(4

@

FP‘E'/’T"”%‘”'/ Larry Lo e

/ —er cors< r]g'lm s)

LID
Nano Processor

User's Guide

Drawing Number
A-5955-0331-1 | _ =
g Sy Shy— e e e - _-/-’_' .

—~

HEWLETT ﬁ PACKARD

LI D
NANOPROCESSOR

HEWLETT FPACKARD

PREFACE

The Loveland Instrument Division Nano Processor is a control oriented device designed
for instrument applications. The Nano Processor is not arithmetic oriented. The motiva-

o tion for such a design was three fold. First. it was felt that ASM designs were too limiting;
second, “‘off-the-shelf” microprocessors had too many “real time” limitations; and
finally, there was a need for a common building block among LID designs. Thus the two
major objectives for the Nano Processor were the design of a general purpose LSI device
optimized for instrument control and to provide a software method of implementing
complex control algorithms.

Some of the key features of the Nano Processor are an internal data base of sixteen
8-bit registers, seven direct control I/O lines, fixed time high speed instructions, high
speed vectored interrupt, and bit oriented control instructions. The Nano Processor can
operate at speeds up to 500 nanoseconds per any of its 42 instructions, while dissipating
less than one watt from a ceramic 40 pin package. The factory cost of this device is less
than $20 or less than $27 with an ALU.

‘-'.11" i 3 I
u.nl 2 - I
A s e . N IORRUTN | (NN W I = ST S I8
o] | . : ; 2 : — Runninz IL{'[L

I I : i . - I——

TABLE OF CONTENTS

Page
I: INTRODUCTION G 5 oiic st siesivition wtersivintess » |
1. HARDWARESTRUCTUREc0vvuvnnn. |
I1. PROCESSORTIMINGoovvvennrnnnnnns 5
IV. PROGRAM ADDRESSINGvvvvvnnnnnn. 8
V. NANO PROCESSOR INSTRUCTIONSET. 9
VI. INTERFACING THE NANO PROCESSOR 14
APPENDICES
A. SPEC. SHEET
B. ROM—RAM SIMULATOR
C. NANO PROCESSOR DESIGN EXAMPLES
D. SOFTWARE
E. GENERAL INFORMATION

,__—
b= o
e
H
!
1

I. INTRODUCTION. \
The -hp- Nano Processor (NP) is a single chip, N-channel MOS, 8 bit parallel, control
~ oriented central processing unit designed by the Lovelund Instrument Division for
internal control and interfacing of instruments,
The NP coupled with a program ROM forms the minimum nano processor control
computer. The NP can directly address up to 2048 8-bit bytes of program memory, and
» with simple block switching techniques, up to 512 K of 8-bit bytes.

All instructions and data are transferred in and out of the NP with the bidirectional 8-bit
parallel data bus (D@ through D7).

The NP allows data transfers with up to 15 input and 15 output ports addressed by a
4-bit device select code and an 1/O read/write control line.

@ The normal program may be interrupted by use of the interrupt request control line. This
interrupt is a fully vectored interrupt with 256 possible vectors.

The NP can control external circuits and check their status through the use of the 7 direct
control lines (DCQ through DC7).

9 All inputs and outputs are TTL compatible. Each output will sink one standard power
TTL load. Each input has an internal pull-up device.

The NP instruction set numbers 42 including data transfers, bit manipulation, magnitude R
comparisons, jump, and jump to subroutine.

Il. HARDWARE STRUCTURE.
The NP contains:
A. One 8-Bit Accumulator (ACC)
One Control Logic Unit (CLU)
One 1-Bit Extend Register (E)
Sixteen 8-Bit Storage Registers (R — R17)
One 8-Bit Magnitude Comparator (CMP)

Seven Bidirection Direct Control I/O Lines (DC@ — 6)

O m m g 0w

One 11-Bit Program Counter (PC)

2]

One 11-Bit Subroutine Return Register (SRR)

One 11-Bit Interrupt Return Register (IRR)

“

i o >
i tll’i -
. s e il] T PO e =

! h[{

DATA i
BUS KL po 550 A5 U R LSO by v AR i RO
(8 BITS 8 BIT DATA BUS ;
INT
INSTRUCTION <
REGISTER E STACK,
CESEE:OL ¢ ATOR olr \:ogfrss COUNTER | ADDRESS BUS
. SuB
STACK
CONTROL
AND
ANO S
PROGRAM, - - + -~
GATES = | i :
. 4 BIT CONTROL BUS
MAIN cLock—2 } ' U -
INTERRUPT , i
e IRECT GATE
o |
INTERRUPT . :
ACKNOWLEDGE
VO _INSTRUCTION o | . 119
READ/WRITE 4_ :
: 1/
U ”
| WERsleT PSP ETE oEVICE T
NANO PROCESSOR BLOCK DIAGRAM
& P & & & G i ¢ < @ C

"0 Tialeh
CLE D O)

&
|

FLAG O ==]
SET CMD | 2) Q D——«——— -—O DC i
CLR CMD | > R_ PS Voo

FLAG | -
SET CMD 2> S Q D—«»i (3] 0¥
CLR CMD 2) R PS—T Voo

FLAG 2 ==
SET CMD 3) s 0 D_—»-— () D
CLR CMD 3> R PS "Vloo

FLAG 3 == e :rg

T :
SET CMD 4> 5 0 - I/\/> — - -+ {) oca
-
. CLR CMD 4) R PS +Vop
FLAG 4 - ——ll i
\\N I’

SET CMD 5> S Q >—e¢——-o—{) OC
CLR CMD 5> R PS w “Vop

FLAG 5 -
SET CMD 6>- Q D—v— DCe
CLR CMD 6 Ps

FLAG 6 =

DIRECT CONTROL
I/0 STRUCTURE

Accumulator.
The 8-bit accumulator may be loaded from or output to the 8-bit data bus.
Control Logic Unit.
The CLU is the heart of the NP. It provides the following functions:
1. Test, set or clear any bit of the accumulator or the extend register.
2. Set or clear any of the command flip-flops.
3. Test any of the flag inputs.
4. Clear the accumulator.
5. Increment or decrement the accumulator in binary.

6. Increment or decrement the accumulator in decimal.

(Note: Two Binary Coded Decimal (BCD) digits are assumed and the output
is two BCD digits and overflow[carry.)

7. Complement accumulator (1’s complement)
Extend Register.

The 1-bit extend register is used to indicate overflow (carry) fmm or underflow (borrow)
to the accumulator, or it may be used as an internal ﬂag . -

Storage Registers.

The sixteen 8-bit storage registers are for general data use. They may be recalled to the
accumulator. They may be loaded from the accumulator or directly from the program
ROM. RQ may be used for comparisons and indexing.

Magnitude Comparator.

The magnitude comparator compares the 8 bits of the accumulator to the 8 bits of the
R for greater than, less than or equal to.

Direct Control 1/0 Lines.

The direct control I/O lines are 7 lines (DCP — DC6) that may be used for output with set
and clear functions on their controlling ﬂlp-ﬂops. The status of the output may be
directly tested as inputs for feedback flags.

Pmnm cnuntpr.

The 11-bit program counter provides direct addressing of the control program up to 2048
bytes.

Subroutine Stack Register.

The 11-bit subroutine stack register provides for a single level of subroutining within the
control program.

Interrupt Stack Register.

The 11-bit interrupt stack register provides for a single level of interruption.

IIl. PROCESSOR TIMING.

_ The NP is designed with a quasi static structure. The clock may be stopped in the low
v state with no loss of data.

The maximum clock rate is 4 MHz for the fast (A series) chips. A/l instructions are exe-
cuted in two clock periods or 500 ns with this clock rate.

To obtain a 500 ns cycle time the program ROM must have < 85 ns access from address
(" to output and < 65 ns access from output enable to output. (A list of possible ROM’s to
be used with the NP is liated in Appendix A.)

TaA |

CLOCK

CLOCK

l *L.:Y\
I

PROGRAM ACCESS |
FROM PROGRAM

GATE tgp ———) o

fa— OFF —»f«& PULSE |4 CLOCK PERIOD_..I
MAIN CLOCK
INPUT : —
|
@—— FETCH PHASE——#»«a@— EXECUTE PHASE——»
|
|
|
T
PROGRAM VALID |_.1 PAI vaLiD
ADDRESS VALID , o
(PAO-I0) __| , VALID
|
} > Tpap |
}TPGL Toon PROGRAM GATE
Toeu™ e | o [« l'ﬂ- |V INSTRUCTIONS
PROGRAM i
GATE | ~ I:
Y | _______
|
- | T
PROGRAM ACCESS I !
FROM ADDRESS > |etp INSTRUCTIONS

FOR MAX. SPEED
90ns MAX.

INSTRUCTION POINT

| PROGRAM DATA MUST
<5 BE ON DATA BUS

BY THIS POINT IN
TIME.

DC /10 LINES

MAIN CLOCK
INPUT

DEVICE SELECT
AND R/W OUTPUTS

DATA INPUT
(R/W LOW)

DATA OUTPUT
(R/W HIGH)

I
R —
I
\

|
|
|
I |
o | !
<t— FETCH PHASE — - EXECUTE PHASE —>

tosi | I T 032

DURING FETCH

AND ALL NON — 120

INSTRUCTIONS, DS AND

R/W LINES REMAIN HIGH.
1

[

|

|

|

|

|

|

|

1 |
DATA_ MUST BE ON BUS _,!
|

|

|

|

DURING EXECUTE OF

170 INSTRUCTION LINES
ASSUME PROGRAMMED
VALIJE. 2

BY THIS POINT IN TIME.

I OUTPUT DATA SHOULD BE
I STORED ON LEADING EDGE
|"5\ OF CLOCK.

BUS BY THIS POINT IN

TIME. I \Q_
l‘* oo —4

- et
M DV

OUTPUT DATA NO
LONGER VALID

|
|
OUTPUT DATA WILL BE ON |
[
[
I
I

IV. PROGRAM ADDRESSING.

For ease of discussion the program address (11 bits) will be looked at as a 3-bit page
number (PA 10 - PA 8) and an 8-bit page offset (PA 7 — PA).

In all instruction except jump and skip instructions, the program address is incremented.
It is incremented once in one byte instructions and twice in two byte instructions.

In a JUMP (JMP) or JUMP TO SUBROUTINE (JSB) instruction, the page number from
the first byte and the page offsct from the second byte of the instruction are loaded into
the program counter during the execute phase.

In the JUMP INDIRECT INDEXED (JAI) and the JUMP INDIRECT INDEXED TO
SUBROUTINE (JAS) instructions, the page number is formed the same as an indexed
register address (but only the bottom 3 bits are used) and the page offset is taken from
the accumulator.

CAUTIONS:

These two instructions allow great addressing power but they also have great
dangers.

1. Due to the indexing structure, a JAI instruction executed with
R(3 set will be executed as a JAS instruction,

2. Due to the subroutine return address storage system, the byte
after a JAS instruction will not be executed upon return from the
subroutine.

3. Remember that this is an OR FUNCTION not an ARITHMETIC
ADD.

All branching in the NP is done with the skip instructions. Thv.;: skip instruction causes
two bytes of program to be skipped if the condition being tested is true.

Example:

Program Instruction

Address
After the skip instruction N SBS 3 Skip if accumulator bit

3 is set.
This instruction is executed > N+1 JMP EXIT (Jump instructions
require two bytes.)

if Bit 3 is zero N+2 ,
This instruction is executed = N+3 CBN 3 Clear accumulator bit 3
if Bit 3 is Set

V. THE NANO PROCESSOR INSTRUCTION SET.

The NP instruction set is divided into groups:

1.

2,

Accumulator group
Register transfer group
Input /output group
Comparator group

Program control group

Instruction Listing Format.

SBS N | opolid N

Instruction Operand(s) Operation Operand

Mnemonic Code Code
Register Addressing.

The sixteen internal 8-bit registers may be directly addressed with LOAD (LDA), STORE
(STA) and STORE ROM DATA (STR) instructions or indexed address may be used with
LOAD INDEXED (LDI) and STORE INDEXED (STI).

The effective indexed address is the “or” function of the bottom (I — I3) 4 bits of the
instruction with the bottom 4 bits of RG(RGP — R@3).

Example:
Ip — 15 1001
RGO — RG3 0101
Effective Register 1101
_ Address

Note: This is an “or” function instead of an add, therefore, no carry takes place.

lt'.]i

. !
11 & -

-T

casmasas BERE it s i - -

wem W,

*+#Note: Since R{) is used as the index, caution should be used so that R is
not the effective destination of a Store instruction. ***

V —-A. ACCUMULATOR GROUP.

SBS N

SBZ N

SBN N

CBNN

INB

IND

DEB

RSA

SEZ

LDR

Skip on accumulator bit 7N Set (1)
Skip on accumulator bit #N zero (9)
Set accumulator bit #N

Clear accumulator bit #N

Increment accumulator as an 8-bit binary number,
The extend register is set if overflow occurs.

Increment accumulator as two BCD code decimal
numbers() ().

Carry between digits is automatically handled,

The extend register is set if overflow occurs.

Decrement accumulator as an 8-bit binary number,
The extend register is set if underflow occurs. *

:mament accumulator as two BCD coded decimal
gits.

Borrow between digits is automatically handled.

The extend register is set if underflow occurs.

Clear accumulator.
Does not affect the extend register.

Complement accumulator
The accumulator is treated as an 8-bit binary number
and one’s complement is performed.

Left shift accumulator
1-bit shift with zero (@) fill.
Does not affect extend register,

Right shift accumulator
1-bit shift with zero () fill,
Does not affect extend register,

Skip on extend register set (1).
Skip on extend register Zero (@).

ROM Data.
Load accumulator with ROM data,
(ROM data is the second byte of this instruction)

00010 N

00110 N

00100 N

10100 N

00000000

00000010

00000001

00000011

Ooo0o00100

00000101

00000111

00011111

009 17 1 114

11001111

V — B. REGISTER TRANSFER GROUP.

LDA R 0110 R
Load accumulator with data from register # R.

STAR 0111 R
Store accumulator at register #R.

LDI Z 1410 £

Load accumulator with data from register addressed
by (2)v(R0). (See description of indexing.)

ST Z 1 1 E
Store accumnulator at register addressed by (2) v (R0).
STRR, 1101 R
ROM Data
ROM Data.

Store ROM data at register #R,
ROM data is the second byte of this instruction.

V —C. EXTEND REGISTER GROUP.

STE ’ ; 10110100

Set extend register.
CLE 10110101

Clear extend register.

V —D. INTERRUPT GROUP.

DS! q 10101111

Disable the interrupt.
ENI oo0o101111

Enable the interrupt.

NG S 8 vt o DT i-.':l.‘l._

L

V - E. COMPARATOR GROUP.

All comparisons are made based on R@ and the accumulator containing 8-bit unsigned
binary numbers.
SLT 00001001
Skip on accumulator less than R@,
SEQ 00001010
Skip on accumulator equal to RO.
SAZ 00001011
Skip on accumulator equal to zero (@),
SLE ’ oo001100
Skip on accumulator less than or equal to R@.
SGE ' 00001101
Skip on accumulator greater than or equal to RO,
SNE 00001110
Skip on accumulator not equal to RO.
SAN . ‘ oo0001111
Skip on accumulator not equal to zero (@),
SGT . 00001000
Skip on accumulator greater than R@.

V - F. INPUT/OUTPUT GROUP.

INA DS 0100 DS

Input data from device #DS to accumulator.

OTA DS 0101 DS
Output accumulator data to device #DS.

OTR DS, ROM DATA ' 1100 DS

ROM DATA

ROM Data.
Output ROM data to device #DS
ROM data is the second byte of this instruction.

STCK 00101 K
Set direct control.
Bit #K

ciek 10101 K
Clear direct control.
Bit

SFSJ | ocoo011 J
Skip on direct control. :

‘ Flag 7 Set (1).
SFZJ 00111 J

Skip on direct control flag 7&) zero (@),

10010000
Return from interrupt.
An unconditional jump to the location stored in the
interrupt stack register is performed.
The interrupt control bit is not affected.

101170001

Return from interrupt and enable interrupt.
Same as RTI| instruction except that the interrupt
control bit is set allowing future interrupt.

01011111

NO Operation.
10010 2

Jump indirect (through accumulator) indexed.

The page number is the indexed value (Z) v (R@).

The page offset is the accumulator.

An uncondition jump to the address formed from the

page number and page offset.
. 10011 z

Jump indirect (through accumulator) indexed to
subroutine.

Same as JA| with the addition that the location of the
JAS instruction Plus 2 is stored in the subroutine stack

register,

CAUTIONS:

These two instructions allow great addressing power but they also have great

RTI
®
RTE
NOP
®
JAI
. JAS
<
o] J
dangers,
i 1
2.
L

PR IR

Due to the indexing structure, a JAI instruction executed with
R(3 set will be executed as a JAS instruction.

Due to the subroutine return address storage system, the byte
after a JAS instruction will not be executed upon return from the
subroutine.

13 9

V — G. PROGRAM CONTROL GROUP.

JMP

JSB

RTS

RSE

ADDRESS

The address is broken into two section page number
and page offset,

The first byte contains operation code and page
number,

The second byte contains the page offset.

An unconditional jump to the address is performed.

ADDRESS

(See jump for address format)

An unconditional jump to the address is performed
and the address of the next ROM location after the
page offset is stored in the subroutine stack register,
Note: Since the subroutine stack register is a s'ngle
level deep, subroutines cannot be nested.

Return from subroutine.

An unconditional jump to the location stored in the

subroutine stack register is performed

The location of the RTS instruction Plus 2 is stored in
the subroutine stack register, thus co-routine linkages
may be performed.

Return from subroutine and enable interrupt.
Same as RTS instruction except that the interrupt
control bit is set allowing future interrupt.

VI . INTERFACING THE NANOPROCESSOR.

The interface of the NP is divided into five sections:

1. Program Access

2. 1/OPort

3. Direct Control Lines

4. Interrupt System

5. Power Supplies and Clock
Program nccln#.'

Page Number

Page Offset

10111000

10111001

|
The NP accesses its program through the use of the 11 program address lines (PAQ — 1¢)
and the program and gate line.

When the program gate is high the program source should supply the program data
referenced by the program address onto the data bus.

"\E;— —_

PROGRAM

ADDRESS
LINES

DEVICE
SELECT

I/0 READ/WRITE
GROUND

. R

DATA BUS

|

i =
2
30
4 [
5]
6 [
il
8 [
itel
0]
1| em
12 C
B E
14 [
15]
16 [
7
18
©]
20 [}

PAO
PAI
PA2
PA3
PA4
PAS
PAG
PA7
PAB
PA9 *
PAIO
DS3
DS2
DS
DSO
R/W
GND
DO
DI

D2

INT
INT
INT

V66
Voo

VBG
DCO

DC2
DC3
DC4
DC5
DC6
ENA
REQ
ACK
CLK
PSG

D7
D6
D5
D4
D3

139
]38
37
M 36
[]35
(134
]33
132
)3
] 30
[]29
)28
]27
)26
] 25
)24
23
)22

]2

PIN

ouT

140 +9 o +12VOLTS*

+5 VoLTS®
-2 TO -5 VOLTS

DIRECT CONTROL
170 LINES

INTERRUPT LINES

MAIN CLOCK INPUT
PROGRAM GATE

DATA BUS

*£5% . <IW TOTAL

- ——— - —

1/0 Ports,

The NP can address up to 1o input and 15 output data ports through the use ol its device
select and 1/O Read/Write lines.

The external devices may be numbered @ through 17 in octal. OTA 17 is used as the NOP
instruction.

Direct Control Lines.

The seven bidirectional direct control lines may be used in one of four modes for each
line.

1. Asadc static output line with set/clear program control.

2. As an input flag (internal flip-flop must be set — this is the turn-on condition)
with direct testing by the program.

3. Asa bidirectional control line.

Example:
The NP puts DC Line 2 low to signal an external device to start and the
external device holds the line low until finished. Thus, the NP (after
setting dc lines again) can determine the end of the external devices
cycle.

4. As an internal program flag with set/clear and direct testing by the program.

Interrupt System.

The NP’s interrupt system is controlled by three lines: Interrupt Request, Interrupt
Acknowledge, and Interrupt Enable.

During the execute phase of every instruction (except an interrupt disable — clear control
#7) the status of the interrupt request line is checked. If that line is low, an interrupt
phase will follow regardless of the state of the interrupt enable. The interrupt phase is
indicated by the interrupt acknowledge line going high. Daisy chaining of the interrupt
acknowledge line can be used for interrupt priority.

During the interrupt phase the interrupt enable is automatically turned off; the vector
address is input and the return address is stored in the interrupt stack register.

The interrupt request line input is always active. The interrupt enable output may be used
externally to gate this input if interrupt enable/disable capability is required. See Inter-
rupt System Timing.

Power Supply And Clock.

Three power supplies are required by the NP: + 12 or + 9 volts and + S volts for the main
logic and - 2 to - § volts for backgate bias.

The clock input is (as all inputs are) TTL compatible. That is, no external pullup resistors
are normally required. (But see “Data Bus Application Hints” for special cases.) It should
be noted that to provide a fast clock edge, the internal clock is pulled up with a current
of approximately 3 mA.

Power supplies must turn on as shown in the Nano Processor Turn-On Valid Start-Up
Sequence Diagram,

e
INTERRUPT SYSTEM TIMING:
MAIN CLOCK)
INPUT .
t—EXECUTE PHASE—a— INTERRUPT PHASE —$»ng——FETCH PHASE —=>
OF FIRST INSTRUCTION
OF INTERRUPT SERVICE
———r |
INTERRUPT ity 4 e I“ —mT,RRla—
REQUEST :
INPUT A ™\ INT REQ MUST BE
INT REQ STORED REMOVED BY THIS
AT THIS POINT POINT TO PREVENT
SECOND INT PHASE
INTERRUPT
ACKNGWLE DGE

OUTPUT e Tian > T+
. fe— Tya —’l‘*'| Tvi
MINIMUM VECTOR \\;\

VECTOR MUST BE ON
DATA BUS BY THIS
POINT IN TIME '

ACCESS TIME -100ns

ENABLE . THIS LINE MAY BE USED TO
EJTFEF?RFUPT . /_L/ GATE OFF INT REQ
OH?Pb’r L—‘ TiE MAX—"I DISABLE
INTERRUPT RESPONSE TIME: =

(tPAX: OMNE FULL INSTRUCTION
TIME OVER MINIMUM)

Nano Processor Turn On

Valid Startup Sequence

DD

Sample Circuit (Schematic)

VDD and VBG valid

before VGG applied — 49 or ¥12

A\ VoG
(pin 40)

VGG rise time less

than 1 microsecond

All supplies are valid
and clock is running

» r '.; [3 .
After ‘GG is valid
al least onen cloua:

prl « must occur

within 4 microseconds — ——)

MCLK

ARRPERNDIEX
B

'
|
}

)

[TEMPERATURE Still air

h;—rn_. L

NANOPROCLSSOR 5PICIFICATIONS

Revision Date 11/10/75 2
C
: fu}mm s
18320-1692 NP-A 7\b¢ 1820-1691 NP-B
G T {1, T e LTEORED
MIN TYP MAX MIN TYP MAX
Ve 11 F¥ig] 125 8.5 g9 il
Lo k)™ 30 40 20 26
-—-GG -
Vee 4.75 +5 5.5 ‘ 2.5 | &5 5.5
13
IDD(mA) 110 90
(oot i s Vag <2 -3 -5 =2 =3 -5
be marked Pd(mW) &od 1000 550 650
IBB(yA) 500 350
i CLK ON 100ns 100 ns lusec. 135ns lusec
CLOCK AT——| CLK OFF 100ns - 175ns w
TYP. VOLTAGESI cLk T 250ns @ 375ns o
TPAI 25ns 25ns
Tpa2 60ns 95ns 125ns TSns IA0NS | 180ns
T
TanH 15ns 20ns 30hs \Sms 2% ns 45ns
FALs. bt 5 15 25ns 5 30
ACCESS PG ns ns ns ns ns
TIP 8 35ns 50ns
TAA 90ns 145ns
TEA 35ns 60ns
DCIO |TDC 40ns 90ns 150ns 40ns 110ns 225ns
.'[.
. TDsz 30ns | 85ns 30ns 120ns
DATA IN | Tp1 40ns 60ns
TDO 150ns 215ns
T S |
DATA OUT Toy 40ns 50ns
TIV 4 30ns 40ns
INTERRUPT— T1pp™ 30ns 40ns
acknowledge TIAH 115ns 160ns
TIAL 100ns 140ns
Tqu 95ns 155ns
Tvi 40ns 60ns -
TiE 250ns 375 n:
AMBIENT Moving air 80°C 80°C
78°¢C 70°C

——p—

10.

11.
12
13
14.

A1l outputs can sink 1.6ma at 0.6 volts or less.

Inputs have own pull-ups and may require up to 1.6ma to be
sinked when input low is 0.4 volts. See MCLK for an exception.

MCLK may require up to 3.0ma to be sinked when low (0.4 volts)
and external ckt may have to provide a pull-up capability to
5.0 volts for high speed operation.

Data bus speed vs. capacitance must be treated in accordance
with data bus application hints.

It is preferred that other outputs drive less than 20pF for
max. speed; however, 30pF is usually acceptable.

A]]'input levels must equal or exceed 4.0 volts bilevel and
< 0.4 volts low levels.

Turn-on must be in accordance with "Turn-on Methods".
TEA = CLK off - TIP - TPGH; TAA = CLKT - TIP - TPA2.
TVA = CLKT - TIAH - TVI.

.Max. pulse r.t. 50nsec. up to 4.0V; Max. pulse f.t. 100nsec.

down to 0.8V.
Pulse ht. = 5V; approx. rise & fall times 1lOnsec. (test).
12.0 volts.

At VGG
5.0 volts.

At VDD

Min. & max. delay times from Interrupt Request Input till
fetch phase of first instruction (vector has already been
serviced) is: min. = TIV + CLK PW + CLKT and max. =TIV +
CLK PW + 3 CLKT.

APRPPENDIX
B

— iy

ROM-RAM SIMULATOR

NOTE

DUE TO THE COMPLETION OF THE NANO PROCESSOR
PROJECT, LID WILL NO LONGER SUPPORT OR PROVIDE
ADDITIONAL INFORMATION ON THE ROM-RAM SIMULATOR
AFTER JAN. I, I976.

ROM - RAM SIMULATOR

ROM - RAM Simulator is a block of memory that simulates
'a ROM. A block diagram of the ROM - RAM is provided.
As the block diagram indicates ROM -RAM can

be addressed in three ways:

1. Through address switches

2. By an HPIB connector and

3. By a processor

The contents of each memory location can be
entered in two ways:

1. By the contents switches
2. Through the HPIB Connector

The following is a brief description of the
above options.

SWITCHES

Set the I/0 Selector on "SW". Set the address
swithces to desired address location. The i
.designated location and the contents of that
location will be shown on the displays. 1If
change of contents is desired, set the contents
switches to the new contents and press the "WRITE"
button. The new contents will be displayed on

the contents display.

PROCESSOR

BUF FER

e

CONTENTS OUT
z
1024 X 8 g2

RANDOM ACCESS =K
MEMORY e
>
;)
; o
ADDRESS IN

THREE TO ONE
SELECTOR

ADDRESS
SWITCHES

PROCESSOR

ASCII
CONNECTORS

CONTENTS
DISPLAY

TWO TO ONE
SELECTOR

ADDRESS
DISPLAY

= ASCI|
CONNECTOR

— CONTENTS

 SWITCHES

OuTPruT

To output the contents of the mcmory to other devices
such as a processor, set the I/0 Sclector on "OUT"
Provide a 10 bit high true signal on the edge
connectors PAO0 through PA9 address lines,

A high enable signal will cause the ROM-RAM to output
the contents of the addressed location on the output
bus.

HPIB CONNECTOR

ROM - RAM Simulator is HPIB compatable, that is:
the address and contents can be given to the
ROM -RAM Simulator through the HPIB. Normally
the listen address is set to "3", however; this
can be changed to "2" by changing the jumper
wire on the board. The following is an example
program for writing in the ROM - RAM Simulator
from a 9830 calculator.

10 CMD"?7U3"
20 WRITE (13,30) A,B;C;
30 Format 3B
A 1is the two most significant bits of the address.
B - is the eight least significant bits of the address.

C 1is the contents.

A, B, and C are the decimal equivalant of the binary code.

Example:

Utilizing a 9830 calculator, the following program
could be used to write individual codes on the
ROM - RAM Simulator.

10 DISP "ENTER ADDRESS";
20 INPUT I

30 DISP "ENTER CONTENTS";
40 INPUT C

50 A = BIAND (ROT (I,8),3)
60 B = BIAND (I, 255)

70 CMD "?U3"

80 WRITE (13,90)A,B,C;

90 FORMAT 3B
100 GO TO 10

L)
*SVo —
o— 4 DIND
4 DIN
620 DAg-2 |
- (o] s
e L] - DIN2
G'.Do 5
+57/0 i ui4
Ol
3NOO [
570 AR 201Ny
o___.._'..
GHDo CAy 8 E-DIN4
I
CRLKT —o
+5VO i :
o— - 4
6106 e 1S,
*IR Y . DINg
o o B | SO
.l__:c.,‘ an):‘
o
G- ' DA 1_
+5V0 s 2-DIN,
O]
GHoo DA L4 L2 D INg
-
CO!TENTS
MULTIPLEXERS

a5

DAo'i = Bo i
DA 3 uie ! L B
DA 2B,
3 5
DAz~ B3 TO
> ADDRE
MOCTIPCEXERS
o Zo
Z,—Jr
9 3 I
DA 4 S
4 4 =g
pag u7 gy uIs
DAg!3 2 gg
13 15 12
DA, =8y | —

8 LBS OF ADDRESS

J

v
ADDRESS LATCHES

9 S_=
— Bg OWUT

2 MSB OF ADDRESS

(b outy '2 13
" | use Yo— 0o

| ==
L;J
o

D ourﬁ@dz
D OuTgS &

o use D,
4
|| uss D3
3
|
2 u3s Dg
0,
u3s Ds
|
)| U3 JO*—0g

u3s 0y

-1

JUMPER
WIRE
])] n“—o
£2-34
L3-2'4
‘]
i e et
!
. 'I| :> o DA3 x
- };a
5] U26
*5v 2
1)
" il 0 DA4 2

U arv—21

] ADDRESSED 12y

\L)ATH LCNT

l-.'! l!_u ;7
wH CLK De
vai
T80, 04
F]
3 13
% LONT
uz22
I 1
Z; Zy I
[1A
ADDRESS

LATCH ENAHLES

!.
Husi - LENT
= +5v)
e
kY iy
.| uee *]
*5V |uza JOr—-pnFO
L =
- ; %
uzs - -

uza DLwNoie

—

A9 —

Ds3

Ad—e A3 — A2 — AD
7 9) ¢
1 i GND , Asw,0GND
or3V . 045V
E—’ 12 _ pa3 _FAl
uil 2 iz LL—B! 6D uls — gl 5D
5 s ASW2pP 5 ASHO0
4 s o+5V i o5V
e | PA2 * —PAQ
—84 2 g2 t 8o
s < (L} EJ] IZ
5V
4 T
v f I | vz):"_'ﬁg"gm'lmu SELECTOR
T'_c, : ?m le
+5
SELECTOR SWITCH
@& & @ @ @

2<0Q

/

ROM-RAM STMULATOR COMPONENTS

IC# DLESCTRIPTION HI' PART NO
| 2102 INTEL RAM 1820-1078
9-153 74153 4-1 MULTIPLEXER 18520-0620
¥4 ,15 74157 2-1 MULTIPLEXER 1§20-0839
16,17 74175 HEX D, FF 1820-0839
18 7474 D-FF 1826-0077
19 - 74107 J-K FF 1820-0281
20,21 7474 D-FF 1826-0077
22 74155 2-4 DECODER 1820-0738
2325 7404 HEX INVERTOR 1820-0174
26,27 7430 8INPUT NAND 1820-0070
28 7438 0.C. 21 NAND 1820-0621
29 7400 21 NAND 1820-0054
30 7413 1820-0537
31 7410 3 INPUT NAND 1820-0068
32 7400 21 NAND 1820-0054
53,34 7408 21 AND 1820-0511
35,36 7438 0.C. 21 NAND 1820-0621
37,38 7404 HEX INV 1820-0174
1/0 SW DPDT SWITCH 3101-0939
7203
ADD - SPDT SWITCH 3101-1258
CONT. SW 7101
WKITE SW SPST PUSH BUTTON 3101-0063
@ 47 UF CAPACITOR 0180-0097
C2-Cs .47 UF CAPACITOR 0160-0174
RESITOR- PACK 1810-0136
R, 330 Q RESISTOR 0683-3315
Rz2-Ry 1K RESISTORS 0683-1025
7300 LED DISPLAY 5082- 7300
24 PIN ASCII CONNECTOR 1251-3283
Ci .01 UF CAPACITOR 0150-0093

Bo AR D

§imu A 7o R

Rom - RAM

R

He I8 Cowwecro

NELRLLER Eslowm

- -lltlla :QIIQII.:I-InI-‘\;n-
RRaapndne ranflinsaren . 2
L) H 3 . ol 3t [}
LR 3]] hd“' LS R S o
ip
4
] ! \
i » C
i
1

goshushs

Mo

APPENDIX
c

® AN ARITHMETIC CAPABILITY FOR THE NANO PROCESSOR.

By using 4 or S 1/O parts and minimum external hardware, the capacity of the Nano
Processor for data manipulation and storage is greatly increased. Choose a RAM size
® (minimum one word) and an ALU capability to suit your needs.

ity

w OTA
OTA
OTR

. INA
OTA

&

3

9

-

Let

and

ADDR

DATA

ADDR be the select code of the Address Storage Latch.

ALU
FN

RAM

DATA be the select code of the Data Storage.

be the select code of the Arithmetic Unit.
be the select code of the Function Storage.

be the WRITE ENABLE line of the RAM.

*ADDRESSES RAM LOCATION A
*Lets A be one argument of the Arith/Logic Unit
*Selects function "+ for the ALU

*Puts the result in A
*Maybe it also puts the result in DATA

*Puts DATA in RAM Location (ADDR)

NP

RA
i%oogssg DCO
DATA
BUS
SR
ADCRESS EN;‘\BEE
STORAGE Y
RAM
ADDRESS
DATA DATA
IN ouT
DATA 2
STORAGE -

OTHER
I/0 PORTS

FUNCTION
STORAGE

.._

niee i

- —

PRIMARY ’ . SECONDARY
STORAGE STORAGE

feuk curl | leek cLr
? cq_w'n-:RRUPT
; ACKNOWLEDGE
DATA
m .
l
Qg
———CLR
D CLK
! NANO PROCESSOR
LOW uo__,__OCL: i BLOCK SWITCHING (I)
PORT PULSE - _
D CLK
|
Al
o A,
VAIN
CLOCK '
Lﬁom TO BLOCK JMP, JSB, JAI, JAS,RTS, __o| NEW BLOCK
SWITCH PORT — > TRSE,RTI or RTE INSTRUCTIO ADDRESSED—®=
/0 PORT
PULSE
QB
BLOCK
SWITCH x
POINT NOTE

INTERRUPTS MUST BE DISABLED
DURING BLOCK SWITCHING

G BwW N
T A R S

[=)]

STORAGE \ec

o, BLOCK
> CODE
CLK TS
AIO
I/0 PART
PULSE (L)

Use one quad tristate latch for 16K memory.
The new block may be set at any time.

No need to disable interrupts.

A19 s used as the "current block" indicator. AlD = ¢.
Subroutines may be in block H or current block.

Return is to current block.

Interrrups are to block H. Return is to current block.
Blocks are 1024 words each.

NANO PROCESSOR
BLOCK SWITCHING (II)

e e

ARPPENDIX

THIS APPENDIX CONTAINS INFORMATION
ON THE USE OF THE NANO PROCESSOR
EDITOR, ASSEMBLER, AND LOADER FOR
A 9830A CALCULATOR. ALSO THE
ASSEMBLER AND LOADER FOR A 2100 DOS
III SYSTEM FOR THE NANO PROCESSOR
IS COVERED, TO OBTAIN THESE
PROGRAMS SEE GENERAL INFORMATION

IN APPENDIX E.

THE FOLLOWING 1S A DOCUMENTATION OF THE
NANO PROCESSOR SOFTWARE

FOR FURTHER INFORMATION. RECOMMENDATIONS, OR

IN CASE OF DIFFICULTY PLEASE CONTACT KAMRAN
FIROOZ AT

303-667-5000 Ext. 2873

OcToBer/1974

NANO PROCESSOR EDITOR

A NEW EDITOR FOR THL 9830 CALCULATORS

PURPOSE:

To generate or edit a source program on the
9830 calculators.

ROM REQUIREMENTS: ADVANCE PROG. #11279B,

STRING VARIABLE #11274B

MEMORY REQUIREMENTS: 8K

OBJECTIVE: At the present time the programs stored on

the cassette tapes of the 9830 calculators

cannot be accessed by any program as a data

file. In many applications it is guite

desirable to be able to edit a program in

whatever programming language desired, and)
store the generated source program as a

data file on the cassette tapes. These

programs can then be ' called in " by an

assembler or a similar processor to be

assembled.

The primary objective of this editor is to
generate source programs for the Nano Pro-
cessor Assembler; however, the program is
versatile enough so that it can produce source

program for other Micro Processor Assemblers
as well.

Kamran Firooz
August 1974)

SYNTAX:

The editor operates in two separate modes
“FILE EDIT* and "LINE EDIT". The FILE ERIT"
is used to edit the entire file;

the "LINE EDIT" is used to edit individual lines.

The commands shown on the lower portion of

the "SPECIAL FUNCTION CARD" are executed during
the "FILE EDIT" mode, and the commands shown

on the upper portion are executed durin2 the
"LINE EDIT" mode. All of the commands shown

on the card are immediately executable. The
shift key is not needed to execute any of the
commands in either mode.

A maximum of 140 lines can be édited on each
file. The program will notify the user if
this limit is exceeded. The maximum length
of each line is 32 characters. Any character
past this limit will be ignored. a "/" is used
to designate the physical end of a line. If
"/"™ is not found in each line, the editor will
insert a "/" in the 32nd character. For a
more efficient use of line length, a ":" is
used as the "PSEUDO-END of LINE'" character.
This character will be recognized by the

Nano Processor Assembler.

CLA /
TAG STA 12 /
JMP FAST /
is equivalent to:
CLA :TAG STA 12 : JMP FAST /

The physical file length is dctermined hy
the "EOF" statement. If such a statement
1s not found, the file length is taken as
140 lines.

The LOAD and STORE commands require a cassette
file length of at least 2240 words.

After each command is entered, any negative
number that is typed will cause the program to
go back to the "FILE EDIT"mode without executing
the requested command.

-4-

LTST OF COMMANDS OF "FILE EDIT'" MODE

INPUT:

STORE:

LOAD:

DELETE:

INSERT:

XREF:

LIST:

LIST N,

LIST N,,N;

LINE EDIT:

HELP:

To generate a new file or replace certain
lines of a previously generated program.
"EXIT" command will terminate the INPUT
command .

To store the generated source program in
a desired file on cassette tapes.

To load a previously stored program into
the editor.

To delete line no. N; to N, of the generated
program.

To insert N lines after line N, of the gener-
ated program.

To list a cross reference table of a character
string.

To list the entire program.

To 1list line no. N, to the end of the program.

:To list line no. N; to N, of the program.

To edit an individual line.

To help the user with the different commands
and their syntax.

L

7]

-5-

LISTP; LISTP N,; LISTP N,, N,: To perform the same

LABEL:

CHANGE:

function as LIST; LIST N,; and LIST N,, N,,
except that all the statements separated

by the "PSEUDO-END OF LINE" character (:)
will be listed on seperate lines.

To list all of the labels used throughout the

source program.

To change a character string throughout the
source program.

NOTE 1: The line numbers are only generated
during the print period; they are not
stored with the program.

NOTE 2: To delete or list a single line set
N] =N2. '

NOTE 3: The total length of the file will be printed
after each LIST or LISTP command.

NOTE 4: 1If as a result of an unacceptable command
such as wrong file length an error occurs
which stops the calculator, the program
can be restarted without losing the
current file by '"CONT 100".

LIST OF COMMANDS OF "LINE EDIT'" MODE

FORWARD : To move the visible pointer one character
space to the right each time it is pressed.

BACK: To move the visible pointer one character
to the left each time it is pressed.

INSERT: To open up a character space immediately ax
the visible pointer.

DELETE: To delete the character space where the visible

pointer is located.
¥ - To store the edited ‘1line and edit the next line.

4 g To store the edited line and edit the line immed-
iately before the present line.

EXIT: To store the edited line and return
to the "FILE EDIT" mode.

NO EDIT: To return to the "FILE EDIT" mode. All of the
changes on the edited line will be ignored.

7- N

NOTE 5:To replace the strings followed by the visible
pointer, just enter the new string.

NOTE 6:If line one is being edited and command '3"
is executed the program will return to the
"FILE EDIT" mode.

NOTE 7:The visible pointer cannot pass the end of
line character (/).

The following example is provided in an attemt to famil-
iarize the user with some of the features of the Nano
Processor Editor. All of the commands given by the user
are underlined

EXAMPLE :

Load the editor program in the 9830 calculator and press
RUN. EXECUTE. At the beginning of the execution the pro-
gram loads the special function keys from the file

following the editor program. Then the calculator will
display

"FILE EDIT?"
Press INPUT

"STARTING LINE?"
1

"ENTER LINE 1 ?"

Then the following program is typed in:

ERAMFLE PROGRAM.
*THIS PROGRAM READS A MUME-F IH-
¢t BCI- AND COMYERTS IT TO BIN. -
.
"
START IHMA DS@ #IHPUT THE ECD #-
STH RS *STORE THE # IN RS.
STF 6.0 sCLERR Ro:LOOP LoA s
SAN #SKIF IF ACCHD: JMP QUT.
OED #DECREMEMT IN ECD: STH S
LR 38 1HE *INCREMEMT IM BIM. .
STH B JMP LOOF:OUT LDA &
UTH DS1 #0UTFUT THE BIN. #-
JUFSTART *READ AHOTHER HUMBER.-
Laf GCT @RS OCT S: END: EOF.

L S HE

& EAANFLE PROGREAM.-

“THIS PROGRAM FEADS A HUFMBER N

After the last line is entered press

EXIT

Ce——

“FILE BDIT?"

LIST

——

BCT AML COMYERTS

SRR

J
WA

1T

GTR RS +5TORE THE # M
STR i «CLERR RO:LOOP LIA .
SHH #EKIF LF ACC#BE JMP 00T

ED =DECREMENT IH ECD: iR S

T RiN, -

HA =B $THRFUT THE Brp .

..
g

L

IR THE #THOCREMENT IN BIN, &
TR G NP LUOF20O0T Lo K

CTECDSL S0UTEUT THE

BIN,

i

WESTART <RERL HHETHER HUMBER -

o OCT BeRS OUT 52
HUMBER= 15

Ere

COF -

-10-

To list the lines separated by '":" individually type:

LISTP

FHLE L

I R e T T TR T R R R R S R e I R A SR

Tl o=

* EMYAMFLE FROGCRAMA
#THIS FROGEARM READ: A HUMBER IH~S
f BECT AMD COMYERTS IT TO BIM. <

TERD OIHA DEn £ IHPUT THE BOCD #;“
“ef PSS #5TORE THE # IH RS«
STE asa #CLEAR RO
LEgFE LA 5+
< SHe #=SEIR IF RCCHA
AMP OUT
1H RED #DECEREMEHT IH BCD
TR 5~
11 I_OF @A
THE *IHCREMENT IM BIH. .~
12 STH B
AW Loop
ouT LA a-
OTA DS1 «QUTPUT THE BIH. #¢
AMF STHET #EEAD AHOTHER HUMBER .-
s OCcT @8
kS UCT 5
FoH I
EOF

TOTAL LIME HUMBER= IS

DOCRSS T w SRR) I SN i)

—— i
L R

® W

_11-

Suppose it is desired to output the binary equivalent
number to some other devices besides device (DS1).
Then press
INSERT
"INSERT AFTER LINE?"
35
""HOW MANY LINES BE INSERTED?"
p 3
"ENTER LINE 14 2"

OTA 2/
"FILE EDIT?"
Note that operand DS1 used in line 13 is not defined.
This definition could be achieved by inserting a new
line or addition to one of the existing lines.
LINE EDIT
"WHICH LINE?"
14

"OTA 2 /n

-12-

Press the "BACK" on Special Function Keys, the pointer will
be pointing at;

"IJTA 2 / "

Then type:

DS1:°0CT 1 /

“"OTA 2 :BS1 GCT 1 /
Since no further changes are required press
EXIT

“FILE EBDIT?"
To observe the changes type;

LISTP 10, 15

FAGE 1

ERERER LA TS CAF TR R ERLRG SR RRR SRR AR E R R4 e Ch S BRI P RS % S PR R RS Uh TS s 4

i VET “NECRENEHT IH BOD

o il
11 | IR &

“HE 2 THCREMEHT 1H BIH. -
12 i

AME LanF
LUT LDA @
13 D7TA D51 =0UTFUT THE BIH. #-
14 RN
1.3 P STHET <READ HHUTHER HUMEBER -
TOTAL LIHE HUMBER= {5

S

-13-

If no further ckanges are necessary and you wish to
store the program on a cassette file press;

STORE
"STORE THE PROGRAM ON FILE?"
1

After the program is stored on the tape, calculator
will print;

FEOGRHM L Rs LIEEDR O FILE i

“FILE EDIT?"

Note that if a negative numher was entered as the file number,
the editor would ignore the STCE command and return to the
"FILE EDIT?" mode.

To terminate program press;

END

14

k=
ol MR Ieaglo 'l .. . NANOPROCESSOR EDITOR s

USER DEFINABLE KEY OVER LAYER

NANO PROCESSOR ASSEMBLER

SECTION I

USER GUIDE TO THE NANO PROCESSOR ASSEMBLER

PURPOSE: To assemble a source program for the
NANO PROCESSOR using a 9830 calculator.

MEMORY REQUIREMENTS: 8K

ROM REQUIREMENTS: Advanced programming #11279B.
String Variables #11274B, and Extended
I1/0 #11272B

SOFTWARE REQUIREMENTS:
The Nanoprocessor EDITOR must be used to
generate the source files.

Kamran Firooz
August, 1974

DESCRIPTION: The Nano Processor Assembler is an
absolute assembler designed to assemhle =ource
programs (generated by the Nano Processor lLditor)
stored on cassette tapes and to pcenerate cquivialent
object code files. A loader program can then
be used to load these binary files into a
ROM-RAM Simulator, or a PROM. The assembling
is performed in two passes. Pass one searches
for user defined symbols, and pass two translates
the mneumonic source program statements to their
equivalent binary codes.

These binary codes are stored in an array called
object file. At the end of pass 2 the object

file is stored on the cassette tape. The file
number where this array will be stored is request-
ed at the beginning of the program.

The assembler program is written as a ''conver-
sational" program: that is, the different options
of the assembler are asked at the beginning

of the program. If the answer "Y" is not
encountered the option will be voided. The
following is a brief description of these

options.

OPTION

OPTION

I '""SYMBOL TABLE"

For this option the calculator will ask:

"“"PRINT THE SYMBOL TABLE?"
If the reply is "Y" the symbol table will be
printed

2 "PROGRAM PRINTOUT"

The second option provides a listing of the
source program and its equivalent code. In
regard to this option the calculator will ask;
"PRINT THE PROGRAM?"

If the answer is "Y" each line of the assembled
program will be printed duiing pass two.

PERMANENT SYMBOL TABLE:

The permanent symbol table is an array consisting

of all the op-codes and their binary equivalents.

Permanent symbol table is stored on a file follow-

ing the assembler file. At the beginning of exccut-

ion this file is loaded into the calculator.

USER DEFINED TABLE:

User difined table is an array that holds the
numerical value or the address of the labels.
During the pass 1 all the labels are stored in
this array. At the end of pass 1 this array
is sorted in alphabetical order. The alpha-
betical arrangement of the labels make it pos-
sible to perform algorithmic search instead of
a linear search. During pass 2 everytime an
alphabetical operand is found, the assembler
performs a logarithmic search into the user
defined table to find the value or the address
of the operand.

Maximum length of user defined table is 140
labels. Exceeding this limit would cause an
error which stops the program.

P S

OBJECT FILE:

Object file is an array that holds the bhinary
codes of the assembled source program. At the end
of pass II this file is stored on a cassette Tape.
A loader program can then be used to load the
object file to a ROM-RAM Simulator, or a ROM.

Object file is a 1024X1 array. Each location of
this file will hold the object code for that
location. For example; location 16 will hold
the code that must be stored on location ljmgf
the ROM. (Due to the fact that array starts from
1 and not Pp. All locations are decremented

by one by the "LOADER")

Since object file has only 1024 location, caution)
must be taken not to exceed location 1777 octal.

For example; the code that must be stored on

location 2150 octal will be stored on location 150

octal. (11'th bit is truncated).

At the beginning of the assembling all of the
locations of the object file are initialized

to -\ . During the assembling

-| is over written by other codes, however the
locations not used will remain as -| This feat-
ure is used by the loader for "PATCH ASSEMBLING".
For further in-ormation refer to '""NANO PROCESSOR
LOADER".

PROGAM SOURCE FILES:

Progam source files are cassette files that contain
the source program. These files are generated
through the Nano Processor Editor. Up to 10 files
can be assembled at one time. If more than onc [ile
is used, an EOF statement must designate the
termination of each file.

The maximum length of each file is 140 lines, and
Each line is 32 character spaces wide.

A "/" is used to designate the end of line,

For example:

LOOP LDA REGS5 * LOAD ACC from RS /

For more efficient use of the source files, another
character called the PSEUDO END OF LINE CHARACTER
(":") is used to tell the assembler that the state-
ment has terminated and that more statements follow
on the same physical line

For example:

CLA: LDA REGS5 :BACK STA R16 /

This line will occupy only one physical line of

the program source file: However, it will be
accepted as three individual lines by the assembler.
i.e. This one physical line as far as the assembler
is concerned is equivalent to the followint lines:

CLA /
LDA REGS /
BACK STA R16 /

GENERAL FORMAT:

LABEL:

Each line of the program consists of one or more
separate fields. These fields are: Label, Opcode,
Operand, and Comments. For the convenience of
the user these fields are separated by one or
more blank spaces. The following is a brief
description of each one of these fields.

Label is a symbolic name that provides the ability
to refer to the instruction or the value generated
by the instruction, for example; in the instruction:

START LDA REG17 /

START is the label, and it holds the address of
the location where this instruction is stored on
the ROM.

But in the instruction:

REG17 ocT 17 /

REG17 is a label that holds the numerical value
assigned to it by the OCT instruction.

The first letter of a label must be alphabetical,
and the total length of the label cannot :xceed

6 characters. If the first character of an in-
struction is blank the assembler assumes that there
is no label present. Repeated labels cause the ass-
embler to print an error message.

22

'W‘? ‘r] :

g
OPCODE:
Opcodes are mnemonic operation codes stored in
the permanent symbol table that are recognized <
by the assembler and translated as machine in-
structions or Pseudo-instructions.
o
MACHINE INSTRUCTIONS:
Machine instructions are those instructions that
the Nano Processor can execute to perform a &
specific task. The assembler translates these
instructions to their binary codes.
There are three types of machine instructions:
&
Type 1:
Single byte instructions that are self-
defined and do not require an operand.
=
&
8
<
..-.g«‘!_ 5 o .y
DA

For example:

CLA * CLEAR ACC

STE ‘ * Set extend register

RTS * Return from Subroutine

ENI * Enable the Intrupt

INB * Increment the ACC in Binary
SLE * Skip if ACC < to register 0

Type 2:

Single byte instructions that require
an Operand.

For example:

SBS § * Skip if Bit 5 of the ACC is set
CBN BIT4 * (Clear BIT4 of the ACC
INA DSS * TInput to ACC from Device 5

Type 3:

Double byte instructions that must
be accompanied by an Operand -

For example:

OTR 2,DATA * OQutput ROM Data to Device 2
STR RE,FOUR * Store FOUR Into Register 5
JMP GOOD * Jump to Location GOOD
JSB ADD * Jump to Subroutine ADD

-10-

PSEUDO INSTRUCTION:

Pseudo instructions performs two types of tasks,
Type 1:

They provide information to the assembler
about the program being assembled, such
as ORG, EOF, END

Type 2:

They allow the definition of constants,

such as OCT, DEC, BCD. Obviously type 2
of the Pseudo Instruction must be accom-
panied by a label and an Operand, since

it is assigning the numerical value of

the Operand to the label.

OPERAND:

s

Some instructions require the designation of

an Operand. This Operand could be a destination
address in a JUMP instruction or the numerical
value of a label in an assign instruction. There
are three types of Operands, they are:

Type 1 - NUMERICAL VALUE:

This type of Operand is used in a type
two instruction code, or in a Constant

Define Pseudo-instruction.

(Type 2 Pseudo instruction).
NoTE & AL NUMERIC UNLUES ARE TAVEN

AD OLTAL EXCEPT 1y BCD om DEC.
PSETVUDO WIRTR,

L J

e

-T1=

For example:)
LDA 5§ * LOAD ACC FROM REGISTER §
SFZ 4 * SKIP IF FLAG 4 1S ZERO
REG14 OCT 14 * ASSIGN VALUE OF 14 TO THE
LABEL REG14
JMP 377 * JUMP TO LOCATION 377
LDR 20 * LOAD ACC FROM ROM DATA 20

This type cf Operand has to be numerical. If they are
being used in a type two instruction they cannot
exceed 7 or 17 (OCTAL), if they are being used in

a constant instruction their octal value

should not exceed 377.

The following Operands are acceptable:

CBN 5 * CLEAR BIT 5 OF ACC
STA 16 * STORE ACC IN REGISTER 16)
AA OCT 167 *
BB DEC 250
CC BCD 89

However the following Operands will cause error messages.

SBN 20 SET BIT 20 OF ACC
(Accumulator has only 8 bits.)
SFS 14 SKIP IF FLAG 14 IS SET
(There are only 8 flags.)
DD OCT 19 (Unacceptable octal numbers.)

EE DEC 340 (Exceed 377 octal.)
EE BCD 140 (Exceed 377 octal.)

Type 2 - SYMBOLIC ADDRESS OR SYMBOLIC VALUE:
This type of Operand is used in jump and)

jump to subroutine instructions or in a
type two opcode instruction.

= 1

Example:

JMP LOOP
JSB ADDING
JBN BIT4
LDA RIZ
STA R6

JAI INDI

This type of Operand follows the same Syntax rules
as the label, that is; it must begin with an alpha-
betical character and must be less than or equal to
6 characters long. These Operands must be defined
somewhere in the program as an address or a constant.

Type 3 - SYMBOLIC OR NUMERICAL VALUE

This type of Operand is a mixture of type
1 and type 2 Operands, and it is used in
type 3 instructions.

For example:

STR R4,FORTY
STR 4,FORTY
STR R4,40
STR 4,40

-13-

As the above example indicate, this type of Operand
consists of two separate fields. Either one of thesc
fields are separated from each other by a ",", and
there should be no hlank space anywhere in the Operand
Field. The symbolic portion of Operand follows the

same rules as typce one of the Operands.
COMMENTS

The comment field allose the user to transcribe
comments on the list output produced by the assembler.
The comments field must begin with an asterisk.

This field could start at the beginning of a line
such as:

* THIS IS ONLY A COMMENT /
or after a type one Opcode
AGAIN CLE * CLEAR EXTEND REGISTER /
Comments are ignored during pass one.

If an * occurs at the beginning of a line, the
entire line is assumed to be a -comment.

PSEUDO OPCODES:
ORG:

EOF:

END:

OCT:

DEC:

+1d=

ORG is a Pseudo Opcode that provides
absolute program origin or cstarting
address of a segment of a program.

The operand of the ORG must be an

octal number. If no ORG is encount-
ered the assembler assumes the starting
address to be zero.

An EOF statement notifies the assembler
that the physical end of file has reach-
ed which causes the assembler to load
the next source file.

Terminates the source language program.

Note that ORG, EOF, and END are not
executable statements; therefore

any jump or jump subroutine to these
instructions would cause an error.

OCT is a defining opcode that equates
the numerical value of the operand to
the label. Obviously the operand needs
to be an octal number.

DEC Pseudo Opcode is another defining
statement that converts the numerical value
of the operand to octal and equates the
converted number to the label.

BCD:

-15-

BCD is a pseudo opcode that converts
the numerical value of the operand from
BCD to octal equivalent. Each digit of
the operand is taken as a 4 bit BCD
number.

For example in the following statement:
TAG BCD 38

The assembler separates the number

38 to 3 and 8 as 0011 1000.

This number is then converted to octal
00 111 000 (P7p). Note that the operand
cannot exceed two digits.

-16-

SECTION 11

A BRIEF DESCRIPTION OF THE ASSEMBLER PROGRAM

THE PROGRAM:

AND A FLOW CHART FOR BOTH PASSES

NANO PROCESSOR ASSEMBLER program is written

in the 9830 BASIC language. The source files

are stored in an integer array and converted

to string variable by the use of "TRANSFER"
statement for assembling. The program consists
of two passes, in pass one the assembler searches
for labels and checks the syntax of opcodes.
Labels or the addresses associated with

them are stored in an array called "USER DEFINED
TABLE". At the end of the pass one, this file

is sorted in alphabetical order. This arrange-
ment makes it possible to perform a logarithmic
search for the labels rathsr than a linear search.

In pass 2 the assembler converts all of the
statements to their equivalent binary codes,
and stores the converted codes in an array
called "OBJECT FILE". At the end of the
assembling, the "OBJECT FILE" will be stored
on a cassette tape.

The following pages include a simplified
flowchart of both passes.

® -17-

(SrarT)

‘ loap Permawsor
A ‘:Y"Bfl- /A Hee

t

Aues 77pmy 4 8Bouy
b ds

AL Crm iy orplices

o L

yeg /
P‘f} — Lagr Fiu
Ir

o

A

Loso 4
v SovRes Firg

[
|

Cowsiveg A

A

Sovrce ¢,up

S 4

Conmer 13
Liwg

e) F"’D THE
OFCo Dg

LAser No

PRSQrny

Y

STors AOpRsS¢ oR 7.
VeLAE of 7HF L#gsL A
° In Toe ecr Derimsp 78

Y

FLow CHARr or p#se T

H¥Aro PRoCE $soR ASSeme L eg

) : f./,qm Réw r,pa oz

Sser 1974

_— S i —— — e E— — %
o __ — - — — e il = g o e

-18-

, wengeg
i

CF Sruwey
(eey

LI 77>

I L45r Y5y |S70R% Twe
FILE ChircT fug
E/ uS:__‘_r.‘"_e

Losp A
Cource ¥
)

‘F

Cowsiper
Soukce Liwg

Y

[\ s
Commsnry

" No
Y63 [/ Lhsr
\ Liae
PRImT

t Limg ?i
FI*D 7p¢ |
OplovoE l

TS 2P7p pE
ﬂf-‘ﬂwm:; Awv
OFeR gmp

Fi¥p rie
DFPeRAvP

SToRe 7T#¢ Cimany

Leok \w THE
OB JEe7 FILE

FLew CHART ofF Phss IL

>

NANDO PRO Ceccp g ASCEm B LER

Kangn Fikoo 2

Seer 1974

@

&

&

3

&<

<

. — T B T — —— e .y . ——J

"D

l
] 3

4

£
&

Hn—»-uo--—sn-r--—---—-
IO B M 1 Y OSRN EURhot BEN

s TIATHL
<

-19-

EXAMPLES

The following examples are given in an attempt to

familiarize the user with the Nono Processor ASSEMBLER.
EXAMPLE 1

The following program will add the contents of Register 5
and Register 6 and store the result on Register 6.

Source program was generated by the '"'NANO PROCESSOR EDITOR",

and stored on file 2 of a cassette tape.

€ HAND PROCESSOR ASSEMELER -

+

B

T

4, 4

EXPMFLE 1OHE

HE R

Al

THE CONWTEWTS OF REG. S5
THE COHTEHTS OF FEG. &

AHD STORE THE EEZULT IN EEG:E;

ratakLES

L.Lidf
LED
“HH
IMP
I TIH
1HI
STH
AMF
[HD:

b N

LDAR ES *LOAD ACC FREOM RS-
*DECREMENT IH DECIMAL-~
*SKIP IF RACC #8-

JuUT: STR RS-~

Re #L0OAD ACC FEOM Eg-
*INCEEMEHT IH DECIMAL~

R& *STORE ACC AT EE ~
LOOP:OUT LDA Re~

STR REe *FEc HAS THE RESULT-

T 5 #RS 15 OCTHL S5-

Re OCT &8 EHD-

EQF -

LIHE HUMBER= 1+

FRGE

EEXFT T EXXT L L FELT XL T LEX AT TR E XL EFFIEL TR F AR L T L ELF AL FLEFF L 1 L E A+ T o I4F

-20-

Load the assembler into the 9830 and press RUN, FXECUTE.
After the Permanent Symbol Table is loaded into the Calculator,

Calculator will display;

FRINT SYMEOL [RELE °
Y
FEINT THE FROGRAM

;

—_—

STORE THE GuJECT FILE OMFILE HO.

cUHMARY SOURCE FILES 7
1
FILE RO. 7

2

At this point sorce program stored on file 2 is loaded and the
following pages are printed on the printer.

3§

-21- PAGE 1

- e - - — - ——— 4 S e ——— e ——— eSS mm s s eSS

®) *37VMBUL THRELE+)
7 = MEBEOL HUODTEE=S “YRLUE?S

LDOF K
auT 13
RS o

P

o

HUMEER OF cRREORS FOR PASS 1= 4

i | - 3¢

SNt (.~

ol e B IRl R I M e I, QR
S R T R N R ST S ST O P

-
-

[G S Y
| e

—_—— e b e ;
O O R A

o’

HUMEE*®

HHHG FROCESSOERE Az EMELER

EVAMPLE OHE

Al 1AF COHTEHWHTE OF EEL, &
TC 'HE COWTEMTS OF KEG. =

AHD STOFE THC RESULT

5] 145 | TP
1 K
il 1y
3 2EA
4 Bl
5 165
£ 145
T IS

3 T :-- =
Ll o I

R TR o B o
LR a

-
N
=
et
e
0y D

JF ERPEORES FOR PRSS 2

IH FEG. &

LIA
DED
SHHN
AplF

STAH
L.IA
IHD

AMF

LA
IHD
=TH
oCT
acT
EHD

= 4

~22.

ouT
RS

R

RE
LOoF

e
T

TN =&
g

FAGE 2

= AL HLC FROM RS
*DECFEMEST 1H DEC i MAL
=50 I 1F ACE#6

£LORU ACC FROM Re

*INCFEMENT TH DECIMHL

*STUFE ACC AT kK&

*Fe HHS THE RESULT
5 IE BETRL. 5

L

- 23_

EXAMPLE II

The following program examines 2 Direct Control
lines (DCP -DCI) and based on their conditions displays
a different message on an external display.

The editor listing and the assembler listings
are provided in the following pages.

b\

R R R RS R R R RS

3

1
[}

a0
RN R s J B A R

et e b

TS S
P o—

TN 0 G X R
O =) Ty L e G P

i I
[SR ¢ B0 WU S R e Y]

nn r_n:\ﬂ{ n

-24-

LIGFLAY FEOUTLHE 2«3+ -
OF O R1s8 ALLEHF FEGLISIER 1
Frof TR R« s LEHk ko
b= FLAGHE ==ELF [F Doy 1= ET
M DISFA <DISFLHY MESSHGE A
i FLAGY #3kIP IF DOl IS SETH
M nISPE «DI=FLAY MESZAGE B~
"H1 =EHARELE THEF IHTEREURT.

ARF FEHD <EOTH FLAGS REE CLERES

nesFH ZTR REE 48 *EEGA=487
LUR E1 O #LOAD ACC FEOM FOINTER.-
SLT #5EIR IF RCC < 48s
ATR 18 =CLERFE THE FOMTERE-
tHI ¢ JMP RERD
IaPE STR EB.40

E

FEGHA=48

LTA F1 %LOAD ACC FROM FOIMTER.

SGE =SEIF IF RCC:=44-

TR Elsdld sFOINTER=48-

EHIs IMP RERD-

PG 37T *#IHTERRUFT ROUTIHE-
A RZ #STORE THE ACC DURING.
= THE IHTEEEUFT PERIOD: *~

t.UA F1 #*LOAD ACC FEOM FOINTER-

. 4UTA DEa =0UTFUT RCC TO ADDRESE-
+ LATCH (DEYICE SELECT @ii#ix-

AT 2 +=JUMF IMDIRECT TO LOC,

* @18y AWD 2 BITS OF ACCS

EL OTE DSZ+48 *=0OUTFUT ELAME
AMF DISP~

H OTE DS2.181 *=0UTFUT *A* CODE .
JMP DISP-

D OTR DS2s.1684 = OUTPUT *D* CODE-

IMP DISP-

E OTR DS2s185 #0OUTFUT 'E* CODE~
AMF DISP-

I OTE DS2+111 =0UTPUT *I* CODE-
JMF DISP.-

EOTRE DS2+112 =0UTFUT E

AMP DISP.-

OTE 2s114 *=0UTPUT

TR 2s+1ie =0UTPUT

OTRE 2«117 #=0QUTPUT

OTE E:IEE #*0QUTFUT R
OTRE 2:123 #0UTPUT 5:

Mmoo T

ISP OTR DS1.46 «0UTRUT EDDE ¥
* FOE BELAHME TO DEWICE 1:#~
OTR D53 #3THRT THE DISFLAY S
ITHE~
iHE *DOUFLE THCREMEMT THE
+ FOIHTER: #: %~
=TA 12 LIIH 2 *EELOAD THE HLL.
+ BY ITS YALUE EREFORE THE -
* INTEERUFT QOCCURED: *:%.-
MIDD ENI *EMABLE THE IHTERFUFT.

L: JMF DISF-
H: IMF DISP.-
a: JMF DISP-
OTRE 2y 128 *0UTFUT P: IMF DISP-
R: JMF DISF-
3t JMFP DISP-
v OTR ,.1 1 #=0UTPUT Y: JMP DISF-

FHGE

R o s n s Rl S s R o e T e ol o e g e e e o o O S TR R R

1

R ey . Sm—

il T ———

@

)

38
FRGE Z

LS LA FARR LT AL FLLFE TR AL LA EFIEXFETEFET XXX EART (VAL E T F 02802 %Y

) 57 “EEFORE RETURM:#:%.
S FI1T +RETURM FROM IHTERRUFT-
Sa FLSETH STF R1+8 *FESET POINTEFR.-
A AP MIDD-
=1 FESETE STE F1:48 =EFSET POIHNTER~
oz AMFP MIDD~
63 (RG 1980 *DISPLAY:*:+ &
e DISFLAY 15 0E:*:x-~
55 iMF BL #DISPLAY ELHHE.-
o E Tt #DISPLAY D~
&7 JHF I *DISPLAY 17
& AP = #*DISFLAY S~
3 JMP P2 JMP L: JMF R: IMP %~
7 JMFP EBL: JMP I: JMP S: JWMF BL-~

71 AMP 0 JMP K: JMP RESETR~

72 ORG 1948 *DISPLAY:*:=-

| <« ERROR IH DISPLAY:#®:%~

e JMF E: JMP R: JUMF R~

75 JUP 0: JMP R: .MF BL: JMP I~
7 JHP H: JMP BL: JMF D: JMP I~
Fd MF S5: JMF P: JMP L: JMP R~
79 AMP %: JMF RESETEB~

7 Fa3 OCT @A:R1 OCT 1:RZ2 OCT 2~
oS ns@ oCcT 8:DS1 OCT 1~

21 32 0OCT 2:DS3 OCT 3~

g2 FLAGA OCT @:FLAG1 OCT 1: EHD~
a3 EOF -

\

FOTHL LTHE HWUMEER= 33

‘o

-26-
FHISE

) v OMBOL Trbl E#

< HEOL HEDEE= -~ «“AHLLE »

r
o i
=
|
(U
|

H15SPH
il=FE
EL

H

0

E

I

k

% 433
M BT
I 443
F 447
o 453

Pt Tody = == 300 0T 1T, N

=] D = 0 =g Gl

S N S R A (V— C0

nisp 467
M10D : 476
FCSETH S48
RESETE oa4
[SA])

=51 1
056

=

)

o
o o R R S A]

WMEER OF CREORS FOR PASS 1= @

s

DIZFLAY

i .. oy

ikl

1:1

s

+ @i,

Wi
484
ARG
Jﬁa
Jay
44
il
41:=
4:i3
414

415

M
it

LHT

I |
FE
120
IRIG IS
TS
SR
e B
RN |
b
HEh

.....

]

1
()

,.
-
-
-

—
[12y =4 (5

I

141
iZi

L b
——

HHD &

SR
nd4n
sl
aey
61% P
141
chl
057
B2
184
201

FOUTIHE

FEAD

EIT= OF
Bl

JHTERELUFT FERIOD

CUEVICE SELECT @2

HICIZ

STR
R

5FS
P

=SFs
AMF

EMI
AMF

=
LIH
SLT
STR
ENI
AMP
STR

LDA
=GE
STR

EMI
JHF

OFG

STH

LDA
OTA

10
FEE, 3

FLALO
DISFA

FLAG1
DISPE

FEARD
FEs 4@
F1

Fls38

A
m
=) b i
=

A
Fed =)

nsa

2

DSZ. 4@
DISF
D52 101
DISP
052, 184
DISF

+CLEHE LFGISTER |
«CLEHF Fu

<SE 1P IF Dnoe 15 ZET
*DIE AY MESSAGE F

SK1IFP LF DCi 15 SEN
*DISFLHY MESSAGE E

<EHHELE THE [NTERFLFT
*B0OTH FLAGY ARE CLERE

*REGA=40
#LOAD HCC FROM FOINTFE

+SKEIF IF RACC < 4A
+CLEAR THE FOMTER

* REGCA=4a
*LOAD ACT FROM FOIHTEE

*SKIF IF ACC:=4n
=FULHTER=941

#*INTEEFUFT ROUTIHE
=STOFE THE HACC DIREIHG

#LOAD ACC FRUM POTHTER
#0UTPUT ACC TGO ADDFESS

#=IUMF IHDIRECT TO LOC.
#*0OUTPUT EBLANE
CODE

UUTFIT *R*

= QUIFUT *DY CODE

¥2

i ¢ BT BT R

R o R

- - ‘"%
-t g

qua
ai
Ji

4 3%
424
425
A2s
| RO i
Fay
443
Wgl
i

sy
<11
a5
ot 5 3
ST

— iy

*
=
A R o VS o

TRRTE B U SRR o 1S A
-
!
R e X N e [

o 50 T e D B
Do I ol S
S R I o Y RS I SR IR ISR w LI SRl (i)

t Faow

534 -y
Pt Ziy 0y o e T 0T L2

B GO e
=
e

&
Il
— Tl =

= e
iy o
- =

Sl
b

. FRF BLANE

474

475

L

QBQ
Han

161
e

H

nIsF
Tee DNEYICE 1

BYv 11, YHLUE BEFORE THE
LTHTERFUFT DCCURED

Uik
MF
TR

IMP
uUTR
AMP
OTR
AMF
OTR
IMP
OTE
JMF
OTE
JHF
OTE
P
0Tk
AMF
OTRE
AMP
aTR

OTA
THE
[HE

-28-

FHGE

DSty 185
nl=F
b= 111
DI%P

S 131
nIsp
05148

nsa

Tult b=

=OUTHOT B CnlbE

*0UTFLT *T* (UQDE

SOUTHEULT F

=0OUTEUT L

*0UTPUT H

#IUTFUT 0

*QUTFUT F

*DUTFUT R

*AUTFUT =

*QUTFUT ¥

*QUTPUT CODE

#3THRT THE DISFI.AY
*DOUPLE THCREMENT THE

*FELOAD THE RACC

€3

-
—
Zal

T T o= = T

(A 5

Ty AT T S Ty

RN el . i

Tyl T Tyl
=d A i

s BLT T)

e

LR RO

.r
Wkt S e el 0

1

4

T T ()

(R B A RO R e e o B e B o e

A

- N -
[

S

my e

™) TRy

Ji=mf mvlimag =l

., u;

=J
I

FTE

o
857y

BEFGIE FETURH

FE Y TP B

Erlne

- o4 904

+

B
1841

R

ISR AY

r
T,
[t

r b !
P S Y

-—,_.-
BRIt SN R B oC vl
[At B A o

et

—_
St

& Op

.,,.
e |

I,

A N e S
=

T
J.d.l I-t
TR R

o

T I
(S

1%
]

D
A

o
s
o0 . (0
o |

1,

50 T

N oy RS

¥

.,_
=

o B T ot R O ot WA

P e AP o B Y

oV RN
1=
e

L DISFLRY

'l
uLy

M1DLD EHI

FTI
REZEIH =TF FKl.@

AMF - MIDD
FESETE STRE FE1.46
JHFP - M1DD
OFEG 186868

AMP o EL
JMFE D
JHF 1
NP

JMF

- m

JMF
AMF

b

JHEY
JHPEL
JHP T
14 |
JMF EL
AMP 0
JMP K

AP RESETA

ORG 1848

JMPE

*EMAELE THE IHIERELFT

SRETURN TROM TH1ERRLFT
*PESET POINTER

+*RESET FOIHTEF

+OISFLHY

*DIZFLAY ELAME

*DISFLAY D

+DISFLAY 1
#DISPLAY

(e

*DISFLAY

¢¥

—— o ——————— e —— —— ———— e — T — 4 —— . T ———— — " —— —— T — — . . T

J =
. N
Rl ek
=
£ L.
R O
T
on s
L) -

h—
%
b« |

4 1844 ol MNP E
4 LAY HS:

o IS SH1 MF 0
Vo i3y 43
= JASH ~al IMF E
l 1851 HS3
5 iase ~a1 JMP BL
i 1853 Mz
VS 1854 280 IMP 1
7S 1855 | 023
O 1o 281 JMP N
R 1857 a37
V6 iuan 2al JiMP BL
il =) LEG] BE3
Ve 1aR- a1 AMP I
7o 18R a1z

7’6 154 cel JMP 1
7k 1865 |23
=l 1HER 2@l . AMF

167 H497

1878 281 AMP
1871 "4 7
1872 SE1 AMP

> - o W

l ‘. -‘J —- -'1-‘
IR E SN R

1875 0323

iara 281 JMP
1875 @Ay

187 281 JME Y
1877 (EToNE

1181 281 IMFP RESETE
111 184

5} ocT
F1 acT
Rz ocT
nsa acT
nsl ncT

-l jagele, o

o -

For o = v 20 0 0 0L 00 00 00 00

S0 @) = D

E D5: OcT
= D53 acT
2 FLAGE OCT
) FLAGL 0OCT

HUMBER OF ERRORS FLR PASS 2= @

... -

EXAMPLE III

The following example will demonstrate the
"PATCH ASSEMBLING" feature of the NANO PROCESSOR

®
ASSEMBLER and LOADER.
Suppose it is desirable to change the message B
® of the example 2
""ERROR IN DISPLAY"
o TO:
"ERROR IN DEVICE"
@ A short program such as the one following could
:) accomplish the desired change.
é‘.’
-
&
&

=3 3=
PAGE 1

érw+%ﬁ»;;;;++1*@»¥++¥-¢¥¥§e£414f%}*****%i*i**%**i***@%fﬂéi**1++w}fz*i***

‘) i T e PRTV N PEGkERM FOR DISPLAY.
=2 vl Sin
NTR el SOUTPLT 143 To 2
SMP 4 o MIMP T DISF
Y OTR 2sl2e 20UTPUT 127 TO 2~
IMF 4" % MUMP TO DISF-
HkG 1868
IMF 483 % WUMF 10 BL~
P 41% +=3UMP TO D
AHF 41T = JUpIE TO E-
IME W
AMP 422 « JiMF TO I~
AMP
IMP 417 *JUMFP T E-
P S8d = JUMP TO RESETE-
EHD: EUF.

A Lo Ph—E L o=y nyge

el el = ey

Pidl L LPHE HUMBER= 18

—— e ———aa —— — ——— . S i . S S
L T T p—————— e s ——————————— T — " — —— e 7. o e o o e e o

HLMEETR

|:||" .

5.0
*3YMBOL THBLE=
SYMBOL ADDRESS CYALUE »

7 5148
W 514

cirRnRS FORE PRS: 1= @

¥q

> arG Sta

) S 1n 102 4 OTR 2. 183 OUTEUT 103 T =
511 5 I
=12 W1 81 S T = NIMFE T L) sp
: e Ol
Sia 212 W S 108 *QUTFUT 127 Tn 2
Wi 126
5 1 ;El MNP 487 > IME T DIsF
1 ";1'”‘

CREG 1de
T B AMEP G * HIFIF T BL
I o MY
e TN Sy AMP 41 s s MIMF T D
i [I5 Dot] T
THEE | Sl P 417 =JIUMF To E
18BE5 (50
LENE Zad B L | S
10e7 11«
1871 i AMP 423 #UMP TO 1
187 5 e
167 W AMF
3

-

[T S S
b s T

NRLA

L3 P P .

i e Zal JMF
14 187% 317

15 T 261 - AMF 584 * JUMF TO RESETB
15 LATT 104

)

HUMBEERE OF EXFORS FUF FPASS 2= @

17 *=IUME TO E

EHD

ASSEMBLY LANGUAGE INSTRUCTIONS

ACCUMULATOR INSTRUCTIONS:

Skip on Bit N=1

Skip on Bit N=§

Set Bit N

Clear Bit N

Increment ACC (Binary)
Increment ACC (Decimal)
Decrement ACC (Binary)
Decrement ACC (Decimal)

Clear ACC
Complement ACC

Left Shift ACC
Right Shift ACC
Load ACC with ROM DATA *

Skip on E=1
Skip on E=§
Set E

Clear E

3%

SBS
SBZ
SBN
CBN
INB
IND
DEB
DED

CLA
CMA

LSA
RSA
LDR

SES
SEZ
STE
CLE

REGISTER AND 1/0 INSTRUCTIONS:

Load ACC From Register R

Load ACC Indexed

Store ACC At Register R

Store ACC Indexed

Input To ACC From DS

Output ACC To DS

Store ROM DATA At Register R*

Output ROM DATA To DS*

LDA
LDI
STA
STI
INA
OTA
STR

OTR

zZ T Z 2

DATA

* 11 11.

pp ofp N

#9 119 N,
pp 198 N,
19 1pp N
pa ppp ppp
pp ppp p1p
pp pp9 PPl
pp ppp P11
pp ppp 199
pg ppp 191
pp pPp 119

pp ppp 111

11 gp1 111
o DATA .
pp P11 111

pp 111 111
19 119 149
14 119 191

p1 19,
11 18,
g1 11,

p1 pp DS
g1 p1, DS,
11 01 R
DATA)
11 pp DS
. DATA

yO

-36-

Set Control K STC K pp 147 | K,
Clear Control K GLE « 19 141 . K,
Skip On Flag J=1 SFS J pe p11 . J .
Skip On Flag J=§ SFz J o8 111
COMPARATOR INSTRUCTIONS:
Skip On ACC >RO SGT pp pp1 poPg
Skip On ACC <RO SLT pp pp1 ppl
Skip on ACC = RO SEQ pp pp1 P1p
Skip On ACC 3RO ~ SGE pp p91 191
Skip On ACC <RO SLE pp pA1 199
Skip On ACC #RO SNE pg pp1 119
Skip On ACC = 0 SAZ pp pp1 P11
Skip On ACC # 0 SAN gp pP1 111
PROGRAM CONTROL INSTRUCTIONS:
Jump To Address JMP ADDRESS 19 pgp PN
__OFFSET
Jump Indirect To Address JAI U 1 19, U
Jump Sub T Address * JSB ADDRESS 19 pp1 PN'
_OFFSET
Jump Indirect Sub To Address JAS U 1p 11, U ,
Return From Subroutine RTS 19 111 ppP
Return From Interrupt and RTE 19 119 pp1
Enable Interrrupt
Return From Interrupt RTI 19 419 ppp
No Operation NOP g1 p11 111
Di,sable The Interrupt DSI 19 191 111
Enable The Interrupt ENI g 191 111

* Double Byte Instructions

* PN = Page no. .
Kamran Firooz
October 21., 1974

NANO PROCESSOR LOADER

Nano Processor loader is a program that loads the object files
produced by the Nano Processor Assembler and stored on cassette
tapes into the ROM-RAM Simulator. At the beginning of the execu-
tion the calculator questions the file number where the object
file is stored. Then it askes;

"PATCH LOADING?"

If the reply is negative all of the unused locations of the ob-
ject file will be loaded by the code for instruction NOP (137).
If patch loading was requested; only the assembled codes will be
loaded.

Kamran Firooz
Sept. 1974

Example:

Consider the program given on the following page. In
order to load the object file of this program into ROM-RAM
Simulator, load the Loader program into the calculator and
RUN EXECUTE.

"FILE NO.?"
6
"PATCH LOADING"
N

Since the answer to the latter question was negative locations
@ to 57, and 52f to 1§57 and 11fp to 1777 will be filled by
the code for NOP. (137 ocT.)

However, if the reply was "Y' the only locations effected in
the ROM-RAM would be 51f to 517 and 1§6f to 1§77. Rest of the
memory would remain unchanged.

This feature of the loader can be used to combine (PATCH) object
files of different source programs.

I g
—— T

T

T T T e e L S W S
N (S S 22

)

IMEER

R
LI B

302
103
201

067
302
126
201

O&T

70|
(1% I
@ Ifll
Fi1 s
2]
E11
201
V14
24
204
{1
155
N
201
104

[T

FHES

ootk FaR DTSLAY

(N
lE

T | S
0Tk 24126
InF

LR
MP

JMP

AMF

JHF

JMF
AP C
AMP
JHP

EHD

b

*OUTPUN s To 2
<A e DL LR
«0OUTPUT 127 0

+ AUMF T DlsSF

= JUMF T EL
+ AUME o I
. JJUpME TO E
* AMF T I

IUMF TO E
< JUMP TO RESETE

1r<§9;§§§§k’)
5 R

THE FOLLOWING IS A DOCUMENTATION OF THE
NANO PROCESSOR ASSEMBLER anp LOADER WRITTEN
For H.P. 2100 CoMPUTERS, TwWO PROGRAMS FOR
TRANSFERRING SOURCE PROGRAMS FroM 9830 TO
2100, AND TRANSFERRING OBJECT FILES FROM
2100 To 9830 are ALSO INCLUDED.

PLEASE BEAR IN MIND THAT NANO PROCESSOR
MATERIALS ARE H.P. PRIVATE.

FOR FURTHER INFORMATION, RECOMMENDATIONS
OR IN CASE OF DIFFICULTY PLEASE CONTACT
KAMRAN FIROOZ AT

303-667-5000 Ext. 2873

DecemBer/1974

i, i G SV RS Y S | e

o p——

. —— [—— W P} %

o o i e R

NANO PROCESSOR ASSEMBLER

PURPOSE: To assemble a source program for the

Nano Processor using an HP 2100 Computer

MEMORY REQUIREMENTS: 16K

SYSTEM REQUIREMENT: DOS III

Kamran Firooz

December, 1974

r

DESCRIPTION: The Nano Processor Assembler is an absu-
lute assembler designed to assemble source
programs stored on a disk and to generate equiv-
alent object code files. A loader program can
then be used to load these binary files into a
ROM-RAM Simulator, or a PROM. The assembling
is performed in two passes. Pass one searches
for user defined symbols, and pass two trans-
lates the mnemonic source program statements to

their equivalent binary codes.

These binary codes are stored in an array called

the object file. At the end of pass 2 the object
file is stored on the disk. The file name where

this array will be stored is requested at the

beginning of the program.

: ASSEMBLER OPTIONS: The fullowing questions arc asked at the
beginning of exccution:
"LISTING?"
If the response to this option is "YIS" the Logical
Unit where the listing must be done is requested; other-
¢
wise, listing of both passes will be suppressed.
this casc all of the assembly and error messages
will be listed on Logical Unit 1 (CRT).
Next question is:

"OBJECT

FILE NAME?"
Object file must be a binary file of at least 8
sectors. These files can be created prior to the
execution of the assembler ty using the following
command:

:ST,B,name, 8
If the number of sectors in the file is less than
8, the computer will display:

"FILE name IS TOO SMALL"

"OBJECT FILE'S NAME?"

Note that the type of file is not searched by the

assembler, any type of file other than Binary File

will result in an error at the time of storing the

object codes into the object file (at the end of
Pass 11).

The following questions are asked next:

e ram—— . v PN W ' W vy

"HOW MANY SOURCE FILES?"

"ENTLER SOURCE FILE'S NAME?"
Up to five source files can be given. The assembler
will assemble the source files in the order that
file names are entered. Only one file name should
be given at a time. If more files are needed the
computer will display:

"ENTER SOURCE FILF'S NAME?"
If any of the Source Files are not found on the
disk, the computer will display:

"FILE name NOT FOUND"

"ENTER SOURCE FILE'S NAME?"
After all of the Source Files are entered, the assem-

bler starts to assemble the given Source Files.

OBJECT FILE: Object file is an array that holds the binary

codes of the asscmbled source program. At the end
of pass 2 this file is stored in a binary file of the
disk. A loader program can then be used to load the

object file to a ROM-RAM Simulator, or a ROM.

Object file is a 1024 X 1 array. Each location of
this file will hold tlie object code for that loca-
tion. For example; location 16 will hold the code
that must be stored on location 15 of the ROM.
(Due to the fact that the array starts from 1 and
not #, all loc=tions are decremented by one by the

"LOADER") .

Since object file has only 1024 locations, caution
must be taken not to cxceed location 1777 octal.
For example; the code that must be storcd un loca-
tion 2150 octal will be stored on location 150
octal. (11'th bit is truncated); howevef the address
would appear as 2150 in the asscmbler listing.

At the beginning of the assembling all of the loca-
tions of the object file are initialized to Lﬂ?"’\
(ecOhe—or_NIR) . During the assembllng'f;; is over
written by other codes; however, the locations not
used will remain as ki}n This feature is used by

the loader for "PATCH ASSEMBLING". For further
information refer to "NANO PROCESSOR LOADER".

P A e v

AT — p— —— e —— = ay ¥

g ——— oy —

(]

PROGRAM SOURCE FILES: As the name implies, program source
files are files stored on the disk that centain the
source programs. These files can be generated or
edited using standard HP 2100 editor or any other

available editors (CRTED for example).

Up to five files can be asscmbled at one time. If
more than one file is used, an EOF statement must

designate the termination of each file.

USER DEFINED TABLE: User defined table is an array that
holds the numerical value or the address of the
labels. During pass 1 all the labels are stored in
this array. In pass 2, everytime an alphabetical
operand is found, the assembler performs a linear
search into the user defined table to find the value

or the address of the operand.

Maximum length of the user defined table is 256 labels.
Exceeding this 1limit would cause the assembler to

print error messages, and any label encountered will

be ignored.

During thc second pass, if any of the ignored labels
are referenced, the assembler will print "Undefined

Label" error message.

*

GENERAL FORMAT: Each line of the program consists of one

LABEL:

or more separate fieclds. These fields arc: Label,

Opcode, Operand, and Comments. For the convenience

of the user these ficlds are separated by one or
more blank spaces. The following is a brief descrip-

tion of each one of these fields.

Label is a symbolic name that provides the ability
to refer to the instruction or the value generated

by the instruction. For example, in the instruction:
START LDA REG17

START is the label, and it holds the address of the
location where this instruction is stored on the
ROM.

But in the instruction:
REG17 OCT 17

REG17 is a label that holds the numerical value

assigned to it by the OCT instruction.

The first letter of a label must be alphabetical,
and the total length of the label cannot exceed

5 characters. II the first character of an in-
struction is blank the assembler assumes that
there is no label present. Repeated labzls cause

the assembler to print an error message.

OPCODE:

MACHINE

Opcodes are mnemonic operation codes stored
in the permanent symbol table that are recognized
by the assembler and translated as machine in-

structions or Pseudo-instructions.

INSTRUCTIONS: Machine instructions are those
instructions that the Nano Processor can execute
to perform a specific task. The assembler trans-
lates these instructions to their binary codes.

There are three types of machine instructions:

Type 1:
Single byte instructions that are self-

defined and do not require an operand.

J

For example:

CLA * CLEAR ACC

STE ¥ Set extend register

RTS * Return from Subroutine

ENI * Enable the intrupt

INB * Increment the ACC in Binary
SLE *# Skip if ACC € to register 0

Type 2:
Single byte instructions that require an

Operand.

For example:

SBS 5 * Skip if Bit 5 of the ACC 1s Setr
CBN BIT4 # Clear Bit4 of the ACC
INA DS5 * [nput to ACC from Device 5

Type 3:
Double byte instructions that must be

accompanied by an Operand -

For example:

OTR 2,DATA * Qutput ROM Data to Device 2
STR RS5,FOUR * Store FOUR Into Register 5
JMP GOOD * Jump to Location GOOD

JSB ADD *# Jump to Subroutine ADD

€)

-lU_

PSEUDO INSTRUCTION: Pseudo instructions perform tuo

OPERAND:

types of tasks:

Type 1:
They provide information to the assembler
about the program being assembled, such as

ORG, EOF, END

Type 2:
They allow the definition of constants,
such as OCT, DEC, BCD. Obviously, type 2
of the Pseudo Instruction must be accom-
panied by a label and an Operand, since
it is assigning the numerical value of the

Operand to the label.

Some instructions require the designation of an
Operand. This Operand could be a destination
address in a JMP instruction or the numerical value
of a Label in an assign instruction. There are
three types of Operands:

Type 1 - NUMERICAL VALUL:

This tvpe of Operand is used in a type 2
instruztion code, or in a Constant Define
Pseudo instruction.

(Type 2 Pseudo instruction)
ot SO i o " ..
Qg;fbk_ ng}fﬁfu" Eﬂjb ™\ Y)E(w-pAﬂariﬁ"”“j#v.

_11-

For example:

LDA 5 * LOAD ACC FROM REGISTER 5
SFZ 4 * SKIP IF FLAG 4 1S ZERO
REG14 OCT 14 * ASSIGN VALUE OF 14 70

* THE LABEL REG14

JMP 377 J * JUMP TO LOCATION 377
LDR 20 * LOAD ACC FROM ROM DATA 20
This type of Operand has to be numerical. 1f they

are being used in a type 2 instruction they cannot
exceed 7 or 17 (OCTAL); if they are being used in
a define constant instruction their octal value
should not exceed 377.

The following Operands are acceptable:

CBN 5 * CLEAR BIT 5 OF ACC
STA 16 * STORE ACC IN REGISTER 16
AA OCT 167 * OCTAL 167

BR DEC 250 * QOCTAL 372

cC BCD 89 * QOCTAL 231

However the following Operands will cause error

messages:

SBN 20 SET BIT 20 OF ACC

(Accumulator has only 8 bits.)

(

-1 2_
SFS 14 SKIP IF FLAG 14 !s SET P
(There are only § flags.)
DD OCT 19 (Unacceptable octal numbers.)
LE DEC 340 (Exceed 377 octal.) S
T BCD 140 (Exceed 377 octal.)
Type 2. SYMBOLIC ADDRESS OR SYMBOLIC VALUE: ¢

This type of Opcerand is used in jump to

subroutine instructions or in a type 2

opcode instruction. P
For example:
JMP LOOP P
JSB ADDNG
JBN BIT4
LDA RIZ &
STA R6
JATI INDI
@
This type of Op2rand follows the same Syntax
rules as the Label; that is, it must begin with
an alphabetical character and must be less than 2
or equal to 5 characters long. These Operands
must be defined somewhere in the program as
addresses or constants. o

Type 3 - SYMBOLIC OR NUMERICAL VALUE:

This type of Operand is a mixture of type
1 and type 2 Operands, and it is used 1in

type 3 instructions.

For example:

STR R4, FORTY
STR 4,FORTY
STR R4,48

STR 4,48

As the above examples indicate, this type of
Operand consists of two separate fields. These
fields are separated from each other by a ",",

and there should be no blank space anywhere in the

Operand Field. The symbolic portion of Operand

follows the same rules as type 1 of the Operands.

COMMENTS: The comment field allows the user to tran-

scribe comments on the 1list output produced by the
assembler. The comments field must begin with an
asterisk. This field could start at the beginning

of a line, such as:

<1d=

* THIS IS ONLY A COMMENT
or after the Opcode or Operand
AGAIN CLE * CLEAR EXTEND REGISTER

Comments are ignored during pass one.

If an "*" occurs at the beginning of a line, the

entire line 1is assumed to be a comment.

If a comment starts at the beginning of a line, up
to 64 characters can be used in each line. If a
comment begins after an Opcode or Operand, up to 28
characters will be printed and remainder will be

truncated.

ERROR MESSAGES: For the convenience of the user, the
assembler will print error messages if any error are
encountered. Along with the message the line

number where the error occured is printed.

PSEUDO OPCODES:

ORG:

END:

OCT:

DEC:

ORG is a Pscudo Opcode that provides
absolute program origin or starting
address ol a scgment of a program.

The operand of the ORG must be an octal

number. If no ORGC is encountered the
assembler assumes the starting address

to be zero.

An EOF statement notifies the assembler
that the physical end of file has been
reached. This causes the assembler to

load the next source file.

End terminates the source language program.

Note that ORG, EOF, and END are not

executable statements; therefore, any

reference to these instructions would

cause an cerror.

OCT is a defining opcode that equates

the numerical value of the operand to

the label. Obviously, the operand needs

to be an octal number.

DEC Pseudo Opcode is another defining

s R s, LT

— Lty e g =

()

BCD:

-16-

statement that converts thc numerical
value of the operand to octal and
equates the converted number to the

label.

BCD is a pseudo opcode that converts
the numerical value of the operand from
BCD to its octal equivalent. Each digit of
the operand is taken as a 4 bit BCD

number.
For example, in the following statement:
TAG BCD 38

The assembler separates the number 38 to

3 and 8 as @@11 14¢9.

This number is then converted to octal
gp 111 @pp (#7¢). Note that the operand

cannot exceed two digits.

- 1 "F =
P EXAMPLES

The following cxamples are given in an attempt to
familiarize the user with the NANO PROCESSOR ASSEMBLER.

o EXAMPLE 1

The following program will add the contents of Register 5
and Register 6 and store the result on Register 0.

9 ' The source program was generated by the "CRTED EDITOR"
and stored on File NPEX1 of a disk.

Lo dae Wi PHOCE il o MEL
k. EHMFLE
RIS TSR
[TERRE
515154

+
T

PHT o PROGERARN L PHE DO TERNTS OF PEGLISTER S5 TO TEHE
COMTENTS OF REGI- Lk & RMHD STORE THE RESULT IH REGISTER .

..

=
SO hi
T o
L L
.y

Do)

&

- -
-

=
oy T

4 &

]

LUGF LR ES el ufll ACE FREOM BEG
DED #DECREMEHT IM DECYIFMAL
SHH #SE1F 1TF RCE e
P O #<EHT UF DT THE »
BTH RS CSTORE THE ACC TH R

I
= ST

e
-
=

Fa 8

A
Bt edhatiedhariliod
;

T T T
DoE B B |

S
=

b I Ao
=

1.6 LDA K& L0l Hou -FROM REG. &
aLy IMD ®IHCREMENT IH DECTIHAL
o B = STH ®& «STOFE ACC AT WEGISTER s
1) JHPLTE
A 20 PEPLAT THE BECREMEMT ANG IHCEEMENT EOUTIHE
55 N 1 1 T O =
AECD IHD
BE23 IR RE ARS HAS THE SUM
) @@;4 5 | % sDEFIHE RS A o THL S
da25 P |
"\@@Eﬁ 1D
EEE Y [T

LLoad the

:PR,NPA

After the program is loaded the computer will display;

| =

NPEX1

At this point the source program stored on File NPEX1 is loaded

and the following pages are printed on the printer (Logical

IInit 6).

assembler

Pl

into the

Hpill FlLES ¢

o LLEYS

HHPE

1{'

2100 as

follow;

..-—q.- T EC

EFET

F it CSOR ASSEMBLER - HOY

1974

o et T

n

L T e
’ L

S e o

FRILE i £

Hifhirs
i+ l”“'“'i 1

LI D 0 B I 15 T = 1 |
- GEETE ETS OF REGISTER
"
i Pdfe LEOE | UH RS
vitihe vl ik
, 1 ST E S T ;wﬂi .
B 711 B 1 5 1
F PRI A
DR [t = o S 1125
Pl 136 LOR K
L3 S L

516
Ruis

LSRR L j L
15 65 I B Ciid
TS 1 RS § I
* FEFLEH

THE DECEEMEH

b iR HeEhioelts

e
1_ !.-:] -! T'—"

=2/}

VA B T

SR HREEMBLER ~- NOY

o

FEGISTER 3
fHE RESULT

FHE

ACC FROM REG, 5
SOECREMENT 1H TECTHAL
PERIPOIF RCT
< END OF ROUTINE

wl D

+ TORE THE HCL IH RS
A0HD BCC FROM FEG. &
*THCREMENT TH BECIFPEL
¢GTORE ACC

1T

W FELISTEF &.

AT FELISTER

AL THOREMEHT ROUT THE

o0 T SRS O RS

P [)J'.u Ly T T

(R

TR N il i Tir o
15820 S 71 Pk
aaYy 1 PO I T
1, |
i1 i
SRLE
FIEY OF

ERLGHS F?

— e — Y, D e e et

SRE HAS THE Siiid

+IIEF THE RS RS OCTAL S

o IR P e

EXAMPLE II

The following program examines 2 Direct Control
lines (DC§ - DC1l) and based on their conditions

displays a different message on an external display.

The editor listing and the assembler listings are
provided on the following pages.

L 4

e L EE

-

R | | e G st aet P TENY

T e et

-22-

RISTES B HEHG PEOCESSOR RSSEMRBLEFR
(R L TR foHEPLE
T 1% X
il)
AR '
e .
(STA LSO
TR IR NE blretr #0LERR REGISTER
s Rlale TR RRGG =ULERR R
RINR R FF FLAGER £0KTIF IF BB 15 SE]
| e S F L GRLAY MESSHLGE A
Mk n Bl ossk IR GF Dl 1S SR
(TSN M D1Sre =DLISR AT MESSAGE B
i] L *EMRELE THE THTEEEUPT
(e s P REAY *RE [THER FLAG 18 SET
B s [STE O REB. S8 «ST0ORE <8 IH 6
gt v LIth R aLORD ARc PROM R
1% i o LT e LT I RO (4
113] i ed S LERE THE FOIHTER

ey LAY ROUT DHE

143, | 141
51 NIRRT
@, - Lit P STE a3

! 11 S S

SGE ESKIF TF RLC > POINTER

TR Fis18 =SET [HE POINTEE FOlk B
FH

i I H
RN =

,
™5

T@ D

S N SR

.,.
AL
L
£

T 81 AR S B
[CLLANE ol T el s ERET RGLIT I HE
LA (- (5 o N e
(515 IS gl B THE COHTENHTS NF RO DU THG INTEREURT ROUT I HE
IS Y LOE &1 +L0RT ACC T RGH POIHTER
ST TR L=Ew
823 SauTrnT BCC TO pubkEssS LAETCH <LV ITCE ZELECT 83
o jidl

EL Gk DaZ«dlr «OUiedl A BLAHE
P BIsE

fOOTR BS2s 191 £DLTPUT "E"™ CODE
AME TSP

B o
T

=
s

S

1 e

OEI2 L OTE DSF 10 «0UTPUT "D COLDE

LI AW DI EE

514 E OTE LS« a5 «=0uUTrerar "B® Cobk
! I D =F

[OTF DS2s111 =0UTPUT “I" CODE
JF DISF
fo TR DS2s 114 «nuTpPUT “E" CODE
I OSP
OTE DSEx LIS =ptens "L cohk
M BIAF
BRI W TR DS2e] Lee #000TEUT "HT DULE
LT T TN A
da%51 0 OTE 24117 «0UTFUT "0 CODE
[R1Y i WF nlskE
BES2 P ool sel2a s0UTRUT P CODE
4 F 1 BT S 5
’\Bﬂﬁﬁ EOTE Jdiee =0UTPUT “R" CODE
BEGE 1150 S e
BEAST 5 TR TSSe |20 #QUTRIT St CDDE
BSE B 1 N T i
BESy 8 O0TkR Cs Lol +QUTPUT YT COLE
Aaea DISF OTR D51 «48 «0UTFUT A BLARK

U Ot .E- Bo LT o NG

S

_
—
T

[t
S =
T] T LR B G T e

=
=
fo

Y. R

tl‘ LT AR LU TE

I I

Q-

-r‘.r-*-—-—————-

EEIr
LG
LT
Gl e
g8va
A4
(5 M

1 s
I To
500 I
7501
(ETRENE |
B
B
@ nu

P

L

l__l ki

2

— E.— —
R B W)
= -
o

f o B)

.,_
5l

=i

I bt)

v
e

o B o B nor B I L

-
‘_A.

-
=

-~
'.-l-

e
=

L] _3
i B o B SR w

Do R Y

Fog)ffoan
b s it

L

Lo

e e

X

4

o

WD A

L0 D

CE O O e i
¥R A0 WLl Lk

e %

2% =3 0T,

§ rs; (5

.
-

LR

3

WTH L
R
L HE

*

““TH TR L R

[l .
#] VLT
Ploth 1]

-
Lot

FRET 1Y

LTH 1%

pHEE R

BposRETURIL FROH

I 1 2 O
et WLy
SETE STK
ApF plI LA
ks 1EAn
HiF L
AP H
RS
IyiE

;'.:g' =

1

Flsa =227

Y L" i .t'lr

3L RS

0 IEFLAY
B e R
I 1SPLAY

SPLAY &
-N1ESFLAY F

{1

' s DISPLAY |

qF A
R
HE
F
AHpE
WP BL
o
JHF

ftle SR T
T B L S e A
ARE E
15| A O

1]
SiE 0
AHRF R
A Bis
AR
P
AME EL
AMP D
JAF T
JHPF B
e b
L
A H
AMF
I SETE
| T I S
L OLT 1
22 Al &
G T I I
It T |
DSz T 2
AEs LT 2
FLHGD o T
ELRGY W]
CHD

It

cRLEFLAY
D LE LR

1

| Hil

L

-23-

507 1

YL BEE
HTE

PR REART

‘I

i

PO HTER

FOTHYER

(S i

"t THE

i
I IS

PHEREREEM T THE #RIHTEDR

B

THTERFHIFI

MCCURET

i e’

-

e T

- vempe gy

LR

T w—— O Y

—— NIy v s

,— e —

Pt

-t\

| HE

[
e
[15
{51 FiG
LG

BRI

TS
Lt ¥
(% L3

Ljadit t
F T
et
Fhef Lo
ke

b
k2
e 2
g =
M
453
a5 7
Hd e
BB Rt
74
147
A5 :
st
S HIE
SR

EISTNTE

: I
HEE L

) S P R

FOR PRSS

HAHO FoOfEsuR ASSEMELER -- HOY 1974

.. . . > 0

&

—— ————— "“m—t .!-:ru"'ul'o

¢

.
FRGE & NPE«E FENHC sl ROSEMELER -~ HOY 1974

%] & it pirOcE St peaSErBLER

v 2 % L

5 ' DT<PLiy RO i HE

® & 3G U SRS 2 «CLEAR REGISTER 1
= RISESS] e
OREEE 32" mERD STk ME =CLERE [
& ik LIt
T 1 L6 5 O R ZF5 FLALA #5KIP LF Doy 15 SET
[LA 1S S 15 1 S 1 G4 B *N1SPLAY WeE=SACE H
G0 T T
aaGEs ast OFY FLAGE #SEKIP IF BE1 IS SET
hiskE *DIESPLAY NESSRAGE B

—

¢

M4k

5,
A
s 5

03 L
ot B A

I |
—
- Faf
. =
-

W
e

L}

w5 LRCR| YEHAEBLLE THE THTERRELFT
2R iMF FEAD +MEITHER FLAG IS SET

A
o T =
1 5

i Mo =t
T T T
e B ROCHR s B AOL R

HER ONISFEH STR (e du

iy
%}

-4 Ty
s
10
. 3
% Ja
o

ey

Dot B o o
T T

I MR L G
: P 0 Ol
i
it

ig1 DA F1 “L0ORD ACC FROM F1
i #SRIP IF ACE <48

=B STR 148 #CLEME THE FOILHTER

FibE

e EHI

SED 0 e

15 b

i

—t P
Pt
=

Lt

=
i AT
ot IR
AU R

gt Qo Fadt P 0 P T T

RS

DISFE =STR FO.48

W
AT
=

-
acCl

RS

141 LOH F1
nls ShE *SEIFP IF RCC > POIMTER
EhE | STRORT 40

Lt

asy EHIT

B 15! JRF READ

EE

L e

o B O e
bRt

W
2

o 1

-
A
ik

oS
-

P

W I <

-.-.._
! I._‘| i
=
!

s T I RS 5

{3l o 5

!

[}
La’y £,

=
2

L T T O I S I S T I A B T A e i S S S e

TR PR SRR EN
o B T S R0 ¢ L G o S S b R
o
—
1 e

opG 397 “«IHTERELUFT =OUTIHE
377 162 ST REE
w2 HOLDES THE COMTEMHTE OF ACC DURING IHTERREUFT FOUTTHE

A 14 [(1 I B +LOAD ACT FROM FOTHTER
(55 15 N SRy ara hisa

«OUTRUT HOD T ADDRESS (HTCH <DEYICE SELECT @3

) 2 PSR JRL 2

ST e T

G407 3:e &L OTE ISz a4

5 15 S ISR

BdEs i AP DISF

(515 RE TR R R

SE T HwE: A OTE Dozs 16l #OUTFUT "A™ COUE
[EESNE] ER]

B4l el JMP DTSR

LIS B [

#3415 =D DT Sz 104 *OUTFUT "It CODE
(5 20 I A WA

a415s 20| B TC TS R A

B3l beh

Lot £ L 0l

oD 0o o0 =4~ Ty men in

o e O 0t G L L

i i ey s s

B e Bt et T e ——

o

A

LR

e

Sag e

B it ar ae o |

— -

g

2

R L R ST

P,

e I e e o

£

wh) &

LR LR R

AL

i n B RO TS ¢+ 8 e

Ny
¥t

L5 R = o e
et SEa) S .

T

IR

R B R s g a i

Tl —

3
4

Y = e

-~

[i

PR T 4 2

o=

| I
prag
i-beiin

v"'-:- (R 5]
(1
i?"-;'_l_"

' [y S
B e
145

Y
REIEE
R TR
Piche
et
Hee
R
e
g 70
HET

R 1Y
|‘|‘1-I|’T'

ro L

(2
Qg
U
N
FS
HLAEn|
M e
[Bt B

REE

il
Pl
Rl
131
St
i
p PR
(RIELR!
HET S

1ETH

HFFa

DSF

Ml

ZETH

SETE

o
ot
nMA

LHE
1HEF

=11l
|3tk

R "t'li- !L I_I[._

Bl
k11
B r I"

S

RS

HAMO b ESOR faoserBLER

b RE

Fi.8
Mihn
oL

Miou

TR

FCHATRLIT

*OUTEUT

IR SR

SOTRFOT

#OUTRUT

SUHITRUT

*OUTFUT

*OLTRUT

*OUTFUT

'E‘I.I

uJ-u

“F' "

h MO
(RRE I}
10T
CUDE
AN
[DE
RS
U
COnE
CODE

COOE

#START THE DISFLAY

+NIOUELE

“UFIIRTE

IHTERFLFT

*EHRELE
+FETURH

THCRENMENT

THE

POIMIER

LT ED

THE IHTERRUFT
FREOM THTEFFUFT

*HESET FOIWTER FOF R

THE FOIHTE

il = o st P s el e rwar -l it e v L e i r il e gl R el

LA e

oot ey T 9

b A K
i

o
® lau
Kl
r{m
it
10z

163

bt

[.
e

Ll

Fhl |!'_

R ialGN

1y
MRS
s,
S R
BN Y TR
FEe
f e,
et
IESE Y
IRER
P
1 508

L'l'-:

i
U
Reletd

) ’_.II"".

U EPS
525
I-ri.:“a'
I Clibais
L, 3
:l.l. i
ST

IR
| B
;185 G2
A

181 4%

jipei
Lt]
Lkl
(IR
| KRG
R
I l-:l»—l I~_—.
1847
1850
|51
[kit
TESS
Tiathe]
Lha5
lL’F‘lJ
318 e
R RIRE
1)

il
(]}
Lo T

D T
B o S i e B e |

Ly
e |
a5

2t
i
=H
(A
A
CH
i

! H

.

El oz
§—

LN 0

11
T
e 13t
) B
S|
() D
&

Ty

14 [e

i

e

i
ik
HF
IpE
HF

MF

JME

<27

HAUD Fea T ESOR RSSENBELER - - HOY 17974

LT FIESSHGE
1 +NISFLAY H

[«[ZFCAY D
L «DUSFLAY T

RLESPLRY &
o #DISPLAY F
! #NISPLAY L
F «NTSPLAY W

i *DISFLAY Y

SETH #RESEL THE

; |_'.'! 4 !;1 5 M E ':,:_: E; F‘! 1: E E:
L

il

1

BRI

rUTHTER

b e e, gt

TEY YW P) A= o=

LE LIRS

e —t e — ey e e U

e ey WETE RN P Pt =yt

- —

)

-

G SR S i
SRR B DT R,

[l n X

o T4 — 0 A0

R e ol T T I o T T S S —
-
T SR

e e — e T

.

FHGL

1B
RS
1A7E
17
)b
| P
187
185
:‘l[i]l
Livi

i1
el
S

1

S
T,

S

I
21l

el

f b
[
[
]_I Skl
{LEoh
R
T
FLA
FL

-2l

P SETE

iy
T
LT
15T
NI
T
cT
4 51 i
Gl ulL

EHD

Bt

el —+ o

D ez

oo
Lt B

HO 0 eREDES FOR PHE:

[

HAMD POCESOR ASSEMELER ~- HOY 1974

. & e S

P

e ._.._. 3

i b B A R e — e - - e

EXAMPLE TI1I
The following example will demonstrate the "PATCH
ASSEMBLING feature of the NANO PROCESSOR ASSEMBLER

and LOADER.

Suppose it is desirable to change the message B of
the example 2

"ERROR IN DISPLAY"

TO:

"ERROR IN DEVICE"

A short program such as the one following could
accomplish the desired change.

T

e e e R

o

S N O
w K

&

SR IS SR e o O R WO
-“"

b

LT 5T

[._\'[._ar‘g.‘lf._luln—u-ZHp-by—-_.._ bk ok e e Bk ek b il s
Lol el coUR wal B R o St Wl o 5 o S < FUMTR N

it
(=5

)

Slr

e LS = 1§ i el Hopbo P FSOR ASSEMRLER - HOY 1974

HEsn . il SO0 0SS CRpLER
i

A TG LR
FH b V0Ll ol W SFLAY PROGERAM GIVEH OH ESAKPLE 2

ey SR
bty A TR 2103 *UUTFUT Ccope Fos "0 To Dz
nhit [l
SRR I A 1 JaP 46y s JUMP 70 DG
BEts U8 .
1509 el TR 2128 FOITRUT COR ok "y
578 N B
[S el M g

[l"‘;': [RE

"

(] P R H TS
1R TR I s # MF TO BL
8 CTo B E 15
B PR S | R 413
1Bes B3
18 Ful RIS £ IMF TO E
180S #i7
10ge 4l [} S
180, tlet
L5 T 1 § 1] 1] S =dMP TOD 1
10971 823
1870 281 L
LBy L
1874 il MME 4y ®*JMP 1D E
1675 7
PBIE ey HE Deg *JMP TD SETE
AT Lty

i

« P TO 0

RN

W uf ERFGES FOR FHSS & 9= B

« N

ASSEMBLY LANCUAGE INSTRUCTIONS

ACCUMULATOR INSTRUCTIONS:

Skip on Bit N=1 SBS N pp g1p N,
Skip on Bit N=4 SBZ N pp 119 N,
Set Bit N SBN N AR 1AR N,
Clear Bit N CBN N 14 188 N
Increment ACC (Binary) INB pp ppp £pp
Increment ACC {Decimal) IND ap anp £19
becrement ACC (Binary) DEB Ap ppg 0l
Decrement ACC (Decimal) DED Vg Bl
Cleuar ACC CLA AR ARG LED
Complement ACC CMA A ppg Ll
Left Shift ACC LSA ap Aa0 119
Right Shift ACC RSA off ppd 111
Load ACC with ROM DATA * * LDR DATA 11 91 111

DATA 4
Skip on E=1 SES Ap P11 111
Skip on E=p SEZ 49 111 111
Set E STE 19 119 149
Clear E CLE if 114 191

REGISTER AND 1/0 INSTRUCTIONS:

Load ACC From Register R LDA R Al 1p, R
Load ACC Indexed LpE 2 11 1p. 7 .
Store ACC t Register R STA R p)1, R g
Store ACC "ndexed - e ST 2 11 11 R
Input T¢ . (.C From DS INA DS A fAp DS,
Output ACC To DS 0TA DS #1 #1, DS,
Store ROM DATA At Register R* STR R,DATA 11 01 R

. DATA
Output ROM DATA To DS* OTR DS,DATA 11 #p DS

. DATA .

e TE

= .

. L

i 8 L AR g ——

e

Set Control K

Clear Control K
Skip On Flag J=1
Skip On Flag J=§

COMPARATOR INSTRUCTIONS:

Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip

On
On
on
On
On
On
On
On

PROGRAM

Jump To

ACC >RP
ACC <Rp
ACC = RD
ACC >R9
ACC <RP
ACC ¥R
ACC =
ACC # §

CONTROL INSTRUCTIONS:

Address

Jump Indirect To Address
Jump Sub To Address#*

Jump Indirect Sub To Address
Return From Subroutine

Return From Interrupt and

Return

Enable Interrrupt

From Interrupt

No Operation

Dissable The Interrupt

Enakle The Interrupt

* Double Byte Instructions

* PN

Page no.

-32-

STC
ClL.C
SFS
SFZ

SGT
SLT
SEQ
SGE
SLE
SNE
SAZ
SAN

JMP ADDRESS

JAI U

JSB ADDRESS 34

JAS U
RTS
RTE

RTI
NOP
DSI
ENI

Oy o= o=

P

-}
-

r ;u
s
i

- gy T i S SeTasut sy ———— NN T

e p——— TR PR VYT AN W

-

- —

Fs

——rTRS ¥
O

Kamran Firor-
October 21.

NANO PROCESSOR LOADER (NPL)
{Using H.P. 2100 Computer)

Nano Processor Loader is a program that loads the object
codes produced by the Nano Processor Assembler and stored
on a Binary File of a disk into a ROM-RAM Simulator.

At the beginning of the execution the computer questions
the I/0 slot where the ASCII Card is placed, and then the

file name where the object file is stored is asked:
Next question is:
"PATCIL LOADING?"

If the reply is negative, ull of the unused locations

of the object file will be loaded by the code for instruct-
ion NOP (137 octal). I[patch lcoding was requested; only
the assembled codes will be loadec: and 211 usused locations

will remain unchanged.

Kamran FIirooz
December/1974

e mtr———— ey &

LR w e

g

e ey AV I P

ey ————y o

e

B L L

Example:

Consider the program given on the following page. In order
to load the object file of this program into ROM-RAM Simulator,
load the Loader prog%am into the computer and RUN EXECUTE.

"OBJECT FILES'S NAME"

0OBJ1
"PATCIHl LOADING?"

NO

Since the answer to the latter question was negative, locations
p to SP7, and 52P to 1f57 and 11Pf to 1777 will be filled by
the code for NOP.

llowever, if the reply were "Y" the only locations affected in
the ROM-RAM would be 51§ to 517 and 1p6f to 1§77. The rest of
the memory would remain unchanged.

This feature of the loader can be used to combine (PATCH)
object files of different source programs.

Kamran Firooz
December/1974

J

"'-'-‘w'-:r-ﬂ’

——Y nrrrnva*.r— gt

e .‘——-—-“‘—'4‘?"??"?"?"7 "‘"""e‘ v

D,

o R e S

L W o I sl W o T 0

—

@
P P

o

f

i 2 S

ik 8 RS HAHD FROCE=SUE A= EMBLER = HOYW 1974

e UIHEBLER

lidedrt B DISFLAY MEOGEAM GIVEH b EMAMFLE O

s T N T A LU 57 #QUTPWT CULE FOR "5 70 &

g 0 e
154 49 4 i LET #JUte TGO DIsF
e
U S i B " Lilp s 1 25 *OUTFELUT CoabDE Fap w"
:r- = | b
%, "
LI | tra
A Ly Pl P P T BL
1%l R0 o
T i e 41z FAME TO N
i, wi i 4
el R e 417 « M TG E
] § ety 11 ?
1l il Sl '
Pt | 1
FETR e 0z =AME Tne !
',
11 - ! NN !

S O B

™

,..
.
At
faicn
=
o
Y
§:

(]
m
m

s 2ad fir g =My 0 =

g OF CREgES FOR FRSS 2 = #

e ar b AN T e g — ety 4 T I g e

e TR L T

ey AT AT W YT

W W ——————— T OGP T ey ey

(his program cpafies tae user tq transfer ais binavy ZiFES

from 2100 to a 9830 calculater. The ohject files proauced
hy <4108 Nano Processor rssembler are First punched o paper

tape as Lo Tlows:

Sk, nane

The punched binary tape can then be read by this preogrem
using 2 paper tape veader and stored on cassette tapes.

The files stored by this program 3.¢ compatable to the Iiles
produced by the 39830 Assembler, therefore, they can be
loaded into a ROM-RAM Simulator using the 9830 Nano Processor

loader program.

Yamran Firoo:z
December/197:

-

. L

g g— T T}

i &, i S & S g

i

wb%g

- 2708 70O 9536

-.'I‘-‘I !__ v . e S S ———
LB e F THODY NECEMEER 1974
o

bl g

40

SN
il
|‘]:_j

S
Lk
i

RN

45

O WL TR Tal ik A 1S

vl b VTR

Feta § RN,

(8 S S ¥ o8 |
B2
i T Coong
i
i Ba it vl F

T g el

HE

i

L

L RS FIRE

|

FILFIE b

|Il.i. ..;

Moo =0ininkl wERDs M OBJECT FLLE PREODUCED £ THE 2182 HAHD FROCES OR
il STORES THE FILE OH A CASSETTE TAPE.

COMPATREBLE TO THE FILES FEODUCELD BY THE =838 AZSEMELER
THLY TAM BE LOADED

THTO Fr ROM=kAr SIRULETOR UEING THE LORDER

)

by P = T - - | & - - - P T N -y e = e
[he raper tape can then de stored on 2 QISR £ 210U Somrutel
as tollows:

S, S, ¥y, name

R | " —— s | e | g 2 ST C I o - 2T R0 N

ILe” stored progyran €3n "e assepiiod UsIHAZ (.8 =01 Dehiso

. - - e - - AT -
Processor Assenbler [(NEAJ.

- - b - -— - - -, - - -l L 3 - = -~ -

In kbfdrticn te Thls ZTXoLTam, GRS Ma S et 2Tmina. [SCE
al o Y830 ealculiater to create or €211 LS DIOETIES =Hc: The

LiSTX #select code numbher for npuncn.
Trans{er the source pregram onte pa €T tape and then into

a 2Iug.

Trars fer of Scurce Prozrams from 23

G
>

3
done Liy usc of 9830 ASCII card interfaced to an HFIZ =ayvd af

a 211) or the teletyne plug.

Kamraa Firoo:z
Decsr.herf1074

o ——

e T FR Y

FEWE

. way

= .3
[s — |
P _::.L

™

[FRiS)
< 13
i-n
-0

-
s B
vkt ! g b

Do oy W e

Pl TRY ot e o . a0

LR RE PR e e o L B
R e
o ek et

CoratabeT

w
-
-

O o O O
vl
o ogihr R B Rl R]

_—

-
—

B SR S TP A SO OO SSOUR v R I SR b L P
0 I B N % Bt e R o R B I i B0 (S O it L e

D D I G E DS I3 0 E D

-
*J

1 .H:;@

S
FAE 11 1)
- ol
e
SR
L0 ¥]

Seu

tn

=== AE3A T 2108 ——— s me e

‘:’fa o = ,.ii ! FItnnZ DECEMEBER 1974.

AN E

=

¥ teo ek CUHCHES A OSOURCE FILE GEHERRTEDN BV THE HAND FROCESSUR
#hat e Ui FHEER TRPE DBSING A PRFER TRPE FUNCH. |

vl

pestoad o TUWCER Th'E LAH THEN BE STORED oH A DISK OF A 2168 COMPUTER.
SRR R - FEOGRAR CHN BE ASSEMELED USIHG THE 2188 NAHO FROCESSOR
£ Lot RGER PR Y,

=EL

5 B r'ln i

O R E B ._jutlf[hﬂ]

V58 55 .f-" ¥ COLE HO.
iIsFls f

R ¥ A

2 2

LT 1 i isdd

LS UE

Fiig I= Pt
IMRHSERE & T3 1 70 Mg
pi .

¥t T 1:1

JERIE

GUISHE a-4i

HERT 1

GOSUE Su

EHD

He P 1007 © P o2 iag)

W hs-fr TsEHN 430

BITF-F '

P=Pt

NRITE 7 25H$0 188 -117 _
IF 0 ctjy. "EOF Y43 THEHY 428
LU 2 L 5 N §

MRLIE v« aETTEDS

RO i
- -... ‘_.,Qv.‘ ——

APBPERNDIX
=

GENERAL INFORMATION

Nano Processor suppert materials may be ordered
from LID at no charge., The Nano Processor User's

Guide may be obtained by asking for drawing number
A-5955-0331~-1. Also a limited quanity of software
material, ie 9830A EDITOR, ASSEMBLER, LOADER CASSETTE.
and 2100 DOS 1Iii paper tape are available at no charge,

Whe n ordering, cspecify one of the following:
98304 NANC PROCESSOR SOFTWARE CASSETTE
2/N 5061-0768S

2100 NANO PROCESSOR SOFTWARE PAPEKR TAPE
P/N 5061-0769

Thrse materials are limited, and when the supply is
exhausted no more will be available, VYou may be
able to check around your division for others who

have these software materials,

e PR AR IR BT AT AT

I1.

A

NANO PROCESSOR

George Latham
7/29/75

"DATA BUS APPLICATION HINTS'"

Data bus rise time equations where 'Cp" is the total data bus capacitance
external to the Nano Processor package.

A.

B.

IlAﬂ (:hips
Rise time = 7.7(Cp + 7)ns (Cp in pF)
"B Chips
Rise Time = 9.6(Cp + 7)ns (Cp in pF)

“CH Chips (V€ eVGER AVALADLE)
Rise Time = 11.5(Cp +7)ns (Cp in pF)

We will define data bus fise time as: r.t. (data) (to a 4.0 Volt level)
A max. loading of one T2L input (1.6mA) is allowed.

The data bus rise time is measured from the last data output low (''0")
or from the last moment the ROM applies a zerc on the data bus. It

is therefore important to watch the time between TPA2 valid and TpGH
(program gate) to be sure that the ROM does not glitch the data bus

low just before a valid high ("'1') is output by the ROM. It is reason-
able to use maximum values of both TPAZ and TPGH at the same time.

The equations for interrelating these paameters are:
1. CIK1> r.t. (data) + Typ +Tpy max.

2. CIKT> min. spec.

3. CIKT> Tppz + Taa + T1p
Note: TaA include r.t.(data) to 4.0 Volts

4. CIKT> Tpgy max.+ Tgp + TIp

Reasonable values to use for Tpy max. (not speced) are:
"A" Chip, 110ns; "B" Chips, 140ns; "C" Chips, 170ns.

Other suggested Data Bus Pull-Up Methods.

A.

The most simple pull-up method for gree,tcr data bus speeds is to connect a
10K resistor from each data bus to 12V or 9V for "A'" or "B'" § "C'" chips
respectively. This is pemmissible providing that the circuits on the

data bus have a maximm voltage rating of at least 7;0 volts. One LS
input is assumed (0.36mA). The principle of operation is that then N.P.
output pull-up FETS will self-clamp the data bus to approximately 6.5

Voits using 10X ofm resistors. Design cor};ants for this method are:

o | e e e i S

- — -

e

vA" Chips: r.t.(data) = 2.4 (Cp + 7)ns

wp" Chips: r.t.(data) = 3.6 (Cp + 7)ns

neY Chips: r.t.(data) = 3.9 (Cp *+ 7)ns (Cp IN pF)

B. A faster yet method which yields a lower clamp voltage (=5.5 Volts max.) @
uses 7.5K ohm resistors comnected as in part A, but also connects clamp-
ing Schottky diodes between the data bus and the 5 volts supply.

Design cméj:ants for this method are:

“A" Chips: r.t.(data) = 2.2 (Cp *+ 7)ns

3.1 (Cp + 7)ns P

wp" Chips: r.t.(data)

"' Chips: r.t.(data) = 3.4 (Cp + 7)ns . (Cp in pF).

