
Part No. 45625-90001 

HP 150 Personal Computers 

HP 150 

TECHNICAL 

Reference Manual 

Product No. 45625A 

FliP'W HEWLETT a:e.. PACKARD 

Personal Office Computer Division 
974 East Arques Avenue, Sunnyvale, CA 94086 

Printed in U.S.A. 5/84 



NOTICE 

Purpose: This manual provides detailed technical int'ormation on the internals 
of the HP 150 hardware, firmware, and software. It is designed to aid in the 
development of hardware and software products which will become part ot', or work 
in conjunction with, the HP 150. 

User Level: Use of this information assumes a background in digital logic and 
assembly-language programming. 

Related Products: The HP 150 Progr-wuller's Tool Kit (Product 45435A) contains 
the Assembler, Linker, and appropriate documentation. The HP 150 ~-DOS User's 
Guide (Product 45624A) provides details on KS-DOS. 

COmpatibility: A hardware/software product designed to be dependent on one 
specific vers ion of the HP 150 hardware, firmware, or software may be 
incompatible with other versions of the HP 150 -- or such a product may be 
incompatible with future personal computer products from Hewlett-Packard, 
including models based on the HP 150 itself. 

Support: Because of the specialized nature of this information, the many 
capabilities of the HP 150 when used at this level, and the importance of design 
strategy for successful implementation of hardware/firmware-based products, 
assistance in the use of this manual is provided through local consulting -­
available ~ the hour (Product 45686A) or ~ the day (Product 45687A). Contact 
your local HP Sales and Service Office - - ask for Personal Computer Systems 
Engineering. 

11 

NOTICE 

The information contained in this document is subject to change without 
notice. 

HEWLETT-PACKARD MAKES NO WARRANTY OF AlfY KIND WITH REGARD TO THIS 
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRAHTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard 
shall not be liable for errors contained herein or for incidental or 
consequential damages in connection with the furnishing, performance or 
use of this material. 

Hewlett-Packard assumes no responsibility for the use or reliability of 
its software on equipment that is not furnished by Hewlett-Packard. 

This document contains proprietary information which is protected by 
copyright. All rights are reserved. No part of this document may be 
photocopied, reproduced or translated to another program language without 
the prior written consent of Hewlett-Packard Company. 

Copyright (c) 1984 by HEWLETT -PACKARD COMPANY 



LIST OF EFFECTIVE PAGES 

The List of Effective Pages gives the date of the current edition, and 
lists the dates of all pages of that edition and all updates. Within the 
manual, any page changed since the last edition is indicated by printing 
the date the changes were made on the bottom of the page. Changes are 
marked with a vertical bar in the margin. If an update is incorporated 
when an edition is reprinted, these bars and dates remain. No information 
is incorporated into a reprinting unless it appears as a prior update. 

First Edition •.•.•••.••.••. May 1984 

Effective Pages Date 

ALL ..•..•.......•......•....••....••......•. " .. • May 1984 

iii 



PRINTING HISTORY 

iv 

New editions are complete revisions of the manual. Update packages, which 
are issued between editions, contain additional and replacement pages to 
be merged into the manual by the customer. The date on the title page and 
back cover of the manual changes only when a new edition is published. 
When an edition is reprinted, all the prior updates to the edition are 
incorporated. No information is incorporated into a reprinting unless it 
appears as a prior update. The edition does not change. 

First Edition .•.•...••..••. May 1984 



PREFACE 

I CAUTION I 
This document provides detailed technical information 
revealing internal details of the UP 150 hardware, 
firmware, and software. 

The information presented allows development of hardware 
and software products for the UP 150 which may be 
incompatible with future personal computer products from 
Hewlett-Packard, including models based upon the UP 150 
itself. 

This manual presents technical information concerning the UP 150 Personal 
Computer and covers its hardware, firmware, and software subsystems. 

The intent of the manual is to aid in the development of hardware and software 
products which will become part of, or work in conjunction with, the HP 150. 

The reader is directed towards the HP 150 Programmer's Reference materials for 
complementary programming information including language and development tools. 

v 



vi 

MANUAL OVERVIEW 

This manual consists of the following sections and appendices: 

Section 1 - Introduction provides an overview of the UP 150. 

Section 2 - Hardware Overview provides product specifications 
information and briefly describes each subsystem 
of the BP 150. 

Section 3 - Hardware Subsystems contain detailed information 
on the UP 150's hardware subsystems and helpful 
des ign hints. 

Section 4 - Memory and I/O Mapping provides information on the 
memory and input/output bit mappings of the system's 
processor. 

Section 5 - System Software provides information on the 
operating systems, device drivers, MS-DOS calls, 
AGI_OS, BIOS, configuration, and disc format structure. 

Section 6 - System Firmware provides mapping informai ton on 
system RAM memory. 

Section 7 - Programming the HP 150 contains programming 
information on escape sequences, MS-DOS, AGIOS, 
alphanumeric and graphics displays, datacomm, 
keyboard, HPIB, and accessory card interfacing. 

Section 8 - AGIOS Function Call Reference provides a 
reference list of AGIOS function calls. 

Appendix A - Logic Diagrams contain schematic diagrams of the UP 150. 

Appendix B - Further Reference Documents provides a list of 
reference documents to supplement this manual. 



T ABLE OF CONTENTS I 

Section 1 - INTRODUCTION 
HP 150 System Overview .........•...........•.......••........................ 1-1 
System ~chi tecture .......................................................... 1-1 
Display. . . . . . . . . . . . . . . . . . . . . . . . .. . .......................................... 1-2 
Keyboard ..........•.......................•........•.................•....... 1-3 
CommWlications ............................................................... 1-3 

Section 2 - HARDWARE OVERVIEW 
In troduct ion ................................................................. 2-1 
Product Specifications .............................•..................•...... 2-1 

General Description .. > •••••••••••••••••••••••••••••••••••••••••••••••••••• 2-1 
Physical Specifications ....................••..........•••...•..•.....•... 2-2 
Environmental Specifications .......................•.......•..........•... 2-2 
Product Regulations ............•....•....•......•..•.......•.........••... 2-3 
Power Requirements .•........•.........•..•......•..•.•....•..........•.... 2-3 
CommWlications .....................•......................•............... 2-3 
Subsystem Power Requirements .....••....•..•..•.....••..•..•.•........••... 2-3 

HP 150 Printed Circuit Assemblies .....................•...•.•.•••..•......... 2-5 
Analog Boards ..........................................•.....•••.•........ 2-6 
Digital Logic Boards .................................••....•...•..•...•... 2-6 

Section 3 - HARDWARE SUBSYSTEMS 
Front Plane .... , ............................................................. 3~1 

Thermal (Integral) Printer Interface ....•.••..•.•...••.................•.. 3,..1 
Front Plane Connectors and Signals ........•.•..••.•.......••.............. 3-2 
Video Board Front Plane Connector ......................................... 3-4 
Accessory Front Plane Connectors ..•.................................•..•.. 3-5 
Sweep Board Connector ........•........••.........•.•....•..........•....•. 3-6 
Touchscreen Connecto:r ..................•.••............•..............•.•. 3-6 
Integral Printer Connector ....••.•.•..••.....•.........•.•..•.•........••. 3-7 
Power Supply Connector ..........................•....•............•....... 3-7 
Front Plane Signal Descriptions ....................•...................... 3-7 

Processor Subsystem ................................•........................ 3-10 
Overview ..................................•......•.•..................... 3-10 
Memory and I/O Mappings ...............•............•....................• 3-11 
Processor Board Block Diagrams ..............•.......•.....•••............ 3-11 
Reset, CMOS Power, and Test Strap Logic .........•...•.................... 3-13 
Microprocessor System Architecture .......................•...•.......••.. 3-13 
Bus Cycles................................ . ..........•.....•............ 3-14 
System Timing and Control Logic ..............................•........... 3-14 
Interrupt Controller ...............................••............•....... 3-18 
I/O Devices ...............................................•.............. 3-19 

Video Subsystem .......................................•..................... 3-23 
Video Technology and Display Format ................•..................... 3-23 
Displaying Alpha Characters .............................................. 3-27 
Video Board Overview............... . .................................... 3-32 

vii 



I TABLE OF CONTENTS (Continued) 

Keyboard and Touchscreen Subsystem .......................................... 3-37 
Keyboard ................................................................. 3 - 3 7 
Touchs creen .................................. , ..................•........ 3 - 38 
Specifications .•......................................................... 3-40 
Timing ................................................ ' ................. 3-40 
8041 Keyboard/Touchscreen Scanner ........................................ 3-44 

Da tacomm Subsystem ......................•................................... 3 - 50 
General Description ...................................................... 3-50 
RS232C/422 Datacomm Module Connector ..................................... 3- 50 
Baud Rate Genera tor ...................................................... 3 - 51 
Multi-Protocol Controller ............................................... 3-52 
Communicatons Interface Circuitry .....................•.................. 3-53 

Mezzanine Memory Subsystem .................................................. 3-55 
Mezzanine Memory PCA ..................................................... 3-55 
PCA Overview ............................................................. 3-55 
Conne ctor Signals ....................................................•... 3 - 57 
ROM ...................................................................... 3-59 
Slot Selection Generation ................................................ 3-60 
CMOS RAM ...........................•..................................... 3-61 
LEDs ..................................................................... 3-62 
Dynamic RAM •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 3-62 

Accessories Subsystem ....................................................... 3-64 
Accessory Hardware Des ign Guidelines .......•............................. 3-64 
Mechanical Specifications ................................................ 3-64 
Power Requirements ....................................................... 3-64 
Thermal Limits ........................................................... 3-65 
Accessory Signal Loading Restrictions .................................... 3-65 
Signal Timing Diagrams ................................................... 3-67 
Accessory Front Plane Connector ......................................... 3-'(0 
Accessory Connector Signal Descriptions .................................. 3-71 

Accessory Card Hardware and Electrical. ..................................... 3-73 
Electrical Des ign ........................................................ 3-73 
Mechanical Design ................ " ....................................... 3-76 
Drawings ................................................................. 3-80 

Section 4 - MEMORY AND I/O MAPPING 
Memory Mapped Devices ......................................... , ............... 4-1 

HP 150 Memory Map ......................................................... 4-1 
CRT Controller Registers. ., ... " .......................................... 4-3 
Horizontal Timing Registers (RO, R1, R2 anr H3) ........................... 4-4 
Vertical Timing Registers (R4, R5, R7, R8 and R9) ......................... 4-5 
Pin Configuration/Skew Bits Register (R6) ................................. 4-5 
DMA Control Register (RA) •••••••••••..••••••••••••••••••.•••••••••••••.••• 4-5 
C')ntrol Register (RB)., . . . . . . . . . . . . . ' ............................. 4-6 
Table Start Register . RC and RD) .••...•........••.•.•...•.•.•.•..•.•...•.. 4-6 
Auxiliary Register 1 ,HE and RF) .............•..•........................• 4-6 
Sequential Break Register 1 (RIO) ......................................... 4-6 

viii 



T ABLE OF CONTENTS (Continued>1 

Data Row Register (R1) ...........................................•........ 4-6 
Data Row End Register (R12) ............................................... 4-6 
Auxiliary Address Register 2 (R13 and R14) .............................•.. 4-7 
Start Command (R15) ....................................................... 4-7 
Reset Command (R16) ..............................................•........ 4-7 
Smooth Scroll Offset Register (R17) .........................•.......•..... 4-7 
Vertical Cursor Control Register (R18) .....•...................•.......... 4-7 
Horizontal Cursor Register (R19) .......................................... 4-7 
Cursor Registers R38 and R39 (READ) ..............•........................ 4-7 
Interrupt Enable Register (R1A) ........................................... 4-7 
Status Register (R3A) ..................................................... 4-8 
Vertical Light Pen Register (R3B) ......................................... 4-8 
Horizontal Light Pen Register (R3C) ......................................• 4-8 
Video Attribute Latch ...........................................•......... 4-8 

I/O Mapped Devices ......................................................•.... 4-9 
HP 150 Input/Output Map ........................•.......................... 4-9 
Real Time Clock (MM58167A) .....................•......................... 4-10 
Integral Printer Interface .....................•......................... 4-11 
Keyboard/Touchscreen Controller (8041A) ..............................•... 4-11 
Datacomm Port 1 Control Lines/Manuf Test nepeat ......................•... 4-12 
Datacomm Port 2 Control Lines/Clock Source Select ..........•.........•... 4-12 
Interrupt Controller (8259) ............................................•. 4-13 
Baud Rate Genera tor (8116T) ..............................•......•........ 4-13 
HPIB Controller (9914) ................................................... 4-11.4 
MPSC - Dat~cQmm Controller (7201/8274) ................................... 4-14 

Section 5 - SYSTEM SOFTWARE 
Operating System Structure ................................................... 5-1 

The Command Processor ..................................................... 5-2 
The Personal Applications Manager (P.A.M.) ................................ 5-2 
Applications Programs ................................................•.... 5-2 
Basic Disc Operating System (BDOS) ........................................ 5-3 
Basic Input/Output System (BIOS) .......................................... 5-3 

Operating System Memory Usage ................................................ 5-4 
Operating System Memory Map ............................................... 5 - 4 
Interrupt Vectors ......................................................... 5-5 
MS-DOS Interrupts ......................................................... 5-7 
HP 150 Hardware Interrupts ................................................ 5-7 
Firmware Variables ........................................................ 5-7 
BIOS and BDOS ............................................................. 5-7 
Disc Buffer Cache ......................................................... 5-7 
File Control Blocks (FCBs) ................................................ 5-8 
Fields of the FCB ......................................................... 5-8 
Installable Device Drivers ............................................... 5-10 
PAMCODE.EXE or Resident Portion of COMMAND.COM ........................... 5-10 
Application Program Area (Program Segment) .............................. 5-11 
Program Segment Prefix (PSP) Control Block .............................. 5-12 

ix 



I TABLE OF CONTENTS (Continued) 

How a Program Terminates ................................................. 5-13 
Conditions in Effect When a Program Receives Control ..................... 5-13 
Transient Portion of COMMAND. COM ......................................... 5-15 

HP 150 Devices .............................................................. 5-16 
Logical (Mappable) Devices ...................•........................... 5-16 
Phys ical Devices ......................................................... 5-16 
Mapping Logical to Physical Devices ...................................... 5-16 
The Device Configuration Utility ......................................... 5-17 
Installable Devices ......................•............................... 5-18 
Character Devices and Block Devices ...................................... 5-20 
How Application Programs Can Get to Devices .............................. 5-20 
Device Driver Structure .................................................. 5-21 
Pointer to Next Device Field ............................................. 5-22 
Attribute Field .......................................................... 5-22 
Strategy and Interrupt Routines .......................................... 5-23 
Name Field ............................................................... 5-23 
Device List .............................................................. 5-24 
How to Create a Device Driver ...•.................•..................... 5-26 

How MS-DOS Calls a Device Driver ..........................................•. 5-27 
Request Header ........................................................... 5-27 
Unit Code ................................................................ 5-27 
Command Code Field .............•..•....•................................. 5 - 28 
Status Word ....•.........•.....................•......................... 5 - 28 
Device Driver Functions and Parameters ................................... 5-31 
Ini t ..................................................................... 5-31 
Media Check .................•......................................•..... 5-32 
Build BPB (BIOS Parameter Block) .......•................................. 5-33 
Read or Write ..........................•................................. 5-35 
Non-Destructive Read No Wait .................................... " ........ 5-36 
Status ...............................................................•... 5-37 
Flush .......................................•............................ 5 -38 

HP 150 Installable Device Driver Example .................................... 5-39 
AGIOS: I/O Control of the Con Device ....................................... 5-49 

The Alpha/Graphic Input/Output System (AGIOS) ........................... 5-49 
Accessing the AGIOS ...................................................... 5-49 

BIOS and Its Devices ........................................................ 5-51 
Introduct ion ............................................................. 5 - 51 

The CONFIG. SYS File ......................................................... 5-55 
Disc Format and Directory Structure ....................•.................... 5-57 

Phys ical Disc Format......................... . ......................... 5-57 
Disc Media Storage Capacity .............................................. 5-57 
Disc Sector Allocation ................................................... 5-58 
Header Record. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . ........ 5-59 
Boot Sector .............................................................. 5 -61 
File Allocation Table (FAT) .............................................. 5-62 
Disc Clusters................................ , ........................... 5-62 
FAT Structure.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................... 5-62 
How to Use the File Allocation Table ..................................... 5-62 
MS-DOS Disc Directory .................................................... 5-63 

x 



T ABLE OF CONTENTS (Continued>1 

Section 6 - SYSTEM FIRMWARE 
Firmware Memory Map ...•.......•.........•..................•..•.••.....••.... 6-1 

RAM ••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••• 6-1 
Firmware Entry Point Jump Vectors .•.....•...........••...•................ 6-1 

Section 7 - PROGRAMMING THE HP 150 
Generating Es cape Sequences ...•.....•....•........................•..•..••... 7-1 
Performing MS-DOS System Function Calls •...•...............•........••...•.•. 7-2 
Making AGIOS Function Calls ...•.....•........•.....•.....•••.••...••..•...••. 7-5 
Alphanumeric Display Interfacing ....•...............•.........••...........•. 7-8 

Alphanumeric Video RAM Structure .•.............•........••.........•.•.•.. 7-8 
Alpha Video Buffer Format ......................•.......•.•..••...•...•..•. 7-8 
Video Row Pointer Table Format ..........•..•............•.•..••.........•. 7-9 
Row Pointer Formulation ...........•....••..............................••. 7-9 
Line Buffer Format ...•.........•.....•.....••.........................•.. 7-10 
Enhancement/Character Set Byte Structure .............•................... 7-10 
Character Code Structure ...•...••....•.•....•......•..................... 7 -10 
Finding Row Pointer Table Origin ..........•.•.••......•..••••...•......•. 7-11 
Fetching Row Pointers from the Table ........•.•.•..•..••..•....•...•..... 7-12 
Placing a Character in Alpha Memory .......•...•.....•..•..•••.•••..••...• 7-13 
Writing to Lines 25, 26, and 27 ........•..••...•••....•••.•••...•..•.•.•• 7-15 

Graphics Display Interfacing ........•........•...•..•..••••.....••.••.•••..• 7 -18 
Keyboard Interfacing ...........•......•••••••........••.•............•...•.. 7 -~2 

Keycode Mo~e .............................................................. 7-~2 
Console RAW/COOKED Mode .•..•••...•...••••..........•....•.....•.•....•... 7- 3 
Key Characteristics ...................................................... 7- 4 
Sample Keyboard Driver .....•.•......•.•...................... ' ............ 7-25 
Flush ing the Keyboard Buffer .....•............•......•.......••..•.•••... 7 - 26 
Keycode Tables .............•.....................•..•.....•.•••.•..•..•.• 7-29 

Programming Data Communications ........................•.....•..•..•.....•.. 7 -34 
Data Comm Using COM1 and COM2 Logical Devices ...........•...•.•....•.•... 7-34 
Assigning COM1 and COM2 to Physical Ports ................................ 7-34 
Opening the COM Devices ..........................•............•.......•.. 7-35 
Input from the COM Devices ........•...........................•....••.•.. 7-35 
Output to the COM Devices .............................................•.• 7-36 
Closing the COM Devices ...•.........................................•••.. 7-37 
COM Device I/O Example - A Termi.nal Emulator .......•...•...........•..... 7-37 
Programmatic Configuration of Data Comm ................•................. 7-39 
Reading the Current Configuration ......................•...........•..... 7-39 
Changing the Data Comm Configuration ..................................... 7-43 
Restoring the Original Configuration ..................................•.. 7-46 
Data Comm Control functions .............................................. 7-48 
IOCTL Reads for Input .................................................... 7-48 
Special COM Functions Through IOCTL Write Request ........................ 7-48 
Fast Buffer Send for Output .............................................. 7-50 

HPIB Interfac ing ............................................................ 7-52 
Limited HPIB Driver Functionality ...........................•............ 7-52 
Opening the HPIBDEV Device .............................•.....•.....•..... 7-52 

xi 



I TABLE OF CONTENTS (Continued) 

HPIB Control Calls ..••.•••..• 
MS-DOS IOCTRL Function Call. 
Control Block Format ....• 
Control Template Format. 
Sample Identify Templates •. 
Sample Read/Write Buffer Templates. 
HPIB Interface Example (9111A Graphics Tablet). 

Accessory Card Interfacing ••.....••..•••. 
Memory (Slot) Address Identification •• 

Section 8 - AGIOS FUNCTION CALL REFERENCE 
Syntax Used in the AGIOS Function Calls. 
Batch Function Call .. 
Video Intrinsics. 

Define Area .•• 
Write Area. 
Clear Area. 
Enhance Area •• 
Read Area .• 
Shift Area. 
Write Line. 

Application Softkeys. 
Update Softkey Label .• 
Read Softkey Label .... 
Display Softkey Labels ... 

Control Functions .......•... 
Execute Two Character Sequence 
Position Cursor (ESC & a) ..... 
Define Enhancements (ESC & d). 
Cursor Sense Absolute (ESC a) •. 
Cursor Sense Relative (ESC ') .. 
Set Cursor Type •••••••• 
Read Cursor Type ..... . 
Read Terminal Configuration. 

Touchscreen Functions. 
Field Operations ... 
Row Column Operations. 
Define Touch Field (ESC - z g). 

(ESC Char} ••. 

Define 
Delete 

z s). Softkey Field (ESC 
Touch Field (ESC - z d). 

Touchscreen Reset (ESC z j) .. 
Set Touch Reporting Mode (ESC - z n). 

Keyboard Intercept ......... . 

xii 

Define Key Characteristics. 
Get Key Characteristics. 
Put Key ....... . 
Keycode On/Off. 
Keycode Status .. 

. ..... 

.7-53 
.. ... 7-53 

· .. 7-53 
· .7-54 
.7-56 

· .7-57 
.. 7'"58 
· .7-65 
· .7-65 

• .• 8-1 
· .8-2 
· .8-4 

. ...... . 8-5 
. ...... 8-5 

· .8-6 
· .8-6 
.8-6 

· ... 8-7 
· .8-8 
· .8-9 

• ••. 8-9 
.8-9 

• •• 8-10 
.8-11 

. .•....... 8-11 
.... 8-12 

. ...... . 8-13 
· .8-13 
· .8-13 
· .8-14 
.8-14 

· .. 8-14 
.8-15 
.8-15 

· .8-16 
· .8-17 
.8-18 

· .8-18 
.8-18 

· .8-19 
.8-20 
.8-21 
.8-21 
.8-22 
.8-22 
.8-23 



TABLE OF CONTENTS (Continued>1 

Read Keypad Status....................................................... 8 - 23 
Display Control ·(ESC • d) ................................................... 8-24 

Clear Graphics Memory (ESC • d a) •••••.•..••..•.••..•...••.••...••.•.••.. 8-24 
Set Graphics Memory (ESC • db) ...•..•..•..•.....•..•.....•.•...•.••.••.. 8-24 
Turn On Graphics Display (ESC • d c) ••••••••••••••••••••••••••••••••••••• 8-24 
Turn Off Graphics Display (ESC • d d) .•.•••..••..•.•...•.•••.•••....•.••. 8-25 
Turn On Alphanumeric Display (ESC • d e) ...•.....••.••.•.•..••••••.••..•• 8-25 
Turn Off Alphanumeric Display (ESC • d f) ....••..•..•..••..••.•••.....•.• 8-25 
Turn On Graphics Cursor (ESC • d k) .......•......••••••.•.•.•.•.••.•.••.. 8-25 
Turn Ofr Graphics Cursor (ESC • d 1) .••••••.••••••••••••••••••••••.•••••• 8-26 
Turn On Rubber Band Line (ESC • d m) ..•••.•....•••....•••.•...•••.•..••.. 8-26 
Turn Off Rubber Band Line (ESC • d n) ......•....••.•..••••••.•••..•...••. 8-26 
Move Graphics Cursor Absolute (ESC * d <x,y> 0) .......................... 8-26 
Move Graphics Cursor Incremental (ESC • d <x,y> p) .•...••...........••.•. 8-27 
Turn On Alphanumeric Cursor (ESC • d q) ..•...•.•...••.•.•.••.•••••••••••. 8-27 
Turn Off Alphanumeric Cursor (ESC • d r) .•.......•..•.....••.•••.....•.•. 8-27 
Turn On Graphics Text Mode (ESC • d s) ••.•..••...•..•.....••..••....•.... 8-28 
Turn Off Graphics Text Mode (ESC • d t) •.••......••.•••.•.•.•.•.••..•••.. 8-28 

Vector Drawing Mode (ESC * m) ..........•......•••••.••..•.•...•....•..•..... 8-29 
Select Drawing Mode (ESC * m <mode> a) .........•...•......••....•..•...•. 8-29 
Select Line Type (ESC * m <type> b) ..••••..•••.•.•.•...•..••.....•.•••••. 8-29 
Define Line Pattern and Scale (ESC * m<pattern><scale>c) .....••..•.••.... 8-30 
Define Area Fill Pattern (ESC • m <pattern> d) .•...•..••..••...•••..•.... 8-30 
Fill Rectangular Area, Absolute (ESC * m <x1,y1',x2,y2> e) •.•....•.•••.•.. 8-31 
Fill Rectap~lar Area, Absolute Relocatable 
(ESC * m <x1,y1,x2,y2> f) ..••...••....•.•....•..•.•.••••••..•••••••••••.. 8-31 
Select Polygonal Fill Pattern (ESC * m <pattern> g) ••.•••••••••••••••••.• 8-31 
Select Boundary Pen (ESC * m <pen> h) .......••...•.••.....•..•........... 8-32 
No Polygon Boundary (ESC * m h) ..........•..•....•.••.....••.•...•..•..•. 8-32 
Set Relocatable Origin (ESC * m <x,y> j) ................................. 8-33 
Set Relocatable Origin to Pen Position (ESC * m k) .••................•.•. 8-33 
Set Relocatable Origin to Cursor Position (ESC· m 1) •.•..•.••••••.•.•.•. 8-33 

Graphics Text (ESC .) .......................•..•...••..•.....•.........•..•. 8-34 
Set Graphics Text Size Text Size (ESC * m <size> m) •••••••••••••••••••••• 8-34 
Set Graphics Text Orientation «ESC * m <orientation> n) .......•......... 8-34 
Turn On Text Slant (ESC * m 0) •••••••••••••.••••••••••••••••••••••.•••••• 8-35 
Turn Off Text Slant «ESC * m p) ....•......•................•............ 8-35 
Set Graphics Text Origin (ESC * m <0-9> q) •..•••••.•..•...•..••..•..•..•. 8~36 
Graphics Text Label (ESC * 1 <text» ..................................... 8-36 
Define User Character Set ..........................................•..... 8-37 
Select Default Character Set ...............•................•............ 8-37 
Output Single Text Character ............................................. 8-37 
Set Graphics Default (ESC * m r) ......................................... 8-38 
Set Picture Definition Defaults (ESC * m 1 r) ............................ 8-39 
Graphics Hard Reset (ESC * w r) ...........•......................•..•.... 8-39 

Graphics Plotting (ESC * p) ................................................. 8-40 
Lift Pen (ESC * mp a) ...................................•....••.•...•.... 8-40 
Vector Move (ESC * P a <x ,y» ............................................ 8-40 
Lower Pen (ESC * P b) ..•............••.•....•••...•....•.....•.••...••.•. 8-41 

xiii 



I TABLE OF CONTENTS (Continued) 

Vector Draw (ESC * p b <x,y» ............•............................... 8-41 
Plot to Cursor Position (ESC * P c) ..........•........................... 8-42 
Point Plot (ESC * p d) ....................................•.............. 8-42 
Set Relocatable Origin to Pen Position (ESC * P e) ........•.............. 8-42 
Start Polygonal Area Fill (ESC * p s) .................................•.. 8-43 
Terminate Polygonal Area Fill (ESC * P t) ................................ 8-43 
Polygon Move ........................................................•.... 8-43 
Po lygon Draw ............................................................. 8 - 44 
Lift Boundary Pen (ESC * P u) ............•............................... 8-44 
Lower Boundary Pen (ESC * P v) ............................•.........•.... 8 - 45 

Graphics Status (ESC * s) ...................................••.............. 8-46 
Read Device ID (ESC * s 1) ................................•.............. 8-46 
Read Pen Position (ESC * s 2) .......•.....................•.............. 8-46 
Read Cursor Position (ESC * s 3) ......................................... 8-47 
Read Cursor Position, Wait for Key (ESC * s 4) ........................... 8-47 
Read Display Size (ESC * s 5) ............................................ 8-48 
Read Graphics Settings (ESC * s 6) .•..........•.......................... 8-48 
Read Graphics Text Status (ESC * s 7) ....•..•....•......................• 8-49 
Read Zoom Status (ESC * s 8) .................•.....................•..... 8-49 
Read Relocatable Origin (ESC * s 9) ...................................... 8-50 
Read Reset Status (ESC * s 10) ........................................... 8-50 
Read Area Shad ing (ESC * s 11) ........................................... 8 - 51 
Read Dynamics (ESC * s 12) ............................................... 8-51 
Read Extended Screen Dimen'sions .................•........................ 8-52 

Appendix A - LOGIC DIAGRAMS 
Touchscreen peA .....................•........................................ A-1 
Keyboard peA ................................................................. A - 3 
Processor PCA ................................................................ A-5 
Processor Front Plane Interface .............................................. A-7 
Processor I/O Bus ............................................................ A-9 
Processor Datacomm Port ..................................................... A-l1 
Video Alpha RAM Su bsys tem ................................................... A -13 
Video Alpha Display Subsystem ............................................... A-15 
Video Graphics Display Subsystem ............................................ A-17 
Thermal Printer Interface (Part of Front Plane peA) ......................... A-19 
Mezzanine Memory peA ........................................................ A-21 
Mezzanine Dataconun peA ...................................................... A-23 
Sweep peA ...................................................•............... A - 25 
RAM (Memory Extender) PCA ................................................... A - 27 
Language peA ................................................................ A - 29 

Appendix B - FURTHER REFERENCE DOCUMENTS 

xiv 



~1_NT_R_O_D_U_CT_I_O_N ____________ ~lri!H1' 

This section provides an overview of the HP 150's system architecture, display, 
keyboard, data communications, and peripherals. 





HP 150 System Overview 
System Architecture 
Display 
Keyboard 
Communications/Peripherals 

CONTENTS 

1-1 
1-1 
1-2 
1-3 
1-3 





Introduction 

HP 150 SYSTEM OVERVIEW 

The HP 150 Personal Office Computer, the third member of the Series 100 family, 
offers a complete business solution and gives the customer more power and memory 
space in a small, effic ient package. The entire sytem (display, processor, 
keyboard, flexible and Winchester disc drives, and integral printer) occupies 
only 2.1 square feet of space, about the same "footprint" as an open looseleaf 
notebook. Several features have been added to decrease the amount of time 
required to learn and use the system such as a touchscreen interface and an 
advanced "shell" called the Personal Applictions Manager 
(P.A.M.) which shields the user from the "computerese" associated with many 
computer systems. 

The HP 150 system features are summarized below. 

System Architecture 

- Intel 8088 microprocessor (operating at 8 MHz) 
- MS-DOS 2.0 operating system 
- Built-in HPTouch 

256K bytes of main memory standard; 640K bytes maximum 
- Battery back-up for system configuration and real t~e 

clock 

The HP 150 uses an Intel 8088 microprocessor running at 8 MHz. The standard 
system contains 256K bytes of RAM memory for the operating system, applications 
and user workspace, and can be expanded to 640K. Touchscreen and graphics are 
standard with the system. 

In addition to the above capabilities, the HP 150 is also a customer expandable 
system. There are two expansion slots, accessible through the back of the unit, 
which allow the customer to add accepsories (such as additional memory) to the 
system without requiring the assistance of an HP representative or dealer. 
Installation of accessories is a simple operation, requiring an average of 5 to 
10 minutes. 

The HP 150 Personal Computer uses MS-DOS 2.0 from Microsoft Corporation as the 
standard operating system. MS-DOS 2.0 is a single-user, single-task operating 
system for which many third-party software packages have been developed. The 
operating system resides on disc and upon initialization MS-DOS is loaded into 
the processor's main memory. 

1-1 



Introduction 

A unique enhancement by Hewlett-Packard to the MS-DOS operating system has been 
the addition of an easy-to-understand facility to help the user execute 
commands. PAM (Personal Applications Manager) provides simple intuitive menus 
for the most frequently used system commands. Unlike other systems which 
require the user to learn the system "computerese", PAM through menus and 
HPl'ouch, guides the user through commands. With PAM starting applications, 
creating directories, deleting files and listing existing files can be as easy 
as touching the screen. For more advanced users the standard MS-DOS command 
facility is also available. 

Display 

- Built-in high-resolution on-screen graphics display 
(512 x 390) 

- High-resolution character display; 9 x 14 dot character 
cells; upper and lower case 
Display enhancements: inverse video, underline, blinking, 
half-bright, security and all combinations 

- Up to two pages of 24 lines x 80 characters of display 
memory 

The HP 150 can display both alphanumeric and graphics on the 9 inch diagonal 
screen. The alphanumeric display consists of a 27 line by 80 column format. 
The 25th and 26th lines are used for the screen labeling of function keys (and 
all are automatically "touchable" through touchscreen), and the 27th line is for 
system status and error messages. The screen memory stores 2 pages of text. 
which allows ~ff-screen storage of the display. High resolution characters with 
true descend~rs are generated in a 9 x 14 dot cell with half-dot shift. The 
standard display is green character against a black background. 

The graphics display has a resolution of 512 dots horizontally by 390 dots 
vertically. This gives a 1:1 aspect ratio guaranteeing symmetry (that is, 
circles look like circles). The numeric keypad also serves as the graphics 
keypad, allowing the customer to turn on and off the alpha display, turn on and 
off the graphics display or transfer the graphics display to one of the HP 
graphics printers. It also displays the graphics cursor and allows it to be 
moved around the screen. 

1-2 



Introduction 

Keyboard 

- Detachable, typewriter-style 
- Special editing keys 
- Numeric/Graphics pad 
- Eight screen-labeled function keys 

The UP 150 keyboard is designed to provide a familiar interface to the system 
and minimize training time. The low-profile keyboard shape, the sculptured 
keycaps and the dished "home" keys help to make the keyboard comfortable to use. 
The 107-key keyboard contains the full local editing keys such as cursor control 
keys, display scrolling keys, "next" and "prev" keys for scrolling by pages and 
"insert" and "delete" keys for inserting or deleting characters or entire lines. 

Series 100 function keys are screen labels used by the system and by application 
programs to increase the ease of use of the system. With the HP 150, this 
capability is enhanced by the use of HProuch. Now, all function keys can be 
selected by pressing the key itself or by touching the key label on the screen. 

Communications/Peripherals 

- One RS-232/RS-422 communication port 
- One RS-232 communication port 
- One HP-IB port 
- Full block mode graphics terminal support 

Two RS-232-C ports (one of which is capable of RS-422 c,ommunication) may be used 
to connect the system to a remote computer or to serial devices (such as 
printers or plotters). Flexible protocols allow the use of either hardware or 
software handshaking and communication speeds can range from 110 to 19,200 baud. 

The HP 150 contains the HP 2623 Graphics terminal feature set and can. run any HP 
3000 software which currently runs on that terminal. This includes block mode 
for V/3000 software and graphics applications such as HPEasychart and HPDraw as 
well as line-drawing and math character sets, "security" fields , transmit-only 
fields, edit checks and Tektronix 4010/4014 emulation. 





~H_A_R_D_W_A_R_E_O_V_E_R_VI_E_W ________ ~[!J 

This section provides product specifications information and briefly describes 
each module of the HP 150. 





Introduction 
Product Specifications 

General Description 
Physical Specifications 
Environmental Conditions 
Product Regulations 
Power Requirements 
Communications 
Subsystem Power Requirements 

CONTENTS 

HP 150 Printed Circuit Assemblies 
Analog Boards 
Power Supply PCA. 
Sweep PCA. 
Digital Logic Boards 
Processor PCA. 
Keyboard PCA. 
Mezzanine Memory PCA. 
RS232C/422 Datacomm PCA. 
Front Plane PCA. 
Video PCA. 
Touchscreen PCA. 

2-1 
2-1 
2-1 
2-2 
2-2 
2-3 
2-3 
2-3 
2-4 
2-5 
2-6 
2-6 
2-6 
2-6 
2-6 
2-7 
2-7 
2-7 
2-7 
2-7 
2-7 





Hardware Overview 

INTRODUCTION 

The HP 150 digital hardware performs the logic functions of a 16 bit personal 
computer with screen graphics. It consists of a Processor PCA, a Memory PCA, 
a Video subsystem PCA, a Touchscreen PCA, a Front Plane peA, and a Keyboard peA 
wi thin the Keyboard itself. Its operation is based on the 8 MHz 8088 
microprocessor. 

The Processor PCA provides control signals, input/output and data processing 
functions. The 'ROM/RAM PCA provides 256K bytes of dynamic RAM for system and 
user memory and up to 160K bytes of ROM. The Video subsystem PCA controls the 
display RAM and provides video display data and timing signals for driving the 
sweep circui try. The Touchscreen PCA provides an easy user interface to the 
system beyond the standard keyboard. Two accessory slots are provided allowing 
for memory expansion and additional processing and I/O capability. 

PRODUCT SPECIFIC A TIONS 

General Description 

System Processor: 

Main Memory: 

Screen Size: 
Alphanumeric 
Graphics 

Screen Capacity: 

Character Generation: 

Character Size: 

Character Set: 

Cursor: 

Intel 8088 microprocessor 
operating at 8 MHz 

256K bytes of RAM memory 

9 inch diagonal 
116 X 150 mm (4.5 X 5.9 inches) 
120 X 160 mm (4.7 X 6.3 inches) 

24 lines X 80 columns, 25th and 
?6th lines for labeling of 
function keys, 27th line for system 
status/error messages. 

7 X 10 enhanced dot matrix with 
1/2 dot shifting, 9 X 14 dot 
character cell, nonillterlaced 
raster scan. 

1.3 X 2.8 mm (0.05 X 0.11 inches) 

Roman8, line drawing, math standard 
(also bold and italic usable by 
applications only) 

Blinking underline or blinking square 

2-1 



Hardware Overview 

Display Enhancements: 

Refresh Rate: 

Tube Phosphor: 

Implosion Protection: 

Keyboard: 

Physical Specifications 

Inverse video, underline, blinking, 
half-bright, security, and all 
combinations. 

60 Hz 

P31 (green) 

Tension band 

Full ASCII code keyboard, eight 
screen-labeled function keys, 
auto-repeat, N-key rollover, cursor 
controls, 18 key numeric pad, 
detachable with 2.43 m (8 ft.) 
coiled cable. 

System Processor Weight: 10.15 kg (22.34 lbs.) 

Keyboard Weight: 2.14 kg (4.7Ibs.) 

Display Monitor 305 mm (w) X 305 mm (D) X 287 mm (H) 
Dimensions: [12.0 in. X 12.0 in. X 11.3 in. ] 

Keyboard Dimens ions: 

Flat 

Standing 

Environmental Conditions 

456 mm (W) X 225 mm (D) X 35 mm (H) 
[18.0 in. X 8.9 in. X 1. 4 in. ] 

456 mm (W) X 225 mm (D) X 35 mm (H) 
[18.0 in. X 8.9 in. X 2.5 in. ] 

Temperature (Free Space Ambient): 

Non-operating 
Operating 
With 2674A (Integral 

Thermal Printer) 

Humidity: 

*Vibration: 

*Shock 

2-2 

-40 to +75 C (-40 to +167 F) 
o to +50 C (+32 to +131 F) 
o to +50 C (+32 to +131 F) 

5 to 95% noncondensing 

5-55 Hz @ 0.015" displacement 

30g, 11 ms, 1/2 sine 



Hardware Overview 

*TYPe tested to qualify for normal shipping and handling 
original shipping carton. 

Product Regulations 

This product when used with HP approved options and peripherals meets the 
requirements of the following agencies/standards for EDP equipment or office 
equipment in the following countries: 

Safety: 

RFI: 

Datacomm: 

Power Requirements 

Input Voltage: 

Power Consumption: 

45610A 
45650A 
45655A 
45660A 

Communications 

Data Channels: 

HP-IB Channel: 

RS-232 Channel: 

Data Rate (RS-232): 

Canada - CSA Certification 
International - IEC 380/435 Compliance 
United States - U.L. Listing 
Finland - FEI (pending) 

Germany - VDE Class B 
United States - FCC Level B 

CCITT v.24 interchange v.28 electrical 
Australia - Telecom (pending) 
Belgium - Prr (pending) 
Finland - PTT (pending) 
Germany - FTZ (pending) 
Sweden - PTT (pending) 
U. K. - BT (pending) 

115 V (+10%,-25%) at 50/60 Hz (+-5~) 
230 V (+10~,-25~) at 50/60 Hz (+-5~) 

240 Volt Amp 
356 Volt Amp 
356 Volt Amp 
356 Volt Amp 

1 HP-IB, 1 RS-232/RS-422, 1 RS-232 

Bus used only for specified HP peripherals 

General asynchronous communications 

110, 150, 300, 600, 1200, 2400, 
4800, 9600, and 19200 baud 

2-3 



Hardware Overview 

Port 1 and 2: 

Port 1, only: 

EIA standard RS-232-C and CCITT v.24; 
hardware and XOH/XOFF handshaking 
available. 

RS-422 communication capability 

Subsystem Power Requirements 

The figures below are the worst case power consumption figures for the main 
system boards. The values given for accessory slots are obtained by subtracting 
the main system board power consumption figures from the power available from 
the power supply printed specifications. A more realistic set of-figures for 
accessory hardware board designers to use in determining power available for 
accessories is given in Section 3. 

PCA +5 Volt +12 Volt -12 Volt 

Sweep Board: 125 mA 1.9 A 60 mA 
Processor: 2.3 A 140 mA 80 mA 
ROM/RAM: 1.0 A 0 0 
Video subsystem: 3.4 A 0 0 
Front plane: 15 mA 0 0 
Thermal Printer: 800 mA 2.2 A * 0 
Touch Screen: 0 150 mA 20 mA 
Mezzanine Dat~~~mm: 200 mA 50 rnA 50 mA 
Accessory Slots: 1.15 A 280 mA 210 mA 

TOTAL 9.6 A 2.5 A ** 480 mA 

* This current at +12v for the TPM comes from a separate winding on the power 
supply. 

** This total does not include the current supplied for the TPM on the 
separate winding. 

2-4 



Hardware Overview 

HP 1 50 PRINTED CIRCUIT ASSEMBLIES 

The HP 150, in its standard configuration consists of seven modules. They are 
the Processor, Video, Sweep/CRT, Touchscreen, Keyboard, Power Supply, and Front 
Plane. Below is a block diagram of the HP 150 system showing each of the 
modules and their associated PCAs. 

SWEEP PCA 

SWEEP/CRT 

VIDEO PCA 

I I 
I VIDEO I 
1<---+ +-->1 

OPTIONAL 
THERMAL 
PRINTER 

_____ 1 I I 1 ____ _ 
I /1\ I 
I FRONT I I POWER 

TOUCHSCREEN PCA I PLANE PCA I I SUPPLY ~A 

TOUCHSCREEN 

I ___ \1/__ I 
I I I I I 

I +-->1 FRONT PLANE 1<--+ I 
1<------>1 1<------1 

POWER 
SUPPLY 

-----1 1-----r1rr---1 1 ____ _ 
/1\ 

MEZZANINE 
MEMORY PCA 

PROCESSOR I 
PCA I 
___ \1/_-

PROCESSOR 

KEYBOARD PCA 

I I 
1<----->1 KEYBOARD 
I I 

--rrr~Tr~n-1 1--------/1\ /1\ /1\ 
DATACOMM PCA 

DISCS, I I I 
PRINTERS, I I I +---> SF.RIAL PORT 2 (RS-232 DEVICES) 
PLOTTERS ,ETC. 1<-----------+ I 
(OPTIONAL) I HP-IB +--------> SERAIAL PORT 1 

______ 1 DEVICES 

Figure 2-1. HP 150 ~ lock Diagram 

(RS-232/RS-422 
DEVICES) 

A brief description of each PCA in the HP 150 system is given below. Each 
board is described in detail in Section 3. 

2-5 



Hardware Overview 

Analog Boards 

POWER SUPPLY peA. The power supply used in the HP 150 system is a 120 watt 
switching supply that provides +5, +12, and -12 volts to the system 
components. The supply is mounted vertically to the side of the metal chassis 
and supplies power to the system through a cable which connects to the front 
plane board and a separate connector on the power supply connects to a ribbon 
cable to provide +12V to the optional thermal printer (TPM). An overview of the 
supply is provided in Section 3. 

SWEEP peA. The sweep electronics (assembly 45600-60004) used for HP 150 is 
the same sweep used in the HP 120 computer system. This board also mounts 
vertically to the side of the metal chassis and interfaces to the digital 
logic on the video board via a ribbon cable to the front plane board. This 
sweep provides focus, brightness, vertical and horizontal centering controls 
at the rear of the uni t. Coarse brightness. horizontal width and 
vertical size controls are accessible after removal of the shroud of the system. 
Details about this board as well as the yoke and CRT are found in Section 3. 

Digital Logic Boards 

There are six PCAs containing primarily digi tal logic which create the HP 
150 hardware personality. 

PROCESSOR peA. The processor board (45611-60002) houses the 8088 
microprocessor, the heart of the system. The bulk of the I/O components such 
as HP-IB controller, keyboard and touchscreen controller, real-time clock, and 
datacomm are on this board. The processor board interfaces to the rest of 
the system boards through 96 pin, 60 pin, and 30 pin connectors. The processor 
board connects to the front plane through the 96 pin connector. The 60 and 30 
pin connectors are physically mounted on top of the processor board, and connect 
the mezzanine memory and datacomm PCAs, respectively. See Section 3 for a 
discussion on the processor board. 

2-6 



Hardware Overview 

KEYBOARD PCA. The keyboard is detached from the HP 150 unit and a cable 
connects it to a 6 pin phone jack on the processor board. See Section 3 for 
more keyboard information. 

MEZZANINE MEMORY PCA. The mezzanine memory board (45611-60006) is one of 
two boards mounted on the processor board in a mezzanine position beneath 
the video board. The memory board contains ROM, dynamic RAM, CMOS RAM, 
and indicator LEDs. A 60 pin connector is used to interface the memory and 
processor boards. See Section 3 for detailed memory board information. 

RS232C/422 DATACOMM PCA. The RS232C/422 board (45611-60015) is the other 
board in a mezzanine position. It connects to the processor board through a 
30 pin connector. The board has provision for both asynchronous and 
synchronous communications and can meet RS232C or RS422 communications 
standards. Details on this board are in Section 3. 

FRONT PLANE PCA. The front plane board (45611-60005) provides the interconnect 
for the processor, video, touchscreen, sweep, TPM, and accessory boards. 
The front plane also serves as a conduit for power to the various PCAs from 
the power supply. Section 3 describes the front plane in more detail. 

VIDEO PCA. The alphanumeric and graphics displays are generated by the video 
subsystem, the core of which is the video board (45611-60003). The video 
board design is based on an SMC9007 display controller and a custom 40 pin 
gate array for generation of the alpha and graphics displays respectively. 
This board is covered in Section 3. 

TOUCHSCREEN PCA. The touchscreen board (45611-60001) is actually a 
mixture of analog and digital circuitry. The 8088 interfaces to the 
touchscreen via the 80.41A keyboard/touchscreen controller. A 10 conductor 
ribbon cable connects the touchscreen to the front plane where information is 
in turn exchanged with the processor board. Details on the touchscreen are in 
Section 3. 

2-7 





HARDW ARE SUBSYSTEMS 
~ ______________ ~[IJ 

This section provides detailed information on the hardware subsystems of the BP 
150. Design hints on the optional accessory card are discussed here also. 
Subsystem discussion includes the front plane, processor, video, keyboard, 
touchscreen, datacomm, and memory. 





CONTEWTS 

Front Plane 
Thermal (Integral) Printer Interface 
Front Plane Connectors and Signals 
Video Board Front Plane Connector 
Accessory Front Plane Connectors 
Sweep Board Connector 
Touchscreen Connector 
Integral Printer Connector 
Power Supply Connector 
Front Plane Signal Descriptions 

Processor Subsystem 
OVerview 
Memory and I/O Mappings 
Processor Board Block Diagram 
Reset, CMOS Power, and Test Strap Logic 
Reset Logic. 
CMOS Power Circuit. 
Test Strap Logic. 
Microprocessor System Architecture 
Bus Cycles 
System Timing and Control Logic 
Clock Generator. 
Wait State Generation. 
GO Generator. 
Inte~t Controller 
I/O ~--"ices 
I/O Decoding. 
Keyboard and Touchscreen Controller. 
Datacomm. 
HP-IB Controller and Interface. 
Real Time Clock. 

Video Subsystem 
Video Technology and Display Format 
Raster Scan. 
Video Frame Format. 
Alpha Screen Format. 
Displaying Alpha Characters 
Alpha Character Cell Format. 
Alpha Video Enhancements. 
Graphics Display. 
Video Board OVerview 

Keyboard and Touchscreen Subsystem 
Keyboard 
Electrical Interface. 
Keyboard Operation. 
Touchscreen 
Mechanical Description. 
Specifications 
Timing 
Interface Description. 

3-1 
3-1 
3-2 
3-4 
3-5 
3-6 
3-6 
3-7 
3-7 
3-7 

3-10 
3-10 
3-11 
3-11 
3-13 
3-13 
3-13 
3-13 
3-13 
3-14 
3-14 
3-14 
3-15 
3-16 
3-18 
3-19 
3-20 
3-20 
3-21 
3-21 
3-21 
3-23 
3-23 
3-23 
3-24 
3-26 
3-27 
3-28 
3-30 
3-31 
3-32 
3-37 
3-37 
3-37 
3-37 
3-38 
3-38 
3-40 
3-40 
3-41 



Resolution Versus Humber of Pairs. 
Pair Address to Row, Column Ho. Conversion. 
8041 Keyboard/Touchscreen Scanner 
Block Diagram. 
Status Register (I/O Port 0019H). 
Initialization. 
8041 Commands (I/O Port 0019H). 
Keyboard and Touchscreen Data Input (I/O Port 0018H). 

Datacomm Subsystem 
General Description 
RS232C/422 Datacomm Module Connector 
Baud Rate Generator 
Multi-Protocol Controller 
Communications Interface Circuitry 

Mezzanine Memory Subsystem 
Mezzanine Memory PCA 
PCA Overview 
Connector Signals 
ROM 
ROM Decoding. 
Wait State Disable. 
ROM Timing. 
Slot Selection Generation 
CMOS RAM 
CMOS Decoding and Access. 
CMOS Power. 
LIDs 
LED Decoding. 
LED Register Reset. 
Dynamic RAM 
Decoding. 
Dynamic RAM Refresh. 
PCA Configuration. 

Accessories Subsystem 
Accessory Hardware Design Guidelines 
Mechanical Specifications 
Power Requirements 
Thermal Limits 
Accessory Signal Loading Restrictions 
Signal Timing Diagrams 
Accessory Front Plane Connector 
Accessory Connector Signal Descriptions 

Accessory Card Hardware and Electrical 
Electrical Design 
Helpful Design Hints 
General Schematic Discussion 
Tranceiver Schematic Discussion 
Mechanical Design 
Helpful Design Hints 
I/O Panel Design 
List of Vendors 
I/O Panel Paint Specifications 
Drawings 

CONTENTS (Cont.) 

3-42 
3-42 
3-44 
3-44 
3-45 
3-45 
3-46 
3-49 
3-50 
3-50 
3-50 
3-51 
3-52 
3-53 
3-55 
3-55 
3-55 
3-57 
3-59 
3-59 
3-59 
3-60 
3-60 
3-61 
3-62 
3-62 
3-62 
3-62 
3-62 
3-62 
3-63 
3-63 
3-63 
3-64 
3-64 
3-64 
3-64 
3-65 
3-65 
3-67 
3-70 
3-71 
3-73 
3-73 
3-73 
3-73 
3-74 
3-76 
3-76 
3-76 
3-77 
3-78 
3-80 



Hardware Subsystems 

FRONT PLANE 

The front plane, or mother board, of thE:' HP 150 svstem is the board that 
provides the interconnection of the various components of the system. The 
processor, video, and two optional accessory boards plug into connectors on the 
front plane. Four cable connectors interface the power supply, sweep, 
touchscreen, and optional TPM to the rest of the system via the front plane. 

The front plane is used primarily to provide a comnnmications path from the 
processor board to the video and accessory boards. Tb ... r'e is some digital logic 
on the front plane which is used for transferring bytes from the processor to 
the TPM. This circuitry is described below. Power for each of the boards comes 
from the power suppply via the front plane. Video signals are transmitted to 
the sweep via the front plane and timing signals for the touchscreen are 
transmitted or received via the front plane. 

Thermal (Integral) Printer Interface 

The optional thermal printer mechanism (TPM) interfaces to the rest of the 
system via logic on the front plane and processor boards. The processor sends a 
data byte to the TPM by writing the byte into a transparent latch on the 
front plane. A negative going pulse on NTPMWRT is sent causing the latch to 
receive the data byte. On the positive edge of NTPMWRT (the deassertion of 
NTPMWRT) the byte is latched into the latch. Also, a D flip-flop on the front 
plane is clocked which results in NSTR (JF7-15) being asserted (goes low). The 
assertion of NSTR tells the TPM that a byte is available for it to read. After 
the TPM reads the byte in the latch, it asserts NACK (JF7-6) by bringing it low. 
This results in the flip-flop preset inputs going low presetting the two D 
flip-flops. This makes NSTR go back high in preparation for the next byte to be 
sent to the TPM by the processor. It also makes the output of the D flip-flop 
go low which in turn makes NOCINT go low. NOCINT is one of the open collector 
interrupt lines on the front plane. Asserting NOCINT causes an interrupt to the 
processor. The interrupt service routine will poll the devices which assert 
NOCINT to determine which device to service. After receiving an interrupt from 
the T~ interface logic, the 8088 can send another byte to the TPM. (Note that 
an interrupt service routine must poll the TPM interface logic last because the 
poll consists of reading the TPM status which also clears the interrupt at the 
end of the poll.) 

The TPM status can be determined by reading the status register. The NTPMRD 
signal is asserted (goes low) by the processor board which enables the bus 
driver on the front plane to dri ve the data bus. Bi t 0=1 if acknowledge has 
been sent by the TPM in response to a byte sent to the TPM. Bit 1=1 if the TPM 
is installed and bit 2=1 if paper is present in the TPM. (Bits 3-7 are not 
used.) The deassertion of NTPMRD (its rising edge) clocks the flip-flop which 
clears the interrupt generated on NOCINT. 

3-1 



Hardware Subsystems 

A read or write to the TPM will cause the processor board signal NTPMSL to go 
low which results in 6 wait states to be added to the bus cycle. 

The TPM connects via a ribbon cable to a connector on the front plane. The 8088 
accesses the TPM at I/O address XX30 as described in the Memory and I/O Mapping 
section of this manual. Note that "XX" can be any (address) value. 

Summarizing, a byte of data is sent to the TPM by writing the data at port XX30. 
The TPM acknowledges the receipt of the data and readiness to accept the next 
byte of data to be sent by asserting the NOCINT interrupt line. The interrupt 
handling routine can poll the TPM by reading port XX30 and inspecting the least 
significant bit. If the bit is set, the TPM has generated an interrupt. The 
end of the read cycle clears the interrupt if caused by the TPM. PAPER OUT and 
ONLINE status are also available at the same address. 

Front Plane Connectors and Signals 

The following paragraphs provide a description of the connectors and the 
connector signals on the front plane. 

Front Plane PCA Connector Layout: 

JF5 -
SWEEP 

JF6 -
TOUCHSCREEN 
I 
I 
I 
I 

JFl - VIDEO BOARD 

JF2 - PROCESSOR BOARD 

JF7-
INTEGRAL 
PRINTER 

I 
I 
I 
I 
I 

JF3 - ACCESSORY SLOTl JF4 - ACCESSORY SLOT2 

3-2 

JF8 -
POWER 



Hardware Subsystems 

JF2 - Processor Board Front Plane Connector Pinouts and Signals 

1. FPA 0 33. NTPMWRT 65. NTPMRD 
2. FPA 1 34. NPFAIL 66. GND 
3. FPA 2 35. NSLOTSEL 2 67. GND 
4. FPA 3 36. FPNRST 68. +5V 
5. FPA 4 37. NOCINT 69. GND 
6. FPA 5 38. NOCWAIT 70. +5V 
7. FPA 6 39· +5V 71. GND 
8. FPA 7 40. BIO/-M 72. GND 
9· ABUS 8 41. -12V 73. GND 

10. ABUS 9 42. NVIDINT 74. GND 
11. ABUS 10 43. -12V 75· GND 
12. ABUS 11 44. FPGO 76. GND 
13. FPA 12 45. GND 77. GND 
14. FPA 13 46. GND 78. GNO 
15· FPA 14 47. FPCLK 79· GND 
16. FPA 15 48. GND 80. GND 
17. FPA 16 49. GND 81. GND 
18. FPA 17 50. BIO/-M 82. GND 
19· FPA 18 51. +12V 83. GND 
20. FPA 19 52. FPDT/-R 84. GND 
21. FPD 0 53. +12V 85. GND 
22. FPD 1 54. SHOLDA 86. GND 
23. FPD 2 55· FPNWRT 87. GND 
24. FPD 3 56. N.C. 88. +5V 
25· FPD 4 57. FPNRD 89. +5V 
26. FPD 5 58. +5V 90. +5V 
27. FPD 6 59. N.C. 91. +5V 
28. FPD 7 60. GND 92. TSDATA 
29· FPNSSO 61. TSCLK 93. GND 
30. NSLOTSEL1 62. GND 94. NDCOCINT 
31. BATV 63. N.C. 95· TSSYNC 
32. BATV 64. FULLMEM 96. +5V 

JF2 
+---------- ---------------------------------------+ 

32 I + + ... •.. + + I 1 
64 I + + ... .•• + + I 33 
96 I + + ... ... + + I 65 

+-------------------------------------------------+ 

Pictorial view of processor board front plane connector with pin 
assignment (as viewed from component side of front plane board) 

3-3 



Hardware Subsystems 

Video Board Front Plane Connector 

JFl - Video Front Plane Connector Pinouts and Signals 

1. FPA 0 
2. FPA 1 
3. FPA 2 
4. FPA 3 
5. FPA 4 
6. FPA 5 
7. FPA 6 
8. FPA 7 
9. ABUS 8 

10. ABUS 9 
11. ABUS 10 
12. ABUSll 
13. FPA 12 
14. FPA 13 
15. FPA 14 
16. FPA 15 
17. FPA 16 
18. FPA 17 
19. FPA 18 
20. FPA 19 
21. FPO 0 
22. FPD 1 
23. FPD 2 
24. FPD 3 
25. FPD 4 
26. FPD 5 
27. FPD 6 
28. FPD 7 
29. +5V 
30. +5V 
31. +12V 
32. +12V 
33. +12V 
34. BATV 
35. BATV 

JFl 

36. +5V 
37. GND 
38. FPNRST 
39. GND 
40. NOCWAIT 
Jll. +5V 
42. BIO/-M 
43. GND 
44. NVIDINT 
45. GND 
46. FPOO 
47. GND 
48. FPCLK 
49. GND 
50. +5v 
51. GND 
52. BIO/-M 
53. GND 
54. FPDT/"'R 
55. N. C. 
56. +5V 
57. N.C. 
58. FPNRD 
59. GND 
60. (RESERVED) 
61. GND 
62. +5v 
63. GND 
64. NVSYNC 
65. GND 
66. NHSYNC 
67. GND 
68. WB 
69. NFB 
70. GND 

+-------------------------------------------------+ 
35 I + + ... . .. + + I 1 
70 I + + ... . .. + + I 36 

+-------------------------------------------------+ 
Pictorial view of processor board front plane connector with pin 
assignment (as viewed from component side of front plane board) 

3-4 



Hardware Subsystems 

Accessory Front Plane Connectors 

The accessory boards plug into the bottom slots of the card cage. The system 
signals available to the modules are listed below. 

JF3/4 Accessory Board Front Plane Connector Pinout and Signals 

1- FPA 0 36. (RESERVED) * 
2. FPA 1 37. NPFAIL 
3. FPA 2 38. (RESERVED) * 
4. FPA 3 39· FPNRST 
5· FPA 4 40. +5V 
6. FPA 5 41. GND 
7. FPA 6 42. GND 
8. FPA 7 43. NOCINT 
9. ABUS 8 44. aND 

10. ABUS 9 45. NOCWAIT 
11- ABUS 10 46. (RESERVED) * 
12. ABUS 11 47. BIO/-M 
13. FPA 12 48. +5V 
14. FPA 13 49. -12V 
15. FPA 14 50. NDCOCINT 
16. FPA 15 51- aND 
17. FPA 16 52. -12V 
18. FPA 17 53. SHOLDA 
19· FPA 18 54. FPGO 
20. FPA 19 55. +5V 
21- GND 56. GND 
22. GND 57. FPCLK 
23. FPD 0 58. (RESERVED) * 
24. FPD 1 59. GND / FULLMEM * 
25· FPD 2 60. +12V 
26. FPD 3 61- GND 
27. FPD 4 62. BIO/-M 
28. FPD 5 63. +12V 
29. FPD 6 64. FPNWRT 
30. FPD 7 65. +5V 
31- GND 66. FPTYr/-R 
32. FPNRD 67. GND 
33. GND 68. FPNSSO 
34. +5V 69. GND 
35· BATV 70. NSLOTSELx ** 

JF3 and JF4 
+-------------------------------------------------+ 

35 I + + ... . .. + + I 1 
70 I + + ... . .. + + I 36 

+-------------------------------------------------+ 

Pictorial view of option module front plane connector with pin 
assignment (as viewed from component side of front plane board) 

3-5 



Hardware Subsystems 

* Pin 59 is FULLMEM is on JF3 only. Pin 59 is GND on JF4. 
Connections to this pin and all pins labeled RESERVED should not be made. 

** HSLOTSELx will be either HSLOTSEL1 or HSLOTSEL2 depending upon which 
s ide of the front plane the module is plugged into. The left s ide of 
the card cage (from rear view of the package) holds module 1 and gets the 
NSLOTSEL1 signal. The right side of the card cage holds module 2 
and gets HSLOTSEL2. 

Sweep Board Connector 

The Sweep board connects to the front plane via a 20 pin connector, 
JF5, whose signal pins are listed below: 

+------------+ 
20. + + 10. 20. +5V 10. NHSYNC 

+ + 19. GHD 9· +12V 
+ + lB. NHB B. GND 
+ + 17. GND 7. +12V 
+ + 16. NFB 6. GND 
+ + 15. GHD 5. +12V 
+ + 14. SWPNRST 4. GND 
+ + 13. -12V 3. GND 
+ + 12. +12V 2. +12V 

ll. + + 1. ll. HVSYHC 1. +5V 
+------------+ 

JF5 

Touchscreen Connector 

The Touchscreen connects to the front plane via a 10 pin connector, JF6, whose 
signal pins are listed below: 

+------------+ 
1. + + 6. 1. +12V 6. +12V 

+ + 2. TSDATA 7. +12V 
+ + 3. -12V B. GND 
+ + 4. TSSYNC 9. TSCLK 

5· + + 10. 5· GND 10. GND 
+------------+ 

JF6 

3-6 



Hardware Subsystems 

Integral Printer Connector 

The Integral Printer connects to the front plane via a 20 pin connector. 
JF7. whose signal pins are listed below. 

+------------+ 
l. + + ll. l. DO ll. D1 

+ + 2. D2 12. D3 
+ + 3. D4 13. D5 
+ + 4. D6 14. D7 
+ + 5· NPOR 15· NSTR 
+ + 6. NACK 16. POUT 
+ + 7. N.C. 17. NONL 
+ + 8. GND 18. GND 
+ + 9. +5V 19· +5V 

10. + + 20. 10. N.C. 20. N.C. 
+------------+ 

JF7 

Power Supply Connector 

Power to the system comes from the power supply through a 12 pin connector. 
JF8. on the front plane board. The signal definition is given below: 

+-----+ 
l. + NPFAIL 

(Pin removed for polarization) 
3. + GND 
4. + -12V 
5· + GND 
6. + (N. C. ) 
7. + +12V 
8. + GND 
9· + +5V 

10. + +5V 
11. + +5V 
12. + GND 

+-----+ 
JF8 

Front Plane Signal Descriptions 

The following description of the front plane signals referenceche connector 
diagrams shown previously. 

FPA 0-7 

ABUS 8-11 

The lower 8 address bits of the 20 bit address generated by 
the 8088. These signals are buffered and demultiplexed. 

The upper 12 address bits of the 20 bit address. 

3-7 



Hardware Subsystems 

FPA 12-19 

FPDBUS 0-7 

FPCLK 

FPNRD 

FPNWRT 

FPNSSO 

BIO/-M 

FPDT/-R 

FPGO 

HOCWAIT 

NVIDINT 

lIDCOCINT 

NOCINT 

3-8 

These signals also are buffered and demultiplexed. 

Data bus signals from the external data bus. This data 
path is the means through which data is passed between the 
processor and the video board or option slot modules or the 
optional TPM. 

Buffered 8 Mhz system clock. 

Buffered -RD signal from the 8088 used to indicate a bus 
read cycle in progress. 

Buffered -WRT signal from the 8088 used to indicate a bus 
write cycle in progress. 

8088 bus cycle status line. The combination of FPNSSO, 
BIO/-M, and FPDT/-R allow boards connected to the front plane to 
completely decode the current bus cycle. 

Buffered IO/-M signal from the 8088 used to distinguish 
memory wld I/O bus cycles. 

Buffered DT/-R signal from the 
direction of data from the 8088 for 

8088 used to 
a given bus cycle. 

indicate 

Signal which qualifies the address generated by the 
microprocessor. The address qualification is needed primarily 
for dynamic RAM circuits which cannot tolerate an assertion of 
RAS or CAS on a false address. FPGO goes high at the 
beginning of T2 and goes back low at the beginning of T4 of a 
bus cycle. FPGO can also be used to terminate a bus wri te 
cycle by having its falling edge used to clock data into a 
register or other device on an accessory device in an option 
slot. Terminating the writes in this way can provide better 
hold timing than using FPNWRT. 

This line can be asserted by the ()ption modules or video 
board through an open collector gate to insert wait states into 
a bus cycle to provide sufficient time for a bus cycle access. 

This line is asserted by the video subsystem to generate an 
interrupt to the processor. This interrupt occurs once every 
frame. The signal can be monitored by the option slot 
devices if desired. 

This open collector interrupt signal has the same interrupt 
priori ty as the datacolll..l11 controller chip on the processor 
board as it shares the same input to the interrupt controller as 
the datacomm controller chip does. This input can be asserted 
by accessories for interrupt servicing. 

System interrupt signal asserted by a device 
collector gate. This line can be used by options 
processor service. 

via an open 
slots to get 



SHOLDA 

FULLMEM 

NSLOTSELl 

NSLOTSEL2 

NFB 

NHB 

NHSYNC 

NVSYNC 

TSCLK 

TSDATA 

TSSYNC 

NTPMRD 

NTPMWRT 

FPNRST 

NPFAIL 

BATV 

Hardware Subsystems 

Synchronized hold acknowledge signal from the 8088. 
is asserted by the mezzanine memory board. 

HOLD 

Indicates which mezzanine memory board option is installed. 
FULLMEM=O if 128K RAM and FULLMEM=l (it is pulled high by a 
pull up resistor on an installed extension memory board) if' 
256K RAM is on the board. An accessory should not connect to 
this signal pin. 

Signal indicating an address within the 64K block allocated to 
option module 1 has been generated by the 8088. 

Same as NSLOTSELl but asserted when address within option module 
2 address space is generated. 

Video Full-Bright signal to sweep board. 

Video Half-Bright signal to sweep board. 

Horizontal sync signal from video board used by the processor 
and sweep boards. 

Vertical sync signal from video to sweep board. 

Touchscreen clock signal. 

Touchscreen data signal. 

Touchscreen sync signal. 

Signal from CPU to read TPM status. 

Signal generated by the processor card to handshake bytes of' 
data to the TPM. 

Signal generated by processor board at 
initialize logic circuitry. 

power-on time to 

Signal generated by the power supply indicating power supply 
output level stability. 

These two connector lines carry 
located on the video board to 
back-up power such as the CMOS 
clock. 

current from the batteries 
circuitry requiring battery 
RAM and the CMOS real time 

3-9 



Hardware Subsystems 

PROCESSOR SUBSYSTEM 

Overview 

The UP 150 processor board is based on the Intel 8088-2 microprocessor. The 
microprocessor runs at an 8 MHz clock speed and is configured for operation in 
the min~ mode. The general architecture of the processor, memory, and I/O 
is depicted in figure 3-1. As shown in the diagram, the majority of the 
circuitry is partitioned between three data busses: the memory data bus, the 
I/O data bus, and the external data bus. 

+------------------------+ 
~lemory Data Bus 

+-------->1 
1 1 
1 1 

Memory Board 

ROM 
Dynamic RAM 

CMOS RAM 
1 
1 
1 

+------------------------+ 
MEMORY BOARD 

v 
----------~~/I~\-----------------------------

1 
1 
1 

PROCESSOR - I/O BOARD 

+----------------------------------> 
+--------------+ External Data Bus (to Front plane: 

----+ 
8088-2 1 

Video, TPM and 
Option Modules) 

1 +------------------------+ 
1 Keyboard/Touchscreen 1 
1 IIP-IB 1 
1 1 Baud Rate Generator 1 
+-------->1 Datacomm Protocol Chip 1 

I/O Data Bus 1 Datacomm Module Option 1 
1 Real Time Clock 1 
1 Interrupt Controller 1 

+--------------+ +------------------------+ 

Figure 3-1. Processor Board and Memory Board Block Diagram 

3-10 



Hardware Subsystems 

Memory and I/O Mappings 

The logic on the processor board and the other boards which exchange data 
with the microprocessor are mapped into the 8088's memory or I/O space. 
Section 4 depicts the memory and I/O maps for the system. Note that I/O 
addresses xx80 through XXFF are available for option module use. Also note 
that "XX" can be any value. 

Processor Board Block Diagram 

Besides the 8088 microprocessor, the processor board contains a number of LSI 
and MSI components which are used to interface with other subsystems, provide 
cOllllllUllications with external devices, or perfonn specialized fWlctions. The 
block diagram in figure 3-2 shows the basic architecture of the board. This 
section of the manual will detail the various subsections and components of the 
processor board. 

3-11 



Hardware Subsystems 

+----------+--------+-------------------+-------------> Mezzanine 
ABUS 1 I ABUS 0-7 1 ABUS 0-19 Memory 
8-11 1 1 ABUS 12-19 1 Address 
+-----------+ +-----------+ +-----------+ 

Address 
Buffer 

Address 
Latch 

Address 
Latch 

+-----------+ +-----------+ +-----------+ 
1 

A8-11 1 
1 1 
1 AD 0-7 A12-19 1 

1 1 I 
+----------+ 1 Address/Data 1 AD 0-7 Mezzanine 

1 
1 
1 

8088 1 
I 
1 
1<----
1 
1 

+-------------------+----------> Memory 
1 Multiplexed Bus Data 
1 
1 +-------+ 
I 
1 1«---»1 FPD 0-7 Front 

--------+---------->1 1<---------> Plane 
1 1«---»1 Data 
1 1 1 

+----------+ 1 +-------+ 
I 

+-------------------------+-------------------+ 
I AD 0-7 I AD 0-7 A12-19 I 

+-------+ 

+-----------+ 
Address 

Latch 

+-----------+ 
Address 

Latch 
+-----------+ +-----------+ 

I FPA 0-7 I FPA 0-7,12-19 Front 
1 FPA 12-19 1 ABUS 8-11 Plane 

+--------+-------------------+-------------> Address 
+--------+ 

+---------+ 
MM58167 
Real 
Time 
Clock 

+---------+ 1 7201 I 
8116T 1-------->1 1<-----> 
Baud 1-------->1 1 Port 1 

1 Rate 1 1 1 
1 Generator 1 +-----1 1 
I 1 I 1 Datacomm 1 <-----> 

+.---------+ +---------+ 1 1 1 Port 2 
1 «---» 1 1 I/O Data Bus 1 , 1 +--------+ 

<-->1 1<---+------+----+-----------+------->1 
1«---»1 I I I 
I I 1 I +-----------+ I +--------+ 
I 1 I I 8259 I' 9914 , 
+-------+, 1 , , 1<-----> 
+--------------------+, Interrupt" 1 1 Control 
, 8041 I Controller, +-----1 HPIB , 
'Keyboard/Touchscreen' '" 
1 Controller 1 +-----------+ 1 1<-----> 
+--------.-----------+ 1 , 1 I I I I I Data 

Keyboard<---I I--->Touchscreen Interrupt Inputs +--------+ 

Figure 3-2. Processor Board Block Diagram 

3-12 



Hardware SubsysteDb 

Reset, CMOS Power, and Test Strap Logic 

This set of miscellaneous circuits provide functions of an ancillary or 
support nature to the more visible functions of the board to be described 
later. 

RESET LOGIC. The power-fail signal from the power supply (NPFAIL, Jl-34) is 
used b.Y the system as a power-on-reset and a CMOS device standby operation mode 
switch. NPFAIL is low when power is first applied to the system and goes high 
no sooner than 75 msec after the power supply output voltages have 
stablized at their specified values. When NPFAIL goes low due to the power 
being disconnected from the power supply, it does so at least 500 usec before 
the power supply output voltages go out of regulation. 

CMOS POWER CIRCUIT The CMOS power circuit regulates current use b.Y real time 
clock and configuration CMOS memory between the batteries and the power supply 
while the unit is switched on. 

TEST STRAP LOGIC. If the test strap input is held low during execution of 
manufacturing self-test, a failing test will be iterated until the failure 
ceases or the input is brought high. This is intended to be a convenience for 
servicing purposes. 

Microprocessor System Architecture 

The system microprocessor is an 8088. The clock frequency the 8088 is run at 
is 8 Mhz. The 8088 is configured in the "minimum mode." As it is not the 
intent of this document to review microprocessor basics, please refer to the 
Intel 8088 data sheets and application notes for fundamentals on 8088 operation. 

3-13 



Hardware Subsystems 

BUS CYCLES 

Address Generation. At the beginning of a bus cycle (memory or I/O access), the 
8088 places the memory or I/O address on its address and address/data pins. 
The address is multiplexed with the data and some of the status information 
so the processor board uses transparent latches to latch and buffer the 
address generated at the beginning of the cycle. Address bits A8-Al1 are 
not multiplexed so a non-latching buffer is used for buffering those four 
signals. ALE (U211 pin 25) is the signal used to latch the address into the 
latches. 

Data Transactions. The 8088 does all data transactions through one of three bus 
tranceivers. All the mezzanine memory board components are isolated by a 
transceiver located on the memory board. All the I/O devices (real time clock, 
datacomm, baud rate generator, keyboard/touchscreen controller, HP-IB 
controller, etc.) are on the I/O bus which is separated from the 8088 by 
another transceiver on the processor board. Any access not to the mezzanine 
memory or the I/O bus will default to the front plane. 

Status Generation. The 8088 generates status information indicating the type of 
bus cycle in progress. Control signals based upon these are generated by the 
processor and are buffered and sent throughout the system to allow circuitry to 
respond properly to read, write, memory, or I/O cycles. 

HOLD State. The 8088 will be put into a HOLD state by the mezzanine memory 
approximately every 56 usec during dynamic RAM refresh. 

System Timing and Control logic 

CLOCK GENERATOR.. The 8284A clock generator is used to provide the system 
clock for the HP 150 hardware. A 24 Mhz crystal provides the reference 
frequency used by the 8284. The 8284 creates an 8 MHz clock which nominally is 
high 33~ and low 66% of the 125 nsec period. The 8284 also divides the 8 Mhz 
clock by 2 to form the 4 Mhz signal ui3ed as the system clock for the 7201 
datacomm controller, the 8116T baud rate generator, the 9914A HP-IB controller, 
and the 8041A keyboard and touchscreen controller. 

The 8284 also provides a reset output pin which is used as a basis for the 
reset signals throughout the system hardware. 

The -F/C input (pin 13) of the 8284 is at a logic 0 state which selects the 
crystal oscillator as the source frequency for the 8284. 

The 8284 is a part of the wait state insertion logic. The 8284 is configured 
in the synchronous mode which affects some of the timing constraints the wait 
state generator logic has . Wait state generation is d~scribed in the next 
section. 

3-14 



Hardware Subsystems 

WAIT STATE GENERATION. The basic bus cycle for the 8088 consists of four 125 
nsec clock periods during which the memory of I/O address is generated by the 
CPU followed by a transmission of data to or the reception of data from a 
memory or I/O device. The cycle can be extended by adding "wait states" to 
the basic 4 clock cycle. The standard bus cycle is shown in figure 3-3. 

CLK 
(8 Mhz) 

ALE 

READY 

1<-- T1 --->1<-- T2 --->1<-- T3 --->1<-- T4 --->1 

\I 
----------------_/ 

\I 
\_----

Figure 3-3. Standard Bus ~ycle with no Wait States 

The four clock periods are labeled T1 through T4 for reference purposes. 
The 8088 samples the READY input during the low clock period of T3. If it is 
high at that time, no extra wait states are added. If it is low, a wait 
state is added as shown in figure 3-4. READY is sampled during the low 
clock period of every wait state. Whenever it is sampled high, the wait 
state is exited and the bus cycle goes into the T4 state. 

-- T2 -->1<-- T3 --->1<-- TW --->1<-- TW --->1<-- T4 --->1 

CLK 
(8 Mhz) 

--\ / 
READY __ /\ ________ / 

\/ 
\_----

Figure 3-4. Bus Cycle with Two Wait States 

The READY input to the 8088 is driven by the ROY output (pin 5) of the 8284. 
The 8284 has two inputs, RDY1 and ROY2 (pins 4 and 6), by which uai t states are 
controlled. Normally, wait states are added by RDY1 (NWAIT). RDY1 is sampled 
at the falling edge of each clock, so effectively, the READY input of the 
8088 is controlled by what the 8284 samples at its RDY1 input just prior to 
the beginning of T3 or just prior to the beginning of each wait state. 

Some processor board logic exists to add a specific number of wait states to 
certain bus cycles. Two wait states are added to the bus cycle when the 8814 
or 8041 or 8116 are accessed by the 8088 and 9 wait states are added when the 
real-time clock is accessed. 

3-15 



Hardware Subsystems 

A min~ of one wait state is added to every bus cycle when jumper W1 is 
installed. (Access of devices requiring more wait states get the additional 
wait states needed but one wait state appears in bus cycles on accesses of 
devices whose decoding logic isn't tied into the wait state generator.) 
Installing W2 causes no wait states to be added for ROM access only. 

Wait states may be inserted by other logic boards by 
line that is routed to the front plane option slots and 
As long as NOCWAIT is low, wait states will be executed 
the NOCWAIT input goes into a synchronizing flip-flop 
by an option or the video board must be anticipated 
The timing diagram in figure 3-5 illustrates wait state 
by an option card. 

asserting the NOCWAIT 
video board connector. 
by the 8088. Since 
the wait states added 

in a timely fashion. 
insertion and deletion 

1<--- T2 -->1<-- T3 --->1<-- TW --->1<-- TW --->1<-- T4 --->1 

CLK 

NOCWAIT 
, / 
,----,/ 

(auto) (added) 

Figure 3-5. Option Wait State Insertion 

To put in an~dditional wait state (there is one automatic wait state for 
allover the '"front plane bus cycles) the option must assert NOCWAIT no later 
than 2 clocks prior to the time the wait state is desired. Wait states are 
exited 2 clocks after the next falling edge of CLK from the point where NOCWAIT 
is deasserted. If an option is designed whose enable is qualified by FPGO 
(described in the next section) wishes to put in a wait state, it must assert 
NOCWAIT within: Tclk - Tfpgo - Tsu74 - 2Tpfp = 125- 38-3-20 = 64 nsec of the 
falling edge or beginning of T3. (Tclk = clock period, 125 nsec; Tfpgo = 
front plane GO delay; Tsu74 = 'r4S74 data setup time, Tpfp = front plane 
propagation delay.) 

GO GENERATOR. The purpose of the GO generator is to provide a signal to 
qualify the address generated by the 8088 on its address pins. The GO 
generator indicates the beginning of T2, end of T1 within a bus cycle and the 
beginning of T4. The address qualification is needed primarily for dynamic 
RAM circuits which cannot tolerate an assertion of HAS or CAS on a false 
address. Another feature of the GO signal is that its deassertion is useful 
for providing better hold margin timing on bus write cycles. A state machine 
is used to implement the GO generator. Basically, the machine inspects the 
NWAIT signal and ALELCH. When ALELCH goes high, the GO generator brings GO 
high at the next negative edge of the clock (beginning of T2). NWAIT is 
monitored until NWAIT goes high. Two clocks later, GO is brought low (at the 
beginning of T4) indicating the end of the bus cycle. 

3-16 



The machine algorithm is: 

+-----------------+ 

+-----------------+ 

/--\ 
/ \ 0 

/ ALELCH? \-----------> 
\ / 
\ / 
\ / 

I 1 
1<------------
1 I 

+-----------------+ I 

GO 

+-----------------+ 

/--\ 
/ \ 

/ NWAIT? \ 
\ / 0 
\ / 
\ / 

I 1 
I 

+-----------------+ 
GO 

+-----------------+ 

I 
f 
I 
I 
I 
I 
I 
I 
I 

(TI, Tl, T4) 

(T2) 

(T3, TW) 

Figure 3-6. GO State Machine Algorithm 

Hardware Subsystems 

The HP 150 utilizes an 8284 clock generator (READY generator) operating in 
synchronous mode. Therfore, the RDY1 input of the 8284 (pin 4) must be 
stable 35 nsec before each falling edge of the clock. The GO generator 
circuit requires NWAIT to be stable 20 nsec prior to the falling edge. Thus, 
meeting the 8284 specification meets the GO generator NWAIT timing requirement. 

3-17 



Hardware SubsystemS 

The timing relationship between GO and the other system timing is portrayed in 
figures 3-7 and 3-8. 

CLK 
(8 Mhz) 

ALE 

GO 

1<-- T1 --->1<-- T2 --->1<-- T3 --->1<-- T4 --->1 

1 
1-

Figure 3-7. Standard Bus Cycle with no Wait States 
with GO Timing. 

1<--- T1 -->1<-- T2 --->1<-- T3 --->1<-- TW --->1<-- T4 --->1 

CLK 

ALE 

GO 

Figure 3-8. Bus Cycle with One Wait State 
With GO Timing. 

The skew between GO and the falling edge of the clock should not exceed 20 
nsec. 

Interrupt Controller 

The 8088 is capable of processing two types of hardware interrupts. 
One type is the non-maskable interrupt (NMI) which is processed when the NMI 
input to the 8088 makes a low to high transistion. This occurs when a hard 
reset key sequence (CTRL-SHIFT-RESET) is issued by the user. The 8088, 
after getting an NMI, will use the values in memory locations 8,9,A,B for 
new code segment and instruction pointer values. This will cause the 8088 
to vector to an interrupt service routine. 

3-18 



Hardware Subsystems 

The other type of interrupt processed by the 8088 is standard or maskable 
interrupts. This type of interrupt is invoked by the INTR input of the 8088 
going high. In response the 8088 will lower the KINTA or interrupt 
acknowledge output twice. The second time KINTA goes low, the 8259A 
interrupt controller will place an 8 bit vector on the data bus. This vector 
will be a value from 0 - OFFH. The 8088 will start at the memory location 
equal to 4 times the vector and load the content of that location and the next 
three locations into the instruction pointer and code segment 
registers and subsequently branch to the interrupt routine. 

The 8259 has 8 inputs through which it accepts incoming interrupts 
from various sources. When an interrupt request occurs by one or more of 
the inputs IRO - IR7 going high, it raises the INTR input to the 8088 high. 
The 8088 in turn asserts NINTA two times. The 8259 will select one of the eight 
interrupt input sources for processing and when the 8088 sends the second 
pulse on BINTA, the 8259 will place a vector on the bus that corressponds 
to the interrupting device that is to be serviced. Should several 
interrupt requests come into the 8259 simultaneously, the 8259 chooses 
which one is to be processed first and which ones subsequently. 

The interrupts coming into the 8259 are prioritized as: 

High~st priority IRO Video 
IR1 Datacomm (7201 and front plane interrupts) 
IR2 +5V (Video second level tasks) 
IR3 Keyboard and Touch Screen 
IR4 Front plane interrupts (lower level) 
IR5 HP-IB 
IR6 (not used) 

Lowest priority IR7 Real-Time Clock 

The 8259 can be programmed to handle incoming interrupts in a number of 
different ways. The system firmware puts it in the iAPX 86 mode, 
level-triggered and non-buffered modes. The 8088 programs the 8259 by 
wri tting various data bytes to it over the I/O bus. The 8259 can be 
programmed to ignore certain interrupts, handle incoming interrupts in a 
particular order, or even to l<lork as a polling device if desired. 

The various ways the 8259 can be used are described in the 8259 data sheet and 
application note available from Intel. 

1/0 Devices 

The I/O bus has eight functional modules which exchange data with the 
microprocessor. These modules are the 8259A interrupt controller, the MM58167A 
real-time clock, the 8116T baud rate generator, the 8041A microcomputer which 
controls the keyboard and touchscreen, the 9914A HP-IB controller, 7201 
datacomm controller, and logic pertaining to datacomm on the fixed port (port 2) 
as well as the mezzanine datacomm board (port 1). Figure 3-9 illustrates the 
I/O bus modules. 

3-19 



Hardware Subsystems 

8088 Data Bus , , , 
+-----------+ 
, 8259A , 
, Interrupt , 
, Controller, 

+-----------+ 
I MM58167A , 
, Real-Time , 
, Clock , 

+-----------+ 
, 8116T , 
, Baud Rate , 
, Generator , 

+---------------+ +-----------+ +-----------+ +-----------+ 

74LS245 
+---------------+ 

I/O BUS 

, , , , , 
------ --~,--- ----1-1--

+--------------+ 
18041A Keyboard' 
1 Touch Screen , 
1 Contoller I 
+--------------+ 

Keyboard 

, , 
+-----------+ ,+-----------+ +----------+ 

9914A '" 7201 , Datacomm , 
, HP-IB '" Datacomm ,Port 1 , 
'Controller , , ,Controller I +----------+ 
+-----------+ , +----1------+ RS232/ 

1 1 +----1-----+ 422 
1 I 1 Datacomm 1 

HP-IB -I Port 2 I RS232 
Touchscreen +----------+ 

Figure 3-9. I/O Bus Device Block Diagram 

I/O DECODING. One or more I/O ports are assigned to each device or module 
on the I/O bus to provide the re9uired communication path with the CPU. The 
I/O map (presented in Section 4) lists the port addresses assigned to each 
device. An I/O bus cycle (one that is not an interrupt acknowledge cycle) is 
executed by the 8088 with the IO/-M signal high, the NSSO signal high and the 
DT/-R signal low, or with IO/-M high, NSSO low and DT/-R high. During the I/O 
cycle the lower 16 bits of the address bus carry the port address being 
accessed. An OR and a NAND gate monitor BIO/-H, NSSO, and DT/-R to see 
if an I/O cycle is occuring. A 3-line-to-8-line decoder with a NOR gate 
decode the address on the address bus and enable the 7201, the 9914. the 
8041, the 8259. the 8116, or logic in one of the datacomm ports when an I/O 
bus cycle is issued by the 8088 to access one of these devices. A NAND 
gate, a NOR and an inverter are used to decode the addresses used by the 
real-time clock chip. 

KEYBOARD AND TOUCHSCREEN CONTROLLER. The interface between the 8088 and 
the keyboard is provided by a single chip microcomputer, an Intel 8041. 
Additionally, the 8041 provides the interface to the touchscreen. 

The 8041 interfaces to the 8088 over the data bus. Two I/O ports are devoted to 
it, ports 18H and 19H. The 8088 can send various commands to the 8041 while 
the 8041 can send information such as a key number or a touchscreen report. 

3-20 



Hardware Subsystems 

Keyboard: The interface between the 8041 and the keyboard depends on the 
synchronization of a hardware counter on the keyboard, and a software counter 
in the 8041. Wi th each key clock the 8041 sends to the keyboard, it 
increments the software counter. It then checks the data line for status of 
the currently addresed key. The contents of the software counter specify the 
correct key address. 

The KBDSYNC line provides a reset mechanism allowing the 8041 to put the 
keyboard counter into a known state (count = 0). Thus the interface to the 
keyboard is proyided by three lines: KBDCLK from 8041, KBDSYNC from 8041, and 
KBDDATA from keyboard. 

Touchscreen: The interface to the touchscreen is essentially identical to 
that for the keyboard. The most significant difference is that the touchscreen 
drives the TSSYNC line. The 8041 must send clocks until the touchscreen 
activates the TSSYHC line to determine the state of the touchscreen counter. 
This provides a positive indication as to whether the touchscreen is 
present. Again, the interface is over three lines: TSCLK from the 8041, 
TSSYHC from the touchscreen, and TSDATA from the touchscreen. 

Bell: The 8041 also provides the drive for the system bell. The on-board 
timer circuit is used to select the frequency of the bell tone. 

Circuitry between the 8041 and the keyboard converts the TTL levels from the 
8041 to 12 volt reference levels used on the keyboard. This is also true for 
the touchscreen. 

For a more detailed explanation of how the 8041 interfaces to the keyboard and 
touchscreen see "8041 Keyboard/Touchscreen Scanner", which is discussed later in 
this manual. 

DATACOMM. The HP 150 hardware provides two independent datacomm ports. 
These ports provide a full complement. of signals and a large degree of 
flexibility for the system firmware to take advantage of. A description of 
these datacomm facilities is discussed later in this manual under "DatacoDDII 
Subsystem" . 

HP-IB CONTROLLER AND INTERFACE. The HP-IB controller used in HP 150 is the 
TMS9914A which is capable of handling the talker and listener functions, 
parallel and serial poll functions, and data handshaking functions required 
to implement the HP-IB standard protocol. SN75160 and SN75161 bus 
transceivers are used to interface the controller to the HP-IB bus. 

The 9914 system clock is the 4 Mhz square wave generated by the 8284 (PCLK). 
The 9914 has 8 I/O addresses assigned to it by which the CPU accesses the 
controller's internal 14 registers to do HP-IE transactions. 

The 9914 can also generate an interrupt to the system at interrupt 
level 5 to receive CPU attention if the processor has enabled the interrupt 
facilities. -INT, the interrupt output signal is an open-drain active low 
signal which is pulled up and inverted for 8259 interrupt handling. 

3-21 



Hardware Subsystems 

REAL TIME CLOCK. The HP 150 uses the MM58167 CMOS real time clock (RTC). This 
is a battery backed up component as is the CMOS RAM on the mezzanine 
memory board. When the main system power is turned off, the 3V battery and 
the associated circuitry maintains approximately 2.5V at the power supply pins 
of the CMOS parts. 

The '58167 is a versatile chip. It interfaces to the system with an 8 bit bus. 
The RTC keeps track of the month, day of month, and day of the week as well 
as the time in hours, minutes, seconds, tenth seconds, hundreths and 
milliseconds. It is capable of producing repeated interrupts at the rates of 
l/month, l/week, l/day, l/hour, l/minute, l/second and 10/second. An alarm 
feature allows an interrupt to be sent to the system at a designated time. 

Several components external to the chip are used in the oscillator 
circuit for the RTC. These include a variable capacitor which must be tuned for 
accurate time keeping with this circuit. The suggested way to calibrate the 
variable capaci tor is to connect a frequency counter to the interrupt 
output of the RTC and program the chip to produce a repetitive 1 Hz 
interrupt. Adjust C28, the variable capacitor, until the period of the pulse is 
as close to 1 second as it will adjust to. 

A number of components are used to create the final signals used to drive the 
-RD and -WR inputs of the RTC. The' 58167 has some rather unusual address 
and data setup and hold times that require the creation of special -RD and -WR 
signals to meet the RTC's timing constraints. 

3-22 

NOTE 

The millisecond register of the RTC is not very 
accurate. It is not recommended for use in critical 
time applications. 

The RTC interrupt status register cannot be polled! 
The status register must be interrogated after 
receiving an interrupt from the RTC. This is due to 
a race condition that exists in the chip that can 
cause an interrupt to be permanently masked if the 
status register is interrogated at the time the 
interrupt was about to occur. This implies that the 
RTC must not have its interrupt output shared in an open 
collector fashion with other devices unless it is 
always the last device to be polled in an interrupt 
service routine. 

The RTC can continue to drive the data bus as long as 
250 nsec after the -RD input is brought back high. A 
restriction that we have in the HP 150 system is that a 
read from the RTC cannot be followed immediately by a 
write to any device on the I/O bus. 



Hardware Subsystems 

VIDEO SUBSYSTEM 

The HP 150 Video Board provides the alphanumeric and graphics displays. This 
section of the manual describes in detail the workings of the board. The video 
board interfaces to the rest of the system through the front plane board. The 
interface signals and connector pinouts are described earlier in this section. 

Video Technology and Display Format 

RASTER SCAN. The HP 150 uses a RASTER SCAN display technology in a 
non-interlaced mode at a 60Hz refresh rate. The video is generated by 
scanning the CRT (cathode ray tube) wi th an electron beam. Electrons 
striking the phosphorous coating on the inside of the tube cause it to glow. 
Characters are displayed using dot patterns traced out by the electron beam. 

The HP 150's display system consists of: 

1. Video Board 
2. Sweep Board 
3. CRT 

The Video Board stores alphanumeric and graphics information in display RAMs. 
It then converts this information into a serial dot stream along with the 
necessary control signals and sends them to the Sweep Board. 

The Sweep Board is responsible for controlling the CRT. It transforms the 
digital signals it receives from the Video Board into analog signals necessary 
for manipulating the electron beam. 

The CRT acts as a transparent screen, onto which information is displayed. 
Electrons are generated in the back of the tube called the "electron gun." 
They are accelerated towards the front by the high voltage placed on the 
inside of the tube by the Sweep Board. The horizontal and vertical 
direction of the beam is regulated by a set of magnetic coils known as the 
"Yoke." The Yoke receives analog control signals from the Sweep Board also. 
See figure 3-10 for a block diagram description of the video system. 

3-23 



Hardware Subsystems 

Horizontal Sync. 

Filament 
VIDEO 

Vertical Sync. 
SWEEP 

Yoke Control 
BOARD BOARD 

(DIGITAL) (ANALOG) High Voltage 

Dot Stream 

Figure 3-10. Video Subsystem Block Diagram 

VIDEO FRAME FORMAT. Figure 3-11 shows the CRT pattern for the ALPHA display 
for one frame time. Part a) of the figure shows the begining of the frame when 
the electron beam is traced from the upper left portion of the screen to the 
lower right. Part b) shows the Vertical Retrace, when the beam is returned 
to the upper left of the screen, thus getting ready for the start of the next 
frame. For the sake of clarity, the following section refers to ALPHA 
display only. The relationship between Graphics and Alpha will be explained 
later. 

Looking at figure 3 -11, the following events take place during an ALPHA 
display in one frame time: 

1. The beam starts out at the top of the tube in the "Start Scan Lines" area. 
The beam will not be allowed to turn on for the first 12 scan lines. 
This area is blanked so that the beam control signals coming from the 
Sweep Board have a chance to settle down before active video display. 

2. On the 13th scan line, the beam reaches the active display area and 
video data is displayed. Note that horizontal retraces are necessary 
to bring the beam back to the start of the next scan line. During this 
time, however, the beam is turned off. 

3. After 
the 6 

3-24 

all of the 378 ALPHA scan lines have been displayed 
"Extra Scan Line" region, where the beam is blanked. 

we enter 



Hardware Subsystems 

4. We reach the end of the "Extra Scan Lines" and the Sweep Board receives a 
Vertical Drive pulse, from the Video Board, telling it to do a 
vertical retrace. In part b), we see the beam returning to the top of the 
screen. The beam is blanked during the vertical retrace, so that we won't 
see the zig-zag lines on the screen. (Hote that horizontal retraces 
continue while this is taking place). 

One complete frame includes the following; 

12 Start Scan Lines 
- 378 Active Scan Lines 

6 Extra Scan Lines 
19 Vertical Retrace Scan lines 

415 = scan lines per frame 

Each scan line is divided into its active (displayable) part, and the blanked 
(horizontal retrace) part as follows: 

- 80 displayable character times 
- 35 horizontal retrace character times 

115 = visible and non-visible characters per scan line 

3-25 



Hardware Subsystems 

f 
Start 

Scan Lines 
=12 

Active 
Scan Lines 

=378 

1 
Extra 

Scan Lines = 6 

+ 

NOTE: 

<=-= = Active Video 

~ = Horizontal Retrace 

= Blanked Video 

A B 

Figure 3-11. Alpha Display CRT Scanning 

Vertical Retrace 
Requires 19 
Scan Line Times 
To Complete 

ALPHA SCREEN FORMAT. Observing part a) of figure 3-12 we see that the alpha 
screen consists of a matrix of characters 27 rows X 80 columns. From here 
on, we will refer to them as Character Rows and Character Columns. Following 
is a table describing the different areas of the screen: 

3-26 

Description 

24 user rows 
2 soft key rows 
1 status row 

Row Number 

1-24 
25-26 

27 

27 rows = total displayable rows in one frame 



11+4------- 80 Columns --------.1_1 
TTT 
I I 

I .. - Character Cell 

- - ~ 

- -
-

27 
Rows 

Hardware Subsystems 

1+1
4--- 9 Dots --1 

Scan 

Figure 3-12. Alpha Character Matrix and Cell 

DlSPLA YING ALPHA CHARACTERS 

o The dot pattern for every character is stored in a Character ROM (Read 
Only Memory). 

o Characters are displayed ~lne scan line at a time. For example. in order 
to display one character row (80 characters). the following must be done: 

1. Fetch the 1st scan line pattern of char 11 from the Character ROM, then 
send it out to be displayed. 

2. Fetch the 1st scan line of the 
display. 

2nd character. and send to the 

3. Repeat this until scan line 1 of all the 80 characters has been displayed. 

3-27 



Hardware Subsystems 

4. Now perform 1,2,3 again, but with scan lines 2 and again with 3. 
up to scan line 14 which completes the character row. 

etc .. 

o To display the entire screen of 27 character rows the above steps 1-4 
would be performed for each character row, a total of 27 times. 

ALPHA CHARACTER CELL FORMAT. Part b) of figure 3-12 indicates the dot 
matrix which makes up each character, known as the character cell. There are 
14 scan lines of 9 dot columns in each cell. 

The HP 150 character cell has the following components: 

Row 
1 x x x x x x x x x Note: 
2 x 000 o 0 0 0 x x = inter row/column 
3 x 0 000 000 x spacing 
4 x 000 0 0 0 o x 0 = character dots 
5 x 0 o 0 0 0 0 o x s = space 
6 x 0 o 0 o 0 0 o x cu = top half of double 
7 x 0 0 o 0 0 0 o x cursor, underline 
8 x 0 0 000 o 0 x or underhang 
9 x 0 0 0 0 0 o 0 x c = bottom half of 

10 x 0 0 0 0 0 0 0 x double cursor or 
11 x 0 0 000 0 o x inter-row spacing. 
12 x s s s s s s s x 
13 c u c u c u c u c 
14 c c c c c c c c c 

12345 6 789 Columns 

o Basic character cell contains the main body of the character called the 
Character Font. (All liP 150 characters are in a roO font.) 

o Inter-row spacing is accomplished by blanking the first and last 
columns of the character cell 

o Scan line 11 is called the Print Line, on which lower and upper case 
characters are positioned. 

o Inter-column 
information 
characters 

spacing is ensured by 
in rows 1 and 14. (Except on 
where ascenders include row 1.) 

o Underline occupies row 13 

o Descenders reach down to row 13 

3-28 

not 
certain 

putting 
Roman 

character 
Extent ion 



Hardware Subsystems 

There are two types of cursors on the HP 150: 

o The double scan line cursor occupies rows 13 and 14. It is a positive 
cursor, which means that it is logical OR-ed with whatever dots that 
may try to occupy the same row. 

o The "Blob" cursor takes up the entire character cell. 
invertible cursor, which means that it will invert whatever 
that may be inside the cell. 

o Both cursors are blinking types. 

It is an 
dot pattern 

Refer to figure 3-13 for a character cell example. Here we see the letter "A." 
As stated above, it takes up only a 7X10 space, leaving room for 
inter-character spacing. A few of the dots dC'" not start at the beginning of 
the designated dot position. These are shifted over by a half-dot position to 
make the slanted lines look much smoother. 

Summary of Video Rates 

Frame Rate 
Scan line Rate 
Character Rate 
Dot Rate 

60 Frames/Second 
415 Scan Lines/Frame 
115 Characters/Scan line 

9 Dots/Character 

Multiplying 
25, '771 , 500 

the above numbers 
(or 25.1115 MHz). 

together will give a dots/frame rate of 

3-29 



Hardware Subsystems 

Dots 
A 

/ "-
1 2 3 4 5 6 7 8 9 

2 

3 

4 

5 

6 

Scan 7 

Lines 8 

9 

10 

11 

12 

13 

14 

Figure 3-13. Character Cell Example 

ALPHA VIDEO ENHANCEMENTS. The HP 150 supports the following types of 
enhancements: 

- inverse 
- underlined 
- blinking 
- half-bright 
- security 

(Only alpha information is blanked out. 
It will not have any effect on other enhancements 
in the same character cell.) 

Any combination of the above enhancements may be defined for a character 
cell. 

3-30 



Hardware Subsystems 

GRAPHICS DISPLAY. Graphics display is stored on the HP 150 us ing a RAM array, 
with each bit representing a graphics dot. The 8088 microprocessor writes the 
dot information into RAM, while the GDC3091 (U38) Graphics Display Controller 
fetches this information in a continuous manner. Every fetch involves the 
reading of one word ( 2 bytes ) from RAM, and once the data enters the GDC3091 , 
it is serialized and shifted out at graphics clock rate. In this manner, all 
graphics scan lines are displayed. 

Graphics has a resolution of 390 vertical }i ':512 horizontal dots. Graphics 
dots are 1 1/2 times as thick horizontally as alpha dots. Since the Alpha 
Display only has 378 scan lines, the Graphics Display area overlaps it by 6 
scan lines on top and bottom ot the screen. Because they are wider, the 512 
graphics dots take up more room than the 720 alpha dots, and graphics 
overlaps alpha by about 16 grapics dots in the horizontal direction. 
Although the two displays are concentric in the vertical direction, they 
are slightly mismatched horizontally, as shown in figure 3-14. 

The physical size of the display is: 

Type Horh.ontal Vertical 
( mm ) ( mm ) 

--------- ---------- -----.----
ALPHA 150 116 
GRAPHICS 160 120 

3-31 



Hardware Subsystems 

720 Alpha Dots 

i r---. 17 G Dots 15 G Dots 

6S can Lines 

i 

Physical Dimensions: 
Graphics; 160mm x 120mm 
Alpha ; 150mm x 116mm 

378 
Scan Lines 

~ 
6S can Lines 

t I· 512 Graphics Dots 

NOTE: 
L ; Graphics Boundary 

L- ; Alpha Boundary 

Figure 3-14. Display Specifications 

Video Board Overview 

H 

·1 

390 
Scan Lines 

The video board contains the digital logic used to display alpha and graphics 
information on the screen. Alpha information is addressed from a plane separate 
from graphics information. To do this, it performs the following functions: 

1. Stores the information to be displayed in alpha and graphics RAM. 

2. Produces an alpha dot stream. 

3-32 



Hardware Subsystems 

3. Produces a graphics dot stream. 

4. Mixes the two dot streams and sends the resulting control signals to the 
sweep: 

NFB not full bright 
NUB not half bright. 

5. Provides deflection control signals used by the sweep; 

NVSYNC vertical sync 
HSYNC horizontal sync. 

Figure 3-15 shows the major components of the video board and the flow of data 
and control information between them. The following list provides a brief 
description of each of these components. 

1. Processor Request and Wait Generation: 
Decodes 8088 access to the alpha or graphics RAM producing signals used by 
the RAM controllers. Also inserts necp-ssary processor wait states. 

2. Graphics RAM interface: 
Interfaces the 8088 and the Graphics Display Controller Chip (GDC-3091) to 
the graphics RAM. 

3. Graphics RAM: 
32K x 8 block of dynamic RAM which is used to store graphics 
information. Because the graphics is a bit map display the information is 
stored in that format. A portion of the RAM is also used by the alpha video 
firmware to store variables. 

4. Graphics Display Controller Chip: 
Custom gate array graphics controller which retrieves data from the 
graphics RAM and forms the graphics dot stream. Also provides graphics RAM 
timing signals. 

5. Alpha RAM controller: 
Interfaces 8088 to the alpha RAM and to the SMe 9007 video controller. Also 
interfaces the SHC 9007 to the alpha RAM. 

6. Alpha RAM: 
12K x 8 block of static RAM which stores the alpha information to be 
displayed. 

7. SHC 9007 Alpha Video Controller: 
VLSI video controller which retrieves data from the alpha RAM and 
provides display signals needed to generate the alpha dot stream. 

8. Character ROM: 
16K x 8 ROM which contains template for each alpha character. The ROM 
contains eight character sets. Each set contains 128 characters. 

3-33 



Hardware Subsystems 

9. Alpha character display hardware: 
This hardware uses information from alpha RAM and the character ROM along 
with signals from the SHC 9007 and generates the alpha dot character stream. 
This stream does not include any enhan~ement information. 

10. Enhancement decoding logic: 
This hardware decodes the enhancement information. It produces signals used 
by the mixing hardware. 

11. Dot stream mixing hardware: 
Mixes the alpha and graphics dot streams with the enhancement information to 
obtain the signals NFB and NHB which are sent to the sweep. 

12. Clock generation: 
Produces various clock signals which are used by the other sections of the 
board. 

The following discussion outlines the events which must take place to obtain 
the video dot stream and other signals sent to the sweep. It also highlights 
the key points of implementation. 

To obtain an alpha dot stream the following happens: 

1. The 8088 writes control information to the SHC 9007 to initialize the 
controller. This establishes the VSYNC and HSYNC signals sent to the sweep 
as well as the other control signals produced by the SHC 9007. 

2. The 8088 writes the characters and enhancements to be displayed to the alpha 
RAM along with information needed by the SHC 9007 to retrieve the characters. 

3. SHC 9007 retrieves data from the alpha RAM and latches it into discrete TTL 
latches. 

4. This data is used to address the character ROM and generate the enhancements 
associated with the character. 

5. The dot stream generated from the character ROM infonnation and the 
enhancement information is combined to form the alpha dot stream. 

NOTES: 1. Accesses to the SHC 9007 and the alpha RAM by the 8088 are 
synchronized to the SHC 9007 character clock. Also accesses by the 
SHC 9007 to the alpha RAM are synchronized to the character clock. 

3-34 

2. 8088 and SHC 9007 alpha RAM accesses are time multiplexed within the 
character clock. In other words, part of the character clock is 
alloted to 8088 accesses and part is alloted to the SHC 9007. 



Hardware Subsystems 

To obtain the graphics display: 

1. The 8088 writes information to be displayed into graphics RAM. 

2. The Graphics Display Controller Chip retrieves the information and forms the 
graphics dot stream. 

NOTES: 1. The signal which initializes the Graphics Display Controller Chip is 
derived from signals generated by the SHC 9007. This means that the 
SHC 9007 must be initialized before the graphics display is enabled 
or the graphics RAM is accessed. 

2. Accesses to the graphics RAM by the 8088 and the Graphics display 
controller are syncronized to the graphics dot clock. The accesses 
are also time multiplexed wi thin each graphics cycle, where one 
graphics cycle is 16 graphics dot clocks in length. 

To obtain the sweep signals: 

1. The alpha and graphics dot streams are combined using combinatorial logic. 
This logic produces the NFB and NBB signals which are sent to the sweep. 

2. The NHSYNC and NVSYNC signals are produced by the SHC 9007 and are buffered 
before being sent to the sweep. 

Notes on clock generation: 

1. The 8 MHz system clock is used by the request and wait generation circuitry 
to aid in sychronizig the 8088 RAM accesses to the video clocks. 

2. All clocks on the video board are derived from a 25.7715 MHz crystal. 

3-35 



W 
I 

W 
0'\ 

..., .... 
~ 
II) 

W 
I 

I-' 
VI 

<: .... 
~ 
o 

&' 
[ 
~ 
II) 

~ .... 
II) 

~ 

Request 
And 
Wait 

Gener· 
ation 

r 80nt-1 
I Plane r" ' 
I (8088) I L __ -I 

+--- .... 

" . 
r-I 
I I 
L_......l 

Video Board 
Clock Signals 

Data, Address and 
Control Information 

Indicates Block 
Is Not On Video 
Board 

Alpha 
RAM 

Controller 

+ 1+---1-, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I L ___ _ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

+ 
Graphics 

RAM 
Interface 

-. 

12Kx8 Alpha 
Static RAM 
1818-1845 

1 
Alpha Video 

Controller 
SMC 9007 
1820-2987 

-, 
I 
I • 

rT-: 
I 
I 

:'-+ 
r---+ 

. I 
Clock Generation II 

5169-0A, OB, OC, OD, I 

ODB, NOD, SMCCLK --l 

DCLK, NDCLK 
GCLK, CL 1, NSOF 

"1 
I 

+ 
Graphics 
Display 

Controller 
GDC-3091 
1820-3091 

t 
32K x 8 Graphics 

Dynamic RAM 
1818-1776 

Enhancement 
Decoding 

Logic 

Character 
Display 
Logic 

• 
1 

Character 
ROM 

16Kx8 

Dot Stream 
Mixing 

r----, 
I Sweep I 
I I 
L __ -l 

;= 
a 
~ 
I» 
;: 
til = g 
; 
a 
foil 



Hardware Subsystems 

KEYBOARD AND TOUCHSCREEN SUBSYSTEM 

Keyboard 

ELECTRICAL INTERFACE. The keyboard interfaces with the 8088 via an 8041 
microcomputer that creates the timing signals needed for communications. Power 
for the keyboard is delivered by the processor board through the keyboard cable. 
The 8041 delivers a clock and sync signal to the keyboard while monitoring a key 
acknowledge return signal from the keyboard on one of the 8041's timer inputs. 

The following signals are connected to the connector jack on the keyboard: 

Pin 1 ---------- SYNC -----------------
Pin 2 ---------- If.C. I 3 2 1 I 
Pin 3 ---------- +12V I * * * I TOP VIEW 
Pin 4 ----_._---- Ground I * * tt I 
Pin 5 ---------- CLOCK 1 6 5 4 1 
Pin 6 ---------- KEY (return 1---------------1 

I 1 
_f \ 

1 Keyboard Cable Intry 

Figure 3-16. Keyboard Jack Detail 

The 8041 creats a CLOCK signal that is non-periodic that averages just under 5 
KHz. The shortest time period is around 190 microseconds with a duty cycle near 
5~. The SYNC signal (active high) is designed to reset the keyboard to a known 
state wi th respect to the 8041. The KEY line is a return signal from the 
keyboard telling the 8041 a key was depressed. 

KEYBOARD OPERATION. The 8041 clocks the keyboard continually by pulsing the 
CLOCK line and sends out a synce pulse on the SYNC line after all the keys have 
been scanned. The sync pulse keeps the 8041 in sync with the keyboard. 

After the 8041 delivers a sync pulse to a seven bit counter on the keyboard, it 
resets it to zero. On the very next negative edge of the clock this counter 
begins to count. The three least significant bits of the counter control the 
inputs to an 8 to 1 multiplexer which monitors the 8 rows of the keyboard matrix 
(each clock pulse causes the multiplexer 1,0 scan a different row). The four 
most significant bits are controlling two BCD to decimal decoders which strobe 
each column of the matrix. The inputs to the 8 to 1 multiplexer are pulled down 
via a resistor. For a particular column address, an output of the decoders will 
be high. If a key in that particular colwnn is depressed, one of the eight 
inputs to the 8 to 1 multiplexer will go high. As -the least significant bits of 
the counter count through all eight rows of that column, the output of the 
multiplexer will go high when the row of depressed key is scanned. This logic 
one signal is returned to the 8041 via a NAND buffer. The 8041 keeps track of 
how many clocks were sent to the keyboard and can determine which key was 
depressed when the logic one was sent on the KEY line since there is a 

3-37 



Hardware Subsystems 

one-to-one correspondence to the number of clock pulses sent and each key 
switch. 

Touchscreen 

NOTE 

The information presented here may be covered by one or 
more Hewlett-Packard patents. 

The touchscreen allows the determination of the X-Y coordinate of an object 
touching the screen. This is accomplished by placing infrared emitters along 
two sides of the grid, and photo-detectors along the other two sides, opposite 
the emitters. By turning on each emitter and checking the output of the 
opposite detector, it can be determined which pairs are blocked. A complete 
scan of the pairs results in an image of the object, allowing the determination 
of an X-Y coordinate. 

MECHANICAL DESCRIPTION. The touchscreen consists of a printed circuit board 
with a center cut-out. This mounts slightly in front of the CRT face, inside 
the bezel. The infrared beams pass through holes in the bezel and across the 
CRT face. 

Connecting the touchscreen p.c. board with the terminal is one 10 conductor 
cable. It plugs into the touchscreen board at the upper right hand corner, and 
into the frontplane next to the sweep board connector. 

For ESD protection, the inside of the bezel insert is coated with a conductive 
paint. Contacting this paint is a spring clip mounted on the back of the upper 
right corner of the board. This clip is bolted to the PCA and connects through 
the pad to a quick disconnect on the front of the board. A ground cable runs 
from the quick disconnect to the chassis. 

3-38 



Hardware Subsystems 

1 
1 P~R 
1 1 1 COUNT 

HP 150 FRONTPLANE 1 CLOCK I COUNTER 1--------+ 
1 1------->1 PULSE 1 

1 1 1 1 SYNCH 1 GENERATOR 1 
+------------ -->1 J1 1<-------1 1 PULSE 
1 1 1 1 DATA I 1-----+ 

____ I 1 1 __ 1<---+ ' _____ 1 1 
1 1 
1 1 
I 1 

____ I 1 
1 1 
I IRED 1 1 

___ v __ 

I 
8041 KEYBOARD I 

AND I 
TOUCHSCREEN I 
CONTROLLER 1 

----r---I 

___ v __ 

8088 SYSTEM 
PROCESSOR 

PROCESSOR BOARD 

DECODER 1<----+ 
AND I 

DRIVERS 1<-------+ 
I 1 

_........-___ 1 1 
1 
1 
1 
1 

INFRARED 
LIGHT 

v___ 1 

PHOTO­
DETECTORS 

1 COUNT 1 
1<-------+ 
1 
1--------+ 

____ I 1 
1 
1 
1 

1 1 
DATA 1 1 1 

+----1 DETECTOR 1<-------+ 
I 1 
1 ____ 1 

TOUCHSCREEN BOARD 

Figure 3-17. Touchscreen Block Diagram 

3-39 



Hardware Subsystems 

SPECIFICA TlONS 

Resolution: 27 rows by 40 columns 

Power Consumption: +12V @ 70ma 

Interface: 6 signals; 

3-40 

1. +12 
2. ground 
3. -12 
4. TSCLOCK: should be driven with an open collector buffer 

pulled up on the T.S. board to 10 volts. 
(Period of 1.4 milliseconds or greater. 
active low, low time to be > 1.5 microseconds 
and less than 10 microseconds.) 

5. TSDATA: high output is 10 volts. 
(Data out, low indicates that the currently 
addressed pair is interrupted. High 
indicates that the pair is unblocked.) 

6. TSSYHC: high output is 10 volts. 
(Synch out, active low, indicates that the 
ts counter is currently on 37 (43 base 8) 
and will rollover to zero on the next 
clock. ) 

Connector: J1 10 pin connector with key. 

!1 !6 
+12 ! +12 

! 
!---------I---------I 
! 2 ! 7 ! 
1 TSDATA 1 +12 1 

! !----
1---------1---------1 1 
13 18 I k 1 
I -12 ! GROUND e 1 
I 1 Y I 
!---------I---------I 1 
!4 19 !---­
! TSSYHC I TSCLOCK 1 

1---------!---------1 
15 !10 
1 GROUND ! GROUND 



Hardware Subsystems 

TIMING 

1.4 ms min I <- 1.5 micro sec min 
no max I <- 10 micro sec max 

tsclock \_1 \_1 \_1 \_1 --

count 33 \1 34 \1 35 \lIb\1 0 0 
1\ 1\ 1\-1\ 

--tssync \ 1 

-tsdata _I \ uuu 1 
unblocked blocked bad emitter undefined unblocked 

o Delay from falling edge clock to data valid = 0.8 msecs maximum. 

o 10 :pair exists at decimal count 21, thus data will always be high at this 
count. 

INTERFACE DESCRIPTION. In the HP 150, a single chip microcomputer, an 8041, 
provides the interface to the touchscreen. Within the 8041, a software count is 
synchronous with the touchscreen hardware counter. As the 8041 sends clocks to 
the touchscreen, it increments this software count and checks the data line. 
When the data shows a blocked pair, the software count specifies which pair is 
blocked. By keeping track of which pairs were interrupted in a scan cycle, the 
8041 can determine if a valid hit has occurred. If so, the hit is reported as 
one of 27 rows and one of 41 columns. (0-26, 0-40). 

The general scheme for this is as follows: 

1. While sync not active send clock (*synchronize count*) 
2. Set count = 00 
3. For count = 0 to 36 

send clock 
wait 1.4 milliseconds 
check data 
if data = block store count 
end 

4. Check synch 
5. If synch is not active then error - GOTO step 1 

else check blocked count numbers for a valid hit 
6. If valid hit then report to system processor 
7. GOTO step 2. 

3-41 



Hardware Subsystems 

Valid Hits: At least one interrupted pair in the column range and at least one 
interrupted pair in the row range. More than one pair, in row or column space, 
is okay as long as the multiple, interrupted pairs are adjacent. (Example: pair 
3 interrupted, and pair 5 interrupted is an error condition.) 

No Hit: This would be a scan cycle which finds no pair interrupted. 

Error Conditions: 

1. An interrupted row pair, but no interrupted column pair. 

2. An interrupted column pair, but no interrupted row pair. 

3. Multiple hits: If any two interrupted row pairs are separated by one or more 
uninterrupted pairs. Likewise for columns (i.e., two distinct objects are 
touching the screen). 

4. Out of synch: At the end of a scan cycle, the synch should be active. If 
this does not occur, a reset should be done. 

If an error condition is found, no hit is reported. 

RESOLUTION VERSUS NUMBER OF PAIRS. The resolution of the touchscreen is 
greater than the number of pairs used. This is accomplished by averaging the 
data. That is, if two adjacent pairs are interrupted, the row or column between 
the two is the one desired. Thus the resolution is effectively doubled, except 
for edge effects. 

This requires that the distance between the adjacent pairs be less than the 
minimum stylus diameter. 

Thus, if any single row or column is interrupted, that is the one desired. If 
an even number of adjacent beams are interrupted, the resul t is the center, 
'half', address. If an odd number of pairs are interrupted, the result is the 
center beam. 

PAIR ADDRESS TO ROW, COLUMN NO. CONVERSION. The pairs are positioned above 
and below the CRT as follows: 

1 2 345 
321012345678901234567890123456789012345678901234567890123456789 

x x x x x x x x x x x x x x x x 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Column No. 6 7 8 
012345678901234567890 

x x x x x 
Pair No. 16 17 18 19 20 

Thus, across the top, the pairs are positioned every fourth column. This leads 
to a resolution of 40 vertical divisions, each division = 2 columns. 

3-42 



Hardware Subsystems 

The pairs are actually offset to the space between 2 adjacent columns, starting 
at the space between columns -2, -1 and repeating every fourth column until the 
space between column 78, 79. This causes an offset which should be corrected at 
the system processor level. The effect is that the 8041 will report column 
pairs in the range a to 40. This is one more division (two columns) than on the 
display. To correct for this, the following should be done: 

Multiply the column report by 2 
Subtract 2 
If negative then set result=O 

=> changes range from 0-40 -> 0-80 
=> changes range from 0-80 -> -2-78 
=> changes range from -2-78 -> 0-78 

This corrects for the offset of the touchscreen hardware with respect to the 
display. 

The pairs are positioned along the sides of the CRT as follows: 

T.S. Display 
Pair Row 

a 0 
1 

1 2 
3 

2 4 
5 

3 6 
7 

4 8 
9 

5 10 
11 

6 12 
13 

7 14 
15 

8 16 
17 

9 18 
19 

10 20 
21 

11 22 
23 

12 24 
25 

13 26 

The rows are a straight forward mapping of the row number reported by the 8041 
into the rows of the display. The report need only be multiplied by 2. 

3-43 



Hardware Subsystems 

8041 Keyboard/Touchscreen Scanner 

A description of the operation of the 8041 peripheral processor used to scan the 
keyboard and touchscreen follows. A complete description of the commands used 
to control the 8041 is included. 

NOTE 

The information presented in this manual with respect to 
the touchs creen may be covered by one or more 
Hewlett-Packard patents. 

BLOCK DIAGRAM. The keyboard and touchscreen are both scanned by an 8041 
peripheral processor. 

3-44 

HP 150 
FIRMWARE 

I , 
-------------------,-------------------, , 

-----------,-----------, I , , , , 
STATUS COMMAND DATA 

REGISTER REGISTER REGISTER 
(AO=l) (AO=l) (AO=O) 

Read Only Write Only Read Only 
(0019H) (00l9H) (00l8H) 

KB KB KB TS TS TS 
RESET CLOCK DATA SYNC CLOCK DATA 

P17 PlO T1 TO P23 P22 

I /1\ /1\ I /1\ , I , I I 
- \1/ --\1/ I I \1/ I ---- ----

KEYBOARD TOUCHSCREEN 



Hardware Subsystems 

STATUS REGISTER (I/O PORT 00190). The 8041 status register 
obtained by reading from the 8041 at I/O port address 0019H. 
following format: 

Bit Interpretation 

7 - 4 Four status bits controlled by the 8041 
program. These are used to qualify the 
data values sent to the HP 150 processor 
by the 8041. 

3 
2 

F1 flag. 
Fa flag. 

Used internally by the 8041. 
Used internally by the 8041. 

1 IBF flag. Set when the HP 150 processor 
writes to the 8041 and cleared when the 
8041 accepts the data. 

a OBF flag. Set when the 8041 has data 
available for the HP 150 processor and 
cleared when the host reads from the 
8041 with AO = O. 

contents are 
It has the 

INITIALIZATION. The following actions will leave the 8041 in its initialized 
state: 

o Power on 
o Hard reset from keyboard 
o Hard reset command from HP 150 processor 
o Initialization command from HP 150 processor 

After initialization. the 8041 will not scan the keyboard or touchscreen until 
an "enable scanning" command is given. About 200us after initialization 
commences. status bits 7-4 will be 0001 if the reset was from power-on or 0010 
otherwise. The initialization continues and attempts to synchronize with the 
touchscreen. The entire initialization takes u~ to 100 MS. 

The recommended start-up procedure for the 8041 after any of the four 
initialization actions listed above is: 

1. Wait 100 milliseconds for the 8041 to initialize itself and check the 
touchscreen. 

2. Send self-test command and wait for results to come back. 

3. Send indentify keyboard command and wait for results to come back. 

4. Enable scanning. 

3-45 



Hardware Subsystems 

8041 COMMANDS (I/O PORT 00 19H). These commands must only be written to the 
command buffer of the 8041 (I/O port 0019H). 

Command Code 

3-46 

08H 

10H 

20H 

21H 

22H 

23H 

24H 

25H 

26H 

28H 

2AH 

2BH 

Function 

Stop bell immediately. Next bell will function normally. 

Release interrupt line. 
request to the host. 

8041 will negate its interrupt 

Hard reset. 8041 will assert its reset output to the HP 150 
processor and initialize itself to power-on state with the 
exception of 8041 status flags (see preceding discussion on 
8041 status register). Scanning must be re-enabled for 
keyboard or touchscreen input. 

Identify keyboard. 8041 will respond with either 7FH or FFH 
d~pending on whether the keyboard identification diode is 
present or not. The 8041 generates an interrupt to the host 
when the ID is ready. Status bits 7 -4 will be 0000 if 
touchscreen is defective and non-zero if the touchscreen is 
working. 

Keyclick off. 8041 will not make keyclick sound when keys 
are pressed. 

Keyclick on. 8041 will make keyclick sound. 

Enable Scanning. 
scan keyboard or 
host. 

After power-on or hard reset, 8041 will not 
touchscreen until command is given by the 

Ini tialize 8041 to power-on state except for status flags. 
Scanning must be re-enabled by HP 150 processor for keyboard 
or touchscreen input. This command does not reset the HP 150 
processor. 

Self-test 8041. The 8041 will test its RAM and ROM and 
respond with F9H if it passes or F8H if it fails. No HP 150 
processor interrupt will be generated; the status register 
must be polled until data is available. 

Stop key repeat. Any key 
after 500 ms if held down. 
want the current key to 
command to stop it. 

on the keyboard T~ill auto repeat 
If the HP 150 processor does not 

auto repeat, it must send this 

Disable hard reset. This command will disable the hard reset 
that is initiated by the control/ shift/reset combination. 

Enable hard reset. This command enables the keyboard hard 
reset. (Default) 



30H - 3FH 

40H 

60H 

Hardware Subsystems 

Beep bell. The bell duration is about 100 ms and its period 
is determined by the lower four bits of the command code. 
With a 5 MHz 8041 clock, the frequency is about 290 Hz for 
30H and about 1. 7 KHz for 3FH. 

Do one keyclick tmmediately. 
disabled. 

Ignored if keyclick is 

Touchscreen detector pairs report. This command is used to 
determine if any LED/Transistor pairs appeared to be blocked 
or bad during initialization. Two data bytes are always 
returned after this command is given. If either or both are 
not OFFH, then their values are the addresses of the blocked 
pairs. I f both are OFFH, then there are no blocked pairs. 
No interrupt is generated for these two bytes; the 8041 must 
be polled for them. This command must be given after 
initialization and before scanning is enabled because it will 
interfere with the interrupt system if the 8041 is attempting 
to report keycodes. 

3-47 



Hardware Subsystems 

Table 3-l. Ired vs. PI' 

Decimal Address Address Ired Photo-Transistor 
Count Hex Octal CR Q-

--------------------------------------------------------
0 00 00 36 21 
1 01 01 35 20 
2 02 02 34 19 
3 03 03 33 18 
4 04 04 32 17 
5 05 05 31 16 
·6 06 06 30 15 
7 07 07 29 14 
8 08 10 28 13 
9 09 11 27 12 

10 OA 12 26 11 
11 OB 13 25 10 
12 OC 14 24 9 
13 OD 15 23 B 
14 OE 16 22 7 
15 OF 17 21 6 
16 10 20 20 5 
17 11 21 19 4 
18 12 22 18 3 
19 13 23 17 2 
20 14 24 16 1 
21 15 25 blank blank 
22 16 26 2 22 
23 17 27 3 23 
24 18 30 4 24 
25 19 31 5 25 
26 lA 32 6 26 
27 is 33 7 27 
28 1C 34 8 28 
29 10 35 9 29 
30 1E 36 10 30 
31 iF 37 11 31 
32 20 40 12 32 
33 21 41 13 33 
34 22 42 14 34 
35 23 43 15 35 
36 24 44 reset reset 

3-48 



Hardware Subsystems 

KEYBOARD AND TOUCHSCREEN DATA INPUT (I/O PORT 00 18H). When data is 
available as a result of key presses or touchscreen touches, the 8041 will write 
to its output register and signal an interrupt request to the HP 150 processor. 
Data is buffered one byte deep in the 8041. If the previous byte written by the 
8041 to its output register has not been read by the HP 150 processor, it will 
wait. Otherwise, it will resume scanning. Bits 7-4 of the status register are 
valid when the data register is valid. They are used to indicate the type ot 
data available. The status values are: 

0000 - Key address. If bit 7 of the data byte is 0, the 
key was depressed, else the key was released. 

Exception: If the data is in response to an 
Identify Keyboard command, then 0000 means the 
touchscreen is not connected. 

0001 - Power on (valid until first write). 

0010 - Reset (valid until first write). 

0011 - Touchscreen release code. Data is O. 

0100 - Touchscreen row address. Same as screen row. 

0101 - Touchscreen column address. Same as screen column/2. 

1000 - Calculator command is complete. Data is a if 
command was not read from calculator. 

1111 - Only occurs after Identity Keyboard command; indicates 
that touchscreen is connected. 

NOTE 

These status bits are valid only when data is available 
(OBF flag = 1). The only exception to this is the 
power-on/reset status which become valid 200 
microseconds after reset or power-on and remains valid 
until the first write to the 8041. 

After reading the 8041 data register, the host MUST send a release interrupt 
command to the 8041 to acknowledge receipt of the data. (Except for self-test 
results and touchscreen bad pair addresses, which are reported without setting 
the interrupt lines.) 

Data from the touchscreen always comes in pairs of bytes, each row address will 
be followed by a column address. As soon as the touchscreen scanner completes a 
scan without any touches, the 8041 will report a touchscreen release code. 
Touchscreen row/column reports will be generated each time a new touched 
position is detected. The only way that the same position can be reported twice 
in a row, is when the screen is released between touches. In this case, a 
release code will be sent between touch reports. 

3-49 



Hardware Subsystems 

DA T ACOMM SUBSYSTEM 

General Description 

The data cOlllJllUDication (datacomm) electronics of the HP 100 Series Personal 
Computer allows the computer to communicate with other computers, mainframes, or 
peripherals via a serial data stream. The HP 150 has two serial EIA Standard 
RS232C (CCITT V.22) datacoDlD ports; Port 1 which is designed for communication 
with other computers either directly or using a modem, and Port 2 which is 
designed primarily for use with peripherals such as RS232C printers, but also 
can be used for computer communications. 

The principal components in the datacomm circuit are the baud rate generator 
chip and the serial controller chip, both ot which are on the I/O bus of the 
8088. The baud rate generator chip supplies the timing needed for data 
serialization for both ports independently and the Multiprotocol Serial 
Controller chip (MPSC) controls both of the datacomm ports. During 
communications, the 8088 writes and reads 8-bit data to and from the MPSC 
which serializes or deserializes the data from the proper port. The rate of 
data serialization is governed by the timing sent to the MPSC by the baud rate 
generator. 

RS 232C/ 422 Datacomm Module Connector 

A 36 pin connector, J3 on the Processor PeA, interfaces the RS232C/422 
datacomm module to the system. The connector signals are: 

1. +12V 13. N.C. 25· DATA 7 
2. +5V 14. NBRD 26. DATA 6 
3. NRxC(l) 15. GlID 27. DATA 5 
4. NRR(l) 16. 28. DATA 3 
5· GlID 17. 29· DATA 1 
6. RD(l) 18. 30. x16 CLK(l) 
7. NTR(l) 19· -12V 31. NSELB 
8. OND 20. +5V 32. NWRT 
9. DATA 4 21. NTxC(l) 33. NRST 

10. DATA 2 22. NCS(l) 34. 
11. DATA 0 23. NRS(l) 35· 
12. GND 24. SD(l) 36. 

3-50 



Hardware Subsystems 

The numbering scheme for the connector goes from 1 through 36 with pins 16, 
17, 18, 34, 35, and 36 undefined and physically absent on the 36 pin 
connector. The signals are defined as: 

DATA 0 - The eight bit interconnect to the 8088 I/O bus. 
DATA 7 

NRxC(l) Receive timing input to the 7201 datacomm controller 
HTxC(l) Transmit timing input to the 7201 controller 
x16 CLK(l) Baud rate generator output 

NRR(l) 
NTR(l) 
NCS(l) 
SO(l) 
RO(l) 
NRS(l) 

NRST 
NBRD 
NWRT 
NSELB 

Receiver Ready 
Terminal Ready 
Clear to Send 
Send Data 
Receive Data 
Ready to Send 

System Reset 
8088 read cycle 
8088 write cycle 
(not used) 

Baud Rate Generator 

The baud rate generator used in the HP 150 is the SMC 8116T Dual Baud Rate 
Generator which can supply two independent baud rates based on a single 
input clock. It consists essentially of a pair of programmable dividers 
using an input frequency of 4 MHz. The user defines a baud rate which the 
8088 translates into an 8-bit value which is written into the 8116T at I/O 
address XXOC hex, the most significant 4 bits of which set the baud rate for 
Port 2 and the" least significant 4 bits set the baud rate for Port 1. The 
timing outputs then connect to the proper port or channel timing inputs on the 
MPSC. 

The 8116T, in this application, generates clock frequencies for asynchronous 
data communications only. Asynchronous communication requires that the input 
clock frequency be 16 times the transmission baud rate, e.g. for a baud rate 
of 300 baud, a clock frequency of 4.8 KHz is required to serialize and 
deserialize the data. See the "Memory and I/O Mapping" section of this manual 
for 8116T programming information. 

The clock frequencies for Port 2 tie directly into the Transmit and Receive 
clock inputs of the MPSC and are always the baud rate times 16. 

3-51 



Hardware Subsystems 

The clock frequencies for Port 1 go to the datacomm interface for Port 1 and 
into a multiplexer, the outputs of which tie to the Transmit and Receive clock 
inputs of the MPSC. The multiplexer allows the selection of the 8116T clock, 
the times-one clock, or the Send timing clock as the Transmit clock input to 
the MPSC. It also selects the 8116T clock, the times-one clock, or the Receive 
timing clock, respectively as the Receive clock input to the MPSC. A latch 
drives the mulitplexer select inputs and is accessed by writing the bit patterns 
as described in the "Memory and I/O Mapping" section of this manual. 

The times-one clock is derived by dividing the 8116T clock output by 16 giving 
a clock of the same frequency as the transmission baud rate. This clock is 
available to support some modems which require a times-one clock for data 
transmission. Even though the Transmit and Receive clocks may be configured to 
use the times-one clock, the communication protocol always assumes asynchronous 
communication. 

Multi -Protocol Controller 

All of the data communications in the lIP 150 are controlled by the MPSC, 
which is a dual-port communications chip. Channel A on the chip controls 
communication to Port 1 while channel B controls Port 2. The chip is capable of 
being configured to do all of the data serialization and deserialization. 
stop/start bit insertion and deletion and parity bit insertion and 
deletion. The chip also controls standard communications status lines on 
each port through internal registers such as Terminal Ready (TR) (CD), Clear 
to Send (CS)(CB), Receiver Ready (RR)(CB), and Request to Send (RS)(CA). The 
data is transmitted from each port on the Send Data line (SD)(BA) and received 
on the Rece~x~ Data line (RD) (BB). The data received or transmitted is 
accessed by the system CPU by addressing the data register for the proper 
port. The chip also provides f\ FIFO three-byte receive buffer to prevent 
incoming data overrun. 

The chip is also capable of interrupting the CPU upon receipt or transmission 
of a character. The Interrupt Request output is tied to the second priority 
interrupt input of the interrupt controller. This is an open-collector output 
and is shared with the open-collector datacomm request line coming from the 
accessory slots (NDCOCINT). In addition to interrupts on character 
transmissions, the MPSC also generates interrupts on parity errors and changes 
in status of the communication control line inputs, freeing the CPU from polling 
these on each character transmission. 

The internal logic of the MPSC chip (aside from transmit and receive logic) runs 
on the system 4 MHz clock (PCLK) and the chip is reset by system resets (NRST). 
The Transmit and Receive clock signal inputs used for channel B (Port 2) are 
tied together and are always derived from the baud rate generator times-16 
clock. The Transmit and Receive clocks for channel A are driven independently 
from the Port 2 interface circuit (see Baud Rate Generator). The chip's Ready 
outputs for synchronization with the CPU are not used since this function is 
accomplished by always asserting an extra cycle in I/O accesses which should 
satisfy access times for this part. The MPSC also has Interrupt Priority 
inputs and outputs which are not used in this system. 

3-,52 



Hardware Subsystems 

Communications Interface Circuitry 

The circuitry interfacing the MPSC to the communications circuitry consists 
primarily of line drivers (MC1488) and receivers (MC1489) which convert the 
MPSC TTL levels to RS232C transmission levels (+12V/-12V). The RS232C standard 
requires that driver outputs must not exceed a slew rate of 30 volts per 
microsecond. All driver outputs are tied to a 470 pf capacitor which provides 
an effective slew rate of 21.3 volts per microsecond maximum (assuming 
short circuit current). The receiver gates (MCl489) have "response control" 
inputs which allow filtering of high frequency noise pulses. The 470 pf 
capacitor used should filter noise faster than 100 ns in the 12V range. Both 
Port 1 and Port 2 use these parts for interfacing to the communications 
channel. The signal interconnection for both po:cts is shown in table 3-2. 

Table 3-2. Datacomm Interconnect List 

Connector pin 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
12 
15 
17 
18 
19 
20 
22 
23 
21. 

Port 1 
Signals 

Shield(AA) 
SD(BA) 

RD(BB)/RD.A* 
RS(CA) 
CS(CB) 
DM(CC) 
SG(AB) 
RR(CF) 
SD.A* 
SD.B* 
OCR 2 (SCF) 
ST(DB) 
RT(DD) 
RD.B* 
OCD2(SCA) 
TR(CD) 
OCR1(CE) 
OCD1(CH) 
TT(DA) 

* Represents Rs422 signal. 

Port 2 
Signals 

Shield(AA) 
SD(BA) 
RD(BB) 
RS(CA) 
CS(CB) 
DM(CC) 
SG(AB) 
RR(CF) 

OCR 2 (SCF) 

OCD2(SCA) 
TR(CD) 
OCR1(CE) 
OCD1 (CH) 

3-53 



Hardware Subsystems 

The control lines OCD1, OCD2, 0CRl, OCR2 and OM are not connected directly to 
the MPSC, but are tied to the CPU data bus through handshake capability with 
certain kinds of equipment that require them (e.g. printers, modems, etc.) and 
are all available on both ports. I/O ports 14H and 16H access these control 
lines on Ports 1 and 2 respectively as described in the "Memory and I/O Mapping" 
section of this manual. 

Port 1 differs from Port 2 in two major respects; Port 1 contains timing 
signals on the RS232C interface as well as RS422 signals on pins that are not 
used by RS232C in most HP applications (those pins are reserved for Data Set 
Testing in the RS232C definition). The timing signals added are Transmit 
Timing (TT)(DA), Send Timing (ST)(DB), and Receive Timing (RT)(DD). The Send 
and Receive timing signals allow an external device to drive the MPSC clock 
inputs for serialization. The Transmit Timing signal is always the same as the 
MPSC input tranmission clock. 

The Rs422 interface consists essentially of a differential driver and receiver 
(75179) in place of the RS232C drivers. These drivers transmit and receive 
differential voltages with respect to the opposite signal line as opposed to 
referencing ground. Note that the RS232C signal RO(BB) and the Rs422 signal 
RD.A are shared in this application. This is accomplished by pulling down the 
opposite driver input to create the proper translation to TTL level signals 
when the RS232C cable is connected. The selection between RS232C and RS422 is 
simply a matter of connecting the cable which connects to the proper signals. 
Since the receive signal comes into the same gate and the transmit signal 
drives both interfaces in parallel, the difference is transparent to the MPSC. 

3-54 



Hardware Subsystems 

MEZZANINE MEMORY SUBSYSTEM 

Mezzanine Memory peA 

peA Overview 

The HP 150 mezzanine memory PCA (assembly 45611-60006) houses ROM, dynamic 
RAM, CMOS RAM, and system status LEOs on a PCA in a mezzanine position between 
the processor and video PCAs. The PCA is supported by four standoffs mounted 
on the processor PCA and electrically interfaces to the processor PCA through 
a 60 pin connector. The block diagram of the PCA is shown in figure 3-18. 

3-55 



Hardware Subsystems 

<--------------------------------------------------------------~--+ 
ASCHOLD 

>--------------------------------------------------------------+ 
SHOLDA 

<----------------+ 
HSLOTSEL1 1 

1 
<-------------+ 1 
HSLOTSEL2 1 1 

1 I 
+---+--+---+ 
1 1----------------------------------+ 
1 1 1 

ABUS 0-19 1 Decode 1------------------------+ +-----+------+--+---+ 
>---------1 Logic 1 RAM Control 

1 1---------------------+ Logic 
1 1 
1 1------------+ +---+--+--+--+--+---+ 
+---+------+ 1 

J 1 
HROMSEL 1 +------+-----+ +---+--+--+--+--+---+ 
<-------------+ 1 

1 256 x 4 1 
>------------------------->1 CMOS RAM 1 
CMOSPWR 1 1 

+-------+ +------+-----+ 
1 

1 1 
AD 0-7 1«---»1 MD 0-7 1 

<--------->1 1<-------+-----+--------

/ \ 
1 1 

60 pin 
connector 
signals 

1«---»1 1 
1 1 1 
1 1 1 
+-------+ 1 

+-------+------+ 
1 LED Register 1<------+ 
+--------------+ 

256K x 8 
Dynamic RAM 

+-------------------+ 
-----------------+ 

1 1 
1 1 
1 +-------------------+ 
1 
1 1 160K x 8 
+-->1 ROM 

1 
+-------------------+ 

Figure 3-18. Mezzanine Memory PeA Block Diagram 

3-56 



Hardware Subsystems 

Connector Signals 

A 60 pin connector, J2 on the Processor PCA, connects the ROM and user RAM 
to the rest of the system. The signals on the interface are listed below: 

Mezzanine Memory Connector Signals 

60. HSLOTSELl 30. +5V 
59· ABUS 11 29· ABUS 19 
5B. NSLOTSEL2 2B. ABUS 9 
57. ASCHOLD 27. HPWRDH 
56. ADl 26. ADO 
55· AD3 25· AD2 
54. AD5 24. AD4 
53. AD6 2'3. M/-R 
52. ABUS 5 22. AD7 
5l. ROMSEL 2l. ABUS 16 
50. ABUS 17 20. ABUS 14 
49. ABUS lB 19· BCLK 
48. ABUS 12 lB. ABUS 13 
47. HCMOSSL 17. HCMSWRT 
46. ABUS 4 16. NXRl 
45. +5V 15. GO 
44. FULLMEM 14. +5V 
43: +5V 13. BDD 
42. ABUS 7 12. CMOSPWR 
41. GHD 11. GND 
40. +5V 10. GND 
39· GND 9· HRWRT 
3B. HCMSOE B. SHOLDA 
37. ABUS 5 7. ABUs6 
36. BIO/-M 6. HBRD 
35· ABUS B 5. ABUS 10 
34. +5V 4. ABUS 3 
33. ABUS 1 3. GND 
32. NRST 2. NMSEL 
31- ABUS2 1. ABUSO 

The mezzanine memory PCA connector signals are described below: 

ABUS 0-19 

AD 0-7 

The demultiplexed 20 bit address generated by the 
BoBB during a bus cycle. 

Least significant B bits of the multiplexed 
data/address bus. Data is transferred to and 
from the memory PCA over these lines. 

3-57 



Hardware Subsystems 

NSLO'l'SELl 

NSLOTSEL2 

GO 

BCLK 

BIO/-M 

rtr/ -R 

BDEN 

NBRD 

NRWRT 

ASCHOLD 

SHOLDA 

NMSEL 

NXRl 

ROMSEL 

FULLMEM 

NMEMRST 

NCMOSSL 

NCMSOE 

NCMSWRT 

CMOSPWR 

3-58 

Signal indicating an address within the 64K block 
allocated to accessory module 1 (90000H - 9FFFFH) bas 
been generated by the 8088. 

Same as NSLOTSELl but is asserted when the address 
is in the address space allocated to accessory module 
2 (AOOOOH - AFFFFH). 

Signal which qualifies the address generated by 
the 8088. GO goes high at the beginning of T2 and 
goes back low at the beginning of T4 of a bus 
cycle. 

Buffered 8 Mhz system clock. 

Buffered IO/-M signal from the 8088. 

DT/-R from the 8088. 

Inverted and buffered -DEN signal from the 8088. 

Buffered -RO signal from the 8088. 

Buffered -WRT signal from the 8088. 

Asynchronous HOLD request generated by the memory 
PCA and sent to the 8088. 

~ynchronized (with the 8 Mhz 
acknowledge from the 8088. 

clock) 

Signal if high prevents write to dynamic RAM. 

HOLD 

Transceiver control signal generated by memory 
PCA. 

ROM access indicator which causes the processor 
PCA to eliminate wait state on the bus cycle. 

When high indicates 256K RAM loaded on the memory 
PCA. When low indicates 128K RAM loaded. (A 
pull-up resistor external to the memory PCA is 
used to pull high.) 

System reset line for the memory PCA. 

CMOS RAM select line active low. 

CMOS RAM output enable active low. 

When low causes a write into CMOS RAM. 

Battery backed-up power source for the CMOS RAM. 



NPWRDN 

ROM 

Hardware Subsystems 

Goes low to indicate an imminent power interruption 
to the system and puts the CMOS RAM into the 
standby mode. 

ROM DECODING. Five 32K x 8 ROMs contain the system firmware used by the PC. 
These ROMs are located in the memory map as follows: 

ROM 

(ROM 5) 
(ROM 4) 
(ROM 3) 
(ROM 2) 
(ROM 1) 

Memory Address 

OF8000H - OFFFFFH 
OFOOOOH - OF7FFFH 
OE8000H - OEFFFFH 
OEOOOOH - OE7FFFH 
OBOOOOH - OB7FFFH 

For a particular ROM to be selected, an address within the memory space 
allocated to it must be generated by the 8088, the 8088 control signal 
IO/-M (becomes BIO/-M after buffering for the memory PeA) must be low. and 
NaRD (buffered read strobe control signal fromn the 8088) must be asserted 
(active low). The decode circuitry for ROMs 2,3.4. and 5 decode address lines 
ABUS 19. 18 18. 17, 16, and 15 when BIO/ -M is low and assert the chip select 
input of the ROM whose contents is at the address generated by the processor. 
The 8088 receives data from the memory (or writes to RAM or the LED register) 
through a transceiver on the memory peA. This transceiver is enabled when ROM, 
CMOS RAM. dynamic RAM. or the LEDs are accessed. 

WAIT STATE DISABLE. Every bus cycle (memory or I/O operation) of an 8088 
consists of four system clocks unless logic external to the 8088 dictates 
that the cycle be extended by some integer number of additional clocks. The 
1mi t state generation circuitry on the processor PCA inserts a minimum of 1 
additional clock period into all bus cycles unless a ROM access is being made. 

3-59 



Hardware SubsystemS 

ROM TIMING. The memory address from the 8088 becomes available to the memory 
PCA 85 nsec after the beginning of Tl. The propagation delays until data is 
available to the processor is as follows: 

ROM 1 Access ROMs 2-~ Access 

address valid 85 nsec address valid 85 nsec 
chip select delay 31 nsec chip select delay 29 nsec 
ROM access time 200 nsec ROM access time 200 nsec 
buffer delay 12 nsec buffer delay 12 nsec 
connector delay 2 nsec connector delay 2 nsec 
total delay 330 nsec 328 nsec 

The cycle is 375 nsec long (T1 + T2 + T3). The data setup time for the 8088 
is 20 nsec. Therefore, the data read margin is 375- 20-330 = 25 nsec. Note that 
the output enable inputs to the ROMs have been asserted worst case 120 nsec 
after the beginning of Tl so that ROM address access time, not ROM output 
enable time, is the limiting factor in ROM access timing. 

Slot Selection Generation 

The HP 150 package provides two peA slots for handling optional module PCA 
devices. The HP 150 architecture provides a flexible interface to the accessory 
slots. Accessories can be accessed through either memory or I/O access (see 
memory and I/O maps). 

I/O addresses XX80 through XXFF have been reserved for accessory module use. 
This provides 128 I/O ports that can be decoded and used for processor and 
auxiliary device intercommunication. The most flexible arrangement that can be 
used for accessory module device interfacing to the 8088 is the memory 
mapped interface with slot select. A memory address within the 90000 - 9FFFF 
range causes Slot Select 11 on the front plane connecting to the external 
module slot 11 to be asserted and an address within AOOOO - AFFFF causes 
Slot Select #2 to be asserted. 

3-60 

I CAUTION] 

It is highly recommended that only 16K of address 
space be used for ei ther of the accessory cards. 
The address ranges 90000-93FFF and AOOOO-A)FFF for 
slot 1 and slot 2, respectively, should be exclusively 
decoded and used even though the slot select lines 
provide 64K of address space. Accessory cards using 
memory space outside this range may not be compatible 
with any enhanced future versions of the HP 150. 



Hardware Subsystems 

What does the slot select scheme provide? An accessory PCA may choose to use 
or not to use the slot select line. If a device does not utilize slot 
select, a decode of at least the most significant four address bits must 
be done to detect a CPU access. More decoding of the least significant 16 
address bits must be done depending on the nature of the PCA and its 
circuitry. In addition, the user must never plug PCAs into Slots #1 and #2 
which become selected on the same address range. When fully decoding the 
address space, boards must be designed for a specific accessory slot. 

Using the slot select lines, a more limited decode is required on the accessory 
PCA since the four most significant bits are decoded by the CPU in asserting 
the slot select line. Therefore, an accessory PCA can detect an access by 
decoding slot select and the appropriate subset of the least significant 16 
address bits. The decode of slot select ensures that no contention will 
occur between accessory modules #1 an #2 since only one slot select signal will 
be active at one time. 

The slot select thereby eliminates the need for d designer of an accessory 
module to be aware of all the addresses used by other existing or future 
accessory modules. It also limits the hardware required for decoding. 

Since the accessory modules are in the 8088 address space, firmware ROMs can be 
placed on the accessory modules to be executed by the 8088. This way drivers 
for each accessory can be located in ROM on the accessory PCA and at power-on, 
when the terminal operating system does a logical system generation, the 
drivers for the modules will be used when needed for module stimulation. 

Another benefit of having the accessory modules in memory space is that block 
transfers of data between CPU and accessory module can take place quickly with 
little CPU software overhead and with the enhanced flexibility of the memory 
access instruction set of the 8088 over the I/O instructions. Thus, a 
softcard CPU can be added cleanly to the system without the hardware and 
particularly the processor intercommunication path hampering performance. 

To summarize, if a memory address between 090000H - 09FFFFH is generated by 
the CPU, NSLOTSELl is asserted. If an address between OAOOOOH - OAFFFFH is 
generated, NSLOTSEL2 is asserted. These signals are routed to the accessory 
slots with NSLOTSEL1 going to one accessory slot and NSLOTSEL2 going to the 
other. 

CMOS RAM 

256 nybbles of battery backed up CMOS RAM is located at address OBCOOOH 
OBFFFFH. The 32K address space allocated to CMOS RAM images the 256 nybbles 
found at OBCOOOH - OBCOFFH. The nybble wide data is accessed on the lower 
four bits of the data bus. 

3-61 



Hardware Subsystems 

CMOS DECODING AND ACCESS. Interfacing the CMOS RAM to the system required 
circuitry to accommodate some of the unusual address and data setup and hold 
timing parameters associated with the part. An address generated by the 
processor wi thin CMOS memory space causes decoding circuitry to assert a CMOS 
address space select signal. When this signal is asserted, the processor PeA 
wait state generation circuitry adds 6 clock periods to the bus cycle. 

CMOS POWER. The power delivered to the CMOS comes from the same power source 
as that used for the real time clock. The Vcc pin for the chip is maintained 
at approxima~ely 5 volts when power is applied to the system and falls to about 
2.5 volts when the power is turned off. 

LEDs 

Six LEOs are positioned on the memory PeA to report power-on test results. 
The LEOs are memory mapped at oBBoOOH - OBBFFFH. Any memory wri te wi thin 
this range will access the LEOs. The LEDs are accessed on the lower six bits 
of the data bus. 

LED DECODING. When the LED address is present, a memory write cyale is 
in progress, and when GO is deasserted, the LED register will be clocked with 
data from the CPU. The LEDs will in turn display the complement of the 
register contents (Le., a "zero" turns an LED on, a "one" turns an LED off). 

LED REGISTER RESET. When the power is turned on or the RRESET test point 
on the processor PCA is grounded, the system reset signal will reset the LED 
register, making all outputs go to the zero state. This will turn all the 
LEDs on and will indicate to the observer that +5 volts is functioning at least 
well enough to light the LEDs. The self-test code will then proceed to turn 
off the LEDs if the system tests pass; or writes an error code into the 
LEOs signifying the failing subsystem or component. 

Dynamic RAM 

The 256K of dynamic RAM requires a considerable amount of support circuitry. 
This section will describe the decoding, control signal generation, and RAM 
ttming. The next section will cover the refresh mechanism used on this PeA. 

3-62 



Hardware Subsystems 

DECODING. The 256K of RAM is organized as four banks of 64K. The memory 
space allocation is: 

Bank 0 
Bank 1 
Bank 2 
Bank 3 

OOOOOH - OFFFFH 
10000H - 1FFFFH 
20000H - 2FFFFH 
30000H - 3FFFFH 

(U42 - 049) 
(U32 - U39) 
(U22 - U29) 
(U12 - Ul9) 

When a memory cycle is initiated by the 8088 (BIO/-M is low) and an address 
within one of the four memory regions listed above is generated, a 3-to-8 line 
decoder asserts one of four outputs designated for RAM bank selection. 
When GO becomes valid at the beginning of T2, the RAS inputs to the selcted RAM 
bank will all go low. 

DYNAMIC RAM REFRESH. In order to retain the data that has been written into 
a dynamic RAM, a periodic refresh cycle must occur. The refresh cycle 
consists of placing a row address on the address input pins of the dynamic 
RAM (DRAM) and then bringing the HAS input low for a specified amount of time 
and then raising it back high. Each row address within the RAM must be 
refreshed as described within a time period specified by the RAM manufacturer 
in order for the data to be retained in the RAM. This memory PCA uses a 
dynamic ~i which requires each of its 128 row addresses to be refreshed no less 
than every 2 milliseconds. This specification is typical for most DRAMs. Some 
DRAMs have 256 row addresses and require all row addresses to be refreshed no 
less than every 4 msec. The refresh controller on this memory PCA is capable of 
meeting the requirements of both types of DRAM. 

4 row addresses every 56 usec. 
msec The entire refresh process 
to the synchronizing flip-flops. 

(2.5 usee/56 usec) x 10~ = 4.6~ 

The refresh scheme used on this PCA refreshes 
Thus, all the rows are refreshed wi thin 1.8 
takes about 2.5 usec including latencies due 
Therefore, the refresh process consumes about 
of the system bandwidth. 

peA CONFIGURATION. Normally, this peA will be shipped with 256K of DRAM. 
This requires jumper W3 to be installed. If this peA is configured with only 
128K of DRAM jumpers W1 and W2 should be installed and jumper W3 should not 
be installed. This will allow this peA to function properly as a 128K RAM peA 
wi th banks 0 and 1 of RAM installed and allows an extended memory PCA in an 
accessory slot to have a contiguous mapping of its RAM with the RAM on this PCA 
starting at memory address 20000H. 

3-63 



Hardware Subsystems 

ACCESSORIES SUBSYSTEM 

Accessory Hardware Design Guidelines 

The two accessory slots in the card cage provide the means of increas ing the 
overall system capability by adding hardware to meet needs specific to that ot 
certain users. The tollowing paragraphs provide guidelines and specifications 
needed by designers to interface with the system hardware. 

Mechanical Specifications 

The accessory PCA electrically interfaces to the system through a 70 pin 
connector located at the tront ot the board. The PCA can be of the type that 
tits within the card cage such as the Expansion Memory PCAs. Or it may be ot 
the type which requires intertacing to external devices and requires a special 
rear panel to accomodate a connector or connectors. 

Mechanical drawings for the accessory card slots and rear panel are included ir~ 

this section. 

Power Requirements 

Each ot the two accessory slots have the following available power: 

VOLT"AQE 

+5V 
+12V 
-12V 

1.9A 
0.45A 
O.lA 

If powering an external device through the power supply, the designer must use 
a filtering network and fuse between the external device and the HP 100 Series 
Personal Computer. Note that the power consumed by an accessory is limited by 
thermal considerations described next. 

3-64 



Hardware Subsystems 

Thermal Limits 

The maximum thermal dissipation allowed per accessory board is 10 watts. If 
there is an accessory device consuming lOW power in one slot and your board is 
to go in the other, you should expect temperatures on your accessory board of 
20 to 30 degrees C above ambient if your board consumes 5W. If your board 
consumes 8.5W, you should expect to see a 20 to 40 degrees C temperature rise 
above ambient on your accessory board. It is best to measure the case 
temperatures of components on the accessory board if one wants to verify the 
operating temperature of a particular device is within the manufacturer's 
specifications. 

Accessory Signal loading Restrictions 

The accessory boards have access to the signals listed in the front plane 
accessory slot pinout detail (table 3-5). Proper adherence to the AC and DC 
loading restrictions are required for per specification performance ot the 
system. Table 3-3 lists the loading restrictions per accessory PCA. 

3-65 



Hardware Subsystems 

Signal 

Table 3-3. Accessory Loading Restrictions 

Available 
Source 
Current 

Available 
Sink 
Current 

Maximum 
Capacitive 
Loading**** 

FPA 0-1, 12-19 800 uA 3.5 IDA 35 pF 
ABUS 8-11 

FPD O-~( 

BIO/-M* 

800 uA 

800 uA 

3.5 IDA 

3.5 rnA 

35 pF 

25 pF 
FPNRD, FPNWRT 
FPNSSO. FPDT/-R 
FPCLK, FPGO 

NSLOTSEL n 

FPNRST 
NPFAIL 
BATV 

SHOLDA 
FULLMEM** 

NOCINT*** 
NDCOCINT 
NOCWAIT 

3-66 

500 uA 5.0 mA 25 pF 

800 uA 5.0 IDA 50 pF 
500 uA 2.0 InA 25 pF 

40 uA 0 

250 uA 5·0 rnA 25 pF 
0 10 mA 

NOTE 

* The BIO/-M signal comes from one driver and is found 
on pins 41 and 62 of the connector. The aggregate of 
the loading on the two pins must not exceed the 
specification in the table. 

** FULLMEM, if used, must be pulled high by a pullup 
resistor on the accessory board. 

*** These signals must be driven by an open collector 
driver. The pullup resistor is on the processor board 
and need not be on the opt ion board. NOCWAIT 
requires a driver capable of sinking 18 IDA (Schottky 
driver). The NOCINT and NDCOCINT drivers must be 
capable of sinking 5 mAo 

**** To estimate capacitive loading, one can use 2 pF 
per connector pin, 5 pF/inch of PC trace, and 5-10 pF 
per gate terminal. 



Hardware Subsystems 

Signal Timing Diagrams 

Timing diagrams in figures 3-19 thru 3-21 are based on a system with two 
accessory boards installed which conform to the loading restrictions stated in 
the previous paragraph. 

Table 3-4. Accessory Slot Timing Characteristics* 

Symbol 

Tab 
Tbc 
Tac 
Tal, Tbm 
Tan 

Tao 

Tbp 
Tbq 
Tkr 

Ths 
Tdt 
Tju 
Tdv 
Tjw 
Tvw 
Txj 
Tjy 
Taz 

TkAA 

TdBB 
TjCC 
TBBCC 
TdDD 

TkEE 

TuEE 

TFFHH, 
TGGl! 
THHl! 
TLLJJ, 
TMMKK 
TLLMM 

Parameter Nom. 

Clock high time 
Clock low time 
Clock period 125 
FPCLK to 8088 clock skew 
BIO/-M delay from clock rising 
edge 
FPNSSO delay from clock rising 
edge 
FPA n de1.ay from Tl beginning 
ABUS n delay from Tl beginning 
ABUS hold time from T4 rising 
edge 
NSLOTSEL delay from T1 beginning 
FPGO delay from T2 beginning 
FPGO delay from T4 beginning 
FPNRD delay from T2 beginning 
FPNRD delay from T4 beginning 
FPNRD width 
Read data setup time 
Read data hold time 
FPDT/-R delay from clock rising 
edge 
FPDT/-R delay from clock rising 
edge 
FPNWRT delay from T2 beginning 
FPNWRT delay from T4 beginning 
FPNWRT width 
Data valid delay from T2 
beginning 
Data hold time from rising 
edge of T4 
Data hold time from FPGO 
deassertion 
SHOLDA delay from falling 
edge of clock 
SHOLDA width (in usec) 
NOCWAIT setup time before 
falling edge of clock 
NOCWAIT width (in usee) 0.125 

Min. 

43 
68 

14 

14 

10 

14 
14 
325 
49 
10 
14 

14 

14 
14 
335 

10 

30 

2.25 
13 

Max. 

28 
88 

83 

102 
95 

110 
48 
48 
128 
108 

225 
83 

83 

98 
98 

84 

24 

2.63 

40 

*AII time specifications are in nsec unless stated otherwise. 

3-67 



Hardware Subsystems 

1<--- T1 -->1<-- T2 --->1<-- T3 --->1<-- TW --->1<-- T4 --->1 

8088 1 1 , , I 1 
CLOCK 1 1 1 1 I 1 - a b c d e t g h i j k 

FPeLK 1 -, -, 
1 - 1 , 
1 m 

BIOI-M \I -\1 
1\ 1\-
n 

FPNSSO \I \1-
1\ 1\-
0 

FPA 0-7 \I 
FPA 12-19 1\ 

p 

ABUS 8-11 \I -\1 
1\ 1\-
q r 

NSLOTSEL 1 \I 
NSLOTSEL 2 1\ 

s 

FPGO 1 
I 
t u 

READ CYCLES 

FPNRD -
v w 

FPO 0-7 I \ 
x\ Iy 

1 
FPDT/-R 1 

z AA 

WRITE CYCLES (FPDT/-R = 1) 
1 I 

FPNWRT , I 
BB CC 

FPO 0-7 / \ 
DD\ lEE 

Figure 3-19. Accessory Slot Bus Cycle Timing 

3-68 



Hardware Subsystems 

1<--T4/TI-->I<-- TI --->1<-------- TI --------->I<--T1/TI-->1 

8088 
CLOCK 

1 
I~_­
FF 

1 
SHOLDA _______ -,1 

BH 

.......... --

Figure 3-20. SHOLDA Timing 

1 
I~_­
GG 

1 
1 
1=1----

T1 -->1<--- T2 -->1<-- T3 --->1<-- TW --->1<-- TW --->1<-- T4 --->1 

8088 
CLOCK 

HOCWAIT 

1 
1 

JJ'---

1 1 

(auto) (added) 

1 
1, __ -

KK 

1.,,--___ 1 
LL MM 

Figure 3-21. Accessory Wait State Insertion 

3-69 



Hardware Subsystems 

Accessory Front Plane Connector 

The accessory PCAs plug into the bottom slots of the card cage. 
signals available to the modules are listed in table 3-5. 

• 

Table 3-5. Connector Pinouts 

l. FPA 0 26. FPD 3 5l. Glm 
2. FPA 1 21. FPD 4 52. -12V 
3. FPA 2 28. FPD 5 53. SHOLDA 
4. FPA 3 29· FPD 6 54. FPGO 
5. FPA 4 30. FPD 1 55· +5V 
6. FPA5 3l. Glm 56. Glm 
1. FPA 6 32. FPNRD 51. FPCLK 
8. FPA 1 33. Glm 58. (RESERVED) * 
9. ABUS 8 34. +5V 59· Glm / FULLMEM • 

10. ABUS 9 35· BAN 60. +12V 
1l. ABUS 10 36. (RESERVED) • 6l. Glm 
12. ABUS 11 31. NPFAIL 62. BIO/-M 
13. FPA 12 38. (RESERVED) • 63. +12V 
14. FPA 13 39· FPNRST 64. FPNWRT 
15· FPA 14 40. +5V 65. +5V 
16. FPA 15 4l. Glm 66. FPM/-R 
11. FPA 16 42. Glm 61. GHD 
18. FPA 11 43. HOCINT 68. FPHSSO 
19. FPA 18 44. GHD 69. GHD 
20. FPA 19 45. HOCWAIT 10. ISLOTSELx •• 
2l. GND 46. (RESERVED) • 
22. GND 41. BIO/-M 
23. FPD 0 48. +5V 
24. FPD 1 49. -12V 
25. FPD 2 50. HDCOCINT, 

JF3 and JF4 
+-------------------------------------------------+ 

35 I + + .•. . .. + + I 1 
10 I + + ..• . .. + + I 36 

+-------------------------------------------------+ 

Pictorial view of option module front plane connectors (JF3 and 
JF4) with pin assignment (as viewed from component side of Front 
Plane PCA). 

Pin 59 is FULLMEM is on JF3 only. Pin 59 is GHD on JF4 . 
Connections to this pin and all pins labeled RESERVED should 
not be made. 

•• HSLOTSELx will be either NSLOTSELl or HSLOTSEL2 depending 
upon which side of the front plane the module is plugged 
into. The left side of the card cage (from rear view of the 
package) holds module 1 and gets the NSLOTSELl signal. The 
right side of the card cage holds module 2 and gets 
HSLOTSEL2. 

3-10 

The system 



Hardware Subsystems 

Accessory Connector Signal Descriptions 

The accessory connector signals described in table 3-6 reference the timing 
diagrams in figures 3-19 through 3-21. 

FPA 0-7 

ABUS B-11 

FPA 12-19 

FPO 0-7 

FPCLK 

FPHRD 

FPNWRT 

FPNSSO 

BIO/-M 

FPrIr/-R 

FPGO 

Table 3-6. Signal Descriptions 

The lower 
the BoBB. 

B address bits of the 20 bit address generated b.Y 
These signals are buffered and demultiplexed. 

The upper 12 address bits of the 20 bit address. 

These signal~ also are buffered and demultiplexed. 

Data bus signals from the external data bus. This data path is 
the means through which data is passed between the processor 
and the video board or option slot modules or the optional TPM. 

Buffered B Mhz system clock. 

Buffered -RD signal from the BOBB used to indicate a bus 
read cycle in progress. 

Buffered -WRT signal from the BoBB used to indicate a bus 
write cycle in progress. 

BoBB bus cycle status line. The combination of FPNSSO, 
BIO/-M, and FPDT/-R allow boards connected to the front plane to 
completely decode the current bus cycle. 

Buffered 10/-M signal from the BoBB used to distinguish 
memory and I/O bus cycles. 

Buffered 
direction 

DT/-R signal from the 
of data from the B08B for 

BoBB used to indicate 
a given bus cycle. 

Signal which qualifies the address generated by the 
microprocessor. The address qualification is needed primarily 
for dynamic RAM circuits which cannot tolerate an assertion of 
RAS or CAS on a false address. FPGO goes high at the 
beginning of T2 and goes back low at the beginning of T4 of a 
bus cycle. FPGO can also be used to terminate a bus wri te 
cycle by having its falling edge used to clock data into a 
register or other device on an accessory device in an option 
slot. Terminating the writes in this way can provide better 
hold timing than using FPNWRT. 

3-71 



Hardware Subsystems 

HOCWAIT 

NDCOCIHT 

IlOCIHT 

SHOLDA 

FULLMEM 

NSLOTSELl 

NSLOTSEL2 

FPHRST 

IlPFAIL 

BATV 

3-72 

This line can be asserted by the option modules or video 
board through an open collector gate to insert wait states into 
a bus cycle to provide sufficient time for a bus cycle access. 

This open collector interrupt signal has the same interrupt 
priori ty as the datacomm controller chip on the processor 
board as it shares the same input to the interrupt controller as 
the datacomm controller chip does. This input can be asserted 
by accessories for interrupt servicing. 

System interrupt signal asserted by a device via an open 
collector gate. This line can be used by options slots to get 
processor service. 

Synchronized hold acknowledge signal from the 8088. 
is asserted by the mezzanine memory board. 

HOLD 

Indicates which mezzanine memory board option is installed. 
FULLMEM=O if 128K RAM and FULLMEM=l (it is pulled high by a 
pull up resistor on an installed extension memory board) if 
256K RAM is on the board. An accessory should not connect to 
this signal pin. 

Signal indicating an address within the 64K block allocated to 
option module 1 has been generated by the 8088. 

Same as NSLOTSELl but asserted when address within option module 
2 address space is generated. 

Signal generated by processor board at power-on time to 
initialize logic circuitry. 

Signal generated by the power supply indicating power supply 
output level stability. 

These two connector lines carry current from the batteries 
located on the video board to circuitry requiring battery 
back-up power such as the CMOS RAM and the CMOS real time 
clock. 



Hal'dwal'e Subsystems 

ACCESSORY CARD HARDWARE AND ELECTRICAL 

Electrical Design 

HELPFUL DESIGN HINTS. Because the 8088 in the UP 150 runs in "Min" mode, the 
write line (FPlfWR) may not rise soon enough to lock your data in. The signal 
FPGO is designed to allow this timing deficiency to be overcome. One way this 
may be implemented is by combining DT/-R with FPGO to create a write signal. 
The sample schematic (figure 3-31) at the end of this section shows a typical 
method of doing this. 

Hote that the signal NSLOTSEL is not guaranteed to be valid until 110 ns into 
the "Tl" cycle. Prior to that time, glitches may be present. Edge sensitive 
chips should not be directly connected to this line. In general, NSLOTSEL 
should be combined with another of the control lines to create a valid signal. 
Note ho,," NSLOTSEL is combined with FPGO on the sample schematic to create the 
signal NQUAL which is low only when the board is truely selected. 

Based on the two points above, you have probably noticed what a handy little 
signal FPGO can be. FPGO is the first signal you should turn to if you come up 
wi th any timing problems in the interface to the UP 150 bus. 

The UP 150 firmware has provisions to deal with options cards. To take full 
advantage of these features, an option card should provide an "ID BYTE" at the 
first address in the memory space. In the sample schematic enclosed, the "ID 
BYTE" has been loaded into the first address of the ROM. If a ROM is not 
present on the accessory card, an "ID Byte" may be generated via an octal buffer 
(like a LS244). Use a dip switch to set the IOID BYTE" in this case. 

Be aware of the capacitive and dc loading specifications that an accessory card 
must meet. It doesn't take too many gates and trace lengths to exceed the 
specifications. Note, for example, that most control lines will not drive two 
Schottky gates because there would be a violation of the DC loading 
specification. The DC and AC loadulg specifications are contained in table 3-3. 

GENERAL SCHEMATIC DISCUSSION. There is a "generic" accessory card schematic 
in figure 3-31. It includes a tranceiver interface to the data bus, buffering 
of the address lines, buffering and filtering of the reset line, memory and I/O 
space accesses, and a ROM. The memory and address reads are separated with the 
BIO/-M signal. When high, this signal disables the S138. The S138 determines 
which of the the main blocks on the accessory card are selected. If an I/O 
access occurs to the address set by the dip switches, then the state of the F74 
flip flop is toggled. This will select one of the two LEDs. The" controller" 
is a piece of LSI logic which takes care of the external peripheral device. 

3-73 



Hardware Subsystems 

Another feature that is nice to have, although not present on the enclosed 
schematic, is a software hard reset of the accessory card. This allows the card 
to be hard reset without a hard reset of the system. 

TRANSCEIVER SCHEMATIC DISCUSSION. The schematic in figure 3-22 includes a 
tranceiver on the data bus. This circuit illustrates how a "general purpose" 
tranceiver might be put on the data bus. 

There are a number of problems in putting a tranceiver on the data bus 
including: 

1. Creating a write pulse which will clock data into its destination and allow 
sufficient hold time before the tranceiver is disabled. 

2. Ensuring that the tranceiver is not disabled prior to the data hold time on 
a read. 

3. Ensuring that the tranceiver is disabled prior to OT/-R changing state. 

The circuit proposed should solve these problems without causing contention on 
the HP 150's data bus or on the accessory card's data bus. In addition, it does 
not rely on unspecified minimum delay times. Check the timing to see if this 
circuit will work for a particular application. 

The circuit works by first latching (with the rising edge of FPCLK) a board 
select signal (NQUAL) as the tranceiver enable signal. This delays the 
tranceiver enable signal, allowing read/write cycles to finish prior to 
disabling the tranceiver. 

Since the tranceiver enable signal has been delayed, OT/-R must also be delayed. 
The second flip-flop latches the state of OT/-R with the falling edge of FPCLK. 
This delay allows the tranceiver to be disabled prior to a direction change (at 
the end of an instruction cycle) while still allowing the direction to be 
established prior to tranceiver enable (at the start of an instruction cycle). 

Of course, the circuits above will not be useful for every design but they may 
be helpful in saving a little time in the design process. Remember that the 
ultimate responsibility is yours. 

Parts List 

3-74 

1 FAST '00 
1 FAST '74 
1 ALS '245 
1 LS '04 



Hardware Subsystems 

DC Loading (For Tranceiver Circuit Only) 

FPM/-R 40 uA High 
1.2 mA Low 

FPGO 40 uA High 
1.2 mA Low 

FPCLK 40 uA High 
1.0 mA Low 

HSLOTSEL 20 uA High 
.4 mA Low 

References 

1982 Fast Data Book (Fairchild) 
1981 TTL Data Book (Texas Instruments) 
198J ALS/ AS Data Book (Texas Instruments) 

fpgo 

que! 
tl81ots.l )--------ID 

p 

r------t> F74 

1pc1k 
+5Y C 

cUr 

QI---... 

04 P D Q~--------------------~da Ift~---~ 

'------'> F74 

C 

HP 150 FBOHTPLAHE 
DATA BUS 

+5v 

Figure 3-22. Tranceiver Schematic 

ACCESSOBJ CAllD 

DATA BUS 

3-75 



Hardware Subsystems 

Mechanical Design 

HELPFUL DESIGN HINTS. Consider the height restriction drawing since the tabs 
where the I/O panel thumbscrews attach can interfere with components on the 
accessory card. 

The I/O Panel should be of a sturdy design so it will transfer sufficient force 
to cause the frontplane connector to seat. When testing the mechanical design, 
remove the metal chassis and watch the connector as the thumbscrews are 
tightened. It is possible to design a panel such that the thumbscrews will go 
all the way in, yet the frontplane connector will not move. 

Make sure that the I/O panel has as many holes for airflow as possible. The air 
will flow along the long dimension of the accessory board. For most effective 
use of this airflow, lay the chips out with their long dimension perpendicular 
to this airflow. Also, lay your "hot" chips as close to the I/O panel as 
possible. 

Be sure to mask off the annular ring around the thumbscrew's hole and to use an 
inside star washer between the thumbscrew and the I/O panel. This will ensure 
that there is a solid ground path between the I/O panel and the chassis of the 
HP 150. 

I/O Panels with a connector should have the ground plane split near the I/O 
panel to bypass the connector shield to the I/O Panel ground. This will prevent 
high frequency noise (like ESD) from entering the system. 

I/O PANEL DESIGN. Accessory cards not requiring an I/O Panel should be based 
on the board blank drawing titled "Board Blank - no I/O Panel" with two 
extractors and two extractor retainer pins to remove the accessory card from the 
HP 150. Drawings for the extractors as well as the extractor retainer pins are 
provided in this manual. 

If an I/O panel is required, all the required dimensions may be obtained from 
the drawings enclosed. Please note that the accessory card fits under the 
L-bracket for the design presented. The I/O Panel should be solid and sturdy 
since the force from the thumbscrews must be transmitted to the frontplane 
connector in order to fully insert the connector. 

3-76 



Hardware Subsystems 

LIST OF VENDORS 

I CAUTION I 
Parts may be available from the following vendors. HP 
does not guarantee or warrant any of the following parts 
or vendors. 

o Frontplane Connedor 

Vendor: Amp 
Harrisburg, Pa. 

Vendor Part Number: 1-102584-0 

o Thumbscrew 

Vendor: Precision Metal 
3402 Enterprise Ave. 
Hayward, Ca 94545 
(415) 881-1401 

Vendor Part Number: 45641-00001-2 (also HP Part No.) 

Use the drawing in figure 3-24 to set this part up with its own part number. 
This will prevent any possible changes to the part from affecting you. The 
drawing will also allow the part to be set up with any vendor you wish. 

o E-Ring Retainer 

Vendor: Truarc Retaining Rings Division 
Waldes Kohinoor, Inc. 
41-16 Austel Place 
Long Island City, NY 11101 
(212) 392-3100 

Contact the factory for the distributor near you. 

Vendor part number: Truarc X-5133-11 H. 

3-11 



Hardware Subsystems 

o L-Bracket 

Vendor: Pike Tool and Grinding Inc. 
4205 High Country Road 
Colorado Springs, Colo. 80907 
(303) 598-9611 

Vendor Part Number: 45641-00001-1 (also BP Part No.) 

Use the drawing in figure 3-25 to set this part up with its own part number. 
This will prevent any possible changes to the part from affecting you. Again, 
the drawing is provided for this part if you wish to set it up yourself. 

o Accessory Card Extractor (figure 3-26) 

Vendor: Trend Plastic 
1245 Laurelwood Rd .. 
Santa Clara. CA. 95050 
(408) 727-5797 

Vendor Part Number: 0403-0473 (also HP Part No.) 

o Accessory Card Extractor Retainer Pin (figure 3-27) 

Vendor: Drivelock, Inc. 
Sycamore, IL. 
(815) 895-8161 

Vendor Part Number: 9945 

One possible distributor for this part is: 

Bearing Engineers, Inc. 
1250 Space Park Way 
Mountain View, CA. 94040 
(415) 969-1155 

The Bearing part number is 3-0.330-R-SP. 

I/O PANEL PAINT SPECIFICATIONS 

~ope 

This specification establishes the requirements for pigment composition, to 
achieve a color in HP's Corporate Color Program. 

3-78 



Requirements 

o Pigments used to manufacture a color should be from the 
approved Hewlett-Packard List, "Pigments Used to Achieve 
the Corporate Color". 

o Pigment substitutes may be required for specific type of 
material that uses higher temperature, (such as plastic) 
to be produced in a Corporate Color. 

a. Use pigment with equivalent physical and performance 
properties as recommended on the pigment list. 

Hardware Subsystems 

b. Required physical and performance properties of pigments: 

1. Heat Resistance 
2. Bleeding Characteristics 
3. Chemical Resistance 
4. Exposure Performance (Ultra-violet,etc.) 

Quantitative 

o Pigment Composition (approximation - adjust ~ for tinting 
purposes) 

a. Paint Pigments for Parchment White Case, Visual Color 
Standard No. 6009-0130: 

Trace % 
I8.55'1 

.31 ~ 
Trace....!! 

~ 

Lampblack 
Titanium Dioxide White 
Yellow Iron Oxide 
Red Iron Oxide 

Gloss Standard: 18+-3 Gloss Units at 85 degree /-

b. Paint Pigments for Cobblestone Gray Accent, Visual Color 
Standard No. 6009-0133: 

8.0 I Lampblack 
28.4 Titanium Dioxide White 
10·2 ~ Yellow Iron Oxide 
4.5 ~ Red Iron Oxide 

48.3 ,; Other 

Gloss Standard: 18+-3 Gloss Units at 85 degree /-

3-79 



Hardware Subsystems 

Drawings 

Included in this section are the following drawings: 

o I/O Panel 

o Retainer Thumbscrew 

o L-Bracket 

o Accessory Card Extractor 

o Accessory Card Extractor Pin 

o Board Blank With I/O Panel (Accessory Card Details) 

o Height Restriction (Accessory Card Clearances) 

. 0 Board Blank - No I/O Panel 

o Accessory Card Schematic 

3-80 



W 
I 

Q) .... 

""2 .... 

1 
w 

I 
I\) 
W 

1-1 
"'­o 

f .... 

r::' ,., ld' 1°1 = .. =:-_--:=o:-===-.::=-=--=~.::-,= 

I 

-----j\ 
rr~(Q)~l rrfR1(c~ 

I<l---- ur1 . IflJ --------.I> I 
i 1 <!--.-U~ 2 . 10 ----.p.. I 

f!:li.l~ ~'~OL ___ . I~ ~ f 
o -l.S DX~. I A~.~S 

2 PLCS. _~o .=If r!l ! f2B.20 

(.:~~ ~~:~~----l>-f+-<>--16~-- i ~ 
4 IPltS. J<r---!A .le l> ~ ~. 

4 ~ILICS • 

1M~iJ"~S 

~j1ii]~ ~j1~~ 

~ ~~ 
l ~_/ 

[iJ~r_~~ 
!k-=-" -(j) ~QD -t>U .--

A. fXIMX~H: ~AIM~ 1~ D~~~~~. ~XlMt tH~~~~l~ t~IM¥~~SX~1M 

.~~51l4l1l4l lHXt~. 

~. ~XV~l XTEIl4l , 1~ XiJ"[1l4l A ~X1H Xl~1l4l ~ ~~ ~ltS.~ 

~. 1l4l~~K ~fr 1~~ ~R~~S ~f IIl4lIl4l DX~. ~1 lH[ 1~~ l.~ ~X~. 
H~LES ~IM~ S~~~Y P~XlMl lH[ F~~lMl SX~~ ~IM~ [~~E~ ~F X1EIl4l 1. 

~. XIMS1~ll'XT[Il4lS ~. 4. S ~S SHO~IM ~IM SXD[ ¥X~~ 
B :l. P.I-JoTS .11:1 '" -'/.1:0. - . ~-~:;j.'''' Ii- 3l>!!l-oQEQu,V 
7 2.. -P.C. MOu/'Jr,>JG- "8R11c\(~ .• ~~ __ . ___ ==f.!56.,-ooao,":, 
b I IN~£ ~:s~ -~~ii~:..t!.~i. ·Ri;':·.~"-·~~-'-'---3-
'i :J- E-R,NG. Rn",t.J& ;o.,;:r.- ." .. '=-R~-A~ -<" ",'B"-II. • e ,,'. 

I 1'A,un- ""inA.. "f)#6E RCi!;. Vh\lTe: • 
~ ~ ,H,",Me __ Noe '/S64J-ooool--=--__ 
_ ,_ ~ CObO BOllED 5rEEL 1.1. ..... ,"- I __ I ITEM QT'I'. ""ATII:IIIIAL·DIlIICRIRION "' .. T ..... ,.AIIITNO "'AT'L.PWG.NO. M"'T'L.SP'ItC. 

iI 
t :: 
: 

i 



Hardware Subsystems 

FINE 
DIAMOND KNURL :> 

~, 
I 
I 
I 
I 

:x I 
I 

l 14-0.4 

"- ,., j 
<;x, 118 

9. 
~ 

1=) 5DIA. 0 

~ 
I 

o 

E-RING GROV 

o 
o 

3,0 DIA 

E 2.01 ::g6DIA. 

NO. 3M 
.5 P THREADS 
K TO THREAD 

PAST E - RING 
GROVE 

Figure 3-24. 

I 
I 
I 

I 

I 

1 
I 
<t 

14-

14-

Retainer Thumbscrew 

1. FINISH: SRND TO DE BURR • ®r~ 2. ~~=~ ~H~~:~!~~E~' ~~S S::"~~ICK 2-~ql-r 
~._~9_.~. [. 15.CC 

USE PEn SELF-CLINCHING CD Y I 

FRSTENER OR EQUIVRLENT. -_. ~ 

~- ::/1 ~ 

ii'~ i 1 

119 . 6 
I I 
I 

---1> 4. 7 <f-

r 14-- 17. 00 -----t> I 
(REF) 

4.25 DIR. (+.08-.00) 

1"'~-·-·--
28.85 

-----FDLD UP 90 DEGREES 

3.20 DIR (+.003-.000) 2 PLCS. 

2,3 

t t 
t 

3.7 

t 

! ~ I fi~B I ~~; :O~L~ ~~L .07'l"n:I------------

Figure 3-25. L-Bracket 

3-82 



= ~-l --- ,------ -- I 
- - - - It I. 

I '< 

I I 
I I 

\. .. ) 
L_~_-----" 

It) 
~ 

1 

Hardware Subsystems 

I I ' I , 
I' , 

I I i: I ' 

SSC,TIOoJ Po. A 

Figure 3-26. Accessory Card Extractor 

Figure 3-27. Accessory Card Extractor Retainer Pin 

3-83 



Hardware Subsystems 

q 138GJ 
~9~~~§ c;-

IS! Cl:!z...J...J IT 

~ ~5§?~ cr'-
:l!::;: 

I z VI 

it! r<J 
~ 

I "" 
0 (to 

Q g; Q ~ ..: ~ 
w 0 w "' ;; w a: ::!!' 

~ <0 -
w 0 0: :l 
0 ...J 85 ~ Vi ...J 

l-
cC • ~u. ~ 

Z ~ ;;'i <nO ~ 
w Z ~ ZW 0 Z 
0 ~ ~e Vi 
~ 1(§tjVl~ 
0 ::;: <0::;: 
() .. o<cCW'-

w()i)5rxO 

0 5 oz 01::::::1 z Z _ zw< 

oVi EJ ~ t<i 

IS! 23 rtj~ 
::;: 

(\J ::> 
<D 0. ~ '" <D Ole! ~ to ~~ 

0 
<;t 
C\I 0 

Figure 3-28. Board Blank Drawing With I/O Panel (Accessory Card Details) 

(f) 

o.g 
>-0.. 
I-N 

(f) 

N~ 
N 

~----------------------254,O----------------------------~.1 
COMPONENT SIDE VIEW 

NOTES: 
ill NO COMPONENTS ALLOWED IN THIS AREA, 
~ COMPONENTS HIGH 9,2MM MAX. 
lID COMPONENTS HIGH 17.5 MM MAX. 
Y. ALL DIMENSIONS IN MILLIMETERS. . 

Figure 3-29. Height Restriction Drawing (Accessory Card Clearances) 

3-84 



'

2.9 

r 8.Q7 

LL:- 66.36 

Hardware Subsystems 

!.oR 
<I+PLCS) 

-il,2.·54TYP 
L---f--#;trn .. ,....,.m+Tf'I.'1:;";.= ... Tf'I.'1 .. =>ri:'-r----- 254.0 

244.6 ---.,..---+ •• t+tt't++++++++++H+++ ++ .. tt++ ++t.'" 
7.62 

2.2.7.0 ----

NOTE 

No components allowed in 
shaded area. Also do not 
run any traces in the 
shaded region on the circuit 
or component side. 

.8'1¢ 
C 70 PLCS) 

3.0~n-~ 

(2PLCS) I (tPlC$) 

2.50 
UNPLAH() 
(2.PlCS) 

_ _ ;fi~18.6} 
11.0 TYP 

O--D-AT-U-M---+t++:-------e-9.I-J,JJ,...:I-++'!>.-~-- S:OR "PLCS 1 

15.0 ----+~ ---

11.2. 93.1 

6.2. 98.1 

2.2. 102.1 

o 10+.3 

COMPONENT SIDE VIEW 

Figure 3-30. Board Blank - No I/O Panel 

3-85 



Hardware Subsystems 

This is page is blank. 

3-86 



+5 

16 

+5 
16 

RNI 16X"". 7K 

2 4 

47 BIO/-M 3 
------------------'!>--------------------------

+5 LS244 
~ A4 10 

F>=B 
IN 

~I~~ R0 ~~~--*r---:1~6 ~LBS85B 
I~ ,~4 ~ _. __ ttll~--O~~ 1/2 DIP SWITCH 

f-jl 
14 

I FPR0 

2 FPAI 
3 FPA2 
4 FPR3 
5 FPA4 
6 FPA5 
7 FPR6 
8 FPR7 

-=-----==----------------------"- IAI IYI f'-"----::=------I 
_;;-__ -:::::::-__________ ~ IA2 IY2 16 AI 

--'=--__ -==-________ +-__ --"16 IR3 IY3 14 A2 
_,'--__ -:,,:,= ________ -,f-_-"--I8 1A4 IY4 12 R3 
_:::----__ ~_"_ ________________ li2AI 2YI 9 A4 I 

_;;-__ -===:-___ ---------- ==-~:: :::; : I 
-=-----'-'-"'------ -----+----'17'-12A4 2Y4 ~ ___ R7__ I +5 I 

I~ II 16 414 i 
L2.. 'iJ' ~ 

11 A410 9 

6B 
_01~~+12 

34 _'1': +5 

+5 16 RNI 16X4. 7K 

~ 

5 6 7 8 

+-H--+==:---<>:~ 1/2 DIP SWITCH 

NRESET 
.01-1- Cl,C2 J; 1 I 

21,41 T C3 ,C4 T01 
42,67 CS.C6 ~ 

i L AS 12 LSS5 -rr--
~~S2;~ f, ~~ ~BT f-'~-'14-----' ~S-~ J~:-----------:-~ ----------------

_,,9,-____ R!1US8:c::::::::. ________ +-_---'2'1IAI IYI 18 AS l=. I ~. 12 0 1::9::_-_-_1--+ ___ --+ _____ -.-_~rJ.J_i-'--' 1 

---------

II·~--~ll 
I r STATUS BYTE I I 

171 1"1 13J1 II 81 6[ 4 -'I IlJ I I 
~ +S 

_-;.-10;:-__ AllU59:::::'::::-::-_____ ~ IA2 IY2 16 AS l 8 II -I j 
_."II,--__ RBUS:c:::=10=--_____ + __ -"j6 IR3 I Y3 14 AlB F74 .1 8 r:-'''; RED 
_-;:12::----___ ABUS==IIC-_________ ~ IA4 IY4 12 All ________ ---' a. II 

=:::f:!t::::::::::::::::~::~:~~:::=__-_=-~--:::-~~=-_-~:::~::::--:~-:::--_-~'":~;Y,§ ~~ ~'-tA A_I~_3 __ , __ AIlll<E __ S_~-_BU_-_~_,· .. ::. "' rol ro ro rol ~ -
r 8 7 6 5\" 3 2\ n;!;';1 ;;In;71 

+5 

16 

oL- '---

oL-

ROM 

-: ~ JB JJjJLIS2J:J: I ]-19 20 I I 
9[10 II 13 14 15i 16 17[ 112 DATA BUS 

OOl Dl D2 D3 D4 D5~ 07\ 'V' 

~==I==f=-=-=====;:;rl==--==:::::--======'~--- ,I 

,----,10 I ~ of L" 
32 FPNRD L-..2...41 
~--~---~~--,--,--------, 

~ 
o-lL 

1~~~~--------------------------4-----+-------. 

4 6 

+-----------Hf-------'S'-! LS32 

66 

~6 9 
fFiSfREfiD 10 F00 +5~ LSil4 8 

1 I 
FAST WRITE 

2 F00 . 
5138 ~ 
~ 

14 

~ 

~ 54 FPGO 

--'-.7B=--+NS'-=0c.TSEL='-___ '-!I· 2 ~~ 
~'r-----"0 

'---+----------+--r- -----------, I 
II 
II 
II 

....:SET 9 10 I 12 

LS32 LS32 
+12 +5 ~tIF3: h '--__ +---"-j2J D i4Qr:LS't--__ --i;12G;i~r5+------' I 

~~~~~-----~-NF~P~~K===::l~=----~J +5
3 F7~ r=lf:;-I +5

16 
r-__ R0~10=--~8~~K~ 

JY ~I 

[i 

II 

- c'--II-------

II 

J Y 

NRD NCS 

FI 
57 FPQ.K 

~se: 

B,X I 

+5 
20 II 

~ CONTROLLER 
NERRf'LG 7 I~ 

'------'lyDIR cc G J!-

--=-=--__ -CF='P=OO;.-__________ -"-I2 A~I ~~1 H 

---''-'-----:j=t=~:---------21; ~ ; L Ell ~;:::: : '"/7611:~ 
23 

24 
25 

~ f-'M"--_____ ++ ________________ _ 

26 - 27 

28 l,22,A.P 

29 --c=-------:~=~::::---------215 A7 B7 15 D6 _=-__ -'--= _______ -"13 AS B8 17 D7 J J J DATA BUS 

L'==-=f-==~::::::::/==::::=/===~/==:::====::::::::===-===-- --
30 

39 NFPRESET 

10 ALS245 

II 
12 LS32 ~
13 100 NRESET 

1'----1 ----

------J 

Figure 3 -31. Typical Accessory Card Schematic 

Hardware Subsystems 

3-87 





MEMORY AND 1/0 MAPPING 

~--------------~~ 

This section contains memory and input/output maps for the HP 150 memory and 
input/output address spaces. Included is information describing the register 
and bit mappings of all devices which consume a portion of the 8088 processor's 
address space for both memory and input/output instruction types. More 
information regarding the functionality of the devices themselves may be found 
in Section 3, Hardware Subsystems. 





Memory Mapped Devices 
HP 150 Memory Map 
HP 150 Memory Map continued 
CRT Controller Registers 

CON'l'ENTS 

Horizontal Timing Registers (RO, Rl, R2 and R3) 
Vertical Timing Registers (R4, R5, R7, R8 and R9) 
Pin Configuration/Skew Bits Register (R6) 
DMA Control Register (RA) 
Control Register (RB) 
Table Start Register (RC and RD) 
Auxiliary Register 1 (RE and RF) 
Sequential Break Register 1 (RlO) 
Data Row Start Register (Rl1) 
Data Row End Register (R12) 
Auxiliary Address Register 2 (R13 and Rl4) 
Start Command (R15) 
Reset Command (R16) 
Smooth Scroll Offset Register (Rl7) 
Vertical Cursor Register (R18) 
Horizontal Cursor Register (R19) 
Cursor Registers R38 and R39 (READ) 
Interrupt Enable Register (R1A) 
Status Register (R3A) 
Vertical Light Pen Register (R3B) 
Horizontal Light Pen Register (R3C) 
Video Attribute Latch 

I/O Mapped Devices 
HP 150 Input / Output Map 
Real Time Clock (MM58167A) 
Integral Printer Interface 
Keyboard / Touchscreen Controller (8041A) 
Datacomm Port 1 Control Lines / Manuf Test Repeat 
Datacomm Port 2 Control Lines / Clock Source Select 
Interrupt Controller (8259A) 
Baud Rate Generator (8116T) 
HPIB Controller (9914) 
MPSC - Datacomm Controller (7201/8274) 

4-1 
4-1 
4-2 
4-3 
4-4 
4-5 
4-5 
4-5 
4-6 
4-6 
4-6 
4-6 
4-6 
4-6 
4-7 
4-7 
4-7 
4-7 
4-7 
4-7 
4-7 
4-7 
4-8 
4-8 
4-8 
4-8 
4-9 
4-9 

4-10 
4-11 
4-11 
4-12 
4-12 
4-13 
4-13 
4-14 
4-14 





Memory and I/O Mapping 

MEMORY MAPPED DEVICES 

HP 150 Memory Map 

FOOOO 

EOOOO 

D4000 

D3000 

DOOOO 

c8000 

COOOO 

BC100 

BCOOO 

B8001 

BSooo 
BOOOO 

+--------------------------------------------+ 
Finnware 

+------- ROM -------+ 
I (128 K) 
+--------------------------------------------+ 
I RESERVED (Alpha RAM/CRTC Image) 
+--------------------------------------------+ 
I CRT Controller Registers / VATT Latch 
+--------------------------------------------+ 
I Alphanumeric Character RAM (12 K) 
+--------------------------------------------+ 

RESERVED (Graphics RAM Image) 
+--------------------------------------------+ 

32K Graphics RAM 
+--------------------------------------------+ 

RESERVED (CMOS HAM Image) 
+--------------------------------------------+ 

256 x 4 CMOS (Configuration) RAM 
+--------------------------------------------+ 

RESERVED (System Status LEDs Image) I 
+--------------------------------------------+ 
I System Status LEDs I 
+------------------------------------------- I 
+------------------------------ .. -------------+ continued on 

next page 

4-1 



Memory and I/O Mapping 

4-2 

HP 150 Memory Map continued 

BOOOO 

A4000 

AOOOO 

94000 

90000 

80000 

70000 

60000 

50000 

40000 

30000 

20000 

10000 

06000 

00000 

+--------------------------------------------+ 
RESERVED FOR FUTURE ACCESSORY SLOTS 

+--------------------------------------------+ 
Accessory Slot 2 Address Space (16K) I 

+--------------------------------------------+ 
I RESERVED FOR FUTURE ACCESSORY SLOTS I 
+--------------------------------------------+ 
I Accessory Slot 1 Address Space (16K) 
+--------------------------------------------+ 

ROM Expansion 11\ I 
+---- I I ----+ 

I I I 
+---- I I ----+ 

I I 
+---- \11 I ----+ 

I 
+---- I ----+ 

RAM Expansion I 
+--------------------------------------------+ 

I 
+---- Operating System ----+ 
I and User RAM 
+---- ----+ 
I (Standard, 232 K) 
+---- ----+ 
+--------------------------------------------+ 
I Firmware RAM / Op.Sys.lnterrupt Vector RAM I 
+--------------------------------------------+ 

NOTE 

11\ Used for 
I RAM in 
I 640 K Byte 
I contig. 

For a more detailed map of Operating System, User, and Firmware RAM useage, 
refer to System Software (Section 5), Operating System Memory Map. 



Memory and I/O Mapping 

CRT Controller Registers 
Initialization 

Register Bit Definition Register 
Type Regis- Data 8088-Addr 

D7 D6 D5 D4 D3 D2 D1 DO ter I (hex) (hex) Read/Write 
+----+----+----+----+----+----+----+----+ ------

MSB CHARS. /HORIZONTAL PERIOD LSB 
MSB CHARACTERS I DATA ROW LSB 
MSB HORIZONTAL DELAY LSB 
MSB HORIZONTAL SYNC WIDTH LSB 
MSB VERTICAL SYNC WIDTH LSB 
MSB VERTICAL DELAY LSB 
PIN CONFGI CURSOR SKEW I BLANK SKEW 
MSB VISIBLE DATA ROWS/ FRAME ILSB 

ISCAN LINES/FRMI SCAN LINES/DATA ROW 
B8 (MSB 

B7 SCAN LINES FRAME BO 
DMA DMA BURST DLY I DMA BURST COUNT 

IDIS I I I 
!ABLEIMSB I ILSB IMSB I ILSB I 
I X I PBI INTERLACE I OPERATION I2XC/ 
, ISS' MODES' MODES I!XC , 
IMSB 'TABLE START REGISTER(LS BYTE) ILSB I 

ADDRESS I TABLE START REG (MS BYTE) 
MODE MSB) (LSB 

MSB AUX. ADDRESS REG.1 LS BYTE LSB 
ROW AUX ADDR REG 1 (MS BYTE t ATTR'S I (MSB) 

MSB I SEQUENTIAL BREAK REG. 1 
IMSB DATA ROW START REGISTER LSB 
MSB , DATA ROW END/SEQU. BRK REG 21LSB I 

IMSB , AUX. ADDRESS REG.2 (LS BYTE)ILSB I 
I ROW IAUX ADDRESS REG 2 (MS BYTE) I 
I ATTR' S I (MSB) (LSB) I 

I :~ ~= I 
IOFSTI 
IOVR-1 OFFSET VALUE 
IFLOWI(MSB) (LSB) I 0 
I VERTICAL CURSOR REGISTER (ROW COORD.) 
I (MSB) (LSB) 
I HORI ZONTAL CURSOR REG. ( COL. COORD.) 

(MSB) (LSB) 
I VERT I INTERRUPT ENABLE REG I FRM 
I RE-ILGHTI ITIM­

X ITRCEI PEN I X I X I X I X I ER 
INTIVERTI I STATUS REGISTER 

PEN-I RE-ILGHTI I ODD/I I FRM 
DING I TRCE I PEN I I EVEN I X I '!'MER 
MSB IVERT LIGHT PEN REG(ROW COORD)ILSB I 
MSB IHOR LIGHT PEN REG (COL COORD)ILSB I 

IVIDEO ATTRIBUTES REGISTRI 
IDISPI I CURS I I I 

X I X I X I ON IBLRTI BLRTI BLOB I GRENI 

RO I 73 
R1 I *4F 
R2 I 2E 
R3 I 07 
R4 , 13 
R5 # 20 
R6 , C9 
R7 , *lA , 
R8 , 2D 
R9 , 9F 

RA , 70 

RB , 41 
RC , 91 

RD , 97 
RE , FF 

RF , 3F 
R10 + FF 
R11 FF 
R12 FF 
R13 + 00 

R14 + 00 
R15 00 
R16 + 00 

R17 00 

R18 FF 
R38 + 
R19 00 
R39 + 

RlA , 40 

R3A 

R3B + 
R3C + 

"VA'IT" 00 

D3000 WRITE 
D3002 WRITE 
D3004 WRITE 
D3006 WRITE 
D3008 WRITE 
D300A WRITE 
D300C WRITE 
D300E WRITE 

D3010 WRITE 
D3012 WRITE 

D3014 WRITE 

D3016 WRITE 
D3018 WRITE 

D30lA WRITE 
D301C WRITE 

D301E WRITE 
D3020 WRITE 
D3022 WRITE 
D3024 WRITE 
D3026 WRITE 

D3028 WRITE 
D302A READ/WRITE 
D302C READ/WRITE 

D302E WRITE 

D3030 WRITE 
D3070 READ 
D3032 WRITE 
D3072 READ 

D3034 WRITE 

D3074 READ 

D3076 READ 
D3078 READ 

D30BE WRITE 

4-3 



Memory and I/O Mapping 

4-4 

• These registers are programmed with If -1. 
, These registers must have these initialization values. 
+ These registers may not be accessible on future UP 150 revisions 

and must not be written to or read from. 

NOTE 

For a full description of the CRT Controller registers, refer to the 
SMC9007 data in Standard Microsystems Corporation 1982 Data Book. Use of 
registers noted as being not accessible on future HP 150 revisions is not 
recommended and such access may result in software incompatibilities with 
certain HP 150 units. All addresses not specifically shown are reserved 
and should not be used. 

A description of CRT controller registers as those registers are used and 
supported by the UP 150 follows. 

HORIZONTAL TIMING REGISTERS (RO, Rt, R2 AND R3) 

These registers define the horizontal scan line timing. They must contain 
the (hexadecimal) values shown. 

<------- one scan line ----------> 1 

<------------ RO ----------------> 1 
73 1 

<--'------ R1 ------> ! <-- (RO-Rl) -->! 
4F 1 1 

1 <-R2-> 1 
2E 

+----------------------+ +--------
ACTIVE DISPLAY 1 

VLT ----------------+ +-------------+ 
--- ------ ---- ------+ +_., .. _----- ----+ 

DOR. SYNC <--- R3 --->1 
+-----------------------+ 07 +---



Memory and I/O Mapping 

VERTICAL TIMING REGISTERS (R4, R5, R 7, R8 AND R9) 

These registers define the vertical frame timing. They must contain the 
(hexadecimal) values shown. 

<----- one complete frame -------> 
<------------ R9 ----------------> 

9F 
<-----(R7xRB)------> 

lA2D 
! <-R5-> 
1 20 

--------------+ +-------------+ 
VERTICAL BLANKING 
(NO SKEW) 

DATA ROW DISPLAY TIMEI 
+----------------------+ +--------

-------------------+ +-------------+ 
VERT. SYNC 1 <--- R4 --->1 

+-----------------------+ 13 +---

PIN CONFIGURATION/SKEW BITS REGISTER (R6) 

- Contains pin configuration information ( bit 7,6 ) 
- Cursor skew ( bits 5,4,3 ) define the number of character 

clocks the cursor signal is delayed from VLT 
- Blank skew ( bits 2,1,0 ) define the number of character 

clocks the horizontal blank component of the CBLANK signal 
is delayed from VLT. 

- Both cursor skew and blank skew are the value "001" for 
the 1 character skew. 

- Must contain C9 Hex. 

DMA CONTROL REGISTER (RA) 

- DMA disable ( bit 7). A logic "1" on this pin forces the 
SMC9007 DMA request into the inactive state, and the 
address bus will enter its high impedance state. 

- DMA burst delay (bits 6,5.4). This register is loaded 
with "111" for zero delay. allowing all characters to be 
retreived from video RAM in one burst. 

- DMA Burst Count ( bits 3,2,1,0 ). Not Used. 
- Must contain 70 Hex. 

4-5 



Memory and I/O Mapping 

4-6 

CONTROL REGISTER (RB) 

- 7 bit register 
Smooth scroll mechanism is enabled by writing a "1" to bit 
6. 

- Interlace, ( bits 5,4 ). "00" - non interlaced mode. 
- Operation mode (bits 3,2,1 ). "000" for repetitive 

memory addressing. 
Single/double height cursor ( bit 0 ). "1" = single. 

- Must contain 41 Hex. 

TABLE START REGISTER (RC AND RD) 

- These registers point to the address where the row table 
begins. 

- The registers are set up the following way for contiguous 
row table mode: 

* register D ( bits 7,6 ) = "10" 
* register D ( bits 5-0 ) = upper 6 bits of the 

14 bit address 
* register C ( bits 7-0 ) = lower 8 bits of the 14 

bit address. 
- RC must contain 91 Hex, RD must contain 97 Hex. 

AUXILIARY REGISTER 1 (RE AND RF) 

- Not used, except for bits 7,6 in register F which must be 
"00" for single height, single width characters. 

- HE must contain FF Hex, RF must contain 3FH. 

SEQUENTIAL BREAK REGISTER 1 (RIO) 

- This register may not be accessible on certain HP 150 revisions 
and must not be used. 

DATA ROW START REGISTER (Rll) 

- Defines the first data row number at which a smooth scroll 
operation begins. 

- Is initialized by the system firmware to FF Hex. 

DATA ROW END REGISTER (RU) 

- The row numerically one less than the row defined by this 
register is the last data row on which a smooth scroll 
will occur. 

- Is initialized by the system firmt-Tal'e to FF Hex. 



Memory and I/O Mapping 

AUXILIARY ADDRESS REGISTER 2 (R13 AND R14) 

This register may not be accessible on certain HP 150 revisions 
and must not be used. 

START COMMAND (R15) 

- During initialization of the SMC9007. after all vital 
screen parameters are loaded. a start command can be 
initiated by addressing this dummy register location. 

RESET COMMAND (R16) 

- This register may not be accessible on certain HP 150 revisions 
and must not be used. 

SMOOTH SCROLL OFFSET REGISTER (R17) 

- This register is loaded with the scan line offset number 
to allow a smooth scroll operation to occur. The offset 
register causes the scan line counter to start at the 
programmed value rather than zero for the data row that 
starts the smooth scroll interval. 

- Must have data bit 7 (most significant) cleared (0). 

VERTICAL CURSOR REGISTER (RI8) 

- This register specifies the data row in which the cursor 
appears. 

HORIZONTAL CURSOR REGISTER (R19) 

- This register specifies the character position in which 
the cursor appears. 

CURSOR REGISTERS R38 AND R39 (READ) 

- These registers may not be accessible on some revisiollS of the 
HP 150 and must not be used. 

INTERRUPT ENABLE REGISTER (RIA) 

- This 3 bit write only register allows each of the 3 
SMC9007 interrupts to be enabled or disabled. 

- Bit 6 is set to "1" to enable vertical retrace interrupts. 
- Must contain 40 Hex. 

4-7 



Memory and I/O Mapping 

4-8 

STATUS REGISTER (RlA) 

- This register is only used to clear the interrupt bit. The 
value read is irrelevent. 

VERTICAL LIGHT PEN REGISTER (RlB) 

- This register may not be accessible on certain revisions ot 
the BP 150 and must not be used. 

HORIZONTAL LIGHT PEN REGISTER (Rle) 

- This register may not be accessible on certain revisions ot 
the BP 150 and must not be used. 

VIDEO ATfRIBUTE LATCH 

This latch stores 5 bits ot video data, and can be updated during the 
blank portions of the video trame. It is a memory mapped I/O register with 
the 8088 address D30BE hexadecimal. The register is actually decoded as a 
non-existent SMC9007 register. 

VIDEO ATTRIBUTE LATCH PIN DEFINITION 

+----------+-----------+----------+----------+----------+ 
I DISPON BLRT CBLRT BLOB GREll r 
+----------+----------+----------+----------+----------+ 

D4 D3 D2 Dl DO 

note: - positive logic is used ( 1 = on, 0 = ott ) 
- when writing to this register, D5-D7 are don't cares 

DISPON 
BLRT 

CBLRT 

BLOB 

GREN 

Alpha Display On 
Character Blink Rate 
Characters with BL ( blink ) enhancement 
set will be blanked on the screen while 
BLRT is a "1." 
Cursor Blink Rate 
The character tor which CURS from the 
SMC9007 is active high, the cursor will 
be blinked when CBLRT is a "1." 
Blob Cursor Select 

(otherwise double scan line cursor) 

Graphics Display Enable 



Memory and I/O Mapping 

I/O MAPPED DEVICES 

HP 150 I/O Map 

OOFF +--------------------------------------------+ 

Reserved For 
Accessory Slots I 

I 
I 

0080 +--------------------------------------------+ 
I 

I/O Image I 
(DO NOT USE) I 

0060 +--------------------------------------------+ 
I 

Real Time Clock (MM58167A) I 
I 

0040 +--------------------------------------------+ 
I 

Integral Printer Interface I 
0030 +--------------------------------------------+ 

Reserved 
(00 HOT USE) 

OOlC +--------------------------------------------+ 
Keyboard/Touchscreen Controller (8041A) 

0018 +--------------------------------------------+ 
I Datacomm Port 2 Control Lines 
I Manufacturing Test Repeat 

0016 +--------------------------------------------+ 
I Datacomm Port 1 Control Lines 
I Datacomm Clock Source Select 

0014 +--------------------------------------------+ 
I 

Interrupt Controller (8259) I 
0010 +--------------------------------------------+ 

I 
Baud Rate Generator (8116T,) I 

OOOC +--------------------------------------------+ 

HPIB Controller (9914) 

0004 +--------------------------------------------+ 
MPSC - Datacomm Controller (7201) 

0000 +--------------------------------------------+ 

4-9 



Memory and I/O M"'pping 

4-10 

NOTE 

I/O mapped devices at 0000 Hex through 0080 Hex are not exclusively decoded 
to 16 bits. Rather they may be accessed through any combination of high 
order byte bits. For future hardware compatibility it is highly 
recommended that programs which access I/O mapped devices directly at these 
addresses do so with a high order byte address of 00 Hex. Accessory cards 
may exclusively decode a 16 bit address. See the accessory card 
specifications for more information. 

Real Time Clock (MM58167A) 

+----------+--------------------------------------+------------+ 
I Address Register Type 
+----------+--------------------------------------+------------+ 

0056-005FH Not Used reserved 
0055H "GO" Comamand Register wri te 
0054H Status Bit read 
0053H RAM Register Reset write 
0052H Counter Register Reset write 
0051H Interrupt Control Register write 
0050H Interrupt Status Register read 
004FH Month RAM Register read/write 
004EH Date RAM Register read/write 
004DH Day RAM Register read/write 
004cH Hour RAM Register read/write 
004BH Minutes RAM Register read/write 
004AH Seconds RAM Register read/write 
0049H Tenth/Hundreth Sec RAM Reg read/write 
0048H Millisecond RAM ~egister read/write 
0047H Month Counter Register read/write 
0046H Date Counter Register read/write 
0045H Day Counter Register read/write 
0044H Hour Counter Register read/write 
0043H Minutes Counter Register read/write 
0042H Seconds Counter Register read/write 
0041II Tenth/Hundreth Sec Counter read/write 
0040H Millisecond Counter Register read/write 

+----------+--------------------------------------+------------+ 
For more information on this part, see the MM58167A Data Sheet, National 
Semiconductor Corporation. 



Memory and I/O Mapping 

Integral Printer Interface 

+----------+--------------------------------------+------------+ 
I Address Register TYPe 
+----------+--------------------------------------+------------+ 
10030H I Status/Data I read/write I 
+----------+--------------------------------------+------------+ 

Bit: 1 6 5 4 3 2 1 o 
+------------------------------------------------+ 

READ I I HPAPER I ONLINE I ACK I 
I - I our I I I 
I I I I I 
+------------------------------------------------+ 
+------------------------------------------------+ 

WRITE I I I I I I I I 
I D1 I D6 I D5 I D4 I D3 I D2 I D1 I DO 
I I I I I I I I 
+------------------------------------------------+ 

Keyboard / Touchscreen Controller (8041A) 

+----------+--------------------------------------+------------+ 
I Address I Register Type 
+----------+--------------------------------------+------------+ 
10019H I Status / Command Register I read/write I 
10018H I Data Register I read/wri te I 
+----------+--------------------------------------+------------+ 
For more information on the use 01 these registers, see the "Hardware 
Subsystems" section, "Keyboard and Touchscreen". 

4-11 



Memory and I/O Mapping 

4-12 

Datacomm Port 2 Control Lines / Manuf Test Repeat 

+----------+--------------------------------------+------------+ 
1 Address Register Type 
+----------+--------------------------------------+------------+ 
1 0016H/ 0CRl/OCD1, OCR2/OCD2, DM Ctrl. Lines, 1 read/write 1 
1 1 Port 1 detect, Manufac. test bit 1 1 
+----------+--------------------------------------+------------+ 
Bit: 7 6 5 3 2 1 o 

+-------------------------------------------------------+ 
READ, 1 ---- 1 ---- 1 ---- 1 POD 1 OM 1 MTST 1 OCR2 1 OCRl 1 
WRITE 1 ---- 1 ---- 1 ---- 1 ---- f ---- 1 ---- 1 OCD2 f OCDl f 

+-------------------------------------------------------+ 
In the above: 

POD = 0 if Port 1 datacomm PeA is not present. 
POD = 1 if Port 1 datacormn PeA is in place. 
MTST = 0 if jumper wire is not grounding U62 pin 14. 
MTST = 1 if U62 pin 14 is grounded causing repetition of 

manufacturing test segment that failed. 

Datacomm Port 1 Control Lines / Clock Source Select 

+----------+--------------------------------------+------------+ 
f Address Register 1 TYPe 1 
+----------+--------------------------------------+------------+ 
10014H 1 0CRl/OCD1, OCR2/OCD2, OM Ctrl. Lines,1 read/write 1 
1 1 Clock Source Select 1 I 
+----------+--------------------------------------+------------+ 
Bit: '7 6 5 4 3 2 1 o 

+-------------------------------------------------------+ 
READ 10 10 10 11 I DM 10 IOCR210CRlf 
WRITE 1 Clock Source 1 ---- I ---- I ---- I ---- I OCD2 1 OCDl 1 

+-------------------------------------------------------+ 
Clock source select bits are defined as follows: 

+-----+-----+---------------+---------------+ 
I Bits Receive Transmit 
1 7 1 6 Clock Clock 
+-----+-----+---------------+---------------+ 

o 0 x16 x16 
o 1 xl xl 
1 0 RT ST 
1 1 RT ST 

+-----+-----+---------------+---------------+ 



Memory and I/O Mapping 

Interrupt Controller (8 259A) 

+----------+--------------------------------------+------------+ 
I Address Register Type 

+----------+--------------------------------------+------------+ 
10010,0011HI Interrupt Controller Registers I read/write I 
+----------+--------------------------------------+------------+ 
For more information on this part, see the 8259A Data Sheet, Intel 
Corporation. 

Baud Rate Generator (8116T) 

+----------+--------------------------------------+------------+ 
I Address Register Type 

+----------+--------------------------------------+------------+ 
1000CH I Baud Rate Select I write 
+----------+--------------------------------------+------------+ 

Baud Rate Select Coding: 

Port 2 Control Port 1 Control 
+---------------+---------------+---------------+------------+ 

D1 D6 D5 D4 D3 D2 Dl DO I Clock Output I Baud Rate 
I (Hz.) I 

+---------------+---------------+---------------+------------+ 
0 0 0 0 0 0 0 0 800 50 • 
0 0 0 1 0 0 0 1 1200 15 • 
0 0 1 0 0 0 1 0 1760 110 
0 0 1 1 0 0 1 1 2152 134.5 * 
0 1 0 0 0 1 0 0 2400 150 
0 1 0 1 0 1 0 1 4800 300 
0 1 1 0 0 1 1 0 9600 600 
0 1 1 1 0 1 1 1 19200 1200 
1 0 0 0 1 0 0 0 28800 1800 * 
1 0 0 1 1 0 0 1 32000 2000 • 
1 0 1 0 1 0 1 0 38400 2400 
1 0 1 1 1 0 1 1 51600 3600 • 
1 1 0 0 1 1 0 0 16800 4800 
1 1 0 1 1 1 0 1 115200 1200 * 
1 1 1 0 1 1 1 0 153600 9600 
1 1 1 1 1 1 1 1 301200 19200 

+---------------+---------------+---------------+------------+ 
* Denotes baud rates not configurable through the HP 150 Config menus. 

4-13 



Memory and I/O Mapping 

4-14 

HPIB Controller (9914) 

+-------~--+--------------------------------------+------------+ 
I Address Register I TYPe 
+----------+----------------------------~---------+------------+ 
IOOOBH Command Pass Thru /Parallel Poll I read/write 
IOOOAH Address Status Register I read 
I0009H Address Switch / Address Reg I read/write 
I0008H Interrupt Status O/Interrupt Mask 0 I read/write 
IOOoTH Data In / Data Out I read/write 
looo6H Bus Status / Auxiliary COllllllaDd I read/write 
I0005H Serial Poll register I read 
looo4H Interrupt Status l/Interrupt Mask 1 I read/write 
+----------+---------------------------------~----+------------+ 

For more information on this part, see the TMS9914 Data Sheet, Texas 
Instruments Incorporated. 

MPSC - Datacomm Controller (7201/8274) 

+----------+--------------------------------------+------------+ 
I Address Register I TYPe 
+----------+--------------------------------~-----+------------+ 
I 0003H I Channel B Control Reg I read/write I 
IOOO2H I Channel B Data Reg I read/write I 
IOOOlH I Channel A Control Reg J read/write J 
IOOOOH I Channel A Data Reg I read/write J 

+----------+--------------------------------------+------------+ 
For more information on programming this part, see the "PD7201 
Multiprotocol Serial Communications Controller Technical Manual", IEC 
Electronics U.S.A. Incorporated, or 8274 Data Sheet, Intel Corporation. 



~S_V_S_T_E_M_S_O_F_TW __ A_RE __________ ~lr~HI, 

The software environment of the HP 150 is covered in this section. Included is 
a discussion of the operating system, MS-DOS, and HP's enhancements to it, 
installable and BIOS devices, and the disc format and directory structure 
including drive specific capacity and organizational information. 





Operating System Structure 
The Command Processor 

COITENTS 

The Personal Applications Manager (P.A.M.) 
Application Programs 
Basic Disc Operating System (BOOS) 
Basic Input/Output System (BIOS) 

Operating System Memory Usage 
Operating System Memory Map 
Interrupt Vectors 
MS-DOS Interrupts 
HP 150 Hardware Interrupts 
Firmware Variables 
BIOS and BOOS 
Disc Buffer Cache 
File Control Blocks (FCBs) 
Fields of the FCB. 
Installable Device Drivers 
PAMCODE.EXE or Resident Portion of COMMAND.COM 
Application Program Area (Program Segment) 
Program Segment Prefix (PSP) Control Block 
How A Program Terminates 
Conditions In Effect When A Program Receives Control 
Transient Portion of COMMAND.COM 

HP 150 Devices 
Logical (Mappable) Devices 
Physical Devices 
Mapping Logical to Physical Devices 
The Device Configuration Utility 
Installable Devices 
Character Devices and Block Devices 
How Application Programs Can Get to Devices 
Device Driver Structure 
Pointer to Next Device Field 
Attribute Field 
Strategy and Interrupt Routines 
Name Field 
Device List 
How to Create a Device Driver 

How MS-DOS Calls a Device Driver 
Request Header 
Unit Code 
Command Code Field 
Status Word 
Device Driver Functions and Parameters 
Init 
Media Check 
Build BPP (BIOS Parameter Block) 
Read or Write 
Non Destructive Read No Wait 
Status 

5- 1 
5- 2 
5- 2 
5- 2 
5- 3 
5- 3 
5- 4 
5- 4 
5- 5 
5- 7 
5- 7 
5- 7 
5- 7 
5- 7 
5- 8 
5- 8 

5- 10 
5- 10 
5- 11 
5- 12 
5- 13 
5- 13 
5- 15 
5- 16 
5- 16 
5- 16 
5- 16 
5- 17 
5- 18 
5- 20 
5- 20 
5- 21 
5- 22 
5- 22 
5- 23 
5- 23 
5- 24 
5- 26 
5- 27 
5- 27 
5- 27 
5- 28 
5- 28 
5- 31 
5- 31 
5- 32 
5- 33 
5- 35 
5- 36 
5- 37 



Flush 
HP 150 Installable Device Driver Example 
AGIOS: I/O Control of the Con Device 

The Alpha/Graphic Input/Output System (AGIOS) 
Accessing the AGIOS 

BIOS and its Devices 
Introduction 

The COMFIG.SYS File 
Disc Format and Directory Structure 

Physical Disc Format 
Disc Media Storage Capacity 
Disc Sector Allocation 
Header Record 
Boot Sector 
File Allocation Table (FAT) 
Disc Clusters 
FAT Structure 
How to Use the File Allocation Table 
MS-DOS Disc Directory 

CONTENTS ( Cont. ) 

5- 38 
5- 39 
5- 49 
5- 49 
5- 49 
5- 51 
5- 51 
5- 55 
5- 57 
5- 57 
5- 57 
5- 58 
5- 59 
5- 61 
5- 62 
5- 62 
5- 62 
5- 63 
5- 63 



System Software 

OPERATING SYSTEM STRUCTURE 

This chapter deals with the operating system on the HP 150, MS-DOS 
from Microsoft Corporation, and its interface with the HP 150 hardware and 
firmware. 

The operating system can be partitioned into several layers: 

I Command I 
I Processor I 
I (COMMAND. COM) I 

Invokes 
------;> 

I Application 
I Program I 
I (xxxxxxxx. EXE) I 

IBasic Disc Operating I 
I System I 
I (BOOS) I 

Invokes 
<------

I Basic Input/Output System I 
I (BIOS) I 

I Firmware I 
I (Read Only Memory) I 

Hardware 

--------------- \ 
I Personal I 
IApplications I 
I Manager I 
I (PAMCODE.EXE) I 

I 
I 
I 
I 

--------------- I 
I 
I 
I 

OPERATING 
SYSTEM 

(RANDOM ACCESS 
MEMORY) 

I 
I 
I 
I 
I 
I 
/ 

5-1 



System Software 

The Command Processor 

The Command Processor is a program file called COMMAND. COM. 
When running under MS-DOS COMMANDS mode, this program acts as the user interface 
to the system. Its function is to read, parse, and execute command line inputs 
such as "COPY A:*. * B'" Command lines may come from the keyboard or from a 
batch file on disc. 

The Command Processor contains a number of built-in commands such 
as COPY, DIR, DEL, and HEN. That is, these commands are recognized and acted 
upon directly by the COMMAND.COM program. Given an input line the command 
processor first checks for a built-in command. If the input line was not a 
directive for one of the built-in commands, the first word of the command line 
is checked against filenames with the extensions . COM, .EXE, and .BAT (in that 
order) on the default disc drive. Files with extensions .COM or .EXE are 
executable programs. .COM files are single group, non-relocatable programs • 
. EXE files are relocatable. .BAT files are text files containing one or more 
command lines which are processed sequentially by the Command Processor. 

The Command Processor consists of three parts: the resident, initialization, and 
transient parts. The resident part handles all standard MSDOS errors including 
the CONTROL-C and Fatal Error Abort interrupts, plus it contains the code 
necessary to reload its transient part if necessary. The initialization portion 
contains the code necessary to process the AUTOEXEC file and determine the 
segment at which programs are to be loaded. This part of the command module is 
overlaid by the first program it loads in. The transient part of the command 
module contains all of the internal command processors and the batch file 
processor. This portion of the command module displays the disc prompt, reads 
commands from tQe keyboard or batchfile, and processes them. 

The Personal Applications Manager (P .A.M.) 

P.A.M. is similar in structure to the MS-DOS Command Processor, COMMAND. COM. 
However, rather than being driven by MS-DOS command line-type inputs, the 
Personal Applications Manager presents a friendly face to the user through 
touchscreen menus. Together with the File Manager, it offers essentially all 
the functionality of 
the generic MS-DOS command processor, however it is much easier for the novice 
user to operate. The CONFIG.SYS file indicates to 
MS-DOS that it should load and execute PAMCODE.EXE rather than COMMAND.COM on 
the HP 150. See the CONFIG.SYS File and System Booting sections for more 
information. 

Application Programs 

Application programs are generally program files with the extension .EXE. Both 
the Command Processor and Personal Applications Manager can invoke application 
programs. 

5-2 



System Software 

Basic Disc Operating System (BOOS) 

The Basic Disc Operating System is the heart of the MS-DOS operating system. 
The BDOS is supplied by Microsoft Corporation and is standard across a wide 
variety of equipment from many vendors. BDOS presents a system-independent 
hardware interface for the Command Processor and applications programs. It is 
for this reason that applications programs written to run under MS-DOS are to a 
certain extent easily transported from machine to machine. 

The BDOS exists as a file called MSDOS.SYS residing on all MS-DOS 
system discs. It is a collection of system management and input/output 
functions termed System Functions. 

Application programs interface with the BDOS through System Function 
calls. These calls are made by loading 8088 registers on the HP 150 with 
parameters including a function number identifier, and then issuing a software 
interrupt. 

An application program written to perform all I/O and System Management 
functions through the docmnented BDOS System Functions will be truly machine 
independent, and capable of being run on other machines utilizing a compatible 
version of MS-DOS. However many I/O intensive applications bypass BDOS for the 
sake of efficiency, commonly accessing lower-levels of the operating system 
including the Basic Input/Output System (BIOS) and even the hardware. At this 
point, machine dependencies and non-portability is introduced. 

For details of System Functions see ~he HP 150 Programmers Reference Manual. 

Basic Input/Output System (BIOS) 

The Basic Input/Output System (BIOS) processes BDOS I/O requests. While the 
BDOS knows nothing of the details of the specific piece of the hardware upon 
which it runs, the BIOS is very knowledgeable. MS-DOS is customized to run on 
the HP 150 through the BIOS. 

Just as the BDOS exists on system discs as a file named MSDOS.SYS, the BIOS is 
contained in a file called IO.SYS. These two files 
are read into HP 150 RAM memory during system initialization (booting) and much 
of them remains in memory to perform I/O and System Management functions on 
behalf of applications programs. 

MS-DOS (the BDOS) invokes the BIOS for each I/O request by passing the BIOS a 
long pointer (20 bit address) to an I/O packet. This is true fer all requests 
whether they are from MS-DOS itself or on behalf of its applications. The 
packet is a self-contained structure which contains all the information required 
to fully execute the I/O request. For more information on this interface, see 
"Calling a Device Driver" in this section. 

The BIOS is discussed in more detail later in this chapter. 



System Software 

OPERA TING SYSTEM MEMORY USAGE 

Operating System Memory Map 

High 
Memory+----------------------------------------------------+ 

I I 
I I 
I Transient Portion of COMMAND.COM I 
I I 
+----------------------------------------------------+ 
I I 
I Application Program I 
I (User) Area I 
I (Program Segment) I 
+----------------------------------------------------+ 
I 
I User Stack for COMMAND.COM (256 bytes) 
+----------------------------------------------------+ 
I PAMCODE.EXE or resident portion of COMMAND.COM 
+----------------------------------------------------+ 
I Installable Device Drivers 
+----------------------------------------------------+ 
I File Control Blocks (FCBs) 
+----------------------------------------------------+ 

Disc Buffer Cache 
+----------------------------------------------------+ 
I MS-DOS (BOOS) 
I (File MSDOS.SYS) 
+----------------------------------------------------+ 
I BIOS 
I (File IO.SYS) I 

o6800H+----------------------------------------------------+ 
I Firmware I 
I Variables I 
I (RESERVED) I 

00400H+---------------------------------------------··------+ 
I Interrupt Vectors I 

OOOOOH+----------------------------------------------------+ 

5-4 



System Software 

Interrupt Vectors 

Interrupts within the HP 150 are triggered by hardware attached to 
microprocessor, software interrupt instructions performed by 
software interrupt instructions from application (user) programs, 
some special circumstances, by the 8088 itself. 

the 8088 
MS-DOS, 

or under 

Every interrupt is assigned a type code that identifies it to the 8088. 
Interrupts are identified as "INT n" where n (the type code) is a 
number between 0 and 255 inclusive. The type code is used by the 8088 to 
calculate a location in the memory based interrupt vector table containing 
the four byte address of the interrupt routine. The interrupt vector for 
INT 0 is at address OOOOOH. the vector for INT 1 is at address 00004H, and 
so on. The interrupt vector table can contain up to 256 vectors, one for 
each interrupt type. 

Each entry in the table is a doubleword pointer containing the address of 
the procedure that is to service interrupts of that type. The higher 
addressed word of the pointer contains the base address of the segment 
containing the procedure. The lower addressed word contains the 
procedure's offset from the beginning of the segment. Since each entry is 
four bytes long, the 8088 can calculate the location of the correct entry 
for a given interrupt type by simply multiplying the type by four. For 
more information on how the 8088 processor treats interrupts and the 
conditions which cause Intel-reserved interrupts, see the IAPX86/88, 
186/188 User's Manual, Programmer's Reference, Intel Corporation, May 1983. 

The 256 interrupt types are pre-allocated for the HP 150. The following 
table describes that allocation. 

5-5 



5-6 

System Software 

Starting 
Address 

Interrupt Vector 
Description Usage 

003FCH 

00200H 

OOlFCH 

00120H 

0011CH 
00118H 
00114H 
00110H 
0010CH 
00108H 
00104H 
00100H 

OOOFCH 

000A8H 
000A4H 
OOOAOH 
0009CH 
00098H 
00094H 
00090H 
oo08CH 
ooo88H 
ooo84H 
ooo80H 

0007CH 

. 
00014H 
00010H 
ooooeH 
00008H 
00004H 
OOOOOH 

+------------------------------------------+-----------+ 
I Type 255 Pointer - (**** not used ****) /1\ 
I ' I 

I 
- Available -

I I I 
I Type 128 Pointer - (**** not used ****) I \1/ 
+------------------------------------------+-----------+ 

Type 127 Pointer - ( RESERVED) I 
- Reserved -
- for HP 

I Type 72 Pointer - ( RESERVED) I 
+------------------------------------------+-----------+ 
I Type 71 Pointer - HP 150 Hardware (IR7) /1\ I 
I Type 70 Pointer - HP 150 Hardware (IR6) I I 
I Type 69 Pointer - HP 150 Hardware (IR5) Reserved I 
I Type 68 Pointer - HP 150 Hardware (IR4) for and I 
I Type 67 Pointer - HP 150 Hardware (IR3) used b.y HPI 
I Type 66 Pointer - HP 150 Hardware (IR2) hardware. I 
I Type 65 Pointer - HP 150 Hardware (IR1) I I 
I Type 64 Pointer - HP 150 Hardware (IRO) \1/ I 
+-------~----------------------------------+-----------+ 
I Type 63 Pointer - (**** not used ****) /1\ 
I I 

I 
I I 
/.';I.'ype 42 Pointer - (**** not used ****) I 
T Type 41 Pointer - MSDOS Interrupt 29 Reserved 
I Type 40 Pointer - MSDOS Interrupt 28 for 
I Type 39 Pointer - MSDOS Interrupt 27 MicroSoft 
I Type 38 Pointer - MSDOS Interrupt 26 I 
I Type 37 Pointer - MSDOS Interrupt 25 I 
I Type 36 Pointer - MSDOS Interrupt 24 I 
I Type 35 Pointer - MSDOS Interrupt 23 I 
/ Type 34 Pointer - MSDOS Interrupt 22 I 
I Type 33 Pointer - MSDOS Interrupt 21 I 
/ Type 32 Pointer - MSDOS Interrupt 20 \1/ 
+------------------------------------------+-----------+ 
/ Type 31 Pointer - (**** not used ****) //\ I 
I / I 

/ 
I / I 
/ Type 5 Pointer . (**** not used ****) Reserved I 
I Type 4 Pointer - Intel Dedicated for I 
I Type 3 Pointer - Intel Dedicated Intel / 
I Type 2 Pointer - Intel Dedicated I I 
I Type 1 Pointer - Intel Dedicated I I 
I Type 0 Pointer - Intel Dedicated \// I 
+------------------------------------------+-----------+ 



System Software 

MS-DOS INTERRUPTS 

Interrupt 27H: 
Interrupt 26H: 
Interrupt 25H: 
Interrupt 24H: 
Interrupt 23H: 
Interrupt 22H: 
Interrupt 21H: 
Interrupt 20H: 

Terminate But Stay Resident 
Absolute Disc Write 
Absolute Disc Read 
Fatal Error Abort Address 
CONTROL-C Exit Address 
Terminate Address 
Function Request 
Program Terminate 

HP150HARDWAREINTERRU~ 

IR7: Real Time Clock (MM58167A) 
IR6: Not Used (Tied High) 
IR5: HPIB Controller (9914) 
IR4: *Integral Printer,Accessory Slot NOCINT (Low Priority Open Collector) 
IR3: Keyboard and Touchscreen 
IR2: Not Used (Tied High) 
IR1: *MPSC (Datacomm Controller),Accy. Slot NDCOCINT (High Priority O/C) 
IRO: Video Controller (9007) 

* These interrupts may be initiated from an accessory board by using the 
NOCINT and NDOCOINT open collector lines. Either may be used, IR1 has 
higher priority than IR4 (IR1 will be serviced prior to IR2-IR7). See 
Accessory Board Subsystem in the Hardware Subsystems section of this 
manual. 

Firmware Variables 

The firmware uses the RAM space between 00400H and 067FFH for jump vectors 
and other working data storage. See Sec+ I.on 6, "System Firmware" for more 
information. 

elos and BDOS 

The Basic Input/Output System (BIOS) and the Basic Disc Operating System 
(BDOS) are loaded from disc during initialization. BOOS is loaded 
following BIOS loading and initialization, and overlays the initialization 
portion of BIOS. The origin address of MS-DOS is BIOS revision dependent. 

Disc Buffer Cache 

The Disc Buffer Cache is an area used for buffering of disc data for all 
drives. It includes portions or all of the File Allocation Tables 
(depending upon cache size), the root directory, and data for non-sector 
oriented reads and writes. The size of the Disc Buffer Cache may be 

5-7 



5-8 

System Software 

altered from the default by the "BUFFERS= <number > " cOMand in the 
CONFIG.SYS file. See the CONFIG.SYS file information in this section for a 
description of the "BUFFERS" co_and. 

File Control Blocks (FeBs) 

File control blocks contain file information taken from the directory, and 
include pointers marking an access position. 
Two types of FCBs exist. An unopened FCB is one that contains only a drive 
specifier and a filename, which can contain wild card characters (* and 1). 
An opened FCB contains all fields filled by the MS-DOS 'Open File' system 
function call. 

Space for two FCBs is allocated in the Program Segment Prefix (in the 
application program area). Space is allocated above the Disc Buffer Cache 
for a number of additional FCBa. The "FUES=<number>" command in the 
CONFIG.SYS file can be used to alter the amount of 
space allocated for FCB's in this area. See the CONFIG.SYS file 
information in this section for a description of the "FILES" command. Note 
that each open file requires its own FCB. 

FIELDS OF THE FCB. The FCB is structured as follows: 

Name 
Size 

(bytes) 
Offset 

Hex Decimal 
+--------------------+----------+-------------+------------+ 
I 
I Drive number 1 OOH 

I 
I o 

+--------------------+----------+-------------+------------+ 
Filename 8 01-08H I 1-8 

--------------------+----------+-------------+------------
Extension 3 09-0BH 9-11 

--------------------+----------+-------------+------------
Current block 2 OCH,ODH 12,13 

--------------------+----------+-------------+------------
Record size I 2 OEB,OFH 14,15 

--------------------+----------+-------------+------------
File size 4 10-13H 16-19 

--------------------+----------+-------------+------------
Date of last write I 2 14H,15H 20,21 

--------------------+----------+-------------+------------
Time of last write I 2 16a,11H I 22,23 
--------------------+----------+-------------+------------
Reserved 8 18-lFH I 24-31 

--------------------+----------+-------------+------------
Current record 1 20H 32 

--------------------+----------+-------------+------------
Relative record 4 21-24H 33-36 

+--------------------+----------+-------------+------------+ 



System Software 

Drive Number. 
Specities the disk drive; 1 means drive A: and 2 means drive B: and so on. 
It the FCB is to be used to create or open a tile, this tield can be set to 
o to specity the detault drive; the Open File system call Function (OFH) 
sets the tield to the number ot the detault drive. 

Filename. 
Eight characters, lett-aligned and padded (it necessary) with blanks. It 
you specity a reserved device name (such as PRH), do not put a colon at the 
end. 

Extension. 
Three characters, lett-aligned and padded (it necessary) with blanks. This 
tield can be all blanks (no extension). 

Current Block. 
Points to the block (group ot 128 records) that contains the current 
record. This field and the Current Record field (ottset 20H) make up the 
record pointer. This tield is set to 0 by the Open File system call. 

Record Size. 
The size ota logical record, in bytes. Set to 128 by the Open File system 
call. It the record size is not 128 bytes, you must set this tield atter 
opening the file. 

F'Ue Size. 
The size ot the tile, in bytes. The tirst word of this 4-byte field is the 
low-order part ot the size. 

Date of Last Write. 
The date the file was created or last updated. The year, month, and day 
are mapped into two bytes as follows: 

+---------------------------~---+-------------------------------+ 
1 otfset 15H offset 14H 
1 
1 15 14 13 12 11 10 9 8 1 7 6 5 4 3 2 1 0 1 
1---+---+---+---+---+---'+---1---+---+---+---1---+---+---+---+---1 
lylyIYIYlylylyIMIMIM!MIDIDIDIDIDI 
1---+---+---+---+---+---+---1---+---+---+---1---+---+---+---+---1 
1 year 1 month 1 day of month 1 

5-9 



System Software 

Time of Last Write. 
The time the file was created or last updated. The hour, minutes, and 
seconds are mapped into two byts as follows: 

+-------------------------------+-------------------------------+ 
1 offset 17H offset 16H 
1 
1 15 14 13 12 11 10 9 8 1 7 6 5 4 3 2 1 0 1 
1---+---+---+---+---1---+---+---+---+---+---1---+---+---+---+---1 
IHIHIHIHIHIMIMIMIMIMIMISISlslslSI 
1---+---+---+---+---1---+---+---+---+---+---1---+---+---+---+---1 
I hour 1 minute 1 second 1 

Reserved. These fields are reserved for use by MS-DOS. 

Current Record. 
Points to one of the 128 records in the current block. This field and the 
Current Block field (offset OCH) make up the record'pointer. This field is 
not initialized by the Open File system call. You must set it before doing 
a sequential read or write to the file. 

Relative Record. 
Points to the currently selected record, counting from the beginning of the 
file (starting with 0). This field is not initialized by the Open File 
system call. You must set it before doing a random read or write to tbe 
file. IX .:the record size is less than 64 bytes, both words of this field 
are used; if the record size is 64 bytes or more, only the first three 
bytes are used. 

NOTE 

If you use the FCB at offset 05CH of the Program Segment Prefix, the last 
byte of the Relative Record field is the first byte of the unformatted 
parameter area that starts at offset BaH. This is the default Disk 
Transfer Address. 

InstaUable Device Drivers 

The code for devices additional to those implemented in the BIOS is loaded above 
the Disc Buffer Cache. The CONFIG.SYS file contains declarations of device 
driver 
files, and these files are loaded from disc and sequentailly linked at system 
initialization time. For more information on this process and device drivers in 
general, see the "HP 150 Devices", the "CONFIG.SYS File" and "Operating System 
Initialization/Booting" discussions later in this section. 

5-10 



System Software 

PAMCODE.EXE or Resident Portion of COMMAND.COM 

The resident portion of COMMAND.COM contains the code necessary to determine if 
the transient portion needs to be reloaded (a checksum test), and contains the 
code to do the reloading of that transient portion. It also contains the 
interrupt 22H, 23H, and 24H handlers. PAMCODE.EXE is fully resident, that is it 
does not contain a transient portion in high memol'Y as does COMMAND. COM. As 
such, if PAMCODE.EXE is declared as the SHELL in the CONFIG.SYS file, quite a 
deal of system memory will be consumed by this user interface. 

Application Program Area (Program Segment) 

When an external command is typed, or when a program is executed through P.A.M. 
or through the EXEC system call, MS-DOS determines the lowest available free 
memory address to use as the start of the program. This area is called the 
Program Segment. 

The first 256 bytes of the Program Segment are set up by the EXEC system call to 
use as the Program Segment Prefix (PSP) Control Block. 
The program is then loaded following this block. An .EXE file with minalloc and 
maxalloc both set to zero is 
loaded as high as possible. 

5-11 



System Software 

PROGRAM SEGMENT PREFIX (PSP) CONTROL BLOCK At offset 0 wi thin the program 
segment, MS-DOS builds the Program Segment Prefix (PSP) control block. The 
format of this block is as follows: 

OOOH+------------+---------+-----------+--------------------+ 
I I End of' I I Long call to MS- I 
I lIT 20H I alloc. I Reserved I DOS function dis- I 
I I block I I patcher (5 bytes) I 

008H+------------+---------+-----------+--------------------+ 
I I I I 
I I Terminate address I CTRL-C exit I 
I I (IP, t:S) I address (IP) I 

010H+------------+--------------------------+---------------+ 
I I I 
ICTRL-C exit IHard error exit address I 
laddres~ (CS)I (IP, CS) I 
+---------------------------------------+ 

Used by MS-DOS 

02CH 

05CH 

+-------------------------------------------------------+ 

FormatteQ Parameter Area 1 formatted as standard 
-,- unopened FCB 06CH 

+-------------------------------------------------------+ 
. I I 
I I 
I Formatted Parameter Area 2 formatted as standard I 
I unopened FCB (overlaid if FCB 05CH is opened) I 

OBOH+-------------------------------------------------------+ 
I I 
I Unformatted Parameter Area I 
I (default Disk Transfer Area) I 

100H+-------------------------------------------------------+ 

NOTE I· 

Programs must not alter any part of the Program Segment 
Prefix control block below offset 05CH. 

5-12 



HOW A PROGRAM TERMINATES 
A user (application) program may return to EXEC by one of four 
methods: 

1. A long jump to offset 0 in the Program Segment 
Prefix (PSP) 

2. By issuing an INT 20H with CS:O pointing to the PSP 

3. By issuing an INT 21H with register AH=O with CS:O 
pointing at the PSP, or 4CH and no restrictions on CS 

4. By a long call to location 50H in the Program Segment 
Prefix with AH=O or Function Request 4cH 

NOTE 

System Software 

It is the responsibility of all programs to ensure that the CS register contains 
the segment address of the Program Segment Prefix when terminating via any of 
these methods, except Function Request 4cH. For this reason, us ing Function 
Request 4CH is the preferred method. 

All four methods result in transferring control to the program that issued the 
EXEC. During this retunling process, Interrupts 22H, 23H, and 24H (Terminate 
Address, CONTROL-C Exit Address, and Fatal Error Abort Address) addresses are 
restored from the values saved in the Program Segment Prefix of the terminating 
program. Control is then given to the terminate address. If this is a program 
returning to COMMAND. COM, control transfers to its resident portion. If a batch 
file was in process, it is continued; otherwise, COMMAND.COM performs a checksum 
on the transient part, reloads it if necessary, then issues the system prompt 
and waits for you to type the next command. 

CONDITIONS IN EFFECT WHEN A PROGRAM RECEIVES CONTROL 

For All Programs. 

TIle segment address of the passed environment is contained at offset 2CH in the 
Program Segment Prefix. 

The environment is a series of ASCII strings (totaling less than 32K) in the 
form: 

NAME=parameter 

Each string is terminated by a byte of zeros, and the set of strings is 
terminated by another byte of zeros. The environment built by the command 
processor contains at least a COMSPEC=string (the parameters on COMSPEC define 
the path used by MS-DOS to locate COMMAND.COM on disk). The last PATH and 
PROMP!' commands issued will also be in the environment, along with any 
environment strings defined with the MS-DOS SET command. 

5-13 



System Software 

The environment that is passed is a copy of the invoking process environment. 
If your application uses a "keep process" concept, you should be aware that the 
copy of the environment passed to you is static. That is, it will not change 
even if subsequent SET, PATH, or PROMPT commands are issued. 

Offset 50H in the Program Segment Prefix contains code to call the MS-DOS 
function dispatcher. By placing the desired function request number in AB, a 
program can issue a far call to offset 50H to invoke an MS-DOS function, rather 
than issuing an Interrupt 21H. Since this is a call and not an interrupt, 
MS-DOS may place any code appropriate to making a system call at this position. 
This makes the process of calling the system portable. 

The Disk Transfer Address (DTA) is set to BOH (default DTA 
in the Program Segment Prefix). 

File control blocks at 5CH and 6CH are formatted from the first two parameters 
typed when the command was entered. If either parameter contained a pathname, 
then the corresponding FCB contains only the valid drive number. The filename 
field will not be valid. 

An unformatted parameter area at B1H contains all the characters typed after 
the command (including leading and imbedded delimiters), with the byte at BOH 
set to the number of characters. If the <, >, or parameters were typed on the 
command line, they (and the filenames associated with them) will not appear in 
this area; redirection of standard input and output is transparent to 
applications. 

Offset 6 (one word) contains the number of bytes available in the segment. 

Register AX indicates whether or not the drive specifiers (entered with the 
first two parameters) are valid, as follows: 

AL=FFH if the first parameter contained an invalid 
drive specifier (otherwise AL=OOH) 

AH=FFH if the second parameter contained an invalid 
drive specifier (otherwise AH=OOH) 

Offset 2 (one word) contains the segment address of the first byte of 
unavailable memory. Programs must not modify addresses beyond this point unless 
they were obtained by allocating memory via the Allocate Memory system call 
(Function Request 48H). 

!For .EXE Executable Programs. 

os and ES registers are set to point to the Program Segment Prefix. CS,IP,SS, 
and SP registers are set to the values passed by MS-LINK. 

For .COM Executable Programs. 

All four segment registers contain the segment address of the initial allocation 
block that starts with the Program Segment Prefix control block. 

5-14 



System Software 

All of user memory is allocated to the program. If the program invokes another 
program through Function Request 4BH, it must first free some memory through the 
Set Block (4AH) function call, to provide space for the program being executed. 

The Instruction Pointer (IP) is set to lOOH. 

The Stack Pointer register is set to the end of the program's segment. The 
segment size at offset 6 is reduced by 100H to allow for a stack of that size. 

A word of zeros is placed on top of the stack. This is to allow a user program 
to exit to COMMAND.COM by doing a RET instruction last. This assumes, however, 
that the user has maintained his stack and code segments. 

Transient Portion of COMMAND.COM 

These are the command interpreter, inte:a:nal commands and batch processing 
portions of COMMAND. COM. This area may be legally destroyed (overlayed) by an 
application program, and if it is then it is reloaded from disc at application 
program termination time. 

5-15 



System Software 

HP 150 DEVICES 

There are two classes of "devices" associated with the HP 150. These are 
logical devices and physical devices. 

Logical (Mappable) Devices 

Logical devices can be thought of as generic types of input/output channels. 
Logical devices are named in a symbolic manner. For example, the device name 
"PIUl" refers to printer, the name "CON" refers to console. The following 
logical device names are supported by the operating system BIOS Version A.01.02: 

* "CON - Console Device 
"COMl - Primary Communication Device 
"COM2 - Secondary Communication Device 
"AUX - Auxiliary Device 
"PIUl - Printer Device 

* "CLOCK - Clock Device 
"LST - List Device 
"PLT - Plotter Device 

* "HPIBDEV - HPIB Device .. "INT " - Internal Printer Device 
"LPl'l " - Parallel Printer Device 1 (another name for PIUl) 
"LPl'2 II - Parallel Printer Device 2 (another name for LST) 
"LPl'3 II - Parallel Printer Device 3 (another name for AUK) 

"A","B","C" ••. - Disc Drives 

Note: * These named devices have actual physical devices associated directly 
with them and thus are not mappable. All of the other named devices 
are mappable. 

Physical Devices 

The physical class of devices on the UP 150 are the hardware input/output 
entities. 

These include the 

- Serial Communications Port 1 
- Serial Communications Port 2 
- Real Time Clock 
- Keyboard 
- Display Screen 
- Integral Printer 
- UPIB Port. 

Mapping logical to Physical Devices 

The UP 150 personal computer is uniquely flexible when it comes to the 
assignment of logical to physical devices. The logical devices may be "mapped" 

5-16 



System Software 

to physical devices. In this respect, the HP 150 differs from most common 
personal computers. Some other common personal computers for example have fixed 
logical to physical device mapping. The serial communications devices COMl and 
COM2 are permanently mapped to specific hardware I/O addresses carried on 
internal board connectors. While this presents a simple system architecture, it 
also carries with it a rather rigid one. 

The Device Configuration Utility 

The HP 150 has a piece of non-volatile memory which contains active logical to 
physical mapping information. An applications program called "DEVCOHFG.EXE" 
allows you to change the mapping stored here. 
DEVCOHFG is a menu driven application and its usage is described in the BP 150 
Owner's Guide. Conceptually, the mapping scheme looks like this: 

BIOS 
(IO.SYS) 

FIRMWARE 
("ROM 
BIOS") 

DEVICE 
DRIVERS 

PRH LST AUX PLT COMl COM2 A B C L 
I I I I I I I I I 
I I I I I I I I I 
I I I I I I I I I 

-----------------------------------_ .. - -----------------
CMOS NON-VOLATILE MEMORY 

Logical to physical device mapping tables 

I 
I 
I 
I 

---------------------------------------------------------------
I 
I 
I 

I I 
I Port I Port 
I 1 I 2 
I Driver I Driver 
I I 

I I 
RTC I Keyboard I 

DriverlDrivt!r I 
I I 
I I 

I 
Display I 
Driver I 

I 
I 

I 
Integral I 
Printer I 
Driver I 

I 

I 
HPIB I 

Driver I 
I 
I 

HARDWARE Port Port 
2 

RTC I Keyboard I Display I Integral I HPIB 
DEVICES 1 I I I Printer I 

I I I I 

5-17 



System Software 

Installable Devices 

There is really a third class of devices on the HP 150. These devices are 
termed "installable devices". They combine the attributes of both logical and 
physical devices. Installable devices can be created by the system programmer 
to implement I/O. Installable devices are given names just as the logical 
devices are however installable devices are implemented outs ide the BIOS. An 
example of an installable device might be "NET" -- a network. 

Installable devices are really entities unto themselves. They are not mappable 
(through the CMOS logical to physical device mapping tables) in current HP 150 
implementations nor are they recognized by the device configuration utility. 
Upcoming versions of the operating system will allow installable devices to be 
mapped into the system device configuration however. 

An installable device consists of some executable object code termed a "device 
driver". The code is stored on the operating system disc 
as a file with the extension .COM (for example NETWORK.COM). The device driver 
generally implements all levels of the I/O interface from its BDOS interface 
down to the hardware itself. 

Installable devices can be thought of as extensions to the BIOS. They allow for 
I/O expansion of an MS-DOS based system. The device architecture is described 
in the following diagram. 

5-18 



--------------------------------------' 

Application Program 

BOOS 
[MSDOS. SYS] 

(Basic Disc Operating System 

I BIOS I 
I [IO.SYS] I 
I I 

I Firmware I 
I ("ROM BIOS") I 

Hardware 

Installablel 
Device I 

Drivers I 
I I 
I [.COM Files] I 

(Fixed and Accessories) 

System Software 

Installable devices share the same calling conventions as the BIOS devices. A 
discussion of how to implement installable device drivers appears later in this, 
the system software section. 

5-19 



Character Devices and Block Devices 

There are two kinds of devices: 

Character devices 
Block Cevices 

System Software 

Character devices are designed to perform serial character I/O like CON, AUK, 
and PRN. These devices are named (i.e., CON, AUK, CLOCK, etc.), and users may 
open channels (handles or FCBs) to do I/O to them. 

Block devices are the "disk drives" on the system. They can perform random I/O 
in pieces called blocks (usually the physical sector size). These devices are 
not named as the character devices are, and therefore cannot be opened directly. 
Instead they are identified via the drive letters (A:, B:, C:, etc.). 

Block devices also have units. A ~ingle driver may be responsible for one or 
more disk drives. For example, bluck device driver ALPHA may be responsible for 
drives A:,B:,C: and D:. This means that it has four units (0-3) defined and, 
therefore, takes up four drive letters. If driver ALPHA is the first block 
driver in the device list, and it defines 4 units (0-3), then they will be 
A: ,B: ,C: and D:. If BETA is then the second block driver and defines three 
units (0-2), then they will be E: ,F: and G:, and so on. MS-DOS 2.0 is not 
limited to 16 block device units, as previous versions were. The theoretical 
limit is 63 (26 - 1), but it should be noted that after 26 the drive letters are 
unconventional (such as ], \, and .). 

NOTE 

Character devices cannot define multiple units because they have only one name. 

How Application Programs Can Get to Devices 

The BOOS (the heart of MS-DOS) serves as an interface for dealing with devices. 
Many of the MS-DOS System Functions access devices implemented in the BIOS. 
These System Func~dons include functions to input and output characters to the 
CON, AUK, and PRN devices, functions to perform block I/O (reads and writes) to 
character (CON, AUS, PRN) and block (A,B,C ... etc.) devices, and functions to 
perform block device file directory (create, open, close) operations. 

A special I/O control function allows control information to be passed to 
devices. This may be used for example to perform special CON device functions 
including the l~hole AGIOS function library. MS-DOS also allows access to 
installed devices through many of its system functions. 

Application programs for the sake of portability should gain access to devices 
through the MS-DOS (BOOS) System Function Calls. See "Accessing Devices through 
MS-DOS" later in this chapter for more information. 

5-20 



System Software 

Device Driver Structure 

A device driver is a binary file with all of the code in it to manipulate the 
hardware and provide a consistent interface to MS-DOS. In addition, it has a 
special header at the beginning that identifies it as a device, defines the 
strategy and interrupt entry points, and describes various attributes of the 
device. 

NOTE 

For device drivers, the file must not use the ORG 100H (like . COM files). 
Because it does not use the Program Segment Prefix, the device driver is simply 
loaded; therefore, the file must have an origin of zero (ORG 0 or no ORG 
statement) . 

A device header is required at the begiwling of a device driver. 
A device header looks like this: 

DWORD pointer to next device 
(Must be set to -1) 

WORD attribu"ces 
Bit 15 = 1 if char device 0 is blk 
if bit 15 is 1 

Bit 0 = 1 if current sti device 
Bit 1 = 1 if current sto output 
Bit 2 = 1 if current NUL device 
Bit 3 = 1 if current CLOCK dev 
Bit 4 = 1 if special 
Bits 15-12 Reserved, must be set 
Bit 14 is the IOCTL bit 
Bit 13 is the NON IBM FORMAT bit 

to 0 

WORD pointer to device's strategy entry 
point 

WORD pointer to device's interrupt entry 
point 

a-BYTE character device name field 
Character devices set a device by name. 
For block devices the first byte is 
the number of units, the other 7 are not 
used 

Note that the device entry points are words. They must be offsets from the same 
segment nwnber used to point to this table. For example, if XXX:YYY points to 
the start of this table, then XXX:strategy and XXX: interrupt are the entry 
points. 

5-21 



System Software 

POINTER TO NEXT DEVICE FIELD The pointer to the next device header field is a 
double word field (offset followed by segment) that is set by MS-DOS to point at 
the next driver in the system list at the time the device driver is loaded. See 
the "Device List" discussion which appears later in this chapter. It is 
important that this field be set to -1 prior to load (when it is on the disk as 
a file) unless there is more than one device driver in the file. If there is 
more than one driver in the file, the first word of the double word pointer 
should be the offset of the next driver's Device Header. 

NOTE 

If there is more than one device driver in the installable device driver file, 
the last driver in the file must have the pointer the next Device Header field 
set to -1. 

ATTRIBUTE FIELD 
The attribute field is used to tell the system whether this device is a block or 
character device (bit 15). Most other bits are used to give selected character 
devices certain special treatment. (Note that these bits mean nothing on a 
block device). For example, assume that a user has a new device driver that he 
wants to be the standard input and output. Besides installing the driver, he 
must tell MS-DOS that he wants his new driver to override the current standard 
input and standard output (the CON device). This is accomplished by setting the 
attributes to the des ired characteristics, so he would set bits 0 and 1 to 1 
(note that they are separate!). Similarly. a new CLOCK device could be 
installed by setting that attribute. (Refer to "The CLOCK Device", in thli.s 
chapter for ~9~e information.) Although there is a NUL device attribute, the 
NUL device cannot be reassigned. This attribute exists so that MS-DOS can 
determine if the NUL device is being used. 

The NON IBM FORMAT bit applies only to block devices and affects the operation 
of the BUILD BPB (Bios Parameter Block) device call. (Refer to "Media Check" 
and "Build BPB" in the "Calling a Device Driver" section later in this chapter 
for further information on this call.) 

The other hit of interest is the IOCTL bit, which h<",5 meaning 011 character and 
block devices. This bit tells r.fS-DOS whether the dl:wice can handle control 
strings (via the IOCTL system call, Function 44H). 

If a driver cannot process control strings, it should initially set this bit to 
o. This tells t.fS-DOS to return an error if an attempt is made (via Function 
44H) to send or receive control strings to this device. A device which can 
process control strings should initialize the IOCTL bit to 1. For drivers of 
this type, MS-DOS will make calls to the IOCTL INPUT and OUTPUT device functions 
to send and receive IOCTL strings. 

The IOCTL functions allow data to be sent and received by the device for its own 
use (for example, to set baud rate, stop bits, and form length), instead of 
passing data over the device channel as does a normal read or write. The 
interpretation of the passed information is up to the device, but it must not be 
treated as a normal I/O request. 

5-22 



System Software 

STRATEGY AND INTERRUPT ROUTINES 
These two fields are the pointers to the entry points of the strategy and 
interrupt routines. The strategy and interrupt routines are the actual device 
driver code. They are word values so they must be in the same segment as the 
Device Header, 

The 2.0 DOS does not really make use ot two entry points (it simply calls 
strategy, then immediately calls interrupt). This dual entry point scheme is 
designed to facilitate future multi-tasking versions of MS-DOS. In 
multi-tasking environments I/O must be asynchronous, to accomplish this the 
strategy routine will be called to queue (internally) a request and return 
quickly. It is then the responsibility of the iuterrupt routine to perform the 
actual I/O at interrupt time by picking requests off the internal queue (set up 
by the strategy routine), and process them. When a request is complete, it is 
flagged as "done" by the interrupt routine. The DOS periodically scans the list 
of r~quests looking for ones flagged as done, and "wakes up" the process waiting 
for the completion of the request. 

In order for re~118sts to be queued as above it is no longer sufficient to pass 
I/O informatin in registers, as was the case in earlier versions, since many 
requests may be pending at anyone time. Therefore the new device interface 
uses data "pacltets" to pass request information. A device is called with a 
pointer to a packet called a Request Header, this packet is linked into a global 
chain of all pending I/O requests maintained by the DOS. The device then links 
the packet into its own local chain of requests for this particular device. The 
device interrupt routine picks requests of the local chain for processing. The 
DOS scans the global chain looking for completed requests. These packets are 
composed of two pieces, a static piece which has the same format for all 
requests (called the static request header), which is followed by information 
specific to the request. Thus packets have a variable size and format. 

At this point it should be emphasized that MS-DOS 2.0 does not implement most of 
these features, as future versions will. There is no global or local queue. 
Only one request is pending at anyone time, and the DOS waits for this current 
request to be completed. For 2.0 it is sufficient for the strategy routine to 
simply store the address of the packet at a fixed .location, and for the 
interrupt routine to then process this packet by doing the request and 
returning. 

Remember: The DOS just calls the strategy routine and then immediately calls the 
interrupt routine, it is assumed that the request is completed ~Then the 
interrupt routine returns. 

NAME FIELD 
This is an a-byte field that contains the name of a character device or the 
number of units of a block device. If it is a block device, the number of units 
can be put in the first byte .• This is optional, because MS-DOS will fill in 
this location with the value returned by the driver's IN IT code. Refer to 
"Installation of Device Drivers" in this chapter for more information. 

5-23 



System Software 

Device List 

A list of all devices accessible by the operating system is maintained in RAM 
memory on the BP 150. The list includes each device supported by the BIOS 
together with any installable device drivers loaded from disc during 
initialization of the operating system. 

During operating system initialization, the SYSINIT routine provided by 
Microsoft the BIOS reads a file called CONFIG.SYS located on the 
operating system disc. If any installable device drivers are to be installed, 
the CONFIG.SYS file should contain an entry such as 

DEVICE = NE'l'WORILSYS 

for each installable device. SYSINIT will load the device 
driver from disc (the file "NET.COM" in the above example) and link it into the 
list of existing device drivers. This device list contains both the boot 
(default BIOS) drivers and any installable device drivers found referenced in 
the CONFIG.SYS file. The system always processes the installable device drivers 
first and links them in ahead of the default ones, thus allowing the user to 
override default devices if he so chooses. 

The format of the entries in the system's device list is the same as that of the 
device header required at the beginning of an installable device driver file. 
The details of this structure have been described, but in general it consists of 
the device specific information MSDOS needs to utilize each device. Such 
entries as the device type, and pointers to the device driver's strategy and 
interrupt routines are found in the system's device list structure. MSDOS 
requires that."tbere be at least four devices defined by this list at boot time • 
. They must be both the first four entries in this list and they must implement 
the CON, AUK, PRN, and CLOCK devices. The minimum system device list would then 
appear as follows: 

5-24 



System Software 

SYSDEV --> +-----------------------+ 
1 next device driver 1--+ 
+-----------------------+ 1 
1 device type - charco 1 
+-----------------------+ 1 
1 strategy entry point I 
+-----------------------+ 1 
1 interrupt entry point I 1 
+-----------------------+ 1 
1 device name - "CON" 1 
+-----------------------+ 1 

1 
+------------------------------+ 
+-> +-----------------------+ 

1 next device driver 1--+ 
+-----------------------+ 1 
I device type - charco 1 1 
+-----------------------+ 1 
I strategy entry point I 1 
+-----------------------+ 1 
I interrupt entry point 1 1 
+-----------------------+ I 
1 device name - "Iil.1X" 1 
+-----------------------+ 1 

I 
+------------------------------+ 
+-> +-----------------------+ 

1 next device driver 1--+ 
+-----------------------+ I 
I device type - charco I 1 
+-----------------------+ I 
1 strategy entry point I 1 
+-----------------------+ I 
I interrupt entry point 1 I 
+-----------------------+ 1 
I device name - "PRN" 1 
+-----------------------+ I 

I 
+------------------------------+ 
+-> +-----------------------+ 

***** nil ***** 
+-----------------------+ 
1 device type - charco 
+-----------------------+ 
I strategy entry point 
+-----------------------+ 
1 interrupt entry point I 

+-----------------------+ 
1 device name - "CLOCK" I 

+-----------------------+ 

5-25 



System Software 

An installable device driver with the same name as one of these BIOS resident 
devices will be linked in at that position, thus preempting the default device 
of the same name. As such, BIOS devices may be replaced by installable devices 
of the same name. Additional devices of either type (block or character) will 
be added to the system (whether they reside in BIOS or on disc) by updating the 
"next device driver" field of the last entry in this list to the point to the 
additional drivers. The SYSINIT module of the BIOS is responsible for bringing 
in the installable device drivers from the disc and inserting them in this list 
as pictured above. Once all of the installable drivers have been linked in, 
MS-DOS scans the preset list of default or BIOS resident device drivers, and 
links them into this list. The logical device names for the block devices (the 
labels A, B, C, etcetera) are determined by the position of the block device in 
the device list, and by how many units each device driver supports. The first 
unit of the first block device driver in the device list is assigned the label 
A, the second B, and so on. 

How to Create a Device Driver 

In order to create a device driver that MS-DOS can install, you must write a 
binary file with a Device Header at the beginning of the file. Note that for 
device drivers, the code should not be originated at lOOH, but rather at O. The 
link field (pointer to next Device Header) should be -1, unless there is more 
than one device driver in the file. The attribute field and entry points must 
be set correctly. 

If it is a character device, the name field should be filled in with the name of 
that character device. The name can be any legal a-character filename. 

11S-DOS always processes installable device drivers before handling the default 
devices, so to install a new CON device, simply name the device CON. Remember 
to set the standard input device and standard output device bits in the 
attribute word on a new CON device. The scan of the device list stops on the 
first match, so the installable device driver takes precedence. 

[ NOTE] 

Because MS-DOS can install the driver anywhere in memory, care must be taken in 
any far memory references. You should not expect that your driver will always 
be loaded in the same place every time. 

5-26 



System Software 

HOW MS-DOS CALLS A DEVICE DRIVER 

Request Header 

When MS-DOS receives a reference to a device it scans the device 
list to find the first match of the referenced device. From this list it pulls 
the pointer to the device's strategy routine and calls the code with a device 
request header. The strategy routine simply saves a pointer to the segment and 
offset of the start of the device request header, and returns to the DOS. The 
DOS then immediatly calls the device's interrupt routine, where the request 
header is examined and acted upon as requested. It is the responsibility of the 
device's interrupt routine to examine the command code in the request header, 
transfer control of the routine to process that command, set the status word in 
the request header appropriatly, fill in any co~nand specific parameters, and 
return to the DOS. 

A pointer to the Request rleader is passed to the strategy entry point in ES:BX. 
is made up of a piece of fixed-length data (the Static Request Header) followed 
by data pertinent to the operation being performed. Note that is is the device 
driver's responsibility to preserve the machine state (for example, save all 
registers on entry and restore them 011 exit). There i:<3 enough room on the stack 
when strategy or interrupt is called to do about 20 pushes. If more stack is 
needed, the driver should set up its own stack. 

The following figure illustrates the static portion of a Request Header. 

STATIC REQUEST HE..IIDER -> 

BT~ length of record 
Length in bytes of this 
Request Header 

BYTE unit code 
The SUbtD~it the operaton 
is for (minor device) 
(no meaning on character 
devices) 

BYTE command code 

WORD status 

8 bytes RESERVED 

UNIT CODE The unit code field identifies which unit of a block device in your 

5-27 



System Software 

device driver the request is for. For example, if your device driver has 3 
units defined, then the possible values of the unit code field would be 0, 1, 
and 2. 

COMMAND CODE FIELD The command code field in the Static Request Header 
specifies the function to be performed and can have the following values: 

Command 
Code 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Function 

INIT 
MEDIA CHECK (Block only, NOP for character) 
BUILD BPB (Block only, NOP for character) 
IOCTL INPUT (Only called if device has IOCTL) 
INPUT (read) 
NON-DESTRUCTIVE 
INPUT STATUS 
INPUT FLUSH 
OUTPUT (write) 

INPUT NO WAIT (Char devs only) 
(Char devs only) 
(Char deva only) 

OUTPUT (write) with verify 
OUTPUT STATUS (Char devs only) 
OUTPUT FLUSH (Char devs only) 
IOCTLOUTPUT (Only called if device has IOCTL) 

These functions are described in detail later in the section. 

STATUS WORD The following figure illustrates the status word in the Request 
Header. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

lEI 
I R I RESERVED 
I R I 

1 BID I I 
1 U I 0 I ERROR CODE (bit 15 on)1 
1 S I !" I I 

The status word is zero on entry and is set by the driver interrupt routine on 
return. 

Bit 8 is the one bit. When set, it means the operation is complete. For MS-DOS 
2.0, the driver sets it to 1 when it exits. 

Bit 15 is the error bit. If it is set, then the low 8 bits indicate the error. 
The errors are: 

5-28 



o 
1 
2 
3 
4 
5 
6 
7 

Write protect violation 
Unknown Unit 
Drive not ready 
Unlmown command 
CRC error 
Bad drive request structure length 
Seek error 
Unknown media 

8 Sector not found 
9 Printer out of paper 
A Write fault 
B 
C 

Read fault 
General failure 

Bit 9 is the busy bit, which is set only by status calls. 

System Software 

out t on character devices: If bit 9 is 1 on return, a write request 
made would wait for completion of a. current request. If it is 0, 

there is no current request, and a wr1 te request (if made) would start 
immediately. 

For input on character devices with a butfer: If bit 9 is 1 on return, a 
read request (if made) would go to the physical device. If it is 0 on 
return, then there are characters in the device buffer and a read would 
return quickly. It also indicates that something has been typed. MS-DOS 
assumes all character devices have an input type-ahead buffer. Devices 
that do not have a type-ahead buffer should always return busy=O so that 
MS-DOS will not continuously wait for something to get into a buffer that 
does not exist. 

One of the functions defined fOT each device is INIT. This routine is called 
only once when the device is installed. The INIT routine returns a location 
(DS:DX), which is a pointer to the first free byte of memory after the device 
driver (similar to "Keep Process"). This pointer method can be used to delete 
initialization code that is only needed once, saving on space. 

Block devices are installed the same way and also return a first free byte 
pointer as described above. Additional information is also returned: 

The number of units is returned. This determines logical device names. If 
the current maximum logical device letter is F at the time of the install 
call, and the IHIT routine returns 4 as the number of units, then they will 
have logical names G, H, I , and J. This mapping is determined by the 
position of the driver in the device list, and by the number of units on 
the device (stored in the first byte of the device name field). 

A pointer to a BPB (BIOS Parameter Block) pointer array is also returned. 
There is one table for each unit defined. These blocks will be used to 
build an internal DOS data structure for each of the units. The pointer 
passed to the DOS from the driver points to an array of n word pointers to 
BPBs, where n is the number of units defined. In this way, if all units 
are the same, all of the pointers can point to the same BPB, saving space. 
Note that this array must be protected (below the free pointer set by the 
return) since an internal DOS structure will be built starting at the byte 

5-29 



System Software 

pointed to by the free pointer. The sector size defined must be less than 
or equal to the maximum sector size defined at default BIOS INIT time. If 
it isn't, the install will fail. 

The last thing that INIT of a block device must pass back 
is the media descriptor byte. This byte means nothing to MS-DOS, but is 
passed to devices so that they know what parameters MS-DOS is currently 
using for a particular drive unit. 

Block devices may take several approaches; they may be dumb or smart. A dumb 
device defines a unit (and therefore an internal DOS structure) for each 
possible media drive combination. For example, unit = drive 0 single side, unit 
1 = drive 0 double side. For this approach, media descriptor bytes do not mean 
anything. A smart device allows multiple media per unit. In this case, the BPB 
table returned at INIT must define space large enough to accommodate the largest 
possible media descriptor byte to pass information 
about what media is currently in a unit. 

5-30 



System Software 

Device Driver Functions and Parameters 

All strategy routines are called with ES:BX pointing to the Request Header. The 
interrupt routines get the pointers to the Request Header from the queue that 
the strategy routines store them in. The command code in the Request Header 
tells the driver which function to perform. 

NOTE 

All DWORD pointers are stored offset first, then segment. 

INIT 
Conmand code II 0 

IN IT - ES:BX -> 

I 13-BYTE Static Request Header 1 
1-------------------- -------------1 
1 BYTE , of units 1 
1----------------------------------1 
1 DWORD break address I 

1----------------------------------1 
1 DWORD pointer to BPB array 1 
1 (Not set by character devices) 1 
I 1 

The number of units, break address, and BPB pointer are set by the driver. On 
entry, the DWORD that is to be set to the BPB array (on block devices) points to 
the character after the ':' on the line in CONFIG.SYS that loaded this device. 
This allows drivers to scan the CONFIG.SYS invocation line for arguments. 

NOTE 

If there are multiple device drivers in a single device driver file, the ending 
address returned by the last IN IT called will be the one MS-DOS uses. It is 
recommended that all of the device drivers in a single device driver file return 
the same ending address. 

5-31 



System Software 

MEDIA CHECK Cormrmd Code :I 1 

MS-DOS calls MEDIA CHECK first for a drive unit. MS-DOS passes itlJ current 
media descriptor byte (refer to the section "Media Descriptor Byte" later in 
this chapter). 

MEDIA CHECK - ES: BX - > 

1 13-BYTE Request Header 1 
1-----------------------------------1 
1 BYTE media descriptor from DPB 1 
1-----------------------------------1 
1 BYTE returned I 

In addition to setting the status word, the driver must set the return byte to 
one of the following: 

Media Not Changed - current DPB and media byte are OK. 

Media Changed - Current DPB and media are wrong. MS-DOS invalidates any 
buffers for this unit and calls the device driver to build the BPB with 
media byte and buffer. 

Not Sure If there are dirty buffers (buffers with changed data, not yet 
written to disk) for this unit, MS-DOS assumes the DPB and media byte are 
OK (media not changed). If nothing is dirty, MS-DOS assumes the media has 
changed. It invalidates any buffers for the unit, and calls the device 
driver to build the BPB with media byte and buffer. 

Error - If an error occurs, MS-DOS sets the error code accordingly. 

-1 Media has been changed 
o Don't know if media has been chaIlged 
1 Media has not been changed 

If the driver can return -lor 1 (by having a door-lock or other interlock 
mechanism) MS-DOS performance is enhanced because MS-DOS does not need to reread 
the FAT for each directory access. 

5-32 



BUILD BPP (BIOS PARAMETER BLOCK) 
Comund cods • 2 

MS-DOS will call BUILD BPB under the tollowing conditions: 

It Media Changed is returned 

It Rot Sure is returned, and there are no dirty butters. 

System Software 

The BUILD BPB call also gets a pointer to a one-sector butter. What this butter 
contains is determined by the ROR IBM FORMAT bit in the attribute tield. It the 
bit is zero (device is IBM tormat-compatible), then the bufter contains the 
first sector ot the tirst File Allo~ation Table (FAT). The FAT IB byte is the 
tirst byte ot this butter. 

NOTE 

The BPB must be the same. as tar as locatioil of the FAT is concerned, tor all 
possible media because this first FAT sector must be read betore the actual BPB 
is returned. It the NOR IBM FORMAT bit is set, then the pointer points to one 
sector of scratch space (which may be used for anything). 

BUILD BPB - ES:BX -> 

13-BYTE Request Header 1 
----------------------------------1 

BYTE media descriptor trom DPB 1 
----------------------------------1 

DWORD transfer addres~ 
(Points to one sector worth of 
scratch space or tirst sector 
of FAT depending on the value 

I 
I 
1 
1 

of the ROR IBM FORMAT bit) 1 
----------------------------------1 

DWORD pointer to BPB 1 
1 

It the ROH IBM FORMAT bit ot the device is set, then the DWORD transfer address 
points to a one sector buffer, which can be used tor any purpose. It the ROR 
IBM FORMAT bit is 0, then this butfer contains the tirst sector ot the first FAT 
and the driver must not alter this butter. 

It IBM compatible tormat is used (NON I~~ FORMAT BIT = 0), then the first sector 
ot the tirst FAT must be located at the same sector on all possible media. This 
is because the FAT sector will .be read BEFORE the media is actually determined. 
Use this mode if all you want is to read the FAT ID byte. 

In addition to setting status word, the driver must set the Pointer to the BPB 
on return. 

5-33 



System Software 

In order to allow for many different OEMs to read each other's disks, the 
tollowing standard is suggested. The information relating to the BPB for a 
particular piece of media is kept in the boot sector for the media. In 
particular, the format ot the boot sector is: 

BUILD BPP - ES:BX -> 

3 BYTE near JUMP to boot code 

8 BYTES OEM name and version 

B WORD bytes per sector 
p ------------------------------------
B BYTE sectors per allocation unit 
I ------------------------------------
v WORD reserved sectors 

BYTE number of FATs 

WORD number of root dir entries 

WORD number of sectors in logical 
image 

I ------------------------------------
B BYTE media descriptor 
p ------------------------------------
B WORD number of FAT sectors 

--~---------------------------------
WORD sectors per track 

WORD number of headS' 
------------------------------------1 

WORD number of hidden sectors I 
I 

The three words at the end (sectors per track, number of heads, and number of 
hidden sectors) are optional. They are intended to help the BIOS understand the 
media. Sectors per track may be redundant (COUld be calculated from total size 
of the disk). Number of heads is useful for supporting different multi-head 
drives which have the same storage capacity, but different numbers of surfaces. 
Number of hidden sectors may be used to support drive-partitioning schemes. 

Media Descriptor Byte 
The last two digits of the FAT ID byte are called the media descriptor byte. 
Currently, the media descriptor byte has been defined for a few media types, 
including 5-1/4" and 8" standard disks. 

Although these media bytes map directly to FAT ID bytes (which are constrained 
to the 8 values F8H-FFH), media bytes can, in general, be any value in the range 
OOH-FFH. 

5-34 



System Software 

READ OR WRITE Command codes = 3,4,8,9, and 12 

READ or WRITE - ES:BX (Including IOCTL) -> 

1 l3-BYTE Request Reader 1 
1-----------------------------------1 
1 BYTE media descriptor from DPB I 
1-----------------------------------1 
1 DWORD transfer address 1 
1-----------------------------------1 
1 WORD byte/sector count 1 
1----------------------------- -----1 
I WORD starting sector number 1 
1 (Ignored on character devices) 1 

In addition to setting the status word, the driver must set the sector count to 
the actual number of sectors (or bytes) trallsferred. 1-10 error check is 
performed on an IOCTL I/O call. The driver must correctly set the return sector 
(byte) count to the actual number of bytes transferred. 

The Following Applies to 810ck Device Drivers: 
Under certain circumstances the BIOS may be asked to perform a write operation 
of 64K bytes, which seems to be a "wrap around" of the transfer address in the 
BIOS I/O packet. This request arises due to an optimization added to the write 
code in MS-DOS. It will only manifest on user writes that are within a sector 
size of 64K bytes on files "growing" past the current EOF. It is allowable for 
the BIOS to ignore the balance of the write that "wraps around" if it so 
chooses. For example, a write of 10000R bytes worth of sectors with a transfer 
address of XXX: 1 could ignore the last two bytes. A user program can never 
request an I/O of more than FFFFR bytes and cannot wrap around (even to 0) in 
the transfer segment. Therefore, in this case, the last two bytes can be 
ignored. 

5-35 



NON DESTRUCTIVE READ NO WAfT 
Cotmm1d code • 5 

NON DESTRUCTIVE READ NO WAIT - ES: BX - > 

I 13-BYTE Request Header 1 
1----------------------------------1 
1 BYTE read from device I 

System Software 

If the character device returns bit = 0 (characters in buffer), then the next 
character that would be read is returned. This character is not removed from 
the input buffer (hence the term "Non Destructive Read"). Basically, this call 
allows MS-DOS to look ahead one input character. 

5-36 



System Software 

STATUS 
COiIIIiDacl codes • 6 and 10 

STATUS - ES:BX -> 

I 13-BYTE Request Header 

All the driver must do is set the status word and the busy bit as follows: 

For output on character devices: If bit 9 is 1 on return, a write request (if 
made) would wait for completion of a current request. If it is 0, there is 
no current request and a write request (if made) would start immediately. 

For in t on character devices wi th a buffer: A return of 1 means, a read 
request if would go to the physical device. If it is 0 on return, 
then there are characters in the devices buffer and read would return 
quickly. A return of 0 also indicates that the user has typed something. 
MS-DOS assumes that all character devices have an input type-ahead buffer. 
Devices that do not have a type-ahead buffer should always return busy = 0 so 
that the DOS will not hang waiting for something to get into a buffer which 
doesn't exist. 

5-37 



System Software 

FLUSH COIIIIUIId codes • 1 and 11 

FLUSH - ES:BX -> 

I 13-BYTE Request Header 

The FLUSH call tells the driver to flush (terminate) all pending requests. This 
call is used to flush the input queue on character devices. 

5-38 



System Software 

HP 150 INST ALlABlE DEVICE DRIVER EXAMPLE 

This is an example of an MSDOS installable device driver for the liP 150. As an 
MSDOS installable device driver, this example does nothing more than support the 
12 MSDOS command codes in name only, and does not attempt to implement their 
functions. The intention of the example is to outline the structure of an 
installable device driver. It is then a matter for the programmer to "fill in 
the blanks" to implement a functional driver. All device functions exist in 
name only, returning done status immediatly . 

• ~~***~************~**************************************~******************** , 
· , 
· , 
· , 
· , 
; DPi:tJezo Routine's Label Function of the pa't"¥'f;icular routine 
; ----------~--------------------~-~----~----------~-~-~---~--~-----~---------
; NSDOS COMMAND CODES: 
; 
; 
· , 
· , 
; 
; 
· , 
· , 
· !J 

· , 
· " · , 
· , 
· , 
· , 

NSDos INITIALIZE 
I-ISDOS-NED1A CHECK - -NSDOS BUILD BPB 
IISDOS-IOCTL-INPUT 
MSDOS-INPlIT­
ItfSDOS-NON DSrlN INPUT 
NSJX)S-IN1:Vr STJiiuS - -IISDOS INPUT FLUSH 
NSDOS-0lJTPlif 
NSDOS OUTPIJT rliTH r,'EHIFY 
MSDOS-OUTPUT-ST ATiis 
NS])()[r OUTPUT-FLUSH - -NSDOS IOCTL OUJ.'PUT 

o - initializes the option into the system 
1 performs media check on block deoices 
2 builds the deoice' s BIOS PtDtameter Block 
3 pez70rms an I/O control read from c1.erJice 
4 performs a nort'II2l dest:l"UCti1Je read 
5 - pex1" orm:s a non-destructi7Je read, no wit 
6 retUZ"11S current input status of dm1ice 
7 flushes the deoice's input buffers 
8 performs a nozomal output to the dm1ice 
9 perrforms output lIith verify to the deoice 

10 returns CUZTent output status of device 
11 flushes the device's output buffers 
1.2 performs 10 corrtzool output to the der:Jice 

; 'NOTE: 
; 

All cOll'1!1m'ld code routines listed abmJe exist in name only and siRt?ly 
return status equal to done 1AYhen called. 

· , 
.****************************************************************************** , 

5-39 



System Software 

.****************************************************************************** , 
· , 
· , stazrt of the Installable Derice Drioer Routine 
· , 
; 
· , This nea:t section staFts the cods segment fop the Pest of this module. 
· , 
CODE 
DRIVER 

SEG1IE1IT PUBLIC 'CODE' 
PRJC FAR 
ASSl/1IE CS:CODB,BS:CODB,DS:CODE 
Oil: 0 

BEGIN: 
STAHr 

· , 
.****************************************************************************** , 

.****************************************************************************** , 
· , 
; 
· , 
· , 

The follmn-ng is the NSDOS installable deoice dril1el"'S deoice headeP. · , 
; This header II&lBt be at the beginning of each instaZlable deoice dFioer. It 
; is used by the SYSINIT module prooided by IIiczoosoft to link this installable 
;derice dM,oer into the system's deoice list. The fomat of this deoice header 
; is as follOfMJ: 
· , 
· , 
· , 
· , 
· , 
· , 
; 
· , 
· , 
· , 
· , 
; 
; 
· , 
· , 
· , 
· , 
· , 
· , 
; 
· , 

15 14 13 12 11 10 9 a 7 6 5 4 3 2 :l 0 

+-----------------------------------------------------------------------+ 
I offset of the NEXT DEVICE DRIVER in the deIJice list (-1 if last errtr>y) I 
+-----------------------------------------------------------------------+ 
I segment of the lIEXT DEVICE DRIVER in the dwice list(-l if last entry} I 
+-----------------------------------------------------------------------+ 
I ItI.'TBIBUTBS IIOzad descroibing deoice specific characteFistics I 
+---------------------------------~.,------------------------------------+ 
I offset to the deoice dz1ioer's STRATEG1 zooutine I 
+-----------------------------------------~----------------------- .. ----+ 
I offset to the deoice driver's INTEIlBlJPT POUtin-;; I 
-I-------------------------------------~,-----------~,~-~------------------+ 

I 1st 2 bytes of a cham.c. t1.lw. !fANE, OF /I of UNrts for- a block derJice I 
+-----------------------------------------------------------------------+ 
I 2nd 2 bytes of a c1Kaactezo deoice NANE, Or> nothing fop a block deoice I 
+---------------------------------------------------~-------------------+ 
I 3m 2 bytes of a chacactezt del1ice !lANE, OF nothing fop a block dwice I 
+-----------------------------------------------------------------------+ 
14th 2 bytes of a character> dmJice RAIlE, oro no'thing fop a block derJice I 
+-----------------------------------------------------------------------+ , 

.****************************************************************************** , 

5-40 



System Software 

.~~~*~~~~*~~~~~~~~~~~*******~**~~*********~*~*~*****~***~*******************~** , 
· , 
· , 
· , 
· , 
· , The deoice inplemented by the hi1Jer is a sinple character deoice 
; llith an JISIX)S strategy zooutine at DRIVER STIlATECf and an /IISDOS interrupt 
; routine at DRIVER INTEBRJP.t. The name 01 this deoice is "DRIVER". The 
; installable deoicB hioer header for this der1ice is as fol.lOll8: 
· , 
lIEZr DEVICB 
A7.'TIiiIJUrBS 
BrIlA'rEGY 
I1I'.rE1lIIJP:l 
DEVICB NANE 

DD 
1111 
III 
1M 
DB 

-1 
08000H 
DRIVER S!tRJtrBGY 
DRIVER - IIITERlfIP.t 
"DRIVBR " 

; link to neJ:t dn. --1 end of list 
; 8000H means a c~ dnice 
;cIriver's STRATEGY zooutine errtPfl 
;~' s INTElllIJP£ zooutine entPfl 
; d.r-i:oezo' s fUIme is "DRIVEN' 

· , 
.***********~~***************************~************************************* , 

.~***************************~~*~~*~~******~******~~**~****~~~~*~~~*~~********* , 
· , 
· , Dztit1e1", S IfSDOS COOirund Cods Routines Dispatch Table 
· , 
· , 

The follOiling section contains a dispatch table that describes the entPfl · , 
; points fOX" the routines that inplement the VCU>ious 12 NSDOS COIIJIrlJ1d codes for 
; this emnple der1ice. This table is inde:x:ed into based on the IISDOS COf1IIItlIId 
; code in the request header, and a iUllf? is nrzde to the addzress of the routine 
; listed in this table. The dispatch table of NSDOS cormand codes for this 
; etXIII{)le d!'i7Jezo is as follOll1S: 
· , 
NSDOS COllllA1lD CODES: ;St.~ NSDOS Cormrmd Codes (dispatch table) ar NSDOS INITIALIZE ; 0 - initializes the dri1Hlr into the system 

1JN IISDOS-NEDIA CHECK ; 1 - performs media check on block deoices 
1JIf MSDOS -BUILD-BPS ; 2 - builds the derri.ce' s BIOs Pa.rametezt Bloc1c. 
1M NSDO!rIOC'.fL-IlIPU'r ; 3 - performs an I/O control read fzoom derJice 
II., IIS'DO!FII'PUT- ; 4 - pezrforms a nornrzl destructioe read 
IXI ItSDOS-NON DSTll!I INPUT ; 5 - pezrforms a non-destru.cti-oe zread, no 'llJait 
l5.{ NSDO!r INM STifus ; 6 - retuzons CUH"eflt input status of deI1ice 
1M NSDOS-INPUT-FUISH ; 7 - flushes the deI1ice's input buffers 
lJII MSlX)!(OUTPtii ; 8 - pmifO%'mS a nonml output to the dernce 
TN NSDOS_OlITPUT_rnm_VERIFY; 9 - pez10rms output iI1ith oerify to the der1ice 
IJII MSDOS _ OUTPUT _ STJtrlJS ; 10 - zoetul'ns cuzo:rent output status of deoice 
IN IISDOS _ OUTPUT _FUlSH ; 11 - flushes the deoice' s output buffers 
IN NSDOS IOCTL ounvr ;12 - performs I/O control output to the cler1ice 

· , 
.**********************~*~~~******~*~~~~~~*~~~~*~*~~~~*~~~*~~~~**~~*~********** , 

5-41 



System Software 

.~~~~~~~~~~~~~*~~~~~~*~***~****~*~~~~~~*~*~***************************~*****~** , 
· , 
· , 
· , 
· , 

rhis ne:&t section contains a tetlf?late fop the IISDOS request header. rhia 
; tetlf?late is used to e:J:tzract and update the necessary request 1tartIBzo errtl"ies. 
; rile IISros request header's fomat is as sluNn belOll: 

· , 

· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
; 
; 
· , 
· , 
· , 
· , 
· ,. 
· , 
· , 
· , 

1 6 543 2 1 0 

+---------------------------------------+ 
I LE1IGT1I of the request HEADER in bytes I 
+---------------------------------------+ I UNIT that this call is intended fop I 
+---------------------------------------+ 
I COItJlAND CODE OP function nunbezt I 
+---------------------------------------+ 
I c1:Pivezo' s HETUBlI STIfrUS, first of ttIO I 
+-----------------~---------------------+ 
I ciz.i17er' S RE'l'UBlI stATUS, second of tfIJO I 
+--------w.------------------------------+ I ********** B!SXRVEV ***~**~*~ I 
+---------------------------------------+ I ~~~~~*~*** B!SlRVEV ~****~*~* I 
+---------------------------------------+ I **~~****~* BESERVEV *****~*** I 
+---------------------------------------+ I *****~**** BESlBVEP *~*~~**** I 
+---------------------------------------+ I *~*~**~~*~ RESERVED *~~*~*~~~ I 
+---------------------------------------+ I ***~~***~~ RESERVED **~****** I 
+---------------------------------------+ I *~***~**~~ RESERVED *~~****~* I 
+---------------------------------------+ I ******~~** RESERVED ******~~~ I 
+---------------~-----------------------+ I **~~~* Command Specific Data ****~~ I 

I ~~~*** Command Specific Data *~~~** I 
+---------------------------------------+ 

.~*~~~*~*~~*~*~~~****~*~~*~~**~~*~****************~*******~*~*~~~~~*~~~~**~*~~* , 

5-42 



System Software 

.•••••••••••••• *** ••••• * ••••••• ***** •••• * •••••• *.****.** •• *******.************* , 
· , 
; 
; 
; 
; The HEQlJEST HEADER structure that this module 1UiU·use to access the IISDOS 
; :r>equest heatJeZ. packet is defined as follOlil8: 
; 
REQUEST_HEADER 

HEADER LEIIGTH 
UNIT NlIlmER 
CONliAND CODE 
RETURN STATUS 
RESERlED 
NEDIA DESCRIPTOR 
TRANsFER ADDRESS 
COUlI'!r 
STAHrDIG SECTOR 

REQUEST_HEADER 

STRIC 

DB ? 
DB 1 
DB 1 
W 1 
DB 8 
DB 1 
DD ? 
IN "1 
1J!I 1 

ENDS 

DIP (1) 

; length of the request header 
;unit nuni>er for this zoequest 
; zoequest heat:leP' s cOl1l1ll1ld code 
; dri-oer' s return s"tatus IIOrd 
;*****.* RESERVED •• ***.* 
;media descriptor ¥e 
; transf eP addzaesul 
;byte/seatOP count 1Jalue 
; sta.r>ting sector value 

;end of Fequest header template 
, 
.****************************************************************************** , 

.***************************************************************.*.***.**.***** , 
· , 
; DPi,oer's Local Varoiables 
; 
, 
HEAVER POINTER Dl) 'I ; pointer to the request hea.d.e:P 
, 
.****************************************************************************** , 

.******************.*********************************************************** , 
· , 
· , DRIVER's Local Constants 
· , 
; 
UtA]{ COMMiWD CODE EQU 012 - -, 
.************************* •• *************************************************** , 

5-43 



System Software 

.~~~~~~~~*~~~~~~~~~~~~~~~~~*~*~~~*~~~****~*~~~~~~*~**~~~~~********************* , 
; 
· , 
· , 
· , 

This ne:z:t section contains this driver's strategy POUtine. 
; is entered each time a request is nrzde foro this deoice. 
· , This POUtine 

· , 
All pequests for> this deoice · , 

; fizost call its strategy POUtine and then its intez.r.upt routine 
; rhe strategy POUtine is passed a poirrter (in ES:BX) to the request 1zeadero, 
; Wzich it salJes in a local l1aPiable called HEADER POIlITER and then it retuzons 
; to the BDOS. This e:IX1II1ple de1Jice dritlel" s strategy routine is defined as 
; follOll8: 
· , 
· , I1IffIrS - ES:BX points to the request 1leaiI.e1" 
· , 
; 0UTPlJTS - HEADERJ?OINTTm po-ints to ths active request headeJo 
· , 
.***********************~***~*~*~*******~~*************************~*********** , 
· , 

; beginning of strategy ~ 

DRIVER STRItf!EGY: ; strategy POUtine entPf/ point 
iVY fiORD P'l.'R CS:lHEADER_POINTER},BX ;save offset of roequest header 
KfN 'fIORD P.rR cs: I HEADER POINTE1H2],ES ; save segment of request hsadeF 
1!IJtT - ; return to the calling routine 

; end of the strategy pztOCeduzte 
, 
.***********************~**~~*~*~************~~*~*****~~*~*~****~~~~~~~~******* , 

.**~*~**~~***~~~***~~**~***********************~********************~***~****** , 
· , 
· , 
· , 
· , 
; Thi,s next section contains this dPi."exo's HSDOS interrupt routine. This 
; is the entl"'Y point tho:t the BDOS tlill call inmediately after 
; it has called this dztiver's strategy routine. It is this routine' II 
; zoesponsibility to tmnsfer control to the appropriate routine 1Jithin this 
; TIrX1:ule based on the cormrmdcode found in the current request header. It 
; uses this conm:znd code as an index into its MSIX>S cormr:md codes dispatch 
; table, to e:r:tzract the address of the routine that can sePl1ice the incoming 
; request. 
; 
; 
· , 
· , 
· , 
; 

5-44 

INPUTS - HEADER_POINTER points to the request lzeadero 

OUTPUTS - HEQUEST HEADER [HETlIllN STATUS] set apprtopriately 
COf1f1rlTld-code specific data ~ specified 



System Software 

.****************************************************************************** , 
, 
DRIVER INrERlIlP"r: 

lfiSH AX 
PUSH BX 
PUSH CX 
PUSH DX 
PUSH DB 
PUSH ES 
PUSH Dl 
PUSH SI 
PUSH BP 

· , 

; deoice dri'Oezo inteJwztupt routine 
; saoe the callezo' s AX zoegistezo 
; BaH the callezo's BX zaegiater 
; saw the callezo' s CX zoegistezo 
; BaI1e the caller's DX zoegistezo 
; BaIJe the call.er' s DB zoegis1;ezt 
; BaI1e the caller's ES zaegiater 
; sage the callezo' s Dl zoegistezo 
;BaH the oallezo's 51 zoegistezo 
;saoe the caUezo's BP zoegistezo 

J.1rese sections of code prepare the s1J8Um's zoegistezos flith the 'Oaluea · , 
; found in the request header befozoe transfeJ"Ping control. to the appropriate 
; %'OUtine. The registezts are prepa.md as follotl8: 
· , 
· , 
· , 
· , 
; 
· , 
; 
· , 
· , 
· , 
· , 

· , 

AX == iW-->IIBD1A DESCBIPTORIAL-->UNIr NUNBER 
BX == OFFSET tlithin BS segmerrt to the request lleadezo 
ex III COUlI'.r (bytes or sectoFs) of the data to he :read or iDritten 
DX III STAllf1l1G SECTOR to be :read or 1IPitten 
D1 III rRAIISFER ADDRESS of usezo's buffel" or data 
81 III a.ddzoess uf the stozrt of the sBPl1icing routine 
DB == data segmerrt addzoess uf this driHz" (same as CS) 
ES III segment adiJztess of the request header 

BX,CS:CHEADER POD1'.lBR] 
AL,CBX.UNIT NiiNBER] 
All, C BX .IIEDIA DESCBIPrOR] 
CX,{BX.COUNTJ 
DX,CBX.STAIlfIlIG SECTOR] 
D1,AX -

; point DB: BX to the request header 
;load AL 7#ith the UNIT IlUNBER 
;load All flith the NEDIA DESCBIPLOR 
; load CX 7#ith the COU1IT ualue 
;load DX llith the STARrING SECTOR 
;saN AX in DI ~lN 

Ea:tract the conmmd code from the request heoder and bzoanch to the 
; ~e routine flithin this 1IPlule that can sez-oice it. 
· , 

· , 

· , 

lUI 
]{OB 
ClIP 
JG 
SIlL 
101 
ADD 
](CHG 
LES 
PUSH 
pop 
JItP 

AL, C BX. CONM.ANJ) CODE] 
AH,AH -
AL,JIAX CONMAND CODE 
CONNAND CODE IiRRJR - -AL,l 
8I,OFFSEr IISDOS CONMAND CODES 
SI,AX - -
AX,DI 
DI, C ax. TBAJlSYEB ADDRESS] 
CS -
DS 
UORD Pm [SI] 

; load AX .nth the COIMAllD CODE 
;clear uff the high byte of AX 
; is this a legal corrmand code? 
; -L f no. then ezoror out hezte 
; corwezrt byte to lkn'Cl pointezo 
; 'POint SI to HSDOS dispatch table 
; inde.z: 81 to the desizted routine 
; %"estozoe AX fr'Ofll Dl "tenp. storage 
;point DI to transfezo addzo. offset 
;place code segment on the stack •• 
; then point DB to the code segment 
;jUII{J to the appropriate routine 

.*****************************~************************************************ , 

5-45 



System Software 

.****************************************************************************** , 
· , 
· , 
· , 
· , 
· , 
· , 

These are a set of gene:ral purapose routines that are used by all 
of the NSDOS cc:TiFil'mid code routines. 

· , 
CONIIAND CODE ERllJR: 

IDi AL,3 
l«JV All, 1000000lB 
JIll' EXIT DRIVER 

EXIT: 
WN All "OOOOOOOlB 

· , 

; AL=3 means bad cormrznd code enoor 
;AH=erTOl" and done bits set 
;e:x:it drioez. through EXIT_DRIVER 

; AlI=no erTOPS occuzted this time 
;drop through to e:x:it -the ~ 

.****************************************************************************** , 

.****************************************************************************** , 
; 
· , 
; 
· , 
; This procedure is used to generate a lung z>etuzrn to the caller. 
; The value passed to this routine in AX is placed in the 
; llETU1IN _STATUS 'tkJFd entry of the pending :Jt>eqUest headezo. Then this routine 
; zoestOFeS the stack back to the state it ~ tDhen this driver ItltlS originally 
; called, a::ad then returns to the caller. 
· , 
· , 
· , 
; 
; 
· , 

INPUTS - AX contains the BETlJIIN STATUS rJalue for the 
pending I/O request. -

EXIT P1IOC PlCJC FAR 

EXIT DRIVER: 
-LDS 

NOV 
pop 
pop 
pop 
pop 
pop 
pop 
pop 
pop 
pop 
RET 

BX,CS:[HEADER POINTER] 
DB: [BX. RmlRJr STATUS] ,AX 
BP -
SI 
DI 
ES 
DB 
DX 
CX 
HZ 
AX 

EXIT PBX ENDP 

; point BX to the roequest heade:r 
;set the S'rATllS lIOFd accordingly 
;rest~ the caller's BP register 
;raestore the caller' 8 SI registB'".l' 
;restore the caller's DI register> 
; FeStore the caller" 8 ES register 
; 1!eStoPe the caller's DB register 
; raestore the caller's DX register> 
; restore the caller' 8 ex raegistezo 
;r'estore the caller's BX roegister> 
; restore the caller's AX raegist8l' 
; return to caller BDOS 

, 
.****************************************************************************** , 

5-46 



System Software 

.****************************************************************************** , 
· , 
; Dri1Jer>' s MSDOS Cormrmd Code Routines 
; 
· , 
; '!'he /IISDOS Conmxnd Code Routines do nothing other than exit lIith the 
; RETURN STATUS ~ in the request header set to done Jlithout e%".l"OJ'S. 

· , 
NSDOS NEDIA CHECK: 

iiop -
.JIIP EXIT 

NSDOS BUILD BPB: 
Hop -
nIP EXIT 

IISDOS IOCTL DlPUT: 
NOP -
JMP EXIT 

NSDOS INPUT: 
lIOP 
JNP EXIT 

NSDOS NON DSTRfT INPUT: 
HOP 
JNP EXIT 

MSJ)()S INPUT· STATlIS: 
NoP -
JKP EXIT 

NSDOS INPUT FWSlI: 
Mop -
JKP EXIT 

MSlJOS OUTPUT WITH VERIFY: 
NoP - -
JMP EXIT 

MSDOS OUTPUT STATUS: - -NOP 
JNP EXIT 

MSDOS OUTPUT FLUSH: - -HOP 
.IMP EXIT 

;MSDOS Conmmd Code , 1 
;code to pr'OCe8S MEDIA CHECK 
; jump to the EXIT routine 

; NSDOS COfIITDnd Code e 2 
;cod.e to process BUILD BPB 
; jump to the EXIT routine 

; NSDOS COITUrKlnd Code /I 3 
;code to pPOCeSs IOCTL INPUT 
; jUllf! to the EXIT rooutine 

;NSDOS Coom;md Code , 4 
; code to process INPiIT 
;itmf! to the exit ztoUtin.e 

; IISDOS Cormrmd Code , 5 
; code to process lION DSTRV INPUT 
; jump to the e:rit xooutine 

;NSIJ()S Conmmd Code II (1 

;code to process INWr STATUS 
;jump to the EXIT FOUtine 

;MSDOS Cc;mr:md Code II 7 
; code to process INPUT FIlJSH 
;jUH{J to the EXIT r'Oldin.e 

; NSDOS C011r1m'Id Code II 8 
; code to process OUTPUT 
;julI'1Ip to the EXIT POUtine 

; MSlJOS Conm:md Code II 9 
;code to process OUTPUT JI/VERIFY 
;jump to the EXIT zooutine 

;I$DOS Coommd Code 1110 
;cod.e to process OUTPUT STATUS 
;jump to the EXIT routine 

;NS])()S C~ Code 1111 
; code to process OUTPUT FLUSH 
;jump to the EXIT routine 

5-47 



System Software 

IISDOS IocrL OUTPIJT: ; /ItSDOS Cormand Code '12 
NoP -
ntP EXIT 

;code to process IOCTL 0UTPUr 
; Jump to thB EXIT Z'OUtine 

IISDOS INITIALIZE: ; IISDOS C01IfIl111d Code 110 
LDs BX,CS:[HEADER_POIlITERJ ;point DS:BX to the FeqUest headezt. 
101 VORD Pm DS: [BX. TRANSFER ADDRESS J ,OFFSET NS1X>S INITIALIZE 
WN JIORD PTR DS:[BX.TRANSFER-ADDRESS+2J ,CS -
JNP EXIr -

. , 
DRIVER EllDP . , 
CODE 

5-48 

ENDS 
END 



System Software 

AGIOS: I/O CONTROL OF THE CON DEVICE 

The Alpha/Graphic Input/Output System (AGIOS) 

The Alpha/Graphic I/O system is a set of functions which can be called from 
application programs. The functions help programmers manipulate the BP 150 
video display, con'trol the touchscreen, and handle the keyboard. The AGIOS 
functions provide a high level interface to these entities sparing the 
programmer of much tedium which may otherwise be necessary. The price which is 
sometimes paid for this convenience is performance. For this reason, Section 7, 
Programming the HP 150, includes some information allowing programmers access to 
the alpha and graphics memories in a direct manner. 

Accessing the AG!OS 

The Alpha/Graphic I/O System is implemented as a set of functions which are 
really MS-DOS System Function Call sub-functions. MS-DOS incl .. v!e~ a function, 
I/O control for devices (function 44H). This function enables an IOCTL device 
command to an open device to be performed. The IOCTL function can be 
implemented b.Y a device driver to 
allow control-type manipulation of the device, rather than read/write oriented 
operations. The UP 150 console device "COB" implements the AGIOS function set 
through its IOCTL call. 

Most high level programming languages on the UP 150 do not allow direct 
manipulation of the 8088 registers. To perform an MS-DOS System Function and 
hence, an AGIOS function, the registers must be loaded with function-dependent 
data. As a result, AGIOS function calls from high level languages are usually 
made through assembly language subroutines combined with the higher level code 
at link time. 

The following code is an example of an AGIOS function call written in assembly 
language. It is the "Execute Two Character Escape Sequence" AGIOS function. 

This AGIOS function call requires a three byte buffer which contains the 
function code followed b.Y the "J" parameter. 

+---- --+- ------+---- --.-+ 
BUFF 16 0 J 

+------+-------+-------+ 
Byte: +0 +1 +2 

Tile program segment to accomplish the clear display would look something like 
this in assembler: 



buff 

LABEL I1BAB 
ICI'I AX, 4403H 
ICI'I BX,l 
ICI'I CX,3 
ICI'I DX ,0YFSF:r buff 
nrr 218 
llB';l 

DB 16,0, '.1' 

; I/O ContZ'Ol Jlraite 
;Console Handle, alJlaflS • 1 
; buff length (3 in this case) 
;and Offset 
; 148-DOS call. 

System Software 

The above example lacks elegance and structure typical ot good programming 
practice. For example, the butter could reside in the data segment and be 
accessible such that other escape sequences could be programmed. Or the 
tunction dependent argument ("J" in this case) could be passed on the stack. 
Nor does the above routine do any error checking. It an MS-DOS error occurs 
when you make an AGIOS tunction call, the "carry tlag" is set according to the 
standard MS-DOS procedures. If an AGIOS error occurs, the AX register contains 
a non-zero value. AGIOS error,~ can occur when MS-DOS errors do not occur. This 
means that the carry flag is not set but the AX register contains a non-zero 
character. Therefore, you need to check both ot these indicators after a 
function call to determine if the operation was completed successfully. 

For more information on making AGIOS and MS-DOS calls trom high level languages, 
together with some more generalized examples, refer to Section 7, Programming 
the HP 150. 

5-50 



System Software 

BIOS AND ITS DEVICES 

Introduction 

The HP 150's Basic I/O System (BIOS) consists of a set of twelve modules that 
are responsible for interacting with Microsoft's Basic Disc Operating System 
(BOOS) on one side, and with the HP 150 finnware routines on the other. The 
interface between the BDOS and the BIOS is specified by Microsoft, and the HP 
150's BIOS modules implement this interface. (See "Calling a Device Driver" 
earlier in this section.) However, to perfonn the actual I/O operations they 
rely heavily on the services provided by the finnware. ~iuch of what these 
modules do is to take function calls handed down from the BOOS, translate them 
into appropriate firmware calls, and call the firmware routines to execute the 
I/O function. 
CONSOLE DEVICE 

Device Names: CON 

Device Functions Implemented: 

o INIT................... . . . . .. Not implemented 
1 MEDIA CHECK •.........•.•..... Not implemented 
2 BUILD BPP .••....•..•..•.••... Not implemented 
3 IOCTL INPUT •.....•••.....•... Reserved - returns error 
4 INPUT (read) ..........•....•. Valid 
5 NON-DESTRUCTIVE INPUT NO WAIT Valid 
6 INPUT STATUS ...•............. Not implemented 
7 INPUT FLUSH ....•......•...•.. Valid 
8 OUTPUT (write) ...........•... Valid 
9 OUTPUT (write) WITH VERIFY ... Valid 

10 OUTPUT STATUS ................ Not required by finnware 
11 OUTPUT FLUSH ................. Valid 
12 IOCTL OUTPUT ....•.•.....••.•. Valid - AGIOS 

5-51 



SERIAL DATA COMMUNICA nONS DEVICES 

Device Names: 

COM, COM1, COM2, PRN, LST, AUX, PLT, LPTl, LPT2, LPT3 

Device Functions Implemented: 

o INIT...... • • . • . . . • . • . • . • • . • .. Not implemented 
1 MEDIA CHECK ••.••.•...••...... Not implemented 
2 BUILD BPP ......•............. Not implemented 

System Software 

3 IOCTL INPUT •..•......••.•.... Valid - returns on buffer empty 
4 INPUT (read) ..............•.. Valid 
5 NON-DESTRUCTIVE INPUT NO WAIT Valid 
6 INPUT STATUS ..........••..••. Not implemented 
7 INPUT FLUSH .......•.......... Valid 
8 OUTPUT (~~ite) ............... Valid 
9 OUTPUT (write) WITH VERIFY •.. Valid 

10 OUTPUT STATUS ...........•.... Valid 
11 OUTPUT FLUSH ................. Not implemented 
12 IOCTL OUTPUT .. , ......•..•••.. Valid 

TIME DEVICE 

Device Name: 

CLOCK 

Device Functions Implemented: 

5-52 

o INIT......................... Not implemented 
1 MEDIA CHECK .................. Not implemented 
2 BUILD BPP ..........•......... Not implemented 
3 IOCTL INPUT .•................ Reserved - retul~S an error 
4 INPUT (rea.d) ..•......•....... Valid 
5 NON-DESTRUCTIVE INPUT NO HAlT Not implemented - returns busy flag 
6 INPUT STATUS .....•.....•..... Not implemented 
7 INPUT FLUSH .................. Not implemented 
8 OUTPUT (write) ....•....••.... Valid 
9 OUTPUT (write) WITH VERIFY .•. Valid 

10 OUTPUT STATUS ...•.....•...... Not implemented 
11 OUTPUT FLUSH ................. Not implemented 
12 IOefL OUTPUT ......•...•...... Not implemented 



System Software 

INTEGRAL PRINTER DEVICE 

Device Names: 

INT, PRN, AUX, LST, LPl'l, LPl'2, LPl'3 

Driver Functions Implemented: 

o IHIT ............................................... .. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

MEDIA CllECK .................................. .. 
BUILD BPP •••••.•....•..•...•. 
IOCTL INPUT ..•.....•..••..... 
INPUT ( read) .•••.•••.••••••.. 
NON-DESTRUCTIVE INPUT NO WAIT 
INPUT STATUS •.••.....•.•••.•. 
INPUT FL USB ................................ .. .. 
OUTPUT (write) .••....••••.••. 
OUTPUT (write) WITH VERIFY .•• 
OUTPUT STATUS ••••.•.•••••.••. 
OUTPUT FLUSH 
IOCTL OUTPUT •••••.•.••••••••. 

Not implemented 
Not implemented 
Not implemented 
Reserved - returns an error 
Valid 
Not implemented - returns an error 
Not implemented 
Not implemented 
Valid 
Valid 
Valid 
Not implemented 
Not implemented 

DISC, HPIB PRiNTER, HPIB PLOTTER DEVICES 

Device Names: 

A: •••• L:, AUX, PRN, LST, PLT, LPl'l, LPl'2, LPl'3 

Driver Functions Implemented: 

o IRIT ................................................ .. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

MEDIA ClIECK .................................. .. 
BUILD BPP ..•••.••••..•.•..•.. 
IOCTL INPUT .................................. .. 
INPUT ( read) ••.•........•.•.. 
NON-DESTRUCTIVE INPUT NO WAIT 
INPUT STATUS •.. , ....•.••...•. 
INPUT FLUSH .•...••..•.••••••. 
OUTPUT (write) .•.••..•.•••••• 
OUTPUT (write) WITH VERI" ••. 
OUTPUT STATUS ....•..•..••.••• 
OUTPUT FLUSH 
IOCTL OUTPUT ..••..•...••••.•• 

Not implemented 
Not implemented 
Not implemented 
Reserved - returns an error 
Valid 
Not implemented - returns busy flag 
Not implemented 
Not implemented 
Valid 
Valid 
Valid 
Not implemented 
Not implemented 

5-53 



HPIBDEV DEVICE 

Device )lame: 

HPIBDEV 

Driver Functions Implemented: 

o I.IT ........................ . 
1 
2 
3 
4 
5 
6 
7 
8 
9 

tmDIA CHECK •••••••••••••••••• 
BUILD BPP ••••.••••••••••••••• 
IOCTL INPtJ'I' ••••..••••••.••••• 
INPUT ( read) ....••.•.•..•.... 
NON-DESTRUCTIVE INPUT NO WAIT 
INPUT STATUS ..•.•.••..•...•.. 
INPUT FLUSH ••••..•..•.•.•.•.• 
OUTPUT (write) ••••.....••..•• 
OUTPUT (write) WITH VERIFY .•. 

Not implemented 
Not implemented 
Not implemented 
Special HP data returns 
Not implemented 

System Software 

Not implemented - returns busy flag 
Not implemented 
not implemented 
Valid 
Valid 

10 
11 
12 

OUTPUT STATUS •.•.•••.•.•..•.. Valid 
OUTPUT FLUSH llot implemented 
IOCTL OUTPUT ..••••••••••••..• Valid - pass through of template & data 

5-54 



System Software 

THE CONFIG.SYS FILE 

In many cases, there are installation-specific configurations of the operating 
system that are needed to be set up at boot time. The user need not re-build 
the DOS (BDOS) to include special drivers or to 
include a particular number of device drivers. Drivers for additional devices 
may be included as separate entities. See the discussion of devices earlier in 
this chapter. The configuration file allows a user to configure his system 
without extra work. 

The configuration file is simply an ASCII file that has certain commands for the 
operating system initialization task. 

During operating system initialization (booting) a long jump to the SYSINIT 
routine in the BIOS SYSINIT module is made. This module (supplied with the 
operating system from Microsoft) will initialize the DOS and read the 
configuration file CONFIG.SYS, if it exists, to perform device installation and 
various other user settable things. 

The following are a list of commands for the configuration file CONFIG.SYS: 

BUYRBS • <TlUIIIbez.> 
This is the number of additional sector buffers to add to the system list. 
The effect of several BUFFERS commands is to allocate a series of buffers. 
The default is BIOS specific, equal to 16 in versions A.Ol.02 and A.Ol.06. 
The minimum value allowed for BUFFERS is one. With Winchester disc based 
systems, performance may be improved by increasing the buffer or size so as 
to allow the entire disc FAT (File Allocation Table) into buffer memory. As 
such, the operating system can access the enti.re FAT without going to disc. 

FILES • <numbezo> 
This is the number of open files that the XENIX system calls can access. The 
default is BIOS specific, equal to 20 in versions A.Ol.02 and A.Ol.06. If a 
number less than or equal to five is specified, the command is ignored. 

DEVICE = < filename> 
This installs the device driver in <filename> into the system list. 

BREAK ,. <ON or OFF> 
If ON is specified (the default is OFF), a check 
will be made every time the system is called. 
abort programs over previous versions of the DOS. 

SllITCHAR =- <char> 

for 'c at the console input 
ON improves the ability to 

Causes the DOS to return <char> as the current switch designator character 
when the DOS call to return the switch character is made. Default is 'I'. 
Note that the setting of SWITCHAR may effect characters used on the SHELL 
line (this is true of COMMAND. COM) . 

AYAILDEV ,. <TIllE or FALSE> 
The default is TRUE which means both Idev/<dev> and <dev> will reference the 
device <dev>. If FALSE is selected, only jdev/<dev> refers to device <dev>, 

5-55 



System Software 

<dev> by itself means a file in the current directory with the same name as 
one of the devices. 

SHELL • < filename> 
This begins execution of the shell (top-level command processor) from 
<filename>. Kote that the parameters on this line are shell dependent. 

A typical configuration file might look like this: 

IJIJYFKIIS • 10 
FILES II 10 
DEVICE II /bin/netJIor.ok.sys 
BREAK .. 011 
SlfITCHAB II -

SHELL II parncod.AJ. e:r.e Z'OC7t 

5-56 



System Software 

DISC FORMAT AND DIRECTORY STRUCTURE 

Physical Disc Format 

HP 150 disc media are partitioned physically into "tracks" which 
in turn are each partitioned into "sectors". Each sector is a physical portion 
of a track commonly containing 256 bytes of information. 

Sectors are numbered 0, 1, 2, 3, ..... and so on. 
sector 1 follows sector 0 physically on the disc. 
employed to improve disc read and write efficiency. 

This is not to say that 
Sector "staggering" is 

The disc drive takes care of logical to physical mapping and as such the 
programmer need only be concerned with logical sector numbering, above. 

Disc Media Storage Capacity 

The following table shows the storage capac:l.ty in sectors and number of 
kilobytes for different types of disc drives available on the HP 150. 

Media Type 
Total 

Sectors 
Total 

1m 

+------------------------------------------------------------+ 
I 3-1/2" Single Sided f-1icrofloppy 1,056 264 
+------------------------------------------------------------+ 

3-1/2" Double Sided Microfloppy 1,385 * 709 

5-1/4" Double Sided Minifloppy 1,056 264 

8" Floppy (HP Format) 4,5QO 1,125 

8" Floppy (IBM Format) 2,002 ** 250 

"5MB" Winchester 18,848 4,712 

"10MB" Winchester 37,820 9,455 

"15MB" Winchester 56,730 14,182 
+------------------------------------------------------------+ 
* Sector size is 512 bytes. 
** Sector size is 128 bytes. 

All other media have 256 byte sectors. 

5-57 



Disc Sector Allocation 

Beginning with logical sector number 0, several contiguous sectors 
are reserved for system use, that is they do not contain file 
data. The sector map of a disc looks like this: 

Sector 
Humber Contains 

+-------+---------------------------------------------------+ 
o Header Record 

1 Boot sector tor operating system disc. FF's for 
non-O.S. disc. 

2-XX File Allocation Table (FAT) Humber 1 

xx-xx File Allocation Table (FNf) Number 2 

xx-xx Disc Directory 

xx - Disc Data Area 
Last 

+-------+---------------------------------------------------+ 

System Software 

NOTE: The number ot FAT, DIRECTORY and DATA sectors varies from media type to 
media type. 

5-58 



System Software 

Header Record 

The header record contains disc dependent data. It is always the first logical 
disc record. The header record is structured as follows. 

ENTRY REFERS TO DISC TYPE 

I 3" & 5"1 3" db!. \ RAM 
I I single I sided \ disc I 8" \ 
I========================+========+========?========+========+ 
IEBH, 1CH,90H (3 Bytes} I All discs contain this information I 
I------------------------+--------+--------+--------?--------+ 
"HP150" (8 Bytes} I All discs contain this infonnationl 
------------------------+--------+--------+--------+--------+ 
bytes per ;3ector (W) I 256 I 512 I 512 I 256 I 
------------------------+--------?--------+"-------+--------+ 
sectors per cluster* (B)\ 4 I 2 I 1 I 16 \ 
------------------------+--------+--------+--------+--------+ 
reserved sectors (w}1 2 I 2 I 2 I 2 I 
------------------------+--------+--------+--------+--------+ 
number of FATs (B)I 2 I 2 I 1 I 1 I 
------------------------+--------+--------+--------+--------+ 
number of DIR entries(W}I 128 I 128 I 128 I 256 I 
------------------------?--------+--------+--------+--------+ 
total sectors (W}I 1,056 I 1,385 I ** 4,500 I 
------------------------+--------+--------+--------+--------+ 
media type = FAR (B}I All discs use this value 
------------------------+--------+--------+--------+--------+ 
sectors per FAT (W}I 3 I 3 I 3 I 3 I 
------------------------+--------+--------?--------+--------+ 
sectors per track (W)I 16 I 8 I NA i 30 I 
------------------------+--------?--------+--------+--------+ 
number of heads (W)I 2 I 2 I NA I 2 I 
------------------------?--------?--------+--------+--------+ 
, of hidden sectors I All discs use this value 
= OOH (W) I 

+------------------------?-----------------------------------+ 

5-59 



ENTRY REFERS TO DISC TYPE 

I 
I 15MB I 10 MB I 15 MB I IBM 8" I 
1========================+========+========+========+========1 
IEBB, 1CH,90H (3 B.ytes)l All discs contain this information I 
1------------------------+--------+--- -,- ---+--------+--------1 
I "HP150 " (8 Bytes) I All discs contain this information I 
1------------------------+--------+--------+--------+--------1 
Ibytes per sector (W)I 256 I 256 I 256 I 128 I 
1------------------------+--------+--------+--------+--------1 
Isectors per cluster* (B)I 16 I 16 I 16 I 8 I 
1------------------------+--------+--------+--------+--------1 
I reserved sectors (W) I 2 I 2 I 2 I 1 I 
1------------------------+- ------+--------+--------+--------1 
number of FATs (B) I 2 I 2 I 2 I 2 I 
------------------------+--------+--------+--------+--------1 
number of DIR entries(W)I 1,024 I 1,024 I 1,024 I 68 
------------------------+--------+--------+--------+--------
total sectors (W)I 8,848 I 37,820 I 56,730 I 2,002 
------------------------+--------+--------+--------+--------
media type = FAR (B)I All discs use this value 
------------------------+--------+--------+--------+--------
sectors per FAT (W) I 9 I 15 I 21 I 6 
------------------------+--------+--------+--------+--------
sectors per track (W)I 31 I 31 I 31 I 26 
------------------------+--------+--------+--------+--------
number of heads (W)I 4 I 4 I 6 I 1 
------------------------+--------+--------+--------+--------
, of hidden sectors I All discs use this value 
= DOH (W)I 

+------------------------+-----------------------------------+ 
* Also referred to an an allocation unit. 
** Size specified in the DEVCOHFG utility. 

5-60 

System Software 



Boot Sector 

The boot sector holds an index to other sectors which 
system code (MS-DOS). During system initialization, the 
code from the sectors indexed by the boot sector. 
non-operating system disc, this sector contains FF's. 

System Software 

contain the operating 
firmware reads in the 

If the disc is a 

The format of the boot sector of a disc containing an operating system is as 
follows. 

+--------------------------------------------------+ 1 Number of sectors to Read (WORD) 1 
1--------------------------------------------------1 1 Absolute Disc Sector lumber to Load From (WORD) 1 
1--------------------------------------------------1 1 Memory Address to Load Into (Offset) (WORD) 1 
1--------------------------------------------------1 
1 Memory Address to Load Into (Segment) (WORD) 1 
+-----------_ .. _------------------------------------+ 

(contiguous) 
+--------------------------------------------------+ 
1 Humber of Sectors to Read (WORD) 1 
1--------------------------------------------------1 
1 AbHolute Disc Sector Number to Load From (WORD) 1 
1--------------------------------------------------1 
1 Memory Address to Load Into (Offset) (WORD) 1 
r--------------------------------------------------I 
1 Memory Address to Load Into (Segment) (WORD) 1 
+---------------------------------------_ .. _--------+ 

(contiguous) 
+--------------------------------------------------+ 
1 1 
1 1 
+--------------------------------------------------+ 

(contiguous) 
+--------------------------------------------------+ 
I FFFFH (Extent Terminator) (WORD) I 
+--------------------------------------------------+ 
1 Execution Starting Address (Offset) (WORD) 1 
+--------------------------------------------------+ 
1 Execution Starting Address (Segment) (WORD) 1 
+--------------------------------------------------+ 

Note: The second through n'th extents may not exist. 

---------+ 

first 
extent 

---------+ 
---------+ 

second 
extent 

---------+ 
---------+ 

n'th 1 
extent 1 

---------+ 

5-61 



System Software 

File Allocation Table (FAT) 

DISC CLUSTERS 
Disc sectors are grouped together into what are known as "clusters". On a 3 
1/2" flexible disc, there are four sectors per cluster. Files are assigned 
space on the disc in increments of 1 cluster. That is for a 3 1/2" disc files 
are built in one kilobyte pieces. 

The File Allocation Table is an area partitioned into many one and one half byte 
(12 bit) entries, each representative of a particular cluster. A file's 
directory entry contains a starting cluster number. The FAT entry corresponding 
to this cluster will point to another cluster, being the second cluster of the 
file. The FAT entry corresponding to this second ciuster will point to a third 
cluster and. so on. That is, the FAT entries describe a linked list of clusters 
containing the file. 

FAT STRUCTURE The File Allocation Table always begins on the first section 
after the reserved sectors. If the FAT is larger than one sector, the sectors 
are contiguous. Two copies of the FAT are usually written for data integrity. 
The FAT is read into one of the MS-DOS buffers whenever needed (open, read, 
write, etc.). The File Allocation Table is an array of 12-bit entries (1.5 
bytes) for each cluster on the disk. Tne first two FAT entries map a portion of 
the directory; these FAT entries indicate the size and format of the disk. 

The second and third bytes currently always contain FFH. 

The third FAT entry, which starts at byte offset 4, begins the mapping of the 
data area (cluster 002). Files in the data area are not always written 
sequentially on the disk. The data area is allocated one cluster at a time, 
skipping over clusters already allocated. The first free cluster found will be 
the next cluster allocated, regardless of its physical location on the disk. 
This permits the most efficient utilization of disk space because clusters made 
available by erasing files can be allocated for new files. 

Each FAT entry contains three hexadecimal characters: 

000 If the cluster is unused and available. 

FF7 The cluster has a bad sector in it. MS-DOS 
will not allocate such a cluster. CHKDSK counts 
the number of bad clusters for its report. 
These bad clusters are not part of any allocation 
chain. 

FF8-FFF Indicates the last cluster of a file. 

xxx Any other characters that are the cluster number 
of the next cluster in the file. The cluster 
number of the first cluster in the file is kept 
in the file's directory entry. 

5-62 



System Software 

HOW TO USE THE FILE ALLOCATION TABLE The following information is included 
for system programmers who wish to write installable block device drivers. This 
section explains how MS-DOS uses the File Allocation Table to convert the 
clusters of a file to logical sector numbers. The driver is then responsible 
for locating the logical sector on disk. Programs must use the MS-DOS file 
management function calls for accessing files; programs that access the FAT are 
not guaranteed to be upwardly-compatible with future releases of MS-DOS. 

Use the directory entry to find the start ing cluster of the file. Next, to 
locate each subsequent cluster of the file: 

1. Multiple the cluster number just used by 1.5 (each FAT 
entry is 1.5 bytes long). 

2. The whole part of the product is an offset into the FAT 
pointing to the entry that maps the cluster just used. 
That entry contains the ~luster number of the next 
cluster of the file. 

3. Use a MOV instruction to move the word at the calculated 
FAT offset into a register. 

4. If the last cluster used was an even number, keep the 
low-order 12 bits of the register by ANDing it with FFF; 
otherwise, keep the high-order 12 bits by shifting the 
register right 4 bits with a SUR instruction. 

5. If the resultant 12 bits are FF8H-FFFH, the file contains 
no more clusters. Otherwise, the 12 bits contain the 
cluster number of the next cluster in the file. 

To convert the cluster to a logical sector number (relative sector, such as that 
used by Interrupts 25H and 26H and by DEBUG): 

1. Subtract 2 from the cluster number. 

2. Multiply the result by the number of sectors per 
cluster. 

3. Add to this result the logical sector number of the 
beginning of the data area. 

MS -DOS Disc Directory 

The disc directory is a list of all files residing on the disc. The FORMAT 
program builds the root directory for all disks. Its location on disk and the 
maximum number of entries are dependent on the media. 

Since directories other than the root directory are regarded as file by MS-DOS, 
there is no limit to the number of files they may contain. 

All directory entries are 32 bytes in length, and are in the following format 
(note that byte offsets are in hexadecimal): 

5-63 



0-7 Filename. Eight characters, left aligned and padded, 
if necessary, with blanks. The first byte of this 
field indicates the file status as follows: 

8-0A 

OB 

5-64 

OOH The directory entry has never been used. This is 
used to limit the length of directory searches, 
for performance reasons. 

2EH The entry is for a directory. If the second byte 
is also 2EH, then the cluster field contains the 
cluster number of this directory's parent directory 
(OOOOH if the parent directory is the root 
directory) . Otherwise, bytes OlB through OAB are 
all spaces, and the cluster field contains the 
cluster number of this directory. 

E5H The file was used, but it has been erased. 

Any other character is the first character of a 
filename. 

Filename extension 

File attribute. The attribute byte is mapped as follows 
(values are in hexadecimal): 

01 File is marked read-only. An attempt to open the 
file for writing using the Open File system call 
(Fvnction Request 3DH) results in an error code 
being returned. This value can be used along 
with other values below. Attempts to delete the 
file with the Delete File system call (13H) or 
Delete a Directory Entry (41H) will also fail. 

02 Hidden file. The file is excluded from normal 
directory searches. 

04 System file. The file is excluded from normal 
directory searches. 

08 The entry contains the volume label in the 
first 11 bytes. The entry contains no other 
usable information (except date and time of 
creation), and may exist only in the root 
directory. 

10 The entry defines a sub-directory, and is 
excluded from nOl~al directory searches. 

20 Archive bit. The bit is set to "on" whenever 
the file has been written to and closed. 

Note: The system files (IO.SYS and MSDOS.SYS) 
are marked as read only, hidden, and system 

System Software 



files. Files can be marked hidden when they 
are created. Also, the read-only, hidden, system, 
and archive attributes may be changed through 
the Change Attributes system call (Function 
Request 43H). 

OC-15 Reserved. 

16-17 Time the file was created or last updated. The hour, 
minutes, and seconds are mapped into two ~es as follows: 

+-------------------------------+------------------------------+ 
offset 15H offset 14H 1 

1 
1 15 14 13 12 11 10 9 8 1 7 6 5 4 3 2 1 0 1 
1---+---+---+---+---+---+---1---+---+---+---1---+---+---+---+---1 
IYIYIYIYIYIYIYIMIMIMIMIDIDIDIDIDI 
1---+---+---+---+---+---+---1---+---+---+---1---+---+---+---+---1 
1 year 1 month 1 day of month 1 

where: 

H is the binary number of hours (0-23) 
M is the binary number of minutes (0-59) 
S is the binary number of two second increments 

18-19 Date the file was created or last updated. 
The year, month, and day are mapped into two bytes 
as follows: 

+-------------------------------+-------------------------------+ 
offset 17H 1 offset 16H 1 

1 1 
1 15 14 13 12 11 10 9 8 1 7 6 5 4 3 2 1 0 I 
1---+---+---+---+---/---+---+---+---+---+---1---+---+---+---+---1 
1 HIlI I H 1 H 1 HIM I t4 1 M I M 1 M I MiS 1 SIS 1 SiS 1 
1---+---+---+---+---1---+---+---+---+---+---1--'·+---+---+---+---1 
1 hour I minute 1 second 1 

l-fhere: 

Y is 0-119 (1980-2099) 
M is 1-12 
D is 1-31 

lA-1B Starting ch,ster; the clus'Ger number of the first 
cluster in the file. 

Note that the first cluster for data space on all disks 
is cluster 002. 

The cluster Nwnber is stored with the least significant 
byte first. 

System Software 

5-65 



NOTE 

Refer to section "How to Use the File Allocation 
Table," for details about converting cluster 
numbers to logical sector numbers. 

lC-lF File size in bytes. The first word of this four-byte field 
is the low order part of the size. 

5-66 

System Software 



SYSTEM FIRMWARE .. 

~--------------~[!] 

The HP 150 system contains a large amount of system management code located in 
Read Only Memory. In general, the firmware is not designed to be utilized by 
system programmers. The operating system BIOS serves as the interface to 
firmware located functionality. 

The HP 150 firmware is a rather complex multi-tasking operating system in 
itself. MS-DOS runs on the firmware as a single task from the firmwares 
perspective. Essentially all of the terminal functionality of the HP 150 is 
implemented in the firmware. The firmware implements much of the BIOS device 
driver functionality in addition to the terminal personality. 

This section details the firmware's useage of the 26 K Byte of system RAM which 
it claims, and includes a table of the firmware entry points, vectors located 
within a portion of that memory. 





Firmware Memory Map 
RAM 

CONTENTS 

Firmware Entry Point Jump Vectors 

to 

6-1 
6-1 
6-1 





System Firmware 

FIRMW ARE MEMORY MAP 

RAM 

Portion of the system RAM memory is reserved for the use of the firmware. The 
following shows how that address space is allocated. 

Start of MS-DOS BIOS 
06800H +---------------------------------------------+ 

I 
I System Messages 
I 

01560H +---------------------------------------------+ 
Firmware Data Area 
(RESERVED - DO NOT MODIFY) 

00580H +---------------------------------------------+ 
I 
I Firmware Entry Point Jump Vectors 
I 

00400H +---------------------------------------------+ 
Top of Interrupt Vector Table 

FIRMW ARE ENTRY POINT JUMP VECTORS 

The firmware is highly structured, consisting of many tasks drivers, and 
software processors. Long calls may be made to these entities through vectors 
located in an area of firmware RAM. In general, each entry point detailed in 
the table below has a defined set of functions and parameter passing conventions 
for those functions. Programs should not call these functions, except when 
implementing operations as described in section 7 of this manual, Programming 
the HP 150. Access to the firmware entry points (located in ROM) should at all 
times be made through the following jump vectors. 

6-1 



System Firmware 

Address Vector to: Length (bytes) 
+--------+-------------------------+-----------------+ 

00400H System timer tor MS-DOS 4 

00420H 
00425H 
0042AH 
0042FH 
00434H 
00439H 
0043EH 
00443H 
00448H 
0044DH 
00452H 
00457H 
oo45CH 
00461H 
00466H 
0046BH 
o0470H 
o0475H 
0047AH 
0047FH 
o0484H 
00489H 
0048EH 
00493H 
00498H 
00 49DH 
004A2H 
004A7H 
004ACH 
004B1H 
004B6H 
004BBH 
004COH 
004C5H 
004CAH 
OO4cFH 
004D4H 
004D9H 

and applications 
THP ENTRY 
DHP-ENTRY 
Dap-DRlVER 
MMP ENTRY 
STP-ENTRY 
IWP-ENTRY 
PHP-ENTRY 
PAP ENTRY 
PAP-PARSE 
PAP PERFORM 
DTP-ENTRY 
VCP-ENTRY 
CHP ENTRY 
DMP ENTRY 
WMP ENTRY 
KBP ENTRY 
DCP ENTRY 
RSP ENTRY 
UTP ENTRY 
NVRP ENTRY 
GSP ENTRY 
BMP ENTRY 
STGP ENTRY 
HPSP ENTRY 
SKP iNTRy .......... 
SWP ENTRY 
SLP-ENTRY 
GRP-ENTRY 
GRP TKPARSE 
TSP ENTRY 
TPM SKP ENTRY 
IHP-ENTRY 
OHP-ENTRY 
OHP OPl'IOH 
VAU-EXTERNAL DRIVER 
WMP-ENTRY -
KBT ENTRYl 
KBT-ENTRY2 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

+--------+-------------------------+-----------------+ 

6-2 



L--P_R_O_G_R_A_M_M_IN_G_T_H_E_HP_15_0 ___ ---'lr~!.ji, 

This section is intended as an aid to programmers wishing to write applications 
programs to run on the HP 150. The HP 150 includes many system level functions 
intended to ease the complexity of programs running on the machine. Some of the 
examples included in this section demonstrate the use of these facilities. 

In some cases the functions provided, particularly in the area of video 
interfacing, may not provide acceptable performance levels for your application. 
For this reason the internal video structure of the HP 150 is described. The HP 
150's built-in capabilities in the area of data communications are extensive. 
Information is included in this section to allow a programmer to take advantage 
of some of these capabilities. Finally, the HPIB interface on the HP 150 is 
described from an applications program standpoint. The discussion and 
corresponding examples show how to drive this interface and as such extend the 
capabilities of the HP 150 even further. 





CONTENTS 

Generating Escape Sequences 
Performing MS-DOS System Function Calls 
Making AGIOS Function Calls 
Alphanumeric Display Interfacing 

Alphanumeric Video RAM Structure 
Alpha Video Buffer Format 
Video Row Pointer Table Format 
Row Pointer Formulation from Above Table 
Line Buffer Format 
Enhancement/Character Set Byte Structure 
Character Code Structure 
Finding the Row Pointer Table Origin 
Fetching Row Pointers from the Table 
Placing a Character in Alpha Memory 
Writing to Lines 25, 26, and 27 

Graphics Display Interfacing 
Keyboard Interfacing 

Keycode Mode 
Console RAW/COOKED Mode 
Key Characteristics 
Sample Keyboard Driver 
Flushing the Keyboard Buffer 
Keycode Tables 

Programming Data Communications 
Data Comm Using COM1 and COM2 Logical Devices 
Assigning COM1 and COM2 to Physical Ports 
Opening the COM Devices 
Input From the COM Devices 
Output to the COM Devices 
Closing the COM Devices 
COM Device I/O Example - A Terminal Emulator 
Programmatic Configuration of Data Comm 
Reading the Current Configuration 
Changing the Data Comm Configuration 
Restoring the Original Configuration 
Data Comm Control Functions 
IOCTL reads for Input 
Special COM Functions through IOCTL Write Request 
Fast Buffer Send for Output 

HPIB Interfacing 
Limited HPIB Driver Functionality 
Opening the HPIBDEV Device 
HPIB Control Calls 
MS-DOS IOCTRL Function Call 
Control Block Format 
Control Template Format 
Sample Identify Templates 
Sample Read/Write Buffer Templates 
HPIB Interface Example (9111A Graphics Tablet) 

7-1 
7-2 
7-5 
7-8 
7-8 
7-8 
7-9 
7-9 

7-10 
7-10 
7-10 
7-11 
7-12 
7-13 
7-15 
7-18 
7-22 
7-22 
7-23 
7-24 
7-25 
7-26 
7-29 
7-34 
7-34 
7-34 
7-35 
7-35 
7-36 
7-37 
7-31 
7-39 
7-39 
7-43 
7-41 
7-~ 
7-~ 
7-~ 
7-50 
7-52 
7-52 
7-52 
7-53 
7-53 
7-53 
7-54 
7-56 
7-51 
7-58 



Accessory Card Interfacing 
Memory (Slot) Address Identification 

CONTENTS (Cont.) 

7-65 
7-65 



Programming the HP 150 

GENERATING ESCAPE SEQUENCES 

From the Microsoft C Language for example, a formatted print function (from the 
Microsoft C Library) may be used to send an escape sequence to the console 
escape sequence processor. Note that in the following example the string is 
terminated by cariage return and linefeed characters to cause the console output 
buffer to be "flushed", that is have the information actually processed. 

I/define ESC (h;1B 

l1I7.in() 
{ 

printf ( "'1cc&a12c2l'\r\n", ESC ); 
J 

The above example moves the cursor to row 2, column 12 in the currently 
displayed screen window. 

I CAUTION J 

Because AGIOS calls are processed immediatly the call is issued and escape 
sequences are not processed until the console buffer is flushed, mixing the two 
without flushing the console buffer prior to making the AGIOS call may result in 
the AGIOS call being processed first. 

7-1 



Programming the HP 150 

PERFORMING MS-DOS SYSTEM FUNCTION CALLS 

From the Microsoft C Language for example, MS-DOS System Function calls are most 
easily made through an assembly language routine combined with the C object at 
link time. The following is an example of a general purpose System Function 
call written in assembly language. It is actually an assembly language coding 
of a Microsoft C· compatible function. The function, when called with the 
appropriate parameters, can invoke almost any MS-DOS System Function. 
Parameters are passed on the stack. Note that since parameter passing 
conventions between routines vary from language to language, this function is 
particular to Microsoft C. 

;,-------------------------------------------------------------------------------
· , 
· , 
; 
; 
· , 
· , 
· , 
; 
· , 
· , 
· , 
· , 
· , 
; 
; 

· , 
· , 
; 
; 
· , 
· , 
· , 
; 
· , 
· , 

doscall ( a!I:, ~, ~, d:J; ) 
int (1%, ~, ~, ch:; 

Issues an lIS-DOS System Function Call 1I7ith l"egisteros passed in using 
IIicJ:oosoft C pa:rameter- passing comJention and registeros passed out in 
global four 1JOrd lklMable. 

Parameteros in: 
a!I: - Value to put in register AX 
ba: - Value to put in l"egister BX 
~ - Value to put in l"egister CX 
d:J; - Value to put in r.>egistero DX 

Retuzrn11alue: 
1 (boolean TIflE) - Canoy flag t.llS set by function (~ fO%" some f'ns) 
o (boolean FALSE) - Canoy flag riot set by function (no Br'l"OZO) 

Parameteros out: 
Registezas AX, BX, CX, and DX azre ~ as four contiguous 1IOJrds 
in global -oariable 'dc_Pet' (llhich is defined by this FOUtine) 
Jlord 1 - AX l"egister- PetUPned by function 
1ford 2 - BX %'egister ~ by function 
fiord 3 - CX raegister Petumed by function 
Jlord 4 - DX raegister Petuztned by function 

TIfJE EQU 1 ;Boolean tzoue fO%" Z¥Jtuzrn 1Jalue 
FALSE EQU 0 ;Boolean false foro retuzrn mlue 

dc_args STIflC ;stack stmature for passed parameteFs 
IN ? ;Calleros BP 
IN ? ; Retuzrn address 

a!I: in IN ? ; 'a!I:' 
~-in IN ? ;'~' 
~ in DI ? ;'~' 
d:J;-in IN ? ;'d:J;' 
dc:args ENDS 

7-2 



ret_fDYJS 
a:x: out 
b:t:-out 
c:x; out 
d:x;-out 

ret_fDYJs 

DGmlJP 
DATA 

de ret 

STRIC 
IN ? 
IN ? 
IN ? 
DI 'I 
ENDS 

G1lJlJP DATA 

Programming the UP 150 

; structuzae for retuzoned parametel"S 
; Returrned AX IkJrd 
; Returrned BX JIOZ'd 
; Bett.a>ned CX wrd 
; Returrned DX lt10rd 

SEGNENT fiORD PUBLIC ' DJrrA' 
ASSlINE DS:GlVUP 

PUBLIC de ret 
ret_aztgs <OfjO,O,O> ;Global 1JaZtiable ' de ret' declaztation 

DATA E1iDS 

PGRJUP GlVlJP PBJG 
PIDG SEGNENT rIORD PUBLIC ' P1VG' 

ASSlIIIE CS:PGIDUP, DS:DGROUP 

PiIBLIC doscall 
doscall PBJC NEAR 

PUSH BP ;Sa1Je BP and set it up as a pointer into 
J«N BP ,SP ; the stack to ret1."i..elJe passed arguments 
I40V AX,[BP].a:x: in ;Copy AX parameter from stack 
/tIOV BX, [BP] • b:t: - in ;Copy BX parameter fzoom stack 
IfOV CX,[BP].c:x;-in ;Copy CX parameter fram stack 
NOV DX,[BP] .d:x;-in ;Copy DX parameter from stack 
INT 21H - ;ImJoke ItS-DOS System Function 
IDV DGRJUP:de ret.a:x: out,AX ;AX IkJrd for retza.n 
J.tOV DGRJUP:de - ret. lxxt out ,BX ; BX fIOrd for retuzon 
101 DGBJUP: de - 1!et. c:x; - out ,CX ;CX IIOrd for return 
MOV DGRJUP:de - ret.d:x;-out ,DX ;DX fIOrd for zoetum 
KJV AX,F ALSE - - ;Assume no eFl'OI* 

JNC deall end 
NOV AX ,TIiiE 

deall end LABEL NEAR 
pop BP ; Restore BP 
RET 

doscall ENDP 

P1VG ENDS 

END 

As an e~ample of a C program performing an MS-DOS Function Call 
consider the following: 

7-3 



Programming the UP 150 

#define WMNY 0 

stPUCt de ret tern { . /"" doscall' retUPn pa:iX1J1IBte:r structure */ 
char al; 
char ah; 
char bl; 
char bh; 
char cl; 
char ch; 
char> dl; 
chaza dh; 
J; 

TIrlin () 
{ 

/* Prints the dPive letter for the cuzorent default disc */ 

c'l7t:u> dPi:t1e; 

dosoall ( Ox1900, WMMY, DlJMNY, WNNY ); 
if ( de z>et.al < 12 ) 

/* CWTent Disc System F' n * I 

dz..f .. :lJe :: de ret" al + ' A' ; 
else 

drive:: '?'; 
pFintf ( "CUXTent Disc is 'k\r>\n", dri1Je ); 

} 

This program invokes MS-DOS System Function Call 19H (Current Disc) 
returns a number in AL indicating the current default disc drive. 
appropriate drive letter is printed. 

7-4 

vlhich 
The 



Programming the UP 150 

MAKING AGIOS FUNCTION CALLS 

From the Microsoft C Language for example, AGIOS Function calls are most easily 
made through an assembly language routine combined with the C object at link 
time. AGIOS calls, being a special case of the doscall function previously 
described, could be performed using that assembly language routine. However for 
the sake of efficiency another routine is described. It is actually an assembly 
language coding of a Microsoft C compatible function. The function, when called 
with the appropriate parameters, can be used to invoke any AGIOS function. 
Parameters are passed on the stack. Note that since parameter passing 
conventions between routines vary from language to language, this function is 
particular to Microsoft C. Refer to Section 8, AGIOS Function Call Reference, 
for a directory of AGIOS functions . 

. _----------------------------------------------------------------------------, 
; 
; 
; 

int agios ( buf add, length ) 
int buf _add, leTigth 

; PeryOH1iS an ACIOS function call mth paramete:rs passed using Microsoft 
; C la:nguage parameter passing conventions. Calls NSOOS fum.--tion number 044H 
; (I/O Control For DelJices) &ri,th sub-function 003H (JlPite to Dez1ice Control 
; Channel) us'ing CON (console) handle. 

· , 
· , PaPameter.>s in: 
· , buf add - The l'.ddr>ess (offset - assumes same data segment) of the ACIOS 

- parameter buffer for the call. specifies the particular 
ACIOS function to be performed and ather perrtinent data for 
the function. 

; 
; 
; 
; 
; 
; 
; 
; 

length - Specifies the length of the aboIJe parameter buffer in bytes. 

Return value: 
o - ACIOS function executed iI1ith no error. 

· , 
; 

Non-O - ACIOS function executed iI1ith erTO%'. Value retuzrned is the 
status code returned from the function specified in the 
parameter buffexa (see ACIOS func1;ion documentation). 

· , 

PGROUP 
PRJG 

CONIN 

agios args 

buf add 
buf len 
agios _ azogs 

GROUP PRJG 
SEGMENT BYTE PUBLIC ' PRJG' 
ASSUME CS:PGROUP 

EQU 0 ;Sta:ndaxd MS-JX)S console handle 

STIllC ;stack structure for passed azogs. 
IN ? ;Callers BP 
IN ? ;Return a.ddress 
IN ? ;Parvmeter buffer addPess offset 
lJIi ? ;Nurrber of bytes in parm buffer 
ENDS 

7-5 



Programming the UP 150 

agios 

agios 

EVBLlC agios 
PBX NEAR 
EVSH BP 
IKJV BP,SP 
NOV AX,04403H 

101 
IDV 
1CN 
lNT 
pop 
NET 
ENDP 

BX,CONIN 
ex, [BP] ,buf len 
DX,[BP],bu{" add 
2111 -
BP 

PBOG ENDS 

END 

;",Pite contzaol stzting to AGlOS 
;Sa:tJe calleJIS BP 
;lnitialize base pointer 
;NS-DOS System Function 44H, Sub­
; Function 3 
;DelJice handle 
;Get length of pa.rametezo buffezo 
;Get buffezo addrtess 
;Catl lIS-DOS 
;Bestozre calleJIS BP 
;RetUFn to calle%" 

Since the above assembly language function can be used to perfrom any 
AGIOS function, you may wish to put a shell around it for any particular AGIOS 
functions called. This will be done for Function 17, Position Cursor in the 
following example. 

First, declare the parameter buffer structure and data area: 

stFUCt agios -pc_tern ( 
unsigned int funct _ mIITl; 
cha:zr. mode; 
unsigned int colU1ll1.; 
unsigned in-t zao»; 
J; 

1* function mtniJezo It I 
lit rtvde * I 
lit column n:utrber It I 
lit Z"OII nuniJer It I 

The above serves as a template for the parameter buffer particular to the 
Position Cursor function. 

Now two constants, the parameter buffer length and the Position Cursor function 
number are defined: 

/ldefine PC_FLEN 
#define PC FNUN 

sizeof( struct agios"pc _ tem) 
17 

lit Function length * I 
lit Function mtniJezo :II-I 

The following statement actually reserves a data storage area for the parameter 
buffer. 

struct agios""pc _ tem agios""pc...J?<lF = { PC _ FNUM, 0, 0, 0, J; 

The variable 'ret code' is used for the integezo value returned by an AGlOS 
function call. The value indicates success or failure of the function call. 

7-6 



Programming the UP 150 

/'" Function call :retUFn t1alue '" / 

NOfl the cursor positioning function is defined: 

CUl"Sor ( roll, colunn ) 

unsigned int Z'Ot1; 
unsigned int column; 

{ 
agios ..:pc .J!f1P. row II J:IOW; 
agios..:pc.J!f1P.column .. colU1rl1; 
ret _ codB .. (;;gios ( &agios..:pc..J?OI', PC _FLEN ); /'" per70ml the ACIOS call "/ 

J 

Note that the m?de parruneter has not been defined. This would be done in most 
cases only once outside the above routine. The mod~ parameter is defined and 
-the above function called with the following statements: 

agios..:pc ...:J!ll.F. mode • Ox99; 

cursor (2, 12); 

/" POI4 and COll,mn parameters are both t1aUd 
positi1Je absolute 1I1i7'lltl.oll t1alues "/ 

7-7 



Programming the HP 150 

ALPHANUMERIC DISPLAY INTERFACING 

Alphanumeric Video RAM Structure 

The following information describes the internal architecture of the HP 150 
alphanumeric video structure. It provides programmers with a means of bypassing 
the console driver (CON: device) and its AGIOS function subset for the purpose 
of putting alphanumeric information to the screen. 

The AGIOS function set contains some powerful screen manipulation capabilities 
and is the preferred method of accessing the alpha (and graphics) video memory. 
In situations where these functions provide adequate functionality and 
performance they should be used. 

The HP 150 has 48 lines of display normally available to applications through 
console outputs and the AGIOS function calls. The following information applies 
only to the 27 lines (24 text plus two softkey plus one status) forming the 
physical screen as it appears at any given time. 

Each of the 27 lines of alphanumeric text displayed on the screen are 
represented by 80 consecutive words (pairs of bytes) in RAM. A table (video row 
pointer table) indexes the address of the first byte in each line. This table 
is read by the HP 150 video control hardware directly, and the video control 
chip DMAs into the appropriate area of memory accordingly. Note that 
consecutively displayed lines on the screen do not necessarily have their 
storage areas i~ a corresponding order in RAM. 

ALPHA VIDEO BUFFER FORMAT 

+------------~-------------------------+ 
160 character buffer, line "a" 

+--------------------------------------+ 
160 character buffer, line "b" 

+--------------------------------------+ 
160 character buffer, line "e" 

+--------------------------------------+ 

+--------------------------------------+ 
160 character buffer, line "x" 

+--------------------------------------+ 
160 character buffer, line "y" 

+--------------------------------------+ 

7-8 

Note: the ordering 
of line buffers 
here in RAM is not 
indicative of their 
position on the 
screen 



Programming the UP 150 

VIDEO ROW POINTER TABLE FORMAT 

The row pointer table also located in alphanumeric video RAM contains 27 
consecutive pointers indexing the first character of each line in the alpha line 
buffer. That is each pointer indexes the first byte in the above buffer. Note 
that the pointers are arranged line 1 through line 27 as described in the 
following diagram. 

Byte II 1 
2 
3 
4 

Byte # 5 
6 
7 
8 

Byte , 105 
106 
107 
108 

+======================+ 
low byte of pointer 
----- not used ----­
high byte of pointer 
----- not used -----

+======================+ 
low byte of pointer 
----- not used ----­
high byte of pointer 
----- not used -----

+======================+ 

4 bytes each for 
lines 3 - 26 

+======================+ 
low byte of pointer 
----- not used ----­
high byte of pointer 
----- not used -----

+----------------------+ 

forms row pointer 
for line 1 
(top of screen) 

forms row pointer 
for line 2 

forms row pointer 
for line 27 
(bottom of screen) 

ROW POINTER FORMULA nON FROM ABOVE TABLE 

high byte of pointer low byte of pointer * 
1---+---+---+---+---+---+---+---1---+---+---+---+---+---+---+---1 

bit number 115 114 113 112 III 110 I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I 
1---+---+---+---+---+---+---+---1---+---+---+---+---+---+---+---1 

represents I *** I 11~ bit word offset from alpha RAM origin (DOOOOH) I 
1---+---+---+---+---+---+---+---1---+---+---+---+---+---+---+---1 

* 

*** 

The least significant bit (AO) must be a zero (0). 

These bits define the double height and width characteristics of the 
referenced row. Note that double high/double wide characters are not 
supported by the HP 150 firmware, software or hardware. 

D15 D14 
0 0 Single height, single width (standard) 
0 1 Single height, double width \ not 
1 0 Double height top half, double width I supported 
1 1 Double height bottom half, double width / (will not work) 

7-9 



Programming the HP 150 

LINE BUFFER FORMAT 

The diagram below describes the format of each display line's RAM buffer. 

first column position last column position 
in line in line 

I-----------+-----------I-----------Z-----------I-----------+-----------1 
1 character 1 attribute 1 1 character 1 attribute 1 
1 code 1 /char set I 1 code 1 /char set 1 
I-----------+-----------I-----------Z-----------I-----------+-----------1 

pair 6f bytes for 
each character pos­
i tion in line 

+-----------------------+ 

ENHANCEMENT/CHARACTER SET BYTE STRUCTURE 

+--------+--------+--------+--------+--------+--------+--------+--------+ 
D1 D6 D5 D4 D3 D2 D1 DO 

+--------+--------+--------+--------+--------+--------+--------+--------+ 
1 secur- 1 half 1 under- 1 inver- 1 blink character set 
1 i ty 1 bright 1 line I se I code 
+--------+--------+--------+--------+--------+--------+--------+--------+ 

NORMAL ROMAlf ............ 0 · ..... 0 · ..... 0 
ROMAN EXTENSION ......... 0 · ..... 0 · ..... 1 
LINE DRAWING ............ 0 · ..... 1 · ..... 0 
MATH .................... 0 · ..... 1 · ..... 1 
BOTJD NORMAL ROMAN . . . . . . . 1 · ..... 0 · ..... 0 
BOLD ROMAN EXTENSION .... 1 · ..... 0 · ..... 1 
ITALICISED NORMAL ROMAN . 1 · ..... 1 · ..... 0 
ITALICISED NORMAL ROMAN . 1 · ..... 1 · ..... 1 

CHARACTER CODE STRUCTURE 

+--------+--------+--------+--------+--------+--------+--------+--------+ 
D1 D6 D5 D4 D3 D2 D1 DO 

+--------+--------+--------+--------+--------+--------+--------+--------+ 
I end of I 
I line * I 1 bit character code ** 
+--------+--------+--------+--------+--------+--------+--------+--------+ 
* The end of line bit, when set, will cause the remainder of the line to 

be blanked by the HP 150 video hardware. 

** The character sets may be seen by performing "SYSTEM TEST" from the 
HP 150 Service Keys softkey level. 

1-10 



Programming the DP 150 

Finding the Row Pointer Table Origin 

In order to find the base address of the row pointer table a call must be made 
to the firmware "memory manager". The firmware manages the alphanumeric video 
memory and different versions of the firmware may place the pointer table in 
different places in RAM. For this reason it is necessary to call the memory 
manager at run time. 

The following assembly language routine will return a pointer which is an offset 
from the alpha RAM segment at ODOOOOH. It is compatible with Microsoft C 
language function calling conventions. 

ALPHA BEG EQU ODOOOH ;AlpM. 1ri.deo BAN segment 

DJftA 

GBJUP DJftA 
SEGNENT JIORD PUBLIC ' DATA' 
ASSUIIE DS: rx:BJlJP 
ENDS 

GBJUP P1lJG 

SEGIIEIiT III OOOOH 
om 042FH 
LABEL FAR 
ENDS 

SEGNENr 
ASSUIIE 

BYTE WBLIC ' PBJG' 
cs: PGllJUP ,DS: rx:RJIJP,ES: NOTHING 

;------------------------------------------------------------------------------· , 
· , 
; 
· , 
· , 
· , 
· , 
· , 

unsigned int 11id tadd() 

/* RetUZ'f'UJ stan address offset of 1Jideo pointer table. Segmtnlt is 
'alpha_seg'. tJideo metrDZ"Y is addressed through a table of pointers 
to absolute display locations. This function calls the fiZ"lllilare 
memozoy ma.nagezo and zretUZ'f'UJ the tabl.e 0Pigin * / 

7-11 



Programming the HP 150 

11id todd 
PUBLIC 11id todd 
PlVC 
PUSH 
PUSH 
PUSH 
101 
PUSH 
CALL 
SUB 
NOV 
SIlL 
ADD 
I«JII 
pop 
pop 
pop 
RET 
EllDP 

NEAR 
BP 
DB 
ES 
DX,7 
DX 
mem 11fP" 
BX ,7u:J?HA SEC 
CL,4 -
BX,CL 
BX,12H 
AX,BX 
ES 
DB 
BP 

;Saoe BP 
;Saoe DB 
;SaJ1e ES 
; Call the firmllr,ate JIIBIIIOpY wrznager llith 
; function 7: zretuzon segment of rotI 
; pOinter table in BX. 
;C~ to ALPHA SEC zaelatioe acldzaess 
;NUttiply by 16 -

;Yia:ed offset to reM table 

;Bestore ES 
;Bestmoe DB 
;Bestore BP 

Fetching Row Pointers from the Table 

Given the row pointer table origin, the following Microsoft C compatible 
assembly language function will return the pointer for any alphanumeric video 
row, zero throu,gh 26. Note that the pointer returned from this routine is a 
word pointer and that it must be multiplied by two to get the correct byte 
offset for the row origin. This i~ done in the qik_char function which follows. 
The function uses an external variable ~ tab which is assumed to contain the 
result of the 11id tad function above. The -following C language statement would 
make that assignment: 

int Z"OIl tab 

Note that the variable Z"OIl tab is declared external in the following assembly 
language code and defined in the C module above. 

E1lTBII Z"OIl tab:'IIORD ;Base address of alpha. 1Jideo roll pointer 
; table. Nust be initialized from 
; , 11id _todd' funtion prior to use. 

;--~---------------------------------------------------------------------------
; unsigrued int Z"OIl..:ptr ( Z"OIl_ num ) 
; 
; . , . , 
; 

7-12 

/'It RetUZ'f1S staIrt offset address of tJideo rotI n:uniJe:r 'roril num' • 
Segment is 'alpha_seg'. Pointer comes from table »hose base 
is ' r07J tab' is returned by function ' 11id _ tadd'. .. / 



STIllC 
1M ? 
1M ? 
1M ? 
ENDS 

WBLIC ZOOtI pzo 
PlVC NEAR 
PUSH BP 
I«J'I BP ,SP 

Programming the UP 150 

;S'taCk s-tructure for passed azoguments 
;Callers BP 
; Return address 
; '7.'011_ num' argument 

IDV BX,[BP].ZOOtI num ; '7.'OII_num' in BX 
SHL BX,1 - ;4 bytes 
SHL BX, 1 ; pel" entzoy 
IDV AX ,DGBOUP: %'011 tab 
ADD BX,AX - ;NOII haoe offset address of 7Jideo Z'OfI ptzo 
WSH DB 
NOV DX,ALPHA SEC 
NOV DB ,DX -
/tDV AL,[BX] 
ItKJV iIH,[iJX+2] 
pop DS 
pop BP 
RET 
ENDP 

; u. order %'OIl pointezo 
; High ordezo ZOotI pointer 

Placing a Character In Alpha Memory 

The Microsoft C compatible function qik_char described below is an example of a 
routine which uses the row pointer returned by the above function to place a 
character onto the display in any row and column position. 

;----------------------------------------~-------------------------------------
; qik chtzra ( ztOIJI, col, displl7OZ'd ) 

· , 
; /* Jfzoites dispr40rd (character> code and attzoibute/character set code into 
; alpha video menrJZ>y at display roll rrumber 'rmi' and colunn 1'lUlIbezo 'col'. 
; Uses Z"OII7 origin address Feturned by the 'roII..:ptZO' function. 
· , 
; 
· , 
· , 
· , 
· , 
· , 

Azoguments in: 
'Z"OlII' 
'col' 
, disp _1IOZ'd' 

- screen position roll nutriJezo (0 < II ZOOfI < II 26) 
- sczreen position colurm TIUIIiJezo (0 < II col < II 79) 
- high oztdezo byte is attzoibute/chtuv.cteza set byte 

and leN order byte is character code 

; Return -oalues: none 
· , 
; Registers pzoesezorJed: BP, SP, 81 
· , 

1-13 



Programming the UP 150 

qc'ltor _ arrJs srIIJC ; stack stzoucturoe fOF passed argumerrt 
DI ? ;Callezos BP 
1M ? ; lletuzon address 

POll DI ? ; Sc:reen roll 7UIIIbezo (0 <:I ztofI <:I 26) 
col IN ? ; Sc:reen colUl1l1 nuniJer (0 <. col < III 79) 
displlOrd DI 7 ; attribute/ char set and c'Jtmtactert bytes 
qchar_arrJs ENDS 

qik_char 
PUBLIC qik_chazo 
PBX NEAR 
PUSH BP 
NOV BP,SP 
IDV AK,[BP] .r'mf1 ;Get 1Jideo RAN adt:htess 
Pi/SH AX ;RorD on stack fOF 'roII1yzo' call 
CALL FOIJ1pZO 
NOV DI,AX ; Lines alpha RA/tI address !lOrd offset 
pop AX ; POll back off stack 
NOV AX, [BP] . col ;Column off stack 
ADD DI,AX ;Md to r>Oli disp~ 
SHL DI,l ; TIiO bytes pe:r c'Jtmtactert 
NOV AX,[BP].dis~ ;Chazo and enhancement codes !:rom stack 
NOV BX,DS ; Saoe curzaent data segnam-t 
IOV ex ,ALPHAJJEG ; Initialize a.lpha RAN segment 
NOV DS,CX 
l«>V [DI],AX ;Put c1u:aa and enhancement to alpha RAIl 
NOV DS,BX ; Bestoz.e original data segment 
pop BP 
RET 

qik_char END{' 

[ NOTE 

It is necessary to initialize the video memory prior to using the above function 
for random character reads and writes. The firmware sets bit 7 of the character 
code to blank trailing portions of lines. Any character placed into the line 
buffer will not be displayed unless all preceeding character codes in the line 
have their most significant bits cleared (0). The following r.Ucrosoft C code 
uses the qik char routine above to clear all those bits, writing a space with no 
attributes to display lines 1 through 21 .. 

7-14 



Programming the HP 150 

/" Initializes alpha RAIl for random use of the ' qik char' function. "rites 
spaces to all chaztactezo positions on lines zezoo thzoough 23. This is 
zoequizted to FfJfINJI1e any end-of-line ~ in the menrory. Should be 
called once pPiozo to using the ' qik_char' flmCtiOn in a random IIIlIfI'IBI' "/ 

{ 
int ztOII; 

int col; 

} 

for ( ~ = 0; ztOII <- 23; ~) { 
for (col • 0; col <= 79; ++col) { 

qik char (%'011, col, 0:z:0020 ); 
J; 

J; 

Writing to Lines 25, 26, and 27 

The HP 150 uses screen lines 25 and 26 for softkey labels, and line 27 as a 
status line. It periodically updates softkey labels and the cursor position 
counters on lines 25 and 26, and the time and status messages on the 27th line 
from variables it maintains in other places in memory. The previously described 
character to screen routine qik_char is capable of writing to any screen line, 
including the last three. If that routine is to be used to place text on lines 
25 through 27 the firmware should be disabled from overwriting those lines with 
softkey and status text. The first of the two routines which follow will 
disable firmware modification of the last three lines of the screen. The second 
should be called prior to program termination to reenable that processing. 

PGBJUP GBJUP P'Bf.)G 

fi:mrJumps SEGMENT AT OOOOH 

OR: 0420H 
thp entPy LABEL FAR 

OB:; 043EH 
php_ent:ry LABEL FAR ;Personality ha:ndl.ezo pzsocess 

firmJumps ENDS 

PRJG SEGNENT BYTE PUBLIC ' PROG' 
ASSUItE CS: PGBJUP ,DS: IXlIVUP ,ES: IIOTHING 

7-15 



Programming the HP 150 

;-------------------------------------------------------------------

· , 
· , 
; 
· , 
· , 
; 
; 
· , 
· , 

j* To use the status 1 ins on the HP150, one DlSt fiPfrt disable the 
poPtion of the fi~ (the status line pztOCess) that Ji10Uld 
other>ltri.se contiriually update the status line. After disabling the 
status 1 ins process, a pzoogram can II1rite into the 11ideo merI~ 
represerrting the status line. 

Arguments: none 

; Retuzrned values: none 
; 
· , Registers presezwoed: none 
· , 

PUBLIC stat init 
stat init PBJC NEAR-

IDV DX,l 
PUSH DX 
MOV DX,2 
PUSH DX 
CALL php_entry 

DS,DX 

J«JV DX,O 
p[Slf DX 
NOV DX,O 
PUSH DX 
NOV DX,3 

IflSH DX 
KJV DX,[3AHJ 

IflSH DX 
101 DX,6 
PUSH DX 
CALL thp_entry 

#KJV DX,O 
IflSH DX 
CALL yield 

stat init ENDP 

7-16 

*j 

;Get DS register wIue for the 
; global context area for the 
; terminal personality 
; The DS register wlue is 
; Fetuzrned in the DX register, 
; mcn1e it into the DS register 

;Code to disable status line process 

;Nessage type to send to status 
; 1 ins process 

;Using the 1B wlue obtained abmJe 
; get the token for the status 
; line process 

;Call TASK HANDLER PROCESS to 
; disable tire status line process 

;The yield FOUtine is dtascr>ibed 
; elsel4here 



Pl'ogramming the HP 150 

;-------------------------------------------------------------------

· , 
· , 
· , 
· , 

/'It rhis zooutine r'eI1tZbles the fiZ'frMZlte status line process causing it 
to :resume updating of softkey labels, CUZ'Seno position infornation, 
time, and status messages on the last three lines of the displafi. 

· , 
Argurrtmts in: none · , 

; 
; Returned oczlues: none 
· , 
· , 
· , 

PUBLIC stat alnu 
stat alnu PBJC NEAR-

IDI DX,l 
PUSH DX 
l«JV DX,2 
PUSH DX 
CALL php entry 

DB,DX 

101 DX,O 
PUSH DX 
It10V DX,l 
PUSH DX 
KJV DX,3 

lfJSH DX 
IlOV DX,[3AHJ 

EflSH DX 
J!DV DE, 6 
PUSH DX 
CALL thp_entry 

toI DX,O 
EflSH DX 
CALL !field 

stat alnu ENDP 

PlVG ENDS 

END 

'It/ 

;Get DB register oczlue feno the 
; global conte:J:t area feno the 
; terminal pezosonality 
;The DB r>egister mlue is 
; retuz.ned in the DX :register, 
; 1ImJe it into the DB register 

;COik to enable status line process 

;l4essage type to send to status 
; line process 

;Using the DB oczlue obtained abmJe 
; get the token feno the status 
; line pFOCess 

; Cal 1 TASK HANDLER PBJCESS to 
; enable the status line process 

;The !field zooutine is desC%"ibed 
; elstniJhere 

7-17 



Programming the UP 150 

GRAPHICS DISPLAY INTERFACING 

The display system on the UP 150 consists of two separate "planes", a character 
based alphanumeric plane and a bit mapped graphics plane 512 dots wide by 390 
dots high. The Alphanumeric and Graphics planes overlay each other on the 
display. 

A comprehensive set of high level functions are provided to access the graphics 
plane. The AGIOS function set (see System Software section) provides functions 
to perform vector draws, area fills, implement graphics-plane based character 
sets, etcetera. This is the preferred interface for programmers wishing to 
access the graphics bit-map. However there are situations where, for 
performance or ease of software transportation reasons, the programmer may wish 
to access the graphics bit-map directly. The following information describes 
how that may be done. 

Portion of the 8088 address space is allocated to a 32 kilobyte block of memory, 
the Graphics RAM (see Memory and I/O Mapping section). Of this 32 -kilobyte 
block, a little over 24 kilobytes forms the graphics bit-map. The remainder is 
used by the firmware and should not be modified in any way by the programmer. 
The bit-map is organized as described in the following diagram: 

'y' 'x' BIT POSITION 
BIT 

POSIT- :0 
ION 

:8 
1: 

:16 
15: 

:24 
23: 

:32 
31: 

:40 
39: 

o 

1 

+--------+--------+--------+--------+--------+-----
I COOOOH I C0001H I COOO2H I C0003U I C0004H I 

+--------+--------+--------+--------+--------+------
I C0040H I C0041H I C0042H I co043H I co044H I 

+--------+--------+--------+--------+--------+------
I 
I 

+--------+--------+--------+--------+--------+------
I C6140H I C6141H I C6142H I C6143H I C6144H I 
+--------+--------+--------+--------i---------+------

:504 
503: 511: 

------+--------t 
I C003FH t 

-----+--------
I COOm 

-----+--------+ 
I 
I 

-----+--------+ 
I C617FH I 

-----+--------+ 

A bit set ("1") will turn on the graphics dot corresponding to that bit 
position. 

An example of an assembly language procedure which accesses the graphics bit map 
follows. The routine is implemented as a Microsoft C Language compatible 
function which sets a bit (turns the graphics dot on) given the x and y 
coordinates. 

1-18 



Programming the UP 150 

;------------------------------------------------------------------------------
· , bit_set ( ~, Y ) 
· , 
· , 
· , 

/* sets graphics bit nap ~ location for bit position '~' on 
soan line 'y' */ 

· , 
· , 
· , 

de azogs 

cm:in 
lxx;-in 

c:s:in 
d!&-in 
de:args 

%let azogs 
cm:Out 
lxx;-out 
c:s:-out 
d1z;-out 
ret_argB 

DCBlJUP 
DJrrA 

EQU 1 
BQU 0 

STIlle 
1JII '1 
IN '1 
1M '1 
IJII '1 
DlI '1 
III '1 
ENDS . 

STlllC 
III '1 
IN '1 
III i 
1JII '1 
EN1JS 

GBJUP DJrrA 

;Boolean troue for %letUl'ft 11alue 
;Boolean false for .1"'e'tUI'ft 11alue 

;stack stzructure for passed ~ 
;Catlers BP 
; Rett.arn address 
;'cm:' 
; , lxx;' 

; 'c=' 
; I d!&' 

; stFUCture for retlQ'fted parameters 
; Betl.a"l'UKl AX IIOzrd 
; Retuztned BX IIOzrd 
;Betuztned CX IIOrd 
; Retuztned DX IIOzrd 

SEGIIEIIT JIORD PUBLIC 'DATA' 
ASSU/IIE DS: JX:lOUP 

PUBLIC de ret 
ret_at"gs <0,0,0,0> ;Global 1k1.:Piable ' de ret' declaration 

DA'rA ENDS 

7-19 



Programming the UP 150 

bit set 

bit set 

data seg 

PNOG 

CRJUP PRJC 
SECIIEIIT BfrB PUBLIC ' PBJG' 
ASSUlIB CS: PClCIUP ,DS: DClCIUP ,ES: IIOrHIlIG 

ST1IJC 
DI 1 
DI 1 
DI 1 
DI ? 
EIIDS 

PUBLIC bit set 
PBJC 
PUSH 
ICN 
IDV 
WN 
MIL 

101 
NOV 
ICN 
lCN 
SHR 
ADD 
ItDV 
AND 
l«JV 
ROL 
ID'I 
lCN 
OR 
pop 
RET 
ENDP 

KNDP 

ENDS 

END 

NEAB-
BP 
BP,SP 
BX,[BP] .f! 
AX,4OH 
BX 

DI,AX 
DX,[BP].z 
AX,DX 
CL,3 
AX,CL 
DI,AX 
CL,DL 
CL,OOOOOll1B 
DL ,OOOOOOOlB 
DL,CL 
CX,OCOOOH 
ES,CX 
ES:[DI],DL 
BP 

;stack stl'UCture fozo passed azogumerrts 
;Ca1.l.e1"8 BP 
; Retuzon a.ddztess 
;z coordinate (0 (8 z (III 511) 
; f! coordinate (0 (8 f! (8 389) 

;Cet f! coordinate (0 (. f! (8 389) 
; 40 bNtes per line in bit na:rp 
; AX nOlI contains start byte of graphics 
; raster line y. Ignore upper ItJOld of 
; result as should be zero. 

;Cet z coordinate (0 (III z (III 511) 
;Detemrine nuniJezo of JIhole bNtes ClC.I'08S 

; z coordinate is. 

;Add to %"l1.tIter line byte offset. 

;IJetermine bit position from z 
;Create a 1IIl8k 

;Craphics bit na:rp segment 

;Set the bit in graphics bit na:rp 

As an example of a C program using the above function, consider the following. 
This program takes 9111A Graphics Template stylus position inputs and scales the 
x and y coordinates down to the HP 150 graphics bit-map matrix size. The 
corresponding dot in the graphics bit-map is then turned on. In this way, the 
graphics template stylus acts as an "electronic pencil" for the HP 150 graphics 
display. Note that the stylus status check inhibits bit-map modification unless 
the stylus is depressed. 

The following main calling routine requires the following support code which is 
described elsewhere in this section: 

1-20 



Programming the HP 150 

- doscall f'unction, see "MS-DOS System FWlction Calls f'rom 
C Language". 

- All routines (except muin), structures, variables and constants 
f'rom "HPIB Interf'ace Example (91lA Graphics Tablet)". 

I"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""1 
main( ) 
{ 

int :.:, y, status; 

if ( tab init() =. 1 } { 
pztimf ( ""Ic""dA\n\zo", ESC ); 
pztintf ( "k"dC\n\zo", ESC ); 
llhile ( 1cbhit() •• 0 } { 

get _:x; JI_ status (k, &y, &status, 

I"" initialize graphics tablet "1 
I" clear graphics "remopY ""I 
I" tum on graphics IIIBIfIOpY "" I 

tab handle); I"" get data, "" I 
I"" if stylus llithin bounds and 

is depressed, put dot on display"" I 
if ( (:x; <= 0:1:Zde9) &S (y u 0:I;216e) && 

( (status •• O~19) II (status =- 0:1;719) } } { 
:.: = :.:123; 1'It corwert stylus position to "1 
y • 389 - (yI22); I" display bit nup position "1 
bit_set ( :.:, y ); I" tum on graphics 1RIflfIm'!I bit "1 

J; 
J; 

J; 

:t:enia:cl08e (tab -,_vile) ; I" close the tablet "1 
J 

7-21 



Programming the HP 150 

KEYBOARD INTERFACING 

The HP 150 keyboard includes many special function keys such as "Clear display". 
These keys are processed locally by the HP 150 firmware rather than being sent 
to an application requesting its information through the console input function 
and its associated high-level language inplementations (for example BASIC 
"INPUT"). Applications may obtain additional control over the HP 150 keyboard 
by placing the HP 150 keyboard into what is termed "keycode mode". This mode 
allows such keys as Clear dispLay to be passed to the application program rather 
than resulting in the display being cleared. 

Keycode Mode 

Through the use of keycode mode, applications can detect activation of almost 
any HP 150 keyboard key as well as the state of the SHIFT, EXTEND CHAR, and CTRL 
keys in conjunction with other keys. Keycode mode also allows programs to 
receive touchscreen input and distinguish it from keyboard input. 

The following routines are examples showing how the HP 150 might be put into 
keycode mode. The AGIOS calls are more thoroughly described in the HP 150 
Programmer's Reference Manual. The first function uses the AGIOS Keycode ON/OFF 
function to read and save the keycode mode (on or off). It could be used so 
that the following function (kin_Fest) could restore the entry mode prior to 
program termination. The other two functions set keycode mode on and off 
respectively. Note that all functions are written in the C language and use the 
agios and data_seg functions described elsewhere in this section. 

#define 011 1 
#define OFF 0 

strruct agios_"ko_tem { /'" ACIOS Keycode Mode ON/OFF parameter temp"'/ 

#define KO FLEa 
#define KO:FNUM 

#define KS FLEN 
#define KS:FNUH 

unsigned int funct nutn; 
char mode;-
}; 
sizeof( stPUCt agios ko tem) 
43 /'" Keycode nVde ON/OFF function II it / 

( /* ACIOS Key Status parameter template ", / 
unsigned int funct nutn; 
unsigned int buf_Offset; 
unsigned int buf _segment; 
J; 
sizeof( struct agios ks tem) 
44 /'" Read k2ycOde 1IVde status function , ", / 

strruct agios_ko_tem agios_K.o.J!<lI' '" lKO_FHUM, OJ; /'" .ACIOS set keycode 
mode conm:md buffera "/ 

struct agios_ks_tem agios_ks.J?CT-r; /'" ACIOS r>ead keycode 

unsigned int entry_kern; 
int dseg; 

7-22 

nrxle conm:md buff era "/ 



Programming the UP 150 

km..llet( } 
{ 

dseg = data seg(}; 
agios_ks..,JXiio.func1;_nuTn = KS_FNlJN; /'11 Read and save keycode nrxle status '11/ 
agios_ksyar.but_offset = &entry_kcm; 
agios _ ks yar. but_segment = dseg; 
agios{ &agios _ ks yar, KS _FLEN} ; 

} 

/'11 RestOPe keycode nrxle state '11/ 

"/ 

/'11 Turn of.f keycode r>eporting mode ",/ 

Console RAW/COOKED Mode 

It is advisable that MS-DOS be placed in RAW mode when doing key code mode inputs 
from the keyboard, otherwise MS-DOS will process the key information looking for 
special control sequences such as Control-C (terminate program) and Control-P 
(toggle printer logging). The following routines show how the RAW/COOKED mode 
for the console may be manipulated. They are written in the C language and use 
the dOscall function described earlier in this section. The first two functions 
are intended for initialization and cleanup respectively. They can be used to 
save the RAW/COOKED mode as at program entry, and restore it prior to 
termination. See the Programmer's Reference Manual for more information on the 
MS-DOS I/O Control for Devices System Function Call. 

#define RAJ{ _MASK Ox20 
#define lOC _ GET Ox4400 
#define lOC jJET Ox4401 
IJ:define STDlN 0 

/'" HSDOS ioctrl - ra1JI7 mode bit m:zsk "/ 
/* HS-ros ioctrl - get deIJice infomrztinn * / 
/* NS-ros ioctrl - set deoice infomrztion ",/ 
/* standaztd input IrIS-DOS file handle ", / 

7-23 



Programming the UP 150 

rrDlJ/et ( ) 
{ 

doscall ( IOC GET, STDIN ); 
entpY_ioc III (-de ret.ell ) & O:d)OFF; 

1* Read and satIe rrDll cooked nWe * I 
1* NSB of entpY_ ioc FlIASt be zertO 

befmoe it is used to set 1IVde "1 
} 

rrDI rest ( ) 
{ -
} 

rail on{} 
{ -
} 

rt:t» off ( ) 
{ -
} 

Key Characteristics 

1* Bestmoe %'rA71 coo1«<l mode st;ate * I 

While in keycode mode, the characteristics of each key may be set individually. 
Specifically each key may be: 

- Processed ~ormally (for example Clear dispLay clears the display) 
- Intercepted and passed to the application for processing 
- Ignored 
- Any of the above accompanied by a bell beep 

The following C language functions turn the interception mode on and off for all 
keys on the keyboard. The programmer could modify these routines to selectively 
define individual keys with any of the above characteristics. Note that it is 
not possible to read and save the key characteristics prior to changing them so 
that they could be restored prior to program termination. See the HP 150 
Programmer's Reference Manual for more information on the AGIOS Define Key 
Characteristics function. 

strruct agios _ dk _ tem 

#define DK FLEN 
#define DK:FNUN 

{ 1'It AeIOS Define Key chaFacteristics '" I 
unsigned int fwwt -"wm; 
unsigned int characteristics; 
unsigned int keycode; 
}; 
sizeof{struct agios_dk_tem} 
40 I'll Define Key characteristics function , *1 

struct agios dk tern agios_dkyar" {DK_FNUN, O::dJ002, OxfJOFE}; 1* ACIOS 
define key cha:mctenstics conmmd buffer "'I 

7-24 



Programming the UP 150 

J 

int off{) 
( -

agios _dk..JXZZ'. cht:J:ractePistics • 0dJ00(); /" rum off key intercept mode " / 
agios ( &agios _ dk..J?<lZ', DK _ FLEN) ; 

J 

Sample Keyboard Driver 

The following program and its support function 'key hit' demonstrate how one 
might use keycode mode. The main calling routine ini tializes the BP 150 by 
saving the state of RAW/COOKED and keycode modes prior to setting them on. It 
then loops printing keyboard statistics for keys pressed and terminates 
following depression of the "Stop" key. Prior to termination, RAW/COOKED and 
keycode modes are restored as at entry. 

#define KBD S'rArllS 0:U406 
lldefine READ Fe OfJ:JFOO 
#define TIIJE- 1 

/" NS-DOS ioctz-l - get input status .. / 
/" lIS-DOS zoead file/dtn1ice f'UJ'Url;ion numbezo "/ 

#define FALSE 0 

stzouct key_buf_tern { /" keycoc1B buffer ten{JZate "/ 
chaZ" flags; 
chaZ" id; 
c'hor keycode; 
chaZ" unused; 
J; 

7-25 



Programming the HP 150 

nuin( ) 
{ 

} 

raM on{}; 
int-on{ ); 
lan_an(); 

dol 

1* remerri>er CUZ"l'ent console RIll lCOOKED m:Jde * I 
1* remerri>er CUZ"l'ent keycode mode *1 

1* turn on console RIll mode '" I 
1* turn on key intercept mode fop all keys '" I 
1* turn on keycode nr:x1.e * I 

if ( key kit() ) { 
pnntf ( "Data from keyboard: FLAGS = k; ID = k; KEYCODE· k\zo\n" 

, lcey_ buf. flags, key_ buf. id, kel'-buf. keycode ); 
}; 

} .,kile ( key buf. keycode 1= Ox58 ); 
kIn rest ( ) ; - 1* restore keycode mode as at errt:ry '" I 
irrt _ off{ ); 1* turn inteztCept mode off again *1 
1:'0:»_ rest( ) ; I'" restore X"CDiJ mrx1e as at errtz:oy * I 

key_kit ( j 

( 

} 

1* Checks fop ckcta in the HP-150 keyboard type ((head buffer. This routine 
checks to see if thePe are any keys in the keyboard type ahead buffeza. 
If so the data fop the fipst key is read from the buffer and placed in 
a structure l1a.Piable. 

Arguments in: None. 
Return 1Jalue: 

TRJE if a key tctlS Pead from the buffer 
FALSE if nothing ws read fPam the buffero "'1 

doscalUKBD STATUS, STDIN, 0, 0); 
if ( dc_ret~al ) ( 

} 

doscalU READ Fe, STDIN. 4, &key_ buf) ; 
return (TllJE )-; 

retum( FALSE) ; 

1* If there are any keys in the '" I 
1* keyboard type ahead buffer 'It I 
1* then raead the data bytes '" I 
/'" for the first key 'hI 

Flushing the Keyboard Buffer 

The following routine flushes the keyboard type-ahead buffer by reading all the 
keys from it until none are left. Note that the keyboard type ahead buffer is a 
firmware buffer, not an MS-DOS buffer. The only way to flush the firmware 
buffer is to read keys from the MS-DOS device until the buffer is empty. After 
reading a key from the MS-DOS device the MS-DOS task must yield to the firmware 
to allow it to remove another key from its buffer and pass it to the MS-DOS 
task. An assembly language routine which will yield control to the firmware 
follows the f!ush_kbuf routine. 

7-26 



Programming the HP 150 

flush_1cbuf( ) 

,,,, nush HP-150 keyboazrd type ahead buffeza "" 

{ 

struct key_but_tan tmsh_can; ,,,, t~ butfeza to deposit keys *' 
doscall ( DD STATUS, STDIN, 0, 0 ); ,,,, Bead eoerthing in the type *' 
tlhile ( dc_ret.al ) { ,,,, ahead butfeza and ignore it "" 

doscall ( READ PC, STDIlI, 4, &t:rash can ); 
!field ( 1 ); - - ,III' Yield 'to allorl the fi1!fllkZ7.te to*' 
doscall ( DD_STATUS, STOIY, 0, 0); ,,,, Put any pending keys in the "" 

} ,,,, NSDOS key buffeza .. , 
} 

YIELD FCN EQU oo9H ;Task handleza yield function code 

DC1DJP 
DATA 

G1lJIJP DItrA 
SEGItEIIT fIORD H1BLIC I DItrA' 
ASSlIKB DS: DCBJUP 

DATA 

IMORD 
004208 
OOOooH 

G1DJP PBX: 
,~NENT BYTE EflBLIC ' PRJG' 

; Task handlezo entZ'!/ point 
;Offset 
;Segtnerrt 

ASSl/1ItE CS: PGR)lJP, DS: DGBJUP, lIS: NOTHING 

;------------------------------------------------------------------------------
; yield ( time ) ,'It Yield contl"Ol to fil"lllA1a%'e "" 

,,,, Time pa:t>Qlllli!tezo to fiZ'RMZl"e "" · , 
; 
· , 
· , 
· , 
; 
; 
· , 
; 
· , 
; 
; 
; 

int time; 

Calls the fiZ'fllk.ate task handlezo rlith a function code indicating that 
any pending firtlt1.Fe tasks should be allOlNed to pzoocess for a specified 
period of time. 

Arguments in: 
time - mininun numbezo of milliseconds that the fiztnllazte »ill haoe 

contl"Ol up to a nrz:rinun 17alue determined by the fi1!fllkZ7.te. A 
71alue of zet:'O »ill simply cause the HSDOS task to be placed 
on the end of the fima'lare r>eady task list. 

Return 11alue: None. 

; Registezas pzaeseprJed: BP, lIS 

· , 

7-27 



Programming the HP 150 

YIELD AB:S STIIJC 
IN ? 
IN ? 
IN ? 

YIELD TIllE DI ? 
YIELD-AB:S 1D1DS 

PUBLIC YIELD 
YIELD PR>C NEAR 

PUSH ES 
PUSH BP 
NOV AX, [BP] • YIELD_TIllE 
PUSH AX 
I«JV AX,YIELD_FCN 
EflSH AX 
CALL DGlVUP: THP ENTIIr 
pop BP 
pop ES 
RET 

YIELD ENDP 

PJK)G ENDS 

END 

7-28 

;stack st~ foza passed tzrtgs. 
;Caller-' s BP 
;Caller-' s ES 
; Retuztn addztess 
;NiniRun milliseconds foza yield 

;Yield to fizwazoe tasks 
;SalJe callers ES 
;SalJe callers BP 
; Yield time parameter 

;Yield f~ion cods 

;Call fimM:lFe task handler­
; Restore callers BP 
; BestOPe callezas ES 
;Return to caller-



Programming the UP 150 

Keycode Tables 

+----------------------------------------------------------+ 
USASCII KEYCODES 

--------+----------+--------+---------+-------+----------------------+--------+ 
I Key I Physical I Normal I Control I Shift I Extended Character I Special 
I 

, 
I Key addr I I I I 8-bit yes I 8-bit no I flag 

--------+----------+--------+---------+-------+-----------+----------+--------+ 
001 057 054 054 Fli'F 054 054 1 
002 03A 058 FFF 05A 058 058 1 
003 03D 000 000 000 000 000 1 
004 03E 001 001 001 001 001 1 
005 03F 002 002 002 002 002 1 
006 038 003 003 003 003 003 1 
007 008 053 FFF 059 053 053 1 
008 OOF 051 FFF FFF 051 051 1 
009 OOE 004 004 004 004 004 1 
010 OOD 005 005 005 005 005 1 
011 OOC 006 006 006 006 006 1 
012 OOB 007 007 007 007 007 1 
013 OOA 043 043 049 043 043 1 
014 009 042 069 048 042 042 1 
015 03C 060 000 OTE OFB 060 0 
016 02C 031 FFF 021 oBS 031 0 
017 051 032 FFF 040 040 032 0 
018 044 033 FFF 023 023 033 0 
019 045 034 FFF 024 OF7 034 0 
020 046 035 FFF 025 OF8 035 0 
021 047 036 FFF 05E 05E 036 0 
022 040 037 FFF 026 05C 037 0 
023 010 038 FFF 02A 05B 038 0 
024 017 039 FFF 028 05D 039 0 
025 016 030 FFF 029 OB9 030 0 
026 015 02D 02D 05F OF6 02D 0 
027 014 03D 03D 02B OFE 03D 0 
028 013 027 027 027 027 027 1 
029 012 044 044 044 044 044 1 
030 011 045 045 045 045 045 1 
031 049 024 024 026 024 024 1 
032 04A 071 011 051 FFF 071 0 
033 04B 077 017 057 OTE 077 0 
034 04c 065 005 045 OD7 065 0 
035 04D 072 012 052 FFF 072 0 
036 04E 074 014 054 FFF 074 0 
037 04F 079 019 059 FFF 079 0 
038 048 075 015 055 FFF 075 0 
039 018 069 009 049 FFF 069 0 
040 01F 06F OOF 04F 006 06F 0 

7-29 



Programming the HP 150 

+----------------------------------------------------------+ 
USASCI I KEYCODES 

--------+----------+--------+---------+-------+----------------------+--------+ 
I Key I Physical I Normal I Control I Shift I Extended Character I Special 
I 

, I Key addr I I I I 8-bit yes I 8-bit no I flag 
--------+----------+--------+---------+-------+-----------+----------+--------+ 

041 OlE 070 010 050 OF1 070 0 
042 OlD 05B 01B 07B OB3 05B 0 
043 01C 050 010 070 07C 050 0 
044 01B 05C 01C 07C FFF 05C 0 
045 OlA 040 06B 046 040 040 1 
046 019 041 060 0>.J7 041 041 1 
047 043 056 056 056 056 056 1 
048 03B FFF FFF FFF FFF FFF 0 
049 053 061 001 041 004 061 0 
050 054 073 013 053 ODE 073 0 
051 055 064 004 044 OE4 064 0 
052 056 066 006 046 OBE 066 0 
053 039 067 007 047 OBA 067 0 
054 050 068 008 048 OBC 068 0 
055 020 06A OOA 04A 024 06A 0 
056 027 06B OOB 04B OBF 06B 0 
057 026 06c ooc 04c OBB 06c 0 
058 025 03B 03B 03A OAF 03B 0 
059 024 027 027 022 060 027 0 
060 023 025 025 025 025 025 1 
061 022 02C 06E 020 02C 02C 1 
062 021 02F 02F 02F 02F 02F 1 
063 071 055 055 057 055 055 1 
064 041 FFF FFF FFF FFF FFF 0 
065 073 07A OlA 05A FFF 07A 0 
066 074 078 018 058 OEC 078 0 
067 075 063 003 043 OB5 063 0 
068 076 076 016 056 OBO 076 0 
069 077 062 002 042 OFC 062 0 
070 070 06E OOE 04E OF9 06E 0 
071 028 060 000 040 OFA 060 0 
072 02F 02C 02C 03C 03C 02C 0 
073 . 02E 02E 02E 03E 03E 02E 0 
074 020 02F 02F 03F 05F 02F 0 
075 042 FFF FFF FFF FFF FFF 0 
076 02B 052 052 052 052 052 1 
077 02A 020 065 029 020 020 1 
078 029 02E 06c 02E 02E 02E 1 
079 072 050 05C 05B 050 050 1 
080 036 FFF FFF FFF FFF FFF 0 

7-30 



Programming the HP 150 

+----------------------------------------------------------+ 
USASCII KEYCODES 

--------+----------+--------+---------+-------+----------------------+--------+ 
Key I Physical I Normal I Control I Shift I Extended Character I Special , I Key addr I I I I 8-bit yes I 8-bit no I flag 

--------+----------+--------+---------+-------+-----------+----------+--------+ 
081 037 020 020 020 020 020 0 
082 035 FFF FFF FFF FFF FFF 0 
083 033 023 061 02A 023 023 1 
084 032 021 062 028 021 021 1 
085 031 022 063 02B 022 022 1 
086 06F 008 008 008 008 008 1 
087 06D 009 009 009 009 009 1 
088 06B OOA OOA OOA OOA OOA 1 
089 069 OOB OOB aOB OOB OOB 1 
090 067 071 071 071 071 071 1 
091 065 073 073 073 073 073 1 
092 063 072 072 072 072 072 1 
093 061 070 06A 070 070 070 1 
094 05F 037 037 037 037 037 1 
095 05D 038 038 038 038 038 1 
096 05B 039 039 039 039 039 1 
097 059 075 075 075 075 075 1 
098 05E 034 034 034 034 034 1 
099 05C 035 035 035 035 035 1 
100 05A 036 036 036 036 036 1 
101 058 074 074 074 074 074 1 
102 066 031 031 031 031 031 1 
103 064 032 032 032 032 032 1 
104 062 033 033 033 033 033 1 
105 06E 030 030 030 030 030 1 
106 06A 077 077 077 077 077 1 
107 060 076 076 076 076 076 1 

1. The keyboard key numbers are specified in decimal, all other entries are 
specified in hexadecimal. 

2. A keycode entry of 'FFF' means that no keycode is returned for that key 
sequence. 

7-31 



Programming tbe HP 150 

3. The keycodes were obtained using Rev. B of the firmware ROM's: 
1818-3321, 1818-3322, 1818-3323, 1818-3324, 1818-3325 

Keycode reporting differences in Rev. A of the firmware ROM's: 
CTRL <key 072> does not report a keycode 
CTRL <key 073> does not report a keycode 
CTRL <key 097> reports key code 05C 

4. The keycodes were recorded with the keyboard state set as follows: 
Keycode mode on. 
Console device in raw mode. 
Intercept mode set for all keys. 
Control-C checking off. 
Caps mode off (keyboard key function). 
Caps lock off (configuration menu function). 
Language USASCII (configuration menu function). 
Application softkey labels displayed. 

5. Every keycode returned to an application is made up of four bytes: 

\ 
\ 

Defined by 
HP-150 firmware 

\ 
\ 

/ 

/ 
/ 

/ 

1=========================1 
Qualifier flag byte 1 

1=========================1 
1 Keycode source ID 1 

> 1=========================1 
1 Keycode 1 
1=========================1 
1 Undefined 1 
1=========================1 

Qualifier byte format: 
1=======================================1 
I SP 1 XX 1 LE 1 RE 1 CT 1 LS 1 RS 1 RP 1 
1=======================================1 

SP - Special key 
XX Reserved 
LE Left extended character key down 
RE - Right extended character key down 
CT - Control key down 
LS - Left shift key down 
RS - Right shift key down 
RP - Repeating key 

Keycode source ID byte: 
OCOH - Keyboard data 
o80H - Touchscreen data 

keycode+O 

keycode+1 

keycode+2 

keycode+3 

6. Keycodes vary with the keyboard (language) field of the terminal 
configuration menu. 

7. CTRL-numeric keys on main keyboard section (not numeric) report keycodes 
in an erratic manner. These key sequences should not be used for this 
reason. 

7-32 



,--

Q 
Q 
Q 
g 

~ 
[]",'" ~ . 

• ! '" .. -

Keyboard Key Position Numbers 

Programming the HP 150 

7-33 



Programming the HP 150 

PROGRAMMING DATA COMMUNICATIONS 

The HP 150 personal computer has comprehensive data conanunications facilities 
which are accessible to the programmer. There are two data communications 
ports, both of which are capable of running in synchronous or asynchronous mode. 
Only asynchronous mode is supported by the system firmware and software. If you 
wish to program the HP 150 to use synchronous mode it will be necarrary to write 
your own hardware level I/O, configuration, and interrupt drivers. For persons 
wishing to do such things, see the "Data CODDll at the Hardware I/O Level" 
discussion later in this section. 

The following information should make your task of interfacing to the HP 150's 
powerful data communications capabilities relatively simple, especially for 
asynchronous operation. The discussion covers logical (COMl and COM2) to 
physical (Portl and Port2) configuration, input and output of data through these 
devices, programmatic reconfiguration of the port asynchronous operating 
parameters, and port hardware interfacing. Included is an example of a simple 
terminal emulator application program. 

Data Comm Using COM'1 and COM 2 Logical Devices 

Input/Output to the COMl and COM2 devices can be performed using the MS-DOS 
"Read from a File/Device" and "Write to a File/Device" System Function Calls. 
The device in question must be "opened" prior to accessing it in this manner, 
and should be "closed" when access is complete, usually just prior to 
application program termination. It may be necessary to have the user assign 
COMl and/or CQM~ to one of the physical serial I/O ports on the HP 150 prior to 
running your application. 

NOTE 

Serial cODDllunications I/O through the MS-DOS COM devices is somewhat slow 
because of operating system and firmware overhead. In practice throughput rates 
of around 2400 baud (half duplex) can be attained. For higher throughput it may 
be necessary to use the MS-DOS I/O Control for Devices System Function Call or 
deal directly with the hardware. See "Data CODun Control Functions" later in 
this section. 

ASSIGNING COMI AND COM2 TO PHYSICAL PORTS 

COMl and COM2 are recognized as device names by MS-DOS. They may be mapped 
(assigned) to either of the physical hardware ports, "Portl" and "Port2". There 
is an RS232 connector for Portl and an RS232/422 connector for Port2 at the rear 
of the HP 150. Both these ports are standard on the HP 150. The mapping 
between COM1/COM2 and Portl/Port2 is stored in non-volatile memory on the HP 
150. Currently the only trivial way to change this assignment is to run the 
"DEVCONFG" utility program shipped with the HP 150 operating system. The 
default mapping has COMl assigned to Portl and COM2 assigned to Port2. This 
means that MS-DOS references to COMI cause Portl hardware to be accessed, and 
references to COM2 cause Port2 hardware to be accessed. The assignment of Portl 

7-34 



Programming the HP 150 

and Port2 as the "Remote/Serial" devices in the DEVCORFG utility has no meaning 
here and will not alter the logical to physical device mapping. 

OPENING THE COM DEVICES 

The MS-DOS "Open a File" System Function Call (3DH) provides a "handle" or 
device identifier used for input and output of data and control information to 
the device. The function call is made passing a pointer to a character string 
being the device name, COMl or COM2 in this case. The character string must be 
terminated by a null byte. The following is a C language example of a call to 
open the COMl device. It uses the dOscall function previously described. 

#define OPEN -''' O:J:3D02 I'll lIS-DOS Open FilelDel1ice SlJStem Function *1 
I'll ~ , dOscaU' argument *1 #define WNJa 0 

stAlCt de ztet tem ( I'" , closcal l' ztetuAl parametezo str'UC'tJate *1 
char al; 
char 011; 
char bl; 
char bh; 
char cl; 
char ch; 
char dl; 
chmo dh; 
J; 

char coml name[51 • ( "COItl" J; 
cht:ao COIII1Kindle; 

( 
coml name[ 41 • 0; I'll terminate der1ice name stzaing J#ith NULL * I 
closcalt ( OPEN 111, 1JIJ1tDIr, 1JIJ1tDIr, &coml nt11I12[ 01 ); I'll open COlll: derJice "'I 
conhmdle = dc:ret.al; 

J 

The above code associates the variable conhandle with a handle used for all 
future references to the COMl device while it remains open. 

INPUT FROM THE COM DEVICES 

As mentioned, data input from the serial communications devices is most easily 
performed using the MS-OOS "Read from a File/Device" System Function Call (3FH). 
This function allows single or multiple character input from the device. The 
Read from a File/Device function will wait on a character if none exists when 
called. The firmware level drivers for Portl and Port2 buffer incoming and 
outgoing data. If the port incoming buffer is empty when the read function is 
called, the function will not return with a character until a byte is received 

7-35 



Programming the HP 150 

at the serial interface for the port. Otherwise the function will return a 
character from the buffer and adjust the buffer accordingly. 

The MS-DOS I/O Control for Devices System Function Call can be used to check the 
Portl and Port2 incoming buffer status. The function is called using. the "get 
input status" request as in the following C language example. 

#define Ioe IJISTA'r tkx:4406 I'" lIS-DOS IocrL Function - get input status '" I 

{ 
doscall ( Ioe INS'rA'r, conhmdle ); 
if ( tU:_zoet.aI == OdF ) 

1* buffezo contains data "'I; 
else 

I'" buffer is enpty * I; 

1* check deI1ice input stat '" I 

The above I/O Control for Devices function with the get input status request 
would normally be called prior to reading a character from the device. Note 
that this may not be a valid function call for devices other than COMl and COM2. 
The following is a C language example of a single character input from a open 
device with the handle conhzttdle. It uses the doscaU function previously 
described. The input character is placed in variable inchar. 

#define lIEAD (b;JFOO 1* lIS-DOS Bead From FilelDeoice Sys-tem Function "'I 

char inchar; 

{ 

J 
doscall ( IlBAD, conhmdle, 1, &incht.ao ); 

OUTPUT TO THE COM DEVICES 

/'" char in f%'Olll deI1ice fit I 

The MS-DOS "Write to a File/Device" System Function Call allows single or 
multiple character output to the serial communication devices among others. 
Once again, it is advisable to check s·tatus prior to making the call in case the 
device outgoing buffer is full. The following example shows how this may be 
done in the C language. 

1* MS-DOS IocrL Function - get output stat * I 

doscall ( Ioe OUTSTAT, conhmdle ); 
if ( tU:_zoet.aI == fkt:FF ) 

I'" buffer can accept data * /; 
else 

1* buffer is full *1; 

7-36 

1* check deoice output stat *1 



Programming the HP 150 

Given that ready is returned by the check output status call above, the MS-DOS 
"Write to a File/Device" System Function Call is used in the following example 
to send the character variable outchar. 

0:x:4000 I" NS-JX)S flnte To FitelDelJice System l'unC'tion *1 

char outchazo; 

{ 

J 
doscal t ( JIRIrB, comhant:I1,e, 1, &.outchar ); I" ""';'te char. to deoice *1 

CLOSING THE COM DEVICES 

An application which has opened devices or files should close them prior 
to termination. If either of the MS-DOS COM devices are opened, as COMl 
is above, they should be closed using the MS-DOS "Close a File Handle" System 
Function Call (3EH). The following example shows how that device may be 
closed in C language. camhandIe and com1 name variables are as 
defined in the device open example as previously described. 

{ 

J 
doscall ( CLOSE, comhant:I1,e ); 

COM DEVICE I/O EXAMPLE - A TERMINAL EMULATOR 

1* close the COllI: deoice *1 

The following example implements a simple terminal emulator for the HP 150. It 
will use the COM1 device and sends all escape and control sequences as well as 
special keyboard keys to the firmware for processing in a manner consistent with 
"terminal" mode on the UP 150. Pressing ! on the keyboard terminates the 
application. To use this application on a HP3000 computer, the Port to which 
COM1 is assigned should be configured as for HP3000 Point-to-Point (system 
defaults) . 

7-37 



Progl'3mming the UP 150 

#define rIllE I 
#define FALSE 0 
#define BJIIjlASK 0ra0 I" IISDOS ioctpl - MIl RJde bit III%Bk " I 
#define OPEll JII OdD02 I" lIS-DOS Open FilelDer1ice S!/8tem Function "1 
#define CLOSE OdEOO I" lIS-DOS Close FilelDeoice S!/8tem Function "1 
#define READ OdFOO I" lIS-DOS Bead From FilelDer1ice S!/8tem Function "1 
#define 1I1lI!'B tkx:4OOO I" lIS-DOS flPite .'ro FilelDer1ice S!/8tem Function "1 
#define IOC_GBr tkx:4400 I" lIS-DOS IOCTL Function - get deI1ice infozrnrztion "1 
#define IOC _SIr tb:440I I" lIS-DOS IOCTL Function - set deI1ice infozrnrztion "1 
#define IOC _ I1IS!lAr tb:4406 I" lIS-DOS IocrL Function - get input status "1 
#define IOC _ OUTSrAr tb:440? I" lIS-DOS IocrL Function - get input status "1 
#define snxmr I I" standaRi output /lIS-DOS file handle (console) "1 
#define WIfJIa 0 I" ~ 'doscall' a.f'(IUIIIImt "1 

stzruct de 1.'et tern - -

chazo dcent _ ioc; 
chczz. cotri7anttle; 
chart outcharo; 
chart inchart; 
chart terminate; 

{ I" , doscall' retum parame'teP stZ"UCtul'e "1 
chart al; 
chart ala; 
chazt hI; 
chart bh; 
chart cl; 
chart ch; 
chtuo ell; 
chart dh; 
J; 

char coml_name[51 • ( "CONI" J; 

e:&tezrn stzruct de 1.'et tem de _1.'et; 

l117in( ) 
{ 

comlJltzme[ 41 = 0; I" terminate der1ice name stPing 1#i.th NULL "1 
doscaZl ( OPEN 111, W/lllta, WN/tI1', &com1 name[ 0 J ); I" open CONI: der1ice "1 
camhandle = dc-Fet.al; -
doscall ( IOC GET, cotrhandle ); I" Read and sa:oe console l'aJiJlcoo1<ed mode "1 
dcent ioc = (-de Pet. ell ); . 
doscaluIOC SEr,conhandle,O,(dcent ioc I RJIIIjIASK)); I" Set raJI mode on "1 
terminate .-FALSE; -

7-38 



} 

dol 

if ( kbhit() I· o.zoo } l 
ou:tchazo • getch(}; 
if ( outchazo·· 'I' ) 

terminate • rIllE; 

Programming the HP 150 

I'll get chtzrracter from 1cbd * I 
I'll end p%'Og%'QIII 1Ihen I pressBel * I 

doscaZ Z ( JIRIrE, COIIiIandZe, 1, &outcharo ); I'll llrite chazo. to COIIl: * I 
}; 
doscall ( IOC BrAT, comhandle ); 1'It check COIIl: input status * I 
if ( de_ret.a! •• 0dF ) l 

}; 

doscaZ Z ( READ, COIIiIandZe, 1, &inchar ); I'll chazo in from COllI: * I 
do l I'll flait for COllI output zoeody *1 

doscaZ Z ( IOC OU'rSTAr, COIIiIandZe ); 
} IlhiZe ( de ret-:al !- Oa:.FF ); 
doscaZ Z ( 1I1iirE, STDOUT, 1 ~ &inchaP ); 1ft chtzrracter out to consoZe * I 

} llhile ( !terminate ); 
doscalZ {IOC SET ,coniltDldle,O,dcent ioc}; 
doscalZ ( CLOSE, COfIimull,e ); -

I'll Restore 1!'t1JtJlcoo1c.sd RX1e state *1 
I'll close the COllI: der1ice *1 

Programmatic Configuration of Data Comm 

The current configuration of each data communications port may be determined by 
making a call to the HP 150 data communications driver firmware. The calls are 
made by referencing a particular physical port - that is, Port1 or Port2. Note 
that either of these ports are configurable as MS-DOS devices COMl or COM2. 
Currently there is no trivial way of determining the mapping in a programmatic 
manner. This information is stored in non-volatile CMOS memory and is managed 
by the DEVCOHFG utility. The location of the mapping data which the DEVCOHFG 
utility manages is dynamic, that is it varies from version to version of the 
utility. Unlike the firmware which may be called to return configuration 
informa tion which it manages, the DEVCONFG ut 1li ty has no such facili ty . 
Accessing the CMOS memory directly to manipulate or read the Port1/Port2 to 
COMl/COM2 mapping data will introduce DEVCONFG version dependencies. This 
should be avoided at all costs. Stated in simple terms, if your application 
must reconfigure either of the serial ports using the methodology to be 
described, your application will require the user to have fixed Port1/Port2 to 
COM1/COM2 mapping. 

READING THE CURRENT CONFIGURATION 

The firmware call to be described will read configuration menu items into a data 
structure defined by the caller. The structure has a fixed format and is 7 
bytes long. Three additional header bytes and one additional trailer word are 
defined as part of the structure. These bytes are used for firmware use during 
the read configuration described here and the verify and reconfigure datacomm 
functions to be described later. 

The configuration data structure elements (ignoring the bytes used by the 
firmware) are defined as follows: 

7-39 



Programming the HP 150 

misc 1: 

misc 2: 

baud rate: 

parity: 

clock: 

asterisk: 

recvyace: 

7-40 

bit 
7 

bit 
6 

bit 
5 

bit 
4 

bit 
3 

bit 
2 

bit 
1 

bit 
o 

+-------+-------+-------+-------+-------+-------+-------+-------+ 
, 1 Stop, CS(CB)' SRR 'RR(CF)' SRR 'SR(CH)' Chk , ENQ 
I Bit I Xmit I Invert I Recv I Xmit I I Parity I ACK 
+-------+-------+-------+-------+-------+-------+-------+-------+ 
o 2Stop 0 No 0 No 0 No 0 No 0 Lo 0 No 0 No 
1 lStop 1 Yes 1 Yes 1 Yes 1 Yes 1 Hi 1 Yes 1 Yes 

bit 
7 

bit 
6 

bit 
5 

bit 
4 

bit 
3 

bit 
2 

bit 
1 

bit 
o 

+-------+-------+-------+-------+-------+-------+-------+-------+ 
, TR(CD) , DM(CC) I I 7 Datal Xmit I 
I I Xmit I I Bits I Pace I 
+-------+-------+-------+-------+-------+-------+-------+-------+ 

o Lo 0 No 0 8Data 0 None 
1 Hi 1 Yes 1 7Data 1 Xon/Xott 

02H 110 Baud 
04H 150 Baud 
05H 300 Baud 
06H 600 Baud 
07H 1200 Baud 
OAB 2400 Baud 
OCH 4800 Baud 
OEB 9600 Baud 
om 19200 Baud 

0 Zeros 
1 Ones 
2 Even 
3 Odd 
4 None 

0 INT CLOCK 
1 EXT Xl CLOCK 
2 EXT x16 CLOCK 

0 No Asterisk 
1 OM Asterisk 
2 RR Asterisk 
3 Line Asterisk 
4 CS Asterisk 

0 No Recv Pace 
1 Xon/Xoff Recv Pace 
2 TR(CD) Recv Pace 



Programming the UP 150 

The above structure elements plus some firmware variables are represented in an 
assembly lan~age structure as follows: 

config data ST1IJC 
pztedef: t1al DB 7 
bazr.zoel itb; DB 7 
poPt - DB 7 

misc 1 DB 
misc-2 DB 
baud-rate DB 
pctPity DB 
clock DB 
astensk DB 
Z'eCfJ~ DB 

7 
7 
7 
7 
7 
7 
7 

;structure defining config data ar'fia 

;Used by fil'llWtZre for config calls 
;Used by fiZ'flM:ale for config calls 
;Used by firJlllaZle for config calls 

;lIiscel1.aneous configuration bits 
;lIiscel1.aneous configuration bits 
;Baud Fate 
;PaPityand checking 
;Clock source 
;Cont:rol line astensk 
;Beceioe pacing 

;Used by fimllazoe for config calls 

A Microsoft C language compatible call is now described. The function is passed 
two parameters: 

- The port number (1 = Port1, 2 = Port2) 

- A pointer to a data structure defined as above 

The function will fill in the structure provided by the caller with the 
configuration for the appropriate port. Rote that the configuration information 
will reflect that as it currently exists in non-volatile memory, as is seen in 
the configuration memu. 

'J!II/B 
FALSE 
SUCCESS 
DHP RELEASE DEVICE 
DHP-CDEV -
DHP-CDTOK 
vEIiin CODE 
COliFIC-CODE 
STARr DRIvER CODE - -

gqu 1 
EQU 0 
EQU 0 
EQU 3 
EQU 1 
EQU 14 
EQU 14 
EQU 1 
EQU 13 

CBJUP DATA DGBJUP 
DATA SEGIIElIT JlORD IfIBLIC 'DATA' 

ASSUNE DS: DGRJUP 

DB ' HPIBDEV' ,0 
PUBLIC f14_es 

f14 es 1M 7 

DATA ENDS 

; HPIB dernce name stzoing 

; Fil'flll1O.Z"e ES saDed here 

7-41 



Programming the UP 150 

GBJUP PBJG 
ASSUIIE cs: firm...Jumps ,IXJ: I1Of'HIlIG 
SF&IIEIIT BfrB AT ooooH 
OR: 04258 
LABEL FAR 
OR: 042A11 
LABEL FAR 
OR: 045CH 
LABEL FAR 
BI1DB 

SF&1IEI1T BrrE WBLIC ' PBJG' 
ASSlJ1tIE CS: PCIlJUP,DB: DGBJUP,ES: NOrHIlIG 

;------------------------------------------------------------------------------
· , 
· , 
· , 
· , 
· , 
; 
· , 
· , 

7-42 

I" Reads CUZ"Ptmt datacotrm poPt nuniHno ' pori _ num' configuration 
infOX'flllEtion fZ"Ol1l eNOS (configuration) ,,~ into the scratch 
structure at DB:' scratch' • The configuration data czrrea at ' scratch' 
»ill ha:oe all the mlues neeclsd to specify the datacotrm 
configzaation. These can be DXlified and passed to the fimMD.te 
datacOfml dPifHn' to set a neil configuration. Retuzrns '.lIIJE if 
successful in peFforming the opezvtion, false othertlise. 

srIIIC 
1M '1 
1111 '1 
1M '1 
1M '1 
DDS 

;Stack stl'UCture fO%' passed argumerrts 
; Callezos BP 
;Calleros ztetuz.n a.dc&oess 
;Pon nunber (1 • PoPtl, 2 • PoPt2) 
; , scztatch' argumerrt 



Programming the UP 150 

PUBLIC get conf 
get_conf PlDC NEAR 

PUSH BP 
IDV BP,SP 
IDV BX,( BP). port_TIURI 
NOV DI ,( BP) • scratch ; , scratch' aztgUIFII1Trt f%'Olll stack 
pop BP 
IDV BS,f",_es ;Initialize fiZ'Rlal"e ES register 
ICJV (DI}.predef oal,3 ;Initialize the oariables of the 
I«JV (DI}.barrel_~,6 ; config data area zoequil'fJd b!/ 
SHL BL,1 ; config pI"OCeSsing 
ClIP BL,2 ;POFt ID is 2 fO%' port 1 
dE port_one 
NOV BL,11 ;POFt ID is 11 fen- port 2 

port_one LABEL NEAR 
l«JV (DI}.poFt ,BL 
IDV AH,BL ;Pon identification 
IDV AL,04H ;04 fen- full duple:%: hazrcb#il'fJd f01!lfl 
PUSH AX 
l«JV AX,020lH ;01 to%' pex"801'KZlit!/ ID, 02 for config 

; Dalues are requil'fJd 
PUSH AX 
PUSH DB ;Segment of scratch data area 
PUSH DI ;Offset of scratch data area 
LEA AX,(DI}.poFt ;Pointezo to start of config data area 
EflSH AX 
IDV AX, 3 ;Function code fen- ClIP GF:t DEV CONl'IG - - -Pl/SH AX 
CALL cnp_entry ;Beturns: AX • status, BX • fail reason 
ClIP AX ,SUCClfSS ;Call tn"ftJP if failzates 
101 AX,TlIIE ; Fizrnua.tte call e:r.ecuted 'llithout eH'O.ZOS 

.IE get .. cf_ok 
NOV AX,FALSE ;EZTOr d.u:Ping firmM:Zre call 

get_cf_ok LABEL NEAR 
RET 

get_conf EllDP 

CHANGING THE DATA COMM CONFIGURATION 

The configuration data structure initialized by the above function is used when 
reconfiguring the port with different baud rate, parity, handshaking and other 
parameters. The process of reconfiguration is as follows: 

1. Save a copy of this data area for later restoration of the original 
configuration. 

2. Change the appropriate structure parameters to reflect the desired 
new configuration. 

3. Call ",era_conf to "obtain the firmware device token", "get the 
firmware device", and verify that the new configuration data area 
is valid. 

7-43 



Programming the UP lSO 

4. If the data is a valid configuration for the port (t1er_conf returns 
TRUE), call config to "attach the firmware datacomm driver", 
reconfigure the hardware, "start the firmware driver", and "release the 
firmware datacolllll device". 

The following function performs the verification process, returning TRUE it the 
configuration data structure represents a valid port configuration. 

;------------------------------------------------------------------------------
; chctzo t1er conf ( 1JC sczra:tch ) - -· , 
; 
· , 
· , 

,- Venfies the cIo:tacourn configuration data in the config data 
stztucture. Retuzrns T1IJE if configuration is 11alid, FALsE othezvise. 
An ~le of an im1alid configultation IIOUl.d be 8 data bits llith 

· , 
· , 
· , 

a pcaoity other then "none". rhe configultation should be checked 
for 11alidity pPiol" to attenpting to configuxoe a pol"t using the 
config function. The configuration data structure to be 
oe:rified is located at DS:'1JC scrratch' -, · , 

· , 
0tn'Cf _ arogs 

1JC sczra:tch 
oef.ct _ a:ttgS 

STIlJC 
IN '1 
lXt/ '1 
IN '1 
EIIDS 

PUBLIC 1JerI_ conf 
PR:JC NEAR 
PUSH BP 
t«JV BP,SP 

; stack structzar.e for passed cuogumrmts 
;Callers BP 
;Callers zoetulon o.cldzaess 
; , 1JC _scratch' argument 

/lIN D1, [ BP] • DC scroich ;' scratch' 
pop BP -
CALL get dtok 
CALL get-ddeo 
JDV ES ,f1l es 
PUSH DS -
PUSH DI 
l«JV AX, VERIFY CODE 
ff/SH AX -
PUSH [D1 J . deo_ token 

CALL dhp dPioer 

CNP AX,SUCCESS 
JZ coof_ok 
1DV AX,F ALSE 
JItIP ocoof done 

conf _ok LABEL NEAR -
NOV AX ,TRlE 

oconf done LABEL NEAR 
RET 

"er _ conf ENDP 

7-44 

;Obtain the fil'llWare cIo:tacourn deoice token 
;Get the f~ da:taconrn deI1ice 
;lnitialize fiZ'frlilalte ES zoegister 
; , 1)c _scratch' segment 
; '7JC_sczra:tch' offset 
; Fir'f1M:1.re drioer function code 

;Der1ice token - set up using , get_con!, 
; call prior to ' "er _con!, 
;Call fimuazoe cIo:tacourn dPit1er - returns 
; AX III status, BX • fail .A!lCZSOrt 

;Configultation IrA2S bad 

;Configultation lIaS 1Jalid 



Programming the UP 150 

get_dtok PJl)C I1EAB ;Obtain datacotrrn deoice to1cen. Sal1ea 
; the token in the config data aNa. 

ItCN ES,fll_es ;Initialize fil'flUare ES roegister 
XOB AX,AX 
ItCN AL,[DI] • port 
PUSH AX ;Pozwt ID (2 • POl'tl, 11 • Pozwt2J 
ItCN AX,DIIP _ GUl'OI 
PUSH AX ; DelJice handler function code 
CALL dhp entry ;Token retuztned in BX 
IfO'I [DI1.deo_token,BX 
RE'r 

get dto1c. ENDP 

get ddm1 PBJJC BAll ;Get the datacotrrn deoice allOlling fop . e:t:elusioe access . , 
101 BS,ftl es ;Initialize firrlllar"e ES registeza 
PUSH [DI] . deo token 
IfO'I AX,DIIP _ GDEv 
PUSH AX 
CALL dhp_entroy 
BET 

get_cldeo ENDP 

The following function performs the actual port configuration and leaves the 
port operational from the firmware standpoint. It should be preceeded by the 
oe.r_conf call and only called if the ge.r_conf call returns TRUE. 

;------------------------------------------------------------------------------
; config ( cf_scratch J 
; 
; 
· , 
; 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
, 

/* Attaches the fiZ'f1fikn:>e datacotrm anger, configures the datacotrrn port 
using configuration data stE'UCture at DS: 'cf_scratch', then staPts 
the fimMl.f"e dataconm deoice drioer for the port. 
'DIe attach call initializes the dri1Jezo so that the configuration is 
active. It is nece;-3saxoy to stazrt the datacotrrn device dri1Jezo 
follOEJi.ng a configuration call in ordezo to have the configuration 
changes take effect. The' get _conf' function should be used to 
initialize the configuration data area pM.or to "wification of 
1k1Piables in this area fop the neff) configuzration. 
Returns TRIg if no error lias encountered during calls to the 
fiFl1fA1a%te , FALSE othezvise ." / 

config args ST1IJC 
- III ? 

;Stack stl"'UCtta'e fop passed maguments 
;Callezos BP 

IN ? 
cf _scratch III ? 
config args ENDS 

;Callers return address 
; , cf _scratch' argument 

7-45 



Programming the UP 150 

config 
PUBLIC config 
PRJC NEAR 
PUSH BP 
I«'N BP,SP 
101 DI ,[ BP 1. cf _ scra:tch ;' cf _scratch' argument froom s-tack 
pop BP 

ID'I 
}{OR 
NOV 
PUSH 
l«JV 
PUSH 
NOV 
IfISH 
CALL 
CNP 
JNE 

101 
PUSH 
PUSH 
JfOV 
IfISH 
PlJ.SII 
CALL 

IIJV 
NOV 
PUSH 
PUSH 
CALL 
CALL 
NOV 
JIIP 

ES,f'lil_e8 
AX,AX 
AL,[DI1.poz't 
AX 
AX, 2 
AX 
AX, 10 
AX 
dhp_ent~ 
AX , SUCCESS 
conf=e%TOr 

ES,f'lil_e8 
DS 
DI 
AX ,COIIFIG _ CODE 
AX 
[DIJ • deo token 
dhp _ dzoi-iin. 

; Attach the fiZ'flMUle dataconm dzoWezo -
; initial izes the drioez. so that the 
; configuration is actWe. 
;Initialize firrruare ES ztegistezo 

;Pon id JI70rd (2 III PoFt1, 11 III Por't2J 

; Point-to-point fil'fllikLre drioez. 

; FiX'f1lA1are drivezo function code 
; (DHPjfJ.'TACH_DRIVERJ 

;Configure the ikrtacOlllTl pan. 
;Initialize fizrrrliJare ES zoegistezo 
;'cf scratch' segment 
; '~scratch' offset 
; FiZ'lTlllare drWer function coc1s 

; staPt the firrr»:r:z>e dataconm dzoWezo 
ES,fliJ e8 ;Initialize finruaz.e ES ztegistezo 
AX ,STAHr DRIVER CODE 
AX - -; FiZ'f1l4arte dPWezo function code 
[DIJ • cleo_token ; Deoice token from scratch area 
dhp dritJel;" ; Alil1ays returns success 
zael-ddev 

; No erFOr duPing attachment 

conf _ ezTOZ> LABEL NEAR 
lOY AX,F ALSE ; Errozo 1I1hile tzving to attach drioez. 

config done LABEL NEAR 
- RET 

config EIIDP 

7-46 



Programming the HP 150 

NEAR 
ES,f» es 
(DI].de17 token 

;Belease the cIataconm dez1ice 
;Initialize fimllazoe ES zoegister 

AX,DHP IiiLEASE DEVICE 

PRJC 
IDV 
PUSH 
IDV 
PUSH 
CALL 
RET 
ENDP 

AX - -; Function code for fiZ'flMZZle dtn7 handler 
dhp entry 

RESTORING THE ORIGIr,lAL CONFIGURATION 

It is important for applications which modify a port's configuration to restore 
the original configuration prior to termination. Note that the above calls do 
not change the configuration reflected in the port configuration menus. If the 
ports are not restored to their originally configured state, their actual state 
will not correspond with that specified in the menus until the next system hard 
reset. 

This applies to programs which access the data communication controller and 
associated hardware directly. Programs which modify configuration should 
include the following operations to ensure the hardware is reconfigured prior to 
program termination. 

At program initialization: 

1. Call get_conf to read the initial configured state. 

2. If the program is going to use the config function to reconfigure 
the port, rather than going to the hardware directly, the configuration 
data area should be saved. 

At program cleanup: 

1. If the program used the config function to change the initial 
configuration, the configuration data area as saved at initialization 
should be restored. 

2. The lJer> conf function is called to obtain the firmware device 
token and get the firmware device. It also verifies the config 
data area as being valid (which it should be - it has not been changed). 

3. The config function is called to actually restore the initial 
configuration as reflected by the config data area. 

7-47 



Programming the HP 150 

Data Comm Control Functions 

The MS-DOS I/O Control For Devices System Function Call ~lements some special 
data comm control functions on the HP 150. Data communications data I/O using 
the MS-DOS Read and Write functions on COMl or COM2 devices has been described 
earlier in this section. In addition to some special control functions, 
alternative and possibly preferable data I/O methods are described here. 

IOCTL READS FOR INPUT 

In addition to using the MS-DOS Read From a File/Device System Function (3FH) 
input may be accomplished through the I/O Control For Devices Function, request 
2: "Read bytes from device control channel". Data channel bytes are returned 
for the COM devices. There are two principal advantages to input in this 
manner. First. the call gets any characters already received by the system 
without waiting for additional data (even if the requested number of bytes are 
not returned). Second. the call provides for optimal performance without having 
to put the device in "RAW" mode. The caller should check the AX register when 
MS-DOS returns (as specified for the function) to determine the number of bytes 
transferred. 

An example of IOCTRL data input is shown below. It uses the dOscall function 
previously described in this section. 

lldefine IOC _READ Ox4402 

int CO",-remJ L bandLe, buffer, length} 

/* Reads inforrration fPOm the datacOf1lll dez1ice (CON1/COII2 preoiousl!j 
opened, file handle 'handLe') into a character buffer at 'buffer'. 
Vill Pead a ~ of ' length' bytes. Returns num1Jer. of bytes 
actually read (0 for none read) * / 

int handle; 
cha%> *buffer; 
int length; 

{ 

} 

doscall ( IOC_HEAD, handle, 1.ength, buffer ); 
return ( (dc_ret.ah « B) + de ret.at ); 

SPECIAL COM FUNCTIONS IMPLEMENTED THROUGH IOCTL WRiTE REQUEST 

The MS-DOS I/O Control for Devices System Function with Request 3 : "Write to 
device control function" is used to implement a set of sub-functions for 
datacomm control. The defined sub-functions are: 

7-48 



Programming the HP 150 

(8,1) 
(8,2) 
(8,3) 
(8,4) 
(8,5) 
(8,6) 
(8,7) 
(8,8) 

Set 7-bit (normal) mode for both transmit and receive 
- Set 8-bit (binary) mode for both transmit and receive 
- Set transparent (monitor) mode 
- Disable transparent (monitor) mode 
- Modem disconnect 
- Send break 
- Fast buffer send 
- Reset data comm 

The functions are specified with a two-byte identifier whose first byte is 8 to 
differentiate them from control requests to other devices. They are initiated 
by performing the MS-DOS I/O Control for Devices System Function with request 3. 
The buffer specified by the MS-DOS function (DS:DX) should contain the function 
code. For example, to send a break: 

doscall ( ICC Jm.rn:, handle, length, &sub function ); 

where: 

IOC NRTT.I is defined as 4403 Hex 

and: 

handle ~ device handle from device open call 
length = 2 (sub-function number length) 
sub function = 0807 Hex 

Note that function (8,7) is a special case, described below. 

The following definitions are in order: 

BINARY MODE The eighth bit is not stripped from the data stream of received 
characters. In non-binary mode, either 7 or 8 bits are received as configured 
for the port (in the configuration menu). That is, when the port is configured 
for 7 data bit operation (in the config menu) , the eighth data bit (parity) is 
masked. In binary mode, the 7/8 data bits configured state is effectively 
overridden and a full 8 data bits are returned. The eighth bit will be the 
parity bit if the port is configured for 7 data bits in the config menu. 

TRANSPARENT MODE In transparent mode. control characters normally resulting 
in some action being performed by the firmware datacomm driver are sent through 
as data instead. For example, if ENQ/ACK or XON/XOFF hanshaking for the port is 
enabled in the configuration meim for the port, placing the port in transparent 
mode effectively disables the handshaking from taking place. The handshaking 
settings in the configuration menus are not altered however. Both receive and 
transmit handshaking are effected. In addition, transparent mode causes parity 
checking to be disabled. 

SEND BREAK The transmit data line is driven active (on) for 210 milliseconds. 
This is commonly used to signal a special condition to the host. 

7-49 



Programming the HP 150 

DISCONNECT MODEM Commonly used to cause a modem attached to the port to go 
off-line. The Terminal Ready control line output is driven inactive for two 
seconds. 

RESET DATA COMM This function disables transparent mode and sets 7 bit 
(normal) mode. It has no other effect. 

FAST BUFFER SEND FOR OUTPUT 

For improved performance over the "Write to a File/Device" MS-DOS System 
Function for data output to the communications ports, a "fast send" I/O Control 
for Devices sub-function is offered. This sub-function is implemented in a 
manner similar to the "send break" call above however the buffer pointed to by 
DS:DX is slightly different. In addition to the sub-function number, three 
words follow it. The buffer structure for fast send is: 

stzouct fcs_buf_tem { 
int fcode; 
int sBCLoffset; 
int setL segment; 
int count; 
J; 

/fr sub-function number 0807 Hex; fr / 
/fr send data buffer offset address fr/ 
/* send data buffe%" segment address "" 
/fr length of send data bufte%" (bytes) fr / 

So a Microsoft C language compatible function to implement the fast send 
sub-function can be defined as foll~ws: 

com send ( handle, buffezo, length) 

/fr Using "fast send buffer-" furcCtion of IOCTRL foro dataconrn deoice to 
send 'length' bytes from 'buffeza' to da:taconrn output channel llith a 
handle of ' handle'. :t / 

int handle; 
char *buffezo; 
int length; 

( 
fcs_bu!.fcode = (b;()807; 
fcs_buf.seCLoffset :I buffex-; 
fcs _but. seCL segment • dseg; 
fcs_but.count • length; 

doscall ( lOC _ VRITE, handle, 8, &fcs Jmf ); 
J 

7-50 



Programming the UP 150 

where: 

and: 

IOC_~ is defined as 4403 Hex 

handle = device handle from device open call 
~fer = address (offset) of buffer containing send data 
length = number of bytes in buffer 

dSeg is equal to the applications data segment register (OS) 

7-51 



Programming the HP 150 

HPIB INTERFACING 

WARNING 

This facility is meant for use with NON-DISC devices. Templates can interfere 
with the disc driver used by the MSDOS file system. In general, problems can 
occur if any action on the bus changes conditions at a disc drive. For example, 
since a UNIVERSAL DEVICE CLEAR resets the head on an 82905 drive, it should not 
be used. Let the user beware. 

Limited HPIB Driver Functionality 

It should be understood that the BP 150 does not implement the full set of BPIB 
functions through its firmware and as such has limited capabilities in an 
instrument-control environment. In general the firmware-based BPIB driver does 
not support and activity which may be initiated by a peripheral. 

The computer peripherals on the HP 150 (discs, plotters, printers etcetera) are 
slave devices to the HP 150, which acts as a controller at all times. The BP 
150 initiates all HPIB operations. Th.e limitation is a firmware restriction, 
the BP 150 has a full hardware implementation of the HPIB standard. Therefore 
it may be necessary to write RAM-based drivers which deal directly with the BPIB 
controller hardware to support certain HPIB configurations. 

Specifically the following conditions are not supported by the BP 150 firmware 
interface: 

- SRQ (Service Request) Function 
- TRIGGER Function 
- Multiple controllers 
- Transactions between other devices on the same bus 

Opening the "HPIBDEV" Device 

MSDOS functions are called by placing parameters in registers and executing a 
software interrupt 21 (hexadecimal). Controlling the HPIB device requires 
familiarity with two MSDOS functions. The "OPEN" function provides access to 
the HPIB driver. Once the driver is available, the "IOCTRL" function specifies 
the actions to be performed on the HPIB. 

The OPEN function returns a "file handle" that is used by the IOCTRL function. 
To OPEN the HPIB device, set up the 'registers as follows and perform a software 
interrupt 21 hexadecimal. 

Ali 
AL 
DS,DX 

7-52 

= OPEN function number 
= access requested 
-> the ASCII name of the device 

:: 61 (3Dh) 
= 0,1, or 2 
= BPIBDEV 



Programming the UP 150 

HPIB Control Calls 

MS-DOS IOCTRL FUNctION CALL. Now that the HPIB device is opened, the IOCTRL 
function is used to control the HPIB. The function IOCTRL requires: 

AH = IOCTRL function number = 68 (4411) 
AL = subfunction number = 3 
BX = file handle returned b.y OPEN function 
ex = count of bytes in the CONTROL BLOCK 
DX,DX -> the CONTROL BLOCK 

CONTROL BLOCK FORMAT. The CONTROL BLOCK has the following format: 

Parm/Ret 

Parm 

Return 

Parm 
Return 
Parm 
Parm 
Parm 
Parm 
Return 
Parm 
Parm 
Parm 

SIZE 

word 

word 

word 
word 
word 
word 
word 
word 
word 
word 
byte 
byte 

DESCRIPl'IOlf 

Function 
high byte 
low byte 

17 
18 

= 0 (numbP.rs are U1 decimal) 
= use of Control Block 
= Perform this new template 
= Continue this template 

--used to recover from a 
--paral.!el poll 

Status of 
o 
4 

function 

6 
7 
8 
9 

= Success 
= Busy (try NEW 

again) 
= Timeout Error 
= EOI Error 
= Bus Error 
= Poll Error 

function 

10 = Undefined Error - HPIB bus 
protocol error. 

11 = Overall Timeout Error 
Data Buffer Length 
Number of data bytes sent or received 
Offset of Data Buffer 
Segment of Data Buffer 
Offset of Template 
Segment of Template 
Return Template Pointer 
Overall Time Limit in milliseconds 
HPIB Device address 
HPIB Unit address 

7-53 



Programming the HP 150 

CONTROL TEMPLATE FORMAT. The template is a series of commands, and 
optionally, data bytes to the HPIB driver. Four types of commands exist with 
the high two bi ts of the command determining the type. The low 6 bits are 
qualifiers that further identify the command. 

7 6 5 4 3 2 1 o 

I I I I I I I I I 
I command type I SBUF I PPE I EOI I TERM I UNIT I ADm I 
I I I I I I I I I 

The following equates are used in the sample templates to denote command type. 

Template Commands (bits 6,7) 

SET VALUE = 0 changes a configuration value in the HPIB driver. 

RECEIVE = 040h indicates data should be read. The number of bytes read 
and where they are placed is determined by the lower 6 
bits of the command. See the qualifiers described below. 
If the SBUF bit is clear, then one data byte is read and 
it is placed at the next location in the template. 
Regardless of the state of SBUF, the next byte is not 
considered a template command. 

~ OaOh indicates data should be sent. The number of byt~s 
transmi tted and where they are coming from is determin~d 
by the qualifiers. 

CONTROLLER = OCOH indicates the following byte (the controller command) 
should be transmitted with the attention (ATN) line high. 

Some of the controller commands are: 

UNTALK 
UNLISTEH 
TALK 
LISTEN' 

= 5Fh 
=3Fh 
= 40h 
= 20H 

The value of a command is created by "OR"ing the equates of the command types 
mentioned above with the following qualifiers. 

HOTE 

Terminator and time unit are carried from one template to another. 

Qualifiers to Commands 

----ADDRESS = 1 (bit 0) 

7-54 



Programming the UP 150 

When the CONTROLLER command has the address bit set, the drive address is "OR"ed 
with the following byte (the controller command). The address bit can be used 
with a SET VALUE command to specify what BPIB device address should be used for 
all the operations specified in the template, otherwise the address specified in 
the CONTROL BLOCK is used. 

---- UNIT = 2h (bit 1) 

When the CONTROLLER command has the unit bit set, the unit address is "OR"ed 
with the following byte (the controller command). The unit bit can be used with 
a SET VALUE command to change the BPIB unit address used with all the following 
template commands. (The default unit address is the one specified in the 
CONTROL BLOCK.) 

---- TERM = 4h (bit 2) 

The TERM bit implies the terminator character is of relevance when receiving 
characters. When used with SET VALUE, the following byte is the terminator 
character. When used wi th RECEIVE, the terminator character previously 
specified will denote the last character to be read. 

BOTE 

SET VALUE + EOI + TRM => Read until TRM character, or EOI is received. 

---- EOI = 8h 

The EOI bit is used 
an EOI is expected. 
reported. Set Value 
ignored tor the rest 

---- PPE = 10h 

(bit 3) 

with RECEIVE to specify that with the last data byte read, 
If EOI expectancy state is not set correctly, an error is 

+ EOI => next byte in template is ignored and EOI should be 
ot the template. 

(bit 4) 

PPE is used with SET VALUE to specify what devices the parallel poll should be 
looking tor a response from. The following byte indicates the devices. PPE is 
used with disc drives. The PPE qualifier with RECEIVE, SEND, or CONTROLLER 
indicates a parallel poll will be performed before the command is executed for 
the current device id. 

---- SBUF = 20h (bit 5) 

The SBUF bit is used with RECEIVE or send to specify that a buffer rather than a 
single byte is to be transferred. The butfer offset address and the buffer 
segment address are always taken from the CONTROL BLOCK. When SET VALUE and 
SBUF are used, the next byte is the amount of time the BPIB driver waits for a 
single character before going into interrupt mode. The time unit is - 10 
microseconds. 

7-55 



Programming the UP 150 

SAMPLE IDENTIFY TEMPLATES. On an identify command, two data bytes are 
expected with the EOI line asserted after the second data byte is received. The 
identity command is IDENTIFY SECONDARY = 60h. The first template reads the data 
bytes into the buffer specified in the CONTROL BLOCK. The second template 
places the data bytes in the template itself with labels Dl and D2 allowing easy 
access to the data. 

IDENTIFY TEMPLATE Ii 

DB CONTROLLER 
DB UNLISTElf 
DB CONTROLLER 
DB UNTALK 
DB CONTROLLER (or) ADDRESS 
DB IDENTIFY SECONDARY 
DB CONTROLLER 
DB LISTEN + POe 
DB RECEIVE (or) EOI ( or) SBUF 
DB 0 - dWlllllY' byte 
DB CONTROLLER 
DB UNTALK 
DB CONTROLLER 
DB UNLISTEN 

- CO 
- 3F 
- CO 
- 5F 
- Cl 
- 60 
- CO 
- 3E 
- 68 
- 00 
- CO 
- 5F 
- CO 
- 3F 

DB END DATA -end of template- 00 

IDENTIFY TEMPLATE '2 

DB CONTROLLER - CO 
DB UNLISTElf - 3F 
DB CONTROLLER - CO 
DB UNTALK - 5F 
DB CONTROLLER (or) ADDRESS - Cl 
DB IDENTIFY SECONDARY - 60 
DB CONTROLLER - CO 
DB LISTEN + POC - 3E 
DB RECEIVE - 40 

Dl: DB ? -received byte - ? 
DB RECEIVE (or) EOI - 68 

D2: DB ? -received byte - ? 
DB CONTROLLER - CO 
DB UNTALK - 5F 
DB CONTROLLER - CO 
DB UNLISTEN - 3F 
DB END DATA -end of template- 00 

7-56 



Programming the UP 150 

SAMPLE READ/WRITE BUFFER TEMPLATES. The following templates assume the 
buffer specified in the CONTROL BLOCK contains/receives the data. 

BLOCK TRAIfSFER "Ill" TEMPLATE 

DB SET_VALUE (or) TERM (or) EOI - OC 
DB ? -last data expected- FF 
DB CONTROLLER - CO 
DB UNTALK - 5F 
DB CONTROLLER - CO 
DB UlfLISTEB - 3F 
DB CONTROLLER {or} ADDRESS - C1 
DB TALK - 40 
DB CONTROLLER - CO 
DB LISTEN + POe - 3E 
DB RECEIVE (or) SBUF - 60 
DB X -dWlDllY byte- x 
DB CONTROLLER - .CO 
DB UNTALK - 5F 
DB CONTROLLER - CO 
DB UlfL IS'l'Elf - 3F 
DB Elm-DATA -end of template- 00 

BLOCK 'l'RAlISFER "0tJ'l''' TEMPLATE 

DB CONTROLLER 
DB tnrrALK 
DB CONTROLLER 
DB UlfLISTEN 
DB CONTROLLER {or} ADDRESS 
DB LISTEN 
DB CONTROLLER 
DB TALK + POe 
DB SEND (or) SBUF 

- CO 
- 5F 
- CO 
- 3F 
- Cl 
- 20 
- CO 
- 5E 
- AO 

DB 
DB 
DB 
DB 
DB 
DB 

x 
CONTROLLER 
tnrrALK 
CONTROLLER 
UNL I STEN 
END DATA 

-dwmny byte- x 
- CO 
- 5F 
- CO 
- 3F 

-end of template- 00 

1-57 



Programming the UP 150 

HPIB Interface Example (9111A Graphics Tablet) 

The following is an example of using the MS-DOS I/O Control System Function 
accessing the "HPIBDEV" device to interface an HPIB peripheral. In this case it 
is a 9111A Graphics Tablet which is interfaced. The example is written in the C 
language. 

The routines obtain and print stylus position and status information. The 
routines use the doscall. function previously described (see "MS-DOS System 
Function Calls from the C Language"). The routine which returns the OS (data 
segment) register contents is described following the C code. 

Note that this example for the sake of compactness contains minimal error 
checking. Error checking enhancements should be included for reliable 
funct ionali ty . 

#define IO_DEVICE_C'rl1L 

#define crBL_FIJ1ICrIOl1 

#define rIllE LIIIIr 
Idsfine DBV AND UIIIr ADDRESS - - -
Idsfine SE'.t _VALlIE 
#define RECEI!E, 
#define SEIID 
#define CO'JlT1VLLEB 

#define UNrALK 
#define UIILISTEII 
#define TALK 
lldefine LIsrEJI 

#define ADDRESS 
#define UlIIr 
#define TEBN 
#define EOI 
#define PPB 
ldefine SIJUF 

#define DD_DATA 
#define POe 
#define IIAXLENGTH 
#define LIlfEFEED 
#define EO, 
#define ESC (b;1B 

irrt tab handle; 
char bufl12]; 

7-58 

0:J:4403 

11 

(b;3() 

0dJ006 

(b:()() 

(b;4() 

0fx:80 

O~ 

th:5f 
O:z:3f 
0:J:40 
(b;ZO 

tkcOl 
tkc02 
tkc04 
tkc08 
(b;10 
(b;ZO 

tkcOO 
O:de 
128 
tkcOa 
t»:ff 

1* lIS-DOS 110 Control fozo DerJices 
Systelll Function code, BUb-function 
3 (rlzoite to Deoice Ctztl Channel) *1 

1* Control Block function - pePfOl'fll 
this nell teJlf?late * 1 

1* HPIBDEV IOCT1lL Call. time limit * 1 
1* 9111A HPIB addI'ess code * 1 

1* COllrBJL '.lEIIPLArE CONlllll1DS * 1 

1* HPIB C01lfBJLLEB. COIlltAllIB *1 

I'" HPIB COII'J!1IOLLEB CONNJIIID QUALIFIEBS * 1 



ProgrammiDg the UP 150 

stztUCt de_ret _ tern ( I" , closoall' zoetJaon ptZZ'QIIII1ter stl'llCtul'e "1 
char al; 
chazo all; 
chazo bl; 
char bh; 
char cl; 
chazo ch; 
chazo dl.; 
chazo dh; 
J; 

e:J:tezon stztUCt de_ret _ tern de_ret; 

static int hpib_ctpl_block[11) III ( 

crIlL l'UIIC'.tIOlI, 
0, 0: 
0, 0, 
0, 0, 
0, 0, 
rIllE LIIIIT, 
D13 AND UNIT ADDRESS 
J; - - -

22 

static c'hazt llPite telltplate[ 16) III ( 

C01lf1l)LLER , 
lIIIrALlC, 
COllTBJLLBR, 
UlILIsrBII , 
COllTBJLLBR + ADDllBSS, 
LIsrBII, 
COllTBJLLER, 
TALK + POe, 
SBlID + SBUF, 
0, 
CONT1lJLLER, 
UNTALK, 
CONTBJLLER, 
UNLIsrEN, 
BI1D DArA 
J; 

I" ContZ'OI block used fozo lIS-DOS "1 
I" 110 ContZ'Ol SysteM Function caU "1 
I" to "HPIBDEV" "1 

I" length of aborJe block "1 

I" 'rerlf'tate fozo ASCII IlPites (ths "1 
I" only kind) to ths tablet "1 

7-59 



Programming the HP 150 

COIt'rIDLLBR , 
UI1rALK, 
COIt'rIDLLBR , 
UllLIsrD , 
COIt'rIDLLBR + ADDBBSS, 
!,ALK, 
COIt'rIDLLER , 
LIsrEII + POe, 
BBCEIVE + SI1UP + IDI, 
0, 
COIt'rIDLLBR , 
UI1rALlC, 
COIt'rIDLLER , 
UlILIS!'EII , 
EIID DA!'A 
J; -

static cbtz!o :read aacii[ 19J • { 
SB!' V ALUi + EOI + !'BIll, 
LIIIiFDD, 

7-60 

SB!' V AUJE + S'MJF, 
IDi: 
COIt'rIDLLBR , 
UI1rALK, 
COIt'rIDLLBR , 
UlILIsrD, 
CO'l1'rHJLLBR + ADDHBSS, 
!,ALlC, 
COIt'rIDLLBR , 
LIsrEII + POe, 
BBCEIVE + SI1UP + !'EBltI, 
0, 
COIt'rIDLLER , 
UI1rALIC, 
COIt'rIDLLER , 
UllLIs:tEII , 
EIID DittA 
J; -

1ft Template fop ASCII JWads f%'CRI tablet "1 



Programming the UP 150 

1****************************************************************************1 
I'IIrin () 
{ 

int %, fI, status; 

if ( tab init() •• 1 ) { 
lihUe - ( 1c.bhit() •• 0 ) { 

1* initialize graphics tablet * I 
1* Continuouslfl request stfllus positi 

and status from tablet until 
keflboard is hit *1 

get_%..)J_status (k, 'y, .tnatus, tab_handle); 1* get data *1 
printf ("%: k fI: k status: k\r", :.s:, y, status; 1* display it *1 

J; 
J; 

~ia:clOBe (tab handle); 
J -

I" close the tablet * I 

1"""""""***"**""""*""""""""""""*""""""""*"*"**"""""""""*"""*"*"""""""*""""""""1 
chazo tab_init() 

{ 

J 

I" Initializes the graphics tablet by opening the cUwice and checking 
fO%" the tablets response to the Iderrtiffl function. Retuzons 0 if the 
tablet did not identify conoectlfl, returns 1 othezwise "1 

tab handle • open tablet (); 1* open the tablet and get handle * I 
alPite block (tab handle, "01;", 3); I" Pezrform tablet Output Iderrtitfl *1 
a read (tab handle, buf); I" operation 1* 
if (buflO) 1= '9') 1* Did tablet identify itself 7 "1 

pzointf ( "9111A Graphics Tablet did not identify\r>\n" ); 

zwturn ( 0 ); 
J 
else 

zwturn ( 1 ); 

1* Note - HPIB appeaztS to "hang" IIhen 
01 sent to a non-e:x:istant tablet "1 

1*""""""""""""""""""""""****"""***"**""""*""*""""""*"""*""""""""""*""*""""*"""1 
int open_tablet () I" Opens the deoice "HPIBDEV" and retums handle 

{ 

J 

Note - no error checking ! "1 

hpib ctrl blockl 5} • hpib ctrl blockl 7} • data aeg (); 
Z"etza.n (:s:enia:open (" HPIBDEv", '2)); 

7-61 



Programming tbe UP 150 

/****************************************************************************/ 
int :x:enia:open (fileJIt1IIIB, access) /* open deoice "fileJ,aRIIl' foza RJCIe 

"access " (zoead/JtIltite/both) * / 
chazo *file JIt1IIIB; 
int access; 

{ 
irrt a:x:, durmry; 

a:x: • 0:r:3d00 + access; 
doscall (a:x:, tb.umP:I, durmry, file JItlRIB) ; 
retuzon ( ( de ret. all « 8 ) + de ret. al ); /* return handle * / 

J - -

/***************************************************************************/ 
JtIltite_block (handle, butfe%", count) /* lfntes "count" ASCII bytes fZ'C1fll 

"buffe%" to deoice "handle" using 
lIS-DOS lfnte to a File/Delh.ce 
System Function Call /* 

char *buffe%"; 

{ 
hpib utzal block{ 21 = count; 
hpib-utrl-block{ 41 = (int) butfer; 
hpib:utrl:block{61 == (int) lIPite_terrplate; 

/* Upc1o:te the control block * / 
/* J1ith the passed pammeters * / 

/* PeP/0FIII the lInte to a File/Dernce System Function Call */ 

doscall (IO_DEJ(ICE_CTBL, handle, CTllL_BLOCK._COlJ11T, hpib_utrl_block); 
J 

/***************************************************************************/ 
a zoead (handle, buffer) /* Reads a block of ASCII data from the specified 

- ~e. */ 
chazo *buffer; 

{ 
hpib _ c-trl_ block{ 21 = IIAXLENGTII; 
hpib_ctrl_block{41 • (int) buffer; 
hpib_utrl_block{61 == (int) read_ascii; 

/* Pez70rm the zoead '" / 

/* Update the control block llith * / 
/* passed ~ezos * / 

doscall (IO_DEVICEJ:TllL, handle, crRL_BLOCK._COUlfT, hpib_ctrl_block); 
J 

7-62 



Programming the UP 150 

/***************************************************************************/ 
get _:x; -11_ status (:x;, ", status, tab_handle) 

/* Beads the st"tus position and status f:rom the tabtet. Reads untit sia: 
b"tea of data azte receioed. PaJlsea the a.cIdzoess and status 11ariabtea 
fzoom the I"etuI'n stPing. Note that due to timing COfisiderations, ant" 
fioe b"tea azte receioed in some instances, fotlotled b" Sel1en ne:%:t tillle * / 

int *:x;, *y, *status; 
int tab_handle; 

lIhi,le (b read (""" :x;, tab handle) ! -6) ; 
*:x; • ((mr. :x; » 8) i ~f)-+ (my :x; « B); *" • ((my:" » 8) & ~f}·+ (my:" « 8); 

/* Bead untit #at id data * / 
/* Canoe:rt to lb"te, hb"te * / 

* status • (("':I status » 8) , ~f} + (1IPJ. status « 8); 
J - -

/***************************************************************************/ 
int b roeod (buffer, handle) /* Pez7OZ'f11S a ~ data read fzoom the tablet 

- untit an BOI character is detected. Betums 
the nuniJezo of b"tea read fzoom the tablet * / 

int *buffer; 
int handle; 

{ 
hpib ctrt btock[2} r: 6; /* Update the controt block Jlith */ 
hpib:ctrt:btock[4} III (int) buIfer; /* passed paro.meteN */ 
hpib_ctrt_block[6} - (int) read_bint:u?l; 

/* Pez7OZV1 the read * / 

doscall (10 DEVICE crIlL, handle, crIlL_BLOClC_COU1I'.f, hpib_ctrl_bloc1c.); 
I"etuI'n (hpib _ ctrl_ block[ 3] ; 
J 

/*************************************************************************/ 
:x:enia:close (handle) /* Close deIJice Jlith handle of "handle" * / 

int handle; 

( 
doscatl ((h;Je()(), handle); 

J 

7-63 



Programming the UP 150 

;-----------------------------------------------------------------------------
. , 

PUBLIC data _ tIefJ 
PBJC BAR 
ICN AX,DS 
RET 
EIIDP 

7-64 



Programming the HP 150 

ACCESSORY CARD INTERFACING 

Memory (Slot) Address Identification 

16K of contiguous memory space is allocated to each of the two accessory slots 
on the HP 150. Associated with each slot is a hardware accessory card select 
line which goes active when a memory read or write occurs to the memory space 
allocated to that particular slot. The memory blocks are allocated to each slot 
as follows: 

Accessory Slot 1 
Accessory Slot 2 

90000H - 93FFFH 
AOOOOH - A3FFFH 

Through utilization of the slot select line, accessory boards using memory 
mapped I/O space may be designed to be slot independent. That is, their memory 
mapped space will reside within the absolute bounds as defined for the 
particular slot in which the card is installed. A firmware routine called the 
Option Handling Processor (OUP) has a function which will return the slot ID (1 
or 2) for a particular accessory, if that accessory is installed. Accessories 
with associated software wishing to utilize this function must have a unique id 
byte memory mapped to the base address of the 16K block. See the Accessories 
Subsystem discussion in Section 3 for more information. 

The following example shows how to obtain the memory segment address for an 
installed card given its specific id. 

JICC ID EQU 
GEr-f'OKEII 1fQU 
suii1 EQU 
SIm2 EQU 
Sl SEC 1fQU 
S2-SEC BQU 

OOOR 
007R 
OOlH 
0028 
09000R 
OA/JOOR 

;Put youzo accessory board id 7UIiJe:r hezoe 
;OHP get slot token function cods 
;Slot one id token 
;Slot trio id token 
; Slot one 1IAJtI segment addzoess 
;Slot trio RAIl segment address 

; lBDOS entPy intezozrupt and function codes 

IISDOS 
OPKII DEV 
IOC1iiiRL 

02lH 
03DH 
0448 

; NSDOS entrfl inte:rwzaupt 
;Open deoice function cods 
; I/O corrI;zool fO%" dnices function cods 

;IIS-DOS S!I8tem Function pa.rameteza equates 

D1PIJT 
0UTPIJ'r 
READ 

DOOR 
oolH 
0028 

;Open deI1ice fO%" input 
;Open deoice fO%" output 
;Read fzrom deoice 

1-65 



Programming the UP 150 

DCD/P 
DA'lA 

HPIBDEV 
WBS 

DA'lA 

GD/P DA'lA 
SECIIEIll 'fIORD IfIBLIC 'DJrrA' 
ASSU1IE DB: DCD/P 

LABEL lMORD 
III OOOCOH 
1M 000408 

DB 
1M 

BIIDS 
PAGE 

, HPIBDEV' ,0 
1 

GD/P PlDG 

;Option hantlLezo proceasoza errtzwy point 
; Offset of option handlezo proceBsoza 
; SeglFII1rat of option handlezo processoza 

; FirmJIazte deoice J'IC'lfIIe string 
; l'irmJIazte BS tkllue 

SECIIBIIT BYrE PUBLIC 'PlDG' 
ASSU1IE CS: PGD/P,DS: DCD/P,ES: NOrHIlIG 

;------------------------------------------------~-----------------------------· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 

GET_ACe_SEC - Get accessop!! slot segnrmt address foza given ide rhe 
fiZ'flllaZte is called to locate flhich option slot contains 
the option boazd and the accessozay slot BAIt addrIess 
segment pointezo is set accozdingly. 

Registers in: None 
BegiBtezos out: AX • 0 if accessozay boazd llith gWen id not found 

Address base poirrtezt (segtllB,rt) if found 
Registezas presezooed: None 

PUBLIC GI:.l ACe SEC 
GI:.l ACe SEC pilJc NEAR - ;Initialize hazrtbIr.ate intez.faoe 

;Load firnlazte BS tkllue - - CALL GI:.l BS 

CHIC 82 

IIIIrERB 

J1IZ nUT ERR 
101 AX,JiJc ID 
PUSH AX -
101 AX ,GBT f'OKEII 
PUSH AX -
CALL FAR PrR OHP 
OR AX,AX 
J1IZ IJlIr B1IR 
NOV AX,sl_SEC 
ClIP BX ,SLOTI 
JNZ CHIC 82 
RET 
LABEL 
NOV 
ClIP 
J1IZ 
RET 

NEAR 
AX,82 SEC 
BX,srD.r2 
IJlIT EBB 

LABEL NEAR 
SUB AX,AX 
RET 

GET ACe SEC EJlDP 

7-66 

;.TUIIf! if .eJ-I'OJ" 

; Load accessozay boazd id 7IIIIIbezo 

;Load get to1um function code 

;Call fiZ'flllaZte option hantlLa­
;Jump if error 

;stozae option boazd BAIt segment 
; address depending on slot id 



Programming the UP 150 

;'------------------------------------------------------------------------------
· , OHP - Fap call to fiZ'llllaZ'e option hancl1,er processozo. 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
; 
· , 
· , 
· , · , 
· , 

OHP 

OHP 

This !'OUtine loads BS llith the address of the firRlare ex:tra seg 
and then does a long iUIII' to the fiZ'llllaZ'e OHP routine. JIhen 
the OHP does a fap ztetuJon, contFOl is ztetumed to the caller 
of this POUtine. 
IIOrB - The call to this routine nurt be a faro call (32 bit) 

AztglllllBl'rts in: 
All argumtmts to the 0IlP are pushed on the stack and are 
the calltn"S zoesponsibility. 

Retuzrn 11alues: 
Values ztetumed are specified by the OHP and depend on the 
OHP function ex:ecuted. 

Registtn"B prres"""": None 

PUBLIC OHP 
PRJC FAR ;Fap call to fil'flll1Qte OHP 
NOV ES ,W _ ES ;Load BS fozo firRlare 
JItfP lHORD PTR DGRJUP:DHP_ENTBr ;Irrtersegmerrt indirect imp to 0IlP 
BPS ;Dunrrr:/ return 

EIIDP 

;------------------------------------------------------------------------------
· , G'Er _ BS - Load and saI1e fiZ'flllaZte ex:tra segnrellt address. 
· , 
; 

· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 
· , 

GE'.l VAllS 
WPTR 
Gir VAIlS 

GE'.l BS 

This routine opens a fiZ'fllllare derJice ' HPIBDEV' , reads fouzo bytes 
from it flhich is a 32-bit pointeza to a fiZ'flMZFe infomation block, 
loads the fiZWlflZte BS oalue fztCRI this infomation block, and 
stoztes the BS oalue for late%" f~ calls. 

~o+_ • 
• .".", &lIV VV.& -v 'I.ft: 

None. 
Begisttn"S out: 

FF - Z: er1ePthing O.K., firnla:re ES oalue stozoed 
lIZ: e:rJ'Ol" in function calls, ES oalue not stozoed 

IIBgisttn"B prres~: 
BP, BS 

STlIJC 
DD "I 

;Stack stzructurre fozo ~ 11ariables 
;Pointezo to fiZ'fllllare info block 

ENDS 

lVBLIC GIfT BS 
Pfl)C 

PUSH 
PUSH 
SUB 
NOV 
IOV 
LEA 
IDV 
I1I'!t 
JC 

lIE.iR 
BS 
BP 
SP,4 
BP,SP 
A/I,OPEN DEV 
DX,HPIBDEV 
AL,IIIPIIT 
NSDOS 
GET ERR 

;Get and sat1e liZ'llllaZ'e BS 11alue 
;SaIJe callers BS 
;Sa»e callers BP 
;Allocate space for ~ 11ariables 
; Initial ize base pointeza 
;Open deoice 
; name' HPIBDEV' 
; lor input 

; Jwnp i I e:rJ'Ol" on open 

7-67 



Programming the HP 150 

IDV BX,AX ;Get der1ice handle fO%" read 
IDV All ,10Cl1TI1L ;1/0 control fO%" der1ice 
IDV AL,RBAD ; Bead 
IDV CX,4 · fouzo bytes , 
LEA DX,[BP].lfIJ!nl · into talf'OR'l'!l IItoZ'agB , 
I1IT IISIX)S · f%'Olfl cleDice handle in BX , 
JC CET EBfl ; J'UItIp if e:I"ft1r on read 
ClIP AX,4 ;J'UItIp if four bytes not read 
.T1IZ CET EBfl 
LBS Bx,TBP].lfI Pnl ;Load pointezo to fll info bloc1c 
IDV AX,BS:[BX]- ;Load firwllJarte BS ~l., 
IDI lfI_BS,AX ;stozte BS wI., 
ADD SP,4 ;Belease allocated st;acl space 
pop BP ;Beatore callers BP 
pop BS ;Beatore callezos BS 
SUB AX,AX ;Yl.ag ~hing O.I. 
llEr ;BetKm to call .. 

GET EllIl - LABEL NEAR ;EPI.'OP occuzeJ"ed 
ADD SP,4 ;Release allocated stack space 
pop BP ;Beatore caners BP 
pop ES ; Bestol"e callers BS 
OR AX,OFFFFH ; Set fJft'OP flag 
RIIT ;BetKm to call1IZ' 

GET BS EIIDP -
ENDS 

EIID 

7-68 



L..-A_G_I_OS_F_UN_C_T_IO_N_C_AL_L_R_E_F_E_RE_N_C_E----Jr~'il, 

This section is a reference to the Alpha Graphics Input/Output System (AGIOS) 
set of function calls on the HP 150. 

AGIOS is a facility that lets you use system routines to perform tasks on the HP 
150 keyboard and display. They let you perform text and graphics mode 
operations on your display. let you define and use softkeys (function keys), and 
let you perform all touch screen operations. 

This manual contains information elsewhere pertinent to using the AGIOS function 
set. Section 5. System Software, provides an introduction to the Alpha Graphics 
I/O System and includes a simple example of an AGIOS function call. Section 7. 
Programming the HP 150. describes a general AGIOS caller function for the C 
language. This function provides a relatively easy way for C programs (and 
programs in other languages with suitable modifications to the agios function) 
to invoke any AGIOS function. Section 7 also includes many examples of AGIOS 
calls from the C language. 





CONTENTS 

Syntax Used in the AGIOS Function Calls 
Batch Function Call 
Video Intrinsics 
Define Area 
Write Area 
Clear Area 
Enhance Area 
Read Area 
Shift Area 
Write Line 
Application Softkeys 
Update Softkey Label 
Read Softkey Label 
Display Soft key Labels 
Control Functions 
Execute Two Character Sequence (ESC char) 
Position Cursor (ESC & a) 
Define Enhancements (ESC & d) 
Cursor Sense Absolute (ESC a) 
Cursor Sense Relative (ESC ') 
Set Cursor Type 
Read Cursor Type 
Read Terminal Configuration 
Touch Screen Functions 
Field Operations 
Row Column Operations 
Define Touch Field (ESC­
Define Softkey Field (ESC 
Delete Touch Field (ESC­
Touch Screen Reset (ESC­
Set Touch reporting Modes 
Keyboard Intercept 
Define Key Characteristics 
Get Key Characteristics 
Put Key 
Keycode ON/OFF 
Keycode Status 
Read Keypad Status 
Display Control (ESC * d) 

z g) 
- z s) 
z d) 
z j) 
(ESC - z n) 

Clear Graphics Memory (ESC * d a) 
Set Graphics Memory (ESC * d b) 
Turn On Graphics Display (ESC * d c) 
Turn Off Graphics Display (ESC * d d) 
Turn On Alphanumeric Display (ESC * de) 
Turn Off Alphanumeric Display (ESC * d f) 
Turn On Graphics Cursor (ESC * d k) 
Turn Off Graphics Cursor (ESC * d 1) 
Turn On Rubber Band Line (ESC * d m) 
Turn Off Rubber Band Line (ESC * d n) 
Move Graphics Cursor Absolute (ESC * d <x,y> 0) 

8-1 
8-2 
8-4 
8-5 
8-5 
8-6 
8-6 
8-6 
8-7 
8-8 
8-9 
8-9 
8-9 

8-10 
8-U 
8-11 
8-12 
8-13 
8-13 
8-13 
8-14 
8-14 
8-14 
8-15 
8-15 
8-16 
8-17 
8-18 
8-18 
8-18 
8-19 
8-20 
8-21-
8-21 
8-22 
8-22 
8-23 
8-23 
8-24 
8-24 
8-24 
8-24 
8-25 
8-25 
8-25 
8-25 
8-26 
8-26 
8-26 
8-26 



CONTEHTS (Cont.) 

Move Graphics Cursor Incremental (ESC· d <x,y> p) 
Turn On Alphanumeric Cursor (ESC * d q) 
Turn Off Alphanumeric Cursor (ESC * d r) 
Turn On Graphics Text Mode (ESC· d s) 
Turn Off Graphics Text Mode (ESC * d t) 
Vector Drawing Mode (ESC· m ) 
Select Drawing Mode (ESC * m <mode> a) 
Select Line Type (ESC * m <type> b) 
Define Line Pattern and Scale (ESC * m <pattern><scale> c) 
Define Area Fill Pattern (ESC· m <pattern> d) 
Fill Rectangular Area, Absolute (ESC * m <x1,y1,x2,y2> e) 
Fill Rectangular Area, Relocatable (ESC * m <x1,y1,x2,y2> f) 
Select Polygonal Fill Pattern (ESC * m <pattern> g) 
Select Boundary Pen (ESC * m <pen> h) 
No Polygon Boundary (ESC * m h) 
Set Relocatable Origin (ESC * m <x,y> j) 
Set Relocatable Origin to Pen Position (ESC· m k) 
Set Relocatable Origin to Cursor Position (ESC· m 1) 
Graphics Text (ESC *) 
Set Graphics Text Size (ESC· m <size> m) 
Set Graphics Text Orientation (ESC * m <orientation> n) 
Turn On Text Slant (ESC * m 0) 
Turn Off Text Slant (ESC * m p) 
Set Graphics Text Origin (ESC * m <0-9> q) 
Graphics Text Label (ESC * 1 <text» 
Define User Character Set 
Select Default Character Set 
Output Single Text Character 
Set Gra~hics Default (ESC * m r) 
Set Pi~ture Definition Defaults (ESC * m 1 r) 
Graphics Hard Reset (ESC * w r) 
Graphics Plotting (ESC· p ) 
Lift Pen (ESC * P a) 
Vector Move (ESC * p a <x,y» 
Lower Pen (ESC * P b) 
Vector Draw (ESC * P b <x,y» 
Plot to Cursor Position (ESC * p c) 
Point Plot (ESC * p d) 
Set Relocatable Origin to Pen Position (ESC * P e) 
Start Polygonal Area Fill (ESC * P s) 
Terminate Polygonal Area Fill (ESC * p t) 
Polygon Move 
Polygon Draw 
Lift Boundary Pen (ESC * P u) 
Lower BcllA~dar¥ Pen (ESC * P v) 
Graphics Status (ESC * s ) 
Read Device ID (ESC· s 1) 
Read Pen Position (ESC· s 2) 
Read Cursor Position (ESC * s 3) 
Read Cursor Position, Wait For Key (ESC * s 4) 
Read Display Size (ESC * s 5) 
Read Graphics Settings (ESC· s 6) 
Read Graphics Text Status (ESC * s 7) 
Read Zoom Status (ESC * s 8) 

8-27 
8-27 
8-28 
8-28 
8-28 
8-29 
8-29 
8-29 
8-30 
8-30 
8-31 
8-31 
8-31 
8-32 
8-32 
8-33 
8-33 
8-33 
8-34 
8-34 
8-34 
8-35 
8-35 
8-36 
8-36 
8-37 
8-37 
8-37 
8-38 
8-39 
8-39 
8-40 
8-40 
8-40 
8-41 
8-41 
8-42 
8-42 
8-42 
8-43· 
8-43 
8-43 
8-44 
8-44 
8-45 
8-46 
8-46 
8-46 
8-47 
8-47 
8-48 
8-48 
8-49 
8-49 



Read Relocatable Origin (ESC * s 9) 
Read Reset Status (ESC * s 10) 
Read Area Shading (ESC * s 11) 
Read Pynamics (ESC * s 12) 
Read Extended Screen Dimensions 

CONTENTS (Cont.) 

8-50 
8-50 
8-51 
8-51 
8-52 





AGIOS Function Call Reference 

SYNT AX USED IN THE AGIOS FUNCTION CALLS 

Each AGIOS function call is explained in detail on the succeeding pages. In 
order to clarify the information that you need to supply, a standard notation is 
used. Parentheses and positional notation is used as follows: 

PARM 

(PARM1,PARM2) 

(,PARM) 

(PARM, ) 

(PARM) 

«PARM) ) 

Indicates a single byte parameter. 

Indicates two single byte parameters with parm1 in the high 
byte and parm2 in the low byte. 

Indicates a single byte parameter in the low order byte of 
the word. The high byte is ignored. 

Indicates a single byte parameter in the high order byte of 
the word. The low byte is gnored. 

Indicates a word (16 bit) parameter. 

Indicates a double word parameter. Usually the first word is 
a data segment address and the second word is an offset 
address. 

Where applicable. the AGIOS call name is followed by the corresponding escape 
sequence. For example, one entry later in this section is: 

DEFINE TOUCH FIELD (ESC - z g) 

TIds indicates that the escape sequence which corresponds to the Define Touch 
Field AGIOS call is ESC - z g. 

8-1 



AGIOS Function Call Refennce 

BA TCH FUNCTION CALL 

A special function call is available which lets you execute a sequence ot 
function calls automatically. Using this funetion call is espeeially eonvenient 
when you frequently perform the same set of AGIOS function calls. 

To "batch" function calls, you set up the sequence ot AGIOS function calls in a 
cormr:md buffezo. Then you issue the following batch function call using the 
command buffer as one ot its parameters. 

(0, 0) Function code 

(BUFFER LENGTH) COMMAND Bt.JFFE!t length (byte cOWlt). 

«COMMAND BUFFER» A pointer to the buffer containing the AGIOS function calls. 
The function calls are defined consecutively. Use the same 
parameter format as specitied in this section tor the 
individual function calls. 

A batch call is abor~ed when any of the fUnetion calls in the batch causes an 
error condition. Additionally, you cannot nest batch function calls (include 
them in the batch). 

EXamPle: 

This example clears the alpha display by hOllleing up first, then clearing the 
display. Refer to the "H" and." J" options of the "Execute Two Cha.racter 
Sequence" function call. 

The command buffer looks like this: 

Ccmtents--> I 16 I 0 I H I 16 I 0 I J I 

Byte --) +0 +1 +2 +3 +4 +5 

8-2 



AGIOS Function Call Reference 

The assembler routine that sets up the command buffer and executes a batch call 
might look like this: 

CLS PUSH DS ; SarJe DS on Stack 
pop CMDSBG ; And Store it in Batch Buffer 

· , 
101 AX, 4403R . I/O Control Write , 
l«)V BX,l ; Console Handle 
101 CX,8 ; Batch Buffer Length 
l«)V DX,offset BATCH ; Batch Ccmrrr;md Buffer 
INT 218 
RET 

· , 
CMDBUF DB 16,0,'H' ,16,O,'J' 

· , 
BATCH DB 0,0 ; ACIOS Batch Corrm::znd 
BUFLBN IN 6 ; CMDBUF Len 6 Here 
CNDOFF IN CMDBUF ; CMlJOFF equates CMDBUF 
CMDSBGDI 0 ; Data Segment Dwrmy Value 

8-3 



AGIOS Function Call Reference 

VIDEO INTRINSICS 

The video intrinsics are a set of functions that may be used to update the 
state of the display. With the exception of the Write Line function, all 
intrinsics operate on a pre-defined subset area of the 24 by 80 character 
display. All row and column values are relative to zero. The upper left 
corner of the display is (0,0) and the lower right corner is (23,79). 

A null data buffer pointer (segment = OFFFFH) will suppress the 
update operation for that data type. There is a one to one correspondence 
between the position of a data byte in its buffer and the character position 
that it will affect in the pre-defined update area, starting at the upper 
left corner, incrementing column position first and then row position. 

The ASCII data consists of the 8 bit UP Standard ASCII 
code. The character set data consists of character 
follows: 

CHARACTER 
CODE: 

8 
A 
B 
C 
D 

SPACE 

CHARACTER 
SET SELECTED: 

Nornal RoImn 
Line Dra7..ri,ng 
Bold Face R017W1 

Ital ic Rorrrm 
Math 
No Change 

character 
set code characters as 

The enhancement data consists of enhancement code characters as 
follows: 

security off: 8 ABC D E F G H I J K L M N 0 
seCUl'i ty on: P Q R STU V ", X Y Z [ \ ] 

-------------1-----------------------------------------------
half-bright 1 x x ::c ::c ::c ::c ::c x 
underline 1 ::c x x x x ::c x x 
inverse video 1 x ::c x x ::c x x ::c 
blinking 1 x ::c x x x x x ::c 

(A space, 20H, indicates no change to the current state.) 

8-4 



AGIOS Function Call Reference 

DEFINE AREA 

This function specifies the area to be operated upon by subsequent area 
update operations. 

(0, 1) 

(LR-ROW,LR-COL) 

(UL-ROW,UL-COL) 

«PREV-COORD) ) 

WRITE AREA 

Function Code. 

Defines the lower right corner of the area to be operated 
upon. 

Defines the upper left corner of the area to be operated 
upon. 

A pointer to a buffer 
coordinates are returned. 

where 
The 

the previous 
format of 

area 
the 

returned data is the same as 
This buffer pointer may be null. 

the two input coordinates. 

This function writes data into the pre-defined display area. 

(0, 2) 

(DATA LENGTH) 

«ENH POINTER» 

( (CHAR SET» 

«ASCII POINTER» 

Funct ion Code 

Length of the data buffers. 

A double word pointer to a buffer of enhancement code 
characters to be used to change the enhancement state of 
the update area. 

A double word pointer to a buffer of character set code 
characters to be used to change the character set state 
of the update area. 

A double word pointer to the buffer of ASCII data to be 
written into the update area. 

8-5 



AGIOS Function Call Reference 

CLEAR AREA 

This tunction clears the most recently detined area to ASCII blanks (20H), with 
no enhancements set. 

(0, 3) Function Code 

ENHANCE AREA 

This function sets the enhancement state ot the entire pre- detined display 
area to the specitied enhancement. 

(0, 4) Function Code 

( ,ENHANCEMENT) An enhancement code character. 

READ AREA 

This tunction reads data trom the pre-detined display area. 

(0, 5) 

(DATA LENGTH) 

( (ENH POINTER) ) 

« CHAR SET» 

«ASCII POINTER» 

8-6 

Function Code 

Length ot the data bufters. 

A double word pointer to the butter that the enha.~cement 

data will be read into. 

A double word pointer to a bufter that the character set 
data will be read into. 

A double word pointer to the bufter that the ASCII data 
will be read into. 



AGIOS Function Call Reference 

SHIFT AREA 

This f'unction shif'ts the data in the pre-def'ined display area. 
Enhancements and character set are shif'ted with the ASCII data. 
of'f' an edge of' the update area is lost. 

Data shif'ted 

(0, 6) 

(DATA LENGTH) 

«Elm POINTER» 

«CHAR SET» 

Function Code 

Length of' the data buf'f'er. 

A double word pointer to a buf'f'er of' enhancement codes to 
be used to enhance the remaining unshif'ted area. 

A double word pointer to a buf'f'er of character set code 
characters to be used to change the character set state 
of' the remaining unshif'ted area. 

«ASCII POINTER» A double word pointer to a buf'f'er of' ASCII data to be 
written into the remaining unshif'ted area. 

(DIRECTION,DIST) DIRECTION: 

0 = up 
1 = down 
2 = lef't 
3 = right 

DIST: 

The number of' rows/columns to shif't the current video data. 

8-7 



AGIOS Function Can Reference 

WRITE LINE 

This function writes a single row (or part of a row) in the workspace. Unlike 
Write Area, this intrinsic ignores the area bounds set by Define Area. If 
the position and length of the data are defined such that the right 
workspace boundary is violated, that portion of the data exceeding the boundary 
is ignored. No line wrap occurs. 

(0, 7) Function Code 

(WKSP-ROW, WImP-COL) Defines the workspace 
data will be written. 

relative position at which the 

(DATA LENGTH) 

«Elm POINTER» 

« CHAR SET» 

«ASCII POINTER» 

8-8 

Length of the data buffers. 

A double word pointer to the buffer of enhancement data to 
be written at the designated position. 

A double word pointer to a buffer of character set code 
characters to be used to change the character set state 
of the update area. 

A double word pointer to the buffer of ASCII data to be 
written at the designated position. 



AGIOS Function Call Reference 

APPLICATION SOFTKEYS 

This section gives the AGIOS function calls that support Application Softkeys. 
You can access these softkeys by typing [Shift] [User System]. You can use 
ASCII and Extended Roman characters within Application Softkey labels. 

UPDATE SOFTKEY LABEL 

This function will update a softkey label and enhancement. 

(0, 8) 

( ,NUMBER) 

«DATA) ) 

(, TOP EmI) 

(,BOT EBB) 

Function Code 

Softkey Number (the softkey number is from 1 to 8 inclusive) 

A double word pointer to the buffer of ASCII data to be 
written into the label area. (16 bytes.) 

Enhancement code for the top half of the J~bel. 

Enhancement code for the bottom half of the label. 

READ SOFTKEV LABEL 

This function 
returns the 
buffers. 

(0, 9) 

( ,NUMBER) 

«DATA) ) 

gets the sOftkey number specified by the caller and then 
softkey label and the enhancement code characters in two 

Function Code 

Softkey Number 

A double word pointer to the buffer which is for the ASCII 
data. 

( (ENHANCEMENTS) ) A double word pointer to the buffer which is for the 
enhancement code characters. 

8-9 



AGIOS Function Call Reference 

DISPLAY SOFTKEY LABELS 

This function displays the application softkey labels in the softkey window. 

(0,11) Function Code 

8-10 



AGIOS Function Call Reference 

CONTROL FUNCTIONS 

EXECUTE TWO CHARACTER SEQUENCE (ESC CHAR) 

(0,16) 

OP-CBAR 

0 · · 1 : 
2 : 
3 · · 4 · · 5 · · 9 · · @ · · A : 
B · · C · · D : 
E 
F : 
G · · H · · I · · J : 
K 
L · · L · · P : 
Q : 
R : 
S : 
T : 

Function Code 

The character equivalent ot a 2 character escape sequence. 
Any operation characters are valid except tor those that 
return data. The tollowing list detines some ot the most 
common ones. 

Dump Alpha to Printer U · Ne%t Page · Set tab V · Previous Page · Clear tab ", · Forrmt Mode On · Clear all tabs X · Forrmt Mode Off · Set left rmrgin :r · Display Functions On · Set right rmrgin Z · Display Functions Off · Clear rmrgins [ · Start Unprotected Field · Delay one second } · End ~tected Field · Cursor up b · Enable Keyboard · Cursor dorm. c : Disable Keyboard 
Cursor right f · HOdem Disconnect · Cursor left g · Soft Reset Terminal · Reset terminal h · Home Up · Home dorm. i : Back Tab 
Return j · Display Softkey Def Menu · Home up k · Exit Softkey Def Menu · Tab l : Memory Lock On 
Clear display m Memol'y LOf'k Off 
Clear line p · Default Ill} Value · Insert Line q · Default [f2} Value · Delete Line r : Default [f3} Value 
Delete Character wlo Wrap s · Default [f4} Value · Insert Character wlo Wrap t. : Default [f5} Value 
Insert Character Off u : Default [+'6} Value 
Roll Up 1) Defaul~ If?} Value 
Roll Dorm. w Default [f8} Value 

8-11 



AGIOS Function Call Reference 

POSmON CURSOR (ESC &:. a) 

(0,17) 

IDDB 

(COLUMN) 

(ROW) 

8-12 

Function Code 

Bit 0: 
1 • f4ind0r.7 rofA1 addztess 
o • wrkspace rofA1 addztess 

Bit 1: 
1 - relative rofA1 addztess 
o - absolute rofA1 addztess 

Bit 2: 

1 - negative rofA1 addztess 
o = positive rofA1 addztess 

Bit 3: 
1 - rofA1 addztess is valid 
o • rofA1 addztess is not val id 

Bit 4: 
1 • f4ind~ column addztess 
o = ~pkspace column addztess 

Bit 5: 
1 • relative column addztess 
o = absolute column addztess 

Bit 6: 
1 = negative column addztess 
o • positive column addztess 

Bit 7: 
1 = column address is valid 
o • column address is not valid 

An unsigned integer 

An unsigned integer 



AGIOS Function Call Reference 

. DEFINE ENHANCEMENTS (ESC &. d) 

(0,18) Function Code 

SEC SEC: 1 = on, ° = off. 

ENH: the ESC &d code character (@ .. O) 

CURSOR SENSE ABSOLUTE (ESC a) 

(0,19) 

«BUFFER) ) 

Function Code 

A pointer to a buffer where two words are returned. The 
first word is the column number in binary and the second 
word is the row number in binary. 

CURSOR SENSE RELATIVE (ESC ') 

(0,20) 

«BUFFER) ) 

Function Code 

A pointer to a buffer where two words are returned. The 
first word is the column number number in binary and the 
second word is the row number in binary. 

8-13 



AGIOS Function Can Reference 

SET CURSOR TYPE 

This function sets the alpha cursor type. 

(0,21) 

(,TYPE) 

READ CURSOR TYPE 

Function Code 

Alpha cursor type: ° = underscore 
1 = inverse cell. 

This function reads the alpha cursor type. 

(0,22) 

«BUFFER) ) 

Function Code 

A pointer to a word location where alpha cursor type data is 
stored. 

READ TERMINAL CONFIGURATION 

This function reads the current terminal configurations. 

(0,24) 

«BUFFER) ) 

Function Code 

A word pointer to the buffer where the current configuration 
is returned. 

When this function is complete, BUFFER contains: 

( ,RRRRRTSP) 

(KEYBOARD LANGUAGE) 

(STRING LANGUAGE) 

(op SYS DEVICE) 

8-14 

R = reserved bits, 
T = set if touch screen off, 
S = set if softkeys on, 
P = set if remote port 2. 

Bits 0-2: addr. 0-7. 
Bits 3-15: dev. 0 = HP-IB, 1 = Accsy. 



AGIOS Function Call Refel'ence 

TOUCH SCREEN FUNCTIONS 

The touch teatures on the HP 150 can be programmed in a variety ot ways. The 
two general types ot touch operations are "Field" operations and "Row/Column" 
operations. These two types can be intermixed. 

Several ot the touch screen function calls in this section assume keycode mode. 
Reter to "Keycode Modes" in Section 7 tor intonnation on this mode. 

FIELD OPERATIONS 

There are four types of touch fields you can detine. They are: 

ASCII Fields: 

This mode is very similar to the User-Detinable Softkeys (see Section 4). A 
butfer of ASCII characters is associated with a touch tield. A response string 
ot 0 to 80 ASCII characters is obtained by consecutive keyboard input 
operations. The tirst input obtains the first ASCII byte, and the second 
input obtains the second ASCII byte, etc. The response string is generated 
when the field is touched and should be indistinguishable trom the typing ot 
the same string from the keyboard. Auto-repeat is performed. 

Keycode Fields: 

Keycode fields require that you be in keycode mode (see "Keycodes", Section 7). 
The two data words ot the response string are treated as a keycode and a 
qualfier and are processed by the regular keyboard routines. The final 
response to touch depends on the state and mode of keyboard processing. Touch 
simulates typing on the keyboard. Releasing simulates releasing your tinger 
trom the key. Auto-repeat is performed. 

Toggle Fields: 

The touch field is defined as a toggle switch. Touching the area toggles the 
field on and off. Whenever the field is touched, sensing information is 
passed to the application. 'rile sensing information consists of three data 
bytes. The data is obtainen by three consecutive keyboard input operations. 
The qualifier word of each data byte returned to the application has the 
touch screen 10. The three data bytes of sensing intonnation are: 

01B - toggle on field Peport opcode 
dl - response stPing first byte 
d2 - Pesponse stPing second byte 

8-15 



AGIOS Function Call Reference 

028 - toggle off field report opcode 
dl - response string first byte 
d2 - response string second byte 

Normal Fields: 

This type of touch field senses touch and/or release. The sensing 
information consists of three data bytes. The data can be obtained b,y 
three consecutive keyboard input operations. The qualifier word of each data 
byte returned to the application has the touch screen ID. Auto-repeat is 
performed. The three data b,ytes of sensing information are: 

058 - field touched report opcode 
dl - :response string first byte 
d2 - :response string second byte 

068 - field released :report opcode 
dl - :response string first byte 
d2 - :response string second byte 

Touch fields can overlap. If they do, then the most recent definition for 
a character cell takes precedent. 

ROW COLUMN OPERA nONS 

This type of touch operation returns the row and column position when a touch 
occurs. The row and column position are returned b,yte-by-byte using the 
keyboard input function of the operating system. Three data bytes are 
returned. The qualifier word returned with each byte of data has the touch 
screen ID. The data bytes for row/collwn operations are: 

03H - row column touch :report opcode 
l'ObJ -- touched 'POlI1 number in binary 
aol - touched column number in binary 

The data bytes for release report of row/column are: 

8-16 

04H - r~ column :release report opcode 
l"~ - touched rObJ number in binary 
col - touched column number in binary 



AGIOS Function Call Reference 

DEFINE TOUCH FIELD (ESC - z g) 

(0,32) 

«STRING» 

(LENGTH) 

(ATTRIBUTE ,MODE) 

(ON-ENH,OFF-ENH) 

( CURSOR, BEEP) 

(LR-ROW,LR-COL) 

(UL-ROW,UL-COL) 

Function code 

Pointer to response string. Points to 2 words for keycode 
field the first word is the qualifier and the second word is 
the keycode. Points to 2 bytes for toggle or normal field, 
o - 80 bytes for ASCII field. 

Response string length 

Touch ATTRIBUTE: 

1= ASCII field 
2= Keycode field 
3= Toggle field 
4= Normal field 

Reporting MODE: 

1= Report when touched 
2= Report when released 
3= Report both touch and release 

Enhancements of the field for on and off state for 
toggle field. Also enhancements of the field when touched 
and released for normal, ASCII, and keycode fields. 

CURSOR: 

o = do not position cursor 
1 = position cursor on touch 

BEEP: 

o = do not beep 
1 = beep on touch 

Rowand column of the lower right corner of the touch 
field. 

Rowand column of the upper left corner of the touch 
field. 

8-17 



AGIOS Function Call Reference 

DEFINE SOFTKEY FIELD (ESC - z s) 

This function defines one of the eight softkey label areas as a touch field. 
These fields when touched produce the same response as if the corresponding 
function key is typed. The default is all softkey touch fields are on. 

(0,33) 

(MODE ,KEY) 

Function code 

KEY (Softkey number): 1-8 

MODE: 1 = on, ° = off. 

DELETE TOUCH FIELD (ESC - z d) 

Deletes the touch field with upper left corner at <row> <col>. Nothing 
happens if there is no touch field there. The row and column are screen 
relative coordinates. 

(0,34) 

(UL - ROW, UL -COL) 

Function code 

Rowand column position of the field to be deleted. 
(OFFH,OFFB) deletes all fields. 

TOUCII SCREEN RESET (ESC - z j) 

Resets all fields to off. 

(0,35) Function code 

8-18 



AGIOS Function Call Referen£e 

SET TOUCH REPORTING MODES (ESC - z n) 

This tunction determines if, and how, touch is reported to your application b.Y 
the HP 150 terminal. 

(0,36) 

(,SCREEB-MODE) 

(,TOUCH-MODE) 

Function code 

Touch Field and Row/Col sensing: 

o Disable reporting. 

1 Enable sensing for row/c,;;lumn position. Touch fields are 
inactive. 

2 Enable sensing for touch fields only. Row/column sensing is 
inactive. 

3 Enable sensing for both row/column and touch fields. 
Row/column sensing occurs tor areas not defined as touch 
fields. 

4 Toggles touch screen on and off. 

10-14 - Same 
be sent. 

as 0-4, but causes escape sequence reports to 
This form is used ONLY by the system parser. 

Sense touch or touch-release: (used with Row/Col sensing 
only) 

1 Report on Touch . 
2 - Report on Release 
3 Report on both Touch and Release 

8-19 



AGIOS Function Call Reference 

KEYBOARD INTERCEPT 

Keyboard Intercept functions let you gain more control over the use of the 
keyboard. Each of the keyboard keys can be individually set to normal 
processing or one of the special processing modes. It should be noted that 
the keycodes for [tl] through [tl2] are valid only when the application softkey 
labels are displayed on the screen with AGIOS function call (0,11). 

There is no explicit "get keycode and qualifier" function call. The standard 
operating system console input function returns the normal ASCII code and 
also keycodes. The qualifiers are also returned if key code mode is on. 

The qualifier word is composed of the following bit values: 

Bit Value 

15-8 Input Device ID: 

OCOH = keyboard 
080H = touch screen 
OOOH = terminal internal 

7 Special key. If set, the data is a non-ASCII keycode. 
6 Res~}'Ved. 
5 Left extend char - set when down. 
4 Right extend char - set when down. 
3 Control - set when down. 
2 Left shift - set when down. 
1 Right shift - set when down .. 
o Repeating key when set. 

To properly use the key intercept functions, the application program 
should first put the operating system's console input device into raw mode. 
This will allow keycodes to be passed through without interpretation by the 
operating system. Keycode mode should then be turned on. Finally each of the 
keys on the keyboard can be set to the desired mode of operation. For more 
information see "Keyboard Interfacing" in Section 7 of this manual. 

8-20 



AGIOS Function Call Reference 

DEFINE KEY CHARACfERISTICS 

This function lets you alter characteristics of any of the special keys. 
Specifically, you can: 

v Process the key normally (Same as on UP 2623 terminal) 
v Intercept the key and pass a keycode to the application for processing 
v Ignore the key when it is pressed 
v Beep when the key is pressed in combination with the above characteristics 

(0,40) 

(CHARACTERISTICS) 

(KEYCODE) 

Function Code 

Key Characteristics 

Bit: 
1 
2 
3-15 

Action: 0 
intercept 
ignore 

reserved 

beep 

If bit 1 and 2 are both set, the key is treated as an 
intercept key. When both are zero, the key resumes normal 
functioning. 

Keycode from table on previous page. A value of OFEH will 
set all special keys to the specified characteristics. 

GET KEY CHARACTERISTICS 

This function returns the characteristics of a key to the caller. 

(0,41) 

«BUFFER» 

(KEYCODE) 

Function Code 

Pointer to a buffer where the key's characteristics will be 
returned. 

Keycode 

8-21 



AGIOS Function Call Reference 

PUT KEY 

This function lets you specify direct the terminal to process the key code 
normally. Use this function when you wish to 'process' a keypress which was read 
in when intercept mode was active. For normal ASCII keys, you would simply 
'echo' the character in place of using this function. 

(0,42) Function Code 

(QUALIFIER) Qualifier 

Bit: Interpretation: 

15-8 = Input Device 1D (OCOH = keyboard) 
7 = Special key. Must be set. 
6 = Reserved 
5 = Left extend char, set when down 
4 = Right extend char, set when down 
3 = Control, set when down 
2 = Left shift, set when down 
1 = Right shift, set when down 
a = Not used 

(KEYCODE) Keycode 

KEYCODE ON/OFF 

This function. turns the keycode mode of the console device on and off. If 
keycode mode is off, each key hit on the keyboard returns one byte of data when 
the console input device is read. If keycode mode is on, each key press 
returns four bytes of data. The first two bytes form a word of qualifiers 
and the next two bytes form a word of key data. See 'Keycode Modes' in 
Section 7 for more detail. 

(0,43) 

MODE 

8-22 

Function Code 

Keycode mode: 

~ = on 
o = off 



AGIOS Function Call Reference 

KEYCODE STATUS 

This function returns the on/off status of a keycode. 

(0,44) 

«BUFFER» 
Function Code 

A pointer to a byte location where the keycode on/off status 
is returned. 

READ KEYPAD STATUS 

This function returns the status of whether the extended keypad is in 
numeric or graphics mode. 

(0,44) 

«BUFFER» 
Function Code 

A pointer to a byte location where the keypad status is 
returned. 

When this function is complete, BUFFFJR contains 0 if numeric mode is set, and 1 
if graphics mode is set. 

8-23 



AGIOS Function Call Reference 

DISPLA Y CONTROL (ESC * d) 

CLEAR GRAPHICS MEMORY (ESC" d a) 

This function clears graphics display memory to o. The complete displayable 
graphics area of 512 x 390 dots are cleared. 

(4, 1) Function Code 

SET GRAPHICS MEMORY (ESC" db) 

This function sets graphics display memory to 1. 
graphics area of 512 x 390 dots are set. 

(4, 2) Function Code 

TURN ON GRAPHICS DISPLAY (ESC" d c) 

The complete displayable 

This function turns on the graphics display. 
not affected. 

The data in graphics memory is 

(4, 3) Function Code 

8-24 



AGIOS Function Can Reference 

TURN OFF GRAPHICS DISPLAY (ESC'" d d) 

This function turns off the graphics display. The data in graphics memory is 
not affected. 

(4, 4) Function Code 

TURN ON ALPHANUMERIC DISPLAY (ESC" d e) 

This function turns on the alphanumeric display and alphanumeric cursor. 
The data in alphanumeric memory is not affected. 

(4, 5) Function Code 

TURN OFF ALPHANUMERIC DISPLAY (ESC'" d f) 

This function turns off the alphanumeric display. 
memory is not affected. 

(4, 6) Function Code 

TURN ON GRAPHICS CURSOR (ESC" d Il) 

The data in alphanumeric 

This function turns on the graphics cursor. 
not affected. 

The data in graphics memory is 

(4, 7) Function Code 

8-25 



AGIOS Function Call Reference 

TURN OFF GRAPHICS CURSOR (ESC" d J) 

This tunction turns ott the graphics cursor. 
not attected. 

The data in graphics memory is 

(4, 8) Function Code 

TURN ON RUBBER BAND LINE (ESC" d m) 

This tunction turns on the rubber band line and graphics cursor. 

(4, 9) Function Code 

TURN OFF RUBIJER BAND LINE (ESC" d n) 

This tunct ion turns ott the rubber band line. 

(4,10) Function Code 

MOVE GRAPHICS CURSOR ABSOLUTE (ESC '" d <x,y> 0) 

This function moves the graphics cursor to 
move occurs even if the cursor is turned otf. 

Function Code 

the specified location. The 

(4,11) 

(X-COORD) The X coordinate of the new cursor position expressed as an 
absolute number in the range of plus and minus 16383. 

8-26 



(Y-COORD) 

AGIOS Function Call Reference 

The Y coordinate of the new cursor position expressed as an 
absolute number in the range of plus and minus 16383. 

MOVE GRAPHICS CURSOR INCREMENTAL (ESC'" d <x,y> p) 

This function moves the graphics cursor to the specified location. The 
move occurs even if the cursor is turned off. 

(4,12) 

(X~COORD) 

(Y-COORD) 

Function Code 

The X coordinates of the new cursor position expressed as a 
number that is relative to the current cursor position. Its 
range extends from -32768 to +32767. 

The Y coordinate of the new cursor position expressed as a 
number that is relative to the current cursor position. Its 
range extends from -32768 to +32767. 

TURN ON ALPHANUMERIC CURSOR (ESC" d q) 

This function turns on the alphanumeric cursor. 
memory is not affected. 

(4,13) Function Code 

The data in alphanumeric 

8-27 



AGIOS Function Call Reference 

TURN OFF ALPHANUMERIC CURSOR (ESC" d r) 

This £unction turns off the alphanumeric cursor. 
memory is not affected. 

(4,14) Function Code 

TURN ON GRAPHICS TEXT MODE (ESC" d s) 

The data in alphanumeric 

This function turns on graphics text mode. Characters that normally go to 
the alphanumeric display will be drawn on the graphics display. 

(4,15) Function Code 

TURN OFF GRAPHICS TEXT MODE (ESC flo d t) 

This function turns off graphics text mode. 

(4,16) Function Code 

8-28 



VECTOR DRAWING MODE ( ESC * m ) 

SELECT DRAWING MODE (ESC" m <mode> a) 

This function selects the vector drawing mode. 

(4,17) 

(MODE) 

Function Code 

Drawing Mode: 

o = Graphics memory not changed 
1 = Clear mode 
2 = Set mode 
3 = Complement mode 
4 = Jam mode 

SELECT LINE TYPE (ESC" m <type> b) 

This function selects the vector line type. 

(4,18) 

(TYPE) 

Function Code 

Line Type: 

1 = 
2 = 
3 = 
4= 
5 = 
6 = 
7 = 
8 = 
9 = 
10= 
11= 

User defined line pattern 
Current area fill pattern 

. . . . . . . . ---------
POint-plot- - - - - - - -

8-29 



AGIOS Function Call Reference 

DEFINE LINE PATTERN AND SCALE (ESC" m <pattern><scale> c) 

This function defines a user line pattern and scale. 

(4,19) 

(,PATTERN) 

(SCALE) 

Function Code 

The line pattern expressed as an eight bit binary number. 

The line scale expressed as a binary number from 1 to 16. 

DEFINE AREA FILL PATTERN (ESC" m <pattern> d) 

This function defines a user area fill pattern of 8 b.Y 8 screen dots. 

(4,20) 

( , DATA ROWl) 
( , DATA ROW2) 
( , DATA ROW3) 
( ,DATA ROW2) 
(,DATA ROW4) 
( ,DATA ROW5) 
( ,DATA ROW6) 
(,DATA ROW7) 
(,DATA ROW8) 

8-30 

Function Code 

You specify all eight rows of the 8 by 8 fill pattern. Each 
DATA-ROW is an eight-bit byte which defines a particular row 
of the pattern. 



AGIOS Function Can Reference 

FILL RECfANGULAR AREA, ABSOLUTE (ESC" m <x1,yl,x2,y2> e) 

This tunction fills a rectangular area 
fill pattern. The rectangular region is 
left and upper right coordinates. 

with the selected line or area 
defined by specifying the lower 

(4,21) Function Code 

(LWR LEFT X-COORD) Each coordinate is in the range of -16384 to +16383. 
(LWR LEFT Y-COORD) 
(UPR RIGHT X-COORD) 
(UPR RIGHT Y-CooRD) 

FILL RECfANGULAR AREA, RELOCATABLE (ESC" m <x1,yl,x2,y2> f) 

This tunction fills a rectangular area 
fill pattern. The rectangular region is 
left and upper right coordinates. 

with the selected line or area 
defined by specifying the lower 

(4,22) Function Code 

(LWR LEFT X-COORD) Each value is in the range from -32768 to +32767. 
(LWR LEFT Y-CooRD) 
(UPR RIGHT X-COORD) 
(UPR RIGHT Y-CooRD) 

SELECT POLYGONAL FILL PATTERN (ESC" m <pattern> g) 

This function selects a pattern for polygonal and rectangular area 
fill. 

8-31 



AGIOS Function Call Reference 

(4,23) 

(PA'rI'ERlf) 

Function Code 

Area Fill Pattern: 

1 = Solid till pattern 
2 = User-detined till pattern 
3-10 = Pre-detined till pattern 

SELECT BOUNDARY PEN (ESC * m <pen> h) 

This tlUlction selects the pen to be used to draw the boundary ot a tilled 
polygon. The actual value is not signiticant in a black and white system. 
This function turns on boundary drawing with a solid line pattern. The 
drawing ot each edge ot the bolUldary can be individually controlled. 

(4,24) 

(PElf) 

Function Code 

Boundary Pen Number 

NO POLYGON BOUNDARY (ESC '* m h) 

This function turns ott drawing ot bo~~dary arolUld a polygon. 

(4,25) Function Code 

8-32 



AGIOS Function Can Reference 

SET RELOCAT ABLE ORIGIN (ESC" m <x,y> j) 

This function sets the relocatable origin to the specified absolute 
location. 

(4,26) 

(X-COORD) 

(Y-CooRD) 

Function Code 

The X coordinate is the new relocatable origin expressed as 
an absolute number in the range of -16384 to +16383. 

The Y coordinate is the new relocatable origin expressed as 
an absolute number in the range of -16384 to +16383. 

SET RELOCATABLE ORIGIN TO PEN POSITION (ESC" m k) 

This function sets the relocatable origin to the current pen position. 

(4,27) Function Code 

SET RELOCATABLE ORIGIN TO CURSOR POSITION (ESC * m I) 

This function sets the relocatable origin to the current cursor position. 

(4,28) Function Code 

8-33 



AGIOS Function Call Reference 

GRAPHICS TEXT (ESC *) 

The HP 150 offers a comprehensive graphics character set in read-only memory 
(IDM). This standard character set is used by all graphics text operations. 
However, you do have the ability to create custom characters of your own design 
and to use these singly or to replace the entire built-in character set. 

SET GRAPHICS TEXT SIZE (ESC'" m <size> m) 

This function sets the graphics text size. The vector lists that define the 
current character set are scaled using this text size. 

(4,29) 

(X-SCALE) 

(Y-SCALE) 

Function Code 

The X coordinate scale factor for text characters. The 
format is a 16 bit number with the radix point between bits 
7 and 8: 

Bits 1-8 = integer 
Bits 9-16 = fraction 

The Y coordinate scale factor for text characters. The 
format is a 16 bit number with the radix point between bits 
7 and 8: 

Bits 1-8 :: integer 
Bits 9-16 = fraction 

SET GRAPHICS TEXT ORIENTATION (ESC * m <orientation> n) 

This function selects the graphics text orientation. This also changes the 
direction of line feed, carriage return, and backspace. The desired 
orientation is specified by a number defined as: 

8-34 



AGIOS Function Call Refel'ence 

(4,30) 

(ORIEHTATIOI) 

Function Code 

Graphics Text Orientation: 

1 = lormal 
2 = Rotate 90 degrees counterclockwise 
3 = Rotate 180 degrees counterclockwise 
4 = Rotate 270 degrees counterclockwise 

TURN ON TEXT SLANT (ESC * m 0) 

This function 
characters. 

(4,31) 

turns on the 26.57 

Function Code 

TURN OFF TEXT SLANT (ESC * m p) 

degree slant of graphics text 

This function turns off 26.57 degrees slant of graphics text characters. 

(4,32) Function Code 

8-35 



AGIOS Function Can Reference 

SET GRAPHICS TEXT ORIGIN (ESC * m <0-9> q) 

This function sets the graphics text origin to one of twelve positions of text 
justification. The positions are shown in this figure: 

3------6------9 
I I 
I I 
I I 
I I 
258 
I I 

Base line -) 0 10 11 
I I 
I I 
1------4------7 

(4,33) Function Code 

(ORIGIN) Graphics Text Origin: 

A number from 0 to 11. 

GRAPHICS TEXT LABEL (ESC * ) <text» 

This function outputs a string of graphics characters. 

(4,34) 

( ('J:£A"J:» 

8-36 

Function Code 

Segment and offset address of a string of characters. The 
string must be terminated by CR, LF, CR LF, or LF CR. 



AGIOS Function Call Reference 

DEFINE USER CHARACTER SET 

This function lets you re-define the entire graphics character set. All 
subsequent graphics text operations will use this character set. This includes 
text size, orientation, slant, and justification. 

(4,35) 

«TABLE) ) 

Function Code 

Segment and offset address of the table that points to the 
vector lists of characters. 

SELECT DEFAULT CHARACTER SET 

This function sets the character set to the default set maintained by the 
system. The cell size is 7 x 10. 

(4,36) Function Code 

OUTPUT SINGLE TEXT CHARACTER 

This function outputs a single graphics character defined by a vector list. All 
current graphics text operations such as size and orientation apply. 

(4,37) 

( ( CHARACTER) ) 

Function Code 

Segment and offset address of the vector list of a single 
character. 

8-37 



AGIOS Function Call Reference 

SET GRAPHICS DEFAULT (ESC * m r) 

This function sets the graphics parameters to their default values. 

(4,38) Function Code 

The defaults affected by this call are: 

8-38 

Pen down 
Line type 1 
User-defined line pattern solid 
User-defined area fill pattern solid 
Boundary pen off 
Dr~wing mode set 
Relocatable origin 0,0 
Text size 1 
Text origin 1 
Text slant off 
Text orientation 1 
Graphics text off 
Graphics display on 
Alphanumeric display on 
Graphics cursor off 
Alphanumeric cursor on 
Rubber band line off 
Graphics cursor position 0,0 



AGIOS Function Call Reference 

SET PICTURE DEFINITION DEFAULTS (ESC. m 1 r) 

This function sets the picture definition parameters to their default values. 

(4,12) Function Code 

(RESET LEVEL) The level of graphics reset. On the HP 150 the value '1' is 
the only supported level. 

The picture defaults are: 

Pen down 
Line type 1 
User-defined line pattern solid 
User-defined area fill pattern solid 
Boundary pen off 
Drawing mode set 
Text size 1 
Text origin 1 
Text slant off 
Text orientation 1 
Graphics text off 

GRAPHICS HARD RESET (ESC * w r) 

Sets the graphics parameters to their power on state. 

(4,13) Function Code 

8-39 



AGIOS Function Call Reference 

GRAPHICS PLOTTING ( ESC * p ) 

LlFf PEN (ESC. p a) 

This function lifts the pen. 

(4,39) Function Code 

VECTOR MOVE (ESC. p a <x,y» 

This function lifts the pen and moves the pen to the new coordinate position. 
The pen is lowe~ed at the end of the operation. 

There are three ways to specify the new coordinate position: 

(4,40) 

(X-COORD) 
(Y-COORD) 

(4,41) 

(X-COORD) 
(Y-CooRD) 

(4,42) 

(X-coord) 
(Y-coord) 

8-40 

Function Code 

The X and Y numbers give an absolute coordinate position in 
the range from -16384 to +16383. 

Function Code 

The X and Y numbers give an incremental coordinate position 
in the range from -32768 to +32767. 

Function Code 

The X and Y numbers give a relocatable coordinate position 
in the range from -32768 to +32767. 



AGIOS Function Call Reference 

LOWER PEN (ESC * p b) 

This function lowers the pen. 

(4,43) Function Code 

VECTOR DRAW (ESC * p b <x,y» 

This function lowers the pen and draws a vector to the new coordinate position. 
The pen is lowered at the end of the operation. 

There are three ways to specify the new vector coordinates: 

(4,44) 

(X-COORD) 
(Y-CooRD) 

(4,45) 

(X-COORD) 
(Y-COORD) 

(4,46) 

(X-COORD) 
(Y-COORD) 

Function Code 

The X and Y numbers give the absolute coordinates of the 
vector position. They are in the range from -16384 to 
+16383. 

Function Code 

The X and Y numbers give the incremental coordinates of the 
vector position. They are in the range from -32168 to 
+32161. 

Function Code 

The X and Y numbers give the relocatable coordinates of the 
vector position. They are in the range from -32168 to 
+32161. 

8-41 



AGIOS Function Can Reference 

PLOT~O CURSOR POSITION (ESC * P c) 

This function moves the pen from its current position to the current cursor 
position if the pen is up. A draw is performed from the current pen 
position to the current cursor position if the pen is down. 

(4,47) Function Code 

POINT PLOT (ESC * P d) 

This function draws a dot at the current pen position and then lifts the pen. 

(4,48) Function Code 

SET RELOCATABLE ORIGIN TO PEN POSITION (ESC * p e) 

This function sets the relocatable origin to the current pen position. 

(4,49) Function Code 

8-42 



AGIOS Function Call Reference 

START POLYGONAL AREA FILL (ESC" p s) 

This !unction starts polygonal area fill. The boundary pen is lowered with this 
function. 

(4,50) Function Code 

TERMINATE POLYGONAL AREA FILL (ESC" p t) 

This function terminates the polygon definition and fills the polygon. 

(4,51) Funct ion Code 

POLYGON MOVE 

This function closes the polygon defined up to this point and moves the pen 
to the new coordinate position to start a new polygon. 

There are three ways to specify the new coordinate position: 

(4,52) 

(X-COORD) 
(Y-COORD) 

(4,53) 

(X-COORD) 
(Y-CooRD) 

(4,54) 

Function Code 

The X and Y numbers give the absolute coordinates of the new 
position. They are in the range from -16384 to +16383. 

Function Code 

The X and Y numbers give the incremental coordinates of the 
new position. They are in the range from -32767 to +32767. 

Function Code 

8-43 



AGIOS Function Call Reference 

(X-COORD) 
(Y-COORD) 

POLYGON DRAW 

The X and Y numbers give the relocatable coordinates of the 
new position. They are in the range from -32768 to +32767. 

This function defines the edge of a polygon from the current pen position to 
the new coordinate position. 

There are three ways that you can specify the new coordinate position: 

(4,55) 

(X-COORD) 
(Y-CooRD) 

(4,56) 

(X-COORD) 
(Y-COORD) 

(4,57) 

(X-COORD) 
(Y-CooRD) 

Function Code 

The X and Y numbers give the absolute coordinates of the new 
position. They are in the range from -16384 to +16383. 

Function Code 

The X and Y numbers give the incremental coordinates of the 
new position. They are in the range from -32768 to +32767. 

Function Code 

The X and Y numbers give the relocatable coordinates of the 
new position. They are the range from -32768 to +32767. 

LIFT BOUNDARY PEN (ESC" p u) 

This function lifts 
polygon are not drawn. 
lowered. 

the 
This 

polygon 
remains 

(4,58) Function Code 

8-44 

boundary pen. Undrawn edges of the 
in effect until the boundary pen is 



AGIOS Function Call Reference 

LOWER BOUNDARY PEN (ESC * P v) 

This function lowers the polygon boundary pen. If a boundary pen has been 
specified, undrawn edges of the polygon are drawn with a solid line 
pattern. This remains in effect until the boundary pen is lifted. 

(4,59) Function Code 

8-45 



AGIOS Fundion Call Reference 

GRAPHICS STATUS ( ESC • s ) 

READ DEVICE ID (ESC it s 1) 

This function returns the device id of the HP 150. 

(4,60) 

«BUFFER» 

Function Code 

Segment and offset address of the buffer to be used for 
returned device data. 

When this function is complete, BUFFER contains an ASCII string that identifies 
the device. 

READ PEN POSITION (ESC it s 2) 

This function returns the current position and the state of the pen. 

(4,61) Function Code 

«BUFFER) ) Segment and offset address of the buffer to be used for 
returned pen status data. 

When this function is complete, BUFFER contains: 

(X-COORD) 
(Y-COORD) 

(STATE) 

8-46 

The binary X and Y coordinates of the current pen position 

o = pen lifted, 1 = pen lowered 



AGIOS Function Cal) Reference 

READ CURSOR POSITION (ESC * s 3) 

This function returns the current position of the cursor. 

(4,62) 

«BUFFER) ) 

Function Code 

Segment and offset address of the buffer to be used for 
the returned cursor data. 

When this function is complete, BUFFER contains: 

(X-COORD) 
(Y-COORD) 

The X and Y coordinates of current cursor position. 

READ CURSOR POSITION, WAIT FOR KEY (ESC * s 4) 

This function returns the current position of the cursor, but lets the 
user move it on the display first. The user can type any ASCII key or the 
SELECT key on the keyboard to move the cursor. As soon as one of these 
characters is typed, the cursor coordinates are returned to the program. 

(4,63) 

«BUFFER» 

Function Code 

Segment and offset address of the buffer to be used for 
returned cursor position. 

When this function is complete, BUFFER contains: 

(X-COORD) 
(Y-COORD) 

(CODE) 

The X and Y coordinates of current cursor position. 

The character code of the key that was typed. 

8-47 



AGIOS Function Call Reference 

READ DISPLAY SIZE (ESC * s 5) 

This function returns the number of displayable units and also the number of 
units in millimeters. 

(4,64) 

( (BUFFER) ) 

Function Code 

Segment and offset address of the buffer to be used for 
the returned displayable size and unit data. 

When this function is complete, BUFFER contains: 

(X-LWR-LEFT) 
(Y-LWR-LEFT) 
(X-UPR-RIGBT) 
(Y-UPR-RIGBT) 

(X-MM) 
(Y-MM) 

The X and Y coordinates of the maximum display size. 

The X and Y dimensions in dots / millimeters. 

READ GRAPHIgi~ETI1NGS (ESC * s 6) 

This function returns information about the current graphics settings in 
effect. 

(4,65) 

«BUFFER) ) 

Function Code 

Segment and offset address of the buffer to be used for 
returned graphics settings. 

When this function is complete, BUFFER contains the settings in consecutive 
words: 

(CLEAR DISPLAY) 
(NUMBER OF PENS) 
(RESERVED) 
(RESERVED) 
(AREA SHADING) 
(RESERVED) 
(RESERVED) 
(DYNAMIC MODIFICATION) 
(GRAPHICS CHARACTER SIZE) 
(GRAPHICS CHARACTER ANGLES) 

8-48 



(GRAPHICS CHARACTER SLANT) 
(DOT-DASH LINE PA'l'TER!l) 
(RESERVED) 
(RESERVED) 
(RESERVED) 
(RESERVED) 

READ GRAPHICS TEXT STATUS (ESC" s 7) 

AGIOS Function Call Reference 

This function returns the current attributes of graphics text. 

(4,66) 

«BUFFER) ) 

Function Code 

Segment and offset address of the buffer to be used for 
the returned graphics attributes. 

When this function is complete, BUFFER contains: 

(X SIZE) The character cell size. 
(Y SIZE) 

(ORIGIN) The text origin. 

(ANGLE) The text orientation. 

(SLANT) The character slant. 

READ ZOOM STATUS (ESC" s 8) 

This function returns the terminal's zoom setting. 

(4,67) 

«BUFFER) ) 

Function Code 

Segment and offset address of the buffer to be used for 
the returned zoom setting. 

8-49 



AGIOS FUDctioD Call RefereDce 

When this function is complete, BUFFER contains: 

(ZOOM SIZE) 

(ZOOM ON/OFF) 

1 - 16 (the HP 150 always returns 1). 

o = otf, 1 = on (the BP 150 always returns 0). 

READ RELOCATABLE ORIGIN (ESC'" s 9) 

This function returns the current relocatable origin. 

(4,68) 

«BUFFER) ) 

Function Code 

Segment and offset address of the buffer to be used for 
the returned origin. 

When this function is complete, BUFFER contains: 

(X-COORD) 
(Y-COORD) 

The X and Y coordinates of the current relocatable origin. 

READ RESET STATUS (ESC'" s 10) 

This function returns information on whether the terminal has executed a 
full reset since the last time reset status was checked. 

(4,69) 

«BUFFER) ) 

Function Code 

Segment and offset address of the buffer to be used for 
the returned reset status. 

When this function is complete, BUFFER contains: 

(RESET STATUS) 
(RESERVED) 
(RESERVED) 
(RESERVED) 
(RESERVED) 
(RESERVED) 
(RESERVED) 

8-50 



AGIOS Function Call Reference 

(RESERVED) 

READ AREA SHADING (ESC * s 11) 

This function returns information on the area shading capability of the 
terminal. 

Function Code (4,70) 

«BUFFER» Segment and offset address of the buffer to be used for 
the returned shading data. 

When this function is complete, BUFFER contains: 

(CAPABILITIES) 

(WIDTH) 
(HEIGHT) 

The area shading capabilities. 

The area shading pattern size. 

READ DYNAMICS (ESC * s 12) 

This function 
capabilities. 

returns information on 

Function Code 

the terminal's dynamic graphics 

(4,71) 

((BUFFER) ) Segment and offset address of the buffer to be used for 
the returned dynamic graphics data. 

When this function is complete, BUFFER contains: 

(SELECTIVE-BRASE-CAPABILITIES) 

(COMPLEMENT-CAPABILITIES) 

8-51 



AGIOS Function Call Reference 

READ EXTENDED SCREEN DIMENSIONS 

This tunction provides intormation about the alpha and graphics screen size plus 
the relationship between the two. 

(0,74) 

«BUFFER) ) 

Function Code 

Segment and ottset address ot the butter to be used tor the 
returned screen size data. 

When this function is complete, BUFFER contains: 

(X·PlXELS) 
(Y-PlXELS) 

(ROWS) 
(COLUMNS) 

(X-MM) 
(Y-MM) 

(ROW-MM) 
(COL-MM) 

(DELTA-X) 
(DELTA-Y) 

8-52 

512 graphics display size in pixels. 
390 

27 alpha display size. 
80 

160 graphics display size in mm. 
120 

150 alpha display size in Mm. 
116 

10 graphics origin minus alpha origin in ... 
4 



LOGIC DIAGRAMS I 
L..----___ ------ICTI 

Schematic diagrams for the UP 150 are provided in this appendix. 





Table of Contents 

Touchscreen PCA .•• 
Keyboard PCA .••••. 
Processor peA .•••. 
Processor Front Plane Interface. 
Processor I/O Bus .•.•.•••• 
Processor Datacomm Port .•... 
Video Alpha RAM Subsystem ... 
Video Alpha Display Subsystem .• 
Video Graphics Display Subsystem .•••••••••••. 
Thermal Printer Interface (Part of Front Plane PCA) .•. 
Mezzanine Memory PCA •.•. 
Mezzanine Datacomm peA .. 
Sweep peA .•.•.•••..••.••• 
RAM (Memory Extender) PCA. 
Language PCA............. •. 

...... 

Logic Diagrams 

. .A-l 
.A-3 

• •• A-5 
.. A-1 

• •• A-9 
. ...... .. A-l1 

.A-13 

.A-15 

.A-l1 

.A-19 

.A-21 

.A-23 
• •• A-25 

.A-21 
• •• A-29 







Logic Diagrams 

This page is blank 

A-2 



Logic Diagrams 

13 MI 

-VI ~C4011B 

10 13 12 II d 13 12 II 

B C 
+12 

A B C D W A 

V~DW M4 M5 VDD 
16 

XO-XI3 
MC4028B 

11 
MC4028B 

~ (j 
V55 VSS 

QO QI Q2 Q3 Q4 05 Q5 Q7 08 09 QO QI Q2 Q3 04 05 Q6 Q7 08 Q9 

3~15 I 6 7~151 

~ 
2 IS I 

5~ 91 51 

GI-G8 
~ 

SWITCH CONNECTION r- ~ r- -r-- --- --- --- --- --- --- --- --- --- --- -- - --- - -- --- --- 1 
I XO XI X2 X3 X4 XS X6 X7 X8 X9 XIO XII XI2 XI3 

I 
I I 
I I 
I MENU 8 I J M F4 7 U H p, PTAB N I RESTOR SIP RUI 
I �,----- -, 
I GI A7 B9 C9 D9 E9 "* A6 B8 C8 08 D20 E20 f E8 I I 9 I 

JI-5 

I CLEAR DEL DEL PREV NEXT .. G L.SHFT TAB 2 PENTER P- PFI2 ESC I I 
I ---.. LINE CHAR DEL I I 220K 

:1 IG2 I I AI4 BI6 CI6 016 EI6 F9 D7 E2 CI 83 C20 B20 AI8 EI 8 
+12 

:T 
15 I CLEAR INS INS 

" 
, , STOP R.SHFT 0 SPAREl P6 P3 p. ENTER I I 

7~ VDD I -- LINE CHAR I I 01 

~ XO~ R3 14 INH IG3 DIS FII FI I I CLOCK AI3 BI5 CIS EI5 Fe A2 EI3 C2 F2 019 EI9 VDD 
QI 12 XI 14 

~ 
IK +12 

~ 
A I F8 BACK I RET SELECT .. CTRl CAP W A P9 P+ PFII Z I I , D2 

I SP "- I I 
~D3 CK Q2 II 10 B X2 15 

154 AI2 BI4 CI4 DI4 EI4 F7 D2 01 C3 Dc. CI9 BI9 AI7 E3 I I 
SYNC RI 

2 RST 
M2 

Q3 9 9 C 
M3 

X3 12 I F7 + J » I SRIIRE 2 - 3 E 5 'P5 P2 X I I 

2~ If<' MC4024B I ] , / kll 
'''' D4 

sJ NC 04 6 X4 I IG5 All BI3 CI3 DI3 B2 F6 BI 84 C4 D4 DI8 Ele *' E4 CR71 I 

;-JQ Q5 5 
MC4051B 

X5 5 F6 { : ? R.E. R D P8 p/ PFIO C II 

5~ 
NC I - FI 4 

I> 
+12 

I / CHAR I I 

11 12 13 14 
~ Q6 4 ~x 

"~ BI2 [ 
, 

NC I G6 AIO CI2 DI2 EI2 F5 A3 85 CS DO, CI8 BI8 A16. ES II 

Q7 3 X7~ I F5 0 P l > L.E F2 5 T F P4 PI P0 V I I 

3~ GND 75UF T35UF T35UF 10UF 
. CHAR V5S 

~s~r 
I II 

g I G7 A9 BII CII DII Ell F3 A4 86 C6 D6 DI7 EI7 FlO E6 I I 

~ I SYSTEM 9 0 K < SPACE F3 6 Y RESEl P7 p* PF9 B I I 

4~ +12 
I 

. 
I I 

I G8 A8 BIO CIO DIO EIO F4 A5 B7 C7 AI CI7 BI7 AIS E7 I I 
'''' D5 

MI MI 
I I I 

~ KEY R2 3 I 4 6 
5 I I I 

2.2K 2 L ____________________________________ 
---------- _____ ~I D6 MC401lB MC401lB I I 

JI-I 

JI-3 

JI- 4 

JI-6 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

L _____ 

N/C 
JI-2<:!--- Y 

NOTE 
* DIODE NOT LOADED 

Figure A-2. Keyboard PCA 

A-3 



Logic Diagrams 

This page is blank 

A-4 



Logic Diagrams 

ABU$ 
r--uf.''k---~3",.;---, U21 0 E~,~"E I" 

HoLD H~D~If.l'''-~ __ -1 I~ YJ 

AM 5 ~r __ ~L 'sk:~,~,,"~JJ_221'_CC~ __________ -L ___ ~r~'O~NT~R~O~L~ ______ ~~J_-r-~---__ ------------------------------~~-------------------------------~ 

E:::"'-"''-----------i--j ~3::r4---+----------;r--""1---~IO e ~r 
AD7 ' q ~ r-+ ____ 3--1~r.:5=--+---"_1;T p, g NGo I 
~: ~!~:::::::::::::::j ~G~ $7'1- I LJ4 10 ~ LS"~[I ~LSIl1_, 
A/~f.l6'-----1 U21+,K U613 ~ ~ z U6!+ 12 U614 ,7 6() 

AI! >.=S'---_--1 5 c. D" Q 6 -i-----.2.J r-r--=-IK c" i r=-IK ~"4 qqP ---
NLf''t-L-----1 ~LE 9 B I I L$~g "ts~ ~ I ~ 
~~ 1"-----1 LUS~: ,---tI ____ -<U_'2T::4~INI(_"":_"'_'-_-_-~:--~+-'+-- ~~n PAD 

AIS 3' ," "310 
AI6 6 TEST PAl,) _ 

Al7~- I~.Q""K.<----->--I-''<l' 10 Nal( 

AI8 i
7.G R7 sdlf- L,---='-~ 

Ai<1 j '<$ I r-+-"·XN=c-t-~+sV Ct-R ! 
'17 ~2. I~I<' :~ A Q)13 f.)W7 

DTII[ ~~ 10K U2'4,~ B Q G ~+_ NSS~'3 RG 1\ QF~t--
/'JDE :;.1.6 )i'YK +SV LSIGIf 

:;;~2: R~ U513 ~: ~I--
~K ~15VW~~ 
R8 Ga-r NW1..+--

1 

13 s 

LS164-

U514 

Lstr.>4 

g 

g 

9 

U45 
U214 

fb -t-SY 

'---

UH 12 

",.. U44 
13 
~ 

S10/M 

~2 
U75 

NDCRD 

151 LS3"R 

~ 
lJ62 

4 ,-SOQ 

~ 
~CI~88L 
~ 

~ ~-. 

~ U21 ;D:o!Al!T"Afl-_,,'3~,l:1C' f-l 11~"-4 6 _2+-'q -'\J'-- + 5 v 

LS368 

LS02 

~ 

~ 
~ 

LSC'! 
.2.J~ 

VU44-

--.Jl_0 ~~g_ 
~ 

~-
U32 

7 4 07 

~,-
U7/0 

~ U7/0 

I~ 

I~ cA3083 

U7G 'i" 

Figure A-3. Processor PeA 

'" ;;: 
oc 
3 
« 
% 
to 
.g 

'" 
'---

AM) 
~ 

ADi. ~ 
A~1. 

ADS -{:.:o> 
ADI -t-> 
ADS 
AD6 ~~ 

AD7 

ABUS 6! -r--, 

ABVsi ~ 

A8V-sZ, ~ 

ABLJS 3 ~ 
\RUS ~ ~ 

ABUS r; s----., 

ARl)sr; ~ 
ABVS7 ~~ 

ABUSB ~ 
,ABlJ5 q -'iC> 

V) ARV m ...r--. 
iii ARUS ~ 
~ ARU"12 -r:----. 

ABIJ.'13 

ABUS I~ -r--, 

ARtlS IS ~ 

. ABUS 16 -'iC> 

ARVS 17 ~ 

.1tBV S 18 -'iC> 

ARUS/q -t-> 

8DTiR V 
BIO~ 

AIr," 13 s~'tI1BCLK ~ 
~U310 ~ 

GO [> 
NNltf/,P5T ~"-o 

,vB, D -£'-

2.b 
5b 

2.5 
55 
24 
54 

53 
22 

33 
31 
4-

LLb 

37 
7 

4-Z 
35 
ZB 
5 

59 
4B 

IS 

20 
52 
21 
50 
49 
Zg 

23 
36 
i9 
13 
is 

32 
6 

UZIO 
~I~ --1"-.9 
-NWRT~r~ rVlTWRT I.-

L5Z1/-1t 

~bO 

~5S 

~16 
~'1'i 

cJ2 

A-5 



Logic Diagrams 

This page is blank 

A-6 



+5v 

+12- v 

GND 

-/2v 

( 3 eli NXR2 13 
I U2b It 

(j &71.1"- NXRI 
lli/rs; LS1!4 

AhPS 

CONTROL AD1 
(.1- Ajq '" AD? 

A D-~ 
AM 
AD" 
An&. 

AD7 

ABue; ( 1 Ali'" AL£ 

AM 
8088 APDRESS ADi 

( 1- AI8 A02 

A03 

AM 
AilS 
ADb 
AD7 

B10/M 

NR.5i B IZ FPNR5T 
ak IS lS24y 5 (PCLk 

NRD 4 U/6 16 FPNRD 
NWRT 15 F-PNVlRT Z 

DTI1i. ,- 14 FPDT/If 6 

GO 17 3 FP(;O 

JlSSIo 13 7 FPNsslsi 

CO:: 11,19 

C1 Al2 » SHOlDA »54 

( 1. 6/J- )<I NPF'AIL 
-c1 34 

)<! BATV 

TEST PAllS 
E+sv ~6/'f :31,32 

-tt: I :os CQ-C/5, 3~ 58, G8, 7O, 

221'5 r- C7 Olf/r -,--- C8 0.01),1 gi-_ccz2C;S 
B -9/,% 

±l -L 

Gt#€STWlDS 

'------<> - 12v TESTPAD 
~------<> + l2.v ,-£-STPAt> 

5~53 

JI 

2 
3 

4 

5 
6 
7 

8 

9 

18 

17 

14 

13 
e 
7 

4-

3 

... 

.... 
.,.. 
.... 
.... 

1 

I I 19 
PI", FiJ 18 FPDQJ 

17 F'PtJ1 
~ 21 

16 FPD2 :: .... 22 

W 
::::1 2.3 

15 FPD3 .- ~24 
14 I=PD't " 

':::::;25 Jl 
13 F'PD5 

... l t:>56 26 I 

12 FPD6 
-;>-c:::::.J 27 

SCf,63 

U /7 II FPD7 ABuse ~ q 
28 

A BUS '1 LS245 ~ 10 ... 
A8US10 .... /I 

II A BUSJ 1 ... 
I 12 

EN 
19 Ff'A0 ~ ll/ 1 A12 L5373 16 FPA1 .-

14 EN 15 FPAI2-

15 FPA2 ::: Z- An 7 L5373 6 FPAI3 U /10 3 
AILj 13 12 FPAI4 12 FPA3 ...... Ul9 

4 JI Aft:; 9 FPA4 .... 8 9 FPAI5 

6 FPA5 
5 A16 3 2 FPAtG_ .... 

S ",,, .. c. 
b An 4 s FPAI7 
7 AIR 17 16 FPA18 

2. FPA7 
~ 

B AI'! 18 19 FPAI~ 

ij DE 
~J 

-;:; 
50 BIOI"; (1- GU~ p- I:> 40 
36 

NFOCINT 
47 (3 HI? )<l <:! 42 

57 NSOClNT cJl (3 fil? )<J <::::l 37 
55 
52 (1 fI/S )<i NOC'rIAIT <::::l 38 

44 

5A) ( 1 Gill ):> NSLOTSEl1 t::> 30 
3 

2.q ) ( 1 611J » NSlOTSEL2 
t:> 3S 

Ct Gill P fULLMt:M I> 6'f 
> cJl 

( 3 A/4- }:> N-rPMRD t:> bS 

(3 H/z }:> TSCLK t::> 61 

(3 H/3 » TSSYNG t::> '75 

(3 H/i )<J TSDATA <:! '1 c: 

(3 A{s » AlTPMWRT I:> 33 

(3 ~8 }<1 NDCOCINT <:194 

Figure A-4. Processor Front Plane PCA 

Logic Diagrams 

JI 

... .... 

~ 

- .... 
;:-... 

---t> ... 
... ... 

13 
1'1 
15 
16 

17 

18 
1"1 

21!l 

JI 

A-7 



Logic Diagrams 

This page is blank 

A-a 



"&<;"1 U31 10 
1f&l$59 L 

~b 

~ ABU.5 61-7 

AD<I>-AD7 
(aIf>88,4DD/lf'.5S) 

l 

U410 

... 
"'" 11/ 

devs 3 

L __ .J 

R2S~~r ~:; ~ 

~ 
~ 
/19611-/1553 

~5 

• U21 
~~ 

+Sil" 
! 

2 U3Z 
Ls/ri-

l~( 

... :z 
iJ 
8 c 
:2 

Logic Diagrams 

tS1I 

NDCRD 

U62~21 iK 
3 I ~ &; 

lS3 8 j .IIMD 

NIllID J- ;13-1+ 
,.... 

C ~ 

x 16 CLKIll _r- J3-.3<\> 
': :J3-5 

DATA~ :1"3-11 
:[3-2, 

.:J'!-I. 

Figure A-5. Processor I/O Bus 

A-9 



Logic Diagrams 

This page is blank 

A-10 



(3 D/12) 
S D(2) 

3 D/12 NP.S(2\ 

(3 D/12 ) 
NTR(2) 

3 D/12 
NRST 

l532 

3 B/12. MTA0 

3 D/l2. NRR 2) 

3 D/J2 Nc52 

3 D/12 RD2 

NOT£$: 

10 
~--+-----~--~~--+Sv 

lK 

I. ALL CAPACITORS SHOWN ARE LJ70 p5 (0160-3335) 
2. MClLf8BL POW£R CONN{;.CTIONS: 

-/2v TOPINJ 

+ 12v TO PIN 14 
GND ro PIN 7 

Logic Diagrams 

::5'" .sD (SA) £>J5-2-
101182 I (103) 

C36 

J5- Lf 

J5-20 

Js-n 

, JS -lq 

I £>35-9,10,11)13-/8, 
21,2'1)2.5 

OCR1 (ef) 3"5-22 
125) 

J5-12 

35-6 

4- ]"S -8 

J5-- 5 

J5-3 

J5-1 

J5-7 

MOUNTING 
HOl..tS(2) 

Figure A-6. Keyboard PeA Port 

A-ll 



Logic Diagrams 

This page is blank 

A-12 



(~~- AZ 
VA!/; --> VA12 

fPF\¢~ F(JA7 
A6US8~ A5USll 
FrA12~FI"A\'\ 

3- All 
FPAlj;~FPA7 

J"FI Ho AI3US8'-1OA6US11 
, Fl'AtZ ~FPAt'l 

Ff'A7 

JFI, ~< 

JFI,~_--,--,-",,-___ ...J 

TF 

WItIT AN() 
R£QUE5T 
GENE::f(A TJ:ON 

2Q3 

~ 
~-

NG.(.II 

AfJORE.55 
MULTIPLEXING:-

574 
U70 

PTRFTCH '0 
-----~t------' 

'57Li 
U77 ii " 5EL 

CL~ 

CONFLICT 
PRE Vi: NTION 

<== 

DCLK 
:2 - G-2. 

I'll' 

CONTROL 
5IG-NAL 
G-iCNE/'€-

ATION 
=::::? 

U~(3 
/0 +ORNl,ot 

3 'S/iZ II ;r PR 

" 
'5112 
U~9 

NWf0 I" K Q 
CLR. 

" 

RAM CHIP 5fLfC-r 
OECOOING-

'Ls157 
UI7 

STATIC RAM 
?X-3 

IY 
RY 
3Y 
~Y 

s 

NCS I 
NCS23 7 

NCS'45 

" 

CliJ 
CID-

Y07 

Logic Diagrams 

r-____________ ~VO~~_~~V_O_7 ________ ~~~-2E~ 

, DDI 
DU" 

" DDS 
__ JlIl.~ 

D03 
13"."- DD2 

001 
17 DD0 

~ 007 

DATA /3UFFEI'(5 
AND LATCHES 

+SRN1,l 

B~NK¢ 

1818-
18</0 

I/oa 17 
lID 7 I~ 
liD" 15 

VO. 
vas 

PD. 
P05 

POl 
FPDIo 
FPO 
fPD~ 
fr03 
FPO" 
FrOI 
FPD~ 

~ 

~ , ;r PR 

'5112 

1/05 I~ 
I/Oq 13 
1/03 II 
I/O Z 10 
I/O I 9 

VIII VIl¢ 

Nor UI013 

QC 

U(P!/" +5 
:3DO-D-... " RI8 

NOE 

I. 

~Mj I l5 
(iM 1Z AI0 

STATIC RAM Ag 
AA~ 13 

A~ ZK -3 
RA7 I A7 RAio Z 

A" BANK I 
RAJ 3 A5 
RA~ ~ 1818-
M3 ;; 

Aq 18~5 

~A2 " 
A3 
AZ 

RAl 7 
AI " '-'8 
A¢ VII7 VIIS' VI'4 

+5rt'N1,3 

: /lVOEN &3GS 

~ 
LTCH8Z &-<I 

I> 
r-----;Qo.;A.;:---;;-J ',it&\"-------l--l-~-..:3...3 J GLR 5 t55MC, 

NQO 

NOCU< 
(~ 

'5112 
~--yjr--o, U"3 

2. K 
~ "NC55MG 

NOTe UN,-E55 5PECLFLEO ' ALL ~E5:r:5TOIi'5 IKSl. 
Y'-1 Vol 5'"0"~ 
,5R" IS I K PJl-LUP 8 OtViCE'S / ~E5r."iroK: 

Figure A-7. 

Vll'l 
V03 
VOl 
VOl 
V00 

Dll'l 
Ie 003 

" tJV2 

" 001 
19 orx; 

.IFl, ';:1- 28 

19 I I FPOT/R A 

I 

~ 
L-__ t---"A.:cLE::,N:.;:.;;,--___ . _______ ._~ 

ALENI 

~ 007 
s DO" 

005 
Oll'l 

I~ 003 
" 002 
10 Wi 

" ;537~ '9 DOl'! 
U~llD 

F2. 

~ ____________ ~V~O~8_~ __ VO~1~5~--------~~-EE[) 
___________ ~N~C5~5~M~C __________ ~ 

_____________ ~C~55~M~C~ ________ ~ 

Video Alpha RAM Subsystem 

A-13 



Logic Diagrams 

This page is blank 

A-14 



,MGG L~ 

NHSYNC 

i-A/. VA0 -12 I2l 

l-M CIA 

.~ VA3 VA2~VA2 
~ VAl VAL IVAI 

~ VAS W~ ~ A TNT OOBI r ~ VA6 HIT·fC-'------"!lL.,:---1 
~ VA7 5 CBLK ~ CBLK 

1 16 NCSSMC 

-
NV5VNC QDB 

~ VA8 M CUR5'3~ CURS L--t--- ~,"5 5RN' ~ 
~V~9¢ 39 VA9 C <Jl'~'Lt--_S",H"-CC,,,L",-KR"--I-___ ---' R6 \'L~+ +, 

V C VAIO 9 VIT II VLT I. 
~ VAil 0 NCS 5 NC55MC 13 Ls¢t 

~-~ 
CI::6LJ G( 

U5-::9LX,,l:1,;-t.'.!!.I-JiiGRBJr;E:.'!NL ___________ t-______ -'" ~;1--<!s~1. 1'3" DOTS 

rG~R",EN'---t-___ -1 9 ENHANCEMENT DECODING ~~ 

i-AG 

1- AS -
Ul16 

1- A6 -
= NFOGINT -.lL S~5 

13 +5RNi,7 
12 

JFH'+ 
3-CB -
~ 

+5 [> TFi-29,3¢,3G,41,5¢, 56,62 [:::> +5 

JjI)!F la/fiF IJpF 

cT,C14T C1'('3'.4'51 ClO,CII'i CC4 I 6,8,9,/3, CI2,(lO 
I 15,16,1Y,18, 

V 19,23"" 
Z913~, jlj :; c) 

NOTE: 

33,35,36,3" 
3!,39,'t0,'t1, 
't2,'t3,~'t 

ALL RESISTOR VALUES 
IN OHMS, Y"W,5~o 

"+SR" IS iK52l'UlL-UP 
IN KESISTOR 
NETWORK (lBl~-0083) 

1- 12 

1-AS 

3-138 

VLT 

NRc.o 

V9lA~K 

INT 

NVSV"C 

NHSYNC 

NRSTA 

VDI/J-7 

GQ8 

GOB 

GD 

Nan 

~ VAI1 (/J VBlNK 2~ VBlRNK ~-----1-1r--4--, 12 UllB 

. ~ VAI3 7 NDRB ~ 5RNl 't .--------------1 
~~ VD0 NRIT ~R5T'" ( C3) 11+~5 +"~ 
~ VOL CSYNCiz NVS R7 12K Ul~8 
~~ VDL U NVS 3 NHS Ir. '9 S t-VV3 2 VD3 3 NH5 
. ~ VOl I lP511l 3~ 
~?518 V05.5 NTSC~5RHNI,".r_--_'::lqG L < 9 
I--- VV6 17 VDG N5LGNL---J3~ ~.ID 5 5GI;~ 5l~ -
~ VD7 5lll ru- 10 3 5D~5Li 

+<21 "rC GND I". L'!- 2ll 7 \<l~ ·~L'/\. ___ ~~ 5 2G 8 \D~ci? 

~L3 '3D 3Q~ 
VIDEO CONTROLLER ~5Rl't~1l GQ 5 

RNI,1..j 
U51't 513 

SCAN LINE LATCH 

U72 

~ 
~ 

t~ lSl0 3 Sl3 Sl2 12 U5~ '--+--~"c~ 
!3 lS(J¢p.1!I! ___ +-::~NS;:,;13'C'.S"l,,-1.-;'\5 

1liSPON 6 

L ___________ ---' +5RNJ,11 ?i 

C~1ill~~~~~~~L~K-*~~J:-o~~-----~~~~~~;:;;,~~---------~~ 
j. B8,1 (6 CeB =l= .OijJF ALPHA ClOCK GENERATION 08 

RI[, ~2l¢ 

HAL 16L6 U3!4 

21AOff 

19 NHB 

If NBlA"K 

IINUL 

Figure A-B. 

ENHANCEMENT­
LATCH 

CO~Y BIT 
QC 

Video Alpha Display Subsystem 

Logic Diagrams 

NGVIDEO 3 - C1 

U/8 
I'; 8 HSYNC 
9 

L5¢¢ 

DOT STREAM MIXING 

loml NIN~Ll _5153 
1- - 21 - 141 I uriS 

JFl-6~ 

JFH6 

I B A I 

I y 4f-K¢~NFI?J 
r I ~7'2 JF1-G I 5TB or-, , 

I '3 2 ¢ i 
3 4 6 5 

• 
SI/J¢ 

U71Z 

RESISTOR NETWORK "~Nr' 

'"5 
14 -- - -I 

I 
I 
I 

I K 
:1 +5"[;Nl"i 

~~i~+5RN1,c 
) K ~3 · I K :4 

:5 · 
" · IK :6 · IK 17 · ~~ 
, K :~ · · 
" 

:J(J , · IK '1/ · 1 K :12 
--,\~ . 

! ___ ~~+5Rt)t!3 

A-15 



Logic Diagrams 

This page is blank 

A-16 



( 1-B 

( 1.-I.~ 

( 1.-1 ~ 

( 1.- AI:> 

( 1. -1'1 

( 1..-c."'-

( ?,.- F2.. 

A\..E~l 

NFPAIIo 

NQI> 

C:rR~i'H ICS 
Rf"'., 

I:N\f.i.1""'C.~ 

~5R\!I,<; 
10 

(G1..?£-}FjZ.;::P.-.Q().:!I.I>_--l1j 12 0 Gl..I-" 'lJ...-_---, 

~, /I &7~ 
~~ ~U~1 

Ul~ I, 
+SRI'II," 

( '2.- (72.. Dll':' 

( 2.-('-2- NOtLl<-

C 1- 1\3 CLi 

FP~I-I'" 
1- ..,2- ""\ 

SOF IIN'il 
c,c.\..,< C.cNI:Il."'i"\C)\-l " lJl10 I. 

+SRNI,1o 

~0\5 1'.01'+ 1'.013 ROI'!. Rill! 1'.010 ~\)q (Roe 
,," 1'4 I~ Iq ~ /4 /'1 /'1 'i<lI' BANK I 

IL.Jl£8 R3 DO DO DO DO DO DO DO DO IBls-nlb 

~'1m A¢~ 
1---I-..!.Ix-U",2" RI AI h GRM'HItS 

US3"/.~ rn AZt!:-. .r~~~ 
'f7A a 1\3~ 

.-+-+-+-----~ W ~ 

AS~ f 
£tv 8 un U23 U25 U2.'/ UI2- UI3 UN UISA~ ~ 

22",f I VDO u---
C-7 p He, Abp--...:I.c I r-- III 

I. YSS I~ 
~ 13 

or Dr: Dr Dr Dr Dr or Dr r--2. 111.n.. 12-

<. 00' "DOlo:l. 005 2 D\)~ l DDa DD2.' Otll2. DIlP ~ ~ II 

~ RN2 10 

>SRNI," 
12. 1\ I. 50~-

Ull" 

~ ~ 
j'--2. 8 

1810-
01./50 
"---

~:. (:!'l. ~~I (~"'¢ 
'tV 3~ 2.Y IV 

U38 

C:r~v.~It.s 
OIS~\.."'i 
c.ONii.O L.L.1i \l. 
c.\o\\~ 

Logic Diagrams 

M;YI\lE,~'t!20 _____ !:!.N~u-~VI~DE=:::Q.bG2~_:::13~8D) 

1820-
30'11 

:d" 
Gt<01L-. 

GMof!1.-­
GI!I)IL­
CJIJI)~ 

~ 

n= "3F1-3Y ,1"FI-"05 

~'" 

Figure A-9. Video Graphics Display Subsystem 

A-17 



Logic Diagrams 

This page is blank 

A-18 



3 ID 
~..L:L:.J"-L-___ 4~2D 
~LJ:J,~ __ ----:7-4~O 

~ 
=>~=-----""'13-:--l"lD 

14- SD -::::.-....u::.&.l.Z... ______ ,..:....j~ bD 

177D 
·--+-....:...:..t8D U.3 

10K L5373 

+5V 

UI 

I R6 

.YF7-1 

.:TF 7-11 

IK 
+5V---", \r-....... ~-----. 

+SV [:> J"F7- '11 1'1 

r,TF7-8r18 

::TF7-IS 

Logic Diagrams 

2. L53&B 
+-___ --'-PO:.....:U=-.;T'----<<:] :T F 7- /6 

7407 
U2. 

UI 
Ls~E3 

U4 

N soc..::rA) T 6 5 • +5v 

R4 
FPNRST 

SWNRST 

13 

J"F7-/7 

rv---+SV 
R1 

U2 
J"F7-.s 7407 

+5V 

U2 
7407 

+5V 

JF7-6 

Figure A-10. Thermal Printer Interface (Part of Front Plane PCA) 

A-19 



Logic Diagrams 

This page is blank 

A-20 



Logic Diagrams 

lS3Z L532 S/I 

~ 
I II U-;;13 (jqS'- ~ I 

::f2.-57 

~ 
ASGfiOLP 

U2t U25 U26 U27 U28 U21 

J2--SI 

~ 
1. LA YOUT A iD.i"F CAP. FOR EK-H RAM. 
2.LA'IOUT A 1fi.lfJi;J'CAP. PER 'TTTL PACKS. 
3. LAYOUT A <illli",FCAP. FOR E.ACH SIIZ,.s7'f, 5138, IWDSI3'1. 

.. Figure A-11. Mezzanine Memory PeA 

A-21 



Logic Diagrams 

This page is blank 

A-22 



AOiIJ 

AOI 

ADZ 

A03 

A04 

ADS 

AOG 

AD7 

XIGCLK 

so 

+5V 

+5V 

+12V 

-12V 

DRIVERS 
MCI488 

U42. 

RECEIVERS 
MCI4S9 

JI-23 ~ 2 ;>=3'-0-_==-___ -.,-__ --, 
I ,,470Uf u44 

JI-22 c:l- Ci6I~- .3 I-'-I_--+---. 
U4? ~ 2 I e.C.I.T.T. 

(108.2)e:> JI-7 C> _________________________________ -'4,"'-<5~, . Ci/.31r--
V ~OPf U44 I 

JI-4 <:]r---~==----.--- ... --- CI5 J-'- 6 t-4'---jr--'--
I 74LS32 470p\, -Sl--J 

(109) =:::J 

(106) -<J JI-33 r- U2.1 }'3<-__ -1>----___________ R.;..;S:...Tc..., U2.3 'C221r- I 
2 bG 1213 II 

4 74LS32 I ~:~SI75 U42 ~7~OPf 
JI-32 lr-.::>---"<r.-::>, - GI2 ( I 

,. U21 ,)::>"_6'--___ -'9"\> UII oeOI 1213 1_'11 r--:+----+-------------------'.!I~ 

JH3 

JI-14 

5 .. _ I ~~f 
ADt>~O Q~ U42 G2slf- \113\ C> 
AOI .1. 0 Qp.u.II ____ ..:;0:::G~D.::2 _ _+--+-------""9"'10'4)r 8 - (120 I c-

ADG 50 i,j G 1.470pf UI3 
A071 __ 40 is.:3 GZs4I-- ~4 (lz51 

v ______ r---+--+------------"''''--''.-'-+-:;4~~''JF------------------cw:.''-!....-o:::::J 

74L5S40 

c:::=~-+------_!--_'ql - GI UI" 
i 19J('2 

I 

~I UI3 
,- ---4-------------+~~IIOC f·113~ ___________________ ~(~12~z~I~~~ 

4 70~,f 12 

JI-II <:>---------<ji-. _--,-,II--.JY 
JI·Z9 <> .. ________ +, _--!.12"QY 

A ~_ -,O,cC",.R.c.1 +-+--' 
A 8 OCR2 

C411 UI3 

8 10 

470p~_" 

>--cill lA4 

~113 
JI-IO - 13 Y Ar1-

JI-28 <"__ 14 Y AI-'6"'-l_J.<Do-"'M+-+ ____ + 
JI-9 <:::0 15 Y ApL~ 
JI-27 , 16 Y Ari-I V 
JI-26 17 Y Ar2-

J 1- 2 5 18 Y A 2 1\ I +5 
'---- ".64K 

~~ 
r-_________ ~~C~=O~U44~10~-~~-----~~~-----~~(~1~15~1-<:] 

470pf 9 -0242 -0050 -0242 
czaI GRI'!N I, • .' r--).CkI5 

/~17!1 __ , J -" CRIS ~RI~R9¥RI~RI~RI7 V ... .& 
I 
+i 

JI-21 

R4 L 4.64K 

:::::, ,,,'" I 'f'~ 15 G2 A 11 __ ~ 2 li31~ '~ 
r"X.:.:I~""C"'L'_'K _ _+--I 

1>.010 ST '~_3A QAJ1 
<l---------____ ~-~9 y AI ~ ~ B QBlQ 

A<~ C c:.C~ 
A3~ +5 4.S4K 6 0 QD~ 
A~S R5 '--

~J_--------------------~7 Y AI~~~~~RT~--------------------~--~ 
A2~_ ~X~I~C~L~K------------------~l 
A r-L-

3: ~.- ;~------~-+-+-~~-+-+-------~~> 
r------_+-~~,~~ ;>. " 1 

I' S -. 
r-4-~-------+--~2:-<//~L~7------------~~----~~-----(II-O-4)--o:::::J 

1 \U25 I J ~ 6] 0J- CR~-l" -g~~o 
0- WlkE 1 UI3 WIRE 2 :l. 

L 3 I CRI C R2 

47C'P' 2 r-* ~ 
(10-1 9- .024; ·0241 

R2 
6.19K 

R3 
6.19K 

~1-10 .... ~R""6>N_.__O -12 
il:..--J IK 9 -3002 

U23 CR4T~ s7 C. R3 

JI-24 C.>-----------------------------------------------------------+-~~~~~ ~8~~~-------------------4~~I--0~O-50--------------~(~IO~3~)~~ 
1C 447 771(O~ 

'---

JI-6 

JI-Z 

JI-20 

JI-I 

JI-I~ 

~----~------------------------~---+--:~-
CR7 

CI,C2,CS,CII 
C13,C24, CZ7 

C7i1 . (lad 

1= NOTES 

I. ALL RE5\~itOR:5 ARE .2S~ 'n 70"c. 
2.. ALLDIOI)ES ARE 1901 - OOSO, (}NLESS 

(]TIIERIAII!>'" NOTl:.I>. 

3, R52.3.2. IlRIVeRS U~~, tJlj,2. 

RS2.32. R<'lf1t.5 UI.3, tJ'flj 

'to U25'(7SI7~) IS '1:5',,2-

t'I<' VF.J>. /~"'VIO!- • 
GUD JI-5 
GtlD JI-6 

GNU JI·12 
GIlD JI·15 

Figure A-12. Mezzanine Datacomm PCA 

Logic Diagrams 

J2-20 

J2-B 

J 2-5 

J2-4 

J2-23 

J2-22 

J2-12 

J2-15 

J2·9 
J 2-10 
J2-16 

J 2-3 

J2-2 

J 2-1 

J Z·7 

EIA 

TR (CD) 

RR (CF) 

CS (CB) 

RS (CA) 

oeol (CH) 

TT (DA) 

O~D 2 (sCAl 

OCRI (GE) 

OC R2 (scF) 

DM\CC) 

5T (OB) 

RT(DD) 

SD,,," 

SO.B 

RO.8 

RO(BB)/RO. A 

SD (BA) 

SHIE LO (AA) 

SG (AS) 

A-23 



Logic Diagrams 

This page is blank 

A-24 



JI -18 HALF BRT 

JI-I +5V 

JI-2,12 +12V 

'-----dD-------Q6-----------------------------' 
: +5V +40V 

1 R303 
316n,l% 

R301 R302 
10K 10K 

CR306 

• [[ill 

R304 
IK,2W 

Q301 
2N4401 

CR308 
30V,5W 

1902-0644 

5 14 
I 4 6 R305 

I ·ITP21 U301 31.6,1% ~ T 
: I 74S38 WI DS301 : 

I 2 3 I 
I 7 U301 I 

I VIDEO I L _____________________________________________ ~ 
r--------------------------------------------------- _______ ~+~V 

+12V R 223 1 

--!...----O+12V I:> 

: 

CATHODE,CRT2 , J3-7 

~r---------'r:> AQ UA DAG, J3-6 

FILAMENT, CRT4, J3- B 

OS 101 

FILAMENT, CRT 3, J3-6 

JI-3,4 RETURN r>-
R~~I T C~" 237,1%,.5W I: 

k>'--/VIA,----..! V C:N~ER CW R225 
2K,20%,.75W 

R224 L - - - - - - - - , 
237,1%,.5W I 

JI-II VER DR C205 -12V I 
I C 210 2200UF I 

1 ~h I 

J2-2 r - - - -_, 
J2 -51 I 
J2-31 RED 

J 1-13 - 12 V I:> 
I Lo-.:~IV V R210: J2 -61 

L __ ~ -=-I~ __ ~~~C~L _____ I 1~~6 330A • TP I VERTICAL : VER YOKE: BLUE 

JI - 20 

JI -5,7,9 

JI-6,8,15,17,19 

,----------------1 1% I 
I CII8 I R215 R211 I 
I f-----] I I R219 3.3 Jl. 

I .01 V CD I I HEIGHT lOOK 1% 1/2 W I 
I +5V II r--------------.J 

I:> I 1 O+12V I I 10 12 R208 R222 I r - - - - -LiNEARITy-WiDTH - - ~ 7 rci:~:, ~~;;;;.==~~.~=~?~=~~%==.~~=======:=:===~~ ,,:w ~'''"' 
: r RII6 +40V JI-14 220 

I 50K 
20% 

I .75W 

I CRI02 

I 
CI08 r FLYBACK - --1 RI20 

YOKE,NOT 
ON PCA 

J2-1 1 BLACK 

HOR YOKEl 
I 
I 
I 

J2-4 I WHITE 

HOR YOKEL ____ -l 

I ANODE, +12 KV 
1.75UFI TIOI I 133K,I% 

L-_~~~II_~ )~~~I -------~~~~R~II~5--~-----------------~-~ 

16 R 110 2.0~5~% ~~~-"R/I",/'2v_--..... --.!.---I> 

+5V RI04 
IK 

2.2 K BRIGHTNESS 
GRID I, -70 TO O,CRT I, J3-5 

lOOK 

JI-IO HOR DR I:::>-___ +--4I--'"9q RI06 RI03 
470 47K 

RI13 
2.2M 

GRID 2 ,+400V ,CRT 6, J3-1 

10 

II 

I HORIZONTAL 

74LS 
221 

UIOI 
2 
3 

74LS 
221 
UIOI 

8 

RII4 

1.0M 

4 

QIOI .01 GAP CAP 

I 
I 

1854 _094-8 ( 3 PLl I 
r------------------------~ ~---------------------, CI02 

~ 
~ 74S38 

U201 

7406 

~
U202 

- 4 
2 .. 

1826-0120 

UNUSED GATES 

I 
.22UF 

0160-5098 
(2PLl 

I 
I 
I 

1 

I 
I 
L _____ _ 

• TP L I I 
I HORIZONTAL I - - - - - - - -' _________ J 

Figure A-13. 

GRID 4 , -70 TO +400V , CRT 7, J3- 3 

NOTES: 

I. UNLESS OTHERWISE SPECIFIED, 

ALL DIODES ARE: 1901-0050 

ALL RESISTORS 5%, .25 W @ 70· 

ALL CAPACITORS IN MICROFARADS. 

Sweep peA 

Logic Diagrams 

A-25 



Logic Diagrams 

This page is blank 

A-26 



12 I 0/8 33Jl-X~ I RIO-0533 
I~ ~9 ,,, RB, N~~st 

1 1 

I N R~>6 4 ffi---I« J 1 Rl' NR" ra:=:iI I" 1 fbI 
1 I 

11 
~ u,,).,211' R7I ,NR~SL ~A¢ 

I. 
I '~AI 

I. II u,: 12.'011 NRAS ~ '~A2 
~ ~/\3U51 : , 

IS 4 ~ .J£..~I, N0\;~ ~A~ 
1'1 ~,I ~A? 
13 ~~'" ~"'~ I ' un '~"" ,'.1 

532 NR'S5 IS ffi 

HUl ~ IS m 
,,~ :~ UQ4 13 

I q ~ M 
lJ'l'-l l¢i '~ ~I t u421 502 

RAe ~ Al 
S~2. ~ ,1>,,, U,I 

'"~ -cr- ~ M 
NRA%O ~ 14 

~ 
AS 

~ 
Ab 

'---------
Al 

[----1 N,'.:,.,--", fI\S 

r 111 
J 1-\8 

:r 1 ,\", 

-, l-lO 

:J 1..,2 ,. \ -,~ 

k FPMUSIr. H"l\~lB 1-

I=Pp."u<,,'7 , 
I'PO,,,,,,,,, 4 UB 
FPAI>U,I,\ 0; 

BIOI ... b 

, G A tr4 --"! 
7 

-5"'--
~ ~HOLOf\ 

I' \'G-O 
31 S~ 

J 1 '47 

SPf\RES 

BoNK '1 

U5L U5~ U5'-\ U~I Ubl. Ub, 

B~NK 1 

1)1'2 U13 01 Y USI U'a2. U8" 

1)1\1. UII, UIlY UI21 IJ \?. 2. 

\)1'-1 \ U IY2 

L I---
WE f.L-

U"Y 

j I 

~H 
U8Y I I 

Y1fr'S E'NO~l ~ 

'"'R; I 

NRI\SGO 

8 " I CID 

~PNIlD 

/~31~ i'P N WilT • L'ol ~ 

Logic Diagrams 

31 01-
~I- bY 

JI- 23 
"11- t~ 

1/- ZS 
11-lb 
1"1- :n 
1'\ - 28 
jl -2.9 
)1 -:'0 

1 R2.. , ' un 
f-- --~~-J!---Iw.c~"~ /-,''-.1 ~ ..... ~~~~~~~~....tFJ:'P1WDT/'JR'-C::~J 

31" c'L ~¢~ 
:n-Iob 

I 
i 

- j 
I 
I 
I 
1 

Figure A-14. 

'5V~ 
JO/<jf 

(3- Cf4, CIIo-C- 21 
C.2Q-L'fo,C'I3 -CS,! 
BY EVER..v bLN< X I RAk 

RAM (Memory Extender) PeA 

I TeST PerUT 

JI -3Y ,~O ,'l~,S5 
b'i 

'J\ - 21,'1<-,,1,33 
3b, 38,Y I ,42 
~4,Yb,51,Sb 
59., 01, b 1,1,9 

A-27 



Logic Diagrams 

This page is blank 

A-28 



Ul3 UIL\ UIS Ult. un UIS 

.:n-5'+ 

BANI<. I 

UIIl.\-'!.---I-l--+.., 

U33 U34 U35 U3t. U37 U38 

U4'f U45 U4lD U41 

5~2. 

NSU:lT'5EL 

~3 

FPABU5I~O 
q.l'- Il rfijU\l~ S 
504" u31~ 

UI'l 

U3'l 

Logic Diagrams 

L~ 

NRASGO 

~ 
FPN-.ncr <J +-______ -=E!.:N:::.I:>A:...;:r.'"'"A-'-____ -t_-=iD-</U\l~~ ~1-32 

:TI-1.'1 
L"'¢ ~ 

19 

MD!)' II SI B-1 AlJ.''1e-----..!..L FP",!!lBl ... V=5(j'-r:: ~_<I~ :n-23 
y ..... ____ MOl IZ B2. U211. i>Z 8 FPDBUS"'; II-Z~ 

MIl:1- \3 83 A' 7 FPDBU51 .:n-Z5 
MD3 14 B4W A~ G. F'POBUS3 JI-2t. 

!-.... ____ .'1 D'+ 15 85 AS,5 F~P EIlJ"'u::2 I:>-<l JI-l1 
__ --- .J1D5 I~ BI. A~iq ~D'" ,J .:Ti-zg 

I ..... ____ "'DI. 17 87 Ai 3 FPI>BUSI. l:><1 .:fI-Z~ 
r ...... --__ ... ...,,,J;>l~B8 LSZ45 Aa 2 FPoBUSol :n ... 30 

D11~ 

\2 U3~'T=~-~--------~p~P~or.~'l~'R~<J 
s¢'+ 1 TtST POINT I 

:1'1 -34,'iO,'I8, S':> 
1.5 

Figure A-15. Language PCA 

A-29 





L...-F_U_R_T_H_E_R_R_E_FE_R_E_N_C_E_D_O_C_U_M_E_N_T_S---,CIJ 

Additional information may be found in the following documents: 

Title 

o HP 1$0 Sezor1ice llanual 

o HP 1$0 OIIneJo's Guide 

o HP 1$0 Terminal User's Guide 

o lIS-DOS User's Guide 

UP Product No. 

45611A 

45621A 

45623A 

45624A 

UP Part No. 

45611-90002 

45621-90001 

45623-90002 

45624-90001 

B-1 





INDEXI 

A 

AGIOS Buffer. Character Set Code ............................................. 8-4 
AGIOS Buffer. Enhancement Code ............................................... 8-4 
AGIOS Call Syntax ............................................................ 8-1 
AGIOS Calls .................................................................. 7-5 
AGIOS Control Functions ..................................................... 8-11 
AGIOS Function Set ............................................................. 2 
AGIOS Funct ion ................................................•.............. 7-5 
AGIOS Touch Screen Functions ...................•............................ 8-15 
AGIOS Video Intrins ics .............•......................................... 8-4 
AGIOS. Null Data Buffer ..............................•....................... 8-4 
AG I OS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . 5 - 49 • 7 -5 
AUX Device ....................•.................................•..•...•.... 5 -16 
Accessories Subsystem ........•.............................................. 3-64 
Accessory Card Extractor ...•................................................ 3-80 
Accessory Card Extractor Pin ..................•............................. 3-80 
Accessory Card Hardware and Electrical. ..................................... 3-73 
Accessory Card Slot 10 ..•........•.......................................•.. 7-65 
Accessory Cards ...........•....................•......................•..... 7 -65 
Accessory Connector Signal Descriptions ..................................... 3-71 
Accessory Front Plane Connectors ..............................•......•. 3-5. 3-70 
Accessory Hardware Design Guidelines ...........•............................ 3-64 
Accessory Signal Loading Restrictions ....................................... 3-65 
Accessory Slot Bus Cycle Timing .................•...................•....... 3-69 
Accessory Wait State Insertion .............................................. 3-69 
Address Generation .......................................................... 3-14 
Alpha Character Cell Format ............................•...........•........ 3-28 
Alpha Screen Format ......................•.................................. 3 - 26 
Alpha Video Enhancements ...............................................•.... 3 -30 
Alpha/Graphic Input/Output System ...•.....•................................. 5-49 
Alphanumeric Cursor ..............................................•.......... 8-28 
Alphanumeric Display ......................................................... 1-2 
Alphanumeric Display Memory .............•.................................... 7-8 
Alphanumerics Display ON/OFF. AGIOS ......................................... 8-25 
Analo g Boards ...........................•..............•..................... 2 - 6 
Application Program Area .................................................... 5-11 
Applications Programs ..........•........................................•.•.. 5-2 
Application Softkeys. AGIOS .................................................. 8-9 
Area Fill, AGIOS ............................................................ 8-30 
Attributes, Display ......................................................... 7-10 
Availdev Command, Config. Sys ................................................ 5-55 

B 

BDOS .................................................................... 5-3, 5-7 
BIOS .................................................................... 5-3, 5-7 
BIOS Devices ................................................................ 5-51 
Basic Disc Operating System .................................................. 5-3 

1-1 



Index 

Basic Input/Output System •• 
Batch AGIOS Call, Example •• 
Baud Rate Generator ..•• 
Binary Data Comm Mode •. 
Block Device .••.•.••..• 
Block Device Drivers ... 
Block Devices .•.•....•• 
Board Blank - Ho I/O Panel .• 
Board Blank with I/O Panel (Accessory Card Details). 
Board Front Plane Connector. 
Boot Sector ...•... 
Boot Sector, Disc. 
Booting ..•........ 
Booting, System .•. 
Break Command, Config.Sys .•. 
Break, Data Communications .. 
Buffers Command, Config.Sys .. 
Build BPP Device Function. 
Built-In Commands. 
Bus Cycles ••.•..•.• 

CLOCK Device ..•.•...•..... 
CMOS Decoding and Access •. 
CMOS Power ...•..••.. 
CMOS Power Circuit .• 

. ; 

CMOS Power, and Test Strap Logic .. 
CMOS RAM .•.. 
COM Devices. 
COM1 Device. 
COM2 Device. 
COMMAND. COM . 
COH Device .• 
CRT •••••••• 
CRT Controller Registers .. 
Character Cell Example •• 
Character Device .. 
Character Devices •• 

Set Code, AGIOS. 
Sets, Graphics .. 

Character 
Character 
Clear 
Clear 
Clock 

Area, AGIOS ...•.•.•. 
Graphics Memory, AGIOS •• 
Device ..... 

Clock Generation .. 
Clock Generator. 
Clusters, Disc ••. 
Command Processor. 
Command.Com .•..••. 
Communication Port .. 
Communications ..•... 

. ... 

Communications Interface Circuitry. 
Communications/Peripherals. 
Con Device ...•••............ 

1-2 

c 

· .5-3 
· .8-2 
.3-51 
.7-49 

..5-22, 5-28, 5-30 
·5-35 

· .5-20 
.3-80 

. . . . .. .3-80 
............ . 3-4 

. .. 5-58 
.5-61 
.5-61 
.5-55 
.5-55 
.7-49 
·5-55 
.5-33 
··5-2 
.3-14 

.5-16 

.3-62 

.3-62 

.3-13 

.3-13 

.3-61 

.7-34 
. .. 5-16 
· .5-16 
· .5-15 
.5-16 
.3-23 

....•... 4-3 
.3-30 
·5-22 

· ·5-20 
· .8-4 
.8-37 

... 8-6 
· .8-24 
..5-52 

.. .3-35 
.3-14 
.5-62 
· ·5-2 
·5-2 
.1-3 
.2-3 

.3-53 

..1-3 

.5-51 



Index 

Config.Sys .....................•............................ 5-2, 5-8, 5-10, 5-24 
Config. Sys File ............................................................. 5-55 
Configuring Data Comm .........•.......................•..................... 7-39 
Console Device .............................................................. 5-51 
Console RAW/COOKED Mode ..........•............•............................. 7-23 
Control C Check ....................................•........................ 5-55 
Control Funct ions, AGIOS ....................................•............... 8 -11 
Current Block ..........................•...........•......................... 5-9 
Current Record ............................••...•.•.....••................... 5 -10 
Cursor ON/OFF, AGIOS ...................................•...•.....•....•..... 8-26 
Cursor Positioning ........•...........................••..........••......... 7-6 
Cursor Positioning, AGIOS ...................... " .......•..................... 8-12 
Cursor Sense Absolute, AGIOS ...........................•.................... 8-13 
Cursor Sense Relative, AGIOS ................................................ 8-13 
Cursor Sensing, AGIOS ....................................................... 8-13 
Cursor Type, Reading ........................................................ 8-14 
Cursor Type, Setting .......................................•...........•.... 8-14 
Cursor, Alphanumeric ..........................•...............•............. 8-27 
Cursor, Graphics ..... " .............•..•...................................... 8-26 

D 

DC Loading Tranceiver Circuit ................ " ...•........................... 3-75 
DEVCONFG.EXE ........•..........•..................•.••.........•.•.......... 5-17 
DOSCALL Funct ion ....................................•........................ 7 - 2 
Data Comm Conf igura t ion .................••..•..•............................ 7 - 39 
Data COIIUII Control Functions ..........•.....................•................ 7-48 
Data Comm I/O .............................•......•....................•..... 7-34 
Data Comm I/O, Fast ..............................•.•...•.................... 7-48 
Data Comm Logical/Physical Mapping ...................•••.................... 7-34 
Data Communications Devices ...............................•...........•..... 5-52 
Data Communications, Programming .........•.....•....•...................•... 7-34 
Data Transactions ......••................•..............•..•........•....... 3-14 
Da tacollUll ........................................•........................... 3 - 21 
Da tacollUll Baud Rate Generation ..........................•......•............. 4 -13 
DatacollUll Clock Source Select ..........................•....•.•..•........... 4-12 
Datacomm Controller (7201/8274) ............................................. 4-14 
Datacomm Port 1 Control Lines .........•..................................... 4-12 
Datacomm Port 2 Control Lines ............•....................•............. 4-12 
Datacomm Subsystem .................•........................................ 3-50 
Date of Last Write .........................................•................. 5-9 
Decoding .............................•.................•.................•.. 3-63 
Define Area Fill Patern, AGIOS .............................................. 8-30 
Define Area, AGIOS ........................................................... 8-5 
Define Enhancements, AGIOS .................................................. 8-13 
Define Key Characteristics, AGIOS ................................. , ......... 8-21 
Define Line Pattern and Scale, AGIOS ........................................ 8-30 
Define Softkey Field, AGIOS ................................................. 8-18 
Define Touch Field, AGIOS ................................................... 8-17 
Define User Character Set, AGIOS .......•.................................... 8-37 
Delete Touch Field, AGIOS ................................................... 8-18 
Device Command, Config. Sys .................................................. 5-55 
Device Configuration Utility ................................................ 5-17 
Device Driver .................................... , .......................... 5-18 

1-3 



Index 

Device Driver Creation ..............•...•................................... 5-26 
Device Driver Example ....•...........................................•....... 5-39 
Device Driver Functions ................•........••..............•........... 5-31 
Device Driver Header ........................................•............... 5-40 
Device Driver Installation •....•...............•.........•..........•.•..... 5-55 
Device Driver Parameters ...••..•......................•.....•.......•..•.... 5-31 
Device Driver Structure ..•....•.......................•..•..•.........•..•.. 5-21 
Device Functions •.........•.......•.............•...........•....•.•...•••.. 5-31 
Device Header .........•...•.••............•.......•..•............•.....•... 5-21 
Device List .•..............•..•.....•....•..................•......... 5-24, 5-27 
Device Mapping ..................•....••.....•.......•.................•..... 5-16 
Devices ..................................•...............•.••............... 5-16 
Digi tal Logic Boards .......................•................................. 2-6 
Directory ......................•...•..•...........•.......................... 5-8 
Directory, Disc ................•...............•..............•............. 5-63 
Disc ·Boot Sector ......................•..•................•....•......•..... 5-61 
Disc Butter Cache ..................••.••...•...•.......•..................... 5-7 
Disc Clusters ......................•..•....•.......•................•....••• 5-62 
Disc Data Area .....•....•............•.............................••...•... 5-58 
Disc Device ................................................................. 5-53 
Disc Directory ........•..............•................ , ...••.••.•..... 5-58, 5-63 
Disc Directory Structure ............••...•••..•........•..••.••.••.•.•...•.. 5-57 
Disc Format ................................................................. 5-57 
Disc Header Record ...................•..........................•........... 5-59 
Disc Sector Buffers ...........•.•..........................•..............•. 5-55 
Disc Sizes .......................................... to •••••••••••••••••••••••• 5-57 
Disc Storage Capacity .....•.......•....................................•.... 5-57 
Disk Transfer Address ....................•.................................. 5-14 
Dispatch Table, Device Command ...........•.......•.......................... 5-41 
Display ..........................................•.....•.................•..• 1-2 
Display Attributes .......................••..•.............................. 7-10 
Display Character Codes ..................................................... 7-10 
Display Control Functions, AGIOS ............................................ 8-24 
Display Enhancements ...............•................................... 1-2, 7-10 
Display Interfacing ..........................................•........•...... 7-8 
Display Memory Organization ............•.....................•.....•......... 7-8 
Display ON/OFF, AGIOS ....................................................... 8-24 
Display Row Pointers ......................................................... 7-9 
Display Softkey Label, AGIOS ..........................•....•.....•.......... 8-10 
Display Writes, Fast ........................................................ 7-13 
Displaying Alpha Characters ..................•.............................. 3-27 
Drawings .................................................................... 3-80 
Driver Number .•.............................................................. 5-9 
Dynamic RAM ................................................................. 3-62 
Dynamic RAM Refresh ......................................................... 3-63 

E 

ESD protect ion .............................................................. 3 -38 
Electrical Design ........................................................... 3-73 
Electrical Interface .......................... , ............................. 3-37 
Enhance Area, AGIOS .......................................................... 8-6 
Enhancement Code, AGIOS ...................................................... 8-4 
Enhancement Definition, AGIOS ............................................... 8-13 

I-4 



Index 

Enhancements, Display .......................................•............... 7-10 
Environmental Conditions ..•.................................................. 2-2 
Escape Sequence, AG10S ...•..•............................................... 8-11 
Escape Sequences ...............•............................................. 7-1 
Extension, FCB ........................•...............•..•..•................ 5-9 
Extractor .................•.....•.....•..................................... 3 -78 
Extractor Retainer Pin ..........•.........................................•. 3-78 

F 

FAT .................................................................................................................................................. 5-62 
FCB .........................................•...•.................•...•..•... 5-8 
Field Operations, AG1OS ....................................•................ 8-16 
File Allocation Table ...•.............................•...•....... 5-55,5-58,5-62 
File Control Blocks .........................................•................ 5-8 
File Manager ...........................................................•..... 5-2 
File Size ........................................................................................................................................ 5-9 
Filename ................................................•..•......•.•.. 5-9, 5-64 
Filename Extension ......•........•......•.............•....•..•............. 5-64 
Files Command, Config. Sys ...................................•....•.•........ 5-55 
Files, Number of Open .................•....................•................ 5-55 
Fill Rectangular Area, Absolute, AG1OS .......•....•.....••••••...••..•.•.... 8-31 
Fill Rectangular Area, Relocatable, AG1OS ........................•.•...•..•. 8-31 
Fimware .............................................................................................................................................. 2 
Firmware Calls .....................•...................................•....• 6-1 
Firmware ES Register ....•.........•••.........•.......••....•.......•....... 7 -67 
Fimware Entry Points ...................................................•.... 6-1 
Firmware Jump Vectors ........................................•••...•••..••... 6-1 
F imware R.AM.................................... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 6-1 
Fimware Variables ...................................•.................•..... 5-7 
Fimware yielding ........................................................... 7-27 
Flush Device Function ..........•.......................•................•... 5-38 
Flushing Console Buffer ........•.....•...••....•...•.•....•............•..... 7-1 
Flush ing Keyboard Buffer .....•.•............................................ 7 - 26 
Front Plane ........................................•..........•.............. 3-1 
Front Plane Connectors and Signals •....................................•..... 3-2 
Front Plane PCA .............................................................. 2-7 
Front Plane PCA Connector Layout .........•.............•..................... 3-2 
Front Plane Signal Description ...............•.•...•.....................•... 3-7 
Frontplane Connectors ..........•..•.......................•......•.......... 3-77 
Further Reference Documents ...............................•......•........... B-1 

G 

GO Generator ................................................................ 3-16 
General Description .......................................................... 2-1 
General Description, Datacomm Subsystem ..................................... 3-50 
General Schematic Discussion ................................................ 3-73 
Get Key Characteristics, AG1OS .............................................. 8-21 
Graphics Area Fill ................... ' ....................................... 8-30 
Graphics Bit Map ............................................................ 7-18 
Graphics Cursor Moves, AG10S ................................................ 8-26 
Graphics Cursor ON/OFF, AG10S ............................................... 8-25 
Graphics Display ....................................................... 1-2, 3-31 

1-5 



Index 

Graphics Display Interfacing ................................................ 7-18 
Graphics Display ON/OFF, AGIOS .................••...•.................•..... 8-24 
Graphics Hard Reset, AGIOS ..........•...•.........•............•....•.•..... 8-39 
Graphics Line Patterns .........................................••........... 8-30 
Graphics Line Type, AGIOS ..................•........•.....•..•.........•.... 8-29 
Graphics Memory Clear, AGIOS ........•..................................•.... 8-24 
Graphics Memory Set, AGIOS .............................................•.... 8-24 
Graphics Plotting Functions, AGIOS .......................................... 8-40 
Graphics RAM ......•..................................•....•.•....•.•.....•.. 7-18 
Graphics Status, AGIOS .....•...........................•..•.•...••.......•.. 8-46 
Graphics Tablet Interface ...........•........•.•..................•.....••.. 7-58 
Graphics Text Label, AGIOS ...............••......•...........•..••........•. 8-36 
Graphics Text Mode ............•.....•...........................•.....•..... 8-28 
Graphics Text, AGIOS .................................................•.••... 8-34 

H 

HP 150 Input/Output Map ...............•...•...........•.......•.....•........ 4-9 
HP 150 Printed Circuit Assemblies .........•••........•.............•......... 2-5 
HP 150 System Overview, ..............•.....••.....•..........•.•.•..•......... 1-1 
HP- IB Controller and Interface ......•..•..........••.•.•...•..••...•...•..•. 3-21 
HP-IB Port ................................................................... 1-3 
HPIB Controller (9914) ...................................................... 4-14 
HPIB Driver .............••.................•.............•.............•••.. 7-52 
HPIB Interfacing ...............•...........•.................•.....•........ 7 -52 
HPIB Printer, Device ...........•.....•..........•.......•..•.•....•...•..... 5-53 
HPIB Programming .....................••.................•................... 7 - 52 
HPIB Templates .....................•..•....................•..•........•.... 7-54 
HPIBDEV Device ..........•........................•...•••......•. 5-16, 5-52, 5-54 
Hardware Overview ...•....................................................•... 2-1 
Header Record ............................................•..........•..•••.. 5 -58 
Header Record, Disc ................................................•...•••.. 5-59 
Height Restriction ...............•........•.....................•.....••.•.. 3-76 
Height Restriction (Accessory Card Clearances) ...................••.......•. ,3-80 
Helpful Design Hints ..........................••............•...•..... 3-73,3-76 
Hold State ...........•........................•............••...•.........•• 3-14 

I 

I/O Bus Device Block Diagram .............................••...••..•••..•.•.. 3-20 
I/O Control For Devices .....................•.............••...•...••..•.•.. 5-49 
I/O Decoding ................................................................ 3-20 
I/O Devices ................•...............................•.•...•....•..... 3-19 
I/O Mapped Devices ............................•..............•.•......•...... 4-9 
I/O Panel ................................................................... 3-80 
I/O Panel Design ..........................••........••................•....• 3-76 
I/O Panel Pain Specifications ......................................•........ 3-78 
ID BYTE ..................................................................... 3-73 
INT Device .................................................................. 5-16 
10 . SYS. . . . • . • • . • . . . . . . . . . . . . . . . . . . . .. ~ . • . . . . . . . . . . . . . . . . . . . • . . . . . . • • • . . • . . . . . 5 -3 
Init Device Function ........................................................ 5-31 
Ini t ializa t ion ............•................................................. 3 -45 
Initialization, System ...............•..............•....................... 5-55 
1nstallable Device .......................................................... 5-24 

1-6 



Index 

Installable DEvice Command Routines ......................................... 5-46 
Installable Device Driver ................................................... 5-39 
Installable Device Drivers .................................................. 5-10 
Installable Devices ..............................................•.......... 5-18 
Integral Printer Connector ................•..................•..•..•......... 3-7 
Integral Printer Device .........•.......................................•... 5-53 
Integral Printer Interface ................•..............................•.. 4-11 
Interface Description ...................••.....•....•...•................... 3-41 
Interrupt Controller .•........•........................................•.... 3-18 
Interrupt Controller (8259A) .•••..•.......................•................. 4-13 
Interrupt Routine, Device ..................................•.......... 5-23, 5-44 
Interrupt Type Code ...•......•......•....•................................... 5 - 5 
Interrupt Vectors ......•....................................................• 5-5 
Interrupts, Hardware .............................•........•.................. 5-7 
Interrupts, MS-DOS ......•................................•................... 5-7 
Introduct ion ............•.................................................... 1-1 

K 

Key Characteristics .............•...•...........................•........... 7 -24 
Key Put, AGIOS ...................•.•..•...........•......................... 8-23 
Keyboard ................•.....•..•...............•.....••.......•...... 1-3, 3 - 3 7 
Keyboard Buffer .......•..........................•............•..•.......... 7 - 26 
Keyboard Characteristics, AGIOS ...................•..•...................... 8-21 
Keyboard Dr i ver ....•..................................•..........•....••.... 7 - 25 
Keyboard Intercept, AGIOS ........................•...............••.....•... 8-20 
Keyboard Interfacing ...........................•.....•.....•................ 7 -22 
Keyboard Key Code s ....•...••••....•.....•.......................•........... 7 - 29 
Keyboard Operation ..•.....•..........•...................................... 3 - 3 7 
Keyboard PCA Port ..••.............•..............................•.......•.. A-14 
Keyboard PCA ................••.......................................... 2 -7, A - 3 
Keyboard Status .............••............•.....................•........... 7 - 26 
Keyboard and Touchscreen Controller ..............•..................•...•... 3-20 
Keyboard and Touchscreen Data Input (I/O Port 0018H) ........................ 3-49 
Keyboard and Touchscreen Subsystem ..............................•........... 3-37 
Keyboard/Touchscreen Controller (8041A) ..............•...................... 4-11 
Keycode Mode .................................................... 7 -22, 8-20, 8-22 
Keycode ON/OFF, AGIOS .....................•................................. 8-22 
Keycode Status, AGIOS ....•...•.......•......................•....•.......... 8-23 
Keycodes ..........................•.•................................. 7-22, 7-29 

l 

L-Bracket .......................•.•.....•............................. 3-78, 3-80 
LED Decoding ............................•.....•............................. 3-62 
LED Register Reset ...............•...•......•..•............................ 3-62 
LEDs ....................•......................•.....•...................... 3-62 
LPI'1 Device ................................................................. 5-16 
LPI'2 Device ................................................................. 5-16 
LPI'3 Device ................................................................. 5-16 
LST Device .................................................................. 5-16 
Language peA ................................................................ A - 29 
Lift Boundary Pen, AGIOS .................................................... 8-44 
Lift Pen, AGIOS ............................................................. 8-40 

1-7 



Index 

List of Vendors ............................................................. 3-77 
Logic Diagrams ............•........•......•....•.....•••............•........ A-1 
Logical Devices ............................................................. 5-16 
Lower Boundary Pen, AG lOS. . . . . . . . . . . • • . . . . . . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 - 45 
Lower Pen, AGIOS ..............••....•••..............................•...... 8 - 41 

M 

MPSC ••••••••..•••••.•...•••.•..•..•..••..••..••....•••..•.•..••••••••.•••..• 4-14 
MS-OOS ....•....•....•.........•....•.•..•.........•.....•............•...•..• 5-1 
MS-DOS Calls ................................................................. 7-2 
MSDOS . SYS. . . . • . • • . • • • . . . • • . • . . • • . • . • • • • . • • • . . • . • • • • • • . • • • . . • • • • • • . • • • . • • • • • . . 5 -3 
Manuf Test Repeat ....................•....•..........•.•.•...•..••.•...•.... 4-12 
Maxalloc ..................................•................................. 5-11 
Mechanical Description ......................•....•....•...............•.•... 3-38 
Mechanical Design ...................•.......•..•.....•.•...•.....••.•...•••. 3-76 
Mechanical Specifications ..•.............••....•.•.......•.•....•.•••.•.•... 3-64 
Media Check Device Function •..........•..••...............•................. 5-32 
Media Descriptor Byte ...........................•......•....•....•.... 5-30, 5-34 
Memory Map ................................•...............•.................. 4-1 
Memory Map, Firmware ......................•..•....•....•..••..............•.. 6-1 
Memory and I/O Mappings ........•.•........•...••.....•....•...•••...•....... 3-11 
Mezzanine Datacomm PCA ............•.......•.......•......................... A-23 
Mezzanine Memory Connector Signal .....•.........•......•.................•.. 3-57 
Mezzanine Memory PeA Block Diagram .•........•.........••...•...........••... 3- 56 
Mezzanine Memory PeA ..........•....•.•...............•.•.•.•..... 2-7, 3 - 55, A - 21 
Mezzanine Memory Subsystem ..............•........•......••.................. 3-55 
Microprocessor System Architecture ............•........•.................... 3-13 
Minalloc .............................•.......................•.............. 5-11 
Modem Disconnect ....•..................................................•.... 7-49 
Moni tor Data Comm Mode ................•..................................... 7-49 
Move Graphics Cursor Absolute, AGIOS ........................................ 8-26 
Move Graphics Cursor Incremental, AGIOS ...•..........•...........•.•........ 8-27 
Multi-Protocol Controller ...........•.•.•...........................•...••.. 3-52 

N 

NSLOTSEL .................................................................... 3 -73 
Name Field, Device ............•..........•.........•.....................•.. 5-23 
No Polygon Boundary, AGIOS ............................••...•.............•.. 8-32 
Non Destructive Read No Wait Device Function ..•........•...•.............•.. 5-36 

o 
Operating System Disc ............................•....•........•............ 5-61 
Operating System Memory Usage ................................................ 5-4 
Operating System Structure ................................................... 5-1 
Operating System, MS - DOS 2.0 ................................................. 1-1 
Output Single Text Character, AGIOS ......................................... 8-37 
Overview ....................... , ............................................. 3-10 

p 

1-8 



Index 

PAMCODE . EXE ................................................................. 5 -10 
peA Configuration .............................................•............. 3-63 
peA Overview ................................................................ 3-55 
PLT Device ...........................•...................................... 5-16 
PRN Device ..............................................................•... 5 -16 
Pair Address to Row, Column Ho. Convers ion ..........•.........•............. 3 - 42 
Personal Applications Manager (P.A.M) ................................... 1-1, 5-2 
Physical Devices ..........•..........................•...................... 5-16 
Physical Disc Format .....................•.•..........•................•.... 5-57 
Physical Specifications ...........•...•.....................•.......•....•... 2-2 
Plot to Cursor Pos i tion, AGIOS ................................•....•..•..... 8-42 
Plotter Device .............................................................. 5-53 
Point Plot, AGIOS .......................••...........•........•..•.......... 8-43 
Polygon Draw, AGIOS ......................................................... 8-44 
Polygon Move, AGIOS ............•............................................ 8-43 
Position Cursor, AGIOS ..............................•.•...............•..... 8-12 
Power Requirements ....................................•.......•.....•.. 2-3, 3-64 
Power Supply Connector ........•.............................................. 3-7 
Power Supply PCA .........•.•..........•....•................................. 2-6 
Processor Board Block Diagram ..•...................................... 3-11, 3-13 
Processor Board and Memory Board Block Diagram .•....•....•..•............... 3-10 
Processor Front Plane peA .................................................... A-7 
Processor I/O Bus •.•..........................................•.....••.••..•. A-9 
Processor peA ....................................................•..•.•••.... A·5 
Processor Subsystem .........................................•...•..••...•... 3-10 
Processor System Overview ...................•....•...•....•.••.....•....•... 3-10 
Product Regulations .......................•....•............................. 2 - 3 
Product Specifications ...................•............•...................... 2-1 
Program Receiving Control .........................................•......... 5-13 
Program Segment Prefix (PSP) Control Block .........................•...•••.. 5-11 
Program Segment .......................................................••.•.. 5-11 
Program Termination ......................................................... 5-13 
Programming Application Softkeys .........•.............................•..... 8-9 
Pro gramm ing the HP 150......................................................... 2 
Put Key, AGIOS ..................................•........................... 8-22 

R 

RAM (Memory Extender) PCA ................•.................................. A-27 
RAM Expans ion ...........................................................••... 4- 2 
ROM ......................................................................•.. 3-59 
ROM Decoding .................................................•.............. 3-59 
ROM Timing .......................•...............................••......... 3-60 
RS-232 .........................................................•.•........... 1-3 
RS-232 Communication Port .................................................... 1-3 
RS-232/RS-422 Communication Port ............................................. 1-3 
RS-232/RS-422 ................................................................ 1-3 
RS232C/422 Datacomm Module Connector ........................................ 3-50 
RS232C/422 Datacomm peA ...................................................... 2-7 
Raster Scan ................................................................. 3-23 
Read Area, AGIOS ............................................................. 8-6 
Read Area Shading, AGIOS ............. ' ....................................... 8-51 
Read Cursor Position, AGIOS ................................................. 8-47 
Read Cursor Position, Wait For Key, AGIOS ................................... 8-47 

1-9 



Index 

Read Cursor Type. AGIOS ..................................................... 8 -14 
Read Device Function ..........................................•............. 5-35 
Read Device ID. AGIOS ..•.......................................•............ 8-46 
Read Display Size. AGIOS ...............................•.................... 8-48 
Read Dynamics, AGIOS .............................•......•....•.............. 8-51 
Read Extended Screen Dimensions. AGIOS ...........•......•...•....•...•...•.. 8-52 
Read Graphics Setting. AGIOS ...............................•....•.......•... 8-48 
Read Graphics Text Status. AGIOS ......•...•.•.....•....•..•.••....•..•...... 8-49 
Read Keypad Status. AGIOS ...........•.....•....•........................•... 8 - 23 
Read Pen Position. AGIOS ................•..............•..........•••..•••.. 8-46 
Read Relocatable --Origin. AGIOS .....................................•.•...•.. 8-50 
Read Reset Status. AGIOS ......••.....•....•....•............•.....•••.••••.. 8-50 
Read Softkey Label. AGIOS .........•..................•.•....••...•.••..•.••.. 8-9 
Read Terminal Configuration. AGIOS ..............•........................... 8-14 
Read Zoom Status, AGIOS ...........................•.......•.....•........... 8 -49 
Real Time Clock ...............................•........•...........•....••.. 3-21 
Real Time Clock (MM58167A) .......................•..............•..•..•..... 4-10 
Record Size .....................................................••.••..••.... 5-9 
Relative Record .................•........••.................•......•...••... 5-10 
Request Header .................•...............•............•......•.•.•.... 5-25 
Request Header. Device .......••.........•.......................•..•....•.•. 5-42 
Reset Logic ................................................................. 3-13 
Resolution Versus Number of Pairs ...........•........••••••....•....•.•..•.. 3-42 
Retainer Thumbscrew ....................•.......•...•...•..•.....•.•.••••.... 3-80 
Ring Reta iner ....•.........................•.........•.......•.•.•...•.••..• 3-77 
Row Column Operations, AGIOS ............................•.............•...•. 8-16 
Row Po inter Table ..............................•.......••..•...•..•...••..... 7-9 
Rubber Band Line, AGIOS ............•........••.....................•.....•.. 8-26 

s 
SHOLDA Timing ........................••..........................•.......... 3-69 
SYSINIT Routine ..............................................•...••....•.••• 5-55 
Screen Memory Organizat ion ..•................................•...••....•.•... 7-8 
Screen Writes, Fast ...•....................•............•....•...•.•.••..•.• 7 -13 
Sector Allocation, Disc ....................•.........•.••..•.•...•.•..•.•..• 5-58 
Sectors, Disc ..................................•...........•....•....•...... 5-57 
Select Boundary Pen, AGIOS ...........................•......•............... 8-32 
Select Default Character Set, AGIOS ....••.....•.....•.........•..•.....•••.. 8-37 
Select Drawing Mode, AGIOS .•.•.........••....•...•....................•.•... 8-29 
Select Line Type, AGIOS ........................................•.....•••••.. 8-29 
Select Polygonal Fill Pattern. AGIOS .......•.....••..•.•..•....•.•.•....•••• 8-31 
Set Cursor Type, AGIOS ...................•...........•......•......•..•.•.•• 8-14 
Set Graphics Default, AGIOS ......................................•......•... 8-38 
Set Graphics Memory, AGIOS ......................•................•....••.•.. 8-24 
Set Graphics Text Origin, AGIOS ............•..........•................•.... 8-36 
Set Graphics Test Orientation, AGIOS ............................•.......•... 8-34 
Set Graphics Text Size. AGIOS ..................................•............ 8-34 
Set Picture Defini tion Defaults. AGIOS ...................................... 8-39 
Set Relocatable Origin to Cursor Postion, AGIOS ............................. 8-33 
Set Relocatable Origin to Pen Position, AGIOS ......................... 8-33. 8-42 
Set Reloca table Origin, AGIOS ............................................... 8-33 
Set Touch Reporting Modes. AGIOS ................•................•..•....... 8-19 
Shell Command. Config. Sys ..............................•....•...........•... 5-56 

1-10 



Shift Area, AGIOS .•.•.•. 
Signal Timing Diagrams .. 
Slot Select, Accessory. 
Slot Selection Generation .. 
Soft Key Direct Display Writes .. 
Softkey Label Display, AGIOS. 
Softkey Label Read, AGIOS .... 
Softkey Label Update, AGIOS .. 
Softkey Touch Field Definition, AGIOS •• 
Softkeys, Programming ..•.....•.•.. 
Specifications ...•...........••...• 
Start Polygonal Area Fill, AGIOS .•• 
Static Request Header .. 
Status Device Function. 
Status Generation ...•.... 
Status Line, Writing To .• 
Status Register (I/O Port 0019H). 
Status Word ...........••• 
Strategy Routine, Device. 
Sub-Directories .••.•....• 
Subsystem Power Requirements. 
Sweep Board Connector .•. 
Sweep Board .• 
Sweep PCA .•.• 
Switchar Command, Config.Sys. 
System Architecture •. 
System Booting .•.•.•. 
System Function Calls .. 
System 
System 

Initialization .. 
Timing and Control Logic. 

T'PM ............................ . 
Technology and Display Format. 
Templates, HPIB .......•.•.•..... 
Terminal Configuration, Reading. 
Terminal Emulator .......•.•..•.• 
Terminate Polygonal Area Fill, AGIOS. 
Test Strap Logic ........•.•.•.....•..•. 
Text Mode, Graphics .•...•.•....•..•••. 
Thermal (Integral) Printer Interface. 
Thermal Limits .•..•......•• 
Thermal Printer Interface. 
Thumbscrew ... 
Thumbscrews. 
Time Device. 
Time of Last Write. 
Touch Field Definition, AGIOS. 
Touch Field Deletion, AGIOS ... 
Touch Reporting Modes, AGIOS. 
Touch Screen ASCII Fields .... 
Touch Screen Functions, AGIOS. 
Touch Screen Keycode Fields ..• 

T 

Index 

... 8-7 
· .• 3-67 

.7-65 
• .•• 3-60 

• .7-15 
· .8-10 
• .• 8-9 

. ........ . 8-9 
.8-18 

· .• 8-9 
. •••••.. 3-40 

· .8-43" 
. ...... . 5- 27 

· .. ·5- 37 
· .. 3-14 
. •. 7-15 
• .. 3-45 
• •• 5-28 

• .. 5-23, 5-44 
.5-64 
.2-4 

• ••. 3-6 
· .. 3-23 

• •• 2-6, A-25 
·····5-55 
· ••••. 1-1 

······5-55 
.5-3, 7-2 

·5-61 
•••••. 3-14 

· .• 3-1 
• .3-23 
• .7-54 

· .... 8-14 
• ••.. 7-37 
• •••• 8-43 

• .• 3-13 
• .• 8-28 

• .3-1 
.3-65 

. ... A-19 
• .3-77 

• .. 3-76 
·5-52 

··5-10 
· .. 8-17 

.8-18 

.8-19 

.8-15 

.8-15 
• .8-15 

1-11 



Index 

Touch Screen Normal Fields ..........•....................................... 8-16 
Touch Screen Reset, AG1OS •...............•.•.....•.......................... 8-18 
Touch Screen Row Column Operations ............•................•.......•.... 8 -16 
Touch Screen Toggle Fields .•....................•................•......••.. 8-15 
Touchs creen .................•..............•...•.........•....•..•.•.•. 1-1, 3 - 38 
Touchscreen Block Diagram .........................•.....•............•...... 3-39 
Touchs creen Connector ........••..........•..........•.•.........•.•....•.•.•. 3-6 
Tou chs creen PeA.............................................................. 2-7 
Touchs creen PeA .....•.•.•.................................................... A-1 
Tracks, Disc ................................................................ 5-57 
Trance i ver Schema tic .....................•.•.................•..........••.. 3 -75 
Tranceiver Schematic Discussion ..........•...................•........•..... 3-74 
Transparen t Data Comm Mode ...................•...............•...•..•..•.... 7 - 49 
Turn Off Alphanumeric Cursor, AG1OS •.....•.................................. 8-28 
Turn Off Alphanumeric Display, AG10S .....•..........•....................... 8-25 
Turn Off Graphics Text Mode, AG1OS .......................................... 8-28 
Turn Off Rubber Band Line, AG1OS ...•.......•...•......................••.•.. 8-26 
Turn Off Text Slant, AG1OS ...........................••................••••. 8-35 
Turn On Alphanumeric Cursor, AG1OS ....•...••.•..•.•....•.•..••...•.•.•...... 8-27 
Turn On Alphanumerics Display, AG10S ........••.•................•..•........ 8-25 
Turn On Graphics Cursor, AG10S ........................................ 8-25, 8-26 
Turn On Graphics Text Mode, AG10S .•..........................•.....•....•... 8-28 
Turn On Rubber Band Line, AG1OS ...•..•.•...........•..•..................... 8-26 
Turn On Text Slant, AG1OS ................••.•....•.........••...•.•...•..... 8-35 
Turn off Graphics Display, AG1OS .......•.•.••.................•.•........... 8-25 
Turn on Graphics Display, AG10S ......•..••.......•..•...........•........... 8-24 

u 
Unit Code .•........•.•...•......................•..................•........ 5-27 
Update Softkey Label, AG10S ...........•..........................•.•......... 8-9 

v 
Vector Draw, AG1OS ..........•..............•.........•••.......•............ 8-41 
Vector Drawing Mode, AG1OS ............•.............•......•....•....•...... 8-29 
Vector Move, AG1OS .......................•....................•............. 8-40 
Video Alpha Display Subsystem .......•.............................•....•.... A-15 
Video Alpha RAM Subsystem .............................................•..... A -13 
Video Area Clear, AG1OS ......•......•................•......•.....••...•..... 8-6 
Video Area Enhance, AG1OS ..••......................................•.....•..• 8-6 
Video Area Read, AG10S .............•.........•••............................. 8-6 
Video Area Shift, AG10S ....................................................... 8-7 
Video Area Write, AG1OS .............•...•.................................... 8-5 
Video Attribute Latch ........................................................ 4-8 
Video Board .......................................................•......... 3-23 
Video Board Overview ..................................................•..... 3-32 
Video Define, AG1OS .......................................................... 8-5 
Video Frame Format .......................................................... 3-24 
Video Graphics Display Subsystem ............................................ A-17 
Video 1ntrinsics, AGIOS ...................................................... 8-4 
Video Line Write, AGIOS ...................................................... 8-8 
Video Memory Organization .................................................... 7-8 
Video PeA.................................................................. .. 2-7 

1-12 



Index 

Video Row Pointers ...............................................•........... 7-9 
Video Subsystem ..................................................•.......... 3-23 
Video Writes, Fast ................•...•..•.................................. 7-13 

w 
Wait State Disable ....................•.•..•................................ 3-59 
Wait State Generation ...............•.•...............•................•.... 3-15 
Write Area, AG1OS ......................................................•.•... 8-5 
Write Device Function .............•...•..................................... 5-35 
Write Line, AG1OS .................••..•.•...•................................ 8-8 

y 

Yielding To Firmware ....................••..............•........•.......... 7 -27 

1-13 





READER COMMENT SHEET 

HP 150 Technical Reference Manual 

45625-90001 May 1984 

We welcome your evaluation of this manual. Your comments and suggestions help 
us to improve our publications. Please use additional pages if necessary. 

Is this manual technically Yes [ ] No [ ] 
accurate? 

Are the concepts and wording Yes [ ] No [ ] 
easy to understand? 

Is the format of this manual Yes [ 1 No [ ] 
convenient in size, 
arrangement and readability? 

Comments: 

Date: 

FROM: 

Name Title 

Company 

Address 

City State Zip 

(If no, explain under 
Comments, below.) 

(If no, explain under 
Comments, below.) 

(If no, explain under 
Comments, below.) 



FOLD 

FOLD 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 1355 CUPERTINO, CALIFORNIA 

POSTAGE WILL BE PAID BY ADDRESSEE 

Hewlett-Packard Company 
Personal Office Computer Division 
P.O. Box 486 
974 E. Arques Avenue 
Sunnyvale, CA 94086 

Attn: Technical Support Manager 

FOLD 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

FOLD 





Flidl HEWLETT 
a:f.!jI PACKARD 

Part No. 45625-90001 
Printed in U.S.A. 5/84 


