
North American Response Centers
.

HP 3000 APPLICATION NOTE

PASCAL/3000
Using

Dynamic Variables
To

Increase Slack Efficiency

r".. HEWLETT
a:~ PACKARD

August 15, 1986
Document PIN 5958-5824/2633

NOTICE

The information contained in this document is subject to change without

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved.
Permission to copy all or part of this document is granted provided that the copies are not made or
distributed for direct commercial advantage; that this copyright notice, and the title of the publication
and its date appear; and that notice is given that copying is by permission of Hewlett-Packard Company.
To copy otherwise, or to republish, requires prior written consent of Hewlett-Packard Company.

Copyright @ 1986 by HEWLETT-PACKARD COMPANY

PASCAL/3000

Preventing Stack Overflows

With Dynamic Variables

Is the Bit Baron in your HP3000 complaining about your Pascal
program's stack size? Does he say,

II ABORT :program.group.acct.%seg_num.%code_offset

PROGRAM ERROR #20 :STACK OVERFLOW",

after you say...

II:RUN program.group.acct;MAXDATA=31232;NOCB"?

If so, then it is probably time to examine some means of reducing the stack memory required by your
program.

One option, potentially very effective and available only to Pascal programmers, is the use of Dynamic
Variables. Dynamic Variables offer a means of dynamically allocating, deallocating, and reallocating
memory for GLOBALLY accessible data. Dynamic Variables are allocated in the logicaIIHeap", and in
comparison to permanent global data, offer an enormous potential for stack memory savings. However, in
order to insure that a given implementation of Dynamic Variables yields this savings, the PASCAL/3000
programmer needs to to take into account some of the specifics of Heap memory management. If this is
not done, poor usage of Dynamic Variables can result in additional processing overhead with no memory
savings atall.

The Pascal/3000 compiler implements the Heap by allocating memory for Dynamic Variables in the DL
Area (DL to DB) of the user stack. The Heap begins with no memory allocation. As Dynamic Variables
are initially allocated, Heap growth occurs away from DB and towards DL in descending memory
locations.

PASCAL PROCESS STACK

Dl->

08->

Q->

5 ->

z ->

..... -".-

GlOBAL
Yarllblea

lOCAl
Variables

Fig. 1

)~Nea

When Heap growth causes the Heap limit to descend to DL, the DL Area is expanded to accommodate the
larger Heap. However, the inverse is not always true. Contraction of the Heap will not always result in
contraction of the DL Area. When the Heap is contracted and the DL Area is not, the memory released
from the Heap is still counted in the DL Area.

This is very significant since the entire DL Area, not just the Heap within it, is included in the stack size
that is counted against a given MAXDATA. In light of the fact that "Heap Compaction" efforts (to use
the Manual's terminology) do not assure stack memory savings in and of themselves, the key to deriving
memory savings from Dynamic Variables becomes one of programming for minimum DL Area size.

Pascal/3000 programmers can indirectly control the size of the DL Area through the Heap procedures
they use for acquisition and disposition of Dynamic Variables. The two basic alternatives are the use of
NEW & DISPOSE calls; or the use of NEW calls in conjunction with MARK and RELEASE calls. Additionally,
the $HEAP_DISPOSE$ and $HEAP_COMPACT$ compiler options can alter the affect these procedures have
on Heap memory.

The use of these procedures and compiler options will control two important aspects of Heap memory
management. First, they will determine whether Heap memory previously returned through the return of
variables is ever reused, and second, they will determine if the DL Area is ever contracted after expansion
due to Heap growth. It is worth noting at this point that PASCAL/3000 never performs true "garbage
collection" on the Heap (dynamic concatenation of allocated variables). Heap memory management is
limited to the two operations just mentioned.

2

NEW

Calls to the NEW procedure will allocate enough memory for the variable defined by the pointer type plus
an additional two bytes used to record the variable's length. With the exception of one case, the variable
will be allocated at the Heap limit (the end of the Heap closest to DL). This pushes the Heap limit
towards DL and often requires expanSlOn of the DL Area.

When the$HEAP DISPOSE ON$ compiler option is in effect, the NEW procedure will first search the Heap
for an available 'iiiole" left by the prior return of another Dynamic Variable. If a hole of sufficient size is
found, the new variable will be allocated there instead of at the end of the Heap. This option is normally
desirable if Dynamic Variables are being returned to the Heap through calls to the DISPOSE procedure.

• HEAP_DISPOSE OFF$
NEW (Variable_PoInteli

OL ->

DB ->

z ->

BEFORE

..
.. .. ••• a ..

...... .. .; ..
....

DL ->

OB->

z ->

Fig. 2

3

AFTER

..

....::.:.'~~~~.'.~..'~::

DISPOSE

The DISPOSE procedure performs a logical return of the specified variable by resetting the pointer to it.
This leaves the above mentioned "hole" in the heap of allocated variables.

'HEAP_DISPOSE OFF'
DISPOSE (Point• .,

DL ->

DB ->

z ->

BEFORE

a a ..

..
..

·.···.···HEAp·:·····
"." ." ..

..

AFTER
DL ->

DB -> ~------~-t

z ->

Fig. 3

4

If the $HEAP COMPACT$ compiler option is in effect, and theDISPOSEd variable is at the Heap limit, then
the Heap itself, but not DL, will eventually be contracted. This lopping off of the variable from the Heap
can reduce the time necessary for "holell searches by the NEW procedure,but does not free any memory
from the DL Area.

$HEAP_DISPOSE ON.
DISPOSE (Pointer)

o •

.. o. o· •

........DL ->

DB ->

Z ->

BEFORE

o..
..

:oo·:.HE~P::.o.:o.·.

..
..

o •

DL ->

08 ->

Z ->

Fig~ 4

5

AFTER

·0 : : ••0.t.fEA~ :00 0.·.

STACK
SIZE

RELEASE

As an alternative to the DISPOSE procedure, variables may be logically returned to the Heap through the
use of MARK and RELEASE calls. When the RELEASE procedure is used to dispose of variables, both the
HEAP and the DL Area will be contracted, or cut back, to the limit of the Heap at the time of the
previous corresponding MARK call. This occurs regardless of the compiler options in effect. It is the
ONLY Pascal procedure which will cause the DL Area to be contracted, and as such, has the greatest
potential for stack memory savings.

OL ->

DB ->

z ->

BEFORE

....... . .

Fig. 5

AFTER

DL ->

:.<:':~.~:.:~>
. ...

DB ->----..-..;...o.t

Z ->

STACK
SIZE

As a result of its operation though, the RELEASE procedure is only appropriate for returning the most
recently acquired Dynamic Variable(s). Additionally, there are three important warnings associated with
the use of this procedure.

First, any dynamic variables allocated between matching MARK and RELEASE calls are
no longer accessible. If referenced after the RELEASE call, these variables can cause a
program abort with PROGRAM ERROR #24: BOUNDS VIOLATION.

The second warning involves the use of GETHEAP calls. Seldom used directly by user
applications, GETHEAP is called by VPLUS/3000 whenever a VOPENFORMF is done.
Care must be taken to insure that GETHEAP (or VOPENFORMF) calls are not bracketed by
MARK/RELEASE calls unless c,orrespondingRETURNHEAP (or VCLOSEFORMF) calls are
included. Failure to do so will result in a program abort when the RELEASE call

6

attempts to contract DL over an allocated Getheap Area; (PASCERR 607) RELEASE
PARAMETER ENCLOSES GETHEAP AREA.

And finally, the DLSIZE intrinsic should not be called if Dynamic Variables are
allocated. This intrinsic can contract DL over allocated variables which presents the
danger of program aborts with bounds violation.

There is also one important performance consideration associated with the use of Pascal/3000 Dynamic
Variables. Expansion or contraction of the DL Area requires that the stack be swapped out to virtual
memory and brought back in. This is a very high overhead operation. Expansions of DL can be
minimized if an estimate of the eventual heap size can be calculated prior to program execution. This size
can then be included in the DL= parm of the: PREP or : RUN for the program. Since contractions of the
DL Area only result from RELEASE calls, RELEASE calls should be used as sparingly as possible.

IN REVIEW

To help clarify this "heap" of information, lets examine a few typical cases where
effective use of Dynamic Variables can save stack memory.

Tables of information with capacities that need to vary between runs (i. e. product codes, personnel
numbers, etc.) lend themselves to the use of the NEW procedure with the default compiler options. By
allocating a variable for each table entry only as it is needed, the programmer can assure that tables never
over allocate memory for the data present during any given run. The default compiler options
($HEAP DISPOSE OFF; HEAP COMPACT OFF$) eliminate the overhead associated with NEW searches for
available "holes"in the Heap. -

Data that need only be present during one phase of a process' execution (i. e. program initialization) can be
allocated and then returned in mass through the use of the MARK and RELEASE procedures.

And last, but not least, is dynamic, random, data. A good example of this was seen in a monitor program
that ran continuously and tracked information on active sessions. A very large record was needed for
each session so long as it was active, yet it was not possible to predict how many records would be needed
at any given time nor how long any given record would need to exist. This application successfully
utilized the NEW and DISPOSE procedures with $HEAP DISPOSE ON ;HEAP COMPACT ON$ to solve a
reoccurring problem with stack overflows. - -

7

