
\J!

Worldwide Response Center

HP 3000 APPLICATION NOTE #43

RUN TIME ABORTS

FliHa HEW.LETT
a:~ PACKARD

July 15, 1988
Do~ument PIN 5958-5824R2832A

RESPONSE CENTER APPLICATION NOTES

HP 3000 APPLICATION NOTES are published by the Worldwide Response Center twice a month
and are distributed with the Software Status Bulletin. These notes address topics where the volume of
calls received at the Center indicates a need for addition to or consolidation of information available
through H P support services.

Following this publication you will find a list of previously published notes and a Reader Comment
Sheet. You may use the Reader Comment Sheet to comment on the note, suggest improvements or
future topics, or to order back issues. We encourage you to return this form; we'd like to hear from you.

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

.This document contains proprietary information which is protected copyright. All rights are reserved.
Permission to copy all or part of this document is granted provided that the copies are not made or
distributed for direct commercial advantage; that this copyright notice, and the title of the publication
and its date appear; and that notice is given that copying is by permission of Hewlett-Packard
Company. To copy otherwise, or to republish, requires prior written consent of Hewlett-Packard
Company.

Copyright © 1988 by HEWLETT-PACKARD COMPANy

Run Time Aborts

1. INTRODUCTION

This note is intended for programmers who want the ability to trace, through the abort address, the
location of an error in their program.

A run time abort is MPE's mechanism to handle an irrecoverable situation encountered when a
process is executing and there is no user trap facility in place.

In this note, an examination of some of the causes of these run time aborts will be made. The steps
that MPE executes once the decision to abort has been made, will be explained. The components of
an abort and the messages will be explained in order to use that information, along with a compiler
listing and PMAP, to trace the address to the source of the abort. Also included, are two examples of
abort situations with detailed instructions on locating the source statement causing the abort.

2. WHAT CAUSES A RUN TIME ABORT?

An explanation of some of the causes of these aborts and why the decision to terminate an executing
process was made, will help with the error detection process.

A. LIBRARY ROUTINE (SUBSYSTEM'S LIBRARIES):

A process might be aborted because a subsystem library routine has encountered a problem.
Suppose a READ is done from a FORTRAN program. A FORTRAN library routine is called
to do the I/O. If an unexpected EOF is detected or a data format problem occurs and the
library routine cannot complete the operation, it may have to abort the program.

Library routines called by COBOL, SORT, RPG, BASIC (compiled), etc. may all encounter
similar situations. Many times it is possible to programmatically tell the library routine, in
advance, what t6 do if a particular error occurs. Programmers can even write their own
customize error recovery routines called user trap routines.

B. MPE INTRINSICS:

An MPE intrinsic may abort a process - the cause depends very much on each individual
intrinsics' requirements. The abort could be caused by a missing parameter, a bad parameter
value or address being passed, or a parameter that is the wrong data type. Another possibility
is that, in order to use the intrinsic, the program file must have some special capability (i. e.,
DS, MR, PH) but has not been prepped with these capabilities. In any case, the intrinsic decides
the situation requires special attention and it asks MPE to abort the program.

c. HARDWARE/MPE:

For the protection of other users and the system as a whole, the HP3000 routinely checks for
errors. These errors detected by the hardware or MPE could cause an abort. For instance) if a
data value maximum is exceeded during an arithmetic operation, the hardware detects the
problem. An example would be attempting to add +1 to the integer value 32767 which would
result in an INTEGER OVERFLOW. The hardware might also encounter a bad instruction
which would result in an INVALID INSTRUCTION error or an invalid address for code which
would result in a CST VIOLATION.

MPE will abort a program when a stack requires more space than the programmer has
specified as necessary or when a stack requires more that the maximum stack space allowed by
MPE (32K). This results in a STACK OVERFLOW. This could be caused by the data stack
actually being too large or possibly a recursive procedure call or looping situation. Each time
the procedure is called) the data used by that procedure is placed on top of the stack. In an
unchecked recursive call) data would continually be added to the stack until a STACK
OVERFLOW occurred.

Another cause for aborts is the improper indexing of arrays or the destruction of pointers by
other programming errors. If the index or pointer references an area that does not lie within
the bounds of the stack) a BOUNDS VIOLATION will occur and MPE will abort the program.

This) of course) is not intended to be a complete list) but just some of the more common causes
of abort situations the programmer may encounter.

3. THE STEPS IN MPE'S ABORT MECHANISM

If there is no user trap in effect and the system has made the decision to abort the process, MPE
executes the following steps:

A. The MPE error routines will print the abort address(es) and error messages.

B. The process resources are given back as in a normal program termination. All files are closed.
For new files) the data may be lost. Extra data segments (if private) are deleted. All RINS are
unlocked and the data stack is deleted. The code segments are then unloaded.

C. The Command Interpreter prints the final line - the abnormal termination message.

2

4. THE COMPONENTS OF AN ABORT MESSAGE

This is the standard format of an abort message:

#1 #2 #3 #4

[-]-[][][]
ABORT :PRMAST.PUB.PAYROLL.%0.%65:SYSL.%214.%1153

PROGRAM ERROR #20 :STACK OVERFLOW
[]

v
#5

[
PROGRAM TERMINATED IN AN ERROR STATE.

]
(CIERR 976)

1. This is the name, group, and account of the program that has aborted.

#2. The first set of octal numbers is the abort address within the user code. The first of these
numbers is the user code segment where the abort occurred, code segment O. The second octal
number is the code offset into this segment, the location of the instruction within the segment,
%65.

#3. This information and the foll()wingset of octal addresses will only appear if the abort occured
while executing SL code. SYSL indicates that the user code was calling a routine in SL. PUB. SYS
when the abort occurred. This information also might have been PUSL indicating an address
location in the SL of the local PUB group, or GUSL indicating an address in the SLof the local
group other than PUB.

#4. This next set of octal numbers are the code segment number and the code offset location that
was being executed within the SL.

5. These message lines are the error messages giving the program error number and the cause of the
abort, and crs abnormal termination message.

5. WHAT IS NEEDED TO TRAC.E THE ABORT?

A. COMPILER LISTING

The following listings are needed to trace the abort address.

The programmer will need a compiler source listing that includes the code offsets and/or a
symbolic table map. The different languages use options specified on the $CONTROL line of
the source file:

3

COBOLI I
FORTRAN77
PASCAL
SPL
BBASIC
BASICj3000
RPG

$CONTROL MAP, VERBS
$CONTROL CODE OFFSETS
$CONTROL TABLES, CODE-OFFSETS
$CONTROL MAP, ADR, INNERLIST
(LINE) 0001 GLOBAL COPTION 10, LABEL
$CONTROL MAP
$CONTROL MAP, CODE

Depending upon the compiler used, these listings will have some differences. In some cases, the
compiler listing will liave two columns of numbers on the left side of the source statements.
One column is the sequence numbers or editor line numbers. The other column is the starting
location of the machine instruction code for each source statement. In other cases, the code
offsets will be listed below all of the source statements, listing the editor statement number
next to its corresponding starting code location. See the compiler listing examples in appendix
A and B of this note.

Note that the starting code locations are not consecutive locations because one high -level
language statement can cause the compiler to issue many machine level instructions.

B. PMAP

Next, the programmer will need a Pmap. To get a Pmap listing, do the following:

:FILE SEGLIST;DEV=LP
:PREP FTNUSL,FTNP;PMAP

(or the LDEV # or a printer)

Refer to the Fortran example of the Pmap in appendix A of this note for the following
explanation.

The Pmap for the Fortran program, FTNP, contains two code segments:

PROCESSDATA
MAINPROG

segment 0;
segment 1.

The routines called from each of the code segments are listed below the segment name. The
first routine that is listed within PROCESSDATA is PROCESSRTN. This routine is assigned
STT 1 (Segment Transfer Table). This routine begins at word 0 of the code segment and,
therefore, has a value of 0 under the "CODE" heading. The IIENTRYII point in the ~de

segment is located at word 24. Each word of code forPROCESSRTN then follows until the
last word of code is reached. This is a routine whose code is internal to this code segment.

The following routines beginning with FTN_ are Fortran routines that do the error trapping,
range checking, and I/O. These are external routines residing in an SL. Notice that there are
?'s under the heading "SEG" for all of the external routines. These will be resolved at LOAD
time when the :RUN command is executed. These external routines are CALLED from this
code segment but the actual code resides elsewhere. The second internal routine that is listed
is SUM, STT 2, beginning at word 743 in this code segment. The internal routine, ZERO, STT
3, begins at word 1062.

In code segment 1, MAINPROG, are three types of routines. The first routine that is listed is
MAIN__ which is the main program outer block. This is internal to this code segment. The
second routine (and most of the others) are external routines whose code resides in an SL. The

4

third routine, PROCESSRTN, is external to this code segment, but does reside with this
program file. Its segment number is already resolved as residing in code segment 0,
PROCESSDATA.

With these listings the abort address can now be traced.

6. HOW TO TRACE THE ABORT ADDRESS.

A. FORTRAN?? EXAMPLE

Please refer to the Fortran compiler listing and PMAP in Appendix A of this note for this
tracing example.

ABORT :FTNP.PUB.FTNACCT.%O.%1030
PROGRAM ERROR #24 :BOUNDS VIOLATION

The first octal number in this abort example (%0) is the program -relative number of the code
segment in which the abort occurred. The second octal number (% 1030) is the address of the
instruction that was executing when the abort occurred. This instruction could not
successfully complete. Therefore, identifying this instruction will give an important clue to
the cause of the abort.

Another clue to keep in mind is the TYPE of error. Because this particular abort is a bounds
violation,look for an operation that attempted to load or store outside the bounds of the data
stack:.

1) Locate the Segment.

Looking at the Pmap for FTNP. PUB. FTNACCT, locate the code segment which has the
same relative segment number that appears in the abort message. In this example, code
segment 0 is PROCESSDATA.

2) Locate the Routine/Procedure.

Next, determine which routine in PROCESSDATA was executing when the abort
occurred. In the Pmap for this example, locate the second octal number (% 1030). Begin
by looking down the "CODEII column to find a code location that is less than the abort
location, but the next location in this column is greater than the abort location. The
addresses shown on the Pmap and in the abort message, are lIabsolute ll addresses which
are code locations relative to the start of the code segment. What is needed, however, is
a code location relative to the start of one of the routines in the segment.

In this example, the abort occurred somewhere in the SUM routine. Code for this
routine starts at location %743 which is less than the abort address, %1030, and the
next code location is %1062 which is greater than %1030.

At this point the programmer has the general location of the problem. In many
cases this is sufficient. If not, continue the trace to the specific code location.

Now convert the abort location to a routine-relative location. Do this by
subtracting the starting code location for SUM from the abort code location. The

5

result is the abort location relative to the start of the routine.

%1030
% 743

% 65

(This is OCTAL subtraction.)

The abort occurred while executing the 65th code instruction in the routine SUM.

3) Locate the Instruction.
To locate the instruction, refer next, to the compiler listing. Just how .to locate the
source statement that corresponds to the relative location that we have calculated,
depends on the compiler used. Each may provide different information concerning code
locations.

In this example, the program is a Fortran 77 program. The code locations on this listing
were obtained by compiling with $CONTROL CODE_OFFSETS. These code offsets
are listed after all the source statements. The numbers under the "STMT" heading on
the CODE_OFFSETS listing correspond to the statement numbers on the left side of
the compiler source listing. Each statement number on the CODE_OFFSETS listing
has a program code location (P-LOC) value associated with it. Looking at these P-LOC
values, find a value that has a starting code location less than the calculated relative
abort location, %65, with the next starting code location greater than %6 S. The code
location that qualifies is at location %46, at statement number 6. This is the statement
that was executing when the abort occurred.

4) Determine the cause

By examining the source statement, the reason for the abort may be obvious." The
program can be corrected and the trace was successful.

Many titnes it is not soobvious, so a few items need to be considered:

a. The type of abort that occurred;

b. What typically causes this type of abort;

c. What the code is actually doing when the source statement is executed.

In this example, the type of abort is a bounds violation. The most likely cause is a
subscript going out of bounds. This possibility should be checked first. This source
statement would result in code that loads a subscripted array element to the top of stack
(TOS) and adds it to a simple variable already loaded on TOS; the result is stored back
into the simple variable.

The SUbscript, I, happens to be the loop index. The bounds of the loop determines the
values that will be used to subscript the array. The limit and step for the loop are
actually passed in the parameters to the routine, SUM. It is very possible that the limit
is too high and is out of the true bounds of the array (and our stack as well).

Now find where SUM is called from PROCESSDATA. It is being called from two
locations. Examine the parameters that are being passed. What determines these

6

parameter values and what are the values? If this is not clear,a PRINT or WRITE
statement could be added to show what these values are, before each call to SUM. A
debugger could also be used to verify the values.

In this case, both calls to SUM are being passed the array, DATA. So where could the
bounds of DATA be exceeded? DATA is dimensioned (12,NYRS). The LIMIT parameter
will be either of these dimensioned, 12 or NYRS. In the line 16.000, SUM is called with
the second parameter set to 122 instead of 12. This is the cause of the problem.

B. COBOlll EXAMPLE

Please refer to the COBOLII compiler listing and Pmap in Appendix B of this note for this
tracing example. The Fortran 77 example provides more detailed information for tracing, so
both examples should be read to have a good understanding of this process.

ABORT :COBP.PUB.COBACCT.%2.%154:SYSL.%43.%3476
PROGRAM ERROR #24 :BOUNDS VIOLATION

In this COBOLII example, the abort actually occurred while executing a routine in
SL. PUB. SYS. However, the programmer should start with the abort location in the program
code where the SL routine was called. This is most likely a Library routine or intrinsic call
that was caused to abort by an error in the program code.

1) Locate the Segment

Again use the Pmap to identify the segment reported by the abort address. The abort
occurred in code segment %2. Looking at this example's Pmap, segment 2 is
100PROCESSDA02 which can also be identified in the source compiler listing as
100-PROCESS-DATA SECTION 02 in ~he main program.

2) Locate the Procedure

To determine which procedure was executing when the abort occurred, find a code
location in the Pmap under the "CODE" heading that is less than the abort code location,
%154, but the next location in this column is greater than %154. In this code segment,
there is only one procedure that is internal to this segment, 100PROCESSDA02. (The
segment name and the procedure have the same name.) The procedure COBEXSUB is
called from this segment but resides in code segment 0 as shown by a 0 under the
heading IfSEG". All of the other routines are COBOLII Library routines residing in the
SL. Therefore, the abort occurred while execu ting the %154 instruction in the the
procedure 100PROCESSDA02. If there had been another internal procedure in this
segment with a starting code location greater than the abort location, then the
routine-relative location would need to be calculated as in the Fortran 77 example.

3) Locate the Instruction

From the Pmap, go to the PROCEDURE/VERB MAP of the maIn program where
1OO-PROCESS-DATA is located.

7

Note that each program and subprogram has its own Symbol Table Map and
Procedure/Verb Map. Unlike the Pmap which is combined, these are maps of each
individual program that is compiled with $CONTROL l\1AP, VERBS.

This listing shows each procedure in this program and its relative PB (program base)
location. Remember that the second half of the program's abort address is the code
offset into the segment where the error occurred. This location, %154 is the %154 code
instruction in the procedure, IOO-PROCESS-DATA. Find this location by looking
down the column labeled PB-LOC. The value needed is a PB-LOC value that is greater
than the abort location, but less than the following PB-LOC value.

In this example, the largest PB-LOC is %131. Because there is no other PB-LOCation in
this procedure, the verb located at %131 was the last to execute. The error occurred
trying to execute this last DISPLAY statement.

4) Determine the Cause

Next, look at the source listing and locate this source DISPLAY statement to determine
why the abort occurred. This statement is

DISPLAY TAB-PLAYER-NAME(PLX), TAB-PLAYER-NUM(PLY) ,
TAB-BATTING-AVER(PLX).

The usual cause for a bounds violation is the improper indexing of an array. This array,
TAB-PLAYER-RECORD, is indexed by PLX; however, the DISPLAY of one element in
this array is subscripted by PLY. In Working-Storage, PLY has a value of 1000 which
is meant to be the array index limit. This is in error because the array .is defined as
occurring 100 times.

The bounds error could have occurred while attempting to add elements to the array
that exceeded its limit. Although the bounds violation would probably not have
occurred while attempting to add the 101 st entry, it would have occurred when the
program tried to add an entry in a location that exceeded the data limit of the stack.
Other data on the stack could have been overwritten before the bounds error occurred.

The array element, TAB-PLAYER-NUM, is mistakenly indexed by PLY which has a
value of 1000. The COBOLII display routine in the SL attempted to display a location
beyond the bounds of the stack and the abort occurred.

7. SUMMARY

The examples that were used are very simple programs, but the steps for tracing a run time abort
are exactly the same for a large 10,000 line program with many subprograms, as well as, a small
100 line program. Take the steps one at a time.

1) Run a compiler listing with code locations or a map.

2) Prep with the Pmap option.

3) From the abort address, locate the code segment number on the Pmap, 4) Determine
what procedure or routine was being called or performed at the time ofihe abort.

8

5) Then use the code offsets on the compiler listing or the map to identify the statement or
instruction that was being executed at the time of the abort,

6) Once the instruction has been located, determine the possible causes for the abort.
Knowing the program logic, the data,and what results are expected, is very useful in
determining the likely cause. Locating the abort location sometimes is not conclusive. The
abort could be the result of other programming errors and, therefore would point to the
location of the abort, but not to the error itself.

For example, if a call was made to transfer data base information to a buffer and the
buffer is too small to contain all of the information, then the foHowing area of the data
stack already containing valid data could be overwritten. If this overwritten area of the
stack contains a stack marker, then a CST violation could occur. The program could not
branch to a valid code location to continue executing. The abort address would point to
the PCAL instruction that was made to an invalid location. It would not point to the
transfer of data to the buffer which is the actual error.

9

FORTRAN77
1

APPENDIX A

PAGE 1 HEWLETT-PACKARD HP32116A.00.11
HP FORTRAN 77 (C) HEWLETT-PACKARD CO. 1986 WED, APR 6, 1988, 9:07 AM

0 1.000 $CONTROL SEGMENT 'MAINPROG'
0 2.000 $CONTROL USLINIT, CODE OFFSETS, RANGE
1 3.000 WRITE(6,*) IIHOW-MANY YEARS?II
2 4.000 READ(5,*) NYRS
3 5.000 CALL PROCESSRTN(NYRS)
4 6.000 STOP
5 7.000 END
0 8.000

C 0 D E OFF SET S

STMT P-LOC STMT P-LOC STMT P-LOC STMT P-LOC STMT P-LOC
1 000003 2 000024 3 000035 4 000037 5 000042

NUMBER OF ERRORS = 0 NUMBER OF WARNINGS = 0
PROCESSOR TIME 0: 0: 1 ELAPSED TIME 0: 0: 9
NUMBER OF LINES = 8

10

PAGE 1 HEWLETT-PACKARD HP32116A.00.11
HP FORTRAN 77 (C) HEWLETT-PACKARD CO. 1986 WED, APR 6, 1988, 9:11 AM

o
o
1
2
2
3
4
5
5
6
7
8
8
9

10
11
12
12
13
14
15
16
16
17
17
18
19
19
20
21

1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000
11.000
12.000
13.000
14.000
15.000
16.000
17.000
18.000
19.000
20.000
21..000
22.000
23.000
24.000
25.000
26.000
27.000
28.000
29.000
30.000

$CONTROL SEGMENT 'PROCESSDATA'
$CONTROL CODE OFFSETS, RANGE

SUBROUTINE PROCESSRTN(NYRS)
REAL DATA in (12',NYRS), TOTAL (NYRS), AVG (12)

C
PRINT *,"enter data now"
read *, DATA" in
WRITE(6,*) "after read"

C
PRINT *,"calltb zero"
CALL ZERO(TOTAL,NYRS)
,CALL ZERO(AVG,12)

C
PRINT *, "first call to sum"
DO I = 1, NYRS
TOTAL(I)=SUM(DATA in(1,I),122,1)
END DO

C
PRINT *, "second call to sum"
DO 1=1,12
AVG(I)=SUM(DATA in (I,1),NYRS,NYRS)/NYRS
END DO

C
WRITE(6,600) "YEARLY TOTALS", (I,TOTAL(I) ,1=1 ,NYRS)

C
WRITE(6,600) "MONTHLY AVGS",(I,AVG(I),I=1,NYRS)

600 FORMAT(1X,S/(I4,2X,F16.3»
C

700 RETURN
END

COD E 0 F F SET S

STMT P-LOC
2 000030
7 000175

12 000323
17 000457

STMT P-LOC
2 000026
6 000154

11 000237
16 000447

STMT P-LOC
3 000074
8 000200

13 000332
18 000556

STMT P-LOC
4 000115
9 000206

14 000353
20 000660

STMT P-LOC
5 000133 '

10 000227
15 000355
21 000661

NUMBER OF ERRORS = 0 NUMBER OF WARNINGS = 0
PROCESSOR TIME 0: 0: 2 ELAPSED TIME 0: 0:12
NUMBER OF LINES = 30

11

PAGE 1 HEWLETT-PACKARD HP32116A.00.11
HP FORTRAN 77 (C) HEWLETT-PACKARD CO. 1986 WED, APR 6,1988, 9:11 AM

o
o
1
2
3
4
5
6

1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000

$CONTROL SEGMENT 'PROCESSDATA'
$CONTROL CODE OFFSETS, RANGE

SUBROUTINE ZERO(ARY, LIMIT)
REAL ARY(LIMIT)
DO 1 I = 1, LIMIT
ARY(I) = 0.0
RETURN
END-

COD E 0 F F SET S

STMT P-LOC
3 000005

STMT P-LOC
2 000003

STMT P-LOC
4 000015

STMT P-LOC
5 000044

STMT P-LOC
6 000045

NUMBER OF ERRORS = 0 NUMBER OF WARNINGS = 0
PROCESSOR TIME 0: 0: 1 ELAPSED TIME 0: 0: 8
NUMBER OF LINES = 8

12

PAGE 1 HEWLETT-PACKARD HP32116A.00.ll
HP FORTRAN 77 (C) HEWLETT-PACKARD CO. 1986 WED, APR 6, 1988, 9) 12 AM

o
o
1
2
3
4
5
6
7
8
9

10

1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000
11 .000
12.000

$CONTROL SEGMENT 'PROCESSDATA'
$CONTROL CODE OFFSETS, RANGE

FUNCTION SUM(ARY, LIMIT, STEP)
REAL ARY(L1MIT)
INTEGER STEP
XSUM = 0.0
DO I = 1, LIMIT, STEP
XSUM = XSUM + ARY(I)
SUM=XSUM
END DO
RETURN
END

COD E 0 F F SET S

STMT P-LOC
4 000005
9 000112

STMT P-LOC
2 000003
8 000071

STMT P-LOC
5 000007

10 000113

STMT P-LOC
6 000046

STMT P-LOC
7 000070

NUMBER Of ERRORS = 0 NUMBER OF WARNINGS = 0
PROCESSOR TIME 0: 0: 1 ELAPSED TIME 0: 0: 8
NUMBER OF LINES = 12

PROGRAM FILE FTNP.PUB.FTNACCT

PROCESSDATA 0
NAME STT CODE ENTRY SEG
PROCESSRTN 1 0 24
FTN RANGE ERR 4 ?- -FTN E RSLE 5 ?
FTN S RSLE 6 ?
FTN E WSLE 7 ?
FTN S WSLE 10 ?
FTN DO R4IO 11 ?
FTN DO 1410 12 ?
FTN DO CHIO 13 ?
FTN E WSFE 14 ?
FTN S WSFE 15 ?
FTN DO R4IOA 16 ?
SUM 2 743 744
FTN LOOP ERR 17 ?
ZERO 3 1062 1063
SEGMENT LENGTH 1150

MAINPROG 1
NAME STT CODE ENTRY SEG
MAIN 1 0 1
FTN S STOP 2 ?

13

10240 CAPABILITY 600
o TOTAL CODE 1244
? TOTAL RECORDS 12
PROCESSOR TIME 00:00.711

3 0
4 ?
5 ?
6 ?
7 ?

10 ?
11 ?
12 ?
13 ?

74
o INITIAL STACK
o INITIAL DL
o MAXIMUM DATA

00:00:01.918

PROCESSRTN
FTN E RSLE
FTNSRSLE
FTN E WSLE
FTN S WSLE
FTN DO 1410
FTN-DO-CHIO
FTN F EXIT
TERMINATE'
SEGMENT LENGTH

PRIMARY DB
SECONDARY DB
TOTAL DB
ELAPSED TIME

1

14

COBOLII
C
PAGE 0001

APPENDIX B

HEWLETT-PACKARD 32233A.Ol.07 [74} COBOL IIlv FRI, APR 8, 1988,
10:57 AM Copyright HEWLETT-PACKARD CO. 1987

VALUE ZERO.

X(2).
9(4).
S9 (4) .
S9(4).
X(62).
S9V999

LABEL RECORDS ARE STANDA

RECORD CONTAINS 80 CHAR

ASSIGN TO "PLAYER,DA".

PIC X(80).

PIC
PIC
PIC
PIC
PIC
PIC

PLAYER-RECORD.
05 FILLER
05 PLAYER-NUM
05 AT-BATS
05 HITS
05 PLAYER-NAME
05 BATTING-AVER

001000* COBCNTL.PUB.SYS Defaults are:
002000*CONTROL LIST,SOURCE,NOCODE,NOCROSSREF,ERRORS=100,NOVERBS,
WARN
003000*CONTROL LINES=60,NOMAP,MIXED,QUOTE=",NOSTDWARN,SYNC16
001000$CONTROL USLINIT,MAP,VERBS
001100
001200 IDENTIFICATION DIVISION.
001300
001400 PROGRAM-ID. COBOLEX.
001500 AUTHOR. NA RESPONSE CENTER.
001600 DATE-WRITTEN. MAR. 15, 1988.
001700
001800 ENVIRONMENT DIVISION.
001900
002000 CONFIGURATION SECTION.
002100 SOURCE-COMPUTER. HP-3000.
002200 OBJECT-COMPUTER. HP-3000.
002300
002400 SPECIAL-NAMES.
002500 CONDITION-CODE IS C-C.
002600
002700 INPUT-OUTPUT SECTION.
002800 FILE-CONTROL.
002900 SELECT PLAYER-FILE
003000
003100
003200 DATA DIVISION.
003300
003400 FILE SECTION.
003500
003600 FD PLAYER-FILE
RD
003700
ACTERS.
003800
003900 01 FD-PLAYER-RECORD.
004000 05 STAT-REC
004100
004200 WORKING-STORAGE SECTION.
004300
004400 01
004500
004600
004700
004800
004900
005000
005100

00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046

00032

00003 COBCNTL
00004
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031

00001 COBCNTL
00002 COBCNTL

15

00047
00048
00049
00050
00051
00052
00053
00054

005200 01
005300
005400
005500
005600
005700
005800
005900

OUT-PLAYER-RECORD.
05 FIllER
05 OUT-PlAYER-NUM
05 OUT-AT-BATS
05 OUT-HITS
05 OUT-PLAYER-NAME
05 OUT-BATTING~AVER

16

PIC X(2).
PIC 9(4).
PIC S9(4).
PIC S9(4).
PIC X(62).
PIC S9V999.

CALL "COBEXSUB" USING HITS, AT-BATS, BATTING-AVER.

READ PLAYER-FILE RECORD INTO PLAYER-RECORD
AT END MOVE "y" TO END-OF-FILE-IND.

IF PLX < PLY THEN
SET PLX UP BY 1.

MOVE HITS TO TAB-HITS(PLX).
MOVE AT-BATS TO TAB-AT-BATS(PLX).
MOVE BATTING-AVER TO TAB-BATTING-AVER(PLX).

SET PLX TO 1.
PERFORM 200-RPT-DATA UNTIL PLX =
CLOSE PLAYER-FILE.
STOP RUN.

BY PLX.

PLY.

PIC S9(4) COMP VALUE 100

PIC X VALUE
VALUE

100 TIMES INDEXED
PIC X(2).

PIC 9(4).
PIC S9(4).
PIC S9 (4) .
PIC X(62).
PIC S9V999.

MOVE "N" TO END-OF-FILE-IND.

OPEN INPUT PLAYER-FILE.

SET PLX TO 1.
PERFORM 100-PROCESS-DATA

UNTIL END-OF-FILE.

PAGE 0002jCOBTEXT COBOLEX
00055 006000 01 TAB-PLAYER-RECORD.
00056 006100 05 DISPLAY-TABLE OCCURS
00057 006200 10 FILLER
00058 006300 10 TAB-PLAYER-NUM
00059 006400 10 TAB-AT-BATS
00060 006500 10 TAB-HITS
00061 006600 10 TAB-PLAYER-NAME
00062 006700 10 TAB-BATTING-AVER
00063 006800
00064 006900 01 PLY

O.
007000
007100 01 END-OF-FILE-IND
007200 88 END-OF-FILE
007300
007400************************
007500* BEGIN MAIN PROGRAM *
007600************************
007700
007800 PROCEDURE DIVISION.
007900
008000 OOO-MAIN-ROUTINE SECTION 01.
008100
008200
008300
008400
008500
008600
008700
008800
008900
009000
009100**************************
009200* DO MORE PROCESSING *
009300**************************
009400
009500
009600
009700
009800
009900
010000 100-PROCESS-DATA SECTION 02.
010100
010200
010300
010400
010500
010600
010700
010800
010900
011000
011100

00065
00066
00067
00068
00069
00070
00071
00072
00073
00074

- 00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106

17

00107
00108
00109
00110

011200
011300
011400
011500

MOVE PLAYER-NUM TO TAB-PLAYER-NUM(PLX).
MOVE PLAYER-NAME TO TAB-PLAYER-NAME(PLX).
DISPLAY TAB-PLAYER-NAME(PLX), TAB-PLAYER-NUM(PLY),

TAB-BATTING-AVER(PLX).

18

CALL INTRINSIC "PRINT" USING OUT-PLAYER-RECORD,
-80,%0.

SET PLX UP BY 1.
MOVE TAB-HITS(PLX) TO OUT-HITS.
MOVE TAB-AT-BATS(PLX) TO OUT-AT-BATS
MOVE TAB-BATTING-AVER(PLX) TO OUT-BATTING-AVER.
MOVE TAB-PLAYER-NUM(PLX) TO OUT-PLAYER-NUM.
MOVE TAB-PLAYER-NAME(PLX) TO OUT-PLAYER-NAME.

PAGE 0003/COBTEXT COBOLEX
00111 011600
00112 011700
00113 011800 200-RPT-DATA SECTION 03.
00114 011900
00115 012000
00116 012100
00117 012200
00118 012300
00119 012400
00120 012500
00121 012600
00122 012700
00123 012800
00124 012900
00125 013000

19

PAGE 0004/COBTEXT COBOLEX SYMBOL TABLE MAP
LINEN LVl SOURCE NAME BASE DISPL SIZE USAGE CATEGORY

R 0 J BZ

FILE SECTION

00000 FD PLAYER-FILE Q+2: 000332 000106 SEQUENTIAL
00034 01 FD-PlAYER-RECORD Q+2: 000444 000120 DISP AN
00035 05 STAT-REC Q+2: 000444 000120 DISP AN

WORKING-STORAGE SECTION

00039 01 PLAYER-RECORD Q+2: 000564 000120DISP AN
00040 05 FILLER Q+2: 000564 000002 DISP AN
00041 05 PlAYER-NUM Q+2: 000566 000004 DISP N
00042 05 AT-BATS Q+2: 000572 000004 DISP NS
00043 05 HITS Q+2: 000576 000004 DISP NS
00044 05 PLAYER-NAME Q+2: 000602 000076 DISP AN
00045 05 BATTING-AVER 0+2: 000700 000004 DISP NS
00047 01 OUT-PLAYER-RECORD Q+2: 000704 000120 DISP AN
00048 05 FILLER Q+2: 000704 000002 DISP AN
00049 05 OUT-PlAYER-NUM Q+2: 000706 000004 DISP N
00050 05 OUT-AT-BATS 0+2: 000712 000004 DISP NS
00051 05 OUT-HITS Q+2: 000716 000004 DISP NS
00052 05 OUT-PLAYER-NAME Q+2: 000722 000076 DISP AN
00053 05 OUT-BATTING-AVER 0+2: 001020 000004 DISP NS
00055 01 TAB-PLAYER-RECORD Q+2: 001024 017500 DISP AN
00056 05 DISPLAY-TABLE Q+2: 001024 000120 DISP AN

0
PLX Q+2: 000000 000002 INDEX NAME

00057 10 FILLER Q+2: 001024 000002 DISP AN
00058 10 TAB-PLAYER-NUM 0+2: 001026 000004 DISP N
00059 10 TAB-AT-BATS Q+2: 001032 000004 DISP NS
00060 10 TAB-HITS 0+2: 001036 000004 DISP NS
00061 10 TAB-PLAYER-NAME 0+2: 001042 000076 DISP AN
00062 10 TAB-BATTING-AVER 0+2: 001140 000004 DISP NS
00064 01 PLY 0+2: 020524 000002 COMP NS
00066 01 END-OF-FllE-IND Q+2: 020526 000001 DISP AN
00067 88 END-OF-FIlE

20

PAGE 0005jCOBTEXT COBOLEX SYMBOL TABLE MAP
LINE# LVL SOURCE NAME BASE DrSPL SIZE USAGE CATEGORY

R 0 J BZ

STORAGE LAYOUT (#ENTRYS) (VALUES IN WORDS)

INDEX TABLE (1) Q+1 : 000000 000001
START TABLE (3) Q+1 : 000001 000006
DISPLAY BUFFER Q+1 : 000007 000144
USER LABEL POINTER Q+1 : 000153 000002
FILE TABLE (1) Q+1 : 000155 000043
TALLY Q+1 : 000220 000002
USER STORAGE Q+1 : 000222 010032
RUNNING PICTURES Q+1 : 010254 000003
FIXUP AREA (1) Q+1 : 010257 000011

POINTER AREA

DB-5 CURRENT VALUE OF Q FOR STORAGE AREA
DB-4 'PARM=' WORD - SWITCHES
Q+1 WORD ADDRESS OF STORAGE AREA
Q+2 BYTE ADDRESS OF STORAGE AREA
Q+3 DECIMAL POINT & COMMA
Q+4 # PARMS AND CURRENCY SIGN
Q+5 BYTE ADDRESS OF 9 WORD TEMPCELlS
0+6 WORD ADDRESS OF 1 WORD TEMPCELLS
Q+7 BYTE ADDRESS OF LITERAL POOL
Q+10 PLABEL OF SORT OR MERGE OUTPUT
Q+11 WORD ADDRESS OF START TABLE
Q+12 WORD ADDRESS OF USER LABEL POINTER
Q+13 PREVIOUS VALUE OF DB-5
Q+14 RESERVED

21

PAGE 0006/COBTEXT COBOLEX PROCEDURE/VERB MAP
LINE # PB-LOC # PROCEDURE NAME/VERB INTERNAL NAME

00075
00077
00079
00082
00084
00090
00091
00092
00093
00095
00098
00098
00098
00100
00102
00103
00104
00105
00106
00107
00108
00110
00113
00115
001 t6
00117
00118
00119
00120
00123

000003
000003
000006
000036
000040
000052
000054
000071
000076
000003
000003
000003
000025
000030
000037
000046
000054
000065
000076
000107
000120
000131
000003
000003
000010
000034
000045
000056
000067
000100

o OOO-MAIN-ROUTINE
MOVE
OPEN
SET
PERFORM
SET
PERFOR,M
CLOSE
STOP

100-PROCESS-DATA
READ
MOVE
MOVE
CALL
IF
SET
MOVE
MOVE
MOVE
MOVE
MOVE
DISPLAY

200-RPT-DATA
SET
MOVE
MOVE
MOVE
MOVE
MOVE
CALL

000MAINROUTI01'

100PROCESSDA02'

200RPTDATA03'

o ERRORS, 0 QUESTIONABLE, 0 WARNINGS

DATA AREA IS %010270 WORDS.
CPU TIME = 0:00:04. WALL TIME = 0:00:09.

22

C
PAGE 0001 HEWLETT-PACKARD 32233A.01.07 [74] COBOL IIlv FRI, APR 8, 1988,

11:07 AM Copyright HEWLETT-PACKARD CO. 1987

PIC S9(4).
PIC S9(4).
PIC S9V999.

MOVE 0 TO BATTING-AVER.
COMPUTE BATTING-AVER = HITS I AT-BATS.

00001 COBCNTL
00002 COBCNTL

00003 COBCNTL
00004
00006
00007
00008
00009
00010
000 11
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036

001000* COBCNTL.PUB.SYS Defaults are:
002000*CONTROL LIST,SOURCE,NOCODE,NOCROSSREF,ERRORS=100,NOVERBS,
WARN
003000*CONTROL LINES=60,NOMAP,MIXED,QUOTE=",NOSTDWARN,SYNC16
001000$CONTROL SUBPROGRAM, MAP, VERBS
001100
001200 IDENTIFICATION DIVISION.
001300
001400 PROGRAM-ID. COBEXSUB.
001500 AUTHOR. NA RESPONSE CENTER.
001600 DATE-WRITTEN. MAR. 15, 1988.
001700
001800 ENVIRONMENT DIVISION.
001900
002000 DATA DIVISION.
002100
002200 WORKING-STORAGE SECTION.
002300
002400 LINKAGE SECTION.
002500
002600 01 HITS
002700 01 AT-BATS
002800 01 BATTING-AVER
002900
003000************************
003100* BEGIN SUB PROGRAM *
003200************************
003300
003400 PROCEDURE DIVISION USING HITS, AT-BATS, BATTING-AVER.
003500
003600 OOO-SUB-ROUTINE.
003700
003800
003900
004000
004100 GOBACK.

23

PAGE ooo2/COBT~XT COBEXSUB
LINE# LVL SOURCE NAME

R 0 J BZ

LINKAGE SECTION

SYMBOL TABLE MAP
BASE OISPL SIZE USAGE CATEGORY

00021 01
00022 01
00023 01

HITS
AT-BATS
BATTING-AVER

Q+20 000000 000004 OISP
Q+21 000000 000004 OISP
Q+22 000000 000004 OISP

24

NS
NS
NS

PAGE 0003/COBTEXT COBEXSUB SYMBOL TABLE MAP
LINE# LVL SOURCE NAME BASE DISPL SIZE USAGE CATEGORY

R 0 J BZ

STORAGE LAYOUT (#ENTRYS) (VALUES IN WORDS)
FIRST TIME FLAG Q+1 : 000000 000001
START TABLE (1) Q+1 : 000001 000002
USER LABEL POINTER Q+1 : 000003 000002
TALLY Q+1 : 000005 000002
RUNNING PICTURES Q+1 : 000007 000003
FIXUP AREA (1) Q+1 : 000012 000011
9 WORD TEMP CELLS (3) Q+1 : 000023 000033

POINTER AREA

DB-5 CURRENT VALUE OF Q FOR STORAGE AREA
DB-4 'PARM=' WORD - SWITCHES
Q+1 WORD ADDRESS OF STORAGE AREA
Q+2 BYTE ADDRESS OF STORAGE AREA
Q+3 DECIMAL POINT & COMMA
Q+4 # PARMS AND CURRENCY SIGN
0+5 BYTE ADDRESS OF 9 WORD TEMPCELLS
0+6 WORD ADDRESS OF 1 WORD TEMPCELlS
Q+7 BYTE ADDRESS OF LITERAL POOL
Q+10 PLABEL OF SORT OR MERGE OUTPUT
0~11 WORD ADDRESS OF START TABLE
0+12 WORD ADDRESS OF USER LABEL POINTER
0+13 PREVIOUS VALUE OF DB-5
0+14 RESERVED
0+15 TO 0+17 WORD ADDRESSES FOR PARMs/EXTs
Q+20 TO 0+22 BYTE ADDRESSES FOR PARMs/EXTs

25

PAGE 0004jCOBTEXT COBEXSUB PROCEDURE/VERB MAP
LINE # PB-LOC # PROCEDURE NAME/VERB INTERNAL NAME

00031
00033
00034
00036

000030
000030
000032
000074

o OOO-SUB-ROUTINE
MOVE·
COMPUTE
EXIT PGM

COB£XSUB

o ERRORS, 0 QUESTIONABLE, 0 WARNINGS

DATA AREA IS %000056 WORDS.
CPU TIME = 0:00:01. WALL TIME = 0:00:04.

PROGRAM fILE COBP.PUB.COBACCT

COBEXSUB 0
NAME STT CODE ENTRY SEG
COBEXSUB 1 0 3
DIVD 4 ?
COBEXSUB'S 2 0 0
COBEXSUB' 3 107 107
SEGMENT LENGTH 234

200RPTDATA03' 1
NAME STT CODE ENTRY SEG
200RPTDATA03' 1 0 0
PRINT 3 ?
IO'CLOSE'fILES 4 ?
TERMINATE' 5 ?
COBOLEX 2 114 114
DEBUG 6 ?
COBOLTRAP 7 ?
000MAINROUTI01' 10 3
100PROCESSDA02' 11 2
IO'fTAB'INIT'C 12 ?
SEGMENT LENGTH 254

100PROCESSDA02' 2
NAME STT CODE ENTRY SEG
100PROCESSDA02' 1 0 0
COBEXSUB 2 0
C'DISPLAY 3 ?
C'DISPLAY'fIN 4 ?
C'DISPLAY'INIT 5 ?
IO'READSEQ'C 6 ?
SEGMENT LENGTH 220

OOOMAINROUTI01' 3
NAME STT CODE ENTRY SEG
000MAINROUTI01' 1 0 0
IO'CLOSE'fILES 2 ?
IO'CLOSE'C 3 ?
IO'OPEN'C 4 ?

26

TERMINATE'
SEGMENT LENGTH

5
114

?

PRIMARY DB
SECONDARY DB
TOTAL DB
ELAPSED TIME

o INITIAL STACK
10346 INITIAL DL
10346 MAXIMUM DATA

00:00:01.847

27

2260 CAPABILITY 600
o TOTAL CODE 1044
? TOTAL RECORDS 54
PROCESSOR TIME 00:00.818

BACK ISSUE INFORMATION
Following is a list of the Application Notes published to date. If you would like to order single cop.ies of
back issues please use the Reader Comment Sheet attached and indicate the number(s) of the note(s) you
need.

Note # Published

1 2/21/85
2 10/15/85
3 4/01/86
4 4/15/86
5 5/01/86
6 5/15/86
7 6/01/86
8 6/15/86
9 7/01/86

10 7/15/86
11 8/01/86
12 8/15/86
13 9/01/86
14 9/15/86
15 10/01/86
16 10/75/86
17 77/07/86
18 11/15/86
19 72/07/86
20 7/07/87
21 1/75/87
22 2/15/87
23 3/07/87
24 3/75/87
25 4/01/87
26 4/75/87
27 5/01/87
28 5/15/87
29 6/01/87
30 6/15/87
31 7/01/87
32 7/15/87
33 8/15/87
34 9/01/87
34 10/01/87
35 10/15/87
34 11/07/87
36 12/01/87
37 12/15/87
38 7/07/88
39 7/15/88
40 2/07/88
41 4/07/88
42 7/15/88
43 7/15/88

Topic

Printer Configuration Guide (superseded by note #4)
Terminal types for HP 3000 HPIB Computers (superseded by note #13)
Plotter Configuration Guide
Printer Configuration Guide - Revised
MPE System Logfile Record Formats
Stack Operation
COBOL II /3000 Programs: Tracing Illegal Data
KSAM Topics: COBOL's Index I/O; File Data Integrity
Port Failures, Terminal Hangs, TERMDSM
Serial Printers - Configuration, Cabling, Muxes
System Configuration or System Table Related Errors
Pascal/3000 - Using Dynamic Variables
Terminal Types for HP 3000 HP/B Computers - Revised
Laser Printers - A Software and Hardware Overview
FORTRAN Language Considerations - A Guide to Common Problems
IMAGE: Updating to Turbo/MAGE & Improving Data Base Loads
Optimizing VPLUS Utilization
The Case of the Suspect Track for 792X Disc Drives
Stack Overflows: Causes & Cures for COBOL II Programs
Output Spooling
COBOLII and MPE Intrinsics
Asynchronous Modems
VFC Files
Private Volumes
TurboIMAGE: Transaction Logging
H P 2680A, 2688A Error Trailers
HPTrend: An Installation and Problem Solving Guide
The Startup State Configurator
A Programmer's Guide to VPLUS/3000
Disc Cache
Calling the CREATEPROCESS Intrinsic
Configuring Terminal Buffers
Printer Configuration Guide
RIN Management (Using COBOLll Examples) (A)
Process Handling (Using COBOLII Examples) (B)
HPDESK IV (Script files, FSC, and Installation Considerations)
Extra Data Segments (Using COBOLII Examples) (C)
Tips for the DESK IV Administrators
AUTOINST: Trouble-free Updates
Store/Restore Errors
MRJE Emulates a HASP Workstation
HP 250 / 260 to HP 3000 Communications Guidelines
MPE File Label Revealed - Revised 6/15/88
System Interrupts
Run Time Aborts

