
HEWLETT-PACKARD

HEWLETT ~ PACKARD

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and
workmanship. For Hewlett-Packard Desktop Computer Division products
sold in the U.S.A. and Canada, this warranty applies for ninety (90) days
from date of delivery.* Hewlett-Packard will, at its option, repair or replace
equipment which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any. Equipment
returned to Hewlett-Packard for repair must be shipped freight prepaid.
Repairs necessitated by misuse of the equipment, or by hardware,
software, or interfacing not provided by Hewlett-Packard are not covered
by this warranty.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD
SHALL NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

* For other countries, contact your local Sales and Service Office to
determine warranty terms.

~
I

I
I

IIJ m t

Assembly Development ROM

HP 9835A Desktop Computer

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525

. (For World-wide Sales and Service Offices see back of manual.)
Copyright by Hewlett-Packard Company 1979

ii

Customer Questionnaire
To help us in preparing new manuals, there is a questionnaire in the back of this manual. Your

answers to the questions can assist in producing better, more useful manuals. Your feedback is

our only way of knowing the validity of our manuals. Please complete the questionnaire and

mail it - postage is already paid in the United States. Thank you.

System 35 Manual Reference
The following block diagram shows manuals that are included in the System 35 Documentation

scheme and suggested progression. Dotted-line borders indicate those manuals are available

with specific options; solid borders indicate those manuals that are shipped with every System

35.

~-r-- --,
I Mass Storage I

Techniques Manual

L-JI-J ,----,
I Mass Storage I
LeriPhera~a.:.a~

Beginner's Guide

Reference Guide

r
I

I/O

Programming

Owner's

Manual

~ 7 .JV V

Operating

¢ and

--,
I

Programming Manual

----r ,
I Assembly I
tanguage Ma:l:J

Preview

<=> System Test

Manual

----r Plotter ,

I Programming I
L_ Manual_J

_l!
I --,
I Interface Manuals I

L~JI_J
r------,
I Peripheral Manuals I
L ____ J

iii

iv

Chapter Summaries
Chapter 1. General Information. An introduction to the product and the manual. The pur

pose and differences of the two Assembly Language ROMs are explained. ROM installation

procedures are given. A glossary is provided, along with a discussion of the syntactical forms

used in the manual.

Chapter 2. Getting Started. A general discussion of the assembly language system. A format

for the creation of an assembly language program is presented. Topics such as modules,

routines, and memory allocation are discussed, along with methods of using them effectively.

Also discussed is the storage and retrieval of modules on mass storage.

Chapter 3. The Processor and the Operating System. Necessary information on the struc

ture of the processor and the operating system is presented. Topics covered are: machine

architecture, memory organization, data structures and arithmetic, and the machine instruc

tions.

Chapter 4. Assembly Language Fundamentals. The basic statements and syntaxes used

throughout the assembly language are discussed. Program entry, assembling, symbolic opera

tions, module creation, program and variable storage, and utilities are the topics covered.

Chapter 5. Arithmetic. Arithmetic operations are reviewed and the arithmetic utilities are

discussed. Floating point and BCD arithmetic are explained.

Chapter 6. Communicating between Basic and Assembly Language. The techniques used

to pass information to and from the assembly language programs are discussed. Calling assem

bly routines and passing parameters are presented, along with issues involved with using

common. Applicable utilities are also discussed.

Chapter 7. I/O Handling. The various techniques of handling the receiving and sending of

information to peripheral devices is presented. Topics are: a review of I/O-type machine

instructions, registers, applicable utilities, interrupts and interrupt service routines,

handshake-type of I/O, direct memory access, and mass storage devices.

Chapter 8. Debugging. Techniques for isolating and correcting logic problems in assembly

programs are discussed. Included in the discussion are techniques for stepping through prog

rams, getting dumps, patching, and using the keyboard.

Chapter 9. Errors and Error Processing. A discussion of Assembly Language ROM and

other related errors, and what causes them. Included are methods for trapping errors and

possible methods for correcting them.

v

Table of Contents

Chapter 1: General Information

Structure of the Manual. , , , 2

Purpose of the ROMs ,' ,'"., 2

ROM Installation .. , .. 3

Buzzwords , , " .. " , ,. ..,.,', " .. ,', ... ,., .. 4

Fundamental Syntax , , , , , ... , , 6

Chapter 2: Getting Started

Developing Routines for Later Use , , , ... 7

Overview , , 9

Program Creation. , 9

Program Entry , , , .. , 14

Other Extensions , ,., , 16

Modules, Routines, and Such, , ,..... 17

Names , , . , , , , , , 17

Survey of Modules and Routines .. , , . , . , , ... , 18

Setting Aside Memory .. ,. 19

Retrieving and Storing Modules , , 22

Chapter 3: The Processor and the Operating System

Machine Architecture , , 25

Registers .. , .. , , , ... 26

General Memory Organization . , . , '. 28

Protected Memory . , , ... , ,................. 28

Base and Current Page , , 29

Data Structures ... , .. 30

Integers , , 0 • 30

Strings , , .. , , " , ... "." .. " ... , .. ' ... , ... ,.,.... 30

Full-Precision Numbers ... , . , , , ... , .. , .. , , , , .. 31

Short-Precision Numbers., .. ,.",., , " ,., , .. ,. 31

Machine Instructions ,., , ... , ... , , ,.. 32

Operands ,., .. , , ' ,., , ... " " .. " .. " .. 32

Indirect Addressing , , . , .. , . , .. , ... , .. , ... , .. , , . . . 34

Load/Store Group .. , . , , , , .. , . , ... , , , , , , .. , . , , , , . , 34

Integer Math Group , , .. , , , ... , , , 35

Branch Group .. , .. , , .. , , , , , 36

Test/Branch Group ... , , ... " .. , , " ,37

vi

Test/ Alter /Branch Group < < < < < < •• , , • < < , •••• , < ••••• < < •••••••• < ••••• , •••••••• 38

Shift/ Rotate Group < ••••• < < ••••••• , • • ••••••••••••••• <. • ••••••• < •• < •• < • " • 40

Logical Group· < •• < < ••••••••• , •••••• , , •• < •• < •••••••• , •••• < < ••••••••• 41

Stack Group < • •• < •••• < ••••• < ••••• < ••••••••••••• 42

BCD Math Group· , < •••••••• , •••••• , •• < 44

I/O Group < • < < < ••••• < •••••••• < < < ••••••• ···47

Miscellaneous . , , < •• , , , • , • , • , < < , , < •••• < < , •••••• , • , , ••••••• , ••••••••••• 48

Chapter 4: Assembly Language Fundamentals

Program Entry , .. , ., ., < • , , •••••••• , •••••• , •••••••• , < < ••••• , •••••••• < •• , • < • 49

Assembly Language Source '. " < •••• < ••• 51

Actions· ... , < ••••••• , •••••• < , •••••••• < ••••••••• , ••••• 51

Labels < < < • , < ••••• , , ••• < •• < ••• , , • • • • • •• • ••• < • , ••••• , ••••••••• , •••••• 51

Comments' , . , , ... , , ... , , < •••••••• < ••••••••• 53

Syntaxing the Source , .. < •• < ••••••• , •••••• < •••••••••••••••••••••••••• < ••••••• 53

Creating Modules .. < •••••• < < < < ••••••• , ••••••• < • < •• , ••••• , ••••• < •• , • , ••••• , ••••• 55

Storage .. < • < , ••••••• < ••••••• < • < < < ••• , , • < •••••••• < •••••••••••••••••••••••• < ••••• 56

Modules < < ••••••••• < < •••••• < •••••••••••••••• , • < ••••• , , •••• , ••• < ••••••• 56

Variables ... , , < ••••••••• '.' • < < • , ••••••••••• , •• < •• 56

Data Generators· ... , < •••• , , • , •••••••• < , •• < , •••• , •••• , •• < < •••••••••••••• , •• , • 57

Repeating Instructions . , . < < • • • • • •• • ••••••• < < • < , •••••• < •• , • •• • < • , •••••••••• , •••• 59

Assembling, , ... , , .. < ••••••• , , •••••• ,. ·······,····,········,··,········60

Effect of BASIC Environments < ••••••••• , •••••••••••••••• , , •••••• , , •• , ••• < • < •• 60

Source Listing Control , , ... , , .. , ", < < , • 61

Page Format· .. < < • • • • • • • , , • , ••••• , • , •••• , ,.,." < , • , ••••• , , , •••••• < •••• 62

Page Length ... , . < < •• < •••• , , • < , •••• < •••• , ••••• < • • • • • •• • •• , •••••••••••••• 63

End-of-Page Control ., < , •• , • •• ' •••• < < •••••••• < ••••••• , • , ••••• , •••••• , .' 63

Page Headings , , , , , . < < , ••••• < < , •••• , , • < < ••••••• , •••• 64

Blank Line Generation .. < ••• , ••••••••••• , , , • < ••••• < < •••••• , < < •••••••• , • , • 65

Non-Listable Pseudo-Instructions ., , .. ",............. ., , 65

Conditional Assembly, , . , .. < < ••••• , •••••••••• , ••••••• , • , ••••• , •••••• 65

Relocation , .. , < •••••••• , •••••• , • , •••••••••••••••• , , , ••••••• < , •• < ••• , ••• 68

Symbolic Operations ,.,.' , , ,., ... < < • • • •• 69

Pre-Defined Symbols .,., , " < < ••• , •••• , •••• , •• , •• , •••••• 69

Defining Your Own .. , . , .. , . < ••••••••••• , ••••• , •••••••• < • • • • • • • •• " •• , •• , •• 71

Literals .', ... , , < , , • < < ••••• , < ••• , • , < •••••••••••••• , ••••• 72

Evaluation of Literals, , , , ... , .. < < , • < , ••••• , •• , ••• < < ••••••••••• 72

Nesting Literals , < ••••••••••• < < •••• < , < ••••••• < •••••••• , , , •••••• < • 73

Nonsensical Uses of Literals· < •••••••••••••••• < •• < •• , • , •• < •••• , •• , , ••• , • , •• 74

Literal Pools , ... < < •••• , •• < < < •••••••••••••• , ••••••••• , , •••• , •••• 74

vii

Expressions . , . , . , , ... , , , . , . , ," , " ,', , 75

External Symbols and Elements' . , ... , . , , , , , , , , , ... , , , 77

Other Absolute Elements' , , ,", ,.. .,.., .. , , . , , ... , , ,., 78

Utilities' " , , , , 79

Chapter 5: Arithmetic

Binary Coded Decimal , , ' , "., .. 83

Arithmetic Machine Instructions , , " .. " , .. , , 84

BCD Registers· . , .. , , . , , . , , ... ,." ' , ... "' , 84

BCD Arithmetic , ... , , .. , ... ,., ,. 84

Addition , , ,.... , , , . , , ,. 85

Ten's Complement for BCD, , , ... , . , , .. , . , , , , . , ·86

Floating Point Summations ' . , , , , ,.. , " 88

Normalization , , , , , ., ,.. .., ,. ··,·89

Rounding ,. " .. , .. " ,.. .".. ., , .. " .. '.... 89

Floating Point Multiplication , , ,.,. 90

Floating Point Division ., , , ... , ... , , , , , ,., ... 92

The FDV Instruction ' ., , , ., .. , .. , , .. ,"', .. ,. 94

Thirteen-Digit Dividends' , , ···,········,·,··············95

Floating-Point Division Example' , ····,,·····,···96

Arithmetic Utilities' , . , , , , .. ' .. " .. , " .. " , ,...... 99

Utility: ReI-math ., .. ,.... ,·······:···············,·······,········,······,99
Utility: Rel-to-int , . " .. ".,., 102

Utility: Rel-to-sho ' , , .. ', ., " ,.,.,' ... , ... 103

Utility: Int-to-rel .. , , ... , , ,.. ." .. " , 104

Utility: Sho-to-rel .'" ... , . , ... , ., , .. "., , , ,. 105

Chapter 6: Communication Between BASIC and Assembly Language

The ICALL Statement .. , , , .. , , , 107

Corresponding Assembly Language Statements , ... , " .. 108

Arguments· , , ' , ,. ..,., ".. 109

"Blind" Parameters ,........... , , , . 112

Getting Information on Arguments " .. ,., , , ... , ,. 113

Utility: Get-info , ,. 114

Retrieving the Value of an Argument, ,..... . .. , ,. . .. 116

Utility: Get-value ,., , , , ... , ... , .. , .. 117

Utility: Get-element· . , ' , , , , , , , , , .. , . .. , ,., 118

Utility: Get-bytes , ,., ., .. ,··.··.····,,·················,119

Utility: Get-elem-bytes .. , , . ' , , , , , , ... , , , , , 120

viii

Changing the Value of an Argument 0 < < , , " •• 0 0 0 0 •••• , • , , ••••••••••••••••••• , • 122

Utility: Put-value ... , . 0 • , , ••••••••• , • , ••••• < • < •• , , , • < •• , , < •••• , ••••• < • , 122

Utility: Put-element, ... , ... , , < •••••• , ••• , , •••••••••••••••••••••• , • , < •• , 123

Utility: Put-bytes , . , , . , .. < < ••••••• , •••••• , •••••••••••••••• 124

Utility: Put-elem-bytes , , , " , 125

Using Common < •••••• , • •• • ••••• ,', ••• ,.,.", •••••••• , •••••• ,." ••••••• 127

Busy bits , ... , ... " ,., ,. o. • ••••••••••••••••• ,'" •• 130

Utility: Busy. , , , < • , •••••••••••••• , , • , , •• , , • 131

Chapter 7: I/O Handling

Peripheral-Processor Communication. , , , .. < ••••••••• 0 •••••••••••••••••••••• 133

Interfaces , , , , ... , . , , . , 134

Registers ., .. " .. , , ', , " .. , ... ,' 134

Select Codes < •• , •• , , ••••• , •• , ••••••••••••••• , •• ,' ••••••• , ••••• , ••• , 134

Status and Control Registers , , " 136

Status and Flag Lines, , , .. , ... , " , , .. , , , 137

Programmed I/O , , " .' ... , .. , , , ... , .. , 138

Interrupt I/O ... , , .. < • , ••••••• , ,." ••••••••• , •• " •• < < •••••••••• , , • , •• , • " •••• 138

Priorities .. , < ••••••••••••••••••• , • , ••••••••••••••••••••••••••••• , •• 140

Interrupt Service Routines and Linkage ... < ••••••• , •••••• , •••• , , ••• , ••• ,., ••• 140

Access , .. , . ,< ' ••••••• , •••••• , •• ,. < • , ••••••• , •••••••••• , ••••••••• , ••••• 141

Utility: Isr-access . , .. , , , , . , , 143

State Preservation and Restoration , ... , 0 •••••••• ,. ..,. 145

Indirect Addressing in ISRs , , , , ., 146

Direct Memory Access (DMA) ., , , .. , .. < • , ••••••••••••••••••••••••••••••• 147

DMA Registers ,.... ' , " 148

DMA Transfers. , , , , , 149

BASIC Branching on Interrupts " " , , .. , .. " ... , 150

ON INT Statement .. , , . , < , ••••••••••••••••••••• 150

Signalling, .. " , , < < , , , ••••• , ••• , • , • , ••••••••••• , , •••••• ,. • ••• 151

Additional Pre-Defined Symbols, 0 , ••••• , , ••••••••••••••••••• , ••••••••••••••• 153

Prioritizing ON INT Branches , , .. < •••••••• , ••• , ••••••• , ••• , •••••••••• 153

Environmental Considerations , , , , , , 155

Disabling ON INT Branching ., , ' , ... , 156

Mass Storage Activities . , , , 156

Reading from Mass Storage ., , , , ... ,. < • , •••••• 157

Utility: Mm-read-start <. • .••••.....•• , •••••••••••••••••••• " ..• , 158

Utility: Mm-read-xfer .. , , , , ,., 159

Writing to Mass Storage" " , > ••• > .. > , , , •• , ." , ••• ,. > , , . , . > • 160

Utility: Mm-write-start .. , ". > •••••••• > . , , > ... > > .. , . , 161

Utility: Mm-write-test ... , . , . > > •••••••• , •• > , , •• , , ••• , > , ••• , • , , •• > 161

System File Information , .. , , , ' > , •• ,. > •••••• , , ••• 163

Utility: Get-file-info , > ••• > . , . , , > ••••• 164

Utility: Put-file-info ... , ... , > •••• > > • , , > . > . , > ••••• 165

Printing ,.,....... > •• ,.,..... • > ... > > . , , ... , 166

Utility: Printer_select ,.,", "......... , , .. , > . > 166

Utility: Print_string ... ,., ... , ... " , > > > ••••••••••• > • , , •••••••••••••• 167

Chapter 8: Debugging

Stepping Through Programs • > ••• , ••• " •••••• "",.,170

Individual Instruction Execution , " > . , ,. ,>,.,., 170

Setting Break Points , , . > ••• , • • • •• • > •••• , • • •• • •• 174

Simple Pausing , > > ... , . , > • , •••••••••• , •••••••••••• , ••• , • , ••• 174

Transfers , > ••••••••••••• , ••••••• > , 175

Environments > •••••••••••••••••••••• , • , •••••••••••• , , 176

Data Locations ... ,' .. , > > , .. , , , , .. 177

IBREAK Everywhere , , , > > > 178

Number of Break Points > > ••••• , • • •• • •••• > 179

Clearing Break Points > > • • • • • • • •• ..:' • > . , , . , > > 179

Interrogating Processor Bits -...... , .. , , . > • , •••••••• , •••••••••• > . , .. 180

Protected Memory , . , , ,. 180

Dumps .. > > ... , , , " 181

Value Checking > > , , .. , , , ' <. 183

Functions, , ... , > • • • • • • • • • • •• < • > , , 184

DECIMAL , ", < , •••••••••••• < , •• , •••••• < 184

OCTAL. < > < •••• , ••••••••••••• ,., ••••••• > •••• >.... > ... " ... ,184

IADR .. , .. , .. , < •••••••••••••••• < ••• , •• , •••••••• < •••••••• > ••• 185

IMEM < •••••• , ••••••• < ••••••••••••• < •••••••••• < , ••••••••••• 186

Patching , > ••• > , > •••• > , ••••••• ' •••••••• , • 187

Chapter 9: Errors and Error Processing

Types of Errors> > , , , , >. . •• ,. > . -, .. , 189

Syntax-Time and Assembly-Time Errors , , .. , . , > ••••••• , •••••• 189

Run-Time Errors .. , " > > > ••••••• , •• , ••• , ••••••••• , , , • • • • • • • • •• '" 190

Utility: Error_exit > •••• , • • • • • ••••• > ,.' 191

Run-Time Messages , < •••••• , •••••••••••••••• , _ •• 193

Assembly-Time Messagefi > ... , .. > ••• > > ... , < ••••• > > , .. > < 195

ix

x

Appendix A: ASCII Character Set

ASCII Character Codes 204

Appendix B: Machine Instructions

Detailed List 207

Bit Patterns and Timings, , , , . , . , .. , , > , > ••• , > ... > > ••• > > > , .. > ,> ••• > .. , ... > •• > , , • , 221

Alphabetic List. , , > ••• > ••••• , ••• , ,. ,>. > •• > > > . > .. > , > . , , .. " 221

Approximate Numerical List> , ... , ,, > • , •• > ••••• , •••• , ••••• > •••••• 221

Appendix C: Pseudo-Instructions > > • 223

Appendix D: Assembly Language BASIC Language Extensions Formal Syntax: , 225

Appendix E: Pre-Defined Assembler Symbols 231

Appendix F: Utilities. > > , > > > 233

Appendix G: Writing Utilities> 235

Appendix H: 110 Sample Programs

Handshake String Output , , , , 237

Handshake String Input >, > , , , , , > . > ••••• > ••••••• , • > . , ,. , .. > ••• > •••• >, •• ,' > 239

Interrupt String Output > > . , .. > , > •••• > ••••••••• > , •• , • , ••••••••••• < • • •• •• 241

Interrupt String Input > > , , .. , ... "., .. , .. ,." .. , 244

DMA String Output " .. ,. > •• , • , • , • , ••• , ••••• " •• , •• ", •• ", ••••• , •• ",... • ••• 247

DMA String Input. , , , , .. , , , , ... , . , , . , .. , , , > •••• 250

HP-IB Outputl Input Drivers. ,. ..',. ", ... ,.'" ... 253

Real-Time-Clock Example .. , . " , " > ••• , , •••
257

Appendix I: Demonstration Cartridge

Using the tape .' ... > •• , •••• , • , ••• , , , •• , • , •• , , • , ••• , • , •• , •• , • , • , •••• , ••••••• , > , . 261

Typing Aids ,." , .. ,. > , > , .. > •••••••••• > , , > , •• , ••••• , 261

Appendix J: Error Messages ... > •••• , , , • " , •••
265

Mass Storage ROM Errors 269

Plotter ROM Errors 269
~"'~'~~90~~~9~"'~<"~~< >.~< "'~9"9~.9"O.'~~,,"."."9~~~99 ••

Assembly Language ROM Errors

Assembly Time Errors

Appendix K: Maintenance

270

271

Maintenance Agreements .. , , ... , , .. , , . , , > ••• , , ••••• , ••••• , ••• , •••• 273
Sales & Service Offices 274

Subject Index 277

General Information

Chapter 1
Table of Contents

Structure of the Manual .. " , 2

Purpose of the ROMs ,. ,........ , 2

ROM Installation .. ,.. 3

Buzzwords .. , , " ,., ... ' , 4

Fundamental Syntax. , , ,... .., , " .. 6

Chapter 1
General Information

Welcome to the world of assembly language programming on the 9835A/B.

It is the design of the Assembly Development Read Only Memory (ROM) to help extend the

capabilities of your 9835A/ B by giving you greater control and speed through the use of

machine instructions, pseudo-instructions, and extensions to the BASIC language.

The assembly language system is provided to you as ROMs which plug into the drawers

provided for that purpose in the 9835A/B. There are three physical ROMs, comprising two

"logical" ROMs -

• The Assembly Development ROM. Two physical ROMs. This ROM is always provided

with an Execution ROM (together comprising HP product number 98339A), and the three

ROMs as a unit constitute the assembly language system of the 9835A/ B .

• The Assembly Execution ROM, HP product number 98338A. One physical ROM. Since

this ROM is an integral part of the assembly language system, the use of the capabilities in

this ROM is incorporated into the discussions in this manual. Information on this ROM can

be found separately in the Assembly Execution ROM manual (HP part number 09835-

90082).

It is assumed throughout this manual that you are familiar with the basic operation and lan

guage of the 9835A/B. It is also assumed that you are reasonably well-acquainted with at least

one other assembly language.

1

2 General Information

Structure of the Manual
It is the intent of this manual that you should be able to find between its covers everything you

need to know to use the assembly language effectively. However, since assembly language

programming isa complex topic, the manual relies a great deal on your past experience. Most

of the information is in succinct presentations of a particular topic; it is not the intent to "teach"

assembly language programming to someone not familiar with the topic.

The major topics covered are: assembly language program creation (Chapter 2), the processor

and relevant operating system constructs (Chapter 3), assembly language fundamentals (Chap

ter 4), arithmetic (Chapter 5), communications with BASIC (Chapter 6), I/O handling (Chap

ter 7), debugging tools (Chapter 8), errors and error processing (Chapter 9). Each topic, or

chapter, has a summary at the beginning detailing the information to be presented therein. A

compilation of these summaries can be found immediately preceding the Table of Contents.

The manual is organized so that each topic can be covered completely within a given chapter.

This approach was chosen over the strict syntactical or semantical treatment of the individual

statements and instructions. As a consequence, you may find this difficult to use as a "quick

reference" for syntax and meaning of the individual commands.

To meet your needs for "quick reference" material, an Assembly Language System QUick

Reference Manual (HP part number 09835-90081) is provided. In addition, you will find much

of the information in this manual condensed and tabulated in the various appendices of this

manual.

A recommended method for using the manuals is to start with this one as your basic learning

tool. Then you should be able to use the QUick Reference Manual effectively for all future

reference.

Purpose of the ROMs
The Development ROM is used to write and debug assembly language programs on the

9835A/ B. The Execution ROM, provides the capability to load, run, and store assembled

routines and modules.

The Execution ROM can be used independently of the Development ROM. However, the

Development ROM cannot be used without the Execution ROM. The latter's capabilities, there

fore, are considered in this manual as an inherent part of the Development ROM. Because of

the overhead required by the debugging features provided by the Development ROM, pro

grams run more rapidly if the Execution ROM is used without the Development ROM.

General Information 3

ROM Installation
Before assembly language programming can proceed, the ROMs must be in place. The installa

tion is a simple process.

There are several ROM drawers for the computer: one on the right side of the machine and

four in front. Each front drawer holds up to four ROMs; the side drawer holds up to fourteen.

ROMs may be placed in any ROM slot in any drawer.

Assembly Language System ROMs

To add the ROMs, turn off the computer and remove a ROM drawer (by pulling outwards on it

until it is completely separated from the computer). Insert the ROMs, one at a time, following

this procedure: you should orient the ROM so that its label reads the same way as the others in

the drawer (with the bottom of the lettering toward the "front" of the drawer). Then insert it

vertically in one of the unused slots. Make sure that it slides in all the way to the bottom of the

connector. There are small raised ribs on both sides of each ROM which will fit into recesses in

the slot; if the ribs don't fit, you have not oriented the ROM correctly.

After inserting both ROMs, re-insert the drawer in the machine (by pushing on it until it is flush

with the outside cover of the machine). With this done, you are now ready to begin writing

assembly language programs.

Figure 1. Installing the Development ROM

4 General Information

Buzzwords
During the course of the discussions in this manual, words and phrases are used which are in

common circulation among those who are familiar with assembly languages. While the mean

ing of most are either well-known, or are deducible from the context, there are a few which may

be unfamiliar, or unique to the 9835A/ B assembly language, or are variable from one assem

bly language to the next and thus need to be defined for this one. They are-

assembled location - a reference to a location in memory which may be specified in one

of the following forms -

{symbol} [~ {numeric expression}]

{expression} [" {numeric expression}]

where:

{symbol} is an assembly location. It may be either a label for a particular machine instruc

tion (in which case the address of the associated instruction is used), or an assembler

defined symbol (in which case the associated absolute address is used), or a symbol

defined by an EQU instruction (described in the "Symbolic Operations" of Chapter 4).

{expression} may be a numeric expression or a string expression. If numeric, a decimal

calculation is performed and the result is interpreted as an octal value; if the result is not

an octal representation or an integer, an error results. If a string expression is used, the

string must be interpretable as either an octal integer constant or a known assembly

symbol (see {symbol} above).

{numeric expression} serves as a decimal offset from the given label or constant.

byte - a group of 8 binary digits (bits).

busy bits - each variable located in the BASIC value or common areas has associated

with it two bits: a "read" busy bit, and a "write" busy bit. When a busy bit is set, all

attempts to perform the associated function on that variable are locked out. When a busy

bit is cleared, the function may be performed on the variable.

conditional assembly - an aSSignation that certain portions of a module are not to be

assembled unless a condition has been set. The portions begin with any of the IFA through

IFH, and IFP, pseudo-instructions, and end with the next XIF pseudo-instruction. IFA

uses the A-condition as a test, and so on. The conditions are set by the statement assem

bling the module (lASSEMBLE).

General Information 5

interrupt service routine (ISH) - an assembly language routine intended to perform a

certain action, or set of actions, when the computer receives a request from an external

device. An "active" ISH is one which is currently enabled for a given device.

mass storage unit specifier (msus) - a single word corresponding to the BASIC lan

guage mass storage unit specifier as described in either the 9835A/ B Operating and

Programming Manual - HP part number 09835-90000 - or the Mass Storage

Techniques Manual- HP part number 09835-90070. An msus has the following struc

ture -

Unit HPIB Device Select
Number Address Type 1 Code

I I I I I I I I I I I I

I I L I J I I I I I I I
15 14 13 12 11 10 9 8 7 6 5 4 3 2 OBit

An msus can designate the current default as its mass storage device (meaning it will use

the device indicated by the last MASS STORAGE IS statement executed). This is desig

nated by having the msus be all ones (Le., equal to - 1).

object module - a section of assembled code stored in the pa~ticular region of memory

set aside for it. Though the source module for the object code may no longer be resident in

memory, when created, the module was delimited by certain pseudo-instructions (NAM

and END) and is referenced by the name given to it by the NAM pseudo-instruction.

octal expression - a numeric expression which, when displayed or printed, appears as

an octal (base-8) number. Within arithmetic operations, it has a decimal value (base-l0).

Thus, the value 178 will appear as 17 (representing the value 1510), but if arithmetic was

performed on it, it would act as if it were 1710. All octal expressions are necessarily

integers in the range of 0 to 1777778.

source module - a section of assembly language source code beginning with a NAM

pseudo-instruction and ending with the END pseudo-instruction.

word - two bytes; a group of 16 binary digits (bits).

1 The device type is the ASCII code for the type minus 1008.

6 General Information

Fundamental Syntax
The syntax conventions used in this manual are those used in the Operating and Programming

Manual for the 9835A/ B -

All syntax items displayed in dot matrix form should be pro

grammed as shown.

[] Items contained in brackets are optional items.

Ellipses mean that the previous item may be repeated

indefinitely.

In addition, the following convention is employed throughout the Assembly Language series of

manuals -

{ } Items contained in braces are syntax items considered as a

unit. The names inside are usually descriptive of the function

intended for that item. Whenever an item enclosed in braces

appears in the text, the notation refers to the same notation

within an earlier syntax.

Getting Started

Chapter 2
Table of Contents

Developing Routines for Later Use < , • , , •• < •• • ••• '., < •••• , •• , ••• , < •• , , ••• , •• , , ••••• 7

Overview < •• , , ••••••••••••••• < •• • ••••••• ,. ,..... " 9

Program Creation ... 9

Program Entry,....... 14

Other Extensions .. < ••• 16

Modules, Routines, and Such < ••• < < • < • •• ., •••• < < • , ••••• < • < • < • 17

Names. " " ,...... 17

Survey of Modules and Routines < •• < ••• " •••• • < • , ••• , ••• , < , ••••••• , ••• 18

Setting Aside Memory .. , , < • , •••••••••••• , ••• < ••••••• < ••• < • , • < ••• 19

Retrieving and Storing Modules .,................ , , ,'. .., 22

Chapter 2
Getting Started

Summary; This chapter contains a general discussion of the assembly language sys

tem. A format for the creation of an assembly language program is presented. Topics

such as modules, routines, and memory allocation are discussed, along with methods of

using them effectively. Also discussed is the storage and retrieval of modules on mass

storage.

The thing to remember about the assembly language system is that it has been thoroughly

integrated into the operating system of the 9835A/ B. Once the ROMs have been installed, you

are able immediately to begin programming in assembly language. In addition, you have the

capability to load and store your programs on mass storage, to assemble them separately or

leave them in source form, to execute them from BASIC and pass BASIC variables to them,

and to debug them, including a full pausing and stepping capability.

Developing Routines for Later Use
Most assembly language programs are written with the intent that they will be used many times,

not just at the time they are written. It is for just such program development that the full

capabilities of the assembly language system come into play. The development comes in

several stages. Each stage has its unique requirements and the tools to meet those require

ments.

The first stage is creation of the source program. This is achieved by the use of the editing

capabilities of the 9835A/B. Additionally, the basic mass storage capabilities of the computer

can be used.

The second stage is the creation of the object (or machine) code. This requires not only an

assembly of the source, but the ability to allocate special locations in memory to hold the newly

created object code.

The third stage is the validation of the routines as written, commonly known as "debugging".

This is enabled by calls from a BASIC driver, followed by application of various debugging

tools provided by the assembly system. The capabilities to pause and step a program have been

extended to assembly language instructions to assist this process.

7

8 Getting Started

The fourth stage is to store away the debugged object code so that it may be used at a later

time. A special mass storage statement is provided by the assembly language system. This

statement stores object code into a special assembly file.

Finally, the end-user of the routines must be able to retrieve the object code from mass storage

as it is needed. He also must be able to access the routines from BASIC programs. Both these

needs are met with the Execution ROM, so the capabilities are not only provided, but they are

provided independent of the program development capabilities located in the Development

ROM.

Each of the topics involved in these stages is discussed at length in this manual.

Figure 2 presents a graphical presentation of this overview.

Mass Storage Editing
Capabilities SOllrce Capabilities
of System 35 ~ Statements of System 35

(Source) Program Creation

Assembly

Memory
Allocation

(Object) Module Creation

Calls from
BASIC

Assembly Language System' s

8
Routine Validation

Debugging Tools

(Debugging)

Storage
Special Files

Mass Storage

Retrieval

~

User's BASIC Programs
(includes calls to routines)

Figure 2. Overview of Assembly Language Routine Development Process

Getting Started 9

Overview
At this point, there are three fundamental structures to be explained: programs, modules, and

routines.

A program is the set of source statements from which the object (or machine) code is gener

ated. The assembly source statements are extensions to the BASIC language which is used in

the 9835A/ B. The statements themselves are stored in the machine as part of the BASIC

program in which they reside. At some point, you must take the assembly source statements

and assemble them into object code, in order that they can be run. The object code is stored in

a specified location in the machine.

A module is a subset of the object code. It is a means of separating and identifying parts of the

code so that those parts may be used individually (as in mass storage operations). There may

be any number of modules present at anyone time, limited only by the amount of memory

allocated for object code.

A routine is a "callable" section of a module. It is analogous to the subprogram in BASIC. It

has a named entry point, possibly·a parameter list, and (if programmed correctly) a return. A

module may contain any number of routines, again limited only by the amount of memory

allocated to hold the object code.

In short, the usefulness of each structure is as follows -

• Programs contain assembly language source code.

• Modules contain object code to be loaded from or stored on mass storage.

• Routines are executable sections of object code.

Program Creation
The first matter which is likely to concern you about the assembly language system is how to

create an assembly language program.

In general, the process of creating an assembly language subprogram consists of the following

steps -

1. Enter and store the source code (program).

2. Create an area in memory which will ultimately contain the object code.

10 Getting Started

3. Assemble the source code into object code, storing the latter into the area of memory set

aside for it.

4. Execute the object code (routines) from BASIC "drivers".

Each of these steps will be discussed at length in the pages of this manual, along with a number

of not-so-incidental side-topics (such as "debugging" techniques). The purpose of this short

section is to give you an impression of the general procedure through which an assembly

language subprogram is created.

As an example to use to demonstrate the process, suppose the following task has been assigned

to you-

Requirement: Write an assembly language subprogram which takes two integer

values and multiplies them together as integers. If the result overflows the range of

an integer (- 32 768 to + 32 767), then the subprogram should return the same

error as the system would (Le., error number 20).

With this task in hand, suppose that you have completed a programming analysis that suggests

that the following assembly language sourcecode would fulfill the subprogram's functions- 1

NAM Multipl ication j Beginning of module

Multiply: LDA =Integers
LI1I:~ :::: I f"fr)l)t :I.

. .J~:;j\1 C;E-t !.).::i. 'i i)E:'

L..IiA = I i"Mit E'i;;!l:::' r'O'::::_ -+-1
LDE =Input2
-.r:;!',! =.).:::1.1 i.AE'

Llii:i I (it ~=·l;~~.:·t-·:::.

':;BF ':':·+2
Cr'!E

L..DF"i =~:::~.:.1

.J':::;t-! E[-"["·'::'j·-· e::-::·j t

.J':::;r-!
FET

-:::1. r-' ~:'.::2. ·r () r- -i ri t i:::' l;;~ !::' roo ::::- c: r- E'.::t. t ~::' ij

r·:·.:-.:.~:I-··.::. ~·r!t(·:) pCiir·~t ·f()'\ 1 ()l,',i::::.
i 1(1(:1 -j C.3.t =:::':::_ :1 -i !"'it i:::'i;!I::'!'" 1:)::t.r···.::1i"i"it:·!:. =::.j ::::. -::if""::'

t::::i~::,::::·!::·c! i r'! ti'-i ':::' Cl!····dE·r
M

• i;~;li =.)i:::'(i [):/ tl·-,E':::.t:'
:,::. t·:::i. t ~:'rnE'r-!t ::::' .::j.r-!C! ·::tr-'E' =~;;!i !,)~:'(i t"'~::j.rn~:':::·

He t i),:3. 1 t:'('i t (.~) F)()'~ t"j t (f"l,3J.iYlE' : !"I'! i) 'I t 'j ri'i :/ ::: ;
r" (ii_~ t 'j i"': ~::' tH=:" !;~"j n :.::. L::/ f' ~:' t c ~'-i i 1'''ii;;~ .::a. c t t-i.::t 1
=,},:i 1 !_,l e c! f' t 1'''1 ~::' i '-i f) i,A t ~)::i. r",:::l ffl f.' t !:::' (' :::.

from EASIC and storing them where
the routine can use them

arithmetic accumula~or and
fin~11 multipli~5 them

overflow is pe~formed
t~ checking the result for anything
in the B register when it should be 0
and if it isn/t, Errrn~ 20 is selected
and the routine is aborted

If everything is OK, thE~ result stored
! The V~oduct is then returned to the

c! i_~ t ~:i t~ t :.).3. (. i ·::i t! '~E' i rHf E f:! :::; I C: l'i :::' t. t:' c:1
among the argumE~ts

We/re finished, so return to EASIC
END Multipl icatlon i End of module

1 The fact that it is rarely possible to create a running program at this stage should not get in the way of accepting the example.
Usually there is debugging involved in later stages.

Getting Started 11

Now that the routine has been developed, it is necessary to get it into the memory of the

machine as a program. This is done by preceding each and every assembly language statement

with the keyword ISOURCE and entering it as a program line. The process of entering (with the

keyword included) is the same as with any other BASIC statement - so you can use EDIT or

AUTO and the 8 key in the same way you normally enter any BASIC statement. (This

process is fully described in the "Program Entry" section of this chapter.)

The final result of entering the routine would look something like -

;:::: C I ::: otJ F:' C E
:3i:::i I ::;()!...!F:C[

12[1 jSOi...lF:CE::
.I, ,,::OJ::.' I ::::;UU~:CE
1. 40 I :::;C)i,JF\:::E
i 50 I ::::OU F:CE
i6~] I'::::O!...H:;::C[
i ?Ci I :::OUF:CE
:!.f:~j E;O:".iF:CE
:!. '::+i I ':::OU::;::C[:::

NAM Multipl ication i B8]inning of module
E>-::T [r'i""'or'"" .. ,e::,:: 'j t, :::;,:::'t ',),:j, 'i ' .. ,i!:::'. Put ',)d,! i,.j!:::' ! !...it j 'i '11:. '! e:::,

Integers: H~~ ar8a for integers cr8ated

I ('lPi,..!t i :: Ii···!T
I npt.Jt ~2::
Cil...!tPi,..it ::

Multiply: LDA =Integers

,.1":::: rii :::; '::' t ',},3, 1 i) e
L .. DH ::: I l"';t~'e(;iei'-':::,+:L
L .. DB ::: I nput ~:::
,J::::;I"1 (;,:::'t '),:::;, 'i ue
LDH Inte':;lei''''::::,

L.Ii A = I t-1 t E- :;;~ ~:' ! ::::.

LI1I:; =Cil .. ~'t. f:)t~t

Indicates 81try pJint follows
I nC!'i C.:::i.t E':::· it'j (it ~:'!;iE:'r" r)::j. ('.:::!. fl"let E'r-':::· ·::i~·-·i:::·

f)::t::::·~::'i::'cj 'i ri t 1'''iE Cit-·C!E:·!· .. · !~'i i)!:::'r"i !:::::) t!·-!e~::.t-::·

statemefits and are giv8~ n~~es
f:i c t iM.f.~i '! !:::' I"'! t (.~) 1::::Ci 'i i"'1 t (r-i,::j, rfi E' : I'll !) 1 t 'i I:)'j ~)) ;:

r'()I...Jt '! n~:' l:::,,:::',::) '! n::::, b::.! 'fe-t <:: h 'j (p;i ,:::I.C 'i:, I .. ,~:i 'I
').::1.1 i,..i e () f t 1'''1 e i i''', pu t p::i rOO,,:::;, r;'p:::"i:, eT :::'
from BASIC and storing them where
the routine can use them

arithmetic accumulator and
f 'j n,:::;. 'II::.! i'fiU 'j t 'j i:) ': 'j e:::, t j''',er;',

H c hec k fOi,'" O')':::'i''''f 'j 01 .. .1 'j :::' t:"::' r"'t''(:'r'''rned
L.! ':..' , i'··' ec k i i"; (J 1:. :.", ,:::' e::::, i,,'; : t f ':)(" ,"'" ", 'i:. i'''' c ,,",""

~md the rc~tine is aborted

! The product is then returned to the
c! u t. ~)i_,l t !,).::t. r" i ,:~,1::! '1 E- i i,Hi :B ~::1 :::; I C: -~'j ~::. t E:'(]

among the arguments

END Multipl ication

This source code demonstrates the three critical items in assembly subprograms. First, a routine

has to be part of a module; modules are delimited with the NAM and END pseudo-instructions

(see lines 10 and 270 in the source). Second, a routine has to have an entry point; this consists

of a SUB pseudo-instruction (see line 40), any parameters (see lines 50 through 70), and a

name (the label used on the first machine instruction following the SUB, see line 80). Finally, a

routine must be able to return to the BASIC program which called it; this is accomplished with

the RET 1 instruction (see line 260).

The NAM, END, and SUB pseudo-instructions are discussed in Chapter 4. The RET 1 instruc

tion is discussed in Chapter 3.

12 Getting Started

The next three steps in program creation are each satisfied with BASIC-executable statements.

Creation of a storage area for the object code for the program (which can be estimated at less

than 40 words; there is essentially one word of object code per line of source) is accomplished

by programming the statement -

(The ICOM statement is fully discussed in the "Setting Aside Memory" section of this chapter.)

This can be followed in the same program by an instruction to assemble the source code into

object code -

290 IASSEMBlE Multipl ication

(The IASSEMBLE statement is fully discussed in Chapter 4.)

If the assembly is successful (and it will be in this example), then the routine can be called and

used as desired. A typical call looks like -

600 IeAll Multiply(Ind~x,Dim8~sion,Subscript)
t5 :i.IJ fir,··t-·.::t.::} (~:::; i.At)S.C r"~ f)t) ::=i'/:::i.ll)!::;'

(The ICALL statement is fully discussed in Chapter 6.)

Thus, the final result could easily be -

10

40
::;;OUF:CE
:;:;O!...iF:CE

60 :::;OUFCE
70 ';;;;Oi...iF.:CE
C:~L:i ::;OUF.:CE
'30 :;:;OUPCE
1 ~.:iU ::;OU F.:CE

120 ::::;OUFCE
13(~ ::::;OUFCE
i 40 ~:;CIL1F~C:E

15~:'i ::;OUPCE

NAM Multipl ica~ion ! B~ginning ot module
E::·::T Er-' (·C)r-~_.E:·>:: i t ~ C;E't =.).:-:a. 1 i .. ~E·,

I i'-it ~::'!;~E' i'-·::::.: 1::::;::; ~~ ~:;t ()r-'.3,!;;iE' .:i.r-·E',3. f'Cir-' i r-j1:. E'i;!E'r-':=;. C f-'e'·3, t E'ci

Inpw.1: Ir·H
I r-if:!t~t 2: I r'~1'
Ciijt ~==t~t : I r·~-r

L.DA =Int~';ie(·:::.+l

Indicates Efitry point follows

1 3.1 ue of the i nput. p3.r··.3.met.er-·~::.

from BASIC and st.oring t.hE~ where
t.he rout.ine can use t.hem

arit.hmet.ic accumulat.or and
finally mult.ipl ies t.hem

A check for overflc~ is performed

and t.he routine is a~~rted

Getting Started 13

230 ':::;OI.JF~C E 'T"t-!E' t)r-·(:::::ji-Act 'j:::. r.tH!~::.(! r"E·tijj""'!'·'iE,!::j t() ti'-iE'

;;~,:~O ~::;oi ... n:;::CE c! t.t t t:) i) '~. !').:1 (' i .::i t) '! E' 'j t-i 1:; f::j ::; I C: '! i =~ i:. 1-:;:- C]

among the arguments
RET 1 We~re finished, so return to BASIC
END Multipl ication ! End of module

~90 IASSEMBLE Multiplication

600 ICALL Multiply(Index,Dimension,Subscript)
E; i ~~] I:::! ('('.::i:) (~:;!J!:):.:::.c rH

• 'j f)t > =\1.3. '! tJi:::'

It isn't necessary that a program be assembled in every BASIC program which uses it. Object

code can be stored on mass storage with a statement like -

So if the example were instead made to read-

:::;OUF~C[

~::;Ui.JF"CE

NAM Multipl ication ! Beginning of module

':::;01..) :::::CE:
':::;Ol..JRCE
:::;OUF'CE

'::;otJF:CE
':::;OI...iF:C[

1 ;;:.C ::;ClUF:CE
1. :3U ~:;C)Uf:;::CE

1. '::;~::! :::;CiURCE
1.1:::C:l ':::;OURCE
1.;:"(:i :::;iJUF:CE

~?::~. ~:] ~:;C~Li ~:C:E:

~~5 ~~1 ':::; UJ F: C E
;:;:'6~:J '::;UUF:CE

Integers: BSS 2

:···if)i...it J.::
t··iFi . ..!t ~~:

I.xt. f) i) t :

::::;UB
li···j·r
Ii··rr
H·iT

ultiply: LDA =Integers
L.DB ::: Input 1

L..Iit: ::: I j'"'it)i-At ;;:~

.J:::;!':'! C;l::'t. !').::J. '! i)~_~'

L..Di=i Inteqer-·:::.
L.DE I rltE:·!;;~e!····:::.+:l

::;'Tfi I r-!t E·!~~E·i""··:::·
LliA == I [-1t E:'i;~E'!-':::'

LI:E =Ci!Jt t=it~i:.

~::;t c!(,,~j.!;;jl::' ,::j,('E··~ -f"()t-' i j"':1. E:'i;;!E:' !.~':::, C t-';::',:::1. t E'ij

Indicates entry point follows
I !"'!(j i C·:::L t E-::;, it 'j r-it ~:'!;~~::' r' ~)::!.r·'::L!Y!E:'t !::'r--:,::. ·::1.r'E'

~~ssed in the order qiven by these
:::. '~":1, t E·iYi~:,!· .. !t ::::' .::tt-lc1 ·::tr"'E' !;;;i'j =,)=:::'j'''l l'''~:irfiE':=,

r"c!!~~t 'j I"'!~.::' tiE";;i i r"::::, t):) ·f!-::'1:. c i''': 'i i"'!!~ ·:::i.C t i.X::t. 'I
l'}.::'i,l i.AI::' clf' t!''':E' l!·"it)i)t. r):::J.i,M,,::ti'fi ,::'1:.,:::'r';:,
from BASIC and storing them A1Ere
the routine can use them

arithmetic ~:cu~jlator and
finally multiFl ies them

H check for overflow is performed

i j'''! t.t":t:, E; r-'''::'!]1 :::,'i:.i:;·r'" i,'.!~-!~:'(i 'i t ::::,\'-IC!ij '! cl t::E' ~3

.::Lf"!i] '1 .~. -:- '1 :=,1''':'' ',' II ! .('('C!i"" ::::.;"! 'i ;:- :::,!:::' j I::: ::: t i::~'Cj

and the routj~e is aborted

amc~q the arquments

:;;:~?~) ':;CiUF~CE END Mu!tipl ication ! ~nc ot· mc~ule

:'::;~::!~:i I :::;T C!F~ E 'I~ I~~ I r 'f r:' i I~ ~ t, ~ l~!:"-.: 11 !':"!LJL. 'r !!

:~; 1 i;::1 Et'~I)

14 Getting Started

the object code is consequently stored into the file "MUL T".

Later programs can retrieve the object code for use, such as in the following program -

10 INTEGER Dimension~Index~Subscript

~AA ICRll Multiply(I Djmension,Sub~:ript)

(Both ISTORE and ILOAD are discussed in the "Retrieving and Storing Modules" section of

this chapter.)

Program Entry

The assembly language source statement is an extension to the BASIC language used in the

9835A/ B. This means that each assembly language statement is entered using a

"keyword" - in this case ISOURCE - as a message to the operating system that the line is an

assembly language statement.

By looking at an example, you can see what is meant -

1(:7 L.ET H=H3
20 LET f;:::;20

?F:IHT fi,B

50 ISGJRCE NO?
60 ISOJRCE END ~x~m~ie

Lines 10, 20, 30, and 70, are all recognizable as BASIC statements. The keywords they

use - LET, PRINT, and END - direct that certain actions take place. Lines 40, 50, and 60,

are all assembly language statements; this was indicated by the ISOURCE keyword used in

these lines.

Entering assembly language statements, by using the ISOURCE keyword, is thereby the same

process as entering other types of BASIC statements. You may use all of the system editing

features that you are used to using in the creation of BASIC programs - EDIT, AUTO, etc. You

store each line with the 8 key, as you would any other BASIC line.

Getting Started 15

Also, assembly lines do not have to be in any special place in the BASIC program. The above

example could be re-arranged as follows -

40 ISOURCE NOP

Thus, you are free to enter your assembly statements anywhere in your BASIC program. But,

you may ask, what is the effect of spreading them out like this? The answer is, simply, none.

When the time comes to use them, assembly statements and BASIC statements are separated

by the operating system and treated differently.

When the BASIC program is run, ONLY the BASIC statements are executed. The ISOURCE

statements are ignored, and, as you will be shown in Chapter 4, when the assembly language

lines are assembled, the BASIC statements are ignored. A way to consider it is that there are

two programs in one - BASIC's and the assembler's. So you can envision the example above

as being this way -

BASIC

LET fi:::: 10
LET J::::::2!J
F'R I hT f1, J::

ASSEMBLER

~,-----,source ~

You should note, then, that ISOURCE statements are not "executable" in the usual BASIC

sense. Their location in the program does not indicate the place where they will be executed.

Assembly instructions are not executed until a routine is "called"; this is discussed in detail in

Chapter 4.

Now that it has been said that the two types of statements can be thoroughly intermixed, it

should also be said that the practice is not recommended. As a good programming practice -

i.e., for readability and to preserve the self-documenting features of BASIC - it is recom

mended that assembly statements be collected together and placed in one spot in the program.

The first example is a recommended practice over the second, even though the second is

permissible.

16 Getting Started

Other Extensions
In addition to the ISOURCE statement, there are a number of other BASIC language exten

sions provided by the assembly languge system. Unlike the ISOURCE statement, they are

"executable", and their appearances are part of the BASIC lines (as distinguished from the

assembler's). Where they appear is where the action associated with them is taken. This is

identical to the way the other BASIC statements perform. The statements involved are -

IASSEMBLE

IBREAK

ICALL

ICHANGE

ICOM

IDELETE

IDUMP

ILOAD

INORMAL

IPAUSE OFF

IPAUSE ON

ISTORE

OFFI-NT

ONINT

Also provided are four numeric functions -

DECIMAL

IADR

IMEM

OCTAL

The functions can be used wherever numeric functions in general may be used.

All of these statements (except ICOM and ISOURCE) and the functions are available to you as

live keyboard operations as well as programmable statements. A full discussion of each of the

statements and functions can be found within this manual.

Getting Started 17

Modules, Routines, and Such
There are three basic activities associated with using assembled modules and routines. First,

there is the need to retrieve them from wherever they may be stored (including providing a

place for them to be kept while they are resident in the memory of the machine). Second, there

is the actual execution of the routines. And third, there is the occasional requirement to store,

or re-store a module on mass storage (including, perhaps, the need to free up the space in

memory it previously occupied).

Names
Routines, modules, and files all have names. The names given them mayor may not bear some

significance to one another; that depends upon you and the way that you name things.

Conventions for the naming of files and methods of general file manipulation can be found in

the Operating and Programming Manual and in the Mass Storage Techniques Manual. The

conventions are not any different than for files in general.

Names for modules are assigned with the creation of the source. In the assembly language

source code, you have a NAM pseudo-instruction. This serves two purposes - to designate the

beginning of the module and to assign the module a name. All of the assembly source state

ments which follow the NAM are in that module until an END pseudo-instruction is encoun

tered. Thus, recalling the previous example -.

40 ISOU~£E NOP

All of the ISOURCE statements between lines 20 and 60 (in this case, just the one) form the

module called "Example". The formal syntaxes of these pseudo-instructions are -

t···~RtYl {module name}

Et---~D {module name}

{module name} is a symbol which becomes the name of the module. It follows the same rules as

names in BASIC: up to fifteen characters; starts with a capital letter; followed by only non

capital letters, numbers, or the underscore character.

18 Getting Started

The {module name} in the END statement must correspond to the {module name} of the NAM

statement or an assembly error ("EN") results.

You may have any number of modules in your source code. Each module begins with a NAM

and ends with an END pseudo-instruction as above.

mayor
may not
be on
same
device

Mass Storage

file 1

file 2

file3

ILOAD file 1

ILOAD file 2

........

ISTORE module 4

module 5 I TO file 3
I

Memory

module 1

module 2

module 5

" "

" "

ICOM
region

User

I IDELETE module 1

ICOM size

ICALL routine 1

ICALL routine 2

"",,~m;~~rrm~~~I~CA~L~L~r:ou~ti~ne~3~=
ICALL routine 4

ICALL routine 5

ICALL routine 6

Figure 3. Overview of Routines and Modules.

Survey of Modules and Routines
To sketch the functional relationships of modules and routines, please refer to Figure 3 above.

Modules are stored in files and may be retrieved and placed in memory using the "ILOAD"

command. When the ILOAD command is executed, all of the modules in the file are loaded into

the memory. Note that many files can be loaded, with many modules each, with all of the

modules able to remain resident in the memory.

Getting Started 19

Alternatively, modules which are already in memory may be stored into a single file using the

"ISTORE" command. When the ISTORE command is executed, the designated modules are

stored into an "option ROM" (OPRM) type of file (on tape cartridges) or an "Assembly"

(ASMB) type of file (on non-tape mass storage media). After storage, the modules are still in

memory. They may be removed (Le., the space they occupy in memory is "freed up") by using

the "IDELETE" command.

The area of memory where the modules are stored is called the "ICOM region". It is a particu

lar contiguous area which must be large enough to hold all of the object code you wish to have

resident in the memory at anyone time.

Each module contains one or more routines. Your access to the routines is through the ICALL

statement, which is very similar to the CALL statement used for BASIC subprograms. The

ICALL statement may have arguments which you need to "pass" (send down) to the routine

itself. What these arguments, if any, may be, and what meaning they hold depends upon what

you have in mind for that routine. There are corresponding items in the assembly source code;

these are discussed in Chapter 6.

Setting Aside Memory
As indicated by Figure 3, you cannot load a module until there is an ICOM region into which to

load it. Neither can you assemble your source code into object code unless there is an ICOM

region into which the object code can go.

The statement to use to create an ICOM region is -

Ie::: ()!" ! {size}

where {size} is an integer constant indicating the number of words to be used to form the ICOM

region. The maximum size is 32 718 words.

The ICOM statement is a "declaration", that is, it is not executable, but rather is used when

assignment of memory takes place just before a program is run. This is similar to a DIM or COM

statement. As with a DIM or COM statement, the statement cannot be executed from the

keyboard.

Once created, the ICOM region remains in existence until it is explicitly destroyed. But it is

possible to change the size by using another ICOM statement.

20 Getting Started

The order in which modules appear in the ICOM region is determined by the order in which

they are loaded using the ILOAD statement discussed in the next section or are created by the

IASSEMBLE statement discussed in the next chapter.

In most cases, the space which is freed up by reducing the size of the ICOM region is returned to

your available memory space. Sometimes, however, it is not returned, this being caused by the

status of the common area allocated in memory, or by other option ROMs. The space is

returned whenever -

• There is no common area assigned (with the COM statement); and,

• The requirements of another option ROM do not interfere.

There may be any number of ICOM statements in a program. The current size of the ICOM

region is determined by the last one which appears in the program when the 8 key is pressed

(or the command RUN is executed).

For example, suppose you have a program with the following statements in it -

ICCt'1 '3::::':+
Ii Ii'l A$ [J. i;3!J::!

Upon pressing 8, the ICOM region would be 2 000 words long. This is because line 610 is

the final ICOM appearance.

The region continues to exist even if you load in another program which contains no ICOM

statements. All ICOM statements must appear in the main program, not in any subprogram.

ICOM statements in a program must appear before any COM statement. This is to insure that

the ICOM region will be allocated before the common is allocated.

Getting Started 21

There are three ways to eliminate the ICOM region -

• Execute SCRATCH A

• Execute ICOM a in a program.

• Turn off the machine.

After any of these actions, the region is no longer in existence. If there are any modules in the

region, they disappear as well. If any of those modules contain an active interrupt service

routine, you get an error (number 193) if you try to eliminate the region using ICOM O. If any of

your routines provided to other users contain active ISRs, your documentation for the routine

should warn the users of that fact so they can avoid this error.

The ICOM a procedure can be used to assure that all previous modules are deleted. For

example, the following sequence -

assures that an ICOM region of 2 000 words is in existence at the running of the program, and

one completely clear of any previously loaded modules.

When you are altering the size of the ICOM region, the new size specified becomes the size of

the region from the moment of running the program. If the size being requested i,s larger than

that which already exists, the additional space needed is requested from the operating system.

If the space is available, everything proceeds uneventfully. If the space is not available, an error

(number 2) results. To make the space available, one of the following procedures must be

followed -

• Execute SCRATCH A.

• Execute SCRATCH C.

Each procedure has its separate effects, and the course selected should be determined by your

circumstances at the time. Consult the Operating and Programming Manual for details on the

other effects of each of these commands.

22 Getting Started

If the size being requested is smaller, modules are deleted if they no longer fit into the smaller

region. For example, suppose the following situation existed-

1--1-....... ---------- "old" ICOM size ----------I.~I

I
module module module module module

A B C D E

I

'"""I .1------ "new" ICOM size -------t.~1

Upon compilation of the new ICOM statement, the modules E, D, and C are deleted. None of

those modules may contain an active interrupt service routine or an error results (number 193).

Retrieving and Storing Modules
Modules are stored in files on mass storage media as Option ROM (OPRM) or Assembly

(ASMB) types of files. On tape media, they are stored in the OPRM type and on non-tape

media they are stored in the ASMB type. In this case, the two file types are equivalent. 1

To retrieve a module, or modules, from mass storage, identify the file name of the file contain

ing the module. Combine the name with the mass storage unit specifier2 of the device to form a

file specifier. Then execute the statement -

I LJ:n::n:J {file specifier}

This retrieves ALL the modules in the file and stores them in the ICOM region.

If there are modules already loaded in the ICOM region, these additional modules are added to

them, (NOT written over them). If an existing module in the ICOM area has the same name as

one of the modules being loaded, the existing module is deleted and the loaded version takes

its place.

If you do not want all the modules in a given file, you can purge the unwanted ones from the

ICOM region using the IDELETE statement-

IIJ!::~:L.",::::='T'E:.:: {module name} [,{module name} [, ...]]

1 OPRM-type files may be created by other option ROMs for their particular purposes. In those cases, the contents are entirely
different.

2 Not to be confused with the single-word msus described in Chapter l. This form is used by BASIC's Mass Storage statements
(see the Operating and Programming Manual or Mass Storage Techniques Manual),

Getting Started 23

For example, if you had loaded a file which had the routines Larry, Pat, Ed, and Piper, and you

want to keep only Larry, then you execute the statements -

1 i i ~... 1 r--' "T
i ... -"'l"i"

or, more simply-

i LJ !::: ... 1... ... j:::... i...... -+- t ... C:!:= r"'" '1 F) i:::~ r

Deletions do not have to be done immediately after loading. They can be done at any time.

After the IDELETE has been executed, the portion of the ICOM region which the module

previously occupied is made available for use in loading other modules. The space is NOT

returned to the generally available memory; that action is done with an ICOM statement with a

smaller size.

Whenever a module is deleted, other modules are moved, as necessary, to take up any slack

space in the ICOM region. This is done so that all of the free space in the region is at the end. If

a module is being deleted, or being moved as above, and it contains an active interrupt service

routine, an error results (number 193).

If you desire at any time to delete all of the modules in your ICOM region, you can do so by

executing either of the following statements -

..i.. L. ~.. ~._._ .. ::::: .. "';- E~:

J .LJ t:: ... L. ... t::... : ...

Sometimes you may desire to move modules in the opposite direction - from memory to mass

storage. This is done with the ISTORE statement. The statement has the form -

I:':::::; ""r c:n:;::' E:: {module name} L {module name} L ... J J ; {file specifier}

A {module name} must be the name of a module currently stored in the ICOM region. Upon

execution of the statement, a file with the name and mass storage unit specifier given in the {file

specifier} is created and the modules are stored in the file, in the order listed.

The file created by an ISTORE statement is an OPRM or ASMB type, as appropriate to the

medium involved. It can the~ be used in ILOAD statements at a later time.

24 Getting Started

In the case that you might want to store all of the routines currently in the ICOM region into a

particular file, you can use either of the following statements -

:1 '::::;·r·(.. ,:::::·,,..··· {file specifier}

"T c::;'rC::F;::'E::::: {file specifier}

Chapter 3
Table of Contents

The Processor and the Operating System

Machine Architecture . < •• > > •••

Registers <. > > •• , , •• < •••

General Memory Organization ..

Protected Memory < ••

Base and Current Page ..

Data Structures

Integers. > ••

Strings > •••••• < ••

Full-Precision Numbers

Short-Precision Numbers

Machine Instructions .. < ••••••

Operands .. < • •• > •••••••

Indirect Addressing

Load / Store Group

Integer Math Group ..

Branch Group

Test/Branch Group . < ••••

Test/ Alter /Branch Group

Shift/Rotate Group

Logical Group.

Stack Group

BCD Math Group .. > ••••••

I/O Group

Miscellaneous

.25

" 26

. .. 28

.28

.29

. 30

., 30

..30

... 31

. .31

. 32

. ... 32

. 34

• > •••••••• 34

.. 35

. 36

.37

.38

.. 40

. 41

. 42

. ... 44

.,.,.,47

......... 48

~--~~

Chapter 3
The Processor and

the Operating System

Summary: This chapter contains the necessary information on the structure of the

processor and the operating system. Topics covered are: machine architecture, memory

organization, data structures, and the machine instructions.

Before proceeding to the actual assembly language, it is useful to discuss the processor and

operating system with which you are dealing. This chapter discusses various concepts related to

the processor, the machine instruction set, the operating system organization, and data struc

tures.

Machine Architecture
The 9835A/ B is developed around a set of processors called a "hybrid". There are actually

three processors - the Binary Processor Chip (BPC), the Input-Output Controller (IOC), and

the Extended Math Chip (EMC). Each has its own set of instructions, but all three work in

conjunction. It is not necessary in using the assembly system that you know on which chip a

particular instruction resides. In the presentation of the instruction set - and for all practical

purposes while working with the computer - no distinction need be made between the proces

sors, and the entire instruction set may be considered as being resident on a single processor.

In addition to the processors, the hybrid also contains an I/O bus which is controlled by certain

instructions. The I/O bus has an "address" part and a "data" part. Some of the instructions (it

is indicated which ones) cause an "input cycle" to occur on the bus, which means that an

address is given to the address part of the bus, and the data which appears on the data part is

considered to be input. Other instructions cause an "output cycle", which means that the data

is to be output to the given "address".

Figure 4 is a graphical representation of this architecture.

25

26 The Processor and the Operating System

PROCESSOR

address
t----~ peripheral

address TO
TO

MEMORY
PERIPHERAL

DEVICES
data data

Figure 4. Generalized Machine Architecture

Registers
The memory locations in the machine are addressed from 0 to 1777778. There are 32 memory

locations which are addressed as if they were part of the computer read/write memory, but

actually are part of the processor. These locations are called "internal registers". Each register

has a specific location and has been given a name. As you will learn in "Symbolic Operations"

(Chapter 4), these names have been reserved and cannot be redefined while using the assem

bly system.

The internal registers are -

Name

A

Ar2

B

C

Cb

D

Db

Dmac

Dmama

Dmapa

P

Pa

R

R4

R5

R6

R7

Se

Address
(Octal)

0

20-23

1

16

13

17

13

15

14

13

2

11

3

4

5

6

7

24

Description

Arithmetic accumulator

BCD arithmetic accumulator

Arithmetic accumulator

Stack pointer

Block bit for byte pointer in C (use most significant bit only)

Stack pointer

Block bit for byte pOinter in D (use second most significant bit only)

DMA count register

DMA memory address register

DMA peripheral address register (use lower 4 bits only)

Program counter

Peripheral address register (use lower 4 bits only)

Return stack pointer

) 1/ a (Input/ Output) registers

Shift-extend register

The Processor and the Operating System 27

Figure 5 is a map of where these registers lie. In addition to these registers, the addresses 258

through 378 are also registers, but are not (except for a few isolated cases) used in assembly

programming.

A
B
P
R

R4
R5
R6
R7

(reserved)

"
~ (reserved)

I I
Db _/ Dmama

Dmac
C
D

Ar2

Se

(reserved)

I Pa

I Dmapa

address
o
1
2
3
4
5
6
7
10
11
12
13
14
15
16
17

20
21
22
23
24
25

37

Figure 5. Map of Lowest Memory

All of these registers can be referenced either by their names or by their actual addresses. The

two methods are equivalent, though reference by name is recommended as a programming

practice.

In addition to the above internal registers, there are some "external" registers which reside in

the computer read/write memory. They are-

Name

Ar1

Base page -
Oper_1

Oper_2

Result

Address
(octal)

177770-177773

177620-177701

177702

177703
I

177704

Description

BCD arithmetic accumulator

Base_page temporary area (50 words)

Arithmetic utility operand address registers

Arithmetic utility result address register

28 The Processor and the Operating System

General Memory Organization

In order to find your way around the machine effectively, you should be aware of where things

are stored in memory. Occasionally these areas can become considerations in your

programming.

First in the memory come the internal registers. They were discussed above.

Next in the memory comes the ICOM area. The starting location is dependent upon system

needs, but is always at least 418. The size of the ICOM region depends upon the size designated

by the ICOM statement. Its maximum ending address is 777568. This is the reason for the

limitation on the size in the ICOM statement.

Next in the memory comes the area reserved for the system to store programs and the like. This

area extends from the end of the ICOM region to 1776178.

This area is followed by the registers in the read/write memory (see the list in the previous

section) with a number of interspersed system-reserved areas.

Figure 6 is a graphical presentation of this organization.

The immediately addressable memory consists of 65 536 words, which is all that can be ad

dressed by a 16-bit word (the basic unit of memory in the system). Note that the memory is

divided into two blocks - an "upper" block and a "lower" one. This distinction between

blocks becomes significant when addressing individual bytes in memory.

Protected Memory

All of the reserved areas mentioned above are known as "protected memory". To give some

measure of security to the operating system, it is advised that no attempt should be made to

write or branch into these areas.

Access to certain portions of protected memory (e.g., BASIC variables) is provided by utilities

within the assembly system. The user should access those areas only through the utilities.

Some measure of protection against access into these areas is provided during debugging. See

Chapter 8 for a discussion of how this is done and the extent of the protection provided.

The Processor and the Operating System 29

o

CPU registers

37
(reserved)

40 . (at least 1 word) starting address
min =41 """""" -~"""""" -:....--.................. ---< dependent upon

user data
(ICOM area)

system needs

ending address
, dependent upon

max = 77756 ---~(~re-s-e-rv-e""l'd):-------li--<' starting address,
77777 ~ length of ICOM, (at least 1710 words) I

100000 and system needs

177617
177620

177701
177702
177703
177704
177705

177767
177770

177773
177774

177777

-r (reserved)
,--

-

Base_page

Oper_1
Op_er 2
Result

(reserved)

Ar1

(reserved)

Figure 6. Memory Map

Base and Current Page

lower block

upper block

A concept that occasionally arises during discussion of the instructions and the assembler is that

of the "page", the "base" and "current" pages in particular.

A page is 1 024 words of memory.

30 The Processor and the Operating System

The "base" page is a wrap-around page. It consists of the upper half of the last page in the

machine (addresses 1770008 to 1777778) and the lower half of the zero page (addresses 0 to

7778). This is the same as a page which runs from - 512 to + 511, effectively "wrapping

around" address O.

During execution, the program counter (P) points to the address of the current instruction. The

"current" page is those 1 024 words of memory centered upon the current instruction. There

fore, the current page is a continually changing page, extending from (P)- 512 to (P)+ 511.

Data Structures
It is common to access BASIC variables from an assembly language routine then retrieve the

contents, manipulate them, or alter them. To be effective at it, you should be aware of how

BASIC stores a value in each of its data types.

There are four data types in BASIC: full-precision numeric values, short-precision numeric

values, integers, and strings. Each is stored in its own unique structure.

Integers
The simplest of the types is the integer. A~ integer consists of a single word. Values between

- 32 768 and + 32 767 can be stored in the word. Negative values are stored in two's com

plement form. An integer looks like-

15 14 OBit

I JSi9nBit

Value

Strings
Strings are the next simplest structure. A string is a succession of bytes, one character to a byte.

A string may be of variable length. To be able to designate the length, the string is preceded by

a word which contains the number of bytes in the string.

If a string has an odd number of bytes in it, then the left-over byte in the word containing the

last character of the string is wasted. A typical string of length n looks like -

~(Iength)

byte 1 byte 2

byte 3 byte 4

byte 5 byte 6

~'-- '--

byte n-2 I byte n-1
byte n I

The Processor and the Operating System 31

Full-Precision Numbers
Full-precision numeric values are stored as 12-digit, BCD (Binary Coded Decimal), floating

point numbers. They occupy four words each. The first word contains the sign of the exponent,

a two's-complement IO-bit exponent, and the sign of the mantissa. The other three words

contain the twelve mantissa digits, 4 to each word. The words look like this -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 OBit

Exp I I I I I I I I I
I I I I I I~an

Sign! Exponent o 0 o 0 0 Sigr

01
(most signHicant digit) 02 03 04

05 06 07 De

012
09 010 011

(least significant)

The exponent is always adjusted during arithmetic routines so that there is an implied decimal

point following 01. Thus, every mantissa value looks like -

Short-Precision Numbers
Short-precision numeric values are stored as 6-digit, BCD floating point numbers. Unlike

full-precision, they occupy two words each instead of four. The first word contains a 7 -bit

exponent, the sign of the mantissa and the two most significant mantissa digits. The second

word contains the remaining four mantissa digits. The words look like this -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 OBit

Exp: I I I I I
I~an

I I I 1 1 I

Sign! Exponent Sign 01 02

03
I

04 05 06

As with full-precision, the exponent is stored in two's complement form and the implied deci

mal point follows 01.

If you are unfamiliar with BCD arithmetic or need a refresher in floating point operations, it is

suggested that you refer to Chapter 5.

32 The Processor and the Operating System

Machine Instructions
The machine instruction set underlying the assembly language system consists of 92 instruc

tions, divided into eleven groups. The groups are -

Load/Store

Integer Math

Branch

Test/Branch

Test/ Alter /Branch

Shift-Rotate

Logical

Stack

BCD Math

I/O

Miscellaneous

Operands

Operations placing values into registers or memory.

Operations involving integer arithmetic.

Operations altering the execution sequence unconditionally.

Operations altering the execution sequence, dependent upon

some condition.

Operations altering the execution sequence and a value, de

pendent upon some condition.

Operations performing re-arrangments of the bits in the A or

B register.

Operations performing logical functions on the A or B regis

ters.

Operations managing stacks.

Operations involving BCD arithmetic.

Operations specifically involving I/O operations.

Some unclassifiable operations.

Most instructions require operands. These operands have general forms which they may assume.

Many instructions contain an operand which is the address on which the function is to be

performed. This {location} may be a constant (octal or decimal) or it may be a symbol. It also

may be an expression containing any allowable combination of constants and symbols. For a

full discussion of allowable expressions and symbols, and the "types" they are allowed to

assume, consult "Symbolic Operations" in Chapter 4.

For example, note the operands in the following -

..... ~
"'i

The Processor and the Operating System 33

A {location} may be either "relocatable" or "absolute" (see "Relocation" and "Symbolic

Operations" in Chapter 4 for a full treatment of these types). If a relocatable {location} is used,

the assembler generates machine code which uses' 'current page" addressing, and thus the

{location} must be within - 512 words and + 511 words of the instruction. If an absolute

{location} is used, the assembler generates machine code which uses "base page" addressing

(meaning it takes the address as an offset from location 0).

An {address} is a {location} the same as above, except the intended location must be

relocatable and within - 32 and + 31 words of the current instructions.

A {register} may be specified either through its absolute address or by its pre-defined symbol.

The permissible registers are those with addresses between 0 and 7, inclusive. These are

registers A, B, P, R, R4, R5, R6, and R7.

A number of instructions are followed by a {value}, which is a numeric expression usually in the

range of 1 through 16. This {value} frequently indicates the number of bits involved in the

operation. For example -

right-shifts the A register by 8 bits.

NOTE

Specifying the R4, R5, R6, or R7 registers (absolute loca

tions 4 through 7) in an instruction causes an "I/O bus

cycle" to occur. Consult Chapter 7, "I/O Handling", for the

proper use of these registers.

34 The Processor and the Operating System

Indirect Addressing
Some instructions may also employ "indirect addressing". This is indicated by including the

optional indicator ; I, such as -

....) =_ .. 1, = ... = 'r :: .. : ..

There is only one level of indirect addreSSing provided with the processor. Of course, if further

levels are deSired, it is possible to implement them on your own. Some flagging scheme could

be adopted, for example. One approach could be to adopt the policy that the sign bit (bit 15) of

a word would indicate further indirection, with the remaining bits being the value. In such an

approach, a load accumulator instruction would become two instructions -

1SOURCE i nR A,1
1SOUR(E SAM *-1

Load/ Store Group

Use curr~rt contents ct~ pointer

This group of instructions allows transfers of data to take place. With the instructions below you

can move information to and from the arithmetic accumulators (the A and B registers). You can

also transfer the contents of one contiguous set of words in memory to another contiguous set.

Instruction

LDF:i {location} [; I]

, ·r· ~-. {I .} [~] L..U.b ocatton ; J..

:=:TF! {location} L I]

:=:TB {location} [; I]

{value}

><FF: {value}

Description

Loads register A with the contents of the specified location.

Loads register B with the contents of the specified location.

Stores the contents of the A register into the specified loca

tion.

Stores the contents of the B register into the specified loca

tion.

Clears (zeroes out) the specified number of words, beginning

at the location specified by the A register. {value} must be an

integer between 1 and 16.

Transfers the specified number of words, from one location to

another. The starting address of the location being transfer

red from must be stored in the A register. The starting ad

dress of the location being transferred to must be stored in

the B register. {value} must be an integer between 1 and 16.

The Processor and the Operating System 35

Integer Math Group
This group of instructions allows you to perform fundamental arithmetic operations on the

contents of the arithmetic accumulators (the A and B registers).

Instruction

r:rC:iI:::: {location} ['i :1]

Description

Adds the contents of the specified location to the contents of

the A register, leaving the result in A. If a carry occurs, the

Extend flag is set in the processor. If an overflow occurs (a

carry from bits 14 or 15, but not both), the Overflow flag is set

in the processor.

Adds the contents of the specified location to the contents of

the B register, leaving the result in B. If a carry occurs, the

Extend flag is set in the processor. If an overflow occurs (a

carry from bits 14 or 15, but not both), the Overflow flag is set

in the processor.

Performs a two's complement of the A register (Le., one's

complement, incremented by 1). If a carry occurs, the Extend

flag in the processor is set. If an overflow occurs (.a carry from

bits 14 or 15, but not both), the Overflow flag in the proces

sor is set.

Performs a two's complement of the B register (Le., one's

complement, incremented by 1). If a carry occurs, the Extend

flag in the processor is set. If an overflow occurs (a carry from

bits 14 or 15, but not both), the Overflow flag in the proces

sor is set.

Binary multiply. Uses Booth's Algorithm. The values of the A

and B registers are multiplied together with the product

placed into A and B. The A register contains the least

significant bits and the B register contains the most significant

bits and the sign. (An anomaly in the processor results in an

improper result whenever A or B equals - 32 768.)

36 The Processor and the Operating System

Branch Group
This group of instructions allows you to alter the execution sequence unconditionally. It in

cludes the "jumps" and "returns" from subroutines.

Instruction

Jr-"-iF' {location} [, I]

TC:·i·.,.·i {I t' } [T] .. .'),' oca ton ,.l.

Description

Unconditionally branches to the specified location.

Jumps to a subroutine. The value of the R register is in

cremented and the current value of the P register (i. e., the

location of the JSM instruction itself) is stored into the ad

dress pOinted to by the R register. Execution then proceeds to

the specified location.

Returns from a subroutine. {value} is added to the contents of

the address pOinted to by the R register. The results are

stored in the P register (i. e., specifying the next location for

execution) and the R register is decremented. This is, in ef

fect, a retur~ from a JSM instruction to the instruction which

is {value} instructions from the JSM itself. The "usual" return

is RET 1. {value} must be an integer between -32 and 31.

The Processor and the Operating System 37

Test/Branch ~roup

Similar to the Branch group, this group of instructions allows you to alter the execution

sequence, but conditionally upon the result of some test. Most instructions involve tests on all

or part of one of the arithmetic accumulators (the A and B registers), but a couple allow a test

on a location in memory which you can specify.

Instruction

C:F'!::::i {location} L I]

C::F'FHlocation} L I]

:::::ZB {address}

,._., ·-7 r·, {dd }
f':: .• :~_ .. D a ress

'::; I B {address}

F'I F:l {address}

r< 1..r::: a ress ~-.. .,.. .. -.. {dd }

Description

Compares the contents of the A register with the contents of

the specified location. Execution skips over the next word if

the contents are not equal.

Compares the contents of the B register with the contents of

the specified location. Execution skips over the next word if

the contents are unequal.

Skips to {address} if register A is O.

Skips to {address} if register B is O.

Skips to {address} if register A is not O.

Skips to {address} if register B is not O.

Skips to {address} if register A is 0, then increments A regard

less. The Extend and Overflow flags in the processor are not

affected by the incrementing action.

Skips to {address} if register B is 0, then increments B regard

less. The Extend and Overflow flags in the processor are not

affected by the incrementing action.

Skips to {address} if register A is not 0, then increments A

regardless. The Extend and Overflow flags in the processor

are not affected by the incremen ting action.

Skips to {address} if register B is not 0, then increments B

regardless. The Extend and Overflow flags in the processor

are not affected by the incrementing action.

38 The Processor and the Operating System

Test/ Alter/Branch Group
Similar to the Test/Branch group, this group of instructions allows you to conditionally alter

the execution sequence. In addition to tests, you can also alter the contents of the item being

tested (such as set or clear a bit, or increment or decrement a register). Certain bits in the

processor (Extend and Overflow) can be tested with some of these instructions, as well as

registers and memory locations.

Some instructions may be followed by either of the following -

indicating that the bit being tested by the instruction will either be set (S) or cleared (C) after the

test has been made.

Instruction

:I'::::;Z: {location} L I]

IY:::;Z: {location} [; I]

:::;r::iF) {address} [; ::::;]

::3F:i F' {address} [; C:]

'::;E:F' {address} [; '::;]

'::;B!=' {address} [, C:]

'::;Fii"y1 {address} [; ,:::;]

::::;F=iry 1 {address} [" C]

'=:;Eq"y1 {address} L ':::;]
'::;Bt"'1 {address} L C]

::::;L_F"i {address} [:, ::-~;]

'::L.Fi {address} [; C]

Description

Increment the contents of the specified location and skip

execution of the next word if the result is O.

Decrement the contents of the specified location and skip

execution of the next word if the result is O.

Skips to {address} if the A register is positive or zero (bit 15 is

0).

Skips to {address} if the B register is positive or zero (bit 15 is

0).

Skips to {address} if the A register is negative (bit 15 is 1).

Skips to {address} if the B register is negative (bit 15 is 1).

Skips to {address} if the least significant bit of the A register is

O.

Instruction

:=;LB {address} L C]

F:LR {address} [" :=:]

F'LFI {address} [, C]

F:LB {address} [" :=:]

F:LB {address} L C]

:=:(:1:=; {address} [, :=:]

:=:()'=: {address} [" C]

'=:(:IC {address} [, '=:]

:=;iJC {address} [" C]

:=;E:=: {address} L :=;]

:=:E :=: {address} L C]

The Processor and the Operating System 39

Description

Skips to {address} if the least significant bit of the B register is

O.

Skips to {address} if the least significant bit of the A register is

not O.

Skips to {address} if the least significant bit of the B register is

notO.

Skips to {address} if the Overflow flag in the processor is set.

Skips to {address} if the Overflow flag in the processor is

cleared.

Skips to {address} if the Extend flag in the processor is set.

Skips to {address} if the Extend flag in the processor is

cleared.

NOTE

The Extend and Overflow flags can be cleared only by using

the SEC, SES, SOC, and SOS instructions with the" C op

tion.

40 The Processor and the Operating System

Shift/Rotate Group
This group of instructions performs re-arrangements of bits in the arithmetic accumulators (the

A and B registers). Circular and non-circular shifts are available.

Instruction

:::<E:: F: {value}

::::;]31..._. {value}

{value}

F'::::::! {value}

F:'F: 1... ... {value}

Description

Shifts the A register right the indicated number of bits with all

vacated bit positions becoming O.

Shifts the B register right the indicated number of bits with all

vacated bit positions becoming O.

Shifts the A register left the indicated number of bits with all

vacated bit positions becoming O.

Shifts the B register left the indicated number of bits with all

vacated bit positions becoming O.

Shifts the A register right the indicated number of bits with

the sign bit filling all vacated bit positions. (Arithmetic right)

Shifts the B register right the indicated number of bits with

the sign bit filling all vacated positions. (Arithmetic right)

Rotates the A register right the indicated number of bits. Bit 0

rotates into bit 15 each time. (Right circular)

Rotates the B register right the indicated number of bits. Bit 0

rotates into bit 15 each time. (Right circular)

Rotates the A register left the indicated number of bits. Bit 15

rotates into bit 0 each time. (Left circular)

Rotates the B register left the indicated number of bits. Bit 15

rotates into bit 0 each time. (Left circular)

The Processor and the Operating System 41

Logical Group

This group of instructions performs logical (Boolean) operations upon the contents of an

arithmetic accumulator (on A or B register). Logical "and" and "or" operations are available,

along with complementing and clearing operations.

Instruction

., ,., {address} [;! :I]

. J. (): ::! {address} [,! :1]

...... :y! 1····~

Description

Logical "and" operation. The contents of the A register are

compared bit by bit, with the contents of the specified loca

tion. For each bit-comparison a 1 results if both bits are 1 's, a

o results otherwise. The 16-bit result is left in A .

Logical "inclusive or" operation. The contents of the A regis

ter are compared, bit by bit, with the contents of the specified

location. For each bit-comparison, a 0 results if both bits are

O's, a 1 otherwise. The 16-bit result is left in A.

Performs a one's complement of the A register (i. e., bit-by-bit

inversion of all 16 bits).

Performs a one's complement of the B register (i.e., bit-by-bit

inversion of all 16 bits).

Clears register A. This instruction is identical to SAR 16.

Clears register B. This instruction is identical to SBR 16.

42 The Processor and the Operating System

Stack Group

The Stack group of instructions provides you with operations for managing stacks. The instruc

tions withdraw items from (also called "pop" or "pull") or push items onto a stack pointed to

by either the C or D register. The items are pushed from or withdrawn into a specified register

(other than C or D) and the C or D register is incremented or decremented appropriately.

Pushing instructions increment or decrement the C or D register prior to doing the pushing.

Withdrawing instructions increment or decrement the C or D register after doing the with

drawal. Consequently, the pointer is always left pointing to the "top" of the stack after the

operation.

Decrementing the C or D register is indicated by including , I:i after the operand. For "with

drawing" instructions, D is the default. For example, the following are equivalent -

Incrementing is specified by including, I after the operand. This is also the default for "push

ing" instructions if neither I or D is included. For example, the following are equivalent -

F'l .. ·jC h, I

When using the byte instructions (PBC, PBD, WBC, WBD), the address pointed to by the C or

D register must not have an absolute address less than 408.

When pushing or withdrawing bytes, the least significant bit of the address register (either C or

D) is used to determine which byte is desired in the stack (a 0 implies the left most byte of the

word being addressed). To retain the full 16-bit addressing capability, the Cb or Db register is

used, as appropriate. These one-bit registers hold the most significant bit of the word address

when the byte addressing instructions are used. They should be explicitly set or cleared,

depending upon the value of the address involved.

Instruction

i :: • .-.~ ::::: {register} :: r"l
L.":!..=.J ::::: {register} [;: :r]

::::: . d ,::::~ {register} ;= r-'~

i.'-'.i ::::~ {re gister} [:: :1:]

) 1"'-; f :: {re gister{ :l T"l

c:::r::;(:: {register} [:: :1:]

:::::'1::: IJ {register} '! r"1

, ... [J {register} [" :[]

!..'j!..! . .l ::::: {register} L [J]

i..'.Ii..!·j ::::: {register} " :[

1..'.1 ~.'..i :J {re gister} [,' :!J]

!.·:·.lI)·.1 ::::: {register} :!

i..'.i1:::C::: {register} [~! [J]

i}·jE::::::::: {register} ; :[

l!·jI:::::!J {register} [" :!J]

i)·H:::: IJ {register} ~! I

! to ••• ll
' __ ' .:...) L._.

~[) :E:: L..J

The Processor and the Operating System 43

Description

Pushes contents of {register} onto the stack pointed to by the

C register.

Pushes contents of {register} onto the stack pointed to by the

D register.

Pushes the lower byte (right half) of {register} onto the stack

pointed to by the Cb and C registers. If the least significant bit

of C is aI, the byte is placed in the lower byte of the word in

the stack; if it is a 0, it is pushed into the upper byte.

Pushes the lower byte (right half) of {register} onto the stack

painted to by the Db and D registers. If the least significant bit

of D is a 1, the byte is placed in the lower byte of the word in

the stack; if it is a 0, it is pushed into the upper byte.

Withdraws a word from the stack pointed to by the C register

and stores it into {register}.

Withdraws a word from the stack pointed to by the D register

and stores it into {register}.

Withdraws a byte from the stack pointed to by the Cb and C

registers andplaces it into the lower byte (right half) of {regis

ter}. If the least significant bit of C is a 1, the byte is withdrawn

from the lower byte of the word in the stack; if Jt is a 0, it will

be withdrawn from the upper byte.

Withdraws a byte from a stack painted to by the Db and D

registers and places it into the lower byte (right half) of {regis

ter}. If the least significant bit of D is a 1, the byte is withdrawn

from the lower byte of the word in the stack; if it is a 0, it is

withdrawn from the upper byte.

Clears the Cb register {indicates lower block of memory}.

Sets the Cb register (indicates upper block of memory).

Clears the Db register (indicates lower block of memory).

Sets the Db register (indicates upper block of memory).

44 The Processor and the Operating System

BCD Math Group
This group of instructions provides you with BCD arithmetic operations using the Ar1 and Ar2

registers.

In general, the instructions associate the Ar1 register with "X" and the Ar2 register with "Y" in

the mnemonic for the instruction. Both registers contain values which are considered BCD

full-precision values when operated upon by instructions in this group.

The mantissas referred to below consist of 12 BCD digits. All the shifting operations manipulate

the digits as units (i. e., 1 digit - or 4 bits - at a time). In addition, shifting operations involve

an additional digit in the A register (located in the lower 4 bits, numbered 0 through 3).

All arithmetic is performed in BCD. The values being operated upon are assumed to be nor

malized BCD floating-point (full-precision) values. Signs and exponents are left strictly alone.

There is a flag in the processor, called Decimal Carry, which is set when an overflow occurs

during a BCD operation.

A full discussion of BCD arithmetic techniques can be found in Chapter 5.

Instruction Description

Mantissa right shift on Arl. The number of digits to be shifted

is specified in the lower 4 bits (0-3) of the B register. The shift

is accomplished in three stages -

1. The digit in bits (0-3) of the A register is right-shifted into

the first digit of the mantissa, with the twelfth digit being

lost. This is the first shift.

2. The mantissa digits are then right-shifted for theremaining

number of digits specified. The twelfth digit, except for the

last shift, is lost on each shift and the vacated digits are

zero-filled.

3. Finally, the last right-shift takes place with the twelfth digit

shifting into the A register. The Decimal Carry flag in the

processor is cleared along with the upper 12 bits of the A

register (4-15).

Instruction

I'y'! ! 'j'

(•••• j ••••• j ',.

!· •••• ·i·i:····,:

The Processor and the Operating System 45

Description

Mantissa right-shift on Ar2. The number of digits to be shifted

is specified in the lower four bits (0-3) of the B register. The

shift is accomplished in three stages -

1. The digit in bits (0-3) of the A register is right-shifted into

the first digit of the mantissa, with the twelfth digit being

lost. This is the first shift.

2. The mantissa digits are then right-shifted for the remaining

number of digits specified. The twelfth digit, except for the

last shift, is lost on each shift, and the vacated digits are

zero-filled.

3. Finally, the last right-shift takes place, with the twelfth digit

shifting into the A register. The Decimal Carry flag in the

processor is cleared along with the upper 12 bits of the A

register (4-15).

Mantissa left-shift on Ar2 for one digit. This is a circular ~hift,

with the digit in bits (0-3) of the A register forming a thir

teenth digit. The non-digit part o(the A register is cleared

(Le., bits 4-15), and the Decimal Carry flag in the processor is

cleared.

Mantissa right-shift ()n Ar1 for one digit. The twelfth digit is

shifted into the A register (bits 0-3). The non-digit part of the

A register is cleared (Le., bits 4-15), and the Decimal Carry

flag in the processor is cleared. The first digit in the mantissa

is set to O.

Normalizes the Ar2 mantissa. The mantissa digits are left

shifted until the first digit of the mantissa is non-zero, or until

twelve shifts have taken place, whichever comes first. If the

original first digit is already non-zero, no shifts occur. The

number of shifts required is stored as the first four bits (0-3) of

the B register. If twelve shifts were required, the Decimal

Carry flag in the processor is set, otherwise it is cleared.

Ten's complement of Ar1. The mantissa of Ar1 is replaced

with its ten's complement and Decimal Carry is cleared.

46 The Processor and the Operating System

Instruction

:::::;]] ':::::; {address}

Description

Ten's complement of Ar2. The mantissa of Ar2 is replaced

with its ten's complement and Decimal Carry is cleared.

Fixed-point addition. The mantissas of Ar! and Ar2 are

added together, and the result is placed into Ar2. Decimal

Carry is added to the twelfth digit. After the addition, Decimal

Carry is set if an overflow occurred, otherwise Decimal Carry

is cleared.

Mantissa word addition. The contents of the B register are

added to the ninth through twelfth digits of the mantissa of

Ar2. Decimal Carry is added to the twelfth digit; if an over

flow occurs, Decimal Carry is set, otherwise it is cleared.

Fast Multiply. Performs the multiplication by repeated addi

tions. The mantissa of Ar1 is added to the mantissa of Ar2 a

specified number of times. The number of times is specified in

the lower 4 bits (0-3) of the B register. The result accumulates

in Ar2. If intermediate overflows occur, the number of times

they occur appears in the lower 4 bits of the A register after

the operation is complete. The upper 12 bits of the A register

are cleared along with Decimal Carry.

Fast divide. The mantissas of Ar1 and Ar2 are added together

until the first decimal overflow occurs. The result accumulates

into Ar2. The number of additions without overflow is placed

into the lower 4 digits of the B register (0-3). The remainder

of the B register is cleared, as is the Decimal Carry flag in the

processor.

Clears the Decimal Carry flag in the processor.

Skips to {address} if Decimal Carry is set. Decimal Carry is a

flag in the processor which may be set as the result of certain

BCD arithmetic operations (see Chapter 5 for details).

Skip to {address} if Decimal Carry is cleared. Decimal Carry is

a flag in the processor which may be set as the result of

certain BCD arithmetic operations (see Chapter 5 for details).

The Processor and the Operating System 47

I/O Group

The I/O group of instructions provides you with some of the operations necessary to accessing

peripheral devices through the I/O bus. In addition to the instructions contained here, there

are instructions in other groups which can have I/O effects (e.g., LOA, STA ...).

The techniques useful to the implementation of I/O operations using the instructions in this

group and the other groups are discussed in Chapter 7.

Instruction

.... .'1··· C::: {address}

':::::: ::::;i {address}

::::::;:r.:J :r

Description

Skips to {address} if the Flag line is set (true). The Flag line is

associated with a peripheral on the current select code (see

Chapter 7 for details) .

Skips to {address} if the Flag line is clear (false). The Flag line

is associated with a peripheral on the current select code (see

Chapter 7 for details).

Skips to {address} if the Status line is set (true). The Status

line is associated with a peripheral on the current select code

(see Chapter 7 for details).

Skips to {address} if the Status line is clear (false). The Status

flag is associated with a peripheral on the current select code

(see Chapter 7 for details).

Enables the interrupt system. Cancels the DIR instruction.

Disables the interrupt system. Cancels the EIR instruction.

Sets DMA outwards. Directs that DMA operations read from

memory, write to the peripheral.

Sets DMA inwards. Directs that DMA operations read from

the peripheral, write to memory.

Enables the DMA mode. Cancels the DDR instruction.

Disables Data Request. Cancels the DMA instruction.

48 The Processor and the Operating System

Miscellaneous
The following instructions are unclassifiable into any of the other groups.

Instruction

!::: .. ' :::: .. { I } [T]
l. ,; va ue :' ., ..

Description

Null operation. This is exactly equivalent to LDA A.

The contents of any register can be treated as the current

instruction and executed. {value} is a numeric expression in

the range 0 through 31, indicating the register to be used.

The register is left unchanged, unless the instruction code

causes it to be altered. The next instruction to be executed is

the one in the word following the EXE, unless the code in the

executed register causes a branch.

Chapter 4
Table of Contents

Assembly Language Fundamentals.

Program Entry> . > > , . , > , 49

Assembly Language Source , , 51

Actions. ,.. , " 51

Labels , , , 51

Comments .. > .. 53

Syntaxing the Source. , > > 53

Creating Modules 55

Storage ,..... ,.',....... 56

Modules , ,, , ,.. .., ... ,., ,.,.,.. .."...... 56

Variables .. , , , . , ... , , .. , , , ... ,.". 56

Data Generators ... , . , , . , , , . , , . , , ... , , , ... 57

Repeating Instructions , , , , ... , . , ,............ 59

Assembling.. ., ,.' .. "........... " ". , " , .. , ,. 60

Effect of BASIC Environments , ... , , , , , '.' 60

Source Listing Control.. ., ... ,.... ,.,.... , ,., ... , ... ,...... 61

Page Format ... , , , , .. ,.................................. ., 62

Page Length , , , .. , . , , .. ." '.... 63

End-of-Page Control ... , , " ., .. ,............. , ,. 63

Page Headings. , , , , , . , , 64

Blank Line Generation, , , " " ... ,.,. 65

Non-Listable Pseudo-Instructions , ... , . , ... , , , 65

Conditional Assembly , . , .. , .. , ,....................... . .. 65

Relocation. , , , , , . , ,.,., ,......... 68

Symbolic Operations .. , ... , ... , , . , , 69

Pre-Defined Symbols ... , ... > ,.' > , .. , : 69

Defining Your Own , , , , , , 71

Literals ,.... , ,.,.. ." ,...................... 72

Evaluation of Literals , , , , , 72

Nesting Literals , , , ' ... 73

Nonsensical Uses of Literals , , 74

Literal Pools. ,, ... ,., ,. .., ' ... , ,.. 74

Expressions .. , , , . , 75

External Symbols and Elements .. , . , , ... , , , , .. 77

Other Absolute Elements , ., 78

Utilities , , ... , , ... , , 79

Chapter 4
Assembly Language

Fundamentals

Summary: This chapter discusses some of the basic statements and syntaxes used

throughout the assembly language system. Program entry, assembling, symbolic opera
tions, module creation, program and variable storage, and utilities are the topics co

vered.

When writing assembly language programs there are a number of things with which you will be

involved constantly. In the beginning, questions arise on how to use the language: How do you

enter the source code? What kind of symbolic addressing is there? How do you create and

distinguish modules? How do you create the object code and where is it stored? What utilities

are available and how do you use them?

The answers to those questions form the underlying capabilities through which you write your

applications. These are things which nearly every assembly language program uses. As essen

tial as they are, however, none are difficult to master.

Program Entry
You were introduced early in Chapter 2 to the integrated nature of the assembly language with

its host language, BASIC. You know from that chapter how assembly language statements can

be intermingled with BASIC statements - that you can employ the usual editing features on

the assembly statements. However, there is more to the ISOURCE statement than just its

integrated nature with BASIC.

As stated in Chapter 2, all assembly language statements are designated with the keyword

"ISOURCE". The keyword is followed by {assembly language source}. So the syntax of the

entry line is -

{line number} [{BASIC label} ::] I !:::::;(n...lF!(~:E: {assembly language source}

49

50 Assembly Language Fundamentals

Here's a simple example of this from Chapter 2 -

50 ISOURCE NOP
E2 ISOUR'F END E_

The {line number} and {BASIC label} are the same as you are used to in BASIC. However, it

should be noted that the statement is not an executable one, so the BASIC label is only useful

for documentation and EDIT purposes.

To BASIC, the ISOURCE statement appears as a comment. If you were to change the above so

that it read -

and then executed a statement "GOTO Example", the result would be to simply execute the

END statement in line 70. That is because, to BASIC, the lines appear the same as -

or-

The BASIC label on an ISOURCE line finds its most useful characteristic in being able to be

referenced, as any other BASIC label on any other type of line may be, with an EDIT com

mand. Thus, if you were to execute -

on the above, you would be working in the editor, starting with line 40. This feature will

become useful during program development as will be pointed out shortly.

Assembly Language Fundamentals 51

Assembly Language Source
You may have recognized the assembly language instruction and pseudo-instructions to the

right of ISOURCE in the examples above. This is where your instructions and pseudo

instructions appear. However, the source is a little more versatile than that. In general, {assem

bly language source} has the syntax -

[{label}] {action} [{comment}]

Or, the action may be omitted and only a comment appears -

[{label} ::] ! {comment}

A label is always optional in the source, but either an {action} or a {comment} must be present

in every source line.

Actions

An {action} in assembly language source is -

• A machine instruction, with any operand it may require. These were discussed at some

length in Chapter 3 .

• A pseudo-instruction, with any operand it may require. These are discussed under the

topics to which they relate.

The actions contained in the above example were -

Labels

The {label} in assembly language source is part of the symbolic addressing capability of the

assembler. This {label} is used by the assembler only. Neither the operating system nor BASIC

is aware of its existence.

52 Assembly Language Fundamentals

The label follows the same form and rules as do labels in BASIC -

• Up to 15 characters long.

• First character must be a capital letter (F::!- :Z:).

• Only the non-capital letters ({J,- Z:), the numerals ([::: to :::1), or the underscore LJ may be

used following the first character.

No two labels are allowed to be the same in a given module. If your source consists of two or

more modules, then the same label may be defined more than once, provided each definition is

in a different module. (Distinguishing between modules is discussed in "Creating Modules",

later in this chapter.) So you may not code -

i.' t· :::::: i! i ;;

in one place in the module and later in the same module code -

There are other restrictions as well on the choosing of labels. For instance, there are symbols

already defined by the assembler and you are not allowed to choose one of them as a label.

This is discussed at length in "Symbolic Operations" in this chapter.

Both a BASIC label AND an assembly language source label can appear in the same line, and

they are distinct from one another. BASIC does not know about the source label and the

assembly language system does not know about the BASIC label.

Since neither BASIC nor the operating system is aware of the existence of source labels, actions

ouside the assembler cannot reference these labels. Thus, if you had the source line -

You can neither say GOTO Rumpelstiltskin nor EDIT Rumpelstiltskin. Neither of these can find

"Rumpelstiltskin", since only the assembler can know it is there.

Assembly Language Fundamentals 53

This can be a nuisance in some instances during program development. Many programmers

use labels almost exclusively and rarely consider the line number when using the editor to

change a line. For instance, in the above, they would not be used to saying, "EDIT 100" to get

at the line in order to change it. They are more used to saying, "EDIT Rumpelstiltskin". A way

for them to do it would be to change the line to -

Note that, as the example demonstrates, the name can be the same in the BASIC label as in the

source. This takes advantage of the fact that BASIC and the assembler are unaware of each

other's labels. The names do not have to be the same.

Comments

As with any BASIC line, a comment may be included by simply adding an exclamation point

(!) and typing your comment after it. Since you have a total of 160 characters for a line, your

comment may fill up the remainder of the 160 characters left after the rest of the statement has

been provided (line number, ISOURCE keyword, label, action).

Syntaxing t'he Source
When you are creating your source program, you are either entering· it from the keyboard or

retrieving it from mass storage (LINK or GET). In either case, as the statement is entered (the

8 key on the keyboard is pressed or a record is read from mass storage), the operating

system takes note of any use of the keyword ISOURCE. When a line has this keyword, the

operating system turns over the remainder of the line following the keyword to the assembly

system. The assembly system, then and there, checks the syntax of the source.

By checking the syntax at the time of entry of the statement, a considerable amount of proces

sing time is saved when the time comes to assemble the source into object code. In addition, it

gives you, as the programmer, immediate feedback when a syntactical error occurs. You do not

have to wait until assembly time just to find out that you misspelled NOP.

54 Assembly Language Fundamentals

At syntax time, the assembler takes care of capitalization, lower case, and spacing for the

source. It's quite similar to the SPACE DEPENDENT mode of entry for BASIC statements (that

mode is not required to get the effect with the assembly system). It follows the following rules in

syntaxing the source -

• Everything between the ISOURCE and the colon (if present) is the label. Its initial

character is capitalized and the remaining letters are converted to lower-case. This is

regardless of whether they were entered in that form.

• The label, if present, is left-justified to the second column following the keyword

ISOURCE.

• The first three letters following the colon (or just the first three letters, if there is no label)

are considered the machine instruction or pseudo-instruction and are capitalized. The

instruction will remain in the same column as it was entered, and, if possible, a space is

added after it.

• Everything after the instruction or pseudO-instruction is considered the operand for the

instruction, up until the exclamation point before the comment (if any). Any label (sym

bol) in the operand will have its initial character capitalized and the remaining letters

converted to lower case automatically.

• Comments are unchanged and remain in the same columns as entered, whenever possi

ble.

In short, simply enter the statement in your most comfortable fashion and the assembly system

automatically assures that what you enter is in the proper form (though it still can't guarantee

that you have entered the right instruction for what you mean to do.

As a demonstration of this facility, consider the following line ready for syntaxing -

It becomes-

Assembly Language Fundamentals 55

Creating Modules
When you were introduced in Chapter 2 to the concept of a module, it was said that a module is

given a name through the NAM pseudo-instruction.

So, when you enter a source line which has the following form -

you are assigning a name to a module, and you are also delimiting the beginning of the module.

By the inclusion of this statement, all source lines which follow are part of the module with the

name designated in this source line, that is, all lines until the END pseudo-instruction is encoun

tered in the source. It has the form -

[t··1L) {module name}

Its {module} name must be the same as in the NAM pseudo-instruction.

A {module name} follows the same rules for naming as do labels (see above).

It is by the use of these two instructions that modules are created. 'The source lines which

appear between them comprise a single module, and the name assigned to the module is the

one with which the module is referenced (with the ILOAD and ISTORE statement for example).

When it comes time to assemble the source into object code, the assembler treats the source

lines in a module as a unit.

In actuality, therefore, there are two modules - a source module and an object module. When

you are assembling a module, the name you use refers to the source module and creates the

object module. Later, other statements, such as ISTORE and ILOAD, refer solely to the object

module.

56 Assembly Language Fundamentals

Storage
Modules
When assembly converts a source module into an object module, there must be a place to keep

the object module. That is the function of the ICOM region.

You were introduced to the ICOM region in Chapter 2 in connection with the loading and

storing of modules. It is also used to hold modules which are created through assembly. Once a

module has been assembled, the object code appears in the ICOM region just as if you had

loaded it from mass storage.

Variables
Within a module, you may want to set aside one or more words of memory for your use. For

example, you might need a location to store a variable, or keep a counter, or save a register.

This is done with the BSS pseudo-instruction -

' ... ' ' ' {number} .\M..!· .•••. t1

where {number} is the number of words to be set aside. {number} can be any absolute expres

sion, provided the expression evaluates to a positive integer (see "Symbolic Operations"

below).

This kind of storage is part of the object code and is set aside "in-line". This means that

wherever it appears in the source, the storage appears in the same relative location in the object

module.

For example, suppose a module contained the following source lines -

Assembly Language Fundamentals 57

Then, at some appropriate spot in the object module (relative to the other instructions in the

module) there would be the following contiguous locations -

Save a 1 word

Save 4 4 words

Renras some number of words equal to "the absolute symbol, Larry"l

Again 1 word

The locations at labels Save_a, Save _ 4, and Renras are merely reserved by the BSS pseudo

instructions, and their contents are not initialized to any particular value.

It is possible to aCcidentally execute these locations when the routine is run if you're not

careful. Ordinarily, you should place these locations somewhere safely out of the potential

execution sequence, since they are used just for storage. Some applications, though, use

self-generating code, and a BSS is a way to set aside locations for it.

Data Generators
A "data generator" is very much like a BSS operation. The funcHon, as with the BSS, is to set

aside words of memory at a particular location in the object code. But in addition, the words are

to be initialized to some value. The initialization occurs at the same time the words are set aside

(Le., at assemble-time).

This is done using the DA T pseudo-instruction which has the form -

:::::F::rr' {expression} L {expression} L ... J J

An {expression} may be any absolute or relocatable expression. The various forms that an

expression may take are discussed in "Symbolic Operations" later in this chapter.

As an example, suppose you want the value 100 (a decimal integer) to be located at location

"X" in the object module. You can achieve this by identifying the location in the source code

(ultimately the object code) where you want the value to be, then placing this instruction at that

point -

1 Such symbols are discussed at length in the "Symbolic Operations" section later In this chapter.

58 Assembly Language Fundamentals

Upon encountering this pseudo-instruction, the assembler generates the words necessary to

store the value (in this case, only 1 word is necessary). It then stores the value (100) into the

word(s) and proceeds with the remaining assembly. Thus, the location of the words is depen

dent upon the instruction's relative position in the source module, the same as with any

machine instruction.

The number of data words generated for each {expression} is dependent upon the result of the

{expression} -

Result Words

Full-precision 4

Short-precision 2

Decimal integer 1

Octal integer 1

Address l 1

Literal 1

String actual length (2 characters per word)

If more than one {expression} is present, the necessary data words are generated in the order in

which they appear in the list. As an example, if you were to include the instruction -

ten words would be set aside and initialized to the appropriate values -

1 including "external"

Assembly Language Fundamentals 59

Repeating Instructions
To help relieve the tedium of writing the same instruction many times (which many applications

occasionally require), a "repeat" pseudo-instruction is provided -

F~:EJ::' {expression}

The pseudo-instruction causes the immediately following machine instruction to be duplicated

in the object code {expression} number of times.

For example, suppose you are writing a real-time application where timing was critical, and to

make things work correctly you need 10 NOPs at a certain location. Ordinarily you would

type-

.!. .:::,Ci, ... ;!':~i i:::. f·.ir·,D

I':::;Ui...ii?C:E: j··iC)P
·i::::()...iF:C::: "r··'·

I '::; Cli.! i::::C: E: i··j [...f [....
I ':::() . .H?CE t·iUi··'

But all of this could be replaced with -

and the same effect would be achieved.

Some pseudo-instructions may not be replicated. They are -

C":",..' -T"
L __ {""; !

60 Assembly Language Fundamentals

Assembling
Object code is created by "assembling" the source code. Again, modules are a key factor. The

assembly directive is aimed at modules, using the module name as a delimiter in the source

code so the assembler can tell which ISOURCE statements to assemble as part of the module.

Of course this same name is also used to store the object code using mass storage.

The IASSEMBLE statement is the vehicle for assembling modules. It has the forms -

::U::::!~::=';::=':;E:::I""'·n:::H E: {module} ['! {module} [' J J [:: {option} [;' {option} [;' ... J J J
I r:=r:='/:::;E}'H::::L. .. r::::: [!:::::::. .. -.I. J [:: {option} [; {option} [; ... J J J

Each {module} indicated is assembled, in the order given by the statement. Only those modules

are assembled; any others which may be present in the source at the time are ignored. If the

ALL version of the statement is used (with or without the optional word ALL), every module

present in the source is assembled.

An {option} falls into one of two categories: listing directives and conditions (for conditional

assembly). These are discussed separately below. The options, and their categories, are-

1... ... ::r
Listing directives

.!:::i

Conditions
i::~ ..

r---i

Effect of BASIC Environments
To assemble a module, all of its source lines (between the NAM and END pseudo-instructions)

must lie within the same BASIC "environment". That is, the NAM and END for a module must

lie within the main program or within the same subprogram or multi-line function. For modules

where this is not true, an error ("EN" assemble-time error) occurs.

Assembly Language Fundamentals 61

Source Listing Control
Listings of the source code in a module can be obtained during an assembly. These listings

contain the line numbers, instructions, and comments from the source lines along with the

associated machine addresses and contents of that address.

Here is part of a typical listing -

450 01036 14264~
4bJ 01~37 003005

'.:~ 01041 056003 JMP ++3
': 'i' '::::.1: -3.("1 .. ~:./ ; . .1,:::;,:".3.

~~~ 0L0~~ 17200~ SAP ++3 I.yp~ "C, )12)~ 

'line \absolu~conten~actions ~comments 
numbers addresses 

The addresses and contents are displayed in octal representation. 

Listings are not automatic. They are obtained in one of two ways-

• By using the LIST option in the IASSEMBLE statement. This directs that a listing is 

desired for all the modules in the statement. The statement wO!lld look like the following 

examples -

• By using the LST pseudo-instruction in the source code itself. 

Modules can be just partially listed, if desired. This kind of control is achieved by using the LST 

and UNL pseudo-instructions within the source code, placing the LST before any instructions 

which you want listed, and placing the UNL before any instructions you do not want listed. For 

example, if the following source lines are assembled-

:::j.(;~:::: 'r .:.. !: :1 ... : 1::: 

I 

only lines 430 through 500 would be listed. 



62 Assembly Language Fundamentals 

The primary purpose of this capability is to allow as much modularity in the listings as you can 

get in source code. To implement this purpose, a "listing counter" is used. 

Whenever an LST instruction is encountered during an assembly, the listing counter is in

cremented. Whenever an UNL instruction is encountered during an assembly, the listing 

counter is decremented. Source lines are listed whenever the counter is greater than O. 

Whenever it is equal to 0 or negative, then no lines are listed. 

The counter is set to 0 upon execution of the !ASSEMBLE statement. This is why there is no 

automatic listing. However, if the LIST option is included in the IASSEMBLE statement, then 

the counter is initialized to 1. This is why that option creates a listing. Thus, you could defeat a 

LIST option by placing an UNL instruction at the beginning of a module. This initialization 

occurs for each module assembled, so if you have more than one module indicated in your 

IASSEMBLE statement, the counter is set at the beginning of the assembly for each. 

This capability sees its greatest usefulness during debugging stages and while working with 

independently written sections of source code. For example, a number of people could be 

writing different sections of code, each containing their own LST and UNL instructions. These 

instructions could then be overridden when they were combined into a single module by 

preceding the sections with an LST instruction (to get a listing) or an UNL (to suppress the 

listings). 

Page Format 

Each and every assembly listing page has the following format-

• The word "PAGE" and the current page number of the listing occurs on the first line 

starting at column 49 . 

• A heading occurs on the second line, left-justified. The heading always includes -

where {name} is the name of the module currently being assembled. Additional heading 

information can be specified for this line (see "Page Heading" below). 



Assembly Language Fundamentals 63 

• A blank line follows the heading . 

• The text follows the blank line. The number of lines printed depends upon the LINES 

option in the IASSEMBLE statement, the number of source lines encountered, and the 

SKP pseudo-instructions which may be encountered while assembling the source. LINES 

and SKP are described in the following sections . 

• If the EJECT option is not included in the IASSEMBLE statement, then a minimum of 

three blank lines (carriage return/line feed, CR/LF, pairs) will be printed at the end of a 

page. The number may exceed three if the number of source lines printed on a page is less 

than the standard length for a listing page (see above). 

Page Length 

The length of the text in each page of your assembly listings can be specified through the 

IASSEMBLE statement using the LINES option, which has the form -

L_ I t···~E~=; {numeric expression} 

This option directs that any listing of the routines being assembled have pages of the length 

indicated by {numeric expression}, which must be a positive value. This value becomes the 

"standard length" of the listing pages, specifying the number of source lines to be printed on a 

page during listings of the assembly source. It is not necessary that thi~ value be the page length 

of the printing device being used, though this is frequently the value selected. 

If the option is omitted from the !ASSEMBLE statement, the value of 60 is assumed for page 

length, giving an overall page size of 66 lines. 

Printer control characters, such as line-feed and form-feed, in a comment can affect the actual 

printing length of the pages independent of the length you specify. Thus, a page length of 60 

could result in actually 61 lines if one of the comments in your ISOURCE statements contains a 

line-feed character. 

End-of-Page Control 

At any time during the assembly of a module, you can force the listing to continue printing at 

the top of the next physical page by including -

at the desired spot in the module. If a listing is being generated when this pseudo-instruction is 

encountered in the source code, the printer is sent to top-of-form. This is physically done in one 

of two ways-



64 Assembly Language Fundamentals 

• If the EJECT option was included in the IASSEMBLE statement which is assembling the 

module, then a form-feed character (ASCII character 148), is sent to the printer . 

• If the EJECT option was not included, sufficient CR/LF pairs (ASCII characters 158 and 

128) are sent to the printer to fill out the standard length of a listing page (plus three at the 

end of the page). Thus, if you already have printed 10 lines on a page, and an SKP 

instruction was encountered, the assembler sends (length -10 + 3) CR/ LF pairs. 

The SKP instruction is not required to cause pagination to occur when the standard length of a 

listing page is exceeded. Thus, if you are working with a default length of 60 for your standard 

length, then each 60 lines from the last page break forces a new page break. 

Page Headings 

The heading for each listing page is -

:··'·1 () IJ 1.....11... ... E:::::: {na me} 

where {name} is the name of the module currently being assembled. This heading can have 

additional information added to it through the HED pseudo-instruction. This instruction has the 

form-

LJ {comment} 

When this instruction is encountered, and a listing is being generated, pagination immediately 

occur~, the same as with the SKP instruction (see above). On the new page, and on all pages 

after it, the indicated {comment} appears after {name} in the heading, replacing any previous 

information specified by an earlier HED instruction. 

You can change the heading any number of times in a listing. This is frequently done in order to 

generate documentation by sections, even though all sections may reside in a single module. 

The heading appears on the page exactly the same as in {comment}, including the positioning 

of blanks, control characters, etc. 



Assembly Language Fundamentals 65 

Blank Line Generation 

If occasional blank lines are desired in a listing (usually to set off sections of code, or com

ments), they may be generated by including -

':::;r:::'c: {number} 

at the desired spot in the source statements. {number} designates the number of blank lines 

desired. {number} can be any absolute expression, provided the expression evaluates to a 

positive integer (see "Symbolic Operations" below). 

Non-Listable Pseudo-Instructions 

The following pseudo-instructions do not appear in a listing -

!. .••••.••• ..i i 

::::;F'C::: 

Conditional Assembly 
For reasons of complexity or length, it is occasionally desirable to selectively assemble only 

parts of a module. This is particularly true during the debugging stage of longer, complex 

assembly programs. "Conditional assembly" is the ability to designate certain portions of a 

module for assembly, depending upon conditions established by the IASSEMBLE statement. 

You may recall from the description of the IASSEMBLE statement earlier, there are options 

called "conditions" available with the statement. These conditions -

IJ 

C:... 

i="-

H 



66 Assembly Language Fundamentals 

are used to designate which conditions are "set" during the assembly. By including one or 

more of these conditions, all conditional assembly statements predicated upon that condition 

are assembled. For example, if the following statement is executed-

IAS3EMBLE Retrieve;A 

then any occurrence of conditional assemblies based on "A" are assembled. Also, any condi

tional assemblies based on B through H are not assembled, since those conditions were not 

included in the options for the IASSEMBLE statement. 

The conditional assembly sections are delimited by pseudo-instructions. A conditional section 

begins with one of the following -

IFE: 
IFe 

IFE 
IF(::; 

IFH 

and it concludes with -

>< IF 

In addition to the lettered conditions, a numeric condition can be tested by using an IFP 

pseudo-instruction. It has the form -

I FF' {absolute expression} 

The condition is considered true if {absolute expression} evaluates as a positive value. It should 

be noted that this is an assembly-time construct, meaning that the variables contained in the 

expression are evaluated at the time of assembly. 

The IFP instruction performs in the same manner as the IFA through IFH instructions. It also 

terminates with the XIF instruction. 



Assembly Language Fundamentals 67 

The conditional assembly is based upon a flag. At the beginning of the assembly for a module 

the flag is set so that object code is generated for all instructions. An IF conditional encountered 

during the assembly which does not have its condition set turns off the flag so that no further 

code is generated. Encountering an XIF statement resets the flag so that code generation can 

resume. For instance, if the source is-

+ c..;'-' 

I DEBUGGING SECTIG~ 

5e~ ISOURCE XTF 

ust be _ +1 Ie number 
~4~ ISOURCE ADA -1~ 

Then if-

is executed, lines 430 through 460, 480, and 490 are assembled, but 520 through 550 are not. 

Line 570 is assembled. 

The one XIF actually affected both conditions. This effect is more dramatically illustrated by-

IASSEMBLE ~~~~lEJe 

where neither A nor B is set. In this <;ase 480, 490, 520 through 550 are not assembled. But 550 

is assembled! 

The effect of the XIF, then, is as a flag for all the conditions. As a consequence, it is not possible 

to "nest" conditional assemblies. This effect is the same with the IFP conditional. 



68 Assembly Language Fundamentals 

Relocation 
The code talked about in this section is relocatable. You do not have to worry about the 

absolute location of your module. The assembler automatically generates the appropriate 

machine codes for each of your instructions to assure that the correct location is reached when 

referenced. 

Some instructions generate relocatable object code in which the operand address is an offset 

from the current address and the relocating loader has to make no changes to the object code 

for them as long as they are within - 512 and + 511 of the current address . 

. For indirect addressing, and for instructions which are more than 512 words away from the 

current address, it is required of the loader to adjust the address in the intermediate word to 

reflect the actual address being referenced. For indirect addressing generated by the assembler, 

this activity is automatic. 

Some instructions permit you to specify an absolute machine address for its operand. In those 

cases, the assembler generates the code necessary to perform the reference to the absolute 

location. 

For example, if the instruction was assembled -

... L.Jj····-1 .r::i 

(which essentially says "load register A with the contents of register B) the result would be a 

machine instruction which references the B register (absolute address 1). This reference would 

be independent of the actual location of the instruction itself. 

There are a couple of ways to produce an absolute address in an operand. The pre-defined 

symbols are one way. There is a type of expression known as "absolute" which is another way. 

Both of these are dicussed in the next section, "Symbolic Operations" . 

You should never try to use absolute addressing within the ICOM region, since not only is the 

location of the region itself not fixed, but modules can be moved around within the region. 



Assembly Language Fundamentals 69 

Symbolic Operations 
You have been introduced, in small doses, to symbols throughout the chapters preceding this 

one. The idea of symbols in an assembly language is the same as it is in a higher language such 

as BASIC - to make operations simpler and the code more understandable. 

Several symbolic tools are provided for you in this assembly language system. You have" 

already seen one described in detail in this chapter - labels. There are some pre-defined 

symbols the assembly system provides for certain locations in the machine (mostly registers). 

There are ways to define your own symbols (and give them a "type"). And, there are ways to 

access symbols in other modules. 

Symbols can be used as operands in machine instructions and in some pseudo-instructions. 

They can be part of expressions in an operand. 

Pre-Defined Symbols 
The assembler has pre-defined a number of symbols and has reserved them as references to 

special locations in memory. Each of the locations has a special meaning and function. The 

symbols themselves are "reserved", meaning they cannot be re-defined (by using them as 

labels on something else). The symbols are -

Symbol 

A 

Arl 

Ar2 

B 

Base_page 

C 

Cb 

D 

Db 

Dmac 

Dmama 

Dmapa 

End _isr _high 

End isr low 

Isr _flag 

Isr_psw 

Description 

Arithmetic accumulator 

} BCD arithmetic accumlators 

Arithmetic accumulator 

Global temporary area (50 words) 

Stack pointer 

Address:.extension bit for byte pointer in C 

Stack pointer 

Address-extension bit for byte pointer in D 

DMA count register 

DMA memory address register 

DMA peripheral address register 

Reserved symbols for writing interrupt service routines 



70 Assembly Language Fundamentals 

Symbol 

Oper_l 

Oper_2 

P 

Pa 

R 

R4 

R5 

R6 

R7 

Result 

Se 

Utlcount 

Utlend 

Utltemps 

Description 

} Arithmetic utility operand address registers 

Program counter 

Peripheral address register 

Return stack pointer 

I/O registers 

Arithmetic utility result address register 

Shift-extend register 

} Reserved symbols for writing utilities 

The meaning of each of these locations is discussed in other chapters. The absolute locations of 

the registers can be found in Chapter 2. A description of the function of the accumulators and 

pointers can be found in Chapter 3 as part of the discussion on machine instructions. A 

discussion of the I/O registers and symbols can be found in Chapter 7. The arithmetic registers 

are discussed in Chapter 5. 

Using a pre-defined symbol in a machine instruction is the same as using its address. For 

example -

means simply that register A will be loaded with the contents of register B. The same effect 

could have been achieved with -

except that the symbolic form makes it more obvious what is intended by the operation. This is 

true with most symbols. 



Assembly Language Fundamentals 71 

Defining Your Own 
You are defining your own symbol each time you specify a label on an instruction or pseudo

instruction. Normally the "value" of the label is the address associated with the instruction. 

However, in two cases it is possible to create the label and specify what its value is to be. One 

case is when the label is on the EQU pseudo-instruction; the other case is when the label is on 

the SET pseudo-instruction. 

The EQU is an assembly-time construct. It exists only at the time of assembly to give you 

value-assigning capability to symbols. It generates no code itself, and it has no implementation 

or "location" in the object module. 

To define a symbol using an EQU, the form is-

{label}:: [iJLJ {expression} 

the resulting symbol ( {label}) has the same "type" as the expression (see "Expressions" 

below) and it has the same value as the result of the expression. 

As an example, assembling the statement-

ISGJRCE Ihree: ~lU 

means that in all references in the module to the symbol "Three", it is the same as referring to 

the value 3. Thus-

means load A with the contents of location 3. 

A common use for this instruction is to assign a symbol an address which is an offset from 

another address. For example, if this sequence were in a module -

I ':;C)Ui?C:E: 
I ':::;C!:".IF?CE EC!U 

then Save b would refer to the second word in the ass area "Save_registers", and it would 

probably be used to store away the contents of the a register sometime -

and later retrieve the value -



72 Assembly Language Fundamentals 

The SET pseudo-instruction defines a symbol in identical fashion to an EQU. Consequently, it 

has the same general form -

{label} ~ '::;[T' {expression} 

The difference between the two is that the SET instruction can have its {label} be a symbol 

which has been previously defined. The effect in that case is to allow a redefinition of the 

symbol. For example, after assembling the following instructions -

the symbol "Three" has the value 30B. 

Literals 
Literals are a special means of defining your own symbols without actually having to go to the 

trouble to do so. The result is a form of symbolic addressing without the symbol. 

The form of a literal is -

:::: {expression} [, {expression} [,' ... J J 

where {expression} may be any absolute or relocatable expression (see "Expressions" below). 

Evaluation of Literals 

When a literal is encountered in an operand, three things occur -

1. The literal is converted to its binary value. If there is more than one expression in the 

literal, then they are all converted. 

2. The binary value is stored in a literal pool. If there is more than one expression in the 

literal, then they are stored contiguously in the order specified. 

3. The address of where the value is stored is then substituted for the literal i.n the operand. 

If the same literal is used in more than one instruction, only one value is generated in the literal 

pool. All instructions using this literal refer to the same location. 



Assembly Language Fundamentals 73 

Literals can be part of expressions as well as having expressions as part of them. Since they 

ultimately are replaced by an address (pointing to a specific location within a literal pool), their 

"type" is "relocatable". See the section on "Expressions" later in this Chapter. 

Basically, a literal means "the address of {expression}". An example should help in the under

standing of literals. Suppose that you want to store the value 1 into the A register. There are 

two ways you could accomplish that purpose. You could code -

or, you could use a literal and code -

: ::~j :::::! 

Using the literal method is easier and is more self-documenting. While the literal form strictly 

says "load A with the contents of the address of the constant 1" , it can also be read as "load A 

with the constant 1", and this short-hand version can be an excellent way of self-documenting 

your programs, not to mention the elimination of a lot of unnecessar'y symbols. 

Nesting Literals 

Since literals use expressions, and literals may be used in expressions, it is possible to have a 

literal within a literal (nesting). In fact, it may be done to any depth, though the most useful 

form of nesting is a single level. 

Suppose you want to initialize a variable to the value of pi each time you enter a routine. A 

nested literal would be a way of accomplishing this in a clean, straight-forward fashion -

:::::::::::::'; .. ~ . , ..... :::",>:::: : .... , .. ':. J 



74 Assembly Language Fundamentals 

and the locations starting at "Pi" now contains the full-precision value indicated (which is a fair 

approximation to pi). This would replace coding which could have looked like this (without 

using literals) -

Nonsensical Uses of Literals 

A literal, basically, is an address. Since it can be used in an operand wherever an address may 

be used, it is possible to use it in instructions where the result is a little nonsensical. 

For example, consider the result of doing some of the following -

Caution dictates that you well consider the appropriateness of the action when using the literal. 

Literals can be a highly useful tool, but only when properly employed. 

Literal Pools 

Literals are assemble-time constructs, but they eventually resolve to an actual address in the 

object code. That address points into a literal "pool". 

A literal pool is part of your module where the actual values of literals are stored. There is 

automatically a literal pool assigned at the end of each module where literals are used. As many 

literal values as possible are stored there by the assembler. However, in some cases, a literal 

pool is needed earlier in the program (a need indicated by the assembler with the "L T" 

assembly-time error). In that case a pool should be created using the LIT pseudo-instruction. 

This instruction has the form -

LIT {size} 



Assembly Language Fundamentals 75 

where {size} is the number of words to be set aside (it may be a positive numeric expression). 

The instruction acts very much like a BSS. And, like a BSS, it should be placed at a location in 

your code where it is not likely to be inadvertently executed. 

Most modules do not need assignment of an extra literal pool. However, one is needed where 

there is a literal used beyond 512 words from the first available space in the literal pool at the 

end of the module. To alleviate the problem, a literal pool must be created with the LIT 

statement within 512 words of the instruction. 

A common cause of this kind of problem is a large BSS assignment between the instruction and 

the end of the module. Sometimes moving the BSS to some other location is a solution to the 

problem. 

Expressions 

Literals, some pseudO-instructions (particularly EQU), and a number of machine instructions, 

all permit "expressions" to be used as an operand. These expressions take one of two 

forms - "absolute" or "relocatable". The type of an expression depends upon the type of the 

individual elements in it. 

An element is of the type "absolute" if it is any of the following -

• A decimal integer (like 0, 1, 2, 1 024). 

• An octal integer (like lOB, 40B, 100000B). 

• A string (enclosed by quote marks) (like "ERROR") 

• An ASCII character, preceded by an apostrophe (like' A). 

• A label associated with an EQU or SET pseudO-instruction whose expression is also 

evaluative as type absolute (like EQU 40B). 

An element is of the type "relocatable" if it is any of the following -

• A label not associated with an EQU or SET pseudo-instruction (Le., it is an "address"). 

• A literal (like =0). 

• An asterisk, symbolizing "current address". 

• A label associated with an EQU or SET pseudo-instruction whose expression is also 

evaluative as type relo,catable (like EQU *). 



76 Assembly Language Fundamentals 

An expression is a list of elements each pair of which is separated by one of the following 

operators -

·:1':· 

meaning addition, subtraction, division, and multiplication, respectively, as in BASIC. 

The result of an expression is either absolute or relocatable depending upon the following 

rules: 

An absolute expression is any expression which contains ~ 

• Only absolute elements. 

• An even number of relocatable elements, paired in sequence and by sign (Le., for each 

relocatable element there is another relocatable element adjacent to it, of opposite sign). 

These pairs may be in combination with absolute elements. 

A relocatable expression is any expression which contains -

• An odd number of relocatable elements, paired in sequence and by sign, except the last, 

which must be positive. 

• An odd number of relocatable elements, as above, in combination with any number of 

absolute elements. 

Any combination of absolute or relocatable elements which does not result in either an abso

lute or relocatable value, by the rules above, results in an error. 

These rules and the rules for using ::-1< and ...... can be summarized as -

The expression is - The type is- Example 

absolute ± absolute absolute 

absolute + relocatable relocatable 

relocatable ± absolute relocatable 

relocatable - relocatable absolute 

relocatable + relocatable error 

absolute - relocatable error 

absolute * absolute absolute 

absolute / absolute absolute 

absolute * relocatable error 

relocatable * absolute error 

absolute / relocatable error 

relocatable / absolute error 



Assembly Language Fundamentals 77 

Unlike BASIC, there is no precedence among the operators. All are of equal precedence. 

Where precedence is desired, parentheses must be used. So where BASIC requires -

2*16+3*8 

to result in 56, the same expression in the assembly language results in 280 (assembly language 

operators are evaluated from left to right). However, 56 would be the result if it were expressed 

as-

(2*16) +(3*8) 

An expression may be of any length and contain as many operators and parentheses as desired, 

as long as the result can be evaluated and the parentheses are properly paired. All operators 

are evaluated from left to right. Multiplication and division can only be used with elements that 

are of type absolute. 

External Symbols and Elements 
There is an additional relocatable element, called "external". It behaves in almost all respects 

as does any other relocatable element, except that only one external item may appear in an 

expression. Also, the expressions containing -

relocatable - relocatable 

are not allowed when one of the relocatable elements is external. Externals are defined as 

symbols appearing in an EXT pseudo-instruction -

i:=~:>CT· {symbol} L {symbol} L ... J J 

These are entry points in another module or utility. "Entry points" are merely symbols in a 

module which are listed in an ENT pseudO-instruction in that module -

FJ·rr· {symbol} L {symbol} L ... J J 

If one module contains -

then that symbol would be available to another module which contains -

l::: ... ;:< ·T·· ...... , !... .::'. :::::; ~::: I C: ·f· t. I 



78 Assembly Language Fundamentals 

At execution time for a module with EXT instruction, all of the symbols listed in it must be either 

a utility name or be contained in an ENT or SUB (described in Chapter 6) of another module. It 

is not necessary that the module be in source form; it may already be an object module 

assembled from a source module which contained the symbol as an ENT or SUB. 

Other Absolute Elements 
There are additional absolute elements which may be used in expressions. These are 

"machine addresses", short-precision numbers, and full-precision numbers. 

A machine address is one of the following -

• An assembler pre-defined symbol. 

• A symbol associated with an EQU or SET pseudo-instruction whose expression is 

evaluated as a machine address (Le., it contains a pre-defined symbol or another EQU

associated symbol whose expression contains a pre-defined symbol). 

For the most part, machine addresses can be used just like absolutes. However, they remain 

defined from assembly to assembly. By defining a machine address in one module (with an 

EQU or SET), it then oecomes available to you with the same value in other modules which you 

assemble. 

For example, if you were to assemble a module containing -

then RIOO is a machine address following the above rules, just as if the assembler had pre

defined it. If you don't do any SCRATCH or GET statements in the meantime, then the next 

assembly you do would also have this symbol available without ever having to define it. 

When full-precision numbers (like - 2.5, 3E3, 3.141592) and short-precision numbers (like 

IS, - 2.55,3.141595, 3E3S) are used in expressions, they become the entire expression. This 

is because these numbers are only intended as simple data-generating devices in literals and in 

DAT pseudO-instructions. Explicitly, the rules for using full- and short-precision numbers are -

• They may only appear alone in an expression, i. e., they may not be in combination with 

other elements. 

• They may only appear in literals and in DAT pseudo-instructions. 



Assembly Language Fundamentals 79 

Utilities 
A number of utilities have been provided to help make your programming tasks easier and to 

give you direct access to some of the operating system's capabilities and routines. 

Descriptions of the utilities are made in conjunction with those topics where the utilities playa 

part. The form of the description of a utility is somewhat standardized. Each description will tell 

you-

• The name of the utility. 

• The general procedure for using the utility. 

• Any special requirements which must be satisfied for the utility to work properly. 

• A step-by-step calling procedure for the utility. 

• The exit conditions. 

Utilities are a form of subroutine, so to execute them it is necessary to execute a jump-to

subroutine instruction (JSM) if you want the utility to return to the routine which calls it. Most 

utilities execute a RET 1 instruction to return, so in some cases where you follow a utility call 

with a RET 1 of your own, you can save the RET instruction by usi~g the JMP (unconditional 

branch) instruction instead. For example, a typical utility call looks like -

t.. •••• ux:: 

but if it happened to be followed by a RET 1 -



80 Assembly Language Fundamentals 

the calling procedure could be changed to -

TMP iement 

and you save a word of code: the effect is otherwise the same. Check the exit conditions for a 

utility before using this approach. 

Utilities which you use in a module must have their names in an EXT pseudo-instruction for that 

module. Otherwise, the assembler is unable to tell that you meant a utility and not one of your 

own labels, causing an "undefined reference" assembly error. 

Appendix F contains a short description of the utilities and has cross-references to the location 

in the manual of the full discussion on each utility. 



Assembly Language Fundamentals 81 

The utilities currently available are -

Utility 

Busy 

Error exit 

Get_bytes 

Get elem _ bytes 

Get element 

Get file info 

Get info 

Get value 

Int to reI 

Isr access 

Mm read start 

Mm read xfer 

Mm write start 

Mm write test 

Printer select 

Print_string 

Put_bytes 

Put_ elem _ bytes 

Put element 

Put file info 

Put value 

ReI math 

ReI to int 

ReI to sho 

Sho to reI 

Description 

Tests the busy bits of a BASIC variable 

Aborts an ICALL statement with a particular error number 

Accesses substrings (or parts of parameters) 

Same as "Get_bytes", but used for array elements 

Same as "Get_value", but used for array elements 

Accesses the file-pointer of an assigned file 

Returns the characteristics of a variable passed as a 

parameter or existing in common 

Returns the val ue of a BASIC variable 

Data type conversion from integer to full-precision 

Establishes hardware linkages for interrupts 

Prepares to read a physical record from mass storage 

Reads a physical record from mass storage 

Writes a physical record to mass storage 

Verifies a physical record was written to mass storage 

Changes or interrogates select-code for standard printer 

Outputs a string to the standard printer , 

Replaces substrings (or parts of parameters) 

Same as "Put_bytes", used for elements in an array 

Same as "Put_value", used for elements in an array 

Manipulates the file-pointer of a file 

Changes the value of a BASIC variable 

Provides access to all the arithmetic routines 

Data type conversion from full-precision to integer 

Data type conversion from full-precision to short 

Data type conversion from short-precision to full 



82 Assembly Language Fundamentals 



Arithmetic 

Chapter 5 
Table of Contents 

Binary Coded Decimal>. > > . 

Arithmetic Machine Instructions . > , > •• > ... > , ••• > • , , • > , ••• , , , , > , • , ••••• , • , , •••• , • , 84 

BCD Registers ... > > ., ", .... > ••• , , , •• , • , • , • , , • > ••••• , > , , •• , •••••• , • , " ,. • •••• 84 

BCD Arithmetic .. . .. > • > ... , , , > . > • , , , , •••••• > .. > ••••••••••• , •• > > ,. > ... , > > > .. , . 84 

Addition . > , , .... , > , ,. • ••••••• ,." •• ,., •••• ".,.' •• ,., ....... , > .. >.,.85 

Ten's Complement for BCD. > . > , , ....... , .. , .... > ••• , • , , , , ••••••• > , .. , .. , . > •• 86 

Floating Point Summations, ........... > •• > > . > • , • > > > > •• , • ,> .. , > • > . , , > . , > ••• > 88 

Normalization .. , .. , ..... > •• > > , , , , , . , .... , .... , ... , , .. , , ........ , .. >. ,., 0 • , , 89 

Rounding ........ , . , , , , .. > , ... , . , .. , . > •• , , • , , • , , ,. .." ••••••••• " •• ,., 0 •••• 89 

Floating Point Multiplication. , . , .. . .. '. 0 , •• , , , • , , •• , •• , , ••••••• , • , , • > •••••••• 90 

Floating Point Division. , ......... , ...... > , .. , , , 0 , • , • , >, ... , .... > , , , . , ... , . , , 92 

The FDV Instruction .. , . , ....... ,> "., ....... > • , , , , ••• , •• > , . . .. .., .. > , . 94 

Thirteen-Digit Dividends, , .. . ............ , , ..... > .. , , ... , , ........ , , .... 95 

Floating-Point Division Example, . , .. . .... ",.,................. " .. " ... 96 

Arithmetic Utilities> .. > .. , ..... > •• , •• , ••• , , •• , •• , •• , •• " ••• , ••• > ........... , .. > .. 99 

Utility: Rei_math ......... > , , . , , .. , .. : ... , ...... , . , , . , .... , .. > .............. > 99 

_ Utility: Rei_to _int .. , ............... , ...... , ... , .. >. . ... ,: .. > 0 •• " ,., ••• , 102 

Utility: Rei_to _sho 0 ••••• , •• , , • • • •• • •••• "." ••• " ••••• > ... , ............... 103 

Utility: Int_ to _rei .... , . . . . .. . .... , .. , > .. ,." ..... ,.,.. ..,." ....... , .... 104 

Utility: Sho _to _rei .......... , . , ....... , ........ . ............. , .. ,." .. ". 105 



~~--------------------------------------------------------------------------------~~ 

~ 

Chapter 5 
Arithmetic 

Summary: Arithmetic operations are reviewed and the arithmetic utilities are 

discussed. Floating point and BCD arithmetic are explained. 

Numerical calculations are a large part of any computer's operations. Implemented within the 

9835A/ B's processor are both integer and primitive Binary Coded Decimal (BCD) floating

point arithmetic operations. This chapter deals with those operations and is intended for those 

readers who may have no acquaintance with this topic, or perhaps only a passing one. The 

particular machine instructions involved with such arithmetic are reviewed. 

Because the processor provides only rudimentary floating-point operations and because com

plete floating-point operations (e.g., subtract, divide) are not easy to write, utilities have been 

provided to perform these calculations. These utilities are discussed later in this chapter. If you 

are not interested in doing your own BCD arithmetic, it is recommended you skip immediately 

to "Arithmetic Utilities". 

Binary Coded Decimal (BCD) uses four-bit binary codes to represent decimal digits. Thus, the 

12-digit mantissa of a full-precision number is represented by 48 bits. The BCD digits are as 

follows -

DECIMAL BCD 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

83 

~ 



84 Arithmetic 

A BCD number within this manual has its digits represented as 01, 02, 03, etc., with each digit 

corresponding to some BCD digit. 01 is the most significant digit in a number. Since full

precison numbers within the 9835A/B contain 12-digit BCD mantissas, 12-digit BCD numbers 

are used as the most frequent examples in this discussion. In that case, 012 is the least signific

ant digit in a number. 

Arithmetic Machine Instructions 
There are some machine instructions which specifically operate upon the BCD registers. The 

discussions in this chapter will make use of the capabilities of these instructions to develop the 

techniques to write BCD arithmetic routines. If you have not done so already, you should 

familiarize yourself with the instructions before moving on in this chapter. A description of the 

instructions can be found in "Arithmetic Group" in Chapter 3. 

BCD Registers 
There are two registers in the machine used for BCD arithmetic - Arl and Ar2. These symbols 

are pre-defined by the assembly language to the registers' locations in memory (see Chapter 

3). The mnemonics for some instructions occasionally refer to these registers as X and Y 

respectively (see Chapter 3). 

BCD Arithmetic 
To understand BCD arithmetic in the context of the 9835A/B, recall from Chapter 3 that a 

full-precision value is represented in four words which contain its information as follows -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 OBit 

Exp: J J J J I I I I 
I 0 I I J I I~an 

Sign! Exponent o 0 0 0 Sign 

01 
(most significant digit) 02 03 04 

05 06 07 08 

012 
09 010 011 

(least significant) 



Arithmetic 85 

The exponent is stored in two's complement form. The exponent and the mantissa are always 

adjusted by arithmetic routines so that there is always an implied decimal point following Dl. 

Thus, the mantissa of every value stored looks like -

Except possibly for intermediate results within the individual arithmetic algorithms, the most 

significant digit of a full-precision value (D1) will never be 0 unless the entire number is O. 

Sometimes, after an individual arithmetic operation, the answer needs to be normalized, that 

is, the digits of the answer shifted to the left until D1 is no longer O. The exponent then needs to 

be adjusted to reflect the change. 

An important thing to keep in mind when examining BCD arithmetic, as implemented by the 

processor, is that mantissas are represented in a "sign-magnitude" format. This means that the 

absolute value is stored as the actual mantissa, and the sign of the mantissa is maintained 

separately. 

Addition 

There is a one-bit Decimal Carry (DC) flag within the processor which serves a BCD function 

similar to the Extend flag for binary addition. 

DC is set to a one or zero, depending upon the occurrence or absence of a carry from the 

addition of the two D1's of the two BCD numbers being added. Since mantissas are represented 

in a sign-magnitude form (with the sign in the exponent word rather than part,of what gets 

added), DC represents an overflow for 12-digit mantissa additions. 

DC itself is part of the addition in the D12 position. This gives it potential use with 

multiple-precision floating point arithmetic. The addition process looks like this -

+ 

Ar1 

Ar2 

Ar2 

There are three instructions which concern themselves exclusively with DC. They are - SDS 

(Skip if DC set), SCD (Skip if DC clear), and CDC (Clear DC). 



86 Arithmetic 

Ten's Complement for BCD 
The addition of the ten's complement of a number is used in lieu of a subtraction mechanism. If 

the signs of the two numbers to be summed are different, one of the numbers is complemented 

(it doesn't really matter which one), before the addition. 

The ten's complement of a number with n digits to the left of the decimal point is -

x = Ian - X 

The ten's complement of a floating-point number has the same exponent as the original 

number. Since the mantissa (M) of a full-precision number can be assumed to have the decimal 

point implied after D1, then the number must be less than 10 (but greater than 0) and the ten's 

complement of a mantissa becomes -

M = 10 - M 

Accordingly, all that is necessary to complement a floating-point number is to complement the 

mantissa. It is immaterial whether the mantissa is treated as a 12-digit integer or as a number 

between a and 10; the same sequence of digits results. 

There are two instructions for doing ten's complements - CMX and CMY. The only difference 

between them is that CMX operates on the Arl register and CMY operates on the Ar2. 

CMX and CMY leave the exponent word of a full-precision number completely alone. This 

means that the sign of the mantissa~ and the entire exponent are left unchanged in a ten's 

complement by CMX and CMY. 



Arithmetic 87 

Ten's complement helps to accomplish addition, too. Rather than go into all of the nuances and 

subtleties of the arithmetic process, there is a simple rule for accomplishing decimal summa

tions using ten's complements. Assuming the exponents are the same for the numbers to be 

added -

• If the signs of the numbers are the same, simply add them and leave the signs alone. If DC 

occurs, the result (Ar2) must be shifted to the right one place, and the exponent adjusted . 

• If the signs of the numbers are different, complement, then add. A further complementing 

action may be necessary: if DC occurs, then the result necessarily has the same sign as 

the number which was not complemeted; if DC does not occur, then the result must be 

complemented and then given the sign of the number which was complemented. 

The FXA instruction is used to add mantissas. Here is a routine to implement the rule -

::::;()Ui?CE 
::::;UUF:C[ 

;····T"i(::· .::: ... l.····· 

::::;CiUF'C:E::) i·i; ::::i(:)(,,:::

':::;()\...\:;;:'CE Ji)::::.t .'.:,(:;j:: 

'3UL!PC:C 

L ... ur"i ::::::1. 

'!""iA \:::!i .... , 

i=iDfi :::::1 i:::"··' 

:::1 •. : .•. ..:: t i: :r= 

! =:::' ::::. ;= ••••.• :~~. ~.,.! 'j +. 'j', *; j'-" -:::t 

-onificant rii0 , 

;"'j ..1,) : .. ': ",:. roo' :;:::"-'i'" 



88 Arithmetic 

Floating Point Summations 
In the example just completed, you may have noted that to copy the sign the entire exponent 

word was copied. What if the exponents were different? The answer is - the exponents must 

have been the same. In fact, the only reason the example worked at all was that the exponents 

were the same. 

If exponents are different, addition of mantissas cannot proceed properly. To add the numbers 

it is necessary to make the exponents the same by shifting one of the mantissas an amount 

equal to the exponent difference. 

This difference is easily found by subtracting the smaller exponent from the larger. If the 

difference is eleven or less (the precision of the 12-digit mantissa), it is possible to offset the 

mantissa of the number with the smaller exponent. 

For example suppose there are two numbers to be added-

X. XXXXXXXXXXX E6 

Y. YYYYYYYYYYY E4 

By shifting the smaller one to the right by 2 digits (the difference between 6 and 4), it is possible 

to align the exponents -

X.XXXXXXXXXXX E6 

O.OYYYYYYYYYYYY E6 

z . Z Z Z Z Z Z Z Z Z Z Z E6 

As can be readily seen from the example, a shift of more than 11 digits would cause the smaller 

value to be all zeroes in the significant 12 digits. 

The digits to the right of the 12 most significant digits are lost in the action of shifting. That is, all 

except the left-most one. When using the MRX or MRY instructions, this digit is retained in the 

A register (bits 0-3) so that it can be used later for rounding purposes. 

To use the MRX or MRY instructions, the number of digits to be shifted must be present in the B 

register. 



Arithmetic 89 

The process for this "justification" of exponents can be summed up as follows: 

• Subtract one exponent from the other storing the absolute value of the difference in the B 

register. 

• Execute the MRX shift if the Ar1 register is smaller; execute the MRY shift if the Ar2 

register is smaller. 

Normalization 

The raw result of an arithmetic operation (such as FXA) might not be a floating-point number 

that fits the standard form. It might have a leading DC needing to be incorporated into the 

number, as was seen in the "Addition" section earlier. Another possible deviation is a resulting 

Dl of zero and no overflow. There could also be several zero-valued digits as left-most digits of 

the mantissa. 

Such situations call for "normalization". One type of normalization is accomplished with the 

NRM instruction. This instruction shifts register Ar2 left, leaving the number of shifts required in 

the B register as a binary number. The maximum number of shifts NRM performs is 12. If NRM 

must do all twelve shifts, Ar2 must have been O. This is indicated by a value of 12 left in Band 

DC being set. For any other shift-count, NRM will leave DC at O. 

The rules for the normalization process are -

• Execute the NRM instruction. 

• Follow this instruction by adding the complement of the contents of B (shifted left 6 bits) 

to the Ar2 exponent unless DC is set. If DC is set, store 0 into Ar2. 

• Test the exponent result for an underflow. 

Rounding 

The addition operation (FXA) does not automatically round a result, and there is no instruction 

which does rounding in one step. Instead, it is necessary that a series of instructions be estab

lished to accomplish the result. 

Recalling from "Floating Point Summations" (above) that the leftmost digit for rounding pur

poses (if any) is typically deposited in the A register by an MRX or MRY instruction, this digit 

can be checked to determine if rounding is required. 



90 Arithmetic 

The process of rounding, then, would have the following steps -

• Determine from register A if rounding is required (Le., if it's greater than or equal to 5). 

• If rounding is not required, take no further action. If rounding is required, then load 

register B with 1 and execute an MWA instruction. This has the effect of incrementing the 

mantissa in Ar2 by 1. This action is an easier method than setting Arl to 1 and executing 

an FXA and it's faster, too. Don't forget to check DC for an overflow. 

• One way the sequence of rounding could appear is -

lU ISOURCE ADA =~5 ~:::;C.:::t 'f 1:;:* f:! clc'hii"'! 
ISOURCE SAM *+3 If' 'f E':;:.S t !·"!.::i.i'-i ::::; ! :=._1 r·cfi..~!"'·!cf 'i t"i=;;} 

C;(::'t j·-'E:":::I.CJ::) t () .:::Lcfcl 1. t () f':ir';~~~ 

Add 1 ~u least s1 f1cant digit of Ar2 

Floating Point Multiplication 
Twelve-digit BCD floating-point multiplication is partially accomplished using the FMP instruc

tion. This instruction effectively multiplies the value in the Arl register by a digit contained in B 

and adds the result to a partial product in Ar2. 

Since, in the full multiplication process, exponents are merely added together, that part of the 

process is trivial. The ultimate sign of the product is also a trivial matter, determined by 

inspection of the signs of the original operands. Then the only matter of difficulty in the process 

is the actual multiplication of the mantissas. By way of explanation, assume that there are two 

mantissas to be multiplied -

multiplicand = ABC D 

multiplier = W X Y Z 

Just four digits are used to reduce the amount of symbolism required of the example. The same 

procedures and conclusions are applicable to a full twelve BCD digits. 



Arithmetic 91 

One symbolic way to indicate how this multiplication is done is -

A B C D 

x W X Y Z 

0 0 0 0 partial product 0 

Zov Zl Z2 Z3 Z4 Z (ABCD) x 10° 

P4 Ps P6 P7 Ps partial product 1 

Yov Yl Y2 Y3 Y4 0 Y (ABCD) X 101 

P3 P4 Ps P6 P7 Ps partial product 2 

Xov Xl X2 X3 X4 0 0 X (ABCD) X 102 

P2 P3 P4 Ps P6 P7 Ps partial product 3 

Wov WI W2 W3 W4 0 0 0 W (ABCD) X 103 

PI P2 P3 P4 Ps P6 P7 Ps partial product 4 (result) 

Notice that at each stage the multiple of ABCD, such as X(ABCD), must be multiplied by an 

increasing power of ten in order that the digits of the multiple line up appropriately with the 

digits of the last partial product. An equivalent procedure is to have the partial product shifted 

right one digit at each stage. 

Now, consider for a moment what is necessary within the assembly language to generate partial 

product 1 = 0 + Z (ABCD). Ar2 must be cleared and Ar1 is loaded with ABCD. Z is stored into 

B in bits 0 to 3. Then the FMP instruction is executed. Ar1 is added to Ar2 Z times, producing Z 

(ABCD) in Ar2. The overflow digit, Zov, ends up in the A register (bits 0 to 3). The overflow digit 

could be any value from 0 to 9 (each add could cause a carry, and there can b~ up to nine 

additions). 

To create the next partial product, a mantissa right-shift on Ar2 must occur. Notice that man

tissa right-shifting instructions (MR?< and MRY) also shift bits 0 to 3 of the A register into Dl. 

Thus, the right-shifting of the partial product (which must occur to prepare Ar2 for the next 

partial product) also automatically takes care of retaining the overflow digit. 

Next, ABCD is added to Zov Zl Z2 Z3 a total of Y times (again by use of the FMP instruction). 

Partial product 2 is created. The process is repeated for the X and W digits, producing the result 

in Ar2. 



92 Arithmetic 

After the final partial product has been calculated by the final execution of the FMP instruction, 

it is possible that a non-zero digit may be present in bits 0-3 of the A register. Such a digit is 

necessarily the most significant digit of the final product. In this case, another MRY execution is 

required. Further, the exponent of the product (which was initially estimated as the sum of the 

operand's exponents) must be incremented by one to reflect this power-of-ten shift. 

Upon each step of partial product summation, a significant digit is lost due to the shift. This 

can't be helped. In general, the product of two 12-digit numbers has 24 digits of precision, but 

the bottom 12 digits must be discarded since only 12 BCD digits are stored in a mantissa. An 

error analysis of the algorithm discloses that dropping these digits causes the answer, on 

average, to be slightly smaller than it should be. However, rounding introduces a similar error, 

but in the other direction. Note that the process did not round each partial product. 

The discarded digits can be inspected before they are permanently lost. The MRY instruction 

causes the digit to be placed in the A register (in bits 0 to 3). This provides an easy way for a 

rounding mechanism to check on those digits as they are discarded. The rounding routine 

needs to save the last digit discarded for use in rounding in the event the last use of FMP 

produces no overflow digit. 

Finally, it should be noted that you can put WXYZ into B at the very start of the process and 

simply shift Bright 4 bits (with an SBR 4 instruction) between each execution of FMP. After all, 

FMP uses only bits 0 to 3 of the register as the number of times to add Ar1 and Ar2. 

Floating Point Division 
There are many possible algorithms to accomplish floating-point division. The one presented 

here was chosen because of its effective use of the machine instructions and data structures 

employed by the processor and operating system. 

Remembering that full-precision numbers consist of both a signed mantissa and a signed 

exponent, use can be made of the mathematical properties of both to reduce the division 

problem to manageable proportions. Suppose that you have two full-precision values to 

divide -

- 4.8E3 + 1.5E - 2 



Arithmetic 93 

The mathematical properties of exponents can be utilized and the second exponent can be 

subtracted from the first giving the exponent of the answer (subject to possible later adjust

ment). This is the first (and easiest) step in the division algorithm. 

Secondly, the mathematical properties of signs within a division process can be used to deter

mine the sign of the quotient from the signs of the divisor and dividend (negative quotient if the 

signs are different, positive quotient otherwise). 

Thus, the problem can be reduced to the division of the mantissas -

(- 4.8 -7- 1.5) E5 

As long as the full-precision numbers have been normalized, this adjustment of the exponents 

works for any pair of exponents. The normalization of the numbers also assures that the 

division of the mantissas under the following algorithm is sufficient to produce the mantissa of 

the result. 

Since the decimal point of each mantissa is in the same place, they can be dropped altogether. 

For example -

- 4.8 -7- 1.5 = - 48 -7- 15 

The algorithm can then consider both the divisor and the dividend as 12-digit integers. 

The algorithm begins by placing the normalized values into the BCD arithmetic registers. The 

divisor (1.5E2 in the example) is transferred to register Ar1. The dividend (- 4.8E3 in the 

example) is transferred to register Ar2. Basically, the algorithm subtracts the absolute value of 

the mantissa of Arl from the absolute value of the mantissa of Ar2 until Ar2 is smaller than Ar1. 

The number of subtractions required for that to occur becomes the first digit in the quotient (it'll 

be some value between 0 and 9 because the mantissas are normalized). If there is a (non-zero) 

remainder, then it is shifted left (multiplied by 10) and the subtraction process is repeated to 

calculate another digit in the quotient. The process is repeated until either a zero remainder 

occurs, or sufficient digits have been calculated, whichever occurs first. The resulting digits are 

merged, in order, to form the complete mantissa of the quotient. 



94 Arithmetic 

There are some points to keep in mind in following the algorithm -

• Suppose you have a divisor whose normalized mantissa is larger than the normalized 

mantissa of the dividend, for example -

15 + 48 

then the first digit of the quotient's mantissa could easily be zero. If calculation of only 

twelve digits were made, the first digit being zero would mean a loss of a significant digit. 

To guarantee that there are always at least 12 significant digits calculated for the quotient, 

it is necessary (and sufficient) to calculate 13 digits. The 13th digit can always be thrown 

away, or used for rounding, if the first digit is not zero. Thirteen digits are always sufficient 

because you can never have a quotient with two leading zeroes, if the divisor and the 

dividend are both normalized. 

• The number of subtractions during the calculation of any digit in the quotient is always 

nine or less. Again, this is true because the divisor is normalized and its first digit is always 

non-zero. 

• At times during the algorithm, it is necessary to left-shift the mantissa of Ar2 (the mantissa 

at this point is the remainder). When shifting the remainder to the left (multiplying it by 

10), you are shifting the first digit out of Ar2. If this digit is zero, this is not a problem. But, 

if the digit is non-zero, you can't ignore it during subtractions of the divisor. This in effect 

means that you are dealing with a 13-digit dividend! Since the machine instructions deal 

in 12-digit arithmetic, it is necessary that the algorithm handle the thirteenth. 

The FDV Instruction 

The FDV instruction provided by the processor is the primary tool used to implement the 

algorithm in assembly language. The instruction works by accomplishing the equivalent of 

automatically repeated subtractions of Arl (the divisor) from Ar2 (the dividend) until Ar2 is 

smaller than Ar!. The instruction actually adds the divisor to the ten's complement of the 

dividend until an overflow occurs. However, this is equivalent to subtracting until an "under

flow" occurs. It is easier to understand the procedure if the discussion is in terms of "subtrac

tions", but it should be kept in mind that what is really occurring with the instruction is repeated 

"complement-additions" until overflow. This process is what is meant by the term "subtrac

tions until overflow". 



Arithmetic 95 

The FDV instruction returns the number of subtractions without overflowing as a binary 

number in the B register {bits 0-3}. The remaining bits in the B register {4-l5} are cleared.! In 

effect, then B contains the next digit in the quotient. 

This process is repeated for the number of digits to be calculated. After each FDV execution, 

the result of the overflow subtraction is left in Ar2. Since Ar2 does not contain the remainder, it 

is necessary to patch Ar2 so that it will contain the proper value for the next calculation. To get 

the proper value it is necessary to add Arl back into Ar2 to undo the results of the last 

subtraction {which caused the overflow}. 2 

There is one case, however, where Ar2 does not need to be patched up, and this is when the 

remainder {Ar2} is zero. This situation implies not only that no patching up is needed, but also 

that the quotient is complete - no further digits need be calculated. It should be noted that the 

number of subtractions (which has been stored in the B register) is one count too small, thus B 

has to be incremented in this case so that it can be used as the last digit in the quotient. 

Thirteen-Digit Dividends 

The largest difficulty in the algorithm is attempting to deal with those instances where the 

dividend has thirteen digits. This situation arises when you shift the remainder left a place. The 

most significant digit must be retained when it is non-zero so that the subtractions are sub

tracted from the proper amount. 

This shifting can be accomplished with the ML Y instruction. With the way that the ML Y instruc

tion operates, the left-most digit (D1) ends up being shifted out of Ar2 into register A {in the 

lower 4 bits, 0-3}. Thus, the thirteen-digit algorithm must accomodate the most significant digit 

residing in the A register and the twelve least significant digits in the Ar2 register. The use of 

FDV must now take this modified situation into account. 

When the FDV instruction is exec1)ted, Arl is subtracted from Ar2 until an overflow occurs. 

When this overflow occurs, it is necessary to decrement A and keep subtracting {without 

patching up Ar2}. Each time an overflow occurs, A must be decremented until finally an 

overflow occurs when A is O. This can be handled very neatly within a small loop. 

1 Since bits 4-15 of the register are cleared during execution of the FDV instruction, you can't accumulate Quotient digits there. 
After each digit is calculated, it is necessary that you store the digit as part of a quotient which you keep stored in another 
location. 

2 This is eqUivalent to complementing Ar2, adding in Arl, then complementing Ar2 again. 



96 Arithmetic 

Another aspect of dealing with thirteen-digit dividends is the count placed in B with each 

execution of FDV. Since each overflow is a "successful" subtraction in the sense that is part of 

a proper count of subtractions (at least until A is 0), then that subtraction must be counted, too. 

The difficulty with this is that FDV does not count this last (overflowing) subtraction. The 

solution obviously is to add 1 to the value in the B register each time FDV causes an overflow. 

However, with the last overflow, being the "real" overflow, the 1 shouldn't be added in, so 

after adding it in (during the loop), you have to subtract it back out again (after leaving the 

loop). To further complicate matters, if you have a zero remainder, you have to add it right 

back in again. 

For example, if there happened to be three uses of FDV for a certain quotient digit, you form 

the quotient digit as -

Q" = (B + 1)\ + (B + 1)\ 

value after 1st value after 2nd 

use of FDV use of FDV 

+B\ 
value after final 

use of FDV 

If the same general situation produced a zero remainder, then the quotient digit is formed as -

Q" = (B + 1)\ + (B + 1)\ + (B + 1)\ 

value after 1st value after 2nd value after final 

use of FDV use of FDV use of FDV 

Floating-Point Division Example 

An example of a 13-digit division routine follows. The rules which it implements are -

1. Always increment the value returned in B after an FDV operation. 

2. After incrementing B, check the contents of A. If non-zero, loop immediately, performing 

no other tests or activities. 

3. When a quotient digit has been found (Le., A is zero), check to see if the remainder is O. 

If so, exit the division loop. Save the last digit found as part of the answer. 

4. If the remainder is not 0, decrement the value of the last quotient digit found and save it 

as part of the answer. Then add back the divisor to the remainder. 



Arithmetic 97 

The example does not include routines for testing and handling -

• signs 

• division by zero 

• exponents 

• overflow 

• rounding 

These have to be handled in a real program before or after the division algorithm itself (as 

appropriate). 

SOURCE Quotie~t 3: 
SOURCE Quotient 4: 
SGJRCE QuotIent r~r= 

::;C1tJ~:C: t: :"1 :;;~ 1 

~=;C~l..JF~C:t: L:~ i 1:. ~"'i 

;-'i~: .'1 

~IH Digit counter 

=:+ 

-.;. .; ---..!. 
t-i:_: 1.' 

tor quotient word 
for quotient word 2 
for quotient word ~ 
+n~ quotiEfi~ word 4 

for quotient word 1 

START OF DIVISION LOOP 

It; ::.3.:::.:::' ::::: :=':::r"': ~.,: r.E'!"-'rnl r-i·3.1:. i :::r-~~ ZE,tH·C: 

~nplemEfit the dividend 

Initializes digit CC0nt to ,~ 

Initialize FIN repE~ition counter to 

ORKS ON NEXT QUOTIENT DIGIT 



98 Arithmetic 

',' C ,'" i)j ~t. ;::·.t .... 

ISOj~lt Fdv :c~r' 

I ~:~(JLiF~C:E: 
I ~:::; C)~ ... ~ ~:::: ......... . 

Ie;!") iPC"":F" 

I;:::; ()...i F:' c: E=': 

:::;'T:1;:; C!i) ;;. : ':: (it t)"i:. j ':; .L 

F~ Ii:i c'CI!) 1:::: )1::) 

fi:D:E~ ::::: ..... -! 

I:::' .::: .• :::i. -.) ~:' (J ·~i ::::_ il:::::,:} 
.. J ;"'! '! + 

:D ;:::. C = .. ': l"i'i i--: l ; .. :; 1 :::: i ! ! i:::' n·;::!. 'i t",! cf t:' ~'''' !,]; r . :::: .... 

j:::i:"'lrl ~::).:iC i< '! i"'j :::J 'j : . .: i···· :::l!· .. · . ! .. .t, . ,t / 

i ;'" ::::!.-.... +',::,(. l"', ,.l!.": !,_ ! =::-'l" i!. 

t.(": .-

- !!:::'i"il. :"',! :~ l! 1-.:> !Y.!.l::::·t 



I ::;O!JF:~CF 
I;::;CiUF~CF 

LI! i:::\ ()i)()'::, 'j .::,(;"i:, '::i, 

m'm ==:i,'?B 

Add in new digit (old d glT 
I'::UUf;':CE :::::Tf:i AF;;::? ':::;,;:'i.".":;:' ti"';>';:' ce:,('r-",:,:''::: t,ed cf.~c,t ':::, ",' 
I~:;C)tJ~~C:E:. Flt"'C1Ct:'i:::':] tc: .::tC1,ji,..l::::.t ;': · .. ·.·-1::·· ... :~; .~!.I .~1· I. 

Arithmetic Utilities 

Arithmetic 99 

Now that you have been introduced to the complexities of BCD arithmetic and floating-point 

operations, this is the time to present an easier way of accomplishing these operations - the 

arithmetic utilities. 

In order to make BASIC a useful programming tool, the operating system already contains a 

number of floating-point routines. Recognizing that BCD and floating-point arithmetic can be a 

difficult and laborious task to implement, the assembly language provides a utility by which the 

operating system mathematical routines can be accessed. There are also utilities for the conver

sion of numerical data types. 

UTILITY: ReI math 

The Rei_math utility provides access to all of the system floating point routines and functions. 

General Procedure: The utility is told the execution address of the desired routine or function 

and is also told the number of parameters. The parameters are floating-point values stored in 

full-precision form (4 words each). The result is a full-precision value. 

Special Requirements: 

• If one operand is passed to the utility, the address of the operand is stored in register 

Oper_1. 

• If two operands are passed to the utility, the address of the first operand is stored in 

register Oper _1 (as above), and the address of the second operand is stored in register 

Oper_2. 

• The address of where the result should be stored must be stored in the register Result. 

• All operands and the r~sult are full-precision values and require 4 words each. 



100 Arithmetic 

• Values passed must make sense for the routine or function being called (e.g., Oper_ 2 

should not point to a value of 0 when calling the division routine), or else an error results. 

• The storage areas for the operands and the result must reside either in the ICOM region or 

in the Base_page register. Specifically, they cannot be specified as Ar1 or Ar2. 

Calling Procedure: 

1. Assure that Oper _1, Oper _2, and Result contain the proper addresses as above. 

2. Load register A with the number of parameters required for the routine or function (see 

the table on next page). Note that some routines require this number to be com

plemented. 

3. Load register B with the execution address of the routine or function (see the table on 

the next page). 

4. Call the utility. 

Exit Conditions: 

• The result is placed into the 4 words starting at the address pOinted to by the Result 

register. 

• Register A contains 0 if no error is encountered during execution of the utility. 

• Register A contains the error number should an error be encountered during execution of 

the utility. 



Arithmetic 101 

Table 1. Routines, Addresses, and Parameters for ReI_Math Utility 

Routine Execution Address Operands 
(LDB =) (LDA =) 

Addition 306208 2 
Subtraction 306128 2 
Multiplication 307328 2 
Division 311008 2 
Exponentiation 340668 2 
DIV 325748 2 
MOD 327258 2 
SQR 312408 1 
INT 326378 1 
FRACT 330528 1 
EXP 337638 1 
LOG 337738 1 
LGT 340538 1 
PROUND 320158 -2 
DROUND 320378 -2 
A8S 326228 1 
SGN 334418 1 
PI 360578 0 
RND 333778 0 
RES 360778 0 
-typ 67338 1 
SIN 340038 1 
COS 340148 1 
TAN 337418 1 
ASN 340258 1 
ACS 340408 1 
ATN 337518 1 
ERRLl 617658 0 
ERRNI 617538 0 
DECIMALl 1620268 1 
IADR 1621678 -2 
IMEM 1621508 -2 
OCTAL 1621058 1 
AND 316328 2 
OR 316478 2 
EXOR 316158 2 
NOT 316618 1 
Less Than «) 316678 2 
Less Than or Equal To ( < = ) 316758 2 
Not Equal «» 317278 2 
Equal(=) 317178 2 
Greater Than or Equal To (>=) 317118 2 
Greater Than (» 317038 2 

I 

1 These functions return an integer value which is stored in the second word of the four words reserved by Result. 



102 Arithmetic 

By way of example, suppose you have established two full-precision values which need to be 

multiplied. The call to the Rei_math utility to accomplish the multiplication would look similar 

to this-

ISOURCE Multiply: j MULTIF~Y ~~E OPERANDS 
I ~:;Cii..JFCE LDn 

I '::;Ot.!F'CE 
T:::;OUF:CE 

I::::;OUi?CE 
I '::;:Oi..H';U::E 

L..I)A -;:~:~ 

Test for any errors 
F~r'('ctr~ ~.:>r1cCii)i·-itE·t···~:·c1!1 :::,::: 11:;·.~.!.)!:::· 

Note in the last line of the example the call to the Error_exit utility (page 191) is made when 

register A is not zero. When this occurs, A contains the error number of the error 

encountered - ready-made for calling the Error_exit utility. 

UTILITY: Rei to int 
The Rei_to _int utility provides for the conversion of a full-precision value into an integer. 

General Procedure: The utility is given the address of the location of th.e full-precision value 

and the address of the location where the integer is to be stored. 

Special Requirements: The full-precision value must be within the range of integers 

(- 32 768 to + 32 767). 



Arithmetic 103 

Calling Procedure: 

1. Store the address of the full-precision value into register Oper_1. 

2. Store the address of where the integer is to be stored into register Result. 

3. Call the utility. 

Exit Conditions: The overflow bit in the processor is set if the integer is outside the range of 

integers. 

An example-

..... ]::::(" ......... i :::. ~ ! . ..: r l 

:::>! i"l tJt=::::::.'(' 
: T1 f:i ::::: \'.:~. i.A ~;:' 

i.J ~.t' ••••• : ••• 

UTILITY: ReI to sho 

The Rei_to _sho utility provides for the conversion of a full-precision value into a short

precision one. 

General Procedure: The utility is given the address of the location of the full-precision value 

and the address of the location wher~ the short-precision value is to be stored. 

Special Requirements: A short-precision value requires 2 words to be stored. 

Calling Procedure: 

1. Store the address of the full-precision value into register Oper_1. 

2. Store the address of the storage area for the short-precision value into register Result. 

3. Call the utility. 

Exit Conditions: No special exit conditions. 



104 Arithmetic 

As an example-

T':: :} i"" ..... 

UTILITY: Int to rei 

The Int_ to _rei utility provides for the conversion of an integer into a full-precision value. 

General Procedure: The utility is given the address of the location of the integer and the 

address where the full-precision value is to be stored. 

Special Requirements: None. 

Calling Procedure: 

1. Store the address of the integer into register Oper_1. 

2. Store the address of the storage area for the full-precision value into register Result. 

3. Call the utility. 

Exit Conditions: No special exit conditions. 

An example-

.. '1 :C:E: i': i l"" ::::.i .. i :r','" 

c: ..=r::,=._,r::. 

r" ..... : ... : : ... ... . ': ~' ... ,' :::1~::' !'" 



Arithmetic 105 

UTILITY: Sho to reI 

The Sho to rei utility provides for the conversion of a short-precision value into a full

precision one. 

General Procedure: The utility is given the address of the location of the short-precision 

value and the address of where the full-precision value is to be stored. 

Special Requirements: None. 

Calling Procedure: 

1. Store the address of the short-precision value into register Oper_1. 

2. Store the address of the storage area for the full-precision value into register Result. 

3. Call the utility. 

Exit Conditions: No special exit conditions. 

An example-

.... : ... :: ... :: ..... :, 



106 Arithmetic 



Chapter 6 
Table of Contents 

Communication Between BASIC and Assembly Language 

The ICALL Statement ....................... , .. , ... , ................ , ... ,., ... , 107 

Corresponding Assembly Language Statements ......... , ........ , .. , ... , .. , .. 108 

Argumen ts ." .. , ...... , .. , ... , .. , , , , , ........ , , .. , , . , , .. , ... , . , ... , , ... , . , , 1 09 

"Blind" Parameters ",., ... " .. "." ... , .... , ... , .. "." .... ,. . .... " .. ",112 

Getting Information on Arguments " .. "., ..... ,.... "'" ., ....... ,., .. , .. ,113 

Utility: Get_info ..... , ... , , . , , , ...... , , , , , .. , .... " , ... ,. .., ... "", .. 114 

Retrieving the Value of an Argument " ........ " ... "., ... ,.,', ....... ,. ".,116 

Utility: Get_value, , ... , . , , , .. , .. , " "' .. " .. ,", .... ,.,.. ,.",. , ..... 117 

Utility: Get_element ................... , ........ , .............. , ....... 118 

Utility: Get_bytes , ...... , .. , ,. .. . ..... ,.,., .. " .. , ... ,. ., ........ , .. ,119 

Utility: Get_ elem _bytes.. " " ........ , ... ". ,., ...... , ... "., .. , ..... 120 

Changing the Value of an Argument .,., ........ ', .. , .. " .... , ............ , .122 

Utility: Put_value """" " .. , ... " .. ,......... . ........ ,' .. , .. ,.,., .. 122 

Utility: Put_element ....... , .. ".... ' ............ , .. ',.. .,' ......... , .123 

Utility: Put_bytes ..... , ... , .. ', .. ", , .. , ..... " .. ", ' ........ , ..... , .. , ,124 

Utility: Put_ elem _bytes .. , ......... , .. , ... "., .... " ... , ..... , ... , .. , .. 125 

Using Common .. ,., .. ,."., .. " ......... " .. , .. " .. ,., ... , .. " ...... , .. ,., .... 127 

Busy bits ., .. ' ..... , .. , ... ,., .......... , ........ , ... ', ..... " .. , .... ,.,." 130 

Utility: Busy ... " ..... ',.,., .. ,., ... , ... ,.",.,.""." .. ,., .. , .. "".,131 



f.f,---------------------------------------------------------------------------------,~ 
107 

Chapter 6 
Communication 

Between BASIC and 
Assembly Language 

Summary: This chapter discusses the techniques used to pass information to and from 

assembly language programs. Calling assembly language routines and passing paramet

ers are presented, along with issues involved in using common. Applicable utilities are 

also discussed. 

Once assembly language programs have been written, they are executed using the ICALL 

statement. This statement is very similar to BASIC's CALL statement for subroutines. In fact, 

the function it performs is nearly identical in effect - the only difference is that the target 

subroutine has been written in assembly language instead of in BASIC. The ICALL statement 

also provides a means to pass data between BASIC and assembly programs through its argu

ment list. Data can also be passed through common. 

The ICALL Statement 
There are two ways to execute an assembly language routine. One way is as an interrupt service 

routine when an interrupt occurs on the select code to which the service routine has been 

linked. This way is discussed in Chapter 7. The other way is through executing an ICALL 

statement, either in a BASIC program or from the keyboard. 

The syntax of the statement is -

I C:FH.-..i .... _ {routine name} [ ( {argument} L {argument} L ... J J ) J 

{routine name} is the name of the assembly language routine to be executed. {argument} is a 

data item which has the same characteristics as an argument in BASIC's CALL statement

there may be constants, variables, or expressions. (How these items correspond to instructions 

in the assembly language will be discussed shortly.) 



108 Communication Between BASIC and Assembly Language 

By way of example, suppose that you have an ICALL which is being used to call a sort routine 

and the routine was written in such a way as to require two arguments be passed to it - an 

array to be sorted and the number of elements to be sorted (in that order). Then the following 

would be valid calls to that routine -

ICALL Sort(Test~~},100) 

ICALL Sort(Test$(+),Number 

Upon executing the ICALL statement, execution in a program transfers to the routine named. 

Upon return from the routine, control is passed to the BASIC statement which follows the 

ICALL. This is identical in effect to the CALL statement in BASIC. 

In executing the statement from the keyboard, the routine named is executed just as if it were 

used in a program. Upon return from the routine, control is passed back to the keyboard. This is 

unlike BASIC's CALL statement, which cannot be executed from the keyboard. 

To execute a routine, whether it be from a program or from the keyboard, its object code must 

currently reside in the ICOM region. 

Corresponding Assembly Language Statements 
When the ICALL is executed, it references a routine in the object code. When the module 

containing the routine was assembled, it declared that routine name as a "subroutine" entry 

point. ("Subroutine" and "routine" are synonymous in this context.) This is done with a SUB 

pseudo-instruction and a label. 

When a SUB pseudo-instruction appears in the source code, it is a signal to the assembler that a 

subroutine entry point follows. Then the first machine instruction (or some code-generating 

pseudo-instruction, such as BSS or DAT) must have a label. That label becomes the routine 

name. If the label is missing, an error results (assembly-time "SQ" error). 

For example, in the above examples of ICALL, the Sort routine could have been defined by the 

sequence -

130URCE SUB 

except that there are arguments involved. (That exception is discussed in a moment.) The joint 

use of these two statements results in the label "Sort" being identified as a routine name, 

referenceable with an ICALL statement. 



Communication Between BASIC and Assembly Language 109 

In general, no machine instructions or code-generating pseudo-instructions can be inserted 

between a SUB pseudo-instruction and the instruction containing the routine name. An excep

tion to this exists when arguments are involved in a call. 

Arguments 

When a value is placed into an ICALL statement to be sent down to an assembly language 

routine, that value is called an "argument" (like the argument of a mathematical function). The 

corresponding structure on the assembly language side is called a "parameter". A parameter 

"declaration" is an assembly pseudo-instruction by which a parameter is created. 

When a routine is to be called with arguments, a parameter declaration pseudo-instruction is 

required for each one of the arguments. These declarations appear between the SUB pseudo

instruction and the instruction containing the rou tine name. 

Thus, when there is a call like -

the corresponding assembly language entry looks like -

30URCE SUB 

To accommodate the two arguments, two parameter declarations had to appear between the 

SUB instruction and the entry point. (In this example, they were the STR and REL declara

tions.) These declarations may even have labels of their own -

~uJPCE 218meter PEL 

The appearance of these labels does not effect the fact that "Sort" is the name of the routine. 



110 Communication Between BASIC and Assembly Language 

Parameter declarations have "types" just like variables. These types have to correspond to the 

"types" of the arguments used in the ICALL. The declarations and their types are -

meaning integer 

meaning full-precision 

meaning short-precision 

':::::. i i"",:: meaning string 

F"" I L... meaning a file number 

In the above example, STR had to be used as the first parameter declaration because the first 

argument was a string. Similarly, REL had to be the second declaration because the second 

argument was a numeric expression (which is always full-precision). 

When an array is to be passed, the declaration is followed by an "array identifier" - (*). Thus, 

when arrays are involved, the declarations appear as -

meaning an integer array 

meaning a full-precision array 

meaning a short-precision array 

meaning a string array 

(File numbers do not come in arrays, so that declaration - FIL - cannot be followed by an 

array identifier.) 

Since the example call above uses a string array as the first argument, the corresponding 

assembly language parameter declaration uses an array identifier after STR. 

The parameter declarations are associated with the arguments in the ICALL in the same order. 

If the types do not match when the ICALL is executed, an error occurs (number 8). 

So, if the subroutine entry looks like-

SOURCE Sor~. LDA 



Communication Between BASIC and Assembly Language 111 

then this ICALL executes properly -

but these ICALLs result in run-time errors -

Each declaration reserves three words in the object code upon assembly. As a result of the 

ICALL execution, these words contain a descriptor of the corresponding argument. These 

descriptors are used by the utilities for fetching and storing values. Thus, in the Sort calling 

example above, when the ICALL is executed, a descriptor for Test$(*) is stored in the three 

words starting at Parameter _1. Similarly, a descriptor for the constant 100 is stored in the three 

words starting at Parameter _ 2. 

The types discussed here do not apply just to simple variables, arrays, and constants. They also 

apply to single elements of arrays and expressions. If you have a STH parameter declaration, 

for example, any of the following would be valid as arguments in the ICALL statement -

It is similar for numerical expressions. 

The number of arguments passed 9Y an ICALL statement must be no more than the number of 

parameter declarations in the subroutine entry. There may be fewer, however. The actual 

number passed is stored in the word reserved by the SUB pseudO-instruction. 

Unlike the CALL statement in BASIC, the ICALL statement can be executed from the 

keyboard. In doing so, any variables used as arguments pass their current values to the routine, 

rather than resetting them to 0 (this is the same contrast as between running a program by 

pressing 8 and running it pressing B). 



112 Communication Between BASIC and Assembly Language 

"Blind" Parameters 
With explicit parameter declarations, an error occurs if a different type of variable or expression 

is passed. In many cases, the error is desirable - you do not want different types of arguments 

corresponding to a single parameter declaration. But in other cases, the error might not be as 

desirable. Take the example of a sort. You might want the sort to have the capability of sorting 

any type of array. You have two choices in that case - you can make different routines, each 

with the appropriate declarations, or you can use a single entry point and the ANY parameter 

declaration. 

The ANY declaration -

is "blind" to the type of the corresponding argument in the ICALL statement. When used, it 

accepts any type of argument as valid - string, full-precision, short-precision, integer, file 

number, array. The descriptor for the argument is stored in the three words set aside, just as in 

the other declarations. 

Now, if your entry looks like -

ISCD~:E SUB 
ISOURCE ANY 
IS(DRCE REl 
"!" :"! i ~.(. r ::;C)("t:; L..Ilfi 

then any of the following calls would be valid -

~HLL Srn~t(Test$(*), 100) 
I r': ~::li! ::; c:t-· t < 'r i::':;:. t ::: .~:. ::::: :t i? ij ::= 

ICAll SQrt(#l,l~~) 

When using the ANY declaration, it becomes the responsibility of your assembly language 

routine to determine what is a valid parameter and what is not. You lose the automatic type

checking available with explicit declarations. Techniques for doing this are discussed in the 

next section. 



Communication Between BASIC and Assembly Language 113 

Getting Information on Arguments 
When an ICALL is executed with an argument, and the corresponding parameter is blind, then 

it may be necessary for the purposes of your routine to know what type of argument is actually 

passed. This need can be present even when one of the explicit type declarations is used, since 

an expression or constant can be passed as easily as a variable. 

A utility has been provided for obtaining this information, along with other "vital statistics" 

which may be useful to know during the execution of your routine. Before describing the utility 

itself, let's look at the information which it can provide you about an argument. 

The information returned by the utility is stored in an area which you set aside for it. The size of 

the area can vary from 3 words to 30. The information, when returned, is in the following 

form-

Word # Description 

o Argument type (see description later) 

1 Number of dimensions (O for non-arrays) 

2 Size, in number of bytes (dimensioned length, for strings) 

(for arrays only:) 

3 Total number of elements in arrayl 

4 Lower bound of first dimension 1 

5 Absolute size of first dimension (upper bound - lower + 1) 

6 Lower bound of second dimension (if any)! 

7 Absolute size of second dimension 

8 Lower bound of third dimension (if any) 1 

9 Absolute size of third dimension 

10 Lower bound of fourth dimension (if any)! 

11 Absolute size of fourth dimension 

12 Lower bound of fifth dimension (if any) 1 

13 Absolute size o'f fifth dimension 

14 Lower bound of sixth dimension (if any)! 

15 Absolute size of sixth dimension 

16 Element offset 

17 Size, in words, of each element (dimensioned length, for strings) 

(dependent upon memory size of your machine:) 

18-20 Pointer parameters 

21-23 Pointer parameters (only for machines over 64K bytes) 

24-26 Pointer parameters (only for machines over 128K bytes) 

27 -29 POinter/parameters (only for machines over 192K bytes) 
1 Stored as a negative number. 



114 Communication Between BASIC and Assembly Language 

The argument type returned in word 0 is as follows -

Value Type 

0 String expression 

1 Full-precision expression 

2 Short-precision expression 

3 Integer expression 

4 String simple variable 

5 Full-precision simple variable 

6 Short-precision simple variable 

7 Integer simple variable 

8 String array element 

9 Full-precision array element 

10 Short-precision array element 

11 Integer array element 

12 String array 

13 Full-precision array 

14 Short-precision array 

15 Integer array 

16 File number 

The size, in bytes, will be one of the following values -

F or an integer 

Short-precision 

Full-precision 

String variables 

String expressions 

2 

4 

8 

dimensioned length 

actual length 

The utility which retrieves all this information is called "Get_info". 

UTILITY: Get info 

General Procedure: The utility is told the location where the information is to be returned 

and the address of the parameter declaration. It returns with the information on the argument 

in the ICALL corresponding to the parameter declaration. 



Communication Between BASIC and Assembly Language 115 

Special Requirements: 

• The location where it is to store the information must be adequate to hold all that may be 

returned. For non-arrays, 3 words will suffice. For arrays, up to 30 words may be required 

(as above). If you are writing a general routine, it may be wise to play it safe by setting 

aside a full 30 words . 

• An argument must have been passed by the ICALL (in the case of parameters) or a 

corresponding BASIC COM declaration must exist (in the case of common declarations). 

Calling Procedure: 

1. Load register A with the address of the storage area for the information to be returned. 

2. Load register B with the address of the parameter declaration corresponding to the 

desired argument. 

3. Call the utility. 

Exit Conditions: There are no error exits from the utility. It always returns to the instruction 

following the JSM. Since there are no error exits, and there is no requirement that there be as 

many arguments as there are parameter declarations, an argument must actually have been 

passed by the ICALL in order for the utility to work correctly. 

Following up on the example in the previous section, suppose the first thing that the Sort 

routine does is check to see if the first parameter passed is an array. Then, by using the 

Get_info utility, it is possible to have the instructions look as follows -

'::::Cii..,iPCE 
:::OLij?C:E: 
SOURCE Ar~ay: HNY 
SOURCE Number: RE 

:::::Ui.JF:C:E 
:::::Oi.JRC:l::: 

':::;(}.JF.'CE 
':::U.JF.:CE 

C:F' =1.6 Is it = fi10 number~ 
Yes, indicate error 0 

fif~; .. ' '·::L >i t I. - I:: 1;;:~ ~ :~ :~; ::. .,;" 
t·· ... : ~ 'i 1 11::J : i H • • :::~. !" :' E' tH

• t-· c= ~"" ;::; 



116 Communication Between BASIC and Assembly Language 

The array information returned by the Get_info utility is used for accessing elements in arrays 

passed as arguments. It is used by the element-retrieval utilities described in a later section of 

this chapter. Once retrieved, the information is usable any number of times for accessing the 

array associated with it. It is not necessary to retrieve the information every time you access an 

array, as long as you have not altered the information (except the pointer) between accesses. 

The seventeenth word of the array information (word 16 on the chart) is reserved to hold the 

offset from the start of the array of the element to be accessed. Therefore, it is permissible 

(indeed, it is necessary) to alter the contents of that location to indicate which element in the 

array you wish to retrieve. None of the other words returned by the utility should be changed. 

In making multiple accesses with the same information, caution should be taken when an array 

is involved. If a REDIM statement is executed upon the array between accesses, the information 

may not reflect the true structure of the array. This potentiality can be addressed in one of two 

ways-

• Advise the BASIC user against using a REDIM on the array between executions of the 

routine or routines involved . 

• Call the Get_info utility each time the array is accessed. 

Similar problems exist when a BASIC subprogram is called recursively, and the subprogram 

uses a local array as an argument in an ICALL, or when a subprogram calls a routine and later 

exits (causing its local arrays to disappear). 

Retrieving the Value of an Argument 
At some point during execution of your assembly language routine, you may want to retrieve 

the value of an argument so that you can use it in your processing. By doing so, you accomplish 

one of the methods of communicating with assembly language - namely, passing a value TO 

the assembly language routine from BASIC. 

There are a number of utilities for this purpose. The one to use is dependent upon the type of 

argument passed. The utilities available are -

Name 

Get value 

Get element 

Get_bytes 

Get _ elem _ bytes 

Used For 

Simple variables, expressions, individual elements of 
arrays passed as arguments, and file numbers 

Elements (from arrays passed as arguments) 

Substrings of strings passed as arguments either as 
simple string variables, expressions, or individual 
elements of arrays passed as arguments 

Substrings of individual elements (from string arrays 
passed as arguments) 



Communication Between BASIC and Assembly Language 117 

How each of these utilities is used is described in the immediately following pages. 

UTILITY: Get value 

General Procedure: The utility is given the address of the parameter declaration and the 

address of where the value of the argument is to be stored. It returns with that value stored in 

the indicated area. It works on simple variables, expressions, and individual elements of arrays 

(passed as arguments), of any type. 

Special Requirements: 

• The storage area set aside for the value must be large enough to hold the value. The size 

of the storage area must be -

for a file number 

for an integer value 

for a short-precision value 

for a full-precision value 

for a string 

1 word 

1 word 

2 words 

4 words 

maximum length in bytes + 2 + 1 word 

(+ 1 additional word if the string length is odd) 

• An argument must have been passed by the ICALL for the utility to work properly. 

Calling Procedure: 

1. Load register A with the address of the storage area for the value. 

2. Load register B with the address of the parameter declaration. 

3. Call the utility. 

Exit Conditions: There are no error exits from the utility. It always returns to the instruction 

following the call. 

Here is an example call to the utility, retrieving information from a full-precision argument-

LD2 =P.::H···.3.rn'::·-::. Er· 

. .J::::;t'1 '.).3.'j U':::' 



118 Communication Between BASIC and Assembly Language 

UTILITY: Get element 

General Procedure: This is similar to the "Get_value" utility. This utility retrieves a value 

from an element of an array passed as an argument. It works on arrays of any type. 

Special Requirements: 

• The storage area set aside for the value must be large enough to hold the value. Resultant, 

the size of the storage area must be -

for an integer 

for a short-precision value 

for a full-precision value 

for a string 

1 word 

2 words 

4 words 

maximum length in bytes 2 + word 

(+ 1 additional word if the string 

length is odd) 

• The array information must be retrieved with the "Get_info" utility before calling this 

utility. 

• The offset of the element in the array must be correct in the array information (word 16 

returned by "Get_info"). It should be remembered that the offset of the element is 

dependent upon the number of dimensions in the array and the length of each. A calcula

tion may be necessary to arrive at the offset when accessing multiple-dimension arrays. 

The offset is in terms of number of elements. 

Calling Procedure: 

1. Store the element offset within the array information (word 16 returned by "Get-info"). 

2. Load register A with the address of the storage area for the value. 

3. Load register B with the address of word a of the information returned by the 

"Get_info" utility (see description of that utility). 

4. Call the utility. 

Exit Conditions: There are no error exits from the utility. It always returns to the instruction 

following the call. 



Communication Between BASIC and Assembly L;;}nguage 119 

Here is an example call, retrieving the third element (relative element 2) of an integer array and 

placing it into Value -

I:::::CH...lFCE 
I ';:;:()!..JFCt: 

UTILITY: Get_bytes 

General Procedure: This is similar to the "Get_value" utility. This utility retrieves a substring 

of a string passed as an argument, having been given the starting byte and the number of bytes 

to be retrieved. 

Special Requirements: 

• The storage area set aside for the substring must be large enough to hold all of the 

substring. This includes not only the string itself, but also two extra words. Remember, a 

word holds two characters . 

• A string must have been passed by the ICALL for the utility to work properly. 

Calling Procedure: 

1. Store the number of the sta,rting byte of the substring desired into the first word of the 

storage area set aside for the substring. (Note that bytes 0 and 1 are the length word of 

the string.) 

2. Store the number of bytes in the substring into the second word of the storage area. 

3. Load register A with the address of the storage area. 

4. Load register B with the address of the parameter declaration. 

5. Call the utility. 



120 Communication Between BASIC and Assembly Language 

Exit Conditions: There are no error exits from the utility. It always returns to the instruction 

following the call. The substring is returned starting with the third word of the storage area. 

(Note: Since the second word contains the length of the substring, you have a string data 

structure starting with the second word!) 

For example -

1 ::::.'i: C i··,::;X·.:01.C!:. ,:::r ('j qi···!(:;1 .. ··e 'j ei···,(::i1:. h :;. 
'r :--··::i/·: :::. f e i···· 1. i;;:i c h::l i·····ac t e r"' :::. 

I '::Di...ieCr:::: 
I ':::Ci...ii?CE: 
ISOURCE Pa~~ameter: 0TP 

LDB :::::P.:::U····.:;H{;!:::·t .:;,,!'" . 

.r:::;\·'l C;,::, '.' !.y: .. ,j:. e~:;· 

In this example, Value is the storage area. Since 2 has already been generated and stored in the 

first word, and 10 in the second, the first 10 bytes of the string would be transferred. Of course, 

the original string must contain at least 10 characters - or the bytes which are returned may be 

nonsense. Why was the value 2 stored as the byte number? Because bytes in a string are 

numbered starting with 0, and bytes 0 and 1 contain the length of the string (see "Data 

Structures" in Chapter 3). 

UTILITY: Get_ elem _bytes 

General Procedure: This is a combination of the "Get_element" and "Get_bytes" utilities. 

This utility retrieves a substring of an element of a string array passed as an argument. The 

utility is given the starting byte and the number of bytes to be retrieved. 

Special Requirements: 

• The storage area set aside for the substring must be large enough to hold all of it. This 

includes not only the string itself, but also two extra words. Remember, a word holds two 

characters. 

• The array information must be retrieved with the "Get_info" utility before calling this 

utility. 

• The offset of the element in the array must be correct in the array information (word 16 

returned by "Get_info"). It should be remembered that the offset of the element is 

dependent upon the number of dimensions in the array and the length of each. A calcula

tion may be necessary to arrive at the offset when accessing multiple-dimension arrays. 

The offset is in terms of number of elements. 



Communication Between BASIC and Assembly Language 121 

Calling Procedure: 

1. Store the number of the starting byte of the substring desired into the first word of the 

storage area set aside for the substring. (Note that bytes 0 and 1 are the length word of 

the string.) 

2. Store the number of bytes in the substring into the second word of the storage area. 

3. Store the offset within the array information. 

4. Load register A with the address of the storage area for the value. 

5. Load register B with the address of word 0 of the information returned by the 

"Get_info" utility (see description of that utility). 

6. Call the utility. 

Exit Conditions: There are no error exits from the utility. It always returns to the instruction 

following the call. The substring is returned starting with the third word of the storage area. 

(Note: since the second word contains the length of the substring, you have a string data 

structure starting with the second word!) 

For example -

DAT 2 
DAT 10 

I :3Cd)~:C:E E;::;::; 5 :::;lJt!:::.tt-y l r-j!;i :::.tt)r"·~:3.i;JE· ·a.f-·E··~ 

I ::;CUPCE An---a.',..' i nf 0: IS::; 30 
I ::;CUFCE E -i eiii~:r;t- : EOU AtT"-':!.') i nf 0+ 16 ! E 1 E-mE-nt off :=-E"t 
I :::;CI~.JF:~C:E: ;:;tJE: 
I =::;()!J F;:C:E F~.3.t"·.:if;"!E·t ~::'f-. : ::;TF.: ( '* ) 

I':;OUFCE 
I::{ii...iFCE 
I::;OUF:CE 
I ::;C(if~:CE 

LIlA =Ar"r""::t::_"~ i nf.:o 
[_DE =F'.::tr-""::tmet-er" 

LIlA =2 
::;TA E 1 E"went- . 

LJ):B =Ar .. t· ... ~:: .. ~ .. i r-!f'c: 
.J::;tI1 F:l_~t._ E'1 E'f[~ C!:)tE'::;' 

In this example, Value is the storage area. Since 2 has already been generated and stored in the 

first word, and lOin the second, the first 10 bytes of the string element are transferred. Of 

course, the string element must contain at least 10 characters - or the bytes which are re

turned may be nonsense. 



122 Communication Between BASIC and Assembly Language 

Changing the Value of an Argument 
At some point during the execution of your assembly language routine, you might want to 

accomplish the other half of this method of communication with BASIC - namely, changing 

the value of a BASIC variable which is used as an argument, in effect changing the value of a 

BASIC variable from the assembly language routine. 

As with retrieving a value, there are a number of utilities available for changing a value. The 

one to use is dependent upon the type of argument passed. The utilities available are -

Name U~dFm 

Put value Simple variables and individual elements of 
arrays passed as arguments 

Put element Elements (from arrays passed as arguments) 

Put_bytes Substrings of strings passed as arguments 
either as simple variables or as individual elements 
of arrays passed as arguments. 

Put_ elem _bytes Substrings of elements (from string arrays 
passed as arguments) 

How each of these utilities is used is described in the immediately following pages. 

UTILITY: Put value 

General Procedure: The utility is given the address of the parameter declaration and the 

address of the value. It changes the value of the BASIC variable associated with the parameter. 

It works only on simple variables and individual elements of arrays (passed as arguments), of 

any type. 

Special Requirements: 

• The value must have the appropriate data structure for the data type of the argument (see 

"Data Structures" in Chapter 3) . 

• An actual argument must have been passed by the ICALL for the utility to work properly. 

Calling Procedure: 

1. Load register A with the address of the storage area of the value. 

2. Load register B with the address of the parameter declaration. 

3. Call the utility. 



Communication Between BASIC and Assembly Language 123 

Exit Conditions: There are no error exits from the utility. It always returns to the instruction 

following the call. 

Here is an example call to the utility, passing information to an integer argument-

I :::; Ci 1...1 ~~ c: E 1=/ .~, 1 i.A i:'~· ~ 

I :::; Ci tJ F: C: E 
ISOURCE Parameter: INT 

I ::; Ci i.J F: i=: E=': 
I:::; C! tJ F~: C: f:' 
I::; Ci ij f~~ C: E~ 

UTILITY: Put element 

L. I~ :B ::-.: F= ·~~i r o

' .:::=~ rn E:" t ~::' [,", 
.J :::; ft"i F) t·t t i.).:::t 1 t·i ~:' 

General Procedure: This is similar to the "Put_value" utility. This utility changes the value 

of a single element in an array passed as an argument. It works on elements of arrays of any 

type. 

Special Requirements: 

• The value must have the appropriate data structure for the data type of the argument (see 

"Data Structures" in Chapter 3). 

• The array information must be retrieved with the "Get_info" utility before calling this 

utility. 

• The offset of the element in the array must be correct in the array information for the array 

(word 16 returned by "Get_info"). It should be remembered that the relative element 

number of the element is dependent upon the number of dimensions in the array and the 

length of each. A calculation may be necessary to arrive at the offset when accessing 

multiple-dimension arrays. 

Calling Procedure: 

1. Store the element offset into the array information (word 16). 

2. Load register A with the address of the storage area for the value. 

3. Load register B with the address of word 0 of the information returned by the 

"Get_info" utility (see description of that utility). 

4. Call the utility. 



124 Communication Between BASIC and Assembly Language 

Exit Conditions: There are no error exits from the utility. It always returns to the instruction 

following the call. 

Here is an example call, storing information from Value into element 0 of an integer array -

ISOURCE Array info:BSS 30 
EQU Array info+16 

ISOURCE Parameter: INT C*) 

I ::; (1 tJ t::~ C: E 
I::; Ci jJ F.~ C: E 
I :=;Cilj F.:C:E 
I ~=; (1 fJ ~~ C: E 
I ~=; Ci tJF.~ C: E 

I::;; i] iJ F:~ C: E 
I :::ClljF:C:E 
I :::; Ci iJ F.~ C: E 

UTILITY : Put_bytes 

L Ii :B ::: Fi t-· i'-' ·::i ::) i t-l f" c= 
.J :::; t:1 F: i.A t ~:' 1 ~::' Hi ~:' !o·Oj t 

General Procedure: This is similar to the "Put_value" utility. This utility changes the value 

of a substring which is part of a string variable or an individual element of a string array, having 

been given the starting byte and the number of bytes to be changed as well as the new 

characters. 

Special Requirements: 

• The bytes to be transferred are preceded by two words in the storage area. The two words 

contain the starting byte for the substring and the number of bytes to be transferred . 

• A string variable or an element of a string array must have been passed as an argument for 

the utility to work properly. 

Calling Procedure: 

1. Store the number of the starting byte of the substring to be changed into the first word of 

the storage area. (Note that bytes 0 and 1 are the length word of the string) 

2. Store the number of bytes in the substring into the second word of the storage area. 

3. Load register A with the address of the storage area. 



Communication Between BASIC and Assembly Language 125 

4. Load register B with the address of the parameter declaration. 

5. Call the utility. 

Exit Conditions: There are no error exits from the utility, so it always returns to the 

instruction following the call. 

For example -

ISOURCE Parameter: STR 

1st character (ignore length) 
T~insfer 10 characters 
Substring storage area 

Other info already saved 

In this example, Value is the storage area containing the string to be transferred. Since 2 has 

already been generated and stored in the first word, and 10 in the second, the first 10 bytes of 

the string are changed. Why was the value 2 stored as the byte number? Because bytes in a 

string are numbered starting with 0, and bytes 0 and 1 contain th~ length of the string (see 

"Data Structures" in Chapter 3). 

UTILITY: Put_ elem _bytes 

General Procedure: This is a combination of the "Put-element" and "Put-bytes" utilities. 

This utility changes a substring of an element in a string array which has been passed as an 

argument. The utility is given the starting byte and the number of bytes to be transferred. 

Special Requirements: 

• The bytes to be transferred are preceded by two words in the storage area. The two words 

contain the starting byte for the substring and the number of bytes to be transferred. 

• The array information for the array must be retrieved with the "Get_info" utility before 

calling this utility. 

• The offset of the element in the array must be correct in the array information for the array 

(word 16 returned by "Get_info"). It should be remembered that the offset of the 

element is dependent upon the number of dimensions in the array and the length of each. 

A calculation may be ne~essary to arrive at the offset when accessing mUltiple-dimension 

arrays. The offset is in terms of number of elements. 



126 Communication Between BASIC and Assembly Language 

Calling Procedure: 

1. Store the number of the starting byte of the substring to be changed into the first word of 

the storage area. (Note that bytes 0 and 1 are the length word of the string.) 

2. Store the number of bytes in the substring into the second word of the storage area. 

3. Store the element offset into the array information (word 16). 

4. Load register A with the address of the storage area for the string to be transferred. 

5. Load register B with the address of word 0 of the information returned by the 

"Get_info" utility (see description of that utility). 

6. Call the utility. 

Exit Conditions: There are no error exits from the utility. It always returns to the instruction 

following the call. 

For example-

1st c~iracter (ignore length) 
Transfer 10 cha~acters 
Substring storage area 

ISOURCE Array info:BSS 30 
EQU Array info+16 

ISOURCE Parameter: STR (*) 

L.. }) i:i :::: f! ro

" i"'" .:~j. :) 'i !"'j f' () 
L.. Ii J3 ::::: F> .~J. i· .. · .::l. i"l"i !::;' t ~::' ro

" 

Info alrs~dy saved 

JSM Put e1em bytes 

In this example, Value is the storage area for the string to be transferred. Since 2 has already 

been generated and stored in the first word, and 10 in the second, the first 10 bytes of the string 

element are changed. It is the responsibility of the software (not shown) to assure that 10 

characters of valid data are stored in the remainder of the storage area. 



Communication Between BASIC and Assembly Language 127 

Using Common 
Another way to pass information between BASIC and assembly language routines is through 

BASIC's common area. 

You may recall from subprograms in BASIC that if you have a COM statement in the main 

program, the locations named therein can be accessed by other BASIC subprograms and 

functions through their own COM statements. Though the subprograms may change the 

names, the locations are the same. The order of appearance in a COM statement is all

important. If a main program has the statement -

and a subprogram has the statement -

then X and A are the same storage location, Band Yare the same, and C and Z are the same. 

The same kind of operation is available in your assembly language routines with the COM 

pseudo-instruction -

As with the SUB pseudo-instruction, the COM only serves as a preface. It is followed by one or 

more parameter declarations of the same types as in the SUB -

'T 1-•• 
.. i .. i'·! : 

F~~~ E::: I .... 

The FIL is not permitted, since there is no corresponding item within BASIC's COM syntax. 

Each pseudo-instruction used after an assembly language COM corresponds to an item in the 

COM declaration in the main BASIC program. Just as in a BASIC subprogram, the types must 

agree. 1 However, the ANY pseudo-instruction fulfills the same function here as it does with the 

SUB pseudo-instruction - to allow any type of item to be passed. 

III the types do not correspond, an error results (number 198). 



128 Communication Between BASIC and Assembly Language 

As with SUB, arrays are designated by following the type with an array identifier - (>i<). If the 

type is ANY, the array identifier is not allowed. 

Each pseudo-instruction reserves three words of memory when assembled. And, like SUB, the 

words are used to contain a descriptor. The descriptors are used by the variable retrieval 

utilities for fetching and storing values in the common area. THE SAME UTILITIES USED IN 

FETCHING AND STORING ARGUMENT VALUES ARE USED FOR THE SAME PURPOSES 

FOR VALUES IN THE COMMON AREA. These utilities are-

Get info 

Get value 

Get element 

Get_bytes 

Get_ elem _ bytes 

Put value 

Put element 

Put_bytes 

Put elem _ bytes 

The utilities are called in the same fashion and are subject to the same restrictions. See the 

description of the utilities in the preceding sections of this chapter to determine how they are 

used. 

The item pseudo-instructions used with the COM pseudo-instruction can have their own labels, 

just as the parameter declarations used with a SUB may have. And just as in a BASIC subprog

ram, they need not have the same names as were given the corresponding items in BASIC. For 

example, suppose the following BASIC common statement exists at the time of a call to an 

assembly language routine -

then you could access Q(*) and Z$ by using these pseudo-instructions -

F.~EL. (.~~ ) 

Note the differences in names. 



Communication Between BASIC and Assembly Language 129 

If the number of item pseudo-instructions in the assembly language routine exceeds the 

number of items in common at the time the routine is called, an error results (number 199). 

A COM pseudo-instruction sequence need only be set up once per module. Each routine within 

the module has access to the information within the sequence. The three-word descriptors are 

filled, and type-checking occurs, only once - at the first ICALL of a routine within the module. 

Busy Bits 
Overlapped processing in the 9835A/ B is partially implemented through the facility of "busy 

bits" . 

Each variable located in the BASIC value or common areas has associated with it two bits which 

are independent of the value - a "read" busy bit, and a "write" busy bit. Each time an I/O 

operation is executed that cannot be buffered, one of the busy bits is set. If a variable is having 

its value changed by the I/O operation, then the read busy bit is set. If the variable is output

ting its value in the I/O operation, then its write busy bit is set. If a variable is not involved in a 

pending I/O operation both bits are cleared. When the I/O operation is completed, the busy 

bits for the variables involved are cleared. 

When an I/O operation is encountered during execution of BASIC statements, the appropriate 

busy bits are set and a request is made by the operating system for the resources to satisfy the 

operation. Until that operation is complete, BASIC (in OVERLAP mode), continues to execute 

succeeding lines in the program until it encounters a statement which contains variables with 

busy bits that are set. 

If the statement is attempting to use the value of a variable and its read busy bit is set, then the 

further execution of the statement waits until the busy bit is cleared. The same is true for a 

statement attempting to change the value of a variable when either its read or write busy bit is 

set. When the I/O operation completes, the busy bits are cleared and the waiting statement is 

executed. 

In short, overlapped processing uses busy bits as a signal as to whether a statement can be 

executed or not. 



130 Communication Between BASIC and Assembly Language 

If an ICALL statement is executed with overlapped processing, it is possible that a BASIC 

variable in the common area may be "busy" when the routine wants to access it. (The busy bits 

of variables passed as arguments are checked - and are non-busy - before the ICALL is 

executed.) Although it is 'still possible to access the variable without regard to the status of the 

busy bits, frequently that is not a desirable programming approach. You may on occasion want 

to check the value of the busy bits when you suspect the user of. the routine may be using 

overlapped processing. 

Busy bits are checked from an assembly program using the "Busy" utility to be described 

shortly. If you are checking the bits for a busy condition, and the busy condition is set, it 

remains set throughout the time you are in the assembly routine. For it to become un-busy, you 

must exit the routine and permit the operating system a chance to perform the 1/0 operation 

and clear the busy bits. 

For example -

340 IF Bus) THEN 330 

If the Sort routine exits, setting Busy to 0 if a busy condition is not encountered, and to 

non-zero otherwise, this is a tight loop which keeps trying to execute Sort until the common 

variables which are busy become un-busy and it can proceed on its way. By exiting the routine 

after each unsuccessful attempt, the operating system is given an opportunity to perform the 

110 operation which has the variable(s) tied up. 

UTILITY: Busy 

The Busy utility checks the status of the busy bits of a variable in BASIC's common area. It is 

not necessary to check the busy bits of a variable passed as an argument since all arguments are 

checked upon calling a routine (and the call is executed only when all the arguments are not 

busy). 

General Procedure: The utility is given the location of the common declaration for the vari

able. It returns the value1(}f the busy bits for that variable into the A register. 

Special Requirements: This utility should only be used for variables in common. 



Communication Between BASIC and Assembly Language 131 

Calling Procedure: 

1. Load register B with the address of the pseudo-instruction of the common declaration to 

be checked. 

2. Call the utility. 

Exit Conditions: The utility returns the busy bits in the A register. The "read" busy bit is in bit 

o and the "write" busy bit is in bit 1. The other bits are not disturbed. 

In the following example, if any of the busy bits among three common variables is set, a flag is 

set and the routine is exitted -

ISrnJRCE V~riab121: INT 
ISOURCE Variable2: SHO 
ISOURCE Variable3: REL 

I :::;Ci!JF~~ C:E its. : I i'··j'r 
I ::::;QURCE ::;;01····1:. ~ L..DE: ::::"/::lx···i .:::;.b·\ e 1 
I :::OU F~~CE 
I ::::Di...iF:CE: 

I :::;Oi.JF:CE 
I:::CUPCE 
ISCURC:E 
I ::;CitJ I:~~C:E 
I ::;OUF:CE 

ISOUF:CE 
I::;OURCE k:!t-+: 

::; ~~F .:,:. +4 
LDfi :::::::1 
LDE Bu~:.':..' b·i t :::. 

Cor~inue processing 



132 Communication Between BASIC and Assembly Language 



110 Handling 

Chapter 7 
Table of Contents 

Peripheral-Processor Communication> > , , > , , , 

Interfaces> .. , > ....... , .. > , ... , """" 

Registers ' , .. , > 

Select Codes, , , , 

Status and Control Registers , .. 

133 

134 

134 

134 

136 

Status and Flag Lines, , , , . , , , . , , , .. , . , , , .. , , , , , ., .'" .. > , , . , , > , , . , , , , , . , , , , 137 

Progra mmed I 10 ' ., , ... , .. ',., .... ", ,>""".,., ,. > , , , , . " , ..... >. , ... ,. 138 

Interrupt I I a ' .... , , , . , , , .. , .. , , . , , .. , > ,. ".",.""."".,., .. ,.,.", , .. " .. 138 

Priorities. , . , , .. ,.",.,., ... ,.",., .. ".,.,., ..... > . > .. > . , , ... , . , .. ,.,. > .. 140 

Interrupt Service Routines and Linkage .... > , .. > .. , .... , ... , .... , ....... , ..... 140 

Access ......... , .. , .. , , ..... , ... " , " , " , , .. , < • , • < ••• " •• ". "< " " , ••• ". 141 

Utility: Isr _access. , .... , ... " . , . " . , , , ... , " , , . , ",., ,.,.,." .. ,.,. ",143 

State Preservation and Restoration, ... < • , ., •• ' < " , " , • , • , , , , • , , < "' ,., < , < ••• , 145 

Indirect Addressing in ISRs ... , . , , .. , , , . " , .. ,.. ." .. ,"... " ... " .. " ... , .... 146 

Direct Memory Access (DMA) . , , " .. , , " . , , " .. , , " .. , " , , .... , . , < " • , , • , , • , , , " • , , 147 

DMA Registers, , " ... " ....... , " .. " " , , . , . , , . , , . " ... , .. " ," ' .. , .. ,", .... , .. 148 

DMA Transfers .. , < " , • , , • ," " <.","",," •• , •• " >. ,.,.""" ... "."""",, 149 

BASIC Branching on Interrupts ," .... " .. ",.""", .... ,.,.,.,",.,..... .""". 150 

ON INT Statement, .. , . , , , , " " .. ,".,. """, ... , ... ,.:.,"",. " .. < " • , ••• 150 

Signalling, , , , .. , , , . , , . , , , .. , .. , , , . , " , . , , , , , , , , ... , ... , .. ,.' , . , , . , , , ... 151 

Additional Pre-Defined Symbols, . , " , , . , . , > , . , . , . , , , , , .. , , < , , ,. .,."" •• "., 153 

Prioritizing ON INT Branches, .. , , .... , . , " ... , , .. , , , , , . , , , " " .. " ,., .. , ... 153 

Environmental Considerations> . , , .... , , .. , .. , , , , , , ,.,." <, •• <" •••• " •• 155 

Disabling ON INT Branching •..•. , ••• " •••. <. 156 

Mass Storage Activities. . . .. .., .... ,' .... , ..... ,.. . ., '" < > . , .. > , .. , 156 

Reading from Mass Storage .. , .. , > •••• < •• , •••• , ••••• > •• , , , •• , • > •• 157 

Utility: Mm _read_start: > ••• ".. >, •• , >., >., >., .. ' > 158 

Utility: Mm _read _ xfer . ,. > 159 

Writing to Mass Storage, . > , , • , ••• , < • > , , < •• , , , • , •• ., > .. , , . , . < •• , , • 160 

Utility: Mm _write_start >, ,.,.,., •• < , , • , • , •• < • , , , ., ",." •• ,." •••• > .. , 161 

Utility: Mm _write _test, < , > , , .. , , , . , < • > . .. >., < , , • , , • > , > , . , , .... , > 161 

System File Information, , , .. >, > •• > > , , > , • > ..... , , , . > , , > .,. > •• , >.",. >, >. 163 

Utility: Get_file _info. , ....... , , . , . , . > ", .. """ >.,. > .... , .. 164 

Utility: Put_file_info .. , > , , .. "" 165 

Printing >., >, .. , ... >., >.,166 

Utility: Printer_select 

Utility: Print_ stnng 

" .. > ... > > ••••• > <". > ....... > •• , <, ••• 166 

",. >, •••• , > •••• , >.' •• >, >., •••• >, 167 



133 

Chapter 7 
I/O Handling 

Summary: This chapter describes the various techniques of handling the receiving and 

sending of information to peripheral devices. Topics are: a review of I/O machine 

instructions, registers, applicable utilities, interrupts and interrupt service routines, 

handshake I/O, direct memory access, and mass storage devices. 

A major usage for assembly language programs is to improve or customize the performance of 

the 9835A/B with respect to data transfers with peripheral devices. The types of devices dealt 

with are those which communicate via the various interface cards (e.g., HP98032, HPIB, etc.). 

The types of I/O which the assembly language supports are programmed (handshake-type), 

interrupt, and direct memory access (or DMA). 

A number of detailed examples have been provided demonstrating the various types of I/O on 

different interfaces. These examples can be found in Appendix H. 

Peripheral-Processor Communication 
All I/O, except for that to the internal devices (tape cartridge, keyboard, printer, CRT or SLD), 

necessarily takes place through the "backplane". The backplane is that physical area of the 

machine where the interface cards are inserted (also known as the I/O "slots"). 

Figure 8. Location of I/O Slots (Backplane) 
I 



134 I/O Handling 

The backplane serves as an intermediary between the processor and the peripheral interfaces. 

The internal addressing of the backplane is transparent, both to the interfaces and to the 

programmer. 

Interfaces 
The processor does all its talking, through the backplane, to peripheral interfaces, never di

rectly to a peripheral itself. An interface is a complex electronic circuit which provides mechani

cal, electrical, data format, and timing compatibility between the 9835A/B and the peripheral 

device to which it is connected. From a programmer's point of view, the primary task of an 

interface is to provide a means of exchanging data between the 9835A/ B and the peripheral. A 

well-designed interface isolates the programmer from the details of electronics and timing, 

appearing as a simple "black box" through which information is exchanged. 

The processor can talk to as many as 14 peripheral interfaces through the backplane. Each can 

be talked to individually, and there may be a mix of peripherals using programmed, interrupt, 

or DMA types of transfers. 

Individual I/O operations (Le., exchanges of single words) occur between the processor and 

one interface at a time, although interrupt and DMA modes of operation can be programmed to 

allow automatic interleaving of individual operations. 

A peripheral is addressed through a select code and a transfer occurs through four special 

registers reserved for the purpose. These will each be discussed shortly. 

Discussion of the techniques and methods presented in this chapter uses the common HP 

interfaces as examples. A full discussion of the operation of these interfaces can be found in the 

Interfacing Concepts manual (HP part number 09825-90060) and also from your Sales and 

Service office (list in Appendix K). 

Example programs utilizing various I/O techniques with a number of the standard interfaces 

can be found in Appendix H. 

Registers 
All I/O operations go through a set of four registers maintained by the 9835A/B. The 

four - R4, R5, R6, and R7 - are the sole means of communicating data between the proces

sor and peripheral interfaces. While the registers are actually on the interface cards, they may 

be thought of as being in the computer memory. This makes the cards themselves accessible by 

simple memory referencing instructions. 



I/O Handling 135 

The 9835A/B sees the registers as single-words and always sends or receives a full word of 

data when it references one of them. If a particular interface utilizes less than the ftill sixteen bits 

(when exchanging 8-bit extended ASCII data bytes, for example), then the most significant bits 

(8 through 15) are received as zeroes. On output, if fewer than 16 bits are utilized by the 

interface, it ignores the most significant bits. The value of these bits, in this case, is a "don't 

care" (Le., may be any pattern of ones or zeroes). 

All of the HP 98030 series of interface cards use the registers as follows -

Register On Input On Output 

R4 Primary Data In Primary Data Out 

R5 Primary Status In Primary Status Out 

R6 Secondary Data In Secondary Data Out 

R7 Secondary Status In Secondary Status Out 

The R4 register, then, is almost always used for data transfers. R5 is always used for status and 

control information. The "secondary" registers - R6 and R7 - perform the indicated 

functions only nominally. The exact interpretation as to how the register is used depends upon 

the interface card being used (see the Interfacing Concepts manual for details). 

In order to give some specific examples for using the registers, the '98032 16-Bit Parallel 

Interface (sometimes called General Purpose Input/Output - GPIO) is used. This card 

defines the secondary registers as 

Register On Input 

R6 High-Byte Data In 

R7 (unused) 

Select Codes 

On Output 

High-Byte Data Out 

Trigger 

As mentioned earlier, more than one interface card may be connected to the 9835A/B. It 

becomes necessary, then, that there be a mechanism whereby a particular interface can be 

chosen to respond when an I/O register is referenced for either input or output. This 

mechanism is the Peripheral Address Register (Pa). 



136 1/0 Handling 

Pa holds a binary number in the range 0 to 15 (utilizing only the lower four bits of the word, 0 to 

3). Each interface has an externally-settable select code switch which can also be set to a value 

between 0 and 15. However, since select codes 0 and 15 are reserved for the internal printer 

and tape cartridge unit, respectively, the permissible select code settings are 1 through 14. 

Whenever an operation to one of the 1/0 registers is performed, the 9835A/B makes the 

contents of the Pa register available to all the interfaces connected to the backplane. Each card 

compares the value with its own select code. If they match, the interface responds to the 

operation. 

So, for example, if the following statements are executed in turn -

I ::::;CUF'CE LDj::"l ... ,., 
I :::;Ci!...lF"~C:E ,:::;oon=i eo;:;' 

I ':;()i..JF:CE L..DFi ~>!. 

then a word of data is read from the interface card set to select code 8. (The data was read in the 

third line; this is discussed in "Programmed 1/0" below.) 

The label "Pa" is reserved by the assembler for the Peripheral Address register. 

Status and Control Registers 
The primary purpose of any interface is to allow data to be exchanged between the computer 

and the peripheral device to which it is connected. But HP's 98030 series of interface cards are 

even more versatile, possessing a programmable capability of their own. This in turn provides 

optional capabilities with the card that can be set and changed by control instructions from the 

9835A/B. (For details on what capabilities are provided, consult the Interfacing Concepts 

manual.) 

The programming of the interface is done by the 9835A/B using the R5 register. Some of the 

interfaces use other registers for extended control bits (these are also described in the Interfac

ing Concepts manual). 

Interface cards can also return information to the 9835AI B about which optional programming 

features are currently selected. This information, called the status byte, is obtained through an 

input operation using register R5. The status byte (8 bits) is determined solely by the charac

teristics of the interface card being addressed in the Pa register. Again, information on particu

lar cards can be found in Interfacing Concepts}. 



I/O Handling 137 

Remembering that these registers are not really memory locations, but instead are registers on 

the card being addressed by the Pa register, storing information to these locations is not the 

same as storing to other memory locations or registers. For example, storing a value in R5 to set 

the control register sends the information to the addressed interface. Later, if you were to read 

a value from R5, the information you sent would not be what is returned. Instead, the contents 

of the status register in the interface would be returned. 

Status and Flag Lines 
Whenever an I/O register is accessed, the interface with the same select code as is in the Pa 

register responds. The primary response depends upon the nature of the interface and which 

register is accessed (see discussion above). However, in all cases there is a secondary effect. 

Part of every interface's response is to set or clear the Status and Flag lines. 

The Status line (not to be confused with the status register discussed above), is a single bit 

indicating whether the interface is operational or not. By inclusion, this can also mean the 

status of the actual peripheral to which the interface is connected. For example, if a peripheral 

device has a line coming from it that indicates its power is on, it could be connected to the 

Status line in the interface. Then the program could quickly determine whether the device is 

turned on or off. As another example, a printer might have the Status line connected to the 

out-of-paper indicator (should it have one) to indicate to the program when it is inoperable 

because of lack of paper. 

The Flag line is a momentary "busy/ready" indicator used to keep the computer from getting 

ahead of the peripheral. The line shows that the interface is busy processing the last task given 

it by the 9835A/ B or that it is ready for another operation. If the line is set, it indicates 

"ready"; if the line is cleared, it indicates "busy". For example, if the computer has a sequence 

of ASCII characters to send to a slow printer, it sends one character (making the Flag line 

"busy") and then waits for the Flag line to go "ready" again before sending the next character. 

There are four instructions, part of the I/O group, which can check these lines -

,j'" ':::::; Skip if Flag line is set (Le., "ready") 

'--",f-- ;' Skip if Flag line is cleared (Le., "busy") 

'::::<::::: __ " Skip if Status is set (Le., "operational") 

(::::;':::::, '- .. ,., Skip if Status is cleared (Le., "non-operational") 

These instructions have the capability of skipping up to 31 locations in a forward branch, up to 

32 locations in a backward branch, or to the same instruction. 



138 I/O Handling 

Programmed I/O 
Programmed I/O is the process whereby software controls the transfer of information between 

memory and an interface. In the process the program must decide when and where to make the 

transfer, how to make it, and how much information to transfer. The decision even to originate 

the transfer comes under program control. 

The Status line can be used to determine the availability of an interface. The interface is 

selected, under program control, by the contents of the Pa register. Then the Status line is 

checked to see if the interface (and by inclusion its associated peripheral) is operational. 

After an operational interface has been chosen, the Flag line can be used to determine when 

the interface (Le., peripheral) is ready for a transfer and when it has not finished with the 

previous transfer. 

With sufficient checks of Flag and Status before and between I/O operations, it is possible to 

eliminate initiating an I/O operation to an interface which isn't ready for it. For example, a 

simple output driver for the 98032 interface is -

I :=;C)tJI~~C:E~ :::;";i:; F'.3. C: !'''l(;!() :::.!::' t i"'il::' r:!i::' r" i j:) !"'lE' ('·3.1 

ISOURCE SSS *+3 C:~-!':::'ck f'()f"' (::r;E:'j""".:::Li:. 'iCtf'"~::t"J fjE·i.)·~ (I::' 
ISOURCE LDA =164 
I8JURa~ JSM Errc~ ~~it 
I~::;OUFC::E ::;:;FC * 
I:=;OU~~CE STB F4 I]t~t j:)!.At t t-JE' rii:::'::<t. :.I)Cil·-·c~ .~ C', t ~"'!~:' 'j rit ~:.~.N·F·.3.C E' 

I :;::;Oi...iF::CE ::;;'T'B ::;:7 ::::; t·ar· 'I:. ·i:. he h.:ti.n d:::. i···.:::i. k ~:' 

Interrupt I/O 
Interrupt I/O is a means of allowing control to pass temporarily to an assembly language 

routine other than the routine (BASIC or assembly language) currently executing. The 

"interrupt", which causes the control to be passed, is detected through the backplane and is 

associated with a particular interface. After the "interrupt service" routine completes its tasks, 

control is passed back to the original routine. 



The process looks something like this -

"original" 
routine 

c: 
.Q 

"B-----, 
Q) 
x 
Q) 

'0 

~ 
:;:::: 

interrupt --O---~ 
detected 

The sequence of events in interrupt I/O can be detailed as follows -

I/O Handling 139 

1. The interface sends a request for service to the backplane which passes it along to the 

processsor. 

2. The processor alters the flow of execution so that the routine associated with that inter

rupting source can be executed. The processor saves its place ~n the interrupted routine 

so that it can later return to it. 

3. The interrupt service routine is executed, performing whatever functions are desired. 

Frequently these functions involve some form of programmed I/O or direct memory 

access. The service routine may signal an end-of-line BASIC branch, indicating to 

BASIC that some condition occurred (discussed below). 

4. The service routine returns the processor to the interrupted routine so that the "original" 

process can resume. 

The uses for interrupt I/O are so diverse that it is difficult to generalize about them. However, 

one particular use is fairly well-defined and of general applicability - data transfers. 

Interrupt I/O is normally used in data transfers whenever a particular data device has a transfer 

rate which is significantly slower than that of the computer. Since the 9835A/ B has a transfer 

rate of around 10 000 characters per second, peripheral devices with transfer rates slower than 

this number are candidates for interrupt I/O. 

The usual approach is to transfer a word to or from the peripheral device, then go away to do 

some other processing whil-'e waiting for the device to interrupt by becoming "ready" for 

another transfer. 



140 I/O Handling 

Priorities 
Select codes are assigned hardware "priority" levels to control what should be processed when 

an interrupt service routine is executing and another interrupt is received, or when two or more 

simultaneous interrupts are received. 

There are two priority levels -

High for select codes 8 to 15 

Low for select codes 0 to 7 

An interrupt received from a high-priority select code may interrupt a service routine which is 

executing for an interrupt from a low-priority select code. But an interrupt from a low-priority 

select code may not interrupt any other service routine. 

Interrupt Service Routines and Linkage 
An interrupt service routine is associated, or "linked", with a select code by the Isr _access 

utility described later. This linkage establishes where the interrupt service routine resides, and 

to which select code it applies. 

An interrupt service routine may be placed anywhere in the ICOM region. The routine typically 

does one or more of the following -

• Talks to the interface (i. e., satisfies or acknowledges the interface's interrupt). 

• Passes data to (or retrieves data from) the rest of the program, when appropriate. 

• Breaks the linkage, if desired. 

The method of talking to the interface depends upon the type of interface. Some devices or 

applications do not require the passage of data; the acknowledgement of the interrupt is usually 

the desired effect in such cases. 

The linkage can be "broken" (or terminated) during an interrupt service routine by executing 

one of two statements. If the linked select code is high-priority, the statement is -



I/O Handling 141 

If the linked select code is low-priority, the statement is -

The service routine is exited with a RET 1 instruction. 

Here is an example of a short interrupt service routine which simply reads a word of data from 

the interface -

Access 

':::;TH 

?CT 

: .C IS ,~ a line feed? 

NOTE 

Utilities cannot be called from an interrupt service routine. 

Attempts to do so may lock up the machine. 

The operating system (OS) contains a mechanism to regulate requests for hardware capabilities 

in order to eliminate conflicting uses of these capabilities. For instance, since there is only one 

DMA channel, it is necessary that there be a mechanism to prohibit two simultaneous DMA 

transfers. 

The OS mechanism which regulates the use of DMA (and also interrupt) transfers either grants 

or does not grant what is called "access". Before starting either an interrupt or DMA operation, 

access should be requested from the operating system. 

Another example - suppose a device operating on a high priority select code has a relatively 

slow data rate. This is an ideal situation in which to use interrupt driven I/O. Suppose further 

that the device operates in such a fashion that the data must be transferred within a fixed time 

period following its issuance of an interrupt or the data is lost (the internal tape drive is such a 

device.) If there are other interrupt type transfers operating concurrently on other high priority 
I 

select codes, it may not be possible to service our slow device within the necessary time frame. 

When the operating system grants access, this type of conflict is impossible. 



142 I/O Handling 

Users of the assembly language system are required to request access from the operating 

system. The OS grants access if granting this access does not compromise any previously 

granted access. 

Devices such as that discussed above which require interrupt service within a specified time 

frame are called "synchronous", and need "synchronous" access. Devices with no such time 

constraints are called "asynchronous", and need "asynchronous" access. 

The regulation of access incorporates the following points -

• When the operating system grants synchronous access to an operation, it is guaranteeing 

that the requesting process will have its interrupts serviced with maximum priority. 

• DMA conflicts with synchronous access since DMA's cycle stealing causes the processor to 

run slower and could thus compromise a synchronous process. 

• Synchronous access on a low priority select code in conjunction with asynchronous access 

on a high priority select code is conflicting since the asynchronous device could interrupt 

the synchronous ISR, thus compromising the timing requirements of the synchronous 

device. 

• Synchronous and asynchronous access on the same priority level is also conflicting. 

Remember an interrupt request on the same priority level as a currently executing ISR will 

not be processed until the executing ISR completes. 

The following table summarizes the granting of access -

Access Already Granted 

Abortive ASYN DMA SYN 

L H L H H L 

{ Low 
"'0 

Abortive 
Q,l High 

d 

d d .... 
(I) 

{ Low Q,l 

= ASYN a' High Q,l 

x 

x x 
a:: 

DMA (I) x x x 
(I) 
Q,l 

{ High u 
SYN u 

ct: Low 

d x x x x 

d d x x x x x 

blank = Granted 

x = Not granted 

d = Dangerous, but granted 



I/O Handling 143 

BASIC statements also obtain and release access as I/O is performed. The following table lists 

some of the ways access is used by the system: 

Use Access 

Cartridge Operations SYNC (HIGH select code) 

Flexible Disk Operations DMA 

PRINT, PRINT USING ASYNC 

Plotter Drivers ASYNC 

CARD ENABLE ASYNC 

ENTER/ OUTPUT INT ASYNC 

ENTER/OUTPUT DMA DMA 

ENTER / OUTPUT FHS 1 DMA 

In general, single BASIC statements could cause access to be granted and released several 

times. For example, the cartridge operations obtain and release synchronous access once for 

each physical record transferred. 

UTILITY: Isr access 

This utility is used to request access and, if the access is granted, to create the linkage between 

an interrupt service routine (lSR) and a select code. Pressing RESET ( (CONnll STOP I) during execu

tion of the utility may cause a SCRATCH A to be issued. 

General Procedure: The utility is told where the ISR resides and what kind of access is 

required. If access is granted, it re,turns successfully. If access is not granted immediately, it 

keeps trying periodically until it is successful or until a specified number of attempts have been 

made (in which case it returns unsuccessfully). 

Special Requirements: The B register must contain information as follows -

Bits Description 

0-3 Select code to be linked to the ISR 

4-5 Access code (see next page) 

8 -14 Number of attempts to be made before aborting 

1 In addition to obtaining DMA acces; (which in this case is used just to ensure there is no synchronous access granted), the FHS 
drivers disable all interrupts during the actual transfer loop. 



144 I/O Handling 

The access codes are -

o Abortive access 

1 Asynchronous access with programmed I/O 

2 Asynchronous access with DMA 

3 Synchronous access with programmed I/O 

Calling Procedure: 

1. Load register A with the address of the ISR. 

2. Load register B with the information described above. 

3. Call the utility. 

Exit Conditions: 

RET 2 If the attempt at linkage is successful, the utility returns to the second word following 

its call. Register Pa is set to the select code; if access code 2 was specified then 

Dmapa has also been set to the select code. 

RET 1 If the attempt at linkage is unsuccessful, the utility returns to the first word following 

the call. Register A contains an indication of the type of difficulty encountered -

- 1 Access couldn't be obtained after specified number of attempts. 

- 2 Select code is still linked to an assembly language ISR. 

Note: Access code 0 (abortive access) should be used with caution. An interrupt routine with 

abortive access can exist on the same priority level as an interrupt routine with synchronous 

access. If the abortive routine is in progress when an interrupt occurs requiring the synchronous 

service routine, the abortive routine will finish before the synchronous routine can be serviced. 

The timing requirements of the synchronous routine might thus be violated. 

Access code 0 is intended to be used by routines that will be executed only extremely 

infrequently. For instance, if the 9835A/B is monitoring a potentially dangerous 

manufacturing process, it may be necessary to have an interrupt service routine to shut down 

the process when something goes awry. This could be accomplished with an abortive routine. 

The advantage (and also the reason for the previously mentioned caution) of access code 0 is 

that no other modes of access are prohibited by its use. Thus, the infrequently used routine will 

not prevent another routine from getting the type of access it needs. 



I/O Handling 145 

As an example of the use of the Isr _access utility, suppose the ISR from page 141 is to be linked 

to select code 2 for asynchronous access. The following would be a sequence to establish such 

a linkage-

I::;DUFC:E 
I:::;OUkCr:: 

LDB =(64*256)+(1*lE)+2 

State Preservation and Restoration 
When an interrupt is detected and an interrupt service routine is called, the processor automati

cally saves the state of some of the registers so that their values can be restored upon return 

from the ISR. Other registers are left alone and if your service routine' uses them, it is up to your 

ISR to save them and restore them before returning from the ISR. 

The registers which are automatically preserved are -

A 

B 

C 

Cb 

P 

Pa 

Also, the state of the Overflow and Extend processor flags are preserved and restored before 

the return from the interrupt. 



146 I/O Handling 

If your ISR contains any of the following types of instructions -

Indirect addressing 

Stack group 

CLR 

XFR 

and the operand of the instruction(s) is an address in the ICOM region, then it is necessary that 

the following instruction sequence be executed in the ISR before any such instruction is 

executed -

::;Tfi ::;.::i!.)~.:·:3~5 

L .. In::i ::::4B 

Then, before the ISR exits, and after the affected instructions have been executed, the follow

ing sequence must be executed -

Indirect Addressing in ISRs 
Indirect addressing in ISRs can produce anomalies unless the following rules are followed -

1. If indirect addressing is employed with the operand being an address in the ICOM 

region, one of the processor registers must be preserved. For the method of doing this, 

consult the "State Preservation and Restoration" section immediately above. 



I/O Handling 147 

2. If indirect addressing is used in a JMP or JSM (including any jumps to external symbols 

or symbols more than 512 words away from the current instruction, both of which have 

implied indirect addressing), then the most significant bit must be set in the address. For 

example, instead of -

in an ISH the procedure must be -

3SM (:Sub+100000B),I 

Direct Memory Access 
(DMA) 

Direct memory access (DMA) is a means to exchange entire blocks of data between memory 

and peripherals. A block is a series of consecutive memory locations. Once started, the process 

is automatic; it is done under processor control, regulated by the interface. Since only the 

98032A interface supports DMA, the following discussion is in terms of that interface. 

To the peripheral, the DMA operation appears as programmed I/O. The transfer, however, is 

actually performed by special DMA hardware. Information regarding the transfer is stored in 

the DMA registers for the DMA hardware to use. This information is the select code, the initial 

memory location, and the number -of words to be transferred. The memory location register 

and the count register are successively adjusted after each word transferred until the transfer is 

complete. Upon completion of the transfer, the interface and the DMA hardware stop 

automatically. 



148 I/O Handling 

The direction of the transfer is specified before the transfer takes place. It can be specified as 

either "inward" (Le., from the peripheral to memory), or "outward" (Le., from the memory to 

the peripheral). To set the direction outwards, the instruction-

=.-.:= 
.! •••. : .•• -. 

is used. To set the direction inwards, the instruction -

IJ :r 

is used. 

DMA Registers 
There are three registers which contain information used by the DMA hardware - Dmapa, 

Dmama, and Dmac. Before any DMA transfer takes place, the appropriate values must be 

loaded into these registers. 

Dmapa contains the peripheral address of the device requesting DMA. Only the least signific

ant bits of the register specify the select code which is to be the peripheral side of the DMA 

activity. During DMA transfers, the address bus takes its address from the Dmapa register rather 

than Pa as in other I/O transfers. The value is supplied to Dmapa by the Isr _access utility when 

it grants DMA access. 

Dmama contains the address of the first word in memory (Le., lowest address) where the data 

transferred is (or will be) stored. After each word transferred, this register is automatically 

incremented. 

Dmac is the count register for a DMA transfer. Before the transfer begins, it should be set to 

n-l, where n is the number of words to be transferred. After each word transfer, the count is 

decremented. If, during a word transfer, the value of Dmac is 0 (meaning that this is the last 

word to be transferred), the processor automatically informs the interface that the DMA 

operation will be complete after the present word is transferred. In the case of inputs where the 

amount of transferring data is unknown in advance, Dmac should be set to a very large number 

in order to disable the signal to the interface. 



I/O Handling 149 

DMA Transfers 
OMA transfers are accomplished with six distinct actions. 

First, the Isr _access utility is used to obtain access to the OMA channel and to set up the ISR 

linkage used when the transfer terminates. 

Second, the direction is set using an SOO or SOl instruction. If no direction is set, then any 

previous setting of the direction prevails. 

Third, the appropriate values are stored into the OMA registers. 

Fourth, the OMA requests are enabled using the instruction -

Fifth, a "Start OMA" command is given to the interface using programmed I/O. With the 

98032 interface, this command is the value 3208 using the Primary Control register (R5-0ut). 

Finally, when the OMA transfer is complete, the interface generates an interrupt which causes 

the processor to branch to the designated ISR. This ISR should disable the card, and then 

disable the OMA mode with the instruction -

:i i 111 

The following is part of an ISR which demonstrates a typical set-up for a OMA inward transfer 

(in this case lK words placed into a buffer in memory) -

.. ······:i:::i 
'._ ..... Ar 1:· 

'j :::.('~ ::'::"' ... i:, .. :: ':-:':::.:::;. 

:-'1"'-
"ro' 

::::;c .. :~::., .... 



150 I/O Handling 

BASIC Branching on Interrupts 
The handling of interrupts can be integrated into BASIC programs by using the ON INT 

statements. The object is to allow the flexibility of combining the high-level features of BASIC 

with the capabilities of assembly language in asynchronous I/O applications. And since ISRs 

cannot use the system utilities, in particular those that access a BASIC variable, a means of 

taking action on an interrupt after completion of the ISR is a necessity. 

ON INT Statement 
The ON INT statement is an executable BASIC statement which acts in a similar fashion to the 

ON KEY statement (see the 9835A/B Operating and Programming Manual). The statement 

allows the BASIC programmer to specify where, in his BASIC program, to branch whenever an 

interrupt is signalled for the select code he specifies. 

As with the ON KEY statement, there are three ways these branches can be taken -

::!:!: {select code} [:, {priority} ] C······ ! ... {subprogram name} 

:!:!:: {select code} [:, {priority}] (:; ':::::; L..! IJ {line identifier} 

+1:: {select code} L {priority}] ': .. ::<J T() {line identifier} 

Whenever an interrupt is signalled from an ISR for a particular select code, if ON INT has been 

executed for that select code, then at the end of execution of the BASIC line which was 

executing when the signal came, the indicated branch in the ON INT is taken. 

In the GOTO version, the branch is "absolute", which is to say that the program goes to the 

line indicated and picks up its execution there, forgetting where it was before. This has the 

effect of an "abortive" type of branch, and should only be used by the BASIC programmer 

when he wants the program to resume execution at some pre-determined point after handling 

an interrupt, without regard to where the program was before the interrupt occurred. 

In the CALL and GOSUB versions, the branch is only temporary. After the subprogram or 

subroutine has been executed and the SUBEXIT, SUBEND, or RETURN (as appropriate) has 

been executed, then the program returns to the line following the one where it was interrupted. 

This is the same as if the CALL or GOSUB was in between the interrupted line and the one 

following it. 

The {line identifier} and {subprogram name} in the CALL, GOSUB, and GOTO statements are 

the same as elsewhere in BASIC, except that a CALL may not have any parameters. 



Chapter 8 
Table of Contents 

Debugging 

Stepping Through Programs 

Individual Instruction Execution 

Setting Break Points 

Simple Pausing , , 

Transfers, . , . , ' , , , , . 

Environments 

Data Locations 

IBREAK Everywhere , . , , , , , 

Number of Break Points , ... , 

Clearing Break Points .. , . 

Interrogating Processor Bits ... , 

Protected Memory ... , , . , 

Dumps, " .". ",., ..... ," 

Value Checking. , , , . , .. , ,. .. 

Functions, ., .. ", 

DECIMAL ... , 

OCTAL, .... . 

IADR """ 

IMEM ... ,."., .. , , 

Patching ,...... .,." < , , •• 

. 170 

,.170 

,174 

" . 174 

' .. 175 

.. " ... ".176 

... 177 

..... 178 

, .. ,., ... ,179 

. ..... ,.,." .. , .. , .. 179 

.. ,., ....... " .. 180 

..... ',,', .. ,.,.,. " .. , .... , .. ,180 

...... 181 

..,." , .... , .. 183 

, .. 184 

..... , .. ,',.".,.184 

. ........... ,.,. < <.184 

.. " .. , <.185 

.; .. ,. ,,186 

., .. " ...... <., .. , ....... ,., .... 187 



I/O Handling 151 

The {select code} specified in an ON INT statement restricts the branching action to occurring 

only when the assembly language triggers the ON INT condition for that select code. The 

interrupt may have occurred in actuality on another select code. This can be a way of allowing 

more than one branch for interrupts from a single interrupting device. 

As an example -

leg ON INT#3 GOSUB Print result 

Should anywhere in the program an interrupt occur, causing an assembly language interrupt 

service routine to be executed, that assembly language ISH has the capability to cause either 

the branch of line 100 or the branch of line 110 to be taken. Thus, an assembly language ISH 

signals BASIC either to print an intermediate result or to note that all data has been processed. 

Signalling 

The {select code} specified in an ON INT statement restricts the branching action to occurring 

only when an interrupt is "signalled" for that select code. In actuality, an interrupt may not 

have occurred on that select code at all. Conversely, an interrupt may occur on the select code, 

but BASIC and its ON INT condition.may never hear about it. It is necessary for the ISH which 
.. .' 

does the actual handling of an interrppt to inform, or "signal", the operating system that the 

interrupt occurred and trigger the c)N INT conditions which may be set up at the time. 

The responsibility of the ISR to signal the ON INT is also an opportunity. This signalling allows 

you in an ISR to decide whether or not you want BASIC to know about the interrupt. If you do 

not want BASIC to know, simply do not signal the condition. The signalling also allows you to 

signal different interrupt conditions. An example of doing this might be a case where, after an 

interrupt, a peripheral indicates whether it wants to input or output data. Your routine could 

signal one select code to execute at) input routine and signal another select code to execute an 

output routine. 

To signal an ON INT, your ISH must execute the following instructions-

.... ·;.·"1:.··.· ... ·[ ... 1 1::!:;':::E.; 



152 I/O Handling 

Mask necessarily contains the select code to be signalled. Rather than containing the number of 

the select code, however, it has the bit set for the appropriate select code. For example, if you 

are signalling select code 2, you set bit 2 to 1 in Mask and leave the others O. Similarly, if you 

are signalling select code 5, you set bit 5. Thus, the statement containing Mask in the above 

could just as easily be a literal. For example -

would signal select code 5. 

When you want to signal a select code after others have already been signalled, a slightly 

different instruction sequence is required -

I ::;Ol .. H<E 
I :::ClUF:CE 
I3C1UkCE 

I::;OUPCE 
r:::CUF:CE 
T :::;OUF:CE 

I::::Ol...IkCE 
I::::OUF:CE 

LDB I ::x·._P::;·I.,.1 
LDA =10:?:::t: 
::;TA :t:~ I 
AIlE: =3 
LIlA j·'1.a::;.k 
DIk 
TOP 

Mask is the same as above. 

Or·::;. in the select code 

As a further example, suppose you want both to signal BASIC when a device sends a line-feed 

character to the computer, and to terminate the ISR's linkage. Then the ISR might appear as-

._. _ .iF:·········· L..r ~ :'_.'-',, . J.~j 

,~ ,t a line feed? 

i :::.r'·' [:::::1.:3:: i . 

L ... 'ul::: .L .... ' , =;;;1 r··~3. '1 ~B A ::::; I C: 

:::::j .. , .:. 



I/O Handling 153 

Additional Pre-Defined Symbols 

Isr _flag and Isr _psw are pre-defined symbols in the assembler. Also pre-defined are two other 

symbols used by the assembler - End _isr _low and End _isr _high. These symbols may not be 

redefined. 

Prioritizing ON INT Branches 
Since more than one interrupt may occur while a single BASIC statement is executing, it is 

possible that by the time the line finishes there may be a number of ON INT branches waiting to 

be executed. In such situations you may want to assure that some ON INT branches are taken 

before others, or that you finish one routine (caused by an ON INT GOSUB or ON INT CALL) 

before you start another. This can be achieved by using the {priority} option of the ON INT 

statement, thereby "prioritizing" the branching caused by interrupts.! 

There is a "system priority" for ordering this interrupt branching. For an ON INT to be honored 

at the end of a BASIC line, its priority must be greater than the current system priority. 

Initially, the system priority is set to O. When a BASIC line finishes, and there is at least one ON 

INT branch pending which is greater than the system priority, then the system takes the branch 

associated with the ON INTwith the greatest {priority}. The values assigned to {priority} may be 

any integer numeric expression from 1 to 15. If {priority} is omitted,.} is assumed. 

If the ON INT branch to be executed is a GOTO, then the system priority level is unchanged. 

But if the branch to be executed is a GOSUB or a CALL, then the system priority level is 

changed to the priority level of the ON INT. Whenever the subroutine or subprogram is finished 

executing, then the previous system priority level is restored. 

Thus, with the GOSUB and CALL versions, there are two effects involving priorities -

• The subroutine or subprogram is not allowed to execute until its priority is the highest one 

pending . 

• Whenever the subroutine or subprogram is executing, it locks out any other interrupting 

branches unless they have a higher priority. 

I 

1 This "prioritizing" also holds between the various types of end-of-Iine branch statements that have the priority parameter. 
Thus an ON KEY with high priority is executed before an ON INT with low priority. 



154 I/O Handling 

With the GOTO version there are also two effects, slightly differing -

• The branch is not taken until it has the highest priority of all pending branches . 

• The execution of the branch does not lock out any other branches, so that at the end of 

the line to which it branches, if there are other pending branches, the highest one of those 

is executed. 

For example, suppose there are these four statements in effect -

and also suppose that at the end of some BASIC line in the program, an interrupt had been 

received from all four of the interfaces involved. Then the process of dealing with them pro

ceeds like this -

EVENT 

Reaches end of current 
BASIC line 

Finishes Routine 7 

NEXT ACTION SYSTEM PRIORITY 

GOSUB Routine 7 Changes from a to 15 

GOSUB Routine 5 Changes from 15 to 9 

Suppose at this point another interrupt is received from select code 7. 

EVENT NEXT ACTION SYSTEM PRIORITY 

Reaches end of current GOSUB Routine 7 Changes from 9 to 15 
BASIC line in Routine 5 

Finishes Routine 7 Returns to interrupted Changes from 15 to 9 
point in Routine _5 

Finishes Routine 5 GOTO 1000 Changes from 9 to a 

Finishes with line 1000 GOTO Routine 4 Stays at a 



I/O Handling 155 

Environmental Considerations 

Changes in program environment, i.e., calling a subprogram or returning from one, can affect 

whether an ON INT is in effect or not. 

Once executed, the CALL version of an ON INT is always in effect, whether in the main 

program or in any subprogram, until it is redefined by another ON INT or is specifically 

disabled (see below). 

In the GOSUB or GOTO versions, the statement is in effect only in the same program environ

ment. This is to say that if you have executed an ON INT statement in your main program, then 

it is effective only while your program is executing part of the main program. The instant the 

program goes into a subprogram (through a CALL statement), the statement is no longer 

effective until the execution returns to the main program. Similarly, if you define an ON INT in 

a subprogram, it is effective only while the program is executing that subprogram. 

A side-effect occurs here when you use the CALL version of an ON INT. By calling the 

subprogram with an ON INT, you have the effect of locking out the other interrupts, except 

those which are executed in the subprogram itself and other CALL versions. This is regardless 

of priority. In the priority exampl~ in the previous section, if the ON INT#5 had been a CALL 

instead of a GOSUB, then the second interrupt from select code,. 7 would not have been 

acknowledged until the subprogram had finished. 

Since recursive calls of subprograms are possible, it is also possible that many calls to the same 

subprogram may be stacked up because an interrupt from a different select code with a CALL 

version of an ON INT in effect may be received while processing the CALL caused by a 

previous interrupt. 



156 I/O Handling 

Disabling ON INT Branching 
The branching enabled by an ON INT statement can be disabled using an OFF INT statement 

for the same select code. It is effective for the ON INT statement within the same program 

environment (main program or subprogram) or for the CALL versions of the ON INT within any 

environment. 

The statement has the form -

iJFF I t---jT * {select code} 

where {select code} is a numeric expression for any valid interface select code between 1 and 

14, inclusive. 

The effect of the OFF INT statement is to disable the ON INT for that select code within the 

current environment. If there is no ON INT statement currently in effect for the select code, 

then the OFF INT has no effect. 

The DISABLE and ENABLE statements work the same way for the ON INT statements as they 

do for the ON KEY statements. They should not be confused with the DIR and EIR machine 

instructions, which disable and enable the interrupt system. 

Mass Storage Activities 
For devices meeting the operating system's criteria for mass storage peripherals, the reading 

and writing of records is simple. 

If a device has been specified in a MASS STORAGE IS statement in BASIC, as in-

1\'11: __ .. _ :::: .,--, .- l::::=C .. l' !... 
1 il i 'N''': -'.N} ',.N,'· _.·1 1 : ... :J L ... 

or is capable of being so specified, then it is possible to use utilities to access it. 

There are two utilities involved in reading from a mass storage device - Mm _read _start and 

Mm _read _ xfer - and there are two utilities involved in writing to a mass storage device -

Mm _write_start and Mm _write_test. The reading utilities are always used together. So, too, 

are the writing utilities. 



I/O Handling 157 

Reading from Mass Storage 
The flow of data to and from a mass storage device is buffered. For each device there is a 

"device buffer" in memory which holds data corresponding to a physical record (256 bytes). 

Device buffers are dynamically allocated by the operating system and their actual locations at 

any given time are of no concern. 

To get information from a mass storage device into its device buffer takes the Mm_read start 

utility. Then to get the information out of the buffer and into your user space takes the 

Mm _read _ xfer utility. The transfer of data, therefore, looks something like this -

Mm - read - start Mm - read - xfer User 
Space 

The utilities accomplish their purposes with the help of two locations containing vital informa

tion for their use. The first is the Mass Storage Descriptor (MSD) and the second is the Mass 

Storage Transfer Identifier (MSTID). 

The MSD is three words in the ICOM region which contains the following information -

WORD 
o MSUS 

lower 16 bits of 
record number 

2 don't I upper 7 bits of 
care record number 

15 ... 7 6 0 

This information must be provid\!d by your program. You must determine this information in 

advance of attempting the reading operation. The msus is of the form -

Unit Device Select 
Number Address Type 1 Code 

I I I I I I I I I I I I 

I I 1 I I I I I I I I I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 OBit 

1 The device type is the ASCII code for the type minus 1008. 



158 I/O Handling 

The MSTID is a single word. The information in it is returned by the Mm _read_start utility and 

used by the Mm _read _ xfer utility. 

The usual procedure in reading a record from mass storage (which is all that can be read at one 

time) is to call the Mm _read_start utility and then, if all goes well with that, to call the 

Mm _read _ xfer utility. Because the latter utility may have to wait on the operating system or 

the device, it is possible the utility may return without having completed the transfer. In that 

case, it is your option either to loop back and keep trying, or to do something else and try again 

later. 

UTILITY: Mm read start 

General Procedure: The record number is determined, then the transfer of the record's 

contents is made from the device to the device buffer. If the buffer allocation causes a memory 

overflow, there is an error. 

Special Requirements: The record number and msus must be loaded into the MSD in ad

vance of the call. There must be a stable location (not changed by other activities) for the 

MSTID to be held. 

Calling Procedure: 

1. Store the msus and record number into the MSD area. 

2. Load register A with the address of the MSD area. 

3. Call the utility. 

Exit Conditions: 

RET 1 Occurs if there is a memory overflow during execution of the utility. 

RET 2 Occurs if all went normally. Register A contains the MSTID. This should be im

mediately stored in the location reserved for it. 



I/O Handling 159 

UTILITY: Mm read xfer 

General Procedure: The MSTID is used to retrieve the record from the device buffer. The 

record is stored into a location set aside for the purpose. 

Special Requirements: The MSTID must be available from a previous call to 

Mm read start. A location of 128 consecutive words must be set aside to hold the contents of - -
the record when they are returned by the utility. 

Calling Procedure: 

1. Load register A with the contents of the MSTID. 

2. Load register B with the address of the storage location for the data. 

3. Call the utility. The transfer may not be completed on the first or subsequent calls (see 

exit conditions). In that case, to successfully complete the transfer, all three steps must 

be repeated. 

Exit Conditions: 

RET 1 Occurs when the transfer is not completed. It is up to y~ur routine at this point to 

decide whether another attempt should be made immediately, or whether some

thing else should be executed (and to come back later). 

RET 2 Occurs when the transfer is complete. The location specified contains the data. If 

register A contains a non-zero value, an error occurred and A is the error number. In 

addition to mass storage errors (80 through 99), error 19 is returned if the MSTID 

parameter is invalid. 

CAUTION 

Pressing RESET ( (CONnll STOP I) during execution of either of the 

above utiities may cause a SCRATCH A to occur. 



160 I/O Handling 

The following is an example of a typical call to these utilities to read a record from mass 

storage -

ISG~2CE Number" BSS 

.L : ::: ~ 1.,1 .= !"':.; .... r" 

: ..... ~. : "': :,... ... 

············:!f.:::·········· :1. :::1 .::: t :::: v', .:.; F' v', .... :'. ::::j ~::.~) .~ 

1:···:1ii .. .:r:.=.,,_i::: . .: ro
" ;;;~::: 

. L .::::1,):."=1":: i : .. -

Writing to Mass Storage 
Writing to mass storage is very much like reading from it. The flow of data is buffered. To get 

the data from the user space into the device buffer, and then to transfer the data from the buffer 

to the mass storage device, the Mm _write_start utility is used. Then a test can be made to 

determine when the transfer is complete by using the Mm _write _test utility. 

As with the reading utilities, these utilities accomplish their purposes with the help of the same 

two locations - MSD and MSTID. They contain the same information as they do in the reading 

utilities and are used in a similar fashion. 



I/O Handling 161 

UTILITY: Mm write start 

General Procedure: The record number is determined, then the transfer of the data is made 

from the ICOM region to the device buffer. If the buffer allocation causes a memory overflow, 

there is an error. 

Special Requirements: The record number and msus must be loaded into the MSD in ad

vance of the call. There must be a stable location (not changed by other activities) for the 

MSTID to be held. The data to be transferred must be ready (256 bytes - 128 consecutive 

words). 

Calling Procedure: 

1. Store the data to be transferred in its location. Store the msus and record number into 

the MSD area. 

2. Load register A with the address of the MSD area. 

3. Load register B with the address of the data location. 

4. Call the utility. 

Exit Conditions: 

RET 1 Occurs if there is a memory overflow during execution of the utility. 

RET 2 Occurs if all went normally. Register A contains the MSTID. This should be im

mediately stored in the location reserved for it. 

UTILITY: Mm write test 

General Procedure: The MSTID is used to check to see if the data from the buffer has been 

transferred to the mass storage device. 

Special Requirements: The MSTID must be available from a previous call to 

Mm write start. 



162 I/O Handling 

Calling Procedure: 

1. Load register A with the contents of the MSTID. 

2. Call the utility. The transfer may not be completed on the first or subsequent calls (see 

exit conditions). In that case, to successfully test for a completed transfer, both steps in 

the calling procedure must be repeated. 

Exit Conditions: 

RET 1 Occurs when the transfer from the device buffer to the device is not completed. It is 

up to your routine at this point to decide whether another test should be made 

immediately, or whether something else should be executed (and to come back 

later). 

RET 2 Occurs when the transfer is complete. If register A contains a non-zero value, an 

error occurred and A is the error number. In addition to mass storage errors (80 

through 99), error 19 is returned if the MSTID parameter is invalid. 

CAUTION 

Pressing RESET ( Ic@\11 sliP I) during execution of either of the 

above utilities may cause a SCRATCH A to occur. 

The following is an example of a typical call to these utilities to write a record to mass storage -

.,- ..i!?C:E: I": 

!... '.. i .:::= ~ ::~ 

Te-:-·': 

T ... _j_ :. __ .:::!: : ~-:: _ C)'j' ..... _:. 

i···:;::·····:·· ·:····,;t .. · 



I/O Handling 163 

System File Information 
As an ASSIGN statement is executed in BASIC, a file-descriptor is created for that assignment 

in the operating system's files table. The ASSIGN statement essentially has two parameters -

the file number and the file name (including the BASIC language mass storage unit specifier). 

The file number is, for all practical purposes, an offset into the files table. The file name and the 

BASIC language mass storage unit specifier are translated and the critical information as

sociated with them comprise an entry in the files table (Le., the "file descriptor"). 

The file descriptor consists of 10 words containing the following information -

Word Description 

o Lower 16 bits of the address of the first physical record in the file 

1 Number of logical records in the file 

2 Current physical record number (Le., an offset from the file's beginning. 

3 Current word in physical record 

4 Size of a logical record (in words) 

5 Mass storage unit specifier (msus) 

6 Buffer address 

7 Check read status (0 = off, 1 = on) 

8 Highest 7 bits of the first physical record in the file 

9 (Reserved by the operating system) 

Note that words 0,5 and 7 contain the information necessary to create an MSD. You may 

access a file descriptor through two utilities - Get_file_info to obtain the information, and 

Put_file _info to change the information. 

NOTE 

A files table is created for each BASIC "environment" (Le., 

main program and subprograms). When access is made 

through utilities to the files table, the table accessed is the 

one associated with the BASIC environment which called the 

assembly language program. 



164 I/O Handling 

UTILITY: Get file info 

General Procedure: The utility is given the file number and the location of a place to store the 

file descriptor. It retrieves the designated descriptor and stores it, provided the file has been 

assigned. 

Special Requirements: There must be a ten-word area available for the utility to store the 

information from the descriptor. 

Call Procedure: 

1. Load register A with the address of the ten-word area where you desire the information 

to be stored. 

2. Load register B with the file number (an integer from 1 to 10). 

3. Call the utility. 

Exit Conditions: 

RET 1 Occurs if the file has not been assigned by a BASIC ASSIGN statement. 

RET 2 Occurs if all went normally. 

Here is an example of a routine which has a file number passed to it, and then gets the file 

descriptor -

! ... ~ t:' ::::- =.. ;- . 
••••• ;. '_\.",::1 

,::,-:--,,::'''' 

!.. ... Ui···i :::::F· 



I/O Handling 165 

UTILITY: Put file info 

General Procedure: The utility is given the file number and the location of the area contain

ing the new file descriptor information. It stores that information into the files table as indicated 

by the file number, provided that the file has been assigned. 

Special Requirements: The new pointer information must be stored in the designated area 

before calling the utility. This information must be in the correct form and location or file 

difficulties may ensue. Most of the information is normally returned by the "Get_file_info" 

utility and only a couple of words are changed to change the pointer in the file (e.g., the current 

record and word numbers). Only words 2,3, and 7 should be changed in the descriptor. 

Calling Procedure: 

1. Load register A with the address of the ten-word area where the information is stored. 

2. Load register B with the file number (an integer from 1 to IO). 

3. Call the. utility. 

Exit Conditions: 

RET 1 Occurs if the file has not been assigned by a BASIC ASSIGN statement. 

RET 2 Occurs if all went normally. 

Here is an example where the next physical record in a file is specified -



166 I/O Handling 

Printing 

Two utilities are provided to enable you to gain access to the standard system printer

Printer_select and Print_string. 

Printer_select enables you to set the standard system printer to a select code of your choosing. 

Print_string enables you to print a string to the standard printer. 

Utility: Printer_select 

General Procedure: The utility is given the select code to be assigned as the standard system 

printer and the desired printing width. The utility makes the assignment and returns with the 

previous values of both the select code and printer width. 

Special Requirements: The select code value must be in the range of 0 through 17 for the 

utility to work properly. Neither the previous nor the selcted printer should be on HPIB device. 

Calling Procedure: 

1. Load register A with the desired select code. 

2. Load register B with the desied printer width. 

3. Call the utility. 

Exit Conditions: There are no error exits from the utility, so it always returns to the instruc

tion following the call. Register A contains the value of the previous select, and register B 

contains the value of the previous printer width. 

The utility can feasibly be used just to interrogate the current value of the printer's select code. 

However, a second call to the utility is needed in such cases to assure that the select is not 

changed by the first call. So, for example -

- • j r~i ,~. . .... :,-' 

This results in an unchanged printer specification and the values for the select code and width 

being stored in the ICOM area for future use. 



I/O Handling 167 

Because of the possibility that a RESET ( IC@ll@ffi), or similar interruption, may occur between 

the first and second calls to the utility, it is recommended that the first call have a definite valid 

value for the select code in A (as above). In that way, should there indeed be an interruption, a 

valid select code for the printer can be assured. 

Utility: Print_string 

General Procedure: The utility is given the address of a string, and it prints that string to the 

standard system printer. 

Special Requirements: The string to be printed must be in standard string format (see "Data 

Structures" in Chapter 3). The string must be no longer than 506 characters. 

Calling Procedure: 

1. Load register A with the address of the string to be printed. 

2. Call the utility. 

Exit Conditions: 

RET 1 If a memory overflow occurs during execution of the utility. 

RET 2 If the @ffi key is pressed during execution of the utility. 

RET 3 If all goes normally. 

For example -

":'T' '! 

_.. 1 ~ i 

i- :"'·F":· "!: l!' '1:::'::::.:- ~-."" 

CAUTION 

Pressing RESET (lcoNnll STOP I) during execution of the 

Print string utility may cause a SCRATCH A to occur. 
- I 



168 I/O Handling 



Chapter 8 
Debugging 

Summary: This chapter describes techniques for isolating and correcting logic prob

lems in assembly programs. Included in the discussion are techniques for stepping 

through programs, getting dumps, patching, and using the keyboard. 

The assembly system has provided you with a number of BASIC language tools to help you 

debug your assembly language programs during their development stages. 

These tools are for run-time debugging, so your source code must have been assembled into 

object code and stored in the ICOM region before attempting to use any of the debugging 

features detailed in this chapter. 

There are three classes into which these tools fall: stepping through programs, dumps, and 

value checking. There is also an additional capability provided for the correction of some 

errors - patching. 

The BASIC statements available for debugging are -

::::: ...... l···-J; 1 i -'j i •• ~: L ... . 

: i!! ii·::····· 

.. L j .... 

_ .. __ .:::::::t:: ... 

and the following BASIC functions are available -

: :'" i 

169 

'------------------------------------------------------------------------------------'~~ 



170 Debugging 

Stepping Through Programs 
"Logic" difficulties are some of the hardest problems to solve in debugging programs. In batch 

environments, the usual solution is to print the contents of variables at critical points in the 

program or to print dump.s. The capabilities for both of these methods are provided. However, 

advantage has been taken of the interactive, "hands-on" nature of the 9835A/ B and a feature 

has been added which allows you to execute the assembly statements individually. This permits 

you to examine the flow of the program as it executes rather than having to decipher a dump or 

trying to print the contents of specific variables at what you guess is the critical point. 

If you are desirous of looking only at particular points in the program, or at particular variables, 

there is also the ability to establish "break points" for these items, so that your debugging 

routines can be invoked only when certain conditions arise. You can also establish different 

routines for different break points, adding to the flexibility. 

Individual Instruction Execution 
Normally, all BASIC lines, including the ICALL statement, act as a unit. That is to say, 

whenever you press the 8 key, the line which is currently executing is allowed to finish 

before the program is actually interrupted. Thus, if you press 8 during execution of the 

line -

:L!2iU L..ET Fi::::t +:t 

the line finishes and the variable A contains the value 2. Then the 8 takes effect. The same is 

true of a line containing an ICALL statement. 

For example, if you press 8 during the execution of-

then the assembly routine completes before the 8 is honored. This is not always desirable; 

especially not during debugging of the assembly routine. It does not allow you to look at the 

execution of the routine to help you determine what may be going wrong. 

The same problem occurs with the @ill key. Pressing I SllP I causes an entire BASIC line to be 

executed. Thus, if you stepped through line 120 as above, the entire routine Sort would be 

executed, and you would not be able to observe its execution on an instruction-by-instruction 

basis. 



Debugging 171 

To permit you to analyze the execution of assembly language routines, an executable BASIC 

statement has been provided -

Now, should you have the sequence in your program -

:L 1 0 I F'HU '::;E ()H 
, ... F' Ie H L.L ':::; '··if .1-. ::. i:::: .:: ,:,:. ::. ::. 

then pressing 8 during the execution of line 120 would cause program execution to be 

interrupted after completion of whatever machine instruction is being executed at the time. 

Further, the assembly language source line associated with the following instruction is dis

played according to certain rules. 

If the source lines are still in memory when you press 8 (e.g., you just assembled the object 

code which you are running), then the source line is displayed. If the source is no longer in 

memory (e.g., the object code was obtained through an ILOAD), then the instruction displayed 

is the result of a "reverse assembly". If there is an operand with an instruction which is reverse 

assembled, then the octal value of that operand is displayed (this is because the reverse 

assembly process has no way of knowing what symbols you might have used to assemble the 

instruction originally). 

After pressing 8, should you press B, execution resumes normally. It is notnecessary for 

you to do anything (such as cleaning up the registers, etc.) for execution to resume as if you had 

never interrupted it. 

After pressing 8, you may want to observe the flow of execution of your assembly routine. 

This can be done by successively pressing the @ill key. Each time the key is pressed, another 

machine instruction is executed and the assembly source line associated with the next machine 

instruction is displayed. You may continue this way for as long as you like - until you press 

B to allow processing to proceed uninterrupted until the end of the routine. 

Of course, the @ill key can be used to step through the BASIC program as you are used to 

doing. That feature is unchanged. It is possible, therefore, to "step into" the assembly lan

guage routine from the BASIC (Le., you need only @ill into line 120 above) and not have to 

use the 8 key at all. 



172 Debugging 

In summary, IPAUSE ON allows two unique features -

• The 8 key can be used to halt execution within an assembled routine. 

• The I STEP I key can be used to execute individual assembly language instructions. 

Some key things to remember in using the IPAUSE ON facility -

• This is an execution-time debugging tool. You must be executing your previously

assembled object code with an ICALL statement. 

• If the source code is available for display, it will be displayed, otherwise the line is 

"reverse assembled". 

• Utilities are not stepped instruction-by-instruction, but rather as a unit. 

• The I slip I key performs in BASIC just as before. 

• Keeping the I STEP I key depressed causes repeated execution of the stepping function, the 

same as in BASIC. 

By way of example, suppose you had the following source code -

4a IHS:::::Ertf::;LE E::·::t r .. ·.::!.c t 
5a Loop: LINPUT H$ 

7a IeALL E~~ract(A$) 

1 ;20 I :::OUFCE 
130 IS(UF~E String: 
140 ISOUFCE SUB 
i 50 I ::::OtF:CE F'.::u····.::.iiiet ;;;:r:: :::TF 

i 710 I '::OtJPCE 
1 ;::!;:~ I '::()UF"'(E 
1. t3Ci I ~=;C!tJ~~C:E 
20j~~ I ::::Oi...!FCE 
~;:: 1 13 I ':::OU:::::CE 
22::1 I :::'=;OtJFCE 
2313 I '::OUPC:E 
;;~':h1 I S (li...! PC E 

26a ISOUFCE Loop: 

L..IiI:: ::;t r· (:i~~ 

L.JJ fi :::~:; i:. !--. 'j f"'~!;l 

AliA :::tr"j nq 
fiDA ==1 

CBU 

CPi4 ::::5,::j.B 
.. H'fF 'r' e:::· 

Initial ize counter 
! Initialize stack pointer 

F.:E't. r' i E'i·)E' r'lE'::'::!:. c: t··~:i(·.3.ct E;·t-· 

I:;. 'i t. .3. C Cif(i1"!'i-:i '? 



::;:CUFCE 
::;:OUF.:CE 

PET 

STB ::;;-1:. r' i n9 

DecreMent. Done? 

tT~Ci cc=rnrnE"E", rIc! E·::<tr~··::tctE·E· 

Found COmrf;3., e::<tt"'.3.ct. 

Debugging 173 

34e 
::::5e 
:~::6121 

::;;0 UF.:C E 
SCI.PCE 'le:::-: 
::;;OUF.:CE 
::;:OUFCE 
::::OiJF.:CE 

LIlA =::;;t t", i n9 
LDt: =Pan3.ffiE't ET 

b::..' C h::u"'l';! i n 9 1 ETiI;!t h 
then e::,::t t-',3.C t i r"ii;! 

.}ftiF: F't~t_I'}'::L 1 t~E:' 
Er'~I* E>::t.r-·,:~Ct. 

Then the following would be the display lines you would see as you executed this program 

using the I STEP I key -

10 DHl ASC H3J 
:2: (:~ I cor'! 1 ~30 
30 I F'r:iI...!:::;E OH 
4~~i IA':::SEt'tBLE E::-::tt-'act 
50 Loop: LINFUT AS 

170 00061 006025 ISOUPCE 
180 00062 142025 ISOUFCE 
190 00063 007756 ISOUPCE 
200 00064 002021 ISOURCE 
210 e~065 170600 ISOURCE 
220 00066 023753 ISOURCE 
230 00067 022021 ISOUFCE 
240 00070 030016 ISOUPCE 
250 00071 070530 ISOURCE 
;:?6f1 0i~)0'?2 (}?476fl I::;;OUF.:CE Loop: 
270 00073 012016 ISOURCE 
290 @3075 054001 ISCURCE 
300 00076 067774 ISOURCE 
260 00072 074760 IS(~RCE Loop: 
270 00073 012016 ISCUFCE 
290 00075 054001 ISOUFCE 
300 e~076 067774 ISOURCE 
260 00072 074760 ISOUPCE Loop: 
270 00073 012016 ISOURCE 
290 00075 054001 ISOURCE 
300 00076 067774 ISOURCE 
260 00072 074760 18JURCE Loop: 
270 00 ~]7:::: ~H 2~~il6 I ::;;CIi.JPCE 
290 00075 054001 ISOU~:E 

::::00 00076 067774 ISOURCE 
260 00072 074760 ISOUPCE Loop: 
270 00073 012016 ISOUPCE 
280 00074 066004 ISOURCE 
~~0 00100 026012 ISOURCE Yes: 
330 00101 0::::7740 ISOUPCE 
::::40 00102 0020~3 ISOUPCE 
::::50 0010:::: 00600:::: ISOUPCE 
360 00104 166007 ISOURCE 
e0 F'F.: Ir-n "< II;: fiS; II >" 
<: 12:34~::i> 
':;10 (~OTO L()op 
50 Loop: LINPUT AS 

..lSI'! GE't ""'3.1 iJe 

LDI: :::t r' in,;! 
L.Dri =::::tt",in,;! 

ADA ::;:tt-, 'i n';! 

ADA =1 
::;:TA C 

DS:::: I: 

, .. n'IP L.oop 
l-lBC A 
CPA =54B 

CPA =54:8 

Ji'P "f'.::-s 
ADB =_i 

Initialize counter 
In it i -3.1 i ze :::,t.3.C k pc.-i n1:. .::-t'" 

I ::;, 'I 1:. ,3. C ommd, '') 
Decrement. Done? 

Fetrieve next ch3.~acter 
I::;, it ,3. cOlnm,::;.? 

! DecreffiEfit. Done? 

~:E·t. r-' iE-i.}€:, t-iE">::t c t"j.::jJ'-·,:iC t E"!'-' 

I::::. i t .~ C Ciffirn.3. '? 
Decrement. Done? 

FOi.,wd C()ffifi.3., E'::< r',::u:t. 
tl~) :: t-!.::iJ·-!:;!l t-!!;;l E·t"i!;;~t h 



174 Debugging 

Note that the address of the instruction, as well as the octal value of the instruction, is displayed 

along with the source line. 

This stepping facility can also be used, quite effectively, with the IBREAK statement (discussed 

below). 

Should the IPAUSE ON facility be no longer desired, it can be turned off with -

The two statements can appear repeatedly in a program, allowing the stepping facility to be 

used in testing some programs but skipping over already proven programs. For example, 

suppose you had two programs - Sorta and Sortn - but the first was already tested and the 

second was not. Then this sequence might appear in your program -

:1. :U3 IPi::iU'3E OFF 
128 ICAll Sorta(A$(*» 
1 ::::C I F'I=1i...i:::;E Oh 
14C ICAU_ SortnCA(*» 

Stepping through this sequence results in lines 110, 120, and 130 executing without interrup

tion, but line 140's call to Sortn would be executed instruction-by-instruction. 

Executing IPAUSE ON when the facility is already in effect causes no change. Similarly, execut

ing IPAUSE OFF when the facility is already off causes no change. 

Both IPAUSE ON and IPAUSE OFF can be executed from the keyboard. 

Setting Break Points 
It is possible to define points in an assembly language routine where the execution should 

pause should it ever reach that point. These are called "break points". They can be used to 

pause execution - allowing you to utilize the stepping activity described above in IPAUSE ON 

or to investigate the contents of variables, etc. They can also be used to allow branching to 

some BASIC routine, giving you the power of BASIC in doing some of your debugging. 

Simple Pausing 

To simply pause at a break point, you need to execute the following statement in advance of 

reaching that point (either in the program or from the keyboard) -

I E:F'E:F=j!-:::: {address} 



Debugging 175 

where {address} is the assembled location! for the break point desired. Following execution of 

this statement, anytime the program execution reaches this address, it pauses. You may do any 

keyboard operations necessary at this point, or you may start stepping the program, (if 

IPAUSE ON has been executed), or you may resume execution using the 8 key. The 

address must have been assembled before the IBREAK is executed. 

If you were to execute -

then every time the fourth word past assembly label "Hook" is reached during execution, the 

program execution pauses. If you were to execute -

then Hook is assumed to be a BASIC variable, and the result of the expression is assumed to be 

an absolute address using whatever the value of Hook is when the statement is executed. 

You can also specify the number of occurrences of reaching a break point before pausing 

should come into effect. This is done by executing -

:1 1:::: F~:' E:: I:::::: j .. < {address} :: {cou nter} 

where {counter} is a numeric expression; any variables within {counter} are BASIC variables. A 

pause occurs when {address} has been reached {counter} number of times. {counter} is reset 

after each pause. 

When a break point is reached and a pause is to be taken, the pause takes place before 

execution of the contents of that address. 

Transfers 

Instead of just pausing at a break point, it is possible to branch to a BASIC routine. The intent of 

this facility is to give you access to BASIC's capabilities, particularly the printing and variable

testing facilities, during your debugging efforts. 

1 See "Buzzwords" in Chapter 1 for the definition of "assembled location". 



176 Debugging 

The branch can be any of the three standard forms of BASIC branching -

I :EH~~'[J::!I··< {address} [; {counter}] C::::::H .. _.L_ {subprogram} 

I E:F;~:E::::::1~< {address} [:; {counter}] (;C)'::;UE: {line identifier} 

:r:EF~::E::::::H·< {address} [; {counter}] C;(}T·Ci {line identifier} 

When either CALL or GOSUB has been designated, execution of the assembly language 

routine is suspended when {address} is reached. Then the designated subprogram or sub

routine is executed. When that subprogram or subroutine is completed, then execution of the 

assembly language routine resumes with {address}. 

When GOTO is specified, an unconditional branch is taken when {address} is encountered and 

execution of the assembly language routine is terminated. 

{counter} performs the same as in the simple pausing form. 

In the GOSUB and GOTO forms, there is an "environmental" restriction. The {line identifier} 

must be in the same BASIC environment (Le., main program or subprogram) as that in which 

the IBREAK statement is executed. More on this in "Environments" below. 

Environments 

The GOSUB and GOTO types of break points are related to the BASIC "environment" (Le., 

main program or subprogram) in which they are executed. Whenever an IBREAK statement of 

either type is encountered, the resulting break point is effective only for the environment in 

which the statement is located. The CALL version of break points is in effect in all environ

ments. 

For example -

210 IBREAK Hook GOTO Check hook 

the break point established for "Hook" is good only in the subprogram "Test". Leaving Test 

causes the break point to be cleared. 



Debugging 177 

Executing an IBREAK statement from the keyboard is effective only for the environment 

executing at the time the statement is made. For example, if the following program lines had 

been executed -

and while the pause caused by line 210 is still in effect-

is executed, then the break point established for "Hook" is good only in the subprogram 

"Test". As with the above, leaving Test causes the break point to be cleared. 

If no program is executing when an IBREAK is executed from the keyboard, then the main 

program is considered to be the environment for the break point. If the program is replaced, as 

with a GET or a LOAD, then the break point is cleared. 

Data Locations 

Break points can also be established for data locations. This is done with -

In this case, {address} is presumed to be a data location referenced by other instructions. 

Whenever it is referenced by execution of some instruction, the pause occurs. 

If you were to say -

'r 
•. !.. 

then whenever "Renras" is referenced, such as in -

a pause would occur for that instruction. 



178 Debugging 

A counter can also be specified with this form of break point -

{counter} is of the same form, and operates in an identical fashion, to the counter of the 

non-DATA form of break point. 

Because the XFR machine instruction may access a particular location twice when it is exe

cuted, the break point on a data location may not operate correctly if the instruction referencing 

it is an XFR. The way to avoid this incorrect operation of the break point is to set {counter} to 2. 

(The only time this problem occurs is when the destination area for the XFR overlaps the 

origination area.) 

Symmetry suggests that you should also be able to branch to BASIC routines with the DATA 

form of break point just as you can with the non-DATA form. And so you can-

' .. ···!···~., ...... ;····H<.. i!, rr'::::::: {address} [ {counter}] C::;C/:::::;LJ:r::: {line identifier} 

I:FH:;::'E:r::::!i··< J .. ..'l ' ::: {address} [ {counter}] i:::::;()"r"() {line identifier} 

They operate in an identical fashion to transfers of the non-DATA type and are under the same 

"environmental" restrictions. 

In order to determine whether an address is being referenced, each instruction is "interpreted" 

(that is, analyzed for its components). Resultantly, a program runs much slower while an 

IBREAK DATA statement is in effect. 

In addition to the pausing capability, using IBREAK DATA also allows trapping on "protected 

memory" violations (see "Protected Memory" section of this chapter). 

IBREAK Everywhere 

You may have a total of eight (8) break points (regardless of type) in effect at a given time, 

except for one extreme case. It may be desirable to establish a break point at every location in 

the ICOM region. This can be accomplished with -



Debugging 179 

This statement overrides all other IBREAK statements and causes a pause before execution of 

every instruction in the ICOM region. There are also branching forms -

I:EF'f:-=r::jf·< '-.J! C:HL.J. __ . {subprogram} 

I BF~EJ::!i-< ! .•••• !! C;C<:;UB {line identifier} 

I BF~!E~F+::' C! {line identifier} 

Note, however, that there is no {counter} in any of these forms. 

Number of Break Points 

As was mentioned above, there can be no more than eight (8) IBREAK statements in effect at 

one time, that is to say within the same environment. And only one IBREAK ALL can be in 

effect at a given time. 

In addition, there can only be one IBREAK or IBREAK DATA each in effect for a given 

{address}. Executing an IBREAK or IBREAK DATA with the same {address} as specified in an 

already effective IBREAK or IBREAK DATA statement causes the newly-executed statement to 

override the previous one. While there may be an IBREAK and IBREAK DATA both for the 

same {address}, the capability is not a useful one. 

Clearing Break Points 

There are a number of ways that break points can be cleared. One way as has already been 

mentioned, is leaving the BASIC environment, which clears any GOSUB or GOTO type of 

break points. Another way is to reassemble the module containing the break points. A third way 

is to execute an INORMAL statement. This statement has the form -

After execution of the statement, whatever form of break point is established for the address 

(except IBREAK ALL) is cleared. 

If {address} is omitted in this statement -

then all break points are cleared. This is the only way to clear an IBREAK ALL which may be in 

effect. 



180 Debugging 

Protected Memory 
An assembly language program is allowed to access only certain portions of memory during the 

process of stepping with the mID key or when an IBREAK DATA statement is in effect. Should 

you try to step through a program which makes an access outside of the allowed memory, then 

an error results (number 187). The same is true if an IBREAK DATA statement is in effect. 

"Access" means jumping to or writing into memory. 

The allowed memory is -

• The ICOM region. 

• BASIC's "value" area (the region where BASIC variables are stored). 

• BASIC's common area (the region where BASIC common variables are stored). 

• The processor registers 

• The temporary values stored in the base page (pre-defined symbol "Base_page"). 

• The utilities. 

All other memory is considered "protected" memory_ 



Debugging 181 

Dumps 

A common tool of debugging is the memory "dump". This is a print-out (or display) of the 

contents of selected locations in the memory. A typical use is to dump areas of the ICOM 

containing data so that the actual contents at some point during execution can be compared 

with the expected contents. All of this is in the hope that the comparison yields differences 

which give a clue as to the source of the difficulties being encountered. 

This tool is provided through the IDUMP statement which has the form -

-.- .,-,! ! !-.... ,. {I t' } [ . {I ti } [. ] ] 1. UUi'ir-' oca Ion , oca on , ... 

This statement can be placed in a program to be executed (perhaps as the result of a branching 

IBREAK statement) or it can be executed from the keyboard (perhaps during a pause caused by 

stepping or IBREAK). 

Any number of {Iocation}s can be specified. They can take a number of forms. The simplest 

is-

{address} 

Thus, IDUMP {address} prints the contents of {address} to the current system printer. The 

contents are printed in their octal representation. 

{location} can specify a whole range of addresses by using the form -

{address} Tel {address} 

With this form, the IDUMP statement prints the contents of all addresses starting with the first 

and ending the last specified {address}. If the second address is numerically smaller than the 

first, then a "wrap-around" through the end of memory into the top of memory is taken. For 

example, if you execute-

IOUMP 1????6 TO 1 

then the contents of four addresses would be printed - those for 177776, 177777,0, and 1, in 

that order. Again, the contents are printed in their octal (base-B) representation. 



182 Debugging 

Addresses are always specified in their octal representation, or symbolically (such as "Hook" 

or "Loop"). This is the same as for an assembled location, which is what {address} happens to 

be. 

The output of the IDUMP statement is always printed to the current system printer. It is in octal 

form, unless otherwise specified. This specification is accomplished by preceding {address} 

with {mode selection}, which is one of the following -

:::::1 '::::; c:: for ASCII character representation 

E:: I : .... ~ for binary representation (base-2) 

]][C:: for decimal representation (base-IO) 

I···-!E::>< for hexadecimal representation (base-I6) 

()c:::--r for octal representation (base-B) 

Thus, the general form of {location} is -

[ {mode selection} ] {address} ["r'C) {address} ] 

As an example of all this, take the example program at the beginning of the chapter. If a couple 

of statements are added so that the main BASIC program reads -

1 0 DE'! fit [10 J 
2(1 I cm'! H~O 

:::0 Ifi:=;~=;El"mlE E::<tr·.3.c t 
40 IBREAK loop G08JB Dlmp 
50 IDUMP 41 TO 104 Dump Ot IC(~ r~gion 

60 PRIHT 
70 loop: lINPUT A$ 
:::0 TCAll E::·::tj·-·act (A:$:) 
9~~1 Fl?IhT "<";A$; ">" 

120 D~np A,B r~gist~rs in oC~3.1 form, 
1:3~J :::.tr·1r"11;l lE'r-!!;;!tt-f it"1 ij!::'C 1 ri"i-:1'1 f'C!f'rn, .:if'"i!j 

14(J .:if-i i] tt-fE' :::.tr-·lr"!f;! 1t-! c~"~3.r·.:iCtE·r-· f'Cir-'ff! 

160 ump: IDL~P A TO B;DEC String;ASC String,l TO String,8 



Debugging 183 

then running it results in the following print-out -

000053: 021335 000001 100207 000000 000205 002025 006025 42025 007756 002[Ql 
000065: 170600 023753 022021 030016 070530 141714 012016 66004 054001 067774 
000077: 170201 026012 037~~0 002003 006003 166007 

000000: 000115 000012 

000042: 12~i5~6789$5% 

000000: 000071 000011 
i;3;~!UC41 ~ -+{KI0:l (1 

000U42: 12345~6789$5% 

0UC00C: 000070 000010 
Cii::n3~.}=+ 1: +{~Ofi 10 
000042: 12345,6789$5% 

000C42: 12345,6789$5% 

000042: 12345,6789$5% 

Value Checking 
Value checking is a method of tracing the value of variables in your assembly language program 

using the interactive capabilities of the 9835A/ B. You already have been introduced to break 

points and dumps in earlier sections. The capability of value checking serves as a useful adjunct 

to these procedures. 

The value checking of assembly "variables" is similar to the monitoring of variables in BASIC 

during a debugging phase. Just as you would use a live-keyboard operation or judiciously 

placed PRINT statements to trace the execution of a program or the change in value of a 

variable in a BASIC program, so too can you use the monitoring tools for assembly programs. 



184 Debugging 

Functions 

Four additional functions are provided as extensions to BASIC which can be useful in the 

monitoring of values in an assembly language program. The four are -

IRDR 

They can be used as other than monitoring tools, but their descriptions here are primarily in 

that context. As functions, these items can be easily adapted for use in the special function 

keys. 

DECIMAL 

This function has the form -

DEC I t-.-1RL ( {octal value} ) 

The function converts an octal integer value into its decimal representation. If the argument 

given is not octal, then an error (number lB4) results. 

This can be used as a quick, simple way of converting octal numbers into the more familiar 

decimal value. Being a function, it can be used anywhere any other BASIC numeric function 

can be used. Often you will find it useful in PRINT statements which are a part of subroutines 

called by break points. 

OCTAL 

This function is the converse of the DECIMAL function. Its role is to convert decimal values into 

their octal (base-B) representation. The function has the form -

iJCTRL ( {decimal value} ) 

This can be used as a quick, convenient method of converting decimal numbers into their 

frequently used octal representations (a form which is useful because of its ready conversion 

into binary representation, and vice-versa). 

The values resulting from this function must be treated with care. Though the result of the 

function is an octal representation, the value is still base-IO. This difference is unimportant 

unless you are going to do arithmetic with the value resulting from the function. 



Debugging 185 

As an example of this, suppose the decimal value 15 is to be converted into octal. The method 

is-

and the resultant value is 17, the octal representation of 15. Now, if the result has 1 added to it, 

as with the expression -

the ultima te result is 18. This can be a surprise since the usual octal arithmetic suggests that the 

result of 178 + 1 be 208. To get the proper octal result, the procedure is -

Note also that the expression -

still does not yield 20. 

IADR 

This function yields the numeric value in octal representation of an assembled location. The 

form is-

.. 1.. !·····II:JF;::: ( {assembled location} 

As an example, take the case of the example program at the beginning of this chapter. The 

result of-

is 76. 

This function can be viewed as a convenient method of determining the address of a symbol, or 

of an offset from a symbol. 



186 Debugging 

IMEM 

This function is a quick, convenient way to look at the contents of a specific location in 

memory. The result is a numeric value, in octal representation, for the contents of a specified 

address. The form is -

.. 1- :. " .... _ :--.~ ( {assembled location} ) 

The function is similar in many respects to the IDUMP statement. It is easiest, perhaps, to list 

the differences -

• IMEM is a function, where IDUMP is a statement. 

• IMEM deals only with a single address, where IDUMP can deal with many. 

• IMEM represents the value only in octal, where IDUMP can use many different representa

tions. 

• IMEM can be displayed and stored, where IDUMP can only be printed. 

An obvious use for the function is in a routine called by an IBREAK statement. By using the 

function in such a manner, perhaps in a PRINT statement, you can ease the burden of checking 

variables from the keyboard. You can even use the value returned as a comparison against 

some set of limits so that you print only when the value exceeds those limits. There are many 

other possibilities for use. 

Interrogating Registers and Flags 
Interrogating the processor register A, B, P, R, Pa, Cb, Db, Dmapa, Dmama, Dmac, C, D, Ar2, 

SE, and Arl yields meaningful results only when execution of an assembly language subprog

ram has been suspended due to detection of a break point, or due to the use of the @ill or 8 
keys (see Stepping Through Programs). 

Further, the values of cetain processor flags are stored in specific memory locations when a 

subprogram is suspended as described above. The flags are then available for interrogation as 

follows: 

Decimal Carry 

Overflow 

Extend 

least significant bit of location 308 

least significant bit of location 318 

most significant bit of location 318 



Debugging 187 

It is important to note that interrogating an I/O register (R4, R5, R6, or R7) causes an input 

I/O bus cycle, using the current Pa register contents as the interface address. See Chapter 7 for 

details on the effects of such an action. 

Patching 
Patching is the practice of changing the contents of memory locations without re-assembling. 

Patching as a standard procedure does not come highly recommended in the programming 

world. Nonetheless, there are circumstances which arise that occasionally suggest patching as 

the most profitable course of action. 

To change a particular location in memory in the 9835A/B is not difficult. The statement to use 

is-

"r (""" E::: {assembled location} ""r"() {octal expression} 

After execution of the statement, the specified {assembled location} contains the specified octal 

value. 

Changing the contents of a register is a common use of this facility. However, it should be 

remembered that attempting to change the contents of the I/O registers (R4, R5, R6, or R7) 

causes an output I/O bus cycle to occur, using the Pa register for the interface address. See 

Chapter 7 for details on the effects of such an action. 



188 Debugging 



Errors and Error Processing 

Chapter 9 
Table of Contents 

Types of Errors , .. , . , . , ...... , , , .... , , . , , . , .. , , . , , , , , ........ , , .... , .. , ...... , . 

Syntax-Time and Assembly-Time Errors, , ......... , .......... , , , ... . 

Run-Time Errors ..... , ................. , ....... , .......... , .. , ... , , . 

Utility: Error_exit, .. , ... , . , . , , ....... , ..... ,.',.', ... , .. ,', ..... . 

Run-Time Messages.,., .... ,', ... "., ........................... " 

Assembly-Time Messages. , , 

189 
189 

190 
191 

193 

195 



fr--------------------------------------------------------------------------------" 

Chapter 9 
Errors and 

Error Processing 

Summary: This chapter contains a discussion of Assembly Language ROM and other 

related errors, and what causes them. Included are methods for trapping errors and 

possible methods for correcting them. 

Whether you are writing or accessing an assembly language routine, it is possible to encounter 

an error resulting from your actions. The intent of this chapter is to give some gUidance as to 

how certain errors can be handled. It is not intended as a definitive checklist of what can go 

wrong, nor is it an exhaustive treatment of the means to correct the difficulties which are listed. 

Rather, it is meant as a reference for some of the things which can go wrong, what might cause 

them, and how to deal with them. Each programmer has a unique method of approaching the 

problem of error processing and there is no way to anticipate all of them. Even so, the following 

should offer some assistance in identifying the source of an error. 

Not every machine error is covered here - oniy those directly related to writing or accessing 

assembly language routines. A complete listing of error messages (though not in the same detail 

as in this chapter) can be found in Appendix J. 

Types of Errors 
There are three types of errors associated with assembly language routines: those which 

occur during the writing (or entering) of the source code (called "syntax-time" errors); those 

which occur while assembling the source code (called "assembly-time" errors); and those 

which occur during the execution of an assembly language routine (called "run-time" errors). 

Some of these errors can be anticipated and trapped, others cannot. 

Syntax-Time and Assembly-Time Errors 
Syntax errors are caught when entering source code, usually with the message -

IMPRnp~p ,SOURCE ~i 

189 



190 Errors and Error Processing 

The error can then be immediately corrected and the statement reentered. A side-effect of this 

entry-time check of the syntax is that the time required for assembly is greatly shortened over 

what it would be if syntax-checking were deferred until assembly. 

Errors encountered during the assembly process are indicated by the assembler in three ways: 

• The message -

1. ..... Li···j)· nn 

is displayed. nn is the line number of the IASSEMBLE statement. This is a fatal BASIC 

error, unless otherwise trapped. 

• Each line in the source code containing an assembly error is printed on the current system 

printer. Included is the message -

followed by the error type. 

• The message -

follows the listing of the individual errors. The total number of errors is also printed. 

An explanation of the individual assembly-time errors can be found at the end of this chapter. 

Run-Time Errors 

Run-time errors can sometimes be anticipated. They come at two distinct times, and your error 

processing is different depending upon which of those times are of concern. The times are 

"program development" and "production run". 

During program development, errors normally are handled using the debugging techniques 

detailed in Chapter 8. Care should be taken in recognizing errors during development. Not all 

of them are obvious or indicated by an error message - many simply lock up the machine. 



Errors and Error Processing 191 

During the running of production (debugged) routines, errors can be caused by the users of the 

routines. For instance, the user may inadvertently assign an argument a value of zero when that 

argument is to be used as a divisor within the assembly language routine. You should try to 

anticipate these usage errors and program procedures to trap them. 

There are many alternatives for actions to take when your routine encounters and traps a usage 

error. For example, you may wish to assign a value to a particular return variable, or you may 

want to print a warning message, or, perhaps, to correct the value and proceed with the 

routine. Another method is to notify the user by issuing a BASIC error message. Such messages 

can be issued through the Error_exit utility discussed below. 

Of course, you need to tell the users (in the documentation of the routine) what kind of errors 

can occur, when they can occur, and what to do about them. 

UTILITY: Error exit 

The Error_exit utility provides you with the capability of aborting an assembly language 

routine by "creating" a BASIC error. Two types of BASIC errors can be created

"recoverable", which can be trapped by a BASIC ON ERROR statement; and "non

recoverable" (or "fatal"), which cannot be trapped. 

General Procedure: The utility is given the number of the error to be created. Then the utility 

is called with the JSM instruction, but no return is made to the original assembly language 

routine from the utility. Instead, the utility uses the information placed on the return stack to 

help create the error. The return stack is appropriately "cleaned up" and control is returned 

either to the BASIC driver (if the error is non-fatal) or to the operating system (if the error is 

fatal). 

Special Requirements: Error numbers are passed to the utility in the A register. The value of 

the error number is placed in bits 0-14. Bit 15 is set if the error is to be non-recoverable. If bit 

15 is not set, the error will be recoverable. Error numbers 32 762 through 32 767, with bit 15 

set, are reserved by the operating system and should not be used. 

Calling Procedure: 

1. Load the error number into the A register. 

2. Call the utility using the JSM instruction. 



192 Errors and Error Processing 

Exit Conditions: The utility returns control to the BASIC driver which called the routine, 

appropriately setting conditions so that ERRL, ERRM$, and ERRN work as expected. Also 

triggers ON ERROR, if applicable. 

The utility can be used anywhere in your assembly language, wherever you would like to abort 

the execution of the current assembly language routine and where you would like to indicate to 

BASIC what reason (error) caused the abortion. 

For example, suppose somewhere in one of your assembly routines you wanted to abort the 

routine if a certain variable (Flag) is non-zero at a certain point. Suppose also that the variable, 

when non-zero, contained the error number, then your program could look like -

ISQURCE LDA Flag 
I ::;;Qi..JRC:E ::;;ZA 'it:'+2 
ISQURCE J8M E~ror exit 

Similarly, there are some utilities which, when an error is encountered, return an error number 

in register A. In these case, a quick two-instruction sequence can give you an error-related 

abort. For example, the Rei_math utility is such a utility -

As an example of a fatal error, suppose the error desired is 8. The error sequence could be -

I80URCE LDA =100010B 
ISQURCE J8M Errc~ exit 



Errors and Error Processing 193 

Run-Time Messages 
The following is a list of the system error messages you, or the users of your routines, may 

receive should something go wrong retrieving, using, or storing assembly language routines. A 

possible corrective action, or actions, is included in the discussion of the error. 

r····r··-· : ..... 
.. . ... -

i ...... i·· .. !·· .. i .... ··!·· .... 

ROM missing, or configuration error. To operate the 9835A/ B, all system 

ROMs must be in place. In addition, to write assembly programs, the Assembly 

Execution and the Assembly Development ROMs must also be installed. Per

form the system test if the problem persists. 

Memory overflow. You may have specified an ICOM which is too large for 

your current available space. Some things to try: select a smaller ICOM size; 

execute SCRATCH C (if no important data remain in common), delete mod

ules and reduce the ICOM size; segment your BASIC prorams; segment your 

assembly programs. The error may also be caused by trying to load modules 

which are too large for the current ICOM region (either collectively or 

individually) . 

Improper argument in DECIMAL or OCTAL function. The OCTAL function 

has a range from - 65535 to + 65535. The DECIMAL function has a range 

for its arguments of - 1777778 to + 1777778. 

Break Table overflow. A maximum of eight breaks can be established with the 

IBREAK statements and be in effect at one time. If eight breaks are in effect, 

then to allow other breaks to be established it is necessary to clear previous 

breaks using the INORMAL statement. 

:J. E:; E Undefined BASIC label or subprogram name used in IBREAK statement. 

When the IBREAK statement is executed, an undefined label or name is al

lowed, but when the break actually occurs, the label or name must exist. 

Attempt to write into protected memory; or, an attempt to execute an 

instruction not in the ICOM region. This is the result of an attempt to branch 

outside of permissible areas or to change the contents of memory outside of 

the permissible areas. There is probably a difficulty in the logic of the program 

which needs to be corrected. This error only occurs when the @ill key is being 

used, an IBREAK DATA statement is in effect, or when using the ICHANGE 

function. 



194 Errors and Error Processing 

EF:F'iJF' 1 E: Ei Label used in an assembled location not found. Symbolic addressing requires 

that all assembly symbols be resolved by execution time. This error probably 

results from a misspelling of a label or forgetting to assemble the module 

containing the label. 

EF'F'iJF' 1 Ei '3 Doubly-defined entry point or routine. A module being assembled (with an 

IASSEMBLE statement) or loaded from mass storage (with an ILOAD state

ment) contains a SUB or ENT entry point with the same label as a SUB or ENT 

entry point within a module already resident within the ICOM region. Check 

the other routines for the duplicate occurrences. 

EF:F:iJF: 1:3 CJ Missing ICOM statement. You must include an ICOM statement to create your 

ICOM region before assembling or loading modules. Program an ICOM state

ment of adequate size and re-run the program 

1. :::j L Module not found. The module indicated in an ISTORE or IASSEMBLE 

statement is not currently resident in the ICOM region. Check the module 

names used in your ISTORE statement to find the one which is missing from 

memory. 

E!::;::'F:CiF~' 1:3;2 Errors in assembly. At least one error was encountered while assembling one 

of the modules in your IASSEMBLE statement. 

F···~:1:~~:1.:)f~: 1 ::3 ~:. Attempt to move or delete module containing an active interrupt service 

routine. This is the result of trying to reduce the size of the ICOM region (or to 

eliminate it), or trying to delete a module, when one of the affected modules 

contains an active interrupt service routine (lSR). The only ways to allow the 

action to take place are to SCRATCH A (which affects a number of other 

things) or to inactivate the ISR. To inactivate the ISR, consult the routine's 

documentation, or press Reset ( ICQBI'll1 STOP I). 

EF~f~:(=)f~: 1:34 IDUMP specification too large. The resulting dump would be more than 

32 768 elements. 

EFF'()F' 1 '35 Routine specified in ICALL not found. You are specifying the wrong routine 

name or you are failing to load the correct module. Double check the 

documentation indicating the location and name of the routine. 

1 :3 E; Unsatisfied externals. Symbolic addressing requires that all references to sym

bols outside the current module be resolved at the time any routine within the 

current module is executed. This may possibly be a missing ENT instruction 

within another module. 



Errors and Error Processing 195 

: '---j -- Missing COM statement. The routine you are calling is expecting to find or 

place some of its data in common, but you are not providing the COM state

ment required. Add the appropriate COM statement in the BASIC program 

and re-run it. 

BASIC'S common area does not correspond to assembly module 

requirements. The routine you have called is expecting to find or place some 

of its data in common, but your COM statement does not match up with the 

assembly COM declarations in either type or size. Check both the COM 

statement in the BASIC program and the COM declarations in the assembly 

routine. 

Insufficient number of BASIC COM items. The routine you are calling is ex

pecting to find or place some of its data in common, but your BASIC COM 

statement does not provide enough variables to satisfy the routine's needs. 

Check both the COM statement in the BASIC program and the COM declara

tions in the assembly routine. 

Assembly-Time Messages 
The following is a list of the assembler error messages you may receive while assembling a 

module. All of these errors cause a "fatal" error, which means that the assembly produced no 

object code. After the error has been corrected, it is necessary to re-assemble the module 

containing the error. A possible corrective action, or actions, is included in the discussion of the 

error. 

Doubly-defined label. A label can only be defined once in a module. In addi

tion, any label used in an EXT instruction is restricted from being used again as 

a label in the module. Check all spellings; change a label name to something 

else, if necessary. 

END statement missing; or module name does not match. The END statement 

(in an ISOURCE statement) must be included to signify the end of a module. 

The name in the END statement must match the name used in the immediately 

preceding NAM statement. Particular ones to look out for: assembling more 

than one module at a time, but leaving out the END instruction between 

modules; or, the END instruction is after the BASIC program's END statement. 



196 Errors and Error Processing 

l:: ... :: 

: ......... 1""" 

Expression evaluation error. This is a result of a mismatch of element types in 

the operand of an instruction. The particular prohibited forms 

are: relocatable + relocatable; external ± external; using the relocatable or 

external forms with the * or / operators. Check the spelling and type of your 

symbols in the expression. 

Literal pools full or out of range. You may have exhausted the storage given in 

your literal pool (LIT) declarations. In this case you should add more LIT 

declarations or increase the size of the ones you have. Another cause of the 

error can be using a literal in an instruction and there is no literal pool within 

512 words of the instruction. Additionally, for some instructions, the assem

bler attempts to create an indirect reference automatically and requires a lit

eral pool within 512 words of the ihstruction. In either case, add another literal 

pool (using a LIT instruction) within range. 

ICOM region memory overflow. The current module being assembled has 

caused object code generation which exceeds the current memory allowance 

for the ICOM region. Either you must re-run the current main BASIC 

program with a new ICOM statement increasing the ICOM size, or you must 

rearrange your assembly so that the module fits. This latter course can include 

deleting other modules or rewriting the abortive module so that it requires less 

memory. 

Operand out of range. Some instructions using indirection require a 

relocatable expression to evaluate to an address within 512 words of the 

current address. Skips must be no more than 32 words in either direction. The 

EXE instruction requires a register (0 to 31) and the instructions in the Stack 

Group require registers in the range of 0 to 7. Check to see that the operand 

used is within the range appropriate for the instruction. Also, check the 

spelling on all symbols to see that the right symbol was used. 

Parameter declaration pseudo-instruction out of sequence. The ANY, FIL, 

INT, REL, SHO, and STR pseudo-instructions must follow a SUB or COM 

pseudo-instruction, or be a part of a group of such pseudo-instructions which 

follow a SUB or COM pseudo-instruction. Any other appearance of these can 

cause this error. It can also be caused if a SUB sequence does not terminate 

with a machine instruction with a label. Check to see that you have not 

inadvertently omitted the SUB or COM, or have placed another instruction in 

between the pseudo-instruction and its SUB or COM. 



Errors and Error Processing 197 

Incorrect type of operand used. Each instruction requires that its operand be 

of a certain type - relocatable or absolute. Check the type of all symbols used 

in the expression in the operand and see that they correspond to the type 

required by the instruction. If you are using a constant, check to see that a 

constant is allowed by the instruction. 

Undefined symbol. By the end of the assembly, all symbols must have been 

defined, either by use as a label on an instruction or as a symbol associated 

with a value through an EQU, EXT, or SET pseudo-instruction. A symbol not 

so defined, except those pre-defined by the assembler, and used in the assem

bly, causes this error. Check the spelling of all undefined symbols to make sure 

that you did not intend something else. The symbol otherwise has to be de

fined, either by label or EQU, EXT, or SET. 



198 Errors and Error Processing 



Appendices 
Table of Contents 

Appendix A: ASCII Character Set 

ASCII Character Codes, . , , , , 

Appendix B: Machine Instructions 

Detailed List, , . , ... , .. " .. ,." ...... ,., .. < , ••• 

Bit Patterns and Timings, ,. .., ......... , .. " 

Alphabetic List ...... , . , ...... , ...... , ..... , .. , . 

Approximate Numerical List ... , .... 

Appendix C: Pseudo-Instructions ... , ... , . . . .. . ... < •• 

.,.204 

.., .. ".,.,.,.207 

., .. , .... 221 

., .. 221 

.., .. 221 

, ........ 223 

Appendix D: Assembly Language BASIC Language Extensions Formal Syntax. ,,225 

Appendix E: Pre-Defined Assembler Symbols,. , ....... , , , . , , . , , < , , < < , . ,. , .. < , < . < , 231 

Appendix F: Utilities < , < "" ••••• , 

Appendix G: Writing Utilities .. , .... 

Appendix H: 110 Sample Programs 

Handshake String Output. , .. , . , ... 

Handshake String Input 

Interrupt String Output .. , , , , , , . 

Interrupt String Input .. , ... . 

DMA String Output ., ... , < •• < , , •••••• 

DMA String Input. 

HP-IB Outputl Input Drivers. , , " .,. 

Real-Time-Clock Example 

Appendix I: Demonstration Cartridge 

Using the tape. ,. .. 

Typing Aids . ., .... , .. ' .... 

Appendix J: Error Messages, 

Mass Storage ROM Errors 

Plotter ROM Errors. 

Assembly Language ROM Errors ' .. 

Assembly Time Errors, .... , ... , . , , .. , . , .. 

Appendix K: Maintenance 

Maintenance Agreements, ...... , .. _ , < , • < _ 

Sales & Service Offices <I _ _ , • < < • < • 

, 233 

." ..... , ... 235 

, ....... ,,237 

..,., .. 239 

', .. ,., .. , ... , ... ".241 

, .... " ... ,.244 

. ..... , ..... ". < .... 247 

. ... , ....... 250 

,.253 

,257 

.. 261 

< ...... , .. ,. <,.261 

. ...... ",. < .. ',., .... ,., .... ,. <. < 265 

.......... < <. < 269 

• < •• , < •• < •• 269 

. .... , <.270 

.., ... 271 

,. < <, < <, .. ,. <,273 

• < •••• < •• <. <, <'" < < < 274 



Appendix A 
ASCII Character Set 

The following table and chart show the ASCII character set and the keypresses necessary to 

obtain the ASCII character codes. 

199 



200 Appendix A: ASCII Character Set 

ASCII Character Set 
ASCII Key(s) 

Character Comments to Press* 

NUL Null ICo§:LI C space bar J 
SOH Start of Header ICONTL'0 
STX Start of Text ICONTLI@ 
ETX End of Text ICONTLI@ 
EOT End of Transmission ~@) 
ENQ Enquiry ,Ciii!! L'0 
ACK Acknowledgement 'C@'L' 0 
BEL Bell ICONTLI@ 
BS Backspace ICONTLI@ 
HT Horizontal Tab ICONT'LICQ 
LF Line Feed @1l0 
VT Vertical Tab ICONT'LI@ 
FF Form Feed ICONT'LI© 
CR Carriage Return ICONTLI@ 
SO Shift Out ICONTLI@ 
SI Shift In @1l@ 

DLE Data Link Escape (CONTL' 0 
DCl Device Control ~@ 
DC2 Device Control (CONnie§) 
DC3 Device Control ICONTLI@ 
DC4 Device Control IC~'L'0 
NAK Negative Acknowledgement ICONnl@ 
SYN Synchronous Idle IC®)'0 
ETB End of Text Block ICONTLI® 
CAN Cancel ~0 
EM End of Media ICONnl0 
SUB Substitute ICONT'LI@ 
ESC Escape ~O 
FS File Separator ICONnl8CJ 
GS Group Separator (CONTLIG) 
RS Record Separator ICONTL'8 
US Unit Separator ICONTL'8w* 

1>' Assumes CAPS mode; mUltiple keys must be pressed simultaneously. 

* Also can be found among calculator keys. 

Octal Decimal 
Code Code 

00 0 

01 1 

02 2 

03 3 

04 4 

05 5 

06 6 

07 7 

10 8 

11 9 

12 10 

13 11 

14 12 

15 13 

16 14 

17 15 

20 16 

21 17 

22 18 

23 19 

24 20 

25 21 

26 22 

27 23 

30 24 

31 25 

32 26 

33 27 

34 28 

35 29 

36 30 

37 31 



Appendix A: ASCII Character Set 201 

ASCII Character Set (continued) 

ASCII Key(s) 
Character Comments to Press*: 

SP Blank C space bar J 
! Exclamation Point 8CD 
" Double Quote 8eg 
# Pound Sign 8m 
$ Dollar Sign 8CD 
% Percen t Sign am 
& Ampersand 8CD , 

Apostrophe CJ 
( Left Parenthesis CD 
) Right Parenthesis CD 
'" Asterisk 8 CD'" 
+ Plus Sign 8CD'" 
, Comma 0'" 
- Min us Sign (Dash) G'" 

Period CJ'" 
/ Forward Slash CD'" 
0 CD'" 
1 CD'" 
2 m'" 
3 m'" 
4 CD'" Numerics 
5 m'" 
6 GJ'" 
7 CD'" 
8 CD'" 
9 CD'" 

Colon ao 
, Semicolon 0 
< Less Than ao 
= Equal CD'" 
> Greater Than 8CJ 
? Question Mark 8CD 

1< Assumes CAPS mode; multiple keys must be pressed simultaneously. 

* Also can be found among calculator keys. 

Octal Decimal 
Code Code 

40 32 

41 33 

42 34 

43 35 

44 36 

45 37 

46 38 

47 39 

50 40 

51 41 

52 42 

53 43 

54 44 

55 45 

56 46 

57 47 

60 48 

61 49 

62 50 

63 51 

64 52 

65 53 

66 54 

67 55 

70 56 

71 57 

72 58 

73 59 

74 60 

75 61 

76 62 

77 63 



202 Appendix A: ASCII Character Set 

ASCII Character Set (continued) 

ASCII Key(s) 
Character Comments to Press-tr 

@ Commercial At am 
A 0 
B ® 
C @ 
D ® 
E 0 
F CD 
G @ 
H 0 
I CD 
J CD 
K ® 
L CD 
M Capital @ 
N 

Letters ® 
0 @ 
P 0 
Q @ 
R ® 
S ® 
T 0 
U @ 
V 0 
W ® 
X 0 
Y 0 
Z 0 
[ Left Bracket am 
\ Reverse Slash Inaccessible 

from Keyboard 

] Right Bracket am 
i UpArrow 0 

- Underscore 8~ 
* Assumes CAPS mode; multiple keys must be pressed simultaneously. 

* Also can be found among calculator keys. 

Octal Decimal 
Code Code 

100 64 

101 65 

102 66 

103 67 

104 68 

105 69 

106 70 

107 71 

110 72 

111 73 

112 74 

113 75 

114 76 

115 77 

116 78 

117 79 

120 80 

121 81 

122 82 

123 83 

124 84 

125 85 

126 86 

127 87 

130 88 

131 89 

132 90 

133 91 

134 92 

135 93 

136 94 

137 95 



Appendix A: ASCII Character Set 203 

ASCII Character Set (continued) 

ASCII Key(s) Octal Decimal 
Character Comments to Press* Code Code 

, 
Grave Mark Inaccessible 140 96 from Keyboard 

a 80 141 97 

b 80 142 98 

c 8@ 143 99 

d 8@ 144 100 

e 80 145 101 

f 80 146 102 

g 8@ 147 103 

h 80 150 104 

i 80 151 105 

j 80 152 106 

k 80 153 107 

1 8eg 154 108 
Noncapital 

m Letters 8@ 155 109 

n 80 156 110 

0 8@ ,157 111 

P 80 160 112 

q 8@ 161 113 

r 80 162 114 

s 80 163 115 

t 80 164 116 

u 8@ 165 117 

v 80 166 118 

w 8® 167 119 

x 80 170 120 

Y 88 171 121 

z 80 172 122 

{ Left Brace 173 123 

I Vertical Line 174 124 

} Right Brace Inaccessible 
from Keyboard 

175 125 

tV Tilde 176 126 

DEL Delete 177 127 
I 

* Assumes CAPS mode; mUltiple keys must be pressed simultaneously. 



ASCII .. _.~:~~~~~~.,~?~~~" . 
Chat. BInary Oct Hex Dec 

NULl 00000000 000 00 

SOH 00000001 001 01 

STX OOOO()01.0 002 02 

ETX 00000011 003 03 3 

EOT 00000100 004 04 

ENQ 00000101 005 05 5 

ACK 00000110 006 06 

BELL 00000111 007 07 

BS 00001000 010 08 

HT 00001001 011 09 9 

LF 00001010 012 OA 10 

VT 00001011 013 os 11 

FF 00001100 014 OC 12 

CR 00001101 015 00 13 

SO 00001110 016 OE 14 

SI 00001111 017 OF 15 

OLE 00010000 020 10 16 

OC1 00010001 021 11 17 

OC2 00010010 022 12 18 

OC3 00010011 023 13 19 

OC4 00010100 024 14 20 

NAK 00010101 025 15 21 

SYNC 00010110 026 16 22 

ET8 00010111 027 17 23 

CAN 00011000 030 18 24 

EM 00011001 031 19 25 

SUB 00011010 032 lA 26 

ESC 00011011 033 18 27 

FS 00011100 034 1C 28 

GS 00011101 035 10 

RS 00011110 036 IE 30 

US 00011111 037 IF 31 

ASCII Character Codes 
EQUIVALENT FORMS 

"' __ ~"~"'_""'_."'_""--o..<",,-....... _ •.. _ • ASCII 
Char. Biliary Oct Hex Dec 

space 00100000 040 20 32 

00100001 041 21 33 

00100010 042 22 34 

# 00100011 043 23 35 

$ 00100100 044 24 36 

% 00100101 045 25 37 

& 00100110 046 26 38 

00100111 047 27 39 

00101000 050 28 40 

00101001 051 29 41 

* 00101010 052 2A 42 

+ 00101011 053 2B 43 

00101100 054 2C 44 

00101101 055 20 45 

00101110 056 2E 46 

00101111 057 2F 47 

00110000 060 30 48 

00110001 061 31 49 

00110010 062 32 50 

00110011 063 33 51 

00110100 064 34 52 

00110101 065 35 53 

00110110 066 36 54 

00110111 067 37 55 

00111000 070 38 56 

00111001 071 39 57 

00111010 072 3A 58 

00111011 073 3B 59 

< 00111100 074 3C 60 

00111101 . 075 30 61 

> 00111110 076 3E 62 

00111111 077 3F 63 

ASCU EQUIVALENT FORMS 

Chat. -"8;~;;.y'"'''' Oct Hex Dec 

@ ;01000000 100 40 64 

A 01000001 101 41 65 

B 01000010 102 42 66 

C 01000011 103 43 67 

o 01000100 104 44 68 

E 01000101 105 45 69 

01000110 106 46 70 

G 01000111 107 47 71 

H 01001000 l10 48 72 

01001001 111 49 73 

01001010 112 4A 74 

K 01001011 113 48 75 

L 01001100 114 4C 76 

M 01001101 115 40 77 

N 01001110 116 4E 78 

a 01001111 117 4F 79 

P 01010000 120 50 80 

Q 01010001 121 51 81 

R 01010010 122 52 82 

S 01010011 123 53 83 

T 01010100 124 54 84 

U 01010101 125 55 85 

V 01010110 126 56 86 

W 01010111 127 57 87 

X 01011000 130 58 88 

Y ; 01011001 131 59 89 

Z ! 01011010 132 5A 90 

01011011 133 58 91 

01011100 134 5C 92 

01011101 135 50 93 

; 01011110 136 5E 94 

,01011111 137 SF 95 

ASCII . ___ ~.~~v..-:L:~T FORMS 
Char. Hex Dec 

60 96 

01100001 141 61 97 

01100010 142 62 98 

01100011 143 63 99 

onOO100 144 64 100 

01100101 145 65 101 

01100110 146 66 102 

01100111 147 67 103 

01101000 150 68 104 

01101001 151 69 105 

01101010 152 6A 106 

01101011 153 6B 107 

01101100 154 6C lOB 

01101101 155 60 109 

01101110 156 6E 110 

01101111 157 6F III 

01110000 160 70 112 

01110001 161 71 113 

01110010 162 72 114 

01110011 163 73 115 

01110100 164 74 116 

: 01110101 165 75 117 

01110110 166 76 118 

01110111 167 77 119 

01111000 170 78 120 

01111001 171 79 121 

01111010 172 7A 122 

01111011 173 7B 123 

01111100 174 7C 124 

01111101 175 70 125 

01111110 176 7E 126 

DEL 01111111, 177 7F 127 



Appendix A: ASCII Character Set 205 

The following table gives the octal value for an ASCII character in the most significant byte 

("First Character" column) and the least significant byte ("Second Character" column) of a 

word. The diagram illustrates the positions of the first and second character positions of a word. 

First Character Second Character 

~--------------~------------~II~--------------~------------~ 

115 114 13 12 11 10 9 6 o 

ASCII First Character Second Character ASCII First Character Second Character 
Character Octal Equivalent Octal Equivalent Character Octal Equivalent Octal Equivalent 

NUL 000000 000000 % 022400 000045 
SOH 000400 000001 & 023000 000046 
STX 001000 000002 , 023400 000047 
ETX 001400 000003 ( 024000 000050 
EOT 002000 000004 ) 024400 000051 
ENQ 002400 000005 * 025000 000052 
ACK 003000 000006 + 025400 000053 
BEL 003400 000007 , 026000 000054 
BS 004000 000010 - 026400 000055 
HT 004400 000011 027000 000056 
LF 005000 000012 / 027400 000057 
VT 005400 000013 0 030000 000060 
FF 006000 000014 1 030400 000061 
CR 006400 000015 2 031000 000062 
SO 007000 000016 3 031400 000063 
SI 007400 000017 4 032000 000064 
DLE 010000 000020 5 032400 000065 
DC1 010400 000021 6 033000 000066 
DC2 011000 000022 7 033400 000067 
DC3 011400 000023 8 034000 000070 
DC4 012000 000024 9 034400 000071 
NAK 012400 000025 : 035000 000072 
SYN 013000 000026 ; 035400 000073 
ETB 013400 000027 < 036000 000074 
CAN 014000 000030 = 036400 000075 
EM 014400 000031 > 037000 000076 
SUB 015000 000032 ? 037400 000077 
ESC 015400 000033 @ 040000 000100 
FS 016000 000034 A 040400 000101 
GS 016400 000035 B 041000 000102 
RS 017000 000036 C 041400 000103 
US 017400 000037 D 042000 000104 
SP 020000 000040 E 042400 000105 
! 020400 000041 F 043000 000106 
" 021000 000042 G 043400 000107 
# 021400 I 000043 H 044000 000110 
$ 022000 000044 I 044400 000111 



206 Appendix A: ASCII Character Set 

ASCII First Character Second Character ASCII First Character Second Character 
Character Octal Equivalent Octal Equivalent Character Octal Equivalent Octal Equivalent 

J 045000 000112 e 062400 000145 
K 045400 000113 f 063000 000146 
L 046000 000114 9 063400 000147 
M 046400 000115 h 064000 000150 
N 047000 000116 i 064400 000151 
0 047400 000117 j 065000 000152 
P 050000 000120 k 065400 000153 
Q 050400 000121 I 066000 000154 
R 051000 000122 m 066400 000155 
S 051400 000123 n 067000 000156 
T 052000 000124 0 067400 000157 
U 052400 000125 p 070000 000160 
V 053000 000126 q 070400 000161 
W 053400 000127 r 071000 000162 
X 054000 000130 5 071400 000163 
Y 054400 000131 t 072000 000164 
Z 055000 000132 u 072400 000165 
[ 055400 000133 v 073000 000166 
\ 056000 000134 w 073400 000167 
] 056400 000135 x 074000 000170 

" 057000 000136 y 074400 000171 
8 057400 000137 z 075000 000172 
, 060000 000140 { 075400 000173 
a 060400 000141 r- 076000 000174 
b 061000 000142 } 076400 000175 
c 061400 000143 tV 077000 000176 
d 062000 000144 DEL 077400 000177 



207 

Appendix B 
Machine Instructions 

Detailed List 

Instruction Form Group Description Page 

AAR {n} Shift/Rotate Shifts the A register right the indicated number of 40 

bits with the sign bit filling all vacated bit positions. 

(Arithmetic right) 

ABR '{n} Shift/Rotate Shifts the B register right the indicated number of 40 

bits with the sign bit filling all vacated bit positions. 

(Arithmetic right) 

ADA {loc} [ l] Integer Math Adds the contents of the specified location to the 35 

contents of register A. The result is in A. If a carry 

occurs, Extend is set, otherwise Extend is un-

changed. If an overflow occurs, Overflow is set, 

otherwise Overflow is unchanged. A carry is from 

bit 15; an overflow is a carry from bit 15 or 14, but 

not both. Extend and Overflow are bits in the pro-

cessor. Specifying register R4, R5, R6, or R7 as 

the location causes an input 110 bus cycle to the 

interface addressed by the Pa register. Indirect 

addressing may be specified. {loc} must be on 

base or current page. 

ADB {loc} [, I] Integer Math Adds the contents of the specified location to the 35 

contents of register B. The result is in B. If a carry 

occurs, Extend is set, otherwise Extend is un-

changed. If an overflow occurs, Overflow is set, 

otherwise Overflow is unchanged. A carry is from 

bit 15; an overflow is a carry from bit 15 or 14, but 

not both. Extend and Overflow are bits in the pro-

cessor. Specifying register R4, R5, R6, or R7 as 

the location causes an input 110 bus cycle to the 

interface addressed by the Pa register. Indirect 

addressing may be specified. {loc} must be on 
I 

base or current page. 



208 Appendix B: Machine Instructions 

Instruction Form Group Description Page 

AND {loc} [, 1] Logical Logical "and" operation. The contents of the A 41 

register are compared, bit by bit, with the contents 

of the specified location. For each bit comparison 

a 1 results if both bits are 1 's, a a results otherwise. 

The 16-bit result is left in A. Specifying register 

R4, R5, R6, or R7 causes an input bus cycle to the 

interface addressed by the Pa register. Indirect 

addreSSing may be specified. {loc} must be on 

base or current page. 

CBL Stack Clears the Cb register. Specifies the lower block of 43 

memory for byte-referencing stack instructions. 

CBU Stack Sets the Cb register. Specifies the upper block of 43 

memory for byte-referencing stack instructons. 

CDC BCD Math Clears Decimal Carry explicitly. 

CLA Shift Clears register A. This is exactly equivalent to SAR 41 

16. 

CLB Shift Clears register B. This is exactly equivalent to SBR 41 

16. 

CLR {n} Load/Store Clears the specified number of words, beginning 34 

at the location pOinted at by the A register. A 

maximum of 16 words may be cleared. 

CMA Memory Perform a one's complement of the A register (bit 41 

by bit inversion of all 16 bits). 

CMB Memory Perform a one's complement of the B register (bit 41 

by bit inversion of all 16 bits). 

CMX BCD Math Ten's complement of Arl. The mantissa of Arl is 45 

replaced with its ten's complement and Decimal 

Carry is cleared. 

CMY BCD Math Ten's complement of Ar2. The mantissa of Ar2 is 46 

replaced with its ten's complement and Decimal 

Carry is cleared. 

CPA {loc} [ ] Test/Branch Compares the contents of register A with the con- 37 

tents of the specified location and skips if they are 

unequal. Indirect addreSSing may be specified. 

Specifying register R4, R5, R6, or R7 causes an 

input bus cycle to the interface addressed by the 

Pa register. {loc} must be on base or current page. 



Instruction Form 

CPB 

DBL 

DBU 

DDR 

DIR 

DMA 

DRS 

DSZ {loc} [ T] 

EIR 

Appendix B: Machine Instructions 209 

Group 

Test/Branch 

Stack 

Stack 

I/O 

I/O 

I/O 

BCD Math 

Description 

Compares the contents of register B with the con

tents of the specified location and skips if they are 

unequal. Indirect addressing may be specified. 

Specifying register R4, R5, R6, or R7 causes an 

input bus cycle to the interface addressed by the 

Pa register. {loc} must be on base or current page. 

{loc} must be on base or current page. 

Clears the Db register. Specifies the lower block of 

memory for byte-referencing stack instructions. 

Sets the Db register. Specifies the upper block of 

memory for byte-referencing stack instructions. 

Disables Data Request. Cancels the DMA 

instruction. 

Disables the interrupt system. Cancels the EIR 

instruction. 

Enables the DMA mode. Cancels the DDR 

instruction. 

Mantissa right shift of Arl for one digit. The 

twelfth digit is shifted into bits 0-3 of the A regis

ter. The non-digit part of the A register is cleared 

(bits 4-15), and the Decimal Carry bit in the pro

cessor is cleared. The first digit in the mantissa is 

set to O. 

Test/ Alter/Branch Decrements the contents of the specified location 

and skips if the new contents are O. Specifying 

register R4, R5, R6, or R7 causes an input (or an 

input and an output) bus cycle to the interface 

addressed by the Pa register. I ndirect addressing 

may be specified. {loc} must be on base or current 

page. 

I/O Enables the interrupt system. Cancels the DIR in

struction. 

Page 

37 

43 

43 

47 

47 

47 

45 

38 

47 



210 Appendix B: Machine Instructions 

Instruction Form Group Description Page 

EXE {reg} [ L] Miscellaneous Executes the contents of a register. {reg} is an in- 47 

teger in the range of 0 through 31, indicating the 

register to be used (see Memory Map for the cor-

respondence between location and register). The 

register is left unchanged unless the instruction 

code causes it to be altered. The next instruction 

to be executed is the one following the EXE, un-

less the code in the executed register causes a 

branch. Indirect addressing may be specified. 

FDV BCD Math Fast divide. The mantissas of Arl and Ar2 are 46 

added together, along with Decimal Carry, until 

the first decimal overflow occurs. The result ac-

cumulates into Ar2. The number of additions 

without overflow is placed into the lower 4 bits of 

the B register (0-3). The remainder of the B regis-

ter is cleared, as is the Decimal Carry bit in the 

processor. 

FMP BCD Math Fast Multiply. Performs the multiplication by re- 46 

peated additions. The mantissa of Arl is added to 

Ar2 along with Decimal carry, a specified number 

of times. The number of times is specified in the 

lower 4 bits (0-3) of the B register. The result ac-

cumulates in Ar2. If intermediate overflows occur, 

the number of times they occur appears in the 

lower 4 bits of the A register after the operation is 

complete. The upper 12 bits of the A register are 

cleared along with Decimal Carry. 

FXA BCD Math Fixed-point addition. The mantissas of Arl and 46 

Ar2 are added together and the result placed in 

Ar2. Decimal Carry is used as the twelfth digit. 

After the addition, Decimal Carry is setif an over-

flow occurred, otherwise Decimal Carry is cleared. 

lOR {loc} [ ] Logical Logical "inclusive or" operation. The contents of 41 

the A register are compared, bit by bit, with the 

contents of the specified location. For each bit 

comparison, a 0 results if both bits are O's, a 1 

otherwise. The l6-bit result is left in A. Specifying 

register R4, R5, R6, or R7 causes an input bus 

cycle to the interface addressed by the Pa register. 

Indirect addressing may be specified. {loc} must 

be on base or current page. 



Appendix B: Machine Instructions 211 

Instruction Form Group Description Page 

ISZ {loc} [ '] T est/ Alter/Branch Increments the contents of the specified location 38 

and skips if the new contents are O. Specifying 

register R4, R5, R6, or R7 causes an input (or an 

input followed by an output) bus cycle to the inter-

face addressed by the Pa register. Indirect addres-

sing may be specified. {loc} must be on base or 

current page. 

JMP {loc} [" r] Branch Unconditionally branches to the specified loca- 36 

tion. Indirect addressing may be specified. {Ioc} 

must be on base or current page. 

JSM {loc} [ ] Branch Jumps to subroutine. The value of the R register 36 

is incremented by 1 and the value of the P regis-

ter (i. e., the location of the JSM instruction itself) 

is stored in the address pOinted to by the R regis-

ter. Execution then proceeds to the specified lo-

cation. Return from the subroutine is effected by 

the RET instruction. Indirect addressing may be 

specified. {loc} must be on base or current page. 

LOA {Ioc} [ ] Load/Store Loads register A with the con ten ts of the 34 

specified location. Specifying register R4, R5, 

R6, or R7 causes an input I/O bus cycle to the 

interface addressed by the Pa register. Indirect 

addressing may·be specified. {Ioc} must be on 

base or current page. 

LOB {loc} [ , ] Load/Store Loads register B with the contents of the 34 

specified location. Specifying register R4, R5, 

R6, or R7 causes an input I/O bus cycle to the 

interface addressed by the Pa register. Indirect 

addressing may be specified. {Ioc} must be on 

base or current page. 

MLY r"1l_ BCD Math Mantissa left shift on Ar2 for one digit. This is a 45 

circular shift, with the bits 0-3 of the A register 

forming a thirteenth digit. The non-digit part of 

the A register is cleared (bits 4-15), and the Dec-

imal Carry bit in the processor is cleared. 

I 



212 Appendix B: Machine Instructions 

Instruction Form Group Description Page 

MPY r·"1F'··· Integer Math Binary multiply. Uses Booth's Algorithm. The 35 

values of the A and B registers are multiplied to-

gether with the product placed into A and B. The 

A register contains the least significant bits and 

the B register contains the most significant bits 

and the sign. B may contain any integer value 

except - 32 768. 

MRX BCD Math Mantissa right shift on Arlo The number of digits 44 

to be shifted is specified in the lower 4 bits (0-3) 

of the B register. The shift is accomplished in 

three stages: 

1) Bits 0-3 of the A register are right-shifted into 

D1 of the mantissa, with the twelfth digit 

being lost. This is the first shift. This shift al-

ways takes place, even if B = o. 

2) The digits are then right-shifted for the re-

maining number of digits specified. The 

twelfth digit is lost on each shift (except for 

the last shift) and the vacated digits are zero-

filled. 

3) Finally, the last right-shifting takes place, 

with the twelfth digit shifting into the lower 4 

bits (0-3) of the A register. The Decimal 

Carry bit in the processor is cleared and the 

non-digit part of the A register is cleared (bits 

4-15). 

MRY BCD Math Mantissa right shift on Ar2. The number of digits 45 

to be shifted is specified in the lower 4 bits (0-3) 

of the B register. The shift is accomplished in 

three stages: 

1) Bits 0-3 of the A register are right-shifted into 

D1 of the mantissa, with the twelfth digit 

being lost. This is the first shift. This shift al-

ways takes place, even if B = o. 

2) The digits are right-shifted for the remaining 

number of digits specified. The twelfth digit 

is lost on each shift (except for the last shift) 

and the vacated digits are zero-filled. 



,-'--"'--~' -' .. --~- .. ---~.----~' ---.---"~. ~' _.-.-' -' -'·'----~--~'-"--------'----~'-··'-'·'--~----r-"--~-" 
: Instruction Form Group Description I Page i 
1- -;----'-----,---.--.---"--------,----'--- t 1 

I 3) Finally, the last right~shifting takes place, I' 

MWA 

NOP 

NRM 

PBC C'E:C {reg} [ T] 

I 

I 
I 

PBD I ;:::'HL {reg} 

I cr:: I "D {reg} [ I] 

I 
I 
i 

I 
, ' 

1 i 

BCD Math 

with the twelfth digit shifting into the lower 4 

bits (0-3) of the A register. The non-digit part 

of the A register is cleared (bits 4-15), and i 
the Decimal Carry bit in the processor is 

cleared. 

Mantissa word addition. The contents of the B 

register are added to the ninth through twelfth 

digits of the Ar2 register. Decimal Carry is added 

to the twelfth digit; if an overflow occurs, Deci

mal Carry is set, otherwise Decimal Carry is 

cleared. 

Miscellaneous Null operation. This is exactly eqUivalent to LOA 

BCD Math 

Stack 

Stack 

, A. 

, Normalizes the Ar2 mantissa. Up to twelve left

shifts of the mantissa are performed until the first 

digit of the mantissa is non-zero. If the original 

, first digit is already non-zero, no shifts occur. The 

: number of shifts required is stored in the first 4 

bits (0-3) of the B register. If 12 shifts are re-

quired, the Decimal Carry bit in the processor is 

set; otherwise, the Decimal Carry bit is cleared. 

The exponent is not altered. 

Pushes the lower byte (right half) of the specified 

register onto the stack pointed at by the Cb and C 

registers. Specifying register R4, R5, R6, or R7 

causes an input I/O bus cycle to the interface ad

dressed by the Pa register. Incrementing or de

crementing of the C register can be specified. In

crementing is the default. {reg} must be in the 

range of a through 7. The incrementing or decre

menting action takes place before pushing. 

, ____ ... __ --L _____ ._.~ ____ , .. _.L....... ___ . ___ _ 

Pushes the lower byte (right half) of the speCified 

register onto the stack pointed at by the Db and 0 

registers. Specifying register R4, R5, R6, or R7 

causes an input I/O bus cycle to the interface ad

dressed by the Pa register. Incrementing or dec

rementing the 0 register can be speCified. Incre

menting is the default. {reg} must be in the range 

of 0 through 7. The incrementing or decrementing 

action takes p!~~_,~~i<?re pushing:. 

46 

47 

45 

43 

43 



214 Appendix B: Machine Instructions 

Instruction Form Group 

PWC Pl,-lC {reg} , D Stack 

F'l-<H:::: {reg} [, I] 

PWD P ~,-j D {reg} , [, Stack 

Pl-,m {reg} [, I] 

RAL PRL in} Shift/Rota te 

RAR PRP in} Shift/Rotate 

RBL F'BL in} Shift/Rotate 

RBR PBP in} Shift/Rotate 

RET F'ET in} Branch 

Description Page 

Pushes entire register (full word) onto the stack 43 

pOinted at by the C register. Specifying register 

R4, R5, R6, or R7 causes an input I/O bus cycle to 

the interface addressed by the Pa register. Incre

menting or decrementing the C register may be 

specified. Incrementing is the default. {reg} must 

be in the range of 0 through 7. The incrementing 

or decremen ting action takes place before 

pushing. 

Pushes the entire register (full word) onto the 

stack pointed at by the 0 register. Specifying 

register R4, R5, R6, or R7 causes an input I/O bus 

cycle to the interface addressed by the Pa register. 

Incrementing or decrementing the 0 register may 

be specified. Incrementing is the default. {reg} 

must be in the range of 0 through 7. The 

incrementing or decrementing action taken place 

before pushing. 

43 

Rotates the A register left the indicated number of 40 

bits. Bit 15 rotates into bit 0 (left circular). 

Maximum rotation of 16 bits. 

Rotates the A register right the indicated number 40 

of bits. Bit 0 rotates into bit 15 (right circular). 

Maximum rotation of 16 bits. 

Rotates the B register left the indicated number of 40 

bits. Bit 15 rotates into bit 0 (left circular). 

Maximum rotation of 16 bits rotated. 

Rotates the B register right the indicated number 

of bits. Bit 0 rotates into bit 15 (right circular). 

Maximum rotation of 16 bits. 

Returns from subroutine. in} is added to the con

tents of the address pOinted to by the R register. 

The R register is decremented by 1. This is, in 

effect, a return from a JSM instruction (see 

above), to in} instructions following the JSM itself. 

The "usual" return is RET 1. in} must be in the 

range of - 32 through 31. 

40 

36 



Appendix B: Machine Instructions 215 

Instruction Form Group Description Page 

RIA {adrs} Test/Branch Skips to {adrs}if register A is not 0, then incre- 37 

ments register A by 1. Extend and Overflow are 

not effected by the incrementing action, even if a 

carry or overflow occurs. {adrs} must be within 

- 32 and + 31 of the current location. 

RIB {adrs} Test/Branch Skips to {adrs} if register B is not 0, then incre- 37 

ments register B by 1. Extend and Overflow are 

not affected by the incrementing action, even if a 

carry or overflow occurs. {adrs} must be within 

- 32 and + 31 of the current location. 

RLA {adrs} [ , ] Test/ Alter/Branch Skips to {adrs} if the least significant bit of the A 39 

{adrs} [" C] 
register is not O. Setting or clearing the bit after the 

test can be specified. {adrs} must be within - 32 

and + 31 of the current location. 

RLB {adrs} [ , =:] Test/ Alter/Branch Skips to {adrs} if the least significant bit of the B 39 

{adrs} L ::] 
register is not O. Setting or clearing the bit after the 

test can be specified. {adrs} must be within - 32 

and + 31 the current location. 

RZA {adrs} Test/Branch Skips to {adrs} if register A isnot O. {adrs} must be 37 

within - 32 and + 31 of the current location. 

RZB {adrs} Test/Branch Skips to {adrs} if, register B is not O. {adrs} must be 37 

within - 32 and + 31 of the current location. 

SAL {n} Shift/Rotate Shifts the A register left the indicated number of 40 

bits with all vacated bit positions becoming O. 

Maximum shift is 16 bits. 

SAM '::JH,-! {adrs} [, '=;J T est/ Alter/Branch Skips to {adrs} if the A register is negative (bit 15 is 38 

::;i=!i'1 {adrs} [, C] 
1). Setting or clearing the bit after the test can be 

specified. {adrs} must be within - 32 and + 31 of 

the current location. 

SAP :::;F:iF' {adrs} [, :::;J Test/ Alter/Branch Skips to {adrs} if the A register is positive or zero 38 

:::;F1F' {adrs} [; C] 
(bit 15 is 0). Setting or clearing the bit after the test 

can be specified. {adrs} must be within - 32 and 

+ 31 of the current location. 

SAR '::;RF~ {n} Shift/Rotate Shifts the A register right the indicated number of 40 

bits with all vacated bit positions becoming O. 

Maximum shift is 16 bits. 

I 



216 Appendix B: Machine Instructions 

Instruction Form 

SBM 

SSP 

:=;BP {adrs} L C:] 

SBR 

soc 

SOl 

SDO 

SDS {adrs} 

SEC TC {adrs} [, ':] 

{adrs} [, C] 

Group Description Page 

Shift/Rotate Shifts the B register. left the indicated number of 40 

bits with all vacated bit positions becoming O. 

Maximum shift is 16 bits. 

Test/Alter/Branch Skips to {adrs} if the B register is negative (bit 15 is 

1). Setting or clearing the bit after the test can be 
Test/ Alter/Branch 

specified. {adrs} must be within - 32 and + 31 of 

the current location. 

Test/Alter/Branch Skips to {adrs} if the B register is positive (bit 15 is 

0). Setting or clearing the bit after the test can be 

specified. {adrs} must be within - 32 and + 31 of 

the current location. 

Shift/Rotate 

BCD Math 

I/O 

110 

BCD Math 

Shifts the B register right the indicated number of 

bits with all vacated bit positions becoming O. 

Maximum shift is 16 bits. 

Skips to {adrs} if Decimal Carry is clear. Decimal 

carry is a single bit in the processor which may 

have been set by certain arithmetic operations. 

{adrs} must be within - 32 and + 31 of the cur

rent location. 

Sets DMA inwards. Reads from peripheral, writes 

to memory. 

Sets DMA outwards. Reads from memory, writes 

to peripheral. 

Skips to {adrs} if Decimal Carry is set. Decimal 

carry is a single bit in the processor which may 

have been set by certain arithmetic operations. 

{adrs} must be with - 32 and + 31 of the current 

location. 

Test/ Alter/Branch Skips to {adrs} if Extend is clear. Extend is a Single 

bit in the processor which may have been set by 

certain arithmetic operations. Setting or clearing 

the bit after the test can be specified. {adrs} must 

be within - 32 and + 31 of the current location. 

38 

38 

40 

46 

47 

47 

46 

39 



Appendix B: Machine Instructions 217 

Instruction Form Group Description Page 

SES {adrs} [.; :;J T est/ Alter/Branch Skips to {adrs} if Extend is set. Extend is a single 39 

I ,~:; {adrs} [, '=J 
bit in the processor which may have been set by 

certain arithmetic operations. Setting or clearing 

the bit after the test can be specified. {adrs} must 

be within - 32 and + 31 of the current location. 

SFC '; {adrs} 110 Skips to {adrs} if the Flag line is false (clear). The 47 

Flag line is the one associated with a peripheral on 

the current select code (pointed to by the Pa regis-

ter). {adrs} must be within - 32 and + 31 of the 

current location. 

SFS ':: {adrs} 110 Skips to {adrs} if the Flag line is true (set). The flag 47 

line is that associated with the peripheral on the 

current select code (pointed to by the Pa register). 

{adrs} must be within - 32 and + 31 of the current 

location. 

SIA '; {adrs} Test/Branch Skips to {adrs} if register A is 0, then increments 37 

register A by 1. Extend and Overflow are not af-

fected by the incrementing action, even if a carry 

or overflow occurs. {adrs} must be within - 32 

and + 31 of the current location. 

SIB {adrs} Test/Branch Skips to {adrs} if register B is 0, then increment 37 

register B by 1. Extend and Overflow are not af-

fected by the incrementing action, even if a carry 

or overflow occurs. {adrs} must be within - 32 

and + 31 of the current location. 

SLA {adrs} L ':;] T est/ Alter/Branch Skips to {adrs} if the least significant bit of the A 38 

{adrs} L C] 
register is 0. Setting or clearing the bit after the 

test can be specified. {adrs} must be within - 32 

and + 31 of the current location. 

SLB {adrs} [,; J T est/ Alter/Branch Skips to {adrs} if the least significant bit of the B 39 

{adrs} [ :] 
register is 0. Setting or clearing the bit after the 

test can be specified. {adrs} must be within - 32 

and + 31 of the current location. 

I 



218 Appendix B: Machine Instructions 

Instruction Form Group Description Page 

SOC ~~:;>= {adrs} [, '=::] Test/ Alter/Branch Skips to {adrs} if Overflow is clear. Overflow is a 39 

'::; C!C {adrs} [, C] 
single bit in the processor which may have been 

set by certain arithmetic operations. Setting or 

clearing the bit after the test can be specified. 

{adrs} must be within - 32 and + 31 of the cur-

rent location. 

SOS ':;rY:=: {adrs} L '::;J Test/ Alter/Branch Skips to {adrs} if the Overflow is set. Overflow is a 39 

{adrs} [, ;:] 
single bit in the processor which may have been 

set by certain arithmetic operations. Setting or 

clearing the bit after the test can be specified. 

{adrs} must be within - 32 and + 31 of the cur-

rent location. 

sse {adrs} I/O Skips to {adrs} if Status line is false (clear). The 47 

status line is the one associated with the peripheral 

on the current select code (pointed to by the Pa 

register). {adrs} must be within - 32 and + 31 of 

the current location. 

SSS {adrs} I/O Skips to {adrs} if the Status line is true (set). The 47 

status line is the one associated with the peripheral 

on the current select code (pointed to by the Pa 

register). {adrs} must be within - 32 and + 31 of 

the current location. 

STA '::T:=: {Ioc} [, I] Load/Store Stores the contents of the A register into the 34 

spcified location. Specifying register R4, R5, R6, 

or R7 causes an output bus cycle to the interface 

addressed by the Pa register. Indirect addressing 

may be specified. {Ioc} must be on base or current 

page. 

STB {Ioc} [, T] Load/Store Stores the contents of the B register into the 34 

specified location. Specifying register R4, R5, R6, 

or R7 causes an output bus cycle to the interface 

addressed by the Pa register. Indirect addressing 

may be specified. {Ioc} must be on base or current 

page. 

SZA ':::ZF1 {adrs} Test/Branch Skips to {adrs} if register A is O. {adrs} must be 37 

within - 32 and + 31 of the current location. 

SZB '::;ZB {adrs} Test/Branch Skips to {adrs} if register Bis O. {adrs} must be 37 

within - 32 and + 31 of the current location. 



Appendix B: Machine Instructions 219 

Instruction Form Group Description Page 

TCA Integer Math Performs a two's complement of the A register 35 

(one's complement, incremented by 1). If a carry 

occurs, Extend is set, otherwise Extend is un-

changed. If an overflow occurs, Overflow is set, 

otherwise Overflow is unchanged. A carry is from 

bit 15; an overflow occurs when complementing 

- 32 768. Extend and Overflow are bits in the 

processor. 

TCB Integer Math Performs a two's complement of the B register 35 

(one's complement, incremented by 1). If a carry 

occurs, Extend is set, otherwise Extend is un-

changed. If an overflow occurs, Overflow is set, 

otherwise Overflow is unchanged. A carry is from 

bit 15; an overflow occurs when complementing 

- 32 768. Extend and Overflow are bits in the 

processor. 

WBC {reg} [ J] Stack Withdraws a byte from the stack pointed at by the 43 

{reg} 
Cb and C registers and places it into the lower byte 

(right half) of the speCified register. Specifying 

register R4, R5, R6, or R7 causes an output 110 

bus cycle to the interface addressed by the Pa 

register. Incrementing or decrementing the C 

register can be specified. Decrementing is the 

default. {reg} must l?e in the range of 0 through 31. 

The incrementing or decrementing routine takes 

place after the withdrawal. 

WBD !.'·jEIJ {reg} [,. fJ] Stack Withdraws a byte from the stack pointed at by the 43 

lJ·jE:D {reg} , T 
Db and D registers and places it into the lower byte 

(right half) of the specified register. Specifying 

register R4, R5, R6, or R 7 causes an output 110 

bus cycle to the interface addressed by the Pa 

register. Incrementing or decremen ting th e D 

register can be specified. Decrementing is the 

default. {reg} must be in the range of 0 through 31. 

The incrementing or decrementing routine takes 

place after the withdrawal. 



220 Appendix B: Machine Instructions 

Instruction Form Group 

WWC {reg} L n Stack 

{reg} 

WWD {reg} [ :] Stack 

{reg} 

XFR {n} Load/Store 

Description Page 

Withdraws a full word from the stack pointed at by 43 

the C register and places it into the specified 

register. Specifying register R4, RS, R6, or R7 

causes an output 110 bus cycle to the interface 

addressed by the Pa register. Incrementing or 

decrementing of the C register can be specified. 

Decrementing is the default. {reg} must be in the 

range of 0 through 31. The incrementing or 

decrementing action takes place after the 

withdrawal. 

Withdraws a full word from the stack pointed at by 

the D register and places it into the specified 

register. Specifying register R4, RS, R6, or R7 

causes an output 110 bus cycle to the interface 

addressed by the Pa register. Incrementing or 

decrementing of the 0 register can be specified. 

Decrementing is the default. {reg} must be in the 

range of 0 through 31. The incrementing or 

decrementing action takes place after th e 

withdrawal. 

Transfers the specified number of words, from the 

location starting at the address pointed at by the A 

register to the location starting at the address 

painted at by the B register. A maximum of 16 

words can be transferred. 

43 

34 



Instruction 

AARn 
ABRn 
ADA 
ADB 
AND 
CBL 
CBU 
CDC 
CLA 
CLB 
CLRn 
CMA 
CMB 
CMX 
CMY 
CPA 
CPB 
DBL 
DBU 
DDR 
DIR 
DMA 
DRS 
DSZ 
EIR 
EXE 
FDV 
FMP 
FXA 
lOR 
ISZ 
JMP 
JSM 
LDA 
LDB 
MLY 
MPY 
MRX 
MRY 
MWA 
Nap 
NRM 
PBC r 
PBD r 
PWCr 
PWDr 

15 14 13 12 

1 1 1 1 
1 1 1 1 

°11 0 1 0 
°11 0 1 0 
0/i 1 0 1 
o 1 1 1 
o 1 1 1 
011 1 
111 1 
111 1 
o 1 1 1 
1 1 1 1 
111 1 
011 1 
o 1 1 1 
°11 0 0 1 
°11 0 0 1 
011 1 
o 1 1 1 
o 1 1 1 
011 1 
011 1 
011 1 
0/i 1 0 1 
011 1 
°11 1 1 1 
o 1 1 1 
o 1 1 1 
o 1 1 1 
D/I 1 1 0 
°Il 1 0 0 
of. 1 1 0 
°11 1 0 0 
0/i 0 0 0 
°11 0 0 0 
o 1 1 1 
011 1 
o 1 1 1 
o 1 1 1 
011 1 
o 0 0 0 
o 1 1 1 
011 1 
o 1 1 1 
o 1 1 1 
011 1 

Alphabetic List 
Bit Patterns and Timings 

Bit Pattern Timing 

11 10 9 8 7 6 5 4 3 2 1 o 
o 0 0 1 0 0 0 00 1= n-l --+ n+9 
1 0 0 1 0 0 0 ..---- --+ n+9 

~ ~~I r-:-------ad-d-r-ess-"-------:-----t ~~ 

o 0 0 1 0 1 0 0 1 0 0 0 12 
o 0 0 1 0 1 0 1 1 0 0 0 12 
o 0 1 1 1 1 0 0 0 0 0 0 11 
o 0 0 1 0 1 0 0 1 1 1 1 25 
1 0 0 1 0 1 0 0 1 1 1 1 25 

r---~---"-.-_____t o 0 1 1 1 0 0 0 l +- n -1 --+ 6n + 16 o 0 0 0 0 1 1 0 ~O---O---O--O~ 9 
1 0 0 0 0 1 1 0 0 0 0 0 9 
o 0 1 0 0 1 1 0 0 0 0 0 59 
o 0 1 0 0 0 1 0 0 0 0 0 23 

~ ::~ I: address : ~~ 
o 0 0 1 0 1 0 0 0 0 0 0 12 
o 0 0 1 0 1 0 1 0 0 0 0 12 
o 0 0 1 0 0 1 1 1 0 0 0 12 
o 0 0 1 0 0 0 1 1 0 0 0 12 
o 0 0 1 0 0 1 0 0 0 0 0 12 
1 0 1 1 0 0 1 0 0 0 0 1 56 
1 B/c I +- address --+ 25 
o 0 0 1 0 0 0 1 0 0 0 0 12 
o 0 0 0 0 0 0 I +- register --+ 14 
1 0 1 0 0 0 1 ~O::---::O:----=-O--=-O -1~ 37 + 13B 
1 0 1 0 0 0 0 0 0 0 0 0 ~2+ 13B (note 2) 

g ~ I~ 0 1 0 0 0 0 0 0 ~ i~ 
1 B/c +- --+ 25 
1 Blc +- --+ 14 

address o B/c +- --+ 23 

~ :;~ I: : ~~ 
1 0 1 1 0 1 1 0 0 0 0 1 32 
1 0 1 1 1 0 0 0 1 1 1 1 65+2T (note 3) 
1 0 1 1 0 0 0 0 0 0 0 0 62 + 4B (note 4) 
1 0 1 1 0 1 0 0 0 0 0 0 33+4B (note 4) 
o 0 1 0 0 0 0 0 0 0 0 0 28 
o 0 0 0 0 0 0 0 0 0 0 0 11 
o 0 1 1 0 1 0 0 0 0 0 0 23+Z (note 5) 
1 0 0 1 Va 1 1 0 0 +- --+ 23 
1 0 0 1 II a 1 1 0 1 +- --+ 23 
o 0 0 1 Va 1 1 0 0 +- r --+ 23 
o 0 0 1 1

/0 1 1 0 1 +- --+ 23 

Instruction 

15 

RALn 1 
RARn 1 
RBLn 1 
RBRn 1 
RET 1 
RIA 0 
.RIB 0 
RLA 0 
RLB 0 
RZA 0 
RZB 0 
SALn 1 
SAM 1 
SARn 1 
SBLn 1 
SBM 1 
SBP 1 
SBRn 1 
SDC 0 
SDI 0 
SDO 0 
SDS 0 
SEC 1 
SES 1 
SFC 0 
SFS 0 
SIA 0 
SIB 0 
SLA 0 
SLB 0 
SOC 1 
SOS 1 
SSC 0 
SSS 0 
STA °11 
STB °11 
SZA 0 
SZB I 0 
TCA I 1 
TCB 1 
WBCr 0 
WBDr 0 
WWCr 0 
WWDr 0 
XFRn 0 

Bit Pai 

14 13 12 11 10 9 8 

1 1 1 0 0 0 1 
1 1 1 0 0 0 1 
1 1 1 1 0 0 1 
1 1 1 1 0 0 1 
1 1 1 0 0 0 0 
1 1 1 0 1 0 0 
1 1 1 1 1 0 0 
1 1 1 0 1 1 1 
1 1 1 1 1 1 1 
1 1 1 0 1 0 0 
1 1 1 1 1 0 0 
1 1 1 0 0 0 1 
1 1 1 0 1 0 1 
1 1 1 0 0 0 1 
1 1 1 1 0 0 1 
1 1 1 1 1 0 1 
1 1 1 1 1 0 0 
1 1 1 1 0 0 1 
1 1 1 0 1 0 1 
1 1 1 0 0 0 1 
1 1 1 0 0 0 1 
1 1 1 0 1 0 0 
1 1 1 1 1 1 0 
1 1 1 1 1 1 1 
1 1 1 0 1 0 1 
1 1 1 0 1 0 0 
1 1 1 0 1 0 1 
1 1 1 1 1 0 1 
1 1 1 0 1 1 0 
1 1 1 1 1 1 0 
1 1 1 0 1 1 0 
1 1 1 0 1 1 1 
1 1 1 1 1 0 1 
1 1 1 1 1 0 0 
0 1 1 0 B/CL 
0 1 1 1 B/c +-

1 1 1 0 1 0 1 
1 1 1 1 1 0 1 
1 1 1 0 0 0 0 
1 1 1 1 0 0 0 
1 1 1 1 0 0 1 
1 1 1 1 0 0 1 
1 1 1 0 0 0 1 
1 1 1 0 ,0 0 1 
1 1 1 0 0 1 1 



Instruction Bit Pattern 

RAl n 
RARn 
,RBl n 
RBRn 
RET 
RIA 
RIB 
RlA 
RLB 
RZA 
RZB 
SAln 
SAM 
SARn 
SBln 
SBM 
SBP 
SBRn 
SDC 
SDI 
SDO 
'5DS 
SEC 
SES 
SFC 
SFS 
SIA 
SIB 

I
SLA 

.SLB 

I 

SOC 
SOS 
SSC 
SSS 
STA 
STB 
SZA 

i SZB 
TCA 
TCB 
WBCr 

I 

WBDr 
WWCr 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 
1 
1 
1 
1 
o 
o 
o 
o 
o 
o 
1 
1 
1 
1 
1 
1 
1 
o 
o 
o 
o 
1 
1 
o 
o 
o 
o 
o 
o 
1 
1 
o 
o 
D/I 

D/I 

o 
o 

I i 
o 
o 
o 
o 
o 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
o 
o 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

o 
o 
1 
1 
o 
o 
1 
o 
1 
o 
1 
o 
o 
o 
1 
1 
1 
1 
o 
o 
o 
o 
1 
1 
o 
o 
o 
1 
o 
1 
o 
o 
1 
1 
o 
1 
o 
1 
o 
1 
1 
1 
o 
o 
o 

001 
001 
001 
001 
000 
100 
100 
111 
111 
100 
100 
001 
101 
001 
001 
101 
100 
001 
101 
001 
001 
100 
110 
111 
101 
100 
101 
101 

1 
1 
1 
1 
1 
o 
o 

1 0 0 l-oE-_.-"1=-=5'----=n-=--_~___j 
1 0 0 ~oE-~ __ =n_-~I ___ ~~ 
1 0 0 l-oE-...:..._--=1=5~-......!.n~_~~-l 
1 0 0 oE_ n-l ~ 

o oE_ -+ 
1 oE_ -+ 
1 oE- -+ 

H/H cis oE_ skip -+ 
HIt{ Cis oE_ 
o 0 oE_ 
o 0 L.,....;..oE-__ -..--______ -+___j 
1 0 ...--=O_-'O"--'_oE-__ ......:n:...:...-~I __ -+ _ __l 

HIt{ Cis oE_ skip _+ 

o 1 L-...;.O·--OO--.I-:---=---n-_-l----+~ 
1 0 O~---=,--L.-. -'-....-----__ . ___ -+----j 

H/p, cIs ~oE_ _+ 
skip 

H/R CIs oE_ _+ 

o 1 L-..-C-O===O==I=oE_====n=-==I===~=: 
1 1 ~~ ______ . ___ Sk~iP _______ ~~ 
o 000 1 000 
o 0 0 .-.:O~--.::O~....:::O~_..::::.O_.:::::.-0-l 
1 1 I oE_ 

H/R cIs oE_ 
HIt{ CIs oE_ 
1 0 oE_ 
1 0 oE_ 
o 1 oE_ 
o 1 oE_ skip 

1 1 0 HIt{ CIs oE_ 
1 1 0 HIt{ cis oE_ 
1 1 0 HIt{ cIs oE_ 
1 1 1 HIp. CIs I oE_ 
1 0 1 1 0 l,oE_ 
1 0 0 1 0 oE_ 
B/C '! oE_..::..-.-.-..:;-~-..:...-.'---.-----

B/C ~ address 

1 0---1--0--0-'-1 ~ ~ ,I 

I _ skip . 1 0 1 0 0 ~ ________ ._~ : 
o 0 0 0 0 1 0 0 0 0 OIl 
g g ~ 1% ~ ~ ~ g I ~ 0 ~ i 

'I I o 0 1 I/o 1 1 1 1 I oE_ r ~ I 
o 0 1 I/o 1 1 11 0

1 
f: -+ i 

o 0 1 I/o 1 1 1 ..-- _+ I 
o 1 1 0 0 0 0 loE-~-n---l-~ 

Timing 

25-n 
n+9 

25-n 
n+9 
16 
14 
14 
14 
14 
14 
14 

n+9 
14 

n+9 
n+9 
14 
14 

n+9 
14 
12 
12 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
19 
19 
14 
14 
9 
9 

23 
23 
23 
23 

12n+21 l' WWD r 
XFRn 

---------------------------~----------~ 

Notes on bit patterns: 

B/C (Base Page/Current Page) 

C/S (Clear/Set) 

D / I (Direct / Indirect) 

H/H (Hold/Don't Hold) 

1/ D (Increment/Decrement) 

All are coded 0/1 respectively 

skip } if the high bit in the field is 1, the 

address field is negative (2's complement) 

Notes on timings: 

Appendix B: Machine Instructions 221 

All timings are maximum clock times. The clock rate is 6 megahertz. Clock times may vary 
up to ± 5% from the clock rate. 

Any operation using register R4, R5, R6, or R7, should add 7 clock times. 

Any operation using register R8, R9, RIO, Rl1, R12, R13, R14, or R15 should add 5 clock 

times. 

Maximum interrupt lockout time is 239. 

Minimum interrupt lockout time is 2. 

Maximum DMA lockout time is 10. 

Minimum DMA lockout time is 2. 

Interrupt execution is 36. 

DMA read = 3 + IOn + lockout time} n is the number of words 

DMA write = 3 + 9n + lockout time transferred during a request 

Note 1. B is the current value in bits 0 through 3 of the B register. 

Note 2. If bits 0 through 3(B) of the B register are 0 then the total timing is 34. 

Note 3. T is the total number of 0 ~ 1 and 1 -+ 0 transitions in the A register (using an 

imaginary 0 to .the right of bit 0). 

Note 4. B is the current value in bits 0 through 3 of the B register. If B = 0, then the total timing 

is 26. 

Note 5. Z is the number of leading zeroes in the mantissa of Ar2. If Z = 12, then the total timing 

is 69. 



222 Appendix B: Machine Instructions 

Instruction 

15 14 13 12 11 

NOP 0 0 0 0 0 
LDA/B °/, 0 0 0 AlB 
~pA/B °/, 0 0 1 AlB 
AD AlB °/, 0 1 0 AlB 
STAIB °/, 0 1 1 AlB 
JSM °/, 1 0 0 0 
AND °/, 1 0 1 0 
'/oSZ °/, 1 0 '1o 1 
lOR °/, 1 1 0 0 
JMP °/, 1 1 0 1 
EXE °/, 1 1 1 0 
SDo/, 0 1 1 1 0 
E/olR 0 1 1 1 0 
DMA 0 1 1 1 0 
DDK 0 1 1 1 0 
°/cBulL 0 1 1 1 0 
P/ww/Bc/o 0 1 1 1 wIB 
MWA 0 1 1 1 0 
CMY/x 0 1 1 1 0 
FXA 0 1 1 1 0 
XFR 0 1 1 1 0 
CLR 0 1 1 1 0 
NRM 0 1 1 1 0 
CDC 0 1 1 1 0 
FMP 0 1 1 1 1 
FDV 0 1 1 1 1 
MRX 0 1 1 1 1 
DRS 0 1 1 1 1 
MRY 0 1 1 1 1 
MLY 0 1 1 1 1 
MPY 0 1 1 1 1 
SF/os/c 0 1 1 1 0 
RIslJ,A/B 0 1 1 1 AlB 
S/RL AlB 0 1 1 1 AlB 
Sss/c 0 1 1 1 1 
SA/BP/M 1 1 1 1 AlB 
SOlEc/s 1 1 1 1 olE 
RET 1 1 1 1 0 
TCA/B 1 1 1 1 AlB 
CMA/B 1 1 1 1 AlB 
CLA/B 1 1 1 1 AlB 
AA/BR 1. 1 1 1 AlB 
RlsA/BR 1 1 1 1 AlB 
SA/BL 1 1 1 1 AlB 
RA/BL 1 1 1 1 AlB 

Approximate Numerical List 
Bit Patterns 

Bit Pattern 

10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 0 0 0 

Address Field 

0 0 0 0 0 0 0 Register Address 

0 0 1 0 0 0 0 °/, 0 0 0 
0 0 1 0 0 0 1 E/o 0 0 0 
0 0 1 0 0 1 0 0 0 0 0 
0 0 1 0 0 1 1 1 0 0 0 
0 0 1 0 1 0 u/L °/c 0 0 0 
0 0 1 '1o 1 1 P/w c/o I Register Address 

0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 Y/x 1 0 0 0 0 0 
0 1 0 1 0 0 0 0 0 0 0 
0 1 1 0 0 0 0 N=# of words 

0 1 1 1 0 0 0 binary=(n-1) 

0 1 1 0 1 0 0 0 0 0 0 
0 1 1 1 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 1 0 0 0 0 1 
0 1 1 0 0 0 0 0 0 0 0 
0 1 1 0 0 1 0 0 0 0 1 
0 1 1 0 1 0 0 0 0 0 0 
0 1 1 0 1 1 0 0 0 0 1 
0 1 1 1 0 0 0 1 1 1 1 
1 0 sic 1 Flo SldpField 

1 0 Rls 0 ll, if bit 5 is 0, then skip to(p+n), 

1 1 sIR Hlp, cis n=bits 0-4 

1 0 sic 1 0 if bit 5=1, then skip to(p-n), 

1 0 P/M H/fi cis n=two's complement of bits 0-4 

1 1 cis H/ji cis 
0 0 0 1 0 complemented skip field 

0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 
0 0 1 0 1 0 0 1 1 1 1 
0 0 1 0 0 0 0 Shift Field 
0 0 1 Rls 1 0 0 in source,n=1-16 

0 0 1 1 0 0 0 binary= (n -1) 

0 0 1 1 1 0 0 complemented shift 



Appendix C 
Pseudo-Instructions 

The following table lists the available assembler pseudo-instructions with a short description of 

each, and the page number of the more detailed description listed elsewhere in this manual. 

223 



224 Appendix C: Pseudo Instructions 

Instruction 

ANY 

BSS 

COM 

OAT 

END 

ENT 

EQU 

EXT 

FIL 

HED 

IFA 
IFB 
IFC 
IFD 
IFE 
IFF 
IFG 
IFH 
IFP 

INT 

LIT 

LST 

NAM 

REL 

REP 

SHO 

SKP 

SPC 

STR 

SUB 

UNL 

XIF 

r ;:~M" 1'" 

..... , 1_: 

IFMj-"1 

~ .... IT 

Form 

{expression} 

{expression} [ ,; {expression} [, ... ] ] 

{name} 

{symbol} [,. {symbol} L ... ] ] 

{expression} 

{symbol} L {symbol} [" ... ] ] 

{comment} 

{numeric expression} 

[ .. +) ] 

{expression} 

tH=4i'1 {name} 

~':::._;-i {expression} 

[ "+i ] 

,::::p,= {integer expression} 

-::-~F: [ (>1<) ] 

Description 

Speci{ies a common or subroutine 
declaration to be any type 

Reserves a block of memory 

Preface for assembly language common 
declara tions 

Defines data generators 

Designates the end of a module 

Identifies entry points in the module 

Defines a symbol 

Identifies external entry points 

Specifies a subroutine declaration to be a 
file number 

Source listing control for top-of-page with 
change of heading 

Beginning of conditional assembly 

Specifies a common or subroutine 
declaration to be an integer 

Reserve memory for literals and links 

Source listing control for enabling the 
listing 

Designates the beginning of a module 

Specifies a common or subroutine 
declaration to be full-precision 

Repeats instructions 

Specifies a common or subroutine 
declaration to be short-precision 

Source listing control for top-of-page 

Source listing control for printing blank 
lines 

Specifies a common or subroutine 
declaration to be a string 

Preface for a subroutine entry point 

Source listing control for disabling the 
listing 

End of a conditional-assembly block 

Page 

112 

56 

128 

57 

17 

77 

71 

77 

110 

64 

66 

110 

74 

61 

17 

110 

59 

110 

63 

65 

110 

108 

61 

66 



Appendix D 
Assembly Language 

BASIC Language Extensions 
Formal Syntax 

The following is an alphabetical list of the BASIC Language extensions provided by the Assem

bly Language ROMs. For a full discussion of their semantical meanings and applications, 

consult the indicated pages in this manual. 

Assembled Location (page 4) 

{symbol} [ :' {BASIC numeric expression} ] 

{expression} [ , {BASIC numeric expression} ] 

where: 

{BASIC numeric expression} serves as a decimal offset from the given label or constant. 

{symbol} is an assembly location. It may be either a label for a particular machine instruc

tion (in which case the address of the associated instruction is used), or an assembler

defined symbol (in which case the associated absolute address is used), or a symbol 

defined by an EQU instruction (in which case the associated value is used). 

{expression} may be a numeric expression or a string expression. If numeric, a decimal 

calculation is performed and the result is interpreted as an octal value; if the result is not 

an octal representation or an integer, an error results. If a string expression is used, the 

string must be interpretable as either an octal integer constant or a known assembly 
symbol (see {symbol} above). 

DECIMAL Function (page 184) 

D [C I t"1 Fl L. ({BASIC )lumeric expression} 

225 



D: l!\ssE:mbl~/ Language BASIC 

IADR Function (page 185) 

J .. ! :::!:::H~:' ::: {assembled location} 

IASSEMBLE (pages 60-67) 

.. LJ···!·:::: :::); ...... !! ...... E::: {module} [ :' {module} [ , ... J J [ ; {option} L {option} [ " ... J J J 

..... :····1 ...... ;':::::;\::: ... ; :::H .. \... U·····lL. L. ... :J [ ; {option} [ :' {option} [ , ... J J J 

where {module} is the name of an existing module in the source program. 

{option} may be any of the following: 

IT l·iF;:::::; {numeric expression} 



Appendix D: Assembly Language BASIC Language Formal Syntax 227 

IBREAK (pages 174-180) 

•. .!:::::.<i::: ... : .... :)--::. [.u: (·r·:::::::] {address} [ ; {counter}] [ C::: :L. ... L. ... {subprogram} ] 

-.- .. _. _.- .. _ .. _. 
: ~ .... ; l'-:::~ : ... ~ .. --~ : .. : 

where: 

[ 1::::::::rr f::l ] {address} [ ; {counter}] [ 

[ :U:::=rU~::: ] {address} [ ; {counter}] [ 

[ c:: F:l L. .. L. ... {su bprogram} ] 

, " .. _ .. , .. _ .. [ c~>y:=:; LJ E: {line identifier} ] 

[ c;c)"r C:: {line identifier} ] 

{address} is an assembled location. 

L.J1:::: {line identifier} ] 

() {line identifier} ] 

{subprogram} is the name of a BASIC subprogram. 

{counter} is a numeric expression. 

{line identifier} is a line in the BASIC program. 

ICALL (pages 107-111) 

:::::( .. ::::::::: ..... 1... ... {routine} [ ( {data item} [ ; {data item} [ :' ... ]] 

where {routine} is the label associated with a SUB pseudo-instruction sequence and {data 

item} takes on the same forms and attributes as parameters in BASIC's CALL statement. 

ICHANGE (page 187) 

(··i(:~;i:::::: {assembled location} () {octal expression} 

ICOM (pages 19-22) 

:r C::CH'1 {integer constant} 

IDELETE (pages 22-23) 

. .1.. 1.. ~:=-. L_ .. c __ ·i,.··· ;,_.:: ... {module} [ .,: {module} [ ~ ..... ] ] 

where {module} is the name of an existing module in the ICOM region. 



228 Appendix 0: Assembly Language BASIC Language Extensions Formal Syntax 

IDUMP (pages 181-183) 

I DLJ(H~::' {location} [ :; {location} [ :; ... J J 

where {location} has the following syntax: 

[ {mode selection} J {address} ["Tei {address} J 

with {address} an assembled location and {mode selection} taking on any of the 

folloWing forms -

f:i':::;C: for ASCII character representation 

B I (~ for binary representation 

for decimal representation 

for hexadecimal representation 

iJCT for octal representation 

ILOAD (page 22) 

.L ...... C:H::nJ {file specifier} 

where {file specifier} is of the same form as elsewhere in BASIC (see Mass Storage 

Techniques manual, or Operating and Programming manual). 

IMEM Function (page 186) 

.Li·'iL ... i' ({assembled location} 

INORMAL (page 179) 

" ,~-,·,c il... ... [{address} J 
where {address} is an assembled location. 

IPAUSE OFF (page 174) 



Appendix 0: Assembly Language BASIC Language Extensions Formal Syntax 229 

IPAUSE ON (pages 171-174) 

ISOURCE (pages 49-54) 

{source line} 

where {source line} may take either of the following forms -

[ {label} :' J {action} [ i {comment} J 
[ {label} J' {comment} 

and: 

{label} is of the same form as elsewhere in BASIC; 

{action} is a machine instruction, pseudo-instruction, or data generator; 

{comment} is any combination of characters 

ISTORE (pages 23-24) 

where: 

{module} [ :' {module} [ " ... J J :: {file specifier} 

U:::!i ... J._ .. J ~ {file specifier} 

{module} is the name of a module currently existing in the ICOM region. 

{file specifier} is of the same form as elsewhere in BASIC (see the Mass Storage 

Techniques manual or the Operating and Programming manual). 

LITERALS (pages 72-75) 

= {expression} L {expression} L ... J J 
{expression} may be absolute or relocatable 

OCTAL Function (page 184) 

iJC::TRL ({numeric expression} 



230 Appendix D: Assembly Language BASIC Language Extensions Formal Syntax 



Appendix E 
Predefined Assembler Symbols 

The assembler has predefined a number of symbols and has reserved them as references to 

special locations in memory. Each of these locations has a special meaning and function. You 

may not redefine these symbols. They are -

Name 

A 

Ar1 
Ar2 

B 

Base_page 

C 

Cb 

D 

Db 
Dmac 

Dmama 
Dmapa 

End isr high 

End isr low 

Isr _flag 
Isr_psw 
Oper_1 

Oper_2 
P 
Pa 

R 

R4 

R5 
R6 
R7 

Result 

Se 

Utlcount 

Utlend 
Utltemps 

Description 

Arithmetic accumulator 

} BCD arithmetic accumulators 

Arithmetic accumulator 

Base page temporary area (50 words) 

Stack pOinter 

Block bit for byte pointer in C(most significant bit of address 138) 

Stack pointer 

Block bit for byte pointer in D(second most significant bit of address 138) 
DMA count register 

DMA memory address register 

DMA peripheral register (lower 4 bits of address 138) 

) Reserved symbols for use with interrupt service routines 

} Arithmetic utility operand address registers 

Program counter 

Peripheral address register (lower 4 bits of address 118) 

Return stack pointer 

) 1/ 0 regist~rs 
Arithmetic utility result address register 

Shift-extend register 

} Reserved symbols for writing utilities 

Each predefined symbol references a particular location in memory, except for the Utlend 

symbol, which refers to an execution address of a system routine. A graphical representation of 

these locations, plus others of interest, is presented on the next page. 

231 



232 Appendix E: Pre-defined Assembler Symbols 

address* 

o 

37 
40 

min=41 

max= 
77756 

77777 

100000 

170665 
170666 

170737 
170740 

177617 
177620 

177701 
177702 
177703 

177704 
177705 

177767 
177770 

177773 
177774 

177777 

CPU 
registers 

(reserved) 
(at least 1710 words) 

user data 
(ICOM area) 

(reserved) 

Return stack 

(reserved) 

Base_page 

Oper 1 

Oper 2 

Result 

(reserved) 

Ar1 

(reserved) 

* in octal representation 

~ . starting address 
dependent upon 
system needs 

\ Cb .... 

Db-address 
dependent upon 
starting address, 
and 
length of ICOM, 

A 
B 
P 
R 

R4 
R5 
R6 
R7 

(reserved) 

~ (reserved) 

I I 
l-/" Dmama 

Dmac 
C 
0 

Ar2 

Se 

(reserved) 

I Pa 

I Omapa 

address 
o 

2 
3 
4 
5 
6 
7 
10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 

37 



Utility Name 

Busy 

Error exit 

Get_bytes 

Get_ elem _bytes 

Get file info 

Get info 

Get element 

Get value 

Int to rei 

Isr access 

Mm read start 

LOA with: 

address of 
bit pattern 

error 
number 

address of 
storage area 

address of 
storage area 

address of 
storage area 

address of 
storage area 

address of 
storage area 

address of 
storage area 

N/A 

address of 
ISR 

address of 
mass storage 
descriptor 

LOB with: 

address of 
parameter 

N/A 

address of 
parameter 

address of 
array info 

file 
number 

address of 
array info 

address of 
parameter 

address of 
parameter 

N/A 

select code 
in bits 0-3; 
access 
code in 
bits 4-5; 
trial 
counter 
bits 8-14 

N/A 

Exits 

RET 1 

None - returns to 
BASIC 

RET 1 

RET 1 

RET 2 - normal 
RET 1 - file unassigned 

RET 1 

RET 1 

RET 1 

RET 1 

RET 1 - linkage not 
establish ed for 
reason found in 
register A: 

- 1 = resources 
unobtainable 

- 2 = select code 
linked to 
another ISR 

RET 2 - normal 

RET 1 - memory overflow 
RET 2 - normal 

(A contai.,s mass 
storage transfer 10) 

Other 

Storage area consists of: 
1st word - starting byte 
2nd word - number of bytes to be 

transferred 
3rd word on - sufficient space 

for string 

Array info obtained by Get_info 
utility. Relative element number 
must be stored in array pointer 
(word 16) of array info. 
Storage area same as in Get bytes. 

Storage area contents after return: 
word 0 - lower 16 bits of file address 
word 1 - number of defined records 
word 2 - current record number 
word 3 - current word in current record 
word 4 - size of defined record 
word 5 - mass storage unit specifier 
word 6 - buffer address 
word 7 - check read (O=off, 1 =on) 
word 8 - high 7 bits of file address 
word 9 - (reserved by system) 

Storage area must be at least: 
3 words - simple variables 

18 words - arrays 
for arrays, add 3 words for each 64K 
bytes in your machine's memory 

Array info obtained by Get info 
utility. Relative element number 
must be stored in array pointer 
(word 16) of array info. 
Storage area must be sufficient 
size to hold value. 

Storage area must be sufficient 
size to hold value 

Load address of integer into 
Oper 1 and address of storage 
area into Result. Storage area 
must be at least 4 words. 

select code is 0-7 for low-level or 8-15 for 
high-level; resource code is: 
o - no resources 
1 - asynchronous access 
2 - asynchronous access with DMA 
3 - synchronous access 

trial counter is number of attempts before 
aborting (RET 1, with A set to - 1) 

Mass storage descriptor is 3 words containing: 
word 1 - mass storage unit specifier I 

word 2 -least significant 16 bits ofrecord number 
word 3 - most Significant 7 bits of record number 

Description 

Retrieves busy bits for a BASIC variable 

Aborts execution of ICALL statement, 
setting an error number 

Accesses substrings (or parts of arguments) 

Same as "Get bytes" used for accessing elements 
of string arrays 

Accesses a file-pOinter 

Returns the characteristics of a variable 
passed as a parameter or existing ~n common 

Same as "Get_value", used for elements in 
an array 

Returns the value of a BASIC variable 

Data type conversion from 
integer to full-precision 

Establishes linkages for interrupts 

Prepares to read a physical 
record from mass storage 

Page 

130 

191 

119 

120 

164 

114 

118 

117 

104 

143 

158 



233/234 

Utility Name LOA with: LOB with: Exits Other Description Page 

Mm read xfer mass storage address of RET 1 - transfer incomplete Storage area must be at least 128 words - -
transfer ID storage area RET 2 - transfer complete Mass storage transfer ID would be returned 

Appendix F 
(A contains 0, or from Mm read start utility. 
error number encountered Storage area rec~ves transferred information Reads a physical record from mass storage 159 
during transfer) Utilities 

Mm write start address of address of RET 1 - memory overflow Mass storage descriptor same as in Mm _read_start. Writes a physical record to mass storage 161 - -
mass storage storage area RET 2 - normal Storage area must be at least 128 words and contain 
descriptor (A contains mass information to be transferred 

storage transfer ID) 

Mm write test mass storage N/A RET 1 - transfer incomplete Mass storage transfer ID is returned from Verifies a physical record was 161 - -
transfer ID RET 2 - transfer complete 

(A contains 0, or error 
Mm _write_start utility. written to mass storage 

number encountered 
during transfer) 

Printer select select code printer RET 1 Changes or interrogates select-code 166 -
width (A contains previous for standard printer 

printer select code; B 
contains previous printer 
width) 

Print string address of N/A RET 1 - memory overflow String must be in same form as standard string Outputs a string to the standard printer 167 -

string RET 2 - I STOP I pressed 

RET 3 - normal 

Put _bytes address of address of RET 1 Storage area same as Get _bytes Replaces substrings (or parts of arguments) 124 
storage area parameter 

Put elem _bytes address of address of RET 1 Same as Get elem _bytes Same as "Put_bytes", used for accessing elements of 125 
storage area array info string arrays 

Put element address of address of RET 1 Same as Get element Same as "Put value", used for elements in an array 123 - -
storage area array info 

Put file info address of file RETI - file unassigned Same as Get file info Manipulates a file-pointer 165 - - - -
storage area number RET 2 - normal 

Put value address of address of RET 1 Changes the value of a BASIC variable 122 -
storage area parameter 

Rei math number of execution - RET 1 Address of first operand into Provides access to all the arithmetic routines 99 
operands address (A contains 0, or an error Oper _1 and address of second operand 

number) into Oper_ 2. Address of result 
area into Result. Execution address 
is for the desired routine. 

Rei to int N/A - N/A Overflow bit may be set Address of the value to be Data type conversion from full-precision to integer 102 
converted should be stored 
in Oper _I, address of storage 
area of integer into Result 

ReI to sho N/A N/A Address of the value to be Data type conversion from full-precision to short 103 -
converted should be stored in 
Oper _1; address of storage 
area for converted number 
should be stored in Result 

Sho to reI N/A N/A Same as ReI to sho Data type conversion from short-precision to full 105 - - -



Appendix G 
Writing Utilities 

A utility, essentially, is a "special" assembly language subroutine. What makes it special is a set 

of instructions which keeps it from being displayed when a program is being stepped through 

using the mID key. This provides some manner of security for the code in the routine from the 

casual user. 

The following must be done to make a section of code into a utility -

1. The entry point for the utility must consist of the instruction -

2. Each exit point from the utility must consist of the following instructions -

·!····i:· .. ········:= 
.LJ .::::: I::~ .. 

i::;;:<i:::·····-;--· n (n may be any number, - 32 through + 31, dep~nding upon the desired 

returning point) 

For example, here is a simple utility to increment a private counter -

::;DLiF:C:F 
::::;OUPCF 
':::DUF:CE: ~:ET 

235 



236 Appendix G: Writing Utilities 

It is not required that a utility actually be a subroutine. It may also be in-line code by replacing 

the RET with JMP *+2. By making a section of in-line code a utility, you can make your @ill 

actions in debugging simpler. If you already know what a section does and don't want to have 

to step through each instruction in that section each time it is encountered, you can make it into 

a utility as above. Then, whenever it is encountered, the section is stepped through as if it were 

a single statement. 

Utilities, and calls to utilities, are not allowed in interrupt service routines (lSRs). 



Appendix H 
I/O Sample Programs 

30 INTERFRCE CARDS RPPLICRBLE ARE: 

..... )l·:::i .... t:: . 
. : ,,'1.'1 

::: .. 1 ::-...: 

· ... ; .. ·;v: 

~~~ SOURCE: 

-.::'::::.=::.!

:::::01.': F' c::[
'::::CURCE::
'::::U.JF:C:E:
:::C!U[:::C::i::::

~bU SOURCE:

500 SU.JRCE:

"j ,:: ":::: I T F:' SF' !:::j! : !:::":

::::'F="i::n "r I (iE: CL"C)Ci<

ct.:: .. ,: .t· ... :

::: 1···· -! ,",

237

238 Appendix H: I/O Sample Programs

::ilC

:'~)·?~3

~;:=:~3

I::;CUECE
I::;CtJFCE
I !:;Ot.lf?CE
l::;OUF:CE

I:;::OUPCE
I :::GUi;::CE

L,lIH :::::Sti'-"i nq
L,lII:

• "¥ :. ... : :

E:~jt21

E::!.IZ!
ISOURCE Write lGJP: WBC H,l

ISseI
E:i:;r:i

"r:: 1": ~~ r' i t e t::, >' t e
D':;:Z :;::;i:.r'i 1'-:(0

L,Df=l ;:::C:t'"
..1'::;1": I",ir'1 'i:":::~, __ l:::,!)t ':::
LDH :::LY

I GET THE STRING PAFAMETER

T F' T}'j E ;:; T J? I f<~;
'Tf-E)",! THEi?E T C;

GET THE NEXT C~~F PJR OUTPUT

! FETUFN TO I:HSIC

l:::;OUFCE
ISCIiJRCE
l:::;OUFCE
lS0UFCE
I:;:;OUFCE
I::;:Cli.JFCE
I:::;OUFCE

SUBROUTINE TO C~TPUT ONE C~~R8~TEF ~n GPIO-LIKE CRFli.

7:20
,?'::::~j

'?4!j
ISOUFCE
I ::::;OUF'CE

I::;CIURC:E
I:;:;Oi.JFC:C

780 ISOUFCE
I ';:;OUF::CE:
I::;CilJRCE

Lil.H .. ;
F-!! i

810 ISOUFCE I

CHARACTER IS PASSED IN H

:;:;F::'C j"ir'i t
::::;-n::i :-:::4
;:;TA F'?
F.ET

SKIP IF CARD IS DOWN
ELSE WAIT FOF CARD
OUTPUT DATA TO CHFD
TFIGGER HANIGHHKE

Appendix H: I/O Sample Programs 239

~~ INTERFACE CARDS A~~LICABLE ARE:

j60~b SERIAL INTERFP:E

110 INTEGER SelE~t code HOLD T~= SELECT lUD~

1 t
,-- HOLD SELECT CODE

EQJATES W~ -~/L~

----, : E

CRS ARE IGNORED.

::::: i . ..i = ... ~:' i .l'"

. :::- ~-'

.i::::.:::.: :"':l:'il-;"i .j'"

::::;'-::::":- INIIIHL1~E THE STRING LENGTH

f._.Ll]"""l ::::::"':T :: : ... ~~l U~ : TO ru! BYIL~ INTO

: ... '::::: ,
.:)!,)i . ..lr::: , ...

C::BL.

240 Appendix H: I/O Sample Programs

'::;OU!:;:'C:::::::
::::;OUi:;:'CE

SIGNRL THIS S RN INPUT
' ... ' !: ! ..)..:;: i·': ":"i-jr'" !'" j··iHj···j]};:;;HHt<E:

i.,,!! !! i rUie: ! •• J)!:;:' TO c:Cn·'1F E:T·E:

TF CHRRIHGE RETURN
'r!"'!E}'! I C:J~OFE IT
~u~C PUi CHHFHCTEF IN STRING
AND BUMP STRING LLNGi W

HHVE WE INFUT 160 CHHFS?

Appendix H: I/O Sample Programs 241

SERIAL INTERFACE (INTER8JPT ENABLE BYTE SHOULD BE CHANGED)

I r1 I ;···~r)i...!'i:. ::~: J:: l i:::; fi ::1

NTEGER Select code
ALLOW FOR l60 CHARACTER STRING
BASIC VARIABLE TO HOLD n~E SELECT CODE

l6l
DC) err H U:: ~'.iOF:K i ... iHI LE I i··rn;::kF::i.JPT
OUTPUT IS IN PROGRESS

2~X! I :::x· d':::if-i';:'·: :U I :;=.:p " OUTF>i..H COi·'iF'L..ETE:::""" i···iE>::T ", ! C:;ET j···iE:f?E i.'~HE]·4 I :::F: Oi.rri::>trr L;;;
210 ~nput COMPLETE.".SO REPEAT

::;Oi.JF:CE:
:::;OL.iG:'CE

330 SOURCE

BVTE POINTER FOk ISR
TE!'lF' FOF: L:::F:'
TEJ-1F' F·OF: I ';::;FO'
EQUATES FOR CR/LF

98032 INTERRUPT ENABLE MASK

340 SOURCE ROUTINE: TO OUTPUT A STRING FOLLOWED BY CR/LF TO A GPIO-LIKE
INTERF0:E USING INTERRUPT.

~b0 SOUkCE
ENTRy ~uINi: Out~~t

SOURCE P~~AMETERS: 1) INTEGER CONTAIN[NG SELECT CODE j i . ..! 14

410 SOURCE

440 SOURCE

46U
4"70

49U SOURCE

SiCI

57[1

::;Oi.JF:CF
:::;DiJRC[
:::;OUF:CE
:::;C)iJF: (:1::

S8U SOURCE
SOUF?CE
';:;:OiJFCE

STRING TO BE OUTPUT

.i.:::! SELECT CODE (~T ~c
164 CARD OR PERIPHERAL DOWN

LOAD A ii iH SELECT CODE
LH~LK FDR VHL1U RANG[(1-14)

I:::: I \,'E: [RkCF:' i '=.:! IF:·
T ':::: (IUT· C·I::::· ::;:'Ai<C;r::·

S[[IF CARD IS OK
FIRST SELECT I"'· 1-: T':i"'"

! !_il.i!:::.

242 Appendix H: I/O Sample Programs

:::;OU F:~C E::
::::;C)UFC:E

878 SOUFCE

! Ti~i .. -.; ;.-.

!"'.:UFi

'::};:::,1.'i:···": LDi:::: =:Li::;.::j.
.:.: :::: ;~.:

900 SGJFCE

.! t·::····:_
• 1 ••••••• _.

:-. ,'" .) F~~ C: E

:::;CUF:~CE

:::;CUF~CE

::;CUF.~CE

.. r:;I"-j E::"·l'"·cr-- "" .. :.:.'

L:DA ::::U

':::;T·j::j j:;:::::
U:n::j p.::..
FiDA ::::-;:::

Fmf~ =··"·1
IOF.~ ::;b 11
LDI =1

A])f:; =:::~::

IF t.:; . .!! L :Ut·(···,·· ' .. :;i::: i

Cy:: T i i·n:· ::::T P T ! ··n, F'i::--n: i"ii' ii::·T E:::::;:

~~T UP BYTE POINTER FOR ~D

TO GET LHH~ FROM STRl~:

BE :::/ .. H .E: Ht-fD rrUD ;:? ·Te: j C' ,,:::;., :·1

... .'u I:::;F: >.iIL..:"'. C! . .FTF'r:T" (.. :P : i:···

SEND n~E DATH BYTE TO CRRr

RESAVE BYTE POINTER

"!~! it:"
i ~ ! t ...

DEPENDING ON WHETHER THE
SELECT CODE IS OR LOW
CALL THE CORRECT TERMINATION
F~:CUT I r·~E

AND NOW TRIGGER AN END CF

CORFECT MASK WOFD MUST BE
CALCULATED BY A COMPUTED
SHIFT INSTRUCTION
::::;A')E TH 13 !"IA::;~:::

ANR U3E MAGIC CODE TC
TRIGGEF THE ~UL BRANCH

Appendix H: I/O Sample Programs 243

244 Appendix H: I/O Sample Programs

1f:! THIS PF.: (1i:;F.: Ar'1 HiPUr:; A ~:;TF.:H~G U::::I!"jG HHEf<:F.:UPT FF.:Of'1 A GPIC--LH=:E HHEFFACL
20
30 INTERFACE CARDS APPLICABLE ARE:
413

16 BIT FA~::ALL.EL

BCD 6~~i

70
813

'38033
'38~):36 8ER I AL HHEPFACE .:: I tHERFJJFT H~f'{BLE B'y'TE :::HOULD BE CHtit'jGED::'

'30 I Cot'1 1000
lee DIM InputS[16e] ALLOW FOR 160 CHARACTER STRING
1113 INTEGER Select code BASIC VARIABLE TO HC~D THE SELECT CODE
1 ~~e I tiS::;Et'1BLE
1 :::0 I HPUT II ::;ELECT CODE TO F.:Ei=tD FRet,,!,,?!I, ~:;e 1 E'C 1:,_::: ode
140 m,j nH #::;e 1 ec t COdE:' GO TO I:=T don~::' ::;ET UP nm OF L It',:E BF.:At'jCH - -
15(~! ICfLL EntE't-' ___ !;)F:.i':",, __ int(::::elec 1:,_codE') ! ::::Tf'iRT THE READ OPERiiTIOH
11::;0 !
17[1 I CAI....L F::E',3,d j""'e::::,i .. 41 \. .:: I npl.n,:$:)
1::;(1 I!I::;F' iIF'FiR··(ff:iL. ;:;:~E::;:JL."r:::::!';; Il···lf)t~t.$

WHILE WAITING RJR IT TO CCMPLETE.
DISFLAY THE PARTIFL RE8UI....TS '

1 '3[1 GOTO 1 ?~J

~:;::1~i L:.f'" donE': ICALL F:E',3,d,_,r"'E':=,U'!\.(Inpi..~tS)

,'220 DI::;P II HlPUT Cm'1PLETE •• " :::TPH,jG:::"; Input:$:

i"Fit'i Enter~_",qpi o_,i nt
26~J

:::OUF<:CE
:::OURCE E>:;"r C~t~·t !').:'=i OJ : . ..J~=', FltJt. !.).::t.'~ t~t-:::·. Er··r-·cij···:._E::'>:: -j t., I :::.f-~.-::t.C C E":::·:=·

29~1

3~Xi

:310

:::::!:;~i

:36l1

::f.2~.3

;~~:~! ~:i

SOURCE Select code:BS;

:::OURCE :::,::i'''!!::<:::5:
~::;CHJRCE Cr": EQU l3
SOURCE Lf: EQU 10
:::QURCE En::i,!::' 1.E' f;'>:~5k ~ EOU ~:;::0~m

SCiURC:E
30URCE
30URCE
::;OUF:CE

F.: CiiJ T H1E:::; TO HjF'UT i:i ::;"n::: If';c;
IHTEPFACE U3ING IHTERRUPT.

RESERVED TO HOLD SELECT CODE
! RESERVED FOR 160 CHAR STRING

FiTE POINTER FOR ISR
! TEr'1P FOR I SR

TEi"lP FOR I :::;F:
EQUATES FOR CR/LF

98032 INTERPUPT ENABLE MA~¥

FOLLOWED BY LF FROM A GPIO-LIKE

::;OUF:CE
SOUF:CE

EHTRY F'OINT: Enter o lnt

SOURCE PARAMETER: 1) INTEGER COHTAINING SELECT CODE
::;Ol...!f<:CE I

POSSIBLE ERRORS: 19 SELECT CODE OUT OF RANGE
164 CARD OR F'ERIFHERAL DOWN

450 SOUPCE
1 t

4?0 SOURCE
SOURCE PARAMETER:

540

':::OI...lF:CE !

':;OURCE En'\,ET
'::OUF'CE

::;OURCE
::;OtWCE

620 SOURCE

I f'~T
oint: LDA =Selec GET THE SELECT CODE FARM

! UJAD A WITH 3ELECT CODE
CHECK FOR VALID RANGE (1-14)

GIVE ERROR 1'3 IF 3ELECT CODE
1 ::;. OUT OF RAf,~C;E

65~J

670
6:::~3

69~:1

710

'300
91 ~:1
920
930
940

990
1~':'100

H~i10

1[120
H3:~:O

1060
1~37ti

10:::~:i

1090
IHh3
1110

1130
1140

i -i .'-1-01:

11'='>':'

i 170
1 i::)3
1190
1200
i210
122~J
of '-1'-11-.1

1 .:::.-.:'"~!

L..DA ::;.:,·1 ec t code
::;Tf:j p:::.
~:;::;C: C:.:ir·c! ijC:i.=.i:'··1

LIlA = I :=~r"

Appendix H: I/O Sample Programs 245

SEE IF CAPD IS OK
FIRST COpy SELECT CODE TO PA
::;KIP IF DOW'4
::;ET UP Ar'~ ISR ::;O!...!f~:CE

::;OUPCE
SOUPCE
::;Oi...1F.: CE
::;OUPCE
::;OUF.:CE
::;j]UI~:CE

::;OUF.:CE
::;OUF.:CE

L..DB =(iO*256)+(1*16)!
ADB ::;e'l <:'C t C odo::'

i0 TRIES. PESOURCE=1=ASYNC

.JSt'1 :r. :::.r-· ·::!.cc Eo';::·:::'

::;TA ::;t r- i r'iI;!
LDA ::::::::;tr'inq

I=ml:j =1
STA B~~e pointer

IF COULDN~T GET IT, RETPY
IHITU'1LI::E :E;'r'TE COUHT OF
STRING BUFFER AREA
::£T UP B,"!'TE POIHTEI~: FOP E;F.:

I TO PUT C Hfi F.:::; It~TO :::rrR I ['iG

::;OUPCE
::{IUPCE
::;OUPCE
::;OI...iPCE
::;OUPCE

SFC * WAIT FOP CAPD
LDA R4 START FIPST INPUT OPERATIOH

::;OURCE C:::.t"··d dC,I ... II···I:
SOURCE
':;OURCE

RET

LDf1 =164
.J:::; t'1 Er-r'0 t-· e>:: i i:.

::;CIi..JRCE P::;;r'ri"! ::;.tr·: ::;Tf~:

::;OURCE F.:e.::id (·e~::·iJ 1 t : LDf1 =::;t r' i 1"';;;;i
SOUPCE LDB =Parm str

::;OURCE
::;OUF-TE

::{IURCE
::;OUF.:CE
SOUF.:CE
SOURCE
::;OUF.:CE

::;OURCE
SOUF.:CE

::;OUF.:CE
::;OURCE

::;OURCE
::;OUPCE
::;OUF.:CE

~:ET

L.DA :34B
::;TA ::::~;F

L_I1i=i

CBL.
L.I1A F.:4

LIlA C
::;TA B! . ..'te pDinter'
LIlA ::;t to. inq
i=iDA =i
::; Hi St. r"'i r-<~
CPA =160

SOURCE .JMP Terminate
SOURCE another: STA R7
SOURCE JMP Exit
::;OURCE
SOURCE Terminate: LDA =0
SOURCE STA R5
::;OURCE
':;OUPCE

:=.:;otJPCE
:=':;OUF-:CE

ADA =-.;::

.JSM End i:::.r low,I

..It'IF' *+2
3SM End i~~ iqh,I

EHAFLE THE CARD TO IHTERRUPT

GO BACK TO BASIC.

SINCE I' AM GOIHG TO DO STACK
OF'EF.J=iTI ut·E, I t'1U::::T :::;F!"/E 3:;
AND INITIALIZE IT

SET UP THE BYTE POINTER
SO I CAH PUT A DATA BYTE
FHO THE ::;TF: I He;

I C;ET THE t··!E>-:;T CHARACTER F F.: 01'1
THEH CARD ••• IC;NORE CR/S

IF LINE FEED, THE TERMINATE
THE I ':;R TFJH·~::::;FEf<:

EL:=':;E PUT CHAF'i=iCTEP I r·i STR I i···iC
I SAVE NEW E~TE POIHTER

HAVE WE RECEIVED i60 CHARS
IF YES, THEN SHUT DOWH
START ANOTHER HANDSHAKE
THEN EXIT THE ISR

DEPENDING ON WHETHER n~E
SELECT CODE IS HIGH, OR L.OW
CALL THE CORRECT TERMINATION

246 Appendix H: I/O Sample Programs

12':5(1
i260
i27(1

129[1
1300
i3i(1

1 :]4~3

1 ::;;:':~(1
14(1)

141(1

i4:::a3
144~~1

14;50
146(1

::;()i...i~~CE

SOUFCE

:::;:OUF.~CE

::;OUF:CE
:;;;:OUF:CE
30UF.:CE
::;OUPCE
30UPCE

';:;OUf;,:CE
:;::OUFCE :;;;:b'! 1 ::
::;;OUF.:CE
::;OUF:CE

LDfi F;:j.
ADH ::; .. ···1

:::TA
LDfi
:::::TH

AND NOW TRIGGER AN END OF
LINE BRANCH. TO DO THIS, THE
COPFECT MH3K WC~D MUST BE
CHLCULHTED BY H COMFUTED
SHIFT IN3TRUCTION

HND USE MAGIC CODE TO
TRIO:ER THE EOL BFA0:H

RETUPN FROM INTERRUPT
BIT MHSK FOF IN3TFUCTION

Appendix H: I/O Sample Programs 247

10 THIS ~~OGRAM OUTPUTS A STRI~~ USING DMA TO A -10 NTERFACE.

30 INTERFACE CARIS APPLICABLE FPE:

CC)I"1 1. [101:::i
I r'i I I"·!pi . ..it ::I:. I: 16Ci J
NTEGER Select code
ri ':::; ::;[I'iI: L..E

Hi .L..U~·~ 'ii·, t;::>:i C:HHRi:1Cn::F' '::;T'F'I t··le;;
BASIC VAR[ABLE TO HOLD THE S~LEc CODE

i···iF\JT n:=':;EL.ECT (:ODE TO l·.iF ITE TO?", ::::;,:::.'j ec
N INT #Select code GOTO

141:::[Inpi . ..it: L.Ir·lFUT "'=':;'TFI i"Y:; TC) I.'~P:::TE":)", I(;~:.;.xt.l A:='::i< l.J3EF i·-l...ib:: '::rrF:II··!C; TCl Oi...iTFUT
l$~i IC!:::!Li Oi . ..rt.P! .. ·it._ ... ':;W:,·i o __ ... cllY;.:::i.(::>,·l '::-C1: >::cck,·, I (;p; ... lt::l:.)

i :::::i~~ I::: I '1-·1
190 (~(}TO 1'?U
2UU

DO UTHEP WOPK WHILE INTERRUPT
ryJTPUT IS IN PROGRESS

! COMPLETE .•. SO REPEHT

SC~RCE NHM Uutp~t_gpi
SOUPCE EXT
SOURCE Select code:B~$1
::;Oi.JRCE ::::'i:. i'"'1 j"<:;::

340 SOURCE

TO HOLD SELECT CODE
RESERVED F~~ 16U CHAR STFING
RESERVED TO EXPAND STRING
T'E:i"lF' n)F: I '::;F'
'TE::i"'iF' FOF: I :=':;F
EQUATES FC? CR/LF

ROUTINE TO (~TFUT A STFI~~ FOL.L.OWED BY CR/LF TO A GPIO-LIKE

37U SOURCE

39U SOURCE
:=':;OL.W:CE
:='::Oi.JFCE

420 3C~RCE

46j~)

470

r.::··-·II··~ ..) .. :::I~.l
i::'".-i ,-..
'._!'·'i'r':.1
r.::-t:"'-01
.. ..1 ..) .. .:'

570

:::Oi...iFCE
::;OURCE

:::;QUF:CE
:::OUFCE
::;Ot..!RCE

::;OUF.:CE
::;OUFCE
::;OURCE

590 SOURCE

INTERFHCE USING DMH.

PHRAMETEFS: 1) INTEGER CONTHINING SEL.ECT CODE Te) 14
~, STRING TO BE OUTPUT

POSSIBLE ERROFS: 19 SELECT CODE OUT OF FANGE
164 CAFD OF PERIPHERAL DOWN

T i-,l-r
.i.!,!!

GET THE SELECT CODE PARM

LOAD H WITH SELECT CODE
CHECK FOR VALID RANGE (1-14)

GIVE EFFOR 19 IF SELECT CODE

::::;OUF<:CE :::>: ok:
::;Oi...iF':CE

SEE IF CARD IS OK
FIRST COpy SELECT CODE TO PA

:::;OUF:CE SKIP IF CARD IS UP

248 Appendix H: I/O Sample Programs

I::J)UPCE
I ::;CU f;:~CF

650 ISCUPCE
66(::
;::;'?~~i

'?30
74~D

?:5Ij

a~::;I;~!

::::6(j

;:::90
90(:j
r:~ 1 ~3
921?1
';r::o
940
'j~:;O

96~:::1

97(1

I ':::;I]!..JRCF
I ';;::OUF:CE
ISCtF:CE
I ::::OUPCE
I:;::;Di.JF.:CE
ISOUPCE
I :::;OUf':CE
I:::;cn..JRCE
ISOUi?CE
I :::::OU I:;,:CE
ISOUI?CE
I:::;;OUPCF
I::::OURCE
I :::;C)iJF:~C:E:
I:::::I)L.n:;::CE
I ::;;OUf;':CE
I ::::;OUPCE
I';:;OURCE
I:::;OUF:CE
ISOU:::,:CE
I:::;OUF.:CE
I::;OI..JPCE
I::;;OtWCE
I::;OUPCE
I::;OURCE
I :::;Oi..JF.:CE
I ';:::OUF.:CE
ISOUkCE
ISCJI.JF::CE
I:::;OURCE
I':::OUPCE
I:::;OUPCE

I:::;OI...!F.:CE
I:::;Oi..,iPCE
I::;OURCE
ISOUF:CE
ISOUF.:CE
ISOURCE
I:::;OURCE !

LDf::: :::: iC4 ! ELSE GIVE EPPOP 164
JSi"i E)-'r-'O::)f"" <:'::'j 1:.

LDB =(10*256)+(2*16)' 10 TPIES~

.JI"·iF~ :::c ()k

L_:D f=j ::::::::; t r· i l""j ;;;~

IF COULDN~T GET IT, PETRY
! GET THE STRING PAPAMETEP

F'OR Di"'iA, THE t··IOF::I·,j'(iL. :::: TF: HiG FOF t'HH L,KH·j·" T DO, THE DfHA t'lI. . .i::::;T
BE STOPED ONE BYTE PEP WC~D~ SO THE FOL.LOWING L.OC~ WILL.
EXF~ND THE STFING AND ADD A CR/LF

LDA =String+l 1 FIR~~ SET UP BYTE POINTEP TO
SAL ! WITHDRAW THE LAST CHARA:TER

F1 D Fi :::~ .. _. 1

L..Dfi =::;t f"'i i"'P:;l+:::::
HDH :::;t("i n';:;i
::;TA Ii
L..DH =L..f
F'L·m A,D
LDfl c.::C(·

PL,W A,D

TCB
SIB *+4
~,.iBC fl, D
Pl,W H,D
F: I B *-~~?
L .. Df:1 ::;t ("i n':;l

L .. DA :::En3.b·1 E' [;';.:;.:::.1<

~::; -r !i F.~ 5
I!t'1A
PET

USE C FOR THE BYTE POINT8~

! NOW COM~JTE A WOPD POINTER
TO WHERE TO PLACE THE L.F

NOW LOOP TO COpy F1L.L BYTES

1 SET UP I~F1 CONTROL. REGISTERS
COI..H·rr ::::I:!:CHflF:::::;-l

1 DMAF1 ~ DF1TA F1DDRE~S

1 3ET I~A ~jTWARDS
ENF1BL.E THE CARD TO INTERRUPT

1 GO BACK TO BASIC.

1010
102~~1

1 ~~i::::~:i
104(1
105(j
1060
1(170
10Htl
l~Y::lO

lH30
1110
1120
11:30
1140
115(1
i i 6~:1
1170
i 1::::(1

I :::;OURCE I :::r : I WILL GET THE INTERRUPT

1190
12~X1

12H3
122(1
12:30
L240

I:::i)URCE
ISOURCE
I::;OURCE
I::;OUF::CE
ISOURCE
ISOUF::CE
ISOURCE
I::;OURCE
I::;OURCE
ISOURCE
ISOUF::CE
ISOURCE
I:::;OURCE
ISOURCE
ISOURCE
ISOURCE
ISOURCE

:::;Hl ::;a'.)E<::~;

L.DA ::::4B

LDA =~j

!:;TA F.:5
DDP
L.DA p.3.
ADA =-::::

3AP *+3
JSM End isr lCM,I
Jt'1P *+2
JSM End isr hiqh.I
LDA P.3. - - -.

ADA =-1
lOP ::;b 11
LDB =1
[::<E A

THE DMA TRA~:;FER IS COMPLETE

! SO DI3ABLE THE CARD

D I ::;;ABLE Dt'1A
DEPENDING ON WHETHER THE
SELECT CODE IS HIGH, OR LOW
CALL THE CORRECT TERMINATION
ROUTIt'~E

AND NOW TRIGGER AN END OF
LINE BRANCH. TO DO THIS~ THE
CORRECT MASK WORD MUST BE
CALCULATED E~ A COM~jTED
SHIFT INSTRUCTION

125f·) I::;OI..JPCE ::;n1:
126121 I::;OUF"~CE LDI:
12?~3 I:;:;OLWCE LDFI
12:::0 I::;OUPCE ::nA
12'3(1 I::;OUF"~CE riD I::
1::::~.Xi I::;;OUPCE LilA
131 ~! ISClUF":CE DIP
1320 I:::;OUPCE lOP
13:3121 I::;OU~~CE :::nA
1:::4(1 I::;OUPCE EI~:

1350 I::;OU~~CE :::;TA
1 ::::6C~1 I:::;OUPCE L..Dfi
1 :::"7(1 I ::;OI.JPCE ::nA
:1.:3:::0 I::;OUPCE PET
139~~1 I30UI:~:CE :;:;b1 1 : :::;BL.
1.400 I::;OU~~CE

141.0 ISOUF:~CE Elm

Eo1 m.::..:::.k
I ~:T=::p:::.I .. .t
=10::::1:
I;, T

J.

:::::~:

Eo 1 m.::..:::·~::

B, I
Ii, I

1:::.1""· fl.9. I;;I, I
~:;.:i ' . .-IEi: ::::5
35B

Oi..~t.PI..-It·._ qpi Ct dm.::L

Appendix H: I/O Sample Programs 249

::;f1' ... 'E TH I::; t'1A::;t:::
AND USE MAGIC CODE TO

! TF:: I GGEP THE ECrL.. n::::Ar·1CH

PETUF.:h FPor'1 I HTEF~~PUF'T
BIT MASt::: FOP INSTRUCTIOH

250 Appendix H: I/O Sample Programs

10 THIS PROGRAM INPUTS A STRING USING DMA FROM A GPIO INTERFACE.

30 INTERFACE CARn3 APPLICABLE ARE:
"i-iJ

16 BIT F'AFAU .. .EL.

·?~::f :r. COI'1 HXj0
80 DIM Input$[160J
90 INTEGER Select code
:L00 It·HEGER C!···l::ir-··.:j.ct·er-· count
110 INTEGER A,C
12~J I ri!:;~::;Et'1:BLt::

ALLOW FOF 160 CHARACTER STRING
BASIC VARIABL.E TO HOL.D THE SELECT CODE
VARIABLE TO HOLD INPUT CHARACTER COUNT

140 ON INT #Select code GOTO Isr done ! SET UP END OF LINE BRANCH ... - . __ .
1:=':;0 :n·;PUT Hr·;Ur·n::Ef~ OF CHf=n:;::HCTEP::;; TC PEi=iD?".C:h::ir··.::I.ct,:::r CDunt
16Ci IC!~LL Ent'::·r-·_ 'Jp·i c, ... _.:Ji"fi.O:i.(:::;,,:··i ec1:.'::ode, C)··I::i.r·.3.cti:?t·~.cOi..Jr-;·;::·> ! ::;TART THE kE!="{D

1.80 IC:=iL .. .L ·r,:::·:::. t .. _drn.::i (C, A)
190 DI:::;P "m'!A CCi .. .ir-H:::;1I ;C:, "ADDRE::;;::;::::" ;A, I

WHILE WAITING, DISPLAY DMA COUNT AND
HD lii~::ES::::;

;~:~jO I::: I-+- 1
2E1 1::;;OTO H::i~j

230 I :~:r dOi"·!~::·: IC!::-lLL. F\"·.:::l.d .. _r·e:::.u·j t .:: Input:$: >
;;~4i::j DE;F'" HiPUT CCit'1F'l...E·T"E.". ;:::;TRH;G:::"; Inpi...it::l::

260
27~:j

:::::90
:30Ci

NAM Enter gpl dff8
SOURCE EXT Get ~81ue,

SOURCE Select code:BSS

:::;OUF'CE Ee
::;OUF~CE ::;a!')E-:::::~5:

3~~ SOURCE

~ilue,Error Qvi~,Isr acc~ss

F:E::;EV/EIi TO i···nL.Ii-·-::::;EL.ECT CODE
RESERVED FOR 160 C~~R STRING
RESERVED FOR EXPHNDED STRING
l"E['1P F·OF.: E:F:

~b~ SOURCE I ROJTINES TO INPUT A FIXED LENGTH STRING FROM A GF'IC

380 SrnJRCE

4~~ S(~RCE !

::;OU!~::CE

::;OUF.:CE
430 SOURCE !

460 SOURCE

~30 SOURCE
::;OUF:CE

::;OURCE !

INTERFACE USING DMA.

ENTRY POINT: Enter

1) INTEQ~R CONTAINING SELECT CODE
~' NUMBER OF CHARACTERS TO REFW (

POSSIBLE ERRORS: 19 SEL.ECT CODE OR CHAR COUNT OUT OF RANGE
164 CARD OR PERIPHERffi_ D(~N

PARAMETERS: 1.. INTEGER TO HOLD CURRENT DMA COUNT

SOJRCE ! ENTRY POINT: 1 t
530 SOURCE

':;OUi::::CE
:;:;OURCE
::;QURCE

580 SOURCE Parm ceunt: INT

i> STRING TO CONTHIN THE INPUT DATA

GET THE SELECT CODE PARM

LOAD H WITH SELECT

:: .. ,"!"i

::::C!UFC:E
:::Oi.JF'CE
'::::O!.)j?CE

230 SOUFCE

-;:"9Ci
::::Uf~

1. 00(j
H~H~

l.H~0

UE!

11.30
1140
11.$3

'::::Ci!.)FCE::
'::::(J)j:;:'CE

::::Oi . ..iPC:[
:::::Cii.Jj:;::CE:
:::;C)UF'C::E

:::;C)UPC:E
:::C)UPCE
::;OU!?CE
:::::Ui...iPCE:
::::()UF.~CE

:::CiUFCE
'::;Oi...iPC:E:
::;:: CiU F: C E:
::;OUf<::E
::;Oi.Jf::'Ci::
::;;OUPCE
:::::()UFCE
':::: CitJ F~~ C E
::::CiUF.:CE
::;CUF.: CE
'::Ct.iPCE

::::UUF:CE
:::UUF::CE
:::CUf~:CE

:::Ut.JPCE

1.1::::0 SUUPCE

1220

1240

=::UUF.: CE
SOUPCE
'::CURCE

: •••. : j •• ..;

·._:i!!!

L..DH ::::1:::.(

LIlt::: ::::"I:.(.. j (!q

f=!Dr:! := :1.

l.r··jl

~=; -r I::! 1- e r(, t==

$ L..r! f:i ::::'r E- l"fq:)

L.DE :c.:C~p::i!····m

.J:::;['1 Put '.).:"1·j : . ..!e

~:;-rA -r ~'ri'!~:::
LIiFl ::::T~.:·rf!t:i

L.Ii:B =P~t:!.::tr···~y!

.J~:;t'l I.).:::i.·i !, .. iE"

F:ET 1
B:::'::: 1

Appendix H: I/O Sample Programs 251

CHECK FUP VALID PANGE (1-14)

CHECK IT FCiR RANGE

SEE IF CARD IS UK
FIRST CUPY SELECT CUDE l~ PA
SKIP IF CARD IS OK
EU;E GIVE EF'ROR 164

IF COULDN/T GET IT, RETPY
INITIALIZE DMA REGISTERS

! i .. JF(CT FCiP C:=iF:D
::::;n::iFT F·IF.:';::;T Il·1F\JT OPEF.:HTICn··~

! ENHELE THE CAFD TO INTEPRUPT

! E~HELE ~?G:ESSER FOR DMH
GCi B~:K TCi EHSIC.

! I MUST PHCK THE STRING FROM
FFC~ 1 BYTE TCi 2 ~:TES PEP

252 Appendix H: I/O Sample Programs

125121 ISOi...!HCE
126£1 ISOURCE
127~j ISOURCE
12i:{~3 ISOUf;.:CE
12'j~j I ~:;;CJi...!RCE
1 :3~~1~3 I~:;OURCE

1 :31 [1 I~;OURCE

1::;;;::121 ISOURCE
1:3:3t1 ISOUF::CE
1:34~) I:::;CI!Jf;.:CE
1 :350 I~30URCE

1:360 I:30URCE
1:37£1 I::;OURCE
1:380 I::;OUPCE I:::.f"' :
1::::'3(~ I::aJURCE
140£1 ISOUf;.T:E
1410 lSOURCE
1420 180Uf;.:CE
14:30 I~:;OUf;.:CE

1440 ISOURCE
1450 I::;OURCE
146~3 I SOURCE
1470 I:::;OURCE
1480 I::;OI.WCE
1490 ISOUf;.:CE
150~~1 ISOURCE
15H1 ISOURCE
152'.3 ISOUPCE
15:3'.3 I:;:;OURCE
1540 ISOUf;.:CE
i55Ei I:;:;OUf;.:CE
1~i6£1 I:;:;OURCE
1~i'?~) I:::;OU!::::CE
i5::~(1 180Uf;.:CE
159~3 I:::'OURCE
1600 I::;;OURCE
1610 I::;J)UF.:CE
1620 I:;:;OURCE
1E:30 ISOi...!RCE
164~3 I::;CIiJRCE
165(1 I:::;OURCE
166~::1 I:::;OtlPCE
1 ~':;·?i~i I::;OURCE
16;3~3 I::;OURCE
16'30 I::;OURCE
1';:"(10 I :;:;Oi.JF::CE
U10 l::;;OURCE
1?20 I30UF.:CE
1'?:3~3 E;OURCE
1740 I:::;OURCE
1'?5~) I9JURCE 3b1 1 :
i 76~J I8Cli...!RCE
1 ?7~~1 I :::CitJF.:C:E

C::E~L

L.ItA 3tt""j n9
TCA
::;;IA .;.:-+4
L,JL,m :B, I
F'DC B, I
RIA *-2
L.DA =:;:;t r' i r,,;/
LIIB =F'.::I.!····rn :::.1:-t"·

.y::;t'·l Pi..~t 1 ••• 81 UE"

RET

LItA :35B
::;TA ~:;.:1f.}fo::·:35

L.ItA :34B
:3TA :35:B
LDA Dr[>~e

F!DA =1
TCA
ADA :::;t t"- i 1""1']

3TA ::;t I'"' i n';;;i
LDA =0
STA J:;;:5
ItItR
L.Dr-=I p.~

ADA =-!:::
SAP *+:3
JSM End isr low, I
Jt,1F' *+2
J:;:;t'1 Er"'il::L i :::r._hi 9h, I
LIlA Pa
I=iDA =""'1
lOJ:;;; :::;td 1
LIIE: =1
E>::E f1
:::;T1:: Ee, 1 iI"I.~:::-k

L.I1B I:::r p:::.!.,.!
L.I1fl = 10":3:t:
::HA B, I
ADE <::
L.DA Eo 1 ril.:'i:::.k
DIJ:;;:
ICIF:

::;"TR
ElF

B,I

::;;TA I:::.t"" fl.SL9,1

STA :::::~iB

F.:ET 1
~:;BL

GET CHAFACTER COUNT

GET A B\'TE
! PACt::: IT

RETUFN RESULT TO BASIC

I WILL GET AN INTERRUPT WHEN
THE DMA 13 COMPLETE

I GET TO HERE WHEN I~A DONE
COMPUTE ACTUAL NUMBER OF
CHARACTERS TRANSFERED

SAVE IN :3TRING LENGTH WORD
D I ;:;;ABL.E THE CARD

D 1 :;:;ABLE Dt-Hi
DEPENItING (~ WHETHER THE

I SEL.ECT CODE IS HIGH, OR LOW
CALL. THE CORRECT TERMINATION
F::OUTINE

AND NOW TRIGGER AN END OF
LINE BRANCH. TO DO THIS, THE
CORRECT MA3K WORD MUST BE
CALCUL.ATED B'y' A COt'1PUTED
SHIFT IN8TRUCTION

1 SA\'E TH I :::; NASK
AND USE MAGIC CODE TO
TR I GGEf;.: THE EDL BRAtK:H

RETURN FROM INTERRUPT
BIT MASK FOR INSTRUCTION

Appendix H: I/O Sample Programs 253

10 98034A HPIB CARD DRIVER
;21:3
3(1 nw A:::;::; HfBL\' LAi--iGUAGE DF.: I VEFS FlF.:E PFW'/ I DED ••• Of-iE FOR OUTPUT AHD ONE
4~) FOR nWUT.. BOTH Hf11,,"E PF:O\'I:::nm··I:::; FOF.: H~CLUDHiG A Bi...!S Cot'1t'1I=ir·m STRU~G
50 FOR ADDRESSING THE BUS.
60

I CALL Hp i b_ .. out pi.At < < I ::;C >, < C'·'iII $: :::.,

I Cf=!U ... Hpi b .. _,;::·,···,te-r· < ISC>, <O'1D!>.
<DATf=!$:> J)

10t~1

110
12t)
1:]0
14(1
l::i~)

16~)

<'.,,'f:IF<:!> J

-< I:::;C:>
<cr'iD!>
<DATA!>
(',/AF.:!>

INTERFBCE SELECT CODE <1 TO 14) (INTEGER)
STRING TO CUTPUT WITH ~rN TRUE
STRING TO OUTPUT WITH ATN FALSE
STRING VARIABLE TO HOLD DFiTA READ FROM BUS

17(1 POSSIBLE ERRORS:
1:::f)

164 CAF.:D i,JA::::; t·40T AI··i I··WIE CfiF.:D 1 '3121
2(1~~1

210
220

~5(i(1

501
<Cf'iD:!::::· Wl::; 1···IOH-t··IULL Pt..!T THE eAfU! l·JA:::; r·~OT ACTI'·lE Cm-nROLLER
<DFHA!> ~·.IAS t··IOfl··NULL BUT THE Ci:jfUi ~,H1::; t·WT ACTI'.,,'ER TAU:::EF.:
< "lAR:!::> L,JAS ::;PEC I F I ED :BUT THE CARD t,.IA:::; t··IOT FiCT I '.,.'E I... I ::;TEt·4ER

;;;::::::0
240 I cot'! 1000
250 INTEGER Se-lect code-
26~:~ DUI Crnd:!:[160:], Data.:!: [160], "/:a.t~! [160]
2?0 I A:::;::;Et'lBLE
~2;::0 H·1F'I...iT "HPIB ::ELECT CODE?",S,;,,·lE·Ct COdE·
290 ON KEY #0 GOSUB Output
300 rn~ KEY #1 Ga::;UB Enter
3H3 PRHH "(E\'O = OI..JTPUT 1<:£'/1 E}·ITER"
:;:2(1 D I ::;p "I DLE"
::::::::0 C;OTO 3;?0
::::40 Output: Ga::;UB Linput emd
350 LIt-Wi..JT ItDATfl TO :::;EHri:=.;It, LL3.t.;:iL!
:;:60
37(1
:;:::a3

~,~;i~~ i;·!pi t:~ ... o~~~'~t :i;~~~.iE.e :.T,-'~ :~;.~:~~ .. :~~rnd$, D.:a.ta$)

F.:ETUF.:H
390 Enter: GOSUB Linr~t_emd
400 rCAlL Hpib ente-r<Se-le-e~_eode,Cmd$,Var$)
4H3 F'f-":nn It _. DATFi PEAD =It;",".::~.r .. $:

420 F:ETUF:f-·/
4::::~3 !
440 L. i npU1:. end: L.H~PI..JT "CO!·'lr'~Al"·m B'y'TE:;:;?", CflKU:
450 F.:ETUF.:t:~
460

490
500
510
C"-II-':
._I~r,:,!

5:;:~Z1

540
55t3
56[1
570

600
61(1

~:;OUF.:CE

::;OUPC:E
::;CiI..iECE en·:d:
:::;OUFCE D.:a.t.;:iL:

i··jAi·'1 Hp·i b
D::T Ge-t '.).::.t.·1 ' . ..Ie, Pl.~t
IS:::; ::::i
EOU Cmd

SOUPCE Select code-:BSS
:::OUF::CE P.::lrrf,_t::t"t-·: B:::;:::;
:::OUF.:CE L.t":
::;OUFCE Cr·:
SOUFCE :::1:..:i 1:. u~::·l :
::;OUFCE ::::-t.:a. t : ... 1:.::.2 :

::;OUF.:CE :::>'-3. t :.4:::.4:
::;OUFCE
SOURCE Out p:a.nn:
SOUF.:CE

EG:!fj 1 ~3

ES:::;
B::;::;

Ir·n

i.).:a. I.-Ie- ~ Er·r··or-·_,::·::<i t
STRI~; TO HOLD CMD I~TES
STRING TO HOLD DATA BYTES
INTERFACE SELECT CODE
POINTER TO PARM PSEUDO OPS
EOUATE:::;

4 WORD::: TO CONTAIN STATUS
BYTES FROM 98034

254 Appendix H: I/O Sample Programs

64~::i

6:~50

660

6'30
·?CC

';;;;O:'.JF.~CE

::::Oi . .JF:CE:
::::Ot.iF:CE:
:;:;OUFCE
:;:;OUF:CE
:;;;;Ci..JFCE
:::;Oi...lF:CE
:;::OUF:U::
':;:OI..Ji?CE:
:::;OUPCE

'::;OUf~:CE:

':;;OI...lFCE

SOUf~:CE:

8S0 srn.JF.£E

CF'A

L..:D:B :::::i'"

L..IiA :::;t.::t t. iJ~::,4
t:ii"1I~ :::::::~·(iI::

I....DH ::::!:=.iCI:i.
}:::;I'·j Fl····j···.:::.!""··

L.Dr{ =I\::i.t.:i

C: 1:: L.

.. mF
i?E·r

:;::IJB
I t·rr

~=;l]fJF:~C:E I::i"""it. !·).::~.r··: ~:::;TF:

'340

1010
i ~~i2fi

SOUF:CE 1···1(,1 c:......;:::·nter··· ~ L.DE =E:nt !==,::j.r·m

:::;OUFCF
:::;OUFCE

PET 1

Ar·m :::;;::fiF
F:ZA .;.:.+:3

CHL.L SFTUF ROUTIN~

i IS THERE A DATA FARHME:rEP~

NO, RE:TURN TO BHSIC

CHECi<
DO l···!CrrH I !···lG

l'.iE;: r:iF'E: .. -: ;.':~ :;;ET

I EL.SE GIVE: EPROR 501

! OI . ..!TF't.IT H B,":'TE
SEE IF DONE WITH STFING

DONE, SO GO RPC: TO BASIC

! CAL.L. SETUF ROUTINE

IS THERE H DATH PF~AMETER?

NO, l~EN I/D DONE
! 1'11::II<E :::;I...!F:E :r. ···!·'1 H L..E;TE}·iE!?

LDA =502 EU3E GIVE EPROR 502
104~]

:i.(15C
i.~]60

1(1?0
1 ~J;:::~~i
10'30
11~jO

111(1

l12~j

11:~;;0

; 17,.:<
.!oJ-i I:'}

11'30
12~3fi

i;~~1~3

i22(i

L.DA =0 CLE:AP DATH STPING CC0NTER

SOUFCE

::;:;rA IL:::. t ·::i

LDH =D3.i:..:i

ADr~1 :::1

::T=i C
CBL

SOUPCE Enter loop: SFC .;.:.
SOURCE LDA R4

:::;OUPCE

LIlA !~S

CPA =Cr··

CPA =Lf
Ji'iP Ent clone

PEC A, I
I ::: 2: D.::;. t .3.

~~l UP BYTE POINTER FOR DATA

STAPT ACCEPTOP HHNDSHAKE

READ DHTA FP(~ CAFD
E: I T A F:ETU~J(::O
IF SO, IGNORE IT
IS IT TERMINATOR?

ELSE PUT BYTE INTO STPING
BUMP STPING LENGTH
REPEAT FOP NEXT BYTE

4i:JO
4:i.i;::i

4 ':;ii;:'i
~:;j;::!(i

::::;10

i:::'!:::':-::
._! !i::.!

610

::::;C)i.JF:C:E
::;CiU):;,'CE

SOUF'CE
'::;(1 Li PC:: E
SCUf?CE:

':::;OU);::CE
:=':;OUF:C::E

:=':;OURCE
SCUF~:CE
:::;()UF: CE
:=':;OUPCE
:=':;OUF:C:E

Appendix H: I/O Sample Programs 255

! RETURN DATA TO PARAMETER

HPI SETUP ROUTINE
PC Err::; TC '::;!JB F'':::EiJDC C)P C::::iy-rrr:IIt··j:=':; F'i::rRi·ci COUfF)
\iE:::;:' I F\' F'Fi!? ArciE:TEF: COUr·rr
FETCH SELECT CODE AND VERIFY CARD IS A 98034A
FETe!···! CO!"'1!·c!fil···1D ':::;TF'Il···1G F'Ai?Hi·'iETE1? Ht·m OUTPUT IT

L. .. DS :::::~:::~

LDf:r :::;e 1
:=':;TA p.::.

':::+:: I F' IF >=2
T~ ~2, GIVE ERROR 8

SET UP F'H HND DO STATUS SEQ
ON CF~D TO VERIFY IT IS A
98(84A INTERFACE

LDH SEE IF THERE IS ANYTHING

LDA :::;t.:=..t ' . ..1:::.4
AND ="100B

C:::BL
SFC .;.:.

FET 1

OUTPUT, IF NOT, SKIP
MAKE Sl8E I AM ACTI~~
cor·1TROLLEF:

I :=':;)<IP IF \'E:::;
ELSE GIVE ERROR 500

NOW OUTPUT THE CCMMA~OS

SEND GJT CMD b"fIL

t·10T '/ET

740 SOURCE STAnJS SEQUENCE FOR 98034 C~?D. NOTE THAT THIS SEQUENCE
750 SOURCE COULD FORCE THE CARD TO VIOLHTE THE IFC TIME SPECS IF
760 SOURCE THE PJLLOWING CONDITIO~3 E~IST:

:::;C~L!~~C:E

~=;Clt.IRC:E

1) CARD IS NOT S~3TEM CONTROLLER

BEFORE THE DIF:
3) THE CONTROLLER PULLS IFC AFTER THE LDH P5 BUT BEF(~E

810 SOURCE THE DIR
820 S(~RCE THE ONLY ALTERNATIVE TO THIS IS TO DIR BEFORE THE LDH R5.
:=:3~J :::;OUFLE TH 1:::(Hm'~E!',"ER COULD COi'IPF'Ol'l r:=.;;E Hr·ry' S\'HCHRm·~u:=; I HTERF:UPT

256 Appendix H: I/O Sample Programs

la6~3

18"?f:I

1 ;:;9~~1
1. '~f:lt1
19H3
1 '~2~Zi
19:3D
1 '340
19~if:l

196D

:::Otiti
2010
~:f:l2C

:~:e"?~)

20:::~]

ISOURCE ! TRANSFER IN PROGRE~S
I:::OUFCE
I::;)OURCE Hpit~.::::.i:.ai:.t~:::.:::;FC .;.:.
ISOURCE LDA R5
ISOU~~E AND =60B
I::;OURCE
I:::;01...!FTE
I:::;CIIJFCE
ISOUf.':CE
ISOURCE
I :::;(JUF.:CE
I:;::OUPCE
I'::OC.WCE
ISOUPCE
I::;OURCE
I::::'OUF:CE
ISOUF::CE
I :::aJUF::CE
I:::; Ci!J F::C:E
I :::C!tJF;~C:t:
I:=;oUF:~E

ISOUPCE
ISOUFCE
ISOUF':CE
I:::CIi .. mCE

CPA =6UB
.Jt'1P "',+3

L.IIA ::: 1. E:~~

~::;F'C: "*'
DIP
:::;FC *
LIlA R6

::;;FC *
L.IJi=:1 R6
::nA ::;i:..3.tu:::.2
3FC *
LDA P6
::; 'r !::i ::; 1:. .:::1. t t~ ~::. :~i
::;F=-C: .~~

LDf:i F6
Eli?
:::;TH St.::~.tu~:.4

FET 1
am Hp·ib

FOF: E><At'·IPL.E THE THPE CAF::TFUDGE).

GET THE CAPD INTO
IT~S STHTUS SEQUE~:E.
MAKE SURE IT IS A 98f:134

llE~=;

IF HOT, C;II.,.'E ERPOP 164

(THIS 13 THE CRITICAL TIME)
MADE IT, SO DISABLE MY
INTERRUPTS FOR THE REST OF
THE STATUS SEQUE~:E.

Appendix H: I/O Sample Programs 257

10 F'ROCF:Ai'! TO IlEt'lOr'1STPATE US I ['1G THE ClOCl< FOR I NTERRUF'TS

:30 THH:; E>::Af'IF'lE ::;HO~JS Hm,j TO USE THE ClOO< H-HERRUPT TO PUT THE TH1E
46 OF IlA\' HHO THE :::;'lSTHi i'1E::SAGE AREA A:;:; lm'~G AS THE PR OGR At'l IS RUr·H·4H~G.

6~3 THE ClOCt< IS PROGRAt'ii'1ED TO GEt-~ERATE Ar'i HHERRUPT EVERY SECOHD. THE
7~3 A::;;SHrBl'l HHERRUPT SERf,IICE ROUTINE TRIGGERS AH END OF lIHE BRANCH. THE
::;:6 EOl BRAHCH ~:OUTH~E CAlU:: Ar'~ AS::;H1Bl'l ROUTIHE TO PUT THE TH1E OF DA'l
90 INTO THE SYSTEM MESSAGE AREA.
100
116 ICet'! 200
1 2~3 I A=:;SH1BlE
1::::0 ICAll Setut:,-clock
140 OH INT #9 CAll Time

SET UP ISR AND START CLOCK
SET UP EOL BRAt·4CH

15~3

160 ! BACt<GRour·m PROG~:Ar'1:

170
1:;::0 II I SF' I
190 1=1+1
2(10 GOTO 1:30
2H3
220 =:;;U:B Time
2:30 ICAll Display time
246 SUBEXIT '-
25(1 I ::;;OUPCE HAr1 Time
266 ISOU~:CE E~<:T Er-·r·or:.....e::d t, Pt-·i nter:"",sE" 1 ect, Pr·i nt_::::U-' i ng
270 ISOUPCE EXT Isr aCCE"SS
280 ISOUPCE Select code:EQU 9
290 I ::;OU~:CE Eo 1 m.::tsk: :3ET GET AS=;:;Et1BLER TO COt'1PUTE
:300 I SOURCE REF' ::;;.:;·1 E"C t c odE" THE EOl f'1ASK FOR TF.! I GGEP H-~G
310 I::;;OURCE E01 m.::t:::.k: SET Eol ma:::.k*2 EOl BRAHCHES
320 I30URCE Ct-·: EQU 13 OTHER EQUATE3
330 I30URCE If: EQU 10
340 I30UPCE 3tring: BSS 20 AREA TO HOLD TIME OF DAY
356 ISOURCE Oi d_pi : BSS 1 nom ~mFm:3 TO HOLD CURREt-H
360 ISOU~:CE Old pi;): :BSS 1 PRHHER IS AND PRINTER L.JIDTH
376 I:30URCE ! -
:::::;::6
3'::n:i
466
410
420
43~3

440
456
460
476

49~3

506
510
526

546
550

576
5:36
5'30
666
610

I30URCE SUB
I ::;:DURCE Set up _c 1 oc k : LDA =::;e 1 E"C t code
I=30URCE :3TA P.::t -

i'IAkE ::;:URE THE ClOO< CAf:::D
1=3 Al1\iE

I30Uf:::CE =:;::;::S C::tr·d ok
I:::OURCE C::tr·d dOl,m: lDA =164 IF NOT, GIVE ERROR 164
I ::;;OURCE .1:3t1 Error' e>~ i t
I:30URCE C::tt-'d ok: lDA = I sr-' - ! SET UF' ISR lINKAGE
I30URCE
ISOU~:CE
I:;:;OUf:::CE

I=30URCE
I=;:;OURCE

ISOURCE 3tart card:

I30URCE
I30URCE
I30URCE
I30URCE Out_loop:
I30URCE
I::;OURCE
I=;:;OURCE

lDB =(10*256)+(1*16)+Select codE"
'.1::;i'! 1:::r aCCE"SS -

.1i'!P *+2 IF EPROP, THEH .1Ui'1P

.1NF' Stat-·t cat-·d
CPA =-1 -

.1t1P :;:;.:;·t Uf,-c 1 oc k

ELSE GO :;::TART UP THE CARD
IF DIDN/T GET RESOURCE3
THEt-~ TF((, AGA H-~

RET IF 1SR ALREADY lINKED,RETURN
lDA =="U4H/U4=04/U4F'166CVU4G"+lf
3Al 1 3ET UP C TO POIHT TO 3TRIHG
STA C ~jH1CH I ~j ILL OUTPUT TO THE
CBl CLOCK TO PROGRAt1 IT.
lDB =-21
3FC *
~~BC R4, I

RIB Out_loop
lDA =200B

B IS -(CHAR COUNT-I)
~,jAIT FOR CARD
=3HOVE NE>~T B'lTE OUT TO CARD
TRIGGEP HANDSHAKE
lOOP UNTIL DONE
EHABlE THE CARD TO 1HTERRUPT

258 Appendix H: I/O Sample Programs

&40 SOURCE

SOURCE Display time:LDA =jelect _Jde

::i::~~3
;~'I!:::':~

() •••• !!-~.:

~3~3~)

:=;13~J

;~~!~:'1(1

'36~=i
9-;::'0
+::ii}

1. (J6~~!
H.i?0

111 ~3

:::;OURC:E
::~OUFCE

:::;OUFCE
SOUFCE
:::;OUF:CE

'::{)URCE
:30UPCE
:::;OUF:CE
:::;OUF:C:E
SOUF.:CE

:::;OUF:CE
':;CURCE
SOUPCE
::;OURCE
::;OURCE

1120 SOURCE

1;210

L.l.Ji···i ::::i j.

LDH =:Str"'i n'J
:::;FiL
ADH =.,

1 ••• :.BL..

S3M Printer select
::;TA Ci"j

LDf=i ==3t r' in,::!
.E;t;l Pr-"! nt_.:::.tt"·· i n'J
. .n-! F' t-lemc.'·)

L.I~fi ==2

LDB I:=:T i:)Si.-J

LDH ==iU3B
~:;TA]:~, I
AllF.; ==:,::

STfRT INnJT OPEPHTION

GET THE NEXT BYTE

ELSE PUT CHARACTER INTO
STRI0~ AND BUMP CCUNT

JUMP IFMEMCRY O~:PR_OW
I Gi··DRE :::;TOP ~:::E\'

F:E:::ET !lPR Ir·nER I::;"

PESTOPE THE A~INTEP 1~

SIGNAL CAPD THAT WE GOT THE
INTEPRL~T BY DISABLING AND
THEN PE-ENABLING THE CARD

TRIGGEP ~UL BRA0:~

Appendix H: I/O Sample Programs 259

::::i-i::.i ':::: 1 .. .1 1 .. ~::

. -. itJ~?C:F

260 Appendix H: I/O Sample Programs

Appendix I
Demonstration Cartridge

Along with the Assembly Language Development and Execution ROMs, a tape cartridge has

been provided to demonstrate the capabilities of the assembly language system. This

Demonstration Cartridge (HP part number 11141-10154) is specifically intended to -

• Graphically display the kind of speed increases which can be obtained by using assembly

language subprograms for certain types of applications.

• Provide a number of programs which can serve as examples of how to write assembly

language sUbprograms. 1

• Provide a set of definitions for some of the special function keys so that those keys can be

used as typing aids.

Using the Tape
To run any of the demonstration programs, execute the statement-

A set of instructions is displayed which can then be followed interactively.

Typing Aids
The starting and final cursor positions of the typing aids were chosen with assembly listings in

mind. The intent in selecting these positions was to make it easy to enter source as it would

appear when listed within an assembly listing.

The following table gives, for each key; the typing aid, the position where the typing aid begins,

and the position where the cursor will finally reside. Because some typing aids end with a blank,

the triangle (a) has been chosen to indicate the end of the typing aid. All blanks after the start of

the typing aid, and before the triangle, will appear when the key is pressed.

I

1 The commented source for the chess program is contained in file CHESSS.

261

262 Appendix I: Demonstration Cartridge

Key Typing Aid

o _: .. '::::,; ; Li [:;:, C:: [: a

1 T ':::! ,.:~! Lj i::~. :::. ~::._ a

2

3

4

i .• ..: "

.. _. "T ; •. ('j 1::"" ;-,.: ... : ': ",
.. l.i i "'; i": :' m

Typing Aid Final Cursor

Starting Position Position

11 31

11 19

11 21

home

current current + 2

5 1':::/ .. /. __ ;, ;:::. a(followed by next line) 11

6

7

8

9

11

CLEAR
LINE

CLEAR
LINE

CLEAR
LINE

CLEAR
LINE

CLEAR
LINE

i ... :i[:: ... i

t .. :
. :: ! ':: E ••••••

12 (used by other keys)

13 .L ':i ::' .. _.:. -r:'" a(followed by next line)

~ a

14 (Undefined)

15 (Undefined)

16 (Undefined)

17

18 CLEAR
LINE !:::);-:::::::: i, , , ... :::;:) .J .. ':'" a

51

home

home

home

home

home

11
30

41

home

53

6 (over second quote mark

in insert character mode)

7 (over second quote mark

in insert character mode)

7 (over second quote mark

in insert character mode)

8 (over second quote mark

in insert character mode)

6 (over second quote mark

in insert character mode)

32

43

12

Key Typing Aid

19 F:::::: i····.i ~l

(use only after using Key 7 or 9)

20

21

CLEAR
LINE

" ;;~

(use only after using key 7 or 9)2

22

23

C":3~

··r·:!. i::::;~

24 (used by other keys)

25 (used by other keys)

26

27 CLEAR , ,
LINE 1 : .. -- =_

28 § 1":"1
.... m LINE 1

, r=:-:
.- '-_0'

29 CLEAR
~ LINE "oJ

30 CLEAR
1- , , ii li ~ LINE

... ._- L. __

3 1 § -- , _0 •• 1- :: " f"::- r- L.-i r" LINE --

-r -_.
~ -_.

-;.. -_. ,

~

ii ii~

Appendix I: Demonstration Cartridge 263

Typing Aid Final Cursor

Starting Position Position

current - 1 current + 4 (over

second quote mark in

insert character mode)

home

current - 1

current

current

home

10 (over second quote mark

in insert character mode)

current + 4 (over second

quote mark in insert

character mode)

current + 3

current + 4

18 (over second quote mark

in insert character mode)

home 13

home

home

home

home

6

8 (over second quote mark

in insert character mode)

9 (over second quote mark

in insert character mode)

1 For example, in the insert character mode with the cursor in each case located over the second quote mark:
• Pressing Key 7 results in - ,.
• Pressing Key 19 results in -

2 This key performs for the keyword "KEY" as key 19 does for the keyword "BIN". See Note 1.

264 Appendix I: Demonstration Cartridge

Appendix J
Error Messages

The following is a numerical list of the system error messages. A brief description of the error is

given. For those errors involving the assembly language system, also consult Chapter 9. For all

other errors, reference the Operating and Programming Manual.

.. :::i

-.j

1 1

14

17

Missing ROM; or configuration error

Memory overflow; or subprogram larger than block of memory

Line not found or not in current program segment

Improper return

Abnormal program termination; no END or STOP statement

Improper FOR/ NEXT matching

Undefined function or subroutine

Improper parameter matching

Improper number of parameters

String value required

Numeric value required

Attempt to redeclare variable

Array dimensions not specified

Multiple OPTION BASE statement or OPTION BASE statement preceded by

variable declarative statements

Invalid bounds on array dimension or string length in memory allocation

statement

Dimensions are improper or inconsistent; or more than 32 767 elements in an

array

Subscript out of range

265

266 Appendix J: Error Messages

1 i:=i
1 "_!

2 :~::

:::; 1

:~:: 2

4D

4 1

Substring out of range; or, string too long

Improper value

Integer precision overflow

Short precision overflow

Real precision overflow

Intermediate result overflow

TAN (7T*3/2), when n is odd

Magnitude of argument of ASN or ACS is greater than 1

Zero raised to negative power

Negative base raised to non-integer power

LOG or LGT of negative number

LOG or LGT of zero

SQR of negative number

Division by zero; or,X MOD Y with Y = 0

String does not represent valid number; or string response when numeric data

required

Improper argument for NUM, CHR$, or RPT$ function

Referenced line is not IMAGE statement

Improper format string

Out of DATA

EDIT string longer than 160 characters

I/O function not allowed

Function subprogram not allowed

Improper replace, delete, or REN command

First line number greater than second

Attempt to replace or delete a busy line or subprogram

Matrix not square

Appendix J: Error Messages 267

Illegal operand in matrix transpose or matrix multiply

Nested keyboard entry statements

No binary in memory for STORE BIN; or no program in memory for SAVE

Subprogram COM declaration is not consistent with main program

Recursion in single-line function

"'T .::::: Line specified in ON declaration not found

. i Vi File number less than 1 or greater than 10

File not currently assigned

....
... ..:!: Improper mass storage unit specifier

l •• ~

. !i Improper file name

Duplicate file name

Directory overflow

File name is undefined

Mass Storage ROM is misSing

l : ; Improper file type

PhYSical or logical end-of-file found

PhYSical or logical end-of-record round in random mode

Defined-record size is too small for data item

File is protected; or, wrong protect code specified

1" :
:~~l •• _.l The number of physical records is greater than 32 767

Medium overflow (out of user storage space)

Incorrect data type

Excessive rejected tracks during a mass storage initialization

Mass storage parameter less than or equal to 0

Invalid line number in GET or LINK operation

(See Mass Storage ROM errors)

268 Appendix J: Error Messages

Cartridge out; or door open

Mass storage device failure

Mass storage device not present

Mass storage medium is write-protected

Record not found

:::5 Mass storage medium is not initialized

Not a compatible tape cartridge

Record address error; or, information can't be read

Read data error

Check read error

Mass storage system error

.-• .JI .-•• -.

~j 1 -:j:j (See Mass Storage ROM errors)

Item in PRINT USING list is string but IMAGE specifier is numeric

Item in PRINT USING list is numeric but IMAGE specifier is string

Numeric field specifier wider than printer width

Item in PRINT USING list has no corresponding IMAGE specifier

(See I/O ROM errors)

(Unused)

1 1 ~-=1--"'~ 1 1 :~: (See Plotter ROM errors)

(Unused)

(See I/O ROM errors)

(Unused)

(See Assembly Language ROM errors)

•• _ ••• -.oN ili , , , ... c:; ({octal number} :: {octal number}

This error indicates an error in the machine's firmware system; it is a fatal error. If reset

does not bring control back, the machine must be turned off, then on again. If the problem

persists, contact your Sales and Service Office.

Appendix J: Error Messages 269

Mass Storage ROM Errors
Format switch off

Not a disk interface

.J]. Disk interface power off

Incorrect controller address; or, controller power off

Incorrect device type in mass storage unit specifier

Drive missing; or power off

.' !.-
... ! Disk syste m error

Incorrect unit code in mass storage unit specifier

(Unused)

::::1 1 :::~ ::::~ (Unused)

Plotter ROM Errors
Plotter type specification not recognized

1 .I. Plotter has not been specified

(Unused)

LIMIT specifications out of range

11.4······11::; (Unused)

270 Appendix J: Error Messages

Assembly Language ROM Errors
Improper argumentin OCTAL or DECIMAL function

Break Table overflow

Undefined BASIC label or subprogram name used in IBREAK statement

Attempt to write into protected memory; or, attempt to execute instruction not

in ICOM region

Label used in an assembled location not found

Doubly-defined entry point or routine

Missing ICOM statement

Module not found

Errors in assembly

Attempt to move or delete module containing an active interrupt service

routine

Address out of range in IDUMP statement

Routine not found

Unsatisfied externals

Missing COM statement

BASIC's common area does not correspond to assembly module requirements

Insufficient number of BASIC COM items

DD

E::><

Appendix J: Error Messages 271

Assembly-Time Errors
Doubly-defined label

END instruction missing; or module name does not match

Expression evaluation error

Literal pools full or out of range

ICOM region overflow

Operand out of range

Argument declaration pseudo-instruction out of sequence

Incorrect type of operand used

Undefined symbol

272 Appendix J: Error Messages

Appendix K
Maintenance

Maintenance Agreements
Service is an important factor when you buy Hewlett-Packard equipment. If you are to get

maximum use from your equipment, it must be in good working order. An HP Maintenance

Agreement is the best way to keep your equipment in optimum running condition.

Consider these important advantages -

• Fixed Cost - The cost is the same regardless of the number of calls, so it is a figure that

you can budget.

• Priority Service - Your Maintenance Agreement assures that you receive priority treat

ment, within an agreed-upon response time.

• On-Site Service - There is no need to package your equipment and return it to HP. Fast

and efficient modular replacement at your location saves you both time and money.

• A Complete Package - A single charge covers labor, parts, and transportation.

• Regular Maintenance - Periodic visits are included, per factory recommendations, to

keep your equipment in optimum operating condition.

• Individualized Agreements - Each Maintenance Agreement is tailored to support your

equipment configuration and your requirements.

After considering these advantages, we are sure you will see that a Maintenance Agreement is

an important and cost-effective investment.

For more information, please contact your local HP Sales and Service Office. A list follows.

273

HEWLETT i1I PACKARD

SALES & SERVICE OFFICES Hewlett-Packard Soulh Africa

PO~o~ ~~~
Howard Place, Cape Province, 7450
PIne Park Centre, Foresl Drove,
Plnelands, Cape Province, 7405
Tel: 53-7955 thu 9
Telex: 57-{)006

SRI LANKA
Metropolitan Agencies ltd.
209,9 Union Place
Colombo 2

NIGERIA
Tel: 35947

~gle~~~~~ering Telex: 1377METROlTD CE
ANGOLA ETHIOPIA

The ElectroniCS ~ble: METROnD
Telectra lot 259, Satok Road Inslrumenlations ltd.

Emf~~~~~~: de
Abdella Abdulmalik Blue Star ltd.

Kuching, Sarawek N6B1770 Oyo Road SUDAN
P.O. Box 2635 Blue Star House Yokogawa-Hewlett-Packard lid. Tel: 53544 Oluseun House Radison Trade

Eldclricos, S.A.R.l. AddI.Abebe 11!11A Magaralll Road Nakamo Building Cable: PROTElENG P.M.B. 5402 P.O. Box 921
Tel: 11 93 40 ~560025 24 Kami Sasajima-cho lbaclan Khartoum ~i~~~~I~~~r's, 42-I"OT.' GUAM

Tel: Nakamura-ku, Nagoya, 450 MOZAMBIQUE Tel: 461577 Tel: 44048
Luanda MedicalOnty .

Telex: 043-430 Tel: 052 571-5171 A.N. Goncalves, Lid. Telex: 31231 TEll NG Telex: 375
Cable: BLUESTAR 162, l' Apt. 14 Av. D. luiS Cable: THETIEL Ibadan Tel: 35515.6 t~:c~~~' Inc.

Yokogawa-Hewlett-Packard lid. TAIWAN Cable: TELECTRA Luanda Blue Star Lid. Tanigawa Building Caixa Postal 107 The Electronics Inslrumenla- Hewlett-Packard Far East ltd. P.O. Box 8117 Meeakshi Mandiram 2-24-1 Tsuruya-cho Maputo tions lid. AUSTRALIA xxx!1678 Mahatma Gandhi Rd. Tel: 27091, 27114 Taiwan Branch
r:nJ:~lrsll Kanagawa-ku 144 Agege Molor Road, Mushin

~:Ji~~nf, ~~~a~I:~st Road Hewlett-Packard Australia Cachiri 682 016 Yokohama, 221 Telex: 6-203 NEGON Mo P.O. Box 6645 Ply. Lid. Cable: EARMED Guam Tel: 32069,32161,32282 Tel: 045-312-1252 Cable: NEGON Lagos Taipei 31-41 Joseph Street Telex: 0885-514 Telex: 382-3204 YHP YOK Cable: THETEIL Lagos Blackburn, Victoria 3130 HONGKOHG Cable: BLUESTAR NEW GUINEA Tel: 3819160-9,3141010
P.O. Box 36 Schmidt & Co.fiong Kong) Ltd. Blue Star Ltd. ~~l::'~~r:::~:ackard Lid. Hewlett-Packard Australia PAKISTAN Cable: HEWPACK TAIPEI
Done .. t ... Eaat, VICtoria 3109 Wing On Centre, 28th Floor t-I-117/1 Ply. Ltd. Mushko & Company Ltd. Hewlett -Packard Far East Ltd.
Tel: 896351 Comaught Road, C. , Sarojini Devi Road

105, l-chome, San-no-maru g~et,:'~~~ Bank Bu~ding Oosman Chambers Taiwan BranCh
c(Telex: 31-024

~~= Secunclerabacl 500 003 ~~~2~~:g~7~j~ Abdullah Harron Road 68-2, Chung Cheng 3rd. Road

:J
Cable: HEWPARD Metbourne Tel: 70126, 70127

Ward Strip Karachl-3 ~~~~~~318-KaOhSiUng Hewlett-Packard Australia Telex: 74766 SCHMC HX Telex: 015-459 Yokogawa-Hewlett-Packard Ltd. Port Moresby, Paupua Tel: 511027,512927
Inoue Building Tel: 258933 Telex: 2894

c(Ply. Ltd. INDIA Cable: BLUE FROST
Cable: COOPERATOR Karachi

Analytical Only
31 Bridge Street Blue Star ltd. Blue Star Ud.

1348-3, Asahi-cho, l-chome NEW ZEALAND San Kwang Instruments Co .. Ltd. a:: Pymble Kasturi Buildings 21:34 Kodambakkam Hi~ Road ::~~/:~~: 243 Hewlett-Packard (N.l. I Ltd. Mushko & Company, Lid. 20 Yung Sui Road .- New Soulll Wales, 2073
:nshed'r:~ Madras 600 034 4-12 Cruickshank Street 388, Satel~te Town T.lpeI

Tel: 4496566
Tel: 82056 Yokogawa-Hewlett-Packard Ltd. Kilbirnie, Wellington 3 f:~~t~dI Tel: 3615446-9 (4 ~nesl en Telex: 21561 T=21 Telex: 041-379 Kum~aya Asahi P.O. Box 9443 Telex: 22894 SANKWANG

Cable: HEWPARD Sydney Telex: 011-2156 Cable: BLUESTAR Hachi,uni Building Courtney Place Cable: FEMUS Rawalpindi Cable: SANKWANG Taipei ;:) Hewlett-Packard Australia Cable: BlUEFROST 4111 Aoor :el:¥1-~; PHILIPPINES TANZANIA
c(153~'r~iII Road

Blue Star Lid. INDONESIA 3-4, Tsukuba
The Online Advanced ~:'c::~:~r Aeradio U. I, ltd. 5ahas BERCA Indonesia P.T. ~e~:=:~~ma 360

Cable: HEWPACK Wel~ngton
Systems Corporation Park.lde, S.A., 5063 ~5aYarkaru.o

P.O. Box 496tJkt. Hewlett-Packard (N.Z.) Ltd.

<i J1n.Abdul Muis 62 Rico House P.O. Box 861 Tel: 2725911 KENYA Pakuranga Prolessional Centre Amorsolo cor. Herrera Str. Dar .. Salaam Telex: 82536
~:02S

Jakarta
Advanced Communications Ltd. ~~ ~~~nga Highway ~~:il~ro' Makati Tel: 21251 Ext. 265

Ui Cable: HEWPARD Adelaide Tel: 349255, 349886
P.O. Box 30070 Telex: 41030

Hewlett-Packard Australia Telex: 011-4093 Telex: 48748 BERSIL IA
NaIrobi f:~~~ MetroManI ..

CC 14~i}~~rig Highway
Cable: FROSTBLUE Cable: BERSAL

Tel: 331955 Tel: 85-35-81,85-34-91,85-32-21 THAILAND
Blue Star Lid. BERCA Indonesia P.T. Telex: 22639 Cable: HEWPACK Auckland Telex: 3274 ONLINE UNIMESA Co. Ltd.

<i NecI .. nds, W.A. 6009 Band Box House P.O. Box 174&y.

~::~: Aeradio~.A. "td.
Anatytical.tlledical Only Elcom ResearCh Bu~ding

Tel: 3865455 Prabhldlvi 23 .lin. Jimerto Medical Supplies N.l. lid. RHODESIA 2538 Sukumvit Ave.
Telex: 93859

~:02S ~: P.O. Box 19012 Scientific Division Field TechnQ Sales :=7~~":, 2 Cable: HEWPARD Perth 79 Carlton Gore Road, Newmarket 45 Kelvin Road North
Cable: BErcacon Nairobi Airport P.O. Box 3458 Cable: UNIMESA Bangkok Hewlett-Packard Australia Telex: 011-3751 NaIrobI P.O. Box 1234 a:: 12\l~I~olgo Street

Cable: BlUESTAR ISRAEL Tel: 336055156 Auckland f:~a, (5 ines) UGANDA

LL Blue Stir Ltd. Electronics Engineering DiY. Telex: 22201122301 Tel: 75-289
~e:~:ar Aeradio(EA), lid Fy8hwlck, A"8,T. 2609 IlhavdeIp 01 Motorola Israel lid. Cable: INTAERIO Nairobi Cable: DENTAL Aucklnl Telex: RH 4122

« Tel: 804244 Staoium Road 16, Kremenetski Street
~::g:~ Aeradio ".A.) Lid.

Analytical.tlledicalOnly SINGAPORE P.O. Box 2577
Telex: 62650 AhmecImecI 380 014 P.O.Box 25016 Medical Supplies N.l. Lid. Hewtett-Packard Singapore Kal1lpll" Cable: HEWPARD Canbem Tel: 42880 T ... AvIv P.O. Box 95221 Norrie and Parumoana Streels (Pte·IUd. Tel: 54388
Hewlett Packard Australia Telex: 234 Tel: 38973 Mom Portrua 1150 Depot Road Cable: INTAERIO Kampala
~.Ltd. Cable: BlUEFROST Telex: 33569,34164 TeI:7~ Alexandra P.O. Box 58

ZAMBIA 5lll00r Blue Star ltd. Cable: BASTEL Tel-Aviv KOREA Telex: 3858
~~ R.J. Tilbury ~mbial lid. Teachers Union Building 7HnStrell JAPAN Samsung Electronics Co., ltd. AnaIyticaI edicaI Only P.O. Box 2792 495-499 BouIK!ary Strael P.O. Box 506 V~wa-Hewlett-Packard lid. 15111 Floor, Daeyongak Bldg .. Medical Supplies N.l. Ltd. Telex: HPSG RS 21486

Luaak.
~:~~1~ Queensland 4000 CaIcutIa 700 001 Chuo Bldg., 4111 Roor 25-5, l-KA P.O. Box 309 Cable: HEWPACK, Singapore

Tel: 73793
TeI:2U131 ~;:;:'~~ka~ome

Choong Moo-Ro, Chung-Ku, 239 Stanmore Road SOUTH AFRICA Cable: ARJA YTEE, Lus.tka Cable: HEWPARD Brilblnl &.ul Christchurch TeIex:021-7$!16
Tel: (2316811,778-3401121314 Tel: 892'{)19 Hewlett-Packard Soulll Alrica

BANGLADESH C8b1e: BlUESTAR OaaIuo,532
Priv?e' ha LIdWendywood, OTHER AREAS NOT LISTED,

The General Electric Co. Blue Star ltd. Tel: 06-304-6021 Telex: 2257S Cable: DENTAL Christchunch CONTACT:
01 Bangladesh ltd. htdari House Telex: 523-3624 MALAYSIA ~""edicalOnly Sandton, fransvaal, 2144 Hewlett-Packard Intercontinental

Magnet House 72 7III&8thAoor Yokogawa-Hewlett-Packard Lid. Hewtett-Packard Sales SON BHD Medical Supplies N.Z. Lid. Hewlett-Packard Centre 3200 Hillview Ave.
Oilkusha Commercial A/lII 91 Nehru Place ~=:a-chome Suite 2.2112.22 303 Great King Street Daphne Street, Wendywood, Palo Alto, California 94304

~~\'5?f5'M9 New DelhI 110 024 Bangunan Angkasa Raya P.O. Box 233 Sandton, 2144 ~(4~~J_g~:~~~ Tel: 634710 & 635166 Tel: 03-331-6111 JaIaiI Ampang Dunedin Tel: 802-1040.6
Telex: 734 Telex: 031-2463 =:~~Wi&c~ 724 ~~=1 Tel: 88-817 Telex: 8-4782 Cable: HEWPACK Palo Alto
Cable: GECOAC Dacca Cable: BLUESTAR Cable: DENTAL Dunedin Cable: HEWPACK Johannasllurg Telex: 034-8300,034-8493

ONTARIO
Hewtett-Packard ~)LId.
1020 Morrison Dr.
Ott-.K2HBK7

CC ALBERTA ~~J~J-~ Hewlett-Packard ~ada) Ltd.
0 11620A - 168111 Street Hewlett-Packard ~.) lid

CC Edmonton T5M 319 6877 Goreway Drive

~(4tWJ~~t~~~ MIas ¥:. L4V 1118 QUEBEC
Z BRITISH COLUMBIA MANITOBA NOVASCOnA Tel: 1416J! 8-9430 Hewtett-Packard J;anada) lid. FOR CANADIAN AREAS

CC ~~~:~i= ft~ll Lid.
Hewlett-Packard tanadal ltd. Hewlett-Packard J;anada) ltd. Hewlett-Packard J;anada) Lid. TWX: 61 92-4246 275 Hymus Blvd. NOT LISTED:

~r:~~e~ :=g~l
800 WindmUl Road Hewlett-Packard (Canada) Ltd. POin" Clalra H9R lG7 Contact Hewlett-Packard (Canada I

0 f:~ITl5~_W~3 Dartmouth B3B 1 L 1 552 Newbold Street Tel: (514)697-4232 Ltd. in Mississauoa·

~~~~ Tel: J] 01 Tel: \902) 469-7820 London N6E 255 TWX: 610-422-3022 
Twx: 610-821-6141 TWX: 61 71-3531 TWX: 610-271-4482 Tel: (519) 686-9181 TLX: 05-821-521 HPCL 

CC MEXICO 
PERU 0 Hewlett-Packard Mexicana, 

ARGENnNA SA de C.V. t:"f:~~f4~c!dica S.A. a: Hewlett-PaCkard Argentina Av. Perifl!rico Sur No. 6501 
S.A. ECUADOR Tepepan, Xochimilco San Isidro Casilla 1030 

W Av. Leandro N. Alem 822 - 12" 
='fI.:saU :::: 

MexIco 23, D.F. LIma 1 
1001 Buanoa Alree Tel: 905-676-4600 Tel: 41-4325 

:i Tel: 31-6063,4,5,6 P.O. Box 6423 CCI Telex: 017-74-507 Telex: Pub. Booth 25424 SISIDRO 
Telex: 122443 AR CIGY Eloy AIIaro No. 1824,3°Piso Hewlett-Packard Mexicana, 

Cable: ELMED Lima 

CC Cable: HEWPACKARG COLOMBIA Quito 
Inslrumentacidn Tel: 453 482 S.A. de C.V. SURINAME 

VENEZUELA Biotron S.A.C.l.y M. Hewlett-Packard do Brasil Henrik A. Langebaek & Kier S.A. Telex: 2548 CYEDE ED Ave. Constitucidn No. 2184 Surtel Radio Holland N. V. 
% Bolivar 177 l.e.C. Llda. Carrera 7 No. 48-75 Cable: CYEDE-OuitO ~2~4~'-71-84 Grote Holstr. 3-5 Hewlett-Packard de Venezuela 

1066 Buenos Atree P.O. Box 155 C.A. .- Tel: 30-4846, 34-9356, 34-{)460, Rua Padre Ch~ ApartadO A«ea 6287 Medical Only Telex: 038-410 Paramaribo P.O. Box 50933 
;:) 33-2863 

90000-P6rto S 8ogcIbI, I D.E. Hospitalar SA Tel: 72118, 77880 Caracas 105 Tel: flSl2J,f ,22-5821 Tel: 269-8877 NICARAGUA los Ruices Norte Telex: 011-7595 Cable: HE ACK Potto Alegre Telex: 44400 Casilla 3590 Cable: Surtel 
0 Robles 625 Roberto Tenln G. 3a Transversal Cable: Biotron Baries Hewtett-Packard do Brasil Cable: AARIS Bogotl 

Quito Apartado Postal 689 TRINIDAD & TOBAGO Edificio Segre BOLIVIA en Casa Kav~n S.A. l.e.C. Ltda. Instrumentacion Tel: 545-250 Edificio Ter~n CARTEL Caracas 107 
Calle Potosi' 1130 

Av. Epitacio Pessoa, 4664 ~a~ie~~~4t~~ S.A. Cable: HOSPITALAR-Ourto Managua Caribbean Telecoms lid. Tel: 239-4133 (20 lines) 

0 =-RIo de JanaJro.RJ 
Tel: 25114, 23412,23454,22400 P.O. Box 732 Telex: 25146 HEWPACK P.O. Box 500 

=3n
54098 ELSALVADOR Cable: ROTERAN Managua 69 Frederick Street Cable: HEWPACK Caracas 

Z laPaz Tel: IPESA 
f;t61s=n Tel: 41530,53221 Telex: 021-21905 HPBR-BR Tel: 304475 BuleYar de los Heroes 11-48 PANAMA 

CC Telex: CWC BX 5298,ITT 3560082 Cable: HEWPACK San Salvador Electrdnico Balboa, S.A. FOR AREAS NOT LISTED, 
Cable: KAVLlN Rio de Janeiro COSTA RICA Tel: 252787 Aparatado 4929 URUGUAY CONTACT: 

..I BRAZIL Cientilica Costarricense S. A. Panama 5 Pablo Ferrando S.A. C. el Hewlett-Packard 
Hewlett -Packard do Brasil CHILE Avenida 2, Calle 5 GUATEMALA Calle Samuel Lewis Avenida ltalia 2877 Inter-Americas 

c( l.e.C. Ltda. =. ~~a~~' c\fi~a 1204 
San Pedro de Montes de Dca IPESA Edificio "AlIa", No.2 CasiUa de Correa 370 3200 Hillview Ave 

Alameda Rio Negro, 750 Apartado 10159 Avenida Relorma 3-48, Culdecl de Pcmama Montevideo P.lo Alto. Calilornia 94304 a:: Alphaville Casih 16475 San Jose Zona 9 Tel: 64-2700 Tel: 40-3102 Tel: (4151856-1501 

~ 06400 Baruerl SP Correa 9, Santiago Tel: 24-38-20, 24-08-19 ~~:a~~~3~:r86,66471-5,ext.9 Telex: 3483103 Curundu, Telex'. 702 Public Booth Para TWX 910-373-1260 
Tel: 429-3222 Tel: 34152 Telex: 2367 GALGUR CR Canal Zone Pablo Ferrando Cable HEWPACK Palo Alto 

Z Cable: HEWPACK Sao Paulo Telex: JCALCAGNI Cable: GALGUR Telex: 4192 Teletro Gu Cable: ELECTRON Panama Cable: RADIUM Montevideo Telex. 034-8300, 034-8493 

W 2179 
U 



FINLAND Cable: HEWPACKSA Hamburg ITALY POLAND Hewlett-Packard Espanola, SA 
AUSTRIA Hewlett-Packard OY Telex: 21 63032 hphh d Hewlett-Packard Italiana S.p.A. Biuro Informacji Technicznej Av Ramdn y Cajal, 1 Ankara 
Hewlett-Packard Ges.m.b.H. Nahkahousunb 5 Hewlett-Packard GmbH Via G.Di Vittorio, 9 Hewlett-Packard Edificio Sevilla, planta 9' Tel: 25 03 09 - 17 80 26 
Handelskai 52 P.O. Box 6 TeChnisches Buro Hannover 20063 Cernusco UI Stawki 2, 6P -Seville 5 Telex: 42576 OZEK TR 
P.O. Box 7 SF-00211 Helsinki 21 Am Grossmarkt 6 Sui Naviglio (MI) 00-950 Warszawa Tel: 64 44 54f.i8 Cable: OlYUREK ANKARA 
A-1205 Vienna Tel: (90) 6923031 D-3ooo Hannover 91 Tel: (2) 903691 Tel: 33.25.B8J39.67.43 ~~~~~~-~~~~d7~scailola SA UNITED ARAB EMIRATES Tel 351621-27 FRANCE Tel: (0511 )46 60 01 Telex: 311046 HEWPACKIT Telex: 812453 hepa pi 
Cable: HEWPAK Vienna Emitac Ltd. (Head Office) 

Hewlett-Packard France Telex: 092 3259 Hewlett-Packard Italiana S.p.A. UNIPAN E-Bllbao 1 PO. Box 1641 Telex: 75923 hewpak a Avenue des Tropiques Hewlett-Packard GmbH Via Turazza , 14 Biuro Obslugi TeChnicznej Tel: 23 83 06123 82 06 Sharjah 
BAHRAIN les Ulis Technisches Buro Nurnberg 35100 Padova 01-447 Warszawa Hewlett-Packard Espanola SA Tel: 35412113 
Medical Only Boite Postale No. 6 Neumeyerstrasse 90 Tel: (49) 664888 ul Newelska 6 CtRamon Gordillo 1 Telex: 8136 
Wael Pharmacy ~~~O(~ )OOOs;r~~~ex D-85OONurnberg Telex: 41612 HEWPACKI Poland (Entlo. ) Emitac Ltd. (Branch Office) 
PO. Box 648 Tel: (0911) 56 30 83 Hewlett-Packard ltaliana S.p.A. ZakJady Naprawcze Sprzetu E-Valencia-10 P.O. Box 2711 
Bahrain TWX: 600048F Telex: 0623 860 Via G. Armellini 10 Medycznego Tel: 96-361.13.54/361.13.58 Ahu Dhabi 
Tel: 54886,56123 HeWlett-Packard France Hewlett-Packard GmbH 1-00143 Roma Plac Komuny Paryskiej 6 Tel: 331370/1 
Telex: 8550 WAEl GJ Chemin des Mouilles Technisches Buro Munchen Tel: (06) 54 69 61 90-007 LOdi SWEDEN 
Cable: WAElPHARM B.P. 162 EsChenstrasse 5 Telex: 61514 Tel: 334-41, 337-63 Hewiett-Packard Sverige Ail UNITED KIN<ODOM 
Analytical Only ¥~113~8~c3~"l1 25, 

0-8021 Taufklrchen Cable: HEWPACKIT Roma Telex: 886981 Enighetsvagen 3, Fack Hewlett-Packard Ltd. 
AI Hamidiya Trading Tel: (089) 6117-1 Hewlett-Packard Ita/iana S.p.A. S-161 Bromma 20 King Street lane 
and Contracting TWX: 310617F Hewlett-Packard GmbH Corso Giovanni Lanza 94 PORTUGAL Tel: (08)7300550 Winnersh, Wokingham 
P.O. Box 20074 Hewlett -Packard France Technisches Buro Berlin 1-10133 Torino Telectra-Empresa Tl!cnica de Telex: 10721 Berks. RG11 5AR 
Manama Pericentre de la Cepillre Kaithstrasse 2-4 Tel:(011) 682245J659306 Equipamentos Electricos S.a.r.1. Cable: MEASUREMENTS Tel: (0734) 784774 
Tel: 259978,259958 31081 Toulouse-Le Mlrall 0-1000 Berlin 30 Medical,cah;ulators Only ~~8. 'l:'~~a Fonseca 103 Stockholm Telex:847178,9 
Telex: 8895 KALDIA GJ ~~1~17~T2 Tel: (030) 2490 86 Hewlett-Packard ltaliana S.p.A. Hewlett-Packard Sverige A8 Hewlett-Packard ltd. 

P-L1sbon 1 Froiallsgatan 30 Trafalgar House 
BELGIUM Telex:018 3405 hpbln d Via PrinCipe Nicola 43 G,c Tet: (19) 68 60 72 

Hewlett -Packard France 1-95126 Catania S-421 32 Vawa Fr61unda Navigation Road 

t- Hewlett-Packard Benelux GREECE Cable: TElECTRA lisbon Tel: (031) 490950 Altrincham 
S.A./N.V le ligoures Kostas Karayannis Tel:(095) 370504 Tetex: 12598 Telex: 10721 via Bromma office Cheshire WA14 lNU en Avenue du Col-Vert, 1, Bureau de vente de Marseilles 8 Omirou Street Hewlett-Packard ltaliana S.p.A. Medical only Tel: (061) 928 6422 

« (Groenkraaglaan) Place Roul!! de ViHenueve Athens 133 Via Nuova San Rocco A. Mundinter SWITZERLAND Telex: 668068 
8-1170 Brussels 13100 Alx-en-Provence Tet: 32 30 303132137 731 Capodirnonte, 62A Intercambio Mundial de Com~rcio Hewlett-Packard (Schweiz) AG 

W Tel: (02) 6605050 Tel: (42) 59 41 02 1-80131 Napoli S.a.r.1. Zurcherstrasse 20 Hewlett-Packard ltd. 
Cable: PAlOBEN Brussels Hewlett-Packard France frS.rarc~1 Only Tel: (081) 7913544 P.O. Box 2761 P.O. Box 307 lygon Court 

2, Allee de Ia Bourgnette CH-8952 Schlieren-ZuriCh Hereward Rise 
W Telex: 23-494 paloben bru 

35100 Rennes G. Papathanassiou & Co. Hewlett-Packard ltaliana S.p.A. Avenida Antonio Augusto 
Tel: (01) 7305240 Dudley Road 

.J CYPRUS Tel: (99) 51 4244 17 Marni Street Via E. Masi, 9,!l de Aguiar 138 Telex: 53933 hpag ch Halesowen, 

~~PG~~~c;rios Xenopoulos Street 
Athens 103 1-40137 Bologna P - Lisbon West Midlands B62 SSD 

C 
TWX: 740912F 

Tel: 5522 915.5221 989 Tel: (051) 307887 J3OOO40 Tel: (19) 53 213117 Cable: HPAG CH 
Tel: (021) 550 9911 

P.O. Box 1152 Hewlett-Packard France Telex: 21 5329 INTE GR JORDAN 
Telex: 16691 munter p Hewlett-Packard (Schweiz) AG Telex: 339105 

C Nicosia lB. rue du Canal de la Marne Cable: INTEKNIKA Cable: INTERCAMBIO lisbon ChAteau Bloc 19 
67300 Schlltlghelm Mouasher Cousins Co. CH-1219 La L1gnon-Geneva Hewlett-Packard ltd. 

Tel 45628129 Medical Only P.O. Box 1387 QATAR Wedge House 

~ Cable: Kypronics Pandehis Tel: (88)8308 10 +:i~x~m: ~ 22ch TWX: 890141F Technomed Hetlas ltd. Amman ~~~seBO~~~ & Contracting 799, london Road 
Telex: 3018 52 Skoufa Street Tel: 24907139907 Cable: HEWPArJG Geneva Thornton Heath Hewlett-Packard France Athens 135 Telex: SA8CO JO 1456 Doha ¥~r'~11~~:t1~3 c CZECHOSLOVAKIA Immeuble pericentre 
Vyvojova a Provozni ZakJadna Tel: 3626 972 Cable: MOUASHERCO Tel: 22170 SYRIA 

Z 
Rue van Gogh 

HUNGARY Telex: 4439 NASSER General Electronic Inc. Telex: 946825 Vyzkumnych Ustavu v Bechovicich 59650 Villeneuve 0 Ascq 
MTA KUWAIT Cable: NASSER Nuri Basha-Ahnaf Ebn Kays Street Hewlett-Packard ltd « CSSR-25097 Bechovlce u Prahy ~(2~Jo~~:~ 25 

AI-Khaldiya Trading & P.O. Box 5781 Tel: 89 93 41 Ml1szerl1gy es M~restechnikai 
P.8.°~~cg~8-Safat RUMANIA Damascus 

10, Wesley SI. 
Telex: 12133 

Hewlett-Packard France 
Szolgalata Hewlett-Packard Reprezentanta Tel: 33 24 87 Castleford « Institute 01 Medical Bionics Bureau de Vente H!'H!ett-Pac!r.an~ Ser.:ict Kuwait 6O.n. Baicescu i6 Telex: ii2i5 ITIKAL Yorks WF10 1.4E 

0 Vyskumny Ustav lekarskej Bioniky Centre d' affaires Pans-Nord lenin Krt. 67, P.O.Box 241 Tel:424910141 1726 Bucuresti Cable: ElECTROBOR DAMASCUS 
Tel: (0977) 550016 

1391 Budapest VI Telex: 557355 Jedlova 6 Baliment Amp~re Tel: 42 03 38 LUXEMBURG Tel: 15 80 23113 88 85 MedicaliPersonal Calculator only CS-88346 Rue de la Commune de Paris Telex: 10440 Hewlett-Packard ltd a:: Bratislava-Kramare B.P. 300 Telex: 22 51 14 Hewlett-Packard Benelux Sawah & Co. 1, Wallace Way 
SA/N.Y. I.I.R.U.C. Place Azme 

LL Tel: 4251 93153 Le Blanc Mesnil cedex Avenue du Col-Vert, 1 Intreprinderea Pentru B.P.2308 Hltchln 

« Telex: 93229 Tel: !J1)931 88 50 ICELAND (Groenkraaglaan) Intretinerea Damascus Hertfordshire, SG4 OSE 

DDR Hewlett-Packard France Medical Only B-1170 Brussels Si Repararea Ublajelor de Calcul Tel: 16 367-19 697-14 268 +:i~x~~2m~ 11 
EntwickJungslabor der TU Dresden Av. du Pdt. Kennedy ~~;~~'::~1i~~~:a~lt~nc. 

Tel: (02) 672 22 40 B-dul Prof. Dimitrie Pompei 6 Suleiman Hilal EI Mlawi 
J: t~~~~~~gsinstitut Meinsberg ~17og6~~1~2as=s Cable: PAlOBEN Brussels Bucurestl-Sectorul 2 P.O. Box 2528 USSR 

t- P.O.Box 895 Tetex: 23 494 Tel: 88-20-70, 88-24-40, 88~7-95 Mamoun Bitar Street. 56-58 Hewlett-Packard 
Waldheim/Meinsberg Hewlett-Packard France IS-Reykjavik Telex: 118 DamascusTeI: 1146 63 Representative Office USSR 

MOROCCO a:: Tel: 37 667 "France-Evry" immeuble lorraine Tel: 1 58 2011 63 03 Doibeau SAUDI ARABIA Pokrovsky Boulevard 4/17-kw 12 

0 
Telex: 518741 Boilevard de France Cable: ELDING Reykjavik 81 rue Karatchi Modern Electronic Moscow 101000 
Export Contact AG Zuerich 91035 Evry-Cedax Casablanca Establishment (Head Office) TUNISIA Tel: 294.20.24 

Tel: 077 96 60 IRAN Telex: 7825 hewpak su Z Guenther Forgber Hewlett-PaCkard Iran ltd. Tel: 3041 82 P.O. Box 1228, Baghdadiah Street T unisie Electronique 
Schlegelstrasse 15 Hewlett-Packard France No. 13. Fourteenth St. T eiex: 23051122822 Jeddah 31 Avenue de la Liberte YUGOSLAVIA 

W~ 
1040 Berlin 50, Rue de Metz Mir Emad Avenue Cable: MATERIO Tel: 27 798 Tunis Iskra-StandardAiewiett-Packard 
Tel: 42-74-12 57130 Jouy aux Arches P.O. Box 4112419 Gerep 

Telex: 40035 Tel: 280 144 Miklosiceva 38N11 

D.. 
Telex: 111889 Tel: (87) 694532 Tehran 3, roe d 'Agadir Cable: ElECTA JEDDAH Corema 

nrofl ~~16 74 DENMARK Tel: 851082-5 Casablanca Modem Electronic 1 ter. Av. de Carthage 

0 Hewlett-Packard AiS GERMAN FEDERAL REPUBLIC Telex: 213405 hewp ir Tel: 272093.5 Establishment (Branch) Tunis SOCIALIST COUNTRIES 

a:: Datavej 52 Hewlett-Packard GmbH IRELAND Telex: 23739 P.O. Box 2728 Tel: 253 821 NOT SHOWN PLEASE 
DK-3460 Birkerocl Vertriebszentrale Frankfurt Hewlett-Packard ltd. Cable: GEREP-GASA Riyadh Telex: 12319 CABAM TN CONTACT: 

~ Tel: (02)816640 Berner StrilSS8 117 King Street lane Cogedir Tel: 62596.ti6232 
TURKEY Hewlett-Packard Ges.m.b.H Gabie: RAOUFCO 

W 
Cable HEWPACK AS Posttach 560 140 Wlnnersh, Wokingham 31 rue Omar Siaoui TEKNIM Company ltd. Handelskai 52 
Telex: 37409 hpas dk 0-6000 Frenkfurt 56 Berks, RG11 SAR Casablanca Modem Electronic Riza Sah Pehlevi P.O. Box 7 
Hewlett-Packard AiS t~~If6~J~~2f:sl Frankfurt ~~:E£~~h 47 74 

Tel: 27 65 40 Establishment (Branch) Caddesi No.7 A-1205 Vienna, Austria 
Navervej 1 Telex: 21737J23003 P.O. Box 193 KavakJidere. Ankara Tel: (022;1) 351621 to 27 
DK-8600 Slikeborg Telex: 04 13249 hpffm d Telex: 84 7178 Cable: COGEDIR AI-Khobar Tel: 275800 MEDITERRANEAN AND Tel: 44678-44813 Tel: (06) 8271 66 Hewlett-Packard GmbH Cable: Hewpie london NETHERLANDS Telex: 42155 MIDDLE EAST COUNTRIES 
b~~I~ ~EWr,t8~sA~K Technisches Bl1ro Boblingen Hewlett-Packard ltd. Hewlett-Packard Benelux N.V. Teknim Com., ltd. NOT SHOWN PLEASE 

Herrenberger Strasse 110 i~n~v~~~e~~~~ustrial Estate Van Heuven Goedhartlaan 121 Barbaros Buivari 55112 CONTACT: 
EGYPT 0-7030 B6bllngen. Wurtfemberg P.O. Box 667 SPAIN Besikyas, Istanbul Hewlett-Packard S.A. 
I.E.A t~~If:~M~~~ BOblingen 

Dublin 12, Eire Nl-Amstelveen 1134 Hewlett-Packard Espanola, SA Tel: 613 546 Mediterranean and Mid"dle 
International Engineering Associates Tel: (01) 514322 Tel: (020) 472021 Calle Jerez 3 Telex: 23540 East Operations 
24 Husse.in Hegazi Street Telex: 07265739 bbn Telex: 30439 E-Madrld 16 Medical only 35. Kolokotroni Street 
Kasr-el-Ami Hewlett-Packard GmbH Medical Only +:i~~1 ~j~i~: (10 ~nes) E.M.A. Platia Kefallariou 
Cairo Technisches Bl1ro Dusseldorf Ca~diac Services Oreland) ltd. NORWAY Muhendislik Kollektif Sirketi GR-Kifissia-Athens, Greece 
Tel 23 829 Emanuel-leutze-Str.l (Seestern) Kilmore Road Hewlett-Packard Norge AiS Hewlett-Packard Espadnola SA Mediha Eidem Sokak 4116 Tel: 808033712591429 
Telex: 93830 0-4000 Duaseldorl Artane Osterdalen 18 Colonia Mirasierra Yuksel Caddesi FOR OTHER AREAS 
Cable: INTENGASSO Tel: (0211) 59711 Dublin 5, Eire P.O. Box 34 Edificio Juban Ankara NOT LISTED CONTACT 
S4MITRO Telex: 085186533 hpdd d Tel: (01)315820 1345 Ostera .. % Costa Brava, 13 Tel: 17 56 22 Hewlett-Packard SA 
Sami Amin Trading Office Hewlett-Packard (;mbH Medical Only Tel: (02) 171180 Madrkl34 Cable: EMATRADEIAnkara 7, rue du Bois-du-lan 
18 Abdel Aziz Gawish TeChnisches Buro Hamburg Cardiac Services Co. Telex: 16621 hpnas n Hewlett-Packard Espanola, S.A. Analytical only P.O. Box 
Abdine-Cairo Wendenstrasse 23 ~~~:%o/1~~~OUth Hewlett-Packard Norge AiS Milanesado 21-23 Yilmaz Ozyurek CH-1217 Meyrin 2 - Geneva 
Tel: 24932 ~;r~~~7~~rNs 1 ~a:r;~114 E-Barcelona 17 Milli Mudafaa Cad 1616 Switzerland 
Cable SAMITRO CAIRO GB-Northern Ireland Tel: P) 203 6200 (5 lines) Kizilay Tel: (022) 82 70 00 

ALABAMA 9sos Aero Drive ILLINOIS MINNESOTA NEW YORK OREGON P.O. Box 42816 
P.O. Box 4207 P.O. Box 23333 5201 Toliview Dr. 2400 N. Prior Ave. 6 Automation lane 17890 SW lower Boones 10535 Harwin Dr. 
8290 Whitesburg Dr. San Diego 92123 Roiling Meadows 60008 St. Paul 55113 Computer Park Ferry road Houston 77036 
Huntsville 35602 Tel: (714) 279-3200 

~PJ~61~~:~~~ Tel: (612) 636-0700 ~1~;'f8l ~~~1550 Tualatin 97062 Tel: (713) 776-6400 
Tel: (205) 881-4591 "Tarzana MISSISSIPPI Tel: (503) 620-3350 'Lubbock 
8933 E. Roebuck Blvd. Tel: (213) 705-3344 TWX: 710-444-4961 

~e~dir06s)ef~~~~ INDIANA 322 N. Mart Plaza PENNSYLVANIA 
~rJo~r:3'1:-~~a~~ COLORADO 7301 North Shadeland Ave. Jackson 39206 650 Perinton Hill Office Park 111 Zeta Drive 

5600 DTC Parkway Indianapolls46250 Tel: (601) 982-9363 Fairport 14450 Pittsburgh 15236 205 Billy Mitchell Road 
ARIZONA Englewood 80110 ~pm-~~:~~~ 

Tel: (716) 223-9950 Tel: (412) 782-0400 San Antonio 78226 
2336 E. Magnolia SI. Tel: P03) 771-3455 MISSOURI TWX: 510-253-0092 

1021 8th Avenue Tel: (512) 434-8241 
Phoenix 85034 IOWA 11131 Colorado Ave. No.1 Pennsylvania Plaza CONNECTICUT f;~~~ ~~~_~7 

King of Prussia Industrial Park UTAH Tel: (602) 244-1361 12 lunar Drive 2415 Heinz Road 55th floor King of Prussia 19406 2160 South 3270 West Street 
2424 East Aragon Rd. New Haven 06525 Iowa City 52240 TWX(891d-771-2087 

34th street & 8th Avenue 
~m~~:~m Satt Lake City 84119 New York 10001 Tucson 85706 Tel: (203) 389~551 Tel: il19) 338-9466 

1024 Executive Parkway Tel: (212) 971-0800 Tel: (B01) 972-4711 

en Tel: (602) 889-4661 TWX: 710-465-2029 KENTUCKY St. Louis 63141 5858 East Molloy Road PUERTO RICO VIRGINA 

W -ARKANSAS FLORIDA Medical Only Tel: P14) 878-0200 Syracuse 13211 Hewlett-Packard Inter-Americas P.O. Box 12778 
Medical Service Only P.O. Box 24210 3901 Atkinson Dr. 

NEBRASKA Tel: il15) 455-2466 Puerto Rico Branch Office Norfolk 23502 
t- PO. Box 5646 2727 N. W. 62nd Street Suite 407 Atkinson Square 

~:i~r~nl~Oad 1 Crossways Park West Calle 272, Tel: (804) 460-2671 
Brady Station Ft. Lauderdale 33309 Louisville 40218 Edif. 203 Urg. Country Club « Tel: (502)456-1573 ~r;m)§2miro P.O. Box 9669 Little_Rock 72215 Tel: P05) 973-2600 Suite 101 Carolina 00924 2914 Hungary Springs Road t- Tel: (501)376-1844 4428 Emerson Street LOUISIANA Omaha 68106 NORTH CAROLINA Tel: (809) 762-7255 Richmond 23228 

en CALIFORNIA Unit 103 P.O. Box 1449 Tel: (402) 392-0948 5605 Roanne Way Telex: 345 0514 Tel: (B04)285-34~1 
1579 W. Shaw Ave Jacksonville 32207 3229-39 Williams Boulevard Greensboro 27405 SOUTH CAROLINA 

0 Fresno 93771 Tel: (904) 725-6333 Kenner 70063 NEVADA Tel: (919) 852-1800 P. O. Box 6442 WASHINGTON 

Tel: (209) 224-0582 P.O. Box 13910 Tel: (504) 443~201 "Las Vegas 6941-0 N. Trenholm Road Bellefield Office Pk. 

W 6177 lake Ellenor Dr. Tel: (702) 736-6610 OHIO Columbia 29260 1203-114th Ave. S.E. 
1430 East Orangethorpe Ave. MARYLAND Medical'computer Only Bellevue 98004 

!::: Fullerton 92631 Orlando 32809 7121 Standard Drive NEW JERSEY Bldg. 300 Tel: (803) 782-6493 Tel: (206) 454-3971 
Tel: (714) 870-1000 Tel: P05) 859-2900 Parkway Industrial Center W. 120 Century Rd. 1313 E. Kemper Rd. TENNESSEE TWX: 910-443-2446 

Z 3939 lankershim Boulevard P.O. Box.12826 Hanover 21076 Paramus 07652 Cincinnati 45426 8914 Kingston Pike P.O. Box 4010 

~e~rt~1~)~11~~~ 91604 
Suite 5, Bldg. 1 Tel: P01) 796-7700 Tel: (201) 265-5000 Tel: (513) 671-7400 Knoxville 37922 Spokane 99202 

::) Office Park North TWX: 710-862-1943 TWX: 710-990-4951 Tel: (615)523-0522 
Penascola 32575 Crystal Brook Professional 16500 Sprague Road Tel: (509) 535-0864 

TWX: 910·499·2671 2 Choke Cherry Road CkNaa~nd 44130 
5400 West Rosecrans Blvd. 

Tel: (904) 476-8422 Rockville 20850 Building. Route 35 
~(2Jfd~~~~~ 

3027 Vanguard Dr. 'WEST VIRGINIA 
Tel: P01 ) 948-6370 Eatontown 07724 Director's ptaza Medical/Analytical Only 

PO. Box 92105 GEORGIA 
TWX: 710-828-9684 Tel: (201 ) 542-1384 

~~ii:~~70 
Charleston 

World Way Postal Center P.O. Box 105005 330 Progress Rd. Tel: (304)345-1640 
Los An~1es 90009 450 Interstate North Parkway MASSACHUSETTS NEW MEXICO Dayton 45449 
Tel: (213 776-7500 Atlanta 30348 32 Hartwell Ave. P.O. Box 11634 Tel: (513)859-8202 "Nashville WISCONSIN 
TWX· 91 -325-6608 Tel: (404) 955-1500 Lii"lil~'''i 02173 Station E 1041 Kingsmill Park'.r.IY ~e'ri:j5~er~c:~~ 9004 West lincoln Ave. 
-Los Angeles Medical Service Only 11300 lomas Blvd., N.E. Columbus 43229 West Allis 53227 
Tel: (213) 776-7500 ~~~~u~N~~~2 ~~"7id-~~t~~ Albuquerque 87123 Tel: (614)436-1041 TEXAS 

Tel: (414)541-0550 
Tel: (505) 292-1330 3003 Scott Boulevard MICHIGAN TWX: 910-989-1185 OKLAHOMA 4171 North Mesa FOR U.S. AREAS Santa Clara 95050 P.O. Box 2103 23855 Research Drive P.O. Box 32008 Suite C110 NOT LISTED: Tel: (406) 988-7000 1172 N. Davis Drive 

f:~'Wm~76~~ 48024 
156 Wyatt Drive 6301 N. Meridan Avenue EI Paso 79902 Contact the regional office 

~~i'm~~~165 Warner Robtna"31098 Las Cruces 88001 
~:Ia~~2?_~rk3112 Tel: (915)533-3555 

Tel: (912) 922-0449 Tel: (505) 526-2484 nearest you: Attanta, Georgia ... 
724 West Centre Ave. TWX: 910-9983-0550 P.O. Box 1270 North Hollywood. California ... 

646 W. North Market Blvd HAWAII KalamaZoo 49002 9920 E. 42nd Street 201 E. Arapaho Rd. Rockville, Maryland .. 
Sacramento 95834 ~~~~~iuK~3a~eet Tel. (606) 323-8362 Suite 121 Richardson 75080 Rolling Meadows, 
Tel (916)929-7222 Tulsa 74145 Tel: (214) 23H101 Illinois. Their complete 

Tel: (808) 955-4455 addresses are listed above. 

·~rvil"':. nnlu 





Subject Index 

a 
AAR, ,< ,<, < < < 40,207,221,222 
ABR, , < < , < , , , < , < , 40,207,221,222 
ABS function < < < < < < < , , " 101 
ACS function < < < > < , , < , , , , ,< 101,266 
ADA , , > , ,< 35,207,221,222 
ADB <", > "", > , , , < , , < 35,207,221,222 
AND: 

instruction 41,207,221,222 
operation >, < " >"",'." >"", 101 

ANY 112,128,128,196,224 
ASC declaration, > , 
ASCII character set 
ASMB file-type , , 
ASN function, 
ASSIGN 
ATN fun~ti~~',',',' 
AUTO 

., y, •• " >. 

'" < <"" <", 182 
199 

, , , , , , " 19,22,23 
, > < 101,266 

< , " 163,164,165 
,<""", <" < 101 

Abortive access, < , < , , , < , , 

, " """ 11,14 
142 

Absolute 75 
Access: 

abortive> < • > . , . > 142 
asynchronous < < , , < 142 
granting, , < , , , , < , < , < " 142 
synchronous> , , , , , < < " ", < < < < ' " 142 

Accumulators: 
General 26,34,35,40,69,231 
map, < , , , < , , < , , , , < , , , < , >, < <, ", 27 

Addition, General, < < , < < , , < , , , , , , , < 35 
Addition,BCD < • , < <, 210 
Addition, binary < < < , , ' , , , , , < , , < , < 207 

Address, machine, < 78 
Addressing: 

General 
indirect, , < , •• , , • , < < > 

33 
34,146 

Arguments: 
changing values of 
passing from BASIC' : : : : : : : : : : : : > > 
system information about> , < < , , < < < 

Arrays: 
changing val ues in < < • > , > < , • < , < > , , > 
identifiers 
obtaining informati'~~ '~n . > . > > < > > > . 
retrieving elements from : : : < > > . > . > 

retrieving substrings from > , 
system information about 

122 
109 
113 

124 
129 
115 
118 
121 
113 

Assembled location, >, > > > < , • > < , , • < > 225 
Assembled location,definition , < , > , > . < < " 4 
Assembling: 

process" "< < • >, ,." < • , , •• , •••• , 60 
error .", .. < , , , , > , , . , , , .... , > ., 194 

Assembly: 
Developmen t ROM. , ... , , . , , .. , .. 261 
Execution ROM .. , , ... , " "'.,,, 261 
Language ROMs , . , < , • , , •• , , • , • , • 268 
conditional, definition 4 

Asynchronous access, , ... ', .. ',',', .. ' ,'. , , ,',' '142 

b 
BASIC: 

General",., ... " 8,9,11,12,122,174 
assembly language extensions . , , , " 13 
assembly source entry .. '. >, ., < •• 14 
branching on interrupts .. , , .... , " 150 
calling assembly language, . < , •• , , ., 7 
common .,., .. ", .... < , • , , ,. 128,132 
comparison of expressions, .. , .... , 77 
comparison of operators ., ,., < , ••• 76 
drivers .. ,. ". > . , . > , , .. , , .. , < > , . <. 10 
end-of-line branches, , , . , , . < , •• , ,. 139 
labels, , , , . , , . , . , < ••• ,. .,. > , , .. 50,52 
passing variables, < ., >, < •• , •• ,.,. 5 
relation to assembly language. , . , . , . 49 
role of STEP key > , , > > , ....... , . >, 1 72 
routines , , ... , .. , , , . , . , . , . , . , , .. < 175 
subprograms. , . , , , ., 155,163,176,179 
variables: 

BCD: 

general, .. , . , . < , • , , ••• , •• 123,175 
names, , .. , ... , ... , , .. , ..... " 17 
structure .. , .,. ..,.,".,. 30 

General, , ...... , . . . .. ., < • , • , • 31 
Math group , .. , , . , , .. , , . , .. > . > , 44,45 
addition .. , . , , .. , .. , , , , , , . , . , , .. , 210 
arithmetic: 

General , , ... , . , , < • < , ••• , 83 
addition, , . , . , , , . , , , . , , .. , .. , <. 85 
subtraction. , , , , , , , .... , , , ... , , 86 

defined, , , , , . , , , . > , < • , • , •• , , , , , , • , 83 
division, . " >"." ." ". 46,92,210 
multiplication, < , , , , • , , , , • > , 46,90,210 
normalization, .. , .. , , .. , ... 44,89,213 
registers ... , , , < •• , , ••• , •• , , , , , • , , • 84 
rounding, , < , , • , , •• > , .. , ... , , . , < , • , 89 

277 



278 Index 

BIN declaration .. > > > > > > • > •••• < , 0 , < • > 182 
BSS > > •• > • > , • , , > > >. " ••• 56,57,75,224 
Backplane .. > • , , • > • > •• >. 0 • 0 •• , , 133,134 
Base page . < • > , ••••• > ••• > •• 0 > • > 29,33,221 
Base page,defined >, 0 , > • > •••••• > • 0 • 0 • 0 30 
Binary Processor Chip (BPC) .,.,. 0 .25,26 
Blank lines, in listings .... > 0 •• 0 •• 0 ••• > 0 > 65 
Blind parameters> .... > .. > > .. > > ••• , •• 112 
Booth's algorithm > > > > , > > ,> ,.,.,.35,212 
Braces (in syntax), explained . 0 , • 0 •• 0 , •• > 6 
Brackets (in syntax), explained ,. 0 , 0 > > •• > 6 
Branch group .. 0 •• > > , > > •• >, ., •• 0 , •• 0 .36 
Branching: 

General .. > •• > .... , .. > ••• > • > .. 36,211 
end-of-line, 0 > • > . , . , . > > ,. >" •••• 139 
interrupt, prioritizing .,. , ... , .... > 153 
on interrupts > > > > •••• > > > , > > , > > , > . 0 150 

Break points , ..... , .. > •• , , , ••••• 172,270 
Buffers,device " > •• , •• ,< , •• 157,158,162 
Bus cycles, 1/0 >,. > . > > 25,33,187,207,208 

210,213 -216,218,219,220 
Bus, 1/0 . > . > > . > , •• > ••• > > . , > .... 0 > .. < .47 
Busy bits . 0 > > ... > > < • > .. > , •• , > ....... 130 
Busy bits, definition .. , > • , ••• , •• > • 4 
Busy utility > > ••••••• , •• > ., ••• > • > < 81,130 
Bytes: 

General. , . . . ... > 0 > > > , •••••• 42,43 
definition .... > ••• , • • •• .., > , •• , 0 • , • 4 
pointers ,.,. 0 • , •• , , , , , < , •• < ••• > • > • 69 
retrieving from BASIC . < , . , , < ... , .119 

c 
CALL, ." .... " .. ". 0""" > •• " .19,111 
CBL , , , , , , .. ,< ..... ,43,208,221,222 
CBU . 0 > , , •• , , , ••• , • > , • , ,43,208,221,222 
CDC >""'" > , " ,>. 46,85,208,221,222 
CHR$ , , , , , 0 • 0 , " >".,.,. > 266 
CLA 0 • • •• , , , ••• 41,208,221,222 
CLB . , .. , > • < , . 0 , , ,> ••• 0 .41,208,221,222 
CLR 00' ••• 34,146,208,221,222 
CMA 0 •• 0". , >",.41,208,221,222 
CMB . < .. " .. , 0., > ••• > .41,208,221,222 
CMX .. , , ... 45,86~208,221,222 
CMY ., .. ,.",., .. , ... 46,86,208,221,222 
COM: 

pseudo-instruction ",,59,128,129,195 
196,224 

statement ,.,.,.,115,128,195,267,270 
CONTINUE key .,. . > <,,111,171,175 
COS function ,. > • • • , , • , , • < .... ,101 

CPA, "><"<""'" 
CPB, .. , <., 0""'" 

Clock times .. < , , , • , 

Code: 

,37,208,221,222 
,37,208,221,222 
., ... >., ... ,221 

object ,.".",.",.,5,7,8,9,14,60,68 
source, .. < .. , , , > , •••• , •• , , • ,5,60,189 

Commands: 
AUTO." .. 0" > •••• ' •••• >., .. ,,11,14 
EDIT <.,. > 0 •• 0 <'.0 .... 11,11,14,14,53 
REN .. , 0 . , , .. , .. , .... , , , . , > , • > •• 266 
SCRATCH A ", .. 21,143,159,162,194 
SCRATCH C .. , .......... ,. <,21,193 

Comments,in assembly source o. o· 0,51,53,54 
Common .. ,. < 0 ••• 0 . , ... , .. > .... 128,132 
Common, error regarding . , < .. < . , .... < 195 
Complement: 

one's ... , .. , , .. , , . > , • > <. ,< < .. 41,208 
ten's . < . , >. >.,. < < < ..... , , 045,86,208 
two's o. < . , .. , . , , . < .......... , .46,219 

Conditional assembly: 
definition " .... , , < • , , • , •• , , ••• , •• , 4 
flags , . 0 , • , •• , •• , ••• , •• , , • > , •• , •• , < 67 
general . < , . , . 0 •• > •••• , •••• , , •• ,60,65 

Control registers , ... , ...... ,. > • > >. •• 135 
Current page: 

General ' .. , ............ ,.29,33,221 
defined .... " >. > •••• , •• , , • , , ••• ,30 

d 
DAT ."., < . , . . . . ,. ,<., ••• 57,224 
DATA., .... , ..... "., >, •• , •• > ....... 266 
DBL ... , .. , .. , .. , , , ...... 43,209,221,222 
DBU ., >,. > •• > •••• " < ••• 43,209,221,222 
DDR .. , >. , • < "" •• ,47,149,209,221,222 
DEC declaration , > • • •• • •• '., •••• , •• , 182 
DECIMAL. ,16,101,169,184,193,225,270 
DIR ." ..... , .. > •• > > . 47,156,209,221,222 
DISABLE ""'" 0 , , • , •••• , • > ,. ."., 156 
DIV function .. , .. , ,. >. ,,>. < , > < • > , •• 101 
DMA instruction, .. , . , . , .149,209,221,222 
DROUND .".,., .. > ••• , •• , •••• > , , • , • 101 
DRS, . , . , . , . > • , •• , •• , , , , .45,209,221,222 
DSZ .. , ... , .. ,.,. ,., ... ,38,209,221,222 
Data generators .. , , .. , . > •••••• , • , • , ••• 57 
Data locations . . ... ,., > .... , > , • > •••• 177 
Debugging. , . , , . , . , . , > • > , , • , • , • , .2,8,169 
Decimal Carry flag, .46,85,89,180,186,208 

209,211,213,216 



Declarations: 
ANy .. ,." ....... " ... ,. 112,128,196 
ASC , ....... , .... , .............. 182 
BIN ............................ , 182 
DEC .... , ....................... 182 
FIL ., ................ ' .. 110,128,196 
HEX ............................ 182 
INT ..................... 110,128,196 
OCT ........ , ................... 182 
REL ., ............ , .. , .... ,. 110,128 
SHO .......... " ... , .. « 110,128,196 
STR, ....... , ....... 110,111,128,196 

Device buffers ... , ........... 157,158,162 
Direct memory access (DMA): 

General,.47,47,133,141,142,147,216 
lockout time " ............ , ...... 221 
registers .................. 69,148,231 
timings .......................... 221 
transfers ...... , ........ , . . . . . . . .. 149 

Division, BCD .... , ... , .. " .... 46,92,210 
Dot matrix, explained. , .... , ............ 6 
Dumps ........... , ............. , , ... 181 

e 
EDIT ................... , .. 11,14,53,266 
EIR .......... ,. " ... 47,156,209,221,222 
EJECT option, IASSEMBLE statement 
.............................. , ... 60,63 

ENABLE ............................ 156 
END: 

pseudo-instruction ... 5,11,17,18,55,59 
195,224,271 

statement ................... 195,265 
ENT ................ , ........ 77,194,224 
EQU .. , ......... 4,59,71,75,197,224,225 
ERRL ........................... 101,192 
ERRM$ ............................. 192 
ERRN ......... , .............. ,. 101,192 
EXE .. , ....... , . " ... 47,196,210,221,222 
EXOR .. < ••••••••••• , •••••••••••••• ,.101 
EXP function .. < ••••••••••••••••••••• 101 
EXT ... , ........ 59,77,78,80,195,197,224 
Ellipses (in syntax), explained ..... , ..... 6 
Entry points ................ , ..... 77,194 
Error_exit utility .... , , ........ 81,186,191 
Errors: 

assembly language .. ', . '/' .... 270,270 
assembly-time , .................. 190 

Index 279 

files . , ....... < •••• < • • • • • • • • • • • • • • 267 
mass storage ............ : . ' ... 269,269 
messages: 

General ................ , , . . . . 265 
assembly-time .... < ••• , •• , 193,271 
run-time ................. , ... 193 

processing ................. < < •••• 189 
run-time. . . . . . . . . . . . . . . . . . . . . . . .. 190 
syntax-time ...................... 189 

Exclamation point ................ , .... 53 
Expressions: 

General .... , ................. 75,196 
absolute, defined .................. 75 
external ....................... " 196 
octal, defined ......... < •••••••••••• , 5 
relocatable ................. , . . . . . 196 
relocatable, defined. , ............ , . 75 
type of result ...................... 76 

Extend flag .... 35,38,39,145,180,186,207 
216,217,219 

Extended Math Chip (EMC) ............ 25 
External. . . . . . . . . . . . . . . . . .. ...... 76,196 

f 
FDV, ................. 46,94,210,221,222 
FIL .................... 110,128,196,224 
FMP ........... 46,90,91,92,207,221,222 
FOR statement ...................... < 268 
FRACT . < ••••••••••••••••••••••••• < • 101 
FXA ... < •••••••• 46,87,89,90,210,221,222 
Files: 

ASMB-type .... < •••••••••••• 19,22,23 
OPRM-type ................. 19,22,23 
descriptor ......... , ..... 163,164,165 
errors ........................... 267 
names ............................ 17 
numbers .................... 117,118 

Flag line ......................... 47,217 
Flags: 

Conditional assembly .............. 67 
Decimal Carry .. 46,85,89,180,186,208 

209,210,211,213,216 
Extend . 35,38,39,39,145,180,186,205 

214,217,217 
Overflow .. 35,38,39,145,180,186,205 

215,218,217 
Full-precision numbers ... 30,58,78,84,102 

103,104,105,117,118 



280 Index 

Functions: 
ABS ........................... ,101 
ACS ...... , ................. 101,266 
ASN .. . ....... , ........ , ... .101,266 
ATN ............................ 101 
CHR$ ............. , ............ 266 
COS , .......................... 101 
DECIMAL ...... 16,101,169,184,193 

225,270 
DIV ........ , ................... 101 
DROUND ........................ 101 
ERRL , .......... <> ••••••••• 101,192 
ERRM$ ....... , .................. 192 
ERRN ....... , ............... 101,192 
EXP .... , ........................ 101 
FRACT ............. . ..... " .... 1 0 1 
IADR ........ 16,101,169,184,185,226 
IMEM ........... 16,101,169,184,186 
INT ........... , ................ 101 
LGT ......... . ............. 101,266 
LOG . .................. . .. 101,266 
NUM ............................ 266 
OCTAL .. 16,101,169,184,193,229,270 
PI ............................... 101 
PROUND ........................ 101 
RES ....................... > ..... 101 
RND ....................... > .... 101 
RPT$ ........................... 266 
SGN " > ........................ 101 
SIN ............................. 101 
SQR .. ' ............ > ••••••••• 101,266 
TAN ..... , .................. 101,266 
TYP ....................... , ..... 101 

9 
GET statement ........ > , ..... 53,177,268 
Get bytes utility ..... 81,116,119,120,128 
Get-elem bytes utility ... 81,116,120,128 
Get-element utility ... 81,116,118,121,128 
Get-file info utility ......... , ..... 81,164 
Get-info utility .. 81,114,118,121,123,128 
Get-value utility ........ 81,116-119,128 
Groups: 

BCD Math ............ , ........ 44,45 
Branch ........................... 36 
I/O ....................... , ...... 47 
Integer Math .. , ............ . ... > 35 
Logical ........................... 41 
Stack ......................... 42,146 
Test/ Alter/Branch .......... , ..... 38 
Test/ Branch ................. , .... 37 

h 
HED .......................... 64,65,224 
HEX declaration ..................... 182 

• 
I 

I/O: 
ROM ............................ 268 
bus ............................... 47 
bus cycles ...... , .......... 25,33,187 
group ............................. 47 
interrupt ............ . ...... 133,138 
operations, relation to busy bits .... 130 
programmed ................. 133,138 
registers> ........... 26,26,70,187,231 
sample programs ................. 237 

IADR ........... 16,101,169,184,185,226 
IASSEMBLE ...... 12,16,20,60,'62,65,190 

194,226 
IASSEMBLE ALL ..................... 60 
IBREAK '" .16,169,174,179,181,186,193 

227,270 
IBREAK ALL ................ 169,178,227 
IBREAK DATA .. 169,177,179,180,193,227 
ICALL .. . .12,16,18,19,107,107,108,115 

117,123,131,172,227 
ICHANGE ............... 16,169,187,227 
ICOM ..... 12,16,18,19,21,22,23,193,196 

227,270,271 
ICOM region .... 19-23,28,56,108,157,161 

169,178,193,194,196,232,270,271 
IDELETE ................. 16,18,22,227 
IDELETE ALL ....................... 227 
IDUMP ..... 16,169,181,186,194,228,270 
IF conditional ............. . ....... 66,67 
IFA ....................... : ...... 66,224 
IFB .............................. 66,224 
IFC .......................... ' ... 66,224 
IFD .............. , ............... 66,224 
IFE .............................. 66,224 
IFF ................................... 66 
IFG ............................. 66,224 
IFH .............................. 66,224 
IFP .............................. 66,224 
ILOAD ... 14,16,18,20,22,55,171,194,228 
IMAGE ....... · ........ · ...... ······ .268 
IMEM .......... 16,101,169,184,186,228 
INORMAL .......... 16,169,179,193,228 



INT: 
function> ... > ................ > . " 101 
pseudo-instruction> " 110,128,196,224 

lOR .. > ... > .......... > ... 41,210,221,222 
IPAUSE OFF ......... > " . 16',169,174,228 
IPAUSE ON ......... 16,169,171,175,229 
ISOURCE ...... 11,11,49,50,53,54,63,229 
ISTORE ......... 14,16,19,23,55,194,229 
ISTORE ALL ........... ; ............. 24 
ISZ ......... , ...... > .... > 38,211,221,222 
Index > ......... , ...... > ............. 277 
Indirect addressing: 

General ......... > .......... , ... 34,68 
in ISRs ... > . . . . . . . . . . . . . . . . . . . .. 146 

Input cycle, explained ............... , 25 
Input-Output Controller (lOC) ...... 25,26 
Instructions: 

individual execution of ......... > .. 170 
machine: 

General ............... > 32,54,223 
AAR ................... > .. 40,207 
ABR ... > ..... > > > > .... > > . > . 40,207 
ADA .... > , ............ , ... 35,207 
AOB .. > > .................. 35,207 
AND .......... , ........... 41,208 
CBL ...................... 43,208 
CBU ............. ' ...... > 43,208 
CDC ..... > . > . .. . > . > .. 46,85,208 
CLA ' ... > . > > .............. 41,208 
CLB ... > . . . . . . . .. . ..... 41,208 
CLR .................. 34,146,208 
CMA ........... "', ..... 41,208 
CMB ., ................... 41,208 
CMX ., ................ 45,86,208 
CMY " .. , ............ , 46,86,208 
CPA .......... " .... " .. 37,208 
CPB .... · .... ,· .......... 37,209 
OBL ..................... , 43,209 
OBU ....... , .............. ,43,209 
OOR ....... , ......... 47,149,209 
OIR ········,···.·· ... 47,156,209 
OMA ........... , . · ... 47,149,209 
DRS···· .. ·,···· .......... 45,209 
OSZ ··················.··.38,209 
EIR .................. 47,156,209 
EQU·················· ..... 4,225 
EXE ......... , .... , , , ..... 47,210 
FOV .. > .. " ........ ····46,94,210 
FMP· ............ 46,90,91,92,210 
FXA .......... > .. 46,87,89,90,210 
lOR········ ·············41,210 
ISZ ................ ~ ...... 38,211 

Index 281 

JMP .. " ................. 36,211 
JSM ............... 36,79,211,214 
LOA ............ , > .... 34,211,213 
LOB ...................... 34,211 
MLY ..................... ,45,211 
MPY. , . > .......... , ...... 35,212 
MRX ............ 44,87,89,91,212 
MRY ......... 45,87,89,91,92,212 
MWA .................. 46,90,213 
NOP> .. " ..... " ......... 47,213 
NRM . > .............. , . 45,89,213 
PBC. ,. . .. , .............. 43,213 
PBO .... , ................. 43,213 
PWC ...... ,', ............ 43,213 
PWO ... , ................. 43,213 
RAL ..... ,. . ......... , ... 40,213 
RAR ...................... 40,213 
RBL ..................... 40,213 
RBR ........... , .......... 40,213 
RET ....... 11,36,79,141,211,213 
RIA ... , ........... , . . . . . . . 37,215 
RIB ............... , ....... 37,215 
RLA .......... , ....... , ... 39,215 
RLB .... , ................. 39,215 
RZA ... , , .......... , . . . . . . 37,215 
RZB ..... , ............ >. 37,215 
SAL ....... , , , , ........... 40,215 
SAM ....... :.. . ......... 38,215 
SAP ...................... 38,215 
SAR .... , ............. 40,208,215 
SBL ........... , ....... > . 40,216 
SBM ...................... 38,216 
SBP ............ '" ...... 38,216 
SBR, .. " . . . . . . . .. 40,92,208,216 
SCO ............. "....... 85 
SOC· . , . . . . . . . . . . .. > ..... 46,216 
SOl· . > ......... 47,148,149,216 
SOO ............. 47,148,149,216 
SOS ................. , . 46,85,216 
SEC· ... , ................ 39,216 
SES ······················39,217 
SFC .... · .. ·· .... · ... 47,137,217 
SFS ................. 47,137,217 
SIA· ..... , , .............. , 37,217 
SIB· ...... > . . . . . . . . . . . . . . . 37,217 
SLA .. , . , ...... , .......... 38,217 
SLB ..... ················39,217 
SOC·········· ···········39,218 
SOS······················39,218 
SSC ................. 47,137,220 
SSS .......... , ....... 47,137,218 
STA ........... , .......... 34,218 



282 Index 

STB ...................... 34,218 Integer Math group ............ , ....... 35 
SZA ...................... 37,218 Integers: 
SZB ...................... 37,218 General ..... 58,102,105,114;117,118 
TCA " .................... 35,219 octal ................... , , ......... 58 
TCB ...................... 35,219 structure .......................... 30 
WBC ..................... 43,219 Interfaces: 
WBD ..................... 43,219 General ....... , .. , ...... 133,134,147 
WWC ..................... 43,219 98032 (GPIO) ....... 135,138,147,149 
WWD ................... , . 43,220 237,239,241,244,247,250 
XFR .. , . . .. . ...... , .. 34,146,220 98033 (BCD) ................ 239,244 
arith metic ." .... " ..... " ..... 84 98035 (Clock) ........... 237,239,257 
entry ....... , .................. 51 98036 (Serial) ....... 237,239,241,244 
groups ................ , ..... ,. 32 Interrupt I/O ................... 133,138 
opera nds ..... , .... , , .......... 32 Interrupt service routines: 

patching ... , .................. , , . 187 General .... , ......... 21,138,140,149 
processor ... , ..................... 25 called from BASIC ........... 150,151 
pseudo-: defined ......... , .................. 5 

General .... , ... , .... 18,51,54,223 errors in .................. , ...... 194 
ANY ...... , ....... , ..... , .... 128 linkage ...................... 141,152 
BSS .................... 56,57,75 reserved symb ............ . ..... 231 
COM ." ..... 59,128,129,195,196 reserved symbols .................. 69 
DA T ........ , ............ " ... 57 state in .......................... 145 
END., .... 5,11,17,55,59,195,271 Interrupts: 
ENT ., ....... , .... , , ... 77,78,194 General .......... , .......... 209,221 
EQU, ...... " .......... 59,75,197 execution time ............ ,., .... 221 
EXE ........ , ....... , ........ 196 lockout time ..................... 221 
EXT ......... 59,77,78,80,195,197 related machine instructions ........ 47 
HED ....................... 64,65 Isr _access utility .... ' .......... 81,143,149 
IFA ................... " ...... 66 
IFB ..................... , ..... 66 
IFC .. , . , .... , , , .... , ..... , .... 66 
IFD , .... " .................... 66 
IFE .................... , ...... 66 
IFF ........................... 66 
IFG ........................... 66 
IFH ........................... 66 

• 
J 

IFP ........................... 66 JMP ..................... 36,211,221,222 
LIT ....................... 74,196 JSM ............. 36,79,211,214,221,222 
LST .................... 61,62,65 
NAM .......... 5,11,17,55,59,195 
REP .......................... 59 
SET .............. ,.71,72,75,197 
SKP ...... , .......... 62,63,64,65 
SPC ......... , ................ 65 
SUB ........ 11,59,78,108,128,129 

194,196 
k 

UNL .................... 61,62,65 Keyboard ........................... 133 
XIF ..... , .................. 66,67 Keys: 
non-listable, ...... , ............ 65 CONTINUE ............. 111,171,175 

repeating ........................ , 59 RUN ............................ 111 
timing .... " ..... , .............. , 221 STEP ...... 170,171,172,173,180,193 

Int_to_rel utility ............... , .. 81,104 STORE ..................... 11,14,53 



I 
LDA ................ 34,211,213,221,222 
LDB ............ , .... , , .. 34,211,221,222 
LGT function .................... 101,266 
LINES option, IASSEMBLE statement 
...................... , ........ 60,63,64 

LINK .................. ', ..... , .. 53,268 
LIST option, IASSEMBLE statement 

, .................. , .... , ...... , .. 60,61 
LIT. , . , , .. , ...... , ..... , , ... , 74,196,224 
LOAD ... , .................... , ..... 177 
LOG function .. " .... , ..... , .... 101,226 
LPY .. , ............................. 221 
LST ................. "., .. 61,62,65,224 
Labels: 

BASIC .. , , ..................... 50,52 
assembly ..... , ....... , ..... , 194,195 
assembly language ............. 51,52 

Lines: 
Flag ..... " ... , .. , ...... , ..... 47,217 
Sta tus . .. ., ...... , .... " ..... , .. 218 
blank, in listings ... " .. , .. " .. , .... 65 
flag ......... , ....... , ..... , .. , .. 137 
status, ............... , ' .. 47,137,138 

Listing: 
General. , ..... , ..... , ..... , . , . ,61,62 
directives .......... , ........... , .. 60 

Literals: 
General ........................ 72,75 
as data generators ., ............. ,. 58 
evaluation of , ..... , ..... , , ... , .... 72 
form of ., ......... , ...... " ....... 72 
nesting ........... , ...... , .. , ..... 73 
nonsensical use of ........ ', ..... ,. 74 
pools , ..... , ..... ",., .. ,74,196,271 

Load / Store group ............... , .... 34 
Lockout times: 

DMA ............................ 221 
interrupt ..... , ...... , ............ 221 

Logical: 
group ......................... , . , ,41 
operations .... " ...... ,', ......... 41 

m 
MASS STORAGE IS , .......... ,., .. 5,156 
MLY , ........ : .......... 45,211,221,222 
MOD operation ......... 'I' . , , , , . , ' • , , 101 
MPY .... , , , , , , .. , , , ... , ...... 35,212,222 

Index 283 

MRX ........... 44,87,89,91,212,221,222 
MRY ........ 45,87,89,91,92,212,221,222 
MWA ................. 46,90,213,221,222 
Machine address ...................... 78 
Machine architecture .. , ....... , .... 25,26 
Machine code, , , ....... , , , .... , ....... 33 
Maintenance agreements . < < • , •••••••• 273 
Mantissa shifting ... , ... < •• , ••••••• 44,45 
Manual: 

Assembly Language Quick Reference> 2 
Interfacing Concepts .. < •• 134,135,136 
Mass Storage Techniques. > .... > •• 5,17 

228,229 
Operating and Programming ..... 17,21 

228,229 
structure ... < •••••••••••• , •••••••••• 2 

Mass storage: 
General .............. 8,22,53,56,156 
Descriptor (MSD) .... 157,160,161,163 
ROM ........ , ... <. • •••••..••••. 269 
Transfer Identifier (MSTID) ., 160-162 
Transfer identifier (MSTID) ... 157-159 
errors ................ , .......... 269 
reading from ..................... 157 
unit specifier (msus) .. >.5,157,163,269 
unit specifier (msus), defined ........ 5 
writing to ........................ 160 

Memory: . 
General ........................... 56 
dumps ............... < •• , •••••••• 181 
general organization .. , ............ 28 
map, . > ....................... 27,232 
protected ...... , ..... 28;1 78, 180, 193 

Mm read start utility ........ 81,156-159 
Mm -read-xfer utility ........ 81,156-159 
Mm - write- start utility .... 81,156,160,161 
Mm - write-test utility ..... 81,156,160,161 
Modules: -

General .......... , , ............... 22 
creation .......................... 55 
defined ............................ 9 
names ............ , .... , .......... 1 7 
object .......................... 8,8,8 
object, defined ...................... 5 
source ........... " .............. 5,5 
storage ........ < • , •••••• , ••••••••• 56 

Multiplication: 
BCD ... , ............. , .... 46,90,210 
binary .... , ...... , ............ 35,212 



284 Index 

n p 
NAM ".,." ... ". 5,11,17,55,59,195,224 PAUSE key .... , , ..... , ..... 170,171,172 
NEXT. , ..... , , ........... , , ....... , . 265 PBC .................... 43,213,221,222 
NOP .................... 47,213,221,222 PBD ... < •• , •••••••• > ••••• 43,213,221,222 
NOT operation .......... , ........... 101 PI ....................... , .......... 101 
NRM , ... , ............ 45,89,213,221,222 PRINT, ......... , ............... 183,186 
NUM function ., .......... , ......... 226 PRINT USING .......... , ............ 268 
Names: PROUND ........................... 101 

modules ............... , ... '. . . . . . . 17 PWC ................. < •• 43,213,221,222 
Normalization .............. , ....... 44,89 PWD .. , ..... < •••••••• , •• 43,213,221,222 
Numbers: Page: 

full-precision. , . 58,78,84,102,103,104 format, listings .................... 62 
105,117,118 headings, listings ..... , ...... , , .... 64 

full-precision, structure ............. 30 length, listings. < , •••• , , •••••• , • • • •• 64 
octal ......... ,. . ........... 184,225 base .................. ,' . 29,33,221 
short-precision .... 58,78,103,105,114 base, defined. . . . . . . . . . . . . .. . ..... 30 

117,118 current .................... 29,33,221 
short-precision, structure ........... 30 current, defined . , ...... , .... , . , , .. 30 

defined ................. , ... , .. , . . 29 
Parameters: 

blind .......... " ..... , ..... ,.. 112 

o in SUB pseudo-instruction ...... .. 109 
Pausing .... , .. , ............ , . . . . . . . .. 7,8 
Plotter ROM ........ , ....... , , ....... 268 

OCT declaration ..................... 182 Pointers, stack ... < ••••••• 26,27,69,70,231 
OCTAL ..... 16,101,169,184,193,229,270 Pools, literaL .. , .... " ........ 74,196,271 
OFF INT .................... 16,156,191 Print_string utility ................. 81,167 
ON ERROR ..................... 191,192 Printer_select utility ...... , , ..... " 81,166 
ON INT .. " ...................... 16,150 Priorities, for select codes ............. 140 
ON declarations ..................... 267 Processors: 
OPRM file-type ...... , .......... 19,22,23 Binary Processor Chip (BPC) .... 25,26 
OPTION BASE ........ " ........... 265 Extended Math Chip (EMC) ........ 25 
OR ., .......... ' .................... 101 General .... , ..... , ...... ,....... 142 
Object: Input-Output Controller (lOC) ... 25,26 

code .................. 7,8,9,14,60,68 bus ............................... 25 
modules .......................... 8 instructions ................... , " 25 
modules, defined .... , .............. 5 Programmed I/O ............. , ...... 138 

Octal,expression,defined . , .............. 5 Programs: 
One's complement ................ 41,208 assembly language,developing ....... 7 
Operands ............................. 32 counter .............. , ......... 26,70 
Operating system, .... , ............. 141 counter, map ........ , ............. 27 
Operations: creation ....................... 8,9,49 

AND .................... , ....... 101 defined ............................ 9 
EXOR ......... , .. , ........ > ••••• 101 entry ... , ......................... 49 
Logical .... ' ...... > , ••••••••••••• , 41 stepping ......................... 7,8 
MOD ... , ............ , ....... 101,266 stepping through ...... , , . , ...... , 170 
NOT ... , ....... " ..... " .... > ••• 101 Protected memory ...... , . 28,178,180,193 
OR .. , ... , , , ... , . , , ........... , .. 101 

Output cycle, explained .. , ............. 25 
Overflow flag ...... 35,38,39,145,180,186 

207,217,218,219 
Overlap mode .. < •••••••••••••••••••• 130 

Put bytes utility ..... 81,122,124,125,128 
Put-elem bytes utility. .. 81,122,125,128 
Put-element utility ... 81,122,123,125,128 
Put-file info utility ........... 81,163,165 
Put-value utility ..... 81,122,123,124,128 



Index 285 

r 
RAL , , .. , , ............ 40,40,213,221,222 
RAR ..................... 40,213,221,222 
RBL . . . . . .. . ....... ,.. .40,213,221,222 
RBR ................ , .... 40,213,221,222 
RED 1M ........................... , .. 116 

ReI math utility. , .......... , ....... 81,99 
ReI-to int utility ......... : ....... 81,102 
ReI-to -sho utility ................ 81,103 
Relocatable ... . ............. 68,75,196 
Rotation , ....................... 40,215 
Routines: 

BASIC .,.. . .................... 175 
REL " ........ , ............. 110,128,224 defined .......................... 9 
REN command .,.... ........... . .. 266 names ............ " .............. 1 7 
REP ............................. 59,224 
RES function ......... , .............. 101 
RET ...... 11,36,79,141,211,213,221,222 
RETURN ........................... 150 
RIA .............. , ........... 37,215,222 
RIB ..................... 37,215,221,222 

s 
RLA .. . ................. 39,215,221,222 SAL ..................... 40,215,221,222 
RLB ..................... 39,215,221,222 SAM ................... 38,215,221,222 
RND function ........................ 101 SAP ..... ,., ..................... 38,215 
ROA ............................... 221 SAR ................ 40,208,215,221,222 
ROMs: SAVE ................... , .. , .... , ... 267 

Assembly Development ... 1,2,193,261 SBL ... , ... , .. , .......... 40,216,221,222 
Assembly Execution .......... 1,2,261 SBM .................... 38,216,221,222 
Assembly Language .............. 268 SBP .............. : ...... 38,216,221,222 
I/O .... " ...................... 268 SBR ............. 40,92,208,216,221,222 
Mass Storage ............ , ....... 269 SCD ................................. 85 
Plotter .... , ..................... ,268 SCRATCH A ........ 21,143,159,162,194 
installation .................... . ... 3 SCRATCH C ...................... 21,193 
requirements of other ........... ..20 SDC .................... 46,216,221,222 

RPT$ ........... ............ . .... 266 SDI ..... " ...... 47,148,149,216,221,222 
RUN: SDO ................ 47,148,149,216,222 

command ......................... 20 SDP ... , ....... ".. . ...... , ..... , .. 221 
key .......... " .............. 20,111 SDS ... , .............. 46,85.,216,221,222 

RZA ........... , .. , .. , .. 37,215,221,222 SEC ..... , ....... , ....... 39,216,221,222 
RZB .. , .... , ............ ,37,215,221,222 SES ,., ............... 39,217,221,222 
Registers: SET ....................... 71,72,75,197 

General 26,33,37,38,40-44,48,70,135 SFC ........ , ........ 47,137,217,221,222 
180,207,208 - 221,231 SFS .. , .............. 47,137,217,221,222 

BCD .. , ...... , ............ :., .... 84 SGN function ........................ 101 
DMA ...................... .' .148,231 SHO ........... " ..... 110,128,196,224 
DMA,General ..... , ............... 26 SIA ............. , ............ 37,217,222 
DMA,map ............ , ............ 27 SIB ........ , ............ 37,217,221,222 
I/O ............... 26,27,70,187,231 SIN function. . . . . . . . . . . . . . . . . . . . .. ..101 
Peripheral Address ........... 135,231 SKP ........... , ........ 62,63,64,65,224 
arithmetic ........ 70,92,93,94,95,231 SLA ..................... 38,217,221,222 
control ......... ,., ......... , .... 135 SLB ..................... 39,217,221,222 
external ...................... , ... 27 SOC ., .................. 39,218,221,222 
internal ... , .................... , .. 26 SOS ................. , ... 39,218,221,222 
internal,map ...... " .. , ........... 27 SPC ..... , ........... , ........... 65,224 
map ............................. 27 SQR function .............. , ..... 101,266 
preservation by ISRs .............. 145 SSC .. , ............. 47,137,220,221,222 
stack ............... ,., ........... 42 SSS .. , ........... , .. 47,137,218,221,222 
status .............. "., ......... 136 STA ...... , .............. 34,218,221,222 
timing ..... , ..................... 221 STB ..................... 34,218,221,222 



286 Index 

STEP key, ..... 170,171,172,173,180,193 
STOP, .................... , ......... 265 
STORE BIN ......................... 267 
STORE key .................... , 11,14,53 
STR ............... 110,111,128,196,224 
SUB pseudo-instruction. 11,59,78,108,128 

129,194,196,222 
SUBEND ........ , ................... 150 
SUBEXIT ........................... 150 
SZA .................. , .. 37,218,221,222 
SZB ..................... 37,218,221,222 
Sales and Service offices .............. 274 
Select codes, priorities ................ 140 
Shift/ Rotate group ................... 40 
Shifting. , .......... 207,211,212,215,216 
Shifting, mantissa .................. 44,45 
Sho to rei utility." .... , ............. 105 
Short-precision numbers .... 30,58,78,104 

106,114,117,118 
Sign-magnitude format ................ 85 
Signalling interrupts .................. 151 
Skipping ... 37-39,46,47,209,216,217,218 
Source: 

Source code: 
Source,code,General ......... 8,53,60,189 
Source,listing control .................. 61 
Source, module ......................... 5 
Space dependent mode ................ 54 
Stack group .......................... 42 
Stack group, in ISRs .................. 146 
Stacks: 

General ..... 42,213,213,213,213,219 
pointers: 

General ............. 26,69,70,231 
map .......................... 27 

registers ........ , ................ , 42 
Statements, BASIC: 

ASSIGN, ............... 163,164,165 
CALL ........................ 19,111 
COM ........... 115,128,195,267,270 
DATA ....................... , ... 266 
DISABLE. . . . . . .. . .............. 156 
EDIT, ........................... 266 
ENABLE ........................ 156 
END ........................ 195,265 
FOR ............................ 265 
GET ..................... 53,177,268 
IASSEMBLE ... 12,16,20,60,62,65,190 

194,226 
IASSEMBLE ALL. . . . . . . . . . . . . .. .. 60 
IBREAK ..... 16,169,174,179,181,186 

193,227,270 

IBREAK ALL ............ 169,178,227 
IBREAK DATA ...... 169,177,179,180 

193,227 
ICALL .............. 12,16,18,19,107 

108,115,117,123,131,172,227 
ICHANGE ........... 16,169,187,227 
ICOM ........ 12,16,18,19,21-23,193 

196,227,270,271 
IDELETE ............... 16,18,22,227 
IDELETE ALL ................... 227 
IDUMP .. 16,169,181,186,194,228,270 
ILOAD ........ 14,16,18,20,22,55,171 

194,228 
IMAGE .......................... 268 
IMEM ........................... 228 
INORMAL ....... 16,169,179,193,228 
IPAUSE OFF ......... 16,169,174,228 
IPAUSE ON .... , . 16,169,171,175,229 
ISOURCE ..... 11,49,50,53,54,63,229 
ISTORE ...... 14,16,19,23,55,194,229 
IS TORE ALL ...................... 24 
LINK ......................... 53,268 
LOAD .............. , ............ 177 
MASS STORAGE IS ............ 5,156 
NEXT ........................... 265 
OFF INT ..................... , 16,156 
ON ERROR .................. 191,192 
ON INT ...................... 16,150 
ON declarations .................. 267 
OPTION BASE ................... 265 
PRINT ...................... 183,186 
PRINT USING ................... 268 
REDIM .......................... 116 
RETURN ........................ 150 
SAVE ........................... 267 
STOP ............. , ............. 265 
STORE BIN ...................... 267 
SUBEND ........................ 150 
SUBEXIT ........................ 150 

Status line ........................ 47,218 
Status registers ...................... 136 
Stepping programs ................... 7,8 
Strings: 

General ..................... 117,118 
as data generators ................ 117 
structure .......................... 30 

Subprograms, BASIC .... 155,163,176,179 
Subprograms,errors .................. 266 
Subroutines .................. 36,211,213 
Substrings: 

changing value of ................ 125 
retrieving .................... 119,121 
retrieving from arrays ............. 121 



Symbolic operations "" ,. .,.,., ...... 69 
Symbols: 

General ., ..... "., ... ",., .. 196,197 
address of " .. , ...... , ........... 185 
defining .. , ......... " ........ ,.,.71 
error regarding .. ..,." .. , ...... 194 
external ... ......... . .. " .... , .. 7 6 
pre-defined .... , ......... 69,153,231 

Synchronous access .......... ,' .. , ... 142 
Syntax,fundamental .................... 6 

t 
TAN function .. , ..... , . , ......... 101,266 
TCA ., ......... , ........ 35,219,221,222 
TCB ................. , .. 35,219,221,222 
TYP function .......... ,., ...... ", .. 101 
Tape cartridge .. , ................ 133,141 
Tape cartridge, Demonstration ., ...... 261 
Ten's complement .. ,., .. ,.45,46,86,208 
Test/ Alter / Branch group ............. 38 
Test/Branch group .. ' ...... ,., .. " .37 
Timings: 

clock ..... , ............ , ......... 221 
execution ... , ... ".,.,.,.... ., 221 
instruction " ..... , ............... 221 
lockout ", .. 0< .... 0< ... .. ...... 221 

Transfers,DMA .. , .. ,., .. , ..... , ... 149 
Two's complement ........... , , ... 35,219 
Typing aids, demonstration cartridge .. 261 

u 
UNL ", ... ,', ......... , .... 61,62,65,224 
Utilities: 

General ....... , ... ,.,,78,79,180,233 
Arith metic ........ , ............... 99 
Arithmetic,operand registers .. , .... ,27 
Busy, ..... , ... , ............. 81,130 
Error exit ... ,·· ......... 81,186,191 
Execution of .. ,.,., ... , ...... ,.,. 1 72 
Get bytes ., ..... ,., .81,116,119,128 
Get-elem bytes ... , .81,116,120,128 
Get-element.", .81,116,118,121,128 
Get-file info .............. " .81,164 
Get-info .... 81,114,118,121,123,128 
Get-value ... 81,116,117,118,119,128 
Int to reI .,., ..... , ... , .. , ... 81,104 
Isr-acCess '., ...... , .. . 1 ••• 81,143,149 

Index 287 

Mm read start .. 81,156,157,158,159 
Mm -read-xfer ... 81,156,157,158,159 
Mm - write- start ...... 81,156,160,161 
Mm - write-test, .. " .. 81,156,160,161 
Print string, ............ , ..... 81,167 
Printer select., .. , ............ 81,166 
Put bytes .... , .. 81,122,124,125,128 
Put-elem bytes..... 81,122,125,128 
Put-element ..... 81,122,123,125,128 
Put-file info., .. ""'" .81,163,165 
Put-value .. , .... 81,122,123,124,128 
Rei-math." ... , ........... , .. 81,99 
ReI-to int ... , ... " .. , ....... 81,102 
ReI-to - sho ,., ... "." .. "".81,103 
Reserved symbols ... , ............. 70 
Sho to rei. ." ............ 81,105 
Writing ~ ....... , .... , .. , ... , ,231,235 

v 
Value checking ., .. , .. , ... , .......... 183 
Variables: 

General . . . . . . . .. . ... , ... , .. ",.,,56 
BASIC " ................ , .... 13,175 
retrieving values from ."., ....... 117 
value checking ."., .. "., ......... 183 

w 
WBC ... '" ...... , ....... 43,219,221,222 
WBD , ............ ", .... 43,219,221,222 
WWC ... , ...... ,., ...... 43,219,221,222 
WWD .... ,., ...... " .... 43,220,221,222 
Word: 

General " ......... , , ... , .. , .... ,.43 
defined .. , .. , ... , ... , ... ,., ........ 5 
transfers ........... , .......... 34,220 

x 
XFR ' ... , ..... , ,., .34,146,220,221,222 
XIF ,... . ... , ....... ,,' ... , ... 66,67,224 
XREF option, IASSEMBLE statement .,. 60 



288 

Your Comments. Please ... 

Your comments assist us in improving 

the usefulness of our publications; they 

are an important part of the inputs used 

in preparing updates to the publica

tions. 

Please complete the questionnaire, fold 

it up and return it to us. Feel free to 

mark more than one box to a question 

and to make any additional comments. 

If you prefer not to give us your name 

just leave the last part, name and ad

dress, blank. All comments and sugges

tions become the property of HP. 



1. Did you have any difficulty in understanding or applying the material presented in 
this manual? 

o None o Minimal Difficulty o Difficulty o Considerable Difficulty 

If so: 

a. What were the "difficult" areas? 

o IndeXing? o Omitted information? 

o Organization? o Examples 

o Depth of coverage? o Other (Please explain) 

b. What do you suggest we can do to clarify these areas? 

2. What was your ievei of programming knowledge before you started using this 
manual? 

o None o Beginner o Intermediate o Expert 

3. What is your major application of the equipment described in this manual? 

0 Business Administration 0 Education 

0 General Computation and Data AnalysiS 0 Data Acquisition and Control 

0 Engineering 0 Medicine 

What kind? What kind? 

0 Interfacing 0 Other (Please name) 

4. What best describes your level of involvement with the eqUipment? 

0 Run programs written by others 0 Write complex programs 

0 Write simple programs 0 Hobbyist 

0 Do simple calculations 0 Other 

0 Do applications programming 

5. What type of binding would be best for your particular use? 

o Single pages in looseleaf binders o Glued spine 
o Spiral or wire-o binding o Other (Please specify) ______ _ 

General Comments: 

Narne: ______________________________________________________ _ 

Address: __________________________________________________________ __ 

Thank you for your help. No postage necessary if mailed in the U.S.A. 
()aQ~c:. a()()Q~ February 1,1979 



BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY 

HEWLETT-PACKARD COMPANY 
DESKTOP COMPUTER DIVISION 
3404 EAST HARMONY ROAD 
FORT COLLINS, COLORADO 80525 

A~TN: CO\l~~OLLEq DOCUME\JTATION 

FIRST CLASS 
PERMIT NO. 37 

LOVELAND, COLO. 



1. ::j::j 

-; ..... . 

Assembly Language ROM Errors 
Improper argument in OCTAL or DECIMAL function 

Break Table overflow 

Undefined BASIC label or subprogram name used in IBREAK statement 

Attempt to write into protected memory; or, attempt to execute instruction not 

in ICOM region 

Label used in an assembled location not found 

Doubly-defined entry point or routine 

Missing ICOM statement 

Module not found 

Errors in assembly 

Attempt to move or delete module containing an active interrupt service 

routine 

Address out of range in IDUMP statement 

Routine not found 

Unsatisfied externals 

Missing COM statement 

BASIC's common area does not correspond to assembly module requirements 

Insufficient number of BASIC COM items 

Assembly-Time Errors 
Doubly-defined label 

END instruction missing; or module name does not match 

Expression evaluation error 

Literal pools full or out of range 

ICOM region overflow 

Operand out of range 

Argument declaration pseudo-instruction out of sequence 

Incorrect type of operand used 

Undefined symbol 



Part No. 09835-90083 
Microfiche No. 09835-99083 

HEWLETTjfPACKARD 

Printed in U.S.A. 
February I, 1979 

:::0 
o 
3: 


	000000
	000001
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	Chapter 1
	001
	002
	003
	004
	005
	006
	Chapter 2
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	Chapter 3
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	Chapter 4
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	Chapter 5
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	Chapter 6
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	Chapter 7
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	Chapter 8
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	Chapter 9
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	Appencices
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221a
	221b
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233a
	233b
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	Index
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	replyA
	replyB
	xBackA
	xBackB

