
HP AdvanceNet

NetlPC3000/V
Programmer's Reference Manual

rA~ HEWLETT
~""PACKARD

Part No. 5958-8581
E0788

HP AdvanceNet

Net1PC3000/V

Programmer's Reference Manual

~l) ~:~;:~~
19420 HOMESTEAD ROAD CUPERTINO, CA 95014

Printed in U. S. A. 07/88

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that
is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced or translated to another language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1987 by HEWLETT-PACKARD COMPANY

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions,
contain additional and replacement pages to be merged into the manual by the customer. The dates on
the title page change only when a new edition or a new update is published. No information is
incorporated into a reprinting unless it appears as a prior update; the edition does not change when an
update is incorporated.

The software code printed alongside the date indicates the version level of the software product at the
time the manual or update was issued. Many product updates and fixes do not require manual changes
and, conversely, manual corrections may be done without accompanying product changes. Therefore, do
not expect a one to one correspondence between product updates and manual updates.

First Edition
Update l.
Edition 2...

MAY 1987.
DEC 1987.

. JUL 1988.

32344A. 00. 04
32344A. 00. 06
32344A. 00. 01

111

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to
that edition. Within the manual, any page changed since the last edition is indicated by printing the date
the changes were made on the bottom of the page. Changes are marked with a vertical bar in the margin.
If an update is incorporated when an edition is reprinted, these bars are removed but the dates remain.
No information is incorporated into a reprinting unless it appears as a prior update. To verify that your
manual contains the most current information, check that the date printed at the bottom of the page
matches the date listed below for that page.

Effective Pages

All. .

Date

. JUL 1988

v

PREFACE

Network Interprocess Communication (NetlPC) is a set of programmatic calls that can be used to exchange
data between processes executing on the same or different nodes in an HP NS network. NetlPC3000/V,
in particular, is a version of NetlPC that can be used in programs written for MPE-V based systems.

NetlPC provides programmatic access to network protocols. NetlPC3000/V currently provides access to
the Transmission Control Protocol (TCP), the Transport Layer protocol used by NS3000/V link products.

NetlPC3000/V is provided with the purchase of any NS3000/V link product. These products include:

• StarLAN/3000 Link (product number 3026 SA)

• ThinLAN/3000 (product number 30240A; includes ThickLAN option)

• NS Point-to-Point 3000/V Link (product number 30284A for MICRO 3000, MICRO 3000XE,
Series 37, and Series 37XE computers; product number 30285A for other HP 3000s)

• Asynchronous SERIAL Network Link (product number 32003A)

• NS X. 25 3000/V Link (product number 24405A)

NOTE

The material in this manual supercedes descriptions of NetlPC for the
HP 3000 previously included in the NS3000/V User/Programmer
Reference Manual.

Audience

As a NetiPC programmer, you should be familiar with MPE-V, the HP 3000 operating system on which
NetlPC 3OOO/V can be used. You should also be familiar with the TCP protocol. If you are using direct
access to level 3 (X. 25) you should be familiar with the X. 25 protocol and the NS X. 25 3000/V Link.

Vl1

PREFACE (continued)

Organization of This Manual

This manual contains the following sections:

• Section 1, "Introduction," explains the method used by NetIPC to establish connections between
processes, and introduces the NetlPC calls involved.

• Section 2, "NetlPC Intrinsics,1I provides a detailed description of each NetlPC intrinsic, in
alphabetical order. This section also explains the structure and function of several parameters
that are common to multiple NetlPC calls.

• Section 3, "NetlPC Examples," provides two sample programs that use NetlPC.

• Appendix A, IIIPC Interpreter (IPCINT)'., describes how to use the IPCINT software utility which
provides an interactive interface to the NetlPC intrinsics used for programmatic access to X.25
level 3.

• Appendix B, IICause and Diagnostic Codes lists the possible cause and diagnostic codes generated by
NS X. 25 packets.

• Appendix C, IIError Messages", includes a list of SOCKERRs and the corresponding protocol
module errors returned in the I PCCHECK intrinsic, and a complete table of the SOCKERRs
generated by NetlPC.

Related Publications

The following publications may be of additional use to you when writing programs with NetIPC:

l"lPE-V Programming:

PASCAL/3000 Reference Manual (32106-90001)

COBOL!3000 Reference Manual (32213-90000

FORTRAN Reference Manual (30000-90040)

MPE V Intrinsics Reference Manual (32033-90007)

Refer to the above manuals for lists of additional language-related publications.

vin

PREFACE (continued) I

NS3000/V:

NS3000/V User/Programmer Reference Manual (32344-90001)

NS3000/V Network Manager Reference Manual.'Volume I (32344-90002)

NS3000/V Network Manager Reference Manual, Volume II (32344-90012)

NS3000/V Error Message and Recovery Manual (32344-90005)

X.25 Protocol:

NS X.25 3000/V Link Guide (24405-90002)

X. 25: The PSN Connection (5958- 3402)

ix

NOTATION

nonitalics

italics

[]

{ }

CONVENTIONS USED IN THIS MANUAL

DESCRIPTION

Words in syntax statements which are not in italics must be entered exactly as
shown. Punctuation characters other than brackets, braces and ellipses must also be
entered exactly as shown. For example:

EXIT;

Words in syntax statements which are in italics denote a parameter which must be
replaced by a user-supplied variable. For example:

CLOSE filename

An element inside brackets in a syntax statement is optional. Several elements
stacked inside brackets means the user may select anyone or none of these elements.
For example:

[AS] User may select A or B or neither.

When several elements are stacked within braces in a syntax statement, the user must
select one of those elements. For example:

{A~} User must select A or B or C.

A horizontal ellipsis in a syntax statement indicates that a previous element may be
repeated. For example:

[,itemname] ... ;

In addition, vertical and horizontal ellipses may be used in examples to indicate that
portions of the example have been omitted.

A shaded delimiter preceding a parameter in a syntax statement indicates that the
delimiter must be supplied whenever (a) that parameter is included or (b) that
parameter is omitted and any other parameter which follows is included. For
example:

i terra [·~.i temb] ['~ii temc]

means that the following are allowed:

item::J.
item::J.,itemb
item::J.,itemb,itemc
i tem::J., , i temc

xi

CONVENTIONS (continued)

When necessary for clarity, the symbol l::i may be used in a syntax statement to
indicate a required blank or an exact number of blanks. For example:

SET[(modifier)]/::i(variable);

underlining

(CONTROL)char

Xll

When necessary for clarity in an example, user input may be underlined. For
example:

NEW NAME? ALPHA

Brackets, braces or ellipses appearing in syntax or format statements which must be
entered as shown will be underlined. For example:

LET var[lsubscriptll = value

Output and input/output parameters are underlined. A notation in the description
of each parameter distinguishes input/output from output parameters. For example:

CREATE (parm1 ,parm2 ,f!:Ea.E,error)

Shading represents inverse video on the terminal's screen. In addition, it is used to
emphasize key portions of an example.

The symbol () may be used to indicate a key on the terminal's keyboard. For
example, (RETURN) indicates the carriage return key.

Control characters are indicated by (CONTROL) followed by the character. For example,
(CONTROl)Y means the user presses the control key and the character Y simultaneously.

NOTE

NetlPC intrinsics can be coded in either uppercase or lowercase characters.
In this manual, intrinsics are sometimes shown in uppercase and sometimes
shown in lowercase; however, this is not intended to indicate a requirement
for using either uppercase or lowercase.

CONTENTS

Section 1
INTRODUCTION

'... 1-1
.. 1-1

· .. 1-2
. 1-2

· .. 1- 3
· 1-4
· 1-5
· 1-5

. 1-5
· .. 1-6
· .. 1-7
· .. 1-8

. ... 1-8
.. 1-8

. 1-9
· .. 1-9

1-10
1-10
1-11
1-12
1-12
1-12
1-12
1-15
1-16
1-17
1-18
1-22
1-22
1-22
1-22
1-22

NetlPC Fundamentals
Sockets .
Connections.
Naming, Socket Registry and Destinations ..
Descriptors.
Establishing a Level 4 Connection.

Creating a Call Socket.
Naming a Call Socket.
Looking Up a Call Socket Name
Requesting a Connection
Receiving a Connection Request
Completing a Connection.

Sending and Receiving Data Over a Connection
x. 25 Access .
TCP Access .

Shutting Down Sockets and Connections.
X. 25 Access
TCP Access .

Additional NetlPC Calls .
Direct Access to Level 3 (X. 25).

Features.
Limitations .
Switched Virtual Circuits (SVCs) .
Permanent Virtual Circuits (PVCs).
Access to the Call User Data (CUD) Field
Access to X. 25 Protocol Options

Cross-System NetlPC for TCP Access.
NetlPC Error Codes .
Program Startup.

HP 3000 Program Startup .
HP 1000 Program Startup .
HP 9000 Program Startup .

xiii

xiv

CONTENTS (continued)

Section 2
NETIPC INTRINSICS

Common Parameters .. 2-1
Flags Parameter . 2-1
Opt Parameter .. 2-1
Data Parameter 2-3
Result Parameter 2-4
Summary of NetlPC Intrinsics 2-5
Capabilities 2-6

User-specified Protocol Addressing 2-6
X.25 Catch-all Socket 2-7

Declaring NetlPC Intrinsics in Programs 2-7
ADDOPT 2-8
INITOPT 2-10
IPCCHECK . 2- 11
IPCCONNECT 2-12

Protocol-Specific Considerations 2-15
X. 25 Considerations. 2- 15
Cross-System Considerations for TCP 2-16

IPCCONTROL 2-1 7
Protocol-Specific Considerations 2- 22

X. 25 Considerations 2-22
IPCCREATE 2-23

Protocol-Specific Considerations 2-25
X. 25 Considerations. 2- 25
TCP 2-26

IPCDEST 2-27
Protocol-Specific Considerations 2- 28

X. 25 Considerations. 2- 28
Cross-System Considerations for TCP 2-28

IPCERRMSG. 2- 29
IPCGET 2-30
IPCGIVE 2-31
IPCLOOKUP 2-33
IPCNAME 2-35
IPCNAMERASE 2-36
IPCRECV 2-37

Protocol-Specific Considerations 2-40
X. 25 Considerations 2-40
TCP 2-41
Cross-System Considerations for TCP 2-42

CONTENTS (continued)

IPCRECVCN. 2-43
Protocol-Specific Considerations. 2-47

X. 25 Considerations. 2-47
TCP . 2-48
Cross-System Considerations for TCP. 2-48

IPCSEND . 2-49
Protocol-Specific Considerations. 2- 51

X. 25 Considerations. .. . 2- 51
TCP 2-52
Cross-System Considerations for TCP 2-52

IPCSHUTDOWN 2-53
Protocol-Specific Considerations 2-54

X. 25 Considerations 2-54
TCP 2-55
Cross-System Considerations for TCP. 2- 55

OPTOVERHEAD . 2-56
READOPT. .. . 2-57
Asynchronous I/O. 2- 58

Steps for Programming with Asynchronous I/O 2- 59
IO[DONT]WAIT 2-60

Section 3
NETIPC EXAMPLES

Example 1 3-1
NetlPC Program 1 .. . 3-3
NetlPC Program 2 .. . 3-6

Example 2. .. '" 3-10
NetlPC Program 3 (Server Program). 3-13
NetlPC Program 4 (Client Program) 3-28

Example 3 3-36
NetlPC Program 5 (X. 25 Requestor Program) 3-37
NetlPC Program 6 (X. 25 Server Program) 3-46

xv

CONTENTS (continued)

Appendix A
IPC INTERPRETER (IPCINT)

Using IPCINT. .. A - 1
Comparison of IPCINT to Programmatic NetIPC .. A-1

Example: Programmatic Access to X. 25 Level 3. A -1
Example: IPCINT for X. 25 Direct Access to Level 3 A-2

Syntax of IPCINT A-2
Abbreviated Intrinsic Names .. A - 3
Pseudovariables .. A-4
Prompts for Parameters. .. A-4
Call User Data Field A-4

Sample IPCINT Session. .. A- 5

Appendix B
Cause and Diagnostic Codes

Cause Codes B-1
Diagnostic Codes in X. 25 Clear Packets B-2

Appendix C
Error Messages

X. 25 Direct Access SOCKERR to PMERR Mapping C-1
Network InterProcess Communication Errors (SOCKERRs) C-9

xvi

FIGURES AND TABLES

LIST OF FIGURES

Figure 1-1. Telephone Analogy . 1-2
Figure 1- 2. IPCCREATE. (Processes A and B) . 1- 5
Figure 1- 3. IPCNAME. (Process B) 1- 5
Figure 1-4. IPCLookUp. (Process A) 1-6
Figure 1- 5. IPCCONNECT. (Process A) 1-7
Figure 1-6. IPCRECVCN. (Process B) 1-7
Figure 1-7. IPCRECV. (Process A) 1- 8
Figure 1- 8. SVC Requestor Processing 1-18
Figure 1-9. SVC Server Processing 1-19
Figure 1-10. NS X. 25 Call User Data Field. 1-21
Figure 2-1. Opt Parameter Structure 2-2
Figure 2-2. Option Entry Structure. 2-2
Figure 2- 3. Data Location Descriptor Structure 2- 3

LIST OF TABLES

Table 1-1. Descriptor Summary 1-4
Table 1-2. NetlPC Calls Affecting the Local Process 1-13
Table 1- 3. NetlPC Calls Affecting the Remote Process 1-14
Table 2-1. NetlPC Intrinsics 2-5
Table 2-2. IPCCONNECT Protocol Specific Parmaters 2-15
Table 2-3. readdata Meanings 2-21
Table 2-4. IPCCONTROL Protocol Specific Parameters 2-21
Table 2-5. IPCCREATE Protocol Specific Parameters 2-25
Table 2-6. IPCRECV Protocol Specific Parameters 2-39
Table 2-7. TCP Urgent and More Data Bit Combinations 2-41
Table 2-8. IPCRECVCN Protocol Specific Parameters 2-46
Table 2-9. IPCSEND Protocol Specific Parameters 2-50
Table 2-10. IPCSHUTDOWN Protocol Specific Parameters 2- 54

XVll

_I_N_T_RO_D_U_C_T_IO_N I~

Network Interprocess Communication (NetlPC) is a facility that enables processes on the same or different
nodes to communicate using a series of programmatic calls.

NetlPC3000/V can be purchased as part of any NS3000/V link product. It provides access to TCP
(Transmission Control Protocol), the Transport Layer protocol used in NS3000jV link products. TCP
corresponds to layer 4 (or level 4) of the OSI seven layer network model. Over an NS X.25 network,
NetiPC provides access to X.25 protocol features at level 3 (of the OSI seven layer model). See the
NS3000/V Network Manager Reference Manual, Volume 1, for more information about NS3000/V
network architecture and the OSI model.

The form of process communication offered by NetlPC is more flexible than that provided by PTOP
(Program - to - Program Communication) and more powerful than that provided by MPE V Message Files.
(Refer to the N S 3000/V User/Programmer Reference Manual for more information about these services.)
Because the relationship between NetlPC processes is peer-to-peer rather than master-to-slave, NetlPC
processes are more independent than PTOP processes where the IImaster ll process is in control of
communication.

NOTE

To communicate by means of NetlPC, processes must be executing
concurrently. One or more users (or programs) can run these processes
independently, or one process can initiate the execution of another by using
the Remote Process Management (RPM) Network Service. In conjunction
with NetlPC, RPM can be used to manage distributed applications. Refer
to the NS3000/V User/Programmer Reference Manual for information
about RPM.

Processes that use NetlPC calls gain access to the communication services provided by the network
protocols of NS3000/V. NetiPC does not encompass a protocol of its own, but acts as a generic interface
to the protocols underlying all of the NS 3OOO/V network services.

NETIPC FUNDAMENTALS

The following explanations are based on access to level 4 (TCP) but most of the principles also apply to
direct access to level 3 (X. 25). Information specific to X. 25 is noted in the discussion.

Sockets

NetlPC processes communicate with each other by means of a data structure called a socket. Processes
make use of sockets via the NetlPC calls to establish connections and exchange data with other processes.
The Transport Layer's Transmission Control Protocol (TCP) regulates the transmission of data to and from
these data structures. When direct access to level 3 (X. 25) is used, the X.25 protocol regulates the
transmission of data between sockets. Although data must pass through the control of lower-level
protocols, these details are transparent to NetlPC processes when they send and receive data. For

1-1

Introduction

information about NS3000/V network architecture, refer to the NS3000/V Network Manager Manual,
Volume I.)

Connections

Before a connection can be established between two NetlPC processes, each process must create a call
socket. A call socket is roughly analogous to a telephone handset with multiple buttons or extensions.
NetlPC processes engage in a dialogue, or "conversation," over the connections formed by their respective
call sockets in order to create a virtual circuit (Ve) socket at each process. A call socket can be thought
of as one of the steps needed to build a VC socket.

The VC sockets created by this dialogue are the endpoints of a new connection called a virtual circuit or
virtual circuit connection. While a call socket is analogous to a telephone with multiple extensions, a VC
socket is analogous to one of the extensions on that telephone. Figure 1-1 is an illustration of this
telephone analogy.

CALL SOCKET CALL SOCKET

EJ~~EJ vc ~~~~I SOCKETS I

L ~

VIRTUAL CIRCUIT

Figure 1-1. Telephone Analogy.

Virtual circuits are the basis for interprocess communications. Once a virtual circuit is established, the
two processes that created it may use it to exchange data. Two processes pass data only through VC
sockets, not through call sockets. For example, a process may use one call socket to establish multiple VC
sockets; these VC sockets are then used to communicate with different processes. A call socket may even
be shut down once a virtual circuit connection is established without affecting communication between
the processes. A virtual circuit has two major properties:

• It is a dedicated link, accessible only to the two processes that established the connection.

• It provides reliable service, guaranteeing that data will not be corrupted, lost, duplicated or
received out of order.

Naming, Socket Registry and Destinations

When a NetlPC process initiates a connection with a peer process, it must reference a call socket that was
created by the peer process. In order to gain access to another process's call socket, a NetlPC process must
reference the socket's name.

1-2

Introduction

NetIPC processes associate ASCII -coded names with the call sockets they create and insert this
information into their node's socket registry. Each NS3000/V node has a socket registry that contains a
listing of all the named call sockets that reside at that node. Pursuing the telephone analogy begun
earlier, the socket registry could be compared to a telephone directory: a call socket is associated with a
name and inserted in the local socket registry in much the same way as a telephone number is associated
with a person's name and placed in a local telephone directory.

NetIPC processes reference call sockets created by other processes by passing a socket name and the
corresponding node name to the socket registry software. The socket registry determines which socket is
associated with the name and translates the address of that socket into a destination descriptor which it
returns to the inquiring process.

A destination descriptor is a data structure which carries address information. Specifically, when a
destination descriptor is returned to a process, it tells the process:

• how to to get to the node where the referenced socket resides, and

• how to get to the referenced socket at that node.

Using the socket registry to gain access to another process's call socket is similar to using directory
assistance to find a person's phone number. The end result is also similar: a destination descriptor, like a
telephone number, is used to direct a caller to a particular destination.

Descriptors

NetIPC processes reference call sockets, VC sockets and destinations with descriptors. Descriptors are
returned to processes when certain NetIPC calls are invoked. Below is an explanation of these descriptors,
the NetIPC call, or calls, that are used to obtain them, and the terms which refer to them in syntax and
parameters.

• Call Socket Descriptor. A call socket descriptor describes a call socket. A process obtains a call
socket descriptor by invoking I PCCREATE (to create a call socket) or I PCGET (to get a call socket
descriptor given away by another process). When a call socket descriptor is obtained with either
one of these calls the call socket it describes is said to be owned by the calling process. The term
calldesc refers to a call socket descriptor parameter.

• Destination Descriptor. A destination descriptor describes a destination socket. The descriptor
points to addressing information that is used by the NS3000/V link product to direct requests to
a certain call socket at a certain node. A process obtains a destination descriptor by invoking
I PCDEST which creates a destination descriptor for the designated remote node, or by invoking
I PCLOOKUP (to look up the name of a call socket in a specific socket registry). The term
destdesc refers to a destination descriptor parameter.

• VC Socket Descriptor. A VC socket descriptor describes a VC socket. A VC socket is the
endpoint of a virtual circuit connection between two processes. A VC socket descriptor is
returned by I PCRECVCN and I PCCONNECT after an initial dialogue takes place over a connection
formed by call sockets. A process can also obtain a VC socket descriptor given away by another
process by invoking I PCGET. The term vcdesc referS to a VC socket descriptor parameter.

1-3

Introduction

Table 1-1. Descriptor Summary.

TYPE OF PARAMETER DESCRIPTION RETURNED AS
DESCRIPTOR NAME OUTPUT FROM

call socket calldesc Refers to a call socket. A call IPCCREATE
descriptor socket is used to build a VC I PCGET

socket.

destination destdesc Refers to a destination socket. IPCLOOKUP
descriptor A destination socket points to IPCDEST

addressing information that is
used to direct requests to a
certain call socket at a certain
node.

VC socket vcdesc Refers to a VC socket. A VC IPCCONNECT
descriptor socket is the endpoint of a IPCRECVCN

virtual circuit connection IPCGET
between two processes.

NOTE

The parameter descriptor is used in several NetlPC calls to refer to
either a call socket descriptor, destination descriptor or a VC socket
descriptor.

Establishing a Level 4 Connection

The steps needed to establish a virtual circuit connection are described in the following examples.
Although only two processes are shown, this is not meant to imply that communication cannot exist
between more than two processes. Either or both of the processes shown can establish virtual circuit
connections with other processes. Secondary or auxiliary connections can also be set up between the same
two processes.

NOTE

Both of the processes in the following dialogue are assumed to be created
and running at their respective nodes. NetlPC does not include a call to
schedule remote processes. Refer to "Remote Process Management" (RPM)
in the NS3000/V User/Programmer Reference Manual for more
information about initializing processes with RPM.

The following paragraphs are a call-by-call explanation of the dialogue of how a virtual circuit

1-4

Introduction

connection is built. The telephone analogy that was used to explain call sockets, VC sockets, and virtual
circuits is continued as each call is compared to a certain aspect of the telephone system.

Creating a Call Socket

Interprocess communication is initiated when Process A and Process B each create a call socket by
invoking the NetlPC call I PCCREATE. As explained previouslY, a call socket is roughly analogous to a
telephone with multiple extensions (see Figure 1-1). I peCREATE returns a call socket descriptor to the
calling process in its ea lldese parameter that describes the call socket, or "telephone," that the process
has created. This call socket descriptor is used in subsequent NetlPC calls.

PROCESS A PROCESS B

Figure 1-2. IPCCREATE. (Processes A and B)

Naming a Call Socket

Process B associates a name with its call socket by calling I PCNAME. When a call socket is named, this
information is placed in the socket registry at the local node. The name Process B assigns to its call socket
must also be known to Process A because Process A must reference it later in its I PCLOOKUP call. (When
a socket name is known to both processes in this way, it is called a well-known name.) The socket must be
named and be in the socket registry at Process B's node when Process A calls I PCLookUp.

PROCESS A

SOCKET REGISTRY

"NAME"

PROCESS B

Figure 1-3. IPCNAME. (Process B)

Looking Up a Call Socket Name

Process A must know the name assigned to Process B's call socket. It calls I PCLOOKUP to "look up" the
name of the call socket in the socket registry at the node where Process B resides. I PCLOOKUP returns a
destination descriptor in its destdese parameter. The destination socket described indicates the location
of the destination call socket which is owned by Process B. Compared to the telephone system,

1-5

Introduction

I PCLOOKUP is similar to directory assistance: Process A calls the "operator" (I PCLOOKUP), and gives
him/her a IIcity" (location parameter) and a "name" (socketname parameter). Using the "citY,1I that is,
the node name or environment id, the operator looks for the name in the proper IItelephone directoryll
(socket registry). Once the name is found, the operator returns a IItelephone numberll (destdesc
parameter) to the caller.

PROCESS A

SOCKET REGISTRY

"NAME"

~~

PROCESS 8

Figure 1-4. IPCLookUp. (Process A)

NOTE

An alternative to using I PCNAME and I PCLOOKUP to name a socket and
then obtain its destination descriptor is available through the use of the
I PCDEST call. I PCDEST enables you to assign an address to the remote
socket. For direct access to level 3 (X. 25) the I PCDEST intrinsic must be
used to obtain a destination descriptor. Refer to the description of
I PCDEST in Section 2 for more information.

Requesting a Connection

Process A specifies the destination descriptor returned by I PCLOOKUP and the call socket descriptor
returned by I PCCREATE in its I PCCONNECT call. With these two parameters, I PCCONNECT requests a
virtual circuit connection between Process A and Process B. Because of this, I PCCONNECT can be
compared to dialing a phone, but not waiting for an answer. I PCCONNECT returns a VC socket descriptor
in its vcdesc parameter that describes the VC socket endpoint of the connection at Process A.

I PCCONNECT is a non-blocking call; it does not suspend the execution of the calling process.

1-6

PROCESS A

SOCKET REGISTRY

"NAME"

~r-------i

PROCESS B

Introduction

Figure 1-5. IPCCONNECT. (Process A)

Receiving a Connection Request

Using the call socket descriptor returned by its I PCCREATE call, Process B calls I PCRECVCN to receive any
connection requests. In this example, Process B will receive a connection request from Process A. (Process
A IIdialed its telephone" to call Process B when it called I PCCONNECT.) I PCRECVCN returns a VC socket
descriptor in its vcdesc parameter. This VC socket is the endpoint of the virtual circuit at Process B. The
connection will not be established, however, until Process A calls I PCRECV. Compared to the telephone
system, I PCRECVCN is similar to hearing the telephone ring and answering it.

PROCESS A

SOCKET REGISTRY

"NAME"

~r-------i

PROCESS B

Figure 1-6. IPCRECVCN. (Process B)

1-7

Introduction

Completing a Connection

Process A calls I PCRECV using the VC socket descriptor returned by its I PCCONNECT call. I PCRECV
returns the status of the connection (successful/unsuccessful) initiated by I PCCONNECT. If the status is
successful, the connection has been established and Process A and Process B can "converse" over the new
virtual circuit. Compared to the telephone system, I PCRECV is similar to listening to hear if the phone
was answered. I PCRECV can also be used to receive data. This function is described in the I PCRECV call
discussion later in this section.

PROCESS A

SOCKET REGISffiV

VIRTUAL CIRCUIT CONNECTION

PROCESS B

Figure 1-7. IPCRECV. (Process A)

Sending and Receiving Data Over a Connection

Once a virtual circuit connection is established, the two processes can exchange data using the NetIPC
calls I PCSEND and I PCRECV. Either process can send or receive data. I PCSEND is used to send data on an
established connection. Invoking I PCSEND is analogous to "speaking" over a telephone connection.
I PCRECV is used to receive data on an established connection; the use of I PCRECV is similar to "listeningll
at your telephone handset. (Note that I PCRECV has a dual function: to complete a virtual circuit
connection as well as to receive data on a previously established connection.)

X.25 Access

Direct access to level 3 (X. 25) provides message mode transfer. Stream mode is not supported for X. 2S.
Each I PCRECV returns a complete message (provided the data length specified is of sufficient size). The
X. 25 protocol signals the end of message and NetIPC buffers the message until an I PCRECV (or required
I PCRECVs) retrieve it.

1-8

Introduction

TCP Access

For TCP access, all data transfers between user processes are in stream mode. In stream mode, data is
transmitted as a stream of bytes; there are no end -of -message markers. This means that the amount of
data received in an individual I PCR£CV request is not necessarily equivalent to a message sent by an
I PCS£ND call. In fact, the data received may contain part of a message or multiple messages sent by
multiple I PCSEND calls. You specify the maximum number of bytes you are willing to receive through a
parameter of I PCRECV. When the call completes, that parameter contains the number of bytes actually
received. This will never be more than the amount requested by I PCRECV, but it may be less. The data
you receive will always be in the correct order (in the order that the messages were sent), but there is no
indication of where one message ends and the next one starts. It is up to the receiving process to check
and interpret the data it actually receives. An application which does not need the information in the
form of individual messages can simply process the data on the receiving side.

If an application is concerned about messages, the programmer needs to devise a scheme to allow the
receiving side to determine what the messages are. If the messages are of a known length, the receiving
process can execute a loop which calls I PCRECV with a maximum number of bytes equal to the length of
the portion of the message not yet received. Since I PCRECV returns to you the actual number of bytes
received, you can continue to execute the loop until all the bytes of the message have been received. The
following Pascal program fragment demonstrates this idea:

received len := 0;
while (r;ceived_len < msg_length) and (errorcode = 0) do
begin

data len := msg length - received len;
ipcr;cv(connection, tempbfr, data_len, , , errorcode);
if errorcode = 0

then strmove(data_len, tempbfr, 1, databfr, received len + 1);
received len := received len + data_len;

end;

In the above example, the Pascal function st rmove takes each piece of the message received in tempbfr
and concatenates it to the portion of the message already in da tabfr. Upon exiting the loop, the entire
message has been stored in da t a bf r.

If the length of the messages are not known, the sending side could send the length of the message as the
first part of each message. In that case, the receiving side must execute two I PCRECV loops for each
message: first to receive the length and then to receive the data. An example of this technique is shown at
the end of this section.

Shutting Down Sockets and Connections

The NetIPC call I PCSH UTDOWN releases a descriptor and any resources associated with it. I PCSHUTDOWN
can be called to release a call socket descriptor, a destination descriptor, or a VC socket descriptor. Since
system resources are used up as long as call sockets and destination sockets exist, you may want to release
them whenever they are no longer needed.

The call socket is needed as long as a process is expecting to receive a connection request for that socket.
A process which receives a connection request can release the call socket any time after the connection
request is received via I PCRECVCN, as long as no other connection requests are expected for that call
socket.

1-9

Introduction

Similarly, a process which requests a connection can release its call socket any time after the call to
I PCCONNECT, as long as it is not expecting to receive a connection request for that socket. In fact) a
process which requests a connection need not create a call socket (via I PCCREATE) at all; instead, it can use
a temporary call socket by calling I PCCONNECT without specifying a call socket descriptor. (A temporary
call socket is automatically destroyed when the I PCCONNECT call completes.) A process which requests a
connection can also release the destination socket any time after the call to I PCCONNECT.

For example, referring to Process A discussed in Establishing a Connection) Process A no longer needs the
destination socket after calling I PCCONNECT (see Requesting a Connection). Process A can then call
I PCSHUTDOWN to release the destination socket. In addition, if Process A does not expect to receive
connection requests, it can call I PCSHUTDOWN a second time to release the call socket.

Process B) as described in Establishing a Connection, can call I PCSHUTDOWN to release its call socket any
time after the call to I PCRECVCN (see Receiving a Connection Request). Process B should release its call
socket only if it does not want to establish additional connections.

Before a process terminates, it should terminate its virtual circuit connections by releasing its VC sockets
with I PCSHUTDOWN. If a process does not release its VC sockets before terminating) the system releases
them when the process terminates. Because I PCSHUTDOWN takes effect very quickly, all of the data that is
in transit on the connection is lost when the connection is shut down. As a result, if there is a possibility
that data would be in transit on the connection, the processes that share a connection must cooperate to
ensure that no data is lost.

X.25 Access

X.25 direct access to level 3 does not support the graceful release bit. Using I PCSHUTDOWN on a VC
socket description causes a clear packet to be sent. As a suggestion, to ensure that no data packets are lost
before the clear packet is sent, the D bit option could be set in the last I PCSEND. This would assure
end-to-end acknowledgement of this message before issuing the I PCSHUTDOWN to clear the virtual
circuit.

rep Access

To ensure that no data is lost, the I PCSHUTDOWN graceful release bit can be set, and the following
sequence of steps can be followed:

1) Process A calls I PCSHUTDOWN and sets bit 17, the graceful release flag. Process B receives a
message (with an I PCRECV) informing it that Process A has called for graceful release. (This
message is sent to B automatically when A sets the graceful release flag.) Process A enters a
simplex-in state; that is) it can receive data but not send any. Process B will enter a simplex-out
state, in which it can send data but not receive any. As a result, data that is in transit to Process
A (which initiated the graceful release shutdown) will reach Process A without being lost.

2) Next, one of two steps must occur to completely shut down the connection. Either (1) Process B
initiates its own graceful release or (2) Process A calls I PCSHUTDOWN without the graceful release
option. This releases Process A's VC socket descriptor and shuts down the connection. In this
case) Process B must also release its socket descriptor by calling I PCSHUTDOWN.

If the graceful release option is not used (this may be necessary, for example) if the remote node does not
support graceful release) the following steps should be followed when shutting down a connection:

1-10

Introduction

1) Process A sends a "last message" to Process B via an I PCSEND call. This message contains data that
will be recognized by Process B as a termination request, and may also contain data to be
processed by Process B. Process A then calls I PCRECV.

2) Process B receives Process A's message with a call to I PCRECV and sends a "confirmation message"
to Process A via I PCSEND. This message contains data that indicates to Process A that it is okay
to terminate the connection, and may also contain data to be processed by Process A. Process B
then calls I PCRECV.

3) Process A receives Process B's "confirmation message" via the call to I PCRECV and calls
I PCSHUTDOWN to release its VC socket descriptor and shut down the connection.

4) Process B's IPCRECV completes with a resul t parameter value of 64 ("REMOTE ABORTED
THE CONNECTIONII

). It then calls I PCSHUTDOWN to release its VC socket.

Additional NetlPC Calls

Once a virtual circuit is established between processes, call or VC descriptors can be given away, names
can be erased, and other functions can be performed. The following NetIPC calls are provided in addition
to those described in the previous paragraphs to enable you to perform these functions. A brief
introduction to each call and its use follows. (A complete description of these and all of the NetIPC calls
is provided in Section 2.)

• IPCCONTROL. Performs special operations on sockets such as enabling synchronous mode, and
changing asynchronous timeout values.

• I PCDEST. Returns a destination descriptor which can be used to send messages to another
process. This is an alternative to naming the descriptor with I PCNAME and acquiring it with
I PCLOOKUP.

• IPCGET. The companion call to IPCGIVE. Receives a descriptor given away by a process that has
called I PCGIVE. This call is similar to I PCLOOKUP because it enables your process to acquire a
descriptor that can be used in subsequent NetlPC calls.

• I PCGIVE. The companion call to I PCGET. Releases ownership of a descriptor to NetIPC so that
it can be acquired by another process via a call to I PCGET.

• I PCNAMERASE. Does the reverse of I PCNAME: it removes a name associated with a call socket
from the socket registry. Only the owner of a call socket descriptor can remove its name.

1-11

Introduction

DIRECT ACCESS TO LEVEL 3 (X.25)

Features

Features of direct access to level 3 (X. 25) with NetlPC are:

• Supports switched virtual circuits (SVCs) and permanent virtual circuits (PVCs).

• Provides access to the call user data (CUD) field in data packets.

• Creation of a catch -all socket which can be used to accept data packets with no CUD or
unknown CUDs.

• Provides access to X. 25 protocol options.

Limitations

Limitations using direct access to level 3 (X. 25) are:

• Intranet use only (level 4 provides internet and intranet connections)

• One virtual connection socket accesses one X.25 virtual circuit for data transfers over X.25.
Multiplexing of connections over a virtual circuit is not supported.

• Message mode transfer of data only. Stream mode is not supported.

• I PCNAME, I PCNAMERASE and I PCLOOKUP are not supported.

Switched Virtual Circuits (SVCs)

Switched virtual circuits are defined as a logical association that only exists as long as the connection does.
Both processes create their own local call sockets using I PCCREATE that can be associated with protocol
relative addresses. To establish a connection with a specific server process, a request process can include a
server protocol relative address in the I PCDEST intrinsic. Alternatively, an opt parameter in I PCCREATE
can be used to create a catch -all socket where any incoming request for a connection can be accepted
(whether or not the server protocol relative address exists or has been included in I PCDEST). A catch-all
socket receives incoming call requests that do not match any other given protocol relative address. One
catch-all socket can be defined for each X. 25 network.

As an example, two programs communicating over an SVC can be designated as the requester and server.
Both programs need to be running in order for communication to occur. Figure 1- 8 shows the order of
NetlPC calls used for a requestor program and the X. 25 packets generated as a result of the calls. Figure
1-9 describes the order of NetlPC calls used for a server program.

1-12

Introduction

The calls outlined in Figure 1- 8 perform the following functions:

1. Create a call socket with I PCREATE. The call socket descriptor (calldesc) is returned.

2. Create a destination descriptor socket (destdesc) with I PCDEST. You can sp-ecify a remote
protocol relative address (protoaddr) to be associated with the destination descriptor.

3. Establish the virtual circuit socket with I PCCONNECT, supplying the calldesc and destdesc
created by the previous two calls.

4. Receive a response to the connection request with I PCRECV, setting the data length parameter
(dlen) equal to zero.

5. Send a message over the connection with I PCSEND.

6. Receive a message over the connection with I PCRECV.

7. Shutdown the connection with I PCSHUTDOWN. Cause and diagnostic values can be entered that
will be included in an X. 25 clear packet sent as a result of this call.

8. The I PCSHUTDOWN intrinsic will not complete until X.2S has received a clear confirmation
packet.

1) IPCCreate
I

2} IPCDest
I

3) IPCConnect 4) IPCRecv 5} IPCSend 6) IPCRecv 7} IPCShutdown 8)

CALL
REQUEST

CALL
CONFIRM

X.25 Protocol

DATA DATA CLEAR
REQUEST

CLEAR
CONF

Figure 1-8. SVC Requestor Processing Example

1-13

Introduction

Figure 1-9 shows the order of NetlPC calls used for a server program and the X. 25 packets generated as a
result of the calls. The calls outlined in Figure 1~9 perform the following functions:

1. Create a call socket with I PCREATE. The call socket descriptor (calldeso) is returned. The
socket could be created as a catch-all or bound to a protocol relative address.

2. Call I PCRECVCN and wait for an incoming call request packet. I PCRECVCN will return a VC
descriptor (vcdeso) when it is established that the incoming protocol relative address defined in
(1) matches the incoming protocol relative address, or a catch-all socket was created in (1).

3. As I PCRECVCN completes and returns a vcdesc, X. 25 sends the requestor process a call accepted
packet.

4. Receive a message over the connection with I PCRECV.

5. Send a message over the connection with I PCSEND.

6. Since the server (I PCRECV) in this example waits to receive a message, you may decide to set a
timer to handle the inactivity.

7. (Optional step.) Shutdown the connection with I PCSHUTDOWN after data has not been received
for a period of time. (For example, after a timeout has occurred.) Note that the X. 25 protocol
implicitly handles the incoming clear request by sending a clear confirmation packet.

1} IPCCreate

I
2) IPCRecvcn 3) 4) IPCRecv 5) IPCSend 6} IPCRecv [n IPCShutdown]

X.25 Protocol

INCOMING
CALL

REQUEST

CALL DATA

ACCEPTED
DATA CLEAR

REQUEST
CLEAR

CONF

Figure 1-9. SVC Server Processing Example

Note that Figures 1-8 through 1-9 do not show synchronization of data transfer between the two
programs, and do not include error checking, or the intrinsic calls required for adding options and special
user capabilities. See example 4 in section 3 of this manual for programmatic examples of a server and
requestor using access to the X. 25 protocol.

1-14

Introduction

Permanent Virtual Circuits (PVCs)

Permanent virtual circuits are defined as two DTEs with a logical association permanently held by the
network. Since the connection is permanent, both processes must initiate the connection using the
I PCCREATE intrinsic. Both processes must specify the destination of a connection request with the
I PCDEST intrinsic which requires a node name corresponding to a configured PVC number.

The possible ordering of intrinsic calls to communicate over a PVC could be as follows:

1. Create a call socket with I PCREATE. The call socket descriptor (oalldeso) is returned.

2. Create a destination descriptor socket (destdesc) with I PCDEST.

3. Establish the virtual circuit socket with I PCCONNECT, supplying the oalldeso and destdeso
created by the previous two calls.

4. Send a reset packet (to the DCE) by setting the reset request in I PCCONTROL.

5. Send an interrupt packet to the remote process by setting the interrupt request in I PCCONTROL.

6. Send data over the connection with I PCSEND.

7. Receive data over the connection with I PCRECV.

8. Send a reset packet by setting the reset request in I PCCONTROL when all data has been
sent/received.

9. Shutdown the connection with I PCSHUTDOWN. Note that a PVC is a permanent connection, and
the shutdown process causes the connection to go to a reset state.

Note that these steps do not show how to synchronize data transfer between the two programs, and do not
include error checking, or the intrinsic calls required for adding options and special user capabilities.

1-15

Introduction

Access to the Call User Data (CUD) Field

The NetlPC intrinsics I PCCON NECT, I PCRECVCN and I PCCONTROL provide access to the call user data
(CUD) field in data packets as follows:.

• Specifying a protocol relative address in the CUD.

This field may be present in X.25 call request and incoming call packets which you can access with
I PCCONNECT and I PCRECVCN. The call user data field can only be accessed over an SVC. The
maximum length of the call user data (CUD) field is 16 bytes. In the NS X.25 3000/V implementation
of X.25, the first four bytes of the CUD are reserved for protocol relative addressing. Figure 1-10
shows the contents of the first four bytes of the NS X. 25 CUD. The first two bytes, as shown in Figure
1-10, indicate that the source of the call request packet is an NS X.25 3000/V node using direct access
to level 3. Optionally, the last two bytes contain the protocol relative address that the call request
expects to find (if any).

To access all 16 bytes of the CUD, the opt parameter protocol flags bit 17 can be set in
I PCCONNECT. This option is useful for communication with non-HP nodes.

o

2

3

Fe (hex)

AA (hex)

protocol relative address

protocol relative address

Figure 1-10. NS X.25 Call User Data Field (first four bytes)

• Connecting to a catch-all socket.

Using I PCCREATE, you can identify a socket as a catch -all socket over an SVC. All incoming calls
with a protocol relative address specified in the CUD that does not match any given protocol relative
address are routed to the catch-all socket. One catch-all socket may be defined for each X.25
network.

For an incoming call with a protocol relative address specified, NetlPC checks if the address matches
one created. If it matches, the call is accepted. If it does not match, NetIPC checks for the existence of
a catch -all socket. If no catch -all socket has been created, the call is rejected and a clear packet is sent
by X. 25. If a catch-all socket has been created, the call is accepted.

If no protocol address is specified in the incoming call, NetIPC checks for the existence of a catch-all
socket. If no catch -all socket has been defined, the call is rejected. If there is a catch -all socket, the
call is accepted.

1-16

Introduction

• Defer connection requests

The I PCCONTROL intrinsic provides you with the capability to accept or reject a connection request
that is in the deferred state. Using the intrinsic I PCCONTROL, it is possible to inspect the inbound CUD
and/or the calling DTE address before accepting the call.

Access to X.25 Protocol Options

The NetIPC intrinsic parameters flags and opt provide access to the following X. 25 protocol functions:

• Qualifying X.25 data packets

The Q bit in the general format identifier field in an X. 25 data packet can be set using the I PCSEND
intrinsic. The status of the Q bit in incoming data packets is returned in the I PCRECV intrinsic. The
Q bit status indicates whether the data is a user message (Q bit=O) or a device control message (Q bit= 1)
from or to a remote PAD.

• Set end-to-end acknowledgment.

The D bit in the general format identifier field in an X. 25 data packet can be set using the I PCSEND
intrinsic. The status of the D bit in incoming data packets is returned in the I PCRECV intrinsic.

Setting the D bit locally specifies end-to-end acknowledgment of data packets. I PCSEND does not
complete until it receives acknowledgment that the entire message has been received. For HP 3000 to
HP 3000 communication, I PCRECV initiates the acknowledgment when the remote HP 3000 process
calls I PCRECV.

• Identify a facilities set.

For an SVC, you can specify a facilities set name in the I PCCONNECT intrinsic. The facility sets are
created when you configure the X. 25 link with NMMGR. If no facility set is specified, the facilities
set defaults to the NMMGR configured facility set. For a PVC, the facility set cannot be specified
with I PCCONNECT and the facility set configured in NMMGR is used.

• Set cause and diagnostic codes.

Using I PCSHUTDOWN, you can enter a reason code that will be included in X. 25 clear packets as cause
and diagnostic values. This option is only used with SVCs. Reasons for events or errors are returned
by I PCCONTROL. See Appendix A for a list of diagnostic codes used with X. 25 protocol access. Note
that when the DTE sends the clear packet, the cause code is always set to zero.

• Send and receive interrupt and reset packets.

You can request the X. 25 protocol to send an interrupt or reset packet with I PCCONTROL. When used
in this way, the I PCCONTROL intrinsic will not return until the appropriate confirmation packet is
received by X. 25.

• Set no activity timeout.

You can set a no activity timeout value with the I PCCONTROL intrinsic. This option clears the
connection after the specified time if no data packets are exchanged on the virtual circuit.

1-17

Introduction

CROSS-SYSTEM NETIPC FOR TCP ACCESS

A cross-system application refers to NetIPC communication between processes running on computers of
different types. Cross-system NetlPC is supported using access to the Transmission Control Protocol (TCP)
only. This section explains what NetlPC calls using TCP access need to be considered for a cross-system
application between an HP 3000 and HP 1000 and between an HP 3000 and HP 9000 (Series 300 or
800). Cross-system NetlPC is also supported between HP 3000s and personal computers (PCs) in an HP
Office Share Network. See the PC Net/PC/RPM Programmers' Reference Guide (50924-90000) for
programming considerations and the NetlPC calls available on the PC.

NetlPC communication between MPE- V based and MPE/XL based HP 3000s is not considered
cross-system. See the Net!PC 3000/XL Programmer's Reference Manual for more information about
NetlPC on MPE/XL based HP 3000s.

This section does not explain details about the NetlPC calls available on the HP 1000 or HP 9000. For
this information, refer to the following manuals:

• NS/1000 User/Programmer Reference Manual (91790-90020)

• HP 9000 Net/PC Programmer's Guide (for the Series 300 and 800) (98194-90002)

For cross-system NetlPC to function properly, the software revision codes must be as follows:

• NS/l 000 software revision code 5.0 or greater for the HP 1000

• NS3000/V V-delta -1 MIT (Master Installation Tape) or later (to be used with IEEE 802.3 LAN
only) for the HP 3000

• LAN/9000 Series 800 Release 2.1 or later for the HP 9000 Series 800

• NS-ARPA Services Release 6.2 or later for the HP 9000 Series 300

To use this "Cross-System NetlPC' section, you must first have a good understanding of the NetlPC calls.
Review the remaining sections on the calls before and while you read this section. For an example of
programs for an HP 3000 system that will communicate with similar programs on an HP 1000 system, or
on an HP 9000 system, refer to Section 3, example 2.

There are two categories of calls when considering cross-system NetlPC communication -- local and
remote. Calls made for the local process do not directly affect the remote process. The local NetlPC calls
are used to set up or prepare the local node for interprocess communication with the remote node. That
is, the resulting impact on the local calls is only to the local node. There is no information that needs to
be passed to the remote node. This is true whether or not the remote node is another HP 3000.

The intrinsics listed in Table 1- 2 affect local processes only and will therefore have no adverse effects if
used in a program communicating with an unlike system (e. g., an HP 3000 program communicating with
an HP 1000 program). However, keep in mind that the calls (even those of the same name) differ from
system type to system type. The following are some local call differences to be aware of:

1-18

Introduction

• Maximum number of sockets. The maximum number of socket descriptors owned by an HP
3000 process at any given time is 64; on the HP 1000 the maximum is 32; on the HP 9000, the
maximum is 60 (including file descriptors). (This number includes both call socket and virtual
circuit socket descriptors.)

• I PCCONTROL parameters. The I PCCONTROl intrinsic supports different sets of request codes on
different system types. Refer to the NetIPC documentation for a particular system for a full
description of the request codes available on that system. This manual describes HP 3000 request
codes only.

• Manipulation of descriptors. On the HP 3000, the I PCGIVE, I PCGET, I PCNAME, and
I PCNAMERASE calls can be used to manipulate call socket and VC socket descriptors. You can
manipulate call socket and destination descriptors on the HP 9000 with the i pcname () and
i pcname rase () intrinsics, and on the HP 1000 with the I PCName and I PCName rase intrinsics.
In addition, on the HP 1000, you can manipulate call socket and destination descriptors with the
I PCG i ve and I PCGet intrinsics.

• Asynchronous I/O. The HP 3000 utilizes the MPE intrinsics IOWAIT and IODONTWAIT to
perform asynchronous I/O. On the HP 9000 and HP 1000, the NetlPC intrinsics i pcse Iect ()
and I PCSe Iect are used to perform asynchronous I/O.

TABLE 1-2. NetlPC Calls Affecting The Local Process

HP 3000 HP 1000 HP 9000

ADDOPT Addopt addopt ()
(Not implemented) Adrof (Not implemented)
INITOPT InitOpt initopt()
IPCCONTROl I PCCont rol ipccontrol()
IPCCREATE I PCCreate ipccreate()
IPCGET I PCGet (Not implemented)
I PCGIVE I PCGive (Not implemented)
I PCNAME I PCName ipcname()
IPCNAMERASE I PCName rase i pcname rase ()
(Not implemented) I PCSeIect ipcseIect()
OPTOVERHEAD (Not implemented) optoverhead ()
READOPT ReadOpt readopt ()

NOTE

There are many additional differences between local NetIPC calls for the
HP 3000 and those used for other HP systems. Refer to the corresponding
system's NetlPC documentation for more information.

1-19

Introduction

Table 1- 3 lists the NetlPC calls affecting cross-system communication with the remote process. The
table also describes differences between each call on the HP 3000, HP 1000 and HP 9000, if the
difference will affect cross-system communication.

TABLE 1-3. NetlPC Calls Affecting The Remote Process

1-20

NetlPC Call

IPCConnect

IPCDest

IPCLookUp

IPCRecv

Cross-System Considerations

Checksumming - TCP checksumming will be enabled for both sides of the
connection if it is enabled by either side for HP 3000 to HP 1000 or HP
3000 to HP 9000 cross-system communication. Checksumming is always
enabled on the HP 9000. On the HP 3000, enabling/disabling
checksumming with NetlPC intrinsics allows you to override the
checksumming decision made during network transport configuration for
this particular process.

Send and receive sizes - The HP 3000 send and receive size range is 1 to
30,000 bytes. The HP 1000 send and receive size range is 1 to 8,000 bytes.
The HP 9000 send and receive size range is 1 to 32,767 bytes. Although
the ranges are different, you must specify a send size within the correct
range for the respective receiving system; otherwise, an error will occur.
For example, if the HP 3000 node sends 16,000 bytes, the HP 1000 node
can call I PCRecv twice, receiving the first 8,000 bytes the first time and
the second 8,000 bytes the second time.

Note that the default send and receive sizes are different on different HP
systems. On the HP 3000, the default send and receive size is less than or
equal to 1,024 bytes. On the HP 1000 and HP 9000, the default send and
receive size is 10abytes.

TCP protocol address - The recommended range of TCP addresses for
cross-system user applications is from 30767 to 32767 decimal (%74057 to
%77777) for the HP 3000, HP 1000 and HP 9000.

No differences that affect cross-system operations.

Receive size (dlen parameter) - Range for the HP 3000 is 1 to 30,000
bytes. Range for the HP 1000 is 1 to 8,000 bytes. Range for the HP 9000
is 1 to 32,767 bytes. Refer to the discussion of send and receive sizes for
I PCConnect and I PCRecvcn.

Data wait flag - The HP 1000 and HP 9000 I PCRecv call supports a
"DATA_WAIT" flag. This flag, when set, specifies that the call will not
complete until the amount of data specified by the dlen parameter has
been received. This flag is not available on the HP 3000, meaning that the
call may complete before all the data is received. However, the HP 3000
I PCRecv supports other flags such as the "more data" and "destroy data"
flags. Refer to the description of I PCRecv in Section 2 for more
information.

NetlPC Call

IPCRecvCn

IPCSend

IPCShutDown

Introduction

TABLE 1-3. NetlPC Calls Affecting The Remote Process (cont'd)

Cross-System Considerations

Checksumming - TCP checksumming will be enabled for both sides of the
connection if it is enabled by either side for HP 3000 to HP 1000 or HP
3000 to HP 9000 connections. Checksumming is always enabled on the HP
9000. On the HP 3000, enabling/disabling checksumming with NetIPC
intrinsics allows you to override the checksumming decision made during
network transport configuration for this particular process.

Send and receive sizes - The HP 3000 send and receive size range is 1 to
30,000 bytes. The HP 1000 send and receive size range is 1 to 8,000 bytes.
The HP 900a send and receive size range is 1 to 32,767 bytes. Although
the ranges are different, you must specify a send size within the correct
range for the respective receiving system; otherwise, an error will occur.
For example, if the HP 3000 node sends 16,000 bytes, the HP 1000 node
can call I PCRecv twice, receiving 8,000 bytes the first time and the second
8,000 bytes the second time.

Note that the default send and receive sizes are different on different HP
systems. On the HP 3000, the default send and receive size is less than or
equal to 1,024 bytes. On the HP 1000 and HP 9000, the default send and
receive size is 100 bytes.

No differences that affect cross-system operations. Note that the urgent
data bit is not supported on the HP 1000; however, if this bit is set by the
HP 3000 program, it will be ignored by the receiving process on the HP
1000. For differences in send and receive sizes see the discussion for
I PCRecvcn.

Socket shut down - The HP 3000 provides a graceful release flag that is not
available on the HP 1000 or HP 9000. If the graceful release flag (flags
17) is set on the HP 3000, the HP 1000 will respond as though it were a
normal shutdown. The HP 3000 and HP 1000 do not support shared
sockets; the HP 9000 does. Shared sockets are destroyed only when the
descriptor being released is the sole descriptor for that socket. Therefore,
the HP 9000 process may take longer to close the connection than expected.

NOTE

There are many additional differences between NetIPC calls for the HP
3000 and those for other HP systems. However, these differences should
not affect the cross-system communication capabilities of your program
because they affect the local node only. Refer to the corresponding
system's NetIPC documentation for more information.

1-21

Introduction

NetlPC Error Codes

NetlPC calls with the same names on different systems may return different error codes. Refer to the
system's NetlPC documentation for a complete list of the NetlPC error codes that are applicable to your
implementation.

Program Startup

NetlPC itself does not include a call to schedule a peer process. In programs communicating between
multiple HP 3000s, you can use the Remote Process Management (RPM) call RPMC rea te to
programmatically schedule program execution. However, RPM between HP 3000s and HP 1OOOs, and HP
3000s and HP 9000s is not currently supported by Hewlett-Packard. Instead, you must manually start up
each NetlPC program on its respective system.

UP 3000 Program Startup

To manually start up an HP 3000 NetlPC program, log on to the HP 3000 and run the NetlPC program
(with the RUN command).

You can schedule the program to start at a particular time by writing a job file to execute the program,
and then including time and date parameters in the STREAM command that executes the job file.

UP 1000 Program Startup

To manually startup an HP 1000 NetlPC program, logon to the HP 1000 system and run the NetlPC
program with the RTE XQ (run program without wait) command.

To have the NetlPC program execute at system start up, put the RTE XQ command in the WELCOME
file.

UP 9000 Program Startup

Remote HP 9000 processes can be manually started or can be scheduled by daemons that are started at
system start up. In HP-UX a daemon is a process that runs continously and usually performs system
administrative tasks. Although a daemon runs continuously, it performs actions either when an event
occurs, or at designated times.

To manually start up a NetIPC program, logon to the HP 9000 system and run the NetlPC program. HP
recommends that you write a NetlPC daemon to schedule your NetIPC programs. You can start the
daemon at start up by invoking it from the fete/net 1inkre file.

1-22

'--NE_T_I_PC_IN_T_R_IN_S_IC_S I~

COMMON PARAMETERS

The flags, opt, data, and resul t parameters are common to many NetlPC intrinsics. Remote Process
Management intrinsics also use these parameters, with the exception of the data parameter. The
following discussion of these parameters may help to clarify the more condensed information given under
each intrinsic.

Flags Parameter

The flags parameter is a bit representation, 32 bits long, of various options. Normally an option is
invoked if the appropriate bit is on (i.e. set equal to 1). Borrowing Pascal-type syntax, we shall use flags
[0] to refer to the high order bit in the two-word parameter, flags [31] to refer to the low order bit,
and a similar designation to refer to each of the bits in between. Bits which are not defined for a given
intrinsic must be off (zero).

Opt Parameter

The opt parameter, which denotes various options, contains an integer code for each option along with
associated information. It is not necessary to know the internal structure of this parameter in order to
use it. Several "opt parameter manipulation intrinsics" have been provided to enable you to add option
information without concerning yourself with the parameter's structure. However, a knowledge of the
opt parameter's structure can help you to determine an appropriate size for the array. (The parameter
must be defined as a byte array or as a record structured in the manner described below. If your program
is written in a language which supports dynamically allocated arrays, the OPTOVERHEAD intrinsic may be
used to determine the size of the array.)

The opt parameter consists of these fields, as shown in Figure 2-1:

• length, in bytes, of option entries and data (2-byte integer), where

length=(8 * number of entries) + length of data;

• number of entries (2-byte integer);

• option entries (eight bytes per entry);

• data associated with the option entries (variable length).

2-1

NetIPC Intrinsics

Byte

o
length

2

3

4

n

n + 1

z

number of entries

entries

data

Figure 2-1. Opt Parameter Structure

Each 8-byte option entry, in turn, consists of the following fields:

• option code (2-byte integer);

• offset (relative to the base address of the opt parameter) indicating the location of the data for this
option entry (2-byte integer);

• length, in bytes, of the data (2-byte integer);

• reserved (2 bytes).

Figure 2-2 shows the structure of each option entry_

Byte

o
option code

2

3
offset

4

5
dato length

6
<RESERVED>

7

Figure 2-2. Option Entry Structure

2-2

NetiPC Intrinsics

If the parameter is declared as a simple byte array, it must be large enough to contain four bytes for the
first two fixed-length fields, eight bytes for each option entry, plus the actual data. That is:

4 + 8 * numentries + data length

NOTE

Use of certain opt parameter options may result in the loss of portability
between heterogeneous HP machines.

Data Parameter

The data transmitted by NetIPC intrinsics can in most cases be vectored. In the case of vectored data, the
data parameter does not contain actual data but rather the addresses from or to which the data will be
gathered or distributed. The data parameter may always be defined as a byte array. If the data are
vectored, the parameter may also be a record explicitly structured in the manner described below.

The addresses of the data are represented by data location descriptors. For all intrinsics supporting
vectored data, a maximum of two data location descriptors is permitted. Each data location descriptor is
eight bytes long and consists of four 2-byte fields as shown in Figure 2-3:

• the descriptor type (represented by a 2-byte integer);

• a DST (data segment) number or index;

• a byte offset (from DB on the calling process's stack or on an extra data segment) indicating the
location of the data;

• the length in bytes of the data.

Byte

o
type

2

3
DST

4
offset

5

6

byte count
7

Figure 2-3. Data Location Descriptor Structure

2-3

NetlPC Intrinsics

The descriptor type field can have one of the following values:

• O--the offset is a DB-relative byte address on the calling process's data stack (the DST is ignored);

• I--DST is the logical index number returned by the MPE V intrinsic;

• 2--DST is an actual data segment number.

All data segment references require privileged mode.

The dlen parameter indicates the length of the data parameter. If the data are vectored, dlen must
give the total length of the data location descriptors (i. e. 8 or 16 bytes), not the length of the actual data.
Actual data can be from 1 to 30,000 bytes long for both vectors combined.

Result Parameter

If a NetIPC (or Remote Process Management) intrinsic call that uses waited I/O is successful, the resul t
parameter will return a value of zero. Otherwise the value returned represents a NetlPC error code.
NetlPC error messages are listed in the NS3000/V Error Message and Recovery Manual. You can also
obtain the appropriate error message by calling I PCERRMSG.

NOTE

When nowait I/O is used, the resul t parameter is not updated upon
completion of an intrinsic. Therefore, the value of resul t will indicate
only whether the call was successfully initiated. To determine whether the
call completed successfully, you can use the I PCCHECK intrinsic.

In addition, when called on an HP 3000, these intrinsics cause MPE-V condition codes to be set. Usually
CCE indicates successful completion, CCL indicates failure, and CCG is either not used or represents a
warning.

2-4

Summary of NetlPC Intrinsics

Table 2-1. NetlPC Intrinsics

NetlPC Intrinsics

Intrinsic Function

ADDOPT Adds an option entry to the opt parameter.

INITOPT Initializes the opt parameter so that entries may be added.

IPCCHECK Returns the number of the last recorded error for a call or VC
socket.

IPCCONNECT Requests a connection (a virtual circuit) to another process,
returning a VC socket descriptor for a VC socket belonging to the
calling process.

IPCCONTROL Performs special operations such as enabling nowait I/O, enabling
user-level tracing, and enabling software interrupts.

IPCCREATE Creates a call socket for the calling and called process..

IPCDEST Returns a destination descriptor which the calling process can use
to establish a connection to another process.

IPCERRMSG Returns the IPC error message corresponding to a given error
code.

IPCGET Enables the calling process to obtain a call or VC socket that has
been given away by another process.

IPCGIVE Gives away a call or VC socket, thereby allowing another process
to obtain it.

IPCLOOKUP Returns a destination descriptor associated with a given socket
name. Used with TCP access only.

IPCNAME Specifies a name for a call socket, thereby enabling other processes
to obtain access to that socket. Used with TCP access only.

IPCNAMERASE Deletes a call socket name from the socket registry. Used with
TCP access only.

2-5

NetIPC Intrinsics

Table 2-1. NetlPC Intrinsics (cont.)

Intrinsic Function

IPCRECV Receives the reply to a connection request, thereby establishing
the connection, or receives data on an already-established
connection.

IPCRECVCN Receives a connection request from another process, returning a
VC socket descriptor.

IPCSEND Sends data on a connection.

IPCSHUTDOWN Releases a socket descriptor and any resources associated with it.

OPTOVERHEAD Returns the amount of space needed for the opt (option)
parameter, a parameter common to many IPC intrinsics.

READOPT Allows the user to read an entry from the opt array. Useful for
looking at an entry when it is received as output by an intrinsic.

Capabilities

Some NetlPC intrinsics require special capabilities if you use the functions described below.

User-specified Protocol Addressing

NetlPC intrinsics I PCCONNECT) I PCREATE, and I PCDEST allow you to specify protocol relative addresses.
Addresses in the range %74057 to %77777 can be used without special capabilities. In privileged programs
you can specify protocol relative addresses between %I and %74056.

NOTE

The protocol relative address range %1 to %74056 is administered by HP.
Contact your HP representative before using an address within this reserved
range.

2-6

NetlPC Intrinsics

X.25 Catch-all Socket

Using access to X. 25 (level 3), network administrator (NA) capability is required to create a catch-all
socket for an X. 25 network. NA capability is required to run a program that creates a catch-all socket.

Declaring NetlPC Intrinsics in Programs

All NetIPC intrinsics must be declared in your program. See the examples in section 3 of this manual for
Pascal declarations. Refer to the appropriate language reference manuals for declarations in other
languages.

2-7

Adds an option entry to the opt parameter.

Syntax

ADDOPT (opt,entrynum~optioncode~datalength~data[~result])

Parameters

£e.!
(input/output)

entrynum
(input)

optioncode
(input)

data length
(input)

data
(input)

resul t
(output)

Discussion

Record or byte array, by reference. The opt parameter to which
you want to add an entry. Refer to "NetlPC Intrinsics/Common
Parameters" for more information on the structure of this parameter.

16-bit integer, by value. Indicates which entry is to be initialized.
The first entry is entry zero.

16-bit integer, by value. The entry's option code, identifying the
option.

16-bit integer, by value. The length (in bytes) of the data
associated with the option.

Byte array, by reference. The data associated with the option.

16-bi t integer, by reference. The error code returned; zero if no
error.

The ADDOPT intrinsic specifies the values of an opt parameter's option entry fields and adds any
associated data. The intrinsic also updates the size of the opt parameter.

The parameter must be initialized by I NI TO PT before options are added by ADDO PT. Consider this
program fragment:

I NIT0 PT (0 Pt, 1);

ADDOPT (opt, 0, 8, 2, data_offset);

IPCSEND (cd, data, dlen, , opt, result);

2-8

{one option entry}

{first entry is entry zero, option code
8; entry's data area contains a 2-byte
integer specifying an offset from
data parameter address}

{sends data located at offset from
data address specified in opt}

ADDOPT

IN rTOPT and ADDOPT allow you to initialize the opt parameter for use in another intrinsic. These
auxiliary intrinsics make the structure of the opt parameter largely transparent.

Condition codes returned by ADDOPT are:

• CCE- -Succeeded.

• CCL--Failed because of a user error.

• CCG--Not returned by this intrinsic.

This intrinsic may be called in split stack mode.

2-9

INITOPT

Initializes the opt parameter so that entries may be added.

Syntax

INITOPT (~)eventualentriesLresult])

Parameters

~
(output)

eventualentries
(input)

result
(output)

Discussion

Record or byte array, by reference. The opt parameter which is
to be initialized. Refer to "NetlPC Intrinsics/Common Parameters" for
more information on the structure of this parameter.

H>-bit integer, by value. The number of option entries that are to
be placed in the opt parameter.

1E)-bi tin teger, by reference. The error code returned; zero if no
error.

The IN ITOPT intrinsic initializes the length and number-of -entries fields (i. e. the first four bytes) of the
opt parameter. This must be done before options are added to the parameter by means of the ADDOPT
intrinsic.

Condition codes returned by this intrinsic are:

• CCE- -Succeeded.

• CCL--Failed because of a user error.

• CCG--Not returned by this intrinsic.

This intrinsic may be called in split stack mode.

2-10

IPCCHECK

Returns the number of the last applicable error.

Syntax

I PCCHECK (descriptor [~ipcerr] [~pmerr] Lresul t])

Parameters

descriptor
(input)

ipcerr
(output)

pmerr
(output)

result
(output)

Discussion

32-bi t integer, by value. The call socket or VC socket descriptor
for which the error is to be reported. A zero value indicates the last call
socket or VC socket descriptor referenced.

32-bit integer, by reference. The error code of the last recorded
NetlPC error.

32-bi t integer, by reference. The error code of the last recorded
Transmission Control Protocol (TCP) or X. 2S protocol error.

32-bi t integer, by reference. The error code returned for this
intrinsic call (not the previously recorded error). A zero value indicates no
error.

The I PCCHECK intrinsic returns the last recorded NetlPC and/or protocol module error for a given call
socket or VC socket (i. e. the VC socket at the calling process's end). If the descriptor value is zero, the
most recent error applicable to the last call or VC socket referenced is returned. The descriptor is the
only required parameter (option variable).

Condition codes returned by this intrinsic are:

• CCE--The intrinsic call was successful.

• CCL--Unsuccessful.

• CCG--Unsuccessful. The intrinsic could not return the error code because the data structure
which retains error codes has been released.

Split stack calls are permitted.

2-11

IPCCONNECT

Requests a connection to another process.

Syntax

I PCCONNECT ([oalldeso] ~destdeso[~flags] [~opt] ~ vodeso [~result])

Parameters

oalldeso
(input)

destdeso
(input)

flags
(input)

opt
(input)

2-12

32-bit integer, by value. A call socket descriptor for a call socket
belonging to this process. For TCP access, if -1, or if omitted, a call socket
is created temporarily to establish the connection.

32-bi t integer, by value. Destination descriptor. Describes the
location of the named call socket. (this is the call socket to which the
connection request will be sent). A destination descriptor can be obtained
by calling I PCDEST. For TCP access, you can also obtain a destination
descriptor by calling I PCLOOKUP.

32 bi ts, by reference. A bit representation of various options. No
flags are defined for access to the X.2S protocol. The following flags are
defined for access to TCP:

• flags [0] (input). (TCP only.) Makes the connection a "protected" one. A
protected connection is one which only privileged users may establish or
use.

• flags [21] (input). (TCP only.) Enables checksum on the Transmission
Control Protocol (TCP) connection for error checking. Checksum may
also be set by the corresponding I PCRECVCN call. If either side specifies
"checksum enabled" then the connection will be checksummed. TCP
checksum may be enabled globally, over all connections, when
configuring the Network Transport. See the NS3000/V Network
Manager Reference Manual, Volume I for details on Network Transport
configuration. Checksum enabled by either I PCRECVCN or TCP (remote
or local) configuration overrides a 0 setting (checksum disenabled) for
this flag. Checksum error checking is handled at the link level and is
not normally required at the user level. Enabling checksum may reduce
network performance. Recommended value: O.

Record or byte array, by reference. A list of options, with
associated information. Possible options are:

IPCCONNECT

• call user data (code=2, length=n, n bytes) (input). For access to the X.25
protocol only. This option contains data to be inserted as the call user
data (CUD) field in an X. 25 packet. The maximum length for the CUD
is 16 bytes. HP has reserved the first four bytes of the CUD for protocol
addressing. The user can supply data up to 12 bytes. By setting the no
address flag (protocol flags option), the user can access all 16 bytes of· the
CUD. See section 1, Access to the Call User Data (CUD) Field for more
information.

• maximum send size (code=3, length=2; 2-byte integer) (input). (TCP
only.) This option, which must be in the range 1 to 30,000, specifies the
length of the longest message the user expects to send on this connection.
The information is passed to TCP. If this option is not used, TCP will be
able to handle messages at least 1024 bytes long. If the value specified is
smaller than a previously specified maximum send size, the new value
will be ignored.

• maximum receive size (code=4, length=2; 2-byte integer) (input). (TCP
only.) This option, which must be in the range 1 to 30,000, specifies the
length of the longest message the user expects to receive on this
connection. The information is passed to TCP. If this option is not
used, TCP will be able to handle messages at least 1024 bytes long. If
the value specified is smaller than a previously specified maximum
receive size, the new value will be ignored.

• address option (code= 128, length=2; 2-byte integer) (input). (TCP only.)
This option specifies the source port address of the connection request.
Address values in the range %74 057 to %77777 can be used without
special capabilities. In privileged programs, values in the range %1 and
%74056 can be used. See the paragraph IIUser-specified Protocol
Addressing" at the beginning of this section for more information.

• facilities set name (code= 142, length=8, packed array of 8 characters)
(input). For access to the X. 25 protocol only. This option field is used to
associate a facilities set with the virtual circuit to be created over an
SVC. This option does not apply to a PVC. This is an optional
parameter and defaults to the facilities set name entered while
configuring the X.25 network (see NS3000/V Network Manager
Reference Manual, Volume 1).

• protocol flags (code= 144, length=4, 4-byte buffer) (input). This option
contains 32 bits of protocol-specific flags. The following flags are
currently defined:

• no address (bit 17, input). (X. 25 only.) This flag provides the user
with access to the entire X. 25 call user data field (16 bytes). This
option can be useful for communication with non-HP nodes.

2-13

IPCCONNECT

vcdesc
(output)

result
(output)

Discussion

32-bit integer, by reference. The returned VC socket descriptor, a
number identifying a VC socket belonging to this process through which
data can be sent or received. This descriptor can be used in other intrinsics.

32-bi t integer, by reference. The error code returned; zero if no
error.

The I PCCONNECT intrinsic is used to establish a VC socket (a virtual circuit) to another process. The
calling process must first create a call socket for itself and obtain the destination descriptor of a call
socket belonging to the other process.

A successful result means that the connection request has been initiated. The process which requested the
connection (via I PCCONNECT) must then call I PCRECV with the VC socket descriptor value in order to
complete the connection. (I PCCONNECT is a non-blocking call: the calling process is not blocked pending
completion of its request.)

Only the destination descriptor and VC socket descriptor parameters are required (option variable). If a
call socket descriptor is not supplied, or if the specified value is -1, a call socket will be created for the
purpose of setting up the connection. This socket will be destroyed before completion of the I PCCONNECT
call.

Condition codes returned by this intrinsic are:

• CCE--Succeeded.

• CCL--Failed.

• CCG- - Not returned by this intrinsic.

This intrinsic may not be called from split stack mode.

2-14

IPCCONNECT

Protocol-Specific Considerations

The following table outlines parameters that are specific to the particular protocol you are accessing.

Table 2-2. IPCCONNECT Protocol Specific Parameters

Parameters TCP X.25

flags

0 Protected connection nla

21 Enableldisable checksum nla

opt

2 nla Call user data (CUD)

3 Maximum send size nla

4 Maximum receive size nla

128 TCP source port address nla

142 nla Facilities set name

144 None defined Bit 17: access to CUD

X.25 Considerations

I PCCONNECT used over a switched virtual circuit causes the X. 25 protocol to send a call request packet to
the node and process described by the destination socket. Over a permanent virtual circuit (PVC), a reset
packet is sent.

The opt parameter CUD field is sent as the CUD field in the call request packet. Based on the setting of
the opt protoool flags "no address" flag, the user has access to either 12 or 16 bytes in the CUD field.

For communication between HP nodes, the first four bytes of the CUD field are interpreted as an address
for incoming call packets (the third and fourth bytes contain the protocol relative address). The X.25
protocol uses this data to find the proper source socket to route the incoming call. This corresponds to the
relative address parameter passed when the source socket was created.

2-15

IPCCONNECT

Common errors returned by I PCCONNECT in resul tare:

SOCKERR 0
SOCKERR 46
SOCKERR 55
SOCKERR 116
SOCKERR 143
SOCKERR 157
SOCKERR 160
SOCKERR 162
SOCKERR 163

Request completed successfully.
Unable to interpret received path report.
Exceeded protocol module's limit.
Destination unreachable.
Invalid facilities set.
All outgoing switched virtual circuits are busy.
I ncompa t i ble with protoco I state.
X.25 permanent virtual circuit does not exist.
Permanent virtual circuit already established.

A complete table of SOCKERRs is included in Appendix C.

Cross-System Considerations for TCP

The following are HP 3000 to HP 1000, and HP 3000 to HP 9000 programming considerations for this
intrinsic:

Checksumming - TCP checksumming will be enabled for both sides of the connection if it is enabled by
either side for HP 3000 to HP 1000 or HP 3000 to HP 9000 connections. Checksumming is always
enabled on the HP 9000. On the HP 3000, checksumming can be enabled by setting bit 21. On the HP
3000, this bit can be used to override the checksumming decision made during network transport
configuration for this particular process.

Send and receive sizes - The HP 3000 send and receive size range is 1 to 30,000 bytes. The HP 1000 send
and receive size range is 1 to 8,000 bytes. The HP 9000 send and receive size range is 1 to 32,767 bytes.
Although the ranges are different, you must specify a send size within the correct range for the respective
receiving system; otherwise,. an error will occur.

Note that the default send and receive sizes are different on different HP systems. On the HP 3000, the
default send and receive size is less than or equal to 1024 bytes. On the HP 1000 and HP 9000, the
default send and receive size is 100 bytes.

2-16

IPCCONTROL

Performs special operations.

Syntax

I PCCONTROL (descriptor, request [~wrtdata]mwlen]
[~~readdata] [~rlen] [~flags] [, resul t])

Parameters

descriptor
(input)

request
(input)

32-bit integer, by value. Either a call socket descriptor or a VC
socket descriptor.

32-bi t integer, by value. The value supplied indicates what control
operation is to be performed.

NOTE

SOO-level requests are available only to
processes running in Privileged Mode.

• 1 = Enable nowait (asynchronous) I/O for the specified call socket or VC
socket descriptor. See the paragraph, Asynchronous I/O in this chapter
for more information on .asynchronous processing.

• 2 = Disable nowait (asynchronous) I/O for the specified call socket or VC
socket descriptor; perform waited (blocking) calls only.

• 3 = Change the default timeout (initially 60 seconds) for waited and
nowait I/O (receive operations only). The wrtdata parameter contains
the timeout value in tenths of seconds (l6-bit signed integer).

• 9 = Accept a connection request that is in the deferred state. This
request is valid only over connection sockets in the connection pending
state. If the user wishes to clear, rather than accept the call, then use
the reject request (15). The call must be accepted before attempting to
send or receive data on the connection. No readdata or wrtdata
parameters are associated with this request.

• 10= Send a reset packet (X.2S only). This request is valid only over
connection sockets. The wrtdata parameter (2 bytes) can contain the
cause (byte 1) and diagnostic (byte 2) fields to be included in the reset
packet sent by the X. 25 protocol. The cause field may be overridden by
the PDN. If configured as a DTE, the cause will always be 0,
irrespective of the value entered. Suggested value for the cause field is 0
(zero), DTE originated. No readdata is associated with this request.

2-17

IPCCONTROL

2-18

• 11 = Send an interrupt packet (X.25 only). This request is valid only
over connection sockets. The wrtdata parameter can contain 1 byte of
user data that will be inserted in the interrupt packet sent by the X.25
protocol.

• 12 = Reason for error or event (X.25 only). This request returns the
reason for the NetlPC error or event on an X.25 connection in the
readdata parameter. The first byte of readdata contains the type of
packet, the second byte contains the interrupt user data field, and the
third and fourth bytes contain the cause and diagnostic fields. This
request is valid only over an X.25 connection socket after a
communications line error has occurred. Possible cause and diagnostic
codes generated by NS X. 25 are listed in Appendix B.

The types of packets returned are:

• 10 = Clear packet received
• 11 = Reset packet received
• 12 = Interrupt packet received
• 14 = Network shutdown
• 15 =Restart sent by local network operator
• 16 = Level 2 failure detected
• 17 = Restart sent by local protocol module
• 18 =Restart packet received

If no event is reported, readdata contains zeros. If the error was caused
by a clear or restart packet, the connection is lost, and the user must use
I PCSHUTDOWN to clear the connection. There is no wrtdata associated
with this request.

• 13 = Set no activity timeout (X.25 only). This request is only valid on
connection sockets. The wrtdata parameter contains the timeout value
in minutes (16-bit positive integer). If not specified, the default value of
zero will be passed to wrtdata disabling the timer. After a timeout,
I PCSHUTDOWN must be used to remove the connection socket. There is
no readdata associated with this request.

• 15 = Reject a connection request that is in the deferred state. The socket
is automatically deleted after this request.

For X. 25, this request causes the protocol to send a clear packet with the
cause field set to zero (DTE originated) and the diagnostic field set to 64.
This request is valid only over connection sockets in the connection
pending state.

• 256 = Enable nowait receives; disable nowait sends.

• 257 = Enable nowait sends; disable nowait receives.

• 258 = Abort outstanding nowait receives.

• 259 = Enable user-level NetIPC tracing. This request causes NetIPC

wrtdata
(input)

wlen
(input)

readdata
(output)

rlen
(input/output)

IPCCONTROL

intrinsic calls (both initiation and compJetion of I/O requests) to be
traced. If tracing is enabled, the wrtdata parameter has three tracing
related options, described under wrtdata.

• 260 = Disable user-level NetlPC tracing.

• 261 = Enable immediate acknowledgment. (TCP only.) Instructs the
TCP protocol module to acknowledge received frames immediately.
Note that use of option 261 can degrade performance of the user's
process.

• 262 = Change the timeout for waited and no-wait sends. (Default=
timeout disabled.)

• 514 = Return the socket's address in the readdata buffer (privileged
users only). The rlen parameter returns the length of readdata. See
the table in "Discussion" of this intrinsic for explanations of the values
returned in readdata.

Record or byte array, by reference. If the request is to change
the default timeout, (request code 3 or 262) the value in the first two
bytes of the wrtdata buffer will become the new timeout, in tenths of a
second. A zero value indicates an indefinite timeout: a call to IOWAIT will
return only when the next I/O request completes. If the request is to
enable tracing, (request code 259) this parameter may (optionally) contain
information in the same format as the opt parameter in other intrinsics.
Permitted options are:

• code 131--lndicates that the data portion of this parameter contains the
trace file name. If omitted, the trace file will be named SOCK####,
where #111# are four randomly chosen digits, and placed in the caller's
group and account.

• code 132--lndicates that the data portion of this parameter contains a
2-byte value representing the number of records allotted to the trace
file. If omitted, or if this value is zero, the DEFAULT is 1024 records.

• code 133--Indicates that the data portion of this parameter contains a
2-byte value representing the maximum number of bytes of user data
which. you wish to trace. If omitted, or if the value is -1, the DEFAULT
is 2000 bytes (a zero value means zero bytes). The largest amount of
user data which may be traced is 8,1 92 bytes.

32-bit integer, by value. Length in bytes of the wrtdata
parameter.

Record or byte array, by reference. If request enables tracing,
the trace file's name is returned in this parameter. If request asks for the
socket's address, that address is returned here.

32-bit integer, by reference. The maximum number of bytes that
you expect to receive in the readdata parameter. If readdata returns

2-19

IPCCONTROL

the trace file name, rlen will return the length in bytes of this name. If
readdata returns the socket's address, rlen will return the byte length of
the address.

flags
(input)

result
(output)

Discussion

32 bits, by reference. A bit representation of various options. The
following flag is defined:

• flags [31] (input)- - (TCP only.) If NetlPC tracing is enabled in this
intrinsic, this flag indicates that Transport Layer protocol activity
(headers and internal messages) should also be traced.

32-bi t integer, by reference. The error code returned; zero if no
error.

The I PCCONTROL intrinsic is used to perform various special operations on sockets. The intrinsic is
"option variable." All requests require the desoriptor and request parameters. The timeout and
software interrupt requests also require the wrtdata parameter. For tracing and socket address requests,
information may be returned in the readdata buffer.

Request code 3 is used to set a receive timeout value as specified in wrtdata (two bytes). Zero (0) may be
used to indicate no timeout. The timeout value should be in tenths of a second. The default value is 60
seconds with the timeout enabled.

Request code 262 is used to set a send timeout value as specified in wrtdata (two bytes). Zero (0) may be
used to indicate no timeout. If timeouts are enabled, the timer will expire the number of timeout seconds
(as specified in wrtdata) after completion of the last send. The default value is timeout NOT enabled.
There is only one send timer per connection. It will be running any time there is an outstanding send.
That is, if nowait I/O is used, it will run until IOWAIT completes for all sends. For a waited send, the
timer will run until the intrinsic completes. If multiple nowait sends are issued, the timer will be
restarted for each send initiated and for each IOWAIT completed with sends still outstanding. If a send
timer expires before a send completes, the connection must be shutdown.

Request codes 9 and 15 allow the user to accept or reject a connection that is in the deferred-connection
state (see IPCRECVCN). If the connection request is accepted, the connection can receive and send data
upon the completion of IPCCONTROL. If the connection is rejected, all resources allocated for the
connection are returned and the requestor is notified of the rejection.

2-20

IPCCONTROL

When requesting the descriptor's address (request code 514), readdata has the meanings shown in Table
2-3:

Table 2-3. readdata Meanings

Descriptor Type Address Meaning

call socket port address of socket (for TCP, length=2 bytes)

connection from I PCCONNECT local port address of connection socket (for
TCP, length=2 bytes)

connection from I PCRECVN remote port address of connection socket in
bytes 0 and I, remote internet address of node
in bytes 2 through 5. (6 bytes total length)

Condition codes returned by this intrinsic are:

• CCE--Succeeded.

• CCL- - Failed.

• CCG--Not returned by this intrinsic.

This intrinsic may not be called in split stack mode.

2-21

IPCCONTROL

Protocol-Specific Considerations

The following table outlines parameters that are specific to the particular protocol you are accessing.

Table 2-4. IPCCONTROL Protocol Specific Parameters

Parameters TCP X.25

request

10 nla Send reset

11 nla Send interrupt

12 nla Reason for error or event

13 nla Set inactivity timeout

261 Enable immediate ack nla

flags

31 Trace transport layer protocol nla
activity

X.25 Considerations

Common errors returned by I PCCONTROL in resul tare:

SOCKERR 0
SOCKERR 59
SOCKERR 65
SOCKERR 67
SOCKERR 107
SOCKERR 160
SOCKERR 168

Request completed successfully.
Socket timeout.
Connection aborted by local protocol module.
Connection failure detected.
Transport is going down.
Incompatible with protocol state.
Restart event occurred on X.25 connection.

A complete table of SOCKERRs is included in Appendix C.

2-22

IPCCREATE

Creates a call socket for the calling process.

Syntax

I PCCREATE (socketkind m.protocol] mflags] mopt] ,calldesc [, resul t])

Parameters

socketkind
(input)

protocol
(input)

flags
(input)

opt
(input)

32-bit integer, by value. Indicates the type of socket to be created.
The only type which a user process may create is:

• 3 =call socket. Used for sending and receiving connection requests.

32-bi t integer, by value. Indicates the protocol module which the
calling process wishes to access. If the value is zero or if this parameter is
not specified, the TCP module is chosen by default. The protocols currently
available to user processes are:

• 0 = Default protocol. The current default is TCP. The recommended
value for programs using I PCNAME and I PCLOOKUP is 0 rather than 4 for
TCP.

• 2 = X. 25 protocol

• 4 = TCP (Transmission Control Protocol)

32 bi ts, by reference. A bit representation of various options. The
following option is defined:

• flags [0] (input). TCP only. Makes the newly created socket a
IIprotected ll socket. A protected socket is one which only a privileged
user may create or use.

Record or byte array, by reference. A list of options, with
associated information. Refer to IINetlPC Intrinsics/Common Parameters ll

for more information on the structure of this parameter. The following
options are available:

• maximum connection requests queued (option code=6, length=2, 2-byte
integer) (input). Used to specify the maximum number of unreceived
connections that can be queued to a call socket. The default value is 7.

• address option (option code=128, length=n; n-byte array) (input). Allows
users to specify the socket's protocol relative address rather than having
NetlPC allocate an address. The format of this address is defined by the

2-23

IPCCREATE

protocol. For TCP and X. 25 protocol access, the address is a 2- byte
array. For X. 25, you must either specify a protocol relative address, or
identify the socket as catch -all. (See the opt protocol flags "catch-all
socket flag" (bit 2) description.) Address values in the range % 74057 to
% 77777 can be used without special capabilities. In privileged programs,
values in the range % 1 and % 74056 can be used. See the paragraph
"User-specified Protocol Addressing" at the beginning of this section for
more information.

• network name (code= 140, length= 8, packed array of characters) (input)
The X.25 network name is the network interface (NI) name defined
when the network is configured with NMMGR (see the NS3000/V
Network Manager Reference Manual, Volume I). This option is required
for X.25 protocol access. This field is left-justified. For unused bytes
pad the field with nulls (ASCII zero).

• protocol flags (code= 144, length=4, 4-byte buffer).

• catch-all socket flag (bit 2, input). X. 25 protocol access only. This
flag identifies the socket as a catch -all socket. Network
administrator (NA) capability is required to set this flag. User
capability is required to run a program that creates a catch-all
socket. The address option (protocol relative address) does not
apply to a catch-all socket.

calldeso
(output)

result
(output)

Discussion

32-bit integer, by reference. Call socket descriptor. The socket
descriptor which identifies the created socket.

32-bi t integer, by reference. The returned error code; zero if no
error.

The I PCCREATE intrinsic creates a call socket, returning a call socket descriptor. A call socket descriptor
is an identifying number which may be used in other NetlPC intrinsic calls. (Internally, a call socket
descriptor is an AFT, an Available File Table entry number; the descriptor is stored in the Available File
Table.) A process may own a maximum of 64 (call and VC) sockets. If a socket has been given away (via
the I PCGIVE intrinsic), it is included in this total until another process takes it (via I PCGET).

Condition codes returned by this intrinsic are:

• CCE - -Succeeded.

• CCL--Failed.

• CCG--Not returned by this intrinsic.

I PCCREATE may not be called in split stack mode. I PCCREATE runs in waited mode. It does not return
until the request is completed.

2-24

IPCCREATE

Protocol-Specific Considerations

The following table outlines parameters that are specific to the particular protocol you are accessing.

Table 2-5. IPCCREATE Protocol Specific Parameters

Parameters TCP X.25

flags

0 Protected socket nla

opt

140 nla NI name required

144 None defined Bit 2: catch -all socket flag

X.25 Considerations

For direct access to X. 25, the protocol parameter must be 2 (X. 25). The opt parameter network name
must include the X. 25 network NI name.

The opt parameter address option (code 128) is used to contain the protocol relative address of the source
socket.

X. 25 compares the protocol relative address contained in an incoming call (in the CUD field) to the
protocol relative addresses assigned to all X.25 call sockets at the source sockets' destination. If the
protocol relative address of the source socket matches the incoming call's address (CUD) the call is routed
to that socket. If no match is found, the incoming call is routed to the catch -all socket if one has been
defined. If the CUD address does not match any of the call sockets and no catch-all socket has been
defined, the incoming call is cleared. The cause field of the clear packet is set to 0 and the diagnostic is
64.

The catch-all socket can be defined by setting the opt protocot flags catch -all socket flag. Only one
catch-all socket can be defined per directly-connected network.

The catch-all socket and address option (protocol relative address) only apply to switched virtual circuits
(SVCs).

2-25

IPCCREATE

Common errors returned by I PCCREATE in resul tare:

SOCKERR 0
SOCKERR 4
SOCKERR 9
SOCKERR 55
SOCKERR 106
SOCKERR 107
SOCKERR 153

Successful completion.
Transport has not been initialized.
Protocol is not active.
Exceeded protocol module's limit.
Address currently in use by another socket.
Transport is going down.
Socket is already in use.

A complete table of SOCKERRs is included in Appendix C.

TCP

For TCP access) only the socketkind and calldesc parameters are required. (In SPL terms, the
intrinsic is option -variable.)

2-26

IPCDEST

Creates a destination descriptor.

Syntax

I PCDEST (socketkind [~location] [~locationlen]~protocol~

protoaddr~protolen[~flags] [.~opt] ~destdesc[~result])

Parameters

socketkind
(input)

location
(input)

location len
(input)

protocol
(input)

protoaddr
(input)

protolen
(input)

flags

opt

32-bit integer, by value. Defines the type of socket. Theonlytype
which a user process may create is:

• 3 = call socket.

Character array, by reference. The name of the node (optionally
node.dom:zin.organization) on which the destination socket is to be
created. If this parameter is omitted, the local node is assumed.

32-bit integer, by value. The length in bytes of the destination
node name. Zero indicates that no location was given (that is, the node is
local). Maximum (for a fully qualified name) is 50.

32-bit integer, by value. Defines the protocol access to be used by
the user processes. The protocols currently available to user processes are:

• 2 = X. 25 protocol

• 4 = TCP

Byte array, by reference. Protocol relative address (remote address)
with which the socket will be associated. The format of this address,
defined by the protocol, is a 2-byte array (16 bits). Nonprivileged
programs must use addresses in the range % 74057 to % 77777. For X.25
access to level 3, this address is not included in the CUD field of an X.25
call packet. (See the discussion of I PCCONNECT for the parameters
providing access to the CUD.)

32-bit integer, by value. The length in bytes of the protocol
address.

32 bi ts, by reference. A bit representation of various options. No
options are currently defined.

Record or byte array, by reference. A list of options, with
associated information. No options are currently defined.

2-27

IPCDEST

destdesc
(output)

result
(output)

Discussion

32-bi t integer, by reference. Destination descriptor. Describes
the location of the named call socket. May be used in subsequent NetIPC
calls (I PCCONNECT , etc.).

32-bi t integer, by reference. The error code returned; zero if no
error.

The I PCDEST intrinsic creates a destination descriptor for the purpose of sending messages to another
process. For TCP access, you can use this intrinsic as alternative to using I PCNAME and I PCLOOKUP to
create a destination descriptor. I PCDEST must be used for X. 25 protocol access.

Using I PCDEST enables you to specify a particular protocol relative address to be associated with the
destination descriptor. See Example 2 in Section 3 of this manual for an example program that uses
I PCDEST.

Nonprivileged user processes must use addresses in the range % 74057 to % 77777.

This intrinsic is option variable. The required parameters are: socketkind, protocol, protoaddr,
proiolen, and destdesc. Condition codes returned by this intrinsic are:

• CCE--Succeeded.

• CCL- - Failed.

• CCG--Not returned by this intrinsic.

This intrinsic may not be called in split stack mode. I PCDEST runs in waited mode. It does not return
until the request is completed.

Protocol-Specific Considerations

X.25 Considerations

I PCDEST is used to create a destination descriptor for X. 25 direct access. The protoaddr parameter is
only used with switched virtual circuits (SVCs).

Cross-System Considerations for TCP

The following are HP 3000 to HP 1000 and HP 3000 to HP 9000 programming considerations for this
intrinsic:

TCP protocol address - The recommended range of TCP addresses for user applications is from 30767 to
32767 decimal (%74057 to %77777) for the HP 3000, HP 1000, and HP 9000.

2-28

IPCERRMSG

Returns the NetlPC error message corresponding to a given error code.

Syntax

IPCERRMSG (ipcerr,msg,len,result)

Parameters

ipcerr
(input)

msg
(output)

len
(output)

result
(output)

Discussion

32-bi t integer, by value. A valid NetlPC error code.

Character array, by reference. The NetlPC error message
corresponding to the given error code. This array must be at least 80 bytes
in length.

32-bi t integer, by reference. The length (in bytes) of the error
message. The maximum is 80 bytes.

32-bi t integer, by reference. The error code returned for this
intrinsic call; zero if no error.

The I PCERRMSG intrinsic returns the NetIPC error message corresponding to a given error code. It also
gives the length of the message. All parameters are required.

Condition codes returned by this intrinsic are:

• CCE- -Succeeded.

• CCL--Failed because of a user error.

• CCG--Failed because of an internal error (e. g. unable to open the message catalog,
GenMessage failure, etc.).

This intrinsic may not be called in split stack mode.

2-29

IPCGET

Receives a (call socket or VC socket) descriptor which has been given away by another process.

Syntax

IPCGET (givename~nlen,flags,descriptor,result)

Parameters

givename
(input)

nlen
(input)

flags

descriptor
(output)

result
(output)

Discussion

Character array, by reference. The temporary name assigned to
the socket when it was given away. It is up to 16 characters long.

32-bit integer, by value. The length in bytes of the specified name.

32 bi ts, by reference. A bit representation of various options. No
flags are currently defined for this intrinsic.

32-bi t integer, by reference. The descriptor that was given away
via the I PCG I VE command. May be a call socket descriptor or a VC socket
descriptor.

32-bi t integer, by reference. The error code returned; zero if no
error.

The I PCGET intrinsic allows a process to obtain a call or VC socket descriptor which has been relinquished
by another process through the I PCGIVE intrinsic. A temporary name identifies the socket for the
process which wishes to acquire it. All the parameters are required.

Condition codes returned by this intrinsic are:

• CCE--Succeeded.

• CCL- - Failed.

• CCG--Not returned by this intrinsic.

This intrinsic may not be called in split stack mode.

2-30

IPCGIVE

Gives away a (call socket or VC socket) descriptor, making it available to other processes.

Syntax

IPCGIVE (descriptor~givename~nlen~flags~result)

Parameters

descriptor
(input)

givename
(input/output)

nlen
(input)

flags

result
(output)

Discussion

32-bit integer, by value. The descriptor to be given away. May be
a call socket or VC socket descriptor.

Character array, by reference. A name which will be temporarily
assigned to the specified socket. The process which obtains the socket must
request it by this name. If the nlen (name length) parameter is zero, an
8-character name is randomly assigned and returned in the givename
parameter. If the name is supplied by the user, it must be no longer than
16 characters.

32-bit integer, by value. Length in bytes of the specified name. If
the value is zero, the NetlPC facility will assign the name.

32 bi ts, by reference. A bit representation of various options. No
flags are currently defined for this intrinsic.

32-bi t integer, by reference. The error code returned; zero if no
error.

A process can invoke I PCGIVE to IIgive" a call or VC socket descriptor that it owns to another process at
the same node. For example, Process A at node X can give a VC socket descriptor to Process B, also at
node X, so that Process B may use a connection Process A has previously established with process C at node
Z. Because Process B was "given" the endpoint of a previously established connection, it does not need to
create its own call socket and engage in the NetlPC connection dialogue in order to exchange with Process
C.

All the parameters are required.

When it is given away, a socket is assigned a new, temporary name. This name is either specified by the
user or assigned by the NetlPC facility. It continues to exist only until the socket is obtained by another
process or destroyed. The other process uses this name in a call to I PCGET, not I PCLOOKUP. However, the
syntax of the name is the same as it is for other intrinsics permitting socket name parameters. Therefore
it is possible to use a socket's IIwell-known" name - a name bound to the socket and known to other
processes - in the I PCG I VE and I PCGET intrinsics.

2-31

IPCGIVE

Once a process has given away a socket, it no longer has access to the call socket/VC socket descriptor
specified. If a process expires after giving away a socket, before another process has obtained it, the socket
or VC socket will be destroyed.

Other processes may continue to send data to a socket after it has been given away. It is the responsibility
of this process to notify other processes that a socket has been given away and to tell them the name by
which they can acquire it.

Condition codes returned by this intrinsic are:

• CCE- -Succeeded.

• CCL--Failed.

• CCG--Not returned by this intrinsic.

This intrinsic may not be called in split stack mode.

2-32

IPCLOOKUP

Obtains a destination descriptor for a named call socket. Used with TCP access only.

Syntax

IPCLOOKUP (socketnarne~nlen [.~·location] mloclen] mflags] ~

destdesc [~protocol] [.~socketkind][~result])

Parameters

socketname
(input)

nlen
(input)

location
(input)

loclen
(input)

flags
(input)

destdesc
(output)

protocol
(output)

socketkind
(output)

result
(output)

Character array, by reference. The name of the socket.

32-bi t integer, by value. The length in bytes of the specified socket
name. Maximurn is 16.

Character array, by reference. An environment id or node name
indicating where the socket registry search is to take place. The domain
and organization names which fully qualify the node/environment
designation are optional. If no location is specified, the local socket registry
is searched.

32-bit integer, by value. The length in bytes of the location
parameter. A zero value indicates that the socket registry search is to take
place on the local node.

32 bi ts, by reference. A bit representation of various options. The
following flag is defined:

• flags [0] (input). Causes the destination descriptor to be IIprotected. II A
protected destination descriptor is one which only privileged users may
create or use.

32-bi t integer, by reference. The returned destination descriptor,
which the calling process may use to access the named socket as a
destination. This descriptor is required by the I PCCONNECT intrinsic.

32-bi t integer, by reference. A number identifying the protocol
module with which the socket is associated: 4 =TCP.

32-bit integer, by reference. A number which identifies the
socket's type: 3 = call.

32-bi t integer, by reference. The error code returned; zero if no
error.

2-33

IPCLOOKUP

Discussion

The I PCLOOKUP intrinsic is used to gain access to a named socket. When supplied with the socket's name,
it returns a destination descriptor which the calling process can use in order to send messages to that
socket. It is important to synchronize the naming and lookup of sockets so that the naming occurs before
the lookup. If these two events are occurring concurrently, you can repeat the I PCLOOKUP call, checking
the resul t parameter after each call, until the call is successful. If the resul t value is 37 ("NAME
NOT FOUNDII

), the socket has not yet been given the name. The following Pascal program fragment
illustrates this idea:

socket name := 'RAINBOW';
location := 'SOMEWHERE';
resu It: = 0;
count:=O;
repeat

IPCLOOKUP (socketname,7,location, 9, ,destdesc,protocol,socketkind,result)
count:=count+1;
until (result <> 37) or (count >= maxcount)
if result <> 0 then ERRORPROCEDURE;

The only required parameters in the I PCLOOKUP intrinsic are sooketname, nlen, and destdeso (option
variable). Condition codes returned by this intrinsic are:

• CCE- -Succeeded.

• CCL--Failed.

• CCG--Not returned by this intrinsic.

This intrinsic may not be called in split stack mode.

2-34

IPCNAME

Associates a name with a call socket descriptor. Used with TCP access only.

Syntax

IPCNAME (calldesc, socketname,nlen ,result)

Parameters

calldesc
(input)

socketname
(input/output)

nlen
(input)

result
(output)

Discussion

32-bit integer, by value. The call socket descriptor to be named.

Character array, by reference. The name (maximum 16
characters) to be assigned to the socket. If the nlen (name length)
parameter is zero, an 8-character name is randomly assigned and returned
in the gilJename parameter. If the name is supplied by the user, it must be
no longer than 16 characters.

32-bi t integer, by value. The length in bytes of the specified socket
name. Maximum is 16.

32-bi t integer, by reference. The error code returned; zero if no
error.

The I PCNAME intrinsic allows a user to bind a name to a call socket. Using the I PCLOOKUP intrinsic,
another process can obtain access to the socket by means of its name. A single call socket on an HP 3000
can have a maximum of 4 names. (VC sockets cannot be named.) If the specified name length is zero, an
8-character name will be randomly generated and returned in the socketname parameter. When the
socket is destroyed, the name will be removed from the socket registry.

All parameters are required. Condition codes returned by this intrinsic are:

• CCE--Succeeded.

• CCL- - Failed.

• CCG--Not returned by this intrinsic.

This intrinsic may not be called in split stack mode.

2-35

IPCNAMERASE

Deletes a name associated with a call socket descriptor. Used with TCP access only.

Syntax

IPCNAMERASE (socketname,nlen,result)

Parameters

socketname
(input)

nlen
(input)

result
(output)

Discussion

Character array, by reference. The socket name, bound to a socket,
which is to be removed.

32-bi t integer, by value. The length in bytes of the specified socket
name. Maximurn is 16.

32-bit integer, by reference. The error code returned; zero if no
error.

If a socket has been named with the I PCNAME intrinsic, the owner of the socket may remove the name by
means of the I PCNAMERASE intrinsic. The owner is the process which created the socket or, if the socket
has been given away, the process which has acquired it.

All the parameters are required. Condition codes returned by this intrinsic are:

• CCE--Succeeded.

• CCL - - Failed.

• CCG--Not returned by this intrinsic.

This intrinsic may not be called in split stack mode.

2-36

IPCRECV

Receives a response to a connection request, thereby establishing a connection, or receIves data on an
already-established connection.

Syntax

I PCRECV (vcdesc mdata] [~'dlen] [~flags] [.~opt] Lresul t])

Parameters

vcdesc
(input)

data
(output)

dlen
(input/output)

~
(input/output)

32-bit integer, by value. The VC socket descriptor, a number
identifying the VC socket belonging to this process through which the data
will be received.

Record or byte array, by reference. A buffer to hold the received
data or a list of data descriptors (maximum two) indicating where the data
are to be distributed.

32-bi t integer, by reference. Gives the maximum number of bytes
you are willing to receive. For a response to a connection request, this
value may be 0 (or the parameter may be omitted). For actual data on an
established connection, the value must be between 1 and 30,000. The
returned value indicates how many bytes were actually received.

32 bi ts, by reference. A bit representation of various options. The
following options are defined:

• flags [16]--no output (input). (TCP only.) If nowait I/O is used and this
bit is set, the flags parameter will not be updated upon completion of
this I PCRECV. This allows a calling procedure to have a local flags
parameter and still complete before the I PCRECV completes. This flag
has no effect if waited I/O is being used.

• flags [26]--more data (output). Indicates that there may be more data to
be received after completion of this I PCRECV.

For TCP, this bit will always be set when normal, non-urgent data has
been received because TCP sends data in stream mode, with no
end-of-data indication. However, if urgent data has been received, and
no more is pending, this bit will be set to 0.

For X. 25, the "more data" flag indicates that the data returned is not the
complete message. The amount of data specified in dlen has been
moved into data. The following part of the message will be returned in
the next call to I PCRECV, unless the destroy flag (29) was set.

• flags [29]--destroy data (input). If set, this flag causes delivered data
that exceeds the amount allowed by the specified dlen or byte count (for

2-37

IPCRECV

opt
(input/output)

2-38

vectored data) to be discarded. Use this flag to remove data that may
have arrived at your node (and queued in the NetlPC buffer) that you do
not want the process to receive. For example, you may want to reuse a
previously established connection, but would not want to receive data
left over from a previous transmission.

Note that in TCP stream mode, there is no mechanism to verify that data
has been discarded.

• flags [30]- -preview (input). This flag allows the calling process to
preview the data - that is, to read the data without removing them from
the queue of data to the receiving socket.

• flags [31]--vectored (input). This flag indicates that the received data
are to be distributed to the addresses given in the data parameter.

Record or byte array, by reference. A list of options, with
associated information. The following options are defined:

• data offset (code=8, length=2; 2-byte integer) (input/output). This option
specifies an offset in bytes from the data parameter's address. The
received data are to be written into memory beginning at this location.
Do not use this option with vectored data.

• protocol flags (code= 144, length=4; 4-byte buffer) (output). This option
contains 32 bits of protocol-specific flags. The following flags are
currently defined:

• end-to-end acknowledgment (bit 18, output). (X. 25 only.) This
flag indicates that the D bit is set in the X. 25 packet associated
with this call.

• qualifier bit (bit 19, output). (X. 25 only.) This flag indicates that
the Q bit is set in the X. 25 packet associated with this call.

• urgent data (bit 27, output). (TCP only.) This flag indicates that
urgent data has been received on an established connection. This
flag is not output if f lags[16] (no output flag) is set when
I PCRECV is called in nowait mode.

NOTE

If using nowait I/O and opt array options
that generate output, the array must remain
intact until after I aWAIT completes.
Otherwise, the array area will be overwritten
or (if the area has been deleted from the
stack) an error will occur.

result
(output)

Discussion

IPCRECV

32-bi t integer, by reference. The error code returned; zero if no
error.

NOTE

When nowait I/O is used, the resul t
parameter is not updated upon completion of
IOWAIT. Therefore, the value of resul t
will indicate only whether the call was
successfully initiated. To determine whether
the call completed successfully after an
IOWAIT, you can use the I PCCHECK intrinsic.

The I PCRECV intrinsic serves two purposes: (l) to receive a response to a connection request, thereby
establishing a connection, and (2) to receive user data on an established connection.

NOTE

In the first case the VC socket descriptor is the only required parameter; in
the second, the VC socket descriptor, data, and data length parameters are
required. The brackets in the syntax diagram represent the first case.

In receiving a response to a connection request, the I PCRECV intrinsic returns nothing in the data buffer.
A resul t value of zero indicates a successful connection establishment. The resul t parameter will
indicate an error if the destination rejected the request. In that case you must still call I PCSHUTDOWN
with the returned VC socket descriptor value to shutdown the connection.

Successful completion of an I PCRECV request on an established connection (resul t code zero) means that
some amount of data was received: the amount requested or the amount transmitted, whichever is smaller.
It does not mean that you received all the data you asked for.

Completion of I PCRECV (while using waited I/O) with a non-zero resul t can mean that a fatal error
occurred or for TCP access, a gracful release request has been received (indicated by SOCKERR 102). If
nowait I/O is being used, I PCCHECK must be called to indicate a fatal error or graceful release.

Unless the intrinsic is called in nowait mode, the process is blocked until some data arrive or a timeout
occurs. In nowait mode, the addresses of the data and flags parameters are retained by NetlPC until
needed. The input value of flags is retained and updated (with the "more data" flag off or on) when
IOWAIT completes. The data parameter (or the vectored location) will then contain the data received.
Only one nowait receive may be outstanding on a single connection.

The returned dlen parameter (or the IOWAIT tcount parameter in the case of a nowait request) shows
how many bytes of data were actually received in the data parameter. This amount may be different

2-39

IPCRECV

from what you requested. If you did not receive all the data you want, you can obtain the additional data
in a subsequent I PCRECV call. For more information, see the discussion of "Sending and Receiving Data
Over a Connection" earlier in this manual and the programmatic examples in Section 3.

Protocol-Specific Considerations

The following table outlines parameters that are specific to the particular protocol you are accessing.

TABLE 2-6. IPCRECV Protocol Specific Parameters

Parameters TCP X.25

flags

16 No output flag nla

26 More data More data

opt

144 Bit 27: urgent data Bit 18: state of D bit in X.25
packets

Bit 19: state of Q bit in X. 25
packets

X.25 Considerations

A single I PCRECV call returns data for one message only. If the "more data" flag is set, the complete
message has not been received. The remaining part of the message can be received by subsequent calls to
I PCRECV, unless the destroy flag (29) is set. If the destroy flag is set, the remaining part of the message is
destroyed. The end of message is indicated by the reset of the "more data" flag.

If an interrupt packet is received in the middle of a data packet stream, I PCRECV returns no data. The
resul t parameter indicates that an event has occurred. The interrupt user data field can be retrieved by
calling I PCCONTROl, request 12 (reason for error or event). The next call to I PCRECV returns the whole
data message.

If a reset packet is received in the middle of a data packet stream, all previously received packets are
discarded. I PCRECV returns no data. The resul t parameter indicates a reset has occurred. Use the
I PCCONTROl request 12 (reason for error or event) to retrieve the cause and diagnostic fields for the reset.

2-40

IPCRECV

Common errors returned by I PCRECV in resul tare:

SOCKERR 0 Request completed successfully.
SOCKERR 59 Socket timeout.
SOCKERR 65 Connection aborted by loca 1 protoco 1 module.
SOCKERR 67 Connection failure detected.
SOCKERR 107 Trans port is going down.
SOCKERR 117 Attempt to establish connection failed.
SOCKERR 146 Event reset.
SOCKERR 156 Event interrupt.
SOCKERR 158 Connection request rejected by remote.
SOCKERR 168 Restart event occurred on X.25 connect ion.

A complete table of SOCKERRs is included in Appendix C.

TCP

The urgent data bit indicates that urgent data has been received. Table 2-3 demonstrates the meaning of
urgent data and more data. Use these bits in combination to determine the status of data received.

Table 2-7. TCP Urgent and More Data Bit Combinations

Urgent More Data Meaning

0 0 Should never happen. (The
receipt of normal data in
stream mode causes IImore
data ll to be set.)

0 1 Normal receive, no urgent
data.

1 0 Urgent data received, no more
urgent data.

1 1 Urgent data received and
more is pending.

Condition codes returned by this intrinsic are:

• CCE--Succeeded.

• CCL--Failed.

• CCG--Not returned by this intrinsic.

This intrinsic may be called in split stack mode.

2-41

IPCRECV

Cross-System Considerations for TCP

The following are HP 3000 to HP 1000, and HP 3000 to HP 9000 programming considerations for this
intrinsic:

Receive size (dlen parameter) - Range for the HP 3000 is I to 30,000 bytes. Range for the HP 1000 is I
to 8000 bytes. Range for the HP 9000 is I to 32,767 bytes. Although the ranges are different, you must
specify a send size within the correct range for the respective receiving system; otherwise, an error will
occur.

Note that the default send and receive sizes are different on different HP systems. On the HP 3000, the
default send and receive size is less than or equal to 1024 bytes. On the HP 1000 and HP 9000, the
default send and receive size is 100 bytes.

Data wait flag - The HP 1000 and HP 9000 I PCRecv call supports a "DATA_WAIT" flag. This flag,
when set, specifies that the call will not complete until the amount of data specified by the dlen
parameter has been received. This flag is not available on the HP 3000, meaning that the call may
complete before all the data is received. However, the HP 3000 I PCRECV supports other flags such as the
IImore data" and "destroy data" flags.

2-42

IPCRECVCN

Receives a connection request on a call socket.

Syntax

IPCRECVCN (oalldesc,vodesc['.flags] [~opt] [,result])

Parameters

oalldeso
(input)

vcdesc
(output)

flags
(input)

32-bit integer, by value. Call socket descriptor. The socket
descriptor for a call socket belonging to this process.

32-bit integer, by reference. The returned VC socket descriptor, a
number identifying a VC socket belonging to this process through which
data can be sent or received. This descriptor can be used in other intrinsics.

32 bi ts, by reference. A bit representation of various options. The
following flags are defined:

• flags [O]--protected (input). (TCP only.) Ensures that the connection
will be "protected" (privileged users only).

• flags [18]--defer (input). Causes the reply to the connection request to
be deferred. The intrinsic will complete when a connection request is
received, but the virtual circuit will not be established. The
I PCCONTROL intrinsic can be used later to accept or reject the
connection.

• flags [21]--checksum (input). (TCP only.) Enables checksum on the
Transmission Control Protocol (TCP) connection for error checking.
Checksum may also be set by the corresponding I PCCONNECT call. If
either side specifies "checksum enabled" then the connection will be
checksummed. TCP checksum may be enabled globally, over all
connections, when configuring the Network Transport. See the
N S3000IV Network Manager Reference Manual, Volume I for details on
Network Transport configuration. Checksum enabled by either
I PCCONNECT or TCP (remote or local) configuration overrides a 0
setting (checksum disenabled) for this flag. Checksum error checking is
handled at the link level and is not normally required at the user level.
Enabling checksum may reduce network performance. Recommended
value: O.

• flags [25]--discarded CUD (output). For X. 25 protocol access. Indicates
that call user data (CUD) was present, but that the data had to be
discarded or truncated. If the call user data option (code= 5) is not
specified the call user data is discarded. If the CUD buffer is not long
enough to contain the data, this flag is set and the data is truncated.

2-43

IPCRECVCN

opt
(input/output)

2-44

Record or byte array, by reference. A list of options, with
associated information. The following options are defined:

• maximum send size (code=3, length=2; 2-byte integer) (input). (TCP
only.) This option, which must be in the range 1 to 30,000, specifies the
length of the longest message the user expects to send on this connection.
The information is passed to TCP. If this option is not used, TCP will be
able to handle messages at least 1024 bytes long. If the value specified is
smaller than a previously specified maximum send size, the new value
will be ignored.

• maximum receive size (code=4, length=2; 2-byte integer) (input). (TCP
only.) This option, which must be in the range 1 to 30,000, specifies the
length of the longest message the user expects to receive on this
connection. The information is passed to TCP. If this option is not
used, TCP will be able to handle messages at least 1024 bytes long. If
the value specified is smaller than a previously specified maximum
receive size, the new value will be ignored.

• call user data (code=5, length=n, n bytes) (output). (X. 25 only.) This
option provides a buffer for the return of the call user data (CUD) field
from an X. 25 packet. If call user data is present, but this option is not
supplied, the discarded flag [25] is set. If the buffer is not long enough
to contain the data, the data is truncated and the discarded flag is set.

• calling node address (code=141, length=8; 8-byte array) (output). An
output parameter that is used to contain the address of the requestor.

For TCP, the first two bytes of the array contain the remote socket's port
address and the next four bytes contain the remote node's internet
protocol address. The remaining bytes are unused.

For X. 25 protocol access, the X. 25 address of the calling node is returned
in this field. The format of the record is equivalent to 16 nibbles (or
BCD digits) in which the first nibble is the address length (ranging from
o to 15), and the following 15 nibbles contains the calling address. The
calling node address is not available if the call originated from a PAD.

You can use READOPT to obtain the output of this parameter.

• protocol flags (code= 144, length=4; 4-byte buffer) (output). This option
contains 32 bits of protocol-specific flags. The following flags are
currently defined:

• request from PAD (bit 14, output). (X.25 only.) This flag indicates
that connection request is coming from a PAD as opposed to a
connection coming from a host.

• calling node address available (bit 16, output). (X. 25 only.) This
flag indicates that the calling node X. 25 address was present.

IPCRECVCN

NOTE

If using nowait I/O and opt array options
that generate output, the array must remain
intact until after IOWAIT completes.
Otherwise, the array area will be overwritten
or (if the area has been deleted from the
stack) an error will occur.

result
(output)

Discussion

32-bit integer, by reference. The error code returned; zero if no
error.

NOTE

When nowait I/O is used, the resul t
parameter is not updated upon completion of
IOWAIT. Therefore, the value of resul t
will indicate only whether the call was
successfully initiated. To determine whether
the call completed successfully, you can use
the I PCCHECK intrinsic.

The I PCRECVCN intrinsic allows a process to receive a connection request and establish a connection
(virtual circuit). The connection is identified by the returned VC socket descriptor. The calling process
can then employ the I PCSEND and I PCRECV intrinsics to send and receive data on the connection. A
maximum of 7 unreceived connection requests may be queued to a call socket.

If the calling process sets the defer reply to connection request flag (flags [18]), this intrinsic will
complete when a connection request is received, but the virtual circuit will not be established. The calling
process must use I PCCONTROl to either accept or reject the request This feature is useful if an
application must defer replying to the connection request and then, depending upon the identity of the
requestor, decide to reject or accept the request. The identity of the requestor can be determined by using
either the call node address option or I PCCONTROl to return the remote port and internet protocol
addresses.

If this intrinsic is called in nowait mode, the data structures for the connection are created when the call
to IOWAIT completes. They are not created with the initial call to I PCRECVCN. Therefore the address of
the VC socket descriptor parameter is retained by NetIPC, and the descriptor's value is returned to that
location when IOWAIT completes. The VC socket descriptor, any flags, and the opt parameter must all be
global to both the I PCRECVCN and the IOWAIT intrinsic calls. NetIPC also retains the flags parameter.

The only required parameters are the call socket descriptor and VC socket descriptor (option variable).

2-45

IPCRECVCN

Condition codes returned by this intrinsic are:

• CCE--Succeeded.

• CCL- - Failed.

• CCG- - Not returned by this intrinsic.

Condition codes returned by the call to IOWAIT are:

• CCE--Succeeded.

• CCL--Failure in NetlPC (e.g. resource problems, VC socket descriptor out of bounds) or
protocol module. In the event of a NetlPC failure the connection request will still be
pending, allowing the user to correct the problem and issue another call to I PCRECVCN.

• CCG--Connection established but a noncritical error (e.g. flags parameter out of bounds)
occurred.

The I PCRECVCN intrinsic may not be called in split stack mode.

2-46

IPCRECVCN

Protocol-Specific Considerations

The following table outlines parameters that are specific to the particular protocol you are accessing.

Table 2-8. IPCRECVCN Protocol Specific Parameters

Parameters TCP X.25

flags

0 Protected connection nla

21 Enable checksum nla

25 nla Discarded CUD flag

opt

3 Maximurn send size nla

4 Maximum receive size nla

5 nla Received CUD

141 Calling node's IP address Calling node's X. 25 address

144 nla Bit 14: PAD

Bit 16: calling node address
available flag

X.25 Considerations

I PCRECVCN is used with switched virtual circuits (SVCs) only.

The call user data field returned in the opt parameter (code= 5) is used by X. 25 as follows. The first four
bytes of the cali user data field is used to determine the destination call (source) socket. The incoming call
is sent to the call socket whose relative protocol address matches the first four bytes of the call user data.
See the discussion for I PCCREATE for more information on protocol relative addresses.

Call acceptance can be affected by the X. 25 configuration of the local user group (LUG) facility which
can limit access to a node by specifying which remote X.2S addresses are allowed to communicate with
the node. See the NS3000/V Network Manager Reference Manual, Volume I for more information about
the LUG facility.

2-47

IPCRECVCN

Common errors returned by I PCRECVCN in resul tare:

SOCKERR 0
SOCKERR 59
SOCKERR 107

Request completed successfully.
Socket timeout.
Transport is going down.

A complete table of SOCKERRs is included in Appendix C.

TCP

The calling process may also specify whether checksumming is to be employed by the protocol modules
(i. e. TCP) that support it. For TCP, checksumming is usually disabled unless it is included by the remote
protocol module or if the TCP checksumming flag (flags (21]) is set. When checksumming is enabled,
performance is usually degraded because of increased overhead.

Cross-System Considerations for TCP

The following are HP 3000 to HP 1000 and HP 3000 to HP 9000 programming considerations for this
intrinsic:

Checksumming - TCP checksumming will be enabled for both sides of the connection if it is enabled by
either side for HP 3000 to HP 1000 or HP 3000 to HP 9000 connections. Checksumming is always
enabled on the HP 9000. On the HP 3000, checksumming can be enabled by setting bit 21. On the HP
3000, enabling checksumming can be used to override the checksumming decision made during network
transport configuration for this particular process.

Receive size (dlen parameter) - Range for the HP 3000 is 1 to 30,000 bytes. Range for the HP 1000 is 1
to 8000 bytes. Range for the HP 9000 is 1 to 32,767 bytes. Although the ranges are different, you must
specify a send size within the correct range for the respective receiving system; otherwise, an error will
occur.

Note that the default send and receive sizes are different on different HP systems. On the HP 3000, the
default send and receive size is less than or equal to 1024 bytes. On the HP 1000 and HP 9000, the
default send and receive size is 100 bytes.

2-48

IPCSEND

Sends data on a connection.

Syntax

I PCSEND (lJcdesc ,data ,dlen [~flags] mopt] [, resul t])

Parameters

vcdesc
(input)

data
(input)

dlen
(input)

flags
(input)

opt
(input)

32-bi t integer, by value. The VC socket descriptor, a number
identifying the VC socket belonging to this process through which the data
will be sent.

Record or byte array, by reference. Contains the data to be sent
or a list of data descriptors (maximum two) indicating the locations from
which the data will be gathered. Flags [31] is set if data descriptors are
used.

32-bi t integer, by value. The byte length of the data parameter:
that is, the amount of actual data (range is 1 to 30,000) or the length of the
data descriptors (8 or 16 bytes).

32 bi ts, by reference. A bit representation of various options. The
following flag is defined:

• flags [31]--vectored (input). Indicates that the data to be sent are to be
gathered from the addresses given in the data parameter. (The
parameter will not contain actual data.)

Record or byte array, by reference. A list of options, with
associated information. Refer to "NetlPC Intrinsics/Common Parameters"
for more information on the structure of this parameter. The following
options are defined:

• data offset (code=8, 1ength=2; 2-byte integer) (input). An offset in bytes
from the data parameter's address indicating the actual beginning of the
data. HP recommends that you do not use data offset if data descriptors
are used to point to another location from which data should be
obtained.

• protocol flags (code= 144, 1ength=4; 4-byte buffer) (input). This option
contains 32 bits of protocol-specific flags. The following flags are
currently defined:

• end-to-end acknowledgment (bit 18, input). (X. 25 only.) D bit
will be set in the last X. 25 data packet corresponding to this
message. When this flag is set, I PCSEND waits to complete until
acknow1egement from the remote that the complete message has

2- 49

IPCSEND

been received. When the connection is between two HP3000's
running NS X.25 3000/V, the acknowlesgement is made when
I PCRECV is called on the remote side.

• qualifier bit (bit 19, input). (X.25 only.) This flag indicates to
X. 25 to set the Q bit in the packets that contain this message.

• urgent data (bit 27, input). (TCP only.) If set, this bit will cause
the data sent to be marked urgent.

result
(output)

Discussion

32-bi t integer, by reference. The error code returned; zero if no
error.

NOTE

When nowait I/O is used, the resul t
parameter is not updated upon completion of
IOWAIT. Therefore, the value of resul t
will indicate only whether the call was
successfully initiated. To determine whether
the call completed successfully, you can use
the I PCCHECK intrinsic.

The I PCSEND intrinsic is used to send data on a connection. The only required parameters are vcdesc,
data, and dlen (option variable).

A set of addresses in the data parameter allows vectored data to be gathered from multiple locations.

The value specified by the data offset option is relative to the data array. If data descriptors are used,
specifying this option will cause a portion of the descriptor to be passed over (the offset is NOT applied to
the pointer in the descriptor). This may lead to unexpected results.

If this intrinsic is called in nowait mode, the address of the data is passed to the protocol module being
accessed. The contents of the data buffer will have been read when IOWAIT completes. As many as 7
nowait sends may be outstanding on a connection.

2-50

IPCSEND

Condition codes returned by I PCSEND and IOWAIT are:

• CCE--Succeeded.

• CCL - - Failed.

• CCG--Not returned.

Split stack calls are permitted.

Protocol-Specific Considerations

The following table outlines parameters that are specific to the particular protocol you are accessing.

Table 2-9. IPCSEND Protocol Specific Parameters

Parameters TCP X.25

opt

144 Bit 27: urgent data Bit 18: state of D bit in X.25
packets

Bit 19: state of Q bit in X.25
packets

X.25 Considerations

Setting the Q bit flag causes X. 25 to set the Q bit (qualifier bit) in X. 25 data packets.

Setting the D bit flag causes X. 25 to specify end-to-end acknowledgment of data packets. I PCSEND does
not complete until it receives acknowledgment that the entire message has been received.

Common errors returned by I PCSHUTDOWN in resul tare:

SOCKERR 0
SOCKERR 50
SOCKERR 65
SOCKERR 67
SOCKERR 107
SOCKERR 131
SOCKERR 146
SOCKERR 156
SOCKERR 159
SOCKERR 160
SOCKERR 168

Request completed successfully.
Invalid data length.
Connection aborted by local protocol module.
Connection failure detected.
Transport is going down.
Protocol module does not have sufficient resources.
Event reset.
Event interrupt.
Invalid X.25 D-bit setting.
Incompatible with protocol state.
Restart event occurred on X.25 connection.

A complete table of SOCKERRs is included in Appendix C.

2-51

IPCSEND

TCP

The urgent data bit of the protocol flags option (opt parameter) is used to inform TCP that the data to be
sent should be marked urgent. This will not cause the data to be delivered out of band, and the receiver
of this data will not know of urgent data that is pending until a receive is posted. See I PCRECV for more
information.

Cross-System Considerations for TCP

There are no differences that affect cross-system operations. Note that the urgent data bit is not
supported on the HP 1000; however, if this bit is set by the HP 3000 program, it will be ignored by the
receiving process on the HP 1000.

Send size (dlen parameter) - Range for the HP 3000 is I to 30,000 bytes. Range for the HP 1000 is 1 to
8,000 bytes. Range for the HP 9000 is 1 to 32,767 bytes. Although the ranges are different, you must
specify a send size within the correct range for the respective receiving system; otherwise, an error will
occur.

Note that the default send and receive sizes are different on different HP systems. On the HP 3000, the
default send and receive size is less than or equal to 1,024 bytes. On the HP 1000 and HP 9000, the
default send and receive size is 100 bytes.

2-52

IPCSHUTDOWN

Releases a descriptor and any resources associated with it.

Syntax

I PCSHUTDOWN (descriptor [~flags] mopt] Lresul t])

Parameters

descriptor
(input)

flags

opt

result
(output)

Discussion

32-bit integer, by value. The socket to be released. May be a call
socket, destination, or VC socket descriptor. Privileged Mode capability is
required to release destination descriptors created in privileged mode.

32 bi ts, by reference. A bit representation of various options. The
following flag is defined:

flags [1 7]--graceful release of connection. (TCP only.) This option is not
supported for access to the X. 25 protocol.

Record or byte array, by reference. A list of options, with
associated information. The following option is defined:

• reason code (code= 143, length=2) (input). (X. 25 only.) This option allows
you to include cause and diagnostic values in the X.25 clear packets
when a connection is closed down. The first byte contains the cause and
the second byte contains the diagnostic code. A list of cause and
diagnostic codes used with NS X.25 protocol access is contained in
Appendix B. If DTE originated, the cause code will always be zero.

32-bi t integer, by reference. The error code returned; zero if no
error.

The I PCSHUTDOWN intrinsic permits you to close a call socket or release a connection. The descriptor is
the only required parameter (option variable).

I PCSHUTDOWN can be called to release a call socket descriptor, a destination descriptor, or a VC socket
descriptor. Since system resources are used up as long as call sockets and destination sockets exist, you
may want to release them whenever they are no longer needed.

The call socket is needed as long as a process is expecting to receive a connection request for that socket.
A process which receives a connection request can release the call sockets any time after the connection
request is received via I PCRECVCN, as long as no other connection requests are expected for that call

2-53

IPCSHUTDOWN

socket. For more information on I PCSHUTDOWN, refer to "Shutting Down Sockets and Connections" in
Section 1.

Condition codes returned by this intrinsic are:

• CCE--Succeeded.

• CCL- - Failed.

• CCG--Not returned by this intrinsic.

This intrinsic may not be called in split stack mode.

Protocol-Specific Considerations

The following table outlines parameters that are specific to the particular protocol you are accessing.

Table 2-10. IPCSHUTDOWN Protocol Specific Parameters

Parameters TCP X.25

flags

17 Graceful release of nla
connection

opt

143

X.25 Considerations

nla Reason code (SVCs only)

Shutting down an X. 25 connection causes a clear packet to be sent by X. 25 over an SVC, or a reset packet
over a PVC, unless the virtual circuit is already cleared. You can specify the cause and diagnostic fields in
the opt parameter (code= 143) that will be included in the clear packet over an SVC. Over a public data
network (PDN), the cause may not be transmitted to the remote node.

When used with direct access to level 3, the intrinsic I PCSHUTDOWN can only be called in waited mode.
The intrinsic will not return until the request is completed. Thus, if a vcdesc is specified in
I PCSHUTDOWN the reception of the X.25 clear confirmation packet will signal the successful completion
of the call.

X. 25 direct access to level 3 does not support the graceful release bit. As a suggestion, to ensure that no
data packets are lost before the clear packet is sent, the D bit option could be set in the last I PCSEND.
This would assure end-to-end acknowledgment of this message before issuing the I PCSHUTDOWN to clear
the virtual circuit.

2-54

IPCSHUTDOWN

Common errors returned by I PCSHUTDOWN in resul tare:

SOCKERR
SOCKERR
SOCKERR

o Request completed successfully.
54 Invalid call socket descriptor.
66 Invalid connection descriptor.

A complete table of SOCKERRs is included in Appendix C.

TCP

If graceful release is specified and supported by the remote process, the requestor of a graceful release will
go to a simplex -in state (i. e. able only to receive, unable to send) and the remote process will go to a
simplex-out state. The VC remains in this state until the remote process shuts down its socket, at which
time all resources are released. See IIShutting Down a Connection ll in Section 1 for a list of steps to take
in implementing a graceful release shutdown.

If graceful release is selected, a SOCKERR 102 resul t will be returned if any of the following conditions
exist:

• A connection request has been received, but the connection has not been accepted.

• The connection has already been gracefully released, and the process is therefore in a simplex-in
state.

• A connection request has been issued, but the connection has not yet been established.

• The connection has been aborted.

• The protocol module (part of the NS transport) does not support graceful release.

• Data is being sent from the connection. This could occur, for example, if I PCSEND was called in
nowait mode and has not yet completed.

Cross-System Considerations for TCP

The following are HP 3000 to HP 1000 and HP 3000 to HP 9000 programming considerations for this
intrinsic:

Socket shut down - The shutdown procedure for the NS/1 000 and NS3000/V processes is the same,
except that the graceful release flag is not available on the HP 1000. If the graceful release flag (flags
17) is set on the HP 3000, the HP 1000 will respond as though it were a normal shutdown. The shutdown
procedure for both NS/1 000 and NS/9000 Series 800 processes is identical except for shared sockets on
NS/9000 Series 800. Shared sockets are not destroyed until only one socket descriptor exists (the last
socket descriptor). Therefore, the NS/9000 Series 800 process may take longer to close the connection
than expected.

2-55

OPTOVERHEAD

Returns the number of bytes needed for the opt parameter in a subsequent intrinsic call, not including
the data portion of the parameter.

Syntax

optlength := OPTOVERHEAD (eventualentries[,result])

Parameters

opt length
(returned function
value)

eventualentries
(input)

result
(output)

Discussion

16-bi t integer. The number of bytes required for the opt parameter,
not including the data portion of the parameter.

16-bit integer, by value. The number of option entries that will be
placed in the opt parameter.

16-bit integer, by reference. The error code returned; zero if no
error.

This function returns the number of bytes needed for the opt parameter, excluding the data area. The
one parameter is required.

Condition codes returned by this intrinsic are:

• CCE- -Succeeded.

• CCL--Failed because of a user error.

• CCG--Not returned by this intrinsic.

This intrinsic may be called from split stack mode.

2-56

READOPT

Obtains the option code and argument data associated with an opt parameter argument.

Syntax

READOPT(opt,entrynum,optioncode,datalength,data,result)

Parameters

opt
(input)

entrynum
(input)

optioncode
(output)

data length
(input/output)

data
(output)

result
(output)

Record or byte array, by reference. The opt parameter to be
read. Refer to "NetIPC Intrinsics/Common Parameters" for information on
the structure and use of this parameter.

16-bit integer, by value. The number of the option entry to be
obtained. The first entry is number zero.

16-bit integer, by reference. The option code associated with the
entry. These codes are described in each NetIPC call opt parameter
description.

16-bit integer, by reference. The length of the data buffer into
which the entry should be read. If the data buffer is not large enough to
accommodate the entry data, an error will be returned. On output, this
parameter contains the length of the data actually read. (The length of the
data associated with a particular option code is provided in each NetIPC
call opt parameter description.)

Array, by reference. An array which will contain the data read from
the option entry. If the array is not large enough to hold the data read,
nothing will be returned.

16-bit integer, by reference. The error code returned; zero if no
error.

2-57

Asynchronous I/O

ASYNCHRONOUS I/O

In order to perform nowait (asynchronous) socket I/O on an HP 3000, a process must use the MPE-V
IOWAIT and IODONTWAIT intrinsics. IOWAIT and IODONTWAIT behave in the same way except that, in
the first case, the calling process must wait until the I/O operation completes; in the second case, control is
immediately returned to the calling process. One of these intrinsics must be called at some point after a
nowait I/O request. The calling process is not blocked after the initial nowait I/O request.

I PCSEND, I PCRECV, and I PCRECVCN are normally blocking calls. The calling process must wait until the
send/receive request is completed. A process can use I PCCONTROL to enable nowait I/O for a specified
call socket or VC socket descriptor. (Nowait mode remains in effect until another I PCCONTROL call
restores waited mode.) If a process issues a nowait send or receive request, the request will be initiated but
its completion cannot be verified until IOWAIT or IODONTWAIT is called. (For a nowait I PCRECVCN call,
the data structures for the connection are not created until IOWAIT is called.) I PCCONNECT is always an
unblocked call: control returns immediately to the calling process, which must call I PCRECV to complete
the connection.

The I PCCONTROL intrinsic itself does not function in asynchronous mode. For example, an I PCCONTROL
called with direct access to X.25 in order to send an interrupt packet will not complete until the X.25
protocol receives an interrupt confirmation.

Within the IOWAIT/IODONTWAIT intrinsic, the filenum parameter should be given the appropriate call
socket/VC socket descriptor value. A value of zero indicates that the IOWAIT intrinsic will wait for the
first I/O completion from all sockets or files for which asynchronous I/O requests have been issued. The
function value returned by the intrinsic is the descriptor (or file number) for which the I/O has completed
(zero if no completion).

The cstation (calling station) parameter returns a zero value for any nowait receive request. For a
nowait send request, bit one of the parameter (the second highest bit) is returned on (all other bits off).
Therefore you can check bit one of the cstation parameter to determine whether an input or an output
operation completed.

The tcount parameter returns the amount of data received after a nowait I PCRECV call. The target
parameter is not currently used by NetlPC.

The syntax for IOWAIT and IODONTWAIT is given here for convenience. For further information on these
intrinsics, please see the MPE V Intrinsics Reference Manual.

NOTE

A program does not need Privileged Mode capability In order to make
nowait NetlPC I/O requests.

2-58

Asynchronous I/O

Steps for Programming with Asynchronous I/O

The following summarizes the steps to follow to have your program perform asynchronous I/O:

• Create the call or VC socket with I PCCREATE, I PCCONNECT, or I PCRECVCN.

• Enable nowait I/O with I PCCONTROL.

• Make a I PCRECVCN, I PCRECV, or I PCSEND NetlPC call on the socket. The call will be
asynchronous.

• Check the result code returned by the call to see if an error occurred when the call was
initiated.

• Call IOWAIT to cause the calling process to wait until the NetlPC call completes or
IODONTWAIT to see if the request has completed.

• Once the asynchronous NetlPC call completes do the following:

• Check the condition code to see if an error occurred. If the condition code=CCE, no
error occurred. If the condition code <> CCE, an error occurred.

• If an error occurred, call I PCCHECK to determine the error code (returned in the
ipcerr parameter).

• If IOWAIT or IODONTWAIT was called with filenum=O or no filenurn specified,
check the fnurn value returned to determine the socket for which I/O completed.
(You can compare the fnurn value with the calldesc value returned by I PCREATE
and the lJcdesc value returned by I PCCONNECT and I PCRECVCN.)

• If both a send and receive request were pending, check the returned cstation value
to determine if a send completed (bit 1 is on) or a receive completed (bit 1 is off).

Refer to Program 3 in Section 3 of this manual for an example program that uses these steps.

2-59

IO[DONT]WAIT

Initiates completion operations for a nowait I/O request.

Syntax

fnum := IO[DONT]WAIT ([filenum] [;target] [;tcount] L,cstation])

Parameters

fnum
(returned function
value)

filenum
(input)

target

tcount
(output)

cstation
(output)

2-60

16-bi t integer. The socket/VC socket descriptor for which an I/O
request has completed. Zero indicates no completion. If a filenum of zero
is specified, and there are outstanding nowait file access request, fnum may
return the file number of a file request that completed.

16-bi t integer, by value. The call/VC socket descriptor indicating
the socket or connection (i. e. call or VC socket) for which the nowait I/O
request was issued. If omitted, or if the value is zero, any nowait NetlPC or
file request issued by the calling process may be completed by this intrinsic
call.

Array of 16-bit values, by reference. Not used by NetlPC.

16-bi t integer, by reference. Returns the amount of data received
after a nowait I PCRECV call. The actual data will be in the I PCRECV data
parameter.

1E>-bi t integer (unsigned), by reference. Bit one is returned on
if the completed request was a send, off if it was a receive. All other bits
will be off.

IO[DONT]WAIT

Discussion

Either IOWAIT or IODONTWAIT is needed to complete a NetlPC nowait send or receive request. IOWAIT
waits until a request can be completed; IODONTWAIT checks to see if a request can be completed and then
immediately returns control to the calling process.

If a nowait I PCRECVCN or I PCRECV request is issued, the data and flags parameters (if specified) must
exist when IOWAIT or IODONTWAIT is called. In other words, these parameters must be global to both
intrinsics, the intrinsic which initiates the request and the intrinsic which attempts to complete the
request (IO [DONT] WAIT).

All parameters are optional (option variable). In general, the condition codes returned by
I aWAIT/IODONTWAIT for socket I/O have the following meanings:

• CCE--Succeeded.

• CCL--Failed.

• CCG--The operation succeeded but a noncritical error (e.g. flags parameter out of bounds)
occurred.

I aWAIT and IODONTWAIT may be called in split stack mode.

2-61

_NE_T_IP_C_E_X_A_M_P_L_ES I~

This section contains examples of NetiPC program pairs. Example 1 consists of two programs that set up
and use a connection to pass data from one program to another. The programs in Example 2 also pass
data, and illustrate how one program, called the server, can be designed to communicate with multiple
remote programs, called clients. Example 3 consists of two programs designed to provide access to the
X. 25 protocol (level 3).

NOTE

It is assumed that these sample programs are started by executing the: RUN
command at the local and remote nodes. For an example program that
illustrates the use of RPM (Remote Process Management) intrinsics to start
processes on HP 3ODDs, refer to the N S 3000IV UserI Programmer
Reference Manual. For methods of starting processes when cross-system
applications are involved, refer to "Cross-System NetlPCII in Section 1.

Example 1

The following two programs comprise an example of how to set up and use a connection (virtual circuit).
The two programs, running on different nodes, open communication via call sockets. They then establish
a connection (between VC sockets) and use this connection to send and receive data. Finally, they
terminate their connection.

In this example, the lengths of the data messages are not known. The sending side (Program 1) includes
the length of each message as the first two bytes of each message it sends. The receiving side (Program 2)
executes two I PCRECV loops for each message: first to receive the length and then to receive the data.

The first program (Program 1):

• looks up the call socket named RALPH located on node JANE and gets back a destination
descriptor;

• creates its own call socket;

• sends a connection request to RALPH;

• shuts down its call socket and its destination socket;

• completes the connection;

• executes a loop in which it:

• reads a line of data;

3-1

NetIPC Examples

• stores the length (number of bytes) of the data in the first part of the message;

• stores the data itself in the second part of the message;

• sends the message on the connection, including the message length as the first two
bytes of the message;

• sends a IIlast messageII which will be recognized by the receiving program as a termination
request;

• receives a "termination confirmation message" and shuts down the connection by releasing its
VC socket.

The second program (Program 2):

• creates a call socket and names it RALPH;

• waits to receive a connection request;

• shuts down its call socket;

• executes a loop in which it:

• calls a procedure that receives a message by executing two I PCRECV loops (the first
loop determines the incoming message length and the second loop receives data until
all the pieces of the message have been received);

• prints the message which was received;

• receives a "last message" termination request;

• sends a "termination confirmation message" in response to the termination request;

• receives a result parameter value of 64 ('IREMOTE ABORTED CONNECTIONII) in response
to a receive request;

• releases its VC socket.

3-2

NetIPC Program 1

$standard level 'HP3000', uslinit$
program connection_example1 (input,output);

const
maxdata = 2000;
maxmsg = maxdata + 2;
maxname = 20;
maxloc = 20;

type
smallint = -32768 .. 32767;
datatype =

record
len: smallint;
msg : packed array[1 .. maxdata] of char;
end;

nametype = packed array[1 .. maxname] of char;
loctype = packed array[1 .. maxloc] of char;

NetlPC Examples

var calldesc
vcdesc
protocol
socket kind
dest
resu It
data
name
location
y_Ien
y_data
num_msgs
st rdata
i

integer; {2-word integer}
integer;
integer;
integer;
integer;
intege r;
data type;
nametype;
loctype;
intege r;
char;
integer;
string[maxdata];
integer;

procedure terminate; intrinsic;

{NetIPC intrinsic declarations}

procedure ipccreate; intrinsic;
procedure ipclookup; intrinsic;
procedure ipcconnect; intrinsic;
procedure ipcrecv; intrinsic;
procedure ipcsend; intrinsic;
procedure ipcshutdown; intrinsic;
procedure ipcerrmsg; intrinsic;

3-3

{initiate connection}

{complete connection}
{fa i led}

NetlPC Examples

{error handling procedure}

procedure leave(result: integer);
var msg: string[BO];

i, len, newresult: integer;
begin
:~:P8~rR~~g(resu It, msg, len, newresu It) ;
if newresult = 0 then

begin
setstrlen(msg, len);
writeln(msg); {print error message}
end

else
writeln('IpcErrMsg result is newresult:1);

terminate;
end;

{main of NetIPC Program 1}

begin

{ look up the call socket RALPH located on node JANE }

name := 'RALPH';
location := 'JANE';
:~!P8~~~~YFH name, 5, location, 4, ,dest, protocol, socket kind, result);
if result <> 0 then leave(result); {failed}

{ create a call socket; then initiate and complete connection to
destination socket}

\~'P8~'r~~~~(socket_ kind, protoco I, , , ca lldesc, resu It) ;
if result <> 0 then leave(result); {failed}
:~:P~~~DD~8~(ca lldesc, dest, , , vcdesc, resu It) ;
if result <> 0 then leave(result); {failed}

!~im=~~~~@I~~:~~~7SC);
:~·p~·r~§Y(vcdesc, ", ,result);
if result <> 0 then leave(result);

3-4

NetIPC Examples

{ prompt for messages and send them }

writeln('Enter 11//" to terminate the program.');
setstrlen(strdata, 0);
while strdata <> '//' do

begin
prompt('Message? ');
readln(strdata) ;
data. len := strlen(strdata);
strmove(data.len, strdata, 1, data.msg, 1);
'~P§~~~9(vcdesc, da t a, da t a . 1e n+2 , , , resuI t) ;

if result <> 0 then leave(result); {failed}
end;

{connection shutdown procedure}

{read message}
{store message length}
{store message}
{send message with

length as first 2 bytes}

da ta. len : = 4;
data.msg := 'END?'; {termination request}
'~P§~~D9(vcdesc, data, 6, , , result);
writeln('END sent');
if result<> 0 then leave(result);
y len : = 1;
~'P§~~§¥(vcdesc, y_data, y_len, , , result); {receive 'V' confirmation}
if (y data = 'V') then writeln('V received');
if (y-data = 'V') and (result = 0) then

~'P§~DY~9P~~(vcdesc)
else

begin
writeln('Warning: shutdown not confirmed or result <> 0');
leave(result) ;
end;

end.

3-5

NetlPC Examples

NetIPC Program 2

$standard level 'HP3000', uslinit$
program connection_example2 (output);

const
maxdata = 2000;
maxname = 20;

type
smallint = -32768 .. 32767;
datatype = packed array [1 .. maxdata] of char;
nametype = packed array [1 .. maxname] of char;

var calldesc:
vcdesc
dlen
result
data
name
len
datastr

integer; {2-word integer}
integer;
integer;
integer;
datatype;
nametype;
smallint;
string[maxdata] ;

procedure terminate; intrinsic;

{NetIPC intrinsic declarations}

procedure ipccreate; intrinsic;
procedure ipcname; intrinsic;
procedure ipcrecvcn; intrinsic;
procedu re i pc recv; int r ins ic;
procedure ipcsend; intrinsic;
procedure ipcshutdown; intrinsic;
procedure ipcerrmsg; intrinsic;

3-6

NetlPC Examples

{error handling procedure}

procedure leave(result: integer);
var msg: string[80];

i, len, newresult: integer;
begin
~p§~rr.~~9(resu 1t, msg, len, newresu 1t) ;
if newresult = 0 then

begin
setstrlen(msg, len);
writeln(msg); {print error message}
end

else
writeln('IpcErrMsg result is newresult:1);

terminate;
end;

{ The following procedure receives one message which was sent via an
ipcsend call. It assumes that the length (number of bytes) of the
message was sent as the first two bytes of data and that the length
value does not include those two bytes. }

procedure receive (

const
head len = 2;

var
var
var

connection
rbfr
rlen

errorcode

integer;
datatype;
smallint;
integer

type
length_buffer_type = packed array[1 .. 2] of char;
header_len_type = record case integer of

o: (wo rd: sma 11 in t);
1: (byte: length buffe r_type) ;

end;

va r i, j
dlen
header len
tempbfr

integer;
intege r;
header len_type;
datatype;

begin {procedure receive }

i:=O;
errorcode .- 0;

3-7

NetlPC Examples

while (i < head len) and (errorcode = 0) do { get length of message}
begin -
dlen := head len - i;
~pqr~qv(connection, tempbfr, dlen, " errorcode);
if errorcode = 0

then strmove(dlen, tempbfr, 1, header_len. byte, i+1);
i : = i + d len;
end;

if errorcode = 0 then
begin
rlen := header_len.word;
i : = 0;
while (i < rlen) and (errorcode = 0) do { get the message}

begin
dlen := header len.word - i;
:~psr~s¥(connect ion, tempbfr, d len, , , e rro rcode);
if errorcode = 0

then strmove(dlen, tempbfr, 1, rbfr, i+1);
i : = i + d len;
end;

end
else

rlen := 0;

end; {procedure receive}

{main of NetIPC Program 2}

begin

{create a call socket and name it}

~P9sr~~~~(3, 0, , , calldes c , res u1t) ;
if result <> 0 then

leave(result); {failed}
name := 'RALPH';
~Pffl~~~ (ca Ildesc, name,S, resu 1t) ;
if result <> 0 then

leave(result); {failed}

{wait for a connection request}

~~Pst~s¥fn(calldesc, vcdesc, , , result);
if result <> 0 then

leave(result); {failed}
'~Pf~J'lY~~R~(ca lldes c) ;

3-8

NetIPC Examples

{wait for a message on the connection and print message received}

repeat
begin
receive (vcdesc, data, len, result);
if result <> 0 then leave(result);
setst r len (da tast r, len);
strmove(len, data, 1, datastr, 1);
if datastr <> 'END?' then writeln (datastr); {print data received}
end

until datastr = 'END?';

{connection shutdown procedure}

if datastr = 'END?' then writeln('END received'};
data := 'V';
'~R9~~D~(vcdesc, data, 1, , , result); {confirmation message}
writeln('y sent');
if result <> 0 then leave(result);
receive(vcdesc, data, len, result);
if result = 64 then

~R9~DY~99~D(vcdesc)
else

leave(result);

end.

3-9

NetIPC Examples

Example 2

This example provides a pair of programs referred to as a server and a client. This server-client pair
is a fairly typical model of an application having multiple nodes (the clients) that request
information from a database or file on a single system (the server). The server program handles
incoming requests from multiple clients on a first-come, first-served basis. These programs, like the
programs in Example I, will work together on the HP 3000. In addition, each program will also
work as a cross-system application with a corresponding program written for the HP 1000 or HP
9000.

The following text explains the operation of the client and server programs included in this manual.

The server program (Program 3):

• Creates a well-known call socket with I PCCREATE. (Well-known means that the socket's
destination descriptor is at an address that is known by the client program. The address is
declared as a constant in both programs).

• Sets the timeout to infinity on the call socket and enables nowait I/O with I PCCONTROL.

• Waits for a connection request from a client by calling I PCRECVCN. When a request is
received, a response is automatically sent to the client from the transport or lower layer.
(This response is received by the client's I PCRECV call).

• Once the call socket is established, the program enters its main loop. In this loop, it waits for
I/O completion on all sockets by calling 10WA1T with filenum equal to O. If some other
function was required of the server, a polling technique with IODONTWAIT could have been
used instead.

• If I/O is successfully completed on the call socket, (I PCRECVCN completes) a virtual circuit
(VC) is established and the procedure HANDLENEWREQUEST does the following:

• Uses I PCCONTROL to set the timeout to infinity and enable nowait I/O on the VC
socket. Setting the timeout to infinity causes the process to wait indefinitely for
incoming requests. If some other function were required of the server, a polling
technique (in which the server periodically checked for requests) could have been
used instead.

• Calls I PCRECV on the virtual circuit to wait to receive the user name from the
client.

• Calls I PCRECVCN on the call socket to wait for the next connection request (from a
new client).

3-10

NetIPC Examples

• If I PCRECV successfully completes on a VC socket the procedure PROCESSREAD does the
following:

• Checks length of data received until all of the user name has been received from the
client. Because each I PCRECV may obtain an amount of data less than or equal to
the amount that has been sent by the client, multiple I PCRECV calls are used, until
the correct length (20 bytes) has been received. Note that if the client name were
not fixed at 20 bytes, variable length data could be handled through the
manipulation of send and receive sizes with the I PCRECVCN intrinsic.

• Reads the data corresponding to the user name from the data file (procedure
READDATA).

• Sends the data to the client with I PCSEND.

• Calls I PCRECV again to get the next user name or shut down notification from the
client.

• Control returns to the main loop, and the server waits for the next IOWAIT completion.

NOTE

If the I/O completed unsuccessfully on a call socket, the socket is shut down
and the program terminates. If the I/O completed unsuccessfully on a VC
socket, the socket is deleted and, unless the error was a remote abort, the
error message is printed.

The client program (Program 4):

• Prompts the user for the name of the remote node (on which the server resides).

• Creates a call socket with I PCCREATE.

• Creates a destination descriptor for the socket using I PCDEST (using the well-known address).

• Sends a connection request to the client using I PCCONNECT. This request is received by the
server's call to I PCRECVCN.

• Changes timeout on the VC socket to infinity with I PCCONTROL. This causes the client to
wait for the server's response indefinitely unless the client receives notification that the
connection is down.

• Receives the server's response to the connection request through I PCRECV.

• Prompts the user for a user name and reads the name that is entered.

3-11

NetiPC Examples

• For any name except IIEOT,II the client sends the name to the server with I PCSEND. If the
name entered is IIEOT,II the call socket and then the VC socket is shut down.

• The client receives the data from the server's data file corresponding to the user name
through I PCRECV. This data is stored.

• Finally, the client prints out the data.

The client program continues to loop until IIEOTII is entered in response to a prompt.

3-12

NetiPC Examples

NetIPC Program 3 (Server Program)

$ STANDARD LEVEL 'HP3000', USLINIT, TABLES ON, CODE OFFSETS ON $
$ COPYRIGHT 'Hewlett Packard Co.' $
PROGRAM server(input, output);

General Algorithm:
Create a well-known call socket (IPCCreate).
Post a nowait IPCRecvCn to receive connection requests sent from
clients.
When the IPCRecvCn completes, receive the connection and post
a nowait IPCRecv to receive the requested user name.
Since the IPCRecv may complete before receiving all of the user name,
additional IPCRecv calls may have to be posted to receive all of
the user name.
Once the all of the user name is received, open the file
named "datafile." Scan datafile until the user
record and information associated with the user name are found.
Call IPCSend (nowait) to send the information associated
with the user name.

1 •
2.

4.

5.

3.

6.

{--}
{ }
{ SERVER: Async Server Sample Program }
{ Revision: <xxxxxx.xxxx> }
{--}
{
{

{--}
{ COPYRIGHT (C) 1987 HEWLETT-PACKARD COMPANY.
{ All rights reserved. No part of this program may be photocopied,
{ reproduced or translated into another programming language without
{ the prior written consent of the Hewlett-Packard Company.
{--}
{

{--}
{ Name Server
{ Source: xxxxxxxxxxx
{ Date: <xxxxxx.xxxx>
{--}
{
{
{ PURPOSE:
{ To show the operation of asynchronous NetIPC calls.
{
{ REVISION HISTORY
{ }
{ DESCRIPTION
{ The Server uses IPC to receive a user name from a Client and sends
{ information associated with the user name back to the Client.
{ The Server can have connections to 63 Clients.
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

3-13

NetlPC Examples

Major Data Structures:

Since all IPC calls (except IPCCreate) are done nowait, the main loop
calls IOWAIT, determines what type of event completed, and calls the
appropriate procedure to handle the event.

The field sd is the vc socket descriptor returned by the IPC and IOWAIT
calls; buff_len is the number of bytes already received by the VC; buffer
is used to store the user name; next points to the next vc record.

New records are added to the head of the list.
The pointer head ptr points to the head; curr_ptr is used to point
to the vc record for which an event must be processed; prev_ptr is used
to update the list when a record is deleted.

}

}
}

Post a nowait IPCRecv on the VC to receive next user name or
shutdown notification from the remote (the IPCRecv completes
with SOCKERR 64, REMOTE ABORT).
Upon receipt of shutdown notification, call IPCShutDown to shut the VC.

}

7.

datafile: datafile contains a fixed number of records (4).
Each record contains a 20-byte user name and an 60-byte information
field, i.e.:

+-------------------------------+
I use r name 1 info rma t ion
+-------------------------------+

20 I 1 60

vc record: For each VC, an IPCRecv is posted to receive the user name.
Since the IPCRecv may complete without receiving all the data,
multiple IPCRecv calls may be necessary to receive the entire name.
Since the server may have several VCs open simultaneously,
this program allocates a buffer for each open VC to store the
user name as it is received, and the number of bytes already received
for each VC is counted. This information is kept in a linked list
of vc_records, which has the following format:

8.

As an alternative, a program with multiple VCs can loop on a single VC
once the first IPCRecv call completes, making all the IPCRecv calls
necessary to receive the rest of the data. Only one buffer is
required, but the program is tied to one VC until all the data for that
VC is received. Since the program is tied to a single VC, the receive
scheme can be the same as one that is used for programs that have only
one VC. (For an example of a receive scheme for a single VC, refer to
the Client program example.)

+-------------------------------+ +-------------------------------+
1 sd I buff len I buffer I next I I sd I buff len I buffer I next 1
1 1 - I I 0--1--> I 1 - I 1 0--1-->
+-------------------------------+ +-------------------------------+

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
LABEL

99;

3-14

NetlPC Examples

CONST

ALL SOCKETS = 0;
BUFFERlEN = 20;
CALL SOCKET = 3;
CCE = 2;
CCG = 0;
CCL = 1;
CHANGE_TIMEOUT = 3;
ENABLE NOWAIT = 1;
FOREVER = TRUE;
INFINITE SELECT = -1;
INFOBUFLEN = 60;
INT16_LEN = 2;
MAX_BUFF_SIZE = 1000;
MAX_RCV_SIZE = 4;
MAX_SEND_SIZE = 3;
PROTO_ADDR = 128;
REMOTE_ABORT = 64;
TCP = 4;
TCP ADDRESS = 31767;
ZERO = 0;

{ used to call IOWAIT on all sockets}
{ user name buffer length }

{ information buffer length }

{ for opt array }
{ for user name }
{ for info buffer }
{ for reporting IPC }
{ call that causes }
{ error }

TYPE
{ }
ShortInt = -32768 .. 32767;
byte = 0.. 255;
byte array type = packed array [1 .. 40] of byte;
Buffer Type = packed array [1 .. BUFFERLEN] of char;
InfoBufType = packed array [1 .. INFOBUFLEN] of char;
name_of_call_array_type = packed array [1 .. 10] of char;

vc_record_type
sd
buff len
buffer
next
end;

seve r i ty_type =

= record
integer;
integer;
Buffer_Type;
vc_ptr_type;

(RECOVERABLE, IRRECOVERABLE);

{ to hold user names }
{ received on VCs }

integer;
vc_ptr_type;
Integer;
vc_ptr_type; {point to head of VC list}

VAR
call name
ca 11 sd
control value
cstation

cu rr sd
curr_ptr
dlen
head_pt r

name of call array type;
integer; {-set by IPCCreate
ShortInt; { for IPCControl
ShortInt; {for IOWAIT--indicates if

{ receive or send completed

}
}
}
}

3-15

{ set by IPCRecvCn

for IPCRecv

NetlPC Examples

infofi Ie
new vc
opt_data
opt_num_arguments
opt ion
prev_ptr
protocol_kind
severity
snum
resu It
short error
socket kind
TempBuff
timeout
timeout len

Buffer_Type;
integer;
ShortInt;
ShortInt;
byte_array_type;
vc_ptr_type;
Integer;
seve r i ty_type;
ShortInt;
Integer;
ShortInt;
Integer;
Buffer_Type;
Integer;
Integer;

{ for OPT calls

{

}

}

}

$ TITLE 'Procedures', PAGE $
PROCEDURE ADDOPT; INTRINSIC;
PROCEDURE INITOPT; INTRINSIC;
PROCEDURE IPCCheck; INTRINSIC;
PROCEDURE IPCControl; INTRINSIC;
PROCEDURE IPCCREATE; INTRINSIC;
PROCEDURE IPCNAME; INTRINSIC;
PROCEDURE IPCRECVCN; INTRINSIC;
PROCEDURE IPCRECV; INTRINSIC;
PROCEDURE IPCSEND; INTRINSIC;
PROCEDURE IPCSHUTDOWN; INTRINSIC;
FUNCTION IOWAIT : ShortInt; INTRINSIC;
PROCEDURE FCHECK; INTRINSIC;
PROCEDURE FCLOSE; INTRINSIC;
FUNCTION FOPEN : ShortInt; INTRINSIC;

{ Internal Procedures }

PROCEDURE CHECK_FILE;
FORWARD;
{ Check that the file exists. }

PROCEDURE ERROR ROUTINE
(where name of call_array_type;

what integer;
sd integer;
severity: severity_type);

FORWARD;
{ If irrecoverable error, print error message and terminate.
{ If recoverable error, just print error message.

}
}

PROCEDURE HANDLENEWREQUEST
(VAR new_vc : integer);

FORWARD;
{ Called when an IPCRecvCn completes--a new client wants to talk to us }

PROCEDURE PROCESSREAD
(VAR curr vc : integer);

3-16

NetlPC Examples

FORWARD;
{ Called when an IPCRecv completes successfully. }

PROCEDURE READDATA
{VAR client_buf Buffer Type; { contains user name requested }

VAR output_buf InfoBufType); { will contain information buffer }
FORWARD;

{ Called by ProcessRead. Gets information buffer from datafile. }

PROCEDURE SETUP;
FORWARD;
{ Create a TCP call socket using a well-known address }

PROCEDURE SHUTDOWNVC
(VAR shut_vc integer);

FORWARD;
{ Shut down a VC that the client no longer needs (IPCShutdown). }
{ Called when an error occurs on a VC, including REMOTE ABORT. }

$ TITLE 'Check File', PAGE $
{-------------~--}
{Procedure: CHECK FILE }
{- }
{ Check that the file can be opened before resetting it to read data. }
{ Called once, at the beginning of main. }
{--}
PROCEDURE CHECK_FILE;
CONST

EXISTING FILE = 1;
NO_CHANGE = 0;
SEC CODE = 0;

{ for FOPEN }

VAR
fnum ShortInt;

begin
fnum := FOPEN (infofile, EXISTING FILE);
if ccode <> CCE then {FOPEN unsuccessful. Call ERROR ROUTINE. }

begin
FCHECK (fnum, short error);
call name := 'FOPEN - ,
result := short error;
severity := IRRECOVERABLE;
ERROR ROUTINE{ call name, result, 0 , severity);
end - { ccode <> CCE }

else { FOPEN was successful. Close file and return. }
FCLOSE (fnum, NO_CHANGE, SEC CODE);

end; {CHECK FILE}

3-17

NetIPC Examples

$ TITLE 'Error Routine', PAGE $
{-------------~--}
{Procedure: ERROR ROUTINE }
{ }
{ Called if error <> REMOTE ABORT. }
{ If irrecoverable error, print error message and terminate. }
{ If recoverable error (error on IPCSend or IPCRecv I/O completion), }
{ just print error message. }
{--}
PROCEDURE ERROR ROUTINE

(where name of call array type;
what integer; - -
sd integer;
severity: severity_type);

begin {Error_Routine}
begin
writeln('Server: Error occurred in , where,' call.');
writeln('Server: The error code is: " what:5,

The local descriptor is: " sd: 4);
end;

if severity =
GOTO 99;

IRRECOVERABLE then
{ term ina t e }

end; {Error_Routine}

$ TITLE 'HandleNewRequest', PAGE $
{--}
{Procedure: HANDLENEWREQUEST }
{ }
{ Called when an IPCRecvCn completes--a new client wants to talk to us }
{ Allocate and initialize vc record for the new VC. }
{ Set the timeout to infinity with IPCControl for later calls }
{ Enable NOWAIT 10 for the VC socket (IPCControl) }
{ Post an IPCRecv on the VC to receive user name }
{ Post another IPCRecvCn to receive the next connection request }
{--}
PROCEDURE HANDLENEWREQUEST

(VAR new_vc : integer);

begin { HandleNewRequest }

{ Get a vc record for the new VC; add to list; initialize vc record}
new(curr_ptr);

{ Add to the head of the list
curr_ptrA.NEXT := HEAD_PTR;
head_ptr := curr_ptr;

{ Initialize vc record
with curr_ptrA do

begin

3-18

}

}

NetlPC Examples

sd := new_vc;
buff len := 0;

end; {-with curr_ptr }

{ Set the timeout to infinity with IPCControl for later calls}
control value := 0;
timeout-len := 2;

opt num arguments := 1;
~~~~~p~( option, opt_num_arguments, short error );
IF short error <> ZERO THEN

begin- {error on initopt }
call_name := 'InitOpt '
result := short error;
severity := IRRECOVERABLE;
ERROR ROUTINE( call name, result, call_sd, severity);
end; - {error on-initopt }

~pt¢Qn~rq~( new_vc, CHANGE_TIMEOUT, control_value, timeout len,uU resuliuy ;

IF result <> ZERO THEN
begin
call_name := 'IPCControl';
severity := IRRECOVERABLE;
ERROR_ROUTINE ( call_name,result, new_vc, severity);
end;

, , ,

{ Enable NOWAIT 10 for the VC socket (IPCControl)

.~~~Y9~~rR~( new_vc, ENABLE NOWAIT , , , , , , resu It) ;

IF result <> ZERO THEN
begin
call_name := 'IPCControl';
severity := IRRECOVERABLE;
ERROR_ROUTINE ( call_name,result, new_vc, severity);
end;

}

{ Post an IPCRecv on the new VC to get user name }
dlen := BUFFERLEN;
'~~~ffl~s'¥ ( new_vc, TempBuff, d len, , , resu It) ;
IF result <> ZERO THEN

begin
call name := 'IPCRecv
severity := IRRECOVERABLE;
ERROR_ROUTINE( call_name,result, new_vc, severity);
end;

{ Post another IPCRecvCn to receive the next connection request }
~~~ffl~s'¥~~( call_sd, new_vc, , , result );
IF result <> ZERO THEN

begin
call name := 'IPCRevcCn '

3-19

NetlPC Examples

severity := IRRECOVERABLE;
ERROR_ROUTINE(call_name, result, new_vc, severity);
end;

end; { HandleNewRequest }

$ TITLE 'ProcessRead', PAGE $
{---}
{Procedure: PROCESSREAD }
{ }
{ Called when an IPCRecv completes. If all of the user name is received, }
{ call ReadData and send information buffer (IPCSend). }
{ Otherwise, post another IPCRecv to get rest of user name. }
{---}
PROCEDURE PROCESSREAD

(VAR curr vc : integer);

VAR
data buf
i

InfoBufType;
ShortInt;

{ vc record not found for curr vc }
{ INTERNAL ERROR }

begin {ProcessRead}
{ Get the name this client wants data for }

{ Scan linked list for vc record for curr vc }
curr ptr := head ptr;
while (curr_ptr <> nil) and (curr_ptrA.sd <> curr_vc) do

curr ptr := curr ptrA.next;
if curr-ptr = nil then

begin
call_name := 'Program
result := 0;
severity := IRRECOVERABLE;
ERROR_ROUTINE (call_name,result, curr_vc, severity);
end

else
{ vc_record found, so move data to vc record buffer
begin
for i := 1 to dlen do

curr ptrA.buffer[i + curr ptrA.buff len] := TempBuff[i];
{ update length (amount of data received)
curr_ptrA.buff_len := curr_ptrA.buff_Ien + dlen;
end;

}

}

if curr_ptrA.buff_Ien < BUFFER LEN then
{ Not all of the name was received, so post another IPCRecv on the VC }
{ to receive the rest of the name }

begin
dlen := BUFFERLEN - curr_ptrA.buff_Ien;
:~,~~~~~~H curr_vc, TempBuff, dlen, , , result);
IF result <> ZERO THEN

begin
call name := 'IPCRecv
severity := IRRECOVERABLE;

3-20

Buffe r Type;
InfoBufType);

NetlPC Examples

ERROR_ROUTINE (call_name,result, curr_vc, severity);
end;

end; {if curr_ptrA.buff_len < BUFFER LEN }

if curr ptrA.buff len = BUFFERLEN then
{ Received all of-the name, so call ReadData to get the data }
{ we need from the file to send to the client. }
{ Also reset buff len to 0 to receive next name request }
begin -
curr ptrA.buff len := 0;
ReadData(curr-ptrA.buffer, data buf);
{ Send information buffer to client }
~~~~~~g ( cu rr_vc, data_ buf, I NFOBUFLEN, , , resu It) ;
IF result <> ZERO THEN

begin
call name := 'IPCSend
severity := IRRECOVERABLE;
ERROR_ROUTINE ( call_name,result, curr_vc, severity);
end;

{ Post another IPCRecv on VC to get next user name or shut down }
{ notification from client. }
~~~~~§~ ( cu rr_vc, TempBuff, d len, , , resu It) ;
IF result <> ZERO THEN

begin
call_name := 'IPCRecv ;
severity := IRRECOVERABLE;
ERROR_ROUTINE(call_name,result, curr_vc, severity);
end;

end;
end; { ProcessRead }

$ TITLE 'ReadData', PAGE $
{---}
{Procedure: READDATA }
{ }
{ Called by ProcessRead. Input is user name (client buf). }
{ Returns information buffer associated with user (output buf). }
{--~----------------}
PROCEDURE READDATA
(VAR client buf

VAR output_buf

CONST
LAST REC

VAR
current rec
datafile
info buf
found
name buf

= 4;

Shortlnt;
TEXT;
InfoBufType;
Boolean;
Buffer_Type;

3-21

NetlPC Examples

begin { ReadData }

{ }
{ Open the file named "datafile".
{ Each record contains a 20-byte user name and an 50-byte information field.
{ Search until the last record is found, or we match the user name the
{ client wants.
{ If there is a match, retrieve the remaining data in the record
{ (the information field), and prepare to send it back.
{ If there is no match, return "name not found" to the client.
{}

found := FALSE;
current_rec := 1;

RESET(datafile, infofile);

WHILE (NOT found) AND (current rec <= LAST REC) DO
begin {search the file }

READLN(datafile, name_buf, info_buf);

IF client buf = name buf THEN
begin {found a match }
{ }
{ We found the name the client requested in the file.
{ Set the flag to fallout of the while loop, and
{ get the buffer to be sent to the client.
{}
writeln('Server: " client buf, ' information found.');

found := TRUE;
output buf := info buf;

end; { found a match }

{ increment to test the next record in the file }
current rec := current rec +1;

end; { search the file}

{}
{ We've fallen out of the WHILE loop because there is a match,
{ or we reached the end of the file. Find out which one it is.
{}

IF NOT found THEN
begin {didn't find the requested name}

{ }
{ We didn't find the data in the file. Put an error
{ message in the data buffer.
{ }
write In ('Server: " client_buf, ' not in file.');

3-22

NetlPC Examples

output buf :=
'SERVER did not find the requested name in the datafile.

end; { didn't find the requested name}

end; { ReadData }

$ TITLE 'SetUp', PAGE $
{---}
{Procedure: SETUP }
{ }
{ Create a TCP call socket using a well-known address }
{ Set the timeout to infinity with IPCControl for later calls }
{ Enable NOWAIT 10 for the VC socket (IPCControl) }
{ Post an IPCRecvCn to receive connection requests }
{ Global Variables: sets call_sd with IPCCreate; }
{ new vc is set when IPCRecvCn completes }
{-----------------------~---}
PROCEDURE SETUP;

begin { SetUp }

{ Set up the opt array for one option }
opt num arguments := 1;
·~",~tJ~p~(opt ion, opt_num_a rguments, sho rt e rro r);
IF short error <> ZERO THEN

begin- {error on initopt }
call_name := 'InitOpt '
result := short_error;
severity := IRRECOVERABLE;
ERROR ROUTINE(call name,result,call_sd, severity);
end; - {error on-initopt }

{ Add the option for the well-known address for the IPCCreate Call }
opt data := TCP ADDRESS;
~qq~p~(option,-O, PROTO_ADDR, INT16_LEN, opt_data, short error);
IF short error <> ZERO THEN

begin- {error on AddOpt }
call_name := 'AddOpt '
result := short error;
severity := IRRECOVERABLE;
ERROR ROUTINE(call name,result,call sd, severity);
end; - {error on-AddOpt } -

{ Prepare to create a call socket }
socket_kind := CALL_SOCKET;
protocol_kind := TCP;

{A call socket is created by calling IPCCREATE. The value returned
{in the call sd parameter will be used to check for an IPCRecvCn
{}

~~~~~~rm~( socket_kind, protocol_kind, ,option, call_sd, result );

3-23



NetlPC Examples

IF result (> ZERO THEN
begin
call name := 'IPCCreate '
severity := IRRECOVERABLE;
ERROR_ROUTINE ( call_name,result,call_sd, severity);
end;

{ Set the call sd timeout to infinity with IPCControl for later calls}
control_value := 0;
timeout len := 2;

:~~~~Qn~rQ1( call sd, CHANGE_TIMEOUT, control_value, timeout_len,o""resuii') ;
IF result (> ZERO THEN

begin
call_name := 'IPCControl';
severity := IRRECOVERABLE;
ERROR_ROUTINE( call_name,result,call_sd, severity);
end;

{ Enable NOWAIT 10 for the call socket

, , ,

}

:~~~~PD~RP~ ( ca 11_sd, ENABLE_NOWAIT , , , , , , result );

IF result <> ZERO THEN
begin
call name := 'IPCControl';
severity := IRRECOVERABLE;
ERROR_ROUTINE( call_name,result, call_sd, severity);
end;

{ Post an IPCRecvCn to receive a connection request }
o~~~~~~~~~ ( ca 11_sd, new_vc , , , res uIt );
IF result <> ZERO THEN

begin
call name := 'IPCRevcCn '
severity := IRRECOVERABLE;
ERROR_ROUTINE ( call_name,result, new_vc, severity);
end;

end; { SetUp}

$ TITLE 'ShutdownVC', PAGE $
{-------------------------------------------------------------------------}
{Procedure: SHUTDOWNVC }
{ }
{ Shut down a VC that the client no longer needs. }
{ Called when an error occurs on a VC, including REMOTE ABORT }
{------------------------------------------------------~------------------}
PROCEDURE SHUTDOWNVC

(VAR shut vc : integer);

3-24



NetlPC Examples

begin {ShutdownVC}
{ }
{ The client shut down the VC, or it has gone down due to a
{ networking problem. Either way, accept the shutdown.
{}
~~~~n4~g9~~H shut_vc, , , resu It) ;
IF result <> ZERO THEN

begin
call_name := 'IPCShutdwn';
severity := IRRECOVERABLE;
ERROR_ROUTINE(call_name,result, shut_vc, severity);
end;

for shut vc }
}

:= curr ptr;
:= curr-ptrA.next;

{ while curr_ptr <> nil ... }
= nil then { vc record not found

{ INTERNAL ERROR

}

}

}

}

{ deleting first entry

{ deleting middle entry

{ Delete vc record from linked list
prev_pt r : =- nil;
curr ptr := head ptr;
while (curr_ptr <> nil) and (curr_ptrA.sd <> shut_vc) do

begin
prev_ptr
curr_ptr

end;
if curr ptr

begin
call_name := 'Program
result := 0;
severity := IRRECOVERABLE;
ERROR_ROUTINE(call_name,result, shut_vc, severity);
end;

if prev_ptr = nil then
head_ptr := head_ptrA.next

else
prev_ptrA.next := curr_ptrA.next;

{ Deallocate vc record
dispose(curr ptr);
end; { ShutdownVC }

$ TITLE 'Server MAIN', PAGE $
{--}
{ MAIN }
{--}
{ Set up a rcp call socket with a well-known address. Post a nowait }
{ IPCRecvCn on the call socket and wait for a connection request (SETUP). }
{ }
{ Loop forever waiting for I/O completions. }
{ Exit the loop if an irrecoverable error (error other than error on }
{ VC I/O completion) occurs by calling ERROR ROUTINE with IRRECOVERABLE }
{ severi ty. }
{ The following events can occur: }
{ -IPCRecvCn successfully completes (CCE and snum = call socket desc). }
{ A new Client wants service. }
{ Action: call HANDLENEWREQUEST }
{ -IPCRecv successfully completes (CCE, snum <> call socket descriptor & }
{ cstation = 0). A Client is sending us a user name. }

3-25

NetlPC Examples

{ Action: call PROCESSREAD }
{ -IPCSend successfully completes (CCE, snum <> call socket descriptor & }
{ cstation <> 0). }
{ Action: nothing (nothing needs to be done) }
{ -Error occurs on call socket (CC <> CCE and snum = call socket desc). }
{ Action: set severity to IRRECOVERABLE and call ERROR ROUTINE. }
{ ERROR ROUTINE will print error message and terminate. }
{ -Error occurs on VC socket (CC <> CCE and snum <> call socket desc and}
{ resul t = SOCKERR 64, REMOTE ABORT). }
{ This means that the remote shut down its VC; not really an error. }
{ Action: call SHUTDOWNVC (IPCShutdown and delete VC record) }
{ -Error occurs on VC socket (CC <> CCE and snum <> call socket desc and}
{ resu It <> SOCKERR 64, REMOTE ABORT). }
{ An error occurred on a VC other than a remote abort. }
{ Action: set severity to RECOVERABLE and call ERROR_ROUTINE. }
{ ERROR ROUTINE will print error message and continue. }
{ Call SHUTDOWNVC (IPCShutdown and delete VC record). }
{ Handle each one of these cases in this loop.
{
{}

begin { Server}

head_ptr := nil;
infofile := 'datafile';

{ Loop, waiting for I/O to complete.

}

}
}
}

}

{ wait for I/O completion on }
{ anyone of the sockets }

Create a call socket with a well-known address for the
clients to call.
Post an IPCRecvCn (NOWAIT) to receive connection requests.

{ Make sure datafile can be opened.

{
{
{

WHILE FOREVER = TRUE DO
begin {Forever Do }
snum := IOWAIT(ALL_SOCKETS, , , cstation);

SETUP;

if ccode = CCE then
{ successful completion }

if snum = call sd then
{ successful 170 completion on call socket, so must be IPCRecvCn }

HANDLENEWREQUEST(new vc) { new vc was set to the new VC}
{ in the IPCRecvCn call }

else
{ successful I/O completion on VC

begin
curr sd := snum;
if cstation = 0 then

PROCESSREAD(curr sd);
end;

}

{ IPCRecv completed. }
{ Client sent us user name. }

if ccode <> CCE then
begin
:~~Q¢n~q'~ (s num, resuI t, ,);

if snum = call sd then

{ error, including shutdown notification}

{ get IPC error code }
{ error on call socket--terminate }

3-26

NetlPC Examples

begin
call_name := 'IPCRecvCn ';
severity := IRRECOVERABLE;
ERROR_ROUTINE (call_name, result, call_sd, severity);
end

else
{ Error on VC. If not REMOTE ABORT, print message and delete VC. }
{ If REMOTE_ABORT, just delete VC. }

begin
curr_sd := snum;
if result <> REMOTE ABORT then

begin
if cstation = 0 then

call name := 'IPCRecv
else

call name := 'IPCSend
severity := RECOVERABLE;
ERROR ROUTINE (call name, result, curr_sd, severity);
end; -{ result <> REMOTE_ABORT}

end;
end;

SHUTDOWNVC(curr sd); {error on VC, so delete it
end; {snum <>-call sd }
{ ccode <> CCE }
{ Forever Do }

}

99: writeln;

{ }
{ We encountered an irrecoverable error (error other than error on VC I/O
{completion). The NS cleanup routine will shut down
{ all the sockets we own once the program has terminated.
{}

end,. {Server}

3-27

General Algorithm:
1. Get the name of the remote node from the user.
2. Create a call socket (IPCCreate).
3. Get the path descriptor for the Server's well-known socket

(I PCDest).
4. Request connection to the Server (IPCConnect).
5. Receive connection verification (IPCRecv).
6. Loop--ask the user for user name for information retrieval

(until the user enters the string literal 'EOT').
7. Send the user name to the Server (IPCSend).
8. Receive the information associated with the user name (IPCReceive).

NetlPC Examples

NetIPC Program 4 (Client Program)

$ STANDARD LEVEL 'HP3000', USLINIT, TABLES ON, CODE OFFSETS ON$
$ COPYRIGHT 'Hewlett Packard Co.' $
PROGRAM Client(input, output);

{--}
{ }
{ CI ient: CI ient Sample Program }
{ Revision: <870610.1327> }
{--}
{
{

{--}
{ COPYRIGHT (C) 1987 HEWLETT-PACKARD COMPANY.
{ All rights reserved. No part of this program may be photocopied,
{ reproduced or translated into another programming language without
{ the prior written consent of the Hewlett-Packard Company.
{--}
{
{--}
{ Name: Client
{ Date: <870610.1327>
{--}
{
{
{ PURPOSE:
{ Client to correspond with async Server example.
{
{ REVISION HISTORY
{}
{ DESCRIPTION
{ The Client uses IPC to send a user name to the Server and receive
{ information associated with the user name from the Server.
{
{
{
{
{
{
{
{
{
{
{
{
{}
LABEL

89,
99;

3-28

NetIPC Examples

CONST

BUFFERLEN = 20;
CALL_SOCKET = 3;
CHANGE TIMEOUT = 3;
FOREVER = TRUE;
INFINITE SELECT = -1;
INFOBUFLEN = 60;
INT16_LEN = 2;
LENGTH_OF_DATA = 20;
MAX BUFF SIZE = 1000;
MAX-RCV SIZE = 4;
MAX-SEND SIZE = 3;
MAX-SOCKETS = 32;
INTEGER_LEN = 2;
TCP = 4;
TCP ADDRESS = 31767;
ZERO = 0;

{ Well-known TCP address used by Server}

TYPE
{}
{}
ShortInt = -32768 .. 32767;
byte = 0.. 255;
byte array type = packed array [1 .. 8] of byte;
buffer type = packed array [1 .. BUFFERLEN] of char;
InfoBufType = packed array [1 .. INFOBUFLEN] of char;
name_of_call_array_type = packed array [1 .. 10] of char;

VAR
buffer len
call name
ca 11 sd
control value
data buf
error return
node name
node name len- -proto addr
protocol_kind
req_name_Ien
requested_name
socket kind
temp position
timeout
timeout len
vc sd

$TITLE 'IPC Procedures', PAGE $
PROCEDURE IPCConnect; INTRINSIC;
PROCEDURE IPCControl; INTRINSIC;
PROCEDURE IPCCREATE; INTRINSIC;
PROCEDURE IPCNAME; INTRINSIC;
PROCEDURE IPCDEST; INTRINSIC;

Intege r;
name of call_array_type;
integer;
ShortInt;
InfoBufType;
Integer;
Buffer_Type;
Integer;
ShortInt;
Integer;
Integer;
Buffer_Type;
Integer;
ShortInt;
Integer;
Integer;
Integer;

3-29

NetIPC Examples

PROCEDURE IPCRECVCN; INTRINSIC;
PROCEDURE IPCRECV; INTRINSIC;
PROCEDURE IPCSEND; INTRINSIC;
PROCEDURE IPCSHUTDOWN; INTRINSIC;

$ TITLE 'Internal Procedures', PAGE $

PROCEDURE GETLEN
(VAR buffer BUffer_Type;

VAR current_pos ShortInt;
VAR length Integer);

FORWARD;
{ Get the length of a string. Return the next post ion }

PROCEDURE ERROR ROUTINE
(VAR where name of call array type;

what integer;
sd : integer);

FORWARD;

PROCEDURE RECEIVEDATA
(VAR info_buf : InfoBufType);

FORWARD;

PROCEDURE SETUP;
FORWARD;
{ Create a call socket, connect to server using IPCDest }

PROCEDURE SHUTDOWNSOCKETS;
FORWARD;
{ Shut down the call and vc sockets }

$ TITLE 'Error_Routine', PAGE $
PROCEDURE ERROR ROUTINE

(VAR where name of call array type;
what integer; - -
sd : integer);

{--}
{Procedure: ERROR ROUTINE }
{- }

{ Called if result code returned <> O. }
{ Prints error message and terminates. }
{--}

BEGIN {Error_Routine}

writeln('Client: Error occurred in ,where,' call.');
writeln('Client: The error code is: " what:5,

, The local descriptor is: " sd:4);

GOTO 89;

END; {Error Routine}

3-30

$ TITLE 'GetLen',
PROCEDURE GETLEN
(VAR buffer

VAR current pos
VAR length

PAGE $

Buffer_Type;
ShortInt;
Integer);

NetIPC Examples

{--}
{Procedure: GETLEN }
{ }
{ Get the length of a string. Return the next postion. }
{--}
VAR

ShortInt;

BEGIN {Get Len}
{ }
{ Find the first blank in the string. Return the difference
{ between the blank position, and the initial value of current_pos
{ }

orig_pos := current pos;

WHILE bUffer[current_pos] <> ' , DO
current_pos := current_pos + 1;

{ set the length value for the caller}
length := current_pos - orig_pos;

{ increment beyond the space, for the next time}
current pos := current pos + 1;

END; { Get Len }

$ TITLE 'ReceiveData', PAGE $
PROCEDURE RECEIVEDATA

(VAR info buf : InfoBufType); {on exit, will contain the information }
{ buffer received from the server }

{--}
{Procedure: RECEIVEDATA }
{ }
{ Receives data from Server. Loops on IPCRecv until total amount of }
{ data is received. }
{--}
VAR

temp_buf
i
j

InfoBufType; { used for IPCRecv }
integer; {amount of data currently received }
integer; {array index for moving data from temp_buf to info_buf}

BEGIN { ReceiveData }
i := 0;
while i < INFOBUFLEN do

3-31

NetlPC Examples

begin
buffer len := INFOBUFLEN - i;
:~~~~~qY'(vc sd, temp buf, buffer len, , ,
HHHHHHHHHH~ r ro r=re turn);- -
IF error return <> ZERO THEN

BEGIN { error on IPCRecv }
call name := 'IPCRecv ;
Error Routine(call name, error return, vc sd);
END - {error on IPCRecv } -

ELSE
{ error return = ZERO; IPCRecv successful }
{ move data to info_buf (output buffer) }

begin
for j := 1 to buffer len do

info_buf[i + j] :; temp buf[j];
i := i + buffer_len; - { update amount of data received }
end;

end; {wh i Ie }

END; { ReceiveData }

$ TITLE 'SetUp', PAGE $
PROCEDURE SETUP;
{--}
{Procedure: SETUP }
{ }
{ Create a TCP call socket (IPCCreate). }
{ Create destination descriptor for Server's well-known call socket (IPCDest). }
{ Establish VC with Server (IPCConnect). }
{ Set the VC timeout to infinity (IPCControl). }
{ Call IPCRecv to verify the Server received the connect request }
{ (wait for the Server to call IPCRecvCn). }
{--}
VAR

destdesc : Integer;

BEGIN {SetUp}

{ Prepare to create a call socket }
socket_kind := CALL SOCKET;
protocol_kind := TCP;

{ }
{A call socket is created by calling IPCCREATE. The value returned
{in the call_sd parameter will be used in the subsequent calls.
{ }
~.~~~~~~~~(socket_kind, protocol kind, , , call_sd, error return);

IF error return <> ZERO THEN
BEGIN
call name := 'IPCCreate '

3-32

NetlPC Examples

Error_Routine(call_name,error_return, call sd);
END;

{ }
{ The server is waiting on a well-known address (TCP_ADDRESS). Create the
{ destination descriptor for the socket from the remote node.
{}
proto_addr := TCP_ADDRESS;

:XR~~~~ (soc ket kind, node name, node name len, p rotoco 1 kind,
HHHHHHpHroto_addr, INTEGER_LEN-; , , destdesc, error return);
IF error return <> ZERO THEN

BEGIN
call name := 'IPCDest
Error_Routine(call_name,error_return, destdesc);
END;

{ Now connect to the server }
i~"~~R~~~~~ (ca 11_sd, des tdes c, , ,

vc_sd, error return);
IF error return <> ZERO THEN

BEGIN
call name := 'IPCConnect';
Error_Routine(call_name,error_return, destdesc);
END;

{ Set the timeout to infinity with IPCControl for later calls }
control_value := 0;
timeout len := 2;

:X~~~9n~r9~(vc sd, CHANGE TIMEOUT, control_value, timeout_len,
HOH OH~HHH~ 00 0 ~HHe r ro r=ret urn);

IF error return <> ZERO THEN
BEGIN
call name := 'IPCControl';
Error_Routine(call_name,error_return, vc sd);
END;

{}
{ Verify the server received the connect request. Wait for the
{ server to do an IPCRecvCn.
{}
:~~~~~~~(vc_sd, data_buf, buffer_len, , , error return);
IF error return <> ZERO THEN

BEGIN
call name := 'IPCRecv ,
Error_Routine(call_name,error_return, vc sd);
END;

END; { SetUp }

3-33

NetIPC Examples

$ TITLE 'ShutdownSockets', PAGE $
PROCEDURE SHUTDOWNSOCKETS;
{--}
{Procedure: SHUTDOWNSOCKETS }
{ }
{ Shuts down the VC and ca 11 sockets. }
{ Entered after ERROR ROUTINE completes. }
{--------------------~---}

VAR
resu 1t Integer;

BEGIN { ShutdownSockets }
{}
{ We are terminating this program. Clean up the allocated
{ sockets.
{}

:~g¢$n.qnt.qQwn (vc sd, , , resu It) ;
{U[)onU'tUUworry about errors here, since there isn't much we can do. }

:~·g¢$nq~qQw.rH ca 11 sd, , , resu It) ;
(U[)onU'tUUworry abo~t errors here, since there isn't much we can do. }

END; { ShutdownSockets }

$TITLE 'Client MAIN', PAGE $
BEGIN { Client }

{--}
{ MAIN }
{ }
{ Prompt user for remote node name. }
{ Create a call socket and connect to the server (SETUP). }
{ Loop (until user enters 'EOT'). }
{ Prompt user for name. }
{ Send use r name to Se rve r (I PCSend) . }
{ Receive information buffer associated with name from Server }
{ (RECEIVEDATA). }
{ Shutdown call and VC sockets (SHUTDOWNSOCKETS). }
{--}
nOde_name_len := 0;
requested_name :=

{ Ask the user for the NS node name of the remote node }
Prompt('Client: Enter the remote node name: ');
Readln(node_name);

temp position := 1;
GetLen(node_name, temp_position, node_name_len);

SETUP;

3-34

{ Create a call socket and connect to the server}

NetIPC Examples

WHILE requested name <> 'EOT' DO
BEGIN {loop for name }

{ Ask the user for a name to be retrieved }
Prompt('Client: Enter name for data retrieval (or EOT to exit): ');
Readln(requested_name);
req_name_len := BUFFERLEN;

IF requested name <> 'EOT' THEN
BEGIN { continue processing}

{ Ask for the name the user requested }
;~.!B¢~~n~ (vc sd, requested name , req_name_Jen,
...... ·error=return); -

{ Get information buffer from server.
RECEIVEDATA(data_buf);

{ Print out the data received }
Writeln('Client data is: " data_buf);

, t

}

END;
END;

89:

{ continue processing}
{ loop for name }

{ Clean up the call and vc sockets }
SHUTDOWNSOCKETS;

99:

END. {Client}

3-35

NetIPC Examples

Example 3

Example three includes a pair of programs designated requestor (X 25CHECK) and server (X 25SERV) using
access to X.25 at level 3. These programs will work together on HP 3000 systems over an NS X.25
3000/V Link. The programs' functions are described in the comments included with the program listings.
Note that these programs are simplified versions of the programs released with the NS X.25 3000/V link
product.

3-36

NetlPC Examples

NetIPC Program 5 (X.25 Requestor Program)

{

}

{***}
{ Declarations for X52CHECK and X25SERVR }
{***}
CONST

c prot addr x25chk = 31000; {X25CHECK protocol address}
c-prot-addr-server = 31001; {X25SERV protocol address}
- - {These decimal addresses are in the range 30767 .. 32767 where PM }

{ is not required }
c patern='abcdefghijklmnopqrstuvwxyz0123456789';
c=buffer_len = 36;
c nb loop =10;
c=calling_add_code = 141;
c_prot_add_code = 128;
c_net_name_code = 140;
c clear rcvd = 67; {SOCKERR for a CLEAR packet received}

TYPE
shint = -32768 .. 32767;
nibble = O•• 15;
byte = 0 .. 255;
rc_type = (done,

error,
no_vc_desc,
no dest desc,
no=call=desc) ;

event_type = (i_addopt,
i create,
i-dest,
i=connect,
i recv call_conf,
i=send-;
i recv,
i-shut source,
i-shut-dest,
i-shut-connection);

event_msg_type ; array [event_type] of string[80];

opt_type = packed record
length: shint;
num entries : shint;
data: packed array [1 .. 256]

end;
bUffer_type = string [c_buffer_len]

{ }
{ }
{Declarations}

of shint;{ }
{ for }
{ }

3-37

NetIPC Examples

socket_type = (call,destination,vc);
name type = string [50];
name len = shint;

{ NetIPC
{
{

}
}
}

CONST
c event_msg = event msg type

['construction of option record',
'creation of the local call descriptor',
'creation of the destination descriptor',
'CALL packet sending',
'CALL CONF packet reception',
'DATA packet sending',
'DATA packet reception',
'shutdown of call descriptor',
'shutdown of destination descriptor',
'CLEAR packet sending'];

VAR
rc
result
r
p_call desc
p_vc_desc
p_dest_desc
p_retry
p_set_up_time
p_transit_time

rc_type;
integer;
shint;
intege r;
integer;
intege r;
boolean;
integer;
intege r;

{***}
{******* Declaration for the NetIPC intrinsics ******}
{***}

PROCEDURE Addopt ;INTRINSIC;
PROCEDURE Initopt ;INTRINSIC;
PROCEDURE Readopt ;INTRINSIC;

PROCEDURE I PCCont rol ;INTRINSIC;
PROCEDURE IPCCreate ;INTRINSIC;
PROCEDURE I PCDest ;INTRINSIC;
PROCEDURE IPCConnect ;INTRINSIC;
PROCEDURE I PCRecvcn ;INTRINSIC;
PROCEDURE I PCRecv ;INTRINSIC;
PROCEDURE I PCSend ;INTRINSIC;
PROCEDURE IPCShutdown ;INTRINSIC;
PROCEDURE I PCE rrmsg ;INTRINSIC;
PROCEDURE GETPRIVMODE ;INTRINSIC;
PROCEDURE GETUSERMODE ;INTRINSIC;

3-38

}
{

{****** Other intrinsics used in the programs

PROCEDURE quit ;INTRINSIC;
FUNCTION timer:integer ;INTRINSIC;
{

}

NetIPC Examples

******}

{***}
{ }
{ SOURCE CHECK }
{ }
{ DESCRIPTION }
{ Simplified version. }
{ This program checks that connections to remote nodes or even }
{ to local node can be actually achieved. It also allows to }
{ estimate the performances of the network. It communicates with}
{ program X25SERV that runs on remote nodes. }
{ X25CHECK sends 10 times a message to the remote server which }
{ echoes them back. }
{ It checks for both connection and communication errors. }
{ This version of X25CHECK is not compatible with the version of }
{ the product (doesn't work with the official server). }
{***}

$GLOBAL$
PROGRAM x25chk (input,output);

$include 'decl'$

FUNCTION ask_y_n
var

c : string [1];

boolean;

begin {ask_y_n}
repeat

writeln;
prompt ('Do you want to run the test once again?(y/n) > ');
read In (c);

until (c='y') or (c='y') or (c='n') or (c='N') or (c=");
if (c='y') or (c='y') then ask y n := true
else ask y n := false; - -

end; {ask_y=n}"

PROCEDURE check (result
event

in teger;
event_type) ;

3-39

NetIPC Examples

var
msg
len
r

string [80];
integer;
integer;

begin {check}
~~~~~~~~g (resu It, msg, len, r) ;
setstrlen (msg,len);
if r <> 0 then
begin

writeln ('Can"t get the error message ... ');
QUIT (123);

end
else
begin

write In ('An error occured during' ,c event msg [event]);
writeln ('with the following identification-: ');
writeln (msg);
p_retry := ask_y_n;

end;
end; {check}

{----------------------INIT desc-----------------------------------------}
{ Create call descriptor with dedicated protocol relative address }
{ Create destination desc to connect with the server }
{------------------------------------------------------------------------}

PROCEDURE init desc ( var rc

var
j,
prot addr
opt
net_name,
node name
net_name_Ien,
node name len

begin

shint;
opt_type;

string [8];

shint;

{----------------------------------}
{ Creation of the call descriptor. }
{----------------------------------}

3-40

:~!~~~p.p~ (opt, 2, r) ;
if r <> 0 then
begin

check (r,i_addopt);
rc := no_call_desc;



NetlPC Examples

end
else
begin {initopt}

prot addr := c prot addr x25chk;
~~~9P~ (opt,0,c_prot_add=code,2,prot_addr,r);
if r <> ° then
begin

check (r,i_addopt);
rc := no_call_desc;

end
else
begin

prompt('Enter the name of the network you are working on > ');
readln (net name);
net name len := strlen(net name);
~~~~p~ (opt,1,c_net_name_code,net_name_len,net_name,r);
if r <> 0 then
begin

check (r,i_addopt);
rc := no_call_desc;

end
else
begin

:x.~¢¢rrr~~~~ (3,2, ,opt,p_call_desc,result);
if result <>0 then
begin

check (result, i_create);
rc := no_call_desc;

end
else
begin

{------------------------------------}
{ Creation of the destination desc }
{------------------------------------}

writeln;
prompt ('Enter the name of the node you want to check> ');
readln (node name);
nOde_name_len := strlen(node_name);
prot addr := c prot addr server;
'~~¢~~~~ (3,node name,node name len,2,prot addr,2",
.......... p_des t =des c , res u'1t ); - -
if result <> 0 then
begin

check (result,i_dest);
rc := no dest desc;

end;{else dest} 
end;{else create}

end;{else addopt}
end;{else addopt}

end;{else initopt}
end;{init_desc}

3-41



NetIPC Examples

{------------------------------CONNECT-------------------------------}
{ Send CALL to the server and wait for CALL CONF }
{Evaluate the set up time }
{-----------------------------------~--------------------------------}

PROCEDURE connect ( var rc : rc_type);

var
chrono

begin

integer;

chrono := timer;
{------------------------------------}
{ Send CALL packet to remote server }
{------------------------------------}

:i·:~~:~~T·~~ <~ p0c~~~ndesc, p- dest_desc, , ,p_vc_desc, resu 1t) ;

begin
check (result,i_connect);
rc := no_vc_desc;

end
else
begin

writeln ('CALL packet sent ... ');
{------------------------------------}
{Get CALL CONF packet from the server}
{------------------------------------}

~·R~R~·q¥ (p vc des c , , , , , res u1t ) ;
p=set=up_tlme-:= timer-chrono;
if result <> 0 then
begin

check (result,i recv_call_conf);
rc : = error;

end
else
begin

writeln ('CALL CONF packet received ... ');
writeln;

end;
{------------------------------------}
{ The connection is now opened. }
{------------------------------------}

end; {else connect}
end; {connect}

PROCEDURE data transfer ( var rc

3-42

var
buffer
buffer len

buffer type;
integer;



chrono
i

intege r;
shint;

NetlPC Examples

{-------------------------OATA TRANSFER-----------------------------}
{ PURPOSE : Manage the data t~ansfer with the server }
{ Evaluate the transit time }
{-------------------------------------------------------------------}
begin {data transfer}

i : = 1;
ch rono : = timer;

while ( i <= C nb loop) and ( rc = done) do
begin

buffer .- c patern;-buffer len := c buffer len;- -

{------------------------------------}
{ Send data packet on the line. }
{------------------------------------}

·~~~~nQ (p vc desc,buffer,buffer len",result);
writeln ('DATA packet sent ... ');

if result <> 0 then
begin

check (result,i_send);
rc : = error;

end
else
begin

{------------------------------------}
{ Receive data packet echoed by the }
{ remote server. }
{------------------------------------}

:~p(j;~~.qV (p vc desc,buffer,buffer len",result);
write In ('DATA packet received .~.');

writeln;
if result <> 0 then
begin

check (result,i_recv);
rc : = error;

end
else

i := i+1;
end;{else send}

end;{while}
p_transit_time := timer - chrono;

end;{data transfer}

3-43



NetlPC Examples

{-------------------------SHUTDOWN-----------------------------------}
{ PURPOSE : Shutdown call, destination and vc descriptor }
{ according to the value of rc. }
{ Display the results of set up and transit time }
{ Ask to retry }
{--------------------------------------------------------------------}
PROCEDURE shutdown;

begin
if rc <= error then
begin

{------------------------------------}
{ Shutdown the vc descriptor. }
{ Send CLEAR on the line. }
{------------------------------------}

:~!'~~~~~~~~~ (p_vc_desc, , ,resu It) ;
if result <> 0 then check (result,i shut connection);
writeln ('CLEAR packet sent ... '); - -

end;

if rc <= no vc desc then
begin

{------------------------------------}
{ Shutdown the destination desc. }
{------------------------------------}

!~,.~~~~~~~~~~ (p_des t _des c , , , resuI t ) ;
if result <> 0 then check (result,i_shut_dest);

end;
if rc <= no dest desc then
begin

{------------------------------------}
{ Shutdown the call descriptor. }
{------------------------------------}

i~·~~$~·H;~j:'~¢>~~ (p call desc", result);
If-~;;~i{~~> O-then-check (result,i_shut_source)

end;

if rc = done then
begin

{------------------------------------}
{ Display the results. }
{------------------------------------}

writeln ('The following figures have been measured on the network: ');
writeln (' Set up time ',p set up time:10,' ms');
writeln (' Transit time: ',(p transIt time/(c nb 100p*2»:10:0,

, ms'); - - -

p_retry := ask_y_n
end;

end;{shutdown}

3-44



}

BEGIN
p_retry := false;
repeat

rc := done;
INIT_DESC (RC);
if rc = done then
begin

CONNECT (rc);
if rc = done then
begin

DATA TRANSFER (rc);
end;

end;
SHUTDOWN;

until p_retry = false;
END.

{

NetIPC Examples

3-45



NetlPC Examples

NetIPC Program 6 (X.25 Server Program)

{

}
{******************************************************************}
{ }
{ SOURCE X25SERV }
{ }
{ DESCRIPTION }
{ }
{ The purpose of that program is to answer to a remote program }
{ X25CHEK which verifies that the connections have been actually }
{ established. }
{ The server receives messages and echoes them to the remote }
{ calling node. }
{ The server has a dedicated protocol relative address. }
{ This version of X25SERV is not compatible with the version of }
{ the product. }
{******************************************************************}

program x25serv (input,output);
$include 'decl'$ {include file of type and constants}

{----------------------------Check init-----------------------------}
{ PURPOSE: Checks the results of IPC calls. Used during the initi- }
{ alization phase when errors are not discarded but dis- }
{ played to the operator. }
{ }
{-------------------------------------------------------------------}
PROCEDURE check init (result:integer);

VAR
msg
msg_Ien
r

string [80];
integer;
intege r;

BEGIN
if result <> 0 then
begin

!+.~~'~:~~:~g (res u1t , ms g , ms g_len, r) ;
setstrlen(msg,msg len);
if r <> 0 then -
begin

writeln('Can"t get the error message');
QUIT (123);

end{if}
else
begin

writeln('X25SERV: error occured during initialization of the');

3-46



NetlPC Examples

writeln('
write In (msg);
QUIT (125);

end;{else}
end;{if}

END;{check_init}

server with the following identification:');

shint;
opt_type;
name_type;
shint;
shint;

PROCEDURE create_descriptor;
var

prot_addr
opt
net name
net name len
wrtdata

begin {create_descriptor}

{-------------------------------------}
{ Creation of the descriptor dedicated}
{ to the server. }
{-------------------------------------}

!~.~.~~~p!~ (0 pt , 2) ;
prot addr := c prot addr server;
~~~9~~ (opt,O,c prot add-code,2,prot addr,result);
~h~~~=init (res~lt);- - -

prompt ('Enter the name of the network you are working on > ');
readln (net_name);
net name := strltrim (net name);
net name := strrtrim (net=name); {eliminates blanks}

{usefull when server is run from a stream}
net name len:= strlen (net name);
~9q~P~ (opt,1,c net name code,net name len,net name,result);
~h~~~=init(resuTt);- - - - -

!~·~~~r~~~~ (3 , 2 , ,0 Pt , P_ca 11_des c , res u1t) ;
check init (result);
writeTn('Call descriptor: ',p_call_desc);

{------------------------------------}
{ Disable the timer on the call }
{ descriptor. }
{------------------------------------}

wrtdata := °
i~.PQQqn~rQ·~ (p call desc,3,wrtdata,2", ,result);
check init (result);

end; {create_descriptor}

PROCEDURE echo;

3-47

NetIPC Examples

var
opt
ca 11 ing_add ress
i,
option_code,
addr_len,
data len
buffer
buffer len

begin {echo}

opt_type;
packed array [1 .. 16] of nibble;

shint;
buffer type;
integer;

{------------------------------------}
{ Initialize an option field to get }
{ the calling node address. }
{------------------------------------}

:~~'~.~~p~ (0 pt , 1) ;
~~9~.P~ (opt,O,c_calling add code,8,calling address,r);

{------------------------------------}
{ Wait for a connection request. }
{ ie Incoming CALL. }
{------------------------------------}

:~~¢R~f;¥f;n (p ca 11_desc, p_vc_desc, ,opt, resu It) ;
if result = 0 then
begin

writeln('Call Received ');

{------------------------------------}
{ Get the calling address from the }
{ CALL pkt. }
{------------------------------------}

data len := 8;
option code := c calling add code;
R~~~~,p~ (opt, 0, opt ion_code , data_len, ca 11 ing_add ress, r) ;
write In ('Calling node address = ');
addr len := calling address [1]; {the first nibble contains the addr Ie
for T:= 2 to addr len+1 do write (calling address [i]:1);
writeln ; -

{------------------------------------}
{ Loop on data transfer. }
{------------------------------------}

i : = 1;
while (i <= c_nb_loop) and (result = 0) do
begin

buffer len := c_buffer_len;
{------------------------------------}
{ Receive pkt from X25CHECK. }
{------------------------------------}

:~:~~~~~¥ (p vc desc,buffer,buffer len",result);
Tfresl.ll t ;; 0-then -

3-48

NetlPC Examples

begin
writeln('Data packet received ');

{------------------------------------}
{ Echo the same buffer. }
{------------------------------------}

'~·~~~~n~ (p vc desc,buffer,buffer len,,,result);
if result; a-then i:=i+1; -

end;{if}
end; {while}

end;
end; {echo }

PROCEDURE shutdown_connection;
var

buffer
buffer len

begin

buffer type;
integer;

{------------------------------------}
{ End of connection. }
{ Wait for X25CHECK to CLEAR first }
{------------------------------------}

if result = 0 then
begin

buffer len : = 1;
:~~~R~qy (p_vc_desc, buffe r, buffe r_len, , , resu 1t) ;

{------------------------------------}
{ This IPCRECV should complete with }
{ an error indicating a CLEAR recvd. }
{------------------------------------}

if result = c clear rcvd then

{------------------------------------}
{ We can shutdown the vc descriptor }
{------------------------------------}

·~~$fjM~QQwn (p_vc_desc, , ,resu 1t) ;
end;

end;{shutdown_connection}

PROCEDURE shutdown call desc;
begin {shutdown call desc}

:~~¢~fJ4~~Q~n (p ca 11 desc", resu 1t) ;
en·di........ ·{shu·tdown_ca 11_desc}

begin {main server}

CREATE_DESCRIPTOR;

3-49

NetIPC Examples

while true do {endless loop}
begin

ECHO;
SHUTDOWN_CONNECTION;

end;

SHUTDOWN CALL_DESC;

end. {main server}
{

}

3-50

'-----IP_C_IN_T_E_R_P_R_ET_E_R_(_IP_C_IN_T_) I~

The IPC interpreter (IPCINT) is a software utility provided with the NS X.25 3000/V link product.
IPCINT can be used as a learning tool for programmers and as a troubleshooting tool by network
administrators.

IPCINT executes NetlPC intrinsics one at a time in response to commands typed at the keyboard. IPCINT
can only be used for X. 25 direct access to level 3.

Using IPCINT

To use IPCINT you must have an NS X. 25 link up and running on a local HP 3000 node and on a remote
node. In order to exercise the intrinsics between nodes, the remote node must be running either IPCINT
or an X. 25 direct access to level 3 server program.

You must have NA or NM capability to run IPCINT. To use IPCINT you enter RUN I PCl NT. NET. SYS at
the MPE-V prompt. At the IPCINT prompt (» you can enter a NetlPC intrinsic abbreviation or E to
exit.

You will be prompted for parameters required for the intrinsic you specified. The intrinsic is executed by
IPCINT and any output parameters or errors returned are displayed. IPCINT creates a log file called
IPCLOG to contain the actions of each intrinsic executed.

Comparison of IPCINT to Programmatic NetlPC

The following examples show the difference between programmatic access and IPCINT used to execute the
I PCCREATE intrinsic.

Example: Programmatic Access to X.25 Level 3

For a program using direct access to X. 25 level 3, a call to I PCCREATE can be specified as follows:

IPCCREATE (3,2"opt,calldesc,result)

The value 3 for parameter socketkind specifies a call socket. The value 2 (for parameter protocol)
indicates the protocol access is X.25. At a minimum, the opt array would contain the X.25 network
name, and optionally either define a catch-all socket (opt code 144, bit 2) or specify a protocol relative
address (opt code 128). The calldesc will contain the call socket descriptor, and resul t will contain
an error (if any).

A-I

IPC Interpreter (IPCINT)

Example: IPCINT for X.25 Direct Access to Level 3

For example, to execute the I PCCREATE intrinsic using IPCINT, enter CR from the IPCINT prompt (see
example below). You are prompted for the I PCREATE X.2S parameters. In this example, no catch-all
socket is specified; therefore, a protocol relative address is specified. The network name is a required
parameter. The network name X25NET is used in this example. After the required parameters are
entered, press [RETURN) and the I PCCREATE intrinsic is executed.

) CR
Protocol: 2
Catch All Socket (YiN)? N
Protocol Relative Address: 31000
Network name (8 chars): X25~
-----) Executing: IPCCREATE
CALL = 6

SYNTAX OF IPCINT

The following paragraphs describe the syntax of IPCINT commands. This includes:

• Abbreviations for the intrinsics.

• Pseudovariables for socket descriptors.

• Prompts for parameters.

• Call user data field.

A-2

IPC Interpreter (IPCINT)

Abbreviated Intrinsic Names

The IPCINT program uses abbreviations for NetlPC intrinsics. Table A-I shows the supported IPC
intrinsics and the IPCINT abbreviations.

TABLE A-t. NetlPC Intrinsics IPCINT Abbreviations

Intrinsic IPCINT Abbreviation

IPCCREATE CR

IPCNAME NAME

IPCNAMERASE NAMERASE

IPCDEST DEST

IPCGIVE GIVE

IPCGET GET

IPCCONNECT CN

IPCCRECVCN RCN

IPCRECV R

IPCSEND S

IPCCONTROL CTR

IPCSHUTDOWN SHUT

IOWAIT WAIT

IODONTWAIT NOWAIT

IPCCHECK CHECK

IPCERRMSG ERR

A-3

IPC Interpreter (IPCINT)

Pseudovariables

Three pseudovariables are used by IPCINT to store the most recently assigned socket descriptors as follows:

Pseudovariable

c
o
V

socket descriptor

call
destination
vi rt ua I c i rcu it

The pseudovariable names can be overidden by the user.

Prompts for Parameters

When you enter the IPCINT abbreviation for the selected intrinsic, IPCINT prompts you for the required
parameter values which you then enter from the keyboard. Default values are provided for most input
parameters. The parameter names correspond approximately to those used in the reference portion of this
manual. IPCINT prompts for X. 25 opt array parameters without your having to use the IN ITOPT or
ADDOPT intrinsics. You are also prompted for X. 25 flags parameter bit settings. Prompts requiring a
YIN (yes/no) answer default to N (no).

Output parameters are displayed on the screen following execution of the called intrinsic.

Call User Data Field

The call user data field can be entered as a concatenated ASCII string enclosed in single quotes.
Hexadecimal digits can be included in an ASCII string by preceding the digits with an h. For example,
h45'hello'h 10 can be entered which represents a string of hexadecimal 45, the word "hello" followed by
hexadecimal 1O.

A-4

IPC Interpreter (IPCINT)

SAMPLE IPCINT SESSION

The following example describes the steps to create a call socket, send and receive data over a connection,
and then close the socket using IPCINT on a local node. This sample session assumes a remote node is also
using IPCINT. The remote node running IPCINT sends the local node a message as described in step 7.

The steps below follow the SVC requestor processing example in Figure 1- 8 (Section 1). The remote node
should follow the steps in the SVC server processing example in Figure 1-9 (Section 1).

User input is underlined in the examples provided. For detailed information about NetlPC intrinsic
parameters refer to the intrinsic descriptions in Section 2. Intrinsic parameter names that differ from the
names used as prompts in IPCINT are included in parentheses in the discussion of the examples.

Step 1

Run the IPCINT program from the MPE-V prompt. A log of the session will be written to a file named
IPCLOG.

(1) :RUN IPCINT.NET.SYS
IPCINT (A.01.04) (c) COPYRIGHT Hewlett-Packard Company 1988.
> > > > IPC Interpreter

To exit IPCINT at any time enter E at the IPCINT prompt (».

Step 2

Enter the IPCINT abbreviation for the desired intrinsic (see Table A-1). In this example, CR for
I PCCREATE is entered.

You are prompted for all required input parameters. You must enter 2 for X.25 direct access at the
Protoco 1 prompt. In this example, enter Y(yes) to create a catch-all socket (opt code 144, bit 2). Enter
the network name configured for your network at the Netwo rk name (opt code 140) prompt.

After entering all required parameters, the intrinsic is executed. The call socket descriptor (calldesc) is
returned in the pseudovariable "C".

The output parameters are interepreted and displayed. In this example, a call socket has been created as a
catch-all socket.

(2) > CR
Protocol: 2
Catch All socket (YiN)? Y
Network name (8 chars): X25net
-----> Executing : IPCCREATE
CALL = 6
Catch All socket

A-5

IPC Interpreter (IPCINT)

Step 3

Execute the I PCDEST intrinsic by entering DEST at the prompt. You are prompted for the remote Node
name (location) where the destination socket will be created. In this example, RAINBOW is used. Enter a
protocol relative address (protoaddr) in the decimal range 30767 to 32767 for the remote address. In
this example, 7000 is used. The I PCDEST intrinsic is executed and a destination descriptor (destdesc)
will be returned in pseudovariable 11011.

(3) > DEST
Node name (50 chars): RAINBOW
Protocol relative address (30767 .. 32767): 31000
-----> Executing : IPCDEST
DEST = - 1

Step 4

In order to execute this step, the remote node server program or lPClNT must have already executed, an
IPCCREATE followed by an IPCRECVCN. The remote waits for the local to send the connection request.
IPCINT provides a timeout so the IPCRECVCN will not wait indefinitely.

Execute I PCCONNECT by entering CN at the prompt. You are prompted for the call socket descriptor. To
use the default, press [RETURNI which is the value returned in pseudovariable IICII by the previous call to
I PCCREATE.

You are prompted for the destination socket descriptor. To use the default, press [RETURN) which is the
value returned in pseudovariable "0" by the previous call to I PCDEST.

You are prompted for access to the call user data (CUD) field (opt 144, protocol flags, bit 17). In this
example, V (yes) is entered. Selecting "yesll allows you to enter up to 16 bytes of user data at the 16
bytes of CUD prompt (opt code 2).

Next, you are prompted for a facility set name (opt code 142). To use the default configured for your
network, press [RETURN). The I PCCONNECT intrinsic is executed and a virtual socket descriptor is
returned.

In the example, the statement, IINo add ress in CU!Y' refers to the fact that you requested full access to
the CUD.

(4) > CN
Call socket desc (32 bit integer I~/D/V): ~ETURN)

Destination socket desc (32 bit integer IC/tJ/V): [RETURN)

Full access to CUD (V/N)? Y -
16 bytes of CUD (ascii ",hexa: hFC ...):hFCAA0001
Fac iIi ty name (8 cha rs): [RETURN)

-----> Executing : IPCCONNECT
VC = 7
No address in CUD

A-6

IPC Interpreter (IPCINT)

Step 5

Execute I PCRECV by entering R at the prompt to receive the response to the previous connection request.

The default value for the VC socket descriptor is the value returned in the last I PCCONNECT (or in the
case of an incoming call, by I PCRECVCN). This value is the default for any subsequent I PCSEND or
I PCRECV calls.

To use default values, press (RETURN). Buffe r length (dlen) defaults to 4096 bytes. Prey iew data
and Des troy data (flags 30 and 29) default to no (N). Data offset (opt code 8) is defaulted to
none.

(5) > R
VC-socket desc (32 bit integer /C/D/I): ~ETURN)
Buffer length (bytes): (RETURN)

Prey iew data (YiN)? (RETURN)

Des troy data (Y IN) ? (RETURN)

Da ta offset (bytes): (RETURN)

-----> Executing IPCRECV
MAX LEN = 4096
RECV LEN = 0
BUFFER = "

Note that there is no data returned in "Buffer" because the function of this call to lPCRECV is to accept
the connection request from the remote node.

Step 6

Execute a call to I PCSEND by entering S at the prompt.

Enter a value for the buffer length. IPCINT will send a string of characters equal to the number of bytes
specified. If you enter 0 for buffer length, you will be prompted to enter the contents of the data you are
sending. You can specify up to 80 characters of data. At the Buffer prompt enter the data to send. In
this example, 'Hello from local' is entered.

Pressing (RETURN) at the VC socket desc prompt which defaults to the VC socket descriptor returned by
the previous call to I PCCONNECT (in this example). To use default values, press (RETURN], Q bi t set and
D bi t set (opt code 144, bit 19 and bit 18) are defaulted to no (N). Data offset (opt code 8) defaults
to none.

(6) > S
Buffer length (bytes): Q
Buffer (ascii:" ,hexa;hFC ...): 'Hello from local'
VC socket desc (32 bi t integer /C/D/~): (RETURN)

Q bi t set (Y /N): (RETURN)

D bi t set (Y /N)? (RETURN)

Data offset (bytes): (RETURN)

-----> Executing : IPCSEND

In order for the remote node to receive the sent data, an lPCRECV must be executed from the remote node
with lPClNT (or a server program).

A-7

IPC Interpreter (IPCINT)

Step 7

Before executing step 7, the remote must execute IPCSEND to send data to the local node (see step 6,
IPCSEND).

Execute I PCRECV to receive data by entering R at the prompt. Step 7 assumes a remote node using
IPCINT has sent you a message.

Press (RETURN) to use the default VC socket descriptor (LJodeso). To use default values, press (RETURN).

Buffer length (dlen) defaults to 4096 bytes. Preview data and Destroy data (flags 30 and 29)
default to no (N). Data offset (opt code 8) is defaulted to none.

Values returned by I PCRECV include data sent from the remote displayed at the prompt: Buffe r =
(data), length of the received data (dlen), and the buffer length input displayed as MAX LEN (dlen, from
input). -

(7) > R
VC-socket desc (32 bit integer IC/Dl~f): (RETURN)
Buffer length (bytes): (RETURN]

Preview data (YiN)? (RETURN)

Destroy data (YiN)? (RETURN)

Data offset (bytes): (RETURN)

-----> Executing IPCRECV
MAX LEN = 4096
RECV LEN = 17
BUFFER = 'Hello from remote'

Step 8

Execute I PCSHUTDOWN to shutdown the socket by entering SHUT at the prompt.

At the descriptor prompt, enter a descriptor (C, D or V) in order to indicate which socket needs to be
shutdown. In this example, the VC socket descriptor, V is entered.

You are prompted for a reason code (opt code 143). In this example, 100 is entered which will cause a
clear packet to be sent. The clear packet will contain a cause code zero (0), and diagnostic code 100.
(I PCCONTROL is used to access cause and diagnostic codes.)

(8) > SHUT
Descriptor (32 bit integer Ic/D/v): V
Reason code (16 bit decimal): 100
-----> Executing : IPCSHUTDOWN

A-8

Step 9

Exit from the IPCINT program by entering E at the prompt.

(9) > E

IPC Interpreter (IPCINT)

A-9

'----- I~BI~use and Diagnostic Codes .~

Cause and diagnostic codes can be inserted and read from X.25 packets using NetlPC intrinsics. The
following tables show possible cause and diagnostic codes generated by NS X. 25 3000/V which is a subset
of the CCITT (1980 X. 25 recommendation) specified value.

CAUSE CODES

If NS X.25 3000/V is configured as a DTE, the cause code will always be set to zero (0). If the node is
configured as a DCE, the following tables show the values included in restart, clear and reset packets.

Table B-1. Cause codes for Restart Packets

Cause Meaning
Code

1 Local procedure error

7 Network operational

Table B-2. Cause Codes for Clear Packets

Cause Meaning
Code

1 Number busy

3 Invalid facility request

19 Local procedure error

25 Reverse charging acceptance not subscribed

41 Fast select acceptence not subscribed

Table B-3. Cause Codes for Reset Packets

Cause Meaning
Code

5 Local procedure error

B-1

Cause and Diagnostic Codes

DIAGNOSTIC CODES IN X.25 CLEAR PACKETS

The following lists the diagnostic codes sent and received in X.25 clear packets. The I PCCONTROL
intrinsic can be used to insert cause and diagnostic codes that will be included in clear packets sent by the
X. 25 protocol. You can include diagnostic codes with the I PCSHUTDOWN intrinsic that will be included in
the clear packet sent by the X. 25 protocol. This function is only available with SVCs.

TABLE B-4. X.25 DIAGNOSTIC CODES SENT/RECEIVED IN CLEAR PACKETS

Diagnostic Code Meaning/Cause

0 No additional information

1 Invalid P(S)

2 Invalid P(S)

16 Invalid packet type

17 Invalid packet type for state R 1

18 Invalid packet type for state R2

19 Invalid packet type for state R3

20 Invalid packet type for state PI

21 DTE received an unexpected packet while
waiting for a CALL CONF. (Invalid packet
type for state P2.)

22 DCE received an unexpected packet while
waiting for a CALL CONF. (Invalid packet
type for state P3.)

23 Invalid packet type for state P4

B-2

Cause and Diagnostic Codes

TABLE B-4. X.25 DIAGNOSTIC COPES SENT/RECEIVED IN CLEAR PACKETS (cont'd)

Diagnostic Code Meaning/Cause

24 Unexpected packet or CALL packet received
in state P5 (after a CALL COLLISION
occurred.

2S Invalid packet type for state P6

27 Invalid packet type for state D 1

28 Invalid packet type for state D2

29 Invalid packet type for state D3

32 Packet not allowed

33 Unidentifiable packet

34 An incoming CALL was received on a
one-way outgoing SVC.

3S Packet type invalid on a PVC

36 Packet on an unassigned logical channel

37 Reject not supported

38 Calling address length was too short in
received CALL packet.

39 A CALL packet was received that was greater
than the valid length.

Call user data field was too long or fast select
was requested.

B-3

Cause and Diagnostic Codes

TABLE B-4. X.25 DIAGNOSTIC CODES SENT/RECEIVED IN CLEAR PACKETS (cont'd)

Diagnostic Code Meaning/Cause

40 D bit facility requested but not configured.

41 Restart with non-zero in bits 1-4, 9-16

43 Unauthorized interrupt confirmation

44 Unauthorized interrupt

48 Timer expired

49 Timer expired for incoming call

50 Timer expired for clear indication

51 Timer expired for reset indication

52 Timer expired for restart indication

64 (l) Invalid facility field length. : Either too
short or does not match the buffer length.

(2) Facility set was not found in path table or
in facility tables.

(3) Access not allowed because of LUG.

(4) No free entry was found in connection
table.

(5) DCE rejected the CALL because it
detected a CALL COLLISION.

B-4

Cause and Diagnostic Codes

TABLE B-4. X.25 DIAGNOSTIC CODES SENT/RECEIVED IN CLEAR PACKETS (cont'd)

Diagnostic Code

65

66

67

68

69

Meaning/Cause

(1) The facility requested is not supported or
allowed here:

• Reverse charge in CALL CONF packet.
• Fast select.
• Throughput class negotiation (not

configured).
• Closed User Group facility in CALL CONF

packet (not allowed).
• Bilateral closed user group (not supported).
• Packet size negotiation (not configured).
• Window size negotiation (not configured).
• RPOA facility (not supported).

(2) Invalid facility code used.

(1) Invalid facility length.

(2) Value is out of range in facilities for
window size, packet size, or throughput class.

(3) Reverse charging is requested but not
configured.

Invalid BCD digit in called address field.

Invalid BCD digit in calling address field.

Facility field too long (> 63 bytes).

B-5

______I~c·IError Messages .~

This appendix includes the mapping of X. 25 SOCKERRs to protocol module errors, and the complete table
of possible NetlPC errors (SOCKERRs).

X.25 Direct Access SOCKERR to PMERR Mapping

In the I PCCHECK intrinsic, both socket errors (SOCKERRs) and the corresponding protocol module errors
(pmerrs) are returned. the following SOCKERRs are mapped to pmerrs. Other SOCKERRs can be
returned to NetlPC with a corresponding pmerr of zero (0).

SOCKERR 46 : UNABLE TO INTERPRET RECEIVED PATH REPORT.

PMERR = 5 Intrinsics : IPCConnect

Cause : The address key corresponding to the remote node name in the
network directory has not been found in the path tables.

Action: Check consistency between configuration file and network directory.

PMERR = 41 Intrinsics: IPCConnect

Cause : The address key corresponding to the remote node does not
belong to the network the IPCCreate has been issued against.

Action: Check configuration or issue IPCCreate on the correct network.

SOCKERR 50 : INVALID DATA LENGTH.

PMERR = 20 Intrinsics : IPCSend

Cause : The requested send length has been found invalid.
Action: Verify that the buffer length matches the requested length.

The length cannot be equal to O.

SOCKERR 54 : INVALID CALL SOCKET DESCRIPTOR.

PMERR = 39 Intrinsics: IPCShutdown (call socket descriptor)

Cause : Attempted release of a non -existent call
socket.

Action: Note the running environment and submit an SR.

C-l

Error Messages

SOCKERR 55 : EXCEEDED PROTOCOL MODULE'S SOCKET LIMIT.

PMERR = 1 Intrinsics : IPCCreate

Cause : All call socket entries in the X. 25 internal tables are in use.
Action: Remember to release call sockets when no IPCConnect and

IPCRecvcn are expected .

PMERR = 45 Intrinsics: IPCConnect

Cause : All connection entries in X. 25 internal tables are in use.
Action: Remember to shut the VC's that are no longer in use.

SOCKERR 59 : SOCKET TIMEOUT.

PMERR = 33 Intrinsics : IPCControl

Cause : The reset timer expired before a reset confirmation
packet was received.

Action: None. Informative.

PMERR =34 Intrinsics: IPCControl

Cause : The interrupt timer expired before
an interrupt confirmation packet was received.

Action: None. Informative.

SOCKERR 65 : CONNECTION ABORTED BY LOCAL PROTOCOL MODULE.

PMERR = 21 Intrinsics: IPCShutdown (Virtual circuit descriptor)

Cause : The X. 25 level 3 virtual circuit already was cleared
when the NetlPC call was issued.

Action: No action. The virtual circuit socket has been properly closed.

PMERR =36 Intrinsics: IPCRecv, IPCSend, IPCControl

Cause : The inactivity timer has timed out.
Action: Shutdown the connection before re-opening it.

SOCKERR 66 : INVALID CONNECTION DESCRIPTOR.

PMERR =38 Intrinsics: IPCShutdown (Virtual circuit descriptor)

Cause : An attempt has been done to release a non -existent virtual
circuit socket.

Action: Note the running environment and submit an SR.

C-2

SOCKERR 67 : CONNECTION FAILURE DETECTED.

PMERR = 2 Intrinsics: IPCSend) IPCRecv) IPCControl

Cause : A clear packet has been received. The remote system or
network aborted the connection.

Action: Retrieve the cause/diagnostic field with IPCControl) and issue
IPCShutdown on the virtual circuit.

SOCKERR 106 : ADDRESS CURRENTLY IN USE BY ANOTHER SOCKET.

PMERR = 4 Intrinsics: IPCCreate

Cause : The requested protocol relative address is already used by
another process through another IPCCreate call.

Action: Use another protocol relative address or wait for previous
process to release its call socket.

SOCKERR 107 : TRANSPORT IS GOING DOWN.

PMERR = 7 Intrinsics: IPCRecvcn

Cause: A NETCONTROL STOP command has been issued. All call sockets
must be shut.

Action: Issue an IPCShutdown on call socket.

PMERR =8 Intrinsics: IPCRecv, IPCSend) IPCControl

Cause: A NETCONTROL STOP has been issued; the X. 2S protocol module
is not in a state to accept any request.

Action: Issue an IPCShutdown on virtual circuit socket.

PMERR = 9 Intrinsics : IPCCreate

Cause : The X. 2S protocol module is not in a state to accept the
creation of new call sockets because a NETCONTROL STOP
command has ben issued.

Action: Issue an IPCShutdown on the call socket.

Error Messages

C-3

Error Messages

SOCKERR 111 : INTERNAL SOFTWARE ERROR DETECTED.

PMERR = 40 Intrinsics: IPCConnect

Cause : Internal error. (Unable to allocate a receive list)
Action: Submit an SR.

PMERR = 48 Intrinsics: IPCControl, IPCConnect, IPCRecv, IPCSend

Cause : Internal error.
Action: Critical X. 25 error. Submit an SR.

SOCKERR 116 : DESTINATION UNREACHABLE.

PMERR = 13 Intrinsics: IPCConnect

Cause : The facility set associated with address key has not been
found in the internal tables.

Action: Verify that the correspondance between address keys and facility
sets in the configuration file is correct.

PMERR = 17 Intrinsics: IPCConnect

Cause : Outgoing access not allowed. Some X. 25 address or address
keys are configured in the Outgoing LUG table in
confirmation files, and requested outgoing address has not
been found in the table.

Action: Check configuration of Outgoing Local User Group if necessary.

SOCKERR 117 : ATTEMPT TO ESTABLISH CONNECTION FAILED.

PMERR = 19 Intrinsics: IPCRecv completing IPCConnect

Cause : The virtual circuit failed to be opened. On receipt of the
call configuration packet, a clear packet has been sent
by the local system.
Possible causes are:
1. Incompatible facilities with the other end.
2. No call confirmation has been received within allowed

timeframe, causing a clear packet to be sent.
3. A reset packet was received instead of a call confirmation.

This may be due to confirmation problem (PVC and SVC
rnapping error)

Action: Issue IPCShutdown on virtual circuit, correct cause if necessary
and re-issue IPConnect.

C-4

PMERR = 35 Intrinsics: IPCRecv completing IPCConnect (on DTE)

Cause : No call confirmation has been received within
allowed timeframe. A clear packet
had to be sent that has not been answered by a clear confirmation. The
clear timer expired twice.

Action : Check connection to the remote node.

PMERR =37 Intrinsics: IPCRecv completing IPCConnect (on DCE)

Cause : No call confirmation has been received within allowed
timeframe. A clear packet had to be sent that has not been
answered by a clear confirmation. The clear timer expired
twice. The local side sent a diagnostic packet.

Action : Check connection to the remote node.

SOCKERR 143: INVALID FACILITIES SET OPT RECORD ENTRY.

PMERR = 14 Intrinsics: IPCConnect

Cause : The facility set passed as a parameter has not been found
in the internal facility table for an SVC.

Action: Use SVC facility sets defined in configuration.

PMERR = 15 Intrinsics: IPCConnect

Cause : The facility set passed as a parameter has not been found
in the internal facility table for a PVC.

Action: Use PVC facility sets defined in configuration.

SOCKERR 146 : RESET EVENT OCCURRED ON X. 25 CONNECTION.

PMERR = lOIntrinsics : IPCSend

Cause : A reset packet was sent internally because of an internal
error or because of resource shortage (mainly buffers).

Action: Re-issue call if necessary. Check buffer usage.
Adjust buffer confirmation to usage.

PMERR = 11 Intrinsics : IPCSend, IPCRecv

Cause : An unsolicited reset packet was received.
Action: Use IPCCONTROL (request 12) to retrieve the cause/diagnostic field.

Error Messages

c-S

Error Messages

SOCKERR 153: SOCKET IS ALREADY IN USE.

PMERR = 3 Intrinsics: IPCCreate

Cause : A single socket per network interface can be created
with the catch -all capability.

Action: Wait for catch -all socket to be released.

SOCKERR 156 : INTERRUPT EVENT OCCURRED ON X. 25 CONNECTION.

PMERR = 12 Intrinsics: IPCRecv, IPCSend

Cause : An interrupt packet was received.
Action: Use IPCCONTROL (request 12) to get interrupt data.

SOCKERR 157: ALL OUTGOING SWITCHED VIRTUAL CIRCUITS ARE BUSY.

PMERR = 16 Intrinsics: IPCConnect

Cause : No more free LCN one-way outgoing or two-ways SVC.
Action: Wait for LCN to be freed and re-issue call.

SOCKERR 158: CONNECTION REQUEST REJECTED BY REMOTE.

PMERR = 18 Intrinsics: IPCRecv

Cause : The outgoing call packet has been answered by a clear packet.
Action: Use IPCCONTROL (request 12) to retrieve the cause/diagnostic field.

Take action depending on cause/diagnostic using table given.

SOCKERR 159 : INVALID X. 25 D BIT SETTING.

PMERR = 22 Intrinsics: IPCSend

Cause : User requested an X. 25 packet to be sent with the D-bit set
while the facility set in use does not allow it.

Action: Use a facility set allowing D-bit usage.

C-6

SOCKERR 160: INCOMPATIBLE WITH PROTOCOL STATE.

PMERR = 24 Intrinsics : IPCSend

Cause : Data cannot be sent on the line. A reset packet had been issued
by local protocol module, and the reset confirmation packet has not
yet been received.

Action: Wait then re-issue the call if necessary.

PMERR = 25 Intrinsics : IPCSend

Cause : Data cannot be sent on the line. A reset request packet has
been received and the protocol module is waiting on the IPC
user response to generate the reset confirmation packet.

Action: Complete pending IPCSend(s) if any, or issue an IPCReceive
to complete the reset/reset configuration sequence.

PMERR =26 Intrinsics: IPCControl (interrupt)

Cause : Interrupt packets cannot be sent on the line. A reset
packet has been issued by the local protocol module, and
the reset configuration packet has not yet been received.

Action: Issue an IPCRecv to complete the reset/reset configuration sequence.

PMERR = 27 Intrinsics: IPCControl (interrupt)

Cause : An interrupt packet is not allowed in the current state.
Action: Wait for the protocol module to be in a proper state.

PMERR = 28 Intrinsics: IPCControl (reset)

Cause : A reset packet is not allowed in the current state.
Action: Wait for the protocol module to be in a proper state.

PMERR = 31 Intrinsics : IPCConnect

Cause : An IPC connection request is invalid in the current state:
level 2 is down or level 3 is not established.

Action: Wait for level 3 to be ready again.

Error Messages

C-7

Error Messages

SOCKERR 162: X. 25 PERMANENT VIRTUAL CIRCUIT DOES NOT EXIST.

PMERR = 47 Intrinsics : IPCConnect

Cause : The PVC was not found.
Action: Check if the PVC is configured.

SOCKERR 163: PERMANENT VIRTUAL CIRCUIT ALREADY ESTABLISHED.

PMERR = 32 Intrinsics: IPCConnect

Cause : This PVC is already established.
Action: Wait for owner to close the PVC before using it again.

SOCKERR 168: RESTART EVENT OCCURRED ON X. 25 CONNECTION.

PMERR =43 Intrinsics: IPCSend, IPCRecv, IPCControl

Cause : Connection has been aborted because a restart packet was received.
Action: Issue an IPCShutdown to shut the virtual circuit.

PMERR = 44 Intrinsics: IPCSend, IPCRecv, IPCControl

Cause : A restart packet has been sent by the local protocol module.
Action: Issue an IPCShutdown to shut the virtual circuit and

wait for the restart procedure to complete.

C-8

Error Messages

NETWORK INTERPROCESS COMMUNICATION ERRORS (SOCKERRS)

NetlPC errors are (32-bit) integers that are returned in the resul t parameter of NetlPC intrinsics when
the intrinsic execution fails. (A result of 0 indicates that the intrinsic succeeded.) In addition, NetlPC
errors and Transport Protocol (Transmission Control Protocol, and X. 25 protocol) errors are returned in
the I PCCHECK intrinsic: NetlPC errors in the ipcerr parameter and Transport Protocol errors in the
pmerr parameter.

"Submitting an SR" (service request) is documented in the NS3000/V Error Message and Recovery
Manual.

NetlPC ERRORS (SOCKERRS)

Message Cause Action

0 SUCCESSFUL No error was detected. None.
COMPLETION.
(SOCKERR 0)

1 INSUFFICIENT STACK Area between Sand Z : PREP your program file with
SPACE. registers is not sufficient for a greater MAXDATA value.

(SOCKERR 1) execution of the intrinsic.

3 PARAMETER BOUNDS A specified parameter is out Check all parameters to make
VIOLATION. of bounds. certain they are between the
(SOCKERR 3) user's DL and S registers. If

an array is specified, make
certain all of it is within
bounds.

4 TRANSPORT HAS NOT A : NETCONTROL was not Notify your operator.
BEEN INITIALIZED. issued to bring up the
(SOCKERR 4) transport.

5 INVALID SOCKET Specified socket type Check and modify your socket
TYPE. parameter is of an unknown type parameter.

(SOCKERR 5) value.

6 INVALID PROTOCOL. Specified protocol parameter Check and modify protocol
(SOCKERR 6) is of an unknown value. parameter.

7 ERROR DETECTED IN An unsupported bit in the Make certain the bit is off
flags PARAMETER. flags parameter was set, or a before calling the intrinsic.
(SOCKERR 7) nonprivileged user set a

privileged bit.

C-9

Error Messages

NetlPC ERRORS (SOCKERRS) (cont'd)

C-IO

Message

8 INVALID OPTION IN
THE opt RECORD.
(SOCKERR 8)

9 PROTOCOL IS NOT
ACTIVE.

(SOCKERR 9)

10 PROTOCOL DOES NOT
SUPPORT THE
SPECIFIED SOCKET
TYPE.

(SOCKERR 10)

13 UNABLE TO ALLOCATE
AN ADDRESS.
(SOCKERR 13)

14 ADDRESS OPTION
ERROR.

(SOCKERR 14)

15 ATTEMPT TO EXCEED
LIMIT OF SOCKETS
PER PROCESS.
(SOCKERR 15)

16 PATH
DESCRIPTORS OR
PATH DESCRIPTOR
EXTENSIONS
UNAVAILABLE.
(SOCKERR 16)

Cause

An unsupported option was
specified in the opt record, or
a nonprivileged user
attempted to specify a
privileged option.

A : NETCONTROL has not been
issued to activate the
requested protocol module.

The type of socket you are
trying to create is not
supported by the protocol to
be used.

No addresses were available
for dynamic allocation.

The address option in the opt
record has an error in it (e. g.,
invalid length or is in the
privileged range).

User has already reached the
limit of 64 sockets per
process.

1. Transport's path cache or
path descriptor table is full.

2. Network Interface (NI) was
not started.

3. IP address is incorrect
either in the network
directory, or the routing
information in the
configuration file.

Action

Check your opt record and
remove or modify the option.

Notify your operator.

Use a different socket type or
protocol.

Wait a while and try again.
See "Submitting an SR".

Check the values being placed
in the opt record.

Shut down any sockets which
are not being used or have
been aborted.

1. Contact your operator to
see if the table can be
expanded.

2. Start the NI.

3. Use NMMGR to correct
the network directory or
configuration file. (After
correcting the configuration
file you must issue a
:NSCONTROL UPDATE.)

NetlPC ERRORS (SOCKERRS) (cont'd)

Error Messages

Message Cause Action

18 FORMAT OF THE opt NetlPC was unable to parse Check your INITOPT and
RECORD IS the specified opt record. ADDOPT calls.
INCORRECT.
(SOCKERR 18)

19 ERROR DETECTED WITH Maximum message size option Check the values being placed
MAXIMUM MESSAGE in the opt record had an error in the opt record.
SIZE OPTION. associated with it (e. g., too
(SOCKERR 19) many bytes specified, invalid

message size value).

20 ERROR WITH DATA Data offset option in the opt Check the values being placed
OFFSET OPTION. record had an error associated in the opt record.
(SOCKERR 20) with it (e. g., too many bytes

specified).

21 DUPLICATE opt The same opt record option Remove the redundant call.
RECORD OPTION was specified twice.
SPECIFIED.
(SOCKERR 21)

24 ERROR DETECTED IN Maximum connection requests Check the values being placed
MAXIMUM CONNECTION queued option in the opt in the opt record.
REQUESTS QUEUED record had an error associated
OPTION. with it (e. g., too many bytes

(SOCKERR 24) specified, bad value).

25 SOCKETS NOT Error occurred attempting to Try again. If it still fails, see
INITIALIZED; NO initialize NetlPC, or network "Submitting an SRII

•

GLOBAL DATA management is still
SEGMENT. initializing.

(SOCKERR 25)

26 UNABLE TO ALLOCATE The attempt to create a data Contact your operator to see
A DATA SEGMENT. segment failed because the if these tables can be
(SOCKERR 26) DST table was full or there expanded.

was not enough virtual
memory.

C-ll

Error Messages

NetlPC ERRORS (SOCKERRS) (cont'd)

Message Cause Action

27 REQUIRED PARAMETER A required parameter was not Check your calling sequence.
NOT SPECIFIED. supplied in an option variable
(SOCKERR 27) intrinsic call.

28 INVALID NAME Specified name length was too Check your name length
LENGTH. large or negative. parameter. Shorten the name

(SOCKERR 28) if necessary.

29 INVALID DESCRIPTOR. Specified descriptor is not a Check the value being
(SOCKERR 29) valid socket, connection, or specified.

destination descriptor.

30 UNABLE TO NAME The socket descriptor given in Check if the correct
CONNECTION SOCKETS. the I PCNAME call was for a descriptor was specified.
(SOCKERR 30) VC socket; VC sockets may

not be named.

31 DUPLICATE NAME. Specified name was previously Use a different name.
(SOCKERR 31) gIven.

32 NOT CALLABLE IN The particular NetlPC Recode to call the intrinsic
SPLIT STACK. intrinsic cannot be called from the stack. Vectored
(SOCKERR 32) from split stack. data may be required.

33 INVALID NAME. Name is too long or has a Check the name's length.
(SOCKERR 33) negative length. Shorten the name if

necessary.

34 CRITICAL ERROR NetlPC previously detected The socket can no longer be
PREVIOUSLY and reported an irrecoverable used. Call I PCSHUTDOWN to
REPORTED; MUST error; most likely it was clean up.
SHUTDOWN SOCKET. initiated by the protocol
(SOCKERR 34) module.

C-12

Message

NetlPC ERRORS (SOCKERRS) (cont'd)

Cause

Error Messages

Action

35 ATTEMPT TO EXCEED
LIMIT OF NAMES PER
SOCKET.

(SOCKERR 35)

36 TABLE OF NAMES IS
FULL.

(SOCKERR 36)

A socket can have only four
names; the caller attempted to
give it a fifth.

Socket registry or give table is
full.

Use no more than four names.

Shut down unused sockets,
call I PCNAMERASE on any
sockets that no longer need to
be looked up, or get given
sockets. See if the operator
can configure more PCBs. See
IISu bmitting an SRI!.

37 NAME NOT FOUND. Name was not previously Check names specified, make
(SOCKERR 37) specified in an I PCNAME or sure names were properly

I PCGIVE call; I PCNAMERASE agreed on, determine if a
or I PCGET was previously timing problem exists.
issued with the name; or
socket no longer exists.

38 USER DOES NOT OWN Attempted to erase a name of Have the owner of the socket
THE SOCKET. a socket you do not own. call I PCNAMERASE.
(SOCKERR 38)

39 INVALID NODE NAME Syntax of the node name is Check the node name being
SYNTAX. invalid. supplied.

(SOCKERR 39)

40 UNKNOWN NODE. Unable to resolve the Check the node name to see if
(SOCKERR 40) specified node name as an NS it is correct. The node name

node name. may be valid but the specified
node's transport may not be
active.

41 ATTEMPT TO EXCEED User has already reached the Call I PCSHUTDOWN on any
PROCESS LIMIT OF limit of 261 destination unneeded destination
DESTINATION descriptors per process. descriptors.
DESCRIPTORS.

(SOCKERR 41)

C-13

Error Messages

NetlPC ERRORS (SOCKERRS) (cont'd)

C-14

Message Cause

43 UNABLE TO CONTACT Send to remote socket registry
THE REMOTE REGISTRY process failed. This is often
SERVER. caused by the fact that the

(SOCKERR 43) PXP protocol module is not
active on the local node.

44 NO RESPONSE FROM No reply was received from
REMOTE REGISTRY the remote registry process.
SERVER. This is often due to the

(SOCKERR 44) remote node not having
initialized its tranport.

46 UNABLE TO INTERPRET Unable to interpret the
RECEIVED PATH information returned by the
REPORT. remote socket registry process

(SOCKERR 46) regarding the looked -up
socket.

47 INVALID MESSAGE The message received from
RECEIVED FROM the remote registry process
REMOTE SERVER. does not appear to be a valid
(SOCKERR 47) socket registry message.

50 INVALID DATA Specified data length
LENGTH. parameter is too long or

(SOCKERR 50) negative.

51 INVALID DESTINATION Supplied destination
DESCRIPTOR. descriptor value is not that of
(SOCKERR 51) a valid destination descriptor.

52 SOURCE AND The source socket is not of the
DESTINATION SOCKET same protocol as the socket
PROTOCOL MISMATCH. described by the destination
(SOCKERR 52) descriptor.

Action

Contact your operator. If
unable to resolve the problem,
see "Submitting an SR".

Contact your operator. If
unable to resolve the problem,
see "Submitting an SR".

See "Submitting an SR".

See "Submitting an SR".

Check and modify the value.

Verify that you are passing an
active destination descriptor.

Validate that you are using
the correct destination
descriptor. Make certain both
processes have agreed on the
same protocol. Determine the
correct socket was looked up.

Message

NetlPC ERRORS (SOCKERRS) (cont'd)

Cause

Error Messages

Action

53 SOURCE AND
DESTINATION SOCKET
TYPE MISMATCH.
(SOCKERR 53)

54 INVALID CALL SOCKET
DESCRIPTOR.
(SOCKERR 54)

55 EXCEEDED PROTOCOL
MODULE'S SOCKET
LIMIT.

(SOCKERR 55)

57 ATTEMPT TO EXCEED
LIMIT OF NOWAIT
SENDS OUTSTANDING.
(SOCKERR 57)

58 ATTEMPT TO EXCEED
LIMIT OF NOWAIT
RECEIVES
OUTSTANDING.
(SOCKERR 58)

59 SOCKET TIMEOUT.
(SOCKERR 59)

60 UNABLE TO ALLOCATE
AN AFT.

(SOCKERR 60)

The source socket cannot be
used for communication with
the socket described by the
destination descriptor.

Specified descriptor is not for
a call socket.

Protocol module being used
cannot create any more
sockets.

User tried to send data too
many times in nowait mode
without calling IOWAIT.

User tried to issue too many
consecutive nowait receives
without calling IOWAIT.

The socket timer popped
before data was received.

User has no space for
allocating an active file table
entry (socket descriptor).

Validate that you are using
the correct destination
descriptor. Make certain both
processes have agreed on the
same method of
communication. Determine
the correct socket was looked
up.

Validate the value being
passed.

Contact your operator; the
limit may be configurable.

Call IOWAIT to complete a
send. The limit is 7.

Call IOWAIT to complete a
receive. The limit is 1.

If this is not desired, call
I PCCONTROL to increase or
disable the timeout.

Close unnecessary files or
sockets. Run the :PREP
program with a greater
MAXDATA segment size.
Run the program with the
NOCB option.

C-15

Error Messages

NetlPC ERRORS (SOCKERRS) (cont'd)

Message Cause Action

62 CONNECTION REQUEST User called IPCCONNECT Call I PCRECV.
PENDING; CALL without a subsequent
IPCRECV TO I PCRECV before issuing the
COMPLETE. current request.

(SOCKERR 62)

63 WAITING I PCRECV called with deferred The call I PCCONTROL with
CONFIRMATION; CALL connection option. accept/reject option.
IPCCONTROL TO I PCCONTROL has not been
ACCEPT/REJECT. called to accept/reject.

(SOCKERR 63)

64 REMOTE ABORTED THE Remote protocol module Call I PCSH UTDOWN to clean
CONNECTION. aborted the connection. This up your end of the
(SOCKERR 64) will occur when a peer has connection.

called I PCSHUTDOWN on the
connection.

65 CONNECTION ABORTED Local protocol module Call I PCSH UTDOWN to clean
BY LOCAL PROTOCOL encountered some error which up your end of the
MODULE. caused it to abort the connection. See "Submitting

(SOCKERR 65) connection. an SR."

66 INVALID CONNECTION Supplied value is not that of a Check the value being given.
DESCRIPTOR. valid VC socket (connection)
(SOCKERR 66) descriptor.

67 CONNECTION FAILURE An event occurred which Call I PCSHUTDOWN to clean
DETECTED. caused the local protocol up your end of the

(SOCKERR 67) module to determine that the connection.
connection is no longer up
(e. g.) retransmitted data was
never acknowledged).

68 RECEIVED A GRACEFUL Informational message. Do not attempt to receive any
RELEASE OF THE more data.
CONNECTION.

(SOCKERR 68)

C-16

NetIPC ERRORS (SOCKERRS) (cont'd)

Error Messages

Message Cause Action

69 MUTUALLY EXCLUSIVE Bits in the flags parameter Check and clear the
flags OPTIONS were set which indicate appropriate bits.
SPECIFIED. requests for mutually
(SOCKERR 69) exclusive options.

70 CAN'T GIVE SHARED Transferring connections and Only attempt to transfer or
CONNECTIONS. shared connections are share connections.
(SOCKERR 70) mutually exclusive actions.

71 I/O OUTSTANDING. Attempted an operation with Call IOWAIT to complete the
(SOCKERR 71) nowait I/O outstanding. I/O or I PCCONTROL to abort

any receIves.

74 INVALID IPCCONTROL Request code is unknown or a Validate the value being
REQUEST CODE. nonprivileged user requested a passed.
(SOCKERR 74) privileged option.

75 UNABLE TO CREATE A Unable to create an entity Contact your operator to see
PORT FOR LOW LEVEL used for communication if the number of PCBs could
I/O. between NetlPC and the be increased. {Number of

(SOCKERR 75) protocol module. This error connections divided by two is
might occur if you are trying a good estimate}, See
to open a large number of "Submitting an SR".
connections and do not have
enough PCBs configured.

76 INVALID TIMEOUT Value specified for the Modify the value.
VALUE. timeout is negative.

(SOCKERR 76)

77 INVALID WAIT/NOWAIT Mode of socket cannot be Use I PCCONTROL to specify
MODE. used. correct mode.

(SOCKERR 77)

C-17

Error Messages

NetlPC ERRORS (SOCKERRS) (cont'd)

Message Cause Action

78 TRACING NOT Attempted to turn off trace Remove the call.
ENABLED. when tracing was not on.

(SOCKERR 78)

79 INVALID TRACE FILE Requested trace file name is Validate and modify the trace
NAME. not valid. file name.

(SOCKERR 79)

80 ERROR IN TRACE DATA An error was detected in the Modify the values being used.
LENGTH OPTION. option specifying the
(SOCKERR 80) maximum amount of data to

be traced (e. g., negative value,
too large, too many bytes used
to specify the value).

81 ERROR IN NUMBER OF An error was detected in the Modify the values being used.
TRACE FILE RECORDS option specifying the
OPTION. maximum amount of records

(SOCKERR 81) to be in the trace file (e. g. ,
negative or too large a value,
too many bytes used to specify
the value).

82 TRACING ALREADY Attempted to turn on tracing Remove the call or turn off
ENABLED. when tracing already enabled. trace before the call.

(SOCKERR 82)

83 ATTEMPT TO TURN ON Network Management was Call I PCCHECK; the protocol
TRACE FAILED. unable to enable tracing. module error returned will be
(SOCKERR 83) the Network Management

error number. Consult your
Network Management
manual for the appropriate
action to take.

84 PROCESS HAS NO I PCCHECK was called, but the None, but no NetlPC or
LOCAL SOCKET DATA user had no sockets or protocol module errors are
STRUCTURES. destination descriptors, and available.
(SOCKERR 84) therefore no data structure

for retaining error codes.

C-18

NetIPC ERRORS (SOCKERRS) (cont'd)

Error Messages

Message Cause Action

85 INVALID SOCKET I PCERRMSG was called with Check the value being passed.
ERROR NUMBER. an invalid NetlPC error code.
(SOCKERR 85)

86 UNABLE TO OPEN The error message catalog Notify your operator.
ERROR CATALOG does not exist, it is opened
SOCKCAT.NET.SYS. exclusively, or the caller does
(SOCKERR 86) not have access rights to the

file.

87 GENMESSAGE FAILURE; MAKECAT was not successfully Notify your operator.
NOT A MESSAGE run on the message catalog
CATALOG. SOCKCAT. NET. SYS.

(SOCKERR 87)

88 INVALID REQUEST Internal error. See "Submitting an SR".
SOCKET DESCRIPTOR.

(SOCKERR 88)

89 INVALID REPLY Internal error. See "Submitting an SR".
SOCKET DESCRIPTOR

(SOCKERR 88)

91 WOULD EXCEED LIMIT Internal error. See "Submitting an SR".
OF REPLIES
EXPECTED.

(SOCKERR 91)

92 MUST REPLY TO Internal error. See "Submitting an SRI!.
BEFORE RECEIVING
ANOTHER REQUEST.

(SOCKERR 92)

C-19

Error Messages

NetlPC ERRORS (SOCKERRS) (cont'd)

Message Cause Action

93 INVALID SEQUENCE Internal error. See IlSubmitting an SRII
•

NUMBER.
(SOCKERR 93)

94 NO OUTSTANDING Internal error. See IlSubmitting an SRII
•

REQESTS.
(SOCKERR 94)

95 RECEIVED AN Internal error. See "Submitting an SRII
•

UNSOLICITED REPLY.
(SOCKERR 95)

97 WOULD EXCEED LIMIT Internal error. See IlSubmitting an SRII
•

OF SHARED
CONNECTIONS.

(SOCKERR 97)

96 INTERNAL BUFFER Attempted use of the buffer See IISubmitting an SRII
•

MANAGER ERROR. manager by NetlPC or the
(SOCKERR 96) protocol module resulted in an

error.

98 INVALID DATA Data segment index value in Check the value being
SEGMENT INDEX IN the vectored data array is not supplied.
VECTORED DATA. valid.
(SOCKERR 98)

99 INVALID BYTE COUNT The count of data in the Check the values being given.
IN VECTORED DATA. vectored data array is invalid.
(SOCKERR 99)

100 TOO MANY VECTORED More than two data locations Limit the number to two per
DATA DESCRIPTORS. were specified in the vectored operation. Use multiple sends
(SOCKERR 100) data array. or receives if necessary.

C-20

NetlPC ERRORS (SOCKERRS) (cont'd)

Error Messages

Message Cause Action

101 INVALID VECTORED Type of vectored data is Check the value being used.
DATA TYPE. unknown (must be a 0, 1, or 2)
(SOCKERR 101) or the data type is for a data

segment (l or 2) and the user
is not privileged.

102 UNABLE TO 1. Protocol module does not Check command sequence.
GRACEFULLY RELEASE support graceful release.
THE CONNECTION.
(SOCKERR 102) 2. Process tried to release

connection that was not in
correct state.

3. Output pending.

103 USER DATA NOT User data option is not Do not use user data option.
SUPPORTED DURING supported for I PCRECV or
CONNECTION IPCCONNECT.
ESTABLISHMENT.
(SOCKERR 103)

104 CAN'T NAME A Internal error. See "Submitting an SRtI
•

REQUEST SOCKET.
(SOCKERR 104)

105 NO REPLY RECEIVED. Internal error. See "Submitting an SRII
•

(SOCKERR 105)

106 ADDRESS CURRENTLY
IN USE BY ANOTHER
SOCKET.
(SOCKERR 106)

107 TRANSPORT IS GOING
DOWN.
(SOCKERR 107)

108 USER HAS RELEASED
CONNECTION; UNABLE
TO SEND DATA.
(SOCKERR 108)

Address being specified for
use is already being used.

The transport is being shut
down.

Process tried to send after
initiating a graceful release.

If you are a privileged user
trying to specify a well
known address, or try again
later. If you are
nonprivileged, then see
"Submitting an SRII

•

Call I PCSHUTDOWN on all
sockets and destination
descriptors.

Check command sequence.

C-21

Error Messages

NetlPC ERRORS (SOCKERRS) (cont'd)

Message Cause Action

109 PEER HAD RELEASED Process tried to receive after Check command sequence.
THE CONNECTION; remote initiated graceful
UNABLE TO RECEIVE release.
DATA.
(SOCKERR 109)

110 UNANTICIPATED NetlPC received a protocol Call I PCCHECK to get the
ERROR. module error which it was protocol module error. Call
(SOCKERR 110) unable to map. I PCSHUTDOWN to clean up.

See "Submitting an SR".

111 INTERNAL SOFTWARE Internal error. See "Submitting an SR".
ERROR DETECTED.
(SOCKERR 111)

112 NOT PERMITTED WITH Internal error. See "Submitting an SR".
SOFTWARE
INTERRUPTS
ENABLED.
(SOCKERR 112)

113 INVALID SOFTWARE Internal error. See "Submitting an SR".
INTERRUPT
PROCEDURE LABEL.
(SOCKERR 113)

114 CREATION OF SOCKET Possible causes include:
REGISTRY PROCESS
FAILED. 1. Resource limitations or 1. Retry later.
(SOCKERR 114)

2. Socket registry program 2. Contact your HP
missing. representative for

assistance.

C-22

NetlPC ERRORS (SOCKERRS) (cont'd)

Error Messages

Message Cause Action

116 DESTINATION The transport was unable to
UNREACHABLE. route the packet to the
(SOCKERR 116) destination.

This may be caused by:

1. Network Interface (NI) 1. Start the NI.
was not started or

2. IP address is incorrect 2. Use NMMGR to correct
either in the network the network directory or
directory, or the routing configuration file. (After
information in the correcting the
configuration file. configuration file you must

issue a :NETCONTROL
UPDATE.)

117 ATTEMPT TO Protocol module was unable Notify your operator.
ESTABLISH to set up the requested
CONNECTION FAILED. connection. This may be
(SOCKERR 117) caused by the remote protocol

module not being active.

118 INCOMPATIBLE NetlPC software was Notify your operator.
VERSIONS. incompatible with the
(SOCKERR 118) software being executed by

the remote registry process.

119 ERROR IN BURST An unsupported option was Check your opt record and
SIZE OPTION. specified in the opt record, or remove or modify the option.
(SOCKERR 119) a nonprivileged user

attempted to specify a
privileged option.

120 ERROR IN WINDOW An unsupported option was Check your opt record and
UPDATE THRESHOLD specified in the opt record, or remove or modify the option.
OPTION. (SOCKERR a nonprivileged user
120) attempted to specify a

privileged option.

C-23

Error Messages

NetlPC ERRORS (SOCKERRS) (cont'd)

C-24

Message

124 ENTRY NUMBER NOT
VALID FOR
SPECIFIED OPT
RECORD.
(SOCKERR 124)

125 INVALID OPTION
DATA LENGTH.
(SOCKERR 125)

126 INVALID NUMBER OF
EVENTUAL OPT
RECORD ENTRIES.
(SOCKERR 126)

127 UNABLE TO READ
ENTRY FROM OPT
RECORD.
(SOCKERR 127)

131 PROTOCOL MODULE
DOES NOT HAVE
SUFFICIENT
RESOURCES.
(SOC KE RR 131)

141 X.25 NETWORK NAME
INCORRECTLY
SPECIFIED.
(SOCKERR 141)

142 INVALID CALL USER
DATA OPT RECORD
ENTRY.
(SOCKERR 142)

143 INVALID FACILITIES
SET OPT RECORD
ENTRY.
(SOCKERR 143)

Meaning/Cause

User error. Entry number of
option is either negative or
higher than specified in the
INITOPT opt value.

User error. Data length for
option either negative or too
high.

Number of option entries is
either too high or negative.
Either an internal restriction
or a user mistake.

The option record indicates
that the entry is not valid or
the buffer supplied by the
user was too small to hold all
of the data.

Protocol module is
temporarily out of buffers or
internal data descriptors.

Using direct access to X. 25,
network name not specified or
incorrect.

The length of the call user
data is invalid for the
transport protocol type.

The facility set passed as a
parameter has not been found
in the internal facility table
for a switched virtual circuit
(SVC) or permanent virtual
circuit (PVC).

Action

Correct and reissue command.

Correct and reissue command.

Correct the entry by making
the number positive or
smaller in value.

Check entry number, make
sure the option record has not
been written over and check
output buffer length.

Retry later when the system
load is lighter.

The network name (option
code 140) must be specified in
the I PCCREATE call for X. 25
access. Network name must
be 1 to 8 characters in length.

Check length of call user data
opt in the opt array. It must
be greater than 1 for
I PCCONNECT and 4 for
I PCRECVCN. The maximum
length is protocol specific.

Use SVC or PVC facility sets
defined in configuration.

NetlPC ERRORS (SOCKERRS) (cont'd)

Message Meaning/Cause

144 INVALID CALLING The user may request the
NODE OPT ENTRY. address of the calling node.
(SOCKERR 144) Address of 8 bytes will be

returned.

145 INVALID REASON A reason code (option 143)
CODE. (SOCKERR was specified for an
145) I PCSH UTDOWN on a

connection that is not using
direct access to X. 25.

146 RESET EVENT 1. A reset packet was sent
OCCURRED ON X.25 internally because of an
CONNECTION. internal error or because of
(SOCKERR 146) resource shortage (mainly

buffers).
2. An unsolicitated reset

packet was received.

151 COULD NOT OBTAIN A The attempt to obtain a
SEMAPHORE. semaphore before sending a
(SOCKERR 151) message to the protocol

module failed.

Error Messages

Action

The length of the option
entry must be exactly 8 bytes.

Omit the invalid reason code
from the I PCSHUTDOWN call.

1. Re-issue the call if
necessary. Check buffer
usage and adjust buffer
configuration to usage.
2. Use I PCCONTROL request

12 to retrieve
cause/diagnosic field.

See IISubmitting an SRII.

153 SOCKET IS ALREADY A single socket per network Wait for catch -all socket to
IN USE. (SOCKERR interface can be created with be released.
153) the catch -all capability.

155 INVALID X.25 FLAG For direct access to X. 25 Check the call containing the
OPT RECORD ENTRY. (level 3) the opt record flags opt record flags parameter
(SOCKERR 155) (code 144) parameter in and correct the entry.

I PCCREATE, I PCCONNECT,
I PCRECVCN or I PCSEND is
improperly set, or the length
is incorrect.

156 INTERRUPT EVENT An interrupt packet was Use I PCCONTROL request 12
OCCURRED ON X.25 received. to retrieve interrupt data.
CONNECTION.
(SOCKERR 156)

157 ALL OUTGOING No more free LCN one-way Wait for LCN to be free and
SWITCHED VIRTUAL outgoing or two-ways SVC. re-issue call.
CIRCUITS ARE BUSY.
(SOCKERR 157)

C-25

Error Messages

NetlPC ERRORS (SOCKERRS) (cont'd)

C-26

Message

158 CONNECTION REQUEST
REJECTED BY
REMOTE.
(SOCKERR 158)

159 INVALID X.25 0 BIT
SETTING. (SOCKERR
159)

160 INCOMPATIBLE WITH
PROTOCOL STATE.
(SOCKERR 160)

162 X.25 PERMANENT
VIRTUAL CIRCUIT
DOES NOT EXIST.
(SOCKERR 162)

163 PERMANENT VIRTUAL
CIRCUIT ALREADY
ESTABLISHED.
(SOCKERR 163)

164 ADDRESS VALUE IS
OUT OF RANGE.
(SOCKERR 164)

165 INVALID ADDRESS
LENGTH. (SOCKERR
165)

166 CONNECTION NOT IN
VIRTUAL CIRCUIT
WAIT CONFIRM
STATE.
(SOCKERR 166)

167 TIMEOUT NOT
ALLOWED ON SHARED
CONNECTION.
(SOCKERR 167)

168 RESTART EVENT
OCCURRED ON X.25
CONNECTION.
(SOCKERR 168)

Meaning/Cause

The remote node received the
connection request and
rejected it. (An outgoing call
packet was answered by a
clear packet.)

User requested an X. 2S
packet to be sent with the
D-bit set while the facility
set in use does not allow it.

The user requested an
operation which is not
supported by the protocol
module.

The permanent virtual circuit
(PVC) was not found.

A connection request was
issued on a PVC which is in
use by another process.

Address specified in opt
parameter is out of range.

An invalid address length was
specified in the opt
parameter.

Attempt was made to accept
or reject a connection that is
open or in the process of
closing.

Attempt to set a send time
out on a shared connection.

Connection has been aborted
because a restart packet was
received or was sent.

Action

The call may be retried later.
Use I PCCONTROL request 12
to retrieve cause/diagnostic
field.

Use a facility set allowing
D - bit usage.

Verify the sequence of
intrinsic calls.

Check if the PVC is
configured.

Select a different PVC or
retry later.

Specify an address in the
range 30767 to 32767.

The address length is 2 bytes.
(For non -privileged users)

Use flags parameter in
I PCRECVCN to defer
acceptence or rejection of the
connection request.

Use I PCCONTROL to disallow
sharing of the connection or
do not attempt to set send
time out on this connection.

Issue an I PCSHUTDOWN on the
virtual circuit. Wait for the
Restart procedure to
complete.

A

asynchronous 1/0,2-17,2-58
ADDOPT, 2-8

c
call socket

creation of in TCP, 1- 5
creation of in X. 25, PVC, 1-15
creation of in X. 25, SVC, 1-12
naming in TCP, 1- 5

call socket, definition of, 1-2
call user data (CUD), 1-16
capabilities required, 2-6

protocol addressing, 2- 6
X. 25 catch-all socket, 2-7

catch -all socket, 1-16
cause and diagnostic codes, 1- 17
common parameters, 2- 1
condition codes, intrinsics that set, 2-4
connection

completing in TCP, 1-8
receiving in TCP, 1-7
requesting in TCP, 1-6
sending and receiving data over in TCP, 1- 8
shutting down in TCP, 1-9

cross-system, NetlPC, 1-18
HP 1000, 1-18
HP 9000 Series 800, 1-18

CUD, 1-16
access to, 1- 16

o
data exchange

TCP, 1-2, 1-8
data, exchange of, TCP, 1-2
data, sending and receiving, TCP, 1- 8
data, vectored, 2- 3
data, vectoredf, 2-4
declarations of intrinsics, 2-7
defer connection requests, 1-16
descriptors, releasing in TCP, 1- 9
descriptors, definitions of, TCP, 1- 3
destination descriptor, definition of, TCP, 1- 3
D bit, 1-17

INDEX

INDEX-1

Index

E

end -to-end acknowledgment, 1-1 7
errors, Network InterProcess Communication, C-9
example programs, 3- 1
examples, 3-1
exchanging data, TCP, 1- 8

F

facilities set, 1-1 7

G

graceful release
definition in TCP, 1-10
example in TCP, 1-10

interrupt packet, 1-17
intrinsics summary, 2-5
INITOPT, 2-10
IODONTWAIT, 2-60
IOWAIT, 2-60
IPCCHECK, 2- 11
IPCCONNECT, 2-12
IPCCONTROL, 2-17
IPCCREATE, 2- 23
IPCDEST, 2-27
IPCERRMSG, 2-29
IPCGET, 2- 30
IPCGIVE, 2-31
IPCLOOKUP, 2- 33
IPCNAME, 2-35
IPCNAMERASE, 2-36
IPCRECV, 2-37
IPCRECVCN, 2-43
IPCSEND, 2-49
IPCSHUTDOWN, 2-53

L

level 3 access, X. 25, 1- 12

M

message size, TCP, 1- 9
MPE-V condition codes, intrinsics that set, 2-4

INDEX-2

N

name, call socket, X. 25, 1- 12
name, of socket, TCP, 1- 2
name, well-known, TCP, 1-5
no activity timeout, 1-17
nowait 1/0,2-17,2-58
NetlPC Calls, ReadOpt, 2-57
NetlPC, introduction, 1-1
Network InterProcess Communication, errors, C-9
Network IPC, cross-system, 1-18
NS/l 000, cross-system, 1-18
NS/l 000, documentation, 1-18
NS/9000 Series 800, cross-system, 1-18

o
option entry, structure, 2- 2
Opt Parameter, obtaining option code and data, 2-57
OPTOVERHEAD, 2-56

p

parameter structure
data, 2-3
vectored data, 2-3
flags, 2-1
opt, 2-1
result, 2-4

permanent connection, PVC, 1-15
permanent virtual circuit (PVC), 1-15
program declarations, 2-7
protocol relative address, 1-12
PVC

communication over, 1-15
shutdown connection, 1-15

Q

Q bit, 1-17

R

receiving data, TCP, 1- 8
registry, socket, TCP, 1-2
releasing descriptors, 1-9
remote process scheduling, 1-4
reset packet, 1-1 7
result parameter, NetlPC Errors returned in, C-9
ReadOpt, 2-57

Index

INDEX-3

Index

Remote Process Management, I-I, 1-4
RPM, 1- 1, 1- 4

s
sending data, TCP, 1-8
shutting down sockets and connections

PVC, 1-15
SVC, 1-12
TCP, 1-9

socket name, TCP, 1-2
socket registry, TCP, 1-2
socket

shutting down in TCP, 1-9
virtual circuit (VC) in TCP, 1-2

sockets, giving away, 2- 31
socket, definition of , 1-1
stream mode, TCP, 1-8
summary, of intrinsics, 2- 5
switched virtual circuit (SVC), 1-12
SOCKERR Messages, C- 9
SR, submitting, C - 9
Submitting an SR, C- 9
SVC

communication over, 1-12
facilities set, 1-1 7
shutdown connection, 1-12

T

timeouts, 2-17
tracing, 2- 17
TCP, 1-1
Transmission Control Protocol, 1-1

v
vectored data, 2-3, 2-4
virtual circuit connection, 1-2
virtual circuit socket, 1-2
virtual circuit, 1-2

establishment in Tep, 1-4
VC socket, 1-2

w
well-known name, TCP, 1- 5

INDEX-4

x
X. 25 protocol, I - I 2
X.25

address, CUD, 1- 16
catch-all socket, 1-16
cause and diagnostic codes, 1- 17
defer connection requests, 1-16
D bit, 1-17
facilities set, 1- 17
interrupt packet, 1-17
no activity timeout, 1-1 7
protocol options, 1- 16
protocol relative address, 1-12
PVC connection, 1-1 5
Q bit, 1-17
reset packet, 1-1 7
send and receive data, 1-12, 1-15
send reset packet, 1- 15
shutdown connection, 1-12, 1-15
SVC connection, 1-12
flags, 1-16
opt, 1-16

SPECIAL CHARACTERS

oalldeso parameter, TCP, 1- 3
data parameter, 2-3
desoriptor parameter, definition of, TCP, 1-4
destdeso parameter, TCP, 1- 3
flags parameter, definition of , 2-1
opt parameter, 2-1
resul t parameter, 2-4
lJodeso parameter, TCP, 1-3

Index

INDEX-5

SALES & SUPPORT OFFICES r:l
Arranged alphabetically by country ~

Product Line Sales/Support Key
Key Product Une
A Analytical
CM Components
C Computer Systems
E Electronic Instruments I Measurement Systems
M Medicll Products
P PersonII Compulltion Products
• SIIes only for specific product line

Support only for specific product line

IMPORTANT:These symbols designlte general product line ClPlbility.They do not insure sales or
support IYlilibility for all products within aline, atalllocations.Contact your local sales office for
informltion regarding locations where HP support is available for specific products.

HEADQUARTERS OFFICES
If there is no sales office listed for your area. contact one of these
headquarters offices.

Datatronix Electronica Ltda.
Av. Pacaembu 746-C11
SAO PAULO, SP
Tel: (118) 260111
CM

ASIA
Hewlett-Packard Asia LId.
47/F, 26 Harbour Rd.,
Wanchai, HONG KONG
G.P.O. Box 863, Hong Kong
Tel: 5-8330833
Telex: 76793 HPA HX
Cable: HPASIAL TO

CANADA
Hewlett-Packard (Canada) LId.
6877 Goreway Drive
MlSSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
Telex: 069-8644

EASTERN EUROPE
Hewlett-Packard Ges.m.b.h.
Lieblgasse 1
P.O.Box 72
A-1222 VIENNA, Austria
Tel: (222) 2500-0
Telex: 134425 HEPA A

NORTHERN EUROPE
Hewlett-Packard SA
V. D. Hooplaan 241
P.O.Box 999
NL-118 LN 15 AMSTELVEEN
The Netherlands
Tel: 20 5479999
Telex: 18919 hpner

SOUTH EAST EUROPE
Hewlett-Packard SA
World Trade center
110 Avenue Louis-Casai
1215 Cointrin, GENEVA, Switzerland
Tel: (022) 989651
Telex: 27225 hpser
Mail Address:
P.O. Box
CH·1217 Meyrin 1
GENEVA
Switzerland

MIDDLE EAST
AND CENTRAL AFRICA
Hewlett-Packard SA
Middle East/Central
Africa Sales H.Q.
7, rue du Bois-du-Lan
P.O. Box 364
CH·1217 Meyrin 1
GENEVA
Switzerland
Tel: (022) 83 12 12
Telex: 27835 hmeach
Telefax: (022) 831535

UNITED KINGDOM
Hewlett-Packard LId.
Nine Mile Ride
WOKINGHAM
Berkshire. RG 113LL
Tel: 0344 773100
Telex: 848805/848814/848912

UNITED STATES OF
AMERICA
Customer Information Center
(800) 752-0900
6:00 AM to 5 PM Pacific Time

EASTERN USA
Hewlett-Packard Co.
4 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 948-6370

MIDWESTERN USA
Hewlett·Packard Co.
5201 Tollview Drive
ROWNG MEADOWS, IL 60008
Tel: (312) 255-9800

SOUTHERN USA
Hewlett-Packard Co.
2000 South Park Place
ATLANTA, GA 30339
Tel: (404) 955-1500

WESTERN USA
Hewlett-Packard Co.
5161 Lankershim Blvd.
NORTH HOLlYWOOD, CA 91601
Tel: (818) 505-5600

OTHER
INTERNATIONAL
AREAS
Hewlett-Packard Co.
Intercontinental Headquarters
3495 Deer Creek Road
PALO AtTO, CA 94304
Tel: (415)857-1501
Telex: 034-8300
Cable: HEWPACK

ALGERIA
Hewlett-Packard Trading SA
Bureau de Liaison Alger
Villa des Lions
9, Hai Galloul
OZ-IORDJ EL BAHRI
Tel: 760336
Telex: 63343 dlion dz

ANGOLA
Telectra Angola LOA
Empresa Tecnica de Equipamentos
16 rue Cons. Julio de Vilhema
LUANDA
Tel: 35515,35516
Telex: 3134
E,P

ARGENTINA
Hewlett-Packard Argentina SA
Montaneses 2140/50
1428 BUENOS AIRES
Tel: 541-11-1441
Telex: 22796 HEW PAC-AR
A,C,E,P
Biotron S.A.C.l.M.e.1.
Av. Paso Colon 221, Piso 9
1399 BUENOS AIRES
Tel: 541-333-490,

541·322·587
Telex: 17595 BIONAR
M
Laboratorio Rodriguez
Corswant S.R.L.
Misiones, 1156-1876
Bernal, Oeste
BUENOS AIRES
Tel: 252-3958, 252·4991
A
lntermaco S.R.L.
Florida 537171
Galeria Jardin - Local 28
1005 BUENOS AIRES
Tel: 393-4471/1928
Telex: 22796 HEW PAC-AR
P(Calculators)
Argentina Esanco S.R.L.
A/ASCO 2328
1416 BUENOS AIRES
Tel: 541-58-1981, 541-59-2767
Telex: 22796 HEW PAC-AR
A
All Computers SA
Montaneses 2140/50 5 Piso
1428 BUENOS AIRES
Tel: 781-4030/40391783-4886
Telex: 18148 Ocme
P

AUSTRALIA
Adelaide, South
Australia Office
Hewlett-Packard Australia LId.
153 Greenhill Road
PARKSIDE, SA 5063
Tel: 61-8-272-5911
Telex: 82536
Cable: HEWPARD Adelaide
A*,C,CM,E,P

Brisbane, Queensland Wael Pharmacy
Office P.O. Box 648
Hewlett-Packard Australia LId. MANAMA
10 Payne Road Tel: 256123
THE GAP, Queensland 4061 Telex: 8550 WAEL BN
Tel: 61-7-300-4133 E,M
Telex: 42133 Zayani Computer Systems
Cable: HEWPARD Brisbane 218 Shaik Mubarak Building
A,C.CM,E,M,P Government Avenue

P.O. Box 5918
Canberra, Australia MANAMA

Capital Territory Tel: 276278
Office Telex: 9015 plans bn
Hewlett-Packard Australia Ltd. P
Thynne Street, Fern Hill Park BELGIUM
BRUCE, A.C.T. 2617 Hewlett.Packard Belgium S.A.lN.V.
P.O. Box 257, Blvd de la Woluwe, 100
JAMISON, A.C.T. 2614 Woluwedal
Tel: 61·62-80·4244 B-12oo BRUSSELS
Telex: 62650
Cable: HEWPARD Canberra Tel: (02) 32-2-761-31-11
C,CM,E,P Telex: 23494 hewpac

A,C,CM,E,M,P
Melbourne, Victoria BERMUDA
Office
Hewlett-Packard Australia Ltd. Applied Computer Technologies

Atlantic House Building
31-41 Joseph Street P.O. Box HM 2091
P.O. Box 221 Par-La-Ville Road
BUCKBURN, Victoria 3130 HAMILTON 5
Tel: 61-3-895-2895 Tel: 295-1616
Telex: 31-024 Telex: 380 3589/ACT BA
Cable: HEWPARD Melbourne P
A,C,CM,E,M.P

Perth Western Australia BOLIVIA
• ' Arrellano Ltda

Office Av. 20 de OCtubre #2125
Hewlett-Packard Australia Ltd. Casilla 1383
Herdsman Business Park LA PAZ
CLAREMONT, W.A. 6010 Tel: 368541
Tel: 61·9-383-2188 M
Telex: 93859
Cable: HEWPARD Perth BRAZIL
C,CM,E,P Hewlett-Packard do Brasil S.A.

Sydney, New South =~Negro, 750-1. AND.

Wales Office 06400 Barueri SP
Hewlett-Packard Australia Ltd. Tel: (011) 421.1311
17-23 Talavera Road Telex: (011) 71351 HPBR BR
P.O. Box 308 Cable: HEWPACK Sao Paulo
NORTH RYDE, N.S.W. 2113 CM,E
Tel: 61-2-888-4444 Hewlett-Packard do Brasil SA
Telex: 21561 Praia de Botafago 228-A-614
Cable: HEWPARD Sydney 6. AND.-CONJ. 601
A,C,CM,E,M,P Edificio Argentina· Ala A

AUSTRIA 22250 RIO DE JANEIRO, RJ
Hewlett-Packard Ges.m.b.h. Tel: (021) 552-6422
Verkaufsbuero Graz Telex: 21905 HPBR BR
Grottenhofstrasse 94 Cable: HEWPACK Rio de Janeiro
A-8052 GRAZ E
Tel: 43-316-291-5660 Van Den Cientifica Ltda.
Telex: 312375 Rua Jose Bonifacio, 458
C,E Todos os Santos

Hewlett-Packard Gas.m.b.h. 20771 RIO DE JANEIRO, RJ
Lieblgasse 1 Tel: (021) 593-8223
P.O. Box 72 Telex: 33487 EGLB BR

A-1222 VIENNA A
Tel: 43-222-2500 ANAMED I.C.E.1. Ltda.
Telex: 134425 HEPA A Rua Vergueiro, 360
A CCM EM P 04012 SAO PAULO, SP

" '" Tel: (011) 572·1106
BAHRAIN Telex: 24720 HPBR BR
Green Salon M
P.O. Box 557
MANAMA
Tel: 255503·250950
Telex: 84419
P

Hewlett-Packard France
Batiment Levitan
2586, route de Grasse
Bretelle Autoroute
06600 ANT/BES
Tel: (93) 74-59-19
C

Hewlett-Packard France
64, Rue Marchand Saillant
F-61000 ALENCON
Tel: (33) 29 04 42
C"

CYPRUS International Engineering Associates
Telerexa Ltd. 6 EI Gamea Street
P.O. Box 1152 Agouza
Valentine House CAIRO
8Stassandrou St. Tel: 71-21-68134-80-940
NICOSIA Telex: 93830 lEA UN
Tel: 45 628, 62 698 Cable: INTEGASSO
Telex: 584511rx cy E

E,M,P Sakrco Enterprises

DENMARK 70 Mossadak Street
Hewlett-Packard AlS Dokki, Giza
Kongevejen 25 CAIRO
DK-3460 BIRKEROD Tel: 706440,701087
Tel: 45-02-81-6640 Telex: 9337
Telex: 37409 hpas dk C
A,C,CM,E,M,P S.S.C. Medical
Hewlett-Packard AlS 40 Gezerat EI Arab Street
Rolighedsvej 32 Mohandessin
DK-8240 RISSKOV, Aarhus CAIRO
Tel: 45-06-17-6000 Tel: 803844, 805998, 810263
Telex: 37409 hpas dk Telex: 20503 SSC UN
C,E M'

DOMINICAN REPUBLIC EL SALVADOR
Microprog SA IPESA de EI Salvador SA
Juan Tomas Mejia y Cotes No. 60 29 Avenida Norte 1223
Arroyo Hondo SAN SALVADOR
SANTO DOMINGO Tel: 9-011-503-266-858
Tel: 565-6268 Telex: 301205391PESA SAL
Telex: 4510 ARENTA DR (RCA) A,C,CM,E,P

P ETHIOPIA
ECUADOR Seric-Ethiopia
CYEDE Cia. Ltda. P.O. Box 2764
Avenlda Eloy Alfaro 1749 ADDIS ABABA
YBelgica Tel: 185114
Casilla 6423 CCI Telex: 21150
QUITO C,P

Tel: 9-011-593-2-450975 FINLAND
Telex: 39322548 CYEDE ED Hewlett-Packard Finland
E,P Field Oy
Medtronics Niittylanpolku 10
Valladolid 524 Madrid 00620 HELSINKI
P.O. 9171, QUITO Tel: (90) 757·1011
Tel: 2-238-951 Telex: 122022 Field SF
Telex: 2298 ECUAME ED CM
A Hewlett-Packard Oy
Hospitalar SA Piispankalliontie 17
Robles 625 02200 ESPOO
Casilla 3590 Tel: (90) 887-21
QUITO Telex: 121563 HEWPA SF
Tel: 545-250, 545-122 A, C, E, M, P

Telex: 2485 HOSPTL ED FRANCE
Cable: HOSPITALAR-Quito Hewlett-Packard France
M Z.1. Mercure B
Ecuador Overseas Agencies C.A. Rue Berthelot
Calle 9 de Octubre #818 13763 Les Milles Cedex
P.O. Box 1296, Guayaquil AIX.EN-PROVENCE
QUITO Tel: 33·42-59-4102
Tel: 306022 Telex: 410770F
Telex: 3361 PBCGYE ED A,C,E,M
M

EGYPT
Sakrco Enterprises
P.O. Box 259
ALEXANDRIA
Tel: 802908,808020,805302
Telex: 54333
C

China Hewlett-Packard Co., Ltd.
P.O. Box 9610, Beijing
4th Floor, 2nd Watch Factory Main
Shuang Yu Shou, Bei San Huan Road
Hai Dian District
BEIJING
Tel: 33-1947 33-7426
Telex: 22601 CTSHP CN
Cable: 1920 Beijing
A,C,CM,E,M,P

China Hewlett-Packard Co., Ltd.
CHP Shanghai Branch
23/F Shanghai Union Building
100 Van An Rd. East
SHANG·HAI
Tel: 265550
Telex: 33571 CHPSB CN
Cable: 3416 Shanghai
A,C,CM,E,M,P

COLOMBIA
Instrumentaci6n
H. A. Langebaek & Kier SA
Carrerra 4A No. 52A-26
Apartado Aereo 6287
BOGOTA 1, D.E.
Tel: 212-1466
Telex: 44400 INST CO
Cable: AARIS Bogota
CM,E,M

Nefromedicas ltda.
Calle 123 No. 9B-31
Apartado Aereo 100-958
BOGOTA D.E., 10
Tel: 213-5267, 213-1615
Telex: 43415 HEGAS CO
A

Compumundo
Avenida 15 # 107-80
BOGOTA D.E.
Tel: 57-214-4458
Telex: 39645466 MARCO
P
Carvajal, SA
Calle 29 Norte No. 6A-40
Apartado Aereo 46
CALI
Tel: 9-011-57-3-621888
Telex: 39655650 CUJCL CO
C,E,P

CONGO
Seric-Congo
B. P. 2105
BRAZZAVILLE
Tel: 815034
Telex: 5262

COSTA RICA
Cientifica Costarricense SA
Avenida 2, Calle 5
San Pedro de Montes de Oca
Apartado 10159
SAN JOse
Tel: 9-011-506-243-820
Telex: 3032367 GAlGUR CR
CM,E,M

O. Fischel R. Y. Cia. SA
Apartados 434-10174
SAN JOSE
Tel: 23-72-44
Telex: 2379
Cable: OFIR
A

Hewlett-Packard (Canada) ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario l4V 1M8
Tel: (416) 678·9430
Telex: 069-83644
A,C,CM,E,M,P

Hewlett-Packard (Canada) ltd.
2670 Queensview Dr.
OTTAWA. Ontario K2B 8K1
Tel: (613) 820-6483
A,C,CM,E' ,M.P"

Hewlett-Packard (Canada) ltd.
3790 Victoria Park Ave.
WlLLOWDALE, Ontario M2H 3H7
Tel: (416) 499-2550
C,E

Quebec
Hewlett-Packard (Canada) ltd.
17500 Trans Canada Highway
South Service Road
KIRKLAND, Quebec H9J 2X8
Tel: (514) 697-4232
Telex: 058-21521
A,C,CM,E,M,P'

Hewlett-Packard (Canada) ltd.
1150 rue Claire Fontaine
QUEBEC CITY, Quebec G1R5G4
Tel: (418) 648·0726
C

Hewlett-Packard (Canada) ltd.
130 Robin Crescent
SASKATOON, Saskatchewan S7L 6M7
Tel: (306) 242·3702
C

CHILE
ASC ltda.
Austria 2041
SANTIAGO
Tel: 223-5946,223-6148
Telex: 392-340192 ASC CK
C,P

Jorge Calcagni y Cia
Av. Italia 634 Santiago
Casilla 16475
SANTIAGO 9
Tel: 9-011-562-222-0222
Telex: 392440283 JCYCL CZ
CM,E,M

Metrolab SA
Monjitas 454 of. 206
SANTIAGO
Tel: 395752, 398296
Telex: 340866 METlAB CK
A

Olympia (Chilelltda.
Av. Rodrigo de Araya 1045
Casilla 256-V
SANTIAGO 21
Tel: 225-5044
Telex: 340892 OLYMP
Cable: Olympiachile Santiagochile
C,P

CHINA, People'S
Republic of
China Hewlett-Packard Co., ltd.
47/F China Resources Bldg.
26 Harbour Road
HONG KONG
Tel: 5-8330833
Telex: 76793 HPA HX
Cable: HP ASIA l TO
A",M'

BRUNEI
Komputer Wisman Sdn Bhd
G6, Chandrawaseh Cmplx,
Jalan Tutong
P.O. Box 1297,
BANDAR SERI BEGAWAN
NEGAM BRUNI DARUSSALAM
Tel: 673-2-2000-70/26711
C,E,P

CAMEROON
Beriac
B. P. 23
DOUALA
Tel: 420153
Telex: 5351
C,P

CANADA
Alberta
Hewlett-Packard (Canada) ltd.
3030 3rd Avenue N.E.
CALGARY, Alberta T2A 6T7
Tel: (403) 235-3100
A,C,CM.E· ,M,P'

Hewlett-Packard (Canada) ltd.
11120-178th Street
EDMONTON, Alberta T5S 1P2
Tel: (403) 486-6666
A,C,CM,E,M,P

British Columbia
Hewlett-Packard (Canada) ltd.
10691 Shellbridge Way
RICHMOND,
British Columbia V6X 2W8
Tel: (604) 270-2277
Telex: 610-922-5059
A,C,CM,E' ,M,P'

Hewlett-Packard (Canada) ltd.
121- 3350 Douglas Street
VICTORIA, British Columbia V8Z 311
Tel: (604) 381-6616
C

Manitoba
Hewlett-Packard (Canada) ltd.
1825 Inkster Blvd.
WINNIPEG, Manitoba R2X 1R3
Tel: (204) 694-2777
A,C,CM,E,M,P'

New Brunswick
Hewlett-Packard (Canada) ltd.
814 Main Street
MONCTON, New Brunswick E1C 1E6
Tel: (506) 855-2841
C

Nova Scotia
Hewlett-Packard (Canada) ltd.
Suite 111
900 Windmill Road
DARTMOUTH, Nova Scotia B3B 1P7
Tel: (902) 469-7820
C,CM,E' ,M,P'

Ontario
Hewlett-Packard (Canada) ltd.
3325 N. Service Rd., Unit W03
BURLINGTON, Ontario l7N 3G2
Tel: (416) 335-8644
C,M'

Hewlett-Packard (Canada) ltd.
552 Newbold Street
LONDON, Ontario N6E 2S5
Tel: (519) 686-9181
A,C,CM,E' ,M,P'

SALES & SUPPORT OFFICES 0
Arranged alphabetically by country 3

FRANCE (Cont'd) Hewlett-Packard France Hewlett-Packard France Hewlett-Packard GmbH Hewlett-Packard GmbH

Hewlett-Packard France 3, Rue Graham Bell 4, Rue Thomas-Mann Verbindungsstelle Bonn Vertriebszentrum Ratingen

28 Rue de la Republique BP 5149 Boite Postale 56 Friedrich-Ebert-Allee 26 Berliner Strasse 111

Boite Postale 503 57074 METZ Cedex 67033 STRASBOURG Cedex 5300 BONN 0·4030 RATINGEN 4

25026 BESANCON CEDEl, FRANCE Tel: (87) 36-13-31 Tel: (88) 28-56-46 Tel: (0228) 234001 Postfach 31 12

Tel: (81) 83-16-22 Telex: 860602F Telex: 890141F Telex: 8869421 Tel: (02102) 494-0

Telex: 361157 C,E C,E,M,P" Hewlett-Packard GmbH Telex: 589070 hprad

C,E" Hewlett-Packard France Hewlett-Packard France Vertriebszentrun Siidwest A,C,E,M,P

Hewlett-Packard France Miniparc-ZIRST Le Peripole III Schickardstrasse 2 Hewlett-Packard GmbH

ZA Kergaradec Chemin du Vieux Chime 3, Chemin du Pigeonnier de la Gepiere 0-7030 BOBLINGEN Vertriebszentrum Muchen

Rue Fernand Forest 38240 MEYLAN (Grenoble) 31081 TOULOUSE Cedex Postfach 1427 Eschenstrasse 5

F-29239 GOUEESNOU Tel: (76) 90-38-40 Tel: 33-61-40-1112 Tel: (07031) 645-0 0-8028 TAUFKIRCHEN

Tel: (98) 41-87-90 980124 HP Grenobe Telex: 531639F Telex: 7265 743 hep Tel: 49-89-61-2070

E C A,C,E,M,P" A,C,CM,E,M,P Telex: 0524985 hpmch

Hewlett-Packard France Hewlett-Packard France Hewlett-Packard France Hewlett-Packard GmbH A,C,CM,E,M,P

Chemin des Mouilles Bureau vert du Bois Briand Les Cardoulines Zeneralbereich Mktg Hewlett-Packard GmbH

Boite Postale 162 Cheman de la Garde Batiment B2 Herrenberger Strasse 130 Geschliftsstelle

69131 ECULLY Cedex (Lyon) - CP 212 212 Route des Oolines 0-7030 BOBLINGEN Ermlisallee

Tel: 33-78-33-8125 44085 NANTES Cedex Pare d'activite de Valbonne Tel: (07031) 14-0 7517 WALDBRONN 2

Telex: 310617F Tet: (40) 50-32-22 Sophia Antipolis Telex: 7265739 hep Postfach 1251

A,C,E,Mr Telex: 711085F 06560 VALBONNE (Nice)
Hewlett-Packard GmbH

Tel: (07243) 602-0

Hewlett-Packard France
A,C,E,CM",P Tel: (93) 65-39-40 Geschliftsstelle Telex: 782 838 hepk

Pare d'activites du Bois Briard Hewlett-Packard France
C Schleefstr.28a

A,C,E

2 Avenue du Lac 125, Rue du Faubourg Bannier Hewlett-Packard France 0-4600 DORTMUND-41 GREAT BRITAIN
F-91040 EVRY Cedex 45000 ORLEANS 9, Rue Baudin Tel: (0231) 45001 See United Kingdom
Tel: 3311/6077 9660 Tel: 33-38-62-2031 26000 VALENCE Telex: 822858 hepdod GREECE
Telex: 692315F E,P* Tel: 33-75-42-7616 A,C,E

C
C" Hewlett-Packard A.E.

Hewlett-Packard France
Hewlett-Packard France

Hewlett-Packard gmbH 178, Kifissias Avenue

Hewlett-Packard France Zone Industrielle de Courtaboeuf
Carolor

Reparaturzentrum Frankfurt 6th Floor

Application Genter Avenue des Tropiques
ZAC de Bois Briand

Berner Strasse 117 Halandri-ATHENS

5, avenue Raymond Chanas 91947 LES ULIS Cedex (Orsay)
57640 VIGY (Metz)

6000 FRANKFURT/MAIN 80 Greece

38320 EYIENS (Grenoble) Tel: 33-6-907 7825
Tel: (8) 771 2022

Tel: (069) 500001-0 Tel: 301116473360,301116726090

Tel: (7£) 62-57-98 Telex: 600048F
C

Telex: 413249 hpffm Telex: 221286 HPHLGR

Telex: 980124 HP GRENOB EYBE A,C,CM,E,M,P" " Hewlett-Packard GmbH A,C,CM*" ,E,M,P
Hewlett-Packard France

C Hewlett-Packard France Pare d'activite des Pres Vertriebszentrum Nord Kostas Karaynnis SA

Hewlett-Packard France 15, Avenue de l'Amiral-Bruix 1, Rue Papin Cedex Kapstadtring 5 8, Omirou Street

Rue Fernand. Forest 75782 PARIS Cedex 16 59658 VlUENEUVE D'ASCQ 0-2000 HAMBURG 60 ATHENS 133

Z.A. Kergaradec Tel: 33-15-02-1220 Tel: 33-20-91-4125 Tel: 49-40-63-804-0 Tel: 32 30303, 32 37 371

29239 GOUESNOU Telex: 613663F Telex: 160124F Telex: 021 63032 hphh d Telex: 215962 RKAR GR

Tel: (98) 41-87-90 C,P" C,E,M,P A,C,E,M,P A,C",CM,E

Hewlett-Packard France Hewlett-Packard France Hewlett-Packard France Hewlett-Packard GmbH Impexin

Pare Club des Tanneries 242 Ter, Ave J Mermoz Pare d'activites Paris-Nord 11 Geschliftsstelle Intelect Oiv.

Batiment B4 64000PAU Boite Postale 60020 Heidering 37-39 209 Mesogion

4, Rue de la Faisanderie Tel: 33-59-80-3802 95971 Roissy Charles de Gaulle 0-3000 HANNOVER 61 11525 ATHENS

67381 LlNCOLSHEIM Telex: 550365F VILLEPINTE Tel: (0511) 5706-0 Tet: 6474481/2

(Strasbourg) C,E" Tel: (1) 48 6380 80 Telex: 092 3259 hphan Telex: 216286

Tel: (88) 76-1s-oo Hewlett-Packard France Telex: 211032F A,C,CM,E,M,P P

Telex: 890141F 6, Place Sainte Croix C,E,M,P" HeWlett-Packard GmbH Haril Company

C,E*,M*,P* 86000 POITIERS GABON Geschiiftsstelle 38, Mihalakopoulou

Hewlett-Packard France Tel: 33-49-41-2707 Rosslauer Wag 2-4 ATHENS 612
ShoGabon Tel: 7236071

centre d'affaires Paris-Nord Telex: 792335F 0-6800 MANNHEIM
C,E"

P.O. Box 89 Telex: 218767
Batiment Ampere Tel: 49-0621-70-05-0

LIBREVILLE M"
Rue de la Commune de Paris Hewlett-Packard France Tel: 721484

Telex: 0462105 hpmhm
Hellamco

Boite Postale 300 47, Rue de Chativesle Telex: 5230
A,C,E

93153 LEILANC·MESNIL 51100 REIMS Hewlett-Packard GmbH
P.O. Box 87528

Tel: (1) 865-44·52 Tel: 33-26-88-6919 GERMAN FEDERAL Geschiiftsstelle
18507 PIRAEUS

Telex: 211032F C,P" REPUBLIC Messerschmittstrasse 7
Tel: 4827049

C,E,M Hewlett-Packard GmbH 0-7910 NEU ULM
Telex: 241441

Hewlett-Packard France A
Hewlett-Packard France Pare d'activites de la Poterie Vertriebszentrum Mitte Tel: 49-0731-70-73-0

Pare d'activites Cadera Rue Louis Kerautel-Botmel Hewlett-Packard-Strasse Telex: 0712816 HP ULM-O GUATEMALA

Quartier Jean-Mermoz 35000 RENNES 0-6380 BAD HOMBURG A,C,E* IPESA OE GUATEMALA

Avenue du President JF Kennedy Tel: 33-99-51-4244 Tel: (06172) 400-0 Hewlett-Packard GmbH
Avenida Reforma 3-48, Zona 9

33700 MERIGNAC (Bordeaux) Telex: 740912F Telex: 410 844 hpbhg Geschiiftsstelle
GUATEMALA CITY

Tel: 33-56-34-0084 A",C,E,M,P" A,C,E,M,P Emmericher Strasse 13
Tel: 316627, 317853,66471/5

Telex: 550105F Hewlett-Packard France
Hewlett-Packard GmbH 0-8500 NORNIERG 10

9-011-502-2-316627

C,E,M 98 Avenue de Bretagne
Geschaftsstelle Tel: (0911) 5205-0

Telex: 30557651PESA GU

76100 ROUEN
Keithstrasse 2-4 Telex: 0623 860 hpnbg

A,C,CM,E,M,P

Tel: 33-35-63-5766
0-1000 BERLIN 30 C,CM,E,M,P

Telex: 770035F
Tel: (030) 2199 04-0

C,E
Telex: 0183405 hpbln d
A,C,E,M,P

HONG KONG
Hewlett-Packard Hong Kong, Ltd.
G.P.O. Box 795
5th Floor, Sun Hung Kai centre
30 Harbour Road, Wan Chai
HONG KONG
Tel: 852-5-832-3211
Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG
E,C,P

CET Ltd.
10th Floor, Hua Asia Bldg.
64-66 Gloucester Road
HONG KONG
Tel: (5) 200922
Telex: 85148 CET HX
CM

Schmidt &Co. (Hong Kong) Ltd.
18th Roor, Great Eagle centre
23 Harbour Road, Wanchai
HONG KONG
Tel: 5-8330222
Telex: 74766 SCHMC HX
A,M

ICELAND
Hewlett-Packard Iceland
Hoefdabakka 9
112 REYKJAVIK
Tel: 354-1-67-1000
Telex: 37409
A,C,CM,E,M,P

INDIA
Computer products are sold through
Blue Star Ltd.AII computer repairs
and maintenance service is done
through Computer Maintenance Corp.

Blue Star Ltd.
B. D. Patel House
Near Sardar Patel Colony
AHMEDABAD 380 014
Tel: 403531, 403532
Telex: 0121-234
Cable: BLUE FROST
A,C,CM.E

Blue Star Ltd.
40/4 Lavelle Road
BANGALORE 560 001
Tel: 57881, 867780
Telex: 0845-430 BSLBIN
Cable: BLUESTAR
A,C·,CM,E

Blue Star Ltd.
Band Box House
Prabhadevi
BOMBAY 400 025
Tel: 4933101, 4933222
Telex: 011-71051
Cable: BLUESTAR
A,M

Blue Star Ltd.
Sahas
414/2 Vir Savarkar Marg
Prabhadevi
BOMBAY 400 025
Tel: 422-6155
Telex: 011-71193 BSSS IN
Cable: FROSTBLUE
A,CM,E,M

Blue Star Ltd.
K2'!,an. 19 Vishwas Colony
Alkapuri, BORODA, 390 005
Tel: 65235, 65236
Cable: BLUE STAR
A

Blue Star Ltd.
7 Hare Street
P.O. Box 506
CALCUTTA 700 001
Tel: 230131,230132
Telex: 031-61120 BSNF IN
Cable: BLUESTAR
A,M,C,E

Blue Star Ltd.
133 Kodambakkam High Road
MADRAS 600 034
Tel: 472056,470238
Telex: 041-379
Cable: BLUESTAR
A,M

Blue Star Ltd.
13 Community Center
New Friends Colony
NEW DELHI 110 065
Tel: 682547
Telex: 031-2463
Cable: BLUEFROST
A,C· ,CM,E,M

Blue Star Ltd.
15/16 CWellesley Rd.
PUNE 411 011
Tel: 22775
Cable: BLUE STAR
A

Blue Star Ltd.
2-2-47/1108 Bolarum Rd.
SECUNDERABAD 500 003
Tel: 72057, 72058
Telex: 0155-459
Cable: BLUEFROST
A,C,E

Blue Star Ltd.
T.C. 7/603 Poornima
Maruthunkuzhi
TRIVANDRUII695 013
Tel: 65799, 65820
Telex: 0884-259
Cable: BLUESTAR
E

Computer Maintenance Corporation
Ltd.
115, Sarojini Devi Road
SECUNDERABAD 500 003
Tel: 310-184, 345-774
Telex: 031-2960
C"

INDONESIA
BERCA Indonesia P.T.
P.O.Box 496/Jkt.
JI. Abdul Muis 62
JAKARTA
Tel: 21-373009
Telex: 46748 BERSAL IA
Cable:BERSALJAKARTA
P

BERCA Indonesia P.T.
P.O.Box 24971Jkt
Antara Bldg., 12th Floor
JI. Medan Merdeka Selatan 17
JAKARTA-PUSAT
Tel: 21-340417
Telex: 46748 BERSAL IA
A,C,E,M,P

BERCA Indonesia P.T.
Jalan Kutai 24
SURABAYA
Tel: 67118
Telex: 31146 BERSAL SB
Cable: BERSAl-SURABAYA
A·,E,M,P

IRAQ
Hewlett-Packard Trading SA
Service Operation
AI Mansoor City 9B/3/7
BAGHDAD
Tel: 551-49-73
Telex: 212-455 HEPAIRAQ IK
C

IRELAND
Hewlett-Packard Ireland Ltd.
Temple House, Temple Road
Blackrock, Co. DUBLIN
Tel: 88/333/99
Telex: 30439
C,E,P

Hewlett-Packard Ltd.
75 Belfast Rd, Carrickfergus
Belfast BT38 8PH
NORTHERN IRELAND
Tel: 09603-67333
Telex: 747626
M

ISRAEL
Eldan Electronic Instrument Ltd.
P.O.Box 1270
JERUSALEII91oo0
16, Ohaliav St.
JERUSALEM 94467
Tel: 533221,553242
Telex: 25231 AB/PAKRD IL
A,M

Computation and Measurement
Systems (CMS) Ltd.
11 Masad Street
67060
TEL·AVIV
Tel: 388 388
Telex: 33569 MotillL
C,CM,E,P

ITALY
Hewlett-Packard Italiana S.p.A
Traversa 99C
Via Giulio Petroni, 19
1-70124 BARI
Tel: (080) 41-07-44
C,M

Hewlett-Packard ItalianaS.p.A.
Via Emilia, 51/C
1-40011 BOLOGNA Anzola DeIl'Emilia
Tel: 39-051-731061
Telex: 511630
C,E.M

Hewlett-Packard Italiana S.p.A.
Via Principe Nicola 43G/C
1-95126 CATANIA
Tel: (095) 37-10-87
Telex: 970291
C

Hewlett-Packard Italiana S.p.A.
Via G. di Vittorio .10
20094 CORSICO (Milano)
Tel: 39-02-4408351

Hewlett-Packard Italiana S.p.A.
Viale Brigata Bisagno 2
16129 GENOVA
Tel: 39-10-541141
Telex: 215238

Hewlett-Packard Italiana S.p.A.
Viale G. Modugno 33
1-16156 GENOVA PEGLI
Tel: (010) 68-37-07
Telex: 215238
C,E

Hewlett-Packard Italiana S.p.A.
Via G. di Vittorio 9
1-20063 CERNUSCO aUL
NAVlGUO
(Milano)
Tel: (02) 923691
Telex: 334632
A,C,CM,E,M,P

Hewlett-Packard Italiana S.p.A.
Via Nuova Rivoltana 95
20090 UIlITO (Milano)
Te!: 02-92761

Hewlett-Packard Italiana S.p.A.
Via Nuova San Rocco a
Capodimonte, 621A
1-80131 NAPOLI
Tel: (081) 7413544
Telex: 710698
A··,C,E,M

Hewlett-Packard Italiana S.p.A.
Via Orazio 16
80122 NAPOLI
Tel: (081) 7611444
Telex: 710698

Hewlett-Packard Italiana S.p.A.
Via Pellizzo 15
35128 PABOVA
Tel: 39-49-664-888
Telex: 430315
A,C,E,M

Hewlett·Packard Italiana S.p.A.
Vlale C. Pavese 340
1-00144 ROllA EUR
Tel: 39-65-48-31
Telex: 610514
A,C,E,M,P·

Hewlett-Packard Italiana S.p.A.
Via di Casellina 57/C
500518 SCANDICCI-FIRENZE
Tel: 39-55-753863
C,E,M

Hewlett-Packard Itallana S.p.A.
Corso Svizzera, 185
1-10144 TORINO
Tel: 39-11-74-4044
Telex: 221079
A·,C.E

IVORY COAST
S.I.T.E.L.
Societe Ivoirienne de
Telecommunications
Bd. Giscard d'Estaing
Carrefour Marcory
Zone4.A.
Boite postale 2580
ABIDJAN 01
Tel: 353600
Telex: 43175
E
S.I.T.1.
Immeuble "Le General"
Av. du General de Gaulle
01 BP 161
ABIDJAN 01
Tel: 321227
Telex: 22149
C,P

JAPAN
Yokogawa-Hewlett-Packard Ltd.
152-1,Onna
ATSUGI, Kanagawa, 243
Tel: (0462) 25-0031
C,CM,E

Yokogawa-Hewlett-Packard Ltd.
Meiji-Seimei Bldg. 6F
3-1 Motochiba-Cho
CHIBA,280
Tel: (0472) 25 7701
C,E

Yokogawa-Hewlett-Packard Ltd.
Yasuda·Seimei Hiroshima Bldg.
6-11, Hon-dori, Naka-ku
HIROSHIMA, 730
Tel: (082) 241-0611

Yokogawa-Hewlett-Packard Ltd.
Towa Building
2-2-3 Kaigan-dori, Chuo-ku
KOIE,650
Tel: (078) 392-4791
C,E

Yokogawa-Hewlett·Packard Ltd.
Kumagaya Asahi 82 Bldg.
3-4 Tsukuba
KUIIAGAYA, Saitama 360
Tel: (0485) 24-6563
C,CM,E

Yokogawa-Hewlett-Packard Ltd.
Asahi Shinbun Daiichi Seimei Bldg.
4-7, Hanabata-cho
KUMAMOTO, 860
Tel: 96-354-7311
C,E

Yokogawa-Hewlett·Packard Ltd.
Shin-Kyoto Center Bldg.
614, Higashi-Shiokoji-cho
Karasuma-Nishilru
KYOTO,600
Tel: 075-343-0921
C,E

Yokogawa-Hewlett-Packard Ltd.
Mito Mitsui Bldg.
1-4-73, Sanno-maru
lillO, Ibaraki 310
Tel: (0292) 25-7470
C,CM,E

Yokogawa-Hewtett-Packard Ltd.
Meiji-Seimei Kokubun Bldg.
7-8 Kokubun, 1Chorne, Sendal
M1YAGI,980
Tel: (0222) 25-1011
C,E

Yokogawa-Hewlett·Packard Ltd.
Gohda Bldg. 2F
1-2-10 Gohda Okaya-Shi
Okaya-Shi
NAGANO, 394
Tel: (0266) 23 0851
C,E

Yokogawa-Hewlett-Packard Ltd.
Nagoya Kokusai Center BUilding
1-47-1, Nagono, Nakamura-ku
NAGOYA, AlC1I450
Tel: (052) 571-5171
C,CM,E,M

Yokogawa-Hewlett-Packard Ltd.
Sai-Kyo-Ren Building
1-2 Dote-cho
OOIIIYA-SHI SAlTAlIA 330
Tel: (0486) 45-8031

SALES & SUPPORT OFFICES 0Arranged alphabetically by country

JAPAN (Cont'd) JORDAN LEBANON Hewlett-Packard de Mexico, MOROCCO
Yokogawa-Hewlett-Packard Ltd. Scientific and Medical Supplies Co. Computer Information Systems SAL. SA de C.V. Etabllssement Hubert Dolbeau &Fils

Chuo Bldg., 5-4·20 Nishi-Nakajima P.O. Box 1387 Chammas Building Condominio Kadereyta 81 rue Karatchi

4-20 Nishinakajima, 5 Chome, AMMAN P.O. Box 11-6274 Dora Cireuito del Mazon No. 186 Desp. 6 B.P.11133

Yodogawa-ku Tel: 24907, 39907 BEIRUT COL DEL PRADO • 76030 Oro. CASABlANCA

OSAKA, 532 Telex: 21456 SABCO JO Tel: 894073 Tel: 463-6-02-71 Tel: 3041-82, 3068-38

Tel: (06) 304-6021 C,E,M,P Telex: 42309 chacis Ie P Telex: 23051, 22822

Telex: YHPOSA 523-3624 KENYA C,E,M,P Hewlett-Packard de Mexico, E

C,CM,E,M,P' ADeOM Ltd., Inc., Kenya LIBERIA SA de C.V. Gerep

Yokogawa-Hewlett-Packard Ltd. P.O.Box 30070 Unichemicals Inc.
Monti Morelos No. 299 2, rue Agadir

1-27-15, Yabe NAIROBI P.O. Box 4509
Fraccionamiento Loma Bonita 45060 Boite Postale 156

SAGAMIHW Kanagawa, 229 Tel: 331955 MONROVIA
GUADAWARA, Jalisco CASABLANCA 01

Tel: 0427 59-1311 Telex: 22639 Tel: 224282
Tel: 36-31·48-00 Tel: 272093, 272095

Yokogawa-Hewlett-Packard Ltd. E,M Telex: 4509
Telex: 0684 186 ECOME Telex: 23 739

Hamamtsu Motoshiro-Cho Daichi KOREA E
P P

Seimei Bldg 219-21, Motoshiro-Cho Samsung Hewlett-Packard Co. Ltd.
Microcomputadoras Sema-Maroc

LUXEMBOURG Hewlett-Packard, SA
Hamamatsu-shi Dongbang Yeoeuido Building Hewlett-Packard Belgium S.A.lN.V. Monti Pelvoux 115

Dept. Serle

SHIZUOKA, 430 12-16th Floors 6, rue Lapebie

Tel: (0534) 56 1771 36-1 Yeoeuido-Dong
Blvd de la Woluwe, 100 LOS LOMAS, Mexico, D.F. CASABLANCA
Woluwedal Tel: 520-9127

C,E Youngdeungpo-Ku Tel: 260980
B-12oo BRUSSELS P Telex: 21641

Yokogawa-Hewlett-Packard Ltd. SEOUL Tel: (02) 762-32-00 Microcomputadoras Hewlett-Packard,
Shinjuku Daiichi Seimei Bldg. Tel: 784-4666, 784-2666 C,P

Telex: 23-494 paloben bru SA deC.V.
2-7-1, Nishi Shinjuku Telex: 25166 SAMSAN K

A,C,CM,E,M,P Monte Pelvoux No. 115 NETHERLANDS
Shinjuku-ku,TOKYO 163 C,CM,E,M,P Lomas de Chapultepec, 11000 Hewlett·Packard Nederland B.V.
Tel: 03-348-4611 Young In Scientific Co., Ltd. MADAGASCAR MEXICO, D.F, Startbaan 16
C,E,M Youngwha Building Technique et Precision Tel: 520-9127 NL-1187 XR AMSTELVEEN

Yokogawa Hewlett-Packard Ltd. 547 Shinsa Dong, Kangnam·Ku 12, rue de Nice P P.O. Box 667

9-1, Takakura-cho SEOUL 135 P.O. Box 1227 NL·1180 AR AMSTELVEEN
Hewlett-Packard de Mexico,

Hachioji-shi, TOKYO, 192 Tel: 546-7771 101 ANTANANARIVO
SA de C.V.

Tel: (020) 547-6911

Tel: 81·426-42·1231 Telex: K23457 GINSCO Tel: 22090
Monte Pelvoux No. 111

Telex: 13216 HEPA NL

C,E A Telex: 22255 A,C,CM,E,M,P
Lomas de Chapultepec

Yokogawa-Hewlett·Packard Ltd. Dongbang Healthcare P
11000 MEXICO, D.F. Hewlett-Packard Nederland B.V.

3-29-21 Takaido-Higashi, 3 Chome Products Co. Ltd. MALAYSIA Tel: 5-40-62·28, 72-66, 50-25 Bongerd 2

Suginami-ku TOKYO 168 Suite 301 Medical Supply Center
Hewlett-Packard Sales (Malaysia) Telex: 17-74-507 HEWPACK MEX P.O. Box 41

Tel: (03) 331-6111 Bldg. 1-31 Dongsungdong
Sdn. Bhd. A,C,CM,E,M,P NL 2900AA CAPEUE AID IJSSEL

Telex: 232-2024 YHPTOK Jong Ro-gu, SEOUL
9th Floor Hewlett-Packard De Mexico (Polanco)

Tel: 31-20-51-6444

C,CM,E,P' Tel: 764-1171, 741-1641
Chung Khiaw Bank Building Avenida Ejercito Nacional '579

Telex: 21261 HEPAC NL

Yokogawa Hokushin Electric
Telex: K25706 TKBKO

46, Jalan Raja Laut 2d8y3er piso
C,E

Cable: TKBEEPKO
Corporation M

50736 KUALA LUMPUR, MALAYSIA Colonia Granada 11560 Hewlett-Packard Nederland B.V.

Shinjuku-NS Bldg. 10F Tel: 03-2986555 MEXlCOD.F, Pastoor Petersstraat 134-136

4-1 Nishi-Shinjuku 2·Chorne KUWAIT Telex: 31011 HPSM MA Tel: 254-4433 P.O. Box 2342

Shinjuku-ku AI-Khaldiya Trading &Contracting A,C,E,M,P' P NL 5600 CH EINDHOVEN

TOKYO, 163 P.O. Box 830 Protei Engineering Hewlett-Packard de Mexico,
Tel: 31-40-32-6911

Tel: (03) 349-1859 SAFAT P.O.Box 1917 SA de C.V.
Telex: 51484 hepae nl

Telex: J27584 Tel: 424910, 411726 Lot 6624, Section 64 Czda. del Valle
C,E,P

A Telex: 22481 AREEG KT 23/4 Pending Road 409 Ote. 4th Piso NEW ZEALAND
Yokogawa Hokushin Electric Corp. Cable: VISCOUNT Kuching, SARAWAK Colonia del Valle Hewlett-Packard (N.Z.) Ltd.
9-32 Nokacho 2Chome E,M,A Tel: 36299 Municipio de Garza 5Owens Road
Musashino-shi Gulf Computing Systems Telex: 70904 PROMAL MA Garcia Nuevo Leon P.O. Box 26-189
TOKYO, 180 P.O. Box 25125 Cable: PROTELENG 66220 MONTERREY, Nuevo Le6n Epsom, AUCKLAND
Tel: (0422) 54-1111 SAFAr A,E,M Tel: 83-78-42-40 Tel: 64-9-687-159
Telex: 02822-421 YEW MTK J Tel: 435969

MALTA Telex: 382410 HPMY Cable: HEWPAK Auckland
A Telex: 23648 C C,CM,E,P'

Yokogawa-Hewlett-Packard Ltd. P Philip Toledo Ltd.
Infograficas ySistemas Hewlett·Packard (N.Z.) Ltd.Kirkirkara P.O. Box 11

Meiji-Seimei Photo &Cine Equipment
Notabile Rd. del Noreste, S.A. 184·190 Willis Street

Utsunomiya Odori Building P.O. Box 270
MRIEHEL Rio Orinoco'171 Oriente WELLINGTON

1-5 Odori, 2Chome SAFAT
Tel: 447 47, 455 66, 4915 25 Despacho 2001 P.O. Box 9443

UTSUNOMIYA, Tochigi 320 Tel: 2445111
Telex: Media MW 649 Colonia Del Valle Courtenay Place, WEWNGTON 3

Tel: (0286) 33-1153 Telex: 22247 MATIN KT
E,M,P MONTERREY Tel: 64-4-887-199

C,E Cable: MATIN KUWAIT Tel: 559-4415,575-3837 Cable: HEWPACK Wellington

Yokogawa·Hewlett-Packard Ltd. P MAURITIUS Telex: 483164 C,CM,E,P

Yasuda Seimei Nishiguchi Bldg. W.J. Towell Computer Services Blanche Birger Co. Ltd. A,E Northrop Instruments &Systems Ltd.
30-4 Tsuruya-cho, 3 Chorne P.O. Box 5897 18, Jules Koenig Street Hewlett-Packard de Mexico, 369 Khyber P.ass Road
Kanagawa-ku, YOKOHAMA 221 SAFAr PORT LOUIS SA deC.V. P.O. Box 8602
Tel: (045) 312-1252 Tel: 2462640/1 Tel: 20828 Blvd. Independencia No. 2000 Ote. AUCKLAND
C,CM,E Telex: 30336 TOWELL KT Telex: 4296 Col. Estrella Tel: 794-091

C P TORREON, COM Telex: 60605

MEXICO Tel: 171-18-21-99 A,M

Hewlett-Packard de MeXico, P

S.A. deC.V.
Rio Nio No. 4049 Desp. 12
Frace. Cordoba
JUAREZ
Tel: 161-3-15-62
P

Northrop Instruments &Systems ltd. Mushko & Company Ltd. PUERTO RICO SINGAPORE Hewlett-Packard Espanola, SA
110 Mandeville St. Cosman Chambers Hewlett-Packard Puerto Rico Hewlett-Packard Singapore (Sales) Avda. S. Francisco Javier, SIN
P.O. Box 8388 Abdullah Haroon Road 101 Munoz Rivera Av Pte. Ltd. Planta 10. Edificio Sevilla 2
CHRISTCHURCH KARACHI 0302 Esu. Calle OChoa 1150 Depot Road E·SEVlLLA 5, SPAIN
Tel: 488-873 Tel: 524131, 524132 HATO REV, Puerto Rico 00918 SINGAPORE,0410 Tel: 54/64 44 54
Telex: 4203 Telex: 2894 MUSKO PK Tel: (809) 754-7800 Tel: 4731788 Telex: 72933
A,M Cable: COOPERATOR Karachi A,C,CM,M,E,P Telex: 34209 HPSGSO RS A,C,M,P
Northrop Instruments &Systems Ltd. A,Er QATAR Cable: HEWPACK, Singapore Hewlett-Packard Espanola, SA
Sturdee House PANAMA Computer Arabia A,C,E,M,P Isabel La Catolica, 8
85-67 Ghuznee Street

Electronico Balboa, SA P.O. Box 2750 Dynamar International ltd. E-46004 VALENCIA
P.O. Box 2406 DOHA Unit 05-11 Block 6 Tel: 34-6-3611354
WELLINGTON Calle Samuel Lewis, Ed. Alfa

Tel: 428555 Kolam Ayer Industrial Estate Telex: 63435
Tel: 850-091 Apartado 4929

Telex: 4806 CHPARB SINGAPORE 1334 C,P
Telex: NZ 3380 PWMACITY P Tet: 747-6188 Hewlett-Packard Espanola, SA
A,M Tel: 9-011-507-636613

Nasser Trading &Contracting Telex: 26283 RS Av. de Zugazarte, 8
NIGERIA Telex: 368 3483 ELECTRON PG

P.O.Box 1563 CM Las Arenas-Guecho
Elmeco Nigeria Ltd. CM,E,M,P

DOHA SOUTH AFRICA E-48930 VlZCAYA
45 Saka Tirubu St. PERU Tel: 422170 Hewlett-Packard So Africa (Pty.) ltd. VlZCAVA
Victoria Island Cia Electro Medica S.A. Telex: 4439 NASSER DH P.O. Box 120 Tel: 34-423-83 06
LAGOS Los Ramencos 145, Ofc. 301/2 M Howard Place, CAPE PROVINCE Telex: 33032
Tel: 61·98-94 San Isidro SAUDI ARABIA 7450 South Africa SWEDENTelex: 20-117

Casilla 1030 Modern Electronics Establishment Tel: 27 121153-7954
Hewlett-Packard Sverlge ABE

LIlIA 1 Hewlett-Packard Division Telex: 57-20006
Cstra Tullgatan 3

NORTHERN IRELAND Tel: 9-011-511-4-414325, 41-3705 P.O. Box 281 A,C,CM,E,M,P
S·200111W.11OSee United Kingdom Telex: 39425257 PE PB SIS Thuobah Hewlett-Packard So Africa (Pty.) ltd. Box 6132

NORWAY CM,E,M,P AL-KHOBAR 31952 2nd Roor Juniper House Tel: 46-40-702-70
Hewlett-Packard Norge AlS SAMSS.A. Tel: 895-1760, 895-1764 92 Overport Drive Telex: (854) 17886 (via SpAnga
Folke Bernadottes vei 50 Arenida Republica de Panama 3534

Telex: 671 106 HPMEEK SJ DURlAN4067 offICe)
P.O. Box 3558 San Isidro, LIlIA

Cable: ELECTAAL-KHOBAR Tet: 27-31-28-4178 C,P
N-5033 FYUltGSDALEN (Bergen) Tel: 9-011-511-4-229332/413984/

C,E,M Telex: 6-22954
Hewlett-Packard Sverige AB

Tel: 0047/5/165540 413226 Modern Electronics Establishment C
Elementvagen 16

Telex: 76621 hpnas n Telex: 39420450 PE L1BERTAD
Hewlett-Packard Division Hewlett-Packard So Africa (Pty.) Ltd. S-7022 7OREBRO

C,E,M A,C,P
P.O. Box 1228 Shop 6 Linton Arcade Tel: 49-019-10-4820

Hewlett-Packard Norge A/S
Redec Plaza, 6th Floor 511 Cape Road Telex: (854) 17886 (via SpAnga office)

Osterndalen 16-18 PHILIPPINES JEDOAH Linton Grange C
P.O. Box 34 The Online Advanced Systems Corp. Tel: 644 96 28 PORT ELIZABETH 6001

N-1345 OESTEWS 2nd Roor, Electra House Telex: 402712 FARNAS SJ Tel: 27141130 1201
Hewlett-Packard SVerige AB

115-117 Esteban Street Cable: ELECTA JEDDAH Telex: 24-2916
Skalholtsgatan 9, Kista

Tel: 47-2-17-1180
A,C,CM,E,M,P P.O. Box 19

Telex: 76621 hpnas n P.O. Box 1510 C
S-16393 spANGA

A,C,CM,E,M,P Legaspi Village, Makati Modern Electronics Establishment Hewlett-Packard So Africa (Pty.) ltd. Tel: (08) 750-2000
Hewlett-Packard Norge AlS Metro MANILA Hewlett-Packard Division Fountain Center Telex: (854) 17886
Boehmergt. 42 Tel: 815-38-10 (up to 16) P.O.Box 22015 Kalkoen Str. Telefax: (08) 7527781
Box 2470 Telex: 63274 ONLINE PN RIYADH 11495 Monument Park Ext 2 A,C,CM,E,M,P
N-5037 SOUEIISYIC A,C,E,M,P Tet: 491-97 15,491-63 87 PRETORIA 0105

Tel: 0047/5/29 00 90
Telex: 202049 MEERYD SJ Tel: (012) 45 5725

Hewlett-Packard Sverige AB
PORTUGAL C,E,M Telex: 32163

Box 266
OMAN Mundinter Intercambio Abdul Ghani EI Ajou Corp. C,E

Topasgatan lA
Khimjil Ramdas Mundial de Comer-cio SAR.L. P.O. Box 78 S-42123 VASTRA-FROLUNDA
P.O. Box 19 Av. Antonio Augusto Aguiar 138 RIYADH

Hewlett-Packard So Africa (Pty.) Ltd. (Gothenburg)
MUSCAT/SULTANATE OF OMAN Apar1ado 2761 TeI:4041717

Private Bag Wendywood Tel: 46-031-89-1000
Tel: 795901 US80N Telex: 200 932 EL AJOU

SANDTON 2144 Telex: (854) 17886 (via SpAnga
Telex: 3489 BROKER MB MUSCAT Tel: (19) 53-21-31,53-21-37 P

Tet: 27-11-802-5111, 27-11-802-5125 office)
P Telex: 16691 munter p Telex: 4-20877 SA A,C,CM,E,M,P

SCOTLAND Cable: HEWPACK Johannesburg
Suhall & Saud Bahwan M See United Kingdom A,C,CM,E,M,P SUDAN
P.O.Box 169 Soqulmica SENEGAL Mediterranean Engineering
MUSCAT/SULTANATE OF OMAN SPAINAv. da Liberdade, 220-2 Societe Hussein Ayad &Cie. Hewlett-Packard Espanola, S.A.

&Trading Co. Ltd.
Tet: 734201-3 1298 USIOA Codex P.O. Box 1025
Telex: 5274 BAHWAN MB Tel: 56-21-82

76, Avenue Georges Pompidou Calle Entenza, 321
KHARTOUII

E B.P.305 E.-8ARCELONA 29Telex: 13316 SABASA DAKAR Tel: 3/322 24 51, 3217354
Tel: 41184

Imtac LLC A Tet: 32339 Telex: 24052
P.O. Box 9196

Telectra-Empresa Tecnica de Cable: AYAD-Dakar
Telex: 52603 hpbee

C,P
lIMA AL FAHALISULTAMATE A,C,E,M,P

OF OMAN EQuipmentos El8ctricos S.A.R.L. E
Hewlett-Packard Espanola, SA SWITZERLAND

Tel: 70-77-27, 70-77-23 Rua Rodrigo da Fonseca 103 Moneger Distribution SA
Calle San VICente SIN Hewlett-Packard (SChweiz) AG

Telex: 3865 Tawoos On P.O. Box 2531 1, Rue Parent
Edlflcio Albia 11-7B Clarastrasse 12

A,C,M US80N 1 B.P.148
CH-4058 BASELDAKAR 48001 BUAO

PAKISTAN
Tel: (19)68-60-72

Tel: 215671 Tel: 4/423 83 06 Tel: 41-61-33-5920

Mushko &Company Ltd.
Telex: 12598

Telex: 587 A,C,E,M A,C,E,P

House No. 16, Street No. 16
CM,E

P Hewlett-Packard Espanola, S.A. Hewlett-Packard (SChweiz) AG
Sector F-6/3 C.P.C.S.!. Systerne Service Conseil (SSC) Crta. N-VI, Km. 16, 400 7, rue du Bois-du-Lan
ISWIA8AD Rua de Costa Cabral 575 14, Avenue du Parachois Las Rozas Case postale 365-1366
Tel: 824545 4200 PORTO DAKAR ETOU E-IIADRID CH-12171EYR1N 1
Telex: 54001Muski Pk Tel: 499174/495173 Tel: 219976 Tel: (1) 637.00.11 Tet: (0041) 22-83-11-11
Cable: FEMUS Islamabad Telex: 26054 Telex: 577 Telex: 23515 HPE Telex:27333 HPAG CH
A,E,P· C,P C,P C,M A,C,CM,E,M,P

SALES & SUPPORT OFFICES 0
Arranged alphabetically by country 7

SWITZERLAND (Cont'd) TOGO Saniva Bilgisayar Sistemleri A.S. Hewlett-Packard Ltd. UNITED STATES
Hewlett-Packard (Schweiz) AG Societe Africaine De Promotion Buyukdere Caddesi 103/6 The Quadrangle Hewlett-Packard Co.

Allmend 2 Immeuble Sageb Gayrettepe 106-118 Station Road Customer Information Center

CH-8967 WIDEN Rue d'Atakpame ISTANBUL REDHILL, Surrey RH 11PS Tel: (800) 752-0900

Tel: 41-57-31-2111 P.O. Box 4150 Tel: 1673180 Tel: 44-737-686-55 Hours: 6:00 AM to 5:00 PM

Telex: 53933 hpag ch LOME Telex: 26345 SANI TR
Telex: 947234 Pacific Time

Cable: HPAG CH Tel: 21-62-88 C,P
C,E,P

Alabama
A,C,CM,E,M,P Telex: 5357 Hewlett-Packard Ltd.

P Best Inc. Avon House
Hewlett-Packard Co.

Hewlett-Packard (Schwelz) AG
TRINIDAD & TOBAGO

Esentepe, Gazeteciler Sitesi 435 Stratford Road
2100 Riverchase Center

Schwamendingenstrasse 10 Keskin Kalem Building 100 - Suite 118

CH-8050 ZURICH Caribbean Telecoms Ltd.
Shirley, SOLIHULL, West Midlands

BIRMINGHAM, AL 35244
Corner McAllister Street &

Sokak 6/3, Gayrettepe B904BL
Tel: 41-1-315-8181 ISTANBUL Tel: '(205) 988-0547

Eastern Main Road, Laventille
Tel: 44-21-745-8800

Telex: 823 537 HPAG CH Tel: 172 1328, 1733344 Telex: 339105 A,C,M,P-
P.O. Box 732C,P Telex: 42490 C,E,P Hewlett-Packard Co.
PORT-OF·SPAIN

SYRIA Tel: 624-4213 A Hewlett-Packard Ltd. 420 Wynn Drive

General Electronic Inc. Telex: 22561 CARTEL WG UNITED ARAB Heathside Park Road HUNTSVILLE, AL 35805

Nuri Basha Ahnaf Ebn Kays Street Cable: CARTEL, PORT OF SPAIN EMIRATES Cheadle Heath, Stockport Tel: (205) 830-2000

P.O. Box 5781 CM,E,M,P Emitac Ltd.
SK3 ORB, United Kingdom C,CM,E,M-

DAMASCUS Tel: 44-061-428-0828 AlaskaComputer and Controls Ltd. P.O. Box 1641
Tel: 33-24-87 P.O. Box 51

Telex: 668068 Hewlett-Packard Co.
Telex: 44-19-88

SHARJAH A,C,E,M,P

Cable: ELECTROBOR DAMASCUS
1Taylor Street Tel: 591181

4000 Old Seward Highway

PORT·OF·SPAIN Hewlett-Packard Ltd. Suite 101
E Tel: (809) 622-7719/622-7985

Telex: 68136 EMITAC EM Harmon House ANCHORAGE, AK 99503

Middle East Electronics Telex: 38722798 COMCON WG
Cable: EMITAC SHARJAH No. 1George Street Tel: (907) 563-8855

P.O.Box 2308 LOOGO AGENCY 1264
E,C,M,P,A UXBRIDGE, Middlesex UX8 1YH C,E

Abu Rumaneh A,P Emitac Ltd. Tel: 89572020 Arizona
DAMASCUS Feral Assoc. P.O. Box 2711 Telex: 893134/5

Hewlett-Packard Co.
Tel: 33 4592 8Fitzgerald Lane ABU DHABI C,CM,E,M,P

8080 Pointe Parkway West
Telex: 411771 Meesy PORT·OF·SPAIN Tel: 820419-20 Hewlett-Packard Ltd. PHOENIX, AZ 85044
M Tel: 62-36864, 62·39255 Cable: EMlTACH ABUDHABI King Street Lane Tel: (602) 273-8000

TAIWAN
Telex: 22432 FERALCO Emitac Ltd. Winnersh, WOKINGHAM

A,C,CM,E,M,P

Hewlett-Packard Taiwan Ltd.
Cable: FERALCO P.O. Box 8391

Berkshire RG 11 5AR
M Tel: 44/734/784774 Hewlett-Packard Co.

THM Office DUBAI, Telex: 8471789 3400 East Britannia Dr.
2, Huan Nan Road TUNISIA Tel: 377591 A,C,E,M,P Bldg. C, Suite 124
CHUNG L1, Taoyuan Tunisie Electronique S.A.R.L. Emitac Ltd. NORTHERN IRELAND TUCSON, AZ 85706
Tel: (034) 929-666 31 Avenue de la Liberte P.O. Box 473 Tel: (602) 573-7400
C TUNIS RAS AL KHAIMAH

Hewlett-Packard (Ireland) Ltd.
C,E,M--

Hewlett-Packard Taiwan Ltd. Tel: 280-144 Tel: 28133, 21270
Carrickfergus Industrial Centre

California
Kaohsiung Office C,E,P 75 Belfast Road, Carrickfergus

11/F, 456, Chung Hsiao 1st Road Tunisie Electronique S.A.R.L. UNITED KINGDOM co, ANTRIM BT38 8PM Hewlett-Packard Co.

KAOHSIUNG 94, Av. Jugurtha, Mutuelleville ENGLAND Tel: 09603 67333 99 South Hill Dr.

Tel: (07) 2412318 1002 TUNIS-BELVEDERE Hewlett-Packard Ltd.
C,E BRISBANE, CA 94005

C,E Tel: 280144 Miller House Cardiac Services Company Tel: (415) 330·2500

Hewlett-Packard Taiwan Ltd. Telex: 13238 The Ring, BRACKNELL
95A Finaghy Road South C

8th Floor, Hewlett-Packard Building C,E,P Berks RG12 1XN
BELFAST, BnO OBY Hewlett-Packard Co.

337 Fu Hsing North Road Corema SA Tel: 44/344/424-898
Tel: 0232-625566 1907 North Gateway Blvd.
Telex: 747626

TAIPEI 1ter. Av. de Carthage Telex: 848733
FRESNO, CA 93727

TUNIS
M Tel: (209) 252-9652

Tel: (02) 712-0404 E
Telex: 24439 HEWPACK Tel: 253-821 SCOTLAND C,M

Telex: 12319 CABAM TN
Hewlett-Packard Ltd. Hewlett-Packard Ltd. Hewlett-Packard Co.Cable:HEWPACK Taipei

A,C,CM,E,M,P M Elstree House, Elstree Way 1/3 Springburn Place 1421 S. Manhattan Av.

TURKEY
BOREHAMWOOD, Herts WD61SG College Milton North FULLERTON, CA 92631

Ing Lih Trading Co. Tel: 01 2075000 EAST KILBRIDE, G74 5NU
3rd Floor, No.7, Sect. 2 E.M.A Telex: 8952716 Tel: 041-332-6232

Tel: (714) 999·6700

Jen Ai Road Mediha Eidem Sokak No. 41/6
C,E Telex: 779615

C,CM,E,M

TAIPEI 100 Yenisehir C,E Hewlett-Packard Co.

Tel: (02) 394-8191 ANKARA Hewlett·Packard Ltd. 7408 Hollister Ave. #A

Telex: 22894 SANKWANG Tel: 319175 Oakfield House, Oakfield Grove Hewlett-Packard Ltd.
GOLETA, CA 93117

Telex: 42321 KTX TR Clifton BRISTOL, Avon BS8 2BN SOUTH QUEENSFERRY
Tel: (805) 685-6100A

Cable: EMATRADE ANKARA Tel: 44-272·736806 West Lothian, EH30 9TG
C,E

THAILAND M Telex: 444302
Tel: 0313311188

Unimesa Co. Ltd. Telex: 72682 HPSQFYG Hewlett·Packard Co.

30 Patpong Ave., Suriwong
Teknim Company Ltd. C.E,P C,CM,E.M.P 2525 Grand Avenue

BANGKOK 5,
Iran Caddesi No.7 Hewlett-Packard Ltd. LONG BEACH, CA 90815
Karaklidere

Tel: 235-5727, 234-0991/3
9 Bridewell Place Tel: (213) 498-1111

ANKARA
Telex: 84439 Simonco TH LONDON EC4V 6BS C

Tel: 275800
Cable: UNIMESA Bangkok Telex: 42155 TKNM TR

Tel: 44-01-583-6565 Hewlett·Packard Co.

A,C,E,M C,E
Telex: 298163 5651 West Manchester Ave.

Bangkok Business Equipment Ltd. Kurt &Kurt A.S.
C,P LOS ANGELES, CA 90045

5/:-6 Dejo Road Mithatpasa Caddesi No. 75 Hewlett-Packard Ltd. Tel: (213) 337-8000

BANGKOK Kat 4Kizilay Pontefract Road Hewlett-Packard Co.

Tel: 234-8670, 234·8671 ANKARA NORMANTON, West Yorkshire WF6 1RN 3155 Porter Drive

Telex: 87699-BEQUIPT TH Tel: 318875/6/7/8 Tel: 44/924/895 566 PALO ALTO, CA 94304

Cable: BUSIQUIPT Bangkok Telex: 42490 MESR TR Telex: 557355 Tel: (415) 857·8000

P A C,P C,E

Hewlett-Packard Co.
5725 W. Las Positas Blvd.
PlEASANTON, CA 94566
Tel: (415) 460-0282
C

Hewlett-Packard Co.
4244 So. Market Court, Suite A
SACRAMENTO, CA 95834
Tel: (916) 929-7222
A",C,E,M

Hewlett-Packard Co.
9606 Aero Drive
SAN DIEGO, CA 92123
Tel: (619) 279-3200
C,CM,E,M

Hewlett-Packard Co.
3003 Scott Boulevard
SANTA CLARA, CA 95054
Tel: (408) 988-7000
Telex: 910-338-0586
A,C,CM,E

Hewlett-Packard Co.
2150 W. Hillcrest Dr.
THOUSAND OAKS, CA 91320
(805) 373-7000
C,CM,E

Colorado
Hewlett-Packard Co.
2945 center Green Court South
Suite A
BOULDER, CO 80301
Tel: (303) 499-6655
A,C,E

Hewlett-Packard Co.
24 Inverness Place, East
ENGLEWOOD, CO 80112
Tel: (303) 649-5000
A,C,CM,E,M

Connecticut
Hewlett-Packard Co.
500 Sylvan Av.
BRIDGEPORT, CT 06606
Tel: (203) 371-6454
C,E

Hewlett-Packard Co.
47 Barnes Industrial Road South
WALLINGFORD, CT 06492
Tel: (203) 265-7801
A,C,CM,E,M

Florida
Hewlett-Packard Co.
2901 NW. 62nd Street
FORT LAUDERDALE, FL 33309
Tel: (305) 973-2600
C,E,M,P"

Hewlett-Packard Co.
6800 South Point Parkway
Suite 301
JACKSONVILLE, FL 32216
Tel: (904) 636-9955
C",M**

Hewlett-Packard Co.
255 East Drive, Suite B
MELBOURNE, FL 32901
Tel: (305) 729-0704
CM,E

Hewlett-Packard Co.
6177 Lake Ellenor Drive
ORLANDO, FL 32809
Tel: (305) 859-2900
A,C,CM,E,P"

Hewlett-Packard Co.
4700 Bayou Blvd.
Building 5
PENSACOLA, FL 32503
Tel: (904) 476-8422
A,C,M

Hewlett-Packard Co.
5550 W. Idlewild, #150
TAMPA, FL 33614
Tel: (813) 884-3282
C,E,M,P

Georgia
Hewlett-Packard Co.
2015 South Park Place
ATLANTA. GA 30339
Tel: (404) 955·1500
Telex: 810-766-4890
A,C,CM,E,M,P"

Hewlett-Packard Co.
3607 Parkway Lane
Suite 300
NORCROSS, GA 30092
Tel: (404) 448·1894
C,E,P

Hawaii
Hewlett-Packard Co.
Pacific Tower
1001 Bishop SI.
Suite 2400
HONOLULU, HI 96813
Tel: (808) 526-1555
A,C,E,M

Idaho

11309 Chinden Blvd.
BOISE, ID 83714
Tel: (208) 323·2700
C

Illinois
Hewlett-Packard Co.
2205 E. Empire St.
P.O. Box 1607
BLOOMINGTON, IL 61702-1607
Tel: (309) 662·9411
A,C,E,M""

Hewlett-Packard Co.
525 W. Monroe, #1308
CHICAGO, IL 60606
Tel: (312) 930·0010
C

Hewlett-Packard Co.
1200 East Diehl Road
NAPERVILLE, IL 60566
Tel: (312) 357-8800
C
Hewlett-Packard Co.
5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800
Telex: 910-687-1066
A,C,CM,E,M

Indiana
Hewlett-Packard Co.
11911 N. Meridian St.
CARMEL, IN 46032
Tel: (317) 844-4100
A,C,CM,E,M

Hewlett-Packard Co.

111 E. Ludwig Road

Suite 108
FT. WAYNE, IN 46825
Tel: (219) 482-4283
C,E

Iowa
Hewlett-Packard Co.
4070 22nd Av. SW
CEDAR RAPIDS, IA 52404
Tel: (319) 390-4250
C,E,M

Hewlett-Packard Co.
4201 Corporate Dr.
WEST DES MOINES, IA 50265
Tel: (515) 224-1435
A**,C,M""

Kansas
Hewlett-Packard Co.
North Rock Business Park
3450 N. Rock Rd.
Suite 300
WICHITA, KS 67226
Tel: (316) 684-8491
C,E

Kentucky
Hewlett-Packard Co.
305 N. Hurstbourne Lane,
Suite 100
LOUISVILLE, KY 40223
Tel: (502) 426-0100
A,C,M

Louisiana
Hewlett-Packard Co.
160 James Drive East
ST. ROSE, LA 70087
P.O. Box 1449
KENNER, LA 70063
Tel: (504) 467-4100
A,C,E,M,P

Maryland
Hewlett-Packard Co.
3701 Koppers Street
BALTIMORE, MD 21227
Tel: (301) 644-5800
Telex: 710-862-1943
A,C,CM,E,M

Hewlett-Packard Co.
2Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 948-6370
A,C,CM,E,M

Massachusetts
Hewlett-Packard Co.
1775 Minuteman Road
ANDOVER, MA 01810
Tel: (617) 682-1500
A,C,CM,E,M,P"

Hewlett-Packard Co.
29 Burlington Mall Rd
BURLINGTON, MA 01803-4514
Tel: (617) 270-7000
C,E

Michigan
Hewlett-Packard Co.
4326 Cascade Road S.E.
GRAND RAPIDS, MI 49506
Tel: (616) 957-1970
C,M

Hewlett-Packard Co.
39550 Orchard Hill Place Drive
NOVI, MI 48050
Tel: (313) 349-9200
A,C,E,M

Hewlett-Packard Co.
560 Kirts Rd.
Suite 101
TROY, MI 48084
Tel: (313) 362-5180
C

Minnesota
Hewlett-Packard Co.
2025 W. Larpenteur Ave.
ST. PAUL, MN 55113
Tel: (612)644-1100
A,C,CM,E,M

Missouri
Hewlett-Packard Co.
1001 E. 101st Terrace Suite 120
KANSAS CITY, MO 64131-3368
Tel: (816)941-0411
A,C,CM,E,M

Hewlett-Packard Co.
13001 Hollenberg Drive
BRIDGETON, MO 63044
Tel: (314) 344-5100
A,C,E,M

Nebraska
Hewlett-Packard
11626 Nicholas St.
OMAHA, NE 68154
Tel: (402) 493-0300
C,E,M

New Jersey
Hewlett-Packard Co.
120 W. century Road
PARAMUS, NJ 07652
Tel: (201) 265-5000
A,C,CM,E,M

Hewlett-Packard Co.
20 New England Av. West
PISCATAWAY, NJ 08854
Tel: (201) 562-6100
A.C.CM,E

New Mexico
Hewlett-Packard Co.
7801 Jefferson N.E.
ALBUQUERQUE, NM 87109
Tel: (505) 823-6100
C,E,M

Hewlett-Packard Co.
1362-C Trinity Dr.
LOS ALAMOS, NM 87544
Tel: (505) 662-6700
C,E

New York
Hewlett-Packard Co.
5 Computer Drive South
ALBANY, NY 12205
Tel: (518) 458-1550
A,C,E,M

Hewlett-Packard Co.
9600 Main Street
CLARENCE, NY 14031
Tel: (716) 759-8621
C,E,M

Hewlett-Packard Co.
200 Cross Keys Office Park
FAIRPORT, NY 14450
Tel: (716) 223-9950
A,C,CM,E,M

Hewlett-Packard Co.
7641 Henry Clay Blvd.
LIVERPOOL, NY 13088
Tel: (315) 451-1820
A,C,CM,E,M

Hewlett-Packard Co.
No. 1Pennsylvania Plaza
55th Floor
34th Street &7th Avenue
MANHATTAN NY 10119
Tel: (212) 971-0800
C,M"

Hewlett-Packard Co.
15 Myers Corner Rd.
Hollowbrook Park, Suite 20
WAPPINGERS FALLS, NY 12590
Tel: (914) 298-9125
CM,E

Hewlett-Packard Co.
2975 Westchester Ave
PURCHASE, NY 10577
Tel: (914) 935-6300
C,CM,E

Hewlett-Packard Co.
3 Crossways Park West
WOODBURY,NY 11797
Tel: (516) 682-7800
A,C,CM,E,M

North Carolina
Hewlett-Packard Co.
305 Gregson Dr.
CARY, NC 27511
Tel: (919) 467-6600
C,CM,E,M,P"

Hewlett-Packard Co.
9401 Arrow Point Blvd
Suite 100
CHARLOm, NC 28217
Tel: (704) 527-8780
C"

Hewlett-Packard Co.
5605 Roanne Way
GREENSBORO, NC 27420
Tel: (919) 852·1800
A,C,CM,E,M,P"

Ohio
Hewlett-Packard Co.
2717 S. Arlington Road
AKRON, OH 44312
Tel: (216) 644-2270
C.E

Hewlett-Packard Co.
4501 Erskine Road
CINCINNATI, OH 45242
Tel: (513) 891-9870
C,M

Hewlett-Packard Co.
15885 Sprague Road
CLEVELAND, OH 44136
Tel: (216) 243-7300
A,C,CM,E,M

Hewlett-Packard Co.
9080 Springboro Pike
MIAMISBURG, OH 45342
Tel: (513) 433-2223
A,C,CM,E",M

Hewlett-Packard Co.
One Maritime Plaza, 5th Floor
720 Water Street
TOLEDO, OH 43604
Tel: (419) 242-2200
C

Hewlett-Packard Co.
675 Brooksedge Blvd.
WESTERVILLE, OH 43081
Tel: (614) 891-3344
C,CM,E"

Oklahoma
Hewlett-Packard Co.
3525 N.W. 56th St.
SuiteC-100
OKLAHOMA CITY, OK 73112
Tel: (405) 946-9499
C,E",M

SALES & SUPPORT OFFICES G
Arranged alphabetically by country 9

UNITED STATES
(Cont'd)
Hewlett·Packard Co.
6655 South Lewis,
Suite 105
TULSA, OK 74136
Tel: (918) 481·6700
A**,C,E,M*,P*

Oregon
Hewlett·Packard Co.
9255 S. W. Pioneer Court
WILSONVILLE, OR 97070
Tel: (503) 682-8000
A,C,E*,M

Pennsylvania
Hewlett·Packard Co.
Heatherwood Industrial Park
50 Dorchester Rd.
Route 22
HARRISBURG, PA 17112-2799
Tel: (717) 657-5900
C

Hewlett·Packard Co.
111 Zeta Drive
PITTSBURGH, PA 15238
Tel: (412) 782·0400
A,C,E,M

Hewlett·Packard Co.
2750 Monroe Boulevard
VALLEYFORGE, PA 19482
Tel: (215) 666-9000
A,C,CM,E,M

South Carolina
Hewlett-Packard Co.
Brookside Park, Suite 122
1Harbison Way
COLUMBIA, SC 29212
Tel: (803) 732-0400
C,M

Hewlett·Packard Co.
545 N. Pleasantburg Dr.
Suite 100
GREENVILLE, SC 29607
Tel: (803) 232·8002
C

Tennessee
Hewlett-Packard Co.
One Energy Centro Suite 200
Pellissippi Pkwy.
KNOXVILLE, TN 37932
Tel: (615) 966-4747
A,C,E,M,P

Hewlett-Packard Co.
3070 Directors Row
Directors Square
MEMPHIS, TN 38131
Tel: (901) 346-8370
A,C,E,M

Hewlett-Packard Co.
44 Vantage Way,
Suite 160
NASHVILLE, TN 37228
Tel: (615) 255·1271
A,C,E,M,P

Texas
Hewlett-Packard Co.
1826-P Kramer Lane
AUSnN, TX 78758
Tel: (512) 835-6771
C,E,P'

Hewlett-Packard Co.
5700 Cromo Dr
EL PASO, TX 79912
Tel: (915) 833-4400
C,E*,M"

Hewlett-Packard Co.
3952 Sandshell Drive
FORT WORTH, TX 76137
Tel: (817) 232·9500
C

Hewlett·Packard Co.
10535 Harwin Drive
HOUSTON, TX 77036
Tel: (713) 776·6400
A,C,E,M,P*

Hewlett·Packard Co.
3301 West Royal Lane
IRVING, TX 75063
Tel: (214) 869·3377
C,E

Hewlett-Packard Co.
109 E. Toronto, Suite 100
McALLEN, TX 78501
Tel: (512) 630-3030
C

Hewlett-Packard Co.
930 E. Campbell Rd.
RICHARDSON, TX 75081
Tel: (214) 231-6101
A,C,CM,E,M,P*

Hewlett-Packard Co.
1020 Central Parkway South
SAN ANTONIO, TX 78232
Tel: (512) 494-9336
A,C,E,M,P*

Utah
Hewlett-Packard Co.
3530 W. 2100 South St.
SALT LAKE CITY, UT 84119
Tel: (801) 974-1700
A,C,E,M

Virginia
Hewlett-Packard Co.
840 Greenbrier Circle
Suite 101
CHESAPEAKE, VA 23320
Tel: (804) 424-7105
C,E,M
Hewlett-Packard Co.
4305 Cox Road
GLEN ALLEN, VA 23060
Tel: (804) 747-7750
A,C,E,M,P'

Hewlett-Packard Co.
Tanglewood West Bldg.
Suite 240
3959 Electric Road
ROANOKE, VA 24018
Tel: (703) 774-3444
C,E,P

Washington
Hewlett-Packard Co.
15815 S.E. 37th Street
BELLEVUE, WA 98006
Tel: (206) 643-4004
A,C,CM,E,M

Hewlett-Packard Co.
1225 Argonne Rd
SPOKANE, WA 99212
Tel: (509) 922·7000
C

West Virginia
Hewlett-Packard Co.
501 56th Street
CHARLESTON, WV 25304
Tel: (304) 925-0492
A,C,M

Wisconsin
Hewlett-Packard Co.
275 N. Corporate Dr.
BROOKFIELD, WI 53005
Tel: (414) 784-8800
A,C,E*,M

URUGUAY
Pablo Ferrando SAC. e I.
Avenida Italia 2877
Casilla de Correo 370
MONTEVIDEO
Tel: 59·82-802-586
Telex: 398802586
A,CM,E,M

Olympia de Uruguay SA
Maquines de Oticina
Avda. del Libertador 1997
Casilla de Correos 6644
MONTEVIDEO
Tel: 91-1809, 98·3807
Telex: 6342 OROU UY
P

VENEZUELA
Hewlett-Packard de Venezuela C.A.
3A Transversal Los Ruices Norte
Editicio Segre 2& 3
Apartado 50933
CARACAS 1050
Tel: (582) 239-4133
Telex: 251046 HEWPACK
A,C,CM,E,M,P

Hewlett-Packard de Venezuela, C.A.
Centro Ciudad Comercial Tamanaco
Nivel C-2 (Nueva Etapa)
Local 53H05
Chuao, CARACAS
Tel: 928291
P

Albis Venezolana S.R.L.
Av. Las Marias, Ota. AUx,
EI Pedregal
Apartado 81025
CARACAS 1080A
Tel: 747984, 742146
Telex: 24009 ALBIS VC
A

Tecnologica Medica del Caribe, C.A.
Multicentro Empresarial del Este
Ave. Libertador
Edit. Libertador
Nucleo "C"· Oticina 51·52
CARACAS
Tel: 339867/333780
M

Hewlett-Packard de Venezuela C.A.
Residencias Tia Betty Local 1
Avenida 3y con Calle 75
MARACAIBO, Estado Zulia
Apartado 2646
Tel: 58-2-617-5669
Telex: 62464 HPMAR
C,E*

Hewlett-Packard de Venezuela C.A.
Urb. Lomas de Este
Torre Trebol- Piso 11
VALENCIA, Estado Carabobo
Apartado 3347
Tel: (5841) 222992
C,P

YUGOSLAVIA
Do Hermes
General Zdanova 4
YU-l1ooo BEOGRAD
Tel: (011) 342 641
Telex: 11433
A,C,E,M,P

Do Hermes
Celovska 73
YU-61ooo UUBUANA
Tel: (061) 553 170
Telex: 31583
A,C,E,M,P

Elektrotehna
Titova 51
YU-61000 UUBUANA
CM

Do Hermes
Kralja Tomislava 1
YU-71oo0 SARAJEVO
Tel: (071) 35 859
Telex: 41634
C",P

ZAIRE
Computer & Industrial Engineering
25, Avenue de la Justice
B.P.12797
KINSHASA, Gombe
Tel: 32063
Telex: 21552
C,P

ZAMBIA
R.J. Tilbury (Zambia) ltd.
P.O. Box 32792
LUSAKA
Tel: 215590
Telex: 40128
E

ZIMBABWE
Field Technical Sales (Private) Limited
45, Kelvin Road North
P.O. Box 3458
SALISBURY
Tel: 705 231
Telex: 4-122 RH
E,P

September 1987

Part No. 5958-8581
Printed in U. S. A. 07/88
E0788

rli;' HEWLETT
.:~ PACKARD

	Printing History
	List of Effective Pages
	Preface
	Conventions Used in This Manual
	Contents
	Section 1 Introduction
	Section 2 NetIPC Intrinsics
	Section 3 NetIPC Examples
	Appendix A IPC Interpreter (IPCINT)
	Appendix B Cause and Diagnostic Codes
	Appendix C Error Messages
	Index

