
HP 3000 Computer Systems

Native Language Support
Reference Manual

r'iOW HEWLETT
~~ PACKARD

HP 3000 Computer Systems

NATIVE LANGUAGE SUPPORT

REFERENCE MANUAL

Fli;' HEWLETT
II:I!II PACKARD

19447 PRUNERIDGE AVENUE, CUPERTINO, CA 95014

Part No. 32414-9000)
E0984

Printed in U.S.A. 9/84

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO
THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for inciden
tal or consequential damages in connection with the furnishing, performance or use of this
material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All
rights are reserved. No part of this document may be photocopied, reproduced or trans
lated to another language without the prior written consent of Hewlett-Packard
Company.

Copyright (c) 1984 by HEWLETT-PACKARD Company

11

LIST OF EFFECTIVE PAGES I

The List of Effective Pages gives the date of the current edition, and lists the dates of all
changed pages. Unchanged pages are listed as "ORIGINAL". Within the manual, any
page changed since the last edition is indicated by printing the date the changes were made
on the bottom of the page. Changes are marked with a vertical bar in the margin. If an
update is incorporated when an edition is reprinted, these bars and dates remain . No in
formation is incorporated into a reprinting unless it appears as a prior update.

First Edition September 1984

Effective Pages

All .

111

Date

September 1984

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued be
tween editions, contain additional and replacement pages to be merged into the manual by
the customer. The date on the title page and back cover of the manual changes only when
a new edition is published. When an edition is reprinted, all the prior updates to the edi
tion are incorporated. No information is incorporated into a reprinting unless it appears as
a prior update.

First Edition •••••••••••••••••• September 1984

IV

MPE V MANUAL PLAN

INTRODUCTORY LEVEL:

GENERAL
INFORMATION

Manual
~95.3-7553

MPE V COMMANDS
Reference

Manuel
32033-90006

SEGMENTER
Referenc~

Manual
30000-90011

STANDARD USER LEVEL:

MPE V INTRINSICS
Reference

Manual
32033-90007

DEBUG/STACKElUMP
Reference

Manual

30000-90012. I

ADMINISTRATIVE LEVEL:

MPE V SYSTEM OPERATION
& RESOURCE MANAGEMENT

Reference Manual
32033-90005

SUMMARY LEVEL:

R~~~~
\~~0-90049

GUIDEdd~
N.aO~RATOR

ttl ~3-90021

MPE V UTiUTIES
Reference

Manual
3203.3-90008

F1LE SYSTEM
Reference

Manual
30000-90236

There are many more manuals applicable to the FIP 3000. A complete list may be found in every
issue of the fviPE V Communicator. Please contact your System Manager.

v

NOTATION

COMMAND

KEYWORDS

parameter

parameter

[]

{ }

user input

. c
superscnpt

J

CONVENTIONS USED IN THIS MANUAL I

DESCRIPTION

Commands are shown in CAPITAL LETTERS. The names must con
tain no blanks and be delimited by a non -alphabetic character
(usually a blank).

Literal keywords, which are entered optionally but exactly as
specified) appear in CAPITAL LETTERS.

Required parameters) for which you must substitute a value) ap
pear in bold ital lOS.

Optional parameters) for which you may substitute a value, appear
in standard i tal ios ..

An element inside brackets is optional. Several elements stacked in
side a pair of brackets means the user may select anyone or none of
these elements.
Example: [A] lAB' h[B] user may se ect or or nelt er.

When brackets are nested, parameters in inner brackets can only be
specified if parameters in outer brackets or comma place-holders
are specified.
Example: [parm7 [,parm2[,parm3]]] may be entered as:

parm7 ,parm2 ,parm3 or
parm7, ,parm3 or
, ,parm3 ,etc.

When several elements are stacked within braces the user must
select one of these elements.
Example: {A}

{ B } user must select A or B.

An ellipsis indicates that a previous bracketed element may be
repeated, or that elements have been omitted.

In examples of interactive dialog) user input is underlined.
Example: NEW NAME? ALPHA1

Control characters are indicated by a superscrip{. Example: y
C

•

(Press Y and the CNTL key simultaneously.)

'---~_) indicates a terminal key. The legend appears inside.

** Comment ** Editor's comments appear in this form.

vi

[CONTENTS I

------,

Section
PREFACE.

Section I
INTRODUCTION TO NLS
Background Information ..
Scope Of Native Language Support
Supported Native Languages .

8-Bit Character Sets .
Language-Dependent Characteristics.

Native Language Support in MPE .
NLS System Utilities
Configuring Native Languages
NLS Intrinsics .
Peripheral Support
Conversion Utilities.
Application Message Facility
File Naming Conventions.

NLS In The Subsystems
Accessing NLS Features ...

Intrinsics
Additional Parameter Values in Existing Intrinsics .
Native Language Attribute.
Commands .

Implicit Language Choice In Subsystems
The NLGETLANG Intrinsics. . .
User - Defined Commands (UDCs)

Application Programs
General Application Program...
Application Program Without NLS .
Single Language Application .
Multilingual Application . . .
HP Subsystem Utility Program

Section II
APPLICATION MESSAGE FACILITY.
Accessing Application Catalogs
Source Catalogs .
Directives

$SET Records ..
Message Records
Message Records Special Characters
Comment Records. . .
Sample Source Catalog

Parameter Substitution .
Positional Parameter Substitution
Numerical Parameter Substitution

Catalog Naming Convention .
Maintaining A Message Catalog .

Merging Maintenance Files By Line Numbers

vii

Page
. . xv

Page
1-1
1-1
1-1
1-2
1-3
1-4
1-5
1-5
1-5
1-5
1-5
1-6
1-6
1-7
1-7
1-7
1-8
1-8
1-8
1-8
1-9
1-9
1-9

1-10
1-10
1-11
1-12
1-12
1-14

Page
2-1
2-1
2--2
2-2
2-2
2-4
2-4
2-5
2-5
2-5
2-6
2-6
2-7
2-8
2-9

CONTENTS (Continued)

APPLICATION MESSAGE FACILITY (Continued)
Modifying A Record .
Adding A Record
Deleting A Record.

Merging Maintenance Files By $SET And Message Numbers.
Set Numbers ...
Message Numbers
Comment Records
The $DELSET Directive.

User Dialogue.
Formatting A Source Catalog .
Expanding A Formatted Catalog
GENCAT JCWs
GENCAT In Batch Mode
GENCAT HELP Facility
Error Messages.

Section III
NLS IN MPE SUBSYSTEMS
FCOPY .

FCOPY Options.
CHAR Option
Character Translate Options.
Upshift Option .
FeOPY and KSAM Files.

Combined Use of Options ..
Error Messages . .
Performance Issues .

IMAGE .
Utility Programs

DBSCHEMA.
DBUTIL ...
DBUNLOAD/DBLOAD .

Intrinsics . .
DBOPEN.
DBPUT ..
DBINFO .
DBLOCK.

Changing The Language Attribute Of An Image Data Base
Error Messages

I<'SAM .
Creating KSAM Files With KSAMUTIL
Error Messages
Addition~l Discussion .
Creating KSAM Files Programmatically
Additional Discussion ..
Modifying KSAM Files
Generic Keys
Using FCOPY With KSAM Files

Copying From A KSAM File To Another KSAM File .
Changing The Language Attribute of a KSAM File.

Moving NLS KSAM Files To Pre-NLS MPE .

viii

Page
2-9
2-9
2-9
2-9
2-9
2-9

2-10
2-10
2-10
2-12
2-14
2-15
2-15
2-16
2-17

Page
3-1
3-2
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-5
3-5
3-5
3-5
3-5
3-6
3-6
3-6
3-6
3-6
3-7
3-7

3-11
3-11
3-13
3-13
3-14
3-14
3-14
3-15
3-18
3-18
3-18
3-18

CONTENTS (Continued) I

NLS IN MPE SUBSYSTEMS (Continued)
QUERY .

Command Summary .
Upshifting Data (Type U Items) .
Range Selection
Date Format .
Real Number Conversions.
Sorted Lists in REPORT, .
Numeric Data Editing in Report.

Additional Discussion.
Error Messages . , . , . , , .

SORT-MERGE .
Stand-Alone SORT-MERGE.
Programmatic SORT-MERGE

The SORTINIT Intrinsic, ,
The MERGEINIT Intrinsic
Parameters .
Additional Information .

Error Messages , .
Performance Considerations
COBOLII Sorting And Merging,

VPLUS .. , .
Language Attribute .

Unlocalized .
Language-Dependent
International ... , .

Setting the Language ID Number.
Field Edits

Date Handling
Numeric Data , .
Native Language Characters.

ENTRY and Language ID number
Error Messages .
VPLUS Intrinsics

VGETLANG. ,
VSETLANG. ," ,

Page
3-19
3-20
3-20
3-20
3-20
3-20
3-20
3-20
3-20
3-21
3-23
3-23
3-24
3-24
3-25
3-25
3-26
3-26
3-27
3-27
3-29
3-29
3-29
3-29
3-29
3-30
3-30
3-31
3-31
3-31
3- 31
3-32
3-32
3-33
3-34

Section IV
NATIVE LANGUAGE INTRINSICS ,

NLS Date And Time Formatting Overview.
ALMANAC,
CATCLOSE.
CATOPEN .
CATREAD .
NLAPPEND
NLCOLLATE.
NLCONVCLOCK.
NLCONVCUSTDATE
NLFMTCALENDAR .

IX

Page
4-1
4-2
4-3
4-5
4-6
4-7
4-9

4-10
4-12
4-14
4-16

CONTENTS (Continued)

NATIVE LANGUAGE INTRINSICS (Continued)
NLFMTCLOCK. . .
NLFMTCUSTDATE
NLFMTDATE
NLGETLANG .
NLINFO .
NLKEYCOlYIPARE.
NLREPCHAR...
NLSCANMOVE .
NLTRANSLATE .

Appendix A
SYSTEM UTILITIES

NLUTIL Program ..
NLS File Structure
Language Installation Utility (LANGINST)
Adding a Language. . . .
Deleting a Language . . .
Modifying Local Formats.
LANGINST User Dialogue

Choosing A Function.
Adding A Language . .
Deleting A Language .
Modifying Local Language Formats.

Error Messages

Appendix B
SUPPORTED LANGUAGES & CHARACTER SETS

Character Set Definitions.
Language Definitions .

Appendix C
COLLATING IN EUROPEAN LANGUAGES

Collating Sequence .
Language-Dependent Variations.

Spanish .
Danish/Norwegian.
Swedish
Finnish .

Appendix D
EBCDIC MAPPINGS ,

Background Data .
ROMAN8 to EBCDIC Mapping.

x

4-18
4-20
4-22
4-24
4-26
4-31
4-33
4-35
4-38

Page
· A-I
· A-I
· A-I
· A-I
· A-2
· A-2
· A-3
· A-3
· A-3
· A-4

. . A-4
· A-5
· A-6

Page
· B-1
· B-1
· B-2

Page
· C-l
· C-3
C-I0
C-I0
C-I0
C-l1
C-ll

Page
· D-l
· D-l
· D-l

CONTENTS (Continued) I

Appendix E
PERIPHERAL CONFIGURATION.

NLS Terminology.
Peripheral Support Summary ..
Specifics of 7- Bit Support . . .
NLS Peripheral Support Details.
HP 150 P .C. As A Terminal
HP 238 2A Terminal

, HP 2392A Terminal .
HP 2563A Printer .
HP 2608A/HP 2608S Printers
HP 2621B Terminal .. -...
HP 2622A/HP 2623A Terminals.
HP 2622J/HP 2623J TermInals .
HP 2625A/HP 2628A Terminals.
HP 2626A/HP 2626W Terminals
HP 2627A Terminal .
HP 26 31B Printer. .
HP 2635B Printer/Terminal
HP 2645J Terminal.
HP 26 80A Printer
HP 268 8A Printer .
HP 2700 Terminal .
HP 2932A/HP 2933A/HP 2934A Printers.
Notes .

Appendix F
CONVERTING 7-BIT TO 8-BIT DATA.

National Substitution Sets
Conversion Utilities ..
Conversion Algorithm
Conversion Procedure.
N7MF 8CNV Utility
17DB8CNV Utility ..
V7FF 8CNV Utility. .
V7FF 8CNV and Alternate Character Sets
V7FF8CNV Operation .

Appendix G
APPLICATION GUIDELINES

All Programming Languages
COBOLII (HP 32233A) ..
FORTRAN (HP 32102B) .
SPL (HP 32100A) .
RPG (HP 321 04A) .
BASIC (HP 3210 IE)
Pascal (HP 32106A)

xi

Page
· E-l
· E-l
· E-2

. . E-4
· E-4
· E-5
· E-6
· E-7
· E-8
· E-9
E-I0
E-ll
E-12
E-13
E-14
E-15
E-16
E-17
E-18
E-19
E-20
E-21
E-22
E-23

Page
· F-l
· F-l
· F-2
· F-3
· F-5
· F-7
· F-8
F-I0
F-I0
F-ii

Page
· G-l
· G-l
· G-2
· G-2
· G-3
· G-3
· G-3
· G-3

CONTENTS (Continued)

Appendix H
EXAMPLE PROGRAMS .

A. Using SORT In A COBOLII Program
B. Using SORT In A Pascal Program ..
C. Using SORT In A FORTRAN Program
D. Using DATE/TIME Formatting Intrinsics In A FORTRAN Program.
E. Using The DATE/TIME Formatting Intrinsics In An SPL Program.
F. Using The NLSCANMOVE In A COBOLII Program.
G. Using The NLSCANMOVE Intrinsic In An SPL Program .
H. Using NLTRANSLATE/NLREPCHAR Intrinsics In A COBOLII Program .
I. Using The NLKEYCOMPARE Intrinsic In A COBOLII Program
1. Using The NLKEYCOMPARE Intrinsic In An SPL Program .
K. Obtaining Language Information In A COBOLII Program .
L. Using CATOPEN/CATREAD/CATCLOSE Intrinsics In A Pascal Program.

xu

Page
· . H-l

.H·d
· H-3
· H-5
· H-6

· H-IO
H-15
H-22
H-29
H-32
H-36
H-41

· H-45

Title
Application Program Format
Application Program Without NLS
Single Language Application .
Multilingual Application ...
HP Subsystem Utility Program
GENCAT Utility Program.
GENCAT Functions.
Sample Source Catalog.
Positional Parameter Substitution.
Numerical Parameter Substitution
Collision Files
Dialogue For Modifying A Source File
Maintaining A GENCAT Source File
Source Catalog Formatting Dialogue .
Expanding A Formatted Catalog . . .
Formatting/Expanding GENCAT Source Files
GENCAT HELP Facility Dialogue
KSAM File Test Program .
Results Returned By The NLKEYCOMPARE Intrinsic
Generic Key Searches
KSAM Recovery Procedure .
Stand-Alone SORT-MERGE Dialogue
SORT Verb Syntax.
NLS Date And Time Formatting Overview
ROMAN 8 Character Set.
KANA8 Character Set.,
Collating Sequence.
Language Dependent Variations.
ROMAN 8 To EBCDIC Mapping.
Character Conversion Data
N7MF8CNV Dialogue.
17DB 8CNV Dialogue . . .

xiii

ILLUSTRATIONSI

Page
1-10
1-11
1-12
1-13
1-14
2-1
2-3
2-5
2-6
2-6
2-8

2-10
2-12
2-13
2-14
2-15
2-16
3-12
3-15
3-17
3-18
3-24
3-28
· 4-2
· B-3
· B-4
· C-3
C-I0
· D-2
· F-4
· F-5
· F-9

I TABLES

Title
GENCAT Error Messages
MAKECAT/GENCAT Comparison.
FCOPY Error Messages .
IMAGE Utility Program Conditional Messages
IMAGE Library Procedure Calling Errors
IMAGE Schema Syntax Errors ..
KSAMUTIL Error Messages
KSAM File System Error Messages
Commands For Language-Dependent Information
QUERY Error Messages
Programmatic SORT Error Messages . . .
Interactive SORT Program Error Messages
Programmatic MERGE Error Messages ..
Interactive MERGE Program Error Messages.
VPLUS/3000 Error Messages .
LANGINST Error Messages
Exarnples of Collating Sequence Priority ...
Peripherals Fully Supported in 8-Bit Operation-All Language Options
Peripherals With Limited Support in 8-Bit Operation
Peripherals Not Supported in 8-Bit Operation
Conversion Utilities by File Type .

xiv

Page
2-17
2-22

3-4
· 3-8
· 3-9
3-10
3-13
3-14
3-21
3-21
3-26
3-26
3-27
3-27
3-32
A-6
C-l

· E-2
· E-3
· E-3
· F-2

PREFACE

Native Language Support (NLS) provides the HP 3000 with the features necessary to
produce localized application programs for end users without reprogramming for each
country or language.

Native Language Support consists of Multi -Programming Executive (MPE) intrinsics, ad
ditional features in COBOLII, and the FCOPY, IMAGE, KSAM , QUERY,
SORT-MERGE, and VPLUS subsystems, the Application Message Facility, plus utilities to
install and implement native language capabilities.

xv/xvi

_____IN_T_R_O_DU_C_T_IO_N_T_O_N_L_S-----JI~

Hewlett-Packard Native Language Support (NLS) features enable the applications desig
ner/programmer to create local language applications for the end user.

BACKGROUND INFORMATION

A well-written application program manipulates data and presents it appropriately for its use and
user. Users who are less technically sophisticated benefit from application programs which interact
with them in their native language, and which conform to thei.r local customs. Native language
refers to the user's first language (learned as a child), such as Finnish, Portuguese, or Japanese. Local
customs refer to conventions such as local date, time, and currency formats.

Programs written with the intention of providing a friendly user interface often make assumptions
about the local customs and language of the user. Program interface and processing requirements
vary from country to country, and sometimes within a country. Much existing software does not take
this into account, and is appropriate for use only in the country or locality in which it is written.

The solution to this problem is to design application programs that can be easily localized.
Localization is the adaptation of a software application or system for use in different countries or lo
cal environments. In such an environment, the user's native language and/or data processing
requirements may differ from those in the environment of the software developer. Traditionally,
localization has been achieved by modifying a program for each specific country. Applications
designed with localization in mind provide a better solution. Localization can then be accomplished
with (ideally) no modification of code at all.

An applications designer must write the application program with built-in provisions for localization.
Functions which are local language or custom dependent cannot be hard -coded. For example, all
messages and prompts must be stored in an external file or catalog. Character comparisons and up
shifting must be accomplished by external system-level routines or instructions. The external files
and catalogs can be translated, and the program localized without rewriting or recompiling the ap
plication program.

Native Language Support (NLS) provides the tools for an applications designer/programmer to
produce localizable applications. These tools may include architecture and peripheral support, as well
as software facilities within the operating systems and subsystems. NLS addresses the internal func
tions of a program (e.g., sorting) as well as its user interface (messages, formats, for example).

SCOPE OF NATIVE LANGUAGE SUPPORT

HP 3000 Native Language Support (NLS) consists of features within MPE, as well as in the FCOPY,
IMAGE, KSAM, QUERY, SORT-MERGE, VPLUS, and COBOLII subsystems. These facilities allow
application programs to be designed and written with a local language interface for the end user, and
locally correct internal processing. The end user can see localized programs produced by applications
designers/programmers who have used the available NLS tools.

1-1

Introduction to NLS

The MPE interface, the subsystems, programmer productivity tools, and compilers have not been
localized.' The applications designer must still interact with MPE and the subsystems using American
English. For the designer/programmer, the interface has not changed. For example, it is possible to
write a complete local language application program using COBOLII and VPLUS, but the COBOLII
compiler and the VPLUS FORMSPEC program retain their English -like characteristics.

Not all functions which vary from one language to another or one country to another are provided by
HP 3000 NLS. For example, tax calculation rules are usually country-specific (or even more local),
and rules for word hyphenation are related to individual languages. Functions such as these are con
sidered to be application -specific, and are beyond the scope of NLS.

SUPPORTED NATIVE LANGUAGES

NLS is based on languages and character sets which have been pre-defined and built into the operat
ing system. These are referred to as supported languages. Hewlett-Packard has assigned a unique
language name and language ID number to each language supported in NLS. Characteristics of sup
ported native languages are documented in Appendix B, "SUPPORTED LANGUAGES AND
CHARACTER SETS. II In some cases, Hewlett-Packard has introduced more than one supported lan
guage corresponding to a single natural language. For example, NLS supports FRENCH (language
number 7) and CANADIAN-FRENCH (language number 2). Upshifting is handled differently in
FRENCH and CANADIAN-FRENCH. When language-dependent characteristics differ within the
same natural language , NLS can create separate native languages to represent these differences.

Each of the supported languages may also be considered a IIlanguage family II which is applicable in
several countries. GERMAN (language number 8), for example, may be used in Germany, Austria,
Switzerland, and any other place it is requested. The 8-bit character sets are ROMAN8, character
set 1, and KANA8, character set 2.

In addition to the native languages supported, an artificial language, NATIVE - 3000 (language num
ber 0), represents the way the computer used to deal with language before the introduction of NLS.
The collating sequence (the sequence in which characters acceptable to the computer are ordered) for
NATIVE- 3000, for example, is simply the order of characters in the USASCII code. The
NATIVE-3000 date format is that returned by the existing MPE intrinsic, FMTDATE. Whenever lan
guage number 0 is used in a native language function, the result will be identical to that of the same
function performed before the introduction of NLS. NLS intrinsic calls with the language parameter
equal to 0 will always work correctly, even if no native languages have been configured on the sys
tem. This list contains the language names and ID numbers (langnum values) available in each
character set.

1-2

Introduction to NLS

USASCII (Set #0)

Language Number Language Name

00 NATIVE-3000

ROMANS (Set #1)

Language Number Language Name

00 NATIVE- 3000
01 AMERICAN
02 CANADIAN-FRENCH
03 DANISH
04 DUTCH
05 ENGLISH
06 FINNISH
07 FRENCH
08 GERI\1AN
09 ITALIAN
10 NORWEGIAN
11 PORTUGUESE
12 SPANISH
13 SWEDISH

KANA8 (Set #2)

Language Number Language Name

00 NATIVE- 3000
41 KATAKANA

a-Bit Character Sets

Within NLS, each supported language is associated with an 8-bit character set (one character set may
support many languages). Like languages, character sets have Hewlett-Packard defined names and
ID numbers assigned, although these names and numbers are not widely used, except, in documenta
tion. Before the introduction of NLS, the only widely",:supported character set was USASCII, a
128-character set designed to support American English text. USASCII uses only seven bits of an
8-bit byte to encode a character. The eighth or high order bit is always zero. For this reason,
USASCII is referred to as a 117 -bit II code.

An 8-bit byte has the capacity to contain 256 unique values, which means it is possible to build su
persets of USAscn which permit encoding and manipulation of characters required by languages
other than American English. 'These supersets are referred to as 118-bit II or II extended II character
sets. New characters are added with code values in the range 161-254.

1-3

Introduction to NLS

NLS supports three character sets:

CHARACTER SET #0, USASCII

CHARACTER SET #1, ROMAN8

CHARACTER SET #2, KANA8

Appendix B, "SUPPORTED LANGUAGES AND CHARACTER SETS" contains a list of native lan
guages supported by each character set.

Another method of providing foreign characters (not supported by NLS) involves replacing as many as
12 existing characters in USASCII with substitution characters. The 7-bit substitution set eliminates
some characters in favor of others needed by a particular local language. A different substitution set
is necessary for each language. NLS 8-bit character sets support all USASCII characters (with the ex
ception of "\" in KANA8) in addition to the characters needed to support several western
European- based languages and katakana .

The use of 8-bit character sets for NLS implies that in character data, all bits of every byte have sig
nificance. Application software must take care to preserve the eighth (high order) bit, nowhere al
lowing it to be modified or reused for any special purpose. Also, no differentiation should be made
between characters having the eighth bit turned off and those with it turned on, because all are
characters of equal status in the extended character set.

language -Dependent Characteristics

For each native language which is supported by NLS, a number of characteristics are known. These
are lexical conventions (e.g., collating sequence and upshifting rules), country or local custom
dependent formats (currency symbols, date and time formats), and data processing conversion tables:

0. Lexical conventions vary from country to country. The collating sequence is affected by the local
alphabet and usage of each language. Upshifting tables maintained by NLS for each supported
language contain the appropriate result of upshifting any character in the corresponding character
set. This category of information is really language-related in the literal sense.

• Currency symbols, and date, time and number formats are country and local custom dependent.
Currency symbols and their position in relation to numbers depend on local custom. Date, time
and number formats also vary from country to country.

• Data processing tables for ASCII -to-EBCDIC and EBCDIC-to-ASCII conversion are affected by
language because the EBCDIC codes are different from country to country.

Within NLS, characteristics that are language related, custom dependent, and data processing orient
ed are all considered to be language dependent. All information used by, or available from NLS is
based on the application's choice of language(s). For example, NLS maintains an ENGLISH collating
sequence and an ENGLISH time-of -day format. In this context, ENGLISH refers specifically to that
used in England rather than the English language. (AMERICAN refers to the language, formats and
tables used in the United States.)

Appendix B, "SUPPORTED LANGUAGES AND CHARACTER SETS," contains a complete list of
supported languages and language characteristics. The exact information on any particular installed
language is available programmatically via the NLINFO intrinsic (see Section IV, IINATIVE
LANGUAGE INTRINSICS") or, in report form from the NLUTIL program.

1-4

Introduction to NLS

NATIVE LANGUAGE SUPPORT IN MPE

The MPE components of NLS consist of the utility programs, LANGINST and NLUTIL, and system
intrinsics, as well as an application message facility.

NLS System Utilities

LANGINST is used by system managers to select the native languages to be supported on their sys
tem(s). NLUTIL is used to obtain the details of languages installed on a system. LANGINST and
NLUTIL are described in Appendix A, IISYSTEM UTILITIES. II

Configuring Native Languages

Before any native languages (except NATIVE-3000) can be used on a system, they must be con
figured by the System Manager using the LANGINST utility program. Refer to Appendix A,
IISYSTEM UTILITIES" for the LANGINST user dialogue. The System Manager can select which sup
ported languages to configure, and can modify several formats associated with any language (s) being
configured. This feature is useful, for example, to a System Manager in Austria who wants to install
GERMAN with a different currency symbol than the default for this language. Changes to a system's
language configuration are effective after the next system startup, at which time the configured lan
guages are installed. After a language has been installed, language -specific information available in
NLS may be used by any application program requesting it.

NLS Intrinsics

The NLS intrinsics may be called by application programs and Hewlett-Packard subsystems to provide
language-dependent functions and information for any language installed on a system. For example,
the NLFMTDATE intrinsic returns a locally formatted date, and the NLeOL LATE intrinsic compares two
character strings using a language-dependent collating sequence. The NLS intrinsics are documented
in Section IV, "NATIVE LANGUAGE INTRINSICS. II Major HP 3000 subsystems call NLS intrinsics
to perform certain functions. For example, configured native languages can affect the collating se
quence used by SORT-l\1ERGE, the numeric formatting done by VPLUS, and the EBCDIC conver
sions performed by FCOPY. Section III, IINLS IN MPE SUBSYSTEMS" contains specific information.

[NOTE _J
None of these changes are automatic. All existing ap
plications and jobs will work the same way they did
previously when NLS is installed unless they are
modified to request NLS functions.

Peripheral Support

Peripherals configured for any of the 7·-bit substitution sets are not supported by NLS.

Most Hewlett-Packard peripherals are designed for 8-bit opera.hon. I\1ost peripherals that have been
configured for 7-bit operation can be reconfigured for 8-bit operation. Refer to Appendix E,
"PERIPHERAL CONFIGURATION II for instructions. Limitations and notes are listed for each

1-5

Introduction to NLS

peripheral. All NLS features are available to users with 7- bit USASCII terminals and printers,
provided that the data used contains only USASCII characters. For example, a user in the United
States can use AMERICAN (the Hewlett-Packard name for English as it is used in the United States)
for sorting, date formatting, and message handling consistent with lexical conventions and local cus
tom formats. This is possible because USASCII is a subset of ROMANS.

NLS has no direct control over what peripherals are configured on a system. It is, therefore, the
user's responsibility to confi$ure peripherals which support the character set (s) necessary for the
desired languages.

Conversion Utilities

Data encoded according to any 7-bit substitution set is not supported by NLS. Users with data en
coded in one or more of the European 7-bit substitution sets supported on the older HP terminals and
printel'S have the option to convert this data. A set of utilities is available to convert 7- bit data to
S-bit (ROMANS) data in KSAM files, IMAGE data bases, VPLUS forms files, and MPE files.
Appendix F, "CONVERTING 7- BIT TO S- BIT DATA, " contains conversion instructions.

Application fV1essage Facility

A localizable program contains no text (prompts, commands, messages) stored in the code itself. This
allows the text to be translated (part of the localization process) without modifying the source code of
a program or recompiling it. Therefore, a good text handling facility is essential to Native Language
Support.

The principal tool supplied within NLS for text handling is the Application Message Facility. The ap
plication message catalog facility consists of the GENCAT utility program and the "CAT" intrinsics
(CATREAD, CATOPEN, and CATCLOSE). The application message catalog facility provides efficient
storage and retrieval of program messages, commands, and prompts. The GENCAT program is used
to convert an ASCII source file containing messages into a binary application catalog that can be ac
cessed by the intrinsics. Application programs use the CAT intrinsics to retrieve messages from it.
An application message catalog consists of a file containing character strings (messages), each unique
ly identifiable by a set number, and a message number within a set. Key features of the Application
Message Facility include:

• Each message in a catalog can allow up to five parameters which may be specified by position or
by number.

• An editor is used to create an MPE ASCII file which is the source catalog. The GENCAT program
is used to read the source catalog and to create a formatted catalog. The formatted catalog has an
internal directory for efficient access, and is compacted (by deleting trailing blanks, for instance)
to optimize storage space.

• GENCAT has a facility to merge two message source files; a master file and a maintenance file.
The maintenance file contains changes to be made in the master file. Updates of a localized ver
sion of an application may be made by translating the maintenance file, then merging it with the
localized source file.

~ Multiple localized versions of an application can be supported with translations of the original
source catalog. If a naming convention is established, the application program can determine
which localized catalog to open at run time (using the CATOPEN intrinsic). A suggested naming
convention is discussed in Section II, "APPLICATION MESSAGE FACILITY. II

1-6

Introduction to NLS

The application message facility IS documented In Section II, II APPLICATION MESSAGE
FACILITY. II

FILE NAMING CONVENTIONS

An application which has been localized into several languages will have separate message catalogs,
VPLUS forms files, and/or various other language-dependent data files for each of these languages.
It is suggested that a naming convention be established for these files which follows the language
numbering used by NLS. To do this, a file name should be used which is up to five identifying
characters followed by a three digit language number, corresponding to the language of the file con
tents. For example, the original, un10ca1ized data might be stored in a file whose name is FILEOOO;
the FILE008 would contain the same data modified for German, and FILEO 12 would contain Spanish
data. It is the responsibi1it.y of the application program, then, to determine at run time which file to
open. (Once the language number is determined, the NLAPPEND intrinsic may be used to form the file
name if this convention is followed.)

NLS IN THE SUBSYSTEMS

In addition to the new utilities and MPE intrinsics, NLS provides features in COBOLII, FCOPY,
IMAGE, KSAM, QUERY, SORT-MERGE, and VPLUS. NLS features in these subsystems are in
tended to provide applications designers and programmers with the tools to design local language ap
plications. The subsystems themselves are not localized. The application end user, not the program
mer or subsystem user, sees the localized interface.

MPE Native Language Support intrinsics provide the means to implement NLS features of the subsys
tems. This means that native language definition is consistent in all the subsystems. Collating se
quence is a good example of consistency within MPE and in the subsystems. The collating sequence
defined for a specific native language can be used in MPE by calling the NLCOLLATE and
NLKEYCOMPARE intrinsics. The same collating sequence is used by SORT-MERGE in ordering
records, by KSAM in ordering keys, and by IMAGE in ordering sorted chains when these subsystems
are dealing with sorted character strings that have been associated with the same native language.

The MPE operating system and its subsystems function independently of native language features con
figured on the system. NLS features are optional, and must be requested to be invoked. This means
that existing application software and stream files will operate as they did before the introduction of
NLS.

ACCESSING NlS FEATURES

On HP 3000 systems using MPE and subsystems with NLS features, all NLS features are optional.
These features must be requested by the applications programmer through intrinsic calls or interac
tively by the user of a subsystem program through a LANGUAGE cOlumand or keyword.

1-7

Introduction to NLS

Intrinsics

One way of getting (optional) NLS features from application programs is through calls to specific NLS
intrinsics, primarily in MPE. Thus, to get a local language date format, an application should call
the new NLFMTDATE intrinsic instead of the old FMTDATE intrinsic (which is unchanged).

Additional Parameter Values In Existing Intrinsics

Another way is by specifying values for extended or new parameters in existing intrinsics. For ex
ample, SORTINIT in SORT-MERGE has been extended to allow the specification of a CHARACTER
key, and a native language ID number (langnum) which determines the collating sequence to be used.
These additional parameters must be used in an application to sort according to native language
values.

Native Language Attribute

Some subsystem structures, including IMAGE data bases, KSAM files, and VPLUS forms files may be
assigned a language attribute by their creators. The language attribute will ensure that certain func
tions will perform according to localized specifications at run time. VPLUS, for example, will per
form its upshift function according to the language of the forms file.

Commands

Commands or keywords have been added to certain subsystems which make NLS features available on
request. For example, entering LANGUAGE=FRENCH within QUERY would cause sorted character data
of IMAGE types X and U to be sorted according to the FRENCH collating sequence in its output
reports. If the language command is not entered) QUERY (or any other subsystem) will perform as it
did before the introduction of NLS. If these commands are not used) the default language(s) used by
subsystem utility programs can be influenced by the values of the two NLS Job Control Words,
NLUSERLANG and NLDATALANG.

Some general suggestions for designing applications incorporating NLS features) and specific strategies
for using major programming languages are included in Appendix G) "APPLICATION
GUIDELINES. II

Information on how and when the individual subsystems are influenced is included in Section III,
IINLS IN MPE SUBSYSTEMS. II

1-8

Introduction to NLS

IMPLICIT LANGUAGE CHOICE IN SUBSYSTEMS

Two NLS Job Control Words (JCWs), NLUSERLANG and NLDATALANG, permit the subsystem
user to designate a default language other than NATIVE- 3000 for the subsystems. Each of the five
subsystem programs (SORT, MERGE, FCOPY , QUERY , ENTRY) looks at one of these JCWs, and its
value is used as a default language by the program. The default can be superseded by a specific com
mand. Utility programs in the subsystems are often run within user-defined commands (UDCs).
UDCs are often created for the convenience of a less sophisticated computer user than the person who
designed them. To add to this convenience, NLS has established a convention for designating the na
tive language choice for operation of the subsystem programs that does not require the user to enter a
language explicitly. This is accomplished through the use of two reserved Job Control Words (JCWs),
NLUSERLANG and NLDATALANG:

e NLUSERLANG designates the user interface (and report output) language for programs. If the
subsystems were localized (which they aren't), this would be the language of choice for prompts
and messages. If user input data is modified, (for example, upshifted by QUERY or VPLUS) this
language determines which language's attributes are used. NLUSERLANG designates the default
language for all language-dependent operations in QUERY and ENTRY.

I) NLDATALANG designates the internal data manipulation language. One of the reasons that this
is distinct from NLUSERLANG is the possibility that multiple users with different interface lan
guages may wish to share some common internal data which is, for example, sorted according to
one language. The data manipulation language is used in the SORT, MERGE, and FCOPY
programs to control their language-dependent functions, such as collating, upshifting, and con
versions to and from EBCDIC. Note that if the user interface of one of these programs were
localized, which it isn't, it would use NLUSERLANG as its default for messages, prompts, etc.

NLUSERLANG and NLDATALANG are independent JCWs, and are treated independently by
NLS. In many cases, of course, they will specify the same language, but examples already exist in
which they could have been used with distinct values. One example is the HPWord product,
which has the concepts of a user language and a document language.

The NlGETLANG Intrinsic

NLUSERLANG and NLDATALANG values are retrieved by the subsystems through calls to the
NLGETLANG intrinsic. Application programs may also wish to use this intrinsic. NLGETLANG retrieves
the value of the language attribute requested, and verifies that it is installed. If the value is that of
an unconfigured or undefined language, NLGETLANG will return a language 10 number of a
(NATIVE- 3000) and an error. To use either JCW, set the integer value corresponding to the lan
guage 10 number desired, using :SETJCW. The fvIPE V Commands Reference Manual
(32033-90006), lists the: SETJCW command syntax.

User"""Defined Commands (UDCs)

ENTRY, FCOPY, QUERY, SORT and MERGE are often run from within user-defined commands
(UDCs). The two NLS Job Control Words (JCWs) give the user the option of establishing a native
language within a UDC.

1-9

Introduction to NLS

APPLICATION PROGRAMS

The focus of HP 3000 NLS is the application program. Most NLS tools are accessed programmatically
from applications according to the requirements of the designer or programmer. Several common ap
plication models are possible. These are illustrated in Figures 1-1 to 1- S. NLS capabilities can be
used in single language applications) multilingual applications) in subsystem utility programs) or not
at all.

General Application Program

The functions language can influence in an application in terms of data manipulation (internals) and
user interaction (externals) is illustrated in Figure 1-1. The core application program is flanked by
functions that can differ according to language and local customs (local date) time) and currency
formats) .

DATA MANIPULATION

DATA BASE

USER INTERACTION

SCREENS

INDEXED SEQUENTIAL

SORTING

CHAR. MANIPULATION

APPLICATION
PROGRAM

PROMPTS, MESSAGES

USER COMMANDS

FORMATS

Figure 1-1. Application Program Format

1-10

Introduction to NLS

Application Program Without NLS

Figure 1-2 shows an application program which does not make use of NLS capabilities. This
NATIVE-3000 application makes use of conventional programming techniques and standard MPE
and subsystem features to achieve the key language-dependent functions. It cannot be localized
without reprogramming and is unaffected by the introduction of NLS.

DATA MANIPULATION

DATA BASE

USER INTERACTION

SCREENS

IMAGE
data bose(s)
ond intrinsics

INDEXED SEQUENTIAL

KSAM
files and
intrinsiC5

SORTING

SORT-MERGE
intrinslcs

CHAR. MANIPULATION

Hard-coded functions
(e.<:l., compares

upshifts)

APPLICATION
PROGRAM

Customer-wrItten
or third party

application

VPLUS
forms and
lntrinslcs

PROMPTS, MESSAGES

Hard-coded
ond/or messoge

cotolog

USER COMMANDS

Hord-co<led
and/or command

file

FORMATS

IntrinsiC5
(e.'oJ .• FMTDATE)

Figure 1-2. Application Program Without NLS

1-11

Introduction to NLS

Single language Application

French is used as the single language application example in Figure 1- 3. The applications designer
has determined that only French is required) and has hard-coded its language ID number (langnum)
7 into the program. The langnum is used as a parameter in calling various native language
dependent intrinsics. In addition) the designer has created IMAGE data bases) KSAM files, and
VPLUS forms files with the French language attribute, and has expressed all prompts and messages in
French. This use of NLS is for programs which will only be used in one country or location, or with
only one language.

DATA MANIPULATION

DATA BASE

USER INTERACTION

SCREENS

IMAGE data
bose(s) with

"FRENCH" attribute

INDEXED SEQUENTIAL

KSAM file(s)
with "FRENCH"

attribute

SORTING

SORT-MERGE
intrinsics

CHAR. MANIPULATION

NL lntrlnsics
(e.g.. NLCOLLATE

NLSCANMOVE)

APPLICATION
PROGRAM

A program written
for use in FRANCE.

Se~ lANGNUM
to 7 (FRENCH).

FRENCH VPLUS
forms
flle(s)

PROMPTS, MESSAGES

Hord~coded

and/or application
message cotolog

USER COMMANDS

Hord-coded
and/or command

file

FORMATS

/ntrinsics
(e.g•• NLFMTDATE)

Figure 1- 3. Single Language Application

Multilingual Application

The program in Figure 1-4 shows a localizable or multilingual application. This application can be
used in several countries or in multiple languages by different users on the same system. The key at
tribute of this progr2,m is that it selects its language(s) at run time.

When installing an application on a system, the manager of the application may establish configura
tion file(s) for that application. These files store information about various users or transactions and

1-12

Introduction to NLS

their native language requirements. At run time the application program can determine which
language (s) to use.

The program may call the NLGETLANG intrinsic to obtain the system default language, (which can be
set by the System Manager when native languages are configured) or it may prompt the user to enter
a language name or ID number (langnum).

The application may call NLGETLANG to obtain the user interface language and/or the data manipula
tion language. The Job Control Words NLUSERLANG and NLDATALANG must be in place before
invoking this type of application. This method could be too restrictive if many users or transactions
are handled from one job or session.

Once the languages have been determined, the program opens the appropriate VPLUS forms files,
message catalogs, and/or command files, based on the user interface language choice. It also opens
any needed IMAGE data bases, KSAM files, or general data files; these mayor may not depend upon
language choice. The appropriate language ID numbers are used in calling the various native lan
guage intrinsics. Different users may concurrently run the same program with different languages.
The application can be designed to use more than one language within a single execution. For ex
ample, one language may be used for data manipulation and a different one for user interactions.

DATA MANIPULATION USER INTERACTION

SCREENS

USER COMMANDS

Command file(s) or
message co~alog(s)

chosen by LANGNUM

PROMPTS, MESSAGES

VPLUS forms file(s)
wjapprQpriote language

or "internationaP'

In oppllcatlon messo<Je
catolog(s) chosen

by LANGNUM

\
~
~
~

~r----F-O-R-MA-rs------'

A progrom written
for use in

multiple countries.
Determine LANGNUM(s)

ot run time.•

« From application
configuration file,
system default, user
prompt, Jews, etc.

APPLICATION
PROGRAM

~
~

J
/

/.......----------,

SORT-MERGE
intrinsic'S

SORnNG

DATA BASE

INDEXED SEQUENTIAL

CHAR, MANIPULATION

KSAM flle(s)
with appropriate

language attrlbute(s)

IMAGE data base(s)
with appropriate

language attrlbute(s)

NL intrinsiCB
(e.g., NLCOLLATE

NLSCANMQVE)

NL in~rim;ics

(e,g., NlFMTDATE)
'- .v ... _

Figure 1-4. Multilingual Application

1-13

Introduction to NLS

HP SUbsystem Utility Program

Figure 1- 5 shows a special category of multilingual application, the Hewlett-Packard subsystem
utility program. Many of these programs are not typically used by end users, but are used to manipu
late user data in conjunction with application programs. They determine which language to use at
run time via a user-entered keyword or command, or via defaults.

The user interaction in these programs has not been made localizable since many of these programs are
not end user tools.

H<m:J-coded

DATA MANIPULATION

DATA BASE

IMAGE
data base(s)

INDEXED SEQUENTIAL

KSAM
(lIe(8)

SORTING

SORT-MERGE
intrinsics

~~
~

:!
r--------wl~

CHAR. MANIPULATION

NL intrinsiCB
(e.g., NLCOLLATE

NLSCANMOVE)

HP 3000
SUBSYSTEMS

FCOPY, SORT, MERGE,
QUERY, ENTRY

Determine LANGNUM
from UlSer commond

or ke word.•

• Coli NLGETLANG to
estoblish defoult(lS).

USER INTERACTION

SCREENS

VPLUS forms file(s)
w/oppropriote longuoge

or "internotionol"

PROMPTS, MESSAGES

Hard-coded or in
message catalog

(not localized)

USER COMMANDS

\
<;,~
~
~

~r---F-O-RM-A-TS-----'
NL intrinsics

(e.g., NLFMTDATE)

Figure 1- 5. HP Subsystem Utility Program

1-14

,APPLICATION MESSAGE FACILITY 1-______-----'0

The Application Message Facility is a Native Language Support (NLS) tool that provides a program
mer with the flexibility needed to create application catalogs for localized applications. Text such as
prompts, commands) and messages intended for the user's interaction with an application can be
stored in separate ASCII editor files. This allows the programmer to maintain files and localize ap
plications without changing the program code.

The NLS Application Message Facility contains the GENCAT utility program and the CAT intrinsics)
CATOPEN, CATREAD, and CATCLOSE) as shown in Figure 2-1.

APPLICATION
SOURCE
CATALOG

FORMATTED
APPLICATION

CATALOG

CATOPEN
~---

CATREAD
>

CATCLOSE
<

APPLICATION
PROGRAM

Figure 2-1. GENCAT Utility Program

The GENCAT utility creates and maintains message catalogs which meet the NLS requirements for
efficient storage and retrieval of messages. For a comparison of GENCAT and MAKECAT, an MPE
utility which is also used to create and maintain message catalogs, refer to Table 2-2.

ACCESSING APPLICATION CATALOGS

Catalogs formatted with GENCAT can be accessed by applications via the CAT intrinsics:

CATOPEN - Opens a catalog for access by an application.

CATREAD - Retrieves text from a catalog.

CATCLOSE - Closes a catalog.

The NLAPPEND intrinsic can be called to concatenate the language ID number and the catalog file
name before the catalog is opened. Refer to IICATALOG NAMING CONVENTION II in this section
for more information.

The intrinsics are documented in Section IV, IINATIVE LANGUAGE INTRINSICS. II Refer to
Program L in Appendix H for an example of their use.

2-1

Application Message Facility

SOURCE CAT ALOGS

First, the user creates an MPE ASCII file in an editor with an EDIT/3000 compatible format. The
catalog may contain 8-bit characters. The GENCAT program reads the source catalog and creates a
binary formatted catalog which can be accessed by application programs. Calls to the CAT intrinsics
access the formatted catalogs. An internal directory is created in the formatted catalog which ex
pedites accessing the catalog. The text in the formatted catalog is compressed for efficient storage.
The source catalog's record size may vary from 20 words to 128 words. Often, a message is split over
several records.

Figure 2- 2 illustrates the three functions GENCAT performs on an application message catalog:
modifying, formatting and expanding.

DIRECT;VES

A source catalog contains directives which partition information in the message catalog. The three
types of directives include $ to denote a comment line, $SET to mark the beginning of a new set of
messages, and message numbers to indicate messages.

$SET Records

A $SET record initiates a logical grouping of messages. Sets break the catalog into manageable seg
ments containing logical groupings of messages (e.g., one set of messages for prompts, one set for in
structions, one set for error messages).

The format of a $SET record, where xxx is a required number for that set of messages (ranging from
1 to 255) is:

$SET xxx [oomment] $set xxx [oomment].

A $SET record can contain comment as an optional character string. If there is not at least one blank
between xxx and the comment, GENCAT will issue an error message and terminate the formatting.

Set records must begin in column 1. For example, to indicate that set number 1 is being defined:

$SET 1 Set one contains all prompts.

See Figure 2-3 for an example of a $SET record.

2-2

Application f\1essage Facility

GENCAT MENUS

ENTER INDEX OF DESIRED FUNCTION

O. EXIT.

1. HELP.

2. MODIFY SOURCE CATALOG.

.3. FORMAT SOURCE INTO FORMATTED CATALOG.

4. EXPAND FORMATTED CATALOG INTO SOURCE.

1 1 1
ENTER NAME OF CATALOG

TO BE MODIFIED

ENTER NAME OF MAINTENANCE FILE

ENTER INDEX OF MERGE "TYPE

O. DO NOT MERGE.

1. HELP.

2. BY LINE NUMBER.

3. BY SET/MESSAGE NUMBER.

i
SAVE COLLISIONS?

ENTER "YES" OR "NO"

YES

1
~ ENTER NAME OF

NO COLLISION FILE
~(---,I

ENTER NAME OF NEW

SOURCE CATALOG FILE

1
I MODIFYING SOURCE...]

ENTER NAME OF SOURCE FILE

TO BE FORMATIED

1
IFORMATTING... I

ENTER NAME FOR NEW FORMATTED FILE

1
TOTAL NUMBER OF
SETS FORMATIED = __

TOTAL NUMBER OF MESSAGES
FORMAITED =

ENTER NAME OF FORMATTED

CATALOG TO EXPAND

ENTER NAME OF NEW

SOURCE FILE

1
IEXPANDING..•

i
TOTAL NUMBER OF

SETS EXPANDED =

TOTAL NUMBER OF
MESSAGES EXPANDED =__

'-'-__......] - INDICATES

USER INFORMATION DISPLAYED

~--------------------------------,----"~--------'

Figure 2-2. GENCAT Functions

2-3

Application fyfessage Facility

Message Records

Message records consist of a message number followed by the message text. This may be an error mes
sage, prompt, or any text which may change with the language or country where the program will be
use4. Message records:

• Identify message locations within a set.

• Must be in ascending sequence and unique within the set that contains them.

• Do not need to be consecutive.

For example, within a set, one can have messages 1-25, 101, 300-332, and 32766. All of these
message numbers can be used again in another set. The format for a message record where xxxxx, an
integer, is the required message number is:

xxxxx [the text of the message].

Text is an optional character string which, if present, follows the message number. If the text is not
preceded by a blank, GENCAT will replace the character immediately following the message number
with a blank. The user will be informed that a blank has replaced the character. An exception is
made if one of two special characters, "% II or II &, II follow the message number. These characters will
:aot be replaced by a blank. Their meaning is explained in the following section.

Message Record Special Characters

When CATREAD is writing a message to a file, the percent (%) instructs CATREAD to post a carriage
return-line feed before writing the next record. For example, a message in set 4:

3 AN ERROR OCCURRED DURING THE LOADING %
OF THE DATA BASE.

The execution of CATREAD (cat index, 4,3) ; results in a display of:

AN ERROR OCCURRED DURING THE LOADING
OF THE DATA BASE.

The ampersand (&) indicates that the statement is continued on the next line. Message 98 in set 67 is:

98 THE NUMBER OF FILES &
DOES NOT MATCH THE &
SYSTEM'S CALCULATIONS.

The execution of CATREAD (cat index, 67 ,98, •..); results in a display of:

THE NUMBER OF FILES DOES NOT MATCH THE SYSTEM'S CALCULATIONS.

Note the use of blanks as separators preceding the ampersand. Message records must begin in column
1 and may have leading zeros. For example, the format of messag'3 number 3 in some set is:

0003 PLEASE ENTER YOUR NAME.

2-4

Application Message Facility

The tilde (-) is used as a literal character. It instructs CATREAD to treat the character which follows
it as a literal part of the message (even if it is a special character). For example, two tildes in a row
will put one tilde into the message.

The exclamation mark (!) is discussed in lipARAMETER SUBSTITUTION II in this section.

Comment Records

Comments are used throughout the catalog to document sets and messages, and to make them easier to
read. The format of a comment record, where comment is an optional string of characters is:

$[comment] •

A blank between $ and [comment] is necessary only when the comment is a $SET or $DELSET record.

Sample Source Catalog

Notice the directives $, ($SET numbers), message numbers, message comments, and the use of blanks
in the sample source catalog in Figure 2- 3.

$ This catalog is for development only. Messages will be
$ added as needed.
$**
$SET 1 Prompt s
1 ENTER FIRST NAME
2 ENTER LAST NAME
$
$**
$SET 2 Error messages
1 NAME NOT ON DATA BASE
2 ILLEGAL INPUT
95 OPERATION IS %
INCONSISTENT WITH ACCESS TYPE
$

Figure 2- 3. Sample Source Catalog

PARAMETER SUBSTITUTION

Parameter substitution can often be used with messages. An exclamation mark (!) is used within a
message to indicate where a parameter is to be inserted using CATREAD. The user must choose posi
tional or numerical parameter substitution. Mixing these two types within a message is not allowed.

2-5

Application Message Facility

Positional Parameter Substitution

Positional parameter substitution simply means that each of the parameters in the CATREAD parameter
list is to be inserted into the message at each successive II! II. A maximum of 5 parameter substitutions
is allowed in one message. The example in Figure 2-4 will be used to illustrate the use of positional
parameter substitution.

SPL STATEMENT

CATREAD (cat index, 13, 400, error" ,user, term);

PARAMETERS

BYTE ARRAY usor (0:8):="MARY.KSE II

, 0;
BYTE ARRAY term (0: 5) : ="THREE", 0;

Figure 2-4. Positional Parameter Substitution

Message 400 in set 13 is:

400 ILLEGAL INPUT FROM USER! ON TERMINAL NUMBER!

The execution of the SPL statement in Figure 2--4) with the parameters given, results in the following
message:

ILLEGAL INPUT FROM USER MARY.KSE ON TERMINAL THREE.

Numerical Parameter Substitution

Numerical parameters allow the user to decide where the parameters are to be placed within the mes
sage. The exclamation mark (!) is immediately followed by a number in the range 1-5. The example
in Figure 2-5 will be used to illustrate the use of numerical parameter substitution.

SPL STATEMENT

CATREAD (cat index, 7, 4, error",fourstr, fivestr)

PARAMETERS

BYTE ARRAY fourstr (O:4):=IFOUR", 0;
BYTE ARRAY fivestr (O:4):=I FIVE", 0;

Figure 2- 5. Numerical Parameter Substitution

A message in set 7 is:

4 EOF DETECTED AFTER RECORD !1 IN FILE !2

2-6

Application Message Facility

The execution of the SPL statement in Figure 2- 5, with the parameters given, results in the following
message:

EOF DETECTED AFTER RECORD FOUR IN FILE FIVE.

Message 5 in set 7 is:

5 EOF DETECTED AFTER RECORD !2 IN FILE !1

A change in the call results in a different message:

CATREAD (cat index, 7, 5, error",fourstr, fivestr)

Message:

EOF DETECTED AFTER RECORD FIVE IN FILE FOUR.

Mixing numerical and positional parameter substitution characters is not allowed and will be flagged
as an error:

EOF DETECTED AFTER RECORD! IN FILE !1.

Numeric parameter substitution can be used only with GENCAT and the CATREAD intrinsic.
CATREAD interprets the character tilde (-) as a literal character. If a character is preceded by a tilde
(-), that character is taken literally. For example, if set 7 also contains the following message:

6 ERROR! IN INPUT""'!

When the SPL statement, CATREAD (cat index, 7,6,error" ,seventeen), is executed, the result
ing output is:

ERROR 17 IN INPUT!

The second exclamation mark would not be used for parameter substitution because it is preceded by a
II-II

CATALOG NAMING CONVE~~TION

Catalogs are MPE files accessed by application programs via the CAT intrinsics. An application that
has been localized into more than one language will typically have a separate message catalog for each
language. A naming convention facilitates using different localized versions of files required by an
application program.

A catalog file name can be identified with a maximum of five characters. Each native language sup
ported by NLS has a language ID number (langnum). A three-digit language ID number can be ap
pended to the catalog file name to identify each localized catalog.

For example, an original unlocalized message catalog is APCATOOO. The message catalog in German
would be APCAT008. A Spanish version would be APCAT012. Refer to Appendix B, IISUPPORTED
LANGUAGES AND CHARACTER SETS, II for a complete list of native languages and their cor
responding language ID numbers. vVhen the language 10 number has been selected, the NLAPPEND
intrinsic may be used to form the catalog file name. At run time the application program is
responsible for determining which catalog to open with the CATOPEN intrinsic.

2-7

Application Message Facility

MAINTAINING A MESSAGE CATALOG

Maintenance functions can include addition, deletion, and modification of records in the source file.
The input for merging consists of two files, the source file and the maintenance file. The main
tenance file is merged against the source file, either by line numbers or by $SET and message num
bers. If the user does not know the line numbers, the $SET and message numbers can be used success
fully. The context of the $SET and message records in the maintenance file determines the type of
maintenance performed on the source. Changes made to a source during a maintenance merge may be
kept in a collision file named by the user. Collision files are created at the option of the user. Figure
2-6 illustrates how the collision file may be merged against the modified source catalog to re-create
the original source.

RELATIONSHIP OF COLLISION FILE

TO SOURCE CATALOG FILE

MAINTENANCE SOURCE

COLLISION FILE

o
,r--G-E-N-CA-r-' / NEW SOURCE

~o
COLLISION FILE

MODIFY 0
'-G-E-N-CA-r-I /ORIGINAL SOURCE

~o
MAINTENANCE FILE

Figure 2- 6. Collision Files

2-8

Application Message Facility

Merging Maintenance Files by Line Numbers

Merging a maintenance file against a source catalog file by line numbers may include modifying,
adding or deleting records.

MODIFYING A RECORD. If the maintenance file's line number is common to the source file's, the
source's record is overwritten by the maintenance record.

ADDING A RECORD. If the line number in the maintenance file does not exist in the source, the
record represented by that line number from the maintenance file is added to the source at that line
number.

DELETING A RECORD. The directives $EDIT and $EDIT VOID=XXXXXXXX are used to delete
records from the source file. If $EDIT VOl D is used, the records beginning with and including the
record number of the $EDIT VOl D record to record XXXXXXXX are deleted. The line number
XXXXXXXX represents the line number XXXXX. XXX of the source file.

Merging Maintenance Files by $SET and Message Number

When GENCAT reads a $SET record from the maintenance file, all records following the $SET record
are considered to be message records or comment records within that set until GENCAT reads another
$SET record or exhausts the maintenance file. Set numbers must be in ascending order, and all mes
sage numbers must be in ascending order within each set.

The first record GENCAT expects to read from the maintenance file is a $SET, $DELSET (Refer to
liTHE $DELSET DIRECTIVE II discussion in this section.), or a comment record. GENCAT will con
tinue to read and evaluate the maintenance file records until there is an error or the maintenance file
is exhausted. After GENCAT reads a maintenance file record, it is evaluated according to a set of
rules, and a copy of the source is modified as necessary. The following rules for evaluation apply to
set numbers and message numbers.

SET NUMBERS. New message numbers and set numbers are added to the source catalog file. All
message numbers and messages following this set record are assumed to be new, and will be added to
the source file.

Set numbers, if already present, signify changes to the set of messages currently in the source catalog.
All message numbers and messages following this set are to be evaluated according to the rules for
message nurnbers.

Set numbers in a $DELSET record mean that the entire set of messages in the source is to be deleted.

MESSAGE NUMBERS. New message numbers within a $SET are added to the new source. Message
numbers that are already present are deleted if no text follows the message number. If new text is
supplied, the existing message will be updated.

2-9

Application Message Facility

COMMENT RECORDS. Comment records are written to the new source file as they are
encountered, either in the source or the maintenance file.

THE $DELSET DIRECTIVE. The $DELSET directive is allowed only in the maintenance file. It in
structs GENCAT to delete the entire set of messages denoted by xxx. Optional text may follow xxx,
providing it is preceded by at least one blank. The $DELSET directive is not written to the new file.

$DELSET records must begin in column 1. The format of a $DEL.SET record, where xxx is an existing
set number in the source catalog is:

$DELSET xxx [text].

The directives $SET and $DELSET may be either in uppercase or lowercase ($set and $de 1set).
Mixed cases are not allowed (e.g., $Set or $de LseT).

User Dialogue

The user may modify a source file, format a source catalog, or expand a formatted catalog as shown
in Figure 2-7. The process of maintaining a GENCAT source file is shown in Figure 2- 8.

To modify a source file, enter:

:RUN GENCAT.PUB.SYS

HP32414A.OO.OO GENCAT/3000 (C) HEWLETT-PACKARD., 1983

ENTER INDEX OF DESIRED FUNCTION

O. EXIT.
1. HELP.
2. MODIFY SOURCE CATALOG.
3. FORMAT SOURCE INTO FORMATTED CATALOG.
4. EXPAND FORMATTED CATALOG INTO SOURCE.

»2

ENTER NAME OF CATALOG SOURCE FILE TO BE MODIFIED

>>APCATOOO

ENTER NAME OF MAINTENANCE FILE

»CATMANNT

'------,---,.._----------

Figure 2-7. Dialogue For fv10difying A Source File (1 of 2)

2-10

Application Message Facility

If the name of a nonexistent file is entered, an error message is displayed.

NONEXISTENT PERMANENT FILE (FSERR 52)

EXPECTED AN EXISTENT FILE AS INPUT (GCERR 15)

The prompt will then be repeated:

ENTER NAME OF MAINTENANCE FILE

»CATMAINT

ENTER INDEX OF MERGE TYPE

o. DO NOT MERGE.
1. HELP.
2. BY LINE NUMBER.
3. BY SET/MESSAGE NUMBER.

»3

Entering an "0" or [RETURNl aborts the maintenance function and returns to the main menu.

The user has the option of saving all the modifications resulting frOln the merge in a collision
file.

SAVE COLLISIONS? ENTER "YES" OR "NO"

»YES

ENTER NAME OF COLLISION FILE

»COLCAT

If the name of an existing file is entered, the prompt is repeated. A f\BIIQO.B.® continues the
merging without saving the collisions.

GENCAT merges the source and maintenance files into a temporary file, and will prompt for
the name of a permanent file:

ENTER NAME OF NEW SOURCE CATALOG FILE

»NEWCAT

This prompt is repeated until a unique file name or a f\BIIQO.B.® is entered. The temporary file
is copied to the new permanent file. If a ~qETDR}\j) is entered the merging is aborted.

L...- ~ ___'

Figure 2-7. Dialogue For Modifying A Source File (2 of 2)

2-11

o
SOURCE CATALOG ~LE~

FIXED ASCII.
RECORD SIZE - 408 - > 2568

Application Message Facility

IMAINTAINING I

o
/

NEW SOURCE CATALOG FILE
(MODIFIED SOURCE CATALOG

VIA MAINTENANCE FILE).
FIXED ASCII.

I I
SAME RECORD SIZE AS

GENCAT SOURCE CATALOG FILE.

MAINTENANCE FlLE.
FIXED ASCII.

SAME RECORD SIZE AS
SOURCE CATALOG FILE

COLLISION FlLE
(OPTIONAL FILE - ON
DEMAND FROM USER).

FIXED ASCII.
SAME RECORD SIZE AS
SOURCE CATALOG FILE.

Figure 2- 8. Maintaining A GENCAT Source File

FORMATTING A SOURCE CAT AlOG

It is necessary to format the source catalogs so the CAT intrinsics can access them. GENCAT format
ted files are binary, and cannot be edited. Formatting compacts files and creates a directory, which
saves disc space and reduces access time.

During the formatting process, GENCAT verifies that:

e All directives are legal and used correctly.

8 Set numbers are in ascending order.

Q Set numbers are greater than 0 and less than or equal to 2S 5.

CD Message numbers are in ascending order within each set.

o Message numbel'S are greater than 0 and less than or equal to 3:2766.

• Continuation and concatenation characters are correct.

• Parameter substitution characters are used correctly.

2-12

Application Message Facility

The dialogue listed in Figure 2-9 is an example of formatting a source catalog.

:RUN GENCAT.PUB.SYS

HP32414A.OO.OO GENCAT/3000 (C) HEWLETT-PACKARD., 1983

ENTER INDEX OF DESIRED FUNCTION

O. EXIT.
1. HELP.
2. MODIFY SOURCE CATALOG.
3. FORMAT SOURCE INTO FORMATTED CATALOG.
4. EXPAND FORMATTED CATALOG INTO SOURCE.

»3

ENTER NAME OF SOURCE FILE TO BE FORMATTED

»NEWCAT

FORMATTI NG ...

ENTER NAME FOR NEW FORMATTED FILE

»FORMCAT

TOTAL NUMBER OF SET FORMATTED = 6
TOTAL NUMBER OF MESSAGES FORMATTED = 167

FORMATTING SUCCESSFUL

Figure 2-9. Source Catalog Formatting Dialogue

2-13

Application Message Facility

EXPANDING A FORMATTED CATALOG

GENCAT contains a function to re-create the original source catalog file by expanding the formatted
catalog. The result is a new source catalog that can be edited) then converted to a formatted catalog.
Figure 2-10 is an example of the user dialogue for expanding a formatted catalog. Figure 2-11 il
lustrates the relationship of formatted files to expanded files.

:RUN GENCAT.PUB.SYS

HP32414A.OO.OO GENCAT/3000 (C) HEWLETT-PACKARD., 1983

ENTER INDEX OF DESIRED FUNCTION

O. EXIT.
1. HELP.
2. MODIFY SOURCE CATALOG.
3. FORMAT SOURCE INTO FORMATTED CATALOG.
4. EXPAND FORMATTED CATALOG INTO SOURCE.

»4

ENTER NAME OF FORMATTED CATALOG TO EXPAND

»FORMCAT

ENTER NAME OF NEW SOURCE FILE

»NCATSOUR

EXPANDI NG ...

TOTAL NUMBER OF SETS EXPANDED = 6
TOTAL NUMBER OF MESSAGES EXPANDED = 167

EXPANSION SUCCESSFULLY COMPLETED

Figure 2-10. Expanding a Formatted Catalog

2-14

Application Message Facility

RELATIONSHIP OF FORMATTED FILES
TO EXPANDED FILES

IFORMATIING I0-7
1

GENCAT I~0
SOURCE CATALOG FILE

FIXED ASCII

RECORD SIZE = 408 -> 2568

FORMAITED CATALOG FILE
FIXED BINARY

RECORD ~ZE = 128 W

FILECODE = 1230

FORMATTED CATALOG FILE
FIXED BINARY

RECORD SIZE = 128W

FILECODE = 1230

NOTE:

FIXED ASCII

SOURCE CATALOG FILE

SAME RECORD SIZE AS
ORIGINAL SOURCE

CATALOG FILE
THE EXPANDED SOURCE FILE IS NOT AN EXACT
DUPLICATE OF THE ORIGINAL SOURCE FILE.
1. THE EXPANDED SOURCE WILL NOT CONTAIN ANY COMMENTS.
2. THE EXPANDED CATALOG IS AN UNNUMBERED FILE EVEN

IF THE ORIGINAL SOURCE IS A NUMBERED FILE.

Figure 2-11.. Formatting/Expanding GENCAT Source Files

GENCAT JeWs

GENCAT sets one of three specific Job Control Words (JCWs) at the conclusion of a maintenance)
formatting or expansion process: GCl\1AINT) GCFORMAT) or GCEXPAND. If the process com
pletes successfully) the appropriate JCW is set to zero (e.g.) GCFORMAT is set to FATAL if a format
failed). If the process terminates unsuccessfully) the JCW is set to FATAL.

GENCAT IN BATCH MODE

GENCAT can be invoked interactively or in batch mode. GENCAT will abort a job in batch mode if
an error is encountered while formatting) expanding) or modifying.

2-15

Application Message Facility

GENCAT HELP FACILITY

GENCAT has an online HELP facility. The user can enter the index number for HELP from the
menu or a II? II in response to any prompt that does not have a menu selection for HELP. See Figure
2-12 for an example of the GENCAT HELP Facility dialogue.

:RUN GENCAT.PUB.SYS

HP32414A.OO.OO GENCAT/3000 (C) HEWLETT-PACKARD., 1983

ENTER INDEX OF DESIRED FUNCTION

o. EXIT.
1. HELP.
2. MODIFY SOURCE CATALOG.
3. FORMAT SOURCE INTO FORMATTED CATALOG.
4. EXPAND FORMATTED CATALOG INTO SOURCE.

»1

This is the driver menu for GENCAT.

Input consists of a numeric index, 0 through 4. Each index denotes
a function for GENCAT to perform.

o - Will exit GENCAT and return you to MPE.
1 - Will display this message.
2 - Will direct GENCAT to begin the maintenance function.
3 - Will direct GENCAT to begin the formatting function.
4 - Will direct GENCAT to begin the expansion function.

For each prompt, an input of an index for HELP or a "?" (depending
upon the type of prompt) will display instruction for that prompt.

Briefly, formatting is the creating of an internal representation of a
source message catalog into a form used by the CATxxxx intrinsics.
Maintenance is modifying the source message catalog by merging a
maintenance file against it. The merge may be by line numbers
set and message numbers. Expansion is converting the formatted
file back into a source message catalog.

A carriage return exits GENCAT and returns to MPE.

Figure 2-12. GENCAT HELP Facility Dialogue

2-16

Application Message Facility

ERROR MESSAGES

GENCAT error messages are listed in Table 2-1.

Table 2-1. GENCAT Error Messages

#

2

3

4

5

6

8

MESSAGE

FREAD ERROR ON
SOURCE FILE.

INPUT FILE MUST HAVE
AT LEAST ONE RECORD.

INPUT FILE MUST
CONTAIN FIXED LENGTH
RECORDS ONLY.

INPUT FILE MUST BE
USASCII FILE ONLY.

INPUT FILE RECORD
SIZE MUST BE BETWEEN
40 AND 256 BYTES.

SET NUMBERS MUST BE
BETWEEN 1 AND 255.

SET NUMBERS MUST BE
IN ASCENDING
SEQUENCE.

MEANING

A failure by FREAD when
reading a source m.essage
catalog.

The file has an EOF of
zero (0).

File does not have a fixed
record length.

Source and maintenance
files must have records
that are in USASCII
format.

The record size of a source
or maintenance file is
greater than 256 bytes
(128 words) or less than
40 bytes (20 words).

A set number in a main
tenance or source file is
not greater than or equal
to 1, or not less than or
equal to 255. The set
number may be negative
or it may not be numeric.

A set number is less than
or equal to the previous
set number in the source
file. Error can be detec
ted at format time or
during amaintenance
function.

ACTION

Recreate the source mes
sage catalog.

Place at least one record
in the file.

Create the file with a
fixed record length.

Create the source and
maintenance files with
USASCII format.

Create a source and main
tenance file with a record
size greater or equal to 40
bytes or less than or equal
to 256 bytes. (Note that
this record length includes
any line nurnbers in the
file.)

Change set number to a
value between 1 and 255
inclusive.

Change numbers to strict
ascending sequence.

L..-__--L. --L- --I... ---'

2-17

Application Message Facility

Table 2-1. GENCAT Error Messages (Continued)

#

9

10

11

12

13

14

15

MESSAGE

MESSAGE NUMBERS MUST
BE BETWEEN 1 AND
32766.

MESSAGES MUST EITHER
CONTAIN ALL NUMBERED
OR ALL POSITIONAL
PARAMETER
SUBSTITUTION
CHARACTERS. MIXES
NOT ALLOWED.

MESSAGE NUMBERS MUST
BE IN ASCENDING
SEQUENCE.

MESSAGE CONTAINS
NON-BLANK CHARACTER
IMMEDIATELY
FOLLOWING MESSAGE
NUMBER. NON-BLANK
CHARACTER ASSUMED TO
BE A BLANK.

EXPECTED ONE OF THE
FOLLOWING INPUTS: 0,
1, 2, 3, 4, OR A
RETURN.

EXPECTED ONE OF THE
FOLLOWING INPUTS: 0,
1, 2, 3, OR A
RETURN.

EXPECTED AN EXISTENT
FILE AS INPUT.

MEANING

A message number value
is not between 1 and
32766 inclusive.

During the scan of the
message, GENCAT detec
ted a mix of parameter
substitution characters.
For example, a message
contained numeric sub
stitution characters as
well as positional substi
tution characters.

A message number was
processed that is less than
or equal to the previous
message number. The
message numbers within a
set are not in ascending
sequence.

GENCAT detected a non
blank character im
mediately following the
message number in ames
sage. GENCAT replaces
this character with a
blank.

GENCAT detected an in
correct input in response
to the first menu (which
prompts for a function).

GENCAT detected an in
correct input in response
to the menu prompting
for the type of merging it
is to perform.

The file does not exist on
the system.

2-18

ACTION

Change message number
value to a value that is
between 1 and 32766
inclusive.

Change the parameter
substitution characters
either to all numeric sub
stitution or all positional
substitution characters.
(Note that this is for each
message only.)

Arrange the messages
within the set so that
their numbers are in strict
ascending order.

Insert a blank between the
message nurnber and the
message text.

Respond only with 0, 1,
2, 3, 4, or a (REfORNJ.

Respond only with 0, 1,
2, 3, or a l.BllldE3:t:D.

Either create the file or
input the name of a file
that does exist on the
system.

Application Message Facility

Table 2-1. GENCAT Error Messages (Continued)

#

16

17

18

20

21

22

23

MESSAGE

EXPECTED A UNIQUE,
NON-EXISTENT FILE
NAME AS INPUT.

EXPECTED A RESPONSE
OF "YES" OR "NO" AS
INPUT.

INPUT FILES MUST
HAVE EQUAL RECORD
SIZES FOR THIS
FUNCTION.

THE CONSTRUCT OF
$DELSET IS NOT
ALLOWED IN THE
SOURCE.

ONLY FIVE (5)
POSITIONAL PARAMETER
SUBSTITUTIONS
ALLOWED PER MESSAGE.

MAINTENANCE FILE
MUST BE NUMBERED FOR
LINE-NUMBER MERGES.

SOURCE FILE MUST BE
NUMBERED FOR
LINE-NUMBER MERGES.

MEANING

The file already exists on
the system. The name of
the file should be one that
does not exist on the
system.

GENCAT requires a
response of either II YES, II

"yes ," "NO, II or "no " to
the prompt of II SAVE
COLLISIONS? Enter
"YES" or "NO. II

Source and maintenance
files must have equal
record sizes if the main
tenance file is to modify
the source file.

The construct $DELSET)
which may be used in a
maintenance file, was
detected in a source file
during amaintenance
function.

GENCAT detected more
than five (5) parameter
substitution characters in
one message. Up to five
parameter substitution
characters are allowed per
message.

The maintenance file is an
unnumbered file. The
maintenance file must be
a numbered file if it is to
be us,~d in a line-number
merge.

The source file is an un
numbered file. The
source file must be a
numbered file if it is to be
used in a line-number
merge.

ACTION

Purge the file or input the
name of a file that does
not exist on the system.

Respond with II YES, II

II yes , II "NO, II or "no ."

Create a maintenance file
that has a record size
equal to the record size of
the source file.

Remove $DELSET con
struct from the source
file.

Only five (5) or fewer
parameter substitution
characters per message.

Numbel' the maintenance
file if the file is to be used
in a line-number merge.

Number the source file if
the file is to be used in a
line-number merge.

L.--__--I.. --J-~--------.-._--L --'

2-19

Application Message Facility

Table 2-1. GENCAT Error Message (Continued)

MESSAGE MEANING ACTION

24 SOURCE FILE CANNOT During a line-number Remove all occurrences of
CONTAIN FORMS OF merge, GENCAT ex- $EDIT and $EDIT VOl D=
$EDIT. amines the source file for from the source file.

$EDIT and $EDIT VOl D=
constructs. These are not
allowed since if collision
files are to be used, an
ambiguity would exist if
the $EDIT and $EDIT
VO I D= were left in the
source file.

25 SEQUENCE NUMBER IN The value following the Reevaluate this value and
$EDIT VOID RECORD $EDIT VOl D= may have a correct it, as it represents
CONTAINS TOO MANY maximum of eight place a line number.
DIGITS. EIGHT IS holders.
THE MAXIMUM.

26 FILE IS NOT A GENCAT can only ex- Format the file using
FORMATTED FILE. pand formatted catalogs GENCAT.

(i.e., files formatted by
GENCAT).

27 SET RECORD IS A message was found Place the message in a set
REQUIRED BEFORE A before set number was or place a set number
MESSAGE RECORD IS defined. before the message.
FORMATTED.

28 VALUE IN RIGHT BYTE Your message contains For messages 28 through
OF KANJI CHARACTER special escape sequences 32, consult your HP rep-
IS INVALID. provided by HP that are resentative, or remove all

used for research and occurrences of the form
development activities. "esc$<terminator> II or
These special escape se- II ESC (<terminator> II from
quences are not supported your message catalog.
by HP and HP assumes no Where ESC is the escape
responsibility for their character, <terminator> is
use. II@II or "A" through IIZII.

29 SCAN COMPLETED WITH See Message Number 28. See Message Nurnbel' 28.
NO CLOSING KANJI
ESCAPE SEQUENCE.
EXPECTS A CLOSING
KANJI ESCAPE
SEQUENCE TO
TERMINATE KANJI
CHARACTER SEQUENCE.

2-20

Application Message Facility

Table 2-1. GENCAT Error Messages (Continued)

MESSAGE MEANING ACTION

30 INCOMPLETE KANJI See Message Number 28. See Message Nurnber 28.
CLOSING ESCAPE
SEQUENCE DETECTED.

31 VALUE IN LEFT-BYTE See Message Number 28. See Message Number 28.
OF KANJI CHARACTER
IS INVALID.

32 VALUE IN PARAMETER See Message Number 28. See Message Number 28.
SECTION OF KANJI
ESCAPE SEQUENCE IS
INVALID. EXPECTED A
STRING OF DIGITS.

33 BLANK RECORDS THAT GENCAT detected a Remove the record from
ARE NOT CONTINUATION blank record in the source the source file, or modify
RECORDS ARE NOT catalog and this record is the record immediately
ALLOWED. a continuation record for before it to end with a

the previous record. 11% II or a II & II character.

2-21

Application Message Facility

Table 2-2. MAKECAT/GENCAT Comparison

FEATURES

Access Methods

Formatting

Function

Input

Literal Character

Messages

Numerical
Parameters

Output

Processing

MAKECAT

The FOPEN, GENMESSAGE, and
FCLOSE intrinsics are used to
open, access, and close formatted
MAKECAT catalogs.

Places an internal directory in the
file's user labels. The file is for
matted in place without creating
a new file.

Converts or formats HELP and
message files into catalogs.
Installs system message catalog,
using the BU I LD entry point.

The name of a file must be en
tered in a file equation. : FILE
INPUT=<your file>.

Not supported.

The message number range per set
is 1-255.

Not supported.

Saves the formatted file as a tem
porary file with the name
CATALOG.

Formats more quickly than
GENCAT.

GENCAT

CATOPEN, CATREAD, and
CATCLOSE intrinsics open) access
and close formatted GENCAT
catalogs.

A source message file is formatted
into another file, leaving the
original source intact. The
application uses the formatted file.
The original source file can be
purged. The formatted file can be
expanded to restore the original
source file.

Formats application message
catalogs. Provides maintenance
facility to modify existing source
catalogs. Provides capability of ex
panding a formatted file back into
the original source file.

GENCAT prompts the user for the
name of a file.

The tilde II '"" II serves as a Iiteral
character, causing the character
which immediately follows it to be
treated as text.

The message nurnber range per set
is 1-32766.

Up to 5 numerical parameters can
be contained in a message.

GENCAT prompts the user for the
name of the formatted file. The
file is saved as a permanent file.

GENCAT verifies each message for
correct parameter substitution
characters. Manipulates two tem
porary files while formatting the
source file.

1...-, -1.-1-.. -__--1

2-22

Application Message Facility

Table 2- 2. MAKECAT/GENCAT Comparison (Continued)

FEATURES

Record Format

Sets

User Interface

MAKECAT

Accepts source files of any size, but
the file it saves has a record size of
80 bytes. The system message
catalog is fixed binary. An appli
cation catalog is fixed ASCII.

The set directive is $SET. The set
number range for a catalog is 1-63.

The user must know which entry
points to use and when to use them.
Files are input via file equations.
Error messages require user
interpretation.

GENCAT

Accepts source catalog files with
record sizes from 40 to 256 bytes.
The formatted file has a record size
of 128 words, and is fixed binary.
When a formatted catalog is ex
panded into a source catalog, the
new source catalog is fixed ASCII
with a record size identical to the
original source catalog.

When maintenance is being per
formed, both the source file and
the maintenance file must be of
equal lengths in fixed ASCII. The
resulting source file, and collision
file, if specified will be fixed
ASCII, and their record sizes will
equal the record size of the original
source file.

The set directive can be $SET or
$set. The set number range for a
source catalog is 1- 255.

GENCAT is menu-driven. The
menus originate from a catalog.
Each prompt has HELP text as
sociated with it. Error messages are
self -explanatory.

"-1- ..,

2-23/2-24

NLS IN MPE SUBSYSTEMS 1-
~ DD
Native Language Support (NLS) supplies the applications designer with the tools to support native
language data and local custom formats. NLS provides support features in FCOPY, IMAGE, KSAM,
QUERY, SORT-MERGE and VPLUS. COBOLlI access to native language collating sequences is in
cluded in the SORT-MERGE subsection discussion.

The emphasis of NLS in the subsystems is on providing the end-user, rather than the application
designer, with local language data and formats. User interfaces (prompts, commands and messages)
of the subsystem utility programs, e.g., FORMSPEC or D.BUTIL, are not localized.

These notes on the subsystems are intended to be used as addenda to the subsystems manuals. Refer to
the SORT-MERGE, KSAM,FCOPY, QUERY, IMAGE and VPLUS manuals for complete documen
tation on these subsystems. The format of each subsystems manual has been maintained as much as
possible in these updates.

3-1

NLS In MPE Subsystems

FCOPY

Native Language Support (NLS) features in FCOPY can be accessed by adding a LANG= parameter to
the existing options.

:FCOPY FROM=A; TO=B; LANG=GERMAN; UPSHIFT

If the LANG= parameter is omitted, FCOPY fetches the current data language with NLGETLANG (mode
2). If there is none, or if it is NATIVE-3000, FCOPY functions as it did before the introduction of
NLS.

FCOPY Options

The FCOPY options affected by language dependency are character printing, translating, upshifting,
and updating KSAM files.

CHAR OPTION. Character codes not represented by symbols are displayed as periods. The TO= file
can be a line printer, a keyboard display terminal, or an intermediate disc file to be listed at a later
time.

CHAR No LANG= The NATIVE- 3000 processing scheme will be retained.

CHAR LANG= The character definition table associated with the language will be used.
Characters of type 3 (undefined graphic character) and 5 (control code) as
in NLINFO item 12, are replaced by periods. Refer to Section IV,
"NATIVE LANGUAGE INTRINSICS," for more information.

CHARACTER TRANSLATE OPTIONS. These options translate data for ASCII-to-EBCDIC and
EBCDIC-to-ASCII conversions.

EBCDICI N/
EBCDICOUT

Input of the LANG= parameter will result in the translation table associated
with the language being used.

For example, using an EBCDIC-to-ASCII conversion table, PCOPY con
verts data from German EBCDIC to ROMAN 8:

>FROM=MYGEBCFL; TO: MYROM8FL; LANG=GERMAN; EBCDICIN
EOF FOUND IN FROMFILE AFTER RECORD 29

30 RECORDS PROCESSED *** 0 ERRORS

3-2

NLS In MPE Subsystems

UPSHIFT OPTION. The UPSH IFT option converts lowercase alphabetic characters of supported
native languages to their corresponding uppercase characters as part of the copying operation.

UPSHIFT No LANG= Any character belonging to USASCII or to one of the extensions will be up
shifted as it would have been before the introduction of NLS.

LANG= All characters will be upshifted according to the given language's upshift
definition.

FCOPY AND KSAM FILES. To change the language of an existing file, a new KSAM file must be
built with the new language attribute) and the old file copied into the new. If FeOPY copies an ex
isting KSAM file to a new KSAM file the same language attribute is 'assigned to the new file. The
LANG= option of FCOPY cannot be used to change the language of a KSAM file.

Combined Use Of Options

Using LANG= without another relevant option such as UPSH I FT or EBCD ICIN usually results in a
warnIng message:

«966» WARNING: LANG OPTION NOT RELEVANT

The user can continue without affecting the outcome of the operation. The LANG= option is ignored.

The following combinations are flagged as an error:

BCDICIN;LANG=xxx
BCDICOUT;LANG=xxx
EBCDIKIN;LANG=xxx
EBCDIKOUT;LANG=xxx
KANA;LANG=xxx

For example:

>FROM=DEUTSCH; TO=DANSK; LANG=GERMAN; BCDICIN
*57*SYNTAX ERROR: ILLEGAL COMBINATION OF OPTIONS

o RECORDS PROCESSED *** 1 ERROR

3-3

NLS In MPE Subsystems

Error Messages

Table 3-1 lists the error messages for FCOPY.

Table 3-1. FCOPY Error Messages

ERROR # MESSAGE CAUSE ACTION

960 LANGUAGE NOT The language Verify spelling of lan-
CONFIGURED. requested is not guage name. Ask the

configured on the System Manager to con-
system. figure the language on

the system.

961 NLS NOT CONFIGURED. Nonative languages Ask the System Manager
are configured on to configure the native
the system. language on the system.

966 WARNING: LANG OPTION The LANG option is Check command for
NOT RELEVANT. not relevant to correct options. You

command last are given the choice
entered. whether or not to con-

tinue the operation.

Performance Issues

The implementation of CHAR, UPSHIFT, and EBCDICINjEBCDICOUT using NLS intrinsics and lan
guage definition tables requires additional time for the conversion process.

3-4

NLS In MPE Subsystems

IMAGE

Native Language Support (NLS) in IMAGE enables the user to assign a language attribute to a data
base. This language attribute determines the collating sequence used to insert an entry with a sort
item of type X or U in a sorted chain. It also determines the operation of comparisons for entry level
DBLOCK calls. In order to use NLS with IMAGE, this language attribute will have to be specified by
the user either at schema processing time or through the SET command in DBUTIL.

Utility Programs

NLS features in IMAGE can be requested in four utilities: DBSCHEMA, DBUTIL, DBUNLOAD ,
and DBLOAD.

DBSCHEMA. The optional language attribute will be specified:

BEGIN DATA BASE databasename[,LANGUAGE: language];

The language name or ID number can be used for language. If no LANGUAGE is specified, the data
base will use NATIVE- 3000 as a default.

The names of data items and data sets are restricted to certain USASCII characters. This allows
schemas to be valid internationally, for all Hewlett-Packard 8-bit character sets. It also allows the
sources of application programs which call IMAGE intrinsics to be entered from and displayed on all
8- bit and 7- bit (USASCII) terminals.

DBUTIL. DBUTIL includes the SET, HELP, and SHOW commands:

SET:

HELP:

SHOW:

SET LANGUAGE= language. This command can be issued only on a virgin
ROOT file or an empty data base (where <language> is the language name
or language ID number).

HELP SHOW and HELP SET will display the syntax for SHOW and SET
commands with the LANGUAGE option.

SHOW databasename [/ma i ntlJJord] LANGUAGE. The language attribute
of the data base is displayed.

DBUNLOAD/DBLOAD. DBUNLOAD copies the data to specially formatted tapes or disc volumes.
The language ID number of the data base is stored along with the data.

DBLOAD warns the user who tries to load data when the language attribute of the data base on disc
and the data base on tape are incompatible:

WARNING: THE LANGUAGE OF THE DATA BASE IS DIFFERENT FROM THE LANGUAGE
FOUND ON THE DBLOAD MEDIA.

3-5

NLS In MPE Subsystems

If the user is running DBLOAD in a session, the user may choose to continue:

CONTINUE DBLOAD OPERATION? (YIN)

In case of a job execution of DBLOAD, or a negative answer CI Nil) to the previous question, the
DBLOAD operation is prematurely terminated.

Intrinsics

The language attribute of the IMAGE data base enables the IMAGE intrinsics to utilize native lan
guage features .

nnOPEN. OBOPEN checks the language attribute of the data base. When the language attribute of
the data base is not supported by the current configuration of the system, an error code of -200 is
returned:

DATA BASE LANGUAGE NOT SYSTEM SUPPORTED.

DBPUT. The position of a new entry with a type X or U item in a sorted chain is determined accord
ing to the collating sequence of the language attribute of the data base.

If the data base language attribute is NATIVE- 3000, the insertion of a new entry in the sorted chain
is determined by the result of a BYTE COMPARE between the key of the new record and the keys of
the entries already in the chain.

If the data base has a language attribute other than NATIVE-3000, the collating sequence definition
of the native language is used via a system version of the NLCOLLATE intrinsic to determine where to
insert the new entry.

DBINFO. OBI NFO provides additional information about the language attribute of the data base:

Mode: 901

Purpose: Obtain language attribute of the data base.

Qualifier: Ignored

Buffer Array Contents: Word 1 contains the language ID number .

DBLOCK. If a lock item is of type U or X, and a lock specifies an inequality (range), the collating
sequence for the language of the data base will be used.

3-6

NLS In MPE Subsystems

Changing The Language Attribute Of An IMAGE Data Base

This change cannot be done with a single command. Once data has been stored in an IMAGE data
base with a native language attribute, changing the language attribute requires reorganizing data
along any sorted chains according to the collating sequence of the new language.

The procedure is:

1. DBUNLOAD the data base.

2. Purge the data base using PURGE in DBUTIL.

3. Modify the schema with the language attribute set by the LANGUAGE: parameter and create a
new root file with the schema processor.

4. Create the data base using CREATE in DBUTIL.

5. Run DBLOAD in session mode. A warning message is issued because the language has been
changed. A prompt is displayed:

CONTINUE DBLOAD OPERATION? (Y/N)

Enter lIyll to complete the change of the language attribute.

NOTE]

All IMAGE data bases created before NLS are con
sidered to have NATIVE- 3000 as a language attribute.

Error Messages

The three types of error messages used in IMAGE are listed in the following tables. Table 3-2 lists
Utility Program Conditional Messages) Table 3- 3 lists Library Procedure Calling Errors, and Table
3-4 lists Schema Syntax Errors.

3-7

NLS In MPE Subsystems

Table 3-2. IMAGE Utility Program Conditional Messages

MESSAGE

DATA BASE LANGUAGE
NOT SYSTEM
SUPPORTED.

ERROR READING ROOT
FILE RECORD.

ERROR WRITING ROOT
FILE RECORD.

INVALID LANGUAGE.

LANGUAGE MUST NOT BE
LONGER THAN 16
CHARACTERS.

LANGUAGE NOT
SUPPORTED.

NLINFO FAILURE.

NLS RELATED ERROR.

WARNING: THE
LANGUAGE OF THE DATA
BASE IS DIFFERENT
FROM THE LANGUAGE
FOUND ON THE DBLOAD
MEDIA.

MEANING

Language of the data base is not
currently configured on your
system.

DBUTIL is unable to read a root
file record.

DBUTIL has detected an error
while writing a root file record.

Language name or number contains
invalid characters.

Language name is too long and)
therefore) must be incorrect.

The language specified is either not
supported on your system or is not a
valid language name or number.

An error was returned by MPE
NLS.

An error was returned by MPE NLS
on a DBOPEN on the data base.

User has changed the language at
tribute of the data base between
DBUNLOAD and DELOAD.
DBLOAD wants the user to be
aware of potential differences in
sorted chains of the collating se
quence of the two languages (the
language of the data base on disc
and on tape) are different. In ses
sion mode the questIOn IICONTI NUE
DBLOAD OPERAT I ON? II is asked.
In job mode) DBLOAD will ter
minate execution.

3-8

ACTION

Ask the System Manager
to configure the native
language on your system)
or provide a valid
language.

Contact your Hewlett
Packard support
representative.

Contact your Hewlett
Packard support
representative.

Retype the correct lan
guage name.

Retype the correct lan
guage name.

Contact the System
Manager for configura
tion of that language) or
provide a valid language.

Contact your Hewlett
Packard support
representative.

Contact your Hewlett
Packard support
representative.

After noting the informa
tion returned by
DBLOAD) and the result
on eventual sorted chains
in the data base) proceed
with the operation by
answering IIYES. II

Table 3-3. IMAGE Library Procedure Calling Errors

NLS In MPE Subsystems

eCL CONDITION MEANING ACTION

-200 DATA BASE LANGUAGE DBOPEN attempted to open Ask the System Manager
NOT SYSTEM the data base and found that to configure the lan-
SUPPORTED. the language of the data base guage on your system.

is not currently configured.
The collating sequence of the
language is unavailable ;
DBOPEN cannot open the data
base.

-201 NATIVE LANGUAGE NLS internal structures have Ask the System Manager
SUPPORT NOT not been built at system to install NLS.
INSTALLED. startup. The collating se-

quence table of the language
of the data base is unavail-
able; DBOPEN cannot open the
data base.

-202 MPE NATIVE LANGUAGE The error number given was Ask the System Manager
SUPPORT ERROR #1 returned by MPE NLS on a to install NLS.
RETURNED BY NLINFO. NLI NFO call in DBOPEN.

3-9

NLS In MPE Subsystems

MESSAGE

BAD LANGUAGE.

DATA BASE NAME TOO
LONG.

LANGUAGE EXPECTED.

LANGUAGE NOT
SUPPORTED.

NATIVE LANGUAGE
SUPPORT ERROR.

Table 3-4. IMAGE Schema Syntax Errors

MEANING

Language name contains invalid
characters or language number is
not a valid integer.

Data base name contains more than
six characters.

Schema Processor expected at this
point to find a LANGUAGE statement
after the comma following BEG! N
DATA BASE name statement.

Language specified is not currently
supported on your system or is not a
valid language.

An error was returned by MPE
NLS.

3-10

ACTION

Examine schema to find
incorrect statement, edit,
and run Schema Processor
again.

Examine schema to find
incorrect statement, edit,
and run Schema Processor
again.

Examine schema to find
incorrect statement, edit,
and run Schema Processor
again.

Examine schema to find
incorrect statement, edit,
and run Schema Processor
again.

Contact your Hewlett
Packard support
representative.

NLS In MPE Subsystems

KSAM

The Keyed Sequential Access Method (KSAM) organizes records in a file according to the content of
key fields within each record.

Native Language Support (NLS) in KSAM provides the resources to create files whose keys of type
BYTE are sorted according to a native language collating sequence. All BYTE keys in the file will be
sorted using the collating sequence table of the specified language. Keys, as well as data in the
record, may contain 8-bit character data.

A file language attribute may be supplied when a KSAM file is created to provide a key file organized
according to the collating sequence of a native language. The language attribute is provided when the
file is created. All KSAM files created before NLS was introduced are considered to have
NATIVE- 3000 as a language attribute.

A KSAM file can be built with KSAMUTIL, or programmatically using FOPEN.

Creating KSAM Files With KSAMUTIL

Vv'hen using KSAl\;1UTIL, the parameter LANG=langname or LANG=langnum may be supplied on the
BUILD command, as shown in Figure 3-1. NATIVE-3000 is used as the default language attribute if
no language is specified.

The language specified in the LANG= parameter must be installed on the system at the time the com
mand is issued for KSAMUTIL to build the file. If the language is not installed, an error message is
returned and the file is not builL

Danish is specified as the language in the example. The language attribute of the KSAM file can be
checked by the VER I FY command (mode 3).

3-11

NLS In MPE Subsystems

:RUN KSAMUTIL.PUB.SYS

HP32208A.03.13 THU, FEB 16, 1984, 8:54 AM KSAMUTIL VERSION:A.03.13
>BUILD TEST;REC=-80,3,F,ASCII;KEY=B,1 ,4;KEYFILE=TESTK;LANG=DANISH
>VERIFY

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?i

TEST. LORO.NLS CREATOR=SLORO
FOPTIONS(004005)=KSAM, :FILE, NOCCTL, F, FILENAME, ASCII, PERM
AOPTIONS(000400)=DEFAULT, NOBUF, DEFAULT, NO FLOCK, NO MR, IN
RECSIZE:SUB:TYP:LDNUM:DRT:UN.: CODE:LOGICAL PTR: END OF FILE:FILE LIMIT

-80: 9: 0: 3: 89: 2: 0: 0: 0: 1023
LOG. COUNT:PHYS. COUNT:BLK SZ:EXT SZ:NR EXT: LABELS:LDN: DISCADDR:

0: 0: -240: 43: 8: 0: 3: 00000234251 :

KEY FILE=TESTK KEY FILE DEVICE=4 SIZE= 114 KEYS=
FLAGWORD(000020)=RANDOM PRIMARY, FIRST RECORD=O, PERMANENT
KEY TY LENGTH LOC. D KEY BF LEVEL

1 B 4 1 N 168 1

0: 19.2
0: 8.6

o
o
1
o
o
o
o
o
o
o
o
o

1
DANISH

KEY ACCESS= 47/'84 9:
COUNT START= 47/'84 9:

o END BLK WDS=
80 ACCESSORS=
o FCLOSE
o FREADBYKEY
o FFINDBYKEY
o FREADLABEL
o FFINDN
o FPOINT
o FCONTROL
o FREE RECS
o KEYBLK SPLIT
o SYSTEM FAILURE
o RESET DATE
3 TOTAL KEYS
4 LANG

DATA FILE = TEST VERSION= A.3.13
KEY CREATED= 47/'84 9: 0: 7.6
KEY CHANGED= 47/'84 9: 0: 8.5
DATA RECS = 0 DATA BLOCKS=
DATA BLK SZ= 120 DATA REC SZ=
FOPEN 1 FREAD
FREADDIR 0 FREADC
FREMOVE 0 FSPACE
FGETINFO 1 FGETKEYINFO
FWRITELABEL 0 FCHECK
FWRITE 0 FUPDATE
FLOCK 0 FUN LOCK
FSETMODE 0 FREE KEYBLK
KEYBLK READ 2 KEYBLK WRITTEN
KEY FILE EOF 10 FREE KEY HD
MIN PRIME 0 MAX PRIME
DATA FIXED TRUE DATA B/F
FIRST RECNUM 0 MIN RECSIZE

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?

>E

END OF PROGRAM

Figure 3- 1. KSAM File Test Program

3-12

NLS In MPE Subsystems

Error Messages

KSAMUTIL error messages are listed in Table 3-5.

Table 3-5. KSAMUTIL Error Messages

ERROR # MESSAGE CAUSE ACTION

1070 'LANG' NOT FOLLOWED Improper syntax was Enter language name
BY '=' OR HAS TOO used in specifying the using correct syntax.
MANY PARAMETERS. language name.

1071 ' Ll\NG' LANGUAGE Language name too Enter correct language
VALUE TOO LONG OR long) or missing as a name.
ABSENT. parameter.

1072 'LANG' LANGUAGE The language number Enter correct language
NUMBER VALUE contains invalid number.
INVALID. characters.

1073 'LANG' LANGUAGE NOT Language specified is Ask the System Manager
SUPPORTED. not configured on to configure the lan-

your system, or not a guage on your system.
valid language name
or number.

1074 NATIVE LANGUAGE NLS is not installed on Ask the System Manager
SUPPORT IS NOT your system. to configure the lan-
INSTALLED. guage on your system.

1075 NATIVE LANGUAGE An NLS MPE error Ask the System Manager
SUPPORT LANGUAGE NOT occurred . No lan- to configure the lan-
SUPPORTED. guage table exists for guage on your system.

language specified.

1076 NATIVE LANGUAGE An NLS MPE error Ask the System Manager
SUPPORT RELATED occurred. to configure the lan-
ERROR. guage on your system; if

it is already configured,
contact your Hewlett-
Packard support
representative.

Additional Discussion

Refer to Appendix A of the KSAM Manual (30000-90079) for more information on error messages.

3-13

NLS In MPE Subsystems

Creating KSAM Files Programmatically

The user must provide the langnum when calling FOPEN to build a KSAM file. The langnum is
stored in word 10 of the KSAMPARAM array. The FOPEN intrinsic checks each time a KSAM file is
opened to determine whether the language used is configured on the system. For backward com
patibility reasons bit 11 in the flagword (word 15) must be set to 1 if a language other than 0
(NATIVE- 3000) is used, to denote that word 10 contains valid information.

If bit 11 of flagword is 0, the default language, NATIVE- 3000, is used and the data in word 10 is
ignored. If the language is not configured, condition code CCL is returned by FOPEN.

The file system error messages listed in Table 3- 6 have been included with NLS:

Table 3-6. KSAM File System Error Messages

.... d·J

ERROR # MESSAGE CAUSE ACTION

196 LANGUAGE NOT The language name or Ask the System Manager
SUPPORTED. number specified for to configure the lan-

FOPEN is not con- guage on your system.
figured on your sys-
tem, or is not a valid
language name or
number.

197 NATIVE LANGUAGE An NLS MPE error Contact your Hewlett-
SUPPORT RELATED occurred on a FOPEN Packard support
ERROR. call. representative.

Additional Discussion

Refer to Appendix A in the KSAM Manual (30000-90079) for a complete list of KSAM file system
errors.

Modifying KSAM Files

Every record added or updated in a KSAM file has its new keys of type BYTE inserted in the key file
according to the collating sequence of the language defined for that KSAIYf file. That function is
handled internally by a system version of the NLCOLLATE intrinsic when the language attribute of the
file is different from NATIVE-3000. A new key in a file with a NATIVE-3000 language attribute
will be ordered according to the result of a BYTE COMPARE between the key of the new record and
the keys of the records already in the key file.

3-14

NLS In MPE Subsystems

Generic Keys

NLS collating sequences differ from the USASCII collating, and the differences must be considered
when performing generic key searches. Refer to Appendix C, IICOLLATING IN EUROPEAN
LANGUAGES, II for more information.

The description of a generic key search in a KSAM file with a native language attribute is presented
from an application point of view.

Keys matching a certain generic key may not be in consecutive order in the key file because the keys
are sorted according to a native language collating sequence. The key sequence in Figure 3-3 il
lustrates this with a French KSAM file; keylength is 4, the generic key length is 2. The partial key'
'I aa II appears in non -consecutive keys (with a result of 0 in the last column of the figure). Records
containing partial keys (such as II AA II or II Aa II) are intermixed according to the French collating se
quence. These keys have a result of 1. listed.

If a generic key search is performed in a KSAM file with a language attribute other than
NATIVE- 3000, the application program must determ.ine whether the retrieved record matches the
generic key and, even if it does not, whether subsequent records might still match it.

The codes returned by NLKEYCOMPARE are shown in Figure 3-2.

Refer to Section IV, 'INATIVE LANGUAGE INTRINSICS, 11 for a complete discussion of the
NLKEYCOM PARE intrinsic.

RESULT

o

2

3

MEANING

The retrieved key Inatches the generic key exactly.

The retrieved key does not match the generic key.
Uppercase/lowercase priority or accent priority is different.

The retrieved key value is less than the generic key.
It precedes the designated key in the collating sequence.

The retrieved key is greater than the generic key.

Figure 3-2. Results Returned By The NLKEYCOMPARE Intrinsic

3-15

NLS In MPE Subsystems

The generic key search sequence is:

1. After FFINDBYKEY has been called with >= as relational operator (relop), the logical record
pointer points to the data record indicated by the arrow labeled "Case 2 II •

2. The subsequent FREAD call will retrieve the data record. When the partial key "AA II is com
pared to the generic key "aa II they are found to be different.

This comparison is done by calling the intrinsic NLKEYCOM PARE using the generic key and the
key found in the record. The result returned by NLKEYCOMPARE tells the application whether
the FREAD delivered a record:

a . Before the desired range (result 2).

b. In the desired range with an uppercase/lowercase or accent priority difference
(result 1).

c. With an exact match (result 0).

d. After the desired range (result 3).

3. To get all records whose key match the generic key exactly, the FREAD calls and subsequent
NLKEYCOMPARE calls should continue until a result of 3 is returned.

When performing a generic key search in a KSAM file with a native language attribute other than
NATIVE-3000 use the NLKEYCOMPARE intrinsic to compare partial keys and generic keys.

Refer to programs I and J in Appendix H, "EXAMPLE PROGRAMS, II for generic key searches in
KSAM files with native language attributes.

3-16

NLS In MPE Subsystems

Key length: 4

Language: FRENCH (only USASCII characters are used in the example).

Desired records are all records whose record key starts with lI aa II

(generic key = lI aa II , length = 2).

Pointer
Position

Case 1 --->

Case 2 --->

Case 3 --->

Key NLKEYCOMPARE Result
Value (II aa II Compared to Key)

A 2
a 2

AA 1
Aa 1
aA 1
aa 0
AAA 1
aaa 0
AAAA 1
AAAa 1
AAaa 1
AaAa 1
AaaA 1
Aaaa 1
aAAA 1
aAAa 1
aAaA 1
aaAA 0
aaaA 0
aaaa 0

Baaa 3
baaa 3

Case: 1. FREAD starting at the beginning of the file.

2. FFI NDBYKEY with relational operator =or >= and subsequent
FREAD calls.

3. FF I NDBYKEY with relational operator> and subsequent
FREAD calls.

Key Value: Key values in ascending sequence.

Figure 3- 3. Generic Key Searches

3-17

NLS In MPE Subsystems

Using FCOPY With KSAM Files

COPYING FROM A KSAM FILE TO ANOTHER KSAM FILE. If the KSAM file already exists
(built via KSAMUTIL or programmatically) the keys of type BYTE are put into the new file accord
ing to the collating sequence belonging to the language of the liTO" file. If the file does not exist, a
new file is built with the same language attribute as the "FROM II file.

CHANGING THE LANGUAGE ATTRIBUTE OF A KSAM FILE. FCOPY cannot be used to
change the language attribute of an existing file. KSAMUTIL must be used to build a new KSAM file
with the new language attribute. Then the data can be copied to this file using FCOPY. Keys of type
BYTE in the destination key file will be ordered according to the collating sequence of the new
language.

Moving NLS KSAM Files To Pre-NLS MPE

Restoring a KSAM file with a native language attribute other than NATIVE- 3000 to a system
without NLS installed can result in an incorrect key sequence in the key file for type BYTE keys.
Systems without NLS installed do not recognize any collating sequence except NATIVE-3000.

If a file with a native language attribute other than NATIVE- 3000 is restored, the first FOPEN on
the file will return the same error condition code as if a system failure occurred while the file was
opened. KSAMUTIL should be used to build a new KSAM file. The file with the native language at
tribute is recovered, and FCOPY is used to copy the recovered file into the new KSAM file. See
Figure 3-4 for an example of this recovery procedure.

:RUN KSAMUTIL.PUB.SYS

HP32208A.03.10 SAT, SAT, MAY 26,1984, 12:33 PM KSAMUTIL VERSION:A.03.10
>BUILD NEWDATA;REC=-80,3,F,ASCII;KEY=B,1,4:KEYFILE=NEWKEY
>KEYINFO OLDDATA;RECOVER

>EXIT

:FCOPY FROM=OLDDATA;TO=NEWDATA;KEY=O

:RUN KSAMUTIL.PUB.SYS

HP32208A.03.10 SAT, SAT, MAY 26,1984, 12:33 PM KSAMUTIL VERSION:A.03.10
>PURGE OLDDATA
>~ENAME NEWDATA,OLDDATA
>RENAME NEWKEY,OLDKEY
>EXIT

Figure 3-4. KSAM Recovery Procedure

3-18

NLS In MPE Subsystems

QUERY

QUERY operations are performed by entering commands consisting of key words and parameters.

Native Language Support (NLS) features can be accessed in QUERY to retrieve data which meet
user-defined selection criteria, and to sort data according to native language collating sequences. The
user must know what the native language in QUERY is, how the language is specified, how the lan
guage affects the output, and how to determine which language is being used.

IMAGE data bases have a language attribute that describes the collating sequence used in sorted
chains and locking. This language attribute does not affect QUERY operation.

Although QUERY commands are in English, the user can expect the output data to be sorted and
formatted according to the QUERY user's language. The language of the data base may determine
the data sequence while using QUERY passively for data retrieval (F I NO). When data is being sorted
or formatted by QUERY, the user's language will determine the ordering and formatting of the data.

For example, in a French data base with a QUERY user's language of Danish, data items in a sorted
chain might be retrieved according to the French collating sequence; but the sorting or formatting is
done according to Danish criteria.

The user can specify the QUERY user's language by:

a Using a QUERY command:

>LANGUAGE = langnum or >LANGUAGE=langname. Default is NLUSERLANG.

• Using an MPE command:

:SETJew NLUSERLANG = langnum. Default is NATIVE-3000.

For example, if the user's language is French, the QUERY command is:

>LANGUAGE = 7
or

>LANGUAGE = FRENCH

Or the MPE Job Control Word NLUSERLANG may be used: : SETJCW NLUSERLANG=7.

The >LANGUAGE= command always overrides NLUSERLANG. If neither option is used to specify the
user's language, QUERY assumes LANGUAGE=O (NATIVE- 3000). NATIVE- 3000 is the default,
which ensures backward compatibility. When the user's language is NATIVE- 3000, QUERY per
forms as it did before NLS features were available.

QUERY allows access to more than one data base at the same time. This means that more than one
data base language attribute may be active at the same time. In any case, upshifting, collating, range
selection, formatting, or sorting is dependent on the QUERY user's language specified by the user via
the Jew J:..P,USERLANG or the LANGUAGE= command.

3-19

NLS In MPE Subsystems

Command Summary

NLS can affect QUERY in upshifting data, range selection, date format, real number conversions,
and sorted lists and numeric data editing in REPORT.

UPSHIFTING DATA (TYPE U ITEMS). QUERY upshifts commands and the data of type U items.
QUERY commands are upshifted according to NATIVE-3000. Data is upshifted according to the
user's language to UPDATE ADD (or ADD), UPDATE REPLACE (or REPLACE), FIND, LIST, MULTIFIND,
and SUBSET.

RANGE SELECTION. QUERY collates data according to the user's language in FIN D, LIST,
MULTIFIND, or SUBSET. The MATCH feature (in FIND and MULTIFIND commands) is no longer valid
when LANGUAGE <> 0 (NATIVE-3000). QUERY will display an error message if MATCH is used in
an interactive mode, and will abort the session in a batch mode.

DATE FORMAT. DATE is a reserved word in the REPORT command which provides the system
date. It is formatted according to the user's language.

REAL NUMBER CONVERSIONS. In the commands REPORT and LIST the output is formatted ac
cording to the user's language. For example, 123.45 in NATIVE-3000 becomes 123,45 in FRENCH.

SORTED LISTS IN REPORT. QUERY sorts type U or X items in a REPORT according to the col
lating sequence of the user's language.

NUMERIC DATA EDITING IN REPORT. QUERY converts the data edited using the
NATIVE- 3000 edit mask (using the period as a decimal point and a comma as thousands separator) to
the corresponding characters in the user's language.

Additional Discussion

Refer to the QUERY Reference Manual (30000-90042) for a complete description of these
commands.

3-20

NLS In MPE Subsystems

The commands listed in Table 3-7 are used to obtain language-dependent information.

Table 3-7. Commands For Language-Dependent Information

COMMAND LANGUAGE-DEPENDENT INFORMATION

>HELP LANGUAGE Explains LANGUAGE command function, format and
parameters.

>SHOW LANGUAGE Displays the QUERY user's language.

>FORM Displays the data base language attribute.

Error Messages

QUERY error messages which support the NLS enhancement are listed in Table 3-8.

Table 3-8. QUERY Error Messages

MESSAGE MEANING ACTION

DBINFO MODE 901 The version of IMAGE on This is a warning. The user
FAILED. CHECK DATA your system does not have may wish to update
BASE LANGUAGE NLS features. IMAGE/3000 to the same
ATTRIBUTE AND IMAGE level as QUERY.
VERSION.

EXPECTED A LANGUAGE The LANGUAGE command only Enter HELP LANGUAGE for a
NUMBER OR NAME. accepts the name of a Ian- complete explanation of the

guage or the number as- command and then re-enter
sociated with that name. it.

INTERNAL QUERY NLS The NLS subsystem encoun- Contact your Hewlett-
PROBLEM. tered an error from which it Packard support

could not recover while at- representative .
tempting to initialize
language-dependent
information.

3-21

NLS In MPE Subsystems

Table 3- 8. QUERY Error Messages (Continued)

MESSAGE MEANING ACTION

LANGUAGE INVALID. Language specified not con- Run NLUTI L. PUB.SYS to list
NATIVE-3000 USED. figured. The default) the languages and associated

NATIVE-3000 was used. numbers available on your
system.

LANGUAGE NOT Languages are configured on Run NLUTI L. PUB. SYS to list
CONFIGURED ON THIS each system. Language the languages and associated
SYSTEM. NATIVE-3000 specified is not available on numbers available on your
USED. your system. The default system.

language is NATIVE-3000.

MATCH NOT VALID WHEN QUERY can only allow the If possible) change the lan-
LANGUAGE <> matching option for guage to NATIVE-3000 for
NATIVE-3000. NATIVE-3000. the match.

NLCOLLATE INTRINSIC An unexpected error condi- Contact your Hewlett-
INTERNAL ERROR. tion occurred while doing a Packard support

comparison of the data. representative.

NLUTIL INTRINSIC The NLS subsystem encoun- Contact your Hewlett-
INTERNAL ERROR. tered an error from which it Packard support

could not recover while at- representative.
tempting to initialize
language-dependent
information.

USER LANGUAGE INVALID. User language not available. Ask the System Manager to
Only NATIVE-3000 is avail- configure the desired lan-
able on your system. guage on your system.

USER LANGUAGE NOT Languages are configured on Run NLUTI L. PUB. SYS to list
CONFIGURED ON THIS each computer system. the languages and associated
SYSTEM. NATIVE-3000 Language specified is not numbers available on your
USED. available on your system. system.

The default language is
NATIVE-3000.

3-22

NLS In MPE Subsystems

SORT-MERGE

SORT-MERGE organizes records in a file according to the collating sequence of the keys. The
default collating sequence for character data is based on the binary values of the characters. EBCDIC
and user-defined sequences can also be used. Native Language Support (NLS) in SORT-MERGE
provides the user with the option of collating according to a native language sequence.

SORT-MERGE can be used as a stand-alone program or programmatically.

Stand-Alone SORT-MERGE

The key type CHARACTER allows the user to access native language collating sequences. The
specific native language collating sequence is assigned by the LANGUAGE command.

C[HARACTER] The collating sequence defined in the LANGUAGE command is used to sort
keys of type CHARACTER. Refer to Figure 3-5 for an example of the use
of the CHARACTER key type.

COMMAND SYNTAX DESCRIPTION

LANGUAGE Defines the native language
>L[ANGUAGE] [I S] {langnum } collating sequence to be

{langname} used to sort keys of type
CHARACTER.

The LANGUAGE command may specify a language ID number (langnum) or language name
(langname). The language specified must be configured on the system. If the LANGUAGE command is
not used, the language to be used for collating keys of type CHARACTER defaults to
NLDATALANG, the language returned by the NLGETLANG intrinsic (mode 2).

3-23

NLS In MPE Subsystems

In Figure 3- 5 the LANGUAGE command designates Swedish. The VER I FY command will confirm
which language collating sequence will be used for the SORT or MERGE stand-alone program.

:RUN SORT.PUB.SYS
HP32214C.04.00 SORT/3000 MON, JAN 30, 1984, 1:52 PM
(C) HEWLETT-PACKARD CO. 1983

>INPUT MYFILE
>OUTPUT $STDLIST
>KEY 1,4, CHARACTER
>LANGUAGE IS SWEDISH
>VERIFY

INPUT FILE = MYFILE
RECORD LENGTH = SAME AS THAT OF THE
OUTPUT FILE = $STDLIST
KEY POSITION LENGTH TYPE

1 4 CHAR
LANGUAGE IS SWEDISH
>END

INPUT FILE

ASC/OESC
ASC (MAJOR KEY)

Figure 3-5. Stand-Alone SORT-MERGE Dialogue

Programmatic SORT-MERGE

To use SORT-MERGE programmatically with NLS features, the user must designate the collating se
quence with the oharseq parameter in the SORTI NIT and MERGE INIT intrinsics.

THE SORTINIT INTRINSIC. The syntax for a procedure call using SORTI NIT is:

IA IA IV IV DV IV
SORTINIT (inputfiles,outputfiles,outpufoption,reolen,numreos,numkeys,

IA IA LP P IA L I
keys,altseq,keyoompare,errorproo,statistios,failure,errorparm,

I IA o-v
spaaeallooation,oharseq,parm2)

3-24

NLS In MPE Subsystems

THE MERGEINITINTRINSIC. The MERGEINIT syntax for a procedure call is:

IA P IA P LV
MERGEINIT (inputfiles,preprooessor,outputfiles,postprooessor,keysonly,

IV IA IA LP P IA L
numkeys,keys,altseq,keyoompare,errorproo,statistios,failure,

I I IA o-v
errorparm,spaoeallocation,charseq,parm2)

PARAMETERS. The following parameters apply:

numkeys and keys The numkeys parameter is an integer. The keys parameter is an integer
array. These parameters describe the way records are sorted or merged.
One of these parameters cannot be specified without the other. The use of
numkeys and keys disallows the use of keycompare. The number of keys
used during the comparison of records is contained in numkeys, and the
way records are compared is specified by keys. For each key specified,
keys contains three words:

The first word gives the position of the first character of the key within the
record. The second word gives the number of characters in the key. The
third word (bits 0-7) gives the ordering sequence of the records (a value of
o for ascending, 1 for descending). Bits 8- 15 of the third word indicate
the type of data according to the following convention:

O=logical or byte (same as type BYTE in interactive mode)

1=two's complement, including integer and double integer

2=floating point

3=packed decimal

4=Display - Trailing -Sign

5=packed decimal with even number of digits

6=Display-Leading-Sign

7=Display-Leading-Sign -Separate

8=Display-Trailing-Sign -Separate

9=character (collating sequence of charseq is used).

3-25

NLS In MPE Subsystems

charseq A two-word integer array. To utilize charseq:

• Set word 0 to 1.

• Set word 1 to the l angnum of the collating sequence to be used for
sorting keys of type 9 (CHARACTER). The language designated must be
configured on the system.

Whenever keys of type CHARACTER are compared, and charseq has been used to request a native
language collating sequence (e.g., Dutch, Spanish, Danish), SORT or MERGE will call the
NLCOLLATE intrinsic to do a native language comparison.

If NATIVE-3000 has been designated by the user or as a default, SORT-MERGE will do a direct
byte comparison on keys of type CHARACTER. NATIVE-3000 is an artificial language whose col
lating sequence is based on the binary values of the characters.

ADDITIONAL INFORMATION. Refer to the SORT-MERGE/3000 Manual (32214-90002) for
other parameter descriptions.

Error Messages

NLS-specific error messages include those for Programmatic SORT (Table 3-9), Interactive SORT
(Table 3-10), Programmatic MERGE (Table 3-11) and Interactive MERGE (Table 3-12).

Table 3-9. Programmatic SORT Error Messages

29 LIB SORT LANGUAGE NOT SUPPORTED.
30 LIB NLINFO ERROR OBTAINING LENGTH OF COLLATING SEQUENCE TABLE.
31 LIB NLINFO ERROR LOADING COLLATING SEQUENCE TABLE.
32 LIB INVALID CHARSEQ PARAMETER.

Table 3-10. Interactive SORT Program Error Messages

40 INVALID LANGUAGE ID.
41 THE LANGUAGE SPECIFIED IS NOT SUPPORTED.

3-26

NLS In MPE Subsystems

Table 3-11. Programmatic MERGE Error Messages

21 LIB SORT LANGUAGE NOT SUPPORTED.
22 LIB NLINFO ERROR OBTAINING LENGTH OF COLLATING SEQUENCE TABLE.
23 LIB NLINFO ERROR LOADING COLLATING SEQUENCE TABLE.
24 LIB INVALID CHARSEQ PARAMETER.

Table 3-12. Interactive MERGE Program Error Messages

37 INVALID LANGUAGE ID.
38 THE LANGUAGE SPECIFIED IS NOT SUPPORTED.

Performance Considerations

SORT-MERGE executes more slowly when keys of type CHARACTER and a native language collat
ing sequence are requested. The complex collating 8Jgorithms required by some of the languages may
use additional CPU time. The speed of SORT-MERGE is unchanged when a native language collating
sequence is not requested, or when NATIVE- 3000 is requested.

COSOlll Sorting And Merging

The syntax for the SORT and MERGE verbs has changed slightly for NLS. It is now possible to
specify the native language whose collating sequence is to be used. The old syntax allowed only an al
phabetic name:

[COLLATING SEQUENCE IS alphabet-name]
,-------------------

The syntax has been changed to:

{alphabetname }
[COLLATING SEQUENCE IS {languagename }]

{langnum }

With the addition of NLS features, alphabetname retains the same meaning, languagename is an
alphanumeric data item containing the name of the language whose collating sequence is to be used,
and langnurn is an integer data item containing the language identification number of the language to
be used.

3-27

NLS In MPE Subsystems

Figure 3-6 demonstrates the use of the SORT verb syntax:

002600 WORKING-STORAGE SECTION.
002700 01 AN - LANG- NAME PI C X(16) VALUE II FRENCH II

002800 01 NUM-LANG-ID PIC S9(4) COMP VALUE 7.

003300
003400
003500
003600
003700

SORT SORT-F I LE
ASCENDING KEY SORT-KEY
COLLATING SEQUENCE IS AN-LANG-NAME
USING IN-FILE
GIVI NGOUT- FI LE.

004000 SORT SORT-FILE
004100 ASCENDING KEY SORT-KEY
004200 COLLATING SEQUENCE IS NUM-LANG-ID
004300 USING IN-FILE
004400 GIVING OUT-FILE.

005000 SORT SORT-FILE
005100 ASCENDING KEY SORT-KEY
005300 USING IN-FILE
005400 GIVING OUT-FILE

Figure 3-6. SORT Verb Syntax

3-28

NLS In MPE Subsystems

VPLUS

The VPLUS/3000 product consists of five major parts: Intrinsics, FORMSPEC, ENTRY, REFSPEC,
and REFORMAT.

VPLUS/3000 Native Language Support (NLS) enables an applications designer to create interactive
end-user applications which reflect both the user's native language and the local custom for numeric
and date information in the supported languages. NLS provides these specific features in
VPLUS/3000:

• Native decimal and thousands indicators.

• Native language month names for dates.

9 Alphabetic upshifting of native characters.

o Native characters in single value comparisons and table checks.

• Native collatirig sequen~e in range checks.

VPLUS/3000 does not support the application design process in native languages. Form names, field
identifiers, and field tags support only USASCII characters.

REFSPEC and REFORMAT do not use NLS features. These programs interact with users in
NATIVE-3000 only.

language Attribute

VPLUS/3000 contains an NLS language attribute option which allows the applications programmer to
design an international or language-dependent forms file. If a native language attribute is not
specified the forms file is unlocalized.

The forms file reflects the language characteristics of the application. Each forms file has a global
language ID number. The application may be unlocalized, language-dependent, or international.
For examples of these applications, see Figures 1- 3, 1-4, and 1- 5 in Section I, IIINTRODUCTION
TO NLS. II

UNLOCALIZED. If no language ID number is assigned to a forms file, it will default to 0
(NATIVE- 3000) .

LANGUAGE-DEPENDENT. This application only operates in a single language context. The lan
guage ID number is assigned when the forms file is designed. If the text needs to be in the native lan
guage, unique versions of a forms file are required for each language supported.

INTERNATIONAL. Multinational corporations may need to maintain a business language for
commands, titles, and menus in addition to accommodating the language of the end user for the ac
tual data retrieved or displayed. For this application, select 11-111 as the language ID number for the
forms file. The VPLUS/3000 intrinsic VSETLANG must be called at run time to assign the appropriate
language.

3-29

NLS In MPE Subsystems

Setting The Language 10 Number

The components of a form which can be language-dependent are the text) the initial values of fields,
and the field edit rules. The language ID number determines the context for data editing) conver
sion, and formatting. The FORMSPEC language controls the context when the forms file is designed.
The forms file language controls the context when the forms file is executed.

The forms designer sets language ID number values for the forms file via the FORMSPEC
Terminal/Language Selection Menu. The forms file language defaults to 0 (NATIVE-3000) if no
language ID number is specified for it. NATIVE-3000 is currently the only selection available for
the FORMSPEC language. This means that initial values and processing specifications must be
defined with the month names and numeric conventions of NATIVE-3000.

The designer can change the forms file language ID number at any time. The value must be a positive
number or a zero for a single language application. If the value is acceptable) but the language is not
configured) FORMSPEC will issue a warning message. The language ID number will not be rejected.
The designer is prompted to confirm the value or change it.

For multiple language applications) the forms designer selects a forms file language ID number value
of -1. The international language ID number indicates that the intrinsicVSETLANG will be called at
run time to select the language ID number for the forms file. If an application uses an international
forms file without calling VSETLANG, it will be executed in the default, NATIVE-3000. If
VSETLANG is called for an unlocalized or language-dependent forms file, an error code will be
returned.

The designer has three options in designing an application to work effectively with multiple
languages:

e Develop several language-dependent forms files.

• Create one international forms file.

• Produce a combination of language-dependent files and an international forms file.

VGETLANG may be used to determine whether a language-dependent forms file or an international
forms file is being executed. If VGETLANG indicates an international forms file) VSETLANG must be
called to select the actual language. Refer to the VGETLANG and VSETLANG intrinsics at the end of
this section.

Field Edits

NATIVE-3000 must be used to specify date and numeric fields within FORMSPEC. VPLUS/3000
will convert the value when the forms file is executed to be consistent with the native language selec
ted. Single value comparisons (LT) LE, GT) GE) EQ) NE) table checks, and range checks (IN, NIN)
specified within FORMSPEC may contain any character in the 8~bit extended character set consistent
with the selected language ID number. When the form is executed at run time, the collating table for
the native language specified is used to check whether the field is within a range.

3-30

NLS In MPE Subsystems

DATE HANDLING. VPLUS supports several date formats and three date orders: MDY, DMY, YMD.
Any format is acceptable as input when the form is executed, provided that the field length can ac
commodate the format. The forms designer specifies the order for each date-type field. With NLS,
the native month names are edited and converted to numeric destinations. The format and the date
order are not related to the language of the forms file.

NUMERIC DATA. Decimal and thousands indicators are language-dependent in the NUM [n] and
IMPn fields. When data is moved between fields and automatic formatting occurs for data entered in
any field, recognition, removal or insertion of these decimal and thousands indicators is language
dependent. The optional decimal symbol in constants is also language-dependent.

~OTE]

VPLUS/3000 edit processing specifications and terminal
edit processing statements are separate and are not
checked for compatibility. There will be no check that
the designer has specified a terminal local edit which is
consistent with the language-dependent symbol for the
decimal point (DEC TYPE EUR, DEC TYPE US) in the
configuration phase.- - --

NATIVE LANGUAGE CHARACTERS. If a native language ID number has been specified in the
forms file, the UPSHI FT formatting statement will use native language upshift tables.

Range checks and the single value comparisons LT, LE, GT and GE involve collating sequences.
When the form is executed, the ,native language collating sequence table designated by the language
ID number is used to check whether the field passes the edit.

NLS features in VPLUS/3000 do not include support for pattern matching with native characters.
MATCH uses USASCII specifications.

Entry And Language 10 Number

The forms file language determines the user language in ENTRY unless the file is international (-1).
The ENTRY program uses the intrinsic VGETLANG to identify the language of the forms file selected
by the designer.

If the forms file is international, ENTRY calls the NLS intrinsic NLGETLANG (mode 1). If it returns a
value of UNKNOWN, the user is prompted for a language ID number. Once a valid language ID number
is determined, ENTRY calls the VSETLANG intrinsic to specify the corresponding language.

The batch file does not have a language indicator. Users with different native languages may collect
data in the same batch file if the associated forms file is international.

3-31

NLS In MPE Subsystems

Error Messages

VPLUS/3000 Error Messages are listed in Table 3-13.

Table 3-13. VPLUSj3000 Error Messages

NUMBER

9001

9002

9011

9014

9015

9500

9998

MESSAGE

NATIVE LANGUAGE SUPPORT
SOFTWARE NOT INSTALLED.

LANGUAGE SPECIFIED IS NOT
CONFIGURED ON THIS SYSTEM.

WARNING: LANGUAGE NOT
CONFIGURED. CHANGE OR HIT
II ENTER II TO PROCEED.

ATTEMPTED SETTING A LANGUAGE
DEPENDENT FORMS FILE TO
ANOTHER LANGUAGE.

NATIVE-3000 IS CURRENTLY THE
ONLY SELECTION AVAILABLE.

LANGUAGE OF FORMS FILE IS NOT
CONFIGURED ON THIS SYSTEM.

LANGUAGE ID MUST BE 0 TO 999
OR -1 FOR INTERNATIONAL FORMS
FILE.

ACTION

Ask the System Manager to install
NLS software.

Select another language or ask the
System Manager to configure the
desired language.

Language specified is not configured
on the system. Forms file produced
can only be executed on a system
configured with that language.

VSETLANG can only be used with in
ternational forms files.

FORMSPEC language can only be 0
in this version.

Ask the System Manager to configure
the language or use forms file on a
system with that language
configured .

Forms file language ID number must
be between -1 and 999.

VPLUS Intrinsics

The VGETLANG and VSETLANG intrinsics are used only with the VPLUS/3000 subsystem. Intrinsic
calls in VPLUS/3000 are usually in COBOL. Refer to the VGETLANG and VSETLANG sections for ex
amples of calls in other programming languages.

3-32

NLS In MPE Subsystems

VGETLANG
The VGETLANG intrinsic returns the language ID number of the forms file.

SYNTAX

CALL "VGETLANG II USING COMAREA,LANGNUM

This intrinsic returns the language ID number of the forms file being executed. The forms file must
be opened before calling VGETLANG. Otherwise, CSTATUS returns a nonzero value.

PARAMETERS

COMAREA The following COMAREA fields must be set before calling VGETLANG if
not already set:

LANGUAGE

COMAREALEN

Set to code identifying the programming lan
guage of the calling program.

Set to total number of words in COMAREA.

VGETLANG may set the following COI\1AREA fields:

CSTATUS Set to nonzero value if call is unsuccessful.

LANGNUM

EXAMPLE

Integer variable to which the language ID number of the forms file is
returned.

The following examples illustrate a call to VGETLANG:

COBOL:

BASIC:

FORTRAN:

SPL:

CALL "VGETLANG" USING COMAREA,LANGNUM.

120 CALL VGETLANG(C(*) ,L)

CALL VGETLANG (COMAREA,LANGNUM)

VGETLANG (COMAREA ,LANGNUM);

SPEC~Al CONSIDERATiONS

This intrinsic is used only in the VPLUS/3000 subsystem.

3-33

NLS In MPE Subsystems

VSETLANG
The VSETLANG intrinsic specifies the native language to be used with an international forms file.

SYNTAX

CALL "VSETLANG" USING COMAREA,LANGNUM,ERROR

This intrinsic sets the language to be used by VPLUS/3000 at run time for an international forms
file. The forms file must be opened before calling VSETLANG. Otherwise, CSTATUS returns a
nonzero value.

If VSETLANG is called to set the language ID number for a language-dependent or unlocalized forms
file, an error code of -1 will be returned to ERROR. For international forms files, both CSTATUS
and ERROR return a value of zero and the forms file is processed with the native language ID num'"
ber specified in LANGNUM.

PARAMETERS

COMAREA The following COMAREA fields must be set before calling VSETLAN"G (if
not already set):

LANGUAGE

COMAREALEN

Set to code identifying the programming lan
guage of the calling language.

Set to total number of words in COMAREA.

VSETLANG may set the following COMAREA fields:

CSTATUS Set to nonzero value if call is unsuccessful.

LANGNUM

ERROR

An integer containing the ID number of the language to be used by
VPLUS/3000.

Integer to which the error code is returned. Zero means the call was suc
cessfully completed. A value of -1 is returned if the call is unsuccessful.

3-34

NLS In MPE Subsystems

EXAMPLE

The following examples illustrate a call to VSETLANG:

COBOL:

BASIC:

FORTRAN:

SPL:

CALL "VSETLANG" USING COMAREA ,LANGNUM ,ERROR.

120 CALL VSETLANG(C(*),L,E)

CALL VSETLANG (COMAREA,LANGNUM,ERROR)

VSETLANG (COMAREA,LANGNUM,ERROR);

SPECIAL CONSIDERATIONS

This intrinsic is used only in the VPLUSj3000 subsystem.

3-35/3-36

NATIVE LANGUAGE INTRINSICS 1-"------ ----'OU
The following categories of intrinsics are used by Native Language Support (NLS).

Information Retrieving:

ALMANAC
NLGETLANG
NLINFO

Character Handling:

NLCOLLATE
NLKEYCOMPARE
NLREPCHAR
NLSCANMOVE
NLTRANSLATE

Time/Date Formatting:

NLCONVCLOCK
NLCONVCUSTDATE
NLFMTCALENDAR
NLFMTCLOCK
NLFMTCUSTDATE
NLFMTDATE

Application Message Catalog:

CATCLOSE
CATOPEN
CATREAD
NLAPPEND

Returns numeric date information.
Returns the current language.
Returns language-dependent information .

Compares two character strings.
Compares strings of different length.
Replaces nondisplayable characters.
Moves and scans character strings.
Translates strings from and to EBCDIC.

Converts the time format.
Converts the custom date format.
Formats the date.
Formats the time.
Formats the date into custom date format.
Formats date and time.

Closes a message catalog.
Opens a message catalog.
Reads information from a message catalog.
Concatenates a file name and a language number.

4-1

Native Language Intrinsics

NLS Date And Time Formatting Overview

Figure 4-1 shows the results of using NLS intrinsics when formatting date and time.

NATIVE LANGUAGE DATE AND TIME FORMATTING OVERVIEW

HP 3000
INTERNAL FORMATS

LANGUAGE-DEPENDENT
EXTERNAL FORMATS

MPE INTRINSICS

f

CALENDAR Internal
----->~I Calendar Date

(Single Word) NLFMTCALENDAR >

Formatted Custom
(Short) Date

(e.g .. 9/24/84)

Forma tted Dote
(e.g., Mon,

Sep 24, 1984)

CLOCK Internal
----->~I Time Of Day

(Double Word)

Formatted Date And
Time (e.g., Mon.

Sep 24, 1984,
12: 17 PM)

Formatted Time
(€.g., 12: 17 PM)

Figure 4-1. Date And '".rime Formatting Overview

4-2

Native Language Intrinsics

ALMANAC
INTRINSIC NUMBER 406

Returns numeric date information.

SYNTAX

LV LA I I I I 0 - V
ALMANAC (date,error,yearnum,monthnum,daynum,weekdaynum);

This intrinsic returns the numeric date information for a date returned by the CALENDAR intrinsic.
The returned information is year of the century, month of the year, day of the month, and day of
the week.

PARAMETERS
date logical by value (required)

A logical containing the date in the format:

Bits 0 6 7 15

IYear of Century Day of Year

error logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error #

1
2
3

Meaning

No parameters available for returning values.
Day of the year out of range.
Year of the century out of range.

yearnum

monthnum

integer by reference (optional)
An integer to which the year of the century is returned. For example,
00=1900, 84=1984.

integer by reference (opt io,vial)
An integer to which the month of the year is returned. For example,
1=January, 12=December.

4-3

Native Language Intrinsics

daynum

weekdaynum

integer by reference (optional)
An integer to which the day of the month is returned.

integer by reference (optional)
An integer to which the day of the week is returned. For example,
1=SundaY,7=Saturday.

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D and E in Appendix H, "EXAMPLE
PROGRAMS."

4-4

Native Language Intrinsics

CATCLOSE
INTRINSIC NUMBER 41 7

Closes the specified application message catalog file.

SYNTAX

I CATCLOSE

D LA
(cat index ,error)

The CATCLOSE intrinsic is for use with the application message facility.

PARAMETERS

cat index

error

double by value (required)
The catalog index returned by the CATOPEN intrinsic.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error #

1
100

Meaning

Close of catalog file failed.
Internal message facility error.

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program L in Appendix H, "EXAMPLE PROGRAMS. \I

4-5

Native Language Intrinsics

CATOPEN
INTRINSIC NUMBER 415

Opens the specified application message file.

SYNTAX

o SA LA
oatindex:=CATOPEN (fonmaldesignator,error);

The CATOPEN intrinsic must be used with the application message facility.

FUNCT~ONALRETURNS

A catalog index double is returned (an internal value recognized by the CATREAD and CATCLOSE in
trinsics). This is not a file number.

PARAMETERS
fonmaldesigna:tor

error

byte array (required)
Contains a string of USASCII characters that identify the catalog file to the
system. This string must be terminated by any USASCII special character
except a slash or a period.

logioal array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error #

1
2
3
100

Meaning

Open failed on catalog file.
Could not access catalog file.
File specified is not a GENCAT formatted catalog.
Internal message facility error.

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program L in Appendix H, "EXAtvlPLE PROGRAMS."

Native Language Intrinsics

CATREAD
INTRINSIC NUMBER 416

Reads the specified catalog and returns (or sends) the text as specified.

SYNTAX

I D IV IV LA SA IV
msglen:=CATREAD (catindex,setnum,msgnum,error,buff,buffsize,

SA SA SA SA BA IV o-v
parml,parm2,parm3,parm4,parm5,msgdest);

The CATREAD intrinsic provides access to the application message facility. It only accesses catalogs
opened with the CATOPEN intrinsic. The NLS application message catalog facility is discussed in
Section II, "APPLICATION MESSAGE FACILITY. II

FUNCTIONAL RETURNS

The length of the message is returned to msgl en (in positive bytes).

PARAMETERS

cat index

setnum

msgnum

error

double by value (required)
An index returned by CATOPEN which specifies the catalog to be used.

integer by value (required)
A positive integer no gr'~ater than 255 specifying the set number within the
catalog.

integer by value (required)
A positive integer no greater than 32766 specifying the message number
within the message set.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-7

Native Language Intrinsics

Error #

1
2
3
4
6
7
14
15
16
17
18
19
100

Meaning

Invalid cat index specified.
Read failed on catalog file.
Set not found.
Message not found.
User buffer overflow.
Write failed to msgdest file.
Set < = 0 specified.
Set> 255 specified.
Message number < 0 specified.
Message number> 32766 specified.
Specifies buflen < = o.
Specifies msgdest < O.
Internal message facility error.

buff

buffsize

parml-parm5

msgdest

byte array (optional)
A byte array to which the assembled message is returned.

integer by value (optional)
When specified, this is the buffer length in bytes. If buff is not specified,
this is the length (in bytes) of the records to be written to the destination
file. (Default = 72 bytes.)

byte arrays (optional)
Parameters to be inserted into message. These must always point to a
character string. The strings must be terminated by a binary zero.

integer by value (optional)
Integer value specifying the destination of the assembled message (0 =
$STDLIST, >2 = file number of destination file. Default = $STDLIST if
buff not specified and no file if specified).

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program L in Appendix H, IIEXAMPLE PROGRAMS. II

4-8

Native Language Intrinsics

NLAPPEND
INTRINSIC NUMBER 412

Appends the appropriate language ID number to a file name.

SYNTAX

SA IV LA
NLAPPEND (fonmaldesignator,langnum,error);

The NLAPPEND intrinsic allows an application to designate which of several language-dependent files
(e.g., application message catalogs or VPLUS forms files) should be used by appending the language
ID number to the file name. (This assumes that the application uses this naming convention for its
language - dependent files.)

PARAMETERS

fonmaldesignator

langnum

error

byte array (requi red)
Contains a string of USASCII characters interpreted as part of a formal file
designator. The file name must end with three blanks.

integer by value (required)
An integer specifying the language ID number of the catalog to be opened.

log i cal array (requ ired)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful)
both words contain zero.

Error #

1 *
2*
3
4
5*
6*

Meaning

NLS is not installed.
Specified language is not configured.
Invalid file name.
File name not terminated by three blanks.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with a langnum equal to 0
(NATIVE- 3000).

SPECI;1;.l CONSIDERAT~ONS

Split-stack calls not permitted.

4-9

Native Language Intrinsics

NLCOLLATE
INTRINSIC NUMBER 402

Compares two character strings in a language-dependent manner.

SYNTAX

SA SA IV I IV LA LA O~V

NLCOLLATE (string1,string2,length,result,langnum,error,collseq);

This intrinsic collates two character strings according to the collating sequence of the specified lan
guage. Its purpose is to determine a lexical ordering. It is not intended to be used for searching or
matching. To determine whether two strings are equal, use the COMPARE BYTES machine
instruction.

PARAMETERS

string1

string2

length

result

langnum

error

byte array (required)
One of two character strings to be collated.

byte array (required)
The other character string to be collated.

integer by value (required)
The length (in bytes) of the string segments to be collated.

integer by reference (required)
The result of the character string collating:

o If string1 collates equal to string2.
-1 If string1 collates before string2.

1 If sf ri ng 1 collates after stri ng2.

Result will be 0 if a nonzero error is returned.

integer by value (required)
The language ID number indicating the collating sequence to be used.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-10

Error #

1 *
2*
3
4
5*
6*

Native Language Intrinsics

Meaning

NLS is not installed.
Specified language is not configured.
Invalid collating table entry.
Invalid Iengt h parameter.
NLS internal error.
NLS internal error.

collseq

OPERATION

* These errors do not apply to calls with a langnum equal to 0
(NATIVE- 3000).

logical array (optional)
An array containing the native language collating sequence table as return
ed by NLI NFO, item 11. This parameter is required for split-stack calls. If
this parameter is present, langnum will be ignored and this routine will be
much more efficient.

If the call seq parameter is omitted, and langnum is specified as ('Or defaults to) a language which
collates by binary encoding, the COMPARE BYTES machine instruction will be used to compare the
two indicated strings. Otherwise, the call seq array will be used to determine the string compare
operation (note that this may be a COMPARE BYTES). Refer to the NLINFO intrinsic items 11 and
27.

SPECIAL CONSIDERATIONS

Split-stack calls are permitted.

4-11

Native Language Intrinsics

NLCONVCLOCK
INTRINSIC NUMBER 409

Checks validity of the string by using the formatting template returned by NLIN F0 item 3, then con
verts the time to the general time format returned by the CLOCK intrinsic. This intrinsic is the in
verse of NLFMTCLOCK.

SYNTAX

o SA IV IV LA
time: =NLCONVCLOCK (string ,stringlen, langnum,error) ;

FUNCTIONAL RETURNS

The intrinsic returns the time in the format:

Bit s 0 7 8 15

Hour of Day Minute of Hour

Seconds Tenths of Seconds

NOTE J
Seconds and tenths of seconds will always be zero.

PARAMETERS

string

stringlen

langnum

byte array (required)
A character string containing the time to be converted.

integer by value (required)
A positive integer specifying the length of the string (in bytes).

integer by value (required)
An integer which contains the language iD number specifying the custom
time format w.hich has to be matched by the string.

4-12

error

Native Language Intrinsics

logioal array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error #

1 *
2*
3
4
5 *
6 *

Meaning

NLS is not installed.
Specified language is not configured.
Invalid time string.
Invalid length.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with a langnum equal to 0
(NATIVE- 3000).

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D and E in Appendix H, IIEXAMPLE
PROGRAMS. II See Figure 4-1 for an illustration of the relationship between the various date and
time handling intrinsics.

4-13

Native Language Intrinsics

NLCONVCUSTDATE
INTRINSIC NUMBER 408

Checks the validity of a string by using the formatting template returned by NLINFO item 2, then
converts the date to the general date format as returned by the CALENDAR intrinsic. This intrinsic is
the inverse of NLFMTCUSTDATE.

SYNTAX

L SA IV IV LA
date:=NLCONVCUSTDATE (string,stringlen,langnum,error);

FUNCTIONAL RETURNS

The intrinsic returns the date in the format:

Bits 0 6 7 15

IYear of Century

PARAMETERS

Day of Year

string

stringlen

langnum

error

byte array (required)
A character string containing the date to be converted. Leading and trail
ing blanks will be disregarded.

integer by value (required)
A positive integer specifying the length of the string (in bytes).

integer by value (required)
An integer which contains the language ID number specifying the custom
date format which has to be matched by the string.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-14

Error #

1*
2*
3
4
5*
6*
7

8

Native Language Intrinsics

Meaning

NLS is not installed.
Specified language is not configured.
Invalid date string.
Invalid string length.
NLS internal error.
NLS internal error.
Separator character in sf ri ng doesn't match separator
in the custom date template.
The length of the date string is more than 13 characters
(excluding leading and trailing blanks).

* These errors do not apply to calls with a langnum equal to 0
(NATIVE-3000).

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D and E in Appendix H, "EXAMPLE
PROGRAMS. II See Figure 4-1 for an illustration of the relationship between the various date and
time handling intrinsics.

4-15

Native Language Intrinsics

NLFMTCALENDAR
INTRINSIC NUMBER 413

Formats the supplied date according to the language-dependent calendar template. The formatting is
done according to the template returned by NLI NFO item 1.

SYNTAX

LV SA IV LA
NLFMTCALENDAR (date,string,langnum,error);

PARAMETERS

date logical by value (required)
A logical value indicating the date in the format as returned by the
CALENDAR intrinsic:

IYear of Century

Bits 0 6 7

Day of Year

15

string

langnum

error

byte array (required)
A character string in which the formatted date is returned. This string will
be 18 characters long, padded with blanks if necessary.

integer by value (required)
An integer containing the language ID number indicating the calendar
template to be used. A langnum of 0 will return the date formatted as
though FMTCALENDAR were used. (For example, FRI, OCT 1, 1982.)

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error #

1 *
2*
3
5*
6 *

Meaning

NLS is not installed.
Specified language is not configured.
Invalid date value.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with a langnum equal to 0
(NATIVE- 3000).

4-16

Native Language Intrinsics

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D and E in Appendix H, IIEXAMPLE
PROGRAMS. II See Figure 4-1 for an illustration of the relationship between the various date and
time handling intrinsics .

4-17

Native Language Intrinsics

NLFMTCLOCK
INTRINSIC NUMBER 410

Formats the time of day obtained with the CLOCK intrinsic. The specified language will determine
the format. The template (clock format description) returned by NLI NFO item 3 will be used.

SYNTAX

DV SA IV LA
NLFMTCLOCK (time,string,langnum,error);

PARAMETERS
time double by value (required)

A double word value containing the time in the format as returned by the
CLOCK intrinsic:

Bits 0

Hour of Day

7 8 15

Minute of Hour

Seconds Tenths of Seconds

string

langnum

error

byte array (required)
An eight-character byte array in which the formatted time of day is
returned.

integer by value (required)
An ID number specifying which language-specific format is to be used. A
langnum of 0 will return the time formatted as though FMTCLOCK were
used.

logioal array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error #

1 *
2*
3
4*
5 *
6 *

Meaning

NLS is not installed.
Specified language is not configured.
Invalid time format.
NLS internal error.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with a langnum equal to 0
(NATIVE- 3000) .

4-18

Native Language Intrinsics

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D and E of Appendix H) "EXAMPLE
PROGRAMS. II See Figure 4-1 for an illustration of the relationship between the various date and
time handling intrinsics .

4-19

Native Language Intrinsics

NLFMTCUSTDATE
INTRINSIC NUMBER 407

Formats the general date format returned by the CALENDAR intrinsic to the custom date format for a
native language. A custom date is an abbreviated format such as II 10/1/82 11 or 1182. 10. 1. II The
formatting is done according to the template returned by NLI NFO item 2.

SYNTAX

LV SA IV LA
NLFMTCUSTDATE (date,string,langnum,error);

PARAMETERS

date logical by value ~required)

A logical value containing the date In the format as returned by the
CALENDAR intrinsic:

Bits 0 6 7 15

I Year of Century Day of Year

string

langnum

error

byte array (required)
A 13-character byte array to which the formatted date is returned.

integer by value (required)
An ID number of the language whose custom date template is to be used for
the formatting. A langnum of 0 will return the time formatted as though
FMTCLOCK were used.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful)
both words contain zero.

Error #

1 *
2*
3
5*
6*

Meaning

NLS is not installed.
Specified language is not configured.
Invalid date value.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with a langnum equal to 0
(NATIVE- 3000).

4-20

Native Language Intrinsics

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to examples D and E in Appendix H, "EXAMPLE
PROGRAMS. II See Figure 4-1 for an illustration of the relationship between the various date and
time handling intrinsics.

4-21

Native Language Intrinsics

NLFMTDATE
INTRINSIC NUMBER 414

Formats the specified date and time according to the concatenation of the templates returned by
NLIN.FO items 1 and 3.

SYNTAX

LV DV 8A IV LA
NLFMTDATE (date,time,string, langnum, error) ;

PARAMETERS

date logical by Dalue (required)
A logical value indicating the date In the format as returned by the
CALENDAR intrinsic:

Bit s 0 6

Year of Century

7

Day of Year

15

time double by Dalue (required)
A double word value indicating the time to be formatted. The double word
is in the format returned by the CLOCK intrinsic:

Bit s 0

Hou r of Day

7 8 15

Minute of Hour

Seconds Tenths of Seconds

string

langnum

byte array (required)
A 28-character string in which the formatted date and time are returned.

integer by Dalue (required)
A language ID number designating the formatting templates to be used. A
langnum of 0 will return the date/time string as though FMTDATE were
used. (For example: MaN, FEB 7, 1983 9:00 AM.)

4-22

error

Native Language Intrinsics

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error #

1 *
2*
3
4
5 *
6 *

Meaning

NLS is not installed.
Specified language is not configured.
Invalid date value.
Invalid time value.
NLS internal error,
NLS internal error.

* These errors do not apply to calls with a langnum equal to 0
(NATIVE- 3000).

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program K in Appendix H) "EXAMPLE PROGRAMS."
See Figure 4-1 for an illustration of the relationship between the various date and time handling
intrinsics .

4-23

Native Language Intrinsics

NLGETLANG
INTRINSIC NUMBER 411

Returns current language information.

SYNTAX

I IV LA
langnum:=NLGETLANG (function,error);

This intrinsic returns a language ID number which characterizes the current user, data, or system. It
is intended for use by Hewlett-Packard subsystems (programs, not intrinsics) or by applications
programs so they can automatically configure themselves. Refer to IISPECIAL CONSIDERATIONS II
for a description of where NLGETLANG derives its information.

FUNCTIONAL RETURNS

The language ID number (langnum) of the current user, data, or system. In the event of an error,
an integer value of 0 (i.e., NATIVE- 3000) is always returned to langnum.

PARAMETERS

function

error

integer by value (required)
An integer containing the function number indicating which type of lan
guage ID number should be returned. The possible values are:

The user-interface language. This is used to specify the language to
be used for communication between the program and the user.

2 The data language. This is an attribute which .determines how
various language-dependent data manipulation functions (e.g.,
sorting, upshifting) should be performed by the subsystem.

3 The system default language.

logioal array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-24

Error #

1
2

3
4

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

Native Language Intrinsics

Meaning

NLS is not installed.
NLGETLANG found the language requested, but it was
not configured on the system.
Invalid funot i on value.
No language specified for NLGETLANG to access.

The NLGETLANG intrinsic will locate the language ID numbers requested by funot ion 1 and 2 by
referring to the Hewlett-Packard defined Job Control Words (JCWs) NLUSERLANG and
NLDATALANG respectively. If the required JCW does not exist, or has a value greater than or
equal to FATAL (32768), Error #4 is returned.

ADD~TIONALDISCUSSION

For example calls of this intrinsic refer to Program K in Appendix H, "EXAMPLE PROGRAMS. II

4-25

Native Language Intrinsics

NLINFO
INTRINSIC NUMBER 400

This intrinsic returns language-dependent information.

SYNTAX

IV LA I LA
NLIN FO (i temnumber , i temval ue , 1angnum,error) ;

PARAMETERS

itemnumber

itemlJalue

integer by value (required)
Positive integer which specifies the itemvalue to return.

type of variable depends on itemnumber (required)
Return variable for information requested; or (if i temnumber is 22 or 24)
the language name or num.ber about which information is requested.

The following is a list of the currently defined i temnumbers, and the data types and information
returned to i temval ue.

Item # Type Description of i temlJal ue

LA An I8-character array to which the calendar format is returned. The 18
characters of the string for this definition are interpreted as the format
description for that language.

The following descriptors are valid:

D One-character day abbreviation.
DD Two-character day abbreviation.
DDD Three-character day abbreviation.
M One-character month abbreviation.
MM Two-character month abbreviation.
MMM Three-character month abbreviation.
MMMM Four-character month abbreviation.
mm Numeric month of the year.
dd Numeric day of the month.
yy Numeric year of the century.
yyyy Numeric year.
Nyy National year.

Valid separators are any special character.

For example, a format may be: DOD, MMM dd, yyyy. Using this format
in NATIVE-3000 would result in: FRI, MAY 25, 1984.

4-26

2 LA

Native Language Intrinsics

A 13-character array to which the custom date format is returned. The
13 characters of the string for this definition are interpreted as the custom
date format description.

The following descriptors are valid:

mm
dd
yy
yyyy
Nyy

Numeric month of the year.
Numeric day of the month.
Numeric year of the century.
Numeric year.
National year.

3

4

LA

LA

Valid separators are any special character. For instance, a date format
might be: yy/mm/dd. An example of this format in NATIVE-30aO:
81/03/25.

An eight-character array to which the clock specification is returned. This
eight-character string provides the clock format description (template):

HHSXXYYZ with:

HH Clock hour specification, either 1112 11 or "24 11 .
S Separator. Valid separators may be any special or alpha charac

ter, or "0" if no separator between hours and minutes should
appear.

XX Symbol for AM.
YY Symbol for PM.
Z Suppresses leading zero (of hours) if blank; prints leading zero if

O.

In suppression of leading zero, II II (leading zero suppressed) or 110" (lead
ing zero will be printed) are valid. For example, the format "12: AMPM II

would yield formatted clock information in the form: 9: 06 AM. The lead
ing zero is suppressed.

If the clock specification were changed to 11240 0 ", the formatted
clock information for the same time would be: 0906. Note the four
blanks used as place holders to ensure the correct placement of the leading
zero suppression character.

A 48-character array to which the month abbreviation table is returned.
Each abbreviation is four characters long, using blank padding where
necessary to maintain uniform length in all native language abbreviations.
For example, the NATIVE- 3000 abbreviations contain three characters
plus a blank. The first four characters of the array contain the abbrevia
tion of January.

The month abbreviation table for NATIVE- 3000 would be:
"JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC II

4-27

Native Language Intrinsics

5 LA A 144-character array in which the month table is returned. Each
month's name can be up to 12 characters long. Unused space in each
month name is padded with blanks where necessary to equal 12 characters.
The table begins with the language-dependent equivalent in the native lan
guage specified for January.

For example, the month name table for NATIVE-3000 would be:
"JANUARY FEBRUARY MARCH ... DECEMBER II

6

7

LA

LA

A 21-character array in which the day abbreviation table is returned.
Each abbreviation is three characters long. The table begins with Sunday.

For example, the day abbreviation table for NATIVE-3000 would be:
"SUNMONTUEWEDTHUFRISAT"

An 84-character array in which the table containing the day of the week is
returned. Each day is 12 characters long (with blank padding as needed).
The table starts with Sunday.

For example, the day name table for NATIVE-3000 would be:
IISUNDAY MONDAY TUESDAY SATURDAY II

8

9

10

LA

LA

LA

A 12-character array to which the YES/NO responses are returned. The
first six characters contain the (upshifted) II YES II response; the second six
the (upshifted) II NOli response.

A two-character array to which the symbols for decimal separator and
thousands indicator are returned. The first character contains the decimal
separator, the second contains the thousands indicator.

A six-character array to which the currency signs are returned. The first
character represents the short currency symbol (if any) used for business
formats; the second character is a flag that indicates whether the currency
symbol precedes or succeeds the number and also whether the currency
symbol is preceded or succeeded by blanks. The last four characters contain
the full currency symbol. The layout of the second character is as follows:

bits 0:4 0

1
2
3

bits 4: 4 0
1
2

The currency symbol has no blanks preceding or succeed
ing it.
The currency symbol has a blank preceding it.
The currency symbol has a blank succeeding it.
The currency symbol has blanks preceding and succeed
ing it.

The currency symbol precedes the number.
The currency symbol succeeds the number.
The currency symbol replaces the decimal separator.

11 LA An array to which the collating sequence table is returned. A call to
NLINFO item 27 determines the length of this array based on the length of
the table of the native language specified.

4-28

12

13

14

15

16

17

18

19

20

21

22

23

24

LA

LA

LA

LA

LA

LA

L

I

LA

LA

LA

L

LA

Native Language Intrinsics

A 256-character array to which the character set attribute table is return
ed. Each character will contain the numeric identification of the character
type:

o Numeric character.
1 Alphabetic lowercase character.
2 Alphabetic uppercase character.
3 Undefined graphic character.
4 Special character.
5 Control code.

A 256-character array to which the ASCII -to-EBCDIC translation table is
returned. I

A 256-character array to which the EBCDIC-to-ASCII translation table is
returned.

A 256-character array to which the upshift table is returned.

A 256-character array to which the downshift table is returned.

A logical array to which the language numbers of all configured languages
are returned. The first word of this array contains the nurnber of con
figured languages. The second word contains the language number of the
first configured language. The third word contains the language number of
the second configured language, etc. (The langnum parameter is
disregarded.)

A logical to which true (-1) is returned if the specified language is support
ed (configured) on the system. Otherwise, false (0) is returned.

An integer to which the character set ID number supporting the specified
language is returned.

A 16-character array to which the uppercase name of the character set
supporting the specified language is returned. If the name contains fewer
than 16 characters, it will be padded with blanks.

A 16 -character array to which the uppercase name of the specified lan
guage is returned. If the name contains fewer than 16 characters, it will
be padded with blanks.

The i temval ue is a logical array containing a language name or number
(in ASCII digits) terminated by a blank. The array must be at least eight
words in length. The associated language ID number will be returned to
langnum.

A logical to which true (-1) is returned if the character set specified is sup
ported (configured) on the system. Otherwise, false (0) is returned.

The i temval ue is a logical array containing a character set name or num
ber (in ASCII digits) terminated by a blank. The required length of this
array is eight words or more. The associated character set ID number will
be returned to langnum.

4-29

Native Language Intrinsics

25

26

27

28

29

langnum

error

LA

I

I

I

LA

A 16-character array to which the uppercase name of the specified charac
ter set is returned. The langnum parameter must contain the ID number
of the character set. If the name contains fewer than 16 characters, it will
be padded with blanks.

An integer to which the class number of the specified language is returned.

An integer to which the length (in words) of the collating sequence table of
the specified language is returned.

An integer to which the length (in words) of the national-dependent in
formation table is returned. If no national table exists for the specified
language, Error # 4 is returned.

A logical array to which the national-dependent information table is
returned. To determine the size of this array, the length must first be ob
tained with a call to NLI NFO item 28.

integer by referenoe (required)
The language or character set identification number for the information
requested.

logioal array (required)
This two-word array contains the error number in the first word. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error #

1 *
2*
3 *
4
5 *
6 *
7-9
10

Meaning

NLS is not installed.
Specified language is not configured.
Specified character set is not configured.
No national table is present.
NLS internal error.
NLS internal error.
Reserved.
The i temnumber is out of range.

* These errors do not apply to calls with a 1angnum equal to 0
(NATIVE- 3000) .

SPECIAL CONSIDERATIONS

Split-stack calls are permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs D, E, F, G and H in Appendix H, lEXAMPLE
PROGRAMS. II

4-30

Native Language Intrinsics

NLKEVCOMPARE
INTRINSIC NUMBER 405

Compares two strings of different length. For use with KSAM generic key searching.

SYNTAX

SA IV BA IV I IV LA LA o-v
NLKEYCOMPARE (genkey,length7,key,length2,result,langnum,error,collseq);

This intrinsic gives the KSAM user the ability to determine whether the key of a record matches the
generic key specified. It should be used when reading a KSAM file in key sequential order in com
bination with FREAD, after a FF I NDBYKEY call.

The NLKEYCOMPARE intrinsic allows a program to determine whether a generic key search found an
exact :match (i.e., the generic key is exactly equal to the beginning of the key, and not almost equal
because of priority (e.g. ,uppercase versus lowercase or accent). It also allows the program to deter
mine whether an exactly matching key could be farther along the key sequence.

PARAMETERS

genkey

length7

key

length2

result

byte array (required)
Contains the generic key to be compared to the keys contained In the
record read by FREAD.

integer by value (required)
The length in bytes of genkey, which must be less than length2.

byte array (required)
This contains an entire key to which the user wants to compare gen!<ey.

integer by value (required)
The length in bytes of key, which must be greater than length 7.

integer by reference (required)
The result of the compare:

o The retrieved key matches the generic key exactly for a length
of length7.

The retrieved key does not match the generic key: it is different
only because of priority (e.g., uppercase versus lowercase
characters or accent). The FREAD key is still in range. This
means that records may follow whose key matches the generic
key exactly.

4-31

Native Language Intrinsics

2 The retrieved key is less than the generic one (its collating order
precedes the key specified). It does not match genkey. This
means the FREAD call found a record which precedes the range
requested. Records which match genkey may follow.

3 The retrieved key is greater than the generic key (it collates af
tel' the specified key). This means that the FREAD call found a
record whose key follows the specified range. No records
matching genkey follow.

langnum

error

integer by ~alue (required)
The language ID number indicating the collating sequence to be used for
the compare.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

Error #

1 *
2*
3
4
5*
6*
7

Meaning

NLS is not installed.
Specified language is not configured.
Invalid collating table entry.
Invalid 1ength parameter.
NLS internal error.
NLS internal error.
Value of length1 is not less than length2.

collseq

* These errors do not apply to calls with a langnum equal to 0
(NATIVE- 3000) .

logical array (optional)
An array containing the collating sequence table as returned by NLI NFO
item 11. This parameter is required for split-stack calls. If this parameter
is present, langnum will be ignored and this routine will be much more
efficient.

SPECIAL CONSIDERA TIONS

Split-stack calls are permitted. NLKEYCOMPARE is intended for use with the KSAM subsystem.

ADDITIONAL INFORMATION

For example calls of this intrinsic refer to Programs I and J in Appendix H, "EXAMPLE
PROGRAMS. II

4-32

Native Language Intrinsics

NLREPCHAR
INTRINSIC NUMBER 403

Replaces nondisplayable characters of a string.

SYNTAX

BA BA IV BV IV LA LA o-v
NLREPCHAR (instr,outstr,stringlength,repchar,langnum,error,charset);

This intrinsic replaces all nondisplayable control characters in the string with the replacement charac
ter. Nondisplayable characters are those with attribute 3 (undefined graphic character) or 5 (control
code), as returned by NLINFO item 12.

PARAMETERS

instr

outstr

stringlength

repchar

langnum

error

byte array (required)
A byte array in which the nondisplayable characters have to be replaced.

byte array (required)
A byte array to which the replaced character string is returned.

integer by value (required)
A positive integer specifying the length (in bytes) of ins t ring.

byte value (required)
A byte specifying the replacement character to be used.

integer by value (required)
An integer value specifying the language ID number of the language that
determines the character set to be used.

logical array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-33

Native Language Intrinsics

Error #

1 *
2*
3
4
5 *
6*
7
8

Meaning

NLS is not installed.
Specified language is not configured.
Invalid replacement character.
Invalid 1ength parameter.
NLS internal error.
NLS internal error.
Invalid charset table entry.
Overlapping strings, out st ri ng would overwrite
instring.

charset

* These errors do not apply to calls with a langnum equal to 0
(NATIVE-3000).

logioal array (optional)
Contains the character set definition for the language to be used, as return
ed in NLINFO item 12. If this parameter is present, langnum will be ig
nored and this intrinsic will be much more efficient.

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITtONAL DISCUSSION

For example calls of this intrinsic refer to Program H in Appendix H, "EXAMPLE PROGRAMS. II

4-34

Native Language Intrinsics

NLSCANMOVE
INTRINSIC NUMBER 401

Moves and scans character strings according to character attributes.

SYNTAX

I SA SA LV IV
numchar:=NLSCANMOVE (instring,outstring,flags,length,

IV LA LA LA o-v
langnum,error,charset,shift);

The machine instructions (and the SPL constructs) for SCAN and MOVE used for upshifting or in
conjunction with the alphabetic, numeric or special characters will only work for NATIVE-3000.
This intrinsic will handle this function in a language-dependent manner.

FUNCTIONAL RETURNS

The number of characters acted upon in the SCAN or MOVE operation.

PARAMETERS

instring

outstring

flags

byte array (required)
A character string which will act as the source string of the SCAN/MOVE.

byte array (required)
A character string which will act as the target.

NOTE

If outstring and instring are the same string, this
intrinsic will act as SCAN. Otherwise, a MOVE will be
performed. (Refer to Error # 3.)

logical by value (required)
A flag defining the options for calling the intrinsic. This parameter always
defines the condition for terminating the SCAN/MOVE operation.

4-35

Native Language Intrinsics

bits 14:2

bits 13:1

bits 12:1

bits 11:1

bits 9:2

bits 0:9

Alphabetic. NLINFO item 12, types 1 (alphabetic
lowercase character) and 2 (alphabetic uppercase
character) .

1 Lowercase.
2 Uppercase.
3 Uppercase or lowercase.

Numeric. NLINFO item 12, type o.

Special. NLINFO item 12, types 3 (undefined graphic
character), 4 (special character), or 5 (control code).

WH I LE/UNT I L option. If this bit is zero, then
SCAN/MOVE is performed while the condition specified
by (flags (12 :4)) is true. If this bit is one,
SCAN/MOVE is- performed until the condition specified
by (flags (12: 4)) is true.

Shift.

1 Upshift.
2 Downshift.

Reserved. These bits of the flags parameter are reser
ved and must be zero.

length

langnum

error

integer by value (required)
An integer indicating the maximum number of characters to be acted upon
during the indicated operation.

integer by value (required)
An integer containing the language ID number which implies both the
character set definitions of character attributes and the language-specific
shift.

logioal array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful,
both words contain zero.

4-36

Error #

1 *
2*
3

4
5 *
6*
7
8
9

Native Language Intrinsics

Meaning

NLS is not installed.
Specified language is not configured.
Overlapping strings; i nst ri ng would have been over
written by out sf ri ng.
Invalid l engt h parameter.
NLS internal error.
NLS internal error.
Reserved portion of flags is not zero.
Both upshift and downshift requested.
Invalid table element.

charset

shift

* These errors do not apply to calls with a langnum equal to 0
(NATIVE- 3000).

logical array (optional)
An array containing the character set definition for the language to be
used, as returned in NLINFO item 12. If present, the langnum parameter
will be ignored, and this routine will be much more efficient. This param
eter is required for split-stack calls in which fl ags (12: 4) is not equal to 0
and flags (12:4) is not equal to 15.

logical array (optional)
An array containing shift information for a desired upshift or downshift
(e.g. , as returned in NLIN FO items 15 or 16). This parameter will be util
ized when bits (9:2) offlags is not equal to O. If present, the langnum
parameter will be ignored, and this routine will be much more efficient.
In split-stack calls this parameter is required if bits (9: 2) offl ags is not
equal to O.

SPECIAL CONSIDERATIONS

Split -stack calls are permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Programs F and G, In Appendix H, "EXAMPLE
PROGRAMS. II

4-37

Native Language Intrinsics

NLTRANSLATE
INTRINSIC NUMBER 404

The NLTRANSLATE intrinsic translates a string of characters from EBCDIC-to-ASCII or
ASCII-to-EBCDIC using the appropriate native language table. This intrinsic performs the same
function as CTRANSLATE using native language tables.

SYNTAX

IV SA SA IV IV LA LA o-v
NLTRANSLATE (code,instring,outstring,stringlength,langnum,error,table);

The instring parameter is translated into outstring for length of stringlength using a transla
tion table determined according to the first rule that applies from the following list:

1. If table is present, a translation will be made using table.

2. If langnumequals NATIVE-3000 a standard ASCII-to-EBCDIC or EBCDIC-to-ASCII transla
tion is made.

3. The ASCII-to-EBCDIC or EBCDIC-to-ASCII translation table for the language specified will
be used.

PARAMETERS

code

instring

outstring

stringlength

langnum

integer by value (required)

1 EBCDIC-to-ASCII
2 ASCII-to-EBCDIC

byte array (required)
The string of characters to be translated.

byte array (required)
A byte array to which the translated string is returned. The parameters
instring and outstring may specify the same array.

integer by value (required)
A positive integer specifying the number of bytes of instring to be
translated.

integer by value (required)
An integer containing the language ID number of the language whose
translation tables are to be used.

4-38

error

Native Language Intrinsics

logioal array (required)
The first word of this two-word array contains the error number. The
second word is reserved and always contains zero. If the call is successful)
both words contain zero.

Error #

1 *
2*
3
4
5 *
6*

Meaning

NLS is not installed.
Specified language is not configured.
Invalid oode specified.
Invalid 1ength parameter.
NLS internal error.
NLS internal error.

fable

* These errors do not apply to calls with a langnum equal to 0
(NATIVE-3000).

logical array (optional)
A 256-byte array which holds a translation table. Each byte contains the
translation of the byte whose value is its index. This parameter corresponds
to NL I NFO items 13 and 14. If present) langnum parameter will be ig
nored and this routine will be much more efficient.

SPECIAL CONSIDERATIONS

Split-stack calls are not permitted.

ADDITIONAL DISCUSSION

For example calls of this intrinsic refer to Program H in Appendix H) "EXAMPLE PROGRAMS. II

4-39/4-40

_______S_YS_T_E_M_U_T_I_LI_T_IE_S_I~

NLUTIL Program

The program allows the user to verify the language/character set configuration on the system.

:RUN NLUTIL.PUB.SYS

This displays a table of the configured languages and their character set. For example:

Lang Lang Char
-.ill Name _ID

3 DANISH
5 ENGLISH

12 SPANISH

Char
Name

ROMAN8
ROMAN8
ROMAN8

A prompt asks whether the user wants a full listing :

Do you require a full listing of the current configuration? (YIN)

An II NII response will terminate the program. A "Y II response will produce a complete formatted list
ing of the currently configured languages written to file NLL I ST on device class LP.

NLS File Structure

The file NLSDEF. PUB.SYS lists all character sets supported by Hewlett-Packard and it relates charac
ter set names to character set ID numbers. It does the same for languages, and it indicates, for every
language, what character set is required to support that language.

A file CHRDEFxx (xx is the character set ID number) contains the data pertaining to the character set
with ID number xx, and all languages supported by that character set. There is more than one
CHRDEFxx file.

The NLSDEF and the CHRDEFxx files are used by the program LANGINST. PUB.SYS to build or modify
the file LANGDEF. PUB. SYS (see below for a description of this program). This file is used at system
start up to build a number of system data segments holding the information required by NLS. The
number of data segments built at start up is one plus one for every language configured.

Language ~nstallation Utility (lANGINST)

The file LANGDEF. PU B. SYS contains all language-dependent information for every language to be
configured on a system at the next startup. It is an MPE file that is built or modified by running the
program LANGINST. It gathers data from NLSDEF • PUB. SYS and CHRDEFxx. PUB. SYS files into
LANGDEF. PUB. SYS.

A-I

System Utilities

Only a user logged into the PUB group of the SYS account as MANAGER. SYS can run LANGINST to:

• Add a language to the configuration file.

• Remove a language from the configuration file.

• Display and modify local formats of a configured language.

• Display the languages supported by Hewlett-Packard.

• Display the languages currently configured.

• Modify the system default language.

Any changes to LANGDEF will become effective when the system next comes up.

Adding a Language

LANGINST prompts the user MANAGER. SYS for the language to add to LANGDEF. The user may sup
ply either the language ID number or name. If [RETURN} is entered, the operation is aborted. If the
language is already installed the user is advised, and the addition is cancelled with an error message:

SWEDISH is already configured.

Similarly, for example, if the appropriate CHRDEFxx file is not available, the add is cancelled with an
error message:

The CHRDEFxx file is missing.
The Addition has been cancelled.

Refer to Table A-1 for a complete list of LANGINST error messages.

It is not possible to add NATIVE-3000. This language is hard-coded and is always configured. Any
attempt to configure it will result in the error message:

NATIVE-3000 is always configured.

Deleting a Language

LANGINST allows the user to delete any configured language with the exception of NATIVE- 3000,
which cannot be deleted. In addition, a check is made to ensure that the language designated as the
system default is not deleted.

A-2

System Utilities

Modifying Local Formats

The System Manager is allowed to modify the following local formats for any language configured in
LANGDEF:

• Date format (Dateline format).

• Custom date format (Short) .

• Time format.

• Currency sign.

• Decimal and thousands indicator.

• Month names.

• Abbreviated month names.

• Weekday names.

0 Abbreviated weekday names.

• Yes/N0 indicators.

• National date table.

If the language supports a special National Table containing date information (KATAKANA), the last
option is displayed to allow the user to modify this date information.

Whenever any changes have been made) the new copy of the file is saved under the name LANGDEF.
In addition, the old) unchanged version of the file is saved under the name LANGDxxx. The number
xxx increases by one every time a new copy of LANGDEF is saved. This allows the user to return to
the configuration that existed before LANGDEF was changed. To return to the previous configuration,
: PURGE or : RENAME the current LANGDEF. Then : RENAME the LANGDxxx with the highest number
LANGDEF. The next system startup will delete the changes.

lANGINST User Dialogue

The following are user dialogues for choosing a function, adding a language, deleting a language, and
modifying local language formats.

CHOOSING A FUNCTION. The System Manager selects an item from the main menu:

O. EXIT
1. ADD LANGUAGE TO LANGDEF
2. DELETE LANGUAGE FROM LANGDEF
3. MODIFY NATIVE FORMATS
4. LIST HP SUPPORTED LANGUAGES
5. MODIFY THE SYSTEM DEFAULT LANGUAGE
6. LIST LANGUAGES CURRENTLY CONFIGURED

A-3

System Utilities

To list languages which can be configured on the system, select Option 4:

HP SUPPORTED LANGUAGES:

o NATIVE-3000
1 AMERICAN
2 CANADIAN-FRENCH
3 DANISH
4 DUTCH
5 ENGLISH
6 FINNISH
7 FRENCH
8 GERMAN
9 ITALIAN

10 NORWEGIAN
11 PORTUGUESE
12 SPANISH
13 SWEDISH
41 KATAKANA

press any key to continue ...

using
using
using
using
using
using
using
using
using
using
using
using
using
using
using

USASCI I
ROMAN8
ROMAN8
ROMAN8
ROMAN8
ROMAN8
ROMAN8
ROMAN8
ROMAN8
ROMANS
ROMANS
ROMAN8
ROMAN8
ROMAN8
KANA8

ADDING A LANGUAGE. To add a language, select Option 1:

1. Use the language name or language ID number (langnum).

2. The addition is aborted by entering a (RETURN), a language that is already configured, a language
not supported by NLS, or NATIVE-3000.

Enter language to be added: SPANISH

SPANISH is already configured.

If a language is requested that is supported but has not been previously configured, LANGINST
configures it and displays the message:

SPANISH has been successfully configured.

3. When the addition is successfully completed, or else aborted, the main menu is displayed.

DELETING A LANGUAGE. To delete a language, select Option 2:

1. Use the language name or language ID number (langnum).

2. The deletion is aborted by entering a (RETURN), a language that is not configured, or the system
default language.

3. When the deletion is successfully completed, or else aborted, the main menu is displayed.

A-4

System Utilities

MODIFYING LOCAL LANGUAGE FORMATS. To modify local language formats, select
Option 3:

1. Use the language name or language ID number (langnum).

2. The process is aborted by entering a (RETURN), a language that is not configured , or
NATIVE-3000.

3. If the process is aborted, the main menu is displayed.

4. If a configured language is entered, amenu is displayed:

D. RETURN
1. DATE FORMAT (Dateline format)
2. CUSTOM DATE FORMAT (Short)
3. TIME FORMAT
4. CURRENCY SIGN
5. DECIMAL AND THOUSANDS INDICATOR
6. MONTH NAMES
7. ABBREVIATED MONTH NAMES
8. WEEKDAY NAMES
9. ABBREVIATED WEEKDAY NAMES
10. YES/NO INDICATORS
11 . PROCESS THE NATIONAL DATE TABLE

Enter selection number :4
Business Currency sign :F
Enter the new value :<CR>
Fully qualified Currency sign :FF
Enter the new value :<CR>
The currency sign currently follows the number, e.g., 100DM.

The following currency codes are available:

<CR> to retain the existing value.
o - The currency symbol precedes the number, e.g., $100.00.
1 - The currency symbol succeeds the number, e.g., 100.00DM.
2 - The currency symbol replaces the decimal point, e.g., 100$00.

Enter the required currency codes (0, 1, or 2) :<CR>
There are to be no blanks before or after the currency symbol.

The following blank-control codes are available:

<CR> to retain the existing value.
D - No blanks before or after the currency symbol.
1 - A blank is to precede the currency symbol.
2 - A blank is to succeed the currency symbol.
3 - A blank is to precede and succeed the currency symbol.

Ent0r the required code (0, 1, 2, or 3):<CR>

After the selection is made, the current value is displayed. The user is prompted for a new
value. If a new value is entered, it is validated and if valid it replaces the old value. If no new
value is entered (only (RETURN)) or if an invalid value is entered, the old value is retained.

A-S

System Utilities

Error Messages

Table A-I contains LANGINST error messages.

Table A-I. LANGINST Error Messages

MESSAGE

A NONNUMERIC GRAPHIC
CHARACTER IS
EXPECTED ...

ATTEMPTING TO ADD TOO
MANY CHARACTER SETS.

BUILDING AN EMPTY
LANGDEF ...

DELETION TERMINATED
... ATTEMPTING TO
DELETE NATIVE-3000.

ERRONEOUS STARTING
YEAR NUMBER. EXPECTED
A NUMBER BETWEEN 0 AND
99.

INPUT TOO LONG ...
PLEASE REENTER:

INTERNAL ERROR
PLEASE REPORT.

INVALID DATE FORMAT.
EXPECTED MM/DD/YY.

LANGNAME IS ALREADY
CONFIGURED.

LANGNAME IS AN ILLEGAL
LANGUAGE NAME (OR
NUMBER) .

MEANING

An alphabetic or special
character (but not numeric) is
expected.

Adding this language would
exceed the maximurn con
figurable character sets.

There was no existing
LANGDEF file, so a new,
empty one is being built.

The language NATIVE- 3000
may not be deleted from the
list of configured languages.

The year nurnber entered in
not valid.

The program does not expect
so much input in this context.

Internal error.

The entered date is not valid.

The language selected has al
ready been configured.

The language name or nurn
ber entered is not valid.

A-6

ACTION

Enter a valid character.

Don't configure languages
from so many character sets.

None. If you have already
configured languages) find
LANGDEF. PUB.SYS on a
backup and restore it. Or
else, reconfigure the lan
guages with this program.

None.

Enter the year nurnber again.
It must be a number between
oand 99.

Reenter the data correctly.

Contact your Hewlett
Packard representative.

Enter the date again in the
form MM/DD/YY.

None.

Enter the language again,
correctly.

System Utilities

Table A-I. LANGINST Error Messages (Continued)

MESSAGE

LANGNAME IS AN INVALID
SYSTEM DEFAULT
LANGUAGE.

LANGNAME IS NOT A
CONFIGURED LANGUAGE.

LANGNAME IS NOT
CONFIGURED.

LANGNAME IS NOT IN THE
CHRDEF FILE.

NATIVE-3000 IS ALWAYS
CONFIGURED.

NATIVE-3000 MAY NOT BE
~'ODI FIED.

THE CHRDEFXX FILE IS
MISSING. THE ADDITION
HAS BEEN CANCELLED.

THE DECIMAL SEPARATOR
AND THOUSANDS
SEPARATOR SHOULD BE
DIFFERENT.

THE EXPECTED NAME
SHOULD CONTAIN
ALPHABETIC CHARACTERS
ONLY.

THE FILECODE FOR
CHRDEFXX.PUB.SYS IS
INCORRECT.

MEANING

The language selected is not
configured on the system.

The language selected is not
configured on your system.

The language entered is not
configured on your system.

One of the CHRDEF,X,X files is
not consistent with the NLSDEF
file.

NATIVE-3000 may not be
added to the list of configured
languages because it is always
configured .

The language definition of
NATIVE-3000 may not be
modified.

The character definition file for
the selected language is missing.

The decimals and thousands
separators have been defined to
be the same.

Only alphabetic characters are
allowed in this context.

The character definition file for
the selected language has a bad
file code.

A-7

ACTION

Add the language to the list
of currently configured
languages with this
program.

Add the language to the list
of currently configured
languages with this
program.

Add the language to the list
of currently configured
languages with this
program.

Restore all CHRDEF,X,X files
and NLSDEF from your
master backup.

None.

None.

Restore the missing file
from your master backup.

Change the decimal and/or
thousands indicator.

Please re-enter the value,
restricting the input to al
phabetic characters.

Restore the missing
CHRDEF,Xx file from the
master backup.

System Utilities

Table A-I. LANGINST Error Messages (Continued)

MESSAGE

THE FILECODE FOR
LANGDEF.PUB.SYS IS
INCORRECT.

THE FILECODE FOR
NLSDEF.PUB.SYS IS
INCORRECT.

THE LANGUAGE YOU ARE
ATTEMPTING TO DELETE
IS THE SYSTEM DEFAULT
LANGUAGE.

THE USER SHOULD BE
MANAGER.SYS, RUNNING
IN THE PUB GROUP.

THERE IS NO MORE ROOM
FOR ADDITIONAL DATE
PERIODS. PLEASE
REPORT.

TOO MANY LANGUAGES
HAVE BEEN CONFIGURED.

UNABLE TO RENAME
LANGDEF TO LANGDnnn.
THE EXISTING LANGDEF
WILL BE PURGED.

UNKNOWN OPTION
PLEASE REENTER.

MEANING

The current language definition
file has a bad file code.

The master NLS definition file
has a bad file code.

The system default language
may not be deleted from the list
of configured languages.

The user is not MANAGER. SYS
or is not logged on in the PU B
group.

There is no room for additional
entries in the national date
table.

Adding another language would
exceed the maximum configur
able languages.

The old LANGDEF file could not
be renamed because all files
LANGDOOO thru LANGD999 al
ready existed.

The option selected is not a
valid one.

ACTION

Restore LANGDEF. PUB. SYS
from a backup copy. Or
purge it, and recreate it by
reconfiguring the desired
languages with this
program.

Restore NLSDEF. PUB.SYS
from the master backup.

If you wish to delete this
language, you must first
change the system default
language to another
language.

Log on as MANAGER. SYS in
the PU Bgroup and run the
program again.

Contact your Hewlett
Packard representative.

Don't configure so many
languages on one system.

Purge some or all of the
files LANGDOOO to
LANGD999 so the most
recent changes to LANGDEF
can be saved in the future.

Entel' the numbel' cor
responding to one of the
currently valid options.

'-- ..1.-.. ..•._-1.- --'

A-8

SUPPORTED LANGUAGES _

'--- A_N_D_C_H_A_R_A_C_T_E_R_S_E_T_S---'[I]

Character Set Definitions

The character sets supported by NLS are:

Set Name

USASCII
ROMAN 8
KANA8

Set ID Number

00
01
02

Languages Supported

NATIVE- 3000.
Many European - based languages.
Phonetic Japanese (katakana).

All character sets are supersets of USASCII, and are occasionally referred to generically as II ASCII II

character sets, as in the term II ASCII -to-EBCDIC translation II •

For every character set a character attribute table is defined. This table of 256 entries holds an at
tribute (type) for every character.

Type Identification:

0: Numeric character.
1: Alphabetic lowercase character.
2: Alphabetic uppercase character.
3: Undefined graphic character.
4: Special character.
5: Control code.

Example

2, 7, 9
a, b, n, q, x
A, B, f\I, Q, X

#, %, ? £..,
Linefeed, Escape

B-1

Supported Languages And Character Sets

Language Definitions

The following language names and language ID numbers are supported in NLS:

USASCII (Set #0)

Language Number Language Name

00 NATIVE-3000

ROMANS (Set #1)

Language Number Language Name

00 NATIVE- 3000
01 AMERICAN
02 CANADIAN-FRENCH
03 DANISH
04 DUTCH
OS ENGLISH
06 FINNISH
07 FRENCH
08 GERMAN
09 ITALIAN
10 NORWEGIAN
11 PORTUGUESE
12 SPANISH
13 SWEDISH

KANAS (Set #2)

00 NATIVE-3000
41 KATAKANA

The following items are defined for every supported language:

The upshift and downshift table.
The collating sequence table.
The ASCII -to-EBCDIC and EBCDIC-to-ASCII translate tables.
The long date format (the DATELINE format).
The short date format (the custom date format).
The time format.
The currency symbol (one character).
The currency descriptor (up to four characters).
The position and spacing of the currency sign.
The decimal and thousands separators for numbers.
The equivalents of YES and NO (both up to six characters).
The full weekday names (up to twelve cha-racters).
The abbreviated weekday names (up to three characters).
The full month names (up to twelve characters).
The abbreviated month names (up to four characters).
The National Date table (where applicable).

Refer to the discussion on the NLI NFO intrinsic in Section IV for a complete description of these items.

B-2

Supported Language And Character Sets

ROMAN8 CHARACTER SET
(USASCII PLUS ROMAN EXTENSION)

a a a 1

a 0 a a 0

a a 1 0 2

be 0 0 0 0 a a a a 1 1

b7 0 a a 0 1 a a 0 a
be a a a 0 a a a a
bs a a a 0 a 0 a a

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NU Sp 0 @ p
111111IIIIIIIIIIIIIIII! °llllllllllllllllllllll!: :III!III!III!IIIII!III!I

A. 0

A PL DLE P a A

11111111111111111111111 lllllllllllllllll!llill
A I\. t

,..,

Pso H 0 C1 1 A Q a q e A

" 2 B R b
!!I!II!II!!II!!!!I!!I!111 A- I\.

0
,..,

STX DC2 r 0 a

ETX # 3 C s
11I11111I11111I111I11I1

E 0 A.
tE DDC3 C S u

EaT DC4 $ 4 D T d t
lllllll!lllll!lll!lll!l: °11111111111111111111111

E q 0

da a
0/0 5 E u

°11!1!1!111!1!1!1!1!111! 1!lllllllllllllllllllll
E ~

, , tENQ NAK e u e 1

AC K SyN & 6 F V f
/1/111/111/1/1111111111 I1I11111I111111111I111I

A. N tv I 0 e

11111111111111111111111II t ,.., ,
1

BEL ETB 7 G W g w n u 00 0
4

8 H X h
/1111111111111111111111:

,
A 0 1BS CAN x a

2

9 I y 1
1111111II1111I111I11I11 11111111111111111111111

, , 6 §.HT EM Y 6 e 1

* J Z j
11!lllll!!!I!I!I!II!I!! !1!!ll!I!!!!I!!!!!!!II!

I\. :a ,
b

,..,
QLF SUB z 0 0

K [k {
!I!I!!!I!I!I!!!:!!!!!!! !!!II!l!I!!!!!!!!!I!!!I:

£ U v
VT ESC + u S «

/1111111111111111111111;Ii
,.., , v

F F FS < L \ I I ... a E s •
C R GS M] m }

:l!l!l!l!!!!!!!!!!!!!!!l
U § e 1 U »

> N
!111!1!111!1!1!111!1111 1!!!11!!1!1!1111!!11!!!

I\.

f 6 f3 Yso RS A n -- U ±

s I US I ? 0 0 0 EL
1111111111111!lll111111 11/11111111111111111111

£ ¢ u 6 y
1:1:11111:11111111111111111

3

4

7

5

6

9

8

10

12

11

14

15

13

a a 1 1

a 1 a a

a 1 0 1

0 1 1 0

0 1 1 1

1 o 0 0

1 o 0 1

1 0 1 0

1 0 1 1

1 1 o 0

1 1 0 1

1 1 1 0

1 1 1 1

Figure B-l. ROMAN 8 Character Set

B-3

Supported Language And Character Sets

KANA8 CHARACTER SET
(JISCII PLUS KATAKANA)

1 1 1 1 15

0 0

0 0

12 13 14 15

:fI. ~...

7- A

'Y :J.

T .::c

l' ~

oj- .;:l.

- 3

.:x ;;

;f 1)

,; }v

/' V

~ p

"7 r;

"" ;/

*
\\

-q 0

1111111111111111111~1~1~1~~

.:c.

7

[1111!111!1!lllllllllllllllllllllllllllllllllll ~

r ~lllllllll~III!!IIII!lll ~!IIIII!II!IIIII!IIIII!I r

t /111 '

v Illllllllll~IIII!llllrllllll\I!IIIIIIIIII!IIII. 7

p 11/111/111111111111111

{ 11111111111!1111!lllllllllllllllll!IIIII!11111 *

y 11111111111111111111111~:llllllll\II!!\\\\I!I\11 ?

z !!!!!lll!!!II!!!!1!1!111llI1!111l111!1!!I!I!l!1 ;I:

u ~llllllllll!lllllllllll! 111!IIIIIIIIIIIII!!III! .

q !1!llll!!IIII!!!I!!!III!!lll!!II!llll!lllll!ll 0

s l!l!l!!llllllll!III!IIIIIIII!!II!IIII!!!IIII!!! J

o 0

f

6 7 8 9 10 11

e

a

b

c

k

9

d

h

1

0 0

0

4 5

@ P

A Q

B R

C S

D T

E U

F V

G W

H X

I y

J Z

K [

L ¥
M]

N A

0

2

4

3

7

9

6

5

?

o
1

8

>

<

o 0 0 0 0 0

o 0 0 0 0 0

2 3

NUL DLE SP

SOH DC1

STX DC2 "
ETX DC3 #

EOT DC4 $

ENQ NAK 0/0

ACK SYN &

BEL ETB
,

BS CAN

HT EM

LF SUB *

VT ESC +

FF FS

CR GS

SO RS

SI US

ba 0 0

b7 0 0

b6 0 0

bs 0

0

4

7

2

o

5

9

6

3

8

10

12

11

14

13

000 0

o 1 0 0

o 1 1 1

1 0 0 0

o 0 1 1

100 1

1 0 1 1

o 0 1 0

o 1 0 1

o 0 0 1

1 1 0 0

o 1 1 0

1 1 0 1

1 1 1 0

1 0 1 0

Figure B-2. KANA8 Character Set

B-4

COLLATING IN EUROPEAN _

'--- L_A_N_G_UA_G_E_S-----'CTI

Collating is defined as arranging character strings into some (usually alphabetic) order. To do this a
mechanism must be available that, given two character strings, decides which one comes first. In
Native Language Support (NLS) this mechanism is the NLCOLLATE intrinsIc.

Look at the full ROMAN 8 character set and consider that all these characters can appear in every
European language. Even if a character does not exist in a language, it can still show up in names
and/or addresses. It is quite useful to address a letter to Spain correctly, even if it originates in
Germany. Therefore, the full ROMAN 8 character set is considered to be used in all languages, and a
collating sequence has been defined for all characters in the ROMAN 8 character set for the languages
it supports. Figure C-l lists the collating sequence for:

AMERICAN
CANADIAN-FRENCH
DANISH
DUTCH
ENGLISH
FINNISH
FRENCH

GERMAN
ITALIAN
NORWEGIAN
PORTUGUESE
SPANISH
SWEDISH

All characters in a group, indicated by brackets (or, in a few footnotes, by underlining) collate the
same. These characters usually differ only in uppercase versus lowercase priority, or accent priority.
In sorting, they are initially considered the same. If the remaining characters in the two strings do
not determine which string comes first, then the priorities of characters will be used to determine the
order. Refer to Table C-l for examples of collating sequence priority.

Table C-l. Examples of Collating Sequence Priority

Sorted Strings

aeb~ aeb

abc ~ Abd

aBc, abc

'-----------_._-

Explanation

The third character in each string is different. The
II b II precedes the II ell.

The characters in the two strings are identical, so accent
priority determines the order. The II e II precedes the IIeII

The last characters in the strings are different. The II c II

precedes the "d".

The characters in the two strings are the same, so the
uppercase priority determines the order. /I BII precedes
"b".

..----_.__._----------------------------"

C-l

Collating In European Languages

NOTE

This Appendix deals with collating or lexical ordering,
and does not include matching. For matching purposes,
there is generally a difference between II AII and II a II •

Figures C-l and C- 2 display the collating sequence in three ways: the graphic representation of the
character, the decimal equivalent of the character's binary value, and a description of the character.
Language-dependent variations to the collating sequence appear in Figure C-2.

C-2

Collating In European Languages

Collating Sequence

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

32 Space

160 Do Not Use

0 48 Zero

49 One

2 50 Two

3 51 Three

4 52 Four

5 53 Five

6 54 Six

7 55 Seven

8 56 Eight

9 57 Nine

A 65 Uppercase A
a 97 Lowercase a

A 224 Uppercase A Acute,
196 Lowercase Acutea a

A 161 Uppercase A Grave
a 200 Lovif~ rcase a Grave

A 162 Uppercase A Circumflex
A 192 Lowercase Circumflexa a

A 216 Uppercase A Umlaut/Diaeresis
a 204 Lowercase a Umlaut/Diaeresis

A 208 Uppercase A Degree
a 212 Lowercase a Degree

A 225 Uppercase A Ti Ide
a 226 Lowercase a Tilde

B [66 Uppercase B]
b 98 Lowercase b

Note that 1£ ligature (211) and e3 (215) are expanded for collating purposes to AE or ae and col
late as: ad AE Ae It aE ae ce AF.

Figure C-l. Collating Sequence (l of 7)

C-3

Collating In European Languages

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

C [67 Uppercase C]c 99 Lowercase c
~ 180 Uppercase C Cedilla

c; 181 Lowercase c Ced i lla

D [68 Uppercase D

]d 100 Lowercase d
f) 227 Uppercase D St roke

d 228 Lowercase d St rake

E 69 Uppercase E
e 101 Lowercase e

E 220 Uppercase E Acute
e 197 Lowercase e Acute

E 163 Uppercase E Grave,
201 Lowercase e Gravee

~ 164 Uppercase E Circumflex
A 193 Lowercase e Circumflexe

~ 165 Uppercase E Umlaut/Diaeresis
e 205 Lowercase e Umlaut/Diaeresis

F [70 Uppercase F]f 102 Lowercase f

G [71 Uppercase G]
9 103 Lowercase 9

H [72 Uppercase H]h 104 Lowercase h

73 Uppercase
105 Lowercase i

f 229 Uppercase I Acute
f 213 Lowercase i Acute

i 230 Uppercase I Grave,
217 Lowercase i Grave1

I 166 Uppercase I Ci rcumf lex
A 209 Lowercase i Circumflex1

'f. 167 Uppercase I Umlaut/Diaeresis
r 221 LO\lJercase Umlaut/Diaeresis

J [74 Uppercase J]j 106 Lowercase j

K [75 Uppercase K]k 107 Lowercase k

Figure C-l. Collating Sequence (2 of 7)

C-4

Collating In European Languages

CHARACTER DECIMAL DESCRIPTION
EQUIVALENT

L [76 Uppercase L]108 Lowercase I

M [77 Uppercase M]
m 109 Lowercase m

N [78 Uppercase N]n 110 Lowercase n
N 182 Uppercase N Ti Ide

n 183 Lowercase n Ti Ide

0 79 Uppercase 0
0 111 Lowercase 0

6 231 Uppercase 0 Acute,
198 Lowercase 0 Acute0

0 232 Uppercase 0 Grave,
202 Lowercase 0 Grave0

0 223 Uppercase 0 Circumflex
A 194 Lowercase 0 Ci rcumf lex0

(j 218 Uppercase 0 Umlaut/Diaeresis
0 206 Lowercase 0 Umlaut/Diaeresis

(5 233 Uppercase 0 Ti Ide
0 234 Lowercase 0 Ti Ide

¢ 210 Uppercase 0 Crossbar
¢ 214 Lowercase o Crossbar

p [80 Uppercase P]
P 112 Lowercase p

Q [81 Uppercase Q]
q 113 Lowercase q

R [82 Uppercase R]
r 114 Lowercase r

S [83 Uppercase S]s 115 Lowercase s
S 235 Uppercase S Caron

S 236 Lowercase s Caron

T [84 Uppercase T]t 116 Lowercase t

Note that the (3 (222, sharp s) is expanded to 5S and collates according to the German stan-
dard as: sr~ st.

Figure C-l. Collating Sequence (3 of 7)

C-S

Collating In European Languages

CHARACTER
DECIMAL
EQUIVALENT DESCRIPTION

U 85 Uppercase U
u 117 Lowercase u

0 237 Uppercase U Acute,
199 Lowercase Acuteu u

D 173 Uppercase U Grave,
203 Lowercase Graveu u

0 174 Uppercase U Ci rcumf lex
Q 195 Lowercase u Circumflex

0 219 Uppercase U Umlaut/Diaeresis
U 207 Lowercase u Umlaut/Diaeresis

V [86 Uppercase V]v 118 Lowercase v

W [87 Uppercase W]w 119 Lowercase w

X [88 Uppercase X]x 120 Lowercase x

y [89 Uppercase Y

]Y 121 Lowercase y
y 238 Uppercase y Umlaut/Diaeresis

y 239 Lowercase y Umlaut/Diaeresis

Z [90 Uppercase Z]z 122 Lowercase z

~ [240 Uppercase Thorn]p 241 Lowercase Thorn

177 Cu rrent 1y Undefined

178 Cu rrent 1y Undefined

242 Cu rrent ly Undefined

243 Cu rrent 1y Undefined

244 Current ly Undefined

245 Cu rrent 1y Undefined

Figure C-l. Collating Sequence (4 of 7)

C-6

Collating In European Languages

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

40 Left Pa rent hes is

41 Right Pa rent hes is

91 Left Bracket

93 Right Bracket

{ 123 Left Brace

} 125 Right Brace

{ 251 Left Guillemets

} 253 Right Guillemets

< 60 Less Than Sign

> 62 Greater Than Sign

= 61 Equal Sign

+ 43 Plus

45 Minus

± 254 Plus/Minus

t 247 One Quarter

t 248 One Half

0 179 Degree (Ring)

% 37 Percent Sign

* 42 Aster isk

46 Per iod (Point)

44 Comma

59 Semicolon

58 Colon

Figure C- 1. Collating Sequence (5 of 7)

C-7

Collating In European Languages

CHARACTER

?

/

\

I

@

Be

#

§

$

¢

£

A

DECIMAL
EQUIVALENT

185

63

184

33

47

92

124

64

38

35

189

36

191

187

175

188

190

186

34

96

39

94

126

DESCRIPTION

Inverse Question Mark

Question Mark

Inverse Exclamation Point

Exclamation Point

Slant

Reverse Slant

Vert ical Bar

Commercial At

Ampersand

Number Sign (Hash)

Section

u. S. Do I 1a r S i gn

u. S. Cent Sign

British Pound Sign

Italian Lira Sign

Japanese Yen Sign

Dutch Guilder Sign

General Currency Sign

Double Quote

Opening Single Quote

Closing Single Quote

Caret

Ti Ide

Figure C-l. Collating Sequence (6 of 7)

C-8

Collating In European Languages

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

168 Accent Acute

169 Accent Grave

170 Accent Circumflex

171 Umlaut/Diaeresis

172 Tilde Accent

95 Underscore

246 Long Dash

176 Overline

A 249 Feminine Ord ina I Indicator

.Q. 250 Masculine Ord ina I Indicator

• 252 Sol id

0 \
\

Control Codes
/

31 /

128 \
\

Currently Undefined
/ Control Codes

159 /

127 DEL

255 r:o Not Use

Figure C-l. Collating Sequence (7 of 7)

C-9

Collating In European Languages

Language -Dependent Variations

Listed below are language-dependent variations for Spanish) Danish/Norwegian, Swedish and
Finnish.

SPANISH. CH is considered a separate character, which collates between C and D. The same
applies to LL, which collates after Land before M:

[
C@ I@

]
The @ symbol can equal anything.

CH LL Therefore, CH comes after C followed by
Ch LI anything, and before D followed by
cH IL anything.
ch 11
D@ M@

In Spanish Nand f\I are not considered the same in collating (this also applies to nand n).
They are different characters which follow one another in the collating sequence:

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

N [78 Uppercase N]
n 110 Lowercase n

N [182 Uppercase N Ti Ide]n 183 Lowercase n Ti Ide

DANISH/NORWEGIAN . The A:, ¢, and Acollate at the end of the alphabet:

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

Z [90 Uppercase Z]z 122 Lowercase z

IE [211 Uppercase AE Liga t ure]sa 215 Lowercase ae Ligat ure

¢ [210 Uppercase 0 Crossbar]¢ 214 Lowercase 0 Crossba r

A [208 Uppercase A Degree]a 212 Lowercase a Degree

p [240 Uppercase Thorn]p 241 Lowercase Thorn

Figure C-2. Language-Dependent Variations (l of 3)

C-IO

Collating In European Languages

SWEDISH. The A, Aand 5 are collated at the end of alphabet:

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

Z [90 Uppercase Z]z 122 Lowercase z

A [208 Uppercase A Degree]a 212 Lowercase a Degree

A [216 Uppercase A Umlaut/Diaeresis]a 204 Lowercase a Umlaut/Diaeresis

5 [218 Uppercase 0 Umlaut/Diaeresis]0 206 Lowercase 0 Umlaut/Diaeresis

p [240 Uppercase Thorn]p 241 Lowercase Thorn

FINNISH. The A, A, and 5 are treated the same as in Swedish. The ¢ is considered to be the
same as 5. V and W, and Yand 0 are regarded as the same in Finnish.

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

U 85 Uppercase U
u 117 Lowercase u

U 237 ·Uppercase U Acute
U 199 Lowercase u Acute

0 173 Uppercase U Grave,
203 Lowercase u Graveu

0 174 Uppercase U Circumflex
A 195 Lowercase u Circumflexu

V [86 Uppercase V

]v 118 Lowercase v
W 87 Uppercase W

w 119 Lowercase w

X [88 Uppercase X]x 120 Lowercase x

Y 89 Uppercase Y ly 121 Lowercase y
V 238 Uppercase Y Umlaut/Diaeresis

y 239 Lowercase y Umlaut/Diaeresis

J0 219 Uppercase U Umlaut/Diaeresis
ti 207 Lowercase u Umlaut/Diaeresis

Figure C-2. Language-Dependent Variations (2 of 3)

C-ll

Collating In European Languages

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

Z [90 Uppercase Z]z 122 Lowercase z

A [208 Uppercase A Degree]a 212 Lowercase a Degree

A [216 Uppercase A Umlaut/Diaeresis]a 204 Lowercase a Umlaut/Diaeresis

0 [218 Uppercase 0 Umlaut/Diaeresis

]0 206 Lowercase 0 Umlaut/Diaeresis
¢ 210 Uppercase 0 Crossbar

¢ 214 Lowercase 0 Crossbar

~ [240 Uppercase Thorn]p 241 Lowercase Thorn

Figure C-2. Language-Dependent Variations (3 of 3)

C-12

_______EB_C_D_IC_M_A_P_PI_N_Gs-----Jl~

NLS provides mappings, through NLTRANSLATE and NLI NFO, from HP 3000 supported character sets
(ROMAN 8, KANA8) to the various national versions of the EBCDIC code. This applies to all native
languages supported on the HP 3000, and is done differently for each language.

Background Data

EBCDIC is an 8-bit code which originally used only 128 of the 256 possible code values. These 128
characters have almost the same graphic representations as the traditional 7-bit, 128-character,
USAscn code. Three characters are different. USASCII has the left and right sqUire brackets ([])
and the caret C"), while EBCDIC includes the American cent (¢) the logical OR (), and the logi
cal NOT (...,).

The EBCDIC code was modified to accommodate the extra characters required by European lan
guages. For example) when the German EBCDIC was defined some less important characters were
traded for German national characters) and the vertical bar (I) became lowercase 5. Similar things
happened to create EBCDIC codes for Norwegian/Danish) Swedish/Finnish, Spanish, Belgian,
Italian) Portuguese) French) and English in the UK.

The 128 unused positions in the various national language EBCDIC codes were later used to accom
modate all national characters which appeared in any of the EBCDIC codes. Each resulting Country
Extended Code Page became a superset of each existing national EBCDIC. In the German table) for
instance) the empty space was used to accommodate characters from other languages) but the
traditional German characters (a, 5 and ti, and 13) retained their original position in the
German national EBCDIC. There are many Country Extended Code Pages now, all showing exactly
the same characters, but showing them in different locations. Consider, for example) the character
which has decimal code 161 (octal 241) hexadecimal AI). In original EBCDIC this is the -. This is
the sharp s ((3) in German, the diaeresis accent (..) in French, the lowercase ti in Swedish/Finnish
and Norwegian/Danish, the lowercase 1 in Italian) and the lowercase c:; in Portuguese.

This situation makes it necessary to map the Hewlett-Packard ROMAN 8 character set to the many
different EBCDIC Country Extended Code Pages.

ROMANS to EBCDIC Mapping

In mapping from ROMAN 8 to and from any EBCDIC, characters look the same) or as close as pos
sible) before and after conversion. The majority of the symbols appearing in ROMAN 8 also exist in
the EBCDIC Country Extended Code Pages. In ROMAN8 there are nine characters which have no
similar EBCDIC character, and six undefined characters. Since there are no undefined characters in
the EBCDIC Country Extended Code Pages, 15 characters in EBCDIC have no look-alike in
ROMAN 8. For these characters a one-to-one mapping has been defined as shown in Table D-1.

D-1

EBCDIC Mappings

dec. oct. hex. ROMAN8 EBCDIC

169 251 A9 .. Grave Accent I Logical OR
170 252 AA A Circumflex Accent Logical NOT-,

172 254 AC ,.., Tilde Accent 2 Superscript 2
175 257 AF £ Italian Lira Sign 3 Superscript 3
177 261 B1 Presently Undefined II MU Character
178 262 B2 Presently Undefined - Double Underline
235 353 EB S Uppercase S Caron Y Uppercase Y Acute
236 354 EC S Lowercase s Caron y Lowercase y Acute
238 356 EE Y Uppercase Y Umlaut 1 Lowercase i Without Dot
242 362 F2 Presently Undefined

!>
Cedilla

243 363 F3 Presently Undefined err Paragraph Sign
244 364 F4 Presently Undefined ® II Registered II Sign
245 365 F5 Presently Undefined t Three Quarters
246 366 F6 - Long Dash SHY Syllable Hyphen
252 374 FC • Solid • Middle Dot

Figure D-1. ROMAN 8 to EBCDIC Mapping

For the Hewlett-Packard KANA8 character set, which supports KATAKANA, the mapping to and
from EBCDIC is defined by Japanese Industrial Standards (JIS) and IBM.

In all1anguages, the character mappings defined and implemented on the HP 3000 are such that any
character mapped from any Hewlett-Packard 8-bit character set to EBCDIC and then back again) or
vice versa, will result in the original character value. A complete listing of the Hewlett-Packard
8-bit character set to EBCDIC mappings and vice versa can be obtained by running the utility
NLUTI L. PUB. SYS.

The mappings can be made available to a program by the NLINFO intrinsic item 13 or 14. The map
pings are used by the NLTRANSLATE intrinsic) which performs the Hewlett-Packard 8-bit to EBCDIC
translation or the reverse. The CTRANSLATE intrinsic maps USASCII to EBCDIC (and vice versa) and
maps JISCII to EBCDIK (and vice versa). For the languages NATIVE- 3000 and KATAKANA there
is no difference between the mappings produced by NLTRANSLATE and CTRANSLATE.

D-2

___P_ER_I_PH~E_R_A_L_C_O_N_F_IG_U_R_A_T_IO_N_II~

Native Language Support (NLS) relies on the use of 8-bit character sets to encode alphabetic,
numeric and special characters required for the proper representation of native languages. Two
character sets are available, ROMAN 8 and KANA 8. This Appendix explains how to configure
various printers and terminals supported on the HP 3000 for 8-bit operation, so that ROMAN8 or
KANA8 characters may be entered and displayed.

Most Hewlett-Packard terminals and printers are designed for 8-bit operation. Some have limitations
which are listed as Notes at the end of this Appendix. A listing of relevant Notes is included with the
instructions fbr each peripheral, and the peripherals to which such notes apply are listed in Table
E-2.

NLS Terminology

The following are definitions of NLS terms:

JISCII

KANA8

ROMAN8

Roman Extension

Old ROMAN 8

Processing Standard

Limited Support

The Japanese version of USASCII. It is a 7-bit character set identical to
USASCII with the exception that the Japanese yen symbol replaces the 11\ II

character.

The Hewlett-Packard supported 8-bit character set for the support of
phonetic Japanese (katakana). It includes all of JISCII plus the katakana
characters. Refer to Appendix B for the table of KANA8 characters.

The Hewlett-Packard supported 8-bit character set for Europe. It includes
all of USASCII plus those characters necessary to support the major western
European languages. Refer to Appendix B for the table of ROMAN 8
characters.

Part of the "old ROMAN 8 II as implemented on a number of the older
Hewlett-Packard terminals and printers. It is not a character set in itself
but refers to an extension to USASCII. This extension is usually imple
mented as an alternate character set. The characters in Roman Extension
form a subset of the non-USASCII characters in ROMANS and the same
internal codes are used in both cases.

USASCII plus Roman Extension. The manuals for terminals supporting old
ROMAN 8 contain this table.

The internal Hewlett-Packard 8-bit processing standard for all
Hewlett-Packard products. This standard was developed ill anticipation of
NLS and specifies standard character sets, escape sequences, character
designations and invocations and keyboard operation for peripherals and
systems.

Refer to the Notes for each specific peripheral.

E-1

Peripheral Configuration

NLS Peripheral Support Summary

Tables E-1, E-2, and E-3 contain information on which peripherals are fully supported, have
limited support, and those which are not supported.

Table E-1. Peripherals Fully Supported in 8-Bit Operation - All Language Options

Conforms To Supports Supports
Model/Type Processing Standard Full ROMANS Old ROMANS

HP 150 PCIAs Terminal YES YES YES

HP 239 2A Terminal YES NO YES

HP 2563A Printer YES YES YES

HP 2621B Terminal YES NO YES

HP 2622J Terminal YES YES* N/A*

HP 2623J Terminal YES YES* N/A*

HP 2625A Terminal YES YES YES

HP 2627A Terminal YES NO YES

HP 2628A Terminal YES YES YES

HP 293 2A Printer YES YES YES

HP 2933A Printer YES YES YES

HP 2934A Printer YES YES YES

HP 2700 Terminal YES NO YES

* Supports KANAB rather than ROMAN8.

E-2

Peripheral Configuration

Table E-2. Peripherals With Limited Support in 8-Bit Operation

Conforms To Supports Supports
Model/Type Processing Standard Full ROMANS Old ROMANS

HP 238 2A Terminal NO NO YES

HP 2608A Printer NO NO YES

HP 2608S Printer NO NO YES

HP 2622A Terminal NO NO YES

HP 2623A Terminal NO NO YES

HP 2626A Terminal NO NO YES

HP 2626W Terminal NO NO YES

HP 2631 B Printer NO NO YES

HP 2635B Prntr/Term NO NO YES

HP 2645J Terminal NO YES* N/A*

HP 2680A Printer NO NO YES

HP 268 8A Printer NO YES YES

* Supports KANA8 rather than ROMAN8.

Table E-3. Peripherals Not Supported in 8-Bit Operation

Conforms To Supports Supports
Model/Type Processing Standard Full ROMANS Old ROMANS

HP 2624B Terminal NO NO NO

HP 2687A Printer YES NO NO**

** This printer functions correctly in 8-bit operation (it has no 7-bit operation). However, much
of the ROMAN8 character set is not implemented and KANA8 is unavailable. Some of Roman
Extension is not implemented; but 8-bit characters with some of the Roman Extension values
print in a degraded fashion (i.e., accented vowels print as the corresponding vowel without ac
cent, and the international currency symbol prints as II 0 II).

E-3

Peripheral Configuration

Specifics of 7-Bit Support

No peripherals are supported in 7- bit native language operation.

All peripherals are supported in 7- bit USASCII operation, though the non- USASCII characters are
then unavailable. This includes the devices not listed at all in the preceding tables, because they are
devices which have only 7-bit operation.

If 8-bit data is sent to a device configured for 7-bit USASCII operation, those characters with the
eighth bit on will be displayed as unrelated (but predictable) USASCII characters, or else as blanks,
depending on the device. For example, an IIaII displays as "H II on a 2645A terminal.

This Appendix contains specific information on each device supported in 8-bit mode to help configure
these peripherals to utilize NLS capabilities.

NLS Peripheral Support Details

There are two ways to access ROMAN 8 characters not on the keyboard.

From many of the terminal keyboard layouts (e.g., French and Spanish) you can access a few
ROMAN8 characters (certain accented vowels) from the standard keyboard by using mutes. Enter a
non-spacing diacritical character (such as an accent luark or circumflex), then the unaccented vowel.
The result on the screen is a single, merged character, and usually a single, merged character is
transmitted to the system. (See Notes 7 and 10 for some of the peripherals.)

Accessing ROMAN8 or KANA8 characters that do not appear on your keyboard can be accomplished
by using II Nell / II 0C'I, II. ell / II , ell, or the II Extend char II key, depending on the terminal. If your
terminal uses II Nell (or "shifting out "), please consult Notes 1-4 at the end of this Appendix.

E-4

Peripheral Configuration

HP 150 P.ClI as a Terminal

Requirements

None. ROMAN8 character set is standard.

Character Set Supported

ROMAN8

Configuring For a-Bit Operation

Global Configuration

Port 1 or Port2

Terminal Configuration

MPE I/O Configuration

La~guage = Language of the keyboard.

Parity =None
DataBits = 8
Check Parity = No

ASCII 8-Bits = Yes

Terminal Type = 10 (12 if connection is ATC).

Typing ROMAN8 Characters Not On The Keyboard

Access the ROMAN 8 characters, not on the national keyboard by pressing the "Extend char II key)
holding it down while pressing one of the other keys. Most of the accented vowels) as well as the
Spanish f\f or n, are accessed from most of the national keyboards by means of mutes. The mute is a
diacritical mark such as an accent) circumflex) or diaeresis. Enter a non -spacing diacritical character
(if it is not on the keyboard layout) press the "Extend char" key)) then the unaccented vowel (or N or
n). The screen displays a single) merged character) and a single) merged character is transmitted to
the system. The non -spacing diacritical character is not displayed on the screen until the second
character~ typed.

Notes

None.

E-5

Peripheral Configuration

HP 2382A Terminal

Requirements

Option 001,002,003, 004, 005, 006 or 007 (National keyboard and ROM).

Character Set Supported

USASCIIplus Roman Extension

Configuring For a-Bit Operation

Datacomm Configuration

Terminal Configuration

MPE I/O Configuration

Parity = None
Chk Parity = No

ASCII 8-Bits = Yes
Language = Language of the keyboard layout.

Terminal Type = 10 (12 if connection is ATC) .

To configure the terminal for 8- bit operation as the default, set switches A 5=up, A6=down, A7=up,
Bl=down.

Typing USASCll/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS qwM, or
ESPANOL M, some Roman Extension characters (certain accented vowels) are accessible from the stan
dard keyboard by using mutes. Enter a non -spacing diacritical character, then the unaccented
vowel. The screen displays a single, merged character. With a national keyboard, the USASCII
characters, which are replaced on the keyboard, cannot be entered, but they can be displayed when
received from the system.

Access the Roman Extension characters not on the keyboard by shifting out the keyboard. Enter
c c

liN II to do so. Enter "0 II to return to the usual keyboard layout.

Notes

1,2,4,5,6,7,9.

E-6

Peripheral Configuration

HP 2392A Terminal

Requirements

None. A subset of the ROMAN8 character set is standard.

Character Set Supported

A subset of ROMANS (the last two columns of the ROMAN8 table are missing).

Configuring For 8-Bit Operation

Datacomm Configuration

Terminal Configuration

MPE I/O Configuration

Parity/DataBits = None/8.

Keyboard = National layout of keyboard.
Language = Language in which terminal messages and labels are to
appear.

Terminal Type = 10 (12 if connection is ATC).

Typing ROMAN8 Characters Not On Keyboard

Some ROMAN 8 characters (certain accented vowels) are accessible from the standard keyboard by
using mutes. Enter a non -spacing diacritical character, then the unaccented vowel. The screen dis
plays a single, merged character oj and a single, merged character is transmitted to the system (in both
character and block mode).

ROMAN 8 characters not on the keyboard are accessible by pressing the "Extend char II key, holding it
down while pressing another key. Most accented vowels are accessed via mute character combina
tions. The mute character itself is accessed via the II Extend char II key, and the vowel from the stan
dard keyboard. The placement of extended characters is in Appendix B of the HP 2392A Display
Station Reference Manual (02392-90001).

Notes

None.

E-7

Peripheral Configuration

HP 2563A Printer

Requirements

None. ROMAN8 character set is standard.
(KANA8 is available with Option #002.)

Character Set Supported

ROMAN8, KANA8

Configuring For a-Bit Operation

Printer

MPE I/O Configuration

Notes

None.

Set primary character set = 20 (ROMAN 8) or = 21 (KANA8) via the
switches on the front panel. If the printer has a serial interface, set
DataBits = 8, Parity = None. These configurations can also be done
programmatically with escape sequences.

For serial interface, configure the printer on the HP 3000 as Termtype
= 20 (8-bits of data). On a Multipoint line, use Termtype = 18 or 22.
For HP-IB interface, use Type = 32, Subtype = 9. This permits
programmatic reconfiguration via escape sequences.

E-8

Peripheral Configuration

HP 2608A/HP 26085 Printers

Requirements

Option 001 and 002 for KANA8.
Option 002 for Roman Extension.

Character Set Supported

KANA8
USASCII pIus Roman Extension

Configuring For a-Bit Operation

Set switches on front panel: USASCII+RomExt
Primary Language = 0000
Secondary Language = 1111

KANA8
Primary Language = 111 0
Secondary Language = 0011

On the HP 2608S only, a program can also set these values via escape sequences.

MPE I/O Configuration

Notes

9,11.

Termtype =20 or 22.

E-9

Peripheral Configuration

HP 26218 Terminal

Requirements

Option 001,002,003,004,005,006 and/or 010 (National keyboard and/or extended character set
ROMs).

Option 101,102,103,1 04, 105,1 06 and/or 110 (Extended national keyboard and/or ROMs).

Character Set Supported

USASCII plus Roman Extension

Configuring For a-Bit Operation

Set switches PO,Pl ,P2:

Set switches LO,L 1 ,L2:

MPE I/O Configuration

Set to 0,1 ,0 (down,up ,down).

Set to language of keyboard layout (see HP 2621B Manual
(02620-90062), for settings for keyboard layout), and switch 5 of the
left-hand group = 0 to activate the keyboard of that language.

Terminal Type = 10 (12 if connection is ATC).

Typing USASCll/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish a few Roman Extension characters (certain accented
vowels) are accessible from the standard keyboard by using mutes. Enter a non-spacing diacritical
character, then the unaccented vowel. The screen displays a single, merged character, and a single,
merged character is transmitted to the system.

Roman Extension characters (except those available via mutes) not available on the keyboard cannot
be entered. But they can be displayed when received from the system.

The USASCII characters which are replaced on the native keyboard are available after pressing
(1'1) in the II modes II level (an asterisk will appear next to the IIUSASCII II label for this function
key). This causes the keyboard to become the standard USASCII layout. Press l 1'1) again (the as
terisk will disappear) to return to the native keyboard.

Notes

10.

E-I0

Peripheral Configuration

HP 2622A/HP 2623A Terminals

Requirements

Option 001, 002, 003, 004, 005, 006 or 202 (National keyboard and/or extended character set
ROMs).

Character Set Supported

USASCII plus Roman Extension

Configuring For a-Bit Operation

Datacomm Configuration

Terminal Configuration

MPE I/O Configuration

Parity = None
Chk Parity = No

ASCII 8-Bits = Yes
Language =Language of the keyboard layout.

Terminal Type = 10 (12 if connection is ATC).

Typing USASCU/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS qwM, or
ESPANOL M, a few Ronlan Extension characters (certain accented vowels) can be accessed from the
standard keyboard by using mutes. Enter a non-spacing diacritical character, then the unaccented
vowel. The screen displays a single, merged character. Access the USASCII characters replaced on a
national keyboard by pressing CS]Tff) and one of the numeric pad keys.

Access the Roman Extension characters not on the keyboard by shifting out the keyboard. Enter
c cliN II to do so. Enter 110 1/ to return to the usual keyboard layout.

Notes

1,2,4,5,6,7,9.

E-ll

Peripheral Configuration

HP 2622J/HP 2623JTerminais

Requirements

None. Katakana is standard.

Character Set Supported

KANA8.

Configuring For a-Bit Operation

Datacomm Configuration

Terminal Configuration

MPE I/O Configuration

Parity =None
Chk Parity = No

ASCII 8-Bits = Yes

Terminal Type = 10 (12 if connection is ATC) .

Typing KANA8 Characters Not On The Keyboard

Access the KANA8 characters not in JISCII by pressing the IIkatakana II key to enter katakana mode.
Press the "CAPS II key to return to the JISCII keyboard.

Notes

None.

E-12

Peripheral Configuration

HP 2625A/HP 2628A Terminals

Requirements

None. ROMAN 8 character set is standard.

Character Set Supported

ROMAN8

Configuring For a-Bit Operation

Datacomm Configuration

Terminal Configuration

MPE I/O Configuration

Parity ~ None
Chk Parity = No
DataBits = 8 (in Multipoint: Code =ASCII 8) .

ASCII 8-Bits = Yes

Terminal Type = 10 (12 if connection is ATC).

Typing ROMAN8 Characters Not On The Keyboard

If the keyboard layout is French or Spanish a few ROMAN 8 characters (certain accented vowels) can
be accessed from the standard keyboard by using mutes. Enter a non -spacing diacritical character,
then the unaccented vowel. The screen displays a single, merged character, and a single, merged
character is transmitted to the system (in both character and block mode).

Access the ROMAN 8 characters not on the keyboard by pressing II. C II to enter lIextended characters
mode. II When not using the USASCII keyboard, this may not actually be the key labelled period (.)
but the period key for the USASCII keyboard. A keyboard layout showing the placement of extended
characters is located in the User's Manual for the HP 2625A Dual-System Display Terminal and HP
2628A vVord-Processing Terminal (02625-90001). Enter 1/, CII to return to the usual keyboard
layout.

Notes

None.

E-13

Peripheral Configuration

HP 2626A/HP 2626W Terminals

Requirements

Option 001, 002, 003, 004, 005, 006 or 201 (National keyboard and/or extended character set
ROMs).

Character Set Supported

USASCII plus Roman Extension

Configuring For a-Bit Operation

Global Configuration

Datacomm Configuration

Terminal Configuration

MPE I/O Configuration

Language = Language of keyboard layout.

Parity = None
Chk Parity = No
DataBits = 8 (In Multipoint: Code = ASCU8).

ASCII 8-Bits = Yes
ESC) A = RomanExt*
Alternate Set = A.

Terminal Type = 10 (1 2 if connection is ATC) .

*On some versions of the 2626W the RomanExt and BOLD alternate sets are exchanged. Press
IDENTIFY ROMS; if CHARACTER ROMS show 1818-1916 and 1818-1917, Rev.A, set ESC) A =

BOLD to access ROMAN 8.

Typing USASCUIRoman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS qwM, or
ESPANOL M, a few Roman Extension characters (certain accented vowels) can be accessed from the
standard keyboard by using mutes. Enter a non -spacing diacritical character, then the unaccented
vowel. The screen displays a single, merged character. Access the USASCII characters replaced on a
national keyboard by pressing (SH I FT I and one of the numeric pad keys.

Access the Roman Extension characters not on the keyboard by shifting out the keyboard. Enter
c cliN II to do so. Enter 110 . II to return to the usual keyboard layout.

Notes

1,2,3,5,6,7,8,9.

E-14

Peripheral Configuration

HP 2627A Terminal

Requirements

None. Roman Extension is standard.

Character Set Supported

USASCII plus Roman Extension

Configuring For a-Bit Operation

Datacomm Configuration

Terminal Configuration

MPE I/O Configuration

Parity = None
Chk Parity = No

Language =Language of keyboard layout.
ASCII 8-Bits = Yes

Terminal Type = 10 (12 if connection is ATC) .

Typing USASCIl/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS qwM, or
ES PANOL M, a few Roman Extension characters (certain accented vowels) can be accessed from the
standard keyboard by using mutes. Enter a non -spacing diacritical character, then the unaccented
vowel. The screen displays a single, merged character, and a single, merged character is transmitted
to the system (in both character and block mode).

Access the USASCII or Roman Extension characters not on the keyboard by putting the keyboard in
Foreign Characters mode. Enter II. ell to do so. Find the keyboard location of anc!. desired character
in the HP 2627A Display Station Reference Manual (02627 -90002). Enter II, II to return to the
usual keyboard layout.

Notes

4.

E-15

Peripheral Configuration

HP 26318 Printer

Requirements

Roman Extension and katakana are now standard. Formerly option #008 (katakana) or #009
(Roman Extension) was required.

Character Set Supported

KANA8
USASCII plus Roman Extension

Configuring For a-Bit Operation

Set the rocker switches on the Serial I/O Interface PCA (S2, inside the printer) as follows:

Switches 6,7 Set to 00 (both open).
(Received eighth bit passed).

Set the rocker switches on the Printer Logic PCA (inside the printer) as follows:

In 1st Group of 7

In 2nd Group of 10

Front Panel Switches

MPE I/O Configuration

Notes

9,11,14.

Set Switch 7 = 0 (Open) (8-bit Datacomm).

Set Switches 1- 5 = 11111 (USASCII) ; 10110 (JISCII).
Set Switches 6-10 = 10001 (Roman Extension) ; 10101 (katakana).

Parity =00 (None).

Subtype = 14 (not supported if connection is ATC).
Terminal Type =20 or 22.

E-16

Peripheral Configuration

HP 26358 Printer/Terminal

Requirements

Roman extension is now standard. Formerly one of options #001, 002, 003, 004, 005 or 006 (na
tional keyboards) was required.

Character Set Supported

USASCII plus Roman Extension

Configuring For a-Bit Operation

Set the rocker switches on the Serial I/O Interface PCA (S2, inside the printer) as follows:

Switches 6,7 Set 00 (both open).
(Received eighth bit passed).

Set the rocker switches on the Printer Logic PCA (inside the terminal) as follows:

In 1st Group of 7

In 2nd Group of 10

Set Switch 7 = 0 (Open) (8-bit Datacomm).

Set Switches 1- 5 = 11111 (USASCII).
Set Switches 6-10 = 10001 (Roman Extension).

Set the rocker switches on the keyboard PCA (inside the terminal) as follows:

Set Switches 4- 8

Front Panel Switch

MPE I/O Configuration

Notes

1,2,5,7,9,11.

Set to language of terminal keyboard. Refer to the HP 2630B Family
Reference Manual (02631-90918) for a list of keyboard layouts and
the corresponding switch settings.

Parity = None.

Terminal Type = 15.

E-17

Peripheral Configuration

HP 2645J Terminal

Requirements

None. Katakana is standard.

Character Set Supported

KANA8

Configuring For a-Bit Operation

Datacomm Configuration

MPE I/O Configuration

Parity = None

Terminal Type = 10 (12 if connection is ATC) .

Typing KANA8 Characters Not On Keyboard

Access the KANA 8 characters not in JISCII by pressing the "katakana II key to enter katakana mode.
Press the katakana key again to return the keyboard to its JISCII layout. Alternatively, press the
right (s HI FT) key (once by itself) to enter katakana mode, and the left (s HI FT) key to exit from it.

Notes

9,12.

E-18

Peripheral Configuratio~

HP 2680A Printer

Requirements

Environment files ending in "X" for USASCII plus Roman Extension.
Environment files ending in "K" for KANA8.

Character Set Supported

USASCII plus Roman Extension
KANA8

Configuring For 8--Bit Operation

Use the environment files ending in "X" (for USASCII plus Roman Extension) or those ending in "K"
(for KANA8).

Notes

9,11.

E-19

Peripheral Configuration

HP 2688A Printer

Requirements

Environment files COURxA, GOTHxA, LP88, PICAxA, PRESxA, ROMPxA, SCRPRA.

Character Set Supported

ROMAN 8

Configuring For a-Bit Operation

Use one of the envir~nmentfiles listed above for support of ROMAN 8.

Notes

9,11.

E-20

Peripheral Configuration

HP 2700 Terminal

Requirements

None. Roman Extension is standard.

Character Set Supported

USASCII plus Roman Extension.

Configuring For a-Bit Operation

Port 1 or Port2
Configuration

Terminal Configuration

MPE I/O Configuration

Parity/DataBits = None/8.
Chk Parity =No

Language = Language of keyboard layout.
ASCII 8-Bits = ON.

Terminal Type = 10 (12 if connection is ATC).

Typing USASCIl/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS gwM, or
ESPANOL M, a few Roman Extension characters (certain accented vowels) can be accessed from the
standard keyboard by using mutes. Enter a non -spacing diacritical character, then the unaccented
vowel. The screen displays a single, merged character, and a single, merged character is transmitted
to the system (in both character and block mode).

Access the USASCII or Roman Extension characters not on the keyboard by putting the keyboard in
Foreign Characters mode. Enter". C" to do so. Find the keyboard location of any desired character
using the algorithm in the HP 2700 Family Alphanumeric Reference Manual (02703-90003). Enter

cII, "to return to the usual keyboard layout.

Notes

3,13.

E-21

Peripheral Configuration

HP 2932A/HP 2933A/HP 2934A Printers

Requirements

None. ROMAN8 and KANA8 character sets are standard.

Character Set Supported

ROMAN8, KANA8

Configuring For a-Bit Operation

Printer

MPE I/O Configuration

Notes

None.

From the front panel, in the Printer Print Settings, set Primary
Character Set = 1 (ROMAN8) or = 2 (KANA8).

For serial interface, in the Interface Data Settings, set DataBits = 8,
Parity =None.

For Multipoint, set Parity =None, Code =ASCII8.

These can also be done programmatically with escape sequences.

For serial interface, configure the printer on your HP 3000 as
Termtype = 20 (8 bits of data) (not supported via ATC connection or
ADCC with HIOTERMO.) On a Multipoint line, use Terminal Type =
18 or 22.

E-22

Peripheral Configuration

NOTES

The following Notes apply to the peripherals covered in this Appendix. Refer to the description of
each peripheral for a list of which Notes apply to it.

1. \Vhen IIN
cli (shift out) and 1I0

C
" (shift in), are used to shift the keyboard out for Roman

Extension" they are transmitted to the system when the terminal is in character mode. This
results in superfluous data in the byte stream sent to the system.
(HP 23 82, 2622, 2623, 2626, 26 35)

2. When shift out and shift in are sent to the terminal they have no effect on the active character
set (as expected by some software), but they do affect subsequent keyboard operation, as if
they had been typed in.
(HP 2382, 2622, 2623, 2626, 2635)

3. When the keyboard is shifted out, (in Foreign Characters mode for the HP 2.700 family), the
space bar sends %240 instead of %40, and the DEL key sends %377 instead of %177.
(HP 2626, 2700)

4. When the keyboard is shifted out (in Foreign Characters mode for the HP 2627), the space bar
sends %240 instead of %40, and the DEL key sends nothing. This has been fixed in the most
recent versions of the 2622 and 2623 terminals. These will show as ROMs 1818-3199/3203
with Date Code 23 13 or later (2622), and 1818- 3223/3228 with Date Code 23 35 or later
(2623).
(HP 2382, 2622, 2623, 2627)

5. If II(ESCAPE))B" or II(ESCAPE))C II is entered or transmitted to the terminal, the alternate charac
ter set will be redefined (e.g., to line draw or math). This will cause all would be Roman
Extension characters, whether displayed on the terminal or entered via one of the methods list
ed above, to appear as the corresponding line draw or math symbols (or blanks, if that alternate
set is not present in the terminal). To remedy this, enter 1I0

c
(ESCAPE))A" (on the HP 2626A,

reset Alternate Set to A in the TERMINAL CONFIGURATION menu). Note that data entered
or displayed while the terminal has another alternate character set defined is correct internally
even though it may not display correctly on the terminal.
(HP 23 82, 2622, 2623, 2626, 26 35)

6. When the terminal is in block mode and one or more Roman Extension characters are entered
(e.g., "U"), then (ENTER) is pressed, what is transmitted to the system, and written to the
buffer of the program reading from the terminal, is lI(ESCAPE]) UII. This is the terminal's way of
compensating for Note 5. It means that when the data is sent back again from the computer,
"u" will always display this way, and not as the corresponding line draw or math symbol. It

also means that there may be more information in the program buffer than the user or the
programmer is expecting, or there is less room in that buffer for other information. Note that
if the terminal is controlled by VPLUS/3000, it strips out the escape sequence before passing
the data on to the calling program's buffer (and from there to the data file or data base).
(HP 23 82, 2622, 2623, 2626)

E-23

Peripheral Configuration

7. For the languages FRANCAIS azM, FRANCAIS qwM, and ESPANOL M when mutes are used
and the terminal is in character mode, two characters are sent to to the system although a
single, merged character appears on the screen. This means that an incorrect two-byte
representation of the accented character will be received by the program or file. The next time
they are displayed the terminal will put them back together, provided the terminal is still con
figured for FRANCAIS azM, FRANCAIS qwM, or ESPANOL M. In block mode a single
character (the correct ROMAN8 code for the merged character) is sent to the system.
(HP 23 82, 2622, 2623, 2626, 26 35)

8. When softkey labels which contain extended characters (in the range %200-%377) are received
from the system, the extended characters are lost and the inverse video is turned off on the
label.
(HP 2626)

9. This device does not actually support 8-bit character sets, but simulates them by handling two
7-bit character sets, a primary and an alternate. Legitimate data from real alternate character
sets (line draw or math) cannot be used in a supported (standard) way together with general
ROMAN8 (KANA8) data because these devices treat Roman Extension (katakana) as an alter
nate character set, in 8- bit mode. All alternate character sets are addressed by codes with the
eighth bit set to one; Roman Extension (katakana) must share this position with the other al
ternate sets through the use of escape sequences ("(ESCAPE».:>:"), and on the terminals shift
in/shift-out are unsuitable for invoking alternate sets. The practical result of this is that NLS
will not support the use of alternate character sets together with ROMAN 8 (KANA8) data on
these devices. Configure the device for 8-bit modeas documented, then limit the data to (old)
ROMAN8 (KANA8).
(HP 2382,2608, 2622A, 2623A, 2626, 2631,2635, 2645J, 2680, 2688)

10. For the French and Spanish keyboards, when mutes are used and a mute diacritical is entered
followed by a space, the ROMAN 8 codes for the diacritical and the space are both transmitted
to the system, not just the ROMAN 8 character for the diacritical.
(HP 2621B)

11. When a shift-out character is sent to the printer, it causes subsequent data (until a shift-in is
sent) to be selected from the alternate character set, whether or not the eighth bit is on.
(HP 2608, 26 31, 263 5, 26 80, 26 88)

12. When the system sends an 8- bit character the terminal shifts into katakana mode until a 7- bit
character is received. For example, switching terminal speed with the MPE : SPEED command
sometimes results in the receipt of an 8- bit character from the system. The user will need to
exit katakana mode before entering "MPE" to signal that the speed has been changed.
(HP 26451)

13. When the terminal is in Block Format mode (e.g., under control of VPLUS), an attempt to
read the character %254 (tilde-accent in ROMAN8) from an input field causes the read to
hang.
(HP 2700)

14. Versions of the 2631B with Printer Logic PCA #02631-60225 are not supported, because
switch 7 (8 bit datacomm) is ignored. It is possible to configure 8 bit datacomm on this PCA
programmatically via an escape sequence; but the program must do so before every data
transfer.
(HP 2631B)

E-24

i---C_O_N_VE_R_T_IN_G_7_-B_I_T_T_O_8_-_B_IT_DA_T_A-----JI~

Many Hewlett-Packard peripherals can be configured for 7-bit operation with one of the European
language national substitution character sets. These peripherals must be converted to S-bit operation
to access Native Language Support (NLS) capability. NLS requires the use of S-bit character sets
which include USASCII and native language characters.

NLS for western European languages is based on the ROMAN S character set in which the additional
characters required are assigned to unique values between 128 and 255. It requires eight bits to hold
the value of a ROMAN 8 character. All the special European characters are accessible in ROMAN S
without losing any of the USAscn characters.

The 7-bit national substitution sets do not offer a full complement of characters. New characters
replace existing ones. In FRANCAIS, for example, the graphic symbol 11#11 is not available. In
Spanish and French, even the substitutions made are not sufficient to obtain all the necessary new
characters. The use of mute characters is required. Mute characters provide a single graphic on the
terminal screen or paper for two bytes of storage and two keystrokes. For example, an "e" in Spanish
or French would be produced with an accent mark plus an lie II , whereas ROMANS contains the "e"
as a single character. In anyone language, the graphic symbols for other European countries are not
available at all. For example, a French user does not have access to the necessary characters to
properly address a letter to someone in Germany. The ROMAN S S-bit character set eliminates these
problems.

National Substitution Sets

Many Hewlett-Packard peripherals support the 7-bit national substitution sets for the following lan
guages. (They are listed here as they appear on the terminal configuration menus of the terminals
which support them):

SVENSK/SUOMI
DANSK/NORSK
FRANCAIS M
FRANCAIS
DEUTSCH
UK
ESPANOL M
ESPANOL
ITALIANO (On a few devices only.)

These are 7-bit national substitution character sets or languages in which one or more of 12 USAscn
graphic symbols are replaced by other graphic symbols required for the national language being used.
The same 7-bit internal code is displayed as a different symbol than that assigned to it by USASCII.
For example, in USAscn the decimal value 35 is assigned to the graphic symbol 11#11; but in the
FRANCAIS national substitution set, the same decimal value 35 is assigned to the graphic symbol
11£11.

Users who have been using these (HP 262X) terminals in 7-bit operation for many years may have a
substantial investment in data which is encoded in one of these 7-bit national substitution character
sets. Hewlett-Packard is making several conversion utilities available to convert this data to
ROMANS.

F-1

Converting 7-Bit To 8-Bit Data

Conversion Utilities

Because NLS involves using full 8-bit character sets for all data, customers wanting to use the facility
will need to configure their peripherals for 8-bit operation. (This is not possible for the HP 264X
terminals.) The national substitution characters, if input on a terminal configured for 7- bit opera
tion, will not display correctly on a terminal or printer configured for 8- bit operation.

Several utilities are available to convert existing data that has been input with an HP 262X terminal
configured for 7-bit operation. Refer to Table F-l for a listing of these utilities. The premise of
these utilities is that users will run them once for each file which needs converting, and will configure
all their peripherals for 8-bit operation. Thereafter, peripherals will only be used in 8-bit operation.

Table F-l. Conversion Utilities by File Type

File Type

EDITOR files.

Other MPE files which
are all text.

MPE files in which text
data is organized in fields
which need to start in fixed
columns.

MPE files which include
some non text data (e.g.,
integer or real).

IMAGE data bases.

VPLUS forms files.

HPWORD files.

TDP files.

Utility to be Used for Conversion

N7MF 8CNV (text option).

N7MF8CNV (text option).

N7MF 8CNV (text option; data option if language is
FRANCAIS M or ESPANOL M).

N7MF8CNV (data option).

I7DB8CNV.

V7FF8CNV.

HPWORD internal files have always been based on a subset of
ROMAN 8. No conversion is necessary.

Run N7MF8CNV and then change back whatever "\" is con
verted to in the chosen language in case you need the "\ " for
embedded TDP commands.

F-2

Converting 7-Bit To 8-Bit Data

Conversion Algorithm

The conversion utilities convert records or fields from files which are assumed to have been created at
an HP 262X terminal configured for 7-bit operation, and for a language other than USASCII. The
conversion is from the HP 262X implementation of a European 7-bit substitution character set to the
8-bit ROMAN8 character set. This involves converting the values with which certain characters are
stored in the file. Before conversion, the file should look correct on a HP 262X terminal configured
for 7-bit operation with the appropriate substitution set. After conversion the file will look correct
on any terminal configured for 8-bit operation.

Records and/or fields from files of all types are converted using the same algorithm which is expressed
in Figure F-l. The conversion affects only the 12 characters shown in the table. All other charac
ters remain unchanged.

To use this table, find the desired national substitution set on the left. The uppermost row shows the
7-bit decimal values for which substitutions may have been made. There are two rows of informa
tion opposite each national substitution set. The upper row shows the graphic assigned in 7-bit opera
tion and the lower row the decimal value assigned the graphic in ROMAN 8 after using the conversion
algorithm.

When certain FRANCAIS M and ESPANaL M characters are followed immediately by certain other
characters, the two-character combination is converted to a single ROMAN 8 character, and the field
or record being converted is padded at the end with a blank:

FRANCAIS M

"'-(94) followed by a, e, i, 0, or u is converted to a(192), e(193), 1(209), 6(194), or
0(195).

"(126) followed by a, e, i, 0, or u is converted to a(204), e(205), 1(221), 0(206),
U(207) .

.. (126) followed by A, 0, or Uis converted to A(216), (j(218), or 0(219).

ESPANOL M

'(39) followed by a, e, i, 0, or u is converted to a(196), e(197), f(213), 6(198), fJr
U(199).

If these characters are followed by any other character, they are converted to their ROMAN 8 equiv
alent as shown in Figure F-l.

F-3

Converting 7-Bit To 8-Bit Data

CHARACTER CONVERSION

Decimal Value of Character to be Converted

National
Subst.Set 35 39 64 91 92 93 94 96 123 124 125 126

USASCII # @ \ { }

SVE/SUOMI # E A 5 A 0 e a 0 a u
35 39 220 216 218 208 219 197 204 206 212 207

DANSK/NORSK # @ f£ ¢ A A- (B ¢ a
35 39 64 211 210 208 94 96 215 214 212 126

FRANCAIS £
, 0 § e u ,
a c; e

187 39 200 179 181 189 170 96 197 203 201 171

FRANCAIS M £ a 0 § e u ,
c; e

187 39 200 179 181 189 170 96 197 203 201 171

DEUTSCH £ § A 5 0 A- a 0 a (3

187 39 189 216 218 219 94 96 204 206 207 222

U K £ @ [\] A { I }
187 39 64 91 92 93 94 96 123 124 125 126

ESPANOL # @ i ~ l 0 { n }
35 39 64 184 182 185 179 96 123 183 125 126

ESPANOL M # @ ~ l 0 { n }
35 168 64 184 182 185 179 96 123 183 125 126

ITALIANO t @ 0 c; e A- u a 0 e 1
187 39 64 179 181 197 94 203 200 202 201 217

Figure F- 1. Character Conversion Data

F-4

Converting 7-Bit To 8-Bit Data

Conversion Procedure

To convert 7-bit substitution data to 8-bit ROMAN 8 data:

1. Determine which files need to be converted. A file must be converted if the data was input
from an HP 262X terminal configured for 7-bit operation, or for a national substitution set
other than USASCII.

2. Determine the national substitution set ("language II on the terminal configuration menu) from
which the conversion should be done for each file. This is the language the HP 262X terminal
was configured for at the time the file data was input.

3. Refer to Table F-l to determine which utility should be used to convert each file.

4. Back up all files to be converted (: STORE to tape or SYSDUMP).

S. Run each utility, supplying it with the language and file names as determined above.
Instructions for running each utility are found at the end of this Appendix.

6. Configure all terminals and printers for 8- bit operation. (At least one terminal must already be
configured for 8- bit operation when the V7FF 8CNV utility is run.) Refer to Appendix E,
"PERIPHERAL CONFIGURATION. II

Figure P-2 is a sample dialogue from a session executing N7MF8CNV for both text and data files.

:RUN N7MF8CNV.PUB.SYS

HP European 7-Bit character sets are:

1. SVENSKjSUOMI
2. DANSKjNORSK
3. FRANCAIS M
4. FRANCAIS
5. DEUTSCH
6. UK
7. ESPANOL M
8. ESPANOL
9. ITALIANO

From which character set should conversion be done: 5
File types which can be converted are:

1. MPE text files (each record converted as one field).
2. MPE data files (define fields; only defined fields are converted).
3. Test Conversion.

Type of file to be converted:

Name of text file to be converted: ABC

112 records converted in ABC

Name of text file to be converted: ~uEW

Figure F - 2. N 7MF 8CNV Dialogue (1 of 2)

F-S

Converting 7-Bit To 8-Bit Data

File types which can be converted are:

1. MPE text files (each record converted as one field).
2. MPE data files (define fields; only defined fields are converted).
3. Test Conversion.

Type of file to be converted: 2

Name of data file
Please supply one

Start, Length:
Start, Length:
Start, Length:
Start, Length:

to be converted: XYZ
at a time the field to

1 , 12
15,30
61, 6
(RETURN]

be converted (first byte is 1).

Data file XYZ: fields to be converted are:

1 , 12
15, 30
61 , 6
Co rrect? It'=:R=ET:-:"':U:=R=-=''N)

287 records converted in XYZ

Name of data f i let 0 be conve rt ed: (RETURN)

File types which can be converted are:

1. MPE text fi les (each record converted as one field).
2. MPE data files (define fields; only defined fields are converted).
3. Test Conversion.

Type of fi Ie to be converted: (RETURN]

HP European 7-Bit character sets are:

1. SVENSK/SUOMI
2. DANSK/NORSK
3. FRANCAIS M
4. FRANCAIS
5. DEUTSCH
6. UK
7. ESPANOL M
8. ESPANOL
9. ITALI ANO

From which character set should conversion be done: ~~

END OF PROGRAM

Figure F-2. N7MF8CNV Dialogue (2 of 2)

F-6

Converting 7-Bit To 8-Bit Data

N7MF8CNV Utility

N7MF8CNV converts data in EDIT/3000 and other MPE text and data files from a Hewlett-Packard
7- bit national substitution character set to ROMAN 8. The user is prompted for language and file
type (text or data). For a data file, the user will be prompted on each file for the starting position
and length of each field (portion of a record) to be converte4. For a text file, each record is convert
ed as one field.

The user is prompted for the name of each file to be converted. Files are read one record at a time;
each record is converted (or certain fields of it are converted for data files), and the result is written
to a new temporary file. When all records have been read, converted and written to the new file, the
old (unconverted) copy is deleted, and the new one saved in its place. An exception to this is KSAM
files, which are converted in place, rather than written to a new temporary file. A count of the
number of records read and converted is displayed on $STDLIST.

This utility will not convert files containing bytes with the eighth bit set. This situation probably in
dicates a misunderstanding or error. The likely causes are:

9 File is not a text or data file.

l/I File is a data file for which the fields have been inaccurately located.

~ File was created on a terminal configured for 8-bit operation.

• File has already been converted.

The maximum record length supported is 8192 bytes. The maximum number of fields supported in
the records of a data file is 256.

If the file being converted contains user labels, these are copied to the new file without conversion. If
a fatal error is encountered during the conversion (e.g., 8-bit data or file system error found) the
conversion stops, the old copy of the file is saved, and the new copy is purged. The data is unchang
ed. An exception to this is KSAM files. Since these are converted in place, some records may already
have been modified. KSAM files (including key file) should be restored from the backup tape to en
sure a consistent copy.

A yC entered during conversion displays the number of records successfully converted and conversion
continues. On variable length data files, if a field or portion of a field is beyond the length of the
record just read, a warning is displayed and that field is not converted on that record. Other fields on
the same record are converted, and processing continues with subsequent records. After each file has
been converted, the user is prompted for another file name.

In addition to the text and data options, there is a test conversion option which shows how the conver
sion algorithm operates. The test conversion option must be run from a terminal configured for 7-bit
operation with the chosen national substitution set. The user is instructed to enter a string, and the
result of the conversion is displayed. The user does not have to switch back and forth between 7-bit
and8-bit operation to see the result. Each character converted is displayed as a decitnal value in
parentheses rather than graphically. Other characters are displayed unchanged.

At any point in the program, a [RETURN) exits the current program level at which the user is located.
A [RETURN] in response to a request for the starting position and length of a field in a data file indi
cates that the definition of fields is complete, and the program proceeds with the conversion of the
data file. A (RETURN) entered in response to a request for a text file name indicates the conversion of
text files is complete; the program goes back to the question: "Type of file to be
convert ed?".

F-7

Converting 7-Bit To 8-Bit Data

17DB8CNV Utility

17DB8CNV converts the character data in an IMAGE data base from an Hewlett-Packard 7-bit na
tional substitution set to ROMAN8. The program is a special version of the DBlOAD. PUB.SYS
program, and the conversion is done as part of a data base load. The procedure for running
17DB8CNV is:

1. Run DBUNLOAD. PUB. SYS to unload your data base to tape.

2. Run DBUTIl. PIJB.SYS,ERASE to erase the data in your data base.

3. Run I 7DB8CNV to convert the data and load it back into your data base.

17DB8CNV will request the following:

1. The 7-bit national substitution set from which the conversion is to be made.

2. The data base name.

3. The utility prompts the user: Convert all data fields of type X or U. "YES" or
[RETURN) means "YES". If a "NO" is entered, the user will be prompted in each data set for
each field of type U or X.

The single field in an automatic data set is not proposed for conversion. Whether or not its
values are converted depends on the response to the item(s) through which it is linked to detail
data set(s). At the end of each data set, the user is asked to confirm that the correct fields to
be converted from that data set have been selected. Again, a (BETURN) is treated as a "YES"
answer. Enter II WI or II n II to change the data fields in that data set to be converted.

17DB8CNV then loads the data base from tape. As each record is read, those fields which were selec
ted have their data converted according to the algorithm for the 7- bit national substitution set which
was selected at the beginning of the program.

17DB8CNV will not allow 8-bit data (bytes with the high-order bit set) in the data fields it is trying
to convert. The utility will not abort but the field in question will not be converted, and a warning
will be issued:

** WARNING: 8-bit data encountered in item [itemname in DS data set].

If the program should abort for any reason during the conversion, the user must log on again to clear
the temporary files used during the conversion process before running the program again.

Figure F-3 shows the dialogue from a sample run of the I7DB8CNV program.

F-8

Data Set
ITEM1
ITEM2
ITEM3
ITEM4
Is Data

Converting 7-Bit To 8-Bit Data

:RUN I7DB8CNV.PUB.SYS

HP European 7-bit character sets are:

1. SVENSK/sUOMI
2. DANSK/NORSK
3. FRANCAIS
4. FRANCAIS M
5. DEUTSCH
6. U K
7. ESPANOL
8. ESPANOL M
9. ITALIANO

From which character set should conversion be done: 2

WHICH DATA BASE: QWERTZ

Convert all fields of type U,X in all data sets (YiN)? N

SET1 fields to be converted:
(Y IN)? (RETURN]
(Y IN) '? (RETURN]

(YIN)? N
(Y IN)? lr.=R=ET==-U==-R-=-""N]

Set SET1 correct ly defined (YIN)? (RETURN]

Data Set SET2 - Automa~ic Master

Data Set
ITEM1
ITEM5
ITEM6
Is Data

SET3 fields to be converted:
(Y IN)? (RETURN]

(YIN)? N
(YIN)? E

Set SET3 correctly defined (YIN)? (RETURN]

DATA SET 1: 19 ENTRIES
DATA SET 2: 0 ENTRIES
DATA SET 3: 25 ENTRIES
END OF VOLUME 1, 0 READ ERRORS RECOVERED
DATA BASE LOADED

END OF PROGRAM

Figure F- 3. 17DB8CNV Dialogue

F-9

Converting 7-Bit To 8-Bit Data

V 7FF 8CNV Utility

V7FF8CNV converts text and literals in VPLUS/3000 forms files from a Hewlett-Packard 7-bit na
tional substitution character set to ROMAN 8. V7FF 8CNV is a special version of
FORMSPEC. PUB. SYS and is run the same way. Before running this utility back up the forms file
(:STORE to tape or SYSDUMP), then:

1. Configure your terminal for 8-bit operation. (Refer to Appendix E, "PERIPHERAL
CONFIGURATION , II for information on specific terminal configuration.)

2. Run V7FF8CNV. PUB. SYS, stepping through each form, field definition, save field, function
key label. As each screen is presented on the terminal, 7-bit substitution characters have al
ready been converted to their ROMAN 8 equivalent.

3. If the data is correct, press (ENTER] and proceed to the next screen. If not, correct the data,
then press (ENTER) to continue.

4. After all screens are converted, recompile the forms file as usual.

Conversion applies to substitution characters found in all source records in VPLUS/3000 forms files
with the following exception: substitution characters for II [" and "] II are not converted in screen
source records since these indicate start and stop of data fields. The following would be converted:

• Text in screens.

o Function key labels.

• Initial values in save field definitions.

o Initial values in field definitions.

(I Literals in processing specifications.

V7FF8CNV and Alternate Character Sets

Hewlett-Packard block-mode terminals which have the capability to handle all or part of ROMAN8
can be divided into two groups, based on how they handle alternate character sets when configured
for 8-bit operation.

GROUP ONE - HP 2392A, 2625A, 2627A, 2628A, 2700, and 150. Use shift-out and shift-in
characters to switch back and forth between an 8-bit base character set and an 8-bit alternate
character set. This is the standard for new Hewlett-Packard terminals and printers.

GROUP TWO - EJ? 2622A, 2623A, 2626A, and 2382A. (Do not use an HP 2624A or HP 2624B
as they axe unable to handle 8-bit characters properly.) Group Two terminals use the eighth bit to
switch back and forth between a 7-bit base character set and a 7-bit alternate character set.
Therefore, it is not possible to get true 8-bit operation (ROMAN8) and use an alternate character set
(e.g., line draw) at the same time because the base character set is not really 8-bit, but 7-bit with
the additional characters defined in the alternate character set. Using both 8-bit ROMAN8 charac
ters and line draw in the same file is not recommended since the user must continually redefine the
alternate character set, switching back and forth between Roman Extension and the line drawing

F-IO

Converting 7-Bit To 8-Bit Data

character set. Shift-out and shift-in are ignored by the terminal, which goes to the alternate
character set when the high order bit is on,

Files using alternate character sets on one group of terminals will not display correctly on the ter
minals of the other group, even when terminals from both groups are configured for 8-bit operation.

Therefore, the use of characters from an alternate set affects the conversion procedure. If the forms
file does contain characters from an alternate character set, choose one of the following alternatives:

1. Eliminate the use of alternate character sets (either with FORMSPEC or while running
V7FF8CNV).

2. Define alternate character sets to appear correctly on Group One terminals. This happens au
tomatically when V7FF 8CNV is run from a Group One terminal. Characters from these alter
nate sets will appear as USASCII characters on a Group Two terminal.

V7FF8CNV Operation

V7FF8CNV must be run on a terminal supported by VPLUS/3000 which supports display of all
characters, enhancements and alternate characters sets used in the forms file. If alternate character
sets are used, the HP 2392,2625,2627,2628,2700, or 150 are recommended.

The V7FF 8CNV procedure is:

1. Configure your terminal type properly for 8-bit operation by using the settings recommended
in Appendix E, "PERIPHERAL CONFIGURATION. II

2. Run V7FF8CNV. PUB.SYS., Respond to prompts for the terminal group and the national sub
stitution set.

3. Press NEXT once to begin going through the forms file.

4. Press (ENTER) after each screen until the end of the forms file is reached. Two exceptions to
Step 4 are:

• Type "Y" in IIFunct ion key labels" on each FORM MENU and the GLOBALS
MENU to see and convert function key labels.

o On the field definition screen, if the processing specs have converted data which you
want to save, press the FIELD TOGGLE key, then (ENTER] to save that conversion.

NOTE

If you try to redisplay a screen which has already been
converted and this conversion has been saved by pressing
(ENTER], a message "Form contains 8 bit data"
will be displayed. Do not press It.tJT® again, but con
tinue on through the forms file.

5. Compile your forms file as usual.

These conversion utilities are designed to be used once to update existing data to 8-bit compatibility.

F-ll/F-12

______A_P_P_L_IC_A_T_IO_N_G_U_ID_E_LI_N_E_S_I~

Currently, the HP 3000 supports six conventional programming languages (SPL, FORTRAN,
COBOLII, Pascal, RPG and BASIC). Some general guidelines and some specific to each of the sup
ported programming languages are included in this Appendix to help the programmer select a lan
guage to use for writing a local language or localizable application.

All Programming languages

• Create and use message catalogs. Do not hard-code any text messages, including prompts. For
example, never require a hard-coded lIyll or IIN II in response to a question. The equivalents of
YES and NO for every language supported by NLS are available through a call to NLINFO item 8.

e Use the NLS date and time formatting intrinsics. Do not use the MPE intrinsics DATEL I NE,
FMTCLOCK, FMTDATE and FMTCALENDAR. They all result in American-style output.

• Check a character's attribute, available through NLINFO item 12, to determine printability.
Alternatively, use the NLREPCHAR intrinsic to check whether the character gets replaced or not.
Do not use range checking on the binary value of a character to decide whether it is printable or
not.

• Use the NLCOLLATE intrinsic to compare character strings. Do not compare character strings (I F
abc > pq r ... ,where abc and pq r are both character strings). Since these comparisons are
based on binary values of characters as they appear in the USASCII sequence, they usually
produce incorrect results. Obviously, this is not applicable in case an exact match is tested (I F
abc = pq r ...).

• Use NLSCANMOVE for upshifting and downshifting. Do not upshift or downshift based on the
character's binary value. For a ...z in USASCII, upshifting can be done by subtracting 32 from
the binary value. This does not work for all characters in all character sets.

• To determine whether a character is uppercase or lowercase use the character attributes table
available through NLI NFO item 12. Do not use a character's binary value in range checks to
decide whether it is an uppercase or lowercase alphabetic character.

• Much Hewlett-Packard and user-written software assumes that numeric characters (0 through 9)
are represented by code values 48 through 57 (decimal). In general, this is valid because standard
Hewlett-Packard 8-bit character sets are supersets of USAscn. However, some character sets
may have different or additional characters which should be treated as numeric. Therefore, if at
all possible, avoid doing range checks on code values to recognize or process numeric characters.
For recognition of numeric characters, interrogate the character attributes table, available
through a call to NLINFO item 12.

o Use the NLTRANSLP.TE intrinsic, not CTRANSLATE, to translate to or from EBCDIC.

G Do your own formatting using the decimal separator, the thousands separator, and the currency
symbol available through NLI NFO items 9 and 10. Use the standard statements to output into a
character string type variable. Replace the decimal and thousands separators by those required in
the language being used. Do not use standard output statements (PRINT, WRITE) for real

G-l

Application Guidelines

numbers, since this formats them according to the definition of the programming language. This
usually results in American formats with a period used as the decimal separator.

• Input data into a character string, and preprocess the string to replace any decimal or thousands
separators used in the American formats. Then supply the string to the standard read statement.
Standard input statements for real numbers (READ, ACCEPT) should not be used as they accept the
period as the decimal separator. Many non-American users will input something else (a comma,
for example).

• Always store standard formats for date and time (like those returned by FMTCALENDAR and
FMTCLOCK) if dates or times have to be stored in files or data bases. Never store a date or a time
in a local format. Intrinsics are available to convert from the standard format to a local format,
but the reverse is not always possible.

• Do not use VPLUS/3000 terminal local edits. VPLUS/3000 edit processing specifications and
terminal edit processing statements are separate and are not checked for compatibility. There will
be no check that the designer has specified a terminal local edit which is consistent with the
language-dependent symbol for the decimal point (DEC_TYPE_EUR, DEC_TYPE_US) in the con
figuration phase.

COBOLII (HP 32233A)

• Use the character attributes table of the character set being used to determine whether a charac
ter is ALPHABETIC or NUMERIC. This table is available through a call to NL I NFO item 12. Do
not use the COBOLII ALPHABETIC and NUMERIC class tests to determine this (e.g.) If data
item IS ALPHABETIC).

• Do not use input-output translation by COBOLII from an EBCDIC character set by means of the
ALPHABET-NAME clause and the CODE SET clause. Use the NLTRANSLATE intrinsic.

• Use the NLS date and time formatting intrinsics for display purposes. Do not use TIME-OF-DAY
and CURRENT-DATE. These items are formatted in the conventional American way, and are
unsuitable for use in many other countries.

qj Use the COLLATING SEQUENCE IS language-name or the COLLATING SEQUENCE IS
language-I D phrase in the enhanced SORT and MERGE statements to specify the language
name or number whose collating sequence is to be used. Do not use the COLLATI NG SEQUENCE
IS al phabet -name phrase for sorting and/or merging in COBOLII.

• In condition-name data descriptions (88-level items), avoid the THRU option in the VALUE
clause (e.g., 88 SELECTED-ITEMS VALUE "A" THRU "F").

FORTRAN (tiP 321028)

e Format specifiers Nand M will output in an American numerical format (with commas between
thousands and a decimal point) or an American monetary format (like N, with a II $" added).
Additional post processing will be required.

o Outputting logicals will result in a "T" (for true) or an "F" (for false). Similarly, "T" and "F"
are expected for logical input. Anon-English speaking user may want to use another character.

G-2

Application Guidelines

o The intrinsic functions RNUM, DNUM and STR all assume an American format in the input and
produce an American formatted output.

• The EXTI N' and I NEXT' entry points of the compiler library assume American formats. Do not
use them.

SPL (HP 32100A)

• To determine whether or not the byte is alphabetic, numeric, or special, consult the character at
tribute table of the character set used. This table is available through NLI NFO item 12. Do not
use the IF xyz = (or <» ALPHA (or NUMERIC or SPECIAL) construct to determine this.

• Do not use the MOVE ••• WH I LE construct or the MVBW machine instruction. It stops moving
bytes based on the USASCII binary value of bytes, by which it determines whether the byte is al
phabetic or numeric. Use the NLSCANMOVE intrinsic.

RPG (HP 32104A)

The features of NLS are accessed primarily through intrinsic calls. Using MPE and subsystem intrin
sics from RPG requires expertise. For this reason, the use of RPG as a vehicle to write localizable ap
plications or to access native language structures is not recommended. Some RPG functions, such as
date and numeric formatting, provide some control for national custom differences, but the choices
are very limited and can only be made by recompiling.

BASIC (HP 321018)

The features of NLS are accessed primarily through intrinsic calls. Since most intrinsics are not call
able from BASIC, the use of BASIC as a language to write localizable programs is not supported.

Pascal (HP 32106A)

A type of CHAR indicates an 8-bit entity, and thus allows processing of 8-bit characters without
problems.

G-3/G-4

DATA DIVISION.
FILE SECTION.
SD SORTFILE.
01 SORTFILE-RECORD.

05 SORTFILE-KEY PIC X(4).
05 FILLER PIC X(68) .

FD INPTFILE.
01 INPTFILE-RECORD PIC X(72).

FD OUTPFILE.
01 OUTPFILE-RECORD PIC X(72).

______E_XA_M_P_L_E_P_R_O_G_R_A_M_S----'I~

The example programs in this Appendix demonstrate calls to NLS-related intrinsics from several
programming languages. They are not intended to be used as application programs.

A. Using SORT In A COBOLII Program

This program shows how to sort an input file (formal designator ! NPTF I LE) to an output file (formal
designator OUTPF I LE) using a COBOLII SORT verb.

Lines 3.5 and 4. 1 show how to specify the language to determine the collating sequence.

1 $CONTROL USLINIT
1.1 IDENTIFICATION DIVISION.
1.2 PROGRAM-ID. EXAMPLE.
1.3 * --
1.4 ENVIRONMENT DIVISION.
1.5 INPUT-OUTPUT SECTION.
1.6 FILE-CONTROL.
1.7 SELECT INPTFILE ASSIGN TO "INPTFILE".
1.8 SELECT OUTPFILE ASSIGN TO "OUTPFILE".
1.9 SELECT SORTFILE ASSIGN TO "SORTFILE".
2 * --
2. 1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4 WORKING-STORAGE SECTION.
3.5 01 LANGUAGE PIC S9(4) COMP VALUE 12.
3.6 * --
3.7 PROCEDURE DIVISION.
3.8 MAIN SECTION.
3.9 SORT SORTFILE
4 ASCENDING SORTFILE-KEY
4.1 SEQUENCE IS LANGUAGE
4.2 USING INPTFILE
4.3 GIVING OUTPFILE.
4.4 STOP RUN.

H-l

Example Programs

Line 3. 5 could be written also as:

3.5 01 LANGUAGE PIC X(16) VALUE "SPANISH II.

In the example execution the input and ()utput files are associated with the terminal ($STDI Nand
$STDLIST):

:FILE INPTFILE=$STDIN
:FILE OUTPFILE=$STDLIST
:RUN PROGRAM;MAXDATA=12000

character
cred it
DEBIT
:EOD

cred it
character
DEBIT

END OF PROGRAM

H-2

Example Programs

B. Using SORT In A Pascal Program

This program shows how to sort an input file (formal designator IN PF) to an output file (formal
designator OUTF) using SORTI NIT intrinsic call.

PROGRAM example (inpf,outf);

TYPE
smallint = -32768 .. 32767;

$USLINIT$
$STANDARD_LEVEL 'HP3000'$

char_seq = RECORD
arrayeode:smallint;
language: smallint;

END;

small int;
smallint;

smallint;
small int;
smallint;

INTRINSIC;
INTRINSIC;

= FILE of file_ree;

= PACKED ARRAY [1 .. 72] of CHAR;

smallint;
smallint;
sort ree;
char_seq;
file_arr;
fi le_arr;
fi le_num;
file_num;

WITH keys DO
BEGIN

posit ion : = 1;
length := 4;

file arr = RECORD
num fi Ie:
num zero:

END;

sort ree = RECORD
position:
length:
seq_type:

END;

VAR
numkeys:
reelen:
keys:
eseq:
inp:
out:
inpf:
out f:

file num

file ree

PROCEDURE sortinit;
PROCEDURE sortend;

PROCEDURE main;
BEGIN

numkeys : = 1;
ree len : =72;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

H-3

Example Programs

51 seq_type .- 9;
52 END;
53
54 WITH cseq DO
55 BEGIN
56 array_code:=1;
57 language:= 12;
58 END;
59
60 WITH inp DO
61 BEGIN
62 RESET (inpf);
63 num file .- FNUM (inpf);
64 num zero := 0;
65 END;
66
67 WITH out DO
68 BEGIN
69 REWRITE (outf);
70 num file .- FNUM (outf);
71 num zero : = 0;
72 END;
73
74 sortinit (inp,out"reclen"numkeys,keys""""cseq);
75 sortend;
76
77 END;
78
79 BEGIN
80 main;
81 END.

In the example execution the input and output files are associated with the terminal ($STDI Nand
$STDL 1ST):

:FILE INPF=$STDIN
:FILE OUTF=$STDLIST
:RUN PROGRAM;MAXDATA=12000

cha ract e r
c red i t
DEBIT
:EOD

c red it
cha ract e r
DEBIT

END OF PROGRAM

H-4

Example Programs

c. Using SORT In A FORTRAN Program

This program shows how to sort an input file (formal designator FTN21) to an output file (formal
designator FTN22) using SORTI NIT intrinsic call.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
-15
16
17
18
19
20
21
22
23
24
25
26
27

$CONTROL USLINIT,FILE=21-22
PROGRAM EXMP
INTEGER FNUM
INTEGER N(4)
INTEGER KEYS (3)
INTEGER CSEQ (2)
SYSTEM INTRINSIC SORTINIT, SORTEND

C
C KEY (3) = 9 character type key
C CSEQ(2) - 12 Spanish collating sequence
C

KEYS (1) = 1
KEYS (2) = 4
KEYS (3) = 9
CSEQ (1) = 1
CSEQ (2) = 12

C
C Sort fi Ie FTN21 into FTN22
C

N (1) = FNUM (21)
N (3) = FNUM (22)
N (2) = 0
N (4) = 0
CALL SORTINIT (N(1),N(3)""1,KEYS""",,CSEQ)
CALL SORTEND
STOP
END

In the example execution the input and output files are associated with the terminal ($STDI Nand
$STDLIST):

:FILE FTN21=$STDIN
:FILE FTN22=$STDLIST
:RUN PROGRAM;MAXDATA=12000

character
c red it
DEBIT
:EOD

c red it
charact er
DEBIT

END OF PROGRAM

H--S

Example Programs

D. Using DATE/TIME Formatting Intrinsics In A FORTRAN Program

The user is asked to enter a language. All date and time formatting and conversion is done by using
the language entered by the user. The time and date used in the examples is the current system time
obtained by calling the HP 3000 system intrinsics CALENDAR and CLOCK.

C

C

C
C

LOGICAL LERROR(2)
INTEGER IERROR(2)

LOGICAL LWEEKDAYS(42)
CHARACTER *12 BWEEKDAYS(7)

LOGICAL LMONTHS(72)
CHARACTER *12 BMONTHS(12)

EQUIVALENCE (LANGUAGE, BLANGUAGE)
EQUIVALENCE (LWEEKDAYS, BWEEKDAYS)
EQUIVALENCE (LMONTHS, BMONTHS)
EQUIVALENCE (LERROR, IERROR)
LOGICAL DATE
INTEGER *4 TIME
INTEGER LANGNUM, LGTH, WEEKDAY, MONTH
SYSTEM INTRINSIC CLOCK, CALENDAR, ALMANAC, NLINFO,

NLFMTCLOCK, QUIT, NLCONVCLOCK, NLFMTDATE,
NLFMTCALENDAR, NLFMTCUSTDATE, NLCONVCUSTDATE

CHARACTER *13 BCUSTOMDATE
CHARACTER *28 BDATE
CHARACTER *18 BCALENDAR
CHARACTER *8 BCLOCK

C
C NLINFO item 22 returns the corresponding
C lang number in integer format for this language.
C

CALL NLINFO (22, LANGUAGE, LANGNUM, LERROR)
IF (IERROR(1) .EQ. 0) GO TO 400

C
1001 FORMAT (1X,A12)
1002 FORMAT (1X,A13)
1003 FORMAT (1X,A18)
1004 FORMAT (1X,A8)
1005 FORMAT (1X,A28)
2001 FORMAT (A16)
2002 FORMAT (A1)
C
1 WRITE (6,*)

#"ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):II
READ (5, 2001) BLANGUAGE

C

C

C

$CONTROL USLINIT
PROGRAM EXAMPLE
LOGICAL LANGUAGE(8)
CHARACTER *16 BLANGUAGE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

H-6

50 100
51 C
52
53
54 C
55 200
56 C
57
58
59 C
60 300
61 C
62 C
63 C
64 C
65 400
66
67 C
68 C
69 C
70 C
71 C
72
73
74 C
75 C
76 C
77 C
78
79
80 C
81
82 C
83
84
85 C
86
87 C
88 C
89 C
90 C
91 C
92
93
94 C
95
96
97 C
98 C
99 C

100 C
101
102
103 C
104 C
105 C

Example Programs

IF (IERROR(1) .NE. 1) GO TO 200

WRITE (6, *) "NLS IS NOT INSTALLED"
CALL QUIT (1001)

IF (IERROR(1) .NE. 2) GO TO 300

WRITE (6, *) "THIS LANGUAGE IS NOT CONFIGURED"
CALL QUIT (1002)

CALL QUIT (1000 + IERROR(1»

This obtains the machine internal clock and calendar
formats, which are provided by the HP 3000 intrinsics.

TIME = CLOCK
DATE = CALENDAR

Call ALMANAC and convert the machine internal
date format into numeric values, which will be used
as indices into the name tables.

CALL ALMANAC(DATE, LERROR, , MONTH, ,WEEKDAY)
IF (IERROR(1) .NE. 0) CALL QUIT (2000 + IERROR(1»

Call the tables for month and weekday names and
display todays day name and the current month's name.

CALL NLINFO(S, LMONTHS, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (3000 + IERROR(1»

WRITE (6, 1001) BMONTHS (MONTH)

CALL NLINFO(7, LWEEKDAYS, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (4000 + IERROR(1»

WRITE (6, 1001) BWEEKDAYS (WEEKDAY)

Format the machine internal date format
into the custom date format (short version).
The result will be displayed.

CALL NLFMTCUSTDATE (DATE, BCUSTOMDATE, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (5000 + IERROR(1»

WRITE (6,*) "CUSTOM DATE: II

WRITE (6,1002) BCUSTOMDATE

Use the output of NLFMTCUSTDATE as input for
NLCONVCUSTDATE and convert back to the internal format.

DATE = NLCONVCUSTDATE(BCUSTOMDATE, 13, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (6000 + IERROR(1»

Format the machine internal date format into the
date format (long format) according to the language.

H-7

Example Programs

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

C
C

C

C
C
C
C
C

C

C
C
C
C

C
C
C
C
C

C

C
C

The result will be displayed.

CALL NLFMTCALENDAR(DATE, BCALENDAR, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (7000 + IERROR(1))

WRITE (6,*) "DATE FORMAT:"
WRITE (6,1003) BCALENDAR

Format the machine internal time format into the
language-dependent clock format.
The result will be displayed.

CALL NLFMTCLOCK(TIME, BCLOCK, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (8000 + IERROR(1))

WRITE (6,*) "TIME FORMAT: I.

WRITE (6,1004) BCLOCK

Use the output of NLFMTCLOCK as input for
NLCONVCLOCK and convert back to the internal format.

TIME = NLCONVCLOCK(BCLOCK, 8, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (9000 + IERROR(1))

Format the machine internal time and date format
into the language dependent format.
The result will be displayed.

CALL NLFMTDATE(DATE, TIME, BDATE, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (10000 + IERROR(1))

WRITE (6,*) "DATE AND TIME FORMAT:"
WRITE (6, 1005) BDATE

STOP
END

Executing the program gives the following result:

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
NATIVE-3000
JANUARY
TUESDAY
CUSTOM DATE:
01/31/84
DATE FORMAT:
TUE, JAN 31, 1984
TIME FORMAT:
5: 15 PM
DATE AND TIME FORMAT:
TUE, JAN 31, 1984, 5:15 PM

H-8

END OF PROGRAM

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
8
Januar
Dienstag
CUSTOM DATE:
31.01.84
DATE FORMAT:
Di., 31. Jan. 1984
TIME FORMAT:
17: 15
DATE AND TIME FORMAT:
Di., 31. Jan. 1984, 17: 15

END OF PROGRAM

H-9

Example Programs

Example Programs

E. Using The DATE/TIME Formatting Intrinsics In An SPL Program

The user is asked to enter a language. All date and time formatting and conversion is done by using
the language entered by the user. The time and date used in the examples is the current system time
obtained by calling the HP 3000 system intrinsics CALENDAR and CLOCK.

(0:1),
(0: 7) ,
(0:39),
(0:6),
(0: 13),
(0:8),
(0:71),
(0:41),
(0:3);

TIME,
= TIME + 1;

LOGICAL
DATE,
HOUR'MINUTE =
SECONDS

BYTE POINTER
BP'PRINT;

INTEGER
YEAR,
MONTH,
DAY,
WEEKDAY,
LGTH,
LANGNUM;

MONTH 'NAME - B'MONTHS«MONTH - 1) * 12)#,

DEFINE
WEEKDAy'NAME = B'WEEKDAYS«WEEKDAY - 1) * 12)#,

BYTE ARRAY
B'PRINT(*) = L'PRINT,
B'CUSTOM'DATE(*) = L'CUSTOM'DATE,
B'CALENDAR(*) = L'CALENDAR,
B'DATE(*) = L'DATE,
B'MONTHS(*) = L'MONTHS,
B'WEEKDAYS(*) = L'WEEKDAYS,
B'CLOCK(*) = L'CLOCK;

ERR 'CHECK = IF L'ERROR(O) <> 0 THEN.
QUIT #,

DOUBLE
TIME;

$CONTROL USLINIT
BEGIN

LOGICAL ARRAY
L'ERROR
L'LANGUAGE
L'PRINT
L'CUSTOM 'DATE
L'DATE
L'CALENDAR
L'MONTHS
L'WEEKDAYS
L'CLOCK

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

H-IO

50
51
52
53
54.
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

·92
93
94
95
96
97
98
99

100
101
102
103
104
105

Example Programs

CCNE = IF <> THEN
QUIT #,

DISPLAY = MOVE B'PRINT := #,

ON'STDLIST = ,2;
@BP'PRINT := TOS;
LGTH := LOGICAL(@BP'PRINT)

LOGICAL(@B'PRINT);
PRINT(L'PRINT, -LGTH, 0) #;

INTRINSIC
READ,
QUIT,
PRINT,
CLOCK,
CALENDAR,
ALMANAC,
NLINFO,
NLFMTCLOCK,
NLCONVCLOCK,
NLFMTDATE,
NLFMTCALENDAR,
NLFMTCUSTDATE,
NLCONVCUSTDATE;

« Start of main code.
The user is asked to enter a language name or number.»

DISPLAY
"ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):"

ON'STDLIST;

READ(L'LANGUAGE,-16);

« NLINFO item 22 returns the corresponding
lang number in integer format for this language. »

NLINFO(22,L'LANGUAGE,LANGNUM,L'ERROR);
IF L'ERROR(O) <> 0 THEN

BEGIN
IF L'ERROR(O) = THEN

BEGIN
DISPLAY
"NL/3000 IS NOT INSTALLED"
ON'STDLIST;
QUIT(1001);

END
ELSE

IF L'ERROR(O) = 2 THEN
BEGIN

DISPLAY
"THIS LANGUAGE IS NOT CONFIGURED"
ON'STDLIST;
QUIT(1002) ;

H-ll

Example Programs

DISPLAY "DATE FORMAT: liON 'STDLIST;

DISPLAY MONTH'NAME,(12) ON'STDLIST;

« Use the output of NLFMTCUSTDATE as input for
NLCONVCUSTDATE and convert back to the internal format.»

« Call the tables for month and weekday names and
display todays day name and the current month's name. »

»

»

END;

NLFMTCUSTDATE(DATE,L'CUSTOM'DATE,LANGNUM,L'ERROR);
ERR'CHECK (5000 + L'ERROR(O));

DISPLAY "CUSTOM DATE:" ON'STDLIST;
DISPLAY B'CUSTOM'DATE,(13) ON'STDLIST;

DATE := CALENDAR;

DISPLAY WEEKDAY'NAME,(12) ON'STDLIST;

TIME := CLOCK;

NLFMTCALENDAR(DATE,L'CALENDAR,LANGNUM,L'ERROR);
ERR'CHECK (7000 + L'ERROR(O));

ALMANAC(DATE, L'ERROR, , MONTH, , WEEKDAY);
ERR'CHECK (2000 + L'ERROR(O));

NLINFO(7, L'WEEKDAYS, LANGNUM, L'ERROR);
ERR'CHECK (4000 + L'ERROR(O));

END
ELSE

QUIT (1000 + L'ERROR(O));

NLINFO(5, L'MONTHS, LANGNUM, L'ERROR);
ERR'CHECK (3000 + L'ERROR(O));

DATE := NLCONVCUSTDATE(B'CUSTOM'DATE,13,LANGNUM,L'ERROR);
ERR'CHECK (6000 + L'ERROR(O));

« Format the machine internal date format
into the custom date format (short version).
The result will be displayed.

« This obtains the machine internal clock and
calendar formats which is maintained by MPE.

« Format the machine internal date format into the »
« date format (long format) according to the language. »
« The result will be displayed. »

« Call ALMANAC and convert the machine internal date
format into numeric values, which will be used as indices
into the name tables. »

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

H-12

« Use the output of NLFMTCLOCK as input for
NLCONVCLOCK and convert back to the internal format. »

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

DISPLAY B'CALENDAR,(18) ON'STDLIST;

« Format the machine internal clock format
into the language-dependent clock format.
The result will be displayed.

NLFMTCLOCK(TIME,L'CLOCK,LANGNUM,L'ERROR);
ERR'CHECK (8000 + L'ERROR(O));

DISPLAY "TIME FORMAT:" ON'STDLIST;
DISPLAY B'CLOCK,(8) ON'STDLIST;

TIME := NLCONVCLOCK(B'CLOCK,8,LANGNUM,L'ERROR);
ERR'CHECK (9000 + L'ERROR(O));

« Format the machine internal time and date
format into the language-dependent format.
The result will be displayed.

NLFMTDATE(DATE,TIME,L'DATE,LANGNUM,L'ERROR);
ERR'CHECK (10000 + L'ERROR(O));

DISPLAY "DATE AND TIME FORMAT: liON 'STDLIST;
DISPLAY B'DATE,(28) ON'STDLIST;

END.

»

»

Example Programs

Executing the program results in the following:

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
GER~1AN

Januar
Dienstag
CUSTOM DATE:
31.01.84
DATE FORMAT:
Di., 31. Jan. 1984
TIME FORMAT:
17: 12
DATE AND TIME FORMAT:
Di., 31. Jan. 1984~ 17: 12

END OF PROGRA~1

: [(UN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
o
JANUARY
TUESDAY

H-13

Example Programs

CUSTOM DATE:
01/31/84
DATE FORMAT:
TUE, JAN 31, 1984
TIME FORMAT:
5: 13 PM
DATE AND TIME FORMAT:
TlJE, JAN 31, 1984, 5: 13 PM

END OF PROGRAM

H-l4

Example Programs

F. Using The NLSCANMOVE Intrinsic In A COBOLII Program

In this program there are six different calls to NLSCANMOVE. In every call all parameters are passed to
NLSCANMOVE. Since the upshift/downshift table and the character attributes table are optional
parameters) they may be omitted. For performance reasons (if NLSCANMOVE is called frequently)
they should be passed to the intrinsic after being read in by the appropriate calls to NLINFO.

* The user is asked to enter a language name or number.

CONVERT-NAME-NUM.
NLINFO item 22 returns the corresponding

DISPLAY
II ENTER A LANGUAGE NAt1E OR NUMBER (t~AX. 16 CHARACTERS):".
ACCEPT LANGUAGE.

MOVE "abCDfg6ijkaltAb¢cGjGf1f$E!SAUNdaeE1a23%&7"
TO INSTR1.
MOVE "a 123&i12fItAg¢hklKLabCDASAtiNi"
TO INSTR2.

PIC S9(4) CaMP VALUE O.
PIC S9(4) CaMP VALUE o.
PIC S9(4) CaMP VALUE o.
PIC S9(4) CaMP VALUE 70.
PIC S9(4) CaMP VALUE O.

PIC X(256) VALUE SPACES.
PIC X(256) VALUE SPACES.
PIC X(256) VALUE SPACES.

PIC X(40) VALUE SPACES.
PIC X(30) VALUE SPACES.
PIC X(70) VALUE SPACES.
PIC X(16) VALUE SPACES.

PIC S9(4) CaMP.
VALUE 1.
VALUE 2.

PIC S9(4) CaMP VALUE o.

ERRORS.
ERR1
NO-NLS
NOT-CONFIG
ERR2

TABLES.
CHARSET-TABLE
UPSHIFT-TABLE
DOWNSHIFT-TABLE

STRINGS.
INSTRING.
INSTR1
INSTR2
OUTSTRING
LANGUAGE

01
05

10
10

05
05

01
05
05
05

01
05
88
88
05

PROCEDURE DIVISION.
START-PGM.

Initializing the arrays.

$CONTROL USLINIT
IDENTIFICATION DIVISION.

PROGRAM-ID. EXAMPLE.
AUTHOR. LORO.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

77 QUITPARM
77 LANGNUM
77 FLAGS
77 LEN
77 NUMCHAR

1
1 • 1
1.2
1.3
1.4
1.5
1 .6
1 .7
1.8
1 .9
2
2. 1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3
3. 1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4
4. 1
4.2
4.3 *
4.4
4.5
4.6
4.7
4.8
4.9
5
5. 1
5.2
5.3
5.4
5.5
5.6
5.7 *

H-15

Example Programs

DISPLAY liTHE FOLLOWING STRING IS USED IN ALL EXAMPLES: 'I
DISPLAY INSTRING.

IF ERR1 NOT EQUAL 0
COMPUTE QUITPARM = 2000 + ERR1
CALL INTRINSIC "QUITII USING QUITPARM.

IF ERR1 NOT EQUAL 0
COMPUTE QUITPARM = 4000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

IF ERR1 NOT EQUAL 0
COMPUTE QUITPARM = 3000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

NOT-CONFIG
DISPLAY "THIS LANGUAGE IS NOT CONFIGURED"
CALL I NTR I NS IC "QU IT" US I NG 1002

ELSE
COMPUTE QUITPARM = 1000 + ERR1
CALL INTRINSIC "QUIT'I USING QUITPARM.

CALL INTRINSIC I'NLINFO" USING 12,
CHARSET-TABLE,
LANGNUM,
ERRORS.

IF ERR1 NOT EQUAL 0
IF NO-NLS

DISPLAY "NL/3000 IS NOT INSTALLED"
CALL INTRINSIC "QUIT" USING 1001

ELSE
IF

CALL INTRINSIC "NLINFO" USING 16
DOWNSHIFT-TABLE,
LANGNUM,
EHRORS.

CALL INTRINSIC "NLINFO" USING 15,
UPSHIFT-TABLE,
LANGNUM,
ERRORS.

CALL INTRINSIC "NLINFO" USING 22,
LANGUAGE,
LANGNUM,
ERRORS.

EXAMPLE-1-1.
* The string passed in the array instring should be moved
* and upshifted simultaneously to the array outstring.

5.8 * lang number in integer format for this language.
5.9
6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7
7. 1
7.2
7.3
7.4
7.5
7.6 GET-TABLES.
7.7 * Obtain the character attributes table
7.8 * using NLINFO item 12.
7.9
8
8. 1
8.2
8.3
8.4
8.5
8.6
8.7
8.8 * Obtain the upshift table using NLINFO item 15.
8.9
9
9. 1
9.2
9.3
9.4
9.5
9.6
9.7
9.8 * Obtain the downshift table using NLINFO item 16.
9.9

10
10. 1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
11
11. 1
11.2
11.3

H-16

Example Programs

60(octal) = 48(dec)=

INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,

BITS
= 57(octal) = 47(dec.)

2 3 4 5
o 000

(EXAMPLE 1-1 r'.

TO OUTSTHIHG.
TO FLAGS.
TO FLAGS.

The 'wh i Ie flag' is set. Therefore, the operat ion
continues while one of the end criteria is true.
Since all criteria are set, one of them will be
always true, and the operation continues for the
number of characters contained in length.

IF ERR1 NOT EQUAL 0
COMPUTE QUITPARM = 5000 + ERR1
CALL INTRINSIC IIQUIT·! USING QUITPARM.

o 1 2 3 456 7 8 9 0
o 0 0 0 0 0 0 0 0 0 1

DISPLAY lIUPSHIFTED:
DISPLAY OUTSTRING.

The 'until flag' is set. Therefore, the operation continues
until one of the ending criteria will be true.
If no ending condition is set, the operation
continues for the number of characters contained in
length.

MOVE 48 TO FLAGS.

o 1 2 3 456 789 0 1 2 3 4 5
o 0 0 0 0 0 0 0 0 0 1 0 1 111

CALL INTRINSIC IINLSCANMOVE II USING INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
UPSHIFT-TABLE

GIVING NUMCHAR.

CALL INTRINSIC IINLSCANMOVE II USING

fY10VE SPACES
MOVE 0
MOVE 47

EXAMPLE-1-2.

11.4 * Set the until flag (bit 11 = 1) and the
11.5 * upshift flag (bit 10 = 1). All other flags remain o.
11 .6 *
11 . 7 *
11 .8 *
11 .9 *
12 * Note:
12. 1 *
12.2 *
12.3 *
12.4 *
12.5
12.6
12.7
12.8
12.9
13
13. 1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
14
14. 1
14.2
14.3
14.4 *
14.5 * The string passed in the array instring should be moved
14.6 * and upshifted to the array outstring (same as EXAMPLE 1-1).
14.7 * Set the while flag (bit 11 = 0) and the upshift flag
14.8 * (bit 10 = 1). In addition all ending conditions will be
14.9 * set (bits 12 - 15 all 1).
15 *
15. 1 *
15.2 *
15.3 *
15.4 * Note:
15.5 *
15.6 *
15.7 *
15.8 *
15.9
16
16. 1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

H-17

Example Programs

IF ERR1 NOT EQUAL 0
COMPUTE QUITPARM = 7000 + ERR1
CALL INTRINSIC "QUITII USING QUITPARM.

Note: The 'until flag' is set and the ending condition is
set to 'special character'. Therefore, the operation
continues until the first special character is found
or until the number of characters contained in
length is processed.

CALL INTRINSIC 'INLSCANMOVE" USING INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
UPSHIFT-TABLE

GIVING NUMCHAR.

(EXAMPLE 2-1)".

BITS

BITS
= 30(octal) = 24(dec.)

CHARSET-TABLE,
UPSHIFT-TABLE

GIVING NUMCHAR.

2 3 4 5
1 000

(EXAMPLE 1-2)11.

UNTIL SPECIAL:

TO FLAGS.

DISPLAY "SCAN/MOVE
DISPLAY OUTSTRING.

IF ERR1 NOT EQUAL 0
CALL INTRINSIC "QUITII USING 6.

DISPLAY IIUPSHIFTED:
DISPLAY OUTSTRING.

o 1 2 3 456 789 0 1 2 3 4 5

MOVE 24

MOVE SPACES TO OUTSTRING.

o 1 2 3 456 789 0
000 0 0 0 0 0 0 0 0

17
17. 1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
18 EXAMPLE-2-1.
18.1 * The string passed in the array instring should be
18.2 * scanned for the first occurrence of a special character.
18.3 * All characters before the first special character are
18.4 * moved to outstring.
18.5 * Set the until flag (bit 11 = 1) and the special
18.6 * character flag (bit 12 = 1). All other flags remain zero.
18.7 *
18.8 ~

18.9 *
19 *
19.1 *
19.2 *
19.3 *
19.4 *
19.5 *
19.6
19.7
19.8
19.9
20
20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9
21
21 . 1
21.2
21.3
21.4
21.5
21.6
21.7 EXAMPLE-2-2.
21.8 * The string passed in the array instring should
21.9 * be scanned for the first occurrence of a special
22 * character. All characters before the first special
22.1 * character are moved to outstring (same as EXAMPLE 2-1).
22.2 * Set the while flag (bit 11 = 0) and all condition
22.3 * flags except for special characters (bits 13 - 15 = 1).
22.4 *
22.5 *

H-18

Example Programs

MOVE 92 TO FLAGS.

MOVE 7 TO FLAGS.

MOVE SPACES TO OUTSTRING.

MOVE SPACES TO OUTSTRING.

7(octal) = 7(dec.)

BITS
= 134(octal) =92(dec.)

2 3 4 5
1 1 0 0

o 1 2 3 456 789 0
o 0 0 0 0 0 0 0 0 1 0

000 0 000 0 0 000 0 1 1 1 =

DISPLAY "SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)".
DISPLAY OUTSTRING.

CALL INTRINSIC "NLSCANMOVE" USING INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
UPSHIFT-TABLE

GIVING NUMCHAR.

CALL INTRINSIC "NLSCANMOVE" USING INSTRING,

IF ERR1 NOT EQUAL 0
COMPUTE QUITPARM = 8000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

Note: The 'while flag' is set and all ending criteria
except for special characters are set. Therefore, the
operation continues while an uppercase, a lowercase, or
a numeric character is found. When a special
character is found, or the number of characters
contained in length is processed, the operation will
terminate.

Note: The 'until flag' is set and the ending condition is
set to 'special character' and to 'numeric character'.
Therefore, the opDration continues until the first
special or numeric character is found, or
until the number of characters contained in length
is processed.

EXAMPLE -3-1 .
The string passed in the array instring should be
scanned for the first occurrence of a special or numeric
character. All characters before one of these characters
are moved to outstring and downshifted simultaneously.
Set the until flag (bit 11 = 1) and the ending condition
flags for special and numeric characters (bits 12-13 = 1).
To perform downshifting set bit 9 to 1.

22.6 *
22.7 *
22.8 *
22.9 *
23 *
23.1 *
23.2 *
23.3 *
23.4 *
23.5
23.6
23.7
23.8
23.9
24
24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8
24.9
25
25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8 *
25.9 *
26 *
26.1 *
26.2 *
26.3 *
26.4 *
26.5 *
26.6 *
26.7 *
26.8 *
26.9 *
27 *
27.1 *
27.2 *
27.3 *
27.4 *
27.5 *
27.6
27.7
27.8
27.9
28
28.1

H-19

Example Programs

Note: The 'while flag' is set and the ending criteria for
upppercase and lowercase characters are set.
Therefore, the operation continues while an uppercase or
a lowercase character is found. When a special
or a numeric character is found, or the number of
characters contained in length is processed, the
operation will terminate.

(EXAMPLE 3-1)11.

INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
DOWNSHIFT-TABLE

NUMCHAR.

OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
DOWNSHIFT-TABLE

NUMCHAR.

BITS
= 103(octal) = 67(dec.)

GIVING

GIVING

TO FLAGS.

TO OUTSTRING.

IF ERR1 NOT EQUAL 0
COMPUTE QUITPARM = 10000 + ERR1,
CALL INTRINSIC IIQUIT" USING QUITPARM.

MOVE 67

MOVE SPACES

o 1 2 3 456 789 0 1 2 3 4 5
o 0 0 0 0 0 0 0 0 1 000 0 1 1

CALL INTRINSIC IINLSCANMOVE II USING

IF ERR1 NOT EQUAL TO 0
COMPUTE QUITPARM = 9000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

DISPLAY
"SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.:
DISPLAY OUTSTRING.

28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9
29
29. 1
29.2
29.3
29.4
29.5
29.6
29.7
29.8
29.9 EXAMPLE-3-2.
30 * The string passed in the array instring should be
30.1 * scanned for the first occurrence of a special or numeric
30.2 * character. All characters before one of these characters
30.3 * are moved to outstring and downshifted simultaneously
30.4 * (same as EXAMPLE-3-2).
30.5 * Set the while flag (bit 11 = 0) and the condition
30.6 * flags for upper and lower case characters (bits 14-15 = 1).
30.7 * To perform downshifting set bit 9 to 1.
30.8 *
30.9 *
31 *
31 .1 *
31 .2 *
31.3 *
31.4 *
31.5 *
31.6 *
31.7 *
31.8 *
31 .9
32
32.1
32.2
32.3
32.4
32.5
32.6
32.7
32.8
32.9
33
33.1
33.2
33.3
33.4
33.5
33.6
33.7

H-20

Example Programs

33.8 DISPLAY
33.9 "SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)".
34 DISPLAY OUTSTRING.
34.1
34.2 STOP RUN.

Executing the program results in the following:

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
GERMAN
THE fOLLOWING STRING IS USED IN ALL EXAMPLES:
abCDfg6ijka~Ab¢cGjGf1f$E!SAUNdaeE1a23%&7a 123&i12f~Ag¢hklKLabCDASAUNi

UPSHIFTED: (EXAMPLE 1-1)
ABCDFG6IJKA~AB¢CGJGF1F$E!SAONDAEE1A23%&7A 123&I12F~AG¢HKLKLABCDASAONI

UPSHIFTED: (EXAMPLE 1-2)
ABCDFG6IJKA~AB¢CGJGF1F$E!SAONDAEE1A23%&7A 123&I12F~AG¢HKLKLABCDASAONI

SCAN/MOVE UNTI L SPECIAL: (EXAMPLE 2-1)
abCDfg6ijka~Ab¢cGjGf1f

SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)
abCDfg6ijka~Ab¢cGjGf1f

SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)
abcdfg
SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)
abcdfg

END OF PROGRAM

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
o
THE FOLLOWING STRING IS USED IN ALL EXAMPLES:
abCDfg6ijka~Ab¢cGjGf1f$E!SAU~daeE1a23%&7a 123&i12f~Ag¢hklKLabCDASAUNi

UPSHIFTED: (EXAMPLE 1-1)
ABCDFG6IJKA~AB¢CGJGF1F$E!SAUNDaEE1A23%&7A 123&I12F~AG¢HKLKLABCDASAuNI

UPSHIFTED: (EXAMPLE 1-2)
ABCDFG6IJKA~AB¢CGJGF1F$E!SAUNDaEE1A23%&7A 123&I12F~AG¢HKLKLABCDASAUNI

SCAN/MOVE UNTI L SPECIAL: (EXAMPLE 2-1)
abCDfg6ijka
SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)
abCDfg6ijka
SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)
abcdfg
SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)
abcdfg

END OF PROGRAM

B-21

Example Programs

G. Using The NLSCANMOVE Intrinsic In An SPL Program

In this program there are six different calls to NLSCANMOVE. In every call, parameters are passed to
NLSCANMOVE. Since the upshift/downshift table and the character attributes table are optional
parameters, they may be omitted. For performance reasons (if NLSCANMOVE is called frequently)
they should be passed to the intrinsic after being read in by the appropriate calls to NLINFO.

1 $CONTROL USLINIT
2 BEGIN
3 LOGICAL ARRAY
4 L'UPSHIFT (0:127),
5 L'DOWNSHIFT (0: 127) ,
6 L'CHARSET (0:127),
7 .L'ERROR (0:1),
8 L'INSTRING (0:34),
9 L'OUTSTRING (0:34),

10 L'PRINT (0:34),
11 L'LANGUAGE (0: 7) ;
12
13 BYTE ARRAY
14 B'INSTRING(*) = L'INSTRING,
15 B'OUTSTRING(*) = L'OUTSTRING,
16 B'PRINT(*) = L'PRINT;
17
18 BYTE POINTER
19 BP'PRINT;
20
21 INTEGER
22 LANGNUM,
23 NUM'CHAR,
24 LGTH,
25 LENGTH;
26
27 LOGICAL
28 FLAGS;
29
30 DEFINE
31 LOWER 'CASE = FLAGS.(15:1)#,
32 UPPER 'CASE = FLAGS. (14: 1)# ,
33 NUMERIC'CHAR = FLAGS. (13: 1)#,
34 SPECIAL 'CHAR = FLAGS. (12: 1) iF ,
35
36 WHILE'UNTIL = FLAGS. (11 : 1)# ,
37
38 UPSHIFT'FLAG = FLAGS.(10:1)#,
39 DOWNSHIFT'FLAG = FLAGS. (9: 1)#,
40
41 ERROR 'CHECK = IF L'ERROR(O) <> o THEN
42 QUIT #,
43
44 CCNE = IF <> THEN
45 QUIT #,
46
47 DISPLAY = MOVE B'PRINT := #,
48

H-22

Example Programs

« NLINFO item 22 returns the corresponding language
number in integer format for this language. »

DISPLAY
"ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):"

ON'STDLIST;

MOVE L'OUTSTRING := II ;
MOVE L'OUTSTRING(1) := L'OUTSTRING,(39);

MOVE L'LANGUAGE := ;
MOVE L'LANGUAGE(1) := L'LANGUAGE,(7);

« The user is asked to enter a language name or number. »

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104

ON'STDLIST = ,2;
@BP'PRINT := TOS;
LGTH := LOGICAL(@BP'PRINT)

LOGICAL(@B'PRINT);
PRINT(L'PRINT, -LGTH, 0) #;

INTRINSIC
READ,
QUIT,
PRINT,
NLINFO,
NLSCANMOVE;

« Start of main code.
Initializing the arrays.

MOVE B'INSTRING
:= l abCDfg6ijkaA:Ab¢cGjGf1f$E!SAON'daeE1a23%&7",2;

MOVE * := " a 123&i12ff£Ag¢hkIKLabCDASAuNi " ;

READ(L'LANGUAGE,-16);

NLINFO(22,L~LANGUAGE,LANGNUM,L'ERROR);

IF L'ERROR(O) <> 0 THEN
BEGIN

IF L'ERROR(O) = THEN
BEGIN

DISPLAY
"NL/3000 IS NOT INSTALLED"
ON'STDLIST;
QU IT (1 001) ;

END
ELSE

IF L'ERROR(O) = 2 THEN
BEGIN

DISPLAY
"THIS LANGUAGE IS NOT CONFIGURED"
ON'STDLIST;
QUIT (1002);

H-23

»

Example Programs

« Print the character string used in all examples(instring). »

END
ELSE

QUIT (1000 + L'ERROR(O»;

DISPLAY
liTHE FOLLOWING STRING IS USED IN ALL EXAMPLES: II

ON'STDLIST;
DISPLAY B'INSTRING,(70) ON'STDLIST;

EXAMPLE'1 '2:
« Note: The 'while flag' is set. Therefore, the operation will

continue while one of the end criteria is true. Since
all conditions are set, one of them will be always

»

»

»

END;

NLINFO(16,L'DOWNSHIFT,LANGNUM,L'ERROR);
ERROR'CHECK (4000 + L'ERROR(O»;

NLINFO(15,L'UPSHIFT,LANGNUM,L'ERROR);
ERROR'CHECK (3000 + L'ERROR(O»;

NLINFO(12,L'CHARSET,LANGNUM,L'ERROR);
ERROR'CHECK (2000 + L'ERROR(O»;

LENGTH .- 70;

FLAGS := O',

WHILE'UNTIL .- 1.,
UPSHIFT'FLAG .- 1;

« Obtain the character attributes table using
NLINFO item 12.

NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,
LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHIFT);

ERROR'CHECK (5000 + L'ERROR(O);

DISPLAY ilUPSHIFTED: (EXAMPLE 1-1)" ON~STDLIST;

DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

« Obtain the upshift table using NLINFO item 15.

« Obtain the downshift table using NLINFO item 16.

EXAMPLE'1'1:
« The string passed in the array instring is moved and

UPSHIFTED to the array outstring.
Note: The 'until flag' is set. Therefore, the operation

continues until one of the ending criteria is true.
If no ending condition was set the
operation continues for the number of characters
contained in length. »

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

H-24

MOVE L'OUTSTRING : = ;
t~OVE L'OUTSTRING(1) .- L'OUTSTRING,(39);

FLAGS : = 0;

SPECIAL'CHAR : = 1;

WHILE'UNTIL := 1;
UPSHIFT'FLAG :.= 0;

MOVE L'OUTSTRING .- ;
MOVE L'OUTSTRING(1) := L'OUTSTRING,(39);

FLAGS : = 0;

LOWER'CASE : = 1;
UPPER'CASE : = 1;
SPECIAL'CHAR : = 1;
NUMERIC'CHAR : = 1;

WHILE'UNTIL := 0;
UPSHIFT'FLAG : = 1;

Example Programs

161 true and the operation continues for the number of
162 characters contained in length. This example performs
163 the same operation as EXAMPLE 1-1. »
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178 NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,
179 LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHIFT);
180 ERROR'CHECK (6000 + L'ERROR(O»;
181
182 DISPLAY "UPSHIFTED: (EXAMPLE 1-2) II ON'STDLIST;
183 DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;
184
185 EXAMPLE'2'1:
186 «The string contained in instring should be scanned for the
187 first occurrence of a special character. All characters
188 before the first special are moved to outstring.
189 Note: The 'until,flag' is set and the ending condition is
190 set to 'special character'. Therefore, the operation
191 continues until the first special character is found or
192 until the number of characters contained in length
193 is processed. »
194
195
196
197
198
199
200
201
202
203
204
205
206 NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,
207 LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHIFT);
208 ERROR'CHECK (7000 + L'ERROR(O»;
209
210 DISPLAY "SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1r'
211 ON'STDLIST;
212 DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;
213
214 EXAMPLE'2'2:
215 «Note: The 'while flag' is set and all ending criteria
216 except for special characters are set. Therefore, the

H-25

Example Programs

NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,
LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'DOWNSHIFT);

ERROR'CHECK (9000 + L'ERROR(O»;

operation continues while an uppercase, a lowercase, or
a numeric character is found. When a special
character is found or the number of characters
contained in length is processed, the operation will
terminate.
This is the same operation as in EXAMPLE 2-1. »

NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,
LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHIFT);

ERROR'CHECK (8000 + L'ERROR(O»;

DISPLAY IISCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2f'
ON'STDLIST;
DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

MOVE L'OUTSTRING : = II

;
MOVE L'OUTSTRING(1) : = L'OUTSTRING,(39);

FLAGS := 0;

LOWER 'CASE := 1;
UPPER 'CASE := 1;
SPECIAL'CHAR : = 0;
NUMERIC'CHAR := 1;

WHILE'UNTIL : = 0;
UPSHIFT'FLAG := 0;

II ,
:= L'OUTSTRING,(39);
: =

:= 0;

:= 1 ;
:= 1;

WHILE'UNTIL := 1;
DOWNSHIFT'FLAG := 1;

MOVE L'OUTSTRING
MOVE L'OUTSTRING(1)

FLAGS

SPECIAL 'CHAR
NUMERIC'CHAR

EXAMPLE '3 '1 :
« The data contained in instring should be scanned for the

first occurrence of a numeric or a special character.
All characters preceding the first special or numeric character
are moved to outstring.
Note: The 'unt i I flag' is set and t he end i ng cond it ions are

set to 'special character' and to 'numeric character'.
Therefore, the operat ion runs unt i I the fi rst
special or numeric character is found, or
until the number of characters contained in length
is processed. »

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

H-26

Example Programs

END.

NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,
LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'DOWNSHIFT);

ERROR,CHECK (1000 + L'ERROR(O»;

DISPLAY
"SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)"
ON'STDLIST;
DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

DISPLAY
"SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)"
ON'STDLIST;
DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

,
:= L'OUTSTRING,(39);
: =

:= 0;

: = 1 ;
:.= 1 ;

LOWER 'CASE
UPPER 'CASE

MOVE L'OUTSTRING
MOVE L'OUTSTRING(1)

WHILE'UNTIL := 0;
DOWNSHIFT'FLAG := 1;

FLAGS

EXAMPLE '3 '2:
« Note: The 'while flag' is set and the ending criteria for

upppercase and lowercase characters are set.
Therefore, the operation continues while an uppercase or
a lowercase character is found. When a special
or numeric character is found or the number of
characters contained in length is processed, the
operation will terminate.
This is the same operation as in EXAMPLE 3-1. »

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

Executing the program results in the following:

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
GERMAN
THE FOLLOWING STRING IS USED IN ALL EXAMPLES:
abCDfg6ijka~Ab¢cGjGf1f$E!SAu~daeE1a23%&7a 123&i12f~Ag¢hkIKLabCDASAU~i

UPSHIFTED: (EXAMPLE 1-1)
ABCDFG6IJK~AB¢CGJGF1F$E!SAU~DAEE1A23%&7A 123&I12F~AG¢HKLKLABCDASAUNI

UPSHIFTED: (EXAMPLE 1-2)
ABCDFG6IJKA~AB¢CGJGF1F$E!SAO~DAEE1A23%&7A 123&I12F~AG¢HKLKLABCDASAO~I

SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2--1)
abCDfg6ijka~Ab¢cGjGf1f

SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)
abCDfg6ijka~Ab¢cGjGf1f

SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)
abcdfg

H-27

Example Programs

SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)
abcdfg

END OF PROGRAM

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
NATIVE-3000
THE FOLLOWING STRING IS USED IN ALL EXAMPLES:
abCDfg6ijka~Ab¢cGjGf1f$E!SAU~daeE1a23%&7a 123&i12f~Ag¢hklKLabCDASAu~i

UPSHIFTED: (EXAMPLE 1-1)
ABCDFG6IJKA~AB¢CGJGF1F$E!SAU~DaEE1A23%&7A 123&I12F~AG¢HKLKLABCDASAU~I

UPSHIFTED: (EXAMPLE 1-2)
ABCDFG6IJKA~AB¢CGJGF1F$E!SAU~DaEE1A23%&7A 123&I12F~AG¢HKLKLABCDASAU~I

SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)
abCDfg6ijka
SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)
abCDfg6ijka
SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)
abcdfg
SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)
abcdfg

END OF PROGRAM

H-28

Example Programs

H. Using The NLTRANSLATE/NLREPCHAR Intrinsics In A COBOLII
Program

The string used in the example is 256 bytes in length and contains all possible byte values from 0 to
255. This string is converted from USASCII to EBCDIC. Then the converted string is taken and
translated back to USASCII. This is done according to the ASCII-to-EBCDIC and EBCDIC-to-ASCII
translation tables corresponding to the entered language.

Afterwards this twice-translated string is displayed. All characters which are non-printable (control
and undefined characters) in the character set supporting the given language are replaced by a period
before the string is displayed, by calling NLREPC HAR intrinsic.

01 REPLACE-WORD PIC S9(4) COMP VALUE O.
01 REPLACE-BYTES REDEFINES REPLACE-WORD.

05 REPLACEMENT-CHAR PIC X.
05 FILLER PIC X.

01 STRINGS.
05 LANGUAGE PIC X(16) VALUE SPACES.
05 IN-STRING.

10 IN-BYTE PIC X OCCURS 256.
05 OUT-STRING.

10 OUT-STRl PIC X(80).
10 OUT-STR2 PIC X(80).
10 OUT-STR3 PIC X(80).
10 OUT-STR4 PIC X(16) .

array with all possible

01 ERRORS.
05 ERRl
05 ERR2

PROCEDURE DIVISION.
START-PGM.

* Initialize the instring

PIC X(256) VALUE SPACES.
PIC X(256) VALUE SPACES.

PIC X(256) VALUE SPACES.

PIC S9(4) COMP VALUE O.
PIC S9(4) COMP VALUE O.
PIC S9(4) COMP VALUE O.

PIC 59(4) COMPo
PIC 59(4) COMPo

PIC S9(4) COMP VALUE -1.
INT-FIELD.

PIC X.
PIC X.

BUFFER-FIELDS.
INT-FIELD
BYTE-FIELD REDEFINES
FILLER
CHAR

TABLES.
USASCII-EBC-TABLE
EBC-USASCII-TABLE
CHARSET-TABLE

01
05
05
05

01
05
05

10
10

$CONTROL USLINIT
IDENTIFICATION DIVISION.

PROGRAM-ID. EXAMPLE.
AUTHOR. LORO.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

77 QUITNUM
77 LANGNUM
77 IND

1
1 • 1
1.2
1 .3
1 .4
1.5
1 .6
1.7
1.8
1 .9
2
2. 1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4
4. 1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5
5.1
5.2

H-29

Example Programs

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 3000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNU~1.

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 1000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

CALL INTRINSIC "NLTRANSLATE" USING 2,
IN-STRING,
OUT-STRING,
256,

CALL INTRINSIC NLINFO ITEM 14,
EBC-USASCII-TABLE,
LANGNUM,
ERRORS.

IND FROM 1 BY 1

zero un til 255.

TO LANGNUM.

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 2000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

CALL INTRINSIC "NLINFO" USING 12,
CHARSET-TABLE,
LANGNUM,
ERRORS.

MOVE 8

CALL INTRINSIC "NLINFO" USING 13,
USASCII-EBC-TABLE,
LANGNUM,
ERRORS.

byte values starting from binary
MOVE -1 TO INT-FIELD.
PERFORM FILL-INSTRING VARYING

UNTIL IND > 256.
GO TO GET-LANGUAGE.

5.3 *
5.4
5.5
5.6
5.7
5.8
5.9 FILL-INSTRING.
6 ADD 1 TO INT-FIELD.
6.1 MOVE CHAR TO IN-BYTE(IND).
6.2
6.3 GET-LANGUAGE.
6.4 *The language is hard-coded, set to 8 (GERMAN).
6.5
6.6
6.7
6.8 GET-THE-TABLES.
6.9 * Call the USASCII-EBCDIC and EBCDIC-USASCII
7 * conversion tables and the character attribute table
7.1 * by using the appropriate NLINFO items.
7.2 * NOTE: NLTRANSLATE and NLREPCHAR may be called without
7.3 * passing the tables (last parameter). For performance
7.4 * reasons the tables should be passed, if these
7.5 * intrinsics are called very often.
7.6
7.7
7.8
7.9
8
8. 1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
9
9. 1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

10 CONVERT-ASC-EBC.
10.1 * Convert IN-STRING from USASCII into EBCDIC by
10.2 * using NLTRANSLATE code 2. The converted string will
10.3 * be in OUT-STRING.
10.4
10.5
10.6
10.7
10.8

H-30

Example Programs

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 5000 + ERR1,
CALL I NTR I NS IC "QU IT" US I NG QU ITNUM.

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 4000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 6000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

CONVERT-EBC-ASC.
Convert OUT-STRING back from EBCDIC to USASCII by
using NLTRANSLATE code 1. The retranslated string will
be in IN-STRING again.

LANGNUM,
ERRORS,
USASCII-EBC-TABLE.

IN-STRING,
IN-STRING,
256,
REPLACE-WORD,
LANGNUM,
ERRORS.

USING 1,
OUT-STRING,
IN-STRING,
256,
LANGNUM,
ERRORS,
EBC-USASCII-TABLE.

CALL INTRINSIC "NLTRANSLATE"

MOVE "." TO REPLACEMENT-CHAR.
CALL INTRINSIC "'NLREPCHAR" USING

DISPLAY II I N-STRI NG:"
DISPLAY IN-STRING.
STOP RUN.

10.9
11
11. 1
11.2
11 . .3
11.4
11.5
11 .6
11 . 7 *
11 .8 *
11 .9 *
12
12. 1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
13
13. 1
13.2 REPLACE-NON-PRINTABLES.
13.3 * Replace all non-printable characters
13.4 * in IN-STRING and display the string.
13.5
13.6
13.7
13.8
13.9
14
14. 1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

H-31

Example Programs

I. Using The NLKEYCOMPARE Intrinsic In A COBOLII Program

The example shows a new KSAM file built programmatically. This new KSAM file is built with a
language attribute. This means the keys will be sorted according to the collating sequence of this lan
guage. After building the file ,the program writes 15 hard-coded data records into it.

Perform a generic FF I NDBYKEY with a partial key of l ength 1 containing II Ell. This should position
the KSAM file pointer to the first record whose key starts with any kind of II E" (e, E, e, e,
etc.) .

After locating this record, read all subsequent records in the file sequentially and call NLKEYCOMPARE
to check whether the key found is what was requested. If the result returned by NLKEYCOMPARE is 3,
the program is done. There are no more records whose key starts with any kind of II Ell.

1 $CONTROL USLINIT
1.1 IDENTIFICATION DIVISION.
1.2 PROGRAM-ID. EXAMPLE.
1.3 AUTHOR. LORO.
1.4 ENVIRONMENT DIVISION.
1.5 CONFIGURATION SECTION.
1.6 SOURCE-COMPUTER. HP3000.
1. 7 OBJECT-COMPUTER. HP3000.
1.8 SPECIAL-NAMES.
1.9 CONDITION-CODE IS CC.
2 DATA DIVISION.
2. 1 WORKING-STORAGE SECTION.
2.2 77 QUITNUM PIC S9(4) COMP VALUE O.
2.3 77 LANGNUM PIC S9(4) COMP VALUE O.
2.4 77 LEGTH PIC S9(4) COMP VALUE O.
2.5 77 FNUM PIC S9(4) COMP VALUE O.
2.6 77 RESULT PIC S9(4) COMP VALUE O.
2.7 77 FOPTIONS PIC S9(4) COMPo
2.8 77 AOPTIONS PIC S9(4) COMPo
2.9 77 IND PIC S9(4) COMPo
3
3.1 01 TABLES.
3.2 05 COLl-TABLE PIC X(800) .
3.3 05 KSAM-PARAM.
3.4 10 KEY-FILE PIC X(8) VALUE SPACES.
3.5 10 KEY-FILE-SIZ PIC S9(8) COMPo
3.6 10 FILLER PIC X(8) VALUE SPACES.
3.7 10 LANGUAGE-NUM PIC S9(4) COMPo
3.8 10 FILLER PIC X(8) VALUE SPACES.
3.9 10 FLAGWORD PIC S9(4) COMPo
4 10 NUM-OF-KEYS PIC S9(4) COMPo
4. 1 10 KEY-OESCR PIC S9(4) COMPo
4.2 10 KEY-LOCATION PIC S9 (4) COM P.
4.3 10 DUPL-BLOCK PIC S9 (4) COM P.
4.4 10 FILLER PIC X(20).
4.5
4.6 01 STRINGS.
4.7 05 GEN-KEY PIC X(4) .
4.8 05 FILENAME PIC X(8) VALUE SPACES.
4.9
5 01 ERRORS.

H-32

TO LANGNUM.

TO NUM-OF-KEYS.
TO LANGUAGE·-NUM.
TO FLAG~·JORD.

TO KEY-FILE-SIZ.
TO KEY-DESCR.
TO KEY-LOCATION.
TO DUPL-BLOCK.
TO FOPTIONS.
TO AOPTIONS.

II TO FILENAME.
II TO KEY-FILE.

MOVE 0

MOVE 1
MOVE LANGNUM
MOVE %20
MOVE 0
MOVE %10004
MOVE 4
MOVE %100024
~10VE %4000
MOVE 5

MOVE "KDOOO
MOVE "KKOOO

CALL INTRINSIC "FOPEN" USING FILENAME,
FOPTIONS,

MOVE "0 14eBBeZZZ011EZqrzyx001ABCDXXX007EdCDxyx012ezzAzzz"
TO DATA-REC1.

MOVE "004eABCYYY006ea bcYYY00geeeAyzz 01Oeax fxyzO 13FGH Izqs II

TO DATA-REC3.

MOVE "003EaBCXXX008EEaaYZZ015eABDYZY005eLDFyxy002BBCdxxx"
TO DATA-REC2.

Example Programs

05 ERR1 PIC S9(4) COMPo
05 ERR2 PIC S9(4) COMP VALUE O.

01 DATA-RECS.
05 DATA-REC1 PIC X(50).
05 DATA-REC2 PIC X(50).
05 DATA-REC3 PIC X(50).

01 DATA-RECS-R REDEFINES DATA-RECS.
05 DATA-RECORD OCCURS 15.

10 FILLER PIC X(10).

01 KSAM-RECORD.
05 FILLER PIC X(3).
05 RECORD-KEY PIC X(4) .
05 FILLER PIC X(3).

Build a new KSAM file with the data file name
KDOOO. The key file has the name KKOOO.

Hard-code the language used in the example program
to 0 (NATIVE - 3000).

Set the values for KSAM parameter array.

PROCEDURE DIVISION.
INIT-KSAM-RECORDS.

* Initialize the Data Record with the data which should be
* written to the KSAM file.

10
10. 1
10.2
10.3
10.4
10.5
10.6

5. 1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6
6.1
6.2
6.3
6.4
6.5
6.6
6.7

- 6.8
6.9
7
7. 1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
8
8.1
8.2 *
8.3 *
8.4
8.5
8.6
8.7 *
8.8 *
8.9
9 JIIIIa.*
9.~
9.2
9.3
9.4
9.5
9.6
9.7
9.8
~::). 9

, H-33

Example Programs

10.7 AOPTIONS,
10.8 -10,
10.9 \\,
11 KSAM-PARAM
11.1 GIVING FNUM.
11.2 IF CC NOT EQUAL 0
11.3 CALL INTRINSIC 'lpRINTFILEINFO" USING FNUM,
11.4 CALL INTRINSIC "QUIT" USING 1000.
11.5
11.6 * Fill the hard-coded data into the KSAM file.
11 . 7
11.8 PERFORM FILL-IN-DATA VARYING IND FROM 1 BY
11.9 UNTIL IND > 15.
12 GO TO FIND-DATA.
12. 1
12.2 FILL-IN-DATA.
12.3 CALL INTRINSIC "FWRITE" USING FNUM,
12.4 DATA-RECORD(IND),
12.5 -10,
12.6 O.
12.7 IF CC NOT EQUAL 0
12.8 CALL INTRINSIC "PRINTFILEINFO" USING FNUM,
12.9 CALL INTRINSIC "QUIT" USING 2000.
13
13.1 FIND-DATA.
13.2 * Perform a generic FFINDBYKEY with a
13.3 * part ial key of length 1 and value "E". The relat ional
13.4 * operator will be 2 (greater or equal).
13.5 * This FFINDBYKEY will position the KSAM pointer at the
13.6 * first key starting with any kind of "E".
13.7
13.8 MOVE "Ell TO GEN-KEY.
13.9
14 CALL INTRINSIC "FFINDBYKEY" USING FNUM,
14.1 GEN-KEY,
14.2 0,
14.3 1,
14.4 2.
14.5 IF CC NOT EQUAL 0
14.6 CALL INTRINSIC "PRINTFILEINFO" USING FNUM,
14.7 CALL INTRINSIC "QUIT" USING 3000.
14.8
14.9 * Read the subsequent entries and check whether an
15 * exact match occurred by using NLKEYCOMPARE.
15.1 * When NLKEYCOMPARE returns 3 as a result, there are no
15.2 * more keys starting with any kind of "E".
15.3 * If an exact match was found the record is printed.
15.4
15.5 DISPLAY
15.6 "THE FOLLOWI NG RECORDS MATCH GEN -KEY (E) EXACTLY: II

15.7 MOVE 0 TO RESULT.
15.8 PERFORM READ-DATA UNTIL RESULT EQUAL 3.
15.9 GO TO TERMINATE-PGM.
16
16.1 READ-DATA.
16.2 CALL INTRINSIC "FREAD" USING FNUM,

H-34

16.3 KSAM-RECORD,
16.4 -10.
16.5 IF CC NOT EQUAL 0
16.6 CALL INTRINSIC "PRINTFILEINFO" USING FNUM,
16.7 CALL INTRINSIC "QUIT" USING 4000.
16.8
16.9 CALL INTRINSIC "NLKEYCOMPARE" USING GEN-KEY,
17 1,
17.1 RECORD-KEY,
17.2 4,
17.3 RESULT,
17.4 LANGNUM,
17.5 ERRORS,
17.6 COLL-TABLE.
17.7 IF ERR1 NOT EQUAL 0
17.8 COMPUTE QUITNUM = 5000 + ERR1,
17.9 CALL INTRINSIC "QUIT" USING QUITNUM.
18 IF RESULT = 0
18.1 DISPLAY KSAM-RECORD.
18.2
18.3 TERMINATE-PGM.
18.4 * Close the KSAM file and purge it.
18.5
18.6 CALL INTRINSIC "FCLOSE" USING FNUM,
18.7 4,
18.8 O.
18.9
19 STOP RUN.

Executing the program results in the following:

:RUN PROGRAM

THE FOLLOWING RECORDS MATCH GEN-KEY (E) EXACTLY:
011EZqrzyx
003EaBCXXX
007EdCDxyx

END OF PROGRAr-.1

H-35

Example Programs

Example Programs

J. Using The NLKEYCOMPARE Intrinsic In An SPL Program

The example shows a new KSAM file built programmatically. This new KSAM file is built with a
language attribute. This means the keys will be sorted according to the collating sequence of this lan
guage. After building the file, it is filled with 15 hard-coded data records.

Perform a generic FFIN DBY KEY with a partial key of 1eng t h 7 containing .. E". This should position
the KSAM file pointer to the very first record whose key starts with any kind of .. EII (e, E, e, e,
etc.).

After locating this record read all subsequent records in the file sequentially and call NLKEYCOMPARE
to check whether the key found is what was requested. If the result returned by NLKEYCOMPARE is 3,
there are no more records starting with any kind of II E".

BYTE POINTER
BP'PRINT;

LOGICAL ARRAY
L'DATA(0:74) :=

DOUBLE ARRAY
D'KSAM'PARAM(*) = L'KSAM'PARAM;

LOGICAL
FOPTIONS,
AOPTIONS;

»

(0:1),
(0:79),
(0:39),
(0:4),
(0:399);

<< I key I >>
"014eBBeZZZ",
"011EZqrzyx" ,
"00 1ABCDXXX", « This is the data, which

BYTE ARRAY
FILENAME (0:7),
GEN'KEY (0:4),
KEY (0:4),
B'KSAM'PARAM(*) = L'KSAM'PARAM,
B'PRINT(*) = L'PRINT,
B'RECORD(*) = L'RECORD;

INTEGER
I ,
LGTH,
FNUM,
RESULT,
LANGNUM;

$CONTROL USLINIT
BEGIN

LOGICAL ARRAY
L'ERROR
L'KSAM'PARAM
L'PRINT
L'RECORD
COLL'TABLE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

H-36

Example Programs

« The following DEFINE statement defines the layout of the
KSAM parameter array, which is necessary to build a KSAM
file programmatically. »

DEFINE
KEy'FILE = L'KSAM'PARAM#,
KEy'FILE'SIZ = D'KSAM'PARAM(2)#,
KEy'DEV = L'KSAM'PARAM(6)#,
LANGUAGE = L'KSAM'PARAM(10)#,
FLAGWORD = L'KSAM'PARAM(15)#,
NUM 'OF 'KEYS = L'KSAM'PARAM(16)#,
KEY 'TYPE = L'KSAM'PARAM(17).(O:4)#,
KEY 'LENGTH = L'KSAM'PARAM(17).(4:12)#,
KEY 'LOCATION = L'KSAM'PARAM(18)#,
DUP'FLAG = L'KSAM'PARAM(19).(0:1)#,
KEY 'BLOCK :;: L'KSAM'PARAM(19).(1:15)#,
RANDOM 'FLAG = L'KSAM'PARAM(20). (8:1)#;

ERROR 'CHECK = IF L'ERROR(O) <> o THEN
QUIT #,

CCNE = IF <> THEN
QUIT #,

DISPLAY = MOVE B'PRINT := #,

ON'STDLIST = ,2 ;
@BP'PRINT := TOS;
LGTH := LOGICAL(@BP'PRINT) -

LOGICAL(@B'PRINT);
PRINT(L'PRINT, -LGTH, 0) #;

1007EdCDxyx", « will be written to the KSAM »
1012ezzAzzz", « file. »
"015eABDYZy ll

, « The key starts in column 4 »
1005eLDFyxy", « and is 4 characters long. »
1002BBCdxxx",
1003EaBCXXX",
"008EEaaYZZ I

,

"004eABCyyy ll
,

II 006eabcYYY" ,
II 00geeeAyz zII,

1101 Oeaxfxyz II,

1013FGHI zqs ";

= L'DATA (I * 5)#,RECORD

INTRINSIC
FOPEN,
FREAD,
FWRITE,
FCLOSE,
FFINDBYKEY,
FGETKEYINFO,

DEFINE

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

H-37

Example Programs

« Set the values for KSAM parameter array. »

« Build a new KSAM file with the data file name
KD008. The key file has the name KK008. »

« Hard-code the language used to 8 (GERMAN).

« Call in the collating sequence table.
This is done by calling NLINFO ITEM 11. »

»

»
»

»

<< KSAM file
« Update

« KSAM data file »
« KSAM key file »

« Num of keys = 0 »
« Set the language »
« Indicates that »
« language is set »
« Max. 200 entries »
« Byte key »
« 4 byte length »
« Key start at col.4 »
« Allow dupl. keys »
« Keys per block 10 »

II II

II

,
:= L'KSAM'PARAM(0),(79);
: =

: =

:=

PRINTFILEINFO,
NLINFO,
NLKEYCOMPARE,
FCLOSE,
PRINT,
QUIT,
READ;

MOVE L'KSAM'PARAM
MOVE L'KSAM'PARAM(1)

MOVE FILENAME IIKD008 II:=
MOVE KEy'FILE II1<K008 II:=

NUM 'OF 'KEYS := 1;
LANGUAGE := LANGNUM;
FLAGWORD.(11:1) : ~ 1;

KEy'FILE'SIZ : = 2000;
KEY 'TYPE := 1;
KEY 'LENGTH := 4;
KEY 'LOCATION := 4;
DUP'FLAG := 1;
KEY 'BLOCK : = 10;

FOPTIONS : = %4000;
AOPTIONS .- 105;

MOVE KEY

NLINFO (11, COLL'TABLE, LANGNUM, L'ERROR);
IF L'ERROR(O) THEN

QUIT(1000 + L'ERROR(O»;

IF <> THEN
BEGIN

PRINTFILEINFO(FNUM);
QUIT(2000);

MOVE GEN'KEY

LANGNUM := 8;

FNUM := FOPEN(FILENAME,FOPTIONS,AOPTIONS,-10,,
B'KSAM 'PARAM) ;

« Initializing the arrays.

98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

H-38

Example Programs

154 END;
155
156 «Copy the hard-coded data into the KSAM file. »
157 I := -1;
158 WHILE (I := I + 1) < 15 DO
159 BEGIN
160 FWRITE(FNUM, RECORD, -10, %0);
161 IF <> THEN
162 BEGIN
163 PRINTFILEINFO(FNUM);
164 QUIT(3000);
165 END;
166 END;
167
168 «Perform a generic FFINDBYKEY with a »
169 «part ial key of l~ngth 1 and value "E II . The relat ional »
170 «operator will be 2 (gl~eater or equal). »
171 «FFINDBYKEY will position the KSAM pointer at the »
172 «first record starting with any kind of "E I'. »
173
174 MOVE GEN 'KEY : = II E";
175
176 FFINDBYKEY(FNUM, GEN'KEY, 0, 1, 2);
177 IF <> THEN
178 BEGIN
179 PRINTFILEINFO(FNUM);
180 QUIT(4000);
181 END;
182
183 «Read the subsequent entries and check by »
184 «using NLKEYCOMPARE whether an exact match was found. »
185 «When NLKEYCOMPARE returns a 3 as a result, the program »
186 «is beyond the range of valid keys. »
187 «If an exact match was found, the record is printed. »
188
189 RESULT := 0;
190 DISPLAY
191 'ITHE FOLLOWING RECORDS MATCH GEN-KEY (E) EXACTLY: II
192 ON'STDLIST;
193 WHILE RESULT <> 3 DO
194 BEGIN
195 FREAD(FNUM,L'RECORD,-10);
196 IF <> THEN
197 BEGIN
198 PRINTFILEINFO(FNUM);
199 QUIT(5000);
200 END;
201
202 MOVE KEY := B'RECORD(3),(4);
203 NLKEYCOMPARE(GEN'KEY, 1, KEY, 4, RESULT, LANGNUM,
204 L'ERROR, COLL'TABLE);
205 ERROR'CHECK(9000 + L'ERROR(O»;
206 IF RESULT = 0 THEN « exact hit »
207 BEGIN
208 DISPLAY B'RECORD,(10) ON'STDLIST;
209 END;

H-39

Example Programs

210 END;
211
212 «Close the KSAM file and purge it.
213
214 FCLOSE(FNUM, 4, 0);
215
216 END.

Executing the program results in the following:

:RUN PROGRAM

THE FOLLOWING RECORDS MATCH GEN-KEY (E) EXACTLY:
003EaBCXXX
007EdCDxyx
011EZqrzyx

END OF PROGRAM

H-40

»

Example Programs

K. Obtaining language Information In A COBOlll Program

This program prints the User Interface, Data Manipulation, System Default, KSAM key sequence,
VPLUSj3000 forms file, and IMAGE data base language numbers.

* ---

* ---
DATA DIVISION.
WORKING-STORAGE SECTION.

$CONTROL USLINIT
IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.

II r- II!:.rror .VALUE

X(20) .
S9(4) CaMP.
X(8).
59(4) CaMP VALUE O.
X(148) .
X(256) .

PIC S9(4) CaMP.

PIC S9(4) CaMP.

PIC S9(4) CaMP.

PIC
PIC
PIC
PIC
PIC
PIC

PIC S9(4) COMP VALUE O.
PIC S9(4) CaMP VALUE O.
PIC S9(4) CaMP VALUE 60.
PIC X(114) VALUE LOW-VALUE.

PIC X(2) VALUE"
PIC X(36).

PIC X(8).

PIC X(10).
PIC ZZZ9.
PIC X(f))
PIC ZZZ9.

PIC S9(4) CaMP VALUE 5.

LANGUAGE

FILENUM

PASSWORD

NLERROR.
05 NLERR OCCURS 2

COMAREA.
05 COM··STAT
05 COM··LANG
05 COM-LENG
05 COM-FILL

KSAMAREA.
05 KSAMPARAM.

10 FILLER
10 KLANG
10 FILLER
10 FLAGS
10 FILLER

05 KSAMCONTROL

DBMODE

RESULT.
05 OPER
05 LANG
05 FILLER
05 NERR

DBNAME.
05 FILLER
05 FILENAME

01

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER. HP3000.
SPECIAL-NAMES.
CONDITION-CODE IS CCODE.

01

5.3
5.4
5.5
5.6 01
5.7
5.8 01
5.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1,9

2
2. 1
2.2
2.3
2.4 01
2.5
2.6 01
2.7
2.8
2.9 01
3
3. 1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4
4.1
4.2
4.3
4.4
4.5
4.6 01
4.7
4.8
4.9
5
5. 1
5.2 01

H-41

Example Programs

KSAM-LANG.
DISPLAY "Enter KSAM fi Ie name: II.

ACCEPT FILENAME FREE.
IF FILENAME NOT = SPACES PERFORM KSAM-OPEN.

PIC S9(4) COMP VALUE o.
PIC X(18).

STAT.
05 DBSTAT
05 FILLER

IF CCODE = 0
THEN PERFORM KSAM-INFO
ELSE DISPLAY "Error in KSAM fi Ie OPEN".

MOVE "SYST lang:" TO OPERe
MOVE LANGUAGE TO LANG.
MOVE NLERR (1) TO NERR.
DISPLAY RESULT.

MOVE "DATA lang:" TO OPERe
MOVE LANGUAGE TO LANG.
MOVE NLERR (1) TO NERR.
DISPLAY RESULT.

016
6.1
6.2
6.3
6.4 01 DUMMY PIC S9(4) COMPo
6.5 * ---
6.6 PROCEDURE DIVISION.
6.7
6.8 MAIN.
6.9 PERFORM USER-LANG.
7 PERFORM DATA-LANG.
7. 1 PERFORM SYST- LANG.
7.2 PERFORM KSAM-LANG.
7.3 PERFORM FORM-LANG.
7.4 PERFORM BASE-LANG.
7.5 STOP RUN.
7.6 * .
7.7 USER-LANG.
7.8 CALL INTRINSIC "NLGETLANG" USING 1 NLERROR
7.9 GIVING LANGUAGE.
8 MOVE "USER lang:" TO OPERe
8.1 MOVE LANGUAGE TO LANG.
8.2 MOVE NLERR (1) TO NERR.
8.3 DISPLAY RESULT.
8.4 * .
8.5 DATA-LANG.
8.6 CALL INTRINSIC "NLGETLANG" USING 2 NLERROR
8.7 GIVING LANGUAGE.
8.8
8.9
9
9.1
9.2 * .
9.3 SYST-LANG.
9.4 CALL INTRINSIC "NLGETLANG" USING 3 NLERROR
9.5 GIVING LANGUAGE.
9.6
9.7
9.8
9.9

10 * .
10. 1
10.2
10.3
10.4
10.5
10.6 KSAM-OPEN.
10.7 CALL INTRINSIC "FOPEN" USING FILENAME 1
10.8 GIVING FILENUM.
10.9
11
11. 1
11 .2
11.3 KSAM-INFO.
11.4 CALL INTRINSIC "FGETKEYINFO" USING FILENUM
11.5 KSAMPARAM KSAMCONTROL.

H-42

Example Programs

BASE-LANG.
DISPLAY "Enter DATA BASE name: II •

ACCEPT FILENAME FREE.
IF FILENAME NOT = SPACES PERFORM BASE-OPEN.

FORM-INFO.
CALL "VGETLANG" USING COMAREA LANGUAGE.
CALL "VCLOSEFORMF" USING COMAREA.
MOVE "FORM lang:" TO OPER.
MOVE LANGUAGE TO LANG.
DISPLAY RESULT.

FORM-OPEN.
CALL "VOPENFORMF" USING COMAREA FILENAME.
IF COM-STAT = 0

THEN PERFORM FORM-INFO
ELSE DISPLAY "FORMS file OPEN failed:" COM-STAT.

BASE-OPEN.
DISPLAY "Enter PASSWORD:".
ACCEPT PASSWORD FREE.
CALL "DBOPEN" USING DBNAME PASSWORD DBMODE STAT.
IF DBSTAT = 0

THEN PERFORM BASE-INFO
ELSE DISPLAY "Error in Data Base Open:" DBSTAT.

BASE-INFO.
MOVE 901 TO DBMODE.
CALL "DBINFO" USING DBNAME DUMMY DBMODE STAT LANGUAGE.
MOVE 1 TO DBMODE.
CALL "DBCLOSE" USING DBNAME DUMMY DBMODE STAT.
MOVE "BASE lang:" TO OPER.
MOVE LANGUAGE TO LANG.
DISPLAY RESULT.

11.6 CALL INTRINSIC "FCLOSE" USING FILENUM 0 O.
11.7 IF FLAGS < 0 THEN ADD 32768 TO FLAGS.
11.8 IF FLAGS - (FLAGS / 32) * 32 > 15
11.9 THEN MOVE KLANG TO LANGUAGE
12 ELSE MOVE ZERO TO LANGUAGE.
12.1 MOVE SPACES TO RESULT.
12.2 MOVE "KSAM lang:" TO OPER.
12.3 MOVE LANGUAGE TO LANG.
12.4 DISPLAY RESULT.
12.5 * .
12.6 FORM-LANG.
12.7 DISPLAY "Enter FORM file name:'i.
12.8 ACCEPT FILENAME FREE.
12.9 IF FILENAME NOT = SPACES PERFORM FORM-OPEN.
13
13. 1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
14
14. 1
14.2
14.3 * .
14.4
14.5
14.6
14.7
14.8
14.9
15
15. 1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
16
16. 1
16.2
16.3
16.4

H-43

Example Programs

Executing the program results in the following:

:RUN PROGRAM;MAXDATA=12000

USER lang: 0 Error 2
DATA lang: 3 Error 0
SYST lang: o Error 0
Enter KSAM file name:
GERMANK
KSAM lang: 8
Enter FORM file name:
FRENCHFF
FORM lang: 7
Enter DATA BASE name:
SPBASE.TEST
Enter PASSWORD:
MANAGER
BASE lang: 12

END OF PROGRAM

H-44

Example Programs

l. Using The CATOPEN, CATREAD And CATCLOSE Intrinsics In A
Pascal Program

This program opens a catalog, reads two messages and prints them on the standard list device. It reads
a third message into a buffer, prints the buffer, then closes the catalog.

BEGIN

PROGRAM example (input,output);

TYPE int = -32768 .. 32767;

$USLINIT$
$STANDARD_LEVEL 'HP3000'$

i nt ;

INTEGER;
PACKED ARRAY [1 .. 2] OF int;
PACKED ARRAY [1 .. 8] OF CHAR;

STRING[40];
STRING[80];

parm_n := '59'; { set parameter 1 }
{ append a null character}

STRWRITE(parm_n,STRLEN(parm_n)+1,dummy,CHR(0));

{ Make sure that name ends with a space.}
cat name := 'EXAMPLE ';
intr id:= 1;
cat index := catopen(cat name,error);
IF orror[1] <> 0 THEN show_error;

parm_m := 'thirty-three'; { set parameter 2 }
{ append a null character}

STRWRITE(parm_m,STRLEN(parm_m)+1,dummy,CHR(0));

VAR cat index
error
cat name
dummy,
mS9_len,
set_num,
mS9_num,
int r id
parm_n,
parm_m
buffer

PROCEDURE show_error; {a very simple "error printer"}
BEGIN

PROM PT (' e r ro r " e r ro r [1] : 1) ;
{ intr-id identifies the intrinsic called}

CASE int r id OF
1 WRITELN(' in CATOPEN');
2 : WRITELN(' in CATREAD');
3 : WRITELN(' in CATCLOSE');

END;
END;

FUNCTION catopen: INTEGER; INTRINSIC;
FUNCTION cat read: int; INTRINSIC;
PROCEDURE catclose; ,INTRINSIC;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

H-45

Example Programs

END.

intr id := 3;
catcl"ose(cat index,error);
IF error[1] <> 0 THEN show_error;

msg_num := 23; { change the message number}
msg_len := catread(cat index,set num,msg num,error",

parm n,parm m); -
{ pass parameters 1 and 2, and print on $STDLIST }

IF error[1] <> 0 THEN show_error;

:= 7;
:= 9;

:= 2;
:= 3; { set the message set number}
:= 17; { set the message number}
:= catread(cat index,set num,msg num,error",

parm n,parm m);
{ pass parameters 1 and 2, and print on $STDLIST }

IF error[1] <> 0 THEN show_error;

set num
msg_num

int r id
set num
msg_num
msg_len

{ change the set number }
{ set the message number}

{ get the message into the buffer}
msg_len := cat read (cat index,set num,msg num,error,

buffer); - -
IF error[1] <> 0 THEN show error;

{ update-the length of the buffer}
SETSTRLEN(buffer,msg len);
WRITELN(buffer); - { now write the buffer}

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

This program uses a message catalog file. To build this file, enter the following text into a text file:

Descri~tion of this set of messages.

Comment describing this set's contents.

There is an error in line !1 on page !2.
On page !2 there is an error in line !1.

$set 3
$
17
23
$
$set 7
$
09 Process completed successfully.

Use the GENCAT program to format this file into a catalog file called EXAMPLE. Executing the
sample program results in the following:

:RUN PROGRAM

There is an error in line 59 on page thirty-three.
On page thirty-three there is an error in line 59.

Process completed successfully.

END OF PROGRAM

H-46

A

Accessing
Catalogs, 2- 2
KANA8 Characters, E-4
NLS Features, 1-7
ROMAN8 Characters, E-4

Adding A Language
ID Number, 4-9
LANGINST, A-2

Adding Records To Maintenance Files, 2-9
Algorithm, Conversion, F- 3
ALMANAC Intrinsic, 4- 3
Alternate Character Sets, F-l 0
Application Message Facility, 1-6, 2-1

(See GENCAT)
Applications

International, 3- 29
Language-Dependent, 3-29
Localized, 1- 1, 2- 1
Multilingual, 3- 30
Single- Language, 3- 30
Unlocalized, 3- 29

Applications Programs, 1-10
General, 1- 10
Multilingual, 1- 12
Single - Language, 1- 12
Subsystem Utility, 1-14
Without NLS, 1-11

ASCII -To-EBCDIC Translation, 4- 38
Assigning

A Language Attribute, 1-8,3-5,3-11
A Language ID Number, 3-31

B

Backward Compatibility, 1-6
BASIC, Guidelines For Using, G- 3
BUILD Command, 3- 11

Calendar Formatting, 4,,·16, 4-26
CAT Intrinsics

CATCLOSE, 2-1
CATOPEN, 2-1
CATREAD, 2-1

INDEX I

Catalogs
Accessing, 2- 1
Expanding, 2-1 4
Formatting, 2-13
Message, 2- 2
Naming Convention For, 2-7
Source, 2-2

CATCLOSE, 2-1
Intrinsic, 4- 5
Pascal Program, H - 45

CATOPEN, 2-1
Intrinsic, 4- 6
Pascal Program, H- 45

CATREAD, 2-1
Intrinsic, 4-7
Pascal Program, H - 45

Changing Language Attribute, 3- 3, 3-7, 3- 18
Character Handling, VPLUS, 3- 31
Character Printing, FCOPY, 3- 2
Character Set

Attribute Table, 4- 29
ID Number, 4- 29
Name, 4-30
Specified, 4- 30
Verifying Support Of, 4-29

Character Sets
7-Bit, F-l
8-Bit, 1- 3
KANA8, 1-3, B-2
ROMAN 8, 1-3, B-2, F-l

Character Strings
Comparing, 4-10, 4- 31
Moving, 4- 35
Scanning, 4- 35
Translation, 4- 38

Character Translation, In FCOPY, 3-2
Character Upshifting

FCOPY, 3-3
QUERY, 3-20

Characters, Nondisplayable, 4- 33
Class Number, 4-30
Clock Specification, Formatting, 4- 27
Closing A Message Catalog, 4-5
COBOLII

Guidelines For Using, G-2
Language Information, H -41
Merging, 3-27
NLKEYCOMPARE Program, H - 32
NLTRANSLA1'E/NLREPCHAR, H - 29
Programs Using SORT, H-l

I-I

I INDEX (Continued)

Sorting, 3- 27
Using NLSCANMOVE, H-1 5

Collating Sequences, 3- 23, C- 1
Collating Sequence Table, 4-28

Length Of, 4- 30
Collision Files, 2- 8
Commands, 1- 8

Language-Dependent, 3- 21
User Defined, 1-9

Commands, List Of MPE
BUILD, 3-11
LANGUAGE, 3-19, 3-23
REPORT, 3-20
VERIFY, 3-11, 3-24

Comment Records, 2- 5, 2- 10
Comparing Character Strings, 4-10, 4- 31
Compatibility, Backward, 1-6
Configuration

Language, 1- 5
Verification Of, A-I

Configuring Printers
(See Printer Configuration)

Configuring Terminals
(See Terminal Configuration)

Conversion Procedures, F- 5, F-1 0
Conversion To 8-Bit Data

Editor Files, F - 2
HPWORD Files, F-2
IMAGE Data Bases, F-2
MPE Files, F-2
TDP Files, F-2
VPLUS Forms Files, F-2

Conversion Utilities, 1-6
I7DB8CNV, F-8
N7MF8CNV, F-7
V7FF8CNV, F-1 0

Copying A KSAM File, 3- 18
Country Extended Code Pages, D-1
Creating A KSAM File

Programmatically, 3-14
With KSAMUTIL, 3-11

Currency Symbols, 4-28
Language-Dependent, 1-4

Custom Date Formatting, 4-14,4-20,4-27

D

Data Conversion
Algorithm, F - 3

Language-Dependent, 1-4
Procedure For, F-5, F-10
User Dialogue, F-5, F-9

Date and Time
Formatting, 4-2, 4-22
In FORTRAN, H-6
In SPL, H-10

Date Format, QUERY, 3-20
Date Handling, VPLUS, 3- 31
Date Information, 4- 3
Day Abbreviation Table, 4-28
Day Of The Week Table, 4-28
DBINFO Intrinsic, 3-6
DBLOAD Utility, 3-5
DBLOCK Intrinsic, 3-6
DBOPEN Intrinsic, 3-6
DBPUT Intrinsic, 3-6
DBSCHEMA Utility, 3-5
DBUNLOAD Utility, 3- 5
DBUTIL Utility, 3- 5
Decimal Separators, 4-28
Deleting

Languages V/ith LANGINST, A - 2
Records In Maintenance Files, 2- 9

Directives in Source Catalogs, 2- 2
$,2-2
$SET, 2-2
$DELSET, 2-10

Downshift Table, 4-29

E

EBCDIC
Code, D-1
Mappings, D-1

EBCDIC-To-ASCII Translation, 4- 38
EDITOR Files, Conversion Of, F-2
ENTRY, 3-31

(See VPLUS)
Error Messages

FCOPY, 3-4
GENCAT, 2-17
IMAGE, 3-7
KSAM, 3- 13, 3- 14
LANGINST, A-6
QUERY, 3-21
SORT-MERGE, 3-26
VPLUS, 3-32

1-2

Expanding
Message Catalogs, 2- 2
Source Catalogs, 2-14

F

FCOPY
Character Printing, 3- 2
Character Translation, 3- 2
Character Upshifting, 3- 3
Error Messages, 3- 4

Files
Collision, 2 - 8
Maintenance, 2- 9
Merging By Line Number, 2-9
Merging By Message Number, 2-9
Naming Conventions, 1- 7
Structure, A-I

Formatting
Calendar, 4-16, 4- 26
Clock Specification, 4-27
Custom Date, 4-14, 4-20, 4-2/
Date and Time, 4-2, 4-22
Language-Dependent, 4-26
Message Catalogs, 2-2
Source Catalogs, 2-2, 2-12
Time, 4- 12, 4- 18

Forms File Language ID Number, 3- 33
FORMSPEC, 3-30

(See VPLUS)
FORTRAN

Date/Time Formatting Intrinsics, H-6
Guidelines For Using, G-2
Using SORT, H-S

G

GENCAT, 1-6, 2-1
(See Application Message Facility)
Error Messages, 2- 17
HELP Facility, 2- 16
In Batch Mode, 2-15
Job Control Words (JCWs), 2-15
Special Characters, 2_.4-

General Application Program, 1-10
Generic Key Searching, 3-15, 4- 31

INDEX (Continued) I

H

HELP Facility, GENCAT, 2-16
HPWORD Files, Conversion Of, F-2

I

IMAGE, 3-5
Data Bases, Conversion Of, F-2
Error Messages, 3-7

IMAGE Intrinsics
DBINFO, 3-6
DBLOCK , 3-6
DBOPEN, 3-6
DBPUT, 3-6

IMAGE Utility Programs
DBLOAD , 3-5
DBSCHEMA, 3-5
DBUNLOAD , 3-5
DBUTIL, 3-5

International Applications, 3··29
Intrinsics, NLS

ALMANAC, 4-3
CATCLOSE, 4-5
CATOPEN, 4-6
CATREAD, 4-7
NLAPPEND, 4-9
NLCOLLATE, 4-10
NLCONVCLOCK, 4-12
NLCONVCUSTDATE, 4-14
NLFMTCALENDAR, 4-16
NLFMTCLOCK, 4-18
NLFMTCUSTDATE, 4-20
NLFMTDATE, 4-22
NLGETLANG, 4-24
NLINFO, 4-26
NLKEYCOMPARE, 4- 31
NLREPCHAR, 4- 33
NLSCANMOVE, 4-35
NLTRANSLATE, 4-38

Intrinsics, VPLUS
VGETLANG, 3-33
VSETLANG, 3-34

Invoking GENCAT, 2-15

1-3

[INDEX (Continued)

J

JISCII, E-l
Job Control Words, 3-19, 4-25

In GENCAT, 2-15
NLDATALANG, 1-9
NLUSERLANG, 1-9

K

KANA8, E-l
Character Accessing, E-4
Character Set, B- 3

KSAM, 3-11
Error Messages, 3-13, 3-14

KSAM Files
Copying, 3-18
Creating Programmatically, 3-14
Creating With KSAMUTIL, 3-11
FCOPY, 3-3
Modifying, 3- 14
Moving To MPE, 3-18

L

LANGINST System Utility, A-I
Adding A Language, A- 2
Deleting A Language, A-2
Modifying Local Formats, A - 3
User Dialogue, A - 3
Utility Program, 1- 5

Language Attribute
Assigning, 1- 8, 3- 5, 3- 11
Changing, 3- 3, 3- 7, 3- 18
VPLUS, 3-29

LANGUAGE Command, 3-19, 3-23
Language-Dependent

Applications, 3-29
Commands, 3- 21
Currency Symbols, 1-4
Data Conversion, 1-4
Information, Returning, 4-26
Lexical Order, 1- 4
Variations, C- 9

Language ID Number, 4- 29
Adding, 4-9
Assigning, 3- 31
Forms File, 3-33

Returning, 4- 24
Language Information, COBOLII, H-41
Language Verification, 4-29
Languages

Configuring, 1- 5
Supported, 1-2, B-1

Lexical Order, Language - Dependent, 1- 4
Localized Applications, 1-1, 2-1

M

MAKECAT/GENCAT Comparison, 2-22
Maintenance Files, 2- 9

Directives, 2-10
Merging By Line Number, 2-9
Merging By Message Number, 2-9
Merging By Set Numbers, 2-9

Mapping, ROMAN 8 To EBCDIC, D-l
MERGEINIT Intrinsic, 3-25
Merging, COBOLII, 3.... 27
Merging Maintenance Files, 2- 9
Message Catalogs

Closing, 4- 5
Maintaining, 2- 8
Modifying, 2-2
Opening, 4- 6
Reading, 4-7

Message Numbers, 2- 9
Message Records, 2 - 4

Special Characters In GENCAT, 2-4
Modifying

KSAM Files, 3-14
Local Formats LANGINST, A - 3
Maintenance Files, 2- 9
Message Catalogs, 2-2

Month Abbreviation Table, 4- 27
Month Table, 4-28
Moving Character Strings, 4- 35
Moving KSAM Files, 3- 18
MPE Files, Conversion Of, F-2
Multilingual Applications, 1- 12, 3- 30

N

N7MF8CNV Utility, F-7
Naming Conventions , Catalog, 2-7
Naming Conventions, Files, 1-7

1-4

National Substitution Sets, F-1
National-Dependent Information Table, 4- 30
Nati.ve Language, Specifying A, 3-34
NLAPPEND Intrinsic, 4-9
NLCOLLATE Intrinsic, 4-10
NLCONVCLOCK Intrinsic, 4-12
NLCONVCUSTDATE Intrinsic, 4-14
NLDATALANG JCW, 1-9
NLFMTCALENDAR Intrinsic, 4-16
NLFMTCLOCK Intrinsic, 4-18
NLFMTCUSTDATE Intrinsic, 4-20
NLFMTDATE Intrinsic, 4-22
NLGETLANG Intrinsic, 1-9, 4- 24
NLINFO Intrinsic, 4- 26
NLKEYCOMPARE

COBOLII, H-32
Intrinsic, 4- 31
SPL, H-36

NLREPCHAR Intrinsic, 4- 33
NLSCANMOVE

COBOLII, H-15
Intrinsic, 4- 35
SPL, H-22

NLS Features, Accessing, 1-7
NLTRANSLATE

Intrinsic, 4- 38
COBOLII, H-29

NLUSERLANG JCW, 1-9
NLUTIL Utility Program, 1- 5, A-I
Nondisplayable Characters, 4- 33
Numeric Data Editing

QUERY, 3-20
VPLUS, 3-31

Numerical Parameter Substitution, 2-6
Numeric Date Information, 4- 3

o

Old ROMAN 8, E-1
Opening A Message Catalog, 4-6

Parameter Substitution, 2- 5
Numerical, 2- 6
Positional, 2- 5

INDEX (Continued) I

Parameter Values, 1- 8
Pascal

CATCLOSE, H-45
CATOPEN, H-45
CATREAD, H-45
Guidelines For Using, G- 3
Programs Using SORT, H- 3

Peripheral Support, E-4
Positional Parameter Substitution, 2-5
Printer Configuration

HP 2563A, E-8
HP 2608A/HP 2608S, E-9
HP 2631B, E-16
HP 2635B, E-17
HP 2680A, E-19
HP 2688A, E-20
HP 2932A/HP 2933A/HP 2934A, E-22

Processing Standard, E - 2
Programmatic

KSAM, 3-14
SORT-MERGE, 3-24

Programming Languages, Supported
BASIC, G-3
COBOLII, G-2
FORTRAN, G-2
Pascal, G- 3
RPG, G-3
SPL, G-3

Q

QUERY, 3-19
Character Upshifting, 3-20
Date Format, 3-20
Error Messages, 3- 21
Numeric Data Editing, 3-20
Range Selection, 3-20
Real Number Conversion, 3-20
Sorted Lists, 3- 20

R

Range Selection, QUERY, 3-20
Reading A Message Catalog, 4-7
Real Number Conversion QUERY, 3- 20

1-5

INDEX (Continued)

Records
Comment, 2- 5, 2-1 0
Message, 2- 4
$SET, 2-2

Replacing Nondisplayable Characters, 4- 33
REPORT Command, 3-20
Returning A Language ID Number, 4-24
Roman Extension, E-l
ROMAN8, E-l

Accessing Characters, E-4
Character Sets, B- 3, F-l

RPG, Guidelines For Using, G- 3

s

Scanning Character Strings, 4- 35
Set Numbers, 2-9
$SET Records, 2-2
Single-Language Application, 1-12, 3- 30
SORT

In A COBOLII Program, H-l
In A FORTRAN Program, H-5
In A Pascal Program, H- 3

Sorted Lists, QUERY, 3-20
Sorting, COBOLII, 3- 27
SORTINIT Intrinsic, 3- 24
SORT-MERGE, 3-23

Error Messages, 3- 26
Programmatically, 3-24
Stand-Alone, 3-23

SORT-MERGE Intrinsics
MERGEINIT, 3-25
SORTINIT, 3-24

Source Catalogs
Directives, 2- 2
Formatting, 2-2, 2-13
Sample, 2-5
Size Of, 2-2

Special Characters GENCAT, 2-4
Specifying A Native Language, 3-34
SPL

Date/Time Formatting Intrinsics, H -10
Guidelines For Using, G- 3
NLKEYCOMPARE, H-36
NLSCANMOVE, H-22

Stand-Alone SORT-lViERGE, 3-23
Substitution, Parameter, 2-5
Subsystem Utility Program, 1--14

Subsystems, Supported, 1-7
FCOPY, 3-2
IMAGE, 3-5
KSAM, 3-11
QUERY, 3-19
SORT-MERGE, 3-23
VPLUS, 3-29

Supported Languages, 1-2, B-1
System Default Language, 3-26
System Manager Capabilities, A- 2
System Utility Programs

LANGINST, 1- 5 , A-I
NLUTIL, 1-5, A-I

T

Table Returned
ASCII-To-EBCDIC Translation, 4-29
Character Set Attributes, 4- 29
Collating Sequences, 4- 28
Day Abbreviation, 4- 28
Day Of The Week, 4-28
Downshift Table, 4- 29
EBCDIC-To-ASCII Translation, 4-29
Language ID Numbers, 4- 29
Month, 4-28
Month Abbreviation, 4-27
Upshift Table, 4-29

TDP Files, Conversion Of , F- 2
Terminal Configuration

HP 150 As A Terminal, E- 5
HP 2382A, E-6
HP 2392A, E-7
HP 2621 B, E - 10
HP 2622A!HP 2623A, E-l1
HP 2622J/HP 2623J, E-12
HP 2625A!HP 2628A, E-13
HP 2626A!HP 2626W, E-14
HP 2627A, E - 15
HP 2635B, E-17
HP2645J,E-18
HP 2700, E-21

Thousands Indicators, 4- 28
Time Formatting, 4-12, 4-18
Translation Table

ASCII-To-EBCDIC, 4-29
EBCDIC-To-ASCII, 4·· 29

1--6

u

Unlocalized Applications, 3- 29
Uppercase Character Set Name, 4-29
Uppercase Language Name, 4-29
Upshifting Characters, 3- 3, 3- 20
Upshift Table, 4-29
User Dialogue

Data Conversion, F- 5, F-1 0
Expanding A Formatted Catalog, 2-14
Formatting Source Catalogs, 2-12
GENCAT HELP Facility, 2-16
LANGINST, A-3
Modifying Source Files, 2-10

User - Defined Commands (UDCs), 1- 9
Utilities, Data Conversion, 1-6, F-7
Utility Programs

DBLOAD, 3-5
DBSCHEMA, 3- 5
DBUNLOAD , 3-5
DBUTIL, 3-5
17DB8CNV, F-8
IMAGE, 3-5
LANGINST, 1-5, A-I
N7MF 8CNV, F-7
NLUTIL, 1-5, A-I
V7FF8CNV, F-l 0

INDEX (Continued) I

v

Verification Of Configuration, 4-29
VERIFY Command, 3-11, 3-24
Verifying

Character Set Support, 4-29
Language Configuration, A-I

VGETLANG Intrinsic, 3- 33
VSETLANG Intrinsic, 3-34
VPLUS, 3-29

Character Handling, 3- 31
Date Handling, 3- 31
Error Messages, 3- 32
Forms Files, Conversion Of, F-2
Language Attribute, 3- 29
Numeric Data, 3- 31

VPLUS Intrinsics
VGETLANG, 3-33
VSETLANG, 3-34

XYZ

Yes/N0 Responses, 4- 28

1-7/1- 8

READER COMMENT SHEET

Native Language Support

(32414-90001) September 1984

We welcome your evaluation of this manual. It is one of several that serve as a reference source for
HP 3000 Computer Systems. Your comments and suggestions help us to improve our publications and
will be reviewed by appropriate technical personnel. HP may make any use of the submitted sugges
tions and comments without obligation.

Is this manual technically accurate?

Are the concepts 'and wording easy to
understand?

Is the format of this manual convenient
in size, arrangement and readability?

Comments:

Yes [] No []

Yes [] No U

Yes [] No []

(If no, explain under Comments, below.)

(If no, explain under Comments, below.)

(If no, explain or suggest improvements

under Comments, below.)

We appreciate your comments and suggestions. This form requires no postage stamp if mailed in the
U.S. For locations outside the U.S., your local HP representative will ensure that your comments are
forwarded.

Date:

FROM:

Name

Company

Address

FOLD

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1070 CUPERTINO, CALIFORNIA

POSTAGE WILL BE PAID BY ADDRESSEE

Documentation Manager/47U
Hewlett-Packard Company
Computer Systems Division
19447 Pruneridge Avenue
Cupertino, California 95014

FOLD

FOl.D

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

FOLD

READER COMMENT SHEET

Native Language Support

(32414-90001) September 1984

We welcome your evaluation of this manual. It is one of several that serve as a reference source for
HP 3000 Computer Systems. Your comments and suggestions help us to improve our publications and
will be reviewed by appropriate technical personnel. HP may make any use of the submitted sugges
tions and comments without obligation.

Is this manual technically accurate?

Are the concepts and wording easy to
understand?

Is the format of this manual convenient
in size, arrangement and readability?

Comments:

Yes [] No []

Yes [] No []

Yes [] No []

(If no, explain under Comments, below.)

(If no, explain under Comments, below.)

(If no, explain or suggest improvements
under Comments, below.)

We appreciate your comments and suggestions. This form requires no postage stamp if mailed in the
U.S. For locations outside the U.S., your local HP representative will ensure that your comments are
forwarded.

Date:

FROM:

Name

Company

Address

FOLD

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1070 CUPERTINO, CALIFORNIA

POSTAGE WILL BE PAID BY ADDRESSEE

Documentation Manager/47U
Hewlett-Packard Company
Computer Systems Division
19447 Pruneridge Avenue
Cupertino, California 95014

FOLD

FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

FOLD

READER COMMENT SHEET

Native Language Support

(32414-90001) September 1984

We welcome your evaluation of this manual. It is one of several that serve as a reference source for
HP 3000 Computer Systems. Your comments and suggestions help us to improve our publications and
will be reviewed by appropriate technical personnel. HP may make any use of the submitted sugges
tions and comments without obligation.

Is this manual technically accurate?

Are the concepts and wording easy to
understand?

Is the format of this manual convenient
in size, arrangement and readability?

Comments:

Yes [] No []

Yes [] No []

Yes [] No []

(If no, explain under Comments, below.)

(If no, explain under Comments, below.)

(If no, explain or suggest improvements
under Comments, below.)

We appreciate your comments and suggestions. This form requires no postage stamp if mailed in the
U.S. For locations outside the U.S., your local lIP representative will ensure that your comments are
forwarded.

Date:

FROM:

Name

Company

Address

fOLD

111111

BUSINESS REPLY MAIL
fIRST CLASS PERMIT NO. 1070 CUPERTINO, CALIfORNIA

POSTAGE WILL BE PAID BY ADDRESSEE

Documentation Manager/47U
Hewlett-Packard Company
Computer Systems Division
19447 Pruneridge Avenue
Cupertino, California 95014

FOLD

fOLD

NO POSTAGE
NECESSARY
If MAILED

IN THE
UNITED STATES

fOLD

Part No. 32414-90001
Printed inU .S.A. 9/84
E0884

FliD'l HEWLETT
a:~ PACKARD

	List of Effective Pages
	Printing History
	Contents
	Preface
	Section I Introduction to NLS
	Section II Application Message Facility
	Section III NLS in MPE Subsystems
	Section IV Native Language Intrinsics
	Appendix A System Utilities
	Appendix B Supported Languages and Character Sets
	Appendix C Collating in European Languages
	Appendix D EBCDIC Mappings
	Appendix E Peripheral Configuration
	Appendix F Converting 7-Bit to 8-Bit Data
	Appendix G Application Guidelines
	Appendix H Example Programs
	Index

