to 1
PROBE WRITE ACCESS (PROBEW) Always sets target GR to 1
PROBE WRITE ACCESS IMMEDIATE (PROBEWI) Always sets target GR to 1

Interruption Name Number

I-1PA-RISC 1.1 Architecture Index

I Index

A
absolute accesses3-1, 3-4
absolute_address()5-10
access ID 3-12
access rights 3-12
access type

execute 3-11
read 3-11
write 3-11

ADD 5-83
ADD AND BRANCH 5-75, 5-76
ADD AND BRANCH IF FALSE 5-76
ADD AND BRANCH IF TRUE 5-75
ADD AND TRAP ON OVERFLOW 5-85
ADD IMMEDIATE AND BRANCH 5-77, 5-78
ADD IMMEDIATE AND BRANCH IF FALSE 5-78
ADD IMMEDIATE AND BRANCH IF TRUE 5-77
ADD IMMEDIATE LEFT 5-57
ADD LOGICAL 5-84
ADD TO IMMEDIATE 5-115
ADD TO IMMEDIATE AND TRAP ON CONDITION

5-117
ADD TO IMMEDIATE AND TRAP ON CONDITION

OR OVERFLOW 5-118
ADD TO IMMEDIATE AND TRAP ON OVERFLOW

5-116
ADD WITH CARRY 5-86
ADD WITH CARRY AND TRAP ON OVERFLOW

5-87
ADDB (seeADD AND BRANCH)
ADDBF (seeADD AND BRANCH IF FALSE)
ADDBT (seeADD AND BRANCH IF TRUE)
ADDC (seeADD WITH CARRY)
ADDCO (seeADD WITH CARRY AND TRAP ON

OVERFLOW)
ADDI (seeADD TO IMMEDIATE)
ADDIB (seeADD IMMEDIATE AND BRANCH)
ADDIBF (seeADD IMMEDIATE AND BRANCH IF

FALSE)

ADDIBT (seeADD IMMEDIATE AND BRANCH IF
TRUE)

ADDIL (seeADD IMMEDIATE LEFT)
ADDIO (seeADD TO IMMEDIATE AND TRAP ON

OVERFLOW)
ADDIT (seeADD TO IMMEDIATE AND TRAP ON

CONDITION)
ADDITO (seeADD TO IMMEDIATE AND TRAP ON

CONDITION OR OVERFLOW)
ADDL (seeADD LOGICAL)
ADDO (seeADD AND TRAP ON OVERFLOW)
address aliasing3-6

equivalent aliases3-6
many-reader/one-writer3-6
non-equivalent aliases3-6
read-only 3-6

address mask register8-2
address offset register8-1
alloc_DTLB() 5-10
alloc_ITLB() 5-10
alter 3-8
AND 5-107
AND COMPLEMENT 5-108
ANDCM (seeAND COMPLEMENT)
assemble_12()5-9
assemble_17()5-9
assemble_21()5-9
assemble_3() 5-9
assist emulation trap4-25
assist exception trap4-22
assist processor1-8
atomicity 4-3

B
B (seeBRANCH)
base register modification5-20
BB (seeBRANCH ON BIT)
BCD, (seebinary coded decimal)
BE (seeBRANCH EXTERNAL)

I-2 Index PA-RISC 1.1 Architecture

binary coded decimal5-112, 5-114
binary coded decimal data type2-6
bit data type 2-5
bits

nonexistent 2-7
reserved 2-7
undefined 2-7

BL (seeBRANCH AND LINK)
BLE (seeBRANCH AND LINK EXTERNAL)
Block Copy cache control hint5-17
block TLB (see Translation Lookaside Buff-

er,block)
BLR (seeBRANCH AND LINK REGISTER)
BRANCH 5-62
BRANCH AND LINK 5-58, 5-62
BRANCH AND LINK EXTERNAL 5-58, 5-68
BRANCH AND LINK REGISTER 5-58, 5-65
BRANCH EXTERNAL 5-59, 5-67
BRANCH ON BIT 5-80
BRANCH ON VARIABLE BIT 5-79
BRANCH VECTORED 5-58, 5-66
branches 4-7

base relative 4-9
conditional 4-8, 5-59
delay slot 4-7
delayed 4-7
dynamic displacement4-9
external 5-58
IA relative 4-9
interspace 5-58
intraspace 5-58
local 5-58
not-taken 4-8
static displacment 4-9
taken 4-8
unconditional 4-8, 5-58

BREAK 5-138
BREAK instruction trap 4-21
breakpoint

address mask register8-2
address offset register8-1
data 8-1
instruction 8-1

broadcast_purge_data_TLB()5-10
BV (seeBRANCH VECTORED)
BVB (seeBRANCH ON VARIABLE BIT)

byte data type 2-5

C
cache

clean 3-16
dirty 3-16
move-in 3-21

cache control hints5-17
Block Copy 5-17
Coherent Operation5-18
load 5-17
semaphore 5-18
Spacial Locality 5-17
store 5-17

cat() 5-9
C-bit

Floating-point Status Register6-17
CCR (see Coprocessor Configuration Register)
check 4-14
CLDDS (see COPROCESSOR LOAD DOUBLE-

WORD SHORT)
CLDDX (see COPROCESSOR LOAD DOUBLE-

WORD INDEXED)
CLDWS (see COPROCESSOR LOAD WORD

SHORT)
CLDWX (see COPROCESSOR LOAD WORD IN-

DEXED)
coherence_index()5-10
coherent input/ouput3-17
Coherent Operation cache control hint5-18
coherent_system5-10
COMB (seeCOMPARE AND BRANCH)
COMBF (seeCOMPARE AND BRANCH IF FALSE)
COMBT (seeCOMPARE AND BRANCH IF TRUE)
COMCLR (seeCOMPARE AND CLEAR)
COMIB (see COMPARE IMMEDIATE AND

BRANCH)
COMIBF (see COMPARE IMMEDIATE AND

BRANCH IF FALSE)
COMIBT (see COMPARE IMMEDIATE AND

BRANCH IF TRUE)
COMICLR (see COMPARE IMMEDIATE AND

CLEAR)
COMPARE AND BRANCH 5-72
COMPARE AND BRANCH IF FALSE 5-72
COMPARE AND BRANCH IF TRUE 5-71

I-3PA-RISC 1.1 Architecture Index

COMPARE AND CLEAR 5-104
COMPARE IMMEDIATE AND BRANCH 5-73, 5-

74
COMPARE IMMEDIATE AND BRANCH IF FALSE

5-74
COMPARE IMMEDIATE AND BRANCH IF TRUE

5-73
COMPARE IMMEDIATE AND CLEAR 5-121
conditional trap 4-22
conditions

arithmetic/logical 5-3
floating-point compare 6-17
floating-point test 6-17
shift/extract/deposit 5-7
unit 5-6

control registers 2-13
COPR (seeCOPROCESSOR OPERATION)
COPR,0,0 (seeFLOATING-POINT IDENTIFY)
COPR,0,0 (seeIDENTIFY COPROCESSOR)
coprocessor 1-8, 5-178
Coprocessor Configuration Register2-14, 5-180
COPROCESSOR LOAD DOUBLEWORD IN-

DEXED 5-188
COPROCESSOR LOAD DOUBLEWORD SHORT

5-192
COPROCESSOR LOAD WORD INDEXED 5-187
COPROCESSOR LOAD WORD SHORT 5-191
COPROCESSOR OPERATION 5-186
COPROCESSOR STORE DOUBLEWORD IN-

DEXED 5-190
COPROCESSOR STORE DOUBLEWORD SHORT

5-194
COPROCESSOR STORE WORD INDEXED 5-189
COPROCESSOR STORE WORD SHORT 5-193
coprocessor_condition()5-10
coprocessor_op()5-10
COPY 5-105
CRs (see control registers)
CSTDS (see COPROCESSOR STORE DOUBLE-

WORD SHORT)
CSTDX (see COPROCESSOR STORE DOUBLE-

WORD INDEXED)
CSTWS (see COPROCESSOR STORE WORD

SHORT)
CSTWX (seeCOPROCESSOR STORE WORD IN-

DEXED)

D
data breakpoint 8-1
data debug trap4-25, 8-4
data memory access rights trap4-23
data memory break trap4-24
data memory protection ID trap4-23
data memory protection trap/unaligned data refer-

ence trap 4-24
data TLB miss fault/data page fault4-22
data types

binary coded decimal2-6
bit 2-5
byte 2-5
double-precision floating-point2-6, 6-7
doubleword 2-6
integer 2-6
quad-precision floating-point6-7
signed halfword 2-6
signed word 2-6
single-precision floating-point2-6, 6-7
unsigned halfword 2-6
unsigned word 2-6

DCOR (seeDECIMAL CORRECT)
debug SFU 8-1
DEBUGID (seeIDENTIFY DEBUG SFU)
DECIMAL CORRECT 5-112
DEP (seeDEPOSIT)
DEPI (seeDEPOSIT IMMEDIATE)
DEPOSIT 5-129
DEPOSIT IMMEDIATE 5-131
DIAG (seeDIAGNOSE)
DIAGNOSE 5-175
Direct I/O 1-7
Direct Memory Access I/O 1-8
DIVIDE STEP 5-103
double-precision floating-point data type2-6
DS (seeDIVIDE STEP)

E
EIEM (see External Interrupt Enable Mask)
EIRR (see External Interrupt Request Register)
equivalent aliases3-6
equivalently-mapped3-6
excepting instruction 6-5
EXCLUSIVE OR 5-106

I-4 Index PA-RISC 1.1 Architecture

external interrupt 4-19
External Interrupt Enable Mask2-16
External Interrupt Request Register2-18
EXTRACT SIGNED 5-127
EXTRACT UNSIGNED 5-126
EXTRS (seeEXTRACT SIGNED)
EXTRU (seeEXTRACT UNSIGNED)

F
FABS (seeFLOATING-POINT ABSOLUTE VALUE)
FADD (seeFLOATING-POINT ADD)
fault 4-14
FCMP (seeFLOATING-POINT COMPARE)
FCNVFF (seeFLOATING-POINT CONVERT FROM

FLOATING-POINT TO FLOATING-
POINT)

FCNVFX (seeFLOATING-POINT CONVERT FROM
FLOATING-POINT TO FIXED-POINT)

FCNVFXT (see FLOATING-POINT CONVERT
FROM FLOATING-POINT TO FIXED-
POINT AND TRUNCATE)

FCNVXF (seeFLOATING-POINT CONVERT FROM
FIXED-POINT TO FLOATING-POINT)

FCPY (seeFLOATING-POINT COPY)
FDC (seeFLUSH DATA CACHE)
FDCE (seeFLUSH DATA CACHE ENTRY)
FDIV (seeFLOATING-POINT DIVIDE)
FIC (seeFLUSH INSTRUCTION CACHE)
FICE (seeFLUSH INSTRUCTION CACHE ENTRY)
FIXED-POINT MULTIPLY UNSIGNED 6-59
FLDDS (seeFLOATING-POINT LOAD DOUBLE-

WORD SHORT)
FLDDX (seeFLOATING-POINT LOAD DOUBLE-

WORD INDEXED)
FLDWS (see FLOATING-POINT LOAD WORD

SHORT)
FLDWX (seeFLOATING-POINT LOAD WORD IN-

DEXED)
floating-point

DBL format completer 6-16
delayed trapping 6-27
exception registers6-23
exceptions 6-5, 6-26

division by zero 6-32
invalid operation 6-32
non-trapping 6-28

overflow 6-32
reserved operation6-30
unimplemented 6-30

immediate trapping 6-26
interruptions 6-26
Not a Number
QUAD format completer 6-16
registers 6-2
rounding 6-21
SGL format completer 6-16

FLOATING-POINT ABSOLUTE VALUE 6-50
FLOATING-POINT ADD 6-53
FLOATING-POINT COMPARE 6-60
FLOATING-POINT CONVERT FROM FIXED-

POINT TO FLOATING-POINT 6-46
FLOATING-POINT CONVERT FROM FLOATING-

POINT TO FIXED-POINT 6-47
FLOATING-POINT CONVERT FROM FLOATING-

POINT TO FIXED-POINT AND TRUN-
CATE 6-48

FLOATING-POINT CONVERT FROM FLOATING-
POINT TO FLOATING-POINT 6-45

FLOATING-POINT COPY 6-49
FLOATING-POINT DIVIDE 6-56
FLOATING-POINT IDENTIFY 6-63
FLOATING-POINT LOAD DOUBLEWORD IN-

DEXED 6-38
FLOATING-POINT LOAD DOUBLEWORD SHORT

6-42
FLOATING-POINT LOAD WORD INDEXED 6-37
FLOATING-POINT LOAD WORD SHORT 6-41
FLOATING-POINT MULTIPLY 6-55
FLOATING-POINT MULTIPLY/ADD 6-57
FLOATING-POINT MULTIPLY/SUBTRACT 6-58
FLOATING-POINT ROUND TO INTEGER 6-52
FLOATING-POINT SQUARE ROOT 6-51
Floating-Point Status Register6-9

C-bit 6-11
CQ field 6-11
D-bit 6-11
Enables field 6-10
Flags field 6-10
I bits 6-11
model field 6-11
O bits 6-11
revision field 6-11

I-5PA-RISC 1.1 Architecture Index

RM field 6-10
T-bit 6-11
U bits 6-11
V bits 6-11
Z bits 6-11

FLOATING-POINT STORE DOUBLEWORD IN-
DEXED 6-40

FLOATING-POINT STORE DOUBLEWORD
SHORT 6-44

FLOATING-POINT STORE WORD INDEXED 6-39
FLOATING-POINT STORE WORD SHORT 6-43
FLOATING-POINT SUBTRACT 6-54
FLOATING-POINT TEST 6-62
FLUSH DATA CACHE 5-171
FLUSH DATA CACHE ENTRY 5-173
FLUSH INSTRUCTION CACHE 5-172
FLUSH INSTRUCTION CACHE ENTRY 5-174
flush_data_cache()5-11
flush_data_cache_entry()5-11
flush_instruction_cache()5-11
flush_instruction_cache_entry()5-11
FMPY (seeFLOATING-POINT MULTIPLY)
FMPYADD (see FLOATING-POINT MULTIPLY/

ADD)
FMPYSUB (see FLOATING-POINT MULTIPLY/

SUBTRACT)
FPSR (see Floating-Point Status Register)
FRND (seeFLOATING-POINT ROUND TO INTE-

GER)
FSQRT (seeFLOATING-POINT SQUARE ROOT)
FSTDS (seeFLOATING-POINT STORE DOUBLE-

WORD SHORT)
FSTDX (seeFLOATING-POINT STORE DOUBLE-

WORD INDEXED)
FSTWS (see FLOATING-POINT STORE WORD

SHORT)
FSTWX (seeFLOATING-POINT STORE WORD IN-

DEXED)
FSUB (seeFLOATING-POINT SUBTRACT)
FTEST (seeFLOATING-POINT TEST)

G
GATE (seeGATEWAY)
GATEWAY 5-58, 5-63
general registers2-7
GRs (see general registers)

H
higher-privilege transfer trap4-26
high-priority machine check4-18

I
I/O (see input/output)
IAOQ (see Instruction Address Offset Queue)
IAQs (see Instruction Address Queues)
IASQ (see Instruction Address Space Queue)
IDCOR (see INTERMEDIATE DECIMAL COR-

RECT)
IDENTIFY COPROCESSOR 5-179, 5-186
IDENTIFY DEBUG SFU 8-6
IDENTIFY SFU 5-177, 5-183
IDTLBA (seeINSERT DATA TLB ADDRESS)
IDTLBP (seeINSERT DATA TLB PROTECTION)
IEEE 754 6-1
IIAOQ (see Interruption Instruction Address Off-

set Queue)
IIAQs (see Interruption Instruction Address

Queues)
IIASQ (see Interruption Instruction Address

Space Queue)
IIR (see Interruption Instruction Register)
IITLBA (see INSERT INSTRUCTION TLB AD-

DRESS)
IITLBP (seeINSERT INSTRUCTION TLB PROTEC-

TION)
illegal instruction 5-1
illegal instruction trap 4-20
INCLUSIVE OR 5-105
input/output 1-7
INSERT DATA TLB ADDRESS 5-165
INSERT DATA TLB PROTECTION 5-167
INSERT INSTRUCTION TLB ADDRESS 5-166
INSERT INSTRUCTION TLB PROTECTION 5-168
Instruction Address Offset Queue2-12
Instruction Address Queues2-12
Instruction Address Space Queue2-12
instruction breakpoint 8-1
instruction debug trap4-20, 8-4
instruction memory protection trap4-20
instruction TLB miss fault/instruction page fault

4-20
instructions

I-6 Index PA-RISC 1.1 Architecture

immediate 5-54
integer data type2-6
INTERMEDIATE DECIMAL CORRECT 5-114
interrupt 4-14
Interruption Instruction Address Offset Queue2-

16
Interruption Instruction Address Queues2-16
Interruption Instruction Address Space Queue2-

16
Interruption Instruction Register2-17
Interruption Offset Register2-17
Interruption Parameter Registers2-17
Interruption Processor Status Word2-17
Interruption Space Register2-17
Interruption Vector Address2-15
interruptions

disabling 4-16
floating-point 6-26
group 1 4-18
group 2 4-1, 4-18
group 3 4-1, 4-20
group 4 4-3, 4-26
masking 4-16
performance monitor 7-1
priorities 4-17

Interval Timer 2-16
IO_EIR 2-18
IOR (see Interruption Offset Register)
IPRs (see Interruption Parameter Registers)
IPSW (see Interruption Processor Status Word)
ISR (see Interruption Space Register)
IVA (see Interruption Vector Address)

L
LCI (seeLOAD COHERENCE INDEX)
LDB (seeLOAD BYTE)
LDBS (seeLOAD BYTE SHORT)
LDBX (seeLOAD BYTE INDEXED)
LDCWS (seeLOAD AND CLEAR WORD SHORT)
LDCWX (see LOAD AND CLEAR WORD IN-

DEXED)
LDH (seeLOAD HALFWORD)
LDHS (seeLOAD HALFWORD SHORT)
LDHX (seeLOAD HALFWORD INDEXED)
LDI (seeLOAD IMMEDIATE)
LDIL (seeLOAD IMMEDIATE LEFT)

LDO (seeLOAD OFFSET)
LDSID (seeLOAD SPACE IDENTIFIER)
LDW (seeLOAD WORD)
LDWAS (seeLOAD WORD ABSOLUTE SHORT)
LDWAX (seeLOAD WORD ABSOLUTE INDEXED)
LDWM (seeLOAD WORD AND MODIFY)
LDWS (seeLOAD WORD SHORT)
LDWX (seeLOAD WORD INDEXED)
Level 0

branches 5-59
control registers 2-13
privilege levels 3-11
PSW 2-12

level_0 5-11
LOAD AND CLEAR WORD INDEXED 5-21, 5-40
LOAD AND CLEAR WORD SHORT 5-24, 5-46
LOAD BYTE 5-30
LOAD BYTE INDEXED 5-38
LOAD BYTE SHORT 5-44
LOAD COHERENCE INDEX 5-160
LOAD HALFWORD 5-29
LOAD HALFWORD INDEXED 5-37
LOAD HALFWORD SHORT 5-43
LOAD IMMEDIATE 5-55
LOAD IMMEDIATE LEFT 5-56
LOAD OFFSET 5-55
LOAD PHYSICAL ADDRESS 5-158
LOAD SPACE IDENTIFIER 5-146
LOAD WORD 5-28
LOAD WORD ABSOLUTE INDEXED 5-39
LOAD WORD ABSOLUTE SHORT 5-45
LOAD WORD AND MODIFY 5-34
LOAD WORD INDEXED 5-36
LOAD WORD SHORT 5-42
low_sign_ext() 5-9
lower-privilege transfer trap4-26
low-priority machine check 4-19
LPA (seeLOAD PHYSICAL ADDRESS)
lshift() 5-9

M
many-reader/one-writer aliasing3-6
measurement_enabled5-11
mem_load() 5-15
mem_store() 5-15
memory-mapped input/ouput1-7

I-7PA-RISC 1.1 Architecture Index

MFCTL (seeMOVE FROM CONTROL REGISTER)
MFDBAM (seeMOVE FROM DATA BREAKPOINT

ADDRESS MASK REGISTER)
MFDBAO (seeMOVE FROM DATA BREAKPOINT

ADDRESS OFFSET REGISTER)
MFIBAM (see MOVE FROM INSTRUCTION

BREAKPOINT ADDRESS MASK REGIS-
TER)

MFIBAO (see MOVE FROM INSTRUCTION
BREAKPOINT ADDRESS OFFSET REG-
ISTER)

MFSP (seeMOVE FROM SPACE REGISTER)
MOVB (seeMOVE AND BRANCH)
MOVE AND BRANCH 5-69
MOVE FROM CONTROL REGISTER 5-151
MOVE FROM DATA BREAKPOINT ADDRESS

MASK REGISTER 8-7
MOVE FROM DATA BREAKPOINT ADDRESS

OFFSET REGISTER 8-8
MOVE FROM INSTRUCTION BREAKPOINT AD-

DRESS MASK REGISTER 8-9
MOVE FROM INSTRUCTION BREAKPOINT AD-

DRESS OFFSET REGISTER 8-10
MOVE FROM SPACE REGISTER 5-150
MOVE IMMEDIATE AND BRANCH 5-70
MOVE TO CONTROL REGISTER 5-148
MOVE TO DATA BREAKPOINT ADDRESS MASK

REGISTER 8-11
MOVE TO DATA BREAKPOINT ADDRESS OFF-

SET REGISTER 8-12
MOVE TO INSTRUCTION BREAKPOINT AD-

DRESS MASK REGISTER 8-13
MOVE TO INSTRUCTION BREAKPOINT AD-

DRESS OFFSET REGISTER 8-14
MOVE TO SHIFT AMOUNT REGISTER
MOVE TO SPACE REGISTER 5-147
MOVE TO SYSTEM MASK 5-145
move-in

data cache 3-21
instruction cache 3-22

MOVIB (seeMOVE IMMEDIATE AND BRANCH)
MTCTL (seeMOVE TO CONTROL REGISTER)
MTDBAM (see MOVE TO DATA BREAKPOINT

ADDRESS MASK REGISTER)
MTDBAO (see MOVE TO DATA BREAKPOINT

ADDRESS OFFSET REGISTER)

MTIBAM (seeMOVE TO INSTRUCTION BREAK-
POINT ADDRESS MASK REGISTER)

MTIBAO (seeMOVE TO INSTRUCTION BREAK-
POINT ADDRESS OFFSET REGISTER)

MTSAR (seeMOVE TO SHIFT AMOUNT REGIS-
TER)

MTSM (seeMOVE TO SYSTEM MASK)
MTSP (seeMOVE TO SPACE REGISTER)
multiprocessor systems3-17

N
NaN (see floating-point,Not a Number)
NO OPERATION 5-105
non-access data TLB miss fault/non-access data

page fault 4-23
non-access instruction TLB miss fault4-22
non-equivalent aliases3-6
nonexistent

bits 2-7
NOP (seeNO OPERATION)
null instructions 5-2
nullification 4-7

O
operation

undefined 5-1
OR (seeINCLUSIVE OR)
ordering 4-3
overflow

signed 5-3
unsigned 5-3

overflow trap 4-21

P
page

cacheable 3-16
uncacheable 3-16

page reference trap4-25
page table 3-14
PA-RISC 1.0 1-2
PDC (seePURGE DATA CACHE)
PDTLB (seePURGE DATA TLB)
PDTLBE (seePURGE DATA TLB ENTRY)
performance monitor

I-8 Index PA-RISC 1.1 Architecture

interruptions 7-1
performance monitor coprocessor7-1
PERFORMANCE MONITOR DISABLE 7-4
PERFORMANCE MONITOR ENABLE 7-3
performance monitor interrupt4-19
performed 4-3
phys_mem_load() 5-11
phys_mem_store()5-11
PIDs (see Protection Identifiers)
PITLB (seePURGE INSTRUCTION TLB)
PITLBE (seePURGE INSTRUCTION TLB ENTRY)
PMDIS (see PERFORMANCE MONITOR DIS-

ABLE)
PMENB (see PERFORMANCE MONITOR EN-

ABLE)
power failure interrupt 4-18
privilege level 3-11

changing 4-9
privileged operation trap4-21
privileged register trap4-21
PROBE READ ACCESS 5-154
PROBE READ ACCESS IMMEDIATE 5-155
PROBE WRITE ACCESS 5-156
PROBE WRITE ACCESS IMMEDIATE 5-157
PROBER (seePROBE READ ACCESS)
PROBERI (seePROBE READ ACCESS IMMEDI-

ATE)
PROBEW (seePROBE WRITE ACCESS)
PROBEWI (seePROBE WRITE ACCESS IMMEDI-

ATE)
Processor Status Word2-9

B-bit 2-11, 4-3, 4-7
C/B bits 2-11
C-bit 2-11
D-bit 2-12
E-bit 2-3, 2-10, 4-15
F-bit 2-11
G-bit 2-11, 4-20, 4-25, 8-4
H-bit 2-10, 4-3
I-bit 2-12
L-bit 2-10, 4-3
M-bit 2-11, 4-1, 4-15
N-bit 2-10, 4-3, 4-7
P-bit 2-12
Q-bit 2-11
R-bit 2-11, 2-13, 4-3

S-bit 2-10
T-bit 2-10
V-bit 2-11
X-bit 2-10, 4-3, 4-7
Y-bit 2-10, 4-3, 4-7, 4-25, 8-4
Z-bit 2-10, 4-3, 4-7, 4-20, 8-4

Protection Identifiers 2-13, 3-11
PSW (see Processor Status Word)
PURGE DATA CACHE 5-169
PURGE DATA TLB 5-161
PURGE DATA TLB ENTRY 5-163
PURGE INSTRUCTION TLB 5-162
PURGE INSTRUCTION TLB ENTRY 5-164
purge_data_TLB() 5-12
purge_data_TLB_entry()5-12
purge_instruction_TLB() 5-12
purge_instruction_TLB_entry()5-12
purge_or_flush_data_cache()5-12

R
read_access_allowed()5-12
read-only aliasing 3-6
read-only translation 3-6
Recovery Counter 2-13, 4-3
recovery counter trap4-18
registers

control 2-13
floating-point 6-2
floating-point exception 6-23
general 2-7
reserved 2-7
shadow 2-8
space 2-8

relied-upon translation3-8
reserved

bits 2-7
instruction field values 5-2
instruction fields 5-2
registers 2-7

RESET SYSTEM MASK 5-144
RETURN FROM INTERRUPTION 4-17, 5-139
RETURN FROM INTERRUPTION AND RE-

STORE 4-17, 5-141
RFI (seeRETURN FROM INTERRUPTION)
RFIR (seeRETURN FROM INTERRUPTION AND

RESTORE)

I-9PA-RISC 1.1 Architecture Index

rounding,floating-point 6-21
rshift() 5-9
RSM (seeRESET SYSTEM MASK)

S
SAR (see Shift Amount Register)
SCR (see SFU Configuration Register)
search_DTLB() 5-12
search_ITLB() 5-12
select_data_TLB_entries()5-12
select_instruction_TLB_entries()5-12
send_to_copr() 5-9
SET SYSTEM MASK 5-143
SFU Configuration Register2-15, 5-178
sfu_condition0() 5-12
sfu_condition1() 5-12
sfu_condition2() 5-12
sfu_condition3() 5-12
sfu_operation0() 5-12
sfu_operation1() 5-12
sfu_operation2() 5-12
sfu_operation3() 5-12
SH1ADD (seeSHIFT ONE AND ADD)
SH1ADDL (seeSHIFT ONE AND ADD LOGICAL)
SH1ADDO (seeSHIFT ONE, ADD AND TRAP ON

OVERFLOW)
SH2ADD (seeSHIFT TWO AND ADD)
SH2ADDL (seeSHIFT TWO AND ADD LOGICAL)
SH2ADDO (seeSHIFT TWO, ADD AND TRAP ON

OVERFLOW)
SH3ADD (seeSHIFT THREE AND ADD)
SH3ADDL (seeSHIFT THREE AND ADD LOGI-

CAL)
SH3ADDO (seeSHIFT THREE, ADD AND TRAP

ON OVERFLOW)
shadow registers2-8, 5-141
SHD (seeSHIFT DOUBLE)
Shift Amount Register 2-15
SHIFT DOUBLE 5-123
SHIFT ONE AND ADD 5-88
SHIFT ONE AND ADD LOGICAL 5-89
SHIFT ONE, ADD AND TRAP ON OVERFLOW 5-

90
SHIFT THREE AND ADD 5-94
SHIFT THREE AND ADD LOGICAL 5-95
SHIFT THREE, ADD AND TRAP ON OVERFLOW

5-96
SHIFT TWO AND ADD 5-91
SHIFT TWO AND ADD LOGICAL 5-92
SHIFT TWO, ADD AND TRAP ON OVERFLOW 5-

93
SHRs (see shadow registers)
sign_ext() 5-9
sign_ext_64() 5-9
signed halfword data type2-6
signed overflow 5-3
signed word data type2-6
single-precision floating-point data type2-6
space registers2-8
space_select()5-13
Spacial Locality cache control hint5-17
special function unit 1-8, 5-177
SPECIAL OPERATION ONE 5-183
SPECIAL OPERATION THREE 5-185
SPECIAL OPERATION TWO 5-184
SPECIAL OPERATION ZERO 5-182
SPOP0 (seeSPECIAL OPERATION ZERO)
SPOP1 (seeSPECIAL OPERATION ONE)
SPOP1,sfu,0 (seeIDENTIFY SFU)
SPOP2 (seeSPECIAL OPERATION TWO)
SPOP3 (seeSPECIAL OPERATION THREE)
SRs (see space registers)
SSM (seeSET SYSTEM MASK)
STB (seeSTORE BYTE)
STBS (seeSTORE BYTE SHORT)
STBYS (seeSTORE BYTES SHORT)
STH (seeSTORE HALFWORD)
STHS (seeSTORE HALFWORD SHORT)
STORE BYTE 5-33
STORE BYTE SHORT 5-50
STORE BYTES SHORT 4-3, 5-26, 5-52
STORE HALFWORD 5-32
STORE HALFWORD SHORT 5-49
STORE WORD 5-31
STORE WORD ABSOLUTE SHORT 5-51
STORE WORD AND MODIFY 5-35
STORE WORD SHORT 5-48
store_in_memory() 5-9
strongly ordered 4-3
STW (seeSTORE WORD)
STWAS (seeSTORE WORD ABSOLUTE SHORT)
STWM (seeSTORE WORD AND MODIFY)

I-10 Index PA-RISC 1.1 Architecture

STWS (seeSTORE WORD SHORT)
SUB (seeSUBTRACT)
SUBB (seeSUBTRACT WITH BORROW)
SUBBO (see SUBTRACT WITH BORROW AND

TRAP ON OVERFLOW)
SUBI (seeSUBTRACT FROM IMMEDIATE)
SUBIO (seeSUBTRACT FROM IMMEDIATE AND

TRAP ON OVERFLOW)
SUBO (see SUBTRACT AND TRAP ON OVER-

FLOW)
SUBT (see SUBTRACT AND TRAP ON CONDI-

TION)
SUBTO (seeSUBTRACT AND TRAP ON CONDI-

TION OR OVERFLOW)
SUBTRACT 5-97
SUBTRACT AND TRAP ON CONDITION 5-101
SUBTRACT AND TRAP ON CONDITION OR

OVERFLOW 5-102
SUBTRACT AND TRAP ON OVERFLOW 5-98
SUBTRACT FROM IMMEDIATE 5-119
SUBTRACT FROM IMMEDIATE AND TRAP ON

OVERFLOW 5-120
SUBTRACT WITH BORROW 5-99
SUBTRACT WITH BORROW AND TRAP ON

OVERFLOW 5-100
SYNC (seeSYNCHRONIZE CACHES)
SYNCDMA (seeSYNCHRONIZE DMA)
SYNCHRONIZE CACHES 5-152
SYNCHRONIZE DMA 5-153

T
taken branch trap4-26
temporary registers2-18
TLB (see Translation Lookaside Buffer)
TLB dirty bit trap 4-25
translation

read-only 3-6
write-capable 3-6

Translation Lookaside Buffer3-3
access identifier (ID) 3-12
access rights 3-12
alter 3-8
B-bit 3-5
block 3-4
combined 3-4
D-bit 3-5

E-bit 3-5
entry 3-7
hardware miss hndling3-10
invalidate 3-8
relied-upon translation3-8
slot 3-8
software miss handling3-9
T-bit 3-5
U-bit 3-5

trap 4-14
TRs (see temporary registers)

U
UADDCM (seeUNIT ADD COMPLEMENT)
UADDCMT (seeUNIT ADD COMPLEMENT AND

TRAP ON CONDITION)
unaligned data reference trap4-24
undefined

bits 2-7
instruction 5-1

undefined operation5-1
UNIT ADD COMPLEMENT 5-110
UNIT ADD COMPLEMENT AND TRAP ON CON-

DITION 5-111
UNIT XOR 5-109
unsigned doubleword data type2-6
unsigned halfword data type2-6
unsigned overflow 5-3
unsigned word data type2-6
UXOR (seeUNIT XOR)

V
VARIABLE DEPOSIT 5-128
VARIABLE DEPOSIT IMMEDIATE 5-130
VARIABLE EXTRACT SIGNED 5-125
VARIABLE EXTRACT UNSIGNED 5-124
VARIABLE SHIFT DOUBLE 5-122
VDEP (seeVARIABLE DEPOSIT)
VDEPI (seeVARIABLE DEPOSIT IMMEDIATE)
VEXTRS (seeVARIABLE EXTRACT SIGNED)
VEXTRU (seeVARIABLE EXTRACT UNSIGNED)
virt_mem_load() 5-13
virt_mem_store() 5-13
virtual accesses3-1
VSHD (seeVARIABLE SHIFT DOUBLE)

I-11PA-RISC 1.1 Architecture Index

W
WD bit 2-13
write_access_allowed()5-13
write-capable translation3-6

X
XMPYU (see FIXED-POINT MULTIPLY UN-

SIGNED)
XOR (seeEXCLUSIVE OR)
xor() 5-10

Z
ZDEP (seeZERO AND DEPOSIT)
ZDEPI (seeZERO AND DEPOSIT IMMEDIATE)
ZERO AND DEPOSIT 5-133
ZERO AND DEPOSIT IMMEDIATE 5-135
ZERO AND VARIABLE DEPOSIT 5-132
ZERO AND VARIABLE DEPOSIT IMMEDIATE 5-

134
zero_ext() 5-10
zero_ext_64() 5-10
ZVDEP (seeZERO AND VARIABLE DEPOSIT)
ZVDEPI (seeZERO AND VARIABLE DEPOSIT IM-

MEDIATE)

I-12 Index PA-RISC 1.1 Architecture

