COP420/COP421/COP422 and COP320/COP321/COP322 Single-Chip N-Channel Microcontrollers

General Description

The COP420, COP421, COP422, COP320, COP321 and COP322 Single-Chip N-Channel Microcontrollers are members of the COPSTM family, fabricated using N-channel, silicon gate MOS technology. They are complete microcomputers containing all system timing, internal logic, ROM, RAM and I/O necessary to implement dedicated control functions in a variety of applications. Features include single supply operation, a variety of output configuration options, with an instruction set, internal architecture and I/O scheme designed to facilitate keyboard input, display output and BCD data manipulation. The COP421 is identical to the COP420, except with 19 I/O lines instead of 23; the COP422 has 15 I/O lines. They are an appropriate choice for use in numerous human interface control environments. Standard test procedures and reliable high-density fabrication techniques provide the medium to large volume customers with a customized Controller Oriented Processor at a low end-product cost.
The COP320 is the extended temperature range version of the COP420 (likewise the COP321 and COP322 are the extended temperature range versions of the COP421/ COP422). The COP320/321/322 are exact functional equivalents of the COP420/421/422.

Features

- Low cost
- Powerful instruction set
- $1 \mathrm{k} \times 8$ ROM, 64×4 RAM
- 23 I/O lines (COP420, COP320)
- True vectored interrupt, plus restart
- Three-level subroutine stack
- $4.0 \mu \mathrm{~s}$ instruction time
- Single supply operation
- Internal time-base counter for real-time processing
- Internal binary counter register with MICROWIRETM compatible serial I/O capacity
- General purpose and TRI-STATE ${ }^{\circledR}$ outputs
- TTL/CMOS compatible in and out
- LED direct drive outputs
- MICROBUSTM compatible
- Software/hardware compatible with other members of COP400 family
■ Extended temperature range device COP320/COP321/ COP322 $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Block Diagram

TL/DD/6921-1

Absolute Maximum Ratings
If Military/Aerospace speclfied devices are required, contact the National Semiconductor Sales Office/ Distributors for avaliability and specifications.

Voltage at Any Pin
Operating Temperature Range
COP420/COP421/COP422 COP320/COP321/COP322
Storage Temperature Range Total Sink Current
Total Source Current
-0.3 V to +7 V
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 75 mA 95 mA

Parameter	Conditions	Min	Max	Units
Operation Voltage		4.5	6.3	V
Power Supply Ripple	Peak to Peak (Note 3)		0.4	V
Supply Current	Outputs Open		38	mA
Supply Current	Outputs Open, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		30	mA
Input Voltage Levels CKI Input Levels Crystal Input Logic High Logic High Logic Low TTL Input Logic High Logic Low Schmitt Trigger Inputs RESET, CKI ($\div 4)$ Logic High Logic Low SO Input Level (Test Mode) All Other Inputs Logic High Logic High Logic Low Input Levels High Trip Option Logic High Logic Low	$\begin{aligned} & V_{C C}=\operatorname{Max} . \\ & V_{C C}=5 V \pm 5 \% \\ & V_{C C}=5 V \pm 5 \% \end{aligned}$ (Note 2) $\begin{aligned} & V_{C C}=\text { Max. } \\ & V_{C C}=5 V \pm 5 \% \end{aligned}$	$\begin{gathered} 3.0 \\ 2.0 \\ -0.3 \\ \\ 2.0 \\ -0.3 \\ \\ \\ 0.7 \mathrm{~V}_{\mathrm{cc}} \\ -0.3 \\ 2.0 \\ \\ 3.0 \\ 2.0 \\ -0.3 \\ \\ 3.6 \\ -0.3 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.8 \\ & 0.6 \\ & 3.0 \\ & 0.8 \\ & 1.2 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
Input Load Source Current CKO All Others	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	$\begin{gathered} -4 \\ -100 \\ \hline \end{gathered}$	$\begin{array}{r} -800 \\ -800 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Input Capacitance			7	pF
Hi-Z Input Leakage		-1	+1	$\mu \mathrm{A}$
Output Voltage Levels Standard Outputs TTL Operation Logic High Logic Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 2.4 \\ -0.3 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
CMOS Operation (Note 1) Logic High Logic Low	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=+10 \mu \mathrm{~A} \end{aligned}$	$V_{C C}-1$	0.2	$\begin{aligned} & V \\ & v \end{aligned}$

Note 1: TRI-STATE and LED configurations are excluded.
Note 2: SO output " 0 " level must be less than 0.8 V for normal operation.

COP420/COP421/COP422

DC Electrical Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6.3 \mathrm{~V}$ unless otherwise noted (Continued)

Parameter	Conditions	Min	Max	Units
Output Current Levels LED Direct Drive Output Logic High CKI Sink Current (R/C Option) CKO (RAM Supply Current)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=3.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=3.3 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 2.5 \\ 2 \end{gathered}$	14 3	mA mA mA
TRI-STATE or Open Drain Leakage Current	$V_{C C}=5 \mathrm{~V}$	-2.5	+2.5	$\mu \mathrm{A}$
Output Current Levels Output Sink Current (lou) Output Source Current (IOH)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	+1.6		mA
Standard Configuration All Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V} \end{aligned}$	$\begin{array}{r} -200 \\ -100 \\ \hline \end{array}$	$\begin{array}{r} -900 \\ -500 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Push-Pull Configuration SO, SK Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -1.0 \\ & -0.4 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
TRI-STATE Configuration $\mathrm{L}_{0}-\mathrm{L}_{7}$ Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} -0.8 \\ -0.9 \\ \hline \end{array}$		$\begin{aligned} & m A \\ & m A \end{aligned}$
LED Configuration $\mathrm{L}_{0}-\mathrm{L}_{7}$ Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -1.0 \\ & -0.5 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Allowable Sink Current Per Pin (L, D, G) Per Pin (All Others) Per Port (L) Per Port (D, G)			$\begin{gathered} 10 \\ 2 \\ 16 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Allowable Source Current Per Pin (L) Per Pin (All Others)			$\begin{aligned} & -15 \\ & -1.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

COP320/COP321/COP322

DC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.5 \mathrm{~V}$ unless otherwise noted

Parameter	Conditions	Min	Max	Units
Operation Voltage		4.5	5.5	V
Power Supply Ripple	Peak to Peak (Note 3)		0.4	V
Supply Current	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$, Outputs Open		40	mA
Input Voltage Levels CKI Input Levels Crystal Input Logic High Logic Low TTL Input Logic High Logic Low Schmitt Trigger Inputs RESET, CKI ($\div 4$) Logic High Logic Low SO Input Level (Test Mode) All Other Inputs Logic High Logic High Logic Low Input Levels High Trip Option Logic High Logic Low	$V_{C C}=5 V \pm 5 \%$ (Note 2) $\begin{aligned} & V_{C C}=M a x . \\ & V_{C C}=5 \mathrm{~V} \pm 5 \% \end{aligned}$	$\begin{gathered} 2.2 \\ -0.3 \\ \\ 2.2 \\ -0.3 \\ \\ \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \\ -0.3 \\ 2.0 \\ \\ 3.0 \\ 2.2 \\ -0.3 \\ \\ 3.6 \\ -0.3 \\ \hline \end{gathered}$	0.3 0.6 0.4 3.0 0.6 1.2	$\begin{aligned} & v \\ & \\ & v \end{aligned}$
Input Load Source Current CKO All Others	$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	$\begin{gathered} -4 \\ -100 \end{gathered}$	$\begin{aligned} & -800 \\ & -800 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input Capacitance			7	pF
Hi-Z Input Leakage		-2	+2	$\mu \mathrm{A}$
Output Voltage Levels Standard Outputs TTL Operation Logic High Logic Low CMOS Operation (Note 1) Logic High Logic Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{I}_{\mathrm{OH}}=-75 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=+10 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 2.4 \\ -0.3 \\ \mathrm{~V}_{\mathrm{cc}-}-1 \\ -0.3 \\ \hline \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \\ & V \end{aligned}$
Output Current Levels LED Direct Drive Output Logic High CKI Sink Current (R/C Option) CKO (RAM Supply Current)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}(\text { Note } 4) \\ & V_{O H}=2.0 \mathrm{~V} \\ & V_{I N}=3.5 \mathrm{~V} \\ & V_{\mathrm{R}}=3.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1.0 \\ 2 \end{gathered}$	12 4	mA mA mA
TRI-STATE or Open Drain Leakage Current		-5	+5	$\mu \mathrm{A}$
Allowable Sink Current Per Pin (L, D, G) Per Pin (All Others) Per Port (L) Per Port (D, G)			$\begin{gathered} 10 \\ 2 \\ 16 \\ 10 \\ \hline \end{gathered}$	mA mA mA mA
Allowable Source Current Per Pin (L) Per Pin (All Others)			$\begin{array}{r} -15 \\ -1.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

Note 1: TRI-STATE and LED configurations are excluded.
Note 2: SO output " 0 " level must be less than 0.6 V for normal operation.

AC Electrical Characteristics

COP420/COP421/COP422 $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6.3 \mathrm{~V}$ unless otherwise noted
COP320/COP321/COP322 $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$ unless otherwise noted

Parameter	Conditions	Min	Max	Units
Instruction Cycle Time		4	10	$\mu \mathrm{S}$
Operating CKI Frequency	$\begin{aligned} & \div 16 \text { mode } \\ & \div 8 \text { mode } \end{aligned}$	$\begin{aligned} & 1.6 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
CKI Duty Cycle (Note 1) Rise Time Fall Time	$\begin{aligned} & \text { Freq. }=4 \mathrm{MHz} \\ & \text { Freq. }=4 \mathrm{MHz} \end{aligned}$	40	$\begin{aligned} & 60 \\ & 60 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \% \\ & \text { ns } \end{aligned}$ ns
CKI Using RC (Figure 8c) Frequency Instruction Cycle Time (Note 5)	$\begin{aligned} & \div 4 \text { mode } \\ & \mathrm{R}=15 \mathrm{k} \Omega \pm 5 \%, \mathrm{C}=100 \mathrm{pF} \end{aligned}$	$\begin{gathered} 0.5 \\ 4 \end{gathered}$	$\begin{gathered} 1.0 \\ 8 \end{gathered}$	$\begin{gathered} \mathrm{MHz} \\ \mu \mathrm{~s} \\ \hline \end{gathered}$
CKO as SYNC Input (Figure 8d) tsync	Figure 3a	50		ns
Inputs: SI ${ }^{\text {tseTUP }}$ thold All Other Inputs tsetup thold		$\begin{gathered} 0.3 \\ 250 \\ \\ 1.7 \\ 300 \end{gathered}$		$\mu \mathrm{s}$ ns $\mu \mathrm{S}$ ns
Output Propagation Delay SO and SK $t_{\text {pd1 }}$ $t_{\text {pdo }}$ CKO $t_{\text {pd1 }}$ tpdo All Other Outputs $t_{\text {pd1 }}$ $t_{\text {pdo }}$	Test Conditions: $R_{L}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}$	300	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \\ & 0.25 \\ & 0.25 \\ & \\ & 1.4 \\ & 1.4 \\ & \hline \end{aligned}$	ns $\mu \mathrm{s}$
MICROBUSTM Timing Read Operation (Figure 4) Chip Select Stable before $\overline{\mathrm{RD}}-\mathrm{t}_{\mathrm{CSR}}$ Chip Select Hold Time for $\overline{\mathrm{RD}}-\mathrm{t}_{\mathrm{RCS}}$ $\overline{\text { RD }}$ Pulse Width- $t_{R R}$ Data Delay from $\overline{\mathrm{RD}}-\mathrm{t}_{\mathrm{RD}}$ $\overline{\mathrm{RD}}$ to Data Floating-tDF	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$,	$\begin{gathered} 65 \\ 20 \\ 400 \end{gathered}$	$\begin{aligned} & 375 \\ & 250 \end{aligned}$	
Write Operation (Figure 5) Chip Select Stable before $\overline{W R}-{ }^{t}$ CSW Chip Select Hold Time for WR-twCS $\overline{\text { WR Pulse Width-tww }}$ Data Set-Up Time for WR-tDW Data Hold Time for WR-twD INTR Transition Time from $\overline{W R}$ - $t_{\text {WI }}$		$\begin{gathered} 65 \\ 20 \\ 400 \\ 320 \\ 100 \end{gathered}$	700	

Note 1: Duty cycle $=t_{W_{1}} /\left(t_{W_{1}}+t_{W_{0}}\right)$.
Note 2: See Figure 9 for additional I/O characteristics.
Note 3: Voltage change must be less than 0.5 V in a 1 ms period.
Note 4: LED direct drive must not be used. Exercise great care not to exceed maximum device power dissipation limits when sourcing similar loads at high temperature.

Note 5: Variation due to the device included.

Connection Diagrams

Top Vlew
Order Number COP322-XXX/N or COP422-XXX/N
See NS Molded Package N20A
Order Number COP322-XXX/D or COP422-XXX/D
See NS Hermetic Package D20A

COP420, COP320 Dual-In-LIne Package

TL/DD/6921-2
Top View
Order Number COP320-XXX/N or COP420-XXX/N
See NS Molded Package N28B
Order Number COP320-XXX/D or COP320-XXX/D
See NS Hermetic Package D28C

TL/DD/6921-3
Top View
Order Number COP321-XXX/N or COP421-XXX/N
See NS Molded Package N24A
Order Number COP321-XXX/D or COP421-XXX/D
See NS Hermetic Package D24C
Order Number COP321-XXX/WM or COP421-XXX/WM
See NS Surface Mount Package M24B

TL/DD/6921-31
Order Number COP320-XXX/V or COP420-XXX/V See NS PLCC Package V28A

FIGURE 2

Pin Descriptions

Pin	Description	Pin	Description
$\mathrm{L}_{7}-\mathrm{L}_{0}$	8 bidirectional I/O ports with TRI-STATE	SK	Logic-controlled clock (or general purpose out-
$\mathrm{G}_{3}-\mathrm{G}_{0}$	4 bidirectional I/O ports		put)
$\mathrm{D}_{3}-\mathrm{D}_{0}$	4 general purpose outputs	CKI	System oscillator input
$\mathrm{IN}_{3}-\mathrm{IN}_{0}$	4 general purpose inputs (COP420/320 only)	CKO	System oscillator output (or general purpose input
SI	Serial input (or counter input)		or RAM power supply)
SO	Serial output (or general purpose output	RESET	System reset input
		$v_{C C}$	Power supply

Timing Diagrams

FIGURE 3A. Synchronization Timing

TL/DD/6921-7
FIGURE 3B. CKO Output Timing

TL/DD/6921-8
FIGURE 4. MICROBUS Read Operation Timing

Timing Diagrams (Continued)

Functional Description COP420/COP421/COP422, COP320/COP321/COP322

For ease of reading this description, only COP420 and/or COP421 are referenced; however, all such references apply equally to the COP422, COP322, COP320 and/or COP321, respectively.

A block diagram of the COP420 is given in Figure 1. Data paths are illustrated in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device. Positive logic is used. When a bit is set, it is a logic " 1 " (greater than 2 V). When a bit is reset, it is a logic " 0 " (less than 0.8 V).

PROGRAM MEMORY

Program Memory consists of a 1,024 byte ROM. As can be seen by an examination of the COP420/421 instruction set, these words may be program instructions, program data or ROM addressing data. Because of the special characteristics associated with the JP, JSRP, JID and LQID instructions, ROM must often be thought of as being organized into 16 pages of 64 words each.
ROM addressing is accomplished by a 10 -bit PC register. Its binary value selects one of the 1,0248 -bit words contained in ROM. A new address is loaded into the PC register during each instruction cycle. Unless the instruction is a transfer of control instruction, the PC register is loaded with the next sequential 10-bit binary count value. Three levels of subroutine nesting are implemented by the 10-bit subroutine save registers, SA, SB and SC, providing a last-in, first-out (LIFO) hardware subroutine stack.

ROM instruction words are fetched, decoded and executed by the Instruction Decode, Control and Skip Logic circuitry.

DATA MEMORY

Data memory consists of 256 -bit RAM, organized as 4 data registers of 164 -bit digits. RAM addressing is implemented by a 6 -bit B register whose upper 2 bits (Br) select 1 of 4 data registers and lower 4 bits (Bd) select 1 of 164 -bit digits in the selected data register. While the 4-bit contents of the selected RAM digit (M) is usually loaded into or from, or exchanged with, the A register (accumulator), it may also be loaded into or from the Q latches or loaded from the L ports. RAM addressing may also be performed directly by the LDD and XAD instructions based upon the 6-bit contents of the operand field of these instructions. The Bd register also serves as a source register for 4-bit data sent directly to the D outputs.

INTERNAL LOGIC

The 4-bit A register (accumulator) is the source and destination register for most I/O, arithmetic, logic and data memory access operations. It can also be used to load the Br and Bd portions of the B register, to load the input 4 bits of the 8 -bit Q latch data, to input 4 bits of the 8 -bit L. I/O port data and to perform data exchanges with the SIO register.

Functional Description COP420/COP421/COP422, COP320/COP321/COP322 (Continued)

A 4-bit adder performs the arithmetic and logic functions of the COP420/421, storing its results in A. It also outputs a carry bit to the 1 -bit \mathbf{C} register, most often employed to indicate arithmetic overflow. The C register, in conjunction with the XAS instruction and the EN register, also serves to control the SK output. C can be outputted directly to SK or can enable SK to be a sync clock each instruction cycle time. (See XAS instruction and EN register description, below.)
Four general-purpose inputs, $\mathbb{I N}_{3}-\mathbb{I} \mathbb{N}_{0}$, are provided; \mathbb{N}_{1}, N_{2} and N_{3} may be selected, by a mask-programmable option, as Read Strobe, Chip Select and Write Strobe inputs, respectively, for use in MICROBUS applications.
The \mathbf{D} register provides 4 general-purpose outputs and is used as the destination register for the 4-bit contents of Bd. The \mathbf{G} register contents are outputs to 4 general-purpose bidirectional I/O ports. G_{0} may be mask-programmed as an output for MICROBUS applications.
The \mathbf{Q} register is an internal, latched, 8 -bit register, used to hold data loaded to or from M and A, as well as 8 -bit data from ROM. Its contents are output to the L I/O ports when the L drivers are enabled under program control. (See LEI instruction.) With the MICROBUS option selected, Q can also be loaded with the 8 -bit contents of the L I/O ports upon the occurrence of a write strobe from the host CPU.
The 8 L drivers, when enabled, output the contents of latched Q data to the L I/O ports. Also, the contents of L may be read directly into A and M. As explained above, the MICROBUS option allows L I/O port data to be latched into the Q register. L I/O ports can be directly connected to the segments of a multiplexed LED display (using the LED Direct Drive output configuration option) with Q data being outputted to the $\mathrm{Sa}-\mathrm{Sg}$ and decimal point segments of the display.
The SIO register functions as a 4-bit serial-in/serial-out shift register or as a binary counter depending on the contents of the EN register. (See EN register description, below.) Its contents can be exchanged with A , allowing it to input or output a continuous serial data stream. SIO may also be used to provide additional parallel I/O by connecting SO to external serial-in/parallel-out shift registers. For example of additional parallel output capacity see Application \#2.
The XAS instruction copies C into the SKL latch. In the counter mode, SK is the output of SKL; in the shift register mode, SK outputs SKL ANDed with the clock.
The EN register is an internal 4-bit register loaded under program control by the LEl instruction. The state of each bit of this register selects or deselects the particular feature associated with each bit of the EN register ($\mathrm{EN}_{3}-\mathrm{EN}_{0}$).

1. The least significant bit of the enable register, $\mathrm{EN}_{0} \mathrm{se}-$ lects the SIO register as either a 4-bit shift register or a 4 bit binary counter. With EN_{0} set, SIO is an asynchronous binary counter, decrementing its value by one upon each low-going pulse (" 1 " to " 0 " occurring on the SI input. Each pulse must be at least two instruction cycles wide. SK outputs the value of SKL. The SO output is equal to the value of $E N_{3}$. With $E N_{0}$ reset, $S I O$ is a serial shift register shifting let each instruction cycle time. The data present at DI goes into the least significant bit of SIO. SO can be enabled to output the most significant bit of SIO each cycle time. (See 4 below.) The SK output becomes a logic-controlled clock.
2. With the $E N_{1}$ set the \mathbb{N}_{1} input is enabled as an interrupt input. Immediately following an interrupt, EN_{1} is reset to disable further interrupts.
3. With $E N_{2}$ set, the L drivers are enabled to output the data in Q to the L I/O ports. Resetting EN_{2} disables the L drivers, placing the LI/O ports in a high impedance input state.
4. EN_{3}, in conjunction with EN_{0}, affects the SO output. With EN_{0} set (binary counter option selected) SO will output the value loaded into $E N_{3}$. With $E N_{0}$ reset (serial shift register option selected), setting EN enables SO as the output of the SIO shift register outputting serial shifted data each instruction time. Resetting EN_{3} with the serial shift register option selected disables SO as the shift register output data continues to be shifted through SIO and can be exchanged with A via an XAS instruction but SO remains reset to " 0 ". The table below provides summary of the modes associated with EN_{3} and EN_{1}.

OSCILLATOR

There are three basic clock oscillator configurations available as shown by Figure 8.
a. Crystal Controlled Oscillator. CKI and CKO are connected to an external crystal. The instruction cycle time equals the crystal frequency divided by 16 (optional by 8).
b. External Oscillator. CKI is an external clock input signal. The external frequency is divided by 16 (optional by 8) to give the instruction cycle time. CKO is now available to be used as the RAM power supply $\left(V_{R}\right)$ of as a general purpose input.
c. RC Controlled Oscillator. CKI is configured as a single pin RC controlled Schmitt trigger oscillator. The instruction cycle equals the oscillation frequency divided by 4. CKO is available for non-timing functions.

Enable Register Modes-Bits EN ${ }_{3}$ and EN_{0}

EN_{3}	EN0	SIO	SI	SO	SK
0	0	Shift Register	Input to Shift Register	0	$\begin{aligned} & \text { If } S K L=1, S K=C L O C K \\ & \text { If } S K L=0, S K=0 \end{aligned}$
1	0	Shift Register	Input to Shift Register	Serial Out	$\begin{aligned} & \text { If } S K L=1, S K=\text { CLOCK } \\ & \text { If } S K L=0, S K=0 \end{aligned}$
0	1	Binary Counter	Input to Binary Counter	0	$\begin{aligned} & \text { If } S K L=1, S K=1 \\ & \text { If } S K L=0, S K=0 \end{aligned}$
1	1	Binary Counter	Input to Binary Counter	1	$\begin{aligned} & \text { If } S K L=1, S K=1 \\ & \text { If } S K L=0, S K=0 \end{aligned}$

Functional Description COP420/COP421/COP422, COP320/COP321/COP322 (Continued)

TL/DD/6921-10
RC Controlled Oscillator

Crystal Value	Component Values			
	R1($\Omega)$	R2(Ω)	C1(pF)	C2(pF)
	4.7 k	1 M	22	22
3.58 MHz	3.3 k	1 M	22	27
2.09 MHz	8.2 k	1 M	47	33

CKO PIN OPTIONS

In a crystal controlled oscillator system, CKO is used as an output to the crystal network. As an option CKO can be a general purpose input, read into bit 2 of A (accumulator) upon execution of an INIL instruction. As another option, CKO can be a RAM power supply pin (V_{R}), allowing its connection to a standby/backup power supply to maintain the integrity of RAM data with minimum power drain when the main supply is inoperative or shut down to conserve power. Using either option is appropriate in applications where the COP420/421 system timing configuration does not require use of the CKO pin.

RAM KEEP-ALIVE OPTION (NOT AVAILABLE ON COP422)

Selecting CKO as the RAM power supply (V_{R}) allows the user to shut off the chip power supply (V_{CC}) and maintain data in the RAM. To insure that RAM data integrity is maintained, the following conditions must be met:

1. RESET must go low before $V_{C C}$ goes below spec during power off; $V_{C C}$ must be within spec before RESET goes high on power up.
2. V_{R} must be within the operating range of the chip, and equal to $V_{C C} \pm 1 \mathrm{~V}$ during normal operation.
3. V_{R} must be $\geq 3.3 \mathrm{~V}$ with V_{CC} off.

INTERRUPT

The following features are associated with the IN_{1} interrupt procedure and protocol and must be considered by the programmer when utilizing interrupts.
a. The interrupt, once acknowledged as explained below, pushes the next sequential program counter address (PC
+1) onto the stack, pushing in turn the contents of the other subroutine-save registers to the next lower level $(P C+1 \rightarrow S A \rightarrow S B \rightarrow S C)$. Any previous contents of SC are lost. The program counter is set to hex address 0 FF (the last word of page 3) and EN_{1} is reset.
b. An interrupt will be acknowledged only after the following conditions are met:

1. $E N_{1}$ has been set.
2. A low-going pulse (" 1 " to " 0 ") at least two instruction cycles wide occurs on the N_{1} input.
3. A currently executing instruction has been completed.
4. All successive transfer of control instructions and successive LBIs have been completed (e.g., if the main program is executing a JP instruction which transfers program control to another JP instruction, the interrupt will not be acknowledged until the second JP instruction has been executed.
c. Upon acknowledgement of an interrupt, the skip logic status is saved and later restored upon popping of the stack. For example, if an interrupt occurs during the execution of ASC (Add with Carry, Skip on Carry) instruction which results in carry, the skip logic status is saved and program control is transferred to the interrupt servicing routine at hex address OFF. At the end of the interrupt routine, a RET instruction is executed to "pop" the stack and return program control to the instruction following the original ASC. At this time, the skip logic is enabled and skips this instruction because of the previous ASC carry. Subroutines and LQID instructions should not be nested within the interrupt service routine, since their

Functional Description COP420/COP421/COP422, COP320/COP321/COP322 (Continued)

TL/DD/6921-12

FIGURE 6. MICROBUS Option Interconnect

popping the stack will enable any previously saved main program skips, interfering with the orderly execution of the interrupt routine.
d. The first instruction of the interrupt routine at hex address OFF must be a NOP.
e. A LEI instruction can be put immediately before the RET to re-enable interrupts.

MICROBUSTM INTERFACE

The COP420 has an option which allows it to be used as a peripheral microprocessor device, inputting and outputting data from and to a host microprocessor ($\mu \mathrm{P}$). $\mathbb{I N}_{1}, \mathrm{IN}_{2}$ and IN_{3} general purpose inputs become MICROBUS compatible read-strobe, chip-select, and write-strobe lines, respectively. IN_{1} becomes $\overline{\mathrm{RD}}$-a logic " 0 " on this input will cause Q latch data to be enabled to the L ports for input to the $\mu \mathrm{P}$. N_{2} becomes CS-a logic " 0 " on this line selects the COP420 as the $\mu \mathrm{P}$ peripheral device by enabling the operation of the $\overline{\mathrm{RD}}$ and WR lines and allows for the selection of one of several peripheral components. IN_{3} becomes $\overline{\mathrm{WR}}$-a logic " 0 " on this line will write bus data from the L ports to the Q latches for input to the COP420. G_{0} becomes INTR a "ready" output, reset by a write pulse from the $\mu \mathrm{P}$ on the $\overline{W R}$ line, providing the "handshaking" capability necessary for asynchronous data transfer between the host CPU and the COP420.

This option has been designed for compatibility with National's MICROBUS-a standard interconnect system for 8 -bit parallel data transfer between MOS/LSI CPUs and interfacing devices. (See MICROBUS National Publication.) The functioning and timing relationships between the COP420 signal lines affected by this option are as specified for the MICROBUS interface, and are given in the AC electrical characteristics and shown in the timing diagrams (Figures 4 and 5). Connection of the COP420 to the MICROBUS is shown in Figure 6.
Note: TRI-STATE outputs must be used on L-port.

INITIALIZATION

The Reset Logic, internal to the COP420/421, will initialize (clear) the device upon power-up if the power supply rise time is less than 1 ms and greater than $1 \mu \mathrm{~s}$. If the power supply rise time is greater than 1 ms , the user must provide an external RC network and diode to the RESET pin as
shown below. The RESET pin is configured as a Schmitt trigger input. If not used it should be connected to V_{Cc}. Initialization will occur whenever a logic " 0 " is applied to the RESET input, provided it stays low for at least three instruction cycle times.
Upon initialization, the PC register is cleared to 0 (ROM address 0) and the $A, B, C, D, E N$, and G registers are cleared. The SK output is enabled as a SYNC output, providing a pulse each instruction cycle time. Data Memory (RAM) is not cleared upon initialization. The first instruction at address 0 must be a CLRA.

TL/DD/6921-13 FIGURE 7. Power-Up Clear Circuit

I/O OPTIONS

COP420/421 outputs have the following optional configurations, illustrated in Figure 9a:
a. Standard-an enhancement mode device to ground in conjunction with a depletion-mode device to V_{CC}, compatible with TTL and CMOS input requirements. Available on SO, SK, and all D and G outputs.
b. Open-Drain-an enhancement-mode device to ground only, allowing external pull-up as required by the user's application. Available on SO, SK, and all D and G outputs.
c. Push-Pull-An enhancement-mode device to ground in conjunction with a depletion-mode device paralleled by an enhancement-mode device to V_{cc}. This configuration has been provided to allow for fast rise and fall times when driving capacitive loads. Available on SO and SK outputs only.
d. Standard L-same as a., but may be disabled. Available on L outputs only.
e. Open Drain L-same as b., but may be disabled. Available on L outputs only.

Functional Description COP420/COP421/COP422, COP320/COP321/COP322 (Continued)

f. LED Direct Drive-an enhancement-mode device to ground and to V_{CC}, meeting the typical current sourcing requirements of the segments of an LED display. The sourcing device is clamped to limit current flow. These devices may be turned off under program control (See Functional Description, EN Register), placing the outputs in a high-impedance state to provide required LED segment blanking for a multiplexed display.
g. TRI-STATE Push-Pull-an enhancement-mode device to ground and V_{CC}. These outputs are TRI-STATE outputs, allowing for connection of these outputs to a data bus shared by other bus drivers.
COP420/COP421 inputs have the following optional configurations:
h. An on-chip depletion load device to $V_{\text {CC. }}$
I. A Hi-Z input which must be driven to a " 1 " or " 0 " by external components.
The above input and output configurations share common enhancement-mode and depletion-mode devices. Specifically, all configurations use one or more of six devices (numbered 1-6, respectively). Minimum and maximum current (lout and $V_{\text {OUT }}$) curves are given in Figure $9 b$ for each
of these devices to allow the designer to effectively use these I/O configurations in designing a COP420/421 system.
The SO, SK outputs can be configured as shown in a., b., or c. The D and G outputs can be configured as shown in a. or b. Note that when inputting data to the G ports, the G outputs should be set to " 1 ." The L outputs can be configured as in d., e., f. or g.
An important point to remember if using configuration d. or f. with the L drivers is that even when the L drivers are disabled, the depletion load device will source a small amount of current (see Figure 9b, device 2); however, when the L lines are used as input, the disabled depletion device can not be relied on to source sufficient current to pull an input to logic " 1 ".

COP421

If the COP420 is bonded as a 24-pin device, it becomes the COP421, illustrated in Figure 2, COP420/421 Connection Diagrams. Note that the COP421 does not contain the four general purpose $\mathbb{I N}$ inputs $\left(\mathrm{IN}_{3}-\mathbb{I} \mathrm{N}_{0}\right)$. Use of this option precludes, of course, use of the IN options, interrupt feature, and the MICROBUS option which uses $\mathrm{N}_{1}-I N_{3}$. All other options are available for the COP421.

TL/DD/6921-14
a. Standard Output
b. Open-Drain Output

TL/DD/6921-16
c. Push-Pull Output

e. Open-Drain L Output
(Δ is Depletion Device)

TL/DD/6921-19
f. LED (L Output)

d. Standard L Output

TL/DD/6921-20
g. TRI-STATE Push-Pull (L Output)

h. Input with Load

Typical Performance Characteristics

TRI-STATE Output Source Current

L Output Depletion Load OFF Source Current

Push-Pull Source Current

LED Output Direct LED Drive

FIGURE 9c. COP320/COP321 Input/Output Characteristics

Instruction Set

Table I is a symbol table providing internal architecture, instruction operand and operational symbols used in the instruction set table.

Table II provides the mnemonic, operand, machine code, data flow, skip conditions and description associated with each instruction in the COP420/COP421/COP422 instruction set.

TABLE I. COP420/421/422/320/321/322 Instruction Set Table Symbols

Symbol	Definition
INTERNAL ARCHITECTURE SYMBOLS	
A	4-bit Accumulator
B	6-bit RAM Address Register
Br	Upper 2 bits of B (register address)
Bd	Lower 4 bits of B (digit address)
C	1-bit Carry Register
D	4-bit Data Output Port
EN	4-bit Enable Register
G	4-bit Register to latch data for G I/O Port
IL	Two 1-bit latches associated with the IN ${ }_{3}$ or
	IN inputs
IN	4-bit Input Port
L	8-bit TRI-STATE I/O Port
M	4-bit contents of RAM Memory pointed to by
	B Register
PC	9-bit ROM Address Register (program counter)
Q	8-bit Register to latch data for L I/O Port
SA	10-bit Subroutine Save Register A
SB	10-bit Subroutine Save Register B
SC	10 Subroutine Save Register A
SIO	4-bit Shift Register and Counter
SK	Logic-Controlled Clock Output

Symbol	Definition
INSTRUCTION OPERAND SYMBOLS	
d	4-bit Operand Field, 0 0-15 binary (RAM Digit Select)
r	2-bit Operand Field, 0 0-3 binary (RAM Register
a	Select)
10-bit Operand Field, 0 0-1023 binary (ROM Address)	
y	4-bit Operand Field, $0-15$ binary (Immediate Data)
RAM(s)	Contents of RAM location addressed by s
ROM(t)	Contents of ROM location addressed by t

OPERATIONAL SYMBOLS

$+\quad$ Plus
$-\quad$ Minus
$\rightarrow \quad$ Replaces
\longleftrightarrow Is exchanged with
$=\quad$ Is equal to
$\bar{A} \quad$ The one's complement of A
$\oplus \quad$ Exclusive-OR
: Range of values

TABLE II. COP420/421/422/320/321/322 Instruction Set

Mnemonic	Operand	Hex Code	Machine Language Code (Binary)	Data Flow	Skip Conditions	Description	
ARITHMETIC INSTRUCTIONS							
ASC		30	0011\|0000	$\begin{aligned} & A+C+R A M(B) \rightarrow A \\ & \text { Carry } \rightarrow C \end{aligned}$	Carry	Add with Carry, Skip on Carry	
ADD		31	0011 0001 -	$A+\operatorname{RAM}(B) \rightarrow A$	None	Add RAM to A	
ADT		4A	-0100\|1010	$A+10_{10} \rightarrow A$	None	Add Ten to A	
AISC	y	5-	01011 y	$A+y \rightarrow A$	Carry	Add immediate, Skip on Carry ($y \neq 0$)	
CASC		10	1000110000	$\begin{aligned} & \bar{A}+R A M(B)+C \rightarrow A \\ & \text { Carry } \rightarrow C \end{aligned}$	Carry	Complement and Add with Carry, Skip on Carry	
CLRA		00	1000010000	$0 \rightarrow A$	None	Clear A	
COMP		40	1010010000	$\overline{\mathrm{A}} \rightarrow \mathrm{A}$	None	One's complement of A to A	
NOP		44	\|0100	0100	None	None	No Operation
RC		32	10011\|0010	" 0 " \rightarrow C	None	Reset C	
SC		22	0010/0010	$" 1$ " \rightarrow C	None	Set C	
XOR		02	000010010	$A \oplus R A M(B) \rightarrow A$	None	Exclusive-OR RAM with A	

Instruction Set (Continued)							
TABLE II. COP420/421/422/320/321/322 Instruction Set (Continued)							
Mnemonic	Operand	Hex Code	Machlne Language Code (Binary)	Data Flow	Skip Conditlons	Description	
TRANSFER OF CONTROL INSTRUCTIONS							
JID		FF	\|1111	1111	$\begin{aligned} & \mathrm{ROM}\left(\mathrm{PC}_{8}, \mathrm{~A}, \mathrm{M}\right) \rightarrow \\ & \mathrm{PC}_{7: 0} \end{aligned}$	None	Jump Indirect (Note 3)
JMP	a	6--		$a \rightarrow P C$	None	Jump	
JP	a		$\begin{aligned} & \frac{\|1\| a_{6: 0}}{\text { (pages } 2,3 \text { only) }} \\ & \frac{11 \mid \quad a_{5: 0}}{\|11\|} \\ & \text { (all other pages) } \end{aligned}$	$\begin{aligned} & \mathrm{a} \rightarrow \mathrm{PC}_{6: 0} \\ & \mathrm{a} \rightarrow \mathrm{PC}_{5: 0} \end{aligned}$	None	Jump within Page (Note 4)	
JSRP	a	--	10\| $\mathbf{1 0}_{5}$	$\begin{aligned} & P C+1 \rightarrow S A \rightarrow S B \rightarrow S C \\ & 010 \rightarrow \mathrm{PC}_{8: 6} \\ & \mathrm{a} \rightarrow \mathrm{PC}_{5: 0} \end{aligned}$	None	Jump to Subroutine Page (Note 5)	
JSR	a	$6-$	$\begin{gathered} 0110\|10\| a_{9: 8} \mid \\ \hline a 7: 0 \\ \hline \end{gathered}$	$\underset{\substack{\mathrm{PC}+1 \\ \mathrm{a} \rightarrow \mathrm{PC}}}{ } \mathrm{SA} \rightarrow \mathrm{SB} \rightarrow \mathrm{SC}$	None	Jump to Subroutine	
RET		48	10100\|1000	$\mathrm{SC} \rightarrow \mathrm{SB} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$	None	Return from Subroutine	
RETSK		49	10100\|1001	$\mathrm{SC} \rightarrow \mathrm{SB} \rightarrow \mathrm{SA} \rightarrow \mathrm{PC}$	Always Skip on Return	Return from Subroutine then Skip	
MEMORY REFERENCE INSTRUCTIONS							
CAMQ		$\begin{aligned} & 33 \\ & 3 \mathrm{C} \end{aligned}$	0011 0011 0011 1100	$\begin{aligned} & A \rightarrow Q_{7: 4} \\ & \operatorname{RAM}(B) \xrightarrow{\rightarrow} Q_{3: 0} \end{aligned}$	None	Copy A, RAM to Q	
CQMA		$\begin{aligned} & 33 \\ & 2 \mathrm{C} \end{aligned}$	0011 0011 0010 1100	$\begin{aligned} & Q_{7: 4} \rightarrow R A M(B) \\ & Q_{3: 0} \rightarrow A \end{aligned}$	None	Copy Q to RAM, A	
LD	r	-5	100\|r 10101	$\begin{aligned} & \mathrm{RAM}(\mathrm{~B}) \rightarrow \mathrm{A} \\ & \mathrm{Br} \oplus \mathrm{r} \rightarrow \mathrm{Br} \end{aligned}$	None	Load RAM into A Exclusive-OR Br with r	
LDD	r,d	23	0010 $0011 \mid$ 0010 0011 00 r d	RAM $(\mathrm{r}, \mathrm{d}) \rightarrow \mathrm{A}$	None	Load A with RAM pointed to directly by r, d	
LQID		BF	-1011\|1111	$\begin{aligned} & \mathrm{ROM}\left(\mathrm{PC}_{9: 8}, \mathrm{~A}, \mathrm{M}\right) \rightarrow \mathrm{Q} \\ & \mathrm{SB} \rightarrow \mathrm{SC} \end{aligned}$	None	Load Q Indirect (Note 3)	
RMB	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	$4 C$ 45 42 43	0100 1100 0100 0101 0100 0010 0100 0011	$\begin{aligned} & 0 \rightarrow \text { RAM }(B)_{0} \\ & 0 \rightarrow R A M(B)_{1} \\ & 0 \rightarrow R A M(B)_{2} \\ & 0 \rightarrow \text { RAM }(B)_{3} \end{aligned}$	None	Reset RAM Bit	
SMB	0 1 2 3	$4 D$ 47 46 $4 B$	0100 1101 0100 1101 0100 0110 0100 1011	$\begin{aligned} 1 & \rightarrow \operatorname{RAM}(B)_{0} \\ 1 & \rightarrow \operatorname{RAM}(B)_{1} \\ 1 & \rightarrow \text { RAM }(B)_{2} \\ 1 & \rightarrow \text { RAM }(B)_{3} \end{aligned}$	None	Set RAM Bit	
STII	y	7 -	\|0111 ${ }^{\text {y }}$ y	$\begin{aligned} & y \rightarrow R A M(B) \\ & B d+1 \longrightarrow B d \end{aligned}$	None	Store Memory Immediate and Increment Bd	
X	r	-6	$\underline{00\|r\| 0110 \mid}$	$\begin{aligned} & \mathrm{RAM}(\mathrm{~B}) \longleftrightarrow \mathrm{A} \\ & \mathrm{Br} \oplus \mathrm{r} \longrightarrow \mathrm{Br} \end{aligned}$	None	Exchange RAM with A, Exclusive-OR Br with r	
XAD	r, d	23	0010 0011 10 r d	$R A M(r, d) \longleftrightarrow A$	None	Exchange A with RAM pointed to directly by r, d	

Instruction Set (Continued)
TABLE II. COP420/421/422/320/321/322 Instruction Set (Continued)

Mnemonic	Operand	$\begin{aligned} & \text { Hex } \\ & \text { Code } \end{aligned}$	Machine Language Code (Binary)	Data Flow	Skip Conditions	Description
INPUT/OUTPUT INSTRUCTIONS						
ING		33	001110011	$\mathrm{G} \rightarrow \mathrm{A}$	None	Input G Ports to A
		2A	0010\|1010			
ININ		33	0011/0011	$\mathrm{IN} \rightarrow \mathrm{A}$	None	Input IN Inputs to A (Note 2)
		28	0010/1000			
INIL		33	0011 00011	$\mathrm{IL}_{3}, \mathrm{CKO}, ~ " 0{ }^{\prime}, \mathrm{IL}_{0} \rightarrow \mathrm{~A}$	None	Input IL Latches to A (Note 3)
		29	0010 1001			
INL		33	001110011	$\mathrm{L}_{7: 4} \rightarrow$ RAM ${ }^{\text {(B) }}$	None	Input L Ports to RAM, A
		2E	0010/1110	$\mathrm{L}_{3: 0} \rightarrow \mathrm{~A}$		
OBD		33	001110011	$\mathrm{Bd} \rightarrow \mathrm{D}$	None	Output Bd to D Outputs
		3E	0011\|1110			
OGI	y		0011\|0011	$\mathrm{y} \rightarrow \mathrm{G}$	None	Output to G Ports Immediate
		5-	0101\| y			
OMG		33	001110011	RAM (B) \rightarrow G	None	Output RAM to G Ports
		3A	0011/1010			
XAS		4F	0100/1111	A \longleftrightarrow SIO, C \rightarrow SKL	None	Exchange A with SIO (Note 3)

Note 1: All subscripts for alphabetical symbols indicate bit numbers unless explicitly defined (e.g., Br and Bd are explicitly defined). Bits are numbered 0 to N where 0 signifies the least significant bit (low-order, right-most bit). For example, A_{3} indicates the most significant (left-most) bit of the 4-bit register.
Note 2: The ININ instruction is not available on the COP421/COP321 and COP422/COP322 since these devices do not contain the IN inputs.
Note 3: For additional information on the operation of the XAS, JID, LQID, INIL, and SKT instructions, see below.
Note 4: The JP instruction allows a jump, while in subroutine pages 2 or 3, to any ROM location within the two-page boundary of pages 2 or 3 . The JP instruction, otherwise, permits a jump to a ROM location within the current 64 -word page. JP may not jump to the last word of a page.
Note 5: A JSRP transfers program control to subroutine page 2 (0010 is loaded into the upper 4 bits of P). A JSRP may not be used when in pages 2 or 3 . JSRP may not jump to the last word in page 2.
Note 6: LBI is a single-byte instruction if $d=0,9,10,11,12,13,14$, or 15 . The machine code for the lower 4 bits equals the binary value of the " d " data minus 1 , e.g., to load the lower four bits of B (Bd) with the value $9\left(1001_{2}\right)$, the lower 4 bits of the LBI instruction equal $\left.8(1000)_{2}\right)$. To load 0 , the lower 4 bits of the LBI instruction should equal $15\left(1111_{2}\right)$.
Note 7: Machine code for operand field y for LEl instruction should equal the binary value to be latched into EN, where a "1" or " 0 " in each bit of EN corresponds with the selection or deselection of a particular function associated with each bit. (See Functional Description, EN Register.)

Description of Selected Instructions

The following information is provided to assist the user in understanding the operation of several unique instructions and to provide notes useful to programmers in writing COP420/421 programs.

XAS INSTRUCTION

XAS (Exchange A with SIO) exchanges the 4-bit contents of the accumulator with the 4-bit contents of the SIO register. The contents of SIO will contain serial-in/serial-out shift register or binary counter data, depending on the value of the EN register. An XAS instruction will also affect the SK output. (See Functional Description, EN Register, above.) If

SIO is selected as a shift register, an XAS instruction must be performed once every 4 instruction cycles to effect a continuous data stream.

JID INSTRUCTION

JID (Jump Indirect) is an indirect addressing instruction, transferring program control to a new ROM location pointed to indirectly by A and M. It loads the lower 8 bits of the ROM address register PC with the contents of ROM addressed by the 10 -bit word, $\mathrm{PC}_{9 ; 8}, \mathrm{~A}, \mathrm{M} . \mathrm{PC}_{9}$ and PC_{8} are not affected by this instruction.
Note that JID requires 2 instruction cycles to execute.

Description of Selected Instructions (Continued)

INIL INSTRUCTION

INIL (Input IL Latches to A) inputs 2 latches, IL_{3} and IL_{0} (see Figure 10) and CKO into A . The IL_{3} and ILo latches are set if a low-going pulse (" 1 " to " 0 ") has occurred on the IN_{3} and IN_{0} inputs since the last INIL instruction, provided the input pulse stays low for at least two instruction times. Execution of an INIL inputs IL_{3} and IL_{0} into A3 and AO respectively, and resets these latches to allow them to respond to subsequent low-going pulses on the I_{3} and IN_{0} lines. If CKO is mask programmed as a general purpose input, an INIL will input the state of CKO into A2. If CKO has not been so programmed, a " 1 " will be placed in A2. A " 0 " is always placed in A1 upon the execution of an INIL. The general purpose inputs $I N_{3}-I N_{0}$ are input to A upon execution of an ININ instruction. (See Table II, ININ instruction.) INIL is useful in recognizing pulses of short duration or pulses which occur too often to be read conveniently by an ININ instruction.
Note: IL latches are not cleared on reset.

LQID INSTRUCTION

LQID (Load Q Indirect) loads the 8-bit Q register with the contents of ROM pointed to by the 10 -bit word $\mathrm{PC}_{9}, \mathrm{PC}_{8}, \mathrm{~A}$, M. LQID can be used for table lookup or code conversion such as BCD to seven-segment. The LQID instruction "pushes" the stack (PC +1 \rightarrow SA \rightarrow SB $\rightarrow \mathrm{SC}$) and replaces the least significant 8 bits of PC as follows: $\mathrm{A} \rightarrow$ $\mathrm{PC}_{7: 4}, \mathrm{RAM}(\mathrm{B}) \rightarrow \mathrm{PC}_{3: 0}$, leaving PC_{9} and PC_{8} unchanged. The ROM data pointed to by the new address is fetched and loaded into the Q latches. Next, the stack is "popped" (SC \rightarrow SB \rightarrow SA \rightarrow PC), restoring the saved value of PC to continue sequential program execu-
tion. Since LQID pushes SB \rightarrow SC, the previous contents of SC are lost. Aiso, when LQID pops the stack, the previously pushed contents of SB are left in SC. The net result is that the content of SB are placed in SC (SB \rightarrow SC). Note that LQID takes two instruction cycle times to execute.

SKT INSTRUCTION

The SKT (Skip On Timer) instruction tests the state of an internal 10-bit time-base counter. This counter divides the instruction cycle clock frequency by 1024 and provides a latched indication of counter overflow. The SKT instruction tests this latch, executing the next program instruction if the latch is not set. If the latch has been set since the previous test, the next program instruction is skipped and the latch is reset. The features associated with this instruction, therefore, allow the COP420/421 to generate its own time-base for real-time processing rather than relying on an external input signal.
For example, using a 2.097 MHz crystal as the time-base to the clock generator, the instruction cycle clock frequency will be 131 kHz (crystal frequency $\div 16$) and the binary counter output pulse frequency will be 128 Hz . For time-ofday or similar real-time processing, the SKT instruction can call a routine which increments a "seconds" counter every 128 ticks.

INSTRUCTION SET NOTES

a. The first word of a COP420/421 program (ROM address 0) must be a CLRA (Clear A) instruction.
b. Although skipped instruction are not executed, one instruction cycle time is devoted to skipping each byte of the skipped instruction. Thus all program paths take the same number of cycle times whether instructions are skipped or executed except JID and LQID. LQID and JID take two cycle times if executed and one if skipped.
c. The ROM is organized into 16 pages of 64 words each. The Program Counter is a 10 -bit binary counter, and will count through page boundaries. If a JP, JSRP, JID or LQID instruction is located in the last word of a page, the instruction operates as if it were in the next page. For example: a JP located in the last word of a page will jump to a location in the next page. Also, a LQID or JID located in the last word of page $3,7,11$ or 15 will access data in the next group of four pages.

Option List

The COP420/421/422 mask-programmable options are assigned numbers which correspond with the COP420 pins.
The following is a list of COP420 options. When specifying a COP421 or COP422 chip, Options 9, 10, 19, 20 and 29 must all be set to zero. When specifying a COP422 chip, Options 21, 22, 27 and 28 must also be zero, and Option 2 must not be a 1. The options are programmed at the same time as the ROM pattern to provide the user with the hardware flexibility to interface to various I/O components using little or no external circuitry.
Option 1 = 0 : Ground-no options available
Option 2: CKO Pin
$=0$: clock generator output to crystal
0 not available if option $3=4$ or 5)
$=1$: Pin is RAM power supply $\left(V_{R}\right)$ input (Not available on COP422/COP322)
= 2: general purpose input with load device
= 4: general purpose Hi Z input
Option 3: CKI Input
$=0$: crystal input devided by 16
$=1$: crystal input divided by 8
= 2: TTL external clock input divided by 16
= 3: TTL external clock input divided by 8
$=4$: single-pin RC controlled oscillator ($\div 4$)
$=5$: Schmitt trigger clock input ($\div 4$)
Option 4: RESET Pin
$=0$: load devices to V_{CC}
= 1: Hi-Z input
Option 5: L7 Driver
$=0$: Standard output (Figure 9D)
= 1: Open-Drain output (E)
$=2$: LED direct drive output (F)
= 3: TRI-STATE push-pull output (G)
Option 6: L_{6} Driver same as Option 5
Option 7: L5 Driver same as Option 5
Option 8: L L Driver same as Option 5
Option 9: $\mathbf{I N}_{1}$ Input $=0$: load devices to $\mathrm{V}_{\mathrm{CC}}(\mathrm{H})$
$=1: \mathrm{Hi}-\mathrm{Z}$ input (I)
Option 10: $\mathbb{I N}_{2}$ Input same as Option 9
Option $11=0$: VCC Pin-no options available
Option 12: L_{3} Driver same as Option 5
Option 13: L2 Driver same as Option 5
Option 14: L_{1} Driver same as Option 5
Option 15: Lo Driver same as Option 5

Option 16: SI Input same as Option 9
Option 17: SO Driver = 0: standard output (A)
$=1$: open-drain output (B)
$=2$: push-pull output (C)
Option 18: SK Driver same as Option 17
Option 19: \mathbb{N}_{0} Input same as Option 9
Option 20: IN_{3} Input same as Option 9
Option 21: G_{0} I/O Port
$=0$: Standard output (A)
= 1: Open-Drain output (B)
Option 22: G_{1} I/O Port same as Option 21
Option 23: G_{2} I/O Port same as Option 21
Option 24: G_{3} I/O Port same as Option 21
Option 25: D_{3} Output
$=0$: Standard output (A)
$=1$: Open-Drain output (B)
Option 26: D_{2} Output same as Option 25
Option 27: D_{1} Output same as Option 25
Option 28: D_{0} Output same as Option 25
Option 29: COP Function
= 0: normal operation
= 1: MICROBUS option
Option 30: COP Bonding
$=0$: COP420 (28-pin device)
$=1$: COP421 (24-pin device)
$=2: 28$ - and 24 -pin device
$=3$: COP422 (20-pin device)
$=4: 28$ - and 20 -pin device
$=5: 24$ - and 20-pin device
$=6: 28-$, 24 - and $20-$ pin device
Option 31: In Input Levels
= 0: normal input levels
$=1$: Higher voltage input levels (" 0 " = 1.2V, " 1 " = 3.6V)
Option 32: G Input Levels same as Option 31
Option 33: L Input Levels same as Option 31
Option 34: CKO Input Levels same as Option 31
Option 35: SI Input Levels same as Option 31

Option List (Continued)

COP OPTION LIST

The following option information is to be sent to National along with the EPROM.

OPTION DATA

TEST MODE (Non-Standard Operation)

The SO output has been configured to provide for standard test procedures for the custom-programmed COP420. With SO forced to logic " 1 ", two test modes are provided, depending upon the value of SI:
a. RAM and Internal Logic Test Mode $(S I=1)$
b. ROM Test Mode $(\mathrm{SI}=0)$

These special test modes should not be employed by the user; they are intended for manufacturing test only.

APPLICATION \# 1: COP420 General Controller

Figure 8 shows an interconnect diagram for a COP420 used as a general controller. Operation of the system is as follows:

1. The $L_{7}-L_{0}$ outputs are configured as LED Direct Drive outputs, allowing direct connection to the segments of the display.
2. The $D_{3}-D_{0}$ outputs drive the digits of the mulitplexed display directly and scan the columns of the 4×4 keyboard matrix.
3. The $1 N_{3}-1 N_{0}$ inputs are used to input the 4 rows of the keyboard matrix. Reading the $\mathbb{I N}$ lines in conjunction with the current value of the D outputs allows detection, debouncing, and decoding of any one of the 16 keyswitches.
4. CKI is configured as a single-pin oscillator input allowing system timing to be controlled by a single-pin RC network. CKO is therefore available for use as a V_{R} RAM power supply pin. RAM data integrity is thereby assured when the main power supply is shut down (see RAM Keep-Alive option description).
5. SI is selected as the input to a binary counter input. With SIO used as a binary counter, SO and SK can be used as general purpose outputs.
6. The 4 bidirectional $\mathrm{G}_{\mathrm{I}} / \mathrm{O}$ ports $\left(\mathrm{G}_{3}-\mathrm{G}_{0}\right)$ are available for use as required by the user's application.

APPLICATION \# 2: MUSICAL ORGAN AND MUSIC BOX

Play Mode: Twenty-five musical keys and 25 LEDs are provided to denote F to F with half notes in between. All the keys and LEDs are directly detected and driven by the microprocessor. Depression of the key will give the corresponding musical note and light up the corresponding LED.
Clear: Memory is provided to store a played tune. Depression of the CLEAR key erases the memory and the microprocessor is ready to store new musical notes. A maximum of 28 notes can be stored where each note can be of one to eight musical beats. (Two bytes of memory are required to store one musical note. Any note longer than eight musical beats will require additional memory space for storage.)
Playback: Depression of this button will playback the tune stored in the memory since last "clear."
Preprogrammed Tunes: There are ten preprogrammed tunes (each has an average of 55 notes) masked in the chip. Any tune can be recalled by depressing the "Tune Button" followed by the corresponding "Sharp Key."
Learn Mode: This mode is for the player to learn the ten preprogrammed tunes. By pressing the "Learn Button" followed by the corresponding "Sharp Key," the LEDs will be lighted up one by one to indicate the notes of the selected tune. The LED will remain "on" until the player presses the correct musical key; the LED for the next note will then be lighted up.
Pause: In addition to the 25 musical keys, there is a special pause key. The depression of this key generates a blank note to the memory.
Note: In the Learn Mode when playing "Oh Susanna," the pause key must be used.
Tempo: This is a control input to the musical beat time oscillator for varying the speed of the musical tunes.
Vibrato: This is a switch control to vary the frequency vibration of the note.
Tunes Listing: The following is a listing of the ten preprogrammed tunes: 1) Jingle Bells, 2) Twinkle, Twinkle Little Star, 3) Happy Birthday, 4) Yankee Doodle, 5) Silent Night, 6) This Old Man, 7) London Bridge Is Falling Down, 8) Auld Lang Syne, 9) Oh Susanna, 10) Clementine.

Typical Applications

TL/DD/6921-26
FIGURE 11. COP420 Keyboard Display Interface

Circult Diagram of COP420 Musical Organ

TL/DD/6921-27

Typical Applications (Continued)

TL/DD/6921-29

Auto Power Shut-Off Clircuit

