
North American Response Center

HP 3000 APPLICATION NOTE #34

NOTED

OCT 3'0 1987

Gr. L M.

Extra Data Segments
(Using COSOlll Examples)

Flin- HEWLETT
.:~ PACKARD

November 1, 1987
Document piN 5958-5824R2745



RESPONSE CENTER APPLICATION NOTES

HP 3000 APPLICATION NOTES are published by the North American Response Center twice a
month and are distributed with the Software Status Bulletin. These notes address topics where the
volume of .calls received at the Center indicates a need for addition to or consolidation of information
available through H P support services.

Following this publication you will find a list of previously published notes and a Reader Comment
Sheet. You may use the Reader Comment Sheet to comment on the note, suggest improvements or
future topics, or to order back issues. We encourage you to return this form; we'd like to hear from you.

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND JYITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are
reserved. Permission to copy all or part of this document is granted provided that the copies are not
made or distributed for direct commercial advantage; that this copyright notice, and the title of the
publication and its date appear; and that notice is given that copying is by permission of
Hewlett-Packard Company. To copy otherwise, or to republish, requires prior written consent of
Hewlett-Packard Company.

. Copyright © 1987 by HEWLETT-PACKARD COMPANY



USING EXTRA DATA SEGMENTS

The purpose of this document is to give experienced programmers information on using Extra Data
Segments on the HP 3000. A COBOLII example is provided to illustrate the techniques involved.

Overview

There are numerous applications for Extra Data Segments. Such applications inclucie providing a means
for processes in a process tree to communicate or storing large arrays that cannot fit in the program's
stack due to their size. -Although, of course, no data segment (regardless of type) may exceed 32,768 words
(65K bytes), programs that need to use very large arrays can 'offload' these structures into an XDS.

Referencing data in an XDS

The two types of data segments directly accessible to users of MPE are stacks and extra data segments.

Data in a stack is referenced by MPE through the use of pre-defined registers: the DL, DB, Q, S, and Z.
These are described further in HP 3000 Stack Operation, Appnote #6, May 15, 1986.

Unlike a stack, an Extra Data Segment or XDS, is not referenced by a series of registers. Instead, it is
considered unformatted because it is up to the programmer to decide upon how it will be used and what it
will contain.

The following terms will be used in this document to refer to entries in the XDS:

Logical Entry

Displacement

Entry Length

System Intrinsics

This is analagous to a record in a disc file. It is the definition of one
entry contained in the XDS. It may be no smaller than 1 word (2 bytes)
and must be an integral number of words no larger than the XDS itself.

This is the offset from 0 to the beginning of the logical entry to be read
or written to. Using the disc file analogy, this would be the relative
record number.

This is the number of words (not bytes) that make up one logical entry.
This also defines the number of words to be transferred to or from the
XDS. It may be no less than 1 word and no greater than the size of the
XDS.

The following System Intrinsics are used to create and access an Extra Data Segment:

ALTDSEG

DMOVIN

DMOVOUT

FREEDSEG

Alters the size, in 4 word allotments, of existing extra data segments.

Transfers a specified number of words from an extra data segment to a
program's stack.

Transfers a specified number of words to an extra data segment from a
program's stack.
Releases an extra data segment, thereby erasing it from memory.

1



GETDSEG Creates an extra data segment or grants access to a sharable extra data
segment.

Extra Data Segment or OS Capability

In order to use these intrinsics a program must be PREPed with the DS capability. Additionally, the group
and account in which this program will reside must also have DS capability, although users of such
programs DO NOT need to possess OS.

There are two types of extra data segments: sharable, those that may be accessed by any program knowing
its '10' in the current job or session and private, those known only to the process that created them.

Both sharable and private extra data segments are accessed in the same way. A sharable XDS is analagous
to a temporary file in that it remains associated with the job or session under which it was created and is
purged automatically when this job or session logs off. A private XDS, however, is purged when the
process or program which created it completes.

An Example Using Extra Data Segments

For the rest of this discussion please refer to the following excerpt from a COBOLII program:

XDS-INDEX
XDS- ID
XDS-NAME REDEFINES
XDS-LENGTH
XDS-LOGICAL-ENTRIES
XDS-ENTRY-LENGTH
XDS-DISPLACEMENT
XDS-NUM-LOADED

WORKING-STORAGE SECTION.
01 INTEGER-MASK
01 XDS-CONTROL-DATA.

05
05
05
05
05
05
05
05

PIC ZZZZ9.

PIC S9 (4) COM P.
PIC S9(4) COMPo

XDS-ID PIC X(2).
PIC S9(4) COMPo
PIC S9(4) COMP VALUE
PIC 59(4) COMP VALUE
PIC S9(4) COMPo
PIC S9(4) COMPo

100.
40.

01 XDS-BUFFER.
05 XDS-CUSTOMER-NAME PIC X(30).
05 XDS-ADDRESS PIC X(30) .
05 XDS-AR-AMOUNT PIC S9(9)V99 COMP-3.
05 XDS-AR-BILL-DATE.

10 XDS-AR-BD-YY PIC X(2).
10 XDS-AR-DB-MM PIC X(2).
10 XDS-AR-BD-DD PIC X(2) .

05 XDS-Nurv1-TRANS PIC S9(9) COMPo
05 FILLER PIC X(4) .

Creating and Accessing an XOS

In this example, each logical entry will be 40 words in length and a segment large enough to hold 100 of
these entries will need to be created. The following calculation is used to determine the siz.e of the XDS:

2



XDS-LENGTH = XDS-LOGICAL-ENTRIES * XDS-ENTRY-LENGTH.

This results in a request for an XDS of 4000 words.

Notice that the item XDS-BUFFER is made up of several different data types. How your program
interprets the data in the XDS is limited only by the data types supported by the language used to code
the program.

Shared or Private XDS

To designate that an XDS is to be private (non-sharable), a zero XDS- I Dvalue must be passed to GETDSEG
otherwise the XDS will be considered to be sharable by any process running under the job or session that
created it.

MOVE 'D1' TO XDS-NAME.

For instance, here, the XDS will be sharable and will be called 'D I', this name is arbitrary and may be any
value such that XDS-ID, the 'ID' passed to GETDSEG, is non-zero.

Now GETDSEG is called to have MPE allocate a block of memory and attach this block to the program
requesting it:

CALL INTRINSIC "GETDSEG" USING XDS-INDEX,
XDS-LENGTH,
XDS- I D.

IF C-C < 0 THEN

The condition code returned is checked for a 'less than zero' value to see if the the call has failed. If a
condition code greater than zero is returned, you have been granted access to an existing XDS. It is
important to remember that a shared XDS will survive the process that created it and if the process does
not explicitly delete the data segment with the FREEDSEG intrinsic the XDS will remain. Other processes
run from the session or job under which the XDS was created would use the same XDS if the same XDS
name were used.

If this call is successful then XDS - INDEX will contain a value that the other data segment management
intrinsics can use to locate this XDS. This value MAY NOT subsequently be changed by your program.

Transferring Data to an XDS

Now that an XDS has been created it is possible to load data into it. To do this you will have to know
what the 'displacement' into the XDS will be. This value is ALWAYS calculated from zero since the first
word of an XDS is considered the zeroth word. To calculate the displacement:

COMPUTE XDS-DISPLACEMENT = XDS-ENTRY-LENGTH * XDS-NUM-LOADED.

The item XDS-NUM-LOADED is used to count the number of entries that have already been placed into the
XDS. On the first iteration this value would be zero which would then result in XDS-DISPLACEMENT
being zero. On the next iteration XDS-NUM-LOADED would be I so the displacement would be 40,
remember the first entry occupies words 0 thru 39!

3



Once the displacement has been calculated the DMOVOUT intrinsic is called to cause the transfer to occur:

CALL INTRINSIC IIDMOVOUT II USING XDS-INDEX, XDS-DISPLACEMENT,
XDS-ENTRY-LEN, XDS-BUFFER.

IF C-C NOT = 0

Transferring Data from an XDS

Transfering data into WORKING-STORAGE from an XDS is similar to transferring data to an XDS, a
displacement must be calculated using the number of logical entries and the length of this entry to
calculate a displacement from word zero of the XDS. Once this is done the DMOVI Nintrinsic is used to
initiate the transfer:

CALL INTRINSIC IIDMOVIN II USING XDS-INDEX, XDS-DISPLACEMENT,
XDS-ENTRY-LEN, XDS-BUFFER.

IF C-C NOT = 0

This will cause 40 words (the value of XDS -ENTRY - LEN) of data beginning at the word in the XDS pointed
, to by XDS-DISPLACEMENT to be transferred into XDS-BUFFER.

Any time data is transferred into your programs stack the ONLY limitation on placement of that data are
the absolute bounds of the stack, e. g. the DL and Z registers. (The DL, or data limit register, points to the
absolute boundary of user accessible data. The Z, or stack limit register, points to the absolute upper
boundary of the stack.) Since MPE is not aware of data definitions within a stack it will transfer to ANY
requested location so long as it does not go below DL nor above Z.

If such a location is determined incorrectly, this can cause great problems depending upon what portion of
the stack is overwritten when the data is transferred from the XDS. At a minimum, random dtl!'ta
corruption can occur. At worst, either CST or STT violations may occur because portions of the STACK
MARKER or locations used to store COBOL PERFORM return addresses could be overwritten. If a
program is running in PRIVILEDGED MODE, where no bounds checking is done at all, the results can be
even more disastrous. Therefore, before using such techniques be sure Y9u understand their implications
and have taken the necessary steps to prevent accidents.

Altering the Size of an XDS

When an XDS is initially created, space in Virtual Memory (on disc) is reserved for it when it is not needed
in main memory. Virtual Memory is allocated in 'pages' of 512 words which corresponds to 4 disc sectors
(128 words each). In this example an XDS of 4000 words was requested however space was set aside in
Virtual Memory for 4096 words (8 pages of virtual memory, 512 words each).

The ALTDSEG intrinsic will allow an XDS to be 'sized' up or down in a minimum of 4 word allotments. A
request to increase the size of an XDS can never exceed the initial space requested (in this example, 4096
words). An attempt to request more space than is available will result in the condition code (C-C) being
set greater than zero:

4



CALL INTRINSIC "ALTDSEG" USING XDS-INDEX, 100, XDS-SIZE.
IF C-C > 0 THEN

MOVE XDS-SIZE TO INTEGER-MASK
DISPLAY "REQUESTED SIZE EXCEEDS MAXIMUM AVAILABLE"
DISPLAY "NEW SIZE SET TO MAXIMUM VALUE: ", INTEGER-MASK.

Here, 100 additional words were requested but only 96 remain so ALTDSEG sets C-C greater than zero to
indicate this and the size of the XDS was increased to 4096 words, the maximum available.

WARNING

Sizing an XDS up or down will cause the XDS to be copied to Virtual
Memory and then read back into 'main memory'. This transfer will cause
your program to wait for its completion. For this reason ALTOSEG should
be used infrequently, if at all. When an XDS is created enough space
should be allocated initially to avoid the need to 'size' your XDS during its
life cycle.

Erasing an XDS

An XDS may be erased, releasing the main and virtual memory it had occupied. Shared XDSes are deleted
when the job or session that created them logs off. Private XDSes are deleted when the process (program)
that created them completes.

To free memory occupied by an XDS during execution of the program that created it you would call
FREEDSEG:

CALL INTRINSIC "FREEDSEG" USING XDS-INDEX, XDS-ID.
IF C-C < 0 THEN

If th-e C-C returned is 'LESS THAN' zero, FREEDSEG has failed. A CCE (C-C = 0) returned indicates the
XDS was deleted while a CCG (C-C > 0) indicates that this program's access to it has been removed but
the XDS sill exists and is being shared by other processes in the 'process tree'.

Extra Data Segment System Configuration Considerations

The following system configuration values should be considered if you intend to make use of extra data
segments in your ~oftware applications:

MAX EXTRA DATA SEGMENT SIZE = <XXXXX> (MIN=O, MAX=32764)

MAX # OF EXTRA DATA SEGMENTS/PROCESS = <XXX> (MIN=O, MAX=255)

These values are set during the SEGMENT LIMIT section of the SYSDUMP dialog.

5



In addition you should also consider altering the value of the SWAP TABLE. This table is used to store a
process) 'locality) which is a list of the code and data segments needed in memory in order for the process
to run. If this table is underconfigured a System Failure 602 will result.

Lastly) the amount of virtual memory allocaton configured for your system should be evaluated if extra
data segments are to be used. Since each extra data segment (in fact all data segments) will occupy a space
in virtual memory at least as large as the requested size of the segment in main memory. On MPE V
systems virtual memory can be allocated on all drives except LDEV 1 using either a COOLSTART or
COLDSTART. A RELOAD is necessary to change the virtual allocation on logical devicel.

6



BACK ISSUE INFORMATION

Following is a list of the Application Notes published to date. If you would like to order single copies of
back issues please use the Reader Comment Sheet attached and indicate the number(s) of the note(s) you
need.

Note # Published

7 2/21/85
2 10/75/85
3 4/01/86
4 4/15/86
5 5/01/86
6 5/15/86
7 6/01/86
8 6/15/86
9 7/01/86

10 7/15/86
17 8/01/86
12 8/75/86
13 9/07/86
74 9/15/86
75 70/07/86
76 10/75/86
17 17/01/86
18 11/75/86
19 12/01/86
20 1/01/87
21 1/15/87
22 2/15/87
23 3/01/87
24 3/15/87
25 4/01/87
26 4/15/87
27 5/01/87
28 5/15/87
29 6/01/87
30 6/15/87
31 7/01/87
32 7/75/87
33 8/75/87
34 9/01/87
34 10/07/87
34 77/01/87

Topic

Printer Configuration Guide (superseded by note #4)
Terminal types for HP 3000 HPIB Computers (superseded by note #13)
Plotter Configuration Guide
Printer Configuration Guide - Revised
MPE System Logfile Record Formats
Stack Operation
COBOL III3000 Programs: Tracing Illegal Data
KSAM Topics: COBOL's Index I/O; File Data Integrity
Port Failures, Terminal Hangs, TERMDSM
Serial Printers - Configuration, Cabling, Muxes
System Configuration or System Table Related Errors
Pascal/3000 - Using Dynamic Variables
Terminal Types for HP 3000 HPIB Computers - Revised
Laser Printers - A Software and Hardware Overview
FORTRAN Language Considerations - A Guide to Common Problems
IMAGE: Updating to TurboIMAGE & Improving Data Base Loads
Optimizing VPLUS Utilization
The Case of the Suspect Track for 792X Disc Drives
Stack Overflows: Causes & Cures for COBOL II Programs
Output Spooling
COBOLII and MPE Intrinsics
Asynchronous Modems
VFC Files
Private Volumes
TurboIMAGE: Transaction Logging
H P 2680A, 2688A Error Trailers
HPTrend: An Installation and Problem Solving Guide
The Startup State Configurator
A Programmer's Guide to VPLUS/3000
Disc Cache
Calling the CREATEPROCESS Intrinsic
Configuring Terminal Buffers
Printer Configuration Guide
RIN Management (Using COBOLII Examples)
Process Handling (Using COBOLII Examples)
Extra Data Segments (Using COBOLl! Examples)




