
HP 3000 Computer Systems

APPLICATION DESIGN
Student Workbook

Flin- HEWLETT.:e.. PACKARD

Course No. 22808A
Part No. 22808-93001 NOV 1980

Part No. 22808-93001

HP 3000 Computer Systems
Training Course

Application Design
Student Workbook

Flin- HEWLETT
a:~ PACKARD

19447 PRUNERIDGE AVE., CUPERTINO, CALIFORNIA 95014

Printed in U.S.A. 11180

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER­IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITYAND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errorscontained herein or for incidental or consequential damages in connection with the furnishing. perfor­mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that isnot furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are re~erved.No part of this document may be photocopied. reproduced or translated to another program languagewithout the prior written consent of Hewlett-Packard Company.

Copyright © 1980 by HEWLETI-PACKARD COMPANY

ii

PREFACE

This student workbook was written to assist the student in taking notes while attending the HP 3000 Application Design
Training Course. Each of the pages is a copy of an overhead projection slide that the instructor will use in presenting the
coursf' material. You will find that by making generous notes on these pages, this workbook will be more useful as a reference
after leaving the classroom.

The course material recommended for each student is given below:

Student Workbook 22808-93001
General Information Manual 30000-90008
V/3000 Reference Manual 32209-90001
KSAM Reference Manual 30000-90079
IMAGE Reference Manual , 32215-90003
QUERY Reference Manual 30000-90042
Reference Training Manual 30000-90143

iii

CONTENTS

Introduction " Module 1
MPE Module 2
Transaction Processing Module 3
Data Base Management Module 4
Summary Module 5
Source Listings Appendix A
Answers to Worksessions Appendix B

iv

INTRODUCTION TO APPLICATION III
DESIGN ON THE HP 3000 I I I

HP3000: .

APPLICATION
DESIGN

rrli~ HEWLETT____________ II.:I:JIPACI<ARO

1-1

notes:

references:

application design

MODULES:

I INTRODUCTION

II MPE OPERATING ENVIRONMENT

III TRANSACTION PROCESSING OPTIONS

IV DATA MANAGEMENT OPTIONS

V SUMMARY

notes:

references:

application design

FOUR VIEWPOINTS

IEND USER I IDESIGNER I IPROGRAMMER I
A1-start.

read fila ••.
perform proc1
until proc10

•
•

8

c-
1

00

-

ship to:

ICOMPUTER SYSTEM J

~------ [h~~:~K~~6

/·3

notes:

references:

appl ication design

the I END USER I wants:

• conversational interface to application

• fast response to interactive requests

• ability to generate 1-time reports without
programming

• separation from specific details of computer
software

anything else?

_____________________~__ (AP.) ~:~KL:~6

1-4

notes:

references:

application design

the IIoo.._A_P_P_L_IC....:A_T_I_O_N_D_ES_I_G_N_E_R_1 wants:

• to understand and satisfy end user needs

• to understand the capabilities of the computer
system in order to satisfy these
needs

.• to provide a design that insures
- fast response
- rapid access to information
- high rate of transactions

what else?

FliOW HEWLETT
________________________ ~~PACI<ARO

1-5

notes:

references:

application design

the I APPLICATION ·PROGRAMMER I wants:

• to be able to translate the designer's
specifications into a working program

• to understand how to use
the computer system's software

• programming tools to help code, debug,
and optimize application programs

anything else?

1-6
(hlJ ~:fK~~6------------------------

notes:

references:

application design

the I COMPUTER SYSTEM Ishould provide:

• hardware and software that are capable
of supporting the given application

• support and training for both the
designer and programmer to help
implement a successful application

notes:

references:

application design

SOME HP3000 RESOURCES

files
data bases

virtual memory

languages
COBOL
FORTRAN
BASIC <;

'"
RPG \dSPL

Data
Management

IMAGE t •
KSAM
file system

/Operating System
MPE-
CPU
memory
security

terminal disc
interface storage

I SUPPORT, TRAINING, & DOCUMENTATION I
Fli;' HEWLETT

______________________________ ~~ PACKARD

1-8

notes:

references:

application design

TRAINING for different users

End Users

Designers

Programmers

System
Administrators

I A Guided Tour)

_ .. we are here

IMAGE}
Programmer's Intro ...--+0--.. KSAM Programming

V/3000

I Console Operator I"------.~I System Manager

Fli;' HEWLETT
_________________________ ~~PACKARO

1-9

notes:

references:

application design

DESIGN CONSIDERATIONS
:\
"

• STRUCTURE '<}<rr
_ what it does / ,J

- how it does it

• IMPLEMENTATION
- who uses it and how
- what restrictions are needed '-

v

~ ~iJ~:~t<'::~6

1·10

notes:

references:

application design

TYPICAL TERMINAL APPLICATION

menu

I
I I I 1

transactions

How does this structure work on an HP3000?

1-11

Fro-. HEWLETT-------- - ~~ PACKA~O

notes:

- Think of task in terms of "functions".

- Chart these functions into a set of menu-driven
transactions.

references:

application design
Structure Chart

• outlines HOW application does it

MAIN0001
example:---.... good data., CALL­

FUNCTION

SCREEN

1·12

'//It
I

GET­
SCREEN

DISPLAY­
SCREEN

VALIDATE- OPEN-
SCREEN ALL-FILES

tJ, ~~
ACCEPT- CHECK-

DATA SECURITY

notes:

- "Decompose" data as well as the code.

references:

application design

DATA DICTIONARY

• based on data flow in structure chart

- list of each piece of data for each function
(use structure chart as checklist)

- note characteristics of data items
- duplicated?
- sorted?
- used by more than one function?

Fliifl HEWLETT--,, ~~ PACKARD

1-13

notes:

- Prepare for data management decisions from the start.

references:

application design

Design for Maintenance

• who will maintain your programs?

usually someone else, so make it easy to read
and simple to follow

• a program that is easy to maintain is usually easy
to use

________________________ (JS;)~:~K~~6

'·14

notes:

references:

application design

understanding the END USER

questions to ask:

• who are they?

• what do they want?

• where do they want it?

• in what form?

• when?

• and how fast?

"liiiW .HEWLETT
~~--------- ':M PACKARD

1·15

notes:

- If you can explain your design to the end-user in ter~s

he/she understands, the design has a good change of Jorking,
and of being easy to maintain.

references:

application design

WORKSESSION 1-1

.-13 HEWLETT_______________________ ...,..... PACKARD

1·18

notes:

references:

Worksession 1-1

The purpose of this worksession is to characterize your application. There is no correct answer, but
the more thorough you can be at this stage, the more useful the course will be.

1. Have you settled on a programming language or languages in which to code your application?

Ifyes, which? __---"C.......;-;;;c~;:;;..}..;",~··""")......"'c....;.,..:.:;;<=· _

2. Characterize the structure of the application:

A. Summ~e, in one sentence ifpossible, the purpose ofyour application. "
\

\
''"''y--,_.~ ,t ,,-t..

'\
1.../

f\

(; ",\J:.-
(\:

". , "~ \ .. /,

B. Briefly list the main functions of your application-for example: maintain bill of
materials, maintain vendor file, etc.

C. Connect the functions you listed above int~ a menu tree (as in slide 1-10).

D. Take one of the functions from the menu tree (or choose a subfunction) and determine the
flow of data within this function. Show this in any format-very roughly with circles and
arrows or, more formally, as a structure chart.

3. Characterize your end-user:

A. Who will enter data? __-.;v~_<·~~2__· ...:../1Q:....."_.~ _

" i/\

Where? __'+:.(J....;'\C/_'_v'..,..'....;....:,_. ...:::".:.;;;;;;)<_=):::..k::;.;l._..;;;(;:...;'i·~i......;'.fJ:::.;...':...l.,/.,;;;;;(:...i) _

\;\ C\ ,. t

When? _-..-"---.......;..........;......;;..i..:.:;;?;._/••="'"~-·-"'-·..;;..r...:'~0...::.v-;'-,'A..;;..?)..::.',,:...:t..;;.;J~:r"".+". _
[J (/

/ ,
How fast must response time be? _--,-,"::::,,---::,,:".:;;.... "";';;,,,;-,c;':"-::-i.!-l...i../,:....)/_./_. _

Is the flow even? '_"~ If not, what are the peak times?

I~,.jp··'
u

<;:'"

I-16a

Worksession 1-1 (cont.)

/'"
B. Who will modify data? _...;;;;L;...._\,,_/-"_()__'f'_.J.~_., _

;\ .-

How frequently? _....;L;;;..J...;;";,,.-;"~'_':__C__'~\C;';;""';"·.....;;''-;;;.;:<'1_-------------------
.J

How up-to-date must modifications be? within minutes? hourly? daily? weekly?

y"y"),,//>.1 ...)~~~,>,r)

c. Who will retrieve the data? _

In what Corm1 _

How often? _---.;'-;.;;;;../_'__>_..~r..;;;;..:,,--;.;;,;;;(,J;;;..•. -..._y;_''_.>_<..,..;- _

dWhat kinds of reports are needed? _

Do they want unscheduled reports? _

4. List your security, accounting, and recovery needs:

A. What functions are restricted? _

Towhom? _

B. List any sensitive items: _

Who can see them? _

Who can modify them? _

c. Do you need audits? _

On what transactions? _

I-16b

Worksession 1-1 (cont.)

D. How important is recovery? _

What transactions must be recovered in case ofa crash?

I-16c

application design

DESIGN TRADEOFFS

high-level tools

easy program development

maximum capability

response time

.ystem performance

transaction throughput

ft3 HEWLETT____________________________ ~T~ PACKARD

1-17

notes:

- Generally, the easier to use, the harder to implement.

references:

APPLICATION DESIGN

ART

not

SCIENCE

_ _______________________ Fli;' HEWLETT
a:~ PACKARD

1·18

notes:

- If designing applications were a science, we could write
a program to do it.

references:

MPE OPERATING ENVIRONMENTI~

I MPE OPERATING ENVIRONMENT I

• Architecture Overview

• The Process
- code segments
- data segments

• Process Generation

• MUltiprogramming

___----------------------- l61] ~:~;::6
11-1

notes:

references: General Information Manual
System Reference Manual
MPE Commands Reference Manual
MPE Intrinsics Reference Manual
MPE Pocket Guide

ARCHITECTURE OVERVIEW

HARDWARE SOFTWARE

II Stack Architecture

II Separation Of, pode a Data

II The Process

___________________________ Pi.l~:~K':~6

11·2

notes:

- HP3000 archi,tect'J,re combines hardware and ,softwar~. -/,--j,--,,}>,/::+
,,' " - .•",,), ./\i': ;.J rV\iC:.,.·~.·"'?:t.

, , . l ~(:"J~~)/\

- Hardware controls the transfers between data stack and central
processor.

- Micro-coded instructions in the central processor (firmware),
reduce software needs, are super fast.

references:

architecture overview

code and
data

Igeneral registers I
Ispecial registers I

data

work
area

HP3000 STACK ARCHITECTURE
"")-

5':"::, ~,.'

STACK

Ispecial registers ~

STACK MACHINE REGISTER MACHINE

• processing in stack • processing in general registers

• code and data always separate • may combine code with data

-,Code and data are separate.

:~oth are features that save memory space.

/- No general registers are needed in an HP3000.

11-3

FliP. HEWLETT____________________~~~-----~~~ PACKARD
~~,~"",."":,.,,~ f

-notes:

references:

i
(\ 'I

architecture overview

SHARED CODE SAVES MEMORY SPACE

data
user

1
data
user

2

data
user

3
data~~

user ~ret'j
2

code/data separate vs code/data together

____________________________ (h~ ~:~K':~6

114

notes:

- When code and data are inseparable, copies of code waste space.

references:

architecture overview

VIRTUAL (DISC) MEMORY FOR STORAGE

(secondary
virtual)

~------------------~Ir ,I

II n, I I

,L,-, '---~~: S
MAIN (semiconductor) : ,di~,~:',!;

MEMORY /(v J(A~""

~---- -----------~
VIRTUAL (disc) ME~ORY

11-5

rh~ HEWl.ETT___________-- .U~ PACKARD

notes:

To the user, there is no difference between main and virtual
memory.

- To the system, disc I/O is needed to transfer code from virtual
to main memory, and transfer data to and from main memory.

- Note: only the virtual memory used for data is "configured"
into the system. The virtual memory for code is simply the
program file that results from preparing code for execution.

references:

architecture overview

MAIN MEMORY FOR EXECUTION

CPU

~

~<__:_-da-ta--_

MAIN MEMORY

r-----------.,
I
I

DO

(

I

_________________............... ~iJ ~:~Ka.:~~

11-6

notes:
\\,

- In order to execute, a program's code and data must both be
in main memory. This is managed by MPE.

- Note: only the code and data actually required for immediate
execution must be in main memory; some code segments may
remain on disc.

architecture overview

WORKSESSION 11-1

11-7

notes:

references:

Worksession 11-1 (architecture)

1. The HP 3000 is a stack machine. True or false? T~··------
2. One characteristic~ stack machine is that code and data are separate.

True or false? \------
3. Describe one advantage of separate code and data?

4. Give at least one difference between main memory and virtual memory.

5. In order for a program to execute, all of its code and data must be in main memory.
True or false? -<E~~-·· _

1I-7a

ITHE PROCESS I
II General Characteristics

II Components

II Code Segments - Overview

___________________- (h~~:~KL:~6

11-8

notes:

references:

architecture overview

PROCESS DEFINITION

"A process is

the unique execution of a program

by a particular user

at a particular time."

r£:. HEWLETT______________________ ~'1'... PACI<ARD

11·9

notes:

references:

the process

PROCESS CHARACTERISTICS

process A

code
program

X

data
stack

code: non-modifiable

shared

re-entrant

data: absolutely private

separate from code

modifiable

FliDfJ HEWLETT_______________________________ a:~ PACKARD

11·10

notes:

- Code cannot change during process execution (non-modifiable),
is returned intact after interruption (re-entrant), and can be
shared by many users.

- Datacannof be seen or changed by other users executing the
same code (absolutely private), is stored separately from
code, and c~~e modified by any users sharing the code.

references:

the process

PROCESS COMPONENTS

An executing process consists of:

• 1 or more .code segments

• 1 data segment (the "stack")

data
stack

D
D
I . I

PROCESS

code
segments

_____________________________ (S~ ~::LE~6

11-11

notes:

- Note: in addition to code segments and data stack, the
executing process may also need "extra data segments". If so,
these will be in main memory too. (Extra data segments are
discussed later in this module.) ¥,,(

references:

the process

WORKSESSION 11-2

____________________________ ~~~:~KL:~6

11-12

notes:

(

references:

Worksession 11-2 (theproces$) .

1. Ifyou execute the same program twice, does this result in one process or two processes?

~--''-.A)\')

2. If you and another user each execute the same program, does this result in one or two
processes?

\,- .\I-'", ,::.,)

I'
3. Shared code can be modified. True or false? 1;4\C)""''-J3,

Explain your answer., .\]
, I II

<;- \i (,,}/\ 0- PJ-":)Q L:i:,~-J,-,_J'
/'\

"i/'" <:>;i,j-t:-~~........~:)Lr-(::p

4. Private data can be modified. True or false? -,,\:\---------
Explain your answer.

c/

5. What are the two required ingredients of an executing process?
'.,\

('.-<'~.,,;: ~ _,~t,CJ

II-12a

the process

CHARACTERISTICS OF CODE SEGMENTS

II variable lengths

II managed by system

II natu~ally relocatable

II defined by user

{\'

11-13

________________________ ~i.) =:~1<':~6

notes:

- Code segment definition: Any group of instructions that the
programmer decides should be kept together as a unit.

references:

the process

Code segments are variable length

program

1

2

3

5 code
segments

• optimal le~gth depends on:

)- amount of memory

- frequency of use

- number of segments

4

5

_____________________________ Pi.J=:~':~~

11-14

notes:

f?
//

./
./

in the same size range.

- Maximum length = 16K words,

- Most MPE segments are SK or les_!?L try for user code, segmen~£~;J
. //h:;;:,

~{ '- ,\ :/ \

\

references:

the process

Code segments are managed by the system

virtual memory

1

AS
perform 82 ...'

4

82
read ...

main memory

1

2

3

4

S

---------------------- (hi.J=:;;';:~6
11-15

notes:

- In this example, code segment 1, which is currently executing,
references code in segment 4 (not in memory). At that point,
code segment 4 is copied into main memory so execution can
continue. This is done au~omatically by MPE.

4J.;.

the process

Code segments are naturally relocatable

"",-
beginning of code -.. ~

IPB-register]

1
current instruction

1 < -
IP-register I 2

3

limit of code
4

II

IPL-register I 5

code

MAIN MEMORY PROGRAM FILE

_______________________________ ~P.l ~:~I<L:~6

11·16

notes:

- Program registers in the CPU keep track of the location of any
executing code segment. (These registers are PB, P and PL.)

- Code can be placed anywhere in memory simply by updating
registers.

- All addresses in code are PB-relative.

references:

the process

Code segments are defined by user

segment:

@)

®

program-ID
sample-program

start section 10

init section 20

term section 20
main section 30

err-proc section 40

Code defines segment boundaries*
therefore, programmer controls:

- the number of code segments

- the size of each segment

- which code goes into which
segment

*except RPG and APL

F4~ HEWLETT_______________________________ a:r~PACKARO

11-17

notes:

- Maximum number of code segments per program is 63.

- Note: code segments defined in program can be changed using
a "segmenter" program.

References:

Check language reference manuals (COBOL, COBOL II, RPG, SPL,
BASIC Compiler) for details on segmenting code.

references:
\;

.\ '\.

code segments

WORKSESSION 11-3

11-18
l6p') ~:~KL:~6-------------------

notes:

references:

Worksession 11-3 (code segments)

1.

2. A.

B.

Is there a maximum code segment size?__.....:../...;fe;;;..;/......;;:;.,_ Ifm, what is it?/~;.::;
V

r of code segments per program? _1...;,:::;;;;;;".::::,-..·; _

3. Suppose code in one segment causes a transfer to code in another segment; what must your
program do to manage this transfer?

u
":-'../\'>./\.::§) f

Does your program need to know the address in main memory of the currently executing code
segment? Explain your answer. ,. I ". (

(:' /i)' '..- 4 '-e,,"-Q /; """,A=~<:J }V't ,p, A. . \/.)

4.

5. What characteristics of code segmentation can~ controlled by the programmer?

_________________:>_..:.. __L_-:··_'{-...,'''-i-.:...~~.....>~O;;::'.;;:;.. .:='-"":;;..;v=-_··......\(.......:.'\/_".....{P"o-'k;,;;;;;;..../"\..;,V_"\~O=i_:li-t jr~......;.../i..;;..!"~;;:;;;..;)_'j.'.;,....'.iJJ£.\;~

II-18a

I· CODE SEGMENT DESIGN I

How should code be segmented?

II Concept of Working Set

II Concept of Locality

II Size Considerations

___________________ (lil~:~':J6

11·19

notes:

references:

segment design

WORKING SET -

• The smallest set of segments that must be in main
memory for a program to work efficiently.

Start of program --------.~End of program

initialization
segments

~
~
~

computationl
data analysis

segments
report generation

segments

FA;' HEWLETT_____________________________ a:f:,II PACKARD

11·20

notes:

- The working set for any executing program is "dynamic".
It changes continually throughout the life of the program.

references:

segment design

WORKING SET (2)

data
stack

MPE

MAIN
MEMORY

MAIN
MEMORY

MPE

Bifm}3
data

WdPd31 stack

• The entire working set should fit in main memory for
efficient processing

VIRTUAL MEMORY

...

good

working set fits in memory

poor

working set does not fit

.a." HEWLETT_____________________________ ·~PACt<ARO

11-21

notes:

- Note: the data stack is NOT part of the working set; the
stack must always be in memory when a program executes.

- In this example, the three code segments currently in the
working set (shaded boxes) all fit in main memory on the
left - only two segments fit on the right.

references:

segment design

WORKING SET (3)

How can you make sure the working set fits in main
memory?

A) You can add more memory

OR

B) You can run fewer programs at a time

OR

C) You can structure your program to achieve
better code locality - and a smaller working set

_ ____________________________ rhO-HEWLETT

A:r.JI PACKARD

11-22

notes:

- Which of these solutions makes sense for your application?
A can be expensive
B limits the application
C should be attempted

references:

segment design

CODE LOCALITY

• Good locality on an HP3000 means:

Control stays in one segment for as long as possible ­
when it leaves a segment, it stays out as long as
possible.

• Poor locality means:

Control branches between code segments frequently ­
puts more code in working set.

segment
• •

segment
A B

• If transfers between A and B are frequent, put that code in
the same segment.

___________________________ (AP] ~:~K'::~6

11-23

notes:

references:

segment design

Good locality

000
more INTERNAL calls
than external calls

vs Poor locality

more EXTERNAL calls
than internal calls

("~ ~:~K'-i~6---------------------------11·24

notes:

- This is simply another way of looking at locality.

references:

segment'design

EXAMPLE: suppose a program generates displays using 3 display formats

Main procedure
• opens file

.. _.select8~ISPlayformat

\
pjrocedures B, C, D
,et records

@ -, kroeedures E, F, G.G_:::!frrnat display screen
How would you segmenf·theseprogram blocks?

____________________________ (Ai.J~:~K~~6

11-25

notes:

references:

segment design

SOLUTION:

A seg 1

E

seg 2

F

seg 3 seg 4

F/iOW HEWLETT------------ -':r..I PACKARD

11-26

notes:

This solution keeps code from crossing segment boundaries
each time a record is read and formatted.

- Segments are not too large; there is no redundant code.

references:

segment design

FIRST rule for segmenting code:

1. Stay in segment as long as possible, and stay out as long as possible

data
segment
(stack)

D
user D
code

segments

D o
D

MAIN MEMORY

VIRTUAL MEMORY

_ ______________________________ Fj,gw. HEWLETT
a:~ PACKARD

11·21

notes:

- Every time a program crosses a segment boundary, it increases
the chance that code must be transferred from disc.

- When a referenced segment must be transferred from disc, the
program suspends.

references:

segment design

SECOND rule for segmenting code:

2. Make segments the same size - easier for MPE to find space

example:

c

o
0..-.........---+----I

MAIN MEMORY VIRTUAL MEMORY

• segment C can overlay segment B

rliD'l HEWLETT___----- .:~ PACKARD

11·28

notes:

references:

segment design

THIRD rule for segmenting code:

3. Keep segments small, but not too small

- remember the first rule

many small segments

DD
working set

vs fewer large segments
with good locality

working set

• small segments MAY cause
excessive inter-segment transfers

• larger segments MAY reduce
inter-segment transfers

____________________________ (JSa~:~I<'i;6

11-29

notes:

- Remember: the maximum number of segments per program is 63.

- To help find space in memory, segments should be Sk words
or less.

references:

segment design

FOURTH rule for segmenting code:

4. Separate infrequently used code from code that is executed
most often

Initialization

termination

working set
(start/end)

main
processing
routines
(A)

main
processing
routines
(8)

working set
(main processing)

error
routines

(may never
be used)

FIIOW HEWL.ETT
______________________________ au:. PACKARD

11-30

notes:

- A routine can be large if it is seldom (or never) executed.

- Such code should always be separated from code that is
executed frequently.

references:

segment design

FINAL rule for segmenting

5. Code in segmentable program units

D
I B I

A

B

segment 1

c

D

segment 2

_______________________________ (hi.) ~:~;:~6
11-31

notes:

- Code is prepared into segmentable blocks, called RBMs
(Relocatable Binary Modules).

- Programmer controls which code is placed into which RBM.

references:

segment design

COMPILERS AND SEGMENTATION
compiler defaults

COBOL '68 - 2 segments (1 for Initialization)
(1 for Main Program)

COBOL II - 1 segment (Initialization + Main Program)

FORTRAN - 1 segment (Main Program)

BASIC - 1 segment (Program is smallest unit)

RPG - compiler divides program into 4K segments (user can
specify 1K, 2K, or 3K)

SPL - 1 segment (Main Program)

APL - no segmentation (compilation generates data only)

user control:
COBOL

FORTRAN}
SPL -
BASIC

section-name priority-number

$CONTROL SEGMENT =segment-name

Fli;w. HEWLETT_______________________________ 11:1:. PACKARD

11·32

notes:

- Note differences between compilers.

- Check manuals for specific details.

references:

segment design

How COBOL II determines RBMs and Segments

Compiler

IHITIALIZATIOH
A1 OO-START 10

C100-IHIT 15

E100-MAIN20

F1 OO-GET 15

ERRORSUB

6 RBMs

Segmenter

ERRORSUB

E100MAIH20

C100INIT15
F100GET15
INITIALIZATION

A100START10

4 Segments

FliiiW HEWLETT
__________________________ ~~PACKARD

11-33

notes:

references:

segment design

WORKSESSION 11-4

_______________...._---- ("~~:;;VKL:~6

11-34

notes:

references:

1.

2.

3.

4.

Worksessionll-4 (segment design)

Define a working set.

How does code locality affect performance on an HP 3000?

Give at least three rules for effective segmentation.

Segment the following sample program by marking the program units that you would put in
the same segments. (Each box represents a program unit; you can mark them any way you
want just so long as it is clear which units go to~~_~erJ __

\ I. MAIN I'" "
,----- -----...., \

/ / I INIT fyr~ROc-t\I~T_ER_M_I, ..;-' I ERROR //
.1/ . . \, / \~ / .../"

<·'''l,~INITA·1 I INITB l,/,/Y'PROCA I /,.." ",----,,-,/ ~~------~//
/ ~"- ----,-

--~--------- .------
MAIN calls INIT,PROC, TERM once each.

INIT calls INITA, INITB once each; each is small and executes quickly.

PROC and PROCA work together to do most of the processing.

TERM performs termination procedures; it is small and executes quickly.

ERROR may be called by.any other procedure in case of error.

1I-34a

I DATA SEGMENTS I
Stack

• Layout

• Management

Extra Data Segments

____________________ (li.J~:~K'::6

11-35

notes:

references:

data segments

WHAT IS A STACK?

• 1 word of data stacked on top of another

• LIFO - last item added to top is the first item removed

.-.---....~ bottom of stack
expandable 1

down
---~----- base

expandable
up

...._--....~ top of stack
stack

------------ (1il=:~'::~6

11-36

notes:

- Note: HP3000 data stack is always shown "top down".

references:

data stack

HP3000 DATA STACK

DB1-------....

j I I ,
f.- ;_~t,c~;~~l, J <~\'~-'--{/i, .' -'\'>"',r't'~~)

. . j -.1 /-:;

• user managed data area
DB-relative (negative)

1 per process

v~ri,!~le length
)((

•
•

r .

DLr-....................-
user
data

• global data
DB-relative (positive)

• local data for subroutine
Q-relatlve (positive/negative)

local
data

processing area } TOS • top-of-stack (TOS)
8-relatlve (negative)S

Z

total stack
size = DL thru Z

lowest add~ess available to programmer.

\ >

- DL = data

11-37

F£3 HEWLETT

--------...,.l'I"""""I...,.--~....,~--------------"'1"'" PACKARD
LA---<la/.] ri} --+-{",,-'S f-0-A) :

notes:

- DB

- Q

= data base, the base for all stack expansion whether up
or down.

= dynamic base for the current subroutine(s).

- s = stack top (top of stack), the area where code is executed;
as new values are moved onto stack, S moves toward Z

)L --'::; ~-.
/
/~,.-

= stack limit, the very top of the stack (except for a small
overflow area manag~d by flystem).

j),[)('DJ/

- Z

cl--+ '
references:

data stack

DATA STACK - ANOTHER VIEW

DL
DB

Q,S
Z

global
data

.

INITIAL stack
(fixed size)

• the INITIAL stack must be as large as your global data

_____________________________ (A;)~:~1<':~6

11-38

notes:

- Before any execution, Q and S are at the same location.

- As code is executed, the stack expands dynamically up to the
limit set by user.

i

L.

references:

(
v' Q

data stack

STACK MANAGEMENT

What can a program do to manage stack size?

• Increase stack limits (MAXDATA or STACK)

• Shrink the stack dynamically (ZSIZE or DLSIZE)

• De~ign to I(eep glo~al area small
(O,~".:)",,··{';· " ... -".::,;,j,-_.,-;~._,.--;"":,,-,,,,;,- ,~'"..• '''''''''...'''''''

('

• Segment code to reduce stack size

/'\ C:'') ".,~,{j<'··i
f'--_"~' - _(_c-:.e_'_..··_\'" d...-·· __ (Ai.) ~:~KL::6

11-39

notes:

;>:·-,,-,,;;·_-t'~::_,:: ~

references:

data stack

STACK LIMITS

• stack size (DL-Z) estimated by system

• user can increase this estimated size:

• STACK = increase stack size all at once

• MAXDATA = increases stack size in 1K
increments

_______________________ (hlJ~:~KL:~~

1140

notes:

references:

data stack

T
10,000

.l-

example:

STACK = 10000

T
10,000

--l..

MAIN VIRTUAL

• DB to Z allocated at once in both MAIN and VIRTUAL MEMORY

__________________________--- (S~~:~K~~6

11-41

notes:

- Note: the STACK command does not expand DL-DB area.

- Can be wasteful of memory since main memory space allocated
from start.

references:

data stack

example:
MAXDATA = 10000

T
10,000

1-
T

10,000

1

DL

z

MAIN VIRTUAL

• maximum stack (DL to Z) allocated in VIRTUAL MEMORY

• expanded in MAIN MEMORY as needed (1 K increments)

____________________________ F/,;a HEWLETT
~~ PACKARD

11-42

notes:

- MAXDATA saves main memory.

- Costs in disc I/O needed for incremental expansion.

references:

data stack

Use MAXDATA -

• if you need to expand DL~DB area

• if y~u run out of stack space during execution

NOTE: Neither MAXDATA nor STACK will shrink stack automatically

"Iin- HEWLETT
____________________________ a:~ PACKARD

11-43

notes:

- Use MAXDATA if you get a "stack overflow" message when you
execute program.

references:

data stack

USE STACK = if you need a large stack immediately

example:

• INIT segment requires 20,000 words

• rest of program requires only 10,000 words

STACK = 20,000

DL--.... DL---. DL--....

used
by

INIT

s -----z..._-...

I-------T
10,000

S l
z

----------- (4-]:::C-;~6

11-44

notes:

- STACK saves disc I/O required to expand stack with MAXDATA ­
use it if you know you will need the extra stack space
immediately.

- You can shrink stack when space no longer needed.

references:

data stack

EXAMPLE OF STACK GROWTH (1)

assume:

program modules shown below:

MAIN

./ '"PROCA PROC C

I
PROC B

-------- (+]=~K'::;6

11-45

notes:

- In this example, assume MAXDATA is specified to allow stack
to expand past size estimated by system.

- Each increase means swap to and from disc.

references:

data stack

EXAMPLE OF STACK GROWTH (2)

Q 1-------
local
data

®

Qi ~----­
local
data

o

S ~-----z__...
stack expands
past default estimate

call

®

DL~ _
DB 1--------

r': global ~
L,/ data L,/

global
data

Q -------
local
data

o
S 1-------z...__...
local data is
added as each
procedure is
called

DL-...-IIlIIIIIIW
DB ~-------

callo

global
(main

program)
data

Z 1iIWi~~-"'II

initially, stack
contains only
global data

DL
DB

Q,S ..J"9•.-......,-,_..

_ ____________________________ r.4~ HEWLETT
~~ PACKARD

11-46

notes:

- The first location of Z is the system-determined stack limit.

- After procedure B is called, Z is moved past this limit in
lK increments. Z can expand up to the MAXDATA limit, but
no further.

references:

data stack

EXAMPLE OF STACK GROWTH (3)

DL DL

DB ----- DB
global global
data data

a ----- a,s a
data

Q
local to c> c>0 s

® 0 ®
exits exits is called

11-47.

rA~ HEWLETT
____________________________ a:~ PACKARD

notes:

- Shaded areas of stack are unused except when A calls B
(previous slide).

- Stack does not shrink automatically.

references:

data stack

USE ZSIZE TO SHRINK STACK
example:

DL
DB

usual stack
size

DL
DB

----..-.> 0
save z shrink

QI t-------I stack
(ZSIZE)

Q ----------

8,2-------
maximum
expansion

.-.-----.. DL
DB

back to
usual size

_______________________________ ~iJ ~:~l<L:~~

11-48

notes:

- It is good practice to shrink the stack after the program
has finished with procedures that expand the stack past
its normal size.

- See appendix A for sample procedures to determine relative
location of Z (usual stack size) and then shrink the stack
back to this size.

- These procedures can also be used to expand stack
programmatically. Similar procedures can manage DL-DB area.

references:

data stack

DESIGN TO KEEP GLOBAL AREA SMALL

DL

DB

Q

s
z

global

dynamic area

fixed • no direct user control

dynamic area

_________________________________ (Ai.l~:~I(':::6

11-49

notes:

- Use global area for: .
main program data
data cornmon to more than one procedure
data maintained by a procedure between calls

- Place constant data (such as error messages, screen displays)
in code segment.

- For COBOL programs, global area contains Working Storage for
main program plus some other general purpose data. It also
contains data for subprograms unless they are compiled with
DYNAMIC option (more on dynamic subprograms in the language
unit of Module III).

references:

data stack

SEGMENT CODE TO REDUCE STACK SIZE

problem: restructure this program to reduce stack size

MAIN
(200)

C D
(1200) (400)

• largest stack requirement when ® calls ®

__________________________ (A~ ~:~K'::6

11·50

notes:

- Numbers in parentheses are stack requirements in words.

- When MAIN calls A and A calls C, the total words needed=1700.

references:

data stack

solution: break largest procedure into subprocedures
that are not in direct line

MAIN
(200)

E
(400)

F
(300)

G
(300)

-------------- (Ai] ~:~1<':~6
II-51

notes:

- In this solution, the largest stack requirement is 1100 words.

- But, keep the other factors in mind when segmenting - don't
reduce the stack size only to cause more transfers between
code segments.

references:

data segments

WORKSESSION 11-5

____------------------ (AP.l~:~t<L:~6
II-52

notes:

references:

Worksession 11-5 (data stack)

~ l\
1. The data stack can be shared by more than one process. True or false? fC==lJ.~

3. Using your stack drawing, shade (or otherwise mark) the areas whose size can be managed by
the user.

4. Describe briefly three methods for the pr~pammerto manage stack size.

l

S ,<"/,''-0 <~:~ [;/\.,/\~""?/L/~:_':~}:

'-'''>
~","_."_e>-:">'

5. A. Suppose your application calls procedure 'tX" that doubles the usual size of the stack.··X·'
is called once only, and the call is neither at the beginning nor end of execution. Is this a
situation where you could use ZSIZE effectively? Explain your answer.

B. Suppose this singlt' \"pry large procedure "X" is the first procedure called by your program.
and the default stack size is not sufficient. Would you use STACK or MAXDATA to
expand Y?Ur stack lirr:tit? re there any draw~ackst10your choice?

, c... , <:::;,.-\ • Iii /" til,,,,
~~JL ··/"""'-t'v .-.I(h\-/-- t1..".',W1,':.-~ ~ .,ll.", ../'''''I ~ ," ,.-tS;;l -," -, ~-_F"J~~''''do-'-~~

1I-52a

Worksession 11-5 (cont.)

C. Suppose UX" uses the DL-DB area of the stack; would you use STACK or MAXDATA to
expand your stack size'? Are there~Ydrawb:ck~ tothis choice?

V \(Q-/(!. o.c:)\,c.

6. How does putting error messages in a code segment help keep your stac~ small?
''\ -';'~\ "

1I-52b

I

r/ ~ ~<\ J' \:'..~

I EXTRA DATA SEGMENTS

• What are· they?

• Why use them?

• Limitations

~ Fli;'HEWLETT
---:-:- .:~ PACKARD

11·53

notes:

references:

extra data segments

WHAT IS AN EXTRA DATA SEGMENT?

• a block of unstructured, uninitialized memory

{'r
~-----

V
data stack

• structured
• private
• 1 per process

vs

::========.::~...- --1 2
...- ---1 3

extra data segment

• linear
• private or sharable
• up to 255 per process

... F,," HEWLETT

r.:e..II PACKARD
II-54

notes:

- Extra data segments must be managed by the application.

references:

extra data segments

WHY USE THEM?

stack
• to provide LINEAR

unstructured storage

- large arrays

- table look-up

XDS

• to provide GLOBAL
storage for procedures

- saves data after
procedure exits

• available for other
procedures

global

~-----

local - XDS-
...-----

stack
lI'JD1I HEWLETT____________________________...... a::~PACKARD

II-55

notes:

- Some other uses:
to decrease stack size
to share data between related processes (processes in same
family)

- Note: the file system uses extra data segments extensively
for data buffers.

references:

extra data segments

WHAT ARE THEIR LIMITATIONS?

• require special capability and user management

• user program must:

- create and delete any extra data segments
- move data from XDS to stack, and from stack to XDS

• XDS must be in main memory when accessed
(together with'code and user stack)

• use resources - disc 110, memory, CPU time

__________-- ~t.-i (I~=:~KL:~6

11-66

notes:

references:

extra data segments

WORKSESSION 11-6

Fli;w. HEWLETT____________________ ~t:..PACKARD

II-57

notes:

references:

Worksession 11-6 (extra data segments)

1. Give at least 2 differences between the data stack and an extra data segment:

2. Which of the following data storage needs can be solved by using extra data segments?

~/ A.)A program needs storage for an array that is too large for the data stack.
, .__/

B. A program.needs an area to hold local data from a procedure after the procedure has
exited.

A program needs a storage area for data to be passed to another program in the same
process tree.

1I-57a

I PROCESS GENERATION I

III Life Cycle of Process

III Code Libraries

F,;;e. HEWLETT___________________ ~~PACKARO

11·58

notes:

references:

process generation

"COMPILE-LOAD-GO"

What does HP3000· do.?

standard terms:

HP3000 terms:

Icompile I I load

J compile I Iprep I I
I~

run I

F/,;a HEWLETT_______________________________ a::~ PACKARD

II-59

notes:

- Compile stage common to most systems; it produces object
code from source code.

- Loading in HP3000 has two stages:
PREP resolves some externals, links code segments
RUN (in first phase) resolves remaining externals, sets
up stack

- RUN (in second phase) executes program.

references:

process generation

COMPILE

source ••
code

Text file

complier

User Subprogram
Library file

• segments planned - but not final

_______________________________ (Ai.) =:~t<a.:~~

11-60

notes:

- This stage uses a compiler program (different compilers for
each language).

- Source code in text file compiled into "Relocatable Binary
Modules" in USL file.

Stack information kept in USL file with RBMs.

- RBM is basic building block; one or more may be combined
into code segment, but RBM cannot be split into two or more
segments •.

references:

process generation

PREPARE

segmenter

User SUbprogram
Library file Program file

IRBMI IRBMI

IRBMI IRBMI

Relocatable Library file

• initial stack, code segments linked in Program file

________________________________ ~a~:~~:~6

11-61

notes:

- This stage uses the Segmenter program.

- Sets up final code segments in program file. The segments
are linked through an STT (Segment Transfer Table) associated
with each code segment in program file.

- Sets up initial stack (global stack data) in program file.

- Resolves externals from "Relocatable Library" and builds an
RL segment in program file.

references:

process generation

RUN (1)

system disc

VIRTUAL MEMORY

I
I
I
I
I
I
IL J

loader

~
I I
I I
I I
I I
I t

r--------------------------~I
I

=>1 =>@tackD..._---_-..

• first phase links program units

• not yet a process

__.....---------------------------- (h~.~:~K':~6
11·62

notes:

- RUN, in this stage, uses the Loader program.

- Allocates space for stack on system disc.

- Completes linkage for code segments in system tables.

references:

process generation

RUN (2)

r------- --., r---------,
I~ I I I

!~ q :
: Jj ~I I :
I rogram ----'\ r=::::;:'1 I I Ifile --I ~ I L .J
I . I MAIN MEMORYL -.J

VIRTUAL MEMORY

• creates and executes process

______________________________ FliiiW HEWLETT

~~ PACKARD

11-63

notes:

- Finally, RUN creates the process, making an entry for the
process in system tables.

- Finds space in main memory for code and data.

- Executes the process.

references:

process generation

STREAM capability

• control batch job execution from terminal

:5tream xyz
[!job xyz
!run abc

data

run DEF

run ABC

batch job "XVZ"

1
.

!eoj

'run def

-----...

Interactive terminal

• cor:-tinues with other functions data

• execution sequence set
in stream file

• no operator intervention

~~ F"pwHEWLETT

. . I:~ PACKARD

11-64

notes:

_ Compiling can take time - so use STREAM for long compilations.

- Also, use STREAM to run sequences of programs.

- Allows you to perform other functions while long jobs
execute in batch.

- Resolves externals from Segmented Library.

references:

process generation

ALLOCATE PROGRAM

• when one program used frequently

,-
~t--

program \
.... file ~

~Lfil~

• all externals resolved

• ready to run

• only needs:
memory space
disc space for stack

allocated program

_____________________________ p~ ~:~K~~6

11-65

notes:

- Allocate uses resources, so don't allocate many programs.

- This is particularly useful, to save some RUN overhead, when
one program is run frequently.

references:

SAMPLE PROGRAM

problem: program to retrieve order information by order
number

or
ogramSTART

err
8ubpr

I I
+ •

initialize terminate

'l'

main
process

_ __________________________ FliD'J. HEWLETT

~~ PACKARD

11-66

notes:

- See appendix A for source code listing of this sample program.

references:

sample program

Flow of MAIN process (simplified)

READ ..po

SCREEN

,

FIND ..
ORDER

,

GET ,..
ORDER-INFO

,

PRINT ..
ORDER-INFO

order # Qerminal-,

,order #

data
base

order data

order data Orminal-,

r/i~ HEWLETT_________________________ a:e. PACKARD

11-67

notes:

references:

sample program

How Program is Segmented

A10o-START initialize I
.. perform MAIN until done 1st segment

terminate

C10o-INIT

D10o-TERM

B100-EXIT

E10o-MAIN

error subprogram

open data base
forms file
terminal

close data base
forms file
terminal

exit

read screen (order #)

find order In data base
get order information
print Information

error messages

2nd segment

3rd segment

4th segment
____________________________ (A~ ~:~K'_i:6

11-68

notes:

- Look for RBM boundaries in code.

- Are these the same as the segment boundaries?

- Look at PMAP produced by segme~ter (PREP stage) for final
segment boundaries.

references:

sample program

DYNAMIC ERROR SUBPROGRAM

• puts error messages in local area of stack

• reduces global stack size

--------- Pi.l~:~K'_;J6

11-69

notes:

- A separate, dynamic code segment contains all error messages.
This saves permanent (global) stack space.

references:

sample program

STREAM FILE

• allows concurrent processing during compile and
prep

! JOB MGR. DES IGH
! PURGE PDEM01 P
! PURGE UDEM01 U,--__
! fILE COBTEXT-=!sDEM01 S\4:~-----source file
! FILE COBUSl=[QDEM01 U _ USL file
! FILE COBl I ST= SHULL
! RUH COBOL I I • PUB. SVS ; PARM- 5
! FILE COBTEXT= ERRORSUB
! RUH COBOL I I • PUB. SVS; PARM- 5
! PREP UDEM01 U , PDEM01 P; MAXDATA-11 000; PMAP
! SAVE IPDEM01 P ~- _
! EOJ program file

-------- Fi.J ~:~K':~6

11·70

notes:

- Identify the source file, USL file, program file.

references: MPE Commands Reference Manual

process generation

DEMONSTRATION

_______________________________ (,4i) ~:~L:~6

11-71

notes:

1. Log on

2. Run "PDEM01P" (the program file)

3. Enter one of the following a-digit order numbers:

12340010
12340015
12340020
12340025
12340030
12340035
12340040
12340045
12340050
12340055

references:

ILIBRARIES I
II using code libraries

RL - Relocatable Library

SL - Segmented Library

II all libraries are created and managed by the
segmenter

F/,;' HEWLETT
______________________ a.:~PACKARO

11·72

notes:

references:

using libraries

AN OVERVIEW

~ourc~ => @SLfi~=>
....code~

Compile Prepare Run

process

• RLs part of program file

• SLs part of process

______________________________ ~~ ~:~KL:~6

11-73

notes:

- Each RL is physically part of the program file that
references it.

- An SL is simply "linked" to the executing process that
references it; that is, it is brought into memory and
linkages established to it.

references:

using libraries

RELOCATABLE LIBRARY

• linked at PREP time

segmenter
code segments

} RL segment

program fne

RL file
(contains all RL modules)

_________________________________ (h~ ~:;;Vt<~~6

11·74

notes:

- A Relocatable Library file is made up of compiled units (RBMs)
just like the USL file. These units are not yet segmented.

- The PREP command calls the segmenter to join RL units to
program file.

- Only the RL units referenced by the program are copied to the
program file. All the RL units are placed· inl segment.

references:

using libraries

use RLs

• for routines private to different programs

• for small routines

• for routines that seldom change

}

total
63
segments
Including
RL

________________________________ ~l) ~~~I<~~~

11·75

notes:

- There is a copy of the RL in every program that references
that RL.

- When an RL is changed, the program file must be re-prepared.

- RLs are very useful during program development to keep
different versions of code. PREP whichever RL you want
into the program file for testing.

references:

using libraries

SEGMENTED LIBRARY

process

[STACK]

group

System

.SL file

C~ments ~
- -":;..-.;;. ••

• linked at RUN time

Program file System disc

FliiifJ HEWLETT_________________________________ ~e.II PACKARO

11-76

notes:
\

- SLs, unlike RLs, are already segments.

- There are three parts to the file of Segmented Library
routines. The system SL is checked automatically for any
referenced routines at run time; you must specifically
request RUN to look for account and group SL's. (A lot
of system code used by applications is kept in the
system SL.)

- SLs cannot modify data in the initial global stack
because that part of the stack is already established in
each program file when the SLs are linked to the program.

references:

using libraries

use SLs

• for routines common to many programs

• for routines that may change--------• for large routines

max
191

segments

Fli#W HEWLETT
______________________________ ~~ PACKARD

11-77

notes:

- SLs can be modified without affecting the program file.

- Only one copy of each SL is needed, however many programs
reference it.

- Each SL requires an entry in the CST (code segment table)
which can have a maximum of 191 entries.

references:

using libraries

WORKSESSIONII-7

____________________ &]~:~I<L;~6

11-78

notes:

references:

Worksession 11-7 (using libraries) .

1. Given the following routines, decide whether you would put them in an RL or an SL.

A. A routine to perform a large, complex mathematical function, such as random number
generation, that is used by several programs in your application.

RL or SL_X _

Why? __...../......' (....'')..-... __,......c...O_'__~"""'~).....{...'~ "":t_.·:_{J__, _

[1 f

2.

3.

B. Two small'routines that determine the current location of the stack limit (Z) and then
shrink (or expand) the stack to that limit.

RL X or SL _

Why? _

C. A routine to reformat some data used by your main program (not by a procedure or
dynamic subprogram).

(/RL X or SL _

Why? _

Ifyour program has 62 code segments, would you add an RL?

yes orNo __~i~~r-----
(~

Explain: ~---.;._,.:;..,;/,....:/:,__,A.....;/*: ..;;;;.."'~;...) _

If the segmented library contains 190 SL segments, would you put any code into a new SL
segment?

Yes __.Y.s..;.'_'__ or No _

Explain: I \ }\\ '",_l'

1I-78a

4.

5.

Worksession 11-7 (cont.)

Ifyour program already has a large numberOf~~:~'would you add more?

:::lam: o.,...:.~.....;..~......, _0.............;..;,.i+\._I+(~·...."".,.......,..._--"-J~(£_._i_('I_' "--···_/_':~·_'.i_~tt..,.jj't;-io,,::.....;.!/ ..=eN;;..:-;_r!.II.,;J;l~9;....~'/'_"~"_'~/ _

If many programs will share a library routine, would you put the routine in an RL or SL?

~ or~ X
Explain: _

6. If the routine is subject to frequent modification, would you put it in an~ or SL?

~ orSL \/
l\

Explain: _

II-78b

IMULTIPROGRAMMINGI
II General Considerations

II MPE Process Management

F/iPW HEWLETT
___________________ ~~PACKARO

11-79

notes:

references:

multiprogramming

MULTIPROGRAMMING

• multiple programs executing at the same time

• multiple processes (same program) executing at
the same time

:RUN ABC
session #524

:RUNDEF
session #536

:RUN ABC
job #J05

• how are they all managed?

___________________________ (6i.l~:~KL:~6

11-80

notes:

references:

mUltiprogramming

PROCESS EXECUTION

suppose 3 processes all start at the same time:

1. :RUN ABC ...

2. :RUN ABC ..

3. :RUN XVZ ...

execution SEEMS simultaneous

execution ACTUALLV sequential

on the HP3000, only 1 process executes at a time

__________________________ ~lJ ~:~K't~6

11·81

notes:

- While one process executes, other processes that seem to
be executing are actually waiting.

references:

mUltiprogramming

EXAMPLE: EXECUTING PROCESS

• while process A executes, other processes WAIT

• process waits for I/O or for time-out, etc.

time up

+
I/O

t---- ---
RUN

WAIT

t
I/O complete

t
A's turn

again

_ ___________________________ Fli;' HEWLETT

a,:e.. PACKARO

11-82

notes:

- Processes wait in suspended state either because they are
waiting for I/O to complete or because their allocated
"time slice" is up.

references:

mUltiprogramming

EXAMPLE: MULTIPLE PROCESSES

RUN

WAIT

I I I I I

l--A-.---..1>1 : I A >:

C!)l : I B '>: tv
1__I_C_~>l c >l: c I

I I

TIME 1.... >
• what determines which process executes?

F/ipwHEWLETT________________________ .::t:..I=lACKARO

11-83

notes:

references:

multiprogramming

Scheduling and Memory Management

• parallel functions to determine which process
executes next

I I

dispatcher
process A

system
resources

I
process B I {)

process C

11-84

rIJ;'. HEWLETT------- a:~PACKARO

notes:

- The Dispatcher is a program permanently in main memory.

references:

mUltiprogramming

the Next Process

selected for execution has:

• highest priority - in dynamic queue where priority
changes as processes execute

and

• is ready - has all resources (except memory)

- is not waiting for I/O

________________________ (6~~:~KL:~6

11-85

notes:

references:

mUltiprogramming

Dynamic Scheduling Queues

3 Queues:

C·Queue -
for· terminal transactions

D·Queue
for batch transactions

high priority

E·Queue {
for overnight transactions

low priority

______________________________ (,s~ ~i~K~~6

11-86

notes:

- In the C subqueue, the system constantly recalculates the
average time to execute a process, then raises or lowers
the process' priority accordingly.

- In the D or E subqueues, average can be specified by
system manager.

- The aim of priority management is to favor short
transactions.

references:

multiprogramming

Finding Memory for Next Process

MPE:

• looks for existing free space in memory
(including segments marked for overlay)

• if not enough, begins marking segments for overlay

• mark segment
for overlay

• rearrange free
space

• is there enough
space now?

• if not

F,,;' HEWLETT______________________________ ~I!JI PACKARD

11·87

notes:

- Data stacks are selected for overlay before code segments
because they are usually larger; data must be written
back to virtual memory before it can be overlayed in main
memory.

- System code, as well as user code, may be overlayed;
everything (except the Dispatcher) is fair game.

- What happens if there are no more segments that can be
overlayed, and the 'current code and data still won't fit?
The process can't execute!

references:

mUltiprogramming

Finding Memory for Next Segment

~
Ej

r::l
LJ

• code. in SEG A calls procedure
In SEG B

• if SEG B is In memory,
all is fine

• if not, find space for
SEG B

• same procedure as finding
initial space for process

_ _____________________________ r.6OWHEWLETT
~I:.II PACKARD

11-88

notes:

- When an executing process needs MORE memory, MPE goes
through the same procedure it used to find the initial
memory for the process.

- In this example, if segment "SEG A" must be overlayed to
find room for "SEG B", and "SEG B" returns quickly to
"SEG A", the resulting disc transfers can significantly
affect performance.

references:

multiprogramming

WORKSESSION 11-8

F'i;a HEWLETT____________________ a.:~PACKAAD

11-89

notes:

references:

Worksession 11-8 (multiprogramming)

1. A. When two users run the same program at the same time, is program execution
simultaneous? Expl~in.

B. If the two users run different programs, do the two programs execute simultaneously?
Explain.

2. Consider the following list of program functions, and decide which-queue (C, D, or E) to put
them in: -

A. A program run weekly at night to print paychecks on the line printer.

B. A program to process user requests at a terminal for confirmation of airline reservations.

C. A program run as a batch job to update a data base from a transaction file.

D. A program that accepts data from a terminal and writes it to a file.

3. Is there anything you can do as a program designer to help the memory manager find space in
main memory for your program?

II-89a

operating environment

I SUMMARY I
II the process is the basic operating unit

II for efficient processing:

• segment code efficiently
• keep data stack small
• consider the other processes

____________________ (.+i.J~:~KL;~6

11·90

notes:

references:

TRANSACTION PROCESSINGI~

I TRANSACTION PROCESSING I
• Definition

• Accounting and Security

• Transaction Processing Opti~ns

- Process Handling

• Language Considerations

• Data Entry Techniques
- user control
- V/3000 control/design

111-'

_ _______________________ F/i;W HEWLETT

a:~ PACKARD

notes:

references: System Manager's Reference Manual
MPE Intrinsics Refernce Manual
V/3000 Reference Manual
Individual language reference manuals

transaction processing

DEFINITIONS

• TRANSACTION PROCESSING - any interaction
between a computer system and its users

• TRANSACTION - the smallest useful unit of work,
performed by the computer, and defined by the user

.......,.------------- l&;] ~:~K~~6
111-2

notes:

references:

transaction processing

Interactive Transaction Processing System
. . .

• provides terminal users, connected directly with computer
system, with access to information stored in computer's
data base and files•.

end user

data/commands

.response/results

.-
appli­
cation

program

system

sub­

systems

data

computer system

~~ F,fQW HEWLETT
-;-: ~t:.Il PACKARO

111-3

notes:

- The end user is directly responsible for the transaction~

he/she is not a data processing professional.

- The terminal provides the interface between this user
and the computer.

r·eferences:

transaction processing

data base
(files)

shared by
all users

terminal userterminal user

private
data

terminal user

application code
shared by all users---_.......~

private
data

An Interactive Transaction Processing system should provide:

• communication through terminals with computer system by
relatively large number of users

• ability to handle uneven processing load with heavy terminal
and disc I/O demands

• sharable code and separate data for all users of a particular
application

terminal user

____________________________ lhP.l =:~KL:~6
111-4

notes:

references:

transaction processing

Interactive Transaction Processing System

Advantages include:

• interaction where decisions are made - people most
familiar with data, enter it, interact with it, receive reports
on it

• speeds up business cycle - data is entered, corrected,
and retrieved where it is used ~ no more waiting for the
computer center

• users see it as their system - more chance for success

111-5

Flipw. HEWLETT-------- .:~ PACKA~D

notes:

references:

transaction processing

WORKSESSION 111-1

____________________ ~~~:~K~~6

111-6

notes:

references:

Worksession 111-1 (transaction processing)

1. Define a Utransaction".

2. Describe at least one advantage ofan interactive transaction processing system.

OR describe one disadvantage of a batch system.

III-6a

IACCOUNTING and SECURITY I
II Accounting Structure

II File Security

111-7

r/,;;.. HEWLETT___________________ a=~PACKARO

notes:

references:

accounting structure

MPE
Account Structure

sys account
accounts

other account

Manager mgr
sam ~--+----~users~----+--~ sam

mary sue

other

groups

~~ rrli~ HEWLETT

-;-: .::~ PACKARD
111-8

notes:

- One system-wide account available to all (SYS)

- One public group in each account for all account users (PUB)

references:

accounting structure

PURPOSE

• protect application and data from unauthorized
access

• allow user to do only what he or she needs to do

111·9

notes:

references:

accounting structure

EXAMPLE: ACME CORPORATION

operations manager

accounting

sales

warehouse

Iacme corporation I

F/iOW HEWLETT__________..- ~~ PACKARD

II 1-1 0

notes:

references:

accounting structure

ACCOUNTS

• should reflect corporate structure

example:

HP3000

SYS
operations manager

SALES
sales

ACCTG

accounting
DP

data processing
WHOUSE

warehouse

Fit" HEWLETT__________________________ ~I:.. PACKARD

111-11

notes:

references:

accounting structure

USERS and GROUPS

• consider organization of department

example: Acme Corp.
Accounting Dept.

BILL
manager

I I
LINDA MARY TOM

payroll adm. receivables supv. payables supv.

I
SUE- HELEN

order entry clerk clerk

JOHN
collections clerk

____________________________ (h~ ...~~~~~

111-12

notes:

references:

accounting structure

USERSlGROUPS

• users and groups reflect organization/needs

example:
HP3000 system

@I.....:__:~_:u_p_--IO

r/i;' HEWL.ETT
_____________________________ a:~ PACKARD

111-13

notes:

references:

accounting structure

CAPABILITIES and RESOURCES

• capabilities associated with USERS

• resources associated with GROUPS

Capabilities

• apply security
• manage files
• process handling
• privileged mode

Resources

• files
• disc usage
• cpu time

FliO' HEWLETT
___________________________ -.:r..w PACKARD

111·14

notes:

references:

security

SECURITY

level 1 account - password

user - password

group - password

file - lockword

level 2 account - capability limits

user - capability limits

group - resource limits

file - access protection

111-15

Fliow. HEWLETT-------- -.:~ PACKARO

notes:

First level provides absolute privacy; itis applied to
each level of accounting structure, plus files.

- Second level controls and monitors system use.

references:

security

FIRST LEVEL OF SECURITY

:hello mary.acctg,collect
account pas5word? _
user password? _
group password? _

v

:run myfile.collect.acctg
file lockword? _

MPE command interpreter

account - acctg

group - collect

user - mary

file = myfile

F11n- HEWLETT
_______________________________ &.:r.JI PACKARD

111-16

notes:

- Command interpreter tests for both log-on security and
file security. It prev~nts unauth~rized users from logging
on, using files.

references:

security
SECOND LEVEL OF SECURITY

ACCOUNT =ACCTG

GROUP = COLLECT

FILE = CUSTOMER
lockword = secret
creator = Bill

ACCESS;
read - any user
write - creator only (Bill)

FILE = INVOICES
lockword = stayout
creator = John

ACCESS;

read - group user
write - creator, group librarian

USER =MARY
CAPABILITIES:

group librarian
interactive

_
~~ "f,;- HEWLETT

111-17 ~a PACKA~O

notes:

_ ~fter passing first level tests, access to files and types
of system use is controlled at second level of security.

references:

security

TIPS

• avoid. too much during development mode
- can be a nuisance

• add passwords, lockwords after program developed
and tested

• use full security during production to protect data,
control access

__________________________ (h~ ~:~KL:~6

111-18

notes:

references:

accounting and security

WORKSESSION 111-2

"Ii;' HEWLETT____________________ a.:~I=)ACKARO

111-19

notes:

references:

Worksession 111-2 (accounting structure)

Given the ACCTG account structure shown in the preceding slides, answer the following questions:

1. A. What must the user MARY do in order to read the file INVOICES in the group COLLECT
of account ACCTG? Explain.

B. Does MARY need to do anything more in order to modify the file INVOICES? Explain.

2. A. Can a user in the account SALES read the CUSTOMER file in the COLLECT group of
ACCTG? Explain your answer.

B. Can this same user in account SALES modify the file CUSTOMER? Explain your answer.

III-19a

Worksession 111-2 (cant.)

3. Can the user in account SALES read the file INVOICES in the COLLECT group of account
ACCTG? Explain.

4. Given: a program file CUSTINV in group COLLECT of ACCTG that allows execution access to
group users. Can a user in group OENTRY of ACCTG run this program? Explain your answer.

III-19b

TRANSACTION PROCESSING
OPTIONS

II SESSION MODE

II PROCESS HANDLING

II OTHER OPTIONS

FlijjW. HEWLETT_________________ a:~PACKARO

111-20

notes:

references:

options

PROCESS TREE

"parent" of all
other processes

FORTRAN MYPROG EDITOR

system
processes

Command
Interpreters

user processes

_______________________________ (Ai.) ~:~I<':J6

111-21

notes:

- Each user process is part of a process tree originating
with the first process "PROGEN" , and with a separate
command interpreter as its parent.

- User processes can themselves be parents of other user
processes. (More on this soon.)

references:

options

1 PROCESS PER TERMINAL - Session Mode

L M_PE I
command
interpreter

command
interpreter

command
interpreter

: HELLO .
: RUN .

: HELLO .
: RUN .

: HELLO .
: RUN .

111-22

____________________________ I'P] ~;~Ktt:b

notes:

- This is the mode of operation for which MPE is designed.
As a result, it is the simplest mode to develop and test.

references:

options

Single Process Control

• with logon UDCs, end users don't run programs

:hello .••
rude]

logon ••.
noli!lt •••
nobreak •••

• NOLIST· hides commands from users

• NOBREAK· exit only under program control

data
entry

_ F/i;;a HEWLETT
..:1:.. PACKARD

111-23

notes:

- Such a UOC (User Defined Command) can be used to separate
the end user from most contact with the operating system.

_ Note the user still has to log oni but logging off can be
included in the DDC.

references:

options

SESSION MODE

ADVANTAGES

• simple development and testing
• no special capabilities needed
• simple local terminal logic

DISADVANTAGES

• extra overhead - each log-on, log-off requires I/O

• limited global terminal logic
• extra responsibility for end user

Fli;W HEWLETT
__________________________ ~r.JII PACKARD

111-24

notes:

references:

options

1 PROCESS PER TERMINAL (Process Handling)

I MP_E1

command
interpreter

log-on
at

control
terminal : HELLO .

: RUN .

parent
process

process 2

no log-on
at these

terminals

111·25

F4.. HEWLETT_______________________________ ~~ PACKARD

notes:

- With process handling, the end user can be completely
separated from contact with the operating system.

- Note: There is still only one process associated with
each terminal.

references:

options

PROCESS HANDLING

ADVANTAGES

• END-USER is isolated from MPE commands
• stack sizes are smaller; code units smaller
• session overhead reduced

DISADVANTAGES

• program testing more complex
• extra overhead for process creation
• BASIC and COBOL '68 must use SPL routines
• requires special capability, careful management

111·26

notes:

references:

options

SOME Other Options

• Specialized Single Program

multiple applications

• Central Terminal Control

multiple applications

F4S- HEWLETT
____----------------------- II'~ PACKARD

111-27

notes:

- These other options allow multiple terminals to be controlled
by a single process.

references:

options

single process

I/O
NOWAIT

menu
selection

select:
--0 add item
-0 display cost
-0 modify item

SPECIALIZED SINGLE PROGRAM
Multiple Applications

shared
stack

multiple terminals

r~.. HEWLETT_____________________________ ~GII PACKARO

111-28

notes:

- Most interactive processes are menu-driven. The difference
here is that multiple terminals select different functions
"simultaneously".

- The multiple terminals are the reason NOWAIT I/O is used,
but only to control the terminal I/O.

references:

options

ADVANTAGES

• simple inter-task communication
• shared stack
• fast transfers with NOWAIT I/O

DISADVANTAGES

• complex task handling .
• stack can be very large
• program can be very large
• NOWAIT I/O requires privileged mode

-------- (A~~i~K'::6

111·29

notes:

references:

control
process

options

CENTRAL TERMINAL CONTROL
Child Applications

NOWAIT
I/O

log-on

Q

_______________________________ [hp]~:~.;:~6

111-30

notes:

- The control process communicates with the "child"
applications through "Queuing" files that allow the
processes to pass messages and be sure the messages are
received.

- Again, multiple terminals connected to the control process
require NOWAIT I/O.

references:

options

ADVANTAGES

• fast multi-terminal handling (NOWAIT I/O)
• central control over transactions
• individual processes allow small stacks, small

segments

DISADVANTAGES

• privileged mode required for NOWAIT I/O
• more complicated programming required

__....- (hi.) ~:~K'::6

111-31

notes:

references:

options

NOWAIT I/O

process continues execution

disc terminal

_________________...... Flin- HEWLETT

.:~ PACKARD

111-32

notes:

- Requires Privileged Mode to use. Because MPE also operates
in Privileged Mode, using this mode allows a user to
damage the system itself. So it must be used with great
care, if used at all.

- NOTE: HP does not support applications that use Priviliged
Mode.

references:

options

QUEUING

J record deleted
by READ

MSG
file

Rec 1
2
3
4
5
6
7
8
9

10
11
12r

new record
added by WRITE

msg msg
file file

Iprocess A I
writer1 Ireader

reader1 Iwriter

Iprocess 81

Fli;a HEWLETT______________________________ a.:~ PACKARD

111-33

notes:

- Only available with MPE IV Inter Process Communication
subsystem.

Deletion of record after it is read allows writer to be sure
message has been received.

references:

options

WORKSESSION 111-3

F6DW HEWLETT__________________ .:t:JIPACKARO

111-34

notes:

references:

Worksession 111-3 (options)

1. The Ustandard" MPE processing option runs one process per terminal in sessIon mode. Give at
least one advantage and one disadvantage of this option.
Advantage(s): _

Disadvantage(s): _

2. A. Describe one of the other options we discussed.

B. Give one advantage, ofle disadvantage, of the option you described.

1II-34a

I PROCESS HANDLING I
How to do it

CREATE

ACTIVE/SUSPEND

TERMINATE

Example

Flii18 HEWLETT
___________________ ~e..PACKARO

111-35

notes:

references:

process handling

CREATE

parent

child

$STDIN
$STDLIST

• loads program file (child) and links child to parent

_______________________________ (hPJ ~:~KL:~6

111-36

notes:

- The parent process must have Process Handling capability;
the child process only needs this capability if it uses
process handling procedures.

- Parent can request at create time to be reactivated when
child terminates.

references:

process handling

ACTIVATE

parent must
activate child

parent

.. '"

"II

child

child may
activate parent

• makes process ready to execute - process either newly
created or suspended

________________________________ ··(.hp]~:~.;:J6

111·37

notes:

- Either parent or child can activate related process.

- Calling process may choose to suspend when activated process
starts up. If it does this, the calling process must specify
who will reactivate the suspended process.

- Always use checks to determine whether process is suspended
or already active before activating.

references:

process handling

ACTIVATE/SUSPEND

• PARALLEL PROCESSING -- parent and child process
both run

• SYNCHRONIZED PROCESSING -parent suspends when
.child active, and ·vice versa

parent.

child

time •

E
N
o

F,f,DW HEWLETT______________________________ ~~ PACKARD

111-38

notes:

Parallel processing is particularly dangerous since an
active process cannot recognize that it is being activated.
So make checks before activation.

- When child terminates, the termination reactivates the
parent (now suspended).

references:

process handling

TERMINATE/KILL

A

I

B C

D

• if A terminates, B, C, & 0
are terminated

• if B terminates, 0 is also
terminated

• if C, or 0 terminates, other
processes remain

• A may kill B or C

• B may kill 0

Fli;' HEWLETT______________________________ a:~ PACKARD

IIF39

notes:

- A process is said to terminate however it stops; normal
program termination, abnormal termination (abort), or
because it is the child of a terminated process.

references:

process handling

DEADLOCKS-

MUTUAL SUSPENDS - parent and child each suspend, wait to
be reactivated by other

MISSING ACTIVATION - parent activates child and suspends,
child terminates without activating parent

UNSEEN TERMINATION -parent does not see child's
termination since parent was active

TO AVOID-

• check before activating
• check before terminating
• check before suspending

_ ________________________ FliS- HEWLETT

~~ PACKARD

111-40

notes:

references:

process handling

SAMPLE PROGRAM

CONTROL PROGRAM (parent):
• creates and activates child processes

ORDER RETRIEVAL PROGRAM (child):
• prompts user at terminal for order
• finds order in data base
• displays order at terminal
• prompts for next order

111-41
P~~:6"~L:~6----------------------------

notes:

-The child program is the same program used asa demon­
stration in Module II, with minor changes that allow it
to reactivate parent and suspend.

references:

sample program

user
terminal

parent
process -----.u;Jata

___ -- -- -- base .
-------01----~........~- _-"----- ,;,---- ."..-"--- ,,"..._-- k

----­...------­~...............~

: HELLO .
: RUN .

control/
terminal

_________________________________ lha ~:~K~~6

111-42

notes:

- Only the parent process must log on, run the program.

- The parent process, controlled from the control terminal,
controls each child process.

- User terminals see only screens from executing child
processes.

references:

sample program

PARENT PROCESS

.. start ...
r ,..

" "

create activate
each child each child

synchronized
processing

parallel
processing

________________________________ (h~ ~i~K~~6

111-43

notes:

- The sample program uses both synchronized and parallel pro­
cessing in order to illustrate both methods.

references:

sample program

PROCESS FLOW

until
all children

up

until
all children

done

.... create child
,.

pass it LDEV #

•
activate child

suspend

activate
each child

•
~

check for... termination

I

terminal #
for

child process

"all children
up"

"done
yet?"

F/,;;' HEWLETT________________________________ ~~ PACKA~O

111-44

notes:

This is the flow of the parent process.

- Note the two stages: the first stage creates each child
in turn and suspends. The child then opens a user terminal,
reactivates its parent and suspends. In the second stage,
Parent and child processes execute in parallel until the
child processes complete.

references:

sample program

CHILD PROCESS

."

I
start

I

error
subprogram

initialize main
process terminate

."

start
setup

end
setup } new code

F/,OW HEWLETT_________________________________ a.:r...- PACKARD

111-45

notes:

This is the flow of the child processes.

- Note that it is identical to the sample program in Module
II except for the "Start Setup" and "End Setup" procedures.

- Look at the source code, PMAP, for this sample program
in appendix A.

references:

process handling

I DEMONSTRATION I

_ (6l) ~:~t<L:~6

111-46

notes:

- Log on

- Run the parent process, PDADP

references:

I LANGUAGE CHARACTERISTICS I

II COBOL
II FORTRAN
II BASIC
II RPG
II SPL.
II APL

_________________ (hP.l~:~Ka.::6

111-47

notes:

references:

languages

I COBOL I
good for business data processing - better for I/O than
for computation

Advantages

• widely known and used
• simple record structuring
• good data editing and formatting
• interface to system intrinsics (COBOL II)

DISADVANTAGES

• long-winded
• inefficient computation

----------- ~~~:~1<':~6
111-48

notes:

references:

languages

COBOL - tips on using

• compare and move equal length fields

• use signed numeric items rather than unsigned

• use COMP or COMP-3 to avoid conversion

1-9 digits - use COMP (PIC 59(9) COMP)

10 or more digits - use COMP-3 PIC 89(16) COMP-3)

• begin COMP items on a word boundary

• use indexing rather than subscripting

• avoid the COMPUTE statement

• keep structure out of the LINKAGE SECTION

F!3 HEWLETT
-~-------,.... PACKARD

111-49

notes:

- The HP3000 is a word-oriented system. Byte (character)
boundaries are not supported by the hardware and require
special handling.

- In general, these hints are all due to special ways the
system works. For instance, COMP items of 9 digits or less
use a fast hardware-support binary arithmetic.

references:

languages

more COBOL tips - Dynamic vs. Static Subprograms

Dynamic -
• data Is placed in local (shared) area of the stack; keeps

stack small
• extra overhead because data must be re-Inltlallzed on

each call
• since global area of stack is not used, can be put Into SL

Static -
• data Is placed In global area of stack - Increases

minimum stack size
• data only initialized once, on first call - less overhead
• any MPE flies opened by static subprogram are available

to entire program
• .cannot be placed in an SL

_________________________ [Ai.l=:~KL:~6

III-50

not••:

references:

languages

I FORTRAN I
good for computational applications

Advantages

• widely known and used
• efficient computations
• modular - easy to segment
• easy interface to MPE intrinsics

DISADVANTAGES
• no data structuring
• limited control structures

F/i;' HEWLETT__________________________ a:aI PACKARO

III-51

notes:

references:

languages
FORTRAN TIPS

• Avoid formatted reads and writes - causes external
calls

• Assign equal length fields for character manipulation

• Avoid multiple entry points to subroutine

• Don't mix data types within expression

• Avoid double integers as loop variables

• Avoid exponentiation of double precision and
complex data - causes external calls

• Use EQUIVALENCE statements to redefine character
data

__________________________- (6;] ~i~KL:~6

111·52

notes:

- Again, these tips are due to the way the HP3000 works.
Whenever there is hardware support in the form of firmware,
execution is faster than if a compiler must make external
calls to special software procedures.

r.eterences:

languages

J .BASIC I
good for engineering and scientific applications,
and for applications that manage character strings

ADVANTAGES

• fast development through interpreter
• good string handling
• good matrix manipulation
• compile after developing and testing

DISADVANTAGES

• variable names limited to 2 characters
• awkward segmentation
• computation less efficient than SPL or FORTRAN

_........ F,,;a HEWLETT
a:~ PACKARD

111·53

notes:

references:

languages

IRPG I
good for business data processing in batch mode,
and for report generation

ADVANTAGES

• easy conversion from other machines
• quick development

DISADVANTAGES

• inflexible program control
• inflexible file management
• minimum control over segmentation
• no subroutine capability

F/,;;' HEWLETT
_________________________ ~~PACKARO

III-54

notes:

references:

languages

I SPL I
good for computational applications,' and systems
programming

ADVANTAGES

• designed for use on HP3000 -
• most efficient execution
• flexible and highly modular

DISADVANTAGES

• limited data editing and formatting
• n--: data structuring capability

_________________________ (A~~:~KL:~6

III-55

notes:

references:

languages

SPL - Tips on using

• move words rather than bytes, whenever possible

• pass word address, not byte address, if word is
called for

• when array size varies, create array dynamically

III-56

r".. HEWLETT____________________________- a:e.. PACKARD

notes:

- The first two tips are another example of how to use a
word-oriented machine.

- The last tip can reduce stack size - you don't want the
compiler to allocate a stack based on the largest possible
array size when the size is variable.

references:

languages

I APL I
good for engineering and scientific applications

ADVANTAGES

• excellent array handling
• powerful operators
• quick development
• modular

DISADVANTAGES

• heavy use of system resources
• no segmentati.on
• cryptic

notes:

references:

languages

III-58

notes:

references:

WORKSESSION 111-4

Worksession 111-4 (languages)

1. In all languages, it is important to keep word boundaries in mind when programming for the
HP 3000. True or False?

2. All languages give you the capability to segment code into variable length segments.
True or False?

3. Consider the following application needs:

a) Generate a formatted report.
b) Execute machine instructions on the HP 3000.
c) Manipulate character strings.

Indicate which language (or languages) you would select to perform each of these tasks. Choose
from one of the following:

COBOL FORTRAN BASIC RPG SPL APL

a.

b.

c.

why? _

why? _

why? _

I DATA ENTRY TECHNIQUES I
_ User Controlled

_ V/3000 Controlled

cD---......
terminal

111·59

notes:

references:

data entry

USER CONTROL

Program manages terminal interface directly

• good for simple interactions

• forms control is complex

Fli.. HEWLETT____________________________ a:~ PACKARD

111-60

notes:

- If most terminal interaction is "conversational", user­
control should be adequate.

- If large complex forms are needed in a data entry type
application, control of these forms may be very difficult
to manage.

data entry

CHARACTER MODE TRANSFERS

terminal

Type name and press
RETURN:

IJOHNDOE~\J

operator presses RETURN

computer

..

• simple to use
• no special coding - Just read or write

____________________________ [1i.l=:~Ka.:~~

111-61

notes:

- This is the method for which the terminal I/O system was
designed.

- It is simple to use and works very well for short
conversational transfers.

references:

data entry

BLOCK MODE TRANSFERS

terminal computer

operator
presses ENTER

ship to:

JOHN DOE
500 ARMITAGE AVE ...
CHICAGO ILLINOIS

.".

60614

'"'"
• requires special coding

• complex forms can create large stack

FI1Q'1. HEWLETT______________________________ a.:~ PACKARO

111-62

notes:

- This type of transfer is best for complex data entry
applications.

- But, it is not at all simple to code; can get all but the
most experienced user into trouble.

references:

data entry

BLOCK MODE - Programmatic control of:

• cursor positioning
• scroll display
• video enhancements
• alternate character sets
• ask for and acknowledge data transfers

uses "ESC" sequences:

display "shipto:"

display

"ESC&a10r5c ESC[ESC&dJ ESC&a25C ESC] ESC&d@ ESCW"

Sets up 1 unprotected field, with half-bright inverse video, and turns
on format mode

____________________________ r"ow HEWLETT

.:~ PACKA~O

111-63

notes:

- Note that you only need to code the ESC sequences once, and
they can even be saved in a file to conserve stack space.

references:

data entry

SUMMARY

ICharacter Mode I
• easy to code

• each character echoed
from computer

• use for interactive
applications

vs IBlock Mode I
• hard to code

• characters echoed
within terminal

• use ··for data entry
applications

• Both interrupt CPU for each character transferred from terminal

__________________________ ~i)~;~KL::6

111-64

notes:

references:

data entry

TERMINAL CAPABILITIES

• 262X - Interactive Terminals

2621 }
2622 I asynchronous only
2624 V/3000 (no multipoint)
2626

synchronous or asynchronous
(multipoint on some)V/3000

• 264X - Display Stations
2640A
26408
2641
2644
2645
2647
2648

• 307X - Data Capture Terminals

=~: }V/3000 Iasynchronous only
3077 (hard-wired multipoint)

____________________________ 1'P.J ~:;;VK~~~

111-65

notes:

- Note those terminals that allow V/3000, those that do not.

- Standard transfers are asynchronous - depend on a start-bit
and a stop bit to delineate characters.

- Synchronous transfers (where allowed) are--non-standard, use
lots of memory and special mnltipo4nt software, but are
fast and accurate.

references:

data entry

WORKSESSION 111-5

__________________ (h~~:~Kl.~6

111-66

notes:

references:

Worksession 111-5 (data entry)

1. Given the following application tasks, indicate whether you would use character mode or
block mode:

A. The program prompts the user for a uYES" or teNO" response; if YES, it displays
information on the screen; if NO, it issues another prompt.

Character or Block mode? _

Explain: _

B. The program displays a form into which the user enters a complete set of order
information.

Character or Block mode? _

Explain: _

2. Suppose you decide you want to use block mode transfers or V/3000. Are these capabilities
available on any HP 3000 terminal? Explain your answer.

1II-66a

I V/3000 I
• FORMS DESIGN with intelligent edits

• STAND-ALONE data entry system

OR

• FRONT-END to transaction processing system

terminal

V/3000

111-67

_____________________________ (ipl=L.,;Jri

notes:

- Consider V/3000 for applications that need block mode
terminal transfers.

- Does not require any programming effort to design forms;
has special procedures that make forms control, data
transfers, etc. very simple.

references:

FORMS DESIGN I

forms designer :--: .~
C~
: RUN FORMSPEC·

• Screen Design

• Forms Control

• Data Edits

• Conditional
Processing

forms file

.,,. ""J"WI J"TT_______________________________ If~ PAC-K-ARO

111-68

notes:

- No programming is needed to create the forms file which may
include edits and processing specifications.

references:

V/3000 design

SCREEN DESIGN

special
enhancements acme corporation

ship to: 11.... _

address: I~J

city: I~ _
state: 0 zip: I~ _

fields
for data

custom error messages value checks

111-69

notes:

lha ~:~KL:~6--------------------

Screen design is so simple that it is easy to develop very
elaborate screens.

- The more elaborate the screen, the more stack space is
needed. EVERY character and special enhancement adds to size
of form, hence to stack. Everything on the screen (including
such cosmetic features as lines of asterisks) adds to the
stack size.

references:

V/3000 design

FORMS CONTROL

• current form may be .FROZEN {

• next form may be APPENDED {

acme corporation

header information

order # 1 _

customer name

• either may be REPEATED

• forms family allows field edits to vary, while screen remains
the same

111·70

Fhdl HEWLETT______________________________ a:~ PACKARD

notes:

- Forms control is as easy as screen design and is generally
a good way to save stack space and disc I/O

- Appended and frozen forms help keep forms a uniform size
(saves stack).

- Repeating forms and forms in same family need not be
reprinted on screen (saves disc I/O).

references:

V/3000 design

FIELD EDITS

must be a 9-digit· number

date IL..- ______
display
todays date

must have
value

ship to: I~ _
address: IL.... _

city: I~ _
state: 0 zip: I~ _

is this legitimate
state code

F/,;a HEWLETT______________________________ a:~ PACKARD

111-71

notes:

- Edits provide simple way to check on entered data. But,
keep edits simple to save stack space.

references:

V/3000 design

CALCULATIONS

order # I XX-3275 I
I Ipart no. 7934625 clerk enters

110.00
valuesqty IT] unit price

total I- 70.00
these

tax I 4.20 values
calculated

final total I 74.20

• any field can have calculated value

rliOfj HEWLETT______________________________ ~I:. PACKARD

_ 111-72

notes:

- This provides a good way to help prevent operator error,
speed up entry, and keep data accurate. But, the operator
has less control over entered data.

references:

V/3000 design

CONDITIONAL PROCESSING.

select function

order entry 00
inventory control D

customer file D
---------------aptI.Jnded screen I

.displayed when enter order #
ORDER ENTRY selected

• next function depends on value entered

F/,;' HEWLETT
______________________________ ~I:. PACKARD

111-73

notes:

This type of processing lets you avoid a lot of programming
effort. But, it also adds a lot of data to the stack.

references:

V/3000 design

Tips on Field Edits

• use most concise edit
• EQ, IN, GQ use less code than IF ••. ELSE

• avoid long tables
• omit field name if possible

• use system constants • $EMPTY, $TODAY, etc.
rather than literal values

• keep custom messages short

IN SHORT • KEEP ALL EDITS SHORT

F/iOW HEWLETT
_______________________ ~~PACKARO

II '-74

notes:

references:

V13000 design

WORKSESSION 111-6

__________________ [.]::~f(L:~6

11l-75

notes:

references:

Worksessionlll-6

1. Suppose you have a form with 10 lines of header information, including 2 data fields, followed
by 8 detail lines with 9 fields into which data can be entered. Thus, the entire form has 18 lines
and 11 data fields. The other forms in the file each have between 8 and 10 lines, each with
between 7 and 10 fields for data.

Why is this poor forms design? _

What can you do to improve it? - _

2. Assume an application that accepts data through V/3000 forms. The accuracy of the data can be
checked through edits stored in the forms file, but these edits tend to be quite long and must be
applied to each field. Under what circumstances would you choose to put these edits in your
application program rather than in the forms file? Explain.

3. Suppose you decide to perform all your edits through FORMSPEC rather than coded into your
application. What can you do to make the edits more efficient?

II[-75a

Worksession 111-6 (cant.)

4. You have an order entry application in which totals must be calculated from quantity, unit
price, tax, shipping weight. \\'bat are the advant1ges of letting FORMSPEC perform the
calculations instead of the data entry operator?

What are the disadvantages? _

III-75b

I V/3000 FORMS FILE I

II Code Records

II Managing Forms Files

_ __________________ F/,;aHEWLETT

a,:~ PACKARD

111-76

notes:

references:

V/3000 forms file

CODE RECORDS

• variable length depends on form and field data

• contain everything to display, edit, use form

• many types:

K - global records

L - form records

o - custom messages

plus others

__________________________...·:F~~;~KL.:~~
111-77

notes:

- Code records and the V/3000 data buffers are what a V/3000
formsfile consists of.

references:

a) screen design - includes ALL text

b) field info - all about EVERY field

c) form info - general form description

V/3000 forms file

FORM RECORDS

• 1 for every form in file

II {
keyed access by~

form name

F/,;W HEWLETT
_______________________________ ~~ PACKARD

. 111-78

notes:

- All the information associated with a form is kept in the
form record for that form.

- A form with complex edits, many special enhancements, etc.,
can generate a VERY big form record.

references:

V/3000 forms file

MESSAGE RECORDS

• 1 for every message for every field

...

text of message

keyed access
by

field name/message number

________________________________ FliS- HEWLETT

a:~ PACKARD

ItI-79

notes:

- Custom error messages are invaluable for helping operators,
since they make error correction much simpler. But, take
care in their design. Each message adds to the stack.

references:

V/3000 forms file

FORMS FILES AND THE STACK

OL---.....

largest
form

in
file

08...------1

comarea
extension

comarea

• MAXDATA always required (6K minimum)

• Stack must hold LARGEST form in EACH open forms
file

rli;;' HEWLETT______________________________ ~t:.. PACKARD

111·80

notes:

The Coma rea extension must hold not only the largest form in
the file, but also all message records, two sets. of data
buffers (one for data to be edited, the other for data as it
appears on the screen), plus a global record for all
information that applies to the entire form.

references:

V/3000 forms file

FORMS FILE SIZE
forms file Ys. fast forms file

1300 wordsdirectory

code
records

source
records

intermediate
records }

compiled
forms

uncompiled
forms

used while
source being
modified

directory

code
records

500 words

_____________________________ (+J::~':~6

111·81

notes:

The directory for either type is kept in the stack, the other
records are brought in as needed.

references:

V/3000 forms file

FORMS and DISC I/O

DL---~

DB~------I

• each new form means disc access to bring code
. record into stack

• only repeated forms do NOT require disc I/O

FliJia HEWLETT______________________________ ~I:. PACKARD

111-82

notes:

- Forms in the same family also can save on response time; they
do not need to be repainted on the screen.

- Th~ sample program (see appendix A) uses a single form. This
form is never repainted on screen, nor brought from disc.
The procedure that "gets the next form" is smart enough to
realize the "next" form is the same form.

references:

V/3000 forms file

Tips on Form Design

• avoid one long form, many short forms
- stack size based on longest form

• use repeating· forms where possible
- not "re-painted'~

- saves disc I/O
- faster response for new form

• avoid fancy touches in protected areas
of screen:

- alternate character sets
- display enhancements
- lines of dashes, asterisks, etc.

F/;n- HEWLETT
________________________ .:~PACKARO

111-83

notes:

references:

V/3000 forms file

WORKSES-SION 111-7

----------- (Ai.J~:~K'_i~6
111-84

notes:

references:

Worksession 111-7 (V/3000 structure)

1. V/3000 must run with MAXDATA set to at least 6K. Explain why you think this is necessary.

Would the STACK= parameter be an acceptable substitute for MAXDATA?
Explain your answer.

2. Indicate by a YES or NO after each of the following statements whether it increases the size of
the code record associated with each form.

A. Text that is displayed on the form but is not transferred as data.

Yes or No __..,..- _

B. Special enhancements that are part of the text but do not enhance the data fields.

Yes or No _

C. The size of the unprotected fields into which data is entered.

Yes or No _

D. The number of unprotected fields into which data is entered.

Yes or No _

E. The length of the field edits associated with each field.

Yes or No _

F. The number of fields for which edits are specified.

Yes or No _

G. The total number of fields in the form.

Yes - or No _

1II-84a

Worksession 111-7 (cont.)

3. Explain why repeating forms are faster than other forms.

1II-84b

V13000 data entry

I STAND-ALONE I

clerks

: RUN ENTRY

batch file

• ENTRY - a general-purpose data entry program

• REFORMAT - a general-purpose reformatting
facility

rl/~ HEWLETT_______________________________ a.:~ PACKARD

111-85

notes:

- These applications, provided with V/3000, allow
immediate data entry without programming.

- ENTRY is useful during forms design in order to test the
forms, but is too general purpose to be a highly efficient
data entry application, and it does not transfer data to
or from IMAGE data bases or KSAM files.

references:

V/3000 data entry

ENTRY PROGRAM

• available in all languages (except APL)

• browse and modify entered data

• no direct transfer to data base

• excellent tool to test forms design

• easy to modify to suit application needs

FhP'l HEWLETT------------- .:1:.11 PACKARD

"'·86

notes:

references:

V/3000 data entry

REFORMAT CAPABILITY

• use to specify new combinations of entered data

forms designer ~~
: RUN REFSPEC ------.C

• combine
data

• separate
data

• format
data

reformat file

fTlJiifj HEWLETT________________________________ -.:~ PACKARD

/11-87

- REFSPEC allows you to combine records generated by ENTRY into a
single redord, or to break ENTRY records into multiple records.

- Also, provides means to reformat individual data fields, omit
fields, or add literal data.

- It cannot repeat a record as part of other records. Once an
ENTRY record is reformatted, it cannot be reformatted again in
the same file.

references:

V/3000 data entry

REFORMAT

entry .clerk

: RUN REFORMAT

data
(1 record
per form)

batch file

reformat
specs

reformat file

reformatted
data

output flle(8)

"L~ HEWLETT_______________________________ ~~ PACKARD

111-88

notes:

This capability is most useful during conversions. The data
entered in new V/3000 forms can be reformatted to suit an
existing application's needs. Thus, the data is made
available before the application is rewritten.

references:

V/3000 data entry

REFORMAT TIPS

• Use REFORMAT to separate or combine data records

• REFORMAT cannot repeat the same header record
preceding multiple details

• Use as interim method until existing application
changed to process V/3000 data

r~.. HEWLETT_______________________ a:1!JI PACKARD

111-89

notes:

references:

V/3000 data entry

WORKSESSION 111-8

___________________ [ha~:~~~:~~

111-90

notes:

references:

Worksession 111-8 (V/3000 data entry)

1. The data entered into a set ofV/3000 forms must be written to an IMAGE data base. Can this
be done using ENTRY? Or must you write a special program to transfer the data?

Explain your answer. _

2. Suppose you have an application that expects a separate record for each part number entered on
an order form. You plan to use a new V/3000 form to enter orders in which you allow up to 10
part numbers to be entered on one form. Is there any way you can use your new form with your
existing application?

Yes or No? _ Explain your answer. _

1II-90a

V/3000 programming

I FRONT-END I
• V/3000 procedures to manage forms files, field edits,

data entry and reporting

entry· clerk
:RUN MYPROG

user

....a_p_p_lic_a_t_iO_".... "

J@

______________________________ (ha ~~;iZ:;6

111·91

notes:

- The application uses V/3000 prodecures to handle the inter­
face with the terminal, the forms file, the program buffers,
or an MPE batch file. It can use other procedures to
transfer data between the program buffers and a data base.

references:

V/3000 programming

IN .APPLICATION PROGRAM

• application uses existing Forms File

• all edits can be in forms

• much processing in forms

• V/3000 provides form and data control procedures

• can direct entered data to IMAGE or KSAM

• can retrieve and display data from IMAGE or KSAM

• unlike ENTRY, tailored to user needs

F/i;a. HEWLETT
__________________________ a:t:.I PACKARD

111·92

notes:

- Consider V/3000 for other uses besides data entry.

- Good for anything that requires form-handling, or block
mode terminal I/O.

references:

V/3000 programming

FORM AND DATA CONTROL

screen keys

messages

VGETNEXTFORM
VSHOWFORM

VREADFIELDS
VFIELDEDITS
VGETFIELD

VSETERROR
VPUTWINDOW

VPUTFIELD

o 11000..-_
I 10..0.-_
1 _

Id8ta
program

DODD
DODD

control

111·93

FhP'l HEWLETT____________________________ a:~ PACKAlfitO

notes:

- Additional procedures transfer data between the program and
files or a data base.

- Look at the sample program in the appendix; it uses these
procedures (and some others) to manage the terminal
interface.

references:

V/3000 programming

Form Control

• display and initialize form

CD VGETNEXTFORM

r: --------- I
I form VINITFORM data I
I image ® buffers I

: :
I J window I IL ---.J

V/3000 Memory

________________________ (6ll=~KL:~~

111-94

notes.

references:

V/3000 programming

Collect and Edit Data

user
program

CD
VREADFIELDS

®
VGETBUFFER or
VGETFIELD

r--------- -,
I screen VFIELDEDITS data :
I image ® buffer I
I I
I I
I I window I IL --.J

V/3000 Memory

_____________________________ (hpJ ~:;K'_:~~

111·95

notes:

- In step 3, VGETFIELD provides greater independence from the
form. Each field is referenced independently which means
the form can change without causing the program to be re­
written.

references:

V/3000 programming

Process Errors

form
image

window

data
buffer

user
program

I
VSETERROR

or
VPUTWINDOW

V/3000 Memory

F4D11 HEWLETT___________________________..... .:'~PACKARD

111-96

notes:

- Error processing differs depending on whether edits are done
in the program or by V/3000.

- In either case, messages are passed through the "window" area
of the V/3000 memory to a "window" line on the screen.

references:

V/3000 programming

ERROR HANDLING

• all errors require disc I/O to retrieve error message

application
(or ENTRY)

custom
message forms

file

~~....... F,fDII HE.WLETT

.--: a:~ PACKARD
111·91

notes:

references:

V/3000 programming

Tips for Programming with V/3000

• put all forms into 1 forms file

• open only 1 forms file at a time

• always use fast forms file for production

____________________________ l6p') ~i~L:~~
111-98

notes:

- Consider making prOV1Slons in your code to "time-out" when
doing terminal I/O. This is a safeguard against operators
leaving the terminal hanging.

references:

V/3000 programming

Should You Use V/3000?

• does V/3000 do everything you want? YES

• can you afford the extra stack space? YES

• do you need intelligent front-end edits? YES

THEN

V/3000 should work well for you

_______________________ (h~~:~K~~6

"'·99
notes:

references:

V/3000 programming

BUT

• if you need a keypunch replacement

• if you are short of stack space

• if you have SIMPLE forms you can code easily

THEN

V/3000 may be more than you need.

________________________ (6a~:~KL:~~

111·100

notes:

references:

V/3000 programming

WORKSESSION 111-9

--------- ~i.l=:~K'f~6

111-101

notes:

references:

Worksession 111-9 (V/3000 programming)

1. Suppose you have an application that needs to display small amounts of constant data on the
terminal screen in a format that uses an elaborate format with field enhancements. This can be
done a) with ENTRY or b) in your program with V/3000 procedures. Which would you choose?
Explain your answer.

2. Suppose you have two independent functions in your application, one of which must be selected
by user input at the terminal. You can ask the user to make the selection on a V/3000 menu
form, or you can issue a prompt to be answered by Yes or No.

Would you use V/3000 here? Explain your answer, including any factors that might affect
your choice.

Would you change your answer if there were 3 or more functions to select? Explain.

III-lOla

transaction processing

I SUMMARY I

Select:

• a processing method

• an accounting structure -

• a programming language

• a data entry method

that suits your application, and helps your end user

r/"~ HEWLETT
_____________________ ~~PACKARO

111·102

notes:

references:

I DATA MANAGEMENT I~

I DATA MANAGEMENT I

II Options

II MPE files

~ KSAM 'files

II.IMAGE/QUERY~

II Choosing the right method

IV·1

WI/ill HEWLETT____________....... ~---~r..BPACKARO

y,~6('

notes:

references: MPE Intrins ics Reference Manual
KSAM Reference Manual
IMAGE Reference Hanual
QUERY Reference Manual

I OPTIONS I

MPE files

IMAGE
data base

IV·2

notes:

references:

HEWLETT(hi.) PACKARD

options

MPE FILES

0 ~ ~ Disc files

8, ~ ~

~riSJ ~

cD Device files ~ ~·"A.

~ ~

terminal

card ~reader

etc.

__..... 11:J·:t:~K'::~~

IV·3

notes:

- Disc files provide both sequential access and random access by
record number.

- Device files allow sequential access only.

- Because device files are slower than disc, "spooling" provides
a buffer between devices and a program. Spooling is managed by
the system.

- All files are managed alike by the MPE file system whether they
are disc or device files.

references:

options

KSAM files

data keys • keyed sequential access
(like ISAM)

• keys and data maintained on
separate disc files

• many access options

&. - sequential

- chronological

- keyed

______-...i ~;) ~i~K'::6

IV-4

notes:

- Keyed access has many options:
multiple keys, duplicate keys, partial keys, approximate keys.

references:

options

IMAGE database

• 2·Ievel network structure

• data structure independent from
program

~,

1\ ().-f;)\ I') ,:' .<:>:• ell"-.s" data redundancy

• access at data item level

• speclai security and locking

• .QUERY for rapid data retrieval

(Ii.] =:~:~~----------------------------IV·5

notes:

-·IMAGE has many access methods:
serial access,
directed access (by record number)
chained access (items with same value),
calculated access (find item by its value).

- IMAGE has a special security system that goes beyond the
standard file system security. It also provides simple
logging and recovery procedures.

references:

options

File System underlies both IMAGE & KSAM

~~..-....._-....
key

~
data

IMAGE

file system
(MPE flies)

KSAM

__--------------------------- (&~ ~:~1<'::6
IV-6

notes:

- KSAM is built directly on the file system; the user has the
same controls.

- IMAGE only indirectly uses the file system; the user has no
direct control over IMAGE files.

references:

options

UNSTRUCTURED

MPE files

• no - keys
- chains
- pointers

• limited access methods

• low - cost modification

Ys. STRUCTURED

IMAGE or KSAM

• maintains - keys
- chains

1'-...,poInters
I /'

• excellent access

• costly to modify

______________________________ 1M=~Ka.:~6

IV-7

notes:

IV-7

- It requires less overhead to modify an unstructured file,
but it is not necessarily easier. Your application must
locate the record to be modified. This is done for you
in the structured systems.

references:

options

WORKSESSION IV - 1

_____________________ (SlI~~t<'"i~~

IV-8

notes:

references:

1.

Worksession 1V-1 (structure)

Suppose your application has many on-line inquiries, but all updates are hatch. In this case,
would you store your data in structured or unstructured forms? Exp}a1.n your answer. A

J i"~, ' i ..

;,'"-,,, \ 'j,,' .. -'-{~'~ ',;
"G ,_~ <: '''-\-~A/' (:«£1' +<) "I ':; ./!.f2...,",'/') ',' &,,(jp,

2. Suppose a lot of new data must be added on-line, and inquiries are infrequent. Would you store
the data in structured IMAGE or KSAM files or in unstructured MPE files?

Explain your answer. .\.____ '\ (\,
1)/(\ t:> \ \ {,j (~.;~~-/\..j2~,

IV-Sa

I MPE FILES I

II Using MPE Files

II Sharing Files

- (SI.J~:~K'":~~

IV·9

notes:

references: f
\

using MPE files

Blocks, Buffers, and Extents

r-----------------------------,
I I

I 1 block (= 1 "physical record") I
extent I .. logical I

C ~~I g %record !
[i J I/O; buffer ~I I

I UHf I

: stack :
I Idisc L .J

memory

IV·10

notes:

- A block is a physical record, the smallest unit transferred
to/from disc.

-' A buffer holds 1 block of data in memory, is the buffer between
the disc and the program.

- A logical record is the smallest unit of data processed by
a program.

- An extent is a contiguous piece of a file on disc; most files
are broken into extents.

1\

A sector (not shown on slide) is the smallest addressable unit
on a file (only the file system knows sector addresses); everYt/
block, every extent, must start on a sector boundary. ;Ea~pf/)i')C"
sector=128 words or 56 characters. r(J~/:.J;'/ ~\t' .,

)(.viJ_£-""
references:

using MPE files

.Extent Management (1)

• allocation and initialization of extents is automatic

example:

- initial allocation = 1 (default)
- access is random

r-.-._ EOF
l' (in file label)

record is written
to 2nd extent--

~1!~!~'111111111111111111
-in 1st extent

_ (Ail~:~t<a.:~

IV·11

notes:

- When system allocates a new extent, it only initializes extents
up to the EOFi extent past EOF may contain garbage.

- Allocation and initialization take time.

CJ

references:

using MPE files

Extent Management (2)

• user can decide:

- how many extents - file in small or large "pieces"
- how many to allocate initially - contiguous or discrete

"pieces"

• user can force initialization of all extents

r~HEWLETT_____________________________ ~..,..... PACKARD

IV·12

notes:

- By default, all files are broken into 8 extents; user can
specify as few as I extent, as many as 32.

- I extent allocated initially - this can be changed easily.

references:

using MPE files

Initial Allocation of Extents

• initial allocation can reduce

- on-line allocation time

- seek time

~--- contiguous extents
reduce head movement

~-....-- extents allocated
at random may
cause extra
head movement

• disc seek time depends on placement of file
on the disc

~~ Pi] =:~1<a.:~6

IV·13

notes:

- Generally, initial allocation of extents not necessary.

- Note that system attempts to make all initially allocated
extents contiguous. This MAY reduce seek time.

- Allocate more than one extent if you know allocation will
occur during peak hours of on-line processing and slow response
time.

references:

using MPE files

Choosing the Number of Buffers

• 2 buffers - default assigned by MPE

• allows pre-reading of sequential files

stack

~

~Jrecord'

2nd buffer
disc

c::E:J
Lr: J

------.-.....-.......--..

_____________________________ (la=~~:~~

IV-14

notes:

- Pre-reading means that while records in one buffer are being
processed other records are being read into the second buffer.
This only works for reading sequential files, since the
next block to be read is predictable.

references:

using MPE files

Use.1 Buffer for Random Access

Irecord I

stack

next record
usually not
next -In
sequence .on
file

ft_~3 HEWLETT_____________________________ ~'7'''' PACKARD

IV·16

notes:

- No pre-reading advantage for random files, so no advantage
from having more than 1 buffer.

- The single buffer saves memory space.

references:

using MPE files

Use more than 2 buffers, only

• when loading data· into sequential files

• when no other users on system

disc

[J

stack

1 record

fi3 HEWLETT______________________________~PACKARD

IV·18

notes:

- Many buffers use lots of memory and offer NO advantage except
in the exceptional situation shown above.

- Particularly, avoid more than two buffers in a multiprogramming
environment.

- The number of buffers can be changed each time the file is
opened, so you can experiment.

references:

using MPE tiles

Consider NOBUF - (0 buffers)

• transfers block directly to user stack

• fast

• allows multl-ree

disc stack

______________________________ (AP) ~:~K'"iJ6

IV·17

notes:

- Program must "deblock" logical records from the block
transferred to/from the program.

- Stack must be large enough to hold the entire block.

- Stack must be "frozen" in memory making it hard for MPE to
find memory space for executing processes in a multiprogramming
environment.

references:

using MPE files

Choosing a Blocksize

• Blocksize - a function of record size and the blocking
factor (number of records ina block)

example:

• Recordsize = 80 characters (40 words)
• Blockfactor = 6

1..... 1
....

1 block = 480 characters
(240 words)

IV·18

ft3 HEWLETT_____________________________ a...,.... PACKARD

notes:

Blocksize is a permanent file characteristic1 it is not easy to
change.

- Note: The slide only illustrates fixed length records.
Undefined records are always 1 record per block1
Variable-length records need extra space in each
record and each block for a record count.

references:

using MPE files

Blocksize and Disc Space

• Blocks always start on sector boundaries

example:
• assume block = 160 words

block

sector

160 words .-,-- wasted space = 96 words/block
, .. -""-..

2 sectors
(256 words)

sector·
boundary

ft. HEWLETT
_____________________________ ~..,. PACKARC

IV-18

notes:

- In this example, over half of every other sector is wasted.

- Blocksize should always equal, or be slightly less than, a
multiple of sector size (128 words).

- The first block of every file is set aside for the l28-word
file labell if the block is much bigger than the label, this
too wastes space.

referenc~s:

using MPE. files

Blocksize and Access Mode

small block

• means small buffer ­
less memory space
needed

Ii good for RANDOM
ACCESS

vs. LARGE BLOCK

• transfers more data· at
a time - uses more
memory

• good for SEQUENTIAL
ACCESS

____________________...... (li.J=:~t<'":~~

IV·20

notes:

- Because blocksize is not easy to change, plan for the most
used case.

references:

using MPE files

OPENING and CL,OSING FILES

Use system resources heavily

To minimize impact:

• ODen file once at start of Droaram. . ..
• leave file open

• close",tile once at end of program
,/"",

", '~\,

Consider putting\,.all OPENS and CLOSES in separate
code segment '

F4.. HEWLETT- ~r....- PACKARD

IV·21

notes:

- When opening a new file, open the file, close it at once to
save it as a permanent file, then open it again. This
insures file is not lost. (New files are session temporary
until closed). Or, build the file with a command and then
save it as a permanent file.

- Opening a file is a major operation; it involves writing
from the file label to a control block, setting up the
EOF, setting up record pointers, and establishing the
access path to the file. Closing a file reverses these
steps.

references:

MPE files

WORKSESSION IV - 2

_ ___________________ r""HEWLETT

~aPACI<ARD

IV·22

notes:

references:

Worksession 1V-2 (using MPE files)

1. Suppose you plan to read an entire file from beginning to end in sequential order, and you are
one of many system users:

A. Would you specify 0, 1, 2, or mo~bufTers?Expl~.
it:::)" .._-\ c .. ;f e" '

}

,,",--

B. Would you specify a block factor that gives many records per block or few records per block
<records are fixed·length). Explain your choice.

2. Suppose you plan to add new records in random order, and you do not want to "deblock"
each record•.

A. Would you use 0, 1, 2, or more buffers? Explain.

1.

IV-22a

I SHARING FILES I
II Locking Strategies

II Multi-Access

__________________ 1'i.)~:~K':~6

IV·23

notes:

. rafaranl'ACl-

locking

A Gentleman's Agreement

CJ

~ """""lI
....... .-;

process process.. I rec Sl
A r B

A "locks" file
A modifies record 5
A "unlocks" file

B attempts to "lock" file
B waits until A "unlocks" file
B "locks" file
B reads record 5
B "unlocks" file

ft3 HEWLETT
~~,.... PACKARD

. IV·24

notes:

- The locking mechanism depends on all sharing processes testing
and respecting locking signals.

references:

locking

File is shared-Buffers are not

process
A

process
B

process
C

....- ... buffers

....- .. buffers ...----M

....- buffers

• buffers contain data, current record pointer

IV·25
------------ (hpl ~:~i:J6

notes:

- Each buffer can contain different versions of the same record.

- Each buffer can have a different record pointer to the current
record.

references:

locking

LOCK/UNLOCK

makes sure data is in only ONE program's buffers
at a time

buffers

program

empty

~
r=l
~

fill

readl
write
file

time)

empty

. LOCK: starts with empty buffers

UNLOCK: ends with empty buffers

F4;a HEWLETT____________________________ ~~PACKARD

IV·26

notes:

- Locks ensure that data and pointers are only in one set of
buffers at a time. This keeps the file orderly with only
the latest data, however many processes are concurrently
accessing the file.

references:

locking

When to Lock

• when a file is shared, locking insures dat~ "integrity"

example:

I pr~M I
.... ...1 pro:ss 1...---....

process'
C

• which processes need to lock file X?

• which processes need to lock file Y?

____________________________ (Si.J~:~.:::6

IV·27

notes:

- No processes need to lock file Xi it is not being modified.

- All processes need to lock file Y, even process B, that only
reads the file, if it wants to read the latest data.

references:

locking

• what if sharing programs DO NOT LOCK/UNLOCK?

file

buffer for "8"
contains old value

buffer for"A"
I"'--....,.",.,---contains new value

buffer "A"

I r- reads.
program same _ ..

,8 record

I ~
reads,

program, modifies
, A , record

buffer "8"

~~ lI1]~:~K~~~

IV-28

notes:

references:

locking

• lock around logical transactions

good:

poor:

LOCK
READ
UPDATE

UNLOCK

READ
LOCK

UPDATE
UNLOCK

no changes can
occur between
READ and UPDATE

another user can
change data
(or move pointer)
between READ and LOCK

ft., HEWLETT~~------ ····atz.tlPACI<ARD

IV·29

notes:

references:

locking

• beware of locking around a terminal read

example:

::::: 'ocks term'na'.. ..
walts for read ..

. \)(\\oG'f.
.. \0

\ot r

I I
~.\\" 4

. process \ot te8
a ~.\\"----...........

• all processes wait for operator to wake upl

ft3 HEWLET'____________________________ ~'7''''' PACKAR[

IV-30

notes:

- Devices as well as disc files can be locked.

- A time-out procedure can be used to make sure terminal is not
left hanging-

references:

locking

LOCKING Uses Resources

• use locks with care

• consider designs that avoid locking

example:

process adds/uPdates ~
"""- -"A ..

7-9am ..,.
file

Inquiries X
process -..

B gam to 4pm lll....

Fl3HEWLETT__...... .:~PACKARO

IV·31

notes:

Locking overhead is caused mainly by the number of disc
transfers needed to post the buffers at each lock and unlock.

references:

shared flies

MULTI·ACCESS
~..'y'-.()

v
• shares access path (buffers, pointers)

• restricted to father/son processes

• no LOCK/UNLOCK - ~::;.~ ",j ~

in
same
process
tree

process
A

process
B

process
C buffers

_ (lil~:~t<':~6

IV-32

notes:

references:

shared files - multi

MULTI-ACCESS - Advantages

• saves memory - single rather than multiple buffers

• reduces number of locks

• reduces number of opens/closes

IV-33

n. HEWLETT_______________________....,. PACKAAD

notes:

- Multi access provides a way to pass the file number of the
shared file between processes - this cuts down on the number
of opens and closes.

- Also, it allows chronological writes by many users without
locking around each write.

references:

shared files - multi

MULTI-ACCESS - Disadvantages

• only useful for process-handling applications

• requires cooperation between sharing processes;

• may require locking of global resources

• buffers are required

___~ ~i.l ~:~K'::~6

IV·34

notes:

- Only one file close takes effect, so users must cooperate
to insure correct disposition of file as determined by
close.

- Global resources need to be locked only if the file label
is directly modified.

- NOBUF transfers are not allowed with multi-access.

references:

sharing flies

WORKSESSION IV - 3

~ (&i.J=:~':~6

IV·35

notes:

references:

Worksession IV-3

1. Assume two programs share a file; program nA" updates employee records, program uB"
retrieves current employee data.

A. Which program must lock the file? Explain.

E\

/

Ifprogram nB" can use data that is one day old, write a scenario that avoids locking
altogether.

B.

\\
\){,-,

i

IV-35a

Worksession 1V·3 (cont.)

2. Assume two programs that share an inventory control file; program UA" adds new parts to the
file; program UB" cheeks the latest on-hand quantity of any part in the file. If locking is used,
both programs must lock the file.

For program uA", which locking strategy would you choose? Give your reasons.

A. LOCK file
READ record
UPDATE on-hand quantity
loop back to READ next record

UNLOCK file

B. LOCK file
READ record
UPDATE on-hand quantity

UNLOCK file
loop back to LOCK.file

of;;

, 1~) j:,

3. Assuming the programs in question 2 are child processes in the same process tree, describe how
they can both access the file at the same time, and allow UB" to get the latest data without
locking the file.

IV-35b

I KSAM I

• Overview

• Key Selection

• Using KSAM Files

F4.,. HEWLETT_______________________ .:~PACKARD

IV·38

notes:

references:

I OVERVIEW I

II What is a KSAM file?

II Guidelines for selecting keys
u-- G

-...... (.'i.l~:~KL:~6

IV·37

notes:

references:

KSAM file

• a KSAM file - 2 MPE files

a data file plus a key file

data block 2 control

data block
blocks

key block
data block

key block
• key block

• •

••
•

• •
• •

•

/

IV·38

notes:

- KSAM files are accessible in all languages except APL.

- KSAM interface built into RPG and COBOL II, must make
procedure calls from FORTRAN, SPL, BASIC, or COBOL '68.

references:

KSAM file

SEQUENTIAL ACCESS

data file key file data file

J·ONES JONES <D
ADAMS ADAMS ®

KELLOG ®
CARTER @

• by key value • in chronological order

....~ l'a ~:~K'-i~~

IV-39

notes:

- Key access may use primary or alternate key; keys determined
when file is created. Sequence in ascending order by key
value.

- Data may be written to file in primary key order, or it may
be written in chronological order.

- Access in chronological order is not available in BASIC or
COBOL '68. Chronological access is like sequential MPE access;
key file is not used.

references:

KSAM file

RANDOM ACCESS

data file key file

JONES • access particular record by key value

ADAMS

KELLOG

CARTER

• exact key - e.g. key = "KELLOG"

• partial key - e.g. key = "KE"

• approximate key - e.g. key ~ "K"

IV-40

____________________________ ~i.J ~:~K':~6

notes:

- Direct access by data record number is possible in any language
except BASIC and COBOL '68; as with chronological access, the
key file is not used.

references:

KSAM file

DELETING DATA RECORDS
old

data file
new

data file

• record not physically deleted

• "deleted" record in data file
marked in 1st word

• reload removes records marked
for deletion from data file

x = delete mark

x

IV-41

I

J
• reload\ frequently if file has many deletionzsI

F/,;w HEWLETT_______~---------------.,..,..,...---a:,.. PACKARD

~ V
(

notes:

- "Deleted" data record remains in data file with a delete flag
in first word.

- Key entries for "deleted" records are physically removed from
the key file; key file pointers are updated.

- Leave first word (2 characters) of each data record blank,
so delete flag does not overwrite data.

references:

KSAM file

KSAM Utilities

use FCOPY

• for fast, unprogrammed inquiry

• for loading data into KSAM file

• for re-Ioading data to compress file

use KSAMUTIL

• to create file

• to clear data from file

• for recovery from' system failure. '2:
f;ii

• to retrieve file statistics ..~

IV-42
(Ai.) ~:~K~~~-----------------------------

notes:

- It is possible to create a KSAM file programmatically in an
SPL, FORTRAN, or COBOL II program, but not in BASIC or COBOL
'68.

- There is no built-in KSAM logging capability and no built-in
back up capability; but can use MPE facilities.

references:

KSAM file

KSAM Tips

•. OPEN file using data file name - not key file name

• LOAD file in sequential order by primary key

• PLACE data file and key file on separate discs

________________________________ ~il~:~;:~~

IV-43

notes:

If you open the file using the key file name, the key file
is opened, the data file name retrieved, and the key file
closed, then the data file is opened, the key file name
retrieved and the key file opened. The first open and
close of the key file is not done when you open the file
using the data file name.

- Loading data in primary key sequence takes a little longer
than loading in chronological order (and makes a larger
key file), but significantly speeds up access by primary
key. It produces a tidy data and key file.

- Separate discs save seek time. ..t1l"'·'<*:;Q'''''irdllIIJflllb:. M·e
,iJ.utUI;i:

references:

KSAM files

WORKSESSION IV - 4

__________________ ~i.)~:~Ka.:~6

IV-44

notes:

references:

Worksession 1V-4 (KSAM files)

1. Suppose your application keeps its employee records in a KSAM file. Once a week, it retrieves
all the records iI! the file in sequence by employee last name; once a month, it accesses all
records by department code. Also, it must occasionally locate all employees whose names start
with a particular letter.

Which item would you choose as the primary key, employee name or department code?
Why?

A.

B.. Taking into consideration the item you chose as the primary key, is there any advantage
to forcing new r,C?rds to~ added in prim~key sequence? Any disadvantage? Explain.

~.... ~o=:-;~'_·, /1 :~g:;: f~(f;~ (fAA v:i: ~c

c. Do you need to know the record in order to find the first employee whose name begins
with cCK',? Explain your answer. "

l

2. Over a period of time, many records are deleted from the employee file, and you notice that
accessing the file is slower.

A. Explain why this happens.

B. What can you do to improve the access time in this situation?

IV-44a

GUIDELINES for KEY SELECTION

II Multiple Keys

II Changing Key Values

II Duplicate Keys

~------- (k~~:~K'-i~~

IV-45

notes:

references:

selecting keys

Avoid Multiple Keys

• use as few keys as possible

• each key increases size of key file

key file
2 control blocks --....

blocks for
primary key

blocks for 1st
alternate key

IV-46
--------------- Pi.) =:~I<'t~~

notes:

- Up to 16 different keys are allowed! But, use that many only
if response time is not a consideration.

references:

selecting keys

Select Static Values for Keys
delete flag

x JONES
408 426-6974

JONES
408 427-1234

1._
--..... :-0­\r-- I,.. -,.,

• update of key value forces record to be:

- deleted from data file

- added as new value

• adds unnecessary data to data file

• key file must be restructured

ft3 HEWLETT
~~,..... PACKARD

IV-47

notes:

- In this example, assume the phone number is defined as a key.
When the phone number changes, the entire data record is marked
for deletion, the old key entry is deleted and the new key
entry added to the key file.

references:

selecting keys

Key File uses B-tree Structure

• each key uses separate "tree" of key blocks

• key blocks linked through pointers

• key block structure changed when:

• new value added

• old value deleted

• key value modified

F/iPW HEWLETT__________________________ a:r.8 PACKARD

IV-48

notes:

- To understand how keys are located (and managed), it helps
to know something about the key file structure.

references:

selecting keys

Example of B-tree Structure

2·level tree:

pointers
"root" block

• 'leaf" b!ocks

• binary search fast for unique keys

• adding new values expensive

Flijjfj HEWLETT______________________________ ~~ PACKARD

IV-49

notes:

- Key values are in sequence within blocks.

- The root block always has central values - so that values
are balanced, as many greater as there are lower values
than the root values.

Each block is at least 50% full, but empty entries are kept
for expansion, to minimize chance of block splits.

references:

selecting keys

Number of Levels and Disc I/O

• binary search efficient for unique keys

example: find key = "15"

• .- <D root
..........."""""'.. level

2nd
level

3rd
level

• three levels in tree - up to three disc accesses

Fit;' HEWLETT
____------------------------------ ~e.. PACKARD
IV·50

notes:

- Because of binary search, only one disc access is needed for
each level. The root level block may already be in the buffer
from previous accesses, so the disc I/O to bring in the root
block is often unnecessary.

references:

selecting keys

Creating Duplicate Keys

data file

JONES

ADAMS
KELLOGG

CARTER
JONES

WILSON

JONES

key file

• order of keys depends on how
file created

OUP • chronological order

• updates show

ROUP. keys in random order

•. updates as fast as any
other key

key file built with- DUP
(key order chronological)

~...- P~~:~KL::6

IV·51

notes:

- Adding new keys is always time consuming; adding duplicate keys
is even more so.

- Trying to maintain chronological order adds to the overhead of
adding new duplicate keys. So, use RDUP unless chronological
order is essential.

references:

selecting keys

Accessing Duplicate Keys

• KSAM maintains "chain" of duplicate keys in key file

• read by key gets first key in chain

• long duplicate keys slow to access

• lose advantage of B-tree structure

• binary search inefficient for duplicate chains

"'Ii~ HEWLETT____________________________ a::t.:AI PACKARD

IV-52

notes:

The binary search technique is designed for unique keys. It
is extremely inefficient for accessing duplicate keys and can
double the disc I/O needed to find the start of a long
duplicate key chain. So, keep duplicate chains short! Don't
choose "male/female" as a key.

references:

selecting keys

WORKSESSION IV - 5

~ F'ijjfl.·HEWLETT
-::-: a.::~ PACKARD
IV-53

notes:

references:

Worksession IV·5 (selecting keys)

Assume a file with the following items in each record:

Customer Name (in fonnat: First Last Initial)
Street Address
City
State
Zip Code
Phone Number
Purchase Order Number

Suppose the application needs to

a) Update customer information given only the customer name
b) Add new customers
c) Mail literature by zip code
d) Retrieve the purchase order number for a particular customer
e) List in alphabetical order all customers with the same last name

1. How many keys do you need?

Which items did you select as keys? _

2. Does any key item need to be modified? If so, which?

3. Are any keys duplicates? If so, which?

4. If you need a duplicate key. would you make it a key added in chronological order (DUP) or in
random order tRDUP)? \Vhy?

IV-53a

Worksession IV-5 (cont.)

5. Which function (a, b, c, d, or e) do you think produces the most overhead? (Assume the customer
name does not change.) Explain.

6. ~ich function (a, b, c, d, or e) produces the least overhead? Explain your answer.

7. Which. fnnction (a, h, c, d, or e) is espedally suitable for KSAM? Explain your a...~swei'.

8. Can you think of any ways to reduce the number of keys or to make your keys more effective?

IV-53b

I USING KSAM FILES I

II Key Blocks and Buffers

II Shared Files

"f,OW HEWLETT~ ~ ~ ':~PACKARD

IV-54

notes:

references:

key blocks and buffers

Key Blocksize and B-tree Levels

• ·KSAM default good for most files, but you can
change key blocksize

• in general • large blocks tend to reduce number
of levels ~~/---

-~ ~/

• experiment to determine best blocksize that does
not increase number of levels

• remember, the more levels, the more disc I/O
for access

~~---- (hll ;:;K'-:~~

IV·55

notes:

~eferences:

key blocks and buffers

Choosing a Key Blocksize

• consider method of access
- larger blocks for sequential access
- smaller blocks for random access

• consider number of levels in B-tree
problem:
A) blocksize is large, levels in B-tree = 2
B) blocksize is smaller, levels in B-tree = 2
C) blocksize is very small, levels in B-tree = 3

which blocksize (A, B, or C) would you choose
- for random access?
- for sequential access?

Flin- HEWLETT_____________________________.... It.:~ PACKARD

IV-56

notes:

- Choose B) for random access because you want the smallest
block size that does not increase the number of levels.

- Choose A) for sequential access since it gives you both
a large block and few levels.

There is no good reason to choose C) since it increases
the number of levels with consequent increase in disc I/O.

references:

key blocks and buffers

Default Number of Key Buffers

assume: file has 2 keys; primary key has 2 levels, and
alternate key has 3 levels:

READ only

control

data
buffers

I 3
1------1 key
... .. buffers

·1 per level
(for key with
most levels)

WRITE only

control

data
buffers

3 perkey + 3

9
key

buffers

READ/WRITE or.
UPDATE

control

data
buffers

8
key

buffers

1 per level per key + 3

..,,31 HEWLET1
~~ ~l.II PACKARC

IV-57

notes:

- The data file uses a single buffer - this cannot be changed.

- The number of key file buffers can be increased or reduced
if the default is not working well.

- The default is based on a combination of access mode,
number of keys, and number of ~~v~l~vJn the B-tree.

;; c,*:::~Y:t4'

references:

key blocks and buffers

EXPERIMENT with Number of Buffers

If default not satisfactory -

• you can change number of buffers any time file Is
opened

• consider more buffers
- for loading data into file
- when there are few other users on system

_____------------------------ ~~~:~K':~~
IV·58

notes:

_ Generally, the default works well. Still, there are
situations when the default can be improved on.

- Each additional buffer increases the size of the extra
data segment that holds the buffers, (an extra data
segment is maintained for each open KSAM file).

references:

shared KSAM files

Extra Data Segments

• 1 per open KSAM file

• contain data buffers, key buffers, control blocks

§§
.... ...

XDS

KSAM file

XDS XDS

process n

~~------- (,y,] ~:~I<a.:~~

IV·59

notes:

- The separate extra data segments and private control blocks
add to the overhead of using KSAM files.

- Private control blocks mean the record pointers and the current
EOFs are not shared.

references:

shared KSAM files

USE LOCKINGI

LOCK - writes CONTROL BLOCKS from file to XDS

UNLOCK - writes CONTROL BLOCKS back from XDS to file

LOCK

UNLOCK

KSAM files

}
control
blocks

-----....} buffe~
XDS

• causes extra disc I/O

IV-60
------------------- ...,::(.]~:~K'::~~

notes:

- Locking insures that the latest record pointers, and the EOFs
for both the key and data files, are posted to the file before
the file is accessed by any other process.

references:

shared KSAM files

Lock around Transactions

• lock before moving pointer when access is
pointer dependent

• example:

LOCK
READBYKEY +- positions pointer ..
REWRITE +- uses pointer

UNLOCK

____________________________ p~~:~L:~~

IV·En

notes:

- Some procdures (such as rewrite or delete) depend on the
current pointer being positioned correctly.

- Others (such as a key read) position the pointer at a
particular record.

- Still others (such as sequential read) advance the pointer or
leave it where it is depending on the preceding
procedure.

references:

, j

shared KSAM files

Structure Transactions (1)

to reduce overhead when files are shared:

• separate reads from updates

--use different terminals
- if possible, at different times

read only
n
update only

IV-62

Flin- HEWLETT
_________________________ ~I:.. PACKARD

notes:

references:

shared KSAM files

Structure Transactions (2)

• add or delete records in "batch"

1. Enter new records, deletes on-line to MPE transaction file

2. Update KSAM file from transaction file as batch job

~~..PE _"~~A~~ file

adds/deletes batch
on-line update

to (after hours)
MPE file

_........----------------------- [hP.J ;:~...~;~~IV-63

notes:

references:

using KSAM files

WORKSESSION IV - 6

~ Flii1AHEWLETT
-:-:-: ~r.". PACKARD
IV-64 .

notes:

references:

Worksession (IV-6) (using KSAM files)

1. Suppose you specify a small key block size in an attempt to reduce your key buffer size for a
random access operation. You find that access to the file is slower than it was before you
reduced the key block size. You then run KSAMUTIL and find that there is a 4-level key in the
file whereas there- used to be at most 3 levels.

A. Explain why reducing the block size made access slower.

B. What would you-do in this case to make the disc access faster?

2. Which is easier to do: change key block·size or the number of key buffers? Explain.

3. Two programs both access the same KSAM file. One makes on-line updates to the file; the other
produces daily reports based on a sequential retrieval of all the records in the file.

SD
A. Explain why these prQgrams must both lock the file when accessing it simultaneously.,

,u. ' '~J" i /:!(J' ,f'jQ",t<~~. '~'\,_.J< /(.)<:·~..",r),>,,<,•.•··-·' ,," I :t<'l"',,-,~

B. Is there any way both these programs can execute without locking the KSAM file?
Explain.

IV-64a

I IMAGE/QUERY I

_ Data Base Definition

_ using IMAGE

_IMAGE Structure

II QUERY

Fli;' HEWLETT___________________ a:/:"PACKARO

IV-65

notes:

references:

I DATA BASE DEFINITION I
An Overview of

• IMAGE concepts

• Passwords and Security

• Multiple Data Bases

..,~ "'~WL~TT
___________________ LNaPAC-KARO

IV-66

notes:

references:

data base definition

What is IMAGE?

• a structured collection of data sets

master

detail

least structure maximum structure

~ {;)/~(/~__1":_r:" (h~ ~:~K~~~
IV-67

notes:

- Each data set is ari MPE file. Data sets can be stand-alone
(not connected to another data set) or many data sets can
be connected through multiple "paths".

- This wide range of structure allow data bases to be tailored
to the application.

references:

data base definition

IMAGE Structure

• each data set is a file

• linked through "root file" containing data base definition

,------
~- -~

: y----.-- :
I I
I I
I I
I •

" J--------

,-----
~-- -~I ----- I'JblI . I
I I
I I
I •

" J--------,------
~- -~:0---·---:I I
I I
I I

I •
" J--------

,------
:0--------1
I I
I I
I I
I . . •

" J--------

root file - contains "IMAGE"
of data base

data base files

______________________________ Pi.) =:~t<':~~

IV-88

notes:

- The root file contains a full description of the data base,
including all paths, chains, item definitions, passwords,
etc.

- The root file is shared by all users of the same data base.

references:

data base definition

Paths and 'Chains

path

\(@ZIACE Inc

chain \BEIABC CO
[gIl John

Paths link master to detail data sets

• use as few as possible

• select search items that change
infrequently

• choose the most-used search item as
the head of a primary path

Chains link items in detail with the same
search item values

• length of chain not significant

• access in either direction

• search items must not be sort items

r/;~ HEWLETT_______________________..... a:e.. PACKARD

IV-69

notes:

references:

data ba.e definition

Entries and Items

• an IMAGE entry corresponds to a record

• an IMAGE item corresponds to a field within a record

acct name date . code
Item

within -­
entry

12345 JONES JOHN H 051180 25

98765 MARTIN MARY X 061180 03

- - - -

} entry

IV-70

n3HEWLETT----------- ...,.... PACKARD

notes:

- Special item types are search items and sort items.

- Search items define the "pathsn~ the same search time must be
in a master and its associated detail. They also define the
"chains" wbich are simply search itmes with the same value
in a detail data set.

- Sort items (which must not be search items) are items on
which a chain can be sorted.

references:

data base definition

Master Data Sets

• AUTOMATIC - search items only
- values added automatically
- must be linked to a detail
- good when search ·items are

numerous or have many unique
values

- saves coding effort

• MANUAL - search item (key) PLUS data
- may be stand-alone
- values must be added by program
- provide direct control over data

IV·11

F/,;' HEWLETT____________________________ ~~ PACKARD

notes:

- Use master data sets for search items (keys), and for
one-of-a-kind data.

- Basically, masters provide the key to the bulk of the data,
which is stored in details and often has duplicate key
values.

references:

data base definition

Detail Data Sets

details data sets - linked to masters by paths

- duplicate items are linked in
"chains"

• use for values linked to more than one
master

• use for any-items that must be sorted

______________________________ (AP.l ~:~K':~~
IV·72

notes:

- Good for such items as: sales records, purchase orders,
shipments, that can be associated with several masters and
that are repeated items linked through duplicate search items
(key) values.

- Sort items can only be in detail sets.

references:

data base definition

Choosing a Structure

• multiple paths

- for stable data that seldom changes

- for inquiry-type applications

- to avoid redundant data

• stand-alone data sets

- to provide IMAGE security and logging

- for shared buffers in shared environment

- for QUERY access

the -structure of the data base should reflect the structure
of the organization

F,,;' HEWLETT____________________________ II.:I!JI PACKARD

IV-73

notes:

- Only define paths that are absolutely necessary.

- Each additional path increases the complexity of the data
base; this, in turn, adds to the overhead particularly for
modifying the data.

references:

data base definition

Passwords and User Classes

• provides access on "need-to-know" basis

credit
clerk

supervisor
customer name

can UPDATE
these itemS--------.....

credit rating

t:~d FlE~O balance due
IS Ite".,

can UPDATE this
item (read and write)

IV·74

notes:

- Passwords are associated with classes of users.

Each user class is allowed to perform specific tasks on
specific items.

- There can be up to 63 different user classes. Thus, the
access restrictions can be extremely precise.

references:

data base definition

Multiple Data Bases

• consider more than one data base
- for complex applications with many items

parts description

~~--
application
programs ---~

inventory control

IV·75

Fli;' HEWL.ETT_______________________________ ~~ PACKARD

notes:

- Multiple data bases may be a good way to reflect application
needs.

- They are also a solution if there are too many items for a
single data base (more than 255). But, this ~s not the only
solution. There are usually other ways to reduce the number of
items; for example by combining several ~nto one item.

references:

data base definition

Multiple Data Bases

ADVANTAGES -backup and recovery faster per
data base

-simplify individual data base
structure

-more appropriate for some
applications

DISADVANTAGES -more overhead

-some redundant data

-logging more complex

IV-76

___________________...... (6~~:::v;:~1

netes:

- If you use multiple data bases, try to open only one at a
time, particularly if the data bases are accessed by the same
process.

@erencelO:)

~,
\

data base definition

Seme Guillelines

• use master sets for unique items

• automatic masters for many unique
search i'tems

• manual masters for data pius search items

• use detail sets for:

• repeated (duplicate) items

• items linked te mere than 1 master

• use only those· paths that are really needed

• make most-used path the "primary" path

_ ________________________ F/i;' HEWLETT

.:~ PACKARD

notes:

data base definition

WORKSESSION IV -7

IV·78

rhO- HEWLETT- ~1:.tI,PACKARD

notes:

references:

Worksession IV-7 (data base definition)

Assume you want to put the following items in a data base:

Customer name
Street address
City
State
Zip code
Phone number
Part description
Order number
Price (of part)
Part number
Purchase order
Quantity (of part ordered)
Unit measur~ (by which part is ordered)

And suppcse your application wants to perform the following functions:

a) Locate an order by its number
b) Retrieve the part ordered, the quantity ordered, the unit price, and

the total price.
'c) Bill the customer referring to his purchase order and the particular order number.

Answer the following questions:

1. Which item(s) would you put in a master data set(s). Explain.

2. Which item(s) would you put in detail data set(s)? Explain. 7

~;;:, ;1 JfJ1Y/) ".~. :/i,.('JiI;l

IV-78a

/\,
I

Worksession IV-7 (cont.)

3. Identify any search item(s).

f\
u
~J:

4. How many paths (total) does your data base have?
2,
//

5. Are any sort items needed? If so, which? /

6. Suppose you wanted another item to contain the order date, and you wanted to list all
orders according to this date. How would you redesign your data,base?

/\' ~"'<\'. f;,' {\\ fr". ...".-/! I lL . }, t,/, f' 'i " '/1- ,
I d{A '21;:D ie, jJ>,,,,,,,,'/ ',-' (c;' /' l fl·/, '~'. (,., I,' {/\""S;

'i

IV-78b

Werksessien IV-7(cent.}

7. Draw a diagram of the data base you have designed (optionally including the order date
from question 'i). Show where items go and which head paths, etc.

I USING IMAGE I
- - --• upens ana (.;lose8

II Types of Access

II Locking Strategies

II Maintenance

notes:

references:

using IMAGE

Opens and Closes

• use even more overhead than MPE or KSAMfiles

• limit to once per process

open data base
smrt ~

all transactions
against
data base

end ~~-----
close data base

~~ rli;'H£WLETT

-:-: ~~ 'PACKARD
IV·SO

notes:

references:

using IMAGE

How to Open

• variety of modes

- combine type of access (read, update, modify) with
type of use (exclusive, shared)

- coordinate all data base usage

• select the mode that

- uses the least capability to do the job

- allows concurrent users sufficient power to do their
tasks

lhP.l ~:~K~~--------------------------IV·81

. notes:

- Modes with low capability (such as read only) mean the least
overhead.

- When other users plan to add or delete entries, use a mode
that allows them such access and protect your process
by allowing locks.

references:

using IMAGE

How to Close

• consider options other than full close

CD

®

®

Close entire data base - required before exit from
program

Close individual data set - to release all resources
(except locks)

"rewind data set - to reset dynamic pointers, maintain
current .path

_______________________________ ~il ~:~K':~6

IV-82

notes:

- Mode 2 close uses less overhead than a full close, but it
makes no sense to close a data set if you plan to open it
again. In such a case, leave it open until you no longer
need it or are ready to close the entire data base.

- Mode 3 is useful before a serial read of the entire data set.

references:

using IMAGE

Access Modes

• serial - essentially a simple serial access

• 'directed

• chained

- random by record number

- all items in detail with same search
value

• calculated -locate item by particular value

IV-83

_____________________________ ~a =:~K~~6

notes:

- Serial and directed access are very much the same as
sequential and random access to an MPE file.

Chained access is essentially duplicate key access. This is
the type of access for which IMAGE is very well suited.

- Calculated access is for Master data sets only.

references:

using IMAGE

Serial Access

master
or

detail

• reads sequentially through MASTER or DETAIL

• can read forward or backward

• useful to retrieve all or most of data in a data set

• use it to copy data to MPE file for subsequent
sorting

...._]~:~t<L:~6
IV·84

notes:

- This access type reads records in the order they are stored
in the data set.

- Empty records are skipped.

references:

using IMAGE

Directed Access
master

or

detail

• read entry by its position in data set

• when accessing masters - records
may move

• avoid unless you have exclusive
access

• may access empty entry

• useful only if record number has
previously been determined

• fastest access method

FliD'l HEWLETT______________________________ a:~ PACKARD

IV-S5

notes:

This type of access can generate serious errors if used in a
shared environment where adds and/or deletes can change the
location of particular records.

- Note that IMAGE re-uses the space freed by delete records.

references:

using IMAGE

Chained Access

detail

master

• locates entries in "chain" with the
same search item

• must first locate "chain head" in
master

• useful for locating related events

• chains on primary key loaded in
chronological order

- may change since IMAGE r&-uses
space from deleted items

r/"~ HEWLETT______________________________ a.:~ PACKARD

IV·86

notes:

- Chains can be followed forward or backward.

- Note that this is basically a duplicate key search, the type
of access for which IMAGE, unlike KSAM, is very well suited.

- Chain order of a primary search item can be physically main­
tained by reloading data.

references:

using IMAGE

Calculated Access

master only

IxyZ Co. ~

get "Ace Inc."

• locate entry with particular value

• useful for fast retrieval of data for
particular use

- find customer name/cre~it rating

- find stock number/amount in stock

• best. for manual master where entry
contains data in addition to search
item.

__.....-------------------------- Pi.) ~:~t<'":~~IV·87

notes:

- This type of access is only for master sets where search
item must be unique.

references:

using IM~GE

Locking Strategies

• IMAGE allows locking

• of the entire· data base

• of individual data sets

• of individual entries
- by item value

IV-S8

notes:

IMAGE locking, unlike MPE and KSAM locks, is enforced;
it is more than a gentleman's agreement. When the data base
(or data set or item) is locked, no other user can ignore the
lock.

references:

using IMAGE

<D DATA BASE LOCKS

I lock I
·1 lock ~wait

·1 lock Iwalt

• avoid for long transactions

• saves lock/unlock overhead

Flijia HEWLET1
______________________________ ~~ PACKAR[

IV-89

notes:

- This type of lock uses the least overhead to apply, but all
sharing users must wait until the data base is released
before they can access it.

- Use it mainly if short transactions mean a short wait.

refe.renees:

using IMAGE

® LOWER LEVEL LOCKS

• data set locks

I lock "A" I - lock a long transaction
in data set A

I Ilock "8" ~
- lock 2 short transactions

"8" in dataset 8

• allows concurrent locking within same data base

• best for transactions in different data sets

_____________________________ (S~~:~i:~6

IV·90

notes:

- This locking method requires more overhead.

- Provides faster response, but only if concurrent locks are
applied to different data sets.

references:

using IMAGE

® DATA ITEM LOCKS

• every user should lock on same item

exampie:

1 I D 1""'--, entry in SALESacct stock # IIIIIIl, ...- data set

same item
allows
concurrent lock

'\ i' r

ale~: acct = 3890 \

lock /')
/Ii!

lock unlock

t...._S_8_'8_8_:_ac_c_t_=_3_8_42 1

r ' lock unlock

if f====- -wait :=:==.:>1 sale8: stock # = 154 1
request lock

user C

user A

user B

_______________________________ (Ai.) ~:~KL:~6

IV·91

notes:

- This locking scheme allows concurrent access to the same data
set, but only if the locks are applied to the same item.
Otherwise, the entire data set must be locked since there is
no way to tell that the two different item values are not in
the same entry.

references:

using IMAGE

Deleti'ng Entries

• unlike KSAM, IMAGE re-uses space from deleted entries

BUT

• when entries inserted into free space:
• loses benefits of chain
• can effect access time when across blocks

block 1

block 2

block 3

chained
entries

in
original
order

after
deletions

and
subsequent
insertions

IV-92
,"~' HEWLETT---------- tE'f!jI PACKARD

notes:

references:

using IMAGE

IMAGE Utilities

used by Data Base Administrator to:

• create data base

• maintain data base

- backup to tape (store/restore data)

- restructure (unload/reload data)

- monitor activity (logging)

- recreate data from log tape (recover)

____________________________ (Ai.) ~:~K~

IV·93

notes:

- Loading data must be done programmatically (only reloading
provided through utility) except for small volumes of data
that can be loaded on-line with QUERY.

- All data base access is also programmatic, unless QUERY is
used for small-scale inquire or update.

references:

using IMAGE

Tips on Using Image

• open file with the least capability that allows all concurrent
users to function

• open/close infrequently'

• use appropriate access mode for task

• lock at lowest level that satisfies all users

• at entry level, lock on same item

• reload data if very changeable

• to compact chains

• avoid disc fragmentation

Fli'PW HEWLETT_____________________________ a:~ PACKARD

IV·94

notes:

- When coding IMAGE calls, reference data items by name once,
to preserve data independence, then use the item number to
save time.

Use an * to back reference named items, but avoid using @
to mean "all items" since data base may change.

references:

using IMAGE

WORKSESSION IV - 8

~ (Ai.l~:~KL:~6

IV-95

notes:

references:

Worksession IV-8 (using IMAGE)

1. Suppose you are the only user of the system and want to retrieve information from the data
base, compare it with some data in your program and then update a non-key item. Would you
open the data base for:

a) exclusive read access
b) read access allowing other users to read also
c) read access allowing other users to modify the file
d) update access allowing other users to update also
e) exclusive modify access
f) modify access allowing other users to read
g) modify access allowing other users to modify also?

Explain your answer.

2. Using the same list, how would you open the file if other users planned to read the data base?
Explain.

3. Using the same list and the previous scenario, how should the other users open the data base?
Explain.

_ .. --_._.___------_._----------

IV-9Sa

Worksession IV-8 (cont.)

4. Ifyou wap.t to retrieve data associated with a particular search item in a master data set, what
access mode would you use? Why?

a) serial
b) directed
c) chained
d) calculated

5. Ifyou want to locate all entries with a Particular order number (the order number is a search·
item), what access mode would you choose? Explain.

6. In this same situation (question 5), which data set(s) would you access? Why?

a) a detail data set
b) a master data set
c) a master and a detail data set

IV-95b

Worksession 1V-8 (cont.)

7. Suppose there are 15 concurrent users of the same data base, all users need to access the same
data sets, and these accesses may include verification of data and subsequent changes. What
level of locking would you choose? Why?

a) data base level
b) data set level
c) data entry level

8. Is there anything you can do to make the locking strategy you chose more 'efficient?

IV-95c

I IMAGE INTERNAL STRUCTURE I

II Media records

II Synonym chains

II Sorted chains

II IMAGE as a set of files

r/i~ HEWLETT......... a:alPACI<ARO

IV-96

notes:

references:

IMAGE structure

Media Records

• include chain/path control information plus actual data

• for master data sets

5 words 5 words 5 wordsr----
I
I record
I numberL _

synonym (
chain, head 1st path 2nd path entry >...... Sor link chain head chain head

• for detail data sets

r----
I
I record
I numberL _

1st i.path 2nd; path SI
backward: forward backward: forward ... entry

~pointer : pointer pointer : pointer

IV·97

notes:

4 words 4 words

- In master sets, media records define chain heads, including
"synonym" chain head.

- In detail sets, media records contain backward and forward
pointers for every chain.

When data base is highly structured, pointers in media record
may be longer than actual data entry.

references:

IMAGE structure

Synonym Chains

• cause migrating secondaries

• address of entrj in master is calculated with algorithm

• what if same address is calculated for several unique
values?

,
I
I,
\,

first empty spot---i.~

synonym 1st 2nd (

head~ path path entry l,
) \

synonym, 1st 2nd ~

entry l
link" path path

\
~l,

I

1st 2nd entry jpath path ~

t

an entry is already here

an entry is here too

now set up new linkage

IV·98

F/,;' HEWLETT_______________________________ ~~ PACKARD

notes:

- The algorithm used to calculate the entry location in a master
data set uses two variables you can control: the search item
value and the number used to specify the data set capacity
(how many entries are expected).

references:

IMAGE structure

Long Synonym Chains

• caused by many entries directed to same address

• make access slower

• adds/deletes much slower

reduce number of synonyms by:

• allowing 200k extra space· in master

• use prime number for master capacity

• use ASCII-type search keys or integers
with random values

IV·99

Fli;a HEWLETT_____________________________ ~~ PACKARD

notes:

- Access is slower because the chain must be followed to locate
the correct entry. This takes time and may mean extra disc
I/O.

- Adds and deletes are even slower since the synonym pointers
must be modified once the correct location is found.

references:

IMAGE structure

Sorted Chains

• keep sorted chains SHORT
- unless chain is static or
- used primarily for inquiry

• put sort items at end of entry
- all items following sort item included in sort

IV·l00

___________________________ (AP.l~:~K't~6

notes:

- IMAGE is not designed to manage long sorted chains. It is
particularly time-consuming to add or delete sorted entries.

references:

IMAGE structure

Add a Sorted Entry

chain head

CD C L F data

4 1 master

sort
rec # B F key item

1 0 100 579

2 100 679
detail

3 100 879

4 3 0 100 979

__n_·_9I--new entry

• what pointers must be modified?

IV-l01

notes:

- Each of the shaded pointers must be modified; these are the
count in the master set, the forward pointer logically
preceding the new entry, and the backward pointer logically
following the new entry. For an unsorted entry, only the
count need be modified.

- If the pointers that must be changed are in different blocks
more disc I/O is required.

references:

IMAGE structure

Put Sort Item At End

• to reduce sort overhead
_ I~~~ _&_••L. .&! _· __ .• ~_. _. ~ __ a

• UIII"~~ yuu wclln 8uosequenl nems 10 De pan OT son

310 100 879 ADAMS

4:3 100 n9 GREEN

2 : 1 100 779 JONES

0 1 2 100 679 BROWNI

1

2

3

4

pointers search
B F key

unsorted
data

sort
item

...

extended sort field

sort
order

4

2

3

1

F'i;' HEWLETT_____________________________ ~aI PACKARD

IV·102

notes:

- The extended sort field does allow subsidiary sorts. In
effect, items following the sort items are minor keys.

references:

IMAGE structure

Design Tips to Improve Performance

SORT ITEMS • avoid them, but, if necessary

- sort only sets with few values

- put sort items at end of entry

CAPACITY • make it realistic to save disc space,
then add 20 % for master data set

• make master set capacity a prime
number

SEARCH ITEMS • use type ASCII items, if possible

• if integer, use random valued items

IV·103

Fli;a HEWLETT
_______________________- a:~PACKARO

notes:

references:

IMAGE structure

IMAGE As a Set of Files

• consider blocksize
• can only be changed at create time

• depends on type of usage

• consider number of buffers
• can be changed _
• increase for loading

--------- ~P.l ~:~Ka.:~6
IV-l04

notes:

references:

IMAGE structure

BLOCKSIZE

• default generally yields good performance

• increase or reduce size for special purpose
applications

LARGE
BLOCKS

small
blocks

• few users in batch mode

• memory is available

• most access is serial or chained
(and chains are compact)

• many users in session mode

• application is large, memory limited

• most access is direct or calculated

.....------------- (Si.) ~:~K~:6
'·105

)tes:

- Default is particularly suited to mUlti-purpose applications.
Consider other block sizes if your application is devoted to
one particular type of access.

!ferences:

IMAGE structure

Blocks and Chained Reads

• IMAGE assigns contiguous storage to entries ina primary
path

• RELOAD to force primary chains into contiguous locations ­
avoid crossing block boundaries

block 1

block 2

block 3

block 4

block 5

chained
read

block 1 J
block 2

block 3

block 4

block 5

IV·l06

notes:

" before reload after reload

- Sort entries by primary search item value for initial load.
IMAGE maintains this order at each reload, making items in
primary chain contiguous.

- Lots of adds and deletes wreak havoc with this order because
freed space is re-used. So, reload if this occurs.

Reload only helps the primary chain. This is why the primary
path should be selected with care.

references:

IMAGE structure

BUFFERS

• global for shared access

data
base

IV-l07

r,sS1l HEWLETT_____________________________..... ~~ PACKARO

notes:

- IMAGE writes buffers to disc after every write or rewrite or
deletion. Thus,' it does not have true buffering.

- An output deferred option provides true buffering since
it does not write buffers to the file until they are full.
But~ it can only be used in an exclusive environment when
no other users are sharing the data base. Deferred output
can be very useful to speed up after hours updates when only
the update process is accessing the data base.

references:

IMAGE structure

How Many Buffers?

i i • increase number of buffers
for loading data for batch
jobs

t
expandable

1

~-------

~-----_.

~--- ----

data
buffers

• decrease number of buffers
if memory size limited

• experiment!

OBCB
(an extra data segment)

IV-lOS

notes:

- The data base administrator links the number of buffers to
the number of users.

- The default is based on the number of search items plus the
number of users.

references:

IMAGE structure

WORKSESSION IV - 9

~~ rlij1lHEWLETT
-:-:-:- EI:.tIPACI<ARO
IV-109

notes:

references:

Worksession IV-g (IMAGE structure)

/
-- /

M1 is an automatic master with
1 search item,

. no data items.

. /
,~'\ 0

Given a data base with l data sets,Ame master-..;{M), and two details (D1 and D2), with the following
characteristics: . C/

" '. {,j'- CT yA.!\ /'
i('I''' .

r/cr-:=:'-~~~~ \<\ . /(
L<. \. ~"~'.'.v··· '-.

""..... \;/'
\~"";1' I~-'

M2 and M3 are manual masters with J)'~.··_·--··7"... /
1 search item each,
1 data item each.

D1 is a detail with
1 search item linked to M1, plus
20 data items.

.D2 is a detail with
3 search items, plus
12 data items, including
1 sort item.

Draw a diagram to illustrate this data base. Then answer the following questions.

1. Which of the two detail data sets (D1 or D2) will be faster to modify? Give your reasons.

2. How many words are needed for ~ch data set, in addition to the actual data? Explain.

/I/V\ ('''- {~{) \ '- '-~
<

IV-I09a

Worksession IV-9(cont.}

3. Suppose the sort item is the customer's last name; what can you do

A.
j

~ .+~"'-.'~-".~,/~, .-r.:,/
f,

C::t

B. to provide a sort on the entire name?
l / ~--\

\--/<//~;'<J1r//!) .. £.l,._!\

4. How can you make ~.ch~inedre~<lof the(~etDl easier?
(~//l='-/ /',/ { . .:L~:?t:;:i:;

Will this same technique work for D2? Explain.

$,0";, ,.<:} ;-e

~,_fd,.<::~~_f

5. What problems can you expect if the capacity of M1 is the nearest even number to the total
eXPected number of entries, and the primary search item is a number that increases in
increments of I? Explain.

IV-109b

I QUERY I. .

II What QUERY does

II When to use QUERY

___------------------- (h~~:~K'tJ6
IV-110

notes:

references:

QUERY

Quick Retrieval

QUERY provides:

• non-programmatic, interactive access to data in an
.IMAGE data base

~ FIND: all males with ~
red hair

IV-lll
------------------ ~i.l~:~i:J6

notes:

- QUERY is excellent for quick and highly specific on-line
retrievals; it can look in any data set to locate entries
that fit the specified criteria.

references:

QUERY

Flexible Reporting

QUERY lets you format reports

John Wilkesreport offline
H1; date
H2; "XMAS CARD LIST"

12/20/80
XMAS CARD LIST

by department

\ __11111~ department: 723

name address

Mary Walker

• best for impromptu, one-time reports

______________________________ ~l) ~:~KL:~~

IV·112

notes:

Avoid using QUERY as your daily reporting mechanism. It is
too general purpose to be efficient. Write a specific
reporting routine to cut down on overhead.

references:

QUERY

Low-Volume Modification

QUERY allows you to add or delete an entry or modify
an existing entry

~-----......~change
"1234"

to "ABeD"

• good for debugging and testing

_____________________________ (.4PJ ~:~K':~6

IV·113

notes:

- Any regular, large-scale data base modification should be
done programmatically in order to be efficient.

- QUERY is good for correcting small amounts of data, for testing
changes, for verifying the structure during data base design.

references:

QUERY

Access Mode

• exact mode not easily predicted

IV·114

notes:

serial read

• may look at
entire file

or chained read

• may have multiple
chained reads

- Chained read uses more resources than serial read.

- QUERY uses serial read for non-key items, single key items,
approximate items. For example:
FIND NON-KEY="BLUE"; FIND KEY>lOO;
FIND KEY=20 OR NON-KEY="BLUE"
Each causes a serial read.

- Chained reads are chosen for multiple keys. For instance,
FIND KEY = 1,2,3, causes 3 chained reads;
FIND KEYA = 1 AND KEYB = 2 causes 1 chained read on KEYA.

references:

QUERY

L~C~~9

• QUERY locks entire data~ for every FIND or REPORT

I----~...._....1.....-

• while
QUERY user
FINDS an item
and REPORTS

• all others WAIT!

• application A needs to
lock data set

• applications Band C
need to lock entries in
another data set

____________________________- (Ill ~:~KL:~6

V-115

)tes:

- The entire data base is locked unless QUERY is told to set
Locking OFF completely. This differs from user applications
that can lock a data set or data entry.

ferences:

QUERY

QUERY Ys. User Application

_ ""11~nv: 1 __.& __.&!_!__ .-I .a__

• "Iul;;n I I~ !:ICllcrc:lI-purpuae - nOI opllmlzeu lor
specific use

- works on any data base

- works with any data sets

• USER APPLICATION preferable for

- regular reports

- fast, streamlined access

- large-scale data entry, modification

________________________ (Ai) =:~I<a.:~

IV·116

notes:

references:

QUERY

DEMONSTRATION

~~_ (li.l~:~1<':~6

IV·117

notes:

references:

I SUMMARY J

II when to use MPE files

II when to use KSAM files

II when to use IMAGE

~~ FL.... HEWLETT

~ ~~ PACKARD
IV·118

notes:

references:

summary

When to Use MPE Files

• for logging and backup files

• when you expect to access entire file

• for "transaction" files

- collect on-line updates to MPE file

- transfer to structured file (KSAM or IMAGE) as a
batch job

• for large-scale sorts

~~ Flio-HEWLETT
--;-;- a.:~ PACKARD
IV·119

notes:

references:

summary

When to Use KSAM

• require flexible key· retrieval

- generic or approximate keys

- actual keys

• need data sorted in variety of ways

- by primary or alternate key

- in chronological order

• simple arrangements of data

- not-hierarchical

- no complex relations

• system 3 conversions

_________________________- FA;' HEWLETT

-:":" ~~ PACKARD
IV·120

notes:

references:

summary

When to Use IMAGE

• if your application uses many files, consider consolidating
data in data base

• need to retrieve many duplicate values

• need separate security for different user types

• need QUERY

- for fast, structured reports

- for debugging

- for low-volume data entry

• need locking at entry level as well as at data set or data base
level

FA;' HEWLETT
____________________________ ~~ PACKARD

IV·121

notes:

references:

SUMMARyl~

I SUMMARY I

II Design checklists

- code & data segments
- processing elltiens
- terminal options
- data management options

II Final remarks

V·l

_ ___________________ Fl'-HEWLETT

.:~ PACKARD

notes:

references:

design checklists

CODE SEGMENTS

• stay in segment as long as possible - then stay out as
long as poss~ble

• keep segments approximately the same size

• avoid very large segments

• put seldom-executed code in a separate segment

~ ~"HEWLETT

---:-: ~~PACKARD

V·2

notes:

references:

design checklists

DATA STACK

• keep total stack as small as possible

• keep global area small - use dynamic area where
possible

• shrink stack following unusual growth

• avoid unexpected stack growth

F4.. HEWLETT
_______________________ ~~PACKAAO

V-3

notes:

references:

design checklist

LIBRARIES

;,., :'J,

\." use Relocatable Libraries (RLs) for small,
special-purpose routines private to the program

• use Segmented Libraries (SLs) for large, universal
routines shared by many programs

_______________________ ~i.J~:t'KL:~6

V-4

notes:

references:

design checklists

PROCESS OPTIONS

• use single process
- to simplify development & testing
- for small applications
- with dynamic subprograms

• use parent/child process
- to reduce stack size
- to isolate end-user from system
- for large/complexapplications

~--------.]=:~t<~~
V·5

notes:

references:

d~slgn checklist

LANGUAGES·

• use COBOL for applications with more I/O than computation

• use FORTRAN for applications that need efficient
computation, little I/O

• use BASIC for applications that manipulate strlngs,arrays

• use RPG for batch-applications with reports - conversions
from RPG machines

• use SPL for special-purpose routines within larger
application

• use APL for array manipulation

_________________________ ~i.)~:~'t~~

V-6

notes:

references:

design checklists

TERMINAL COMMUNICATIONS

• use character mode ,if
- small amounts of terminal input
- terminal input determines program flow

• use block mode for
- masses of terminal input
- data entry applications
- cntrl-Y or break not needed

• use V13000 for
- on-line edits
- easy block mode development

~ (li.l~:~K':~6

V-7

notes:

references:

design checklist

'V/3000

• keep field specs short- use concise edits

• avoid re-painting screens

• open 1 forms file at a time

• execute with fast forms file

V-8

r~.,. HEWLETT----------- ~'ZtI PACKARD

notes:

references:

design checklists

FILE SYSTEM

• use small blocks for random access,
large blocks for sequential access

• use single buffer for random access,
two buffers for sequential access
no buffers for fast multirec transfers

• open and close files infrequently

• lock if any sharing user changes file but - try to
design so locks are unnecessary

________________________ P~~:~KL:~6

V-g

notes:

references:

select keys that don't change

shared access requires locks around all transactions

design checklists

KSAM

use KSAM for sorted, sequential access

avoid keys that have many duplicate values

use as few keys as possible

!
________________________ ~~~:~K':~6

V·10

notes:

references:

design checklists

IMA(1E

• use IMAGE
- for multi-file applications
- for data with long duplicate chains

• avoid sorted chains

• use as few paths as possible

• allow 200/0 extra capacity for master sets (and use
prime number)

• lock at lowest level that provides
- concurrent access to most users without too

much overhead

________________________ (h~ ~:;;VKL;~6

V·"

notes:

references:

design checklists

QUERY

• use for qUick, one-time reports

• use to test and debug data base access

• avoid QUERY for
- regular reporting
- large scale data entry or retrieval

_______________________ pl)~:~J('::;~

V-12

notes:

references:

General Rules

.• do you really need that file? that module?

• put design effort where it counts
- 80/20 rule

• consider when a task is needed
- can it be batch? off hours?

• remember that others use the system
- don't be a hog

V·13

notes:

- 80/20 - 80 percent of the overhead occurs in 20 percent of
the code; So, put 80 percent of your design effort
in that 20 percent of the code.

references:

II what do you really want?

EFFICIENCY

FAST FLEXIBLE

FRIENDLINESS

______________________ (lil=:~I<a.::6

V-14

notes:

references:

I THE END I

_
_____________________ FI,,-HEWLETT

a::~ PACKARD

V·15

notes:

references:

APPENDIXA

Source Listings

1. Shrink Stack Examples

SPL subprogram
FORTRAN example
COBOL example

A-I

'CONTROL SUBPROGRAM
BEGIN

PROCEDURE SHRINKSTACK(SIZE,CC1,
INTEGER SIZE,CC,

BEGIN
INTRINSIC ZSIZE,
SIZE:~ZSIZE(SIZE)J

IF <> THEN CCla-! ELSE CCa=O)
END,

INTEGER SIZE,
BEGIN

PUSH(Z):
SIZEI=TOS:

ENDJ

A-2

e FORTRAN Example using STACKSIZE and SHRINKSTACK
C

PROGRAM MAIN
INTEGER *2 SIZE,CC

c
e Other data declarations could go here
e
C aeg1n ma1n eode
e

CALL STACKSIZE(SIZE)
. CALL 8IGSU8(X,Y,Z)

e
C Where BIGSUB 1s a sUbprogram that uses a lot of the local
C Itaek.
e

CALL SHRINKSTACK(SIZE,CC)
c
C This return. the stack to the size it .a. before BIGSUB
C ••• called.
e
C End of FORTRAN example.
C

STOP
END

A-3

* Sample COBOL routine using STACKSIZE and SHRINKSTACK....
DATA DIVISION.
WORKING-STORAGE SECTION.

01 STACK-SIZE
01 CONDITION.CODE

PROCEDURE DIVISION.

PIC S9(4) COMP.
PIC 59(4) COMP.

** Begin processing here.

*8100-SUB.

CALL "STACKSIZE" USING STACK-SIZE.
CALL "BIGSUS· USING PARMX, PARMY, PARMZ.

* Where -BIGSUB" is a subproqram that uses a lot of
* storage In the loeal area of the stack.
• CALL "SHRINKSTACK" USING STACK-SIZE, CONDITION-CODE •..
• This returns the stack to the s1ze it was when
• -STACKSIZ!" was called.
•
*• End of COBOL example.

A-4

2. Demonstration II-t Listings

Stream file
Source files:

PDEM01P
EFRORSUB

PMAP

A-S

1 lJOB DEMO.DESIGN
2 IPURGE PDEM01P
3 lPURGE UDEMOtU
4 IYILE COBTEXT2SDEM01S
5 lYILE C08USL=UDEM01U
6 lrILE COBLIST=SNULL
7 lRUN COBOLII.PUB.SYS,PARMaS
8 IYILE COBTEXT=ERRORSUB
9 IRUN COBOLII.PUB.SYS,PARMz5

10 lPREP UDEM01U,PDEM01PJMAXDATA211000,PMAP
11 ISAVE PDEM01P
12 lEOJ

.~6

SCONTROL LIST, USLINIT, MAP, SOURCE
IDENTIfICATION DIVIS~ON.

PPOGPAM-ID. demote
AUTHOR. ct3000.
DATE-COMPILED.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 error-flag pic 59(04) COMP VALUE o.
77 eXi t-f lag' 'pic 59(04) COMP VALUE o.
77 record-was-found PIC 59(04) COMP VALUE 1 •
01 buffer.

05 FILLER PIC X(08).
05 bUf-minus-ord PIC X(82).

01 image-fields.
05 db-name PIC XC10) VALUE " ORDRET, " •
OS list-of-items PIC X(02) VALUE "I,".
05 password pic X(06) VALUE "MGR, " •
OS model PIC 59(04) COMP VALUE 1.
OS modeS PIC 59(04) COMP VALUE 5.
05 mOde' PIC 59(04) CaMP VALUE 7.
OS search-item PIC X(08) VALUE "ORO-NUM,".
05 d-data-set PIC X(10) VALUE "ITEM-DET, " •
05 m-data-set PIC Xel0) VALUE "ORD-MSTR, "•
OS db-status.

10 cond-word PIC 59(04) CaMP.
10 FILLER PIC X(18).

01 v-buffer.
05 ord-num PIC X(08).
05 ord-num-display PIC X(08).
05 m-dset-buffer.

10 cust-name PIC X(20).
10 cust-street PIC X(20).
10 cust-city PIC X(16).
10 cust-state PIC X(02).
10 cust-zip PIC X(06).
10 cust-phone PIC XetO).
10 purch-ord PIC X(08).

05 d-dset-buffer.
10 quantity PIC 9(04).
10 part-num PIC X(OS).
10 desc PIC X(30).
10 unt-meas PIC X(02).
10 price PIC 9(06).

ot form-buffer
REDEFINES v-buffer PIC X(148).

01 v-parameters.
05 form-file-name PIC X(10) VALUE "OROrORM1, ..

•
05 term-name PIC X(08) VALUE "A264X ".
05 bUf-length PIC 59(04) COMP VALUE 148.
05 message-buf PIC X(72).
05 msg-length PIC 59(04) COMP VALUE 72.
05 actual-length PIC 59(04) COMP.

01 field-buf.
05 order-number PIC X(08).
05 ord-num-lenoth PIC 59(04) COMP VALUE 8.

01 error-message PIC X(28).

A-7

PIC 59(04) COMP VALUE 28.

COMP VALUE ZERO.
COMP VALUE ZERO.
COMP VALUE 60.
COMP VALUE O.
COMP VALUE O.
COMPo
VALUE ZEROS.

59(04)
59(04)
59(04)
59(04)
59(04)
SQ(04)
X(tOS)

PIC
PIC
PIC
PIC
PIC
PIC
PIC

01 err-message-length,
01 comarea.

05 vstatus
05 languaqe
05 ,I comarea<\?length
05 ~. ILLER
05 FILLER
05 lastCDKey
Os FILLER

PPOCEDUPE OIVISION.
alOO-start SECTION lOe

PERFORM clOO-1olt THRU clOO-1nlt0ex1t~

If error-flag NOT EQUAL TO 0
GO TO bl00-exlt.

PEPFORM el00.maln THPU el00 g maln-exlt c

PERFOFM dtOO~close THRU dl00·close·e~lt.

blOO-exit.
IF error-flag NOT EQUAL TO 0

CALL "ERPORSUB N USING

STOP RUN.

**END OF ORDEP RETRIEVAL PROGRAM

*cl00-1nlt SECTION 15.
PERFORM c200-opendb THRU c200 c opendb e exlt.
IF error-flag NOT EQUAL TO 0

GO TO c100-1n!t G exit.
PERFORM c300-openform THRU clOO-openform-exlt.
If error-flag NOT EQUAL TO 0

GO TO c100-1nlt Q ex1t.
PERFQPM e400-openterm THRU c400-opent~rm-exlt~

cl00-1nlt u exlt.
~XIT.

* I
*RETURN TO a100~start

*c200-opendb.
CALL "D~OPEN" USING

db-name,
password,
model,
db-status.

IF cond=word NOT EQUAL TO 0
CALL "DBEXPLAIN" USING db·status
MOVE t TO error-flag e

c200-opendb-exlt.
EXIT.

'*
*RETU~N TO clOO-ln!t

*c3QO-openform.
CALL "VOPENFQRMF" USING

comarea,
form-file-name.

IF vstatus NOT EQUAL TO 0
MOVE 2 TO error-flag.

A-a

c)OO-openform-exit.
EXIT.

**RETUPN TO cl00-inlt

*c400-openterm.
CALL "VOPENTEFM" USING

*

db-name,
password,
model,
db-status.

IF cond-word NOT EQUAL TO 0
MOVE 4 TO error-flag.

d200-closedb-exlt.
EXIT.

**FETURN TO dl00-close

*d300-closeform.
CALL "VCLOSEFORMF" USING

comarea.
IF vstatus NOT EQUAL TO 0

MOVE 5 TO error-flag.
d300-closeform-exlt.

EXIT.

**RETURN TO dl00-close

*d400-closeterm.
CALL "VCLOSETERM" USING

comarea.
IF vstatus Not EQUAL TO 0

MOVE 0 TO error-flaq.

A-9

d400-closeterm-exlt.
EXIT.

**RETUFN TO dleO-close

*elOO-maln SECTION 20.
CALL "VGETNEXTFORM" USING

comarea.
IF vstatus NOT EQUAL TO 0

MOVE S TO error-flag
MOVE 1 TO exit-flag
GO TO el00-maln-exlt.

CALL "VINIrFO~M" USING
comarea.

IF vstatus NOT F.QUAL TO 0
move 17 TO error-flag
move 1 TO exit-flag
GO TO el00-maln-exlt.

CALL "VSHOWFORM" USING
comarea.

IF vstatus NOT EQUAL TO 0
MOVE 9 TO error-flag
MOVE 1 TO exit-flag
GO TO eIOO-maln-exlt.

PERFORM flOO-read THRU fIOO-read-exit
UNTIL exit-flag EQUAL TO t.

eIOO-maln-exit.
EXIT.

**RETURN TO alOO-start

*fIOO-read.
MOVE 0 TO record-was-found.
CALL "VREADFIELDS" USING

comarea.
IF vstatus NOT EQUAL TO 0

MOVE 10 TO error-flag
MOVE" t TO exit-flag
GO TO fIOO-read-exit.

CALL "VGETBUFFEF" USING
comarea,
order-number,
ord-num-lengtn.

IF vstatus NOT EQUAL TO 0
MOVE 18 TO error-flag
MOVE 1 TO exit-flag
GO TO fIOO-read-exit.

IF last-key EQUAL TO 8
MOVE 1 10 exit-flag
GO TO ftOO-read-exit.

MOVE order-number TO ord-num,
ord-num-dlsplay.

PERFORM f200-findord THRU f200-flndord-exit.
IF error-flag NOT EQUAL TO 0

MOVE t TO exit-flag
GO TO fl00-read-exlt.

IF record-~as-found EQUAL TO 1

A-IO

MOVE SPACES TO error-message
PERFORM f400-prlnt THPU f400-prlnt-exit.

fl00-read-exlt.
EXIT.

**RETURN TO etOO-main

*f200-flndord.
CALL "DBGET" USING

db-name,
m-data-set,
mode7,
db-status,
list-of-items,
buffer,
order-number.

IF cond-word EQUAL TO 0
MOVE 1 TO record-was-found
PERFORM f300-getord THRU f300-getord-exit

ELSE
IF cond-word EQUAL TO 17

MOVE~orde~ not found '~Tn etror~message

PERFORM f400-print THRU f400-print-exit
ELSE .,. ',.-

MOVE 11 TO error-flag.
f200-flndord-exit.

EXIT.
**RETURN TO flOO-read
•

f300-getord.
MOVE buf-minus-ord TO m-dset-buffer.
CALL "DBFIND" USING

db-name,
d-data-set,
model,
db-status,
search-item,
order-number.

IF cond-word NOT EQUAL TO 0
MOVE 12 TO error-flag
GO TO f300-getord-exlt.

CALL "DBGET" USING
db-name,
d-data-set,
modeS,
db-status,
list-of-items,
buffer,
ord-num.

IF cond-word NOT EQUAL TO 0
IF cond-word EQUAL TO 17

MOVE "order not found " TO error-message
PERFORM f400-prlnt THRU f400-print-exlt
GO TO f300-getord-exlt

ELSE
~OVE 12 TO error-flag

A-II

GO TO f300-getord-exlt.
MOVE buf-mlnus-ord TO d-dset-buffer.

f300-qetord-exlt.
EXIT •

... *
*RETU~N TO f200-flndord
*f400-print.

IF recoTd-was-tound EQUAL 19 t
AND

error-flag EQUAL TO 0
CALL "VPUTBUFFEP" USING

comarea,
form-buffer,
bUf-length

IF vstatus NOT EQUAL TO 0
MOVE IS TO error-flag
MOVE t TO exit-flag

ELSE
NEXT SENTENCE

ELS~

MOVE SPACES TO m-dset-buffer, d-dset-buffer
CALL "VPUTBUrFE~" USING

comarea,
form-buffer,
buf-length

IF vstatus NOT EQUAL TO 0
MOVE 15 TO error-flag
MOVE t TO exit-flag
GO TO f400-prlnt-~xlt

ELSE
CALL "VPUTWINDOW· USING

comarea,
error-melsage,
err-message-length

IF vstatus NOT EQUAL TO 0
MOVE 16 TO error-flag
MOVE 1 TO exit-flag
GO TO f400-prlnt-exlt.

CALL "VSHOWFOPM" USING
comarea.

IF vstatus NOT EQUAL TO 0
MOVE 1 TO exit-flag
MOVE q TO error-flaq
GO TO f400-prlnt-exit.

MOVE SPACES TO error-message.
CALL "VPUTWINDOW" USING

comarea,
error-messaqe,
err-message-lenqth.

IF vstatus NOT EQUAL TO 0
MOVE 16 TO error-flag
MOVE 1 TO exit-flag.

f400-prlnt-exlt.
EXIT.

A-12

$CONTPOL LIST, SUBPPOGPAM, DYNAMIC
IDENTIFICATION DIVISION.
PROGRAM-IO. ERRORSUB.
AUTHOR. ct3000.
ENVI~ONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 error-flag PIC 59(04) COMP.
PROCEDURE DIVISION

USING error-flag.
alOO-start.

GO TO el, e2, e3, e4, eS, e6, el, ea, e9, el0, ell, e12,
e13, e14, e15, e16, e17, e18

DEPENDING ON error-flag.
el.

DISPLAY "dbopen failure".
Go TO end-of-Iub.

e2.
DISPLAl "vopenformf failure-.
GO TO end-of-sub.

e3.
DISPLAl "vopentermf failure",
GO TO end-of-sub.

DISPLAY "dbelole failure".
GO TO end-of-sub.

eS.
DISPLAY "vcloseformf failure".
GO TO end-of-sub.

e6.
DISPLAY "veloseterm failure",
GO TO end-of-sub.

DISPLAY "vopenformf failure".
GO TO end-of-IUb.

e8.
DISPLAY "v;etnextform failure".
GO TO end-of-sub.

A-13

etS.
DISPLAY "vputbuffer failure".
GO TO end-of-sub.

e16.
DISPLAY "vputwlndow failure",
GO TO end-or-sub.

el7.
DISPLAY ·vInltform failure",
GO TO end-of-sub.

e18.
DISPLAY "vgetbuffer faIlure",
GO TO end-oi-sUb.

end-of-Iub.
MOVE 0 TO error-flaq.
GOBACK.

A-14

PROG~AM FILE PDEM01P,DEMO.DESIGN

E~RORSUB 0
NAfAE STT CODE ENTRY SEG
ERRORSUB 1 0 0
C"DISPLAY"FIN 4 ,
C"OISPLAY"INIT 5 ?
C"OISPLAY"L 6 ?
QUIT 7 ?
ERRORSUB"S 2 0 1071
ERRORSUB" 3 1076 1076
SEGMENT LENGTH 1314

E1OOMAIN20" 1
NAME 8TT CODE ENTRY SEG
!100MAIN20' 1 0 0
VGETNEXTrORM 3 ?
VINITFORM 4 "VSHOWrORM 5 ?
VREADFIELD8 6 ?
VGETBUFFER 7 ?
OSGET 10 .,
DBFIND 11 ?
VPUTBU,r!~ 12 ?
VPUTWINDOW 11 ?
QUIT 14 ?
dellol :I 767 767
DEBUG 15 ?
COBOLTRAP 16 '1
1100STARTI0" 17 3
CIOOINIT1S" 20 2
SEGMENT LENGTH 1224

t:l00INIT1S" 2
NAME STT COD! ENTRY SEG
C1OOINIT1S' 1 0 0
DeOPEN 2 .,
OBEXPLAIN 3 ?
VOPENFORMF 4 ?
VOPENTERM 5 ?
DBCLOSE 6 7
VCLOS!rO~MF 7 ?
VCLOSETERM 10 ?
SEGMENT LENGTH lOa

l100STARTI0" 3
NAME STT CODE ENT~Y SEG
AIOOSTARTI0" I 0 0
ERRORSUB 2 0
TERMINATE" 3 "SEGMENT LENGTH 60

PRIMARY DB 0 INITIAL STACK 2000 CAPABILITY 600
SECONDARY DB 546 INITIAL DL 0 TOTAL CODE 3120
TOTAL DB 546 MAXIMUM DATA 25370 TOTAL RECORDS 26
P.:LAPSED TIME 00:00104.350 PROCESSOR TIME 00aOl.l07

A-IS

3. Demonstration 111-1 Listings

Stream file
Source files:

PDADP
PDEM02P
SRTSETUP
ERROPSUB

PMAPs for:
PDADP
PDEM02P

A-16

1 !JOa DEMO.DESIGN
2 !PURGE PDADP
3 !PUPGE UOADU
4 IFILE COBTF.XT=SDADS
5 !FILE COBUSL=UDADU
6 tFILE COBLIST:SNULL
7 IRUN COHOLII.PUB.SYS:PARM=5
8 !PREP UDADU,PDADP:PMAP:CAP=PH
9 !SAVE PDADP

10 !PURGE PDEM02P
11 !PU~GE UDEM02U
12 IFILE COBTEXT=SDEM02S
13 FILE COBUSL=UDEM02U
14 FILE COBLIST=$NULL
15 RUN COBOLII.PUB.SYS:PAPM=5
16 FILE COBTEXT=ER~ORSUB

17 RUN COBOLII.PUB.SYS,PARM=5
18 SPL SRTSETUP,UDE~02U

19 .PREP UDEM02U,PDEM02P:MAXDATA=11000:PMAP:CAP=PH
20 lSAVE PDEM02P
21 !EOJ .

A-I7

$CONT~OL USLINIT, SOURCE, MAP
IDENTIFICATION DIVISION.
PROGRAM-ID. demo2dad.
AUTHOP. ct3000.
DATE-COMPILED.
ENVIRON~ENr DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER.' HP 3000.
SPECIAL·NAMES.

CONDITION-CODE IS cc.
DATA DIVISION.
WO~KING-STORAGE SECTION.
77 exit-flag
77 error-flag
77 terminate-flag
77 son
77 maxImum-sons
77 return-length
77 pin-num
01 programs
01 reply
01 Pins.

05 pIn-number
OCCUPS 3 TIMES

01 Idev-number
01 display-son

PIC 59(04) CaMP VALUE O.
PIC 59(04) COMP VALUE O.
PIC 5Q(04) COMP VALUE O.
PIC 59(04) COMP VALUE 1 •
PIC 59(04) COMP.
PIC 59(04) COMP.
PIC 59(04) COMP.
PIC XCOS) VALUE "PDEM02P " •
PIC X(03).

PIC S9(04) COMP.
PIC 59(04) COMP.
PIC Z(04).

PROCEDURE DIVISION.
aIOO-start.

DISPLAY "ENTER THE NUMBER or TERMINALS TO BE ACTIVATED".
ACCEPT maximum-sons FREE

ON INPUT EPROR
DISPLAY ·You must enter a number"
GO TO al00-start.

PERFORM b100-create-sOfts THRU blOO-create-sons-exlt
UNTIL son> maximum-sons.

IF error-flag NOT EQUAL TO 0
GO TO al00-start-exlt.

PE~FO~M cl00-print-up-message
THRU cl00-print-up-message-exlt.

IF error-flag NOT EQUAL TO 0
GO TO al00-start-exit.

MOVE 1 TO son.
PERFORM d100-actlvate-sons THRU dIOO-activate-sons-exit

UNTIL son> maxImum-sons.
IF error-flag NOT EQUAL TO 0

GO TO al00-start-exit.
PERFORM etOO-reply THRU el00-rePly-exlt

UNTIL terminate-flag EQUAL TO 1.
al00-start-eXit.

STOP RUN.

**ENO OF FATHER PROGPA~

*
A-IS

bl00-create-sons.
MOVE son TO display-son.
DISPLAY "Enter logical device number of terminal",

display-son.
ACCEPT ldev-number FREE

ON INPUT ERROF
DISPLAY "You must enter a number for the terminal"
GO TO bl00-create-sonS.

CALL INTRINSIC "CREATE" USING
programs,
\\,
pin-number (son),
ldev-number,
\1\.

IF cc LESS THAN 0
DISPLAY "unable to create son processes"
MOVE 1 TO error-flag
MOVE 4 TO son
GO TO blOO-create-sons-exit.

CALL INTRINSIC "ACTIVATE" USING
\pin-number (son)\,
\2\.

IF cc NOT EQUAL TO 0
DISPLAY "unable to activate sons"
MOVE 1 TO error-flag
MOVE 4 TO son
GO TO bl00-create-sons-exlt.

CALL INTRINSIC "GETPROCINFO" USING
\pin-number (son)\.

IF cc NOT EQUAL TO 0
DISPLAY "son process aborted"
MOVE 1 TO error-flag
MOVE 4 TO son.

ADD 1 TO son.
bl00-create-sons-exlt.

EXIT.

**RETURN TO alGO-start
•cl00-prlnt-up-message.

DISPLAY "*** ALL TERMINALS UP *.*".
cIOO-prlnt-up-message-exit.

EXIT •
•
-RETURN TO al00-start

-dl00-actlvate-sons.
CALL INTRINSIC "ACTIVATE" USING

\pin-number (son)\,
\0\.

IF cc NOT EQUAL TO 0
DISPLAY "activation of son unsuccessful"
MOVl 1 TO error-flag
MOVE 4 TO son.

ADD 1 TO son.
dl00-actlvate-sons-exlt.

EXIT.

A-19

**RETURN TO al00-start

*el00-replY.
~ DISPLAY "*** RESPOND ·YES' TO END PROGRAM ***".

ACCEPT reply.
IF rePlY NOT FQUAL TO "YES· AND

replY NOT EQUAL TO "yes"
GO TO el00-reply-exlt.

CALL INTRINSIC "GETPROCID" USING
\1\

GIVING pln-num.
IF Pln-num EQUAL TO 0

MOVE t TO terminate-flag
GO TO el00-reply-exlt.

MOVE 0 TO exlt-flaQ.
PEPfORM e200-reply2 THRU e200-reply2-exlt

UNTIL exit-flag EQUAL TO 1.
elOO-reply-exlt.

EXIT.
*
*RETUFN TO al00-start

*
e200~reply2.

DISPLAY "*** SOME TERMINALS ARE STILL ACTIVE ***".
DISPLAY "*** REPLY ·YES· TO TERMINATE THEM ***".
ACCEPT reply.
IF replY EQUAL TO "YES" AND

replY NOT EQUAL TO "yes"
MOVE 1 TO terminate-flag

ELSE
MOVE 0 TO terminate-flag.

~OVE t TO exit-flag.
e200-rePly2-exlt.

EXIT.

**RETURN TO e100-reply

*

A-20

SCONTROL LIST, USLINIT," MAP, SOURCE,CROSSREF
IDENTIFICATION DIVISION.
PROGRAM-ID. demo2son.
AUTHOR. ct3000.
DATE-COMPILED.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER. HP3000.
SPECIAL-NAMES.

CONDITION-CODE IS CC.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 error-flag pic 59(04) ceMP VALUE o.
77 exit-flag pic 59(04) CaMP VALUE o.
77 record-was-found PIC 59(04) COMP VALUE 1 •
77 call-stat PIC 59(04) COMP VALUE o.
01 buffer.

OS FILLER PIC X(08).
05 buf-minus·ord PIC X(82).

01 image-fields.
05 db-name PIC X(10) VALUE " ORDRET, " •
05 Iist-of-items PIC X(02) VALUE ",,".
05 password pic X(06) VALUE "MGR, "•05 model PIC 59(04) ceMP VALUE 1.
05 modeS PIC 59(04) COMP VALUE 5.
05 mode7 PIC 59(04) ceMP VALUE 7.
05 searCh-item PIC X(08) VALUE "OPO-NUMJ".
05 d-data-set PIC X(10) VALUE "ITEM-OET, II •
05 m-data-set PIC XCtO) VALUE "ORD-M5TR, • •
05 db-status.

10 cond-word PIC 59(04) CaMP.
10 FILLER PIC X(18).

01 v-buffer.
05 ord-num PIC X(08).
05 ord-num-display PIC XCOS).
05 m-dset-buffef.

10 cust-name PIC X(20).
10 cust-street PIC X(20).
10 cust-city PIC X(16).
10 cust-state PIC X(02).
10 cust-zip PIC X(06).
10 cust-phone PIC X(10).
10 purch-ord PIC X(08).

05 d-dset-buffer.
10 quantity PIC 9(04).
10 part-num PIC X(08).
10 desc PIC X(30).
10 unt-meas PIC X(02).
10 price PIC 9(06).

01 form-buffer
PEDEFINES v-buffer PIC XCt48).

ot v-parameters.
05 form-tile-name PIC XC to) VALUE "ORDFORM1, II •
05 term-name PIC X(08) VALUE "A264X " •
05 bUf-length PIC 59(04) CaMP VALUE 148.
05 m"~ssage-buf PIC X(72).

A-21

COMP VALUE 72.
COMP.

COMP VALUE 8.

COMP VALUE 28.

CaMP VALUE ZERO.
caMP VALUE ZERO.
COMP VALUE 60.
COMP VALUE o.
caMP VALUE o.
COMP.
VALUE ZEROS.

PIC 59(04)
PIC 59(04)

PIC X(08).
PIC 59(04)
PIC X(28).
PIC 59(04)

PIC 59(04)
PIC 59(04)
PIC 59(04)
PIC 59(04i
PIC 59(04)
PIC 59(04)
PIC X(108)

05 msg-length
05 actual-length

01 field-buf.
05 order-number
05 ord-num-length

01 error-message
01 err-message-length
01 comarea.

05 vstatus
05 language
05 comarea-length

05 FILLER
05 last-keY
05 FILLe:~

PROCEDURE DIVISIUN.
aiDa-start SECTION 10.

PERFORM cl00-1nlt THRU cl00-1nlt-exlt.
IF error-flag NOT EQUAL TO 0

GO TO bIOO-exit.
PERFORM el00-maln THRU el00-maln-exit.
PERFORM diOO-Close THRU dl00-close-exit.

bIOO-exit.
IF error-flag NOT EQUAL TO 0

CALL "ERROFSUB" USING
error-flag.

STOP RUN.

*.END OF ORDER RETRIEVAL PROGRAM

*el00-1nlt SECTION 15.
CALL "5TARTSETUP" U5ING

call-stat.
IF call-stat NOT EQUAL TO 0

MOVE 13 TO error-flag
GO TO cl00-inlt-exlt.

PERFORM c200-opendb THRU c200-opendb-exlt.
IF error-flag NOT EQUAL TO 0

GO TO cl00-1n1t-ex1t.
PERFORM c300-openform THRU c300-openform-exlt.
IF error-tlaQ NOT EQUAL ro 0

GO TO c100-1nlt-exlt.
PERFORM c400-openterm THPU c400-openterm-exlt.
IF' error-flag Nor EQUAL TO 0

GO TO clOO-lnit-exit.
PERFORM c500-endsetup THPU

c500-endsetup-exlt.
cl00-1nit-exlt.

EXIT.

**RETURN TO alOO-start

*c200-opendb.
CALL "DBOPEN" USING

db-name,
password,
model,

A-22

db-status.
IF cond-word NOT EQUAL TO 0

CALL "DBEXPLAIN" USING db-status
MOVE 1 TO error-flag.

c200-opendb-exlt.
EXIT.

•
*RETURN TO cl00-1nlt
•

c300-openform.
CALL "VOPENFOFMF" USING

comarea,
form-fIle-name.

IF vstatus NOT EQUAL TO 0
MOVE 2 TO error-flag.

c300-openform-exlt.
EXIT.

•
*RETURN TO cl00-Inlt
•c400-openterm.

CALL "VOPENTERM" USING
comarea,
term-name.

IF Ystatus NOT EQUAL TO 0
MOVE 3 TO error-flag.

c400-openterm-exlt.
EXIT.

*.RETURN TO cl00-Inlt

*cSOO-endsetup.
CALL INTRINSIC "ACTIVATE" USING

IF cc NOT EQUAL TO 0
MOVE 14 TO error-flag.

cSOO-endsetup-exlt.
EXIT.

*'.RETURN TO cl00-1nlt
•
d100-close.

PERFORM d200-closedb THRU d200-closedb-exlt.
IF error-flag NOT EQUAL TO 0

GO TO dl00-close-exlt.
PERFORM d300-closeform THPU d300-closeform-exlt.
IF error-flag NOT EQUAL TO 0

GOTD dl00-close-exlt.
PERFORM d400-eloseterm THRU d400-closeterm-exlt.

dl00-close-ex1t.
EXIT.

**RETURN TO alOO-start

*d200-closedb.
CALL "DBCLOSE" USING

A-23

db-name,
password,
model,
db-status.

IF cond-word NOT ~QUAL TO 0
MOVE 4 TO error-flag.

d200-closedb-exlt.
EXIT •.

**RETURN TO dl00-close

*d300-closeform.
CALL ~VCLOSEFORMF" USING

comarea.
IF vstatus NOT EQUAL TO 0

MOVE 5 TO error-flag.
d300-closeform-exlt.

EXIT.

--RETURN TO dlOO-close

*d400-closeterm.
CALL "VCLOSETERM" USING

comarea.
IF vstatus NOT EQUAL TO 0

MOVE 6 TO errOr-flag.
d400-closeterm-ex1t.

EXIT.
*-RETURN TO diOO-close

*elOO-maln SECTION 20.
CALL "VGETNEXTFOR~" USING

comarea.
IF vstatus NOT EQUAL TO 0

MOVE 8 TO error-flag
MOVE 1 TO exit-flag
GO TO eIOO-maln-exit.

CALL "VTNITFORM" USING
comarea.

IF ystatus NOT EQUAL TO 0
move 11 TO error-flag
move 1 TO exit-flag
GO TO el00-main-exlt.

CALL "VS~OWFORM" USING
comarea~

If vstatus NOT EQUAL TO 0
MOVE 9 TO error-flaq
MOVE 1 TO exlt-flaQ
GO TO e100-maln-exlt.

PERFOR~ f100-read THRU fIOO-read-exit
UNTIL exit-flag EQUAL TO 1.

eIOO-main-exit.
f.XIT.

**RETURN TO a100-start

-
A-24

fl00-read.
MOVE 0 TO record-was-found.
CALL "VREADFIELDS" USING

comarea.
IF vstdtus NOT EQUAL TO 0

~OVE 10 TO error-flag
MOVE 1 TO exit-flag
GO TO fIOO-read-exit.

CALL "VGETBUFFER" USING
comarea,
order-number,
ord-num-Iength.

IF vstatus NOT EQUAL TO 0
MOVE 18 TO error-flag
MOVE 1 TO exit-flag
GO TO fIOO-read-exit.

IF last-key EQUAL TO 8
MOVE I TO exit-flag
GO TO fl00-read-exit.

MOVE prder-number TO ord-num,
ord-num-dlsplay.

PEFFORM f200-findord THRU f200-flndord-exit.
IF error-flag NOT EQUAL TO 0

MOVE I TO exit-flag
GO TO fIOO-read-exit.

IF record-was-found EQUAL TO 1
MOVE SPACES TO error-message
PERFOF~ f400-print THRU f400-print-exit.

fIOO-read-exit.
EXIT •

•
*RETURN TO etOO-maln
•

f200-findord.
CALL "DBGET" USING

db-name,
m-data-set,
mode7,
db-status,
list-of-items,
buffer,
order-number.

IF cond-~ord EQUAL TO 0
MOVE t TO record-was-found
PERFORM f300-getord THRU f300-Qetord-exlt

ELSE
IF cond-word EQUAL TO 17

MOVE "order not found " TO error-message
PERFOPM f400-print THRU f400-prlnt-exit

ELSE
MOVE 11 TO error-flag.

f200-findord-exlt.
EXIT •

•
• PETU~N TO ftOO-read

* f300-qetord.

A-25

MOVE buf-mlnus-ord TO m-dset-buffer.
CALL "DBFIND" USING

db-name,
d-data-set,
model,
db-status,
search-Item,
order-number.

IF cond-word NOT EQUAL TO 0
MOVE 12 TO error-flag
GO TO t300-qetord-exlt.

CALL "DBGET" USING
db-name,
d-data-set,
modeS,
db-status,
list-of-ltems,
buffer,
ord-num.

IF cond-word NOT EQUAL TO 0
IF cond-word EQUAL TO 17

MOVE "order not found " TO error-message
PEPFOPM f400-prlnt THPU f400-prlnt-exlt
GO TO f300-getord-exlt

ELSE
MOVE 12 TO error-flag
GO TO f300-getord-exit.

MOVE buf-minus-ord TO d-dset-buffer.
f300-getord-exlt.

EXIT.

**RETURN TO t200-flndord

*f400-prlnt.
IF record-was-found EQUAL TO 1

AND
error-flag EQUAL TO 0

CALL "VPUTBUFFEP" USING
comarea,
form-buffer,
buf-length

IF vstatus NOT EQUAL TO 0
MOVE 15 TO error-flag
MOVE 1 TO exit-flag

ELSE
NEXT SENTENCE

ELSE
MOVE SPACES TO m-dset-buffer, d-dset-buffer
CALL "VPUTBUFFEP" USING

comarea,
form-buffer,
buf-lenqth

IF vstatus NOT EQUAL TO 0
MOVE 15 TO error-flag
MOVE t TO exit-flag
GO TO f400-prlnt-exlt

ELSE

A-26

CALL "VPUTWINDOW" USING
("amarea,
error-messaqe,
err-message-lenqth

IF vstatus NOT EQUAL TO 0
MOVE 16 TO error-flag
MOVE 1 TO exit-flag
GO TO f400-prlnt-exlt.

CALL ~VSHOWrORM" USING
eomarea.

IF vstatus NOT EQUAL TO 0
MOVE 1 TO exit-flag
MOVE 9 TO error-flag
GO TO f400-prlnt-exlt.

MOVE SPACES TO error-message.
CALL~"VPUTWINDOW" USING

comarea,
error-message,
err-message-lenglh.

IF vstatus NOT EQUAL TO 0
MOVE 16 TO error-flag
MOVE 1 TO exit-flag.

f400-prlnt-exlt.
EXIT.

A-27

SCONTROL SURPROG~AM

BEGIN

«******************•••*.*.*****.*.**.*•••••********.****••*.*~
«
« ST~RTSETUP picks UP a terminal looical device number »
« from the CREATE (or RUN) PARM Issued by demo2dad. It »
« converts the ldev into an ASCII string as Part of a FILE »
« command •. It then issues the .,FILE command With the MPE »
« COMMAND intrinsic. (COBOL It eannot eal1 the COMMAND »
« intrinsic, which 11 why STA~TSETUP must be 1n SPL.) »
.« »
« Error return: »
« -0 NO ERROR »
« >0 COMMAND Intrlnsle error number »
« »
«CAUTION: If this procedure 11 not ealled from the ma1n »
« proqram, demo210n, the wron; PARM value will be »
« returned. »
« »
«*••********••****••••*•••••***•••••*.**••••••••••••••••******»

PROCEDURE STARTSETUP(error),
INTEGER error,

BEGIN

LOGICAL ARRAY w·lmaqe(Otlt>,
BYTE ARRAY lmageC*) = .·lmage,
INTEGER

deltaq =- a,
parm,
cmderr,
dumy,

INTEGER POINTER P • 5-0,

INTRINSIC ASCII,
COMMAND,

MOVE .-image sa -FIL! A264I,D£V- .J
Imaqe(23) I_ '15,
PUSH(Q):
perm := p(-deltaq-4)J
DEL'
ASCII(parm,10,1mage(15»J
COMMANDCima;e,emderr,dumy),
error :- IF <~ THEN CMDERR

ELSE 0,
ENDJ

A-28

$CONT~OL LIST, SUBPROGRAM, DYNAMIC
IDENTIFICATION DIVISION.
PROGRAM-ID. ERRORSUB.
AU1HOR. ct3000.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 error-flaq PIC 59(04) COMP.
PROCEDUPE DIVISION

al00-start.
GO TO el, e2, e3, e4, e5, e6, e7, ee, e9, e10, ell, e12,

e13, e14, e15, e16, e17, e18
DEPENDING ON error-flag.

el.
DISPLAY "dbopen failure".
GO TO end-ot-sub.

e2.
DISPLAY "vopenformf failure".
GO TO end-of-sub.

DISPLAY· "vopentermf failure".
GO TO end-ot-sub.

DISPLAY "dbclose failure".
GO TO end-of-sub.

e5.
DISPLAY "vcloseformf failure".
GO TO end-of-sub.

DISPLAY "vcloseterm failure".
GO TO end-of-sub.

e7.
DISPLAY "vopenformf failure".
GO TO end-of-sub.

DISPLAY "vgetnextform failure".
GO TO end-of-sub.

A-29

e15.

DISPLAY ·vputbuffer failure·.
GO TO end-of-sub.

e16.
DISPLAY "vputw1ndow failure·.
GO TO end-of-sub.

et7.
DISPLAY "vin1tform failure·.
GO TO end-of-sub.

etS.
DISPLAY "Vgetbuffer failure".
GO TO end-of-sUb.

end-of-sub.
MOVE 0 TO error-flag.
GOBACK.

A-30

PROGRAM FILE PDADP.DEMO.DESJGN

AIOOSTARTOO' 0
NAME STT CODE ENTRY SEC
A10OSTARTOO' 1 0 0
CREATE J ?
ACTIVATE 4 ,

•
GETPROCINFO 5 .,·GETPROCID 6 ?
C'DISPLAY 7 ?
C·OISPLAY'FIN 10 ?
C·DISPLAY'INIT 11 ?
C'OISPLAY'L 12 ,·ACCEPT'FREE'C 13 ?
TERMINATE' 14 ?
C·ACCEPT 15 ?
QUIT 16 1
demo2dad 2 1323 1323
DEBUG 17 ?
COBOLTRAP 20 1
SEGMENT LENGTH 1470

PRIMARY DB 0 INITIAL STACK 2000 CAPABILITY 1
SECONDARY DB 310 INITIAL DL 0 TOTAL CODE 1470
TOTAL DB 310 MAXIMUM DATA 1 TOTAL RECORDS 14
ELAPSED TIME 00:00:03.164 PROCESSOR TIME 00:00.518

A-31

P~OGRAM FILE PDEM02P.D~MO.DESIGN
~.

SEG' 0
NAME SrT CODE ENTPY SEG
STARTSETUP 1 0 0
ASCII 2 'I
COMMAND 3 'I
SEGMENT LE,NGTH 70

EPRORSU8 1
NAME STT CODE ENTRY SEG
ERRORSUB 1 0 0
C'DISPLAY'FIN 4 'I
C'DISPLAY'INIT 5 'I
C'OISPLAY'L 6 OJ.
QUIT 7 ?
ERRORSUB'S 2 0 1071
ERRORSUB' 3 1076 1076
SEGMENT LENGTH 1314

El00MAIN20' 2
NAME STT CODE ENTRY SEG
El00MAIN20' 1 0 0
VGETNEXTfORM 3 'I
VINITFORM 4 'I
VSHOWFORM 5 'I
VREADFIELDS 6 'I
VGETBUFFER 7 OJ•
DBGET 10 'I
DBFIND 11 'I
VPUTBUFFER 12 'I
VPUTWINDOW 13 'I
QUIT 14 'I
dello210n 2 767 761
DEBUG 15 'I
COBOLTRAP 16 'I
AIOO5TART10' 17 4
CIOOINIT1S' 20 1
SEGMENT LENGTH 1224

Cl00INIT1S' 3
NAME STT CODE ENT~Y SEG
Cl00INIT1S' 1 0 0
STA~TSETUP 2 0
DBOPEN 3 'I
DBEXPLAIN 4 'I
VOPENFORMF 5 ?
VOPENTERM 6 ?
ACTIVATE 7 ?
DBCLOSE 10 ?
VCLOSEFORMF 11 ?
VCLOSETEpM 12 ?
SEGMENT LENGTH 350

A-32

A100START10'
NAME
Al00STAflTl0'
ERRORSUB
TERMINATE'
SEGMENT LENGTH

4
STT

1
2
3

CODE ENTPY SEG
o 0

1
?

60

PRIMARY DB
SECONDARY DB
TOTAL DB

'ELAPSED TIME

o INITIAL STACK
553 INITIAL OL
553 MAXI~UM DATA

00:00:02.671

A-33

2000 CAPABILITY 1
o TOTAL CODE 3260

25370 TOTAL RECOPDS 27
PROCESSQR TIME 00101.182

4. Yorms File Listing

OF<OFO~Mt

A-34

ORDFORM1.DEMO.DESIGN

FORMSPEC Version A.Ot.Ot
TUE, OCT 14, 1980, 4:28 PM

14, 1980, 10:29 AM
14, 1980, 10129 AM= 1109 words (add 500 for KSAMlel.fa.t form. file, or

add 1300 for ~SlMle.s Ilow form. file)

**••
*
*
*
•••**.••••*************************

rms File Status
Modified: TUE, OCT
Compiled: TUE, OCT
Requires 1049 + 60

ad Forml
fault Display Enhancement: HI
ror Enhancement: IU
ndow Display Line: 24
ndo. Enhancement: HI

ERE ARE NO SAVE FIELDS IN THIS FORMS FILE.

ere are 1 forms in this forms file:

Form
FORMI

Hum Fields
14

Mum Lines
22

A-35

Next Form
SHEAD

FORMSPEC VERSION A.Ol.01
FORMS FILEa O~DFORM1.DEMO.DESIGN

Forma FORMI
Repeat Optionl N

Next FormOptlon: C
Next Form: SHEAD

TUE, ac T 14, 1980, 4 s2
PA

this 15 the only form for the demo
********* ********* ********* ********* ********* ********* ********* ******

The order number must be eight digits lon9

Press ENTER key...-------..-_ -..•.......-..•.........._........••...•.•..............
Data Related to Order Number [Q~"nU.d 1

Customer Name (_CM"~'_t~n~·~m~'~ l
Customer Address [eultltr.'t 1

[.Ca"•••t c-..,.I..' V¥-__.....~J
[a.tJ [CUI'. pJ

Phone t~ltpbQD.]

Purchase Order [p'lrebcrdl

Quantity [Q.t.¥-l
Part number [glr~~~._lDescription (da.c • . 1

Unit Measure [~)

Price [pr1cI] *** Presl f8 to EXIT ***
********* ********* ********* ********* ********* ********* ********* ******

Field: ordnum
Hum: 1 Lenl 8 Namel ORDNUM
Inlt Value:

*** PROCESSING SPECIFICATIONS ***
MINLEN.8 ·Order number must be 8 dlQlts-

Enhl HI fTypes R D1ype: D

Field' ordnumd
HUm: 2 Lent 8
Inlt Value:

Field: custname
~um: 3 Lent 20
Inlt Value:

Fielda euststreet
Num: 4 Len: 20
Init Value:

Field: custc:lty
Num: 5 Len: 16
Inlt Value:

Name. ORONUMD

Name: CUSTNAME

Names CUSTSTREET.

Names CUSTCITY
A-36

Enhz HI

Enh I HI

Enh: HI

Enh I HI

FTy~et 0 CType: 0

FType: 0 DType: C

fType. 0 DType: C

FType: OOType: C

FORMSPEC VERSION A.OI.Ot TUE, OCT 14, 1980, 4128 PM
FORMS FILEI ORDFORM1.DEMO.DESIGN PAGE 3

Field: st
Num: 6 Len: 2 Namel ST Enhl HI FTypel D DType: CHAR
Inlt value:

Field: cuszlp
NUm: 7 Len: 6 Namel CUSZIP Enhl HI FTypel D DTypel CHAR
Inlt Value:

Field: custphone
Num: 8 Len: 10 Namel CUSTPHONE Enhl HI FTypel D DTyptl CHAR
Init Value:

Field: purc:hord
Hum: 9 Lena 8 Namel PURCHO~D Enh: HI FTypel D DTyP.' CHAR
Init Value.

Field:qty
oTY Enh. HINum: 10· Lena 4 Namtl rType. D DType. CHAR

Inlt Value:

Field. pertnum
Hum: 11 Len. a Na•• ' PARTNUM Enhl HI 'Type. D DTypel CHAR
Inlt Valuea

Field: dele
Mum: 12 Len: 30 Namel DESC tnh. HI FType. D DTypel CHAR
Inlt Value.

Fielda Ulft
Mum: 13 Len: 2 Namel UN Enhl HI FType. D DType: CHAR
Init Value:

Field: price
Num: 14 Len. 6 Name: PRICE Enhl HI FType. 0 DTypel CHAR
Inlt Value:

A-37

5. IMAGE Schema Listing

OPDRET

A-38

Scontrol 11st,errors-2,bloekmax=512
begin data base ordret'
passwOrdsJ

t C'lerlCJ
63 MGR'

end.

name. Item-det,detal1(1/63),
entry. ord-num(ord-mltr),

quantity,
part-num,
delc,
unt-meas,
price,

capaclty:501:

••tll
na.el ord-mltr,manual(1/63),
entryl ord-num(l),

cUlt-na..e,
CUlt-street,
cUlt-city,
cUlt-ltate,
cUlt-zip, ,
cUlt-phone,
purch-ord,

capaeltYl201,

(1/63),
(1/63),
(1/63),
(1/63),
(1/63),
(1/6]),
(1/63),
(1/63),
(1/63),
(1/63),
(1/61),
(1/63),
(1/6),

x20
x20
x16
x2
x6
xl0
x30
x8
x8
z6
x8a.
x2

ltelftll
cUlt-name,
eUlt-street,
cUlt-city,
CUlt-state,
eUlt-zlp,
cUlt-phone,
delC,
ord-num,
part-num,
price,
purc:h-ord,
quantity,
\lnt-mea.,

1
2
3
4
5
6
1
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
]6
37
38
39
40
41
42
43
44
45
46
41

A-39

APPENDIXB

Ansvvers to Worksessions

Answers to Worksession 11-1 (architecture overview)

1. True. The HP 3000 is a stack machine.

2. True. Code and data must be separate tn a staek machine.

3. Separate code and data means that the code can be shared,
only the data need be private. Shared code saves memory.

4. Vtrtual memory is on diSC' matn memory is semiconductor
memory. Code cannot be executed tn virtual memory, it must
be in main memory.

S. False. Not ALL the code and data need be in main memory for
the program to execute, the data stack and at least one code
se;ment are required for execution.

a-I

Answers to ~orksession 11-2

1. Two processes. A process is a unique execution of a program
at a particular time.

2. Two processes. A process is a unique execution of a program
by a particular user.

3. Falle. Shared code is never modified, This characteristic Is
What allows code to be shared by many processes. It also
means that the code can be re-entrant;

4. True. The main reason that data 15 not shared is that it must
be totallY private and able to be modified by each process
that uses the data, As a result, each execution ot the same
program may have widely different data.

S. The two required Inoredlentl of an executing process are the
data staCk and at least one code .egmen~. Additional
In9redlen~s may be ~ore code segments and extra data seqmentl,

B-2

Answers to Worksesslon 11-3 (code segments)

1. When code segments are variable in length, the code does not
have arbitrary boundaries. This means new eode can be added
without erossing "page" boundaries.

2. a) Yes. The maXimum segment size Is 16K wordS.
b) Yes.' The maximum number 'of segments per program is 63.

3. Nothing. Transfers between le9m.nt, are manaoed completely
by the operating system. (We will see later how programmers
can reduce the number of SUch transfers.)

4. NO. An executinq se9ment can be anyWhere In available main
memory (memory not dedicated to permanent MPE code). The
exact location 11 kept track of by the system through the CPU
regl.~ers: PB, B, and PL.

S. The uier can control:
a. the size of code segments,
b. how .any code segments in his program, and
c. what code 1s In each segment.

B-3

Inl••r. to Workseilion 11-4 (code leo.ent dell0ft)

Thle wOrksesllon differs from the previous ones In that there ar.
ftO Itmple cOrrect answerl. The following an••ers are guldel1n•• ,
eny realonable facsimile should be acceptable.

I. A worklno let Is the smallest let Of seq.ents that must be 1ft
••In memory for a program to work efficientlY. l working ••t
1. dynamie, changing •• the needs of the proqram change over
the cour.e of Its exeeutlon.

2. On the HP]000, the lono.r code remains In tb. sa•••eq.ent
'.aint.lnl oood code locality), the 1e" chanee there I' thatft'. code .eqment. mUlt be brought In fro. virtual me.ory.
Tbi. helpi performance Iinee It reduce. the need for
expensive dllc aceell.

). .) Stay In the lame seo.ent for al 10n9 a. po,.lble (Qood
code loc.llty).

b) Keep .eq.ent 11ze al Imall al pOlslble without cau,inG
exeeilive transfers between ,eOmentl.

c) Try to make code .eqment. approxi.atelY t~e •••• slz,
,inee thll makel it easier to find .paee for the cod. 1ft
main •••ory.

d) Put Infrequently uled code In one (or more) .eparate
levments.

e' Make lure your code II .rltten 10 that It c.n b.
re••g••nted If necessary • think about .eq••ntin, ero- tb.
Itart.

4. lega.nt the Illustrated program unit••

Tbere 11 no·one correct lolutlon. However, there are 10••
obvious considerations. The initialization and termination
routinel should probably all be In one .eQ-ent linee they are
Ihort, execute quiCkly, and each only executes once per
proqram. The two procedure routines should probably be 1n a
.e;ment together Iinee they work t04ether. The error handling
routine Should be In a separate segment since it 1s large and
••y never be need6d.

alk class for other possibilities. Have th•• oive realonl for
eft.ir eholc.s.

B-4

Answers to Workses51on 11·5 (data stack)

1. False. The data stack is absolutely private.

DL •••••••••

DB •••••••••

Q •••••••••

5 ••- ••••••Z f~ _

bottom limit (Data Limit)

start of global data (Data Base)

start of local data (dynam1e ba.e)

top-ot-stack
top limit (staCk limi~)

3. Mark the DL.OB and the O.Z areas as those whose slze can be
directly manaqed by the user.

4. a) The user can set stack limits with MAXDATA or STACK.
This must be done when the program 15 prepared or run,
it cannot be done dynamically durlnq execution.

b) The user can chanqe the size of the DL·OB area With the
DLSIZE intrinsic, or the lize of the g·Z area with ZSIZE.
Usually these intrinsic. are used to reduce the expandable
areas of the stack after they have expanded for a
particular one·time purpose.

c) The user can reduce the global (DA-Q) area by using this
area only for truly global data. For instance, mak!nq a
COBOL IUbProqram "DYNAMIC" insures that its data Is 1n
th. local (and direetlY manageable) area of the staCk
rather than the global area. Reserve the global area for
data that is shared by more than one procedure or that
must be kept between procedure calls to the same
procedure.

5. a) Yes. This is the typical situation where you would call
ZSIZE to Shrink the stack. You WOUld call ZSIZE after "X"
(the procedure that expanded the stack) has exited,
otherwise, the stack will remain the size to which it was
expanded by "X". Note that before you call procedure ·X·,
you should execute an SPL procedure to determine the normal
location of Z 50 it ean be returned to that location with
ZSIZE.

B-5

b) STACK is the best choice since it allocates main memory
at once. Using MAXDATA would cause main memory to be
allocated in 1ncrements of lK words as it was needed~ causIng
extra disc 1/0 at tach Increment. There 1. no real drawback
to this choice since the space in main memorY Is needed at
once. STACK Is only wasteful it the space in maIn memory
Is not used during a large part of the process execution.

c) MAXOATA Is the only choIce here: STACK does not
increase the size of the DL to DB part of the Itaek.
Since it Is the only choice, there Is no re.l drawback.
However, using MAXOATA 11 always costlY In disc 1/0.

6. It error messages are Included in your program al data,
they are placed In the global area of the stack, thereby
making your stacK permanently very large (the global area
cannot be made smaller programmatleal1Y). If, on the
other hand, error meslages are Placed In a separate code
segment or In a subprogram that uses the dynamic area of
the stack, they do not increase the global area of the
stack.

B-6

Answers to Worksess1on 11-6 (extra data seqmentl)

t. At least two of the followIng differenCe' between a data
stack and an extra data seQment should be mentlonedl

1. The stack must be private to a procels, extra data
segments may be shared by~ore than one procelS In the
same jOb or session. '

2. The stack Is created and manaoed bY the sYltlm, extra
data segments are-created and manaQed by user programs.

3, The stack 1s structured, an extra data segment i. linear
and unstructured.

2. Each of the three listed sitUations Is one 1n which extra
data se9ments can prov~d. a SOlution. Note that there may be
other solutions. For instance,

a) An array too large for the data stack could be stored In a
file, but the transfers between the stack and an extra
data segment are usually less time consum1ng than opening
and accessln~ a file.

b) Data local to a procedure normally Is stored in the local
g-relatlve area of the stack where It ceases to be
available when the procedure exits. You can specify that
data for procedure. be stored In the global area of the
stack, but this means a permanently large stack if there
15 a lot of such data.

c) A MAIL facility allowl one word at a time to be passed
between processes. Queuing files are a special type Of
file (only available with MPE IV) that provide an
excellent means to pass data andmelsages between
processes in the same procels tree. But, extra data
segments still provide the only solution for installations
that do not nave MPE IV and where more than one word must
be passed at a time.

Of course, extra data segments cannot take the place of flles
for most data, Only files provide permanent storage for data.

B-7

Answers to Worksession 11-7 (usinq libraries)

1. 1) A routine that performs a mathematieal function could be
in either an RL or an SL. In this ease, becaus. it 15
larqe and because it IS referenced by more than one
program, put it In an SL. A large routine takes up too
much space In an RLJ and a routine that is shared by many
programs
should be In an SL to reduce the number of copies of the
routine.

If the routine Is referenced by a laroe number of
programs, consider putting It in a system SL - sy,tem SLs
are easier to reference since no speeial request 1.
needed.

B) These routines are very good candidatel for ~L routines
for several reasonSI They are small, taking up llttl. room
in the program file. They are essentiallY private to the
program that calls them 11nce they deal with that
program·s stack.

C) The routine that reformats main prooram data muat be In an
RL beeause all data from the main program (outer block) is
1n the glObal data area of the stack. SL routines are
linked to the program after the global stack i.
established and, thus, cannot modifY glObal data.

2. If your program has 62 code s@Qments already, using any RLs
will bring your total number of segments to the limit of 63.
If you are willing to operate With 63 eod@ SegMent., It
doesn't matter how many RLs you add slnee all RLs are placed
1n one segment. You should, of eourle, consider how large
your RL segment is - follow the general COde le;ment rules
for this segment too.

3. If there are 190 SLs, you have room for only 1 more since the
limit 1s 191. In this ease, you wlll probablY want to avoid
any new SLs until you have cleaned up the .eomented library,
purqln9 unused SLS, etc.

4. If your program has a lot of RLs, adding more may make the RL
segment excessively laroe. Consider how often th@ RLs are
needed before adding more and thereby producing a code
seOment that is too large to mana;e easllY.

5. If many programs will share these libraries, then you art
better otf using SLs rather than RLs. This 11 because SLs
are sharable code segments, whereas RLS must be present as
separate copIes in each program file that uses them.
Furthermore, If any RL Is ehanqed, every program that
references them must be re-prepared - possibly a horrendoul

8-8

task.

6. If the routine enan;e. a lot, put 1t 1n an SL. If it 1, In- an
RL, every program that uses it must be re-prepared to get the
latest verslon of the RL. This can be a nuisance,
particularly if the routine Is shared by many programs,

8-9

Answers to Worksesslon 11-8 (multlprogramming)

1. a) NO, Program executlon is never simultaneous on an HP
3000.

b) No, For the same reaSon as al. It does not matter that
the program is different. No two processe. run at
the same time on an HP 3000.

2. a) Put this program In the E queue, It should have the
lowest possible priority so it does not interfere with
on-line transactions.

b) Put this program in the C queue. It Is the type of
on-lIne program to favor for execution.

c) Put this proGram In the D queue. It Is the type of batch
program that should be more favored than the overnl;ht
printing program a), but that should not interfere with
on-line programs such as b).

d) Put this program In the C queue where it can contend for
CPU time with program b). Of the two, the program that
executes the longest without requiring disc 110 will
probablY be favored by the dispatcher.

3. Keeping the data stack small and seqmentinq code
lntellivently are the two things a programmer can do to
help MPE find space In main memory tor your procesi.

B-I0

Suggested answers to workselslon 111-1 (transaction processing)

1. Define a -transaction-.

o A transaction is the smallest complete unit of work
performed by a computer and defined by the user.

o A transaction is a seriel Of 1001cal stepi that accept
input, process data, and generate output In order to
achieve an identifiable result for the user.

2. Give at least one advantage of an interactive trans.etion
processing system.

o The person who uses the data is the one who Interaets
directly with the computer.

o It eliminates the need for a central data processing group
to enter and retrieve data from the computer.

o It provides fast response directly to the people who need
the data.

o The users see the IYltem as their own • afe less apt to
resist it.

OR describe one disadvantage of a batch IYltem.

o The computer system is removed (physically and emotionally)
from the people Who enter data into it or depend on Its
output.

o Response tends to be slower • takes longer to get to the
people who need it.

o Data procelsing becomes something performed In a myster10us
place, the computer room, rather than at terminal, 1n the
regular work are.s.

8-11

Answers to Worksession 111-2 (accounting structure)

1. a) Yel, But Mary must be logged on to qroup COLLECT of
account ACCTG slnce acceSI to INVOICES 1s restricted to
;roup users. Mary can lOQ on alf~llows:

:HELLO MARY.ACeTG

She doeS not need to speclfY the Qroup, since COLLECT Is
her home group. We know thls sinee MARY 15 ;roup
iibrarian and group librarian capability is restricted to
the home group of the librarian.

b) MARY need only be logged-on as shown above In order to
mod1fy the file INVOICES. As group librarian, she h••
wrlte access to INVOICES Which allowl her to mOdifY the
file. (Note that she cannot modify CUSTOMER lince write
access to that file Is reltrlcted to Itl creator.)

2. a) The CUSTOMER file In the COLLECT 9roup Of aceount ACCTG
allows read access to ANY user. This means any Uler In
the system. Therefor" a user In account SALES can aecell
the flle CUSTOMER by its full name, Ineludlft9 the 9fOUP
and account to whleh the file belonQ' and the lockword
assl;ned to the file. To Illustrate, the file name 111

CUSTOMER.COLLECT.ACCTG/LOCKWORD

A user In the group COLLECT of account ACCTG would only
have to g1ve the name CUSTOMER and the loekword, not the
Group and accout names.

b) The user In SALES cannot modify the file CUSTOMER. Write
access to CUSTOMER 11 restricted to a 11nole ulera the
f1le creator, BILL who Is a member of COLLECT 1n ACCTG.
NO other user 1n that or any other group can modify the
file CUS~OMER.

3. Access to INVOICES 1s restr1cted to group uler.. Therefore,
a user 1n SAtES cannot access INVOICES unless he logs on to
group COLLECT, account ACCTG, or the file creator (JOHN)
specificallY releases the file for other users to access, or
the account manager or file ereator chanqes the aceesl
restrictions on the file.

4. No, a user 1n group OENTRY cannot run th~ program CUSTINV.
If execution access is limited to qroup users, this means
that only users In the group to which the program fl1e
belonos can access 1t. So, In order to run CUSTINV, the user
1n OENTRY must be able to log on to the group COLLECT with an
acceptable user name and all passwords.

B-12

Suggested answers to worksesslon 111-3 (options)

1. The "standard" MPE option has the following advantages.

o It 15 Simple to deVelop and telt.
o It requires no special capabilities.
o Local terminal logic II straightforward.

This option has the following disadvantage,:
o The end user must log on, run the prOgram, and log off.
o The overhead for 10991noon and off Is high.
o Interaction between terminals (global terminal logic)

is non-existent,

2a. The three non-standard options we discussed arel

1. one process per terminal with process handling.
2. Specialized single program for multiple applications.
3. Central terminal control With "sons- handling particular

applications.

2b, Each of these options has the followinq advantages and
disadvantages:

The advantages of process handling, one process per terminall
o User Is isolated from MPE commands • does not log on or off

or run program.
o Data stack and code segments tend to be small.
o overhead from logging on and off greatly reduced.

The disadvantages are.
o Special capability requIred (Process Handlin;).
o Program testing more complex (though development may be

easler).
o Extra overhead for process creation.
o Only COBOL II, FORTRAN, SPL can use special capability,

Advantages of Specialized Single Program.
o Simple communication between taSKS.
o Data stack for all applications Is shared.
o Fast terminal handling with NOWAIT 1/0.

Disadvantages are:
o Talk handling is complex.
o Data stack can be very large.
o Program can be very large.
o HOWAIT I/O requires privileged mode.

B-13

Advantages of Central Terminal Controll
o Central contrOl over all transactions.
o Individual processel make stack and code segments

easy to manaGe.
o Fait mUlti-terminal handling with NOWAIT 110.

OisadvantaQes are:
o More complicated proqramming requited.

- Communication between ~roceSlel

- Need SPL routines (unless codino in FORTRAN or COBOL II).
o HaWAIi 1;0 requires pflvl1e~ed mode.

8-14

Answers to worksession 111-4 (languaqes):

1. True. The HP 3000 is a word-oriented machine.

2. False. ~PG can be se;mented only into fixed-length aegments
of 1, 2, 3, or 4K (default 15 4K). APL cannot be
segmented at all. For other languages, however, the
anlwer would be true.

3. a) COBOL or RPG are best for generating formatted reports.
In both languages, formatted output Is simple to code,
uses no extra overhead.

b) SPL il the only language that can eall machine
instructions directly, both FORTRAN and COBOL II (but not
COBOL '68) can eall the MPE Intrinsic••

c) BASIC is particularly well suited to manipulatino
character stringl.

B-15

Answers to worksesslon 111-5 (data entry)

1. a) Character mode is preferable for this task. A small
amount Of data 1s transmitted at a time (YES or NO). The
pro;ram responds immediatelY to the entered data, it does not
need to process a block of data.

b) Bloek mode 15 preferable for this task. The program needs
to process an entire block of data before returning to the
user for more data. Transferring all the data at once cuts
down on the number of terminal/computer transfers, the user
ean correct data on the screen before it 1s transferred whieh
further reduees terminal 1/0.

2. One terminal in each group 1s unable to support either bloek
mode transfers or V/JOOO (Which requires block mOde). Th•••
terminals arel the 2621, the 26408, and the 3017.

8-16

Sugqested answers to worksesslon 111-6 (V/3000 design)

1. It 1s better fOrms design to have all forms approximately the
same size. The internal record where each form 15 stored is
made large enough to hold the largest form.

You can improve the design bY breaklnq the 18 line form into
two forms, one with the header information and a second for
the detail information. You may freeze the header form on
the screen and append the second form to It $0 that the two
forms appear as one to the end user.

2. FORMSPEC edits are kept in the forms file Which uses stack
space to store the form In memory. ~herefore, If your
application Is short of memory, putting all edits in the code
lavel apace. This is particularly true if the edits are long
andlor complex.

~ote that disc I/O is not really a factor in this decision,
it should be about the same unless the large stack caules
memory contention problems that result 1n swapping. If errors
are found, messages must be returned to the operator whether
the edits are performed In rORMSPEC or in the program.

3. If all edits are in a FORMSPEC forms file, they should be
kept as short and simple as possible. The less characters
used, the shorter the stack. It's as simple al that, The
system constants (SEMPTY, SOATE, etc) provided to help the
del1;ner are also ;oOd to keep the edits Short.

4. The advantage I of FQRMSPEC calculations are that they avoid
operator error, reduce the need for error checking, produce
more accurate data, and .ave thinking time on the ~art of the
operator.

The dlsadvantage. are that the calCUlations add to the 11&e
of the for~s file, 91ve the operator less control over the
data, make correcting errors in entered data more
complicated.

B-17

suggested answers to works.aslon 111-7 (V/3000 structure)

1. The code records and the data buffers for V/3000 can use up
to 6K words of the DL-OB area of the stack bY themselves.
Add to that the regular D8 positive area of the stack with
all the data for the program that uses V/lOOO and It becomes
clear why V/3000 needs to have extra staCK space allocated
with the- MAXDATA parameter •.

Tests showed that any program running V/3000 should have a
stack capacity of at least 6K te held the information needed
to process each form. (Remember, that the smaller the form,
the fewer editing specificationa, the less stack spaee il
needed. But, even with care In form design, V/3000 needs a
minimum stack capacity of 6K.)

Only MAXDATA provides extra stac~ space that ineludes the DL
to DB area used for the comarea extension. The STACK
parameter only increa••• the stack between DB and Z, It doe.
not do anything for the DL-OB area needed by the V/3000 code
recordl and bufferl.

2. .) Yea
b) leI
c) Y••
d) Yel
e.) Ye.
f) Yel
g) Ye.

Situationa a) through 9) incr•••• the .i•• of the forM cod.
reeord associated with each form. Note that everythinq .
alsoclated with a for. adds to the code record size, not
Just the data fielda and their edits.

The length of a field and the number of fieldl primarily
affeet the two V/3000 buffers in the DL-OB area. But,
a180 Increase the code record size if onlY becau.. each
each field has a name and number and is usually enhanced.
In any case, the more fields and the lonqer each field,
the more staCk is used.

3. Repeating forms do not have to be brought from disc. A
repeating form Is simply cleared of previously entertd data
or -refreshed". Unlesl it is a repeatinq form, or is the
only form in the file (repeating by default), each new torm
must be brouQht from disc into the user stack.

B-18

Answers to worksession 111-8 (V/3000 data entry)

2, ENTRY cannot be used to take data directlY from a forml file
and write it to an IMAGE data base, For this purpose, you
must write your own ~rogram. However, you could use ENTRY
to write the data from the forms flle to an MPE -batch' file
and then write a proGram that transferred this data to an
IMAGE data base, The only advantaqe to thls method would be
if you did not want to update the data base on-llne, (More
on this 1n mOdule IV).

3, Yes, but only if you use REFSPEC and the REFORMAT pro;r•• ,
This il exactly the type of situation that reformettlnq Is
gOOd for. You can use ENTRY to accept the data from the
new form. It wl1l write one record contaln1n; UP to 10
part numbers. You can use a ~EFSPEC file that breaks th1s
record Up 1nto separate records that contain data In the
form your existing appl1cation expects 1t •. Then run
REFO~MAT to generate the records your application can
use,

B-19

Suggested answers to workstssion 111-9 (V/lOOO proQramming)

1. You need only three simple V/lOOO procedures to perform this
function (VGETHEXTFORM, VINITFO~M, VSHOWFORM) once you have
opened the forms file and the terminal.

Therefore, it 1s not only more efficient but quite ea.y to
code using V/lOOO procedure. 1n your program 1nstead of using
ENTRY. ENTRY does far more than you need. It is a data
entry program with lots Of faney features, so it would be
wasteful to Usi it fOr thl. small task.

You probably would want to use FORMSPEC torms rather than
desioning them yourself sinee the enhancements are 10 e••y to
enter with V/3000 and are managed automatically.

Notel the constant data is included in the forms fil•••
initial data.

2. Thi' il • situation In which you really don·t need V/3000 at
all.

Unl.ss the selected functions themlelv.s require forms and
block-mOde transfers, you can save on general overhead and
stack ,pace by using simple character mode transfers In this
situation.

If, however, the relt of the application uses V/lOOO forms
control, you might as well make this initial function
selection a menu type form.

Now, if there are three or more functions to ••lect, getting
the user response require. more than one simple transfer In
character mode. In this ease, you might .ant to use a V/1000
menu form. It could be not only simpler but more effic1ent.

B-20

Anlwers to worksession 1V-l (structure)

1. Use structure 1n this ease. Structure favorl inquiry which
15 the main task of tnis application. Since the data is
modified in batch mode, on-line response Is not slowed down
by on-line updates. The eholce of IMAGE or KSAM depends on
other factors we wl1l cover later.

2. Use unstructured filel. Adding data on-line requires less
overheaad for MPE files than for either KSAM or IMAGE. AlIO,
structure 11 primarl1y useful for fast on-line Inquiries, not
needed by this application.

Note that the unstructured file could be either an MPE file
or a stand-alone IMAGE data set.

B-21

Answers to worksession IV-2 (using MPE files)

1. a) 2 buffers - this gives YOU the advantaQe of pre-reading
withOut hogging memory to the disadvantage of
other users.

b) many records per block • for sequential aeeesl'Jthe mOre
. records read at a time, the fewer disc reads

are needed. This advantage overrides the
extra memory apace for a large buffer (unl.ss
memory 11 severely limited).

2. a) 1 bUff@r- random reads gain nothinq from multiple bufferl,
and 0 buffers CNOBur, means debloeklng records,

b) small blocksize· Since it 11 unlikelY that the record,
you want are in the lame blOCk, there 1. no
advantage to a large block, and • larg, block
takes UP memory space.

8-22

Answers to Worksession IV-3 (shared files)

1. a) Both programs must lock the file to make sur. program wa­
gets accurate information.

b) The fOllowing is a suggested solution (students may have
many variations on this theme):

Program "A" opens the file 1n the late afternoon, adds the
day·s accumulation of new employees, and closes the file.
Program "B" opens the file 1n the morning, retrieves
employee data on-line for most of the day, and then closes
the file. At this point "A" ean open the file again to add
new employees. Sinee the file II never Shared, It ne.d not
be locked. Note that the update program "A" can be run as .
a batch job.

2. Solution b) is the belt strategy for this Situation. Sine.
program "8" needs the latest Information, it must be able to
access the f1le following the latest update. SOlution a) 1.
highly efficient for a single proqram, but it defeat, the
purpose of sharing the file stnce locking around the update
loop forces program "8" to wait until "AM has eompleted a
series of updates before it can accesl the fi~••

3. This is an ideal situation for mUlti-aeeess. Since the two
programs share the same buffer, the data is sure to be added
in chronological order re9ardltss of Which procell writel t~.

next reeord. Also, because they write to the same buffer,
locking 15 not needed for multi-access.

B-23

Answers to Worksesslon IV-4 (KSAM files)

1. A) The employee name because it 1. used more frequently
(weekly rather than monthly) and because it Is used al a
key for several functions (fUll sequential access and
approximate key acce•• '.

B) Access by primary key is much faster if the da~a 1s loaded
in that order. If the employee name Is the prlm4ry key,
then access by employee name 1s Improved, but acce.1 by
department code 11 not~ Also, although wrlt!nq reeordl in
primary key sequence Improves access by primary key, it
makes adding new reeords slower. So, if this application
depends on fast on-line updates, there may be a re~l

disadvantage to adding records In key aequenee, eV'n thou;h
it speeds up retrieval.

C) Approximate key access (finding the flr.t record with a key
value greater than or equal to a specified value) i8 the
type of access you would use to find the f1rlt employ••
whOle lalt name .tarts with "K". For this purpose, you do
not need to know the record number. In faet, 18AM II not
really designed for direct aecesl by record number, lueh
access Is only possible from FORTRAN or SPL pro;raml.

2. A) The number of record' In the data file that are marked for
deletion may lnereale the time it take, to aceels the file.
The access Is slowed mainly because of the chance of
crossing block boundaries to find the next reeord. A large
number of "deleted" records means that mueh of the data
flle contains useless data that still has to be moved to
and from buffers.

B) You can compress the
marked for deletion.
using reQPY. If the
reason access slowed
time.

data file by deletlnq the records
You do this by reloading the fl1.

number of "deleted" recorda 1. the
down, this will improve your access

8-24

Answers to worksesslon IV-S (selecting key.)

1. You need two keys - Customer Name and Z1p Code

2. Yes - The customer name may change because of marriao.
or divorce. The zip COde may ehange If the eustomer
moves.

]. Yel - Zip Code Is a duplicate key. Since the entire customer
name should be a key (in order to perform function e),
the last name .hould not be defined as a duplicate key
item.

t. RDUP • Whenever possible, add duplicate keys randomly, In
cbronological order.

5. b) - Adding a customer mean. adding a new entry to the key
file and adding a new record to the data file. In
glneral, adds take more disc 1/0 than retrieval. and
non-key updates. Therefore, a) should bl a le.1 time
eonlumlnq procell than b).

6. d) - Simple retrieVal Is the least time consuming process.
Retrieving records With duplicate keys • function e)
takes more time than retrieval by unique keys.

7. e) - Using the entire name as a k,y makel the la.t name a
partial key. With KSAM, it Is easy to retrieve the
first record with a partial key value and then read
lublequent rlcordl in lor ted order. Notel nestedlort.
are not otherwt•• available In KSAM.

8. ·Firat, .sk yourself If you really need to retrieve items by
Zip COde. If not, then you eliminate a duplicate key from
your file. If YOU mUlt perform thl. function, con.lder dO~9

it 1n off-hourI or al • batch job 10 it does not interfere
w1th on-line activity. Second, ask yourself if you can
ass1qft the customer a unique identifier that does not change
1n the lame way a name can change. Using such an identifl~r

as a key means you have a static key item rather than one
that .ay change. Any other Ideal?

B-25

Answers to Worksession IV-6 (using KSAM files)

1. A) The smaller block size increased the number of levels 1n
the 8-tree for one of the keys in the file. This meant that
an extra diSC accesl mloht be required each time a record 1n
the file was accessed. The number of levels 1n a key 1s
directly related to the number of disc transfers that may be
needed to. locate a particular ,value for that key.

B) Increase the block size, load data Into the flle, and
recheck the number of levels. It the key still needs 4
levels, increase the block slze again. Keep doing thls until
YOU achieve an optimum block size.

2. Changlnq the number of buffers for a f11e 11 easier than
chanolng block size beeause block size is a permanent file
characteristic. This means that you must rebuild the file
then reload the data whenever you change key block s1ze.
Changing the number of buffers can be done whenver the flle
is opened, either in the open procedure or with a:FILE
command. .

3. A) Both programs must lock the file to insure that the
loolcal record pointer is positioned to the correct record.
The update procedures depend on pointer position al well as
the procedures that read records in key sequence.

B) The only way for both these programs to execute success­
fUllY without lockinq is to operate in an exclusive
environment. In the situation as outlined, the on-line
update program could execute all day, while the sequential
reporting program could walt until evening (or ~arly morning)
to generate its report.

8-26

Answers to worksesslon IV-7 (data bale definition)

Of course, there Is no sIngle correct solution. One solutIon is
provided in the data base assoeiated with the demonstrat1on
programs. Discuss this solution along with any other solution.
the class comes up with.

In response to question 6, suggest an automatic master contalnlno
the order date.

B-27

Answers to worksesslon IV-8 (using IMAGE)

I, e) Exclusive modify aecess 1s the least capability that.
allows you to perform the specified tasks, (Note that it
actually qlves you more than you need since updates of
non-key items require less capability than mOdification
which implies addin; or deleting entries,) You could also
open for concurrent update access or any of the other
modify modes - but these require more capability.

2. f) Modify, allow concurrent read Is the least capability in
this case. There is no reason to allow concurrent modify
if the other users plan only to read data.

You could open with h) to have the system enforce
lockinq. This Is a valid choice to insure that the
latest data is read, and you don't mind the extra
overhead. Note that you can lock In other modes - mode
h) only enforces it.

3. c) Read, allow concurrent mOdifY Is the least capability for
the other users that allows you to update. A;ain, If you
want the system to enforce locking (and use a higher
capability), they could open with the mode 1).

4. d) calculated mode lets you gO directly to an entry In
a master data set using the value of the search Item to
locate t~e entry.

5. c) Chained access In either forward or backward direction
gives you all entries with the same search item value.

6. e) You must access both a master and a detail. You locate
the search Item in the malter data set and then use the
chain information associated With this master to locate
the head (or tall) of the chain In the detail data set.
The entries you actually want are in the detail.

7. c) Data entry level allows all the users to access the
data set. If the users are not looking at exactly the
same entry, the access can be concurrent. Note also that
there are a number of users, and the transactions will
probably be long (verification and update) - more reasons
for choosin; data entry lockln~.

8. In the ease of data entry loeklng, it Is essential that all
users lock the same item. Otherwise, IMAGE Is forced to
treat the lock as a data set lock to insure that users are
not aceessing the same entrv.

B-28

Anlwers to worksesslon IV-9 (IMAGE structure)

t. D1 il easier to mOd1fy because 1t has fewer paths (1 rather
than 3). This ~eans there are fewer pointers to ehange in
both the detail and the masters when entries are added or
deleted.

2. H1 needs 15 words in addition to the data, 5 for the synonym
chain, and 5 for each of the two paths.

M2 and Ml each need 10 words in addition to the data, ~ for
the synonym chain, and 5 for the path head.

Dt needl 4 words In addItIon to the data (1 path). D2 needs
12 words In addition to the data (3 paths).

3. a) Make the sort Item the last Item In each entry.
b) Either make the sort item the entire name, or follow the

lort item with other items for the first name and initIal.

4, By p.rlodlcallyreloadlng the data. This will plaeeall
entrle. In contiquous positions on disc In the ~rder of th.
Chained read. This technique will work for 02 only If you
are reading a10n9 the chaIn formed by the primary key.

5. You can expeet a hashing algorithm that frequently produces
the ••me location for a master entry. This, In turn, reSUlts
In a .erlel of secondary addresses, and Ion; synonym chains,

8-29

STUDENT COMMENT SHEET

Application Design

22808-93001 NOV 1980

We welcome your evaluation of this course material. Your comments and suggestions help us improve our courses.
The true test of a course is how well it serves your needs in the months following your training. We would appreciate
it if, one or two months after attending this class, you would respond to the following questions concerning the
course material:

How many months ago did you take this course?

1 or less 1 to 3 3 or more _

Did the material serve your needs?

Which topics were more useful to you?

Which topics were least useful to you?

What additional topics would you recommend including in future versions of this course?

~dditional comments?

FROM:

Name

Company

Address

FOLD..................•••-.._ _-••....•......_._ _ _ _ _ __•......•........

111111
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.4. CUPERTINO, CALIFORNIA

POSTAGE WILL BE PAID BY ADDRESSEE

Customer Training Manager
Hewlett-Packard Company
Information Systems Division
19447 Pruneridge Avenue
Cupertino, California 95014

•• ••••••••••••__ 1

FOLD

"22808-93001
Printed in U.S.A. 11/80

Flidl HEWLETT
~~ PACKARD

	Preface
	Contents
	Introduction
	MPE
	Transaction Processing
	Data Base Management
	Summary
	Source Listings
	Answers to Worksessions

