
HP 3000 Computer System

AID Diagnostic Lan.guage
Reference Manual

rli;a HEWLETT
a:~ PACKARD

COMPUTER SYSTEMS DIVISION, 19447 PRUNERIDGE AVE., CUPERTINO, CALIF. 95014

Part No. 30341-90006
Index No. 3HDWR.070.30341·90006 Printed in U.S.A 5/81

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor
mance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied or reproduced without the prior written consent of
Hewlett-Packard Company.

Copyrlght©'981 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES I

The Lilt of Effective Pales llives the date of the current edition and of any pagel c:banied In updates to that eclitlon.
WlthiD the manual, any pap chanpd aiDce the Jut eclition II Indicated by printlnl the date the changel were made
on the botcom of the page. Dwtpa are marked with a vertical bar In the maqIn.1f an update II Incorporated when an
eclition is reprinted, these bars are removed but the dates remain.

iii

IPRINTING HISTORY

New editions are complete reviliona of the manual. Update packqes, which are ilsued between editions, contain
additioDll and replacement pqea to be merged into the manual by the customer. The date of the title pap of the
manual chan... only when a new edition II pUblilbed. When an edition II reprinted, all the prior updates to the edition
are Incorporated.

iv

CONTENTS

SECTION I - GENERAL INFORMATION

Paragraph

INTRODUCTION ••
SPECIAL KEYS ••
PROMPT CHARACTERS •••••••••••••••••••••••••••••••••••••••
LOADING THE AID DIAGNOSTIC PROGRAM ••••••••••••••••••••••
AID COMMANDS AND STATEMENTS OVERVIEW ••••••••••••••••••••

Commands •••
Statements •.••.•••.•••••••••••••.••••••••••••••••••••
Changing Or Deleting A Statement •••••••••••••••••••••

AID PROGRAMMING STRUCTURES ••••••••••••••••••••••••••••••
LISTING AN AID PROGRAM ••••••••••••••••••••••••••••••••••
EXECUTING A PROGRAM •••••••••••••••••••••••••••••••••••••
DELETING A PROGRAM ••••••••••••••••••••••••••••••••••••••
DOCUHENTING A PROGRAM •••••••••••••••••••••••••••••••••••
AID OPERATOR MODE STATE DIAGRAM •••••••••••••••••••••••••

SECTION II - ESSENTIALS OF AID

Paragraph

INTRODUCTION ••
EXPRESSIONS •••
CONSTANTS •••
VARIABLES •••
DATA BUFFERS ••
STRINGS AND STRING BUFFERS ••••••••••••••••••••••••••••••

Strings ••
String Buffers •••••••••••••••••••••••••••••••••••••••

OPERATORS (OVERVIEW) ••••••••••••••••••••••••••••••••••••
RESERVED VARIABLES (OVERVI EW) •••••••••••••••••••••••••••
OPERATOR INPUT MODES ••••••••••••••••••••••••••••••••••••

Entry Mode Input •••••••••••••••••••••••••••••••••••••
Execution Mode Input ••••••••••••.•••••••••••••••••••••
Pause Mode Input ••••• ~ •••••••••••••••••••••••••••••••

PROGRAM EXECUTION •••••••••••••••••••••••••••••••••••••••
ERROR REPORTING •••

Entry Mode Errors ••••••••••••••••••••••••••••••••••••
Execution Mode Errors ••••••••••••••••••••••••••••••••
Program Detection Errors •••••••••••••••••••••••••••••

STATEMENT MEMORY ALLOCATION AND EXECUTION TIME
INFORMATION ••

Statement Memory Allocation ••••••••••••••••••••••••••
Execution Times ••••••••••••••••••••••••••••••••••••••

v

Page

833-1
833-1
833-2
833-2
833-2
833-2
833-3
833-4
833-4
833-5
833-6
833-7
833-8
833-10

Page

833-11
833-11
833-11
833-12
833-13
833-14
833-14
833-14
833-15
833-17
833-18
833-18
833-18
833-18
833-19
833-19
833-20
833-20
833-20

833-21
833-21
833-22

CONTENTS (Continued)

SECTION III - AID COMMANDS

Paragraph

INTRODUCTION ••
CREATE ••
DELETE ••
EEPR ••
EEPS ••
ENPR ••
ENPS ••
EP ••
EXIT •••••••••••••••••••••••••••••••.•••••••••••••••••••••
GO ••
INC •••
LC ••
LF ••
LIST ••
LOAD ••
LOOP ••
LOOPOFF •••
MODIFY ••
PURGE •••
REN •••
RST •••
RUN ••.•••••••••
SAVE ••
SEPR ••
SEPS .
SET •••
SNPR ••
SNPS ••

-TEST ••

SECTION IV - AID STATEMENTS (NON I/O)

Paragraph

INTRODUCTION ••
ASSIGN ••
BUMP ••
CB ••
(COMMENT) •••
DB ••
DELAY •••
ENABLE ••
END •••

vi

Page

833-27
833-27
833-28
833-28
833-29
833-29
833-30
833-31
833-31
833-32
833-33
833-33
833-34
833-34
833-37
833-38
833-39
833-39
833-40
833-41
833-42
833-42
833-43
833-44
833-45
833-45
833-46
833-47
833-47

Page

833-49
833-49
833-50
833-50
833-51
833-52
833-53
833-53
833-54

CONTENTS (Continued)

SECTION IV (Con't)

Paragraph

EPAUSE 000 000 0 0 • 0 0 0 0 0 00 • 0 0 .. 00 0 0 0 0 0 0 0 0 0 • 0 0 0 0 00 0 .. 0 .. 0 000 00 0 ..

EPRINT 00000.00.00000000000000000.00000.000 ... 0.0000000000

FILENAME 0 00 • 00 • 0 0 ••• 0 0 0 0 0 000 0 0 • 0 0 • 0 0 0 0 0 • 0 •• 0 •• 0 0 0 000 0 .0"

FOR-STEP-UNTIL •• 0 ••• 0 •• 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 • 0 • 0 0 0 • 0 0 0 0 0 0 •

GOSUB 00000 •• 00.000.00 •• 000000.00000 •• 00000.00000000000 ••

GOTO 00000 •• 000 •• 00 •• 000.000 •• 0.00000.00 •• 0.00000000.0000

IF-THEN 0.0 •• 00 •• 0 •• 0.0.0000.0.00 ••• 000 •• 00 •• 0000.0000000

IFN-THEN 00 •• 00 •• 0 ••• 0000000000.0 •• 000 00 •• 0 • 000000000 •• 0"

INPUT 0 0 0 0 o •• 0 •• 00 ••• 00.0.00 •• 00 •• 0 .0 •• 0 • 0 0.0000000000.00

INPUTB .0000000 •• 00 •• 00.000 •• 0.00 •• 000 •••• 0 •• 000 000000000

LET .00000 •• 0.0 •• 0 •• 00 •• 0.0.0.0.00.00 •• 0000 •• 0000.0000000

LOOPTO 00000.00.00.00000000000.0000000.00000.00000000000 ..

LPOFF/LPON • 0 0 0 • 0 0 0 • 0 0 ••• 0 ••• 0 0 0 0 0 .. 0 0 0 • 0 0 0 0 .. 0 0 • 0 0 0 0 0 0 0 • 0 0

NEXT 0 ••• 00 •••••• 0 •• 00 •• 0000 •••• 0.000000000.0.0000000000 ..

NOCHECKf' 0 ~ 0 • 0 0 0 • 0 •• 0 0 • 0 0 0 0 0 • 0 0 • 0 .. 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PAGE 000000.000.00.00 .. 0 0 0 0 0 •• 0 .00.00000000 •• 000000000000.

PAUSE 00000.000 000.0000.000000 •• 0 ••• 0 0 0 0 0 0 0 •• 000 0.0000000

PPRINT 0 •• 00. 00 000.0000.000000 •• 0 .00000.0.00000 0 000000000

PRINT 000000.00 00000.000.000000000000000000.0000000000

PRINTEX .00 •• 00.000.000000 .. 0 0 0 0 .000000000.0.0.00000000000

RANDOM 0 0000.00000000000000.00 •• 000.0000.0.00000000000

READCLOCK 000000000000.00.00 ... 000.000000000 •• 0.0000000000

READFILE .0 •• 00.00.00 ••• 00.0.0000.000000000 ... 000000000000

RETURN 00.0.000.0 •• 000.000000.000.0000 .. 0000 •• 0.0000000000

SECTION 00.0.0000 e. 0 0 0 0 0 000000 .. 0 0 0 0" 0 0 0 .. 0" 0 0 0 0 0 0 0 0

SPACE 0 0.000.00000.00 .. 0 0 00 •• 0 0 0 0 0 0 0 0 0 0 0 • 0 000.000.00.00000

SPACESOFF/SPACESON 0 .. 0 0 • 0 0 0 0 • 0 0 ••• 0 0 0 0 • 0 • 0 0 0 0 0 • 0 0 0 0 • 0 0 • 0 0

STARTCLOCK .000.0.0000000 ... 0000000000000000000000000.0.00

SUPPRESS 00 •• 0 •• 00 •• 0000000 0 0 0.00 0.00000000000.0 .. 0 0 0

WRITEFILE .. 0 0 0 00.0000 0 .. 0 0.00.00000.00.000000 •• 000000000

ZEROESOFF/ZEROESON 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 .. 0 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0

SECTION V - SPECIAL CHARACTERS

Paragraph

INTRODUCTION 0.0 .. 0 0 0000000000.00.00 0 0 0 0 0000 .. 0 •• 0 .. 0 00 .. 0 0

PERIOD .. 0 0 0 0000000000 .. 0 0 • 0 0 • 00.000 0 0 .00 .. 00000 •• 0 0 0 0 0 • 0

CONTROL H 0000000.0000000.000000 0 0 0 0 00 ... 000000000.00000

CONTROL X 000000 .. 00 ... 000000 000.00 .. 0 0 00000.000000000000

PARENTHESES 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 ••• 0 0 0 0 ... 0 0 0 ... 0 0

QUOTATION MARKS 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 •• 0 .. 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0

EXCLAMATION MARK 0'" 0 0 •• 0 0 00000.00000.000 •• 0.0.0000. 0.000

PERCENT SIGN 0000 0 • 0 0 0 000 ... 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 000. 0 .. 0 00000 ..

vii

Page

833-54
833-55
833-56
833-56
833-58
833-58
833-59
833-60
833-60
833-61
833-62
833-63
833-64
833-64
833-65
833-65
833-66
833-66
833-67
833-68
833-68
833-69
833-70
833-71
833-71
833-72
833-73
833-73
833-74
833-74
833-75

Page

833-77
833-77
833-77
833-78
833-78
833-79
833-79
833-80

CONTENTS (Continued)

SECTION V (Con't)

Paragraph

PRINT SPACING •••
GREATER THAN SIGN •••••••••••••••••••••••••••••••••••••••
AMPERSAND SIGN ••
SEMICOLON •••
CONTROL Y (ATTENTION) •••••••••••••••••••••••••••••••••••
QUESTION MARK (S) ••
COMMA •••
SLASH MARK ••

SECTION VI - OPERATORS

Paragraph

INTRODUCTION ••
ASSIGNMENT (:=) •••
INTEGER MULTIPLY (*) ••••••••••••••••••••••••••••••••••••
INTEGER DIVIDE (/) ••••••••••••••••••••••••••••••••••••••
INTEGER ADD (+) •••
INTEGER SUBTRACT (-) ••••••••••••••••••••••••••••• ~ ••••••
NOT •••
EQUAL (=) •••
NOT EQUAL TO (<» •••••••••••••••••••••••••••••••••••••••
GREATER OR LESS THAN (> OR <) •••••••••••••••••••••••••••
LOGICAL AND •••
LOGICAL OR ••
EXCLUSIVE OR ••
MODULO OPERATION ••
LOGICAL SHIFT OPERATIONS ••••••••••••••••••••••••••••••••
ARITHMETIC SHIFT OPERATIONS •••••••••••••••••••••••••••••
CIRCULAR SHIFT OPERATIONS •••••••••••••••••••••••••••••••
SPECIAL RELATIONAL OPERATORS ••••••••••••••••••••••••••••

SECTION VII - RESERVED VARIABLES

Paragraph

INTRODUCTION ••
BADINTP •••
CHANNEL •••
CONCHAN •••
DEVICE ••
FILEINFO ••
FILELEN ••

viii

Page

833-80
833-81
833-81
833-82
833-82
833-83
833-84
833-85

Page

833-87
833~87

833-87
833-88
833-88
833-89
833-89
833~90

833-90
833-90
833-91
833-91
833-92
833-92
833-92
833-93
833-94
833-95

Page

833-97
833-97
833-98
833-98
833-98
833-99

833-100

CONTENTS (Continued)

SECTION VII (Con't)

Paragraph

GOPARAM1/GOPARAM2/GOPARAM3 •••••••••••••••••••••••••••••
INDEX ••
INPUTLEN' •••
MAXMEMORY ••
NEWTEST ••
NOINPUT ••
NORESPONS ••
OFFSET •••
PASSCOUNT ••
RUNPARAM1/RUNPARAM2/RUNPARAM3 ••••••••••••••••••••••••••
SECTION ••
SECTIONS1/SECTIONS2/SECTIONS3 ••••••••••••••••••••••••••
STEP •••
TIMEOUT ••
TRUE OR FALSE ••

SECTION VIII - AID STATEMENTS (I/O - NON CHANNEL PROGRAM)

Paragraph

INTRODUCTION •••
ADDRESSOFF/ADDRESSON •••••••••••••••••••••••••••••••••••
8SIO •••
COpy •••••••••••••••••••••••.••••••••.••••••••••••••••••
CPVA •••
ESIO •••••••••••.•••••••••••••••••••••••••••••••••••••••
HIOP •••
INIT ••••••••.••
IOCL •••••••••.•••
ION/IOFF •••..••
LOCATE •.••••••••••••••••••••••••••••••••••.••••••.•••.•
PROC ••••••••.•••••••••••••••••••••••.••••••••.•••••••••
RDRT ••••••.•••••••••••••.••••••••••.•••••••••••••••••••
RIOC •••.•••
RMSK ••••••••••••••••••••.••••••••••••••••••••••••••••••
ROCL ••••••.•••••••••••••••••••••.•••.••••••••••••••••••
RSIO •••••••••••••••••••..••••••••••••••••••••••••••••••
RSH •••••••••••••••••••••.•••••••.•••••••••••.••••.•••••
SMSK •••.••.•••••••••••••.••.••••.••••••••••••••••••••••
UPDATEOFF/UPDATEON •••.•••.•••••••••.•••••....•.••••••••
WIOC ••.••••.••••••••••••.•••.•••.••.•••.••••.••••.•••••

ix

Page

833-100
833-101
833-101
833-102
833-103
833-104
833-104
833-106
833-107
833-107
833-108
833-109
833-110
833-111
833-111

Page

833-113
833-113
833-114
833-116
833-116
833-117
833-117
833-118
833-118
833-118
833-119
833-119
833-120
833-121
833-121
833-122
833-122
833-123
833-124
833-124
833-124

CONTENTS (Continued)

SECTION IX - AID STATEMENTS (CHANNEL PROGRAM TYPE)

Paragraph

INTRODUCTION •••
CHP ••
CLEAR ••
DSJ ••
IDENT ••
IN •••
JUMP •••
RB ,; ••
ROMAB ••
ROMAR ••.••
RMW ••
RR ••••••••••••••••••••••••••••••••••••••• ,; •••••••••••••
RREG •••
WAIT •••
WB ••••••••••• ~ ••.•
WDMAB ••
WEMAR ••
\iR •••.••••••
WREG •••
WRIM •••

SECTION X - FUNCTION STATEMENTS

Paragraph

INTRODUCTION •••
ENDF •••
GETNAMEDATA ••.
GETNAMEINFO ••
FUNCTION •••
SETNAMEDATA ••

x

Page

833-125
833-125
833-126
833-126
833-127
833-128
833-129
833-129
833-130
833-130
833-131
833-131
833-132
833-132
833-133
833-134
833-134
833-134
833-135
833-135

Page

833-137
833-137
833-137
833-138
833-139
833-145

1.0 INTRODUCTION

GENERAL INFORMATION SECTION
I

AID is a stand alone program, independent of operating systems,
which interprets operator statements and commands with emphasis
on easy communication with I/O devices. HP AID is designed for
use on HP 3000 HP-IB version computer systems containing at least
256K bytes of memory, with a device to load AID and a keyboard
console for operator interaction.

HP AID consists of statements for writing programs and commands
for controlling program operation. It is the intent of HP AID to
provide the operator with the ability to communicate with many
different I/O devices in an interpretive level language while
maintaining execution efficiency as if the program was written in
a lower level language.

This manual assumes the operator is familiar with the keyboard
Console and terms related to the console (e.g. ENTER).

For documentation purposes,
outputed by the computer are
user input.

throughout this manual, characters
underlined to distinguish them from

All references to ENTER will be considered synonymous with
similar keys or rontrols on other Consoles or specialized
Consoles (i.e. the ENTER key on the IDS performs the same
function as return/line feed on most Consoles).

This manual makes reference to the Diagnostic/Utility System III
which is documented in the Diagnostic/Utility System III Refer
ence Manual, part no. 30341-90005 of this diagnostic manual set.

1.1 SPECIAL KEYS

RETURN

linefeed

CTRL

Must be pressed after every com
mand and or statement. It ter
minates the line and causes the
Console to return to the first
print position.

Advances the Console one line.

When pressed simultaneously with
another key, converts that key to
a control character that is
usually non-printing.

833-1

AID Diagnostic Language

CTRL H (Bs) or BACKSPACE

CTRL X (Cn) or DELETE ENTRY

CTRL Y (Em)
or

ATTENTION

1.2 PROMPT CHARACTERS

Deletes the previou~ character in
a line. The cursor 1S moved one
space to the left.

Cancels the line currently being
typed. Three exclamation marks, a
Return and Linefeed are issued to
the Console (Note - May not apply
to all Console types).

Suspends AID program execution,
reports the statement number cur
rently executing and prqmpts (».
See the PAUSE command for further
action. CTRL Y has no signifi
cance in the entry mode except
during LISTing where it causes
the listing to terminate.

AID uses a set of prompting characters to signal to the user that
certain input is expected or that certain actions are completed:

> The prompt character for AID; an AID command or statement is
expected.

1 User input is expected during execution of an INPUT{B)
statement.

11 Further input is expected during execution of an INPUT
statement.

111 A full line has been deleted with CTRL X (Note- May not
apply to all Console types).

1.3 LOADING THE AID DIAGNOSTIC PROGRAM

(1) Bring up the Diagnostic/Utility System III (DUSIII) from a
DUSII I Tape.

(2) Enter 'AID'

(3) AID will display its title message and prompt.

1. 4 AID COMMANDS AND STATEMENTS OVERVIEW

1.4.1 Commands

AID Commands instruct AID to perform certain control functions.
Commands differ from the statements used to write a program in
that a Command instructs AID to perform some action immediately,

833-2

AID Diagnostic Language

while a statement is an instruction to perform an action only
when the program is executed. A statement is always assigned a
statement number; a command is not.

Commands are entered following the prompt character (». Most
commands are allowed in either the entry mode or pause mode but
not both. Each command is a single word that must be typed in its
entirety with no embedded blanks. Some commands have additional
parameters to further define command operation. For a complete
decription of all Commands, refer to Section III.

1.4.2 Statements

Statements are used to write an AID program that will subsequent
ly be executed. Each statement entered is limited to 80 charac
ters and becomes part of the current program which is kept until
explicitly deleted.

A statement is always preceded by a statement number. This num
ber may be an integer between 1 and 9999 inclusive. The state
ment number indicates the order in which the statements will be
executed. Statements are ordered by AID from the lowest to the
highest statement number. Since this order is maintained by AID,
it is not necessary for the user'to enter statements in execution
order.

Following each statement, RETURN must be pressed to inform AID
that the statement is complete. AID generates a return-line
feed, prints the prompt character (» and next statement number
on the next line to signal that the statement was accepted. If
an error was made in the statement, AID will print an error mes
sage prior to prompting. (Refer to paragraph 2.10.)

AID statements have a semi-free format. This means that some
blanks are ignored. Imbedded blanks are not allowed in the
keywords or variables, and keywords and variables must be
separated by at least one blank.

> 30

> 30

> 30

> 30

PRINT S

PRINT S

PRINTS

P R I N T S

VALID

VALID

NOT VALID

NOT VALID

> 30 PRINT S VALID

For a complete description of all statements, refer to Sections
IV, VIII, IX, and X.

833-3

AID Diagnostic Language

1.4.3 Changing or Deleting a Statement

If an error is made before RETURN is pressed, the error can be
corrected with CTRL H, (He) or the line may be concelled with
CRTL X (Xc). Refer to paragraph 1.1. After RETURN is pressed, the
error can be corrected by replacing, modifying, or deleting the
statement.

To replace a statement, simply type the statement number followed
by the correct statement.

To replace this statement:

> 30 PRINT X

retype it as:

> 40 30 PRINT S

or better yet, the MODIFY command may be used:

> 30 PRINT X

> 40 M30

30 PRINT X

RS
30 PRINT S

> 40 (statement 30 is now PRINT S)

To delete a statement use the following format:

> 100 DELETE 30

1.5 AID PROGRAMMING STRUCTURES

Any statement or group of statements constitutes a program.
The following is an example of a program with only one statement.

> 100 PRINT "HELLO"

or instruc
In this case,

100 is the statement number. PRINT is the key word
tion that tells AID the kind of action to perform.
it prints the string that follows.

The statement 100 PRINT "HELLO" is a complete program
can run with no other statements and produce a result.
a program usually contains more than one statement.

since it
However,

833-4

AID Diagnostic Language

These three statements constitute a program:

> 10 INPUT A,B,C,D,E

> 20 LET S:=A+B+C+D+E/5

> 30 PRINT S

This program, which calculates the average of five numbers, is
shown in the order of its execution. It could be entered in any
order if the statement numbers assigned to each statement were
not changed.

This program input would execute exactly like the program above:

) 10 20 LET S:=A+B+C+D+E/5

> 30 10 INPUT A,B,C,D,E

> 30 PRINT S

1.6 LISTING AN AID PROGRAM

The LIST command can be used to produce a listing of the state
ments that have been accepted by AID:

> 40 LIST

10 INPUT A,B,C,D,E

20 LET S:=A+B+C+D+E/5

30 PRINT S

> 40

Note that the prompt character (» is not printed in the listing,
but is printed when the list is complete to signal that AID is
ready for the next command or statement.

Any LIST may be terminated with CTRL Y.

Refer to the LIST Command (paragraph 3.13) for other "listing
functions.

833-5

AID Diagnostic Language

1.7 EXECUTING A PROGRAM

After a program is entered it can be executed with the RUN com
mand. RUN will be illustrated with two sample programs.

The first program contains one statement:

> 10 PRINT "HELLO"

When executed, the string HELLO is printed:

> 20 RUN

HELLO

END OF AID USER PROGRAM

> 20

When the present AID program is done executing, AID reports with
"END OF AID USER PROGRAM" before prompting in the entry mode.

The second sample program averages a group of five numbers. The
numbers must be input by the user:

> 10 INPUT A,B,C,D,E

> 20 LET S:=A+B+C+D+E/5

> 30 PRINT S

Each of the letters following the word INPUT, and separated by
commas, names a variable that will contain a value input by the
user from the Console. When the program is run, AID signals that
an input is expected by printing a question mark. The user
enters the values, separated by commas, after the question mark.

EXAMPLE: > 40 RUN

? 7,5,6,8,9

AID prints the results:

7

END OF AID USER PROGRAM

> 40

Refer to the RUN Command (paragraph 3.21) for further details.

833-6

AID Diagnostic Language

1.8 DELETING A PROGRAM

The program that has been entered may be deleted with the EP
(Erase Program) command.

On the previous page, the first program entered was 10 PRINT
"HELLO". After it has run, it should be erased before entering
the next program. Otherwise, both programs will run as one when
RUN is commanded (i.e. they will run in the order of their
statement numbers).

For example: > 10 PRINT "HELLO"

> 20 INPUT A,B,C,D,E

> 30 LET S:=A+B+C+D+E/5

> 40 PRINT S

> 50 RUN

HELLO

? 7,5,6,8,9

7

END OF AID USER PROGRAM

> 50

To avoid confusing results, the following sequence should be
used:

Enter and run the following program:

> 10 PRINT "HELLO"

> 20 RUN

HELLO

END OF AID USER PROGRAM

Erase the program as follows:
> 20 EP

Confirm you want to ERASE

current program (Y or N)? Y

Program Erased

> 10

833-7

AID Diagnostic Language

The user's resident program area is now cleared and another pro
gram be entered:

> 10 INPUT A,B,C,D,E

> 20 LET S:=A+B+C+D+E/5

> 30 PRINT S

> 40 RUN

? 15,25,32,11,27

22

END OF AID USER PROGRAM

> 40

Unless this program is to be executed again, it can now be erased
and another program entered. Refer to EP Command (paragraph 3.7)
for further details.

1.9 DOCUMENTING A PROGRAM

Comments can be inserted in a program with the period (.) Special
Character. Any comment typed after a period will be printed in
the program listing, but will not affect program execution. Com
ments cannot be continued on the next line, but as many comments
as are needed can be entered.

The previous sample program to average 5 numbers can be docu
mented with several comments by using the insert line function:

> 40 5. THIS PROGRAM AVERAGES

> 40 7. 5 NUMBERS

> 40 10 INPUT A,B,C,D,E .GET VALUES

> 40 25.S CONTAINS THE AVERAGE.

833-8

AID Diagnostic Language

The statement numbers determine the position of the comments
within the existing program. A list will show them in order:

> 40 LIST

5 • THIS PROGRAM AVERAGES

7 • 5 NUMBERS

10 INPUT A,B,C,D,E .GET VALUES

20 LET S:=A+B+C+D+E/5

25 .S CONTAINS THE AVERAGE

30 PRINT S

> 40

When executed, the program will execute exactly as it did before
the comments were entered. See the (COMMENT) statement (para
graph 4.4) or the period (.) Special Character (paragraph 5.1)
for further details.

833-9

AID Diagnostic Language

1.10 AID OPERATOR MODE STATE DIAGRAM

* * * * * * *- - - - - - - - - * ENTRY * - - - - - - -
VALID COMt-1AND I * HODE * I 1

or 1- - >* *< - -ILIST COMMAND I
STATEMENT ENTRY I * I > 10 * I I

0_ - - - - - - - _ I * 0_ - - *
0 _ - - - - - _I

* * * * * * * *

I
I
1

_I

I LIST
I COMMAND
0_ _ _

I
I
I

* *
*
*
*
*
*
*<-

*
*
*
*
*-. *

PAUSE
MODE

I *
- - _I *

*
*
*-
*
*
*

* * * * * * *

* * * * * *
*
*
*

I
I
I EXIT COMMAND0_ _ _ _ _ _ _ ~.

I
I
I
I
I
I
I
I
I

_I

* GO (CONTINUE) COMMAND *
<- - - - - - - - - - - -
* *

*
-*
*

* PAUSE TYPE STATEMENT
*- - - - - - - - - - -
*

* FATAL *
* EXECUTION *
* ERROR *
*_ - - - - - - - - _I *
* *
* CONTROL Y *
* (CONSOLE INT/ATTENTION)*
- - - - - - - - - - - ->
* * .-

* I >_>* 0 __

*

* * END OF
* PROGRAM
*- - - - -
*

RUN COMMAND

I II0 I I

I
I.- - - - - - - - ,

EXECUTION
MODE

*
*
*
*
*
*
*
*
*
* * RUN (RESTART) COMMAND
* *<- - - - - - - - - - -
* * * * * * * *

I
I

V
* * * * * *

*
*
*
*
*
*
*
*
*

INPUT I
EXECUTION I

----. I
0_ ->1 ? 1- _I

o ____ 1

833-10

2.0 INTRODUCTION

ESSENTIALS OF AID SECTION
II

This section explains some of the ground rules for handling con
stants, variables, and strings. Discussions are also included
covering the basic elements of the Operators and Reserved Variab
les. For more precise definitions of the items covered, refer to
the sections covering Special Characters, Operators, and Reserved
Variables.

2.1 EXPRESSIONS

An expression combines constants and variables with operators in
an ordered sequence. Constants and variables represent integer
values and operators tell the compvter the type of operation to
perform on those integer values.

Some examples of expressions are:

P + 5 127

P is a variable with an assigned value. 5 and 27 are decimal
constants. The slash (I) is the divide operator.

If P = 49, the expression will result in the value 2.

N - r + 5 - T

N, R, and T contain assigned .values. If N = 20, R
5, the value of the expression will be 10.

10, and T

There is no operator hierarchy and evaluation of expressions is
executed from left to right.

2.2 CONTSTANTS

A constant is either a numeric or a byte.

NUMERIC CONSTANTS: A numeric constant is a positive or negative
integer, including zero. It may be written in any of the follow
ing three forms:

*As a decimal integer

*As an octal integer

- a series of digits with no decimal
point.

- a series of digits (but not 8 or 9)
preceded by a percent (%) symbol.

833-11

AID Diagnostic Language

*As a hexadecimal integer - a series of digits or letters (A F
only) preceded by an exclamation mark
(!).

Examples of Decimal Integers:

(Range is 0 <= INTEGER <= 65536)

-1472
+6732
o
19
65536

(unary negate operation)
(or 6732)

(or -1)

Examples of Octal Integers:

(Range is 0 <= INTEGER (= %177777)

%1472
%6732
%17

-%20 (OR % 177760)

Examples of Hexadecimal Integers:

(Range is 0 <= INTEGER <= !FFFF)

IF
123
lA (NOTE: A represents the value 10, not the var

iable A)
-116 (or IFFEA)

Example of a byte constant:

2.3 VARIABLES

A variable is a name to which a value is assigned. This value
may be changed during program execution*. A reference to the
variable acts as a reference to its current value. Variables are
represented by a single letter from A to Z.

A variable always contains a numeric value that is represented in
the computer by a l6-bit word.

Variables may be manipulated as decimal, octal, or hexadecimal.
However, variable type designations (i.e., 1 or %) would be used
in input and output (e.g., INPUT, PRINT) operations only.

833-12

AID Diagnostic Language

A decimal variable is identified by the absence of a % or
preceding it:

G, +G, and -G are decimal variables.
%G or IG are not decimal variables.

An octal variable is identified by a preceding percent (%)
symbol:

%A and %B are octal variables.

A hexadecimal variable is identified by a preceding exclamation
(1) mark:

!K, !G, !Z are hexadecimal variables.

* All variables are set to zero when a LOAD or RUN command is
entered.

2.4 DATA BUFFERS

Data Buffers are identified by duplicate letters (AA ZZ) and
are manipulated as one dimensional INTEGER arrays with the 16-bit
integer row value defined within parentheses. This row value
starts at 0 and may be represented by a variable A through Z, any
Reserved Variable and constants only. Examples of Data Buffer
elements:

AA(4), CC(400), DD(G), SS(INDEX)

Data Buffers may be declared up to the user memory available
(see MAXMEMORY Reserved Variable).

Once a buffer is declared with a DB statement* it may be manipu
lated as a variable in the form of a decimal, octal or hexadeci
mal integer**:

AA(2)
%88(200)
!FF(l)

is a decimal buffer element.
is an octal buffer element.
is a hexadecimal buffer element.

* If a buffer is not initialized with data the content of any
element is indeterminate.

**The octal or hexadecimal notation would be used only in INPUT
and PRINT type statements.

833-13

AID Diagnostic Language

2.5 STRINGS AND STRING BUFFERS

2.5.1 Strings

STRINGS are defined as any number of ASCII characters enclosed by
quotation marks (i.e.,"strings"). Any ASCII character (except the
quotation mark) is allowed within the string.

2.5.2 String Buffers

STRING BUFFERS are byte-oriented, one-dimensional arrays used to
manipulate STRINGS. These buffers are identified by duplicate
letters (AA to ZZ) preceded by an ampersand (&) and are limited
to the available user memory (see MAXMEMORY Reserved Variable).
The element of a buffer is enclosed in parentheses and defines
the byte to be manipulated. This element may be represented by a
variable A through Z, a Reserved Variable, or constant only. Ex
amples of STRING BUFFER elements are:

&AA(5) identifies byte 6 of buffer &AA (index 0 is the
first element)

&CC(20) identifies byte 21 of buffer &CC

&GG(X) identifies byte X of the buffer &GG

Bytes are packed left-justified so that word one of a buffer
contains:

.-----------------------.
I

BYTE 0 I BYTE 1
I I I0 1

STRINGS within ST~ING BUFFERS may be altered by using starting
and ending byte indicators:

&AA(STARTING BYTE, ENDING BYTE)

The following examples will display some of the rules in
manipulating STRING BUFFERS:

> 10 PRINT &AA(lO)

> 20 PRINT &AA(lO, 20)

.PRINT BYTE 10 OF THE &AA BUFFER

.PRINT BYTES 10 THROUGH 20 OF &AA

> 25 .ANY EXPRESSION RESULT MAY BE STORED INTO A BYTE

> 30 LET &AA(2):=B+%60

> 35 .ONLY SINGLE CHARACTER STRINGS ARE ALLOWED IN AN EXPRESSION

833-14

AID Diagnostic Language

> 40 LET &AA(4):="B"+C

> 45 .ALL MULTIBYTE STRING ASSIGNMENTS MUST BE OF EQUAL LENGTH

> 50 LET &AA(2,S):="ABCD"

> 55 .THE FOLLOWING STATEMENTS WOULD GENERATE ERRORS

> 60

> 60

> 60

> 60

> 60

LET &AA(2,3) :=B+%60 .LET &AA(2,3) MUST BE STORED WITH
"XX"

LET &AA(4);="BC"+C ."BC" NOT ALLOWED IN EXPRESSIONS

LET &AA(2,6):="ABCD" .&AA(2,6) IS EXPECTING 5 CHARACTER

LET &AA(O):=&AA(l):="B" .MULTIPLE STRING ASSIGNMENTS

LET &AA(2,5):=&BB(7,lO):="ABCD" •NOT ALLOWED

2.6 OPERATORS (OVERVIEW)

An operator performs an arithmetic or logical operation on one or
two values resulting in a single value. Generally, an operator
has two operands, but there are binary operators that precede a
single operand. For instance, the minus sign in A-B is a binary
operator that results in subtraction of the values; the minus
sign in -A is a binary operator indicating that A is to be
negated.

The combination of one or two operands with an operator forms an
expression. The operands that appear in an expression can be
constants, variables or other expressions.

Operators may be divided into types depending on the kind of
operation performed. The main types are arithmetic, relational,
and logical (or Boolean) operators.

The arithmetic operators are:

+

*
/
MOD

Integer ADD (or if unary, no operation)
Integer Subtract (or if unary, negate)
Integer Multiply
Integer Divide
Modulo; remainder from division

A + B (or +A)
A - B (or -A)
A * B
A / B
A MOD B produces
the remainder from
A / B

In an expression, the arithmetic operators cause an arithmetic
operation resulting in a single integer numeric value.

833-15

AID Diagnostic Language

The relational operators are:

Equal A = 8
< Less Than A < 8
> Greater Than A > 8
<- Less Than or Equal To A <= 8
>= Greater Than or Equal To A >= B
<> Not Equal A <> 8

When relational operators are evaluated in an expression they
return the value -1 if the relation is found to be true, or the
value 0 if the relation is ~alse. For i~stance, A = 8 is evalu
ated as -1 if A and 8 are equal in value, or as 0 if they are
unequal.

The following examples demonstrate the difference between rela
tional operators and special relational operators in expression
evaluation:

10 LET 8:=6
20 IF 1<8<100 THEN 500

IS EVALUATED AS
1<6 = TRUE (-1)

(-1)<100 = TRUE (-1)
RESULT "TRUE"

10 LET 8:=-10
20 IF 1<8<100 THEN 500

IS EVALUATED AS
1<-10 = FALSE (0)
(0)<100 = TRUE (-1)

RESULT "TRUE"

Note that using relational operators does not work in this type
application. However, consider the evaluation of special rela
tional operators: (Refer to Special Relational Operators (Section
VI) regarding the Special Operators EO, LT, GT, LE, GE, and NE.)

10 LET 8:=6
20 IF 1 LT 8 LT- 100 THEN 500

IS EVALUATED AS
1<6 = TRUE (-1)
6<lOOcTRUE (-1)
TRUE AND TRUE = TRUE

RESULT "TRUE"

10 LET 8:=-10
20 IF 1 LT 8 LT 100 THEN 500

IS EVALUATED AS
1<-10 = FALSE (0)
-lO<lOO=TRUE (-1)

TRUE AND FALSE FALSE
RESULT "FALSE"

The Logical or 8oo1ean operators are:

AND Logical "and" A AND 8
OR Logical "inclusive or" A OR 8
XOR Logical "exclusive or" A XOR 8
NOT Logical complement NOT A

Unlike the relational operators, the evaluation of an expression
using logical operators results in a numeric value which is
evaluated as true (non-zero but not necessarily -1) or false (0).

833-16

AID Diagnostic Language

The Shift Operators are:

LSL or LSR Logical Shift X LSL n (where n is any variable
or constant)

ASL or ASR Arithmetic Shift X ASR n
CSL or CSR Circular Shift X CSL n

For further descriptions of Operators, refer to Section VI.

2.7 RESERVED VARIABLES (OVERVIEW)

AID reserves special locations for variables that may commonly be
used or accessed from a known area. These locations are assigned
names which become Reserved Variables. Reserved Variables may be
altered or accessed as a variable (i.e. like A thru Z). However,
caution must be used since some Reserved Variables are altered by
commands and statements. The following list briefly describes
those Reserved Variables and the operations that change them.

NORESPONS
BADINTP
CONCHAN
FILELEN
FILEINFO
INPUTLEN
MAXMEMORY
TRUE
INDEX

PASSCOUNT
RUNPARAMI/3

GOPARAM1/3

OFFSET
NOINPUT

SECTIONS1/3

NEWTEST

SECTION

- If >0 then altered during bad I/O operation.
- Altered by an illegal device interrupt.
- Set to the system console channel device.
- Set to file length after FILENAME.
- Set to file information after FILENAME.
- Set to character input length during INPUT.
- Altered during DB and BSIO/ESIO execution.
- Stored with -1 at run time.
- During a CB statement, set to -1 if the buf-

fers compare; otherwise the element number (of
the first buffer) which did not compare.

- Optionally incremented by the BUMP statement.
- Set to the value of any parameters passed with

the RUN command; otherwise O.
- Set to the value of any parameters passed with

the GO command; otherwise O.
- Set to 0 after a RETURN statement.
- Set to true with a SNPR command or false with

an ENPR command.
- Set to the appropriate bit mask combination of up

to 48 section numbers input with the TEST com
mand; otherwise set to all "ones" at run time.

- Set to true if a TEST command is entered with
parameters and set to false after a TEST command
without parameters.

- Set to the section number of a SECTION statement
(if the SECTION is executed).

All other Reserved Variables are set to zero at run time. For a
description of each Reserved Variable, refer to Section VII.

833-17

AID Diagnostic Language

2.8 OPERATOR INPUT MODES

Three modes of operator input are available. These modes,
discussed next in detail, are entry, execution, and pause.

2.8.1 Entry Mode Input

Anytime a program is not executing or in a pause mode, AID is in
the entry mode. Entry mode is identified by a prompt (» and the
next sequential statement number.

Example: > 10

In this mode, the operator may enter any valid statement or
command.

2.8.2 Execution Mode Input

Anytime a program is executing, there are two inputs allowed:

(1) CONTROL Y - Initiates a break at the end of the currently
executing statement and a message identifying that state
ment number.

Example: Break in Statement 20

>

At this point, any pause type entry may be made. (Refer to
paragraph 2.8.3.)

(2) INPUT Statement Execution - When an INPUT or INPUTB statement
is executed, a question mark is prompted. Any valid numeric
or alpha input(s) will be accepted. Each input must be
separated by a comma if multiple inputs are requested.

Example: INPUT THREE NUMBERS

? 14F,%37,10

2.8.3 Pause Mode Input

Anytime a CONTROL Y interrupt* or pause-type statement has oc
curred, AID prompts with (» and no statement number. At this
point the operator may enter any valid command which affects pro
gram execution or control except EP, REN, SAVE, LOAD, SET,
DELETE, PURGE, INC and MODIFY. Program alteration is not allowed,
but the operator may display any LIST data.

833-18

AID Diagnostic Language

For further explanations, refer to the operator mode state dia
gram (paragraph 1.10) or refer to the various statements and com
mands for input restrictions.

* An interrupt during an I/O operation is indicated by the
message:

Internal Break in Statement 10

>

(Any pause mode input except LIST, CREATE and LF may be made
when this occurs)

2.9 PROGRAM EXECUTION

After the RUN command is issued, AID must do some house cleaning
before turning over control to execution of the program. This
may cause a slight delay in the initial pass of the resident pro
gram, but subsequent passes will not be delayed. Also, during
this house cleaning, errors may be detected that could abort the
program (e.g., a referenced statement number is missing).

Assuming all goes well in the house cleaning, execution com
mences. If an AID error occurs during execution, the program may
abort and AID will return to the entry mode.

The programmer should be aware of statements that cause large
amounts of time to execute in case time is an important consider
ation (e.g.,DB of a predeclared buffer which causes a pack of the
buffer area). And, he should be aware of statements that consume
large amounts of user area in case memory is a critical factor
(e.g., Comments). A list of memory allocation and approximate
execution times of statements is provided in paragraph 2.11.

If the program does not loop it will exit by printing "END OF AID
USER PROGRAM" and a prompt to indicate AID is in the entry mode.

If the program loops or runs indefinitely, the only way to abort
it is to interrupt (Control Y) and, after the prompt character
is printed, enter the EXIT command.

2.10 ERROR REPORTING

Three types of errors may be reported to the operator; entry
mode errors, execution mode errors, and program detection errors.

833-19

AID Diagnostic Language

2.10.1 Entry Mode Errors

If an error is detected in a statement or command just inputed,
AID prints a circumflex (e) under, or in the vicinity of, the
character that generated the error and then prints an error
message.

Example: > 10 LET A:=%384
Cl

ENTRY MODE ERROR

ARITHMETIC ERROR (OVERFLOW,DIVIDE BY

0, NUMBER TOO LARGE, ETC.)

> 10

The error message implies the octal digit was illegal.

2.10.2 Execution Mode Errors

If a failure is detected during program execution which might
cause a catastrophic failure in AID, the resident pro9ram is us
ually aborted and an error message is reported ident1fying the
faulty statement.

Example: > 10 LET AA(4):=B

> 20 RUN

EXECUTION MODE ERROR IN STATEMENT 10

UNINITIALIZED DB

END OF AID USER PROGRAM

> 20

The error indicates the buffer accessed has not been declared
with a DB statement.

2.10.3 Program Detection Errors

These errors are detected by the user program and will not cause
a catastrophic failure in AID. Documenting the errors would be
the responsibility of the program writer.

833-20

Example:

AID Diagnostic Language

INPUT A LETTER

? 4

BAD INPUT, I SAID A LETTER. TRY AGAIN! !

?

2.11 STATEMENT MEMORY ALLOCATION AND EXECUTION TIME INFORMATION

2.11.1 Statement Memory Allocation

Every statement uses a minimum of three words of user area. In
addition, any parameters entered occupy the following space:

Parameter

Operators (+,-,MOD,etc.)
Special Characters (!,%)
Constants
Variables (A-Z)
Reserved Variables (PASSCOUNT,etc.)
Strings ("ABC")
Data Buffers (AA(x»
String Buffers (&AA(x»
String Buffers (&AA(x,y»
Comments

Word(s) Used

1/2
1/2
1-1/2
1-1/2
1-1/2
1+(char.lngth/2)*
3-1/2
3-1/2
5-1/2
1+(char.lngth/2)*

* Strings or comments containing character strings with more than
four repetitive characters will consume less space because the
repetitive string is packed into two words (i.e., "ABCDEFGH"
would require four words and "********" would require two).
Note also that alternate spaces are packed into bits (i.e. II A
B C D" would require two words but, "ABCDEFGH" would require
four) •

From the table above a few helpful hints arise:

- Use variables or Reserved Variables instead of buffers when
possible.

- Use strings, string buffers, and comments sparingly. If
strings must be used, look for a trade-off in space (i.e.,if a
string containing more than about six characters will be used
repeatedly, it might be beneficial to assign that string to a
string buffer for further manipulation or printing).

- A comment following a statement text consumes three words less
than a comment statement.

833-21

AID Diagnostic Language

Example: > 10 .SAVE XYZ VALUE

> 20 LET A:=AA(4)

The following statement usage saves three words:

> 10 LET A:=AA(4) .SAVE XYZ VALUE

- Although it is not obvious from the table above, chaining LET
statements saves a minimum of three words for each assignment
and greatly enhances execution time.

Example: > 10 LET A:=4

> 20 LET B:=5

> 30 LET C:=5

The following statement usage saves six words:

> 10 LET A:=4,B:=5,C:=5

The following statement saves seven and a half words:

> 10 LET A:=4,B:=C:=5

- Savings are also derived by nesting LET statements in other
statements when allowed.

Example: > 10 LET A:=4,B:=5.C:=6

> 20 FOR A STEP B UNTIL C

The following statement usage saves seven words:

> 10 FOR A:=4 STEP 8:=5 UNTIL C:=6

2.11.2 Execution Times

Each statement requires about twenty machine instructions to
start executing. This overhead is required for setting up cer
tain parameters required for all statements.

Once a statement actually starts executing, it may require as few
as two machine instructions (e.g., SUPPRESS,ENABLE) or thousands
to execute (e.g, DB, where the buffer has been defined
previously).

833-22

AID Diagnostic Language

Since the "Time to Execute" to "Time of Execution" ratio of most
statements is relatively high, it would behoove the programmer to
compact multiple statements into one.

Example:

> 10 .START THE XYZ TEST

> 20 LET A:=4

> 30 LET D:=55

> 40 FOR A STEP 3 UNTIL D

The above can be condensed into the following single statment:

> 10 FOR A:=4 STEP 3 UNTIL D:=55 .START XYZ TEST

The first set of statements takes at least 96 machine instruc
tions ~ore to execute where:

Statement 10
Statement 20
Statement 30

costs
costs
costs

6+
45+
45+

96+

Here are some more time saving hints for programming in AID:

* Comment statements cost 20 machine instructions where comments
in statements cost nothing in execution (see previous example).

* FOR-NEXT loops are much faster than IF-THEN loops

Example: > 10 FOR A:=O UNTIL 10

> 20 LET AA(A):=A

> 30 NEXT 10

The above statements will execute much faster than the
following:

833-23

AID Diagnostic Language

> 10 LET A:=-l

> 20 LET AA(A):=A:=A+l

> 30 IF A <= 10 THEN 20

* DB statements of previously defined buffers are very expensive
because of the packing required for dynamic buffer allocation
and should therefore be used sparingly.

Example:

Example:

> 10 DB AA, 20

>100 DB AA,lO •VERY EXPENSIVE

HINT: If space is available, use another buffer.

> 10 DB AA,20

>100 DB BB,lO

* Chain assignments whenever possible.

Example: > 10 LET A:=4

> 20 LET B:=5

> 30 LET C:=5

May be rewritten to save at least 70 machine instructions as
follows:

> 10 LET A:=4,B:~5,C:=5

or even greater savings may be realized by:

> 10 LET A:=4,B:=C:=5

* Because of inter-statement overhead, transfer of control should
be made to the exact destination.

Example: > 10 GOTO 50

> 50 .BEGIN XYZ TEST

> 60 SECTION 4,300

833-24

AID Diagnostic Language

Although harmless in appearance, the GOTO 50 should bypass any
unnecessary or non-executable comments. The most efficient
code would be:

> 10 GOTO 60

> 50 .BEGIN XYZ TEST

> 60 SECTION 4,300

or better
> 10 GOTO 50

> 50 SECTION 4,300 .BEGIN XYZ TEST

833-25

AID Diagnostic Language

833-26

3.0 INTRODUCTION

AID COMMANDS SECTION
III

The AID Commands available to the operator are listed, in detail,
in this section. The format for each command explanation is:

OPERATION NN~E: General phrase of what the Command does.

MNEMONIC: The form that the Command would be called in.

DESCRIPTION: A detailed explanation of the
function.

Command's

ALLCMED IN:

EXAMPLES:

3.1 CREATE

Describes whether the command is allowed in the
Pause Mode, Entry Mode or both.

One or more examples using the Command.

OPERATION NAME: Create a new file

MNEMONIC: CREATE filename, number of words divided by 128
[,revision]

ALLOOEDIN:

DESCRIPTION:

EXAMPLE(S):

Entry Mode or Pause Mode but not Internal Break
Mode (See Pause Mode Input)

Creates, i.e., adds to the directory of files of
the Diagnostic/Utility tape, a Data file "file
name" which will be the "number of words long"
for tape. Refer to the DUS111 Reference Manual,
part no. 30341-90005 for further details.

> 10 CREATE TEST, 4 (creates the Data file TEST
. with a length of 512 words.

833-27

AID Diagnostic Language

3.2 DELETE

OPERATION NAME: Delete statement(s)

MNEMONIC:

ALLOWED IN:

DESCRIPTION:

EXAMPLE (S) :

D[ELETE] first statement number[/last statement
number.

Entry Mode Only

Removes the statement specified in first
statement number from the user program. If the
last statement number parameter is entered, then
the statements from first to last statement
number are. deleted.

> 100 DELETE 20 (remove statement 20)

-or-

3.3 EEPR

> 100 030/40 (remove statements 30 through 40)

OPERATION NAME: Enable Error Printout

MNEMONIC: EEPR

DESCRIPTION:

ALLOWED IN:

EXAMPLE(S) :

Enables AID to print error messages*. This is a
default condition and would normally be used
only after a previous SEPR Command.

NOTE: Default is error print enabled.

Pause Mode Only

> 11Q RUN

(Control Y)

Break in Statement 80

> EEPR (ENABLE ERROR PRINTOUT)

* These messages are those contained in the EPRINT and PRINTEX
Statements only.

833-28

AID Diagnostic Language

3.4 EEPS

OPERATION NAME: Enable Error Pause

MNEMONIC: EEPS

DESCRIPTION: Enables AID to generate an error pause* after an
error. This is a default condition and would
normally be used only after a previous SEPS.

NOTE: Default is error pause enabled.

ALLOWED IN:

EXAMPLE(S):

Pause Mode Only

> 110 RUN

(Control Y)

Break in Statement 20

> EEPS (ENABLE ERROR PAUSES)

* These pauses are those contained in the the EPRINT and EPAUSE
Statements only.

3.5 ENPR

OPERATION NAME: Enable Non-Error Printout

MNEMONIC: ENPR

DESCRIPTION: Enables non-error messages* to be printed and
operator response to a message to be acknow
ledged. This is a default condition and would
normally be used only after an SNPR Command was
previously entered. ENPR sets the Reserved Vari
able NOINPUT to false.

NOTE: Default is non-error print enabled.

ALLOWED IN: Pause Mode Only

833-29

AID Diagnostic Language

EXAMPLE (S) : > 50 RUN

(Control Y)

Break in Statement 10

> ENPR (Enable Non-error Print)

• These messages are those contained in the PPRINT and PRINT
Statements only.

3.6 ENPS

OPERATION NAME: Enable Non-Error Pauses

MNEMONIC: ENPS

DESCRIPTION: Enables non-error pauses· during AID progra~

execution. This is a default condition anc
would normally be used only after a SNPS commanc
was previously entered.

NOTE: Default is non-error pause enabled.

ALLOWED IN:

EXAMPLE(S):

Pause Mode Only

> 50 RUN

(Control Y)

Break i~ Statement 10

> ENPS (Enable Non-Error pauses again)

• These pauses are those contained in PPRINT and PAUSE Statements
only.

833-30

AID Diagnostic Language

3.7 EP

OPERATION NAME: Erase Program

MNEMONIC: EP

DESCRIPTION: Erases the resident AID program from memory.

ALLOWED IN: Entry Mode Only

EXAMPLE(S):

3.8 EXIT

> 100 .LAST LINE

> 110 EP

CONFIRM YOU WANT TO ERASE THE CURRENT PROGRAM

(Y OR N)

? Y

PROGRAM ERASED (If this message does not appear,
-------------- the program is intact.)
> 10

OPERATION NAME: Leave Program Execution

MNEMONIC: EXIT

DESCRIPTION: Stops AID program execution and returns to the
entry mode. If AID is in the entry .mode, then
EXIT returns to DUSIII.

ALLOWED IN: Pause Mode or Entry Mode

EXAMPLE (S) : > 50 RUN

(Control Y)

Break in Statement 30

> EXIT

END OF AID USER PROGRAM

833-31

AID Diagnostic Language

> 50

-or-

> 100 EXIT

(READY FOR NEXT STATEMENT)

CONFIRM YOU WANT TO ERASE THE CURRENT PROGRAM

(Y OR N)

? Y (a N response will return the operator to
the AID entry mode)

Enter Program Name

3.9 GO

OPERATION NAME: Continue Execution

MNEMONIC: GO [Gl) [, [G2) [,G3])

DESCRIPTION: Causes the present AID program to continue from
the point at which it paused. Up to three para
meters (Gl/G3) may be passed which are accessi
ble by the program with the GOPARAMI/3 Reserved
Variables (additional parameters are ignored).
The parameters are delimited by commas and are
assumed to be decimal integers unless preceded
by a 'or I (see Special Characters). Default
parameters are assigned the value O.

ALLOWED IN: Pause Mode Only

EXAMPLE(S) :

> 100 RUN

DISC NOT READY, READY DISC AND CONTINUE

or

>00 (PROGRAM EXECUTION CONTINUES GOPARAMI
THROUGH GOPARAM3 EQUAL 0)

833-32

3.10 INC

> GO , ,2

> GO 8

AID Diagnostic Language

(THE THIRD PARAMETER (GOPARAM3) IS 2
AND THE REST ARE 0)

or

(THE FIRST PARAMETER (GOPARAM1) IS 8)

OPERATION NAME: Change Statement Increment

MNEMONIC: INC X

DESCRIPTION: Allows the operator to change the statement in
crement value without renumbering (see REN Com
mand). The new value X will take effect after a
valid statement is entered with a number greater
than or equal to the existing statement number.

ALLOWED IN: Entry Mode Only

EXAMPLE(S):

3.11 LC

> 10 LET A:=4

> 20 INC 1

> 20 GOSUB 200

> 21 (Note- increment is by one and not
ten)

OPERATION NAME: List Commands

MNEMONIC: LC

DESCRIPTION: Lists the commands that are available in AID.
The entry mode and pause mode commands are
listed depending on the mode AID is in at the
time of the LC command.

ALLOWED IN: Pause Mode or Entry Mode

EXAMPLE(S): > 10 LC (Lists the entry mode AID commands)

833-33

AID Diagnostic Language

or

Break in Statement 50

> LC (Lists the Pause mode AID commands)

3.12 LF

OPERATION NAME: List Files

MNEMONIC:

DESCRIPTION:

ALLOWED IN:

LF [P[RINTER]]

Lists the files that reside in the Diagnos
tic/Utility directory. For further information,
refer to the DUSIII Reference Manual, part no.
30341-90005.

Entry Mode or Pause Mode, but not Internal Break
Mode. (See Pause Mode Input.)

EXAMPLE(S) :

3.13 LIST

> 10 LF (Refer to DUSIII Reference Manual for
printout information.)

OPERATION NAME: LIST

MNEMONIC: L[IST] [P[RINTER]] (DATA TYPE] [statement
number]

[R]
[V]
[B]
[C]

ALLOWED IN:

DESCRIPTION:

Entry Mode or Pause Mode, but not Internal Break
Mode. (See Pause Mode Input.)

Will print the information requested to the con
sole device. If the optional (PRINTER] is
entered, the LIST will be printed on the printer
device. If DATA TYPE is specified the listing
will be in that type (i.e., 1 for hex, % for
octal else decimal). Any LIST may be terminated
with CTRL Y.

833-34

AID Diagnostic Language

Listing formats are:

Entry

LIST [x/y]

LIST C

LIST R [,x]

Meaning

List the present AID program. x
causes a one line list of statement
x. y causes a multi-line list of
statements x through y.

List the value of PASSCOUNT.

List the Reserved Variables.
If x is entered then list only that
Reserved Variable.

WARNING

The reserved variables VALUEI to VALUE6 and
NAMEI to NAME6 contain information that is
pertinent only to the use of the FUNCTION
statement.

LIST V [,x]

Entry

LIST B [,x,y/z]

List the variables as follows:

If x is not entered, then list all
variables (A - Z). If x is entered,
then list only that variable.

Meaning

List Buffers as follows:

If only B is· entered, then list all
buffers and their lengths in the
order of the statement numbers where
a DB or BSIO occurs. If x is entered,
list the entire contents of buffer x.
(If x is a string buffer then list in
ASCII with a header that designates
the character numbers.) With data
buffers if y is entered, list only
that element of buffer x. If z is
entered, list all elements of buffer
x from y to z.

EXAMPLE(S): SAMPLE PROGRAM LIST

> 60 LIST

> 10 .XYZ DIAGNOSTIC

> 20 •WHAT

833-35

AID Diagnostic Language

> 30 .A

> 40 •FUNNY

> 50 .PROGRAM

> 60

SAMPLE v.ARIABLE LIST

> 110 RUN

(Control Y)

Break in Statement 10

> LISTIV,A

A =. IF6

> LIST%V,F

F = %366

> LIST V

A = 246 B
• • • Z

10 C
94

43 0 4 •••

SAMPLE. DATA BUFFER LIST

> 200 RUN

(Control Y)

Break in Statement 40

> LIST B

STATEMENT NAME SIZE

40
100
150

AA 20 (AA is 20 words long)
&BB 6 (&BB is 6 bytes long)
DO *SIO* (DO is declared as BSIO DO. It's

length is indeterminate)

833-36

> LIST B,AA

AA(O) = 44
AA(8) = 76
AA(16) = 5

26
14
10 77 31

AID Diagnostic Language

• Will list the 20 elements of AA

••• 13
. 10

>LIST B,AA,1/3 • Will list elements 1-3 of AA

AA(l) = 26 14 4

>LIST PRINTER B (Will list all presently defined buffers
on the Printer Device.)

SAMPLE STRING BUFFER LIST

Any character outside the range !20<=character value<!7E
will be replaced with a circumflex (©) for continuity
in listing (i.e., characters 20 and 21 in the following
example are a carriage return and a linefeed).

>LIST B,&BB (Will list a header which identifies each
character position in the string in in
crements of 70 (i.e., in the following
example, the character D is in the 70th
character position) and then lists the
contents of the &BB buffer.)

o
+

DEF

10
+

JKLMNOPQRSTUV

20
+

60
+

69
+

3.14 LOAD

OPERATION NAME: Load Program

MNEMONIC: LOAD filename

DESCRIPTION: Allows the operator to load an AID program from
disc. (See the SAVE command.) Any statements
entered before the LOAD are erased and when the
program is loaded, AID responds with a normal
prompt with the next sequential statement number
following the loaded program.

833-37

AID Diagnostic Language

ALLOWED IN:

EXAMPLE (S) :

Entry Mode Only

Assume the AID program on the cisc ends at
statement 1270.

> 110 LOAD TESTPROG (INITIATES A READ FROM THE
TAPE VIA DUS III)

CONFIRM YOU WANT TO ERASE THE PROGRAM (Y OR N)

? Y

Program Loaded

(A "Y· RESPONSE WILL ERASE THE
CURRENT PROGRAM AND LOAD THE NEW
PROGRAM, AND A "N W RESPONSE WILL
CAUSE NO ACTION TO OCCUR).

3.15 LOOP

The Next Available Statement Number is

> 1280

(LOAD SUCCESSFUL. THE AID PROGRAM TESTPROG ON TAPE
IS NOW IN MEMORY AND ANY VALID STATEMENT OR COMMAND
MAY BE ENTERED).

OPERATION NAME: Set Loop Flag

MNEMONIC: LOOP

DESCRIPTION: Sets a LOOP flag that, during program execution,
will cause a LooPTO statement branch to occur.
(See the LOOPTO statement.) See the LOOPOFF com
mand for resetting this flag.

ALLOWED IN: Pause Mode Only

EXAMPLE(S): > 100 SECTION 1,200

> 200 SECTION 2,500

> 500 LOOPTO 100 .Branch to Section 1 if LOOP
commanded

833-38

AID Diagnostic Language

3.16 LOOPOFF

OPERATION NAME: Clear Loop Flag

MNEMONIC: LOOPOFF

DESCRIPTION:

ALLOWED IN:

Clears the LOOP flag that was set by the LOOP
command. See LOOP command.

Pause Mode only.

(Control Y)
Break in Statement 200

3.17 ~ODIFY

> LOOPOFF (clear LOOP flag meaning exit
AID program normally upon

completion) .

OPERATION NAME: Modify Statement

MNEMONIC: M[ODIFY] Statement Number [/Statement Number]

DESCRIPTION: Provides a means of editing the ASCII text of a
statement. When the MODIFY command is entered
with an existent statement number, AID lists the
statement. Any character editing may now be
done by entering a key letter under the column
to be edited. This editing feature allows in
serting, replacing, or deleting characters. Af
ter the edit is complete the operator may delete
the old statement number and add the new by
simply pressing ENTER, or he may leave the old
statement intact and add the new by entering "J"
(meaning JOIN). If more than one edit type is
entered, only the first edit type is acknow
ledged. Any modify may be aborted by entering
"A".

ALLOWED IN: Entry Mode Only

EXAMPLE(S): > 100 MID

10 LET A:=4
IA(O) (INSERT A(O»

833-39

AID Diagnostic Language

10 LET AA (0) : =4
RFOR (REPLACE LET WITH FOR)

10 FOR AA(0):=4
DDDD (DELETE FOR)

10 AA(0):=4
(ENTER)
> 100

Examples (continued)

> 100 M30

(REPLAr~s STATEMENT 10)

30 .ABC
R50
50 .ABC

(ENTER)
> 100

> 100 M50

50 .ABC
Rl
150 .ABC

J
> 160

3.18 PURGE

(DELETES STATEMENT 30, ADDS STATEMENT 50)

-or-

(PRESERVES STATEMENT 50, ADDS STATEMENT 150)

OPERATION NAME: Purge a File

MNEMONIC: PURGE filename

DESCRIPTION: Removes the file "filename" from the DUSIII dir
ectory. Refer to the DUSIII Reference Manual
for details.

ALLOWED IN:

EXAMPLE(S):

Entry Mode or Pause Mode but not Internal Break
Mode (See Pause Mode Input)

> 10 PURGE TEST (Remove the file TEST from the
directory)

833-40

AID Diagnostic Language

3.19 REN

OPERATION NAME: Renumber Statements

MNEMONIC: REN [cl
where c=(statement multiPle >=1 and default is
ten (10).

DESCRIPTION: Renumbers the existing statements as specified
by the statement multiple. If the renumbering
will exceed 9999, an error is reported and a new
number must be entered. All references to State
ment numbers are also changed to reflect the new
Statement numbers.

ALLOWED IN: Entry Mode Only

EXAMPLE(S): > 10

> 20 GOTO 30

> 30 PAUSE

> 40 REN

> 40 LIST

> 10

> 20 GOTO 30

> 30 PAUSE

> 40 REN3

> 12 LIST

> 3

> 6 GOTO 9

> 9 PAUSE

> 12

(DEFAULTS TO STATEMENT INCREMENTS
OF 10 - WHICH MEANS THE PROGRAM
DOES~'T CHANGE IN THIS EXAMPLE)

833-41

AID Diagnostic Language

3.20 RST

OPERATION NAME: Reset

MNEMONIC: RST

DESCRIPTION: Resets all execution state flags to the default
state:

- Error Pause is enabled (EEPS Command)

- Error Messages unsuppressed (EEPR Command)

- Non-Error Messages unsuppressed (ENPR Command)

- Non-Error Pauses enabled (ENPS Command)

ALLOWED IN:

3.21 RUN

Pause Mode Only

OPERATION NAME: Initiate Execution

MNEMONIC: RUN [PI], [, [P2] [, [P3]]]

DESCRIPTION: Causes the resident AID program to initiate exe
cution from the lowest numbered statement re
gardless of the state of execution. Up to three
parameters (Pl/P3) may be passed into the
RUNPARAMl/3 Reserved Variables for use by the
program (additional parameters are ignored). The
parameters are delimited by commas and are
assumed to be decimal integers unless preceded
by a % or 1. (See Special Characters.) Default
parameters are assigned the value O. AID resets
all variables, buffer pointers and indicators to
their default values except the LOOP and TEST
flags and information.

ALLOWED IN: Pause Mode or Entry Mode

EXAMPLE (S) :

> 100 RUN

(Control Y)

.RUNPARAMI THRU RUNPARAM3=0

Break in Statement 20

833-42

AID Diagnostic Language

> RUN

This sequence would restart program execution

-- or

> RUN 1,,3 (THE FIRST PARAMETER (RUNPARAMl) IS
ASSIGNED THE VALUE 1 AND
THE THIRD (RUNPARAM3) THE VALUE 3)

3.22 SAVE

OPERATION NAME: Save Program

MNEMONIC: SAVE filename [,revision level]

DESCRIPTION: Allows the opera~or to save the resident AID
program, in binary, on the tape via DUSIII (also
see the LOAD command). Nothing is altered in
the AID program and, after the SAVE is
completed, AID returns to the entry mode. If
the optional revision level is entered filename
will have that revision. If no revision is
entered filename will be assigned a 00.00 re
vision level.

NOTE: If room does not exist on the tape for the
file, the message "End od Tape" is' displayed.
Since going to DUSIII will cause the current AID
program to be lost, follow this recovery
procedure:

(1) Insert another Diagnostic/Utility tape that
has more space

(2) SAVE the current AID program on the second
diskette

(3) Re-insert the. original Diagnostic/Utility
tape

ALLOWED IN: Entry Mode Only

833-43

AID Diagnostic Language

EXAMPLE(S) : > 1280 SAVE TEST, 01.02

PROGRAM SAVED (ANY OTHER MESSAGE INDICATES
------------- NO SAVE OCCURRED)

3.23 SEPR

> 1280 (SUCCESSFUL SAVE! ANY VALID COMMAND
OR STATEMENT MAY BE ENTERED)

OPERATION NAME: Suppress Error Printout

MNEMONIC: SEPR

DESCRIPTION: Suppresses error messages and erro~ pauses*
until an EEPR or RST command is acknowledged.

ALLOWED IN:

EXAMPLE(S):

NOTE: Default is error print enabled.

Pause Mode Only

> 110 RUN

(Control Y)

Break in Statement 20

> SEPR

* These error messages and error pauses are those contained in
the EPRINT and PRINTEX Statements only.

833-44

AID Diagnostic Language

3.24 SEPS

OPERATION NAME: Suppress Error Pause

MNEMONIC: SEPS

DESCRIPTION: Suppresses error pauses· from occurring. The RST
and EEPS Commands will override this condition.

NOTE: Default is error pause enabled.

ALLOWED IN:

EXAMPLE (S) :

Pause Mode Only

> 110 RUN

(Control Y)
Break in Statement 50

> SEPS

• These pauses are those contained in the EPRINT and EPAUSE
statements only.

3.25 SET

OPERATION NAME: Set New Statement Number

MNEMONIC: SET Statement Number

DESCRIPTION: Allows the operator to set the current statement
number to any valid statement number. If an
existing statement number is encountered while
sequencing because of the SET command, a warning
message is issued which informs the operator
that a valid statement entry will delete the
existing statement.

ALLOWED IN: Entry Mode Only

EXAMPLE(S) : > 10 LET A:=4

> 20 INC 1

> 20 SET 8

> 8 LET B:=4

833-45

AID Diagnostic Language

> 9 GOSUB SO

WARNING - NEXT STATEMENT ALREADY EXISTS

> 10 SET 20 (RETURN TO ORIGINAL STATEMENT ENTR~

STATEMENT 10 IS NOT ALTERED)
> 20

A typical 'application would be:

> SO GOSUB 900

> 60 SET 900

>900 .BEGIN SUBROUTINE

> 1010 RETURN

> 1020 SET 60

.END SUBROUTINE

> 60 (RETURN TO ORIGINAL MAIN PROGRAM ENTRIES)

3.26 SNPR

OPERATION NAME: Suppress Non-Error Printout

MNEMONIC: SNPR

DESCRIPTION: Suppress non-error messages* on the Console. The
RST and ENPR Commands will override SNPR. SNPR
sets the Reserved Variable NOINPUT to true and
does not allow INPUT(B) statements to be
executed.

NOTE: Default is non-error print enabled.

ALLOWED IN:

EXAMPLE(S) :

Pause Mode Only

> 110 RUN

(Control Y)

Break in Statement 40

> SNPR

* These messages are those contained in the PPRINT and PRINT
statements only.

833-46

AID Diagnostic Language

3.27 SNPS

OPERATION NAME: Suppress Non-Error Pauses

MNEMONIC: SNPS

DESCRIPTION: Suppresses non-error pauses· during AID program
execution.

ALLOWED "IN:

EXAMPLE (S) :

NOTE: Default is non-error pause enabled.

Pause Mode Only

> 110 RUN

(Control Y)

Break in Statement 40

> SNPS

* These pauses are those found in the PPRINT and PAUSE State
ments only.

3.28 TEST

OPERATION NAME: Section Test Select

MNEMONIC: TEST [+ or -] [X[[jY] ,Z]]
TEST ALL

DESCRIPTION: Allows the operator the capability of externally
selecting program sections to be executed. The
optional + or - adds or deletes the following
test sections from the current test section bit
mask; absence of the + or deletes all existing
test section bit masks before continuing. The
optional slash (/) indicates inclusive sections
i.e.- 3/5 means test sections 3, 4, 5. The op
tional comma (,) indicates separate test sec
tions (i.e. 1,3,5 means test sections land 3
and 5). Section numbers may be entered in any
order but the section number must be greater
then 0 and less than 49. Whenever TEST is en
tered with parameters, the Reserved Variables
SECTIONSl/3 are set with bit masks correlating

833-47

AID Diagnostic Language

to the section numbers (see Reserved Variable
SECTIONSI/3) and the Reserved Variable NEWTEST
is set to true (see Reserved Variable NEWTEST).
If TEST is entered without parameters, the
NEWTEST Reserved Variable is set to false and
the bit masks in Reserved Variables SECTIONSI/3
are set to all ones. If TEST ALL is entered, all
Test Sections are selected (i.e., all bits in
SECTIONSl,SECTIONS2 and SECTIONS3 are set).

ALLOWED IN: Pause Mode Only

EXAMPLE (S) : > TEST 1/3,5,7,9/11 (INDICATES SECTIONS 1,2,3,
5,7,9,10 AND 11 ARE
SELECTED)

or
> TEST 10 (INDICATES SECTION 10

IS SELECTED)
or

> TEST (SETS THE NEWTEST RESERVED
VARIABLE TO FALSE)

> TEST + 4 (ADD TEST 4 TO THE TEST
SECTION BIT MASK)

> TEST - 6 (REMOVE TEST 6 FROM THE
TEST SECTION BIT MASK)

See the Reserved Variables SECTIONSI/3 and NEWTEST and the AID
statement, SECTION, for further examples and explanations.

833-48

4.0 INTRODUCTION

AID STATEMENTS (NON I/O) SECTION
IV

The AID statements available to the operator are listed, in de
tail, in this section. The format for each statement explanation
is:

OPERATION NAME: General phrase of what the statement does.

MNEMONIC: The form that the statement would be called in.

DESCRIPTION:

EXAMPLES:

4.1 ASSIGN

A detailed explanation of the statement's func
tion.

One or more examples using the statement.

OPERATION NAME: Assign Data to Buffer

MNEMONIC: ASSIGN data buffer(element) [, (repeat factor)],
datal [, data2] ...•• [dataN]

DESCRIPTION: Stores data into a data buffer. The word datal
is stored into data buffer (element) and, if in
cluded, data2 is stored in data buffer (element
+1), and so on through dataN, which is stored in
in data buffer (element+N-l). If repeat factor
is included, the data pattern is repeated re
peated factor times. Datal through dataN must be
numeric constants.

EXAMPLES:

> 10 DB AA,100,%55 . INITIALIZE AA TO %55

> 20 ASSIGN AA(50),5,10,15,20,25,30,35
(AA(50)=5, AA(51)=10, ••• AA(56)=35)

> 30 ASSIGN AA(lO), (10), !FF
(AA(lO) THROUGH AA(19))=!FF)

> 40 ASSIGN AA(80), (5),3,7
(AA(80)=3, AA(81)=7, AA(82)=3, AA(83)=7••• AA(89)=7)

833-49

AID Diagnostic Language

> 50 LET A:=80,F:=5

> 60 ASSIGN AA(A),(F),3,7

4.2 BUMP

.IDENTICAL TO STATEMENT 40

OPERATION NAME: Bump Pass Counter

MNEMONIC: BUMP[i] [H]

DESCRIPTION: Increments the Reserved Variable PASSCOUNT
(unless the H parameter is used and then prints
that pass count on the Console. The pass counter
(Reserved Variable PASSCOUNT) is initialized to
zero whenever a RUN command is issued. Printing
may be suppressed by a SNPR command and, if the
optional semi-colon follows BUMP, no return-line
feed will be issued after the pass counter value
is printed. The PASSCOUNT is limited to 32767.

EXAMPLES(2): > 10 BUMP H

> 20 RUN

END OF PASS 0 (NOTE- PASSCOUNT is still 0 after
------------- the print because of the H

parameter)

---or---

> 10 BUMPi

> 20 PRINT "FOUND A BUG!!-

> 30 RUN

END OF PASS 1 FOUND A BUG!!

4.3 CB

OPERATION NAME: Compare Buffers

MNEMONIC: CB Buffer 1, Buffer 2, Length of Compare

833-50

DESCRIPTION:

AID Diagnostic Language

Provides a fast comparison between the contents
of two buffers (two string buffers or two data
buffers). If the buffer areas compare, the Re
served Variable INDEX is set to -1. Otherwise,
INDEX is set to the element of Buffer 1 which
did not compare (see INDEX under Reserved Varia
bles).

The length of the compare is in
32,767) if comparing data buffers
if comparing string buffers.

words (limit
and in bytes

EXAMPLE(S):

> 5 C8 AA(lO), 88(10), 10

> 10

• COMPARE AA(10)-AA(19)

• WITH 88(10)-BB(19).

> 15 IF INDEX <> -1 THEN 200 • REPORT ERROR ROUTINE AT 200

> 20 CB &CC(5), &DD(lO), 6 • COMPARE BYTES 5-10 OF &CC

> 25

> 30 IF INDEX -1 THEN 100

• TO 8YTES 10-15 OF &DD

IF INDEX = -1 THEN COMPARE

> 35 • WAS GOOD

NOTE: If a Compare Error occurs in statement 20, you must be
responsible for remembering that the buffer elements are
offset (i.e., &CC(5) is compared to &DD(lO), not &DD(5».

4.4 (COMMENT)

OPERATION NAME: Comment String

MNEMONIC: (period)

DESCRIPTION: Allows entry of comment strings as statements or
following statements. Any entry following a
period will be interpreted as a comment string
for the pending line (the only exception is a
(.) inside a string). Comments should be kept
short and used sparingly since they can only be
used as source data thus consumming a lot of
user data storage space.

833-51

AID Diagnostic Language

EXAMPLE (S) :

> 10 .THIS IS

> 20 .A COMMENT STRING.

> 30 GOTO 40 .THIS IS A COMMENT STRING

> 40 PRINT "STOP.THEN GO"

(This does not indicate a comment string)

4.5 DB

OPERATION NAME: Define Buffer

MNEMONIC: DB Name, Length [,assignment data]

DESCRIPTION: Declares a buffer with a two (alpha) character
name (AA, BB, ••• ZZ) and a buffer length up to
allowable space available* (see MAXMEMORY under
Reserved Variables). The parameter length is
interpreted as a numeric (0 will delete the buf
fer. The only assignment data allowed at declar
ation is a string assignment for string buffers
(see example) or numeric or variable for data
buffer where the entire buffer is stored with
that numeric or variable. Dynamic allocation of
buffers is allowed, but may cause large overhead
in execution time since existing buffers are
"packed" to allow room for a new buffer. Dynam
ic allocation will leave the existing element
values unchanged.

EXAMPLE (S) :

> 10 DB AA, 100 .DECLARES THE BUFFER AA AS 100 WORDS
LONG

> 20 DB &AA, 10 .DECLARES THE STRING BUFFER &AA AS
.10 BYTES LONG (NOTE AA AND &AA
.ARE SEPARATE BUFFERS).

> 30 DB &CC,lOO,"START".EACH SEQUENTIAL 5 BYTE SET OF &CC
.CONTAINS START

> 40 DB CC, 100, a

> 50 DB CC, 110

.STORES 0 IN ALL 100 ELEMENTS OF CC.

.REALLOCATE·CC TO 110 WORDS
(FIRST 100 ELEMENTS INTACT)

833-52

> 60 DB CC, 0 .DELETES BUFFER CC

AID Diagnostic Language

*A limit of 32,767 words is set for data buffers. String buffer
length is limited to 65,536.

4.6 DELAY

OPERATION NAME: Delay

MNEMONIC: DELAY increment

DESCRIPTION: Provides a delay of program execution in approx
imately 91.43* microsecond increments. The max
imum delay increment is 65,535 (5.99 seconds).

*Based on current system clock.

EXAMPLE (S):

> 60 DELAY 10 (SUSPENDS PROGRAM EXECUTION FOR
914.3 MICROSECONDS)

> 100 DELAY 1 (SUSPENDS PROGRAM EXECUTION
91.4 MICROSECONDS)

EXAMPLE (S) :

> 120 DELAY A (SUSPEND FOR Ax91.4 MICROSECONDS)

4.7 ENABLE

OPERATION NAME: Enable Errors

MNEMONIC: ENABLE

DESCRIPTION: Re-enables program execution error reporting
previously disabled by a SUPPRESS statement or
the commands SEPR and SEPS.

EXAMPLE (S) : > 100 ENABLE (SUBSEQUENT ERRORS WILL NOW BE
REPORTED DURING EXECUTION)

833-53

AID Diagnostic Language

4.8 END

OPERATION NAME: Stop Program

MNEMONIC: END

DESCRIPTION: Indicates the end of the existing program execu
tion. END may be used anywhere in the program
and does not have to be the last statement.

EXAMPLE (S): > 10 LET A:=4

> 20 PRINT A

The above program is identical in execution to:

> 10 LET A:=4

> 20 PRINT A

> 30 END

END may be used anywhere to terminate program

> 5 LET A:=4

> 10 GOSUB 30

4.9 EPAUSE

> 20 END

> 30 LET A:=A + 1

> 40 PRINT A

> 50 RETURN

.END PROGRAM AFTER GOSUB 30

OPERATION NAME: Error Pause

MNEMONIC: EPAUSE

DESCRIPTION: Creates an unconditional pause in the execution
of the resident program. This statement is sup~

pressed only by the SEPS command and SUPPRESS
statement. A prompt character (» is printed on
the console; the operator may enter any valid
command.

833-54

EXAMPLE (S) :

4.10 EPRIN'l'

AID Diagnostic Language

> 10 EPAUSE

> 20 RUN

> (Any valid command may be entered)

OPERATION NAME: Print Error Message to Console

MNEMONIC:

DESCRIPTION:

EXAMPLE (S) :

EPRINT [*] [string [, (or;)] [string] etc.]

Enables data, print spacing#, or strings to be
output to the Console. This statement must be
used to print error messages only (see PRINT for
non-error messages). This statement will only
be suppressed the SEPR command and SUPPRESS
statement. The optional (*) disables the pause
following the print. If the Reserved Variable
STEP is greater than zero, the error message is
preceded by a STEP number message. (See Reserved
Variable STEP.)

> 10 EPRINT &BB(0,7)

> 20 EPRINT * &BB(0,7)

> 30 RUN

BAD UNIT

> GO

BAD UNIT

END OF AID USER PROGRAM

--or--

.&BB PREVIOUSLY SET TO "BAD UNIT"

CREATED BY STATEMENT 10

CREATED BY STATEMENT 20

> 10 EPRINT "DATA WORD ";A; "IS"; !BB(J);" SHOULD BE "; !CC(J)

> 20 RUN

DATA WORD 5 IS !F8D4 SHOULD BE !F7D4

See Print Spacing under Special Characters.

833-55

AID Diagnostic Language

4.11 FILENAME

OPERATION NAME: Set Filename

MNEMONIC: FILENAME string buffer [,offset]

DESCRIPTION: Specifies the filename* pointed to by the string
buffer parameter be used in future file access
statements. The optional offset (always 0 for
DUSIII tape) is the sector number . (for DUSIII
disc) from the start of the file, to start sub
sequent file accesses from (default is 0). The
string Pointed to in this statement must contain
a valid and existent filename during execution
and must terminate in a space or!FF character.
Also see the CREATE command, The READFILE and
WRITEFILE statements, and FILEINFO and FILELEN
reserved variables.

EXAMPLE (S) :

> 10 DB&AA, 9, "FNAME123 "

> 20 FILENAME &AA(O)
(ALL FUTURE FILE REFERENCES WILL ACCESS THE FILE

NAMED FNAME123)

-or-

> 100 FILENAME &AA(2),5
(ALL FUTURE FILE REFERENCES WILL ACCESS THE FILE

NAME AME123 STARTING FROM THE 6TH SECTOR
I.E.-SECTOR 5 OF THE FILE)

* The file "filename" must reside on the Diagnostic/Utility
Media being used and must be a valid filename as specified
by the DUSIII Reference Manual, part no. 30341-90005.

4.12 FOR-STEP-UNTIL

OPERATION NAME: For-Step-Unti1

MNEMONIC: F[OR] assignment exp [STEP exp] UNTIL(or TO)
terminator exp

833-56

DESCRIPTION:

-or-

AID Diagnostic Language

Provides a means of repeating a group of in
structions between the FOR statement and a sub
sequent statement using a variable as a counter.
The variable cannot be a string buffer element.
The STEP parameter is an optional increment of
the FOR variable with a default of 1. The FOR
NEXT sequence is repeated until the terminator
expression value is exceeded* by the FOR vari
able value. FOR statements may be nested. Note
that no execution occurs in the FOR statement
after the initial execution. Note also that
UNTIL or TO may precede the terminator expres
sion, but UNTIL will always be listed.

> 10 FOR AA(2):= -5 TO 50
(AA(2) WILL STEP -5,-4,-3,-2,-1,0,1 ••• 50)

> 100 NEXT 10

*If the STEP value is negative the sequence will repeat until the
FOR value is less then the UNTIL value. (Note: The FOR loop
always executes at least once.)

833-57

AID Diagnostic Language

4.13 GOSUB

OPERATION NAME: Go to Subroutine

MNEMONIC: G[OSUBj Statement

DESCRIPTION: Allows program to enter a subroutine and then
return to the next sequential statement* after
GOSUB statement. Nesting subroutines is allowed
to 20 levels.

EXAMPLE(S): > 10 GOSUB 500

> 20

> 490 GOTO 600

.GO TO THE SUBROUTINE STARTING

.AT STATEMENT 500.

.JUMP AROUND THE SUBROUTINE.

> 500 LET A:=A+l .THIS SUBROUTINE

> 510 PRINT A;

> 520 RETURN

.WILL INCREMENT A

.PRINT IT ON THE CONSOLE AND THEN

.RETURN CONTROL TO THE STATEMENT

.FOLLOWING THE GOSUB WHICH CAUSED

.TRANSFER OF CONTROL TO 500.

*See Reserved Variable OFFSET fOL" returning to other statements.

4.14 GOTO

OPERATION NAME: GO TO (Unconditional Branch)

MNEMONIC: GOTO Statement Number

DESCRIPTION: Allows the program to branch unconditionally to
another statement number •

EXAMPLE{S): > 10 GOTO 50 . TRANSFER CONTROL TO STATEMENT 50

833-58

AID Diagnostic Language

4. 15 IF-'rHEN

OPERATION NAME: If-Then Control

MNEMONIC: IF exp [[SPECIAL OPERATOR exp] [SPECIAL OPERATOR
exp]] THEN statement number

DESCRIPTION: Allows the executing program to evaluate "exp"
and, if true (non-zero)*, to transfer control to
statement number specified. "Exp" may be a sim
ple variable, data buffer element, assignment or
expression. Expressions may be separated by a
special relational operator not allowed in any
other expression. The allowable special opera
tors are:

GT (greater than)
LT (less than)
GE (greater than or equal to)
LE (less than or equal to)
NE (not equal to)
EQ (equal to) .

WARNING

String buffers are handled as data buffers in
this mode, i.e., &AA(0):=5 would store &AA(l)
with 5.

Each expression is evaluated and then tested
(left to right) with the special operator. The
results of the special operator evaluation(s) is
logically ANDed and, if the overall result is
true, control is transferred to the THEN state
ment. Up to three expressions are allowed.

EXAMPLE(S):

> 10 IF AA(2) THEN 50 .IF AA(2) IS TRUE (NON-ZERO) GO
TO 50

> 50 IF B:=C THEN 30 .THE ASSIGNMENT IS EXECUTED THEN
• EVALUATED.

> 70 IF A OR B THEN 30 :THE EXPRESSION "A OR B" IS
•EVALUATED.

> 80 IF 14 LE A:=A+l LE 20 THEN 120
.TEST IF A+l IS BETWEEN 14 AND

20 INCLUSIVE.

> 90 IF A:=A+l GE B:=B+1 GE C:=C+1 THEN 200
.TEST IF (A+1»=(B+l»=(C+l)

>100 IF 1 LT B LT 100 THEN 20
.TEST IF B IS BETWEEN 1 & 100**.

833-59

AID Diagnostic Language

* See IFN Statement for the reverse branch condition.
**Note that statement 100 would not execute the same as IF

l(B<lOO THEN 20 which executes as "IF(l<B)<lOO THEN 20" where
the result of l<B will equal -lor O.

4.16 IFN-THEN

OPERATION NAME: IF-NOT-THEN

MNEMONIC: IFN exp THEN statement

DESCRIPTION: Identical to the IF-THEN statement (see IF-THEN)
except the expression "exp" is tested for fal
sity in determining if control is passed to the
label "statement". The expression value is not
altered by the NOT function.

EXAMPLE (S) :

> 10 IF 1 LE A LE 14 THEN 20
.IF A IS BETWEEN 1 AND 14 GOTO 20

> 20 IFN 1 LE A LE 14 THEN 20
.IF A IS "NOT" BETWEEN 1 AND 14
GOTO 20

--or--

> 10 IF A THEN 20

> 20 IFN A THEN 20

4.17 INPUT

• IF AOO GOTO 20

.IF A=O 'GOTO 20

OPERATION NAME: Input Data

MNEMONIC: INPUT x, [y], ••• [n]
I x, [y], •• [n]

DESCRIPTION: Provides capability of rec:iv~ng operator input
from the Console and ass1gn1ng that input to a
variable(s). x may be a simple variable, buffer
element, string buffer, or Reserved Variable.
When executing, input prompts with a ? or?? to
signify an input is expected. (See Special Char
acters.) Each input value must be separated by a

833-60

EXAMPLE(S) :

10 INPUT A

AID Diagnostic Language

comma. Inputs may be an ASCII character, but not
1 or % alone. Also change in character type will
terminate input, but not necessarily report an
error. Additional input beyond the expected is
ignored. All ASCII characters are shifted to
upper case. See Reserved Variable INPUTLEN for
determining the character length of the input.

.VALUE INPUT FROM THE CONSOLE IS

.INTERPRETED AND THEN STORED

.IN A

30 INPUT AA(2)

40 INPUT &BB(2,6)

50 INPUT A,B,C

.AA(2) WILL BE STORED WITH THE
• INPUT VALUE.

.ELEMENTS 2 THROUGH 6 OF STRING BUFFER

.&BB WILL READ THE FIRST 5 CHARS INPUT

.FROM THE CONSOLE. STRING BUFFERS MUST

.BE USED IF ASCII INPUT IS REQUIRED.

.THE OPERATOR MUST INPUT THREE

.NUMERIC VALUES (SEPARATED BY COMMA
• DELIMITERS) TO BE ASSIGNED TO A,
.B AND C

60 INPUT.A

70 RUN

? %7776 (STATEMENT 10 EXECUTION A: =%7776)

? !F4 (STATEMENT 30 EXECUTION AA(2) :=!F4)

? HELLO (STATEMENT 40 EXECUTION &BB(2,6):=
"HELLO")

? 2,4 (STATEMENT 50 EXECUTION A:=2, B:=4)

?? 8 (STATEMENT 50 MORE INPUT REQUIRED
C:=8)

? B (STATEMENT 60 EXECUTION A:=%102)

4.18 INPUTB

OPERATION NAME: Input for buffers

MNEMONIC: INPUTB XX(N)

833-61

AID Diagnostic Language

DESCRIPTION: This statement allows variable length numeric
input into a buffer. XX(N) is the first buffer
element. Commas may replace data to suppress in
put into that element. String buffers are not
allowed.

EXAMPLE (S) :

> 10 DB XX, 7,9

> 20 FOR 1:=0 UNTIL 6

> 30 PRINT XX(I);l;

> 40 NEXT 20

> 45 PRINT

> 50 INPUTB XX(O)

> 60 FOR 1:=0 UNTIL 6

> 70 PRINT XX(I);l;

> 80 NEXT 60

.Fill XX with nines

.Print initial XX contents

.Get input data from operator

.Print XX contents with input
values

> 90 RUN

9 999 999
? ,,2,3,,5
9 923 959

Note that XX(O), XX(l), XX(4) and XX(6) are not changed by the
input.

4.19 LET

OPERATION NAME: Assignment

MNEMONIC:

DESCRIPTION:

[LET] variable:= Any variable, numeric, expres
sion or string

Allows assignment to a variable, data buffer, or
string buffer, the value of any variable, numer
ic, expression, or string.

833-62

EXAMPLE(S) :

> 10 LET A:=lO

> 20 LET C:=D+E

> 30 LET AA(2):=!F

> 45 LET A:=C:=4

> 48 LET A:=4,B:=7

> 50 LET AA(4):=B

AID Diagnostic Language

.A IS ASSIGNED THE VALUE DECIMAL 10.

.C IS ASSIGNED THE SUM OF D+E.

.ELEMENT 2 OF THE BUFFER AA IS ASSIGNED

.THE HEXADECIMAL VALUE F.

.MULTIPLE VARIABLE ASSIGNMENTS ALLOWED.

.MULTIPLE EXPRESSION ASSIGNMENTS
ALLOWED •

• ELEMENT 4 OF BUFFER AA IS ASSIGNED
.THE VALUE OF THE B VARIABLE.

> 60 LET &AA(5,9):="HELLO"
.&AA(5,6)=HE, &AA(7,8)=LL, &AA(9)=O

> 70 A:=lO .IDENTICAL TO STATEMENT 10*

> 80 LET A:=B<C .A=-l if B<C else A=O

*The LET keyword may be omitted but a subsequent list will
display it.

4.20 LOOPTO

OPERATION NAME: Conditional Loop Branch

MNEMONIC:

DESCRIPTION:

EXAMPLE (S) :

LOOPTO label

Causes a branch to the statement specified in
lable if a LOOP Command was previously issued;
otherwise no action occurs.

> 100·SECTION 1,200

> 200 SECTION 2,500

> 500 LOOPTO 100 . Go to 100 if LOOP flag is
set.

833-63

AID Diagnostic Language

4.21 LPOFF/LPON

OPERATION NAME: Control offline listing

MNEMONIC: LPOFF/LPON

DESCRIPTION: Print statements normally have their output di
rected to the Console. LPON statements may be
used to direct the print output to the line
printer*. LPOFF will direct the output back to
the console.

EXAMPLE (S) : > 10 PRINT "This will go to the Console"

> 20 LPON

> 30 PRINT "This will go to the line printer"

> 40 LPOFF

> 50 PRINT "This will also go to the Console"

> 60 RUN

* If no line printer exists the print will default back to the
console.

4.22 NEXT

OPERATION NAME: End of For-Next loop

MNEMONIC: NEXT x
N x

DESCRIPTION: Specifies the end of a For-Next set of state
ments where x must be the statement number of a
respective FOR statement.

EXAMPLE (S): > 10 LET J:=5

> 20 FOR K:=l UNTIL 20

> 30 LET BB(K):=J, J:=J+5

> 40 NEXT 20

833-64

AID Diagnostic Language

This set of statements would store BB(1)=5,
BB(2)=10, ... BB(20)=100.

4.23 NOCHECKS

OPERATION NAME: No Checks Enabled

MNEMONIC: NOCHECKS

DESCRIPTION: Gives the programmer the ability to disable time
critical execution error checks*. This statement
would typically be the first statement in a
"finished known good" program so that the execu
tion overhead of programming checks is allevi
ated (i.e., bounds violations, uninitialized DB,
etc. need not be checked). The "checks" condi
tion is always enabled until this statement is
encountered and then no checks are done until
execution is completed.

EXAMPLE (S) :

> 10 NOCHECKS

> 20 DB AA,lOO

> 30 LET BB(100):=12

(Buffer area overflow not checked)

(Bounds and buffer declarations
not checked)

* If a catastrophic error occurs in the "no checks" mode
the results are unpredictable.

4.24 PAGE

OPERATION NAME: Page Eject

MNEMONIC: PAGE

DESCRIPTION: Issues a page eject to the printer device during
LISTing. During execution this statement exe
cutes as a comment.

833-65

AID Diagnostic Language

EXAMPLE (S):

4.25 PAUSE

> 100 .END OF SECTION X

> 110 PAGE

> 120 .BEGIN SECTION Y

> 130 L PRINTER 100/120

(Listing of Line Printer looks like the
following) •

100 .END OF SECTION X

(Page Eject)
120 .BEGIN SECTION Y

OPERATION NAME: Non-Error Pause

MNEMONIC: PAUSE

DESCRIPTION: Creates an unconditional pause in the executionof an AID user program. This statement is suppressed only by the SNPS command. After aprompt (» is printed on the console, the operator may enter any valid command.

EXAMPLE(S):

4.26 PPRINT

> 10 PAUSE

> 20 RUN

> (Enter any valid command)

OPERATION NAME: Pause Print

MNEMONIC: PP[RINT] [*] string [; (or,)] [string] (etc.)
DESCRIPTION: PPRINT is identical to the PRINT statement except after the print a pause occurs. PPRINT maybe suppressed by SNPR and pause may be suppressed by SNPS. The optional (*) will suppress

833-66

AID Diagnostic Language

pause which follows print. If the Reserved Vari
able STEP is greater than zero, the message
string is preceded by a STEP number message.
(See Reserved Variable STEP.)

EXAMPLE(S) : >10 LET A:=5

> 20 PPRINT "BAD GUY IN";2iA

> 30 RUN

BAD GUY IN 5

> (pause mode)

-or-

4.27 PRINT

> 10 PPRINT * "TOO LATE NOWl!" .SUPPRESS PAUSE

> 20 RUN

TOO LATE NOW 11

END OF AID USER PROGRAM

> 20

OPERATION NAME: Print to Console without Pause

MNEMONIC: PR[INT] [string] [; (or,)] [string] etc.

DESCRIPTION: Enables data, print spacing*, or strings to be
output to list device. This statement must be
used to print non-error messages only (see
EPRINT or PRINTEX for error message reporting).
This PRINT will only be suppressed by the SNPR
command. PRINT strings may be concatenated with
(;) to suppress return line feed or (,) which
generates a return linefeed.

EXAMPLE (S) : > 10 PRINT "A";2;"BC","DE";3;"FGH"

> 20 RUN

A BC

DE FGH

833-67

AID Diagnostic Language

-or-

> 10 DB &AA,lO,"ABCDEFG"

> 20 PRINT &AA(3,6);2;&AA(0,2)

> 30 RUN

DEFG ABC

> 30

* See PRINT SPACING under Special Characters.

4.28 PRINTEX

OPERATION NAME: Print Error without Pause

MNEMONIC: PRINTEX [string] [; (or ,)] [string] etc.

DESCRIPTION: PRINTEX is identical to PRINT except that it is
suppressed by SEPR like EPRINT (see PRINT forfurther details).

EXAMPLE (S) :

4.29 RANDOM

> 10 PRINTEX "ABC";"DEF";2;"GHI"

> 20 RUN

ABCDEF GHI

> 20

OPERATION NAME: Generate Random Numbers

MNEMONIC: RANDOM [(argument)] variablel [,variableN]

DESCRIPTION: Generates random integers (-37,768 to 32,767)from an argument (optional) and stores them intovariables specified (variabll to variableN). Ifan arguement is not included the random sequencecontinues normally, otherwise the random gener-

833-68

AID Diagnostic Language

ator is preset
generator will
numbers.

to the
cycle

argument. The
through 128,563

random
random

EXAMPLE (S) :

> 10 RANDOM(lO)A,B

> 20 RANDOM(lO)C,D

-or-

> 10 RANDOM A

-or-

(NOTE THAT A=C AND B=D SINCE
THE SAME ARGUMENT WAS USED)

• NO ARGUMENT

> 10 RANDOM(RUNPARAMl) A (OPERATOR PASSED AN ARGUMENT
WITH RUN X)

-or-

> 10 RANDOM AA(O),F,TIME
(GENERATE THREE SEQUENTIAL
RANDOM NUMBERS WITH NO
INITIAL ARGUMENT)

4.30 READCLOCK

OPERATION NAME: Read System Clock Contents

MNEMONIC: READCLOCK variable

DESCRIPTION: Reads the contents of a register wnich contains
the amount of clock intervals as specified in
STARTCLOCK statement (see STARTCLOCK Statement).
Resolution is restricted to +-95% of a clock in
terval, therefore, averaging schemes should be
used for critical timing measurement. This
statement also stops the system clock from fur
ther interrupts.

EXAMPLE (S) : > 100 STARTCLOCK 10

> 110 RSI0 AA
> 120 READCLOCK A

833-69

.START 10 MILLISECOND
TIMER

.START CHANNEL PROGRAM

.GET 10 MILLISECOND
INTERVAL COUNTER VALUE
SINCE STATEMENT 100

AID Diagnostic Language

NOTE: The amount of overhead in executing
AID statements should be accounted
for by the programmer.

4.31 READFILE

OPERATION NAME: Read File

MNEMONIC: READFILE buffer element, length

DESCRIPTION: Reads data from the file "filename"* and stores
it into memory starting at the location of the
buffer element for length words(or characters if
using a string buffer)**. Any file may be ac
cessed by this statement.

EXAMPLE(S):

> 10 DB &AA,7,"HOLDIT "

> 15 DB BB,lO

> 20 FILENAME &AA(O)

> 30 READFILE BB(O),lO (The first 10 words of the file
HOLDIT are stored into the buf
fer BB starting at element
zero)

* A valid FILENAME statement must be executed prior to executing
this statement.

**If the buffer being written is a string buffer, the element is
rounded down to the nearest even element to maintain even word
boundaries. If a "rounding" is needed, the length parameter is
incremented.

Example: > 100 READFILE &AA(3),5

This statement would read 6 bytes from HOLDIT and put them into
&AA(2).

833-70

AID Diagnostic Language

4.32 RETURN

OPERATION NAME: Return from Subroutine

MNEMONIC: R[ETURN]

DESCRIPTION: Causes a transfer of control to the next sequen
tial statement after the last GOSUB statement
executed.* If no GOSUB occurred, program execu
tion is aborted with an error message.

EXAMPLE (S) : 10 GOSUB 60

20

.GO TO SUBROUTINE STARTING AT
60.

60 LET A:=A+l,B:=B+l

70 RETURN .RETURNS TO STATEMENT 20

*See Reserved Variable OFFSET for returns to other statements.

4.33 SECTION

OPERATION NAME: Section Execute Test

MNEMONIC:: SECTION x, label

DESCRIPTION: When a program is split up into sections, the
SECTION statement* may be used to determine
whether to execute a particular section. The
executable sections are predefined by the TEST
command and/or by assigning values to the
Reserved Variable SECTIONS1/3 (see Reserved Var
iable section for further details). When a SEC
TION statement is executed, the Section x bit is
extracted from the appropriate bit mask for
SECTIONSl/3 and, if set, the next sequential
statements are executed normally and the
Reserved Variable SECTION is set to the section
number. Otherwise, control is transferred to
the statement specified in LABEL.

833-71

AID Diagnostic Language

EXAMPLE(S) : > 10 SECTION 1, 60

> 20

> 50 .End of section 1

> 60 SECTION 2, 120

> 70

> 120 • END OF SECTION~2

* Do NOT confuse the SECTION statement with the SECTION
Reserved Variable.

4.34 SPACE

OPERATION NAME: Line Space

MNEMONIC: SPACE [Xl

DESCRIPTION: When listing a program on a printer device, gen
erates X line spaces before the next statement.
During execution this statement is treated as a
comment. Default X is 1 space.

EXAMPLE(S} : > 10 .END OF STEP X

> 20 SPACE 3

> 30 .BEGIN STEP Y

> 40 LIST PRINTER

(listing on the line printer looks like the
following)

10 .END OF STEP X

(3 Line Spaces)

30 .BEGIN STEP Y

833-72

AID Diagnostic Language

4.35 SPACESOFF/SPACESON

OPERATION NAME: Control Numeric Print (with/without leading
spaces)

MNEMONIC: SPACESOFF/SPACESON

DESCRIPTION: Allows the programmer to print numbers right
justified with leading spaces(SPACESON). The
default condition is no leading spaces until a
SPACESON is executed. SPACESOFF disables leading
spaces print.

Note: Hex number occupy 5 digits

Octal numbers occupy 7 digits

Decimal numbers occupy 6 digits

EXAMPLE(S): > 10 LET A:=!FDF,B:=%7657,C:=4839

> 20 PRINT !A;%B;C

> 30 SPACESON

> 40 PRINT !A;%B;C

> 50 SPACESOFF

> 60 RUN

!FDF%76574839
!FDF %7657 4839

.LEFT JUSTIFIED

.RIGHT JUSTIFIED

.RETURN TO LEFT JUSTIFIED

Note: If ZEROESON and SPACESON are both enabled then ZEROESON is
dominant

4.36 STARTCLOCK

OPERATION NAME: Start System Clock

MNEMONIC: STARTCLOCK [interval in milliseconds]

DESCRIPTION: Initiates operation of the system clock and cau
ses a counter increment every interval as speci
fied in the optional parameter. (Default is 1
millisecond.) The clock's resolution is +-95%
of the interval specified.

833-73

AID Diagnostic Language

EXAMPLE(S):

>100 STARTCLOCK .START 1 MILLISECOND TIMER

> 100 STARTCLOCK 1 .START 1 MILLISECOND TIMER

4.37 SUPPRESS

OPERATION NAME: Suppress Errors

MNEMONIC: SUPPRESS

DESCRIPTION: Resets the ENABLE statement override flag thUI
returning to conditions set by the error print
ing commands. See ENABLE statement.

4.38 WRITEFILE

OPERATION NAME: Write File

MNEMONIC: WRITEFILE buffer element, length

DESCRIPTION: Writes data starting at the element of the spec
ified buffer into the file "filename"* for
length words (or characters if using a string
buffer)**. Only DATA files may be written into
by this statement. (Refer to the DUSIII Refer
ence Manual, part no. 30341-90005 for additional
information.)

EXAMPLE(S): > 10 DB &AA,6,"HOLDl "

> 15 DB BB,200

> 20 FILENAME &AA(O)

> 30 WRITEFILE BB(100),20
(Writes data starting at BB(lOO)
into the file HOLDI for 20 words)

833-74

AID Diagnostic Language

* A valid FILENAME statement must be executed prior to executing
this statement.

**If the buffer being written is a string buffer the element is
rounded down to the nearest even element to maintain even word
boundaries. If "rounding" is needed, the length parameter is
incremented.

Example: > 100 WRITEFILE &AA(3),S

This statement would write 6 bytes into HOLDI starting at &AA(2).

4.39 ZEROESOFF/ZEROESON

OPERATION NAME: Control Numeric Print (with/without leading
zeros)

MNEMONIC: ZEROESOFF/ZEROESON

DESCRIPTION: Allows the programmer to print numbers right
justified with leading zeroes (ZEROESON). The
default condition is no leading zeroes until a
ZEROESON is executed. ZEROESOFF disables leading
zeroes print.

Note: Hex numbers occupy 5 digits

Octal numbers occupy 7 digits

Decimal numbers occupy 6 digits

EXAMPLE(S): > 10 LET A:=!FDF,B:=%7657,C:=4839

> 20 PRINT lAi%BiC .LEFT JUSTIFIED

> 30 ZEROESON

> 40 PRINT lAi%BiC

> 50 ZEROESOFF

> 60 RUN

IFDF%76574839
10FDF%007657004839

.RIGHT JUSTIFIED

.RETURN TO LEFT JUSTIFIED

Note: If ZEROESON and SPACESON are both enabled then ZEROESON
is dominant.

833-75

AID Diagnostic Language

833-76

5.0 INTRODUCTIONS

SPECIAL CHARACTERS SECTION
V

The AID Special Characters are listed, in detail, in this sec
tion. The format for each Special Character explanation is:

OPERATION NAME: General phrase of what the Character does.

SYMBOL: The Special Character.

DESCRIPTION: A detailed explanation of the Special Charac
ter's function.

EXAMPLE(S): One or more examples using the Special Character

5.1 PERIOD

OPERATION NAME: Comment Identifier

SYMBOL: (Period)

DESCRIPTION: See the description under Comment in the State
ment Section.

5.2 CONTROL H

OPERATION NAME: Backspace (one character)

SYMBOL: CNTRL H (Bs) or BACKSPACE

DESCRIPTION: Allows the operator to backspace to the last
character entered by pressing the CNTRL and H
keys simultaneously on the console. The cursor
is relocated to the last character input and
that character is deleted.

EXAMPLE(S): CRT Example

> 10 LES

833-77

AID Diagnostic Language

(S is incorrect, Operator presses CONTROL H)
> 10 LE

5.3 CONTROL X

OPERATION NAME: Delete Existing Line Input

SYMBOL: CNTRL X(CN) or DELETE ENTRY

DESCRIPTION: Allows the operator to delete the existing input
character string by pressing Control and X si
multaneously on the Console. Three exclamation
marks (Ill) and a return-line feed are printed*
and the operator may input a new string of char
acters.

EXAMPLE(S): > 10 LET Xc I!! (No input occurs)

-or-

?6,7Xclll (Deletes all inputs)

* Note- II! may not be displayed on some Console types.

5.4 PARENTHESES

OPERATION NAME: Enclose

SYMBOL: () Parentheses

DESCRIPTION: Used to:

--Enclose a buffer element
--Enclose a special optional parameter

833-78

EXAMPLE(S):

> 10 LET AA(2):=2

> 20 LET &BB(2):="H"

> 30 PRINT "(2)"

> 40 RANDOM(X) A

5.5 QUOTATION MARKS

AID Diagnostic Language

.DEFINES ELEMENT 2 OF AA

.DEFINES BYTE 2 OF &BB

.PARENTHESES ARE ASCII CHARACTERS ONLY

.ENCLOSES OPTIONAL ARGUMENT

OPERATION NAME: Enclose a Character String

SYMBOL: " " (Quotation Marks)

DESCRIPTION: Encloses a string of characters for assignment
or printing.

EXAMPLE (S) :

> 10 LET &AA(1):="4" (SET THE RIGHT BYTE
OF WORD 1 OF &AA TO AN ASCII
CHARACTER 4)

> 20 LET &CC(10,14):="HELLO"

(STARTING AT CHARACTER 10
OF &CC STORE THE ASCII
CHARACTERS HELLO SEQUENTIALLY)

> 30 PRINT "OK" .PRINTS OK ON THE CONSOLE.

*Note: Quotation marks inside a string are not allowed.

5.6 EXCLAMATION MARK

OPERATION NAME: Hexadecimal Notation

SYMBOL: (Exclamation Mark)

DESCRIPTION: Denotes the following variable, numeric, or buf
fer element will be referenced or manipulated as
a hexadecimal based number.

833-79

AID Diagnostic Language

EXAMPLE (S) :

> 10 PRINT!G

> 20 PRINT "!A"

> 30 LET A:=!F

5.7 PER CENT SIGN

.PRINT THE VALUE OF G IN HEXADECIMAL.

.DENOTES AN ASCII !A ONLY.

.A=HEXADECIMAL F

OPERATION NAME: Octal Notation

SYMBOL: % (Per Cent Sign)

DESCRIPTION: If the symbol (%) is not contained in a charac
ter string, it denotes the variable, numeric, or
buffer element following it is represented or
manipulated as an octal based number.

EXAMPLE(S) : > 10 PRINT %G .PRINT THE VALUE OF G IN OCTAL

> 20 PRINT "%A" .DENOTES AN ASCII CHARACTER %A

> 30 LET A:=%37 .A=OCTAL 37

5.8 Print Spacing

OPERATION NAME: Print Spacing

SYMBOL: 0 through 79

DESCRIPTION:

EXAMPLE(S) :

Provides print spacing when concatenating
strings in print statements.

> 10 PRINT 8; "EIGHT" .PRINTS 8 SPACES AND THEN "EIGHT"

> 20 PRINT "BIG" ;15 ; "GAP"
.PRINTS BIG, 15 SPACES AND THEN
.GAP

833-80

AID Diagnostic Language

5.9 GREATER THAN SIGN

OPERATION NAME: Prompt Character

SYMBOL: > (Greater Than Sign)

DESCRIPTION: When AID or an executing program expects a Con
sole input, the prompt (» is printed in the
first line space. (See the operators section for
a description of the "greater than" function.)

EXAMPLE (S) :

5.10 AMPERSAND

> 100 RUN

(Control Y)
Break in Statement 50

> (AID IS NOW AWAITING OPERATOR INPUT)

OPERATION NAME: String Buffer Designtion

SYMBOL: & (Ampersand)

DESCRIPTION: Denotes a string buffer. This Special Character
is not allowed anywhere else (except inside a
character string).

EXAMPLE(S) :

> 10 DB &AA,lO .DEFINES &AA AS A 10 CHARACTER STRING
BUFFER

> 20 INPUT &AA(2,4) .ACCEPTS 3 ASCII CHARACTERS

> 30 LET &A:="HI" •NOT ALLOWED. VARIABLES CANNOT BE
USED

> 40 LET &AA:="HI" (NOT ALLOWED. STRING LENGTH
MUST EQUAL ELEMENT COUNT)

> 45 LET &AA(O,l):="HI" (ALLOWED. ELEMENT COUNT
EQUALS STRING LENGTH)

> 50 PRINT "&" iA .SPECIFIES AN ASCII & WILL BE PRINTED

833-81

AID Diagnostic Language

5.11 ; (SEMI-COLON)

OPERATION NAME: Suppress Return-Line Feed

SYMBOL: ; (semi-colon)

DESCRIPTION: If the symbol (i) is contained in a concatenated
print string, it denotes no return-line feed is
desired after the print operation. A comma is
used to force a return-line feed (see .comma
Special Character).

EXAMPLE(S) : > 5 LET A:=5

> 10 PRINT A;

> 20 PRINT Ai" DAYS"

> 30 PRINT "CALL " iA

> 40 PRINT "i"

> 50 PRINT Ai 5iA; 4 iA,Ai 5iA

> 60 RUN

The results of the above statements are as follows:

55 DAYS (statement 10 and 20)
CALL 5 (statement 30)

(statement 40)
5 5 5 (statement 50)
5 5

5.12 CONTROL Y

OPERATION NAME: Suspend Execution

SYMBOL: Control Y(Em)

DESCRIPTION: During execution of a program or command, the
operator may interrupt and suspend execution by
pressing control and Y simultaneously. The
prompt (» is printed to indicate AID is waiting
for operator input.

833-82

AID Diagnostic Language

EXAMPLE (S) :

> 100 RUN

(The AID program is now executing.)

CTRL Y (Operator presses Control and Y)

Break in Statement 20

>

5.13 ? or ??

OPERATION NAME: Input Expected

SYMBOL: ? or ??

DESCRIPTION: A question mark (?) indicates the executing
program expects an operator input. A double
question mark (??) indicates the operator did
not input sufficient information (i.e., more
input is expected).

EXAMPLE (S) : > 10 PRINT "INPUT"

> 20 INPUT A,B,C

> 30 PRINT A;2iB;2iC

> 40 RUN

INPUT

? 3,6

?? 8

3 6 8

833-83

AID Diagnostic Language

5.14 COMMA

OPERATION NAME: Separation of Expressions or Force Return-Line
Feed

SYMBOL: (Comma)

DESCRIPTION: Comma (,) may be used to separate expressions;to force a return-linefeed in concatenated printstrings (see semi-colon Special Character forsuppressing return-line feed)~ during commandand statement input to separate parameters, andduring INPUT execution to delimit individualinputs.

EXAMPLE (S) :

> 10 LET A:=4, B:=5

> 20 PRINT A,B

.COMMA SEPARATES EXPRESSIONS

.FORCE RETURN-LINE FEED

> 30 PRINT n n, .DESIGNATES AN ASCII COMMA ONLY
> 40 RUN-

4

5

-or-

> 10 RUN 1,2,3

-or-

> 10 INPUT A,B,C

> 20 RUN

? 1,2,3

(COMMAS SEPARATE RUN PARAMETERS)

(COMMAS SEPARATE INPUT VALUES)

833-84

AID Diagnostic Language

5.15 SLASH

OPERATION NAME: Inclusion

SYMBOL: / (slash)

DESCRIPTION: Allows the operator to enter multiple numbers
X/Y meaning X through Y inclusive. (Also see the
Divide Special Character.)

EXAMPLE(S) :

> 100 LIST 10/50

> 100 020/50

(list statement 10 through 50)

(delete statement 20 through 50)

> TEST 1/3 (initialize test of Sections 1
through 3)

833-85

AID Diagnostic Language

833-86

6.0 INTRODUCTION

OPERATORS SECTION
VI

The Operators available to the programmer are listed in detail in
this section. The format for each Operator explanation is:

OPERATION NAME: General phrase of what the Operator does.

MNEMONIC: The form that the Operator would be used in.

DESCRIPTION: A detailed explanation of the Operator's
function.

EXAMPLE(S): One or more examples using the Operator.

6.1 ASSIGNMENT (:=)

OPERATION NAME: Assignment

SYMBOL: :=

DESCRIPTION: Assigns the value of an expression to a variable
or buffer. (See the LET statement for further
examples and explanation.)

EXAMPLE(S): > 10 LET A:=2*B+4

> 20 LET &AA(0,5) :="HELLO!" (&AA(O)=H
&AA(1) =E,
&AA(2)=L,ETC.)

> 30 LET BB(4):=!F .BB(4)=HEXADECIMAL F

6.2 INTEGER MULTIPLY (*)

OPERATION NAf1E:

SYMBOL:

DESCRIPTION:

Single Word Integer Multiply

*
Executes an integer multiply on two values. The
multiplication product is limited to the range
of a single word integer (i.e.', -32,768 to

833-87

AID DIagnostic Language

32,767). Integer overflow during execution will
cause an abort with an error message.

EXAMPLE(S): > 10 LET B:=2

> 20 LET A:=B*20000

> 30 LET A:=B*2

6.3 INTEGER DIVIDE (/)

.WILL RESULT IN AN OVERFLOW.

.A = 4

OPERATION NAME: Single Word Integer Divide

SYMBOL: /

DESCRIPTION: Executes a single word integer divide on two
single integers. To access the remainder from
the divide, the MOD Operator ma¥ be used.
Divide by zero during execution w111 cause an
abort and an error message. (Also see the spe
inclusion character (/).)

EXAMPLE(S): > 10 LET A:=4,B:=ll

> 20 LET C:=B/A

> 30 LET D:=B MOD A

.C=2 QUOTIENT

.0=3 REMAINDER

6~4 INTEGER ADD (+)

OPERATION NAME: Single Word Integer Addition

SYMBOL: +

DESCRIPTION: Adds two single word integers and provides a
single word result. Overflow (Sum>32767 or
Sum<-32768) during execution will result in an
error message and will abort the program.

833-88

AID DIagnostic Language

EXAMPLE (S) : > 10 LET A:=lO, B:=30

> 20 LET C:=A + B .C 40

6.5 INTEGER SUBTRACT (-)

OPERATION NAME: Single word integer subtraction

SYMBOL:

DESCRIPTION:

EXAMPLE(S):

Subtracts two single word integers and yields a
single word result. Overflow (Difference>32767
or Difference<-32768)· during execution will
result in an error message and program abort.

> 10 LET A:=4

> 20 LET B:=lO

6.6 NOT

> 30 LET C:=A-B .C=-6

OPERATION NAME: Ones Complement

MNEMONIC: NOT

DESCRIPTION:
Executes ones complement arithmetic on a value
(all zeroes to ones, all ones to zeroes).

EXAMPLE (S) : > 10 LET A:=-l

> 20 LET B:=NOT A

.A=-l OR TRUE·

.B=O OR FALSE·

• Any non-zero number is true and zero is false.

833-89

AID DIagnostic Language

6.7 EQUAL (=)

OPERATION NAME: Equal to

SYMBOL:

DESCRIPTION: Provides a relational test between two values.
No assignment is made.

EXAMPLE(S): > 10 IF A = B THEN 20 (GO TO 20 IF A=B)

> 20 LET A:=B=C (A IS SET TO -1 IF B IS EQUAL TO (
ELSE A IS SET TO 0)

6.8 NOT EQUAL TO «»

OPERATION NAME: Not Equal to

SYMBOL: <>

DESCRIPTION: Provides an equality test between two values.

EXAMPLE (S) :

> 10 IF A <> B THEN 20 .GO TO 20 IF A DOESN'T EQUAL B.

> 15 .A AND B ARE UNALTERED•

> 20 LET C:=A<>B •C IS SET TO -1 IF A<>B OR 0 IF
A=B.

6.9 GREATER OR LESS THAN (> OR <)

OPERATION NAME: Greater or Less Than

MNEMONIC: > or < or >= or <=

DESCRIPTION: Provides a relational test between two values.
No assignment is made.

EXAMPLE (S) :

> 10 IF A>B THEN 20 .IF A IS GREATER THAN BUT NOT
EQUAL TO B

833-90

> 15

> 20 IF A<=B THEN 40

> 30 LET A:=B<C

6.10 LOGICAL AND

AID DIagnostic Language

.THEN 20.

.IF A IS LESS THAN OR EQUAL TO
B THEN 40

.A=-1 IF B IS LESS
THAN C ELSE A =0

OPERATION NAME: Logical And

MNEMONIC: AND

DESCRIPTION: Provides a Logical AND of two values.

EXAMPLE(S): > 10 LET A:=IC7

> 15 LET B:=IB5

> 20 LET C:=A AND B .C=185

> 30 IF A AND B THEN 20
(A AND BARE ANDED AS 185 THEN
TESTED FOR TRUTH (NON-ZERO»

6.11 LOGICAL OR

OPERATION NAME: Logical OR

MNEMONIC: OR

DESCRIPTION: Provides a Logical OR of two values.

EXAMPLE(S): > 10 LET A:=lC7

> 15 LET B:=lB5

> 20 LET C:=A OR B .C=lF7

> 30 IF A OR B THEN 20 .A AND B ARE OR-ED AS IF7 THEN
.TESTED FOR TRUTH (NON-ZERO)

833-91

AID DIagnostic Language

6.12 EXCLUSIVE OR

OPERATION NAME: Exclusive Or

MNEMONIC: XOR

DESCRIPTION: Provides a Logical Exclusive OR of two values.

EXAMPLE(S):

> 10 LET A:=!C7

> 20 LET B:=1B5

> 30 LET C:=A XOR B .C=!72

> 40 IFAXOR B THEN 20.A AND BARE XOR-ED AS 172

.THEN TESTED FOR TRUTH (non-zero)

6.13 MODULO OPERATION

OPERATION NAME: Modulo Operation

MNEMONIC: MOD

DESCRIPTION: Provides a means of determining. the remainder of
a division process.

EXAMPLE(S): > 10 LET A:=lO

> 20 LET B:=A MOD 3 .B=l

6.14 LOGICAL SHIFT OPERATIONS

OPERATION NAME: Logical Shift

MNEMONIC: LSL x or LSR x

DESCRIPTION: ~gically shifts a value x places where x may be
any value. A logical shift corresponds to a log
ical divide(LSR) or a logical mUltiply(LSL).

833-92

AID DIagnostic Language

.---------------.
Bits I All 16 bits I<-----------1 1--<-- O's In LSL
Lost 1 shifted left I0 ,

.----------------~
I All 16 bit I Bits

O's In-->---(1-----------> LSR
I shifted right I Lost0 ,

EXAMPLE(S):

> 10 LET A:=A LSR 2

>:20 LET B:=C LSL 1

> 30 LET C:=5 LSL A

.Shift A logically 2 places right

.Shift C logically 1 place left.

.Shift 5 logically (A) places left

6.15 ARITHMETIC SHIFT OPERATIONS

OPERATION NAME: Arithmetic Shift

MNEMONIC: ASL x or ASR x

DESCRIPTION: Arithmetically shifts an integer value x places
where x may be any value. An arithmetic shift
corresponds to an integer divide(ASR) or an
integer multiply(ASL).

Bi ts Lost
<------------------.

I

15 bits shifted I O's IN ASL
Sign 1<-------------
Unchanged I I Left I0 ,

I I 15 bits shifted I Bits Lost
I * I 1-------------> ASR
I I Right I0 ,

* Copy Sign bit x times.

833-93

AID DIagnostic Language

EXAMPLE(S) :

> 10 LET A:=A ASL 2

> 20 LET B:=C ASR 1

> 30 LET C:=5 ASL A

.Shift A arithmetically 2 places
left•

• Shift C arithmetically 1 place
right.

.Shift 5 arithmetically (A)
places left.

6.16 CIRCULAR SHIFT OPERATIONS

OPERATION UAME: Circular Shift

MNEMONIC: CSL x or CSR x

DESCRIPTION: Executes a Circular Shift on an integer value x
places where x may be any value•

.----------------.
I All 16 bits I

.<-(1-<.
I (shifted left I II 0 , j
0 - ,

1 All 16 bits I
.>-1 1->.
I I shifted right I I1 0 , I
0 < ,

CSL

CSR

EXAMPLE (S) :

> 10 LET A:=A CSL 8

> 20 LET B:=C CSR 1

> 30 LET C:=5 CSR A

.Circular Shift A 8 places left.

.Circular shift C 1 place right•

• Circular shift 5 (A) places right

833-94

AID DIagnbstic Language

6.17 SPECIAL RELATIONAL OPERATORS

OPERATION NAME: Special Relational Operators

MNEMONIC: NE (Not Equal), EQ (Equal To), LT (Less Than),
GT (Greater Than), LE (Less Than or Equal To),
GE (Greater Than or Equal To)

DESCRIPTION: These special operators may be used only in the
IF-THEN and IFN-THEN statements. The operators
NE, EQ, LT, GT, LE and GE may be. used to logi
cally AND up to three expressions which deter
mine whether a branch should occur to the "THEN"
statement. Evaluation of the "IF" expressions
occurs left to right.

EXAMPLE(S):

> 10 IF 5 LT A LT 10 THEN 150
(This statement is evaluated as:
IF (5<A) AND (A<lO) THEN GO TO
STATEMENT 150)

> 50 IF A:=R MOD 200 LT 0 THEN 60
(This statement says:
IF (A:=R MOD 200)<0
TUEN 60).
Note that A is not stored with
a relational result (see next
example).

> 70 IF A:=R MOD 200<0 THEN 50
(This statement would store A with
a True or False value R MOD 200<0)

FOR MORE EXAMPLES SEE THE "IF" STATEMENT.

833-95

833-96

7.0 INTRODUCTION

RESERVED VARIABLES SECTION
VII

The Reserved Variables available to the operator are listed in
detail in this section. The format for each Reserved Variable
explanation is:

OPERATION NAME: General phrase of what the Reserved Variable
means.

MNEl-1ONIC:

DESCRIPTION:

The form that the Reserved Variable would be
called in.

A detailed explanation of the Reserved Vari
able I S function.

INITIALIZED TO: Displays the value the Reserved Variable is set
to at the start of program execution (i.e., at
RUN time).

EXAMPLE(S): One or more examples using the Reserved
Variable.

7.1 BADINTP

OPERATION NAME: Bad Interrupt

MNEMONIC: BADINTP

DESCRIPTION: Should an interrupt occur from an unexpected
device or multiple interrupts occur from an
expected device, the erroneous channel/device is
stored in BADINTP*. Some diagnostics will use
this information to test interrupt operation.
If BADINTP is non-zero when an RSIO statement is
executed, AID will report an error.

INITIALIZED TO:
EXAMPLE (S) :

Zero
> 1000 RSIO AA .START CHANNEL PROGRAM

> 1010 IF BADINTP <>0 THEN 2000

> 1020 .OK - TRY NEXT STEP

* Bits 8-12= Channel and Bits 13-15= Device

833-97

AID Diagnostic Language

7.2 CHANNEL

OPERATION NAME: Set I/O Channel Number

MNEMONIC: CHANNEL

DESCRIPTION: Specifies the channel number of the I/O device
to be used in subsequent'I/O or channel program
operations.

INITIALIZED TO: Zero

EXAMPLE (S) :

> 10 LET' CHANNEL:=2,DEVICE:=0 (Following I/O operations will
execute on Channel 2, Device 0)

7.3 CONCHAN

OPERATION NAME: Console Channel Number

MNEMONIC: CONCHAN

DESCRIPTION: This Reserved Variable is initialized to the
channel device number of the AID Console where
bits 9-12= channel and bit 13-15=device.

INITIALIZED TO: Console Channel-Device number

EXAMPLE (S) :

7.4 DEVICE

> 10 PRINT "AID CONSOLE CHANNEL=";%CONCHAN

> 20 RUN

AID CONSOLE CHANNEL=%10

OPERATION NAME: Set I/O Device Number

MNEMONIC: DEVICE

833-98

AID Diagnostic Language

DESCRIPTION: Specifies the device number of the I/O device to
be used in subsequent I/O or channel program
operations.

INITIALIZED TO: Zero

EXAMPLE(S):

> 10 LET CHANNEL:=2,DEVICE:=4 (Following I/O operations will
execute on channel 2,device 4)

7.5 FILEINFO

OPERATION NAME: File Information

MNEMONIC: FILEINFO

DESCRIPTION: After a FILENAME statement has executed, FILEINFO
contains the following information about the
file:

Bit 0 =1 if file protected otherwise 0
Bit 8/11 =Type of the file
Bit 12/15 =Class of the file

(Refer to the DUSIIIReference Manual.)

INITIALIZED TO: Zero

EXAMPLE(S): Assume the file XYZ is protected, class
l(diagnostic), type l(SPLII) and length is 256
words:

10 DB &AA<lO, "XYZ "

20 FILENAME &AA(O)

30 LET A:=FILEINFO AND %100000 LSR 15

40 LET B:=FILEINFO AND %360 LSR 4

50 LET C:=FILEINFO AND %17

60 PRINT &AA(0,2)i" file ","PROTECT BIT="iA;2;

70 PRINT "Class="iBi2i"Type="iCi2i"Length="iFILELEN

80 RUN

XYZ file
PROTECT BIT=l Class=l Type =1 Length=256

833-99

AID Diagnostic Language

7.6 FILELEN

OPERATION NAME: File Length

MNEMONIC: FILELEN

DESCRIPTION: After a FILENAME statement has executed, FILELEN
contains the length of the specified file
rounded up to the nearest 128 word sector
boundary.

INITIALIZED TO: Zero

EXAMPLE(S): See FILEINFO Reserved Variable example.

7.7 GOPARAM1/GOPARAM2/GOPARAM3

OPERATION NAME: Go Parameters

MNEMONIC: GOPARAM1/GOPARAM2/GOPARAM3

DESCRIPTION: Allows the executing program to access up to
three parameters that may have been passed dur
ing the last GO Command. The default value of
unpassed parameters is O.

INITIALIZED TO: Zero

EXAMPLE (S) :

> 10 IF GOPARAM2=2 THEN 50 (IF THE SECOND PARAMETER
IN THE GO COMMAND WAS 2

THEN GO TO 50)

-or-

> GO 4,,6

> GO 4,,6 (GOPARAM1=4 GOPARAM2=0, GOPARAM3=6)

833-100

AID Diagnostic Language

7.8 INDEX

OPERATION NAME: Buffer Compare Indicator

MNEMONIC: INDEX

DESCRIPTION: After a compare buffer (CB) statement has
executed, INDEX will contain -1 if the buffers
compared or it will contain the element of the
first buffer in the CB statement that did not
compare.

INITIALIZED TO: Zero

EXAMPLE(S): > 10 CB AA(10), BB(10),20 .ASSUME AA(11)<>BB(11)

> 20 IF INDEX=-l THEN 80 .INDEX=ll

> 30 PRINT "GOOD= "~AA(INDEX)~"BAD="~BB(INDEX)

> 35 .CHECK THE REST OF THE BUFFER

> 40 FOR INDEX:= INDEX + 1. UNTIL 29

> 50 IF AA(INDEX)<>BB(INDEX) THEN 30

> 70 NEXT 40

> 80 .NEXT STATEMENT

7.9 INPUTLEN

OPERATION NAME: Last Input character Length

MNEMONIC: INPUTLEN

DESCRIPTION: This Reserved Variable contains the character
length of the last input of the most recently
executed INPUT statement.

INITIALIZED TO: Zero

833-101

AID Diagnostic Language

EXAMPLE (S) :

7.10 MAXMEMORY

> 10 INPUT A

> 20 PRINT INPUTLEN

> 30 RUN

? 437
3 (INPUTLEN=3)

-or-

> 10 INPUT A,B

> 20 PRINT INPUTLEN

> 30 RUN

? 437,26
2 (LAST INPUT WAS 2 CHARACTER,I.E.-ASCII 26)

-or-

> 10 INPUT &AA(4,10)

> 20 PRINT INPUTLEN

> 30 RUN

? HELLO

5

- (INPUTLEN=5 EVEN THOUGH 7 CHARACTERS WERE
EXPECTED)

OPERATION NAME: Maximum Buffer Area

MNEMONIC: MAXMEMORY

DESCRIPTION: Dynamically indicates the amount of unused buf
fer space available to the executing program.

INITIALIZED TO: Memory space available prior to RUN time

833-102

EXAMPLE(S):

7.11 NEWTEST

AID Diagnostic Language

> 20 IF MAXMEMORY < 4000 THEN 50

> 30 DB AA, 4000

> 40 GOTO 60

> 50 DB AA, 2000

(IF THE DB AT 30 WAS EXECUTED THEN MAXMEMORY
WOULD THEN EQUAL MAXMEMORY - 4000)

OPERATION NAME: Test Command Indicator

MNEMONIC: NEWTEST

DESCRIPTION: This Reserved Variable may be used to determine
if a test section sequence has been specified
externally. NEWTEST is set to false when a TEST
command is entered with no parameters and stays
false until a TEST Command with parameters is
entered.

INITIALIZED TO: Not altered at RUN time

EXAMPLE(S): The XYZ Program has ten sections that are
executed as a standard test and Section 11 which
is optional. A typical entry sequence would be:

> 10 IF NEWTEST THEN 30

> 20 LET SECTIONS l:=!FFDF .CLEAR SECTION 11
INDICATOR

> 30 .continue

(See Reserved Variables SECTIONS 1/3 and Command TEST for further
explanations.)

833-103

AID Diagnostic Language

7.12 NOINPUT

OPERATION NAME: Non-Error Print Indicator

MNEMONIC: NOINPUT

DESCRIPTION: NOINPUT is true if non-error print is suppressed
(i.e., the SNPR Command was executed). This
allows the executing program to determine if a
PRINT, INPUT statement sequence should be exe
cuted (i.e., if non-error print is suppressed
then no INPUT statement will be executed there
fore rendering any test of the input data
invalid). Setting NOINPUT to false will override
the SNPR command but should be used with
caution.

INITIALIZED TO: Zero

EXAMPLE(S) : > 10 IF NOINPUT THEN 50

> 20 PRINT "00 YOU WANT TO CONTINUE?"

> 30 INPUT & AA(O)

> 40 IF &AA(O) = "Y" THEN 400

> 50 END

> 60 .NEXT S'J;ATEMENT

If an' SNPR command has been previously entered, then the program
will skip past the INPUT sequence of statements 20 to 40.

7.13 NORESPONS

OPERATION NAME: No Response to I/O Flag

MNEMONIC: NORESPONS

DESCRIPTION: If an I/O instruction or channel program execu
tion returns an error condition and this
Reserved Variable is still equal to 0, then AID
will handle the error. However, if the user pro-

833-104

AID Diagnostic Language

gram has changed the value of NORESPONS to non
zero, then AID will set NORESPONS (see table
below) and not report an error. By setting
NORESPONS to a value other than 0, the user pro
gram can handle the no response error.

NORESPONS Reserved Variable Format

o 1 234 5 6 7 8 9 12 13 15
---.

I BIB INOII I> IT ID 1< 4 BIT 3 BIT
I AlA IH IN I 10 IS I CHANNEL DEVICE
I DID I I IT I I I I
IPTIINIO IS I I I I

I I I IP I I I I 1 1 I I0 ,

If NORESPONS<>O when a channel error occurs then:

Bit Meaning (if set)

o
1
2
3
4
5
6
7
8

9-15

reserved
DRTO not pointing to channel program
Illegal interrupt from device in Bits 9/15
HIOP did not halt channel program
too many device interrupts
CCG returned after I/O command
channel program time out (approx. 10 sec.)
channel program did not start
CCL returned after I/O command
channel-device number when error occurred
(bits 9-12=channel number, bit l3-l5=device)

INITIALIZED TO: Zero

EXAMPLE(S): > 10 LET NORESPONS:=2

> 20 LET CHANNEL:=2, DEVICE:=?

> 30 INIT

> 40 IF NORESPONS=2 THEN 60 .CHECK IF INIT WAS OK?

> 50 GOSUB 1000 .NO! PROCESS NORESPONS ERROR

> 60 • ADDITIONAL CODE

833-105

AID Diagnostic Language

7.14 OFFSET

OPERATION NAME: Vary Return Point

MNEMONIC: OFFSET

DESCRIPTION: OFFSET may be used to vary the statement number
returned to when executing a RETURN statement.
OFFSET is set to zero when starting execution
and after a RETURN statement execution. OFFSET,
if used, may be set to any integer value indi
cating the number of statements after (if posi
tive) or before (if negative) the normal return
statement to return to.

INITIALIZED TO: Zero

EXAMPLE(S): > 10 PRINT "Input yes or no"

> 20 INPUT &AA(O)

> 30 GOSUB 500

> 40 GOTO 100

> 50 .START NO ROUTINE

.GO CHECK FOR YES OR NO

.GO TO "YES" ROUTINE

>500 IF &AA(O)="Y" THEN 540 .RETURN NORMALLY

>510 LET OFFSET:=l .FORCE RETURN TO 50

>520 IF &AA(O)="N" THEN 540

>530 LET OFFSET:=-3

>540 RETURN

833-106

.FORCE RETURN TO 10

AID Diagnostic Language

7.15 PASSCOUNT

OPERATION NAME: Execution Pass Counter

MNEMON~C: PASSCOUNT

DESCRIPTION: May be used to maintain a program passcount.
Each time a BUMP statement is executed PASSCOUNT
is incremented. (See BUMP statement.)

INITIALIZED TO: Zero

EXAMPLE (S) :

> 200 .END OF PROGRAM

> 210 BUMP .INCREMENT PASSCOUNT AND PRINT IT

> 220 GOSUB 500' .GO CHECK FOR LOOP

-or-

>290 .Display PASSCOUNT

>300 LET PASSCOUNT:=PASSCOUNT+l

>310 PRINT "End of pass ";PASSCOUNT

7.16 RUNPARAM1/RUNPARAM2/RUNPARAM3

OPERATION NAME: Run Parameters

MNEMONIC: RUNPARAM1/RUNPARAM2/RUNPARAM3

DESCRIPTION: Allows the executing program to access up to
three parameters that may have been passed dur
ing the last RUN Command. The default value of
unpassed parameters is O.

833-107

AID Diagnostic Language

INITIALIZED TO: Parameters input with the RUN Command

EXAMPLE(S):

> 10 IF RUNPARAM2=2 THEN 50
.If the second parameter in
.the RUN command was 2 then
.go to 50

or

>10 RUN 2,,4 (RUNPARAM1=2, RUNPARAM2=0, RUNPARAM3=4)

7.17 SECTION

OPERATION NAME: Section Number

MNEMONIC: SECTION

DESCRIPTION: During program execution, any SECTION statement·
will alter the SECTION Reserved Variable to the
current section number if the section is
executed.

INITIALIZED TO: Zero

EXAMPLE(S):

(Assume TEST 10 was entered prior to execution)

> 100 SECTION 10,300

> 300 SECTION 11,400

.SECTION RESERVED VARIABLE SET TO 10

(SECTION IS UNCHANGED BECAUSE
SECTION 11 WILL NOT BE EXECUTED)

* Do NOT confuse the SECTION statement with the SECTION
Reserved Variable.

833-108

AID Diagnostic Language

7.18 SECTIONSl/SECTIONS2/SECTIONS3

OPERATION NAME: Section Execution Indicators

MNEMONIC: SECTIONSl/SECTIONS2/SECTIONS3

DESCRIPTION: During a SECTION statement execution, the bit in
the Reserved Variable SECTIONSl, SECTIONS2 or
SECTIONS3 correlating to the SECTION statement
number is extracted, and, if it's a logical "1",
the next sequential statement(s) will be exe
cuted. Otherwise, control is transferred to the
statement number in the SECTION statement. The
format is:

Bit 0

1 2

15

16 SECTIONSI

17 18 • • • • • • • • • • • • • • • • •• 32 SECTIONS2

These variables are altered by the TEST command or,
if no TEST has been entered, at RUN time where they
are stored with all "ones".

INITIALIZED TO: Minus one if no TEST Command (without parameters)
was entered otherwise not altered.

EXAMPLE(S):

> TEST 1,17,33 (Bit 0 of SECTIONSl/3 are set to "1" and
the rest are set to "0" meaning only
SECTIONS 1, 17 and 33 may be
executed.)

-or-

> 10 LET SECTIONSl:=SECTIONS2:=SECTIONS3:=!8000
(Yields the same result as the
TEST command above when executed)

833-109

AID Diagnostic Language

7.19 STEP

OPERATION NAME: Step Number

MNEMONIC: STEP

DESCRIPTION: STEP is provided so that the user's current STEP
number may be available to AID or the user pro
gram. A postive and non-zero value in STEP will
cause PPRINT and EPRINT Statement messages to be
preceded by a header message indicating the pro
gram is in that STEP.

INITIALIZED TO: Zero

EXAMPLE (S) : > 5 .START STEP 1 TO CHECK XYZ

> 10 LET STEP:=l

.A FAILURE ANYWHERE MAY DESIGNATE

.THE STEP NUMBER.
> 1000 .END OF STEP 1

-or-

> 10 .START STEP 2 TO CHECK ABC

> 20 LET STEP:=2

> 30 PPRINT*"HELLO"

> 40 EPRINT*"ERROR"

> 50 RUN

Step 2: HELLO

Error in Step 2: ERROR

End of AID user program

833-110

AID Diagnostic Language

7.20 TIMEOUT

OPERATION NAME: Channel Program Timeout Flag

MNEMONIC: TIMEOUT

DESCRIPTION: To disable the software timer (default approxi
mately 10 seconds), the user program may set
TIMEOUT equal to -1. To increase the default
timeout by N times 10 seconds, the user may set
TIMEOUT to N in an assignment statement.

INITIALIZED TO: Zero

EXAMPLE(S): > 10 .SET UP FOR SCOPE LOOP

> 20 LET CHANNEL:=2

> 30 TIMEOUT:=-l .DISABLE I/O TIMEOUTS

> 40 DB CC,3,!1400 .READ DISC ADDRESS

> 50 BSIO AA

> 60 WR 8,CC(0),2

> 70 RR 8,CC(1),4

> 80 JUMP 60

> 90 RSIO

> 100 RUN

7.21 TRUE or FALSE

OPERATION NAME: Truth Assignment

MNEMONIC: TRUE or FALSE

DESCRIPTION: Allows the programmer the ability to manipulate
or assign variables as Boolean Values (even
though they are really manipulated arithmeti
cally internally).

833-111

AID Diagnostic Language

INITIALIZED TO: TRUE is set to -1 and FALSE is set to 0

EXAMPLE (S) : > 10

> 20

LET A:=FALSE

LET B:=TRUE

833-112

.A=O

.B = -1

AID STATEHENTS (I/O - NON CHANNEL PROGRAr1)

8.0 INTRODUCTION

SECTION
VIII

The AID I/O Statements that do not reside within the BSIO-ESIO
instructions are listed, in detail, in this section. The format
of each statement explanation is:

OPERATION NAME: General phrase of what the Statement does.

MNEMONIC: The form that the Statement would be called in.
X is used to indicate the variables A to Z or a
number. XX is used to indicate the buffers AA
to ZZ. N is the same as X but is used as an
index (XX(n).

DESCRIPTION: A detailed explanation of the Statement's function.

EXAMPLE(S}: One or more examples using the Statement.

8.1 ADDRESSOFF/ADDRESSON

OPERATION NAME: Prevent address increment

MNEMONIC: ADDRESSOFF/ADDRESSON

DESCRIPTION: Prevent (ADDRESSOFF) or allow (ADDRESSON which
is the default) channel program data buffer
address from updating after each byte transfer.
These indicators determine the state of Bit 4 of
Word 4 of ReadftJrite Channel instuctions.

833-113

AID Diagnostic Language

8.2 BSIO

OPERATION NAME: Begin Channel Program

MNEMONIC: BSIO XX[,C]

DESCRIPTION: This statement is used to mark the start of the
definition of a Channel program. During u~er

program execution, the Channel Program is com
pletely defined when the ESIO or RSIO statement
is reached. No direct I/O or DB statements may
be placed within a BSIO-ESIO pair.

The Channel program is stored in buffer xx. Any
previous definition of xx is purged. C is the
number of copies to makr (1<=C<=32). Default
for C is 1. xx has the following format when
the definition is com~lete:

Word(s)

o

1 (bits 0-7)

1 (bits 8-15)

2

3

4

5 to n + 4

Definition

Length (quantity n*) of Channel program.

Number of words (quantity s*) to save after
channel program executes. Examples of cases
where needed are RREG and DSJ.

Number of copies minus one.

Dirty** copy mask where bitO-bit15 indicate
status of copies l-16(dirty=Bit set).

Dirty** copy mask where bitO-bit15 indicate
status of copies l7-32(dirty=Bit set).

SPARE

Master copy of Channel program.

* The quantities nand s are used in formulas under the WORD(S)
heading.

**Dirty implies already executed (therefore needing recopying
before another execution is attempted).

833-114

AID Diagnostic Language

n+5 to n+4+(2*s) Two word pairs for saving words after the
channel program executes. First word=relative
location within Channel program. Second word=
relative location of variable.

n+5+(2*s) to
2n+4+(2*s)

2n+5+(2*s)to
3n+4+(2*s)

8n+5+(2*s) to
9n+4+(2*s)

Place to put first copy of Channel program.
(First copy is copy 0.)

Place to put second copy of Channel program.
(If c>l)

Place to put eighth copy of Channel program.
(If c>7)

EXAMPLE (S) : > 10 LET CHANNEL:=5 .Define Disc

> 20 DB AA,3 .Create Buffer

> 30 LET AA(0):=!303 .Disc Status Command

> 40 .To Unit 3

> 50 GOSUB 200 .Get Disc Status

> 60 PRINT "DISC STATUS = ";AA(1) ;AA(2)

> 65 .Output Result

> 70 END

>200 BSIO BB .Build Channel Program to

>210 .Get Status from the Disc

>220 WR 8,AA(0),2 .Output Status Command

>230 RR 8,AA(1),4 .Input Two Status Words

>240 IN H .End of Channel Program

>250 RSIO .End of Definition of

>260 .Channel Program -- Start

>270 .Execution

>280 RETURN

833-115

AID Diagnostic Language

8.3 COpy

OPERATION NAME: Copy Channel Program

MNEMONIC: COPY XX [*N]

DESCRIPTION: Duplicates the master channel program in XX into
all copies of XX. If the optional *N is added,
then only the Nth copy of XX will be duplicated.
Since the RSIO instruction automatically dupli
cates copies, COpy would be needed if modifica
tion to a channel program is needed before
execution. (See example.) Note: Copy number 0
is the first channel program copy.

EXAMPLE (S) : > 10 LET CHANNEL:=2,DEVICE:=4

> 20 BSIO AA,3 .CREATE 3 COPIES OF CHANNEL PROGRAM

> 30 IN H,l,S

> 40 ESIO

> 50 LOCATE 30,A .GET IN H POINTER TO COPY 0

> 60 LET AA(A):=6 •CHANGE HALT CODE TO 6 IN COpy D

> 70 RSIO AA,D .RUN FIRST COpy

> 80 COpy AA*O .DUPLICATE FIRST COpy ONLY

> 90 GOTO 60 .LOOP ON CHANNEL PROGRAM

8.4 CPVA

OPERATION NAME: Set User CPVA

MNEMONIC: CPVA XX(N)

DESCRIPTION: Sets a pointer to the data buffer XX(N) as the
CPVA during subsequent channel program execu
tions. The data buffer XX must be declared at
least 7 words long. If this statement is not
used, .the CPVA pointer defaults to absolute mem
ory and is not accessible by the user.

833-116

EXAMPLE (S) :

8.5 ESIO

AID Diagnostic Language

> 10 DB AA, 7,0

> 20 LET CHANNEL:=3,DEVICE:=4

> 30 CPVA AA(O) .SET CPVA POINTER TO AA(O)

OPERATION NAME: End Channel Program Definition

MNEMONIC: ESIO

DESCRIPTION:

EXAMPLE (S) :

8.6 HIOP

This statement is used to mark the end of the
definition of a Channel program.

See BSIO

OPERATION NAME: Halt Channel Program

MNEMONIC: HIOP

DESCRIPTION: This statement, when executed, will terminate
the channel program executing on the currently
selected device.

EXAMPLE (S): > 10 LET CHANNEL:=5

> 20 PROC .SET PROCEED MODE

> 30 BSIO AA

> 40 JUMP 50

> 50 JUMP 40

> 60 RSIO .Start Program Which Never Ends

> 70 HIOP .Stop Channel Program

833-117

AID Diagnostic Language

8.7 INIT

OPERATION NAME: Initialize I/O Channel

MNEMONIC: INIT

DESCRIPTION: This statement will
selected channel.
place.

initialize the currently
The following actions take

(1) Operations in progress on the channel are terminated.
(2) The channel interrupt enable bit is cleared.
(3) Channel registers are set to initial values.
(4) HP-IB is set to idle state.
(5) The fourth word of each DRT for this channel is cleared.
(6) The mask bit for this channel is cleared (memory

location %13).

8.8 IOCL

OPERATION NAME: I/O Clear

MNEMONIC: IOCL

DESCRIPTION: This statement will clear all I/O channels. The
following actions take place:

(1) Operations in progress on each channel are terminated.
(2) All channel interrupt enable bits are cleared.
(3) Channel registers are set to initial values.
(4) All HP-IBs are set to the idle state.
(5) The fourth word of each DRT is cleared.
(6) All mask bits are cleared (memory location %13).

8.9 ION/IOFF

OPERATION NAME: Enable/Disable External Interrupts

MNEMONIC: ION/IOFF

833-118

DESCRIPTION:

8.10 LOCATE

AID Diagnostic Language

IOFF will disable the external interrupt system
by clearing the interrupt bit in the status
register. Use ION to enable external
interrupts.

OPERATION NAME: Locate a Channel Program Element

MNEMONIC: LOCATE [(copy),] label [(offset}],variable

DESCRIPTION: Finds the element within a channel program buf
fer correlating to the second word of a channel
program instruction (specified in label) and
stores that word in the parameter variable. If
the optional copy is used (where 0<=copy<=31 and
default is O) then that copy of the channel pro
gram is used. If the optional offset is added
(default is 0 offset from the second word of the
channel instruction), then that many words are
added (or subtracted) to the result stored in
the parameter variable.

Note: Copy number 0 is the first channel
program copy.

EXAMPLE(8}: > 10 LET CHANNEL:=2

> 20 8810 AA

> 30 IN H,1,3

> 40 E8IO

> 50 LOCATE 30,A .GET POINTER TO 2ND WORD OF IN H

> 60 LET AA(A}:=5 .CHANGE HALT CODE TO 5.

8.11 PROC

OPERATION NAME: Proceed

MNEMONIC: PROC [N]

833-119

AID Diagnostic Language

DESCRIPTION: This statement is used to enable(or disable when
the N is added) the proceed mode. AID normally
waits for each Channel program to interrupt be
fore continuing to the statement following the
RSIO. This normal mode of having I/O with wait
may be changed to the proceed mode (i.e., I/O
without wait) by using this statement.

EXAMPLE(S): (Assume AA and BB are predefined Channel program
buffers)

> 990 PROC .PERFORM I/O WITHOUT WAIT

> 1010 LET CHANNEL:=2

> 1020 RSIO AA .START CHANNEL PROGRAM AA

> 1030 LET CHANNEL:=3

> 1040 RSIO SB .START CHANNEL PROGRAM BB

> 1050 PROC N .WAIT HERE FOR I/O TO FINISH

8.12 RDRT

OPERATION NAME: Read DRT Word

MNEMONIC: RDRT Z,X
RDRT Z,XX(N)

DESCRIPTION: The DRT (device reference table) entry is
selected by the currently selected channel
device. Z is the DRT word to read (0 <= Z <=
3). The word read is stored in X or XX(N).

EXAMPLE(S): > 10 LET CHANNEL:=2

> 20 RDRT 3,A

833-120

.PLACE DRT WORD 3 IN A

AID Diagnostic Language

8.13 RIOC

OPERATION NAME: Read I/O Channel

MNEMONIC: RIOC K, XX(N) [,C]
RIOC K, X [,Cl

DESCRIPTION: This statement will issue a command C (where
O<=C<=!F and the default is 0) to register K (0
<= K <= !F) on the currently selected channel.
The result is placed in X or XX(N).

EXAMPLE(S): > 10 LET CHANNEL:=2,DEVICE:=5

> 20 RIOC 3,A .Read I/O Register 3 into A

> 30 PRINT "REG 3="i!A

> 40 RUN

REG 3=14014

End of AID user program

8.14 RMSK

OPERATION NAME: Read Interrupt Mask

MNEMONIC: RMSK X
RMSK XX(N)

DESCRIPTION: This statement will read the mask word (memory
location %13), and place it in X or XX(N).

EXAMPLE(S): > 10 RMSK A

> 20 RUN

833-121

.A = MASK WORD

AID Diagnostic Language

8.15 RoeL

OPERATION NAME: Channel Roll Call

MNEMONIC: ROCL XX(N)
ROCL X

DESCRIPTION: This statement will place an interrupt mask in
XX(N) or X. Each bit of XX(N) or X is set to
one if the corresponding channel is present.

EXAMPLE(S): > 10 ROCL A

> 20 PRINT "Channels present=";

> 30 FOR Q:=R:=1 UNTIL 15 .See if Channel is present

> 40 IFN A LSL Q AND !8000 EQ !8000 THEN 70 .Is it?

> 50 PRINT Q;l;

> 60 LET R:=R+l

> 70 NEXT 30

.Yes! Print it's number

> 80 IF R(>l THEN 100 .Any Channels present?

> 90 PRINT "NONE"; .No! Tell operator

>100 PRINT

>110 RUN

8.16 RSIO

OPERATION NAME: Run Channel Program

MNEMONIC: RSIO [XX [, [Cl [,SN] l]

DESCRIPTION: This statement may be used instead of ESIO to
terminate Channel program definition. XX (a buf
fer) may only be added when outside Channel pro
gram definition. See 8SIO for more information.
This statement differs from ESIO in that it
initiates the Channel program execution. C is
the copy number (0 <= C <= 31). Default for C

833-122

AID Diagnostic Language

is O. SN, if added, is the statement number to
execute next if an error is detected during exe
cution of the RSIO. Note: Copy number 0 is the
first channel program copy.

EXAMPLE (S) : > 10 LET CHANNEL:=5

> 20 BSIO AA

> 30 IN H

> 40 RSIO

> 50 BSIO BB

> 60 IN H

> 70 ESIO

> 80 RSIO AA

> 90 RSIO BB

>100 RUN

.Define Device

.Create First Program

.Run First Program

.Create Second Program

.Run First Program

.Run Second Program

8.17 RSW

OPERATION NAME: Read Switch Register

MNEMONIC: RSW X
RSW XX(N)

DESCRIPTION: This statement, when executed, will place the
value of the switch register in X or XX(N).
Bits 13-15 hold the device number and bits 9-12
hold the channel number.

EXAMPLE(S) : > 10 RSW A

> 20 PRINT "Switch Register="ilA

> 30 RUN

Switch Register=120

End of AID user program

833-123

AID Diagnostic Language

8.18 SMSK

OPERATION NAME: Set Interrupt Mask
MNEMONIC: SMSK X

DESCRIPTION: Sends the mask word X to all channels and a copy
is stored in memory location 7.

EXAMPLE(S): > 10 LET A:=!4000

> 20 SMSK A .ENABLE CHANNEL ONE INTERRUPTS.

8.19 UPDATEOFF/UPDATEON

OPERATION NAME: Prevent channel programs from being updated

MNEMONIC: UPDATEOFF/UPDATEON

DESCRIPTION: UPDATEOFF prevents words 2,4 and 5 of read and
write portions of channel programs from being
updated by the channel program microcode.
UPDATEON (the default condition) restores updat
ing. Updating is indicated by the state of bit
5 of word 4 of Read/Write channel instructions.

8.20 WIoe

OPERATION NAME: Write I/O Channel

MNEMONIC: WIoe K, XX(N), [C)
WIOC K, X, [C)

DESCRIPTION: This statement will write X or XX(N) into regis
ter K (O<=K<=!F) on the currently selected
channel. The parameters are the same as those
for RIOC.

833-124

AID STATEMENTS (CHANNEL PROGRAM TYPE)

9.0 INTRODUCTION

SECTION
IX

The following Channel Program Type AID Statements must be located
between the BSIO and ESIO Statements. The format of each state
ment explanation is:

OPERATION NAME: General phrase of what the Statement does.

MNEMONIC: The form that the Statement would be called in.
X is used to indicate the variables A to Z or a
number. XX is used to indicate the buffers AA
to ZZ. N is the same as X but is used as an
index (XX(n».

DESCRIPTION: A detailed explanation of the Statement's
function.

EXAMPLE(S): One or more examples using the Statement.

9.1 CHP

OPERATION NAME: Command HP-IB

MNEMONIC: CHP VO, [VI, • . VN]

DESCRIPTION: This statement executes the Command HP-IB chan
nel instruction. VN is the Nth HP-IB command
(0<=N<=7) and is a reference to a variable or
buffer element which contains the command or is
the command in numeric form.

EXAMPLE(S): > 10 LET CHANNEL:=5, DEVICE:=l

> 20 BSIO AA

> 30 CHP 13F, 15E, 125, !6F

> 40 .UNLISTEN, TALK 30, IDS-LISTEN, ENABLE DOvNLOAD

> 50 RSIO

> 60 RUN

NOTE: VN (a 16-bit quantity) is converted to a byte and stored
in the CHP portion of the channel program.

833-125

AID Diagnostic Language

9.2 CLEAR

OPERATION NAME: Control Cle~r

MNEMONIC: CLEAR [Xl

the Clear channel
currently selected

the optional X is
byte(where O<=X<=lFF

in the channel

DESCRIPTION:

EXAMPLE(S) :

This statement executes
instruction. Commands the
device to clear itself. If
added, it forms the control
and the default is 0)
instruction.

> 10 LET CHANNEL:=5

> 20 8SIO AA

9.3 DSJ

> 30 CLEAR

> 40 RSIO

.CLEAR CHANNEL 5, DEVICE 0

OPERATION NAME: Device Specified Jump

MNEMONIC: DSJ SO [*RO] [,Sl[*Rl] ••• [,SM[*RM]] •.•]] [;XX(N)]
DSJ SO[*RO] [,Sl[*Rl] ... [,SM[*RM]] ...]] [;X]

DESCRIPTION: This statement executes the DSJ channel program
instruction. A jump occurs as a result of the
byte returned from the device. If XX(N) or X is
added, then the byte returned (last byte should
the DSJ execute more than once) or lFF (if the
DSJ never executes) is placed in the right byte
of XX(N) or X. The left byte of XX(N) or X will
be set to O. SM is the statement to execute
when the returned byte of the DSJ is equal to M.
SM must be in the same Channel program. *RM is
the total number of jump address copies of SM to
build into the DSJ instruction.

833-126

AID Diagnostic Language

EXAMPLE (S) : > 5 DB BB, 7,0

> 7 CPVA BB(O) .Define CPVA

> 10 LET CHANNEL:=5 .Define Disc

> 20 BSIO AA .Begin Channel Program

> 30 DSJ 40,60iA .Stuff return byte into A

> 40 IN H, 0, 7 .Error--Store halt code 7

> 50 .In CPVAO

> 60 IN H .OK--Clear CPVAO

> 70 RSIO .Start Execution

> 80 PRINT "DSJ=;Ai2;"CPVAO=";BB(0)
.Output Results

9.4 IOENT

OPERATION NAME: Identify

MNEMONIC: IDENT XX(N)
IDENT X

DESCRIPTION: This statement executes the IDENT channel pro
gram instruction. The word returned from the
device (last word should it execute more than
once) or !FFFF (if it never executes) is placed
in XX(N) or X.

EXAMPLE (S) : > 10 LET CHANNEL:=5 .Define Disc

> 20 DB BB,8 .Create Buffer

> 30 BSIO AA .Begin Channel Program

> 40 IDENT BB(7) .Stuff ID into BB(7)

> 50 IN H .Stop Execution

> 60 RSIO .Start Channel Program

> 70 PRINT "IDENTIFY CODE ="iBB(7)

833-127

AID Diagnostic Language

9.5 IN

OPERATION NAME: Interrupt Halt or Run

MNEMONIC: INH [, [X][,C]]
IN R [, [X] [,C)]

DESCRIPTION: Executes the INTERRUPT channel program instruc
tion. R, if used, will allow the Channel pro
gram to continue to run when this instruction is
reached. H, if used, will cause the Channel pro
gram to halt when this instruction is reached.
X is the CPVA offset (0 <= X <= 3). C is the
code to store at CPVAX on interrupt(0<=C<=255).
Default for both X and C is O.

EXAMPLE(S):

> 4 DB BB,4

> 5 CPVA BB (0) .DEFINE CPVA

> 6 LET CHANNEL:=5

> 10 BSIO AA .Define the following Channel Program

> 20 IN R,3,1

> 30 IN R,2,2

> 40 IN R,1,3

.CPVA3

.CPVA2

.CPVAI

1

2

3

> 50 IN H,,4

> 60 RSIO

.Stop Program Set CPVAO : = 4

.Execute the Above Program

> 70 PRINT "CPVAO="iBB(0)i2;"CPVA1=lBB(1)

> 80 PRINT "CPVA2=" ;BB (2) ; 2; "CPVA3=" iBB (3)

833-128

AID Diagnostic Language

9.6 JUMP

OPERATION NAME: Direct Jump

MNEMONIC: JUMP SN

DESCRIPTION: This statement executes the JUMP channel program
instruction. SN is an AID statement number.
The statement number must be within the same
Channel program.

EXAMPLE (S) : > 10 LET CHANNEL:=S .Define Disc

> 20 BSIO AA

> 30 DSJ 40,SOiA .Does Disc respond?

> 40 JUMP 30 .No! Wait some more.

> SO IN H .Yes! Exit Channel program.

> 60 ESIO

> 70 RSIO AA

9.7 RB

OPERATION NAME: Read Burst

MNEMONIC:RB MOD, XX(N), BC [, [BL] [, [DC=X] [, [R] [, [TO]]]]

DESCRIPTION: This statement executes the Read Burst channel
program instruction. MOD is the device dependent
modifier(O<=MOD<=!lF). If MOD)!F then Read Con
trol is used instead of Read. XX(N) defines the
initial buffer location where the data is to be
stored. BC is the total number of bytes to be
read. BL is the burst length (default is 1)
1<=BL<=2S6. Burst length is the number of bytes
to read this time through the RB. DC, if added,
will allow separate data buffers to be linked
(chained) by using sequ~ntial RB statements. X
is equal to number of links to follow. R, if
added, will cause the data to be stored starting
in the right byte of XX(N) (default is the left
byte). TO, if added, is the statement number to
which channel program execution is transferred
upon successful completion of the RB.

833-129

AID Diagnostic Language

EXAMPLE (S) : > 10 LET CHANNEL:=?

> 20 BSIO BB

> 30 RB O,AA(O),l

> 40

> 50 IN H

> 60 RSIO

-or-

> 10 LET CHANNEL: =2

> 20 DB AA,l

> 30 BSIO BB

> 40 RB 31,AA(0),1

> 50 IN H

> 60 RSIO

.Begin Channel Program

.Read One Byte Into

.Left Byte of AA(O)

•Done

.Execute Channel Program

.Read self test results

9.8 ROMAB

OPERATION NAME: READ OMA Burst

MNEMONIC: ROMAB XX(N), BC [, [BL] [,R] [,TO]]]

DESCRIPTION: This statement executes the Read DMA Burst chan
nel program instruction. The parameters are the
same as those for RB except the modifier and DC
are deleted.

9.9 RDMAR

OPERATION NAME: READ DMA Record

MNEMONIC: RDMARXX(N),BC [,[R]I,TD]]

833-130

DESCRIPTION:

9.10 RMW

AID Diagnostic Language

This statement executes the Read DMA Record
channel program instruction. The parameters are
the same as those for RR except the modifier and
DC are deleted.

OPERATION NAME: Read Modify Write

MNEMONIC: RMW K, BN, C
RMW K, BN, S

DESCRIPTION: This statement executes the Read Modify Write
channel program instruction. K is the register
to be modified (O<=K<=IF). BN is the bit number
of register K to modify (O<=BN<=IF). C will
clear the bit and S will set it. REGISTER K is
read, bit number BN is modified, then register K
is written. For some registers BN has special
meaning.

9.11 RR

OPERATION NAME: Read Record

MNEMONIC: RR MOD, XX(N), BC[, [DC=X] [, [R] [, TD]]]

DESCRIPTION: This statement executes the Read Record channel
instruction. MOD is the device dependent modi
fier (O<=MOD<=11F). If MOD is greater than IF,
then Read Control 1S used instead of Read.
XX(N} defineS the initial buffer location where
the data is to be stored. BC is the number of
bytes to be read. If R is added, will cause the
data to be stored starting in the right byte of
XX(N) (default is the left byte). DC(data
chain), if added, will allow sep~rate data buf
fers to be linked (chained) by using sequential
RR statements. X is equal to number of links to
follow. TD, if added, is the statement number to
which channel program execution is transferred
upon successful completion of the RR.

833-131

AID Diagnostic Language

EXAMPLE(S):

> 100 RR 0,JJ(0),256,DC=2 .READ 4 SECTORS. PLACE THE

> 110 RR 0,BB(0),512,DC=1 • FIRST ONE IN JJ AND THE LAST

> 120 RR 0,FF(128),256 ONE AT FF(128)

9.12 RREG

OPERATION NAME: Read Register

MNEMONIC: RREG K, XX(N)
RREG K, X

DESCRIPTION: This statement executes the Read Register Chan
nel instruction. K is the Channel Register to
be read (O<=K<=!F). XX(N) or X is where the data
is placed. If this statement does not execute,
then !FFFF is placed in X or XX(N). Should this
statement execute more than once, the last value
read will be placed in X or XX(N).

9.13 WAIT

OPERATION NAME: Wait

MNEMONIC: WAIT [5]

DESCRIPTION: This statement executes the WAIT channel program
instruction. The channel program is suspended
until the device requests service. If S is used,
then bit 15 of the first word of the wait
instruction is set.

EXAMPLE (S) : > 10 LET CHANNEL:=5

> 20 DB AA,3

> 30 LET AA(0):=!200

833-132

.Seek Command

AID Diagnostic Language

> 40 LET AA(l):=lOO

> 50 LET AA(2):=!105

> 60 BSIO BB

> 70 WR 8, AA(O), 3

> 80 WAIT

> 90 IN H

>100 RSIO

.Cylinder 100

.Head 1,Sector 5

.Issued Seek

.Wait for Completion

.Done

.Start Channel Program

9.14 WB

OPERATION NAME: Write Burst

MNEMONIC: WB MOD, XX(N), BC [, [BL] [, [DC=X] [, [R] [, [E]]]] 1

DESCRIPTION: This statement executes the Write Burst channel
program instruction. The parameters are the same
as those for RB except the TO is not valid and E
is added to flag at the end of each burst with
the HP-IB END message.

EXAMPLE (S) : > 10 LET CHANNEL: =7

> 15 DB M,6

> 20 BSIO BB .Begin Channel Program

> 30 WB 0,AA(5),1",R .Write One Byte

> 40 .From the Right

> 50 .Byte of AA(5)

> 60 IN H . Done

> 70 RSIO

-or-

> 10 LET CHANNEL:=2

> 20 DB M,l,O

833-133

.Control byte is 0

AID Diagnostic Language

> 30 BSIO BB

> 40 WB 31,AA(0),1

> 50 IN H

> 60 RSIO

9.15 WDMAB

OPERATION NAME: Write DMA Burst

.Initiate Self test

MNEMONIC: WDMAB XX(N), BC [,[BL] [,[R] [,E]]]

DESCRIPTION: This statement executes the Write DMA Burst
channel instruction. The parameters are the same
as those for WB except the modifier and DC are
deleted.

9.16 WDMAR

OPERATION NAME: Write DMA Record

MNEMONIC: WDMAR XX(N), BC[,R]

DESCRIPTION: This statement executes the Write DMA Record
channel program instruction. ~he parameters are
the same as WR except the modifier and DC are
deleted.

9.17 WR

OPERATION NAME: Write Record

MNEMONIC: WR MOD, XX(N), BC[, [DC=N] [, R))

833-134

DESCRIPTION:

EXAMPLE(S):

AID Diagnostic Language

This statement executes the Write Record channel
program instruction. The parameters are the same
as those for RR except the TD is not valid.

> 10 WR O,JJ (0),256,DC=2 .WRITE 4 SECTORS. GET FIRST

> 20 WR 0,BB(0),512,DC=1 • FROM JJ, THE NEXT TWO FROM BB

> 30 WR 0,FF(128),256 • AND THE LAST ONE FROM FF(128).

9.18 WREG

OPERATION NAME: Write Register

MNEMONIC: WREG K, XX(N)
WREG K, X

DESCRIPTION: The parameters are the same as those for RREG.

9.19 WRIM

OPERATION NAME: Write Relative Immediate

MNEMONIC: WRIM Z, [Xl

DESCRIPTION: This statement executes the Write Relative Im
mediate channel program instruction. Z is the
displacement from the next instruction of the
channel program (-128<=Z<=127). X is the data
to write into the channel program at that loca
tion. If Z is negative then X is not used. The
constant used is what is already in the word at
WRIM execution time.

833-135

AID Diagnostic Language

EXAMPLE(S): > 100

> 110

> 120

> 130

JUMP 110

WRIM -3,4

JUMP 100

IN H

833-136

.Jump to 130 Second Time

.Change 100 to JUMP 130

10.0 INTRODUCTION

FUNCTION STATEMENTS SECTION
X

This section defines the statements used in creating programmed
functions.

10.1 ENDF

OPERATION NAME: End Function Definition

MNEMONIC: ENDF

DESCRIPTION: This statement terminates a Function definition.

EXAMPLE(S): See FUNCTION statement.

10.2 GETNAMEDATA

OPERATION NAME: Get data found offset from NAME parameter

MNEMONIC: GETNAMEDATA NAMEx, offset, variable

DESCRIPTION: Provides access to the memory location offset
from the pointer found in NAMEx. If a buffer was
passed as the N~1E parameter then the element of
the buffer plus offset is stored into variable.
If a buffer was not passed then an AID execution
error is reported.

833-137

AID Diagnostic Language

EXAMPLE(S): 10 DB AA,lOO

100 FUNCTION DOlT NAMEI
110 GETNAMEDATA NAMEl,5,A .Store contents of AA(15) into A
120 GETNAMEDATA NAMEl,-3,B .Store contents of AA(7) into B

200 ENDF

500 DOlT M(lO)

10.3 GETNAMEINFO

OPERATION NM1E: Get NM1E parameter information

f-tNEMONIC: GETNAliEINFO NM1Ex [, X] [, Y] [, Z]

DESCRIPTION: Provides the identity of the NAME1/6 parameter
including:

Type- simple variable, reserved variable, data or
string buffer.

Name- A through Z or position of reserved vari
able in AID Reserved Variable Table.

Element- number of the buffer element passed.

Length- Size of the buffer in words.

X, if included, is stored with the following
information:

o 1 8 15
.--------------------------~-----------.
Itype I I name I0 1

type=O for data buffers (AA-ZZ)
1 for string buffers (&AA-&ZZ)
2 for reserved variables (MAXMEMORY-FILELEN)
3 for simple variables (A-Z)

name=%lOl for A,AA or &AA through %132 for Z,ZZ or &ZZ.
If type is a reserved variable then name equals
the offset from the first reserved variable in
memory (See AID LIST R Command for their order).

833-138

AID Diagnostic Language

Note: If a NAME parameter is not passed, then X is
defaulted to that name parameters Reserved
Variable.

Y, if included, is stored with the element passed
if the NAME parameter was a buffer else -1.

Z, if included, is stored with the length of the
buffer passed in NAMEx. If a buffer wasn't passed then Z is

stored with -1.

EXAMPLE (S) :

10 DB AA,lOO

100 FUNCTION EXAMPLE NAME1,NAME2,NAME3,NAME4
110 GETNAMEINFO NAMEl,A,B,C .A=%101(ID),B=5(element),C=100

(length)
120 GETNAMEINFO NAME2,D,E,F .D=O(default parameter),E=F=-l
130 GETNAMEINFO NAME3,G,H,I .G=%140l32(ID),H=I=-1
140 GETNAMEINFO NAME4,J,K,L .J=%100005(5th Reserved Variable),

K=L=-l

500 EXAMPLE AA(5)"Z,STEP .See FUNCTION EXAMPLE

10.4 FUNCTION

OPERATION NAME:

MNEMONIC:

DESCRIPTION:

Function Declaration

FUNCTION name [parameters]

Defines the entry point and parameter format of
subsequent function calls. The function capa
bility enables the user to create quasi
statements with an unique name and parameters
where:

name= maximum of 8 alpha characters.

parameters= Pn [,Pn••••• ,Pn]

where:
P= NAME for a variable or buffer

passed by name.
VALUE for a constant, variable or

buffer passed by value.

833-139

AID Diagnostic Language

n= ordinal number* of P where 1 is
the first parameter of the

NAME or VALUE type and 1<=n<=6.

The following rules** govern FUNCTION use:

(1) Calls to the FUNCTION Statement must ensure all parameter
types are matched. Any parameter may be defaulted Le., ex
cluded, except the NAME type when it is used as a read/write
buffer (e.g., RR O,NAMEl,S). Defaulted VALUE parameters are
assigned the quantity 0 and defaulted NAME parameters are
assigned to the Reserved Variable bearing their name.

* Example: VALUEl,VALUE2,NAMEl,VALUE3,NAME2,VALUE4,NAME3,NAME4

** See the respective examples on the following pages which
display rule usage.

(2) Function calls may not be input
TION Statement is already in
Statement is deleted, any calls
executable and a LISTing of the
warning message.

unless the appropriate FUNC
the program. If a FUNCTION

to it render the program un
function calls will yield a

(3) A FUNCTION calling a FUNCTION is allowed, but limited to the
amount of space available to the user program (i.e., every
FUNCTION call places a 13 word information block into the
user area and each ENDF Statement removes just one
information block).

(4) The FUNCTION Statement may never be executed in line (i.e.,it
must be called) and a branch into a FUNCTION-ENDF Statement
sequence during execution will produce an error.

(5) All AID Statement,Command, Reserved Variable keywords (e.g.,
LET,TEST,etc.) and the buffer names AA to ZZ are reserved and
an attempt to input a FUNCTION statement name using such a
keyword will result in an error.

Limitations using functions:

(a) Use of name buffers (i.e., NAMEI-NAME6) is not allowed in
AID Statements that use buffers without elements (e.g.,
BSIO, RSIO, DB, etc.).

(b) Indexing of name buffers is not allowed (i.e., NAMEI(X».

833-140

AID Diagnostic Language

Example of RULE 1 (correct way)

> 10 FUNCTION ADDEM NAME1,VALUEl,VALUE2

> 20 LET NAME1:=VALUE1+VALUE2

> 30 ENDF

>100 ADDEM A,7,2 .A:=7+2

Example of RULE 1 (incorrect way)

> 10 FUNCTION ADDEM NAMEl,VALUE1,VALUE2

> 20 LET NAME1:=VALUE1+VALUE2

> 30 ENDF

>100 ADDEM 4,7,2

>110 RUN

** AID ERROR in Statement 40 **

FUNCTION Parameter invalid or in wrong order

Example of RULE 2 (correct way)

> 10 FUNCTION GETSR NAME1

> 20 RSW NAME1

> 30 LET NAME1:=NAME1 AND !7F

> 40 ENDF

>100 GETSR AA(O)

>110

833-141

AID Diagnostic Language

Example of RULE 2 (incorrect way)

(Assume this is the first Statement input)

> 10 GETSR AA(O)

Cl

** AID Entry Mode Error **
Illegal parameter, type or input

-or-

> 10 FUNCTION GOING NAME1,NAME2

> 20 ENDF

> 30 GOING A,B

> 40 DELETE 10

> 40 LIST

20 ENDF

30 **Undefined FUNCTION call to Statement 10

> 40

(Note- Statement 30 is supposed to be GOING A,B
but has no significance since Statement
10 was deleted. Statement 10 must be re
stored with a FUNCTION Statement to LIST
or execute normally.)

Example of RULE 3 (correct way)

(Demonstrates a FUNCTION calling a FUNCTION)
> 10 FUNCTION ADDEM NAME1,VALUE1,VALUE2

> 20 LET NAME1:=VALUE1+VALUE2

> 30 ENDF

> 40 FUNCTION GETSR NAMEl

> 50 RSW NAMEl

> 60 ADDEM NAME1,NAME1,4

> 70 ENDF

• Add 4 to sw. reg.

833-142

>200 GETSR A

AID Diagnostic Language

.Get sw.reg. and add 4 to it

(Demonstrates a recursive function call)

> 10 FUNCTION POWER NAME1,VALUE1,VALUE2,NAME2

> 20 IF VALUE1<1 THEN 50

> 30 LET NAME2:=VALUE2:=NAME1*VALUE2, VALUEl:=VALUE1-l

.> 40 POWER NAME1,VALUEl,VALUE2,NAME2

> 50 ENDF

>200 POWER A,7,1,B .Get A to 7th power and put in B

Example of RULE 3 (incorrect way)

> 10 FUNCTION FOREVER NAMEl

> 20 FOREVER NAMEl

> 30 ENDF

>100 FOREVER A

>110 RUN

** AID ERROR in Statement 20 **

Data buffer area overflow

(Statement 20 will build 1'3 word blocks until no more
user space is available at which time the program will
abort.)

Example of RULE 4 (correct way)

> 10 GOTO 300 • Branch around Functions

> 20 FUNCTION POWER NAME1,VALUEl

>290 ENDF

833-143

AID Diagnostic Language

>300 .Start of normal program

Example of RULE 4 (incorrect way)

> 10 FUNCTION POWER NAMEl,VALUEl

> 20 LET NAMEl:=NAME1*NAMEl

> 30 ENDF

> 40 RUN

** AID Execution Mode Error in Statement 10 **
FUNCTION Statement cannot be executed in-line

Example of RULE 5 (correct way)

> 10 FUNCTION TESTX NAMEI .TESTX is valid

Example of RULE 5 (incorrect way)

> 10 FUNCTION TEST NAMEl

@

** AID Entry Mode Error **
Invalid FUNCTION name or reserved keyword

Practical I/O application

>100 FUNCTION READDATA VALUEl,NAMEl,VALUE2,NAME2

>110 .Reads data into buffer NAMEl with modifier VALUEl

>120 • and length VALUE2 and compares the read

>130. data to buffer NAME2

>140 INIT .Intialize Device

>150 BSIO AA • Build Channel Program

>160 RR VALUEl,NAME1,VALUE2 .Read record

>170 RSIO • Execute Channel Program

833-144

AID Diagnostic Language

>180 CB NAMEl,NAME2,VALUE2 .Compare buffers

>190 ENDF .End of READDATA

>500 READDATA 0,AA(0),256,BB(O) .Get and test data

>510 IF INDEX=-l THEN 550

>520 EPRINT* "Compare Error t Bad Data=" ;AA(INDEX) ;

>530 PRINTEX " Good Data=";BB(INDEX)

>540 EPAUSE

>550 .Continue Program

10.5 SETNAMEDATA

OPERATION NAME: Store data into a NAME buffer element

MNEMONIC: SETNAMEDATA NAMEx, offset, variable

DESCRIPTION: Stores the data in variable into the buffer
element plus offset passed as a NAM& parameter.
If a buffer was not passed, an AID execution
error will occur.

EXAMPLE(S}:
10 DB AA, 100

100 FUNCTION DOlT NAMEI
110 SETNAMEDATA NAMEl,5,A .Store contents of A into AA(lS)
120 SETNAMEDATA NAMEl,-3,B .Store contents of B into AA(7)

200 ENDF

300 DOlT M(IO)

833-145

AID Diagnostic Language

NOTES

833-146

	Contents
	Section I - General Information
	Section II - Essentials of AID
	Section III - AID Commands
	Section IV - AID Statements (Non I/O)
	Section V - Special Characters
	Section VI - Operators
	Section VII - Reserved Variables
	Section VIII - AID Statements (I/O - Non Channel Program)
	Section IX - AID Statements (Channel Program Type)
	Section X - Function Statements

