HP Computer Systems

Hardware Installation Manual for Shared Resource Management

(1P) HAWLEETT

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard Desktop Computer Division products sold in the U.S.A. and Canada, this warranty applies for ninety (90) days from the date of delivery.* Hewlett-Packard will, at its option, repair or replace equipment which proves to be defective during the warranty period. This warranty includes labor, parts, and surface travel costs, if any. Equipment returned to Hewlett-Packard for repair must be shipped freight prepaid. Repairs necessitated by misuse of the equipment, or by hardware, software, or interfacing not provided by Hewlett-Packard are not covered by this warranty.

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming instructions when properly installed on that CPU. HP does not warrant that the operation of the CPU, software, or firmware will be uninterrupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.
*For other countries, contact your local Sales and Service Office to determine warranty terms.

Hardware Installation Manual
 for Shared Resource Management
 Manual Part No. 98028-90000

© Copyright Hewlett-Packard Company, 1982
This document refers to proprietary computer software which is protected by copyright. All rights are reserved. Copying or other reproduction of this program except for archival purposes is prohibited without the prior written consent of Hewlett-Packard Company.

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update packages may be issued between editions and contain replacement and additional pages to be merged into the manual by the user. Each updated page will be indicated by a revision date at the bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do not cause the date to change.) The manual part number changes when extensive technical changes are incorporated.

June 1982...First Edition
October 1982...Second Edition (Changes controller operating software part number and clarifies maximum HP-IB cable lengths on controller)

Table of Contents

Chapter 1: Introduction
Prerequisites 2
Resource Management Controller 2
Workstations 3
Unpacking the Equipment 3
Assigning Node Addresses 4
Chapter 2: Controller Installation
Controller Installation 5
Installing Shared Peripherals 5
Preparing the Controller 5
Interfaces 6
Installing Cards in the I/O Backplane 6
Handling Interface Cards 7
Interface and Memory Configuration Switches 7
Installation Procedure 8
HP-IB Interface Configuration 8
HP 98620 DMA Card Installation 9
HP 98625 Disc Interface Card Installation 9
HP 98256 256K-byte Memory Assembly Installation 11
HP 98629 Resource Management Interface Installation 12
Select Code and Interrupt Level Switches 12
Node Address Switches 13
Connecting Shared Peripherals 15
Connecting HP-IB to Shared Peripherals 15
Limitations 15
Connecting the HP 98625 Interface to Disc Drives 15
Interface Cables 16
Physical Arrangement of Equipment 16
Limitations 17
Connecting the Resource Management Controller to Remote Workstations 17
Multiplexer Installation 17
Connecting Other Computers to the Multiplexer 18
Cable Support 18
Interface Cables 19
Connecting Multiple Controllers 19
Turning on the System 20
In Case of Difficulty 20
Chapter 3: Workstation Installation
Installing the HP 9845B/C Shared Resource Workstation 22
Resource Management ROM Installation 22
Resource Management Interface Installation 22
Configuring the Interface Node Address 22
Setting the Select Code 23
Installing the Interface 24
Setting the Node Address Switches 24
Installing the HP 9826/9836 Workstation 26
Resource Management Interface Installation 26

Chapter 4: Service Information

Multiplexer Theory of Operation . 28
HP 98629 Interface Theory of Operation. 31
HP 98029 Interface Theory of Operation. 33
HP 97061 Cable . 35
Disc Interface Theory of Operation . 36
Parts Lists and Schematic Diagrams . 37

Chapter 1
 Introduction

The Hewlett-Packard Shared Resource Management System is a computer networking concept that enables users of HP 9845B/C and HP 9826/9836 computers to share many system resources such as mass storage and output peripherals. Multiple-user access to data files and other system resources results in more efficient use of capital and workspace, and can significantly increase productivity by making information and computing tools more accessible.

This manual contains information for configuring and installing the hardware components that comprise the Shared Resource Management System. Limited service and device repair information is also provided, including schematic diagrams.

Installation procedures and limited service information are included for the following:

- HP 98629 Resource Management Interface for HP 9826/9836.
- HP 98029 Resource Management Interface for HP 9845B/C.
- HP 98028 Resource Management Multiplexer.
- HP 97061 Resource Management Interface Cable.

Brief installation and configuration instructions are also included for other assemblies which have their own installation manuals (part numbers in parentheses). The information provided in this manual should be sufficient for most installations. For additional details, schematic diagrams, and parts lists, refer to the manual indicated which is shipped with the assembly. The assemblies are:

- HP 98256256 K-byte Memory Assembly (98256-90000).
- HP 98625 High-speed Disc Interface (98625-90000).
- HP 98620 DMA Controller (98620-90000).

Prerequisites

It is assumed that you have read and are familiar with the System Planning Guide (9802890001), and that the necessary site preparation has been completed. Be sure that you have filled out the System Map, or have drawn an equivalent to it if your system is more complex.

This section discusses the equipment that is shipped with your system so you can identify each unit and determine where it is to be installed.

Resource Management Controller

The controller consists of an HP 9826, Option 500 with special operating software that converts it into a controller for operating the shared resources used by remote workstations. The controller hardware package consists of the following components:

Standard Minimum Controller Hardware

Stock Number	Description		
HP 9826A	Computer		
HP 98256A	256 K-byte Memory Assembly		
HP 98620A	DMA (Direct Memory Access) Controller		
HP 98625A	High-speed HP-IB Disc Interface		
HP 98629A	Resource Management Interface		
HP 98028A	Resource Management Multiplexer		
HP 98619A			
Option 655	SRM Operating System Software		
HP 10833A	Shielded HP-IB Chaining Cable for use with shared printers		
	09826-87905		Shared Resource Management manual set
:---			

The 09826-87905 manual set includes one each of the following items:

System Manual Set

\(\left.$$
\begin{array}{c|l}\text { Stock Number } & \text { Description } \\
\hline \text { 09826-90080 } & \begin{array}{l}\text { Shared Resource Management Manual } \\
\text { 98028-90000 } \\
\text { Shared Resource Management Installation Manual }\end{array} \\
\text { 98028-90001 } & \begin{array}{l}\text { Shared Resource Management System Planning } \\
\text { Guide }\end{array} \\
09826-90083 & \begin{array}{l}\text { HP 9826/9836 Shared Resource Management }\end{array}
$$

Programming\end{array}\right]\)| HP 9845B/C Shared Resource Management Prog- |
| :--- |
| ramming |
| 3-ring Binder |

If your system uses more than one multiplexer, additional Resource Management Interfaces and any additional memory are shipped in their own separate containers, and must be installed on site. HP 97061 interface cables are shipped with interfaces when they are ordered as an interface option.

Workstations

Workstations are HP 9826/9836 and/or HP 9845B/C computers, each of which must be equipped with a minimum of a Resource Management interface. Additional interfaces for other non-shared peripherals may also be needed, depending on the application. Each resource management interface in the system is connected to a multiplexer. The multiplexer has a short integral cable (1 metre long) that must be connected to an HP 98629 interface for power. Multiplexer installation is discussed in Chapter 2; workstation installation in Chapter 3.

Unpacking the Equipment

While unpacking equipment, inspect and verify that it matches the equipment shown on the packing lists. Unpack the equipment and place it near the final operating locations as follows:

1. Remove the controller and workstation computers from their boxes, and place them near their respective installation locations. If you desire, you can plug them in and run the System Test software to verify their operation, although this is usually done after interfaces and additional memory are installed.
2. After the computers have been located, identify the workstation Resource Management interfaces, and place them with their respective workstation computers. Do the same for any other workstation peripherals and interfaces in the system.
3. Unpack and place the shared peripherals in their operating location. Maintain proper clearances and spacing between printers and disc drives as specified in the System Planning Guide (98028-90001).
4. Place any additional memory or interfaces for the resource management controller near the controller.
5. Identify the individual HP 97061 interface cables and determine their proper routing between interfaces and multiplexers.

> WARNING
> BEFORE PLUGGING IN ANY EQUIPMENT, BE SURE TO CHECK ALL POWER RECEPTACLES AND VERIFY THAT THEY ARE CORRECTLY WIRED. VERIFY THAT EQUIPMENT GROUNDS, NEUTRAL AND LINE CONDUCTORS, AND ANY OTHER CONDUCTORS ARE CONNECTED TO THE CORRECT RECEPTACLE CONTACTS. IF ANY RECEPTACLE IN THE ENTIRE SYSTEM ENVIRONMENT IS INCORRECTLY WIRED, SERIOUS EQUIPMENT DAMAGE AND/OR PERSONAL INJURY CAN RESULT. EQUIPMENT WARRANTIES ARE VOID WHEN EQUUPMENT IS CONNECTED TO AN INCORRECTLY WIRED POWER SOURCE.

To verify receptacle wiring, use a receptacle wiring and polarity tester manufactured for that purpose. In addition, to ensure safe operation, test each receptacle with a standard receptacle tension tester used to verify the contact-retention ability of each contact in the receptacle. Be careful to check all contacts in each receptacle, and replace any defective devices. Both types of testers are available through electrical supply houses, and should be included in any electrician's standard tool collection.

You are now ready to begin system installation. The remainder of this chapter deals with planning node addresses and general topics pertaining to the installation.

Assigning Node Addresses

System message packets are routed according to source and destination node addresses combined with interface select codes. Recommended procedure is to assign single-digit addresses (0-9) to Resource Management controllers, and two-digit (10-63) addresses to workstations. This recommendation is for convenience only and is not a system requirement.

System minimum requirements are as follows:

- Node addresses can be arbitrarily assigned to any node, whether controller or workstation. If default remote mass storage unit specifiers are used by workstation programs and operators, all interfaces in the controller MUST be set to node address 0 .
- Duplicate node addresses can be assigned in the same system PROVIDED no two computers having identical node addresses are connected to the same multiplexer. (It is recommended that each computer in the system be assigned its own UNIQUE node address.)
- If you assign duplicate node addresses in a system, you risk system malfunction whenever you move a computer or rearrange cabling because two computers with identical addresses may inadvertently get connected to the same multiplexer.

Recommendations

The following guidelines are adequate for most systems, and ensure reliable operation with minimum complexity and confusion.

- Assign node addresses to each controller in the system, beginning at node address 0 . Address 0 is the default remote mass storage identifier. Default values can be used by any workstation connected to a controller having node address 0 .
- If your system has more than one controller, use incrementing values for each controller, beginning with address 1 for the second controller, and so forth until all controllers have assigned node addresses.
- Assign node addresses for each workstation, beginning at address 10 (assuming there are not more than 10 controllers in the system). The usual technique is to simply assign node addresses in sequence, 10 through 63, one address for each workstation.
If any workstation has more than one resource management interface, all interfaces can be assigned the same node address, provided the address does not conflict with any other computer sharing a common multiplexer.
- Never assign node address 0 to any workstation. Address 0 is reserved as a default controller address, and can cause system malfunction if another workstation inadvertently uses the default remote mass storage node address. Workstations cannot communicate correctly with other workstations.

Chapter 2

Controller Installation

This chapter explains how to install the Resource Management Controller, the interfaces that connect it to the shared peripherals, and the interconnecting network that provides communication with remote workstations in the Shared Resource Management System. Topics included are:

- Installing the Resource Management Controller and its shared peripherals.
- Installing the interconnection network between the Controller and remote user workstations.

Controller Installation

This section explains how to install the shared peripherals and connect them to the Resource Management controller. After the system hardware is installed, refer to Shared Resource Management operating manuals for information about how to operate and configure the controller and install the necessary software and firmware.

Installing Shared Peripherals

Carefully unpack the shared peripherals and place them in their proper operating positions as explained in the operating manuals that accompany each peripheral. Be sure the power switches are turned off, then plug each peripheral into its AC power source. Interface cables are installed later. Refer to the System Planning Guide (98028-90001)for information concerning cable routing, power line requirements, ventilation, and related topics.

Preparing the Controller

The HP 9826 Option 500 Resource Management Controller is shipped complete with interfaces, memory, and all operating software. Interface configuration is set to default or recommended operating values at the factory, and should need no changes for most applications. However, the following pages describe in detail how to install and configure memory and interfaces for those situations where you may want to change the configuration or convert a standard HP 9826 for use as a Resource Management controller. The procedure can also be used to verify that the hardware has been correctly installed.

Unpack the controller computer. If the interfaces are already installed, and you have no need to change any card configurations, set the computer in position and connect the interface cables as explained later. Otherwise, set the computer on a workbench, desktop, or other suitable surface with the rear panel in an accessible position for installing interfaces and memory options in the I/O Backplane card cage. Remove the four cover plates or interface covers over the card cage area by loosening the eight thumbscrews.

Interfaces

Three interfaces are commonly used in Resource Management controller computers. The internal HP-IB interface connects to line printers. The HP 98625 High-speed Disc Interface is used in conjunction with an HP 98620 DMA (Direct Memory Access) card to control up to four separate disc drives for mass storage use. Each HP 98629 Resource Management Interface is used to connect the controller to remote user workstations through one HP 98028 Resource Management Multiplexer.

The procedures which follow explain how to install and configure the controller interface cards and other boards that plug into the I/O backplane. The installation procedure for the HP 98629 Resource Management Interface applies to both controller and remote workstation installations.

Installing Cards in the I/O Backplane

The HP 9826/9836 computer has eight backplane slots that can be used for interface cards, memory boards, and other devices. Four slots are available for interfacing to external peripherals. The other four slots are reserved for the DMA controller card and memory boards when the computer is used as a Shared Resource Management (SRM) Controller. Memory/DMA and peripheral interface slots are alternated from the top to the bottom of the card cage. Interfaces fit in slots $2,4,6$, and 8 , while slots $1,3,5,7$, and any unused interface slots can be used for memory or a DMA controller. The following diagram shows the card arrangement that is recommended for most installations.

Backplane Slot Assignments

These slot assignment recommendations are based on keeping memory addresses in descending order, top to bottom, and keeping interface cables toward the bottom for better support. Maintenance is also simplified when all systems use a standardized card and cable arrangement. However, slot assignments are not mandatory.

Each of the four peripheral interface slots are located slightly below the pair of threaded fasteners that hold the interface cover thumbscrews when the card is inserted. If you insert the interface into a wrong slot, the thumbscrews in the interface cover cannot mate properly with the threaded fasteners in the computer's rear panel. If a peripheral interface slot is not used for interfacing, it can be used for memory or DMA; a blank cover is then used to conceal the boards after installation.

Handling Interface Cards

Interface cards and other boards in the I/O card cage contain components that are easily damaged by static electrical discharge caused by improper handling. To minimize the risk of component damage, the interfaces and other cards are shipped in special conductive plastic bags for protection. Do not remove the card from its bag until you are ready to install it. When installing the card, be sure there is no opportunity to create a static discharge. Hold the card by the extractors or backplane cover while removing it from the bag, and avoid touching the circuitry on the card. Touch the metal surface on the computer's rear cover panel with one hand and maintain that contact while plugging the interface into the computer with the other hand. After the card is seated into the backplane connector, the risk of damage is negligible.

Whenever you need to remove a card from the computer for service or system changes, keep the card in its protective bag to prevent component damage, or place it on a work surface designed for servicing static-sensitive electronic components and assemblies.

Be careful to avoid touching the printed circuit edge connector fingers on the interface. Fingerprints promote contamination that can lead to unreliable operation. If it becomes necessary to clean the fingers, use a cotton swab and isopropyl alcohol. Be sure to avoid the possibility of electrostatic discharges while cleaning the connector fingers; both for safety, and to prevent component damage.

Interface and Memory Configuration Switches

The interface and memory configuration switches are manufactured as clusters of two to eight individual single-pole, single-throw switches combined in a single molded plastic housing. Each switch is actuated by a slide or rocker. Switch rockers may be manufactured so that they are always flush with the housing, or they may protrude above the housing on one side or the other. The switch position is always determined by which end of the rocker is depressed. If the actuator is a slider, the switch position is determined by the position of the tab on the slider. The following illustrations show how to interpret switch settings correctly; each of the three switches have identical settings.

To set rocker switches, use a ball-point pen or other pointed tool to depress each switch rocker until it is fully seated. If the rocker or slider is not fully seated, erratic behavior may result. Slide switches can be changed by using your fingers or a suitable tool such as a small screwdriver.

Installation Procedure

This section explains how to configure and install all the interface cards and other assemblies that go in the card cage, and how to configure the internal HP-IB interface for proper operation with shared printers and any other devices operating from the interface. All explanations are based on the assumption that the computer is on a table or workbench, the rear panel is facing the person installing the cards in the card cage, no cards have been installed in the cage, and the power cord is disconnected.

HP-IB Interface Configuration

Before installing any cards in the card cage, the HP-IB interface must be configured as the controller of the interface bus. This is done by programming a plug-on jumper located on the circuit board below the card cage. The HP-IB configuration jumper is located approximately in the center of the bottom of the card cage opening. It should be plugged onto the center and right-hand pins. (The center and left-hand pins select the non-controller configuration.) There are also two plug-on jumpers in the left bottom area of the card cage. Do not change their configuration.

HP-IB Configuration Jumper Setting

After the HP-IB configuration is complete, you can install the DMA and disc interface cards as explained next.

HP 98620A DMA Card Installation

Unpack the HP 98620A DMA Card and inspect for any damage, dirty edge connector fingers, or other problems. Plug the card into card cage slot 7 (just above the bottom slot). Handle the card as explained previously, and push the card into the cage until it is firmly seated in the backplane connector.

HP 98625A Disc Interface Card Installation

Carefully unpack and inspect the disc interface as explained earlier for the DMA card. Set the interface select code and hardware interrupt level to their proper values. The card is shipped from the factory preset to select code 14 , but can be set to any non-conflicting value. The hardware interrupt level must be set to $\mathbf{6}$. For simplicity, use the factory preset values.

The following figure shows the two sets of configuration switches on the interface card: Interface Select Code and Hardware Interrupt Level. Note the position of the most significant (MSB) and least significant (LSB) bits on each switch. The switches are shown in their factory-set (default) positions.

HP 98625A Disc Interface Configuration Switches

Configuration Switch Function	Default Value	Allowable Range
Interface Select Code (S2)	14	8 thru 31
Hardware Interrupt Level (S1)	6	6 only

Binary/Decimal Table of Interface Select Codes

$\begin{aligned} & \text { S2 Settings } \\ & \text { MSB } 43210 \text { LSB } \\ & \hline \end{aligned}$	Decimal Value	$\begin{aligned} & \text { S2 Settings } \\ & \text { MSB } 43210 \text { LSB } \\ & \hline \end{aligned}$	Decimal Value
01000	8	10100	20
01001	9	10101	21
01010	10	10110	22
01011	11	10111	23
01100	12	11000	24
01101	13	11001	25
01110	14	11010	26
01111	15	11011	27
10000	16	11100	28
10001	17	11101	29
10010	18	11110	30
10011	19	11111	31

Binary/Decimal Table of

 Hardware Interrupt Levels| S1
 Settings
 MSB LSB | Decimal
 Value | Interrupt
 Level | |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 3 |
| 0 | 1 | 1 | 4 |
| 1 | 0 | 2 | 5 |
| 1 | 1 | 3 | 6 |

No other interface card can be set at the same hardware interrupt level as the HP 98625A. Otherwise, system failure results.

Default switch settings are recommended for most applications.

When the configuration switches on the interface have been set, install it in the bottom slot (Slot 8) in the card cage using the procedure previously described. Seat the card into the backplane connector by screwing in the thumbscrews until they are finger tight. Note that the interface cover plate conceals both slots 7 and 8 . Do not attach the interface cable at this time.

HP 98256A 256K-byte Memory Assembly Installation

Up to three (or five if slots are available) 256K-byte memory assemblies can be installed in the controller. It is recommended that they be installed in slots 1,3 , and 5 , and that the address configuration switches be set to FC, F8, and F4, respectively. If one board is installed, set it to address FC; if two, FC and F8, respectively.

If only one or two Resource Management interfaces are installed, the unused slots can be used for additional memory. Set memory cards four and five to addresses F0 and EC, respectively. If any memory is removed at any time, you must begin with the lowest-address card.

Memory address switch settings for each of the five available addresses are shown in the following figure:

Address FC

Address F8

Address F4

Address F0

Address EC

Memory Address Configuration Switches

After the address has been properly configured on each card, insert the card into the proper slot in the backplane card cage as previously described, making sure the card is fully seated in the backplane connector. After the memory card(s) are installed, you are ready to install the Resource Management interface(s).

Note

If you remove a memory board from the System Controller for any reason, the remaining boards MUST include an FC board. An F8 board must be installed before an F4 board can be used, F4 before F0, and F0 before EC.

HP 98629 Resource Management Interface Installation

Unpack and inspect the Resource Management interface. As with the disc interface, there are two sets of configuration switches on the interface card. One determines the interface select code and hardware interrupt level; the other sets the interface Node Address. Note the positions of the most significant (MSB) and least significant (LSB) bits on each switch. The switches are shown in their factory-set (default) positions.

HP 98629 Resource Management Interface Configuration Switches

Select Code and Interrupt Level Switches

The switch cluster on the left configures the interface select code and hardware interrupt level for the interface. The switch on the extreme left of the cluster is not used, but should be set in the " 1 " position. The next two switches control the interrupt level. The left switch is the MSB; the right switch is the LSB. To ensure reliable system operation under all operating conditions, the hardware interrupt level must be set to 4 . The remaining five switches on the right set the interface select code. Here are the allowable range of settings and the factory-set default values:

Configuration Switch Function	Default Value	Allowable Range
Interface Select Code	21	8 thru 31
Hardware Interrupt Level	4	4 only

The following table shows the switch settings for all allowable interface select code values:

Binary/Decimal Table of Interface Select Codes			
MSB 43210 LSB	Decimal Value		MSB 43210 LSB
	Decimal Value		
01000	8	10100	20
01001	9	$\mathbf{1 0 1 0 1}$	$\mathbf{2 1}$
01010	10	10110	22
01011	11	10111	23
01100	12	11000	24
01101	13	11001	25
01110	14	11010	26
01111	15	11011	27
10000	16	11100	28
10001	17	11101	29
10010	18	11110	30
10011	19	11111	

Binary/Decimal Table of Hardware Interrupt Levels

Switch Settings MSB LSB	Decimal Value	Interrupt Level
0 0	0	3 Do not use
01	1	4 Use ONLY this setting
	2	5 Do not use
11	3	6 Do not use

The default select code is adequate for most applications unless multiple interfaces are installed in a single controller. When multiple interfaces are installed, each must have a unique select code. Hardware interrupt level MUST be set to 4 on all Resource Management interfaces.

Node Address Switches

The switch cluster on the right configures the resource management Node Address. Any value from zero thru 63 can be selected provided it is not the same as the address for any other node connected to the same multiplexer. The right-hand six switches are used to set the Node Address. The two switches on the left in the cluster must be set to their zero position. To set a given switch to ZERO, depress the switch rocker on the side nearest the card edge. To program a ONE, depress the rocker on the side away from the card edge. Be sure the switch rockers are fully seated in their proper positions. Node Address assignments are discussed in Chapter 1. For greatest convenience, set the first controller to address 0 , and use two-digit (10-63) node addresses for workstations.

The following table shows the switch settings for all allowable node addresses.

Node Address Switch Settings			
MSB 76543210 LSB	Decimal Value	MSB 76543210 LSB	Decimal Value
00000000	0	00100000	32
00000001	1	00100001	33
00000010	2	00100010	34
00000011	3	00100011	35
00000100	4	00100100	36
00000101	5	00100101	37
00000110	6	00100110	38
00000111	7	00100111	39
00001000	8	00101000	40
00001001	9	00101001	41
00001010	10	00101010	42
00001011	11	00101011	43
00001100	12	00101100	44
00001101	13	00101101	45
00001110	14	00101110	46
00001111	15	00101111	47
00010000	16	00110000	48
00010001	17	00110001	49
00010010	18	00110010	50
00010011	19	00110011	51
00010100	20	00110100	52
00010101	21	00110101	53
00010110	22	00110110	54
00010111	23	00110111	55
00011000	24	00111000	56
00011001	25	00111001	57
00011010	26	00111010	58
00011011	27	00111011	59
00011100	28	00111100	60
00011101	29	00111101	61
00011110	30	0011110	62
00011111	31		63

Attempting to use values other than those specified in the table may result in improper system operation.

After you have set the configuration switches, insert the interface into the appropriate slot and tighten the thumbscrews until they are finger tight as explained earlier in this chapter. Install blank covers over any card cage slots that are not concealed by the interface cards. This completes the interface and memory installation.

The computer is now ready for connection to peripherals. Place it in its normal operating position, and install the power cord by plugging it into the rear panel and into the assigned electrical power receptacle.

Connecting Shared Peripherals

Now that the controller memory and interface cards are configured and installed, you are ready to connect the controller to its shared peripherals. If the system contains more than one controller, the procedures outlined in this section apply to each controller in the system.

Connecting HP-IB to Shared Peripherals

The HP-IB interface connector is attached to the main rear panel of the Resource Management controller, and must be connected to the shared printers that are connected to the controller. Connect one end of an HP 10833^{1} HP-IB chaining cable to the rear panel HP-IB connector, then attach the other end to the first shared printer. Plug the cable into the connector on the computer or printer, then tighten the two retainer screws until they are finger tight.

Limitations

HP-IB shared printers can be connected in any configuration; either in a "star" or "tree" pattern, or in a serial "daisy-chain" configuration where interface cables are connected in a series path from one printer to the next until all are connected. The total length of cable that can be used to connect peripherals to a single HP-IB interface is a maximum of 20 metres ${ }^{2}$. A total of 8 printers can be connected to the controller (limited both by the HP-IB drivers and the number of spoolers in the controller operating system). These guidelines apply to controllers. Similar guidelines apply to workstations that are connected to other types of HP-IB peripherals.

Eight printer spoolers are provided in the controller operating system. Up to 8 printers can be connected to each controller, but only one can be an HP 2608A ${ }^{3}$. The others (or all eight) can be any mixture of HP 2631B/G printers.

Connecting the HP 98625 Interface to Disc Drives

The HP 98625A Disc Interface is intended ONLY for connecting the HP 9826/9836 Computer to Hewlett-Packard disc drives equipped with CS/80 controllers. Do not attempt to use the interface with any disc or controller that is not equipped for $\mathrm{CS} / 80$ disc commands. If you have any questions concerning compatibility of the interface and a specific drive, consult your nearest HP Sales and Service office. This section explains which interface cables can be used, and establishes guidelines for connecting multiple drives to a single interface.

[^0]
Interface Cables

Use only HP 10833 Series interface cables to connect the disc interface to disc drives. These cables are also used to chain multiple drives together. The HP 10833 Series cables are similar in appearance to standard HP-IB or IEEE-488 chaining cables, but they have additional shielding and other features to minimize RFI and improve noise characteristics. HP 10833 cables can be identified by the model number stamped on the cable jacket. Do not use any other model HP-IB cables to connect the interface to disc drives or controllers.

Chaining cables are usually supplied with disc drives, so none is included with the disc interface. If you need additional cables for connecting multiple drives or for changing system configuration, you can order any of the following lengths:

HP-IB Cables

Model Number	Cable Length
10833 A	1 metre
10833 B	2 metres
10833C	4 metres
10833D	0.5 metre

Note that the total cable length in any application must not exceed 10 metres.

Physical Arrangement of Equipment

The high data transfer rates supported by the disc interface require special consideration when installing interface cables. Cables behave like radio-frequency transmission lines, and can affect data settling time on the high-speed logic driver outputs. Improperly terminated or incorrectly configured cable connections can set up reflections and ringing that adversely affect signal reliability. To minimize these and related problems, configure the disc drives so that the cables are connected serially from drive to drive in a "daisy chain" pattern. For best results, avoid "star" configurations where individual cables are connected from the interface to each drive.

Recommended Arrangement of Computer and Disc Drives

Limitations

Electrical design limits require that the combined bus connections must not exceed 11 equivalent loads and 10 metres total line length for each interface. In addition, line length must not exceed one metre per equivalent load. (These restrictions are due to transmission line reflection characteristics and timing constraints for high data rates.) The interface presents seven equivalent loads. Most disc drive controllers in the CS/80 series present one equivalent load. Therefore, up to four discs can be connected to a single interface. The maximum length of cable that can be connected to a single interface and up to four discs or equivalent loads is as follows:

Equivalent Loads	Maximum Total Cable Length
1	8 metres
2	9 metres
3	10 metres
4	10 metres

Consult disc operating manuals to verify the number of equivalent loads presented by each controller.

Connecting the Resource Management Controller to Remote Workstations

Before you install the interconnecting network between computers, install the System Workstations and their respective peripherals as explained in Chapter 3. After the workstations are installed and connected to their respective peripherals, you are ready to install the multiplexers and interconnecting cables as explained in this section. Refer to the System Map that was filled out during site planning and preparation to determine which computers are interconnected in the System.

Multiplexer Installation

At the heart of each interconnecting network is an HP 98028 Shared Resource Multiplexer. The multiplexer acts as a switching device that controls message flow among the computers that are connected to it. All network communications between computers must pass through a multiplexer. The system has no provision for passing information from one computer directly through a second computer and on to a third. All information transfers are between network controllers and user workstations.

The multiplexer obtains operating power through the short cable that is permanently attached to it. The cable must be connected to an HP 98629 Resource Management interface installed in a controller or remote workstation computer. Only two multiplexers can obtain power from a single controller because of power supply limitations. If three multiplexers are being used with a single Controller, at least one multiplexer must obtain power from a Resource Management interface installed in a different computer. When selecting a remote computer to supply power to the multiplexer, don't forget that the remote computer must have its power on at all times for other computers to be able to use the multiplexer. Only one multiplexer can obtain power from a given HP 98629-equipped workstation computer. HP 9845 computers have no provision for multiplexer power.

To connect the multiplexer to its power source, plug the connector on the short multiplexer cable into the connector on the HP 98629 Resource Management Interface. Snap the two retainer clips into place so the plug cannot come loose.

All System computer connections are handled through multiplexers. You cannot connect two multiplexers directly to each other through a cable, and you cannot connect computers together without using a multiplexer. The next section explains how to connect remote Resource Management interfaces to multiplexers.

Connecting Other Computers to the Multiplexer

The HP 98629A Resource Management Interface is designed to connect certain HP computers to Resource Management Systems. This section explains how to connect the interface to remote multiplexers.

At this point, it is assumed that all multiplexers in the system are connected to a host interface that supplies electrical power. Each multiplexer is a central switch for the computers that connect to it. Since more than one multiplexer can be connected to a single controller, there can be one, two, or three networks connected to a single controller, each multiplexer being the central switch for a single network of workstation computers.

All System connections are made with HP 97061 cables which come in various lengths as explained in the next section. Install each cable from the multiplexer to the appropriate computer by first routing the cable through wiring ducts, conduits, etc. as appropriate. After the cable is in place and protected from foot or vehicular traffic, connect the 50-pin connector on the HP 97061 cable assembly to the Resource Management interface, then snap the retainer clips into position. Plug the 15 -pin connector on the opposite end of the cable into the multiplexer, then tighten the retainer screws to prevent the connector from coming loose. Do not overtighten the screws.

Cable Support

The heavy HP 97061 interconnection cables can apply excessive stress to the connectors on the computer and multiplexer connectors if they are not supported by external means. To minimize the potential for connector failure due to cable movement, use nylon or other suitable electronic cable clamps to support the cables by placing the clamps about 30 cm from the cable connector and attaching them with a screw or other suitable fastener to the table or surface that supports the multiplexer.

Abstract

Note Only two multiplexers can obtain power from a single System Controller. If three multiplexers are used, one must obtain power from another computer in the system that has an HP 98629 Resource Management Interface. Use an HP 97061 cable to complete the connection from the System Controller to the third multiplexer. Do not connect more than one multiplexer power cable to a given workstation.

Interface Cables

Use only HP 97061 interface cables to connect the Resource Management Interface to the network. Interface cables are available in the following four versions:

HP 97061A 10-metre cable with two connectors installed. The 50-pin connector on one end mates with the interface card. The 15 -pin connector on the other end mates with the HP 98028 Resource Managment Multiplexer.

HP 97061B 25-metre cable with two connectors installed. Connectors are the same as those used on the 10 -metre cable.

HP 97061C 60-metre cable with two connectors installed. Connectors are the same as those used on the 10-metre cable.

HP 97061D 60-metre cable with ONE connector installed. Connectors are the same as those used on the 10 -metre cable, except that the 50-pin connector is not attached to the cable. This cable is used where the cable must be fished through conduit, or pulled through wiring ducts. All materials needed for installing the connector (except tools and solder) are included with the cable. Connector assembly procedure is described in the cable installation note (97061-90000).

Connecting Multiple Controllers

Some applications may require use of multiple Resource Management controllers. There are no special procedures when connecting multiple-controller systems. Just be sure that those workstations that access more than one controller are connected to the right multiplexer, and the remaining workstations are connected to their controllers through the right multiplexer. Remember that node addresses must be different for all computers connected to a given multiplexer.

Turning on the System

After all hardware has been installed and all interconnections are complete, turn on the power to the controller and its peripherals. The POWER light on the multiplexer(s) should be illuminated, but the BUSY light should be dark. If the system has more than one controller, repeat for the other controllers in the system.

Turn on power to the remote workstation computers and their peripherals. If a multiplexer is connected to a workstation, it should also indicate POWER is on, and the BUSY light should be dark.

The Shared Resource Management System is now ready for initial system testing and checkout. Refer to the System Manual for procedures.

In Case of Difficulty

In general, each computer in the system is turned on and checked out as a normal stand-alone computer. After operating integrity for each computer is established, the individual elements in the system network are verified. The procedures to be followed in checking and troubleshooting system operation are explained in the System Manual (09826-90080).

Workstation Installation

This chapter explains how to install user workstations in the Resource Management System. Two interfaces are used as follows:

- The HP 98029 Resource Management Interface connects the HP 9845B/C Computer to a multiplexer through an HP 97061 Cable Assembly that is also available as an interface option.
- The HP 98629 Resource Management Interface connects HP 9826/HP 9836 computers to multiplexers, either directly or through an HP 97061 Cable Assembly. The cable assembly is also available as an interface option.

Workstations can be configured as stand-alone computational devices, or they can be complex test systems that share data files with other computers in the network. Because of the wide variety of applications, it is beyond the scope of this chapter to explain how to install workstation peripherals. Refer to operating and installation manuals for instructions on how to install workstation peripherals and equipment. This chapter addresses connecting the workstation to the Shared Resource network through a Shared Resource Multiplexer.

Installing the HP 9845B/C Workstation

Resource Management ROM Installation

The Resource Management ROM for the HP 9845B/C consists of two ROM assemblies; one with a green label, the other with a black label. The green label ROM plugs into the left-hand ROM drawer, and the black label ROM plugs into the right-hand ROM drawer.

To install each ROM, remove the drawer, plug in the ROM, and replace the drawer as follows:

1. Remove the ROM drawer by placing your thumb in the recess at the top of the drawer, then pressing up on the movable catch underneath the drawer face with your fingers. When the catch is pushed up, gently pull the drawer out.
2. Open the clear plastic cover plate by pressing in on the two ears on each side of the inside drawer face, then hinging the cover upward.
3. Plug the ROM pack into an available connector, being careful to maintain proper orientation of the package in the drawer, and being sure the ROM cap mates properly with the small keys on each side of the ROM connector. Inspect to be sure that the ROM is fully seated in the connector before closing the cover.
4. Hinge the cover back down, and snap it into place. Slide the drawer back into the computer and push it in until it is fully seated and the retainer catch is engaged. Repeat the procedure for the other drawer.

Resource Management Interface Installation

The HP 98029 Interface is used to connect the HP 9845B/C to its multiplexer. The interface is equipped with a female 50-pin connector at the end of its pigtail cable that mates with the male 50-pin connector on the HP 97061 Cable Assembly. The interface does not provide any power to the cable, so the HP 98028 Multiplexer cannot be connected directly to the interface for a power source connection. Multiplexer power is obtainable ONLY from the HP 98629 Interface used in HP 9826/9836 Computers.

Unpack the interface, and inspect for any damage during shipment. Before the interface can be installed, the Node Address must be configured.

Configuring the Interface Node Address

To set the interface Node Address, you must separate the housing shell, set the Node Address switches, then reassemble the housing. Refer to the photographs and follow the procedure outlined.

Configuration procedure:

1. Remove four screws from Side A and two screws from Side B as indicated in the photographs. Use a \# 1 POZIDRIV screwdriver.
2. Carefully separate the two halves of the interface housing. It should be unnecessary to use more than mild force. Be sure not to bend the connector pins that interconnect the two printed circuits. If you have difficulty separating the halves, verify that you have removed the correct screws.
3. The configuration switches are located on the printed circuit attached to housing side A next to the female connector socket that mates with the other side. Use a ball-point pen or other suitable tool to set the switch rockers or sliders as explained later in this section. Be sure all the switches are firmly seated in their correct positions. Use the figure accompanying the Node Address Table to determine the proper switch orientation.
4. After the Node Address has been set, carefully plug the two halves together again, then replace and tighten the screws. The interface is now ready to be installed in the computer.

Setting the Select Code

The interface select code can be set at any time before or after the interface has been installed in the computer. The select code is determined by the setting of the rotary switch that is accessible through the hole in the top of the interface housing. To set or change the select code, use a small flat-blade screwdriver to turn the switch rotor until the arrow points to the correct setting. The select code can be any value from 1 through 12, but must be different from any other interface connected to the same computer. The setting used in most applications is select code 5.

Note

Do not use node address 0 for workstations. The default remote mass storage unit specifier is assigned to Node Address 0 which must be a Resource Management controller. The Node Address must also be different from any other address connected to the same multiplexer. To use the default remote mass storage unit specifier, the interface select code must be set to 5 .

Installing the Interface

After the node address is correctly set and the housing is reassembled, install the interface as follows:

1. Be sure the power to the computer is turned OFF.
2. Insert the interface housing into any available slot in the I/O backplane. If an I/O expander is being used, the interface can also be plugged into it. Be sure the interface is fully seated into the backplane connector with the retainer clip engaged so that the interface cannot be removed unless the release is depressed.
3. Connect the interface to the HP 97061 cable that leads to the multiplexer. Snap the retainer clips into place so the connectors cannot accidentally separate. (See Chapter 2 for more information about cable and multiplexer installation.)
4. After the interface is installed and the Resource Management hardware is installed, turn the computer on and verify as explained at the end of Chapter 2.

Setting the Node Address Switches

The switch cluster in the center of the printed circuit card attached to housing side A configures the resource management Node Address. Any value from zero thru 63 can be selected provided it is not the same as the address for any other node that is connected to the same multiplexer. To set a given switch to a ONE, depress the switch rocker on the side away from the connector socket that mates with the other card. To program a ZERO, depress the rocker on the side nearest the connector. Be sure the switch rockers are fully seated in their proper positions. If a slide switch is used instead of rockers, move the slide toward or away from the connector to program a ZERO or ONE, respectively.

Locating Guide for Node Address Switches

The following table shows the switch settings for all allowable node addresses.

HP 98029 Node Address Switch Settings

MSB 543210 LSB	Decimal Value	MSB 543210 LSB	Decimal Value
000000	0	100000	32
000001	1	100001	33
000010	2	100010	34
000011	3	100011	35
000100	4	100100	36
000101	5	100101	37
000110	6	100110	38
000111	7	100111	39
001000	8	101000	40
001001	9	101001	41
001010	10	101010	42
001011	11	101011	43
001100	12	101100	44
001101	13	101101	45
001110	14	101110	46
001111	15	101111	47
010000	16	110000	48
010001	17	110001	49
010010	18	110010	50
010011	19	110011	51
010100	20	110100	52
010101	21	110101	53
010110	22	110110	54
010111	23	110111	55
011000	24	111000	56
011001	25	111001	57
011010	26	111010	58
011011	27	111011	59
011100	28	111100	60
011101	29	111101	61
011110	30	111110	62
011111	31	111111	63

Select the Node Address using the guidelines in Chapter 1.

Note

The HP 98029A Resource Management Interface is intended ONLY for connecting the HP 9845B/C Computer to HP Resource Management System networks. The interface card circuitry is not compatible with any other data communication protocols or techniques.

Installing the HP 9826/9836 Workstation

The HP 98629 Resource Management Interface is used to connect HP 9826/9836 Computers to the Shared Resource Management System through HP 98028 Resource Management Multiplexers. This section explains how to install the computers as workstations. Chapter 2 discusses the use of the same computers as Resource Management controllers. The primary difference between controller and workstation computers lies in the peripherals connected to the computer and the operating software that is installed in the computer.

Plan the memory and interface requirements of the workstation to fit the application of that particular workstation, reserving one I/O backplane slot for the Resource Management interface. Which slot is used is unimportant, but it is usually more convenient to place interfaces that require heavy cables close to the bottom of the card cage.

Resource Management Interface Installation

Unpack the interface from the shipping container, and inspect it for damage. Be careful to follow the handling procedures outlined in Chapter 2.

Before you install the interface, configure the Interface Select Code, Hardware Interrupt Level, and Node Address switches. The select code is usually set to 21 . The hardware interrupt level must be 4 . Set the Node Address to the value indicated on the System Map that was prepared during site planning. Refer to Chapter 1 for node address selection guidelines. Chapter 2 explains how to set the select code, interrupt level, and node address configuration switches.

> Note
> Do not use node address 0 for workstations. The default remote mass storage unit specifier is assigned to Node Address 0 which must be a System Controller. The Node Address must also be different from any other address connected to the same multiplexer. To use the default remote mass storage unit specifier, the interface select code must be set to 21 .

After you have set up the interface configuration switches and verified that they are properly seated in position, plug the interface into the computer as explained in Chapter 2, then tighten the thumbscrews until they are finger tight. Place the computer in its normal operating position, and install the local peripheral interface cables. Attach the multiplexer or HP 97061 cable to the interface as explained in Chapter 2 to complete the connection to the Resource Management System. Be sure to snap the connector retainer clips onto the cable connector to prevent the connector from accidentally disconnecting.

When workstation installation is complete, turn on the equipment as explained at the end of Chapter 2.

Chapter 4

Service Information

The Resource Management System consists of one or more HP 9826 computers configured as controllers, one or more user workstations, and one or more HP 98028 Resource Management Multiplexers. Additional peripherals can be connected to individual computers in the system, and the interconnecting cables between computers and multiplexers complete the hardware network. This chapter discusses the theory of operation for individual devices in the system. It is provided to aid in troubleshooting at the device level after system diagnostics have been used to isolate the problem area. System diagnostics are discussed in the System Manual (0982690080).

Topics discussed in this chapter include:

- HP 98028 Multiplexer theory of operation
- HP 98629 SRM Interface theory of operation
- HP 98029 SRM Interface theory of operation
- HP 97061 Interface Cable Assembly
- HP 98625 Disc Interface theory of operation
- Parts lists for multiplexer and Resource Managment interfaces
- Schematic diagrams for multiplexer and Resource Management interfaces.

Multiplexer Theory of Operation

The HP 98028 Resource Management Multiplexer is the heart of the interconnecting network between computers in the system. It performs the switching and electrical isolation functions that enable nodes in the network to communicate safely and reliably. All multiplexer ports are electrically isolated from each other. Isolated grounds and power for each port's drivers and receivers prevent ground loops and related noise problems. The multiplexer draws electrical power from an HP 98629 Resource Management Interface through the short cable that is permanently attached to the multiplexer housing. (Power cannot be supplied from the HP 9845B/C through an HP 98029 Resource Management Interface.) Up to two multiplexers can be connected to a single Resource Management controller, but only one multiplexer can be connected to a given workstation due to power supply considerations.

Here is a multiplexer block diagram that shows the relationship between the various circuit elements:

Multiplexer Block Diagram

Power Supplies and Port Isolation

The multiplexer has a self-contained DC-to-DC converter that chops the incoming power from the HP 98629 Resource Management Interface, converts it to AC power, then uses a transformer to provide four isolated power sources for the drivers and receivers that connect to remote nodes through HP 97061 cables. Opto-isolators are used to pass signals across the isolation barriers between ports.

Line Drivers and Receivers

The Line Drivers and Receivers communicate with Resource Management interfaces using balanced lines in both directions. The electrical characteristics are similar in some respects to EIA RS-422 standards, but differ in others. The four isolated ports are electrically separated from each other and the non-isolated port. There is no DC electrical continuity between any port and any other port including signal lines, power, and grounds. This isolation eliminates the potential ground-loop hazards that may arise when connecting computers together through long interconnecting cables.

Switching and Control Circuit

The switching and control circuit determines the direction of data flow through the multiplexer, and maintains proper timing between participating computers in the network. It uses the internal 700 khz clock oscillator to generate the timing signals sent to participating interfaces for controlling data transmission.

The term multiplexer is somewhat inaccurate. The switching circuit more closely resembles a digital rotary switch with five ports. Data input is taken from one port at a time in a rotary sequence. As the data arrives, it is sent out on all five ports in a "broadcast" fashion. When the data transmission from the first port is finished, the second input port is selected, and so forth until all ports have been sequenced. The process is then repeated, again beginning with the first port.

To maximize multi-user access to the network, data is handled in packets using a format similar to standard SDLC (Synchronous Data Link Control) protocol. Each participating computer is allowed to transmit one packet of data after which it must wait until all other ports have been serviced before it can send the next packet. Since the data packet includes source and destination information, it is unnecessary for the multiplexer to interpret routings. The task of identifying data destinations is left to the computer interfaces in the network.

As each interface receives data packets from the multiplexer, the interface decodes the packet destination node address. If the packet destination address does not match the programmed interface Node Address, the packet is ignored. If the address matches the interface node address, the interface accepts the packet and notifies the computer of its arrival.

Handshaking Between the Multiplexer and Interfaces

As with any computer and peripheral, it is imperative that data traffic be monitored and controlled so that an orderly flow of information can be maintained. This is accomplished by the handshake activites that occur between the multiplexer and the Resource Management interfaces connected to it.

Multiplexer-Interface Handshake Timing

As indicated in the timing diagram, when the multiplexer polls an interface, it sends 16 clock cycles (approximately 23 microseconds) on the RT (Receive Timing) line, then sets CS (Clear-to-send) if the interface responds to the clock. (Note that all lines are actually differential pairs.) As soon as the interface receives the RT clock signal, it returns the clock on its TT output. If the selected interface has data to send, it immediately starts sending the SDLC flag characters on its SD output, indicating the start of a frame (packet). If there is no data to send, the SD output remains idle. When there is no SD response, the multiplexer switches to the next port at the end of the 16 clock cycles.

If the selected interface has a packet ready, it responds by sending SDLC flag characters on SD (Send Data). If the multiplexer detects activity on SD and TT, it sets CS, then maintains the open channel to the interface by holding CS and RT active until the transmission is completed. The end of a transmission is determined by the detection of eight successive bits with no zeroes. U12 and U9 are used to detect eight successive ONEs received. U12 is an 8-bit shift register that holds the most recent data. If all outputs are low (indicating eight ONEs received), CS is cleared by U9, and the controller switches to the next port.

As data arrives on the SD (Send Data) line, it is sent directly to all RD (Receive Data) outputs. RT and CS are inhibited to the inactive input ports by the tri-state enable lines driven by U13. If CS is inactive on a given port, the interface on that port is expected to monitor incoming data and not attempt to transmit. However, if an interface should inadvertently transmit, the inputs on that port are also disabled by the same line that disables RT and CS, thus preventing data collisions.

Analog Circuits

Line impedances from the multiplexer to the interface are nominally 100 ohms. The output drivers are designed to feed a 100 -ohm load. The resistor/diode and series resistor pair at each input form an approximately 100 -ohm termination for the load end of the line, maintaining a balanced line with minimal reflections.

The rest of the circuitry is relatively straight-forward. The +12 -volt supply is used to provide +5 -volt power to the isolated ports. Opto-isolators provide signal passage across isolated boundaries. U14 is a frequency divider used to generate the clock signals for timing and power-supply switching.

HP 98629 Interface Theory of Operation

The HP 98629 Resource Management Interface handles all information transfers between the computer it resides in and one or more remote computers in the system. The interface performs the following functions:

- Assemble outbound data transmissions into data packets with proper routing information included in each packet.
- Recognize timing signals from the multiplexer, and transmit message packets at the appropriate time, thus preventing data collisions.
- Recognize incoming information, and accept message packets that have the proper node address. Ignore messages containing other node addresses.
- Decode incoming message packets and transfer them to the local computer operating system or other specified destination.
- Possible electrical power to the multiplexer if the multiplexer power cable is connected to the interface.

Data Transmission

When data is being sent by the interface, the following sequence of events occurs:

- Data messages are sent to the interface by the operating system.
- The interface assembles the information into packets and adds routing information.
- The multiplexer sequentially interrogates each interface. When the appropriate timing signals are received from the multiplexer, the interface transmits a message packet.
- The multiplexer broadcasts the message packet to all of the interfaces that are connected to it.
- After the packet is transmitted, the multiplexer switches to the next interface. Timing and Clear-to-send lines to the interface are disabled. If multiple packets are being sent, the interface must wait until its next turn to send the next packet.
- If the interface has no data to transmit, it ignores the select signals from the multiplexer. The multiplexer then switches to the next interface. Limiting transmissions to only one packet at a time improves response time when some users may be transferring large files while other users need access to system resources.

Data Input

Data input occurs only when an incoming packet is recognized, based on its destination node address. The following sequence of events occurs during data reception:

- The interface decodes the destination node address on all incoming data packets. If the address does not match the interface Node Address switch setting, the packet is ignored.
- If the Node Address is recognized by the interface, it accepts the packet, strips off destination and control information, and prepares the data for transfer to the operating system or other destination level.
- The processed data is then transferred to the specified destination level for further action.

Interface Operation

When the multiplexer activates RT (Receive Timing), the interface responds ONLY if it has a packet ready to transmit. If there is at least one packet waiting for transmission, the interface synchronizes on the incoming RT signal and begins sending its timing reference clock on TT (Terminal Transmit Timing). When CS is activated by the multiplexer, it begins sending the flag characters on the SD (Send Data) line, followed by the remainder of the SDLC frame when it receives the CS signal from the multiplexer. When the frame is complete, the multiplexer disables CS and RT, causing the interface to place its outputs in an idle state.

Interaction of the interface with the computer is not as straight-forward, and is beyond the scope of this manual, as is the operation of the processor and other control circuitry on the interface. It is sufficient to explain that the Node Address switch is used by the microprocessor on the card to input the interface node address during power-up and after a hard RESET. The Select Code and Hardware Interrupt Level switches control interaction between the interface and the computer's I/O circuitry.

HP 98029 Interface
 Theory of Operation

The HP 98029 performs essentially the identical function on an HP 9845B/C computer as the HP 98629 performs on HP $9826 / \mathrm{HP} 9836$ computers. Data transmission and reception are identical, and interaction with the multiplexer is also the same. The differences between the two interfaces lie in the interaction with the computer where they reside.

The interface consists of two printed circuit cards interconnected by two single-row connectors. The 98029-66502 board contains the Z-80 microprocessor, memory, datacomm SIO, and differential line drivers and receivers for the datacomm link to the multiplexer. The 9802966501 contains interface circuitry between the Z-80 processor and the HP 9845 computer I/O backplane. It includes a master clock oscillator, hardware register selection circuits, and interrupt and handshake logic.

Data is transferred to and from the HP 9845 through the R4 registers, U6 and U7, one in each direction. Register contents are valid only if the flag is set. Register 5IN provides status and interface ID information; 5OUT is used to pass interface control information from the HP 9845 to the interface.

Registers 5IN and 5OUT are interpreted as follows:
R5IN:

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: |
| x | x | x | x | 1 | 0 | 0 | 1 | IES | x | 0 | 0 | x | DBS | DA | DBE |
| $\mathrm{x}=$ not used | $1=$ always 1 | $0=$ always 0 | | | | | | | | | | | | | |

Bit 0 (DBE) Data Buffer Enabled: When ANDed with Bit 7, this bit indicates, when set, that the data buffer can interrupt the mainframe when the data buffer has space available for another packet.

Bit 1 (DA) Data Available: When set, the interface has a packet of information available for the mainframe.

Bit 2 (DBS) Data Buffer Status: When set, the interface has space available for another outbound data packet.

Bit 7 (IES) Interrupt Enable Status: When set, indicates that the interface can interrupt the mainframe when the prescribed conditions are met.

Bits 4 and 5 set to zero means that the interface ID is contained in bits 11 thru 8 . All other bits in this register are not implemented.

R5OUT:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
x	x	x	x	x	x	x	x	IEN	x	PR	x	x	x	DTE	DBE

$x=$ not used

Bit 0 (DBE) Data Buffer Empty: Bit set enables (clear disables) interrupt when data buffer has space available for another outbound data packet.

Bit 1 (DTE) Diagnostic Test Enable: Bit set interrupts Z-80 CPU and causes it to execute a diagnostic test. Used for factory and System Diagnostic tests.

Bit 5 (PR) Programmable Reset: Bit set causes an interface hardware reset. Automatically cleared during reset.

Bit 7 (IEN) Interrupt Enable: Enables interrupt of mainframe by interface when an incoming data packet has arrived, or when the outbound data buffer has space available for another packet (if Bit 0 is also set).

Operation of the combinatorial support logic is relatively straight-forward.

HP 97061 Cable

As mentioned earlier, the HP 97061 cable is available in 10, 25, and 60 metre lengths. It is used to connect multiplexers to Resource Management interfaces, and consists of 6 twisted-pair shielded two-wire cables enclosed within an outer shield that is covered with a plastic protective jacket. Each pair has a nominal balanced transmission line impedance of approximately 100 ohms. One end has a 50 -pin connector that mates with the interface. The 15 -pin connector on the other end mates with any one of the connectors on the multiplexer.

The following schematic diagram shows the pin connections and internal wiring of the cable for troubleshooting purposes. The molded connectors that are attached to the cables are not field repairable. Connector replacement requires the correct connector and the necessary tools to rewire the new connector, and is not generally recommended. Grounds must be correctly wired to ensure proper RFI performance and maintain noise immunity.

HP 97061 Cable Schematic Diagram

Disc Interface Theory of Operation

The HP 98625 Disc Interface is, conceptually, relatively simple. It consists of:

- a high-speed HP-IB controller contained in a single integrated circuit package,
- a DMA interface/control state machine that manages the interaction between the HP-IB controller and the DMA card, and
- interface select/control circuitry that interacts with the computer through the I/O backplane.

The following block diagram shows the relationship of the circuit functions:

Disc Interface Block Diagram

Data transfers are set up and initiated by the computer through interaction with the interface. A DMA channel is activated, and all data transmission and reception is handled through the DMA channel. Upon completion of the transfer, an interrupt to the computer is generated. The computer then suspends the DMA channel and deactivates the interface. DMA capability is required because the high data rates exceed the capabilities of normal CPU-based I/O drivers.

Installation information, parts lists, and schematic diagrams for the disc interface and DMA controller are contained in their installation manuals, 98620-90000 and 98625-90000, respectively. Refer to those manuals for additional information if needed.

Parts Lists and Schematic Diagrams

Most of the devices discussed in this chapter are normally serviced on a replacement basis. However, the following lists of replacement parts are provided for your convenience.

Tables 1 thru 3 list the replaceable parts. Here is a description of each table column.

Parts may be ordered from Corporate Parts Center. The address is:
Corporate Parts Center
333 Logue Avenue
Mountain View, California 94042
The telephone number is: (415) 968-9200
Manufacturer part numbers are also listed. The following list of manufacturers is provided for your convenience.

Manufacturers Code List				
Mfr. No.	Manufacturer Name	Address		Zip Code
00000	Any Satisfactory Supplier	Milwaukee	WI	53204
01121	Allen-Bradley Co	TX	75222	
01295	Texas Instr Inc Semicond Cmpnt Div	Dallas	NY	13201
03508	GE Co Semiconductor Prod Div	Auburn	NY	Whippany
03888	K D I Pyrofilm Corp	07981		
04713	Motorola Semiconductor Products	Phoenix	AZ	85008
07263	Fairchild Semiconductor Div	Mountain View	CA	94042
11236	CTS of Berne Inc	Berne	IN	46711
14936	General Instr Corp Semicon Prod Gp	Hicksville	NY	11802
24546	Corning Glass Works (Bradford)	Bradford	PA	16701
28480	Hewlett-Packard Co Corporate Hq	Palo Alto	CA	94304
34355	Advanced Micro Devices Inc	Sunnyvale	CA	94086
50088	Mostek Corp	Carrollton	TX	75006
56289	Sprague Electric Co	North Adams	MA	01247
91506	Augat Inc	Attleboro	MA	02703
S4013	Hitachi	Tokyo, Japan		

Table 1. HP 98629A Replaceable Parts

Reference Designation	HP Part Number	$\left\|\begin{array}{l} C \\ D \end{array}\right\|$	Qty	Description	Mfr Code	Mfr Part Number
51	9160-3847	9	21		28480	3160-3847
C	0160-3847	9		CAPACITOR-FXD . $014 \mathrm{~F}+100-0 \%$ SOUDC CFR	28480	0160.3847
${ }_{5} \mathrm{C}$	3180-0197	8	1	CAPACITOR FXD 2. 2UF + 10% 20VDC TA	56289	150De25x9020A2
C.4	0160-3947	9		CAPACITOR-FXD , G1UF + $100 \cdots 0 \%$ S0UDC, EER	28490	0160-3847
CS	016.0-3847	9			26480	9160-3847
C.6	0160-3847	9		CAPACITOR-FXD . 016 F +100-0\% 50UDC CFR	28480	6160-3847
C8	9180-1746	5	1	CAPACITOR -FXD 1EUF+ - 10% 2avoc TA	56289	150D156×902062
CP 9	0180-0229	7 9	1	CAA ACITOR-FXD 33UF+-10\% 10UDC TA	56289	$1500336 \times 9010 \mathrm{~F}$
C 10 C 12	$3160-3847$ $0160-3847$	9		CAPACITOR FXD . $010 \mathrm{~F}+100 \mathrm{OXX} 500 \mathrm{DCD}$ CER	28480	01603847
C 12	1160-3847	9		CAPACITOR-FXD . R1UF +100-0\% SOUDC CER	29480	1160-3847
013	9160-3847	7		CAPACITOR-FXD . $014 \mathrm{~F}+100 \cdots 0 \% 50 \cup D C$ CRER	28480	0160-3847
0.14	0160-3847	9		CAPACITOR-FXD . O1UF + 100 -0\% 50VDC CER	28480	0160 -3847
${ }^{C 15}$	3160-4807	3 9	1	CAPACITTR-FXD 33PF + 5\% 100VDC CER $9+30$	28480	0160-4807
C:16 C17	$0160-3847$ $0160-3847$	9		CAPACITOR-FXD, O1UF + $100-0 \chi$ SOUDC CER	29480	$0160-3847$
C17	10160-3847	9		CAPACITOR FXD, DIUF $+10000 \%$ SOUDC CER	70480	3160-3847
C.18	0160-3847	9		CAPACITOR -FXD. $814 \mathrm{FF}+100 \cdots 0 \%$ SOUDC CER	28480	0160-3847
C19	3160-3847	9			28480	0160-3947
C20	0160-3847	9		CAPACITOR-FXD . $014 \mathrm{LF}+100-0 \%$ SOUDC CER	29490	0160-3847
$\mathrm{C21}$	3160-3847 $0160-3847$	9		CAPAC1TOR FXD .01UF +100-0\% 5BUDC CER	28480	0160-3847
Ce 2	0160-3847	9		CAPACITOR-FXD . $114 \mathrm{~F}+100-0 \%$ SOUDC CER	29480	0160-3847
C23	3160-3847	9		CAPACITOR FXD . $014 \mathrm{~F}+10003 \%$ SOUDC CER	28480	0160-3847
C.24	0160-3847	9		CAPACITOR-FXD . O1UF $+100 \cdots 0 \%$ SOUDC CER	28490	0160-3847
225	9160-3847	9		CAPACITOR - FXD , O1UF +100-0\% SBUDC CER	28480	0160-3847
C36	$0160-3847$ $0160-3847$	9		CAPACITOR-FXD - 01 UF + 10000% S0UDC CER	28480	0160-3847
C 27	3160-3847	9		CAPACTTOR FXD. 916 F +109 3% SOUDC CER	28480	0160-3847
CR1 1	1901-6025	2	1	DIODE-GFN PRF $160 \cup 200 M A$ DO-7	28490	1901-0025
CR3 CR4	$1991-0518$ $1901-0518$	8	2	DIODE-EM STG SCHOTTKY	28480	1931-0518
CR 4	1901-0518	8		DIIDE --SM SIG SChottky	28490	1901-0518
F_{1}	2110-0297	4	1	FUSE . SA 1250 NTD. $281 \times .393$	28480	2110-0297
F_{2}	2110-0423	8	1	FUSE 1, SA 1250 NTD $281 \times .093$	29490	2110-0423
F3	2110-0592	2	1	FUEE 4A 12SU NTD . $281 \times 1 \times 93$	28480	2110-0592
Q ${ }^{\text {a }}$	1954-0019	3	1	TRANSISTOR NPN ST TO-18 PD=360MW	29490	1054-0019
Q2	1653-0015	7	1	TRANSTSTOR PNP ST PD=?日GMW FT=SOMMH7	88480	1853-0015
R 1	0698-8827	4	3	RESISTOR $1 \mathrm{M} 1 \% .125 \mathrm{~W}$ F TC $=6 .+-100$	20.490	0608-8897
22	0698-8627	4		RESTSTOR $1 \mathrm{M} 1 \% \cdot 12 \mathrm{EL}$ W F TC=0 $+\cdots 100$	23480	06,98-8n27
R3	06998-3157	3	1	RESTSTER $19.6 \mathrm{~K} \quad 1 \%$, 12SW F TC $=0+\cdots 100$	24546	C.4-1/8-T0-1962-F
R4	8698-8827	4		RESTSTOR $1 \mathrm{M} 1 \%$. 12 EW F TC=0 +100	28480	3678-8827
R55	0698-0082	7	3	RESESTOR 464 1\%, 125w F TC $=0+-100$	24546	C4-1/8-T0-4640 F
R6	3757-0405	4	1	RESTSTOR 1621%, 125W F TC $=0+\cdots 100$	24546	[4*1/8-T9-162R-F
R\%	0698-0082	7		RESISTOR 46.41%, 125w F TC: $=0+-100$	24546	C4 1/8-T0-4640 F
R8	5698-0092	7		RESISTOR 4641%. 125 SW F TC=0 + 100	245;46	C4 1/8-T0-4640 F
R10	0757-0346	2	3		24546	C4 1/8-T0-10R0-F
R11	0757-0346	2		RESISTOR 101%, 125 W F $\mathrm{TC}=9+\cdots 100$	24546	C4 1/8-70-10R0-F
R12	0698-0083	8	2	RESISTOR $1.96 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC $=0+\cdots 100$	24546	C4\%1/8-T0 1961-F
R13	3598-0083	${ }^{8}$		RESTSTOR $1.96 \mathrm{~K} 1 \% .1254$ F TC= $0+\cdots 100$	24546	C4-1/8-70-1961-F
R14	1910-0.561	8	1	NETWORK-RES 16 -DIP6.8K OHM $\times 15$	26490	101.0-0561
R17	1810-0168	5	1	NETWORK - RES 1.4 -DTP 4.7 K OHM $\times 13$	11236	760-1-R4.7K
R18	0757-0401	0	3	RESISTOR $1001 \% \cdot 125 \mathrm{~W}$ F TC=0t-100	24546	
R19	3757-0401	0		RESTSTOR 1001%, 12SW F TC $=0+\cdots 100$	2.2546	C4-1/8-T0-101~F
R20	0757-0401	0		RESISTOR 1001%, 125w F TC=0 +100	24546	C.4-1/8-T0-101-F
SW1	3101-2510	0	2	SWTTCH ASSEMEI. Y RCCKER	29430	$3101-2510$
Sw2	3101-2510	0		SWITCH ASSEMEI, Y ROCKER	28490	$3101-2510$
111	1820-2117	5	4	IC DRUR TTL LINF DRUR DUAL.	97263	96,36ATC
U3	1820-2117	5		IC. DRUR TII LTN: drur dilal.	07263	963.ATC
11.3	1820-2117	5		IC DRUR TTL LTNE DRUR DUAL	07263	9636ATC
4.4	1820-1201	6	1	IC GATE. TTI LS AND QUAD $2 \cdots$ INP	01295	SN741 S08N
U5	1820 1491	6	1	IC BFR TTL ISS NTN TNU HEX 1 -INP	31295	SN7.41.5367Ath
116	1820-1997	7	1	tr. FF TtL ls dotype pos-mbge-trig prt-in	01295	SN741 5374N
1.78	$1820-2117$	5		IC DRUR TTL LINE DRVR DUAL.	97263	9636ATC
49	1820-2703	5	1	IC DRUR TTI DIFF LINE QUAD	28490	1820-2703
119 110	$1820-2594$ $1920-2594$	2	2		28480 28490	$1820-2594$ $1820-2594$
110	1920-2594	2		IC RCUR TTI L.S IINE RCUR QUAD $2-1 \mathrm{NP}$	28490	1828-2594
1011	1820-1244	7	1	TC MIXPRIDATA SEL TTL LS 4 TO-1 1 TNE DUAL	01295	SN74LS153N
41.2	1820-2301	9	1	TC-780A CTC	28480	$189 \mathrm{C}-2301$
1113	1820-1112	8	3	IC FF TTL LS D TYPE POS-ECEF TRTG	31295	SN74LST4AN
414	1820-1112	8		IC FF TTL LS D TYPE POS-FDGE-TRTG	$01: 395$	SN741.S74AN
415	1820-1112	8		IC FF TTI LS D-TYPE POS-EDEE-TRIG	01295	SN741.S74AN
416	1820 2655	8	2	IC GATE TTL. ALS OR QUAD $2 \cdots$ INP	01295	SN74A! S32N
417	1820-0693	8	$?$	IC FF TTL. S D-TYPE POS EDGK-TRIG	01.295	SN74974N
418	1813-0225	7	1	CRYSTAL-CLIOCK-OSCTLLATAR	88480	1313-0225
419	$1820-0693$	8		IC FF TTL S D-TYPE POS-EDGE-TRTG	01295	SN74974N
U20	1820-1438	1	2	IC MUXR/DATA-EFI TTL IS 2-TD-1 IINE QUAD	01295	SN74LSESTAN

See introduction to this section for ordering information

Table 1. HP 98629A Replaceable Parts

See introduction to this section for ordering information

Table 2. HP 98028A Replaceable Parts

Reference Designation	HP Part Number	$\left\|\begin{array}{l} \mathrm{C} \\ \mathrm{D} \end{array}\right\|$	Oty	Description	Mfr Code	Mfr Part Number
	98028-66501	7	1	PC ASSEMRI.Y	28480	98029-68501
c.3	18180-3207	7	5	CAPACITIR - FXD 2alli a $2 \mathrm{~V}+100 \%$	28480	0180-3207
C 4	0180-3207	7		CAPACITOR-FXD 22llF $250+180 \%$	28480	018c-3207
CS	7160-05.76	5	3		28480	0160-0576
C.7	0188-3207	7		CAPACTTOR-FXD 22UF $25 \mathrm{SU}+100 \%$	29490	0190-3207
C8	1180-3207	7		CAPACITOR-FXD 2RUF $250+100 \%$	28480	9180-3217
c ${ }^{4}$	01.60-4832	4	20	CAPACITOR-FXD . $01 \mathrm{UF}+\mathrm{10} \mathrm{\%} 100 \mathrm{UDC}$ CER	28480	0160-4832
C11	0160-4832	4		CAPACITRR -FXD . 1 CuF + $10 \% 100 \mathrm{VDC}$ LER	28480	3160-4932
C_{13}	11160-4832	4		CAPACITOR-FXD.01UF + $10 \% 1 C O U D C$ CER	29490	0160-483?
C14	0160-3456	6	4	CAPACTTOR-FXD $1000 \mathrm{PF}+\cdots 10 \%$ 1KUDC CER	26480	016.0-3.456
0.5	0180-3456	6		CAPACITOR-FXD 10 OBPF + 10% 1KUDC CER	28480	016.0-3456
C16	0160-4832	4		CAPACITOR-FXD , D10F +-10\% 100VEC CrR	28480	0160-4832
C 17	0160-483?	4		CAPACTTOR-FXD.01UF + - 10\% 1 COUDC CER	28480	016.0-4832
${ }^{C 18}$	0160-483?	4		CAPACTTOR FXD 01UF $+10 \% 100 v E C$ CER	2 E 483	9160-4832
619 0.1	$0180-3207$ $0160-4832$	7		CAPACITOR-FXD 2ЗUF $250+100 \%$	28480	0196-3207
021	0160-4832	4		CAPACTTAR FXD . O111F + 10% 100UDC CER	28489	916,0-4832
68	0160-4832	4		CAPACITOR - FXD . $01 \mathrm{UF}+-10 \%$ 1 ROUDC CER	28490	0160-483?
C23	0160-4832	4		CAPACITOR FXD . D1UF + $10 \% 100 \mathrm{DDC}$ CCR	28490	1160-4832
12.4	01.60-4832	4		CAPACTTOR -FXD.01UF +-10\% 100UDC CER	29490	016.0.483?
C25	1160-4832	4		CAPACYTOR FXD . O1UF + $10 \% 100$ URC CER	28489	9160-4832
C\%	0160-483 ${ }^{\text {c }}$	4		CAPACITOR-FXD . $0111 \mathrm{~F}+10 \% 10 \mathrm{CDDC}$ CRR	29480	01604832
C 27	0150-4832	4		CAPACTTOR FXD . $010 \mathrm{OF}+10 \% 100 \mathrm{VDC} \mathrm{CER}$	28430	0160-4832
$\mathrm{CP8}$	0160-3456	6		CAPACITOR-FXD $1000 \mathrm{PF}+10 \% 1 \mathrm{KUDC}$ CER	28480	0160-3456
C29	0160-3456	6		CAPACITDR-FXD 1300PF + $10 \% 1 \mathrm{KUDC}$ CER	28480	0160-3456
C30	0160-4832	4		CAPACITOR-FXD. R1UF + - 1 C\% 1 COUDC CER	26490	0160-4832
031	0160-4832	4		CAPACTTOR FXD . D1JF + $13 \% 10$ OVDC CER	284980	0160-4832
C33	0160-4832	4		CAPACITOR-FXD , O1UF + - 10\% 10QUDC CER	28400	0160-4832
[34	0160-4832	4		CAPACTTOR FXD. $010 \mathrm{UF}+10 \%$ 100VDC CTR	28480	016,0-4833
C36	0160-4832	4		CAPACITOR-FXD .01UF + 10\% 10OUDC CFRE	28480	0160-4832
138 $C 38$	0160-4832	4		CAPACITGR-FXD, 311.FF-13\% 100 PVE CER	28480	9160-4832
C39	8160-483?	4		CAPACITOR-FXD. $01 . \mathrm{HF}+10 \% 100 U D C$ CER	29490	0160-483?
C40	0160-0576	5		CAPACITOR-FXD $\cdot 10 F+20 \%$ SOUDC CER	20430	016.8-0576
$\mathrm{C42}$	0160-0576	5		CAPACTTOR -FXD, WHF + -20\% SDVDC CER	28480	0160-0576
CR1	1901-1065		4	DTODE-PLIR RECT 1N4936 400 C 1 A 200NS	14936	1N4936
CR2	1901-1065	2		DIODE PWR RECT $1 N 4936$ 439V 14 A 203 NS	14936	$1{ }^{19} 4936$
CR3	1902-3107	9	4	DIODE-ZNR 5.7642% DO-35 PD= $4 \mathrm{4w}$	20480	1902-3107
CR4	1902-3107	9		DIDDE -ZNR 5.76 V \% DO-35 PD=.4W	-8480	1902-3107
CRS	1901-1065	2		DITDE-PWR RFET 1 N4936 400 C 1A 200NG	1.4936	1N4936
CR6	1901-1065	2		DTUDE PWR RFCT 1 N4936 400 V 1 A 200 NS	1.4936	1N4936
CR7	1902-0956	0	1	DIODF - ZNR $8.2 \mathrm{~V} 5 \% \mathrm{DO}-35 \mathrm{PD}=.4 \mathrm{~W}$ TC $=+.065 \%$	28498	1902 0956
CR8	1902-3107	9		DIODF 7 OR 5.7602% DO $35 \mathrm{PD}=.4 \mathrm{~W}$	28480	1902-3107
CR9	1902-3107	9		DIODE-ZNR 5.7602% DO-35, PD $=44 \mathrm{4}$	28490	1902 3107
DSO_{1}	1990-8486		2		29480	5)82-4684
mse	1990-0486	6			29490	5082-4694
DS3	1990-8450	4	8	LED- 1 AMP LUM INT = BODUCD IF =SGMA MAX	28480	5382-4484
$\mathrm{p} ; 4$	1990-0450	4		LED LAM LUM INT=800UCD IT $=50 \mathrm{MA}$ MaX	28480	5088.4484
DS5	1970-0450	4		LED-LAMP LIM INT = BODUCD $J F=50 \mathrm{KA}-\mathrm{MAX}$	28480	5198-4434
DS6	1990-0450	4		LED-L.AMP LUM-INT = 8GOUCD IF $=50 \mathrm{MA}$-MAX	28490	500, 4484
D57	1970-0459	4		LFD LAMP LUM 1 NT $=80$ OUCD IF $=50 \mathrm{MA}$ - MAX	28480	5.382-4484
D68	1990-0450			LED-LAMP LUM-TVIT $=$ GOOUCD IF $=50 \mathrm{MA}$-MAX	28490	5082-4484
1259	1990-0450	4		LED HAMP LUM YNT $=303$ LCD TF $=5 \mathrm{MMA}$ MAX	23480	5382-4484
DS30	1990-0450	4		LED-LAMF LUM-INT $=8000 \mathrm{CD}$ If $=50 \mathrm{MA}-\mathrm{MAX}$	28480	5082-4484
${ }_{1}$	1251-6312	3	4	CDNNECTIIR 15-PTN F HOP TYPE	28480	1851-6.312
J\%	1251-8312	3		CONNETTOR 15-PTN F HDP TYPE	28490	1251-6312
13	1351-6312	3		CTNNELTIR 15 -PTN F HDP TYPE	28480	1-51-6312
J4	1251-6312	3		CONNECTOR 15-PIN F HDP TYPE	29480	1251-6312
P1	1251-5265	3	1	CONNECTOR 1B-PTN M POST TYPE	29480	1251-5265
Q1	1854-0739	4	4	TRANSTSTOR NPN ST PD=1.54 FT=65MH7	04713	miteado
52	185,4-0739	4			04713	MJE.a0
as	1854-06.35	9	2	TRANSISTOR NPN ST PD=50W FT=20MHZ	03508	D4445
84	1854-0635	9		TRANSTSTTR NPN SI PD=504 FT=23MHZ	93508	D4.4145
as	1854-0739	4		TRANSISTOR NPN SI PD=1.5W FT $=65 \mathrm{MH}$ \%	04713	MTE 200
P6	185,4-0739	4		TRANSTSTOR NPN SI PD=1.5W FT $=65 . \mathrm{MH}$ C	84713	muE 200
R 1	0698-3428	1	4	RESTSTOR 14.71%. 125 W F TC $=0+-100$	03988	PMES5-1/8-Tn 14R7-F
R2	0698-3446	3	1	RESISTIR 3E13 1\%, 125W F TC: $0+100$	24546	$\text { C4 } 1 / 8-70-3332-F$
R3	3678-3428	1		RESTSTGR 14.71%, 12SW F TC=0 + 100	37868	FME55-1/8-T) 14R7-F
R4	0757-0416	7	2	RFSISTER 5111%, 125w F TC: $=0+-100$	24546	C. 4 1/8-TE- 511 R - F
25	9757-0416	7			P4546	C4 1/8-T0-5112-F

See introduction to this section for ordering information

Table 2. HP 98028A Replaceable Parts

Reference Designation	HP Part Number	$\left\|\begin{array}{l} C \\ D \end{array}\right\|$	Oty	Description	Mfr Code	Mfr Part Number
R6	0757-0427	0	1	RESISTOR 1 , 5 K 1%. 125 L F F TC $=0+\cdots 100$	24546	
R7	0757-0401	0	2	RESISTOR 100 1\% .125w F TC=0 +-160	24.546	C4 1/8-T0-101-F
RE	0757-04311	0		RESISTTIR $1001 \% .125 W$ F TC $=0+100$	24546	C4-1/8-T0-101 F
80	n6.98-3428	1		RESTSTOR 14.71%, 125.W F TC $=0+-100$	03938	PMCSS-1/9-TC-14R7-F
R10	0698-3428	1		RESISTOR 14.71%, 125w F TC $=0+\cdots 100$	73388	PME5E1/8-TS-14R7 F
RP1	1810-0445	7	8	RESTSTIUE NETWORK- $3 \times .1 \mathrm{~K}$ OHM SIP	1.1236	750-6.3-R100
RP2	1810-6445	7		RESISTIVE NETWIRK- $3 \times .1 \mathrm{~K}$ DHM STP	11236	750-63-2110
RP3	1810-0445	7		RESISTIVE NETWORK- $3 \times .1 \mathrm{~K}$ OHM SIP	11236	750-63-R190
RP4	$1810-0445$	7		RESISTIVE NETWORK- $3 \times .1 \mathrm{~K}$ OHM SIP	11236	750-63-R100
RP5	1810-0488	8	4	RESTSTIVE NETWORK - $4 \times 4.7 \mathrm{~K}$ OHM SIP	28480	1810-0498
KP6	1810-0488	B		RESTSTIVE NETWORK- $4 \times 4.7 \mathrm{~K}$ DHM STP	28480	1910-9400
RP7	1910-0571	0	1	NETWORK-RESISTIVE $13 \times .390 \mathrm{~K}$ OHM DIP	29490	1910-0571
RFE	1810-0235	3	1	NE WORK-RESISTVUE IS $\times 2$, EK OHM DIP	31121	$316 \mathrm{~A}^{2} \mathrm{E} 2$
RP9	1810-0488	8		RESISTIUE NETWRRK - $4 \times 4.7 \mathrm{~K}$ OHM STP	28480	1910-0498
RP10	1810-0488	8		RFSTISTIUE NETWORK- $4 \times 4.7 \mathrm{~K}$ OHM SIP	28480	1810-0488
RP11	1810-0445	7		RESISTIUE NETWORK- $3 \times$. 1 K OHM STP	11235	750 63-8100
RP12	1810-0445	7		RESISTIVE NETWORK- $3 x .1 \mathrm{x}$ OHM STP	11236	750-63-R100
RP13	1810-0445	7		RESISTIVE NETWORK- $3 \times 1 \mathrm{x}$ (1K OHM STP	11236	750-6,3-R100
2P14	1810-0445	7		RESIGTIVE NETWORK- $3 \times .1 \mathrm{~K}$ OWM STP	11236	750-63-R100
T1	9100-4197	7	1	transformer	28490	9106-4197
${ }_{71} 1$	1251-0600	0	8	CONNECTOR-5GL CONT PTN 1.14.MM RSC- 5\% SQ	28480	1251-0600
TPL	1251-0600	,		CONNECTOR-SCL CONT PIN 1.14-MM-ESE-S7 Sa	28480	1251-0600
193	1251-0600	0		CONAECTOR-SGI CONT PTN 1.14-MM BEC-S2 SQ	23480	1251-0600
TP4	1251-0600	0		CONNECTOR-SGL CONT PIN 1.14-MM-BSC-S7 SQ	29488	1251-0600
195	1251-0600	0		CONNFCTOR-SGL CONT PIN 1.14-MM-ESE-SZ SQ	28480	1251-0600
TP6	1251-0600	,		CONNECTOR-SGL CONT PIN 1.14-MM BGC--SZ SG	28490	1251-0600
7P7	1251-0600	0		CONNECTOR-SGL. CONT PIN 1.14-mM - BSC--5z SQ	23480	1251-0600
TP8	1251-0600	0		CONNECTOR-SGL CIONT PIN 1.14-MM ESE- 57 SQ	29480	1251-0600
U1	1820-2703	5	5	IC DRUR TTL DIFF IINE QUAD	23488	1020-2703
U2	1820-2703	5		IC DPUR TTL DIFF LINE QUAD	28480	1826-2703
43	1990-0461	7	12	OPTO-ISOI.ATOR	28490	5082-4364
14	1990-0461	7		OPTO--TSCLATOR	08480	$5083-4364$
じ5	1990-0461	7		OPTO-ISOL.ATOR	28480	500, - 436.4
46	1990-0461	7		OPTO ISOLATOR	28480	5082-4364
4.7	1990-0461	7		OPTO-ISOLATOR	28490	5083-4364
UB	1990-0461	7		DPTO ISOL.ATOR	283880	5032-4364
47	1820-1272	1		IC BFR TTL LS NOR QUAD 2 TMAP	01295	SN\%41533N
410	1820-1492	7	1	IC EFR TtL les inu hex 1-INP	01295	SNTMI.S368AN
411	1813-0230	4	1	CRYSTAL-CLIOCK-OSC Tll ator	28480	1913-0230
1112	1820-1433	6	1	IC SHF-RGTR TIL LIS R S SERTAL-TN PRL OUT	31295	SNTALS 16.4 N
013	1820-1245	8	1	IC DCDR TTL LS 2-TO-4-LTNE DUAL. 2-INP	01295	SN74LS155N
1114	1820-2096	9		IC CNTR TTL L.E ESIN DUAL 4 - BTt	01295	SN7ALS393N
415	1820-1645	2	2	IC BFR TTL Ls bus gliad	01295	SN74L-S126AN
1116	1820-1429	0	1	IC CNTR TTL LS decd synchro	01295	SN74LS16:AAN
417	1820-1645	2		IC BFR TTLL LS GUS Quad	01295	SNT4L.S12GAN
1118	1820-1917	1	3	IC EFR TTL LIS LTNE DRUR DCTI.	01295	SN74LSE40N
419	1920-2203	0	1	IC RCUR TTL LS ITNE RCUR RIIAD	34335	AM26t S3PPC
420	1820-1209	4	1	IC ERR TTL LS NAND QUAD $2 \cdots$ inf	01295	SN74LS3BN
V21	1820-1917	1		IC bFR TTL LIS LINE DRUR OCTL.	01295	SN7415240N
12.2	1990-0461	7		OPTO-ISOLATOR	28480	5052-4364
प23	1990-0461	7		OPTO-ISAL.ATOR	28490	5082-4364
1.124	1990-0461	7		OPTO-ISOLATOR	28480	5182-4364
प25	1820-2703	5		IC drur til diff line guad	28480	1826-2703
426	1990-0461	7		ITPTO-ISDL.ATOR	28480	51)82-4364
427	1990-0461	7		OPTO-ISOL.ATOR	28480	5082-4364
U28	1990-0461	7		OPTO--ISOLATOR	23480	$5782-4364$
430	1820-2703	5		IC DRUR TTL DIFF LINE RUAAD	28490	1820-2703
	1820-2703	5		IC DRVR TTI DIFF LINE RUAD	28480	1820-2703
				Mrscelmaneous		
	$0340-0972$ $3515-0219$	7	19 19		28480 30000	0340~0972 GRDER GY DESCRIPTXON
	$3515-0219$ $0360-2074$	6	19	SCRFW MACH M3 $\times 3.5$ GMM-LG 90-DEG-FLH-HD J-LUG , 016 BRS	284800	MRDER BY DEGCRIPTION $0360-2074$
	3590-1095	6	10	THREADED INSERT-NUT M3 $\times 0.5 \times 59-$ TN-L.G	28480	9590-1095
	0624-0400	8	3		0ecco	ORDER EY DESCRTPTION
	0890-0097	2		TUBING-FLEX . 032 Id TFE . D16-WALL	03000	CRDER BY destriptain
	1251-2942	7	8	LOCK-SUBMIN D CONN	28480	1251-2942
	2190-0004	9	9	WASHER-LK INTL. T NO. 4.115 IN - 1 D	29490	2190-0004
	50.40-9207	8	4	FODT	28480	$51340-9237$
	5061-4253	8	1	POD CASE (TOP)	28480	5061-4253
	5061-4254	9	1	POD CASE (BOTTOM)	28480	5161-4254
	7101-0610	1		FRONT END PLATE:	29498	7101-8610
	7101-0611	2	1	rear end plate	28480	7101-0611
	7121-2204	5	1	Label	284810	7121 - 2204
	8120-3546	7	1	power data caple	28480	B120-3546
	99028-90000	2	1	manual.	28490	9802e-90000

See introduction to this section for ordering information

Table 3．HP 98029A Replaceable Parts

Reference Designation	HP Part Number	$\left\|\begin{array}{l} C \\ D \end{array}\right\|$	Oty	Description	Mfr Code	Mfr Part Number
	98029－66501	8	1	PC ASSEmbly	28490	98079－66501
c1 Cl Ca	$0180-0229$ $0160-4832$	7	1		56239 28498	${ }_{0}^{15008336 \times 9010 月 2}$
c． 3	$0160-4832$	4		CAPACITOR－FXD ．O1UF＋ 10% 100UDC CER	26480	$0160-4832$ $0160-4832$
$C_{6.4}$	01450－4832	4		CAPACITOR FXD ．D1UF＋－10\％100UDC CER	28489	0160－4832
cs	0160－4832	4		CAPACITOR－FXD ．O1UF＋－10\％10日UDC CER	28480	016．0－4832
${ }^{\text {c }}$	0150－4832	4		CAPACITOR FXD ．D1UF＋－10\％ $100 \cup D C$ CER	28480	0160－4832
${ }_{\text {c }} \mathrm{C}$	$0160-4832$ $0160-4832$	4 4 4		CAPACITOR－FXD CAPACITOR－FXD	28480	0160－4832
8	0160.4832	4		CAPACITOR－FXD C．APACITOR－FXD	28480 28480	$0160-4832$ $0160-4832$
C10	0160－4832	4		CAPACITOR－FXD ．O1UF＋－10\％100UDC CER	28480	$3160-4832$
C．11 0.12 12	$0160-4832$ $1160-4832$	4		CAPACTTOR F FXD ，01UF＋ 10% 10OUDC CER CAPACITDR - FXD ．D11 F＋－10X 10OUDC CER	28480 28480	$\begin{aligned} & 0160-4832 \\ & 0160-4832 \end{aligned}$
J1 J2	$1251-5956$ $1251-5956$	9	2	CONNEETOR $22-\mathrm{PIN}$ F POST TYPE CONNECTOR $22-P I N ~ F ~ P O S T ~ T Y P E ~$	29480 28480	$1251-5956$ $1251-5956$
P3	1251－5265	3	1	CONNECTOR 1－A－PIN M POST TYPE	28480	1251－5265
Rep1	1810－0424	2	1	NETWORK－RESISTIUE $15 \times 4.7 \mathrm{~K}$ OHM DIP	11236	761－1－R4．7K
561 $5 W 2$	$3180-3364$ $3101-2509$	2	1	SWITCH－ROTARY 16 PIN DIP APDT SWITCH－RKR DIP－RKR－ASSY 6－1A 1 A SOUDC	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 3100-3364 \\ & 3101-2509 \end{aligned}$
U1	1820－1427	8	1	IC DCDR TTL LS L －TO－4－LINE dual 2 －INP	91295	SN74LS156n
42	1820－1491	6	1	IC BFR TTL LS NON－INU HEX 1－INP	01295	SN74LS367AN
43 44	$1820-1438$ $1820-1197$	9	1	IC MUXR／DATA－SEL TTL LLS $2-$ T0－1 LINE QUAD	01295 01295 01295	SN741．5257AN SN74LSeon
U5	1820－1208	3	2	IC GATE TTL S OR QUAD 2 －INP	31295	SN74LS32N
U6	1820－2719	3	2	IC FF TTL LS D－TYPE PDS－fidge－trig com	07263	741.5534 PC
${ }_{168}^{178}$	1820－2719	3		IC FF TTL L．S D．．TYPE POS－EDGE－TRIG COM	37263	74.5534 PC
\bigcirc	$1820-2488$ $1813-0225$	3 7	1	IC FFFTTL ALS D－TYPE POS－EDGE－TRIG CRYSTAL－CLOEX－OSCILLATOR	01295	SN74AL．574N
U10	1820－1201	6	1	IC GATE TTL LS AND QUAD 2 －－INP	${ }_{01295}^{28480}$	SN74LSO日N
1111	1820－1199	1	1	IC inv til l．s hex 1－inp	01295	sn7alsoun
112 413	$1820-1443$ $1820-1198$	8	1	IC CNTR TTL LSS EIN ASYNCHRD	01295 01295	SN74L．5293N
414	1820－1297	0	1	IL GATE TTL LS EXCL－NOR RUAD 2 －INP	01095	SN74LS266
U15	1820－1245	8	1	IC DCDR TTL L． 2 2－T0－4－LINE dual 2 Inf	01295	SN74LS155N
416 117	1820－1440	5	1	${ }_{\text {IC }} \mathrm{LCH}$ TTL LS Quad	01295	SN74L S279N
${ }_{418}^{1017}$	$1820-1202$ $1820-1208$	7	1	IC GATE TTL LIS NAND TPL 3－INP	01295 01295	SN74LS10N SN74LS32N
1119	1820－1112	8		ic fF TTL ls d－type pos－Edie－trig miscellanedus	01295	SNT4L．S74AN
	0380－0635	3	2		09000	ordfr ay destription

Table 3. HP 98029A Replaceable Parts

See introduction to this section for ordering information

SCHEMATIC NOTES

1. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN. PREFIX WITH ASSEMBLY OR SUBASSEMBLY
2. COMPONENT VALUES ARE SHOWN AS FOLLOWS UNLESS OTHERWISE NOTED
RESISTANCE IN OHMS

CAPACITANCE IN MICROFARADS
3. A Curved line meeting a bus denotes that line enters the bus, a straight line MEETING THE BUS DENOTES THAT LINE DOES NOT ENTER THE BUS.
4. R18 - R20 LOADED FOR 98629. R15, R16, R9, CR2, \& C7 NOT LOADED.
5. R15, R16, R9, CR2, \&C7 LOADED FOR 98628. R18 - R20 NOT LOADED.

SCHEMATIC NOTES

1. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN. PREFIX WITH ASSEMBLY OR SUBASSEMBLY DESIGNATION(S) OR BOTH FOR COMPLETE DESIGNATION.
2. COMPONENT VALUES ARE SHOWN AS FOLLOWS UNLESS OTHERWISE NOTED. RESISTANCE IN OHMS
CAPACITANCE IN MICROFARADS
3. A "•" ON THE OUTPUT OF A GATE DENOTES AN OPEN COLLECTOR OUTPUT
4. A CURVED LINE MEETING A BUS DENOTES THAT LINE ENTERS THE BUS, A STRAIGHT LINE meeting the bus denotes that line does not enter the bus

HP Part No. 98029-66501 Rev A

HP Part No. 98629-66501 Rev A

[^0]: 1 HP 10833 Series chaining cables have special shielded connectors and additional cable shielding to comply with new RFI and EMC requirements. Avoid using earlier model cables. Cables can be identified by the model number printed on the cable jacket.
 2 A maximum of 20 metres or 2 metres per device connected to the bus, whichever is less.
 3 The HP 2608A Printer HP-IB interfaces must be configured to execute CR, LF, and FF characters. SRQ (service request) must be enabled. Command priority checking is optional, and can be enabled or disabled. Refer to the printer installation manuals for details on how to configure these options.

