
North American Response Centers

HP 3000 APPLICATION NOTE #7

COBOL II / 3000 PROGRAMS:
TRACING ILLEGAL DATA

USING ERROR 710/711 DOCUMENTATION

FliiiW HEWLETT
.:~ PACKARD

June 1, 1986
Document PIN 5958-5824/2623

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved.
Permission to copy all or part of this document is granted provided that the copies are not made or
distributed for direct commercial advantage; that this copyright notice, and the title of the publication
and its date appear; and that notice is given that copying is by permission of Hewlett-Packard Company.
To copy otherwise, or to republish,requires prior written consent of Hewlett-Packard Company.

Copyright @ 1986 by HEWLETT-PACKARD COMPANY

COBOL II 1 3000 Programs: Tracing Illegal Data
Using ERROR 710/711 Documentation

A number of calls received by the Response Centers involve COBOLII programs encountering COBOL
run-time errors 710 (Illegal Decimal Digit) or 711 (Illegal ASCII Digit). This note, a revised version of an
article published in Communicator (Issue #28), explains these errors. It will show you how to track down
their source using the information in the error messages in conjunction with compiler MAP and VERBS
listings, and a Segmenter PMAP listing. Three examples are given to help you to locate such errors
whether in a main program, a non-dynamic subprogram, or a dynamic subprogram in a Segmented
Library (SL).

WHAT IS ILLEGAL DATA?

Simply stated, illegal data is any data which when operated upon by the object program code does not
conform to its defined type.

HOW IS IT DETECTED?

Illegal data is detected by the hardware trap system when executing some type of data conversion,
comparison, arithmetic, shift or move instruction which involves decimal or ASCII data. To be considered
legal, such data must be a digit between 0 and 9. In some special cases, such as conversion of ASCII data
to decimal (using the CVAD instruction), blank characters are also allowed provided they are leading
blanks. These operations are implemented by the Extended Instruction Set and Language Extension
Instructions which are part of the Decimal Firmware and Microcode hardware for COBOLII. For more
detail on these instructions see the HP 3000 Machine Instruction Set Manual (PIN 30000-90022).

WHERE DOES ILLEGAL DATA OCCUR?

Actually illegal data can occur anywhere within the scope of the object program's environment, and can
thus appear in an input file, working-storage, or linkage section data item which can itself be a part of a
main segmented main program, dynamic/non-dynamic subprogram, segmented dynamic/non-dynamic
subprogram and/or user's group/public library.

ERROR 710/711 MESSAGE OUTPUT FORMATS:

There are three output formats that may be produced by 710/711 errors depending upon the type of
error and where it occurred. Figures I, 2, and 3 show a typical message in each of the three formats.

*** ERROR 711 ILLEGAL ASCII DIGIT
SOURCE ADDRESS =%001034
SOURCE = '12=4'
STATUS = '%060705 P REGISTER = %000112 INSTRUCTION = CVND

Figure 1. Message Format 1

*** ERROR 710 ILLEGAL DECIMAL DIGIT
SOURCE ADDRESS = ~000624

SOURCE = '3F2F3D5+'
STATUS = ~0603'10 P REGISTER = ~.000212 INSTRUCTION = CVDA

FIXUP, RESTART ATTEMPTED:
NEW SOURCE = '3020305+'

Figure 2. Message Format 2

*** ERROR 711 ILLEGAL ASCII DIGIT
SOURCE ADDRESS = ~000215

SOURCE = '1A4E'
STATUS = %060627 P REGISTER = %000116 INSTRUCTION = CVAD

*** STACK DISPLAY ***

S=001254 DL=177644 Z=003252
Q=001260 P=001202 LCST= P012 STAT=U,1,1,L,0,0,CCG X=000004

Q=001116 P=000115 LCST= G004 STAT=U,1,1,L,0,0,CCL X=000005
Q=000577 P=000126 LCST= 002 STAT=U,1,1,L,0,0,CCG X=000006

FIXUP, RESTART ATTEMPTED:
NEW SOURCE = '114E'

Figure 3. Message Format 3

NOTES PERTINENT TO ALL FORMATS:

SOURCE ADDRESS - This field provides the octal byte address of the source field that contains the illegal
data. This address can be used to trace back to a data item via the compiler MAP listing.

SOURCE - This field gives the contents of the illegal data item between the single quotes. Unprintable
characters appear as blanks. Usually, by looking at this field you can see which characters are illegal, e. g.,
non-digits between 0-9 or leading blanks (in some cases).

STATUS - This field holds the value of the hardware Status Register. You can use this to determine the
segment number being executed at the time of the error trap. The fOfiilat of the Status Register is:

2

8 --------------- 15o 1 2 3 456 7= __C_C_--L__S_e_9_rn_e_n_t_N_U_rn_b_e_r__

Where:
M = Mode: User/Privileged
I = External Interrupts Enabled
T = User Traps Ena.bled
R = Right Stack Op Pending
o = Overflow
C = Carry
CC = Condition Code (CCL=!; CCE=2; CCG=O)

SEGMENT NUMBER = Segment number of executing module

As you can see, the right half of the Status Register is used to hold the Segment Number. However, how
these 8 bits are interpreted is dependent on whether your system has mapping firmware installed (which
allows expanded tables on MPE versions V/E or later). Mapping firmware is standard on all Series 37 and
6x systems using MPE V/E or later. It is optional on Series 4x systems.

To obtain a program segment number for use with your PMAP listing, you must subtract 1 (if your system
has mapping firmware) or %30! (if it does not) from the Status Register's 8-bit value. Be careful to mask
off the Bit 7 from the octal value shown in the STATUS field before subtracting since it may be set
depending on the Condition Code.

If the segment is a library segment, COBOLII provides a stack display which indicates the specific Logical
Code Segment (LCST) and Segmented Library (G for Group SL; P for Account SL, in the PUB group; or S
for the System SL). A PMAP of that library will be necessary to trace further, as you will see later in the
examples.

P REGISTER - This field gives the NEXT address to be executed when the trap occurred. Using this
address and the VERBS listing of the segment (obtained using the $CONTROL VERBS compiler option) you
can find the specific COBOL statement which tried to operate on the illegal data item.

To do this, you should subtract one from the address shown in the P REGISTER field to get the actual
address of the instruction that caused the trap. In addition, on systems with mapping firmware (see
above), the P REGISTER field will include a 'MAP' bit as shown below.

o 1 2 --------------------------------------- 15

~ Instruction Address

So, on systems with mapping firmware, you must also subtract %040000 to eliminate this MAP bit.

3

INSTRUCTION This field displays the particular machine instruction which is
operating on the illegal data. The instructions which can result in illegal data traps
are:

CVAD - ASCII to decimal conversion
CVDA - Decimal to ASCIIconversion
CVDB - Decimal to binary conversion
ADDD - Decimal add operation
SUBD - Decimal subtract operation
CMPD - Decimal compare operation
SLD - Decimal shift left operation
NSLD - Decimal normalizing shift left operation
SRD - Decimal shift right operation
MPYD - Decimal multiply operation

EDIT Subinstructions:

MA - Move alphabetic operation
MN - Move numeric operation
MNS - Move numeric with zero suppression operation
MFL - Move numeric with floating insertion operation
MDWO - Move digit with overpunch operation

Numeric Conversion Operations:

ALGN - Align numeric
CVND - Convert numeric display
ABSN - Absolute numeric

NOTES PERTINENT TO FORMAT 1 MESSAGES:

This message indicates that the illegal source data could not be fully processed by the instruction and the
results of the operation are unpredictable. Data errors of this type must be corrected and the program
re-run for valid results.

NOTES PERTINENT TO FORMAT 2 MESSAGES:

This message indicates that the operation has performed a FIXUP of the illegal data and the NEW SOURCE
field shows the result of the fixup. The fixup operation occurs in a temporary area so it only affects the
target location and not the source data. If you decide the fixup result is not ·acceptible, the data should be
corrected and the program re-run.

A fixup operation is not always performed because of 'bad' data that needs to be corrected. In fact, the
program may actually depend on a fixup happening. Such is the case where programs have been written
to conform to the COBOL 68 ANSI Standard and deliberately use overpunch characters within numeric
fields, for some type of program data control and wish to have the overpunch ignored when the data is
processed numerically. These programs are considered in violation of the COBOL 74 ANSI Standard, but

4

the compiler allows them (with an appropriate error message) so that such COBOL 68 programs may still
be compiled using the COBOLII compiler. It is not recommended that new application designs use such
'features', however, because they do violate the ANSI 74 standard.

The algorithm used for the fixup operation is:

1) If the illegal character is a lower case alphabetic character, it is upshifted before continuing with the
algorithm.

2) The resulting character is converted as follows:

0 thru 9 .. No conversion
A thru I .. 1 thru 9
J thru R .. 1 thru 9
S thru Z .. 2 thru 9

/ .. 1

All other characters are replaced by a zero.

NOTES PERTINENT TO FORMAT 3 MESSAGES:

A stack display has been added to this message, as of library version A. 00. 05, to facilitate tracing errors
which are detected within segmented library- procedures. It is only provided for traps which occur within
segmented libraries.

The information in the stack display is as follows:

The first line indicates the top of stack and stack boundary when the trap occurred.

The second line indicates the location of Q after the four-word marker has been placed at the top
of the stack. Note that Q is four words greater than S. This line reflects the call to the
STACKDUMP procedure by C'TRAP.

The third line identifies the procedure which was executing when the illegal data trap occurred
and is the key line of information needed when tracing the error source segment, as you will see
later.

Any additional lines shown in the stack display can be used to follow a series of segment calls
leading to the detection of the illegal data. In the stack display shown in Figure 3, you can see
that a call was made from LCST 002 (the user program) to LCST G004 (logical segment in a group
library) to LCST PO 12 (logical segment in a public library), where the COBOL LIBRARY existed.

TRACING EXAMPLES

The following examples show how to locate an illegal data item by tracing through a main program, a
non-dynamic subprogram, and a dynamic subprogram residing within a Segmented Library (SL). The
partial MAP, VERBS, & PMAP listings are provided for reference purposes in the analysis of each trace.

5

Example 1: A Simple Trace - A Non-Segmented Main Program

SYMBOL MAP (MAIN PROGRAM)
LINEI LVL SOURCE NAME BASE DISPL SIZE

WORKING-STORAGE SECTION

USAGE

00008 01 A 0+2: 000010 000004 DISP
00009 01 B 0+2: 000014 000004 DISP
00010 01 C 0+2: 000020 000004 COMP-3
00011 01 0 0+2: 000024 000004 DISP

PROCEDURE/VERB MAP
LINE I PB-LOC PROCEDURE NAME/VERB INTERNAL NAME

00013 000003 START-IT STARTITOO'
00014 000003 MOVE
00015 000012 MOVE
00016 000031 STOP

PROGRAM PMAP
STARTITOO' 0

NAME STT CODE ENTRY SEG
STARTITOO' 1 0 0
TERMINATE' 3 ?
QUIT 4 ?
COBTEST 2 34 34
DEBUG 5 ?
COBOLTRAP 6 ?
SEGMENT LENGTH 144

Figure 4. Symbol Map, Procedure/Verb Map, & PMAP for Example 1

Given the following error 711 message and the information in Figure 4:

*** ERROR 711 ILLEGAL ASCII DIGIT
SOURCE ADDRESS = %000014
SOURCE = '1/SA'
STATUS =~060701 P REGISTER =%000012 INSTRUCTION =CVND

Analysis and Trace:

1. Since no fixup information is shown in the error message you know immediately the resulting target
field is undefined and therefore the illegal data must be corrected and the program re-run.

2. The illegal data is the II {" character shown in the SOURCE field and the length of the field is 4 digits.
The STATUS field indicates a segment number of 0; therefore, the problem is within segment 0 of the
user program. The P REGISTER indicates the CVND instruction is located at P-relative address 11 in
segment O. The CVND instruction itself indicates the problem occurred when converting a numeric
display item.

6

3. To locate the item:

a. The PMAP of the program indicates that the P REGISTER address 11 is within the CODE for­
the relocatable binary module (RBM) STARTITOO' within segment O.

b. The VERBS MAP from the source program compilation points to the COBOL MOVE statement,
at line # 14, within relocatable binary module (RBM) STARTITOO', in segment O.

c. The SYMBOL TABLE MAP from the source program compilation tells you the name of data
item by locating the SOURCE ADDRESS within the DISPL field.

In this example, the item is found to be "B" in the working-storage section displacement location 14.

7

Example 2: A Segmented Main and Segmented Subprograms

SYMBOL MAP (MAIN PROGRAM)
LINE# LVL SOURCE NAME· BASE DISPL SIZE USAGE

WORKING-STORAGE SECTION

00008 01 A Q+2: 000146 000004 DISP
00009 01 B Q+2: 000152 000007 DISP
00010 01 C Q+2: 000161 000004 DISP
00011 01 D Q+2: 000165 000004 DISP

SYMBOL MAP (SUBA& SUBBSUBPROGRAMS)
LINE# LVL SOURCE NAME BASE DISPL SIZE USAGE

LINKAGE SECTION
00009 01 A Q+21 000000 000004 DISP
00010 01 B Q+22 000000 000007 DISP
00011 01 C Q+23 000000 000004 DISP
00012 01 D Q+24 000000 000004 DISP

PROCEDURE/VERB MAP (SUBA)
LINE # PB-LOC PROCEDURE NAME/VERB

00014 000070 SUBA-SEC1A
00015 000070 SUBA-PARA1A
00016 000070 DISPLAY
00017 000003 SUBA-SEC2A
00018 000003 SUBA-PARA2A
00019 000003 DISPLAY
00020 000003 SUBA-SEC1B
00021 000003 SUBA-PARA1B
00022 000003 ACCEPT
00023 000007 COMPUTE
00024 000003 SUBA-SEC2B
00025 000003 SUBA-PARA2B
00026 000003 CALL
00027 000010 EXIT PGM

PROGRAM PMAP
SUBA 4

NAME STT CODE ENTRY SEG
SUBASEC1B01' 1 0 0
C'ACCEPT 4 ?
SUBA 2 47 52
SUBA' 5 3
C'DISPLAY 6 ?
C'DISPLAY'fIN 7 ?
C'DISPLAY'INIT 1q ?
SUBA'S 3 47 47
SEGMENT LENGTH 214

INTERNAL NAME

SUBASEC1A01'

SUBASEC2A02'

SUBASEC1B01'

SUBASEC2B02'

Figure 5. Symbol Map, Procedure/Verb Map, & PMAP for Example 2

8

Program Environment: A Main and two Non-Dynamic Subprograms

Given the following error 711 message and information in Figure 5:

*** ERROR 711 ILLEGAL ASCII DIGIT
SOURCE ADDRESS = %001426
SOURCE = '3243 1E'
STATUS = %060705 P REGISTER = %000022
FIXUP, RESTART ATTEMPTED:
NEW SOURCE = '324301E'

Analysis and Trace:

INSTRUCTION = CVAD

1. Since a fixup has been done (as indicated in the error message), you immediately know the resulting
target field has been modified, as shown in the NEW SOURCE field. If, after looking at the results of
the fixup, you decide that it is appropriate, the resulting processing can be considered valid; otherwise
the data should be corrected and the program re-run.

2. The illegal data is the space or unprintable character shown in the SOURCE field and the length of the
field is 7 digits. The STATUS field indicates a segment number of 4; therefore, the problem is in
segment 4 of the user's program file. The P REGISTER gives the location of the CVAD instruction as P
Relative address 21 and the instruction indicates the problem occurred when trying to convert an
ASCII value to decimal.

3. To locate the item:

Tracing the illegal item in this environment is quite similiar to the simple main program trace. You
need to be aware, however, of the non-dynamic subprograms and whether the data item is within the
working-storage area of the module causing the trap message or is being passed, as a parameter, via the
linkage section.

a. The PMAP of the program indicates that the P REGISTER address 21 (22-1) is within the code
for the relocatable binary module SUBASEC1 B01 ' within segment 4.

b. The VERBS MAP of the source program compilation for the SUBA subprogram points to the
COBOL statement COMPUTE, within the RBM named SUBASEC1 B01 '.

c. The SYMBOL TABLE MAP of the source program compilation tells you the name of the data
item by locating the SOURCE ADDRESS within the DIS PL field, provided that the item is in
that module's working storage area. If the address is not shown on the MAP, it indicates the
item has an origin elsewhere and has most probably been passed, as a parameter, to the
detecting module. In this example, the MAP for SUBA does not show any workingstorage area;
hence, the bad data is coming from another area.

d. In order to determine the actual item address from the logical linkage address you must
compute it using information from the PMAP and the source listing "DATA AREA IS
%nnnnnn WORDS. II for each module. An example of this computation is as follows, given the
information:

9

PMAP PGM SEQ PGM DATA AREA (%WORDS) W-S MAP ADDRESS (%BYTE)

SUBP B
SUBP A
MAIN

260 X 2 = 540 %BYTES
246 X 2 = 514 %BYTES
252 X 2 = 524 %BYTES

1426 - 540 =
666 - 514 =

1426
666
152

By using the SOURCE ADDRESS = %1426 in the above error message and the PMAP sequence of the
main and subprogram modules along with the DATA AREA values for each program unit you can
calculate the possible W-S MAP ADDRESS for each program unit for the item you are looking for
e.g., address 1426 for SUBP, 666 for SUBA and 152 for MAIN. By looking at the MAP for each
program module you should now be able to identify what the item is, and the program module where
it was defined by locating the working storage area containing the matching calculated address.

In this example, the item is found within working storage of the MAIN program, as item "B".

10

Exampl~ 3: A Segmented Main and S.egmented Library

SYMBOL MAP (MAIN PROGRAM)
LINEN LVL SOURCE NAME BASE DISPL SIZE USAGE

WORKING-STORAGE SECTION

00008 01 A Q+2: 000370 000004 DISP
00009 01 B Q+2: 000374 000004 DISP
00010 01 C Q+2: 000400 000004 DISP
00011 01 D Q+2: 000404 000010 DISP

SYMBOL MAP (SUBA & SUBB DYNAMIC SUBPROGRAMS)
LINEN LVL SOURCE NAME BASE DISPL SIZE USAGE

LINKAGE SECTION
00009 01 A Q+21 000000 000004 DISP
00010 01 B Q+22 000000 000004 DISP
00011 01 C Q+23 000000 000004 DISP
00012 01 D Q+24 000000 000010 DISP

PROCEDURE/VERB MAP (SUBB)
LINE N PB-LOC PROCEDURE NAME/VERB

00014 000102 SUBB-SECl
00015 000102 SUBB-PARAl
00016 000102 DISPLAY
00017 000003 SUBB-SEC2
00018 000003 SUBB-PARA2
00019 000003 DISPLAY
00020 000042 SUBB-PARA2A
00021 000042 DISPLAY
00022 000076 ACCEPT
00023 000003 SUBB-SEC3
00024 000003 SUB-PARA3
00025 000003 COMPUTE
00026 000056 EXIT PGM

SEGMENTER SL PMAP
SUBBSEC303' 2

NAME STT CODE ENTRY SEG
SUBBSEC303' 1 0 0
QUIT 3 ?
SUBB' 2 72 72
SUBB'S 4 ?
SUBBSEC202' 5 ?
SEGMENT LENGTH 350

INTERNAL NAME

SUBBSEC10l'

SUBBSEC202'

SUBBSEC303'

Figure 6. Symbol Map, Procedure/Verb Map, & PMAP for Example 3

11

Program Environment: A Main and two Dynamic Subprograms in a SL

Given the following error 711 message and information in Figure 6:

ERROR 111 ILLEGAL ASCII DIGIT
SOURCE ADDRESS = %000314
SOURCE = '123 '
STATUS = %060621 .p REGISTER = %000016 INSTRUCTION = CVAD

*** STACK DISPLAY ***
S=001254 DL=117644 Z=003252

Q=001260 P=001202 LCST= P004 STAT=U,1,1,L,0,0,CCG
Q=001116 P=000015 LCST= G002 STAT=U,1,1,L,0,0,CCL
Q=000577 P=000007 LCST= GOOO STAT=U,1,1,L,0,0,CCG
Q=000306 P=000013 LCST= 001 STAT=U,1,1,L,0,0,CCG

FIXUP, RESTART ATTEMPTED:
NEW SOURCE = '123{'

Analysis and Trace:

X=000004
X=000005
X=000006
X=000006

1. Since a fixup has been done (as shown in the error message), you must either accept its results or
re-run the program, after correcting the data item.

2. The illegal datais the trailing space or unprintable character and the length of the field is 4 digits.
The STATUS field indicates a segment number of 227 which, on a system without mapping firmware,
immediately indicates the segment is within some segmented library. The P REGISTER indicates the
CVAD instruction is at P Relative address 15 and the instruction itself indicates the problem occurred
when trying to convert an ASCII value to decimal.

3. To locate the item in this environment you can use the STACK DISPLAY information to identify the
dynamic subprogram where the error was detected and then use similiar procedures, as described above,
to locate the data item and location source address.

a. The top entry in the stack display (LCST=) field indicates the C'TRAP procedure is in segment 4
of the PUBLIC LIBRARY of the account (LCST= P004) and the dynamic subprogram, causing
the trap, is in segment 2 of the GROUP LIBRARY of the account (LCST= G002).

b. The SL PMAP of the library for segment 2, indicates that the P REGISTER address 15 (16-1) is
within the code for the RBM named SUBBSEC303'.

c. The VERBS MAP of the source dynamic subprogram points to the COBOL statement COMPUTE,
within the RBM SUBBSEC303'.

d. The SYMBOL TABLE MAP of the source program compilation indicates the name of the data
item by locating the SOURCE ADDRESS within the DISPL field,provided that the item belongs
to that module's working storage area. If the address is not locatable on the MAP it indicates
the item has an origin elsewhere and has most probably been passed, as a parameter, to the
detecting library module.

e. In order to determine the' actual item address we can refer to the STACK DISPLAY:

12

The stack trace indicates a main program (LCST= 001) called a procedure in a group SL (LCST=
GOOO) which called another procedure within the group SL (LCST= G002), in which the trap
procedure C'TRAP was called from the pub SL (LeST= P004).

Examination of the Q= values (base word address of the next procedures data area, if dynamic)
indicates the SOURCE ADDRESS = %000374 (source byte address = word address %176) falls
inside the data area for the Main procedure, since %176 is less than %306. This defines the
illegal data as a passed parameter,

The actual data item can now be determined by locating the source address within the working
storage section, of the main program's source compilation.

In this example, the item is liB" at displacement location %374.

13

READER COMMENT SHEET

North American Response Centers
HP 3000 Application Note #7 / RC Questions & Answers (June 1, 1986)

We welcome your evaluation of this Application Note and attached RC Questions & Answers Sheet. Your
comments and suggestions help us to improve our publications. Please explain your answers under
Comments, below, and use additional pages if necessary.

Are these documents technically accurate?

Are the concepts and wording easy to understand?

Are the formats of the documents convenient in size,
arrangement and readability?

Comments and/or suggestions for future Application Notes:

AppNote

DYes D No

DYes D No

DYes D No

RCQ&A

DYes D No

DYes D No

DYes D No

This form requires no postage stamp if mailed in the U. S. For locations outside the U. S., your local HP
representative will ensure that your comments are forwarded.

FROM:

Name

Company

Address

Date -----

FOLD FOLD

111111
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

••••••••••••••••••••1••11•••••••••••••••••••••1••111 .

BUSINESS REPLV MAIL
FIRST CLASS PERMIT NO. 1710, SANTA CLARA, CA :::::::::::::::

••111•••••I
POSTAGE WILL BE PAID BY ADDRESSEE 11I11I11I11I11I

Application Note I RC Q &A Comments
HeWlett-Packard Hestern Response Center
3300 Scott Boulevard
Santa Clara, CA 95054

FOLD FOLD

Document pIN 5958-7375/2623 June 1, 1986

~lJ ~:~~~~ RESPONSE CENTER QUESTIONS & ANSWERS

HP 3000 Questions Commonly Received by the North American Response Centers

Q. My application does Image logging to tape. When T try to start logging in the morning, I get the
message, DUPLICATE PERMANENT fI LE NAME (FSERR 100) and logging doesn't start. If I try it
again, it succeeds. What's going on?

A. Image uses the M PE User Logging facility, and when doing logging to tape a buffer is created on disc
in the form of an MPE file in PUB.SYS. It is named 'ULOGnnnn', where 'nnnn' is a number assigned by
MPE each time you issue a ":LOGlogid, START" command for the same logid. The numbers are
assigned consecutively, with "0001" being the first to be used following a system startup. If MPE is
unable to create a ULOGnnnn file because a file of the same name already exists, you will receive the
FSERR 100 message. Each subsequent time you re-issued the command, MPE would assign the next
consecutive number and try again to create a new ULOGnnnn file if it could. This is why a second try at
the command might succeed when the first had failed.

Why would the ULOGnnnn file already exist? The most probable reason is that it had been used
previously when you were also logging to tape, until a system interrupt occurred. Normally to recover
from such an interrupt you would WARMSTART the system to recover the transactions that were not
yet logged to tape when the system went down. As the last step of the recovery, WARMSTART would
purge the ULOGnnnn file. If you used any other type of startup than WARMSTART, you would have
lost the possibility of recovering these transactions and the ULOGnnnn file would remain, perhaps to
cause future FSERR 100 messages.

Q. When trying to change the name of a forms file in REFSPEC I get the message .. In te rna 1 e r ro r
in writing source rec to reformat file. (fSERR 40)11. What do I have to do to change
the name of a forms file associated with a REFSPEC file?

A. You CAN change the forms file name associated with a REFSPEC file, but only by renaming the forms
file before running REFSPEC.

If a forms file is copied to a file with a different name or to a new account, you need to rename or purge
the original file; RUN REFSPEC and recompile the forms file with the new name; and then recompile
the reformat file.

Q. What causes Image error 62, "DDCD full"? I decreased the number of buffers for the data base, and
it didn't seem to help.

A. This Image error is related to the shortage of two resources in the Data Base Control Block (DBCB): the
Lock Area and the Buffer Area. These two areas are allocated space in the data segment dynamically,
and can conflict with each other's requirements on a loaded system.

The Lock Area contains information on locks currently in effect in the data base. If item-level locking
is done, then each entry in the Lock Area needs more space, because information like the value of the
locked entry needs to be stored. This can cause the Lock Area to expand beyond its original size.

The number of buffers, and hence the size of the Buffer Area, is determined by the use of the DBUTIL

more...

»SE1' BUFFSPECS coml'rland. .Unfortunately, if you. request more buffers than Image would be able
to fit in theDBCB, it will allocate as many as possible WITHOUT NOTIFYING YOU OF THE LESSER
NUMEER._'When it does thi$"'q$"'~qny-as-possible" operation, it uses space that the Lock Arearnight.
otherwlse';have needed for expansion later. The optimum allocation of buffers would' be to allocate

. "as-fnany-ds-possible",and then to return one of these buffers in order to allow loran increased Lock
Area at a later time.

There is a trial-and-error procedure that can be used to determine the maximum number of buffers
allowable in a particular data base; it is as follows:

1) Using DBUTIL, set the buffspecs to a constant for all users -­
'nn'(1/120), where 'nn' is the number of buffers. This requires that the
data base be otherwise idle.

2) Open the database with DBDRIVER. The commands are as follows:

:RUN DBDRIVER.PUB.SYS
!B=basename
!Q=password
!M=open mode
o « for Open »
EXIT

It then gives you some figures; the one of interest is the DBCB size; If it
is near 30,000, the DBCB size is at or near the limit.

3) Based on that size, increase or decrease the number of buffers by one, via
DBUTIL »SET BUFFSPECS command.

4) Repeat steps 1 thru 3, taking the buffspecs up and down, until it is
observed that ABOVE some certain number of buffers the DBCB size
doesn't change, but BELOW that number of buffers it does. That is the
maximum number of buffers that will fit in the DBCB.

As discussed earlier, the optimum number of buffers will be the maximum number of buffers, minus 1.
This assumes a default blockmax of 512, which usually yields a maximum number of buffers about IS;
this would mean an additional 512 words (at best) available for the Lock Area. If the blockmax is -­
'substantially lower, and therefore the buffers are smaller and there are more of them, you may need to
decrease the number of buffers by two or three to allocate the same amount of space to the Lock Area.

Q~ Do I need to reply "YES" to the INITIALLY SPOOLED? question in the SYSDUMP dialogue to use a
printer as a spooled device?

A. No. Even if you answer "NO" to the question, you can issue a "STARTSPOOL ldev" command to spool
the device.

By answering "YES", all you are specifying is that you wish to have MPE start spooling that device
automatically once the system is up. This is exactly the same as if you issue a "STARTSPOOL ldev"
command· at that time. "

