
v J v

North American Response Centers

HP 3000 APPLICATION NOTE #21

COBOLII AND
MPE INTRINSICS

FliJl HE'WLETT
~~ PACKARD

January 15, 1987
Document PIN 5958-5824/2703

HP 3000 APPLICATION NOTES are published by the North American Respohse Centers twice a
month and distributed with the Software Status Bulletin. These notes address topics, where the volume
of calls received at the Centers indicates a need for addition to or consolidation of information available
through HP support services. You may obtain previous notes (single copies only, please) by returning
the attached Reader Comment Sheet listing their numbers.

Note # Published

7 2/27/85
2 10/15/85
3 4/07/86
4 4/75/86
5 5/07/86
6 5/15/86
7 6/01/86
8 6/15/86
9 7/07/86

70 7/15/86
11 8/01/86
12 8/15/86
13 9/01/86
14 9/15/86
15 10/01/86
16 10/15/86
17 11/01/86
78 11/15/86
19 12/07/86
20 1/07/87

Topic

HP 3000 Printer Configuration Guide (superseded by note #4)
Terminal Types for HP 3000 HPIB Computers (superseded by note # 13)
HP 3000 Plotter Configuration Guide
H P 3000 Printer Configuration Guide - Revised
MPE System Logfile Record Formats
H P 3000 Stack Operation
Cobol II/3000 Programs: Tracing Illegal Data
KSAM Topics: Cobol's Index I/O; File Data Integrity
Port Failures, Terminal Hangs, TERMDSM
Serial Printers - Configuration, Cabling, Muxes
System Configuration or System Table Related Errors
Pascal/3000 - Using Dynamic Variables
Terminal Types for HP 3000 HPIB Computers - Revised
Laser Printers - A Software and Hardware Overview
FORTRAN Language Considerations - A Guide to Common Problems
IMAGE: Updating to Turbolmage & Improving Data Base Loads
Optimizing VPLUS Utilization
The Case of the Suspect Track for 792X Disc Drives
Stack Overflows: Causes &Cures for COBOL II Programs
Output Spooling

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

This document contains proprietary information which is protected copyright. All rights are reserved.
Permission to copy all or part of this document is granted provided that the copies are not made or
distributed for direct commercial advantage; that this copyright notice, and the title of the publication
and its date appear; and that notice is given that copying is by permission of Hewlett-Packard
Company. To copy otherwise, or to republish, requires prior written consent of Hewlett-Packard
Company.

Copyright @ 1987 by HEWLETT-PACKARD COMPANY

COBOlll and MPE INTRINSICS

The purpose of this article is to give application programmers a guide for using COBOLII with MPE
intrinsics as defined in the Intrinsics manual such that programmers are comfortable using the intrinsics
when the need arises. This article will describe the COBOLII interface with these intrinsics, how to
interpret the Intrinsics manual forCOBOLII use, and finally will recommend certain intrinsics which are
useful for many applications.

intrinsic OvervieYJ

MPE intrinsics can be thought of as system defined subroutines which provide specified functions to user
programs. The functions were thought to be common routines which most application programmers would
encounter during their software development. Most of these intrinsics were created during the mid 1970s
and specifically geared for use with the System Programming Language (SPL) and FORTRAN. As a result,
most of the terminology and usage examples were geared for those languages.

Since that time, many of the intrinsics have been incorporated as features of the high level languages
(such as COBOLII). Therefore, many of the intrinsics should never need to be used in a COBOLII shop.
However, the sophistication of COBOLII use has risen such that some of the intrinsics may be needed by
specific applications.

Like most subroutines, l\1PE intrinsics are passed parameters. Many of these parameters are optional, or
have defaults provided. Several return values to the user. Many make use of a condition code which
describes the status of the intrinsic call. The compiler refers to the SPLINTR file to determine the type
and requirements for each parameter. The SPLINTR file is described in Appendix C-l of the SPL
Reference Manual (Part No. 30000-90024).

Using the Intrinsics Manual

The goal of this section is to describe how a COBOLII programmer should read and interpret the Intriniscs
manual. Once certain fundamental concepts are mastered, it will be possible to read the description of any
intrinsic, and to comfortably use them in a COBOLII program.

Let's examine a common, but complicated, MPE intrinsic: FOPEN. FOPEN is the heart of the file system,
and has many different options. It embodies most of the features of MPE intnnsics, and thus serves as an
excellent example for exploring the COROLII to MPE intrinsic relationship.

Note: You can find a complete description of the FOPEN intrinsic in the MPE Intrinsic Alanual (Part No.
32033-90007). You may want to use it to follow along as this /)cction describe\: line by line, what
information is contained in this description.

The first part of the description contains a list of the parameters associated with FOPEN.

I 0-V BA LV LV IV
fiLenum: =FOPEN (formaldesignator,foptions,aoptions,recsize,

BA BA IV IV IV
devioe,formmsg,userLabels,bLookfaotor,numbuffers,

DV IV IV IV
fiLesize,numextents,initialloo,filecode);

To someone who has never used intrinsics before, much less COBOL-II with intrinsics, this can appear
quite formidable.

The notation filenum := indicates that FOPEN is a function. For FORTRAN, SPL, and PASCAL
programmers, this means that the intrinsic can be used within an arithmetic expression and, much like a
variable, will return a value (filenum) to be used in that expression. Since COBOL-II doesn't provide a
way to call functions from within expressions, this value is acquired instead via the GIVING clause of the
CALL statemen1.

The value so returned is described in the manual under FUNCTIONAL RETURN. For FOPEN, the
description of filenum is "an integer file number used to identify the opened file in other intrinsic calls".
Bear in mind, however, that values· can also be returned to the calling program through the passed
parameters. Not all intrinsics are functions, so be sure that you use GIVING only when the intrinsic you're
calling is so specified.

Following the name of the intrinsic is a list of the parameters it requires. These are the items that should
appear in the USING clause of CALL. Above each parameter is a code which describes its type, specified
in SPL terms. Using the table below, you can translate these to the corresponding COBOL-II data types:

When The Intrinsics
Manual Specifies:

SA - Byte Array
I - Integer
L - "Logical
LA - Logical Array
uI - Double Integer
DA - Double Array
R - Real

What COBOLII
Really Needs:

PIC X(n).
PIC 59(4) COMPo
PIC 9(4) COMPo
PIC X(n).
PIC 59(9) COMP.
PIC 59(4) OCCURS n.
No COBOL-II equivalent.

Ifa V appears in the type code (see foptions), the parameter is expected to be passed by value.
Otherwise, the intrinsic will expect the parameter to be passed by reference. If the notation o-v (option
variable) is shown above the intrinsic name, one or more of the parameters is optional (Otherwise, all
parameters arf'· required.) We shall describe pass-by-value, pass-by-reference, and optional parameters
later in this Note.

2

Below the parameter list is a brief description of the intrinsic, followed by a detailed discussion of each
parameter. The parameter descriptions include information about what the intrinsic expects or returns in
the parameter, whether it is optional, and the effect and meaning of various values that the parameter
may h~ve. It's important that you have a good understanding of this material before you use the
intrinsic.

Calling the Intrin~ic

Now that you understand the type and meaning of the intrinsic's parameters, it's time to code the actual
call. COBOL's normal CALL statement will pass by default all parameters as word addresses
by-reference. This won't do for FOPEN, since most parameters are specified as by-value and those that
aren't are byte-addressed. In addition, FOPEN is option variable which requires special handling not
provided by the normal COBOL-II CALL statement.

So how does one call FOPEN from COBOL-II? There are two ways. The first and simpler method is to
use the INTRINSIC option on the CALL. This option causes the compiler to look up the intrinsic
definition in the file SPLINTR. PUB. SYS, and then to pass the parameters you specify according to that
definition. In this case, you needn't worry about value vs. reference parameters, byte addresses, or option
variable processing.

The second and by far more difficult method is to omit INTRINSIC from .the CALL and generate the
correct sequences yourself. While COBOL-II provides ways for you to pass by-value parameters, byte
addresses, and the option variable information, it has no way of checking whether you've done this
correctly. As you can imagine, this method is error prone and therefore we don't recommend it.

Using either method, it's essential that the order of the parameters as stated in the manual be followed
exactly.

Using the INTRINSIC option, a call to FOPEN might look like:

CALL INTRINSIC "FOPEN" USING FILE-NAME FILE-OPTIONS ACCESS-OPTIONS \\
DEVICE-NAME GIVING FILE-NUMBER.

This calls FOPEN specifying file name,· file options, access options, omitting record size, and specifying a
device. Since the other parameters were not needed (and were shown as optional in the manua!), they did
not need to be included. FOPEN returns a file number to the variable specified after GIVING, in this
case FI LE -NUMBER. COBOL allows you to include commas between the parameters if you wish, but they
have no effect. The \ \ following ACCESS-OPTIONS indicates that reosize is omitted from this call.

If a parameter is specified as pass-by-value (V in the type code), you may pass either a data name or a
specific numeric value in the call. Pass-by-referenceparameters only allow a data name to be used. If
you wished to call FOPEN with [options and aoptions both set to I, you could code the call this way:

CALL INTRINSIC lIfOPENlI USING fILE-NAME
GIVING FILE-NUMBER.

\\ DEVICE-NAME

If you are on MPE version G.Al. 04 ("T-delta-4J1
), G.A2.AO (JlUA-MIr') or later, you may also use the BY

REFERENCE and BY CONTENT phrases available with COBOL- 85. For example:

CALL INTRINSIC "FOPEN" USING FILE-NAME BY REFERENCE,
FILE-OPTIONS BY CONTENT,
ACCESS-OPTIONS BY CONTENT,
\\,
DEVICE-NAME BY REFERENCE,
GIVING FILE-NUMBER.

To give you an idea of the amount of effort that the INTRINSIC option saves you, here's what the same
call to FOPENwould look like without it:

CALL "FOPEN" USING @FILE-NAME
@DEVICE-NAME \\ \\ \\ \\
GIVING fILE-NUMBER.

\FILE-OPTIONS\
\\ \\ \\ \\

\ACCESS-OPTIONS\
\\ \%16400\

\\

Note that we were forced to include one-word place holders (\ \) for all of the parameters we didn't pass
(for filesize we needed two place holders, since it's a two word parameter passed by value), we needed to
specify which parameters were to be passed by-value (those are the ones inside back-slashes), we had to
specify byte addressing (@) for some, and that we included the option variable information (the \%16400\)
indicating which parameters were actually present.

Intrinsic Parameters

This section describes how to format and use certain types of intrinsic parameters in COBOL-II.

FOPEN's forrrKlldesignator parameter requires a string of alphanumeric characters and special
characters as used in file names. The name must be terminated by a non-alphanumeric character, usually
a single space. Therefore, your WORKING-STORAGE Section might have a entry that looks like this:

01 FILE-NAME PIC X(8) VALUE "MYFILE ".

The level is 01 (actually all that is needed is to ensure that the parameter starts on a word boundry).
Because the parameter type is a byte array, a PIC X field is used. The size of that field depends on the size
of my file name plus a single space. So,

01 FI LE-NAME
would be equally as vaild.

PIC X(17) VALUE "MYFILE.PUB.SMITH II

The next parameter is the file options which describe the file to be opened. Here the parameter requires
the setting of bits with a logical BY VALUE parameter. The ·bits are described with standard SPL
notation.

Any COBOLII PIC 59(4) COMP field (required here) contains 16 bits (1 word) of information. Depending
on the parameter, a single bit may have meaning, or a group of two or more bits in a word may have a
meaning. The bits are numbered 0 to 15 starting from the left. SPL notation is of the form s: n where s
is the starting bit and n is the number of conscutivebits which together have a specific meaning. For
example, the notation 14: 2 means bits 14 and 15, while 2: 4 means bits 2 through 5 (4 bits).

So, in the FOPTIONS parameter, the bit groupings have the following meanings:

4

Bits: 0 1 2 3 4 5 6 789 10 1112 13 14 15

L L• L DOMAIN

ASCII

. DESIGNATOR

REC FORMAT

CCTL

LABELLED TAPE

DISALLOW :FILE

FILE TYPE

RESERVED

Groups that have a single bit have two options (on or off). Groups with more thana single bit have many
options. These options are stated in the manual. For example) the domain group with two bits has four
value 00)01,1 0) and 11. If you wanted to specify and old file) the 01 pattern would be indicated.
Therefore) in an empty word) this pattern would be inserted:

o 1 2 3 456 7 8 910 11 1213 14 15

o

The next group is a single bit specifying ascii or binary. To indicate ASCII) the next bit would be filled in:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o

and so on. Suppose you have determined what all the groups should indicate resulting in this pattern:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

001 101 000 1 000 0

5

This indicates an existing permanent ASCII file, which has its name indicated in the file name parameter.
The file has variable length records, file equations disallowed, no carriage control, it is not a labeled tape,
and it is a message file. Bits zero and one are set to zero for MPE.

You need to translate this into something COBOLII will understand since COBOLII cannot directly set bit
patterns. This involves a binary to octal conversion grouping from .right to left. For those not
comfortable with octal and binary numbering schemes, the following charts are provided:

The first chart indicates that bits 13,14,and 15 form the first octal digit; 10, II, and 12 form the second,
etc.

The second table indicates which bit patterns form which octal numbers.

BIT OCTAL
BITS DIGIT PATTERN NUMBER

131415 000 0
001 1

101112 2 010 2
011 3

789 3 100 4
101 5

456 4 110 6
111 7

123 5

0 6

Grouping bits 131415 together forms a pattern of 101 which is an octal 5. So the first octal digit of our
number which will set the desired bit pattern for FOPTION is 5. Completing the translation we get
032105 as the octal number. Fortunately, COBOLIIaccepts octal values as indicated by a leading %sign.

To set our desired FOPTIONS, we would then set our WORKING-STORAGE as follows:

01 FILE-OPTIONS PIC S9(4) COMP VALUE %032105.

The next parameter is the AOPTIONS (access options). These are set using the same technique of bit
patterns. For demonstration purposes, we set several of the file access options. However, most of the
defaults typically would serve our purposes.

In· the case of AOPTIONS, if we left everything at their default values, this would give us read access to
the file.

The rest of the parameters do various things to manipulate the file system. The file system is beyond the
scope of this paper, but it is relevant to note that the vast majority of FOPEN parameters have
corresponding FILE equation options. Many of these options can be specified in the SELECT statement as
well.

Suggested uses of the FOPEN intrinsic follow in the next section.

6

FOPEN does, however, return a condition code. As the manual states a CCE means successful, a CCL states
that the request was denied, and a CCG is not returned.

In order to trap the condition code in COBOLII, you must use the SPECIAL-NAMES portion of the
ENVIRONMENT DIVISION. For example,

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000
OBJECT-COMPUTER. HP3000.
SPECIAL-NAMES.
CONDITION-CODE IS «your choice».

Suppose you had chosen the name of 'cc' for your condition code name. In COBOLII, CC<O means CCL;
CC=O means CCE; and CC>O means CCO.

Therefore, a complete call to FOPEN might look something like this:

CALL INTRINSIC "FOPEN" USING FILE-NAME, 1, 0, GIVING FILE-NUMBER.
GIVING FILE-NUMBER.

IF CC NOT = °
PERFORM ERROR-ROUTINE.

In the above example, an FOPEN was made to an old permanent file requesting read access. If for any
reason, the access was not granted, a negative condition code would be returned which would send us into
an error routine.

Note: The condition code check should immediately follow the call to FOPEN since other code (such as a
display statement) will affect the status of the condition code.

One of the most common problems new programmers encounter is failing to check error or condition codes
whenever they are available.

Assuming the call was successful, the program mIght continue to an FREAD which might look like this:

CALL INTRINSIC IIFREAD" USING FILE-NUMBER, DATA-BUFFER, 72
GIVING DATA-LENGTH.

IF CC > 0
PERFORM END-OF-FILE-ROUTINE

ELSE IF CC < °
PERFORM ERROR-ROUTINE.

The FREAD call needs the FILE-NUMBER from the FOPEN call. The target parameter is a logical array
(PIC X) field where the data read is stored, and the tcount is the length of data to be read (in this case 72
words). The length of data actually returned is stored in the integer DATA-LENGTH.

INTRINSIC USAGE

As mentioned above, many of the functions of the l\1PE Intrinsics have been incorporated into the
COBOLII language features. In this section we WIll try to indicate which intrinsics are most useful to
application programmers, and which can be avoided by using the high level features.

7

Generally speaking, the more you can avoid using intrinsics, the better off you are. Intrinsics are highly
machine dependent, and extensive use of them ties application code down to a specific operating system.
If the language incorporates the intrinsic features, you should try to use those high level features.

In our experience, features such as process handling and extra data segments should be avoided whenever
possible in the application design phase. Their performance overhead and programming complexity are
considerable. Hence, those intrinsics are not described below.

FOPEN

Since many of the parameters of the FOPEN intrinsic are duplicated in the FILE command·, or can be
specified in the SELECT clause, the standard OPEN command is generally preferred. Since the
FILE-NUMBER can be trapped from the OPEN command for use with later file system intrinsics, the
most common need to use the FOPEN intrinsic is to create a new file with userlabels. Since this feature is
not part of the BUILD command, you need to use FOPEN, specifying the creation of a new file with
FOPTIONS.

The other intrinsics used with userlabels are FREADLABEL and FWRITELABEL. Both need the file
number from the OPEN statement.

Once a file has been opened with the OPEN statement, the file name can be used in place of the file
number parameter in subsequent intrinsic calls. For example) portions of a COBOLII program might look
like this:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MYFILE ASSIGN TO "REALNAME.PUB.SYS"
ORGANIZATION IS SEQUENTIAL
FILE STATUS IS FILE-STAT-CODE.

SPECIAL-NAMES.
CONDITION-CODE IS CC.

DATA DIVISION.
FILE SECTION.
FD MYFILE.
01 DATA-RECORD PIC X(72).

WORKING-STORAGE SECTION.

01 FILE-STAT-CODE.
05 STAT-CODE-1
05 STAT-CODE-2

PIC X.
PIC X.

01 TIME-OUT PIC S9(4) COMP VALUE 10.

PROCEDURE DIVSION.
FIRST-SECTION.

OPEN 1-0 MYFILE.
IF STAT-CODE-1 = "9"

PERFORM CHECK-FILE-ERROR.

8

CALL INTRINSIC "FCONTROL" USING MYFILE, 4, TIME-OUT.
IF CC NOT = 0

PERFORM CHECK-INTRINSIC-ERROR.

READ DATA-RECORD
AT END PERFORM EOF-MYFILE.

IF STAT-CODE-1 = "g" THEN PERFORM CHECK-FILE-ERROR.

The above example shows how to place a timeout interval of 10 seconds on the reading of the data record
from REALFILE.I)UB. SYS. If REALFILE was an empty message file, then the program, instead of
waiting for data to be placed in the file, would 'give up' after 10 seconds, and continue on.

Notice, the use of FCONTROL without an FOPEN. Also notice how the MPE file error can be trapped
using COBOLII features. (See the FILE-STATUS description in the COBOLII manual for further details).

PAUSE

The PAUSE intrinsic involves a real parameter for which COBOLII has no equivalent. Please see RC Q&A
July 15, 1986 for a complete description of its use.

COMMAND

Often times it is useful to execute a MPE command such as a FILE equation from a user program. An
example of calling this intrinsic can be found in the COBOLII Reference Manual.

FCONTROL

FCONTROL is one of the most useful of all MPE intrinsics. Through it, you may direct carriage control,
echo, timed reads, and enable/disable various I/O functions with files. A complete description of all codes
is contained in the MPE Intrinsics Reference Manual.

FCONTROL requires the file number to be trapped from the OPEN statement.

WHO

The WHO intrinsic is useful to obtain user atributes. The calling of the intrinsic is straightforward, but
the interpretation of some of the parameters is not, since they require bit extraction which COBOLII does
not perform. For example, the capability parameter states that if the first word, bit 15, is equal to I, the
user has Save File capability.

The following technique will obtain the needed information:

Suppose a call to the WHO intrinsic had returned these values in the first word:

o 1 2 3 4 5 6 7 8 g 10 11 12 13 14 15

o 0 0 001 1 1 100 0 0 0

9

Determine which bit you are interested in. For example, bit 8, which tells if the user has User Logging
capability. To see if the bit is on or off, first divide the number returned by the binary place of the bit as
determined from right to left as listed in the following table:

Bit Number Binary Place Bit Number Binary Place

15 1 7 256
14 2 6 512
13 4 5 1024
12 8 4 2048
11 16 3 4096
10 32 2 8192
9 64 1 16384
8 128 0 32768

Then, take the file access attributes and divide the results in that word by 128 and store it in a temporary
variable, 'B'.

Next, divide B by 2 and multiply the result by 2. Store this in another variable, 'C'.

Next, compare B to C. If B =C, the bit is off. If B <> C then the bit is on.

QUIT

The QUIT intrinsic is useful for two reasons. First, it allows you to put any number you choose in its
parameter. This will allow you to indicate the section of code from which your program aborted, e. g.
CALL INTRINSIC "QUIT" USING 1 could indicate that your program aborted in the first routine.

The second use is to ensure that if your program runs in batch mode, the job stream will abort if the
program aborts, since the QUIT intrinsic changes the system JCW.

FFILEINFO, FGETINFO

These are very useful intrinsics if your program needs to obtain specific information about a particular
file. You will have to use the bit extraction technique described above.

FINDJCW, GETJCW, SET JCW, PUTJCW

These intrinsics are very useful for the manipulation of large complicated jobstreams.

10

ERROR CHECK LIST

The following is a check list to assist you in debugging a COBOLII program with MPE intrinsics:

Symptom: Errors dur9ng compile/prepare.

III Incompatible number of parameters for intrinsic xxxxx
l\fake sure that all required parameters are present.

• Illegal xxxxx operand in intrinsic xxxxx
Make sure that parameters are of the correct type.

• Intrinsic xxxxx not found in intrinsic file
Make sure that the intrinsic name is spelled correctly.

Symptom: PW'f;)gram Aborts .

.I iii Bounds Violation
Check to make sure parameters are being passed correctly.

n Bounds Violation or Stack Overflow/Underflow
Make sure that the contents of the parameters make sense. Locate the offending CALL, and
use DISPLAY, TOOLSET or DEBUG to check the contents.

Symptom: Program Runs, but does not work

II Are all error conditions and status codes being trapped and acted upon?

a Are there code statements between the intrinsic calls and the error checks?

iI Do the parameters contain the expected values, e.g. has other data been placed in them by
accident?

Are their lengths correct?

Are their types correct (PIC S9(4) COMP vs. 9(4).)?

Is a value in WORKING-STORAGE above the parameter values too long, or in an array that
has overrun into other WORKING-STORAGE areas?

• Have previous calls on which this call is dependent been successful?

Remember, make generous use of DISPLAY calls, DEBUG, or TOOLSET when first coding/testing your
code. The most common errors with intrinsics fail to be diagnosed because the programmer assumes
something strange, secret, or complicated is going on with MPE.

Intrinsic calls are very straightforward once you get comfortable with the terminology.

11

