

HEWLETT W PACKARD

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and
workmanship. For Hewlett-Packard Desktop Computer Division products
sold in the U.S.A. and Canada, this warranty applies for ninety (90) days
from date of delivery.” Hewlett-Packard will, at its option, repair or replace
equipment which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any. Equipment
returned to Hewlett-Packard for repair must be shipped freight prepaid.
Repairs necessitated by misuse of the equipment, or by hardware,
software, or interfacing not provided by Hewlett-Packard are not covered
by this warranty.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD
SHALL NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

*For other countries, contact your local Sales and Service Office to
determine warranty terms.

Assembly Development ROM

HP 9835A Desktop Computer

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525
(For World-wide Sales and Service Offices see back of manual.)
Copyright by Hewlett-Packard Company 1979

7,

ii

Customer Questionnaire

To help us in preparing new manuals, there is a questionnaire in the back of this manual. Your
answers to the questions can assist in producing better, more useful manuals. Your feedback is
our only way of knowing the validity of our manuals. Please complete the questionnaire and
mail it — postage is already paid in the United States. Thank you.

System 35 Manual Reference

The following block diagram shows manuals that are included in the System 35 Documentation
scheme and suggested progression. Dotted-line borders indicate those manuals are available

with specific options; solid borders indicate those manuals that are shipped with every System
35.

Owner's
Manual
Beginner's Guide Preview
Operating Svstom Test
Reference Guide (> and - ystem Tes
f Manual
Programming Manuat

] ‘,
- ¥, ¥ 35 Y Y,

Y T T T Sl T e 1T

| Mass Storage | I

Programming | | Assembly | | Programming I I Interface Manuals I

Ml | ST L M | - i
1

| Peripheral Manuals I

Peripheral Manuals
— L

Teiniques Ma—nuzil L
[:{E 1

Mass Storage

iv

Chapter Summaries

Chapter 1. General Information. An introduction to the product and the manual. The pur-
pose and differences of the two Assembly Language ROMs are explained. ROM installation
procedures are given. A glossary is provided, along with a discussion of the syntactical forms
used in the manual.

Chapter 2. Getting Started. A general discussion of the assembly language system. A format
for the creation of an assembly language program is presented. Topics such as modules,
routines, and memory allocation are discussed, along with methods of using them effectively.

Also discussed is the storage and retrieval of modules on mass storage.

Chapter 3. The Processor and the Operating System. Necessary information on the struc-
ture of the processor and the operating system is presented. Topics covered are: machine
architecture, memory organization, data structures and arithmetic, and the machine instruc-
tions.

Chapter 4. Assembly Language Fundamentals. The basic statements and syntaxes used
throughout the assembly language are discussed. Program entry, assembling, symbolic opera-

tions, module creation, program and variable storage, and utilities are the topics covered.

Chapter 5. Arithmetic. Arithmetic operations are reviewed and the arithmetic utilities are
discussed. Floating point and BCD arithmetic are explained.

Chapter 6. Communicating between Basic and Assembly Language. The techniques used
to pass information to and from the assembly language programs are discussed. Calling assem-
bly routines and passing parameters are presented, along with issues involved with using

common. Applicable utilities are also discussed.

Chapter 7. 1/0 Handling. The various techniques of handling the receiving and sending of
information to peripheral devices is presented. Topics are: a review of [/ O-type machine
instructions, registers, applicable utilities, interrupts and interrupt service routines,

handshake-type of 1/ O, direct memory access, and mass storage devices.

Chapter 8. Debugging. Techniques for isolating and correcting logic problems in assembly
programs are discussed. Included in the discussion are techniques for stepping through prog-
rams, getting dumps, patching, and using the keyboard.

Chapter 9. Errors and Error Processing. A discussion of Assembly Language ROM and
other related errors, and what causes them. Included are methods for trapping errors and
possible methods for correcting them.

Table of Contents

Chapter 1: General Information

Structure of the Manual 2
Purpose of the ROMs 2
ROM Installation 3
Buzzwords 4
Fundamental Syntax. 6

Chapter 2: Getting Started

Developing Routines for Later Use ciiiiiiieiiiai.. 7
OVerVIeW 9
Program Creation. 9
Program Entry 14
Other Extensions 16
Modules, Routines, and Such 17
Names 17
Survey of Modules and Routines 18
Setting Aside Memory 19
Retrieving and Storing Modules i 22
Chapter 3: The Processor and the Operating System
Machine Architecture 25
Registers. 26
General Memory Organization P, 28
Protected Memory 28
Base and CurrentPage.......... 29
Data Structures 30
Integers. e 30
SHHINGS 30
Full-Precision Numbers 31
Short-Precision Numbers. 31
Machine Instructions 32
Operands 32
Indirect Addressing 34
Load /Store Group 34
Integer Math Group e 35
Branch Group 36

Test/Branch Group 37

vi

Test/ Alter / Branch Group -« -« cccreeut o 38
Shift /Rotate GrOUP -« -« v v vrmie et .. 40
LOGICAl GIOUD « - -+« « -+ vt e et 41
Stack Group -« - v 42
BCD Math GIOUP - ¢ v v vt e 44
L/ O GrOUD - v v et e e e 47
MISCEIIANEOUS « + -+ + s o v vttt et e e e e e e e e e 48

Chapter 4: Assembly Language Fundamentals

Program Entry - -« 49
Assembly Language SOUICe -« -« vveiiit 51
ACHONS -+« -« o e v et e 51

LabelS - -« eoee e 51
COMMENES - - - -« ot e e e 53
Syntaxingthe Source -« -« .o o 53
Creating Modules - - -« -« over 55
SEOTAGE - -+« e e ettt 56
MoOAUIES - -t o v e e e 56
Variables -« oo e 56
Data Generators - -« - - <« et v ot e e 57
Repeating Instructions « - - -« ..ot 59
ASSEMDIING - - -« oo e 60
Effect of BASIC ENVITONMENTS « « « « - o v oo ettt iei e e e i 60
Source Listing Control ...« 61
Page Format - - - -« oo oo 62
PagelLength - -« .. oo 63
End-of-Page Control .-« -o vt 63

Page Headings - - - - - -« -« covo e 64

Blank Line Generation - -« -« ot e ottt e e 65
Non-Listable Pseudo-Instructions - -« -+« « v vt i e 65
Conditional Assembly - 65
Relocation - ... 68
Symbolic Operationso o 69
Pre-Defined Symbols -o e 69
Defining Your Owno 71
Literals . . .o e 72
Evaluation of Literals - -« - -« -« o oot 72
Nesting Literals 73
Nonsensical Uses of Literals - - - - - - -« - oo i 74

Literal Pools . - - .o ot e e 74

Expressions ... 75

Extemal Symbols and Elements .. 77
Other Absolute Elements ... 78
Utilities .. 79

Chapter 5: Arithmetic

Binary Coded Decimal - - =« - - v cr oo 83
Arithmetic Machine INStIUCHONS -+« « -« s s v v rrr e 84
BCD Registers .. 84
BCD Arithmetic -« - - - - v v v e 84
AddItiOn = -« v v e e e 85
Ten’s Complement for BCD .. 86
Floating Point SUmMmations « -« <« -« - v v 88
Normalization -« « -« v v v v v o v vt oo e 89
Rounding .. 89
Floaﬁng Point Multlpllcatlon .. 90
Floating Point DIVISION - <« -« <<+ o v oo mese e 92
The FDV INSHUCHON « - < - - -« v v o e et 94
Thirteen-Digit Dividends -« -+« - - v 95
Floating-Point Division Example -+ -+« rroooeeee R 926
Arithmetic Utilities - - - -« - - r o v v e e 99
Utility: Rel—math -« oo e 99
Utility: Rl fOmint « - <« - <« << oo e oo 102
Utility: Rel—to——Sho < -+« -+ v oo oot PR 103
Utility: Inttor@l -« <o oo 104
Utility: ShO—tO—T@] « - -+ - v r e 105

Chapter 6: Communication Between BASIC and Assembly Language

The ICALL Statement -« -« - - - o v o e s e 107
Corresponding Assembly Language Statements -~ o-ccnveo i 108
Arguments T 109
“BHNA” PArameters -« -« -« v oo v e 112
Getting Information on Arguments .. 113

Utility: Get—info v - v 114
Retrieving the Value of an Argument 116
Utility: Get—uvalue <« c o - c e e 117
Utility: Get—element « -« - - v o 118
Utility: Get—byte,s ... 119

Utility: Get—elem-—bytes « <~ -~ v v 120

viii

Changing the Value of an Argument 122
Utility: Put—wvalue 122

Utility: Put—element 123

Utility: Put—bytes 124

Utility: Put—elem—buytes 125

Using Common 127
Busy bits 130
Utility: Busy 131

Chapter 7: 1/ O Handling

Peripheral-Processor Communication0 i, 133
Interfaces 134
Registers 134
Select Codes 134
Status and Control Registers 136
Statusand Flag Lines 137

Programmed 170 138

Interrupt 1/ O 138
Priorities. 140
Interrupt Service Routinesand Linkage. 140
ACCESS. .. 141

Utility: Ist—access 143
State Preservation and Restoration. 145
Indirect Addressing in ISRs 146

Direct Memory Access (DMA) . . 147
DMA Registers 148
DMA Transfers 149

BASIC Branching on Interrupts 150
ONINT Statement. 150
Signalling 151
Additional Pre-Defined Symbols 153
Prioritizing ONINT Branches 153
Environmental Considerations. 155
Disabling ON INT Branching 156

Mass Storage Activities 156
Reading from Mass Storage 157

Utility: Mm—read—start, 158

Utility: Mm—read—xfer 159

Writing to Mass Storage -o 160
Utility: Mm—write—start e 161
Utility: Mm—write—test 161

System File Information 163
Utility: Get—file—info 164
Utility: Put—file—info 165

Printing 166
Utility: Printer_select 166
Utility: Print_string 167

Chapter 8: Debugging

Stepping Through Programs 170
Individual Instruction Execution 170
Setting Break Points 174

Simple Pausing 174
Transfers 175
Environments 176
Data Locations 177
IBREAK Everywhere 178
Number of Break Points 179
Clearing Break Points S 179
Interrogating Processor Bits e 180
Protected Memory e 180

DUMIPS . o 181

Value Checking o P 183
Functions 184

DECIMAL .. o 184
OCT AL .. 184
JAD R . e 185
IMEM . o 186
Patching 187

Chapter 9: Errors and Error Processing

Types of Errors PO 189
Syntax-Time and Assembly-Time Errors 189
Run-Time Errors 190

Utility: Error_exit 191

Run-Time Messages i 193

Assembly-Time Messages 195

ix

Appendix A: ASCII Character Set
ASCII Character Codes 204

Appendix B: Machine Instructions

Detailed List 207

Bit Patterns and Timings . o 221
Alphabetic List 221
Approximate Numerical List 221
Appendix C: Pseudo-Instructions 223
Appendix D: Assembly Language BASIC Language Extensions Formal Syntax. 225
Appendix E: Pre-Defined Assembler Symbols 231
Appendix F: Utilities 233
Appendix G: Writing Utilities 235

Appendix H: I/ O Sample Programs

Handshake String Output 237
Handshake String Input 239
Interrupt String Output 241
Interrupt String Input 244
DMA String Output 247
DMA String Input 250
HP-IB Output/Input Drivers . 253
Real-Time-Clock Example 257

Appendix I: Demonstration Cartridge

Usingthetape 261
Typing Aids 261
Appendix J: Error Messages 265
Mass Storage ROM Errors 269
PlOtter ROM Errors ... 269
Assembly Language ROM Errors 0 270
Assembly Time Errors 271

Appendix K: Maintenance

Maintenance Agreements 273

Sales & Service Offices 274

Subject Index 277

Chapter 1
Table of Contents

General Information

Structure of the Manual
Purpose of the ROMSs e
ROM Installation e
Buzzwords
Fundamental Syntax.........

ff

Chapter 1

General Information

Welcome to the world of assembly language programming on the 9835A /B.

It is the design of the Assembly Development Read Only Memory (ROM) to help extend the
capabilities of your 9835A/B by giving you greater control and speed through the use of
machine instructions, pseudo-instructions, and extensions to the BASIC language.

The assembly language system is provided to you as ROMs which plug into the drawers
provided for that purpose in the 9835A /B. There are three physical ROMs, comprising two
“logical’’ ROMs —

e The Assembly Development ROM. Two physical ROMs. This ROM is always provided
with an Execution ROM (together comprising HP product number 98339A), and the three
ROMs as a unit constitute the assembly language system of the 9835A / B.

e The Assembly Execution ROM, HP product number 98338A. One physical ROM. Since
this ROM is an integral part of the assembly language system, the use of the capabilities in
this ROM is incorporated into the discussions in this manual. Information on this ROM can

be found separately in the Assembly Execution ROM manual (HP part number 09835-
90082).

It is assumed throughout this manual that you are familiar with the basic operation and lan-
guage of the 9835A /B. It is also assumed that you are reasonably well-acquainted with at least
one other assembly language.

“

S

2 General Information

Structure of the Manual

It is the intent of this manual that you should be able to find between its covers everything you
need to know to use the assembly language effectively. However, since assembly language
programming is a complex topic, the manual relies a great deal on your past experience. Most
of the information is in succinct presentations of a particular topic; it is not the intent to ‘‘teach”

assembly language programming to someone not familiar with the topic.

The major topics covered are: assembly language program creation (Chapter 2), the processor
and relevant operating system constructs (Chapter 3), assembly language fundamentals (Chap-
ter 4), arithmetic (Chapter 5), communications with BASIC (Chapter 6), 17O handling (Chap-
ter 7), debugging tools (Chapter 8), errors and error processing (Chapter 9). Each topic, or
chapter, has a summary at the beginning detailing the information to be presented therein. A
compilation of these summaries can be found immediately preceding the Table of Contents.

The manual is organized so that each topic can be covered completely within a given chapter.
This approach was chosen over the strict syntactical or semantical treatment of the individual
statements and instructions. As a consequence, you may find this difficult to use as a ‘‘quick

reference’’ for syntax and meaning of the individual commands.

To meet your needs for “quick reference’ material, an Assembly Language System Quick
Reference Manual (HP part number 09835-90081) is provided. In addition, you will find much
of the information in this manual condensed and tabulated in the various appendices of this

manual.

A recommended method for using the manuals is to start with this one as your basic learning
tool. Then you should be able to use the Quick Reference Manual effectively for all future

reference.

Purpose of the ROMs

The Development ROM is used to write and debug assembly language programs on the
9835A/B. The Execution ROM, provides the capability to load, run, and store assembled

routines and modules.

The Execution ROM can be used independently of the Development ROM. However, the
Development ROM cannot be used without the Execution ROM. The latter’s capabilities, there-
fore, are considered in this manual as an inherent part of the Development ROM. Because of
the overhead required by the debugging features provided by the Development ROM, pro-
grams run more rapidly if the Execution ROM is used without the Development ROM.

ROM Installation

General Information

Before assembly language programming can proceed, the ROMs must be in place. The installa-

tion is a simple process.

There are several ROM drawers for the computer: one on the right side of the machine and

four in front. Each front drawer holds up to four ROMs; the side drawer holds up to fourteen.
ROMs may be placed in any ROM slot in any drawer.

el
£
e

"
oy

il

T

-

s
i

:

s,

S f

[
e
P

i

Assembly Language System ROMs

To add the ROMs, turn off the computer and remove a ROM drawer (by pulling outwards on it

until it is completely separated from the computer). Insert the ROMs, one at a time, following

this procedure: you should orient the ROM so that its label reads the same way as the others in

the drawer (with the bottom of the lettering toward the ‘“‘front”’ of the drawer). Then insert it

vertically in one of the unused slots. Make sure that it slides in all the way to the bottom of the

connector. There are small raised ribs on both sides of each ROM which will fit into recesses in

the slot; if the ribs don’t fit, you have not oriented the ROM correctly.

After inserting both ROMs, re-insert the drawer in the machine (by pushing on it until it is flush

with the outside cover of the machine). With this done, you are now ready to begin writing

assembly language programs.

.
el

AP s

g e ey

gl e
L g

oA e

SR
G R
AW e
M
e ﬂmmmﬁﬁﬁy o

B it i ¥
ol
i
i

i
i
i

.
o
s

w%ﬁ@

il
ey

Figure 1. Installing the Development ROM

o
L
- x%g s
e i

R
e
n}é L

e

3

4 General Information

Buzzwords

During the course of the discussions in this manual, words and phrases are used which are in
common circulation among those who are familiar with assembly languages. While the mean-
ing of most are either well-known, or are deducible from the context, there are a few which may
be unfamiliar, or unique to the 9835A /B assembly language, or are variable from one assem-
bly language to the next and thus need to be defined for this one. They are —

assembled location — a reference to a location in memory which may be specified in one

of the following forms —

{symbol} [. {numeric expression}]

{expression} [. {numeric expression}]

where:

{symbol} is an assembly location. It may be either a label for a particular machine instruc-
tion (in which case the address of the associated instruction is used), or an assembler-
defined symbol (in which case the associated absolute address is used), or a symbol
defined by an EQU instruction (described in the “Symbolic Operations’ of Chapter 4).

{expression} may be a numeric expression or a string expression. If numeric, a decimal
calculation is performed and the result is interpreted as an octal value; if the result is not
an octal representation or an integer, an error results. If a string expression is used, the
string must be interpretable as either an octal integer constant or a known assembly

symbol (see {symbol} above).
{numeric expression} serves as a decimal offset from the given label or constant.
byte — a group of 8 binary digits (bits).

busy bits — each variable located in the BASIC value or common areas has associated
with it two bits: a “‘read’” busy bit, and a “write’” busy bit. When a busy bit is set, all
attempts to perform the associated function on that variable are locked out. When a busy
bit is cleared, the function may be performed on the variable.

conditional assembly — an assignation that certain portions of a module are not to be
assembled unless a condition has been set. The portions begin with any of the IFA through
IFH, and IFP, pseudo-instructions, and end with the next XIF pseudo-instruction. IFA
uses the A-condition as a test, and so on. The conditions are set by the statement assem-
bling the module (IASSEMBLE).

General Information 5

interrupt service routine (ISR) — an assembly language routine intended to perform a
certain action, or set of actions, when the computer receives a request from an external

device. An “‘active’’ ISR is one which is currently enabled for a given device.

mass storage unit specifier (msus) — a single word corresponding to the BASIC lan-
guage mass storage unit specifier as described in either the 9835A /B Operating and
Programming Manual — HP part number 09835-90000 — or the Mass Storage
Techniques Manual — HP part number 09835-90070. An msus has the following struc-

ture —
Unit HPIB Device Select
Number Address Typel Code
I] I I | | | | | | I
| |] 1]] | P 1] |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

An msus can designate the current default as its mass storage device (meaning it will use
the device indicated by the last MASS STORAGE IS statement executed). This is desig-
nated by having the msus be all ones (i.e., equal to — 1).

object module — a section of assembled code stored in the particular region of memory
set aside for it. Though the source module for the object code may no longer be resident in
memory, when created, the module was delimited by certain pseudo-instructions (NAM
and END) and is referenced by the name given to it by the NAM pseudo-instruction.

octal expression — a numeric expression which, when displayed or printed, appears as
an octal (base-8) number. Within arithmetic operations, it has a decimal value (base-10).
Thus, the value 17s will appear as 17 (representing the value 1510), but if arithmetic was
performed on it, it would act as if it were 1710. All octal expressions are necessarily
integers in the range of 0 to 177777s.

source module — a section of assembly language source code beginning with a NAM

pseudo-instruction and ending with the END pseudo-instruction.

word — two bytes; a group of 16 binary digits (bits).

7

1 The device type is the ASCII code for the type minus 1008.

6 General Information

Fundamental Syntax

The syntax conventions used in this manual are those used in the Operating and Programming
Manual for the 9835A/B —

r 1= All syntax items displayed in dot matrix form should be pro-

grammed as shown.
[1 Itemscontained in brackets are optional items.

Ellipses mean that the previous item may be repeated

indefinitely.

In addition, the following convention is employed throughout the Assembly Language series of
manuals —

{} Items contained in braces are syntax items considered as a
unit. The names inside are usually descriptive of the function
intended for that item. Whenever an item enclosed in braces
appears in the text, the notation refers to the same notation

within an earlier syntax.

Chapter 2
Table of Contents

Getting Started

Developing Routines for Later Use 7
OVeIVIEW . .. 9
Program Creation 9
Program Entry 14
Other EXtensions 16
Modules, Routines, and Such 17
Names 17
Survey of Modules and Routines 18
Setting Aside Memory 19

Retrieving and Storing Modules 22

(ﬁ

Chapter 2
Getting Started

Summary; This chapter contains a general discussion of the assembly language sys-
tem. A format for the creation of an assembly language program is presented. Topics
such as modules, routines, and memory allocation are discussed, along with methods of
using them effectively. Also discussed is the storage and retrieval of modules on mass
storage.

The thing to remember about the éssembly language system is that it has been thoroughly
integrated into the operating system of the 9835A / B. Once the ROMs have been installed, you
are able immediately to begin programming in assembly language. In addition, you have the
capability to load and store your programs on mass storage, to assemble them separately or
leave them in source form, to execute them from BASIC and pass BASIC variables to them,
and to debug them, including a full pausing and stepping capability.

Developing Routines for Later Use

Most assembly language programs are written with the intent that theiz will be used many times,
not just at the time they are written. It is for just such program development that the full
capabilities of the assembly language system come into play. The development comes in
several stages. Each stage has its unique requirements and the tools to meet those require-
ments.

The first stage is creation of the source program. This is achieved by the use of the editing
capabilities of the 9835A /B. Additionally, the basic mass storage capabilities of the computer
can be used.

The second stage is the creation of the object (or machine) code. This requires not only an
assembly of the source, but the ability to allocate special locations in memory to hold the newly
created object code.

The third stage is the validation of the routines as written, commonly known as ‘‘debugging’’.
This is enabled by calls from a BASIC driver, followed by application of various debugging
tools provided by the assembly system. The capabilities to pause and step a program have been

extended to assembly language instructions to assist this process.

7

7,

8 Getting Started

The fourth stage is to store away the debugged object code so that it may be used at a later

time. A special mass storage statement is provided by the assembly language system. This

statement stores object code into a special assembly file.

Finally, the end-user of the routines must be able to retrieve the object code from mass storage

as it is needed. He also must be able to access the routines from BASIC programs. Both these

needs are met with the Execution ROM, so the capabilities are not only provided, but they are

provided independent of the program development capabilities located in the Development

ROM.

Each of the topics involved in these stages is discussed at length in this manual.

Figure 2 presents a graphical presentation of this overview.

Mass Storage
Capabilities Sonrce
of System 35 y Statements

Editing
Capabilities
of System 35

(Source) Program Creation

Assembly

Y

Assembly Language System’s
Debugging Tools

Memory
Allocation
Em— (Object) Module Creation
Calls from
BASIC
A
G ——
Routine Validation
(Debugging)
Storage
Special Files
\

Mass Storage

Retrieval

\

User's BASIC Programs
(includes calls to routines)

Figure 2. Overview of Assembly Language Routine Development Process

Getting Started 9

Overview

At this point, there are three fundamental structures to be explained: programs, modules, and

routines.

A program is the set of source statements from which the object (or machine) code is gener-
ated. The assembly source statements are extensions to the BASIC language which is used in
the 9835A/B. The statements themselves are stored in the machine as part of the BASIC
program in which they reside. At some point, you must take the assembly source statements
and assemble them into object code, in order that they can be run. The object code is stored in

a specified location in the machine.

A module is a subset of the object code. Itis a means of separating and identifying parts of the
code so that those parts may be used individually (as in mass storage operations). There may
be any number of modules present at any one time, limited only by the amount of memory
allocated for object code.

A routine is a ‘‘callable” section of a module. It is analogous to the subprogram in BASIC. It
has a named entry point, possibly-a parameter list, and (if programmed correctly) a return. A
module may contain any number of routines, again limited only by the amount of memory
allocated to hold the object code.

In short, the usefulness of each structure is as follows —

e Programs contain assembly language source code.
e Modules contain object code to be loaded from or stored on mass storage.

e Routines are executable sections of object code.

Program Creation

The first matter which is likely to concern you about the assembly language system is how to
create an assembly language program.

In general, the process of creating an assembly language subprogram consists of the following

steps —

1. Enter and store the source code (program).

2. Create an area in memory which will ultimately contain the object code.

’

10 Getting Started

3. Assemble the source code into object code, storing the latter into the area of memory set

aside for it.

4. Execute the object code (routines) from BASIC “‘drivers’.

Each of these steps will be discussed at length in the pages of this manual, along with a number
of not-so-incidental side-topics (such as ‘‘debugging’’ techniques). The purpose of this short
section is to give you an impression of the general procedure through which an assembly

language subprogram is created.

As an example to use to demonstrate the process, suppose the following task has been assigned

to you —

Requirement: Write an assembly language subprogram which takes two integer
values and multiplies them together as integers. If the result overflows the range of
an integer (— 32 768 to + 32 767), then the subprogram should return the same

error as the system would (i.e., error number 20).

With this task in hand, suppose that you have completed a programming analysis that suggests
that the following assembly language source code would fulfill the subprogram’s functions —!

1 The fact that it is rarely possible to create a running program at this stage should not get in the way of accepting the example.
Usually there is debugging involved in later stages.

Getting Started

Now that the routine has been developed, it is necessary to get it into the memory of the
machine as a program. This is done by preceding each and every assembly language statement
with the keyword ISOURCE and entering it as a program line. The process of entering (with the
keyword included) is the same as with any other BASIC statement — so you can use EDIT or
AUTO and the key in the same way you normally enter any BASIC statement. (This
process is fully described in the “Program Entry”’ section of this chapter.)

The final result of entering the routine would look something like —

This source code demonstrates the three critical items in assembly subprograms. First, a routine
has to be part of a module; modules are delimited with the NAM and END pseudo-instructions
(see lines 10 and 270 in the source). Second, a routine has to have an entry point; this consists
of a SUB pseudo-instruction (see line 40), any parameters (see lines 50 through 70), and a
name (the label used on the first machine instruction following the SUB, see line 80). Finally, a
routine must be able to return to the BASIC program which called it; this is accomplished with
the RET 1 instruction (see line 260).

The NAM, END, and SUB pseudo-instructions are discussed in Chapter 4. The RET 1 instruc-
tion is discussed in Chapter 3.

11

12 Getting Started

The next three steps in program creation are each satisfied with BASIC-executable statements.
Creation of a storage area for the object code for the program (which can be estimated at less
than 40 words; there is essentially one word of object code per line of source) is accomplished

by programming the statement —

IO <8
(The ICOM statement is fully discussed in the ‘‘Setting Aside Memory’’ section of this chapter.)

This can be followed in the same program by an instruction to assemble the source code into
object code —

(The IASSEMBLE statement is fully discussed in Chapter 4.)

If the assembly is successful (and it will be in this example), then the routine can be called and

used as desired. A typical call looks like —

(The ICALL statement is fully discussed in Chapter 6.)

Thus, the final result could easily be —

Getting Started

It isn’t necessary that a program be assembled in every BASIC program which uses it. Object

code can be stored on mass storage with a statement like —

ke gk ek b ek e

FT1 bt et doed

13

14 Getting Started

the object code is consequently stored into the file “MULT"’".

Later programs can retrieve the object code for use, such as in the following program —

E R T
PIEARER I

(Both ISTORE and ILOAD are discussed in the ‘“‘Retrieving and Storing Modules” section of
this chapter.)

Program Entry

The assembly lénguage source statement is an extension to the BASIC language used in the
9835A/B. This means that each assembly language statement is entered using a
‘‘keyword’’ — in this case ISOURCE — as a message to the operating system that the line is an
assembly language statement.

By looking at an example, you can see what is meant —

Lines 10, 20, 30, and 70, are all recognizable as BASIC statements. The keywords they
use — LET, PRINT, and END — direct that certain actions take place. Lines 40, 50, and 60,
are all assembly language statements; this was indicated by the ISOURCE keyword used in
these lines.

Entering assembly language statements, by using the ISOURCE keyword, is thereby the same
process as entering other types of BASIC statements. You may use all of the system editing
features that you are used to using in the creation of BASIC programs — EDIT, AUTO, etc. You
store each line with the key, as you would any other BASIC line.

Getting Started 15

Also, assembly lines do not have to be in any special place in the BASIC program. The above

example could be re-arranged as follows —

Thus, you are free to enter your assembly statements anywhere in your BASIC program. But,
you may ask, what is the effect of spreading them out like this? The answer is, simply, none.
When the time comes to use them, assembly statements and BASIC statements are separated

by the operating system and treated differently.

When the BASIC program is run, ONLY the BASIC statements are executed. The ISOURCE
statements are ignored, and, as you will be shown in Chapter 4, when the assembly language
lines are assembled, the BASIC statements are ignored. A way to consider it is that there are
two programs in one — BASIC’s and the assembler’s. So you can envision the example above

as being this way —

BASIC ASSEMBLER

You should note, then, that ISOURCE statements are not ‘‘executable’ in the usual BASIC
sense. Their location in the program does not indicate the place where they will be executed.

Assembly instructions are not executed until a routine is “‘called’’; this is discussed in detail in
Chapter 4.

Now that it has been said that the two types of statements can be thoroughly intermixed, it
should also be said that the practice is not recommended. As a good programming practice —
i.e., for readability and to preserve the self-documenting features of BASIC — it is recom-

mended that assembly statements be collected together and placed in one spot in the program.

The first example is a recommended practice over the second, even though the second is
permissible.

16 Getting Started

Other Extensions

In addition to the ISOURCE statement, there are a number of other BASIC language exten-
sions provided by the assembly languge system. Unlike the ISOURCE statement, they are
‘“‘executable’’, and their appearances are part of the BASIC lines (as distinguished from the
assembler’s). Where they appear is where the action associated with them is taken. This is

identical to the way the other BASIC statements perform. The statements involved are —

IASSEMBLE
IBREAK
ICALL
ICHANGE
ICOM
IDELETE
IDUMP
ILOAD
INORMAL
IPAUSE OFF
IPAUSE ON
ISTORE
OFF INT

ON INT

Also provided are four numeric functions —

DECIMAL
IADR
IMEM
OCTAL

The functions can be used wherever numeric functions in general may be used.

All of these statements (except ICOM and ISOURCE) and the functions are available to you as
live keyboard operations as well as programmable statements. A full discussion of each of the
statements and functions can be found within this manual.

Getting Started 17

Modules, Routines, and Such

There are three basic activities associated with using assembled modules and routines. First,
there is the need to retrieve them from wherever they may be stored (including providing a
place for them to be kept while they are resident in the memory of the machine). Second, there
is the actual execution of the routines. And third, there is the occasional requirement to store,
or re-store a module on mass storage (including, perhaps, the need to free up the space in
memory it previously occupied).

Names

Routines, modules, and files all have names. The names given them may or may not bear some

significance to one another; that depends upon you and the way that you name things.

Conventions for the naming of files and methods of general file manipulation can be found in
the Operating and Programming Manual and in the Mass Storage Techniques Manual. The

conventions are not any different than for files in general.

Names for modules are assigned with the creation of the source. In the assembly language
source code, you have a NAM pseudo-instruction. This serves two purposes — to designate the
beginning of the module and to assign the module a name. All of the assembly source state-
ments which follow the NAM are in that module until an END pseudo-instruction is encoun-

tered. Thus, recalling the previous example —.

All of the ISOURCE statements between lines 20 and 60 (in this case, just the one) form the
module called ‘“‘Example”. The formal syntaxes of these pseudo-instructions are —

1 {module name}

i
1

I {module name}

{module name} is a symbol which becomes the name of the module. It follows the same rules as
names in BASIC: up to fifteen characters; starts with a capital letter; followed by only non-
capital letters, numbers, or the underscore character.

18 Getting Started

The {module name} in the END statement must correspond to the {module name} of the NAM

statement or an assembly error (‘‘EN"’) results.

You may have any number of modules in your source code. Each module begins with a NAM
and ends with an END pseudo-instruction as above.

Mass Storage Memory User

|
|
|
!
|
| module 1 e IDELETE module 1
4 [
file 1 ILOAD | filet e |
: |
| module 2 |)
| ICQM -— ' ICOM size
region
I .]
may or | |
g":lé:m o2 ILOAD : file 2 |
er\zze | ' ICALL routine 1
| | ICALL routine 2
: | ICALL routine 3
| | ICALL routine 4
ISTORE !module 4 [~ | | ICALL routine 5
file 3 < es iTonesl 1~~~ —— | ICALL routine 6
| |
¢ module 5 |
|
L \ |
|
I
I

Figure 3. Overview of Routines and Modules.

Survey of Modules and Routines

To sketch the functional relationships of modules and routines, please refer to Figure 3 above.

Modules are stored in files and may be retrieved and placed in memory using the “ILOAD”
command. When the ILOAD command is executed, all of the modules in the file are loaded into
the memory. Note that many files can be loaded, with many modules each, with all of the

modules able to remain resident in the memory.

Getting Started 19

Alternatively, modules which are already in memory may be stored into a single file using the
“ISTORE” command. When the ISTORE command is executed, the designated modules are
stored into an ‘‘option ROM” (OPRM) type of file (on tape cartridges) or an ‘‘Assembly’
(ASMB) type of file (on non-tape mass storage media). After storage, the modules are still in
memory. They may be removed (i.e., the space they occupy in memory is “freed up’’) by using
the “IDELETE” command.

The area of memory where the modules are stored is called the “ICOM region”. It is a particu-
lar contiguous area which must be large enough to hold all of the object code you wish to have

resident in the memory at any one time.

Each module contains one or more routines. Your access to the routines is through the ICALL
statement, which is very similar to the CALL statement used for BASIC subprograms. The
ICALL statement may have arguments which you need to ‘‘pass” (send down) to the routine
itself. What these arguments, if any, may be, and what meaning they hold depends upon what
you have in mind for that routine. There are corresponding items in the assembly source code;

these are discussed in Chapter 6.

Setting Aside Memory

As indicated by Figure 3, you cannot load a module until there is an ICOM region into which to
load it. Neither can you assemble your source code into object code unless there is an ICOM

region into which the object code can go.

The statement to use to create an ICOM region is —

i} {size}

where {size} is an integer constant indicating the number of words to be used to form the ICOM
region. The maximum size is 32 718 words.

The ICOM statement is a “declaration”, that is, it is not executable, but rather is used when
assignment of memory takes place just before a program is run. This is similar to a DIM or COM
statement. As with a DIM or COM statement, the statement cannot be executed from the
keyboard.

Once created, the ICOM region remains in existence until it is explicitly destroyed. But it is
possible to change the size by using another ICOM statement.

20

Getting Started

The order in which modules appear in the ICOM region is determined by the order in which
they are loaded using the ILOAD statement discussed in the next section or are created by the
IASSEMBLE statement discussed in the next chapter.

In most cases, the space which is freed up by reducing the size of the ICOM region is returned to
your available memory space. Sometimes, however, it is not returned, this being caused by the
status of the common area allocated in memory, or by other option ROMs. The space is

returned whenever —

o There is no common area assigned (with the COM statement); and,

o The requirements of another option ROM do not interfere.
There may be any number of ICOM statements in a program. The current size of the ICOM
region is determined by the last one which appears in the program when the key is pressed

(or the command RUN is executed).

For example, suppose you have a program with the following statements in it —

Upon pressing , the ICOM region would be 2 000 words long. This is because line 610 is
the final ICOM appearance.

The region continues to exist even if you load in another program which contains no ICOM
statements. All ICOM statements must appear in the main program, not in any subprogram.

ICOM statements in a program must appear before any COM statement. This is to insure that

the ICOM region will be allocated before the common is allocated.

Getting Started 21

There are three ways to eliminate the ICOM region —

e Execute SCRATCH A
e Execute ICOM 0O in a program.

e Turn off the machine.

After any of these actions, the region is no longer in existence. If there are any modules in the
region, they disappear as well. If any of those modules contain an active interrupt service
routine, you get an error (number 193) if you try to eliminate the region using ICOM 0. If any of
your routines provided to other users contain active ISRs, your documentation for the routine

should warn the users of that fact so they can avoid this error.

The ICOM 0 procedure can be used to assure that all previous modules are deleted. For
example, the following sequence —

assures that an ICOM region of 2 000 words is in existence at the running of the program, and

one completely clear of any previously loaded modules.

When you are altering the size of the ICOM region, the new size specified becomes the size of
the region from the moment of running the program. If the size being requested is larger than
that which already exists, the additional space needed is requested from the operating system.
If the space is available, everything proceeds uneventfully. If the space is not available, an error
(number 2) results. To make the space available, one of the following procedures must be

followed —

e Execute SCRATCH A.
e Execute SCRATCH C.
Each procedure has its separate effects, and the course selected should be determined by your

circumstances at the time. Consult the Operating and Programming Manual for details on the

other effects of each of these commands.

22 Getting Started

If the size being requested is smaller, modules are deleted if they no longer fit into the smaller

region. For example, suppose the following situation existed —

: “old” ICOM size 7i
|
module module module module module
A B C D E
|

I<—— “new” ICOM size ——*l

Upon compilation of the new ICOM statement, the modules E, D, and C are deleted. None of

those modules may contain an active interrupt service routine or an error results (number 193).

Retrieving and Storing Modules

Modules are stored in files on mass storage media as Option ROM (OPRM) or Assembly
(ASMB) types of files. On tape media, they are stored in the OPRM type and on non-tape
media they are stored in the ASMB type. In this case, the two file types are equivalent.?

To retrieve a module, or modules, from mass storage, identify the file name of the file contain-
ing the module. Combine the name with the mass storage unit specifier? of the device to form a

file specifier. Then execute the statement —

{file specifier}

This retrieves ALL the modules in the file and stores them in the ICOM region.

If there are modules already loaded in the ICOM region, these additional modules are added to
them, (NOT written over them). If an existing module in the ICOM area has the same name as
one of the modules being loaded, the existing module is deleted and the loaded version takes
its place.

If you do not want all the modules in a given file, you can purge the unwanted ones from the
ICOM region using the IDELETE statement —

& {module name} [,{module name} [,...]]

1 OPRM-type files may be created by other option ROMs for their particular purposes. In those cases, the contents are entirely
different.

2 Not to be confused with the single-word msus described in Chapter 1. This form is used by BASIC’s Mass Storage statements
(see the Operating and Programming Manual or Mass Storage Techniques Manual).

Getting Started 23

For example, if you had loaded a file which had the routines Larry, Pat, Ed, and Piper, and you

want to keep only Larry, then you execute the statements —

or, more simply —

Deletions do not have to be done immediately after loading. They can be done at any time.
After the IDELETE has been executed, the portion of the ICOM region which the module
previously occupied is made available for use in loading other modules. The space is NOT
returned to the generally available memory; that action is done with an ICOM statement with a

smaller size.

Whenever a module is deleted, other modules are moved, as necessary, to take up any slack
space in the ICOM region. This is done so that all of the free space in the region is at the end. If
a module is being deleted, or being moved as above, and it contains an active interrupt service
routine, an error results (number 193).)

If you desire at any time to delete all of the modules in your ICOM region, you can do so by
executing either of the following statements —

Sometimes you may desire to move modules in the opposite direction — from memory to mass
storage. This is done with the ISTORE statement. The statement has the form —

~{module name} [, {module name} [, ...]] : {file specifier}

A {module name} must be the name of a module currently stored in the ICOM region. Upon
execution of the statement, a file with the name and mass storage unit specifier given in the {file

specifier} is created and the modules are stored in the file, in the order listed.

The file created by an ISTORE statement is an OPRM or ASMB type, as appropriate to the

medium involved. It can then be used in ILOAD statements at a later time.

24 Getting Started

In the case that you might want to store all of the routines currently in the ICOM region into a

particular file, you can use either of the following statements —

: {file specifier}

- {file specifier}

Chapter 3
Table of Contents

The Processor and the Operating System ’
Machine Architecture 25

Registers R 26
General Memory Organization 28
Protected Memory 28
Base and CurrentPage 29
Data Structures 30
Integers e 30
SHINGS 30
Full-Precision Numbers 31
Short-Precision Numbers 31
Machine Instructions 32
Operands 32
Indirect Addressing L 34
Load/Store Group 34
Integer Math Group N 35
Branch Group 36
Test/Branch Group e o 37
Test/ Alter/Branch Group 38
Shift/Rotate Group e 40
Logical Group 41
CStack Group ... e 42
BCD Math Group 44
1/O0Group i 47

MiscellaneoUus e 48

Chapter 3

The Processor and
the Operating System

Summary: This chapter contains the necessary information on the structure of the
processor and the operating system. Topics covered are: machine architecture, memory
organization, data structures, and the machine instructions.

Before proceeding to the actual assembly language, it is useful to discuss the processor and
operating system with which you are dealing. This chapter discusses various concepts related to
the processor, the machine instruction set, the operating system organization, and data struc-

tures.

Machine Architecture

The 9835A /B is developed around a set of processors called a “hybrid”’. There are actually
three processors — the Binary Processor Chip (BPC), the Input-Output Controller (I0C), and
the Extended Math Chip (EMC). Each has its own set of instructions, but all three work in
conjunction. It is not necessary in using the assembly system that you know on which chip a
particular instruction resides. In the présentation of the instruction set — and for all practical
purposes while working with the computer — no distinction need be made between the proces-
sors, and the entire instruction set may be considered as being resident on a single processor.

In addition to the processors, the hybrid also contains an 1./ O bus which is controlled by certain
instructions. The I/ O bus has an ‘“‘address” part and a ‘‘data’ part. Some of the instructions (it
is indicated which ones) cause an ‘‘input cycle’” to occur on the bus, which means that an
address is given to the address part of the bus, and the data which appears on the data part is
considered to be input. Other instructions cause an ‘“‘output cycle’’, which means that the data
is to be output to the given ‘“‘address”.

Figure 4 is a graphical representation of this architecture.

\>

26 The Processor and the Operating System

PROCESSOR
peripheral
0 address address TO
PERIPHERAL
MEMORY DEVICES
data data
Figure 4. Generalized Machine Architecture
Registers

The memory locations in the machine are addressed from 0 to 177777s. There are 32 memory
locations which are addressed as if they were part of the computer read / write memory, but
actually are part of the processor. These locations are called ‘‘internal registers”. Each register
has a specific location and has been given a name. As you will learn in “Symbolic Operations”
(Chapter 4), these names have been reserved and cannot be redefined while using the assem-

bly system.

The internal registers are —

Address
Name (Octal) Description
A 0 Arithmetic accumulator
Ar2 20-23 | BCD arithmetic accumulator
B 1 Arithmetic accumulator
C 16 Stack pointer
Cb 13 Block bit for byte pointer in C (use most significant bit only)
D 17 Stack pointer
Db 13 Block bit for byte pointer in D (use second most significant bit only)
Dmac 15 DMA count register
Dmama 14 DMA memory address register
Dmapa 13 DMA peripheral address register (use lower 4 bits only)
P 2 Program counter
Pa 11 Peripheral address register (use lower 4 bits only)
R 3 Return stack pointer
R4 4
ﬁz Z 170 (Input/ Output) registers
R7 7
Se 24 Shift-extend register

The Processor and the Operating System 27

Figure 5 is a map of where these registers lie. In addition to these registers, the addresses 25s

through 37s are also registers, but are not (except for a few isolated cases) used in assembly

programming.

address
A 0
B 1
P 2
R 3
R4 4
R5 5
R6 6
R7 7
(reserved) 10
Con, [Fa |
(reserved) 12
L] [Dmapa | 13
Db L~ Dmama 14
Dmac 15
C 16
D 17
20
Ar2 21
22
23
Se 24
25
(reserved)
37

Figure 5. Map of Lowest Memory

All of these registers can be referenced either by their names or by their actual addresses. The

two methods are equivalent, though reference by name is recommended as a programming

practice.

In addition to the above internal registers, there are some ‘‘external’’ registers which reside in

the computer read / write memory. They are —

Address
Name (octal) Description
Arl 177770-177773 | BCD arithmetic accumulator
Base page | 177620-177701 | Base_page temporary area (50 words)
Oper 1 177702 Arithmetic utility operand address registers
Oper 2 177703
Result 177704 Arithmetic utility result address register

28 The Processor and the Operating System

General Memory Organization

In order to find your way around the machine effectively, you should be aware of where things
are stored in memory. Occasionally these areas can become considerations in your

programming.
First in the memory come the internal registers. They were discussed above.

Next in the memory comes the ICOM area. The starting location is dependent upon system
needs, but is always at least 41s. The size of the ICOM region depends upon the size designated
by the ICOM statement. Its maximum ending address is 77756s. This is the reason for the
limitation on the size in the ICOM statement.

Next in the memory comes the area reserved for the system to store programs and the like. This
area extends from the end of the ICOM region to 177617s.

This area is followed by the registers in the read / write memory (see the list in the previous
section) with a number of interspersed system-reserved areas.

Figure 6 is a graphical presentation of this organization.

The immediately addressable memory consists of 65 536 words, which is all that can be ad-
dressed by a 16-bit word (the basic unit of memory in the system). Note that the memory is
divided into two blocks —an ‘“‘upper’” block and a “lower” one. This distinction between
blocks becomes significant when addressing individual bytes in memory.

Protected Memory

All of the reserved areas mentioned above are known as ‘“‘protected memory’. To give some
measure of security to the operating system, it is advised that no attempt should be made to

write or branch into these areas.

Access to certain portions of protected memory (e.g., BASIC variables) is provided by utilities
within the assembly system. The user should access those areas only through the utilities.

Some measure of protection against access into these areas is provided during debugging. See
Chapter 8 for a discussion of how this is done and the extent of the protection provided.

The Processor and the Operating System

0
CPU registers
37
40 (at(lreeas;r;/ ?«tfjc))r d) s starting address
min=41 dependent upon
} system needs
J lower block
user data
(ICOM area) T
ending address
dependent upon
max=77756 starting address,
(reserved)

Ly (at least 1710 words) length of ICOM,
100000 and system needs
(reserved) =

177617
177620
' Base_page -
177701 ‘
177702 Oper_1
177703 Oper__2
:;;;8; Result upper block
(reserved)
177767
177770
‘ Art
17777é
177774
(reserved)
177777 J
Figure 6. Memory Map

Base and Current Page

A concept that occasionally arises during discussion of the instructions and the assembler is that

of the ‘‘page’’, the “‘base’ and “‘current’’ pages in particular.

A page is 1 024 words of memory.

29

30 The Processor and the Operating System

The ‘“‘base’’ page is a wrap-around page. It consists of the upper half of the last page in the
machine (addresses 177000s to 177777s) and the lower half of the zero page (addresses 0 to
777s). This is the same as a page which runs from — 512 to + 511, effectively ‘‘wrapping
around’’ address 0.

During execution, the program counter (P) points to the address of the current instruction. The
“current’’ page is those 1 024 words of memory centered upon the current instruction. There-

fore, the current page is a continually changing page, extending from (P)— 512 to (P)+ 511.

Data Structures

It is common to access BASIC variables from an assembly language routine then retrieve the
contents, manipulate them, or alter them. To be effective at it, you should be aware of how

BASIC stores a value in each of its data types.

There are four data types in BASIC: full-precision numeric values, short-precision numeric

values, integers, and strings. Each is stored in its own unique structure.

Integers

The simplest of the types is the integer. An integer consists of a single word. Values between
— 32 768 and + 32 767 can be stored in the word. Negative values are stored in two’s com-
plement form. An integer looks like —

15 14 . . . 0 Bit

Value

T

[

{
\Sign Bit
Strings

Strings are the next simplest structure. A string is a succession of bytes, one character to a byte.
A string may be of variable length. To be able to designate the length, the string is preceded by
a word which contains the number of bytes in the string.

If a string has an odd number of bytes in it, then the left-over byte in the word containing the
last character of the string is wasted. A typical string of length n looks like —

n(length)
byte 1 byte 2
byte 3 byte 4
byte 5 byte 6

)X

byte n-2 byte n-1
byte n -

The Processor and the Operating System

Full-Precision Numbers

Full-precision numeric values are stored as 12-digit, BCD (Binary Coded Decimal), floating
point numbers. They occupy four words each. The first word contains the sign of the exponent,
a two’s-complement 10-bit exponent, and the sign of the mantissa. The other three words

contain the twelve mantissa digits, 4 to each word. The words look like this —

%5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 Bit
Bxp]l T 1 1 T T T T 1 T T T Ivan
Signl Exponent 0 0 0 O Isign
L
D1
(most significant digit) D2 Da D4
Ds Ds D7 Ds
D12
De D10 D11 (least significant)

The exponent is always adjusted during arithmetic routines so that there is an implied decimal
point following D1. Thus, every mantissa value looks like —

Di1. D2 D3 D4 Ds Ds D7 Dg D9 D10 D11 D12

Short-Precision Numbers

Short-precision numeric values are stored as 6-digit, BCD floating point numbers. Unlike
full-precision, they occupy two words each irnistead of four. The first word contains a 7-bit
exponent, the sign of the mantissa and the two most significant mantissa digits. The second

word contains the remaining four mantissa digits. The words look like this —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit
Expl ' T 1 T T [Man ' T T | T T 1
Sign! Exponent Sign D1 D2

Ds Da Ds De

As with full-precision, the exponent is stored in two’s complement form and the implied deci-

mal point follows D1.

If you are unfamiliar with BCD arithmetic or need a refresher in floating point operations, it is
suggested that you refer to Chapter 5.

31

32 The Processor and the Operating System

Machine Instructions

The machine instruction set underlying the assembly language system consists of 92 instruc-
tions, divided into eleven groups. The groups are —

Load/Store Operations placing values into registers or memory.

Integer Math Operations involving integer arithmetic.

Branch Operations altering the execution sequence unconditionally.

Test/Branch Operations altering the execution sequence, dependent upon
some condition.

Test/ Alter / Branch Operations altering the execution sequence and a value, de-

Shift-Rotate

pendent upon some condition.

Operations performing re-arrangments of the bits in the A or

B register.

Logical Operations performing logical functions on the A or B regis-
ters.

Stack Operations managing stacks.

BCD Math Operations involving BCD arithmetic.

/70 Operations specifically involving 1/ O operations.

Miscellaneous

Some unclassifiable operations.

Operands

Most instructions require operands. These operands have general forms which they may assume.

Many instructions contain an operand which is the address on which the function is to be
performed. This {location} may be a constant (octal or decimal) or it may be a symbol. It also
may be an expression containing any allowable combination of constants and symbols. For a
full discussion of allowable expressions and symbols, and the “‘types’ they are allowed to
assume, consult “‘Symbolic Operations’’ in Chapter 4.

The Processor and the Operating System 33

For example, note the operands in the following —

A {location} may be either ‘‘relocatable” or ‘‘absolute’” (see ‘‘Relocation”” and ‘‘Symbolic
Operations’’ in Chapter 4 for a full treatment of these types). If a relocatable {location} is used,
the assembler generates machine code which uses ‘‘current page’ addressing, and thus the
{location} must be within — 512 words and + 511 words of the instruction. If an absolute
{location} is used, the assembler generates machine code which uses ‘‘base page’ addressing

(meaning it takes the address as an offset from location 0).

An {address} is a {location} the same as above, except the intended location must be

relocatable and within — 32 and + 31 words of the current instructions.

A {register} may be specified either through its absolute address or by its pre-defined symbol.
The permissible registers are those with addresses between 0 and 7, inclusive. These are
registers A, B, P, R, R4, R5, R6, and R7.

A number of instructions are followed by a {value}, which is a numeric expression usually in the
range of 1 through 16. This {value} frequently indicates the number of bits involved in the

operation. For example —

right-shifts the A register by-8 bits.

N NOTE
Specifying the R4, R5, R6, or R7 registers (absolute loca-
tions 4 through 7) in an instruction causes an ‘“I/0O bus
cycle” to occur. Consult Chapter 7, IO Handling”’, for the

proper use of these registers.

Indirect Addressing

34 The Processor and the Operating System

Some instructions may also employ ‘“‘indirect addressing”. This is indicated by including the

optional indicator , I, suchas —

There is only one level of indirect addressing provided with the processor. Of course, if further

levels are desired, it is possible to implement them on your own. Some flagging scheme could

be adopted, for example. One approach could be to adopt the policy that the sign bit (bit 15) of

a word would indicate further indirection, with the remaining bits being the value. In such an

approach, a load accumulator instruction would become two instructions —

Load/ Store Group

This group of instructions allows transfers of data to take place. With the instructions below you

can move information to and from the arithmetic accumulators (the A and B registers). You can

also transfer the contents of one contiguous set of words in memory to another contiguous set.

Instruction

Description

= {location} [, 1]

E {location} [, I]

= TH {location} [, 1]

i

]

ZTE {location} [,

L F {value}

=FF {value}

Loads register A with the contents of the specified location.
Loads register B with the contents of the specified location.

Stores the contents of the A register into the specified loca-

tion.

Stores the contents of the B register into the specified loca-

tion.

Clears (zeroes out) the specified number of words, beginning
at the location specified by the A register. {value} must be an
integer between 1 and 16.

Transfers the specified number of words, from one location to
another. The starting address of the location being transfer-
red from must be stored in the A register. The starting ad-
dress of the location being transferred to must be stored in

the B register. {value} must be an integer between 1 and 16.

The Processor and the Operating System 35

Integer Math Group

This group of instructions allows you to perform fundamental arithmetic operations on the

contents of the arithmetic accumulators (the A and B registers).

Instruction Description

Adds the contents of the specified location to the contents of
the A register, leaving the result in A. If a carry occurs, the
Extend flag is set in the processor. If an overflow occurs (a
carry from bits 14 or 15, but not both), the Overflow flag is set

in the processor.

Adds the contents of the specified location to the contents of
the B register, leaving the result in B. If a carry occurs, the
Extend flag is set in the processor. If an overflow occurs (a
carry from bits 14 or 15, but not both), the Overflow flag is set
in the processor.

Performs a two’s complement of the A register (i.e., one’s
complement, incremented by 1). If a carry occurs, the Extend
flag in the processor is set. If an overflow occurs (a carry from
bits 14 or 15, but not both), the Overflow flag in the proces-

sor is set.

Performs a two’s complement of the B register (i.e., one’s
complement, incremented by 1). If a carry occurs, the Extend
flag in the processor is set. If an overflow occurs (a carry from
bits 14 or 15, but not both), the Overflow flag in the proces-
sor is set.

Binary multiply. Uses Booth’s Algorithm. The values of the A
and B registers are multiplied together with the product
placed into A and B. The A register contains the least
significant bits and the B register contains the most significant

bits and the sign. (An anomaly in the processor results in an

improper result whenever A or B equals — 32 768.)

Branch Group

36 The Processor and the Operating System

This group of instructions allows you to alter the execution sequence unconditionally. It in-

cludes the “jumps’ and ‘“‘returns” from subroutines.

Instruction

Description

* {location} [, 1]

1 {location} [, 1]

i {value}

Unconditionally branches to the specified location.

Jumps to a subroutine. The value of the R register is in-
cremented and the current value of the P register (i.e., the
location of the JSM instruction itself) is stored into the ad-
dress pointed to by the R register. Execution then proceeds to
the specified location.

Returns from a subroutine. {value} is added to the contents of
the address pointed to by the R register. The results are
stored in the P register (i.e., specifying the next location for
execution) and the R register is decremented. This is, in ef-
fect, a return from a JSM instruction to the instruction which
is {value} instructions from the JSM itself. The ‘“‘usual’’ return
is RET 1. {value} must be an integer between —32 and 31.

Test/Branch Group

The Processor and the Operating System 37

Similar to the Branch group, this group of instructions allows you to alter the execution

sequence, but conditionally upon the result of some test. Most instructions involve tests on all

or part of one of the arithmetic accumulators (the A and B registers), but a couple allow a test

on a location in memory which you can specify.

Instruction

Description

i {location} [, I]

{location} [. 1]

{address}
{address}

{address}

{address}

i {address}

t {address}

{address}

E {address}

- Compares the contents of the A register with the contents of

the specified location. Execution skips over the next word if

the contents are not equal.

Compares the contents of the B register with the contents of
the specified location. Execution skips over the next word if

the contents are unequal.

Skips to {address} if register A is O.
Skips to {address} if register B is 0.
Skips to {address} if register A is not 0.
Skips to {address} if register B is not 0.

Skips to {address} if register A is 0, then increments A regard-
less. The Extend and Overflow flags in the processor are not
affected by the incrementing action.

Skips to {address} if register B is 0, then increments B regard-
less. The Extend and Overflow flags in the processor are not
affected by the incrementing action.

Skips to {address} if register A is not 0, then increments A
regardless. The Extend and Overflow flags in the processor

are not affected by the incrementing action.

Skips to {address} if register B is not 0, then increments B
regardless. The Extend and Overflow flags in the processor
are not affected by the incrementing action.

38 The Processor and the Operating System

Test/ Alter / Branch Group

Similar to the Test/Branch group, this group of instructions allows you to conditionally alter
the execution sequence. In addition to tests, you can also alter the contents of the item being
tested (such as set or clear a bit, or increment or decrement a register). Certain bits in the

processor (Extend and Overflow) can be tested with some of these instructions, as well as
registers and memory locations.

Some instructions may be followed by either of the following —

indicating that the bit being tested by the instruction will either be set (S) or cleared (C) after the
test has been made.

Instruction Description

& {location} [, I] Increment the contents of the specified location and skip

execution of the next word if the result is 0.

Decrement the contents of the specified location and skip

execution of the next word if the resultis 0.

Skips to {address} if the A register is positive or zero (bit 15 is

0).
F {address} [. =] Skips to {address} if the B register is positive or zero (bit 15 is
 {address} [, "] 0).

Skips to {address} if the A register is negative (bit 15 is 1).

Skips to {address} if the B register is negative (bit 15 is 1).
{address} [,]

F {address} [. =] Skips to {address} if the least significant bit of the A register is
=L FH {address} [.] 0.

The Processor and the Operating System 39

Instruction Description

=i.H {address} [. =] Skips to {address} if the least significant bit of the B register is
=L E {address} [.] 0.
=i Fi{address} [, =] Skips to {address} if the least significant bit of the A register is
' i{address} [,] not 0.
Fi_F{address} [. =] Skips to {address} if the least significant bit of the B register is
Fl_E {address} [, iC] not 0.

- {address} [, =] Skips to {address} if the Overflow flag in the processor is set.

=% {address} [, 2]

Sz {address} [, =] Skips to {address} if the Overflow flag in the processor is
=i_ {address} [, i7] cleared.
ZE = {address} [, =] Skips to {address} if the Extend flag in the processor is set.

=E = {address} [,]
=E i {address} [, =] Skips to {address} if the Extend flag in the processor is
ZEC {address} [,] cleared.

NOTE
The Extend and Overflow flags can be cleared only by using
the SEC, SES, SOC, and SOS instructions with the , i_ op-
tion.

40 The Processor and the Operating System

Shift / Rotate Group

This group of instructions performs re-arrangements of bits in the arithmetic accumulators (the
A and B registers). Circular and non-circular shifts are available.

Instruction Description

Shifts the A register right the indicated number of bits with all

vacated bit positions becoming 0.

Shifts the B register right the indicated number of bits with all

vacated bit positions becoming 0.

Shifts the A register left the indicated number of bits with all
vacated bit positions becoming 0.

Shifts the B register left the indicated number of bits with all
vacated bit positions becoming 0.

Shifts the A register right the indicated number of bits with
the sign bit filling all vacated bit positions. (Arithmetic right)

Shifts the B register right the indicated number of bits with
the sign bit filling all vacated positions. (Arithmetic right)

Rotates the A register right the indicated number of bits. Bit 0
rotates into bit 15 each time. (Right circular)

Rotates the B register right the indicated number of bits. Bit 0

rotates into bit 15 each time. (Right circular)

Rotates the A register left the indicated number of bits. Bit 15
rotates into bit O each time. (Left circular)

Rotates the B register left the indicated number of bits. Bit 15
rotates into bit 0 each time. (Left circular)

The Processor and the Operating System 41

Logical Group

This group of instructions performs logical (Boolean) operations upon the contents of an
arithmetic accumulator (on A or B register). Logical “and’’ and “or’ operations are available,

along with complementing and clearing operations.

Instruction Description

Logical ‘‘and” operation. The contents of the A register are
compared bit by bit, with the contents of the specified loca-
tion. For each bit-comparison a 1 results if both bits are 1’s, a
O results otherwise. The 16-bit result is left in A.

Logical “‘inclusive or’’ operation. The contents of the A regis-
ter are compared, bit by bit, with the contents of the specified
location. For each bit-comparison, a O results if both bits are
0’s, a 1 otherwise. The 16-bit result is left in A.

Performs a one’s complement of the A register (i.e., bit-by-bit

inversion of all 16 bits).

Performs a one’s complement of the B register (i.e., bit-by-bit

inversion of all 16 bits).

Clears register A. This instruction is identical to SAR 16.

Clears register B. This instruction is identical to SBR 16.

42 The Processor and the Operating System

Stack Group

The Stack group of instructions provides you with operations for managing stacks. The instruc-
tions withdraw items from (also called ‘“‘pop’’ or ‘‘pull’’) or push items onto a stack pointed to
by either the C or D register. The items are pushed from or withdrawn into a specified register
(other than C or D) and the C or D register is incremented or decremented appropriately.

Pushing instructions increment or decrement the C or D register prior to doing the pushing.
Withdrawing instructions increment or decrement the C or D register after doing the with-
drawal. Consequently, the pointer is always left pointing to the “‘top’’ of the stack after the
operation.

Decrementing the C or D register is indicated by including . I after the operand. For “‘with-

drawing’’ instructions, D is the default. For example, the following are equivalent —

Incrementing is specified by including . I after the operand. This is also the default for “‘push-

ing’’ instructions if neither I or D is included. For example, the following are equivalent —

When using the byte instructions (PBC, PBD, WBC, WBD), the address pointed to by the C or
D register must not have an absolute address less than 40s.

When pushing or withdrawing bytes, the least significant bit of the address register (either C or
D) is used to determine which byte is desired in the stack (a O implies the left most byte of the
word being addressed). To retain the full 16-bit addressing capability, the Cb or Db register is
used, as appropriate. These one-bit registers hold the most significant bit of the word address
when the byte addressing instructions are used. They should be explicitly set or cleared,
depending upon the value of the address involved.

Instruction

The Processor and the Operating System 43

Description

_{register} ,

register} [, 1]

i{register} , I

“{register} [

register} [, 1]

I {register}

Pushes contents of {register} onto the stack pointed to by the

C register.

Pushes contents of {register} onto the stack pointed to by the
D register.

Pushes the lower byte (right half) of {register} onto the stack
pointed to by the Cb and C registers. If the least significant bit
of Cis a 1, the byte is placed in the lower byte of the word in
the stack; if it is a 0, it is pushed into the upper byte.

Pushes the lower byte (right half) of {register} onto the stack
pointed to by the Db and D registers. If the least significant bit
of Dis a 1, the byte is placed in the lower byte of the word in
the stack; if it is a O, it is pushed into the upper byte.

Withdraws a word from the stack pointed to by the C register
and stores it into {register}.

Withdraws a word from the stack pointed to by the D register
and stores it into {register}.

Withdraws a byte from the stack p;)inted to by the Cb and C
registers and places it into the lower byte (right half) of {regis-
ter}. If the least significant bit of Cis a 1, the byte is withdrawn
from the lower byte of the word in the stack; if it is a 0, it will
be withdrawn from the upper byte.

Withdraws a byte from a stack pointed to by the Db and D
registers and places it into the lower byte (right half) of {regis-
ter}. If the least significant bit of D is a 1, the byte is withdrawn
from the lower byte of the word in the stack; if it is a 0, it is
withdrawn from the upper byte.

Clears the Cb register (indicates lower block of memory).
Sets the Cb register (indicates upper block of memory).
Clears the Db register (indicates lower block of memory).

Sets the Db register (indicates upper block of memory).

44 The Processor and the Operating System

BCD Math Group

This group of instructions provides you with BCD arithmetic operations using the Arl and Ar2
registers. '

" In general, the instructions associate the Arl register with ““X’’ and the Ar2 register with “Y”’ in
the mnemonic for the instruction. Both registers contain values which are considered BCD

full-precision values when operated upon by instructions in this group.

The mantissas referred to below consist of 12 BCD digits. All the shifting operations manipulate
the digits as units (i.e., 1 digit — or 4 bits — at a time). In addition, shifting operations involve

an additional digit in the A register (located in the lower 4 bits, numbered O through 3).

All arithmetic is performed in BCD. The values being operated upon are assumed to be nor-
malized BCD floating-point (full-precision) values. Signs and exponents are left strictly alone.
There is a flag in the processor, called Decimal Carry, which is set when an overflow occurs
during a BCD operation.

A full discussion of BCD arithmetic techniques can be found in Chapter 5.

Instruction Description

Mantissa right shift on Arl. The number of digits to be shifted
is specified in the lower 4 bits (0-3) of the B register. The shift

is accomplished in three stages —

1. The digit in bits (0-3) of the A register is right-shifted into
the first digit of the mantissa, with the twelfth digit being
lost. This is the first shift.

2. The mantissa digits are then right-shifted for the remaining
number of digits specified. The twelfth digit, except for the
last shift, is lost on each shift and the vacated digits are

zero-filled.

3. Finally, the last right-shift takes place with the twelfth digit
shifting into the A register. The Decimal Carry flag in the
processor is cleared along with the upper 12 bits of the A
register (4-15).

The Processor and the Operating System 45

Instruction Description

- Mantissa right-shift on Ar2. The number of digits to be shifted
is specified in the lower four bits (0-3) of the B register. The
shift is accomplished in three stages —

1. The digit in bits (0-3) of the A register is right-shifted into
the first digit of the mantissa, with the twelfth digit being
lost. This is the first shift.

2. The mantissa digits are then right-shifted for the remaining
number of digits specified. The twelfth digit, except for the
last shift, is lost on each shift, and the vacated digits are
zero-filled.

3. Finally, the last right-shift takes place, with the twelfth digit
shifting into the A register. The Decimal Carry flag in the
processor is cleared along with the upper 12 bits of the A
register (4-15).

Mantissa left-shift on Ar2 for one digit. This is a circular shift,
with the digit in bits (0-3) of the A register forming a thir-
teenth digit. The non-digit part of the A register is cleared
(i.e., bits 4-15), and the Decimal Carry flag in the processor is

cleared.

Mantissa right-shift on Arl for one digit. The twelfth digit is
shifted into the A register (bits 0-3). The non-digit part of the
A register is cleared (i.e., bits 4-15), and the Decimal Carry
flag in the processor is cleared. The first digit in the mantissa

is set to 0.

Normalizes the Ar2 mantissa. The mantissa digits are left-
shifted until the first digit of the mantissa is non-zero, or until
twelve shifts have taken place, whichever comes first. If the
original first digit is already non-zero, no shifts occur. The
number of shifts required is stored as the first four bits (0-3) of
the B register. If twelve shifts were required, the Decimal
Carry flag in the processor is set, otherwise it is cleared.

Ten’s complement of Arl. The mantissa of Arl is replaced

with its ten’s complement and Decimal Carry is cleared.

46 The Processor and the Operating System

Instruction

Description

- {address}

Ten’s complement of Ar2. The mantissa of Ar2 is replaced

with its ten’s complement and Decimal Carry is cleared.

Fixed-point addition. The mantissas of Arl and Ar2 are
added together, and the result is placed into Ar2. Decimal
Carry is added to the twelfth digit. After the addition, Decimal
Carry is set if an overflow occurred, otherwise Decimal Carry
is cleared.

Mantissa word addition. The contents of the B register are
added to the ninth through twelfth digits of the mantissa of
Ar2. Decimal Carry is added to the twelfth digit; if an over-

flow occurs, Decimal Carry is set, otherwise it is cleared.

Fast Multiply. Performs the multiplication by repeated addi-
tions. The mantissa of Arl is added to the mantissa of Ar2 a
specified number of times. The number of times is specified in
the lower 4 bits (0-3) of the B register. The result accumulates
in Ar2. If intermediate overflows occur, the number of times
they occur appears in the lower 4 bits of the A register after
the operation is complete. The upper 12 bits of the A register

are cleared along with Decimal Carry.

Fast divide. The mantissas of Arl and Ar2 are added together
until the first decimal overflow occurs. The result accumulates
into Ar2. The number of additions without overflow is placed
into the lower 4 digits of the B register (0-3). The remainder
of the B register is cleared, as is the Decimal Carry flag in the
processor.

Clears the Decimal Carry flag in the processor.

Skips to {address} if Decimal Carry is set. Decimal Carry is a
flag in the processor which may be set as the result of certain
BCD arithmetic operations (see Chapter 5 for details).

Skip to {address} if Decimal Carry is cleared. Decimal Carry is
a flag in the processor which may be set as the result of

certain BCD arithmetic operations (see Chapter 5 for details).

The Processor and the Operating System 47

I/0 Group

The 1/ O group of instructions provides you with some of the operations necessary to accessing
peripheral devices through the 170 bus. In addition to the instructions contained here, there
are instructions in other groups which can have 1/ O effects (e.g., LDA, STA...).

The techniques useful to the implementation of 1/ O operations using the instructions in this
group and the other groups are discussed in Chapter 7.

Instruction Description

= {address} Skips to {address} if the Flag line is set (true). The Flag line is
associated with a peripheral on the current select code (see
Chapter 7 for details).

i {address} Skips to {address} if the Flag line is clear (false). The Flag line
is associated with a peripheral on the current select code (see
Chapter 7 for details).

= {address} Skips to {address} if the Status line is set (true). The Status
line is associated with a peripheral on the current select code

(see Chapter 7 for details).

i~ {address} Skips to {address} if the Status line is clear (false). The Status
flag is associated with a peripheral on the current select code

(see Chapter 7 for details).

Enables the interrupt system. Cancels the DIR instruction.

Disables the interrupt system. Cancels the EIR instruction.

Sets DMA outwards. Directs that DMA operations read from
memory, write to the peripheral.

Sets DMA inwards. Directs that DMA operations read from

the peripheral, write to memory.

Enables the DMA mode. Cancels the DDR instruction.

Disables Data Request. Cancels the DMA instruction.

48 The Processor and the Operating System

Miscellaneous

The following instructions are unclassifiable into any of the other groups.

Instruction Description
Null operation. This is exactly equivalent to LDA A.
{value} [, 1] The contents of any register can be treated as the current

instruction and executed. {value} is a numeric expression in
the range 0 through 31, indicating the register to be used.
The register is left unchanged, unless the instruction code
causes it to be altered. The next instruction to be executed is
the one in the word following the EXE, unless the code in the

executed register causes a branch.

Chapter 4
Table of Contents

Assembly Language Fundamentals .

Program Entry 49
Assembly Language Source 51
ACHONS. - ot 51

Labels e 51
Comments R 53
Syntaxing the Source 53
Creating Modules 55
SHOTAGE . - oo o 56
Modules 56
Variables 56
Data Generators.o oo 57
Repeating Instructions. 59
Assembling« oo 60
Effect of BASIC ENVIrONMents . . .« .« oo v vt i 60
Source Listing Control 61
Page Format. 62
Pagelength........ ... 63
End-of-Page Control FUURUR 63

Page Headings.................... e 64

Blank Line Generation it 65
Non-Listable Pseudo-Instructions PP 65
Conditional Assembly. e 65
Relocationo 68
Symbolic Operations e 69
Pre-Defined Symbols 69
Defining Your Own oo e 71
Literals e 72
Evaluation of Literals. 72
Nesting Literals 73
Nonsensical Uses of Literals. 74

Literal Pools. 74
Expressions..................... e 75
External Symbols and Elements. 77
Other Absolute Elements. 78
Utilities. . . - o 79

a\

f(

Chapter 4

Assembly Language
Fundamentals

Summary: This chapter discusses some of the basic statements and syntaxes used
throughout the assembly language system. Program entry, assembling, symbolic opera-
tions, module creation, program and variable storage, and utilities are the topics co-
vered.

When writing assembly language programs there are a number of things with which you will be
involved constantly. In the beginning, questions arise on how to use the language: How do you
enter the source code? What kind of symbolic addressing is there? How do you create and
distinguish modules? How do you create the object code and where is it stored? What utilities
are available and how do you use them?

The answers to those questions form the underlying capabilities through which you write your
applications. These are things which nearly every assembly language program uses. As essen-
tial as they are, however, none are difficult to master.

Program Entry

You were introduced early in Chapter 2 to the integrated nature of the assembly language with
its host language, BASIC. You know from that chapter how assembly language statements can
be intermingled with BASIC statements — that you can employ the usual editing features on
the assembly statements. However, there is more to the ISOURCE statement than just its
integrated nature with BASIC.

As stated in Chapter 2, all assembly language statements are designated with the keyword
“ISOURCE”. The keyword is followed by {assembly language source}. So the syntax of the
entry line is —

{line number} [{BASIC label} :]

- {assembly language source}

49

7,

50 Assembly Language Fundamentals

Here’s a simple example of this from Chapter 2 —

The {line number} and {BASIC label} are the same as you are used to in BASIC. However, it
should be noted that the statement is not an executable one, so the BASIC label is only useful
for documentation and EDIT purposes.

To BASIC, the ISOURCE statement appears as a comment. If you were to change the above so
that it read —

and then executed a statement ““GOTO Example”’, the result would be to simply execute the
END statementin line 70. That is because, to BASIC, the lines appear the same as —

or —

The BASIC label on an ISOURCE line finds its most useful characteristic in being able to be
referenced, as any other BASIC label on any other type of line may be, with an EDIT com-

mand. Thus, if you were to execute —

on the above, you would be working in the editor, starting with line 40. This feature will

become useful during program development as will be pointed out shortly.

Assembly Language Fundamentals

Assembly Language Source

You may have recognized the assembly language instruction and pseudo-instructions to the
right of ISOURCE in the examples above. This is where your instructions and pseudo-
instructions appear. However, the source is a little more versatile than that. In general, {assem-

bly language source} has the syntax —
[{label} :]{action}[| {comment}]
Or, the action may be omitted and only a comment appears —
[{label} :] ! {comment}

A label is always optional in the source, but either an {action} or a {comment} must be present

in every source line.

Actions

An {action} in assembly language source is —

e A machine instruction, with any operand it may require. These were discussed at some
length in Chapter 3.
e A pseudo-instruction, with any operand it may require. These are discussed under the

topics to which they relate.

The actions contained in the above example were —

Labels

The {label} in assembly language source is part of the symbolic addressing capability of the
assembler. This {label} is used by the assembler only. Neither the operating system nor BASIC
is aware of its existence.

51

52 Assembly Language Fundamentals

The label follows the same form and rules as do labels in BASIC —

e Up to 15 characters long.

]

o First character must be a capital letter (i

7).

e Only the non-capital letters (:2-=), the numerals (i to =), or the underscore (_) may be

used following the first character.

No two labels are allowed to be the same in a given module. If your source consists of two or
more modules, then the same label may be defined more than once, provided each definition is
in a different module. (Distinguishing between modules is discussed in ‘‘Creating Modules’’,

later in this chapter.) So you may not code —

in one place in the module and later in the same module code —

There are other restrictions as well on the choosing of labels. For instance, there are symbols
already defined by the assembler and you are not allowed to choose one of them as a label.
This is discussed at length in ‘““Symbolic Operations” in this chapter.

Both a BASIC label AND an assembly language source label can appear in the same line, and
they are distinct from one another. BASIC does not know about the source label and the
assembly language system does not know about the BASIC label.

Since neither BASIC nor the operating system is aware of the existence of source labels, actions
ouside the assembler cannot reference these labels. Thus, if you had the source line —

You can neither say GOTO Rumpelstiltskin nor EDIT Rumpelstiltskin. Neither of these can find
“‘Rumpelstiltskin”, since only the assembler can know it is there.

Assembly Language Fundamentals

This can be a nuisance in some instances during program development. Many programmers
use labels almost exclusively and rarely consider the line number when using the editor to
change a line. For instance, in the above, they would not be used to saying, “EDIT 100 to get
at the line in order to change it. They are more used to saying, “‘EDIT Rumpelstiltskin’. A way
for them to do it would be to change the line to —

Note that, as the example demonstrates, the name can be the same in the BASIC label as in the
source. This takes advantage of the fact that BASIC and the assembler are unaware of each

other’s labels. The names do not have to be the same.

Comments

As with any BASIC line, a comment may be included by simply adding an exclamation point
(1) and typing your comment after it. Since you have a total of 160 characters for a line, your
comment may fill up the remainder of the 160 characters left after the rest of the statement has
been provided (line number, ISOURCE keyword, label, action).

Syntaxing the Source

When you are creating your source program, you are either entering-it from the keyboard or
retrieving it from mass storage (LINK or GET). In either case, as the statement is entered (the
key on the keyboard is pressed or a record is read from mass storage), the operating
system takes note of any use of the keyword ISOURCE. When a line has this keyword, the
operating system turns over the remainder of the line following the keyword to the assembly
system. The assembly system, then and there, checks the syntax of the source.

By checking the syntax at the time of entry of the statement, a considerable amount of proces-
sing time is saved when the time comes to assemble the source into object code. In addition, it
gives you, as the programmer, immediate feedback when a syntactical error occurs. You do not
have to wait until assembly time just to find out that you misspelled NOP.

53

54 Assembly Language Fundamentals

At syntax time, the assembler takes care of capitalization, lower case, and spacing for the
source. It’s quite similar to the SPACE DEPENDENT mode of entry for BASIC statements (that
mode is not required to get the effect with the assembly system). It follows the following rules in

syntaxing the source —

e Everything between the ISOURCE and the colon (if present) is the label. lts initial
character is capitalized and the remaining letters are converted to lower-case. This is
regardless of whether they were entered in that form.

e The label, if present, is left-justified to the second column following the keyword
ISOURCE.

e The first three letters following the colon (or just the first three letters, if there is no label)
are considered the machine instruction or pseudo-instruction and are capitalized. The
instruction will remain in the same column as it was entered, and, if possible, a space is
added after it.

e Everything after the instruction or pseudo-instruction is considered the operand for the
instruction, up until the exclamation point before the comment (if any). Any label (sym-
bol) in the operand will have its initial character capitalized and the remaining letters
converted to lower case automatically.

e Comments are unchanged and remain in the same columns as entered, whenever possi-
ble.

In short, simply enter the statement in your most comfortable fashion and the assembly system
automatically assures that what you enter is in the proper form (though it still can’t guarantee

that you have entered the right instruction for what you mean to do.

As a demonstration of this facility, consider the following line ready for syntaxing —

it
bl
By

It becomes —

Assembly Language Fundamentals

Creating Modules

When you were introduced in Chapter 2 to the concept of a module, it was said that a module is
given a name through the NAM pseudo-instruction.

So, when you enter a source line which has the following form —

{module name}

you are assigning a name to a module, and you are also delimiting the beginning of the module.
By the inclusion of this statement, all source lines which follow are part of the module with the
name designated in this source line, that is, all lines until the END pseudo-instruction is encoun-

tered in the source. It has the form —

{module name}
Its {module} name must be the same as in the NAM pseudo-instruction.

A {module name} follows the same rules for naming as do labels (see above).

It is by the use of these two instructions that modules are created. The source lines which
appear between them comprise a single module, and the name assigned to the module is the
one with which the module is referenced (with the ILOAD and ISTORE statement for example).

When it comes time to assemble the source into object code, the assembler treats the source

lines in a module as a unit.

In actuality, therefore, there are two modules — a source module and an object module. When
you are assembling a module, the name you use refers to the source module and creates the
object module. Later, other statements, such as ISTORE and ILOAD, refer solely to the object
module.

55

56 Assembly Language Fundamentals

Storage
Modules

When assembly converts a source module into an object module, there must be a place to keep
the object module. That is the function of the ICOM region.

You were introduced to the ICOM region in Chapter 2 in connection with the loading and
storing of modules. It is also used to hold modules which are created through assembly. Once a
module has been assembled, the object code appears in the ICOM region just as if you had
loaded it from mass storage.

Variables

Within a module, you may want to set aside one or more words of memory for your use. For
example, you might need a location to store a variable, or keep a counter, or save a register.

This is done with the BSS pseudo-instruction —

« {number}

where {number} is the number of words to be set aside. {number} can be any absolute expres-
sion, provided the expression evaluates to a positive integer (see ‘‘Symbolic Operations”
below).

This kind of storage is part of the object code and is set aside ‘‘in-line’’. This means that
wherever it appears in the source, the storage appears in the same relative location in the object

module.

For example, suppose a module contained the following source lines —

Assembly Language Fundamentals

Then, at some appropriate spot in the object module (relative to the other instructions in the

module) there would be the following contiguous locations —

Save a 1 word

Save_4 4 words

Renras some number of words equal to ‘‘the absolute symbol, Larry’’?
Again 1 word

The locations at labels Save_a, Save_4, and Renras are merely reserved by the BSS pseudo-

instructions, and their contents are not initialized to any particular value.

It is possible to accidentally execute these locations when the routine is run if you’re not
careful. Ordinarily, you should place these locations somewhere safely out of the potential
execution sequence, since they are used just for storage. Some applications, though, use
self-generating code, and a BSS is a way to set aside locations for it.

Data Generators

A ‘‘data generator’ is very much like a BSS operation. The function, as with the BSS, is to set
aside words of memory at a particular location in the object code. But in addition, the words are
to be initialized to some value. The initialization occurs at the same time the words are set aside
(i.e., at assemble-time).

This is done using the DAT pseudo-instruction which has the form —

" {expression} [, {expression}‘[fs 1]

An {expression} may be any absolute or relocatable expression. The various forms that an
expression may take are discussed in ‘‘Symbolic Operations’ later in this chapter.

As an example, suppose you want the value 100 (a decimal integer) to be located at location
“X’" in the object module. You can achieve this by identifying the location in the source code
(ultimately the object code) where you want the value to be, then placing this instruction at that

point —

’
1 Such symbols are discussed at length in the *‘Symbolic Operations’’ section later in this chapter.

57

58 Assembly Language Fundamentals

Upon encountering this pseudo-instruction, the assembler generates the words necessary to
store the value (in this case, only 1 word is necessary). It then stores the value (100) into the
word(s) and proceeds with the remaining assembly. Thus, the location of the words is depen-
dent upon the instruction’s relative position in the source module, the same as with any

machine instruction.

The number of data words generated for each {expression} is dependent upon the result of the

{expression} —

Result Words

Full-precision 4
Short-precision

2
Decimal integer | 1
Octal integer 1

1

Address!
Literal 1
String actual length (2 characters per word)

If more than one {expression} is present, the necessary data words are generated in the order in

which they appear in the list. As an example, if you were to include the instruction —

ten words would be set aside and initialized to the appropriate values —

— address of 2 in literal pool

Lincluding ‘“‘external”

Assembly Language Fundamentals 59

Repeating Instructions

To help relieve the tedium of writing the same instruction many times (which many applications

occasionally require), a ‘““repeat’ pseudo-instruction is provided —

 {expression}

The pseudo-instruction causes the immediately following machine instruction to be duplicated
in the object code {expression} number of times.

For example, suppose you are writing a real-time application where timing was critical, and to
make things work correctly you need 10 NOPs at a certain location. Ordinarily you would

type —

But all of this could be replaced with —

and the same effect would be achieved.

Some pseudo-instructions may not be replicated. They are —

60 Assembly Language Fundamentals

Assembling

Object code is created by ‘‘assembling’’ the source code. Again, modules are a key factor. The
assembly directive is aimed at modules, using the module name as a delimiter in the source
code so the assembler can tell which ISOURCE statements to assemble as part of the module.

Of course this same name is also used to store the object code using mass storage.

The IASSEMBLE statement is the vehicle for assembling modules. It has the forms —

{module} [, {module}[., ...]][; {option} [, {option}[. ...]]1]
- [HLL T {option} [, {option}[., ...]1]]

Each {module} indicated is assembled, in the order given by the statement. Only those modules
are assembled; any others which may be present in the source at the time are ignored. If the
ALL version of the statement is used (with or without the optional word ALL), every module

present in the source is assembled.

An {option} falls into one of two categories: listing directives and conditions (for conditional

assembly). These are discussed separately below. The options, and their categories, are —

b Listing directives

+ Conditions

Effect of BASIC Environments

To assemble a module, all of its source lines (between the NAM and END pseudo-instructions)
must lie within the same BASIC “‘environment’’. That is, the NAM and END for a module must
lie within the main program or within the same subprogram or multi-line function. For modules
where this is not true, an error (“‘EN’’ assemble-time error) occurs.

Assembly Language Fundamentals

Source Listing Control

Listings of the source code in a module can be obtained during an assembly. These listings
contain the line numbers, instructions, and comments from the source lines along with the

associated machine addresses and contents of that address.

Here is part of a typical listing —

)\line absolu&conten& actions \comments

numbers addresses

The addresses and contents are displayed in octal fepresentation.
Listings are not automatic. They are obtained in one of two ways —

e By using the LIST option in the IASSEMBLE statement. This directs that a listing is
desired for all the modules in the statement. The statement would look like the following

examples —

¢ By using the LST pseudo-instruction in the source code itself.

Modules can be just partially listed, if desired. This kind of control is achieved by using the LST
and UNL pseudo-instructions within the source code, placing the LST before any instructions
which you want listed, and placing the UNL before any instructions you do not want listed. For

example, if the following source lines are assembled —

only lines 430 through 500 would be listed.

61

62 Assembly Language Fundamentals

The primary purpose of this capability is to allow as much modularity in the listings as you can

get in source code. To implement this purpose, a “listing counter” is used.

Whenever an LST instruction is encountered during an assembly, the listing counter is in-
cremented. Whenever an UNL instruction is encountered during an assembly, the listing
counter is decremented. Source lines are listed whenever the counter is greater than 0.

Whenever it is equal to 0 or negative, then no lines are listed.

The counter is set to 0 upon execution of the IASSEMBLE statement. This is why there is no
automatic listing. However, if the LIST option is included in the IASSEMBLE statement, then
the counter is initialized to 1. This is why that option creates a listing. Thus, you could defeat a
LIST option by placing an UNL instruction at the beginning of a module. This initialization
occurs for each module assembled, so if you have more than one module indicated in your
[ASSEMBLE statement, the counter is set at the beginning of the assembly for each.

This capability sees its greatest usefulness during debugging stages and while working with
independently written sections of source code. For example, a number of people could be
writing different sections of code, each containing their own LST and UNL instructions. These
instructions could then be overridden when they were combined into a single module by
preceding the sections with an LST instruction {to get a listing) or an UNL (to suppress the
listings). A

Page Format
Each and every assembly listing page has the following format —

e The word ““PAGE” and the current page number of the listing occurs on the first line
starting at column 49.

o A heading occurs on the second line, left-justified. The heading always includes —

E: {name}

where {name} is the name of the module currently being assembled. Additional heading
information can be specified for this line (see ‘‘Page Heading”’ below).

Assembly Language Fundamentals

o A blank line follows the heading.

e The text follows the blank line. The number of lines printed depends upon the LINES
option in the JASSEMBLE statement, the number of source lines encountered, and the
SKP pseudo-instructions which may be encountered while assembling the source. LINES
and SKP are described in the following sections.

o If the EJECT option is not included in the IASSEMBLE statement, then a minimum of
three blank lines (carriage return/line feed, CR/LF, pairs) will be printed at the end of a
page. The number may exceed three if the number of source lines printed on a page is less
than the standard length for a listing page (see above).

Page Length
The length of the text in each page of your assembly listings can be specified through the
IASSEMBLE statement using the LINES option, which has the form —

L IHES {numeric expression}

This option directs that any listing of the routines being assembled have pages of the length
indicated by {numeric expression}, which must be a positive value. This value becomes the
“standard length” of the listing pages, specifying the number of source lines to be printed on a
page during listings of the assembly source. It is not necessary that this value be the page length
of the printing device being used, though this is frequently the value selected.

If the option is omitted from the IASSEMBLE statement, the value of 60 is assumed for page
length, giving an overall page size of 66 lines.

Printer control characters, such as line-feed and form-feed, in a comment can affect the actual
printing length of the pages independent of the length you specify. Thus, a page length of 60
could result in actually 61 lines if one of the comments in your ISOURCE statements contains a
line-feed character.

End-of-Page Control
At any time during the assembly of a module, you can force the listing to continue printing at
the top of the next physical page by including —

SKP

at the desired spot in the module. If a listing is being generated when this pseudo-instruction is
encountered in the source code, the printer is sent to top-of-form. This is physically done in one
of two ways —

63

64 Assembly Language Fundamentals

e If the EJECT option was included in the IASSEMBLE statement which is assembling the
module, then a form-feed character (ASCII character 14s), is sent to the printer.

o If the EJECT option was not included, sufficient CR/LF pairs (ASCII characters 15s and
12s) are sent to the printer to fill out the standard length of a listing page (plus three at the
end of the page). Thus, if you already have printed 10 lines on a page, and an SKP
instruction was encountered, the assembler sends (length—10 + 3) CR/ LF pairs.

The SKP instruction is not required to cause pagination to occur when the standard length of a
listing page is exceeded. Thus, if you are working with a default length of 60 for your standard
length, then each 60 lines from the last page break forces a new page break.

Page Headings
The heading for each listing page is —

: {name}

where {name} is the name of the module currently being assembled. This heading can have

additional information added to it through the HED pseudo-instruction. This instruction has the
form —

{comment}

When this instruction is encountered, and a listing is being generated, pagination immediately
occurs, the same as with the SKP instruction (see above). On the new page, and on all pages
after it, the indicated {comment} appears after {name} in the heading, replacing any previous
information specified by an earlier HED instruction.

You can change the heading any number of times in a listing. This is frequently done in order to

generate documentation by sections, even though all sections may reside in a single module.

The heading appears on the page exactly the same as in {comment}, including the positioning
of blanks, control characters, etc.

Assembly Language Fundamentals

Blank Line Generation ,
If occasional blank lines are desired in a listing (usually to set off sections of code, or com-

ments), they may be generated by including —

~ {number}

at the desired spot in the source statements. {number} designates the number of blank lines
desired. {number} can be any absolute expression, provided the expression evaluates to a
positive integer (see ‘‘Symbolic Operations” below).

Non-Listable Pseudo-Instructions
The following pseudo-instructions do not appear in a listing —

Conditional Assembly

For reasons of complexity or length, it is occasionally desirable to selectively assemble only
parts of a module. This is particularly true during the debugging §tage of longer, complex
assembly programs. ‘‘Conditional assembly” is the ability to designate certain portions of a

module for assembly, depending upon conditions established by the IASSEMBLE statement.

You may recall from the description of the IASSEMBLE statement earlier, there are options
called ‘““‘conditions’’ available with the statement. These conditions —

65

66 Assembly Language Fundamentals

are used to designate which conditions are “‘set’’ during the assembly. By including one or
more of these conditions, all conditional assembly statements predicated upon that condition
are assembled. For example, if the following statement is executed —

1M

then any occurrence of conditional assemblies based on “A’’ are assembled. Also, any condi-
tional assemblies based on B through H are not assembled, since those conditions were not
included in the options for the IASSEMBLE statement.

The conditional assembly sections are delimited by pseudo-instructions. A conditional section
begins with one of the following —

o

-

b b bt bl eed Red e

T T
B PO T L N v A T

o
T

and it concludes with —
=1F

In addition to the lettered conditions, a numeric condition can be tested by using an IFP
pseudo-instruction. It has the form —

IFF {absolute expression}

The condition is considered true if {absolute expression} evaluates as a positive value. It should
be noted that this is an assembly-time construct, meaning that the variables contained in the
expression are evaluated at the time of assembly.

The IFP instruction performs in the same manner as the IFA through IFH instructions. It also
terminates with the XIF instruction.

Assembly Language Fundamentals

The conditional assembly is based upon a flag. At the beginning of the assembly for a module

the flag is set so that object code is generated for all instructions. An IF conditional encountered

during the assembly which does not have its condition set turns off the flag so that no further
code is generated. Encountering an XIF statement resets the flag so that code generation can
" resume. For instance, if the source is —

Then if —

is executed, lines 430 through 460, 480, and 490 are assembled, but 520 through 550 are not.
Line 570 is assembled.

The one XIF actually affected both conditions. This effect is more dramatically illustrated by —

where neither A nor B is set. In this case 480, 490, 520 through 550 are not assembled. But 550

is assembled!

The effect of the XIF, then, is as a flag for all the conditions. As a consequence, it is not possible
to “nest’”’ conditional assemblies. This effect is the same with the IFP conditional.

67

68 Assembly Language Fundamentals

Relocation

The code talked about in this section is relocatable. You do not have to worry about the
absolute location of your module. The assembler automatically generates the appropriate
machine codes for each of your instructions to assure that the correct location is reached when

referenced.

Some instructions generate relocatable object code in which the eperand address is an offset
from the current address and the relocating loader has to make no changes to the object code
for them as long as they are within — 512 and + 511 of the current address.

"For indirect addressing, and for instructions which are more than 512 words away from the
current address, it is required of the loader to adjust the address in the intermediate word to
reflect the actual address being referenced. For indirect addressing generated by the assembler,
this activity is automatic.

Some instructions permit you to specify an absolute machine address for its operand. In those
cases, the assembler generates the code necessary to perform the reference to the absolute

location.

For example, if the instruction was assembled —

(which essentially says “load register A with the contents of register B) the result would be a
machine instruction which references the B register (absolute address 1). This reference would

be independent of the actual location of the instruction itself.

There are a couple of ways to produce an absolute address in an operand. The pre-defined
symbols are one way. There is a type of expression known as ‘‘absolute’’ which is another way.

Both of these are dicussed in the next section, ‘“Symbolic Operations’’.

You should never try to use absolute addressing within the ICOM region, since not only is the

location of the region itself not fixed, but modules can be moved around within the region.

Assembly Language Fundamentals

Symbolic Operations

You have been introduced, in small doses, to symbols throughout the chapters preceding this
one. The idea of symbols in an assembly language is the same as it is in a higher language such
. as BASIC — to make operations simpler and the code more understandable.

Several symbolic tools are provided for you in this assembly language system. You have
already seen one described in detail in this chapter — labels. There are some pre-defined
symbols the assembly system provides for certain locations in the machine (mostly registers).
There are ways to define your own symbols (and give them a ““type’’). And, there are ways to
access symbols in other modules.

Symbols can be used as operands in machine instructions and in some pseudo-instructions.

They can be part of expressions in an operand.

Pre-Defined Symbols

The assembler has pre-defined a number of symbols and has reserved them as references to
special locations in memory. Each of the locations has a special meaning and function. The
symbols themselves are ‘‘reserved’”’, meaning they cannot be re-defined (by using them as
labels on something else). The symbols are —

Symbol - Description
A Arithmetic accumulator
Arl
} BCD arithmetic accumlators
Ar2
B Arithmetic accumulator
Base page Global temporary area (50 words)
C Stack pointer
Cb Address:extension bit for byte pointer in C
D Stack pointer
Db Address-extension bit for byte pointer in D
Dmac DMA count register
Dmama DMA memory address register
Dmapa DMA peripheral address register
End_isr high
End_isr low
lsr flag Reserved symbols for writing interrupt service routines
lsr_pSw g

69

70 Assembly Language Fundamentals

Symbol Description
Oper_1 }
Arithmetic utility operand address registers
Oper_2
P Program counter
Pa Peripheral address register
R Return stack pointer
R4
R5
[/ O registers
R6
R7
Result Arithmetic utility result address register
Se Shift-extend register
Utlcount
Utlend Reserved symbols for writing utilities
Utltemps

The meaning of each of these locations is discussed in other chapters. The absolute locations of
the registers can be found in Chapter 2. A description of the function of the accumulators and
pointers can be found in Chapter 3 as part of the discussion on machine instructions. A
discussion of the I/ O registers and symbols can be found in Chapter 7. The arithmetic registers
are discussed in Chapter 5.

Using a pre-defined symbol in a machine instruction is the same as using its address. For
example —

means simply that register A will be loaded with the contents of register B. The same effect
could have been achieved with —

except that the symbolic form makes it more obvious what is intended by the operation. This is
true with most symbols.

Assembly Language Fundamentals

Defining Your Own

You are defining your own symbol each time you specify a label on an instruction or pseudo-
instruction. Normally the “‘value” of the label is the address associated with the instruction.
However, in two cases it is possible to create the label and specify what its value is to be. One
- case is when the label is on the EQU pseudo-instruction; the other case is when the label is on
the SET pseudo-instruction.

The EQU is an assembly-time construct. [t exists only at the time of assembly to give you
value-assigning capability to symbols. It generates no code itself, and it has no implementation
or “‘location’’ in the object module.

To define a symbol using an EQU, the form is —

{label}: Fiill{expression}

the resulting symbol ({label}) has the same ‘‘type’” as the expression (see ‘‘Expressions”

below) and it has the same value as the result of the expression.

As an example, assembling the statement —

means that in all references in the module to the symbol “‘Three”, it is the same as referring to
the value 3. Thus —

means load A with the contents of location 3.

A common use for this instruction is to assign a symbol an address which is an offset from

another address. For example, if this sequence were in a module —

then Save_b would refer to the second word in the BSS area “Save_registers”, and it would
probably be used to store away the contents of the B register sometime —

and later retrieve the value —

71

72 Assembly Language Fundamentals

The SET pseudo-instruction defines a symbol in identical fashion to an EQU. Consequently, it

has the same general form —

{label}: =ZE T {expression}

The difference between the two is that the SET instruction can have its {label} be a symbol
which has been previously defined. The effect in that case is to allow a redefinition of the
symbol. For example, after assembling the following instructions —

the symbol “Three’ has the value 30B.

Literals

Literals are a special means of defining your own symbols without actually having to go to the

trouble to do so. The result is a form of symbolic addressing without the symbol.
The form of a literal is —
= {expression} [. {expression}[....]]
where {expression} may be any absolute or relocatable expression (see “‘Expressions’ below).

Evaluation of Literals

When a literal is encountered in an operand, three things occur —

1. The literal is converted to its binary value. If there is more than one expression in the

literal, then they are all converted.

2. The binary value is stored in a literal pool. If there is more than one expression in the

literal, then they are stored contiguously in the order specified.

3. The address of where the value is stored is then substituted for the literal in the operand.

If the same literal is used in more than one instruction, only one value is generated in the literal

pool. All instructions using this literal refer to the same location.

Assembly Language Fundamentals

Literals can be part of expressions as well as having expressions as part of them. Since they
ultimately are replaced by an address (pointing to a specific location within a literal pool), their
“type’’ is ‘‘relocatable’’. See the section on “Expressions’’ later in this Chapter.

Basically, a literal means “the address of {expression}’. An example should help in the under-
standing of literals. Suppose that you want to store the value 1 into the A register. There are

two ways you could accomplish that purpose. You could code —

or, you could use a literal and code —

Using the literal method is easier and is more self-documenting. While the literal form strictly
says ‘‘load A with the contents of the address of the constant 17’ it can also be read as “load A
with the constant 1", and this short-hand version can be an excellent way of self-documenting
your programs, not to mention the elimination of a lot of unnecessary symbols.

Nesting Literals

Since literals use expressions, and literals may be used in expressions, it is possible to have a
literal within a literal (nesting). In fact, it may be done to any depth, though the most useful
form of nesting is a single level.

Suppose you want to initialize a variable to the value of pi each time you enter a routine. A
nested literal would be a way of accomplishing this in a clean, straight-forward fashion —

73

74 Assembly Language Fundamentals

and the locations starting at ‘‘Pi”’ now contains the full-precision value indicated (which is a fair
approximation to pi). This would replace coding which could have looked like this (without
using literals) —

Nonsensical Uses of Literals
A literal, basically, is an address. Since it can be used in an operand wherever an address may

be used, it is possible to use it in instructions where the result is a little nonsensical.

For example, consider the result of doing some of the following —

Caution dictates that you well consider the appropriateness of the action when using the literal.
Literals can be a highly useful tool, but only when properly employed.

Literal Pools
Literals are assemble-time constructs, but they eventually resolve to an actual address in the
object code. That address points into a literal “pool’’.

A literal pool is part of your module where the actual values of literals are stored. There is
automatically a literal pool assigned at the end of each module where literals are used. As many
literal values as possible are stored there by the assembler. However, in some cases, a literal
pool is needed earlier in the program (a need indicated by the assembler with the “LT”
assembly-time error). In that case a pool should be created using the LIT pseudo-instruction.
This instruction has the form —

LIT {size}

Assembly Language Fundamentals

where {size} is the number of words to be set aside (it may be a positive numeric expression).
The instruction acts very much like a BSS. And, like a BSS, it should be placed at a location in
your code where it is not likely to be inadvertently executed.

Most modules do not need assignment of an extra literal pool. However, one is needed where
there is a literal used beyond 512 words from the first available space in the literal pool at the
end of the module. To alleviate the problem, a literal pool must be created with the LIT
statement within 512 words of the instruction.

A common cause of this kind of problem is a large BSS assignment between the instruction and
the end of the module. Sometimes moving the BSS to some other location is a solution to the

problem.

Expressions

Literals, some pseudo-instructions (particularly EQU), and a number of machine instructions,
all permit ‘‘expressions’”’ to be used as an operand. These expressions take one of two
forms — “‘absolute’” or ‘‘relocatable”.The type of an expression depends upon the type of the

individual elements in it.
An element is of the type ‘“‘absolute” if it is any of the following —

e A decimal integer (like 0, 1, 2, 1 024).

e An octal integer (like 10B, 40B, 100000B).

o A string (enclosed by quote marks) (like ‘“‘ERROR”’)

e An ASCII character, preceded by an apostrophe (like 'A).

e A label associated with an EQU or SET pseudo-instruction whose expression is also
evaluative as type absolute (like EQU 40B).

An element is of the type ‘‘relocatable’ if it is any of the following —

o A label not associated with an EQU or SET pseudo-instruction (i.e., it is an “‘address’).
o A literal (like =0).
e An asterisk, symbolizing ‘‘current address’.

e A label associated with an EQU or SET pseudo-instruction whose expression is also
evaluative as type relocatable (like EQU *).

75

76 Assembly Language Fundamentals

An expression is a list of elements each pair of which is separated by one of the following

operators —

meaning addition, subtraction, division, and multiplication, respectively, as in BASIC.

The result of an expression is either absolute or relocatable depending upon the following

rules:

An absolute expression is any expression which contains —

e Only absolute elements.

e An even number of relocatable elements, paired in sequence and by sign (i.e., for each

relocatable element there is another relocatable element adjacent to it, of opposite sign).

These pairs may be in combination with absolute elements.

A relocatable expression is any expression which contains —

e An odd number of relocatable elements, paired in sequence and by sign, except the last,

which must be positive.

e An odd number of relocatable elements, as above, in combination with any number of

absolute elements.

Any combination of absolute or relocatable elements which does not result in either an abso-

lute or relocatable value, by the rules above, results in an error.

These rules and the rules for using # and - can be summarized as —

The expression is — The type is — | Example
absolute * absolute absolute
absolute + relocatable relocatable
relocatable = absolute relocatable
relocatable — relocatable absolute
relocatable + relocatable error
absolute — relocatable error
absolute * absolute absolute
absolute /absolute absolute
absolute * relocatable error
relocatable * absolute error
absolute /relocatable error
relocatable / absolute error

Assembly Language Fundamentals 77

Unlike BASIC, there is no precedence among the operators. All are of equal precedence.
Where precedence is desired, parentheses must be used. So where BASIC requires —

2*16+3*8

to resultin 56, the same expression in the assembly language results in 280 {assembly language
operators are evaluated from left to right). However, 56 would be the result if it were expressed

as —
(2*16)+(3*8)

An expression may be of any length and contain as many operators and parentheses as desired,
as long as the result can be evaluated and the parentheses are properly paired. All operators
are evaluated from left to right. Multiplication and division can only be used with elements that
are of type absolute.

External Symbols and Elements

There is an additional relocatable element, called ‘‘external’. It behaves in almost all respects
as does any other relocatable element, except that only one external item may appear in an

expression. Also, the expressions containing —
relocatable — relocatable

are not allowed when one of the relocatable elements is external. Externals are defined as

symbols appearing in an EXT pseudo-instruction —

ExT {symbol} [, {symbol} [, ...]]

These are entry points in another module or utility. “Entry points’’ are merely symbols in a
module which are listed in an ENT pseudo-instruction in that module —

iT {symbol} [, {symbol} [, ...]]

If one module contains —

78 Assembly Language Fundamentals

At execution time for a module with EXT instruction, all of the symbols listed in it must be either
a utility name or be contained in an ENT or SUB (described in Chapter 6) of another module. It
is not necessary that the module be in source form; it may aiready be an object module

assembled from a source module which contained the symbol as an ENT or SUB.

Other Absolute Elements

There are additional absolute elements which may be used in expressions. These are
““machine addresses”’, short-precision numbers, and full-precision numbers.

A machine address is one of the following —

e An assembler pre-defined symbol.

e A symbol associated with an EQU or SET pseudo-instruction whose expression is
evaluated as a machine address (i.e., it contains a pre-defined symbol or another EQU-
associated symbol whose expression contains a pre-defined symbol).

For the most part, machine addresses can be used just like absolutes. However, they remain
defined from assembly to assembly. By defining a machine address in one module (with an
EQU or SET), it then becomes available to you with the same value in other modules which you
assemble.

For example, if you were to assemble a module containing —

then R100 is a machine address following the above rules, just as if the assembler had pre-
defined it. If you don’t do any SCRATCH or GET statements in the meantime, then the next

assembly you do would also have this symbol available without ever having to define it.

When full-precision numbers (like — 2.5, 3E3, 3.141592) and short-precision numbers (like
1S, — 2.5S, 3.14159S, 3E3S) are used in expressions, they become the entire expression. This
is because these numbers are only intended as simple data-generating devices in literals and in

DAT pseudo-instructions. Explicitly, the rules for using full- and short-precision numbers are —

o They may only appear alone in an expression, i.e., they may not be in combination with
other elements.

e They may only appear in literals and in DAT pseudo-instructions.

Assembly Language Fundamentals

Utilities
A number of utilities have been provided to help make your programming tasks easier and to

give you direct access to some of the operating system’s capabilities and routines.

Descriptions of the utilities are made in conjunction with those topics where the utilities play a
part. The form of the description of a utility is somewhat standardized. Each description will tell
you —

o The name of the utility.

o The general procedure for using the utility.

o Any special requirements which must be satisfied for the utility to work properly.

o A step-by-step calling procedure for the utility.

e The exit conditions.
Utilities are a form of subroutine, so to execute them it is necessary to execute a jump-to-
subroutine instruction (JSM) if you want the utility to return to the routine which calls it. Most
utilities execute a RET 1 instruction to return, so in some cases where you follow a utility call

with a RET 1 of your own, you can save the RET instruction by using the JMP (unconditional
branch) instruction instead. For example, a typical utility call looks like —

but if it happened to be followed by a RET 1 —

79

80 Assembly Language Fundamentals

the calling procedure could be changed to —

and you save a word of code: the effect is otherwise the same. Check the exit conditions for a

utility before using this approach.

Utilities which you use in a module must have their names in an EXT pseudo-instruction for that
module. Otherwise, the assembler is unable to tell that you meant a utility and not one of your

own labels, causing an ‘“‘undefined reference’’ assembly error.

Appendix F contains a short description of the utilities and has cross-references to the location

in the manual of the full discussion on each utility.

Assembly Language Fundamentals

The utilities currently available are —

Utility Description
Busy Tests the busy bits of a BASIC variable
Error exit Aborts an ICALL statement with a particular error number
Get_bytes Accesses substrings (or parts of parameters)

Get_elem_bytes
Get_element
Get_file_info
Get_info

Get_value
Int_to_rel
Isr_access
Mm_read start
Mm_read xfer
Mm_ write_start
Mm_ write_test
Printer _select
Print_string
Put_bytes
Put_elem_bytes
Put_element
Put_file info
Put_value

Rel math

Rel to_int

Rel to_sho
Sho_to rel

Same as ““Get_bytes”, but used for array elements

Same as ‘““Get_value”’, but used for array elements

Accesses the file-pointer of an assigned file

Returns the characteristics of a variable passed as a
parameter or existing in common

Returns the value of a BASIC variable

Data type conversion from integer to full-precision

Establishes hardware linkages for interrupts

Prepares to read a physical record from mass storage

Reads a physical record from mass storage

Wirites a physical record to mass storage

Verifies a physical record was written to mass storage

Changes or interrogates select-code for standard printer

Outputs a string to the standard printer

Replaces substrings (or parts of parameters)

Same as “Put_bytés”, used for elements in an array

Same as “‘Put_value”, used for elements in an array

Manipulates the file-pointer of a file

Changes the value of a BASIC variable

Provides access to all the arithmetic routines

Data type conversion from full-precision to integer

Data type conversion from full-precision to short

Data type conversion from short-precision to full

81

82 Assembly Language Fundamentals

Chapter 9
Table of Contents

Arithmetic

Binary Coded Decimal - - - .- ... oo 83
Arithmetic Machine Instructionso i 84
BCD Registers e 84
BCD Arithmetic - -« -« v oo 84
Addition - [85
Ten’s Complementfor BCD 86
Floating Point Summations 88
Normalization - - - -« . e 89
Rounding -« - oo 89
Floating Point Multiplication 90
Floating Point Division - 92
The FDV Instruction - - - - - o oo e e 94
Thirteen-Digit Dividends . .- 95
Floating-Point Division Example. 926
Arithmetic ‘Utilities- - - - o v oo e 99
Utility: Rel math e 99
Utility: Rel_to_int- ... e 102
Utility: Rel to sho ...« oovot 103
Utility: Int_to_rel - e SO 104

Uti]ity; Sho_to_rel ... 105

N

Chapter 5
Arithmetic

Summary: Arithmetic operations are reviewed and the arithmetic utilities are
discussed. Floating point and BCD arithmetic are explained.

Numerical calculations are a large part of any computer’s operations. Implemented within the
9835A/B’s processor are both integer and primitive Binary Coded Decimal (BCD) floating-
point arithmetic operations. This chapter deals with those operations and is intended for those
readers who may have no acquaintance with this topic, or perhaps only a passing one. The
particular machine instructions involved with such arithmetic are reviewed.

Because the processor provides only rudimentary floating-point operations and because com-
plete floating-point operations (e.g., subtract, divide) are not easy to write, utilities have been
provided to perform these calculations. These utilities are discussed later in this chapter. If you
are not interested in doing your own BCD arithmetic, it is recommended you skip immediately
to ‘‘Arithmetic Utilities”.

Binary Coded Decimal (BCD) uses four-bit binary codes to represent decimal digfts. Thus, the
12-digit mantissa of a full-precision number is represented by 48 bits. The BCD digits are as
follows —

DECIMAL BCD

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

O 00 O Ov W N +H O

83

7,

84 Arithmetic

A BCD number within this manual has its digits represented as D1, Dz, D3, etc., with each digit
corresponding to some BCD digit. D1 is the most significant digit in a number. Since full-
precison numbers within the 9835A /B contain 12-digit BCD mantissas, 12-digit BCD numbers
are used as the most frequent examples in this discussion. In that case, D1z is the least signific-

ant digit in a number.

Arithmetic Machine Instructions

There are some machine instructions which specifically operate upon the BCD registers. The
discussions in this chapter will make use of the capabilities of these instructions to develop the
techniques to write BCD arithmetic routines. If you have not done so already, you should
familiarize yourself with the instructions before moving on in this chapter. A description of the
instructions can be found in ‘‘Arithmetic Group’’ in Chapter 3.

BCD Registers

There are two registers in the machine used for BCD arithmetic — Arl and Ar2. These symbols
are pre-defined by the assembly language to the registers’ locations in memory (see Chapter
3). The mnemonics for some instructions occasionally refer to these registers as X and Y

respectively (see Chapter 3).

BCD Arithmetic

To understand BCD arithmetic in the context of the 9835A /B, recall from Chapter 3 that a

full-precision value is represented in four words which contain its information as follows —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit
Exp I T |] | 1 | I] | | | | Man
Signi Exponent 0 0 O 0 O lsign
L
D1
(most significant digit) D Ds D4
Ds Ds D7 Ds
D12
Do Do D1 (least significant)

Arithmetic 85

The exponent is stored in two’s complement form. The exponent and the mantissa are always
adjusted by arithmetic routines so that there is always an implied decimal point following D1.
Thus, the mantissa of every value stored looks like —

Di1. D2 D3 D4 Ds D¢ D7 Ds Do D10 D11 D12

Except possibly for intermediate results within the individual arithmetic algorithms, the most
significant digit of a full-precision value {D1) will never be O unless the entire number is O.
Sometimes, after an individual arithmetic operation, the answer needs to be normalized, that
is, the digits of the answer shifted to the left until D1 is no longer 0. The exponent then needs to
be adjusted to reflect the change.

An important thing to keep in mind when examining BCD arithmetic, as implemented by the
processor, is that mantissas are represented in a ‘‘sign-magnitude’’ format. This means that the
absolute value is stored as the actual mantissa, and the sign of the mantissa is maintained
separately.

Addition
There is a one-bit Decimal Carry (DC) flag within the processor which serves a BCD function
similar to the Extend flag for binary addition.

DC is set to a one or zero, depending upon the occurrence or absence of a carry from the
addition of the two D1’s of the two BCD numbers being added. Since mantissas are represented
in a sign-magnitude form (with the sign in the exponent word rather than part.of what gets
added), DC represents an overflow for 12-digit mantissa additions.

DC itself is part of the addition in the D12 position. This gives it potential use with

multiple-precision floating point arithmetic. The addition process looks like this —

carry
LD1 IDz | Ds I D4J Ds l Ds |D7 I Ds I Do | D1o |D11—[D12 Ar1
+ [Dy | D2 [Ds [Da | Ds | Ds | D7 [Ds | Do | D1o | D11 | D12 | Ar2
= [pc]|Doi |p.]|Ds [Ds [Ds | De | D7 | Ds | Do | D1o | D11 | D12 | Ar2

There are three instructions which concern themselves exclusively with DC. They are — SDS
(Skip if DC set), SCD (Skip if DC clear), and CDC (Clear DC).

’

86 Arithmetic

Ten’s Complement for BCD

The addition of the ten’s complement of a number is used in lieu of a subtraction mechanism. If
the signs of the two numbers to be summed are different, one of the numbers is complemented
(it doesn’t really matter which one), before the addition.

The ten’s complement of a number with n digits to the left of the decimal pointis —

X=10.-X

The ten’s complement of a floating-point number has the same exponent as the original
number. Since the mantissa (M) of a full-precision number can be assumed to have the decimal
point implied after D1, then the number must be less than 10 (but greater than 0) and the ten’s

complement of a mantissa becomes —
M=10-M

Accordingly, all that is necessary to complement a floating-point number is to complement the
mantissa. It is immaterial whether the mantissa is treated as a 12-digit integer or as a number

between 0 and 10; the same sequence of digits results.

There are two instructions for doing ten’s complements — CMX and CMY. The only difference
between them is that CMX operates on the Arl register and CMY operates on the Ar2.

CMX and CMY leave the exponent word of a full-precision number completely alone. This
means that the sign of the mantissa and the entire exponent are left unchanged in a ten’s
complement by CMX and CMY.

Arithmetic 87

Ten’s complement helps to accomplish addition, too. Rather than go into all of the nuances and
subtleties of the arithmetic process, there is a simple rule for accomplishing decimal summa-
tions using ten’s complements. Assuming the exponents are the same for the numbers to be
added —

e [f the signs of the numbers are the same, simply add them and leave the signs alone. If DC
occurs, the result (Ar2) must be shifted to the right one place, and the exponent adjusted.

o If the signs of the numbers are different, complement, then add. A further complementing
action may be necessary: if DC occurs, then the result necessarily has the same sign as
the number which was not complemeted; if DC does not occur, then the result must be

complemented and then given the sign of the number which was complemented.

The FXA instruction is used to add mantissas. Here is a routine to implement the rule —

88 Arithmetic

Floating Point Summations

In the example just completed, you may have noted that to copy the sign the entire exponent
word was copied. What if the exponents were different? The answer is — the exponents must
have been the same. In fact, the only reason the example worked at all was that the exponents

were the same.

If exponents are different, addition of mantissas cannot proceed properly. To add the numbers
it is necessary to make the exponents the same by shifting one of the mantissas an amount

equal to the exponent difference.

This difference is easily found by subtracting the smaller exponent from the larger. If the
difference is eleven or less (the precision of the 12-digit mantissa), it is possible to offset the

mantissa of the number with the smaller exponent.
For example suppose there are two numbers to be added —

X XXXXXXXXXXX E6
Y.YYYYYYYYYYY E4

By shifting the smaller one to the right by 2 digits (the difference between 6 and 4), it is possible

to align the exponents —

X XXXXXXXXXXX E6
0.0YYYYYYYYYYYY E6

2.222227222222 E6

As can be readily seen from the example, a shift of more than 11 digits would cause the smaller

value to be all zeroes in the significant 12 digits.

The digits to the right of the 12 most significant digits are lost in the action of shifting. That is, all
except the left-most one. When using the MRX or MRY instructions, this digit is retained in the
A register (bits 0-3) so that it can be used later for rounding purposes.

To use the MRX or MRY instructions, the number of digits to be shifted must be presentin the B

register.

Arithmetic 89

The process for this “‘justification” of exponents can be summed up as follows:

e Subtract one exponent from the other storing the absolute value of the difference in the B
register.

e Execute the MRX shift if the Arl register is smaller; execute the MRY shift if the Ar2
register is smaller.

Normalization

The raw result of an arithmetic operation (such as FXA) might not be a floating-point number
that fits the standard form. It might have a leading DC needing to be incorporated into the
number, as was seen in the ‘‘Addition’’ section earlier. Another possible deviation is a resulting
D1 of zero and no overflow. There could also be several zero-valued digits as left-most digits of
the mantissa.

Such situations call for “‘normalization’’. One type of normalization is accomplished with the
NRM instruction. This instruction shifts register Ar2 left, leaving the number of shifts required in
the B register as a binary number. The maximum number of shifts NRM performsis 12. If NRM
must do all twelve shifts, Ar2 must have been 0. This is indicated by a value of 12 left in B and
DC being set. For any other shift-count, NRM will leave DC at O.

The rules for the normalization process are —

o Execute the NRM instruction.

e Follow this instruction by adding the complement of the contents of B (shiftéd left 6 bits)
to the Ar2 exponent unless DC is set. If DC is set, store 0 into Ar2.

o Test the exponent result for an underflow.

Rounding

The addition operation (FXA) does not automatically round a result, and there is no instruction
which does rounding in one step. Instead, it is necessary that a series of instructions be estab-
lished to accomplish the result.

Recalling from ‘‘Floating Point Summations’ (above) that the leftmost digit for rounding pur-
poses (if any) is typically deposited in the A register by an MRX or MRY instruction, this digit
can be checked to determine if rounding is required.

90 Arithmetic

The process of rounding, then, would have the following steps —

e Determine from register A if rounding is required (i.e., if it’s greater than or equal to 5).

¢ If rounding is not required, take no further action. If rounding is required, then load
register B with 1 and execute an MWA instruction. This has the effect of incrementing the
mantissa in Ar2 by 1. This action is an easier method than setting Arl to 1 and executing
an FXA and it’s faster, too. Don’t forget to check DC for an overflow.

o One way the sequence of rounding could appear is —

Floating Point Multiplication

Twelve-digit BCD floating-point multiplication is partially accomplished using the FMP instruc-
tion. This instruction effectively multiplies the value in the Ar]1 register by a digit contained in B
and adds the result to a partial product in Ar2.

Since, in the full multiplication process, exponents are merely added together, that part of the
process is trivial. The ultimate sign of the product is also a trivial matter, determined by
inspection of the signs of the original operands. Then the only matter of difficulty in the process
is the actual multiplication of the mantissas. By way of explanation, assume that there are two

mantissas to be multiplied —

multiplicand = ABCD
multiplier = WX Y Z

Just four digits are used to reduce the amount of symbolism required of the example. The same
procedures and conclusions are applicable to a full twelve BCD digits.

Arithmetic 91

One symbolic way to indicate how this multiplication is done is —

A B C D
x W X Y 2

0 0 O O = partial productO
Zow Z1 22 23 24 = Z(ABCD)x10°

Ps Ps Pe¢ P7 Ps = partial product 1
Yoo Y1 Y2 Y3 Ya 0O = Y(ABCD)x 10!

Ps P« Ps Ps P7 Ps = partial product 2
Xow X1 X2 X3 X« 0 0 = X(ABCD)x 10?2

P2 P P+ Ps Ps P7 Ps = partial product3
Woo W1 W2 Ws Wae 0 0 0 = W(ABCD)x 10

Pi P2 Ps Pa Ps Ps P; Ps = partial product 4 (result)

Notice that at each stage the multiple of ABCD, such as X(ABCD), must be multiplied by an
increasing power of ten in order that the digits of the multiple line up appropriately with the
digits of the last partial product. An equivalent procedure is to have the partial product shifted
right one digit at each stage.

Now, consider for a moment what is necessary within the assembly language to generate partial
product 1 = 0 + Z (ABCD). Ar2 must be cleared and Arl is loaded with ABCD. Z is stored into
B in bits O to 3. Then the FMP instruction is executed. Arl is added to Ar2 Z times, producing Z
(ABCD) in Ar2. The overflow digit, Zov, ends up in the A register (bits 0 to 3). The overflow digit
could be any value from 0 to 9 (each add could cause a carry, and there can be up to nine
additions).

To create the next partial product, a mantissa right-shift on Ar2 must occur. Notice that man-
tissa right-shifting instructions (MRX and MRY) also shift bits 0 to 3 of the A register into D1.
Thus, the right-shifting of the partial product (which must occur to prepare Ar2 for the next
partial product) also automatically takes care of retaining the overflow digit.

Next, ABCD is added to Zov Z1 Z2 Z3 a total of Y times (again by use of the FMP instruction).

Partial product 2 is created. The process is repeated for the X and W digits, producing the result
in Ar2.

92 Arithmetic

After the final partial product has been calculated by the final execution of the FMP instruction,
it is possible that a non-zero digit may be present in bits 0-3 of the A register. Such a digit is
necessarily the most significant digit of the final product. In this case, another MRY execution is
required. Further, the exponent of the product (which was initially estimated as the sum of the

operand’s exponents) must be incremented by one to reflect this power-of-ten shift.

Upon each step of partial product summation, a significant digit is lost due to the shift. This
can’t be helped. In general, the product of two 12-digit numbers has 24 digits of precision, but
the bottom 12 digits must be discarded since only 12 BCD digits are stored in a mantissa. An
error analysis of the algorithm discloses that dropping these digits causes the answer, on
average, to be slightly smaller than it should be. However, rounding introduces a similar error,
but in the other direction. Note that the process did not round each partial product.

The discarded digits can be inspected before they are permanently lost. The MRY instruction
causes the digit to be placed in the A register (in bits O to 3). This provides an easy way for a
rounding mechanism to check on those digits as they are discarded. The rounding routine
needs to save the last digit discarded for use in rounding in the event the last use of FMP
produces no overflow digit. ‘

Finally, it should be noted that you can put WXYZ into B at the very start of the process and
simply shift B right 4 bits (with an SBR 4 instruction) between each execution of FMP. After all,
FMP uses only bits 0 to 3 of the register as the number of times to add Arl and Ar2.

Floating Point Division

There are many possible algorithms to accomplish floating-point division. The one presented
here was chosen because of its effective use of the machine instructions and data structures

employed by the processor and operating system.

Remembering that full-precision numbers consist of both a signed mantissa and a signed
exponent, use can be made of the mathematical properties of both to reduce the division
problem to manageable proportions. Suppose that you have two full-precision values to
divide —

—4.8E3 +~ 1.5E - 2

Arithmetic

The mathematical properties of exponents can be utilized and the second exponent can be
subtracted from the first giving the exponent of the answer (subject to possible later adjust-

ment). This is the first (and easiest) step in the division algorithm.

Secondly, the mathematical properties of signs within a division process can be used to deter-
mine the sign of the quotient from the signs of the divisor and dividend (negative quotient if the

signs are different, positive quotient otherwise).
Thus, the problem can be reduced to the division of the mantissas —
(— 4.8+ 1.5)E5

As long as the full-precision numbers have been normalized, this adjustment of the exponents
works for any pair of exponents. The normalization of the numbers also assures that the
division of the mantissas under the following algorithm is sufficient to produce the mantissa of

the result.

Since the decimal point of each mantissa is in the same place, they can be dropped altogether.

For example —
-48+15=-48 + 15
The algorithm can then consider both the divisor and the dividend as 12-digit integers.

The algorithm begins by placing the normalized values into the BCD arithmetic registers. The
divisor (1.5E2 in the example) is transferred to register Arl. The dividend (- 4.8E3 in the
example) is transferred to register Ar2. Basically, the algorithm subtracts the absolute value of
the mantissa of Arl from the absolute value of the mantissa of Ar2 until Ar2 is smaller than Arl.
The number of subtractions required for that to occur becomes the first digit in the quotient (it’ll
be some value between 0 and 9 because the mantissas are normalized). If there is a (non-zero)
remainder, then it is shifted left (multiplied by 10) and the subtraction process is repeated to
calculate another digit in the quotient. The process is repeated until either a zero remainder
occurs, or sufficient digits have been calculated, whichever occurs first. The resulting digits are

merged, in order, to form the complete mantissa of the quotient.

93

94 Arithmetic

There are some points to keep in mind in following the algorithm —

o Suppose you have a divisor whose normalized mantissa is larger than the normalized
mantissa of the dividend, for example —

15 + 48

then the first digit of the quotient’s mantissa could easily be zero. If calculation of only
twelve digits were made, the first digit being zero would mean a loss of a significant digit.
To guarantee that there are always at least 12 significant digits calculated for the quotient,
it is necessary (and sufficient) to calculate 13 digits. The 13th digit can always be thrown
away, or used for rounding, if the first digit is not zero. Thirteen digits are always sufficient
because you can never have a quotient with two leading zeroes, if the divisor and the

dividend are both normalized.

e The number of subtractions during the calculation of any digit in the quotient is always
nine or less. Again, this is true because the divisor is normalized and its first digit is always

non-zero.

e At times during the algorithm, it is necessary to left-shift the mantissa of Ar2 (the mantissa
at this point is the remainder). When shifting the remainder to the left (multiplying it by
10), you are shifting the first digit out of Ar2. If this digit is zero, this is not a problem. But,
if the digit is non-zero, you can’t ignore it during subtractions of the divisor. This in effect
means that you are dealing with a 13-digit dividend! Since the machine instructions deal
in 12-digit arithmetic, it is necessary that the algorithm handle the thirteenth.

The FDV Instruction

The FDV instruction provided by the processor is the primary tool used to implement the
algorithm in assembly language. The instruction works by accomplishing the equivalent of
automatically repeated subtractions of Arl (the divisor) from Ar2 (the dividend) until Ar2 is
smaller than Arl. The instruction actually adds the divisor to the ten’s complement of the
dividend until an overflow occurs. However, this is equivalent to subtracting until an ‘“‘under-
flow” occurs. It is easier to understand the procedure if the discussion is in terms of ‘“‘subtrac-
tions’’, but it should be kept in mind that what is really occurring with the instruction is repeated
‘‘complement-additions’ until overflow. This process is what is meant by the term ‘‘subtrac-
tions until overflow’’.

Arithmetic 95

The FDV instruction returns the number of subtractions without overflowing as a binary
number in the B register (bits 0-3). The remaining bits in the B register (4-15) are cleared.? In
effect, then B contains the next digit in the quotient.

This process is repeated for the number of digits to be calculated. After each FDV execution,
the result of the overflow subtraction is left in Ar2. Since Ar2 does not contain the remainder, it
is necessary to patch Ar2 so that it will contain the proper value for the next calculation. To get
the proper value it is necessary to add Arl back into Ar2 to undo the results of the last
subtraction (which caused the overflow).2

There is one case, however, where Ar2 does not need to be patched up, and this is when the
remainder (Ar2) is zero. This situation implies not only that no patching up is needed, but also
that the quotient is complete — no further digits need be calculated. It should be noted that the
number of subtractions (which has been stored in the B register) is one count too small, thus B
has to be incremented in this case so that it can be used as the last digit in the quotient.

Thirteen-Digit Dividends

The largest difficulty in the algorithm is attempting to deal with those instances where the
dividend has thirteen digits. This situation arises when you shift the remainder left a place. The
most significant digit must be retained when it is non-zero so that the subtractions are sub-

tracted from the proper amount.

This shifting can be accomplished with the MLY instruction. With the way that the MLY instruc-
tion operates, the left-most digit (D1) ends up being shifted out of Ar2 into register A (in the
lower 4 bits, 0-3). Thus, the thirteen-digit algorithm must accomodate the most significant digit
residing in the A register and the twelve least significant digits in the Ar2 register. The use of
FDV must now take this modified situation into account. v

When the FDV instruction is executed, Arl is subtracted from Ar2 until an overflow occurs.
When this overflow occurs, it is necessary to decrement A and keep subtracting (without
patching up Ar2). Each time an overflow occurs, A must be decremented until finally an
overflow occurs when A is 0. This can be handled very neatly within a small loop.

1 Since bits 4-15 of the register are cleared during execution of the FDV instruction, you can’t accumulate quotient digits there.
After each digit is calculated, it is necessary that you store the digit as part of a quotient which you keep stored in another
location. P

2 This is equivalent to complementing Ar2, adding in Ar1, then complementing Ar2 again.

96 Arithmetic

Another aspect of dealing with thirteen-digit dividends is the count placed in B with each
execution of FDV. Since each overflow is a “‘successful’’ subtraction in the sense that is part of
a proper count of subtractions (at least until A is 0), then that subtraction must be counted, too.
The difficulty with this is that FDV does not count this last (overflowing) subtraction. The
solution obviously is to add 1 to the value in the B register each time FDV causes an overflow.
However, with the last overflow, being the ‘‘real”’ overflow, the 1 shouldn’t be added in, so
after adding it in (during the loop), you have to subtract it back out again (after leaving the
loop). To further complicate matters, if you have a zero remainder, you have to add it right
back in again.

For example, if there happened to be three uses of FDV for a certain quotient digit, you form
the quotient digit as —

Qn=(B+1)\ +(B+1),\ +B\
value after Ist value after 2nd value after final
use of FDV use of FDV use of FDV

If the same general situation produced a zero remainder, then the quotient digit is formed as —

Qn=(B+1)\ +(B+1),\ +(B+1)\
value after Ist value after 2nd value after final
use of FDV use of FDV use of FDV

Floating-Point Division Example
An example of a 13-digit division routine follows. The rules which it implements are —

1. Always increment the value returned in B after an FDV operation.

2. After incrementing B, check the contents of A. If non-zero, loop immediately, performing

no other tests or activities.

3. When a quotient digit has been found (i.e., A is zero), check to see if the remainder is 0.
If so, exit the division loop. Save the last digit found as part of the answer.

4. If the remainder is not 0, decrement the value of the last quotient digit found and save it
as part of the answer. Then add back the divisor to the remainder.

Arithmetic 97

The example does not include routines for testing and handling —

e signs

e division by zero
e exponents

e overflow

e rounding

These have to be handled in a real program before or after the division algorithm itself (as

appropriate).

98 Arithmetic

Arithmetic

Arithmetic Utilities

Now that you have been introduced to the complexities of BCD arithmetic and floating-point

operations, this is the time to present an easier way of accomplishing these operations — the

arithmetic utilities.

In order to make BASIC a useful programming tool, the operating system already contains a
number of floating-point routines. Recognizing that BCD and floating-point arithmetic can be a
difficult and laborious task to implement, the assembly language provides a utility by which the
operating system mathematical routines can be accessed. There are also utilities for the conver-

sion of numerical data types.

UTILITY: Rel _math
The Rel _math utility provides access to all of the system floating point routines and functions.

General Procedure: The utility is told the execution address of the desired routine or function
and is also told the number of parameters. The parameters are floating-point values stored in
full-precision form (4 words each). The result is a full-precision value.

Special Requirements:
e If one operand is passed to the utility, the address of the operand is stored in register
Oper_1.

e If two operands are passed to the utility, the address of the first operand is stored in

register Oper_1 (as above), and the address of the second operand is stored in register
Oper 2.

e The address of where the result should be stored must be stored in the register Result.

o All operands and the result are full-precision values and require 4 words each.

99

100 Arithmetic

e Values passed must make sense for the routine or function being called (e.g., Oper 2
should not point to a value of 0 when calling the division routine), or else an error results.

o The storage areas for the operands and the result must reside either in the ICOM region or
in the Base_ page register. Specifically, they cannot be specified as Arl or Ar2.

Calling Procedure:

1. Assure that Oper 1, Oper_2, and Result contain the proper addresses as above.

2. Load register A with the number of parameters required for the routine or function (see
the table on next page). Note that some routines require this number to be com-

plemented.

3. Load register B with the execution address of the routine or function (see the table on

the next page).
4. Call the utility.

Exit Conditions:
e The result is placed into the 4 words starting at the address pointed to by the Result
register.
o Register A contains 0 if no error is encountered during execution of the utility.

o Redgister A contains the error number should an error be encountered during execution of

the utility.

Arithmetic 101

Table 1. Routines, Addresses, and Parameters for Rel _Math Utility

Execution Address Operands
Routine
(LDB =) (LDA =)
Addition 30620B 2
Subtraction 30612B 2
Multiplication 30732B 2
Division 31100B 2
Exponentiation 34066B 2
DIV 32574B 2
MOD 32725B 2
SQR 31240B 1
INT 32637B 1
FRACT 33052B 1
EXP 33763B 1
LOG 33773B 1
LGT 34053B 1
PROUND 32015B -2
DROUND 32037B -2
ABS 32622B 1
SGN 33441B 1
PI 36057B 0
RND 33377B 0
RES 36077B 0
TYP 6733B 1
SIN 34003B 1
COS 34014B 1
TAN 33741B 1
ASN ' 34025B 1
ACS 34040B 1
ATN 33751B 1
ERRL: ‘ 61765B 0
ERRN! 61753B 0
DECIMAL! 1620268 1
IADR 162167B -2
IMEM 162150B -2
OCTAL 162105B 1
AND . 31632B 2
OR 31647B 2
EXOR 31615B 2
NOT 31661B 1
Less Than (<) 31667B 2
Less Than or Equal To (<=) 31675B 2
Not Equal (<>) 31727B 2
Equal (=) 31717B 2
Greater Than or Equal To (>=) 31711B 2
Greater Than (>) 31703B 2

’
1 These functions return an integer value which is stored in the second word of the four words reserved by Result.

102 Arithmetic

By way of example, suppose you have established two full-precision values which need to be
multiplied. The call to the Rel math utility to accomplish the multiplication would look similar
to this —

Note in the last line of the example the call to the Error_exit utility (page 191) is made when
register A is not zero. When this occurs, A contains the error number of the error

encountered — ready-made for calling the Error_exit utility.

UTILITY: Rel to int
The Rel to_int utility provides for the conversion of a full-precision value into an integer.

General Procedure: The utility is given the address of the location of the full-precision value
and the address of the location where the integer is to be stored.

Special Requirements: The full-precision value must be within the range of integers
(— 32 768 to + 32 767).

Arithmetic

Calling Procedure:

1. Store the address of the full-precision value into register Oper 1.
2. Store the address of where the integer is to be stored into register Result.

3. Call the utility.

Exit Conditions: The overflow bit in the processor is set if the integer is outside the range of
integers.

An example —

UTILITY: Rel to_sho)
The Rel to_sho utility provides for the conversion of a full-precision value into a short-
precision one.

General Procedure: The utility is given the address of the location of the full-precision value
and the address of the location where the short-precision value is to be stored.

Special Requirements: A short-precision value requires 2 words to be stored.

Calling Procedure:

1. Store the address of the full-precision value into register Oper 1.
2. Store the address of the storage area for the short-precision value into register Result.

3. Call the utility.

Exit Conditions: No special exit conditions.

103

104 Arithmetic

As an example —

UTILITY: Int_to rel

The Int_to_rel utility provides for the conversion of an integer into a full-precision value.

General Procedure: The utility is given the address of the location of the integer and the
address where the full-precision value is to be stored.

Special Requirements: None.

Calling Procedure:

1. Store the address of the integer into register Oper 1.
2. Store the address of the storage area for the full-precision value into register Result.

3. Call the utility.
Exit Conditions: No special exit conditions.

An example —

Arithmetic 105

UTILITY: Sho to_rel
The Sho_to_rel utility provides for the conversion of a short-precision value into a full-

precision one.

General Procedure: The utility is given the address of the location of the short-precision
value and the address of where the full-precision value is to be stored.

Special Requirements: None.
Calling Procedure:

1. Store the address of the short-precision value into register Oper_1.
2. Store the address of the storage area for the full-precision value into register Result.

3. Call the utility.
Exit Conditions: No special exit conditions.

An example —

106 Arithmetic

Chapter 6
Table of Contents

Communication Between BASIC and Assembly Language

The ICALL Statement 107
Corresponding Assembly Language Statements 108
Arguments . 109
“Blind” Parameters 112
Getting Information on Arguments 113

Utility: Get_info 114
Retrieving the Value of an Argument 116
Utility: Get_value 117

Utility: Get_element 118

Utility: Get_bytes 119

Utility: Get_elem_bytes 120
Changing the Value of an Argument 122
Utility: Put_wvalue 122

Utility: Put_element 123

Utility: Put_bytes 124

Utility: Put_elem bytes e 125

Using COMMON 127
Busy bits . 130

Utility:Busy,....v...(.",.; ... 131

107

Chapter 6

Communication
Between BASIC and
Assembly Language

Summary: This chapter discusses the techniques used to pass information to and from
assembly language programs. Calling assembly language routines and passing paramet-
ers are presented, along with issues involved in using common. Applicable utilities are
also discussed.

Once assembly language programs have been written, they are executed using the ICALL
statement. This statement is very similar to BASIC’s CALL statement for subroutines. In fact,
the function it performs is nearly identical in effect — the only difference is that the target
subroutine has been written in assembly language instead of in BASIC. The ICALL statement
also provides a means to pass data between BASIC and assembly programs through its argu-

ment list. Data can also be passed through common.

The ICALL Statement

There are two ways to execute an assembly language routine. One way is as an interrupt service
routine when an interrupt occurs on the select code to which the service routine has been
linked. This way is discussed in Chapter 7. The other way is through executing an ICALL
statement, either in a BASIC program or from the keyboard.

The syntax of the statement is —

. {routine name} [{argument} [, {argument}[,...]] 7]

{routine name} is the name of the assembly language routine to be executed. {argument} is a
data item which has the same characteristics as an argument in BASIC’s CALL statement —
there may be constants, variables, or expressions. (How these items correspond to instructions

in the assembly language will be discussed shortly.)

Q

7

108 Communication Between BASIC and Assembly Language

By way of example, suppose that you have an [CALL which is being used to call a sort routine
and the routine was written in such a way as to require two arguments be passed to it — an
array to be sorted and the number of elements to be sorted (in that order). Then the following
would be valid calls to that routine —

Upon executing the ICALL statement, execution in a program transfers to the routine named.
Upon return from the routine, control is passed to the BASIC statement which follows the
ICALL. This is identical in effect to the CALL statement in BASIC.

In executing the statement from the keyboard, the routine named is executed just as if it were
used in a program. Upon return from the routine, control is passed back to the keyboard. This is
unlike BASIC’s CALL statement, which cannot be executed from the keyboard.

To execute a routine, whether it be from a program or from the keyboard, its object code must
currently reside in the ICOM region.

Corresponding Assembly Language Statements

When the ICALL is executed, it references a routine in the object code. When the module
containing the routine was assembled, it declared that routine name as a ‘‘subroutine’ entry
point. (‘“Subroutine’’ and ‘“routine’’ are synonymous in this context.) This is done with a SUB
pseudo-instruction and a label.

When a SUB pseudo-instruction appears in the source code, it is a signal to the assembler that a
subroutine entry point follows. Then the first machine instruction (or some code-generating
pseudo-instruction, such as BSS or DAT) must have a label. That label becomes the routine

name. If the label is missing, an error results (assembly-time “SQ’’ error).

For example, in the above examples of ICALL, the Sort routine could have been defined by the

sequence —

except that there are arguments involved. (That exception is discussed in a moment.) The joint
use of these two statements results in the label ““Sort”’ being identified as a routine name,

referenceable with an ICALL statement.

Communication Between BASIC and Assembly Language

In general, no machine instructions or code-generating pseudo-instructions can be inserted
between a SUB pseudo-instruction and the instruction containing the routine name. An excep-

tion to this exists when arguments are involved in a call.

Arguments

When a value is placed into an ICALL statement to be sent down to an assembly language
routine, that value is called an ‘‘argument”’ (like the argument of a mathematical function). The
corresponding structure on the assembly language side is called a ‘“‘parameter”. A parameter

‘‘declaration” is an assembly pseudo-instruction by which a parameter is created.
When a routine is to be called with arguments, a parameter declaration pseudo-instruction is
required for each one of the arguments. These declarations appear between the SUB pseudo-

instruction and the instruction containing the routine name.

Thus, when there is a call like —

the corresponding assembly language entry looks like —

To accommodate the two arguments, two parameter declarations had to appear between the
SUB instruction and the entry point. (In this example, they were the STR and REL declara-
tions.) These declarations may even have labels of their own —

The appearance of these labels does not effect the fact that ‘“‘Sort’’ is the name of the routine.

109

110 Communication Between BASIC and Assembly Language

Parameter declarations have ‘‘types’” just like variables. These types have to correspond to the

“‘types’’ of the arguments used in the ICALL. The declarations and their types are —

meaning integer
meaning full-precision
meaning short-precision

meaning string

meaning a file number

In the above example, STR had to be used as the first parameter declaration because the first
argument was a string. Similarly, REL had to be the second declaration because the second

argument was a numeric expression (which is always full-precision).

When an array is to be passed, the declaration is followed by an ‘‘array identifier’” — (*). Thus,

when arrays are involved, the declarations appear as —

meaning an integer array
meaning a full-precision array

meaning a short-precision array

meaning a string array

(File numbers do not come in arrays, so that declaration — FIL — cannot be followed by an

array identifier.)

Since the example call above uses a string array as the first argument, the corresponding
assembly language parameter declaration uses an array identifier after STR.

The parameter declarations are associated with the arguments in the ICALL in the same order.

If the types do not match when the ICALL is executed, an error occurs (number 8).

So, if the subroutine entry looks like —

Communication Between BASIC and Assembly Language 111

then this ICALL executes properly —

but these ICALLs result in run-time errors —

Each declaration reserves three words in the object code upon assembly. As a result of the
ICALL execution, these words contain a descriptor of the corresponding argument. These
descriptors are used by the utilities for fetching and storing values. Thus, in the Sort calling
example above, when the ICALL is executed, a descriptor for Test$(*) is stored in the three
words starting at Parameter 1. Similarly, a descriptor for the constant 100 is stored in the three

words starting at Parameter 2.

The types discussed here do not apply just to simple variables, arrays, and constants. They also
apply to single elements of arrays and expressions. If you have a STR parameter declaration,
for example, any of the following would be valid as arguments in the ICALL statement —

It is similar for numerical expressions.

The number of arguments passed by an ICALL statement must be no more than the number of
parameter declarations in the subroutine entry. There may be fewer, however. The actual
number passed is stored in the word reserved by the SUB pseudo-instruction.

Unlike the CALL statement in BASIC, the ICALL statement can be executed from the
keyboard. In doing so, any variables used as arguments pass their current values to the routine,
rather than resetting them to O (this is the same contrast as between running a program by

pressing and running it pressing).

112 Communication Between BASIC and Assembly Language

“Blind”’ Parameters

With explicit parameter declarations, an error occurs if a different type of variable or expression
is passed. In many cases, the error is desirable — you do not want different types of arguments
corresponding to a single parameter declaration. But in other cases, the error might not be as
desirable. Take the example of a sort. You might want the sort to have the capability of sorting
any type of array. You have two choices in that case — you can make different routines, each
with the appropriate declarations, or you can use a single entry point and the ANY parameter

declaration.

The ANY declaration —

is “‘blind”’ to the type of the corresponding argument in the ICALL statement. When used, it
accepts any type of argument as valid — string, full-precision, short-precision, integer, file
number, array. The descriptor for the argument is stored in the three words set aside, just as in
the other declarations.

Now, if your entry looks like —

then any of the following calls would be valid —

When using the ANY declaration, it becomes the responsibility of your assembly language
routine to determine what is a valid parameter and what is not. You lose the automatic type-
checking available with explicit declarations. Techniques for doing this are discussed in the

next section.

Communication Between BASIC and Assembly Language

Getting Information on Arguments

When an ICALL is

executed with an argument, and the corresponding parameter is blind, then

it may be necessary for the purposes of your routine to know what type of argument is actually

passed. This need can be present even when one of the explicit type declarations is used, since

an expression or constant can be passed as easily as a variable.

A utility has been

provided for obtaining this information, along with other “‘vital statistics”

which may be useful to know during the execution of your routine. Before describing the utility
itself, let’s look at the information which it can provide you about an argument.

The information returned by the utility is stored in an area which you set aside for it. The size of

the area can vary

from 3 words to 30. The information, when returned, is in the following

form —
Word # Description
0 Argument type (see description later)
1 Number of dimensions (0 for non-arrays)
2 Size, in number of bytes (dimensioned length, for strings)
(for arfays only:)
3 Total number of elements in array?
q Lower bound of first dimension?
5 Absolute size of first dimension (upper bound — lower + 1)
6 Lower bound of second dimension (if any)?
7 Absolute size of second dimension
8 Lower bound of third dimension (if any)?
9 Absolute size of third dimension
10 Lower bound of fourth dimension (if any)?
11 Absolute size of fourth dimension
12 Lower bound of fifth dimension (if any)?
13 Absolute size of fifth dimension
14 Lower bound of sixth dimension (if any)?
15 Absolute size of sixth dimension
16 Element offset
17 Size, in words, of each element (dimensioned length, for strings)
(dependent upon memory size of your machine:)
18-20 | Pointer parameters
21-23 | Pointer parameters (only for machines over 64K bytes)
24-26 | Pointer parameters (only for machines over 128K bytes)
27-29 | Pointer'parameters (only for machines over 192K bytes)

1 Stored as a negative number.

113

114 Communication Between BASIC and Assembly Language

The argument type returned in word O is as follows —

Value | Type
0 String expression
1 Full-precision expression
2 Short-precision expression
3 Integer expression
4 String simple variable
5 Full-precision simple variable
6 Short-precision simple variable
7 Integer simple variable
8 String array element
9 Full-precision array element
10 [Short-precision array element
11 |Integer array element
12 | String array
13 |Full-precision array
14 | Short-precision array
15 |Integer array
16 |File number

The size, in bytes, will be one of the following values —

For an integer 2

Short-precision 4

Full-precision 8

String variables dimensioned length
String expressions actual length

The utility which retrieves all this information is called ““‘Get_info’".

UTILITY: Get_info
General Procedure: The utility is told the location where the information is to be returned
and the address of the parameter declaration. It returns with the information on the argument

in the ICALL corresponding to the parameter declaration.

Communication Between BASIC and Assembly Language 115

Special Requirements:

e The location where it is to store the information must be adequate to hold all that may be
returned. For non-arrays, 3 words will suffice. For arrays, up to 30 words may be required
(as above). If you are writing a general routine, it may be wise to play it safe by setting

aside a full 30 words.

e An argument must have been passed by the ICALL (in the case of parameters) or a
corresponding BASIC COM declaration must exist (in the case of common declarations).

Calling Procedure:

1. Load register A with the address of the storage area for the information to be returned.

2. Load register B with the address of the parameter declaration corresponding to the

desired argument.

3. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction
following the JSM. Since there are no error exits, and there is no requirement that there be as
many arguments as there are parameter declarations, an argument must actually have been

passed by the ICALL in order for the utility to work correctly.

Following up on the example in the previous section, suppose the first thing that the Sort
routine does is check to see if the first parameter passed is an array. Then, by using the
Get_info utility, it is possible to have the instructions look as follows —

116 Communication Between BASIC and Assembly Language

The array information returned by the Get_info utility is used for accessing elements in arrays
passed as arguments. It is used by the element-retrieval utilities described in a later section of
this chapter. Once retrieved, the information is usable any number of times for accessing the
array associated with it. It is not necessary to retrieve the information every time you access an

array, as long as you have not altered the information (except the pointer) between accesses.

The seventeenth word of the array information (word 16 on the chart) is reserved to hold the
offset from the start of the array of the element to be accessed. Therefore, it is permissible
(indeed, it is necessary) to alter the contents of that location to indicate which element in the

array you wish to retrieve. None of the other words returned by the utility should be changed.

In making multiple accesses with the same information, caution should be taken when an array
is involved. If a REDIM statement is executed upon the array between accesses, the information
may not reflect the true structure of the array. This potentiality can be addressed in one of two

ways —

e Advise the BASIC user against using a REDIM on the array between executions of the

routine or routines involved.

e Call the Get_info utility each time the array is accessed.

Similar problems exist when a BASIC subprogram is called recursively, and the subprogram
uses a local array as an argument in an ICALL, or when a subprogram calls a routine and later

exits (causing its local arrays to disappear).

Retrieving the Value of an Argument

At some point during execution of your assembly language routine, you may want to retrieve
the value of an argument so that you can use it in your processing. By doing so, you accomplish
one of the methods of communicating with assembly language — namely, passing a value TO

the assembly language routine from BASIC.

There are a number of utilities for this purpose. The one to use is dependent upon the type of

argument passed. The utilities available are —

Name Used For
Get_value Simple variables, expressions, individual elements of
arrays passed as arguments, and file numbers
Get_element Elements (from arrays passed as arguments)
Get_bytes Substrings of strings passed as arguments either as

simple string variables, expressions, or individual
elements of arrays passed as arguments

Get_elem_bytes | Substrings of individual elements (from string arrays
passed as arguments)

Communication Between BASIC and Assembly Language

How each of these utilities is used is described in the immediately following pages.

UTILITY: Get_value

General Procedure: The utility is given the address of the parameter declaration and the
address of where the value of the argument is to be stored. It returns with that value stored in
the indicated area. It works on simple variables, expressions, and individual elements of arrays
(passed as arguments), of any type.

Special Requirements:
e The storage area set aside for the value must be large enough to hold the value. The size

of the storage area must be —

for a file number 1 word
for an integer value 1 word
for a short-precision value 2 words
for a full-precision value 4 words
for a string maximum length in bytes + 2 + 1 word
(+ 1 additional word if the string length is odd)

e An argument must have been passed by the ICALL for the utility to work properly.
Calling Procedure:

1. Load register A with the address of the storage area for the value.
2. Load register B with the address of the parameter declaration.

3. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction

following the call.

Here is an example call to the utility, retrieving information from a full-precision argument —

117

118 Communication Between BASIC and Assembly Language

UTILITY: Get_element

General Procedure: This is similar to the ““Get_value” utility. This utility retrieves a value

from an element of an array passed as an argument. It works on arrays of any type.

Special Requirements:

e The storage area set aside for the value must be large enough to hold the value. Resultant,

the size of the storage area must be —

for an integer 1 word

for a short-precision value 2 words

for a full-precision value 4 words

for a string maximum length in bytes 2 + word
(+ 1 additional word if the string
length is odd)

¢ The array information must be retrieved with the “Get_info” utility before calling this
utility.

o The offset of the element in the array must be correct in the array information (word 16
returned by “Get_info”’). It should be remembered that the offset of the element is
dependent upon the number of dimensions in the array and the length of each. A calcula-

tion may be necessary to arrive at the offset when accessing multiple-dimension arrays.
The offset is in terms of number of elements.

Calling Procedure:

1. Storethe element offset within the array information {word 16 returned by “‘Get-info’’).
2. Load register A with the address of the storage area for the value.

3. Load register B with the address of word O of the information returned by the
“Get_info’ utility (see description of that utility).

4. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction
following the call.

Communication Between BASIC and Assembly Language 119

Here is an example call, retrieving the third element (relative element 2) of an integer array and
placing it into Value — ‘

UTILITY: Get_bytes

General Procedure: This is similar to the “Get_value’ utility. This utility retrieves a substring
of a string passed as an argument, having been given the starting byte and the number of bytes
to be retrieved.

Special Requirements:

e The storage area set aside for the substring must be large enough to hold all of the
substring. This includes not only the string itself, but also two extra words. Remember, a

word holds two characters.

e A string must have been passed by the ICALL for the utility to work properly.
Calling Procedure:

1. Store the number of the starting byte of the substring desired into the first word of the
storage area set aside for the substring. (Note that bytes 0 and 1 are the length word of
the string.)

Store the number of bytes in the substring into the second word of the storage area.
Load register A with the address of the storage area.

Load register B with the address of the parameter declaration.

o & Wb

Call the utility.

120 Communication Between BASIC and Assembly Language

Exit Conditions: There are no error exits from the utility. It always returns to the instruction
following the call. The substring is returned starting with the third word of the storage area.
(Note: Since the second word contains the length of the substring, you have a string data
structure starting with the second word!)

For example —

In this example, Value is the storage area. Since 2 has already been generated and stored in the
first word, and 10 in the second, the first 10 bytes of the string would be transferred. Of course,
the original string must contain at least 10 characters — or the bytes which are returned may be
nonsense. Why was the value 2 stored as the byte number? Because bytes in a string are
numbered starting with 0, and bytes 0 and 1 contain the length of the string (see ‘‘Data
Structures” in Chapter 3).

UTILITY: Get_elem bytes ‘

General Procedure: This is a combination of the “‘Get__element” and *““Get_bytes’ utilities.
This utility retrieves a substring of an element of a string array passed as an argument. The
utility is given the starting byte and the number of bytes to be retrieved.

Special Requirements:

e The storage area set aside for the substring must be large enough to hold all of it. This
includes not only the string itself, but also two extra words. Remember, a word holds two

characters.

e The array information must be retrieved with the “Get_info utility before calling this
utility.

e The offset of the element in the array must be correct in the array information (word 16
returned by “Get_info”). It should be remembered that the offset of the element is
dependent upon the number of dimensions in the array and the length of each. A calcula-
tion may be necessary to arrive at the offset when accessing multiple-dimension arrays.

The offset is in terms of number of elements.

Communication Between BASIC and Assembly Language 121

Calling Procedure:

1. Store the number of the starting byte of the substring desired into the first word of the
storage area set aside for the substring. (Note that bytes 0 and 1 are the length word of
the string.)

Store the number of bytes in the substring into the second word of the storage area.
Store the offset within the array information.

Load register A with the address of the storage area for the value.

o & w DN

Load register B with the address of word 0 of the information returned by the
“Get_info” utility (see description of that utility).

6. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction
following the call. The substring is returned starting with the third word of the storage area.
(Note: since the second word contains the length of the substring, you have a string data
structure starting with the second word!)

For example —

In this example, Value is the storage area. Since 2 has already been generated and stored in the
tirst word, and 10 in the second, the first 10 bytes of the string element are transferred. Of
course, the string element must contain at least 10 characters — or the bytes which are re-
turned may be nonsense.

z

122 Communication Between BASIC and Assembly Language

Changing the Value of an Argument

At some point during the execution of your assembly language routine, you might want to
accomplish the other half of this method of communication with BASIC — namely, changing
the value of a BASIC variable which is used as an argument, in effect changing the value of a
BASIC variable from the assembly language routine.

As with retrieving a value, there are a number of utilities available for changing a value. The
one to use is dependent upon the type of argument passed. The utilities available are —

Name Used For
Put_value Simple variables and individual elements of
arrays passed as arguments
Put _element Elements (from arrays passed as arguments)
Put_bytes Substrings of strings passed as arguments

either as simple variables or as individual elements
of arrays passed as arguments.

Put_elem_bytes | Substrings of elements (from string arrays
passed as arguments)

How each of these utilities is used is described in the immediately following pages.

UTILITY: Put_value
General Procedure: The utility is given the address of the parameter declaration and the
address of the value. It changes the value of the BASIC variable associated with the parameter.

It works only on simple variables and individual elements of arrays (passed as arguments), of

any type.
Special Requirements:

o The value must have the appropriate data structure for the data type of the argument (see

‘Data Structures’ in Chapter 3).

e An actual argument must have been passed by the ICALL for the utility to work properly.
Calling Procedure:

1. Load register A with the address of the storage area of the value.
2. Load register B with the address of the parameter declaration.

3. Call the utility.

Communication Between BASIC and Assembly Language 123

Exit Conditions: There are no error exits from the utility. It always returns to the instruction

following the call.

Here is an example call to the utility, passing information to an integer argument —

UTILITY: Put_element
General Procedure: This is similar to the “Put_value’ utility. This utility changes the value

of a single element in an array passed as an argument. It works on elements of arrays of any

type.
Special Requirements:

e The value must have the appropriate data structure for the data type of the argument (see
“Data Structures’’ in Chapter 3).

e The array information must be retrieved with the “Get_info”’ utility before calling this

utility.

e The offset of the element in the array must be correct in the array information for the array
(word 16 returned by ‘“Get_info”). It should be remembered that the relative element
number of the element is dependent upon the number of dimensions in the array and the
length of each. A calculation may be necessary to arrive at the offset when accessing

multiple-dimension arrays.
Calling Procedure:

1. Store the element offset into the array information (word 16).
2. Load register A with the address of the storage area for the value.

3. Load register B with the address of word 0 of the information returned by the
“Get_info’’ utility (see description of that utility).

4. Call the utility.

124 Communication Between BASIC and Assembly Language

Exit Conditions: There are no error exits from the utility. It always returns to the instruction
following the call.

Here is an example call, storing information from Value into element 0 of an integer array —

fed et o

TR mom

et

UTILITY: Put_bytes
General Procedure: This is similar to the “Put_value” utility. This utility changes the value
of a substring which is part of a string variable or an individual element of a string array, having

been given the starting byte and the number of bytes to be changed as well as the new
characters.

Special Requirements:

o The bytes to be transferred are preceded by two words in the storage area. The two words
contain the starting byte for the substring and the number of bytes to be transferred.

e A string variable or an element of a string array must have been passed as an argument for
the utility to work properly.

Calling Procedure:

1. Store the number of the starting byte of the substring to be changed into the first word of
the storage area. (Note that bytes 0 and 1 are the length word of the string)

2. Store the number of bytes in the substring into the second word of the storage area.

3. Load register A with the address of the storage area.

Communication Between BASIC and Assembly Language 125

4. Load register B with the address of the parameter declaration.

5. Call the utility.

Exit Conditions: There are no error exits from the utility, so it always returns to the
instruction following the call.

For example —

In this example, Value is the storage area containing the string to be transferred. Since 2 has
already been generated and stored in the first word, and 10 in the second, the first 10 bytes of
the string are changed. Why was the value 2 stored as the byte number? Because bytes in a
string are numbered starting with 0, and bytes 0 and 1 contain the length of the string (see
“Data Structures’ in Chapter 3).

UTILITY: Put elem_ bytes .
General Procedure: This is a combination of the ‘‘Put—element’” and ‘‘Put—bytes’’ utilities.
This utility changes a substring of an element in a string array which has been passed as an

argument. The utility is given the starting byte and the number of bytes to be transferred.
Special Requirements:

e The bytes to be transferred are preceded by two words in the storage area. The two words
contain the starting byte for the substring and the number of bytes to be transferred.

o The array information for the array must be retrieved with the “Get_info” utility before
calling this utility.

e The offset of the element in the array must be correct in the array information for the array
(word 16 returned by ‘“Get_info”’). It should be remembered that the offset of the
element is dependent upon the number of dimensions in the array and the length of each.
A calculation may be necessary to arrive at the offset when accessing multiple-dimension

arrays. The offset is in terms of number of elements.

126 Communication Between BASIC and Assembly Language

Calling Procedure:

1. Storethe number of the starting byte of the substring to be changed into the first word of
the storage area. (Note that bytes 0 and 1 are the length word of the string.)

Store the number of bytes in the substring into the second word of the storage area.
Store the element offset into the array information (word 16).

Load register A with the address of the storage area for the string to be transferred.

o &> BN

Load register B with the address of word O of the information returned by the
“Get_info” utility (see description of that utility).

6. Call the utility.

Exit Conditions: There are no error exits from the utility. It always returns to the instruction

following the call.

For example —

In this example, Value is the storage area for the string to be transferred. Since 2 has already
been generated and stored in the first word, and 10 in the second, the first 10 bytes of the string
element are changed. It is the responsibility of the software (not shown) to assure that 10

characters of valid data are stored in the remainder of the storage area.

Communication Between BASIC and Assembly Language 127

Using Common

Another way to pass information between BASIC and assembly language routines is through

BASIC’s common area.

You may recall from subprograms in BASIC that if you have a COM statement in the main
program, the locations named therein can be accessed by other BASIC subprograms and
functions through their own COM statements. Though the subprograms may change the
names, the locations are the same. The order of appearance in a COM statement is all-

important. If a main program has the statement —

and a subprogram has the statement —

then X and A are the same storage location, B and Y are the same, and C and Z are the same.

The same kind of operation is available in your assembly language routines with the COM

pseudo-instruction —

As with the SUB pseudo-instruction, the COM only serves as a preface. It is followed by one or

more parameter declarations of the same types as in the SUB —

The FIL is not permitted, since there is no corresponding item within BASIC’s COM syntax.

Each pseudo-instruction used after an assembly language COM corresponds to an item in the
COM declaration in the main BASIC program. Just as in a BASIC subprogram, the types must
agree.! However, the ANY pseudo-instruction fulfills the same function here as it does with the
SUB pseudo-instruction — to allow any type of item to be passed.

7

1 1f the types do not correspond, an error results (number 198).

128 Communication Between BASIC and Assembly Language

As with SUB, arrays are designated by following the type with an array identifier — . If the
type is ANY, the array identifier is not allowed.

Each pseudo-instruction reserves three words of memory when assembled. And, like SUB, the
words are used to contain a descriptor. The descriptors are used by the variable retrieval
utilities for fetching and storing values in the common area. THE SAME UTILITIES USED IN
FETCHING AND STORING ARGUMENT VALUES ARE USED FOR THE SAME PURPOSES
FOR VALUES IN THE COMMON AREA. These utilities are —

Get_info
Get_value

Get element
Get_bytes

Get _elem_bytes
Put_value

Put element
Put_bytes
Put_elem_bytes

The utilities are called in the same fashion and are subject to the same restrictions. See the
description of the utilities in the preceding sections of this chapter to determine how they are
used.

The item pseudo-instructions used with the COM pseudo-instruction can have their own labels,
just as the parameter declarations used with a SUB may have. And just as in a BASIC subprog-
ram, they need not have the same names as were given the corresponding items in BASIC. For
example, suppose the following BASIC common statement exists at the time of a call to an

assembly language routine —

then you could access Q(*) and Z$ by using these pseudo-instructions —

Note the differences in names.

Communication Between BASIC and Assembly Language 129

If the number of item pseudo-instructions in the assembly language routine exceeds the

number of items in common at the time the routine is called, an error results (number 199).

A COM pseudo-instruction sequence need only be set up once per module. Each routine within
the module has access to the information within the sequence. The three-word descriptors are

filled, and type-checking occurs, only once — at the first ICALL of a routine within the module.

Busy Bits

Overlapped processing in the 9835A /B is partially implemented through the facility of “busy
bits”’.

Each variable located in the BASIC value or common areas has associated with it two bits which
are independent of the value — a ‘“‘read’” busy bit, and a “‘write”” busy bit. Each time an /0
operation is executed that cannot be buffered, one of the busy bits is set. If a variable is having
its value changed by the [/ O operation, then the read busy bit is set. If the variable is output-
ting its value in the I/ O operation, then its write busy bit is set. If a variable is not involved in a
pending I/ O operation both bits are cleared. When the I/ O operation is completed, the busy

bits for the variables involved are cleared.

When an [/ O operation is encountered during execution of BASIC statements, the appropriate
busy bits are set and a request is made by the operating system for the resources to satisfy the
operation. Until that operation is complete, BASIC (in OVERLAP mode), continues to execute
succeeding lines in the program until it encounters a statement which contains variables with

busy bits that are set.

If the statement is attempting to use the value of a variable and its read busy bit is set, then the
further execution of the statement waits until the busy bit is cleared. The same is true for a
statement attempting to change the value of a variable when either its read or write busy bit is
set. When the [/ O operation completes, the busy bits are cleared and the waiting statement is

executed.

In short, overlapped processing uses busy bits as a signal as to whether a statement can be

executed or not.

130 Communication Between BASIC and Assembly Language

If an ICALL statement is executed with overlapped processing, it is possible that a BASIC
variable in the common area may be ‘“‘busy’’ when the routine wants to access it. (The busy bits
of variables passed as arguments are checked — and are non-busy — before the ICALL is
executed.) Although it is still possible to access the variable without regard to the status of the
busy bits, frequently that is not a desirable programming approach. You may on occasion want
to check the value of the busy bits when you suspect the user of the routine may be using
overlapped processing.

Busy bits are checked from an assembly program using the ‘“‘Busy’’ utility to be described
shortly. If you are checking the bits for a busy condition, and the busy condition is set, it
remains set throughout the time you are in the assembly routine. For it to become un-busy, you
must exit the routine and permit the operating system a chance to perform the [/ O operation
and clear the busy bits.

For example —

If the Sort routine exits, setting Busy to O if a busy condition is not encountered, and to
non-zero otherwise, this is a tight loop which keeps trying to execute Sort until the common
variables which are busy become un-busy and it can proceed on its way. By exiting the routine
after each unsuccessful attempt, the operating system is given an opportunity to perform the

1/ 0O operation which has the variable(s) tied up.

UTILITY: Busy

The Busy utility checks the status of the busy bits of a variable in BASIC’s common area. It is
not necessary to check the busy bits of a variable passed as an argument since all arguments are
checked upon calling a routine (and the call is executed only when all the arguments are not
busy).

General Procedure: The utility is given the location of the common declaration for the vari-

able. It returns the value of the busy bits for that variable into the A register.

Special Requirements: This utility should only be used for variables in common.

Communication Between BASIC and Assembly Language

Calling Procedure:

1. Load register B with the address of the pseudo-instruction of the common declaration to

be checked.
2. Call the utility.

Exit Conditions: The utility returns the busy bits in the A register. The ‘‘read’’ busy bit is in bit
0 and the ‘“‘write” busy bit is in bit 1. The other bits are not disturbed.

In the following example, if any of the busy bits among three common variables is set, a flag is

set and the routine is exitted —

131

132 Communication Between BASIC and Assembly Language

Chapter 7
Table of Contents

I/ 0 Handling

Peripheral-Processor Communication- -« -« -o i oii i 133
[T ACES -« - - o ottt e s 134
Registers - - .. . oo 134
Select Codes . - - - v it e e 134
Status and Control Registers 136
Statusand FlagLines - . -« ..o 137

Programmed [/ Oo 138

Interrupt [/ O o 138
PrOMHES - - - o o oo 140
Interrupt Service Routines and Linkage. oo oo 140
A CCSS . - - v v o e e e 141

Utility: IST_@CC@SS -+« vt 143
State Preservation and Restoration............ oo 145
Indirect Addressingin ISRs - 146

Direct Memory Access (DMA) 147
DMA Registers . - - 148
DMA Transfers . . o - oo e e e e 149

BASIC Branching on Interruptsi i 150
ON INT Statement. . - oo ot i P 150
Signallingo 151
Additional Pre-Defined Symbolso 153
Prioritizing ON INT Brancheso i 153
Environmental Considerations . -« - <.« v covurinia [P 155
Disabling ON INT Branching -« ..o i 156

Mass Storage Activities 156
Reading from Mass Storage -o oo 157

Utility: Mm_read_start' .. 158
Utility: Mm_read xfer oo 159
Writing to Mass Storage - ..« .. .o 160
Utility: Mm_write_start ... o 161
Utility: Mm_write _test o 161
System File Information................ ... i 163
Utility: Get_file info.... oo 164
Utility: Put_file info.....o .o 165
Printing oo 166
Utility: Printer_selecto 166

Utility: Print_string oo 167

133

Chapter 7
I/ 0 Handling

Summary: This chapter describes the various techniques of handling the receiving and
sending of information to peripheral devices. Topics are: a review of [/0 machine
instructions, registers, applicable utilities, interrupts and interrupt service routines,
handshake I/ 0O, direct memory access, and mass storage devices.

A major usage for assembly language programs is to improve or customize the performance of
the 9835A / B with respect to data transfers with peripheral devices. The types of devices dealt
with are those which communicate via the various interface cards (e.g., HP98032, HPIB, etc.).
The types of [/ O which the assembly language supports are programmed (handshake-type),

interrupt, and direct memory access (or DMA).

A number of detailed examples have been provided demonstrating the various types of /O on
different interfaces. These examples can be found in Appendix H.

Peripheral-Processor Communication

All 1/ 0, except for that to the internal devices (tape cartridge, keyboard, printer, CRT or SLD),
necessarily takes place through the ““backplane”. The backplane is that physical area of the

machine where the interface cards are inserted (also known as the [/ O “‘slots’’).

1/ 0 Slots

Figu’re 8. Location of 1/ O Slots (Backplane)

7,

134

[/ 0 Handling

The backplane serves as an intermediary between the processor and the peripheral interfaces.
The internal addressing of the backplane is transparent, both to the interfaces and to the

programimer.

Interfaces

The processor does all its talking, through the backplane, to peripheral interfaces, never di-
rectly to a peripheral itself. An interface is a complex electronic circuit which provides mechani-
cal, electrical, data format, and timing compatibility between the 9835A /B and the peripheral
device to which it is connected. From a programmer’s point of view, the primary task of an
interface is to provide a means of exchanging data between the 9835A / B and the peripheral. A
well-designed interface isolates the programmer from the details of electronics and timing,

appearing as a simple ‘‘black box’’ through which information is exchanged.

The processor can talk to as many as 14 peripheral interfaces through the backplane. Each can
be talked to individually, and there may be a mix of peripherals using programmed, interrupt,
or DMA types of transfers.

Individual [/ O operations (i.e., exchanges of single words) occur between the processor and
one interface at a time, although interrupt and DMA modes of operation can be programmed to

allow automatic interleaving of individual operations.

A peripheral is addressed through a select code and a transfer occurs through four special

registers reserved for the purpose. These will each be discussed shortly.

Discussion of the techniques and methods presented in this chapter uses the common HP
interfaces as examples. A full discussion of the operation of these interfaces can be found in the
Interfacing Concepts manual (HP part number 09825-90060) and also from your Sales and
Service office (listin Appendix K).

Example programs utilizing various 1/ O techniques with a number of the standard interfaces

can be found in Appendix H.

Registers
All 1/0 operations go through a set of four registers maintained by the 9835A/B. The

four — R4, R5, R6, and R7 — are the sole means of communicating data between the proces-
sor and peripheral interfaces. While the registers are actually on the interface cards, they may
be thought of as being in the computer memory. This makes the cards themselves accessible by

simple memory referencing instructions.

I/ O Handling

The 9835A /B sees the registers as single-words and always sends or receives a full word of
data when it references one of them. If a particular interface utilizes less than the full sixteen bits
(when exchanging 8-bit extended ASCII data bytes, for example), then the most significant bits
(8 through 15) are received as zeroes. On output, if fewer than 16 bits are utilized by the
interface, it ignores the most significant bits. The value of these bits, in this case, is a ““don’t

care” (i.e., may be any pattern of ones or zeroes).

All of the HP 98030 series of interface cards use the registers as follows —

Register On Input On Output
R4 Primary Data In Primary Data Out
R5 Primary Status In Primary Status Out
R6 Secondary Data In Secondary Data Out
R7 Secondary Status In Secondary Status Out

The R4 register, then, is almost always used for data transfers. R5 is always used for status and
control information. The ‘‘secondary” registers — R6 and R7 — perform the indicated
functions only nominally. The exact interpretation as to how the register is used depends upon
the interface card being used (see the Interfacing Concepts manual for details).

In order to give some specific examples for using the registers, the 98032 16-Bit Parallel
Interface (sometimes called General Purpose Input/Output — GPIO) is used. This card

defines the secondary registers as —

Register On Input I On Output
R6 High-Byte Data In High-Byte Data Out
R7 (unused) Trigger

Select Codes

As mentioned earlier, more than one interface card may be connected to the 9835A/B. It
becomes necessary, then, that there be a mechanism whereby a particular interface can be
chosen to respond when an /0O register is referenced for either input or output. This

mechanism is the Peripheral Address Register (Pa).

135

136

[0 Handling

Pa holds a binary number in the range 0 to 15 (utilizing only the lower four bits of the word, 0 to
3). Each interface has an externally-settable select code switch which can also be set to a value
between 0 and 15. However, since select codes 0 and 15 are reserved for the internal printer
and tape cartridge unit, respectively, the permissible select code settings are 1 through 14.

Whenever an operation to one of the 1/0 registers is performed, the 9835A /B makes the
contents of the Pa register available to all the interfaces connected to the backplane. Each card
compares the value with its own select code. If they match, the interface responds to the
operation.

So, for example, if the following statements are executed in turn —

then a word of data is read from the interface card set to select code 8. (The data was read in the
third line; this is discussed in ‘“‘Programmed [/ O” below.)

The label “Pa” is reserved by the assembler for the Peripheral Address register.

Status and Control Registers

The primary purpose of any interface is to allow data to be exchanged between the computer
and the peripheral device to which it is connected. But HP’s 98030 series of interface cards are
even more versatile, possessing a programmable capability of their own. This in turn provides
optional capabilities with the card that can be set and changed by control instructions from the
9835A/B. (For details on what capabilities are provided, consult the Interfacing Concepts
manual.)

The programming of the interface is done by the 9835A /B using the R5 register. Some of the
interfaces use other registers for extended control bits (these are also described in the Interfac-

ing Concepts manual).

Interface cards can also return information to the 9835A / B about which optional programming
features are currently selected. This information, called the status byte, is obtained through an
input operation using register R5. The status byte (8 bits) is determined solely by the charac-
teristics of the interface card being addressed in the Pa register. Again, information on particu-

lar cards can be found in Interfacing Concepts).

170 Handling 137

Remembering that these registers are not really memory locations, but instead are registers on
the card being addressed by the Pa register, storing information to these locations is not the
same as storing to other memory locations or registers. For example, storing a value in R5 to set
the control register sends the information to the addressed interface. Later, if you were to read
a value from R5, the information you sent would not be what is returned. Instead, the contents
of the status register in the interface would be returned.

Status and Flag Lines

Whenever an 1/ O register is accessed, the interface with the same select code as is in the Pa
register responds. The primary response depends upon the nature of the interface and which
register is accessed (see discussion above). However, in all cases there is a secondary effect.

Part of every interface’s response is to set or clear the Status and Flag lines.

The Status line (not to be confused with the status register discussed above), is a single bit
indicating whether the interface is operational or not. By inclusion, this can also mean the
status of the actual peripheral to which the interface is connected. For example, if a peripheral
device has a line coming from it that indicates its power is on, it could be connected to the
Status line in the interface. Then the program could quickly determine whether the device is
turned on or off. As another example, a printer might have the Status line connected to the
out-of-paper indicator (shouid it have one) to indicate to the program when it is inoperable

because of lack of paper.

The Flag line is a momentary ‘‘busy /ready’ indicator used to keep the computer from getting
ahead of the peripheral. The line shows that the interface is busy processing the last task given
it by the 9835A/B or that it is ready for another operation. If the line is set, it indicates
“ready’’; if the line is cleared, it indicates ‘‘busy’’. For example, if the computer has a sequence
of ASCII characters to send to a slow printer, it sends one character (making the Flag line
“busy’’) and then waits for the Flag line to go “‘ready’’ again before sending the next character.

There are four instructions, part of the [/ O group, which can check these lines —
Skip if Flag line is set (i.e., ‘‘ready”’’)

Skip if Flag line is cleared (i.e., “busy’’)
Skip if Status is set (i.e., ‘‘operational’’)

Skip if Status is cleared (i.e., ‘“non-operational’’)

These instructions have the capability of skipping up to 31 locations in a forward branch, up to
32 locations in a backward branch, or to the same instruction.

4

138

[0 Handling

Programmed I/ O

Programmed [/ O is the process whereby software controls the transfer of information between
memory and an interface. In the process the program must decide when and where to make the
transfer, how to make it, and how much information to transfer. The decision even to originate

the transfer comes under program control.

The Status line can be used to determine the availability of an interface. The interface is
selected, under program control, by the contents of the Pa register. Then the Status line is
checked to see if the interface (and by inclusion its associated peripheral) is operational.

After an operational interface has been chosen, the Flag line can be used to determine when
the interface (i.e., peripheral) is ready for a transfer and when it has not finished with the

previous transfer.

With sufficient checks of Flag and Status before and between 1/ O operations, it is possible to
eliminate initiating an [/ O operation to an interface which isn’t ready for it. For example, a

simple output driver for the 98032 interface is —

Interrupt I/ O

Interrupt /0 is a means of allowing control to pass temporarily to an assembly language

routine other than the routine (BASIC or assembly language) currently executing. The
“interrupt”’, which causes the control to be passed, is detected through the backplane and is
associated with a particular interface. After the ‘“‘interrupt service” routine completes its tasks,

control is passed back to the original routine.

/0 Handling 139

The process looks something like this —

“original”
routine

interrupt
service
routine

interrupt _;
detected

/ {f execution

£ ¢
a

-f——0 0 o

The sequence of events in interrupt [/O can be detailed as follows —

1. The interface sends a request for service to the backplane which passes it along to the

processsor.

2. The processor alters the flow of execution so that the routine associated with that inter-
rupting source can be executed. The processor saves its place in the interrupted routine

so that it can later return to it.

3. The interrupt service routine is executed, performing whatever functions are desired.
Frequently these functions involve some form of programmed I/ O or direct memory
access. The service routine may signal an end-of-line BASIC branch, indicating to

BASIC that some condition occurred (discussed below).

4. The service routine returns the processor to the interrupted routine so that the “‘original”

process can resume.

The uses for interrupt [/ O are so diverse that it is difficult to generalize about them. However,
one particular use is fairly well-defined and of general applicability — data transfers.

Interrupt I/ O is normally used in data transfers whenever a particular data device has a transfer
rate which is significantly slower than that of the computer. Since the 9835A /B has a transfer
rate of around 10 000 characters per second, peripheral devices with transfer rates slower than

this number are candidates for interrupt I/ O.

The usual approach is to transfer a word to or from the peripheral device, then go away to do
some other processing while waiting for the device to interrupt by becoming ‘‘ready’ for
another transfer.

140

10 Handling

Priorities
Select codes are assigned hardware ‘‘priority’’ levels to control what should be processed when
an interrupt service routine is executing and another interrupt is received, or when two or more

simultaneous interrupts are received.
There are two priority levels —

High for select codes 8 to 15
Low for select codes 0 to 7
An interrupt received from a high-priority select code may interrupt a service routine which is

executing for an interrupt from a low-priority select code. But an interrupt from a low-priority

select code may not interrupt any other service routine.

Interrupt Service Routines and Linkage

An interrupt service routine is associated, or ‘‘linked’’, with a select code by the Isr_access
utility described later. This linkage establishes where the interrupt service routine resides, and

to which select code it applies.

An interrupt service routine may be placed anywhere in the ICOM region. The routine typically
does one or more of the following —

o Talks to the interface (i.e., satisfies or acknowledges the interface’s interrupt).

o Passes data to (or retrieves data from) the rest of the program, when appropriate.

o Breaks the linkage, if desired.
The method of talking to the interface depends upon the type of interface. Some devices or

applications do not require the passage of data; the acknowledgement of the interrupt is usually
the desired effect in such cases.

The linkage can be “broken’’ (or terminated) during an interrupt service routine by executing
one of two statements. If the linked select code is high-priority, the statement is —

JSM End_isr_high,I

[0 Handling 141

If the linked select code is low-priority, the statement is —
JSMEnd isr_low,I
The service routine is exited with a RET 1 instruction.

Here is an example of a short interrupt service routine which simply reads a word of data from
the interface —

NOTE

Utilities cannot be called from an interrupt service routine.

Attempts to do so may lock up the machine.

Access

The operating system (OS) contains a mechanism to regulate requests for hardware capabilities
in order to eliminate conflicting uses of these capabilities. For instance, since there is only one
DMA channel, it is necessary that there be a mechanism to prohibit two simultaneous DMA

transfers.

The OS mechanism which regulates the use of DMA (and also interrupt) transfers either grants
or does not grant what is called ‘“‘access’. Before starting either an interrupt or DMA operation,

access should be requested from the operating system.

Another example — suppose a device operating on a high priority select code has a relatively
slow data rate. This is an ideal situation in which to use interrupt driven [/ O. Suppose further
that the device operates in such a fashion that the data must be transferred within a fixed time
period following its issuance of an interrupt or the data is lost (the internal tape drive is such a
device.) If there are other interrupt type transfers operating concurrently on other high priority
select codes, it may not be ;;ossible to service our slow device within the necessary time frame.

When the operating system grants access, this type of conflict is impossible.

142 [/0 Handling

Users of the assembly language system are required to request access from the operating
system. The OS grants access if granting this access does not compromise any previously

granted access.

Devices such as that discussed above which require interrupt service within a specified time
frame are called ‘‘synchronous’, and need ‘‘synchronous’’ access. Devices with no such time

constraints are called ‘‘asynchronous’, and need ‘“‘asynchronous’’ access.

The regulation of access incorporates the following points —

e When the operating system grants synchronous access to an operation, it is guaranteeing

that the requesting process will have its interrupts serviced with maximum priority.

e DMA conflicts with synchronous access since DMA’s cycle stealing causes the processor to

run slower and could thus compromise a synchronous process.

e Synchronous access on a low priority select code in conjunction with asynchronous access
on a high priority select code is conflicting since the asynchronous device could interrupt
the synchronous ISR, thus compromising the timing requirements of the synchronous
device.

e Synchronous and asynchronous access on the same priority level is also conflicting.
Remember an interrupt request on the same priority level as a currently executing ISR will

not be processed until the executing ISR completes.

The following table summarizes the granting of access —

Access Already Granted
Abortive ASYN DMA SYN

pr—— —— P
L H L H H L
L d
~ Abortive { ?w
8 High d! d
o Low X
2 ASYN
é, High X X
» DMA X X
Q .
S SYN { High d X X X
< Low |d | d | x| x x | x

blank = Granted
x = Not granted
d = Dangerous, but granted

170 Handling 143

BASIC statements also obtain and release access as [/ O is performed. The following table lists

some of the ways access is used by the system:

Use Access

Cartridge Operations SYNC (HIGH select code)
Flexible Disk Operations DMA

PRINT, PRINT USING ASYNC

Plotter Drivers ASYNC

CARD ENABLE ASYNC
ENTER/OUTPUT INT ASYNC
ENTER/OUTPUT DMA DMA

ENTER/OUTPUT FHS* DMA

In general, single BASIC statements could cause access to be granted and released several
times. For example, the cartridge operations obtain and release synchronous access once for

each physical record transferred. \

UTILITY: Isr_access

This utility is used to request access and, if the access is granted, to create the linkage between
an interrupt service routine (ISR) and a select code. Pressing RESET (& G283) during execu-
tion of the utility may cause a SCRATCH A to be issued.

General Procedure: The utility is told where the ISR resides and what kind of access is
required. If access is granted, it returns successfully. If access is not granted immediately, it
keeps trying periodically until it is successful or until a specified number of attempts have been
made (in which case it returns unsuccessfully).

Special Requirements: The B register must contain information as follows —

Bits Description

0—3 | Select code to be linked to the ISR
4-5 | Access code (see next page)

8—14 | Number of attempts to be made before aborting

1 In addition to obtaining DMA access (which in this case is used just to ensure there is no synchronous access granted), the FHS
drivers disable all interrupts during the actual transfer loop.

144

I/0 Handling

The access codes are —

Abortive access
Asynchronous access with programmed [/ 0O
Asynchronous access with DMA

w N = O

Synchronous access with programmed 1/ 0
Calling Procedure:

1. Load register A with the address of the ISR.
2. Load register B with the information described above.

3. Call the utility.
Exit Conditions:

RET 2 Ifthe attempt at linkage is successful, the utility returns to the second word following
its call. Register Pa is set to the select code; if access code 2 was specified then
Dmapa has also been set to the select code.

RET 1 Ifthe attempt at linkage is unsuccessful, the utility returns to the first word following

the call. Register A contains an indication of the type of difficulty encountered —

— 1 Access couldn’t be obtained after specified number of attempts.

— 2 Select code is still linked to an assembly language ISR.

Note: Access code 0 (abortive access) should be used with caution. An interrupt routine with
abortive access can exist on the same priority level as an interrupt routine with synchronous
access. If the abortive routine is in progress when an interrupt occurs requiring the synchronous
service routine, the abortive routine will finish before the synchronous routine can be serviced.

The timing requirements of the synchronous routine might thus be violated.

Access code 0 is intended to be used by routines that will be executed only extremely
infrequently. For instance, if the 9835A /B is monitoring a potentially dangerous
manufacturing process, it may be necessary to have an interrupt service routine to shut down
the process when something goes awry. This could be accomplished with an abortive routine.
The advantage (and also the reason for the previously mentioned caution) of access code 0 is
that no other modes of access are prohibited by its use. Thus, the infrequently used routine will
not prevent another routine from getting the type of access it needs.

[/0 Handling 145

As an example of the use of the Isr _access utility, suppose the ISR from page 141 is to be linked
to select code 2 for asynchronous access. The following would be a sequence to establish such
a linkage —

State Preservation and Restoration

When an interrupt is detected and an interrupt service routine is called, the processor automati-
cally saves the state of some of the registers so that their values can be restored upon return
from the ISR. Other registers are left alone and if your service routine uses them, it is up to your

ISR to save them and restore them before returning from the ISR.
The registers which are automatically preserved are —

A
B
C
Cb
P
Pa

Also, the state of the Overflow and Extend processor flags are preserved and restored before
the return from the interrupt.

146 1,0 Handling

If your ISR contains any of the following types of instructions —

Indirect addressing
Stack group

CLR

XFR

and the operand of the instruction(s) is an address in the ICOM region, then it is necessary that
the following instruction sequence be executed in the ISR before any such instruction is

executed —

Then, before the ISR exits, and after the affected instructions have been executed, the follow-

ing sequence must be executed — -

Indirect Addressing in ISRs

Indirect addressing in ISRs can produce anomalies unless the following rules are followed —

1. If indirect addressing is employed with the operand being an address in the ICOM
region, one of the processor registers must be preserved. For the method of doing this,

consult the ‘“State Preservation and Restoration” section immediately above.

I/0 Handling 147

2. Ifindirect addressing is used in a JMP or JSM (including any jumps to external symbols
or symbols more than 512 words away from the current instruction, both of which have
implied indirect addressing), then the most significant bit must be set in the address. For

example, instead of —

in an ISR the procedure must be —

JEM Club 68

Direct Memory Access
(DMAY

Direct memory access (DMA) is a means to exchange entire blocks of data between memory
and peripherals. A block is a series of consecutive memory locations. Once started, the process
is automatic; it is done under processor control, regulated by the interface. Since only the

98032A interface supports DMA, the following discussion is in terms of that interface.

To the peripheral, the DMA operation appears as programmed [/ O. The transfer, however, is
actually performed by special DMA hardware. Information regarding the transfer is stored in
the DMA registers for the DMA hardware to use. This information is the select code, the initial
memory location, and the number-of words to be transferred. The memory location register

and the count register are successively adjusted after each word transferred until the transfer is
complete. Upon completion of the transfer, the interface and the DMA hardware stop

automatically.

148

[/ 0 Handling

The direction of the transfer is specified before the transfer takes place. It can be specified as
either “inward” (i.e., from the peripheral to memory), or ‘“‘outward” (i.e., from the memory to

the peripheral). To set the direction outwards, the instruction —

is used. To set the direction inwards, the instruction —

is used.

DMA Registers

There are three registers which contain information used by the DMA hardware — Dmapa,
Dmama, and Dmac. Before any DMA transfer takes place, the appropriate values must be

loaded into these registers.

Dmapa contains the peripheral address of the device requesting DMA. Only the least signific-
ant bits of the register specify the select code which is to be the peripheral side of the DMA
activity. During DMA transfers, the address bus takes its address from the Dmapa register rather
than Pa as in other 1/ O transfers. The value is supplied to Dmapa by the Isr _access utility when
it grants DMA access.

Dmama contains the address of the first word in memory (i.e., lowest address) where the data
transferred is (or will be) stored. After each word transferred, this register is automatically

incremented.

Dmac is the count register for a DMA transfer. Before the transfer begins, it should be set to
n-1, where n is the number of words to be transferred. After each word transfer, the count is
decremented. If, during a word transfer, the value of Dmac is O (meaning that this is the last
word to be transferred), the processor automatically informs the interface that the DMA
operation will be complete after the present word is transferred. In the case of inputs where the
amount of transferring data is unknown in advance, Dmac should be set to a very large number

in order to disable the signal to the interface.

10 Handling

DMA Transfers

DMA transfers are accomplished with six distinct actions.

First, the Isr_access utility is used to obtain access to the DMA channel and to set up the ISR

linkage used when the transfer terminates.

Second, the direction is set using an SDO or SDI instruction. If no direction is set, then any

previous setting of the direction prevails.
Third, the appropriate values are stored into the DMA registers.

Fourth, the DMA requests are enabled using the instruction —

Fifth, a ““Start DMA” command is given to the interface using programmed 1/0. With the
98032 interface, this command is the value 320s using the Primary Control register (R5-Out).

Finally, when the DMA transfer is complete, the interface generates an interrupt which causes
the processor to branch to the designated ISR. This ISR should disable the card, and then
disable the DMA mode with the instruction —

The following is part of an ISR which demonstrates a typical set-up for a DMA inward transfer

(in this case 1K words placed into a buffer in memory) —

149

150

[/0 Handling

BASIC Branching on Interrupts

The handling of interrupts can be integrated into BASIC programs by using the ON INT
statements. The object is to allow the flexibility of combining the high-level features of BASIC
with the capabilities of assembly language in asynchronous [/ O applications. And since ISRs
cannot use the system utilities, in particular those that access a BASIC variable, a means of

taking action on an interrupt after completion of the ISR is a necessity.

ON INT Statement

The ON INT statement is an executable BASIC statement which acts in a similar fashion to the
ON KEY statement (see the 9835A /B Operating and Programming Manual). The statement
allows the BASIC programmer to specify where, in his BASIC program, to branch whenever an

interrupt is signalled for the select code he specifies.
As with the ON KEY statement, there are three ways these branches can be taken —

.. {subprogram name}

{line identifier}
“{line identifier}

Whenever an interrupt is signalled from an ISR for a particular select code, if ON INT has been
executed for that select code, then at the end of execution of the BASIC line which was

executing when the signal came, the indicated branch in the ON INT is taken.

In the GOTO version, the branch is ‘“‘absolute’’, which is to say that the program goes to the
line indicated and picks up its execution there, forgetting where it was before. This has the
effect of an “abortive” type of branch, and should only be used by the BASIC programmer
when he wants the program to resume execution at some pre-determined point after handling
an interrupt, without regard to where the program was before the interrupt occurred.

In the CALL and GOSUB versions, the branch is only temporary. After the subprogram or
subroutine has been executed and the SUBEXIT, SUBEND, or RETURN (as appropriate) has
been executed, then the program returns to the line following the one where it was interrupted.
This is the same as if the CALL or GOSUB was in between the interrupted line and the one
following it.

The {line identifier} and {subprogram name} in the CALL, GOSUB, and GOTO statements are

the same as elsewhere in BASIC, except that a CALL may not have any parameters.

Chapter 8
Table of Contents

Debugging

Stepping Through Programs 170
Individual Instruction Execution 170
Setting Break Points 174
Simple Pausing 174
Transfers e 175
Environments e 176

Data Locations 177
IBREAK Everywhere e 178
Number of Break Points, 179
Clearing Break Points 179
Interrogating Processor Bits 180
Protected Memory e 180
DUMDS e 181
Value Checking 183
Functions R 184
DECIMAL . 184

OCT AL 184

TAD R . 185

IMEM | 186

[/0 Handling 151

The {select code} specified in an ON INT statement restricts the branching action to occurring
only when the assembly language triggers the ON INT condition for that select code. The
interrupt may have occurred in actuality on another select code. This can be a way of allowing
more than one branch for interrupts from a single interrupting device.

As an example —

Should anywhere in the program an interrupt occur, causing an assembly language interrupt
service routine to be executed, that assembly language ISR has the capability to cause either
the branch of line 100 or the branch of line 110 to be taken. Thus, an assembly language ISR
signals BASIC either to print an intermediate result or to note that all data has been processed.

Signalling

The {select code} specified in an ON INT statement restricts the branching action to occurring
only when an interrupt is ‘‘signalled’’ for that select code. In actuality, an interrupt may not
have occurred on that select code at all. Conversely, an interrupt may occur on the select code,
but BASIC and its ON INT condition-may never hear about it. It is necessary for the ISR which
does the actual handling of an inter}y‘pt to inform, or ‘‘signal’’, thevoperating system that the
interrupt occurred and trigger the ON INT conditions which may be set up at the time.

The responsibility of the ISR to signal the ON INT is also an opportunity. This signalling allows
you in an ISR to decide whether or not you want BASIC to know about the interrupt. If you do
not want BASIC to know, simply do not signal the condition. The signalling also allows you to
signal different interrupt conditions. An example of doing this might be a case where, after an
interrupt, a peripheral indicates whether it wants to input or output data. Your routine could
signal one select code to execute an input routine and signal another select code to execute an

output routine.

To signal an ON INT, your ISR must execute the following instructions —

152

[/ 0 Handling

Mask necessarily contains the select code to be signalled. Rather than containing the number of
the select code, however, it has the bit set for the appropriate select code. For example, if you
are signalling select code 2, you set bit 2 to 1 in Mask and leave the others 0. Similarly, if you
are signalling select code 5, you set bit 5. Thus, the statement containing Mask in the above

could just as easily be a literal. For example —

would signal select code 5.

When you want to signal a select code after others have already been signalled, a slightly

different instruction sequence is required —

=
-+
.
M
e
[11]
t
M
[n}
-+
m
[x]
[N
M

Mask is the same as above.

As a further example, suppose you want both to signal BASIC when a device sends a line-feed
character to the computer, and to terminate the ISR’s linkage. Then the ISR might appear as —

I/0 Handling 153

Additional Pre-Defined Symbols

Isr_flagand Isr_psw are pre-defined symbols in the assembler. Also pre-defined are two other
symbols used by the assembler — End_isr_low and End_isr_high. These symbols may not be
redefined.

Prioritizing ON INT Branches

Since more than one interrupt may occur while a single BASIC statement is executing, it is
possible that by the time the line finishes there may be a number of ON INT branches waiting to
be executed. In such situations you may want to assure that some ON INT branches are taken
before others, or that you finish one routine (caused by an ON INT GOSUB or ON INT CALL)
before you start another. This can be achieved by using the {priority} option of the ON INT
statement, thereby ‘‘prioritizing”’ the branching caused by interrupts.*

There is a “‘system priority’” for ordering this interrupt branching. For an ON INT to be honored
at the end of a BASIC line, its priority must be greater than the current system priority.

Initially, the system priority is set to 0. When a BASIC line finishes, and there is at least one ON
INT branch pending which is greater than the system priority, then the system takes the branch
associated with the ON INT with the greatest {priority}. The values assigned to {priority} may be
any integer numeric expression from 1 to 15. If {priority} is omitted,.1 is assumed.

If the ON INT branch to be executed is a GOTO, then the system priority level is unchanged.
But if the branch to be executed is a GOSUB or a CALL, then the system priority level is
changed to the priority level of the ON INT. Whenever the subroutine or subprogram is finished
executing, then the previous system priority level is restored.

Thus, with the GOSUB and CALL versions, there are two effects involving priorities —

e The subroutine or subprogram is not allowed to execute until its priority is the highest one

pending.

e Whenever the subroutine or subprogram is executing, it locks out any other interrupting

branches unless they have a higher priority.

7
1 This “prioritizing” also holds between the various types of end-of-line branch statements that have the priority parameter.
Thus an ON KEY with high priority is executed before an ON INT with low priority.

154 1,0 Handling

With the GOTO version there are also two effects, slightly differing —

e The branch is not taken until it has the highest priority of all pending branches.

e The execution of the branch does not lock out any other branches, so that at the end of
the line to which it branches, if there are other pending branches, the highest one of those

is executed.

For example, suppose there are these four statements in effect —

and also suppose that at the end of some BASIC line in the program, an interrupt had been
received from all four of the interfaces involved. Then the process of dealing with them pro-

ceeds like this —

EVENT NEXT ACTION SYSTEM PRIORITY
Reaches end of current GOSUB Routine_7 Changes from 0 to 15
BASIC line
Finishes Routine_7 GOSUB Routine_5 Changes from 15 to 9

Suppose at this point another interrupt is received from select code 7.

EVENT NEXT ACTION SYSTEM PRIORITY

Reaches end of current GOSUB Routine_7 Changes from 9 to 15
BASIC line in Routine_ 5

Finishes Routine_7 Returns to interrupted Changes from 15to0 9
point in Routine_5

Finishes Routine_ 5 GOTO 1000 Changes from 9 to 0

Finishes with line 1000 GOTO Routine_4 Stays at 0

[/0 Handling 155

Environmental Considerations

Changes in program environment, i.e., calling a subprogram or returning from one, can affect
whether an ON INT is in effect or not.

Once executed, the CALL version of an ON INT is always in effect, whether in the main
program or in any subprogram, until it is redefined by another ON INT or is specifically

disabled (see below).

In the GOSUB or GOTO versions, the statement is in effect only in the same program environ-
ment. This is to say that if you have executed an ON INT statement in your main program, then
it is effective only while your program is executing part of the main program. The instant the
program goes into a subprogram (through a CALL statement), the statement is no longer
effective until the execution returns to the main program. Similarly, if you define an ON INT in
a subprogram, it is effective only while the program is executing that subprogram.

A side-effect occurs here when you use the CALL version of an ON INT. By calling the
subprogram with an ON INT, you have the effect of locking out the other interrupts, except
those which are executed in the subprogram itself and other CALL versions. This is regardless
of priority. In the priority example in the previous section, if the ON INT#5 had been a CALL
instead of a GOSUB, then the second interrupt from select code, 7 would not have been

acknowledged until the subprogram had finished.

Since recursive calls of subprograms are possible, it is also possible that many calls to the same
subprogram may be stacked up because an interrupt from a different select code with a CALL
version of an ON INT in effect may be received while processing the CALL caused by a

previous interrupt.

156

[/ 0O Handling

Disabling ON INT Branching

The branching enabled by an ON INT statement can be disabled using an OFF INT statement
for the same select code. It is effective for the ON INT statement within the same program
environment (main program or subprogram) or for the CALL versions of the ON INT within any
environment.

The statement has the form —
OFF IMT # {select code}

where {select code} is a numeric expression for any valid interface select code between 1 and
14, inclusive.

The effect of the OFF INT statement is to disable the ON INT for that select code within the

current environment. If there is no ON INT statement currently in effect for the select code,
then the OFF INT has no effect.

The DISABLE and ENABLE statements work the same way for the ON INT statements as they
do for the ON KEY statements. They should not be confused with the DIR and EIR machine
instructions, which disable and enable the interrupt system.

Mass Storage Activities

For devices meeting the operating system’s criteria for mass storage peripherals, the reading

and writing of records is simple.

If a device has been specified in a MASS STORAGE IS statement in BASIC, as in —

or is capable of being so specified, then it is possible to use utilities to access it.

There are two utilities involved in reading from a mass storage device — Mm_read _start and
Mm_read_xfer — and there are two utilities involved in writing to a mass storage device —
Mm_ write_start and Mm_ write_test. The reading utilities are always used together. So, too,
are the writing utilities.

I/ 0O Handling 157

Reading from Mass Storage

The flow of data to and from a mass storage device is buffered. For each device there is a
“device buffer’”” in memory which holds data corresponding to a physical record (256 bytes).
Device buffers are dynamically allocated by the operating system and their actual locations at

any given time are of no concern.

To get information from a mass storage device into its device buffer takes the Mm_read _start
utility. Then to get the information out of the buffer and into your user space takes the
Mm_ read_ xfer utility. The transfer of data, therefore, looks something like this —

Mm - read - xfer

User
Space

Device

Mass Mm - read - start
g Buffer

Storage

The utilities accomplish their purposes with the help of two locations containing vital informa-
tion for their use. The first is the Mass Storage Descriptor (MSD) and the second is the Mass
Storage Transfer Identifier (MSTID).

The MSD is three words in the ICOM region which contains the following information —

WORD
0 MSUs

lower 16 bits of
record number

don’t | upper 7 bits of
care | record number

15..7 6 0

Py

2

This information must be provided by your program. You must determine this information in
advance of attempting the reading operation. The msus is of the form —

Unit HPIB Device Select
Number Address Type! Code
| T I [| I | | | | | I
| | | L1 | | | | |] I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

7’

1 The device type is the ASCll code for the type minus 1008.

158

[/ 0 Handling

The MSTID is a single word. The information in it is returned by the Mm_read _start utility and
used by the Mm_read xfer utility.

The usual procedure in reading a record from mass storage (which is all that can be read at one
time) is to call the Mm_read start utility and then, if all goes well with that, to call the
Mm_read xfer utility. Because the latter utility may have to wait on the operating system or
the device, it is possible the utility may return without having completed the transfer. In that
case, it is your option either to loop back and keep trying, or to do something else and try again
later.

UTILITY: Mm_read_start

General Procedure: The record number is determined, then the transfer of the record’s
contents is made from the device to the device buffer. If the buffer allocation causes a memory
overflow, there is an error.

Special Requirements: The record number and msus must be loaded into the MSD in ad-
vance of the call. There must be a stable location (not changed by other activities) for the
MSTID to be held.

Calling Procedure:

1. Store the msus and record number into the MSD area.
2. Load register A with the address of the MSD area.
3. Call the utility.

Exit Conditions:
RET 1 Occurs if there is a memory overflow during execution of the utility.

RET 2 Occurs if all went normally. Register A contains the MSTID. This should be im-
mediately stored in the location reserved for it.

I/ 0 Handling

UTILITY: Mm_read xfer

General Procedure: The MSTID is used to retrieve the record from the device buffer. The

record is stored into a location set aside for the purpose.

Special Requirements: The MSTID must be available from a previous call to
Mm_read_start. A location of 128 consecutive words must be set aside to hold the contents of

the record when they are returned by the utility.

Calling Procedure:

1. Load register A with the contents of the MSTID.
2. Load register B with the address of the storage location for the data.
3. Call the utility. The transfer may not be completed on the first or subsequent calls (see

exit conditions). In that case, to successfully complete the transfer, all three steps must

be repeated.
Exit Conditions:

RET 1 Occurs when the transfer is not completed. It is up to yo“ur routine at this point to
decide whether another attempt should be made immediately, or whether some-

thing else should be executed (and to come back later).

RET 2 Occurs when the transfer is complete. The location specified contains the data. If
register A contains a non-zero value, an error occurred and A is the error number. In
addition to mass storage errors (80 through 99), error 19 is returned if the MSTID

parameter is invalid.

CAUTION
Pressing RESET (@@ &™) during execution of either of the

above utiities may cause a SCRATCH A to occur.

159

160 [/0 Handling

The following is an example of a typical call to these utilities to read a record from mass

storage —

Writing to Mass Storage

Writing to mass storage is very much like reading from it. The flow of data is buffered. To get
the data from the user space into the device buffer, and then to transfer the data from the buffer
to the mass storage device, the Mm_ write _start utility is used. Then a test can be made to

determine when the transfer is complete by using the Mm__write_test utility.

As with the reading utilities, these utilities accomplish their purposes with the help of the same
two locations — MSD and MSTID. They contain the same information as they do in the reading

utilities and are used in a similar fashion.

I/0 Handling 161

UTILITY: Mm_ write_start

General Procedure: The record number is determined, then the transfer of the data is made
from the ICOM region to the device buffer. If the buffer allocation causes a memory overflow,

there is an error.

Special Requirements: The record number and msus must be loaded into the MSD in ad-
vance of the call. There must be a stable location (not changed by other activities) for the
MSTID to be held. The data to be transferred must be ready (256 bytes — 128 consecutive
words).

Calling Procedure:

1. Store the data to be transferred in its location. Store the msus and record number into
the MSD area.

2. Load register A with the address of the MSD area.
Load register B with the address of the data location.

4. Call the utility.
Exit Conditions:
RET 1 Occursif there is a metnory overflow during execution of the utility.

RET 2 Occurs if all went normally. Register A contains the MSTID. This should be im-

mediately stored in the location reserved for it.

UTILITY: Mm_ write test

General Procedure: The MSTID is used to check to see if the data from the buffer has been

transferred to the mass storage device.

Special Requirements: The MSTID must be available from a previous call to
Mm_ write start.

162 1,0 Handling

Calling Procedure:

1. Load register A with the contents of the MSTID.

2. Call the utility. The transfer may not be completed on the first or subsequent calls (see
exit conditions). In that case, to successfully test for a completed transfer, both steps in

the calling procedure must be repeated.

Exit Conditions:

RET 1 Occurs when the transfer from the device buffer to the device is not completed. It is
up to your routine at this point to decide whether another test should be made
immediately, or whether something else should be executed (and to come back

later).

RET 2 Occurs when the transfer is complete. If register A contains a non-zero value, an
error occurred and A is the error number. In addition to mass storage errors (80

through 99), error 19 is returned if the MSTID parameter is invalid.

CAUTION
Pressing RESET (@™ G)) during execution of either of the
above utilities may cause a SCRATCH A to occur.

The following is an example of a typical call to these utilities to write a record to mass storage —

[0 Handling 163

System File Information

As an ASSIGN statement is executed in BASIC, a file-descriptor is created for that assignment
in the operating system’s files table. The ASSIGN statement essentially has two parameters —

the file number and the file name (including the BASIC language mass storage unit specifier).

The file number is, for all practical purposes, an offset into the files table. The file name and the
BASIC language mass storage unit specifier are translated and the critical information as-
sociated with them comprise an entry in the files table (i.e., the “file descriptor”).

The file descriptor consists of 10 words containing the following information —

Word | Description

o

Lower 16 bits of the address of the first physical record in the file
Number of logical records in the file

Current physical record number (i.e., an offset from the file’s beginning.
Current word in physical record

Size of a logical record (in words)

Mass storage unit specifier (msus)

Buffer address

Check read status (0 = off, 1 = on)

Highest 7 bits of the first physical record in the file

O 00 N O O W N

(Reserved by the operating system)

Note that words 0,5 and 7 contain the information necessary to create an MSD. You may
access a file descriptor through two utilities — Get_file_info to obtain the information, and
Put_file info to change the information.

NOTE
A files table is created for each BASIC ‘“‘environment’”’ (i.e.,
main program and subprograms). When access is made
through utilities to the files table, the table accessed is the
one associated with the BASIC environment which called the

assembly language program.

164 1,0 Handling

UTILITY: Get_file_info
General Procedure: The utility is given the file number and the location of a place to store the
file descriptor. It retrieves the designated descriptor and stores it, provided the file has been

assigned.

Special Requirements: There must be a ten-word area available for the utility to store the

information from the descriptor.
Call Procedure:

1. Load register A with the address of the ten-word area where you desire the information
to be stored.

Load register B with the file number (an integer from 1 to 10).

Call the utility.
Exit Conditions:
RET 1 Occurs if the file has not been assigned by a BASIC ASSIGN statement.
RET2 Occurs if all went normally.

Here is an example of a routine which has a file number passed to it, and then gets the file

descriptor —

1/ 0 Handling

UTILITY: Put_file info
General Procedure: The utility is given the file number and the location of the area contain-
ing the new file descriptor information. It stores that information into the files table as indicated

by the file number, provided that the file has been assigned.

Special Requirements: The new pointer information must be stored in the designated area
before calling the utility. This information must be in the correct form and location or file
difficulties may ensue. Most of the information is normally returned by the “Get_file _info”
utility and only a couple of words are changed to change the pointer in the file (e.g., the current
record and word numbers). Only words 2, 3, and 7 should be changed in the descriptor.

Calling Procedure:

1. Load register A with the address of the ten-word area where the information is stored.
2. Load register B with the file number (an integer from 1 to 10).

3. Call the utility.

Exit Conditions:
RET 1 Occurs if the file has not been assigned by a BASIC ASSIGN statement.
RET 2 Occurs if all went normally.

Here is an example where the next physical record in a file is specified —

165

166

[0 Handling

Printing

Two utilities are provided to enable you to gain access to the standard system printer —
Printer_select and Print _string.

Printer select enables you to set the standard system printer to a select code of your choosing.

Print_string enables you to print a string to the standard printer.

Utility: Printer_select

* General Procedure: The utility is given the select code to be assigned as the standard system

printer and the desired printing width. The utility makes the assignment and returns with the

previous values of both the select code and printer width.

Special Requirements: The select code value must be in the range of O through 17 for the

utility to work properly. Neither the previous nor the selcted printer should be on HPIB device.
Calling Procedure:

1. Load register A with the desired select code.
2. Load register B with the desied printer width.
3. Call the utility. ‘

Exit Conditions: There are no error exits from the utility, so it always returns to the instruc-
tion following the call. Register A contains the value of the previous select, and register B

contains the value of the previous printer width.

The utility can feasibly be used just to interrogate the current value of the printer’s select code.
However, a second call to the utility is needed in such cases to assure that the select is not

changed by the first call. So, for example —

This results in an unchanged printer specification and the values for the select code and width
being stored in the ICOM area for future use.

[0 Handling 167

Because of the possibility that a RESET (@3 Ee3), or similar interruption, may occur between
the first and second calls to the utility, it is recommended that the first call have a definite valid
value for the select code in A (as above). In that way, should there indeed be an interruption, a

valid select code for the printer can be assured.
Utility: Print_string
General Procedure: The utility is given the address of a string, and it prints that string to the

standard system printer.

Special Requirements: The string to be printed must be in standard string format (see ‘‘Data

Structures’ in Chapter 3). The string must be no longer than 506 characters.
Calling Procedure:

1. Load register A with the address of the string to be printed.

2. Call the utility.

Exit Conditions:
RET 1 If a memory overflow occurs during execution of the utility".
RET 2 If the key is pressed during execution of the utility.
RET 3 If all goes normally.

For example —

CAUTION
Pressing RESET (@23 G®) during execution of the
Print_ string utility may cause a SCRATCH A to occur.

168 1,0 Handling

Chapter 8
Debugging

Summary: This chapter describes techniques for isolating and correcting logic prob-
lems in assernbly programs. Included in the discussion are techniques for stepping
through programs, getting dumps, patching, and using the keyboard.

The assembly system has provided you with a number of BASIC language tools to help you
debug your assembly language programs during their development stages.

These tools are for run-time debugging, so your source code must have been assembled into
object code and stored in the ICOM region before attempting to use any of the debugging
features detailed in this chapter.

There are three classes into which these tools fall: stepping through programs, dumps, and
value checking. There is also an additional capability provided for the correction of some

errors — patching.

The BASIC statements available for debugging are —

and the following BASIC functions are available —

\S

170 Debugging

Stepping Through Programs

“Logic” difficulties are some of the hardest problems to solve in debugging programs. In batch
environments, the usual solution is to print the contents of variables at critical points in the
program or to print dumps. The capabilities for both of these methods are provided. However,
advantage has been taken of the interactive, ‘‘hands-on’’ nature of the 9835A /B and a feature
has been added which allows you to execute the assembly statements individually. This permits
you to examine the flow of the program as it executes rather than having to decipher a dump or
trying to print the contents of specific variables at what you guess is the critical point.

If you are desirous of looking only at particular points in the program, or at particular variables,
there is also the ability to establish ‘‘break points” for these items, so that your debugging
routines can be invoked only when certain conditions arise. You can also establish different
routines for different break points, adding to the flexibility.

Individual Instruction Execution

Normally, all BASIC lines, including the ICALL statement, act as a unit. That is to say,
whenever you press the key, the line which is currently executing is allowed to finish
before the program is actually interrupted. Thus, if you press during execution of the

line —

the line finishes and the variable A contains the value 2. Then the takes effect. The same is
true of a line containing an ICALL statement.

For example, if you press during the execution of —

il
-

TOALL Sopr (R

then the assembly routine completes before the is honored. This is not always desirable;
especially not during debugging of the assembly routine. It does not allow you to look at the
execution of the routine to help you determine what may be going wrong.

The same problem occurs with the key. Pressing causes an entire BASIC line to be
executed. Thus, if you stepped through line 120 as above, the entire routine Sort would be
executed, and you would not be able to observe its execution on an instruction-by-instruction

basis.

Debugging 171

To permit you to analyze the execution of assembly language routines, an executable BASIC

statement has been provided —

Now, should you have the sequence in your program —

then pressing during the execution of line 120 would cause program execution to be
interrupted after completion of whatever machine instruction is being executed at the time.
Further, the assembly language source line associated with the following instruction is dis-

played according to certain rules.

If the source lines are still in memory when you press (e.g., you just assembled the object
code which you are running), then the source line is displayed. If the source is no longer in
memory (e.g., the object code was obtained through an ILOAD), then the instruction displayed
is the result of a ‘‘reverse assembly’’. If there is an operand with an instruction which is reverse
assembled, then the octal value of that operand is displayed (thivs is because the reverse
assembly process has no way of knowing what symbols you might have used to assemble the

instruction originally).

After pressing , should you press , execution resumes normally. It is not necessary for
you to do anything (such as cleaning up the registers, etc.) for execution to resume as if you had
never interrupted it.

After pressing , you may want to observe the flow of execution of your assembly routine.
This can be done by successively pressing the key. Each time the key is pressed, another
machine instruction is executed and the assembly source line associated with the next machine
instruction is displayed. You may continue this way for as long as you like — until you press
to allow processing to proceed uninterrupted until the end of the routine.

Of course, the key can be used to step through the BASIC program as you are used to
doing. That feature is unchanged. It is possible, therefore, to ‘‘step into’’ the assembly lan-
guage routine from the BASIC (i.e., you need only into line 120 above) and not have to

use the key at all.

172 Debugging

In summary, IPAUSE ON allows two unique features —

e The key can be used to halt execution within an assembled routine.

e The key can be used to execute individual assembly language instructions.
Some key things to remember in using the IPAUSE ON facility —

e This is an execution-time debugging tool. You must be executing your previously-
assembled object code with an ICALL statement.

o If the source code is available for display, it will be displayed, otherwise the line is
“‘reverse assembled’’.

o Utilities are not stepped instruction-by-instruction, but rather as a unit.
e The key performs in BASIC just as before.

e Keeping the key depressed causes repeated execution of the stepping function, the
same as in BASIC.

By way of example, suppose you had the following source code —

e

Debugging 173

oD e g *':'gi H
e

Then the following would be the display lines you would see as you executed this program
using the key —

W

[wct X

i e Ty

X

character

h

Lo

[t

RN

T i

by
YR

T s
L

B Loopt LIMPUT A¥

174 Debugging

Note that the address of the instruction, as well as the octal value of the instruction, is displayed
along with the source line.

This stepping facility can also be used, quite effectively, with the IBREAK statement {discussed

below).

Should the IPAUSE ON facility be no longer desired, it can be turned off with —

The two statements can appear repeatedly in a program, allowing the stepping facility to be
used in testing some programs but skipping over already proven programs. For example,
suppose you had two programs — Sorta and Sortn — but the first was already tested and the
second was not. Then this sequence might appear in your program —

Stepping through this sequence results in lines 110, 120, and 130 executing without interrup-
tion, but line 140’s call to Sortn would be executed instruction-by-instruction.

Executing IPAUSE ON when the facility is already in effect causes no change. Similarly, execut-
ing IPAUSE OFF when the facility is already off causes no change.

Both IPAUSE ON and IPAUSE OFF can be executed from the keyboard.

Setting Break Points

It is possible to define points in an assembly language routine where the execution should
pause should it ever reach that point. These are called ‘‘break points’. They can be used to
pause execution — allowing you to utilize the stepping activity described above in IPAUSE ON
or to investigate the contents of variables, etc. They can also be used to allow branching to
some BASIC routine, giving you the power of BASIC in doing some of your debugging.

Simple Pausing
To simply pause at a break point, you need to execute the following statement in advance of
reaching that point (either in the program or from the keyboard) —

{address}

Debugging 175

where {address} is the assembled location® for the break point desired. Following execution of
this statement, anytime the program execution reaches this address, it pauses. You may do any
keyboard operations necessary at this point, or you may start stepping the program, (if
IPAUSE ON has been executed), or you may resume execution using the key. The
address must have been assembled before the IBREAK is executed.

If you were to execute —

then every time the fourth word past assembly label ‘‘Hook’’ is reached during execution, the

program execution pauses. If you were to execute —

then Hook is assumed to be a BASIC variable, and the result of the expression is assumed to be

an absolute address using whatever the value of Hook is when the statement is executed.

You can also specify the number of occurrences of reaching a break point before pausing
should come into effect. This is done by executing —

{address} ; {counter}

where {counter} is a numeric expression; any variables within {counter} are BASIC variables. A
pause occurs when {address} has been reached {counter} number of times. {counter} is reset

after each pause.

When a break point is reached and a pause is to be taken, the pause takes place before

execution of the contents of that adqlress.

Transfers

Instead of just pausing at a break point, it is possible to branch to a BASIC routine. The intent of
this facility is to give you access to BASIC’s capabilities, particularly the printing and variable-
testing facilities, during your debugging efforts.

’

1 See “‘Buzzwords” in Chapter 1 for the definition of “‘assembled location’ .

176 Debugging

The branch can be any of the three standard forms of BASIC branching —

“{address} [; {counter}]
" {address} [; {counter}] &
. {address} [; {counter}] i

i {subprogram}
{line identifier}
{line identifier}

When either CALL or GOSUB has been designated, execution of the assembly language
routine is suspended when {address} is reached. Then the designated subprogram or sub-
routine is executed. When that subprogram or subroutine is completed, then execution of the
assembly language routine resumes with {address}.

When GOTO is specified, an unconditional branch is taken when {address} is encountered and
execution of the assembly language routine is terminated.

{counter} performs the same as in the simple pausing form.

In the GOSUB and GOTO forms, there is an ‘‘environmental’ restriction. The {line identifier}
must be in the same BASIC environment (i.e., main program or subprogram) as that in which

the IBREAK statement is executed. More on this in ‘“‘Environments’’ below.

Environments

The GOSUB and GOTO types of break points are related to the BASIC ‘“‘environment” (i.e.,
main program or subprogram) in which they are executed. Whenever an IBREAK statement of
either type is encountered, the resulting break point is effective only for the environment in
which the statement is located. The CALL version of break points is in effect in all environ-

ments.

For example —

the break point established for ‘“‘Hook’’ is good only in the subprogram “Test”’. Leaving Test
causes the break point to be cleared.

Debugging

Executing an IBREAK statement from the keyboard is effective only for the environment
executing at the time the statement is made. For example, if the following program lines had

been executed —

and while the pause caused by line 210 is still in effect —

is executed, then the break point established for ‘“‘Hook” is good only in the subprogram
““Test”. As with the above, leaving Test causes the break point to be cleared.

If no program is executing when an IBREAK is executed from the keyboard, then the main
program is considered to be the environment for the break point. If the program is replaced, as
with a GET or a LOAD, then the break point is cleared.

Data Locations

Break points can also be established for data locations. This is done with —

address}

In this case, {address} is presumed to be a data location referenced by other instructions.

Whenever it is referenced by execution of some instruction, the pause occurs.

If you were to say —

then whenever ‘‘Renras” is referenced, such as in —

a pause would occur for that instruction.

177

178 Debugging

A counter can also be specified with this form of break point —

i {address} ; {counter}

{counter} is of the same form, and operates in an identical fashion, to the counter of the
non-DATA form of break point.

Because the XFR machine instruction may access a particular location twice when it is exe-
cuted, the break point on a data location may not operate correctly if the instruction referencing
it is an XFR. The way to avoid this incorrect operation of the break point is to set {counter} to 2.
{The only time this problem occurs is when the destination area for the XFR overlaps the
origination area.)

Symmetry suggests that you should also be able to branch to BASIC routines with the DATA
form of break point just as you can with the non-DATA form. And so you can —

: {counter}] L. {subprogram}

{line identifier}
{+ {line identifier}

: {counter}]

; {counter}]

They operate in an identical fashion to transfers of the non-DATA type and are under the same

‘“‘environmental’’ restrictions.

In order to determine whether an address is being referenced, each instruction is “‘interpreted”
(that is, analyzed for its components). Resultantly, a program runs much slower while an
IBREAK DATA statement is in effect.

In addition to the pausing capability, using IBREAK DATA also allows trapping on ‘‘protected

memory’’ violations (see ‘“‘Protected Memory’’ section of this chapter).
IBREAK Everywhere

You may have a total of eight (8) break points (regardless of type) in effect at a given time,
except for one extreme case. It may be desirable to establish a break point at every location in
the ICOM region. This can be accomplished with —

Debugging 179

This statement overrides all other IBREAK statements and causes a pause before execution of

every instruction in the ICOM region. There are also branching forms —

i {subprogram}
¥ {line identifier}

{line identifier}

Note, however, that there is no {counter} in any of these forms.

Number of Break Points

As was mentioned above, there can be no more than eight (8) IBREAK statements in effect at
one time, that is to say within the same environment. And only one IBREAK ALL can be in

effect at a given time.

In addition, there can only be one IBREAK or IBREAK DATA each in effect for a given
{address}. Executing an IBREAK or IBREAK DATA with the same {address} as specified in an
already effective IBREAK or IBREAK DATA statement causes the newly-executed statement to
override the previous one. While there may be an IBREAK and IBREAK DATA both for the
same {address}, the capability is not a useful one.

Clearing Break Points

There are a number of ways that break points can be cleared. One way as has already been
mentioned, is leaving the BASIC environment, which clears any GOSUB or GOTO type of
break points. Another way is to reassemble the module containing the break points. A third way
is to execute an INORMAL statement. This statement has the form —

i {address}

After execution of the statement, whatever form of break point is established for the address
{except IBREAK ALL) is cleared.

If {address} is omitted in this statement —

then all break points are cleared. This is the only way to clear an IBREAK ALL which may be in
effect. ,

180 Debugging

Protected Memory

An assembly language program is allowed to access only certain portions of memory during the
process of stepping with the key or when an IBREAK DATA statement is in effect. Should
you try to step through a program which makes an access outside of the allowed memory, then
an error results (number 187). The same is true if an IBREAK DATA statement is in effect.

“‘Access’’ means jumping to or writing into memory.

The allowed memory is —

e The ICOM region.

¢ BASIC’s ‘‘value’” area (the region where BASIC variables are stored).

e BASIC’s common area (the region where BASIC common variables are stored).

e The processor registers

e The temporary values stored in the base page (pre-defined symbol ‘“Base_page”’).

o The utilities.

All other memory is considered ‘‘protected’’ memory.

Debugging 181

Dumps

A common tool of debugging is the memory “dump”. This is a print-out (or display) of the
contents of selected locations in the memory. A typical use is to dump areas of the ICOM
containing data so that the actual contents at some point during execution can be compared
with the expected contents. All of this is in the hope that the comparison yields differences
which give a clue as to the source of the difficulties being encountered.

This tool is provided through the IDUMP statement which has the form —

This statement can be placed in a program to be executed (perhaps as the result of a branching
IBREAK statement) or it can be executed from the keyboard (perhaps during a pause caused by
stepping or IBREAK). '

Any number of {location}s can be specified. They can take a number of forms. The simplest

is —
{address}

Thus, IDUMP {address} prints the contents of {address} to the current system printer. The

contents are printed in their octal representatibn.
{location} can specify a whole range of addresses by using the form —
{address} 7 {address}
With this form, the IDUMP statement prints the contents of all addresses starting with the first
and ending the last speciﬁed {address}. If the second address is numerically smaller than the

first, then a ““wrap-around” through the end of memory into the top of memory is taken. For

example, if you execute —

then the contents of four addresses would be printed — those for 177776,177777,0,and 1, in
that order. Again, the contents are printed in their octal (base-8) representation.

182 Debugging

Addresses are always specified in their octal representation, or symbolically (such as “Hook”

or “Loop’’). This is the same as for an assembled location, which is what {address} happens to
be.

The output of the IDUMP statement is always printed to the current system printer. It is in octal
form, unless otherwise specified. This specification is accomplished by preceding {address}
with {mode selection}, which is one of the following —

1 for ASCII character representation
for binary representation (base-2)
for decimal representation (base-10)

for hexadecimal representation (base-16)

I for octal representation (base-8)
Thus, the general form of {location} is —
[{mode selection}] {address} [Ti: {address}]

As an example of all this, take the example program at the beginning of the chapter. If a couple
of statements are added so that the main BASIC program reads —

Debugging 183

then running it results in the following print-out —

Value Checking

Value checking is a method of tracing the value of variables in your assembly language program

using the interactive capabilities of the 9835A / B. You already have been introduced to break
points and dumps in earlier sections. The capability of value checking serves as a useful adjunct

to these procedures.

The value checking of assembly ‘‘variables’ is similar to the monitoring of variables in BASIC
during a debugging phase. Just as you would use a live-keyboard operation or judiciously
placed PRINT statements to trace the execution of a program or the change in value of a

variable in a BASIC program, so too can you use the monitoring tools for assembly programs.

184 Debugging

Functions

Four additional functions are provided as extensions to BASIC which can be useful in the

monitoring of values in an assembly language program. The four are —

SN bl bt

-

They can be used as other than monitoring tools, but their descriptions here are primarily in
that context. As functions, these items can be easily adapted for use in the special function
keys.

DECIMAL
This function has the form —

{ {octal value} :

The function converts an octal integer value into its decimal representation. If the argument
given is not octal, then an error (number 184) results.

This can be used as a quick, simple way of converting octal numbers into the more familiar
decimal value. Being a function, it can be used anywhere any other BASIC numeric function
can be used. Often you will find it useful in PRINT statements which are a part of subroutines
called by break points.

OCTAL
This function is the converse of the DECIMAL function. Its role is to convert decimal values into
their octal (base-8) representation. The function has the form —

i {decimal value}

This can be used as a quick, convenient method of converting decimal numbers into their
frequently used octal representations (a form which is useful because of its ready conversion
into binary representation, and vice-versa).

The values resulting from this function must be treated with care. Though the result of the
function is an octal representation, the value is still base-10. This difference is unimportant

unless you are going to do arithmetic with the value resulting from the function.

Debugging

As an example of this, suppose the decimal value 15 is to be converted into octal. The method

is —

and the resultant value is 17, the octal representation of 15. Now, if the result has 1 added to it,

as with the expression —

the ultimate result is 18. This can be a surprise since the usual octal arithmetic suggests that the
result of 173 + 1 be 20s. To get the proper octal result, the procedure is —

Note also that the expression —

still does not yield 20.

IADR
This function yields the numeric value in octal representation of an assembled location. The

form is —

. {assembled location}

As an example, take the case of the example program at the beginning of this chapter. The
result of —

is 76.

This function can be viewed as a convenient method of determining the address of a symbol, or

of an offset from a symbol.

185

186 Debugging

IMEM
This function is a quick, convenient way to look at the contents of a specific location in
memory. The result is a numeric value, in octal representation, for the contents of a specified

address. The form is —

i {assembled location} :

The function is similar in many respects to the IDUMP statement. It is easiest, perhaps, to list

the differences —

o IMEM is a function, where IDUMP is a statement.
¢ IMEM deals only with a single address, where IDUMP can deal with many.

o IMEM represents the value only in octal, where IDUMP can use many different representa-

tions.

o IMEM can be displayed and stored, where IDUMP can only be printed.

An obvious use for the function is in a routine called by an IBREAK statement. By using the
function in such a manner, perhaps in a PRINT statement, you can ease the burden of checking
variables from the keyboard. You can even use the value returned as a comparison against
some set of limits so that you print only when the value exceeds those limits. There are many
other possibilities for use.

Interrogating Registers and Flags

Interrogating the processor register A, B, P, R, Pa, Cb, Db, Dmapa, Dmama, Dmac, C, D, Ar2,
SE, and Arl1 yields meaningful results only when execution of an assembly language subprog-
ram has been suspended due to detection of a break point, or due to the use of the or

keys (see Stepping Through Programs).

Further, the values of cetain processor flags are stored in specific memory locations when a
subprogram is suspended as described above. The flags are then available for interrogation as
follows:

Decimal Carry least significant bit of location 30s
Overflow least significant bit of location 31s

Extend most significant bit of location 31s

Debugging 187

It is important to note that interrogating an 1/0 register (R4, R5, R6, or R7) causes an input
[/ 0O bus cycle, using the current Pa register contents as the interface address. See Chapter 7 for

details on the effects of such an action.

Patching

Patching is the practice of changing the contents of memory locations without re-assembling.

Patching as a standard procedure does not come highly recommended in the programming
world. Nonetheless, there are circumstances which arise that occasionally suggest patching as

the most profitable course of action.

To change a particular location in memory in the 9835A /B is not difficult. The statement to use

is —

{assembled location} T {octal expression}

After execution of the statement, the specified {assembled location} contains the specified octal

value.

Changing the contents of a register is a common use of this facility. However, it should be
remembered that attempting to change the contents of the I/ O registers (R4, R5, R6, or R7)
causes an output [/ O bus cycle to occur, using the Pa register for the interface address. See
Chapter 7 for details on the effects of such an action.

188 Debugging

Chapter 9
Table of Contents

Errors and Error Processing

Types of Errors 189
Syntax-Time and Assembly-Time Errors. 189
Run-Time Errors 190

Utility: Error_exit. 191

Run-Time Messages. 193

Assembly-Time Messages. 195

N\

Chapter 9

Errors and
Error Processing

Summary: This chapter contains a discussion of Assembly Language ROM and other
related errors, and what causes them. Included are methods for trapping errors and
possible methods for correcting them.

Whether you are writing or accessing an assembly language routine, it is possible to encounter
an error resulting from your actions. The intent of this chapter is to give some guidance as to
how certain errors can be handled. It is not intended as a definitive checklist of what can go
wrong, nor is it an exhaustive treatment of the means to correct the difficulties which are listed.
Rather, it is meant as a reference for some of the things which can go wrong, what might cause
them, and how to deal with them. Each programmer has a unique method of approaching the
problem of error processing and there is no way to anticipate all of them. Even so, the following

should offer some assistance in identifying the source of an error.

Not every machine error is covered here — only those directly related to writing or accessing
assembly language routines. A complete listing of error messages (though not in the same detail

as in this chapter) can be found in Appendix J.

Types of Errors

There are three types of errors associated with assembly language routines: those which
occur during the writing (or entering) of the source code {called ‘‘syntax-time’’ errors); those
which occur while assembling the ‘source code (called ‘‘assembly-time” errors); and those
which occur during the execution of an assembly language routine (called ‘‘run-time’” errors).
Some of these errors can be anticipated and trapped, others cannot.

Syntax-Time and Assembly-Time Errors

Syntax errors are caught when entering source code, usually with the message —

189

(f

7,

190 Errors and Error Processing

The error can then be immediately corrected and the statement reentered. A side-effect of this
entry-time check of the syntax is that the time required for assembly is greatly shortened over
what it would be if syntax-checking were deferred until assembly.

Errors encountered during the assembly process are indicated by the assembler in three ways:

e The message — -

is displayed. nn is the line number of the IASSEMBLE statement. This is a fatal BASIC
error, unless otherwise trapped.

e Each line in the source code containing an assembly error is printed on the current system

printer. Included is the message —

followed by the error type.

e The message —

follows the listing of the individual errors. The total number of errors is also printed.
An explanation of the individual assembly-time errors can be found at the end of this chapter.

Run-Time Errors

Run-time errors can sometimes be anticipated. They come at two distinct times, and your error
processing is different depending upon which of those times are of concern. The times are
“program development’ and ‘“‘production run”.

During program development, errors normally are handled using the debugging techniques
detailed in Chapter 8. Care should be taken in recognizing errors during development. Not all

of them are obvious or indicated by an error message — many simply lock up the machine.

Errors and Error Processing 191

During the running of production (debugged) routines, errors can be caused by the users of the
routines. For instance, the user may inadvertently assign an argument a value of zero when that
argument is to be used as a divisor within the assembly language routine. You should try to

anticipate these usage errors and program procedures to trap them.

There are many alternatives for actions to take when your routine encounters and traps a usage
error. For example, you may wish to assign a value to a particular return variable, or you may
want to print a warning message, or, perhaps, to correct the value and proceed with the
routine. Another method is to notify the user by issuing a BASIC error message. Such messages

can be issued through the Error _exit utility discussed below.

Of course, you need to tell the users (in the documentation of the routine) what kind of errors

can occur, when they can occur, and what to do about them.
UTILITY: Error_exit

The Error_exit utility provides you with the capability of aborting an assembly language
routine by ‘‘creating’” a BASIC error. Two types of BASIC errors can be created —
‘“‘recoverable’’, which can be trapped by a BASIC ON ERROR statement; and ‘“‘non-

recoverable’’ (or ‘““fatal’’), which cannot be trapped.

General Procedure: The utility is given the number of the error to be created. Then the utility
is called with the JSM instruction, but no return is made to the original assembly language
routine from the utility. Instead, the utility uses the information placed on the return stack to
help create the error. The return stack is appropriately ‘‘cleaned up” and control is returned
either to the BASIC driver (if the error is non-fatal) or to the operating system (if the error is
fatal).

Special Requirements: Error numbers are passed to the utility in the A register. The value of
the error number is placed in bits 0-14. Bit 15 is set if the error is to be non-recoverable. If bit
15 is not set, the error will be recoverable. Error numbers 32 762 through 32 767, with bit 15

set, are reserved by the operating system and should not be used.
Calling Procedure:

1. Load the error number into the A register.

2. Call the utility using the JSM instruction.

’

192 Errors and Error Processing

Exit Conditions: The utility returns control to the BASIC driver which called the routine,
appropriately setting conditions so that ERRL, ERRM$, and ERRN work as expected. Also
. triggers ON ERROR, if applicable.

The utility can be used anywhere in your assembly language, wherever you would like to abort
the execution of the current assembly language routine and where you would like to indicate to
BASIC what reason (error) caused the abortion.

For example, suppose somewhere in one of your assembly routines you wanted to abort the
routine if a certain variable (Flag) is non-zero at a certain point. Suppose also that the variable,

when non-zero, contained the error number, then your program could look like —

Similarly, there are some utilities which, when an error is encountered, return an error number
in register A. In these case, a quick two-instruction sequence can give you an error-related
abort. For example, the Rel math utility is such a utility —

Errors and Error Processing 193

Run-Time Messages

The following is a list of the system error messages you, or the users of your routines, may
receive should something go wrong retrieving, using, or storing assembly language routines. A

possible corrective action, or actions, is included in the discussion of the error.

ROM missing, or configuration error. To operate the 9835A /B, all system
ROMSs must be in place. In addition, to write assembly programs, the Assembly
Execution and the Assembly Development ROMs must also be installed. Per-
form the system test if the problem persists.

Memory overflow. You may have specified an ICOM which is too large for
your current available space. Some things to try: select a smaller ICOM size;
execute SCRATCH C (if no important data remain in common), delete mod-
ules and reduce the ICOM size; segment your BASIC prorams; segment your
assembly programs. The error may also be caused by trying to load modules
which are too large for the current ICOM region (either collectively or
individually).

Improper argument in DECIMAL or OCTAL function. The OCTAL function
has a range from — 65535 to + 65535. The DECIMAL function has a range
for its arguments of — 177777s to + 177777s.

~ Break Table overflow. A maximum of eight breaks can be established with the
IBREAK statements and be in effect at one time. If eight breaks are in effect,
then to allow other breaks to be established it is necessary to clear previous
breaks using the INORMAL statement.

t Undefined BASIC label or subprogram name used in IBREAK statement.
When the IBREAK statement is executed, an undefined label or name is al-

lowed, but when the break actually occurs, the label or name must exist.

© Attempt to write 'into protected memory; or, an attempt to execute an
instruction not in the ICOM region. This is the result of an attempt to branch
outside of permissible areas or to change the contents of memory outside of
the permissible areas. There is probably a difficulty in the logic of the program
which needs to be corrected. This error only occurs when the key is being
used, an IBREAK DATA statement is in effect, or when using the ICHANGE

function.

194 Errors and Error Processing

0

Label used in an assembled location not found. Symbolic addressing requires
that all assembly symbols be resolved by execution time. This error probably
results from a misspelling of a label or forgetting to assemble the module

containing the label.

| 3 Doubly-defined entry point or routine. A module being assembled (with an
JIASSEMBLE statement) or loaded from mass storage (with an ILOAD state-
ment) contains a SUB or ENT entry point with the same label as a SUB or ENT
entry point within a module already resident within the ICOM region. Check
the other routines for the duplicate occurrences.

Missing ICOM statement. You must include an ICOM statement to create your
ICOM region before assembling or loading modules. Program an ICOM state-
ment of adequate size and re-run the program

L

! Module not found. The module indicated in an ISTORE or IASSEMBLE
statement is not currently resident in the ICOM region. Check the module
names used in your ISTORE statement to find the one which is missing from

memory.

Errors in assembly. At least one error was encountered while assembling one
of the modules in your IASSEMBLE statement.

2 Attempt to move or delete module containing an active interrupt service
routine. This is the result of trying to reduce the size of the ICOM region (or to
eliminate it), or trying to delete a module, when one of the affected modules
contains an active interrupt service routine (ISR). The only ways to allow the
action to take place are to SCRATCH A (which affects a number of other
things) or to inactivate the ISR. To inactivate the ISR, consult the routine’s
documentation, or press Reset (&3 Go)),

154 IDUMP specification too large. The resulting dump would be more than
32 768 elements.

149% Routine specified in ICALL not found. You are specifying the wrong routine
name or you are failing to load the correct module. Double check the

documentation indicating the location and name of the routine.

 4E Unsatisfied externals. Symbolic addressing requires that all references to sym-
bols outside the current module be resolved at the time any routine within the
current module is executed. This may possibly be a missing ENT instruction

within another module.

Errors and Error Processing 195

Missing COM statement. The routine you are calling is expecting to find or
place some of its data in common, but you are not providing the COM state-
ment required. Add the appropriate COM statement in the BASIC program

and re-run it.

BASIC’S common area does not correspond to assembly module
requirements. The routine you have called is expecting to find or place some
of its data in common, but your COM statement does not match up with the
assembly COM declarations in either type or size. Check both the COM
statement in the BASIC program and the COM declarations in the assembly

routine.

= Insufficient number of BASIC COM items. The routine you are calling is ex-
pecting to find or place some of its data in common, but your BASIC COM
statement does not provide enough variables to satisfy the routine’s needs.
Check both the COM statement in the BASIC program and the COM declara-
tions in the assembly routine.

Assembly-Time Messages

The following is a list of the assembler error messages you may receive while assembling a
module. All of these errors cause a ‘‘fatal’”’ error, which means that the assembly produced no
object code. After the error has been corrected, it is necessary to re-assemble the module
containing the error. A possible corrective action, or actions, is included in the discussion of the

error.

Doubly-defined label. A label can only be defined once in a module. In addi-
tion, any label used in an EXT instruction is restricted from being used again as
a label in the module. Check all spellings; change a label name to something

else, if necessary.

END statement missing; or module name does not match. The END statement
(in an ISOURCE statement) must be included to signify the end of a module.
The name in the END statement must match the name used in the immediately
preceding NAM statement. Particular ones to look out for: assembling more
than one module at a time, but leaving out the END instruction between
modules; or, the END instruction is after the BASIC program’s END statement.

196 Errors and Error Processing

Expression evaluation error. This is a result of a mismatch of element types in
the operand of an instruction. The particular prohibited forms
are: relocatable + relocatable; external + external; using the relocatable or
external forms with the * or / operators. Check the spelling and type of your

symbols in the expression.

Literal pools full or out of range. You may have exhausted the storage given in
your literal pool (LIT) declarations. In this case you should add more LIT
declarations or increase the size of the ones you have. Another cause of the
error can be using a literal in an instruction and there is no literal pool within
512 words of the instruction. Additionally, for some instructions, the assem-
bler attempts to create an indirect reference automatically and requires a lit-
eral pool within 512 words of the instruction. In either case, add another literal

pool (using a LIT instruction) within range.

ICOM region memory overflow. The current module being assembled has
caused object code generation which exceeds the current memory allowance
for the ICOM region. Either you must re-run the current main BASIC
program with a new ICOM statement increasing the ICOM size, or you must
rearrange your assembly so that the module fits. This latter course can include
deleting other modules or rewriting the abortive module so that it requires less

memory.

Operand out of range. Some instructions using indirection require a
relocatable expression to evaluate to an address within 512 words of the
current address. Skips must be no more than 32 words in either direction. The
EXE instruction requires a register (0 to 31) and the instructions in the Stack
Group require registers in the range of 0 to 7. Check to see that the operand
used is within the range appropriate for the instruction. Also, check the

spelling on all symbols to see that the right symbol was used.

Parameter declaration pseudo-instruction out of sequence. The ANY, FIL,
INT, REL, SHO, and STR pseudo-instructions must follow a SUB or COM
pseudo-instruction, or be a part of a group of such pseudo-instructions which
follow a SUB or COM pseudo-instruction. Any other appearance of these can
cause this error. It can also be caused if a SUB sequence does not terminate
with a machine instruction with a label. Check to see that you have not
inadvertently omitted the SUB or COM, or have placed another instruction in
between the pseudo-instruction and its SUB or COM.

-

T

Errors and Error Processing 197

Incorrect type of operand used. Each instruction requires that its operand be
of a certain type — relocatable or absolute. Check the type of all symbols used
in the expression in the operand and see that they correspond to the type
required by the instruction. If you are using a constant, check to see that a
constant is allowed by the instruction.

Undefined symbol. By the end of the assembly, all symbols must have been
defined, either by use as a label on an instruction or as a symbol associated
with a value through an EQU, EXT, or SET pseudo-instruction. A symbol not
so defined, except those pre-defined by the assembler, and used in the assem-
bly, causes this error. Check the spelling of all undefined symbols to make sure
that you did not intend something else. The symbol otherwise has to be de-
fined, either by label or EQU, EXT, or SET.

198 Errors and Error Processing

Appendices
Table of Contents

Appendix A: ASCII Character Set
ASCII Character Codes. 204

Appendix B: Machine Instructions

Detailed List. 207

Bit Patterns and Timings. 221
Alphabetic List 221
Approximate Numerical List. 221
Appendix C: Pseudo-Instructions 223
Appendix D: Assembly Language BASIC Language Extensions Formal Syntax. 225
Appendix E: Pre-Defined Assembler Symbols 231
Appendix F: Utilities 233
Appendix G: Writing Utilities 235

Appendix H: I/ O Sample Programs

Handshake String Output. e 237
Handshake String Input 239
InterruptStringOﬁtput...H...,,,.U,{.....,....(.M.‘ nnnnnn e 241
Interrupt String Input. 244
DMA String OQutput e 247
DMA String Input 250
HP-IB Output/Input Drivers. 253
Real-Time-Clock Example 257
Appendix I: Demonstration Cartridge
Using the tape 261
Typing Aids e e 261
Appendix J: Error Messages 265
Mass Storage ROM Errors 269
Plotter ROMErrors JE S R 269
Assembly Language ROM Errors 270
Assembly Time Errors 271

Appendix K: Maintenance

Maintenance AgQreements 273
Sales & Service Offices 274

199

Appendix A
ASCII Character Set

The following table and chart show the ASCII character set and the keypresses necessary to
obtain the ASCII character codes.

200 Appendix A: ASCII Character Set

ASCII Character Set

ASCII Key(s) Octal | Decimal
Character Comments to Press« Code Code
NUL Null C space bar] 00 0]
SOH Start of Header @ 01 1
STX | Start of Text 02 2
ETX | End of Text (c) 03 3
EOT End of Transmission @ 04 4
ENQ Enquiry @ 05 5
ACK Acknowledgement @ 06 6
BEL | Bell (a) 07 7
BS Backspace @ 10 8
HT | Horizontal Tab M) 11 9
LF | Line Feed (V) 12 10
VT Vertical Tab m 13 11
FF Form Feed @ 14 12
CR Carriage Return 15 13
SO Shift Out 16 14
SI Shift In 17 15
DLE | Data Link Escape (?) 20 16
DC1 Device Control 21 17
DC2 Device Control 22 18
DC3 Device Control 23 19
DC4 Device Control CETA @ 24 20
NAK Negative Acknowledgement @ 25 21
SYN Synchronous Idle 26 22
ETB End of Text Block 27 23
CAN Cancel 30 24
EM |End of Media 31 25
SUB Substitute @ 32 26
ESC Escape @ 33 27
FS File Separator 34 28
GS Group Separator 35 29
RS Record Separator 36 30
Us Unit Separator * 37 31

* Assumes CAPS mode; multiple keys must be pressed simultaneously.

* Also can be found among calculator keys.

ASCII Character Set (continued)

Appendix A: ASCII Character Set

ASCII Key(s) Octal | Decimal
Character Comments to Press« Code | Code

SP Blank C space bar] 40 32
! Exclamation Point @ 41 33
“ Double Quote 42 34
Pound Sign 43 35
$ Dollar Sign 44 36
% Percent Sign % 45 37
& Ampersand 438 38
’ Apostrophe @ 47 39
(Left Parenthesis @ 50 40
) Right Parenthesis 51 41
* Asterisk o -, 52 42
+ Plus Sign * 53 43
, Comma * 54 44
- Minus Sign (Dash) @ * 55 45
Period * 56 46

/ Forward Slash * 57 47
0 * « 60 48
1 @ x 61 49
2 « 62 50
3 . 63 51
: t Numerics : Z: Z:
8 . 66 54
7 * 87 55
8 " 70 56
9) " 71 57
Colon @ 72 58

; Semicolon @ 73 59
< Less Than 74 60
= Equal . 75 61
> Greater Than @ 76 62
? Question Mark 77 63

* Assumes CAPS mode; multiple keys must be pressed simultaneously.

* Also can be found among calculator keys.

201

202 Appendix A: ASCII Character Set

ASCll Character Set (continued)

ASCII Key(s) Octal | Decimal
Character Comments to Press« Code Code

@ Commercial At 100 64
A) (a) 101 65
B 102 66
C 103 67
D (o) 104 68
E (e) 105 69
F (F) 106 70
G @ 107 71
H (v) 110 72
I @ 111 73
J 112 74
K (x) 113 75
L 114 76
M | Capital (m) 115 77
N Letters 116 "8
o % 117 79
P @ 120 80
Q @ 121 81
R @ 122 82
S @ 123 83
T 124 84
U @ 125 85
\4 126 86
w @ 127 87
X @ 130 88
Y 131 89
Z) 132 90

[Left Bracket 133 91
\ Reverse Slash h{.":’;:;jjg'; 4 134 92

1 Right Bracket 135 93
0 Up Arrow 136 94
— Underscore 137 95

* Assumes CAPS mode; multiple keys must be pressed simultaneously.
* Also can be found among calculator keys.

Appendix A: ASCII Character Set 203

ASCII Character Set (continued)

ASCII Key(s) Octal | Decimal
Character Comments to Pressx Code Code
! Grave Mark hlonr:c;:;sbigl:r g 140 96
a) @ 141 97
b 142 98
c 143 99
d @ 144 100
e @ 145 101
f @ 146 102
g @ 147 103
h @ 150 104
i @ 151 105
j 152 106
k @ 153 107
! Noncapital @ o4 108
m [Letters @ 155 109
n @ 156 110
o @ 157 111
p @ 160 112
q @ 161 113
r @ 162 114
@ 163 115
t @@ 164 116
u @ 165 117
v @ 166 118
w @ 167 119
x @ 170 120
y @ 171 121
z) @ 172 122
{ Left Brace) 173 123
| Vertical Line 174 124
} Right Brace o :::fg:*’ys;z;i 4 175 125
n Tilde 176 126
DEL Delete ,) 177 127

* Assumes CAPS mode; multiple keys must be pressed simultaneously.

ASCII Character Codes

CR

S0

St
DLE
DC1
DCz
DC3
DC4
NAK

SYNC

‘ETB
CAN

EM

SUB

SFS

0007111

00001010 -

00001011
00001100
00001101
00001110
00001111

00010000

00010001

00010010
000610011
000i0100
00010101
00010110
00010111

00011000

£ 00011001
‘ 00011010

1700011011 -

00011100

/00011101,

00011110

013

014
015
016

017

020

021

022

023

024

025

026

027

030

031
032
033

034

0A

oC

0D

OE

OF

10

16

7

18

19

1A

is

#1C

1D

12
13
14
15
16

17

19
20
21
22
23
24
25

26

27

28

" oo111110

S00TT 1111

00101000 0

00101001

00101010 .

po01011
00101100
00101101
00101110
coton11
00110000
00110001
00110010
00110011
00110100 |
00110101
00110110 *
00110111
00111000 |

00111001

100111010

00111011 *

00111100

00111101

051,

052

054
055
056
Q57
060
061
062

063

065

066

070

971

072
0.
o7
s

076"

2C

2D

2E

2F

30

31

32

35

36

37

38

139

34

3B

3¢
1aD
3E

- 3F

41

42

43

‘a4

45

47

49

51

52

54

55

57

62

63

01000111

101001000

© owo01001

. 01001010

01001011

01001100

01001101

01001110

010011%1

01010000

01010001
01010010
01010011
01010100
01010101
01010110
01010111

01011000

61011001

i 01011016
[

|o1011011
, 5

¥

g 01011101

i

01011110 136

“ 01011100 |

113. |

114

115

116

117

120

121

122

123

124

125

126

127

130

131"
132
133"

134

49

a
4B
4c
ap
4E

4F

51

52

53

55

57

59

ELY

B

50!

SF

73

7

75

76

77

78

79

81

82

83

84

85

86

87

89

9

92

01101001

01101010

01101100
01101101
01101110
01101111
01110000
01110001
01110010
X 01110011

101110100

01101011

x 01110101 |

Lor110110 |

Lo1n10111:

| 01111000 ,

01111001

01111010,

" 'oL111011

“0i111110

011l

1151,

152
153

154

161

162
163
164 |
165
166
167 -

~170

171

172

173

01311100

L1140

174

175

3

71

72
73
4
75
76
77

78
79
74,

7B

7c.

7D

F o

110

111

12

113

114

115

116

117

118

119

‘120

The following table gives the octal value for an ASCII character in the most significant byte
(““First Character” column) and the least significant byte (‘‘Second Character’’ column) of a
word. The diagram illustrates the positions of the first and second character positions of a word.

First Character

e

Appendix A: ASCII Character Set

Second Character

15 14 13 12 11 10 9 8 6 5 4 3 2 1 0
ASCII First Character | Second Character ASCII First Character | Second Character
Character | Octal Equivalent | Octal Equivalent Character | Octal Equivalent | Octal Equivalent
NUL 000000 000000 % 022400 000045
SOH 000400 000001 & 023000 000046
STX 001000 000002 ’ 023400 000047
ETX 001400 000003 (024000 000050
EOT 002000 000004) 024400 000051
ENQ 002400 000005 * 025000 000052
ACK 003000 000006 + 025400 000053
BEL 003400 000007) 026000 000054
BS 004000 000010 - 026400 000055
HT 004400 000011 . 027000 000056
LF 005000 000012 / 027400 000057
VT 005400 000013 0 030000 000060
FF 006000 000014 1 030400 000061
CR 006400 000015 2 031000 000062
SO 007000 000016 3 031400 000063
SI 007400 000017 4 032000 000064
DLE 010000 000020 5 032400 000065
DC1 010400 000021 6 033000 000066
DC2 011000 000022 7 033400 000067
DC3 011400 000023 8 034000 000070
DC4 012000 000024 9 034400 000071
NAK 012400 000025 : 035000 000072
SYN 013000 000026 ; 035400 000073
ETB 013400 000027 < 036000 000074
CAN 014000 000030 = 036400 000075
EM 014400 000031 > 037000 000076
SUB 015000 000032 ? 037400 000077
ESC 015400 000033 @ 040000 000100
FS 016000 000034 A 040400 000101
GS 016400 000035 B 041000 000102
RS 017000 000036 C 041400 000103
us 017400 000037 D 042000 000104
SP 020000 000040 E 042400 000105
! 020400 000041 F 043000 000106
" 021000 000042 G 043400 000107
021400 , 000043 H 044000 000110
$ 022000 000044 \ 044400 000111

205

206 Appendix A: ASCII Character Set

ASCII
Character

First Character
Octal Equivalent

Second Character
Octal Equivalent

ASCII
Character

First Character
Octal Equivalent

Second Character
Octal Equivalent

SR> N TN XECCHOIO VO ZE MR

a o oo

045000
045400
046000
046400
047000
047400
050000
050400
051000
051400
052000
052400
053000
053400
054000
054400
055000
055400
056000
056400
057000
057400
060000
060400
061000
061400
062000

000112
000113
000114
000115
000116
000117
000120
000121
000122
000123
000124
000125
000126
000127
000130
000131
000132
000133
000134
000135
000136
000137
000140
000141
000142
000143
000144

2““TP‘N‘C><E<C""U7".D'UO:JB'_T““""D‘(Q"'*N

DEL

062400
063000
063400
064000
064400
065000
065400
066000
066400
067000
067400
070000
070400
071000
071400
072000
072400
073000
073400
074000
074400
075000
075400
076000
076400
077000
077400

000145
000146
000147
000150
000151
000152
000153
000154
000155
000156
000157
000160
000161
000162
000163
000164
000165
000166
000167
000170
000171
000172
000173
000174
000175
000176
000177

Appendix B

Detailed List

Machine Instructions

Instruction

Form

Group

Description

Page

AAR

ABR

ADA

ADB

< {n}

T

e floch [1]

20 {loc} [1]

Shift/Rotate

Shift/Rotate

Integer Math

Integer Math

Shifts the A register right the indicated number of
bits with the sign bit filling all vacated bit positions.
(Arithmetic right)

Shifts the B register right the indicated number of
bits with the sign bit filling all vacated bit positions.
(Arithmetic right)

Adds the contents of the specified location to the
contents of register A. The result is in A. If a carry
occurs, Extend is set, otherwise Extend is un-
changed. If an overflow occurs, Overflow is set,
otherwise Overflow is unchanged. A carry is from
bit 15; an overflow is a carry from bit 15 or 14, but
not both. Extend and Overflow are bits in the pro-
cessor. Specifying register R4, R5, R6, or R7 as
the location causes an input I/O bus cycle to the
interface addressed by the Pa register. Indirect
addressing may be specified. {loc} must be on

base or current page.

Adds the contents of the specified location to the
contents of register B. The result is in B. If a carry
occurs, Extend is set, otherwise Extend is un-
changed. If an overflow occurs, Overflow is set,
otherwise Overflow is unchanged. A carry is from
bit 15; an overflow is a carry from bit 15 or 14, but
not both. Extend and Overflow are bits in the pro-
cessor. Specifying register R4, R5, R6, or R7 as
the location causes an input I/O bus cycle to the
interface addressed by the Pa register. Indirect
addressing may be specified. {loc} must be on

base or current page.

40

40

35

35

207

208 Appendix B: Machine Instructions

Instruction Form Group Description Page

AND

. 1] Logical Logical “and’ operation. The contents of the A| 41
register are compared, bit by bit, with the contents
of the specified location. For each bit comparison
a 1 results if both bits are 1’s, a 0 results otherwise.
The 16-bit result is left in A. Specifying register
R4, R5, R6, or R7 causes an input bus cycle to the
interface addressed by the Pa register. Indirect
addressing may be specified. {loc} must be on

base or current page.

CBL Stack Clears the Cb register. Specifies the lower block of| 43

memory for byte-referencing stack instructions.

CBU

Stack Sets the Cb register. Specifies the upper block of[43

memory for byte-referencing stack instructons.

CDC

BCD Math Clears Decimal Carry explicitly.

CLA

Shift Clears register A. This is exactly equivalent to SAR| 41
16.

CLB CLE Shift Clears register B. This is exactly equivalent to SBR| 41
16.

CLR L {n} Load/Store Clears the specified number of words, beginning| 34
at the location pointed at by the A register. A

maximum of 16 words may be cleared.

CMA

Memory Perform a one’s complement of the A register (bit| 41

by bit inversion of all 16 bits).

CMB Memory Perform a one’s complement of the B register (bit| 41
by bit inversion of all 16 bits).

CMX BCD Math Ten’s complement of Arl. The mantissa of Arl is| 45
replaced with its ten’s complement and Decimal

Carry is cleared.

CMY [BCD Math Ten’s complement of Ar2. The mantissa of Ar2 is| 46
replaced with its ten’s complement and Decimal

Carry is cleared.

CPA TFE{loct[L 1] Test/Branch Compares the contents of register A with the con-| 37
tents of the specified location and skips if they are
unequal. Indirect addressing may be specified.
Specifying register R4, R5, R6, or R7 causes an

input bus cycle to the interface addressed by the

Pa register. {loc} must be on base or current page.

Appendix B: Machine Instructions

Instruction

Form

Group

Description

Page

CPB

DBL

DBU

DDR

DIR

DMA

DRS

DSz

EIR

1]

{loc}[. 1]

Test/Branch

Stack

Stack

/0

/O

I/O

BCD Math

Test/Alter/Branch

I/O

Compares the contents of register B with the con-
tents of the specified location and skips if they are
unequal. Indirect addressing may be specified.
Specifying register R4, R5, R6, or R7 causes an
input bus cycle to the interface addressed by the
Pa register. {loc} must be on base or current page.

{loc} must be on base or current page.

Clears the Db register. Specifies the lower block of

memory for byte-referencing stack instructions.

Sets the Db register. Specifies the upper block of

memory for byte-referencing stack instructions.

Disables Data Request. Cancels the DMA

instruction.

Disables the interrupt system. Cancels the EIR

instruction.

Enables the DMA mode. Cancels the DDR

instruction.

Mantissa right shift of Ar]l for one digit. The
twelfth digit is shifted into bits 0-3 of the A regis-
ter. The non-digit part of the A register is cleared
(bits 4-15), and the Decimal Carry bit in the pro-
cessor is cleared. The first digit in the mantissa is

set to 0.

Decrements the contents of the specified location
and skips if the new contents are 0. Specifying
register R4, R5, R6, or R7 causes an input (or an
input and an output) bus cycle to the interface
addressed by the Pa register. Indirect addressing
may be specified. {loc} must be on base or current

page.

Enables the interrupt system. Cancels the DIR in-

struction.

37

43

43

47

47

47

45

38

47

210 Appendix B: Machine Instructions

Instruction

Group

Description

Page

EXE

FDV

FMP

FXA

IOR

Form
ZE {reg} [, 1]
o {loc} [. 1]

Miscellaneous

BCD Math

BCD Math

BCD Math

Logical

Executes the contents of a register. {reg} is an in-
teger in the range of O through 31, indicating the
register to be used (see Memory Map for the cor-
respondence between location and register). The
register is left unchanged unless the instruction
code causes it to be altered. The next instruction
to be executed is the one following the EXE, un-
less the code in the executed register causes a

branch. Indirect addressing may be specified.

Fast divide. The mantissas of Arl and Ar2 are
added together, along with Decimal Carry, until
the first decimal overflow occurs. The result ac-
cumulates into Ar2. The number of additions
without overflow is placed into the lower 4 bits of
the B register (0-3). The remainder of the B regis-
ter is cleared, as is the Decimal Carry bit in the

processor.

Fast Multiply. Performs the multiplication by re-
peated additions. The mantissa of Arl is added to
Ar2 along with Decimal carry, a specified number
of times. The number of times is specified in the
lower 4 bits (0-3) of the B register. The result ac-
cumulates in Ar2. If intermediate overflows occur,
the number of times they occur appears in the
lower 4 bits of the A register after the operation is
complete. The upper 12 bits of the A register are

cleared along with Decimal Carry.

Fixed-point addition. The mantissas of Arl and
Ar2 are added together and the result placed in
Ar2. Decimal Carry is used as the twelfth digit.
After the addition, Decimal Carry is set if an over-

flow occurred, otherwise Decimal Carry is cleared.

Logical ‘“‘inclusive or” operation. The contents of
the A register are compared, bit by bit, with the
contents of the specified location. For each bit
comparison, a 0 results if both bits are 0’s, a 1
otherwise. The 16-bit result is left in A. Specifying
register R4, R5, R6, or R7 causes an input bus
cycle to the interface addressed by the Pa register.
Indirect addressing may be specified. {loc} must

be on base or current page.

47

46

46

46

41

Appendix B: Machine Instructions 211

Instruction Form Group Description Page

ISZ =i {loc}[. 1] Test/Alter/Branch | Increments the contents of the specified location | 38
and skips if the new contents are 0. Specifying
register R4, R5, R6, or R7 causes an input (or an
input followed by an output) bus cycle to the inter-
face addressed by the Pa register. Indirect addres-
sing may be specified. {loc} must be on base or

current page.

JMP T {loc} [, 1] Branch Unconditionally branches to the specified loca- | 36
tion. Indirect addressing may be specified. {loc}

must be on base or current page.

JSM

1] Branch Jumps to subroutine. The value of the R register [36
is incremented by 1 and the value of the P regis-
ter (i.e., the location of the JSM instruction itself)
is stored in the address pointed to by the R regis-
ter. Execution then proceeds to the specified lo-
cation. Return from the subroutine is effected by
the RET instruction. Indirect addressing may be

specified. {loc} must be on base or current page.

LDA LiE{loc[. 1] Load/Store Loads register A with the contents of the | 34
specified location. Specifying register R4, R5,
R6, or R7 causes an input I/O bus cycle to the
interface addressed by the Pa register. Indirect
addressing may’be specified. {loc} must be on

base or current page.

LDB

i{loc} [,] Load/Store Loads register B with the contents of the | 34
specified location. Specifying register R4, R5,
R6, or R7 causes an input I/O bus cycle to the
interface addressed by the Pa register. Indirect
addressing may be specified. {loc} must be on

base or current page.

MLY

BCD Math Mantissa left shift on Ar2 for one digit. Thisis a | 45
circular shift, with the bits 0-3 of the A register
forming a thirteenth digit. The non-digit part of
the A register is cleared (bits 4-15), and the Dec-

imal Carry bit in the processor is cleared.

212 Appendix B: Machine Instructions

Instruction Form

Group

Description

Page

MPY

MRX

MRY

Integer Math

BCD Math

BCD Math

Binary multiply. Uses Booth’s Algorithm. The
values of the A and B registers are multiplied to-
gether with the product placed into A and B. The
A register contains the least significant bits and
the B register contains the most significant bits

and the sign. B may contain any integer value
except — 32 768.

Mantissa right shift on Arl. The number of digits
to be shifted is specified in the lower 4 bits (0-3)
of the B register. The shift is accomplished in

three stages:

1) Bits 0-3 of the A register are right-shifted into
D1 of the mantissa, with the twelfth digit
being lost. This is the first shift. This shift al-

ways takes place, even if B = 0.

2) The digits are then right-shifted for the re-
maining number of digits specified. The
twelfth digit is lost on each shift (except for
the last shift) and the vacated digits are zero-
filled.

3) Finally, the last right-shifting takes place,
with the twelfth digit shifting into the lower 4
bits (0-3) of the A register. The Decimal
Carry bit in the processor is cleared and the
non-digit part of the A register is cleared (bits
4-15).

Mantissa right shift on Ar2. The number of digits
to be shifted is specified in the lower 4 bits (0-3)
of the B register. The shift is accomplished in

three stages:

1) Bits 0-3 of the A register areright-shifted into
D1 of the mantissa, with the twelfth digit
being lost. This is the first shift. This shift al-

ways takes place, even if B = 0.

2) The digits are right-shifted for the remaining
number of digits specified. The twelfth digit
is lost on each shift (except for the last shift)

and the vacated digits are zero-filled.

35

44

45

-

nstruction Form

Group

Description

MWA

NOP

NRM

PBC

PBD

BCD Math

Miscellaneous

BCD Math

Stack

Stack

i3) Finally, the last right-shifting takes place,

with the twelfth digit shifting into the lower 4
bits (0-3) of the A register. The non-digit part
of the A register is cleared (bits 4-15), and
the Decimal Carry bit in the processor is

cleared.

Mantissa word addition. The contents of the B
register are added to the ninth through twelfth
digits of the Ar2 register. Decimal Carry is added
to the twelfth digit; if an overflow occurs, Deci-
mal Carry is set, otherwise Decimal Carry is

cleared.

Null operation. This is exactly equivalent to LDA

A

;Normalizes the Ar2 mantissa. Up to twelve left-

- shifts of the mantissa are performed until the first

: digit of the mantissa is non-zero. If the original

first digit is already non-zero, no shifts occur. The

"number of shifts required is stored in the first 4

bits (0-3) of the B register. If 12 shifts are re-
quired, the Decimal Carry bit in the processor is
set; otherwise, the Decimal Carry bit is cleared.

The exponent is not altered.

Pushes the lower byte (right half) of the specified
register onto the stack pointed at by the Cb and C
registers. Specifying register R4, R5, R6, or R7
causes an input I[/O bus cycle to the interface ad-
dressed by the Pa register. Incrementing or de-
crementing of the C register can be specified. In-
crementing is the default. {reg} must be in the
range of O through 7. The incrementing or decre-

menting action takes place before pushing.

Pushes the lower byte (right half) of the specified
register onto the stack pointed at by the Db and D
registers. Specifying register R4, R5, R6, or R7
causes an input [/O bus cycle to the interface ad-
dressed by the Pa register. Incrementing or dec-
rementing the D register can be specified. Incre-
menting is the default. {reg} must be in the range
of 0 through 7.The incrementing or decrementing

action takes place before pushing.

46

47

45

43

43

214 Appendix B: Machine Instructions

Instruction

Group

Description

Page

PWC FuiC {reg} , T

FUC {reg} [, 1]

PWD Flili{reg} . T

fi{reg} [, 1]

RAR

RBL

RBR

RET

RET {n}

Stack

Stack

Shift/Rotate

Shift/Rotate

Shift/Rotate

Shift/Rotate

Branch

Pushes entire register (full word) onto the stack
pointed at by the C register. Specifying register
R4, R5, R6, or R7 causes an input I/O bus cycle to
the interface addressed by the Pa register. Incre-
menting or decrementing the C register may be
specified. Incrementing is the default. {reg} must
be in the range of 0 through 7. The incrementing
or decrementing action takes place before

pushing.

Pushes the entire register (full word) onto the
stack pointed at by the D register. Specifying
register R4, R5, R6, or R7 causes an input I/O bus
cycle to the interface addressed by the Pa register.
Incrementing or decrementing the D register may
be specified. Incrementing is the default. {reg}
must be in the range of 0 through 7. The
incrementing or decrementing action taken place

before pushing.

Rotates the A register left the indicated number of
bits. Bit 15 rotates into bit O (left circular).

Maximum rotation of 16 bits.

Rotates the A register right the indicated number
of bits. Bit O rotates into bit 15 (right circular).

Maximum rotation of 16 bits.

Rotates the B register left the indicated number of
bits. Bit 15 rotates into bit O (left circular).

Maximum rotation of 16 bits rotated.

Rotates the B register right the indicated number
of bits. Bit O rotates into bit 15 (right circular).

Maximum rotation of 16 bits.

Returns from subroutine. {n} is added to the con-
tents of the address pointed to by the R register.
The R register is decremented by 1. This is, in
effect, a return from a JSM instruction (see
above), to {n} instructions following the JSM itself.
The ‘“‘usual” return is RET 1. {n} must be in the

range of — 32 through 31.

43

43

40

40

40

40

36

Appendix B: Machine Instructions

Instruction

Form

Group

Description

Page

RIA

RIB

RLA

RLB

RZA

RZB

SAL

SAM

SAP

SAR

=1 {adrs}

Sfi {adrs} [, ©]

SHF {adrs} [, =]

SAF {adrs} [,]

SAF {n}

=N

Test/Branch

Test/Branch

Test/Alter/Branch

Test/Alter/Branch

Test/Branch

Test/Branch

Shift/Rotate

Test/Alter/Branch

Test/Alter/Branch

Shift/Rotate

Skips to {adrs}if register A is not 0, then incre-
ments register A by 1. Extend and Overflow are
not effected by the incrementing action, even if a
carry or overflow occurs. {adrs} must be within

— 32 and + 31 of the current location.

Skips to {adrs} if register B is not 0, then incre-
ments register B by 1. Extend and Overflow are
not affected by the incrementing action, even if a
carry or overflow occurs. {adrs} must be within

— 32 and + 31 of the current location.

Skips to {adrs} if the least significant bit of the A
register is not 0. Setting or clearing the bit after the
test can be specified. {adrs} must be within — 32

and + 31 of the current location.

Skips to {adrs} if the least significant bit of the B
register is not 0. Setting or clearing the bit after the
test can be specified. {adrs} must be within — 32

and + 31 the current location.

Skips to {adrs} if register A isnot 0. {adrs} must be

within — 32 and + 31 of the current location.

Skips to {adrs} if register B is not 0. {adrs} must be

within — 32 and + 31 of the current location.

Shifts the A register left the indicated number of
bits with all vacated bit positions becoming 0.
Maximum shift is 16 bits.

Skips to {adrs} if the A register is negative (bit 15 is
1). Setting or clearing the bit after the test can be
specified. {adrs} must be within — 32 and + 31 of

the current location.

Skips to {adrs} if the A register is positive or zero
(bit 15 is 0). Setting or clearing the bit after the test
can be specified. {adrs} must be within — 32 and

+ 31 of the current location.

Shifts the A register right the indicated number of
bits with all vacated bit positions becoming 0.
Maximum shift is 16 bits.

37

37

39

39

37

37

40

38

38

40

216 Appendix B: Machine Instructions

Instruction

Form

Group

Description

Page

SBL

SBM

SBP

SBR

SDC

SDI

SDO

SDS

SEC

SEM {adrs} [, =]

ZEM {adrs} [, 7]

SEF {adrs} [, 5]

ZEF {adrs} [,]

{adrs}

Shift/Rotate

Test/Alter/Branch

Test/Alter/Branch

Test/Alter/Branch

Shift/Rotate

BCD Math

I/0

I/0

BCD Math

Test/Alter/Branch

Shifts the B register.left the indicated number of
bits with all vacated bit positions becoming 0.

Maximum shift is 16 bits.

Skips to {adrs} if the B register is negative (bit 15 is
1). Setting or clearing the bit after the test can be
specified. {adrs} must be within — 32 and + 31 of

the current location.

Skips to {adrs} if the B register is positive (bit 15 is
0). Setting or clearing the bit after the test can be
specified. {adrs} must be within — 32 and + 31 of

the current location.

Shifts the B register right the indicated number of
bits with all vacated bit positions becoming 0.
Maximum shift is 16 bits.

Skips to {adrs} if Decimal Carry is clear. Decimal
carry is a single bit in the processor which may
have been set by certain arithmetic operations.
{adrs} must be within — 32 and + 31 of the cur-

rent location.

Sets DMA inwards. Reads from peripheral, writes

to memory.

Sets DMA outwards. Reads from memory, writes

to peripheral.

Skips to {adrs} if Decimal Carry is set. Decimal
carry is a single bit in the processor which may
have been set by certain arithmetic operations.
{adrs} must be with — 32 and + 31 of the current

location.

Skips to {adrs} if Extend is clear. Extend is a single
bit in the processor which may have been set by
certain arithmetic operations. Setting or clearing
the bit after the test can be specified. {adrs} must

be within — 32 and + 31 of the current location.

40

38

38

40

46

47

47

46

39

Appendix B: Machine Instructions

Instruction

Group

Description

Page

SES

SFC

SFS

SIA

SIB

SLA

SLB

SF 5 {adrs}

Test/Alter/Branch

/0

I/0

Test/Branch

Test/Branch

Test/Alter/Branch

Test/Alter/Branch

Skips to {adrs} if Extend is set. Extend is a single
bit in the processor which may have been set by
certain arithmetic operations. Setting or clearing
the bit after the test can be specified. {adrs} must

be within — 32 and + 31 of the current location.

Skips to {adrs} if the Flag line is false (clear). The
Flag line is the one associated with a peripheral on
the current select code (pointed to by the Pa regis-
ter). {adrs} must be within — 32 and + 31 of the

current location.

Skips to {adrs} if the Flag line is true (set). The flag
line is that associated with the peripheral on the
current select code (pointed to by the Pa register).
{adrs} must be within - 32 and + 31 of the current

location.

Skips to {adrs} if register A is 0, then increments
register A by 1. Extend and Overflow are not af-
fected by the incrementing action, even if a carry
or overflow occurs. {adrs} must be within — 32

and + 31 of the current location.

Skibs to {adrs} if register B is 0, then increment
register B by 1. Extend and Overflow are not af-
fected by the incrementing action, even if a carry
or overflow occurs. {adrs} must be within — 32

and + 31 of the current location.

Skips to {adrs} if the least significant bit of the A
register is 0. Setting or clearing the bit after the
test can be specified. {adrs} must be within — 32

and + 31 of the current location.

Skips to {adrs} if the least significant bit of the B
register is 0. Setting or clearing the bit after the
test can be specified. {adrs} must be within — 32

and + 31 of the current location.

39

47

47

37

37

38

39

218 Appendix B: Machine Instructions

Instruction

Form

Group

Description

Page

SOC

SOS

SSC

SSS

STA

STB

SZA

SZB

S0z {adrs} [5]

=0T {adrs} [, 2]

ST {loc} [1]

=TE{loc} [,]

Test/Alter/Branch

Test/Alter/Branch

/0

I/0

Load/Store

Load/Store

Test/Branch

Test/Branch

Skips to {adrs} if Overflow is clear. Overflow is a
single bit in the processor which may have been
set by certain arithmetic operations. Setting or
clearing the bit after the test can be specified.
{adrs} must be within — 32 and + 31 of the cur-

rent location.

Skips to {adrs} if the Overflow is set. Overflow is a
single bit in the processor which may have been
set by certain arithmetic operations. Setting or
clearing the bit after the test can be specified.
{adrs} must be within — 32 and + 31 of the cur-

rent location.

Skips to {adrs} if Status line is false (clear). The
status line is the one associated with the peripheral
on the current select code (pointed to by the Pa
register). {adrs} must be within — 32 and + 31 of

the current location.

Skips to {adrs} if the Status line is true (set). The
status line is the one associated with the peripheral
on the current select code (pointed to by the Pa
register). {adrs} must be within — 32 and + 31 of

the current location.

Stores the contents of the A register into the
spcified location. Specifying register R4, R5, R6,
or R7 causes an output bus cycle to the interface
addressed by the Pa register. Indirect addressing
may be specified. {loc} must be on base or current

page.

Stores the contents of the B register into the
specified location. Specifying register R4, R5, R6,
or R7 causes an output bus cycle to the interface
addressed by the Pa register. Indirect addressing
may be specified. {loc} must be on base or current

page.

Skips to {adrs} if register A is 0. {adrs} must be

within — 32 and + 31 of the current location.

Skips to {adrs} if register B is 0. {adrs} must be

within — 32 and + 31 of the current location.

39

39

47

47

34

34

37

37

Appendix B: Machine Instructions 219

Instruction Form Group Description Page

TCA TioA Integer Math Performs a two’s complement of the A register | 35
(one’s complement, incremented by 1). If a carry
occurs, Extend is set, otherwise Extend is un-
changed. If an overflow occurs, Overflow is set,
otherwise Overflow is unchanged. A carry is from
bit 15; an overflow occurs when complementing
— 32 768. Extend and Overflow are bits in the

processor.

TCB Integer Math Performs a two’s complement of the B register | 35
(one’s complement, incremented by 1). If a carry
occurs, Extend is set, otherwise Extend is un-
changed. If an overflow occurs, Overflow is set,
otherwise Overflow is unchanged. A carry is from
bit 15; an overflow occurs when complementing
— 32 768. Extend and Overflow are bits in the

processor.

WBC B {reg} [, 1] Stack Withdraws a byte from the stack pointed at by the | 43
WEC {reg} . I Cb and C registers and places it into the lower byte
(right half) of the specified register. Specifying
register R4, R5, R6, or R7 causes an output I/O
bus cycle to the interface addressed by the Pa
register. Incrementing or decrementing the C
register can be specified. Decrementing is the
default. {reg} must be in the range of 0 through 31.
The incrementing or decrementing routine takes

place after the withdrawal.

WBD] Stack Withdraws a byte from the stack pointed at by the | 43

Db and D registers and places it into the lower byte

(right half) of the specified register. Specifying
register R4, R5, R6, or R7 causes an output I/O '
bus cycle to the interface addressed by the Pa
register. Incrementing or decrementing the D
register can be specified. Decrementing is the
default. {reg} must be in the range of 0 through 31.
The incrementing or decrementing routine takes

place after the withdrawal.

220 Appendix B: Machine Instructions

Instruction Form Group Description Page

WWC] Stack Withdraws a full word from the stack pointed at by 43

the C register and places it into the specified

register. Specifying register R4, R5, R6, or R7
causes an output I/O bus cycle to the interface
addressed by the Pa register. Incrementing or
decrementing of the C register can be specified.
Decrementing is the default. {reg} must be in the
range of O through 31. The incrementing or
decrementing action takes place after the

withdrawal.

WWD | Stack Withdraws a full word from the stack pointed at by 43

the D register and places it into the specified

register. Specifying register R4, R5, R6, or R7
causes an output [/O bus cycle to the interface
addressed by the Pa register. Incrementing or
decrementing of the D register can be specified.
Decrementing is the default. {reg} must be in the
range of O through 31. The incrementing or
decrementing action takes place after the

withdrawal.

XFR = E {n} Load/Store Transfers the specified number of words, from the 34
location starting at the address pointed at by the A
register to the location starting at the address
pointed at by the B register. A maximum of 16

words can be transferred.

Alphabetic List
Bit Patterns and Timings

Bit Pat

8

15 14 13 12 11 10 9

A St O OO T r OO T rdrt A Ordrd N OO ™ HO = OO - O Hre OO v

00000111111010011010011111111111v113/ca/c11000000.0

COr1rH OO O OrHOOO OO0 QO " O00 0O OO " OO O rHmd~wOO0
R R R R R R e R R e R R R R R R R R R R e R e R R R I R I I I I IR R I IR B R QR e
R R R I R R R R R R R R R R R R R R R R R I I I I e R I e I I B T IR I T R IR IR o [[Qs Qe g
A A A A A A A A A At A A A A A A A A A A o A A A A A A OO v e et e

e A~ OO0 000 H AHHHMEMHOOOOIHOOODOOOOOMMHOOFFTOOHHOOOOO

Instruction

RAL n
RARn
RBL n
RBR n
RET
RIA
RIB
RLA
RLB
RZA
RZB
SAL n
SARn
SBL n
SBM
SBP
SBR n
SDC
SDI
SDO
SDS
SEC
SES
SFC
SFS
SIA
SIB
SLA
SLB
SOC
SOS
SSC
SSS
STA
STB
SZA
SZB
TCA
TCB
WBCr
WBD r
WWCr
WWD r
XFR n

.SAM

Timing

37+13B
40
19
25
14
23
19
19
32
65+2T (note 3)
28
11
23+Z (note 5)
23
23
23
23

Bit Pattern

8

15 14 13 12 11 10 9

0 |62+4B (note 4)
0 [33+4B (note 4)

1
1

0 K2+13B (note 2)
0
0
0

0

Tt P loco~~|floooo|l fjooococ o~ to

LI O A Tt
coo—r _|ocococo coococool |lof oo o~OoOOCOO -

| |
e coo~—F

ﬁ
1

ocooco cocococoo |o or~rocoocoo|l { ||

register
0
0
0

) ~~o-rllloooco comroo| o oo OHOOOCO0OCO O~

O~ OO L COO0OOCO0OOO0COOOO0O

=R o NeoloNoleloNoReNe)

=
0
0
0

address
address
address
address

COO0O0OO — rm cCOoOHO-H Sloo~OO HOOOOOO r r i
oo HArt A A O~ —HO o000 |[ocoococo HOOMHOO
oo OCO0OHOO-MOOOO OCO00OCOO oo~ OHOoOOOOCOLN 222

— HrErE -~ - O OO0 — o O OOO r et O O

lloorocooroo~r|| |[lococooH||llocomrm—Al || ||~ ~ro~rococo00o

0
0
—
«—

L2RXxoococococoocococoRrllooooocoroocoooRERRRrocoooocoococooocoo

Be

o o
OCr1OrHOOOOOHOOHMOOONOOOOO OO m OO~ rm OO HmMMMHrOO0O~—OO
M rE OO rtr rdrdrt A r A A A A S Nt A St Al A el o O O QOO O rdrdr v v O vl vt v v
Hrd ot et O rdrd A A il A A i T OO H T A A T rd O A A rH O T OO O r rdrd = O v
1100111111111110011111111111111110011111011111

FEOO0OHHOMHOOFFOO0OO0OO0OO0OFOFO0OO0OOFF s aada 00000000000

1
1
Ph
Ph

Instruction

e IS e B
Er<mMOAJIDOcMmreSOX>CcmJD X msz w0 < asc<a>>xXx>Ias0on00
MoQZmmMAdd S SssSannmaoSSxo X AT I Y

MAAAACCCCCCCCCCCCDDDDDDDEHWWWDSM£wwMMMMMNN%%MW

Instruction Bit Pattern Timing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAL n 1 1.1 1 0 0 0 1 1 1 0 0|« 15-n — 25-n
RARn 1 1 1 1 O O 0 1 1 1 0 0!« n-1 > n+9
RBL n 1 1.1 1 1 0 0 1 1 1 0 0|« 15-n - 25-n
RBR n 1 1 1 1 1 0 0 1 1 1 0 0]le n-1 — n+9
RET 1 1 1 1 0 0 0 0 1 0|« - 16
RIA 0 1 1. 1 0 1 0 0 0 1]« - 14
RIB 0 1 1 1 1 1 0 0 0 1]« - 14
RLA 0 1 1 1 0 1 1 1 Ya % |« skip N 14
RLB 0 1 1 1 1 1 1 1 "a % |« - 14
RZA 0 1 1. 1 0 1 0 0 0 0]« - 14
RZB 0 1 1 1 1 1 0 0 0 0 |« - 14
SAL n 1 1.1 1 0 0 0 1 1 0 0 0Je n-1 = n+9
SAM 1 1 1 1 0 1 0 1 " % [« skip — 14
'SARn 1 1.1 1 0 0 0 1 0 1 0 0]« __; = n+9
SBL n 1 1 1 1 1 0 0 1 1 0 0 0|« - n+9
SBM 1 1 1 1 1 1 0 1 " %]« okip - 14
SBP 1 1 1 1 1 1 0 0 " %|« - 14
SBR n 1 1.1 1 1 0 0 1 0 1 0 0|« n-1 - n+9
SDC 0 1 1 1 0 1 0 1 1 1|« skip - 14
'SDI 0 1.1 1 0 0 0 1 0 O O O 1 O O O 12
SDO 0 1.1 1 0 0 O 1 O O 0O O O O 0 0 12
'SDS 0 1 1. 1 0 1 0 0 1 1|« > 14
SEC 1 1 1 1 1 1 1 0 Y %]« - 14
SES 1 1 1 1 1 1 1 1 %W %|e - 14
‘SFC 0 1 1 1 0 1 0 1 1 0|« - 14
SFS 0 1 1.1 0 1 0 0 1 0|« - 14
SIA 0 1 1 1 0 1 0 1 0 1|« - 14
SIB 0 1 1 1 1 1 0 1 0 1|« skip - 14
SLA 0 1 1 1 0 1 1 0 Ya % |« - 14
SLB 0 1 1 1 1 1 1 0 Ya % e - 14
SOC 1 1 1 1 0 1 1 0 "r % |« N 14
SOS 1 1 1 1 0 1 1 1 " %] - 14
'SSC 0 1 1 1 1 1 0 1 1 0|« N 14
SSS 0 1 1 1 1 1 0 0 1 0|« N 14
STA % 0 1 1 0 B8 le N 19
STB % 0 1 1 1 % |e address - 19
SZA 0 1 1 1 0 1 0 1 0 0« N N 14
SZB 0 1 1 1 1 1 0 1 0 0 |« P — 14
TCA 1 1.1 1 0 0 0 0O O O 1 O O O O O 9
TCB 1 1.1 1 1 0 0 0 O O 1 O O 0 0 O 9
WBC r 0 1. 1 1 1 0 0 1 % 1 1 1 0|« - 23
WBD r 0 1 1 1 1 0 0 1 %% 1 1 1 1 |« N 23
WWC r 0 1.1 1 0 0 0 1 % 1 1 1 0]e ¥ = 23
WWD r 0 1 1 1 0 0 0 1 % 1 1 1 1« - 23
XFR n 0 1.1 1 0 0 1 1 0 0 0 0« ni1 = 12n+21

Appendix B: Machine Instructions

Notes on bit patterns:

B/ C (Base Page/ Current Page)
C/S (Clear/Set)

D /1 (Direct/ Indirect)

H/H (Hold/ Don’t Hold)

[/ D (Increment/Decrement)

All are coded 0/1 respectively

skip } if the high bit in the field is 1, the

address) field is negative (2’s complement)

Notes on timings:

All timings are maximum clock times. The clock rate is 6 megahertz. Clock times may vary
up to * 5% from the clock rate.

Any operation using register R4, R5, R6, or R7, should add 7 clock times.

Any operation using register R8, R9, R10, R11, R12, R13, R14, or R15 should add 5 clock
times.

Maximum interrupt lockout time is 239.
Minimum interrupt lockout time is 2.

Maximum DMA lockout time is 10.
Minimum DMA lockout time is 2.

Interrupt execution is 36.

DMA read = 3 + 10n + lockout time } n is the number of words

DMA write = 3 + 9n + lockout time transferred during a request

Note 1. B is the current value in bits 0 through 3 of the B register.
Note 2. If bits 0 through 3(B) of the B register are 0 then the total timing is 34.

Note 3. T is the total number of 0 > 1 and 1 — O transitions in the A register (using an

imaginary 0 to the right of bit 0).

Note 4. B is the current value in bits 0 through 3 of the B register. If B = 0, then the total timing
is 26.

Note 5. Zis the number of leading zeroes in the mantissa of Ar2. If Z = 12, then the total timing
is 69. ‘

221

222 Appendix B: Machine Instructions

Approximate Numerical List
Bit Patterns

Instruction Bit Pattern

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
NOP o 0 0 0 O O O O O o o o o0 o o0 O
LD*s 0 0 0
CP*= % 0 0 1 A&
AD%s % 0 1 0 “B
ST*s % 0 1 1 4B
JSM b/ 1 0 0 0 Address Field
AND % 1 0 1 O
YoSZ b1 0 Yo o1
IOR °h 1 1 0 O
JMP by 1 1 0 1
EXE % 1 1 1 0 0 0 0 0 0 O O | RegisterAddress
SD%% 0 1 1 1 0 0 0 1 O O O O % O 0
EbIR 0 1 1 1 0 0 0 1 0 O O 1 % 0 0 O
DMA 0 1 1 1 0 0 0o 1 0 O 1 O O O 0 oO
DDK 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 O
b/cBYL 0 1 1 1 0 0 0 1 0 1 0 Y P 0 0 O
Pfw* el 0 1 1 1 " 0 0 1 Y% 1 1 P b [Register Address |
MWA 0 1 1 1 o o 1 0 O O O O O O o0 o
CMY/x 0O 1 1 1 0 0 1 O O Y 1 0 O 0 0 O
FXA 0 1 1 1 0 0 1 0 1 O O O O 0o 0 o
XFR 0 1 1 1 0 0 1 1 0 0 0 0 N=# of words
CLR 0 1 1 1 0 0 1 1 1 0 0 O binary={n—1)
NRM 0O 1 1 1 0 0 1 1 0 1 0 O O O O o
CDC 0 1 1 1 0 0 1 1 1 1 0 0 0 O 0 O
FMP 0 1 1 1 1 0 1.0 O O O O O o o0 O
FDV 0 1 1 1 1 o 1 0 O O 1 O O O o0 1
MRX o 1 1 1 1 0 1 1 0 0 0 O O O 0 O
DRS 0 1 1 1 1 0 1 1 0 0 1 0 O 0 0 1
MRY 0 1 1 1 1 0 1 1 0 1. 0 O O O O O
MLY 0 1 1 1 1 0 1 1 0 1 1 0 0 O 0 1
MPY 0 1 1 1 1 0 1 1 1 0 0 O 1 1 1 1
SF’le 0 1 1 1 0 1 0 S 1 % Skip Field
RlsZh*fs O 1 1 1 *% 1 0 ® 0 % if bit 5 is 0, then skip to(P+n),
S/r L*s 0 1 1 1 %% 1 1 Sk & % n=bits 0-4
SS%c 0 1 1 1 1 1 0 S% 1 0 if bit 5=1, then skip to(P—n),
SAEF/m 1 1 1 1 s 1 0 G n=two’s complement of bits 0-4
S%s 1 1 1 1 % 1 1 % " ¢
RET 1 1 1 1 0 0 0 0 1 0 complemented skip field
TCs 1 1 1 1 % 0 0 0 0 0O 1 0 0 0 0 o0
CM*%s 1 1 1 1 % 0 0 0 0 1 1 0 0 0 0 O
CL%% 1 1 1 1 % 0 0 1 0 1 0 0 1 1 1 1
A%sR 1 1 1 1 % O O 1 O 0 o0 O Shift Field
R/SA/B R 1 1 1 1 Als 0 0 1 R/S 1 0 0 in source,n=1-16
SA/BL 1 1 1 1 Alg 0 0 1 1 0 0 0 binary=(n—1)
R*sL 1 1 1 1 Als 0 0 1 1 1 0 0 complemented shift

223

Appendix C

Pseudo-Instructions

The following table lists the available assembler pseudo-instructions with a short description of

each, and the page number of the more detailed description listed elsewhere in this manual.

224 Appendix C: Pseudo Instructions

Instruction Form Description Page
ANY Specifies a common or subroutine 112
declaration to be any type
BSS expression} Reserves a block of memory 56
COM Preface for assembly language common 128
declarations
DAT {expression} [, {expression}[,...]] Defines data generators 57
END i {name} Designates the end of a module 17
ENT " {symbol} [, {symbol}[....]] Identifies entry points in the module 77
EQU I {expression} Defines a symbol 71
EXT ZiT {symbol} [, {symbol}[,...]] Identifies external entry points 77
FIL I Specifies a subroutine declarationtobea | 110
file number
HED ! {comment} Source listing control for top-of-page with | 64
change of heading
IFA 9
IFB
IFC
IFD
IFE t Beginning of conditional assembly 66
IFF
IFG
IFH
IFP * {numeric expression} 4
INT THT [iwo] Specifies a common or subroutine 110
declaration to be an integer
LIT {expression} Reserve memory for literals and links 74
LST Source listing control for enabling the 61
listing
NAM Designates the beginning of a module 17
REL Specifies a common or subroutine 110
declaration to be full-precision
REP Repeats instructions 59
SHO w3] Specifies a common or subroutine 110
declaration to be short-precision
SKP Source listing control for top-of-page 63
SPC Source listing control for printing blank 65
lines
STR Specifies a common or subroutine 110
declaration to be a string
SUB Preface for a subroutine entry point 108
UNL Source listing control for disabling the 61
listing
XIF End of a conditional-assembly block 66

Appendix D

Assembly Language
BASIC Language Extensions
Formal Syntax

The following is an alphabetical list of the BASIC Language extensions provided by the Assem-
bly Language ROMs. For a full discussion of their semantical meanings and applications,
consult the indicated pages in this manual.

Assembled Location (page 4)

{symbol} [, {BASIC numeric expression}]
{expression} [, {BASIC numeric expression}]

where:

{BASIC numeric expression} serves as a decimal offset from the given label or constant.

{symbol} is an assembly location. It may be either a label for a particular machine instruc-
tion (in which case the address of the associated instruction is used), or an assembler-
defined symbol (in which case the associated absolute address is used), or a symbol
defined by an EQU instruction (in which case the associated value is used).

{expression} may be a numeric expression or a string expression. If numeric, a decimal
calculation is performed and the result is interpreted as an octal value; if the result is not
an octal representation or an integer, an error results. If a string expression is used, the

string must be interpretable as either an octal integer constant or a known assembly
symbol (see {symbol} above).

DECIMAL Function (page 184)

DECIMAL ¢ {BASIC numeric expression}

225

225 fopendix D Assembly Language BASIC Language Extensions Formal Suntax

IADR Function (page 185)

i {assembled location}

IASSEMBLE (pages 60-67)

1 [+ {option} [, {option}[....]]]

where {module} is the name of an existing module in the source program.

{option} may be any of the following:

= {numeric expression}

{module} [. {module}[....]1]1[; {option}[. {option}[. ...

111

Appendix D: Assembly Language BASIC Language Formal Syntax

IBREAK (pages 174-180)

]{address} [. {counter}][
J{address} [. {counter}][
1{address} [. {counter}][¢
i {subprogram}]

{line identifier}]

: {line identifier}]

_{subprogram}]
= {line identifier}]
{line identifier}]

{address} is an assembled location.
{subprogram} is the name of a BASIC subprogram.
{counter} is a numeric expression.

{line identifier} is a line in the BASIC program.

ICALL (pages 107-111)

_{routine} [¢ {dataitem}[. {dataitem}[....]] *]

where {routine} is the label associated with a SUB pseudo-instruction sequence and {data

item} takes on the same forms and attributes as parameters in BASIC’s CALL statement.

ICHANGE (page 187)

. {assembled location} 71 {octal expression}

ICOM (pages 19-22)

{integer constant}

IDELETE (pages 22-23)

{module} [. {module}[....]]

where {module} is the name of an existing module in the ICOM region.

227

228 Appendix D: Assembly Language BASIC Language Extensions Formal Syntax

IDUMP (pages 181-183)

{location} [; {location} [;...]]

where {location} has the following syntax:

[{mode selection}] {address} [7 {address}]

with {address} an assembled location and {mode selection} taking on any of the
following forms —

for ASCII character representation
for binary representation
for decimal representation

for hexadecimal representation

HI for octal representation

ILOAD (page 22)

{file specifier}

where {file specifier} is of the same form as elsewhere in BASIC (see Mass Storage

Techniques manual, or Operating and Programming manual).

IMEM Function (page 186)

i {assembled location}

INORMAL (page 179)

. [{address}]
where {address} is an assembled location.

IPAUSE OFF (page 174)

Appendix D: Assembly Language BASIC Language Extensions Formal Syntax 229

IPAUSE ON (pages 171-174)

ISOURCE (pages 49-54)

- {source line}
where {source line} may take either of the following forms —

[{label} :]{action}[| {comment}]
[{label} :] | {comment}

and:
{label} is of the same form as elsewhere in BASIC;

{action} is a machine instruction, pseudo-instruction, or data generator;

{comment} is any combination of characters

ISTORE (pages 23-24)

{module} [, {module}[,...]]: {file specifier}
[FLL]

; {file specifier}

where:
{module} is the name of a module currently existing in the ICOM region.

{file specifier} is of the same form as elsewhere in BASIC (see the Mass Storage

Techniques manual or the Operating and Programming manual).
LITERALS (pages 72-75)

= {expression} [, {expression} [, ...]]
{expression} may be absolute or relocatable

OCTAL Function (page 184)

ZCTHEL ({numeric expression}

230 Appendix D: Assembly Language BASIC Language Extensions Formal Syntax

231

Appendix E

Predefined Assembler Symbols

The assembler has predefined a number of symbols and has reserved them as references to

special locations in memory. Each of these locations has a special meaning and function. You

may not redefine these symbols. They are —

Name Description
A Arithmetic accumulator
Arl } BCD arithmetic accumulators
Ar2
B Arithmetic accumulator
Base_page Base page temporary area (50 words)
C Stack pointer
Cb Block bit for byte pointer in C(most significant bit of address 138)
D Stack pointer
Db Block bit for byte pointer in D(second most significant bit of address 138)
Dmac DMA count register
Dmama DMA memory address register
Dmapa DMA peripheral register (lower 4 bits of address 138)
End_isr_high
End_isr_low
Isr flag Reserved symbols for use with interrupt service routines
Isr_psw
gz::; } Arithmetic utility operand address registers
P Program counter
Pa Peripheral address register (lower 4 bits of address 118)
R Return stack pointer
R4
R5 .
R6 [/ 0 registers
R7
Result Arithmetic utility result address register
Se Shift-extend register
Utlcount
Utlend Reserved symbols for writing utilities
Utltemps

Each predefined symbol references a particular location in memory, except for the Utlend

symbol, which refers to an ekecution address of a system routine. A graphical representation of

these locations, plus others of interest, is presented on the next page.

232 Appendix E: Pre-defined Assembler Symbols

address™
0

a7

min=41

CPU
registers

(reserved)
(at least 1710 words)

max=
77756

77777
100000

170665
170666

170737
170740

177617
177620

177701
177702
177703

177704
177705

177767
177770

1 7777é
177774

177777

user data
(ICOM area)

(reserved)

Return stack

(reserved)

Base_page

Oper_1

Oper_2

Result

(reserved)

Arl

(reserved)

* in octal representation

- A
B
P
R
R4
; R5
starting address A6
dependent upon R7
system needs (roserved)
Co | Pa,
h (reserved)
L [Omapa
address Do~ Dmama
dependent upon Dmac
starting address, c
and D
length of ICOM,
Ar2
Se
(reserved)

address
0

DA WN =

~

11
12
13
14
15
16
17
20
21
22
23
24
25

37

LDB with:

Exits

Utility Name LDA with: Other Description Page
Busy address of address of RET 1 Retrieves busy bits for a BASIC variable 130
bit pattern parameter
Error__exit error N/A None — returns to Aborts execution of ICALL statement, 191
number BASIC setting an error number
Get_bytes address of address of RET 1 Storage area consists of: Accesses substrings (or parts of arguments) 119
storage area | parameter Ist word — starting byte
2nd word — number of bytes to be
transferred
3rd word on — sufficient space
for string
Get_elem_bytes | address of address of RET 1 Array info obtained by Get_info Same as “Get_bytes” used for accessing elements | 120
storage area | array info utility. Relative element number of string arrays
must be stored in array pointer
(word 16) of array info.
Storage area same as in Get_bytes.
Get_file_info address of file RET 2 — normal Storage area contents after return: Accesses a file-pointer 164
storage area | number RET 1 — file unassigned word 0 — lower 16 bits of file address
word 1 — number of defined records
word 2 — current record number
word 3 — current word in current record
word 4 — size of defined record
word 5 — mass storage unit specifier
word 6 — buffer address
word 7 — check read (0=off, 1=0n)
word 8 — high 7 bits of file address
word 9 — (reserved by system)
Get_info address of address of RET 1 Storage area must be at least: Returns the characteristics of a variable 114
storage area | array info 3 words — simple variables passed as a parameter or existing in common
18 words — arrays ’
for arrays, add 3 words for each 64K
bytes in your machine’s memory
Get_element address of address of RET 1 Array info obtained by Get_info Same as “Get_value”, used for elements in 118
storage area | parameter utility. Relative element_number an array
must be stored in array pointer
(word 16) of array info.
Storage area must be sufficient
size to hold value.
Get_value address of address of RET 1 Storage area must be sufficient Returns the value of a BASIC variable 117
storage area | parameter size to hold value
Int_to_rel N/A N/A RET 1 Load address of integer into Data type conversion from 104
Oper_1 and address of storage integer to full-precision
area into Result. Storage area
must be at least 4 words.
Isr_access address of select code RET 1 — linkage not select code is 0-7 for low-level or 8-15 for Establishes linkages for interrupts 143
ISR in bits 0-3; established for high-level; resource code is:
access reason found in 0 — no resources
code in register A: 1 — asynchronous access
bits 4-5; — 1 = resources 2 — asynchronous access with DMA
trial unobtainable 3 — synchronous access
counter — 2 = select code trial counter is number of attempts before
bits 8-14 linked to aborting (RET 1, with A set to — 1)
another ISR
RET 2 — normal
Mm_read_start address of RET 1 — memory overflow Mass storage descriptor is 3 words containing: Prepares to read a physical 158
mass storage | N/A RET 2 — normal word 1 — mass storage unit specifier record from mass storage
descriptor (A contains mass word 2 — least significant 16 bits of record number

storage transfer ID)

word 3 — most significant 7 bits of record number

Utility Name LDA with: LDB with: Exits Other Description Page
Mm_read_xfer mass storage | address of RET 1 — transfer incomplete Storage area must be at least 128 words
transfer ID storage area| RET 2 — transfer complete Mass storage transfer ID would be returned
(A contains 0, or from Mm__read _start utility.
error number encountered Storage area receives transferred information Reads a physical record from mass storage 159
during transfer)
Mm_ write_start | address of address of RET 1 — memory overflow Mass storage descriptor same as in Mm_read_ start. Writes a physical record to mass storage 161
mass storage | storage area| RET 2 — normal Storage area must be at least 128 words and contain
descriptor (A contains mass information to be transferred
storage transfer ID)
Mm_ write_test mass storage | N/A RET 1 — transfer incomplete Mass storage transfer ID is returned from Verifies a physical record was 161
transfer ID RET 2 — transfer complete Mm_ write_ start utility. written to mass storage
(A contains 0, or error
number encountered
during transfer)
Printer_select select code printer RET 1 Changes or interrogates select-code 166
width (A contains previous for standard printer
printer select code; B
contains previous printer
width)
Print_string address of N/A RET 1 — memory overflow String must be in same form as standard string Outputs a string to the standard printer 167
string RET 2 — pressed
RET 3 — normal
Put_bytes address of address of RET 1 Storage area same as Get_bytes Replaces substrings (or parts of arguments) 124
storage area | parameter
Put_elem_bytes | address of address of RET 1 Same as Get_elem_ bytes Same as “‘Put_bytes”, used for accessing elements of 125
storage area | array info string arrays
Put_element address of address of RET 1 Same as Get_element Same as ‘‘Put_value’’, used for elements in an array 123
storage area | array info
Put_file_info address of file RET 1 — file unassigned Same as Get_file_info Manipulates a file-pointer 165
storage area | number RET 2 — normal
Put_value address of address of RET 1 Changes the value of a BASIC variable 122
storage area | parameter
Rel_math number of execution RET 1 Address of first operand into Provides access to all the arithmetic routines 99
operands address (A contains 0, or an error Oper_1 and address of second operand
number) into Oper_ 2. Address of result
area into Result. Execution address
is for the desired routine.
Rel_to_int N/A N/A Overflow bit may be set Address of the value to be Data type conversion from full-precision to integer 102
converted should be stored
in Oper__1, address of storage
area of integer into Result
Rel to_sho N/A N/A Address of the value to be Data type conversion from full-precision to short 103
converted should be stored in
Oper__1; address of storage
area for converted number
should be stored in Result
Sho_to_rel N/A N/A Same as Rel_to_sho Data type conversion from short-precision to full 105

Appendix F
Utilities

233234

Appendix G
Writing Utilities

A utility, essentially, is a ‘““special’’ assembly language subroutine. What makes it special is a set
of instructions which keeps it from being displayed when a program is being stepped through
using the key. This provides some manner of security for the code in the routine from the
casual user.

The following must be done to make a section of code into a utility —

1. The entry point for the utility must consist of the instruction —

2. Each exit point from the utility must consist of the following instructions —

n (n may be any number, — 32 through + 31, depending upon the desired
returning point)

For example, here is a simple utility to increment a private counter —

235

236 Appendix G: Writing Utilities

It is not required that a utility actually be a subroutine. It may also be in-line code by replacing
the RET with JMP »+2. By making a section of in-line code a utility, you can make your
actions in debugging simpler. If you already know what a section does and don’t want to have
to step through each instruction in that section each time it is encountered, you can make it into
a utility as above. Then, whenever it is encountered, the section is stepped through as if it were

a single statement.

Utilities, and calls to utilities, are not allowed in interrupt service routines (ISRs).

237

Appendix H
Sample Programs

170 Sample Programs

238 Appendix H

Appendix H: I /O Sample Programs 239

i

240 Appendix H: [/0 Sample Programs

241

[/ 0O Sample Programs

Appendix H

242 Appendix H: [/O Sample Programs

ford o] o

fond Pt e

Appendix H: 1/0 Sample Programs 243

244 Appendix H: 1/0 Sample Programs

USIHG IHTERREUFT FROM A

- AT
FON R wx B B R S

)

CIMTERRUPT EMPELE BYTE =

OULTD BE CHRMGEL:

Y

i

e

[N

s

o 5

P

IRSSEMELE
IHFUT "SELEST CODE TO READ FROMTY, S code
GHOTHT #5e1e e done | UF EMD OF LIME ERA

o b Oy LR e
T 0T T

U b et fede ke ete ke

RN T X W

LOSELECT COnE

OUT OF RAMGE

T

Appendix H: /O Sample Programs 245

POIF COULDMST GET IT, EETEY
U IHITIALIZE BYTE COUNT OF
STRING BUFFER HRER

POSET UF BYTE POINTER FOR ISR

P PUT CHARS IMTO STRING

T

FAo=ttring
L

R Sl
=

E baiad inter
% POWAIT FORCCARD
! START FIRST IHPUT OFERATION

i

i -
L R 1

L
L

o,

3 VEMRELE THE CARD TO IHTERELUFT
QRCE TR
: EET boGd BRETIC.

SUOIRCE
TEOURCE

2y

Py

(AN

GO T

B

o
kAl

AL

246 Appendix H: /0O Sample Programs

247

Appendix H: [/ O Sample Programs

248 Appendix H: I/ O Sample Programs

[
&

15 ISOURCE !
TE0URCE
IS0URCE
TZ0URCE
TSOURCE
IS0URCE

IRCE

Ll vt ,3; :;._1 oo T

ISOURCE
TSOURCE
IS0URCE
I20URCE
TSOURCE

SOURCE
IE0URCE
IS0OURCE
TSOURCE
ITS0URCE

1268

STRING AMD

St ingtl

Timama

=Erable maszk

tsi o, I

ey g
iy I
TE T
E S T
+
P s 00

-

i

Erd iz _high,l
LIA Pa

ADA =-1

Eh11

AT WOHTT

ELEE GIVE ERROR 164

=E=TiA

R

IF COULDOMST GET IT, RETREY
GET THE STREIMG PARAMETER

Oo. THE DETA PUET
THE FOLLOWIMNG LODF WILL

LF

FIRET SET UFP EYTE FOIMTER T0
MITHDRFW THE LAST CHARACTER
FIRET

" FOR THE BYTE POIMTER
UTE R HORD FOIMTER
© T FLACE THE LF

MOVE IM A OLF

AND R

ROW LOOF TO COPY ALL BYTES

SET DA CGUTHARDE
EHABLE THE CARD TO

THTERRLPT

GOOBACE TO BASIC,

I MILL GET THE IMTERRUPT
THE DMA TRAMSFER 1% COMPLETE

S0 DISABLE THE CARD

DISHELE IMA

LEFEHDING OH WHETHER THE
SELECT CODE IS HIGH, OR LOW
CALL THE CORREECT TERMIMNATION

I ROUTIHE

AL HOW TEIGGER AWM EMD OF
LIME ERAMCH. TO DO THIZ, THE
CORRECT MASE WORD MUST EE
CALCULATED BY A COMPUTED
SHIFT IHSTREUCTIOHN

Appendix H: 1/ O Sample Programs 249

STE Eol_mask I SAVE THIS MASK
[AMD USE MAGIC CODE TO
! TRIGGER THE ECL ERAMCH

LRECE
URCE
LOLIRCE
DURCE

g
P}
o1 F

i ot

- e

B bed

L 0 o

i
3

PORESTORE 25

o

I RETLRH FROM IMTERRUFT
PORIT MASK FOR ITHSTRUCTION

I
1
i

[
i

Shils SEL

1 TS0URCE EMD Ottt gpdio dna

250 Appendix H: I/O Sample Programs

S ot

251

Appendix H: [/ O Sample Programs

s
ket el ke] o] e]

el
et ek

ef o] e

p

et

252 Appendix H: I/ 0O Sample Programs

I30URCE TH I
IS0URCE EBL
TSOlRECE LIA Sxring POGET CHARFRCTER COUMT
ISOURCE TCH
TSOURCE SIA #+4
I:HIPLE WD B, I I GET A EBYTE
4

DEN

TSOURCE FRC B, P PARCE IT
in:HPIE RIA

I] I RETURM RESULT TO BARSIC

3
'l'l (]

LIE =Parm g
JoM Pt ":11:.4:—-
I:MHE FET 1

TEOURCE o

ISOURCE Tar: LIIAR 25
ISOLRCE STH Sa
ISOURECE LI 4B

ISOURCE STHE 5B

IxUUP!E LI Dimac VI GET TO HERE WHEH DA DOME
i ADA = COMPUTE RCTUAL HUMEER OF
TCH CHARACTERS TRAMSFERELD

ADA String
STH String
LI
S2TH
Dk
U”PXE LI Pa
IZQUELE ADA =
SHF s+
JEM Erd der Tow, 1
JHE &4

! JEM
ImﬁdF*& LA
I“HUFFF HBR

PoTOWILL GET AW IMTERRUFT WHEH
THE DMA IS COMPLETE

PSpVvE TH STRIMG LEMGTH WORD
I BISAELE THE CARD

DISAELE TMA

DEFEMDING OH WHETHER THE
SELECT CODE IS HIGH, OF LOM
CALL THE CORRECT TERMIMATION
ROUT IHE

o
a =
|

k1

isr high,

AMD MW TRIGGER AM EHD OF
LIME BRAMCH. TO D0 THIZS, THE
CORRBECT MASE WORT MUST BE
CALCULATED BY A COMPUTED
SHIFT IHEZ TIOM

AYE THIZ 1A
ARD USE MAGIC CODE TO
TRIGGER THE EOL BRAMCH

I S

e S S i O e e o
o e e i

I RETURM FROM IHMTERRUFT
PRIT MASE FOR IMSTRUCTION

F o

I Erter opio dma =

Appendix H: I /O Sample Programs

4R HPIR CARD DRIVER

AREE PROVIDED, . COMHE FOR DUTPUT ABHD OHE
15 FOR THCLUDINHG A BLES COMMARD :-THHG

THO ASSEMELY LAMGUACE DRIVE
FoOR IHFUT. BOTH HAYE PROVIZI
FOR ADDRESSIMNG THE BLZ,

DRI R By B R

ok
px

CHDEy, L CDARTAE: 1 3

ICALL Hpib output L
! by AUMDER, [SVAREX 1 00

ICALL Hpib snter o

R

L3 T s
Ry

vem IMTERFACE SELECT CODE <1 TO 14 CIMTEGERX
HH FIMG TO QUTRUT WITH ATH TRUE B
TRIMG TO CUTPUT WITH ATH FALSE

STRING VARIABLE TO HOLD DATA REMD FROM BUS

[BERS B

ol

oo Oy O

4

?;H HHLL"EHT ¥HE“ SRTCMAS HOT ACTIVER TRLKER

[ent

oM 168g
THTEGER

1 Crcl$l
EMBLE

IHFUT "HPIE = e lect cock

OF EEY #8 G0
OH EEY #1 GOSUE Erter

FRIMT "EEYS® = QUTPUT FEY] = ERTER®
LI&F t1DLE®

GOTO
Ot gt GUELE Linput
LIMPUT "DATA TO SEMDG
TCALL Hpib outpu
FRIMT THTH &
RETURH
Ermer: GOSUR L4
ICALL Hpib enter 3
FRINT © DATH READ
RETURM

!
1L 'H"\'F.u

crdl LIMFUT "0

AT BYTED?Y, Ccl$

vz g, Pt walus

Pt et b ks Gk pek bed i 3

0T BCTIVE COMTROLLER

THE CARD MRS MHOT ACTIVE LISTEMER

253

254 Appendix H: [/ O Sample Programs

et
v gl

nu

[Eainial

255

: [/ 0O Sample Programs

ix H

Append

256 Appendix H: I/ 0O Sample Programs

O FORESAMPLE THE TRFE CRETRIDGE 2.

i

(SRS AR R

g
ad

i

JHE
LIiH

5 ;:"

D LU
i 2R

g WY
[
SRR

£ i) b

o
T S T O

k]

i)
[

5]
i

)

G W

L KA R R R |

i)

e]

Ll
NI

Y

I

DASRNRT | IR R B VW £ TR S < A SN AN A LA EY S U N R kB
=S 0 g O U D Ty e U 00 N O e G T e O gl i

WO RN B RS B R I R I R R I I I B VIR S0 B B R I RN R I e

Appendix H: 170 Sample Programs

FROGEAM TO DEMOHSTRATE USIHG THE CLOCE FOR IHTERRUPTS

AAMPLE ZHOMS HOW TO USE THE CLOCHE THTERRUPT T4 PUT THE TIME
HTO THE SYSTEM MESSAGE ARER AS LOMG AS THE PROGREAM IS RUMMING.
FROCRAMMED TO GEKERATE AW IHTERRUPT EYERY SECOMD. THE
ERFUPT ZERYICE ROUTIME TRIGGERZ AM EHMD OF LIHE BERAHCH. THE
LR E CALLE AM ASSEMEBLY ROUTIHE TO PUT THE TIME OF DAY

i
i
i
i
i
i
i
f
i

ET UP ISR AHD START CLOCK
ET UF EOL BRAMCH

~
e
=4
el

ZUE Time
ICALL Dizplaw time

ZUBEXIT
SOURCE HAM Time
TEOURCE EAT Error_sxit,Printer select , Print_string
TE0URCE EAT Izr access
ISOURCE Zelect codelERU 9
IZ0URCE Ecol mask: ZET 1 PGET ASSEMBLER TO COMPUTE
TE0URCE FEF Zeglect code PTHE EOL MASE FOR TRIGGERIMG
IE0URCE Eol_maski BET Eol _mash#2 PEOL BREAMCHEZ :
TE0URCE Cr: Eou 1z VOTHER ESUATES
Lf: EG 14
E Ztripgl S5 20 bOARER TO HOLD TIME OF DAY
01d pi BEE 1 UOTHG WORDS TO HOLD CUREEHT
O1d gt BEE 1 P OPRIMTIER IS5 AMD FRIMTER WIDTH
i
SR
Zetup clockiLDA =Select code PoMAKE SURE THE CLOCK CARD
ZTH Pa PIZ ALIVE
285 Card ok
Card down? LDA =164 fOIF HOT, GIVE ERFOR 154
JEM Ervor_snit
ISOURCE Card okt LA =TIz POEET UP ISR LIMEAGE
IS0URCE LB =018%258 0+ 01418 0+2elent_code
I50URCE JJEM lsr access -
IE0URCE JHF 542 tOIF ERROR, THEW JUMP
IS0URCE JHP Start card PELBE GO ZTART UP THE CARD
ISOURCE CPA =-1 OIF DIDM/T GET BESOURCES
TEOURCE JHF Zetup clock OTHEW TRY AGARIH
1% FET 1 {IF IS5K ALREADY LIMKED, RETURH
Starty cardd LDA =="UH AM=04-U4P 1000045 +LF
SAL 1 PSET UP COTO POINHT TO STRING
ZTA C POMHICH T OWILL OUTPUT TO THE
CHEL PoLaCy TO PROGEAM IT.
LDE =-21 VB OIS ~OCHAR COUMT-13
Out_Toop! SFC % OWAIT FOR CRRED
WEC B4, 1 VOBMOVE HEAT BYTE OUT TO CARD
ZTH BT ! TRIGGER HRAMDSHAKE
RIB Out Toop POLOOP UMTIL DOHE
. LA =296 ! EMABLE THE CARRD TO IMTERRUPT

257

: 170 Sample Programs

258 Appendix H

Appendix H: I /O Sample Programs 259

T
boLHNE

260 Appendix H: /0 Sample Programs

261

Appendix I
Demonstration Cartridge

Along with the Assembly Language Development and Execution ROMs, a tape cartridge has
been provided to demonstrate the capabilities of the assembly language system. This
Demonstration Cartridge (HP part number 11141-10154) is specifically intended to —

e Graphically display the kind of speed increases which can be obtained by using assembly
language subprograms for certain types of applications.

e Provide a number of programs which can serve as examples of how to write assembly

language subprograms.!

e Provide a set of definitions for some of the special function keys so that those keys can be

used as typing aids.

Using the Tape

To run any of the demonstration programs, execute the statement —

A set of instructions is displayed which can then be followed interactively.

Typing Aids

The starting and final cursor positions of the typing aids were chosen with assembly listings in
mind. The intent in selecting these positions was to make it easy to enter source as it would
appear when listed within an assembly listing.

The following table gives, for each key; the typing aid, the position where the typing aid begins,
and the position where the cursor will finally reside. Because some typing aids end with a blank,
the triangle (A) has been chosen to indicate the end of the typing aid. All blanks after the start of
the typing aid, and before the triangle, will appear when the key is pressed.

4
1 The commented source for the chess program is contained in file CHESSS.

262 Appendix I: Demonstration Cartridge

Typing Aid Final Cursor
Key Typing Aid Starting Position Position
11 31
11 19
11 21
! home
4 | A current current + 2
11 -
51 53
6 home 6 (over second quote mark
in insert character mode)
7 home 7 (over second quote mark
in insert character mode)
8 home 7 (over second quote mark
in insert character mode)
9 | (in, TTA home 8 (over second quote mark
in insert character mode)
10 A home 6 (over second quote mark
in insert character mode)
11 | (ine, i A
12 |(used by other keys)
13 | It A(folléwed by next line) 11 -
A 30 32
14 |(Undefined)
15 |(Undefined)
16 | (Undefined)
17 |1 A 41 43
18 S A home 12

Appendix I: Demonstration Cartridge

Typing Aid Final Cursor
Key Typing Aid Starting Position Position
19 Al current — 1 current + 4 (over
(use only after using Key 7 or 9) second quote mark in

insert character mode)

20 home 10 (over second quote mark
in insert character mode)

21 current — 1 current + 4 (over second
quote mark in insert
character mode)

22 current current + 3

23 current current + 4

24 | (used by other keys)

25 | (used by other keys)

26 TS nip home 18 (over second quote mark
in insert character mode)

27 home 13

28 home -

29 |[(ine] home 6

30 home 8 (over second quote mark
in insert character mode)

31 " A home 9 (over second quote mark
in insert character mode)

1 For example, in the insert chara
e Pressing Key 7 resultsin — |
o Pressing Key 19 resultsin —

e with the cursor in each case located over the second quote mark:

2 This key performs for the keyword “KEY" as key 19 does for the keyword ‘“‘BIN”. See Note 1.

263

264 Appendix I: Demonstration Cartridge

Appendix J
Error Messages

The following is a numerical list of the system error messages. A brief description of the error is

given. For those errors involving the assembly language system, also consult Chapter 9. For all

other errors, reference the Operating and Programming Manual.

(K}

Missing ROM; or configuration error

Memory overflow; or subprogram larger than block of memory
Line not found or not in current prégram segment

Improper return

Abnormal program termination; no END or STOP statement
Improper FOR / NEXT matching

Undefined function or subroutine

Improper parameter matching

Improper number of parameters

String value required

Numeric value required

Attempt to redeclare variable

Array dimensions not specified

Multiple OPTION BASE statement or OPTION BASE statement preceded by

variable declarative statements

Invalid bounds on array dimension or string length in memory allocation
statement

Dimensions are improper or inconsistent; or more than 32 767 elements in an

array

’

Subscript out of range

265

266 Appendix J: Error Messages

[}

Substring out of range; or, string too long

ey

14 Improper value

28 Integer precision overflow

21 Short precision overflow

22 Real precision overflow

23 Intermediate result overflow

& TAN (7+3/2), when nis odd

=5 Magnitude of argument of ASN or ACS is greater than 1

ok Zero raised to negative power

""" 7 Negative base raised to non-integer power

2E LOG or LGT of negative number

24 LOG or LGT of zero

=15 SQR of negative number

a1 Division by zero; or, XMOD Y withY = 0

ad String does not represent valid number; or string response when numeric data
required

33 Improper argument for NUM, CHRS$, or RPT$ function

et Referenced line is not IMAGE statement

45 Improper format string

Z6 Out of DATA

a7 EDIT string longer than 160 characters

R [/ O function not allowed

45 Function subprogram not allowed

41 Improper replace, delete, or REN command

41 First line number greater than second

47 Attempt to replace or delete a busy line or subprogram

4
o
[}

Matrix not square

Appendix J: Error Messages 267

lllegal operand in matrix transpose or matrix multiply

Nested keyboard entry statements

No binary in memory for STORE BIN; or no program in memory for SAVE

Subprogram COM declaration is not consistent with main program

Recursion in single-line function

Line specified in ON declaration not found

File number less than 1 or greater than 10

File not currently assigned

Improper mass storage unit specifier

Improper file name

T Duplicate file name

Directory overflow

File name is undefined

s Mass Storage ROM is missing

Improper file type

Physical or logical end-of-file found

Physical or logical end-of-record round in random mode
21 Defined-record size is too small for data item

b File is protected; or, wrong protect code specified

o The number of physical records is greater than 32 767
£ Medium overflow (out of user storage space)

=5 Incorrect data type

B Excessive rejected tracks during a mass storage initialization

= Mass storage parameter less than or equal to 0

Invalid line number in GET or LINK operation

ST (See Mass Storage ROM errors)

268 Appendix J: Error Messages

-

Cartridge out; or door open

Mass storage device failure

Mass storage device not present

Mass storage medium is write-protected

Record not found

Mass storage medium is not initialized

Not a compatible tape cartridge

Record address error; or, information can’t be read

Read data error

Check read error

Mass storage system error

(See Mass Storage ROM errors)

Item in PRINT USING list is string but IMAGE specifier is numeric
Item in PRINT USING list is numeric but IMAGE specifier is string
Numeric field specifier wider than printer width

Item in PRINT USING list has no corresponding IMAGE specifier
(See /0O ROM errors)

(Unused)

(See Plotter ROM errors)

(Unused)

(See 1/ 0O ROM errors)

(Unused)

(See Assembly Language ROM errors)

o {octal number} ; {octal number}

This error indicates an error in the machine’s firmware system; it is a fatal error. If reset
does not bring control back, the machine must be turned off, then on again. If the problem
persists, contact your Sales and Service Office.

1
i

Appendix J: Error Messages

Mass Storage ROM Errors

Format switch off

Not a disk interface

Disk interface power off

Incorrect controller address; or, controller power off
Incorrect device type in mass storage unit specifier
Drive missing; or power off

Disk system error

Incorrect unit code in mass storage unit specifier
(Unused)

{(Unused)

Plotter ROM Errors

Plotter type specification not recognized
Plotter has not been specified

(Unused)

LIMIT specifications out of range

(Unused)

269

270 Appendix J: Error Messages

LI Lo [
[

L

L

Assembly Language ROM Errors

Improper argument in OCTAL or DECIMAL function

Break Table overflow

Undefined BASIC label or subprogram name used in IBREAK statement

Attempt to write into protected memory; or, attempt to execute instruction not
in ICOM region

Label used in an assembled location not found
Doubly-defined entry point or routine

Missing ICOM statement

Module not found

Errors in assembly

Attempt to move or delete module containing an active interrupt service
routine

Address out of range in IDUMP statement

Routine not found

Unsatisfied externals

Missing COM statement

BASIC’s common area does not correspond to assembly module requirements

Insufficient number of BASIC COM items

Appéndix J: Error Messages 271

Assembly-Time Errors
o Doubly-defined label

B END instruction missing; or module name does not match

E Expression evaluation error

LT Literal pools full or out of range
i ICOM region overflow

Foi Operand out of range

= Argument declaration pseudo-instruction out of sequence

Incorrect type of operand used

Undefined symbol

272 Appendix J: Error Messages

273

Appendix K

Maintenance

Maintenance Agreements

Service is an important factor when you buy Hewlett-Packard equipment. If you are to get
maximum use from your equipment, it must be in good working order. An HP Maintenance

Agreement is the best way to keep your equipment in optimum running condition.
Consider these important advantages —
e Fixed Cost — The cost is the same regardless of the number of calls, so it is a figure that

you can budget.

o Priority Service — Your Maintenance Agreement assures that you receive priority treat-

ment, within an agreed-upon response time.

e On-Site Service — There is no need to package your equipment and return it to HP. Fast

and efficient modular replacement at your location saves you both time and money.
o A Complete Package — A single charge covers labor, parts, and transportation.

e Regular Maintenance — Periodic visits are included, per factory recommendations, to

keep your equipment in optimum operating condition.

e Individualized Agreements — Each Maintenance Agreement is tailored to support your

equipment configuration and your requirements.

After considering these advantages, we are sure you will see that a Maintenance Agreement is
an important and cost-effective investment.

For more information, please contact your local HP Sales and Service Office. A list follows.

HEWLETT

ho: PACKARD

SALES & SERVICE OFFICES

Hewlett- {’ackzm South Africa

P.0. Box 120

Howard Place, Cape Province, 7450

Pine Park Cenire, Forest Drive,
Pinelands, Cape Province, 7405

Tel: 53-7955 thu 9

Telex: 57-0006

SRI LANKA
Metropolitan Agencies Ltd.
209/ Union Place
Colombo

219

Tel: 35947
NIGERIA Telex: 1377METROLTD CE

ANGOLA ETHIOPIA grgmsg 3‘7" n mfnilmmmf:‘ing e g:'m’é. METROLTD

Telectra Abdella Abduimakk Blue Star Ltd Lot 259, Satok Road NGB0 Oyo oag SUDAN

Empresa Técnica de £.0. Box 23'55 Blue Star House Yokogawa-Hewlett-Packard Ltd. K“ﬁg’s‘ Sarawak Oluseun House Radison Trade

quipamentos Addis Absba 11/11A Magarath Road Nakaino Building e TELENG P.M.B. 5402 P.0. Box 921
Eltctn R.L Ibada Khartoum
c0s, S.A. . T 119340 lore 560 025 24 Kami Sasanma -cho i T
B e Rodigues, 42:0T. Nakarmura-ku, Nagoya. 430 NOZAMDIOUE Tolor- 33231 TEIL NG Telex: 375

Gaia Postl. 3'6'4‘5 Only Tel 0 571517 AN G o G e)

Tl Guam Medical - Inc. Yokogawa HowiettPackard L. 162 1 Agt, 14 Av D. Luis Toe Eictionis Incmumentz TAIWAN

Cable: TELECTRA Luanda Suite C, Ai ; Mandir ;a;zngra B,'f,"“'ﬂ o “;p fions L(% cs Instru ?:'vvlllaert'tl;aac“kgl;d Far East Ltd.

: o X ‘
AUSTRALIA B0 Boxese /1678 Mahatma Gandni Rd Kanagawaki - T L o 144 Pgege Motor Road. Mushin 39 Chung Hsiao West Road
Hewlett-Packard Australia Tol_ 644813 b)L T, Yokohama, 221 lelex: el t.‘%“x 6645 ?w . Tth Floor
e N A » N - al

3141 Jlagepn Street Cable: W‘“GD Guam Telex: 0885-514 Telox 300-3208 FHP YOK NEW GUINEA Cable: THETEIL Lagos Tel: 3819160-9,3141010

Bisckburn, Vicioria 3130 HoNG KONG (Hono o ong) L Cable: BLUESTAR Yokogawa-Hewlett-Packard Lid. Hewlett-Packard Australia PAKISTAN Cable: HEWPACK TAIPEI

50 Box % Wing O Carm " Blue Star Ltd. Mito Mitsui Building Ply. Ltd. . Mushko & Company Ltd. Hewlett-Packard Far East Ltd.

Doncunr East, Victoria 3109 M n 111171 105, 1-chome, San-no-maru Development Bank Building Oosman Chambers Taiwan Branch

TJ“GS:??&O e b "Mﬁ Sarojfini Devi :::d "1""25’2"2' i&% elr:udnsgom Ahwnan D;aroon Road 68-; ghgzmng Cheng 3rd. Road

- Secundersl I
S Cable: HEWPARD Melbourne Tol: Tel: 70126, 70127 Tou0 ort Morssby, Paupua m STy, 512907 by 07) 243318-Ksohsiung
1 HewlttPackard Australia Telex: 74765 SCHMC HX Tolex; 015459 Yokogaua-Howett-Packard Lid. 72, Moce ex. 2694 Anaiytical O
< Pty. Ltd. INDIA Cable: BLUEFROST 1348-3, Asa’l'l?-mo‘ 1-chome NEW ZEALAND Cable COOPERATOR Karachi San Kwang Instruments Co., Ltd.

31 Bridge Street Biue Star Ltd. Biue Star Ltd. Atsugi, Kan: 243 Hewlett-Packard (N Z.) Ltd. Mushko & Company, Ltd. 20 Yung Sui Road
[1 o 73 Kasturi Buiidings 204 Kodambakiam High Road Tel: 0462-24-0452 4-12 Cruickshank Street 388, Satelite Town Tai)

New South Wales, 20 Jamshedii Tata Rd Madras 600 034 owiett-Packa Kilbirnie, Weilington 3 Rawaipindi Tel: 3615446-9 4 tines)
b= I s » Toi: 82056 Ky e Packard L. e 0443 g Telex: 22894 SANKWANG
) Cale: HEWPARD Sydney o 2820 21 e Rl Hachipun, Building ourtney Place Cable: FEMUS Rawaipindi Cable: SANKWANG Taipel
=) Hewlett-Packard Austraka Cable: BLUEFROST g"' Aot wba Tel: 6711169 PHILIPPINES TANZANIA

: Lid Star Lt INDONESIA PACK Welki The Oniine Advanced Medical Orly
&L 155 Croentitt Road Sloe Star L. BERCA Indonesia P.T. "5:3;"' Saitama 360 Cable: HEWPACK Wellington Systems Corporation International Aeradio E.A.), Lid.
Park rm- S.A.. 5063 43 Vi Savakar F.0. Box 496K, Howlot-Paiard 1) L1d. Rico House P.0. Box 861
ok Pnb’im:“ Marg Jin.Abdul Muis 62 KENYA Pakuranga Professional Centre Amorsolo cor. Herrera Str. Dar os Salsam
< jaarta . 287 Paluuznoa Highway Village, Malati Tel: 21251 Ext. 265

Telex: 82536 . 400 Yol 349255, 349886 Advanced Communications Lid Box 51005 '-‘8'3&“ ?" Telex: 41030
wm= Cable: HEWPARD Adelaide Tel: 45 78 87 A P 0. 30 30070 P .
(7 Qe Pacard Austla Telex: 0114093 otax: 4574 ‘67“ BERSIL 1 aurangt THAILAND
g |y . Cable: FROSTBLUE BERCA Imnesa PT }:{,335%9 e NEWPACK Auctand mﬂa "5%?}}3"{%,%‘ St JNIMESA Co. L.

141 Siring Highway % Bluo Star Ltd. P.0. Box 174Sby. Analytical Medical Only loom Research Buiding

 MNadiens. W.A. 6000 Sand Box Houss 23 din. Jimerto mmf:‘nwr Y raaot 4 i Medical Supplies N.Z. Lid. BHODESIA s 8 S e
< Telex: 93859 MB"'"‘* 400 025 Tel: 4 P.0. B mn Gumoﬁ Newmarket 45 Ketvin Road North " 332387, 33&3
Q Cable: HEWPARD Perth Tol: 45 73 01 A teacon Rawob Aipon- P.0 Box1234 P.0. Box 3458 Cable: UNIMESA Bangkok
E umm*:am Austraia T g1i.5751 e Tor Pa0ss 56 fuckland TS tnes) uaaNoA
Cable: BLUEST. ISRAEL R e el cal

121 Wollongan Biue Star Lid. Elecironics Engineering Div. Teiex: 2220122301 Cable: DENTAL Auckiand Telex: RH 4122 International Aeradio € A.). Ltd
[TH Fyshwick. A Bhavdeep of Motorola Israel Ltd. Cahle INTAERIQ Nairobi a e b POR By
g7 Stadium Road 16, Kremenetski Stroet 0';7 um“'sﬁ‘pﬁ“‘:;" W2 g Sowat-packand Si pore Kampala

Tel 52850 380 014 P.0.Bok 25016 Intation derado €A L. o Srets e g e Tel: 54388

Cabie: HEWPARD Canberra Tol: 42680 TokAviv RO 0. Box orme moana Cable: INT/ Y’

i s Tel: 38973 Porirua 1150 Depot Road able: INTAERIO Kampala

Hewlett Packard Australia m{mm Toiex: 33569, 34164 Tel: 75-008 Aexandra P.0. Box 58 ZAMBIA

o oo Blue Star Lig. Cable: BASTEL Tel-Aviv §,°,,§E‘ actronics Co., Eaptodica O oy $in : R Tiouy gambia) L

3 “ony .U. Box

Im ﬁﬂﬁy"'”sé'& 7O o ot m’:n«mgmn L. ;g"g Fm Dnymaak Bldn . Modcal Supples N.Z. L. Em-:“'gvﬁpggkz_‘m pore Lusaka

ok ., 4th 0. :

Spring Hil Queensiand 4000 Caleuta 700 001 2"203 %:?u | , Moo-Ro, Chung-Ku, SOUTHAFRICA Cable: ARJAYTEE, Lusaka

Cable: HEWPARD Brisbane Telex .021-703 Vodmg?!. mh-sm Tel: @3) sa” 77834012034 nw-h&a'm South Africa OTHER AREA SNOTLISTED,

BANGLADESH Cable: BLUESTAR e 2 oot Telex: 2257 Cabe: ety éa? Gend Sonen

The General Electric Co. Blue Sw'l‘.td Teléx: 523-3624 MM.AVS!A W Sandton, Transvaal, 2144 Hewett-| Pacllard Imevconnnemd

e mm:s;lzl-li mm'aum' Firved wa-Hewlett-Packard Lid. Hewlett- Packard Sales SON BHO Sunu-es K \Z L1t Hewtett Packard Centre 200 Hihaew Ave. - iaoa

Diksra Comm' Area ﬂ.ﬁ"‘“‘m"‘ﬁo 024 m-z Tm“mmy: ™ sw‘ 2z Anq kot i H ’ Tel: @415) 8561501

ghmme GelR, Temail., SED b e B .

Taton: - 081- -] " N " . nesbu Telex: 300,

Cabie: GECDAG Dacca Cable: BLUESTAR Cable: YHPMARKET TOK 23724 Tel: 2332027491 Cable: DENTAL Dunedin Cable: HEWPACK Johannesburg 034-84

Hewlett-Packard)L,
1020 Morrison Dr.
Ottawa K2H 8K7
Tel: 613)820-6483
« ALBERTA TWX: 610-563-1636
) e Pk o) - Hewlett-Packard Canads) Ltd
q S HLZE O oumsec
= T Gt o6t BRITISH COLUMBIA NOVA SCOTIA T Wieyeh ot Farirs Caada) 16, FOR CANADIAN AREAS

Hewlett-Paciard (Canada) Ltd. Hewlett-Packard (Canada) Lid. vt Packard Ganata) L Hewlett-Pacierd Canada) Ltd. ~ TWX: 610-492-4245 ?75 e B o8 167 Civinct Howiet-Packard Ganada)
& 310.7220 Fisher St. SE. 10691 Sh mssocu. 800 Windmit Road HewtsttPackard Canada)Lid. Pointe Claire bR Contact Hewett

Calgary T2H 218 Rich g ov Dartmouth B38 1L1 $52 Newhai Sir wv'xpsm)azz 332 L 9.
oo 03) 253.2713 Tel: §04)270-2277 7 Tou: B2) oo, 020 London HoE 258 TUX: 0-829-621 HPCL

Twx: 6/0-821-6M1 161 ToaCoibaramat : " 619)

MEXICO
. PERU
g Hewien-Packard Mesican, Compatia Eectro Meia § A
ARGENTINA AL aur Mo, 6501 Los Flamencos 1
E gewlm.P:cm Argentina ECUADOR Toponm 'y ocmr;nlw San |sniro Casilla 1030
Computadoras y Equipos Mexico 23, 0. Lima 1
LU} Ay;teandro N Aem 822 - 127 Flectdntos dal Ecuaor Tel: 905-676-4600 T oth 25424 SISIDRO
O emos P.0. Box 6423 CCI Telex: 017-74-507 Telex: Pub. 2ot 2
< 14,9, loy o No. 50 0
= Telex: 122443 AR CIGY COLOMBIA g Attaro No. 1824,3°i Hewlett-Packard Mexicana, SURINAME
«f Cable: HEWPACKARG Iasrumentacon 453 482 S e o No. 2184 S iland N.V. VENEZUE

Biotron S.A.C.Ly M. Hewlett-Packard do Brasil nrik A, Lanoebaek & Kier S.A. Telex: 2543 CYEDE ED L Grote Hofs" 3.5 Hewlett- Packam de Venezuela
L Bolivar 177 1.e.C. Lida. Caroa N 078 Cable: CYEDE-Quito . 48- PO Box1 &8 Box 50933
= }?63‘?:;‘?’3‘ 5358, 34-0460, m P % m "mo = u:;’;“i‘a'.? S.A. 038410 Tul 7'2'?13' 77880 Caracas 105
= 3288 e It 0512)2 225621 Tt 260877 v s NCARAGUA Cable-Surtel Los Ruices Nore

o Do Bat ewiett p.,;k:m“ Al Cable MRIS Bouoﬁ Robles 625 Aoaringe pova 589 TRINIDAD & TOBAGO Edificio Seqre
8 Cable':\:!lztmn s 1.8.C |_}4 o 1e'|m5°45+zsa eﬁﬁ{?ﬁm CARTEL Caracas ‘1’07

8.C. Lida. R ; "
i itacio Pessoa, ohaek A i Managus Caribbean Tolsmms Ltd. Tel: 239-4133 (20 lines)

8& m:; S‘%O 1. Epitacio - 4664 Carrorl No. Ag-A 5’15 A Cable: HOSPITALAR-Guto Tei: 2..’:91.:4 23412,23454,22400 P.0. Box 7: Telex: 25146 HEWPACK
(&] P0_box -Rio de Janeiro-RJ Aparado 54038 EL SALVADOR Cable: ROTERAN Managua & o;r_e&mu ?:m Cable: HEWPACK Caracas
< Tok 41053610533252% 7T aseo0s2 [0leK: 02-21905 HPBR-OR Tol: 304475 Bulevar de los Heroes 1148 Einorngs Babos, SA. Tel: 62 FOR AREAS NOT LISTED,
< g ke omamer ., A iy gwennt, o, T,

Bl b Inter-Americas
o P o B, Daghees S i, Amemwll M
< Alarﬁedamlgm Negro, 750 Vicuna M; umyu 3, Ofic. 1204 goamd 10159 ;:'e‘:iga Reforma 3-48, 1?:7‘%:02 ?000 Panama Tu?':tu.a 1%020 ;Tlt?‘%l,oé S(éa_l‘llso&r“na 94304
W £33 Saaege e L AP T L UL I
z gltﬂ: H-EWPACK Sao Paule Telex: JCALCAGN! Cable: GALGUR Telex: 4192 Teletro Gu Cable: ELECTRON Panama Cable: RADIUM Montevideo Telex: 034-8300, 034-8493
i

AUSTRIA

Hewlett-Packard Ges.m.b.H.
Handelskai 52

P.0. Box 7

A-1205 Vienna

Tel: 351621-27

Cable; HEWPAK Vienna
Telex: 75923 hewpak a

BAHRAIN
Medical Only
Wael Pharmacy
P 0 Box 648

Tel: 54886, 56123
Telex: 8550 WAEL GJ
Cable: WAELPHARM
Analytical Only

Al Hamidiya Trading
and Contracting

FINLAND
Hewlett-Packard OY
Nahkahousunn 5

% 6
SF00211 Helsinki 21
Tel: 90) 692303
FRAI
Hewlen—Packard France
Avenue des Tropiques
Les Ulis
Boite Postale No. 6
91401 Orsay-Cedex

Tel: (1)907 78 25
TWX(gDDOd&F
Hewlett-Packard France
Chemin des Mouilles
B.P. 162

69130 Ecull
T 78)33 81 5.

Cable: HEWPACKSA Hamburg
Telex: 21 63 032 hphh d
Hewiett-Packard GmbH
Technisches Bro Hannover
Am Grossmarkt 6

D-3000 Hannover 91

Tel: 0511) 46 60 01

Telex: 082 3259
Hewlett-Packard GmbH
Technisches Biro Niimberg
Neumeyersirasse 90
D-8500Nirnberg

Tel: 0911) 56 30 83
Telex: 0623 860

Hewiett-| Packard GmbH
Technisches Biro Muinchen
Eschenstrasse 5

D-8021 Tautkirchen

Tel: (089) 61171
Hewlett-Packard GmbH

ITALY

Hewlett- Packa!d Italiana S.p.A.
I'|0

Via G.Di Vi
20063 Cemusoo
Sul Naviglio (MI)

691
TeIex 311046 HEWPACKIT

Hewlett- Pacl@rd italiana S.p.A.

Via Turazza ,
%5100 Padova

{49) 664888
Telex: 41612 HEWPACKI

Hewlett-Packard ltaliana S.p.A.

Via G. Armelh i 10
1-0014
Tel: 06)54 GQ 61

Telex: 61514
Cable: HEWPACKIT Roma

Hewilett-Packard Italiana S.p.A.

Corso Giovanni Lanza 94

POLAND)
Biuro lnfgrmacg Technicznej

Ul Stawki 2, 6P

00-950 Warszawa

Tel: 33.25.88/39.67.43

Telex: 81 24 53 hepa pl

UNIPAN

Biuro Obslugi Tenhmcznq

01-447 Warszaw:

ul Neweiska S

Poland

Zaklady Naprawcze Sprzetu
Medycznego .

Plac Komuny Parysiiej 6

90-007 Lad#

Tel: 33441, 337-83

Telex: 886981

PORTUGAL

Hewlett-Packard Espafiola, S.A.
Av Ramdn y Cajal, 1

Edificio Sevilla, planta 9°
-Seville 5

Tel: 64 44 54/58

Hewlett-Packard Es;
Ed\thm Albia Il 7°

ilbao 1
Tel: 23 83 06/23 82 06
Hewlett-Paclard Espafiola S.A.
Cﬁémon)Go rdillo 1
E-Valencia-10
Tel: 96-361.13.54/361.13.58
SWEDEN
Hewieft-Packard Sverige AB
Enighetsvagen 3, Fa
$-161 Bromma 2
Tel: 08) 73005 50

ola S.A.

Ankara

Tel: 2503 09 - 17 80 26
Telex: 42576 OZEK TR
Cable: 0ZYUREK ANKARA

UNITED ARAB EMIRATES
Emitac Ltd (Head Office)
P.0. Box

Sharjah

Tei: 35412173

Telex: 8136

Engtac Ltd. (Brancn Office)
Anu Dh bi

Tel: 33137011

UNITED KINGDOM
Hewlett-Packard Ltd.
King Street Lane
Winnersh, Wokmgham

Tel: (808) 955-4455

! 1 Telectra-Empresa Técnica de Telex: 10721 Berks. RG11
P.0. Box 20074 Hewlen Pachard France Technisches Biiro Berlin !‘,1Im::31 Té.gé’z‘gs 5308 E;,?pmmgs Fléctricos S.a.r.l. Gabie: MEASUREMENTS Tel: 0734) 784774
lanama Péricentre de la Cépiére Kaithstrasse 2-4 €011} /85 Fi 103 Stockhotm Telex 8471780
Tel: 31081 Toulouse-Le Mirail D-1000 Berli Medical Calculators Only Bua Rodrigo ia Fonseea
Tolor B30 KALOIA 64 Tel 153&" (7 A Tel: [030) 24 %85 H:ﬁ; Fackard i SpA b Sox i %ﬁ*m Sverige AB mieﬁPm Ltd.
BELGIUM Tw Viteere Telex 018 3405 hpbin d Via Principe Nicoia 43 G/G Tel: 19)68 St istra Frélunda Novigaion Aoad
Hewten Packard Benelux Hewlett-Packard France GREECE ![9|5(02955 0 3%'5“.04 Cable: TELECTRA Lisbon Tel: (©031)49 09 50 Altrincham
- ANV Le Ligoures) Kostas Karayannis e Telex: 12598 Telex: 10721 via Bromma office Cheshire WA14 1NU
[7)] Avenue du Col-Vert, 1, Bureau de vente de Marseilles 8 Omirou Sireet Hewett-Packard Itafiana S.p.A. Medical only SWITZERLAND Tel: (061) 928 6422
(Groenkraaglaan) Place Rouée de Vilenueve Athens 133 Via Nuuva San Rocco A. Mundinter Hewlett-packard Schweiz) AG Telex: 668068
(-4 B1170 Brussels. ?Jﬂé%g;’gg""‘“ Tel: 32 30 30362437 731 |5 Dodimorte. e, 62A Iercambio Mundia de Comérco Hewett-Packard Hewlett-Packard Lid.
W 0o russas Hewlett-Packard France m Only Tel: (081) 7913544 P.0. Box 2761 B e 3 ieren-Zurich e
w Telex: 23-494 paloben bru %’5 1i\lleeRde la Bourgnette pap,m,,ass,o,, &Co. Hewlett-Packard Italiana S.p.A. Avenida Antonio Augusto Tot- 01)7305240 Dudley goad
cveRuS Tel 0951 42 44 17 ban ViokaY Bsioana o Linton elex: 53533 pag s
= Kypron TWX: 740912F T‘.ff'sm 3,35,522, 989 Tel: (051) 307887/300040 Tek 19)53 21 317 Cable: HPAG CH T,‘fs‘m',“;ag‘g’g 2850
(o] Gregunos Xenopoulos Street yousen paciard France Telex: 21 5329 INTE GR 16691 munter Hewlm-Packam (Schweiz) AG Telex: 339105
P.0. B 8, rue du Canal de la Mame Cabte: INTEKNIKA JORDAN ol ISERCAMEIO Lisbon Chéteau Bloc HowletiP
o] ;"Icﬁg':za 20 67300 Schiktigheim Medical Only Moussher Gousins Co. OATAR GH1219 Lo Lignon Geneva vfed:;‘h ackard Ltd.
— el " .0. Box N
E Cable: Kypronics Pandehis %%ﬁ?g 10 Technomed Hellas Ltd. Amman Nasser Tradsigg & Contracting T:on%z 33 h 2 798, London Road
Telex: 3018 Hewl‘etl Packard France 52 Skoufa 3Sstr }:: gaé%gggu"ogms %g,‘ .Box 1 Cable: HEWPA G Geneva gr:rm&; l;::th
CZECHOSLOVAKIA Immeuble péricantre T35 72 Sle: MOUASHERCD Tel: 22170 SYRIA Tel: 01) 6840103
Q Vyvojova a Provozni Zakladna Rue van M HUNGARY Cable: MOU Telex: 4439 NASSER General Electronic Inc. 6825
2 Yk Ustav v Bechovicch - 59650 Villaneuve 0 Ascq i WA Cable: NASSER Nur Basha-Annar DT Ky Stest Hewlett-Packard Ltd
D Y %‘:x(a odr 1% WS!"“GV g Méréstechnikai A g 0 & RUMANIA Si’..ﬁ‘i‘c.f?’ gs‘ﬁggyus"
Telex: 12133 Hewlett-Paciard F Swolgaata P.0. Box 830-Safat Hewitt Packard Reprezentanta Tel: 33 24 87 Yorks WE10 1AE
Institute of Medical Bioni ance !czr Servic Kuwait 8d.n. ualeesc Telex: 11215 ITIKAL - (0977 550K
< of Medical Bionics Bureau de Vente Box 241 Tel: 0977) 550016
3 Vyskumny Ustav Lekarskej Bioniky Centre d* affaires Paris-Nord 13918u IVIO x 24 Tel:42 491041 1726 ? 3113 88 85 Cable: ELECTROBOR DAMASCUS Telex: 557355
dodova & Eanrréen: Ampgre 03“"33’5 LUXEMBURG Tt ?3“0" WedicalPersonal Calcultor only HewettPaciard Ltd
~ X ue de la Commune de Paris | - wal X
m Bratlslavar-man B.P. 300 Telex 22 5114 g?lﬁsvl’lackard Benelux LLRUC, Praca Agr l1‘{.|!¥:=I:lilace Way
w]‘r : 93229 _?_2:53 L‘g :’B'Iaar'!es'l]hsnil Cédex Avenue du Col-Vert, 1 lm::glelgdm Pentru g: 2308 Hertfordshlre SG4 0SE
elex: 1 nkraay N mascus
-4 Hewlgt-iackard France :faEd:lNO?ﬂy écﬁem umﬂ) 8 Rep;rram%pﬁ_lmr de ms"“ Tel: 16 36713 697-14 268 Te"-‘x(oggz 9. 31
Entwickjungslabor der TU Dresden Av. du Pdt. Kennedy Eldmg Tradin Company Inc. Tel: (02) 872 22 40 BB-duI of. -Sle"élmf ! ZOMD" Suleiman Hilal EI Miawi
X Forschun sinstitut Meinsberg 33700 Hafnarvol gT Cable PN-UBEN Brussels ucuresti 54 795 ©;0. Box 2528
£ i) et 28 MERo R nes idess Dl
waldhsmvuoim Hewiett-Packard Fra 1S-Reykjavik - scusTel:
o bers “Francebvry” immeuple Locaine el 1 9 201 63 03 "'3.,:3““ SAUDI ARABIA Wolovsky Boulevard 4/17-kw 12
Telex 518741 Boilevard de France Cable: ELDING Reykjavik) Modern Electronic
O . 035 Evry-Cedex 81 rue Karatchi B Hiead Offie) TUNISIA Tel: 294.20.24
= e act &5 Zuerich Tel: 077 96 60 IRAN paciard lran g s o Tome, o Sweet TS Eiectronique Telex: 7625 hewpak su
Schlegelstrasse 15 HeMm—Packard France No. 13, Fourteenth St Telex: 23051/22822 Jod 27';98 31 Avenue de la Liberte YUGOSLAVIA
~ 1040 Berlin 60, Rue de Metz Mir Emad Avenue Cable: MATERIO T2 58 {-:!\%0 144 Iskra-Standard Hewlett-Packard
W s Wimpaneem AR S teom ket
: rue d" Iir B
B oenmanc Te: 8510825 Cassbianca Eosbishment Branch) Tamis, € C socTeL 3|}\uszr if)::sn?mes
Telex: hewp ir 1 27
(o) Howet:acard AS GeRMAN FEDERAL REPUBLIC °2C2 P To. 220085 P.0. Box 272 Tel: 253 621 NOT SHOWN PLEASE
@ ox3450 Birkero Vervbeaniane Eaniur Hewlett-Packard Ltd. Cable: GEREP-GASA Rt 66232 Telex: 12519 CABAM T NTACT:
Tel: (02) 81 66 40 azf,"efhss?.'&e e Frandu Ko Sheat e Cogedir Tet S2s0b 60 TuRKEY et Pacard Ges.m.b.H
= Cable: HEWPACK 25 s1fam %01 40" Winnersh, Wokingham 31 rue Omar Slaoui Moder Electroni TEKNIM Company L1d. B a2
Ll Telex: 37409 hpas di Bers. RG11 54% Casabianca B e Beanch) Riza Sah Pehiev A-1205 Vienna, Austria
Tel: ; :)
Raveret 1o A Pt 1E’\)IPACKSA Fagkut e (ré’m) Bar7e Telex: 2173723003 b0, Box 183 Kavakidere, Ankara Tel: 0222)35 16 21 to 27
DK-8600 Sllkeborg Telex: 04 13249 hpftm d Telex: 84 Cable: COGEDIR Lt Tel: 275800 MEDITERRANEAN AND
Tel: (06)82 7166 Hewlett-Packard GmbH 55 Hewpe Loncon NETHERLANDS : Tetex: 4215 MIDDLE EAST COUNTRIES
Telex: 37409 hpas di Technisches Buro Babiingen Hewlett-Packard Lid. Hewlett-Packard Benelux N.V. Teknim Com., Ltd. NONEHOWN PLEASE
Cable: HEWPACK AS Herrenberger Strasse LI Ec Avant gggusmal Estate gag Heuvesns Goedhartan 121 SPAN Ei“’f,’;’i Buhari San2 CONTA A iard SA
EGYPT D-7030 Béblingen, Wirttemberg Long Mile 0. Box Medit d Midd
Tel: 0703 blin 12, Eire L-Amstel 1134 Hewlett-Packard Espafiola, S.A. Tel: 613 546 literranean and Middie
Insernahonal Engineering Associates A 'D EJ’PACK Boblingen Tel (01) 5‘4322 Tel: 52.3] “7";0“21 ?‘f.frﬁz ? [Tele:f 23540 %SIK%Iukonum Street
24 Hussein Hegazi Street Flx 57265755 ton | Tel: (1) 458 26 00 (10 lines) Medical only Plata Kefallariou
Kasr-el-Aini ?xﬁﬂcighalgrgg'ggmm a‘;‘&i g‘r’vylces roland) L1g NORWAY Telex: 23515 hpe Muherdisik Kollet Sirketi GR-Kifissia-Athens, Greece
Tel “’2% 829 Emamljsel-Leutze-Slm (Seestern) Kilmore Road ’ Hewlett-Packard Norge A/S Hewlett-Packard Espadiiola S.A. Mediha Eidem Sokak 41/ Tet: 8080337259429
Telex: 93830 -4000 Dusseldorf nane Osterdalen 18 Colonia Mirasierra Yiksel Caddesi FOR OTHER AREAS
Cable: INTENGASSO Tel: (0211) 59711 Dublin 53‘1%{;2 . PO B34 gzngggﬁhél::?a " rkorn Not LISTED CONTACT
Telex: 085/86 533 hpdd d : as) : ewlett-Packard SA.
SAMITRO e 0.85 o on Tel: (02) 1711 80 34 Cable: EMATRADE Ankara 7, rue du Bois-du-Lan
Sami Amin Trading Office Hewlett-Packard GmbH Medical Only Telex: 16621 b
i i i i i ex: pnas Hewlett-Packard Espafiola, S.A. Analytical only .0.Box
18 Abde! Aziz Gawish Technisches Bdro Hamburg Cardiac Services Co. CH-1217 M 2- Ger
Abdine-Cairo Wendenstrasse 23 95A Finaghy Rd. South Hewlett-Packard Norge AS Milanesado 21-23 Yilmaz Ozyurek - eyrin neva
: - Lid Nygaardsgaten 114 E-Barcelona 17 i Mudafaz Cad 166 Switzerian
Tel: 24932 D-2000 Hamburg 1 Belfast BT10 08Y gate: i
Cable: SAMITRO CAIRO Tel: (040) 24 13 GB-Northern Ireland 505 Bergen Te: 6203 6200 (5 lnes) Tel: 022)8270 00
ALABAMA 9606 Aero Drive ILLINOIS MINNESOTA NEW YORK OREGO! P.0. Box 42816
P.0. Box 4207 P.0. Box 23333 5201 Tollview Dr. 2400 N. Prior Ave. 6 Automation Lane 17890 SW Lower Boones 10535 Harwin Dr.
8290 Whitesburg Dr. San Diego 92123 Rolling Meadows 60008 St. Paul 55113 Computer Park Ferry road Houston 77036
Huntsville 35802 Tel (114)279 -3200 Tel: 5192 255-9800 Tel: (612) 636-0700 Albany 12205 Tualatin 97062 Tel: (713) 776-6400
Tel: (205) 8814591 10-687-2260 MISSISSIPPH T (57 188 2081 gg? Tel: (503) 620-3350 “Lubbock
8933 E. Roebuck Bivd. Tel: (213)7053344 INDIANA 322 N. Mart Plaza 550 Pucnton til Otfice Park PENNSYLVANIA ?;qgloss)e;woe u;l
COLORADO 7301 North Shadeland Ave. lackson 1 rive y ‘95
TB;'"'EO {';3'32293'? 5600 DTC Parkway Indianapoiis46250 }'efk:sm ;33?133& Fairport 10450 }a‘mfﬁ‘:l’.&. 15238 205 Billy Mitchell Road
Englewood 80110 Tel: 317)842-1000 MISSOUR! }g'vxﬂgfggggﬁ Tel: 412) 782-0400 $an Antonio 78226
e i Magnoﬁa st. el: (303) 771-3455 TWX: 810-260-1797 S Rl o fve. Ko s s 1021 81 Averwe ol: (512) 434-82:
TEer;o(eng'Z)() 532?14361 CONNECTICUT lzezAHeinz Road Kansas City 64137 95th floar Kmq m Prussla lnduslnal Park %oguum 3270 w;s(Street
: 12 Lunar Drive AR Tol. B16)763-8000 34th street & 8th Avenue King (215 Pt Salt Lake City
2424 East Aragon Rd New Haven 06525 Tel: B19) 338-9466 TWX: 910-771-2087 New York 10001 TWX 5105600870 B 9724711
chs%gfggsoiss ’ Tel: 203 389605 WENTUCKY 1024 Executve Parionay Tel: 212) 971-0800 PUERTO RICO ®01)
i . Louis 6314 5858 East Molloy Road VIRGINA
8 ARKANSAS FLORIDA M oy Tel: 14) 878-0200 o, Hewtt Paciard ItocAmericas .0, Box 12778
N inson Dr. . uerte Rico Norfolk 23502
= R T I s rov e PR
< e Ft. Laudordale 3330 e 7101 Mercy Road Woodbury 11767 Ed. 203 Urg_ County Gl PO Boxsss
= T 513104 4228 Emasen S LOUISIANA Omaha 55106 NORTH CAROLINA e %%5521 7258 Richmond 13228
) cALFORMA Unit 103 P.0. Box 1449 Tel: 402) 392-0948 5605 Roanne Way X Tel: (804) 285-3431
, el enner A el 3 . 0. Box i
[R A (339?3572?114]532 £O.Box 13010 Tel: (504) 443-6201 T';.':‘ng",“?;s_ssw OHIO ?:90"1“-& &‘T%m Road ?%'.%%E‘i‘i%ﬁvimf'é:g
ake Ellenor Dr. MARYLAND Medical Computer Oni " Bellevue
L o agethorps . Oriando 32809 7121 Standard Drive NEW JERSEY Biag. 300 Tel: (803) 762-6493 Tel. @06) ds4-307¢
Tel: (714) 870-1000 Tel: (305) 859-2900 Parkway Industrial Center W. 120 Century Rd 1313 E. Kemper Rd. TENNESSEE 10-443-2446
= 3339 Lankershim Boulevard P.0. Box12826 Hanover 21076 Paramus 07652 Cincinnati 45426 8914 Kingston Pike P.O, aux 4010
& 300 Lankershim Boulevar Suie 5, Bldg. 1 Tel: B01) 7967700 Tel @01) 2655000 Tel: (13) 671-7400 Knoxvilie 37922 Spokane 95202
: Te\: 21 3)8 7—1282 Omce Pa(k Nonn TWX: 710-862-1943 Crvstal Bro?:iol;:uisslonal 15500 SDHUUC Road Tel: (615) 523-0522 Tel: (509) 535-0864
4 2 Cheke Cherry Road ystal B A .
X 910-499-2671 fom 804 i) Ehscmaei A Building, Route 35 oy (215 243-7300 3027 Vanguard Dr. ARG
5400 West Rosecrans Blvd. Tel: (301) 9486370 Eatontown 07724 10-423-9430 Director's Plaza Medical/Analytical Only
Rgnas%gzﬁ&m Center P b hs005 TWX: 710-828-9684 Tel:201) 542-1384 330 Progress Ad. ,"‘334‘;':3’:}70 e 1640
Los An 90009 450 Interstate North Parkway MASSACHUSETTS NEW MEXICO Dayton 45449
Tel. (213§ 7767500 Atlanta 30348 32 Harvel v P.0, Box 11634 Tel: (513)856-8202 “Nashville WISCONSIN
TWX: 910-325-6608 Tel: (404) 955-1500 7 02173 Station E 1041 Kingsmill Parkway Medical Service on 9"!’)04 Wes“t Llnwlr; Ave.
“Los Angeles Megical Service Only re| 5? 71851890 11300 Lomas Bivd., N.E. Columbus 43229 Tel: §15) 244 Temﬁ‘] HT N
Tel: 213) 776-7500 'Au%u X: 710-326-6904 L '.""5"&3??5?12%23 Tel: (614) 436-1041 TEXAS :
3003 Scott Boulevard 04) 736-0592 MICHIGAN ° TWX: 910-989.1185 OKLAHOMA 4171 North Mesa FOR U.S. AREAS
Santa Clara 95050 P.0. Box 2103 23855 Research Drive P.0. Box 32008 Suite €110 NOT LISTED:
Tel: 408) gas 7000 1172 N. Davis Drive 8024 156 Wyatt Drive 6301 N. Meridan Avenue E1 Paso 79902 Contact the regional office
Farmington Hills 4 Las Cri 88001 ! regi
“Ri Warner Robins 31 Tel: (313) 476-6400 Tol: 08 Y 5262484 Oklahoma City 73112 Tel: (915) 533-3555 nearest you: Alanta, Georgia...
Tel- §74) £36-6165 Tel: ©12) 9220443 el o) 526 Tel: 405) 7210 P.0. Box 1270 North Hollywood, Calfornia..
724 West Centre Ave. TWX: 910-9983-0550
646 W. North Market Bivd HAWAI mazoo 49002 9920 E. 42nd Street 201 E. Arapaho Rd. Rockville, Maryland.
Sacramento 95834 2875 So. King Street m (sos, 323-8362 Suite 121 Richardson 75080 Rolling Meadows,
Tel: 916) 929-7222 Honolulu 9 Tulsa 74145 Tel: 214) 2316101 linois. Their complete

addresses are listed above.
*Sarvies Oniu

Subject Index

AAR 40,207,221,222
ABR. 40,207,221,222
ABS function 101
ACS function 101,266
AbA 35,207,221,222
ADB 35,207,221,222
AND:

instruction . . 41,207,221,222

operation 101
ANY 112,128,128,196,224
ASC declaration 182
ASCII characterset. 199
ASMB file-type 19,22,23
ASN function 101,266
ASSIGN . 163,164,165
ATN function 101
AUTO. 11,14
Abortive access 142
Absolute 75
Access:

abortive 142

asynchronous 142

granting 142

synchronous 142
Accumulators:

General . . 26,34,35,40,69,231

map 27
Addition, General 35
Addition,BCD 210
Addition,binary 207
Address, machine 78
Addressing:

General o 33

indirect, 34,146
Arguments:

changingvaluesof . = = 122

passing from BASIC == = . 109

system information about 113
Arrays:
changing valuesin. 124
identifiers. 129
obtaining informationon . .. 115
retrieving elements from . = . 118
retrieving substrings from | 121
system information about . = 113

Assembled location 225
Assembled location,definition 4
Assembling:
Process 60
eITOT 194
Assembly:
Development ROM 261
ExecutonROM 261
Language ROMs 268
conditional, definition 4
Asynchronousaccess. 142
BASIC:
General 8,9,11,12,122,174
assembly language extensions 13
assembly source entry . 14
branching on interrupts 150
calling assembly language 7
common 128,132
comparison of expressions 77
comparison of operators 76
drivers 10
end-of-line branches. 139
labels, 50,52
passing variables, 5
relation to assembly language. ., 49
role of STEP key 172
routines 175
subprograms 155,163,176,179
variables:
general 123,175
names 17
structure ... L. 30
BCD:
General 31
Mathgroup 44,45
addition 210
arithmetic:
General 83
addition 85
subtraction 86
defined 83
division. 46,92,210
multiplication .., 46,90,210
normalization 44,89,213
registers 84

rounding 89

277

278

Index
BIN declaration 182
BSS 56,57,75,224
Backplane 133,134
Basepage 29,33,221
Base page,defined 30
Binary Processor Chip (BPC) 25,26
Blank lines, in listings 65
Blind parameters 112
Booth’s algorithm 35,212
Braces (in syntax), explained 6
Brackets (in syntax), explained 6
Branchgroup 36
Branching:

General 36,211
end-of-line 139
interrupt,prioritizing 153
oninterrupts 150
Break points 172,270
Buffers,device 157,158,162
Bus cycles, [/O 25,33,187,207,208
210,213 -216,218,219,220
Bus, /O 47
Busybits 130
Busy bits, definition 4
Busy utility 81,130

Bytes:
General 42.43
definition, 4
pointers 69
retrieving from BASIC 119
CALL 19,111
CBL 43,208,221,222
CBU 43,208,221,222
cDC ... 46,85,208,221,222
CHRS$ 266
CLA 41,208,221,222
CLB..................... 41,208,221,222
CLR 34,146,208,221,222
CMA 41,208,221,222
CMB 41,208,221,222
CMX 45,86,208,221,222
CMY 46,86,208,221,222

COM:
pseudo-instruction59,128,129,195
196,224
statement 115,128,195,267,270
CONTINUEkey 111,171,175
COSfunction 101

CPA 37,208,221,222
CPB..................... 37,208,221,222
Clocktimes 221
Code:

object 5,7,8,9,14,60,68

SOUICE oo 5,60,189
Commands:

AUTO 11,14

EDIT 11,11,14,14,53

REN 266

SCRATCHA 21,143,159,162,194

SCRATCHC 21,193
Comments,in assembly source ... 51,53,54
Common 128,132
Common, error regarding 195
Complement:

ONe’s 41,208

ten’s ... 45,86,208

tWo's .. 46,219
Conditional assembly:

definition 4

flags L. 67

general 60,65
Control registers 135
Current page:

General 29,33,221

defined 30
DAT ... 57,224
DATA 266
DBL 43,209,221,222
DBU 43,209,221,222
DDR 47,149,209,221,222
DEC declaration 182
DECIMAL ...16,101,169,184,193,225,270
DIR 47,156,209,221,222
DISABLE 156
DIV function 101
DMA instruction 149,209,221,222
DROUND 101
DRS 45,209,221,222
DSZ 38,209,221,222
Data generators 57
Data locations 177
Debugging 2,8,169

Decimal Carry flag . .46,85,89,180,186,208
209,211,213,216

Declarations:
ANY 112,128,196
ASC ... 182
BIN ... 182
DEC 182
FIL 110,128,196
HEX 182
INT..................... 110,128,196
OCT 182
REL 110,128
SHO.. 110,128,196
STR................ 110,111,128,196

Device buffers. 157,158,162

Direct memory access (DMA):
General .. 47,47,133,141,142,147,216

lockout time 221
registers.................. 69,148,231
timings 221
transfers 149
Division, BCD 46,92,210
Dot matrix, explained 6
Dumps 181

EDIT 11,14,53,266
EIR 47,156,209,221,222
EJECT option, IASSEMBLE statement
................................. 60,63
ENABLE 156
END:
pseudo-instruction ... 5,11,17,18,55,59
195,224,271
statement 195,265
ENT ... i 77,194,224
EQU 4,59,71,75,197,224,225
ERRL.............. 101,192
ERRMS$ 192
ERRN 101,192
EXE................. 47,196,210,221,222
EXOR. 101
EXP function 101
EXT............ 59,77,78,80,195,197,224
Ellipses (in syntax), explained 6
Entrypoints 77,194
Error_exitutility.............. 81,186,191
Errors: A
assembly language 270,270
assembly-time 190

Index 279

files ... 267
mass storage. - L. 269,269
messages:
Generalccoi... 265
assembly-time............ 193,271
run-time 193
processingo ol 189
run-time 190
syntax-time 189
Exclamationpoint..................... 53
Expressions:
General 75,196
absolute, defined 75
external 196
octal, defined.............. 5
relocatable. 196
relocatable, defined................ 75
typeofresult 76
Extend flag 35,38,39,145,180,186,207
216,217,219
Extended Math Chip (EMC) 25
External.......................... 76,196
FDV.................. 46,94,210,221,222
FIL .. oo 110,128,196,224
FMP 46,90,91,92,207,221,222
FORstatement. 268
FRACT i, 101
FXA............ 46,87,89,90,210,221,222
Files:
ASMB-type 19,22,23
OPRM-type 19,22,23
descriptor 163,164,165
CITOTS - oot emr it et e i iieean 267
9 7=1 0 0 1=1- P 17
numbers A 117,118
Flagline 47 217
Flags:
Conditional assembly 67
Decimal Carry .. 46,85,89,180,186,208
209,210,211,213,216
Extend . 35,38,39,39,145,180,186,205
214,217,217
Overflow .. 35,38,39,145,180,186,205
215,218,217

Full-precision numbers ... 30,58,78,84,102
103,104,105,117,118

280

Index
Functions:

ABS ... 101
ACS ... 101,266
ASN ... 101,266
ATN 101
CHRS$ 266
COS ... 101
DECIMAL 16,101,169,184,193
225,270

DIV . 101
DROUND: 101
ERRL 101,192
ERRMS$ 192
ERRN 101,192
EXP 101
FRACT 101
IADR 16,101,169,184,185,226
IMEM 16,101,169,184,186
INT 101
LGT 101,266
LOG 101,266
NUM ... 266
OCTAL ..16,101,169,184,193,229,270
Pl .. 101
PROUND 101
RES 101
RND 101
RPTS$ 266
SGN ... 101
SIN ... 101
SQR ... 101,266
TAN 101,266
TYP .. 101
GET statement 53,177,268

Get_bytes utility81,116,119,120,128
Get_elem_bytes utility ...81,116,120,128
Get element utility ...81,116,118,121,128

Get_file_info utility 81,164
Get_info utility ..81,114,118,121,123,128
Get_value utility 81,116—119,128
Groups: v
BCDMath 44 45
Branch 36
1/O . 47
Integer Math 35
Logical 41
Stack 42 146
Test/Alter/Branch 38
Test/Branch 37

HED 64,65,224
HEX declaration 182

1/0:
ROM 268
bus ... 47
buscycles 25,33,187
GIOUD .« oottt 47
interrupt 133,138
operations,relation to busy bits130
programmed 133,138
registers 26,26,70,187,231
sample programs 237
IADR 16,101,169,184,185,226
IASSEMBLE 12,16,20,60,62,65,190
194,226
IASSEMBLEALL 60
IBREAK16,169,174,179,181,186,193
227,270
IBREAKALL 169,178,227
IBREAK DATA ..169,177,179,180,193,227
ICALL 12,16,18,19,107,107,108,115
117,123,131,172,227
ICHANGE 16,169,187,227
ICOM 12,16,18,19,21,22,23,193,196
227,270,271

ICOM region19-23,28,56,108,157,161
169, 178,193,194,196,232,270,271

IDELETE 16,18,22,227
IDELETEALL 227
IDUMP 16,169,181,186,194,228,270
IF conditional 66,67
IFA 66,224
IFB .. 66,224
IFC .. 66,224
IFD ... 66,224
IFE oo 66,224
IFF 66
IFG oo 66,224
IFH ... 66,224
IFP oo 66,224
ILOAD ...14,16,18,20,22,55,171,194,228
IMAGE 268
IMEM 16,101,169,184,186,228

INORMAL 16,169,179,193,228

INT:
function 101
pseudo-instruction ... 110,128,196,224
IOR 41,210,221,222
IPAUSEOFF............. 16,169,174,228
IPAUSEON 16,169,171,175,229
ISOURCE...... 11,11,49,50,53,54,63,229
ISTORE 14,16,19,23,55,194,229
ISTOREALL 24
ISZ......... 38,211,221,222
Index 277
Indirect addressing:
General................ 34,68
inISRs 146
Input cycle, explained 25
Input-Output Controller (IOC) 25,26
Instructions:
individual executionof 170
machine:
General 32,54,223
AAR 40,207
ABR 40,207
ADA 35,207
ADB....... 35,207
AND........... 41,208
CBL 43,208
CBU...................... 43,208
CDC 46,85,208
CLA 41,208
CLB...................... 41,208
CLR....... .. 34,146,208
CMA ... 41,208
CMB 41,208
CMX . oo 45,86,208
CMY 46,86,208
CPA 37,208
CPB.......ooiiii 37,209
5):) SR 43,209
DBU. ..o 43,209
DDR ... oo, 47,149,209
DIR .. .o 47,156,209
DMA 47,149,209
DRS .. oo 45 209
DSZ oo 38,209
1) ; S 47,156,209
EQU ... o 4,225
EXE « oo 47,210
FDV .. o 46,94,210
FMP............. 46,90,91,92,210
FXA....... 46,87,89,90,210
IOR -« oo, 41,210
YA A 38,211

Index 281

JMP ... 36,211
JSM............. .. 36,79,211,214
LDA.............. ... 34,211,213
IDB...................... 34,211
MLY.. 45,211
MPY.. 35,212
MRX 44,87,89,91,212
MRY 45,87,89,91,92,212
MWA.................. 46,90,213
NOP.. 47,213
NRM 45,89,213
PBC...................... 43,213
PBD............oii 43,213
PWC 43,213
PWD 43,213
RAL 40,213
RAR 40,213
RBL...................... 40,213
RBR.........oooiiii 40,213
RET 11,36,79,141,211,213
RIA..... 37,215
RIB..............coiin 37,215
RLA......... 39,215
RIB.........o oo 39,215
RZA 37,215
RZB ..o 37,215
SAL ... 40,215
SAM........ ... 38,215
SAP 38,215
SAR.................. 40,208,215
SBL ... 40,216
SBM. ... 38,216
SBP 38,216
SBR............... 40,92,208,216
SCD .o 85
SDC . oo 46,216
SDI ... 47,148,149,216
SDO ... 47,148,149,216
SDS .o 46,85,216
SEC -+ o 39,216
SES .o 39,217
SFC.......ovi 47,137,217
SFS - oo 47,137,217
SIA. ... 37,217
SIB. oo 37,217
SLA - e 38,217
SIB - oo 39,217
SOC - oo 39,218
SOS -+ o 39,218
SSC.v it 47,137,220
SSS .. 47,137,218

STA oo 34,218

282

Index

STB 34,218
SZA 37,218
SZB ... 37,218
O 35,219
TCB 35,219
WBC 43,219
WBD 43,219
WWC 43,219
WWD 43,220
XFR 34,146,220
arithmetic 84
entry 51
groups ... 32
operands, 32
patching 187
Processor 25
pseudo-:
General 18,51,54,223
ANY 128
BSS 56,57,75
COM 59,128,129,195,196
DAT 57
END 5,11,17,55,59,195,271
ENT 77,78,194
EQU 59,75,197
EXE 196
EXT......... 59,77,78,80,195,197
HED 64,65
IFA . 66
IFB 66
IFC . 66
IFD .. 66
IFE . 66
IFF 66
IFG . . 66
IFH .. . 66
IFP 66
| 8 1 74,196
LST 61,62,65
NAM 5,11,17,55,59,195
REP 59
SET 71,72,75,197
SKP 62,63,64,65
SPC ... 65
SUB 11,59,78,108,128,129
194,196
UNL 61,62,65
XIF ..o 66,67
non-listable 65
repeating, 59
timing 221

Int_to_relutility 81,104

Integer Math group 35
Integers:
General 58,102,105,114;117,118
octal 58
structure, 30
Interfaces:
General 133,134,147
98032 (GPIO) 135,138,147,149
237,239,241,244,247,250
98033 (BCD) 239,244
98035 (Clock) 237,239,257
98036 (Serial) 237,239,241,244
Interrupt IO 133,138
Interrupt service routines:
General 21,138,140,149
called from BASIC 150,151
defined 5
errorsin 194
linkage 141,152
reservedsymb 231
reserved symbols 69
statein 145
Interrupts:
General 209,221
executiontime 221
lockout time 221
related machine instructions 47
Isr_accessutility 81,143,149
j
IJMP .. 36,211,221,222
JSM ... 36,79,211,214,221,222

Keyboard 133
Keys:
CONTINUE 111,171,175
RUN 111
STEP 170,171,172,173,180,193
STORE 11,14,53

LDA 34,211,213,221,222
IDB........... 34,211,221,222
LGT function 101,266
LINES option, IASSEMBLE statement
............................... 60,63,64
LINK 53,268
LIST option, IASSEMBLE statement
.................................. 60,61
LIT . .. 74,196,224
LOAD 177
LOG function 101,226
LPY 221
LST 61,62,65,224
Labels
BASIC 50,52
assembly 194,195
assembly language 51,52
Lines:
Flag 47,217
Status 218
blank, inlistings 65
flag 137
status 47,137,138
Listing:
General 61,62
directives 60
Literals:
General 72,75
as data generators 58
evaluationof 72
formof 72
nesting 73
nonsensical useof 74
pools 74,196,271
Load/Storegroup 34
Lockout times: ‘
DMA 221
interrupt 221
Logical:
QrOUP 41
operations 41
MASS STORAGEIS 5,156
MLY e 45,211,221,222
MOD operation e 101

MPY ... 35,212,222

Index 283

MRX 44,87,89,91,212,221,222
MRY 45,87,89,91,92,212,221,222
MWA 46,90,213,221,222
Machine address 78
Machine architecture 25,26
Machinecode 33
Maintenance agreements 273
Mantissa shifting 44 45
Manual:
Assembly Language Quick Reference . 2
Interfacing Concepts 134,135,136
Mass Storage Techniques 5,17
228,229
Operating and Programming 17,21
228,229
structure 2
Mass storage:
General 8,22,53,56,156
Descriptor (MSD)157,160,161,163
ROM 269

Transfer Identifier (MSTID) ..160-162
Transfer identifier (MSTID) ...157-159

123 ¢ o) - J 269
readingfrom 157
unit specifier (msus)5,157,163,269
unit specifier (msus), defined 5
writingto 160
Memory:)
General 56
dumps........................... 181
general organization 28
MaP . et 27,232
protected 28,178,180,193
Mm_read_start utility 81,156—-159
Mm read xfer utility 81,156—-159
Mm_write_start utility81,156,160,161
Mm_ write_test utility 81,156,160,161
Modules:
General 22
creation 55
defined 9
NAMESttt e 17
object 8,8,8
object,defined 5
SOUICE ... verinineiee e, 5,5
storage ..., 56
Multiplication:
BCD 46,90,210
binary 35,212

284

Index

NAM 5,11,17,55,59,195,224
NEXT 265
NOP 47,213,221,222
NOT operation 101
NRM 45,89,213,221,222
NUMfunction 226
Names:
modules 17
Normalization. 44 89
Numbers:
full-precision ... 58,78,84,102,103,104
105,117,118
full-precision,structure 30
octal 184,225
short-precision 58,78,103,105,114
117,118
short-precision,structure 30
OCT declaration 182
OCTAL 16,101,169,184,193,229,270
OFFINT 16,156,191
ONERROR 191,192
ONINT 16,150
ON declarations 267
OPRM file-type 19,22,23
OPTIONBASE 265
OR 101
Obiject:
code.................. 7,8,9,14,60,68
modules 8
modules, defined 5
Octal,expression,defined 5
One’s complement 41,208
Operands............................. 32
Operating system 141
Operations:
AND 101
EXOR 101
Logical 41
MOD........................ 101,266
NOT .. 101
OR ... 101
Output cycle, explained 25
Overflow flag 35,38,39,145,180,186
207,217,218,219
Overlapmode - -..... 130

PAUSEkey 170,171,172
PBC..................... 43,213,221,222
PBD..................... 43,213,221,222
Pl 101
PRINT 183,186
PRINTUSING 268
PROUND 101
PWC.................... 43,213,221,222
PWD.................... 43,213,221,222
Page:
format, listings 62
headings, listings 64
length, listings..................... 64
base 29,33,221
base, defined. 30
current 29,33,221
current, defined 30
defined 29
Parameters:
blind............... 112
in SUB pseudo-instruction 109
Pausing.................., 7,8
Plotter ROM......................... 268
Pointers,stack 26,27,69,70,231
Pools, literal 74,196,271
Print_string utility 81,167
Printer_select utility 81,166
Priorities, for selectcodes............. 140
Processors:
Binary Processor Chip (BPC) 25,26
Extended Math Chip (EMC) 25
General 142
Input-Output Controller (I0C) ... 25,26
bUS. ..o 25
instructions 25
Programmed[/O........... 138
Programs:
assembly language,developing 7
counter 26,70
countermap 27
creation....................... 8,9,49
defined 9
entry ... 49
stepping L 7.8
stepping through 170
Protected memory 28,178,180,193
Put bytes utility 81,122,124,125,128

Put_elem_bytes utility. ... 81,122,125,128
Put_element utility . .. 81,122,123,125,128
Put_file_ info utility........... 81,163,165
Put_value utility 81,122,123,124,128

RAL 40,40,213,221,222
RAR 40,213,221,222
RBL 40,213,221,222
RBR 40,213,221,222
REDIM 116
REL 110,128,224
REN command 266
REP 59,224
RES function 101
RET 11,36,79,141,211,213,221,222
RETURN 150
RIA 37,215,222
RIB 37,215,221,222
RLA 39,215,221,222
RLB 39,215,221,222
RND function 101
ROA 221
ROMs:
Assembly Development . ..1,2,193,261
Assembly Execution 1,2,261
Assembly Language 268
O oo 268
Mass Storage 269
Plotter 268
installation 3
requirements of other 20
RPT$ 266
RUN:
command 20
key ... 20,111
RZA 37,215,221,222
RZB 37,215,221,222
Registers:
General 26,33,37,38,40—-44,48,70,135
180,207,208 - 221,231
BCD AU 84
DMA] .148,231
DMA General e 26
DMAmap 27
I’0 26,27,70,187,231
Peripheral Address 135,231
arithmetic 70,92,93,94,95,231
control 135
extermal 27
internal 26
internalmap 27
1007-Y o TP 27
preservationby ISRs 145
stack J 42
statuso 136

Index 285

Rel math utility 81,99
Rel to_intutility 81,102
Rel to_shoutility 81,103
Relocatable 68,75,196
Rotation 40,215
Routines:

BASIC 175

defined 9

Namescc.o.... 17

SAL ... 40,215,221,222
SAM 38,215,221,222
SAP . 38,215
SAR 40,208,215,221,222
SAVE 267
SBL 40,216,221,222
SBM 38,216,221,222
SBP 38,216,221,222
SBR 40,92,208,216,221,222
SCD ... 85
SCRATCHA 21,143,159,162,194
SCRATCHC 21,193
SDC 46,216,221,222
SDI 47,148,149,216,221,222
SDO 47,148,149,216,222
SDP 221
SDS 46,85,216,221,222
SEC 39,216,221,222
SES 39,217,221,222
SET 71,72,75,197
SFC................. 47,137,217,221,222
SFS ... 47,137,217,221,222
SGN function 101
SHO 110,128,196,224
SIA ... 37,217,222
SIB 37,217,221,222
SINfunction 101
SKP 62,63,64,65,224
SLA 38,217,221,222
SILB 39,217,221,222
SOC 39,218,221,222
SOS ... 39,218,221,222
SPC .. 65,224
SQR function 101,266
SSC 47,137,220,221,222
SSS ... 47,137,218,221,222
STA ... 34,218,221,222
STB ... 34,218,221,222

286

Index

STEP key 170,171,172,173,180,193
STOP 265
STOREBINt 267
STOREkeycoovvvunn.. 11,14,53
STR110,111,128,196,224
SUB pseudo-instruction . 11,59,78,108,128

129,194,196,222
SUBEND ... 150
SUBEXIT ... 150
SZA 37,218,221,222
SZB ... 37,218,221,222
Sales and Service offices.............. 274
Select codes, priorities................ 140
Shift /Rotategroup 40
Shifting 207,211,212,215,216
Shifting, mantissa 44,45
Sho_to_relutility -................... 105
Short-precision numbers 30,58,78,104

106,114,117,118
Sign-magnitude format 85
Signalling interrupts 151

Skipping ... 37-39,46,47,209,216,217,218
Source:
Source code:

Source,code,General 8,53,60,189
Source,listing control 61
Sourcemodule. L 5
Space dependentmode 54
Stackgroup 42
Stack group, inISRs.................. 146
Stacks:
General 42,213,213,213,213,219
pointers:
General 26,69,70,231
MAD - o 27
registerso 42
Statements, BASIC:
ASSIGN 163,164,165
CALL 19,111
COM........... 115,128,195,267,270
DATA 266
DISABLE I 156
EDIT ... 266
ENABLE 156
END oo 195,265
FOR 265
GET 53,177,268
IASSEMBLE. .. 12,16,20,60,62,65,190
' 194,226
IASSEMBLEALL.................. 60
IBREAK 16,169,174,179,181,186
193,227,270

IBREAKALL 169,178,227
IBREAK DATA 169,177,179,180
193,227
ICALL 12,16,18,19,107
108,115,117,123,131,172,227
ICHANGE 16,169,187,227
ICOM 12,16,18,19,21-23,193
196,227,270,271
IDELETE 16,18,22,227
IDELETEALL 227
IDUMP .. 16,169,181,186,194,228,270
ILOAD 14,16,18,20,22,55,171
194,228
IMAGE 268
IMEM ... 228
INORMAL 16,169,179,193,228
IPAUSE OFF 16,169,174,228
[PAUSEON...... 16,169,171,175,229
ISOURCE 11,49,50,53,54,63,229
ISTORE...... 14,16,19,23,55,194,229
ISTOREALL 24
LINK............ooia. 53,268
LOAD ..., 177
MASS STORAGEIS 5,156
NEXT ... 265
OFFINT...................... 16,156
ONERROR.................. 191,192
ONINT 16,150
ON declarations 267
OPTIONBASEt 265
PRINT 183,186
PRINTUSING 268
REDIM i, 116
RETURNt 150
SAVE 267
STOP .. 265
STOREBIN...................... 267
SUBENDco i 150
SUBEXIT ... 150
Statusline........................ 47,218
Status registers 136
Stepping programs 7,8
Strings:
General 117,118
as data generators 117
structure 30
Subprograms, BASIC 155,163,176,179
Subprograms,errors 266
Subroutines 36,211,213
Substrings:
changing valueof 125
retrieving 119,121

retrieving from arrays - 121

Symbolic operations 69
Symbols:
General 196,197
addressof 185
defining 71
errorregarding 194
external 76
pre-defined 69,153,231
Synchronous access 142
Syntax,fundamental 6
TAN function 101,266
TCA, 35,219,221,222
TCB ... 35,219,221,222
TYP function 101
Tapecartridge 133,141
Tape cartridge, Demonstration 261
Ten’s complement 45,46,86,208
Test/Alter/Branch group 38
Test/Branchgroup 37
Timings:
clocko 221
execution 221
instruction 221
lockout 221
Transfers,DMA 149
Two’s complement 35,219

Typing aids, demonstration cartridge ..261

UNL 61,62,65,224

Utilities:
General 78,79,180,233
Arithmetic, 99
Arithmetic,operand registers 27
Busy 81,130
Error_exit 81,186,191
Executionof 172
Get_bytes 81,116,119,128
Get_elem_bytes81,116,120,128
Get element - 81,116,118,121,128
Get file info -« 81,164

Get_info81,114,118,121,123,128
Get_value ...81,116,117,118,119,128
[nt_to_re] 81,104
Isr_access -............ ’...81,143,149

Index 287

Mm_read_start ..81,156,157,158,159
Mm_read xfer ...81,156,157,158,159

Mm_ write_start 81,156,160,161
Mm_write test 81,156,160,161
Print_string 81,167
Printer_select 81,166
Put_bytes 81,122,124,125,128
Put_elem_bytes 81,122,125,128
Put_element 81,122,123,125,128
Put file info 81,163,165
Put value 81,122,123,124,128
Rel math 81,99
Rel to_int 81,102
Rel to sho 81,103
Reserved symbols 70
Sho to rel 81,105
Writing ... 231,235

Value checking 183
Variables:
General 56
BASIC .. oo 13,175
retrieving values from 117
value checking «.................. 183
WBC ... 43,219,221,222
WBD 43,219,221,222
WWC 43,219,221,222
WWD 43,220,221,222
Word:
General 43
defined 5
transfers 34,220

XFR ..o 34,146,220,221,222
XIF o 66,67,224
XREF option, IASSEMBLE statement ...60

288

Your Comments, Please...

Your comments assist us in improving
the usefulness of our publications; they
are an important part of the inputs used
in preparing updates to the publica-

tions.

Please complete the questionnaire, fold
it up and return it to us. Feel free to
mark more than one box to a question
and to make any additional comments.
If you prefer not to give us your name
just leave the last part, name and ad-
dress, blank. All comments and sugges-

tions become the property of HP.

1. Did you have any difficulty in understanding or applying the material presented in
this manual?

O None O Minimal Difficulty O Difficulty O Considerable Difficulty
If so:

a. What were the ‘‘difficult’” areas?

O Indexing? O Omitted information?
O Organization? 0O Examples
O Depth of coverage? O Other (Please explain)

b. What do you suggest we can do to clarify these areas?

2. What was your level of programming knowledge before you started using this
manual?

O None O Beginner O Intermediate O Expert

3. What is your major application of the equipment described in this manual?

O Business Administration 0O Education
O General Computation and Data Analysis 0O Data Acquisition and Control
O Engineering O Medicine
Whatkind? What kind?
O Interfacing O Other (Please name)

4. What best describes your level of involvement with the equipment?

O Run programs written by others O Write complex programs
0O Write simple programs O Hobbyist
O Do simple calculations O Other

O Do applications programming

5. What type of binding would be best for your particular use?

O Single pages in looseleaf binders O Glued spine
O Spiral or wire-o binding O Other (Please specify)

General Comments:

Name:

Address:

Thank you for your help. No postage necessary if mailed in the U.S. A.

naQae anne2 February 1, 1979

FIRST CLASS
PERMIT NO. 37
LOVELAND, COLO.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

HEWLETT-PACKARD COMPANY
DESKTOP COMPUTER DIVISION
3404 EAST HARMONY ROAD

FORT COLLINS, COLORADO 80525

ATTN: CONTROLLER DOCUMENTATION

s

Assembly Language ROM Errors

Improper argument in OCTAL or DECIMAL function

Break Table overflow

Undefined BASIC label or subprogram name used in IBREAK statement

Attempt to write into protected memory; or, attempt to execute instruction not
in ICOM region

Label used in an assembled location not found
Doubly-defined entry point or routine

Missing ICOM statement

Module not found

Errors in assembly

Attempt to move or delete module containing an active interrupt service

routine

Address out of range in IDUMP statement

Routine not found

Unsatisfied externals

Missing COM statement

BASIC’s common area does not correspond to assembly module requirements

Insufficient number of BASIC COM items

Assembly-Time Errors
Doubly-defined label
END instruction missing; or module name does not match
Expression evaluation error
Literal pools full or out of range
ICOM region overflow
Operand out of range
Argument declaration pseudo-instruction out of sequence
Incorrect type of operand used

Undefined symbol

Part No. 09835-90083
Microfiche No. 09835-99083

HEWLETT (h

i PACKARD

Printed in U.S.A.
February 1, 1979

NOY uawdolana Alquiassy GE Waisis dH

	000000
	000001
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	Chapter 1
	001
	002
	003
	004
	005
	006
	Chapter 2
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	Chapter 3
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	Chapter 4
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	Chapter 5
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	Chapter 6
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	Chapter 7
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	Chapter 8
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	Chapter 9
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	Appencices
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221a
	221b
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233a
	233b
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	Index
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	replyA
	replyB
	xBackA
	xBackB

