
HP 3000 Computer Systems

Transact/3000 Reference Manual

rj,dI HEWLETT
~e..I PACKARD

HP 3000 Computer System

TRANSACT/3000

Reference Manual

Flin-. HEWLETT
.:~ PACKARD

19420 HOMESTEAD RD., CUPERTINO, CALIFORNIA 95014

Part No. 32247-90001 Printed in U.S.A. 12/82

NOTICE

The information contained in this document is sUbject to change
without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

This document contains proprietary information which is protected
by copyright. All right are reserved. No part of this document
may be photocopied or reproduced without the prior written consent
of Hewlett-Packard Company.

copyright ©1982 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES I

The List of Effective Pages gives the date of the current edition and the
dates when pages were changed in updates to that edition. Within the manua1,
any page changed since the 1ast edition has the date the changes were made on
the bottom of the page. Changes are marked with a vertica1 bar in the
margin. When an update is incorporated in a subsequent reprinting of the
manua1, these bars are removed.

Second Edition•..•..................... Dec 1982

iii

IPRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which
are issued between editions, contain additional and replacement pages to be
merged into the manual by the customer. The date on the title page and back
cover of the manual changes only when a new edition is published. When an
edition is reprinted, all the prior updates to the edition are incorporated.
No information is incorporated into a reprinting unless it appears as a prior
update. The edition does not change.

The software product part number printed alongside the date indicates the
version and update level of the software product at the time the manual
edition or update was iSSUed. Many product updates and fixes do not require
manual changes and, conversely, manual corrections may be done without
accompanying product changes. Therefore, do not expect a one to one
correspondence between product updates and manual updates.

First Edition Dec 1981
Second Edition Dec 1982

iv

32247A.OO
32247A.03

PREFACE I

This manual is a reference for programming in the Transact Programming
Language. It assumes a working knowledge of computer programming and the
HP 3000 computer system, including the subsystems IMAGE/3000 and
VPLUS/3000. The manual contains the following sections:

Section 1. INTRODUCTION TO TRANSACT PROGRAMMING LANGUAGE, describes the
features and benefits of Transact and illustrates Transact coding.

Section 2. TECHNICAL OVERVIEW OF TRANSACT/3000, describes the Transact/3000
Compiler, the Transact/3000 Transaction Processor, and Dictionary/3000.

Section 3. TRANSACT/3000 PROGRAMS, describes in detail how to write a
Transact program. It includes information on statements, command
sequences, comments, delimiters, and data items.

Section 4. TRANSACT DATA STORAGE REGISTERS, describes the areas of data
storage in the transaction processor, called II registers ll

, and how they
work.

Section 5. RUNNING TRANSACT/3000, tells how to compile and execute Transact
programs and control execution at run-time. It also discusses automatic
and programmer-controlled error handling.

Section 6. TRANSACT/3000 VERBS, provides detailed specifications for using
the Transact verbs, which are presented alphabetically.

section 7. TRANSACT TEST FACILITY, tells how to use the test facility,
which is a major aid in program testing, integration, and optimization.

v

IPREFACE (continued)

Appendix A explains the error messages issued during Transact program
compilation.

Appendix B explains processor error messages issued when user, program,
system, or internal exceptions occur.

Appendix C contains flow charts illustrating the file or data base
procedures called when Transact verbs perform file or data base operations.

Appendix D lists the intrinsics allowed in a DEFINE(INTRINSIC) statement.

Appendix E provides guidelines for optimizing the run-time performance and
efficiency of Transact applications.

The following manuals and courses are recommended for additional reference
or for practice in using Transact/3000.

Reference Manuals

Part Number

30000-90009
30000-90079
32215-90003
30000-90010
32209-90001
32244-90001
32245-90001
32246-90001

Title

MPE Commands Reference Manual
KSAM/3000 Reference Manual
IMAGE/3000 Reference Manual
MPE Intrinsics Reference Manual
VPLUS/3000 Reference Manual
Dictionary/3000 Reference Manual
Report/3000 User's Guide
Inform/3000 User's Guide

Self-Paced Courses:

Part Number

22842A
22843A

Title

Programming in Transact/3000
Using Dictionary/3000

vi

NOTATION

[]

CONVENTIONS USED IN THIS MANUAL I

DESCRIPTION

An element inside brackets is optional. Several elements
stacked inside a pair of brackets means the user may select
anyone or none of these elements.

Example: [A]
[B]

User may select A or
B or neither.

{ } When several elements are stacked within braces the user
must select one of these elements.

{A}
Example: {B}

{C}
User must select A or B or C.

italics

upper case

Lowercase italics denote a parameter which must be replaced
by a user-supplied variable.

Example: CLOSE file-name

A horizontal ellipsis indicates that a previous bracketed
element may be repeated, or that elements have been
omitted.

Example: . .. [:item-name ...]... ;

Words in upper case appearing in syntax or format
statements must be entered exactly as shown.

Example: EXIT;

vii

ICONTENTS

SECTION I THE TRANSACT LANGUAGE
Transact: Features and Benefits .
Examples of Transact Coding ..•..

Using a Command Sequence ..•..
Using the Data Management Interface .
Using the VPLUS Interface .

SECTION II TECHNICAL OVERVIEW
The Transact Compiler•.................
The Transact Processor .
Data Dictionary/3000 ~ .
Interface with other Systems .

Data Management Interface .
VPLUS Interface .

SECTION III TRANSACT/3000 PROGRAMS
System Statement .
DEFINE(ITEM) Statements .
Command Sequences .

Processing Command Sequences .
Command and Subcommand Labels .
User-Entered Passwords for Commands and Subcommands .

Statements .
Labels .
Verbs .
Modifiers ; .
Target•.................................
Option-List .
Compound statements•.................................
statement Formatting•.... 0" •

Comments .
Delimiters•.................................
Data Items .

Data Item Names•.................................
Data Item Types .
Data Item Sizes .
Data Types and VPLUS .
Data Types and IMAGE .
Data Types and Dictionary/3000 .
Parent Items and Child Items .
Compound Items .
Alias Items .

viii

1-2
1-3
1-3
1-4
1-5

2-3
2-4
2-5
2-7
2-7
2-8

3-3
3-3
3-4
3-4
3-5
3-6
3-8
3-8
3-9
3-9
3-9
3-9

3-10
3-11
3-11
3-12
3-13
3-13
3-14
3-14
3-18
3-18
3-18
3-19
3-19
3-20

CONTENTS (continued) I

SECTION IV TRANSACT DATA STORAGE REGISTERS
List and Data Registers•........

Managing the List and Data Registers .
Key and Argument Registel: .

Key Register .
Argument Register .

Match Register .
Update Register .
Input Register .
Status Register .
How Registers Work .

Verbs and Registers .
Sample of Transact Coding .

SECTION V RUNNING TRANSACT/3000
Transact Program Compilation .

Compiling Transact Programs .
Compiler Listing .
Controlling the Compiler Output .
Program Segmentation .' .
Controlling Input Sources to the Compiler .
Controlling Output Destinations from the Compiler .

Transact Program Execution .
Executing Transact Programs .

Controlling Input Sources to the Processor .
Controlling Output Destinations from the Processor .

Run-Time Control of Program Execution .
Built-In Processor Commands .
Command Qualifiers .
Special Characters and Keys that Control Execution .
Responding to a MATCH Prompt .

Automatic Error Handling .
Data Entry Errors .., .
Data Base or File Operation Errors .

Using the STATUS Option .
Data Entry Errors .
Data or File Operation Errors .

ix

4-3
4-4
4-5
4-5
4-6
4-7
4-8
4-9
4-9

4-10
4-10
4-12

5-2
5-2
5-5
5-8
5-9

5-11
5-12
5-13
5-13
5-16
5-16
5-18
5-18
5-19
5-20
5-23
5-25
5-25
5-26
5-28
5-28
5-29

ICONTENTS (continued)

SECTION VI TRANSACT/3000 VERBS
Declarative Verbs •• 6- 2
Data EIltry and Retrieval Verbs ••• 6-4
Data Base and File Operation Verbs ••••••••••••••••••••••••••••••••••••• 6-6
Program Control Verbs ••••••••••••••••••••••••••••••••••••.•••••••••••••• 6-9
Assignment Verbs •••.••••••••••••• 6-10
CALL ••• 6 -11
CLOSE ••••••••.•••••.••• 6-15
DATA •••••••••••••••.••••.•• 6 -18
DEFINE ••••••.•••••••.••••.••• 6 - 25
DELETE ••••••••••••.••.•••• 6-33
DISPLAY •• 6-39
END •••••••••.•• 6-47
EXIT •••••.••••••••••••••••••••••••••••.•••••••.•••••••••••••••••••••••• 6- 49
FILE •••••••.••• 6- 50
FIND ••••••.•• 6 - 54
FORMAT •.....•••••••.•.•••••••••••••••.•••••••••••••••••••••••••••••••••• 6-63
GET •• 6-71
GO TO •.•..•••••••••.••••••••••••••••••••••••••••••••••.•••••••••••••••• 6- 81
IF •••••••••••••••••..•••••••••••••••.•••••••••••••••••••••••••••••••••• 6-82
INPUT ••••.••.••.•••••••••.••• 6- 86
ITEM ••••••..•••••••••.••• 6- 88
LET ••••••••.••• 6- 89
LEVEL ••••••.•••••••.••••••••••••••••.•••••••••••••••••••••••••••••••••• 6- 95
LIST •••••••••••••••..•••••••••••••••••••••••••••.•••••••••••••••••••••• 6- 97
MOVE ••••••..••••••••.•••••••••••••••••••••••••••••••••.•••••••••••••••• 6-103
OUTPUT ••• 6 -106
PATH ••• 6-115
PERFORM .••• 6-119
PROC ••••.••.••••••••••••••••.•••••••••••••••••.•••••••••••••••••••••••• 6-121
PROMPT •••.••.•••••.•.••••••••••••••••••.•.••••••••••••.•••••••••••••••• 6-129
PUT .••••..•..••••••.•••••••••••••..•••••••••••••.•••••••••••••••••••••• 6-135
REPEAT •••••••••••••..•••.•••••••••••.•••••••••••••••••••••••••••••••••. 6-142
REPLACE •••••••••••••.•.•••••••.••••••••••••••••••••••••••••••.•••••••••• 6 -145
RESET •.••.•••••••••.••.•• 6 -154
RETURN •.•••••••••••.••• 6 -158
SET •••••••••••••.•••••.•••••••••••••.•••••••••••.•••••••••••••••••••••• 6-160
SYSTEM •••••.•••••••.••••.•••••••••••••••••••••••••••.•••••••••••••.••••• 6 -174
UPDATE •••••••••••••.••••••••.•••••••••••••••••••••.•••.•••••••••••••.•• 6 -180
WILE •••••••••••.•••••••••••••••••••••••••••••••••••••.•••••••••••••.•• 6 -187

x

CONTENTS (continued) I

SECTION VII TRANSACT TEST FACILITY
Statement Parts ••••••••••••••••••••••••••••••.•••••••••••••••••••••••••• 7-1
output from Test ••• 7-2
Test Parameters 7 - 4
Examp;J.es ••..•• -. • • • • • • . • • • • • • • • . • • • • • • • . • • • • • • • • • • ..• . • . • . • . . . • . • • • • • • • • • 7 -7

Test Mod.e 1 •• 7 -7
Test Mod.e 3 7 - 8
Test Mod.e 4 •••.••••••••.••.•.••.••.•.••••••......•...••..•.•.•.•••••• 7 - 9
Direct Test Output to File ••• 7 -10
Test Mod.es 22 through 25 ••.•.••••••.••••.••.••••.••••.•••••.••••••••• 7 -11
Test ·Mod.e 25 .•.•••••••.•••.•.•..••.••••••...•.•.•••••..•••••.•.••.••• 7-12
Test Mod.e 34 ..•.•.••.................•••••....•...................•.• 7 -14
Test Mod.e 42 .•...••.••••••.•.•••••...•••••••..•.•.•.•••••.••.•••••••• 7 -17
Test Mod.es 101 and 102 ••••.••••••••••••..••••••••••.••.•••••.•••••••• 7-19

Appendix A COMPILER ERROR MESSAGES

Programmer Errors ••
System Errors .
Traps - .

Appendix B
User Errors

PROCESSOR ERROR MESSAGES
B-3
B-6

B-14
B-16

Appendix C FLOW CHARTS OF FILE AND DATABASE OPERATION
DELETE Charts ••
FIND Charts ••
GET Charts •••
OUTPUT Charts ••
PATH Ch'arts •••••••••••.•••
PUT Charts ••••••••••••••••••.••••••••••••••••••••••••.•••••••••••••••••
REPLACE Charts •••
SET Charts ••••••••••••••••••.••
UPDATE Charts •••••••••••••••.••

C-2
C-4
C-7

C-11
C-14
C-15
C-17
C-20
C-21

Appendix D INTRINSICS ALLOWED IN DEFINE(INTRINSIC)

xi

ICONTENTS (continued)

Appendix E OPTIMIZING TRANSACT APPLICATIONS
Data Stack optimization '.....•..

The Run-Time Stack .
Compiler Statistics•.........•............................•..
Nonsegmented Programs•.......................................
Segmented Programs .
Programs Using CALLs without SWAP option•..................•..
Programs Using CALLS with SWAP Option .
Program Structure Comparison•...............

Processing Time 'Optimization .

INDEX

LIST OF FIGURES

E-l
E-2
E-7

E-ll
E-15
E-2l
E-29
E-33
E-34

2-2
2-6
3-2
4-2
5-6
5-7
E-3
E-9

E-lO
E-12
E-l3
E-14
E-16
E-l9
E-20

2-1
2-2
3-1
4-1
5-1
5-2
E-l
E-2
E-3
E-4
E-5
E-6
E-7
E-8
E-9
E-10

E-ll

E-12

E-13
E-14

E-15

How Transact Works .
Data Definition .
Sample Transact Program .
Data Storage Registers .
Compiler Listing .
Compiler Statistics .
Data Stack Layout for Nonsegmented Transact Programs .
Transact Compiler Statistics .
Compile~ statistics Fields and Data Stack Components .
Compiler Statistics for Nonsegmented program .
Data Stack of Nonsegmented Program .
Table Register Entities of Nonsegmented Program .
compiler Statistics for Segmented Program .
Data Stack of Segmented Program .
Table Register Entities of segmented Program .
compiler Statistics for Program Using CALLs

Without the SWAP option E- 22
Data Stack of Program Using CALLs

Without the SWAP Option E- 27
Table Register Entities of Main Program Using CALLs

Without the SWAP Option•................................. E- 28
Data Stack of Program using CALLs with the SWAP Option E-30
Table Register Subsets for Main Program

After CALLing Subprogram E-3l
Table Register Entities of SUbprogram 4 E-32

xii

CONTENTS (continued) I

LIST OF TABLES

3-1
4-1
5-1

5-2
5-3
6-1

Data Item Size•....•...................•..
Verb/Modifier/Register Summary .•...............•..............•..
Status Register Following Operations of Data Management

Verbs when STATUS option Not Used .
STATUS with Data Entry Verbs•.................•..............
STATUS Option with Data Base and File Operation Verbs .
Transact Verbs by Function .

xiii

3-15
4-11

5-27
5-28
5-30
6-2

IT.HE TRANSACT 1-
'----L_A_NG_U_A_G_E ----' I I I

The Transact Programming Language (Transact) is a high-level computer
language. Programs written in Transact are compiled by the Transact/3000
Compiler. The code produced by compilation is then ex~cuted by the
Transactj3000 Trans~ction Processor. Both the processor and the compiler
'can be used in conjunction with Dictionary/3000 to develop information
processing systems quickly and easily.

Transact is used in a variety of applications, including manufacturing,
finance, and service, and it is used in a variety of industries, including
electronics, communications, banking, oil, forestry, and entertainment.
Transact users are typically applications programmers who design and
implement information management systems. The Transact language provides
these users with a means to develop programs rapidly. In particular, it
provides a high-level interface to data management and data entry
subsystems, and a built-in command structure that allows testing of the
end-user interface during the early stages of program development.

This section contains a brief d~scription of Transact features and
benefits, followed by exampl~s of Transact coding and how it works.

1-1

Introduction

Transact: FEATURES AND BENEFITS

Transact's features make programming easy and fast, thereby increasing your
effectiveness as a programmer. Because of the sophisticated nature of the
language, the amount of Transact coding is significantly less than that
required by other languages:

• What ordinarily requires many lines of code can be accomplished by one
Transact statement.

• Data need not be defined in a Transact program because the compiler
and processor can use the data dictionary for definitions.

• Low level intrinsic calls that interface with IMAGE data baseSt KSAM
and MPE files, and VPLUS/3000 forms files need not be coded in
Transact.

The transaction processor, which actually executes compiled Transact
programs, greatly enhances the efficiency of Transact and adds to end-user
control of program execution. The processor has many built-in capabilities
that reduce coding requirements:

• It handles data validation, display layout, and error procedures
automatically.

• It enables the end user to control program execution by using special
data entry characters and command qualifiers.

In addition, Transact programs can interface with HP 3000 SUbsystems
inclUding the intrinsics library, as well as programs coded in COBOL,
FORTRAN, and other languages.

1-2

Introduction

EXAMPLES OF Transact CODING

The following examples illustrate some of the features of the Transact
Programming Language. The first two examples use Command Sequences to
prompt the user for data; in the first example, the entered data is written
to an IMAGE data set; in the second example, the user enters a key value
that is used to select an entry from an IMAGE data set and display it at
the terminal. The third example uses Transa~t's VPLUS interface to display
a form, accept the data entered through that form, and then write it to an
IMAGE data set.

Using a Command Sequence

Consider the following example of Transact code, which prompts the user for
new customer information and then adds the information to a data set called
CUST-MAST:

$$ADD:
$CUSTOMER:

PROMPT CUST-NO ("Enter Customer Number"):
CUST-NAME ("Enter Customer Name"):
CUST-ADDR ("Enter Customer Address"):
CUST-CITY ("Enter Customer City"):
CUST-STATE ("Enter Custome-r State"):
CUST-ZIP ("Enter Customer Zip");

PUT CUST-MAST,
LIST=(CUST-NO:CUST-ZIP) ;

In a program that uses command sequences such as the above, Transact issues
a prompt character (» to which the user can respond with the command "ADD
CUSTOMER" :

> ADD CUSTOMER

Transact then executes the code in the ADD CUSTOMER command sequence shown
in the example. That is, it prompts the user for customer information
using the prompts specified in the PROMPT statement. The user responds
with information about the customer:

Enter Customer Number> 30335
Enter Customer Name> XYZ Co.
Enter Customer Address> 33 Greenway, Seattle, WA, 98305

1-3

Introduction

The PUT statement adds the new record to the data set CUST-MAST, and then
prompts the user for another command. Notice that the user entered four
responses separated by commas in response to the ENTER CUSTOMER ADDRESS>
prompt. The processor automatically relates each response to its prompt
and saves the user from having to wait for three extra prompts.

NOTE: The user must press a carriage return following each response line.

Using the Data Management Interface

The following example prompts the user for a key value and then uses this
value to retrieve a customer entry from the data set CUST-MAST. The same
,statement that retrieves the entry also displays it at the user's terminal.

$$DISPLAY:
$CUSTOMER:

PROMPT(PATH) CUST-NO ("Enter Customer Number");
CHECK=CUST-MAST; «Check that customer is in data base»

LIST CUST-NAME:
CUST-ADDR:
CUST-CITY:
CUST-STATE:
CUST-ZIP;

FORMAT CUST-NO,
CUST-NAME,
CUST-ADDR,
CUST-CITY,
CUST-STATE,
CUST-ZIP,

col 1,
col 11,
col 30,
col 49,
col 62,
col 65,

head=" Customer:":
nohead:
head=" Address:":
nohead:
nohead:
nohead;

OUTPUT CUST-MAST,
LIST=(CUST-NO:CUST-ZIP)i

Transact executes this code, when the end-user responds to the command
prompt with "DISPLAY CUSTOMER":

> DISPLAY CUSTOMER

1-4

4.;. t

;I;t Introduction

II
I ,

I "t !
The PROMPT statement asks the user to enter a customer.;number. This number
is used to locate a particUlar entry in the data set CUST~MAST. If the
entry is found, the OUTPUT statement displays all the values in the entry
from CUST-NO through CUST-ZIP formatted according to the preceding FORMAT
statement. If the entry is not found in CUST-MAST, Transact issues an
error message and repeats the prompt for a customer number.

Assuming the data entered in the preceding example, the output looks like
this:

CUstomer:
30335 XYZ Co.

Address:
33 Greenway Seattle WA 98305

Using the VPLUS Interface

Assuming a VPLUS form called ADDFORM with six fields for customer
information, the following code displays the form and retrieves the
customer information entered by the end-user. If this information is not
already in the data set, it writes the customer information to ~he data set
CUST-MAST, and returns for another customer.

1-5

Introduction

ADD:

RESET (STACK) ~IST;

LIST CUST-NO:
CUST-NAME:
CUST-ADDR:
CUST-CITY:
CUST-STATE:
CUST-ZIP;

ADD-CUSTOMER:

« clear list register,
« and set it up for ADD

»
»

GET(FORM) ADDFORM,
INIT,
LIST=(CUST-NO:CUST-ZIP),
WINDOW=("Please enter a new customer"),
F7=START-OF-PROGRAM, « f7 key to restart program »
F8=END-OF-PROGRAM, « f8 key to end program »
AUTOREAD; «accept keys f1 thru f6 as ENTER»

PUT-CUSTOMER:

SET(KEY) LIST(CUST-NO);
FIND CUST-MAST, LIST=();
IF STATUS <> 0 THEN

DO
MOVE (MESSAGE) =

"Customer already exists,
GO TO ERROR-MESSAGE;

DOEND;

PUT CUST-MAST.
LIST=(CUST-NO:CUST-ZIP),
ERROR=PUT-ERROR(*);

GO TO ADD-CUSTOMER;

ERROR-MESSAGE:

UPDATE (FORM) *
LIST= (),
WAIT=FO,
WINDOW=«MESSAGE».
FO=ADD-CUSTOMER;

« test if customer in base »
« customer already in base »

please press ENTER to continue.";

« add customer to base »

« process any PUT errors »

« issue error message and »
« wait for user to press ENTER »

1-6

Introduction

When Transact executes this code, it places the terminal in block mode,
displays the form ADDFORM with a message in the window and any FORMSPEC
initialization. It then waits for the user to press the ENTER key, or any
undefined function key. When the user presses ENTER, or any key except f7
or f8, Transact transfers user-entered data from the form to the data
register.

It then checks whether this customer already exists, and if not, writes the
customer info~ation to the data set; if the customer is in the data set
already, it displays a diagnostic message in the window area of the form,
and waits for the user to press the ENTER key. When the AUTOREAD option is
included, Transact accepts any function key not specified in an Fn option
as an ENTER key.

Note that the list register is reset with RESET(STACK) LIST before setting
up the list register for ADD. This is not necessary when using a command
sequence (see previous examples) because Transact automatically resets the
list register at the start of each new command sequence.

NOTE: When VPLUS forms are used for the end-user interface,
there is no need for the command sequence structure shown
in the previous examples. Since VPLUS operates in block
mode, the user presses the ENTER key to enter an entire
block of data instead of pressing carriage return to
enter the response to a prompt.

1-7

1

TECHNICAL 1 _

_O_V_E_RV_I_EW I II I

The Transact Programming Language is used in conjunction with the
Transactj3000 Compiler, the Transactj3000 Transaction Processor, and,
optionally, with Dictionaryj3000. These components work together and with
other HP 3000 system components and data storage facilities to process
Transact programs. Figure 2-1 shows how these components interact and how the
processor works with other HP 3000 systems and data storage facilities.

This section contains information on the following:

• Transactj3000 Compiler

• Transactj3000 Transaction Processor

• Dictionary/3000

• Interface with other Systems and Data Storage Facilities

Section 5 tells how to use these components to run Transact programs.
Specifically, it tells how to use the compiler and the processor and how to
control Transact programs at run time.

2-1

Technical overview

MPED 0KSAM/3000
Files Files

D~
t t

Print I- IMAGE/3000
Files MPE Files

Dictionary/3000

--

Segmented
Library
(other user
object code)

Transact/3000
TRANSACTION

PROCESSOR

Intermediate
Processor
Code FileTransact

Source
Code
Files

-l VPLUS!3000

L:~

- Transact/3000
COMPILER

-

Figure 2-1. How Transact Works

2-2

Technical Overview

THE TRANSACT COMPILER

As Figure 2-1 shows, the Transact/3000 compiler reads the Transact source code
and generates a code file from it. The code file contains data tables and
high-level instructions called lIintermediate processor code". The
Transact/3000 processor then executes this intermediate processor (object)
code.

The compiler accesses the Dictionary/3000 data dictionary to resolve data
definitions that are not defined in the program. Although you need not use
the dictionary to define your data, using it means you need to define much
less data within the program than in a traditional programming language.

You can control the source of input and the destination of output for the
compiler. Options under your control include the listing of source code and
the listing of data item definitions.

2-3

Technical Overview

THE TRANSACT PROCESSOR

When the Transact processor executes the intermediate processor code, it is
effectively executing your program.

The processor has these special features and benefits:

• Built-in capabilities eliminate many coding requirements that would
otherwise be necessary. The processor handles aspects of data
specification and validation as well as display layout and other
supportive actions. These actions would normally need to be programmed.
If you want to manage such actions yourself, you may override the defaUlt
actions of the processor.

• Error-handling techniques simplify Transact programming and help to
ensure effective processing. When the processor discovers an error, it
automatically returns control to the program instruction where the error
most logically occurred, thus saving you from having to code error
routines. You can, however, override this automatic error handling.

• Several command modifiers can be used at execution time to enhance or
modify the program procedures that you set up. For example, you can
direct a display to the line printer, rather than to the terminal. You
can also request that information be sorted before it is displayed. You
need not program these options.

• Data items can be resolved at run time. The processor uses the data
dictionary to resolve the main attributes of any data items whose
definitions the compiler was not able to resolve. Th~s allows you to
code and compile programs before you define all data items.

2-4

Technical Overview

DATA DICTIONARY

Using Dictionary/3000, you can define data items, data bases, and forms files
used in Transact programs. Thus, it is not always necessary to define data
items within the program itself. The data dictionary provides a central
location for data definitions and attributes; it also allows you to change
existing definitions and attributes for easy and dynamic data base
maintenance. Dictionary/3000 does not supply the data itself, which must corne
from MPE or KSAM files, IMAGE data bases, or the user.

Figure 2-2 shows how data definitions are compiled into a Transact
intermediate processor code file through either the squrce program or the
dictionary.

The compiler looks for any undefined data items in the dictionary. The
compiler can resolve data item definitions and VPLUS form definitions through
the dictionary. If it cannot find the items or forms in the dictionary, it
issues a warning message and then produces the intermediate processor code
file.

When the Transact processor executes this intermediate processor code, it,
too, looks in the dictionary for undefined items. These items can be those
not satisfied during compilation or items defined to be satisfied at run time
by a DEFINE(ITEM) item-name statement. If the processor cannot find the items
in the dictionary, it issues an error message and terminates processing.

The processor can resolve VPLUS form definitions only at compile time. At
compile time, all item attributes can be resolved from their dictionary
definitions. At run time, the processor can resolve such basic item
attributes as type, size, decimal length, and storage length; it does not,
however, get such secondary attributes as heading or entry text and edit
nasks.

2-5

Technical Overview

Transact
Compiler

I

NO

YES

YES Data
Dictionary

Figure 2-2. Data Definition

2-6

Technical OVerview

INTERFACE WITH OTHER SYSTEMS

As Figure 2-1 indicates, Transact interfaces with other systems and a110ws you
to use various HP 3000 data storage facilities. For example, you can

• Enter and display data via prompts,

• Enter and display data on a terminal screen formatted by VPLUS/3000,

• Call system intrinsics and other compiled procedures that have been
10aded into a segmented library file, and

• Use IMAGE, KSAM, and MPE files to store and access data. Transact verbs
that enter, update, and delete data allow any access type needed by the
file: chained, serial, direct, or indexed.

Data Management Interface

Transact provides data management facilities that allow you to use MPE files,
KSAM files, and IMAGE data bases without making a single intrinsic call. The
interface to these three subsystems is built upon a common set of verbs and a
common set of special purpose registers.

The same verbs are used to manage the interface between Transact and the data
storage subsystems, IMAGE, KSAM, and MPE. Modifiers associated with these
verbs specify particular functions. For example FIND(CHAIN) retrieves a1l
entries with a particular key value from either a KSAM file or an IMAGE detail
data set. FIND(SERIAL) retrieves all entries in serial order from an MPE or
KSAM file or any IMAGE data set.

The f1exibility provided by the verb modifiers is further enhanced by the
special registers provided with Transact (see Section 4). For instance, the
key register contains the key for keyed selection; the match register contains
criteria for selecting particular records or entries; the update register
specifies not only the item to update but the new value; and the status
register contains values used in error handling.

Error handling is automatic unless you choose to override it. with automatic
error handling, the status register is set to the number of selected records
for the file or data base being accessed, or to a subsystem error number if an
error occurs. Further, when an error occurs, Transact returns the program to
the state it was in before the data base transaction started.

2-7

Technical Overview

AIthough you can fUlly define MPE or KSAM files and. IMAGE data bases in a
dictionary, you must also name each file or data base used by your program in
the SYSTEM statement of the program. However, you need not name the data sets
within a data base; Transact resolves the data set definitions from the data
base root file. For a data base, you can also specify a password and/or an
open mode in the SYSTEM statement; for a file, you may specify options similar
to the file definition options in a FILE or BUILD command.

If desired, you can use the Transact PROC statement to call file system or
IMAGE procedures directly, as well as your own SPL, PASCAL, COBOL, or FORTRAN
procedures. When a PROC statement executes the called procedure, any open
file or data base remains open and information is transferred across the call.
One use for the PROC statement is to perform data set or data item locks on an
IMAGE data base; Transact normally locks the entire data base whenever a
modification is requested in a shared environment. Another use for the PROC
statement is to delimit logical transactions through the IMAGE DBBEGIN and
DBEND procedures.

VPLUS Interface

Transact uses a subset of the data management verbs (GET, PUT, SET, UPDATE) to
access and control VPLUS forms. Without making calls directly to VPLUS
intrinsics, you can retrieve data from forms, move data to forms, control
forms sequence, manage function keys, and send messages to the window.

Often, many different functions are performed with a single statement. For
instance, GET (FORM) opens the terminal and forms file, gets and displays a
form, reads data entered by the user, performs any edits specified through
FORMSPEC, highlights any field with errors and sends an error message to the
window, transfers the data to the program, checks the data against the data
definitions in the program, again performs error processing if necessary, and
finally, performs any finish phase operations specified by FORMSPEC.

Normally, Transact programs operate with the terminal in character mode.
Using any VPLUS verb (GET, PUT, SET, or UPDATE with the FORM modifier) places
the terminal in block mode. Transact automatically switches back to character
mode for any operation, such as a DISPLAY statement, that requires character
mode.

The VPLUS interface supports function key labels on the 262x terminals when
such labels are defined in FORMSPEC. It does does not support the split
screen feature of 262X terminals, nor does it support Datacapture Terminals.

VPLUS forms files may be defined in a dictionary and/or in the SYSTEM
statement of a Transact program. If not defined in the dictionary, each form
and field must be specified in the SYSTEM statement; fields must be specified
in screen order. Even if forms files are defined in the data dictionary,
specifying individual forms in the SYSTEM statement reduces stack size.

2-8

Technical Overview

Transact redefines fields in the forms according to its own data definitions,
maintaining the correspondence between items in the program and fields in the
forms through the screen order of the fields. Note that this means Transact
does not retain the data independence provided by the VPLUS field numbers, nor
does it retain field definitions specified in FORMSPEC.

If the automatic features of the VPLUS interface do not solve a particular
application problem, you can call any of the VPLUS procedures directly with
Transact's PROC verb. Any referenced forms file will remain open and the
terminal will remain in block mode.

2-9

ITRANSAC.T/.3000 1-
'----P_RO_G_R_A_M_S ------..I III I

Programming in the Transact Programming Language requires an understanding of
Transact program structure, which includes the following basic elements:

• The SYSTEM statement,

• The DEFINE(ITEM) statement,

• Command sequences,

• Statements,

• Comments,

• Delimiters, and

• Data Items.

This section includes a discussion of each of these elements.

Figure 3-1 illustrates some typical Transact code. It will be referenced
throughout this section. The cal10uts on the illustration highlight important
points.

3-1

\

\

Transact Programs \ \
\, \

\ 1

'\
\

<--.,.-----SYSTEM
s'ta'temen't

SYSTEM CSTINF,
BASE =CUST (,3) ,
SIGNON = "CUSTOMER INFORMATION SYSTEM Vl .0";

DEFINE(ITEM) TDATE X(6); «TODAY'S DATE» <----DEFINE(ITEM)
sta'tement

$$ADD: <--command
$$A: <--short form

subcommand comment
I I

$CUSTOMER: «ADD NEW CUSTOMER TO DATA BASE»
$C:

verb-':' > PROMPT CUST-NO (II ENTER CUSTOMER NUMBER ") :
CUST-NAME ("ENTER CUSTOMER NAME II):
CUST-ADDR (IIENTER CUSTOMER ADDRESS");

\ \
data item user prompt

verb--> PUT CUST-MAST;
\
data. set

\
1
1·< --command
1 sequence
1
I

$PAYMENT: «ADD PAYMENT TO AIR DATA SET»
$P:

PROMPT CUST-NO (IIENTER CUSTOMER NUMBERII),<----delimiter
CHECK=CUST-MAST:

PDATE ("ENTER PAYMENT DATEII):<---------delimiter
INV-NO (UENTER INVOICE NUMBER II):
AMOUNT ("ENTER AMOUNT OF PAYMENT");<---delimiter

LIST TDATE, DATE;
PUT AR-DETAIL; \

option
$$UPDATE:
$$U:

$ADDRESS: «CHANGE CUSTOMER'S ADDRESS»
$A:

verb modifier
I

PROMPT(KEY) CUST-NO (IIENTER CUSTOMER NUMBER");
PROMPT CUST-ADDR (IIENTER CUSTOMER ADDRESS II);
UPDATE CUST-MAST, LIST=(CUST-ADDR);

\
$$DELETE: option
$$0:

$CUSTOMER: «DELETE OLD CUSTOMER FROM DATA BASE»
$C:

PROMPT(KEY) CUST-NO (IIENTER CUSTOMER NUMBER II);
DELETE CUST-MAST;

END CSTINF;
Figure 3-1. Sample Transact Program

3-2

Transact Programs

SYSTEM STATEMENT

The SYSTEM statement names the Transact program and any IMAGE data bases, MPE
or KSAM files, or VPLUS forms that are used by the program. It can also
override default space allocations used by the processor. The SYSTEM
statement must be the first statement in any Transact program.

The SYSTEM statement in Figure 3-1 names a program, CSTINF, that maintains
customer information and accounts receivable information kept in an IMAGE data
base called CUST.

The format for the SYSTEM statement is specified in section 6.

DEFINE(lTEM) STATEMENT

DEFINE (ITEM) statements are used to define items that are not defined in your
dictionary, or to redefine items that are defined in your dictionary. If you
use a dictionary, items not defined in the dictionary may include temporary
variables or any data items that you must explicitly redefine for your
program. If you are not using a dictionary, then you must explicitly define
every data item in your program in a DEFINE(ITEM) statement.

The DEFINE(ITEM) statement in Figure 3-1 defines a temporary variable used in
the CSTINF program. The other data items used in Figure 3-1 are defined in
the dictionary.

Although they may appear anywhere in a program, it is good practice to place
any needed DEFINE(ITEM) statements immediately following the SYSTEM statement.
DEFINE (ITEM) statements that follow the SYSTEM statement define data global to
the Transact program. You can define data that is local to a program segment,
however, by including DEFINE(ITEM) statements in that segment. Program
segmentation is discussed in section 5.

Section 6 contains specifications for DEFINE(ITEM) statements.

3-3

Transact Programs

COMMAND SEQUENCES

You may structure the body of a Transact program around command sequences
specifically designed for a particular interactive interface to the program.
A command sequence consists of the statements between a command or a
subcommand and the next command, subcommand, or END statement, whichever comes
first. One command sequence in Figure 3-1 begins with the statement following
the subcommand $C and ends with the statement preceding $PAYMENT . The
statements after $P and before $$UPDATE are also considered a command
sequence. Command sequences divide the Transact program into functional parts
that make logical sense to you and that are meaningful to the end user.

One or more functions in a Transact program can be contained in a command
sequence. Each sequence is headed by a command label such as $$ADD or
$$UPDATE and possibly one or more subcommand labels such as $CUSTOMER.
Command and/or subcommand labels are followed by statements. Each sequence
ends with another command label or an END statement.

The remainder of this section describes how the processor executes command
sequences, and it discusses command and subcommand labels. It also tells how
to request user-entered passwords for commands and subcommands.

NOTE: Although Transact is partiCUlarly well suited to writing
programs for interactive access using command sequences, it
is equally well suited to standard programming that does not
make use of command sequences. In partiCUlar, programs that
use VPLUS forms for data entry might not use the command
sequence structure. Also, you may use Transact for standard
batch processing with neither command sequences nor VPLUS
forms.

Processing Command Sequences

When the Transact processor executes a program, it starts by executing any
statements between the SYSTEM statement and the first command label of the
root segment. If there is no command label in the root segment, the processor
executes statements between the SYSTEM statement and the end of the root
segment. When the processor encounters the first command label, it issues the
prompting character 11>11 to ask the end user to enter a command. The end user
must respond to this prompt with a command name defineg in the program
followed by a subcommand name, if there is one. The response that the end
user gives determines which command sequence is executed. The end user may
also respond with one of the processor-defined commands, such as the command
EXIT to exit from Transact.

Before each command sequence is executed, the processor resets all the
registers used for data storage and other data management functions, although
it does not actually clear any data. Registers are discussed in section 4.

3-4

Transact Programs

When the sample program in Figure 3-1 is executed, the end user might enter
any of the following in response to the prompting character:

> ADD CUSTOMER

> ADD PAYMENT

> UPDATE ADDRESS

> DELETE CUSTOMER

Command and Subcommand Labels

A command label is preceded by "$$" and a subcommand label is preceded by "$".
Both are followed by colons, as in

$$command:
$subcommand:

Either label can contain from 1 to 16 characters, not including the leading
"$$" or "$". It must begin with an alphanumeric character. The remaining
characters may consist of any characters except $, ; : = < > () II or a
blank. All command and subcommand labels are global to the program and may be
referenced from any program segment (see "Program Segmentation ll in section 5.)

You may choose to use short forms for commands and subcommands. These short
forms are illustrated for each command and subcommand in Figure 3-1.

A command label must have at least one character following the "$$", for
example, "$$A:". A subcommand, however, can have a null value, as in "$:".
The following code shows a null subcommand:

$$CHANGE:
$ADDRESS:
$:

The null subcommand in this example allows the statements following it to be
executed whether the end user enters

> CHANGE ADDRESS

or merely

> CHANGE

3-5

Transact Programs

User-entered Passwords for Commands and Subcommands

You may require that a system user enter a password in order to execute a
command/subcommand sequence. A password can be a 1-8 character string of any
combination of alphanumeric or special characters. Passwords must be
specified exactly as they were defined. Thus, if a password was defined with
all uppercase characters, then it must be specified with all uppercase
characters in your program and entered by the end-user with all uppercase
characters.

To request passwords, use the following syntax:

$$command (II password II):

$subcommand ("password"):

Consider the following code:

$$ADD(IPQX2") :
$CUSTOMER:

When the end user enters the command

> ADD CUSTOMER

the processor requests the password:

COMMAND PASSWORD>

In order to execute the statements associated with the command ADD CUSTOMER,
the end user must enter the correct password, PQX2:

COMMAND PASSWORD> PQX2

Note that the password is not I pqx 2". Passwords must be exact.

Subcommands as well as commands can require passwords:

$$ADD (II PQX2") :
$CUSTOMER (IIMKC II) :

When the end user enters the command:

> ADD CUSTOMER

the processor requests both passwords:

COMMAND PASSWORD> PQX2
SEQUENCE PASSWORD> MKC

3-6

Transact Programs

If the end user enters an invalid command password, the processor responds
with:

INVALID COMMAND PASSWORD.

If the end user enters an invalid password for a subcommand (or sequence), the
processor responds with:

INVALID SEQUENCE PASSWORD.

In either case, the processor issues a prompt for another command.

3-7

Transact Programs

STATEMENTS

statements perform the data processing functions of a Transact program.

The general format for a Transact statement is:

[label:] vexb[(modifiex)] [~arge~][,op~ion-lis~];

These statement parts are described below, followed by a discussion of
compound statements and statement formatting. Other statement parts,
inclUding relational and arithmetic operators, are listed with the verbs to
which they apply. A statement is always terminated by a semicolon.

Labels

statement labels help control program flow. They identify the point to which
a conditional or unconditional statement should branch.

A statement label may be up to 32 characters long, and it must begin with an
alphabetic character. It is followed by a colon and one or more Transact
statements.

The following code illustrates three statement labels (START-FIND, TESTl, and
PRINT) and points to a fourth (GRAND-TOTAL):

START-FIND:
FIND(CHAIN) DET,

LIST = (A:H),
PERFORM = TEST1;

PERFORM GRAND-TOTAL;
END;

TEST1:
IF (A)="AUGUST" THEN

PERFORM PRINT;
RETURN;

PRINT:
LET (SUB) = (SUB) + (AMOUNT);
DISPLAY;
RETURN;

3-8

Transact Programs

Verbs

Transact verbs are the heart of Transact statements. They are the action
words for any procedure. Verbs in the above example include FIND, IF, LET,
DISPLAY, PERFORM, RETURN, and END. Verbs in Figure 3-1 include PROMPT, PUT,
LIST, UPDATE, and DELETE. Verbs are listed alphabetically and. their
specifications are described in detail in section 6.

Modifiers

Modifiers are an integral part of the verb that change or enhance its action.
Some modifiers specify how values entered by the user will be used. Other
modifiers describe a file access method.

In figure 3-1, the verb PROMPT(KEY) with the modifier KEY has a different
function than PROMPT with no modifier. See section 6 for further information
on the modifiers for each verb.

Modifiers are always enclosed within parentheses and must NOT be separated
from the preceding verb by a space. For example:

FIND(CHAIN) DET;

FIND (CHAIN) DET;

Target

<---correct

<- - -NOT correct

The target identifies the program variable upon Which the verb action is
performed. It can also identify the file or data base for a file operation.
Targets used in Figure 3-1 include names of data sets and data items, such as
the data set CUST-MAST and the data item CUST-ADDR.

Option-List

A list of one or more options, separated by commas, can be specified with
certain verbs to enhance their action. Some options tell how information
should be formatted; others suppress regular processor operations. Examples
of option-list options in Figure 3-1 are "DATE n and "LIST=(CUST-ADDR)".

The verbs that allow options also have a target; options always follow the
verbis target separated by a comma. Some verbs allow you to specify more than
one target/option-list combination by separating them with a colon, as
follows:

3-9

Transact Programs

verb(modifier)
'targe'tl, op'tion-lis'tl:
'targe't2, op'tion-lis't2:

'targe'tn, op'tion-lis'tn;

The verbs that allow such mUltiple target/option lists include DEFINE,
DISPLAY, DATA, LIST, and PROMPT; multiple target/option lists are not allowed
with data base or file access verbs.

Compound Statements

You may combine several Transact statements to form a compound statement,
either unconditional or conditional. AJ.l compound statements are bracketed
with a DO... DOEND pair of statements.

Compound statements may be nested. In that case, only the last DOEND has the
11;11 terminator. (Program delimiters are summarized in this section.)

The following is an example of an unconditional compound statement:

DO
PROMPT (MATCH) CUST-NO;
LIST NAME:

ADDRESS:
CITY:
ZIP;

OUTPUT MASTER, LIST=(CUST-NO:ZIP);
LIST=(CUST-NO:ZIP);

DOEND;

The follow~ng is an example of a conditional compound statement:

IF (A) = (B) THEN
DO

LET (A) (A) * (D) ;
LET (B) = (B) * (X) ;

DOEND
ELSE

DO
LET (A) = (A) * (C);
LET (B) = (B) * (Z) ;

DOEND;

Note that the first DOEND does not have the semicolon (;) terminator; the
terminator is used to end the entire compound statement. Individual
statements within the DO ... DOEND pairs are, of course, terminated with a
semicolon.

3-10

Transact Programs

Statement Formatting

A Transact source program contains program text in 72-column records, not
including line numbers. Program text is entered in free format. Good
programming practice, however, suggests that you use a paragraph and
indentation structure.

In general, you can read and modify code more easily if you break the code
into separate lines for labels, verbs, and options, and use indentation
freely.

You can break lines of code in any place except the middle of a word. Thus,
the following two statements have the same effect:

MOVE (A) = (B) ; and MOVE (A) =
(B) ;

Note that the second line can start anywhere and that no continuation
indicator is required. Words, however, cannot be split. The following
statements are illegal:

MO
VE (A)=(B);

and FIND
(CHAIN)

(verbs cannot be split) (verb(modifier) is a single word)

A string within quotes can be split between lines:

DISPLAY "THIS IS All
II TESTII,

COMMENTS

Comments document a program but do not affect program execution; that is, a
comment appears in the source code listing but does not generate any code.
Comments may appear anywhere in the statement line and are enclosed with the
11«" and "»" characters, as follows:

«[comment]»

The following is an example of comments used in Transact coding:

MOVENAME:
MOVE (OUT-NAME) = (IN-NAME); « Move input field to output field »

Figure 3-1 also includes several comments.

3-11

Transact Programs

DELIMITERS

Transact programs can contain five explicit delimiters, plus the space. The
Transact delimiters are listed below with their functions.

Delimiter

blank

Function

Semicolon - terminates a statement.

Colon - separates target/option phrases within statements;
or serves as a terminator for a label, a command, or a

SUbcommand;
or specifies a range in LIST=options.

Comma - separates options within a statement.

Equal sign - when used in option-list, denotes the
value an item should take;

or serves as an arithmetic operator in MOVE and LET
statements;

or serves as a relational operator in condition
clauses;

or specifies the label to which a program should branch.

Parentheses - enclose a modifier;
or enclose an item name to reference its value;
or enclose certain PROC statement parameters;
other uses are noted in verb specification in
section 6.

Blank space - required as a delimiter between
a verb or verb(modifier) and its target;
must never appear between a verb and its modifier;
otherwise, blanks are ignored.

Figure 3-1 contains examples of Transact delimiters.

3-12

Transact Programs

DATA ITEMS

Data items defined in the dictionary can be obtained either at compile time by
the Transact compiler or at execution time by the processor. They can also be
defined in a Transact program by means of a DEFINE(ITEM) statement. The
DEFINE (ITEM) statement must specify the name and type of the data. This
section tells about data items and data item types; it also describes the
concept of parent items and child items as well as the concept of compound
items.

Data Item Names

The first character of a data item name must be alphanumeric. Subsequent
characters may be either alphabetic (A through Z), digits (0 through 9), or
any ASCII character that is not one of the following characters: ,;: = < >

() II or blank. The name can be from 1 to 16 characters long.

Data items in Figure 3-1 include CUST-NO, CUST-NAME, CUST-ADDR, and others.

When you are referring to the specific value of a data item that is in the
data register, you must enclose the name in parentheses. (Registers are
discussed in detail in section 4.) When you are referring to the name of the
item, that is, its location in the list register, you do not enclose the name
in parentheses.

Notice the difference between

LIST GUST-NO;

which reserves space for CUST-NO in the list register, and

LET (GUST-NO)= 123;

which manipulates the value of CUST-NO.

3-13

Transact Programs

Data Item Types

Data items defined in a DEFINE(ITEM) statement or through Dictionary/3000 can
be one of ten types. The following table lists the ten item types and their
corresponding DEFINE(ITEM) code.

Item Type

Alphanumeric string
Uppercase alphanumeric string
Numeric ASCII string (leading zeroes

stripped)
Zoned decimal (COBOL format)
Packed decimal (COBOL comp-3)
Integer number
Integer number (COBOL comp)
Logical value (absolute binary)
Real, floating point, commercial notation
Real, floating point, scientific notation

DEFINE (ITEM) Code

x
U
9

z
P
I
J
K
R
E

You can specify that values must be positive only, by following the type with
a 11+11. positive only values never require an extra character to display the
sign.

Data Item Sizes

Data item size is specified as the number of characters or digits you want in
each data item. Transact determines how much storage space is required for
that number of characters or digits based on the data item type. You may
override the default storage space by specifying an exact storage size. You
may also specify the number of decimal digits, that is, the number of digits
you want to follow the decimal point in a numeric item. Ensure that space is
allocated for the decimal point when you are computing item sizes.

When items are displayed, Transact generally requires the same number of
display characters as the item size. If the item is not positive only, a
character is added for the sign, even if the value to be displayed happens to
be positive.

It is important to know exactly how Transact allocates storage for items used
with IMAGE or VPLUS. For example, Transact does not require that data be
stored as whole words, whereas IMAGE does; and Transact adds a display
character to signed numeric items, whereas VPLUS does not.

Table 3-1 shows the storage allocated by Transact and the number of characters
required for display, based on the data item type and size. It also gives the
corresponding COBOL specification as an aid to understanding the Transact data
types.

3-14

Transact Programs

Table 3-1. Data Item Size

Transact
Type

X
or
U

9

Transact Default
Storage Allocation

ASCII character string;
1 storage byte per
specified character.

ASCII numeric string;
1 storage byte per
specified digit.

Transact Display
Requirements

Same as storage.

Same as storage.

COBOL
Type

DISPLAY
PIC X

DISPLAY
PIC 9

*Zoned decimal number;
1 storage byte per
digit, including sign,
if any, which is com
bined with last digit:

1 character per digit,
plus 1 character for
the sign, unless item
is positive only:

Z

Z+(10)
Z(10)

10 bytes
= 10 bytes

Z+(10)
Z(10)

10 chars
11 chars

DISPLAY
PIC 9 (Z+)

DISPLAY
PIC 59 (Z)

* Zoned decimal items are stored as a string of ASCII numeric digits. If
the item is defined as Z, the rightmost digit is always overpunched with
a sign indicator, a character that represents both the sign and the
rightmost digit:

LOW-Order
Digit

o
1
2

9

Last Character
if positive

{
A
B

I

Last Character
if Negative

}
J
K

R

If the item is defined as Z+ (implying positive only), no overpunch occurs
and the rightmost digit is unchanged. Z+ is stored like type 9.

3-15

Transact Programs

Table 3-1. Data Item Size (Continued)

Transact
Type

Transact Default
Storage Allocation

Transact Display
Requirements

COBOL
Type

P Packed decimal digit;
1 nibble (1/2 byte)
per digit, plus 1
nibble for the sign:

1 character per digit,
plus 1 character for
a sign, unless item
is positive only:

COMP-3

= 10 chars
= 11 chars

11 chars

P+(10)
P(lO)
P(10,2) =

6 bytes
= 6 bytes
= 6 bytes

P+ (10) =
P(lO)
P(11)

(Sign is stored even if
item is positive only)

*I(1) to I(4) =2 bytes

Binary integer;
storage length depends
on item size:

1 character per digit,
plus 1 character for
a sign, unless item
is positive only:

I

*I(5) to I(9) =4 bytes
1+(5)
I(5)
I(5,2)

= 5 chars
6 chars

= 6 chars

COMP S9
to S9(4)

COMP S9(5)
to S9(9)

I(10) to I(18)=8 byt~s COMP S9(10)
to S9(18)

I(19) to I(27)=12 bytes (none)

J Identical to I;
(use for consistency
with IMAGE type J).

* You can force 5-digit I-type values in the range 10,000 through 32,767
to be stored in 2 bytes by specifying storage length as 2: I(5,0,2).
Similarly, you can force 10-digit values in the range 1,000,000,000
through 2,147,483,647 to 'be stored as 4 bytes: I(10,0,4).

3-16

Tab~e 3-1. Data Item Size (Continued)

Transact Programs

Transact
Type

Transact Default
Storage Allocation

Transact Display
Requirements

COBOL
Type

K SPL ~ogical value; 1 character per digit (none)
storage length depends (K-type items are
on item size: a~ways positive):

K(l) - K(4) = 2 bytes K(10) = 10 chars
K(5) - K(9) = 4 bytes K(10,2) = 10 chars
K(10) - K(18) = 8 bytes
K(19) - K(27) =12 bytes

SPL Real or Long value:R

R(1) thru R(6)
R(7) and above =

4 bytes
8 bytes

1 character per digit,
plus 1 character for
a sign, unless item
is positive on~y:

(none)

R+(5)
R(5)
R(5,2)

5 chars
= 6 chars

6 chars

E SPL Real or Long value;
stored exactly like R.

Constant values may not
be entered in E format;
constant values entered
in other formats into
E-type items are
displayed in E-type
format.

NOTE: Exponent is not
displayed.

Displayed in format:
n.nnEfnn

1 character per digit,
plus 1 character each
for the mantissa sign
(unless item is
positive), the decimal
point, the E, and the
exponent sign, plus 2
characters for the
exponent:

(none)

E(5)
E+(5)
E(5,2) =

11 chars
10 chars
10 chars

Transact Programs

Data Types and VPLUS

Items are displayed on and entered from VPLUS forms in the external display
format. (Refer to Table 3-1 for the display storage requirements.) It is
important to remember that VPLUS does not add a character for the sign to its
numeric data types, whereas Transact does. For example, if you want to
display a 5-digit numeric item in a VPLUS field defined with a maximum size of
5 characters, you must define it in Transact as positive only. A VPLUS item
with a size of 5 digits allows a maximum of 5 characters but a Transact item
defined as I(5) requires 6 display characters.

Data Types and IMAGE

There are several differences between the IMAGE data types and Transact data
types. The main differ~nce is that IMAGE requires all items to be defined as
whole words. In order to maintain consistency, you can define an item in
Transact with an odd number of bytes, but specify that theitern be stored in
whole words. For example, you can define an item in Transact as 9(5,0,6) in
order to specify 5 digits, stored as 6 bytes.

This example illustrates the second difference between IMAGE and Transact data
types. IMAGE does not have a numeric ASCII type 9. This difference does not
cause problems; Transact automatically converts a type 9 item to type X before
transferring it-to IMAGE. When data is transferred into a Transact type 9
item, Transact checks to make sure the data is numeric.

Data Types and Dictionary/3000

There is an exact correspondence between data item definitions in Transact and
Dictionary/3000. Thus, when a Transact program uses an item defined in a
dictionary, it is as if it were defined in the program's-DEFINE(ITEM)
statement. All item attribute~ can be resolved from the dictionary when
Transact compiles with the default DICT option; and all item attributes,
except for heading or entry text, edit masks, and sub-items, can be resolved
from the dictionary at run-time.

You must use caution when using dictionary definitions of parent/child
relations, compound/sub-item relations, and aliases. You must specifically
define an alias relation in the DEFINE(ITEM) statement of your Transact
program; any alias relations defined in the dictionary are ignored by
Transact. The Transact processor recognizes parent/child and
compound/sub-item relations defined in the dictionary, but you can only
reserve space in the list register for the parent or compound item. (For
details, refer to the DEFINE(ITEM) discussion in section 6, and to the
discussions below of Parent and Child Items, Compound Items, and Alias Items.)

3-18

Transact Programs

Parent Items and Child Items

A single data item-can contain other data items, called child items. A data
item containing child items is called a parent it~m. For example, a data item
containing a date may be composed of three child items: month, day, and year,
in any order you choose. A child item may itself be a parent item containing
child items. In this case, it would be both a child item and a parent item.

You define the relation of a child to its parent by including, in the child
item's definition, the parent item ~ame and the position of the child item
within the parent item. Child items need not be of the same type as parent
items. A parent item need not be completely redefined by its child items.
For example, a parent item that is 10 characters long may have a single child
item that is 4 characters long starting in the 2nd character position of the
parent item. (Refer to the DEFINE(ITEM) description in section 6 for details
on how to define parent and child items.

Only the parent item name can be added to the list register, not the child
item names. Child item names may, however, be used in a PROMPT or DATA
statement to prompt the user for these values. Child items may also be
specified in the LIST= options of statements that access VPLUS forms. The
Transact processor understands that these item names are part of the parent
item, and transfers data to the data registers accordingly. Transact makes
the connection between parent and child items through the DEFINE(ITEM) or
dictionary definition of their relation. This parent/child relation can only
be resolved from the dictionary at compile time, not at run-time.

The child items can be the elements of a one- or multi-dimensional array,
which is the parent item. The LET(OFFSET) verb modifier COmbination,
described in section 6, helps manipulate such arrays.

Compound Items

Compound items are
sub-items that are
of decimal places.
are defined in the
dictionary.

data items that are divided into smaller items called
the same in all attributes, that is, size, type and number

Compound items can be thought of as arrays. They, too,
DEFINE (ITEM) statement, if not already defined in the

A sub-item is referenced by an offset into the compound item, not by an item
name. Thus, only the compound item name can be added directly to the list
register, or referenced in a LIST= option; since a sub-item has no name, it
cannot be referenced by name.

3-19

Transact Programs

Alias Items

Any item may be assigned an alias-name where the alias is another name for the
defined item. Generally, you would use an alias in a Transact program where
the dictionary definition of an item has the same definition but a different
name in an IMAGE data set. The primary definition in the dictionary can be
associated with one or more alias names to identify items in data sets that
have different names. The primary name is always used in the Transact
program.

You must define all alias relations with a DEFINE(ITEM) statement in your
program; Transact ignores alias definitions in the dictionary.

3-20

I

TRANSACT DATA 1_
_S_TO_R_A_G_E_.R_E_G_IS_T_E_R_S -----I I IV I

Data storage registers, which are illustrated in Figure 4-1, are storage areas
within the processor. The processor allocates space in these registers only
when it is needed. You must ensure that space allocation is made in the
appropriate registers and at appropriate points in the logic flow of the
program. Because the order in which data is put into the registers is
significant, you should always be aware of what is happening in the registers.

This section describes the data storage registers and includes a description
of how they work.

4-1

Transact Registers

1
LIST item-namel item-name2 1 I

_______________1__1 -

1
DATA valuel value2 1 1

___________ 1__ 1 ---

KEY

ARGUMENT

MATCH

item-name

value

namel/rell
name2/rel2 UPDATE

namel/valuel
name2/value2

INPUT value

STATUS value

Figure 4-1. Data storage Registers

4-2

Transact Registers

LIST AND DATA REGISTERS

The list and data registers are the mechanism for data storage internal to the
processor. If you are familiar with the concept of "stacks" and how they
work, it may help to know that the list and data registers are manipulated as
stacks.

The data register is the storage area for the values of data items. Any data
item you wish to manipulate must have its value in the data register. The
data register holds values (data) only; it does' not hold any information about
the values, such as what value is associated with what data item.

The list register is a map of the data register. It holds the names of data
items. For every data item name in the list register, there is a fixed amount
of space (determined by the data item's attributes) allocated for that data
item in the data register. This storage space in the data register holds the
value for the data item. The list register itself contains only the data item
names, not their values.

The order of item names in the list register determines the order of the
corresponding data item values i~ the data register. Item names in the list
register, and the corresponding space in the data register, are allocated in
the order they are specified in the program. For example, if the first data
item name added to the list register is NAME, identifying a six-byte character
string, then the first six bytes of the data register are allocated to hold
the value of NAME. If NAME is followed in the list register by an item called
ADDRESS that identifies a 20-byte character string, the value of ADDRESS
requires 20 bytes of storage space in the data register following the value of
NAME.

List
Register

Data
Register

I I I
INAMEIADDRESSI
1__ 1 _

\ \

I 1
IMillerl15 West Cliff Drive
I 1 _

<---bottom top---->

The data item names are added to the list register starting at one end, the
bottom, filling towards the other end, the top. The most recently added data
item name is at the top of the currently used space in the list register, and
its value is at the top of the currently allocated space in the data register.
Remember that you can think of these registers as stacks.

4-3

Transact Registers

Managing the List and Data Registers

At the start of program execution, the list register is empty and the contents
of the data register are undefined. When the list register is empty, you
cannot access the data register. During the course of program execution, you
add data item names to the list register, thereby defining the data item
space. Every item added to the list register must have been previously
defined either in a DEFINE(ITEM) statement or the dictionary. Note that child
item names may not be added to the list register, only the parent item names.

Allocating space in the data register does not move the data into the
register. Transact provides means to transfer data to the data register
either interactively from a terminal through prompts or a VPLUS screen, or
programmatically from files or data sets.

In order to keep your data storage requirements to a m1n1mum, you should
release the data register space for your data items when you are through using
them. One way to release this storage space is to let Transact do it for you.
If you are using a command structure Transact resets the list register
whenever a command sequence executes. If you are not using a command
structure, you should manage your data storage directly with Transact
statements.

When data items are removed from the list register, they are removed from top
to bottom; that is the last item added is the first item removed. The values,
however, corresponding to items removed from the list register still exist in
the data register. You can access these values again by adding their item
names back into the list register in the correct sequence.

4-4

Transact Registers

KEY AND ARGUMENT REGISTERS

The Transact processor uses the key and argument registers to perform keyed
access to KSAM files or IMAGE data sets. You must use these registers in
order to perform keyed access to such files; you do not need these registers,
however, to access MPE files or for serial access to IMAGE data sets or KSAM
files.

Both registers are write-only registers. That is, you can assign a data item
name to the key register and a value to the argument register, but you cannot
read either register, nor can you test their contents. The processor uses the
contents of these registers for file and data set- access; and a program can
pass their values to an external procedure.

A unique pair of key and argument registers is made available with each level
of nesting of the PERFORM= option of the data management verbs. As many as 10
levels can be declared.

Key Register

The key register contains a single data item name that identifies a key item
in a KSAM file or a search item in an IMAGE data set. The name you place in
the key register is used by the processor to perform a keyed access to an
existing record. The key register is not used to add a new record or entry.

The key register is needed only when the key name must be specified. It is
needed to locate a particular key in a KSAM file, and it is needed to locate
the chain head in an IMAGE detail data set. The key register is not needed to
access key items in IMAGE manual or automatic master sets; there is only one
key (search) item in a master data set and that item is known to IMAGE.

4-5

Transact Registers

Argument Register

The argument register contains a single value, the value of the key item in
the key register. The Transact processor uses this value to locate any
records in a KSAM file or an IMAGE data set with that key value. If you try
to perform a keyed access without setting up the key and argument registers,
Transact issues an error message.

The argument register is needed when an actual key value is used to access a
file or data set. If the key is known (as in an IMAGE master set), you need
not setup the key register, but you must still set up the argument register,
unless you want to access all the entries.

To illustrate, suppose you have an IMAGE detail data set from which you want
to retrieve all product numbers with the value AlOS. You can put the search
item name (PROD-NO) in the key register and the value (AlOS) in the argument
register.

key
register

argument
register

PROD-NO

A10S

You can then use an appropriate Transact statement to retrieve any entries
that contain a product number with the value IAlOS". Transact performs all
the necessary IMAGE calls.

4-6

Transact Registers

MATCH REGISTER

The match register contains the selection criteria for data retrieval
operations. It holds a list of data item names and selection criteria for
each data item name in the list. The match criteria determine which records
are selected when a retrieval is performed from a data set or file. Only
those records that meet the criteria are retrieved.

In order to use the match criteria, the match items must be in the list
register and also must be retrieved by the data management statement that uses
the match criteria. You must, therefore, not only add match items to the
match register, but also add each item to the list register and include each
item in a LIST= option of the data management statement. If a match item is
not specified in the LIST= option, the data management statement ignores the
match criteria associated with that item.

As many match criteria as you want can be specified. You may assign different
criteria to the same item or to different items, or specify the same criteria
for different items. By default, a Boolean AND connects selection criteria
gathered from different PROMPT(MATCH) or DATA(MATCH) statements. A Boolean
AND also connects selection criteria from mUltiple SET (MATCH) statements
unless the statements use the same item name and specify equality as the
connector; such statements are joined by a Boolean OR. End users can
specifically override these defaults by their responses to a PROMPT(MATCH) or
a DATA(MATCH) prompt (see IIResponding to a Match Prompt" in section 5).

For example, consider the following match register which contains four
separate match criteria:

Match Register

UNIT-PR
less than

500

QTY-ORDERED
AND greater than

10000
AND

QTY-ORDERED
less than

1000000

4-7

AND
CREDIT
equals

A

Transact Registers

UPDATE REGISTER

The update register holds a list of update specifications, each consisting of
a data item name and a new value for that item. These name/value pairs may be
used to update records in an MPE or KSAM file or an IMAGE data set. The
update register is used with the REPLACE verb to update one or more records.

The update register operates on data retrieved with data management verbs.
The retrieved data generally satisfies other criteria set up in the key
register or in the match register. The update register contains new values
for data items in the selected entries. When REPLACE executes, it retrieves
each selected entry and places its current values in the data register. It
then replaces any values in the data register that have a corresponding value
in the update register. If a data item is not named in the update register,
its value in the data register is not changed. REPLACE then writes the
updated entry back to the file or data set.

For example, suppose you want to change the credit rating for all customers
whose rating is currently II A" to "AI". You can set up the match register to
contain the criterion CREDIT = II A" and then set up the update register with
the new value for CREDIT.

Match Register:

CREDIT
=

II A"

Update Register:

CREDIT
II Al II

NOTE: You can update records without using the update register simply by
changing the values in the data register. You do not use the
update register with the UPDATE verb, and you normally would not
use it with REPLACE to update mUltiple entries with different
values. The update register is particularly useful for making the
same change to mUltiple entries.

4-8

Transact Registers

INPUT REGISTER

The input register contains a character string entered by an end user in
response to a prompt generated by the INPUT verb. Typically, the contents of
the input register are tested with an IF verb for a yes or no condition.
Because the processor upshifts all responses, it is not necessary to test for
"YES" and "yes", for example. The contents of the input register cannot be
assigned to any data item or any other register.

STATUS REGISTER

The status register is used to hold status information about the last
operation performed. The contents of the status register differ depending on
whether Transact uses the register for its automatic error handling, or you
control error handling programm~tically by specifying the STATUS option with
various verbs. (Refer to "Automatic Error Handling" in section 5 for a full
discussion of the status register contents.)

In either case, you can test the contents of the status register with an IF
statement; you can also assign the contents of the status register to a
variable for subsequent display or testing.

Transact's automatic error handling is a powerful feature of the the processor
and, in general, you should allow the status register to be used for this
purpose. If you do choose to override automatic error handling with the
STATUS option, you are responsible for doing all your own error handling. You
should also be aware that the STATUS option affects the operation of the data
management verbs. In general, using this option makes iterative verbs
singular and requires the use of the PATH verb to specify a path for
subsequent keyed retrievals. It also suppresses the rewind operation on a
data set prior to a serial read.

Refer to section 5 for a full discussion of the status register and how it
operates with both automatic and programmer-controlled error handling.

4-9

Transact Registers

HOW REGISTERS WORK

This section summarizes the use of registers with Transact verbs. It also
illustrates how registers work using code extracted from a Transact program.

Verbs and Registers

The LIST, DATA, PROMPT, and INPUT verbs cause data to be placed into the
various registers. Following, is an overview of how these four verbs work
with the registers.

• LIST causes an item to be placed in the list register and appropriate
space to be allocated in the data register.

- For use with VPLUS, items may be in any position in the register.

- For use with IMAGE data base access, items must be consecutive but in
any order.

- For use with KSAM or MPE files, items must be consecutive and in the
same order as in the records.

• DATA places values in the data register in space already allocated.
These values come from user input, because DATA causes a prompt.

• PROMPT places the item name in the list register and places the value
(supplied by the user) in the data register.

• INPUT places a charac.ter string (supplied by the user) into the input
register.

How LIST, DATA, and PROMPT act is specified by their modifier. Table 4-1
shows how verbs and modifiers work together to affect registers.

In addition to the verbs listed above, all the data base and fi~e access verbs
(except PUT) and the assignment verbs LET, SET, and MOVE add values to the
data register. The data access verbs get the data from files or data bases;
with LET, SET, and MOVE, the data is assigned in the program.

4-10

Transact Registers

Table 4-1. verb/Modifier/Register Summary

, Verb,
Modifier

PROMPT LIST DATA INPUT

none List
Data

List Data Inpu t (1)

PATH List
Data
Key
Argument

List
Key

Data
Argument

Key Argument
Key (2)

List Data
Match Match

List Data
Update Update

Da ta (1)

Data (3)

Key
Argument

List
Data
Match

List
Data
Update

List (1)
Da ta (1)

KEY-

'MATCH,,,
IUPDATE
I
I
I
ISET,,
, ITEM
1

1----------------- --
I (1) Only if the user enters a value
I (2) If key register is empty
I (3) For the given item

For example, PROMPT affects the list and data registers only, whereas
PROMPT(PATH) affects the list, data, key, and argument registers. If you only
want to add items to the list register, use LIST with no modifier; if you only
want to add an item to the key register, use LIST(KEY).

4-11

Transact Registers

Sample of Transact Coding

The following code extracted from a Transact program shows how registers work.
This discussion includes

• Illustrations showing the files used and the records from those files,
and

• The Transact code and the corresponding register activity.

The code is shown in total first and then broken down by statement.

LIST CUST-NAME:
CUST-ADDRESS;

PROMPT(PATH) CUST-NO;
GET CUSTOMERS,

LIST=(CUST-NAME:CUST-ADDRESS) ;
PROMPT(PATH) PART-NO;
PROMPT QTY-ORDERED;
LIST COST;
LIST UNIT-PRICE:

PART-DESC:
QTY-ONHAND;

GET PARTS,
LIST=(UNIT-PRICE:QTY-ONHAND);

IF (QTY-ORDERED) > (QTY-ONHAND) THEN
DISPLAY IIOnlyll: QTY-ONHAND, NOHEAD: II in stock"
ELSE

DO
LET (QTY-ONHAND)= (QTY-ONHAND) - (QTY-ORDERED);
UPDATE PARTS, LIST=(QTY-ONHAND);
LET (COST) = (UNIT-PRICE) * (QTY-ORDERED);
PUT ORDERS, LIST=(CUST-NO:COST);

DOEND;

The data base referenced contains the three data sets shown below (PARTS,
CUSTOMERS, and ORDERS). The items in each data set are also listed below.

4-12

Transact Registers

PARTS
M

PART-NO, UNIT-PRICE, PART-DESC, QTY-ONHAND
\ /
\/

CUSTOMERS
M

CUST-NO, CUST-NAME, CUST-ADDRESS
\ /
\/

ORDERS
D

PART-NO, QTY-ORDERED, COST, CUST-NO
\ /
_/

The following illustrations show how specific statements affect specific
registers.

LIST CUST-NAME:
CUST-ADDRESS;

CUST-NAME and CUST-ADDRESS are placed in the list register, and space is
reserved for their values in the data register.

LIST CUST -NAME

DATA I I
KEY

~

PROMPT (PATH) CUST-NO;

Transact prompts the user for CUST-NO, and places the item name CUST-NO
in the list and key registers. It places the user's response in the data
and argument registers.

4-13

Transact Registers

GET CUSTOMERS,
LIST=(CUST-NAME:CUST-ADDRESS);

When Transact retrieves the appropriate record from the CUSTOMERS data
set using the key and argument values, it places the values for CUST-NAME
and CUST-ADDRESS into the data register.

CUSTOMERS

.....

LIST I CUST -NAME ICUST -ADDREssl CUST -NO I
DATA 345 I
KEY I CUST -NO I
ARG I 345 I

PROMPT(PATH) PART-NO;

Transact prompts the user for PART-NO, places the item name PART-NO into
the list and key registers, overwriting any value already in the key
register. It then places the value entered by the user into the data and
argument registers, overwriting the previous values in those registers.

PROMPT QTY-ORDERED;

Transact prompts the user for QTY-ORDERED, and places the item name
QTY-ORDERED in the list register. It then places the value entered by
the user into the data register.

LIST CUST -NAME CUST -ADDRESS

DATA ABC CO 13 CANAL ST.

KEY PART-NO

ARG 1234

LIST COST;

Transact places COST in the list register, and reserves space for its
value in the data register.

LIST CUST -NAME CUST-ADDRESS

DATA ABC CO 13 CANAL ST.

KEY PART-NO

ARG 1234

4-14

Transact Registers

LIST UNIT-PRICE:
PART-DESC:
QTY-ONHAND;

UNIT-PRICE, PART-DESC, and QTY-ONHAND are placed in the list register,
and space is reserved for their values in the data register.

LIST CUST-NAME CUST-ADDRESS

DATA ABC CO 13 CANAL ST.

KEY PART-NO

ARG 1234

GET PARTS,
LIST=(UNIT-PRICE:QTY-ONHAND);

When the appropriate record is retrieved from the PARTS data set using
the key and argument values, values are placed in the data register for
UNIT-PRICE, PART-DESC, and QTY-ONHAND. Note that PART-DESC need not be
specified here, because it is in the range between UNIT-PRICE and
QTY-ONHAND.

LIST CUST-NAME CUST-ADDRESS/ CUST -NO / PART-NO/ OTY-ORDERED / COST/uNIT-PRICE/ PART-DEscl OTY·{"\I\II-lAII.1rI1

DATA ABC CO 13 CANAL ST. I 345 I 1234 I 3 I
KEY PART-NO ,
ARG 1234

PARTS

V

IF (QTY-ORDERED) > (QTY-ONHAND) THEN
DISPLAY "0nl y ": QTY-ONHAND, NOHEAD: "in stock";
ELSE

DO
LET (QTY-ONHAND) = (QTY-ONHAND) - (QTY-ORDERED);

This statement computes a new QTY-ONHAND value and places it in the data
register.

LIST CUST-NAME CUST-ADDRESS/ CUST -NO I PART-NO/ OTY-ORDERED ICOST/uNIT-PRICE/ PART -DEscl OTY -ONHANDI

DATA ABC CO 13 CANAL ST. I 345 I 1234 I 3 I I 998 I FRAMMIS
KEY PART-NO

ARG 1234

4-15

Transact Registers

UPDATE PARTS, LIST=(QTY-ONHAND);

Update the PARTS data set with the new QTY-ONHAND for the part whose
entry was the last one accessed by the previous GET statement.

LIST CUST-NAME CUST.ADDREssl CUST-NO I PART-NO I QTY-ORDERED I COST~JNIT.PRICEI PART-DESCI QTY -ONHANDI

DATA ABC CO 13 CANAL ST. I 345 I 1234 I 3 I I 99a I FRAMMIS

KEY PART-NO - ~
-"

ARG 1234

PARTS

V

LET (COST) = (UNIT-PRICE) * (QTY-ORDERED);
PUT ORDERS, LIST=(CUST-NO:COST);

DOEND;

Compute the cost and place it in the data register. Update the ORDERS
data set with the values from CUST-NO through COST.

LIST CUST-NAME CUST-ADDREssl CUST ·NO I PART-NOI QTY·ORDERED I COST~NIT.PRICEI PART-DEscl QTY -ONHANDI

DATA ABC CO 13 CANAL ST. 99'a I FRAMMIS I 2 I
KEY PART-NO

ARG 1234 .
ORDERS

4-16

IRUNNING 1-
_T_R_AN_S_A_C_T_I_30_0_0 1 v I

This section explains how to run Transact, including

• How to compile and execute Transact programs,

• How to control Transact programs at run time,

• How automatic error handling works, and

• How to control processing using the STATUS option.

5-1

Running Transact

TRANSACT PROGRAM COMPILATION

This section tells how to compile Transact programs and lists the control
options you can choose. It also illustrates a compiler listing, tells how you
can control compiler listings, discusses program segmentation, and describes
how to control input sources to and output destinations from the compiler.

Compiling Transact Programs

You create Transact source programs using the HP EDITOR subsystem or any
suitable text management system. The source code file can be either numbered
or unnumbered. You request the Transact compiler to compile the source code
with the following command:

:RUN TRANCOMP.PUB.SYS

When you are running interactively and responding to prompts at a terminal,
the compiler prompts for the name of the file containing the Transact source
code:

SOURCE FILE> Enter the file name under which you saved the source code.

LIST FILE> Enter a carriage return to direct the listing to your terminal
($STDLIST). You can direct the listing to the line printer by
responding with LPj or you can suppress the listing altogether
by responding with NULL. These are the more common responses.
See the discussion of IIcontrolling output Destinations from the
Compiler" for other possible responses.

The compiler then asks you to specify which control options are to be applied
to the compilation:

CONTROL>

*LIST

*DICT

*CODE

*ERRS

Enter one or more of the following options, separated by commas
in response to this prompt. You can precede any of the options
by II NOli to reverse its effect.

The default options are marked by an asterisk (*).

Generates a listing of the compiled source code.

References the data dictionary to resolve item definitions.

Creates the intermediate processor code file that can be
executed by the Transact processor. The code file is
created only if no errors occur during compilation (See
option XERR).

Lists compilation errors on $STDLIST, even if you direct a
listing elsewhere.

5-2

DEFN

OBJT

OPTI

OPTS

STAT

XERR

XREF

Running Transact

Produces a ~isting of item definitions as part of the
compiler ~ist output. You can use this option to determine
how much storage space the Transact compiler has allocated
to each data item defined in your source code or in the
dictionary.

Produces a ~isting of the intermediate processor (object)
code.

Optimizes the tab~es in the code file so that the data
segment stack is reduced at execution time. This option is
meaningful only if any data items are defined with the OPT
option of DEFINE(ITEM) to suppress the item's textual name.
Note that the OPTI option should not be used if the data
item names are needed for prompt strings, display item
headings, and LIST= constructs. Appendix E provides
additional information on this option in conjunction with
data stack optimization.

optimizes segmented Transact programs only. When you
include this option, the processor does not check for local
segment items in the list, match, and update registers when
loading a new segment. Since such checks are essential for
debugging programs under development, this option should
only be used after a program is fully tested and ready for
production. Although OPTS speeds segment transfers, the
program may malfunction or terminate abnormally if a local
item is left in a register.

Generates statistics on data stack usage. These values are
useful in deciding how program structural and/or coding
differences would improve the run-time performance of your
program. Appendix E provides additional information on
this option in conjunction with data stack optimization.

Creates a code file even if errors are encountered in the
compilation (See option CODE).

Generates a listing to provide a cross-reference to
locations of label definitions and their references.

5-3

Running Transact

Two RUN command options may be used to bypass the Transact compiler prompts.
These are the PARM= and INFO= options, which are specified in the compiler
invocation statement.

The PARM= option has parameters that identify your source file and/or your
list file:

1 This parame'ter indicates that TRANTEXT is the formal
file-designator for your source file. If it is
specified, the SOURCE FILE> prompt does not appear.

2 This parameter indicates that TRANLIST is the formal
file-designator for your list file. If it is specified,
the LIST FILE> prompt does not appear.

3 This parameter indicates that both TRANTEXT and TRANLIST
are formal-file-designators. If used, neither the
SOURCE FILE> nor the LIST FILE> prompt appears.

The following invocation produces two listings at the line printer after the
source statements in APPLOI are processed:

FILE TRANTEXT=APPLOl
FILE TRANLIST;DEV=LP, ,2
RUN TRANCOMP PUB.SYS; PARM=3; INFO="DEFN, XREF"

The INFO= option accepts parameters identical with the options used to respond
to the CONTROL> prompt. As the above example illustrates, the parameter is
enclosed in quotation marks. If only blanks are included in the quotation
marks, the default compiler options take effect. If the INFO= option is used,
the CONTROL> prompt does not appear.

You can direct the compiler to a file for answers to its prompts. See
"Controlling Input Sources to the Compiler. II You can also compile a program
by streaming it as a batch job. To do this, set up the stream file to contain
the following MPE commands:

:STREAM
: !JOB j obname
: !RUN TRANCOMP.PUB.SYS
:fi!ename
:!ist-destination
:contro!-options
: !EOJ

5-4

Running Transact

Compiler Listing

Figure 5-1 shows the listing of the source program produced by the compiler
using all four default control options. The three columns of figures on the
left hand side of the page are annotated in the figure, and described below
it.

Figure 5-2 illustrates the output from a compilation that used the STATistics
option. The statistics are especially useful for helping you optimize your
application's run-time data stack utilization. Appendix E defines the
statistics fields in detail, maps them to actual stack components, and
suggests ways to use test modes, program structure, and various coding options
to minimize stack space.

5-5

Running Transact

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

(D) ;

Number
Internal Location

/ Nesting Level
/ /

/ / SYSTEM COMPIL;
0000 / IF (A) = (B)
0000 1 THEN DO
0000 1 DISPLAY "DUPLICATE ENTRY";
0005 1 IF (A) = (C)
0005 2 THEN IF (D) < 50
0008 2 THEN MOVE (A)
0013 1 DOEND;
0013 END;

Line
/

/
/

1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

CODE FILE STATUS: NEW

o COMPILATION ERRORS
PROCESSOR TIME=OO:OO:Ol
ELAPSED TIME=00:OO:03

Figure 5-1. Compiler Listing

Line NUmber Line number from the source listing

Internal Location Internal location reference number of the statement on the
associated text line. These numbers are useful when TEST
mode is used during execution (See Section 7).

Nesting Level Nesting level indicator that is incremented by one when the
compiler encounters the start of a compound statement or a
new level and decremented by one when the end of such a
compound statement or level is reached.

5-6

Running Transact

COMPILING WITH OPTIONS: CODE,DICT,STAT,ERRS

*****COMPILE TIME STATISTICS****
STACK= 23368
TABLE= 14482

*******RUN TIME STATISTICS******
PCODE= 0
SCODE= 3764

PARTIAL TABLE REG. SUMMARV
BASE= 1, 10
FILE= 38, 544

SET= 12, 176
PROC= 0, 0

$$CMD= 11, 65
$CMD= 0, 0
ITEM= 82, 1047

STRNG= 195, 2192
CNTRL= 116, 916

455, 4950

****FINAL TABLE REG. SUMMARY****
WORK AREA= 30, 100

TABLE REG.= 5050
TABLE INDX= 485
TABLE LEN.= 485

1--> words on s~ack used during
_I compila~ion

1--> words on s~ack for ins~ruc~ion

_I code da~a

--> words on s~ack for managing such
en~i~ies as da~a bases, files,
s~rings, procedures, commands, and
Transac~ regis~er manipula~ions

10075
CODE FILE STATUS: REPLACED

*****RUN TIME
DATA REG.=
TABLE REG.=
TABLE INDX=
TABLE LEN.=
ROOT SEG.=
ITEM REG.=
DATA INDEX=
DATA LEN.=

STACK SUMMARV*****
200

5050
485
485

3765
30
30
30

I
I
I
I
1--> summary of Transac~ processor
1 s~ack use
1

1

I
_I

o COMPILATION ERRORS
PROCESSOR TIME=OO:Ol :43
ELAPSED TIME=00:02:15

Figure 5-2. Compiler Statistics

5-7

Running Transact

Controlling the Compiler Output

You may place any of the following commands between any two statements in the
source program to control the compiled output:

!COPYRIGHT
("t;ext;-st;ring")

!INCLUDE(file-name)

!LIST

!NOLIST

!PAGE

!SEGMENT
[("t;ext;-st;ring")]

Causes the compiler to place the specified "t;ext;-st;xing"
in the first record of the code file as a copyright
notice. The text string may be up to 500 characters long.
This command may only be specified once; normally, it
should follow the SYSTEM statement.

Causes the compiler to include the Transact statements
from a specified source file (file-name) that is not the
source file being compiled. The file-name statements are
included at the point in the listing where lINCLUDE
appears, and are compiled with the main source file.
file-name may be a fUlly qualified name with file group
and account. Up to 5 files may be nested with lINCLUDE
commands.

write sUbsequent source statements to the list file. If
LIST is specified in response to the CONTROL> prompt,
lLIST has no effect.

Suppress the listing of subsequent source statements. If
NOLIST is specified in response to the CONTROL> prompt,
lNOLIST has no effect.

Causes the compiler to skip to the top of the next page on
the listing

Causes the compiler to segment the program and the
resulting code file at this point in the source file. The
compiler displays the specified "t;ext;-st;ring" on TRANOUT
when it processes the lSEGMENT command. The text string
may be up to 500 characters long. The following
discussion of segmentation tells why and how to segment
programs.

Since these commands are not language statements, do not terminate them with a
semicolon.

5-8

Running Transact

Program Segmentation

The Transact/3000 compiler produces compact code. This code is placed on the
process stack at execution time and therefore affects the size of the stack.
Even though the Transact code is compact, large programs may produce so much
executable code that the process stack becomes uncomfortably large for the
operating environment. Some programs produce a code file so large that the
process stack cannot contain the code.

One way to solve this problem is to segment your program. Transact allows you
to segment your program into as many as 126 separate segments.

If you choose to divide your program into segments, these segments can be
overlaid in the processor stack in memory. In addition to the root segment
(segment 0) which is always in memory, only the currently executing segment
needs to be on the memory stack. When control transfers to another segment,
the new segment can overlay the segment currently in memory. This technique
allows the processor to execute within a smaller stack size than that needed
by an entire program.

You divide a program into segments by including the !SEGMENT compiler command
in your code wherever you want a new segment to start. You can place this
command between any two Transact statements. However, you should exercise
jUdgement about where you segment your program. For example, you should not
segment within a loop construct. And, when a FIND or OUTPUT statement, for
example, requires a PERFORM block, the statement and the PERFORM block should
be within the same segment. Program control cannot automatically cross
segment boundaries.

One way to control the use of segments is with command labels. When an end
user enters a command, control transfers to the associated command label. As
far as the end user is concerned, it does not matter in which segment a
command label is coded; when the user specifies a particular command label
identifying a particular sequence, the Transact processor makes sure the
segment containing that sequence is loaded into memory, if it is not there
already.

Another way to control the use of segments is to use a GO TO or PERFORM
statement to transfer control to a program control label in a different
segment. In order to transfer control to a program label in another segment,
you must specifically define that label as an entry point. Entry point labels
are necessary for transfers into any segment except your main program segment
(segment 0, the II root II segment). You define a label as an entry point with a
DEFINE(ENTRY) statement. Labels so defined are global to your program; that
is, they can be referenced from outside the segment in which they appear.
Labels defined within a segment are local to that segment.

5-9

Running Transact

The following information describes exactly how segmentation affects data
items and command or program labels.

• All command and subcommand labels are global to the program in which they
are declared. That is, you can reference them from any segment, and they
must be unique within the entire program.

• All program control labels and data items declared before the first
!SEGMENT command are global to the program and may be referenced from any
point.

• Any program control label or data item declared after a !SEGMENT command
is local to that segment. An item of the same name may be declared in
another segment and its separate definition is insured.

If you use the compile option DEFN in a seg~ented program, the compiler
produces a list of the effective ITEM definitions at the end of each segment.

Normally, Transact checks the list, matCh, and uPdate registers when it loads
a new segment to make sure they do not contain items local to another segment.
However, if you compile your program with the compile option OPTS, Transact
does not check the registers for local items. If items local to one segment
remain in these registers when another segment is executed, they may cause
your program to malfunction or even abort.

In addition to the specific considerations discussed above, you should always
consider the following general rules when segmenting your programs:

• Stay in one segment for as long as possible; and, when you leave a
segment, stay out for as long as possible;

• Try to define segments of uniform size since stack space is allocated
for the largest segment

• Put routines used by many segments in the main (root) segment since it
always resides in memory along with whatever other segments happen to be
loaded. However, try to minimize the size of this segment as well.

5-10

Running Transact

Controlling Input Sources to the Compiler

TRANIN is the formal-file-designator for responses to prompts issued by the
compiler. The default setting for TRANIN is $STDINX. You may, however,
change that by means of a file equation. A file equation is specified with the
MPE FILE command, which is further described in the MPE COMMANDS reference
manual. The compiler then reads input from that file until it encounters an
end-of-file condition. If it reaches end-of-file before all prompts are
answered, it returns to $STDINX. (If TRANIN is an EDITOR file, it must be
unnumbered.)

TRANTEXT is the formal-file-designator for the source code file. Like TRANIN,
it can be file-equated to the name of another file.

5-11

Running Transact

Controlling Output Destinations from the Compiler

TRANLIST is the formal-file-designator for the destination of compiler
listings when LP is the response to the LIST FILE> prompt. The default
setting for TRANLIST is DEV=LP. You may, however, change that by means of a
file equation. A file equation or the destination default is activated when
you respond to the LIST FILE> prompt with LP.

TRANOUT is the formal-file-designator for output from the compiler that, by
default, is sent to the standard list device. (The default setting for
$STDLIST is your terminal in session mode, the line printer for a batch job.)
You can use a file equation to specify a device other than $STDLIST for
TRANOUT. If you do this, the compiler prompts, such as SOURCE FILE>, appear
on that device, as do the compiler listing and any requested statistics or
item definitions. (Note that TRANOUT also controls processor output,
inclUding the SYSTEM NAME> prompt.)

If you simply want to redirect your compiler listing, not other compiler
output, you can respond to the LIST FILE> prompt with any of the following
responses:

• A carriage return or $STDLIST directs the compiler listing to the terminal
in a session, to the line printer in a batch job (TRANOUT).

• LP directs the compiler listing to TRANLIST, which is the line printer
unless a :FILE command has specified another device for TRANLIST.

• NULL directs the compiler to display errors on the terminal (in a session)
or to the line printer (in a job) if ERRS is specified, but to suppress
other parts of the listing.

• $NULL directs the listing to a null file, in effect suppressing the listing
(the NULL response is preferred.)

• The name of a file directs the listing to a new disc file. If a file of
the same name already exists, the compiler asks if you want to purge the
existing file.

• A file name preceded by an 11*11 directs the compiler to back reference a
file equation.

TRANCODE is the name of the code file opened and used by the compiler. The
default maximum size of this file is 1023 records. If the error message
"BINARY FILE FULL II is issued during compilation, use an MPE FILE command to
increase the maximum TRANCODE file size. For example, to increase the size to
2000 records, use the following FILE command:

:FILE TRANCODE;DISC=2000

5-12

Running Transact

TRANSACT PROGRAM EXECUTION

This section describes how to execute Transact programs and tells how to
control input to and output from the Transact/3000 Transaction Processor.

Executing Transact Programs

Transact programs are executed by running the Transact processor with the
following MPE command:

:RUN TRANSACT.PUB.SYS

After an acknowledgement message, Transact issues the following prompt:

SYSTEM NAME>

You should r~spond with the name of the program as specified in the SYSTEM
statement of the program you want to execute. In addition to this required
response, you may specify one or more optional responses separated by commas.
These optional responses specify the mode with which you want to open a data
base, and the test mode in which you want to execute, followed optionally by
the locations where you want testing to begin and/or end. The syntax of a
full response to the SYSTEM NAME> prompt is:

program-name [,mode [,test-mode [,start [,end]]]]

where

program-name is the name of the program as it appears in the SYSTEM
statement in the source program. (Required)

mode is the mode to be used in opening any data bases specified in
the program. The mode consists of a single digit indicating
one of the open modes specified for DBOPEN in the HP3000
IMAGE reference manual. If you do not specify a mode here or
in the SYSTEM statement of your program, Transact opens the
data bases in mode 1. Mode 1 allows concurrent modifications
to be made to a data base. Any mode specified in the SYSTEM
statement of the program takes precedence over a mode
specified here.

test-mode The test mode you want to use to debug your program. Test
modes are indicated by a one or two-digit number. (The exact
meaning of each test mode is explained in section 7.)

5-13

Running Transact

start

end

The location where you want testing to begin; this is the
internal location number of a line of processor code (see
figure 5-1), optionally preceded by a segment number if it is
in a segment other than segment 0:

segment number. start.

The location where you want testing to end; specify as the
internal location number of a line of processor code,
optionally preceded by a segment number if end is in a
segment other than segment 0:

segment number. end.

For example, suppose you want to open any data bases named in your program in
mode 3, and you want to execute in test mode 24 between internal locations 0
and 8, respond to SYSTEM NAME> as follows:

SYSTEM NAME> MYPROG,3,24,O,8

If the processor cannot find an interme4iate processor code file associated
with the program name (IIIPxxxxxx ll

, where IIXXXXXX" is the program name), then
it generates an error message and re-issues the SYSTEM NAME> prompt. If you
respond with a carriage return to the original or re-issued prompt, then
control returns to the MPE operating system.

To bypass answering the SYSTEM NAME> prompt, you can use the INFO= option.
This option enables you to specify a system name when you invoke the
processor:

:RUN TRANSACT PUB.SYS; INFO=IIAPPL01 1I

Note that the INFO= parameters are enclosed in quotation marks. When the
INFO= option is used, the SYSTEM NAME> prompt does not appear.

After it locates the code file, the processor generates the. following prompt
if IMAGE data bases have been defined in the SYSTEM statement and no password
supplied:

PASSWORD FOR databasename>

You must enter the correct password to open any data bases so specified. If
the password is invalid, then you are prompted again for the correct password.
If you enter a carriage return in response to the second prompt, control
returns to the SYSTEM NAME> prompt and you can request another program or
specify other modes. Make sure you enter the password exactly as it is
defined; if it is defined with all uppercase letters, enter it with all
uppercase letters.

5-14

Running Transact

Once your program is executing, you can redisplay the SYSTEM NAME> prompt by
pressing the CNTL-Y keys (see CNTL-Y description below) to stop execution and
get the> prompt. When the> prompt appears, type INITIALIZE in order to
redisplay SYSTEM NAME>. You can then specify another program name, or a new
data base mode or test mode.

NOTE: Unlike the programs developed and executed under MPE
control, a Transact program can only be executed by running
the Transact processor. You cannot execute a Transact
program with the MPE RUN command, nor can it be executed
through an MPE User Defined Command (UDC).

5-15

Running Transact

Controlling Input Sources to the Processor

TRANIN is the formal-file-designator for responses to prompts issued by the
processor. The default setting for TRANIN is $STDINX. You may, however,
change that by mean~ of a file equation. The processor then reads input from
the specified file or device until it encounters an end-of-file condition. If
it reaches end-of-filebefore all prompts are answered, it returns to $STDINX.

TRANSORT is the name of the sort file opened and used by the processor. The
default size of this file is 10,000 records divided into 30 extents. If a
larger or smaller sort file is desired, then use a file equation to change the
size. For example, to reduce the sort file size to 5,000 records, use the
following FILE command:

:FILE TRANSORT; DISC=5000

Controlling Output Destinations from the Processor

TRANLIST is the formal-file-designator for the destination of processor output
that is normally sent to the line printer. The default setting for TRANLIST
is DEV=LP. You may, however, change the list device by means of a file
equation. The file equation or the destination default is activated by the
PRINT option to a command or by a SET(OPTION) PRINT statement.

TRANOUT is the.formal-file-designator for output from the processor that is
normally sent to your terminal in a session or to the line printer in a job
($STDLIST). You can direct such output to another file or device by
specifying TRANOUT in a file equation. If you do this, the SYSTEM NAME>
prompt, as well as other processor output is sent to the specified file or
device. (Note that TRANOUT is also the file designator for output from the
compiler.)

TRANVPLS is the name of the file used by the processor to open the VPLUS
terminal. If VPLUS forms are to be directed to a device other than your
terminal during program testing, us~ a file equation to specify a particUlar
terminal. For example, suppose your terminal is logical device 20 and you
want the VPLUS forms displayed on another terminal, logical device 40, use the
following file equation:

:FILE TRANVPLS: DEV=40

TRANDUMP is the formal-file-designator for the destination of test mode output
if you specify a negative test mode in response to the SYSTEM NAME> prompt.
Normally, test mode output is sent to your terminal in a session, to the line
printer in a job (TRANOUT). If you want test mode output to be sent to
another device, you can specify TRANDUMP in a file equation. This is
particUlarly useful when you are using test mode with a program that uses
VPLUS and you do not have another terminal handy for the VPLUS forms.

5-16

Running Transact

For example, you can direct test mode output to the line printer as follows:

SYSTEM NAME> VTEST,,-34 <---negative test mode directs
test output to TRANDUMP

Another method is to direct the test mode output to a disc file by equating
TRANDUMP with this file. For example, you can send your test mode output to a
file TEST with the following commands:

:BUILD TEST; REC=-80"F,ASCII
:FILE TRANDUMP=TEST
:RUN TRANSACT.PUB.SYS

SYSTEM NAME> VTEST,,-34 <---test output goes to file TEST

Test mode output from the program VTEST is saved in the file TEST, which can
be examined or listed using a text editor after your program completes.

A third method is to defer test mode output by setting the output priority to
1. For example:

:FILE TRANDUMP; DEV=,l
:RUN TRANSACT.PUB.SYS

SYSTEM NAME> VTEST, ,-34

<---priority 1 defers test mode output

After your program executes, you can run SPOOK.PUB.SYS to examine the test
mode information saved in a spool file.

5-17

Running Transact

RUN-TIME CONTROL OF PROGRAM EXECUTION

The processor provides several capabilities that allow the end user to control
the execution of a Transact program. This section describes these
capabilities and includes the following sections:

• Built-in Processor Commands

• Command Qualifiers

• Special Characters and Keys That Control Execution

• Responses to a MATCH Prompt

Built-in Processor Commands

certain commands are built into the processor and are available to the user if
the program uses a command structure. These commands influence the execution
of the processor and include the following:

CQMv1AND
[command-name]

EXIT

INITIALIZE

RESUME

TEST[,mode
[,range]]

Lists all the commands, or lists all the subcommands
associated with the specified command-name, in the
currently loaded program

Generates an exit from the processor

Generates an exit from the current program and initiates
the loading of a new program

You are prompted with SYSTEM NAME> when you enter
INITIALIZE.

Causes a process to be resumed that was interrupted by a
CNTL-Y. (CNTL-Y is explained later in this seqtion under
"Special Characters that Control Program Execution ll

.)

Causes the processor to execute in test mode for the
specified range; if no mode is specified i turns of test
mode.

If you define a command in your program with the same name as these built-in
processor commands, the program-defined command takes precedence.

5-18

Running Transact

Command Qualifiers

Transact program commands, such as ADD CUSTOMER or UPDATE ADDRESS can be
qualified by use of command qualifiers. The qualifiers that are recognized by
the processor include

FIELD

PRINT

REPEAT

SORT

TPRINT

Indicates the prompted-for field length on
264X series terminals

Directs output to the line printer instead of
to the user1s terminal

Repeats a command sequence until a termination
character of 11]11 is entered from the terminal
or from the job stream

Sorts any data generated by an output verb
within the command sequence

Directs a line-printer-formatted display to
the user's terminal

For example, when the command string uDISPLAY COMPANY u causes a number of
companies to be listed on the terminal, then the end-user can enter the
command:

PRINT SORT DISPLAY COMPANY

This command produces a sorted list of companies on the line printer.

The processor can also accept match selection criteria if the command sequence
contains a PROMPT(MATCH) or a DATA(MATCH) statement. For example:

PRINT SORT DISPLAY COMPANY DEA

This command produces a sorted list on the line printer of all company names
beginning with the letters "DE". (Refer to IIMatch Specification Characters,1I
below, for an explanation of the character II A

".)

The REPEAT option could be added to this command string:

REPEAT PRINT SORT DISPLAY COMPANY = DEA
, GA

The command now produces a sorted list on the line printer of all company
names beginning with uDE" and a sorted list of all those beginning with "G".

The REPEAT option can be useful with commands that perform data entry. The
command REPEAT ADD TIME-SHEET causes the command sequence to repeat until the
user enters a terminating character.

5-19

Running Transact

Using FIELD accomplishes the same purpose as SET(OPTION) FIELD="><". It
causes the field length of a prompted-for data item to be displayed. For
example

NAME>
or

COMPANY>

<

Special Characters and Keys That Control Execution

Several categories of special characters and keys lend powerful programmer and
user control to Transact program execution. These characters and keys
include:

• CNTL-Y

• Data entry control characters

• Match specification characters

• Field delimiters

• Special keys for use with V/3000 forms

CNTL-Y. The processor recognizes CNTL-Y entered from the user terminal as an
operation break. It causes control to return to the Transact command
interpreter to await the next user command.

To generate a CNTL-Y, press the CNTL and Y keys simultaneously.

You may choose to use the CNTL-Y feature to halt program execution temporarily
in order to enter a TEST or COMMAND command. After using either of these
commands, you can continue execution by entering the command, RESUME. This
feature is especially useful during program debugging. For example, you can
enter the command TEST followed by a test-mode parameter when the program is
temporarily halted. When you resume execution, the program executes in the
specified test mode. (Refer to section 7 for a description of the test
facility) .

DATA ENTRY CONTROL CHARACTERS. Several special characters have a
predetermined meaning to the processor. They should not be used in any other
way as a response to a data entry prompt. They include the following:

Terminates the current operation. Control passes to the next higher
processing level, which may be the command level.

5-20

Running Transact

]] Terminates the current operation. Control passes to command level.

Generates null responses for all subsequent prompts when entered as a
response to an item prompt. It generates null responses for all
subsequent sub-item prompts within a compound item when entered as a
response to a compound item prompt.

In a command sequence, the effect of the! response is terminated by
the end of the command sequence; if the prompt is not in a command
sequence, the 1 response remains in effect for all subsequent prompts
up to the beginning of a command sequence, if any. The effect of the
response is also terminated if control passes again through the
statement to which the end user responded with 1. And, Transact
terminates the effect of the 1 when it performs automatic errOr
handling.

MATCH SPECIFICATION CHARACTERS. Several special characters help to set up
match specifications and are used in response to prompts issued by
PROMPT (MATCH) and DATA (MATCH) statements. They are further described in the
section entitled "Responding to a Match Prompt." Because of their special
meaning, they should only be used for these purposes in character strings.
They include the following:

Indicates a partial word selection criterion for alphanumeric string
data items.

• If "A" is the last character of the entry, then the selection is
based on a search for data base or item values that start with the
preceding character string.

For example, when the user enters "DEAII in response to a prompt
generated by a PROMPT(MATCH) statement, all values starting with the
characters "DE" in a subsequent data base or file operation are
selected.

• If "A" is the first character of the entry and it does not occur at
the end of the string, then values are selected that end with the
input string.

For example, "ADE" would retrieve all item values that end with the
characters "DE".

• If the "A" character appears in any other position in the entry,
values are selected that have any character in this position.

For example, an entry of "AEFAGA" will cause a selection of all
values having "EF" in the second and third positions and "G" in the
fifth position.

5-21

Running Transact

Indicates another partial word selection criterion for alphanumeric
string data items. When the user enters """II as the trailing
characters in an entry, then the selection is based on a search for
data base or file item values that contain the preceding character
string anywhere within them. For example, an entry of IIDE""II causes a
selection of all item values that contain II DEli in any location.

FIELD DELIMITERS. Two characters are used as field delimiters for data entry.
They cannot be used as part of an input string unless the field delimiter
characters have been suppressed or modified by the SET(DELIMITER) statement.
These field delimiters are the comma (,) and the equal sign(=).

If you want to use these characters as is, not as delimiters, you can do one
of two things: You can enclose text or responses containing these delimiters
within quotes, or you can use a SET(DELIMITER) statement to change the
processor's default delimiters to some other character.

Blanks are not normally treated as delimiters; leading and trailing blanks are
stripped from responses unless they are enclosed in quotes. You can also use
the BLANKS option with data entry verbs (DATA, INPUT, and PROMPT) to allow
leading blanks to be be included ina response.

Whatever the delimiter, delimiters can be very useful for responding to
prompts. When the user knows the prompt sequence for a particular operation,
then he or she does not have to wait for prompts, but can enter a string of
data fields separated by delimiters. The processor takes the appropriate
action. For example, assuming the default delimiter, suppose an end user
responds as follows to the command prompt:

>ADD TIME-SHEET = SMITH,77,3,2,V10400,lOO,

In this example, the processor recognizes the 11,11 as a delimiter, and
associates each response with the sequence of prompts that would normally be
issued by the ADD TIME-SHEET command.

SPECIAL KEYS FOR USE WITH VPLUS FORMS. Certain special keys may be used
during the processing of VPLUS forms sequences:

ENTER

fl-f7

When used in a GET(FORM) operation: Normal edit processing as
defined in the VPLUS form definition·is executed and the data is
transferred to the data register. Control passes to the next
statement in the program.

When used in a PUT(FORM) operation with a WAIT= option: Control
passes to the next statement in the program.

Control passes to the next statement in the sequence.

5-22

Running Transact

f8 Control returns to command level unless there are no commands to
execute, in which case the Exit/Restart prompt is issued.

This is the default action caused by these keys; this action may be
overridden by using the FREY= or the Fn= options with verbs that use the FORM
modifier.

Responding to a MATCH Prompt

The MATCH modifier, available with the PROMPT, DATA, and LIST verbs, provides
a powerful mechanism for specifying record selection criteria.

The response to a prompt issued by the PROMPT or DATA verb using the MATCH
modifier is set up in the match register. Then the processor uses it in
subsequent file or data set accesses. It provides a mechanism by which to
specify at run time which records to access.

The response to the prompt may take the following general format:

{[relation] valuel} {[relation] value2}
{ } [connector { }] ...
{valuel TO value2 } {value3 TO value4 }

Where:

relation

value

TO

connector

relational operators for a condition that is other than
equal; use one of the following:

NE not equal to
LT less than
LE less than or equal to
GT greater than
GE greater than or equal to

A numeric value or a partial string specification. A string
with embedded blanks must be enclosed in quotation marks.

Specifies a range of values bounded by the value preceding
and the value following TO.

A logical connector, one of the following:

AND Specifies that the record accessed must contain both
the value before this operator and the value after
this operator

OR Specifies that the record accessed must contain
either the value before or the value after this
operator

5-23

Running Transact

The precedence of these connectors is

AND then OR

To illustrate this syntax, assume the program contains the following
PROMPT(MATCH) statement:

PROMPT (MATCH) ITEM1 (IIEnter match criteria for ITEM1 11
);

When executed, this statement adds the item name, ITEMI, to the list register
and issues the specified prompt. It then sets up the the match register with
criteria entered by the user. For example:

Enter match criteria for ITEM1> GE 500 AND LE 1000

This response sets up the match register with two criteria, as shown below:

1 1
1 ITEM1 ITEM1 1
I(equal to OR greater than) AND less than OR equal to) 1
1 500 500 1000 1000 1
1 1

To further illustrate, the following examples are all legal responses to
prompts issued by DATA(MATCH) or PROMPT(MATCH) statements:

> 20 TO 30

This response sets up the match register to accept any value for the match
item that is between 20 and 30 inclusive. Note that the following response
gives identical results:

> GE 20 ANDLE 30

The following response sets up the match register to accept either the value
II LAX II or II CGY II :

> LAX OR CGY

This next response sets up the match register to accept values beginning with
II REG II or values beginning with IISAS II and containing the value II CITY II in any
position:

5-24

Running Transact

If you want to include one of the standard delimiters, comma or equa~s, within
a value, you must enclose the value in quotes; or you must specify an another
de~imiter with a SET(DELIMITER) statement. For example, you cou~d respond
with:

> "San Diego, California II

This response ensures that the comma is included in the match register
specification.

These examples illustrate how you can set up the match register with responses
to DATA(MATCH) or PROMPT(MATCH) statements. You can a~so set up the match
register in your program with SET(MATCH) statements. Using SET (MATCH) , you
can set up only one selection specification at a time, and you must also make
sure the values used in the match criteria are a~ready in the data register.
For example, the following four statements place the same criteria in the
match register as the response IIA OR BII to the prompt issued by a DATA(MATCH)
CREDIT statement.

LET (CREDIT) = A;
SET (MATCH) LIST (CREDIT);
LET (CREDIT) = B;
SET (MATCH) LIST (CREDIT);

AUTOMATIC ERROR HANDLING

The Transact/3000 Processor automatically traps various types of errors
encountered during the execution of a program and takes certain predetermined
actions. The processor traps errors during data entry and during data base or
file operations.

Data Entry Errors

The processor validates a value entered as a response to a data entry prompt
according to attributes defined for the data item in the dictionary or the
Transact program, that is, data type, field size, decimal field length,
integer field length. If it detects an error in the validation procedure,
then it issues an appropriate error message on the terminal and re-issues the
data entry prompt.

5-25

Running Transact

Data Base or File Operation Errors

The processor assumes that a data set or file error has been caused by the
user specifying an incorrect value for a key item or other incorrect user
input. (Other types of software error conditions should be eliminated before
the program is put into production mode.) If the processor detects an error,
then it generates an error message and returns program control to an
appropriate statement preceding the data set or file operation.

The return location can be the start of the command sequence. In this case,
the program reissues the command prompt so the user can start over with a
command. The return location could also be to a data entry prompt. For
instance, if an error occurs on the second of two data base or file operation
verbs, and there is a data entry prompt between the two, the return locations
is the statement immediately following the first data base or file operation.

The intention of the logic that determines the return location is to restart
at a program point that allows a corrected value to be entered, one that will
not cause the error to recur.

If you want to return to a location of your choice where you can process the
error, you can use the "ERROR=label" option on the associated file or data set
operation statement.

You can test the status register contents with an IF statement within your own
error routines at a label specified by the ERROR= option. You can display the
contents of the status register by first assigning it to a data item. The
data item should be type 1(4) to hold the maximum status value. For example:

DEFINE(ITEM) STAT 1(4);
LIST STAT;
LET (STAT) = STATUS;
DISPLAY STAT;

Transact does not take the ERROR= option when no entries are found with a
mUltiple access verb (DELETE, FIND, OUTPUT, or REPLACE).

Table 5-1 shows the contents of the status register following a data base or
file access statement.

5-26

Running Transact

Table 5-1. status Register Following Operations of Data Management Verbs
when STATUS Option Not Used

status Register Value

Verb

DELETE
FIND
OUTPUT
REPLACE

Operation Successful

number of entries
or records selected
(not necessarily
number retrieved)

Operation Not Successful

o no entries or
records found*

-1 = no master entry
(FIND (CHAIN) and
FIND(RCHAIN) only)

otherwise undefined

GET
PUT
UPDATE

1 one entry or
record found

-1 = entry not found

otherwise undefined

FILE(READ) number of bytes read -1 = end of file

otherwise undefined

PATH number of records in
IMAGE detail data
set chain

o

-1

no detail set chain

no master entry

FILE (CLOSE) 0
FILE(CONTROL)
FILE(SORT)
FILE (UPDATE)
FILE (WRITE)

successful
operation

otherwise undefined

undefined

* Entry not found does not activate the ERROR= option

5-27

Running Transact

USING THE STATUS OPTION

You can disable several aspects of the processor's automatic processing by
using the STATUS option. Use of the STATUS option sets the status register.
You can then test the contents of the status register (by using an IF
statement) before deciding what further processing should be done. The STATUS
option has a different effect depending on whether the statement in which it
appears performs data entry or accesses a data base or file.

Note that you can assign a value to the status register with a LET statement.
Thus, you can reset status to zero with the following statement:

LET STATUS = 0;

Data Entry Errors

The status register normally contains the number of characters entered in
response to the data entry verbs DATA, INPUT, and PROMPT. When the user
enters 11]11 or 11]]11 and the verb does not have a STATUS option, an escape to
the next processing level is generated as discussed above under IIData Entry
Control Characters ll

• The STATUS option suppresses the escape and allows you
to test the contents of the register before continuing processing.

Table 5-2 shows the contents of the status register when a data entry verb is
used with and without the STATUS option.

Table 5-2. STATUS with Data Entry Verbs

User Entry

<CR>
ABC
blanks
]
]]

Status Register
with no

STATUS Option

o
3

-3
escape
escape

Status Register
with the

STATUS Option

o
3

-3
-1
-2

When the STATUS option is used with the CHECK or CHECKNOT option and the user
enters a blank, a carriage return, 11]11, or 11]]11, then neither CHECK nor
CHECKNOT is performed.

The processor validates data for data entry verbs whether or not the STATUS
option is used.

5-28

Running Transact

Data or File Operation Errors

When you specify the STATUS option with data base and file operation verbs,
the automatic error handling described above is suppressed. Instead, you must
determine further processing according to the contents of the status register.
When STATUS is specified, the effect of the operation is described by the
value in the status register:

Status
Register Value

o

-1

>0

Meaning

The operation was successful.

An end-of-file condition occurred.

For a description of the condition that occurred,
refer to IMAGE condition word or KSAM file system
error documentation corresponding to the value.

In addition, STATUS has the following effects:

• It causes accesses and deletions that are normally mUltiple (iterative)
to be single. This affects the iterative verbs: DELETE, FIND, OUTPUT,
and REPLACE.

• It suppresses location of the chain head when DELETE, FIND, GET, REPLACE,
or OUTPUT is used with the CHAIN modifier. Before using these verbs with
the CHAIN modifier, you must locate the chain head with the PATH verb.

• It suppresses the normal rewind performed on a data set or file when
DELETE, FIND, GET, REPLACE, or OUTPUT is used with a SERIAL modifier.
You should force a rewind by closing the file or data set before using
any of these verbs with the SERIAL modifier.

Table 5-3 summarizes the effect of STATUS with data base and file operations
verbs.

5-29

Running Transact

Table 5-3. STATUS Option with Data Base and
File Operation Verbs

No Close or
Find Before the

No Automatic Operation Multiple
Error Handling (CHAIN and SERIAL Action

Verb or Recovery modifiers) Suppressed

CLOSE X
DELETE X X X
FIND X X X
GET X X
OUTPUT X X X
PATH X
PUT X
REPLACE X X X
UPDATE X

Further information about the STATUS option with these verbs is contained in
the verb reference section, Section 6.

5-30

I

TRANSACT/3000 1l1li
'---V_ER_B_S I VII

This section contains detailed specifications for using Transact verbs. The
verb specifications are arranged in alphabetic order for easy reference. Each
specification contains a single-phrase description of the verbis functions.
The verbis syntax is enclosed in a box, followed by a general description of
the syntax and how the verb is used.

The syntax for most of the verbs is described in terms of "statement Parts".
The specifications for each statement part are provided in detail.

Some verbs, however, have modifiers that change both the syntax and the
function of the verb. These verbs are described in terms of "Syntax Options".
Each syntax option description consists of the syntax for that option followed
by a description of the statement parts for that particular syntax option.
Information common to the verb regardless of the particular syntax option
precedes the description of the individual syntax options. Verbs with syntax
options include DATA, DEFINE, LET, LIST, PROMPT, RESET, and SET.

Examples are provided wherever applicable. The examples may be included
within the syntax descriptions, or they may follow the entire verb
description.

Table 6-1 groups Transact verbs by primary function and then tells
specifically what each verb does.

6-1

Transact Verbs

Table 6-1. Transact Verbs by Function

DECLARATIVE VERBS

Verb

DEFINE

ITEM

SYSTEM

Modifier

ENTRY

INTRINSIC

ITEM

None

None

Function

Defines program control labels as entry points into
program segments.

Declares MPE and sUbsystem intrinsics for
subsequent reference by PROC verb. Refer to
Appendix D.

Defines items not defined in dictionary.

Defines items not defined in dictionary;
DEFINE(ITEM) preferred.

Defines data bases, files, or forms used in
program; establishes the program environment.

6-2

Transact Verbs

Table 6-1. Transact Verbs by Function (cont'd)

OATA ENTRY AND RETRIEV AL VERBS

Verb

DATA

DISPLAY

FORMAT

GET

Modifier

None

ITEM

KEY

MATCH

PATH

SET

UPDATE

None

None

FORM

Function

Prompts for value; places value in data register.

Prompts for item name; locates name in list
register, replaces existing value in data register
with value entered in response to verbis second
prompt.

Prompts for value; places entered value in argument
register; does not affect the data register or the
key register.

Prompts for value; places entered value in data
register, and sets up match criteria in match
register based on user response (see section 5
IIResponses to a MATCH Prompt ll

).

Prompts for value; places entered value in data and
argument registers for subsequent keyed access to
KSAM file or IMAGE data set.

Prompts for value; places value in data register if
user enters value other than carriage return;
leaves existing value in data register if user
presses return.

Prompts for value; places entered value in data
register, and item name and value in update
register for subsequent use with REPLACE verb to
update KSAM or MPE file or IMAGE data set.

Generates display of values from data register.

Formats data specified by a subsequent OUTPUT or
unformatted DISPLAY verb.

Displays VPLUS form, retrieves data from form and
places retrieved data in data register (see Data
Base and File Operation Verbs for other GET
functions) .

6-3

Transact Verbs

Table 6-1. Transact Verbs by Function (cont'd)

DATA ENTRY AND RETRIEVAL VERBS (cont'd)

Verb Modifier

INPUT None

LIST None

KEY

MATCH

PATH

UPDATE

Function

Prompts for value; places value entered by user in
input register for subsequent test.

Adds item name to list register.

Adds item name to key register only.

Adds item name to list and match registers; uses
existing data in data register as match criteria.

Adds item name to list and key registers.

Adds item name to list and update registers; uses
existing data in data register as update value.

OUTPUT

PROMPT

None

None

KEY

MATCH

PATH

(see explanation below under "Data Base and File
Retrieval Verbs").

Prompts for value; adds specified item name to list
register, value entered by user to data register.

Prompts for value; adds specified item name to key
register, value entered by user to argument
register.

Prompts for value; adds specified item name to list
register; adds value entered by user to data
register; and sets up match criteria in match
register based on user response (see section 5
"Responses tb MATCH prompt").

Prompts for value; adds specified item name to list
and key registers, value entered by user to data
and argument registers.

6-4

Transact Verbs

Table 6-1. Transact Verbs by Function (cont'd)

OAT A ENTRY AND RETRIEV AL VERBS (cont'd)

Verb

PROMPT

PUT

SET

UPDATE

Modifier

SET

UPDATE

FORM

FORM

FORM

Function

Prompts for value; adds specified item name to list
register, and value entered by user to data
register if user response is other than a carriage
return.

Prompts for value; adds specified item name to list
and update registers, value entered by user to data
and update registers.

Displays VPLUS form and moves data from the data
register to the form (see Data Management and File
Operation Verbs for other PUT functions).

Transfers data from data register to VPLUS buffer
for sUbsequent forms file operations (see
Assignment Verbs for other SET functions).

Transfers data from the data register to the
currently displayed form (see Data Management and
File Operation Verbs for other UPDATE functions).

6-5

Transact Verbs

Table 6-1. Transact Verbs by Function (Cont'd)

DAT A BASE AND FILE OPERATION VERBS

Verb

CLOSE

DELETE

FILE

FIND

Modifier

None

None
CHAIN
CURRENT
DIRECT
PRIMARY
RCHAIN
RSERIAL
SERIAL

*CLOSE
CONTROL
OPEN

*READ
SORT

*UPDATE
*WRITE

None
CHAIN
CURRENT
DIRECT
PRIMARY
RCHAIN
RSERIAL
SERIAL

Function

Closes an MPE or KSAM file or an IMAGE data set or
data base.

Deletes one or more records from KSAM file or IMAGE
data set; modifiers determine type of access.
DELETE does not delete records from MPE files.

Operates on MPE files; modifier determines type of
operation. * indicates other Transact verb is
preferred; see FILE verb discussion for preferred
method.

Retrieves mUltiple records from an MPE or KSAM file
or mUltiple entries from an IMAGE data set, and
places retrieved data in data register; modifier
determines type of access.

6-6

Transact Verbs

Table 6-1. Transact Verbs by Function (cont'd)

DATA BASE AND FILE OPERATION VERBS (cont'd)

Verb

GET

OUTPUT

PATH

PUT

Modifier

None
CHAIN
CURRENT
DIRECT
PRIMARY
RCHAIN
RSERIAL
SERIAL

KEY

FORM

None
CHAIN
CURRENT
DIRECT
PRIMARY
RCHAIN
RSERIAL
SERIAL

None

None

FORM

Function

Retrieves a single record from an MPE or KSAM file
or a single entry from an IMAGE data set l and
places retrieved data in the data register;
modifier determines type of access.

Locates key value in IMAGE master data set l but
transfers no data.

Displays VPLUS form and retrieves data entered in
form; places retrieved data in data register.

Retrieves mUltiple records from an MPE or KSAM file
or mUltiple entries from an IMAGE data set l and
displays the retrieved data; display is formatted
according to preceding FORMAT statement I if any;
modifier determines type of access.

Establishes a chained access path to an IMAGE data
set or a KSAM file; may not be used with MPE files.

Moves data from data register to a record in an MPE
or KSAM file l or to an entry in an IMAGE data set.

Displays VPLUS form and transfers data from VPLUS
buffer to form.

6-7

Transact Verbs

Tab~e 6-1. Transact Verbs by Function (cont'd)

DATA BASE AND FILE OPERATION VERBS (cont'd)

Verb

REPLACE

UPDATE

Modifier

None
CHAIN
CURRENT
DIRECT
PRIMARY
RCHAIN
RSERIAL
SERIAL

None

FORM

Function

Updates va~ues in an MPE or KSAM fi~e or in IMAGE
data set; uses update register for new values,
which may include key va~ues; modifier determines
type of access.

Updates non-key va~ues in an MPE or KSAM fi~e or in
an IMAGE data set.

Transfers data from VPLUS buffer to current~y

displayed form.

6-8

Transact Verbs

Table 6-1. Transact Verbs by Function (Cont'd)

PROGRAM CONTROL VERBS

Verb

CALL

END

EXIT

GO TO

IF

LEVEL

PERFORM

PROC

REPEAT

RETURN

WHILE

Modifier

None

None

None

None

None

None

None

None

None

None

None

Function

Transfers control to another Transact program, a
REPORT program, or an INFORM program.

Ends a command sequence, a level, or a program.

Generates exit from Transact program to MPE
control, or from called Transact program to calling
Transact program.

Transfers control to a labelled statement.

Executes a simple or compound statement if
conditional test is truei optionally executes
another simple or compound statement 'if conditional
test is false.

Defines processing levels within a program.

Transfers control to a labelled statement; use
RETURN verb to return control to the statement
following PERFORM.

Calls an MPE system intrinsic or procedure in an SL
file.

Executes a simple or compound statement until a
condition is true.

Used with PERFORM to return control to statement
following PERFORM.

Repeatedly tests a condition clause and executes a
simple or compound statement while test is true.

6-9

Transact Verbs

Table 6-1. Transact Verbs by Function (cont'd)

ASSIGNMENT VERBS

Verb

LET

MOVE

RESET

SET

Modifier

None

None

DELIMITER

OPTION

STACK

COMMAND

DELIMITER

FORM

KEY

MATCH

OPTION

STACK

UPDATE

Function

Assigns result of an arithmetic operation or array
manipulation to data register or process control
cell.

Moves data within the data register, or moves a
character string or status information to the data
registerj does not check data type.

Resets values of delimiters.

Resets command options.

Resets stack pointer in list register.

Performs specified processor or user-defined
commands.

Sets delimiter to value other than default comma
(,) or equals (=).

Transfers data to VPLUS form buffer from data
register for subsequent forms file operation.

Sets value for key and argument registers.

Adds name in list register and value in data
register to match register for subsequent data set
or file operations.

Sets command options or overrides default execution
parameters.

Moves stack pointer in list register.

Adds name in list register and value in data
register to update register for subsequent file or
data set operation using REPLACE.

6-10

CALL

Transfers execution to another Transact program or to a REPORT or INFORM
program

*
* CALL file-name[([passwoxd] [,mode])]
* [,option-list];

*

*
*
*
*

CALL passes control to another Transact program, a REPORT program, or an
INFORM program. The called program operates as if it were the main program,
but it shares all or part of the calling program's data register space. The
called program returns to the calling program with an EXIT statement. Return
is to the statement following the CALL statement in the calling program.

When a CALL from a main program is executed, any open files or data sets
remain open across the call. When a CALL from- a called system to another
system is executed, files opened by this calling system do not remain open for
use by the system it calls.

While a called program is executing, both the calling program and the called
program are in the memory stack and share the data register.

STATEMENT PARTS

file-name The name of one of the following:

• Another Transact program (as specified in a SYSTEM statement).

• A REPORT program (as specified in a REPORT statement).

• An INFORM program.

If file-name names a report, REPORT or INFORM must be
specified in the option-list.

file-name may also be specified as (item-name), where
item-name is the name of an item that contains the name of
the program or report to be executed.

file-name can be fully qualified as:

file-name.gxoup.account

6-11

CALL

password A password for access to the data base used by the called
program. This parameter is optional, required only if the
called program does not specify a data base password in its
SYSTEM statement; Transact ~rompts for password at run time
if not specified here.

password may be specified as:

lIt;ext;-st;ring ll

it;em-name

The data base password.

The name of an item containing
the data base password.

mode

It is possible to supply the called program with more than
one password. This can be accomplished by defining a
compound item of type X or U, where the size of each element
in the compound is 8 characters. If a list of passwords is
passed to the called program, the first password on the list
is used to open the first data base specified in the SYSTEM
statement, the second password on the list is used to open
the second data base specified, and so on.

The mode in which the data base used by the called program is
to be opened. This parameter is optional, and may be
specified here if SYSTEM statement in called program does not
specify mode in which to open a data base; if mode is
specified in the SYSTEM statement of the called program, that
mode overrides the mode specified here. Default=l

mode may be specified as:

digit;

it;em-name

Number 1 to 8.

Name of item containing mode value.

It is possible to specify a list of modes to be passed to the
called program. This is done by passing a compound item of
type I(2). The mode list may be passed only if a password
list is also passed. Like the password list, the mode list
is used to open each of the- data bases specified in the
SYSTEM statement with a different mode.

6-12

CALL

option-list One or more of the following options separated by commas:

DATA=item-name The location in the data register where the called program
may begin using space. This space includes the location
of the specified item. If item-name is an "*", the called
program cannot use any space already used by the calling
program. If DATA= is omitted, CALL resets the list
register before transferring to the called program.

SIZE=number The number of words of data register space that the called
program can use. If DATA=item-name is also specified,
space starts at the location assigned to item-name. This
space cannot be larger than the number of unused words in
the data register and must start on a word boundary.

NOTE: When Transact CALLs a subprogram, the data
register space allocated to the subprogram is
determined by the DATA= and SIZE= parameters
of the CALL statement, not the DATA= option of
the SYSTEM statement in the called program.
The total size of the data register, however,
is determined by the DATA= option of the main
program1s SYSTEM statement.

SWAP

INFORM

REPORT

A request to write part of the caller's stack space out to
a temporary MPE file before the CALL is made. When
control is transferred back to the calling program, the
MPE file is read back and the stack is restored.

Use of the SWAP option increases the number of nested
calls that can be made before stack space is exhausted.
There is some overhead, however, associated with using the
SWAP option. Therefore it should be used only if
available stack space is very limited.

A request to run the INFORM report specified by file-name.
None of the INFORM menus are displayed. If needed, a data
base password is prompted for. After the INFORM report is
complete, control returns to the statement following the
call.

A request to run the REPORT report specified by file-name.
If needed, a data base password is prompted for. After
the report is complete, control returns to the statement
following the call.

6-13

CALL

EXAMPLES

CALL INVMGT (i'X43 II , 7),
DATA = ORDER,
SIZE = 1000;

calls the INVMGT program, provides a password for opening any data bases used
by INVMGT and allows the data base to be opened in mode 7 for exclusive read
access. INVMGT may use data register space beginning at the item named ORDER,
and it may use 1000 words of space.

DATA (MATCH) SYSNAME("Enter name of application to run :");
SET(KEY) LIST(USER);
GET(CHAIN) PASSWORD-DSET, LIST (SYSNAME , PASSWORD);
CALL (SYSNAME) (PASSWORD, 5),

DATA=*;

The user is prompted for the name of the application to run. Then the
password needed to access the data base is retrieved from the PASSWORD-DSET
detail data set.

DEFINE(ITEM) PASSWORD-LIST 2 X(8) :
MODE-LIST 2 1(2)
MODE-ITEM 1(2) = MODE-LIST(l);

MOVE (PASSWORD-LIST) = "PASSl PASS2 II.

LET (MODE-ITEM) = 1;
LET OFFSET(MODE-ITEM) = 2;
LET (MODE-ITEM) = 5;
CALL ORDPROC (PASSWORD-LIST,MODE-LIST), DATA=*;

This example shows how multiple passwords and mUltiple modes can be passed to
a called program.

6-14

CLOSE

Closes an MPE or KSAM file or an IMAGE data set or data base

*
* CLOSE file-name[/option-list]j

*

*
*
*

CLOSE closes and rewinds an MPE or KSAM file or an IMAGE data set, or closes
the entire data base. Except to rewind or set a file or data set to its
beginning, you need not use CLOSE. Transact automatically closes all files
and data sets at the end of a command sequence and at the end of a program.

You typically use CLOSE to set a file or data set to its beginning when you
are planning to use the STATUS option with a data base access verb that
performs serial acceSSj these verbs are FIND(SERIAL), GET(SERIAL),
DELETE (SERIAL) or OUTPUT(SERIAL). You would also use CLOSE before a
FILE(SORT) statement.

Two special forms of the CLOSE statement may be used to close print files
before you exit from Transact:

• CLOSE $FORMLIST

• CLOSE $PRINT

Closes the spool file used by the VPRINTFORM
intrinsic of VPLUS .

Closes the print file TRANLIST. This statement
is useful for directing output to the printer
using SET(OPTION) PRINT without terminating your
program.

STATEMENT PARTS

file-name The file or data set to be closed. If the data set is not in
the home base as defined in the SYSTEM statement, you must
specify the base name in parentheses as follows:

set-name(base-name)

You may close an entire IMAGE data base by specifying
file-name as a data base with the following format:

@[(base-name)]

To close the home base, omit base-namej to close any other
base, specify a base-name.

6-15

CLOSE

option-list One or more of the following options separated by commas:

ERROR=1 abel
([item-name])

NOMSG

STATUS

Suppress the default error return that the processor
normally takes. Instead, ~he program branches to the
statement identified by label, and the stack pointer for
the list register is set to the data item item-name. The
processor generates an error at execution time if the item
cannot be found in the list register.

If you do not specify an item name, as in

ERROR=label();, the list register is cleared.

If you use an * instead of item-name, as in
ERROR=label(*);, then the list register is not touched.

For more information, see "Automatic Error Handling ll in
section 5.

Suppress the standard error message produced by the
processor as a result of a file or data base error.

Suppress the processor action defined in section 5 under
"Automatic Error Handling". You will probably have to add
coding if you use this option.

When STATUS is specified, the effect of a CLOSE statement
is described by the value in the status register:

Status
Register Value

o

>0

Meaning

The CLOSE operation was successful.

For a description of the condition
that occurred, refer to IMAGE
condition word or MPE/KSAM file
system error documentation that
corresponds to the value.

6-16

CLOSE

You can use the STATUS option with CLOSE to do exit
processing on an error. For example:

CLOSE KSAM-FILE,
STATUS;

IF STATUS <> 0 THEN
GO TO ERROR-CLEANUP;

EXAMPLES

CLOSE ACCREC,
ERROR = FIX (CUST-NAME);

This statement closes the file ACCREC. If an error occurs, it passes control
to the statement labelled FIX and sets the list register to CUST-NAME.

6-17

DATA

Prompts for a value and changes the appropriate location in the data,
argument, match, and/or update registers

**
* *
* DATA[(modifier)] [item-name] [("prompt-string")] [,option-list] *
* [:item-name •••] ..• ; *
* *
**

DATA prompts the user for a value and, depending on the syntax option chosen,
places the value in one or more registers. The registers affected depend on
the verb modifier. Available modifiers are:

• none Place value in data register (see Syntax Option 1).

• ITEM Prompt for item name and if found, place value in data register
(see Syntax Option 2).

• KEY Place value in argument register (see Syntax option 3).

• MATCH Place value in data register; set up match criteria in match
register (see SYntax Option 4).

• PATH Place value in data register and in argument register (see Syntax
Option 5).

• SET Place value in data register unless user presses carriage return
(see Syntax Option 6).

• UPDATE Place value in data register; place item name and value in update
register (see Syntax Option 7).

The user enters a value in response to a prompt-string or to the item-name.
At execution time the processor validates the input value as to type, length,
and other characteristics defined in the Data Dictionary or by a DEFINE(ITEM)
statement. It validates the data before the register is modified. If the
processor detects an error, then it displays an appropriate error message and
reissues the prompt.

You normally use the DATA verb to change the value for a data item that has
already been specified in the list register. DATA searches the list register
from the top of the stack to the bottom to find the requested item-name. If
there are mUltiple occurrences of the same item in the list register, it uses
the last one placed on the list.

6-18

DATA

STATEMENT PARTS

modifier

item-name

*

prompt-string

option-list;

BLANKS

CHECK=
set-name

CHECKNOT=
set-name

NOECHO

NULL

RIGHT

Changes or enhances the action of DATA; often indicates the
register to which the input value should be added or the
register whose value should be changed (see "Syntax options",
below) .

The name of the data item in the list register whose value
should be added or changed in the appropriate register.

The item at the top of the list register; that is, the one
referenced by the last LIST or PROMPT statement unless
explicitly changed by a previous SET or RESET command.

The string that prompts the terminal user for the input value;
if not specified, the user is prompted by the item name or by
an entry text specified in the DEFINE(ITEM) statement or in
the dictionary, if one exists.

A field specifying how the data should be formatted and/or
other checks to be performed on the entered value. Include
one or more of the following options (separated by commas)
unless you use the ITEM modifier (Syntax Option 2):

Do not suppress leading blanks supplied in the input value;
leading and trailing blanks are normally stripped.

Check input value against the IMAGE master set set-name to
ensure that the value already exists. If the condition is
not met at execution time, the processor displays an
appropriate error message and re-issues the prompt. (Note:
you cannot use CHECK= with a KSAM or MPE file, nor can you
use it in a DATA(MATCH) statement.)

Check input value against the IMAGE master set set-name to
ensure that the value does not already exist. If the
option condition is not met at execution time, then the
processor issues an appropriate error message and re-issues
the prompt. (Note: you cannot use CHECKNOT= with a KSAM or
MPE file, nor can you use it in a DATA(MATCH) statement.)

Do not echo the input value to the terminal.

Fill item with ASCII null characters (binary zeros) instead
of blanks.

Right-justify the input value within the register field.

6-19

DATA

STATUS Suppress normal processing of "]" and 11]]11, which cause an
escape to a higher processing or command level. Instead,
set the status register to -1 if "]11 is pressed, and to -2
if "]]" is pressed. If the user enters one or more blanks,
then the status register contains -3. (The status register
normally contains the number of characters entered in
response to a prompt.) The STATUS option allows you to
control sUbsequent processing by testing the contents of
the register with an IF statement.

If the CHECK or CHECKNOT option is also used, then "]",
"]]", a carriage-return, or one or more blanks suppress the
DATA operation and control passes to the next statement.

SYNTAX OPTIONS

(1) DATA {it:em-name} [("prompt:-st:ring) "] [,opt:ion-list:];

{ * }

DATA with no modifier places the value entered as a response to prompt:-st:ring
in the data register. It is added in an area associated with the current data
item if "*" is used or with it:em-name if it is specified.

(2) DATA (ITEM) II prompt: - st:r ing II [,REPEAT] ;

DATA(ITEM) issues a prompt (prompt:-st:ring) to request an item name. When the
user enters an item name in response to this prompt, the processor looks for
this item in the list register. If the item name cannot be found, it displays
an error message and re-issues the prompt. If the item name is in the list
register, this item name is issued as a second prompt to which the user
responds with a value. If the entered value passes all ~dit checks, it is
placed in the data register area associated with the item name. otherwise, the
user is prompted for another value. If the user responds with a "]", the
processor re-issues the prompt:-st:ring prompt. If the user responds with "]]" I

the processor returns to command mode.

The ITEM modifier is typically used to update or correct one or more values in
the data register.

If you use the REPEAT option, then the operation is repeated until a
termination character (]) or a null response (carriage return) is entered in
response to the prompt-st:ring prompt.

(3) DATA(KEY) {it:em-name} [("prompt:-st:ring")] [,opt:ion-list:]

{ * }
[:it:em-name ...] ... ;

6-20

DATA

DATA(KEY) places the value entered as a response to prompt-string in the
argument register. If item-name is specified, this name is used as the prompt
for user input, unless this name is overridden by a prompt-string. If 11*11 is
specified, then the current name in the the key register is used as the prompt
for user input. The key register is changed by this verb only if it is empty.
If the key register is not empty, this verb does not change the item name
already there.

(4) DATA(MATCH) {item-name} [(IIprompt-stringll)] [,option-list]
{ * }
[:item-name .. .] ... ;

DATA(MATCH) places the value entered as a response to item-name or
"prompt-string" in the data register. It places the value in the data
register in an area associated with the current data item if the 11*11 is used
or with item-name if it is specified. The item name and value are also placed
in the match register as a selection criterion for subsequent data base or
file operations.

You cannot specify either CHECK= or CHECKNOT= with DATA(MATCH).

User responses to the DATA(MATCH) prompt are further explained in IIResponding
to a Match Prompt II in section 5.

The MATCH option allows one or more of the option-list items allowed with all
DATA options (see list above). You may also select one of the following, which
specify that a match selection is to be performed on a basis other than
equality.

MATCH option-list:

NE

LT

LE

GT

GE

LEADER

SCAN

Not equal to

Less than

Less than or equal to

Greater than

Greater than or equal to

Matched item must begin with the input string; equivalent
to the use of trailing ""'II on input

Matched item must contain the input string; equivalent to
the use of trailing 11"''''11 on input

6-21

DATA

TRAILER Matched item must end with the input string; equivalent to
the use of a leading II All on input

(5) DATA (PATH) {i t;em-name} [(II prompt; - st;ring II)] [, opt;ion-l ist;]
{ * }
[:it;em-name ...] ... ;

DATA(PATH) places the value entered as a response to prompt;-st;ring in the
data register. It is placed in the data register in an area associated with
the current data item if the "*11 is used or with item-name if it is specified.
The value is also placed in the argument register and the item name in the key
register for subsequent keyed access to KSAM files or IMAGE data sets.

(6) DATA(SET) {it;em-name} [(llprompt;-st;ring")] [,option-list]
{ * }
[: it;em-name . ..] ... ;

DATA(SET) places the value entered as a response to it;em-name or
prompt;-st;ring in the data register. It is placed in the data register in an
area associated with it;em-name, if it is used, or with the current item if 11*"
is used.

If the user responds to the prompt with a carriage return, then the existing
value in the data register is not touched. Note that this differs from the
other DATA statements which add blanks to the data register if the user
responds with a carriage return.

If you use the CHECK= or CHECKNOT= options and the specified condition is not
met, the item remains in the data register. In this case, you should reset
the data register to the previous item to avoid creating an endless loop
should the end user respond with a carriage return to the reissued prompt.
Both CHECK= and CHECKNOT= look for the item in the IMAGE master set even if
the user ent'ers a carriage return.

The primary use of the SET modifier is to update values in the data register
for existing items in the list register.

6-22

DATA

(7) DATA (UPDATE) {item-name} [(II prompt-string ll
)] [,option-list]

{ * }
[: item-name . ..] ... ;

DATA(UPDATE) places the value entered as a response to prompt-string in the
data register. It is placed in the data register in an area associated with
the current data item if the 11*11 is used or with item name if it is specified.
The item name and value are also placed in the update register for sUbsequent
use with the REPLACE verb.

EXAMPLES

DATA(KEY) ACCT-NO ("Account number?lI),
CHECK=ACCOUNT-MASTER;

This example asks the user for an account number, which is placed in the
argument register for sUbsequent access to the data set, ACCOUNT-MASTER. The
value is checked first, however, to see if it already exists in
ACCOUNT-MASTER. If it does not, then an error message is displayed and the
prompt is re-issued.

DATA(SET) QUANTITY("New stock quantity?II);

This example asks the user for a response. If the response is a carriage
return, the data register is not changed. If a value is entered, the new
value replaces the existing value in the data register space allocated to the
item QUANTITY.

DATA ADDRESS (IIEnter customer address ll
):

CITY ("Enter city"):
STATE (Enter 2-1etter state code ll

):

ZIP (EnterS-digit zip code");

In response to the prompt for ADDRESS, the user can enter the entire address
with each item separated by commas; or the user can enter one item of the
address at a time. If the entire address is entered at once, the remaining
item prompts are not issued.

For example, the following dialogue could occur:

Enter customer address> 312 Alba Road, San Jose, CA, 9S050

6-23

DATA

Alternatively, if the user wants to wait for each prompt, the dialogue could
be:

Enter customer address> 312 Alba Road
Enter city> San Jose
Enter 2-letter state code> CA
Enter 5-digit zip code> 95050

In either case, the entered data is moved to the data register locations
associated with ADDRESS, CITY, STATE, and ZIP. If the user presses return in
response to any single prompt, the associated area of the data register is
cleared. If you want the return key to leave the existing data, you must use
a DATA(SET) statement.

6-24

DEFINE

Specifies definitions of item names, names of MPE system intrinsics, or
segmented program control labels to be used by the compiler

**
*
* DEFINE(modifier) definition-list;

*

*
*
*

**

The DEFINE statement is used to define items, entry points into program
segments, or intrinsics called with the PROC statement. DEFINE statements are
generally the first statements that follow the SYSTEM statement in a Transact
program.

The function of the DEFINE statement depends on the modifier you choose, and
for DEFINE(ITEM) on the particular syntax option. The allowed modifiers and
the associated syntax options are:

• ENTRY Define a program control label within a segment as global to
the entire program (Syntax option 1).

• INTRINSIC Define an MPE system intrinsic to be called by the PROC verb
(Syntax option 2).

• ITEM

• ITEM

• ITEM

• ITEM

Define one or more item names (syntax option 3).

Define a synonym for an item name (Syntax option 4).

Define a marker item, which is a position in the list register
(Syntax option 5).

Define an item name whose attributes are to be satisfied by the
processor at execution time (Syntax option 6).

The modifier and definition-list depend on the syntax option you choose.

SYNT AX OPTIONS

(1) DEFINE(ENTRY) label[:label] ... ;

The ENTRY modifier causes a statement label within a program segment to be
global to the whole program so that statements in any segment can reference
this label. You need not define entry point labels within the root segment
(segment 0).

6-25

DEFINE

(2) DEFINE(INTRINSIC) intrinsic-name[:intrinsic-name] ... ;

The INTRINSIC modifier defines MPE system intrinsics that are called by the
PROC verb. Declaring the intrinsic in this manner causes automatic linking
rather than loading of the intrinsic at execution time, thus enabling
significant load-time savings. System intrinsics are treated the same as
user-written procedures.

Not all MPE intrinsics may be specified in a DEFINE(INTRINSIC) statement.
(Refer to appendix D for a list of the intrinsics that are recognized by the
Transact compiler.) If you include an intrinsic name that is not recognized
by the compiler, a compile time message will be issued. If this occurs,
remove the unrecognized intrinsic from the DEFINE(INTRINSIC) statement; the
intrinsic will be loaded at run time.

No compile-time parameter verification is done for system intrinsics used in a
Transact program unless they are declared using the DEFINE(INTRINSIC)
statement.

(3) DEFINE(ITEM) item-name [count]
[tgpe(size[,decimal-length[,storage-length]])]
[=parent-name[(position)]]
[,ALIAS=(alias-reference)]
[,COMPUTE=arithmetic expression]
[, EDIT= II edit-mask ll

]

[, ENTRY =II entry-text II]

[, HEAD= II heading-text II]

[,OPT]
[:item-name ...] ... ;

This option defines an item-name not defined in the dictionary. It also
redefines for this program only, items already defined in the dictionary. Any
number of item-names, separated by colons (:) can be specified in a single
DEFINE (ITEM) statement.

item-name The name of a data item or system variable to which the
definition applies.

When it refers to a data item, item-name identifies an item
that exists in a data base or file used by the Transact
program or that is to be used as a temporary variable. This
item mayor may not be included in the dictionary. The first
character must be alphanumeric, and the other characters may
be alphabetic (A-Z, upper or lowercase), digits (0-9), or any
ASCII characters except , ; : = < > () II or a blank space.
item-name can be up to 16 characters long.

6-26

count

type

size

DEFINE

Five system variables can be specified as an item-name: $CPU,
$DATELINE, $PAGE, $TIME, and $TODAY. Note that only the EDIT=
and HEAD= options are valid with these variables.

The number of occurrences of the item if it is a sub-item
within a compound item. (All of the sub-items have the same
attributes.)

Example: DEFINE{ITEM) SUB 24 X(30);

SUB is defined as a compound item that has 24 3D-character
sub-items.

The data type:
X any ASCII character
U uppercase alphanumeric string
9 numeric ASCII string (leading zeroes stripped)
Z zoned decimal (COBOL format)
P packed decimal (COBOL comp-3)
I integer number
J integer number (COBOL comp)
K logical value (absolute binary)
R real, or floating point, number
E real, scientific notation

If type is followed by a "+", then the item is unsigned, and
can have positive values only. Data entry values are
validated as positive and, if the type is Z or P, positive
unsigned value formats are generated.

Items defined as type E are displayed in the format: n.nnE+nn,
but cannot be entered in this format; they may be entered as
integer or real numbers.

(Refer to the discussion of Data Items in section 3 for
details on these data types.)

The number of characters in an alphanumeric string or the
number of digits, plUS d~cimal point if any, in a numeric
field.

Transact adds a display character for the sign to the
specified size of numeric items (types Z, P, I, J, R, and E)
unless the item type is defined as positive only with a "+".
You should be aware of this extra display character when
transferring data to VPLUS numeric fields.

(Refer to table 3-1 for the relation between the specified
size, its storage allocation, and display requirements.)

6-27

DEFINE

If both ~ype and size are omitted, the dictionary definition
of the item is used.

decimal-length The number of decimal places in a zoned, packed, integer or
floating point number, if any. The maximum decimal-lenguh is 1
less than the maximum s~orage-leng~h of the item.

s~orage-leng~h The byte length of the storage area for the data item, which
overrides the length calculated by the compiler from the type,
size, and decimal length values.

storage length of X and U type items is limited only by the
size of the data register. The maximum size of the numeric
item types 9, Z, P, I, J, and K is 27 digits or characters,
unless a decimal is included in which case the maximum size is
28 characters or digits including the decimal point. For R
and E types, the maximum recommended size is 22 characters and
digits, to allow for 17 accurate digits in the mantissa, a
decimal point, the sign of the exponent, the letter E, and 2
digits for the exponent.

paIen~-name

posi~ion

Name of parent if you are defining a child item; redefines all
or part of a parent item name defined elsewhere in the program
or in the dictionary. (Similar to an equate in SPL or an
equivalence in FORTRAN.)

The following is an example of redefinition of a parent item
defined as II NAME II •

DEFINE(ITEM) NAMEX(32):
FNAME X(10)=NAME(1):
MIDINIT X(l)=NAME(ll):
LNAME X(21) =NAME (12) ;

The byte position in the parent item that is the starting
position of the child item. Begin counting at position 1.
Default = 1.

In the following example, the child item YEAR starts in
position 1 of the parent item DATE, MONTH starts in position
3, and DAY in position 5.

DEFINE(ITEM) DATE X(6):
YEAR X(2)=DATE(1):
MONTH X(2)=DATE(3):
DAY X(2)=DATE(5);

6-28

ALIAS = (al ias
reference)

COMPUTE =
arithmetic
expression

EDIT =
lI edit-string ll

ENTRY =
II entry-text II

HEAD =
II heading-text II

DEFINE

Specify other names (aliases) by which item-name is known,
where alias-reference has the form:

item-namel[(file-listl) [,item-name2[(file-list2)]] ...]

The item defined as item-name is called item-namel in any of
the files or data sets in file-listl, item-name2 in any of the
files in file-list2, and so forth. If file-listl is omitted,
item-namel is the only alias-reference allowed. A file list
may consist of file or data set names separated by commas. If
a referenced data set is not in the home base specified in the
SYSTEM statement, the base name must be specified as
set-name(base-name).

Note that Transact does not retrieve alias definitions from
the dictionary. You must define any aliases in a DEFINE(ITEM)
statement in your program.

An alias ensures that when you reference item-name in your
program, this name is associated with the other names by which
the item is known in files or data sets. You always reference
such an item by its primary name, not its alias.

The following example defines the item QTY-ORD, which is known
in the file ORDERS as QUANTITY and in the file ORD-MAST as
QUANT-ORD. Note that all aliases must have the same
attributes as the primary item:

DEF1NE(1TEM) QTY-ORD 1(4), «use name QTY-ORD in program»
ALIAS=(QUANTITY(ORDERS) ,

QUANT-ORD(ORD-MAST)) ;

Arithmetic expression that specifies the computation to be
performed before the item is used in a display statement or
sort function. It may contain two or more variables separated
by one or more arithmetic operators. Use the form required by
the LET statement.

Default edit mask used for the item's value in any display
(see the DISPLAY and FORMAT statements for an edit mask
feature description).

Text string used as the default prompt string for the item
when used by the PROMPT and DATA statements.

Text string used as the default heading for the item in any
display function.

6-29

DEFINE

OPT OPT is used in combination with the compiler control option,
OPTI. When OPT is specified for an item, the compiler does
not store the item's textual name in the code file if the OPTI
control option has been specified for a compile run. OPT used
in conjunction with OPTI saves data segment stack space at
execution time. (Refer to section 3 for a discussion of the
OPTI compiler option.)

It is your responsibility to ensure that the item's textual
name is not required within the program. An item name is
needed for a prompt string, display item heading, or for the
LIST= option of verbs that access an IMAGE data base.

(4) DEFINE(ITEM) item-name=item-namel

This option defines a synonym for an item defined elsewhere in the program or
in the dictionary.

item-name A synonym for item-namel where item-namel is defined elsewhere
in the program or in the dictionary. item-name assumes the
definition of item-namel, but the processor always references
item-namel in any file or data set operation.

Use this option to provide an alternate name for an item. The
synonYm item-name exists only while the program executes; it
is not an item name in a file or data set, or the dictionary.
For example:

DEFINE(ITEM) PROD-NO 9(10):
PRODUCT-NUM=PROD-NO;

This statement defines the item PROD-NO as a type 9 IO-digit
item, and defines PRODUCT-NUM as a synonym for PROD-NO. The
same item can now be called either PRODUCT-NUM or PROD-NO
within the program.

(5) DEFINE(ITEM) item-name @[:item-name @] ••• ;

This option defines a marker item. A marker item marks a point in the list
register, but it reserves no space in the data register. The marker item must
be defined with the DEFINE(ITEM) statement and placed in the list register
with the LIST statement.

A marker item can be referenced by list pointer operations and list range
options. Marker items are useful in conjunction with the SET modifier on the
PROMPT verb. The PROMPT(SET) statement causes the contents of the list
register to be defined at execution time.

6-30

DEFINE

The following sequence of Transact statements shows an appropriate use of the
marker item:

DEFINE(ITEM) MARKER1 @: MARKER2 @;
LIST MARKER 1;
PROMPT(SET)EMPL:DEPT:PHONE:ROOM:LOCAT10N;
LIST MARKER2;
UPDATE EMPLOYEES,L1ST=(MARKERl :MARKER2);

The first statement defines marker 1 and marker 2. The second statement
assigns space in the list register to marker 1. The third statement prompts
for new information about employees. It is not known which and how much
information will be entered. When data entry is complete, a second marker is
assigned in the list register. Then the EMPLOYEES file is updated with all
the information in the list and data registers between marker 1 and marker 2.
(This example assumes that the current entry has been set up appropriately by
a previous get of the EMPLOYEES data set.)

Generally, you know only the start and end positions of the data entered, but
not how many entries will be made. By placing marker items in the list
register using the LIST statement, you are able to pass a variable number of
items to the EMPLOYEES file.

(6) DEFINE (ITEM) item-name * [:item-name *] ... ;

This option defines an item name whose attributes should be satisfied by the
processor at execution time rather than by the compiler at compile time. Note
that only the basic attributes can be resolved at execution time; these are
count, type, size, decimal-length, and storage length, not such secondary
attributes as heading text or entry text.

EXAMPLES

The following example shows how to define a key item for KSAM file access,
assuming the key is a lO-character item starting in byte 3 of an aO-character
record.

DEF1NE(ITEM) RECORD X(80):
DEL-CODE 1(2) RECORD(l):
KEY X(10)= RECORD(3);

MOVE (KEY) "A123456789";
SET (KEY) LIST(KEY);
FIND(CHA1N) KFILE,

LIST= (RECORD) ;

6-31

«reserve 1st word for delete code»

«assign value to key»
«use key value to find chain head»

«read entire record »

DEFINE

In another example, a portion of a key is defined as a IIgeneric keyll:

DEFINE(ITEM) RECORD X(80) :
DEL-CODE 1(2) = RECORD(l):
KEY X(lO) = RECORD(3):
GEN-KEY X(2) RECORD(3);

The key search is similar to that shown above; use a GEN-KEY value to locate
all records with key values starting with the same first two characters.

6-32

DELETE

Deletes file or data set entries

**
*
*
*

DELETE[(modifier)] file-name[,option-list]i
*
*
*

**

DELETE specifies the deletion of one or more file entries. For mUltiple
deletions, the entries to be deleted are determined by match criteria
specified in the match register. If you do not specify match criteria for a
mUltiple deletion, DELETE deletes all entries in a chain or in the entire file
or data set, depending on the modifier.

DELETE cannot be used with MPE files.

STATEMENT PARTS

modifier

none

CHAIN

CURRENT

DIRECT

PRIMARY

To specify type of access to the data set or file, choose one
of the following modifiers:

Delete an entry from an IMAGE master set based on the key
value in the argument registeri this option does not use
the match register.

Delete entries from an IMAGE detail set or a KSAM chain.
The entries must meet any match criteria set up in the
match register. The contents of the key and argument
registers specify the chain in which the deletion is to
occur. If no match criteria are specified, all entries are
deleted. Match criteria must be included in a LIST=
construct.

Delete the last entry that was accessed from the file or
data set.

Delete the entry stored at the specified record number in
an MPE or KSAM file, or an IMAGE detail or master data set.
Before using this modifier, you must store the record
number as a doubleword integer in the item specified by the
RECNO=option.

Delete the IMAGE master set entry stored at the primary
address of a synonym chain. The primary address is located
through the key value in the argument register.

6-33

DELETE

RCHAIN

RSERIAL

SERIAL

file-name

option-list

Delete entries from an IMAGE detail set or a KSAM chain in
the same manner as the CHAIN option, only in reverse order.
For a KSAM file, this operation is identical to CHAIN.

Delete entries from a file in the same manner as the SERIAL
option, except in reverse order. For a KSAM file, this
operation is identical to SERIAL.

Delete entries in serial mode from an MPE or KSAM file or
from an IMAGE data set that meet any match criteria set up
in the match register. If no match criteria are specified,
all entries are deleted. If match criteria are specified,
the match items must be included in a LIST= option.

The file or data set to be accessed in the deletion. If the
data set is not in the home base as defined in the SYSTEM
statement, the base name must be specified in·parentheses as
follows:

set~name(base-name)

One or more of the following options, separated by commas:

ERROR=label
([item-name])

LIST=
(range-list)

Suppress the default error return that the processor
normally takes. Instead, the program branches to the
statement identified by label, and the stack pointer for
the list register is set to the data item item-name. The
processor generates an error at execution time if the item
cannot be found in the list register.

If you omit item-name, as in ERROR=label()i, the list
register is cleared.

If you use an "*" instead of item-name, as in
ERROR=label(*)i, then the list register is not touched.

For more information, see the section entitled "Automatic
Error Handling" in section 5.

The list of items from the list register to be used for the
DELETE operation. If the LIST= option is omitted, all the
items in the list register are used.

Only the items specified in a LIST= option have their match
conditions applied if match conditions are set up in the
match register. (The match register may be used only with
the modifiers CHAIN, RCHAIN, SERIAL, or RSERIAL.)

6-34

DELETE

Each retrieved entry is placed in the area of the data
register indicated by LIST= before any PERFORM= is
executed, and then the delete is performed.

The options for range-list and the items they cause DELETE
to access include the following:

(item-name)

(item-namel:
item-name2)

(item-namel:)

(:item-name2)

(item-namel,
item-name2,

item-namen)

()

A single item.

All the items from item-namel
through item-name2.

If item-namel and item-name2 are marker
items (see DEFINE(ITEM) verb), and if there
are no items between the two in the list
register, no data base access is performed.

The items from item-namel through the item
indicated by the current stack pointer.

The items from the beginning of the list
register through item-name2.

The items are selected from the list
register. For IMAGE, items can be
specified in any order. For KSAM and
MPE, items must be specified in the
order of their occurrence in the record.
This option incurs some system overhead.

A null item list. That is, delete the entry
or entries, but do not retrieve any data.

LOCK

NOCOUNT

NOMATCH

NOMSG

Lock the specified file or data base unconditionally. If a
data set is being accessed, the entire data base is locked
the whole time that DELETE executes. If LOCK is not
specified, the file or data base is locked before each
entry is retrieved, remains locked while the entry is
processed by any PERFORM= statements, but is unlocked
briefly before the next entry is retrieved.

Suppress the message normally generated by the processor to
indicate the number of deleted entries.

Ignore any match criteria set up in the match register.

Suppress the standard error message produced by the
processor as a result of a file or data base error.

6-35

DELETE

PERFORM=1abel Execute the code fo~~owing the specified label for every
entry retrieved by the DELETE verb before the DELETE
operation. The entries may be optionally selected by match
criteria.

This option allows operations to be performed on retrieved
entries without your having to code loop-control logic.

You may nest up to a maximum of 10 PERFORM options.

RECNO=item-name With the DIRECT modifier: you must define item-name to
contain the doubleword integer address of the record to be
deleted.

With other modifiers: Transact returns the record number
of the deleted record in the doubleword integer item-name.

SINGLE

SOPT

STATUS

Delete only the first selected entry.

Suppress the processor optimization of IMAGE calls. This
option is intended to support a data base operation in a
performed routine that is called recursively. It allows a
different path of the same detail data set to be used at
each recursive entry rather than optimizing to the same
path. It also suppresses generation of an IMAGE call list
of 11'1(11 after the first call is made.

Suppress processor actions defined in section 5 under
II Automatic Error Handling ll

• You will probably have to add
coding if you use this option.

When STATUS is specified, the effect of a DELETE statement
is described by the value in the status register:

Status
Register Value

o

-1

>0

Meaning

The DELETE operation was successfu~.

A KSAM or MPE end-of-file condition
occurred.

For a description of the condition that
occurred refer to IMAGE condition word
or MPE/KSAM file system error documen
tation corresponding to the value.

6-36

DELETE

STATUS causes the following with DELETE:

• Normal mUltiple accesses/deletions become single,

• The normal rewind done by the DELETE is suppressed, so
CLOSE should be used before DELETE(SERIAL).

• The normal find of the chain head by the DELETE is
suppressed, so PATH should be used before DELETE(CHAIN).

In the following example, the programmer wants to be sure
that an entry is not in MASTER-SET. Therefore, there are
two acceptable conditions: either a status register value
of zero (delete successful) or a status register value of
17 (IMAGE error 17 meaning record not found) is acceptable.

DELETE MASTER-SET,
LIST=(KEY-ITEM) ,
STATUS;

IF STATUS = 17, 0 THEN
DISPLAY "ENTRY REMOVED II

ELSE
DO

DISPLAY "ERROR ON DELETE FROM II

"MASTER-SET" ;
GO TO ERROR-CLEANUP;

DOEND;

6-37

DELETE

EXAMPLES

PROMPT (MATCH) DEBT-LEVEL,LT;

DELETE(CHAIN) DEBT-DETL,
LIST=(DEBI-LEVEL) ;

This example deletes all entries that contain a DEBT-LEVEL less than the
number entered by the user. DEBT-LEVEL is required in the LIST parameter
because DELETE reads each record in the chain into the data register area
associated with DEBT-LEVEL in order to check the match condition before
deleting the entry.

PROMPT(MATCH) ZIP (IIDELETE ZIP CODEII);

DELETE(RSERIAL) DETAIL-SET,
SINGLE,
LIST=(NAME:ZIP) ,
PERFORM=LISTIT;

This example deletes only the last entry in the data set that matches the zip
code entered by the user.

6-38

DISPLAY

Produces a display of values from the data register

**
*
* DISPLAY[(TABLE)] [display-lis~]]i

*

*
*
*

**

DISPLAY generates a display from values in the data register. The display can
be formatted and enhanced by character strings specified in the display-lis~.

If you do not specify a format l the display is formatted by any active FORMAT
verb.

STATEMENT PARTS

none or TABLE

TABLE

display-lis~

(No display-lis~.) The processor generates a display
according to the specifications of an active FORMAT statement.
If there is none l the following default formatting
occurs:

• Values are displayed in the order in which they appear
in the data register.

• A heading consisting of one of the following accompanies
each value:

• the heading specified by the HEAD= option in a
DEFINE (ITEM) statement I

• the heading taken from the dictionarYI or

• the associated data item name in the list register.

• Each value is displayed in a field whose length is the
greater of the data item size or the heading length.

• A single blank character separates each value field. If
a field cannot fit on the current display line I then the
field begins on a new line.

Headings are displayed only at the start of each new page in
the information display. Without this modifier I headings are
displayed each time the DISPLAY statement is executed.

The display list contains one or more display fields and their
formatting parameters. Several fields can be displayed. The

6-39

DISPLAY

fields and their formatting parameters are separated by
commas; the field/format-parameter combinations are separated
from each other by colons, as shown in the following general
format:

display-field[,format-parameter] ...
[:display-field,[format-parameter] ...] .. . ;

If you omit display-list, the display is formatted as
described under II none II and IITABLE II .

display field

format
parameters

CCTL=number

CENTER

The following options are possible for display fields:

• A reference to a data item name in the list register;

• A child item name whose parent item is in the list
register; or

• A character string delimited by quotation marks.

If the requested item cannot be found in the list register,
then the processor generates an error at execution time.

Five system variables can also be used as display fields:

$CPU displays the cumulative amount of CPU time used
by the Transact processor for the program, in
milliseconds.

$DATELINE displays the current date and time in the form
Fri, Jul 16, 1983, 3:07 P.M.

$PAGE displays the current page number.

$TIME displays the current time; the default format is
HH::MM AA (e. g. , 03: 07 PM).

$TODAY displays the current date; the default format is
MM/DD/YY (e.g. , 07/16/83) .

One or more of the following formatting parameters can
follow the display field name:

Issue a carriage control code of number (decimal
representation) for the display line containing the
associated display field. Carriage control codes are
found in the MPE Intrinsics Manual.

Center a display field on a line. The entire field,
inclUding leading or trailing blanks, is centered.

6-40

COL=number

EDIT=
lI edit-string ll

DISPLAY

start the display field in the absolute column position
specified by number. The first column position is 1.

If the display is already at a column position greater
than the line width of the display device, the field is
not displayed.

Characters that designate edit masks.

The following characters have special edit mask meanings
for all display fields except system variables $TIME and
$TODAY (all other characters are treated as insert
characters) :

Insert the character from the source data field into
this position in the display field.

Z Suppress leading zeros. Note that you must use an
uppercase z.

$ Use floating dollar signs.

* Fill field with leading asterisks.

Align the implied decimal point as specified in the
dictionary or in a DEFINE(ITEM) definition statement
with the decimal point in the edit mask.

Ignore the implied decimal point and replace this
character with a decimal point.

To denote a negative value with a trailing minus sign,
use the minus sign as the final character of the edit
string. To denote negative values with a trailing II DR II
or IICR II , add IICR II or II DR II to the edit string. Some
edit-string examples:

Number Edit string Result

1234 $$,$$$!AA $12.34
123456 $$,$$$1 AA $1,234.56
123456 ***,**$1 AA *$1,234.56
000009 ZZZZ!AA .09

-123456 $$,$$$!AACR $1,234.56CR
230479 AA/AAjAA 23/04/79

6-41

DISPLAY

System variables (except $DATELINE) can also be edited.
The edit mask characters just defined can be used for
$CPU and $PAGE. Special editing characters are used for
$TIME and $TODAY.

For $TIME, characters in the edit-mask string are
processed as follows:

H Displays hour with no leading blank or zero if
hour < 10.

ZH Displays hour with leading blank if hour < 10.

HH Displays hour with leading zero if hour < 10.

24 Displays hour as expressed on a 24-hour clock;
used as a prefix to H.

M Displays minute with no leading blank or zero if
minute < 10.

ZM Displays minute with leading blank if minute < 10.

MM Displays minute with leading zero if minute < 10.

S Displays second with no leading blank or zero if
second < 10.

ZS Displays second with leading blank if second < 10.

SS Displays second with leading zero if second < 10.

T Displays tenth of a second.

A Displays the next letter in the AM or PM sequence
in uppercase.

a Displays the next letter in the AM or PM sequence
in lowercase.

Except for II all , all other $TIME edit mask characters
must be in uppercase. All characters other than edit
mask characters are· inserted on a character by character
basis.

6-42

DISPLAY

Here are some examples of how edit masks change the
format of the $TIME value 3:07:32 PM:

Edit Mask

HH:MM:SS
24H:M:S
H:MM:SS a.a.
ZH:ZM:SS AA

Displayed Time

03:07:32
15:7:32
3:07:32 p.m.

3: 7:32 PM

For $TODAY, characters in the edit mask string are
processed as follows:

D Displays day of the month with no leading blank or
zero if day < 10.

ZD Displays day of the month with leading blank if
day < 10.

DD Displays day of the month with leading zero if day
of the month < 10.

DDD Displays Julian day of year.

M Displays month with no leading blank or zero if
month < 10.

ZM Displays month with leading blank if month < 10.

MM Displays month with leading zero if month < 10.

nM Displays the first n letters of month name in
uppercase; if n > number of letters in month name,
trailing blanks are not inserted.

nm Displays the first n letters of month name in
lowercase except for the first letter, which
appears in uppercase.

YY Displays last two digits in current year.

YYYY Displays current year.

nW Displays first n letters of day of week in
uppercase; if n > length of the week name, no
trailing blanks are inserted.

nw Displays first n letters of day of week in
lowercase except for the first letter, which
appears in uppercase.

6-43

DISPLAY

All edit string characters must be in uppercase, except
for 11 m" and II W". All characters not defined as an edit
string character are inserted on a character by
character basis.

Various edit masks applied to the $TODAY date JUly 16,
1982, make it appear as follows:

Edit Mask

3w. 3m DD, YYYY
DD 3M, YY
M-DD-YY
MM/DD/YY
DDD, YYYY

Displayed Date

Fri. Jul 16, 1982
16 JUL, 82
7-16-82
07/16/82
197, 1982

HEAD=
II character
string"

JOIN[=number]

LEFT

LINE[=number]

LNG=number

NEED=number

NOCRLF

NOHEAD

Use the character-string as a heading rather than the
default, which is the heading from the dictionary, the
heading from DEFINE (ITEM) , or the item or system
variable name.

Place this number of spaces between the last non-blank
character of the current line and the first character of
the current display field. To concatenate the character
strings, use JOIN=O. Default = 1.

Left justify the data item value in the display field.
This is the default specification.

start the display field on a new line or on a line after
a line skip count specified by number. If the print
device being used can over-print and you want it to do
so, you should specify "LINE=O". Default = 1.

Truncate the display field to this number of characters.
If this option refers to a compound item, then that item
is displayed within a display field length of number.

Print the current line at the top of the next page if
there are fewer than the specified number of lines
between the current line and the bottom of the page.

Do not issue a carriage return and line feed for the
display line containing the display field.

Suppress the default heading for this item reference.

6-44

DISPLAY

NOSIGN A numeric display field is always positive and no sign
position is required in the display field. If a
negative value occurs, the display field contains a
string of minus signs (-).

PAGE[=number] Start the display field on a new page or on a page after
a page skip count specified by number. Default = 1.

RIGHT Right justify the data item value in the display field.

ROW=number Place the display field at absolute line location
number. The first line position is 1. If the display
is already at a line position greater than number, then
"LINE=l" is in effect.

SPACE[=number] Place this number of spaces between the end of the
previous display field and the start of the current
display field. To concatenate fields, use SPACE=O.
Default=l.

TITLE Display the associated display field and any preceding
display fields only at the start of each new page for
which this statement applies.

TRUNCATE Truncate this display field if it overflows the end of
the display line; if field is a numeric type, display
pound signs and do not truncate.

ZERO[E]S Right justify a numeric data value in the display field
and insert leading zeros.

6-45

DISPLAY

EXAMPLES

Assuming the items NAME, ADDRESS, CITY, DISCOUNT, and CUR-BAL have been
defined and also specified in a LIST statement, then the following code:

DISPLAY NAME, COL=5:
ADDRESS, SPACE=3:
CITY, SPACE=5:
"DISCOUNT RATE IS", LINE=2, COL=5:
DISCOUNT, NOHEAD:
"%", JOIN=O:
"CURRENT BALANCE IS", SPACE=10:
CUR-BAL, EDIT="$,$$$,$$$.AA", NOHEAD;

results in the following display:

NAME
SMITH R.

ADDRESS
3304 ROCKY ROAD

CITY
COLORADO SPRINGS

DISCOUNT RATE IS 7.5% CURRENT BALANCE IS $14,734.05

The following example illustrates the use of the TABLE modifier and the TITLE
option.

DISPLAY(TABLE)
"CUSTOMER LIST", COL=25, TITLE:
CUST-NO, LINE=2:
FIRST-NAME, SPACE=3:
LAST-NAME, JOIN=3:
STREET-ADDR, SPACE=3:
CITY, SPACE=3:
ZIP, SPACE=3;

This statement produces a display that prints the title "CUSTOMER LIST"
at the start of each page as a result of the TITLE option, and only
prints the item heads once on each page as a result of the TABLE
modifier.

6-46

END

**
*
*
*
*
*

{(LEVEL)
END[{ system-name

{(SEQUENCE)

}
}] ;
}

*
*
*
*
*

**

The function of the END verb depends on the statement parts used.

STATEMENT PARTS

none

LEVEL

system-name

SEQUENCE

At the end of a command sequence: control returns to command
level (the current command if the REPEAT qualifier is in
effect) or to the beginning of a current level.

At the end of a program: issues the message EXIT OR RESTART
(E/R)? to Which you can respond E to exit from the program or
R to restart the program; neccessary only if program branches
can cause more than one program end.

In either case, the END statement resets the program
registers.

The end of the current level. This causes control to fall
through the level to the statement following the END(LEVEL)
statement and resets the registers to their condition
immediately before the level sequence began.

If you do not use (LEVEL) in this option, Transact generates a
loop after the first execution of the level. The loop begins
at the top of the level. The registers are reset to whatever
their values were at the beginning of the level.

Information on levels is contained in the section that
describes the LEVEL verb.

The end of the executing program (name specified in the SYSTEM
statement); necessary if program is one of several included in
a text file. The registers are reset.

The end of a command sequence; control passes unconditionally
back to command level. The registers are reset.

6-47

END

EXAMPLES

$$ADD:
$PROGRAM:

PROMPT (PATH) PROG-NAME:
VERSION:
DESCRIPTION;

PUT PROGRAMS.
LIST=(PROG-NAME:DESCRIPTION) ;

END;

END terminates the command sequence and clears the program registers.

SYSTEM PROG 1;

END PROG1;

This END statement terminates the program PROGI.

LEVEL;

«process level code»

END;

This END statement terminates processing of the level, resets the program
registers to their state before the LEVEL statement, and returns control to
the LEVEL statement.

LEVEL;

«process level code»

END(LEVEL) ;

NEXT:

This END statement terminates processing of the level, resets the program
registers to their state before the LEVEL statement, and passes control to the
next statement, in this case, the first statement following the label, NEXT.

6-48

EXIT

Generates an exit from the Transact program to MPE or from a called Transact
program to the calling Transact program

*
*
*

EXIT;
*
*
*

EXIT causes control to return to the operating system from the processor if it
was processing a main program; if the processor was processing a called
program, control returns to the the calling program, where processing
continues.

Unlike END, EXIT does not issue the EXIT OR RESTART {E/R}? prompt.

6-49

FILE

Reads, writes, updates, sorts, and otherwise operates on MPE files

*
* FILE(modifiex) file-name[,option-list];
*

*
*
*

NOTE: Several FILE operations can be performed by other Transact verbs.

For: FILE(CLOSE)
FILE (READ)
FILE(UPDATE)
FILE (WRITE)

Use: CLOSE
GET or FIND
UPDATE
PUT

The Transact verbs in the right column are more general; they apply to KSAM
files and IMAGE data sets as well as to MPE files. They also provide more
options, but they are not as efficient as the FILE verb for simple MPE file
operations.

FILE specifies operations on any MPE file defined in the SYSTEM statement.
The operations that FILE performs are determined by the following verb
modifiers:

• CLOSE Closes the specified file (see Syntax Option 1)

• CONTROL Performs an FCONTROL operation (see Syntax option 2)

• OPEN Opens specified file (see Syntax option 3)

• READ Reads record from specified file (see Syntax Option 4)

• SORT Sorts specified file (see Syntax Option 5)

• UPDATE Replaces current record in specified file (see Syntax Option 6)

• WRITE Writes record to specified file (see Syntax Option 7)

6-50

FILE

STATEMENT PARTS

modifier

file-name

option-list

For the meaning of particular modifiers, see the syntax
options' below.

The name of the file as defined in the SYSTEM statement,
including the back-refe:r:ence indicator (*)if applicable. A
file is opened automatically the first time it is referenced.

The allowed options for option-list are unique to each syntax
option.

SYNTAX OPTIONS

(1) FILE(CLOSE) file-name;

FILE(CLOSE) closes the file identified by file-name. If $PRINT is specified as
the file name, the print file TRANLIST is closed.

(2) FILE (CONTROL) file-name, CODE =number [,PARM=item-name];

FILE(CONTROL) specifies that the FCONTROL operation designated by CODE=number
is to be performed. The value of number must be an unsigned integer. (Refer
to the FCONTROL intrinsic description in the MPE Intrinsics Manual for the
meaning of number.)

Any value supplied or returned by the FILE(CONTROL) operation uses the data
register field identified by PARM=item-name.

FILE(CONTROL) is the only statement that performs the FCONTROL functions on an
MPE file.

(3) FILE (OPEN) file-name,LIST=(item-namel:item-name2);

FILE(OPEN) opens the file identified by file-name. It is required only with
the FILE(SORT) operation. It structures the list register with item-namel
through item-name2 for the sUbsequent sort. This operation is required only
if the file already exists and it is to be sorted by the system.

FILE(OPEN) is the only statement that opens an MPE file.

6-51

FILE

(4) FILE(READ) file-name,LIST=(item-namel:item-name2);

FILE (READ) reads a single record from the file identified by file-name and
moves the record contents to the portion of the data register corresponding to
item-namel through item-name2 in the list register. At the completion of the
operation, the status register contains either the number of characters read
or -1 to indicate end-of-file.

(5) FILE(SORT) file-name
{ SORT=(item-namel:item-name2) }
{ } ;
{ SORT=(item-namel[(ASC)] [,item-name2[(ASC)]] ...) }

[(DES)] [(DES)]

FILE(SORT) executes the HP/3000 SORT utility to sort an existing file. The
sort instruction can consist of (1) a range of items in the order that they
are to be sorted (ascending order only), or (2) a list of items or sub-items
in the order that they are to be sorted and a specification of ascending
(default) or descending order.

Provided that the access mode of SORT is defined for the file, an end-of-file
is automatically written into the file before the sort, and the file is
rewound following the sort.

FILE(SORT) is the only command that causes a sort on an MPE file. FILE(SORT)
requires a preceding FILE(OPEN) with a LIST= option if the file to be sorted
has not previously been accessed in the program.

(6) FILE(UPDATE) file-name,LIST=(item-namel:item-name2);

FILE(UPDATE) replaces the current record in the file identified by file-name.
The record contents are defined by item-namel through item-name2 in the list
register.

(7) FILE(WRITE) file-name,LIST=(item-namel:item-name2);

FILE(WRITE) writes a single record to the file identified by file-name. The
record contents are defined by item-namel through item-name2 in the list
register. At the completion of the operation, the status register contains
either the number of characters written or -1 to indicate end-of-file.

6-52

FILE

EXAMPLES

SYSTEM TEST,
BASE=INVTRY,
FILE=TAPE(WRITE(NEW),80,1 ,5000), ... ;

FILE(CONTROL) TAPE,
CODE=7,
PARM=LNUM;

The FILE(CONTROL) statement causes FCONTROL operation 7 to be performed; that
is, it spaces the tape forward to the tapemark. The value it returns is placed
in the data register field specified by LNUM. (Refer to MPE In~rinsics Manual
for more information regarding FCONTROL.)

ITEM A X(10) :
B X(20):
C X(15);

FILE(OPEN) DATAFILE,
LIST= (A: C) ;

This example maps the data register for a sUbsequent FILE(SORT).

6-53

FIND

Performs mUltiple retrievals from a file or data set

*
* FIND[(modifier)] file-name[,option-list]i

*

*
*
*

FIND executes mUltiple retrievals from a file or data set and places retrieved
data in the data register. It is usually used with a PERFORM= option to
execute a block of statements that processes each record retrieved.

When using the match register to select records, each record is placed in the
data register before it is tested for selection against the match register.
At the end of a FIND, the area of the data register specified in the LIST=
option contains the last record retrieved. This may not be the last record
selected.

STATEMENT PARTS

modifier

none

CHAIN

CURRENT

DIRECT

PRIMARY

To indicate the type of access to the data set or file, choose
one of the following modifiers:

Retrieve an entry from an IMAGE master data set based on
the key value in the argument register; this option does
not use the match register.

Retrieve entries from an IMAGE detail set or a KSAM chain.
The entries must meet any match criteria set up in the
match register in order to be selected. The contents of
the key and argument registers specify the chain in which
the retrieval is to occur. If no match criteria are
specified, all entries are selected. Match criteria must
be included in a LIST= construct.

Retrieve the last entry that was accessed from the file or
data set.

Retrieve the entry stored at a specified record number from
an MPE or KSAM file or an IMAGE data set. Before using
this modifier, you must store the record number as a
doubleword integer in the item referenced by the RECNO=
option.

Retrieve the IMAGE master set entry stored at the primary
address of a synonym chain. The primary address is located
through the key value contained in the argument register.

6-54

RCHAIN

RSERIAL

SERIAL

file-name

option-list

FIND

Retrieve entries from an IMAGE detail set or a KSAM file
chain in the same manner as the CHAIN option, only in
reverse order. For a KSAM file, this operation is
identical to CHAIN.

Retrieve entries from a file in the same manner as the
SERIAL option, except in reverse order. For a KSAM or MPE
file, this operation is identical to SERIAL.

Retrieve entries in serial mode from an MPE or KSAM file or
an IMAGE data set that meet any match criteria set up in
the match register. If no match criteria are specified,
all entries are selected. If match criteria are specified,
the match items must be included in a LIST= option of the
FIND statement.

The file or data set to be accessed in the retrieval
operation. If the data set is not in the home base as defined
in the SYSTEM statement, the base name must be specified in
parentheses as follows:

set-name (base-name)

One or more of the following options, separated by commas:

ERROR=label
([item-name])

LIST=
(range-list)

Suppress the default error return the processor normally
takes. Instead, the program branches to the statement
identified by label, and the stack pointer for the list
register is set to the data item item-name. The processor
generates an error at execution time if the item cannot be
found in the list register.

If you specify no item-name, as in ERROR=label()i, the list
register is cleared.

If you use an 11*11 instead of item-name, as in
ERROR=label(*)i, then the list register is not touched.

For more information, see the section entitled IIAutomatic
Error Handling, II in section 5.

The list of items from the list register to be used for the
FIND operation. If the LIST= option is omitted, all the
items in the list register are used.

Only the items specified in a LIST= option have their match
conditions applied if match conditions are set up in the
match register. (The match register may be used only with
the modifiers CHAIN, RCHAIN, SERIAL, or RSERIAL.)

6-55

FIND

Each retrieved entry is placed in the area of the data
register indicated by LIST= and matching occurs before any
FIND is executed.

The options for range-list and the items they cause FIND to
access include the following:

(item-name)

(item-namel:
item-name2)

(item-namel:)

(:item-name2)

(item-namel,
item-name2,

item-namen)

()

A single item.

All the items from item-namel
through item-name2.

If item-namel and item-name2 are marker
items (see DEFINE(ITEM) verb), and if there
are no items between the two in the list
register, no data base access is performed.

The items from item-namel through the item
indicated by the current list pointer.

The items from the beginning of the list
register through item-name2.

The items are selected from the list
register. For IMAGE, items can be
specified in any order. For KSAM and

,MPE, items must be specified in the
order of their occurrence in the record.
This option incurs some system overhead.

A null item list. That is, access the file
or data set, but do not retrieve any data.

LOCK

NOMATCH

NOMSG

PERFORM=1abel

Lock the specified file or data base unconditionally. If a
data set is being accessed, the entire data base is locked
the whole time that the FIND executes. If LOCK is not
specified, the file or data base is locked before each
entry is retrieved from the file or data set, remains
locked while the entry is processed by any PERFORM=
statements, but is unlocked briefly before the next entry
is retrieved.

Ignore any match criteria set up in the match register.

Suppress the standard error message produced by the
processor as a result of a file or data base error.

Execute the code following the specified label for every
entry retrieved by FIND. The entries may be optionally

6-56

FIND

selected by MATCH criteria, in which case control is
transferred only for the selected entries.

This option allows operations to be performed on retrieved
entries without your having to code loop-control logic.

You may nest up to 10 PERFORM= options.

RECNO=item-name with the DIRECT modifier: you must define item-name to
contain the doubleword integer address of the record to be
retrieved.

With other modifiers: Transact returns the record number
of the retrieved item in item-name.

SINGLE

SOPT

Retrieve only the first selected entry.

Suppress the processor optimization of IMAGE calls. This
option is primarily intended to support a data base
operation in a performed routine that is called
recursively. The option allows a different path of the
same detail data set to be used at each recursive entry,
rather than optimizing to the same path. It also
suppresses generation of an IMAGE call list of 11*11 after
the first call is made.

SORT=(item-namel [(ASC)][,item-name2 [(ASC)]] ...);
[(DES)] [(DES)]

FIND sorts on the key items specified in the SORT= option.
FIND sorts each occurrence of item-namel and, optionally,
item-name2, and so forth. If the SORT= option does not
include any item names, FIND sorts the items named in the
LIST= construct. The key items in the SORT= option must
also be included in the LIST= option; the items in the
LIST= option are the record definition for the sort file.

The FIND statement only sorts if a PERFORM= option is also
included, and it always performs the sort before processing
the perform statements. The processing sequence for a sort
is:

• first retrieve each selected record,
• then write each record to the sort file,
• sort the sort file by any specified items, and
• pass each record one by one to the perform

statements.

You may specify ascending or descending sort order. The
default is ascending order.

6-57

FIND

STATUS Suppress processor actions defined in section 5 under
"Automatic Error Handling". You will probably have to add
coding if you use this option.

When STATUS is specified, the effect of a FIND statement is
described by the value in the status register:

Status
Register Value

o

-1

>0

Meaning

The FIND operation was successful.

A KSAM or MPE end-of-file condition
occurred.

For a description of the condition that
occurred, refer to IMAGE condition word
or MPE/KSAM file system error documen
tation corresponding to the value.

STATUS causes the following with FIND:

• Normal multiple accesses become single.

• The normal rewind done by the FIND is suppressed, so
CLOSE should be used before FIND(SERIAL).

• The normal find of the chain head is suppressed, so PATH
should be used before FIND(CHAIN).

6-58

FIND

In the following example of FIND with the status option,
normal processing of an error when a broken chain is found
is suppressed. The STATUS option enables you to perform a
routine to cancel operations until that point.

SET(KEY) LIST(KEY-ITEM};
PATH DETAIL-SET;

GET-NEXT:
FIND(CHAIN) DETAIL-SET,STATUS,
PERFORM=PROCESS-AN-ENTRY;
IF STATUS=18 THEN «BROKEN CHAIN»

DO
PERFORM UNDO-TRANSACTION;
EXIT;

DOEND;
IF STATUS=15 THEN «END OF CHAIN»

END
ELSE IF STATUS=O THEN «SUCCESSFUL OPERATION»

GO TO GET-NEXT
ELSE GO TO ERROR-CLEANUP;

Were you to avoid the STATUS option, you would set up a
procedure to see if a specific entry exists in a chain.
When you test the status register, you would get the number
of records found.

SET(KEY} LIST(KEY-ITEM);
SET (MATCH) LIST(DATA-ITEM3);
FIND(CHAIN) DETAIL-SET,

LIST=(DATA-ITEM3) ,SINGLE;
IF STATUS=O «then no entries found»

When the STATUS option is not in effect for a FIND(CHAIN)
or FIND(RCHAIN) operation on a detail d~ta set, the status
register contains a -1 when the argument value is not in
the master data set.

6-59

FIND

EXAMPLES

The following example uses a PERFORM= option to test data values in each
retrieved entry. The routine TESTl is performed on every record retrieved by
FIND (CHAIN) .

FIND(CHAIN) DET,
LIST=(A:H),
PERFORM= TEST1;

PERFORM GRAND-TOTAL;
END;

TEST1:
IF (A) = "AUGUST" THEN

PERFORM PRINT;
RETURN;

PRINT:
LET (SUB) (SUB) + (AMOUNT);

DISPLAY
RETURN;

The next example sorts the entries in data set ORDER-DET in primary sequence
by ORO-NO and in secondary sequence by PROD-NO. As it sorts, it passes the
sorted entries to the PERFORM= statements at the label DISPLAY to be displayed
in sorted order.

SORT-FILE:
LIST ORD-NO:

PROD-NO:
DESCRIPTION:
QTY-ORD:
SHIP-DATE:

FIND(SERIAL) ORDER-DET,
LIST=(ORD-NO:SHIP-DATE) ,
SORT= (ORD-NO, PROD-NO) ,
PERFORM=DISPLAY;

DISPLAY:
DISPLAY "0 rder List by Product Number", LINE=2:

ORD-NO, NOHEAD, COL=5:
PROD-NO, NOHEAD, COL=20:
QTY-ORD, NOHEAD, COL=35:
SHIP-DATE, NOHEAD, COL=50;

6-60

FIND

The following example illustrates a method for traversing a pair of IMAGE data
sets organized in a tree structure. It uses a recursive routines; that is,
the routine NEXT calls itself.

Assume the data base TREE has the following structure:

TREE-MASTER

\ PARENT /
\ /
\ A /
\ / \
\/ \

\
TREE-DETAIL

\PARENT X(4) /
\CHILD X(4)/
\ /
\ /

LIST PARENT: CHILD;
DATA PARENT;
MOVE (CHILD) (PARENT) ; «Initially parent and child must have »

« value entered by user »
PERFORM NEXT;
DISPLAY IITree Traversal Complete ll

;

EXIT

NEXT:
MOVE (PARENT) = (CHILD)

SET(KEY) LIST(PARENT);
DISPLAY;

FIND(CHAIN) TREE-DETAIL,
LIST=(CH I LD) ,
PERFORM=NEXT.
SOPT;

DISPLAY;
RETURN;

«child item at this level becomes »
«parent at next level »
«PARENT is key to search for next level»

«Find next level in tree and retrieve »
«child (future parent), then call this »
«routine again until there are no more »
«child chains. SOPT is needed to allow»
«a different path at each level of the »
«recursion. »

6-61

FIND

When you use a PERFORM= option in a FIND (or any other file access statement
that allows this option), and execute other file access statements within the
PERFORM= routine, Transact creates a chain of key/argument registers to keep
track of which chain you are following. Each time the program returns from a
PERFORM= routine, one set of key/argument values is removed.

For example:

LIST PROD-NUM:
PROD-CODE:
DESCRIPTION;

DATA(KEY) PROD-NUM;
FIND(CHAIN) PROD-DETAIL.

LIST=(PROD-NUM:DESCRIPTION).
SORT=(PROD-NUM.PROD-CODE).
PERFORM=TESTIT;

EXIT;

TESTIT:
DISPLAY "In TESTIT routine";
DATA(KEY) PROD-NUM;
FIND(CHAIN) PROD-DETAIL.

LIST=(PROD-NUM:DESCRIPTION) ;
DISPLAY;

RETURN;

«set up 1st key/argument pair »

«set up 2nd key/argument pair »

6-62

FORMAT

Specifies the format of information displayed by the OUTPUT verb or by an
unformatted DISPLAY verb

*
* FORMAT display-list;

*

*
*
*

FORMAT specifies the format of a display and the inclusion of any character
strings to enhance the display. You use it in conjunction with the OUTPUT
verb or an unformatted DISPLAY verb. Use the FORMAT/OUTPUT statement
combination when you want to generate a display from more than one entry in a
particular data set or file.

The FORMAT statement must precede the DISPLAY or OUTPUT statement it formats.
A FORMAT statement in PERFORM procedure associated with an OUTPUT statement
does not format that OUTPUT, though it may format another OUTPUT or DISPLAY
statement within the PERFORM= procedure.

The specifications in a FORMAT statement are used by the next OUTPUT statement
or by the next unformatted DISPLAY statement. The FORMAT specifications
cannot be reused unless program control passes through that FORMAT statement
again. Format specifications are reset to default values after each FORMAT
statement is used by the OUTPUT or DISPLAY statement.

The default format is:

• Display values in order they appear in data register.

• Accompany each value with a heading consisting of:

• the heading specified for that value in a HEAD= option of a
DEFINE{ITEM) statement,

• the heading taken from the dictionary definition of the item, or

• the associated data item name in the list register.

• Each value is displayed in a field whose length is either the data
item size or the heading length, whichever is longer.

• A single blank character separates each value field. If a field
cannot fit on the current display line, then the field begins on a new
line.

6-63

FORMAT

STATEMENT PARTS

display-list

display
field

The display list contains one or more display fields and their
formatting parameters. Several fields can be displayed. The
fields and their formatting parameters are separated by
commas; the field/format-parameter combinations are separated
from each other by colons, as shown in the following general
format:

display-field[,foxmat-paxametex] ...
[:display-field,[foxmat-paxametex] .. .] ...

If you omit display-lis~, the display is formatted according
to the default format described above

The following options are possible for display fields:

• A reference to a data item name in the list register;

• A child item name whose parent item is in the list
register; or

• A character string delimited by quotation marks.

If the requested item cannot be found in the list register,
then the processor generates an error at execution time.

Five system variables can also be used as display fields:

$CPU displays the cumulative amount of CPU time used
by the Transact processor for the program, in
milliseconds.

$DATELINE displays the current date and time in the form
Fri, Jul 16, 1983, 3:07 P.M.

$PAGE displays the current page number.

$TIME displays the current time; the default format is
HH:MM AA (e.g., 03:07 PM).

$TODAY displays the current date; the default format is
MM/DD/YY (e.g., 07/16/83).

6-64

format;
paramet;ers

CcrL=number

CENTER

COL=number

EDIT="edit;
st;ring"

FORMAT

One or more of the following formatting parameters can
follow the display field name:

Issue a carriage control code of number (decimal
representation) for the display line containing the
associated display field. Carriage control codes (octal
representation) are found in the MPE Int;rinsics Manual.

Center a display field on a line. The entire field,
including leading or trailing blanks, is centered.

start the display field in the absolute column position
specified by number. The first column position is 1.

If the display is already at a column position greater
than the line width of the display device, the field is
truncated if it is a character field or pound signs are
displayed for a numeric field. If no part of the field
fits, it is not displayed.

Characters that designate edit masks. The following
characters have special edit mask meanings (all other
characters are treated as insert characters):

Insert the character from the source data field into
this position in the display field.

Z Suppress leading zeros. (Z must be uppercase.)

$ Use floating dollar signs.

* Fill field with leading asterisks.

Align the implied decimal point as specified in the
dictionary or in a DEFINE(ITEM) definition statement
with the decimal point in the edit mask.

Ignore the implied decimal point and replace this
character with a decimal point.

6-65

FORMAT

To denote a negative value with a trailing minus sign,
use the minus sign as the final character of the edit
string. To denote negative values with a trailing II DR II

or "CR" I add "CR II or II DR II to the edit string. Some
edit-string examples:

Number Edit String Result

1234 $$,$$$ AA $12.34
123456 $$,$$$ AA $1,234.56
123456 ***,**$ AA *$1,234.56
000009 ZZZZ AA .09

-123456 $$,$$$ AACR $1,234.56CR
-123456 Z,ZZZ AA 1,234.56-

230479 AA/AA/AA 23/04/79

System variables (except $DATELINE) can also be edited.
The edit mask characters just defined can be used for
$CPU and $PAGE. special editing characters are used for
$TIME and $TODAY.

For $TIME, characters in the edit-mask string are
processed as follows:

H Displays hour with no leading blank or zero if
hour < 10.

ZH Displays hour with leading blank if hour < 10.

HH Displays hour with leading zero if hour < 10.

24 Displays hour as expressed on a 24-hour clock;
used as a prefix to H.

M Displays minute with no leading blank or zero if
minute < 10.

ZM Displays minute with leading blank if minute < 10.

MM Displays minute with leading zero if minute < 10.

S Displays second with no leading blank or zero if
second < 10.

ZS Displays second with leading blank if second < 10.

6-66

FORMAT

SS Displays second with leading zero if second < 10.

T Displays tenth of a second.

A Displays the next letter in the AM or PM sequence
in uppercase.

a Displays the next letter in the AM or PM sequence
in lowercase.

Except for lI a ll, all other $TIME edit mask characters
must be in uppercase. All characters other than edit
mask characters are inserted on a character by character
basis.

Here are some examples of how edit masks change the
format of the $TlME value 3:07:32 PM:

Edit Mask

HH:MM:SS
24H:M:S
H:MM:SS a.a.
ZH:ZM:SS AA

Displayed Time

03:07:32
15:7:32
3:07:32 p.m.

3: 7:32 PM

For $TODAY, characters in the edit mask string are
processed as follows:

D Displays day of the month with no leading blank or
zero if day < 10.

ZD Displays day of the month with leading blank if
day < 10.

DD Displays day of the month with leading zero if day
of the month < 10.

DDD Displays Julian day of year.

M Displays month with no leading blank or zero if
month < 10.

ZM Displays month with leading blank if month < 10.

MM Displays month with leading zero if month < 10.

nM Displays the first n letters of month name in
uppercasej if n > number of letters in month name,
trailing blanks are not inserted.

6-67

FORMAT

nm Displays the first n letters of month name in
lowercase except for the first letter, which
appears in uppercase.

YY Displays last two digits in current year.

YYYY Displays current year.

nW Displays first n letters of day of week in
uppercase; if n > length of the week name, no
trailing blanks are inserted.

nw Displays first n letters of day of week in
lowercase except for the first letter, which
appears in uppercase.

All edit string characters must be in uppercase, except
for II mll and II WIl. All characters not defined as an edit
string character are inserted on a character by
character basis.

Various edit masks applied to the $TODAY date July 16,
1982, make it appear as follows:

Edit Mask

3w. 3m DD, YYYY
DD 3M, YY
M-DD-YY
MM/DD/YY
DDD, YYYY

Displayed Date

Fri. Jul 16, 1982
16 JUL, 82
7-16-82
07/16/82
197, 1982

HEAD=
II character
string II

JOIN [=number]

LEFT

Use the character-string as a heading rather than the
default, which is the heading from the dictionary, the
heading from DEFINE(ITEM), or the item or system
variable name.

Place this number of spaces between the last non-blank
character of the current line and the first character of
the current display field. To concatenate the character
strings, use JOIN=O. Default = 1.

Left justify the data item value in the display field.
This is the default specification.

6-68

FORMAT

LINE[=number] start the display field on a new line or on a line after
a line skip count specified by number. If the print
device being used can over-print and you want it to do
so, you should specify "LINE=OI/. Default = 1.

LNG=number Truncate the display field to this number of characters.
If this optiOIl refers to a compound item, then that item
is displayed within a display field length of number; if
necessary, new lines are generated.

NEED=number Print the current line at the top of the next page if
there are fewer than the specified number of lines
between the current line and the bottom of the page.

NOCRLF Do not issue a carriage return and line feed for the
display line containing the display field.

NOHEAD Suppress the default heading for this item reference.

NOSIGN Allow no sign position in the display field. If a
negative value occurs, the display field contains a
string of minus signs (-).

PAGE[=number] start the display field on a new page or on a page after
a page skip count specified by number. Default = 1.

RIGHT Right justify the data item value in the display field.

ROW=number Place the display field at absolute line location
number'. The first line position is 1. If the display
is already at a line position greater than number, then
the display goes to line 1.

SPACE[=number] Place this number of spaces between the end of the
previous display field and the start of the current
display field. To concatenate fields, use SPACE=O.
Default=1.

TITLE Display the associated display field and any preceding
display fields only at the start of each new page for
which this statement applies.

TRUNCATE Truncate this display field if a character field
overflows the end of the display line; display pound
signs if field is numeric.

ZERO[E]S Right justify a numeric data value in the display field
and insert leading zeros.

6-69

FORMAT

EXAMPLES

The following examp~e uses an OUTPUT statement to retrieve information from adata set DETAIL and then display it in a format set up by the preceding FORMATstatement. All headings are suppressed by the first SET(OPTION) statement,rather than by NOHEAD options for individual items. The final RESET(OPTION)statement resets the NOHEAD option for subsequent displays.

SET (OPTION) NOHEAD;
FORMAT IIMailing List: II,COL=15:

II II,LINE=3,TITLE:
FIRST-NAME,COL=5,LINE:
ADDRESS,COL=5,LINE:
CITY,COL=5,LINE:
II,II,JOIN=O:
STATE:
ZIP,COL=30;

OUTPUT(SERIAL) DETAIL;
RESET(OPTION) NOHEAD;

This code produces the following:

Mailing List:

Harry Swartz
1 Main St.
Anywhere, CA 12345

6-70

GET

Moves data to the data register from a data set, file, or formatted screen

*
* GET[(modifier)] source[,option-list];

*

*
*
*

GET retrieves a single entry from an IMAGE data set or a KSAM or MPE file.

It is also used to move data values into the data register from a terminal
under the control of a VPLUS screen.

STATEMENT PARTS

modifier

none

CHAIN

CURRENT

DIRECT

FORM

KEY

To specify the type of access to the data set or file, choose
one of the following modifiers:

Retrieve a master set entry based on the value in the
argument register; this option does not use the match
register.

Retrieve an entry from an IMAGE detail set or KSAM- chain.
It retrieves the first entry to meet any match criteria set
up in the match register. The matching items must be
included in a LIST= option. The contents of the key and
argument registers specify the chain in which the retrieval
occurs. If no match criteria are specified, it retrieves
the first entry in the chain. If no matching entry is
found, GET issues a run-time error.

Retrieve the last entry that was accessed from the MPE or
KSAM file or IMAGE data set.

Retrieve the entry stored at a specified record number in
an MPE or KSAM file, or an IMAGE detail or master set.
Before using this modifier, you must store the record
number as a doubleword integer in the item specified in the
RECNO= option.

GET(FORM) displays a VPLUS form at the user's terminal and
then waits for the user to press ENTER in order to transfer
data from the form to the data register. If the user
presses a function key instead of ENTER, no data is
transferred, unless the AUTOREAD option is used.

Execute a calculated access on an IMAGE master data set
using the key and argument register contents, but transfer

6-71

GET

PRIMARY

RCHAIN

SERIAL

RSERIAL

source

form-name

(i'tem-name)

*

no data. The LIST= option may not be specified with this
modifier. (Use GET with no modifier for a calculated
retrieval from a master data set.)

This modifier is most useful when you combine it with the
ERROR and/or NOFIND options to check for the existence of a
key value in a master data set. It allows programmatic
control of the result of the checking; it is the equivalent
of a CHECK or CHECKNOT on a PROMPT statement.

Retrieve the IMAGE master set entry stored at the primary
address of a synonym chain. The primary address is located
through the key value contained in the argument register.

Retrieve an entry from an IMAGE detail set or a KSAM chain
in the same manner as the CHAIN option, only in reverse
order. For a KSAM file this operation is identical to
CHAIN.

Retrieve an entry in serial mode from an MPE or KSAM file
or an IMAGE detail or master set. It retrieves the first
entry that matches any match criteria set up in the match
register. If no match criteria are specified, it retrieves
the first entry in the file or data set. The match items
must be included in a LIST= option. If no entry matches or
if the file is empty, GET issues a run-time error.

Retrieve an entry from an MPE or KSAM file or an IMAGE data
set in the same manner as the SERIAL option, except in
reverse order. For a KSAM or MPE file, this operation is
identical to SERIAL.

The file, data set, or form to be accessed in the retrieval
operation. If the data set is not in the home base as defined
in the SYSTEM statement, the base name must be specified in
parentheses as follows: se't-name(base-name)

For GET(FORM) only, source may be specified as 'any of the
following:

Name of the form to be displayed by GET(FORM).

Name of an item that contains the name of the form to be
displayed by GET(FORM).

Display the form identified by the II current II form name;
that is, the form name most recently specified in a
statement that references VPLUS forms. Note that this
option is not the same as the CURRENT option (described

6-72

&

op"tion-lis"t

LIST=
(range-lis"t)

GET

under op1;ion-lis"t), which indicates the currently displayed
form.

Display the form identified as the II next II form name; that
is the form name defined as "NEXT FORM" in the FORMSPEC
definition of the current form, where current form means
the form name most recently specified in a statement that
references VPLUS forms.

The LIST option is available with or without the FORM
modifier. other options, described below, are restricted for
use as specified.

The list of items from the list register to be used for the
GET operation. (Note that this option must not be included
with a GET(KEY) operation.)

Only the items specified in a LIST= option have their match
conditions applied if match conditions are set up in the
match register. (The match register may be used only with
the modifiers CHAIN, RCHAIN, SERIAL, or RSERIAL.)

If the LIST= option is omitted with any modifier except
FORM, the current contents of the list register are
assumed. If the LIST= option is omitted for GET(FORM), the
list of items specified for the form in the SYSTEM
statement or the dictionary and which appear in the list
register is assumed.

The options for range-lis"t and the items they cause GET to
retrieve are:

(i"tem-name)

(i"tem-namel:
i"tem-name2)

A single item.

All the items from i"tem-namel
through i"tem-name2.

If i"tem-namel and i"tem-name2 are marker
items (see DEFINE(ITEM) verb), and if there
are no items between the two in the list
register, no data base access is performed.

(i"tem-namel:) The items from i"tem-namel through the item
indicated by the current list register
pointer.

(:i"tem-name2) The items from the beginning of the list
register through i"tem-name2.

6-73

GET

(item-namel,
item-name2,

item-namen)

()

The items are selected from the list
register. For IMAGE, items can be
specified in any order. For KSAM, VPLUS,
and MPE, items must be specified in the
order of their occurrence in the record or
form. Do not include child items in the
list unless they are associated with a VPLUS
forms file. This option incurs some
system overhead.

A null item list. That is, access the file
or data set, but do not retrieve any data.

OPTIONS AVAILABLE WITHOUT THE FORM MODIFIER

ERROR=label
([item-name])

LOCK

NOFIND

NOMATCH

NOMSG

Suppress the default error return that the processor
normally takes. Instead, branch to the statement
identified by label, and set the stack pointer for the list
register to the data item item-name. The processor
generates an error at execution time if the item cannot be
found in the list register.

If you specify no item-name, as in ERROR=label()i, the list
register is reset to empty.

If you use an 11*11 instead of item-name, as in
ERROR=label(*)i, then the list register is not changed.

For more information, see IIAutomatic Error Handling, II in
section 5.

Lock the specified file or data base unconditionally. If
you are accessing a data set, the LOCK option causes
Transact to lock the entire data base while the GET
executes. If LOCK is omitted, Transact unlocks the data
base after each IMAGE call made by GET.

Ensure that a matching entry is not present in the
referenced IMAGE master data set. If such an entry is
found, an error message is generated. If the STATUS option
has also been specified, the code returned in the STATUS
register for the error condition is I, meaning that a
record was found.

Ignore any match criteria set up in the match register.

Suppress the standard error message produced by the
processor as a result of a file or data base errori all
other error actions occur.

6-74

GET

RECNO=item-name With the DIRECT modifier: you must define item-name to
contain the doubleword integer number (I(9,,4)) of the
record to be retrieved.

With other modifiers: Transact returns the record number
of the retrieved record in the doubleword integer
item-name.

STATUS Suppress processor action defined in section 5 under
IIAutomatic Error Handling ll

• You will probably have to add
coding if you use this option.

When STATUS is specified, the effect of a GET statement is
described by the value in the status register:

Status
Register Value

o

-1

>0

Meaning

The GET operation was successful.

A KSAM or MPE end-of-file condition
occurred.

For a description of the condition that
occurred, refer to IMAGE condition
word or MPE/KSAM file system error
documentation corresponding to the
value.

STATUS causes the following with GET:

• The normal rewind done by the GET is suppressed, so CLOSE
should be used before GET(SERIAL).

• The normal find of the chain head by the GET is
suppressed, so PATH should be used before GET(CHAIN).

6-75

GET

In the following example/ GET with the STATUS option allows
you to process the "nonexistent permanent file" error
yourself. This coding lets you access a file that may be
in another account by setting up a file equation through a
PROC call to the command intrinsic.

«1st access, no CLOSE required before SERIAL operation»

GET(SERIAL) DATA-FILE,
LIST= (A: N) ,
STATUS;

IF STATUS <> 0 THEN «An error occurred, check further»
IF STATUS <> 52 THEN «error is other than expected»

GO TO ERROR-CLEANUP
ELSE «52 - nonexistent permanent file»

DO
LET (CR) = 8205; «8205 = space,carriage return»
«could have used (CR)=3360 for carriage return, space»
MOVE (COM-STRING) =

"FILE DATAFILE=DATAFILE.PUB.OTHERONE"+(CR);

«Try opening DATAFILE in another group»

PROC COMMAND (%(COM-STRING), (ERROR), (PARM)) ;
IF (ERROR) <> 0 THEN «command error»

GO TO ERROR-CLEANUP;

«Try again, give up if unsuccessful»

GET(SERIAL) DATA-FILE,
LIST= (A: N) ,

STATUS;
IF STATUS<>O THEN

GO TO ERROR-CLEANUP;
DOEND;

6-76

GET

OPTIONS AVAILABLE ONLY WITH THE FORM MODIFIER

APPEND

AUTOREAD

CLEAR

CURRENT

FEDIT

FKEY=item-name

Fn [(AUTOREAD)] =
label

FREEZE

INIT

Append the next form to the form specified in this
statement, overriding any freeze or append condition
specified for the form in its FORMSPEC definition. APPEND
sets the FREEZAPP field of the VPLUS comarea to 1.

Accept any function key not specified in an Fn=label option
in order to transfer data from the form to the data
register. If a key has been specified in an Fn=label
option, then GET does not execute AUTOREAD for that key.

Clear the specified form when the next form is displayed,
overriding any freeze or append condition specified for the
form in its FORMSPEC definition. CLEAR sets the FREEZAPP
field of the VPLUS comarea to zero.

Use the form currently displayed on the terminal screenj
that is, perform all the GET(FORM) processing except
retrieving and displaying the form. Use this option to
avoid the processing that normally occurs when a new form
is displayed.

Perform the field edits defined in the FORMSPEC definition
immediately before displaying the form.

Move the number of the function key the operator presses in
this retrieval operation to the single-word integer (I(4»
item-name. The function key is determined by the contents
of the field LAST-KEY in the VPLUS comarea. It may have a
value of 0 through 8, inclusive, where 0 indicates the
ENTER key and 1 through 8 indicate function keys I through
8, respectively.

Control passes to the labelled statement if the operator
presses function key n. This option may be repeated for
each desired function key as many times as necessary in a
single GET(FORM) statement. If (AUTOREAD) is included,
then transfer the data from the form to the data register
before going to the specified label. FO, or ENTER, always
transfers data.

Freeze the specified form and append the next form to the
specified form, overriding any freeze or append conditions
specified for the form in the FORMSPEC definition. FREEZE
sets the FREEZAPP field of the VPLUS comarea to 2.

Initialize the fields in a VPLUS form to any initial values
specified for the form by FORMSPEC, or perform any Init

6-77

GET

STATUS

WINDOW=
([field,]
message)

field

message

Phase processing specified for the form by FORMSPEC. The
INIT processing is performed before the form is displayed
on the screen.

Suppress the display of VPLUS field edit error messages in
window; Transact conversion messages are sent to the
window. Transfer control immediately back to the program
after the user has pressed ENTER or the appropriate
function key. If field edit errors exist, Transact sets
the value of the processor status field to a negative count
of the number of errors (given by the NUMERRS field of the
VPLUS comarea). Otherwise, the value in the status field is
O.

Place a message in the window area of the screen and,
optionally, enhance a field in the form. The fields field
and message can be specified as follows:

Either the name of the field to be enhanced, or an
item-name within parentheses which will contain the name
of the field to be enhanced at run time.

Either a string enclosed in quotation marks that
specifies the message to be displayed, or an item-name
within parentheses containing the message string to be
displayed in the window.

The following example illustrates this option when the
field name and the message are specified directly.

GET (FORM) FORM1,
INIT,
LIST=()
WINDOW=(fieldl, ItThis field must be numeric lt

);

In the following example, both the field and the message
are specified through an item-name reference:

DEFINE(ITEM) ENHANCE U(16):
MESSAGE U(72) ;

MOVE (ENHANCE)
MOVE (MESSAGE)

Itfieldl lt
;

ItThis field must be numeric. lI
;

GET(FORM) *
INIT,
WINDOW=((ENHANCE),(MESSAGE));

6-78

GET

EXAMPLES

PROMPT(PATH) CUST-NO;
LIST CUST-NAME:

CUST-PHONE;
GET (CHAIN) DETAIL,

LIST=(CUST-NAME:CUST-PHONE);

The first entry in the chain is retrieved from the data set DETAIL using the
items CUST-NAME through CUST-PHONE in the list register.

PROMPT(PATH) CUST-ID;
LIST CUST-NAME:

CIST-PHONE;
GET(RCHAIN) DETAIL,

LIST=(CUST-NAME:CUST-PHONE);

DATA(PATH) CUST-ID;
DATA (MATCH) CUST-NAME;
GET(RCHAIN) DETAIL,

LIST=(CUST-NAME:CUST-PHONE) ;

The first GET retrieves the last record in the chain. The second GET reads
the chain in reverse order until a record matches the criteria set up by the
PROMPT(MATCH) statement.

GET (FORM) CUSTFORM,
INIT,
LIST= (CUST-NAME, CUST-ADDR, CUST-PHONE);

This statement displays the form CUSTFORM, performs any initialization
specified by FORMSPEC, retrieves values entered into the form, performs any
FORMSPEC edits, and then transfers the entered values to the data register
areas associated with the specified list items.

6-79

GET

The following example illustrates a method for "structured programming" with
VPLUS forms:

START:
DISPLAY "Start of program";
PERFORM GETINFO;
DISPLAY "End of program";
EXIT;

GETINFO:
GET (FORM) MENU,

Fl =ADD,
F2=UPDATE,
F3=DELETE,
F4=LIST,
F5=START,
F6=START,
F7=START,
F8=ENDIT;

«Process ENTER here»

ADD:
«process Fl here»
RETURN;

UPDATE:
«process F2 here»
RETURN;

DELETE:
«process F3 here»
RETURN;

LIST:
«process F4 here»
RETURN;

ENDIT:
EXIT;

An alternate method is to use the FKEY=item-name construct, and then test the
value of item-name with an IF statement.

6-80

GO TO

Transfers control to a labelled Transact statement

* *
* GO TO label; *
* *

GO TO specifies an unconditional branch to the statement identified by label.

STATEMENT PARTS

label The label to which the program should branch.

EXAMPLE

GO TO NEW-TOTAL;

This statement transfers control to the statement labelled IINEW-TOTAL II .

6-81

IF

Performs a specified action based on a conditional test

* *
* IF condition-clause THEN statement [ELSE statement]; *
* *

IF specifies a test to be performed on a test-variable. The test is the
condition-clause; it contains the test-variable, the relational-operator, and
one or more values. If the condition is true, then the specified statement is
performed. You may provide an alternate statement to be performed if the
condition is not true by including the ELSE clause. If you do not include an
ELSE clause and the condition is not true, control passes to the statement
following the IF statement.

NOTE: Do not terminate the statement preceding the ELSE clause with a
semicolon (i).

STATEMENT PARTS

condition-clause

test-variable

(item-name)

EXCLAMATION

FIELD

INPUT

PRINT

A test-variable, relational-operator, and one or more
values in the following format:

test-variable relational-operator value [,value] ...

May be one or more of the following:

The value in the data register that corresponds to
item-name.

Current status of the automatic null response to a
prompt set by a user responding with an exclamation
point (!) to a prompt. If the null response is set,
the EXCLAMATION test variable is a positive integer;
if not set, it is zero. Default is 0.

Current status of FIELD option. If an end user
qualifies a command with FIELD, the FIELD test
variable is a positive integeri otherwise, it is a
negative integer. Default is <0.

The last value input in response to the INPUT prompt.

Current status of PRINT or TPRINT option. The PRINT
test variable is an integer greater than zero and
less than lOi if a command is qualified with TPRINT,
PRINT is an integer greater than lOi if neither

6-82

REPEAT

SORT

STATUS

relat;ional
operator

IF

qualifier is used, PRINT is a negative integer.
Default is <0.

Current status of REPEAT option. If an end user
qualifies a command with REPEAT, the REPEAT test
variable is a positive integer; otherwise, REPEAT is
a negative integer. Default is <0.

Current status of SORT option. If an end user
qualifies a command with SORT, the value of the SORT
test variable is a positive integer; otherwise SORT
is a negative integer. Default is <0.

The value of the status register set by the last data
set or file operation, data entry prompt, or external
procedure call.

Specifies the relation between the test-variable and the
value. It may be one of the following:

equal to

<> not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

6-83

IF

value The value against which the ~es~-variable is compared. Theallowed value depends on the test variable

If ~es~-variable is:

(item-name)

INPUT

EXCLAMATION
FIELD
PRINT
REPEAT
SORT

STATUS

Then value must be:

An alphanumeric string,
a numeric value, or a
reference to a variable
as in (item-name).

An alphanumeric string

A positive or
negative integer

An integer number

statemen~

EXAMPLES

Alphanumeric strings must be enclosed in quotation marks.

If more than one value is given, then:

• The relational-opera~orcan be "=" only, and

• The action is taken if the test-variable is equal to
valuel OR value2 OR ••• valuen. In other words, a comma
in a series of values is interpreted as an OR.

Any simple or compound Transact statement; a compound
statement is one or more statements bracketed by a DO... DOENDpair

IF INPUT = "YES", "Y" THEN
GO TO PROCEED;

This statement causes a program branch to the "PROCEED" label if II YES " or "ynwas input in response to the INPUT prompt. If INPUT contains any other value,control passes to the next statement.

6-84

IF

IF (COUNT) > 3 THEN
GO TO TOO-HIGH;

This statement causes a program branch to the II TOO-HIGH II label if the data
register value for the item-name COUNT is greater than 3.

IF STATUS <> 0 THEN END;

This statement causes an exit from the current command sequence if the status
register value does not equal o.

IF INPUT = "Y" THEN
DO

DISPLAY "PART NUMBER 15": PART-NO;
PERFORM ADD-INFO;

DOEND
ELSE IF (A) = (B) THEN

DO
DISPLAY "DUPLICATE ENTRY";
PERFORM SAME-PART;
IF (A) = (C) THEN

IF (D) < 50 THEN
MOVE (A) = (D);

DOEND
ELSE PERFORM MORE-INFO;

The statements within the first DO/DOEND pair execute if the value in the
input register is "Y".

Otherwise, if the value for A equals the value for B, the statements at the
label SAME-PART are executed.

The value for D is moved to the space reserved for A if:

• INPUT does not equal lIy", and
• A equals B, and
• A equals C, and
• D is less than 50.

The statements at label MORE-INFO are executed if:

- • INPUT does not equal II Y", and
• A does not equal B.

6-85

INPUT

Prompts for a value and places it in the input register

**
*
* INPUT "prompt-string"[,option-list];

*

*
*
*

**

INPUT generates a prompt that requests a user response. Usually the value
input as a response to prompt-string is tested by a subsequent IF statement.
Then the response may be used to programmatically change program flow during
execution. Transact upshifts all entered values.

The value returned by INPUT cannot be displayed or moved. Thus, INPUT is
useful mainly to test a user response. To save or display a user response,
you should use another verb, such as DATA or PROMPT, that transfers the
response to an item defined in your program.

STATEMENT PARTS

prompt-string The prompt that appears on the user's terminal; it must be
enclosed within quotes.

option-list One or more of the following options separated by commas:

BLANKS Do not suppress leading blanks supplied in the input value.

NOECHO Do not echo the input value to the terminal.

STATUS Suppress normal processing of "]" or "]]", which causes an
escape to a higher processing or command level. Instead,
these characters set the status register to -lor -2,
respectively. If the user enters one or more blanks and no
non-blank characters, this sets the status register to -3.
(The status register normally contains the number of
characters entered in response to the prompt, excluding the
carriage return.)

The STATUS option allows you to control sUbsequent
processing by testing the contents of the register with an
IF statement.

6-86

INPUT

EXAMPLES

INPUT "DO YOU WISH THE REPORT ON THE LINE PRINTER?";
IF INPUT = "Y". "YES" THEN

DO
SET(OPTION) PRINT;
DISPLAY "LINE PRINTER SELECTED FOR OPTION PRINfI' ;

DOEND;

This example illustrates a typical use of the INPUT verb. INPUT accepts a
user response, and then the IF statement tests for a particular value of this
response.

6-87

ITEM

Defines variables for use in the program that have not been defined in the
dictionary. The DEFINE(ITEM) verb is preferred. Refer to the DEFINE(ITEM)
description for the syntax option description and additional information.

6-88

LET

Specifies arithmetic operations or sets up array manipulation

**
*
* LET des~ina~ion-variable =ari~hme~ic expression;

*

*
*
*

**

Depending on the particular syntax option, LET can:

• Perform arithmetic operations (syntax Option 1) or

• Aid in array manipulation (Syntax Option 2).

LET, unlike MOVE, checks that the data types of items being assigned are
compatible with the item to which they are assigned. If necessary, LET
performs type conversion.

STATEMENT PARTS

des~ina~ion

variable

(i~em-name)

LINE

OFFSET
(child-i~em)

PAGE

PLINE

STATUS

TLINE

An item name that identifies a location in the data register,
or the processor-defined name of a special purpose register.
The result of the operation is placed in this variable. The
destination variable may be any of the following:

The computed or assigned value of i~em-name. The item name
identifies a location in the data register.

An integer of type I(4) that contains the computed or
assigned value of the line counter for the current line of
terminal display or line printer output.

An integer of type I(4) that contains the offset of a child
item within its parent item, starting at position zero.

An integer of type I(4) that contains the computed or
assigned value of the page counter.

An integer of type I(4) that contains the computed or
assigned value of the line counter for the current line of
line printer output.

An integer of type I(4) that contains the computed or
assigned value of the status register.

An integer of type I(4) that contains the computed or
assigned value of the line counter for the current line of
terminal display output.

6-89

LET

arithmetic
expression

[-]

variablel

operator

variable2

A single variable, or mUltiple variables connected by
arithmetic operators in the format:

[-]variablel [operator variable2] ...

If the expression is preceded by a minus sign, its negative
is assigned.

An item name within parentheses, a numeric constant, or one
of the processor-defined names listed above under the
description of destination-variable.

+ addition
subtraction

* mUltiplication
I division giving the quotient
II division giving the remainder

The same as variablel.

The item names can identify an item of any type and any decimal scale. All
arithmetic operations are performed at the highest scale and the result is
rounded to the scale of the receiving item. If it is not possible to convert
all operands to the highest scale, then Transact chooses the highest scale
that will accommodate all operands; this may result in a loss of least
significant digits.

If all items are single or doubleword integers, then all operations are
performed in doubleword integer arithmetic; if all are floating point, then
long format (double precision floating point) is used. If the items are a
mixture of types, or if the desired precision is greater than the machine
precision, then all arithmetic operations are performed using the hardware
packed decimal instructions.

In mUltiple operations, the arithmetic is done from left to right, in the
following order:

II
I
*

+

division giving remainder (first)
division g1v1ng quotient
mUltiplication
subtraction
addition (last)

You can change the order by using square brackets. For example, the following
two statements may yield different results:

LET (A) =(B) + (C) / (D) ;
LET (A)=[(B) + (C)]/(O);

6-90

LET

Note that Transact does not provide a direct means of performing
exponentiation, square roots, or logarithmic functions.

SYNTAX OPTIONS

(1) LET (variable) = [-]arithmetic-expression;

Choose this option to move a single value or the result of an arithmetic
operation into a location in the data register (item-namel) or into one of the
processor-defined names allowed for the destination variable.

The following are examples of this syntax option:

LET (TOTAL) =(TOTAL) + (AMOUNT); «Add values of AMOUNT and TOTAL»

LET (PERCENT)=9.8; «Set value of PERCENT to 9.8»

LET (INVERSE)=l/(DIVISOR); «Calculate inverse value»

LET (COUNT)=-(COUNT); «Negate value of COUNT»

LET (DEDUCTION)=-[(TOTAL)-(BENEFIT)]; «Negate TOTAL less BENEFIT»

LET PAGE=200; «Set page counter to 200»

LET LINE=60-(REMAINING-LINES); «Calculate value of current line»

LET (STAT) = STATUS; «Set STAT to contents of status
register»

LET STATUS = STATUS+l;

LET STATUS 0;

«Increment value of status register»

«Clear status register»

6-91

LET

(2) LET OFFSET(child-name)=[-]arithmetic-expression

(child-name) Identifies an item that has been defined as a chi1d
item.

This option of the LET verb sets the value of OFFSET for a particular chi1d
item. It allows you to refer to a child item within a parent item, or array,
by telling the processor the byte number of the parent item at which the child
item begins. By changing the value of OFFSET, you may refer to any chi1d item
within the parent item.

Suppose an array and its child items are defined as follows:

DEFINE(ITEM) SALES 3X(10):
YEAR X(10)=SALES(1);

SALES

I I I I
I YEAR I YEAR I YEAR I
I I I I

Initially, the OFFSET of YEAR within SALES is 0, which actually refers to byte
position 1 of SALES. That is, YEAR(I)= SALES(I), and, therefore, YEAR refers
to the first 10 bytes of SALES. To refer to other elements of SALES, you must
change the OFFSET of YEAR. You may do it as follows:

LET OFFSET(YEAR)=(element-number - 1) * element-size

where elemen~-size is expressed in bytes.

For example, to point to the third element of SALES, which is 10 bytes long,
and then move a value to that element, use the following statements:

LET OFFSET(YEAR)= 2 * 10;
MOVE (YEAR) =(VALUE-STRING) ;

« (3rd element-l) * element size

6-92

>>

LET

To access and display the second and third positions, use the following
statements:

SYSTEM TEST;
DEFINE(ITEM) SALES 3X(10):

YEAR X(10)=SALES(1);
PROMPT SALES;
DISPLAY SALES;
DISPLAY YEAR;
LET OFFSET(YEAR)= * 10;
DISPLAY YEAR;
LET OFFSET(YEAR)= 2 * 10;
DISPLAY YEAR;
END;

«Access 2nd element of SALES (2-1) »

«Access 3rd element of SALES (3-1) »

Note that the offset is counted from zero. Thus, to access the second
position in SALES, you specify an offset of 1; to access the third position of
SALES, you specify an offset of 2.

It is possible to step through a parent item using the following form of the
LET statement:

LET OFFSET(child item)=OFFSET(child item) + (byte-len~h-of-child item)

For example, assuming the same array SALES, you can specify the next child
item as follows:

LET OFFSET(YEAR) OFFSET(YEAR) + 10

6-93

LET

You can also use the OFFSET option of LET to manipulate multi-dimensional
arrays. Consider the following three-dimensional matrix of sales figures.
Its dimensions are district, year, and month. Each cell which is a child
item, contains a sales figure in integer format with two decimal places. Note
that each value in each cell requires four bytes of storage.

DISTRICT
2

2 3

YEAR

This SALES matrix requires the following DEFINE(ITEM) statement:

OEF1NE(1TEM) SALES 721(10,2):
01ST 361(10,2) = SALES(l):
YEAR 121 (10,2) = 01ST (1) :
MONTH 1(10,2) = YEAR(l);

To locate the position of one cell within the matrix, you must use three LET
OFFSET statements. To locate the byte position of the second district of the
third year of the seventh month, use the following three LET OFFSET
statements:

LET OFFSET(OIST)= 1 * [36*4];
LET OFFSET(YEAR)= 2 * [12*4];
LET OFFSET(MONTH) = 6 * [1*4];

6-94

LEVEL

Defines processing levels within a program

**********************~***************************************

*
* LEVEL[(label([item-name]»];

*

*
*
*

**

LEVEL specifies a new processing level. LEVEL allows repeated entries and
retention of information during data entry and eliminates redundant data entry
operations. Match, update, and list register entries within a level are
unique to that level. When an end of level occurs, these registers are reset
to their condition upon entering the level.

STATEMENT PARTS

label

item-name

The statement to which the program should branch at the end of
the level sequence

The location in the list register where the pointer is to be
set.

If you specify no item-name, for example, LEVEL(label(»;, the
list register is reset to empty.

If you use an 11*11 instead of item-name, as in
LEVEL(label(*»;, then the list register is not changed.

EXITS FROM LEVEL SEQUENCES

Four types of exits from LEVEL sequences are possible, two of which the end
user controls and two of which you control. They are described below.

(1)]

(2)]]

(3) END (LEVEL)

When the end user enters "]11 in response to any prompt in
a level sequence, control passes to the next previous
processing level, which may be the command level. Any
changes made to the match, list, or update registers
within the level are cleared.

When the end user enters "]]11 in response to any prompt in
a level sequence, control passes to Transact command
level, or if not in a command sequence, Transact issues
the EXIT OR RESTART(EjR» prompt.

When a level sequence ends with the statement END(LEVEL);,
any changes made to the list, match, or update registers
within the level are reset, and then control passes to the
statement immediately following END LEVEL;.

6-95

LEVEL

(4) END When a level sequence ends with the statement END; current
processing of the level ends, any changes made to the
list, match, or update registers within the level are
cleared, and control returns to the currently active LEVEL
statement.

Nested level sequences are possible, as the example illustrates.

EXAMPLES

The following statements m1n1m1ze the data entry required for a sequence of
entries from a time card. It requires values for employee name and year, and
mUltiple entries for day, activity code, and hours:

PROMPT YEAR:
MONTH;

LEVEL;
PROMPT EMPLOYEE;
LEVEL;

PROMPT DAY;
LEVEL;

PROMPT ACTIVITY:
HOURS;

PUT TIME-RECORD;
END;

Execution of these statements causes a prompt for each data item value and
then a loop at the lowest level. When the user has entered all activity items
for a specific day, he or she should enter a II]" in response to IIACTIVITY II .
Control passes to the next higher level and the user is prompted with IIDAY".
When all days have been entered for one employee, then the user should enter
II]" in response to IIDAy lI

• Then he or she is prompted for the next employee.

6-96

LIST

Adds item names to list, key, match, and/or update registers

**
*
* LIST[(modifier)] item-name [,option-list]
* [:item-name [,option-list]] ... ;
*

*
*
*
*

**

LIST adds data item names to the list, key, match, and/or update registers.
The registers affected depends on the verb modifier. You may choose from the
following:

• none Add specified item name to list register, reserve space and,
optionally, place value in data ~egister (see Sy~tax Option 1).

• KEY Place specified item name in key register (see Syntax Option 2).

• MATCH Add specified item name to list register, and copy existing value
for that item from the data register to the match register (see
Syntax option 3).

• PATH Add specified item name to list register and place it in key
register (see Syntax option 4).

• UPDATE Add specified item name to list register and copy value for that
item from the data register to the update register (see Syntax
Option 5).

Consider the following when setting up your list register:

• For use with IMAGE data base access, list items must be consecutive but
in any order.

• For use with KSAM or MPE files, list items must be consecutive and in the
same order as in the file.

• For use with VPLUS forms, list items may appear in any order and need not
be consecutive, although consecutive order allows simpler range lists in
the data management statements.

• Child item names may not be specified as list items in a LIST statement;
instead, the associated parent item name must be specified.

• System variables cannot be put in a LIST statement; they can only be used
in DISPLAY or FORMAT statements.

6-97

LIST

STATEMENT PARTS

modifier

item-name

option-list

Change or enhancement to the action of LIST; often the
register to which the input value should be added or the
register whose value should be changed

The item-name to be added or changed in the list, key, match,
or update registers; must not be a child item name.

Values specific to Syntax Options (1) and (3)

SYNTAX OPTIONS

(1) LIST item-name[,option-list]

LIST with no modifier adds the item-name to the list register and reserves
space in the data register. If you do not include an option from the list
below, Transact does not change the original contents of the data register.
If you choose an option from the list below, it places the corresponding value
in the data register.

option-list:

ACCOUNT

DATE

DATE/D

DATE/J

DATE/L

DATE/Y

GROUP

HOMEGROUP

specifies a value to be placed in the data register. Note
that the options listed below are not variable names and need
not be defined in a DEFINE (ITEM) statement or in a dictionary.

An X(8) item that contains the account name from logon.

An X(6) item that contains the current system date in
MMDDYY format. If the data item size is not six
characters, then truncation or blank fill occurs. This
option is normally used to set up a data item that is to
contain the current date.

An X(6) item that contains the current system date in
DDMMYY format.

~ X(5) item that contains the current system date in
Julian YYDDD format.

An X(27) item that contains the current system date/time
message.

An X(6) item that contains the current system date in
YYMMDD format.

An X(8) item that contains the group name from logon.

An X(8) item that contains the home group of the logged-on
user.

6-98

INIT [IALIZE]

PASSWORD

PROCTIME

TERMID

TIME

TIMER

SESSION

USER

LIST

Blanks if the data item type is an alphanumeric string, or
binary zero for all other types

An X(8) item that contains the first password value entered
during Transact/3000 system logon.

An I(9) item that contains the doubleword integer of
session cpu time in milliseconds.

An I(4) item that contains the terminal logical device
number.

An X(8) item that contains the current time in HHMMSSTT
format.

An I(9) item that contains the doubleword integer of system
time in milliseconds.

An X(l) item than contains an liS" or a "J" to indicate that
the current process is running as a session or a job,
respectively.

An X(8) item that contains the user name from logon.

For example, the following statements define the item MYPASS, move it to the
list register, allocate it space in the data register, and place the user's
password in that space:

DEFINE(ITEM) MY PASS X(8);
LIST MYPASS , PASSWORD;

(2) LIST(KEY) item-name;

LIST(KEY) places item-name in the key register only.

(3) LIST (MATCH) item-name [,option-.list] i

LIST(MATCH) adds item-name to the list register and copies the existing value
from the data register into the match register as a selection criterion for
sUbsequent file or data set operations. MATCH is typically used when a
previous retrieval operation has placed a value in the data register and that
value is now to be used for the next selection criterion. The item-name for
the new data item list may differ from the item-name used for the previous
retrieval. When you are remapping the data register, you can initialize the
value by using one of the choices from option-list shown with Syntax Option 1.

The following values for option-list specify a match selection to be performed
on a basis other than equality.

6-99

LIST

option-list:

NE

LT

LE

GT

GE

LEADER

SCAN

TRAILER

Not equal to

Less than

Less than or equal to

Greater than

Greater than or equal to

Matched item must begin with the input string; equivalent to
the use of trailing /lAII on input

Matched item must contain the input string; equivalent to the
use of trailing IIA

A
II on input

Matched item must end with the input string; equivalent to the
use of a leading /lAII on input

(4) LIST(PATH) item-name;

LIST(PATH) adds item-name to the list register and places it in the key
register.

(5) LIST(UPDATE) item-name;

LIST(UPDATE) adds item-name to the list register and places the value already
in the data register into the update register for a sUbsequent data set or
file operation using the REPLACE verb.

6-100

LIST

EXAMPLES

The first example places item names NAME, ADDRESS, CITY, and DATE in the list
register and reserves areas for their values in the data register. The areas
for NAME, ADDRESS, and CITY are initialized to blanks and the area for DATE is
initialized to the current system date in MMDDYY format.

DEFINE(ITEM) NAME X(20):
ADDRESS X(20):
CITY X(10) :
DATE X(6);

LIST NAME,INIT:
ADDRESS,INIT:
CITY,INIT:
DATE,DATE;

The data register is your stack; it is never cleared, only mapped and remapped
through the list register. To illustrate this point, consider the following
example that references two data bases. In one, a customer name is identified
by two items, II LAST-NAME II and II FIRST-NAME; in the other, the same name is
identified by a single item, "CUST-NAME".

SYSTEM TEST1,
BASE=CUST-BASE,

PROD-BASE;
DEFINE(ITEM) LAST-NAME

FIRST-NAME
CUST-NAME

X(lO):
X(10):
X(20) ;

LIST LAST-NAME: FIRST-NAME;
GET CUST-MAST,

LIST=(LAST-NAME:FIRST-NAME);

RESET (STACK) LIST;
LIST CUST-NAME;

«map data register with LIST statement»

«retrieve name, move to data register »

«reset list register to its beginning »
«map same data with new list register »

PUT CUST-INFO(PROD-BASE),
LIST=(CUST-NAME) ;

END TESTl ;

«write name to other data base »

Note that the list register was reset programmatically with the RESET(STACK)
statement.

6-101

LIST

In the next example, the company code is used to retrieve and display data
from one data set (CO-MSTR) and then the same value, renamed by LIST(PATH) as
the department code, is used to access another data set (DEPT-MSTR).

PROMPT(PATH) COMPANY-CODE,
CHECK=CO-MSTR;

LIST A:
B:
C',

OUTPUT CO-MSTR;
RESET(STACK) LIST;
LIST(PATH) DEPT-CODE;
LIST X:

Y:
z·,

OUTPUT DEPT-MSTR;

« get company code for subsequent retrieval »
« from CO-MSTR data set »

« use same value as department code for »
« subsequent retrieval from DEPT-MSTR »

In the following example, Transact resets the list register automatically when
a new command sequence starts.

Because Transact resets the list register at the start of each new command
sequence, you should define any global variables before the first command
sequence, and then redefine the global variables within each command sequence
preceding any local variables. For example, suppose the variables,
II VENDOR-ID " and "VENDOR-NAME" are to be used by both sequences UPDATE PRODUCT
and UPDATE VENDOR. Before executing either sequence, you can define these
items and place values for them in the data register. In order to retain
these values, all you need do is remap the list register at the start of each
sequence.

LIST VENDOR-ID: << map global variables in list reg. >>
VENDOR-NAME;

DATA VENDOR-ID: « prompt user for data >>
VENDOR-NAME;

$$UPDATE: << new command sequence - >>
$PRODUCT: « Transact resets list register >>

LIST VENDOR-ID: << remap global variables >>
VENDOR-NAME:
PROD-NUM: << variables local to UPDATE PRODUCT >>
DESCRIPTION;

$VENDOR: << Transact resets list register again >>
LIST VENDOR-ID: << remap global variables >>

VENDOR-NAME:
VENDOR-ADDRESS: « variables local to UPDATE VENDOR >>
VENDOR-ZIP;

6-102

MOVE

Places data into a specified data register space

**
*
* MOVE (item-namel)=[-]source-field;

*

*
*
*

**

MOVE places data into the data register location specified by item-namel. You
should use MOVE particularly when you want to move a character string into a
data register location. Unlike LET, MOVE does not check data types during the
operation; if it is necessary to check data types between the source and the
receiving fields, you should use the LET verb.

If the source-field length is not the same as the receiving field length
(item-namel), the source value is truncated on the right or filled with blanks
on the right.

STATEMENT PARTS

(item-namel)

source-field

Specifies that you want the data moved into the data register
location identified by item-namel.

may be one of the following:

[-](item-name2) The value in the data register location for item-name2. If
you include the II_II, then the source value is placed in the
destination field with opposite justification. That is,
source data that is right justified is left justified in
the destination field and vice-versa.

[-] II character
string II

sourcel +
source2

sourcel
source2

A programmer-defined character string. If you include the
minus sign. (-), then the source field is right justified in
the destination field. If character-string is null, as in
1111, then the receiving field is filled with binary zeros.
To fill the receiving field with blanks, use a space, II II

for the character string.

Concatenates the contents of sourcel and source2 and places
the result in the destination field. Any trailing blanks
are stripped on concatenation.

Removes the contents of source2 from sourcel as many times
as the contents of source2 are found in sourcel. Places
the results in the destination field.

6-103

MOVE

STATUS (parm)

DB

BASE

FILE

EXAMPLES

Moves a value to the destination field, depending on the
value of parm. If parm is:

Moves status block used in last IMAGE call to the data
register location specified by i~em-name.

Moves the data base name referenced in the last IMAGE
call to the data register location specified by
i~em-name.

Moves the name of the data set or file referenced by the
last IMAGE, KSAM, or MPE call to the data register
location specified by i~em-name.

1) MOVE (FIELD-B)=(FIELD-A);

Before MOVE After MOVE

FIE LD-A X(4) 1S1AIM 1 1

FIE LD -B X(5) 1c1H1u1elK 1

2) MOVE (MONTH) = (DATE);

ISIAIMI I

ISIAIMI 1 I

(no change)

DATE X(6)

Before MOVE After MOVE

1110101717101 1110101717101 (no change)

MONTH X(2) 11121 11 101

Note that the last four digits are truncated.

6-104

3) The following example illustrates concatenation:

MOVE (NEWFIELD)=(FIELD1)+(FIELD2);

Before MOVE After MOVE

--------- ---------
FIELD1 X(4) IAIBI I I IAIBI I I (no change)

--------- ---------
------- -------

FIELD2 X(3) ICIDIEI ICIDIEI (no change)
------- -------
------------- -------------

NEWFIELD X(6) 1112131415161 IAIBICIDIEI I
------------- -------------

Note that the trailing blanks in FIELDl are stripped when the two
fields are concatenated.

4) The following example illustrates II removal" of characters:

MOVE (DATE) = (FDATE) - (SLASH);

MOVE

Before MOVE After MOVE

----------------- -----------------
FDATE X(8) 10111113111/18121 10111113111/18121 (no change)

----------------- -----------------

SLASH X(1) 1/1 1/1 (no change)

------------- -------------
DATE X(6) I I 1 I I I I 1011131118121

------------- -------------

5) And, this example illustrates justification:

MOVE (FIELDY)= -(FIELDX);

Before MOVE After MOVE

FIELDX X(4)

FIELDY X(4)

IAIBICI I

111213141

IAIBICI I

I IAIBICI

6-105

(no change)

OUTPUT

Causes a mUltiple data retrieval from a file or data set and displays the data

*
* OUTPUT[(modifier)] file-name[,option-list]i

*

*
*
*

OUTPUT specifies a data base or file retrieval operation. It adds each
retrieved record to the data register, but only selects for output those
records that satisfy any selection criteria in the match register. For each
selected record, OUTPUT displays all the items in the current list register.
If you want to select items from the list register, you should precede the
OUTPUT statement with a FORMAT statement.

The OUTPUT statement displays the selected entries after any PERFORM=
statements are executed. This allows you to display the results of any
PERFORM= statements. However, this makes nesting of OUTPUT statements
difficult. The output from the most deeply nested OUTPUT statement is
displayed first. To produce nested output in the more usual order, you can
use a FIND statement to retrieve the data with a PERFORM= option to display
the data.

If a FORMAT statement appears before the OUTPUT statement, then the display is
formatted according to the specifications in that statement. If there is no
preceding FORMAT statement, the display is formatted according to the default
format described below. Once all entries have been displayed according to a
preceding FORMAT statement, subsequent OUTPUT statements revert to the default
format unless control passes again through a FORMAT statement.

The default format for OUTPUT is:

• Display values in order they appear in data register.

• Accompany each value with a heading consisting of:

• the heading specified for that value in a HEAD= option of a
DEFINE (ITEM) statement,

• the heading taken from the dictionary definition of the item, or

• the associated data item name in the list register.

• Display each value in a field whose length is either the data item
size or the heading length, whichever is longer.

• A single blank character separates each value field. If a field
cannot fit on the current display line, then the field begins on a new
line.

6-106

OUTPUT

STATEMENT PARTS

modifier

none

CHAIN

CURRENT

DIRECT

PRIMARY

RCHAIN

RSERIAL

SERIAL

file-name

To specify the type of access to the data set or file, choose
one of the following modifiers:

Retrieve an IMAGE master set entry based on the value in
the argument register. This option does not use the match
register.

Retrieve entries from an IMAGE detail data set or a KSAM
chain. The entries must meet any match criteria set up in
the match register. The contents of the key and argument
registers specify the chain in which the retrieval is to
occur. If no match criteria are specified, all entries are
selected. If match criteria are specified, the match items
must be included in a LIST= option of the OUTPUT statement.

Retrieve the last entry that was accessed from an MPE or
KSAM file or an IMAGE data set.

Retrieve the entry stored at a specified record number from
an MPE or KSAM file or an IMAGE data set. Before using
this modifier, store the record number as a doubleword
integer in the item referenced by the RECNO= option.

Retrieve the IMAGE master set entry stored at the primary
address of a synonym chain. The primary address is located
through the key value contained in the argument register.

Retrieve entries from an IMAGE detail data set chain in the
same manner as the CHAIN option, only in reverse order.
For a KSAM file, this operation is identical to CHAIN.

Retrieve entries from an IMAGE data set in the same manner
as the SERIAL option, except in reverse order. For a KSAM
or MPE file, this operation is identical to SERIAL.

Retrieve entries in serial mode from an MPE or KSAM file or
an IMAGE data set that meet any match criteria set up in
the match register. If no match criteria are specified,
all entries are selected. If match criteria are specified,
the match items must be included in a LIST= option of the
OUTPUT statement.

The file or data set to be accessed in the retrieval
operation. If the data set is not in the home base as defined
in the SYSTEM statement, specify the base name in parentheses:

set-name (base-name)

6-107

OUTPUT

op"tion-lis"t: One or more of the following options separated by commas:

ERROR=label
([i"tem-name])

LIST=
(xange-lis"t)

Suppress the default error return that the processor
normally takes. Instead, the program branches to the
statement identified by label, and Transact sets the list
register pointer to the data item i"tem-name. Transact
generates an error at execution time if the item cannot be
found in the list register.

If you do not specify an item-name, as in ERROR=label()i,
the list register is reset to empty.

If you use an 11*11 instead of i"tem-name, as in
ERROR=label(*)i, then the list register is not changed.

For more information, see IIAutomatic Error Handling ll
, in

section 5.

The list of items from the list register to be used for the
data retrieval portion of the OUTPUT operation. The
display portion follows the same rules as the DISPLAY
statement. If the LIST= option is omitted, the entire list
register is used for the data retrieval.

Only the items specified in a LIST= option have their match
conditions applied if match conditions are set up in the
match register. (The match register may be used only with
the modifiers CHAIN, RCHAIN, SERIAL, or RSERIAL.)

Each retrieved entry is placed in the area of the data
register indicated by LIST= before any PERFORM= is
executed.

The options for range-lis"t and the items they cause OUTPUT
to retrieve are:

(i"tem-name)

(i"tem-namel:
item-name2)

A single item.

All the items from i"tem-namel
through i"tem-name2.

If i"tem-namel and i"tem-name2 are marker
items (see DEFINE(ITEM) verb), and if there
are no items between the two in the list
register, no data base access is performed.

6-108

(item-namel:)

(:item-name2)

(item-namel,
item-name2,

item-namen)

()

OUTPUT

The items from item-namel through the item
indicated by the current list register
pointer.

The items from the beginning of the list
register through item-name2.

The items are selected from the list
register. For IMAGE, items can be
specified in any order. For KSAM and
MPE, items must be specified in the
order of their occurrence in the record.
Do not include child items in the list
unless they are associated with a VPLUS
forms file. This option incurs some
system overhead.

A null item list. That is, access the file
or data set, but do not transfer any data.

LOCK

NOCOUNT

NOHEAD

NOMATCH

NOMSG

PERFORM=label

Lock the specified file or data base unconditionally. If a
data set is being accessed, the entire data base is locked
while the OUTPUT executes. If LOCK is not specified, the
data base is locked before each entry is retrieVed, remains
locked while the entry is processed by any PERFORM=
statements, but is unlocked briefly before the next entry
is retrieved.

Suppress the message normally generated by the processor to
indicate the number of entries found.

Suppress default headings for the displayed values.

Ignore any match criteria set up in the match register.
This option is useful if you want to leave the match
register set up but do not want to use it.

suppress the standard error message produced by the
processor as a result of a file or data base error; all
other error recovery actions occur.

Execute the code following the specified label for every
entry retrieved by the OUTPUT operation. The entries may
be optionally selected by MATCH criteria, in which case the
PERFORM= statements are executed only for the selected
entries. This option allows operations to be performed on
retrieved entries without your having to code loop-control
logic. You may nest up to 10 PERFORM= options.

6-109

OUTPUT

RECNO=item-name With the DIRECT modifier: You must define item-name to
contain the doubleword integer number (1(9,,4)) of the
record to be retrieved.

With other modifiers: Transact returns the record number
of the retrieved record in item-name, a doubleword integer
(1(9,,4)).

SINGLE

SOPT

Retrieve and display only the first entry that satisfies
any selection criteria.

Suppress the processor optimization of IMAGE calls. This
option is intended to support a data base operation in a
routine that is called recursively. The option allows a
different path of the same detail data set to be used at
each recursive entry, rather than optimizing to the same
path. It also suppresses generation of an IMAGE call list
of 11*11 after the first call is made. (For an example using
SOPT in a recursive routine, see the FIND verb examples.)

SORT=[(item-namel:item-name2)] (item-name3[(ASC)]
[(DES)]

[,item-name4[(ASC)]] ...);
[(DES)]

This option sorts each occurrence of item-name3 and,
optionally, item-name4, and so forth.

The list used to define the sort file record is either the
range of items specified by item-namel:item-name2, or if
item-namel and item-name2 are omitted, the entire list
register. You can use the optional range to prevent
unneeded variables from being written to the sort file. In
general, only send to the sort file the items that will be
formatted for output.

The OUTPUT statement always sorts after processing any
PERFORM= statements. The processing sequence for the sort
is:

• First, retrieve each selected record,
• then, execute any PERFORM= statements,
• then write the specified items to the sort file,

and, after writing all the records to
the sort file,

• sort the sort file, and
• display the sorted output.

(See the FIND verb description for a different processing
sequence.)

6-110

STATUS

OUTPUT

You may specify either ascending or descending sort order.
The default is ascending order.

Supress processor action defined in section 5 under
"Automatic Error Handling". You will probably have to add
coding if you use this option.

When STATUS is specified, the effect of an OUTPUT statement
is described by the value in the status register:

Status
Register Value

o

-1

>0

Meaning

The OUTPUT operation was successful.

A KSAM or MPE end-of-file condition
occurred.

For a description of the condition that
occurred, refer to IMAGE condition word
or MPE/KSAM file system error documenta
tion corresponding to the value.

STATUS causes the following with OUTPUT:

• Normal mUltiple accesses become single.

• Supresses the normal rewind done by OUTPUT, so CLOSE
should be used before OUTPUT(SERIAL).

• Suppresses the normal find of the chain head by OUTPUT,
so PATH should be used before OUTPUT(CHAIN).

6-111

OUTPUT

When you want to avoid the normal error recovery so you can
print totals on an error, use STATUS with OUTPUT. The
following example transfers control to a PERFORM label to
compute the totals and then displays the error code.

TRYAGAIN:
PROMPT (PATH) ACCT-NO;
OUTPUT(CHAIN) DETAIL-SET,

LIST= (A: N) ,
ERROR=ERROR-MSG(*),
PERFORM=TOTAL;

PERFORM OUTPUT-TOTAL;
END;

ERROR MSG:
DISPLAY "INVALID ACCT-NO";
GO TO TRYAGAIN;

6-112

OUTPUT

EXAMPLES

The following two examples of OUTPUT retrieve data according to a value
entered by the user. Then they display the data according to the preceding
FORMAT statement.

LIST NAME:
ADDRESS:
CITY:
ZIP;

PROMPT(KEY) CUST-NO;
FORMAT NAME,COL=5:

ADDRESS,COL=20:
CITY,SPACE=5:
ZIP,SPACE=5;

OUTPUT MASTER,
LIST=(NAME:ZIP);

PROMPT (PATH) CUST-NO;
LIST COMPANY:

CO-ADDR:
CO-STATE:
ZIP;

FORMAT COMPANY, COL=5:
CO-ADDR,COL=40:
CO-STATE,LINE,COL=5:
ZIP, COL=40;

OUTPUT(CHAIN) DETAIL,
LIST=(COMPANY:ZIP) ;

The following example retrieves the entries that satisfy the match criterion
LAST-NAME = SMITH from the data set CUSTOMER, then sorts the entries according
to FIRST-NAME and displays only the sorted names.

LIST LAST -NAME:
FIRST-NAME;

MOVE (LAST-NAME) = "SMITH";
SET(MATCH) LIST (LAST-NAME);

FORMAT LAST-NAME: « Items to be displayed »
FIRST-NAME, JOIN=2;

OUTPUT(SERIAL) CUSTOMER,
NOCOUNT, NOHEAD,
SORT=(FIRST-NAME); « Sort on first name

6-113

»

OUTPUT

The resulting display looks like:

Smith Abraham
Smith John
Smith Joseph
Smith Mary
Smith Thomas

In the next example, some of the items selected for sorting and display are
calculated in a PERFORM= routine.

LIST INV-NO:
PRICE:
QUANTITY:
AMOUNT:
TOT-AMT;

OUTPUT(SERIAL) INVENTRY,
. LIST=(INV-NO:QUANTITY),

PERFORM=TOTAL,
SORT=(INV-NO:AMOUNT)

(AMOUNT) ;

TOTAL:
LET (AMOUNT) (PRICE) * (QUANTITY);
LET (TOT-AMT)= (TOT-AMT) + (AMOUNT);
RETURN;

6-114

PATH

Establishes a chained access path to an IMAGE data set or a KSAM file

**
*
* PATH file-name[,option-list];

*

*
*
*

**

PATH uses the key and argument registers to locate the key that defines a
given chain in a KSAM file or an IMAGE detail data set. If you do not include
a STATUS option in the PATH statement, the status register is set to the
number of entries in the chain of an IMAGE detail set; this information is not
returned for a KSAM file.

You must use a PATH statement to establish the path for chained access to an
IMAGE data set or a KSAM file when the STATUS option is included in a
subsequent data access statement. PATH may not be used with MPE files.

STATEMENT PARTS

file-name

option-list

The KSAM file or IMAGE data set to be accessed. If the data
set is not in the home base as defined in the SYSTEM
statement, the base name must be specified in parentheses as
follows: set-name (base-name)

If you specify a set name and do not include the STATUS
option, the status register is set to the number of entries in
the data set chain; the status register does not contain this
information for a KSAM file.

One or more of the following fields, separated by commas:

ERROR =label
([item-name])

Suppress the default error returr that Transact normally
takes. Instead, the program branches to the statement
identified by label, and Transact sets the list register
pointer to the data item item-name. Transact generates an
error at execution time if the item cannot be found in the
list register.

If you do not specify an item-name, as in ERROR=label();,
the list register is reset to empty.

If you use an 11*11 instead of item-name, as in
ERROR=label(*);, then the list register is not changed.

For more information, see IIAutomatic Error Handling, II in
section 5.

6-115

PATH

LIST=
(range-list)

Used only with KSAM files to map out a record. The list
option is needed to locate the key in the KSAM record.

The options for range-list and the records upon which they
operate include the following:

(item-name)

(item-namel:
item-name2)

(item-namel:)

(:item-name2)

(item-namel,
item-name2,

item-namen)

A single item.

All the items from item-namel
through item-name2.

If item-namel and item-name2 are marker
items (see DEFINE(ITEM) verb), and if there
are no items between the two in the list
register, no data base access is performed.

The items from item-namel through the item
indicated by the current list pointer.

The items from the beginning of the list
register through item-name2.

The items are selected from the list
register. Items must be specified
in the order of their occurrence in
the record. This option incurs some
system overhead.

NOMSG The standard error message produced by Transact as a result
of a file or data base error is to be suppressed.

6-116

STATUS

PATH

Suppress processor action defined in section 5 under
"Automatic Error Handling". You will probably have to add
coding if you use this option.

When STATUS is specified, the effect of a PATH statement is
described by the value in the status register:

Status
Register Value

o

-1

>0

Meaning

The PATH operation was successful

A KSAM end-of-file condition occurred.

For a description of the condition that
occurred, refer to IMAGE condition word
or KSAM file system error documentation
corresponding to the value.

Note that when STATUS is omitted, the status register
contains a -1 if the argument value for a PATH operation on
a detail data set is not found in the associated master
data set. Otherwise it contains the number of entries in
the chain.

6-117

PATH

EXAMPLES

The following example uses a PATH statement to locate the head of a KSAM
chain, and then retrieves the first item in that chain.

«retrieve first record»

("Enter Customer Number"); «set up key/arg registers»
«Locate head of chain in KFILE»
«Map KFILE record»

LIST DEL-WORD:
CUST-NO:
LAST-NAME:
FIRST-NAME:
INITIAL;

PROMPT(KEY) CUST-NO
PATH KFILE,

LIST=(DEL-WORD:INITIAL) ;
IF STATUS <> 0 THEN

GET (CHAIN) KFILE,
STATUS,
LIST=(DEL-WORD:INITIAL) ;

The next example uses a PATH statement to determine the number of records in
an IMAGE detail data set.

PROMPT(PATH) GUST-NO;
PATH CUST-DETAIL;
LET (NUM-RECS) = STATUS;
DISPLAY NUM-RECS, NOHEAD:

"Records in this Path";

PATH is required before you use the STATUS option in a data base access
statement because the STATUS option suppresses the usual determination of a
chain head. In the following example, the PATH statement is needed prior to
the FIND(CHAIN) statement that includes a STATUS option:

SET(KEY) LIST(CUST-NO);
PATH CUST-DETAIL;

GET-NEXT:
FIND(CHAIN) CUST-DETAIL.

LIST=(CUST-NO:ZIP).
STATUS.
PERFORM=PROCESS-ENTRY;

IF STATUS <> 0 THEN
GO TO ERROR-ROUTINE

ELSE
GO TO GET-NEXT;

Note that the STATUS option also suppresses the normal mUltiple retrieval
performed by FIND; you must specifically code the loop logic.

6-118

PERFORM

Transfers control to a labelled statement

*
* PERFORM label;

*

*
*
*

PERFORM transfers execution to the statement identified by label; execution
continues until one of the following is encountered:

RETURN;

END;

command or
sub-command
label

Returns control to the statement immediately following the
last PERFORM statement executed

Specifies the end of the current processing level and returns
control to the previous processing level, or to command level
if no previous processing level is active within the perform
block.

Specifies the end of the current command sequence. The
compiler generates an END statement, and the effect is the
same as END;.

PERFORM statements can be nested up to a maximum of 75 levels. Note that this
differs from PERFORM= options in data management verbs, which allow a maximum
of 10 levels of nesting. This difference is due to the number of entries in
an internal table: the PERFORM statement uses a 2-word entry, whereas PERFORM=
uses a 15-word entry. The total table size is approximately 150 words.

Although GO TO statements can branch into and out of PERFORM statement loops,
this is not generally good coding practice.

STATEMENT PARTS

label The label that identifies the sequence of statements called by
PERFORM.

6-119

PERFORM

EXAMPLES.

IF INPUT = "YES", "Y" THEN
PERFORM ADDIT

ELSE GO TO GET-ACCT;
PROMPT INV-NUM("Invoice Number"), RIGHT;

END;

ADD-IT:
PUT CUST-FILE,

LIST=(NAME:ZIP);
LET (NUM) = (NUM) + 1;
DISPLAY NAME, COL=5, NOHEAD:

"HAS BEEN ADDED TO CUSTOMER FILE.", JOIN;
RETURN;

When the response to INPUT causes a transfer to the label ADD-IT, the
statements between ADD-IT and RETURN execute. Control then returns to the
PROMPT statement that immediately follows the IF statement.

6-120

PROC

Calls a procedure that has been loaded into a segmented library (SL) file

*
*
*
*

PROC procedure-name [(parameter-list)] [,option-list];
*
*
*
*

PROC calls an MPE system intrinsic or other compiled procedure that is
resident in an SL file. SL files are searched in the following order: group
SL, account SL, system SL.

The PROC statement does not directly support intrinsics with an optional
number of parameters (Option Variable Intrinsics); you may call such
intrinsics by using a bit map to specify the parameters you want passed.
(Refer to the SPL Reference Manual for more information on Option Variable bit
maps.)

Ensure that any intrinsics called are declared using DEFINE(INTRINSIC).

STATEMENT PARTS

procedure-name The name under which the procedure is listed in the SL
directory

parameter-list Optional items in the parameter-list specify one or more
variables that are passed between the Transact program and the
external procedure. The list may contain any of a number of
variables in any order. The order in which you place the
variables is determined by the order in which the called
procedure expects them. The only exception is that a function
return variable can be placed anywhere in the list; a function
return variable is indicated by a preceding 11&11 (see II NOTE II

below) .

The variable identifiers should be separated by commas. You
may indicate to the called procedure the existence of a null
parameter by placing consecutive commas on the list. Transact
passes a single word value of zero for this null parameter.
Use two commas if the parameter has a double-word value.

All addresses specified by the items in parameter-list are
word addresses. If you want to specify a byte address,
precede the item-name with 11%11. For example, ITEM(NUM)
specifies a word address, whereas %ITEM(NUM) specifies a byte

6-121

PROC

(item-na~e)

ARGLNG

address. PRoe does not automatically align data parameters on
word boundaries.

NOTE: The following special characters may precede any
parameter:

% Passes the given parameter as a byte address

Passes the given parameter by value rather than by
reference

& Copies the function value returned by the intrinsic to the
field in the data register associated with the given item,
or to the STATUS register. Only one such designated
parameter may be included in the parameter-list, and it may
appear anywhere in the list.

The parameter-list may consist of any of the following:

Address of a logical array containing the value of an item
in the data register. Use this parameter to pass any
values defined in your program. It is up to you to make
sure that the item is on a word boundary in the data
register if you want to pass a word address. The beginning
of the data register is on a word boundary; if you add
items with an odd number of bytes, you should add a dummy
fill character to retain word boundaries.

You can include any of the following key words in a
parameter-list. If the key word has an argument, it must
immediately follow the key word with no intervening blanks.
Transact supplies a value (usually an address) whenever it
finds one of these key words in a parameter list.

Address of a logical array containing the argument value
currently associated with the key for data set or file
operations.

Address of an integer word containing the byte length of
the argument value.

BASE
[(base-name)]

BASELNG
[(base-name)]

Address of a logical array containing the name of the given
data base preceded by the two-character base-id supplied by
IMAGE, and followed by a blank character. If no base-name
is specified, then the home base is assumed.

Address of an integer word containing the byte length of
the given base-name, including the terminating blank.

6-122

PROC

BYTE(item-name) Address of an integer word containing the byte length of
the value of the given item.

COUNT
(item-name)

DECIMAL
(item-name)

FILEID
(file-name)

Address of an integer word containing any sub-item
occurrence count for the given item. A value of 1 means
that the given item is not a compound type containing
sub-items.

Address of an integer word containing the decimal place
count for the given item.

Address of an integer word containing the identifier
assigned to file-name by MPE when the file was opened by
this process. The following special files can also be used
in conjunction with the FILEID parameter:

• TRANIN
• TRANOUT
• TRANLIST

Transact input file
Transact output file
Transact printer output file

INPUT

INPUTLNG

Address of the logical array containing the value that was
last input in response to an INPUT statement prompt.

Address of an integer word containing the byte length of
the input value.

ITEM(item-name) Address of a logical array containing the name of the given
item.

ITEMLNG
(item-name)

KEY

KEYLNG

POSITION
(item-name)

SET(set-name)

Address of an integer word containing the byte length of
the given item name.

Address of a logical array containing the name of the data
item currently used as a key for data set or file
operations. The data item name must be terminated by a
semicolon (i).

Address of an integer word containing the byte length of
the data item name in the key, including the terminating
semicolon.

Address of an integer word containing the position, that
is, the byte offset, of a child item within its parent
item. This parameter is set to -1 to indicate that there
is no parent item.

Address of a logical array containing the name of the given
data set followed by a blank.

6-123

PROC

SETLNG
(set-name)

Address of an integer word containing the byte length of
the given data set name, including the terminating blank.

SIZE(item-name) Address of an integer word containing the byte length of
the display or entry format for the given item.

STATUS Address of an integer word containing the value for the
status register set by the Transact processor. If the
STATUS parameter is NOT used, then the status register is
set to one of the condition codes generated by the called
procedure (CCL, CCE, or CCG). Condition codes are defined
as follows:

CCL -1
CCE = 0
CCG = +1

Condition codes in the status register can be tested with a
subsequent IF statement. For example:

IF STATUS < 0 THEN
GO TO CCl-PROCESS;

Where CCL-PROCESS will handle a CCL condition.

STATUS (DB) Address of the IMAGE condition word block.

STATUS (IN) Address of an integer word containing the STATUS value
following the most recent user input statement
(PROMPT/DATA/INPUT). See the appropriate verb for the
interpretation of the STATUS value.

TYPE(item-name) Address of an integer word containing a code that
represents the data type of item-name. The integer code
represents the data type by its position in the sequence:
X, U, 9, Z, P, I, J, K, R, E,@j thus, the code corresponds
to a data type as follows:

O=X,1=U,2=9,3=Z,4=P,5=I,6=J,7=K,8=R,9=E, and lO=@ (the
marker item)

VCOM(form-file) Address of the logical array containing the VPLUS
communication area being used for the referenced form-file.

option-list

UNLOAD

One or more of the following options may follow the parameter
list, separated by commas:

Unload the procedure being called following execution;
that is, remove it from the Loader Segment Table. By

6-124

PROC

default, Transact leaves an entry in the Loader Segment
Table for each called procedure after it executes. Only
use this option if you do not need the procedure again.
Otherwise, Transact incurs extra overhead loading the
procedure the next time it is called.

NOTRAP

NOLOAD

EXAMPLES

Ignore any arithmetic trap detected in the operation of the
procedure. By default, Transact issues an error message
and terminates the called procedure when it encounters an
arithmetic error.

Load the called program the first time it is called rather
than when the program is initiated. By default, Transact
loads all external procedures when it initiates the calling
program.

Used in combination with UNLOAD, this option can save
Loader Segment Table space. NOLOAD is ignored if the
called procedure is an MPE system intrinsic declared in a
DEFINE (INTRINSIC) statement; if you want such a procedure
to be loaded dynamically, do not include it in a
DEFINE (INTRINSIC) statement

The format of the intrinsic ASCII in the MPE Intrinsics Manual is:

I W IV BA
numchar:=ASCII(word,base,string);

The PROC verb to call the ASCII intrinsic has the following format:

PROC ASCII (#(WORD),#(BASE),%(STRING),&(NUMCHAR));

WORD, BASE, and STRING are program variables that correspond to the parameters
of the intrinsic and NUMCHAR is a functional return variable to which the
procedure returns the number of characters, NUMCHAR, translated by the ASCII
intrinsic. Note that NUMCHAR is at the end of the PROC parameter list rather
than in its position in the intrinsic definition. WORD and BASE are preceded
by a 11#11 symbol because they are passed by value; STRING is a byte address as
indicated by the preceding 11%11.

6-125

PROC

The following example calls the intrinsics CREATE and ACTIVATE. (Refer to the
MPE Intrinsics Reference Manual for the syntax of these intrinsics.) Since
both intrinsics are option Variable, a bit map (MAP) is included at the end to
indicate which parameters to pass. Because this map and the CFLAG parameter
are passed by value, they are preceded by a "#11 symbol.

DEFINE(ITEM) ROUTINE X(20):
CPIN 1(4):
CFLAG 1(4) :
MAP 1(4) ;

$$A:
LIST ROUTINE,INIT:

CPIN, INIT:
CFLAG,INIT:
MAP,INIT;

«Process name»
«PIN of process»
«Flags»
«Bit map for optional parameters»

LET (MAP) = 672; «decimal equivalent of bit map "1010100000"»
LET (CFLAG) = 73; «decimal equivalent of bit map "1001001" »
DATA ROUTINE("WHICH PROCESS?");

PROC CREATE (%(ROUTINE)" (CPIN), ,#(CFLAG)"", ,#(MAP));

LET (MAP) = 3;
LET (CFLAG) 3;

PROC ACTIVATE (#(CPIN),#(CFLAG),#(MAP));

END;

Note that the MAP parameter sets up a bit map for an intrinsic that is type
OPTION VARIABLE.

6-126

PROC

The next example calls the VPLUS/3000 procedure VPRINTFORM to print a form on
the line printer.

SYSTEM TEST,
VPLS=CUSTFORM;

DEFINE(ITEM) PRINTCNTL 1(2):
PAGECNTL I (2) :

DEFINE(INTRINSIC) VPRINTFORM;

PRINT:
LIST PRINTCNTL:

PAGECNTL;

« Form definition in Dictionary»

LET (PRINTCNTL)
LET (PAGECNTL)

1 ;
0;

« Underline Fields »
« CR/LF Off »

PROC VPRINTFORM (VCOM(CUSTFORM),
(PRINTCNTL) ,
(PAGECNTL)),

Note that Transact supplies the comarea location for the forms file CUSTFORM
automatically through the parameter VCOM(file name).

The next example calls the IMAGE intrinsic DBCLOSE using the BASE, SET, and
STATUS key-word parameters.

SYSTEM TEST,
BASE=CUSTOMER (IIMANAGER II) ;

DEFINE(ITEM) MODE 1(2);
DEFINE(INTRINSIC) DBCLOSE;

LET (MODE) = 5;
PROC DBCLOSE (BASE (CUSTOMER) ,

SET (CUST -MAST) ,
(MODE) ,
STATUS(DB)) ;

6-127

PROC

The next example shows a call to DSG/3000 intrinsics. The data register size
is increased because of DSG requirements:

SYSTEM DSG,
DATA=4000,10;

DEFINE(ITEM) GRAF 14151+(2,,2):
GRAFSIZE 1(4,,2):
LANG I (1, , 2) ;

LIST GRAF:GRAFSIZE:LANG;

LET (GRAFSIZE) 1415;
LET (LANG) 0;

PROC GINITGRAF((GRAF),(GRAFSIZE),(LANG));

DISPLAY IIReturn from GINITGRAF II ;

The following example illustrates the use of the FWRITE intrinsic in
conjunction with the Transact terminal output file TRANOUT:

SYSTEM DemoO 1;

DEFINE(INTRINSIC) FWRITE;

DEFINE(ITEM) MSG X (30);
DEFINE(ITEM) COUNT 1(4);
DEFINE(ITEM) CONTROL 1(4);

LIST MSG : COUNT : CONTROL;

MOVE (MSG) = IIHELLO THERE WORLD! !II;
LET (COUNT) = -19;
LET (CONTROL) = 0;

PROC FWRITE (#FILEID(TRANOUT), (MSG), (COUNT), (CONTROL));

6-128

PROMPT

Accepts input from the user terminal and places the supplied values into the
list, data, argument, match, and/or update registers

**
* *
* PROMPT [(modifier)] it;em-name[("prompt;-st;ring")] [,opt;ion-list;]; *
* *
**

PROMPT prompts the user for values and, depending on the syntax option chosen,
places the value in one or more registers. The register affected depends on
the verb modifier. You may choose from the following:

• none

• KEY

• MATCH

• PATH

• SET

• UPDATE

Add item name to list register and input value to data
register (see Syntax Option 1).

Add item name to key register and add input value to argument
register (see Syntax Option 2).

Add item name to list and match registers and add input value
to data register; also set up input value in match register as
a match criterion (see Syntax Option 3).

Add item name to list and key registers, and add input value
to data and argument registers (see Syntax option 4).

Add item name to list register and add input value to data
register, unless response is a carriage return (see Syntax
Option 5).

Add item name to list and update registers and input value to
data register; also add input value to update register for
SUbsequent replace operation (see Syntax Option 6).

PROMPT is used to set up and perform a data entry operation, usually for a
subsequent data set or file operation. At execution time it prompts the end
user with a prompt string, the entry text associated with the item, or with
the item name to request the value of the data item. An entry text can be
associated with an item in the dictionary or in the DEFINE(ITEM) defintion of
the item.

Transact validates the input value as to type, length, or any other
characteristics specified in the dictionary or in a DEFINE(ITEM) statement
before it modifies the specified register. If Transact detects an error, it
displays an appropriate error message and reissues the prompt automatically.

6-129

PROMPT

STATEMENT PARTS

modifier

item-name

prompt-string

option-list

Changes or enhances the PROMPT verb; usually determines the
register in which to place the item name and the register to
which the input value should be added or the register whose
value should be changed.

The name of the data item to be placed in the list register
and/or another register, and whose value should be added to or
changed in the data register and/or another register. The
item name cannot be the name of a child item.

The string that prompts the terminal user for the input value.
If omitted, the prompt is the entry text associated with the
item, or if there is no entry text, then the prompt is the
item name.

A field specifying how the data should be formatted and/or
other checks to be performed on the value.

Choose one or more (separated by commas) of the following
options for any syntax option. (See Syntax Option 3,
PROMPT (MATCH) for additional options):

BLANKS Do not suppress leading blanks supplied in the input value
(Leading and trailing blanks are normally stripped.)

CHECK=set-name Check the input value against the IMAGE master set
set-name to ensure that a corresponding search item value
already exists. If the value is not in the data set at
execution time, Transact displays an appropriate error
message and reissues the prompt.

This option cannot be used to check against MPE or KSAM
files, nor can it be included in a PROMPT(MATCH) statement.

CHECKNOT=
set-name

NOECHO

RIGHT

Check input value against the IMAGE master set set-name to
ensure that a corresponding search item value does not
already exist. If the value is in the data set at
execution time, then Transact displays an appropriate error
message and reissues the prompt.

This option cannot be used to check against MPE or KSAM
files, nor can it be included in a PROMPT (MATCH) statement.

Do not echo the input value to the terminal. If omitted,
the input value is displayed on the terminal.

Right justify the input value within the data register
field. By default, the input value is left justified.

6-130

STATUS

PROMPT

Suppress normal processing of 11]11 or "]]11, which causes an
escape to a higher processing or command level. Instead,
set the status register to -1 if the end user enters a"]"
or to -2 if the end user enters a II]]". If the user enters
one or more blanks and no non-blank characters, then the
status register is set to -3. (The status register
normally contains the number of characters entered in
response to the prompt, including leading blanks if the
BLANKS option is used; it never counts trailing blanks.)
The STATUS option allows you to control subsequent
processing by testing the contents of the register with an
IF statement.

If the CHECK or CHECKNOT option is also used, then 11]11,
"]]", or a carriage-return suppresses the data set
operation and control passes to the next statement.

SYNT AX OPTIONS

(1) PROMPT item-name [(IIprompt-stringll)] [,option-list];

PROMPT with no modifier adds the item-name to the list register and the input
value to the data register.

(2) PROMPT(KEY) item-name [("prompt-string ll)] [,option-list];

PROMPT(KEY) places the item-name in the key register and the input value in
the argument register. The data item and its value are used as a retrieval
key for a subsequent data set or file operation.

(3) PROMPT (MATCH) item-name [("prompt-string ll)] [,option-list];

PROMPT(MATCH) adds the item-name to the list and match registers. In
addition, it adds the input value to the data register and also sets up this
value as a selection criterion in the match register for a subsequent file
operation.

The user response to PROMPT(MATCH) may be any of the valid selection criteria
described under IIResponding to a Match Prompt ll in section 5. If the response
is a carriage return, then all values for the data item are selected. If the
response contains several values separated by connectors, only the first value
is placed in the data register space for the item. If a particular value is
input, then all entries that match the associated data item are selected.

6-131

PROMPT

The MATCH modifier allows one or more of any of the op~ion-lis~ items listed
above under "Statement Parts", except for CHECK= and CHECKNOT=, which are not
allowed in a PROMPT (MATCH) statement. You may, in addition, select one of the
following options, to specify that a match selection is to be performed on a
basis other than equality.

op~ion-lis~:

NE

LT

LE

GT

GE

LEADER

SCAN

TRAILER

Not equal to

Less than

Less than or equal to

Greater than

Greater than or equal to

Matched item must begin with the input
string; equivalent to the use of trailing
II All on input

Matched item must contain the input
string; equivalent to the use of trailing
IIAAII on input

Matched item must end with the input string;
equivalent to the use of a leading II AII on
input

For example, for the following command and response sequence, the data base or
file entries selected will contain EMPL values starting with IILIT", AGE values
less than 35, and LOS values greater than or equal to 5:

PROMPT (MATCH) EMPL:
AGE, LT:
LOS, GE;

EMPL> Llr'
AGE> 35
LOS> 5

(4) PROMPT(PATH) i~em-name [(IIpromp~-s~ring")] [,op~ion-lis~];

PROMPT(PATH) adds the i~em-name to the list register and the key register. In
addition, the input value is added to the data register and the argument
register. Use this modifier to set up a data item for a data set or file
operation and its value for use as a retrieval key.

6-132

PROMPT

(5) PROMPT(SET) item-name [(IIprompt-string")] [,option-list] i

PROMPT(SET) adds the item-name to the list register and the input value to the
data register only if the input value is not a carriage return. If the user
responds to the prompt with a carriage return, no additions are made to the
list and data registers. The modifier is primarily used to set up a data item
list for a data set or file operation using the UPDATE verb, where the user
controls that list by means of his or her responses.

For example, the following PROMPT(SET) statement and the responses to its
prompts produce a list register content of II PHONE II and II ROOM II and a data
register content of the associated supplied values:

PROMPT{SET) EMPL:
DEPT:
PHONE:
ROOM:
LOCATION;

EMPL>
DEPT>

PHONE> 278
ROOM> 312

LOCATION>

Note that if you use the CHECK= option and the item is not found in the data
set, you must clear this value from the match register before you reissue the
prompt.

(6) PROMPT(UPDATE) item-name [(IIprompt-string")] [,option-list]
[:item-name ...] ... ;

PROMPT(UPDATE) adds the item-name to the list and update registers, and adds
the input value to the data register. In addition, it sets up the input value
in the update register for a subsequent data set or file operation using
REPLACE. When a subsequent REPLACE statement is executed, it replaces any
value for the specified data item with the value added to the update register.

6-133

PROMPT

EXAMPLES

$$ADD: «Add a new record»
$CUSTOMER:

PROMPT CUST-NAME{IICUSTOMER'S NAME II):
CUST-ADDR:
CUST-CITY:
CUST-PHONE;

This example causes the following sequence of prompts to appear on the
terminal:

CUSTOMER'S NAME>
CUST-ADDR>
CUST-CITY>
CUST-PHONE>

The following example adds a new customer number to the data set and then adds
transactions for that customer. It checks to make sure that the customer
number entered by the user is not already in the data set and that the
transactions apply to a customer number that is in the data set.

$$ADD: «Add new customer»
$CUSTOMER:

PROMPT{PATH) CUST-NUMBER,
CHECKNOT=CUST-MASTER;

PUT CUST-MASTER;
$TRANS:

PROMPT(PATH) CUST-NUMBER,
CHECK=CUST-MASTER;

PROMPT INV-NUMBER:
AMOUNT;

PUT CUST-DETAIL;

6-134

PUT

Moves data from the data register to a file, data set, or a formatted screen

*
* PUT[(FORM)] destination [,option-list];

*

*
*
*

PUT moves an entry from the list and data registers into a file or a data set;
or it displays data in a VPLUS form.

STATEMENT PARTS

FORM

destination

form-name

(item-name)

*

&

optional modifier. If II FORM II is specified, then PUT(FORM)
displays a VPLUS form on a 262X or 264X series termin~l, and
moves data to the form from the data register.

The file, data set, or form to be accessed in the write
operation.

If the destination is a data set that is not in the home base
as defined in the SYSTEM statement, the base name must be
specified in parentheses as follows:

set-name(base-name)

In a PUT(FORM) statement, the destination must identify a form
in a forms file that was named in the SYSTEM statement. For
PUT(FORM) only, destination may be specified as any of the
following:

Name of the form to be displayed by PUT(FORM).

Name of an item that contains the name of the form to be
displayed by PUT(FORM).

Display the form identified by the II current II form name;
that is, the form name most recently specified in a
statement that references VPLUS forms. Note that this
option is not the same as the CURRENT option (described
under option-list), which indicates the currently displayed
form.

Display the form identified as the II next II form name; that
is the form name defined as IINEXT FORM II in the FORMSPEC
definition of the current form.

6-135

PUT

option-list

LIST=
(range-list)

The LIST option is available with or without the FORM
modifier. Other options, described below, may be used only
without or only with the FORM modifier.

If the LIST= option is omitted from a PUT statement without
the FORM modifier, all the items from the current list
register are used for the file or data set operation. If
LIST= is omitted from a PUT (FORM) statement, it uses all the
items both currently in the list register and defined for the
form in the SYSTEM statement or the dictionary.

The list of items from the list register to be used for the
PUT operation.

For PUT(FORM) only, items in the range list can be child
items.

The options for range-list and the records upon which they
operate include the following:

(item-name)

(item-namel:
item-name2)

(item-namel:)

(:item-name2)

(item-namel,
item-name2,

item-namen)

()

A single item.

All the items from item-namel
through item-name2.

If item-namel and item-name2 are marker
items (see DEFINE(ITEM) verb), and if there
are no items between the two in the list
register, no data base access is performed.

The items from item-namel through the item
indicated by the current stack pointer.

The items from the beginning of the list
register through item-name2.

The items are selected from the list
register. For IMAGE, items can be
specified in any order. For KSAM, VPLUS,
and MPE, items must be specified in the
order of their occurrence in the record or
form. Do not include child items in the
list unless they are associated with a VPLUS
forms file. This option incurs some
system overhead.

A null item list. That is, access the file
or data set, or display the form, but do not
transfer any data.

6-136

PUT

OPTIONS AVAILABLE WITHOUT THE FORM MODIFIER

ERROR=label
([item-name])

LOCK

NOMSG

RECNO=
item-name

STATUS

Suppress the default error return that Transact normally
takes. Instead, the program branches to the statement
identified by label, and the stack pointer for the list
register is set to the data item item-name. Transact
generates an error at execution time if the item cannot be
found in the list register.

If you do not specify an item-name, as in ERROR=label();,
the list register is reset to empty.

If you use an 11*11 instead of item-name, as in
ERROR=label(*);, then the list register is not changed.

For more information, refer to IIAutomatic Error Handling,lI
in section 5.

Lock the specified file or data base unconditionally. If a
data set is being accessed, the entire data base is locked
while the PUT executes.

Suppress the standard error message produced by Transact as
a result of a file or data base error.

Place the record number of the new entry into the data
register space for item-name.

Suppress processor action defined in section 5 under
IIAutomatic Error Handling ll

• You will probably have to add
coding if you use this option.

When STATUS is specified, the effect of a PUT statement is
described by the value in the status register:

Status
Register Value

o

-1

>0

Meaning

The PUT operation was successful.

A KSAM or MPE end-af-file conditi9n
occurred.

For a description of the condition that
occurred, refer to IMAGE condition word
or MPE/KSAM file system error documenta
tion corresponding to the value.

6-137

PUT

PUT with the STATUS option could be used in the following
instance:

When a data set is full, you may want to write to an
overflow file. To trap and display the full error
condition, you could use the following code:

«Error, Check it out»
«Unexpected error »

«Write to overflow
«Set full

PUT DATA-SET,
LIST= (A: N) ,
STATUS;

IF STATUS<>Q THEN
IF STATUS<>16 THEN

GO TO ERROR-CLEANUP
ELSE

DO
PUT OVERFLOW,

LIST= (A:N),
STATUS;

IF STATUS<>Q THEN
GO TO ERROR-CLEANUP;

DISPLAY "0VERFLOW FILE USED II
;

DOEND;

»
»

OPTIONS AVAILABLE ONLV WITH THE FORM MODIFIER

APPEND

CLEAR

CURRENT

FEDIT

Append the next form to the specified form, overriding any
freeze or append condition specified for the form in its
FORMSPEC definition. APPEND sets the FREEZAPP field of the
VPLUS comarea to 1.

Clear the specified form when the next form is displayed,
overriding any freeze or append condition specified for the
form in its FORMSPEC definition. CLEAR resets the FREEZAPP
field of the VPLUS comarea to zero.

Use the form currently displayed on the terminal screen;
that is, perform all the PUT (FORM) processing except
retrieving and displaying the form. Use this option to
avoid the processing that normally occurs when a new form
is displayed.

Perform the field edits defined in the FORMSPEC definition
for the form immediately before displaying it.

6-138

PUT

FKEY=item-name Move the number of the function key pressed by the operator
in this operation to the single word integer item-name. The
function key number is a digit from 1 through 8 for
function keys fl through f8, or zero for the ENTER key.
Transact determines which function key was pressed from the
value of the field LAST-KEY in the VPLUS comarea.

Fn=label Control passes to the labelled statement if the operator
presses function key n. n may have a value of 0 through 8,
inclusive, where zero indicates the ENTER key. This option
may be repeated as many times as necessary in a single
PUT (FORM) statement.

FREEZE Freeze the specified form on the screen and append the next
form to it, overriding any freeze or append condition
specified for the form in its FORMSPEC definition. FREEZE
sets the FREEZAPP field of the VPLUS comarea to 2.

INIT Initialize the fields in the displayed form to any initial
values defined for the form by FORMSPEC, or perform any
Init Phase processing specified for the form by FORMSPEC.
PUT (FORM) performs the INIT processing before it transfers
any data from the data register and before it displays the
form on the screen.

WAIT[=Fn] Do not return control to the program until the terminal
user has pressed the function key n. n may have a value of
o through 8, where 1 through 8 indicate the keys fl through
f8 and 0 indicates the ENTER key.

If the end user presses any function key other than one
requested by the WAIT option, Transact displays a message
in the window and waits for the next function key to be
pressed.

If Fn is omitted, PUT(FORM) waits until any function key is
pressed. If the WAIT option is omitted altogether,
PUT (FORM) clears the screen and returns control to the
program immediately after displaying the form with its
data. For example:

PUT(FORM) (FORMNAME), «display form named in FORMNAME»
LIST= (A: C) ,
WAIT; «wait for user to press any key»

WINDOW=
([field]
message)

Place a message in the window area of the screen and,
optionally, enhance a field in the form. The enhancement
is done according to the definition of the destination form
in FORMSPEC. field and message can be specified as
follows:

6-139

PUT

field

message

Either the name of the field to be enhanced, or an
item-name within parentheses containing the name of the
field to be enhanced.

Either a "string" in quotes that comprises the message
to be displayed, or an item-name within parentheses
containing the message string to be displayed in the
window.

The following example illustrates this option when the
field name and message are specified directly:

PUT(FORM) FORM1,
LIST=(A,C,E),
WINDOW=(A,"Press fl if data is correct."),
WAIT=Fl;

In the next example, both the field and the message are
specified through an item-name reference:

DEFINE(ITEM) ENHANCE U(16):
MESSAGE U(72) ;

MOVE (ENHANCE)
MOVE (MESSAGE) =

IFIELD1";
"This field may not be changed.";

EXAMPLES

PUT(FORM) *, «display current form »
LIST=(),
WINDOW=((ENHANCE),(MESSAGE)) ;

The following command sequence prompts for new customer information and adds
this information to the customer master file:

$$ADD:
$CUSTOMER:

PROMPT CUST-NO:
CUST-NAME:
CUST-ADDR:
CUST-CITY:
CUST-STATE:
CUST-ZIP;

PUT CUST-MAST,
LIST=(CUST-NO:CUST-ZIP);

6-140

PUT

The next example displays a header form and then appends a form with data to
the header. After appending the data form 10 times, each time with new data,
the program asks the user if he wants to continue. The data to be displayed
is taken from the data register; the particular items determined by the LIST=
option. In this example, the data in the data register is retrieved from a
IMAGE data set by the FIND statement.

LIST CUST-NO:
LAST-NAME:
FIRST-NAME:
COUNT;

PUT(FORM) HEADER,
LIST=(),
FREEZE;

LET (COUNT) = 0;

FIND(SERIAL) CUSTOMER,
LIST=(CUST-NO:FIRST-NAME) ,
PERFORM=LIST-FORM;

LIST-FORM:

« Freeze header form on screen

« Get data from data base

>>

»

IF (COUNT) < 10 THEN
DO

LET (COUNT) = (COUNT) + 1;
PUT(FORM) CUSTLIST,

LIST=(CUST-NO:FIRST-NAME) ,
APPEND;

DOEND
ELSE

DO
LET (COUNT) = 0;
PUT(FORM) CUSTLIST,

LIST= (CUST-NO: FIRST-NAME) ,
WINDOW=("press any function
APPEND,
WAIT= ;

DOEND;

RETURN;

« Append data form 9 times »

« At 10th iteration, »
« wait for user input »

key to continue"),

6-141

REPEAT

Causes repeated execution of a simple or compound statement until a specified
condition is true

*
* REPEAT statement UNTIL condition-clause;

*

*
*
*

When REPEAT is encountered, the simple or compound statement following it is
executed and then the condition-clause is tested. The condition-clause
includes a test-variable, a relational-operator, and one or more values.
Execution of the statement following REPEAT continues until the test gives a
value of true.

STATEMENT PARTS

statement

condition
clause

A simple or compound Transact statement may follow REPEAT. A
compound statement is bracketed with a DO ... DOEND pair.

A test-variable, relational-operator, and one or more values
in the following format:

test-variable relational-operator value [,value] ...

test-variable May be one or more of the following:

(item-name) The value in the data register that corresponds to
item-name.

EXCLAMATION Current status of the automatic null response to a
prompt set by a user responding with an exclamation
point (1) to a prompt. If the null response is set, the
EXCLAMATION test variable is a positive integer; if not
set, it is zero. Default is o.

FIELD Current status of FIELD option. If an end user
qualifies a command with FIELD, the FIELD test variable
is a positive integer; otherwise, it is a negative
integer. Default is <0.

INPUT The last value input in response to the INPUT prompt.

SORT Current status of SORT option. If an end user qualifies
a command with SORT, the value of the SORT test variable
is a positive integer; otherwise SORT is a negative
integer. Default is <0.

6-142

PRINT

REPEAT

STATUS

relational
operator

value

REPEAT

CUrrent status of PRINT or TPRINT option. If an end
user qua~ifies a command with PRINT, the PRINT test
variable is an integer greater than zero and less than
10; if a command is qualified with TPRINT, PRINT is an
integer greater than 10; if neither qualifier is used,
PRINT is a negative integer. Default is <0.

CUrrent status of REPEAT option. If an end user
qualifies a command with REPEAT, the REPEAT test
variable is a positive integer; otherwise, REPEAT is a
negative integer. Default is <0.

The value of the status register set by the last data
set or file operation, data entry prompt, or external
procedure call.

Specifies the relation between the test-variable and the
value. It may be one of the following:

equal to

<> not equa~ to

< ~ess than

<= ~ess than or equal to

> greater than

>= greater than or equal to

The value .against which the test-variable is compared. The
allowed value depends on the test-variable:

If the test
variable is:

(item-name)

INPUT

EXCLAMATION
FIELD
PRINT
REPEAT
SORT

STATUS

Then value must be:

An alphanumeric string or
a numeric value.

An alphanumeric string.

A positive or
negative integer.

An integer number.

6-143

REPEAT

Alphanumeric strings must be enclosed in quotation marks.

If more than one value is given, then the following are true:

• The relational-operator can be "=" only, and

• The action is taken if the test-variable is equal to value
OR value2 OR ••• valuen.

EXAMPLES

The following example performs the compound statement between the DO ... DOEND
pair until the value of OFFICE-CODE exceeds 49.

REPEAT
DO

GET(SERIAL) MASTER;

PUT SEQFILE;
DOEND

UNTIL (OFFICE-CODE)) 49;

6-144

REPLACE

Changes the values contained in a KSAM or MPE record or an IMAGE data set
entry

*
* REPLACE[(modifier)] file-name[,option-list];

*

*
*
*

REPLACE allows you to replace one or more records or entries in a file or data
set. REPLACE may use the values in the update register as the new values for
the updated entries. REPLACE differs from UPDATE in that it allows you to
change search or sort items in an IMAGE data set as well as key items in a
KSAM file, and because it can perform a series of changes to a file or data
set.

Note that it will only replace key (search) items in an IMAGE manual master
set if there are no detail set entries linked to that key; and it will not
replace IMAGE detail set entries with search items that do not exist in manual
master sets associated with that detail.

The REPLACE operation performs the following steps:

1. It retrieves a data record from the file or data set and places it in
the data register area specified by the LIST= option of REPLACE,
overwriting any prior data in this area.

2. It checks whether this record contains values that match any selection
criteria set up in the match register. If the retrieved data does not
meet the match criteria, it returns to step 1 to retrieve the next
record. If the record meets the selection criteria specified in the
match register, or if there are no match criteria, it first performs any
PERFORM= processing; then it executes steps 3 through 5.

3. It replaces the values in the data register of the items to be updated
with the values in the update register. Or, if there are no values in
the update register, it uses the current values in the data register.
The update register can be set up by a routine specified in PERFORM=
option since the PERFORM= processing is done prior to the actual
replacement. A PERFORM= routine can also be used to place new values
directly into the data register.

4. It writes a new record with updated values from the data register to the
file or data set, and then deletes the old record.

5. It returns to step 1 unless the end of the file or chain has been
reached, or unless the SINGLE option or the CURRENT modifier has

6-145

REPLACE

specified replacement of a single entry only. At the end of the file or
chain or if only retrieving a single entry, it goes to the next
statement.

In order to use REPLACE effectively, these are the steps you must perform:

1. specify the entries to update. Set up the key and argument registers if
you will use REPLACE with no modifier or with the CHAIN or RCHAIN
modifiers. Set up the match register if you want to replace particular
entries when you use the CHAIN, RCHAIN, SERIAL, or RSERIAL modifiers.

If you plan to replace a key (search) item in an IMAGE master set, first
delete all chains linked to that item from associated detail sets. If
you plan to replace a search item in an IMAGE detail set that is linked
to a manual master set, make sure the new search item exists in the
manual master.

2. Get the new values and place them in the update register or, if you are
not using the update register, in the data register. Note that REPLACE
always uses the values in the update register if there are any. You may
get the new values from an end user with a DATA(UPDATE) or
PROMPT(UPDATE) statement, or you may place them directly in the update
register with a SET~UPDATE) statement. When you update mUltiple entries
with different values, you should set up the update register in a
routine identified by a PERFORM= option of the REPLACE statement;
otherwise, the same items are updated with the same values in each of
the mUltiple entries.

3. Use the REPLACE statement to replace the selected entries, or to replace
all entries if no match criteria are specified. Make sure that the
entire record or entry is specified in a LIST= option; otherwise,
REPLACE will write null values into items not specified in the list
register when it writes the updated entry back to the file or data set.

REPLACE both adds the updated record and deletes the original entry so that
any data item that has not been specified in the list register will have a
null value after the operation. This is why you should make sure that the
list register contains every data item name in the set entry. If a chained or
serial access mode is specified (multiple entry updates), the data items to be
updated must have been specified in the update register by using the PROMPT,
DATA, LIST, or SET statements with the UPDATE option. Transactautomatically
restores the original record if an error occurs during the storage operation.

REPLACE with the UPDATE option only replaces that part of the record or entry
that is not a search or sort item. Unlike the other forms of REPLACE, it does
not delete the original entry and replace it by a new entry. ThUS, for this
option, only update items, not the whole record, need be present in the list
register.

6-146

REPLACE

STATEMENT PARTS

modifier

none

CHAIN

CURRENT

DIRECT

PRIMARY

RCHAIN

RSERIAL

SERIAL

To specify the type of access to the data set or file, choose
one of the following modifiers:

Update an entry in an IMAGE master set based on the key
value in the argument register; this option does not use
the match register. If the search item is to be changed,
there must not be any entries in detail data sets linked to
the old search item.

Update entries in an IMAGE detail set or KSAM chain based
on the key value in the argument register. The entries
must meet any match selection criteria in the match
register. If no match criteria are specified, all entries
are updated. If the search item is to be changed in a
chain linked to an IMAGE manual master set, the new item
must exist in the associated master set.

Update the last entry that was accessed from the file or
data set. This modifier only replaces one entry,
overriding the iterative capability of REPLACE.

Update the entry stored at the specified record number.
Before using this modifier, you must store the record
number as a doubleword integer in the item referenced by
the RECNO= option.

Update the IMAGE master set entry stored at the primary
address of a synonym chain. The primary address is located
through the key value contained in the argument register.

Update entries in an IMAGE detail set chain in the same
manner as the CHAIN option, only in reverse order. For a
KSAM file, this operation is identical to CHAIN.

Update entries from a file in the same manner as the SERIAL
option, except in reverse order. For a KSAM or MPE file,
this operation is identical to SERIAL.

Update entries that meet any match criteria set up in the
match register in a serial mode. If no match criteria are
specified, all entries are updated. Note that you cannot
use this modifier to replace key items in IMAGE master set.

6-147

REPLACE

file-name

option-list

The KSAM or MPE file or IMAGE data set to be accessed in the
replace operation. If the data set is not in the home base as
defined in the SYSTEM statement, the base name must be
specified in parentheses as follows:

set-name (base-name)

One or more of the following fields, separated by commas:

ERROR=1abel
([item-name])

LIST=
(range-list)

Suppress the default error return that Transact normally
takes. Instead, the program branches to the statement
identified by label, and Transact sets the list register
pointer to the data item item-name. Transact generates an
error at execution time if the item cannot be found in the
list register.

If you do not specify an item-name, as in ERROR=label();,
the list register is reset to empty.

If you use an 11*11 instead of item-name, as in
ERROR=label(*);, then the list register is not changed.

For more information, see IIAutomatic Error Handling, II in
section 5.

The list of items from the list register to be used for the
REPLACE operation.

The options for range-list include the following:

(item-name)

(item-namel:
item-name2)

A single item.

All the items from item-namel
through item-name2.

If item-namel and item-name2 are marker
items (see DEFINE(ITEM) verb), and if there
are no items between the two in the list
register, no data base access is performed.

(item-namel:) The items from item-namel through the item
indicated by the current list pointer.

(:item-name2) The items from the beginning of the list
register through item-name2.

6-148

(item-namel,
item-name2,

item-namen)

()

REPLACE

The items are selected from the list
register. For IMAGE, items can be
specified in any order. For KSAM and
MPE, items must be specified in the
order of their occurrence in the record.
Do not include child items in the list
unless they are associated with a VPLUS
forms file. This option incurs some
system overhead.

A null item list. That is, delete the entry
or entries, but do not retrieve any data.

LOCK

NOCOUNT

NOMATCH

NOMSG

PERFORM=1abel

Lock the specified file or data base unconditionally. If a
data set is being accessed, the entire data base is locked
while the REPLACE executes. (Note that Transact always
locks a data base opened in mode 1 while REPLACE executes
unless the NOLOCK option is used with SET or RESET.)

Suppress the message normally generated by Transact to
indicate the number of updated entries.

Ignore any match criteria set up in the match register.

Suppress the standard error message produced by Transact as
a result of a file or data base error.

Execute the code following the specified label for every
entry retrieved by the REPLACE verb before replacing the
values in the entry. The entries may be optionally
selected by MATCH criteria.

This option allows you to perform operations on retrieved
entries without your having to code loop control logic. It
is also useful for setting up the update register for the
replacement.

You may nest up to 10 PERFORM= options.

RECNO=item-name with the DIRECT modifier: You must define item-name to
contain the doubleword integer number of the record to be
updated.

with other modifiers: Transact returns the record number
of the replaced record in the doubleword integer item-name.

SINGLE Update only the first selected entry, and then pass to the
statement following REPLACE.

6-149

REPLACE

SOPT

STATUS

Suppress Transact optimization of IMAGE calls. This option
is primarily intended to support a data base operation in a
performed routine that is called recursively. The option
allows a different path to the same detail data set to be
used at each recursive entry, rather than optimizing to the
same path. It also suppresses generation of an IMAGE call
list of "*" after the first call is made.

Suppress processor actions defined in section 5 under
"Automatic Error Handling". You will probably have to add
coding if you use this option.

When STATUS is specified, the effect of a REPLACE statement
is described by the value in the status register:

Status
Register Value

o

-1

>0

Meaning

The REPLACE operation was successful.

A KSAM or MPE end-of-file condition
occurred.

For a description of the condition that
occurred, see IMAGE condition word or
MPE/KSAM file system error documentation
corresponding to the value.

STATUS causes the following with REPLACE:

• Makes the normal mUltiple accesses single.

• Suppresses the normal rewind done by REPLACE, so CLOSE
should be used before REPLACE(SERIAL).

• Suppresses the normal find of the chain head by REPLACE,
so PATH should be used before REPLACE(CHAIN).

6-150

REPLACE

The following example uses marker items to declare a range.
If a key item is involved, this code logs the change and
uses REPLACE instead of UPDATE to make the change.
(Remember that you cannot be sure which items are in a list
delimited by marker items.) STATUS must be used to capture
the error of attempting to update a key or sort item:

«Log and Complete Update»

«Error, Check it out»
«Unexpected »

LOG-FILE,
LIST=(MARKERl :MARKER2);

REPLACE (CURRENT) DETAIL-SET,
STATUS,
LIST=(MARKERl :MARKER2);

IF STATUS<>O THEN
GO TO ERROR-CLEANUP;

DOEND;

UPDATE DETAIL-SET,
LIST=(MARKERl :MARKER2),
STATUS;

IF STATUS <>0 THEN
IF STATUS<>41 THEN

GO TO ERROR-CLEANUP
ELSE

DO
PUT

UPDATE When this option is used, REPLACE does not update search or
sort items. It should be used to perform an iterative
update on a data set or file where you do not want to
change search or sort items. You should use this option
when replacing a non-key item in an IMAGE manual master
set; otherwise, a DUPLICATE KEY IN MASTER error occurs when
REPLACE adds the new entry.

6-151

REPLACE

EXAMPLES

The first example replaces a search item value in an IMAGE master set with a
new value. Before making the replacement, it makes sure that a detail set
linked to the master set through CUST-NO has no entries with the value being
replaced.

PROMPT (PATH) CUST-NO ("Enter customer number to be changed");
FIND(CHAIN) SALES-DET, LIST=(); «Look for old number in detail set»
IF STATUS <> 0 THEN « and,if chain exists, delete it. »

DO
DISPLAY "Before replacing customer number, delete from SALES-DET";
PERFORM DELETE-SALES-REC;

DOEND;

«No chains linked to this customer number; so continue with update »

LIST LAST -NAME:
FIRST-NAME:
STREET-ADDR:
CITY:
STATE:
ZIP;

REPLACE CUST-MAST;
LIST=(CUST-NO:ZIP),
PERFORM=GET-NEW-NAME;

«Set up rest of list register »

«Replace specified customer number»
« with new number entered in »
« GET-NEW-NAME routine »

GET-NEW-NAME:
DATA (UPDATE) CUST-NO ("Enter new customer number"):
RETURN;

The next example changes the product number in a master set PRODUCT-MAST, and
then updates the related detail entries in the associated detail set
PROD-DETL. When the detail set entries have all been updated, it deletes the
master entry for the old product number for PRODUCT-MAST.

PROMPT PROD-NO ("Enter new product number"):
DESCRIPTION ("Enter a one-line description");

PUT PRODUCT-MAST,
LIST= (PROD-NO: DESCRIPTION) ;

SET (UPDATE) LIST(PROD-NO); «Set up update register with new value»

DATA(KEY) PROD-NO «Set up key and argument registers »
("Enter product number to be changed");

RESET(STACK) LIST; «Release stack space »

6-152

REPLACE

«Now, update the product number in each entry of associated detail set »

DISPLAY "Updating product number in PROD-DETL", LINE=2;
LIST PROD-NO: «Allocate space for PROD-DETL entry»

INVOICE-NO:
QTY-SOLD:
QTY-IN-STOCK;

REPLACE (CHAIN) PROD-DETL, «Replace each entry in detail set »
LIST=(PROD-NO:QTY-IN-STOCK) ;

RESET (STACK) LIST;

DELETE PRODUCT-MAST,
LIST= () ;

«Delete old entry from master set »

The following example replaces each occurrence of a non-key item, ZIP, with a
new value. It asks the end user to enter the value to be replaced as a match
criterion for the retrieval. Before making the replacement, it uses a
PERFORM= routine to display the existing record and ask the user for a new
value:

LIST LAST-NAME:
FIRST-NAME:
STREET-ADDR:
CITY;

PROMPT (MATCH) ZIP ("Enter ZIP code
REPLACE(SERIAL) MAIL-LIST-DETL,

LIST=(LAST-NAME:ZIP),
UPDATE,
PERFORM=GET-ZIP;

EXIT;

«Set up list for update »

to be replaced");
«Replace each occurrence»
« of specified zip code,»
« a non-key item. »

GET-ZIP:
DISPLAY;
DATA (UPDATE) ZIP ("Enter new ZIP code");
RETURN;

6-153

RESET

Resets execution control parameters, the match or update registers, the list
register stack pointer, or delimiter values

*
*
*

RESET(modifier) [target;]
*
*
*

The function of RESET depends on the verb's modifier, and the different
modifiers determine the syntax of the statement. The allowed modifiers and
the associated syntax options are:

• COMMAND Clear user responses from the input buffer (Syntax Option 1).

• DELIMITER Reset delimiter values to Transact defaults (Syntax Option 2).

• OPTION Reset various execution control parameters (Syntax Option 3).

• STACK Reset the stack pointer for the list register (Syntax Option
4) •

Syntax Options

(1) RESET(COMMAND);

RESET(COMMAND) clears the input buffer, TRANIN, that contains the responses to
prompts issued by a Transact program. This option is particularly useful to
clear unprocessed responses from the input buffer when there is a need to
reissue a prompt. Unprocessed responses can occur when the end user responds
to mUltiple prompts with a series of responses separated by a currently
defined delimiter.

6-154

RESET

For example:

GET-NAME:
DATA CUST-NO ("Please enter a customer number and name ll

):

CUST-NAME;

SET(KEY) LIST(CUST-NO);
FIND CUST-MAST;
IF STATUS = 0 THEN «CUST-NO not found »

DO
DISPLAY "Invalid Customer Number. Please re-enter. lI

;

RESET(COMMAND); «Clear input buffer before returning»
GO TO GET-NAME;

DOEND;

When the DATA prompt is issued, suppose the user response is:

Please enter a customer number and name> 30335, Jones, James

Without the RESET(COMMAND) statement, the unprocessed response II James II would
appear to Transact as a response to the CUST-NO prompt.

(2) RESET(DELIMITER);

RESET(DELIMITER) resets the delimiters used in input fields to the defaults of
"," and 11=11.

(3) RESET(OPTION) option-list;

RESET (OPTION) and the one or more fields chosen from option-list
programmatically reset any options that have already been set by means of a
SET statement. Or, the OPTION modifier can reset the match and update
registers.

option-list

END

FIELD

MATCH

One or more of the following fields, separated by commas:

Resets the END option. If END or 11]11 or "]]11 is
encountered during execution, control passes to the end of
sequence.

Resets the FIELD option. The lengths of prompted-for
fields are not indicated on 264X series terminals.

Clears the MATCH register so that you can set up new match
criteria.

6-155

RESET

NOHEAD

NOLOCK

PRINT

SORT

SUPPRESS

TPRINT

UPDATE

VPLS

Resets the NOHEAD option. Data item headings are to be
generated on any subsequent displays set up by DISPLAY or
OUTPUT statements.

Re-enables automatic locking disabled by a previous SET
NOLOCK option.

Resets the PRINT option. Any displays generated by the
DISPLAY or OUTPUT statements are directed to the user
terminal.

Resets the SORT option. Any listings generated by
subsequent OUTPUT statements are not sorted before display.

Resets the SUPPRESS option. MUltiple blank lines sent to
the display device are not to be suppressed.

Resets the TPRINT option. Any displays generated by the
DISPLAY or OUTPUT statements and directed to the terminal
are not line printer formatted.

Clears the UPDATE register so you can set up new update
parameters.

Indicates to Transact that the terminal is no longer in
block mode. Error messages are no longer sent to the
window. (Refer to SET(OPTION) VPLS description.)

If SET(OPTION) vPLS=item-name has been specified, you must
follow this statement with a RESET(OPTION) VPLS statement.
The VPLS option causes RESET to write the contents of
item-name back to the VPLUS comarea. Only as much of the
comarea as was transferred by SET(OPTION) VPLS is written
back to the VPLUS comarea by RESET(OPTION) VPLS. You must
not include any Transact statement that references VPLUS
forms between the SET(OPTION) VPLS=item-name and the
RESET(OPTION) VPLS statements. If you do, Transact returns
to command mode and issues an error message.

(4) RESET(STACK) LIST;

RESET (STACK) resets the list register so that a new list can be generated by
PROMPT and LIST statements. The contents of the data register are not
touched.

6-156

RESET

EXAMPLES

RESET(OPTION)
MATCH,
UPDATE;

This example removes all current match criteria and item update values from
the match and update registers.

RESET(STACK) LIST;

This statement resets the list register to its beginning so you can use the
same area for new list items.

6-157

RETURN

Terminates a PERFORM block

*
* RETURN [(level)] ;
*

*
*
*

RETURN transfers control from a PERFORM block to another statement. RETURN is
also used to return to a data base access loop called with the PERFORM=
option.

STATEMENT PARTS

none

level

Transfers control to the statement immediately following the
last PERFORM statement executed; also used to return to data
base access loop called with the PERMFORM= option.

Transfers control to the statement immediately following one of
the previous PERFORM statements in the command sequence.

If level is: then Transact:

1-128 Skips that many PERFORM levels and transfers
control to the statement following the correct
PERFORM statement.

@ Transfers control to the statement following the
top PERFORM statement in the current command
sequence. Control passes through all active
perform levels to level O.

6-158

EXAMPLES

MAIN:
PERFORM A;
EXIT;

A:
PERFORM B;

RETURN;
B:

PERFORM C;

RETURN;
C:

PERFORM D;

RETURN;
D:

PERFORM E;

RETURN;
E: .

IF(VALUE)="SAM" THEN
RETURN;

IF(VALUE)="ALLAN" THEN
RETURN(l) ;

IF(VALUE)="BROWN" THEN
THEN RETURN(@);

«Transfer control to »
«1st statement following PERFORM E;»

«Transfers control to »
«1st statement following PERFORM D;»

«Transfers control to »
«1st statement following PERFORM A;»

6-159

RETURN

SET

Alters execution control parameters, sets the match, update, or key registers,
sets the list register stack pointer, sets up data for subsequent display on a
VPLUS form, or sets alternate delimiters

*
* SET (modifier) target;

*

*
*
*

The function of SET depends on the verb's modifier, and the different
modifiers determine the syntax of the statement. The allowed modifiers and
the associated syntax options are:

• COMMAND Specify processor commands (syntax Option 1).

• DELIMITER Specify proc~ssor delimiters (Syntax option 2).

• FORM

• KEY

• MATCH

• OPTION

• STACK

• UPDATE

Specify data transfer to a VPLUS form buffer for subsequent
display (Syntax Option 3).

Set the value of the key and argument registers (Syntax Option
4) •

Set up match selection criteria in the match register (Syntax
Option 5).

Specify various execution control parameters (syntax Option
6) .

Change the value of the .stack pointer for the list register
(Syntax Option 7),

Set the value of the update register (Syntax Option 8).

SYNTAX OPTIONS

(1) SET(COMMAND) argument;

SET(COMMAND) programmatically invokes command mode and performs any command
identified in argument.

argument The commands specified in the argument parameter may be any of
the following:

6-160

EXIT

INITIALIZE

COMMAND
[(command

label)]

II input-stxing ll

SET

Generates an exit from Transact; control passes to the
operating system or calling program.

Generates an exit from the current program and causes
Transact to prompt for a different program name, which it
will then initiate.

Lists the commands or subcommands defined in the currently
loaded program. If a particular command-label is specified,
it lists all the subcommands associated with that command;
if no command-label, it lists all the commands in the
program.

specifies possible user responses to command prompts and/or
to prompts issued by PROMPT, DATA, or INPUT statements.
This construct allows the program to simulate user
responses to prompts. This option transfers control to and
executes any command sequences specified by input-stxing.
The code does not return automatically to the point from
Which it was called.

EXAMPLES OF SET(COMMAND)

SET (COMMAND) COMMAND;

This statement lists all the commands in the current program and returns to
the next statement.

SET (COMMAND) COMMAND(ADD);

This statement lists all the subcommands in the command sequence beginning
with $$ADD and returns to the next statement.

SET (COMMAND) "REPEAT ADD ELEMENT";

This statement executes ADD ELEMENT until an end user enters "]" or 11]]11; it
then returns to command mode and issues the 11>11 prompt for another command.

SET (COMMAND) "ADD CUSTOMER II
;

This statement executes the code associated with the command/subcommand:

$$ADD:
$CUSTOMER:

It does not return.

6-161

SET

(2) SET (DELIMITER) "delimiter-string";

SET(DELIMITER) replaces
11=") with the delimiter
not a valid delimiter.
delimiter-string.

For example:

If delimiter-string is:

"#/"

11111111

1111

the built-in processor input field delimiters (II/II and
characters in the delimiter string. Note: a blank is
A maximum of eight characters can be defined as a

Then Transact:

recognizes the characters "#" and "/" as field
delimiters.

recognizes quotation marks as field delimiters.

recognizes no delimiters, which means the user
cannot enter mUltiple field responses.

(3) SET (FORM) form[,option-list];

SET(FORM) is used prior to another statement that actually displays the form.
It can be used to transfer data to the VPLUS form buffer for subsequent
display by a GET(FORM), PUT(FORM) or UPDATE (FORM) statement. It can also be
used to set up window messages and field enhancements for sUbsequent displays.

Used with the LIST= option, SET(FORM) allows you to initialize fields in a
form with values from the data register rather than with values specified
through FORMSPEC. With the inclusion of other option-list options, SET (FORM)
also provides form sequence control for the specified form and for the next
form after that form.

SET(FORM) opens the forms file, but not the terminal.

form A form in the VPLUS forms file that is used for the subsequent
display. It may be specified as one of the following:

form-name Name of the form as defined by FORMSPEC.

(item-name) Name of an item that'contains the form name.

* The form identified by the II current II form name; that is,
the form name most recently specified in a Transact
statement that references VPLUS forms. Note that this does
not necessarily mean the form currently displayed.

& The form identified as the II next II form name; that is, the
form name defined as "NEXT FORM II in the FORMSPEC definition
of the current form.

6-162

option-list

APPEND

CLEAR

FEDIT

FREEZE

INIT

LIST=
(range-list)

SET

One or more of the following options, separated by commas,
should be specified in a SET(FORM) statement:

NOTE: The scope of the APPEND, CLEAR, and FREEZE
options is both the previous form (accessed by
the last form specifiction before this SET
operation) and the specified form. Therefore if
the CLEAR option is used, not only will the
previous form be CLEARed when the specified form
is displayed, but also the specified form will
be CLEARed when the next form is displayed,
regardless of the FORMSPEC definitions of the
two forms.

Append the next form to the specified form, overriding any
current or next form processing specified for the form in
its FORMSPEC definition. APPEND sets the FREEZAPP field of
the VPLUS comarea to 1.

Clear the specified form when the next form is displayed,
overriding any freeze or append condition specified for the
form in its FORMSPEC definition. CLEAR sets the FREEZAPP
field of the VPLUS comarea to zero.

After transferring data to the form, perform any field
edits specified in the FORMSPEC definition for the form.

Freeze the specified form on the screen when the next form
is displayed, and append the next form to it. FREEZE sets
the FREEZAPP field of the VPLUS comarea to 2.

Initialize the fields in the specified form to any initial
values defined for the forms by FORMSPEC, or perform any
Init Phase processing specified for the form by FORMSPEC.

The list of items from the list register to be transferred
from the data register to the VPLUS buffer for sUbsequent
processing. If this option is omitted, items that appear
in both the list register and SYSTEM definition for the
form are transferred.

The options for range-list and the records upon which they
operate include the following:

(item-name)

(item-name1:
item-name2)

A single item.

All the items from item-namel
through item-name2.

6-163

SET

If i~em-namel and item-name2 are marker
items (see DEFINE(ITEM) verb), and if there
are no items between the two in the list
register, no data is transferred.

(item-namel:)

(:item-name2)

(item-namel,
item-name2,

item-namen)

()

The items from item-namel through the item
indicated by the current list register
pointer.

The items from the beginning of the list
register through item-name2.

The items are selected from the list
register. Items must be specified
in the order of their occurrence in the
form.

A null item list. Do not transfer any data.

WINDOW=
([field,]
message)

field

message

Place a message in the window area of the screen and,
optionally, enhance a field in the form. The enhancement
is done according to the definition of the form in
FORMSPEC. If the LIST=() option is in effect, the window
message overwrites any previous window messages for the
form, but the field enhancement is in addition to any field
enhancement already on the form. The parameters field and
message can be specified as follows:

Either the name of the field to be enhanced, or an
item-name within parentheses whose data register value
is the name of the field to be enhanced.

Either a "string" of characters within quotes that
comprises the message to be displayed, or an item-name
within parentheses whose data register value is the
message string to be displayed in the window.

EXAMPLES OF SET (FORM)

SET(FORM) MENU,
CLEAR;

This statement clears any prior forms from the screen when a subsequent
statement displays the form MENU. If MENU is the current form, this statement
clears the MENU when the next form is displayed, regardless of the value of
the MENU's FREEZAPP option.

6-164

SET

SET(FORM) LIST-FORM,
LIST=(LIST-DATE) ,
WINDOW=(LIST-DATE,"Only enter orders for this date");

GET (FORM) *,
LIST=(ORDER-NO:QTY-ON-HAND) ;

This example moves a value from the data register area identified by LIST-DATE
to the VPLUS buffer for subsequent display by GET (FORM) . It also sets up a
field to be enhanced and a message for display when GET(FORM) displays
LIST-FORM.

PUT(FORM) (FORMNAME), FREEZE;
SET(FORM) &,

LIST= (ITEM-A) ,
WINDOW= ((ITEM-A), (MESSAGE»;

PUT(FORM) *,
WAIT=Fl ;

This example is highly general. The first PUT(FORM) statement displays
whatever form is identified by FORMNAME and freezes that form on the screen.
SET(FORM) then specifies that the value of ITEM-A is to be displayed and
enhanced in the next form and also specifies a message (MESSAGE) to be issued
when the next form is displayed by the subsequent PUT(FORM) statement.

(4) SET(KEY) LIST ({item-name});
{ * }

SET(KEY) sets the key and argument registers to the values associated with
item-name in the list and data registers. Transact generates an error message
at execution time if the item name cannot be found in the list register. You
typically use this modifier on mUltiple data set operations where the
necessary key value has been retrieved by a previous operation.

If an * is used as the item-name, the last item added to the list register is
used.

EXAMPLE OF SET(KEY)

SET(KEY) LIST(ACCT-NO);
OUTPUT(CHAIN) ORDER-DETAIL,

LIST=(ACCT-NO:QTY-ON-HAND);

This example identifies the key as the item named ACCT-NO and moves the
associated value in the data register to the argument register for the
subsequent data set retrieval by the OUTPUT statement.

6-165

SET

(5) SET (MATCH) LIST ({item-name}) [,option-list] i

{ * }

SET(MATCH) places item-name in the list register and then sets up a match
criterion in the match register using the specified item name and its current
value in the data register. The resulting match criterion is used for
subsequent data set and file operations. By default, the relation between the
item name and its value is equality; you can choose a value from option-list
if the match is to be performed on a basis other than equality.

If an * is specified, the last item added to the list register is used.

You can set up as many match criteria as you desire using separate SET (MATCH)
statements for each. Match criteria set up with the same item name and no
option are joined by a logical OR; those set up with different item names or
with one of the options shown below are joined by a logical AND. (Refer to
the PROMPT(MATCH) and DATA(MATCH) descriptions for other ways to set up match
criteria.)

option-list

NE

LT

LE

GT

GE

LEADER

SCAN

TRAILER

Anyone of the following options may be selected:

Not equal to

Less than

Less than or equal to

Greater than

Greater than or equal to

Matched item must begin with the input
string; equivalent to the use of trailing
IIAII on input

Matched item must contain the input
string; equivalent to the use of trailing
IIAAII on input

Matched item must end with the input
string; equivalent to the use of a
leading II

A
II on input

6-166

SET

EXAMPLES OF SET(MATCH)

LET (QTY-ON-HAND) = 10;
SET (MATCH) LIST (QTY-ON-HAND), LT;

This sets up the match register with the selection criterion:

+-------------+
QTY-ON-HAND

less than
10

+-------------+

MOVE (STATE) = "CA II ;

SET (MATCH) LIST(STATE);
MOVE (STATE) = "NM";
SET (MATCH) LIST(STATE);
LET (DATE) = 010182;
SET (MATCH) LIST(DATE), GE;

These statements set up the match register with the selection criteria shown
below. Note that criteria with the same item name are joined by a logical OR,
those with a different name by a logical AND. These criteria select entries
whose value for STATE is either CA or NM and whose value for DATE is 010182.

+---+
STATE

equal to
"CA"

OR
STATE

equal to AND
"NM"

DATE I
greater than I

010182 I
+---+

(6) SET(OPTION) option-list;

SET(OPTION) and one or more option fields included in option-list
programmatically set the Transact command options or override default
execution parameters. The options in option-list are separated by commas.

option-list Select one or more of the following options:

DEPTH=number Sets the terminal display area depth to a line count of
number. The default value is 22. The depth value defines
how many lines are displayed on the terminal before
Transact automatically generates the prompt

6-167

SET

END=label

FIELD[=l ab"]

"CONTINUE(Y/N)?". This. option a~~ows the video termina~

user to view a ~isting in a contro~~ed page mode. If
number is 0, information is disp~ayed continuous~y on the
termina~, with no generation of the "CONTINUE (Y/N)?"
prompt.

Transact branches to the statement marked label if an end
of sequence is encountered, either by an exp~icit or
imp~icit END or by 11]" or "]]" input· in response to a
prompt at execution time. This contro~ function can be
re-assigned to a different label or reset at any point in
the program ~ogic.

Enhance or change the prompts for data item fie~ds on the
termina~ disp~ay. By defau~t, an item name prompt issued
by a PROMPT or DATA statement shows the item name fo~~owed

by the character ">".

The parameters a and b specify a~ternate disp~ay options,
where a specifies the ~eading prompt character, b specifies
the trai~ing prompt character. If a is a caret, II AII, then
the ~eading prompt character is suppressed.

If both a and b are omitted, the FIELD option encloses the
response field with the delimiters ">" and "<".

This option has the same effect as the FIELD command
qualifier (see section 5).

If the statement is:

SET (OPTION) FIELD;
SET(OPTION) FIELD=":";
SET(OPTION) FIELD="AII;
SET(OPTION) FIELD="[]";

then, the prompt is:

NAME> field-length <
NAME:
NAME
NAME [field-length]

Note that the cursor is positioned in the second character
position following the left delimiter. If no delimiter is
used, the cursor is positioned in the second character
position fo~lowing the field name.

Normally b sets the trailing prompt character to its value;
however, if b is One of the characters II A" through "0" or
"@", entry fields are enhanced as described in the 262X or
264X terminal user handbooks.

For example:

SET(OPTION) FIELD= II JII;

6-168

HEAD

LEFT

NOBANNER

NOHEAD

NOLOCK

PALIGN=number

PDEPTH=number

PRINT

SET

This statement enhances the response field with half-bright
inverse video.

Generates headings for the next DISPLAY verb encountered
with the TABLE option, regardless of page position.

Left justifies data items for any subsequent displays set
up by the DISPLAY or OUTPUT statements. Since this is the
default option, it is normally used to reset justification
after a SET(OPTION) RIGHT, or ZEROS statement.

Suppresses the default page banner containing date, time,
and page number on any subsequent displays set up by the
DISPLAY or OUTPUT statements. The default printer page
depth then becomes 60.

Suppresses data item headings on any subsequent displays
set up by the DISPLAY or OUTPUT statements.

Disables the automatic locking of a data base opened in
mode 1 for a DELETE, PUT, REPLACE, or UPDATE operation.
NOLOCK does not reset the LOCK option specified with a data
base access verb (DELETE, FIND, GET, OUTPUT, PUT, REPLACE,
or UPDATE). Use NOLOCK when you want to set up data set or
data item locks through a PROC statement.

Right justifies the prompts on a display device to column
number on the display screen.

Sets the printer page depth to a line count of number. The
default value is 58 unless the NOBANNER option is
specified, in which case the default value is 60. If
number is 0, the page heading is suppressed on any
subsequent displays directed to the printer.

Sets the PRINT option. Any displays generated by the
DISPLAY or OUTPUT statements are directed to the line
printer instead of to the user terminal. This option has
the same effect as the PRINT command qualifier (see section
5) •

You can redirect results to the printer immediately by
using this option before issuing a DISPLAY or OUTPUT
statement, and then closing the print file with a CLOSE
$PRINT statement. For example:

SET(OPTION) PRINT;
DISPLAY IIPRINT THIS NOW II

;

CLOSE $PRINT;

6-169

SET

PROMPT=number

PWIDTH=number

REPEAT

RIGHT

SORT

SUPPRESS

TABLE

Sets the line feed count between prompts issued by the
PROMPT, DATA, or INPUT statements to number. Thedefault
value is 1.

Sets the printer line width to a character count of number.
The default value is 132.

Sets the REPEAT option. At execution time, Transact
repeats the associated statement sequence until the end
user enters one of the following special characters:

Terminate execution of the current command sequence,
and pass control to the first statement in the
sequence.

]] Terminate repeated execution of this command sequence
and pass control to command mode.

The end user can enter II REPEAT II and then a command name
during execution to control a lOop. This option has the
same effect as the REPEAT command qualifier. Information
on this procedure is contained in section 5, "Command
Qualifiers. II

Right justifies data item values for any subsequent
displays set up by the DISPLAY or OUTPUT statements.

Sets the SORT option. Any listing generated by subsequent
OUTPUT statements is sorted before display. The sort is
performed in the order that the display fields appear in
the list register. This option has the same effect as the
SORT command qualifier (see section 5).

Suppress blank lines of data; only the first of a series of
blank lines is sent to the line printer.

Right justifies numeric fields and left justifies
alphabetic fields for display.

TPRINT Sets the TPRINT option. Any
DISPLAY or OUTPUT statements
are line printer formatted.
effect as the TPRINT command

displays generated by the
and directed to the terminal
This option has the same
qualifier (see section 5).

VPLS=item-name Informs Transact that you want to reference the VPLUS
comarea directly. It directs error messages to the window,
and moves the VPLUS comarea to the area in the data
register itentified by item-name.

6-170

SET

Item-name is the name of a data field containing all or
part of the VPLUS comarea, depending on the size of the
specified item. When this option is used as much of the
current VPLUS comarea as will fit in the specified item is
moved to the data register area associated with that item.
You may then examine or change comarea fields.

A SET(OPTION) VPLS statement must always be followed by a
RESET(OPTION) VPLS statement. You must not use a Transact
statement that references VPLUS forms between a SET(OPTION)
VPLS and a RESET(OPTION) VPLS statement. If you do,
Transact returns to command mode and issues an error
message.

If you plan to open the forms file and terminal with PROC
statements, you should use a SET(OPTION) VPLS statement
just before you place the terminal in blockmode with a call
to VOPENTERM. Reset with a RESET(OPTION) VPLS statement
following the call to VCLOSETERM to return the terminal to
character mode. If you do not call VOPENTERM or VCLOSETERM
directly, or if you do not plan to reference the comarea
directly, you need not use SET (OPTION) VPLS. Instead, in
these cases, use the VCOM parameter of the PROC statement
(see the PROC verb description.)

If the VPLUS form is already open, you can use this option
in conjunction with a RESET(OPTION) VPLS statement to
retrieve or change comarea values.

For example, you could change the window enhancement in the
VPLUS comarea:

DEFINE(ITEM) COMAREA X(16):
WINDOW-ENH X(l)

= COMAR EA (16) ;
LIST COMAREA;

«1st 8 words, comarea»
«right byte of word 8»

WIDTH=number

ZERO[E]S

UPDATE (FORM) *;
SET(OPTION) VPLS=COMAREA;
MOVE (WINDOW-ENH)="K"; «half-bright, inverse video»
RESET(OPTION) VPLS;

Sets the terminal line width to a character count of
number. The default value is 79.

Right justifies numeric data item values and inserts
leading zeros for any subsequent displays set up by the
DISPLAY or OUTPUT statements.

6-171

SET

EXAMPLES OF SET(OPTION)

SET(OPTION) PALIGN=25,PROMPT=2;

This statement aligns the prompt character on column 25, with two blank lines
between the prompt lines.

SET(OPTION) NOHEAD,SORT,DEPTH=O;

This statement sorts subsequent OUTPUT listings to the terminal. It
suppresses item headings and suppresses the usually automatic "CONTINUE
(YIN)?" prompt.

(7) SET (STACK) LIST ({item-name});

{ * }

SET(STACK) moves the stack pointer for the list register from the current
position to the one identified by item-name. Transact generates an error at
execution time if it cannot find the data item in the list register.

Transact begins the search at the data item prior to the current (last) one in
the list register and performs a reverse scan to the beginning of the list.
The scan does not move the pointer, however. The stack pointer is moved only
when the search finds the first occurrence of the data item. The stack
pointer will not be moved if item-name is the current data item and it occurs
only once in the list register.

When a data item has more than one appearance in the list register, each
occurrence can be located by using additional SET(STACK) statements.

You typically use SET(STACK) to manipulate the list register for more than one
file or data set operation or to redefine the data register contents. You may
choose to redefine the data register contents for the following reasons:

o To transfer values from one data item to another in a different set,

o To access subfields of a data item by adding several item names in place
of the original item name, or

o To manipulate data item arrays.

6-172

SET

EXAMPLES OF SET (STACK)

To move the stack pointer for the list register from the current data item to
the item immediately prior to it, use the following format:

SET (STACK) LIST(*);

NOTE: When the stack pointer moves down the list register, the items
above the new current item are removed from the list register.

SET (STACK) LIST (PROD-NO);

This statement moves the stack pointer back to the item PROD-NO. If PROD-NO
appears more than once in the list register, the pointer is set to the first
occurrence of this item going back down the listj that is, the item nearest
the top of the list register stack.

(8) SET(UPDATE) LIST({item-name})i
{ * }

SET (UPDATE) specifies that the item-name in the list register and the current
value for item-name in the data register are to be placed in the update
register for a subsequent file or data set operation using the REPLACE verb.
If * is used as the item name, the current item name is used.

6-173

SYSTEM

Names the Transact program ~nd any data bases, files, or forms that are used
by the program

*
* SYSTEM program-name[,definition-listl;

*

*
*
*

The SYSTEM statement names the program and describes data bases, files, or
forms files that the program uses. It overrides the default space allocations
that Transact uses. It must be the first statement in the program.

STATEMENT PARTS

program-name

definition
list

BANNER ="text"

A 1 to 6 character string of letters or digits that names the
program. Transact stores the output from the compiler in a
file called II IPxxxxxx " where "xxxxxx" is the program name.
program-name is also used to call up the program for execution
when the user enters it in response to Transact's "SYSTEM
NAME>" prompt.

Description of the files or data sets used during execution.
Each group of fields describes a file. Within the group, the
fields can be in any order and separated by commas.

Causes the text string to be placed at the top left
position on every ~age of line printer output generated
during execution of the program.

BASE=base-namel [(["password"] [,mode]) 1
[,base-name2 [(["password" 1[,mode]) 11•••

base-name The name of an IMAGE data base used in the program.
This data base has the attributes described in the
IMAGE/3000 Reference Manual. base-namel is termed the
"home base" and any references in the program to this
data base need not include a base qualifier.

The BASE description opens the IMAGE data base. The
home base can be opened a second time by repeating its
name in the data base list in the SYSTEM statement.
This feature allows two independent and concurrent
access paths to the same detail data set without losing
path position in either access. This might be necessary

6-174

password

mode

SYSTEM

for a secondary access of a detail set during processing
of a primary access path in the same set.

Set references to bases other than the home base must be
qualified by including the name of the data base in
parentheses following the set name:

set-name (base-name)

Used by Transact for opening the data base. If no
password is provided, then at execution time Transact
prompts with

PASSWORD FOR databasename>

If the user enters an incorrect password, Transact
issues an error message and then reprompts for the
password.

Used by Transact for opening the data base. This
specification overrides any mode given by the user at
execution time in response to the lISYSTEM NAME>II prompt.
Default=l.

For example, to specify the data base STORE to be opened
with the password II MANAGER " in mode 1:

SYSTEM MYPROG.
BASE=STORE ("MANAGER II .1) ;

DATA=data-length, data-count

The DATA= specifications given in a main program establish
the data register used by all called programs and take
precedence over any DATA= specifications in called
programs.

data-length

data-count

The maximum word size of the data register.
Default=1024.

The maximum number of entries allowed in the list
register. Default=128.

6-175

SYSTEM

FILE=file-namel
[(access[(file-option-list)]
[,record-length[,blocking-factor
[,file-size[,extents[,initial-allocation
[,file-code]]]]]])]

[,file-name2 . ..]

file-name

access

file
opt ion
list

record-length

blocking
factor

file-size

extents

initial
allocation

file-code

The MPE file name assigned or to be assigned to the
file. A back-referenced file name using a leading "*"
is permitted.

One of the following access modes: READ, WRITE, SAVE,
APPEND, R/W (read/write), UPDATE, SORT. SORT is
identical to R/W with the additional SORT capability.
In other words, an end-of-file is automatically written
into the file before the SORT, and the file is rewound
following the SORT. The default is READ.

Any of the following fields provided that they do not
conflict in meaning: OLD, NEW, TEMP, $STDLIST,
$NEWPASS, $OLDPASS, $STDIN, $STDINDX, $NULL, ASCII,
CCTL, SHARE, LOCK, NOFILE. See FOPEN in MPE Intrinsics
Manual for a full explanation of these options and
terms.

The default is OLD (old file), binary, no carriage
control, and file equation permitted.

Record length of records in file. A positive value
indicates words, a negative value indicates bytes.
Default=byte length required by file operation

Blocking factor used to block records. Default=l
record/block

Size of the file in records. Default=10000 records

Number of extents used by file. Default=10 extents

Initial allocation of extents Default=l extent

MPE file code for the file. Default=O

For example, to define a file with Read/Write access, 40
words per record, a blocking factor of 3 words per
record, and a total of 100 records:

6-176

SYSTEM

SYSTEM FREC,
FILE=WORK«R/W),40,3,100);

In an MPE file or a KSAM file, you can then define the
entire record as a parent item, and define individual
fields as child items. This allows you to access the
entire record by its parent name, and also refer to
individual fields. For example:

DEFINE(ITEM)

LIST RECORD;

RECORD X(80) :
ITEMl X(25)
ITEM2 X(30)
ITEM3 X(15) =
ITEM4 X(lO)

RECORD(l):
RECORD (26) :
RECORD (56) :
RECORD(71);

GET(SERIAL) WORK,
LIST= (RECORD) ;

DISPLAY ITEM1: ITEM2: ITEM3: ITEM4;
DATA (SET) ITEM1: ITEM2: ITEM3: ITEM4;

KSAM=file-namel
[(access [(file-option-list)])]

[,file-name2 ...]

file-name

access

Name of a KSAM data file.

One of the following access modes:
(read/write), UPDATE, SAVE, APPEND.

READ, WRITE, R/W
Default=READ

file
opt ion
list

Any of the following fields provided that they do not
conflict in meaning: OLD, $STDLIST, $NEWPASS, $OLDPASS,
$STDIN, $STDINDX, $NULL, ASCII, CCTL, SHARE, LOCK,
NOFILE. See FOPEN in KSAM!3000 Reference Manual for a
full explanation of these options and terms.

Default = OLD (old file), binary, no carriage control,
and file equation permitted.

6-177

SYSTEM

OPTION =
option-list

TEST

NOTEST

SIGNON=II"text ll

SORT=number

Either enable or disable the test facility for this program
execution.

Enables the TEST command during execution of the
program.

Disables the TEST command during execution of the
program.

Default=TEST

Causes the text string to be displayed as a sign-on message
each time the program is executed. For example:

SYSTEM MYPROG,
SIGNON=IITest Version of MYPROG A02.31 11

;

Specifies the number of records in the sort file. Default
= lO,OOO

VPLS=file-namel[(form-namel[(i"tem-lis"tl)] ...)] ...
[,file-name2[(...)] ...] ...

file-name

form-name

item-list

The name of a VPLUS forms file that is used in the
program. Every forms file referenced in a Transact
program must be specified in the SYSTEM statement.

The name of a form defined within the VPLUS forms file.
If omitted, the dictionary definitions of all the forms
in the specified forms file are used.

For example, if forms file CUSTFORM has a dictionary
definition, you may specify:

SYSTEM MYPROG,
VPLS=CUSTFORM;

If not, you must name each form in the forms file. For
example, assuming CUSTFORM has three forms, MENU, FORMl,
and FORM2i MENU has no fields, FORMI has 3 fields, and
FORM3 has 4 fields:

SYSTEM MYPROG,
VPLS=CUSTFORM(MENU(),

FORMl (Fl ,F2,F3),
FORM2(F4,F5,F6,F7)) ;

A list of item names used in the program, in the order
in which they appear on the VPLUS form, which is in a

6-178

SYSTEM

left to right and top to bottom direction.
need not be the same as the names specified
fields by FORMSPEC, but the items must have
display lengths as the fields. If omitted,
dictionary definitions of all the fields in
specified form are used.

The
for
the
the
the

names
the
same

For example, suppose the fields in FORM2 are defined in
the dictionary:

SYSTEM MYPROG,
VPLS=CUSTFORM

(MENU () ,
FORM 1(F 1.F2,F3) ,
FORM2) ;

WORK=work-length,work-count

work-length

work-count

The maximum word size of the work area containing the
match, update, and input registers. This work area is
used by Transact to set up temporary values used during
execution of the program. Default=256

The maximum number of entries allowed in the work area.
Default=64

6-179

UPDATE

Modifies a single entry in a KSAM or MPE file or in an IMAGE data set, or
modifies a VPLUS form.

*
* UPDATE[(FORM)] destination[,option-list]i

*

*
*
*

UPDATE modifies data items that are not key items in an IMAGE master or detail
set entry or in a KSAM or MPE record. The item to be updated must have been
retrieved by a prior FIND or GET statement. When used with the FORM modifier,
UPDATE modifies and redisplays a currently displayed VPLUS form.

The UPDATE verb does not use the update register. The new value must be
placed in the data register before UPDATE is executed. The value may be
retrieved from an end user, or from a data set or file,

To update a non-key value with UPDATE, perform the following steps:

1. Fetch the record or entry to update and place it in the data register.
You may do this with a GET or FIND statement. If you want to update
several entries, updating the same item in each entry with a different
value, use a FIND statement with a PERFORM= option that calls a routine
containing the UPDATE statement. If you want to update a single entry,
use a GET statement.

2. Place the new value in the data register. You can get the new value
from a data set or file, or from an end user. If you are getting a
value from the end user, PROMPT(SET) or DATA(SET) statement is useful
since it allows the end user to choose whether to leave an existing
value in the data register or enter a new value.

3. Use the UPDATE statement to write the new values to the entry or record.
Since UPDATE always updates the last entry retrieved, it needs no access
modifiers. You must include the names of any items to be updated in a
LIST=option.

Note that if you want to update several entries, updating the same data item
in each entry with the same value, you should use the REPLACE statement rather
than the UPDATE statement. (Refer to REPLACE verb description.)

6-180

UPDATE

STATEMENT PARTS

FORM

destination

form-name

(item-name)

*

&

option-list

LIST=
(range-list)

Optional. If FORM is specified, then this verb transfers data
from the data register to a VPLUS form displayed at a 262X or
264X series terminal by PUT (FORM) or GET(FORM). If the
requested form is not currently displayed on the terminal, an
error results.

The name of a file, data set, or form to be accessed in the
update operation.

If destination identifies a data set that is not in the home
base as defined in the SYSTEM statement, the base name must be
specified in parentheses as follows:

set-name (base-name)

In an UPDATE (FORM) statement, the destination must identify a
form in a forms file that was named in the SYSTEM statement.
For UPDATE(FORM), destination may be specified as any of the
following:

Name of a form to be updated by UPDATE(FORM).

Name of an item whose associated data register location
contains the name of the form to be updated by
UPDATE (FORM) .

The form identified by the "current" form name; that is,
the form name most recently specified in a statement that
references a VPLUS form. Note that this does not
necessarily mean the form currently displayed.

The form identified as the "next II form name; that is, the
form name specified as the IINEXT FORM II in the FORMSPEC
definition of the current form.

The LIST option is available with or without the FORM
modifier. Other options, described below, may be used only
with or only without the FORM modifier.

The list of items from the list register to be used for the
UPDATE operation. If the LIST= option is omitted, UPDATE
uses all the items in the current list register for a file
or data set update; for a form update, it uses all the
items in the list register corresponding to fields in the
VPLUS form definition.

The options for range-list and the records they update
include the following:

6-181

UPDATE

(it;em-name)

(it;em-namel:
it;em-name2)

(it;em-namel:)

(:it;em-name2)

(item-namel,
item-name2,

item-namen)

()

A single item.

All the items from it;em-namel
through it;em-name2.

If it;em-namel and it;em-name2 are marker
items (see DEFINE(ITEM) verb), and if there
are no items between the two in the list
register, no data base access is performed.

The items from it;em-namel through the item
indicated by the current stack pointer.

The items from the beginning of the list
register through it;em-name2.

The items are selected from the list
register. For IMAGE, items can be
specified in any order. For KSAM, VPLUS,
and MPE, items must be specified in the
order of occurrence in the record or form.
Do not include child items in the list
unless they are associated with a VPLUS
forms file. This option incurs some
system overhead.

A null item list. That is, access the file
or data set or display the form, but do not
transfer data.

OPTIONS AVAILABLE WITHOUT THE FORM MODIFIER

ERROR=label
([item-name])

Suppress the default error return that Transact normally
takes. Instead, the program branches to the statement
identified by label, and Transact sets the list register
pointer to the data item item-name. Transact generates an
error at execution time if the item cannot be found in the
list register.

If you specify no item-name, as in ERROR=label();, the list
register is reset to empty.

If you use an 11*11 instead of item- name as in
ERROR=label(*);, then the list register is not changed.

For more information, see the section entitled IIAutomatic
Error Handling, II in section 5.

6-182

UPDATE

LOCK Lock the specified file or data base unconditionally. If a
data set is being accessed, the entire data base is locked
while the UPDATE executes. (Note that Transact always locks
a data base opened in mode 1 while UPDATE executes unless
the NOLOCK option is used with SET.

NOMSG The standard error message produced by Transact as a result
of a file or data base error is to be suppressed.

STATUS Suppress processor actions defined in section 5 under
IIAutomatic Error Handling ll

• You will probably have to add
coding if you use this option.

When STATUS is specified, the effect of an UPDATE statement
is described by the value in the status register:

Status
Register Value Meaning

o The UPDATE operation was successful.

-1 A KSAM or MPE end-of-file condition
occurred.

>0 For a description of the condition that
occurred, refer to IMAGE condition word
or MPE/KSAM file system error documenta
tion corresponding to the value.

The following example uses marker items to declare a range.
If a key item is involved, you should log the attempt.
STATUS must be used to capture the error of attempting to
update a key or sort item:

«Log and complete update»

«Error, Check it out»
«Unexpected error »

LOG-FILE,
LIST=(MARKER1 :MARKER2);

DISPLAY IIkey update attempted ll
;

DOEND;

UPDATE DETAIL-SET,
LIST=(MARKER1 :MARKER2),
STATUS;

IF STATUS <> 0 THEN
IF STATUS <> 41 THEN

GO TO ERROR-CLEANUP
ELSE

DO
PUT

6-183

UPDATE

OPTIONS AVAILABLE ONLY WITH THE FORM MODIFIER

APPEND Append the next form to the specified form, overriding any
freeze or append condition specified for the form in its
FORMSPEC definition. APPEND sets the FREEZAPP field of the
VPLUS comarea to 1.

CLEAR Clear the specified form when the next form is displayed,
overriding any freeze or append condition specified for the
form in its FORMSPEC definition. CLEAR sets the FREEZAPP
field of the VPLUS comarea to zero.

FEDIT Perform any field edits defined in the FORMSPEC definition
immediately before redisplaying the form.

FKEY=i~em-name Move the number of the function key pressed by the operator
in this operation to the single word integer i~em-name.

The function key number is a digit from 1 through 8 for
function keys fl through f8, or zero for the ENTER key.
Transact determines which function key was pressed from the
value of the field LAST-KEY in the VPLUS comarea.

Fn=label Control passes to the labelled statement if the operator
presses function key n. n may have a value of 0 through 8,
inclusive, where zero indicates the ENTER key. This option
may be repeated as many times as are necessary in a single
UPDATE(FORM) statement.

FREEZE Freeze the specified form on the screen and append the next
form to it, overriding any freeze or append condition
specified for the form in its FORMSPEC definition. FREEZE
sets the FREEZAPP field of the VPLUS comarea to 2.

INIT Initialize the fields in a VPLUS form to values defined by
the forms design utility FORMSPEC and perform any Init
Phase processing before transferring data.

WAIT[=Fn] Do not return control to the program until the terminal
user has pressed function key n. n may have a value of 0
through 8, where 1 through 8 indicate the keys f1 through
f8 and 0 indicates the ENTER key.

If the end user presses a different function key, Transact
sends a message to the window saying which key is expected.

If Fn is omitted, then UPDATE(FORM) waits until any
function key is pressed.

6-184

WINDOW=
([field,]
message

field

message

EXAMPLES

UPDATE

Place the message string in the window area of the screen
and, optionally, enhance a field on the form. The
enhancement is done according to the enhancements specified
for the form by FORMSPEC. field and message can be
specified as follows:

Either the name of the field to be enhanced, or an
item-name within parentheses containing the name of the
field to be enhanced.

Either a "string" within quotes that comprises the
message to be displayed, or an item-name within
parentheses containing the message string to be
displayed in the window.

PROMPT(PATH) INV-f\Iv1BR ("INVOICE NUMBER II);
PROMPT (MATCH) ITEM-NUM (II ITEM NUMBER II) ;
LIST ITEM-QTY;
GET(CHAIN) ORDER-LINE,

LIST= (ITEM-QTY) ;
DISPLAY;
DATA(SET) ITEM-QTY

(IIEnter new Quantity or press return to keep old Quantity");
UPDATE ORDER-LINE,

LIST= (ITEM-QTY) ;

This example prompts the user for the values required to find a record. After
it is retrieved, the user is prompted for the new quantity for the item and
the record is updated. Note that the LIST= option for both the retrieval and
the update only need specify the item to be updated.

6-185

UPDATE

The next example is similar, except that it allows the end user to update all
the entries in a chain, rather than a single entry.

PROMPT(PATH) INV-r-.Jv1BR ("INVOICE NUMBER");
PROMPT (MATCH) ITEM-NUM ("ITEM NUMBER");
LIST ITEM-QTY;
FIND(CHAIN) ORDER-LINE,

LIST=(ITEM-QTY),
PERFORM=UPDATE-QTY;

UPDATE:QTY:
DISPLAY;
DATA(SET) ITEM-QTY

("Enter new quantity or press return to keep old quantity");
UPDATE ORDER-LINE,

LIST=(ITEM-QTY);
RETURN;

The next example uses an UPDATE(FORM) statement to update the current form.
It highlights the item identified in FIELD-ENH and sends the message contained
in WINDOW-MSG to the window area of the form:

DEFINE(ITEM) FIELD-ENH U(16):
WINDOW-MSG U(72);

«contains name of field in VPLUS form»
«contains message for VPLUS window»

MOVE (FIELD-ENH) = IIFIELD1";
MOVE (WINDOW-MSG) = "This field must be numeric";

UPDATE(FORM) *
WINDOW=((FIELD-ENH),

(WINDOW-MSG»;

In this particular case, as a result of the prior MOVE statements, the UPDATE
statement highlights FIELDI in the current form and displays the message "This
field is numeric" in the window area of that form.

6-186

WHILE

Repeatedly tests a condition clause and executes a simple or compound
statement while the condition is true

*********************~***

* I

* WHILE condition-clause statement;

*

*
*
*

WHILE causes Transact to test a condition-clause. The condition clause
includes the test-variable, the relational-operator, and the value. If the
result of that test is true, then the statement following the condition is
executed. Then the condition clause is tested again and the process repeated
while the result of the test is true. When the result of the test is false,
control passes to the statement following the WHILE statement.

STATEMENT PARTS

condit ion
clause

test-variable

A test-variable, relational-operator, and one or more values
in the following format:

test-variable relational-operator value[,value] ...

The value to be tested; it may be one or more of the
following:

(item-name)

EXCLAMATION

FIELD

INPUT

The value in the data register that corresponds to
item-name.

Current status of the automatic null response to a
prompt set by a user responding with an exclamation
point (!) to a prompt. If the null response is set, the
EXCLAMATION test variable is a positive integer; if not
set, it is zero. Default is o.

Current status of FIELD option. If an end user
qualifies a command with FIELD, the FIELD test variable
is a positive integer; otherwise, it is a negative
integer. Default is <0.

The last value input in response to the INPUT prompt.

6-187

WHILE

PRINT

REPEAT

SORT

STATUS

relational
operator

CUrrent status of PRINT or TPRINT option. If an end
user qualifies a command with PRINT, the PRINT test
variable is an integer greater than zero and less than
10; if a command is qualified with TPRINT, PRINT is an
integer greater than 10; if neither qualifier is used,
PRINT is a negative integer. Default is <0.

Current status of REPEAT option. If an end user
qualifies a command with REPEAT, the REPEAT test
variable is a positive integer; otherwise, REPEAT is a
negative integer. Default is <0.

Current status of SORT option. If an end user qualifies
a command with SORT, the value of the SORT test variable
is a positive integer; otherwise SORT is a negative
integer. Default is <0.

The value of the status register set by the last data
set or file operation, data entry prompt, or external
procedure call.

Specifies the relation between the test-variable and the
values; it may be one of the following:

equal to

<> not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

6-188

value

WHILE

The value against which the variable is tested;

If ~es~-vaIiable

is:

(i~em-name)

INPUT

EXCLAMATION
FIELD
PRINT
REPEAT
SORT

STATUS

then value must be:

An alphanumeric string or
a numeric value.

An alphanumeric string.

A positive or
negative integer.

An integer number.

s~atement

EXAMPLES

Alphanumeric strings must be enclosed in quotation marks.

If more than one value is given, then the following are
true:

• The relational-operator can be 11=11 only, and

• The action is taken if the tes~-vaIiable is equal to
valuel OR value2 OR ... valuen.

A simple or a compound Transact statement. A compound
statement must be bracketed with a DO ... DOEND pair, as the
example illustrates.

WHILE (SUB-TOTAL) >= 0
DO

GET(CHAIN) ORDERS;

LET (SUB-TOTAL) = (SUB-TOTAL) - (OUT-BAL);
DOEND;

6-189

l_i_~_~_~_~A_Ac_cT_IL_IT_y -------lI~

The Transact test facility enables you to trace a program through execution
for program debugging. The format for the TEST command is:

TEST [numeric-parameter [,[segmentl.]starting-instruction-address]
[,[segment2.]ending-instruction-address]]

STATEMENT PARTS

numeric
parameter

segment1

starting
instruct ion
address

segment2

ending
instruction
address

An integer number that specifies the particular test mode.
The specific test modes are described in Table 7-1.

Segment number where test should begin. If none is given, the
root segment (segment 0) is assumed.

Instruction address where the trace should begin. This
address is the same as the internal locati shown in the
compiler listing produced when a Transact program is compiled
with the LIST option.

Segment number where test should stop. If none is given,
segment 0 is assumed.

Instruction address where trace should end; as with the
starting-instruction-address, this is the internal-location
shown on a compiler listing.

To use the test facility, enter the TEST command with a numeric parameter
anytime you are in command mode. The test facility stays in effect until you
enter the TEST command with no numeric parameter.

For example, if you are in command mode and want to execute all SUbsequent
code in test mode 25, enter the following command:

>TEST 25

If you want to use test mode only between instructions 0 and 8 of the root
segment, enter the following command:

>TEST 25,0,8

7-1

Test Facility

You terminate test mode as follows:

>TEST

If you want to use the test facility during execution of a program, when you
are NOT in command mode, you must take the following steps:

• Press CNTL-Y to enter command mode,

• Enter the appropriate TEST command, and

• Enter the command RESUME.

Execution of the program continues from where it stopped, with the specified
test facility.

You may enter the test parameters (without the keyword TEST) following the
program name and mode parameter in response to Transact's SYSTEM NAME> prompt.

For example, to execute in test mode 25 between instructions 0 and 8 of the
root segment of program MYPROG, enter the following response to SYSTEM NAME>:

mode parameter omitted
/

SYSTEM NAME> MYPROG, ,25,0,8

OUTPUT FROM TEST

Normally the output from TEST is sent to the file TRANOUTi this is your
terminal in a session or the line printer in a batch job. If you want to
change the test destination, you can precede the test numeric parameter with a
minus sign. Then the output goes to TRANDUMP (the formal-file-designator for
the destination oe the test mode output). TRANDUMP is assigned to the line
printer by default. You may change the assignment of TRANDUMP to a different
device through a file equation.

For example, if you are executing in a command sequence, you can direct the
test mode to the line printer simply by preceding the mode with a minus sign:

>TEST -25 <---to request test mode 25 with output to TRANDUMP

If you are not in a command sequence, you can accomp1ish the same results as
follows:

CONTROL-Y BREAK
TEST -25
RESUME

<---to stop execution
<---to request test mode 25 with output to TRANDUMP
<---enter command to resume execution

1-2

Test Facility

You could also direct the test mode output to a disc file you create for that
purpose. For example, to send the test output to the file TEST:

:BUILD TEST; REC=-80"F,ASCII
:FILE TRANDUMP=TEST
:RUN TRANSACT.PUB.SYS

SYSTEM NAME> MYPROG, ,-25

<---crea~e a file for ~es~ ou~pu~

<---equa~e file TRANDUMP wi~h file TEST

<---send ~es~ ou~pu~ ~o TRANDUMP(=TEST)

Another method is to defer test mode by setting the output priority for
TRANDUMP to 1. For example:

:FILE TRANDUMP; DEV=,l
:RUN TRANSACT.PUB.SYS

SYSTEM NAME> MYPROG, ,-25

<---defer ~es~ mode ou~pu~

After executing VTESTi you can run SPOOK.PUB.SYS to examine the test mode
information saved in a spool file.

If you use test mode for statements that access a VPLUS forms file, you should
either direct the test output to a terminal other than the one where the VPLUS
forms are displayed, or else direct the forms to a different terminal.
otherwise, the test output will appear on the terminal screen with the forms.
You could also defer test output as shown above.

For example, you can direct the test output to another terminal whose logical
device number is 19 as shown:

:FILE TRANDUMP; DEV=019
:RUN TRANSACT.PUB.SYS

SYSTEM NAME> VTEST,,-34

<---direc~ ~es~ ou~pu~ ~o 1dev 19

<---run VTEST in mode 34; ou~pu~ ~o TRANDUMP

An alternative is to direct the VPLUS forms to another terminal, while the
test results are sent to your terminal. To redirect the VPLUS forms, use the
TRANVPLS formal file designator:

:FILE TRANVPLS; DEV=019
:RUN TRANSACT.PUB.SYS

SYSTEM NAME> VTEST, ,34

<---direc~ VPLUS forms ~o 1dev 19

<---run your program wi~h ~est mode 34

Now, test mode and character mode output appears at your terminal, but the
VPLUS forms appear on another terminal identified by its logical device
number.

7-3

Test Facility

TEST PARAMETERS

Table 7-1 lists the allowed test parameters and their functions.

Table 7-1. Numeric Parameters for Test Facility

Parameter

(none)

1

2

3

4

22

23

Function

switch off existing test mode.

Display data block with information about the file or data base
operations only if an error occurs.

Display each instruction address and the compiler code at that
address.

Display each instruction address, the compiler code at that
address, the space used by the list and data registers, and the
amount of remaining processor work space.

Display each instruction address, the compiler code at that
address, the instruction timings, and the HP3000 data stack
pointers Z, S, Q, and DL.

Display each instruction address, the compiler code at that
address, and data block for any instructions that perform data
base and file operations.

The dat~ block includes the values and offsets of items in the
key and argument registers used by the data base or file
operation.

Display the instruction address, the compiler code at that
address, and the data block for any instructions that perform
data base or file operations. The display follows a multiple
record operation.

The data block includes the values and offsets of items in the
list, data, key, argument, match, and update registers
specifically used by the data base or file operation.

7-4

Test Facility

Table 7-1. Numeric Parameters for Test Facility (continued)

Parameter

24

25

34

42

Function

Display the instruction address, the compiler code at that
address, and the data block for any instructions that perform
data base and file operations.

The data block incluQes the values and offsets of items in the
list, data, key, argument, match, and uPdate registers
specifically used by the data base or file operation.

This display is issued only when an accessed record meets the
selection criteria in the match register. If there are no
selection criteria for this operation or if the NOMATCH option
is in effect, the display is issued for every record retrieVed
by the data base or file operation.

Display the instruction address, the compiler code at that
address, and the data block for any instructions that perform
database and file operations.

Display' the values and offsets of items in the list, data, key,
argument, matCh, and update registers for items specifically
used by the data base or file operation.

This display is issued for every record accessed by the data
base or file operation.

Display the instruction address, the compiler code for that
address, and the contents of the VPLUS buffer following an
instruction generated by a statement that references a VPLUS
form

Display instruction address and compiler code for that address
only if the instruction is not listed in the compiler listing.

Display contents of the list and data registers whenever the
content of the list register (not the data register) changes.

7-5

Test Facility

Table 7-1. Numeric Parameters for Test Facility (continued)

Parameter

43

44

101

102

121

122

123

Function

Display the instruction address, the compiler code, and the
contents of the list and data register for every instruction.

Display the instruction address, the compiler code, and the
contents of the list, data, key, argument, match, and update
registers for every instruction.

List the data and workspace recovery statistics for every
command sequence.

List the data and workspace recovery statistics for the entire
program.

Issue an overlay call trace whenever another program is called
by a CALL statement.

Issue a trace whenever a file is locked or unlocked.

Issue a workspace recovery message whenever recovery is needed.

7-6

Test Faci~ity

EXAMPLES

The following annotated examples illustrate various test modes. The compiler
~isting shown below is for the ADD PROGRAMMER command sequence used in the
examples of test modes 1, 3, and 4:

end; «end of help for ADD»

end; «end of ADD PROGRAMMER»

display "The sub-commands for ADD are: ",line=2;
set (command) command (ADD) ;

$$ADD: «begin the ADD commands»
$$A:

$: «help for the ADD command»

list=(PROGRAt+1ER:PHONE) ;

PROGRAMMER:
PHONE;
LNAME:
FNAME:
PHONE;

PROGRAt+1ERS,put

list

data

$PROGRAt+1ER:
$PR:

starting-location
/

0077
0077
0077
0078
0078
0080
0082
0084
0085
0085
0085
0086
0086
0086
0087
0088
0089
0090
0091
0095
0095

\
ending-location

176.000
177.000
178.000
179.000
180.000
181.000
183.000
184.000
185.000
186.000
187.000
188.000
190.000
191.000
192.000
193.000
194.000
195.000
196.000
197.000
198.000

In these examples, the tests are requested by the TEST command
just before executing the ADD PROGRAMMER command sequence:

Test Mode 1

This test mode displays the error message only when an error occurSj
in this example, a duplicate key item error occurs.

> TEST 1,77,95 <---Execute instructions 77 thxu 95 in test mode 1

> ADD PROGRAMMER

Enter programmer's last name: MARTIN <---duplicate name

Enter programmer's first name: JOAN

7-7

Test Faci1ity

Enter phone extension number: 3803

*ERROR: DUPLICATE KEY VALUE IN MASTER (IMAGE 43,95,PROGRAMMERS)

+-D-A-T-A---F-I-L-E---D-U-M-P----------+<---data block for unsuccessful PUT

PUT
BASE: PROGB

COND: 43 STATUS: 43 RECNO: -1
SET: PROGRAMMERS

POSN: LIST:
o PROGRAMMER
30 PHONE

DATA:
MARTIN
3803

JOAN

+--------------------------------------+

Enter programmer's last name: JONES

Enter programmer's first name: JAMES

Enter phone extension number: 3067

>

Test Mode 3

<---unique name; no test output

This test mode shows the same information as test mode 2 (the instruction
address and the compiler code for every instruction), plus it shows the space
used by the list and data registers, and the remaining processor work space.

> TEST 3,77,95

> ADD PROGRAMMER
00000 000:000
00087 032:007
00088 032:005

of entries in list register
/ # of words in data register

/ /
LIST DATA CELL WORK

1 15 64 256
2 17 64 256

Enter programmer's last name: FRANCIS
00089 024:008 2 17

Enter programmer's first name: JAMES
00090 024:009 2 17

Enter phone extension number: 4835
00091 024:005 2 17
00092 048:129 2 17

/ \ /
/ compiler code

instruction location

64 256

64 256

64 256
64 256

\ \
\ words left in work space

entries left in work space

7-8

Test Facility

Test Mode 4

In addition to the instruction location and compiler code issued by test mode
2, this mode displays instruction timings and the location of the stack
pointers, Z, 5, Q, and DL. .

stack pointers
/ \

/ \
Z S Q D
07362 05612 05335 00092
07362 05612 05335 00092

> TEST 4,77,95

> ADD PROGRAMMER
00000 000:000
00087 032:007
00088 032:005

Enter programmer's last
00089 024:008

000000 000000
000001 000001
000001 000002

\ /
\ /
instruction times

name: MAYOTTE
000016 000018 : 07362 05612 05335 00092

Enter programmer's first name: MARK
00090 024:009 000015 000033

Enter phone extension number: 3303
00091 024:005 000014 000047
00092 048:129 000016 000063

> EXIT

END OF PROGRAM

07362 05612 05335 00092

07362 05612 05335 00092
09922 07735 05335 00092

7-9

Test Facility

Direct Test Output to File

The following example directs the test mode output to a file TEST. Test mode
1 is selected when the program is executed.

:BUILD TEST; REC=-80"F,ASCII
:FILE TRANDUMP=TEST
:RUN TRANSACT.PUB,SYS

<---build file for ~es~ ou~pu~

<---equate TRANDUMP to tha~ file

TRANSACT/3000 HP32247A.OO.01 - (C) Hewlett-Packard Co. 1982

SYSTEM NAME> MYPROG,,-1,77,95

MYPROG AOO.OO

PASSWORD FOR PROGB>

<---send tes~ mode 1 ou~put ~o TRANDUMP

*INFO: OPENED PROGB,3 (USER 23,-1)

> ADD PROGRAMMER <---command sequence at locations 77-95

Enter programmer's last name: MARTIN

Enter programmer's first name: JOAN

Enter phone extension number: 3803

*ERROR: DUPLICATE KEY VALUE IN MASTER (IMAGE 43,95,PROGRAMMERS)

Enter programmer's last name: * CONTROL(Y) BREAK

> EXIT

END OF PROGRAM

To see the test mode outp~t, run the EDITOR and display or list the contents
of TEST.

7-10

Test Facility

Test Modes 22 through 25

Test modes 22 through 25 are very similar. For that reason, only test mode 25
is illustrated. The compiler code used for the example of test mode 25 is
shown below. It uses three instructions that access a datw base, a PUT, a
REPLACE, and a DELETE. In the case of the REPLACE(CHAIN), two entries in the
chain are replaced.

delete PROGRAMMERS, list=();

«update entries in PROG-AUTHOR»

«delete old entry in PROGRAMMERS»

end; «end of REPLACE PROGRAMMER»

«set up and add entry for new name to PROGRAt+1ERS»

display "Updating entries in PROG-AUTHOR", line=2;
list PROG-NAME: «temp. storage for update»

PROGRAMvlER;
replace(chain) PROG-AUTHOR,

list=(PROG-NAME:PROGRAMMER);
reset(stack) list; «release temp. storage»

list PROGRAt+1ER:
PHONE;

data LNAME ("Enter new programmer's last name ll
):

FNAME ("Enter new programmer's first name ll
):

PHONE;
put PROGRAMMERS, list=(PROGRAMMER:PHONE); «add new»
set(update) list (PROGRAMMER) ;
data LNAME C'Enter old programmer's last name"):

FNAME ("Enter old programmer's first name ll
);

set(key) list(PROGRAMMER);
reset(stack) list; «release space»

$PROGRAt+1ER:
$PR:

«replace ohe programmer with another»

starting location
/

0302
0303
0303
0303
0303
0303
0303
0304
0305
0307
0309
0310
0314
0316
0318
0320
0321
0322
0322
0322
0322
0324
0325
0326
0326
0330
0331
0331
0331
0331
0334
0334

\

453.000
454.000
455.000
456.000
457.000
458.000
459.000
460.000
461.000
462.000
463.000
464.000
465.000
466.000
467.000
468.000
469.000
470.000
471.000
472.000
473.000
474.000
475.000
476.000
477.000
478.000
479.000
480.000
481.000
482.000
483.000
484.000

ending location

7-11

Test Facility

Test Mode 25

This test mode, like test modes 22 through 24, displays the data block (DATA
FILE DUMP) for instructions that access files or data sets. As part of the
data block display, test mode 25 shows the contents of all the registers used
by each data base or file operation. Note in the example below that the data
block for REPLACE(CHAIN) is iSSUed every time an entry is selected in the
chain of the detail set PROG-AUTHOR.

> TEST 25,302,334

> REPLACE PROGRAMMER
00303 032:007
00304 032:005
00305 040:008

Enter new programmer's last name: KING
00307 040:009

Enter new programmer's first name: WENDY
00309 024:005

Enter phone extension number: 3818
00310 048: 129

+-D-A-T-A---F-I-L-E---D-U-M-P----------+ <---data block for PUT

PUT
BASE: PROGB

COND: 0 STATUS: 0 RECNO: 21
SET: PROGRAMMERS

POSN: LIST:
o PROGRAMMER
30 PHONE

DATA:
KING
3818

<---contents of list &
data registers

WENDY

+--------------------------------------+
00314 031 :000
00316 040:008

Enter old programmer's last name: CINTZ
00318 040:009

Enter old programmer's first name: SIMON
00320 198:007
00321 208:254
00322 081: 028
00323 080:000

Updating entries in PROG-AUTHOR
00324 032:006
00325 032:007
00326 067: 132

7-12

Test Facility

+-D-A-T-A---F-I-L-E---D-U-M-P----------+ <---data block for 1st REPLACE
!
!
! REPLACE (CHAIN) COND: 0 STATUS: 0 RECNO:
! BASE: PROGB SET: PROG-AUTHOR
! KEY: PROGRAMMER ARGUMENT: CINTZ SIMON <--key/argument regs
!
! UPDATE: VALUE:
! PROGRAMMER KING WENDY <--update value
!
! POSN: LIST: DATA: <--list/argument regs
! 0 PROG-NAME PROG1A
! 8 PROGRAMMER CINTZ SIMON
+--------------------------------------+

+-D-A-T-A---F-I-L-E---D-U-M-P----------+
!

<---data block for 2nd REPLACE

REPLACE (CHAIN) COND: 0 STATUS: 0 RECNO: 2
BASE: PROGB SET: PROG-AUTHOR

KEY: PROGRAMMER ARGUMENT: CINTZ SIMON

UPDATE: VALUE:
PROGRAMMER KING

POSN: LIST: DATA:
0 PROG-NAME PROG2B
8 PROGRAMMER CINTZ

+--------------------------------------+

2 RECORDS REPLACED
00330 208:254
00331 068:129

+-D-A-T-A---F-I-L-E---D-U-M-P----------+

WENDY

SIMON

<---data block for DELETE

DELETE COND: 0 STATUS: 0 RECNO: 14
BASE: PROGB SET: PROGRAMMERS

KEY: PROGRAMMER ARGUMENT: CINTZ SIMON

POSN: LIST: DATA:
+--------------------------------------+

00334 000:000

> EXIT

Note that this test mode only displays that part of the list and data
registers included in a LIST= option of the data management statement.

7-13

Test Facility

Test Mode 34

This test mode is used to trace instructions that access VPLUS forms. The
output from test mode 34 should always be sent to an alternate device from
your terminal. otherwise, the output interferes with the forms displayed on
the screen.

The compiler code used for this example is shown below.

starting location
I

98.000 0035 ADD-CUSTOMER:
99.000 0035

100.000 0035 get (form) ADDFORM,
101 .000 0035 init,
102.000 0035 list=(ACCOUNT:DATE),
103.000 0035 window=("Please enter a new customer"),
104.000 0035 f7=START-OF-PROGRAM,
105.000 0035 f8=END-OF-PROGRAM,
106.000 0035 autoread;
107.000 0051
108.000 0051 PUT-CUSTOMER:
109.000 0051
110.000 0051 set (key) list (ACCOUNT) ; <<Set up key register»
111 .000 0052 find CUSTOMER, list=() ; <<Check if customer exists»
112.000 0055
113.000 0055 if STATUS <> 0 then <<Cu s tomer already in base»
114.000 0055 go to ADD-CUST-ERROR;
115.000 0058
116.000 0058 put CUSTOMER,
117.000 0058 list=(ACCOUNT:DATE),
118.000 0058 error=PUT-ERROR(*) ; «Process PUT verb error»
119.000 0064

\
ending location

7-14

Test Facility

Before running the program VTEST in test mode -34, build a file, TEST, to
receive the test data and equate TRANDUMP to that file:

:BUILD TEST; REC=-80, ,F,ASCII
:FILE TRANDUMP=TEST
:RUN TRANSACT.PUB.SYS

SYSTEM NAME> VTEST,,-34,35,64 <--run VTEST in test mode 34 with
test output sent to file TEST

The test output from file TEST looks like this:

+-V-P-L-U-S---B-U-F-F-E-R---D-U-M-P----+
!
! PUT(FORM) CODE: 0 FKEY: 0
! FORM: MENUNU FILE: CUSTF
!
+--------------------------------------+
+-V-P-L-U-S---B-U-F-F-E-R---D-U-M-P----+
!
! UPDATE(FORM) CODE: 0 FKEY: 1
! FORM: MENU FILE: CUSTF
!
+--------------------------------------+

\
\
\

TF \ \
\
<--from previous form access

/ statements
/

/
/ /

/

00035 160: 131
+-V-P-L-U-S---B-U-F-F-E-R---D-U-M-P----+
!

<--output from location 35

GET(FORM) CODE: 0 FKEY: 0 <--last key pressed is ENTER
FORM: ADDFORM FILE: CUSTFORM

\
\

\
\
<--entered data

/
/

/
/

DATA:
1113434343
MARGARET
S
TRUEMAN
524 East 79th Street
New York
NY
10024
07/21/82

LIST:
ACCOUNT
FIRST-NAME
INITIAL
LAST-NAME
STREET-ADDR
CITY
STATE
ZIP
DATE

OFFSET:
o
10
28
29
49
71
85
87
96

+--------------------------------------+
00051
00052
00055
00058
00064
00035

198:000
065: 137
011: 001
048: 137
004:000
160: 131

7-15

Test Facility

DATA:
... w ;b .
.W $, ... B,H ..
S
TRU .. AN. Z.
Y.. >.. 5" ,.X.? ..
....... 3 .

\
\

\
\

<--garbage
/

/
/

/

<--fB pressed to exit

<--back to location 35

.. 2

>

FKEY: 8
FILE: CUSTFORM

LIST:
ACCOUNT
FIRST-NAME
INITIAL
LAST-NAME
STREET-ADDR
CITY
STATE
ZIP
DATE

OFFSET:
o
10
28
29
49
71
85
87
96

+-V-P-L-U-S---B-U-F-F-E-R---D-U-M-P----+
I
! GET(FORM) CODE: 0
! FORM: ADDFORM
!
!
!

+--------------------------------------+

7-16

Test Facility

Test Mode 42

This test mode lists the contents of the list and data registers only when the
list register is changed.

The compiler listing shown below is for two subcommands that are part of a
LIST command sequence; this code is executed by entering LIST PROGRAMMER and
LIST PROGRAM respectively.

starting location
/

97.000 0019 $PROGRAMMER:
98.000 0020 $PR:
9-9.000 0020 «list programmers»

100.000 0020
101.000 0020 list PROGRAMvtER:
102.000 0021 PHONE;
103.000 0022 output(serial) PROGRAMMERS,
104.000 0022 list=(PROGRAMMER:PHONE),
105.000 0022 sort=(PROGRAMMER) ,
106.000 0022 nocount;
107.000 0028
108.000 0028 end; «end of LIST PROGRAMMER»
109.000 0029
110.000 0029
111 .000 0029 $PROGRAM:
112.000 0030 $P:
113.000 0030 «list programs»
114.000 0030
115.000 0030 list PROG-NAME:
116.000 0031 DESCRIPTION;
117.000 0032 output(serial) PROGRAMS,
118.000 0032 list=(PROG-NAME:DESCRIPTION),
119.000 0032 sort=(PROG-NAME),
120.000 0032 nocount;
121.000 0038
122.000 0038 end; «end of LIST PROGRAM>)

\
ending location

Note in the following test output that the current contents of the data
register are never shown; only the previous contents. Thus the data register
display in the test output from LIST PROGRAMMER contains garbage. Similarly,
the data register display in the test output from LIST PROGRAM contains data
from the previous command sequence.

> TEST 42,19,38

7-17

Test Facility

> LIST PROGRAMMER
00020 032:007

+-L-I-S-T---D-U-M-P--------------------+ <--issued for LIST PROGRAMMER
! POSN: LIST: DATA:
! 0 PROGRAMMER .a.B.a .. b B.H .
+--------------------------------------+

00021 032:005
+-L-I-S-T---D-U-M-P--------------------+ <--issued for LIST PHONE
! POSN: LIST: DATA:
! 0 PROGRAMMER .a.B.a .. b B.H .
! 30 PHONE
+--------------------------------------+

00022 066: 129

Programmer
CRESSMAN
ERCOLANI
KING
LEDERMAN
VANN

00028

PETE
JOE
WENDY
ABE
KEITH

000:000

Phone Number
3805
4343
3818
3753
4046

Program Name
CRUNCH
DISCOPY
GTDATA
PROJMAN
SGEN
TLIST
UNCRUNCH

00038

> LIST PROGRAM
00030 032: '006

+-L-I-S-T---D-U-M-P--------------------+ <--issued for LIST PROG-NAME
! POSN: LIST: DATA:
! 0 PROG-NAME VANN
+--------------------------------------+

00031 032:002
+-L-I-S-T---D-U-M-P--------------------+ <--issued for LIST DESCRIPTION
! POSN: LIST: DATA:
! 0 PROG-NAME VANN
! 8 DESCRIPTION KEITH 4046 6.B ..
! II •••••••• X.?
+--------------------------------------+

00032 066: 130

Program Description
Compacts ASCII files.
Copies disc files.
Generates random test data.
Project management using the critical path method.
Generates STREAM job files.
Lists the contents of a II STORE II tape.
Expands a file compacted by CRUNCH.
000:000

> EXIT

7-18

Test Facility

Test Modes 101 and 102

These test modes allow you to keep track of the list and data register
size, and also whether recovery was needed. Test mode 101 displays test
data at the end of every command sequence; test mode 102 only at the
end of the program.

> TEST 101

> ADD PROGRAMMER

<---request test mode 101

<---start of command sequence

Enter programmer's last name: MARTIN

Enter programmer's first name: JOAN

Enter phone extension number: 3803

MAXIMUM LIST= 2 ITEMS
MAXIMUM DATA= 17 WORDS
WORKSPACE RECOVERY= 0

+-S-E-Q-U-E-N-C-E---D-U-M-P--+
!
!
!
!
!
+----------------------------+

> ADD PROGRAM

Enter program name: MYPROG

<---current status of list/data regs
at end of this command sequence

<---new command sequence

Program description: Test program for Manual

MAXIMUM LIST= 2 ITEMS
MAXIMUM DATA= 34 WORDS
WORKSPACE RECOVERY= 0

+-S-E-Q-U-E-N-C-E---D-U-M-P--+
!
!
!
!
!
+----------------------------+

<---status at end of second
command sequence

7-19

Test Faci~ity

> TEST 102

> LIST PROGRAMMER

~---request test mode 102

Programmer
CRESSMAN
ERCOLANI
KING
LEDERMAN
MARTIN
VANN

>LIST PROGRAM

PETE
JOE
WENDY
ABE
JOAN
KEITH

Phone Number
3805
4343
3818
3753
3803
4046

Program Name
CRUNCH
DISCOPY
GTDATA
MYPROG
PROJMAN
SGEN
TLIST
UNCRUNCH

> EXIT

Program Description
Compacts ASCII files.
Copies disc files.
Generates random test data.
Test program for Manual
Project management using the critical path method.
Generates STREAM job files.
Lists the contents of a "STORE" tape.
Expands a file compacted by CRUNCH.

+-R-U-N---D-U-M-P------------+
!
! MAXIMUM LIST= 2 ITEMS
! MAXIMUM DATA= 34 WORDS
! WORKSPACE RECOVERY= 0
!
+----------------------------+

END OF PROGRAM

<---test output only issued
at end of program

7-20

I
COMPILER 1-

____E_R_RO_R_M_E_S_S_A_G_ES I A I

The Transact/3000 compiler generates two types of error messages. They appear
on the compilation listing. The two types of error messages are the
following:

(1) Errors that have resulted in the generation of no code or erroneous
transaction code. Unless you have specified the XERR compiler control
option, no code file is produced.

*** ERROR *** ERROR-MESSAGE

(2) Conditions detected by the compiler that do not completely follow the TPL
syntax rules. They are, however, correctable by the compiler in
generating the transaction code file.

** WARNING ** ERROR-MESSAGE

ERROR-MESSAGE takes the following form:

A (ERROR NUMBER) MESSAGE

where II
A

II is positioned under the location in the statement line where the
compiler detected an error condition.

A-I

Compiler Error Messages

NO. MESSAGE

-1 INVALID TERMINATOR

0 COMMAND LONGER THAN
16 CHARACTERS

1 SUB-COMMAND LONGER
THAN 16 CHARACTERS

4 INVALID VERB

5 INVALID ITEM TYPE

EXPLANATION AND/OR ACTION

Compiler has detected an unexpected
field termination character and
expected one of the characters
displayed between the square
brackets. (A blank could be
one of the expected characters.)

Shorten the command label.

Shorten the sub-command label.

Correct the verb name.

The specified item type is not
legal. Legal item types include
X, U, 9, Z, P, I, J, K, R, E, or @.

6

7

8

9

11

12

13

MULTIPLE LABEL
DEFINITION

INVALID MODIFIER

EXPECTING A NUMERIC
FIELD

INSTRUCTION BUFFER
OVERFLOW

UNEXPECTED EOF IN
TEXT FILE

NO MORE STACK SPACE
FOR COMPILER TABLES

FATAL ERROR:
COMPILATION
TERMINATED

Label identified has been previously
defined. Change one label to a
unique name.

Correct or replace the modifier
name.

Compiler expected a numeric field
and has detected a null or
non-numeric field.

The compiler has generated more
object code words than are permitted
by that version of the compiler.

Compiler has detected an EOF within
a statement, probably caused by a
missing statement semi-colon or a
string terminating quotation mark.

Segment the program or split it into
two separate programs; compiler used
all of the data stack.

Compiler has detected an
unrecoverable error. See the
previous error message on the
compilation listing.

A-2

NO.

14

15

16

17

18

19

20

21

22

23

24

2S

MESSAGE

INVALID OPTION

EXPECTING ITEM NAME

ITEM NAME LONGER THAN
16 CHARACTERS

SET NAME LONGER
THAN 16 CHARACTERS

INVALID SYSTEM NAME

MULTIPLE SYSTEM
DEFINITION

MULTIPLE BASE
DEFINITION

EXPECTING A COMMAND
LABEL

EXPECTING A SYSTEM
DEFINITION

SYNTAX CHECKED BUT
NOT COMPILED

INVALID NUMBER

MISSING TEXT

compiler Error Messages

EXPLANATION AND/OR ACTION

Correct or modify the option field.

Compiler expected the name of a data
item and has encountered an invalid
or null field.

Shorten the data item name.

Shorten the data set name.

Incorrect syntax in SYSTEM statement.
Check syntax and correct it.

Previous system statement definition
is still in effect. MUltiple
definition, or a missing END
'system-name' statement separating
two programs in the same source text
file can cause this error.

Base name has been previously
defined in SYSTEM statement; only
the horne base may be defined twice.

Compiler expected a command label
at this point in the program.

Compiler expects the system
statement to be the first statement
in the source text file. Only
comment fields may precede the
SYSTEM statement.

Compiler has checked the identified
syntax but has not generated the
associated object code because of
a previous error condition.

Identified numeric field contains an
invalid number. Check the
associated statement and option
specifications.

Compiler expected a field between
the identified terminator and the
previous one.

A-3

Compiler Error Messages

NO.

29

30

31

32

33

34

36

37

38

39

40

MESSAGE

UNEXPECTED TEXT
BETWEEN DELIMITERS

SYNTAX ERROR

INVALID BASE NAME

DECIMAL COUNT MUST
BE LESS THAN
TOTAL

EXPECTING A CHARACTER
STRING

LABEL LONGER THAN 32
CHARACTERS

INVALID PARAMETER FOR
PROC CALL

STORAGE BYTE COUNT
TOO SMALL

BASE DEFINITION MUST
PRECEDE FILE
DEFINITION

DATA TYPE LENGTH NOT
SUPPORTED

MULTIPLE COMMAND
DEFINITION

EXPLANATION AND/OR ACTION

Compiler expected two consecutive
delimiters. The text between them
is ignored.

Compiler has detected a syntax
error. Check the required
syntax for the associated verb
statement.

Base name in the identified
reference has not been declared
in the system statement.

Decimal place count is larger
than the number of digits declared
in the item definition.

Compiler expected a character
string within quotation marks at
this point in the program.

Shorten the label.

An invalid proc parameter has been
detected. Correct the parameter.

The storage length specified in a
DEFINE (ITEM) statement is less than
the value cal~lated internally for
that item. Storage length specified
is ignored.

A file definition may not precede a
base definition in the SYSTEM
statement. Correct the statement.

The storage length specified in a
DEFINE (ITEM) statement is greater
than the maximum size supported for
that data type. Storage length
specified is ignored.

Command identified has been
previously defined. Change one
command label to a unique name.

A-4

NO. MESSAGE

41 MULTIPLE SUB-COMMAND
DEFINITION

42 PASSWORD LONGER THAN
8 CHARACTERS

43 INVALID MODE

45 EXPECTING A SET NAME

46 MULTIPLE OPTION
DEFINITION

47 MULTIPLE ITEM
DEFINITION

48 MULTIPLE FILE
DEFINITION

49 EXPECTING A FILE
NAME

50 INVALID FILE NAME

Compiler Error Messages

EXPLANATION AND/OR ACTION

The sub-command identified has
been previously defined for the
same command. Change one
sub-command label to a unique name.

Shorten the password.

The mode must be one of the
IMAGE DBOPEN modes (1 to 8).

Compiler expected the name of a
set and has encountered an
invalid or null field.

The same option has been used
more than once in the statement.
This option is ignored.

The item identified has been
previously defined. This
definition is ignored.

The file identified has been
previously defined. This
definition is ignored.

Compiler expected the name of
a file and has encountered an
invalid or null field.

The file name identified is not
a valid file name or back-ref
erence. Correct the file name.

51

52

INPUT STRING LONGER
THAN 80 CHARACTERS

EXPECTING A LABEL
REFERENCE

The prompt-string specified exceeds
the 80 character maximum for the
input verb. Shorten the
prompt-string.

Compiler expected a label name and
has encountered an invalid or null
field.

A-5

compiler Error Messages

NO.

S3

S4

55

56

S7

58

59

60

61

MESSAGE

TOO MANY COMPARE
VALUES

MULTIPLE VALUES ONLY
VALID FOR COMPARE
EQUAL

NON-PRINTING
CHARACTER IN TEXT
FILE IGNORED

INVALID COMMAND LABEL

FORMAT STATEMENT TOO
LONG

CONFLICTING OPTION
IGNORED

OBSOLETE SYNTAX

TOO MANY SORT ITEMS

LITERAL STRING TOO
LONG

EXPLANATION AND/OR ACTION

The compiler has encountered a
comparison with more than 100
values. Split the comparison
into two or more IF statements.

MUltiple compare values may only
be specified if the test
relationship is equality.

The compiler has detected a
non-printing character at the
position indicated. The
character has been ignored.

An invalid character has been
detected in the first position
of the command label. Correct
the command label to begin with
a character other than a "$"
or 11*".

The maximum format control block
(500 words) has been exceeded.
Reduce the number of display-fields
and/or options in the FORMAT
statement.

This option cannot be specified,
since a conflicting option has
previously been specified. This
option is ignored.

Compiler has detected obsolete,
syntax which may be unsupported now.
This refers to syntax that has
sUbsequently been replaced by more
complete features.

More than 30 items have been
specified for a FILE(SORT)
operation. Reduce the number of
SORT items.

Character string exceeds 256
characters. Shorten the string or
split it into several strings.

A-6

NO. MESSAGE

62 ITEM REFERENCED TO
ITSELF

63 FIELD ASSIGNMENT
MUST BE 1 OR 2
CHARACTERS

64 EXCEEDED 30 BLOCK
LEVELS

65 UNEXPECTED BLOCK
TERMINATOR IGNORED

66 UNEXPECTED ELSE
STATEMENT

67 SORT ERROR DURING
LABEL CROSS
REFERENCE

68 SORT ERROR DURING
DATA ITEM
DEFINITIONS

69 NO BASE(S) DECLARED

70 INVALID ELSE
STATEMENT IGNORED

71 EXPECTING AN ELSE
CONDITIONED
STATEMENT

72 INTERNAL LABEL
PLEASE REPORT
THIS ERROR

73 INCOMPLETE BLOCK
STRUCTURE IN PRIOR
SEQUENCE

Compiler Error Messages

EXPLANATION AND/OR ACTION

A sub-item or data base synonym
definition references itself. The
definition is ignored.

Only II a" or "ab" is allowed for a
field assignment, where II a" and lib II

are any characters.

Maximum nesting of IF/ELSE
statements has been exceeded.

An unexpected DOEND statement has
been encountered.

The ELSE statement is invalid in
this position. Correct the
program.

When SORT was called to produce
the cross-reference listing, an
error occurred. The listing is
produced unsorted.

When SORT was called to order the
item definitions an error occurred.
The listing is produced unsorted.

Correct the SYSTEM statement to
include a data base declaration for
the identified set name.

There was no previous IF statement
without a terminating semi-colon.

The previous IF statement was not
complete and an ELSE clause was
expected.

Compiler has detected an error in
its internal program control labels.
The error has been caused by a
system or compiler fault condition.

In this command sequence, the
compiler has had to force the
correct termination of the block
structure. Correct the program.

A-7

Compiler Error Messages

NO. MESSAGE

74 VPLUS FORM NAME
LONGER THAN 15
CHARACTERS

75 INVALID VPLUS FORM
NAME

76 TOO MANY ITEMS IN
VPLUS FORM LIST

77 EXCEEDED MAXIMUM
NUMBER OF PROMPT
STRINGS

78 INVALID COMMAND
REFERENCE

79 SOURCE FILE READ
ERROR

81 EXPECTING AN OPTION

91 PREVIOUS SEGMENT
IS EMPTY-OPTION
IGNORED

92 CODE FILE WRITE
ERROR

93 SEGMENT TABLE FULL

94 DEFINITION CANNOT
FOLLOW STATEMENT
USAGE

95 INCORRECT NUMBER OF
PARAMETERS FOR
INTRINSIC

EXPLANATION AND/OR ACTION

Shorten the form name.

Correct the format of the name to
consist of only alphabetic and
underscore characters.

Shorten the VPLUS form to consist
of fewer than 128 items.

More than 4096 prompt strings have
been used in the program. Segment
the program or reduce the number
of prompt strings per segment.

Referenced command has not yet been
defined.

Examine the file display for a
possible system problem.

The syntax indicates that an option
was expected; see verb description
for more information.

A !SEGMENT statement has been
encountered and no code exists
either since the last !SEGMENT
statement or since the beginning
of the program.

Examine the file display; check any
file equations for invalid access.

More than 63 !SEGMENT statements
have been encountered.

A statement option usage that
requires a prior definition has
been detected.

Check the intrinsic usage.

A-8

NO.

96

97

98

100

102

103

III

117

118

MESSAGE

INVALID INTRINSIC
NAME

EXPECTING AN UNTIL
CLAUSE

1 DOEND I FOR
'REPEAT DO' HAS
1 i 1 TERMINATOR

DATA DICTIONARY
REQUIRED BUT NOT
AVAILABLE

TOO MANY ITEMS IN
FILE LIST

COMPUTATION LEVELS
DO NOT MATCH

DATA DICTIONARY:
DATA BASE ERROR:
ERROR MESSAGE

CANNOT OPEN INCLUDE
FILE

TOO MANY INCLUDE
FILES

Compiler Error Messages

EXPLANATION AND/OR ACTION

Either an invalid MPE intrinsic
name or one that is not yet
processable by the compiler has been
detected. If the intrinsic is
valid, remove the declaration
and allow it to be resolved at
run time.

A REPEAT statement requires an UNTIL
clause.

Remove the 1;1 following DOEND. The
syntax is: REPEAT DO ...

DOEND UNTIL ... ,

Compiler requires information from
the dictionary which it cannot open.
Make the dictionary data base
available or add the definitions to
the SYSTEM statement.

More than 128 items have been used
in a file list.

Parenthesis levels in a compound
arithmetic expression do not match.
Number of • [I do not match number of

I] 1 •

Dictionary data base error has
occurred. See error message for
appropriate action.

Compiler cannot open the file named
in an !INCLUDE control statement.
Compilation continues using current
source file.

More than five INCLUDE files have
been nested (included from each in
sequence) .

A-9

Compiler Error Messages

NO.

119

120

121

122

123

124

125

MESSAGE

INCOMPATIBLE INCLUDE
FILE

VPLUS FILE/FORM NOT
FOUND IN DICTIONARY

ALIAS TABLE IS FULL

MISSING "RECNO II

OPTION

LABEL LINKAGE FATAL
ERROR

DELIMITER STRING
LONGER THAN 8
CHARACTERS

UNEXPECTED UNTIL
STATEMENT

EXPLANATION AND/OR ACTION

Compiler has detected an
incompatible INCLUDE file (not
an ASCII file).

The compiler has looked for
information on a VPLUS forms file
in the dictionary, but the definition
does not exist. Add the definition
to the SYSTEM statement.

Too many item alias names and
associated file names have been
defined for the item. Reduce the
number of alias names or associated
file names.

RECNO option is required for a verb
using the DIRECT modifier.

Compiler detected a bad linkage in
the label resolution structure.
Contact your local SE with a problem
report.

Too many delimiter characters are
defined. Reduce the number to 8 or
fewer.

The UNTIL statement is not valid in
this position.

A-I0

IPROCESSOR 1-
_.E_RR_O_R_M_ES_S_A_G_E_S ---...I B I

The Transact/3000 Processor generates two types of error message: one type
indicates actual errors, the other type provides information to the user, but
does not indicate an actual error. Both types of message are explained in
this appendix or in the appropriate reference manual for the indicated
subsystem.

Error Messages

Error messages are displayed in the following format:

*ERROR: error-message (error-info)

Information Messages

Information messages have the same format as error messages, but are preceded
by *INFO rather than *ERROR:

*INFO: error-message (error-info)

Information messages are conditions that the processor will tell the user
about that are not errors. Also, messages that occur only in test modes are
type INFO.

Error-Info

Whether appearing in an error or information message, error-info may contain
up to five of the following fields:

(type number [,code-location [,PARM(n)] [,file-name]])

B-1

Processor Error Messages

where:

type

USER

PROG

SYSTEM

TRAP

IMAGE

KSAM

MPEF

VPLUS

number

code-location

PARM(n)

file-name

is one the following:

The error is caused by a user of a system and may usually
be corrected by entering a different response.

The error is due to an error in the program and may usually
be corrected by the programmer.

The error is due to constraints of the system the program
is running on and may be corrected by the operator.

The error is due to an internal error in the processor and
its occurrence should be called to the attention of the
Systems Engineer.

The following error ~ypes are derived from the indicated
sUbsystem. The appropriate reference manual should be
consulted for explanation of the error condition.

IMAGE data base error.

KSAM utility error or file system error while operating on
a KSAM file.

MPE file system error.

VPLUS data entry utility error.

is the error number listed in this manual for type USER, PROG,
SYSTEM or TRAP, or it is a number meaningful to the indicated
subsystem.

is the internal location in the program at which the error
occurred (reference the second column of numbers on the
program compilation listing).

n is the field number on mUltiple data entry fields at Which
the error was detected. All the following fields are ignored.

is the name of the data set or file that was involved in the
error condition.

B-2

NO.

1

2

3

4

5

6

7

8

9

10

MESSAGE

ENTRY NOT NUMERIC

INPUT FIELD LONGER
THAN n

ORIGINAL RECORD HAS
BEEN RESTORED

NUMERIC INTEGER PART
LONGER THAN n

NUMERIC DECIMAL PART
LONGER THAN n

MISSING COMMAND

INVALID COMMAND/
OPTION:
command/option

INVALID/MISSING
SUB-COMMAND:
subcommand

INVALID MODE

INVALID SYSTEM NAME

USER ERRORS

EXPLANATION AND/OR ACTION

Data item type is integer, floating
point, or numeric ASCII and a
non-numeric character has been
detected in the data entry field.

Length of data entry exceeds the
size n defined for the
associated data item.

An error has occurred on updating
an entry in a data set and the
original entry has been restored.
Probable cause for the error was a
data entry value for which no
associated master set entry exists.

Integer part of a decimal number
exceeds the length n defined
for the associated data item.

Decimal part of a.decimal number
exceeds the length n defined
for the associated data item.

A command option was entered without
a command.

The command or command option
entered is not valid.

The subcommand entered is not
valid for the command specified, or
no subcommand was entered for a
command that requires one.

The mode used in opening the data
base must be numeric.

System name must be one to six
characters.

B-3

User Errors

NO. MESSAGE EXPLANATION AND/OR ACTION

11

12

13

14

15

16

17

18

19

20

21

22

NO SUCH SYSTEM

INVALID COMMAND
PASSWORD

INVALID SUBCOMMAND
PASSWORD

INVALID TEST MODE
PARAMETER

TEST MODE NOT
AVAILABLE

ATTEMPT TO ASSIGN
NEGATIVE VALUE TO
ITEM: item-name

INVALID ARITHMETIC
FIELD FOR ITEM:
item-name

ENTRY CANNOT BE
NEGATIVE

INVALID LOGICE
CONNECTOR

INVALID PRECEDING
RELATIONAL OPERATOR

UNDELIMITED TEXT
STRING

INVALID PASSWORD FOR
DATA BASE:
base-name

The processor cannot find or open
code file named IPXXXXXX, where
XXXXXX is the system name entered.

The command password to execute a
command sequence is incorrect.

The sequence password to execute a
subcommand sequence is incorrect.

An invalid test mode or associated
instruction range has been
specified.

The test modes have been disabled.

The processor has detected an
attempt to assign a negative value
to a positive-type field.

The processor is attempting to
execute an arithmetic operation
using a data item defined as
character, zoned or packed decimal
(type=X,U,Z or P) and has detected
an invalid data storage format for
the item.

This item has been declared to
always be positive.

Connector must be land, 'or' or
Ito' .

Operator must be one of <>, <=,
=>, <, >.

A string value must terminate with
a quote.

User has entered an invalid password
to the password prompt.

B-4

NO. MESSAGE EXPLANATION AND/OR ACTION

User Errors

23

24

OPENED base-name

LOADED procedure
name

Information message issued under
test mode 1 when a data base is opened
by Transact.

Information message issued under
test mode 1 when a procedure is
loaded by Transact.

B-5

PROGRAMMER ERRORS

NO.

1

2

3

4

5

6

7

8

9

MESSAGE

ITEM NOT FOUND IN
LIST REGISTER:
item-name

NO INPUT AVAILABLE

UNDEFINED DATA ITEM:
item-name

INVALID LIST START
POSITION

PARENT ITEM NOT FOUND
IN LIST REGISTER
FOR: sub-item-name

INVALID FILE FOR
SORT OPERATION

DATA BASE BUFFER NOT
ON WORD BOUNDARY

CANNOT FIND OR OPEN
CODE FILE:
file-name

SUB-ITEM NOT ALLOWED
IN LIST REGISTER:
sub-item-name

EXPLANATION AND/OR ACTION

Item name that is specified is not
in the list register.

The processor has detected an
attempt to use the input variable,
but an INPUT statement has not
been previously executed. Correct
program.

The processor is unable to resolve
the data item's definition
from the dictionary.

start list item-name does not
occur before end list item-name
in list register.

The current operation references a
sub-item for which there is no
associated parent item in the list
register.

A file used in a SORT operation must
be defined with an access of SORT or
R/W in the SYSTEM statement.

The data buffer for a data base
operation must start on a word
boundary. If necessary, insert a
one-character fill item before the
first item of the data base list.

Processor cannot find or open an
I IPXXXXXX' file that has been
called programmatically rather than
by the user.

A sub-item may not be used in
prompt or list statements.

B-6

NO.

10

11

12

13

14

15

16

17

18

MESSAGE

PROC DATA PARAMETER
NOT ON WORD
BOUNDARY

FILE BUFFER NOT ON
WORD BOUNDARY

ITEM NOT
INITIALIZED:
item-name

ATTEMPT TO REFERENCE
A MARKER ITEM:
item-name

SOURCE CODE
INSTRUCTION
IGNORED

SORT KEY NOT WITHIN
FILE ITEM LIST:
item-name

INVALID RETURN
OPERATION

EXCEEDED MAXIMUM
PERFORMS

ARITHMETIC CONVERSION
FOR ITEM: item-name

Programmer Errors

EXPLANATION AND/OR ACTION

The data field for the item given
in a data parameter for the PROC
statement must begin on a word
boundary. If necessary, insert a
one byte fill item before the data
item.

The data buffer for a file operation
must begin on a word boundary. If
necessary, insert a one character
fill item before the first character
of the file operation list.

A reference has been made to an
undefined data item.

A marker item may be referenced only
by a list pointer operation and
list range options.

The processor has detected an
attempt to execute a statement
marked as unexecutable by the
compiler.

An item given in the SORT item
list of a file (SORT) operation
must be contained in the item list
of the last file operation, that
is, the last FILE(OPEN) or FILE
(WRITE) statement.

The processor is unable to execute
the return, since there is no
perform in effect.

More than 10 nested PERFORM= blocks in
a data base or file access statement; or
more than 80 nested PERFORM statements
have been defined in this program.

In an arithmetic operation, a
conversion was attempted but it
failed. Check data types in program;
if necessary, contact your Systems
Engineer.

B-7

Programmer Errors

NO.

19

20

21

22

23

24

25

26

27

MESSAGE

SORT BUFFER NOT ON
WORD BOUNDARY

INVALID/MISSING
KSAM KEY

LIST REGISTER IS
EMPTY

WORKSPACE REORGANIZED

ITEM NOT FOUND IN
VPLUS FORM:
item-name

VPLUS BUFFER
CONVERSION FOR
ITEM: ITEM-NAME

KEY REGISTER IS EMPTY

CHECK FILE IS NOT A
DATA SET

SUB-ITEM FIELD
EXTENDS BEYOND
DATA REGISTER

EXPLANATION AND/OR ACTION

The buffer for a SORT operation
does not begin on a word boundary.
If necessary, insert a one-byte
fill character before the SORT
buffer.

The key was either not defined or
is not a valid key for this file.

An operation was attempted that
required an item on the list
register but the register was
empty.

This message informs the user that
the processor had to attempt to
find space by reorganizing the
program workspace. This is reported
under test mode 123 only.

An item within a list range on a
VPLUS operation is not defined in
the VPLUS buffer. Correct
definition on the SYSTEM statement, or
in the dictionary.

An error occurred in translating
ASCII from a VPLUS screen to an
internal format. Check the
definition of the item in program
and screen. Run program in test
mode 1 to get more information on
the conversion error.

An operation was attempted that
required a key item but none was
defined.

The filename for a check or
checknot is not a data set.

An operation has been attempted
that requires the data register to
be extended. Use the data parameter
of the SYSTEM statement to increase
data register space.

B-8

NO.

28

29

30

31

32

33

34

35

36

MESSAGE

FILE BUFFER EXTENDS
BEYOND DATA
REGISTER

UNDEFINED BRANCH
SEE COMPILATION

DELETE NOT ALLOWED
ON MPE FILE

ITEM STACK FULL

LIST REGISTER FULL

DATA REGISTER FULL

WORKSPACE FULL

WORKSPACE ENTRIES
FULL

LEVEL STACK FULL

Programmer Errors

EXPLANATION AND/OR ACTION

A file operation requires more
data register space. Use the data
parameter of the SYSTEM statement
to increase data register space.

An attempt has been made to use an
undefined label.

A delete operation is not
permitted on an MPE sequential file.
File must be rewritten with
unrequired records omitted.

The number of data items has
exceeded the default count or the
number defined by data-count in
the SYSTEM statement. Increase
list register size with data-count.

IMAGE List register (2048 Bytes)
-not Transact's list register -
is full. Change program to:
split the data base or split the
display operations into two separate
sequential steps, each of which
retrieves some of the data items.

The data register size has
exceeded the default size or the
size defined by data-length in
the SYSTEM statement. Increase
data register size with data-length.

Internal processor work space is
full. Increase work-length
in the SYSTEM statement.

Internal processor work space is
full. Increase work-count in the
SYSTEM statement.

More than 10 processing levels
have been activated in the program.
Eliminate one or more levels.

B-9

Programmer Errors

NO.

37

38

39

40

41

42

MESSAGE

CALL TO UNLOADED
PROCEDURE

LOCAL SEGMENT ITEM
IN LIST: item-name

LOCAL SEGMENT ITEM
IN MATCH REGISTER:
item-name

LOCAL SEGMENT ITEM
IN UPDATE REGISTER:
item-name

INCOMPATIBLE CODE
FILE

INSUFFICIENT STACK
FOR WORK SPACE
RELOAD

EXPLANATION AND/OR ACTION

The processor has detected an
attempt to execute a PROC statement
which references a procedure which
the processor was unable to load.

The processor has detected a
local item in the list register
during a transfer to a new segment.
This error is not detected if the
program was compiled with the OPTS option.
Remove the item from the list
register before the segment exit.

The processor has detected a
local item in the match
register during a transfer to a
new segment. This is not reported if
the program was compiled with the
OPTS option. Remove the local
item from the match register before
the segment exit.

The processor has detected a
local item in the update
register during a transfer to a
new segment. This is not reported if the
program was compiled with the
OPTS option. Remove the local
item from the uPdate register before
the segment exit.

The code file is not compatible with
the version of the processor
currently executing. Recompile with
correct version.

Processor needs more data stack
for a work space reorganization.
One solution is to segment the
program. Transact uses the maximum
stack space by default.

B-10

NO.

43

44

45

MESSAGE

INSUFFICIENT STACK
FOR SYSTEM LOAD

PRINT REGISTER
LENGTH TOO LONG

INSUFFICIENT STACK
FOR VPLUS BUFFER

Programmer Errors

EXPLANATION AND/OR ACTION

The data stack required for the
program is greater than the
maximum specified for the processor.
You must either segment the program
or break it into smaller programs
that are called with a CALL statement.

The processor has detected an
attempt to print a line of more
than 512 characters.

Processor requires more data
stack for a VPLUS buffer than is
available. You should segment
your program, or break it into
smaller callable programs.

46 DECIMAL DIVIDE BY
ZERO

47 DECIMAL OVERFLOW

48 EXTENDED PRECISION
DIVIDE BY ZERO

49 EXTENDED PRECISION
UNDERFLOW

50 EXTENDED PRECISION
OVERFLOW

51 INTEGER OVERFLOW

52 FLOATING POINT
OVERFLOW

Processor has detected a divide by
zero in a packed decimal
computation.

Processor has detected an overflow
in a packed decimal computation.

Processor has detected a divide by
zero in a double precision floating
point computation.

Processor has detected an underflow
in a double precision floating point
computation.

Processor has detected an overflow
in a double precision floating point
computation.

Processor has detected an overflow
in an integer arithmetic operation.

Processor has detected an overflow
in a single precision floating
point operation.

B-11

Programmer Errors

NO. MESSAGE

53 FLOATING POINT
UNDERFLOW

54 INTEGER DIVIDE BY
ZERO

55 FLOATING POINT
DIVIDE

56 ARITHMETIC TRAP
IN EXTERNAL
PROCEDURE

57 OVERLAY CALLED
FOR SEGMENT n

58 NO VPLUS FORM
AVAILABLE FOR
UPDATE

59 ARGUMENT REGISTER
OVERFLOW

60 INVALID OPERATION
FOR FILE TYPE

61 INVALID/MISSING
IMAGE KEY

62 VPLUS FORM NOT
FOUND

63 CALL FUNCTION HAS
INVALID PASSWORD

EXPLANATION AND/OR ACTION

Processor has detected an underflow
in a single precision floating point
operation.

Processor has detected a divide by
zero in an integer arithmetic
computation.

Processor has detected a divide by
zero in a single precision floating
point computation.

Processor has detected an arithmetic
trap in an external procedure called
by a PROC statement.

Informs the user that the processor
has called on overlay for segment
n. This is only reported in
test mode 121.

UPDATE(FORM) was issued, but no
form was displayed with a
prior PUT(FORM) or GET(FORM).

Value has been entered into the
argument register that exceeds
80 bytes in length.

Operation specified in program
is invalid for the given file type.

The key item was either not set up
or is not a valid key item for the
given data set.

The VPLUS form designated as next
form was not defined in the Transact
program or the dictionary.

The password specified in a CALL
statement is invalid for any data
bases to be opened in called program.

B-12

NO.

64

66

67

68

69

70

71

72

73

MESSAGE

INVALID PASSWORD
FOR DATA BASE:
base-name

ITEM NAME NOT
DEFINED: item-name

VPLUS FORM IS NOT
CURRENT: form-name

SORT KEY NOT IN
SORT FILE:
item-name

PARENT OF SORT KEY
NOT IN SORT FILE
FOR: item-name

ATTEMPTED VPLUS
OPERATION WHILE
VPLS OPTION SET

DATE/TIME EDIT
MASK OVERFLOW

DATA REGISTER DOES
NOT START ON WORD
BOUNDARY

UNABLE TO CLOSE
VPLUS PRINTFILE

Programmer Errors

EXPLANATION AND/OR ACTION

The password specified for a data
base in the SYSTEM statement is
invalid.

Item whose name was set up in the
data register for a VPLUS window
option is not defined in the program.

A VPLUS statement uses the CURRENT
option when the named form is not
the current form.

In a FIND or OUTPUT statement with
a SORT= option, an item specified
as a sort key is not in the sort file.

In a FIND or OUTPUT statement with
a SORT= option, the parent of a
child item specified as a sort key
is not in the sort file.

A SET(OPTION) VPLS statement is in
effect. You cannot execute a Transact
statement that operates on VPLUS forms
until you execute a RESET(OPTION) VPLS
statement.

The application of an edit mask to a
$TIME or $TODAY variable results in a
string longer than 64 characters.

The data name specified in the DATA=
option of the CALL statement does not
start on a word boundar-yo Add filler
byte to data register before adding
this item.

The CLOSE $FORMLIST statement failed
because no forms file is open or because
a SET (OPTION) VPLS was executed.

B-13

SYSTEM ERRORS

NO.

1

2

3

4

5

6

7

8

9

MESSAGE

SORT INITIALIZATION

SORT FILE WRITE

SORT OUTPUT

SORT END

CANNOT OPEN PRINT
FILE

CANNOT ACCESS DATA
DICTIONARY

CODE FILE READ

DISC SPACE NOT
AVAILABLE FOR
SORT FILE

PRINT FILE ACCESS

EXPLANATION AND/OR ACTION

Error in call to System SORT
utility. The probable cause is
insufficient disc space for SORT
scratc~ file.

Error on releasing record to the
System SORT utility. If cause is
not apparent to the resident
System Programmer then contact the
Systems Engineer.

Error on requesting record from
System SORT utility. If cause is
not apparent to the resident
System Programmer then contact the
Systems Engineer.

Error in System SORT utility
during exit procedures. If cause
is not apparent to the resident
System Programmer then contact the
Systems Engineer.

The processor is unable to open
the print file.

The processor is unable to access
the Data Dictionary.

The processor detected a read error
while reading the code file.

Could not create scratch space for
SORT operation.

The print device is unavailable.
Check FILE statement or call
system operator.

B-14

NO.

10

11

12

13

MESSAGE

TRANOUT FILE
ACCESS

CANNOT OPEN CALLED
SYSTEM CODE FILE

CANNOT OPEN DATA
BASE: base-name

CANNOT LOAD
PROCEDURE:
procedure-name

EXPLANATION AND/OR ACTION

A write operation to the TRANOUT
file was unsuccessful. This
should occur only if the TRANOUT
file was equated to a system file
or device.

Transact processor· could not open
the code file for a system name
in a CALL statement.

Transact processor cannot open
a data base because it does not
exist or an incompatible open
mode was specified.

Transact processor cannot load
the specified procedure. Usually
occurs when a procedure cannot be
found in a group, account, or
system SL.

B-15

System Errors

TRAPS

NO. MESSAGE EXPLANATION AND/OR ACTION

1

2

3

4

5

6

7

8

9

INTEGER STACK FULL

INTEGER STACK EMPTY

WORKSPACE EMPTY

UNIMPLEMENTED CODE/
OPERAND ENCOUNTERED

EMPTY CODE FILE

UNEXPECTED EOF IN
CODE FILE

ARITHMETIC
CONVERSION FOR
TABLE LITERAL

BROKEN WORK SPACE
CHAIN

ARITHMETIC TRAP

Internal stack is full. Please
notify the Systems Engineer.

Internal stack is empty. Please
notify the Systems Engineer.

Internal processor work space is
empty. Please notify Systems
Engineer.

Probable error in processor or
compiler. Contact the Systems
Engineer.

The processor detected an empty code
file.

The processor encountered an
unexpected end-of-file while reading
the code file. Please notify the
Systems Engineer.

A program constant cannot be
converted to the binary equivalent
as the current statement requires.
This usually means the code file
is corrupted. If recompilation
does not correct this, contact your
Systems Engineer.

Processor has detected a break in a
work space link list. Please report
the error condition to the Systems
Engineer.

Processor has detected an arithmetic
trap condition in its internal
processing. Please report the error
condition and the internal address
(given as %n.%nnnnn) to the Systems
Engineer.

B-16

NO.

10

11

12

MESSAGE

OUT OF RANGE PCODE
ADDRESS

DISPLAY FORMAT
LEVEL OVERFLOW

DISPLAY FORMAT
LEVEL UNDERFLOW

EXPLANATION AND/OR ACTION

Processor has detected a PCODE
address out of the loaded range of
transaction codes. Please report
the error condition and the
PCODE address (given as
%nnn.%nnnnn) to the Systems
Engineer.

Processor has detected an overflow
in managing format levels. Please
report the error condition to the
Systems Engineer.

Processor has detected an underflow
in managing format levels. Please
report the error condition to the
Systems Engineer.

B-1?

Traps

FLOW CHARTS OF FILE _
L..-A_N_D_D_A_T_A_B_A_S_E_O_P_E_R_A_T_IO_N_S....;.---II c I

The flow charts shown in this appendix illustrate which file or data base
procedures are called when a Transact verb performs a file or data base
operation. Flow charts are given for the following verbs:

DELETE - for an IMAGE data set, or a KSAM file operation

FIND - for an IMAGE data set, or a KSAM or MPE file operation

GET - for an IMAGE data set, or a KSAM, MPE, or VPLUS file operation

OUTPUT - for an IMAGE data set, or a KSAM or MPE file operation

PATH - for an IMAGE data set, or a KSAM file operation

PUT - for an IMAGE data set, or a KSAM, MPE, or VPLUS file operation

REPLACE - for an IMAGE data set, or a KSAM or MPE file operation

SET - for a VPLUS file operation

UPDATE - for an IMAGE data set, or a KSAM, MPE, or VPLUS file operation

C-l

DELETE Charts

Execution o£ a DELETE verb for ~n IMAGE data set access results in:

**

*
*
*
*

I *
I *
I *
I *
I *
I *
I *
I *

PERFORM? yes-->label *
no I *
I <-------- *
I *

DBDELETE *
I *

[DBUNLOCK] *
I *
I *
I *
I *

*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

I
I

EOF/EOC? yes -------------->
I
I

<--no Selected? (MATCH?)
yes

I
PERFORM? yes ----> label

no I
I <---------------
I

DBDELETE
I

[DBUNLOCK]
I

STATUS? yes --------------->
no

<----------

CHAIN SERIAL
RCHAIN RSERIAL CURRENT

I I DIRECT
STATUS? -> yes <- STATUS? no modifier

no I no PRIMARY
I I I I

DBFIND I DBCLOSE I
I I I I
-------> I <----- I

I I
-----> [DBLOCK] [DBLOCK]

I I
DBGET DBGET

I I
(mode=2 for SERIAL (mode=l for CURRENT
(3 RSERIAL (4 DIRECT
(5 CHAIN (7 no mod.
(6 RCHAIN (8 PRIMARY

*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

~*

C-2

DELETE Charts

Execution of a DELETE verb for a KSAM file results in the following:

**
* *
* CHAIN SERIAL *
* RCHAIN RSERIAL no modifier CURRENT *
* I I PRIMARY DIRECT *
* I I 1 I *
* [FOPEN] [FOPEN] [FOPEN] [FOPEN] *
* 1 I I I *
* I I I 1 *
* STATUS? -> yes <- STATUS? 1 I *
* no I no I I *
* I I I I I *
* FFINDBYKEY I FPOINT I I *
* 1 I I I I *
* 1<----------------1<---- <------ I I *
* I 1 I I I *
* [FLOCK] 1 [FLOCK] [FLOCK] [FLOCK] *
* I I 1 1 I *
* I 1 I 1 I *
* FREAD I FREADC FREAD FREADDIR *
* I I 1 I I *
* -------->1<------ -----> <----- *
* 1 1 *
* <----yes EOF/EOC? I *
* no I *
* I 1 *
* Selected?(MATCH?) no- I *
* yes I *
* 1 1 *
* PERFORM? yes -> label PERFORM? yes--->label *
* no I no I *
* 1 <------------ I <----------- *
* I 1 *
* FREMOVE FREMOVE *
* I I *
* [FUNLOCK] [FUNLOCK] *
* I I *
* STATUS? no -------------> I *
* yes *
* I *
* I *
* ---------> I *
* I *
* *
************************~***

C-3

FIND Charts

Execution of the FIND verb for an IMAGE data set access results in:

**

/

EOF/EOC? yes ------------------>
no

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

--> *
/ *
/ *

label *
<------- *

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

CURRENT
DIRECT
no mod.
PRIMARY

/

I
I
/

/

/

/

I

PERFORM? yes
no

CURRENT
DIRECT
no modifier
PRIMARY

I
I
I
I

DBGET
I
for(mode=l

(4
(7
(8

end

yes-->label
/

I
I
I
I
I
I

no

SERIAL
RSERIAL

I
STATUS?

I
DBCLOSE

I

SERIAL
RSERIAL
CHAIN
RCHAIN

no
/

perform routine<--

(mode=2
(3
(5
(6

no

I
<---no Selected?(MATCH?)

yes

/

SORT? no--->PERFORM?
yes no

I I
PERFORM? no --->/

yes I
I I

Write to I
Sort File I

I <---------- <-----------
<----no STATUS?

yes
I
I <---------------------------

SORT? no----------------->
yes
/

PERFORM? no ------------->
yes
I

Sort Sort File
/

----> I
I Read Sort Record
I I
/ EOF? yes --------------->
I
I

-> yes <-
I
/
/

/

-------> I <-----
-------> DBGET

I
for

CHAIN
RCHAIN

I
STATUS?

/
DBFIND

/

*

*
*
*
*
*
*
*
*
*
*
*
*
*

*

*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**

C-4

FIND Charts

Execution of a FIND verb for a KSAM file results in the following:

**

<------- *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*

CURRENT *
no modifier DIRECT *
PRIMARY I *

I I *
I I *
I I *
I I *
I I *
I I *
I I *
I I *

FREAD FREADDIR *
I I *
I 1 *
I I *
I I *
----> <---- *

*
*
*
*

PERFORM? yes --> *
no I *

1 *
label *

end

yes-->label
1

I
I
I
I
1

I
I

I
--->1

1
I
I
I
I

no

SERIAL
RSERIAL

I
[FOPEN]

I
STATUS?

I
FPOINT

no
I

perform routine<--

no

I
<---no Selected? (MATCH?)

yes
I

SORT? no--->PERFORM?
yes no

1
PERFORM? no

yes
I

write to
Sort File

I
I <---------- <-----------

<----no STATUS?
yes

I
1 <---------------------------
I

SORT? no----------------->
yes
I

PERFORM? no ------------->
yes
I

sort Sort File
1

----> 1

I read Sort Record
I I
I EOF? yes --------------->
I
I

-> yes <-
I

I I
FFINDBYKEY I

I I I
>1---------1-----> I

I I I
FREAD ---->1<--- FREADC

I
EOF/EOC? yes ------------------>

no

CHAIN
RCHAIN

I
[FOPEN]

I
STATUS?

*
*

*

*

*
*
*
*
*
*

*
*
*
*
*
*

*

*
*
*
*
*

*

*
*
*
*

*

*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

*

**

C-5

FIND Charts

Execution of a FIND verb for anMPE file results in the following:

**

*
*
*
*
*

--> *

<------- *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*

no modifier *
PRIMARY *

1 *
[FOPEN] *

1 *
1 *
1 *
I *
1 *
1 *

FREAD *
1 *
1 *
1 *
I *
I *

<-------->
I
1

1

1
PERFORM? yes

no I *
1 *

label *

DIRECT
CURRENT

I
[FOPEN]

I
1
1

I
1

I
FREADDIR

I
I
1

I
1

*
* CHAIN
* RCHAIN
* SERIAL
* RSERIAL
* 1
* [FOPEN]
* 1
* STATUS? yes-->
* no I
* 1
* FCONTROL 1
* 1 <--------
* -------> FREAD
* 1
* 1
* EOF/EOC? yes ------------------>
* no I
* 1 1
* <---no Selected? (MATCH?) I
* yes I
* I 1
* SORT? no--->PERFORM? yes-->labell
* yes no I 1
* 1 I 1 I
* PERFORM? no --->1 I I
* yes I 1 I
* 1 I I 1
* Write to I I I
* Sort File I I I
* I 1 1 I
* 1 <---------- <----------- I
* <----no STATUS? I
* yes I
* 1 I
* I <---------------------------
* I
* SORT? no----------------->
* yes I
* I I
* PERFORM? no ------------->1
* yes I
* I I
* sort Sort File I
* I I
* ----> I I
* I read Sort Record I
* 1 I I
* I EOF? yes --------------->1
* I no
* I I
* <-- perform routine
*

**
C-6

GET Charts

Execution of the GET verb for an IMAGE data set access results in:

**
* *
* *
* *
* CHAIN SERIAL *
* RCHAIN RSERIAL CURRENT *
* I I DIRECT *
* STATUS? -> yes <- STATUS? no modifier *
* no I no PRIMARY *
* I I I I *
* DBFIND I DBCLOSE I *
* I I I I *

-------> I <----- I *
* I I *
* -----> DBGET DBGET *
* I I *
* (mode=2 for SERIAL (mode=l for CURRENT *
* (3 RSERIAL (4 DIRECT *
* (5 CHAIN (7 no mod. *
* (6 RCHAIN (8 PRIMARY *
* I *
* I *
* EOF/EOC? yes----->error *
* no *
* I *
* I *
* <---no Selected?(MATCH?) *
* yes *
* I *
* I *
* *
* *

**

EOF End of File
EOC End of Chain

C-7

GET Charts

Execution of the GET verb for KSAM access results in the following:

**
* *
* *
* CHAIN SERIAL *
* RCHAIN RSERIAL No modifier CURRENT *
* I I PRIMARY DIRECT *
* [FOPEN] [FOPEN] I I *
* I I I I *
* STATUS? -> yes <- STATUS? [FOPEN] [FOPEN] *
* no I no I *
* I I I I *
* FFINDBYKEY I FPOINT I *
* I I I I *
* I I I I *
* -----> FREAD <----- ---->FREADC <---- I *
* I I I I I *
* I I I I I *
* I EOF/EOC?--> yes <--EOF/EOC? I I *
* I no I no I I *
* I I I I *
* I error I FREAD FREADDIR *
* I I I I I I *
* <---no-Selected? Selected?no--> I I *
* (MATCH) (MATCH) I I *
* yes yes I I *
* I I I I *
* I I I I *
* *
* *
* *
* *
* *

C-8

GET Charts

Execution of a GET verb for an MPE file results in the following:

* *
* *
* *
* SERIAL no modifier CURRENT *
* RSERIAL PRIMARY DIRECT *
* CHAIN I I *
* RCHAIN I I *
* I I I *
* [FOPEN] [FOPEN] [FOPEN] *
* I I I *
* STATUS? yes---> I I *

.* no I I I *
* I I I *
* FCONTROL I I I *
* I <-------- I I *
* -------> FREAD FREAD FREADDIR *
* I I I *
* I I I *
* EOF/EOC? yes----->error I I *
* no I I *
* I I I *
* I *
* <----no Selected? (MATCH?) *
* yes *
* I *
* I *
* *
* *
* *
* *
* *

C-9

GET Charts

Execution of GET(FORM) for a VPLUS form results in the following:
**

*

*

*

*

*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*

no

--->

set FREEZAPP
to 0,1, or 2

I I
I <------------------- *

FKEY=? yes ---> set item-name *
no I *
1 <------------------- *

Fn=label? yes --> if Fn pressed *
no go to label *
1 I
I <-------------------

exit

I
I
I
I
I

-------)-----------
I
I
1

I
I
1

yes -->
I

VSETERROR
I

VERRMSG
I

VPUTWINDOW
I

VSHOWFORM

yes-->AUTOREAD? yes-->set autoread
no I

VREADFIELDS

I

move to list

no

no

conversion error? yes ---> VSETERROR
no VREADFIELDS
I VPUTWINDOW

STATUS? yes -->VFIELDEDITS
no I
I <--------------
A

*
*
*

*

*
*

*
*

*
*
*

*

*
*

I
I A

* 1<----------------------------------
* <-yes STATUS?

*

* I no
* I VFIELDEDITS <----------------------------

* 1 I
* 1 errors? yes --------->
* I no

---->1
VPUTWINDOW

I
VFINISHFORM

1

VGETBUFFER &
I

*
*

*

*
*
*

*
*

*

*
*

*
*

*

*

*

*

*

*

*

*
*

*
* [VOPENTERM]<----[VOPENFORMF]<----[VCLOSEFORMF]

I
* WINDOW option? yes-->item? yes-->
* no no I A
* I I VGETFIELDINFO I
* I I I CLEAR,
* I <----------------------- APPEND,
* CURRENT option? yes--> FREEZE? yes --->

1

I I
* prior SET of form? yes->I

1
I

* VGETNEXTFORM I
I <---------------

INIT? yes---> VINITFORM
no 1

I <-------------
WINDOW= option? yes-->item?

no no
1 1
I <------- VPUTWINDOW

I <---------------------------
FEDIT option? yes --->VFIELDEDITS

no I
I <--------------------

VSHOWFORM
VREADFIELDS <--

I
fkey pressed?

no

**

C-IO

OUTPUT Charts

Execution of the OUTPUT verb for an IMAGE data set access results in:

**

*
*
*
*
*
*

*

*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

no

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

I
I
I <---------
I
I

display

I
I
I
I
I
I

I
I

PERFORM? yes-->

I *
label *

I *

I
I

EOF/EOC yes --------------->
no
I
I

<--no Selected? (MATCH?)
yes

I
PERFORM? yes ----> label

no I
I <---------------

SORT? yes ----> write to
no Sort File

I
display I

I <---------------
no STATUS I

yes I
I <-----------------------
I

SORT? yes --> sort
no Sort File

I <-----------------
read I
Sort File I

I I
<------ yes EOF? no--->display -->

CHAIN SERIAL
RCHAIN RSERIAL CURRENT

I I DIRECT
STATUS? -> yes <- STATUS? no modifier

no I no PRIMARY
I I I I

DBFIND I DBCLOSE I
I I I I
-------> I <----- I

I I
-----> DBGET DBGET

I I
(mode=2 for SERIAL (mode=l for CURRENT
(3 RSERIAL (4 DIRECT
(5 CHAIN (7 no mod.
(6 RCHAIN (8 PRIMARY

*

*

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

*

*
*
*
*

*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

**

EOF End of File
EOC End of Chain

C-ll

OUTPUT Charts

Execution of the OUTPUT verb for a KSAM file results in the following:

**

*
*
*

*

*

*

*
*
*
*
*
*

*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*

*
*
*

DIRECT *
CURRENT *

I *
[FOPEN] *

I *
I *
I *
1 *

I *
FREADDIR *

I *
<-------

no
I
I
1 <---------
1

1

display
I
I
I
1

1

I
I

1
PERFORM? yes-->

1 *
label *

I *

-------->

I
FREAD

I

no modifier
PRIMARY

I
[FOPEN]

1
1

I
I

--> sort
Sort File

I <-----------------
read I

Sort File I
1 I

yes EOF? no-->display -->

no

SERIAL
RSERIAL

1
[FOPEN]

I
STATUS?

<-----

no

no
---> write to

Sort File
1
I

I I
I <--------------

STATUS?
yes
1 <----------------------
1

SORT? yes

I
I

Selected? (MATCH?)
yes

I
PERFORM? yes ----> label

no I
I <---------------
1

SORT? yes

1

display

<--no

no

----- no

-> yes <-

I
I

FFINDBYKEY I FPOINT
->1---------------->1
I 1 I I
FREAD I FREADC

I 1 I
-------> I <-----

I
EOF/EOC yes --------------->

no

CHAIN
RCHAIN

I
[FOPEN]

I
STATUS?

*
*
*

*

*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**

C-12

OUTPUT Charts

Execution of an OUTPUT verb for an JMPE file results in the following:

**
*
*
*
*
*
*
*
*
*
*
*
*'
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*'
*
*
*
*
*
*
*
*
*
*

SERIAL
RSERIAL no modifier DIRECT
CHAIN PRIMARY CURRENT
RCHAIN I I

I I I
[FOPEN] [FOPEN] [FOPEN]

I I I
STATUS? yes --> I I

no I I I
I I I

FCONTROL I I I
I <--------- I I

-------> FREAD FREAD FREADDIR
I I I
I -----> <------
I I

EOF/EOC yes ---------------> PERFORM? yes-->
no no I
I I label
I I I

<--no Selected?(MATCH?) I <---------
yes I

I I
PERFORM? yes ----> label display

no I I
I <--------------- I

SORT? yes ---> write to I
no Sort File I
I I I

display I I I
I I I
I <-------------- I

----- no STATUS I
yes I
I <-----------------------
I

SORT? yes --> sort
no Sort File

I <-----------------
read I
Sort File I

I I
<----- yes EOF? no--> display -->

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*'
*
*
*
*'
*
*
*
*
*
*
*
*
*
*
*
*'
*
*
*

******'*************'**********'******************'******************'********

C-13

PATH Charts

Execution of a PATH verb for an IMAGE data set access results in the
following:

**
* *
* *
* I *
* I *
* DBFINO *
* I *
* I *
* *
* *

**

Execution of a PATH verb for a KSAM file results in the following:

**
* *
* *
* I *
* I *
* FFINDBYKEY *
* I *
* I *
* *
* *

**

C-14

PUT Charts

Execution of a PUT verb for an IMAGE data set results in the following:

* *
* *
* *
* [DBLOCK] *
* I *
* DBPUT (mode=l) *
* I *
* [DBUNLOCK] *
* I *
* I *
* *

Execution of a PUT verb for a KSAM or MPE file results in the following:

* *
* [FOPEN] *
* I *
* I *
* [FLOCK] *
* I *
* FWRITE *
* I *
* [FUNLOCK] *
* I *
* I *
* *

C-l5

PUT Charts

Execution of a PUT(FORM) verb on a VPLUS form results in the following:
**

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

VREADFIELDS
I

WAIT=fn &
wrong key

no<-- pressed?
yes

1

VPUTWINDOW ---->

A
I

CLEAR,
APPEND, yes--->set FREEZAPP
FREEZE? to O,l,or 2

no I
I <---------------

FREY=? yes--->set item-name
no I
1<----------------

Fn=label? yes--->if Fn pressed
no go to label
I I
I <---------------

exit

yes
I

initialize
buffer to

blanks
I

no

item?--> yes
no I

VGETFIELDINFO
I

I
Current? no

yes
I

no

no

no

no

I
Move LIST
to buffer

I

I
I
I <--------------------------

CURRENT option?

[VOPENTERM]<-----[VOPENFORMF]<-----[VCLOSEFORMF]
I

WINDOW option? yes-->

STATUS option? no----->
yes

I 1

I <----------------------
1 <---------------------------------

VFINISHFORM
I
A

VSETERROR
I
I

I <------------- VPUTWINDOW 1

I <---
FEDIT option? yes ---> VFIELDEDITS

no 1

I <---------------------
VSHOWFORM

I
WAIT or Fn=
label option? yes -->

no

yes--
I
I

prior SET I
of form? yes ------->1

I
I

VGETNEXTFORM I
I <---------------
1

INIT? no->items to transfer?
yes no

I
I

VINITFORM
I

VGETBUFFER <-- I I
I <------------------------

LIST=() and not current? yes
no I

1

1

1

I
VPUTBUFFER I

I <---------------------
WINDOW option? yes--> item? yes-->

*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*

*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**

C-16

REPLACE Charts

Execution of the REPLACE verb for IMAGE data set access results in:

**

*

*

*

*
*
*

*

*

*
*

*

*

*
*
*
*
*
*

*
*
*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*

*

*

CURRENT
DIRECT
no mod.
PRIMARY

no

CURRENT
DIRECT

no modifier
PRIMARY

I
I
I
I
I

[DBLOCK]
I

DBGET
I

for

I
I *

DBUPDATE *
I
I
I
I

I I
I <--------

[DBUNLOCK]
I
I
I
I

I
DBPUT

I
DBGET(mode=4)

I
DBDELETE

*
*

I
I
I
I
I
I
I

PERFORM? yes --> *
no I *
I <------ label *
I

get update values
I

UPDATE? yes ->

(mode=l
(4
(7
(8

no

SERIAL
RSERIAL

I
STATUS?

I
DBCLOSE

I

SERIAL
RSERIAL
CHAIN
RCHAIN

no

I
Selected? (MATCH?)

yes
I

PERFORM? yes ---->
I

label
no
I <---------
I

get update values
I

UPDATE? yes -->

I
EOF!EOC? yes ------------->

no

I
DBPUT

I
DBGET (mode=4)

I
DBDELETE

<-no

(mode=2
(3
(5
(6

no
-> yes <-

I
I
I
I

-------> I <-----
I

-----> [DBLOCK]
I

DBGET
I

for

I
I

DBUPDATE
I
I
I
I

I I
-----> I <---------

[DBUNLOCK]
I

<---no STATUS?
yes

I
I <---------------------
I

CHAIN
RCHAIN

I
STATUS?

I
DBFIND

I

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

**
EOF End of File
EOC = End of Chain

C-17

REPLACE Charts

Execution of a REPLACE verb for a KSAM fi~e results in the following:

**
* *
* *
* SERIAL CHAIN no modifier CURRENT *
* RSERIAL RCHAIN PRIMARY DIRECT *
* 1 1 1 1 *
* [FOPEN] [FOPEN] [FOPEN] [FOPEN] *
* 1 1 1 1 *
* 1 1 1 1 *
* <-yesSTATUS? STATUS?yes> 1 1 *
* 1 no no 1 1 I *
* 1 1 I I I I *
* I FPOINT FFINDBYKEY 1 I I *
* I 1 1 1 I I *
* ------->1 1<------- I 1 *
* I I I I *
* ---><--- I 1 *
* -------->[FLOCK] [FLOCK] [FLOCK] *
* 1 I 1 *
* 1 1 I *
* FREAD (CHAIN/RCHAIN) FREAD FREADDIR *
* or I I *
* FREADC (SERIAL/RSERIAL) I 1 *
* I I I *
* I ------> <----- *
* EOF/EOC? yes ----------> I *
* no 1 *
* I I *
* <--no Selected? (MATCH?) 1 *
* I yes I *
* I I 1 *
* I PERFORM? yes ----> PERFORM? yes ----> *
* I no I I I *
* I I label I label *
* I I I I I *
* I I <----------- I <----------- *
* I get update value get update value *
* I I I *
* 1 FUPDATE FUPDATE *
* I 1 I *
* --------> 1 I *
* [FUNLOCK] [FUNLOCK] *
* I 1 *
* ------ no STATUS? 1 *
* yes 1 *
* I *
* 1 <------------------ *
* *
* *

**

C-18

REPLACE Charts

Execution of a REPLACE verb for an MPE file results in the following:

**

*

*

*
*
*
*
*
*
*
*

*
*
*
*
*

*

*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

CURRENT
DIRECT

1

[FOPEN]
I
I
I
I
I
I

[FLOCK]
I
I

FREADDIR
1

<-------
1

I
I
I
I
1

I
PERFORM? yes ---->

1 1

I label
1 I

I <-----------
get update value

I
FUPDATE

I
1

[FUNLOCK]
I
I
I

-------->

no modifier
PRIMARY

1

[FOPEN]
I
I
I
1

I
I

[FLOCK]
1

1

FREAD
I

1

label
I

no

1

Selected? (MATCH?)
yes

I
PERFORM? yes ---->

I
I
1 <------------

get update value
I

FUPDATE

<--no
I
1

I
I

.1
1

I
1

I
I
I I
-------> I

[FUNLOCK]
I

<--no STATUS?
yes

I 1

I <--------------------

SERIAL
RSERIAL
CHAIN
RCHAIN

I
[FOPEN]

I
STATUS? no -->

yes
I

FCONTROL I
I <-------

------->[FLOCK]
I
I

FREAD
I
I
1

EOF? yes -------------->
no

*
*

*
*

*
*

*

*
*

*

*
*

*
*
*
*
*
*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*

*
*
*
*
*
*

* *
*
*
*

*
*
*

**

C-19

SET Charts

Execution of a SET(FORM) verb for a VPLUS form results in the following:

**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

I
yes

I

VSETERROR
I
I
I

I
I

Has current form
shown on screen?

no
I

VPUTWINDOW

--> VGETBUFFER
I

move Transact
items to buffer

I
VPUTBUFFER

I

yes

option? yes---> VINITFORM
I
I

<--------------------------------------
<--------------
transfer?

set FREEZAPP
to O,l,or 2

I I
I <--------------------------------------

no

no

no

no
I
I <--------------------

WINDOW option? yes---> item? yes ---->

I
CLEAR,
APPEND,
FREEZE? yes ------>

been
no
I
I
I
I

VGETNEXTFORM I
I <--
I

INIT

set FREEZAPP
to 0,1, or 2

I I
I <--------------------

FEDIT option? yes ---> VFIELDEDITS
no I
I <--------------------

exit

I
I
I
I
I
I <-----------------------

CLEAR,
APPEND,
FREEZE? yes ------->

[VOPENFORMF]<-----[VCLOSEFORMF]
I

WINDOW option? yes --> item? yes
no no

--> VGETFIELDINFO
I

I I I
I <-----------------------------------

form to SET same
as current form? yes ------------------------->

no

no
I
I
I

items to

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**

C-20

UPDATE Charts

Execution of an UPDATE verb for an IMAGE data set access results in:

**
* *
* *
* *
* [DBLOCK] *
* I *
* DBUPDATE (mode=l) *
* I *
* [DBUNLOCK] *
* I *
* I *
* *

**

Execution of an UPDATE verb for a KSAM file results in the following:

**
* *
* *
* *
* [FLOCK] *
* I *
* FUPDATE *
* I *
* [FUNLOCK] *
* I *
* I *
* *

**

Execution of an UPDATE verb for an MPE file results in the following:

**
* *
* *
* *
* [FLOCK] *
* I *
* FUPDATE *
* I *
* [FUNLOCK] *
* I *
* I *
* *

**

C-21

UPDATE Charts

Execution of an UPDATE(FORM) verb for a VPLUS form results in:

*** *** ** *** **** *** ** ******* ***** ***** * ** ******** ** **** *~~Jfj('k~-'fjt~*~1c,rc-*1c*

*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

I *
I *
I *
I *
I *
I *
I *
I *
I *
I *

-> I *-->VPUTWINDOW

move Transact
items to buffer

I
VPUTBUFFER

I

VREADFIELDS
I

WAIT=fn
& wrong key
pressed? yes

no

option? yes ---> item? yes ---> VSETERROR
no I

I

no

no

I
I
I
I <--

WINDOW

I
I <-----------
I
I
I
I <--------VPUTWINDOW <---------

VFINISHFORM
I

CLEAR,
APPEND,
FREEZE,? yes ----> set FREEZAPP to 0, 1, or 2

no I
I <-------------------------

FREY option? yes-------> set item-name
no I
I <--------------------------

Fn=label option? yes -----> if Fn pressed, go to label
no I
I <----------------------------------

exit

VGETFIELDINFO
I

I I I
I <------------------------------------

INIT option? yes ---->VINITFORM
no I
I <--------~------------

items to transfer? yes --> VGETBUFFER -->
no

requested form same as current? no-------> error
yes

I
[VOPENTERM]

I
WINDOW option? yes --> item?yes -->

no

I I
I <--------------- VPUTWINDOW <-----------
I <---

FEDIT option? yes --> VFIELDEDITS
no I
I <---------------------

VSHOWFORM
I

WAIT or FN=
label option? yes-> STATUS? no --->

no yes
I

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**

C-22

INTRINSICS ALLOWED _
a...-IN_D_EF_I_NE_<_IN--.;.T_R_IN_S_IC--.;.> ----II 0 I

The intrinsics listed in this appendix may be specified in a
DEFINE(INTRINSIC) statement.

ACTIVATE FATHER GENMESSAGE
ALTDSEG FCHECK GETDSEG
ARITRAP FCLOSE GETJCW
ASCII FCONTROL GETLOCRIN

FDELETE GETORIGIN
BINARY FERRMSG GETPROCID

FFILEINFO GETPROCINFO
CALENDAR FFINDBYKEY
CAUSEBREAK FFINDN KILL
CLOCK FGETINFO
CLOSELOG FGETKEYINFO LOCKGLORIN
COMMAND FINDJCW LOCKLOCRIN
CREATE FLOCK LOCRINOWNER
CREATEPROCESS FMTCALENDAR
CTRANSLATE FMTCLOCK MAIL

FMTDATE MYCOMMAND
DASCII FOPEN
DATELINE FPOINT OPENLOG
DBBEGIN FREAD
DBCLOSE FREADBACKWARD PAUSE
DBCONTROL FREADBYKEY PRINT
DBDELETE FREADC PRINTFILEINFO
DBEND FREADDIR PRINTOP
DBERROR FREADLABEL PRINTOPREPLY
DBEXPLAIN FREADSEEK PUTJCW
DBFIND FREEDSEG
DBGET FREELOCRIN QUIT
DBINARY FRELATE QUITPROG
DBINFO FREMOVE
DBLOCK FRENAME READ
DBMEMO FSETMODE READX
DBOPEN FSPACE RECEIVEMAIL
DBPUT FUNLOCK RESETCONTROL
DBUNLOCK FUPDATE RESETDUMP
DBUPDATE FWRITE
DEBUG FWRITEDIR SEARCH
DMOVIN FWRITELABEL SENDMAIL
DMOVOUT

D-1

Intrinsics Allowed in DEFINE(INTRINSIC)

SETDUMP VGETFIELD VPUTLONG
SETJCW VGETFIELDINFO VPUTREAL
STACKDUMP VGETFILEINFO VPUTWINDOW
SUSPEND VGETFORMINFO VREADBATCH

VGETINT VREADFIELDS
TERMINATE VGETKEYLABELS VSETERROR
TIMER VGETLONG VSETKEYLABEL

VGETNEXTFORM VSETKEYLABELS
UNLOCKGLORIN VGETREAL VSHOWFORM
UNLOCKLOCRIN VINITFORM VUNLOADFORM

VLOADFORMS VWRITEBATCH
VCLOSEBATCH VOPENBATCH
VCLOSEFORMF VOPENFORMF WHO
VCLOSETERM VOPENTERM WRITELOG
VERRMSG VPOSTBATCH
VFIELDEDITS VPRINTFORM XARITRAP
VFINISHFORM VPUTBUFFER XCONTRAP
VGETBUFFER VPUTDINT XLIBTRAP
VGETDINT VPUTFIELD XSYSTRAP

VPUTINT

D-2

OPTIMIZING TRANSACT _
,---A_P_P_LI_C_A_TI~O_N_S ----,I E I

This appendix provides suggestions for optimizing the run-time efficiency of
Transact applications, a topic of interest to experienced Transact programmers
responsible for large applications. The fine-tuning of individual programs is
a very application-dependent problem, but the guidelines presented in this
appendix should help you make some of the trade-of~s. Material focuses on
minimizing stack space and maximizing processing speed.

The first part of this appendix shows how to use Transact compiler statistics
and test modes to assess your program's run-time use of the HP 3000 data
stack. It also describes how certain program structure and language options
affect the size of the data stack.

The last part of the appendix presents several program structure and coding
suggestions for increasing Transact program run-time speed.

DAT A STACK OPTIMIZA TION

Data stacks for three different Transact program structures are discussed:

• Nonsegmented program

• Segmented program

• Main program with several CALLed sUbprograms

• Implemented without the SWAP option
• Implemented with the SWAP option

In each case, the entities found on the data stack at run time are identified
and mapped to the compiler listing produced with the STATistics option.
First, however, the general characteristics of the data stack and the compiler
listing are defined.

E-l

Optimizing Transact Applications

The Run-Time Stack

The size and composition of the run-time stack vary with:

• VPLUS utilization

• the number and size of program segments

• how subprograms are designed and whether swapping is used during
processing

• Transact processor register utilization

Figure E-l provides a profile of the data stack, including a breakdown of the
table register components. The stack profile is for a nonsegmented program,
but it illustrates components that may occur on the data stack regardless of
program structure.

Use test mode 4 to initially determine the stack requirements of your program
or specific portions of it. Use the information provided below for individual
components to selectively change their size, if desired.

The data stack components are defined as follows:

PCBX: Process Control Block Extension, a control area for MPE. The size
of this area is operating system-dependent, but could be reduced slightly
by running Transact with the NOCB option. This option should only be
used to avoid stack overflow on a short-term basis. In the long run,
applications should be structured and optimized so that use of the NOCB
option is not necessary.

VPLUS INFO: an area that appears on the data stack if your Transact
program uses VPLUS forms files. This area is used by the VPLUS
subsystem. You can minimize the size of this area by using fast forms
files.

TRANSACT OUTER BLOCK and TRANSACT PROCESSOR CONTROL BLOCK: areas
containing data and pointers for Transact processor control. The size of
these areas is version-dependent and instailation-dependent.

DATA REGISTER: the Transact data register. (Section 4 explains how this
register works.) The default size of this area is 1024 words. The
data-length parameter of the DATA= option in the SYSTEM statement can be
used to control the size of this area. Use test mode 3 or 102 to
determine values to specify for the DATA= option. The data register for
segmented programs or programs using CALLs must be large enough to
accommodate all segments or subprograms. If one part of the application
requires much more· data register space than any other parts, invoke it
using MPE's process handling feature.

E-2

Optimizing Transact Applications

PCBX

-------------------------- <-- DL

VPLUS INFO

<-- DB
TRANSACT OUTER BLOCK

<-- Q
TRANSACT PROCESSOR

CONTROL BLOCK

DATA REGISTER

/------>
/

/ BASES

VPLUS COMAREAi VPLUS,
KSAM, MPE, AND DATA

SET FILE INFO

PROCEDURES

*

*

**

**

TABLE REGISTER

TABLE INDEX

TABLE LENGTH

CODE REGISTER

ITEM REGISTER

DATA INDEX

--------> COMMANDS

SUBCOMMANDS

ITEMS

TEXT STRINGS

CONTROL STRINGS

DATA LENGTH**1
1 ------

I

COMPONENTS IN THE DATA STACK

<-- S

<-- Z

\ WORK SPACE

\
\------> -------------------------

ENTITIES IN TABLE COMPONENTS

*
**

Used to manage the TABLE REGISTER
Used to manage the DATA REGISTER

Figure E-l. Data Stack Layout for Nonsegmented Transact Program

E-3

Optimizing Transact Applications

TABLE REGISTER: an' area used to manage files, PROC calls, built-in and
programmer-defined commands, sub-commands, data items and strings. The
entities of this register are identified in the right-hand diagram of
Figure E-1. Definitions of these entities and optimization suggestions
are provided later in this section.

VPLUS forms files have a significant effect on the size of the TABLE
REGISTER. If an application requires many VPLUS forms, you can conserve
stack space by:

• using a CALL structure rather than a segmented program structure

• specifying only forms used by the main program and each sUbprogram
in the SYSTEM statement of the main program and each sUbprogram.
If only a forms file name is specified in a SYSTEM statement,
Transact allocates TABLE REGISTER space for each form in the file
and for all items associated with each form.

TABLE INDEX and TABLE LENGTH: areas used to manage the TABLE REGISTER.
These areas consist of indexes and lengths, respectively, that correspond
to entities of the TABLE REGISTER.

CODE REGISTER: an area containing instruction code data.

ITEM REGISTER, DATA INDEX, and DATA LENGTH: areas used to manage the
DATA REGISTER component. The default size of each of these areas is 128
words. The DATA= option of the SYSTEM statement can be used to control
the size of these areas. Use test mode 3 or 102 to determine a value to
specify in the data-count parameter of the DATA= option.

DL, DB, Q, S, and Z: stack pointers. Transact requires 4K of the space
between DATA LENGTH and S. SORT, laser printer, and other sUbsystems
have stack requirements between Sand Z. Use test mode 4 to locate stack
pointers DL, Q, S, and Z for various portions of your program.

E-4

Optimizing Transact Applications

The TABLE REGISTER, TABLE INDEX, and TABLE LENGTH components manage the
following entities. In general, as the number of these entities used by your
Transact program increases, so does the table register space required:

BASES: Image data bases.

VPLUS COMAREA i VPLUS, KSAM, MPE, AND DATA SET FILE INFO: forms files,
forms, MPE and KSAM files, and data sets.

PROCEDURES: calls to user procedures or system intrinsics.

COMMANDS: built-in commands and command qualifiers. The 11 built-in
commands (e.g., PRINT, SORT, REPEAT, EXIT) require 65 words of stack
space. Programmer-defined commands increase these needs.

SUBCOMMANDS: programmer-defined subcommands.

ITEMS: data items defined with the DEFINE statement or defined in the
Data Dictionary. This area can be optimized by using the DEFINE(ITEM)
statement with the OPT option as well as compiling with the OPTI compiler
option. Space is allocated for all data item textual names unless these
options are invoked. Refer to syntax option 3 under DEFINE in section 6
and to OPTI in section 5.

TEXT STRINGS: literal ASCII strings. The stack requirements increase
with the number of MOVE and DISPLAY statements with literals, WINDOW=
options for VPLUS, etc. A way to optimize the TEXT STRINGS component is
to keep all application messages in a message file instead of embedding
them in the code. This practice both saves stack space and allows for
easy message customization. Also consider keeping messages in forms
files instead of using the WINDOW= option of the VPLUS verbs.

CONTROL STRINGS: internal representations of DISPLAY and FORMAT
statements and complex arithmetic expressions.

WORK SPACE: work area used for sort items and match, uPdate, input, key,
and argument registers. By default, 256 words are allocated for the work
space portion of the TABLE REGISTER and 64 words for the work space
portions of the TABLE INDEX and TABLE LENGTH components.

E-5

Optimizing Transact Applications

The WORK= option of the SYSTEM statement can be used to control the size
of the work space areas. Run test mode 3 or 102 to determine the
requirements for your program. To override the defaults, specify a
wOIk-leng~h value for the work space portion of the TABLE REGISTER and a
wOIk-coun~ value for the work space portions of the INDEX and TABLE
LENGTH registers.

Do not underestimate WORK SPACE requirements, because the recovery
procedure invoked to re-use work spaces increases processing time.
Maximize the usefulness of test mode 3 or 102 results by ensuring that
all program options and branches are exercised several times.

Segmented programs and programs using the CALL statement have additional data
stack components:

• Segmented programs use the data stack for keeping track of where the
segments are located on disk and storing segment offsets. Code
registers for a root segment and the current segment are also required.

• Programs containing CALLs without the SWAP option use the data stack to
control both the main program and the current subprogram.

• Programs containing CALLs that use the SWAP option require data stack
components very similar to those that do not use this option, but they
do not all need to be present simultaneously on the stack.

Although these three structures require additional data stack components, they
require less total stack space than a nonsegmented program if they contain
more than two segments. The data stack requirements of each structure are
described in detail later in this section.

E-6

optimizing Transact Applications

Compiler Statistics

Figure E-2 illustrates the
option is in effect during
programs, but is virtually
examined in this appendix.

compiler listing produced when the STATistics
compilation. The format shown is for nonsegmented
the same for the other three structures being

The fields are defined as follows:

COMPILE TIME STATISTICS

STACK= x The number of words the Transact compiler put on its
data stack during compilation.

TABLE= x The portion of the data stack used for table space
during compilation, in words.

RUN TIME STATISTICS

PCODE= x The number of words of instruction code data in the
current segment, plus each segment compiled before it.

SCODE= x The number of words of instruction code for a
particular segment, main program, or subprogram.

PARTIAL TABLE REGISTER

The number of words that the TABLE REGISTER, the TABLE
INDEX, and the TABLE LENGTH components require. Refer
to Figure E-3 to map these compiler notations to the
entities in these components. Note that the x values
pertain to TABLE INDEX and TABLE LENGTH and that
the y values pertain to TABLE REGISTER.

The total number of words in the PARTIAL TABLE REG.
SUMMARY.

BASE= x, Y
FILE= x, Y

SET= x, Y
PROC= x, y

$$CMD= x, Y
$CMD= x, y
ITEM= x, y

STRNG= x, y
CNTRL= x, y

x, y

E-7

Optimizing Transact Applications

FINAL TABLE REG. SUMMARY

WORK AREA= x, y The number of words in the WORK SPACE portions of the
TABLE REGISTER, TABLE INDEX, and TABLE LENGTH
components. The x value reflects the work space in the
TABLE INDEX and TABLE LENGTH components, and the y
value reflects the work space in the TABLE REGISTER.

TABLE REG.= Y The total number of words that the TABLE REGISTER
occupies. This value is the sum of the y values in the
PARTIAL TABLE REG. SUMMARY and the y value in WORK
AREA.

TABLE INDX= x The total number of words that the TABLE INDEX requires
This value is the sum of the x values in the PARTIAL
TABLE REG. SUMMARY and the x value in WORK AREA.

TABLE LEN. = x The total number of words that the TABLE LENGTH needs.
This value is the same as that for TABLE INDX=.

RUN TIME STACK SUMMARY

DATA REG.= x The number of words in the DATA REGISTER component.
TABLE REG.= x The number of words in the TABLE REGISTER component.
TABLE INDX= x The number of words in the TABLE INDEX component.
TABLE LEN. = x The number of words in the TABLE LENGTH component.
ROOT SEG.= x The number of words in the CODE REGISTER component.
ITEM REG.= x The number of words in the ITEM REGISTER component.
DATA INDEX= x The number of words in the DATA INDEX component.
DATA LEN. = x The number of words in the DATA LENGTH component.

x The total number of words in the RUN TIME STACK

SUMMARY.

The following format differences occur when the program is segmented or uses
CALLs:

• For segmented programs, the listing includes a PARTIAL TABLE REG.
SUMMARY for each segment. The FINAL TABLE REG. SUMMARY and the RUN
TIME STACK SUMMARY contain information that applies to the largest
segment .

• For programs using the CALL statement with or without the SWAP option,
the information shown in Figure E-2 is provided for the main program
compilation and for each subprogram compilation.

E-8

optimizing Transact Applications

*****COMPILE TIME STATISTICS****
STACK= x
TABLE= x

*******RUN TIME STATISTICS******
PCODE= x
SCODE= x

PARTIAL TABLE REG. SUMMARY
BASE= x, Y
FILE= x, Y

SET= x, Y
PROC= x, Y

$$CMD= x, Y
$CMD= x, Y
ITEM= x, Y

STRNG= x, Y
CNTRL= x, Y

X, Y

****FINAL TABLE REG. SUMMARY****
WORK AREA= X I Y

TABLE REG.=
TABLE INDX=
TABLE LEN.=

*****RUN TIME
DATA REG.=
TABLE REG.=
TABLE INDX=
TABLE LEN. =
ROOT SEG.=
ITEM REG.=
DATA INDEX=
DATA LEN.=

y
x
x

STACK SUMMARY*****
X

X

X

X

X

X

X

X

X

CODE FILE STATUS: REPLACED

o COMPILATION ERRORS
PROCESSOR TIME=xx:xx:xx
ELAPSED TIME=xx:xx:xx

Figure E-2. Transact Compiler Statistics

E-9

optimizing Transact Applications

TABLE INDEX and TABLE
LENGTH entities

PCBX
TABLE REGISTER entities

VPLUS INFO vv

TRANSACT OUTER BLOCK

*

TRANSACT PROCESSOR
CONTROL BLOCK

DATA REGISTER DATA REG. =X

BASE=x,y

FILE=x,y
SET=x,y

BASES

VPLUS COMAREA; VPLUS,
KSAM, MPE, AND DATA

SET FILE INFO

PROC=x,y PROCEDURES

TABLE REGISTER
TABLE REG. =X

$$CMD=X,y COMMANDS

** TABLE INDEX TABLE INDX=x
$CMD=x,y SUBCOMMANDS

** TABLE LENGTH TABLE LEN. =X ITEMS
ITEM=x,y

CODE REGISTER ROOT SEG. =X
STRNG=x,y TEXT STRINGS

* ITEM REGISTER ITEM REG. =X

* DATA INDEX DATA INDEX=x CONTROL STRINGS
CNTRL=x,y

DATA LENGTH IDATA LEN.=x -------------------------
---- 1

I WORK AREA=x,y WORK SPACE **

*

COMPONENTS IN THE DATA STACK ENTITIES IN TABLE COMPONENTS

* Can be changed by using the DATA= option of the SYSTEM statement
** Can be changed by using the WORK= option of the SYSTEM statement

Figure E-3. Compiler Statistics Fields and Data Stack Components

E-10

optimizing Transact Applications

Nonsegmented Programs

Nonsegmented programs generally execute faster than segmented programs, since
the processor does not have to overlay information on the data stack when
switching from segment to segment.

Figure E-4 illustrates the compiler listing produced when a nonsegmented
program was compiled with the STAT option. Figures E-5 and E-6 map the
compiler statistics to individual components and entities in the run-time data
stack.

E-ll

Optimizing Transact Applications

*****COMPILE TIME STATISTICS****
STACK= 23368
TABLE = 14482

*******RUN TIME STATISTICS******
PCODE= 0
SCODE= 3765

PARTIAL TABLE REG. SUMMARY
BASE= 1, 10
FILE= 38, 544

SET= 12, 176
PROC= 0, 0

$$CMD= 11, 65
$CMD= 0, 0
ITEM= 82, 1047

STRNG= 195, 2192
CNTRL= 116, 916

455, 4950

****FINAL TABLE REG. SUMMARY****
WORK AREA= 30, 100

TABLE REG.=
TABLE INDX=
TABLE LEN. =

*****RUN TIME
DATA REG.=
TABLE REG.=
TABLE INDX=
TABLE LEN. =
ROOT SEG.=
ITEM REG.=
DATA INDEX=
DATA LEN. =

5050
485
485

STACK SUMMARY*****
200

5050
485
485

3765
30
30
30

10075

CODE FILE STATUS: REPLACED

o COMPILATION ERRORS
PROCESSOR TIME=00:01:43
ELAPSED TIME=00:02:15

Figure E-4. Compiler Statistics for Nonsegmented Program

E-12

optimizing Transact Applications

PCBX

VPLUS INFO

TRANSACT OUTER BLOCK

TRANSACT PROCESSOR
CONTROL BLOCK

DATA REGISTER

TABLE REGISTER

66 words

816 words

DATA REG.= 200 words

TABLE REG.= 5050 words
\

-------------------------- \
TABLE INDEX TABLE INDX= 485 words \ see Figure E-6

-------------------------- /
TABLE LENGTH TABLE LEN.= 485 words I

CODE REGISTER ROOT SEG.= 3765 words

ITEM REGISTER ITEM REG.= 30 words

DATA INDEX DATA INDEX= 30 words

DATA LENGTH IDATA LEN. = 30 words

I
I

Approx. total data stack 10957 words

Figure E-5. Data Stack of Nonsegmented Program

E-13

optimizing Transact Applications

BASES

VPLUS COMAREA; VPLUS,
KSAM, MPE, AND DATA

SET FILE INFO

PROCEDURES

COMMANDS

SUBCOMMANDS

ITEMS

TEXT STRINGS

CONTROL STRINGS

WORK SPACE

BASE= 1, 10 words

FILE= 38, 544 words

SET= 12, 176 words

PROC= 0, 0 words

$$CMD= 11, 65 words

$CMI)= 0, 0 words

ITEM= 82, 1047 words

STRNG= 195, 2192 words

CNTRL= 116, 916 words

WORK AREA= 30, 100 words

TABLE INDEX and TABLE LENGTH entities----------
TABLE REGISTER entities-------------

Figure E-6. Table Register Entities of Nonsegmented Program

E-14

Optimizing Transact Applications

Segmented Programs

Data stack requirements can be optimized by segmenting your Transact program.
The root segment and a current segment are always represented on the data
stack. The savings in data stack space is approximately equal to the size of
the segments not loaded. Although some processor time is required to overlay
segments onto the data stack as they are required, the efficiency gained by
decreasing the size of the data stack can be significant. Keeping
applications functionally divided into segments minimizes segment switching.

The compiler listing for a segmented version of the nonsegmented program
discussed earlier is shown in Figure E-7. The program consists of four
segments, each of which has compiler statistics in the folloWing categories:

COMPILE TIME STATISTICS
RUN TIME STATISTICS
PARTIAL TABLE REG. SUMMARY

The FINAL TABLE REG. SUMMARY and the RUN TIME STACK SUMMARY reflect
information for the largest segment, in this case segment 4. The following
fields in the RUN TIME STACK SUMMARY are of special note:

SEG. TABLE=
XFER TABLE=

ROOT SEG.=

SCODE REG.=

Areas of the data stack used to keep track of where
segments are located. The number of words required for
SEG. TABLE= is version-dependent. XFER TABLE= contains
2 words for each label defined with a DEFINE(ENTRY)
statement.

The number of words that the code register requires for
the root segment. Keep this segment as small as
possible, since it is always memory-resident.

The number of words that the code register requires for
the largest segment.

Since the largest segment influences the number of words allocated for the
data stack, try to make your segments as uniform in size as possible.

Figures E-8 and E-9 illustrate how the compiler statistics map to the run-time
data stack.

E-15

Optimizing Transact Applications

SEGMENT 0 STATISTICS:
STACK= 11210
TABLE= 3138

*******RUN TIME STATISTICS******
PCODE= 46
SCODE= 46

PARTIAL TABLE REG. SUMMARY
BASE= 1, 10
FILE= 38, 544

SET= 0, 0
PROC= 0, 0

$$CMD= 0, 0
$CMD= 0, 0
ITEM= 54, 675

STRNG= 28, 154
CNTRL= 67, 303

188, 1686

COMPILED SEGMENT 0

SEGMENT 1 STATISTICS:
STACK= 12683
TABLE= 4624

*******RUN TIME STATISTICS******
PCODE= 632
SCODE= 586

PARTIAL TABLE REG. SUMMARY
BASE= 1, 10
FILE= 38, 544

SET= 6, 87
PROC= 0, 0

$$CMD= 0, 0
$CMD= 0, 0
ITEM= 54, 675

STRNG= 42, 477
CNTRL= 67, 303

208, 2096

COMPILED SEGMENT 1

Figure E-7. Compiler Statistics for Segmented Program (1 of 3)

E-16

Optimizing Transact Applications

SEGMENT 2 STATISTICS:
STACK= 15623
TABLE= 6419

*******RUN TIME STATISTICS******
PCODE= 1676
SCODE= 1044

PARTIAL TABLE REG. SUMMARY
BASE= 1, 10
FILE= 38, 544

SET= 7, 103
PROC= 0, °

$$CMD= 0, °
$CMD= 0, °
ITEM= 61, 769

STRNG= 76, 612
CNTRL= 67, 303

250, 2341

COMPILED SEGMENT 2

SEGMENT 3 STATISTICS:
STACK= 15644
TABLE= 7392

*******RUN TIME STATISTICS******
PCODE= 3123
SCODE= 1447

PARTIAL TABLE REG. SUMMARY
BASE= 1, 10
FILE= 38, 544

SET= 12, 176
PROC= 0, °

$$CMD= 0, °
$CMD= 0, °
ITEM= 55, 685

STRNG= 77, 869
CNTRL= 68, 308

251, 2592

COMPILED SEGMENT 3

Figure E-7. Compiler Statistics for Segmented Program (2 of 3)

E-17

Optimizing Transact Applications

SEGMENT 4 STATISTICS:
STACK= 15738
TABLE= 7134

*******RUN TIME STATISTICS******
PCODE= 3773
SCODE= 650

PARTIAL TABLE REG. SUMMARY
BASE= 1, 10
FILE= 38, 544

SET= 12, 176
PROC= 0, 0

$$CMD= 11, 65
$CMD= 0, 0
ITEM= 74, 943

STRNG= 110, 865
CNTRL= 115, 911

361, 3514
COMPILED SEGMENT 4

****FINAL TABLE REG. SUMMARY****
WORK AREA= 30, 100

TABLE REG.=
TABLE INDX=
TABLE LEN. =

*****RUN TIME
DATA REG.=
SEG. TABLE=
TABLE REG.=
TABLE INDX=
TABLE LEN. =
ROOT SEG.=
XFER TABLE=
SCODE REG.=
ITEM REG.=
DATA INDEX=
DATA LEN. =

3614
391
391

STACK SUMMARY*****
200
128

3614
391
391

46
8

1447
30
30
30

6315
CODE FILE STATUS: REPLACED
o COMPILATION ERRORS
PROCESSOR TIME=00:Ol:41

Figure E-7. Compiler Statistics for Segmented Program (3 of 3)

E-18

Optimizing Transact Applications

PCBX

VPLUS INFO

TRANSAcr OUTER BLOCK

TRANSAcr PROCESSOR
CONTROL BLOCK

DATA REGISTER DATA REG.=

66 words

816 words

200 words

DISC ADDRESS SEG. TABLE SEG. TABLE= 128 words

TABLE REGISTER TABLE REG.= 3614 words
\

-------------------------- \
TABLE INDEX TABLE INDX= 391 words \ see Figure E-9--- --------------------------- /
TABLE LENGTH TABLE LEN.= 391 words /----------------------------
CODE REGISTER

(Root Segment) ROOT SEG.= 46 words

TRANSFER TABLE XFER TABLE= 8 words

CODE REGISTER
(SCODE - Overlay Area) SCODE REG.= 1447 words

ITEM REGISTER ITEM REG.= 30 words

DATA INDEX DATA INDEX = 30 words

DATA LENGTH DATA LEN. = 30 words

--------------------------1

Approx. total data stack = 7197 words

Figure E-8. Data Stack of Segmented Program

E-19

optimizing Transact Applications

BASES

VPLUS COMAREAi VPLUS,
KSAM, MPE, AND DATA

SET FILE INFO

PROCEDURES

COMMANDS

SUBCOMMANDS

ITEMS

TEXT STRINGS

CONTROL STRINGS

WORK SPACE

BASE= 1, 10 words

FILE= 38, 544 words

SET= 12, 176 words

PROC= 0, 0 words

$$CMD= 11, 65 words

$CMD= 0, 0 words

ITEM= 74, 943 words

STRNG= 110, 865 words

CNTRL= 115, 911 words

WORK AREA= 30, 100 words

TABLE INDEX and TABLE LENGTH entities----------
TABLE REGISTER entities-------------

Figure E-9. Table Register Entities of Segmented Program

E-20

optimizing Transact Applications

Programs Using CALLs Without SWAP Option

Splitting Transact programs into subprograms also decreases stack
requirements.

Figure E-IO illustrates the compiler statistics for the program used for the
earlier examples, restructured into a main program and 4 subprograms. The
main program statistics appear on the first page, and statistics for the
subprograms appear on the subsequent four pages of the listing.

Figure E-ll illustrates the layout of the run-time data stack. Note that the
top half of the stack, used by the main program, has the same components as
the nonsegmented program data stack. The PROCESSOR PROC. VAR. area holds
processor variables for calling sUbprograms; the size of this area is
version-dependent. The next area is a second TRANSACT PROCESSOR CONTROL
BLOCK. The remaining areas are used by entities of the CALLed subprograms.

Figure E-12 portrays the entities in the TABLE REGISTER, TABLE INDEX, and
TABLE LENGTH components for the main program.

E-21

Optimizing Transact Applications

main program
COMPILING WITH OPTIONS: CODE,DICT,STAT,ERRS

*****COMPILE TIME STATISTICS****
STACK= 11208
TABLE= 962

*******RUN TIME STATISTICS******
PCODE= 0
SCODE= 54

PARTIAL TABLE REG. SUMMARY
BASE= I, 10
FILE= 2, 83

SET= 0, 0
PROC= 0, 0

$$CMD= 11, 65
$CMD= 0, 0
ITEM= I, 9

STRNG= 10, 67
CNTRL= 2, 5

27, 239

****FINAL TABLE REG. SUMMARY****
WORK AREA= 5 , 50

TABLE REG.=
TABLE INDX=
TABLE LEN. =

*****RUN TIME
DATA REG.=
TABLE REG.=
TABLE INDX=
TABLE LEN. =
ROOT SEG.=
ITEM REG.=
DATA INDEX=
DATA LEN. =

289
32
32

STACK SUMMARY*****
200
289

32
32
54
25
25
25

682

CODE FILE STATUS: REPLACED

Figure E-10. Compiler Statistics for Program Using CALLs
Without the SWAP Option (1 of 5)

E-22

optimizing Transact Applications

subprogram 1
COMPILING WITH OPTIONS: CODE,DICT,STAT,ERRS

*****COMPILE TIME STATISTICS****
STACK= 11208
TABLE= 3262

*******RUN TIME STATISTICS******
PCODE= 0
SCODE= 590

PARTIAL TABLE REG. SUMMARY
BASE= 1, 10
FILE= 8, 163

SET= 6, 87
PROC= 0, 0

$$CMD= 11, 65
$CMD= 0, 0
ITEM= 28, 348

STRNG= 33, 413
CNTRL= 25, 159

112, 1245

****FINAL TABLE REG. SUMMARY****
WORK AREA= 5, 50

TABLE REG.=
TABLE INDX=
TABLE LEN. =

*****RUN TIME
DATA REG.=
TABLE REG.=
TABLE INDX=
TABLE LEN. =
ROOT SEG.=
ITEM REG.=
DATA INDEX=
DATA LEN.=

1295
117
117

STACK SUMMARY*****
100

1295
117
117
590

20
20
20

2279

CODE FILE STATUS: REPLACED

Figure E-10. Compiler Statistics for Program Using CALLs
Without the SWAP Option (2 of 5)

E-23

Optimizing Transact Applications

subprogram 2
COMPILING WITH OPTIONS: CODE,DICT,STAT,ERRS

*****COMPILE TIME STATISTICS****
STACK= 11208
TABLE= 4125

*******RUN TIME STATISTICS******
PCODE= 0
SCODE= 1101

PARTIAL TABLE REG. SUMMARY
BASE= 1, 10
FILE= 11, 190

SET= 6, 87
PROC= 0, 0

$$CMD= 11, 65
$CMD= 0, 0
ITEM= 19, 240

STRNG= 54, 468
CNTRL= 13, 45

115, 1105

****FINAL TABLE REG. SUMMARY****
WORK AREA= 8, 60

TABLE REG.=
TABLE INDX=
TABLE LEN. =

*****RUN TIME
DATA REG.=
TABLE REG.=
TABLE INDX=
TABLE LEN.=
ROOT SEG.=
ITEM REG.=
DATA INDEX=
DATA LEN. =

1165
123
123

STACK SUMMARY*****
100

1165
123
123

1101
20
20
20

2672

CODE FILE STATUS: REPLACED

Figure E-IO. Compiler Statistics for program Using CALLs
Without the SWAP Option (3 of 5)

E-24

Optimizing Transact Applications

subprogram 3
COMPILING WITH OPTIONS: CODE,DICT,STAT,ERRS

*****COMPILE TIME STATISTICS****
STACK= 13640
TABLE= 5622

*******RUN TIME STATISTICS******
PCODE= 0
SCODE= 1456

PARTIAL TABLE REG. SUMMARY
BASE= 1, 10
FILE= 19, 310

SET= 10, 146
PROC= 0, 0

$$CMD= 11, 65
$CMD= 0, 0
ITEM= 20, 249

STRNG= 66, 793
CNTRL= 32, 120

159, 1693

****FINAL TABLE REG. SUMMARY****
WORK AREA= 8 , 60

TABLE REG.=
TABLE INDX=
TABLE LEN. =

*****RUN TIME
DATA REG. =
TABLE REG. =
TABLE INDX=
TABLE LEN. =
ROOT SEG.=
ITEM REG.=
DATA INDEX=
DATA LEN. =

1753
167
167

STACK SUMMARY*****
100

1753
167
167

1456
20
20
20

3703

CODE FILE STATUS: REPLACED

Figure E-I0. Compiler statistics for Program Using CALLs
Without the SWAP Option (4 of 5)

E-25

Optimizing Transact Applications

subprogram 4
COMPILING WITH OPTIONS: CODE,DICT,STAT,ERRS

*****COMPILE TIME STATISTICS****
STACK= 13640
TABLE= 5178

*******RUN TIME STATISTICS******
PCODE= 0
SCODE= 652

PARTIAL TABLE REG. SUMMARY
BASE= 1, 10
FILE= 2, 82

SET= 10, 144
PROC= 0, 0

$$CMD= 11, 65
$CMD= 0, 0
ITEM= 57, 735

STRNG= 103, 796
CNTRL= 68, 703

252, 2535

****FINAL TABLE REG. SUMMARY****
WORK AREA= 40, 200

TABLE REG.=
TABLE INDX=
TABLE LEN. =

*****RUN TIME
DATA REG.=
TABLE REG. =
TABLE INDX=
TABLE LEN. =
ROOT SEG.=
ITEM REG. =
DATA INDEX=
DATA LEN. =

2735
292
292

STACK SUMMARY*****
200

2735
292
292
652

25
25
25

4246

CODE FILE STATUS: REPLACED

Figure E-l0. Compiler statistics for Program Using CALLs
Without the SWAP option (5 of 5)

E-26

Optimizing Transact Applications

PCBX

VPLUS INFO

TRANSACT OUTER BLOCK

TRANSACT PROC. CNTL. BLK.

DATA REGISTER

TABLE REGISTER

TABLE INDEX

TABLE LENGTH

CODE REGISTER

ITEM REGISTER

DATA INDEX

DATA LENGTH

PROCESSOR PROC. VAR.

TRANSACT PROC. CNTL. BLK.

DATA REG. =

TABLE REG.=

TABLE INDX=

TABLE LEN. =

ROOT SEG.=

ITEM REG.=

DATA INDEX=

DATA LEN. =

66 words

816 words

200 words

289 words
\

32 words _\-see Figure E-12
/

32 words /-
54 words

25 words

25 words

25 words

194 words

816 words

TABLE REGISTER

TABLE INDEX

TABLE LENGTH

TABLE REG.= 2735 words

TABLE INDX= 292 words

TABLE LEN.= 292 words

CODE REGISTER ROOT SEG.= 652 words

ITEM REGISTER ITEM REG.= 25 words

DATA INDEX DATA INDEX= 25 words

DATA LENGTH DATA LEN. = 25 words

Approx. Total Data Stack 6620 words

Figure E-ll. Data Stack of Program Using CALLs
Without the SWAP Option

E-27

Optimizing Transact Applications

BASES

VPLUS COMAREAi VPLUS,
KSAM, MPE, AND DATA

SET FILE INFO

PROCEDURES

COMMANDS

SUBCOMMANDS

ITEMS

BASE= I, 10 words

FILE= 2 83 words

SET= 0, 0 words

PROC= 0, 0 words

$$CM!)= II, 65 words

$CM!)= 0, 0 words

ITEM= I, 9 words

TEXT STRINGS STRNG= 10, 67 words

CONTROL STRINGS

WORK SPACE

CNTRL=

WORK AREA=

2,

5,

5 words

50 words

TABLE INDEX and TABLE LENGTH entities----------
TABLE REGISTER entities-------------

Figure E-12. Table Register Entities of Main Program Using CALLs
Without the SWAP Option

E-28

optimizing Transact Applications

Programs Using CALLs with SWAP Option

If your main program is large, the SWAP option can reduce the amount of data
stack space required. This option causes some of the main program's stack
entities to be written out to a temporary file when a subprogram is CALLed.
The trade-off in this instance is the overhead required to create this file
and restore its contents when control returns to the main program.

The compiler statistics provided for this program structure are the same as
those provided when a program uses CALLs without the SWAP option. Refer back
to Figure E-IO for compiler statistics produced when the earlier example was
recoded to use the SWAP option with its CALLs.

When the main program is in control, the data stack looks like the top portion
of the layout illustrated in Figure E-ll. Components PCBX through PROCESSOR
PROC. VAR. are present.

Figure E-13 illustrates how the data stack looks after subprogram 4 is CALLed:

• Only a subset of the main program's TABLE REGISTER, TABLE INDEX, and
TABLE LENGTH components are on the stack. The remainder of the
entities have been placed in a temporary MPE file.

• The following components of the main program have also been placed in
the temporary file: CODE REGISTER, ITEM INDEX, and DATA LENGTH.

• Two areas of the data stack are used for processor variables: PROCESSOR
PROC. VAR. and SWAP PROC. VARIABLES. As in the case of CALLs without
the SWAP option, the number of words in these areas is version
dependent.

The entities in the main program's table register subsets are identified in
Figure E-14. Note that the values for BASE=, FILE=, and SET= entities are
represented in the compiler statistics for the main program in the PARTIAL
TABLE REG. SUMMARY (refer to the first page of Figure E-IO).

Figure E-15 illustrates the table components for the largest of the
subprograms--subprogram 4.

E-29

optimizing Transact Applications

--------------------------1
PCBX 1

--------------------------1
VPLUS INFO 1

--------------------------1
TRANSACT OUTER BLOCK 1

--------------------------1
TRANSACT PROCESSOR 1

CONTROL BLOCK 1

--------------------------1
DATA REGISTER DATA REG.=

SUBSET OF TABLE REGISTER

SUBSET OF TABLE INDEX

SUBSET OF TABLE LENGTH

PROCESSOR PROC. VAR.

SWAP PROC. VARIABLES

TRANSACT PROCESSOR
CONTROL BLOCK

66 words

816 words

200 words

93 words - ,
3 words -,-see Figure E-14

/
3 words /-

194 words

67 words

816 words

TABLE REGISTER TABLE REG.= 2735 words

-------------------------- ,
TABLE INDEX TABLE INDX= 292 words , see Figure E-15- -

----------------~--------- /
TABLE LENGTH TABLE LEN. = 292 words /-
CODE REGISTER ROOT SEG.= 652 words

ITEM REGISTER

DATA INDEX

DATA LENGTH

ITEM REG.=

DATA INDEX=

DATA LEN. =

25 words

25 words

25 words

Approx. Total Data Stack = 6304 words

Figure E-13. Data Stack of Program Using CALLs
With the SWAP Option (CALLed Program is on the Stack)

E-30

optimizing Transact Applications

1-------------------------1
1 I
1 BASES IBASE= 1, 10 words
I I
1-------------------------1
I VPLUS COMAREAj VPLUS, IFILE= 2, 83 words
I KSAM, MPE, & DATA I
I SET FILE INFO ISET 0, 0 words
1-------------------------1

TABLE INDEX and TABLE LENGTH entities-------

TABLE REGISTER entities----------

Figure E-14. Table Register Subsets for Main Program
After CALLing Subprogram

E-31

Optimizing Transact Applications

BASES

VPLUS COMAREA; VPLUS,
KSAM, MPE, AND DATA

SET FILE INFO

PROCEDURES

COMMANDS

SUBCOMMANDS

ITEMS

TEXT STRINGS

CONTROL STRINGS

WORK SPACE

BASE= I, 10 words

FILE= 2 82 words

SET= 10, 144 words

PROC= 0, 0 words

$$CMD= II, 65 words

$CMD= 0, 0 words

ITEM= 57, 735 words

STRNG= 103, 796 words

CNTRL= 68, 703 words

WORK AREA= 40, 200 words

TABLE INDEX and TABLE LENGTH entities----------
TABLE REGISTER entities-------------

Figure E-15. Table Register Entities of Subprogram 4

E-32

optimizing Transact Applications

Program Structure Comparison

The following chart summarizes the data stack requirements of the four program
examples just examined. The values shown do not include the stack space
required for the following components: PCBX, VPLUS, and subsystems such as
SORT.

Application structure I Approx. Data Stack

Nonsegmented Program 10957 words

Segmented Program 7197 words

Main Program CALLing Sub-
Programs Without SWAP Option 6620 words

Main Program CALLing Sub-
Programs With SWAP option 6304 words

The main program in the final case is very small, so the savings in stack
space is not as significant as it could be.

E-33

optimizing Transact Applications

PROCESSING TIME OPTIMIZATION

The following are guidelines for improving the efficiency of your Transact
code at run time:

• Adjust the WORK= option of the SYSTEM statement to minimize the work
space recoveries during execution. The number of work space recoveries
can be determined by running test mode 101 or 102. Adjusting work
space size may increase data stack requirements.

• Use DEFINE{INTRINSIC) whenever possible when calling system intrinsics.
This construct prevents the Transact processor from using LOADPROC to
dynamically return the P-Iabel of the intrinsic being called. The
overhead of loading the Transact program is reduced by using
DEFINE{INTRINSIC). See Appendix D for a list of allowable intrinsics.

• Avoid calling many separate user-defined procedures from a Transact
application. One LOADPROC is executed per procedure, contributing to
processing overhead. If possible, combine user-defined procedures into
one procedure, and identify the procedure to be executed with a control
or index parameter.

• Avoid using the UNLOAD option of the PROC verb with frequently called
procedures, since both LOADPROC and UNLOADPROC are called each time a
procedure is called.

• Use the NOLOAD option of the PROC verb with such infrequently called
procedures as error routines.

• When the 255-entry/process limit of the Loader Segment Table (LST) is
likely to be exceeded, UNLOAD can be used to release table entries as
appropriate. A preferred approach is to combine user-defined
procedures whenever possible.

• Avoid mixing character and block modes during a single application.
This mixture requires considerable overhead in VPLUS whenever the
switch from block mode to character mode occurs.

• Because only one VPLUS forms file can be opened at a time, processing
overhead required to close and open forms files is minimized when only
one forms file is used by any program or subprogram.

• Avoid switching between segments in order to minimize the input/output
overhead incurred in loading segment information into the data stack.
Segments should conform as much as possible to the functional
characteristics of the application. Commonly used routines should be
grouped in the root segment (segment 0), since this segment is always
memory-resident. However, this segment should be as small as possible.

E-34

optimizing Transact Applications

• Minimize the amount of calculations performed. If you need extensive
numeric calculations, consider using subroutines in other languages and
invoking them with the PROe statement.

• Use the MOVE verb whenever possible to transfer values between data
items. The MOVE statement does no data type checks or conversions.
The LET verb, however, performs time-consuming data type compatibility
checks.

• Place frequently referenced items on the top of the list register,
i.e., place them towards the end of the LIST verb statement. The list
register is implemented as a linked list with list searches starting
from the top of the list. Searches are minimized when the search item
is at the top of the list.

• Avoid using fragmented lists when accessing data bases. Transact has
to unscramble the list before data base input/output operations are
performed.

• Minimize internal sorting of large files.

E-35

A

Absolute binary, 3-14
Access, key, 4-5
ACCOUNT option, 6-98
Actual key value, 4-6
Alias items, 3-20
ALIAS option, 6-29
APPEND option

GET verb, 6-77
PUT verb, 6-138
SET verb, 6-163
UPDATE verb, 6-184

ARGLNG parameter, 6-122
ARG parameter, 6-122
Argument register, 4-6
Arrays, 3-19
Assignment verbs, 6-10
Automatic Error Handling

data base or file
operation errors, 5-26

data entry errors, 5-25
general, 5-22

AUTOREAD option, 6-77

B

BANNER option, 6-174
BASLNG parameter, 6-122
BASE option, 6-174
BASE parameter, 6-122
Benefits, 1-2
BLANKS option

DATA verb, 6-19
INPUT verb, 6-86
PROMPT verb, 6-130

Block mode, 2-8
BYTE parameter, 6-123

c

CALL verb, 6-11
Carriage return, 1-4
CCTL option

DISPLAY verb, 6-40
FORMAT verb, 6-65

CENTER option,
DISPLAY verb, 6-40
FORMAT verb, 6-65

Chained access path, 6-115
CHAIN modifier

DELETE verb, 6-33
FIND verb, 6-54
GET verb, 6-71
OUTPUT verb, 6-107
REPLACE verb, 6-147

Character mode, 2-8
CHECK modifier

DATA verb, 6-17
PROMPT verb, 6-114

CHECKNOT modifier
DATA verb, 6-19
PROMPT verb, 6-130

Child items, 3-19
CLEAR option

GET verb, 6-77
PUT verb, 6-138
SET verb, 6-163
UPDATE verb, 6-184

CLOSE modifier, 6-51
CLOSE verb, 6-15
CNTL-Y

command mode, 7-.1
operation break, 5-20

COBOL data types, 3-14
Code file, 2-3, 5-8
CODE option, 5-2

INDEX-l

INDEX I

COL option
DISPLAY verb, 6-41
FORMAT verb, 6-65

COMMAND argument, 6-161
COMMAND command, 5-18
Command labels, 3-5
Command mode, 7-1
COMMAND modifier

RESET verb, 6-154
SET verb, 6-160

Command sequence, 1-3, 3-4
Comments, 3-11
Compiled output control

!COPYRIGHT, 5-8
!INCLUDE, 5-8
!LIST, 5-8
!NOLIST, 5-8
!PAGE, 5-8
!SEGMENT, 5-8

Compiler
bypassing prompts, 5-4
control options, 5-2
error messages, A-I
execution, 5-2
general, 2-3
listing control, 5-5
output destination, 5-12
TRANCODE, 5-12
TRANIN, 5-11
TRANLIST, 5-4, 5-12
TRANOUT, 5-8, 5-12
TRANTEXT, 5-4, 5-11

Compiler control options
CODE, 5-2
DEFN, 5-3
DICT, 5-2
ERRS, 5-2
LIST, 5-2
OBJT, 5-3
OPTI, 5-3
OPTS, 5-3
STAT, 5-3
XERR, 5-3
XREF, 5-3

Compiler listing
internal location, 5-6
line number, 5-6
nesting level, 5-6
TEST mode, 5-6

Compiler prompts
list file, 5-2
source file, 5-2

COMPUTE option, 6-29
Conditional test, 6-82, 6-142, 6-187
Connector, see Logical connector
CONTROL modifier, 6-51
COUNT parameter, 6-123
CURRENT modifier

DELETE verb, 6-33
FIND verb, 6-54
GET verb, 6-71
OUTPUT verb, 6-107
REPLACE verb, 6-147

CURRENT option
GET verb, 6-77
PUT verb, 6-138

o

Data base operation verbs, 6-3
Data base root file, 2-8
Data dictionary, 2-5
Data entry control characters, 5~20

Data entry verbs, 6-3
Data items

alias items, 3-20
child items, 3-19
compound, 3-19
names, 3-13
parent items, 3-19
sizes, 3-14
types, 3-14

Data Management interface
data storage registers, 2-7
error handling, 2-7
general, 1-4, 2-7
PROC statement, 2-8
SYSTEM statement, 2-8

DATA option
CALL verb, 6-13
SYSTEM verb, 6-175

Data register, 4-3
Data retrieval verbs, 6-3
Data specification, 2-4

INDEX-2

Data stack optimization, E-1
Data storage, see Registers
Data types

and Dictionary/3000, 3-18
and IMAGE, 3-18
and VPLUS, 3-18

Data validation, 2-4
DATA verb, 6-18
DATE options

DATE, 6-98
DATE/D, 6-98
DATE/J, 6-98
DATE/L, 6-98
DATE/Y, 6-98

DECIMAL parameter, 6-123
Declarative verbs, 6-2
DEFINE(ITEM) statement, 3-3
DEFINE verb, 6-25
DEFN option, 5-3
DELETE verb, 6-33, C-2
DELIMITER modifier

RESET verb, 6-155
SET verb, 6-162

DEPTH option, 6-167
Dictionary/3000, 2-3
DICT option, 5-2
DIRECT modifier

DELETE verb, 6-33
FIND verb, 6-54
GET verb, 6-71
OUTPUT verb, 6-107
REPLACE verb, 6-147

DISPLAY verb, 6-39

E

EDIT option
DEFINE verb, 6-29
DISPLAY verb, 6-41
FORMAT verb, 6-65

EDITOR, 5-2
END option

RESET verb, 6-155
SET verb, 6-168

END verb, 6-47
ENTRY modifier, 6-25
ENTRY option, 6-29
Entry point labels, 5-9
Error handling

automatic, 5-25
general, 2-4
status register, 4-9
suppression, 5-28

ERROR option
CLOSE verb, 6-16
DELETE verb, 6-34
FIND verb, 6-55
GET verb, 6-74
OUTPUT verb, 6-108
PATH verb, 6-115
PUT verb, 6-137
REPLACE verb, 6-148
UPDATE verb, 6-182

Errors
data base operation, 5-26, 5-29
data entry, 5-25, 5-28
file operation, 5-26, 5-29
messages, A-I, B-1

ERRS option, 5-2
Examples

coding, 1-3, 3-2
compiler listing, 5-6
registers, 4-11

EXCLAMATION variable
IF verb, 6-82
REPEAT verb, 6-142
WHILE verb, 6-187

Execution
compiler, 5-2
transaction processor, 5-13

EXIT argument, 6-161
EXIT command, 5-18
EXIT verb, 6-49
External procedure, 6-121

INDEX-3

F

Features, 1-2
FEDIT option

GET verb, 6-77
PUT verb, 6-138
SET verb, 6-163
UPDATE verb, 6-184

FIELD delimiters, 5-22
FIELD option

RESET verb, 6-155
SET verb, 6-168

FIELD qualifier, 5-19
FIELD variable

IF verb, 6-82
REPEAT verb, 6-142
WHILE verb, 6-187

FILEID parameter, 6-123
File operation verbs, 6-7
FILE option, 6-176
FILE verb, 6-50
FIND verb, 6-54, C-4
FREY option

GET verb, 6-77
PUT verb, 6-139
UPDATE verb, 6-184

flow charts, C-l
Fn option

GET verb, 6-77
PUT verb, 6-139
UPDATE verb, 6-184

FORMAT verb, 6-63
Formatting parameters

DISPLAY verb, 6-40
FORMAT verb, 6-65

FORM modifier
GET verb, 5-22, 6-71
PUT verb, 5-22, 6-135
SET verb, 6-162
UPDATE verb, 6-181

FREEZE option
GET verb, 6-77
PUT verb, 6-139
SET verb, 6-163
UPDATE verb, 6-184

Function key labels, 2-8
Function keys, 5-22

G

GET verb, 6-72, C-7
GO TO verb, 6-81
GROUP option, 6-98

H

HEAD option
DEFINE verb, 6-29
DISPLAY verb, 6-44
FORMAT verb, 6-68
SET verb, 6-169

HOMEGROUP option, 6-98
HP EDITOR, 5-2

IF verb, 6-82
Image data base

argument register, 4-5
CLOSE verb, 6-15
data dictionary, 2-5
DELETE verb, 6-33
FIND verb, 6-54
LIST verb, 6-97
OUTPUT verb, 6-106
SYSTEM verb, 6-174
Transact interface, 2-7
UPDATE verb, 6-180

INFO= option
compiler, 5-4
processor, 5-14

Information messages, B-1
INFORM option, 6-3

INDEX-4

INITIALIZE argument, 6-161
INITIALIZE comma~d, 5-18
INIT option

GET verb, 6-77
LIST verb, 6-99
PUT verb, 6-139
SET verb, 6-163
UPDATE verb, 6-184

INPUTLNG parameter, 6-123
INPUT parameter, 6-123
!NPUT register, 4-9
INPUT variable

IF verb, 6-82
REPEAT verb, 6-142
WHILE verb, 6-187

INPUT verb, 6-86
Integer number, 3-14
Interfaces, 2-7
Intermediate processor code, 2-3
Intermediate processor code file, 2-5
Intrinsics allowed, D-l
INTRINSIC modifier, 6-26
Introduction, 1-1
ITEMLNG parameter, 6-123
ITEM modifier

DATA verb, 6-20
DEFINE verb, 6-26, 6-30, 6-31

ITEM parameter, 6-123
ITEM verb, 6-88

J

JOIN option
DISPLAY verb, 6-44
FORMAT verb, 6-68

K

KEYLNG parameter, 6-123
KEY modifier

DATA verb, 6-20

GET verb, 6-71
LIST verb, 6-99
PROMPT verb, 6-131
SET verb, 6-165

KEY parameter, 6-123
Key register, 4-5
KSAM files

argument register, 4-5
CLOSE verb, 6-15
data dictionary, 2-5
DELETE verb, 6-33
FIND verb, 6-54
list register, 4-10
LIST verb, 6-97
OUTPUT verb, 6-106
SYSTEM verb, 6-174
Transact interface, 2-7
UPDATE verb, 6-180

KSAM option, 6-177

L

Labels
command, 3-5
statement, 3-8
sUbcommand, 3-5

LEADER option
DATA verb, 6-21
LIST verb, 6-100
PROMPT verb, 6-132
SET verb, 6.,..166

LEFT option
DISPLAY verb, 6-44
FORMAT verb, 6-68
SET verb, 6-169

LET verb, 6-89
LEVEL modifier, 6-47
LEVEL verb, 6-95
LINE option

DISPLAY verb, 6-44
FORMAT verb, 6-69

LINE variable, 6-89
LIST option

DELETE verb, 6-34
FIND verb, 6-55

INDEX-5

GET verb, 6-73
OUTPUT verb, 6-108
PATH verb, 6-116
PUT verb, 6-136
REPLACE verb, 6-148
SET verb, 6-163
UPDATE verb, 6-181

LIST register, 4-3
LIST verb, 6-97
LNG option

DISPLAY verb, 6-44
FORMAT verb, 6-69

LOCK option
DELETE verb, 6-35
FIND verb, 6-56
GET verb, 6-74
OUTPUT verb, 6-109
PUT verb, 6-137
REPLACE verb, 6-149
UPDATE verb, 6-183

Logical connector, 5-23
Logical value, 3-14

M

MATCH modifier
DATA verb, 5-21, 6-21
LIST verb, 6-99
PROMPT verb, 5-21, 6-131
SET verb, 6-166

MATCH option, 6-155
MATCH prompt, 5-23
Match register, 4-7
Match specification characters, 5-21
Mode, 5-13
Modifiers, 3-9
MOVE verb, 6-103
MPE files

argument register, 4-5
CLOSE verb, 6-15
data dictionary, 2-5
list register, 4-10
LIST verb, 6-97
Transact interface, 2-7

N

Naming conventions
data items, 3-13
statement labels, 3-8
subcommand labels, 3-5
user-entered passwords, 3-6

NEED option
DISPLAY verb, 6-44
FORMAT verb, 6-69

NOBANNER option, 6-169
NOCOUNT option

DELETE verb, 6-35
OUTPUT verb, 6-109
REPLACE verb, 6-149

NOCRLF option
DISPLAY verb, 6-44
FORMAT verb, 6-69

NOECHO option
DATA verb, 6-19
INPUT verb, 6-86
PROMPT verb, 6-130

NOFIND option, 6-74
NOHEAD option

DISPLAY verb, 6-44
FORMAT verb, 6-69
OUTPUT verb, 6-109
RESET verb, 6-156
SET verb, 6-169

NOLOAD option, 6-125
NOLOCR option

RESET verb, 6-156
SET verb, 6-169

NOMATCH option
DELETE verb, 6-35
FIND verb, 6-56
GET verb, 6-74
OUTPUT verb, 6-109
REPLACE verb, 6-149

NOMSG option
CLOSE verb, 6-16
DELETE verb, 6-35
FIND verb, 6-56
GET verb, 6-74

INDEX-6

OUTPUT verb, 6-109
PATH verb, 6-116
PUT verb, 6-137
REPLACE verb, 6-149
UPDATE verb, 6-183

NOSIGN option
DISPLAY verb, 6-45
FORMAT verb, 6-69

NOTEST option, 6-17$
NOTRAP option, 6-125
NULL option, 6-19
NULL subcommand, 3-5
Numeric ASCII string, 3-14
Numeric parameters, 7-2

o

Object code, 2-4, 5-2
OBJT option, 5-3
OFFSET modifier, 6-92
OFFSET variable, 6-89
OPEN modifier, 6-51
Operation break, 5-20
optimizing Transact programs, E-1
Option-list, 3-9
OPTION modifier,

RESET verb, 6-155
SET verb, 6-167

OPTION option, 6-178
Option variable intrinsics, 6-121
OPTI option, 5-3
OPT option, 6-30
OUTPUT verb, 6-106, C-11
Overlays, 5-9

p

Packed decimal, 3-14
PAGE option

DISPLAY verb, 6-45
FORMAT verb, 6-69

PAGE variable, 6-89
PALIGN option, 6-169
Parent items, 3-19
PARM= option, 5-4
Passwords

command, 3-7
option, 6-99
user-entered, 3-6

PATH modifier
DATA verb, 6-22
LIST verb, 6-100
PROMPT verb, 6-132

PATH verb, 6-115, C-14
PDEPTH option, 6-169
PERFORM option

DELETE verb, 6-36
FIND verb, 6-56
OUTPUT verb, 6-109
REPLACE verb, 6-149

PERFORM verb, 6-119
PLINE variable, 6-89
POSITION parameter, 6-123
PRIMARY modifier

DELETE verb, 6-33
FIND verb, 6-54
GET verb, 6-72
OUTPUT verb, 6-107
REPLACE verb, 6-147

PRINT option
RESET verb, 6-156
SET verb, 6-169

PRINT qualifier, 5-19
PRINT variable

IF verb, 6-82
REPEAT verb, 6-143
WHILE verb, 6-188

PROC statement, 2-8, 2-9
PROC verb, 6-121
Processing command sequences, 3-4
Processing time optimization, E-34
Processor

bypassing prompt, 5-14
commands, 5-18
output destinations, 5-16
PRINT option, 5-19
test mode output, 5-16
TRANDUMP, 5-16
TRANIN, 5-16
TRANLIST, 5-16

INDEX-7

TRANOUT, 5-16
TRANSORT, 5-16
TRANVPLS, 5-16
VPLUS, 5-16

Processor command qualifiers
FIELD, 5-19
PRINT, 5-19
REPEAT, 5-19
SORT, 5-19
TPRINT, 5-19

Processor commands
COMMAND, 5-18
EXIT, 5-18
INITIALIZE, 5-18
RESUME, 5-18
TEST, 5-18

Processor error handling, 2-4
PROCTIME option, 6-99
Program compilation, 5-2
Program control verbs, 6-9
Program execution, 5-13
Program segmentation, 5-9
Program structure, 3-1
Prompting character, 3-5
PROMPT option, 6-170
PROMPT verb, 6-129
PUT verb, 6-135, C-15
PWIDTH option, 6-170

Q

Qualifiers, see Command qualifiers

R

RCHAIN modifier
DELETE verb, 6-34
FIND verb, 6-55
GET verb, 6-72
OUTPUT verb, 6-107
REPLACE verb, 6-147

READ modifier, 6-62
Real numbers, 3-14
RECNO option

DELETE verb, 6-36
FIND verb, 6-57
GET verb, 6-75
OUTPUT verb, 6-110
PUT verb, 6-137
REPLACE verb, 6-149

Registers
argument register, 4-6
data register, 4-3
example, 4-2
general, 4-1
input register, 4-9
key register, 4-5
list register, 4-3
match register, 4-7
status register, 4-9
update register, 4-8
verb\modifier summary, 4-10

Relational operators, 5-19
REPEAT option, 6-170
REPEAT qualifier, 5-19
REPEAT variable

IF verb, 6-83
REPEAT verb, 6-143
WHILE verb, 6-188

REPEAT verb, 6-142
REPLACE verb, 6-145, C-17
REPORT option, 6-13
RESET verb, 6-155
RESUME command, 5-18
RETURN verb, 6-158
RIGHT option

DATA verb, 6-19
DISPLAY verb, 6-45
FORMAT verb, 6-69
PROMPT verb, 6-130
SET verb, 6-170

ROW option
DISPLAY verb, 6-45
FORMAT verb, 6-69

RSERIAL modifier
DELETE verb, 6-34
FIND verb, 6-55
GET verb, 6-72
OUTPUT verb, 6-107
REPLACE verb, 6-147

Running Transact, 5-1

INDEX-8

s

SCAN option
DATA verb, 6-21
LIST verb, 6-100
PROMPT verb, 6-132
SET verb, 6-166

SEGLNG parameter, 6-178
Segment boundaries, 5-9
Segmented library (SL) file, 2-7
Selection criteria

MATCH prompt, 5-23
match register, 4-7
processor, 5-19

SEQUENCE modifier, 6-47
SERIAL modifier

data base and file operation
operation verbs, 5-29

DELETE verb, 6-34
FIND verb, 6-55
GET verb, 6-72
OUTPUT verb, 6-107
REPLACE verb, 6-147

SESSION option, 6-99
SET modifier

DATA verb, 6-22
PROMPT verb, 6-133

SET parameter, 6-123
SET verb, 6-161, C-20
SIGNON option, 6-178
SINGLE option

DELETE verb, 6-36
FIND verb, 6-57
OUTPUT verb, 6-110
REPLACE verb, 6-149

SIZE option, 6-13
SIZE parameter, 6-124
SOPT option

DELETE verb, 6-36
FIND verb, 6-57
OUTPUT verb, 6-110
REPLACE verb, 6-149

Sort file, see TRANSORT
SORT modifier, 6-52

SORT option
FIND verb, 6-57
OUTPUT verb, 6-110
RESET verb, 6-156
SET verb, 6-170
SYSTEM verb, 6-178

SORT qualifier, 5-19
SORT variable

IF vert, 6-83
REPEAT verb, 6-142
WHILE verb, 6-188

Source code, 2-3, 5-2
Space allocation, 3-3, 4-1
SPACE option

DISPLAY verb, 6-45
FORMAT verb, 6-69

Stack, 5-7, E-l
STACK modifier

RESET verb, 6-156
SET verb, 6-172

Statements
compound, 3-7
formatting, 3-8
general, 3-8
labels, 3-8
See also Verbs

STAT option, 5-3
STATUS (DB) parameter, 6-124
STATUS field, 6-104
STATUS (IN) parameter, 6-124
STATUS option

CLOSE verb, 6-16
data base and file
operation verbs, 5-29

data entry verbs, 5-28
DATA verb, 6-20
DELETE verb, 6-36
FIND verb, 6-58
GET verb, 6-75, 6-78
INPUT verb, 6-86
OUTPUT verb, 6-111
PATH verb, 6-102
PROMPT verb, 6-131
PUT verb, 6-137
REPLACE verb, 6-149
UPDATE verb, 6-183

STATUS parameter, 6-124
Status register, 4-9
STATUS variable

INDEX-9

IF verb, 6-83
LET verb, 6-89
REPEAT verb, 6-143
WHILE ve~b, 6-188

streamed batch job, 5-4
Subcommand labels, 3-5
SUPPRESS option

RESET verb, 6-156
SET verb, 6-170

SWAP option, 6-13
System intrinsics, 2-7
SYSTEM statement, 3-3
SYSTEM verb, 3-3, 6-174

T

TABLE modifier, 6-39
TABLE option, 6-170
Target, 3-9
Technical overview, 2-1
Temporary variables, 3-3
TERMID option, 6-99
TEST command

Processor, 5-18
Test facility, 7-1

Test modes, 7-1
TIME option, 6-99
TIMER option, 6-99
TITLE option

DISPLAY verb, 6-45
FORMAT verb, 6-69

TLINE variable, 6-89
TPRINT option

RESET verb, 6-156
SET verb, 6-170

TPRINT qualifier, 5-19
TRAILER option

DATA verb, 6-22
LIST verb, 6-100
PROMPT verb, 6-132
SET verb, 6-~66

TRANCODE, '5-12
TRANDUMP, 5-16
TRANIN, 5-11, 5-16
TRANLIST, 5-12, 5-16
TRANOUT, 5-12, 5-16
Transact compiler, see compiler
Transact processor, see Processor
Transact verbs

see also verbs
statement parts, 6-1
syntax options, 6-1

TRANSORT, 5-16
TRANTEXT, 5-11
TRANVPLS, 5-16
TRUNCATE option

DISPLAY verb, 6-45
FORMAT verb, 6-69

TYPE parameter, 6-124

u

UNLOAD option, 6-124
UPDATE modifier

DATA verb, 6-23
FILE verb, 6-52
LIST verb, 6-100
PROMPT verb, 6-133
SET verb, 6-173

UPDATE option
REPLACE verb, 6~151

RESET verb, 6-156
Update register, 4-8
UPDATE verb, 6-180, C-21
Uppercase alphanumeric string, 3-14
Upshift, 4-9
USER option, 6-99
Using a command sequence, 1-3

INDEX-I0

v

VCOM parameter, 6-124
Verbs

and registers, 4-4
assignment, 6-10
CALL, 6-11
CLOSE, 6-15
data base and file operation, 6-6
data entry and retrieval, 6-3
DATA, 6-18
declaration verbs, 6-2
DEFINE, 6-25
DELETE, 6-33
DISPLAY, 6-39
END, 6-47
EXIT, 6-49
FILE, 6-50
FIND, 6-54
FORMAT, 6-63
GET, 6-71
GO TO, 6-81
IF, 6-82
INPUT, 6-86
ITEM, 6-88
LET, 6-89
LEVEL, 6-95
LIST, 6-97
MOVE, 6-103
OUTPUT, 6-106
PATH, 6-115
PERFORM, 6-119
PROC, 6-121
program control verbs, 6-9
PROMPT, 6-129
PUT, 6-135
REPEAT, 6-142
REPLACE, 6-145
RESET, 6-154
RETURN, 6-158
SET, 6-160
SYSTEM, 6-174
UPDATE, 6-180
WHILE, 6-187

VPLS option
RESET verb, 6-156
SET verb, 6-170

SYSTEM verb, 6-178
VPLUS interface

block mode, 2-8
FORMSPEC, 2-8
function key labels, 2-8
general, 2-8
SYSTEM statement, 2-9

VPLUS/3000
Forms, 5-22
GET (FORM), 5-22, 6-71

list register, 4-3
LIST verb, 6-97
PUT (FORM), 5-22, 6-135
SET (FORM), 6-160
special keys, 5-22
SYSTEM verb, 6-178
TRANVPLS file, 5-16
UPDATE (FORM), 6-180
VCLOSETERM, 6-171
VOPENTERM, 6-171

w

WAIT option
PUT verb, 6-139
UPDATE verb, 6-184

WHILE verb, 6-187
WIDTH option, 6-171
WINDOW option

GET verb, 6-78
PUT verb, 6-139
SET verb, 6-164
UPDATE verb, 6-185

WORK option, 6-179
WRITE modifier, 6-52
write-only registers, 4-5

x

XERR option, 5-3
XREF option, 5-3

INDEX-1l

z

ZERO (E) S option
DISPLAY verb, 6-45
FORMAT verb, 6-69
SET verb, 6-171

Zoned decimal, 3-14

!COPYRIGHT, 5-8
!INCLUDE, 5-8
!LIST, 5-8
!NOLIST, 5-8
!PAGE, 5-8
!SEGMENT, 5-8
$STDINX, 5-11
$STDLIST, 5-12

INDEX-12

READER COMMENT SHEET

HP 3000 Computer System

TRANSACT/3000

Reference Manual

32247-90001 Dec 1982

We welcome your evaluation of this manual. Your comments and suggestions
help us to improve our pUblications. Please explain your answers under
Comments, below, and use additional pages if necessary.

Is this manual technically accurate?

Are the concepts and wording easy to
understand?

Is the format of this manual convenient
in size, arrangement, and readability?

Comments:

Yes

Yes

Yes

No

No

No

FROM:

Name

Date _

Company _

Address ~ _

FOLD FOL---_.

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1070 CUPERTINO,CALIFORNIA

POSTAGE WILL BE PAID BY ADDRESSEE

Publications Manager
Hewlett-Packard Company
Information Networks Division
19420 Homestead Road
Cupertino, California 95014

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

---_.FOLD FOLI

SALES &SUPPORT OFFICES
Arranged Alphabetically by Country

Product Line Sales/Support Key BAHRAIN Ontario CYPRUS
Key Product Line Green salon Hewlell-Packard (Canada) LId. Telerexa Ltd.

A Analytical P.O. Box 557 552 Newbold Street P.O. Box 4809
CM Components BAHRAIN LONDON, Ontario N6E 2S5 14C Stassinos Avenue

C Computer Systems Sales only Tel: 255503-255950 Tel: (519) 686-9181 NICOSIA
CH Computer Systems Hardware Sales and Services Telex: 84419 A,CH,CM,E' ,MS,P' Tel: 62698
CS Computer Systems Software Sales and Services P Hewlell-Packard (Canada) LId. Telex: 2894 LEVIDO CY
E Electronic Instruments &Measurement Systems Wael Pharmacy 6877 Goreway Drive E,M,P
M Medical Products P.O. Box 648 MISSISSAUGA, Ontario L4V 1M8

MP Medical Products Primary SRO BAHRAIN Tel: (416) 678-9430 DENMARK
MS Medical Products Secondary SRO Tel: 256123 A,CH,CM,CS,E,MP,P Hewlell-Packard AlS

P Personal Computation Products Telex: 8550 WAEL BN Hewlell-Packard(Canada) LId. Datavej 52
Sales only for specific product line M, E / 2670 Queensview Dr. DK-3460 Birkerod
Support only for specific product line

BELGIUM OTTAWA, Ontario K2B 8K1 Tel: (02) 81-66-40
IMPORTANT: These symbols designate general product line capa- Tel: (613) 820-6483 Telex: 37409 hpas dk
bility. They do not insure sales or support availability for all

Hewlell-Packard Belgium S.A.lN.V. A,CH,CM,CS,E' ,MS,P' A,CH,CM,CS,E,MS,P
Blvd de la Woluwe, 100products within aline, at all locations. Contact your local
Woluwedal Hewlell-Packard (Canada) LId. Hewlell-Packard AlS

sales office for information regarding locations where HP
B-1200 BRUSSELS 220 Yorkland Blvd., Unit #11 Navervej 1

support is available for specific products.
Tel: (02) 762-32-00 WILLOWDALE, Ontario M2J 1R5 DK-8600 SILKEBORG

HP distributors are printed in italics. Telex: 23-494 paloben bru Tel: (416) 499-9333 Tel: (06) 82-71-66

A,CH,CM,CS,E,MP,P CH Telex: 37409 hpas dk

Quebec
CH,E

ANGOLA Canberra, Australia BRAZIL Hewlell-Packard (Canada) LId.
Telectra Capital Territory Hewlell-Packard do Brasil l.e.C. 17500 South Service Road ECUADOR
Empresa Tecnica de Equipamentos Office L1da. Trans-Canada Highway CYEDE Cia. Ltda.
Electricos, S.A.R.L. Hewlell-Packard Australia LId. Alameda Rio Negro, 750 KIRKLAND, Quebec H9J 2M5 Avenida £loy Alfaro 1749
R. Barbosa Rodrigues, 41-1 Dr. 121 Wollongong Street Alphaville 06400 BARUERI SP Tel: (514) 697-4232 Casilla 6423 CCI
Caixa Postal 6487 FYSHWICK, A.C.T. 2609 Tel: (11) 421-1311 A,CH,CM,CS,E,MP,P' QUITO
LUANDA Tel: 804244 Telex: 01 133872 HPBR-BR

Hewlell-Packard (Canada) LId.
Tel: 450-975, 243-052

Tel' 35515,35516 Telex: 62650 Cable: HEWPACK Sao Paulo Telex: 2548 CYEDE ED
E,M,P Cable: HEWPARD Canberra A,CH,CM,CS,E,M,P

Les Galeries du Vallon A,CM,E.P
2323 Du Versont NordCH,CM,E,P Hewlell-Packard do Brasill.e.C. STE. FOY, Quebec G1N 4C2 Hospitalar S.A.

ARGENTINA Melbourne, Victoria Office L1da. Tel: (418) 687-4570
Robles 625

Hewlell-Packard Argentina SA Hewlell-Packard Australia LId. Avenida Epitacio Pessoa, 4664 CH
Casilla 3590

Avenida Santa Fe 2035 31-41 Joseph Street 22471 RIO DE JANEIRO-RJ QUITO
Martinez 1640 BUENOS AIRES BLACKBURN, Victoria 3130 Tel: (21) 286-0237 CHILE Tel: 545-250, 545-122
Tel: 798-5735, 792-1293 Tel: 877 7777 Telex: 021-21905 HPBR-BR Jorge Calcagni y Cia. Ltda. Telex: 2485 HOSPTL ED
Telex: 17595 BIONAR Telex: 31-024 Cable: HEWPACK Rio de Janeiro Arturo Burhle 065 Cable: HOSPITALAR-Quito
Cable: HEWPACKARG Cable: HEWPARD Melbourne A,CH,CM,E,MS,P' Casilla 16475 M
A,E,CH,CS,P A,CH,CM,CS,E,MS,P SANTIAGO 9 EGYPT
Biotron S.A.C.I.M. e I. Perth, Western Australia CANADA Tel: 222-0222

International Engineering Associates
Av Paseo Colon 221, Piso 9 Office Alberta Telex: Public Booth 440001

24 Hussein Hegazi Street
1399 BUENOS AIRES, Hewlell-Packard Australia LId. Hewlell-Packard (Canada) LId. A,CM,E,M

Kasr-el-Aini
Tel: 30-4846,30-1851 261 Stirling Highway 210, 7220 Fisher Street S.E. Olympia (Chile) Ltda. CAIRO
Telex: 17595 BIONAR CLAREMONT, W.A. 6010 CALGARY, Alberta T2H 2H8 Av. Rodrigo de Araya 1045 Tel: 23829,21641
M Tel: 383·2188 Tel: (403) 253-2713 Casilla 256-V Telex: lEA UN 93830
Fate S.A. 1.G.I.Electronica Telex: 93859 A,CH,CM,E' ,MS,P' SANTIAGO 21 CH,CS,E,M
Venezuela 1326 Cable: HEWPARD Perth

Hewlell-Packard (Canada) LId. Tel: 2-25-50-44 Informatic For Systems
1095 BUENOS AIRES A,CH,CM"E,MS,P

11620A-168th Street Telex: 340-892 OL YMP CK 22 Talaat Harb Street
Tel: 37-9020,37-9026/9 Sydney, New South Wales EDMONTON, Alberta T5M 3T9 Cable: Olympiachile Santiagochile CAtRO
Telex: 9234 FA TEN AR Office Tel: (403) 452-3670 CH,CS,P Tel: 759006
P Hewlell-Packard Australia LId.

A,CH,CM,CS,E,MS,P' CHINA, People's Republic Telex: 93938 FRANK UN
17-23 Talavera Road of CH,CS'p

AUSTRALIA P.O. Box 308 British Columbia China Hewlett-Packard Rep. Office Egyptian International Office
Adelaide, South Australia

NORTH RYDE, N.S.W. 2113 Hewlell-Packard (Canada) LId. P.O. Box 418 for Foreign TradeTel: 887-1611 10691 Shellbridge Way lA Lane 2, Luchang St.Office Telex: 21561 RICHMOND, Po.Box 2558
Hewlell-Packard Australia LId. Beiwei Rd., Xuanwu District CAIRO
153 Greenhill Road

Cable: HEWPARD Sydney British Columbia V6X 2W7 BEIJING Tel: 650021
PARKSIDE, SA 5063

A,CH,CM,CS,E,MS,P Tel: (604) 270-2277 Tel: 33-1947, 33-7426 Telex: 93337 EGPOR
Tel: 272-5911 AUSTRIA Telex: 610-922-5059 Telex: 22601 CTSHP CN P
Telex: 82536 Hewlell-Packard Ges.m.b.h. A,CH,CM,CS,E' ,MS,P' Cable: 1920
Cable: HEWPARD Adelaide Grollenhofstrasse 94 Manitoba A,CH,CM,CS, E,P EL SALVADOR
A' ,CH,CM"E,MS,P Verkaufsburo Graz Hewlell-Packard (Canada) LId. COLOMBIA IPESA de £I Salvador S.A.

A-8052 GRAZ 380-550 Century Street /nstrumentaci6n 29 Avenida Norte 1216
Brisbane, Queensland Tel: 291-5-66 WINNIPEG, Manitoba R3H OY1 SAN SALVADOR
Office Telex: 32375 Tel: (204) 786-6701

H. A. Langebaek & Kier S.A.
Tel: 26-6858,26-6868

HewlE:II-Packard Australia LId. Carrera 7 No. 48-75
49 Park Road

CH,E' A,CH,CM,E,MS,P' Apartado Aereo 6287 Te/ex: Public Booth 20107

MILTON, Queensland 4064 Hewlell-Packard Ges.m.b.h. New Brunswick BOGOTA 1, DE A,CH,CM,CS,E,P

Tel: 229-1544 Stanglhofweg 5 Hewlell-Packard (Canada) LId. Tel: 287-8877 FINLAND
Telex: 42133 A-4020 L1NZ 37 Sheadiac Road Telex: 44400 INST CO
Cable: HEWPARD Brisbane Tel: 0732 51585 MONCTON, New Brunswick E2B 2VQ Cable: AARIS Bogota

Hewlell-Packard Oy

A,CH,CM,E,M,P CH Tel: (506) 855-2841 A,CM,E,M,PS'p
Revontulentie 7
SF-02100 ESPOO 10

Effective November 1, 1982: Hewlell-Packard Ges.m.b.h. CW' COSTA RICA Tel: (90) 455-0211
10 Payne Road Lieblgasse 1

Nova Scotia Cientifica Costarricense S.A. Telex: 121563 hewpa sf

J
THE GAP, Queensland 4061 P.O. Box 72

Hewlell-Packard (Canada) LId. Avenida 2, Calle 5 A,CH,CM,CS,E,MS,P
Tel: 30-4133 A-1222 VIENNA
Telex: 42133 Tel: (0222) 23-65-11-0 P.O. Box 931 San Pedro de Montes de Oca Hewlell-Packard Oy

Telex: 134425 HEPA A 900 Windmill Road Apartado.10159 Aaloksenkatv 1O-e

A,CH,CM,CS,E,MS,P DARTMOUTH, Nova Scotia B2Y 3Z6 SAN JOSE
Tel: (902) 469-7820 Tel: 24-38-20, 24-08-19
CH,CM,CS,E' ,MS,P' Te/ex: 2367 GALGUR CR

CM,E,MS,P

0 SALES &SUPPORT OFFICES Hewlett-Packard Ltd. Blue Star Ltd.
West End House 41 Band Box House

Arranged Alphabetically by Country High Street, West End Prabhadevifa SOUTHAMPTON BOMBAY 400025
Hampshire S03 30Q Tel: 422-3101SF-40720-72 JYVASKYLA Hewlell-Packard France Hewlell-Packard GmbH
Tel: (703) 886767 Telex: 011-3751Tel: (941) 216318 Paris Porte-Maillot Technisches BUro Mannheim
Telex: 477138 Cable: BLUESTARCH 15, Avenue De L'Amiral Bruix Rosslauer Weg 2-4
CH A,M

Hewlell-Packard Oy F-75782 PARIS 16 0-6800 MANNHEtM
Hewlell-Packard Ltd. Blue Star Ltd.

Kainvunlie 1-C Tel: (1) 502-12-20 Tel: (0621) 70050
King Street Lane Sahas

SF-90140-140ULU Telex: 613663F Telex: 0462105
WINNERSH, Wokingham 414/2 Vir Savarkar Marg

Tel: (981) 338785 CH,MS,P A,C,E
Berkshire RG 11 5AR PrabhadeviHewlett-Packard France Hewlell-Packard GmbH

BOMBAY 400 025CH
2 Allee de la Bourgonelle Technisches BUro Neu Ulm Tel: (0734) 784774

Telex: 847178 Tel.' 422-6155F-35100 RENNES Messerschmittstrasse 7
Telex: 011-4093

FRANCE
A,CH,E,MHewlell-Packard France Tel: (99) 51-42-44 0-7910 NEU ULM

Cable: FROSTBLUEZ.I. Mercure B Telex: 740912F Tel: 0731-70241
A,CH,CM,CS,E,MRue Berthelot CH,CM,E,MS,P' Telex: 0712816 HP ULM-O

GREECE Blue Star Ltd.F-13763 Les Milles Cedex Hewlell-Packard France A,C,E'
Kostas Karaynnis S.A. Kalyan, 19 Vishwas ColonyAIX·EN·PROVENCE 98 Avenue de Bretagne Hewlell-Packard GmbH 8 Omirou Street Alkapuri, BORODA, 390 005Tel: (42) 59-41-02 F-76100 ROUEN Technisches BUro NUrnberg ATHENS 133 Tel: 65235Telex: 410770F Tel: (35) 63-57-66 CH*' ,CS Neumeyer.~trasse 90 Tel: 32 30 303, 3237371 Cable: BLUE STARA,CH,E,MS,P' Hewlell-Packard France 0-8500 NURNBERG Telex: 215962 RKAR GR A

Hewlell-Packard France 4 Rue Thomas Mann Tel: (0911) 52 20 83-87 A,CH,CM,CS,E,M,P Blue Star Ltd.
Boile Postale No. 503 Boite Postale 56 Telex: 0623 860

PLAISIO SA. 7 Hare Street
F-25026 BESANCON F-67200 STRASBOURG CH,CM,E,MS,P

G. Gerardos CALCUTTA 700 001
28 Rue de la Republique Tel: (88) 28-56-46 Hewlell-Packard GmbH 24 Stournara Street Tel: 12-01-31
F-25000 BESANCON Telex: 890141F Technisches BUro MUnchen ATHENS Telex: 021-7655
Tel: (81) 83-16-22 CH,E,MS,P' Eschenstrasse 5 Tel.' 36-11-160 Cable: BLUESTAR
CH,M Hewlell-Packard France 0-8028 TAUFKIRCHEN Telex: 221871 A,M
Hewlell-Packard France Pericentre de la Cepiere Tel: (089) 6117-1 P Blue Star Ltd.
Bureau de Vente de Lyon F-31081 TOULOUSE Cedex Telex: 0524985 133 Kodambakkam High Road
Chemin des Mouilles Tel: (61) 40-11-12 A,CH,CM,E,MS,P MADRAS 600 034

GUATEMALA Tel.' 82057Boite Postale 162 Telex: 531639F
GREAT BRITAIN IPESA Telex: 041-379F-69130 ECULLY Cedex A,CH,CS,E,P'
Hewlett-Packard Ltd. Avenida Reforma 3-48, Zona 9 Cable: BLUESTARTel: (7) 833-81-25 Hewlell-Packard France Trafalgar House GUATEMALA CITY A,MTelex: 310617F Immeuble Pericentre Navigation Road Tel.' 316627, 314786 Blue Star Ltd.A,CH,CS,E,MP F-59658 VILLENEUVE D'ASCQ Cedex ALTRINCHAM Telex: 4192 TEL TRO GU Bhandari House, 7th/8th FloorsHewlell-Packard France Tel: (20) 91-41-25 Chesire WA14 1NU A,CH,CM,CS,E,M,P 91 Nehru PlaceImmeuble France Evry Telex: 160124F Tel: (061) 928-6422 NEWDELfllll0024Tour Lorraine CH,E,MS,P' Telex: 668068 HONG KONG Tel.' 682547Boulevard de France
A,CH,CS,E,M Hewlell-Packard Hong Kong, Ltd. Telex: 031-2463F-91035 EVRY Cedex GERMAN FEDERAL Hewlell-Packard Ltd. G.P.O. Box 795 Cable: BLUESTARTel: (6) 077-96-60

REPUBLIC Oakfield House, Oakfield Grove 5th Floor, Sun Hung Kai Centre A,CH,CM, CS,E,MTelex: 692315F
Hewlell-Packard GmbH Clifton 30 Harbour Road Blue Star Ltd.E
Technisches BUro Berlin BRISTOL BS8 2BN, Avon HONG KONG 15/16:C Wellesley RdHewlell-Packard France Keithstrasse 2-4 Tel: (027) 38606 Tel: 5-8323211 PUNE411 0115th Avenue Raymond Chanas 0-1000 BERLIN 30 Telex: 444302 Telex: 66678 HEWPA HX Tel: 22775F-38320 EYBENS Tel: (030) 24-90-86 CH,M,P Cable: HEWPACK HONG KONG Cable: BLUE STARTel: (76) 25-81-41 Telex: 0183405 hpbln d Hewlell-Packard Ltd. E,CH,CS,P ATelex: 980124 HP GRENOB EYBE A,CH,E,M,P (Pinewood) CET Ltd. Blue Star Ltd.CH
Hewlell-Packard GmbH Nine Mile Ride 1402 Tung Way Mansion 2-2-47/1108 Bolarum Rd.Hewlell-Packard France Technisches BUro Btlblingen EASTHAMPSTEAD 199-203 Hennessy Rd. SECUNDERABAD 500 003Centre d'Affaire Paris-Nord
Herrenber~er Strasse 110 Wokingham Wanchia, HONG KONG Tel: 72057Bailment Ampere 5 etage 0-7030 BOBLINGEN Berkshire, 3RG11 3LL Tel.' 5-729376 Telex: 0155-459Rue de la Commune de Paris Tel: (07031) 667-1 Tel: 34463100 Telex: 85148 CET HX Cable: BLUEFROSTBoite Postale 300 Telex: bbn or Telex: 84-88-05 CM A,EF-93153 LE BLANC MESNIL A,CH,CM,CS,E,MP,P CH,CS,E Schmidt & Co. (Hong Kong) Ltd. Blue Star Ltd.Tel: (01) 865-44-52
Hewlell-Packard GmbH Hewlett-Packard Ltd. Wing On Centre, 28th Roor T.C. 7/603 PoornimaTelex: 211032F
Technisches BUro Dusseldorf Fourier House Connaught Road, C. MaruthankuzhiCH,CS,E,MS
Emanuel-Leutze-Strasse 1 257-263 High Street HONG KONG TRIVANDRUM 695013Hewlell-Packard France 0-4000 DUSSELDORF LONDON COLNEY Tel.' 5-455644 Tel: 65799Parc d'Activites Cadera Tel: (0211) 5971-1 Herts., AL2 1HA, SI. Albans Telex: 74766 SCHMX HX Telex: 0884-259Quartier Jean Mermoz Telex: 085/86533 hpdd d Tel: (0727) 24400 A,M Cable: BLUESTARAvenue du President JF Kennedy A,CH,CS,E,MS,P Telex: 1-8952716 EF-33700 MERIGNAC
Hewlell-Packard GmbH CH,CS,E ICELAND

INDONESIATel: (56) 34-00-84
Vertriebszentrale Frankfurt Hewlett-Packard Ltd Elding Trading Company Inc.

BERCA Indonesia P. T.Telex: 550105F
Berner Strasse 117 Tradax House, SI. Mary's Walk Hafnarnvoli- Tryggvagotu

P.O.Box 496/JKT.CH,E,MS
Postfach 560 140 MAIDENHEAD P.O. Box 895

JI. Abdul Muis 62Hewlett-Packard France 0-6000 FRANKFURT 56 Berkshire, SL6 1ST IS-REYKJAVIK
JAKARTA32 Rue Lothaire Tel: (0611) 50-04-1 Tel: (0628) 39151 Tel: 1-58-20, 1-63-03
Tel: 373009F-57000 METZ Telex: 04 13249 hpffm d CH,CS,E,P M
Telex: 46748 BERSAL IATel: (8) 765-53-50 A,CH,CM,CS,E,MP,P Hewlell-Packard Ltd. Cable: BERSAL JAKARTACH

Hewlell-Packard GmbH Quadrangle INDIA PHewlett-Packard France
Technisches BUro Hamburg 106-118 Station Road Blue Star Ltd. BERCA Indonesia P. T.Immueble Les 3 B
Kapstadtring 5 REDHILL, Surrey Sabri Complex II Floor Wisma Antara Bldg., 17th floorNouveau Chemin de la Garde
0-2000 HAMBURG 60 Tel: (0737) 68655 24 Residency Rd. JAKARTAZAC. de BoiS Briand
Tel: (040) 63804-1 Telex: 947234 CH,CS,E BANGALORE 560 025 A,CS,E,MF-44085 NANTES Cedex Tel: 55660 BERCA Indonesia P. T.Tel: (40) 50-32-22 Telex: 021 63032 hphh d Hewlell-Packard Ltd. Telex: 0845-430 P.O. Box 174/SBY.CH" A,CH,CS,E,MS,P Avon House Cable: BLUESTAR JI. Kutei No. 11Hewlett-Packard France Hewlell-Packard GmbH 435 Stratford Road A,CH,CM,CS,E SURABAYAZone Industrielle de Courtaboeuf Technisches BUro Hannover SHIRLEY, Solihull

Tel.' 68172Avenue des Tropiques Am Grossmarkt 6 West Midlands B90 4BL
Telex: 31146 BERSAL SBF-91947 Les Ulis Cedex ORSAY 0-3000 HANNOVER 91 Tel: (021) 745 8800
Cable: BERSAL-SURABA YATel: (6) 907-78-25 Tel: (0511) 46-60-01 Telex: 339105
A',E,M,PTelex: 600048F Telex: 092 3259 CH

A,CH,CM,CS,E,MP,P A,CH,CM,E,MS,P

IRAQ Hewlell-Packard Italiana S.p.A. Yokogawa-Hewlell-Packard Ltd. MALAYSIA Hewlell-Packard Nederland B.V. 0Hewlell-Packard Trading SA Via Turazza 14 3-29-21 Takaido-Higashi Hewlell-Packard Sales (Malaysia) Bongerd 2
Service Operation 1-35100 PADOVA Suginami-ku TOKYO 168 Sdn. Bhd. NL 2906VK CAPPELLE, AID Ijessel
AI Mansoor City 9B/3fl Tel: (049) 664888 Tel: (03) 331-6111 1st Floor, Bangunan British P.O. Box 41

('~BAGHDAD Telex: 430315 Telex: 232-2024 YHPTOK American NL2900 AA CAPELLE, Ijssel
Tel: 551-49-73 A,CH,E,MS A,CH,CM,CS,E,MP,P· Jalan Semantan, Damansara Heights Tel: (10) 51-64-44
Telex: 212-455 HEPAIRAQ IK Hewlett-Packard Italiana S.p.A. Yokogawa-Hewlell-Packard Ltd. KUALA LUMPUR 23-03 Telex: 21261 HEPAC NL
CH,CS Viale C. Pavese 340 Oaiichi Asano Building 4F Tel: 943022 A,CH,CS

1-00144 ROMA 5-2-8, Oodori, Telex: MA31011
IRELAND
Hewlell-Packard Ireland Ltd.

Tel: (06) 54831 UTSUNOMIYA, 320 A,CH,E,M,P·
NEW ZEALAND

82/83 Lower Leeson SI.
Telex: 610514 Tochigi Protei Engineering Hewlell-Packard (N.l.) Ltd.

DUBLIN 2
A,CH,CM,CS,E,MS,P· Tel: (0286) 25-7155 Lot 319, Satok Road 169 Manukau Road

Tel: (1) 608800 Hewlell-Packard Italiana S.p.A. CH,CS,E P.O.Box 1917 P.O. Box 26-189
Telex: 30439 Corso Svizzera, 184 Yokogawa-Hewlell-Packard Ltd. Kuching, SARAWAK Epsom, AUCKLAND
A,CH,CM,CS,E,M,P 1-10149 TORINO Yasudaseimei Yokohama Tel: 53544 Tel: 687-159

Tel: (011) 74 4044 Nishiguchi Bldg. Telex: MA 70904 PROMAL Cable: HEWPACK AucklandCardiac Services Ltd.
Telex: 221079 3-30-4 Tsuruya-cho Cable: PROTELENG CH,CM,E,P·Kilmore Road

Artane CH,E Kanagawa-ku A,E,M
Hewlell-Packard (N.l.) Ltd.

DUBLIN 5 JAPAN
YOKOHAMA, Kanagawa, 221

MALTA 4-12 Cruickshank Street
Tel: (01) 351820 Yokogawa-Hewlell-Packard Ltd.

Tel: (045) 312-1252
Philip Toledo Ltd. Kilbirnie, WELLINGTON 3

Telex: 30439 Inoue Building
CH,CM,E

Notabile Rd. P.O. Box 9443
M 1-21-8, Asahi-cho MRIEHEL Courtenay Place, WELLINGTON 3

ATSUGI, Kanagawa 243 JORDAN Tel: 44747, 455 66 Tel: 877-199
ISRAEL Tel: (0462) 28-0451 Mouasher Cousins Company Telex: 649 Media MW Cable: HEWPACK Wellington
Eldan Electronic Instrument Ltd. CM,C·,E P.O. Box 1387 P CH,CM,E,P
P.O. Box 1270

Yokogawa-Hewlell-Packard Ltd.
AMMAN Northrop Instruments & Systems

JERUSALEM 91000
Towa Building

Tel: 24907, 39907 MEXICO Ltd.
16, Ohaliav St.

2-2-3, Kaigandori, Chuo-ku
Telex: 21456 SABCO JO Hewlell-Packard Mexicana, SA de 369 Khyber Pass Road

JERUSALEM 94467
KOBE, 650, Hyogo

CH,E,M,P C.V. P.O. Box 8602
Tel: 533221,553242

Tel: (078) 392-4791 Av. Periferico Sur No. 6501 AUCKLAND
Telex: 25231 ABIPAKRD IL

C,E KENYA Tepepan, Xochimilco Tel: 794-091
A ADCOM Ltd., Inc., Kenya Telex: 60605

Yokogawa-Hewlell-Packard Ltd. MEXICO D.F. 16020
Electronics Engineering Division P.O.Box 30070 Tel: 676-4600 A,M
Motorola Israel Ltd. Kumagaya Asahi Yasoji Bldg 4F NAIROBI Telex: 17-74-507 HEWPACK MEX Northrop Instruments & Systems
16 Kremenetski Street 3-4 Chome Tsukuba Tel' 331955 A,CH,CS.E,MS,P Ltd.
P.O. Box 25016 KUMAGAYA, Saitama 360 Telex: 22639 110 Mandeville St.Tel: (0485) 24-6563 Effective November 1, 1982:TEL·AVIV 67899

CH,CM,E
E,M

Hewlett-Packard Mexicana, SA de P. O. Box 8388
Tel: 3-338973

C.V. CHRISTCHURCH
Telex: 33569 MotillL Yokogawa-Hewlell-Packard Ltd. KOREA Ejercito Nacional #570 Tel: 486-928
Cable: BASTEL Tel-Aviv Asahi Shinbun Oai-ichi Seimei Bldg., Samsung Electronics Computer Colonia Granada Telex: 4203
CH,CM,CS,E,M,P 2F Division 11560 MEXICO, O.F. A,M

4-7 Hanabata-cho 76-561 Yeoksam-Dong
ITALY KUMAMOTo-SHI,860 Kangnam-Ku

CH** Northrop Instruments & Systems
Hewlett-Packard Italiana S.p.A. Tel: (0963) 54-7311 C.P.O. Box 2775 Hewlell-Packard Mexicana, SA de Ltd.
Traversa 99C CH,E SEOUL C.V. Sturdee House
Via Giulio Petroni, 19 Yokogawa-Hewlell-Packard Ltd. Tel: 555-7555,555-5447 Rio Volga 600 85-87 Ghuznee Street
1-70124 BARI Shin Kyoto Center Bldg. 5F Telex: K27364 SAMSAN Pte. Colonia del Valle P.O. Box 2406
Tel: (080) 41-07-44 MONTERREY, N.L. WELLINGTON
M

614 Siokoji-cho A,CH,CM,CS,E,M,P
Tel: 78-42-93, 78-42-40, 78-42-41 Tel: 850-091

Nishiiruhigashi, Karasuma
Telex: 038-2410 HPMTY ME Telex: NZ 3380Hewlell-Packard Italiana S.p.A. Siokoji-dori, Shimogyo-ku KUWAIT CH A,MVia Martin Luther King, 38/111 KYOTO 600 AI-Khaldiya Trading & Contracting

1-40132 BOLOGNA Tel: 075-343-0921 P.O. Box 830 Satat Effective Nov. 1, 1982

Tel: (051) 402394 CH,E KUWAtT Ave. Colonia del Valle #409 NORTHERN IRELAND
Telex: 511630 Yokogawa-Hewlell-Packard LtQ. Tel: 42-4910,41-1726 Col. del Valle Cardiac Services Company
CH,E,MS Mito Mitsui Building Telex: 22481 Areeg kt Municinio de garza garcia 95A Finaghy Road South
Hewlell-Packard Italiana S.p.A. 1-4-73, San-no-maru CH,E,M MONTERREY, N. v. BELFAST BT 10 OBY
Via Principe Nicola 43G/C MITO, Ibaragi 310 Photo & Cine Equipment fCISA Tel: (0232) 625-566
1-95126 CATANIA Tel: (0292) 25-7470 P.O. Box 270 Satat Taihe 229, Piso 10 Telex: 747626
Tel: (095) 37-10-87 CH,CM,E KUWAIT Polanco MEXICO D.F. 11570 M
Telex: 970291 Yokogawa-Hewlell-Packard Ltd. Tel: 42-2846, 42-3801 Tel: 250-5391
C,P Sumitomo Seimei Nagoya Bldg. Telex: 22247 Matin-KT Telex: 17-72755 fCE ME

NORWAY
Hewlell-Packard Italiana S.p.A. 2-14-19, Meieki-Minami, P

M
Hewlell-Packard Norge AlS

Via G. Oi Villorio 9 Nakamura-ku MOROCCO Folke Bernadolles vei 50
1-20063 CERNUSCO SUL NAVIGLIO NAGOYA, 450 Aichi LEBANON Dolbeau P.O. Box 3558
Tel: (2) 903691 Tel: (052) 571-5171 G.M. Dolmadjian 81 rue Karatchi N-5033 FYLLlNGSDALEN (Bergen)
Telex: 334632 CH,CM,CS,E,MS Achratieh

CASABLANCA Tel: (05) 16-55-40
A,CH,CM,CS,E,MP,P Yokogawa-Hewlell-Packard Ltd. P.O. Box 165.167

Tel' 3041-82, 3068-38 Telex: 16621 hpnas n
Hewlett-Packard Italiana S.p.A. Chuo Bldg., 4th Floor BEIRUT

Telex: 23051, 22822 CH,CS,E,MS
Via Nuova San Rocco a 5-4-20 Nishinakajima, Tel: 290293 f ~ewlett-Packard Norge AlS
Capodimonte, 62/A Yodogawa-ku MP** Osterndalen 18
1-80131 NAPLES OSAKA,532

Gerep P.O. Box 34
Tel: (081) 7413544 Tel: (06) 304-6021 LUXEMBOURG 2 rue d'Agadir

N-1345 OSTEIrAS
Telex: 710698 Telex: YHPOSA 523-3624 Hewlett-Packard Belgium S.A.lN.V. Boite Postale 156 Tel: (02) 17-11-80
A,CH,E A,CH,CM,CS,E,MP,P· Blvd de la Woluwe, 100 CASABLANCA Telex: 16621 hpnas n
Hewlett-Packard Italiana S.p.A. Woluwedal Tel: 272093,272095

A,CH,CM,CS,E,M,P
Viale G. Modugno 33 Yokogawa-Hewlett-Packard Ltd. B-1200 BRUSSELS Telex: 23 739
1-16156 GENOVAPEGLI 1-27-15, Yabe, Tel: (02) 762-32-00 P OMAN
Tel: (010) 68-37-07 SAGAMIHARA Kanagawa, 229 Telex: 23-494 paloben bru Khimjil Ramdas
Telex: 215238 Tel: 0427 59-1311 A,CH,CM,CS,E,MP,P NETHERLANDS P.O. Box 19
E,C Yokogawa-Hewlelt-Packard Ltd. Hewlett-Packard Nederland B.V.

MUSCATShinjuku Oai-ichi Seimei 6F Van Heuven Goedhartlaan 121
2-7-1, Nishi Shinjuku NL 1181KK AMSTELVEEN

Tel' 722225, 745601

~ Shinjuku-ku, TOKYO 160 P.O. Box 667 Telex: 3289 BROKER MB MUSCAT

Tel: 03-348-4611-5 NL1180 AR AMSTELVEEN P

CH,E Tel: (20) 47-20-21
Telex: 13216
A,CH,CM,CS,E,MP,P

0 SALES & SUPPORT OFFICES Hewlell-Packard Espanola SA Middle East Electronics
clo Costa Brava 13 PlaceAzm~

Arranged Alphabetically by Country Colonia Mirasierra Boite Postale 2308

~~
E-MADRID 34 DAMASCUS
Tel: (1) 734-8061, (1) 734-1162 Tel: 334592

Suhail &Saud Bahwan Soquimica SINGAPORE CH,CS,M Telex: 11304 SA TACO SY
P.O. Box 169 Av. da Liberdade, 220-2 Hewlell-Packard Singapore (Pty.) Hewlell-Packard Espanola SA M,P
MUSCAT 1298 LISBON Codex LId. Av Ram6n y Cajal 1-9
Tel: 734201-3 Tel: 5621811213 P.O. Box 58 Alexandra Post Office Edificio Sevilla 1, TAIWAN
Telex: 3274 BAHWAN MB Telex: 13316 SABASA P SINGAPORE, 9115 E-SEVILLA 5 Hewlell-Packard Far East LId.

Telectra-Empresa Tecnica de 6th Floor, Inchcape House Tel: 64-44-54, 64·44-58 Kaohsiung Office
PAKISTAN Equipmentos Electricos S.a.r.!. 450-452 Alexandra Road Telex: 72933 2/F 68-2, Chung Cheng 3rd Road
Mushko &Company Ltd. Rua Rodrigo da Fonseca 103 SINGAPORE 0511 A,CS,MS,P KAOHSIUNG
1-B, Street 43 P. O. Box 2531 Tel: 631788 Hewlell-Packard Espanola SA

Tel: 241-2318,261-3253
Sector F-811 P-L/SBON 1 Telex: HPSGSO RS 34209 CH,CS,E
ISLAMABAD Tel: (19) 68-60-72 Cable: HEWPACK, Singapore

C/Ramon Gordillo, 1 (Entlo.3)
Hewlell-Packard Far East LId.

Tel: 26875 Telex: 12598 A,CH,CS,E,MS,P E-VALENCIA 10
Taiwan Branch

Cable: FEMUS Rawalpindi CH,CS,E,P Dynamar International Ltd. Tel: 361·1354, 361-1358
5th Floor

A,E,M Unit 05-11 Block 6
CH,P

205 Tun Hwa North Road
Mushko &Company Ltd. PUERTO RICO Kolam Ayer Industrial Estate SWEDEN TAIPEI
Oosman Chambers Hewlell-Packard Puerto Rico StNGAPORE 1334 Hewlell-Packard Sverige AB Tel:(02) 751-0404
Abdullah Haroon Road P.O. Box 4407 Tel: 747-6188 Cable:HEWPACK Taipei
KARACHI 0302 CAROLINA, Puerto Rico 00628 Telex: RS 26283 Sunnanvagen 14K

A,CH,CM,CS,E,M,P
Tel: 511027,512927 Calle 272 Edificio 203 CM S-22226 LUND

Tel: (046) 13-69-79 Ing Lih Trading Co.
Telex: 2894 MUSKO PK Urb. Country Club

Telex: (854) 17886 (via SPANGA 3rd Floor, 7 Jen-Ai Road, Sec. 2
Cable: COOPERA TOR Karachi RIO PIEDRAS, Puerto Rico 00924 SOUTH AFRICA TAIPEt 100
A,E,M,P· Tel: (809) 762-7255 Hewlell·PackardSo Africa (Pty.) LId. office)

CH Tel: (02) 3948191
A,CH,CS P.O. Box 120 Cable: INGLIH TAIPEI

PANAMA Howard·Place Hewlell-Packard Sverige AB A
Electr6nico Balboa, S.A. QATAR Pine Park Center, Forest Drive, Vastra Vintergatan 9

Nasser Trading &Contracting Pinelands S-70344 OREBRO THAILAND
Calle Samuel Lewis, Ed. Alta

P.O. Box 1563 CAPE PROVINCE 7405 Tel: (19) 10-48-80 Unimesa
Apartado 4929

DOHA Tel: 53-7954 Telex: (854) 17886 (via SPANGA 30 Patpong Ave., Suriwong
PANAMAS

Tel: 22170,23539 Telex: 57-20006 office) BANGKOK 5
Tel: 64-2700
Telex: 3483 ELECTRON PG Telex: 4439 NASSER DH A,CH,CM,E,MS,P CH Tel: 234 091, 234 092

A,CM,E,M,P M Hewlell-Packard So Africa (Pty.) LId. Hewlell-Packard Sverige AB Telex: 84439 Simonco TH

Foto Internacional, S.A. Computearbia P.O. Box 37099 Skalholtsgatan 9, Kista Cable: UNIMESA Bangkok

Colon Free Zone P.O. Box 2750 92 Overport Drive Box 19 A,CH,CS,E,M

Apartado 2068 DOHA DURBAN 4067 S-16393 SPANGA Bangkok Business Equipment Ltd.

COLON 3 Tel: 883555 Tel: 28-4178, 28-4179, 28-4110 Tel: (08) 750-2000 515-6 Dejo Road

Tel: 45-2333 Telex: 4806 CHPARB Telex: 6-22954 Telex: (854) 17886 BANGKOK

Telex: 8626 IMPORT PG P CH,CM A,CH,CM,CS,E,MS,P Tel: 234·8670,234-8671

P Eastern Technical Services Hewlell-Packard So Africa (Pty.) LId. Hewlell-Packard Sverige AB Telex: 87669-BEOUIPT TH
P.O. Box 4747 6 Linton Arcade Frotallisgat~n 30 Cable: BUSIOUIPT Bangkok

PERU DOHA 511 Cape Road S-42132 VASTRA-FROLUNDA P

Cra Electro MMica S.A. Tel: 329993 Linton Grange Tel: (031) 49-09-50 TRINIDAD & TOBAGO
Los Flamencos 145, San Isidro Telex: 4156 EASTEC DH PORT ELIZABETH 6001 Telex: (854) 17886 (via SPANGA Caribbean Telecoms Ltd.
Casilla 1030 Tel: 041-302148 office) 50lA Jerningham Avenue
LIMA 1 SAUDI ARABIA CH CH,E,P P.O. Box 732
Tel: 41-4325, 41·3703 Modern Electronic Establishment

Hewlell-Packard So Africa (Pty.) LId. PORT·OF·SPAIN
Telex: Pub. Booth 25306 Hewlett-Packard Division

P.O. Box 33345 SWITZERLAND Tel' 62-44213,62-44214
A,CM,E,M,P P.O. Box 281 Glenstantia 0010 TRANSVAAL Hewlell-Packard (Schweiz) AG Telex: 235,272 HUGCO WG

Thuobah
1st Floor East Clarastrasse 12 A,CM,E,M,P

PHILIPPINES
AL·KHOBAR Constantia Park Ridge Shopping CH-4058 BASLE

The Online Advanced Systems Tel: 864-46 78 Centre Tel: (61) 33-59-20 TUNISIA

Corporation Telex: 671106 HPMEEK SJ Constantia Park A Tunisie Electronique

Rico House, Amorsolo Cor. Herrera Cable: ELECTAAL-KHOBAR PRETORIA Hewlell-Packard (Schweiz) AG 31 Avenue de la Liberte

Street CH,CS,E,M,P Tel: 982043 Bahnhoheweg 44 TUNIS

Legaspi Village, Makati Modern Electronic Establishment Telex: 32163 CH-3018 BERN Tel: 280-144

P.O. Box 1510 Hewlett-Packard Division CH,E Tel: (031) 56-24-22 E,P

Metro MANILA P.O. Box 1228
Hewlell-Packard So Africa (Pty.) LId. CH Corema

Tel: 85-35-81,85-34-91,85-32-21 Redec Plaza, 6th Floor
Private Bag Wendywood Hewlell-Packard (Schweiz) AG 1ter. Av. de Carthage

Telex: 3274 ONLINE JEDDAH
SANDTON 2144 47 Avenue Blanc TUNIS

A,CH,CS,E,M Tel: 644 38 48
Tel: 802-5111, 802·5125 CH-1202 GENEVA Tel: 253-821

Electronic Specialists and Telex: 402712 FARNAS SJ Telex: 4-20877 Tel: (022) 32-48-00 Telex: 12319 CABAM TN

Proponents Inc. Cable: ELECTA JEDDAH Cable: HEWPACK Johannesburg CH,CM,CS M

690-B Epifanio de los Santos CH,CS,E,M,P
A,CH,CM,CS,E,MS,P Hewlell~Packard (Schweiz) AG TURKEYModern Electronic EstablishmentAvenue

Hewlett Packard Division
19 Chemin Chateau Bloc Teknim Company Ltd.

Cubao, QUEZON CITY
P.O. Box 2728 SPAIN CH-1219 LE L1GNON-Geneva Iran Caddesi No. 7

P. O. Box 2649 Manila
RIYADH Hewlell-Packard Espanola SA Tel: (022) 96·03-22 Kavaklidere, ANKARA

Tel: 98-96-81, 98-96-82, 98-96·83
Tel: 491-97 15,491-6387

c/Entenza, 321 Telex: 27333 hpag ch Tel: 275800
Telex: 40018,42000 ITT GLOBE

Telex: 202049 MEERYD SJ E-BARCELONA 29 Cable: HEWPACKAG Geneva Telex: 42155 TKNM TR
MACKA YBOOTH

CH,CS,E,M,P Tel: (3) 322-24-51,321-73-54 A,E,MS,P E
P Telex: 52603 hpbee Hewlell-Packard (Schweiz) AG E.M.A.

SCOTLAND
A,CH,CS,E,MS,P Allmend 2 Medina EIdem Sokak No.4116

PORTUGAL
Hewlell-Packard LId. Hewlell-Packard Espanola SA CH-8967 WIDEN Yuksel Caddesi

Mundinter c/San Vicente SIN Tel: (57) 31 21 11 ANKARA
Intercambio Mundial de Comercio Royal Bank Buildings

Edificio Albia 11,7 B Telex: 53933 hpag ch Tel: 175622
S.a.r.! Swan Street

E-BILBAO 1 Cable: HPAG CH M
P.o. Box 2761 BRECHIN, Angus, Scotland

Tel: (4) 23-8306, (4) 23-8206 A,CH,CM,CS,E,MS,P
Av. Antonio Augusto de Aguiar 138 Tel: (03562) 3101-2

A,CH,E,MS UNITED ARAB EMIRATES
P-L/SBON CH SYRIA EmitacLtd.
Tel: (19) 53-21-31, 53-21-37 Hewlell-Packard LId. Hewlell-Packard Espanola SA General Electronic Inc. P.O. Box 1641
Telex: 16691 munter p SOUTH QUEENSFERRY Calle Jerez 3 Nuri Basha SHARJAH
M West Lothian, EH30 9GT E-MADRID 16 P.O. Box 5781 Tel: 354121, 354123

GB-Scotland Tel: (1) 458-2600 DAMASCUS Telex: 68136 Emitac Sh
Tel: (031) 3311188 Telex: 23515 hpe Tel: 33-24-87 CH,CS,E,M,P
Telex: 72682 A,CM,E Telex: 11216/T1KAL SY
A,CH,CM,CS,E,M Cable: ELECTROBOR DAMASCUS

E

	List of Effective Pages
	Printing History
	Preface
	Conventions Used in this Manual
	Contents
	Section I The Transact Language
	Section II Technical Overview
	Section III Transact/3000 Programs
	Section IV Transact Data Storage Registers
	Section V Running Transact/3000
	Section VI Transact/3000 Verbs
	Section VII Transact Test Facility
	Appendix A Compiler Error Messages
	Appendix B Processor Error Messages
	Appendix C Flow Charts of File and Database Operation
	Appendix D Intrinsics Allowed in DEFINE(INTRINSIC)
	Appendix E Optimizing Transact Applications
	Index

