
Pascal 3.2 Workstation System
Volume 1: Main Command Level
and SUbsystems

HP 9000
Series 200 and 300
Computers

Pascal 3.2 Workstation System Manual
Vol 1: Main Command Level and Subsystems

HP 9000 Series 200 and 300 Computers

F/;OW HEWLETT
~~ PACKARD

HP Part No. 98615-90023
Printed in USA December 1991

Fourth Edition
E1291

@copyright 1980, 1984, 1986 AT&T Technologies, Inc.
UNIX is a registered trademark of Unix System Laboratories Inc. in the USA and other
countries.

@copyright 1979, 1980, 1983, 1985-90 Regents of the University of California
This software is based in part on the Fourth Berkeley Software Distribution under license from
the Regents of the University of California.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted
to this product only. Additional copies of the programs can be made for security and back-up
purposes only. Resale of the programs in their present form or with alterations is expressly
prohibited.

Copyright © The Regents of the University of Colorado, a body corporate 1979

This document has been reproduced and modified with the permission of the Regents of the
University of Colorado, a body corporate.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted
to this product only. Additional copies of the programs can be made for security and back-up
purposes only. Resale of the programs in their present form or with alterations is expressly
prohibited.

Warranty. The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or direct,
indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

A copy of the specific warranty terms applicable to your Hewlett-Packard product and
replacement parts can be obtained from your local Sales and Service Office.

This document contains information which is protected by copyright. All rights are
reserved. Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Government is
sub ject to restrictions as set forth in paragraph (c) (1) (ii) of the Rights in Technical
Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and
subparagraphs (c) (1) and (c) (2) of the Commercial Computer Software Restricted Rights
clause at FAR 52.227-19 for other agencies.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Copyright © 1987, 1988, 1989, 1990, 1991 by Hewlett-Packard Company

Printing History
New editions of this manual will incorporate all material updated since the previous edition.
The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections which are incorporated at reprint
do not cause the date to change.) The manual part number changes when extensive technical
changes are incorporated.

January 1987

September 1987

May 1988

March 1989

May 1990

December 1991

iv

Edition 1.

Update. Updated to include caution against changing HFS default
parameters with version 3.2.

Update. Updated to include 3.21 revision information, as well as notes
about the prefix command's definition with HFS-formatted disc. Also
includes a September 1987 update page.

Edition 2. This edition includes the 3.22 revision information.

Edition 3. This edition includes additions and changes for the Pascal 3.23
release. The additions to this manual provide information on HP SCSI
and Parallel Interfaces.

Edition 4. This edition includes information for the 3.24 and 3.25 releases
of the Pascal Workstation.

Table of Contents

Chapter 1: Manual Overview
Introduction. 1-1

Before Reading this Manual .. 1-1
Previews of Chapters in Volume I .. 1-2
Previews of Chapters in Volume II 1-4

Chapter 2: The Main Command Level
Introduction. .. 2-1
Main Command Prompt ... 2-1

Key boards .. 2-2
Main Command Quick Reference ... 2-3
Main Command Reference 2-4
eXecute. .. 2-5
Initialize .. 2-6
Memory volume .. 2-7
New sysvol .. 2-9
Permanent .. 2-10
Run. .. 2-11
Stream ... 2-12
User restart ... " 2-15
Version. .. 2-16
What ... 2-18

Chapter 3: The File System
Introduction. .. 3-1

Primary vs. Secondary Storage .. 3-1
Pascal Volumes ... " 3-2

Volumes .. 3-2
Logical Units. .. 3-3
The System Volume and Default Volume 3-4
Files .. 3-5
File Naming Conventions .. 3-6
File Specifications and File Names 3-6
Syntax of a Volume Identifier. .. 3-7
Syntax of a Directory Path (SRM & HFS) 3-8
Syntax of File Names. .. 3-9
File Types Derived from File Names 3-10
File Names (LIF DAM) ... 3-10
File Names (Workstation 1.0 DAM) .. 3-11
File Names (SRM DAM) .. 3-11
File Names (HFS DAM) .. 3-12
File Size Specification .. 3-12
Several Directory Organizations Allowed .. 3-13
File Name Suffixes and File Types 3-13

Table of Contents v

Suppressing the Suffix. .. 3-15
Translating Files from One Type to Another 3-15
Wildcards. .. 3-16
File Names to Avoid ... 3-18
Allowable File Names ... 3-18
File Name Length .. 3-19
No Room on Volume ' .. 3-19

The Shared Resource Management System 3-20
Hierarchical Directories .. 3-20
Notation. .. 3-21
SRM Units and Volumes .. 3-22
Moving Up and Down the Hierarchy. .. 3-22
Default Volume vs. Current Working Directory. .. 3-24
SRM Concurrent File Access .. 3-24
SRM Access Rights .. 3-24

The Workstation Hierarchical File System. .. 3-25
General Information. .. 3-25
Terminology. 3-26
Using HFS .. 3-27
Security of Files and Directories ... 3-32
Workstation HFS and HP-UX" .. 3-33
HFS Listing Information .. 3-34

Chapter 4: The Editor-
Introduction. .. 4-1
Entering the Editor. .. 4-2

Creating a Text File. .. 4-3
The Editor Prompt ... 4-3

A Sample Editor Session. .. 4-4
Creating Text 4-4
Storing your File and Returning to the Editor .. 4-5
Copying Text from Other Files ... 4-6
Confirming or Aborting Commands 4-7
Moving the Cursor .. 4-8
Deleting Text c' ••••••••••• ;. • • • • • • • • •• 4-9
Recovering Deleted Text .. 4-10
Moving and Duplicating Text .. 4-11
Changing and Altering Text. .. 4-11
Formatting Text ... 4-16
Exiting the Editor and Saving the File. .. 4-19
Making a Backup Copy ... 4-20

A Closer Look .. 4-21
The Cursor ... 4-21
The Anchor .. 4-21
The Screen as a Window into a File 4-21
Memory and File Sizes .. 4-22
Structure of Text Files. .. 4-23
Using Workfiles in the Editor. .. 4-24
Stream Files and the ANYCHAR Key 4-24
I/O Errors (Entering and Exiting the Editor) .. 4-24

vi Table of Contents

Editor Commands .. .
Editor Command Summary .. .

Text Modifying Commands .. .
Text Formatting Commands .. .
Miscellaneous Commands .. .
Cursor Keys .. .
Cursor Positioning Commands .. .

Command Syntax and Semantics
Adjust
Copy .. .
Delete

Find .. .
Insert
Jump .. .
Margin .. .
Page .. .
Quit .. .
Replace ','" .. .
Set .. .
Verify
eXchange .. .
Zap ,

Chapter 5: The Filer

4-25
4-25
4-25
4-25
4-25
4-26
4-26
4-27
4-28
4-30
4-32
4-34
4-35
4-37
4-40
4-41
4-42
4-43
4-45
4-48
4-52
4-53
4-55

Introduction. .. 5-1
Entering the Filer. .. 5-2

The Filer Prompt. .. 5-2
Filer Operations. 5-3

A Sample Filer Session .. 5-3
Finding Out What Devices are Accessible. .. 5-3
The Default and System Volumes. .. 5-4
Changing the Default Volume .. 5-4
The System Volume ... 5-6
Listing a Directory .. 5-6
Getting a More Detailed Listing .. 5-7
A Few Words About Wildcards. .. 5-10
Translating Text Files ... ',' .. .
Sending File Listings to the Printer and Screen
Copying Entire Volumes: Backup Copies
Creating a Directory .. .
Copying Files from Volume to Volume
Renaming Files and Volumes
Removing Files .. ,
Leaving the Filer
The System Workfile (A Convenient Scratchpad)

Filer Commands .. .
Filer Command Summary .. .

Volume Related Commands .. .
Exit Commands

Table of Contents

5-11
5-11
5-13
5-14
5-16
5-18
5-19
5-20
5-20
5-21
5-21
5-21
5-21

vii

File Related Commands .. 5-22
Workfile Related Commands .. 5-22

Command Syntax and Semantics .. 5-23
File Specification .. 5-24
Volume Specification. .. 5-25

Access .. 5-26
Bad sector .. 5-29
Change .. 5-30
Duplicate. .. 5-32
Extended directory .. 5-34
Filecopy 5-37
Get .. 5-40
Hfs ... 5-41
Krunch ... 5-44
List directory .. 5-46
Make ... 5-48
New .. 5-50
Prefix 5-51
Quit .. 5-53
Remove. .. 5-54
Save .. 5-56
Translate 5-57
U ni t directory .. 5-60
Volumes .. 5-61
What ... 5-62
Zero .. 5-63

Chapter 6: Pascal Compiler
Introduction. .. 6-1
Steps In Program Development .. 6-2

Prepare the Source Program ... 6-2
Invoke the Compiler. .. 6-3
Handling Syntax Errors. .. 6-4
Interpreting the Compilation Listing 6-5
Running the Compiled Program .. 6-5
Using a Workfile .. 6-6
Debugging .. 6-7

Modules ... 6-7
Module Structure. .. 6-7
Developing and Testing a Module .. 6-10
An Illustration .. 6-13
Compiling a Module Separately. .. 6-13
How the Compiler Finds Library Modules 6-14
How the Loader Finds Library Modules 6-16
A Subtle Point .. 6-17

What Can Go Wrong? .. 6-19
Can't Run the Compiler .. 6-19
Errors 900 thru 908 6-19
Errors When Importing Library Modules 6-20
Not Enough Memory .. 6-20

viii Table of Contents

Insufficient Space for Global Variables. .. 6-20
Errors 403 thru 409 .. 6-21
Error 154: Illegal argument to match pass-by-reference parameter. 6-21

Compiler Options. .. 6-22
ALIAS '" '" 6-23
ALLOW _PACKED ... 6-24
ANSI '.' .. 6-25
CALLABS .. 6-26
CODE .. 6-27
CODE_OFFSETS ... 6-28
COPYRIGHT. .. 6-29
DEBUG .. 6-30
DEF ... 6-31
FLOAT_HDW , .. 6-32
HEAP _DISPOSE .. 6-33
IF ... 6-34
INCLUDE .. 6-35
IOCHECK .. 6-36
LINENUM .. 6-37
LINES .. 6-38
LIST , ... 6-39
OVFLCHECK .. 6-40
PAGE ... : 6-41
PAGEWIDTH. .. 6-42
PARTIAL_EVAL .. 6-43
RANGE .. 6-44
REF ... 6-45
SAVE_CONST .. 6-46
SEARCH .. 6-47
SEARCH_SIZE. .. 6-48
STACKCHECK ... 6-49
SWITCH_STRPOS .. 6-50
SYSPROG .. 6-51
TABLES. .. 6-52
UCSD .. 6-53
WARN ... 6-54
How Pascal Programs Use the Stack. .. 6-55

The Pascal Stack .. 6-55
Global Variables. .. 6-56
Procedure Calls. .. 6-56
Function Calls .. 6-58
Parameter Passing Mechanisms .. 6-58
Function Results. .. 6-59
WITH Addresses .. 6-63

Chapter 7: The Assembler
Introduction. .. 7-1
Operating the Assembler. .. 7-2

Invoking the A.ssembler .. 7-2
Source File Specification. .. 7-2

Table of Contents ix

Listing File Information ... 7-2
Object File Specification .. 7-3
Interpreting the Listing .. 7-4

The Programming System ... 7-5
The IMPORT Text. .. 7-6
The DEF Table ... 7-7
The EXT Table. .. 7-8
Declaring the Module Name .. 7-8
Passing Parameters ... 7-8
Declaring Global Variables. .. 7-9
Referencing Global Variables. .. 7-10
Referencing Other Module's Globals. .. 7-11
Local Variables. .. 7-11
ModuleInitialization .. 7-13
Error Recovery l • • • •• 7-13
Exception Coding. .. 7-15
Returning to Pascal. .. 7-15
Declaring External Procedures. .. 7-16

Instruction Syntax .. 7-17
General Syntax .. 7-17
Line Labels ... 7-18
Opcodes 7-19
Operands .. 7-21
Addressing Modes ' ... 7-26
Comments and Comment Lines .. 7-28

MC68881 and MC68882 Floating Point Co-processor Support 7-29
Assembler Support of the Co-processor. .. 7-29

Assembler Pseudo-Op Reference 7-30
The Exam pIes .. 7-41
The Sample Pascal Programs. .. 7-41

This Program Imports the Pascal Module 7-41
This Program Imports the Assembly Module 7-41

The Sample Pascal Module .. 7-42
The Disassembly of the Module. 7-43
The Assembly Language Module ... 7-44

Chapter 8: The Librarian
Introduction. 8-1

Prerequisites ... 8-1
Library Overview 8-2

Modules and Libraries. .. 8-2
What the Librarian Does .. 8-3
Example Modules. .. 8-3
Compiling and Running the Example Program 8-5

Entering the Librarian. .. 8-8
Setting Up Mass Storage. .. 8-9

Creating Libraries of Object Modules. .. 8-10
Adding Modules to the System Library 8-10
Making Your Own Library. 8-12
Linking Object Files Together. .. 8-14

x Table of Contents

Getting Detailed Object File Information 8-17
The Text and Table Commands. .. 8-18
The Unassemble Commands ... 8-19

Creating aNew Boot File .. 8-23
Librarian Command Reference. .. 8-24
Glossary of Object Code Terminology .. 8-27

DEF table (Definition Symbol Table) .. 8-27
DEFINE SOURCE ... 8-28
EXT Table (External Symbol Table) 8-28
EXPORT. .. 8-29
Flags ... 8-29
General Value or Address Record (GVR) 8-30
IMPLEMENT. .. 8-30
IMPORT ... 8-30
LIBRARIAN .. 8-31
Library .. 8-31
LIBRARY .. , 8-31
Object File. .. 8-31
Object Module .. 8-31
Pascal Module. .. 8-32
REF tables. .. 8-32
Reference Pointer -. .. 8-32
System Library. .. 8-33
Text Record. .. 8-33

Chapter 9: The Debugger
Introduction ... , 9-1

Is the Debugger Loaded? .. 9-1
A Sample Session ... ',' ., 9-2

The Example Program ~ .. 9-2
Please Participate .. , 9-3
Loading the Debugger .. , 9-4
A Note about Key Notations ... 9-5
Is the Debugger Installed? ... 9-5
Invoking the Debugger. .. 9-6
The Debugger Command Screen ... , 9-7
Single-Stepping a Program .. , 9-7
Slow Program Execution. .. 9-7
Returning to the Debugger Command Screen , 9-8
Toggling Between Screens ... , 9-8
Screen Dumps ... , 9-8
A Look at the Queue _. .. 9-9
Displaying Data .. 9-9
Controlling Execution with Breakpoints. .. 9-13
The Pause Function and Breakpoints 9-16
Executing a Number of Statements 9-16
Tracing Program Flow through Procedures. .. 9-17
A Look at the Stack Frame ... 9-17
Examining Variables ~ .. 9-18
Examining Consecutive Memory Locations ; 9-20

Table of Contents xi

Formats for Structured Variables. .. 9-21
Changing Memory Contents. .. 9-22
Static and Dynamic Links. .. 9-23
Exception Trapping .. 9-24
Generating Escapes 9-25
A Note about Assembly Language Programs 9-26
Debugger Named Reboot ; ~ 9-27

Debugger Key board .. 9-30
A Note about Key Notations 9-30
Is the Debugger Installed? .. 9-31
Calling the Debugger from the Main Command Level 9-31
Step Modes ... 9-31
Command Mode .. 9-32

Debugger Command Summary .. 9-34
Debugger Command Reference .. 9-37
Breakpoint Commands ... 9-39
The Call Command .. 9-42
Display Command ... 9-43
Dump Commands. .. 9-45
Escape Code Commands. .. 9-46
Format Commands. .. 9-48
Go Commands .. 9-49
IF, ELSE, and END Commands ... 9-51
Open Memory Commands .. 9-53
Procedure Commands .. 9-54
Queue Commap.ds ... 9-55
Register Operations .. 9-56
Softkey Commands. .. 9-57
System Boot .. 9-58
Trace Commands .. 9-58
Walking the Procedure Links .. 9-60

Appendix A: Error Messages
Unreported Errors A -2
Boot-Time Errors ... A-2
Run-Time Errors ... A-3
I/O System Errors .. A-4
I/O Library Errors .. A-6
Graphics Errors .. A-7
Loader/SEGMENTER Errors .. A-8

SEG MENTER Errors ... A-8
Loader Boot-Time Errors .. A-8

Pascal Compiler Errors .. A-9
Compiler Options .. A-II
Implementation Restrictions ... A-II
Non-ISO Language Features ... A-12

Assembler Errors " ... A-13
Debugger Error Messages/Conditions ... A-14
VMELIBRARY Errors ... A-16

xii Table of Contents

Manual Overview 1
Introduction
This is Volume I of a two-volume manual that describes using the Pascal 3.2 Workstation System.
It shows how to use the subsystems of the Pascal Workstation "environment" - the Editor,
Filer, Compiler, Assembler, Librarian, and Debugger - and how they interact to provide you
with a powerful Pascal program development tool.

Volume II focuses on programming and configuration of the system.

Before Reading this Manual
Here are the manuals that you should have read before reading this manual.

Documentation Guide
This guide describes each manual in the documentation set. It will help you to learn where the
various parts of the system are described.

Computer Installation Guides
You should have already set up your computer hardware according to the instructions in the
Installation Guide for your particular computer.

Peripheral Installation Guide
If you have peripheral devices such as disc drives and printers, you should have set them up
according to the instructions given in this manual. It contains pertinent information taken from
each supported peripheral's installation/operating manual.

Pascal User's Guide
You should have booted the Pascal system according to the instructions in the Pascal User's
Guide. This manual also describes the software confIguration required for various peripheral
devices.

You may have also followed along with the examples to learn how to begin using the system to
compile a few simple Pascal programs, although that is not mandatory due to similar coverage
in this manual.

Pascal Textbook
If you are not familiar with the Pascal language, you should read An Introduction to Program
ming and Problem Solving with Pascal (included in the manual set sent with your system).

Volume II: Programming and Configuration Topics
The second volume of this manual is similar to the Pascal textbook described in the last para
graph, but it presents programming techniques that are specific to the Workstation Pascal
programming language; i.e., the extensions to "standard" Pascal that are provided by the Work
station. As with the Pascal textbook mentioned above, you may want to read or scan Volume
II of this manual before delving too deeply into this volume.

Manual Overview 1-1

Previous Workstation Pascal Manuals
If you are familiar with the documentation for earlier versions of the Pascal Workstation, you
may be happy to know that this manual is a later edition of the original Pascal User's Manual.
However, this manual describes only version 3.2 of the Pascal Workstation.

Note

The main text of this manual does not generally discuss earlier versions
of the system; however, the "System History" section of the "Technical
Reference" appendix of this manual will help you if you are upgrading
from an earlier version of the Workstation Pascal System.

Other Manuals
This manual does not generally assume that you are familiar with any of the other languages
and systems available for this series of HP computers, although references are occasionally made
to some of these other languages where appropriate (such as BASIC or HP-UX).

Previews of Chapters in Volume I
Here are brief previews of the contents of each of the chapters of this manual.

Chapter 2: The Main Command Level
This chapter describes the commands available in the "Main Level" of the Workstation System.

Chapter 3: The File System
This chapter introduces you to the Workstation File System. It describes how the logical units
and volumes are organized, and gives a description of the various file system types which are
available. However, it does not describe access of files from Pascal programs, as this is covered
in the "Programming with Files" chapter in Volume II.

Chapter 4: The Editor
A program usually starts out as an idea. The Editor's function is to provide a useful environment
for the translation of thoughts into actual programs or documents. This chapter fully explains
the features of the Pascal Workstation Editor.

Chapter 5: The Filer
The Filer is used to store, load, copy, translate and perform other file-related utility operations.
This chapter details performing these operations with the Filer.

Chapter 6: The Pascal Compiler
Once a program has been written with the Editor, this source code must be compiled into
object code before it can be executed. This chapter explains the operation of the Compiler and
the options that can be used to modify its operation. The chapter also describes the modular
programming capability, which is one of the most powerful features of this system.

1-2 Manual Overview

Chapter 7: The Assembler
This chapter introduces you to the Assembler, which converts programs written in assembly
language - a humanly understandable version of the microprocessor's machine language -
into object code for the MC68000 family of processors used in these HP Computers.

Chapter 8: The Librarian
This chapter covers the use of the Librarian. In the Pascal Workstation are libraries of object
code modules: some consist of device-drivers, while others consist of useful procedures for such
applications as I/O and graphics. You can also design your own modules. The Librarian's
function is to manage libraries of Pascal and Assembler language object modules.

Chapter 9: The Debugger
We all wish that a program would run perfectly the first time. Unfortunately, there is little
evidence in real life to support that fantasy. The next best thing is to have some good tools
to help you debug your programs. This chapter explains the debugging features available with
this system.

Error Messages
This appendix contains the complete listings of all error messages for the various Pascal sub
systems.

Index
This section contains an index ,to the topics in both volumes of this manual.

ManualOverview 1-3

Previews of Chapters in Volume II
Here are brief previews of the contents of each chapter in the second volume of this book.

Chapter 10: Overview of Workstation Software Features
This chapter gives a brief introduction to the language and library features of the Workstation. It
also tells where various software features are described in the Workstation Pascal documentation
set.

Chapter 11: Data Types and Structures
This chapter describes the types of data available in the Workstation Pascal language. It also
briefly describes some of the data types and structures that might not be available with other
implementations of Pascal.

Chapter 12: Program Flow
This chapter describes the features of Pascal language which allow you to alter the flow of a
program.

Chapter 13: Numeric Computation
This chapter describes the standard Pascal numeric data types and how they are implemented
on the Workstation. It then shows several examples of useful techniques for dealing with angles,
rounding, logarithms, number-base conversion, calendars, and pseudo-random numbers.

Chapter 14: String Manipulation
This chapter describes how to use the HP Pascal type string, as well as using the associated
string functions and procedures.

Chapter 15: Programming with Files
This chapter describes general uses of files, as well as many Workstation-specific file access
techniques.

Chapter 16: Dynamic Variables and Heap Management
This chapter describes how to create and use dynamic variables, as well as how to reclaim the
memory used for these temporary variables.

Chapter 17: Error Trapping and Simulation
This chapter describes how to programmatically handle, and possibly correct, errors before they
halt the execution of your programs. It also shows how to simulate errors in order to debug the
error-handling portions of your programs.

Chapter 18: Special Configurations
This chapter describes how to set up "non-standard" configurations. It first gives background
information regarding how the system boots and configures itself, and then it describes the steps
required to set up several configurations.

1-4 Manual Overview

Chapter 19: Non-Disc Mass Storage
Several "non-disc" types of mass storage devices are available on the Pascal Workstation:
EPROM (Erasable Programmable Read-Only Memory) cards, Magnetic Bubble Memory cards,
and cartridge tape drives. Configuring and using these devices is described in this chapter.

Chapter 20: Backup Utilities
This chapter describes the methods and the utilities supplied which enable you to make a backup
of all or selected data on a supported disc.

Chapter 21: HFS Setup and Utilities
This chapter describes how to use the utilities supplied with the system which enable you to
create and check an HFS on your disc, and enable you to boot from an HFS disc. HFS is short
for Hierarchical File System, the file system used by Series 300 HP-UX (5.0 and later versions).

Chapter 22: Porting to Series 300
This chapter describes the approaches available for running existing Pascal 3.0 software on Series
300 computers with the Pascal 3.2 system.

Technical Reference Appendix
This appendix contains the following information:

• A history of the Pascal system, which includes descriptions of the differences between the
3.2 version and previous versions of the Workstation system

• A list of module names used by the 3.2 system

• Software memory map

• Tables of available display characters.

Command Summaries
This appendix contains a summary of commands for each of the Pascal subsystems.

Glossary
Knowing what technical terms mean is always useful.

Error Messages
This appendix is an abbreviation of the lengthier appendix given in Volume I. This listing of
errors fits on a single sheet of paper, which you may find handy to remove from the manual and
place in a more convenient place.

Index
This volume also has an index to the topics in both volumes of this manual.

ManualOverview 1-5

1-6 Manual Overview

The Main Command Level 2
Introduction
The Main Command Level is the central point of reference for the operating system. It is "where
you are" after booting the system and entering the time and date.

All the Main Command Level commands are listed in the subsequent Quick Reference. How
ever, this chapter focuses mainly on those Main Command Level operations which do not call
subsystems (such as the Editor, Filer, Compiler, etc.); each subsystem is described in later
chapters of this manual.

Main Command Prompt
The Main Command Level consists of two prompt lines, only one of which is displayed at one
time. Press the? key to toggle between them.

Command: Compiler Filer Editor Initialize Librarian Run eXecute Version?

Command: Assembler Debugger Memvol Newsysvol Permanent Stream User What?

The uppercase letters in the prompt lines indicate which key to press to start the operation.

All of the operations are available regardless of which prompt is being displayed.

The prompts are abbreviated on the 50-column display of the Model 226.

Command: Cmplr Edit File Init Libr Run Xcut Ver ?

Command: Asm Dbg Memv New Perm Stream User What?

The Main Command Level 2-1

Keyboards
The Pascal Workstation supports several different styles of keyboards on various models of HP
9000 Series 200 and Series 300 computers. Descriptions of each keyboard are presented in the
Pascal User's Guide. Alphanumeric keys are the same on all keyboards, but some of the special
keys have different labels on the different styles of keyboards.

When this manual indicates two special keys, the first is for the 4602x style of keyboards and
the second for the 98203 style of keyboards. You may wish to consult the "Key Correspondence
Table" from the first chapter of the Pascal User's Guide when using the 98203 style of keyboard.

When you are directed in this manual to press a special key, the text will usually say: "Press
the I Return lor I ENTER I key."

Another common exam pIe is the I Select I key on the 4602x key boards and the I EXECUTE I key on the
98203 keyboards. When you are directed to press one of these keys, the text will say: "Press
the I Select I (I EXECUTE I) key." (The second key noted in parentheses is the 98203 key.)

If you have a 4602x keyboard, you will note that there are both a 1 Return I key and an I Enter I key.
The Pascal Workstation treats these two keys the same.

2-2 The Main Command Level

Main Command Quick Reference

Command

Compiler

Editor

Filer

Initialize

Librarian

Run

eXecute

Version

Assembler

Debugger

Memory volume

New sysvol

Permanent

Stream

User restart

What

Description

Calls the Compiler to translate Pascal source code into object code.

Calls the Editor for creating or editing a source program or textual document.

Calls the Filer for management of the File System.

Initializes the File System (but not discs).

Calls the Librarian for managing, linking, or un assembling object-code files.

Runs the workfile (compiling it if needed) or the last program compiled or assembled
since power-up. If there is no workfile, Run operates like eXecute.

Asks for a code file and runs it.

Allows setting the date, time, and time zone, and displays all the current system
version information.

Calls the Assembler to translate an assembly language source program into object
code.

Runs a program under control of the Debugger.

Sets up a memory resident mass storage volume for fast access.

Asks for a volume to be designated as the system volume.

Asks for a code file to be permanently loaded into memory for execution without
disc loading each time.

Asks for a stream file whose characters are interpreted as keyboard input. until
there are no more left.

Restarts the last program or subsystem that was run.

Displays the system file table and allows you to change the system files or system
and default volumes.

The Main Command Level 2-3

Main Command Reference
Each command in this section contains a description and a syntax diagram. The syntax diagrams
contain rounded and rectangular boxes. Elements in rounded boxes should be interpreted as
literals. An example is as follows:

This notation indicates that you must literally type a W as part of the command.

~or~

The I Return lor I Enter I indicates that you can press either key.

Elements in rectangular boxes are non-literal descriptions of command parameters. An example
is as follows:

ffTj.el
~

This notation indicates that you must supply the actual file name as part of the command.

An example of a complete command is as follows:

~or~

If, for example, this was the Compiler command syntax diagram, it would mean that you must
type W to run the Compiler, then type the name of the file to be compiled, and enter the file
name with either the I Return lor the I ENTER I key.

2-4 The Main Command Level

eXecute
The eXecute command runs a specified code file.

file
specification

Item

file specification literal

Semantics

~ or(lliill

Description Range

Any legal file specification (see
the File System chapter)

The file you specify should be previously compiled or assembled and ready to run. It is not
necessary to include the . CODE suffix in the file name; it is automatically appended to the file
name if not included. If the actual file name does not contain a . CODE suffix, you will need to
terminate tpe file specification with a period to suppress this suffix.

If the specified code file imports other modules not found in the file, those modules must be
contained in the current System Library (which must be on-line) or they must be Permanently
loaded (by using the Permanent command at the Main Level). You can use the What command
to see which file is designated as the current System Library, and to change it if desired.

The Main Command Level 2-5

Initialize
The Initialize operation updates Unit Table entries for all units that are currently on-line. (It
does not initialize mass storage media; that function is performed by using the MED IAINIT
utility program. See the Pascal User's Guide for further details.)

Semantics
The Unit Table contains a record for each of 50 possible logical units available to the File
System. The assignment of unit numbers to physical devices (auto-configuration) is performed
by the TABLE program at power-up. Each record contains the "device address vector" of the
physical device which corresponds to that logical unit number. The computer looks at the
physical location indicated by the device address vector to see if the device is on-line. If it is,
that fact is marked in the record for that unit, along with the volume name (if media is currently
installed in the device). When you press OJ the computer only looks at the Unit Table to see
if a particular device is on-line; it does not check the actual device. (See the Booting Process
section of the Special Configurations chapter for further details of how the TABLE program
works.)

When a device is added to your system after the computer has been powered-up, you will
usually need to execute BOOT:TABLE or power-up the system again in order for the device
to be recognized. However, the Initialize command may in some cases be sufficient to get the
system to recognize the new device.

Initialize also performs a device clear for all on-line devices and causes the system to forget the
last loaded file (the User command can't reload the last program). The Initialize operation also
causes all temporary files to be removed from each volume the next time a file is ope_ned on the
volume.

The volumes CONSOLE: (Unit #2) and PRINTER: (Unit #6) are special cases; these volumes
are always assumed to be on-line. Thus, the system may "hang" if either of them is off-line
when you try to access them.

2-6 The Main Command Level

Memory volume
The Memory volume command creates a mass storage volume in memory.

Item

unit number

volume size

directory size

Semantics

~or@!ill

Description

integer 7 thru 50

integer indicating the number of 512-byte blocks ~1

integer indicating the maximum number of files ~ 1
in the volume

~or@!ill

Range

The Memvol command gives you the capability for very fast mass storage operations.

When the Memvol command is given, you are prompted for a unit number. This number
corresponds to an entry in the Unit Table. Don't give a unit number which is already in use.
The Volumes command in the Filer subsystem shows which unit numbers are currently used.
For most applications, 50 is the recommended unit number to use for your first memory volume.

You are then prompted for the number of (512-byte) blocks needed for the memory volume. Try
to estimate conservatively the amount of memory you want reserved for the memory volume
because it cannot be returned for general purp~se use without turning off the computer. On
the other hand, if you don't specify enough space, you have to create another larger volume.

Memory volumes are useful for program development where a lot of mass storage I/O is involved
(e.g. editing and compiling). Reserve enough space on the memory volume for both the source
file, the object code file, and 40 extra blocks for the Compiler's temporary files. A good rule of
thumb for LIF memory volumes is:

size_oLvolume = size_oLsource_file (in 512-byte blocks) * 4 + 40

If you are transferring a source file from disc (as opposed to starting from scratch) you can
determine its size by getting a directory listing of the volume that contains it. Use the bytes
or blocks value to determine the file size and add a "fudge factor" so the file can grow in size.
Note that different file systems return the file size in different units.

Note that the default directory access method (DAM) for memory volumes is LIF; this DAM
is the primary DAM specified in the TABLE program. See the Special Configurations chapter
for further details about changing the primary DAM.

The Main Command Level 2-7

You are then prompted to give the number of directory entries you need for this memory volume.

Number of directory entries ?

Type the number you think you'11 need and press I Return 1 or I Enter I.

You can refer to your memory volume by its unit number (e.g. #50:). Alternately, you can refer
to it by its given volume name, which is initially RAM: (e.g. MYRAM:).

If you plan to use more than one memory volume, use the Filer's Change command to give each
memory volume a unique name.

Here is a method for setting up an extremely fast program development environment.

1. Create a RAM: volume and specify it as the system volume using the Newsysvol command.

Specify RAM: as the default volume using the Main Command Level's What command
or the Filer's Prefix command.

2. Permanently load the Editor and Compiler using the Permanent command.

3. Go into the Editor and write your program.

4. When you're ready to leave the Editor, use the Update option to create a workfile. The
system puts the workfile on the fast RAM system volume.

5. Press [BJ.

Your file will automatically be compiled. If it compiles with no errors, it will be run. If it
contains errors, you will have the option of returning to the Editor.

Note

Since memory volumes are volatile, don't forget to save the files in the
memory volume on a disc before turning off the computer.

2-8 The Main Command Level

New sysvol
The New sysvol command specifies a new system volume and updates the operating system file
table accordingly.

~or@!ill

Item Description Range

unit number integer 1 thru 50

Semantics
The system file table is used in locating operating system files. It contains the volume and file
names of system files (EDITOR, FILER, etc.). When you press a key at the Main Command
Level that invokes one of these subsystems (such as ITJ), the system attempts to load the
corresponding file indicated in the system file table (here, the EDITOR file).

You can use this command to specify a new system volume. The first step in this operation
prompts you for a unit number. The device corresponding to the specified unit number is
considered to be the new system volume, and serves as a starting point in the search for the
system files: ASSEMBLER, COMPILER, EDITOR, FILER, LIBRARIAN, LIBRARY, and the
work file. If any of these system files are not found, the Unit Table is used in a sequential
search for the rest of them. As each file is found, the name of the volume on which it is
found is prepended to the file name (for instance, SYSVOL:LIBRARY), and the complete file
specification is placed in the file table. If any system file is not found in this search, the operating
system assumes that it will find the file on the flexible disc volume on which it was delivered
(for instance, ACCESS:EDITOR).

Use the Main Command Level's What command to see the resultant system file table.

If the system date is 1 JAN 70 at the time this command is given, the system date will be set
using information stored on the volume.

If the time is hour zero and minute zero and the new system volume is an SRM, the system
time will also be set.

The Main Command Level 2-9

Permanent
The Permanent command loads a program permanently into memory.

file
specification

Item

file specification literal

Semantics

~or@@

Description Range

Any legal file specification (see
the File System chapter)

The Permanent command can be used to load a user program, a system program (Editor ,
Compiler etc.), or a module that is needed by a program. This code file is then ready to execute
immediately when the command is given. A "P-loaded" (Permanently loaded) program does
not have to be loaded from disc each time it is run.

After you give the Permanent command, you are prompted for the name of the file which
contains the module or program. You need not include the. CODE suffix; if you don't include
one, the suffix will be appended to the file name. If the file to be P-loaded does not have a
. CODE suffix, end the file specification with a period to suppress the suffix from being appended
to the file name automatically.

Several programs may be P-loaded in memory. The operating system keeps track of which
programs have been P-loaded. When you give a command to run a program, the operating
system checks to see if it has been P-loaded; if so, it is executed immediately. If not, it is loaded
from disc and then executed; in this case, the memory used by the program is reclaimed after
execution terminates.

An object module which is imported by a program must either be P-Ioaded or contained in the
current System Library (which must be on-line).

A program or module's global variables are zeroed only when it is loaded, not each time the
program is run.

Note

The volume name is not retained when a file is P-Ioaded. Attempting
to execute a file of the same name but on a different volume will still
result in the P-Ioaded file being executed. If a pathname is included
however, the P-Ioaded file is ignored and the file is searched for and
loaded from the file system.

For SRM users and those with HFS discs, do not use a directory path name to execute a P-Ioaded
file. See note above.

2-10 The Main Command Level

Run
The Run operation causes the workfile or last compiled program to be executed.

file
specification

Item

file specification literal

Semantics

Description Range

Any legal file specification (see
the File System chapter)

When the Run command is given, the operating system checks to see if there is a workfile. If
there is a CODE workfile, it is executed; if not, the most recently compiled or assembled file
is executed. If there is a TEXT workfile but no CODE workfile, the TEXT workfile is first
compiled (with the system compiler) to a CODE file and then the CODE file is executed. If
there is no workfile or previously compiled program, the command operates like the eXecute
command and you are prompted for a file specification.

The Main Command Level 2-11

Stream
The Stream command "executes" a file of ASCII characters as if they were being typed from
the keyboard.

file
specification

Item

file specification literal

Semantics

~or~

Description Range

Any legal file specification (see
the File System chapter)

A command stream or stream file is a file that is interpreted as input to the Main Command
Level and/or its subsystems in place of keyboard input. The Stream operation causes a file to
be interpreted. Therefore, a stream file is useful for executing a sequence of commonly used
commands without requiring any operator intervention.

A stream file is created with the Editor and may be of type TEXT, ASCII, HP-UX compatible
or Data. If you do not specify a suffix, a ".TEXT" is automatically appended to the file name;
if the name of the file to be streamed does not have a suffix, add a trailing period to the file
name to suppress the suffix.

In order to generate a valid sequence of keystrokes, you should first run through the desired
sequence wh'ile noting the keystrokes entered. Note particularly the occurrences or absences
of the I Return I or I Enter I key. Then enter the same keystrokes in your stream file. If, during an
Editor or Filer command sequence, you encounter an unpredictable question that has a (Y /N)
or (R/O /N) question associated with it, do not answer the question in the stream file. These
kinds of questions are answered automatically as the file is streamed. (Y /N) questions (Yes/No)
are answered "Y". (R/O/N) questions (Remove/Overwrite/Neither) are automatically answered
"R".

After all the characters in a stream file have been interpreted, control is returned to the keyboard.

Comments
Stream files may contain comments. A line beginning with an asterisk (*) will be interpreted as
a comment if it occurs at the Main Command Level. (Comments cannot be embedded among
commands for subsystems or user programs.) When the command interpreter encounters one
or more comment lines while streaming, they are displayed briefly on the screen, thus allowing
the process to be monitored.

2-12 The Main Command Level

Immediate Execute Keys
If it is necessary to use keys that also act as immediate-execute commands in the Editor, such
as I Select 1 (I EXECUTE I) or I Back space I, use the following key sequences to generate those keystrokes.

Immediate-Execute Key

~
I Back space 1

I Tab 1

I Clear display 1

Left arrow

Right arrow

Up arrow

Down arrow

Generate with these Keys

I CTRL H Select 1 []]

I CTRL H Select 1 []]

I CTRL H Select 1 [[]

I CTRL H Select 1 IT]

I CTRL H Select 1 []]

I CTRL H Select 1 8J
I CTRL H Select 1 [I)

I CTRL H Select 1 QJ

If you have a 98203 keyboard, substitute I EXECUTE 1 or I EXEC 1 for I Select 1 in the preceding table.

Prompts for Keyboard Input
A stream file can be made to display a prompt on the console and then wait for an input string
from the keyboard. The input string is assigned to a variable in the stream file. When the
variable is encountered during streaming, the string is used in its place.

This input prompting must appear in the stream file before all of the commands or comments.
Up to 36 prompts are allowed. They are denoted with an "=" as the first character on a line.

To prompt for an input string, place an equal sign, followed by a single alphanumeric character
variable name (uppercase and lowercase letters used for variables are treated as equal), followed
by the prompt text. For example:

=f What is the name of the file to be P-loaded ?

When the file name is typed in response to the prompt, it is stored in the specified variable, in
this case the variable named f.

After the input prompting, begin entering the commands in the stream file. When you want
the input string to be given to the operating system, use the variable preceded by "@". For
example, the following characters are a command stream:

p@f

The command is the Permanent load command with a file name parameter indicating which
file is to be P-Ioaded. The file whose name was given in response to the above prompt is then
P-Ioaded.

The Main Command Level 2-13

Stream Files on Read-Only Devices
Normally when a file is Streamed, the file is copied to a file named STREAM on the current system
volume; during this copy, prompts are displayed and @ variables are assigned values input from
the keyboard by the computer operator. After all variables have been assigned, the original file
is closed and the STREAM file is read as keystrokes.

The stream file mechanism will not work if the current system volume is a read-only mass
storage device or if the current system volume is completely full. To avoid creating the STREAM

file on the system volume, you can add the three-character token [*] to the end of the file name
you wish to stream. If, for example, you have a file named FIXIT . TEXT you wish to stream, your
response to the system prompt Stream what file? would be:

FIXIT [*]

By including the [*] token, the normal processing of the stream file will be turned off and no
file will be created on the system volume. Note that this means your stream file cannot prompt
for any input from the computer operator.

It is this mechanism (see preceding discussion) that allows the use of stream files stored on
read-only mass storage, such as EPROM, and the use of read-only devices as system volumes.

This mechanism is also used to process the AUTOKEYS stream file, if found during the boot
process when the AUTOSTART stream file is not present. For examples of AUTOSTART and
AUTOKEYS stream files, see the discussions in the Pascal User's Guide and in the Special
Configurations chapter of this manual.

2-14 The Main Command Level

User restart
The User restart command causes the last program that was run to be rerun.

Semantics
Included in the meaning of "program" are user programs and operating system programs such
as Editor, Filer, Compiler, etc.

Global variables are zeroed at the time a program is loaded, not each time a program is rerun.

The Main Command Level 2-15

Version
The Version operation allows you to change the system date, system time and system time zone.

day

month

year

Item

hour

minutes

seconds

separator

Semantics

Description

integer

three alpha characters; letter case is ignored

integer

integer

integer

integer

non alphanumeric character

~or~

Range

1 thru 31

Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec

o thru 27, 2000 thru 2027
70 thru 99, 1970 thru 1999

o thru 23

o thru
J
59

o thru 59

:, -, /, space, etc.

In addition to prompting for the system time [and timezone] and date, some operating system
information is displayed. The current operating system revision, available global and user
memory space information, and default and system volume information is also displayed.

The system time is defined in local time, the timezone specifying the difference between
Greenwich Mean Time (GMT) and local time. For example, a system using Central European
Time (CET), normally one hour ahead of GMT, should have its Time Zone set to [-1:00:00].

2-16 The Main Command Level

This specification of the system time relative to GMT is most useful when transferring data
and programs to and from HP-UX systems, as the HP-UX operating system runs under GMT.
Unless you are absolutely certain you are not going to communicate with an HP-UX system in
terms of transferring files, it is recommended that you set the timezone to the correct value.

New system date ?

System date is
Clock time is
Time Zone is

Workstation

The Version Prompt

21-Jan-87
14:14:50
-1:00:00

Rev. 3.2 15-Jan-87

Available Global Space 57960 bytes
Total Available Memory 191042 bytes

System volume: SYSVOL:
Default volume: SYSVOL:

Copyright Hewlett-Packard 1982. 1983. 1984. 1985. 1987
Copyright A.T.&T. 1980. 1984
Copyright Univ. of California 1979. 1980. 1983

RESTRICTED RIGHTS LEGEND
Use. duplication or disclosure by the U.S.
Government is sUbject to restrictions as set
forth in subdivision (b)(3)(ii) of the Rights in
Technical Data and Computer Software clause at
52.227-7013. Hewlett-Packard Company.
3000 Hanover Street. Palo Alto. CA 94304

For more details on "Global Space" , see the Compiler chapter.

Here are some typical hour values for setting the time zone. Values shown are for standard time
(subtract one hour for daylight savings time).

Time Zone City Value

Honolulu 10

Pacific San Francisco 8

Mountain Denver 7

Central Chicago 6

Eastern New York 5

London 0

Paris -1

Cairo -2

Hongkong -8

Tokyo -9

Sydney -10

The Main Command Level 2-17

What
The What command displays the "system file table" and allows you to specify new file specifi
cations for the system files.

Item

file specification

volume
specification

Semantics

literal

literal

file
specification

volume
specification

Description

~or@!®

Range

any legal file specification (see
the File System chapter)

any legal volume specification
(see the File System chapter)

The system file table contains file specifications that are used by the operating system when
locating system files (Assembler, Compiler, Editor, Filer, Librarian, Library, and Default and
System volumes). The What command displays the system file table; a typical example is shown
below.

2-18 The Main Command Level

The What Display

Assembler Compiler Editor Filer Librarian
liBrary System volume Default volume Quit

ASSEMBLER
COMPILER
EDITOR
FILER
LIBRARIAN
LIBRARY

SYSVOL:ASSEMBLER
SYSVOL:COMPILER
SYSVOL:EDITOR
SYSVOL:FILER
SYSVOL:LIBRARIAN
SYSVOL:LIBRARY

* System volume: SYSVOL:
: Default volume: SYSVOL:

Typing one of the uppercase letters at the top of the menu allows you to change the
corresponding file specification for that system file.

Note

When specifying a system file name that does not have a . CODE suffix,
use a period at the end of the file name to prevent a . CODE suffix from
being appended to the file name.

With this command, it is possible to do such things as specify a file other than LIBRARY as
the System Library, or your custom graphics editor as the System Editor. In the case of your
custom editor, you need only press m to invoke it.

Specifying a logical unit number such as #3: as the Default volume allows any disc media in
a unit with removable media to be the desired volume. To subsequently specify any volume in
the default unit, only the file name need be specified. To accomplish this, make sure that the
drive door is open (or the drive is empty), type [[] for a Default volume change, and then type
the following:

#3: I Return I or I Enter I

Note

If you are specifying a system volume, please refer to the New sysvol

command which is listed earlier in this reference.

The Main Command Level 2-19

2-20 The Main Command Level

The File System 3
Introduction
This chapter introduces you to the Pascal Workstation File System. The File System organizes
and accesses information which is stored on mass storage devices. Even if you are an experienced
programmer, you should read this material because it will help you understand the features of
your Pascal Workstation.

Primary vs. Secondary Storage
Your computer has built into it a substantial amount of very high speed memory called Random
Access Memory, or RAM. This memory is called primary storage to distinguish it from external
mass storage, also called secondary storage. Normally, data processed by the computer must
first be placed in internal memory. (The term "data" is used broadly to mean any information
processed by the computer, so programs are data, too.)

RAM has three important characteristics:

• RAM is very fast: Some data items can be stored or retrieved from RAM in less than a
millionth of a second.

• RAM is volatile: Data in RAM is lost when the computer is powered off.

• It is expensive compared to alternative, slower forms of data storage, such as discs or
magnetic tape.

Information not immediately needed by the computer is kept in secondary storage. Some im
portant characteristics of magnetic discs are listed below:

• Data access is slow compared to RAM, often as much as ten thousand times slower.

• The data is relatively permanent; that is, it is available until erased.

• Magnetic storage is inexpensive compared to RAM.

• Magnetic media are often removable and replaceable, providing an almost unlimited
amount of long-term storage.

The File System 3-1

Pascal Volumes
Let's take an exploratory trip, using the computer itself to investigate the file system. You
should already knowhow to load the Pascal Language system, and be aware of its various
subsystems, such as the Editor and Filer.

To begin our journey, begin at the Main Command level and load the Filer subsystem by
pressing:

The Filer is located on the Pascal disc labelled ACCESS:. When the Filer's prompt line appears,
execute the Volumes command by pressing:

[YJ

The various disc drives connected to your computer will be accessed, and then you will see a
display similar to the following:

Volumes on-line:
1 CONSOLE:
2 SYSTERM:
3 # BOOT:
4 # WRKING:
6 PRINTER:
11 * SYSVOL:
12 # MYVOL:
13 # MASTER:
14 # V14:
50 # RAM:

Prefix is - MYVOL:

This is your workstation's CRT display.
This is your workstation's keyboard.·
BOOT: disc is in right-hand drive (of a 236).
Initialized disc with volume name WRKING:
Printer is connected to built-in HP-IB.
The * indicates the system volume.
{Volumes 11 through 14 are examples of a
possible HP 9133A disc drive configuration.}

Ram volume made with Memory Volume command.
MYVOL: is current prefix volume.

Precisely what will be displayed depends on the drives connected to your computer and what
discs are currently installed in those drives. Note how your display appears. You may want to
change some of the discs in your system's disc drives, or turn off a peripheral and see how that
changes the display.

Volumes
The word "volume" was chosen by analogy to a book. Volume denotes a logical entity in which
a substantial amount of information can be stored. For instance, a flexible disc is a volume.
Volumes have names by which we may refer to them. The display above shows what volumes
are currently accessible to the File System.

Notice that each volume name is followed by a colon. This convention is used throughout the
Pascal system. The colon is a delimiter or punctuation mark which separates the volume name
from further information used to designate data within the volume.

A single large disc may contain more than one volume, as a shelf can hold more than one book.
Flexible discs usually contain a single volume. Thus, for flexible discs you may use the volume
name as the disc drive's name. For instance, if we refer to the volume BOOT: by name, then the
computer will find it in whichever drive it is located.

3-2 The File System

NOTE

Because the file system works with named volumes, it is very important
not to have more than one volume of a given name on-line at one time.
The File System may destroy data by using one volume when you
meant the other.

You can see that some of the volume names don't correspond to a disc device. For instance,
SYSTERM: is the name of the keyboard volume, CONSOLE: is the name of the CRT display,
and PRINTER: is the name of the system hard-copy device. Actually, the File System has a
name for each input/output device that it is able to access. We will have more to say about
these non-disc volumes later.

Logical Units
The numbers in the column to the left of the volume names displayed above are called "logical
unit numbers" or simply "units". The volume name denotes a particular disc, while the unit
number denotes a particular location for a volume. In the case of flexible discs, the unit number
corresponds to a physical disc drive. In the case of a large fixed disc which is divided into several
volumes, each logical unit represents a portion of the disc surface which is treated as if it were
a separate physical disc drive.

To refer to a unit instead of a volume, use a # followed by the unit number. For instance, on a
Model 226 or Model 236 computer, #3: and BOOT: both refer to the same volume as long as the
volume named BOOT: is installed in the right-hand disc drive.

Drive Numbers vs. Unit Numbers
Since a single machine can contain two or more drives, you need to be able to distinguish between
them. If you read the machine's manual, you will find that the drives are differentiated' by drive
number. For instance, the right-hand floppy drive in a Model 236 is drive number 0, while the
left-hand drive is drive number 1. The File System distinguishes between them by assigning
each a unique logical unit number. In the case of the Model 236, these drives are normally
assigned unit numbers 3 and 4, respectively. With external dual floppy drives, drive 0 is usually
the left-hand drive, while drive 1 is the right-hand drive. And with hard disc drives, there can
be several drive numbers. Don't be alarmed, however, because the system takes care of the
correspondence between drive numb~rs and unit numbers for you. In addition, this manual
refers almost solely to logical unit numbers, not drive numbers. Drive numbers were mentioned
so that you would realize that they are not the same as unit numbers.

Blocked and Unblocked Units
Some of the units are displayed with # or * between the unit number and the volume name.
These are blocked units. Blocked units are memory devices that are divided into sectors (blocks)
and have directories describing their contents.

We aren't yet ready to talk about the data stored in a volume, but you probably won't be
surprised to learn that it is organized into groups called "files", which are like chapters in a
book. A directory on a blocked volume is essentially a table of contents.

The other units are unblocked or "byte stream" devices (such as the printer, keyboard and CRT).
Unblocked devices process information one character at a time and do not have directories.

The File System 3-3

The System Volume and Default Volume
Although your workstation can deal with many volumes (up to 50 on-line at once), there are
two volumes which are referred to so frequently that special abbreviations have been provided
to name them. They are the system volume and the default volume.

The System Volume
The system volume is used by the Operating System to store its own private files and records.
Since the Operating System is always overseeing your «omputer's operation, the system volume
needs to be accessible practically all of the time. The abbreviated name for the system volume is
* (asterisk), which appears next to the system volume in the Volumes command's display. The
asterisk need not be followed by a colon, since it is distinctive. Thus for the Volumes display
shown previously, these notations all denote the system volume:

*
*:
SYSVOL:
#11:

Here are some of the ways the operating system uses the system volume:

• When the Operating System is loaded and begins to function, it first looks on the system
volume for subsystem programs such as the Editor, Filer and Compiler. However, if these
subsystem programs are on other accessible volumes, the Operating System will still find
them.

• When the Operating System first begins to function, it may look on the system volume
to find the system date. Th~ system date is put on all files as they are created to help in
maintaining file organization. If you change the system date, the new date gets written
on the system volume.

• During processing of a stream file, data is temporarily stored on the system volume. A
stream file is a pre-recorded sequence of keystrokes which are treated as if they came
directly from the key board.

• If you create an anonymous file (see the Programming with Files section), it will be stored
on the system volume. An anonymous file is a file 'created by a program, used by the
program, and then destroyed when the program ends. While the program is in existence,
the anonymous file is for all purposes a real file.

• If you use a work file during development of a program, it will be stored on the system
volume.

• If you use an AUTOSTART or AUTOKEYS file, it must be stored on the system volume.

The Default (Prefix) Volume
The other special volume is the default volume. This volume is sometimes call the prefix volume.
In many applications it is most convenient to have the frequently needed files together in a single
volume. If you need to specify their file names frequently, it is tedious to constantly type the
volume name or unit number. You can instead tell the File System that when no volume name
is specified, the one to use is the default volume. You specify the default volume by using the
Filer's Prefix command.

3-4 The File System

The preceding Volumes display indicates "Prefix is - MYVOL:". This means that MYVOL:
is the default volume. The default volume can be specified in two ways. If a colon separator
appears with no volume name before it, then the default volume is assumed. If a file name is
given with no volume name before it, the default volume is assumed.

Use the Filer's Prefix command to set the default volume name:

m
Prefix to what directory?
SYSVOL: I Return I or I Enter I
Prefix is SYSVOL:

The default volume and the system volume can be the same volume. In fact, except for single
drive configurations, the default configuration you received from the factory has SYSVOL: as
both the default and system volume.

If the unit specified by a unit number (e.g., #3:) in a Prefix command does not contain a disc
when the Prefix command is executed, then that unit becomes the default volume. That means
that any disc in that drive is the default volume, for as long as it is in the drive.

You can also set the default volume name using the What command of the Main Commmand
Level. The What command is more powerful than the Prefix command because What allows
you to specify a new system volume, as well 'as the name and location of each of the system
files (Filer, Editor, Library etc). For further information on the What command, see the "Main
Command Level" chapter of this manual.

Files
Information within a blocked volume is further organized into files. A file is a collection of related
information, having a name by which it may be accessed. Since a volume usually contains many
files, within the volume there is also a directory, or "table of contents," telling the name of each
file, how big it is, how many sectors it occupies on the disc, and (roughly) what sort of data it
contains.

Files are created by computer programs - either system programs (such as the Editor, Filer
and Compiler), or user application programs.

For example, when you save a Pascal program written with the Editor, the program is saved
with the specified file name in either the current default volume or the specified volume. When
that same program is compiled, the object code is stored in another file. When the object code
program is executed, it may create more files.

You can use the Filer to list the files in a volume. For instance, to see what is in the default
volume of our example system, type:

to invoke the Filer's List Directory command. The Filer responds with:

List what directory?

The File System 3-5

To specify the default directory, type in:

o I Return lor I Enter I

Assuming the configuration shown on previous pages, you could have done the san1e job by
typing:

SYSVOL: I Return I or I Ente!l

The listing of the default volume's directory is shown below.

SYSVOL: Directory type= LIF level 1
created 9-Jan-87 21.13.37 block size=256
changed 9-Jan-87 21.13.37 Storage order
... file name. ... # blks # bytes last chng

TAPEBKUP.CODE 54 13824 28-May-87
FILEINTRO.TEXT 64 16384 28-May-87
FILEINTRO.ASC 73 18688 28-May-87
DATAFILE 10 2560 28-May-87
FILES shown=4 allocated=4 unallocated=12
BLOCKS (256 bytes) used=201 unused=855 largest space=855

File Naming Conventions
The definition of HP Pascal was made to minimize the work of moving Pascal programs fronl
one operating system to another. To do so, string values are used to specify the names of files
and certain other information such as passwords and access rights.

In Pascal 2.0 and later versions, the allowable syntax of a file name depends on the type of
file system (directory) in which the file resides. The underlying file support is structured to
allow programs to work properly regardless of the directory organization(s) being used, but the
syntax of file names is defined by the type of file system on the volume.

File Specifications and File Names
There is a difference between a file specification and a file name. A file name is a character
string which is the external identifier by which a file is designated in a disc directory. A file
specification is a character string which consists of the file name and several other optional items:
volume id, directory path, passwords, and size specifier. Not all of these items are allowed by
every Directory Access Method or under all circumstances. For instance, passwords are only
used with the Shared Resource Management System's hierarchical directory organization, and
directory paths only with the SRM and HFS (Hierarchical File System).

Syntax of a File Specification
The syntax of a legal file specification is given by the following diagram:

file_spec ::=[volume--1.d] [directory_path] file_name ["]"size_spec"]"]

::= volume_id

In this notation, items between square brackets, [and], are optional. Quoted items, such as
"[", appear literally. The definition just given means that a file_spec (file specification) may
appear in one of two forms. The first form consists of an optional volume id, then an optional
directory path, then a file name which is not optional, then an optional size spec. The second
form consists just of a volume id, followed by a colon (:).

3-6 The File System

Exam pIes of the first form are as follows:

File_x
A49ZB[10]
#4:LIBRARY.
BOOT:SYSTEM_P
#45:SYSTEM21/FILER
*EDITOR.

Examples of the second form are as follows:

BOOT:
#3:

*
#45:SYSTEM21/TOOLS
#45:

Syntax of a Volume Identifier
The volume id selects one of up to 50 logical units known to the file system. If no volume
id is present, the volume used is the default volume selected by the Filer's Prefix command.
Otherwise, the volume is specified in one of two ways:

volume_id ::= "#" integer [password] ":"

::= volume_name [password] ":"

In the first case, the integer is a two-digit number from one to fifty; for example, #23: is a
volume id. In the second case, the name is'a sequence of characters. The length of the name
and allowable characters depend on the particular directory organization used by the logical
unit. For most "blocked" mass storage devices, the volume name is actually stored on the disc
itself so it can be identified whenever it is inserted into a drive. For "unblocked" devices which
have no directory, such as printers, the volume name is an arbitrary one supplied by the TABLE
configuration program at boot-up time. For HFS volumes, the root or "I" directory may have
a real volume id, or a "made-up" volume id that is of the form: "hfsn" (where n is an integer
value. Note that passwords are not applicable to HFS systems.

Example volume ids of the second form are MYSYS: and PRINTER: Volume_ids may be 6
characters long in LIF directories, 7 characters long in Workstation 1.0 (UCSD-compatible)
directories, 14 characters long in HFS directories (other than the root directory which is limited
to 6 characters), and 16 characters long in SRM directories. LIF, HFS and SRM allow lower
case, while WS1.0 and serial devices ignore case. WS1.0 converts all characters to uppercase
automatically.

In the case of a logical unit connected to an HFS disc or Shared Resource Management System,
the volume id takes a special meaning. The notation #5: refers to the current working directory
of volume number five; the notation #5:/ refers to the root directory of the SRM or HFS with
which volume number five is associated. The current working directory for any SRM or HFS
volume is selected by the Filer's Prefix or Unit command, or the Main Command Level's What
command.

The File System 3-7

On the other hand, if the logical unit does not have a hierarchical directory, then / is assumed
to be a filename. This is the case for all local mass storage devices except when using HFS to
access them.

Syntax of a Directory Path (SRM, SRM/UX, & HFS)

Directory paths are only allowed when specifying files on SRM, SRM/UX & HFS logical units.
The syntax for a directory path is:

directory_path ::= ["I"] { directory_name [srm_password] "I" }

srm_password ::= "<" word ">"

(SRM passwords are not applicable to HFS or SRM/UX; if SRM syntax is followed, the
password will become part of the filename.)

directory _name :: = file_name
" " .. -

.. _" " .. - ..

The use of curly braces, { and }, indicates that the information between them may occur
zero or more times. As you can see, there are two special directory names allowed with SRM,
SRM/UX, and HFS. The name "." (a single period) refers to the current directory somewhere
along a directory path to a file of an SRM, SRM/UX, or HFS logicallunit. The name" .. "
refers to the parent of the current directory. Other filenames occurring in a directory path are
directories along the path to the one which contains the file being specified. Examples are
given below.

SRM passwords are sequences of up to 16 characters, which govern the access rights to a file
or directory. They are given to a file either at creation time or by use of the Filer's Access
command. Note, this does not apply to HFS which has its own security system described in
Chapter 5, The Filer under the Hfs command description.

In short, HFS file access permissions recognize an owner of a file, a group of people who may
have privileged access to a file, and all other users of the file. The file's Mode defines the access
permissions of the file, i.e. it allows you to restrict or grant permission, providing you are the
owner of the file.

SRM/UX systems employ HFS file access permissions.

Note that a directory path usually doesn't appear by itself; it appears as part of a file specifi
cation, with the file name after the directory path. Examples of directory path~ are:

/.<PASS1>/

/USERS/ROGER/

HERE/THERE/

.. /THERE<PASS2>/

3-8 The File System

Denotes root, using password "PASSl". (On HFS, this would be a
directory under the root directory named ".<PASSl>").

Denotes directory ROGER in USERS, which is in root directory.

Denotes directory THERE, found in HERE.

Directory THERE, found in the parent of the current working di
rectory. (On HFS this would be trying to access a directory called
"THERE<PASS2>") .

A directory path together with a volume id might appear as follows:

#5:/WORKSTATIONS/SYSTEM13/

Occasionally, on SRM only, there is need for a volume password, which is a case not covered by
the above syntax. For SRM you may use either of the following forms:

#5<volpassword>:/dirname1/dirname2/filename
#5: <volpassword>/dirname1/dirname2/filename

That is, the volume password may either immediately precede or follow the colon separator. Vol
ume passwords are not applicable to HFS discs, which have their own security system (discussed
near the end of this chapter).

Syntax of File Names
To th~ Pascal Workstation System, a file name is just a sequence of characters. The Directory
Access Methods allow all printable characters. However, the following characters have signifi
cance either in Filer commands or in the overall specification of files under various Directory
Access Methods (such as directory paths in hierarchical directories), and therefore should be
avoided in file names:

• sharp '#'

• asterisk '*'

• comma ','

• colon ':'

• equals '='

• question mark'?'

• left bracket '['

• right bracket ']'

• dollar sign '$'

• less than '<'

• greater than '>'

Control characters (ASCII ordinal value less than 32) and blanks are removed altogether by the
File System before the name is ever presented to any Directory Access Method.

The File System 3-9

File Types Derived from File Names
The type of a file is determined when it is created, and is derived either by default or from the
specified suffix (the last characters of the file name). Once the file type is determined, a type
code is recorded in the directory, and changing the file name won't change its type.

Suffix

.ASC

.TEXT

.CODE

.BAD

.SYSTM

.UX

<NONE>

File Names (LIF DAM)

File Type

LIF ASCII text file

WS1.0 / UCSD-compatible text file

Workstation Pascal object code

File covering bad area of disc

System Boot file

File of bytes used primarily for data exchange with
HP-UX systems

"Data" file assumed when suffix is missing or un
recognized

The LIF Directory Access Method (DAM) generally allows any ASCII character to be used
in a file name. This is contrary to the HP LIF Standard, which states that file names must
be composed only of uppercase letters, digits, and the underscore '_' character. Note that
uppercase and lowercase letters are distinct. File names stored in LIF directories are always
exactly 10 characters; they are blank-padded by the DAM, if necessary.

The 10-character file name length would be a very severe restriction when four or five characters
are required for a suffix. To ease this problem, the LIF DAM performs a transformation on the
file name which compresses the suffix, if one is present. The transformation occurs automatically
when a LIF directory entry is made, and it is reversed automatically before the file name is ever
presented to any program or to the user.

This process is usually completely transparent to the Pascal user, although its effects may be seen
when a LIF directory is examined from the BASIC language system. It sounds complicated and
dangerous, but in practice it is very smooth. Most people would never notice it if they weren't
told.

Here is how the LIF DAM changes a name before putting it into the directory.

1. Look for a standard suffix (for example, ".ASC").

a. If a suffix is found, the suffix characters are removed from the name, leaving a
trailing period. If this name is longer than 10 characters, including the period,
then an error is reported.

b. If no suffix is found, and the file name contains less than 10 characters, the file is
assumed to be a Data file and the name is put into the directory unchanged. If
no suffix is found, but the file name is exactly 10 characters in length and the last
character is an A, B, C, S, T or U, then an error is reported.

3-10 The File System

2. If the file is not a Data file and no error has been reported, the dot is replaced by the
first letter of the suffix; for instance, the .ASC suffix is replaced by A. If the name is
now less than 10 characters long, it is extended to a length of 10 characters by appending
underscore characters (_) to the name.

Using this algorithm, we would have the following examples:

File name Translated name

'A.ASC' 'AA ________ '

'charlie' 'charlie'

'123456789.TEXT' '123456789T'

'GollyGeeeT' rejected because it would be confused with trans
formation of 'GollyGeee. TEXT'

The reverse transformation is fairly obvious:

1. If the 10th character is a blank, do nothing. Otherwise, go to step 2.

2. Remove all trailing underscores.

3. Compare the last non-underscore to the first letter of each valid suffix. If a match is
found, remove that letter from the file name and append a dot '.' followed by the full
suffix.

4. If no suffix match is found, use the original file name.

File Names (Workstation 1.0 DAM)
The Workstation 1.0 (UCSD-compatible) DAM allows file names of up to 15 characters, includ
ing the suffix. Any lowercase letters are transformed to uppercase so that 'a.text' and 'A.TEXT'
denote the same file.

File Names (SRM DAM)
The SRM itself allows almost any file name, although the Pascal File System removes blanks
and control characters from file names.

The SRM Directory Access Method takes the "<" character to denote the beginning of a
password. All characters up to the next ">" character are part of the password, so that
««««> is a legal password, albeit poorly chosen. Passwords may be up to 16 characters
long.

The File System 3-11

File Names (HFS DAM)
HFS allows filenames of up to 14 characters, including the suffix. Other than the password
(which is not applicable to HFS) and the difference in permitted length of filenames, filenames
which are valid for SRM are also valid for HFS. Consult the section Wildcards later in this
chapter before assigning names to new files if you have never used wildcards before.

File Size Specification
The last, optional part of a file specification is the file size specifier. If present, its syntax is as
follows:

size_spec ::= "[" integer "]"

This specification only takes effect if a new file is being created with REWRITE, OPEN, AP
PEND, or APPEND with OPEN. If the file already exists, the File System tries to make it at
least the size specified. The size is ignored for RESET.

In the first form, the integer gives the number of 512-byte blocks to be allocated to the file. For
instance [100] would cause allocation of 51 200 bytes.

The second form, [*], specifies that the file is to be allocated either (half of the largest free
space) or (the second largest free space), whichever is larger.

If no size specifier is present when space for a new file is being allocated, the largest free area is
assigned to the file, except when using HFS or SRM file systems which allocate no space (SRM
and HFS file systems allocate space when needed).

For files stored in the SRM, the first extent allocated to the file will be of the size specified, and
contiguous if possible.

For files stored on an HFS disc, the [*] is ignored but a valid size specifier in the format [integer]
will be accepted and allocated as described above. Note that on HFS, files may have some
overhead that is "invisible". For example, if you create file ABC. TEXT [1000] on HFS, the file will
consume 1024 blocks, not 1000 blocks, though the usable size will be 512000 bytes.

3-12 The File System

Several Directory Organizations Allowed
HP LIF (Logical Interchange Format) is the default directory format used by your Pascal Work
station System. There are many (mutually incompatible) ways to organize files and directories
on a disc. LIF is an HP standard disc organization used to transport files among (recently man
ufactured) computers from Hewlett-Packard. The HP Series 200/300 BASIC Language System
also~ supports the LIF directory structure on your Series 200/300 computers. HP-UX provides
lifcp and other utilities for handling LIF directories.

In addition, your Pascal Workstation understands three other disc directory organizations.
The WS 1.0 format was the primary disc directory format used by the Pascal 1.0 Workstation
File System. Your Pascal Workstation also supports hierarchical directory structures used
by the Shared Resouce Management System, and HFS, which is used by HP Series 200/300
HP-UX revisions 5.0 and later. Hierarchical directories and their application to SRM,
SRM/UX, and HFS are discussed as a separate topic later in this section. The WS1.0 format
is compatible with the widely used UCSD PascaP system.

File Name Suffixes and File Types
Here are five examples of legal file names, although some are too long for LIF or WSl.O direc
tories:

FILEINTRO.ASC
FILEINTRO.TEXT
FILEINTRO.UX
TAPEBKUP.CODE
DATAFILE

The first four file names have a suffix. This suffix is part of the file name, so FILEINTRO.ASC,
FILEINTRO.TEXT and FILEINTRO.UX are different files. The suffix was appended to specify
the file type when the file was created. The file type is stored in the directory along with the file
name. Thus, the file type would not be changed if you later changed the file name by removing
or changing the suffix. You can see the file type of each file by listing the directory using the
Filer's Extended Directory List command.

The suffixes recognized by the Pascal 3.2 File System are shown below:

.ASC These files are HP Logical Interchange Format (LIF) ASCII files. It is intended
to be the method for interchanging data files among various HP computers.
Information stored in a . ASC file is stored as individual records. Each record
has a two-byte length header and contains an even number of bytes. (A pad
character is added, if necessary, to make an even number of bytes.)

1 "UCSD Pascal" is a trademark of the Regents of the University of California.

The File System 3-13

TEXT

.UX

. CODE

.SYSTM

. BAD

<no suffix>

Text files are the default type of file produced by the Editor. They follow the
WS1.0 (UCSD-compatible) format. . TEXT files consist of a 1024-byte header
containing Editor environment information, followed by compacted text in
1024-byte pages. Each line of information with more than one leading blank
begins with a Data Link Escape control character (DLE, ASCII code 16).
This character is followed by a one-byte indentation code; its binary value is
calculated by adding 32 to the number of initial blank characters in the line.
(Lines with zero or one leading blank merely put the actual line there; there
is no DLE/leading blanks compression.) Each line is then terminated by a
Carriage-Return control character (ASCII code 13). If a line will not fit at
the end of a 1024-byte page, then the whole line is moved to the beginning of
the next page, and the remainder of the previous page is padded with ASCII
nulls (chr (0)).

A . UX file is recognized as one which is used primarily for exchange of data
with HP-UX systems. Data can be either regular text or binary.

A . CODE file is the object code produced by the Compiler, Assembler, or Li
brarian. This file is also called a library.

A . SYSTM file is a special file recognized by the Boot ROM as a file containing
an operating system (a "system Boot file").

A .BAD file is used to permanently cover failed disc sectors. Use the Filer's
Make command to make a file of type .BAD over the defective sector of the
disc media. This type of file should only be used as an emergency measure.
The defective disc should be replaced. For HFS systems, you should also run
the file system check utility (HFSCK) which is covered later in this chapter.

A file whose name at the time of creation does not end in one of these suffixes
or ends with an unrecognized suffix is said to be of type DATA. The data may
be textual or binary in nature.

The Pascal operating system utility programs (e.g., Editor, Filer) in many circumstances au
tomatically append the appropriate suffix to a file's name. (Note that the only time the Filer
appends a suffix is in the Get and Save commands.) For instance, when loading a file into the
Editor, just type the file name without a suffix. The Editor knows that in normal circumstances
you will want to edit a . TEXT file and will automatically add the suffix. Of course, if you wish or
need to specify a suffix, you may. For instance, if you want the Editor to load another type of
file, then the correct suffix must be specified. If the file has no suffix, place a period at the end
of the file name. The period stops the Editor from adding the . TEXT suffix. If you try to specify
a file type that the subsystem can't work with, such as a . CODE file in the Editor, you may get
various kinds of undesirable results. In this example, depending on how you access the file and
the mass storage device used, you could get an error message reading "Illegal I/O request",
a "No workfile found" message, or myriad empty lines.

3-14 The File System

Automatic suffixing is very convenient. For instance, you might write a program with the
Editor and call the output file WORK. The Editor automatically appends .TEXT. When you
use the Compiler to compile WORK, the compiler automatically appends .TEXT to the source
file name, and .CODE to the output file name. Although there are two files, you only need to
remember one name. To execute WORK.CODE, you need only type the following (from the
Main Command Level):

I Select I WORK I Return I
or

EXECUTE WORK I Enter I

Suppressing the Suffix
On the other hand, you may wish a file name which has no suffix. You can suppress the
automatic appending of a suffix by typing a period as the last character in the file name. For
instance, to create a data file with the name AFILE, just tell the Editor to save your file as
"AFILE. ". The period aborts the suffix and makes the type DATA. Likewise, the Librarian and
Compiler will automatically append .CODE to file names unless you tell them not to with the
period; the type will still be CODE, however.

System programs like the Editor don't have the .CODE suffix. This protects them against acci
dental destruction by a wildcard purge operation on all .CODE files. If you wish to permanently
load a system program into memory with the Permanent command, you must append a dot to
the file name. To load the Editor, type:

[f] EDITOR. I Enter I
or
[f] EDITOR. I Return I

Without the period, the system would try to load EDITOR. CODE, which is not what you want.

Translating Files from One Type to Another
Sometimes you may want to translate the contents of a file from one file type to another. For
instance, you may have a file of type .TEXT, created by the Editor, and wish to read it with
the BASIC system. BASIC understands the LIF ASCII (.ASC) format, but not the . TEXT
format. You can use the Filer's Translate command in this situation. A typical dialogue would
be:

ITJ
Translate what file?
EXAMPLE. TEXT I Return I or I Enter I
Translate to what?
EXAMPLE. ASC I Return I or I Enter I

For Pascal 3.2 and later, the same principle can be applied to convert a . TEXT .ASC, or Data file
into a HP-UX compatible file. The dialogue for this could be:

ITJ
Translate what file?
EXAMPLE I Return I or I Enter I (Note this is a Data file)
Translate to what?
EXAMPLE. UX I Return I or I Enter I

The File System 3-15

Note that if you have a file of type .UX which contains tabs and you wish to convert this file to
another type, the Translate command expands the tabs into spaces, and the new file will not
contain tabs. Eight-column tab stops are presumed during the conversion. The UXTEXT _AM
module must be present in the system for this to be possible (as shipped, the UXTEXT _AM is
already installed in INITLIB).

For Translate to make sense, the source file must contain data that is textual in nature; at
tempting to translate a .CODE file, for example, would not make sense.

Translating Text Files to the Printer
Another situation where translation is required is to move a file from a disc volume to the
printer. The file may be a .TEXT, .ASe, DATA, or .UX file. The way such files are stored
on the disc is not compatible with unblocked devices (such as the printer), so you must use the
Translate command. Just type in:

IT]
Translate what file?
WORK. TEXT I Return I or I Enter I
Translate to what?
PRINTER: I Return I or I Enter I

This example illustrates several points. First, in the Filer environment, you must always specify
the complete file name including the suffix. Second, to send a file to a device like the printer
which has no directory, there is no point in specifying a file name. Just use the volume name.
Had you specified a file name after PRINTER: the Filer would have given you an error message.

Wildcards
In the Filer environment, you can specify a particular file or set of files by giving a pattern
which identifies the files you want. These patterns include special characters called wildcards.

For example, we can use the wildcard = (equal sign) to list a subset of the file using the Filer's
List Directory command. From the Filer subsystem, press:

The computer responds with:

List what directory?

Respond with:

FILE= I Return I or I Enter I

FILE= uses the equal sign wildcard to specify all files whose names begin with FILE and end with
any sequence of characters. Using our example system, this command sequence would produce:

3-16 The File System

V12: Directory type= LIF level 1
created 9-Aug-S6 21.13.37 block size=256
changed 28-0ct-S6 15.0S.24 Storage order
... file name.... # blks # bytes last chng

FILEINTRO.TEXT
FILEINTRO.ASC

64
73

16384 28-0ct-86
18688 28-0ct-86

FILES shown=2 allocated=4 unallocated=12
BLOCKS (256 bytes) used=201 unused=855 largest space=855

Notice what happened here. The Filer recognized that the response to the prompt, "List what
directory?", specified not just a volume name but a set of files within that volume.

More than one wildcard may appear in a single file specification given to the Filer, allowing
you to easily describe some rather complex operations. For instance, you can copy all the files
on unit #13 whose names contain the characters INT to the system volume by means of this
command sequence:

[£J
Filecopy what file?
#13: =INT= I· Return I or 1 Enter I
Filecopy to what?
*$ 1 Return I or 1 Enter I

This example uses the destination wildcard "$", which means "use the same name as the source
file had". The command locates each file on unit #13 whose name matches the pattern, and
writes a new copy with the same file name on the system volume. Remember that "*,, is
shorthand for the name of the system volume.

You can use "?" as a wildcard instead of "=". Question mark works like equals, except that
for each file whose name matches the specification, the Filer will ask if you want to perform
the operation. For example, to have the Filer change each file name on the default volume
beginning with FILE into a file name beginning with WORK, type in:

W
Change what file?
FILE? 1 Return I or 1 Enter I

Change to what?
WORK= 1 Return I or 1 Enter I

For example, this would turn FILE_ONE. TEXT into WORK_ONE.TEXT. Each time the speci
fication is met, the Filer will present what it has found and ask if the process should be completed
for the entry. Answer with IT] for yes or []] for no each time you're asked.

The File System 3-17

File Names to Avoid
The File System won't prevent you from creating file names containing wildcard characters,
but you'll be sorry if you do. The Filer will think such file names are wildcard specifications
instead of simple file names. For instance, if you created a file called =.TEXT, then used the
Filer sequence:

[[]
Remove what file?
= . TEXT I Return I or I Enter I

the Filer would remove every file whose name ends in .TEXT in the default volume!

Should you ever accidentally create a file with a wildcard in its name in volume VOLNAM, you
can get rid of it this way:

[[]
Remove what file?
VOLNAM:? I Return I or I Enter I

This will cause the Filer to offer to remove each file in the directory VOLNAM:. You can then
remove the problem file and retain the other files.

Allowable File Names
What file names are allowable depends on the type of directory used on the volume in which the
file resides. In other words, the Directory Access Method determines the file name rules. The
exact rules for file names are given in the subsequent chapter of this manual called "Programming
with Files". Here is a summary of the rules.

It is wise to choose names consisting of alphabetic letters and digits only. If you must use a
punctuation mark within a file name, a hyphen, an underscore, or a period is acceptable. Blanks
are removed from file names.

In LIF, SRM, SRM/UX, and HFS directories, uppercase and lowercase letters are distinct;
"CHARLIE" is not the same file as "Charlie". In WSl.O directories, lowercase letters in a
file name will automatically be converted to uppercase. This exception makes it easier to use
wildcards to move files from one type of directory to another. Within HP Workstation Pascal,
a typed in lowercase suffix will automatically be transformed into uppercase when writing the
file to LIF disc.

Don't Use These Characters
"$", "?", "="

"*,, "." "#" , . ,

"<", ">"

"I"
"[", "]"

control characters

" "

3-18 The File System

Filer wildcard characters.

Used in specifying volumes.

Have special meaning with the Shared Resource Manager.

Has a special meaning with HFS and SRM.

Used to specify the size of a file when it is created.

Control characters are automatically removed from file names.

Blanks are removed from file names.

File Name Length
In LIF directories, file names (without suffix) are limited to 9 characters. If the last character
in the file name is not an A, B, C, S, or T, then 10 characters can be used. If a suffix is present,
up to 9 characters may precede the dot and suffix.

In WSl.O directories, file names may be up to 15 characters including the suffix.

In HFS directories, file names may be up to 14 characters including the suffix.

In SRM directories, file names may be up to 16 characters including the suffix.

In SRM/UX directories, file names may be up to 14 or 16 characters, depending on the file
length allowed in the hosting HP-UX file system.

No Room on Volume
Obviously there is a limited amount of space on a disc volume. When there is no room on a
volume to create a new file, the system will report an I/O error.

You Inay be able to solve this problem by using the Filer's Krunch command. This command
consolidates all of the volumes free space by moving all of the files on a volume to the front
of the volume. This applies to LIF and WSl.O volumes only and not to SRM or HFS volumes
which have different methods of storage.

Both the LIF and WSl.O directory organizations are designed for "contiguous file space alloca
tion." This means that when space is reserved for a file, the disc sectors set aside have sequential
numbers. For instance, a file requiring three sectors might get sectors 26, 27 and 28; OT 31, 32
and 33. Files would not be allocated sectors 13, 56 and 2, because those sectors are not logically
adjacent. To go back to the analogy with file folders in a drawer, if you had a file too big for one
folder you might put it in two or three folders; but you'd want store them next to each other,
not in random places in the drawer.

When a file is purged, all of its sectors are again available for use by another file. As files are
created and purged, the disc space usage will develop "holes" of free space between valid files.
This is called "fragmentation." It's possible for a considerable amount of free space to exist
in the volume, yet be unusable because it is in pieces too small to use. Since files tend to be
small compared to the total space on a volume, this problem usually occurs when the volume
has relatively little free space left.

To see how fragmented your volume is, use the Filer's Extended Directory List command. This
command lists both the files and the fragmented space on the volume.

The File System 3-19

The SRM and SRM/UX Systems
The concepts presented so far have all been applied to local mass storage devices. The same
concepts extend naturally to deal with shared mass storage.

The Shared Resource Management (SRM) and SRM/UX Systems allow several workstations
(computers) to be connected into a network that allows sharing of files and resources. This
network is controlled by the server, which is a centrally located computer with discs, and
possibly some printers and plotters attached. Since the files can now be shared between
several users, a new directory structure is needed. Setting up the SRM or SRM/UX
systems is not described in this manual; see the SRM or SRM/UX documentation for that
information. Configuring your workstation to access an SRM system is described in Chapter
4, "Workstation Startup with Pascal" in the SRM Software Installation Manual. Accessing an
SRM/UX system is described in Chapter 7 of the SRMjUX Administrator's Guide, and in
Appendix G of the Pascal 3.25 User's Guide.

Hierarchical Directories

The SRM and SRM/UX systems use a hierarchical directory structure to organize its files.
This directory structure is a multi-way tree data structure. That is, the first (or top) directory
of the structure is called the root directory. Subordinate to the root directory are other
directories which, in turn, may have further subordinate directories. Each directory may
contain files or other directories. When a directory contains only files (and no directories),
it is called a leaf directory. All files can be called leaf files. The drawing below shows a
hierarchical directory system.

root
/

/---1------'"
SYSTEMS WORKSTATIONS USERS

1 /1'" /1'"
SYSTEM_P SYSTEM SYSTEM21 SYSTEM 45 ROGER BOB FRED

1 1 1 1
EDITOR WORK WORK WORK
FILER

COMPILER

The directory SYSTEMS is a special directory checked by the Boot ROM (version 3.0 or later)
for the presence of operating or language systems ("Systm" type files).

The directory USERS (in the above example) has three subordinate directories: ROGER, BOB,
and FRED. Each subordinate directory has a single file called WORK. Each file and directory is
uniquely specified by the list of directories from the root to the file. That means several files of
the same file name can exist without confusion if they are in different locations in the directory
structure.

3-20 The File System

To save space, the Filer's Duplicate Link command can be used to link a file into a directory
other than its original location. This allows you to have access to a file, such as the Compiler
or Editor, without making an extra, unnecessary copy. See the Filer chapter of this manual for
more information.

Once a duplicate link has been set up, if the file is purged from the directory, what happens to
the link? Only the directory from which the file was purged loses access to the file. All other
directories with links to the file can still find it. The disc space allocated to the file is only
reclaimed when no directories have links to it.

Notation
Hierarchical directories are a simple concept, but we need some specialized words and notation
to talk about them.

The directory at the top of the hierarchy is called the "root" directory. If we want to refer to
a file or directory which is immediately under the root, for instance WORKSTATIONS in the
illustration above, you would specify:

/WORKSTATIONS

This is read as "slash WORKSTATIONS" or "stroke WORKSTATIONS". The / indicates the
root directory.

To go further down the hierarchy, for instance to SYSTEM under WORKSTATIONS, specify:

/WORKSTATIONS/SYSTEM

and for another level yet, specify:

/WORKSTATIONS/SYSTEM/COMPILER

As you can see, to specify a file, the list of directories from either the root directory or the
current working directory to the target file must be specified. The directories in the list are
delimited with /'s. More information about the current working directory is given later in this
section.

Such a sequence of strokes and directory names is called a directory path, since it indicates the
path one must follow down the hierarchy to get to a particular file.

The File System 3-21

SRM Units and Volumes
A workstation connected to an SRM or SRMjUX server normally has units #5: and #45: set
up for server access. The use of two units is in keeping with the idea that there are usually
two special volumes (the system volume and the default volume) through which most file
accesses occur.

If the workstation has no local mass storage, unit #45: will automatically be configured to be
the system volume and unit number #5: will be available for use as the default volume. If there
is local mass storage, the system volume -can be any volume you desire. To set these volumes,
use the What command from the Main Command Prompt.

Here is how the Filer's Volumes display might look right after booting up a workstation con
nected to the SRM and having no local mass storage:

Volumes on-line:
1 CONSOLE:
2 SYSTERM:
5 # MYSRM:
6 PRINTER:

45 * SYSTEM21:
Prefix is - SRM:

You can see that the system starts out with #5: as the default volume and #45: as the system
volume.

Where do the names MYSRM: and SYSTEM21: come from? They are actually the names of
particular directories in the SRM's hierarchy. In this example, the name of the SRM volume is
MYSRM:, and the workstation we are using is at node address 21. Since there is a directory
SYSTEM21, it is s~lected as the system volume. All of this selecting is done by the TABLE
program as it automatically configures the system each time you boot.

If you need to specify the SRM volume's password, you can do it by using this syntax:

MYSRM <password> :filepath

SRMjUX systems do not support volume or file passwords.

Moving Up and Down the Hierarchy
It would be tedious to type a directory path every time you wanted to access a file. To avoid
this, you can specify the current working directory using the Filer's Unit Directory command.
The current working directory can be used as the "root" to specify subordinate files.

[QJ
Set unit to what directory?
#5: /USERS/ROGER I Return lor I Enter I

Once you have done this, unit #5: is associated with the directory named ROGER which is
subordinate to the USERS directory in the root. It's similar to inserting a disc called ROGER:
in a disc drive. If you now command the Filer with:

IT]
List what directory?
ROGER: I Return I or I Enter I

3-22 The File System

it will list all the files in volume ROGER: which is directory /USERS/ROGER. You could also
use the sequence:

IT]
List what directory?
#5: I Return I or I Enter I

since directory ROGER was installed in #5: by the Filer's Unit Directory command.

Suppose that under ROGER is another directory named MYSTUFF which contains more files.
To list the files in MYSTUFF, use the sequence:

IT]
List what directory?
ROGER: MYSTUFF I Return I or I Enter I

The Filer will realize that MYSTUFF under volume ROGER is itself a directory, and list its
contents. If MYSTUFF were not a directory, it would simply be listed as a file in directory
ROGER.

You can move the current working directory still farther down the hierarchy in the obvious way.
For instance, to make MYSTUFF the current directory of #5:

[QJ
Set unit to what directory?
#5 : MYSTUFF I Return I or I Enter I

There was no need to specify the entire directory path from the root because MYSTUFF was
already accessible as a file within volume ROGER.

A special notation is provided to move up the hierarchy. Two periods can be used to denote
the superior, or "parent," directory of a file. For instance, after moving down to MYSTUFF,
unit #5: could be moved back up to the parent directory ROGER by:

[QJ
Set unit to what directory?
#5: .. I Return I or I Enter I

To go up two levels, use the double-period twice, separated by a slash:

[QJ
Set unit to what directory?
#5: .. / .. I Return I or I Enter I

This can be executed all the way up to the root directory. Of course, if you want to get all
the way to the top, it is easier to go there directly, using a stroke as the "name" of the root
directory. For instance, while #5: is assigned to MYSTUFF you could list all the files in the
root directory with the command sequence:

IT]
List what directory?
#5 : / I Return I or I Enter I

The File System 3-23

Default Volume vs. Current Working Directory
The current working directory concept is different from the default volume concept. Specifying
a current working directory is like installing a disc into a drive. Specifying a default volume
simply tells the File System what volume name to use when none is specified with a file name.

The two concepts can come together in the Filer's Prefix command. For instance, typing:

m
Prefix to what directory?
#5: /USERS/BIG_USER I Return lor I Enter I

has two effects since #5: is an SRM unit. The current working directory of #5: is set to
/USERS/BIG_USER, and the default volume name is set to BIG_USER. If we now type:

[ill
Set unit to what directory?
#5: .. I Return I or I Enter I

the current working directory of #5: becomes USERS (the parent of BIG_USER). However,
the default volume name is still BIG_USER. So this command sequence:

[[]
List what directory?
: I Return I or I Enter I

will fail with the message that BIG_USER is not on-line!

The same sort of mistake is commonly made with the system volume. Suppose the current
working directory of #45: is SYSTEM21, and the COMPILER, EDITOR and other system files
are under SYSTEMS. If the current working directory of #45: is changed, the Operating System
won't be able to find the system programs since it thinks of them as SYSTEM21:COMPILER
and so on. If this happens, you need to get into the Filer and restore the current working
directory of #45: . How can you do so if the Filer is no longer on-line? You will need to
eXecute the Filer by name, specifying a path all the way down from the root to wherever it is:

I Select I (EXECUTE)
Execute what file?
#45: /WORKSTATIONS/SYSTEMS/FILER. I Return I or I Enter I

Note the dot after the Filer's name. You don't want the system to append .CODE in this case.

SRM and SRM/UX Concurrent File Access

The SRM and SRM/UX systems also provide the capability of several users concurrently
accessing "shared" files. For further information on this capability, see the "Programming
with Files" chapter in Volume II of this manual.

SRM Access Rights

You can restrict the use of SRM files with a special "access right" password-protection
scheme. For further information on this capability, see the "Programming with Files" chapter
in Volume II of this manual. Also see the Access command description in the "Filer" chapter
for more information on assigning and removing SRM passwords with the Filer. The SRM
"access right" scheme is not supported on SRM/UX.

3-24 The File System

The Workstation Hierarchical File System
This section will give you an overview of the terms and methodology associated with Workstation
HFS.

General Information
The Workstation Hierarchical File System (HFS) is provided with HP Workstation Pascal 3.2
and later versions. It is recommended that this be used in preference to other file systems
provided.

For those who have SRM systems, the principle of storing and retrieving data in a file sys
tem hierarchy is nothing new. The ability to create an HFS on local discs will improve the
organization and overview of your files, and, through this, hopefully your productivity.

If your experience so far only involves the LIF and WSl.O disc directory formats, you can think
of an HFS as being a natural progression from your existing directory format. All files are
stored in a tree structure, the first or top directory in the structure is called the root directory.
Every directory may contain both files and further directories. However, the way in which the
information is physically written onto the storage media is different to LIF and WSl.O. The
files are non-contiguous. Data exchange with BASIC 5.0 and HP-UX 5.1 (and later) systems,
and the ability to boot any of these operating systems from the same HFS disc is possible.

As this file system permits data exchange with BASIC and HP-UX, a new file type has been
introduced which is compatible with the HP-UX environment. This '.UX' file is described earlier
in this chapter and in the Programming with Files chapter in Volume II of this manual.

To create an HFS on an initialized disc, you must first run the MKHFS utility supplied with
the system. To boot a system from an HFS disc, you will also need to use the OSINSTALL
utility to install SYSTEM_P file on your disc and copy other files into a special directory. These
utilities are covered in detail in Chapter 21, "HFS Set-Up and Utilities", in Volume II of this
manual.

To operate in an "HFS environment", you need to either execute the HFS_DAM module and
then TABLE, or incorporate the HFS_DAM module into INITLIB so that it is executed on
booting the system.

The File System 3-25

Terminology
HFS and the utility programs supplied to support the file system use some new terminology.
The following information can also be found in the Glossary at the end of this manual. It is not
really intended that you simply read this; it is more as a local source of reference to you. Many
of these new terms are used extensively in the file system checking utility HFSCK. Here is an
explanation of the words you may not recognize:

Blocks and Fragments Files stored on an HFS disc are non-contiguous, which means that the
information within the file is spread over various areas of the disc.
These are called blocks. Of course, the data may not be equivalent
in size to an exact number of blocks. To avoid wasting a lot of space
on an HFS disc, the file system also works with fragments, which can
simply be looked upon as smaller blocks. Blocks and fragments have
fixed sizes which are defined when the file system is created. The
default sizes are 8192 and 1024 bytes respectively.

Boot area A boot area is reserved on an HFS disc during the installation of the
file system by the MKHFS utility. Information in the boot area is only
used for booting, and the boot area resides on the first 8K bytes of
the disc. The boot area contains a LIF volume header.

Bytes per Inode This specifies the ratio of data bytes to inodes. It reflects the average
size you expect your files and directories to be; the default value is
2048, implying an average file size of 2 kilobytes.

Cylinder One or more vertical collections of tracks in a disc or disc pack.

Cylinder Groups Cylinders are accessed in groups by HFS to minimize the head move
ment when accessing files. Although the files are non-contiguous on
the disc, cylinder group information is used to keep the pieces close
together when possible, thus speeding access.

Inode Among other information pertinent to a file on an HFS disc, an inode
contains one or more pointers which specify where a file's data blocks
are located. As a file may be split into a number of sections, the inode
holds the information concerning the location of each section, enabling
the file system to find the complete file. Each inode is numbered for
reference by HFSCK when a problem occurs. The inode number for
a file can also be seen when a Filer extended listing is produced of a
directory on an HFS disc.

Superblock This is a block on an HFS disc which contains global information about
the file system as a whole and which enables the file system to operate
with the disc; for example, how much disc space is still available and
where it is located. It does not contain information about individual
files stored on the disc. The superblock is created at the same time
as the file system and is replicated into each cylinder group to provide
redundancy.

3-26 The File System

Workstation Header
(wsheader)

Using HFS
Notation

Since the HFS directory structure has no place in which to keep infor
mation such as file type (e.g., .ASC, .CODE) or logical end-of-file, the
HFS driver allocates some space at the start of the data area of your
file to keep track of these things. Normally you will never see this area
of the file since the HFS driver automatically skips over it. The size of
the area is 512 bytes for each file created by the Pascal Workstation
on an HFS disc, except for .UX, type files and directories. Note that
HP-UX tools do not skip this area and the user must decide how to
handle the wsheader. For this reason, . UX files are recommended for
file interchange between HP-UX and the Pascal Workstation. BASIC
5.0 creates and uses compatible wsheaders.

The drawing below shows a typical HFS directory structure.

root
/

/ I '" '" lost + found USERS WORKSTATIONS SYSTEM_P

/ I ~ I
Richard Bill Dave SYSTEM r I I I I

Somefiles test file1 MYFILE EDITOR
I I I I FILER

File_1 DATA DATA DATA COMPILER
File_2 ASSEMBLER

• File_3 • •
Hierarchical directories are a simple concept, but we need some specialized words and notation
to talk about them.

The directory at the top of the hierarchy is called the "root" directory. In the diagram,
lost+found, USERS, and WORKSTATIONS are directories within the root directory, and SYS
TEM_P is a simple boot file also in the root directory.

The directory lost+found is a special directory in the root directory of every HFS disc and must
not be deleted. It is used by the HFSCK utility, which is described in the HFS Utilities chapter.

To refer to a file or directory which is within the root directory, for instance USERS in the
illustration above, you would specify:

/USERS

This is read as "slash USERS" or "stroke USERS". The / indicates the root directory.

The File System 3-27

To go further down the hierarchy, for instance to Richard under USERS, specify:

/USERS /Richard

and for another level yet, specify:

/USERS /Richard/Somefiles

If your current working directory was Richard, then to access File_l you would only need to
type:

Somefiles /File_l

As you can see, to specify a file, the list of directories from either the root directory or the
current working directory to the target file must be specified. The directories in the list are
delimited with the character "/". More information about the current working directory is
presented later in this section.

Such a sequence of strokes and directory names is called a directory path, since it indicates the
path one must follow down the hierarchy to get to a particular file.

HFS Units and Volumes
Before you can use your disc with the above notation, the disc must have the HFS file system
installed on it. Delivered with Pascal 3.2 and later versions is a utility program which provides
this function, called MKHFS. For more information on this utility and instructions on how to
use it, consult the HFS Utilities chapter in the Pascal Workstation System manual Volume II.

Here is how the Filer's Volumes display might look right after booting up a workstation con
nected to a local HFS disc:

Volumes on-line:
1 CONSOLE:
2 SYSTERM:
6 PRINTER:

11 # hfs11:
46 * SYSTEM:

Prefix is -hfs11:

HFS uses the normal unit numbers you have become accustomed to, with two exceptions. If, at
boot time, the system discovers the directory /WORKSTATIONS/SYSTEM on the boot disc,
and that disc is HFS, it will assign that disc to be the system volume and allocate unit "#46"
to it. Unit #46 will be set to the path /WORKSTATIONS/SYSTEM. This is the situation
in the above listing of volumes given by the Filer. Flexible or floppy discs, due to their being
removable and replaceable, will not have #46 assigned to them.

3-28 The File System

HFS and Flexible Disc Unit Numbers
For flexible discs, the system cannot predict what file system will be on the inserted media.
Another problem is that HFS discs usually have a small LIF header at the "front" of the disc
for booting purposes. The system will assign flexible disc units in pairs, for example #3 paired
with #43, and #4 paired with #44. The unit at #3 "understands" LIF discs, and the LIF area
of HFS discs. The unit number at #43 only understands the HFS part of the disc (if it is an
HFS disc). The other pairs work in a similar fashion. To protect your HFS discs, be sure not
to do any operations with unit #3 if unit #43 indicates an HFS disc. Possible problems may
included loss of data or the inability to boot from the HFS disc.

Note

HFS is not supported on the HP 9885 8-inch flexible disc drive, nor
on removable media drives that are accessed by the AMIGO driver
module. This includes the HP 9895 8-inch drive, the HP 82901 and
HP 82902 5.25-inch drives, and the HP 9121 3.5-inch drive. Also not
supported by HFS is the removable media unit in AMIGO "multiple
unit" drives such as the HP 9135 and the HP 9133A, B, C, and XV.
However, the hard disc unit in such a multiple-unit drive can be used as
an HFS unit. The "Adding Modules to INITLIB" section of Chapter
18 discusses the AMIGO and other driver modules.

For flexible disc drives, the system must be able to distinguish between discs inserted into the
drive which are LIF format, and those which are HFS format. To inform the system which type
of disc currently occupies the drive, the following rule is applied. If the drive occupies the unit
numbers #3 and #43, an HFS disc inserted in this drive can only be accessed by using #43.
Similarly, a LIF disc inserted in this drive can only be accessed by #3. This rule is applicable
to all unit number "pairs" assigned to flexible disc drives, i.e. #3 and #43, #4 and #44, #6
and #46, #7 and #47, #8 and #48, and #9 and #49.

Depending on the format of the disc being used, the system will use a particular Directory
Access Method or DAM. For LIF discs a LIF DAM is used and similarly for HFS an HFS DAM
is used. For more information on DAMs, consult the Using Alternate DAMs section in the
Workstation System Manual, Volume II.

Moving Up and Down the Hierarchy
It would be tedious to type a directory path every time you wanted to access a file. To avoid
this, you can specify the current wor~ing directory using the Filer's Unit Directory command.
The current working directory can hie used as the starting point to specify subordinate files.

[[]
Set unit to what directory?
#11: /USERS/Richard/Somefiles I Return I or I Enter I

Once you have done this, the unit (#11: in this example) is associated with the directory named
Somefiles which is subordinate to the Richard and USERS directories. It's similar to inserting
a disc called Somefiles: in a disc drive.

The File System 3-29

If you now command the Filer with:

IT]
List what directory?
Somefiles: 'Return lor, Enter I

it will list all the files in subdirectory Somefiles. You could also use the sequence:

IT]
List what directory?
#11: I Return I or , Enter I

since directory Somefiles was installed in #11: by the Filer's Unit Directory command.

Suppose that under Somefiles is another directory named DIR_l which contains more files. To
list the files in DIR_l, use the sequence:

IT]
List what directory?
Systemfiles: DIR_1 'Return I or I Enter I

The Filer will realize that DIR_l in volume Somefiles is itself a directory, and list its contents.
If DIR_l were not a directory, it would simply be listed as a file in Somefiles.

You can move the current working directory still farther down the hierarchy in the obvious way.
For instance'to make D IR_l the current directory of # 11:

[]]
Set unit to what directory?
#11: DIR_1 I Return I or I Enter I

There was no need to specify the entire directory path from the root, because DIR_l was already
accessible as a file within volume Somefiles.

A special notation is provided to move up the hierarchy. Two periods can be used to denote
the superior, or "parent," directory of a file. For instance, after moving down to DIR_l, unit
#11: could be moved back up to the parent directory Somefiles by:

[]]
Set unit to what directory?
#11: .. I Return lor 'Enter I

To go up two levels, use the double-period twice, separated by a slash:

[]]
Set unit to what directory?
#11: .. / .. 'Return I or I Enter I

This can be executed all the way up to the root directory. Of course, if you want to get all
the way to the top, it is easier to go there directly, using a stroke as the "name" of the root
directory. For example, while #11: is assigned to DIR_l you could list all the files in the root
directory with the command sequence:

3-30 The File System

CD
List what directory?
#11: / I Return lor I Enter I

Note that HFS root directories can be named and renamed but the maximum length is six
characters, the stroke being a convenient generic shorthand. If you have never given your root
directory a name, the system will have given it a default name. The name consists of four or
five characters with the format "hfsnn", where nn normally corresponds to the unit number.

Default Volume vs. Current Working Directory
The current working directory concept is different from the default volume concept. Specifying
a current working directory is like installing a disc into a drive. Specifying a default volume
simply tells the File System what volume name to use when none is specified with a file name.

The two concepts can come together in the Filer's Prefix command. For instance, typing:

IT]
Prefix to what directory?
#11: /USERS/BIG_USER I Return I or I Enter I

has two effects since #11: is an HFS unit. The current working directory of #11: is set to
jUSERSjBIG_USER, and the default volume name is set to BIG_USER. If we now type:

[QJ
Set unit to what directory?
#11: .. I Return lor I Enter I

the current working directory of #11: becomes USERS (the parent of BIG_USER). However,
the default volume name is still BIG_USER. So this command sequence:

CD
List what directory?
: I Return I or I Enter I

will fail with the message that BIG_USER is not on-line!

Booting from an ,HFS Disc
To be able to boot an operating system from an HFS disc you should follow the detailed
instructions given in the HFS Utilities chapter in the OSINSTALL section.

When booting from a non-removable HFS disc, units #11 and #46 will be assigned to the HFS
disc as the Prefix and System volumes respectively.

The File System 3-31

Security of Files and Directories
l'he security of files and directories on HFS discs is controlled by a combination of user class
and permission type "values".

User Class
There are three classes of user who have access to files and directories:

Owner

Group

Other

The owner of a file is normally the person who created it, however it is possible
to transfer ownership. Pascal Workstation and BASIC are "persons" for this
purpose, and are users 17 and 18, respectively.

Where there are users working as a group, files (and directories, which are merely
a special type of file) can be assigned a group ownership. All members of the
group, except the person who is the owner of the file, share the same permissions.
Pascal 3.2 and BASIC 5.0 are both in group number nine (9).

This class of user includes anyone who has access to the system but is neither
the owner nor a member of the group.

Permission Type
There are three types of permission for each file or directory created:

Read (r) A read permission granted for a file allows a user to look at or load into the
computer the contents of a file. For directories, the read permission allows a user
to catalog the directory.

Write (w) Users who have write permission for a file can change the contents of that file.
For directories, write permission allows the user to create and delete files within
the directory. Note that if you have write permission for a directory, but not for
a particular file in the directory, you may still delete that file.

Execute (x) Execute permission is meaningless for files in a Pascal Workstation environment,
but for directories it permits a search through a directory for filenames or further
directories, without the user being able to catalog the directory. If you do not
have execute permission on the directory in which the file exists, you will not
be able to open the file for reading or writing. Execute permissions for files are
used by HP-UX so it is advisable not to remove this permission on a file of type
Hp-ux.

You can find out whether you are the owner of a file by looking at the "directory info" column
of an Extended directory listing. It could look like this for a file:

... directory info ...

664m 17u 9g

We will ignore the "664m" for now. If there is a code "17u" then you are the owner (or "user")
of the file. If the number is not 17 then you are not the owner and the owner access rights are
not applicable to you for the file. This means that for this file you are either a member of a
specified group or simply someone who has access to the system. You see the code "9g" to the
right of the owner code. If the number is not 9 then you are not a member of a group which

3-32 The File System

has access to this file. Assuming that for the file chosen, you are neither the owner or a group
member, then you are classified as "Other". The number 9 is a reserved number specifying a
group for the Pascal and BASIC environments. In BASIC the owner number is 18.

Restriction Definition
By using a combination of user class and permission type, a total of nine permission states can
be defined. You will only be in one user class for each file or directory, but each file has all
of the permission types associated with it. This means that for a file we can combine the user
class and permission type and display it in a shortened form as

Owner
r w x

Group
r w x

Other
r w x

In the above example of a "directory info" column of an Extended directory listing, the code
on the left ("664m") is the octal code defining the access rights. The first 6 specifies the rights
of the Owner, the second 6 the rights of members of the group, and the 4 the access rights for
all other people who are using the disc. The "m" signifies that 664 is the mode field.

The specification and modification of user class and permission types in terms of octal codes is
covered in Chapter 5, The Filer, under the Hfs command.

Workstation HFS and HP-UX
This section attempts to clarify the level of compatibility, with HP-UX the Workstation HFS
provides. If you do not have HP-UX and do not intend sharing data with anyone who has, you
can skip this section.

Compatibility
Any compatibility between Pascal Workstation HFS and HP-UX starts with version 5.1 of the
HP-UX operating system running on the Series 200/300. The extent of this compatibility is
discussed below.

Where HFS Provides Compatibility

This file system enables you to share discs with HP-UX and therefore provides you with the
capability of booting either operating system from the same disc. It also permits sharing of
textual and binary data.

Where HFS is not Compatible

The HFS does not permit the sharing of object code or applications. It does not allow you
to run Pascal under HP-UX or vice-versa, nor does it mean that all the HP-UX file types are
supported. The fact that Pascal and HP-UX can coexist on one disc does not mean that this
disc becomes a multi-accessible disc. Workstation Pascal does not provide the same login type
of security when operating with an HFS disc. This means that all Pascal users are the same
user to the HP-UX system (user 17).

File Handling
As discussed earlier, the implementation of HFS and the implications of compatibility with
HP-UX require a new file type for Workstation Pascal. This new file type is called "Hp-ux"
(. ux suffix).

The File System 3-33

HFS Listing Information
For HFS discs, the Filer's Extended directory listing contains some very useful information:

HFS Extended Listing

hfs11: Directory type= HFS 755 17 9
changed 15-Mar-87 14.24.54 block size=1024
Storage order

... file name # blks # bytes start blk last change ... extension1
type t-code .. directory info create date ... extension2

lost+found 8 8192 3 15-Mar-87 2. 4.14 2
Dir 3 d755m 17u 9g -1

TOP 1 96 64 8-May-86 8. 9.53 3
Dir 3 d755m 17u 9g -1

just_a_file 8 7168 4 15-Aug-86 6.10.24 1
Data -5622 644m 17u 9g 7618

FILES shown=3 allocated=3 unallocated=18497
BLOCKS (1024 bytes) used=17 unused=21726

At the top, the listing prints the volume name (hfs11:), and the directory type (HFS). The
numbers following the directory type indicate the access permission for the directory (755), the
owner (17 - the "Pascal" user), and the group (9 - the "Workstation" group).

Note

If you do not have the HFS_DAM installed, an HFS disc will appear
to the workstation as a LIF disc. This is very dangerous since writing
to an HFS disc as if it were a LIF disc will destroy data stored under
the HFS disc.

Two lines are used to list the information for each file in the directory .

• The first of the two lines gives the file name, the size in blocks, the size in bytes, the i-node
number (in place of the start block), the last change date and time, and the number of
links to the file (in the extension 1 field) .

• The second of the two lines gives the type (Dir, Text, etc.), the type-code (numerical value
for the type), the directory info (details below), and type specific data (in the extension2
field) .

The "Directory info" column shows the public access rights and the ownership of the HFS file.
The field is split into three subfields. The first is the mode (as in 644m), the second the user
or owner (as in 17u), and the third the group (as in 9g). If the file is a "special" file such as a
directory, the file mode will begin with a letter (e.g. d for directory). Other letters include p, n,
s, etc. Other than directories, most special files are not supported by the Pascal Workstation
and should not be manipulated. If the t-code indicates a zero (0), the Pascal Workstation
should not be used to manipulate the file, as it is a special file.

3-34 The File System

The access and ownership information for HFS files and directories is given in the form of octal
numbers (numbers of base 8). In the listing above, the two directories, lost+found and TOP,
have access rights defined in the Directory info column by d755m. The "d" shows that this file
is in fact a directory and the octal number is 755. For the file called just_a_file, the access
rights are given by the number 644. For a detailed explanation of these codes and the other
information in the "directory info" column see the Extended directory and Hfs commands in
the "Filer" chapter of this manual.

Extensions
The extension1 and extension2 fields provide system-dependent file information. For files and
directories on HFS discs, extension1 is the number of links. For files appearing only in one
directory, this field contains 1. For a directory, there will always be at least 2 links (i.e. the
second link appears within the directory as a link to itself).

For most files, the extension2 field usually contains -1 unless the file has a Workstation header
(WSheader) .

The File System 3-35

3-36 The File System

The Editor 4
Introduction
This chapter introduces the features of the Workstation Pascal Editor. The Editor enables you
to create, change, store and retrieve text files, which may be either programs or other textual
documents. Like other parts of the system, the Editor has built-in reminders (prompts) and
uses single keystroke commands.

The Editor is a cursor-based screen editor. The cursor, normally shown on the screen as a
underline character, shows where subsequent characters will be inserted into the text. You can
rapidly access any part of the text file by moving the cursor to the desired location.

The programs and documents created by the Editor are usually stored as text (.TEXT - suffix)
files, but can also be stored as ASCII (.ASC - suffix), HP-UX compatible text files (.UX - suffix)
or data (no suffix) files.

This chapter has four main sections.

• The first two sections, "Entering the Editor" and "A Sample Editor Session", demonstrate
how to enter and use the Editor by leading you through writing a short Pascal program.

• The next section, "A Closer Look", presents more detailed information about the Editor.

• The last section, "Editor Commands", contains an overview or summary of all the Ed
itor commands, a glossary of terms, and a semantic and syntactic description of each
command, in alphabetical order.

Once familiar with the Editor, you can use the overview/summary of the Editor commands for
quick reference.

Note that this manual assumes that you are using an HP 46020 or 46021 style of keyboard. If
you are using one of the 98203 style keyboards, the Editor's prompt line will be slightly different.
It is also assumed that your screen is 80 columns by 24 lines. Other size displays may cause the
text to appear slightly different from what is shown here.

The Editor 4-1

Entering the Editor
It is assumed that the Pascal System is already "up and running" The following prompt should
appear on the top line of your screen:

Command: Compiler Editor Filer Initialize Librarian Run eXecute Version?

(If the screen does not display this prompt, refer to the Pascal User's Guide for loading instruc
tions.)

This prompt tells you that you are at the system's Main Command Level - the level from
which 'all the Pascal subsystems (Compiler, Editor, Filer, etc.) are entered. Entry into any
subsystem is accomplished by typing the uppercase character of the name of the subsystem you
wish to enter.

Note

If you have a system workfile (created in a previous Editor session or
in the Filer subsystem), first go into the Filer and use the Save, New,
and Quit commands to store and release the workfile. Then exit the
Filer subsystem.

When the system is delivered to you, the Editor is on the disc labeled "ACCESS:" and is named:

ACCESS:EDITOR

Now press the m key. You can use uppercase or lowercase: the computer treats both exactly
the same while at the Main Command Level. If the Editor code file is on-line, the screen clears
and displays:

(Loading 'ACCESS: EDITOR'

If you copy the Editor code file to another disc, which has a different volume name, you should
tell the operating system where to look for the Editor. (See the What command in Chapter 1)

4-2 The Editor

Creating a Text File
When you enter the Editor, the following prompt is displayed.

Editor [Rev. 3.2 15-Feb-87]

Copyright 1987 Hewlett-Packard Company.
All rights reserved.

No workfile found.
File? «ret> for new file, <stop> exits)

This tells you that you are entering the Editor without a system workfile and requests a file
name. Respond by pressing the I Return 1 or I ENTER 1 key to instruct the Editor to create a new text
file for your use. The file will be named later when leaving the Editor.

The Editor can also be directly entered from the Compiler subsystem. This IS covered In
Compiler chapter.

The Editor Prompt
The screen clears again and displays the Editor prompt on the top line:

>Edit: Adjst Cpy Dlete Find Insrt Jmp Rplace Quit Xchng Zap?

You are now in the Pascal Editor with a new file. The Editor prompt shows the most common
commands used in the Editor. This is called a "prompt" because it prompts you to take some
action, i.e., give the Editor a command.

The first character of the prompt line (> or <) indicates the direction of cursor movement (i.e.,
the way the cursor moves when I Tab I, I Return lor I Enter 1 keys, or the space bar is pressed). When
the> character is displayed, the cursor will move "forward" in the text. Similarly, when the <
character is displayed, the cursor will move "backwards" in text. Pressing 0,0, or GJ will
set forward direction, while 8], 0, or 0 will set reverse direction.

The character indicates the direction that searches take place in the Find and Replace com
mands, also the Delete and Page commands.

The prompt line shows a partial list of commands available in the Editor. To see the rest of the
commands, type [IJ. The screen shows the Editor's alternate prompt:

>Edit: Margin Page Set environment Verify? [3.2]

This alternate prompt also shows the revision number of the Editor enclosed in brackets. Type
[IJ again and the main Editor prompt reappears.

The Editor 4-3

All of the commands in the Editor are initiated by typing a single key corresponding to the
first character of the command shown in the Editor prompt. Again it does not matter whether
the character is uppercase or lowercase - the Editor accepts either one. Now that you are in
the Editor and understand something about the Editor prompt, let us begin the sample Editor
session.

A Sample Editor Session
Feel free to skim this section if you are familiar with screen-oriented editors. You may even
prefer to tryout the Editor commands on your own. If you choose to experiment with the
Editor commands, do not use any files you cannot afford to lose.

If you are still reading, step through the following examples on your machine. Doing the
examples will help you learn faster than just reading about them.

Creating Text
The most direct way to generate text is with the Insert command. Initiate the Insert command
by pressing [I) and the screen responds with the following prompt:

>Insert: Text <bs>, <clr In> [<sel> accepts, <esc> escapes]

While in the Insert command, any of the regular character-entry keys (the main keyboard) or
the numeric pad keys (on the right) may be used. With a few exceptions, using the key clusters
on the top of your keyboard or I CTRL 1 key sequences is not advised. (Most of these keys generate
a question mark "?" while in the Insert command. Others have results which may surprise you).
Use I CTRL 1 key sequences only if you are working with Stream files. (See Chapter 1 for details
on the use of Stream files). The exceptions are the cursor control keys, I Back space I, I Clear line I,
ANY CHAR and DUMP ALPHA (which sends a copy of the screen image to your printer).

Note

The Editor does not permit control characters to be placed in the text
file. Attempting to edit a file containing control characters (created
by some other system) can lead to unexpected results.

Let's start typing in a Pascal program now. Press ~ or I Enter 1 and then type the text shown
in the display below. If you make a mistake, use I Back space 1 to move the cursor backward and
then type the correction. Prompts in the Editor always show actual key options in the form of
a key abbreviation shown between < and >. For example, <sel> indicates the I Select 1 key (on HP
46020 and 46021 keyboards), while <exe> indicates the I EXECUTE 1 key (on 98203 keyboards).

The word "binary" is misspelled in the display; leave it that way for now.

4-4 The Editor

Notice that when you press I Return 1 or I Enter 1 after typing the first line, the cursor returns to
column one (the column that the P in PROGRAM is in). To type the second line, use I Tab 1 to
indent the comment enclosed in the braces. The next time you press I Return 1 or I Enter 1 the cursor
automatically returns to the indented position created in the previous line. This indenting
feature proves handy when writing Pascal programs as it adds visual clarity to the code.

>Insert: Text <bs>, <clr In> [<sel> accepts, <esc> escapes]

PROGRAM Binery_search(INPUT,OUTPUT);
{This program does a binery search
on an array of characters to find a
"key" character input by the user.}

The display above shows what your screen should look like after the first few lines are typed. To
move the cursor back to column one for the next line, press and hold I Back space I. The keyboard
automatically "repeats" any key that remains pressed.

>Insert: Text <bs>, <clr In> [<sel> accepts, <esc> escapes]

PROGRAM Binery_search(INPUT,OUTPUT);
{This program does a binery search
on an array of characters to find a
"key" character input by the user.}

VAR done
key

alpha
loop, top, mid, btm

BOOLEAN;
CHAR;
ARRAY [1 .. 26] of CHAR;
INTEGER;

When your screen looks like the display above, press I Select 1 (EXECUTE) to complete the insertion.
The screen displays the Editor prompt along with the text you inserted. Next we will save this
program fragment on the disc and then return to create more text.

Storing your File and Returning to the Editor
This section shows how to save a file on a disc and then return to the Editor. It is a good idea
to do this periodically when writing and editing large text files. Although power outages occur
infrequently, it can be devastating to lose an entire session of work. Occasional updating of your
file secures your work against this possibility.

Press [QJ to initiate the Quit command. The screen clears and displays:

>Quit:
Update the workfile and leave
Exit without updating
Return to the editor without updating
Write to a file name and return

The Editor 4-5

Before typing anything, find the disc labeled DOC: and insert it in your disc drive in place of the
disc labeled ACCESS:. Now press [}Y] and the screen displays:

>Quit:
Name of output file «ent> to return) -->

The prompt is requesting a file specification. Respond by typing DOC: BINSEARCH followed by
I Return 1 or I Enter I. The screen now displays:

>Quit:
Writing ..
Your file is 275 bytes long.
Exit from or Return to the editor?

The exact number of bytes may differ with what is indicated in the line above.

Now press [KJ. The screen fills with your text and the cursor is positioned where it was when
you initiated the Quit command.

Copying Text from Other Files
The Insert command is the most common way of creating text but other commands are available.
The Copy command allows you to copy specified text from another file.

Qn the DOC: disc is a text file called BINDOC. TEXT which you are going to copy into your current
text file. Position the cursor by pressing QJ m . This command sequence moves the cursor to
the end of your text file. (More on the Jump command later). Now press wand your screen
displays:

(>Copy: Buffer File <esc>

The Buffer option is demonstrated along with the Delete command later in this section. Now
press m (to Copy from a File) and the new prompt appears:

(>Copy: File [marker. marker 1 ?

The system is requesting a file specification. Type DOC: BINDOC and press I Return 1 or I Enter I. The
. TEXT part of the file name does not have to be typed; it is automatically supplied by the Editor.
The volume name , DOC:, had to be specified because otherwise the Editor would look for the
file on ACCESS:, the default volume. See Chapter 2 for further information on the system default
volume.

4-6 The Editor

The entire file DOC: BINDOC . TEXT has been copied into your current text file in memory. The copy
always occurs at the cursor position. This is why you moved the cursor to the end of the file
before the copy. The screen now appears as follows:

PROGRAM Binery_search(INPUT.OUTPUT);
{This program does a binery search
on an array of characters to find a
"key" character input by the user.}

VAR done
key

alpha
loop. top. mid. btm

BEGIN {Binery_search}

BOOLEAN;
CHAR;
ARRAY [1 .. 26] of CHAR;
INTEGER;

done:=FALSE; btm:=O; top:=26; {initialize}
FOR loop:=1 TO top DO alpha[loop] :=CHR(loop+64);
WRITELN('Type uppercase character for a key');
READ(key); WRITELN;
WHILE NOT done DO
BEGIN {This is the actual binery search}
mid:= ROUND((top + btm)/2);

IF key = alpha[mid] THEN done:= TRUE
ELSE IF key < alpha[mid] THEN top:=mid
ELSE btm:=mid;
IF top=btm THEN BEGIN

To Copy only part of a file, a beginning and ending marker are specified. These markers must
have been previously set in the text file being copied. (See the Set command in the "Editor
Commands" section of this chapter for further information on setting markers). Now that you
have your screen full of text, let's look at the general pattern of leaving an Editor command
and some ways to move the cursor.

Confirming or Aborting Commands
The I Select 1 (EXECUTE) key tells the Editor to accept all of the insertions or changes you have
made in the text file. The cursor remains where it was when you pressed I Select I. Conversely,
pressing I ESC 1 or holding down the I Shift 1 key while pressing I Select 1 (shown as I Shift H Select I) tells
the Editor to ignore all of the changes made since initiating the command and leaves the cursor
where it was when the command was initiated. Both key sequences (I Select 1 and I Shift H Select I)
return you to the main Editor prompt.

The changes are stored in the computer's internal read/write memory but are not made perma
nent on a mass storage medium until you exit the Editor and use one of the options that writes
the information to a file.

Not all commands let you abort changes with I Shift H Select 1 and not all require I Select 1 for accep
tance. For instance, the Copy from buffer command is accomplished by simply pressing m
[]]. The text is copied and the Editor's prompt appears with no other action on your part.
The specifics of how each command uses these keys is discussed as each command is presented.

The Editor 4-7

Moving the Cursor
Now that you have some text on the screen, experiment with positioning the cursor. The four
arrow keys, the I Return lor I Enter I key, the I Tab I key, the space bar and the cursor wheel (also called
the knob) all move the cursor.

Note

The cursor wheel is optional on some Series 300 computer keyboards.
If you have one, you will need to execute the HPHIL and MOUSE
modules before the wheel will operate correctly.

The wheel normally moves the cursor left or right depending on which direction you turn it. If
you turn the wheel while holding down the I Shift I key (or after pressing the knob button), the
cursor moves up or down while remaining in the same column position.

An integer in the range 1 to 9999 can be used as a "repeat factor" before all of the cursor control
keys and some of the Editor commands. (Repeat factors must be in the range 1 to 4095 for use
with the I Tab I key). The result will be the same as if you had pressed the key that many times.
For instance, typing the number 42 and then pressing the space bar ,causes the cursor to move
42 characters in the current direction. The 0 key can also be used as a repeat factor; it means
"as many as possible". For example, pressing 0, [~] moves the cursor to the end of the file
regardless of the length of the file.

The Jump Command offers another means of cursor positioning. Press QJ and the top of your
screen displays:

>JUMP: Begin End Marker <esc>

PROGRAM Binery_search(INPUT,OUTPUT);
{This prog~am does a binery search
on an array of characters to find a
"key" character input by the user.}

Typing [[J causes the cursor to jump to the beginning of the file, in this case directly above th~
P in PROGRAM, and the Editor's main prompt reappears. Now press QJ then wand the cursor
moves to the end of your text file as shown in this partial display:

IF key = alpha[mid] THEN done:= TRUE
ELSE IF key < alpha[mid] THEN top:=mid
ELSE btm:=mid~
IF top=btm THEN BEGIN

END;
IF mid > 0 THEN

done:=TRUE; mid:= -1;
END;

WRITELN('Key -',key,'- is in position ',mid:2)
ELSE WRITELN('key - ',key,' - was not found');

END.

4-8 The Editor

You can also Jump to previously set markers (see the Set command in the "Editor Commands"
section) by typing QJ [ID followed by a marker name.

The beginning and end of a file are simply the first and last characters in the current text file.
In this case, the position directly above the P in PROGRAM and the space following the final word
END. are the first and last characters, respectively. The Editor adjusts these internal pointers
automatically as the text file is changed.

The Page command lets you move through a file one screen (that is 23, 24, or 47 lines
depending on the dispay size) at a time. It is roughly equivalent to using a repeat factor of 23,
23, or 47 with (]J or CD depending on the direction shown in the prompt. If the cursor
is not at the end of the file, press 0 0. N ow type < to change from the forward to the
backward direction and press CEJ (for Page). The top half of your screen now looks like:

<Edit: Adjst Cpy Dlete Find Insrt Jmp Rplace Quit Xchng Zap?

PROGRAM Binery_search(INPUT.OUTPUT);
{This program does a binery search
on an array of characters to find a
"key" character input by the user.}

VAR done
key

alpha
loop. top. mid. btm

BEGIN {Binery_search}

BOOLEAN;
CHAR;
ARRAY [1 .. 26] of CHAR;
INTEGER;

done:=FALSE; btm:=O; top:=26; {initialize}

Notice that the cursor is positioned near the VAR declaration in the program which is 23 lines
from the end of the file. Since the cursor movement direction is still backward, type> to change
it to forward. The Page command is especially handy when moving through a large file.

Deleting Text
Now position the cursor under the first brace ({) character on the second line of the program
and press []]. This initiates the Delete command. Moving the cursor removes text from the
file. To restore the text, use any cursor control key which moves the cursor back over the area
where text has been removed. The I Back space I key and the cursor wheel work well for this.

Upon pressing []], the screen displays:

>Delete < > <Moving commands> [<sel> delete. <esc> aborts]

PROGRAM Binery_search(INPUT.OUTPUT);
{This program does a binery search
on an array of characters to find a
"key" character input by the user.}

VAR done
key

alpha
loop. top. mid. btm

BOOLEAN;
CHAR;
ARRAY [1 .. 26] of CHAR;
INTEGER;

The Editor 4-9

First make sure the direction is forward (» as shown above and then type 4 followed by I Return 1
or I Enter I. This uses a repeat factor and moves the cursor 4 lines, deleting text as it goes. (The
deleted text is temporarily stored in the copy buffer). Now press I Select 1 (EXECUTE) and the
screen displays:

>Edit: Adjst Cpy Dlete Find Insrt Jmp Rplace Quit Xchng Zap?

PROGRAM Binery_search(INPUT.OUTPUT);
VAR done BOOLEAN;

key CHAR;
alpha ARRAY [1 .. 26] of CHAR;

loop. top. mid. btm INTEGER;

Before typing any other keys or moving the cursor, press m then [[]. This takes the informa
tion stored in the copy buffer and copies it into the text file beginning at the current position of
the cursor. Since the Delete command just filled the buffer with the text that was removed, the
Copy from Buffer command simply returns the screen to its state before the Delete command
was entered.

The top of the screen should now display:

>Edit: Adjst Cpy Dlete Find Insrt Jmp Rplace Quit Xchng Zap?

PROGRAM Binery_search(INPUT.OUTPUT);
{This program does a binery search
on an array of characters to find a
"key" character input by the user.}

VAR done
key

alpha
loop. top. mid. btm

Recovering Deleted Text

BOOLEAN;
CHAR;
ARRAY [1 .. 26] of CHAR;
INTEGER;

As the example shows, even if you complete the Delete command using I Select 1 (EXECUTE) instead
of I Shift H Select I, you can still change your mind and recover that text using the Copy (from buffer)
command. Take care not to depend on this too heavily as there are other commands which alter
the contents of the buffer. None of the cursor movements alter the buffer in any way.

4-10 The Editor

Moving and Duplicating Text
The sequence of the Delete and Copy (from buffer) commands provide a convenient way of
moving text to different parts of the file. For instance, in the operation just completed above,
any of the cursor control keys could have been used to reposition the cursor after the deletion
occurred and before the Copy from the buffer was executed.

The buffer is "filled" with the text affected by the Delete command and by the Insert and Zap
commands. Doing a Copy from buffer sequence does not change the contents of the buffer. This
feature lets you to copy the same text in numerous places.

Whether the Delete command was completed with the I Select I (EXECUTE) or I Shift H Select I sequence
makes no difference to the copy buffer. What this means in practical terms is that the Delete
command allows you to fill the buffer without affecting your original text.

So if you want to duplicate the text instead of moving it to a different location, use the sequence:

1. Press [[J to initiate the Delete command.

2. Cause some cursor movement. After pressing [[J, moving the cursor deletes text and
stores it in the copy buffer.

3. Press I Shift H Select I to recover the text that was just deleted.

4. Reposition the cursor to where you want to duplicate the text.

5. Press W []] to duplicate the text at the new cursor position.

Changing and Altering Text
Mistakes or necessary changes in a program or text file are not always obvious when creating
text. The Editor features commands which allow you to go back and make changes when needed.
These are the eXchange and Replace commands and the Delete/Insert command sequence.
These will be demonstrated by making corrections to the sample program text.

Press m []] to move the cursor to the beginning of the file and then type m and press [BJ
to initiate the Replace command. The prompt at the top of the screen appears:

(>Rep1[5]: L V <targ><sub>=>

Press IT] and [YJ to tell the Editor that you are going to give it a Literal string and that you
want to operate in the Verify mode. A Literal string may occur as a word or as part of a word.
The alternative is a Token string which must occur as a word. The Verify mode makes the
changes one at a time after asking you if you want this occurrence replaced. Now type:

/inery//inary/

The slashes were used to delimit the target and substitution strings; however, any non
alphanumeric or non-control characters can be used as delimiters. (In fact, that is necessary
when the slash is part of the search string or replacement string.) Notice also that "inery" is
specified instead of "binery". This is because two occurrences of the word are "Binery". The
two words are unequal.

The Editor 4-11

After you type the final delimiter, the screen clears and displays:

>Repl[5]: L V <targ><sub>=>

PROGRAM Binery_search(INPUT,OUTPUT);
{This program does a binery search
on an array of characters to find a
"key" character input by the user.}

The cursor is positioned behind the first occurrence of the string inery. Now press [[] and
watch what happens:

>Repl[4]: <sh_exc> aborts, R replaces, ' , doesn't

PROGRAM Binary_search(INPUT,OUTPUT);
{This program does a binery search
on an array of characters to find a
"key" character input by the user.}

VAR done
key

alpha
loop, top, mid, btm

BEGIN {Binery_search}

BOOLEAN;
CHAR;
ARRAY [1 .. 26] of CHAR;
INTEGER;

done:=FALSE; btm:=O; top:=26; {initialize}
FOR loop:=1 TO top DO alpha [loop] :=CHR(loop+64);
WRITELN('Type uppercase character for a key');
READ(key); WRITELN;
WHILE NOT done DO
BEGIN {This is the actual binery search}
mid:= ROUND«top + btm)/2);

IF key = alpha[mid] THEN done:= TRUE
ELSE IF key < alpha[mid] THEN top:=mid
ELSE btm:=mid;
IF top=btm THEN BEGIN

4-12 The Editor

The first string inery has been replaced with inary, the cursor is now positioned behind the
second occurrence of the target string and the prompt shows that you can make four more
replacements. Press the space bar (represented by J J in the prompt) to leave the string
unchanged and the screen now displays:

>Repl[3]: <sh_exc> aborts, R replaces, J , doesn't

PROGRAM Binary_search(INPUT,OUTPUT);
{This program does a binery search
on an array of characters to find a
"key" character input by the user.}

VAR done
key

alpha
loop, top, mid, btm

BEGIN {Binery_search}

BOOLEAN;
CHAR;
ARRAY [1 .. 26] of CHAR;
INTEGER;

done:=FALSE; btm:=O; top:=26; {initialize}
FOR loop:=l TO top DO alpha[loop]:=CHR(loop+64);
WRITELN('Type uppercase character for a key');
READ(key); WRITELN;
WHILE NOT done DO
BEGIN {This is the actual binery search}

The Editor 4-13

The cursor is now behind the occurrence of Binery following the BEGIN statement. Press [[] to
replace this one and then press it again to replace the last occurrence of binery. The screen
now displays:

>ERROR: Pattern not found. <space> continues.

PROGRAM Binary_search(INPUT,OUTPUT);
{This program does a binery search
on an array of characters to find a
"key" character input by the user.}

VAR done
key

alpha
lOOp, top, mid, btm

BEGIN {Binary_search}

BOOLEAN;
CHAR;
ARRAY [1 .. 26] of CHAR;
INTEGER;

done:=FALSE; btm:=O; top:=26; {initialize}
FOR loop:=l TO top DO alpha [loop] :=CHR(loop+64);
WRITELN('Type uppercase character for a key');
READ(key); WRITELN;
WHILE NOT done DO
BEGIN {This is the actual binery search}
mid:= ROUND«top + btm)/2);

IF key = alpha[mid] THEN done:= TRUE
ELSE IF key < alpha[mid] THEN top:=mid
ELSE btm:=mid;
IF top=btm THEN BEGIN

The prompt at the top of the screen tells you that the Editor could not find any more occurrences
of the specified string in the file. The cursor is positioned at the final occurrence of the string
but it has not yet been changed. Press the space bar and the Editor prompt reappears, the final
occurrence of the string gets replaced and the cursor remains at the same place on the screen.

To correct the spelling of binery (which was intentionally skipped), use the eXchange command.
Move the cursor to the e in binery in the second line of your program. Now press wand the
screen shows:

>Xchnge: Text <bs> <esc> aborts <sel> accepts

PROGRAM Binary_search(INPUT,OUTPUT);
{This program does a binery search
on an array of characters to find a
"key" character input by the user.}

Type the letter a and then press I Select I (EXECUTE). Pressing I Select I confirms changes made in
eXchange and returns the Editor prompt. That's all there is to the eXchange command.

You should always position the cursor before initiating eXchange because this command cannot
cross line boundaries; you can only make eXchanges on the line where the cursor is located and
only after the cursor.

4-14 The Editor

The eXchange command is handy but the combination of the Insert and Delete commands
is often a more effective way to change text. For example, to clarify the program by adding
comments, position the cursor at the comment following the second BEGIN, press [[], and press
I Tab 1 once. The screen displays:

>Delete: < ~ <Moving commands> [<sel> deletes. <esc> aborts]

PROGRAM Binary~search(INPUT.OUTPUT);
{This program does a binary search
on an array of characters to find a
"key" character input by the user.}

VAR done
key

alpha
loop. top. mid. btm

BEGIN {Binary_search}

BOOLEAN;
CHAR;
ARRAY [1 .. 26] of CHAR;
INTEGER;

done:=FALSE; btm:=O; top:=26; {initialize}
FOR loop:=1 TO top DO alpha [loop] :=CHR(loop+64);
WRITELN('Type uppercase character for a key');
READ(key); WRITELN;
WHILE NOT done DO
BEGIN { the actual binary search}
mid:= ROUND((top + btm)/2);

IF key = alpha[mid] THEN done:= TRUE
ELSE IF key < alpha[mid] THEN top:=mid
ELSE btm:=mid;
IF top=btm THEN BEGIN

U sing a combination of I Tab 1 and the space bar, delete everything between the two brackets and
press I Select I. Part of the screen looks like:

WHILE NOT done DO
BEGIN {}

mid:= ROUND((top + btm)/2);

The Editor 4-15

Press OJ to initiate the Insert command and notice how a space is opened between the brackets.
Insertions always occur directly in front of the cursor's position when Insert is initiated. Now
type in the text shown below and then press I Select 1 to complete the insertion.

WHILE NOT done DO
BEGIN {This routine compares key to

middle. A new top or bottom is chosen
and a new middle computed. The loop
continues until either key = middle or
the array is exhausted.}

mid:= ROUND((top + btm)/2);

Formatting Text
The Pascal Editor allows you to format text with the Adjust and Margin commands. Text is
also formatted by inserting or deleting blanks where needed.

The Editor's Adjust command provides a means of shifting the starting column of a line of
text left or right in the file. This command helps make your Pascal programs and other text
more readable. To increase the clarity of our sample program, move the cursor to the word
mid following the second BEGIN statement in the program. Press m and the Adjust prompt
appears:

Adjust: Ljust Rjust Center <arrow keys> [<sel> to leave]

Experiment with the Adjust command by pressing [TI, []], or []]. These options move text
to the left, right, or center. The values used to shift the text are the Left and Right margins of
the environment (discussed below). Any of the cursor arrow keys as well as I Back space 1 and the
cursor wheel can be used to Adjust text. Now return the line to its original position and press
EXECUTE. Repeat factors are available for use with the Adjust command so that many lines of
text can be shifted at one time.

Note

Think twice before using Adjust with large repeat factors. This is
because I Shift H Select I, which usually aborts all changes made by a com
mand, is not available for exiting the Adjust command. Therefore, to
recover the original format of your text, you would have to Adjust it
again.

N ow that the line is in its original place, press m (to initiate Adjust), type rn G (to indent
the text three spaces to the right), and then type m and press [!]. Watch what happens: the
cursor moves down six lines and shifts each line three spaces to the right. Thus, the Adjust
command is useful for indenting entire blocks of text in a Pascal program.

4-16 The Editor

The screen now looks like this:

Adjust: Ljust Rjust Center <arrow keys> [<sel> to leave]

done:=FALSE; btm:=O; top:=26; {initialize}
FOR loop:=1 TO top DO alpha[loop] :=CHR(loop+64);
WRITELN('Type uppercase character for a key');
READ(key); WRITELN;
WHILE NOT done DO
BEGIN {This routine compares key to

END;

middle. A new top or bottom is chosen
and a new middle computed. The loop
continues until either key = middle or
the array is exhausted.}

mid:= ROUND«top + btm)/2);
IF key = alpha[mid] THEN done:= TRUE
ELSE IF key < alpha[mid] THEN top:=mid
ELSE btm:=mid;
IF top=btm THEN BEGIN

done:=TRUE; mid:= -1;
END;

IF mid > 0 THEN
WRITELN('Key -'.key.'- is in position '.mid:2)

ELSE WRITELN('key - '.key.' - was not found');
END.

Press I Select I to terminate the Adjust command. If you wish to make adjustments in other parts
of your text file, exit the Adjust command using I Select I before moving the cursor from one area
to another. Otherwise you may make unwanted adjustments to your text.

The Margin command lets you margin and fill your text according to a predefined "environ
ment". Margin operates on the paragraph where the cursor is located when [ill is pressed. A
paragraph is any text delimited by any combination of blank lines, lines whose first non-blank
character is the "command character" (see the Set environment command in the section "Editor
Commands"), or the beginning or end of a file. The Margin command is executed completely
by pressing [ill; no parameters or options are available.

Entering the Editor without a workfile or a named file (as you did earlier in this session) auto
matically ~ets (or defaults) the environment to the "program" environment. This environment is
optimized for writing programs. When the Editor is entered with either the name of a "TEXT"
type file or a workfile, the environment associated with that file is the current environment.

You can alter the environment at any time using the Set (Environment) command. Once you
hav~ altered or redefined the environment and saved a text file on mass storage, that environment
is stored along with the text file and is used whenever the Editor is entered with that file.

The Editor 4-17

Since you entered the Editor without a file, your current environment is the Editor's "program"
environment (the default supplied by the system). The Filling option of this environment is set
to False (which disables the Margin command) so, if you press [ID, the screen displays:

ERROR: Wrong environment <space> continues.

If Filling had been set True (with Auto-indent False), the Margin command would fill and
Margin your program like this:

PROGRAM Binary_search(INPUT,OUTPUT); {This program does a binary
search on an array of characters to find a "key" character input by
the user.} VAR done: BOOLEAN; key: CHAR; alpha: ARRAY [1 .. 26] of
CHAR; lOOp, top, mid, btm : INTEGER; BEGIN {Binary_search}
done:=FALSE; btm:=O; top:=26; {initialize} FOR loop:=1 TO top DO
alpha[loop] :=CHR(loop+64); WRITELN('Type uppercase character for a
key'); READ(key); WRITELN; WHILE NOT done DO BEGIN {This routine
compares key to middle. A new top or bottom is chosen and a new
middle computed. The loop continues until either key = middle or
the array is exhausted.} mid:= ROUND«top + btm)/2); IF key =
alpha[mid] THEN done:= TRUE ELSE IF key < alpha[mid] THEN top:=mid
ELSE btm:=mid; IF top=btm THEN BEGIN done:=TRUE; mid:= -1; END;
END; IF mid> 0 THEN WRITELN('Key -',key,'- is in position ',mid:2)
ELSE WRITELN('key - ',key,' - was not found'); END.

The previous display gives you some idea of how important it is to know what your environment
settings are before using the Margin command. The only recovery from this operation is to use
a combination of the Adjust and Insert commands to rebuild the text. If you have a copy of
the original file available, you can exit the Editor without updating the file and reenter it with
the old copy.

Note

The Insert command has effects similar to those of the Margin com
mand when the Filling option of the environment is set to True and
Auto-indent is False. Any time you do an Insert and confirm the
operation by pressing I Select I, both the inserted text and all the text
that follows the insertion in that same paragraph are automatically
margined.

The Margin takes place according to the Left and Right margin settings of the environment. If
you begin an ins"ertion and are not sure of the environment settings, press I Shift H Select 1 to abort
the Insert command. This way, even if Filling is True, your text will not be margined. Then
press m []] to look at the environment settings.

4-18 The Editor

When writing programs, your use of the environment and the Margin command will probably
be more limited than when writing other kinds of text. To see how the program environment is
configured, press rn m (for Set Environment). The screen displays the current environment:

>Environment: {options} <sel> or <sp> leaves
Auto indent True
Filling False
Left margin 0
Right margin 78
Para margin 5
Command ch
Token def True
Ignore case False
Zap markers
275 bytes used, 348909 available.

Patterns:
<target>= 'inery', <subst>= 'inary'

Markers:
TOP FIX

File DOC:BINSEARCH.TEXT
Date Created: 10-11-82 Last Used: 1-11-87

Press the space bar to exit the environment display and the Editor prompt reappears along with
your text. The cursor is at the position it was when the Set command was entered.

Exiting the Editor and Saving the File
Now that you have finished writing and editing the program, exit the Editor by pressing [[]
(for Quit). Make sure that the disc named DOC: is in the same disc drive you have been using.
The screen displays:

>Quit:
Update the workfile and leave
Exit without updating
Return to the editor without updating
Write to a file name and return
Save as file new file DOC:BINSEARCH.TEXT
Overwrite as file DOC:BINSEARCH.TEXT

Respond by pressing rn for Save. If you are on an SRM system, you would use the Overwrite
option. The Overwrite option allows all duplicate links and passwords to a text file to remain
intact after a file has been modified. More information on these options is given in the command
reference under the Quit command.

>Quit:
Writing ..
Your file is 1009 bytes long.
Exit from or Return to the editor?

The Editor 4-19

Your program text has been written to your disc and is accessible under the name BINSEARCH. TEXT
on the volume DOC:.

If you are creating a file for use with another language system, such as BASIC or HPL, the file
should be stored as an ASCII type file on a disc with a LIF directory. To accomplish that, use
the Write option and name the file:

DOC:BINSEARCH.ASC

On a LIF directory, the Pascal system codes all the file names that end in a standard suffix.
The coding scheme removes the period, appends the first character of the suffix to the file name,
and pads the file name to ten characters with "_" (underscore characters). This allows you to
specify file names up to 15 characters. They are encoded to the maximum ten characters for
the LIF directory. The file system encodes the above file name to:

BINSEARCHA

In this case, the first character of the suffix is the tenth character so no "_" characters were
added. This coding mechanism is invisible as long as you are using the Pascal system. When you
catalogue your disc with other language systems, the coded version of the file name is observed.

To create a file which HP-UX commands can process (e.g. vi), the file should be created with
a . ux suffix (for example, #11: BINSEARCH. ux). While it is preferable that the file be written to
an HFS disc, HP-UX supports utilities that can access LIF discs and an SRM.

Making a Backup Copy
The most direct way to make a backup copy of your file is to press rn (to return to the Editor)
and then press [QJ (to initiate the Quit command). Each time you Quit the editor, you can
make another copy of the file currently in the Editor.

Press ~ for the Write option, type in a name for your backup copy such as DOC: BINBKP and
press I Return 1 or I Enter I. If you have another disc handy, replace the DOC: volume with it, specify
the name of the new volume along with a file name and press I Return 1 or I Enter I. Remember
the nine character limit for file names on LIF discs. After pressing I Return lor I Enter I, the screen
displays:

>Quit:
Writing ..
Your file is 1009 bytes long.
Exit from or Return to the editor?

There are now two identical files on your disc(s) of the binary search program. Now press [TI
(for the Exit option) and you will be returned to the Main Command Prompt:

Command: Compiler Editor Filer Initialize Librarian Run eXecute Version?

All the Editor commands covered here are explained in further detail in the "Editor Commands"
section. Less commonly used commands not presented in this sample session can also be found
there.

4-20 The Editor

A Closer Look
This section contains details about how the Editor works and includes information on the cursor,
the screen, memory and file sizes and how the Editor allocates space for text files on a storage
medium. The section also presents information on using workfiles in the Editor, on Stream files
and on I/O errors that may occur when entering and exiting the Editor.

The Cursor
The cursor (the underline symbol on the screen) is a reference point for all of the Editor's com
mands. The action associated with most commands occurs at the cursor position. Commands
that perform actions on lines or paragraphs act upon the line or paragraph where the cursor is
currently located.

You have complete control over the cursor through the arrow keys, the I Tab I and I Return lor I Enter I
keys, the space bar, the mouse, and the cursor wheel. (The cursor wheel is also called the knob).
The cursor's position on the screen determines where the Editor will act upon the text.

The Anchor
You can also use the Zap command to delete text. With this command, all text between the
current cursor position and the "anchor" is deleted. The anchor is set at the position of the
latest Adjust, Find, Insert, or Replace command. (You can also find the position by pressing

0·)

If more than a 80 characters of text are to be deleted, you will be warned as follows: WARNING!
Zap more than 80 characters? (YIN) Press m to confirm the Zap operation; press 00 (or
space bar, etc.) to abort the Zap.

The Screen as a Window into a File
Text files are often too large to be shown all at once on the computer's screen (CRT), so the
Editor uses the screen as a "window" which shows a portion of a file. Depending on which
machine you have, your CRT can display lines of text that are either 49, 79, or 127" characters
long while in the Editor. If a line's length is greater than your display area, the Editor puts an
exclamation point (!) in the last column to inform you that the entire line is not shown.

The screen is capable of displaying more lines than the Editor uses. The top line is reserved for
the system's prompt and the bottom line is reserved for the "type ahead" line. The type ahead
line displays any characters input from the keyboard which have not yet been processed by the
system. One other item is displayed in the lower right corner of the screen. This is a system
status display or "run light." The System or User status of the softkeys is next to the run light.

The screen generally displays the cursor and the text surrounding it. (The Set environment
command is an exception to this). This means that you can move the window up and down
through your text file by moving the cursor. Whether the text is on or off the screen, it resides
in the computer's read/write memory and is easily accessed using either the cursor control
keys or the various editing commands which reposition the window. When an Editor command
operates on a portion of text it displays that text on the screen.

The Editor 4-21

Memory and File Sizes
When the Editor is entered, the current text file is loaded into the computer's read/write
memory. All changes that occur to a text file (including text creation) take place in this
memory and only become permanent when the Editor is exited and the contents of the text file
are written from memory to mass storage (such as a disc).

The maximum size of the text files that can be accessed or created by the Editor depend on
the memory configuration of your system. This size can easily be determined using the Set
(environment) command. The two environment headings, "bytes used" and "available" , should
be added together. The sum equals the maximum size (in bytes) of the text files which can be
handled by the Editor.

If your text file approaches the maximum size while you are doing an insertion, the Editor
displays the following message:

>ERROR: Finish the insertion <space> continues.

This tells you that you are nearing the Editor's memory limits. If, after finishing the insertion,
you attempt to initiate the Insert command again, the Editor informs you:

>ERROR: No room to insert. <space> continues.

Here is procedure to help you work around the Editor memory limits (whatever they may be
on your machine):

1. Set a marker toward the end of your original file (to be used later).

2. Quit the Editor, Save the original file, and Exit the Editor completely (in order to re-enter
with a new file).

3. Re-enter the Editor and press I Return 1 or I Enter 1 (to create a new file).

4. Using the Copy from file command, specify your original file and your marker as follows:
FILENAME [MARK.] and press I Return 1 or I Enter I. (The name of your file and marker will be
different; this just shows you the general form.) Notice that a second marker was not
specified so that the copy takes place from the marker's location to the end of the original
file.

5. Now, press QJ then IT] (to Jump to the end of your new file).

6. Press OJ (to initiate the Insert command).

Now you can continue inserting your text in your new file without too much loss of continuity.
You may want to go back to your original file and delete the text that was copied into your new
file so that it will not exist in both files.

4-22 The Editor

Structure of Text Files
The Editor can read and write four types of files. The predominant file type is TEXT. The
others are DATA, Hp-ux (i.e. HP-UX compatible), and ASCII. TEXT files contain ASCII
characters and are structured in a particular way.

In every TEXT type file, the first two blocks (or 1024 bytes) are reserved for information about
the environment settings, the locations of markers in the file and other information the Editor
needs to work with that file. Since the Editor allocates mass storage in two block increments,
TEXT files always contain an even number of blocks. Also, because the Editor reserves the first
two blocks for file information, a file with only a single character will take up 4 blocks (2048
bytes) of storage space on a mass storage medium.

It is possible to create a text file that is of type DATA (not of type TEXT). To do that, Quit
the Editor, select the Write option, and specify a file name followed by a period at the end of
the file name. The Editor does not append . TEXT to the file name, and the file is stored as type
DATA. (Note that the environment information is lost in this case.) See the Filer chapter for
further information on file types.

If you want to access a DATA file with the Editor, you must specify the file name followed by
a period when entering the Editor. If you do not use the trailing period, the Editor appends
. TEXT to the name you type in and looks for a file with that name in the specified (or default)
volume.

For example, suppose when exiting the Editor you answer the prompt for a file name with DUX.

(a name ending with a period). The Editor saves the file with the name DUX (it strips off the
period) and does not append the. TEXT suffix. If you enter the Editor and want that file, you
must specify DUX. (with trailing period). If you instead specify DUX (i.e., leave out the period),
the Editor appends . TEXT to the name you typed and looks for a file with the name DUX. TEXT.

It may even find a file with that name, but it will be a different file than the one saved by
specifying DUX.. This also applies to HP -UX com pati ble files (. ux suffix).

You can also create a LIF ASCII file by appending .ASC to the file name. ASCII files are
created by writing to a file whose name ends in the suffix:

.ASC

ASCII files are structured differently. ASCII files on LIF discs are compatible with the BASIC
and HPL language systems that run on your computer. When writing ASCII files, the Editor's
environment information is also lost.

Finally, you can also create an Hp-ux type file by appending. UX to the file name. Hp-ux files
are created by writing to a file whose name ends in the suffix:

.UX

Hp-ux files are structured differently. They are compatible with the BASIC and Series 300 HP
UX 5.1 and later Workstations. When writing Hp-ux files, the Editor's environment information
is also lost.

The Editor 4-23

Using Workfiles in the Editor
A workfile in the Editor is used as a "scratch pad" version of a text file. The workfile is useful
because it is the default file in the Editor (as well as in many of the Pascal subsystems). The
workfile is stored on the current system volume (usually a disc). The File System chapter
contains information about using workfiles in all the subsystems; only Editor-related workfiles
are covered here.

There are two ways to enter the Editor: from, the Main Command Level or from the Compiler
subsystem (after the Compiler finds an error in the text file it is compiling). When entering
from the Compiler, the text file being used is automatically read in. When entering the Editor
from the main level, the system automatically looks for a workfile and, if it finds one, reads
the contents of the file into the computer's memory. If the Editor does not find a workfile, it
prompts you for a file name.

Exiting the Editor (using the Quit command) gives you the option of Updating the workfile. If
the Editor was entered with a workfile (or if the Update option was used earlier in the same
editing session), the Editor writes the contents of the text file in memory to the file called
*WORK. TEXT on the system volume. When you are through with all your editing, it is a good
idea to enter the Filer subsystem and Save the workfile.

Stream Files and the ANYCHAR Key
Stream files can be created by the Editor to simulate a "batch" mode in which the computer
executes the commands in the Stream file as if they were coming from the keyboard. The
ANYCHAR key is useful in this regard. It can be used to generate characters which may not
otherwise be attainable by regular keystrokes. For further information on the ANYCHAR key
and Stream files, see the Pascal User's Guide.

I/O Errors (Entering and Exiting the Editor)
There are two general types of errors that can occur when entering the Editor. The first type of
error is generated by the system when it cannot find the volume or file which you specified. The
solution to this is to make sure that the proper volume is on-line. This type of error also occurs
when a workfile exists but the Editor cannot find it because the volume containing that file is
no longer on-line. When the Editor encounters this situation, it informs you that the workfile
has been "lost" and then prompts you for a file name.

The second type of error possible while entering the Editor is a memory overflow condition.
This happens if the text file being read was created on a machine with more memory available
than the machine currently being used. Note that this condition is met if you use the Permanent
command (at the Main Command Level -- see the Overview chapter) to load something into
memory that was not there when you created the text file. Your machine now has less available
memory, so the space for text files is smaller.

When a memory overflow occurs while reading in the file, the Editor lets you continue the entry
process even though the entire file has not been read into memory. However, upon exiting
the Editor, the Save option is no longer available. This safeguard keeps you from accidentally
overwriting your original file.

When exiting the Editor, a-number of different errors are possible. If the Editor detects an error
while writing the contents of the text in the computer's memory to a mass storage medium, it
will display a self-explanatory error message.

4-24 The Editor

Editor Commands
This section contains a brief overview and summary of all the Editor commands and a complete
alphabetized description of the syntax and semantics of all the Pascal Editor commands and
options.

Editor Command Summary

Text Modifying Commands
Copy

Delete

Insert

Replace

eXchange

Zap

Insert text from the copy buffer or from an external file in front of the current
cursor location.

Remove text from the current cursor location to the location of the cursor when
I Select I (EXECUTE) is next pressed.

Inserts text in front of the current cursor location.

Replace the specified target string with the specified substitute string.

Replace the text at the cursor with text typed from the keyboard, on a character
by-character basis.

Delete all text betw~en the anchor and the current cursor location. (The anchor
is set at the location of the latest Adjust, Find, Insert, or Replace command.)

Text Formatting Commands
Adjust

Margin

Adjust the column in which a line (or lines) start.

Format the paragraph where the cursor is located to the margins in the current
environment.

Miscellaneous Commands
Quit

Stop
(I Shift ~
CLR I/O)

Set

Verify

Leave the Editor in an orderly manner. Provides various options for saving the
text currently in memory.

Terminate the Editor subsystem.

Modify the environment or set markers in the text.

Update the displayed text to reflect the text stored in memory.

The Editor 4-25

Cursor Keys
I Tab I Move cursor to next tab position (fixed tabs) in the current direction.

I Return I or Move cursor in current direction to the leftmost character in the next line.
I Enter I

Space bar Move cursor one character in the current direction.

Arrow keys Move cursor in the direction specified by the key.

Cursor wheel Moves the cursor like the arrow keys, but provides user controllable scrolling
speed. Without the I Shift I key, works like right and left arrows; with the I Shift I key,
works like the up and down arrows.

Some Series 300 computers have a knob built into the keyboard and some have a
"knob box" that attaches in-line with the keyboard. Both need the MOUSE and
HPHIL modules to be installed before they will operate. The "knob box" has a
switch on the side that toggles the direction of the scroll similar to the I Shift I key
but the switch does not need to be held down.

Cursor Positioning Commands
o The I~ key positions the curSor at the anchor. (The anchor is set at the location

of the latest Adjust, Find, Insert, or Replace command.)

Find

Jump

Page

Position the cursor after the specified target string.

Position the cursor at the beginning, end, or at the specified marker.

Position the cursor ± 1 screenful of text from the current location.

4-26 The Editor

Command Syntax and Semantics
The Editor commands are presented in alphabetical order and described in a variety of formats
to make them more useful to you. Each command's explanation includes: the command's name,
a brief functional description, a diagram showing its legal syntax, the command's prompt (if
any), and a discussion of using the command. Each of the command's options are also covered,
and some descriptions include examples to show the proper use of these options.

Alphabetical Listing of Editor Commands

Adjust
Copy
Delete
Equals (=)
Find
Insert
Jump
Margin
Page
Quit
Replace
Set
Verify
eXchange
Zap

The Editor 4-27

Adjust
Adjust horizontally shifts the starting column of one or more lines of text.

~ ({ EXECUTE))

Item Description Range

repeat factor integer numeric constant 1 thru 9999

Semantics
The Adjust prompt:

>Adjust: Ljust Rjust Center <arrow keys> [<sel> to leave]

The Adjust command provides a means of formatting text and enables you to make text more
readable. Adjust uses the line position of the cursor when the command is entered as a starting
point. A line-oriented command, Adjust lets you shift an entire line of text to the left or right
using the [8, 0, I Back space I, or cursor wheel. Repeat factors can be used with these keys to
shift the text. For example, pressing m [8 results in the line of text shifting 7 spaces to the
right.

4-28 The Editor

Pressing W (for Adjust) and then [TI, []] or IT] moves the line to the left margin, right
margin or centers the line between the two margins. The margins used by these options are the
Right and Left margins currently set in the environment (see Set command).

Typing a repeat factor and IT] or [!] causes that number of lines to be adjusted the same amount
as the accumulated adjustments at that point. The slash U) functions as an infinite repeat factor
and can be used with IT] and [!]. It causes adjustments to be made from the current line to
either the beginning or the end of the text file, respectively. For example, pressing IT] [2] [!]
causes all the text between the current cursor position and the end of the file to be Centered
according to the current margins.

Note

Take care when using large repeat factors or the slash U) character
to adjust text, because the effects of the Adjust command cannot be
aborted. Whatever adjustments are made become permanent unless
the Adjust command is used again.

Adjust also sets the anchor used by the Zap command. Pressing = (the Equals command) moves
the cursor to the position of the last Adjust unless the anchor has been reset by either a Find,
Insert, or Replace command.

Leave the Adjust command by pressing I Select I (EXECUTE). The system stores the adjusted text
in the computer's memory and the Editor prompt reappears.

The Editor 4-29

Copy
Copy inserts text from a specified file or from the copy buffer.

volume
specification

file
specification

~or~

------------..... ----------.((]fiffiJ-~ ((]ffiID-(EXECUTE])

Item

volume name

file name

marker

Semantics
The Copy prompt:

literal

literal

literal

>Copy: Buffer File <esc>

Description Range

any valid volume name

any valid file name (do not en
ter . TEXT suffIx)

1 to 8 ASCII characters, ex
cluding CHR(O) thru CHR(31)
and CHR(127)

The Copy command provides a way of moving or duplicating text in a file and copying text
from another file. These are the Buffer and File options. Pressing m (for Copy) and 00 (for
Buffer) results in the contents of the copy buffer being inserted into your text at the current
cursor position. The screen displays the new text and the Editor prompt.

The copy buffer is filled with the text involved in the most recent Delete, Insert or Zap command.
Its contents are cleared with the Margin command. Margin clears the copy buffer regardless
of the settings in the environment. Doing a Copy (from a File) also clears the copy buffer. A
subsequent Copy from Buffer command generates the message:

>ERROR: Invalid copy. <space> continues.

Any subsequent Delete, Insert or Zap refills the buffer (destroying its previous contents), and
copying from a file clears the contents of the buffer. However, doing a Copy (from Buffer)
does not alter the buffer's contents. Neither do any cursor control movements or commands.
Therefore, you can make multiple copies of the same text in different locations by repeatedly
positioning the cursor and pressing m 00.

4-30 The Editor

To Copy from a file, press IT] m. The screen displays:

>Copy: File [marker ,marker] ?

The Editor is requesting a file specification and two marker names. The vohllue name may be
omitted if the file in question is on the default volume. The volume (specified or default) mllst
be on-line. Specification of the two previously set markers (see Set command) is optional but,
if given, the marker names must be enclosed in square brackets and separated by a comma.
Remember, only TEXT type files have markers.

If luarkers are specified, only the text between those two markers is copied. If no markers
are specified, the entire file is copied. Only one marker has to be specified. If it is the first
marker (i.e., followed by a comma), the text is copied from the marker position to the end of
the specified file. If only the second marker is given (i.e., preceded by a cOl1uua), the text is
copied from the beginning of the specified file to the position of the marker. The copy occurs at
the cursor's position when the Copy comnland was entered~ You can exit the command before
all specifications are complete by clearing the line and pressing I Return 1 or I Enter I.

After typing the appropriate information and pressing I Return 1 or I Enter I, the Editor displays:

>Copy ...

This shows that the specified text is being copied into your current text. When the operation is
complete, the Editor prompt reappears and the screen displays all or part of the text that was
copied.

The Editor 4-31

Delete
Delete removes text from the current file.

Item Description

repeat factor integer numeric constant

4-32 The Editor

Range

1 thru 9999 (1 thru 4095 for
I Tab I)

Semantics
The Delete prompt:

>Delete: < > <Moving commands> [<sel> deletes, <esc> aborts]

The Delete command enables you to remove text and fills the copy buffer with the deleted text.
Delete uses the cursor position when the command is entered as a starting point. Subsequent
cursor movement by any cursor control key causes text to be removed between this point and
the new cursor position. Text can be recovered by moving the cursor back toward the starting
point.

Direction applies in the Delete command and is shown by > (forward) or < (backward) in the
Delete prompt. Movement generated with I Tab I, I Return 1 or I Enter 1 and space bar takes place in the
direction shown; forward movement is from the cursor toward the end of the file, and backwards
movement is from the cursor toward the beginning of the file. Direction can be changed while
in the Delete command by pressing >. or + (for forward) or < , or - (for backward).

Repeat factors are available within the Delete command. For example, pressing [[] (for Delete)
and then 9 I Return 1 or I Enter 1 will remove 9 lines of text in the current direction, starting at the
cursor position.

Delete fills the copy buffer with the deleted text and thus provides a means of moving or
duplicating text. See the example in the section "A Sample Editor Session".

To exit the Delete command press I Select 1 (EXECUTE) or I Shift H Select I (I Shift ~EXECUTE). I Select I

confirms the deletion, returns the Editor prompt and displays the cursor at its position when
I Select 1 was pressed. I Shift H Select I aborts all changes made since Delete was entered, returns the
Editor prompt and displays the cursor at its position when Delete was entered.

Note that the copy buffer is filled by whatever is deleted; whether the command is exited with
an I Select I or I Shift H Select I makes no difference to the copy buffer.

The Editor 4-33

Equals (I = I) positions the cursor at the anchor's location.

Semantics
The equals sign (I = I) is a cursor positioning command. It moves the cursor to the "anchor" (i.e.,
the beginning of the most recent item Adjusted, Found, Inserted, or Replaced). The anchor is
also used by the Zap command.

4-34 The Editor

Find
Find moves the cursor to an occurrence of a specified string.

Item Description

repeat factor

delimiter

integer numeric constant

literal

target string literal

Semantics
The Find prompt:

>Find[1]: L <target>=>
or

>Find[1]: T <target>=>

Range

1 thru 9999

any valid delimiter; must be
used in matched pairs

1 thru 128 characters

The prompt displayed depends on whether the "Token" definition in the Editor's environnlCnt
is set to True or False. If set to True, the first prompt is displayed; if False, the second is shown.
These are explained below.

In its sinlplest form, the Find command is executed by pressing [£J and specifying a string
surrounded by delimiters. Upon typing the final delimiter, the Cursor is positioned at the end
of the first occurrence of the specified string in the current direction, if found. If the pattern
is not found, then this message is displayed: ERROR: Pattern not found. <space> continues.
Pressing the space bar returns you to Edit mode at the previous location in the file.

The Find command moves the cursor and sets the anchor (used by Zap) at the location of the
target string. In this context, a "string" is a contiguous series of non-control ASCII characters
surrounded by delimiters. Delimiters an~ separators that signify to the Editor the beginning
and end of the string. They can be any non-alphanumeric characters such as / ' . and >.

Don't use a delimiter that appears in your string. Delimiters must be nlatched pairs; if you use
($) to signify the beginning of a string, you must use ($) to signify the end of the string. The
maximum length of a target string is 128 characters.

The Find prompt shows the current direction: When searching for a string occurrence, Find
looks for that string between the cursor position when the command was entered and either the
end of the file (if direction is forward» or the beginning of the file (if direction is backward <).

The Editor 4-35

Repeat factors are available with the Find command but must be typed before the Find com
mand is initiated. If a repeat factor is used, the Editor positions the cursor at the end of that
occurrence of the string. For example, typing rn [TI /the/ results in the cursor being positioned
at the end of the eighth occurrence of the. The slash U) operates in a similar way but signifies
the last occurrence of the specified string in the current direction. If no repeat factor or slash
character is specified it defaults to the value 1 and the Editor attempts to find the first string
occurrence. The Find prompt displays this value in square brackets.

After pressing [TI, the prompt on your screen contains either an L or T for "literal" or "token"
modes. Literal and token are mutually exclusive; if one option is shown as available, the other
is automatically the default. If L is shown in the prompt and you want to use the token search
mode, simply type in the target string surrounded by delimiters. The search will take place in
the default mode (in this case, token). To do the same search in the literal mode, press CD then
type in the string as before. The Find command then searches for a literal form of the string.

A literal string is exactly that - a literal string of characters either isolated or embedded in
a word or paragraph. A token string is one which is isolated by delimiters. Delimiters in this
context are any ASCII characters except numbers or alphabetic characters. Blanks, commas,
and periods are common delimiters in English text because they separate words.

To illustrate literal and token searches, the following example assumes the direction is forward
(» with the cursor located at or before the start of the sentence shown. In the sentence That's
my hat!, a token search for hat moves the cursor behind the last word hat in the sentence
whereas a literal search for hat moves the cursor behind the hat embedded in That's.

The "same" option is another feature of the Find command. Same refers to the most recent
target string used in either the Find or Replace command. Suppose you typed the sequence
[TI CD *galactic*. After pressing the final delimiter (*), the Editor moves the cursor behind
the first literal occurrence of the target string galactic. Then typing [TI CD rn results in the
cursor moving behind the next literal occurrence of the same target.

Note

If a Replace has been done since the last Find operation, the target
string used by the "same" option is now the target specified in the
Replace command.

Searches are sensitive to the case of the characters (upper and lower case) unless Ignore case
and Token are set to True in the Environment. Type rn and m to Set the Environment. Type
CD and OJ to set Ignore case to True. Type OJ and OJ if Token is not already True. After
these two conditions are met, the Editor treats both the target string and each token string as
uppercase.

Find is one of the commands that sets the anchor used in the Zap command and accessed by
the Equals command.

The 1 Shift H Select 1 (I Shift ~EXECUTE) can be used to abort the Find command before all specifications
are complete. 1 Select I cannot be used with the Find command. The command is executed
immediately when the final delimiter (or rn if "same" is used) is typed.

4-36 The Editor

Insert
Insert opens a window in the current file for the subsequent insertion of text.

Item

non-control
ASCII character

non-control ASCII literal
character

Description

~ ([EXECUTE))

Range

CHR(32) thru CHR(126)

The Editor 4-37

Semantics
The Insert prOlnpt:

>Insert: Text <bs>, <clr In> [<sel> accepts, <esc> escapes]

The Insert conllnand opens a window in the text file directly in front of the cursor position
for text creation. When initiated by pressing CD or 1 Insert char 1 or 1 Insert line I, the text from the
cursor to the right edge of the screen is shifted to the right. Insertion always takes place
directly in front of the cursor location when Insert was entered. Any sequence of non-control
ASCII characters lnay be inserted and any cursor control key may be used. However, unless
the movement generated by the cursor control keys is backward, they produce question marks
(7) in the text. You can I Back space 1 to delete a character or press 1 Clear line 1 (I Clear line I) to delete
the most recently inserted line. 1 Clear line 1 is available only after a line of text has been inserted.
Backspacing past the point at which Insert was entered is not possible.

The way in which text insertion takes place depends on flags or parameters set in the Editor's
environment. These flags have default values supplied by the Editor but can be changed with
the Set conllnand. The ones that concern you here are Filling and Auto indent. These two
options generally have opposite values. Most of what you need to know about Filling and Auto
indent can be sUllllned up in one sentence: If you are writing program source text, set Filling
to false and Auto indent to True (Program mode); if writing regular text, set Filling to True
and Auto indent to False (Document mode).

Filling, when set True, performs both "wrap around" and "margining" functions. As inserted
text approaches the Right lllargin (another environment option), the Editor attempts to fit the
words on the current line. If a word would cause the line to extend beyond the right lnargin, it is
autOlnatically shifted to the next line (i.e., the system supplies a 1 Return I). When the insertion is
cOlnpleted by pressing 1 Select 1 (EXECUTE), all text following the cursor in the current paragraph
is margined. Margining adjusts the text to fit between the environment's margins and also
compresses blanks in the text. You can have two blanks following these four characters: ? . :

!. All other blanks are compressed into a single blank character.

Note that the Editor's definition of a paragraph is ANY text delimited by any combination of
blank lines, lines having the Command character as the first non-blank character in a line, or the
beginning and end of a text file. The Command character is yet another of the environment's
options; see the Set command for more details.

Note

As the definition of a paragraph infers, the Editor does not distinguish
tables frolll other kinds of text material. Any insertions within a table
will result in the table being margined (i.e., collapsed) if Filling is
set to True, autoindent to false, and the insertion is exited with 1 Select 1
(EXECUTE). Use the Set command to set Filling to False before inserting
in a table or list. (I Shift H Select I) will NOT restore the text to its original
state).

4-38 The Editor

If Filling is False, a beep is generated as you approach the end of the line, signaling you to press
I Return 1 or I Enter 1 the same way a bell on a typewriter does. If you continue to insert text past
the last visible column on your screen, the Editor accepts the characters and shows you that
they are outside of the display area by placing an exclamation point (!) in the final column.
To access these characters, complete the insertion by pressing I Select 1 (EXECUTE), position the
cursor before the last visible word on the line and press IT] followed by I Return 1 or I Enter 1 to insert
a carriage-return (and thus break the line at that point).

If Auto indent is True, pressing I Return 1 or I Enter 1 automatically places the cursor in the SaIne
starting column as the previous line. When Auto indent is False, the cursor is positioned
according to either the Left or Paragraph margin in the environment.

If Insert is confirmed with I Select 1 (EXECUTE) and Filling is True and Auto indent False, all text
following the insertion in the SaIne paragraph is margined according to the Right, Left, and
Paragraph margin values in the environment. Also, the entire insertion is stored in the copy
buffer so you can copy the same text elsewhere if you wish. If Insert is aborted with I Shift H Select I,
regardless of the options set, all changes are aborted, the copy buffer is cleared, and the text
and cursor appear as they did when the command was entered.

The Insert command sets the anchor (used by the Zap command) at the position where Insert
was initiated. The anchor is set regardless of whether I Select 1 or I Shift H Select 1 is used to exit the
command.

The Editor 4-39

Jump
The Jump command repositions the cursor.

~or~

----------....., (]fu[)-~ ((]ffiID-I EXECUTE))

Item Description

marker literal

Semantics
The Jump prompt:

>JUMP: Begin End Marker <esc>

Range

1 to 8 ASCII characters exclud
ing: CHR(O) thru CHR(31),
and CHR(127)

The Jump command moves the cursor to the beginning or end of a text file or to a previously
defined marker. The command has no other effects; it merely repositions the cursor. To Jump
to the beginning of your file, press QJ [[]. To Jump to the end of your file, press QJ m.
You can also Jump to a marker by pressing QJ [][] and typing the name of any previously
set marker in the file followed by I Return 1 or I Enter I. Marker names are defined with the Set
command. A legal marker name is any sequence of up to eight non-control ASCII characters
(control characters are deleted by the system). They can actually be longer than this, but the
Editor only pays attention to the first 8 and truncates the rest.

Also, marker names are not case-sensitive. The Editor converts all marker names to uppercase
letters so they can be typed using any desired combination of uppercase and lowercase letters.
There is a 10 marker limit per text file. See the Set command for more information on markers.

4-40 The Editor

Margin
Margin formats all text in the current paragraph to fit the margins set in the environment.

Semantics
Margin is disabled and the system generates an error message unless the environnlent's Auto
indent is False and Filling is True when the command is executed.

The Margin command provides a means of formatting paragraphs in your file. A paragraph is
defined by the Editor to be ANY text delimited by any combination of blank lines, lines having
the Command character as the first non-blank character in a line, or the beginning or end of a
text file. See the Set command for details on the Command character.

Upon initiating Margin (by pressing (0), the Editor takes all the text in the current paragraph
(the one where the cursor is) and forces it to fit within the Left, Right, and Paragraph nlargin
boundaries of the environment. After margining, the first line of the paragraph begins at the
column specified by the Paragraph margin setting and the rest of the text conforms to the Left
and Right margin settings. If a word would exceed the Right margin it is "wrapped around" to
the next line.

Two blanks are allowed following the four characters: ?

into a single blank character.
!. All other blanks are cOlnpressed

Since the Command character in the environment delimits a paragraph, you may want to use
it as the first character in each line of tables or lists which you do not want margined. See the
Set command for more information on the Command character.

Note

If a table or list fits the definition of a paragraph, the Margin command
will definitely reformat that text. Exiting the Insert command with
I Select I (EXECUTE) also uses some of the Margin routine so be aware that
these commands can potentially "collapse" a table or list.

The Margin command has no parameters and its effects cannot be aborted. When writing
program text or tables, it is advised that Auto indent be set True, Filling be set False and the
Paragraph margin be equal to the Left margin.

Note

The Margin command clears the contents of the copy buffer regardless
of the settings of the Auto indent and Filling options.

The Editor 4-41

Page
Page moves the cursor one or more pages (screenfuls) in the current direction.

Item Description Range

repeat factor integer numeric constant 1 thru 1000

Semantics
The Page command lets you move rapidly through a text file by repositioning the cursor one
or more pages forward (» or backward «) in a file. Page is executed by pressing [EJ, and its
nlovement occurs relative to the position of the cursor. Page moves the cursor in the direction
displayed by the Editor prompt when the command is entered. The direction can be changed
by pressing >

Repeat factors are available in the Page command. For example, to move the cursor 3 "screens"
or pages in the file, press m [EJ. The slash character U) can be used in place of an integer
repeat factor. Pressing [ZJ [EJ results in the cursor moving to the end of the file (if direction is
» or the beginning of the file (if direction is <). If neither repeat factor nor slash is specified,
the default is 1 and the cursor moves one page in the current direction.

I Select I (EXECUTE) and C§EillJ-1 Select I are not available in the Page command. The command IS

imlnediately executed when [EJ is pressed.

4-42 The Editor

Quit
Quit leaves the Editor with various exit options.

Semantics
The Quit prompt:

>Quit:

~or~

Update the workfile and leave
Exit without updating
Return to the editor without updating
Write to a file name and return
Save as file new file DOC:BINSEARCH.TEXT
Overwrite as file DOC:BINSEARCH.TEXT

The Quit conlmand allows you to exit the Editor and store your file on mass storage. The last
two quit options shown above are only available if the file existed before the editing session.

Quit is initiated by pressing []] from the Editor's prompt. Choose any of the options displayed
by pressing the first letter of the option.

Pressing [ill (for Update) results in the contents of the text in the computer's memory being
written to a text file on the system volume under the name WORK. TEXT. This workfile mayor
may not be associated with another file name (see the Get and Save conllnands in the Filer
chapter). After writing the file, the system reports the file's size (in number of bytes and blocks)
and displays the Main Command Level prompt.

Pressing m (for Exit) either imnlediately exits to the Main COlnmand Level or displays:

Are you sure you want to exit without updating?
Type Yes to Exit without update
Type No to Return to Editor

This message is displayed only if changes have been made to the text file in the current editing
session. If no changes have been made, the system immediately goes to the Main COllunand
Level when m is pressed. It also exits to the Main Conlmand Level if you respond by pressing
[IJ. Responding with []] returns you to the Editor.

The Editor 4-43

Pressing [[] (for Return) returns you to the Editor with the cursor located where it was when
Quit was entered.

Pressing em (for Write) causes the system to prompt you for a file name. If a volume ID is not
given, the default volume is used. The volume PRINTER: may be specified. This results in the
file being listed to the system printer.

If you use the Write option and the file already exists, the Editor displays this prompt:

>Quit:
FILE. TEXT exists ...

Rewrite then purge old
Overwrite
Purge old then rewrite
None of the above

Rewrite then purge old is like the Save command. An attempt is made to write the new file
before purging the old.

Overwrite removes the original file and then attempts to write the new version in its place. On
SRM units, or for HFS discs, duplicate links, and passwords for SRM, will be preserved. On a
local disc, the file may not fit if the new version is larger than the old.

Purge old then rewrite removes the original file and then attempts to write the new file in the
biggest space on the disc. This alternative gives you the best chance that there will be room
for the new file.

If the write fails, whether you "Overwrite" or "Purge old then rewrite", the original copy of
the file is gone and the only copy of the file is in the Editor's memory. It is advisable to save
it on another disc as soon as possible.

None of the above returns you to the Editor. You may Quit again and write the file with a
different name.

Pressing []] (for Save) results in the file being written to the original volume and file.

If you try to Save a file and you get the message:

>ERROR: No room on vol <space> continues.

Press the spacebar to continue. You could put in another disc with enough space, then Quit
and Write it on the new disc. Alternatively, you can Quit and Overwrite the file.

Pressing W (for Overwrite) is designed for SRM systems and HFS discs. The Overwrite option
allows all duplicate links (and passwords for SRM) to remain intact. On a local non-HFS disc,
Overwrite may not work if the file has been enlarged. If this happens, press the spacebar to
continue, Quit and Save again. The previous Overwrite removed the original file. Now the Save
will try to save the file in the largest space on the disc. If this does not work, you must put the
file on another disc.

4-44 The Editor

Replace
Replace does one or more substitutions of a specified string for another string.

Item Description

repeat factor

delimiter

integer numeric constant

literal

target string

substitute string

Semantics

literal

literal

The Replace prompt:

>Repl[l]: L V <targ><sub>=>
or >Repl[l]: T V <targ><sub>=>

Range

1 thru 9999

any valid delimiter; must be
used in matched pairs

1 thru 128 characters

1 thru 128 characters

The prompt displayed depends on whether the "Token" definition in the Editor's environment
is set to True or False. If True, the first prompt is displayed; if False, the second is shown. The
Token definitions are explained below.

The Replace command allows you to substitute one string for another in your text file. The
anchor (used by the Zap command and accessed by the Equals command) is set at the location
of the replacement. Replacements can be done to a single, all, or only certain occurrences of a
string.

In its simplest form, the Replace command is executed by pressing [[] and specifying two strings
- a target and substitute - each surrounded by delimiters. The target and substitute strings
may be different sizes. Upon typing the final delimiter, the first occurrence of the target string
is replaced by the substitute string and the cursor is positioned at the end of the substitution.

A target string (the one that you want replaced) must be supplied. A string is a contiguous series
of non-control ASCII characters surrounded by delimiters. Delimiters signify the beginning and
end of a string and are characters such as: / ' . and >.

A substitute string (what you want the target string changed to) must also'be supplied with
delimiters. The substitute may be an empty (null) string.

The Editor 4-45

Don't use a delimiter that appears within your string. Delimiters nlust be matched pairs; if
you use $ to signify the beginning of a string, you must use $ to signify its end. The substitute
string can have a different set of delimiters than the target string and the two strings Inay be
of different sizes. The maximum length of either string is 128 characters.

After pressing [[], the prompt on your screen contains either an [[] or m for "literal" or
"token" modes. Literal and token are mutually exclusive; if one option is shown as available,
the other is automatically the default. If [[] is shown in the prompt and you want to use the
token search mode, then type in the two strings and their delimiters. The replacenlent takes
place in the default mode, in this case, token. To do the same replacement in the literal lllode,
press [[] and type in both strings as before. The Replace command then searches for a literal
form of the string.

A literal string is exactly that - a literal string of characters either isolated or imbedded in
a word. A token string is usually a word (a string isolated by delimiters). Delimiters, in this
context, are any ASCII charac;ters except numbers or alphabetic characters - they do not have
to be matched pairs. Blanks, commas, and periods are the most common delimiters in English
text because they separate words.

To illustrate literal and token replacements, the following example assumes the direction is
forward (» with the cursor located at or before the start of the sample sentence. In the
sentence That's my hat!, a token replacement for hat with umbrella replaces the last word hat
in the sentence with umbrella whereas a literal replacement would substitute umbrella for the
hat imbedded in That's (resulting in Tumbrella' s my hat!).

Direction applies in the Replace command and is shown by the first character in the cOllllnand's
prompt. If the direction is forward (», the replacement occurs between the cursor positioll and
the end of the file; if backward «), between the cursor and the beginning of the file.

Repeat factors are available for the Replace command but must be typed before the command
is initiated (before [[] is pressed). A repeat factor causes that number of substitutions to be
made. If not specified, the repeat factor defaults to 1. A slash character U) Inay also be used
to change all occurrences of the specified string in the current direction. The repeat factor (or
slash character) is displayed in brackets [] in the command's prompt. The repeat factor works
differently when the Verify option is used.

The Verify option lets you choose whether or not to make a particular replacenlent. The
combination of a repeat factor with Verify allows you to replace only certain occurrences of a
string in the file. For example, after pressing [[] [[] m and typing in the target and substitute
strings, the Editor moves the cursor to the first occurrence of the target string and pronlPts:

>Rpl[2]: <sh-exc> aborts,R replaces,' , doesn't

To confirm the replacement, press [[]. To skip to the next replacement (if any), press the space
bar. While using Verify, pressing I Shift H Select I (I Shift ~EXECUTE) aborts the operation but retains
all replacements made up to that time.

4-46 The Editor

The "same" option is available with Replace. and refers to either the most recent target string
(used in a Find or Replace) or the most recent substitute string (used only in Replace). Which
string it signifies (target or substitute) depends on where it is used in the Replace COlIlllland.
To use "Same", simply press m in place of the delimited string. If you type m followed by
a delimited string, the most recent target is replaced with the specified string. If you type a
delimited string followed by m, the specified target is replaced with the last substitute. Both
strings may be specified by typing m m. The current assignments of the "same" patterns
can be seen by pressing m m (see the Set command for more details).

Note

If a Find has been done since the last Replace, the target string used by
the "same" option is now the target specified in the Find command.

The "Ignore case" option applies to the Replace command. Type m and m to Set the
Environment. Type OJ and [IJ to set Ignore case to True. Type [IJ and [IJ if Token is not
already True. The target string and all token strings in the text are treated as upper case.
When a match is found, the token string is replaced with the substitute string. The case of the
substitute string is not affected by the Ignore case option.

The Replace command can be aborted before all specifications are complete by pressing 1 Shift ~

1 Select I (I Shift ~EXECUTE). (Subsequent use of the "same" option after aborting the Replace COlll
mand may give you unwelcome results).

The Editor 4-47

Set
Set defines markers and alters the environment in which your text operations occur.

~or~

~ (I EXECUTE II

~or~

non-control
ASCII character

--------...... --------.((]fiiD-~ (GHID-I EXECUTE II t------~

Range
Item Description/Default Restrictions

marker literal 1 to 8 ASCII
characters,
CHR(32) thru
CHR(126)

margin integer integer numeric constant o thru 9999; left
margin must be
less than right
margin

non-control ASCII literal CHR(32) thru
character CHR(126)

4-48 The Editor

Recommended
Range

o thru 49 for
50-column dis-
plays; 0 thru 79
for 80-column
displays

Semantics
The Set prompt:

>Set: Env Mrk Prog Doc <esc>

Set lets you define markers and various environment parameters. Markers are Set by moving the
cursor to where you want the marker, pressing []] [}[] (for Set Marker) and typing in a marker
name followed by I Enter I. A marker name is any sequence of up to eight non-control ASCII
characters. The Editor accepts more than eight characters but truncates anything longer. All
non-printing characters (those with an ASCII value of either 127 or in the range of 0 to 31) are
deleted by the system. The Editor converts these names to uppercase so they can be typed in
whatever form is convenient.

No more than ten markers can be set in a file. If you attempt to set more than ten, the Editor
displays the markers in a numbered list and prompts you for the number of the marker you wish
to replace. All markers can be removed by giving the Zap marker command. Markers are used
with the Jump and Copy commands and their names are shown in the environment display.
The locations of the markers are not shown so the use of meaningful marker names is advised.

Pressing []] m (for Set Environment) displays the current environment and allows you to
change the environment's parameters. When entering the Editor with a new file, the default
environment is the Program environment which looks like:

>Environment: {options} <sel> or <sp> leaves
Auto indent True
Filling False
Left margin 0
Right margin 78
Para margin 5
Command ch
Token def True
Ignore case False
Zap markers
275 bytes used. 348909 available.

Patterns:
<target>= 'inery'. <subst>= 'inary'

Markers:
TOP FIX

File BINSEARCH.TEXT
Date Created: 10-11-82 Last Used: 10-11-82

The Editor 4-49

Patterns and Markers are only shown if they have been set. The heading near the bottom
displays a file name if the Editor is entered with a specified file. Whenever a TEXT file is saved
on mass storage, the current environment is saved with it and becomes the default environment
when that file is used by the Editor. (Note that the environment is not saved with Data, ASCII,
or HP~UX compatible files.)

The environment also displays how many bytes of memory have been used and how many are
still available for use in the Editor. The total number of bytes (used and available) depends on
the amount of memory in your machine.

To change a parameter in the environment, press the first letter in the parameter's name. The
cursor is automatically positioned at the item to be changed and the new value must be typed.
If the parameter needs a number (as in Left, Right, and Paragraph margins), then the number
must be followed by pressing 1 Return I or 1 Enter I or the spacebar. All other parameters accept a
single character and return the cursor to the environment's prompt as soon as the character key
is pressed.

Automatic indenting is a boolean (with either a true or false value) which affects the Insert
and Margin commands. When inserting text with this item set true, pressing 1 Return I or 1 Enter I
automatically moves the cursor to the next line at the same starting column as the preyious line.
This indenting feature is useful when writing Pascal programs so it is set true for the Program
(default) environment.

When Auto indent is true the Margin command is disabled. When Auto indent is false, pressing
1 Enter I places the cursor on the next line at either the Left margin or Paragraph margin (as
currently defined in the environment).

Filling is another boolean value which affects the Insert and Margin commands. It usually
has a value opposite that of Auto indent. When set True, filling causes automatic "wrap
around" of text. If a word is too long to fit on the current line (as defined by the Right
margin value), it is carried or wrapped around to the next line and no carriage-return (I Return I
or 1 Enter I) is necessary. Another effect of this parameter being set true (and auto-indent False)
is that an Insert completed by pressing 1 Select I (EXECUTE) causes all text following the insertion
in that paragraph to be margined or filled according to the current values of the Left, Right
and Paragraph margin settings. All blanks in the text are then compressed to a single blank
(though two blanks are allowed following the characters: ? . ! :). The Margin command only
works when Filling is set True and Auto indent is set False.

With Filling set False, the wrap around and margining functions are disabled. When approach
ing the end of a line, the system generates a "beep" to inform you that you need to press 1 Return I
or 1 Enter I to go to the next line. If you type past the display area of the screen" an exclama
tion point (!) is shown in the last column. The text, though not visible, is maintained in the
computer's memory.

The Left margin may be set to any integer between 0 and 9999. Numbers longer than 4 digits
are truncated by the system. The Left margin must be less than the Right margin setting or
an error message is generated when you attempt to exit the environment.

4-50 The Editor

The Right margin setting has the same numerical limitations as the Left margin. Unless you
have a particular reason for doing so (like making full use of a 132-column printer), it is not
a good idea to set this margin beyond the right column display limits of your screen because
the text will not be visible. A line length limitation does exist for the compiler which will only
process up to the first 110 characters on a line of a program source.

The Paragraph margin can be set to any positive integer up to 4 digits. This setting determines
the indention that the first line in each "paragraph" will get. This occurs when Filling is set
false (while inserting text) or when Margin is used. Note that a paragraph as defined by the
Editor is any text surrounded by blank lines or by lines beginning with the Command character
(discussed below). The beginning and end of a file will also delimit paragraphs.

The Command character can be any non-control ASCII character. If this character is the first
non-blank character in a line, the Margin command treats the line as if it were blank. The line
is not margined and it is considered to be the beginning or the end of a paragraph. The default
Command character is the (-) character.

Token is a boolean used by the Find and Replace commands. When Token is set True, the
default value for Find or Replace becomes token and the command's prompt displays the literal
option. (Token and literal refer to the type of target string searches that take place in these
commands). Conversely, if Token is False, the default value for Find and Replace is literal and
the command's prompt displays token as an option.

The Ignore case command affects searches in the Find and Replace commands. If "Ignore case"
is left as False, then "string" and "STRING" and "String" are not treated as equal. If "Ignore
case" is set to True, they are treated as equal. This only works when the Environment's Token
mode is True or if you type a "T" before typing the target string.

The Zap markers command removes all markers from the file.

The environment display is left and the Editor's main prompt returned by pressing I Return 1 or
I Enter I, I Select 1 (EXECUTE) or the spacebar. The current environment settings are only saved in
the mass storage file if it is of type TEXT.

Although there is only a single environment associated with a text file, the environment may be
set to one of two predefined configurations: the Program environment (by pressing [[J m) and
the Document environment (by pressing [[J [[]). These configurations optimize the various
environment parameters for writing programs or regular (non-program and non-tabular) text,
respectively. When either predefined environment is Set, the current environment is displayed
and any of its parameters can be changed. If you want to change just one or two parameters,
use [[J CD to get into the existing environment.

Changes made to the environment cannot be aborted but the parameters may be changed as
many times as desired.

The Editor 4-51

Verify
Verify refreshes the screen display from memory.

Semantics
The Verify command has no options; it is executed immediately by pressing [YJ. Verify causes
the Editor to refresh or update the current screen display from memory, move the current line
(the one where the cursor is) to the middle of the screen, and display the Editor prompt. If the
cursor is located in the first screenful of text (23 to 47 lines depending on the display) when
Verify is used, the line containing the cursor is not moved.

4-52 The Editor

eXchange
eXchange replaces text character for character at the cursor position.

non-control
ASCII character

cursor wheel

~ (I EXECUTE))

Item Description

non-control ASCII literal
character

Range

any valid ASCII character, ex
cluding CHR(O) thru CHR(31),
and CHR(127)

The Editor 4-53

Semantics
The eXchange prompt:

XChnge: Text <bs> <esc> aborts <sel> accepts

The eXchange command lets you exchange text character for character at the cursor position .
. eXchange operates only on. the current line (i.e., the line where the cursor is located when the
command is entered). The I Back space I, 8J and cursor wheel in backspace direction move the
cursor one space back and display the -character that was replaced. The G and cursor wheel
in forward space direction move the cursor forward, up to the end of the line, without changing
anything.

Any ASCII character can be used in eXchange, however, use of control characters is not ad
vised. Carriage returns cannot be entered since the command is unable to cross line boundaries.
Direction and repeat factors do not apply to the eXchange command. Any cursor control key
that does not effectively "backspace" or "forwardspace" the cursor will generate question marks
while executing eXchange. Backspacing past the point at which eXchange was entered is not
allowed.

eXchange is initiated by pressing [XJ and is exited by pressing I Select I (EXECUTE) or I Shift H Select I.
I Select I confirms the exchanges, returns the Editor prompt, and displays the cursor at its position
when I Select I was pressed. I Shift H Select I returns the copy of the text file in the computer's melllory
to its state before eXchange was entered, displays the Editor prompt, and shows the cursor at
its position when eXchange was entered.

4-54 The Editor

Zap
Zap deletes text and fills the copy buffer with the deleted text.

Semantics
The Zap command has no options; it is executed immediately by pressing m. Zap deletes
all text between the "anchor" and the current cursor position and stores it in the copy buffer.
The anchor is located at the position in the text where the most recent Adjust, Find, Insert or
Replace command was executed. You can confirm the position of the anchor by pressing I = I
(the Equals command), which moves the cursor to the anchor.

If more than 80 characters are going to be Zapped, the Editor displays a prompt asking if you
wish to Zap anyway. Also, if the Copy buffer is not large enough to store the deletion, a prompt
asks if you wish to go ahead and Zap the text. (Use the Set environment command to see how
much memory is available; the copy buffer shares this memory with that used to hold the text
file in memory).

Recovery of the deleted text is achieved with the Copy (from buffer) command. Zap can also
be used to move large chunks of text from one location to another within a file.

Note that the effects of Zap can be surprising since the anchor position is set by four different
and commonly used commands (listed above). Therefore, it is a good practice to check the
location of the anchor (using the Equals command) before executing a Zap.

The Editor 4-55

4-56 The Editor

The Filer 5
Introduction
This chapter documents the use of the Workstation Filer subsystem. The Filer lets you nla
nipulate files in various ways including moving, listing, duplicating, creating and deleting files.
The Filer can handle files on devices with a variety of directory structures and physical charac
teristics.

Before you read this chapter, you should read "The File System" chapter which defines basic
concepts such as files, volumes, and directory organizations.

There are four main sections in this chapter.

• The first two demonstrate how to enter and use the Filer by leading you through a sample
Filer session which uses the more common Filer commands.

• The next section, "A Closer Look" , presents detailed information about the Filer and its
operation.

• The "Filer Commands" section contains an overview or summary of all the Filer com
mands (useful for quick reference once you are familiar with the Filer) and a semantic
and syntactic description of each Filer command, presented in alphabetical order.

Any questions you have about commands covered in the sample session should be answered in
the commands section.

The Filer 5-1

Entering the Filer
If your system is not already "up and running" , refer to the Pascal User's Guide for information
on loading the Pascal System. The following prompt must appear on the top line of your screen
before you can enter the Filer:

Command: Compiler Editor Filer Initialize Librarian Run eXecute Version?

The prompt tells you that you are at the system's Main Command Level- the level from which
all the Pascal subsystems (Compiler, Editor, Filer, etc.) are entered. Entry is accomplished by
typing the first character of the subsystem you wish to enter.

Insert the disc labeled ACCESS: and press the [}] key. You can use either uppercase or lowercase
letters when typing commands at the Main Command Level. However, letter case is important
when typing file names. The screen displays:

(Loading • ACCESS: FILER •

You can use the Permanent command (from the Main Command Level) to keep the FILER code
file in memory if you wish. This will allow faster access to the Filer but uses more memory.
Chapter 1 explains how to "permanently load" the Filer.

The Filer Prompt
The screen clears and displays the Filer prompt on the top line:

Filer: Change Get Ldir New Quit Remove Save Translate Vols What Access Udir ?

You are now in the Pascal Filer subsystem. The Filer prompt shows the most common com
mands used in the Filer and "prompts" you to give the subsystem a command.

The prompt shows only a partial list of the available commands; to see the others, type [IJ.
The prompt line shows the Filer's alternate prompt:

Filer: Hfs Bad-secs Ext-dir Krunch Make Prefix Filecopy Duplicate Zero? [3.2]

The alternate prompt displays the revision number of the Filer in brackets. Type [IJ again and
the main Filer prompt reappears.

All Filer commands are initiated by typing a single key corresponding to the uppercase character
of the command shown in the Filer prompt. This is normally the first character of the command
name. Uppercase and lowercase command characters are treated as equivalent by the Filer, so
the keys may be typed in whatever form is convenient.

Filer operations can be aborted by typing 1 Shift H Select I (I SHIFT H EXECUTE I) when a single character
is expected and 1 Shift H Select I followed by I Return I or 1 Enter I in place of a file specification.

5-2 The Filer

Filer Operations
All of the commands in the Filer operate in one of two ways: the Filer either perfornls the
operation immediately (when you press the letter key for that command) or it requests the
information it needs to perform the operation and then does it. The request is generally for
a volume specification or a file specification since all of the Filer's commands (except Quit)
operate on volumes, directories, and files.

A volume specification identifies a particular volume. This can be done by supplying any of
the following: the name of the volume, its associated unit number, a colon (:) to specify the
default volume, or an asterisk (*) to specify the system volume. A file specification consists of
both a volume specification and a file name; it completely identifies a particular file. All file
specifications include a volume specification even if by default. If the volume specification is
omitted and only the file name is given, the Filer looks for a file of that name on the default
volume.

A Sample Filer Session
Work through the following examples on your machine as you read through this section. Inter
acting with the computer will teach you more about the Filer than reading the material.

Finding Out What Devices are Accessible
Now that you have the Filer prompt on the screen, press [YJ. This initiates the Volunles
command and the screen now displays the volumes or I/O units associated with the Pascal
System. Here is a typical display (yours may vary slightly):

Volumes on-line:
1 CONSOLE:
2 SYSTERM:
3 # MYVOL:
4 # ACCESS:
5 # SRM_WORK:
6 PRINTER:

45 * SYSTEM04:
Prefix is - MYVOL:

For each volume currently on-line, the display shows the logical unit number and the associated
volume name. Volumes #5 and #45 are SRM volumes which you mayor may not have.

The "#" beside units 3, 4 and 5 indicates that these are blocked devices. These are used for
mass storage. The "*,, beside unit 45 indicates that this is the system volume, which is also a
blocked ,device. The system volume is used by the system during certain operations and should
be left on-line at all times if possible. Prefix is - indicates which is the default vohuue.
The default volume is assumed when no volume identifier is given. The default volume can be
changed using the Filer's Prefix command or the Main Corrimand Level's What command.

The Filer 5-3

The Default and System Volumes
When booting, the system designates the mass storage device, from which the system files are
read, as the "system volume". The system volume is denoted by an asterisk (*) in the Volumes
command display and remains fixed unless the New system volume command or the What
command is used at the Main Command Level, or a version of the TABLE program is executed
which resets the system volume to a different location, e.g. #45 for SRM.

The Prefix command, because it defines the default volume, lets you specify a particular volume
w here the Pascal System will look for files when you haven't given a volume name or logical
unit number. This is handy in the Filer as well as in other subsystems such as the Compiler or
Editor.

The default volume can be indicated with the colon (:) character. For example, to list the
directory of the default volume, press m (for the List directory command) and answer the
prompt by typing: . The Filer then displays the directory of the current default volume.

Changing the Default Volume
You can use the Volumes command (from the Main Command Level) to see what volume is the
current default volume. It is listed under the heading Prefix in the Volumes display. You can
also see what the current default volume is by pressing m for the Prefix command. The screen
displays:

(Prefix to what directory?

Respond by pressing I Return 1 or I Enter I. The screen now displays the current default volume. Now
press m again and in response to the prompt, type MOJO:. The screen now displays:

(Prefix is MOJO:

Now, whenever you want to specify a file or group of files on the MOJO: volume, you can just
type the file name(s) and the Filer will assume that the file or files specified are on the volume
MOJO:.

It is possible to set the default prefix to a flexible disc drive, regardless of the volume inside.
This is done by typing:

#3: I Return 1 or I Enter 1

while the drive door is open or the drive is empty.

The prefix command is used to set up a working directory on SRM (Shared Resource Man
agement) and HFS (Hierarchical File System) discs as well. If you have an SRM or HFS file
named:

#5:/USERS/JOE/PROJECT1/PROGRAMS/FILE

5-4 The Filer

Initiate the Prefix command as usual and specify:

#5:/USERS/JOE/PROJECT1/PROGRAMS

This sets the SRM or HFS volume as the default volume and /USERS/ JOE/PROJECT1/PROGRAMS
as the working directory. If the previous working directory had been PROJECT 1, then only
PROGRAMS need be typed. Now you can specify the file with:

FILE

If you were to use the Prefix or Udir command again to set the default prefix to another
volume (not on the same unit), the working directory and volume name for the unit remain
PROGRAMS. You need only specify either of the following to get the same file.

#5:FILE

or

PROGRAMS:FILE

It is possible to change the working directory on an SRM or HFS unit without changing the
default volume. Use the Filer's Unit directory command. Press []] and then give the directory
name that you wish to become the working directory. If the new directory is in the existing
working directory, just type the new directory name. If it is not, type the whole directory path
as shown above in the Prefix example (or use the.. superior directory specifier and appropriate
directory names).

Note

Do not use the Prefix command on unit #45 of #46. These are the
system volumes for SRM and HFS, respectively, and should not be
altered.

When Prefixing an HFS~formatted flexible disc, you are automatically
prefixed to the root directory; you cannot prefix to any directory below
the root level on this type of flexible disc. (However, with HFS
formatted hard discs, this restriction does not apply.)

The System Volume
The system volume can also be specified in a shorthand form using the * character. Suppose you
want to specify the file named LIBRARY on the volume SYSVOL:. Assuming that SYSVOL:
is the system volume and is currently in the disc drive associated with unit #3, you can specify
a file on that volume by anyone of the following three methods:

SYSVOL:LIBRARY
or

#3: LIBRARY
or

*LIBRARY

Of course you can make the specification even shorter by typing something like this:

*=ARY

The Filer 5-5

However, if you are doing a critical operation, be sure that there are no other files on the same
volunle which fit that file specification or use the? wildcard instead. If a file named GARY
existed on SYSVOL:, the operation would also be performed on it. Once again, use wildcards
judiciously.

Listing a Directory
To find out what files are on the disc called ACCESS:, press CD to initiate the List Directory
conunand. The Filer prompts you to specify the volume whose directory is to be listed:

List what directory ?

Respond by typing ACCESS:· and pressing I Return 1 or I Enter I. Notice that the colon (:) is part of
the volume specification. The screen now displays the directory (catalog) for ACCESS:. It looks
silnilar to this display:

ACCESS: Directory type= LIF level 1
created 8-0ct-82 3.47.54 block size=256
Storage order
... file name # blks # bytes last chng

FILER 218 55808 8-0ct-82
EDITOR 228 58368 8-0ct-82
LIBRARIAN 202 51712 8-0ct-82
MEDIAINIT.CODE 132 33792 8-0ct-82
TAPEBKUP.CODE 54 13824 8-0ct-82
FILES shown=5 allocated=5 Unallocated=11
BLOCKS (256 bytes) used=834 unused=218 largest space=218

The name of the volume is displayed in the upper left-hand corner of the listing. To the right,
the directory type is displayed. Pascal LIF discs have Level 1 directories. Level 1 directories
contain the date the directory was created and the size of the volume. Level 0 directories do
not. Your directory listing should display the date the directory was created and the date it was
changed as system volume, the size of the storage blocks, and whether the listing is in storage
order or alphabetical order. The size of blocks on LIF volumes is 256 bytes (1 sector). The size
of blocks on WSl.O volumes is 512 bytes and on HFS discs is usually 1024 bytes. The Shared
Resource Management system does its accounting in I-byte blocks. To have directories listed
in alphabetical order, include [*] after the directory name. For exam pIe:

LIFDIR: [*]

The cohunn entries for each file include: file name, number of blocks used for storage, the file
size in bytes, and the date the file was created or changed.

The last two lines display additional directory information including how many more entries can
fit in the directory. The size of a LIF or WSl.O directory is specified when the disc is initialized.

5-6 The Filer

Getting a More Detailed Listing
To get a more detailed listing of the directory on a disc, press W (for the Extended Directory
command) and you will be prompted for a volume name as before. Respond by typing:

ACCESS: I Return I or I Enter I

Your screen now displays:

ACCESS: Directory type= LIF level 1
created 8-0ct-82 3.47.54 block size=256
Storage order
... file name # blks # bytes start blk last change ... extensionl

type t-code .. directory info create date ... extension2

FILER 218 55808 4 8-0ct-82 3.48. 6 0
Code -5582 1

EDITOR 228 58368 222 8-0ct-82 3.48.18 0
Code -5582 1

LIBRARIAN 202 51712 450 8-0ct-82 3.48.35 0
Code -5582 1

MEDIAINIT.CODE 132 33792 652 8-0ct-82 3.48.44 0
Code -5582 1

TAPEBKUP.CODE 54 13824 784 8-0ct-82 3.48.48 0
Code -5582 1

< UNUSED > 218 838
FILES shown=5 allocated=5 unallocated=ll
BLOCKS (256 bytes) used=834 unused=218 largest space=218

The Extended directory listing contains all the same information as the List directory listing
with additional information. It also contains the number of the block where the file starts (for
LIF and WS1.0 discs), the file type as recognized by the file system, the type-code used by the
directory system, SRM (or HFS) access information and two extension fields.

The "directory info" column shows the public access rights and the current file status for
SRM/HFS files. Here are two examples of Extended directory listings; the first is of an HFS
disc and the second of an SRM disc.

HFS Extended Listing

hfsll: Directory type= HFS 755 17 9
changed 15-Mar-87 14.24.54 block size=1024
Storage order
... file name # blks # bytes start blk last change ... extensionl

type t-code .. directory info , . create date ... extension2

lost+found 8 8192 3 1-Jan-86 2. 4.14 2
Dir 3 d755m 17u 9g -1

TOP 1 96 64 8-May-86 8. 9.53 3
Dir 3 d755m 17u 9g -1

just_a_file 8 7168 4 15-Aug-86 6.10.24 1
Data -5622 644m 17u 9g 7618

FILES shown=3 allocated=3 unallocated=18497
BLOCKS (1024 bytes) used=17 unused=21726

The Filer 5-7

The access information for HFS files and directories is given in the form of an octal number (a
number of base 8). In the listing above, the two directories, lost+found and TOP, have access
rights defined in the "directory info" column by d755m. The "d" shows that this file is in fact
a directory and the octal number is 755. For the file called just_a_file, the access rights are
given by the number 644. For a detailed explanation of these codes and the other information in
the "directory info" column see the Extended directory and Hfs command later in this chapter.

SRM Extended Listing

MYDIR: Directory type= SRM 21,0,8
created 20-Jun-86 10.45.52 block size=l
changed ll-Sep-86 17. 6.10 Storage order
... file name.... # blks # bytes start blk last change ... extensionl

type t-code .. directory info create date ... extension2

SOMEDATA.TEXT 12288 12288
Text -5570 MRWSPC CLOSED

Bigfile 2048 2048
Data -5622 MRWSPC CLOSED

FILES shown=2 allocated=2
BLOCKS (1 bytes) used=14336 unused=14496768

20-Jun-86 10.45.56
20-Jun-86 10.45.56
12-Aug-86 12.54. 9
12-Aug-86 12.54. 5

-1
-1
-1
-1

If one of the letters from the table below is missing, then the public access right associated with
that letter has been removed. (Not applicable to HFS discs).

Letter Access Right

M Manager

R Read

W Write

S Search

P Purgelink

C Createlink

Public access rights on a file are established at one of two times. If a file is created by a program,
the public access rights can be established when the file is opened. To do this, use the optional
third parameter on the command used to open the file. The commands used to open files are:
Reset, Rewrite, Open, and Append. The optional third parameter is explained in more detail
in the Programming with Files chapter in this manual.

If a file already exists, the Filer's Access command can be used to establish or, if the Manager
right has not been removed, change the public access rights.

The possible "current file status" are listed below and explained in the Programming with Files
chapter.

CLOSED SHARED EXCLUSIVE CORRUPT

5-8 The Filer

The two extension fields are for LIF and HFS directories. For most LIF file types on a LIF
disc, extension 1 contains a "0". For system files, it contains the start execution address. For
data files, it contains the logical end-of-file. Extension2 contains the volume number in cases
of multi-volume files. The Pascal system cannot create or read multi-volume files; the LIF
DAM merely recognizes them. For single volume files, it contains a "1". HFS assigns different
meanings to the extension fields; see "HFS Listing Information" near the end of Chapter 3.

The above examples are the most common uses of the directory listing commands, but there
are two other useful ways of using the command. One is to use a "wildcard" to specify a subset
of files that you want listed. The other way is to send the listing to the printer or to a file
instead of letting the listing default to the screen. Both methods are combined in the exanlple
below and are covered in detail in the "Filer Commands" section. Press IT] again (to initiate
the Extended Directory command) and answer the prompt for a volume specification as shown
in the display:

List_ext what directory? ACCESS:=.CODE,PRINTER: I Return I or I Enter I

The ACCESS: volume should be on-line. Your specification tells the Filer you want a listing of
all the files on the ACCESS: disc whose name ends in ".CODE". The "=" acts as a substitute
for all combinations of characters in a file name. The "," separates the source file specification
from the destination file specification. The listing will only display the files whose names end
with ".CODE". The EDITOR, FILER and LIBRARIAN are not listed because their names
don't end in ".CODE".

A Few Words About Wildcards
Wildcards are powerful tools for executing Filer commands on related files. There are three
wildcard characters.

? $

A wildcard is a substitute for an arbitrary portion of a file name. For example, if you wanted
to list all the .CODE files on the EXAMP: volume, you could specify:

EXAMP:=.CODE

The "=" stands for any combination of characters. If the file name ended with ".CODE",
that file would appear in the listing. If you wanted to remove some of the . TEXT files on the
EXAMP: volume, you could specify:

EXAMP:?TEXT

The "?" also stands for any combination of characters. However, the Filer will ask you, one at
a time, if you want to remove each file if it fits the specification. The "?" wildcard lets you
verify operations before actually performing them. Unless you are absolutely certain about the
effects of a command using the equals sign wildcard (=), it is best to use the question mark -
by far the safer of the two.

The Filer 5-9

The "$" character is a valid wildcard for destination file specifications. It indicates that the file
is to retain its original name. If "$" is used with other characters, the "$" is used as part of the
name.

Wildcards act as replacement strings in file names. Part of a file name can be given before or
after the wildcard or both before and after. For example, two files named WILD.TEXT and
WILD. CODE on the default volume could be specified by:

WILD? or WILD= or =LD. = or ?ILD=

If you specify more than one partial file name, they must be given in the order in which they
appear in the file name.

Translating Text Files
The Pascal system supports several different types of "text" files. These files are usually created
by the Editor and can be programs, documents, or data. When the file is stored on a disc, the
internal representation of data in the file (i.e., file type) is determined by the suffix appended
to the file specifier when the file was created. The different file types have different information
in the file header and can have different end-of-line schemes. The Translate command can be
used to convert files (that contain textual data) from one file type to another. The file types
that can be used to store textual data and that can be recognized by the Pascal system are
TEXT, ASCII, HP-UX "compatible", and Data. A . TEXT suffix indicates a TEXT file, a . ~SC
suffix indicates an ASCII file, a . UX suffix indicates a file used for data exchange with a system
running under HP-UX, and the absence of a recognized suffix indicates a Data file.

To use the Translate command, press m and see the prompt:

(Translate what file ?

Respond with the name of your input file

MYVDL: MYFILE. TEXT

The Filer will then prompt

(Translate to what?

Respond with the name of your output file

MYVDL:NEWFILE.ASC

The Filer will create an output file of a type corresponding to the suffix on the output file name
(. ASC in the example) and will read the text data from the input file, reformat the data to match
the output file type, and write the data to the output file. This process may seem slow, but
remember that the text is being reformatted.

5-10 The Filer

Sending File Listings to the Printer and Screen
The Translate command is also used to send files to the printer or to the screen. Logically, the
printer and screen are just files of a different format.

Before using the Translate command, remove the ACCESS: volume and replace it with the
DOC: volume (supplied with this manual set). Now use the Extended Directory conlnland to
display the contents of the DOC: volume. Press W, type in DOC: and press I Return 1 or I Enter I.
Your screen should display all the files on the documentation disc.

Press the spacebar: this clears the screen of everything except the Filer prompt. Now press [IJ
to initiate the Translate command. The screen prompts you with:

(Translate what file ?

Respond with DOC: BINDOC. TEXT and press I Return 1 or I Enter I. The screen now prompts:

Translate what file? DOC:BINDOC.TEXT
Translate to what ?

Your first response included both a volume specification and a file name and completely identifies
the file you want to transfer. This time, however, type only the PRINTER: volume specification
and press I Return 1 or I Enter I. The text file is translated to the printer as shown:

BEGIN {Binery_search}
done:=FALSE; btm:=O; top:=26; {initialize}
FOR loop:=1 TO top DO alpha [loop] :=CHR(loop+64);
WRITELN('Type uppercase character for a key');
READ(key); WRITELN;
WHILE NOT done DO
BEGIN {This is the actual binery search}
mid:= ROUND«top + btm)/2);

IF key = alpha[mid] THEN done:= TRUE
ELSE IF key < alpha[mid] THEN top:=mid
ELSE btm:=mid;
IF top=btm THEN BEGIN

END;
IF mid > 0 THEN

done:=TRUE; mid:= -1;
END;

WRITELN('Key -',key,'- is in position' ,mid:2)
ELSE WRITELN('key - ',key,' - was not found');

END.

The Filer shows you what operation it has just performed by displaying:

(DOC: BINDOC . TEXT ==> PRINTER:

The Filer 5-11

Since the operation is complete, the Filer again displays its prompt. Note that only files of
type TEXT, ASCII, UX, or Data should' be sent to the printer. You can also Translate these
files to the screen by using CONSOLE: in the destination specification instead of PRINTER:.
The file is displayed one screen at a time. Press the spacebar to move to the, next screen; press
I Shift H Select 1 (I Shift ~EXECUTE) to abort the operation.

The Translate command can also be used to direct files to the SRM printer on an SRM system.
Using a shared printer or plotter to output data requires you to place your data in an ASCII
file in the spooler directory. Once a file is in the directory, the SRM operating system sends the
file to the appropriate output device as soon as the device is free. See the Translate command
for more details.

If you are not sure if the file in question is a text file, use the Extended Directory command
and look at the column in the display where the file types are shown.

Copying Entire Volumes: Backup Copies
The backup process described here is suitable for volume-to-volume copies if both volumes are
the same size. For different size volumes, see Filecopy in the "Filer Commands" section.

Note

Using Filecopy to copy an entire volume will result in the loss of disc
space if the source volume is smaller than the destination volume. To
copy a volume to a larger one, Filecopy individual file~.

You should still be at the Main Command Level and now have a blank initialized disc. We will
use it for a volume-to-volume Filecopy. Volume-to-volume Filecopy operations do not require
that a directory be present on the destination disc, but does require it to be initialized.

Insert ACCESS: in the disc drive. Press IT] and the Filer will be loaded and display its prompt:

Filer: Change Get Ldir New Quit Remove Save Translate Vols What Access Udir ?

Press IT] for the Filecopy command and the screen shows:

(Filecop1 what file?

N ow type ACCESS: and press I Return 1 or I Enter I. The screen displays:

Filecopy what file? ACCESS:
Filecopy to what ?

5-12 The Filer

You can specify a volume by specifying the logical unit number associated with the physical
disc drive that it is in. Do this by typing #3: and pressing I Return 1 or I Enter I. The Filer knows
that ACCESS: is currently in the drive associated with unit #3 and figures that you want to
transfer that volume to a different volume that will be inserted in the same drive. The Filer
then reads as much of ACCESS: as it can into read/write memory and the screen displays:

Please mount DESTINATION in unit #3
'C' continues, <esc> aborts

Now remove ACCESS:, replace it with the blank initialized disc, and press [gJ. Since no
directory is on the initialized volume, the Filer simply copies the ACCESS: information that it
read into memory onto the new disc. If there had been a directory named TESTER: on the
destination volume, the Filer would have prompted:

Destroy EVERYTHING on volume TESTER: ? (YIN)

This precaution makes sure the information on the disc does not get destroyed if you change your
mind or inserted the wrong disc. Answering with []] for "No" aborts the Filecopy operation
and the Filer prompt returns. Answering with a m for Yes lets the Filecopy take place; the
contents of ACCESS: are written to the new disc. This operation destroys the directory (and,
effectively, all information) that was previously on the destination disc.

In case your machine does not contain enough memory to read in the entire volume ACCESS:,
the Filer prompts you to swap the source and destination discs as many times as necessary to
complete the Filecopy operation. When the operation is complete the Filer prompt reappears.

If you have more than one disc drive you can accomplish the same task by specifying both the
source and destination volumes with either a volume name (if it has one) or by the unit number
associated with the drive it is in. This second method of doing volume-to-volume transfers is
quicker - especially if the amount of memory in your machine is relatively small.

Note

Having two volumes with the same name on-line at one time is not
advised. The Filer looks for volumes according to their volume names
and may not be able to distinguish one from the other. Thus, the Filer
may perform an action on one volume when you wanted the operation
to affect the other volume. The Filer warns you whenever it detects
that this condition exists. If you get a warning, either remove one of
the volumes or use the Filer's Change command to change the name of
one of the volumes. (Specify it by unit number rather than by volume
name, or take 'the other volume of the same name off-line during the
Change operation.)

The Filer 5-13

Creating a Directory
The Filer generally only works with volumes that have directories. There are a few exceptions
to this such as volume-to-volume transfers, where the directory from the source volume is
copied onto the destination volume. Other exceptions are mentioned as they arise. The Filer's
Zero command creates an empty directory on a new disc that has been initialized using the
MEDIAINIT program, previously used discs, or on any other compatible type of mass storage
device such as a hard disc or a volume stored in read/write memory. The Zero command,
however, is not used to create directories on the Shared Resource Manager or on HFS discs.
This is done with the Make command because making an SRM/HFS directory really involves
making a file of type "Directory". Also, for HFS, there is a special utility to create the root
volume of an HFS disc. This is called MKHFS and its operation is covered in Chapter 21, "HFS
Set-Up and Utilities", in Volume II of this manual.

Your screen should now display the Filer prompt. Remove the current volume from the disc
drive associated with unit number 3 and replace it with the second disc that you initialized.
Now press m to initiate the Zero command. The screen displays:

Zero directory (NOT valid for HFS and SRM type units)
Zero what volume?

The request is for a volume specification. Answer with #3: and press I Return lor I Enter I. The Filer
now prompts:

(Destroy V3: ? (YIN)

This question is just a safety precaution so that you won't destroy a volume full of information
by accident. "V3" is the name given to the directory by MEDIAINIT (if created on unit #3).
Press [YJ for yes. The next prompt is:

(Number of directory entries (80) ?

This is asking for the maximum number of files that will be listed in the directory. The number
in the parentheses is the default that will be used if no value is given and is derived from the
number in the existing directory. In most cases, 80 directory entries is a good choice.

The next prompt is:

(Number of bytes (270336) ?

This is asking for the total size of the disc to be handled by the directory (the logical size of the
volume). The number in the parentheses is derived from the number in the existing directory
(if any) or from the unit table entry for that given unit. Press I Return 1 or I Enter 1 to accept the
default size for your disc.

5-14 The Filer

The system now prompts you for a volume name. Volumes and volume name syntax for the
different directory types are described in the File System chapter. Briefly, LIF directory names
must be six characters or less, uppercase and lowercase letters being distinct. WSl.O directory
names must be seven characters or less, and are always uppercased before being written in the
directory. The Filer then confirms that the volume name is the one you wanted.

The screen now appears:

Zero directory (NOT valid for HFS and SRM type units)
Zero what volume ? #3
Destroy ACCESS: ? (YIN) Y
Number of directory entries (80) ? 80
Number of bytes (270336) ?
New directory name? NEWONE
NEWONE: correct? (YIN)

When you press m to confirm the new volume name the Filer informs you that the volume
with that name has been zeroed and the Filer's prompt appears. Your new volume is now ready
for use.

Copying Files from Volume to Volume
The Filecopy command allows you to copy files from one volume to another or even to a different
place on the same volume. The volumes can be separate discs, SRM directories or, in the case
of a hard disc, multiple volumes on the same physical device.

Remove the current volume from drive #3 and insert the DOC: volume supplied with this
document set. To copy a file from one volume to another, press [£J for Filecopy and respond
to the prompt for a file specification with:

(DDC: STREAM. TEXT

When the Filer prompts you for a destination, type in the specification shown below and press
I Return 1 or I Enter I.

Filecopy what file? DOC:STREAM.TEXT
Filecopy to what? #3:$

What happens here is similar to copying a volume from one disc to another using a single
drive. The Filer reads the contents of DOC:STREAM.TEXT into memory and then displays
the message:

Please mount DESTINATION in unit #3
'C' continues. <sh-sel> aborts

The Filer 5-15

Take another disc and insert it in drive #3. Now that you have your new disc in drive #3, press
[]] to continue. The Filer writes the contents of the file that it temporarily stored in memory
to the disc you just inserted and confirms that the Filecopy has taken place.

If you give a unit number (as above) or a different volume name which is not on-line, you must
swap discs to complete the copy.

The wildcard ($) is a feature to avoid repetitious typing; it tells the Filer to give the destination
file the same name as the original file - STREAM. TEXT.

When copying a file to a different volume, always include either a file name or the $ character
when you specify the destination. If you specify the name of a mass storage volume without a
file name, the Filer prompts with a message like this:

Destroy EVERYTHING on volume (volume name) ? (yIN)

Although the volume name may be different, if you answer with a CYJ, the Filer transfers the
specified file to the destination volume, destroying the directory in the process, and rendering
all previous information on that volume useless.

The next example demonstrates how to copy multiple files from one volume to another using
the? character as a wildcard. Press m once again and respond to both the prompts as shown:

Filecopy what file? DOC:MOD?TEXT
Filecopy to what? MKWORK:$

This tells the Filer to copy all the files on the DOC: volume that begin with the characters
"MOD" and end with the characters "TEXT" to the volume MKWORK:, giving them the
same name it had on the DOC: disc. Before the Filer actually copies any files, however, it will
verify with you that you ,actually want to copy each file that fits the specification. Respond to
each prompt with a CYJ for "Yes". As you answer each prompt affirmatively, the Filer copies the
corresponding file to the destination (MKWORK:) volume. If you have a single-drive system,
the Filer will prompt you to swap the discs as in the previous example.

It is worth mentioning that, although specifying a unit number is less typing than specifying
a volume name,· when you specify a unit number the Filer initially acces~es the volume (disc)
currently in the drive without regard to whether or not it was the one you intended. After
the first access of a volume, the Filer associates a supplied unit number with the name of the
volume found in that device. However, if you specify a volume name, the Filer only performs
the command on that volume. If the volume you specified is not on-line the Filer will tell you
so. Specifying the volume name is a good habit if you are doing a lot of disc "swapping"; this
will insure that the Filer does not operate on a disc other than the one you intended to use.

5-16 The Filer

In cases where the destination volume already contains a file with the same name as the file
being copied, this prompt is displayed:

ANYVOL:XFILE
exists ... Remove. Overwrite. Neither? (R/o/N)

You have the options:

• Remove - remove the original file first, then write the new file in the largest space
available.

• Overwrite - replace the contents of the old file with the new information. The Overwrite
option cannot be used to change the type of a file. Attempting to do so would result in
the file contents being inconsistent with the file type.

• Neither - cancel the operation.

The Overwrite option allows you to put a file in the same starting location as the original. This
is important to SRM and HFS disc users when duplicate links exist to a file. All links and
access rights to the file are accurate when a file is updated because it is put in the same logical
location. If you chose the Remove option, and the file has other links, the original file would
not actually be removed; only your link to it is removed. The other users' directories are still
linked to the original file.

Note

Be careful when using the Overwrite option. If the file type is not
the same as the original file type, the contents of the file may become
inaccessi ble.

Care should be exercised when using the Overwrite option. Consider the following example:

You have a file called ABC which you intend to use to overwrite another file called XYZ. TEXT. File
ABC is of type Data and file XYZ. TEXT of type Text. If this particular example is carried
out, the following will occur:

• The file type of XYZ. TEXT will be retained, even though the file contents are overwritten.

• The contents of ABC will be copied into the location where the contents of XYZ.TEXT
reside, overwriting as the operation is executed.

This will result in a file called XYZ. TEXT which has a file type Text, but whose contents are in
fact of type Data. If the Editor, or another subsystem, is used to try to access this file an
error will almost certainly occur. This is because the system assumes that the file contents will
conform to the format expected of a file of type Text, and in reality this is false.

Note

Never use Overwrite when replacing SYSTEM files (.SYSTM suffix).
Some necessary information is not updated by Overwrite.

The Filer 5-17

Renaming Files and Volumes
The Filer's Change command allows you to rename files and volumes. (The exceptions are
that the root directory of the Shared Resource Manager cannot be renamed, neither can the
name of an SRM or HFS directory which is the Unit directory. These may be the sanle in
certain circumstances.) This command requires two specifications: the original name and the
new name. (The original name may include volume specification, directory path for HFS and
SRM, and passwords for SRM; however, the new name cannot). Assuming that the volume
MKWORK: is still on-line, press m for Change and respond to the prompt as shown:

(Change what file? MKWORK: .MOJO:

The volume name is now "MOJO:". To change the file STREAM. TEXT on the MOJO: volunle
to RIVER. TEXT you can either type out both names (separated by either a comma or a press
of the I Return I or I Enter I key) or use a wildcard as shown below:

Change what file ? STREAM=
Change to what ? RIVER=

The Filer changes the file name as described. The wildcard was used as a substitute for the
.TEXT part of both names. The only restriction on using wildcards with this command is that
if you use a wildcard in one of the specifications, you must use it in the other. Because the
strings or subsets represented by the wildcard are not always obvious, discretion is advised when
using wildcards with the Change command.

When changing the name of a file of type TEXT or CODE, remember that parts of the Pascal
System attempt to append the suffixes ".TEXT" or ".CODE" to the file you specify. You can
get around this by specifying a file and adding a period (.) to the file name. This tells the
system not to append a suffix to the file name.

Note

Excluding the Get command, the Filer makes no assumptions about
suffixes and will treat a trailing period as part of the file name.

5-18 The Filer

Removing Files
The Remove command is provided to delete files from a directory of a block structured volunle.
Suppose you have a volume on-line named NEWSTUF: containing the file POLYNOM.TEXT
that you wish to delete. Press []] to initiate the Remove command and respond to the prompt
as shown:

~ Remove what file? NEWSTUF:POLYNOM.TEXT

Then press I Return lor I Enter I. The Filer removes the specified file from the volume and reports:

~ NEWSTUF: POL YNOM . TEXT removed

The Filer prompt reappears as the message is displayed. As in many of the Filer's commands,
the prompt requests a file specification. Wildcards can be used with the Remove command but
should be used carefully. The question mark (?) wildcard provides an easy method for removing
a TEXT and CODE file of the same name. It also lets you verify the operation (a good practice
w hen purging files).

Suppose the same volume NEWSTUF: contains two files you wish to remove, and they are
called: IOTEST.TEXT and IOTEST.CODE. To remove these files answer the "Remove what
file?" prompt with:

NEWSTUF:lOTEST?

and press I Return 1 or I Enter I. The Filer responds with:

Remove lOTEST.TEXT? (YIN)

Reply with [IJ (for Yes) to remove the file. Reply with []] (for No) if you change your mind.
Either reply results in the next prompt:

Remove lOTEST.TEXT? (YIN) Y
Remove lOTEST.CODE? (YIN)

Reply as before and the Filer responds with:

Remove lOTEST.TEXT? (YIN) Y
Remove lOTEST.CODE? (YIN) Y
Proceed with remove? (YIN)

This gives you one more chance to change your mind about the operation. The files are not
actually removed from the volume's directory until you press OJ. Pressing [EJ has the same
effect as if you had never initiated the command (i.e., the directory remains unchanged and
your files remain intact).

If you want to remove all of the files on a volume (for non-HFS local discs only, not SRM), the
quickest way to do so is to execute the Zero command. This command wipes out the directory
of a volume so that the volume may be re-used. See the description of the Zero command earlier
in this chapter or in the "Filer Commands" section.

The Filer 5-1 9

Leaving the Filer
Exit the Filer by pressing [QJ for Quit from the Filer prompt. You will immediately be returned
to the Main Command Level. The Filer can also be exited with the ~ key. The ~ key
waits for any current disc I/O to complete before it actually executes. This key can be used at
any time - even while executing a Filer command. However, this practice is not recommended
since some commands may cause damage to your files if ~ is pressed while they are being
accessed.

The System Workfile (A Convenient Scratchpad)
The Pascal System features a workfile which can be used in the Filer, Editor, Compiler, and
Assembler. Using workfiles with each subsystem is documented in the corresponding chapter of
this manual.

Think of the workfile as being analogous to a default volume. In some of the subsystems, you are
not prompted for a file specification when entering the subsystem if a workfile of the appropriate
type exists. For example, if the text version of a workfile exists when entering the Editor, the
Editor never prompts you for a name of the text file to edit but reads in the workfile instead.
As a matter of fact, before you can edit any other file, you will need to use the Filer's New
command to release the workfile (preceded by the Save command if you want to store the file).
In the same manner, invoking the Pascal Compiler when the text version of a workfile exists
(but not the code file) results in that file automatically being compiled.

If the Filer's Get command is used, the workfile is both the source (TEXT, ASCII, UX, Data)
and object (CODE) file specified in the command.

The Filer has four commands (Get, New, Save, and What) which operate directly on the workfile.
These are covered in the next section.

5-20 The Filer

Filer Commands
This section contains a brief overview and summary of the Filer commands and a conlplete
alphabetized description of the syntax and semantics of all the Pascal Filer commands and
options.

Filer Command Summary

Volume Related Commands
Bad sectors Scans a local medium and searches for unreliable (bad) storage areas.

Extended Directory Lists complete directory information about a specified volume or set of
files.

Krunch

List Directory

Prefix

Volumes

Udir

Zero

Exit Commands
Quit

Consolidates all unused space on a volume in a single area by packing the
existing files together. (Not valid for SRM, SRM/UX, or HFS)

Lists partial directory information about a specified volume or set of files.

Specifies a new default volume.

Lists the volumes currently on-line.

Sets the default unit directory. (HFS, SRM, and SRM/UX only)

Creates an empty directory on the specified volume. (Not valid for
HFS, SRM/UX or SRM)

Provides an orderly exit from the filer.

Pressing the ~ key exits the Filer Subsystem unconditionally. The
current I/O operation is completed before exiting.

The Filer 5-21

File Related Commands
Access

Change

Du plicate link

Filecopy

Hfs

Make

Remove

Translate

Change the access rights (passwords) on a file or directory. (SRM only)

Change the name of a file, set of files, or volume.

Duplicates links to a file or set of files. (HFS, SRM, and SRM/UX only)

Copies a file, set of files, or a volume to a specified destination.

Change the access rights (modes) and owners of files and directories on -an
HFS disc or SRM/UX volume.

Create a directory (HFS, SRM, and SRM/UX) or a file on a volume.

Remove a directory entry or a set of directory entries.

Translates text files of types TEXT, ASCII, UX and Data to other text
file representations or to un-blocked volumes.

Workfile Related Commands
Get Specifies a file as the workfile.

New Specifies that no file is the current workfile.

Save Saves the current workfile(s) with the specified name.

What Lists the name and current state (saved or not saved) of the workfile(s).

5-22 The Filer

Command Syntax and Semantics
The Filer commands are presented in alphabetical order. Each command's explanation includes:
the command's name, a brief functional description, a diagram showing its legal syntax (see
Chapter 2 for an explanation of the syntax used), the command's prompt (if any) and text
which discusses using the command. Each command's options are also covered and some have
examples to show the proper use of these options.

Several of the syntax diagrams on the following pages reference the "volume specification" and
the "file specification" on the following pages. The "volume specification" is the syntax for
commands that operate on volumes. The "file specification" is the syntax for commands that
operate on files. Volume specifications don't need the ":" except when a literal volume name
is given. Then the name must end with a ":" to distinguish it from a file name. If no volume
specification is given, the default volume is assumed.

Alphabetical List of Filer Commands

Access
Bad sectors
Change
Duplicate
Extended directory
Filecopy
Get
Hfs
Krunch
List directory
Make
New
Prefix
Quit
Remove
Save
Translate
U nit directory
Volumes
What
Zero

The Filer 5-23

File Specification

Item

unit number

volume name

password

directory name

file name

number of blocks

Description Range

integer; corresponding to an entry in the Unit 1 through 50
Table

literal

literal

literal

literal

integer

any legal volume name

any legal password (SRM only)

any legal SRM, SRM/UX
or HFS directory name

any legal file name

any legal number of blocks

See Chapter 3 for legal names and values.

5-24 The Filer

Volume Specification

Item

unit number

volume name

Description Range

integer; corresponding to an entry in the Unit 1 through 50
Table

literal any legal volume name

The Filer 5-25

Access
The Access command allows you to change public access rights on your files (SRM only).

file
specification

Item

file specification

attribute

password

5-26 The Filer

literal

literal

literal

Description Range

a legal SRM file specification

MANAGER
READ
WRITE
SEARCH
PURGELINK
CREATELINK
ALL

any legal password (See Chap
ter 3 for details)

Semantics
All access capabilities for a file are initially public. You can remove one or more capabilities
from public access by associating them with password(s).

The Access prompt:

Access codes for what file ?

Type the file specification. If the file already has a MANAGER password, then you must include
the password in the file specification.

The next prompt:

Access: List. Make. Remove. Attributes. Quit?

These are the possibilities. You can list the attribute passwords, make new ones or renlove
passwords. The Attributes option just lists the possible attributes for your help. Quit returns
you to the Filer prompt.

Access rights cannot be changed on open files or open working directories.

To make new passwords, press [}[] . You see this prompt:

Make password:attribute ?

Type the password (up to 16 characters), then a colon (:) followed by the attribute list (with
attributes separated by commas). Different passwords may be associated with each attribute
or one with ALL. If you type a password that already exists, you are asked:

PASSWORD already exists ... replace it ? (YIN)

Note that passwords should not contain these three characters: >

To remove passwords, press [[] . You see the prompt:

Remove password ?

When you type only the password, all attributes associated with it are cleared.

The Filer 5-27

The Attributes option list:

MANAGER
READ
WRITE
SEARCH
PURGELINK
CREATELINK
ALL

Manager - permits the user to assign or remove further attributes.

Read - permits the user to read the contents of the file.

Write - permits the user to write, or overwrite data to or in the file.

Search - permits the user to look at the contents of a directory. This is really a special form of
Read which is applicable to directories.

Purgelink - permits the user to purge links to the file.

Createlink - permits the user to set up new links to the file.

All - associates the given password with all the above listed attributes.

Depending on the attributes associated with a particular file, it may not be permitted to perfornl
some file or directory operations using certain Main- level or Subsystem commands. As an
example, let us suppose you had a file which you wanted a group of people to have access to
(but not all those using the SRM system), but you wished to be the only person who is permitted
to write or overwrite the file. First you would give a password and the READ attribute. This
is the password you will tell the group of people. Second, you would give a different password
and the WRITE and MANAGER attributes. This password only you would know. This would
give the desired protection to the file.

5-28 The Filer

Bad sector
The Bad Sector command scans a local mass storage medium for errors. It is not valid for
SRM or SRM/UX.

volume
specification

Item

volume
specification

Semantics

literal

The Bad sector prompt:

Description

Bad sector scan of what directory ?

Range

(See the beginning of this sec
tion)

The Bad sector command allows you to check a mass storage medium to find out if each block
(sector) is readable. Mass storage media may become unreliable after damage or excessive wear.

Press []] to initiate the command and answer the prompt with a volume specification. The
Filer then displays a message indicating that it is scanning the volume from block 0 to the end
of the volume. The Filer does a read operation on each sector and if the read succeeds, that
sector is considered to be good; if not, the Filer lists the sector number.

If you find a bad sector in a file, you may wish to use the Filer to change the file type (suffix) to
. BAD. (You did make a back-up copy didn't you?) The BAD file will not be moved in a Krunch
operation. A large number of bad sectors indicates worn-out media. The media should only be
used if you are willing to risk losing information on that volume.

The Filer 5-29

Change
The Change command lets you rename files, directories, and vol urnes.

file
specification

volume
specification

Item Description

file specification literal

volume literal
specification

new file name literal

new volume name literal

Semantics
The Change prompt:

Change what file?

new volume
name

~or~

Range

(See the beginning of this sec
tion)

(See the beginning of this sec
tion)

any valid file name

(See the beginning of this sec
tion)

The Change command requires two specifications: the original volume or file specification and
the new one. The two specifications can be separated by either a comma or a carriage return.

To change the name of a file, use any legal volume ID in the first specification and only the new
file name in the second specification. The Filer is intelligent enough to know that the file whose
name you are changing resides on the volume identified in the first specification. After the Filer
has finished changing the name(s) and updating the directory, it reports the name change(s) on
the CONSOLE: volume.

Because many of the Pascal subsystems append the string . TEXT or . CODE to a file name given
in response to a prompt, it is a good idea to retain these parts of a file name when making a
change.

5-30 The Filer

Wildcards (the = and? characters) may be used in the Change command~ If a wildcard is
used in the first specification, it must also be used in the second one. The subset string that is
replaced by the wildcard in the second specification (the new name) is the same as the string it
stands for in the first specification.

Suppose you have a volume named BUGS: with the following files:

WHATISIT.TEXT
WHOISIT.TEXT
WHYISIT.TEXT

Specifying BUGS: WH=TEXT, FO=FA in response to the Change prompt results in the following mes
sages being reported by the Filer:

BUGS:WHATISIT.TEXT changed to FOATISIT.FA
BUGS:WHOISIT.TEXT changed to FOOISIT.FA
BUGS:WHYISIT.TEXT changed to FOYISIT.FA

Here is another example using the files shown above on the BUGS: volume. Specifying
BUGS: WH= . TEXT, = results in:

BUGS:WHATISIT.TEXT changed to ATISIT
BUGS:WHOISIT.TEXT changed to DISIT
BUGS:WHYISIT.TEXT changed to YISIT

You may wish to create some empty files using the Make command and experiment with them
before using wildcards extensively. Until you get used to them, the effects of wildcards are not
always obvious.

Caution

Possible loss of data. Using the Change command to "change" a file
name to the same name results in the file being removed.

Note

The Change command does not change the file type. (See Translate.)

The Filer 5-31

Duplicate
The Duplicate link command establishes a new pointer to a file (HFS, SRM, or SRM/UX
only).

Item

file specification

Semantics

file
specification

Description

literal

The Duplicate link prompt:

Duplicate link (valid only for HFS and SRM type units)
Duplicate or Move ? (DIM)

file
specification ~or@ill)

Range

(See the beginning of this sec
tion)

Do you want the original pointer to the file removed after the duplicate link is established? If
you do, type [K) for Move; if not, type []] for Duplicate.

If you choose the Duplicate option, the next prompt is as follows:

Dup_link what file ?

Type the file specification (including the SRM password if the CREATELINK capability has
one).

Dup_link to what ?

Type the new file specification. Wildcards can be used in the specification. This puts a link to
the file in a second directory.

If the file is referenced from two or more directories, the file is physically removed from the disc
only when all links to the file have been removed.

You should be aware that new CODE files generated by the Compiler, Assembler, and Librarian
to replace older versions are not written in the same space. If several directories have duplicate
links to the same CODE file and the CODE file is recompiled, only one directory has an accurate
link to the new CODE file. Other users must use the Duplicate link command to become linked
to the new CODE file.

5-32 The Filer

Caution

Possible loss of data. Using the Duplicate command to "duplicate link"
or move a file to the same file results in the file being removed.

If you choose the Move option, the next prompt is as follows:

Move what file?

Type the new file specification. Wildcards can be used in the specification. This puts a link to
the file in a second directory, and the original link is then removed.

The Filer 5-33

Extended directory
The Extended directory command lists the directory of a blocked volume or a set of files in the
volume.

Item

file
specification

volume
specification

file specification literal

volume
specification

Semantics

literal

The Extended directory prompt:

List_ext what directory ?

file
specification

volume
specification

y
destination

Description

~or~

Range

(See the beginning of this sec
tion)

(See the beginning of this sec
tion)

The Extended directory command requires a legal volume or file specification. Results can be
listed to the PRINTER: or to a text file if specified and separated from the first specification
by a comma. If no destination is specified the listing defaults to the CONSOLE. Wildcards are
available to identify subsets of files on the volume.

In the listing, the name of the volume is displayed in the upper left-hand corner. To the right,
the directory type is displayed. Pascal LIF discs have Level 1 directories; level 1 directories
contain the creation date and volume size information. Level 0 directories (created on other
systems) do not. Your directory listing should display the date the directory was created and
the date it was changed as system volume, the size of the storage blocks, and whether the listing
is in Storage order or Alphabetic order. The size of blocks on LIF volumes is 256 bytes. The
size of blocks on WS1.0 volumes is 512 bytes and on HFS volumes is usually 1024 bytes. The
Shared Resource Management system uses single byte "blocks".

To have directories listed in alphabetical order, include [*] after the directory name. For
example:

MYDIR: [*]

The column entries for each file depend on the type of directory being cataloged (LIF, SRM,
SRM/UX, or HFS) but can include: file name, number of blocks used for storage, the file size
in bytes, the number of the block where the file starts, the date the file was changed, the type
as recognized by the file system, the type-code used by the directory system, SRM/HFS access
information, the date the file was created, and two extension fields.

5-34 The Filer

The SRM access information column comes under the heading "directory info". It contains
codes which show the access rights which are still public (i.e., which have not been protected
by associating them with a password):

M Manager

R Read

W Write

S Search

P Purgelink

C Createlink

And the current file status:

CLOSED
SHARED
EXCLUSIVE
CORRUPT

CLOSED, SHARED, and EXCLUSIVE are file status that are associated with SRM systems
and are explained in detail in Chapter 15. If a file is ever marked CORRUPT, your Shared
Resource Manager has a problem. Stop your operation and notify the person responsible for
your SRM. He or she should restore the SRM to a usable state.

The last two lines display additional directory information including how many more entries
can fit in the directory or on the file system as a whole. (The available number of entries in a
directory was specified for LIF when the disc was initialized.)

The results can be listed to a printer or a file if you so specify. The destination of the listing
is separated from the volume specification or file specification being listed by a comma. If rio
destination is specified, then the listing defaults to the screen. Wildcards are available to specify
groups or subsets of files on a mass storage medium.

For example, assuming that SYSVOL: (the system volume) is in the disc drive which has been
assigned logical unit #3, a listing of all the CODE files on that volume could be sent to the
printer by specifying any of the following in response to the Extended directory prompt:

#3:=CODE,#6:

*=CODE,PRINTER:

SYSVOL:=CODE,#6

specifies volume residing in unit #3; listing to logical unit #6: (the
PRINTER: volume)

specifies system volume; listing to the PRINTER. (Without the colon, the
listing would be sent to a DATA file named "PRINTER" on the default
volume.)

specifies SYSVOL: volume; listing to unit #6.

In all cases the "=CODE" string refers to all files whose names end in CODE on the specified
volume and the listing is sent to the printer.

The Filer 5-35

Listings can also be sent to a file. Use a destination parameter after the source parameter
(separated by a ",") as in the above PRINTER: example. Give a complete file specification,
using the appropriate suffix in the file -name, otherwise a file of type Data is produced. For
example:

List what directory? #3:,SYSVDL:LIST.TEXT
or

List what directory? #3:,SYSVDL:LIST.ASC

If the directory being listed is of type HFS, the "directory info" column is also used to display
the currently assigned HFS access rights. The column is subdivided into three further columns,
giving information about the mode, user and group respectively. This information is supplied
in the form of octal numbers. Let's take a look at an extended listing of an HFS directory.

hfs11: Directory type= HFS 755 17 9
changed 15-Mar-87 14.24.54 block size=1024
Storage order
... file name # blks # bytes start blk last change ... extension1

type t-code .. directory info create date ... extension2

lost+found 8 8192 3 15-Mar-87 2. 4.14 2
Dir 3 d755m 17u 9g -1

TOP 1 96 64 8-May-86 8. 9.53 3
Dir 3 d755m 17u 9g -1

just_a_file 8 7168 4 15-Aug-86 6.10.24 1
Data -5622 644m 17u 9g 7618

EXAMPLE.UX 1 24 4 6-Nov-86 12.46. 1 1
Hp-ux -5813 666m 17u 9g -1

FILES shown=4 allocated=4 unallocated=18496
BLOCKS (1024 bytes) used=18 unused=21723

In the "directory info" column, the first set of characters for the directory TOP, d755m, refer
to the mode for the directory. The "d" shows that this file is in fact a directory. The 755 is the
octal number defining the access rights (see the Hfs command later in this chapter for a detailed
description of access rights and HFS files), and the "m" states that the 755 is the mode value.
The 17u, to the right, is the user specification, hence the "u". Finally, to the right of the 17u, is
a 9g which is the group specification, denoted by the "g". The numbers 9 and 17 will normally
remain unchanged, however, should you need to specify other group or user identifications see
the Hfs command in this chapter.

SRM/UX units control access to files using the HFS access right scheme and accordingly this
information is printed in the "directory info" column when SRM/UX directories are listed.

5-36 The Filer

Filecopy
The Filecopy command copies a specified file, set of files, or volume to the specified destination.

Item

file
specification

volume
specification

file specification literal

volume
specification

Semantics

literal

The Filecopy prompt:

Filecopy what file ?

Description

file
specification

volume
specification

~ orffiill)

Range

(See the beginning of this sec
tion)

(See the beginning of this sec
tion)

The Filecopy command is initiated by pressing CD and requires two specifications - a source
and a destination - separated by either a comma (,) or I Return 1 or I Enter I. The source volume
must be on-line. The destination volume does not have to be on-line (which allows you to copy
files on different volumes using a single-volume system).

Copying Single or Multiple Files
To copy files, enter the name of the existing file, followed by the name of the file into which
the existing file is to be copied. These two names can be separated either by a comma or by
pressing the I Return 1 or I Enter 1 key.

Wildcards may also be used to specify sets of files. If the equals (=) wildcard is used, the
copy is not confirmed before taking place. Also, note that if the equals wildcard is used alone
(i.e., without any qualifying strings) then the Filer copies every file on the specified volume. If
the question mark wildcard is used, you are asked to confirm the copy of each file meeting the
wildcard specification before the Filecopy takes place. Thus, using the ? wildcard allows you
more flexibility and control over the process.

The dollar sign wildcard ($) may be used in the destination specification to indicate that the
file($) will have the same name (or names) as the source file(s). For example, assume that there
are a number of TEXT files on the volume TRIG: and that a second volume named MATH:
exists. The following specifications:

TRIG:=TEXT,MATH:$

result in all the files on the TRIG: volume whose file names end with the string TEXT being
copied to the volume MATH: and given the same name as they have on the TRIG: volume.

The Filer 5-37

When copying only files, be sure to use either a file name or the $ character when specifying a
destination. If, in the example above, the destination was specified as MATH: instead of MATH: $,
the Filer would respond:

Destroy EVERYTHING on volume (volume name) ? (YIN)

If you respond with [TI, the directory of that volume will be overwritten. In the case of HFS,
the file system may be destroyed. Pressing []] aborts the Filecopy command and returns the
Filer prompt.

Where source and destination are the same volume, the Filecopy command proceeds by reading
the first specified file into memory, prompting you to remove that volume and insert the desti
nation volume, and then writing the file in memory onto the destination volume. Depending on
the amount of memory in your computer, the amount of material being copied, and the number
of files being copied, you may have to swap discs more than once.

Note

When using the Filecopy command with a single mass storage volume,
wait for the Filer's prompt before removing the source volume and re
placing it with the destination volume. Failure to follow this guideline
may result in the loss of information from the source volume.

A size specification may be used in the destination file specification. For example, specifying:

SYSVOL:FILE.OTHERVOL:FILE[35]

would result in the file being written to the first available area on OTHERVOL: that was at
least 35 blocks in size.

Copying Entire Volumes
You can also use the Filecopy command to make a back-up copy of an entire volume. Simply type
in the source volume specification and the destination volume specification. The destination
volume must have been initialized, but it does not have to have been Zeroed (since the directory
gets copied from the source volume). The Filer will ask you if you want the directory destroyed.
A volume-to-volume copy makes an exact copy of the source volume on the destination volume.

Note that having two volumes with the same name on-line at one time is not advised. The
Filer looks for volumes according to their volume names and may not be able to distinguish
one from the other. Thus, the Filer may perform an action on one volume when you wanted
the operation to affect the other volume. The Filer warns you whenever this condition exists.
If you get a warning, either remove one of the volumes or use the Filer's Change command to
change the name of one of the volumes.

You can copy files on one volume to a volume of a different size, but you should not use volume
specifications alone to do this. If the source volume is larger than the destination volume, the
Filer refuses to execute the Filecopy. If the source is smaller than the destination, the destination
volume ends up the same size as the source when the operation is through, so you lose storage
space. (Remember? It makes an exact duplicate of the source.)

5-38 The Filer

The best way to handle copies between different size volumes is to use one of the wildcards.
Use the equals wildcard (=) if the destination is larger than the source and the question mark
wildcard (?) if the destination is smaller than the source. In the latter case you may have to
be selective in your copies, since there may not be enough space for all of the files.

When the Filecopy command has finished its task, the screen displays what file(s) or vohllne
has been copied and the Filer prompt appears. The Filecopy command can be aborted before
any specifications are entered by pressing I Return lor I Enter I in response to the prompt.

In cases where the destination volume already contains a file with the same name as the file
being copied, this prompt is displayed:

ANYVOL:XFILE
exists .. , Remove, Overwrite, Neither? (R/O/N)

You have the options:

• Remove: remove the file before proceeding with the operation.

• Overwrite: replace the contents of the old file with the new information. The Overwrite
option cannot be used to change the type of a file. Attempting to do so will result in the
file contents being inconsistent with the file type.

• Neither: cancel the operation, do not copy this file.

The Overwrite option allows you to put a file in the same starting location as the original. This
is important to SRM and HFS users when duplicate links exist to a file. All links and access
rights to the file are accurate when a file is updated with Overwrite, because it is put in the
same logical location. If you choose the Remove option, the original file would not actually be
removed; only your link to it is removed. The other users are still linked to the original file.

Note

U sing the Filecopy command to "copy" a' file name to the same name
on the same volume results in the file being removed.

Note

The Filecopy command does not change the file type. See Translate.

Note

Overwrite of a file of type SYSTM is not recommended, because the
start execution address cannot be changed in an existing SYSTM file.
Overwrite is also not recommended if the source and destination files
are not of the same file type.

The Filer 5-39

Get
The Get command associates a specified file as the current workfile.

file
spec if icst ion

Item

file specification

Semantics
The Get prompt:

Get what file ?

literal

~or~

Description Range

(See the beginning of this sec
tion)

The Get command is initiated by pressing []J and prompts you for a file specification. If a
workfile currently exists when the Get command is executed, you are asked if you want to release
that file before being allowed to specify a new workfile. ,Upon receiving the specification, the
Filer finds the file (or files) and associates that name with the current workfile. Subsequent
operations on the workfile use the specified name. The workfile i~ generally *WORK. TEXT and/or
*WORK.CODE.

The Get operation assumes that the text version of the specified file has a . TEXT suffix. If the
text version is ASCII, you must include the .ASC suffix, for HP-UX compatible files the . UX
suffix. If the text version is Data, you must include a "." at the end of the file name (to prevent
the appending of the .TEXT suffix).

The operating system notes that either a text or code or both versions of the workfile exist.
Workfiles can only be of type .TEXT j.ASCj.UX/Data or of type CODE. If both text and code
versions of the specified file exist, both are associated with the workfile; if only one exists, the
association is made with that file. The Filer reports one of three things: either a text or code
file has been loaded, both have been loaded, or the file cannot be found on the specified volume.

The Filer is not the only Pascal subsystem where a workfile can be created. The Editor,
Compiler, and Assembler subsystems also create workfiles. Once a workfile exists, it is treated
as the default file in many of the subsystems. A workfile is "released" by the Filer's New
command.

5-40 The Filer

Hfs
The Hfs command permits the specification of access rights to HFS files and directories.
(Valid for HFS discs and SRM/UX units only.)

~or~

Item Description

owner/group
identification

access
information

unmask
information

~or~

~ or mill)

~or~

Range

file specification

Owner /Group
specification

literal

integer

(See beginning of section)

o through 65535

Access specification Access rights entered in octal

Unit number

Umask
specification

Semantics

integer

integer in octal code

o through 777 (See description
of permissible octal codes)

(See beginning of section)

o through 777 (See description
of U mask option)

A complete discussion of file ownership is given in the HFS section of Chapter 3. If you have
never used HFS discs, you may wish to first read the HFS section.

Caution

Unless you have the HP-UX operating system running on your com
puter, this command is best left alone. Changing the ownership of a
file, when Pascal is the only operating system you have available, IS

potentially disastrous as all access to the file can be lost!

Note

HFS is not supported on the HP 9885 8-inch flexible disc drive, nor
on removable media drives that are accessed by the AMIGO driver
module. This includes the HP 9895, the HP 82901, HP 82902, and
HP 9121 drives. Also not supported by HFS is the removable me
dia unit in AMIGO "multiple-unit" drives such as the HP 9135 and
the HP 9133A, B, C, and XV. However, the hard disc unit in such a
multiple-unit drive can be used as an HFS unit. The "Adding Modules
to INITLIB" section of Chapter 18 discusses the AMIGO and other
driver modules.

The Filer 5-41

The Hfs prompt:

HFS access: Owner, Group, Mode, Umask, Quit?

is presented to you. Here are your possible courses of action.

• Owner allows you to transfer the ownership of a specified file to a different user - providing
you are the owner of the file. The required information is the filename and the numeric
identification of the new user.

The Owner option will prompt you:

For which file ?

Type in the filename, with optional volume specifier and optional directory path. Wild
cards may be used in the filename.

Once you have typed your filename in and pressed I Return I:

Enter new owner number

The default number for a file created in a Pascal environment is 17. The default nunlber
for a file created in a BASIC environment is 18. HP-UX users may also use other numbers,
but it should be kept in mind that to transfer ownership of a file from an HP-UX user
to a Pascal user, simultaneously transferring all access rights to the Pascal user, requires
that the owner number be changed to 17 while in the HP-UX environment.

• Group permits you to change the group membership of a specified file to some other
group - providing you are the owner of the file. Similarly, the required information is the
filename and the numeric identification of the new group.

• Mode changes the access permissions of the file, i.e. it allows you to restrict or grant
permission, providing you are the owner of the- file. Information required during this
option is the filename and the octal numeric value of the new permissions.

The default mode assigned to a file when it is created is 666.

The default mode assigned to a directory when it is created is 777.

For example, assume that there is a file called TEST.TEXT which has been created with
the default access rights of 666 and you now wish to restrict the access of this file. Press
lliJ to initiate the Mode subcommand.

You will now be prompted:

For which file ?

Now type the filename which you are operating on. The option will continue with:

Enter new mode

and respond by entering (for example):

744 I Return 1 or I Enter 1

This will cause the system to assign read, write and execute rights to you the owner (user
number 17), and only read permission to all other users of the system.

5-42 The Filer

This command can be used to grant permissions as well as restrict them, but for either
to be possible you must be the owner of the file to be changed.

• Umask controls the default access permissions when either a file or directory is first
created. Normally new files are created with read and write permissions granted (octal
666), and new directories are created with all permissions granted (octal 777). Using this
command you can redefine these default settings by removing the desired permissions
which you no longer wish to grant as default. For example, to change the default value
for directories to read, write, and execute for the owner and execute for the group only,
you should enter 067, to obtain the new default permission 710.

The current value of Umask can be displayed by pressing I Return I when prompted to enter
the permissions you want to remove.

This command will prompt you:

For which unit ?

You should enter the unit number for which these default values discussed above will be
valid. Note that only one value can be set per unit.

You will then be prompted to:

Enter new umask number

By simply pressing I Return I there will be no change to the umask value for the unit.

For each user class the octal codes are specified as follows:

• If Read permission is to be granted, octal code 4 is specified.

• If Write permission is to be granted, octal code 2 is specified.

• If Execute permission is to be granted, octal code 1 is specified.

The individual permission codes are summed and the final value is the access right for the file
for the particular user class. For example, an octal code 664 means that the owner has octal
code 6 for the file i.e. read and write permissions granted. The members of the group may also
read and write, but other users may only read the file.

If you prefer to consider the code as one number, i.e. six hundred and sixty four in the above
example, the following guide will help you to assign the correct value to the file, although the
principle used is identical.

r
400

OWNER
w

200
x

100
r

40

GROUP
w

20
x

10
r
4

OTHER
w
2

x
1

If you sum all the corresponding numbers where permissions are granted you should obtain the
correct octal number. For the above example this would be:

400 + 200 + 40 + 20 + 4 = 664

The Filer 5-43

Krunch
The Krunch command moves all files on a block structured volume so that all the unused storage
space is at the end of the volume.

volume
specification

Item

volume
specification

Semantics

literal

The Krunch prompt:

Crunch what directory ?

~ ormilll

Description Range

(See the beginning of this sec
tion)

If there is the slightest question about the reliability of the mass storage medium you are using
(because of excessive wear or damage), use the Bad sector command to do a scan of the sectors
on the volume before initiating Krunch. If a bad sector is found, use the Filer's Make command
to make a file of type .BAD over the bad sectors. Krunch does not move files of type .BAD.
Moving files onto an unreliable area of storage is a good way to lose them.

The Krunch command is initiated by pressing [[] and it prompts you for a volume specification.
After you respond with a legal volume specification of an on-line, block-structured volume, it
prompts:

Crunch directory MKWORK: ? (yiN)

Where MKWORK: is whatever volume you specified. Typing m for Yes lets the command continue;
[[J for No returns the Filer prompt. The Krunch command executes a sensitive operation -
that of moving all the files forward on the disc by reading the files into memory and then writing
them back out on the disc in such a manner so as to make all the unused space on the volume
contiguous at the end of the disc.

Caution

UNDER NO CIRCUMSTANCES SHOULD YOU ATTEMPT TO IN
TERRUPT THE KRUNCH OPERATION ONCE IT HAS BEGUN.
You are risking your directory, and thus all of the information con
tained on that medium if you do so. Do not touch the power switch
or the door on the disc drive, or attempt to use the keyboard while a
Krunch is in progress.

5-44 The Filer

This process becomes necessary when, after repetitive reading and writing to the disc, the
available storage space becomes highly fragmented. For instance, suppose you have 100 blocks
available on the disc, but because they are all in 10 or 15 block chunks, there is not enough
contiguous storage space for the system to write a 20 block file to the disc.

The Krunch command is extremely useful and using it should not worry you. However, because
it alters the directory (which maps where the information on the disc resides), it is one of the
quickest ways to wipe out a volume. The precautions outlined above should help you avoid any
problems while using the command.

The Krunch command does nothing on SRM, SRM/UX, or HFS units.

The Filer 5-45

List directory
The List directory command lists directory information about a block-structured volume or one
of its subsets.

Item

file
specification

volume
specification

file specification literal

volume
specification

Semantics

literal

The List directory prompt:

List what directory ?

file
specification

volume
specification

y
destination

Description

~ or mill)

Range

(See the beginning of this sec
tion)

(See the beginning of this sec
tion)

The List directory command requires a legal volume or file specification. Results can be listed
to the PRINTER: or to a text file if specified and separated from the first specification by
a comma. If no destination is specified the listing defaults to the CONSOLE. Wildcards are
available to identify subsets of files on the volume.

In the listing, the name of the volume is displayed in the upper left-hand corner. To the right, the
directory type is displayed. Pascal LIF discs have Level 1 directories. Level 1 directories contain
directory-create and volume size information. Level 0 directories (created on other systems) do
not. If your directory is of type LIF, it should display the date the directory was created and
the date it was changed as system volume, the size of the storage blocks, and whether the listing
is in storage order or alphabetical order. The size of blocks on LIF volumes is 256 bytes. The
size of blocks on WSl.O volumes is 512 bytes. The Shared Resource Management system uses
single-byte "blocks", and HFS discs usually use blocks of size 1024 bytes.

To have directories listed in alphabetical order, include [*] after the directory name. For
example:

MYDIR: [*]

The column entries for each file include: file name, number of blocks used for storage, the file
size in bytes, and the date the file was created or changed.

The last two lines display additional directory information. On LIF volumes this includes how
many more entries can fit in the directory. The size of a directory is specified when the disc is
initialized. You need one 256 byte block for each eight directory entries.

5-46 The Filer

For example, initiating the command by pressing [0, specifying ACCESS: and pressing I Return lor
I Enter I results in the following listing appearing on the screen:

ACCESS: Directory type= LIF level 1
created 20-Sep-82 13.57.17 block size=256
Storage order
... file name. . . . # blks # bytes last chng

FILER 218 55808 20-Sep-82
EDITOR 224 57344 20-Sep-82
LIBRARIAN 202 51712 20-Sep-82
MEDIAINIT.CODE 132 33792 20-Sep-82
TAPEBKUP.CODE 54 13824 20-Sep-82
FILES shown=5 allocated=5 unallocated=3
BLOCKS (256 bytes) used=830 unused=223 largest space=223

The Extended Directory command gives more information about the files and unused areas on
the volume.

The Filer 5-47

Make
The Make command creates files and directories.

Item

file specification

Semantics
The Make prompt:

literal

file
specification ~or~

Description

Make File or Directory? (F/D)

Range

(See the beginning of this sec
tion)

The Make command is useful primarily in two ways. Files can be made when you need to
reserve physical space on a disc, and directories can be made on an SRM or SRMjUX system,
or an HFS disc.

Making Files
The Make command is not required to create files to be used by the various Pascal subsystems.
It reserves space only; it in no way initializes or changes the contents of the space. In the Pascal
System, each subsystem lets you either create or specify any files you need. Users of HP BASIC
may quite naturally think that the same function is served by this command as the CREATE
command in BASIC (where you must create a file before using it). Thus the distinction between
these similar sounding commands is drawn here.

The Make command requires at least a file specification (which includes a volume specification
by definition) and accepts an optional size specification. If the (positive integer) size is given,
it must follow the file specification on the same line and be enclosed in square brackets. The
Filer then creates a file with the specified name and of the specified size on the first area of the
volume that has a large enough area of contiguous storage space to meet the size requirements.

When using a size specification to make a file, you must be aware that the size is specified in
"number of blocks". The size of all "Make" blocks is 512 bytes - regardless of the directory
type. A LIF directory considers a 256 byte sector to be a block. The WS1.0 directory considers
a block to be 512 bytes. So if you make a file on a LIF volume and specify 500 blocks, it will
show up in the directory as 1000 blocks.

For example, assume that there is a volume named MKWORK: on-line that has at least 22
blocks of contiguous and unused space available. Press ~ to initiate Make, specifying:

MKWORK:DUX.TEXT[22] I Return I or I Enter I

5-48 The Filer

This results in a file named DUX. TEXT being created on the first available area with 22 blocks
of the volume MKWORK: and the Filer reporting the following:

MKWORK:DUX.TEXT made

A subsequent listing of the directory (using the List directory or Extended directory commands)
will show a file of the same name with a 22-block size (on WSl.O directories).

The size specification may be omitted, in which case the Filer creates the specified file using
the largest unused area on the disc (i.e., the largest contiguous storage space on the disc will be
allocated to the file). It is recommended that you specify the size you want the file to be.

There are two special cases of size specification worth knowing about. The first is the number
zero enclosed in brackets [0] which is the same as omitting the size specification altogether -
the Filer uses the largest space available. The second case is the asterisk character enclosed in
brackets [*] which tells the Filer to make the file's size either the second largest area on the
disc or half of the largest area, whichever is greater. These two special cases are ignored by HFS
discs, and SRM systems will ensure there is enough space available and make a zero size file.

Rebuilding Files
The Make command is useful if you must rebuild a file that was lost on a LIF disc., Here are
steps you can take to do that.

1. You must know its size and where it was located.

2. Then make TEMP files (TEMPI, TEMP2 etc.) over all the unused spaces on the disc
that are as large or larger than the file you'll be making.

3. Then make a file of the proper type over the lost file to recover it.

4. Finally, use the Filer's Remove command to remove all the TEMP files.

An Extended directory listing can help you determine the location and size of unused areas on
the disc.

The above techniques will not recapture lost files on SRM, SRMjUX, or HFS systems.

Making Directories (SRM, SRM/UX, or HFS)

The Make command is used to create direct ores on an SRM or SRMjUX system or HFS disc.
For example:

Answer the first question by typing [[] and specify where you want the directory located and
what is its name. The directory path tells where you want it and its name is the name on the
end of the path. For example, if you had a directory:

/USERS/JOE/PROJECT1

If you wanted to create a directory for Project 1 's DATA files, you should type:

/USERS/JOE/PROJECT1/DATA

The DATA directory is created in the PROJECTI directory.

The Filer 5-49

New
The New command releases or clears the workfile(s).

Semantics
The New command requires no specifications. Upon pressing [[J to initiate the command, it
clears the workfile unless the workfile has been updated since the last Save command. If the
workfile has been updated but not Saved, the following prompt appears:

Throwaway current workfile? (YIN)

Responding by pressing [[J for No allows you to use the Save command to write the file to a
volume; W for Yes clears the current workfile area.

You can check the status of the workfile before using New with the What command. The What
command gives you the name and status (saved or not) of the current workfile.

After the Filer executes the New command, it will respond with:

Workfile cleared

Do not confuse the Filer's New command with the New system volume command at the Main
Command Level - the two commands are different and perform separate functions.

5-50 The Filer

Prefix
The Prefix command changes the default volume to the one specified.

Item

file
specification

volume
specification

file specification literal

volume
specification

Semantics
The Prefix prompt:

literal

Prefix to what directory ?

Description Range

for SRM, SRM/UX, and HFS only
(See the beginning of this section)
(See the beginning of this sec-
tion)

The Prefix command is initiated by pressing m and requires a volume specification. The
command allows you to specify a new default volume - the volume where the Filer searches
for file names when a volume name is not specified. The volume must be block structured (one
used for mass storage) but does not have to be on-line. The current prefix (i.e., default) volume
can be obtained by responding to the Prefix prompt with a colon (:) or just I Return 1 or I Enter I.
(The Volumes command may also be used).

When the command executes, the screen displays the message:

Prefix is MKWORK:

where MKWORK: is the name of the current default prefix. The Prefix command saves
keystrokes if you are doing a lot of file accessing on a particular volume.

Filer commands which request a volume specification may be answered with the colon character
(:) which specifies the current default volume.

It is possible to set the default prefix to a flexible disc drive, regardless of the volume inside.
This is done by typing the following while the drive door is open or the drive is empty.

#3: I Return 1 or I Enter 1

The prefix command is used to set up a working directory on an HFS disc or SRM or
SRM/UX system. If you had an SRM file named:

#5:USERS/JOE/PROJECT1/PROGRAMS/FILE

The Filer " 5-51

Initiate the Prefix command as usual and specify:

#5:USERS/JOE/PROJECT1/PROGRAMS

This sets the SRM volume as the default volume (with volume name of PROGRAMS) and
USERS/JOE/PROJECT1/PROGRAMS as the working directory on the SRM. Now you can
specify the file with:

FILE

If you were to use the Prefix command again to set the default prefix to another vohllne (not
on the same unit), the working directory and volume name for the unit remain PROGRAMS.
You need only specify:

#5:FILE
or

PROGRAMS:FILE

Either will get the same file. The principle is exactly the same for HFS.

Note

Do not use the Prefix command on unit #45 of #46. These are the
system volumes for SRM and HFS, respectively, and should not be
altered.

When Prefixing an HFS-formatted flexible disc, you are automatically
prefixed to the root directory; you cannot prefix to any directory below
the root level on this type of flexible disc. (However, with HFS
formatted hard discs, this restriction does not apply.)

It is possible to change the working directory on an SRM unit without changing the default
volume. Use the Filer's Unit directory command. Press []] and then give the directory name
that you wish to become the working directory. If the new directory is in the existing working
directory, just type the new directory name. If it is not, type the whole directory path as shown
above in the Prefix example.

5-52 The Filer

Quit
The Quit command exits the Filer subsystem and returns control to the Main Command Level.

Semantics
The Quit command has no parameters and no specifications of any type are needed. Pressing
[QJ exits you from the Filer and the Main Command Prompt is displayed on the screen.

The Filer 5-53

Remove
The Remove command purges specified files from the directory.

Item

file
specification

file specification literal

Semantics
The Remove prompt:

Remove what file ?

~or~

Description Range

(See the beginning of this sec
tion)

The Renlove command is initiated by pressing [[] and requires a file specification. The conl
mand removes the specified file from the directory, updates the directory, and reports the action
it has performed. Wildcards may be used to specify a subset of files to be removed. If the equals
wildcard (=) is used in the file specification, the Filer reports the specified file or files and then
prompts:

Proceed with remove? (YIN)

This is the last chance you have to change your mind about the removal. Pressing 00 for No
aborts the operation and no files are removed. Pressing W for Yes removes those files meeting
the wildcard specification from the directory. The process is not always reversible. However,
the Make command can sometimes be used to recover a removed file on a LIF or WSl.O volume.

Note

The Filer considers the file specification = to specify ALL the files on
the default volume and MKWORK:= to specify ALL the files on the
MKWORK: volume. If you use the wildcard in this form and respond
to the Filer's prompt (Proceed with remove ? (YIN)) with a W for
Yes, every file on the directory of the specified volume is removed.
Responding with a [[] for No ab.orts the operation. Wildcards can be
hazardous to your files - watch the prompts.

5-54 The Filer

Specifying a single file (of an on-line volume of course) in response to the Remove prOlnpt results
in the removal of that file from the directory and a report that the file has been removed. Once
the I Return I or I Enter I key is pressed following the file specification (unless wildcards are used),
that file is gone.

While the use of the equals wildcard (=) results in being prompted for whether or not you want
the directory updated, the question mark wildcard (?) acts slightly differently. It allows you to
be more selective in your removal. Given the volume PROCESS: containing the files:

NOVMEMO.TEXT
MARKLTR.TEXT
PARSER. TEXT
PARSER. CODE
GARBAGE. TEXT

The specification PROCESS: ?TEXT in response to the Remove prompt results in the screen clearing
and the following message appearing.

Remove NOVMEMO.TEXT ? (yIN)

Answering with either a m or 00 results in the next prompt appearing below the first:

Remove MARKLTR.TEXT ? (YIN)

The process continues until you have been prompted for all the TEXT files on the PROCESS:
volume and then the final prompt appears:

Proceed with remove? (YIN)

You may be respond with either a m (for Yes) or 00 (for No). The files are not actually
removed until this prompt is answered with a m. The ? wildcard thus allows you to be both
selective and relatively safe about your file removals.

The Remove operation treats HFS and SRM directories like files if they are empty. Remove is
not allowed on non-empty HFS and SRM directories.

The Filer 5-55

Save
The Save command saves the current workfile on the specified volume.

Item

file specification

Semantics

file
specification

literal

~ orffi!®

Description Range

(See the beginning of this sec
tion)

The Save command is initiated by pressing rn and mayor may not require a file specification.

If the workfile was previously named using the Save command, or originally obtained using the
Get command, then the Filer prompts:

Save as PREVIOUS. TEXT ? (YIN)

Where PREVIOUS. TEXT is the name previously associated with the workfile. Responding with
a OJ for Yes results in either a CODE or TEXT file (or both, depending on what is in the
workfile) of that name being removed and replaced with the current workfile.

If the workfile was never updated, it is automatically saved with the original name.

If the workfile is not named, or if you answer 00, the Filer prompts:

Save as what file ?

When naming the file, the following conventions apply to the type of the file:

1. If a standard suffix is recognized, the workfile is either Filecopied, Translated, or Changed
(on the system volume) to the file name and type.

2. If no suffix is recognized, a .TEXT file is the default.

3. If no suffix is included, but a trailing period (.) is found, the file type is Data.

4. The .CODE file is created by removing the suffix (if there is one) and adding .CODE to
the file name.

The Filer displays that the file is now saved.

To find out what the current name and state (saved or not) of the workfile is, use the Filer's
What command.

5-56 The Filer

Translate
The Translate command converts text files among the TEXT, ASCII, UX, and DATA types.

file
specification

Item

file specification

volume
specification

Semantics

literal

literal

The Translate prompt:

Translate what file ?

Description

file
specification

volume
specification

~orm!@

Range

(See the beginning of this sec
tion)

(See the beginning of this sec
tion)

The Translate command is initiated by pressing [!] and requires two specifications - a source
and a destination separated by either a comma (,) or a carriage return (press I Return I or I Enter I).
The source specification can be any block structured volume, any file, or any group of files
on a volume. The destination specified can be any of the above and may also be a non-block
structured volume (i.e., the PRINTER: or CONSOLE:). Non-block structured volumes (like the
PRINTER:) are assumed to be on-line.

Wildcards may be used to specify sets of files but if a wildcard is used in the source specification,
either a wildcard or the $ character (discussed below) must be included for the destination. If
the equals wildcard (=) is used, the Translate is not confirmed before taking place. Also, note
that if the = wildcard is used alone (i.e., without any qualifying strings such as TEXT, CODE, etc.)
then the Filer Translates every file on the specified volume. If the question mark wildcard (?) is
used, you are asked to verify the translate of each file meeting the wildcard specification before
the Translate takes place. Thus, using the? wildcard allows you more flexibility and control
over the process.

The dollar sign wildcard ($) may be used in the destination specification to indicate that the
file(s) will have the same name (or names) as the source file(s). For exam pIe, assuming that
there are a number of TEXT files on the volume TRIG: and that a second volume named MATH:
exists,

TRIG:=TEXT,MATH:$

This results in all the files on the TRIG: volume whose file names end with the string TEXT being
translated" to the volume MATH: and given the same name as they have on the TRIG: volume.

The Filer 5-57

When source and destination files are on the same volume, the Translate command proceeds by
reading the first specified file into memory, prompting you to remove that volume and insert the
destination volume, and then writing the file in memory to the destination volume. Depending
on the amount of memory in your computer, the amount of material being translated, and the
number of files being translated, you may have to swap discs more than once.

Note

When using the Translate command with a single-volume, wait for the
Filer's prompt before removing the source volume and replacing it with
the destination volume. Failure to follow this guideline may result in
the loss of information from the source volume.

The Translate command allows the translating of files or groups of files to non-block structured
devices like the PRINTER: and CONSOLE:. Only text files (i.e., of type TEXT, ASCII, UX, or
Data) should be sent to printers since other files are not generally human-readable.

When the Translate command has finished its task, the screen displays what file (s) have been
translated and the Filer prompt appears. The Translate command can be aborted before all
specifications are given by pressing 1 Clear line 1 (I Clear line I), then 1 Return 1 or 1 Enter I.

In cases where the destination volume already contains a file with the same name as the file
being Translated, this prompt is displayed:

ANYVOL:XFILE
exists ... Remove, Overwrite, Neither? (R/O/N)

You have the options:

• Remove: remove the existing file before proceeding with the translation.

• Overwrite: replace the contents of the old file with the new information. The Overwrite
option cannot be used to change the type of a file.

• Neither: cancel the operation.

The Overwrite option allows you to put a file in the same starting location as the original.
This is important to SRM, SRM/UX and HFS users when duplicate links, passwords, etc.
exist to a file. All links and access rights to the file are accurate when a file js updated
because it is put in the same logical location. If you chose the Remove option, the original file
would not actually be removed; only your link to it is removed. The other directories are still
linked to the original file.

5-58 The Filer

The Translate command can be used to send files to an SRM printer by copying the file into a
special spooler directory.

For example, to print the text file named JOB_i. TEXT located by the directory path #5: /PROJECT_i

on the printer assigned to spooler directory named LP:

1. Type [£J to enter the Filer from the Main Command Level.

2. Type [IJ to invoke the Translate command.

The Filer prompts:

Translate what file?

3. Type:

#5: /PROJECT_i/ JOB_1. TEXT. #5: /LP/ JOB_1. ASC I Enter lor I Return I

The file will be printed as soon as the printer is available. The . ASC ending on the file
name tells the Filer to translate the information into ASCII format, which is the format
handled by the SRM spooler and its supported peripherals.

The Filer 5-59

Unit directory
The Unit directory command changes the volume name and working directory for an SRM or
HFS unit.

Item

file
specification

volume
specification

file specification literal

Semantics
The Unit directory prompt:

Set unit to what directory?

~ ormilll

Description Range

(See the beginning of this sec
tion)

The Unit command changes the working directory on HFS, SRM, and SRM/UX units. The
working diretory and the volume name for HFS, SRM, or SRM/UX units are the same. The
Prefix command performs the same operation but sets the default volume to the HFS, SRM,
or SRM/UX volume. The Unit command does not.

To specify the working directory, you must start either from the existing working directory or
from the root directory. To get to the root directory, supply the volume name or unit number
for an HFS, SRM, or SRM/UX unit, followed by / (e.g., #5:/). This positions you in the
root directory. From the working directory, you can continue down the tree structure from
directory to directory, or you can go back up the structure one directory at a time using " .. "
for the parent of the current directory. For example:

If the present working directory for unit #5 is: USERS/ JOE/PROJECT1/PROGRAMS

and you wanted the new working directory to be: USERS/ JOE/PROJECT5/DOCUMENTS

you can specify it in one of these ways: #5: /USERS/ JOE/PROJECT5/DOCUMENTS or
PROGRAMS:/USERS/JOE/PROJECT5/DOCUMENTS or
#5: .. / .. /PROJECT5/DOCUMENTS or
PROGRAMS: .. / .. /PROJECT5/DOCUMENTS

Note

You cannot set the working directory for an HFS-formatted flexible
disk to any directory below the root directory; the Filer will display
an error message if you attempt this. This restriction does not apply
to HFS hard discs.

5-60 The Filer

Volumes
The Volumes command lists the volumes currently on-line.

Semantics
The Volumes command requires no specifications. Upon pressing [J[J it displays the following
information about all on-line volumes currently associated with the Pascal Workstation File
System: the logical unit number associated with a volume; whether the volume is the system
(boot) volume, a block-structured volume or a non-block-structured volume; the volume's nanle;
and the current Prefix or default volume.

This is a typical display generated by the Volumes command:

Volumes on-line:
1 CONSOLE:
2 SYSTERM:
3 # MINI3:
4 # MINI4:
5 # MY_SRM:
6 PRINTER:

45 * SYSTEM04:
Prefix is - MY_SRM:

The number on the far left is the logical unit number associated with the volume. The *
character in the second column indicates the system volume, which is always block structured.
The # character indicates all other block structured volumes currently on-line. The remaining
volumes (shown with no character in the second column) are non-block-structured. The last
line of the display shows the current default volume. It is where the system looks for a file when
no volume has been specified.

The above configuration shows two flexible disc drives associated with units #3 and #4, and
two SRM volumes associated with units #5 and #45; the SRM units are the working volunie
and system volume, respectively.

The Filer 5-61

What
The What command displays the name and state (saved or not) of the workfile.

Semantics
The What command is initiated by pressing [RJ and requires no other input. The command
shows the name of the current workfile or indicates that it is not associated with a file name.
It also shows whether or not the workfile has been Saved since the last update to the file. If no
workfile exists, the Filer responds with:

No workfile

Suppose you had two files named INFRARED. TEXT and INFRARED. CODE on the default or prefix
volume. Assume that you used the Filer's Get command and spedfied INFRARED to associate
the files with the workfile. If you then edited the TEXT version of that file (using the Pascal
Editor), returned to the Filer and executed the What command, the screen would display:

Workfile is INFRARED (not saved)

because the workfile was changed since the last time a Save command was executed.

Saving the workfile does not change the fact that the workfile exists. It is still there. The New
command is used to clear the workfile.

Saving the workfile is not remembered between separate sessions of the Filer. If you Save the
workfile during the current Filer session, a New command immediately clears the workfile. If
you Save it, quit the Filer and then return to use the New command, the Filer will ask:

Throwaway current workfile ? (YIN)

even though you saved it during the previous Filer session and haven't updated it since.

5-62 The Filer

Zero
The Zero command creates an empty directory on the specified volume. (The Zero command
is not allowed on SRM or SRM/UX volumes or HFS discs. Use the Make command or the
MKHFS utility.)

volume
specification

Item

volume
specification

Semantics
The Zero prompt:

literal

~or~

Description

Zero directory (NOT valid on HFS and SRM type units)
Zero what directory ?

Range

(See the beginning of this sec
tion)

The Zero command is initiated by pressing CD and requires the volume specification of a block
structured volume. The volume must be formatted using the Pascal utility program named
MEDIAINIT. CODE supplied on the ACCESS: volume.

Since the Zero command creates an new empty directory on the volume, you will be prompted:

Destroy THISVOL: ? (YIN)

Responding with a [[] for No aborts the command and returns the Filer prompt.

If you answer [TI, the next prompt is:

Number of directory entries (80) ?

The number in the parentheses is the number in the existing directory. Respond with I Return I
or I Enter I if that is the number you want. If there is no number in parentheses, I Return I or I Enter I
causes the default number for that directory type (80 for LIF; 77 for WSl.O) to be put on the
disc.

The next prompt is:

Number of bytes (270336) ?

It is asking for the logical size of the disc (the extent to be managed by the directory). The
number in the parenthesis is the number in the existing directory or the default for that disc.
Press I Return I or I Enter I to use the displayed number.

The next prompt is:

New volume name ?

The Filer 5-63

The Filer is asking for a legal volume name. Volume name formats vary with different directory
structures. LIF directories allow up to six characters with uppercase and lowercase characters
being distinct. WSl.O directories allow up to seven characters, and all are made uppercase.

An answer of I Return I or I Enter I aborts the Zero command.

After typing a volume name, the final prompt appears:

NEWSTUF: correct?

Responding with [[] aborts the Zero command. Responding with m results in the message:

NEWSTUF: zeroed

Where NEWSTUF: is the name of the new volume. The Filer prompt reappears when the operation
is complete.

Note

Because the Pascal File System works with volume names, a LIF vol
ume whose name is all blanks (ASCII spaces) will not be recognized as
a valid volume.

5-64 The Filer

Pascal Compiler 6
Introduction
This chapter describes the Workstation Pascal Compiler, another subsystem of the Workstation
Pascal System. It shows how to use the Compiler to prepare Pascal source programs for
execution on the Workstation System.

The Workstation Pascal Compiler supports a generous set of Pascal language features. They
are briefly described in the "Overview of Workstation Software Features" chapter in Volume 2.
Further details of the language features available on this system are referenced in that chapter.

Two slightly different compilers are shipped with the Workstation System:

• COMPILER produces object code for all the processors in the MC68000 processor family
(because it generates only MC68000 instructions) .

• COMPILE20 produces machine-specific object code for the MC68020 and MC68030 proces
sors (the MC68000 and MC68010 processors cannot execute these instructions).

Preparing a program for execution on this system is a simple process. First, produce source
text file(s), usually with the Editor subsystem. Then use one of the two compiler subsystems
to generate an output file of relocatable object code. This output file is ready to be linked and
run with the Run command - normally there is no explicit link step.

Compilation speed depends on the storage medium where the source and object code reside.
Using floppy discs, about 1600 lines per minute (lpm) is typical. If the files are memory-resident,
the rate is around 4000 lpm. The Compiler's speed contributes significantly to the interactive
and crisp feeling of the Workstation Pascal environment.

The Compiler, supported by other subsystems, provides complete facilities for the creation,
maintenance and use of software libraries. Modules of Pascal code can be compiled, stored in
the System Library, and automatically accessed by any program which needs them. Compiled
modules carry along a detailed specification of their interface which allows any other program
or module to use the code or data structures they declare.

Object code produced by the Compiler (and the Assembler and Librarian, for that matter) is
targeted specifically for 3.1 and 3.2 versions of the Pascal Workstation. It is in the Workstation
Loader format, and is not generally suitable for loading and execution on other operating
systems. A notable exception is the capability to make CSUBS (compiled subprograms) for
BASIC with the Compiler or Assembler, and the CSUB utility which is a separate product that
executes on the Workstation.

Pascal Compiler 6-1

Steps In Program Development
This section will teach you by example the steps required to compile and run a simple program.
You need to know how to use the Editor before you can proceed with this material. We begin
at the Main Command Level of the system, with no workfile present.

Prepare the Source Program
First we need a program to compile. Enter the following program using the Editor. The
Compiler isn't particular about margins, so you can adjust the program to the left margin as
you type. Try to preserve the indentation, to keep the program easily readable by mortals.

Notice that the word "end" is intentionally misspelled at the bottom of the program. Type it
just as shown, so you can see how errors are handled.

When you leave the Editor (Quit command), you should specify that the output is to be written
to the file "HOWDY". Don't make a workfile (don't use the Update option).

program howdy (input,output);
type

color = (red,orange,yellow,green);
var

hue: color;
i: integer;

procedure show (c:color);
begin

writeln(output, 'Howdy! ',c);
i := i+i;

end;

begin
writeln(output);
for hue := red to

show(hue);
emd.

i := 0;
green do

At this point, if you use the Filer to examine the directory of your default volume, you'll see
the file "HOWDY. TEXT" .

6-2 Pascal Compiler

Invoke the Compiler
The Compiler is invoked by typing the W key when the system is at the Main Command Level.
At the time you booted up, the system looked for the Compiler on all the mass storage volumes
which were on-line. If the Compiler was found at that time, it is expected to still be in the
same volume whenever it's needed. If the Compiler wasn't found, the system will try to run
CMP:COMPILER (or the file specified with the last What command).

So if you press wand the system responds that it can't load the Compiler, you must first put
the CMP: disc in a drive, then press W again.

It takes a few seconds for the Compiler to load from a floppy disc. Then it will ask you:

Compile what text ?

If you had to swap discs, you should remove the CMP: disc and put back the default volume.
Now respond:

HOWDY I Return 1 or I Enter 1

The Compiler automatically appends the ".TEXT" suffix to the name you give; you need not
do so yourself. Next you are asked:

Printer listing (l/y/n/e) ?

If you have no printer, you must answer [[] for no listing, or [TI for a listing file. If you've got
a printer, the [IJ response gets you a complete listing. Answering [[] will get you a listing only
of any errors which are detected. For the moment, let's answer [[] and get no listing. Finally
the compiler asks:

Output file (default is "HOWDY.CODE") ?

Respond to this by pressing I Return lor I Enter 1 to accept the default.

As the Compiler runs, you can observe its progress through the source program. Each dot
displayed represents five lines of the source text which have been scanned. Whenever the
body (the "begin") of a new procedure is reached, that procedure's name is displayed on the
screen along with an estimate (in square brackets) of how much memory is still available for
the Compiler to use. The Compiler reads through an entire procedure body before generating
any code; if you write very large procedures, you may notice the stream of dots hesitating
momentarily at the ends of some of them.

When the misspelled word "emd" is encountered, the Compiler will beep and display the offending
line. You now have three options: press the space bar to continue compiling; hold down I Shift 1
and press I Select 1 (I EXECUTE I) to terminate the compilation; or enter the Editor to fix the mistake.
In this example, you should select "Edit" by pressing [[].

Note

The Editor must be Permanently loaded, or the volume containing
the Editor must be on-line to use the [[] option when exiting the
Compiler.

Pascal Compiler 6-3

Handling Syntax Errors
When compiling, errors are printed on the screen and the Compiler pauses to ask if you wish
to edit your file. If you specify a compiler listing file, it will contain all error messages. In this
case, you must call the Editor yourself after the compilation is finished.

When the Compiler points out a syntax error, the place it indicates is not necessarily the place
where the error occurred; rather, you are shown where the error was first recognized. An easy
way to get extreme examples of this is to accidentally have unbalanced "begin" and "end"
pairs in a deeply nested program. The imbalance may be syntactically (though not visually)
undetectable until much later in the program. Compilers don't see what you mean, only what
you write.

The error message may not seem reasonable to you. For instance, your misspelled "end" looks
to the Compiler like an undeclared identifier which may be the beginning of an assignment
statement. The Compiler sees no similarity between "end" and "emd".

When an error is detected, the Compiler tries to recover by making an assumption about what
you meant. Frequently the assumption is wrong, which leads to further errors being reported in
the vicinity of the first one. Sometimes the Compiler will try to recover by skipping text until
it sees a keyword or other symbol it recognizes.

Back to the example: you elected to edit the program, so the Compiler terminated and the
Editor is now invoked. The file containing the offending line is automatically brought in, and
the cursor is placed where the error was reported. Simply fix the misspelling and quit the
Editor, using the Save option to rewrite the corrected file under its original name, "HOWDY".

Repeat the steps above to compile HOWDY again. If you have a printer, this time you should
ask for a listing. If there are no other accidental errors, the compilation will succeed this time.
Your printout should look like this:

Pascal [Rev 3.2 1/15/87] HOWDY. TEXT 19-Feb-87 15:28:20 Page 1

1:D 0 program howdy (input. output);
2:D 1 type
3:D 1 color = (red.orange.yellow.green);
4:D 1 var
5:D -2 1 hue color;
6:D -6 1 i integer;
7:8
8:D 1 procedure show (c:eolor);
9:C 2 begin

10:C 2 writeln(output.'Howdy! '.e);
11:C 2 i - i+1;
12:C 2 end;
13:8
14:C 1 begin
15:C 1 writeln(output); i := 0;
16:C 1 for hue := red to green do
17:C 2 show(hue);
18:C 1 end.

No errors. No warnings.

6-4 Pascal Compiler

Interpreting the Compilation Listing
The column of numbers at the left enumerates the lines. "D" next to the line number indicates
the line is a declaration; "8" indicates the line was skipped altogether, either because it's blank,
or because it is entirely within a comment. "C" indicates the line is part of the body of a Pascal
block.

The two numbers, - 2 and -6, provide information about where the variables "hue" and "color"
will be stored in memory. More detailed information about this can be requested by the $TABLES$
Compiler option.

The column of numbers immediately to the left of the program text shows how deep structures
in the program are nested. This can be very useful when begin and end statements get out
of balance. The main program is at level 1, with procedures nesting successively deeper. The
structural nesting of complex statements such as FOR-loops, and IF and WITH statements is also
counted.

Running the Compiled Program
If you use the Filer to look at the directory of your default volume, you'll see that there are
two HOWDY files now: HOWDY.TEXT and HOWDY. CODE . Press the [[] or RUN key. The
operating system remembers the name of the most recently compiled file. You'll see the message:

Loading 'HOWDY. CODE'

The program runs, producing this dispJay on the screen:

Command: Compiler Editor Filer Initialize Librarian Run eXecute Version?

Howdy! RED
Howdy! ORANGE
Howdy! YELLOW
Howdy! GREEN

You can also run the program by using the eXecute command: press m or the I Select I (I EXECUTE I)
key. Then when asked

Execute what file ?
answer

HOWDY Return or I ENTER I

Try it now. Actually, you can eXecute any program, not just the one you most recently compiled.
Also, if you use the Run command when you haven't compiled any program, the behavior is as
if you used the eXecute command.

Pascal Compiler 6-5

Using a Workfile
The Compiler's behavior depends somewhat on whether you are compiling a workfile, or some
other source file. If you use a workfile, you are asked fewer questions by the Compiler and
Editor; in fact, while the workfile is present you can't compile or edit any other file! This kind
of abbreviated behavior may be a blessing or a curse, depending on your needs.

Workfiles are most useful when you're writing, compiling, and iteratively refining a single pro
gram source. In such a case, you'll appreciate the convenient reduction in keystrokes needed to
edit, compile, and run the program over and over. On the other hand, experienced programmers
developing complex systems with many source files almost never use workfiles.

Workfiles are not particularly useful unless the Editor has been permanently loaded, or the
volume containing the Editor is on-line.

There are two ways to tell the system to use a workfile. You can create one by using the Update
option when quitting the Editor; a workfile made this way will always be called WORK.TEXT,
and it will be stored on the system volume. Alternatively, you can designate some existing file
as the workfile by using the Filer's Get command. The Update option and the Get command
are explained in the Editor and Filer sections of this manual.

Let's make a workfile of HOWDY using the Editor. Press the m key, and answer that you
want to edit HOWDY. Immediately use the Quit command, and select the option to Update
the workfile. This makes a copy of your original source file (but not of the code file). Note that
the system volume must be on-line at this point, since that is where the workfile is kept.

Now press [[]. If the Compiler isn't on-line, you will need to insert your CMP: disc first. If
you swapped discs, then after the Compiler is loaded it will say:

Mount *WORK.TEXT and press <space>

As you can see, the Compiler knows it's supposed to compile the workfile, and you must put
your system volume back in the drive. If the Compiler was already on-line, only one question
is asked after you press [[]:

Printer listing (l/y/n/e) ?

Probably you'll answer no. The program is then compiled, producing WORK.CODE, and
immediately run.

To execute it again, just press 0. It won't be recompiled unless you change it with the
Editor. If you aren't convinced it actually ran again (it happens pretty fast), press the space
bar to clear the screen before running it again.

6-6 Pascal Compiler

Debugging
The Debugger subsystem is described in detail in Chapter 9 of this manual.

Note

With Pascal 3.0 and later versions, the Debugger is not automatically
loaded at boot time. You will need to load it if you want to use it. See
the Debugger chapter for loading instructions.

Modules
A module is a program fragment which can be compiled independently and later used to conlplete
otherwise incomplete programs. ~or example, you might want to define a "complex number"
data type and some relevant functions, then use those definitions in several programs. This
section introduces the concepts and facilities you will need to define, debug, and use nlodule
libraries.

Modules, like almost everything else in Pascal, must have all their relevant features and
characteristics declared before use. Diagrams precisely detailing the syntax of a module
declaration can be found in the HP Pascal Language Reference manual; an information
presentation is more suitable for present purposes.

Module Structure
The four parts of a module are its heading, the import and export sections, and its implenlent
part .

• The heading introduces the module and names it. The name is an ordinary Pascal iden
tifier. Example:

module complexmath;

• The import part names all other modules on which the present one depends. One module
depends on another if the dependent module makes use of things exported from the
imported one: calling procedures, assigning to exported variables, or declaring variables
of an exported type. The names are separated by commas and the list ends with a
semicolon:

import complexmath,conversions;

There is no import part if the module is independent of all others.

Pascal Compiler 6-7

• The export part defines the constants, types, variables, procedures and functions which
this module will supply to any program or module importing it. Constants, types and
variables are declared just as in a program or procedure block. Procedures and functions
are presented as headings without bodies.

export
const

pi = 3.14159;
type

polar = record

var

radius ,theta: real
end;

scalefactor: real;
origin: polar;

function makepolar (a: complex): polar;
procedure setorigin (a: complex);

The export part may make use of things in turn exported from other modules listed in
the import part (such as the type "complex"). Every module must have an export part.

• The implement part consists of the reserved word IMPLEMENT, followed by constant,
type, variable, procedure and function declarations, followed by the word END. All the
procedures and functions whose headings were in the export part must be present in their
entirety in the implement part. The implement part may make use of things in turn
exported from other modules listed in the import part.

A module does not have to export procedures or functions, it may be used simply to
create data types or variables. In such a case there will be nothing between the words
IMPLEMENT and END.

A complete module, "complexmath", is shown on the next page. It has no import part because
it depends on no other modules. (The module is also on the DOC: disc; the source is called
CXMODULE.TEXT).

The import and export parts are said to define the module's interface to other modules or
programs. This interface is public: the information it contairis is available to any importer of
the module.

The implement part is said to be "private", which means that everything between the words
IMPLEMENT and END is hidden from importers. Anything declared here is unknown outside
the module, except for procedures and functions whose headings were also included in the export
part.

The private and public parts of the module are separated in this way so that its implement
part can safely be changed without altering programs or other modules which import it. This
independence of modules from programs is a key to developing software libraries. Another
implication is that modules can only be dependent on other modules, not on programs. The
reason is simply that there's no way to import a program into a module (since programs have
no export declarations).

It was stated at the outset that a module is a "fragment" of a program. To be more precise,
a module is a set of global (outer level) declarations which can be compiled once, then bound
into a program by an IMPORT declaration in that program.

6-8 Pascal Compiler

Pascal [Rev 3.2 1/15/87] CXMODULE.TEXT 19-Feb-87 16:03:15 Page 1

1:D
2:D
3:D
4:D
5:D
6:D
7:D
8:D
9:D

10:8
11:D
12:D
13:D
14:D
15:D
16:D
17:D
18:8
19:D
20:D
21:D
22:C
23:8
24:D
25:C
26:8
27:D
28:C
29:C
30:C
31:C
32:8
33:D
34:D
35:C
36:C
37:C
38:C
39:C
40:C
41:8
42:D
43:C
44:8
45:D
46:C
47:8
48:D
49:C
50:C
51:C
52:C
53:8
54:C

No errors.

o module complexmath;
1 export
1 type
1 complex = record
1 re: real;
1 im: real;
1 end;
1 const
1 zero complex [re:O.O,im:O.O];

1 function equal (a,b: complex): boolean;
1 function add (a,b: complex): complex;
1 function mul (a,b: complex): complex;
1 function dvd (a,b: complex): complex;
1 function conj (a: complex): complex;
1 function mag (a: complex): real;
1 function scmul (scale:real; a:complex): complex;

1 implement
1

-32 1 function equal (a,b: complex): boolean;
2 begin equal - (a.re=b.re) and (a.im=b.im) end;

-32 1
2

-32 1
2
2
2
2

-32 1
-40 2

2
2
2
2
2
2

function add (a,b: complex): complex;
begin add.re - a.re+b.re; add.im - a.im+b.im end;

function mul (a,b: complex): complex;
begin

mul.re - (a.re*b.re-a.im*b.im);
mul.im - (a.re*b.im+a.im*b.re);

end;

function dvd (a,b: complex): complex;
var denom: real;
begin

denom - sqr(b.re)+sqr(b.im);
if denom = 0.0 then halt(-5); (*divide by zero*)
dvd.re - (b.re*a.re + b.re*a.re) / denom;
dvd.im - (b.re*a.im - b.im*a.re) / denom;

end;

-16 1 function conj (a: complex): complex;
2 begin conj.re - a.re; conj.im - -a.im end;

-16 1
2

-24 1
2
2
2
2

function mag (a:complex): real;
begin mag := sqrt(sqr(a.re)+sqr(a.im» end;

function scmul (scale:real; a:complex): complex;
begin

scmul.re - scale*a.re;
scmul.im - scale*a.im

end;

1 end. (*complexmath*)

Pascal Compiler 6-9

Developing and Testing a Module
The Workstation environment supports a structured approach to the development and testing of
software modules. This is important because modules often become part of the system library,
and many programs may depend on them. The usual steps in the development cycle are:

• Decide what the module will do - define its functionality. Write the interface part first,
specifying what other modules will be needed and what things the module will export.
Remember that when the finished module is imported into a program, only this interface
will be "visible". Figure out how a program will use the exported things to get the module
to do its job.

• Decide how the module will be tested. Write a test program which will thoroughly exercise
it.

• Write the implement part of the module. Embed the completed module in the test
program, and compile the two together. Leave the module inside the program until
you're satisfied with the results.

• Extract the module from the test program. This can be done by using the Librarian to
pull it out of the compiled test program, or by separating the module's source text with
the Editor and compiling it independently.

• Use the compiled module. It can be put in your LIBRARY, or left as a user library which
is manually linked to dependent programs, or loaded into memory by the Permanent load
command.

The following listing shows the source of CXMODULE embedded into the program called CX
(also on the DOC: disc):

Pascal [Rev 3.2 1/15/87] CXO.TEXT 19-0ct-82 09:15:51 Page 1

1:0 o program cx (listing);
2:8
3:0 1 module complexmath;
4:0 1 export
5:0 1 type
6:0 1 complex = record
7:0 1 re: real;
8:0 1 im: real;
9:0 1 end;

10:0 1 const
11:0 1 zero complex [re:O.O.im:O.O] ;
12:8
13:0 1 function equal (a.b: complex): boolean;
14:0 1 function add (a.b: complex): complex;
15:0 1 function mul (a.b: complex): complex;
16:0 1 function dvd (a.b: complex): complex;
17:0 1 function conj (a: complex): complex;
18:0 1 function mag (a: complex): real;
19:0 1 function scmul (scale:real; a:complex): complex;
20:8

6-10 Pascal Compiler

1 implement
1

-32 1 function equal (a.b: complex): boolean;

21:D
22:D
23:D
24:C
25:S
26:D
27:C
28:S
29:D
30:C
31 :C
32:C
33:C
34:S
35:D
36:D
37:C
38:C
39:C
40:C
41 :C
42:C
43:S

2 begin equal - (a.re=b.re) and (a.im=b.im) end;

function add (a.b: complex): complex; -32 1
2 begin add.re - a.re+b.re; add.im - a.im+b.im end;

-32 1
2
2
2
2

-32 1
-40 2

function mul (a.b: complex): complex;
begin

mul.re - (a.re*b.re-a.im*b.im);
mul.im - (a.re*b.im+a.im*b.re);

end;

function dvd (a.b: complex): complex;
var denom: real;
begin

denom - sqr(b.re)+sqr(b.im);
2
2
2
2
2
2

if denom = 0.0 then halt(-5); (*divide by zero*)
dvd.re - (b.re*a.re + b.re*a.re) / denom;
dvd.im - (b.re*a.im - b.im*a.re) / denom;

end;

44:D -16 1 function conj (a: complex): complex;
45:C 2 begin conj.re - a.re; conj.im - -a.im end;
46:S
47:D -16 1 function mag (a:complex): real;
48:C 2 begin mag := sqrt(sqr(a.re)+sqr(a.im)) end;
49:S
50:D -24 1 function scmul (scale:real; a:complex): complex;
51:C 2 begin
52:C 2 scmul.re - scale*a.re;
53:C 2 scmul.im - scale*a.im
54:C 2 end;
55:S
56:C 1 end; (*complexmath*)
57:S
58:S
59:S
60:S

Pascal Compiler 6-11

Pascal [Rev 3.2 1/15/81] CXO.TEXT 19-Feb-87 11:23:21 Page 2

61 :D
62:8
63:D
64:D
65:D
66:D
67:D
68:D
69:D
70:D
71:D
72:8
73:C
74:C
75:C
76:C
77:C
78:C
79:C
80:C
81:C
82:C
83:C
84:C
85:C
86:C
87:C
88:C
89:C
90:C
91 :C

No errors.

-32
-304
-320
-324
-324

REAL
O.OOOOOE+OOO
9.80171E-002
1.95090E-001
2.90285E-001
3. 82683E-001
4. 71397E-001
5. 55570E-001
6. 34393E-001
7.07107E-001
7. 73010E-001
8. 31470E-001
8. 81921E-000
9. 23880E-001
9. 56940E-001
9.80785E-001
9. 95185E-001
1.00000E+000

1 import complexmath;

1 const
1 pi = 3.141592654;
1 nsteps = 16;
1 var
1 a,b: complex;
1 table: array [1 .. nsteps+1] of complex;
1 theta,thetastep: real;
1 i: integer;
1 listing text;

1 begin
1 theta:= 0.0;
1 thetastep:= pi/(2*nsteps);
1 a:= zero; b:= zero;
1 for i - 1 to nsteps+1 do
2 begin
2 a.re := sin(theta); (*leave im part zero*)
2 b.im := cos(theta); (*leave re part zero*)
2 table[i] := add(a,b);
2 theta := theta + thetastep;
2 end;
1 writeln(listing,'
1

REAL
IMAGINARY "
MAGNITUDE '); 1

1
2
2
2
1

for i := 1 to nsteps+1 do
writeln(listing,' "

end.

IMAGINARY
1.00000E+000
9. 95185E-001
9.80785E-001
9. 56940E-001
9. 23880E-001
8.81921E-000
8. 31470E-001
7. 73010E-001
7.07107E-001
6. 34393E-001
5. 55570E-001
4. 71397E-001
3. 82683E-001
2.90285E-001
1.95090E-001
9.80171E-002
-2.0510E-010

table[i] .re,' ',table[i] .im,' ,
mag(table[i]));

MAGNITUDE
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000

6-12 Pascal Compiler

An Illustration
The accompanying listing shows the module "complexmath" embedded in a test program. The
test program isn't very thorough, since it only checks the constant "zero" and the "add" and
"mag" functions.

Modules embedded in a program may be intermixed with global constant, type, and variable
declarations, but all modules must appear before any of the program's global procedures and
functions. Usually all the modules are put first, followed by the program's own globals. If there
are several modules, they must be ordered so that no module is imported by another (or by the
program) until it has been declared.

Notice the semicolon following the END of the module (line 56), and that the program must
have an IMPORT declaration (line 61) even though the module is physically present in the
program.

Program "cx" can be compiled and run as shown. If you'd like to try it, invoke the Compiler by
pressing W at the Main Command Level. When asked what text to compile, put the diskette
labelled DOC: in a drive and answer:

Doe: ex Return or I ENTER I

Let the Compiler put the output file on the same disc (accept the default output file).

Compiling a Module Separately
The file generated by compiling CX. TEXT is a library with two modules: the main program
"cx" and module "complexmath". Strictly speaking a program isn't a module, but within a
library it has a directory entry just as if it were. You might wish to use the Librarian and see for
yourself. The Librarian can display every detail of a code file. Had there been several modules
in "cx", each one would have had a separate directory entry.

It's important to be clear about the distinction between modules and libraries. A library is
a file, created by the Compiler, Assembler, or Librarian. The library's name is its file name,
which you can see with the Filer. Inside the library is a directory naming all the modules in
that file. The library directory can only be displayed by the Librarian.

If you were satisfied at this point with the testing of "complexmath," you could use the Librarian
to pull that one module out of the code file and either make it a user library or add it to the
system library. The Librarian documentation describes how to do this.

Another alternative is to compile the module separately. Simply use the Editor to create a text
file having only the module. Notice that when the module is compiled alone, it must be followed
by a period instead of a semicolon. The Compiler will also accept a sequence of several modules,
separated by semicolons. The last one must be followed by a period. The program listing on
the next page shows the listing generated by a separate compilation.

Pascal Compiler 6-13

How the Compiler Finds Library Modules
A module which has been compiled is called a "library module." Library modules can be im
ported by programs or other modules, because the compiled code file carries with it a description
of the module's interface. The Compiler is able to read this description and, from it, determine
how to properly access everything exported by the module.

When the Compiler processes an IMPORT declaration, it must find the modules named in the
import list and read their interface specifications. A particular search pattern is followed, which
is repeated for each module named in the list.

• If the imported module has been previously declared or imported in the source text being
compiled, then the reference is to that module.

• If no module of that name has been found, the Compiler must search library files on
mass storage. The files to be searched may be specified by a $SEARCH$ option. See the
subsequent Compiler Options section of this chapter.

• If there is no $SEARCH$ option or the module is not found in the specified list of files,
the Compiler goes on to look in the system library.

• If the module still isn't found, error 104 (undeclared identifier) is issued.

Note

The Compiler does not search libraries which have been loaded into
memory with the P-Ioad command. Module interface specifications
are not retained with memory-resident libraries.

A module which is imported may itself import other modules, which are listed in its import
section. The Compiler must follow such a chain all the way back to its root, to a module which
imports no others. The search pattern just described is applied recursively, to a maximum
depth of ten levels. For a restriction, see the subsequent "INCLUDE Files" section. Sometimes
in following an import chain, a module is named in more than one import list. The Compiler
actually reads the interface specification for a module just once.

If a program imports module "A", which in turn imports module "B", the things exported
from "B" are nevertheless hidden from the program. To make them visible, "B" must also be
imported into the program.

6-14 Pascal Compiler

The listing below shows program "cx" recompiled to search for module "complexmath" in a li
brary called "CXMODULE" on mass storage unit #3. The second listing shows "cx" recompiled
assuming "complexmath" has been put into the current System Library.

Pascal [Rev 3.2 1/15/87] CX.TEXT 19-Feb-87 11:34:21 Page 1

1:0
2:8
3:0
4:0
5:8
6:0
7:0
8:0
9:0

10:0
11:0
12:0
13:0
14:D
15:8
16:C
17:C
18:C
19:C
20:C
21:C
22:C
23:C
24:C
25:C
26:C
27:C
28:C
29:C
30:C
31:C
32:C
33:C
34:C

No errors.

-32
-304
-320
-324
-324

o program cx (listing);

1 $search '#3:CXMOOULE'$
1 import complexmath;

1 const
1 pi = 3.141592654;
1 nsteps = 16;
1 var
1 a,b: complex;
1 table: array [1 .. nsteps+1] of complex;
1 theta,thetastep: real;
1 i: integer;
1 listing text;

1 begin
1 theta:= 0.0;
1 thetastep:= pi/(2*nsteps);
1 a:= zero; b:= zero;
1 for i 1 to nsteps+1 do
2 begin
2 a.re := sin(theta); (*leave
2 b.im := cos(theta); (*leave

im part zero*)
re part zero*)

2 table[i] := add(a,b);
2 theta := theta + thetastep;
2 end;
1 writeln(listing,'
1

REAL
IMAGINARY "
MAGNITUDE '); 1

1
2
2
2
1

for i := 1 to nsteps+1 do
writeln(listing,' "

end.

table[i] .re,' ',table[i] .im,' ,
mag(table[i]));

Pascal Compiler 6-15

Pascal [Rev 3.2 1/15/87] CX2.TEXT 19-Feb-87 11:40:11 Page 1

l:D
2:8
3:D
4:8
5:D
6:D
7:D
8:D
9:D

10:D
11:D
12:D
13:D
14:8
15:C
16:C
17:C
18:C
19:C
20:C
21:C
22:C
23:C
24:C
25:C
26:C
27:C
28:C
29:C
30:C
31 :C
32:C
33:C

-32
-304
-320
-324
-324

o program cx (listing);

1 import complexmath;

1 const
1 pi = 3.141592654;
1 nsteps = 16;
1 var
1 a,b: complex;

(* from LIBRARY *)

1 table: array [1 .. nsteps+1] of complex;
1 theta,thetastep: real;
1 i: integer;
1 listing text;

1 begin
1 theta:= 0.0;
1 thetastep:= pi/(2*nsteps);
1 a:= zero; b:= zero;
1 for i - 1 to nsteps+1 do
2 begin
2 a.re := sin(theta); (*leave im part zero*)
2 b.im := cos(theta); (*leave re part zero*)
2 table[i] := add(a,b);
2 theta := theta + thetastep;
2 end;
1 writeln(listing,'
1

REAL
IMAGINARY "
MAGNITUDE '); 1

1
2
2
2
1

for i := 1 to nsteps+1 do
writeln(listing,' "

end.

table[i] .re,' ',table[i] .im,' ,
mag(table[i]));

No errors. No warnings.

How the Loader Finds Library Modules
When the Compiler processes an import declaration, it does not copy, or in any other way bind,
the library module into the program being compiled. Instead it emits reference information
(called REF's) which enable the loader or linker to make the required connections later. Usually
REF's are satisfied (hooked up to the library module) at the last possible moment: when you
Run the program.

A compiled program contains no record of where the Compiler found any imported modules.
The loader has a search pattern it uses to find imported things the program needs:

• First, the file being loaded is searched. There may be modules in it which were compiled
at the same time as the program .

• Then memory-resident libraries are searched. The memory-resident libraries are those
you have loaded with the P command, the contents of INITLIB (which is automatically
loaded at boot time), and the modules of the Operating System itself. The order of search
is most-recently-loaded first.

6-16 Pascal Compiler

• Finally, the current System Library is searched. If a required module is in the System
Library, then it will be loaded with the program and will remain in memory until a
different program is executed.

• If there are still unresolved references, the loader reports them on the CRT. The program
won't run. Control is returned to the Main Command Level.

If your program only imports from the System Library, everything is taken care of automatically.
This is the most common case. If the program imports from user libraries via the $SEARCH$
option, then you must help out the loader in one of three ways:

• Use the P-Ioad command to load copies of the libraries into memory before running the
program. Do this just once, because the P-Ioad command does not check to see if modules
have already been loaded! Memory-resident libraries stay there until you re-boot.

• Use the Librarian to make a new library containing the compiled program and any mod
ules it needs. This new library is an unlinked, executable program. It will be linked
automatically when it is loaded.

• Use the Librarian to link the necessary modules to the program. The resulting library is
a linked, executable program. It will probably still have some unresolved references (for
instance to the system read and write routines), which will be resolved at load time.

A Subtle Point
The loader doesn't search for modules, it searches for external names. Each procedure or
function exported has an external name, as do most structured constants. A single name is
used for all the variables a module exports; it is actually the name of a place in memory where
storage for the variables will be allocated. Certain things, such as types and simple constants,
are only useful at compile time and so have no external name.

If two differently named modules each define the same load-time name, there is no problem
because external names created by the Compiler identify the module where the name originated.
However, if both modules have the same name and define the same load-time name, the most
recently loaded copy overrides the older one.

Since some module names are used by the Operating system, you should avoid using these
names for your own modules unless you intend to overide the name of a system entry point.
These names are listed in the Technical Reference Appendix.

Although two modules that contain the same symbol can be loaded, they cannot both be
imported by the same program without conflicts.

Pascal Compiler 6-17

$INCLUDE Files
The source text of a module or program can be broken up into several text files which are
edited separately but compiled as a group. The $INCLUDE Compiler option tells the Compiler
to insert the text of another file into the one it is presently compiling.

program showinclude (input,output);
$include 'MYVOL:DECLARS'$
$include 'SYSVOL:BODY'$
end.

If the required volume is not online when needed, the Compiler pauses and prompts you to
insert the proper volume.

Miscellaneous:

• An included file may in turn include another file. This "nesting" is allowed to a maximum
depth of 10.

• Importing a library module is a form of file inclusion, and counts against the maximum
allowable depth of 10 while the import declaration is being processed.

• If the imported module has an import declaration in its own interface, the Compiler will
follow the chain and find those module interfaces too. This is another form of nested file
inclusion.

Note

IMPORT "attaches" only code files whereas INCLUDE "attaches" or
inserts only source files.

6-18 Pascal Compiler

What Can Go Wrong?
This section discusses some problems which may occur when using the Compiler, and how to
solve them.

Can't Run the Compiler

1. If the system reports, Cannot open 'CMP: COMPILER', the volume with the Compiler is not
on-line. You may have removed the volume and not put it back. If the Compiler wasn't
found when the system booted, you are expected to put the CMP: disc (which contains
the Compiler) on-line.

2. If the system reports, Cannot load 'COMPILER', either the disc medium is bad or not
enough memory is installed in the Computer to run the Compiler. It is desirable to have
at least 393 Kbytes; the system is normally sold with at least 524 Kbytes.

Errors 900 thru 908
During compilation, three files are written by the Compiler: the code file, which is the one you
want, and the REF and DEF files. The latter two are temporary working storage for linkage
information which is appended to the code file if the compilation terminates normally. All three
of these files are normally opened on the same volume (the volume to which you directed the
code file).

Each of these files is subject to three classes of error:

• Error in opening the file.

• Insufficient space to open the file.

• File fills up before compilation finishes.

An error in opening the file usually means the volume is not on-line. It can also indicate that
the volume's directory is full.

The amount of space allocated to the code file on a LIF or WS1.0 file system is usually half of
the largest free area on the volume, with the potential to expand to the second half of that area
if needed. If you get errors 900, 903, or 906, then you need to make more room on the volume
to which the code file was directed, or use a different volume.

The REF file by default is opened with 30 blocks of disc space on the same volume as the code
file. ACorn piler option at the beginning of the source program can change the size and the
volume selected for REF. There's no simple rule which gives the "right" size for the REF file.
If the file fills up (error 907), then make it bigger in proportion to the amount of program that
remained to compile when the error occurred.

$REF 50$ Allocate 50 blocks

$REF ' CHARLIE: ' $ Put it on volume CHARLIE

$REF 'CHARLIE:', REF 50$ Put it on CHARLIE and allocate 50 blocks

Pascal Compiler 6-19

Errors When Importing Library Modules

1. Syntax errors in the interface of an imported library module. This usually indicates that
the library module itself tried to import some other module which was not found by the
Compiler's search algorithm.

2. Errors 608, 610: Include or import nesting too deep. If module "A" imports "B", which
imports "C" and so forth, the Compiler must follow the chain to its end. The chain can
only be 10 imports deep. Since the same file handling mechanism is also used to process
$INCLUDE files, the combined limit on import and inclusion nesting is 10 deep.

3. Error 613: Imported module does not have interface text. If the library has been linked
by the Librarian, the interface specification has been removed. Also, a main program
looks internally like a module; but it has no interface text.

Not Enough Memory
If the Compiler generates error -2 (not enough memory), then there isn't enough room in
memory to compile the program. You can watch the numbers which appear on the screen in
square brackets as the compilation proceeds - they show approximately how much memory is
left. There are two primary reasons for running out of memory during a compilation. One of
them is large procedure bodies, and the other is P-Ioaded files.

Large Procedure Bodies
When the Compiler processes a procedure, the entire procedure (declarations and body) is
scanned. An internal representation of the procedure, called a "tree", is built. This tree is not
complete until the scanner reaches the end of the procedure, and only then does code generation
begin. The tree form takes a lot of storage, particularly the statements making up the body. If
you write a procedure whose body is ten pages long, the Compiler is very likely to run out of
memory. The moral is that you should keep your procedures reasonably short. A good guideline
is that no procedure should be longer than a page or two.

P-Ioaded Files
If you've Permanent-loaded many libraries or programs, or space has been allocated to a
memory-resident mass storage volume, you may reboot the system to recover the memory,
and try again.

Insufficient Space for Global Variables
You may discover, either at compile time or at run time, that there isn't sufficient space for the
global variables of your program. If this happens, please refer to "Implementation Dependencies"
in the Pascal Language Reference manual, which explains the limitations and what to do if you
exceed them.

6-20 Pascal Compiler

Errors 403 thru 409
These errors should never be reported. They indicate a malfunction in the Compiler itself. If
this ever happens, please show the program which causes it to your HP field support contact.

Error 154: Illegal argument to match pass-by-reference parameter.
The HP Pascal Language Standard specifies that elements of packed structures (packed arrays or
records) cannot be passed as arguments to var or anyvar parameters. This rule was not enforced
in versions of the Pascal compiler prior to revision 3.1 (3.1 enforced it for var parameters by
default). Revision 3.2 added enforcement of the rule for anyvar parameters. If sources that
compiled previously now produce error 154 for arguments to var or anyvar parameters, use the
$ALLOW_PACKED ON$ compiler directive to relax this restriction. The object code generated for
the call will be the same as that generated by previous revisions of the compiler.

Pascal Compiler 6-21

Compiler Options
Compiler options affect the code that is emitted by the Compiler. For instance, the $DEBUG
ON$ option causes the Compiler to emit a MC68000 TRAP instruction after the object code
for each Pascal statement, allowing you to single-step a program.

Sometimes there are restrictions on where an option may appear.

Location

Anywhere:

At front:

Not in body:

Statement:

Special:

Restriction

No restriction. Indicates that the location of the option in the file is
irrelevant.

Applies to entire source file; must appear before the first "token" in the
source file (before PROGRAM, or before MODULE if compiling a list of
modules).

Applies to a whole procedure or function; can't appear between BEGIN
and END. Good practice to put these options immediately before the word
BEGIN, or the procedure heading.

Can be applied on a statement-by-statement basis or to a group of
statements, by enabling before and disabling after the statements of
interest.

As explained under the particular option.

If an option app'ears in the interface (import or export) part of a module, it will have effect
as the module is compiled. However, the option itself will not become part of the interface
specification (export text) in the compiled module's object code.

6-22 Pascal Compiler

ALIAS
Default: External name = Procedure Name

Location: Special; see "Location" below

This option specifies a name, other than the name used in the Pascal procedure or function
declaration, to be used by the loader.

Item Description Range

external name string 1 to 80 ASCII characters

Semantics
The string parameter specifies the external name for the procedure in whose header the option
appears.

Location
The option must appear between the keywords PROCEDURE or FUNCTION and the first
symbol following the semicolon (;) denoting the end of the procedure or function declaration.

The option may not appear in an export section.

Example
procedure $alias 'charlie'$ p (i: integer); external;

Within the program, calls use the name "p"; but the loader will link to the external name
"charlie" wherever "p" is found.

Pascal Compiler 6-23

Default: OFF

Location: Anywhere

This option permits or prohibits the passing of elements of packed arrays or records to var and
anyvarl parameters. It also permits or prohibits using the sizeof function on elements of packed
arrays or records2 .

~LLOWYACKED)I---"r®---1"""" ON • ~

~

Semantics
"ALLOW_PACKED" is interpreted as "ALLOW_PACKED ON".

Passing elements of packed arrays or records to var or anyvar parameters is illegal in HP
Standard Pascal, but the Workstation Pascal Compilers prior to Version 3.2 allowed it. Pascal
3.1 and subsequent compilers allow passing of packed elements to var parameters only if the
compiler option ALLOW _PACKED is ON.

ON specifies that elements of packed structures will be allowed to be passed to var and anyvar
parameters in functions and procedures. You may need to add the option $ALLOW _PACKED
ON$ and re-compile existing pre-3.1 Pascal source code to run it on the 3.1 system. Pascal 3.1
sources may require recompilation to run on 3.2 if they use "system internals".

OFF specifies that passing elements of packed structures to var or anyvar parameters is illegal.
Attempts to do so result in a compile-time error message 154: "Illegal argument to match
pass-by-reference parameter".

OFF also specifies that passing elements of packed structures to sizeof is illegal. Attempts
to do so result in a compile-time error message 125: "Erroneous type of argument for built-in
routine" .

Note

Pre-3.1 compilers allowed only certain packed elements to be passed
to var parameters. These are the elements which ALLOW_PACKED
affects. Others, which pre-3.1 compilers forbade from being passed,
are still forbidden in 3.1 and later compilers.

1 The restriction on passing elements of packed structures to anyvar parameters is new for Pascal Workstation 3.2. See the
description of the SYSPROG directive in this chapter for information on anyvar. Further references to anyvar are in the
"Workstation Implementation" section of the HP Pascal Language Reference.

2 The restriction on passing elements of packed structures to sizeof parameters is new for Pascal Workstation 3.2. See the
description of the SYSPROG directive in this chapter for information on sizeof. Further references to sizeof are in the
"Workstation Implementation" section of the HP Pascal Language Reference.

6-24 Pascal Compiler

ANSI
Default: OFF

Location: At Front

This Compiler option selects whether an error message is to be emitted for use of any feature
of HP Standard Pascal not contained in ANSI/ISO Standard Pascal.

Semantics
"ANSI" is interpreted as "ANSI ON" .

ON causes error messages to be issued for use of any feature of HP Standard Pascal which is
not part of ANSI/ISO Standard Pascal. If the error is issued, no code file will be emitted.

OFF suppresses the error messages.

Example
$ansi on$

Pascal Compiler 6-25

CALLABS
Default: ON

Location: Anywhere

This Compiler option determines whether 16-bit relative or 32-bit absolute jumps are to be
generated by the compiler.

Semantics
"CALLABS" is interpreted as "CALLABS ON".

ON specifies that 32-bit absolute jumpf? will be emitted for all forward and external procedure
calls.

OFF specifies 16-bit PC-relative jumps.

This option is allowed on a statement-by-statement basis.

Example
$callabs off$

6-26 Pascal Compiler

CODE
Default: ON

Location: Not in Body

This Compiler option is used to control whether a CODE file will be generated by the Compiler.

Semantics
"CODE" is interpreted as "CODE ON" .

ON specifies that executable code will be emitted and placed in a CODE file; OFF specifies
that no code will be emitted and no file is to be generated.

Example
$code off$

Pascal Compiler 6-27

Default: OFF

Location: Not in Body

This Compiler option controls the inclusion of program counter offsets in the compiler listing.

~ODE_OFFSET~)---rrG-n-+-{ ON. ~

~

Semantics
"CODE_OFFSETS" is interpreted as "CODE_OFFSETS ON".

ON specifies that line-number/program-counter pairs will be printed for each executable
statement listed. This can be applied on a procedure-by-procedure basis.

Example
$code_offsets on$

6-28 Pascal Compiler

COPYRIGHT
Default:

Location:

Not Applicable

Anywhere

This Compiler option is provided for inclusion of copyright information.

Item

copyright message string

Semantics

Description Range

Entire copyright must fit on
one line.

The string parameter is placed in the object file as the owner of the copyright. If more than
one COPYRIGHT option is included, the last one is effective.

Example
$copyright 'Hewlett Packard Company. 1983'$

Pascal Compiler 6-29

DEBUG
Default: OFF

Location: Not in Body

This Compiler option controls whether the code produced by the Compiler contains the
additional information necessary for full use of the debugger.

Semantics
"DEBUG" is interpreted as "DEBUG ON"

"DEBUG ON" will cause debugging instructions to be emitted for the procedure bodies following
it. It may be applied on a procedure-by-procedure basis.

Example
procedure buggy;
var i: integer;
$debug on$
begin

end;
$debug off$

6-30 Pascal Compiler

DEF
Default:

Location:

10 512-byte blocks (on same volume as code output)

At Front

This Compiler option allows you to change the size and location of the temporary Compiler file
named ". DEF" .

Item

def file size

def file volume
specification

Semantics

integer constant

literal

Description Range

less than 32 767

valid volume specification

If the parameter is a string, it specifies the volume where a temporary Compiler file called" . DEF" ,
which holds external definitions, will be stored. If the parameter is a number, it specifies how
many 512-byte blocks will be allocated for the DEF file. See the preceding explanation of "What
Can Go Wrong?" for further information.

Examples
$def 50$
$def 'DEFVOL:' $
$def 'ANYVOL:', def 50$

Pascal Compiler 6-31

FLOAT_HOW
Default:

Location:

OFF (in COMPILER) ON (in COMPILE20)

Not in body

This Compiler option enables and disables the use of floating-point hardware.

FLOATJlDW

Semantics
HP 98635 Floating-point Math Card
The HP 98635 is an optional PC board that increases the execution speed of floating-point math
computations. This board can be installed in all Series 200 computers.

• ON instructs COMPILER to generate accesses to 98635 hardware for the floating-point
operations listed below. If the hardware is not installed when the program is executed,
an error will be reported.

• OFF tells COMPILER to generate math library calls for floating-point operations.

• TEST causes COMPILER to generate both hardware accesses and library calls. The
code includes tests for the presence of floating-point hardware. If the test succeeds (at
execution time), the hardware accesses are used; otherwise, the library calls are used.

Operations that can potentially use the 98635 floating-point card include: addition, subtraction,
multiplication, division, negation, and the sqr function. Hardware can also be used by any
operation that converts an integer into a real or longreal; however, hardware is not used by
operations that convert reals or longreals into integers. All other math functions call library
routines. The math library will use the 98635, where appropriate, if it is present.

MC68881 or MC68882 Floating-point Math Co-processor
When using this option with the COMPILE20 compiler, it has a slightly different meaning.

• ON causes COMPILE20 to generate MC68881 or MC68882 co-processor instructions. The
object code generated can only run on Series 300 computers equipped with the optional
MC68881 or MC68882 math co-processor.

• OFF causes COMPILE20 to generate code that uses Pascal math libraries.

• TEST is not allowed (COMPILE20 reports an error).

Operations that can can potentially use the MC68881 or MC68882 hardware include all floating
point math computations except trunc. The math library will not attempt to use the MC68881
or MC68882 even if one present.

Note

If you are writing interrupt service routines (ISRs), see the Pascal 3.2
Procedure Library, "System Devices" chapter, "Interrupt Processing
Overview" section.

6-32 Pascal Compiler

HEAP _DISPOSE
Default: OFF

Location: At Front

This Compiler option enables and disables "garbage collection" in the heap.

Semantics
"HEAP _DISPOSE" is interpreted as "HEAP _DISPOSE ON"

ON indicates that DISPOSE allows disposed objects to be reused.

OFF does not recycle disposed objects.

If enabled, this option must appear at the front of the main program.

Example
$heap_dispose on$
program recycle;

begin
new(p);
dispose(p);
new(p);

end.

(*free up cell*)
(*probably gets same cell back*)

The HEAP _DISPOSE option must be the same (either ON or OFF) in the program and in
all modules imported by the program. Erroneous results may occur if those declarations don't
agree, because there is no way for the Compiler to check on which option other modules have
used.

Pascal Compiler 6-33

IF
Default:

Location:

Not Applicable

Anywhere

This Compiler option allows conditional compilation.

Item Description

boolean expression expression that evaluates to TRUE or FALSE

conditional text Pascal source text to be conditionally compiled

Semantics

Range

may only contain compile-time
constants

If the expression evaluates to FALSE, then text following the option is skipped up to the next
END option.

If the boolean evaluates to TRUE, then the text following the option is compiled normally.

IF-END option blocks may not be nested.

String constants may not be used.

Example
const fancy = true;

limit = 10;
size = 9;

$if fancy and ((size+1)<limit)$
(* this will be skipped *)

end

$if FALSE$
(* this will also be skipped. *)

end

6-34 Pascal Compiler

INCLUDE
Default:

Location:

Not Applicable

Anywhere

This Compiler option allows text from another file to be included in the compilation process.

Item Description Range

file specifier string any valid file specifier

Semantics
The string parameter names a file which contains Pascal source to be included at the current
position in the program. Included code may contain additional INCLUDE options (nesting level
is 10). The remainder of the line containing this option must be blank except for the closing
"$".

Example
program inclusive;

$include 'source:declare'$
$include 'source:body'$

end.

Pascal Compiler 6-35

IOCHECK
Default: ON

Location: Statement

This Compiler option enables and disables error checking following calls to file system I/O
routines.

Semantics
"IOCHECK" is interpreted as "IOCHECK ON"

ON specifies that error checks will be emitted following calls on file system I/O routines such
as RESET, REWRITE, READ, WRITE. This option can be used in conjunction with the
standard function IORESULT if the UCSD or SYSPROG language extensions have been enabled.
10CHECK can be specified on a statement-by-statement basis.

OFF specifies that no error will be reported in case of failure.

Example
$ucsd$

$iocheck off$
reset(f, 'datafile');
$iocheck on$
if ioresult <> 0 then writeln('IO error');

6-36 Pascal Compiler

LINENUM
Default:

Location:

Not Applicable

Anywhere

This Compiler option allows the user to establish an arbitrary line number value.

~ LlNENUM n line number ~

Item Description Range

line number integer constant 1 thru 65535

Semantics
The integer parameter becomes the current line number (for listing purposes, and debugging
purposes).

Example
$linenum 20000$

Pascal Compiler 6-37

LINES
Default:

Location:

60 lines per page

Anywhere

This Compiler option allows the user to specify the number of lines-per-page on the compiler
listing. 2000000 lines-per-page suppresses autopagination.

Item

lines per page

Examples
$lines 55$
$lines 2000000$

Description

integer constant

(*suppress auto-pagination*)

6-38 Pascal Compiler

Range

20 thru MAXINT

LIST
Default: ON to PRINTER:

Location: Anywhere

This Compiler option controls whether or not a listing will be generated, and to where it will
be directed.

Item Description Range

file specifier string any valid file specifier

Semantics
"LIST" is interpreted as "LIST ON".

LIST with a file specifier specifies that the file is to receive the compilation listing.

LIST OFF suppresses listing.

LIST ON resumes listing. No listing will be produced at all, regardless of this option, unless
requested by the operator when the Compiler is invoked.

Examples:
$list 'MYVDL:KEEPLIST'$
$list 'PRINTER:'$
$list off$

Pascal Compiler 6-39

OVFLCHECK
Default: ON

Location: Statenaent-by-statenaent

This Conapiler option gives the user sonae control over overflow checks on arithnaetic operations.

Semantics
"OVFLCHECK" is interpreted as "OVFLCHECK ON"

ON specifies that overflow checks will be enaitted for all in-line arithnaetic operations.

OFF does not suppress all checks; they will still be naade for 32-bit integer DIV, MOD, and
naultiplication.

Example
$ovflcheck off$

6-40 Pascal Conapiler

PAGE
Default:

Location:

Not Applicable

Anywhere

This Compiler option causes a form-feed to be sent to the listing file if compilation listing is
enabled.

Example
$page$

Pascal Compiler 6-41

PAGEWIDTH
Default: 120

Location: Anywhere

This Compiler option allows the user to specify the width of the compilation listing.

Item Description

characters per line integer constant 80 thru 132

Semantics
The integer parameter specifies the number of characters in a printer line.

Example
$pagewidth 80$

6-42 Pascal Compiler

Range

Default: OFF

Location: Statell1ent-by-statell1ent

This COll1piler option enables or disables the partial evaluation of ll1ultiple logical operations.

Semantics
"PARTIAL_EVAL" is interpreted as "P ARTIAL_EVAL ON" .

ON suppresses the evaluation of the right operand of the AND operator when the left operand
is FALSE. The right operand will not be evaluated for OR if the left operand is TRUE.

OFF causes all operands in logical operations to be evaluated regardless of the condition of any
other operands.

Example:
$partial_eval on$
while (p<>nil) and (p-.count>O) do

p := p-.link;

Pascal COll1piler 6-43

RANGE
Default: ON

Location: Statement-by-statement

This Compiler option enables and disables run-time checks for range errors.

Semantics
"RANGE" is interpreted as "RANGE ON".

ON specifies that run-time checks will be emitted for array and case indexing, subrange
assignment, and pointer dereferencing.

Example
var a: array[1 .. 10] of integer; i: integer;

i := 11;
$range off$
a[i] : = 0; (* invalid index not caught! *)

6-44 Pascal Compiler

REF
Default: 30 512-byte blocks (on same volume as code output)

Location: At Front

This Compiler option allows you to change the size and location of the temporary compiler file
named ". REF" .

Item

ref file size integer constant

ref file volume spec- string literal
ification

Semantics

Description Range

less than 32767

any valid volume specification

If the parameter is a string, then it specifies the volume where a temporary Compiler file named
". REF", which holds external references, will be stored. If the parameter is a number, it specifies
how many 512-byte blocks will be allocated for the REF file. See "What Can Go Wrong, Errors
900 to 908".

Examples
$ref 20$
$ref 'JUNKVOL:' $
$ref 'JUNKVOL:', ref 50$

Pascal Compiler 6-45

Default: ON

Location: Anywhere

This Compiler option controls whether the name of a structured constant may be used by other
structured constants.

Semantics
"SAVE_CaNST" is interpreted as "SAVE_CaNST ON".

ON specifies that compile-time storage for the value of each structured constant will be retained
for the scope of the constant's name (so that other structured constants may use the name).

OFF specifies that storage will be deallocated after code is generated for the structured constant.

Example
$save_const off$
type ary = array [1 .. 100] of integer;
const acon = ary [345,45691,];

(*big constants take lots of compile-time memory*)

6-46 Pascal Compiler

SEARCH
Default:

Location:

Not Applicable

Anywhere

This Compiler option is used to specify files to be used to satisfy IMPORT declarations.

Item Description Range

file specifier string any valid file specifier

Semantics
Each string specifies a file which may be used to satisfy IMPORT declarations. Files will be
searched in the order given. The current system library file is always searched last. A maximum
of 9 files may be listed.

Multiple SEARCH options are allowed; for instance, you may want to use one for each import
declaration. Note that only the last one encountered during compilation will be in effect for any
import statement (i.e., these options are not cumulative).

Example
$search 'FIRSTFILE', 'SECONDFILE'$

Pascal Compiler 6-47

Default:

Location:

10 files

At front

This Compiler option allows you to increase the number of external files you may SEARCH
during a module's compilation.

Item Description Range

number of files integer constant less than 32 767

Semantics
When compiling a Pascal module, it is sometimes desirable to import another module from
another file. To import a module from another file, the SEARCH option is used to identify the
file. Up to 10 SEARCH options may be given unless the SEARCH_SIZE option is given. The
SEARCH_SIZE option allows you to SEARCH up to 32766 external files for imported modules.

Example
$search_size 30$

6-48 Pascal Compiler

STACKCHECK
Default: ON

Location: Not in Body

This Compiler option enables and disables stack overflow checks.

~ STACKCHECK)t----.rGJtr--+-t ON" ~

~

Semantics
"STACKCHECK" is interpreted as "STACKCHECK ON" .

'ON specifies that stack overflow checks will be generated at procedure entry. It is very dangerous
to turn overflow checks off! Obscure and unreported errors may result.

Example
$stackcheck off$
procedure unsafe;
var

may_smash_heap: array [1 .. 500] of integer;
begin ... end;

Pascal Compiler 6-49

SWITCH_STRPOS
Default: OFF

Location: Anywhere

This Compiler option reverses the positions of the parameters of the STRPOS function.

Semantics
When this Compiler option is used, the expected order of the parameters is that of the HP
standard. In Series 200/300 Pascal (like UCSD's POS function), the STRPOS function expects
the first string parameter to be the search pattern and the second string parameter to be the
source string in which the search takes place. Later the HP standard was established with the
order of the parameters reversed. If $WARN OFF$ is not in effect, then the Compiler issues a
harmless warning that you are not conforming to the standard. If you wish to conform to the
standard, give the SWITCH_STRPOS option in your program.

Example
$switch_strpos$

6-50 Pascal Compiler

SYSPROG
Default:

Location:

System Programming Extensions not enabled

At Front

This Compiler option makes available some language extensions which are useful in systems
programming applications.

Semantics
$SYSPROG$ is interpreted as $SYSPROG ON$.

See the Pascal Language Reference, "Workstation Implementation" section for information on
Language extensions.

Example
$sysprog$
PROGRAM machine_dependent;

Pascal Compiler 6-51

TABLES
Default: OFF

Location: Not in Body

This Compiler option allows you to turn the listing of symbol tables on or off.

Semantics
$TABLES$ is interpreted as $TABLES ON$.

ON specifies that symbol table information will be printed following the listing of each procedure.
This is useful for very low-level debugging.

Example
$tables$
procedure hasabug (var p: integer);
var

6-52 Pascal Compiler

UCSD
Default:

Location:

UCSD not enabled

At Front

This Compiler option allows the compiler to accept most UCSD Pascal language extensions.

Semantics
See the Pascal Language Reference, "Workstation Implementation" section for information on
Language extensions.

Example
$ucsd$
program funnyio;
var

f: file; (* no type specified! *)
begin

unitread(8,ary,80,10);
end.

Pascal Compiler 6-53

WARN
Default: ON

Location: At Front

This Compiler option allows the user to suppress the generation of compiler warning messages.

Semantics
$WARN$ is interpreted as "WARN ON" and compiler warnings will be issued.

Example
$warn off$

6-54 Pascal Compiler

How Pascal Programs Use the Stack
This section describes how Pascal programs use the stack to store data, return addresses
for procedures, and pointers needed to access variables belonging to nested procedures. The
information can be useful when writing Assembler language routines, and when debugging at
the machine level.

You can also investigate this subject by writing some Pascal test programs and then looking
at the emitted code with the Librarian's Un assemble command. Two Compiler options
also produce valuable information: $DEBUG ON$ correlates the machine code displayed by
Unassemble with the original Pascal lines, and $TABLES$ causes the Compiler to print a
description of the size and location of each object in the program.

The Pascal Stack
Seven types of data can be stored on the stack:

• procedure/function parameters

• return addresses

• local variables

• stack frame pointers

• static links

• addresses used by the with statement

• function results

Two address registers are reserved for stack manipulations:

• A7 - the stack pointer (SP)

• A6 - the stack frame pointer (SF)

The stack grows downward in memory (toward smaller addresses) as procedures are called, with
A 7 always pointing to the base (beginning, lowest address) of the datum on the "top" of the
stack. That is, when space is allocated for a procedure which has been called, the area allocated
has a lower (more negative) address than the space already allocated for the calling procedure.
Space allocated to a procedure is called its stack frame.

However, variables extend upward in memory. This simply means that the address of the first
element of an array, or the first field of a record, is lower than the address of the second element
or field.

Pascal Compiler 6-55

Global Variables
Register A5 is reserved as the global base register. A reference to any program or module global
variable is always formulated as a displacement from where register A5 points. The maximum
size of the global area is 65,536 bytes (the displacement field size). In practice, not all of this
space is available to the application. Some of this area is used for system globals, command
interpreter globals, permanently loaded programs and modules, and so forth. Also there is a
limit of 32766 bytes of globals for any program or module.

See the Assembler chapter for details on how to reference Pascal global variables from Assembler
language programs.

Procedure Calls
Here is a brief summary of how one procedure calls another. The calling procedure first pushes
parameters to be passed to the called procedure onto the stack. The calling procedure then
executes a JSR instruction, which pushes the return address on the stack and jumps to the
entry point of the called procedure.

Each parameter is pushed on the stack by first decrementing the stack pointer (A 7) an amount
equal to the size of the parameter, then storing the parameter where SP now points. (Pushing
a byte decrements the stack pointer by two, since SP must always have an even value.)

The first instruction executed by the called procedure is a LINK instruction (if $STACKCHECK
OFF$). The LINK instruction format and function is illustrated below:

format : LINK A6,#d

function: A6 -> -(SP)

SP -> A6

SP-d -> SP

push the stack frame pointer
onto the stack
set the stack frame pointer equal
to the stack pointer
drop the stack by the size(d) of the
local variables for the called procedure

If the program is compiled with $STACKCHECK ON$ (which is the default), a TRAP #1
instruction is issued instead of LINK. The trap service routine checks for stack overflow as it
adjusts A6 and SP. In this case the size #-d is stored in the next word after the TRAP #1
instruction.

The stack frame pointer (A6) is used by the called procedure to reference its local variables and
passed parameters. See Figure 6 for an illustration of stack usage for procedure calls textually
nested at level 1. Level 1 procedures are those declared at the global level of a program or
module.

If the called procedure is not textually nested at levell, the calling procedure pushes a pointer
to the stack frame of the procedure in which the called procedure is declared. This pointer is
called the static link. It is used by the called procedure to resolve references to intermediate
variables - variables which are neither local to the called procedure, nor globals of the program.

6-56 Pascal Compiler

An example might help to clarify the static link. Consider the following program structure
(indentation indicates nesting):

program main
procedure p1

procedure p2
procedure p3
procedure p4

Assume this calling sequence: main calls pI, pI calls p2, p2 calls p4. If p4 calls p3 then the
static link pushed would be that of procedure p2 (since p4 is declared within p2). If instead p4
were to call p2, then the static link would point to pI (p2 is nested within pI). See Figure 7 for
a detailed example of static links.

Returning Control to the Calling Procedure
The called procedure is responsible for stack cleanup and for effecting the return to the calling
procedure. Any parameters, local data, or static links belonging to the called procedure must
be removed from the stack before returning to the caller. Once this is complete, a return to the
calling procedure can be performed.

The stack cleanup is performed in two steps:

1. Restore the stack frame pointer. Use the UNLK instruction to remove local data from
the stack.

Format: UNLK A6

Function: A6 -> SP

(SP)+ -> A6

Set the stack equal to the stack
frame pointer.
Load the stack frame pointer from
the stack and auto increment the stack
pointer (this leaves the stack
pointer pointing to the return
address) .

2. Restore the stack pointer. This removes the static link and parameters from the stack.
After this step, the stack pointer should be as it was before the procedure call.

The called procedure returns to the caller by branching to the return address. If the
return address was saved in an address register during stack cleanup then an indirect
JMP through the address register is executed. If the return address was left on the stack
then an RTS instruction is executed.

Format: RTS

Function: (SP)+ -> PC -- Set the program counter to the
value pOinted to by the stack pointer
and pop the value off the stack.

See Figure 8 for an example of a return from a called procedure.

Pascal Compiler 6-57

Function Calls
Function calls differ from procedure calls only in that they return results. The result is usually
returned on the stack. It is the responsibility of the calling procedure or function to pop the
result off of the stack. This is normally done when the result is referenced.

Parameter Passing Mechanisms
There are two kinds of formal parameter: those passed by reference, and those passed by value.

reference parameters

val ue parameters

all handled alike

a) simple value parameters
simple types (integer, char.)
array and record types <= 4bytes

b) copied value parameters:
reals, and array and record types > 4 bytes

Reference parameters are those which are specified VAR in the procedure heading. They are
"passed by reference": the address of the actual parameter is passed to the called procedure or
function. This address is used for all references to the parameter. No copying of the parameter
is performed.

Value parameters are those which are not specified VAR in the heading. They are "passed
by value": a copy of the parameter is passed to the called procedure or function. If the value
parameter is a simple type (except REAL) then its value is pushed on the stack. If the parameter
is a simple REAL, or an array or record (and its size is more than 4 bytes), then its address is
pushed on the stack by the caller. Before the called routine executes its first statement, it uses
the pushed address to copy the parameter into its local data space (the Compiler reserved this
space in addition to the local variable space).

Values of type "procedure" are not copied; their values are pushed directly even though they
are eight bytes long.

6-58 Pascal Compiler

Function Results
Sometimes the calling environment must allocate temporary space in which to return function
results. In general this is necessary when the function returns a result which is bigger than
4 bytes. The temporary space is allocated as part of the program's global area if the call is
from the main program; otherwise it is allocated as part of the local data area. The amount
of temporary space required is determined at compile time. Functions which return a value of
type real are an exception; the result area is on the stack and occupies eight bytes.

Return Address

A6

Local Vac1

Local Vacn

Parm_1

Parm_n

Return Address

-
)_ local variables for calling procedure

)_ parameters for called procedure

return address pushed on the stack by the jsr
~ instruction executed by the calling procedure

A6 _ ~ the stack frame pointer pushed on the stack by A6 r-

1---------1T)_ ::~::~:~:::~:~ ce:::u~::::d:r: called pro-

A7 - fL... __ Lo_c_a_1 _va_r_-n_---IJ

Local Var_1

Figure 6. Pascal Procedure Calls (Without Static Links)

(The stack is pictured growing toward the bottom of the page. Pointers actually address the
"bottom" of the designated entry.)

Pascal Compiler 6-59

The following Pascal program illustrates the use of the static link.

$DEBUG ON$
program main(input,output);

var i:integer;

procedure A;
var k:integer;

procedure B;
var m:integer;

procedure C(i:integer);
var 0: integer;

procedure D;
var q:integer;
begin

i := k;
k := m;
m
o
q
B;
C(i);

end; {D}

begin {C}
m := 0;
D;

end; {C}

begin {B}
k := 1;
C(m);

end; {B}

begin {A}
B;

end; {A}

0;
q;
1;

begin {main}
A· ,

end.

Note

The preceding program is only for the purpose of illustrating the use of
the static link. Running the program results in error -2 (not enough
memory), because the program recurses indefinitely.

6-60 Pascal Compiler

Consider the following calling sequence:

Main calls A
A calls B
B calls C (with m as the parameter)
C calls D
D calls B

The stack for this calling sequence is shown in Figure 7.

See Note#1

D's A6

See Note#2

Figure 7. Pascal Procedure Calls (With Static Links)

(Pointers actually address the "bottom" of the designated entry.)

Note 1: The static link and the parameters are always accessed at positive offsets from A6.
The effective address of the static link (if present) is always 8(A6). Local variables
are at negative displacements from A6.

Note 2: In general, the static link gives the called procedure access to the intermediate
variables of procedures which precede it in the calling sequence. In this particular
case, the static link gives procedure B access to variables declared within procedure
A.

Procedure D reaches intermediate variables using:

its current stack frame pointer

the difference between its nesting level and that of the called procedure

Pascal Compiler 6-61

In this case procedure D is at level 4 and procedure B is at level 2, for a relative
distance of 2. Therefore procedure B must follow two static links to reach the stack
frame of B.

In other words:

MOVEA.L 8(A6) ,AO - Get procedure D's static link.
MOVEA. L 8 (AO) ,AO - Get procedure C's static link.
MOVE.L 8(AO) ,-(SP) - Get procedure B's static link

and push it on the stack.

Remember: procedure C's static link gives access to B's locals, procedure B's static
link gives access to A's, etc.

Note 3: When nested procedures reference intermediate variables, they use the static link. An
example of this is when procedure D references k and m in the statement k := m;.

k is declared in procedure A and m is in procedure B. The nesting level relative to
procedure D for k is 3 and for m it is 2.

The following code will perform the statement: k : = m.

MOVEA.L 8(A6),AO
MOVEA.L 8(AO),AO
MOVEA.L 8(AO),AO

MOVEA.L 8(A6),A1
MOVEA.L 8(A1),A1

- Get D's static link.
- Get C's static link.
- Get B's static link.

- Get D's static link.
- Get C's static link.

MOVE.L -4(A1),-4(AO) - Store m in k.

The return to procedure A (as shown in the following stack segment) is accomplished
in four steps. Note: the register prefixes indicate the value of the register for the
indicated step. The values are those the registers have AFTER the step has been
executed.

Step 1: UNLK A6 - Restore the stack frame pointer (A6)
Step 2: MOVEA. L (SP) + ,AO - Save the return address in AD
Step 3: ADDQ. L #12, SP - Restore the stack pointer
Step 4: JMP (AO) - Return to where procedure A called B

If there are not any parameters then the return sequence normally is:

UNLK A6
MOVEA.L (SP)+, (SP)
RTS

- Restore the stack frame pointer.
- Replace the static link with the return address.
- Return to procedure A.

If there is no static link (and no parameters) then the sequence is:

UNLK A6 - Restore the stack frame pointer.
RTS - Return to procedure A.

6-62 Pascal Compiler

(Step 1) A6-- $TACKFOR PROCEOURE A

(Step 3) A7--

(Step 2) A7 __

(Step 1) A7-

(Start) A6 -

(Start) A7 --

........... ;;....,..;...."...,.;...."...,.;.~;;.....,.;f

Figure 8. Return From a Procedure Call

(Pointers actually address the "bottom" of the designated entry.)

WITH Addresses
When a procedure includes a with statement that dereferences a pointer (e.g. with XA do)

the compiler allocates space at the bottom of the procedure's stack frame, below local variables,
for temporary storage of the pointer's value. The size is 4 bytes per simultaneously active with

using dereferencing.

Pascal Compiler 6-63

The Assembler 7
Introduction
This chapter describes the use of the Workstation Assembler subsystem. The Assembler
translates assembly language routines into object code which can be executed on this system.
Assembly language programming gives you the ability to optimize critical sections of a program
(primarily for reductions in execution time or code size).

The Workstation Assembler, which has a two-pass design, translates source files written in the
assembly language specified by Motorola in the MC680001, MC68020, and MC68030 manuals.
It also assembles instructions for the MC68881 and MC68882 floating-point math co-processor,
which are described in the MC68881 manual. A summary of the syntax required by this
Assembler is provided in the "Instruction Syntax" section of this chapter.

Although it is not a tutorial on assembly language programming, this chapter contains the
information necessary to write and execute assembly language routines on the Workstation
System. The first section demonstrates the method of generating external procedures and
entire object modules of Assembler code that can be interfaced to Pascal programs. You should
be familiar with the concept of Pascal modules before attempting to emulate them in assembly
language; refer to the "Pascal Compiler" chapter for pertinent information.

Unlike most other assembler subsystems you may have used, the directives ("pseudo
operations") that you give to the Workstation Assembler are specified within the source program
- they are not given in an interactive session with the Assembler. The Workstation Assembler's
pseudo-operations are fully described in the "Pseudo-op Reference" section near the end of this
chapter.

1 The MC68000 manual also includes documentation for the MC68010 processor.

The Assembler 7 -1

Operating the Assembler
This section shows you how to:

• Invoke the Assembler

• Specify the name of your text file program and your resulting code file

• Give listing specifications

• Interpret the listing

Invoking the Assembler
The Assembler is delivered on the ASM: disc. If you plan to run the Assembler several times
in a session, you can use the Permanent command to keep the Assembler in memory ready to
run. Otherwise, put the ASM: disc in a disc drive and press rn to run the Assembler.

Source File Specification
If there is a work file (see the Filer chapter), that file will be automatically assembled and there
will be an "errors only" listing on the CRT. If the "errors only" listing is sufficient your source
program file can be specified as the work file . Otherwise, clear the work file.

If there is no work file, you will be prompted to enter the name of your program file:

What source file?

Enter the volume name (unless using the default volume, explained in the Filer chapter) and
file name of your source program. It is not necessary to include the ".TEXT" suffix of your file
name. If it is not included, it will be added for you by the Assembler subsystem. For example,
if your program file is named PROGRAM.TEXT and it is on the volume named TOMS, then
use this file specification:

TOMS:PROGRAM

Listing File Information
You are then prompted to specify whether or not you will want a listing of the assembly:

Do you want a program listing (y/n/e) ?

You may type:

[YJ for a complete listing
[[] for no listing but errors reported on the CRT
m for a listing of the errors only

7-2 The Assembler

If you want a listing, you can have it printed immediately or have the Assembler generate a file
of the listing information:

What listing file (default PRINTER:PROGRAM.ASC) ?

For a printer listing, press I Return 1 or I Enter I.

To generate a listing on a file, enter the name of the volume andof the file. It is recommended
that a size specification be made for the listing file (see the Filer chapter) when using LIF or
WSl.O file systems. Otherwise, the largest space on the disc will be reserved for the listing,
which may leave no space for the code file. A good rule of thumb is to use twice the number
of blocks used by program file. For example, if TOMS:PROGRAM.TEXT is 20 blocks long, a
size specification of 40 blocks is made for the listing file.

TOMS:PROGLIST.TEXT[40]

It is possible to have a CRT screen listing by specifying "CONSOLE:" as the listing file. This
is not recommended unless the program is very small, or an "error only" listing was requested.
The listing will be scrolled onto the screen and you are returned to the Main Command Level.
There is no way to control the screen listing.

Object File Specification
Finally, you are prompted to give a name for the code file that will be generated by the Assem
bler. The default name is that of the source file with the suffix ".CODE" replacing ".TEXT".

Output file (default is TOMS: PROGRAM. CODE) ?_

If the default name is acceptable, press I Return 1 or I Enter I. If you want to specify another name,
enter the complete file specification.

After this entry, the Assembler begins processing your program. The CRT displays when the
first pass of the Assembler is completed, along with the number of errors encountered during
the first pass. There is a similar display for second pass. After the second pass is completed,
you are returned to the Main Command Level. If no errors were generated during the assembly,
then a code file was created.

If the assembly program is executable (has a start address), you run it by pressing []] at the
Main Level. The Run command will run your program automatically until:

• another program is assembled or compiled.

• a workfile is specified.

• the computer is powered down.

• the system volume is re-specified.

If the Run command no longer works for your program, then use the eXecute command and
specify the name of the code file that was generated.

The Assembler 7-3

Interpreting the Listing
The output from the Assembler contains the following information. The first column on the
listing indicates the (decimal) number of the source-program line. For each line of input, a line
number is generated. This is true of blank lines as well.

The second column shows the current location counter (relative to the code origin). The value
is in hex notation unless the DECIMAL pseudo-op is specified. When the program is loaded,
the number in column two can be added to the base address of the load to obtain the absolute
address of the instruction. This is useful information when debugging.

The third column shows the hexadecimal (base 16) representation of the machine code for the
instruction or value of equated symbols generated by the Assembler.

The right side of the listing is a copy of the source program.

36
37
38
38
39
40
41
42
43

44

45
46
47
48
49
50
51
52
53
54
55

Sample Assembler Output

Address Source Code

00000000 rorg 0

00000000 0000 0000 simple2_zero
00000004 0000 0000

dc.l 0,0

00000008 4E41 simple2_initialize trap #1 (stack check)
OOOOOOOA 0000 dc.w 0 (no local space)

OOOOOOOC 4CFA 0300 movem.l simple2_zero,aO-a1
FFFO

00000012 48ED 0300 movem.l aO-a1,sum(a5)
FFFO

00000018 4E5E
0000001A 4E75

unlk a6
rts

0000001C 4E41
0000001E FFFC

simple2_partadd trap #1
dc.w -4

0000 0010 result
0000 OOOC x
0000 0008 Y
0000 0004 ret_addr

equ 16
equ 12
equ 8
equ 4

(relative to a6)

Error messages are listed under the line in which they occur. At the completion of the assembly,
the total number of errors will b~ displayed. If there are errors, there will be a directive for
you to check the location of the last error in the program. At that location, there will be a
description of the error. Also listed will be the location of the error above it, if one exists. In
this manner, all errors can be located without having to search the whole listing.

7-4 The Assembler

The Programming System
It is assumed that you will be writing most of your programs in Pascal. In the instance where
the execution speed of a particular routine is insufficient, this section will show you how to
translate the Pascal routine into an Assembler language routine and call it from your Pascal
program.

It is possible to write a simple procedure, put it in the "system library" (usually a file named
LIBRARY on the * volume), and access it with an EXTERNAL directive from the Pascal
program. However, add some interface text to the routine, and you have created a module.
The benefits of modules are that global variables and constants may be used for communication
among modules. Special types which define parameters need only be declared in the module
containing the called procedure.

A Pascal module was developed for use as an example. The Librarian was used to disassemble
the code into its Assembler language counterpart. The intent of this section is to explain
the method of interpreting the disassembly information and producing a working Assembler
language module. The examples are also available on the documentation disc (DOC:). The
file (ASMB_Pl) imports the file (file ASMB_Ml). These are both Pascal files. The Pascal file
(ASMB_P2) imports the Assembler language file (ASMB_M2).

You'll notice in the example program that the variables are declared to be of the type which are
defined in the imported module. If the program merely declared one or two of the procedures
to be EXTERNAL procedures, those special types would have to be defined in every program
that called the procedures. It would be like going to the Library for a book and having to write
down the table of contents every time you wanted to use the book.

For your Assembler language module to interface cleanly with the Pascal program, the con
ventions of the Compiler must be followed. That is, you must set up the Assembler language
module to act as if it were a compiled Pascal module. You must also exit the module leaving
everything in order, as a Pascal module would.

The information you need to accomplish a clean "Pascal-to-Assembler language" interface is
presented in this section. You should understand how the Compiler:

• Prepares interface text (IMPORT text)

• Declares entry points (DEF table)

• Declares external references (EXT table)

• Passes parameters

• Creates global variable space

• Initializes modules

• Recovers from errors

• Returns from subroutines

The Assembler 7-5

You will find a listing of the Pascal program and module as originally written, a listing of the
disassembly of the module, and a listing of the final, working Assembler language module. These
listings are included at the end of this section. Remove them from the manual and keep them
out for reference as you're reading this material.

The first subject covered is the method of generating the IMPORT text. This is what separates
an importable module from a simple EXTERNAL routine. The subsequent material is of concern
in either case. There will be a short explanation of the method for declaring EXTERNAL
routines toward the end of the section.

The IMPORT Text
Certain information must be passed from an imported module to the Compiler to complete the
module interface. This information is the IMPORT (or "interface") text. Actually, IMPORT
text contains IMPORT declarations and EXPORT declarations. It's called IMPORT text here
because it's what the Compiler needs when it is importing the module. It must know the module
name, global variables, global constants, and procedure and function names. If special TYPE
declarations are needed to define the variables, they must be included in this information.

At compile time, your imported Assembler module must make this information available to the
Compiler. This is done with the SRC pseudo-op. See how the IMPORT text of the Pascal
listing is exactly the same as the SRC-IMPO RT text below.

src module simple2;
src export
src type
src rec = record
src i1 integer;
src i2 : integer;
src end;
src const
src zero = rec[i1:0,i2:0];
src var
src lastresult : rec;
src procedure initialize;
src procedure add(a,b rec;
src var out: rec);
src end;

The SRC section does not actually name the module or get the global space. There are separate
techniques for accomplishing these things, which are discussed later.

7-6 The Assembler

The DEF Table
The DEF table contains the locations of all the entry points in the Pascal module and the
location of its global space. This information is provided for the linking loader. The information
is used to link all the modules together before they can be loaded and executed.

DEF table of 'SIMPLE';
SIMPLE
SIMPLE_ADD
SIMPLE_INITIALIZE
SIMPLE_SIMPLE
SIMPLE_ZERO

Gbase
Rbase+82
Rbase+l0
Rbase+252
Rbase

The symbol "SIMPLE" which is the same as the module name, is the name of the module's
global variable space. This symbol is entered into the DEF table automatically when you reserve
the global space using the COM statement. This is explained later in the global variable section
of this chapter.

"SIMPLE_ADD" AND "SIMPLE_INITIALIZE" are the entry points into the two procedures
"add" and "initialize". When writing assembly language routines, they must be named as the
Compiler names its procedures. The Compiler appends the module name to the front of the
procedure name, separated by an "_". When the Compiler looks at your IMPORT section, it
assumes that the procedures have been named by its convention. When it's time for the loader
to hook everything together, it looks for those procedure names in your module's DEF table.

"SIMPLE_SIMPLE" is the entry point, or location, of the module initialization body. Module
initialization is discussed later in this chapter.

"SIMPLE_ZERO" is the location of the structured constant, "zero", which appears in the
IMPORT section of the module. Any code which resides in the assembly module and is declared
in the IMPORT section of the module, must appear in the DEF table. It, too, must be named
by prefixing the module name to the constant name that you declare in the IMPORT section.
This name must appear as a label at the constant's location in the program.

You must create a DEF table for the assembly version of your routine. This is done using the
DEF statement. Notice that all the symbols in the Pascal module's DEF table are named in
the DEF statements below except the symbol for the global variable space. The global variable
symbol is entered into the table at the time the space is reserved with the COM statement.

def simple2_add
def simple2_initialize
def simple2_zero,simple2_simple2

The Assembler 7 -7

The EXT Table
The EXT table that you get from the Librarian is the list of the symbols that the loader must
find in some corresponding DEF table so our module can access those external items.

EXT table of 'SIMPLE';

SYSGLOBALS

"SYSGLOBALS" is the only symbol in this particular list. We need to access some of the
system's global variables in our routine so we must know where they are kept. They are in the
global variable space for the system, "Sysglobals". (See the TRY-RECOVER section for more
details about the system globals)

The EXT table is created in the assembly module using REFA and REFR. Both instructions
enter symbol names into the EXT table. REFA causes the symbol to be referenced using absolute
addressing. REFR causes the symbol to be referenced using 16-bit PC relative addressing. See
REFA, REFR, SMODE and LMODE in the pseudo-op reference section.

In the example, "Sysglobals" was declared as external using REFA.

If other modules' global variable sections were to be referenced, the symbol for those areas would
also need to be included in our EXT table. This is explained in the global variable section.

Declaring the Module Name
The module is named using MNAME. This puts the name of the module in the module directory
for the Compiler to reference when importing the module.

If no MNAME is used, the module name will be the same as the file name.

Passing Parameters
When parameters are passed to a procedure, the values or addresses of variables in the parameter
list are pushed onto the stack. The function result space is put on the stack if the routine is a
function. The leftmost variable in the parameter list is pushed onto the stack. Then the rest
are pushed onto the stack in order from left to right. The return address is pushed onto the
stack automatically by the processor at the time the JSR instruction is encountered.

7-8 The Assembler

For example:

114
118

180
184

2FOE
487A 005A

202D FFF8
DIAD FFFO

ITlol)e.1 a8t-(sP)
pea

mOl)e.
mo I) e • 1
add.1 dOtGbase-18(a5)

The stack is mapped in the following way:

FUNCTION RESULT

12(SP)- t----------i

VALUE of x

8(SP)- t----------i

VALUE of Y

4(SP) - ~--------1

RETURN ADDRESS
(SP)- L....-_____ ----'

Notice that the stack grows downward (toward smaller addresses).

If a parameter is passed by reference, a 4-byte address is pushed onto the stack. When passing
by value, values up to 4-bytes are pushed onto the stack, but larger values are essentially passed
by reference. That ir:;, a 4-byte address is pushed on the stack. In this case, a copy of the
value must be made in local variable space so that the actual parameter is not altered. This is
illustrated in the Local Variable section.

More information can be found in the Compiler chapter under the heading "How Pascal Pro
grams Use the Stack" .

Declaring Global Variables
You must understand how the Compiler allocates global variable space so that you get and use
global space the same way. The value stored in register A5 is the base address for all global
areas. Each module that declares global variables is allocated an area for them. The symbol
assigned to the area is equated to the distance from the base address in A5 to the area. Globals
are then referenced symbolically, relative to A5.

The name for the location of a module's globals (relative to the address in A5) is the same as
the module name. So the symbol for the global area for "module simple" would be "simple".

Determine how much space you need for your globals. When determining how much space is
needed, you must also consider any variables that are internally global to the module. Notice
on the Pascal module listing that the variable, "sum" is global to the module.

The Assembler 7-9

If you are rewriting a Pascal module as we have done in the example, the Compiler provides
variable size information beside the variable declarations on the listing (the negative number).
More detailed information can be displayed using the Compiler's $TABLES$ directive. You
must specify the amount using a negative value also. Declare global space using the COM
statement:

COM simple2,-16

The value, -16, corresponds to the global variables, "last result" and "sum". Both are records
containing two integers each.

The COM statement also enters the symbol into the DEF table.

Referencing Global Variables
The Assembler module name is SIMPLE2 as is its global base. Notice in the DEF Table that
"SIMPLE" is equal to "Gbase" (Global BASE) for the Pascal module. Global locations in the
disassembly are referenced using the symbol "Gbase" rather than "simple".

DEF table of 'SIMPLE':

SIMPLE
SIMPLE_ADD
SIMPLE_INITIALIZE
SIMPLE_SIMPLE
SIMPLE_ZERO

Gbase
Rbase+82
Rbase+l0
Rbase+2S2
Rbase

- - - -
170 2020 FFFC
1711 D1AD FFFli
178 lIE7G
180 20GE 0008
1811 lICAD lEOO

- - - -
'!lO I.! e • I Gbase-lI(as) tdO
add.1 dOtGbas~-12(aS)
t rapl.!
'!lOI.Iea. I 8(aG) taO
'11 0 l.I e Ill. ''''' GPa's e - 8 (as) tal-all

When writing your assembly language module, use the COM symbol to reference globals. The
Assembler doesn't recognize "Gbase". In our assembly module, the global variables are refer
enced using "SIMPLE2".

lastresult
lastresult_il
lastresult_i2
sum
sum_il
sum_i2
escapecode
recovery_rec

equ simple2-8
equ simple2-8
equ simple2-4
equ simple2-16 (all are relative to a5)
equ simple2-16
equ simple2-12
equ sysglobals-2
equ sysglobals-l0

Note

When structured variables are used, the individual elements of the
structure are referenced at progressively higher addresses within the
structure's space.

If, for example, you had declared two integers separately instead of together in one record, you
would refer to them as:

lastresult_il
lastresult_i2

7-10 The Assembler

EQU simple-4
EQU simple-8

Referencing Other Module's Globals
When referencing the global variables of another module, it is necessary to establish the external
reference using REFR or REFA.

The individual variables are referenced at negative offsets from the symbol and relative to A5,
as described in the global variable section above. As was mentioned previously, offsets into data
areas are provided on Compiler listings.

Local Variables
There are several methods for getting local variable space. The following method is recom
mended for those intending to produce purely relocatable code. This is important if the code is
to be committed to ROM.

Notice that the first instruction in each of the disassembled routines is:

TRAP #1

TRAP #1 calls a system routine which allocates local variable space in a new stack frame. A
check is made of available stack space. If there isn't room on the stack, a "Not Enough Memory"
error is reported and control is transferred to the Main Command Level.

The TRAP #1 routine then executes a LINK instruction. The LINK instruction is explained in
detail in the MC68000, MC68020, and MC68030 manuals, and in the Compiler chapter under
"How Pascal Programs Use the Stack" .

The following illustration shows the stack before the function "part_add" gets its local variable
space.

Before the LINK:

FUNCTION RESULT

12(SP)-~------~

VALUE of x

8(SP)- 1------------1

VALUE of Y

4(SP)- t---------I

RETURN ADDRESS
(SP)- L--_____ -----I

The Assembler 7-11

After the LINK:

FUNCTION RESULT

16(A6)-

VALUE of x

12(A6)-

VALUE of Y

8(A6)-

RETURN ADDRESS

4(A6)-

OLD (A6)

(A6)-

Temp

-4(A6)- -(SP)

Parameters are now referenced relative to A6 instead of SP. Local variables are referenced at
negative offsets from A6.

Local variable space is also needed for copies of some value parameters. As was discussed in the
parameter section, value parameters which are larger than 4 bytes have their address put on
the stack in place of the value. In order not to alter the value of the actual parameter, a copy
must be made in local variable space. Allocate the space using the TRAP instruction, then
immediately move the values of the value parameters into the local variable space. This is the
case with the parameters to "Procedure Add" .

ADDRESS of a

16(A6)-

ADDRESS of b

12(A6)-

ADDRESS of OUT

8(A6)-

RETURN ADDRESS

4(A6)-

OLD (A6)

(A6)-

COPY of b.i2

-4(A6)-

COPY of b.i1

-8(A6)-

COpy of a.i2

-12(A6)-

COPY of a.i1

-16(A6)- -(SP)

7-12 The Assembler

This mapping was accomplished by the following block of code:

78 S04F
78 4EDO
80 0000

82 4E41 FFFO
B8 208:E 0010
SO 20SS EFFO
S4 2.O,SO FFF4
sa ~()'!3E; OOOC

102 'ZO,S8 FFF8
108 2DSO FFFC
110, 2F20 FFFB
114 2FOE
118 487A OOSA
120 2B4F FFF8

Module Initialization

add"!.,,,1 #8,sp
jfT1P (aO)
dC.IAI 0

trap #1,#-18

or dc.b 0,0 or dc.b I

- - - - - SIMPLE_ADD

{rlOVe a.1 18 (a8 haO
til o~,e .lCal» +t .wlq (a 8)
(flO ve. 1 . (aO) f - 12 (a 8)
tIlo~Je,a..112(a'8) taO
Iflove.1 (a 0) + t - 8 (a 8)
tIlov,e'.l(aO) t -4l a8)
MO vedSYSQLOBALS-I0 <as h -(SF)
fTlove.l a8,-(sp)
pea Rbase+208
Move.l sp,SYSGLOBALS-l0(aS)

Finally, it is necessary to include a module initialization body within each module. The initial
ization body is a routine which is named by appending the module name to itself, separated by
" "

The purpose of module initialization is to allow for file initialization within the module. Even
. if a module has no files, the Compiler emits a call to the module initialization body for every
module imported into a program. It can be a null routine such as an RTS with the label tacked
onto the end of the assembly:

simple2_simple2 rts

The name of the module initialization body must be marked as an entry point along with the
other procedure names using DEF.

Error Recovery
The TRY-RECOVER escape mechanism can be written into assembly language routines for
graceful termination of programs that generate errors. TRY-RECOVER is explained in detail
in the "Error Trapping and Simulation" chapter.

The section of code that could cause the error is enclosed within the TRY section. The TRY sec
tion creates a RECOVER-record on the stack. The record contains the location of the previous
RECOVER-record, the stack frame pointer, (A6), and the location of the RECOVER code. The
location of this record is saved in a special location that the system knows about. This location
is at an offset of -10 in "SYSGLOBALS" (operating SYStem GLOBALS). "SYSGLOBALS" is
relative to A5.

The Assembler 7-13

An example of the TRY action is taken from the disassembly:

88 208E 0010 ITiO 1.1 ea. 1 18(a8) taO
80 20S8 FFFO mo I) e • 1 (aO)+t-18(a8)
84 20S0 FFF4 ITiO 1.1 e .1 (aO) t-12(a8)
88 208E OOOC movea.1 12(a8) taO

102 20S8 FFF8 ITiOVe .1 (aO)+t-8(a8)
108 20S0 FFFC IlIOI)e.1 (aO) t-4(a8)
110 2F20 FFF8 m ol.le.l.· SY~GLOeALS,ttO(as,):J -;(sp)
114 2FOE ITiOve. 1a6 f- ts p)
116 487A OOSA. pe a. Rba.~e.+4t),8.".«••..• i' ,

120 264F FFF'6 mo,ve. 1 SPt;SYSGLoeALS ... l O('as)
124 S88F subq.1 #4tsP
128 2F2E FFFO ITlOI) e.1 -18(a8) t- (sp)
130 2F2E FFF8 III 0 ~I e • 1 -8(a8) t- (sp)
134 4E6A FF88 j S r Rbase+32
138 26SF FFF8 III 0 l) e .1 (sp)+,Gbase-8(aS)

After the above code has been written, write the code body of the routine.

The last piece of code must restore the pointer to the previous RECOVER-record and remove
the current one from the stack. Control is then transferred to the instruction following the
RECOVER section. For example:

178 4E78 trapv
180 208E 0008 III 0 1.1 ea. 1 8(a8),aO
184 4CAO lEOO 11101.1 elTi. I", Gbase-8(aS) tal-a4

FFF8
180 4880 lEOO 11101,1 elll. I", al-a4,(aO)
194 266F 0008 It I 0 ve. 1 8 (s P).tSVSGL06AL.S-.l 0 (as)

FFF8
200 OEFC OOOC add'a .•. w #12tsP
204 4EFA 0024 jlTlP Rbase+242
208 2CSF ITiO l) ea. 1 (sp)+,a8
210 2BSF FFF8 11101.1 e • 1 (sP)+tSYSGLOBALS-I0(aS)
214 7084 11101.1 eq #100,dO
218 B080 FFFE CIIIP .1", SYSGLOBALS - 2 (as) ,dO
220 8800 0012 bne Rbase+240
2211 4CBA OFOO fllO l) elTi. 1,,1 Rbase,aO-a3

If an error or exception does occur, the system stores the number of the error in a location at
"Sysglobals-2(A5)" and looks at "Sysglobals-l0(A5)" to find the location of the RECOVER
record. This location is loaded into the Stack Pointer register (SP). The location of the RE
COVER routine is then popped off the stack and control is transferred to the RECOVER
routine. The next value popped off the stack is the stack frame pointer for the RECOVER
routine. It is moved to A6. Then the higher level RECOVER-record pointer is popped off the
stack and moved to "Sysglobals-l0(A5)".

Once these values have been restored, you may examine the value at "Sysglobals-2(A5)" and
determine what action to take. If you want to handle the error, you may do so. If not, execute
a "TRAP #10" and the problem will ripple out to be handled by the higher level RECOVER
routine.

7-14 The Assembler

Here is the assembly version of the RECOVER routine:

204 4EFA 0024
208 2C5F
210 28.5F FFFS
214 70S4
218 8080
220 8S00
224 4C8A

FF1C
2.30 4SAO

FFF8
23S 6000 0004
240 4E4A
242 4E5E
244 205F
24S OEFC oooc

Exception Coding

jlT1P Rbase+242
hlO\)~a.l(sp}+ til8
h)QiJe.l . (~F'T+tSYSGU08.ALS~tO?ta5)

~o\)e~,>#t('9n~(t •.......•...•... , •............ , :
CHrtcp tiN SV~Gl;q8AUS~2ta51f.;t0
b n eh'bas e+240
lYl·OVE!Ift.·I,,1 RoilS .. e

b raRtli~e+242
t rap:'·#·l'O
Iln lK as
ITlovea.1 (sP)+taO
adda.IAI #12tSP

In your TRY block you may wish to raise certain exception conditions and handle them in the
RECOVER section. This corresponds to the Pascal standard procedure, ESCAPE. When the
condition is determined, store a 16-bit integer value representing the error in "SYSGLOBALS-
2(A5)" and execute a TRAP #10. For example:

32 4E41
3S 202E
40 OOAE
44 4E7S
4S 2040
50 4AA~
54 8COO
58 3.B7C

FFFE
84 4E4A
SS 20SE

0010
72 4E5E
74 205F
7S 504F

FFFC
OOOC
0008

FFFC

trap #1 t#-4
ITlo~le.1 12(aS) tdO
add.l 8(aS) tdO
t rapt)
ITlove.1 dOt-4(aS)
tstd;·t4 (as)
bf~Rba~e,+86 <....
Iftov.e.~ .IN .. #lQOtSYSGI..,08Al.,S-2(~~(1

ttap .•.. ···~10
Move.l -4(aS) t1S(aS)

unIt< as
ITlOl.lea.l (sP)+taO

In your recovery section, check "SYSGLOBALS-2(A5)" to see if you recognize the value. If
you do, make the appropriate recovery. Otherwise, your RECOVER section restores the old
RECOVER-record location and issues another TRAP #10. Thus the error is passed on to the
next RECOVER block.

Returning to Pascal
When returning to Pascal from assembly, the stack must be cleaned up, a function value must
be left on the top of the stack if appropriate, and all Pascal dedicated registers must be restored
(A5, A6 and A7).

The Assembler 7-15

You can return to Pascal by leaving the return address on the top of the stack and executing
an RTS, or you can store the return address in an address register and execute a JMP indirect
through the address register.

218 6080 FFFE CfTlP. w SYSGL06ALS-2(aS) tdO
220 8800 0012 bne Rbase+240
224 4C6A OFOO fTlOl)efTl. w RbasetaO-a3

FF1C
230 48AD OFOO fTlO I) efTl.,,.I aO-a3tGbase-8(aS)

FFF8
238 8000 0004 bra Rbase+242
240 4E4A trap #10
242 4ESE unlk a8
244 205F fTlol)ea.l (sP)+taO
248 DEFC OOOC adda.w #12tSP
250 4EDO jfTlP (aO)
252 4E75 dc.w 20085 or dc.b 78 til 7 or dc.b 'Nu'

Declaring External Procedures
Most of the subjects that have been covered in this section are relevant to EXTERNAL proce
dures.

If you just want to write a routine, put it in the current System Library file (default is the
"LIBRARY" file), and call it from Pascal by declaring it as EXTERNAL, you won't need to be
concerned with IMPORT text.

You will need to generate EXT and DEF tables. And you will have to deal with parameters.
You mayor may not want to deal with local variable space. If you want local space, you will
reference your parameters relative to (A6). Otherwise, reference them relative to (SP). You will
have to write a module initialization body.

The TRY-RECOVER mechanism is also optional. There's always a RECOVER routine some
where that has to handle those errors. The Operating System puts one around your program
before execution.

You must be concerned with the stack. All the parameters must be removed. It must be left in
r

the condition it was in before the calling procedure started preparing for the call.

You must be concerned with restoring A5 and A6 to their original values.

Write the routine, assemble it, and use the Librarian to put it in the System Library. Fronl
Pascal, declare it as EXTERNAL, and call it just as if it were a Pascal procedure.

Just remember - if you're not using standard types, every program that calls this routine will
have to define the special types just as you had originally defined them.

7-16 The Assembler

Instruction Syntax
This section provides details of the syntax of assembly language instructions required by the
Workstation Assembler.

Beginning with system version 3.1, the Workstation Assembler supports most of the MC68020
(and with version 3.22, the MC68030) processor and MC68881 (and with version 3.22, the
MC68882) co-processor instructions. Thus, you can assemble programs that contain instruc
tions which may not be executable by your computer. Consult the target computer's hard
ware documentation to determine which processor is installed in it. The few unsupported
MC68020/MC68030 opcodes, which are not usually required for user level assembly programs,
are:

FGEN Pass command work to co-processor

PFLUSH Memory Management Unit (MMU) instructions

PLOAD Memory Management Unit (MMU) instructions

PMOVE Memory Management Unit (MMU) instructions

PTEST Memory Management Unit (MMU) instructions

General Syntax
Here is the syntax required for Workstation Assembler instructions. Each portion of the diagram
is further described or expanded in the following paragraphs.

Program Line Syntax

operand (5)

Empty circles denote required spaces. Line labels and comment lines must begin in column 1.

Examples

Labels Opcodes Operands Comments

RTS
Label_8 STOP

JSR Sub r_naille

SUIII ADD D1 tD2 This is a COllllllent.

* This l..Jh ole line is a COllllllent.

The Assembler 7 -17

Instruction Fields
There are no fixed-width fields within instructions; instead, spaces characters delimit the fields
of instructions. For instance, the first space after a line label separates it from the subsequent
opcode; the first space after the opcode separates it from the operand; and so forth. Therefore,
the following two program lines are equivalent:

Label ADD Dl,D2 This is a comment.

Label ADD Dl,D2 This is a comment.

This rule dictates that spaces are not permitted within the label, opcode, or operand fields,
because the first space encountered after the start of the field ends that field. Instructions are
otherwise free-format with respect to spaces; for example, comment fields may have any number
of spaces, within the limits of the line width.

Letter Case
Upper- and lower-case characters may be used interchangeably, except inside of literal (quoted)
strings.

add dl,d2
MOVE D2, (Al)
BTst #31,D2

de
dc

'This is a literal.'
'THIS IS A LITERAL. '

Line Labels

These two literals are not equivalent.

If a line label is present, it must start in column 1 of the line. The opcode must start in column
2 or later (or it will·erroneously be considered to be a label).

1234567890123456789012345678901234567890

Label MOVE Al,A2 Comment field.
MOVE Al,A2 Comment field.

Line labels are in a class of objects called symbols, which are described in the "Symbols"
discussion of the subsequent "Operands" section.

7-18 The Assembler

Opcodes

Opcodes (operation codes) are mnemonic abbreviations used for specifying machine language
instructions. Here are some examples:

ADD
JSR
MOVE

The term "opcodes" includes these three types of codes:

• Processor opcodes

• Co-processor opcodes

• Assembler pseudo-opcodes (or simply "pseudo-ops")

Processor and co-processor opcodes are described in this section. Assembler pseudo-ops are
described near the end of the chapter.

Processor Opcodes
Most opcodes described in the MC68000, MC68020 and MC68030 user's manuals are supported
by the Workstation Assembler. Since the syntax and semantics of each instruction are fully
described in those manuals, they will not be described here. The unsupported opcodes are
listed at the beginning of this "Instruction Syntax" section.

Note that some instructions have Address, BCD, Immediate, or Quick forms. When possible,
Motorola's assembler automatically generates machine instructions for these opcodes (for
optimization). However, the Workstation Assembler does not, unless explicitly told to do so.

Co-processor Opcodes
Co-processor opcodes are supported by the Workstation Assembler. The MC68020/MC68030
User's Manuals contain a general description of the syntax and semantics of each. Details
of particular co-processors, such as the MC68881/MC68882, are in the documentation for
the corresponding products. See the "MC68881 and MC68882 Floating Point Co-processor
Support" section for a description of exceptions to the syntax and support suggested in the
co-processor manuals.

The Assembler 7-19

Size Suffixes
Size suffixes can be appended to both of the following items:

• Opcodes and Pseudo-opcodes

• Index registers (in operands)

They specify the size of operand(s) used by the instruction.

The available size suffixes and their definitions are as follows:

Suffix Meaning Data Size Where Used

B Byte

S Short

W Word

L Long

8 bits

8 bits

16 bits

32 bits

apcodes only

apcodes (Branch instructions only)

apcodes and index registers

apcodes and index registers

Floating-point size suffixes:

Suffix Meaning Data Size Where Used

S Single 32 bits

D Double 64 bits

68881/68882 opcodes, DS and the dc.d pseudo-op

68881/68882 opcodes, DS and the dc.d pseudo-op

68881/68882 opcodes, DS and the dc.d pseudo-op

68881/68882 opcodes, DS and the dc.d pseudo-op

X Extended 80 bits

p Packed 96 bits

All instructions that can operate on more than one data size will assume the default size of
word (16 bits) unless a size suffix is explicitly specified.

Here are some examples of using these suffixes:

ADD.B Dl,D2
ADD.W Dl,D2
ADD Dl,D2
ADD.L Dl,D2

ADD (Al,A2.W),Dl
ADD (Al,D2.L),Dl

BEQ.S Label_Z
BEQ.W Label_Z
BEQ Label_Z
BEQ.L Label_Z

AD D registers as Bytes
ADD registers as Words
ADD registers as Words (default operand length)
AD D registers as Long words

16 bits of A2 are used as index (default)
32 bits of D2 are used as index

Branch on EQual; destination specified by 8 bits
Branch on EQual; destination specified by 16 bits (always)
Branch on EQual; destination specified by 8 or 16 bits
Branch on EQual; destination specified by 32 bits

Note that in the BEQ instruction with no suffix, the Assembler determines whether it will use 8
or 16 bits to specify the destination. In contrast to this, the BEQ. W opcode specifies that 16 bits
will be used, even though the destination might fit in 8 bits.

7-20 The Assembler

Operands

Operands specify the data upon which the operation is to be performed. They are composed of
any of the following:

• Constants

• Symbols

• Expressions containing constants, symbols, and operators

• An instance of an addressing mode (see the subsequent "Addressing Modes" section for
further information)

Constants
Constants are sequences of ASCII characters that define a numeric value. There are basically
four types of constants:

• Decimal numeric constants.

123
2147000111

Note that decimal numeric constants may contain any decimal digits 0 through 9; however,
they may not contain a sign character (+ or -), which would make them an expresswn
(see the subsequent "Expressions" section).

• Hexadecimal numeric constants.

$19
$FF20

A $ preceding a numeric constant indicates that it is a hexadecimal (base 16) quantity.

• Floating-point numeric constants.

3.14
5.01E9

-3. 14E-99
2.718E-231

The syntax requirements for these constants are the same as for Pascal floating-point
(real) constants. See the "Real and Longreal Literals" section of the "Numbers" entry in
the HP Pascal Language Reference manual for details.

The Assembler 7-21

• Literal character constants.

'a'
'-.zl'

When the characters are enclosed within single quotes, the Assembler emits a series of
bytes, one per character, each of which contains the ASCII code of the corresponding
character.

Literal character constants may contain 0 to 4 characters. If the single quote character
(,) is to be part of the constant, you must put two quotes in the literal.

'a' 'b' Literal is a' b

Symbols
Symbols are names used in place of values or registers. Symbols must begin with an alphabetic
character, but they may subsequently contain digits (0 .. 9), ~, $ and _ as well as alphabetic
characters. Here are some examples:

Symbol
SYM_2
MAIN __ main
Z~_$13

Symbols may contain any number of characters. The only restriction is that each instruction
must be contained entirely on one line. Note also that upper-case and lower-case letters are
considered equivalent in symbols; i.e., the symbol MAIN is equivalent to the symbol main.

Here are examples of using symbols in instructions:

Symboll EQU RBase+32
JSR Symboll
ADD (Symbol2.Al).Dl

The Location Counter Symbol
The * character is a symbol that signifies the value of the Assembler's location counter (except
when the * is in column 1, which indicates a comment line). Here is an example of using the
symbol in a branch instruction.

The location counter points to the m~mory address at which the instruction begins, and thus is
analogous to the processor's program counter (PC). In fact, * is equal to the program counter
at the point the instruction is fetched; however, the PC varies from * by 2 or 4 bytes at the
point the operands are fetched.

7-22 The Assembler

Symbol Types
Here are descriptions of the various types of symbols known to the Assembler:

• Pre-defined register symbols are any of the following:

Symbol Register Specified

AO thru A 7 Address registers 0 thru 7

CCR Condition Code Register

CACR CAche Control Register

CAAR CAche Address Register

DO thru D7 Data registers 0 thru 7

DFC Destination Function Code register

FPO thru FP7 Floating-Point co-processor registers 0 thru 7

FPCONTROL Floating-Point co-processor control register

FPSTATUS Floating-Point co-processor status register

FPIADDR Floating-Point co-processor Immediate ADDRess register

ISP Interrupt Stack Pointer (A7')

MSP Master Stack Pointer (AT')

SFC Source Function Code register

SP Stack Pointer (same as USP and A 7)

SR Status Register

USP User Stack Pointer (same as SP and A 7)

VBR Vector Base Register

Note that the symbols FPCONTROL, FPSTATUS, and FPIADDR are deviations from Motorola's assem
bler symbol names; however, you can define the Motorola register symbols as shown in the third
example below.

• User-defined register symbols are created with the EQU (equate) pseudo-op:

StackPointer EQU SP
MyAddressReg EQU At
STATUS EQU FPSTATUS

Note that these are the only type of symbols that need to be defined before they are used.

The Assembler 7-23

• Absolute symbols are those which either follow an ORG pseudo-op or are equated to an
absolute expression. Here are some examples:

ORG $FFFFFOOO
AbsSyml EQU $FFFFFED2
AbsSym2 EQU AbsSyml+16
AbsSym3 EQU RelSyml-RelSym2 Note: DIFFERENCE of 2 relatives is absolute

• Relative symbols are those which follow a RORG pseudo-op or are equated to a relative
expression.

RORG *
RelSyml EQU RBase+16
RelSym2 EQU RelSyml
RelSym3 EQU RelSym2+AbsSym2

Relative to Program Counter (PC)

Note: CANNOT add 2 relatives

• External symbols are those which are defined in another module (by a DEF Assembler
pseudo-op, or by another language's compiler). They can be either absolute or relative.
Here examples of how external symbols are defined (in the module to which they are
external):

REFA AbsExtSyml
REFR RelExtSyml

Expressions

Absolute external symbol.
Relative external symbol.

Expressions are the general case of operand: they may be just symbols; or they can be more
complex combinations of symbols, constants, and operators. The operators in expressions are
limited to the following:

• - subtraction, or unary minus

• + addition, or unary plus

• ! bit-wise logical OR

• &; bit-wise logical AND

7-24 The Assembler

Expressions are evaluated in strict left-to-right order, and parentheses are not allowed. Only one
external symbol, or symbol equated to an expression containing an external symbol, is allowed
per expression. Also note that you cannot add two relative symbols (although you can subtract
two, since the difference is an absolute value). Expressions cannot have real number operands.

2+2

RelSyml+48+$DFOO

RelSyml-RelSym2+RelSym3+AbsExtSyml

AbsSyml-AbsSym2+RelSym3+AbsSym3

The Assembler 7-25

Addressing Modes
The Workstation Assembler supports all of the addressing modes of the current 68000 family of
processors; this section describes the syntax required to access each mode.

With system version 3.1, the Workstation Assembler was updated to support the 68020
processor's addressing modes. (The 68030 processor was supported beginning with the 3.22
release, and its addressing modes are the same as 68020 modes.) Since these new modes cannot
be accessed with the old address syntax, new syntax is required. However, note that the old
68000 syntax is still supported in all instances.

The following table shows the syntax and operand components of all supported addressing
modes. Descriptions of operand components are given in the legend on the next page.

Description of Mode 68000 & 68010 68020/68030

Data Register Direct Dn same

Address Register Direct An same

Address Register Indirect (An) same

Address Register Indirect (An) + same
with Post-increment

Address Register Indirect -(An) same
with Pre-decrement

Address Register Indirect d16(An) (bd,An)
(absolute displacement)

Address Register Indirect with Index d8 (An, Rn . SIZE) (bd ,An, Xn . SIZE*SCALE)
(absolute displacement)

Memory Indirect Post-indexed nla ([bd, An] ,Xn. SIZE*SCALE, od)

Memory Indirect Pre-indexed nla ([bd ,An, Xn . SIZE*SCALE] ,od)

PC Memory Indirect Post-indexed nla ([rbd] ,Xn. SIZE*SCALE, od)

PC Memory Indirect Pre-indexed nla ([rbd, Xn . SIZE*SCALE] ,od)

Absolute Address Expr same

Program Counter Indirect rd16 rbd
(relative displacement)

Program Counter Indirect with Index rd8 (Xn . SIZE) (rbd ,Xn. SIZE*SCALE)
(relative displacement)

Immediate Data #Expr same

Register List (MOVEM) Ai-Aj/Dm-Dn same

Bit Field Specifier nla operand{offset: width}

7-26 The Assembler

Legend

An = Address register symbol: AO thru A7

Dn = Data register symbol: DO thru D7

Xn = Index register symbol: AO thru A 7, or DO thru D7

Rn = Equivalent to Xn (see above)

d8 = absolute expression (8-bit): _27 thru 27 -1

d16 = absolute expression (16-bit): _215 thru 215 _1

bd = absolute expression (32-bit): _231 thru 231 _1

od = absolute expression (32-bit): _231 thru 231 _1

rd8 = relative expression (8-bit): PC-27 thru PC+27 -1

rd16 = relative expression (16-bit): PC-215 thru PC+215_1

rbd = relative expression (32-bit): PC-231 thru PC+231_1

SIZE = literal: W (or no suffix) specifies Word operand
= literal: L specifies Long' word operand

SCALE

literal: 1
2
4
8

nl a = not implemented in the older "68000" Workstation Assembler

Expr = expression (relative or absolute)

Ai-Aj/Dm-Dn = List of registers: - means "thru"; I means "and".
The values of i, j, ill, and n can range from 0 thru 7.
Examples: AO-A3/Dl-D41 A5, and D5-D7 IDO/ AO

operand = any of the operands allowed with instructions that can operate on "bit fields".

offset = literal or symbol that specifies starting bit of a bit field.

width = literal or symbol that specifies number of bits in a bit field.
Examples: D7{2:3}, and (AO){Dl:D2}

Operand Components: Order and Optionality
In the above table, an operand is the whole quantity shown in one column entry. Here are some
examples of single operands:

AbsExprl(Al,A2.L)
(AbsExpr2,Al,D3.W*4)
([AbsExpr3,A4],A3.L,AbsExpr4)

The Assembler 7-27

Thus, some of the components of these operands are AbsExpr1, A1, A2. L, AbsExpr2, D3. W*4, and
so forth.

The newer Workstation Assembler allows you to vary the order of these operand components
(however, only with the new 68020 syntax). Here are some examples of varying the order of
operand components (note that all these operands are equivalent):

([AbsExpr3,A4] ,A3.L,AbsExpr4)
([A4,AbsExpr3] ,A3.L,AbsExpr4)
([A4,AbsExpr3] ,AbsExpr4,A3.L)
(AbsExpr4,A3.L, [A4,AbsExpr3])

The Workstation Assembler also allows you optionally to omit some of the operand components,
(however, only with the new 68020/68030 syntax) as shown in the following examples (these
operands a;re not equivalent):

([AbsExpr1,A1] ,A5.L,AbsExpr2)
([A1] ,A5.L,AbsExpr2)
([AbsExpr1] ,A5.L)
([A1])
(D1)

Note that whenever any operand component is omitted, an effective value of 0 is used for that
component.

Comments and Comment Lines

The first space following an operand (or the opcode in an instruction with no operands)
terminates it; the remainder of the characters on the line, if any, are regarded as comments.

Label ADD D1,D2 This is a comment.
RTS This is also a comment (since &TS has no operands).

An asterisk (*) in column 1 indicates line that the entire line is a comment; therefore, any
instructions on the line will be ignored.

1234567890123456789012345678901234567890

* These are comment lines.
* Add word addressed by A1 to the value of the error counter.

*

7-28 The Assembler

MC68881 and MC68882 Floating Point
Co-processor Support
This section describes the Motorola MC68881/MC68882 floating point co-processor support
provided by the HP Pascal Workstation Assembler. Note that the support provided by the
Assembler is a subset of the co-processor's full capabilities.

Assembler Support of the Co-processor
Below is a list showing which co-processor capabilities are supported and which are unsupported
by the Assembler.

• All opcodes are supported.

• All sizes and types of operands are supported, with the exception that floating-point
constants and immediate operands are restricted as follows:

• The floating-point literal constant syntax is that defined in the HP Pascal Language
Reference under "Numbers", such that a period must be present, and the "L"
exponent flag is not allowed (i.e. only the "E" exponent is allowed).

• Only double-precision constants are allowed (i.e. ".D" size suffix).

• The size suffix ".D" must explicitly be given.

• All non-zero constants and immediate operands are normalized (i.e. 0.0 and
normalized are the only supported IEEE types).

• Use of floating-point values in expressions is not supported.

• Assembler Pseudo-op DS allocates space in memory for all types and sizes of operands.

• Assembler Pseudo-op DC, which reserves storage space, only supports double-precision
operands (i.e .. D but not .s or .x).

• No pseudo-ops (directives) are provided to control the rounding mode, so the default of
"round to nearest integer value" occurs.

• No pseudo-ops (directives) are provided to allow use of different co-processors. Therefore,
the default co-processor id of 1 is used, which is the MC68881 or MC68882 co-processor.

The Assembler 7-29

Assembler Pseudo-Op Reference
The following is a list of the commands which direct the assembler to take the described actions.
For a list of the machine commands, see the MC68000 User's Manual.

COM
Used to define a global area.

~ symbol ~ size ~

symbol

size

Item

Semantics

Description

An identifier for the global area

A numeric expression

Range

see "Symbols"

_231 thru 231 -1

The exact location of the global area will be determined at link time. The symbol is DEFined
as an entry point. The amount of space is specified by the absolute value of the expression. If
size is negative, the value of the symbol will be the offset from (A5) to the top of the global
area and variables will have negative offsets from the symbol. This is how the Compiler does
it. If size is positive, the symbol's value will be the bottom of the area, relative to (A5), and
offsets will be positive. Only one COM statement allowed per assembly.

7-30 The Assembler

DC
Used to define some constant value or values, including string literals, into storage.

Item

label

value

string literal

Semantics

Description

An identifier for the constant

An expression that can be evaluated in pass 1

A string of characters

Range

see "Symbols"

_231 thru 231 _1

The instruction must be con
tained on one line

Size suffixes may be used to specify the units of storage into which the values will be assigned.
In the case of string literals, the amount of storage needed will be determined by the assembler
and each character will be assigned into a byte, with the last unit null padded if necessary.

The Assembler 7-31

O~CIMAL
Causes addresses in the listing to be printed in decimal rather than in Hex notation.

(DECIMAL)-+-i

OEF
Defines a label or list of labels as entry points for other modules.

Item Description

label An entry point identifier

os
Reserves storage space.

expression

Item Description

label the identifier for the data space

number an expression that can be evaluated in pass 1

7-32 The Assembler

Range

see "Symbols"

Range

see "Symbols"

o thru 231 -1

Semantics
The units of space are specified by the size suffix. The number of units is determined by the
expression.

The ".S", ".D", ".X", and ".P" size suffixes are supported only for the MC68881/MC68882
floating-point math coprocessor.

END
Indicates the end of the assembly. This should be the last line of the assembly.

EQU
Assigns the value and attribute (absolute or relative) of the expression to the label. Equating
a symbol to a register is allowed.

I label ~ expression ~

Item Description

label the identifier for the data space

value an expression that can be evaluated in pass 1

Range

see "Symbols"

_231 thru 231 -1

The Assembler 7-33

INCLUDE
Specifies a file to be merged into the assembly at the point where the instruction is located.
The '.TEXT' suffix will be automatically appended to the file name. The INCLUDEd file nlay
not contain another INCLUDE.

~filename~

LLEN
Used to specify the column width of your printer.

LIST
Turns the printer listing back on. You must have requested a listing when the assembler was
initiated. LIST is used with NOLIST to exclude blocks of text from the listing.

7-34 The Assembler

LMODE
Specifies a symbol or list of symbols to be accessed using long absolute addressing mode. Over
rides short addressing and PC relative mode implications of REFR, ORG, and RORG.

@.I

Item Description Range

symbol A location identifier see "Symbols"

LPRINT
(Default) Causes all output from DC statements to be printed. (See SPRINT)

MNAME
Used to assign a module name to an a assembly. The default is to assign the file name to the
module.

~ module name ~

NOLIST
Turns off the listing until a LIST is encountered.

The Assembler 7-35

NOOBJ
Requests that no object code be produced.

~

NOSYMS
Inhibits the listing of the symbol table at the end of the program.

ORG
Specifies an absolute origin. When used with the ".L" option, it forces long'mode addressing
for forward and external references. Otherwise short absolute addressing mode is implied.

Item

absolute origin

PAGE

Description Range

A numeric expression that can be evaluated in - 231 thru 231 _1
pass 1

Advances listing to top of next page. This command will not be printed on the listing.

7-36 The Assembler

REFA
Defines a symbol or list of symbols as external and absolute references. The size of the effective
address is implied by the ORG statement.

Item Description Range

symbol A location identifier see "Symbols"

REFR
Defines a symbol or list of symbols as external and PC relative references.

~f--...I..~~~.I

Item Description Range

symbol A location identifier see "Symbols"

The Assembler 7-37

RMODE
Specifies a symbol or list of symbols for access using PC relative addressing. Overrides all other
addressing mode specifications.

Item Description Range

symbol A location identifier see "Symbols"

RORG
Sets a relocatable origin. Using the 'L' option, forces long absolute addressing mode for forward
and external references. Otherwise PC relative addressing mode is implied for forward references
and short absolute addressing mode for REFA symbols.

Item Description Range

relocatable origin A numeric expression that can be evaluated in - 231 thru 231 _1
pass 1

7-38 The Assembler

SMODE
Specifies a symbol or list of symbols to be accessed using short absolute addressing mode.
Overrides all other addressing mode specifications.

Item Description Range

symbol A location identifier see "Symbols"

SPC
Directs the assembler to generate the specified number of blank lines. Used to separate blocks
of code or blocks of comments on the listing.

~numberOf~
SPC blank lines

SPRINT
Print only the first line of output for the DC statements. Otherwise each word of memory used
to store the constant is printed.

The Assembler 7-39

SRC
Used to specify the IMPORT text information which the Compiler needs when importing the
module. Use one SRC for each line of IMPORT text. (see programming section)

~ line of l-.....J
~ export text I"'"

START
Specifies a start location for execution of the main program. Use only in the main program.

Item Description Range

start location An integer numeric expression

TTL
Specifies a title to appear on each page of the assembler listing.

~pagetitle~

7-40 The Assembler

The Examples
Listings of the two programs and two modules are given here and also have been provided on
the documentation disc (DOC:). On the disc they are provided in source and object form. The
file (ASMB_Pl) imports the file (ASMB_Ml). These are both Pascal files. The Pascal file
(ASMB_P2) imports the assembly language file (ASMB_M2).

If you want to see them work, you must either use the Librarian to link the modules to the
programs, P-Ioad the modules, or put the modules in the current System Library. You can then
execute the two programs.

The Sample Pascal Programs

This Program Imports the Pascal Module

$search '#3:ASMB_Ml
Pro!fralTl test(input ,output);
IMPort siMPle;
IJar i,J,k : rec;
be!fin

initialize;
i.il:=l; i.iZ:=Z;
J.il:=3; J.iZ:=4;
add<itJ,k);
l,.Iriteln(k. il d,. iZ)

end.

This Program Imports the Assembly Module

$search '#3:ASMB_MZ
Pro!fralll test(input ,output);
IMPort silllPleZ;
I,Jar i,Jd, : rec;
be!f i n

initialize;
i.il:=l; i.iZ:=Z;
J.il:=3; J.iZ:=4;
add(i,Jd,);
1,.,lritelrdk.il,k.iZ)

end.

The Assembler 7-41

The Sample Pascal Module
(*to enable trv-recover*)

Module siMPle;
expo rt

t}' pe
rec record

i1: integer;
iZ: integer;

end;
const

zero = rec [i1:0tiZ:0];
var

lastresult: rec;

procedure initialize;
procedure add (atb: rec; I)ar out: rec);

iMPlelTlent
var

SUIT1: rec;

procedure initialize;
begin SUITl:= zero end;

function partadd (xn: integer): integer;
var teMP: integer;
begin

telTlP : = x+v;
if teMP < 0 then escape(100);
partadd := telTlP;

end; (*partadd*)

procedure add (atb: rec; var out: rec);
beg i n

t r}'

lastresult.i1 := partadd(a.i1 tb.i1);
lastresult.iZ := partadd(a.iZtb.iZ);
sUM.i1 := sUM.i1+lastresult.il;
sUM.iZ := sUM.iZ+lastresult.iZ;
out := lastresult;

reCOI)e r
if escapecode = 100

then lastresult := zero
else escape(escapecode);

end; (*add*)

end.

7-42 The Assembler

The Disassembly of the Module
Librarian [Rev. 2.0 18-0ct-82J 18-0ct-82 8: 7: 14 pa9'e 1

MODULE SIMPLE Created 8-0ct-82
NOTICE: (none)

Produced by Pascal C~Mpiler of 20-Sep-82
Revision nUMber 2
Directory size 172 bytes
Module size 3072 bytes
Module NOT executable
Code base 0 Size 254 bytes
Global base 0 Size 16 bytes
EXT block 5 Size 20 bytes
DEF block 3 Size 114 b}'tes
EXPORT b I 0 d, 1 Size 182 b}'tes
There are 1 TEXT records

TEXT RECORD # of 'SIMPLE' :
TEXT start blod, 2 Size 254 b}'tes
REF start blod, 4 Size 42 b}'tes
LOAD address Rbase

0 0000 d C .1 0 or dc.b OtO or dc.b ,
2 0000 d c .IAI 0 or dc.b OtO or dc.b ,
4 0000 d c .IAI 0 or dc.b OtO or dc.b ,
6 0000 d C .1 0 or dc.b OtO or dc.b ,
8 0000 d C .1 0 or dc.b OtO or dc.b ,

- - - - - - - - SIMPLE_INITIALIZE
10 4E41 0000 trap #1 t#O
14 4CBA OFOO fTlO v eITl.I RbasetaO-a3

FFEE
20 48AD OFOO fTlO v efTl. IAI aO-a3tGbase-16(a5)

FFFO
26 4E5E unlk a6
28 4E75 rts
30 0000 d C .1 0 or dc.b OtO or dc.b ,

- - - - - - - -
32 4E41 FFFC trap #1 t#-4
36 202E OOOC ITl 0 I) e • I 12(a6)tdO
40 DOAE 0008 ad d. I 8(a6)tdO
44 4E76 trapv
46 2D40 FFFC fTlO I) e • 1 dOt-4(a6)
50 4AAE FFFC tst .1 -4(a6)
54 6COO OOOA b 9'e Rbase+66
58 3B7C 0064 fT10ve. w #100tSYSGLOBALS-2(a5)

FFFE
64 4E4A trap #10
66 2D6E FFFC IrlO V e • 1 -4(a6) d6(a6)

0010
72 4E5E unlk a6
74 205F Irlovea.l (sP)+taO
76 504F ad d"l .1 #8tsP
78 4EDO j'TlP (aO)
80 0000 d c. I 0 or dc.b OtO or dc.b ,

The Assembler 7-43

Librarian [Reu. 2.0 18-0ct-82J 18-0ct-82 8: 7: 14 palte 2

82 4E41 FFFO
8G 20GE 0010
80 2D58 FFFO
84 2D50 FFF4
88 20GE OOOC

102 2D58 FFF8
lOG 2D50 FFFC
110 2F2D FFFG
114 2FOE
IIG 487A 005A
120 2B4F FFFG
124 588F
12G 2F2E FFFO
130 2F2E FFF8
134 4EBA FF88
138 2B5F FFF8
142 588F
144 2F2E FFF4
148 2F2E FFFC
152 4EBA FF8G
15G 2B5F FFFC
IGO 202D FFF8
IG4 DIAD FFFO
IG8 4E7G
170 202D FFFC
174 DIAD FFF4
178 4E7G
180 20GE 0008
184 4CAD lEOO

FFF8
180 4880 lEOO
184 2BGF 0008

FFFG
200 DEFC OOOC
204 4EFA 0024
208 2C5F
210 2B5F FFFG
214 70G4
21G BOGD FFFE
220 GGOO 0012
224 4CBA OFOO

FFIC
230 48AD OFOO

FFF8
23G GOOO 0004
240 4E4A
242 4E5E
244 205F
24G DEFC OOOC
250 4EDO
252 4E75

7-44 The Assembler

SIMPLE_ADD
trap #1 t#-IG
trlouea.1 IG(aG) taO
ITlOI)e.! (aO)+t-1G(aG)
trlOI)e.! (aO) t-12(aG)
ITlOUea.! 12(aG) taO
ITlOue.! (aO)+t-8(aG)
ITlol)e.1 (aO') t-4(aG)
ITlove.1 SYSGLOBALS-I0(a5) t-(SP)
ITloue.1 aGt-(sP)
pea Rbase+208
Moue.1 SPtSYSGLOBALS-IO(a5)
subq.1 #4tSP
trloue.1 -lG(aG) t-(SP)
Move.! -8(aG) t-(SP)
jsr Rbase+32
Moue.1 (sP)+tGbase-8(a5)
subq.1 #4tSP
trlO~le.! -12(aG) t-(SP)
Moue.! -4(aG) t-(SP)
jsr Rbase+32
Moue.1 (sP)+tGbase-4(a5)
ITlOue.! Gbase-8(a5) tdO
add.1 dOtGbase-1G(a5)
trapu
Moue.! Gbase-4(a5) tdO
add.1 dOtGbase-12(a5)
trapu
ITlOVea.! 8(aG) taO
MOI)etrl.l Gbase-8(a5) tal-a4

MoueM.w al-a4t(aO)
IflOI)e.! 8(sp) tSYSGLOBALS-I0(a5)

adda.l #12tsP
jlflP Rbase+242
ITlOUea.! (sP)+taG
Moue.1 (sP)+tSYSGLOBALS-I0(a5)
ITloueq #100 tdO
CMP.W SYSGLOBALS-2(a5) tdO
bne Rbase+240
MoueM.w RbasetaO-a3

MoueM.w aO-a3tGbase-8(a5)

bra Rbase+242
trap #10
un1K aG
MOI,lea.1 (sP)+taO
adda.w #12tsP
jtrlP (aO)
d C • I 20085 or dc.b 78t117 or dc.b 'Nu'

The Assembly Language Module
rllnafrle sirTlPle2

sre Module siMPle2;
sre export
s re t}'pe
s re rec reeo rd
sre il inte~er;

sre i2 : inte~er;

src end;
sre const
sre zero = rec[il:0d2:0];
sre var
sre lastresult : rec;
src procedure initialize;
src procedure add(atb rec;
sre l.Jar out: rec);
src end;

corTI sirTIPle2t-16

def sirTIPle2_add
def siMPle2_initialize
def siMPle2_zerotsiMPle2_siMPle2

refa s}'s~lobals

e"lu sirTIPle2-B
e"lu sirTIPle2-B
e"lu sirTIPle2-4

lastresult
lastresult_il
lastresult_i2
surTI e"lu sirTIPle2-16 (all are relative to as)
surTI_i 1
s urTI_ i 2
escapecode
rEcover_ree

ro r f 0

sirTIPle2_zero

e"lu sirTIPle2-16
e"lu sirTIPle2-12
e"lu sysflobals-2
e"lu sysflobal~-10

dc.l OtO

siMPle2_initialize trap #1 (stad~ ched~)

(no local space)

MoveM.l siMPle2_zerotaO-al

rTloverTI.l aO-al tsurTlCaS)

unl~~ a6
rt s

siMPle2_partadd trap #1
dC.IAI -4

result e"lu 16
x e"lu 12
}< e"lu B (all are relatil.Je to as)
ret_add r e"lu 4

The Assembler 7-45

dnl_Iin~~

telTlP

moved x(aG) tdO (teITlP:=x+}')
add.l }'(aG)tdO
trapv (overflow check)
move.l dOttemp(aG)

tst.l teITlP(aG)
bg'e past_escape

(if teITlP<O)

move #100tescapecode(aS)

trap #10 (then escape 1(0)

Move.l temp(aG) tresult(aG)

* (partadd:=teITlP)

mot)ea.l ret_addr(aG) taO
unl~~ aG
adda.l #12tsP

jlTlP (aO)

simple2_add trap #1 (stack check)
dc.w -lG (for param copies)

a_addr equ lG
b_addr eq 1.1 12
out_addr equ 8
ret_addr2 eq u 4
dnl_Iink2 eq u 0 (relative to aG)
b_i2_coP}' e q Ii ,..4
b_il_coP}' equ -8
a_i2_coPY equ -12
a_i I_coP}' eq 1.\ -lG

movead a_addr(aG) taO (1TIaking' local
move.l (aO)+ta_il~coPy(aG) copies)
ITlot)e.1 (aO) ta_i2_coPy(aG)
ITlOVea.l b_addr(aG) taO
moved (aO)+tb_il_coP}'(aG)
mOl)e.1 (aO) tb_i2_coP}'(aG)

ITIO I) e • I
ITIO v e • I
pea
move.l

recover_rec(aS) t-(sP)
aG t - (s p)
reoove r_add r
sPtrecover_rec(aS)

(TRY)

subq.l #4tsP (calling' partadd)
ITlOt)e.l a_il_coP}'(aG) t-(sP)
mOl)e.1 b_il_coP}'(aG) t-(sP)
jsr simple2_partadd
move.l (sP)+tlastresult_il(a5)

subq.l #4tsP (calling' partadd)
ITlO~le.l a_i2_coP}'(aG) t-(sP)

7-46 The Assembler

IYlol,le.1 b_i2_cop}'(aG) ,-(SP)
Jsr simple2_partadd
moue.l (sp)+,lastresult_i2(aS)

IYlO U e • 1
ad d • 1
t rapl,!

lastresult_il(aS) ,.;jO (SUIYl:=
dO,sum_il(aS) sum+lastresult)

Illol'!e.l lastresult_i2(aS) ,dO
add.l dO,sum_i2(aS)
t rapl,!

Illovea.l out_addr(aG) ,aO
Illouelll.l lastresult(aS) ,al-a2

IYlOI,lelll.l al-a2,(aO) (out:=lastresult)

adda.l #12,sp (end of TRY)

recover_addr movea.l (sp)+,aG (RECOVER)
moue.l (sp)+,recouer_r~c(aS)

moueq #100,dO (if escapecode=100)
CIYlP.I,,1 escapecode(aS) ,dO
bne s}'s_error
movem.l simple2_zero,aO-al

* (then lastresult:=O)
Illovelll.l aO-al dastresult(aS)

bra past_recouer
sys_error trap #10

past_recouer unlK aG
Illol,lea.l (sp)+,aO
adda.l #12,sp

JIIIP (aO)

(else escape)

SilllPle2_silllPle2 rts (initialization body)

end

*** G8000 ASSEMBLER SYMBOL TABLE DUMP ***
EXTERNAL SYMBOLS

SYMBOL TYPE DEF l,JALUE
SIMPLE2 ABS 18 00000001
SYSGLOBALS ABS 2S 00000002

INTERNAL SYMBOLS

SYMBOL TYPE DEF EQU SYM
AO AREG 0
Al AREG 0
A2 AREG 0
A3 AREG 0
A4 AREG 0
AS AREG 0
AG AREG 0
A7 AREG 0
A_ADDR ABS 80
A_II_COPY ABS 88
A_I2_COPY ABS 87
B_ADDR ABS 81

l,JALUE
00000000
00000001
00000002
00000003
00000004
OOOOOOOS
OOOOOOOG
00000007
00000010
FFFFFFFO
FFFFFFF4
0000000:

The Assembler 7 -47

B_1 i_COPY ABS 88 FFFFFFF8
B_12_COPY ABS 85 FFFFFFFC
CCR STREG 0 00000005
DO DREG 0 00000000
Dl DREG 0 00000001
D2 DREG 0 00000002
D3 DREG 0 00000003
D4 DREG 0 00000004
D5 DREG 0 00000005
D8 DREG 0 00000008
D7 DREG 0 00000007
DYN_L1NK ABS 58 00000000
DYN_L1NK2 ABS 84 00000000
ESCAPECODE ABS 33 SYSGLOBALS + FFFFFFFE
LASTRESULT ABS 27 S1MPLE2 + FFFFFFF8
LASTRESULT_11 ABS 28 S1MPLE2 + FFFFFFF8
LASTRESULT_12 ABS 28 S1MPLE2 + FFFFFFFC
OUT_ADDR ABS 82 00000008
PAST_ESCAPE REL 88 0000003E
PAST _RECOI,IER REL 140 000000F4
RECOI,JER_ADDR REL 128 000000D2
RECOI,JER _REC ABS 34 SYSGLOBALS + FFFFFFF8
RESULT ABS 52 00000010
RET_ADDR ABS 55 00000004
RET_ADDR2 ABS 83 00000004
S1MPLE2_ADD REL 77 00000052
S1MPLE2_1NITIALIZE REL 40 00000008
SIMPLE2_PARTADD REL 48 0000001C
SIMPLE2_SIMPLE2 REL 145 00000100
SIMPLE2_ZERD REL 38 00000000
SP AREG 0 00000007
SR STREG 0 00000008
SUM ABS 30 SIMPLE2 + FFFFFFFO
SUM_Ii ABS 31 SIMPLE2 + FFFFFFFO
SUM_I2 ABS 32 SIMPLE2 + FFFFFFF4
SYS_ERROR REL 138 000000F2
TEMP ABS 57 FFFFFFFC
USP STREG 0 00000007
}.{ ABS 53 OOOOOOOC
Y ABS 54 00000008

7-48 The Assembler

The Librarian 8
Introduction
It may seem obvious that the Librarian's purpose is to manage libraries. However, all the things
that it can do to fulfill this responsibility may not be as obvious. This c~apter will help to put all
of the Librarian's capabilities into perspective. The chapter first describes libraries and object
modules, providing some relevant background information that will help you to understand the
Librarian operations described in the latter sections of the chapter.

Here is a brief overview of the operations you can perform with the Librarian:

• Add object modules to or remove them from libraries. For instance, you can add object
modules to the System Library so that the modules will be found and loaded automatically
when any program that imports them is loaded for execution.

• Link the directories of the object modules in a library file. This operation reduces the
file's size.

• Obtain detailed information about the object modules in a library file. For instance, you
can unassemble a compiled Pascal object file and get the Assembler language object code.
The Librarian can disassemble all instructions for the MC68000 family of processors, as
well as MC68881/MC68882 math co-processor instructions.

• Create new system Boot files. This operation is used to create files that are found and
loaded by the Boot ROM and in turn load a system.

Let's look more closely at library files, what is in them, and how to use them.

Prerequisites
This chapter presents simple examples of user modules and libraries. If you find that you want
more information about modules as you read this chapter, read the sections of the Compiler
and Assembler chapters that describe modules.

If you are going to be using the Librarian for purposes other than adding modules to
and removing them from the System Library (usually LIBRARY) or Initialization Library
(BOOT:INITLIB), then you should also be familiar with the concepts presented in the Assembler
chapter.

The Librarian 8-1

Library Overview
This section presents some important terms and concepts you will need to know in order to
understand libraries. It will help you see when and why you will need to use the Librarian.

Modules and Libraries
Libraries are object files. They contain zero or more object modules. Object modules are
the product of the Compiler or Assembler l . For instance, compiling a Pascal source module
generates an object module which is placed in an object file. This file is actually a library,
because it contains an object module.

An object file is composed of a directory of the module(s) that it contains, followed by the object
modules themselves. Here is a pictorial representation of an object file.

OBJECT FILE

Library Directory

Object Module Directory

Define Source

Ext Table

Def Table

Text Record ---------------
Ref Tables

•
•
•

Text Record

Ref Tables

Object Module

The terms Define Source, Ext Table, and so forth are defined in the Glossary of Object Code
Terminology at the end of the chapter.

1 Complete descriptions of how to produce and use Pascal and Assembler modules are provided in the Compiler and Assembler
chapters.

8-2 The Librarian

What the Librarian Does
The Librarian's purpose is to manage object modules. The Librarian can also produce object
files; however, these files consist of object modules produced by the Compiler or Assembler. It
can create library files and add modules to them or remove modules from them. The intent
of these libraries is to provide a convenient location to store object modules. The following
drawing shows the relationship of object modules in an object file (library):

OBJECT FILE

Library Directory

Object Module Directory Object Module Directory

Define Source Define Source

Ext Table • • • Ext Table

Def Table Def Table

Text Record Text Record
--------------- ---------------

Ref Tables

•
•
•

Text Record

Ref Tables

•
•
•

Text Record
--------------- ---------------

Ref Tables Ref Tables

Example Modules
For this example, we will be using three example library modules provided on the DOC: disc
shipped with your system. One contains a compiled program (PROG_l.CODE), and the other
two contain compiled modules (MOD_2.CODE and MOD_3.CODE).

The DOC: disc also contains the source versions of these modules. Although this chapter will
only be dealing specifically with the object versions, it is a good learning experience to compile
the source versions to see how the Compiler deals with imported modules. One method is briefly
outlined in the next section.

Here are source listings and brief explanations of each of the example modules.

Source Listing of PROG_l.CODE

PROGRAM ProgramOne(OUTPUT);

IMPORT ModuleTwo;

BEGIN
WRITELN;
WRITELN;

END.

WRITELN('*************** ProgramOne ***************');
TwoLines;
WRITELN('*************** ProgramOne ***************');

The Librarian 8-3

The example program imports ModuleTwo, which declared the procedure named TwoLines.
Here is the source of ModuleTwo, which was compiled and stored in the library (object-code)
file named MOD_2.CODE.

MODULE ModuleTwo;

IMPORT ModuleThree;

EXPORT
PROCEDURE TwoLines;

IMPLEMENT

PROCEDURE TwoLines;
BEGIN

Source Listing of MOD _2.CODE

WRITELN('I came from ModuleTwo and brought this:');
ThirdLine;

END;

END.

ModuleTwo exports procedure TwoLines, which is used by ProgramOne. It also imports Mod
uleThree, which declares procedure ThirdLine ,and is in the library (object-code) file named
MOD_3.CODE.

MODULE ModuleThree;

EXPORT
PROCEDURE ThirdLine;

IMPLEMENT

PROCEDURE ThirdLine;
BEGIN

Source Listing of MOD _3.CODE

WRITELN('I came from ModuleThree');
END;

END.

This module exports procedure ThirdLine, which is imported by ModuleTwo. Notice that it
does not import any modules.

Here are the results of running the program.

~********** ProgramOne ***************
I came from ModuleTwo and brought this:
I came from ModuleThree
*************** ProgramOne ***************

8-4 The Librarian

Here is what happens when you run ProgramOne. First, ProgramOne prints two blank lines
and then the line of asterisks that contains its name. The procedure TwoLines, imported from
ModuleTwo, is then called; it prints the message: I came from ModuleTwo and brought this:.
Procedure ThirdLine, imported from ModuleThree, is then called; it prints the message: I came
from ModuleThree. Control is then returned to TwoLines and then to the program, which again
prints out its name in asterisks.

Let's take a look at what is needed in order for you to compile and run the program.

Compiling and Running the Example Program
When a program (or module) imports modules, the imported modules must be accessible at
two times:

• When the program is compiled.

• When the program is loaded and run.

Let's take a look at what happens at these two times.

How the Compiler Finds Imported Modules
At compile time, the Compiler searches for each module imported by the source program (or
module); more specifically, it searches to find each module's "interface text." Here is the order
of the places where the Compiler looks in search of interface text:

1. In the source text being compiled. (The source text of modules and programs van be
combined into one source file, as long as the modules precede the program and are in
proper sequence.)

2. In object files specified in a SEARCH Compiler option.

3. In the object file currently designated as the System Library.

(A module's interface text consists of the MODULE name, the IMPORT section, if present,
and EXPORT section; these sections are part of the object module produced when the module
was compiled or assembled. See the subsequent section called Getting Detailed Object File
Information and the Compiler or Assembler chapters for a more complete description of interface
text.)

Here is a strategy (and the method actually used) for compiling these source modules and
program. (Note that you will be learning these Librarian operations in the subsequent examples
given in this chapter, so you will probably want to perform this compilation exercise after
working through the examples using the object modules and program).

1. Compile ModuleThree first (MOD_3.TEXT); call the resulting object file MOD_3.CODE
for simplicity. Since this module does not import any others, it will be compiled with no
need to search for any imported module's interface text.

2. Use the Librarian to add the resultant object module (MOD_3.CODE) to the library file
currently designated as the System Library. (Actually, you will be creating a new library
into which you will place the modules in the current System Library and ModuleThree;
this type of operation is subsequently explained in this chapter.)

The Librarian 8-5

3. After merging these two libraries (into a third new library), you will need to do one of
two things: use the What command to make the resultant library the System Library;
or use the Filer to change the resultant library's name back to the name of the current
System Library.

4. Next, compile ModuleTwo (MOD_2.TEXT); call the resulting object file MOD_2.CODE.
The external references to ModuleThree will be resolved when the Compiler finds the
object ModuleThree in the System Library.

5. Then place this compiled module in the System Library as in steps 2 and 3.

6. Compile the program (PROG_l.TEXT). Since both object modules upon which this pro
gram depends are in the System Library, they will be accessed automatically by the
Compiler when the program is compiled.

7. Run the program. The loader automatically looks in the System Library in order to
resolve the external references; it loads the modules required to complete the program (in
this case, ModuleTwo and ModuleThree).

Since the program and modules have already been compiled and the object files placed on
the DOC: disc, we will not discuss other alternatives of making the source files accessible to
the Compiler. (However, you are again encouraged to do this after learning how to use the
Librarian.)

Let's look now at how the loader finds imported object modules when the program is to be
loaded for execution.

How the Loader Finds Imported Modules
Since a compiled program contains no record of where the Compiler found the imported modules,
the loader must find the imported object modules at load time. Here is the order of the places
where the loader looks:

1. Modules that are part of the object file being loaded.

2. In modules already P-Ioaded in memory, which includes all INITLIB and Operating Sys
tem modules. (The loader searches for these modules in reverse order to which they were
P-Ioaded; in other words, the most-recently loaded modules are searched first.)

3. In the current System Library file.

In order to make all imported modules part of the object file that uses them (alternative 1
above), you have two choices:

• Combine the source modules into one source file (and compile it). You can use the Editor
to add each imported module's source file to the source program. You can also use an
INCLUDE Compiler option in the source program to include each imported module's
source file in the compilation of the program .

• Combine the object modules into one object file. Use the Librarian to combine the program
and imported modules into one object file; you can optionally Link the modules to save
space.

8-6 The Librarian

With both of these methods, only the file containing the program need be loaded; and when
the program is finished, the memory used by the modules can be reclaimed for other purposes.
With P-Ioaded modules, this is not possible (without re-booting).

If you want to P-Ioad modules to make them accessible to the loader, you will only need to P
load all modules which are not in one of the three places stated above. In the example modules
already given, ProgramOne imports ModuleTwo, and ModuleTwo imports ModuleThree. In the
second example that follows, you will be creating a library that contains these two modules and
then P-Ioading the library. (You can alternatively P-Ioad MOD_3.CODE and MOD_2.CODE,
in that order, which does not require use of the Librarian.) The loader will then be able to link
the modules contained in the library to any program that imports them at execution time.

In general, the most convenient way to use modules is to place them in the file that is currently
designated as the "System Library," which is the third alternative shown above. (The default
System Library is the file named "LIBRARY" found on the system volume at power-up. You
can also change it with the What command and the Main Command Level.) This is probably
the most common reason for using the Librarian. In the first example that follows, you will add
modules ModuleTwo and ModuleThree to the LIBRARY file and then run the program.

Subsequent tutorials also describe un assembling these library files and creating system Boot
files.

The Librarian 8-7

Entering the Librarian
The Librarian is provided on the ACCESS: disc shipped with the system. To use the Librarian,
you will first need to put it on-line: either place the disc labeled ACCESS: in a drive, or copy
the LIBRARIAN file to another location (such as a hard disc) and use the What command (at
the Main Command Level) to specify this copy as the system Librarian. After doing either of
these, pressing [TI directs the system to load and execute the Librarian program.

Here is the Librarian's main prompt:

Librarian [Rev. 3.2 15-Jan-87] 15-Jan-87 8:11:58

Q Quit
P Printout OFF PRINTER:LINK.ASC
o Output file: (none)
B write to Boot disk
H file Header maximum size: 38

I Input file: (none)

Copyright 1987 Hewlett-Packard Company.
command?

The commands shown on the left-hand side of the screen are invoked by pressing the corre
sponding key. You will see how ~o use all of them in the following tutorial discussions. All
commands are summarized in the Librarian Command Reference.

8-8 The Librarian

Setting Up Mass Storage
You will often need two on-line mass storage volumes when using the Librarian. If you only
have one volume in your system, you may need to set up a memory volume. This discussion
tells why two volumes may be needed and then outlines how to estimate the size of the volumes
required.

When you combine the object modules in two libraries using the Librarian, you actually create
a third (new) library and then copy into it the desired modules from the other two libraries.
For instance, suppose that you want to add the CONFIG:RS232 module to the BOOT:INITLIB
library file. You will first create a new library, and then add the existing INITLIB modules and
the RS232 module to this new library. This new library must not be taken off-line during the
entire process.

Thus, two separate volumes are often necessary for these two reasons:

• The destination module must not be taken off-line during this entire operation .

• The sum of all source libraries plus the new destination library may exceed the capacity
of one volume.

Continuing with the preceding example, suppose that you have only one single-sided mlnl
disc drive on-line (the capacity is approximately 1050 sectors). The operation cannot usually be
completed, because one mini disc is not large enough to contain the modules in the INITLIB file
(let's assume 750 sectors), the RS232 module (approximately 25 sectors), and the new INITLIB
file (roughly the sum of 750 and 25 sectors). You will need two volumes for the process.

If you don't have two disc drives (or one with sufficient space), you can create a memory volume.
It is usually more convenient to use the memory volume as the destination volume. In this case,
you could create one with a specified size of 400 blocks, or 200 Kbytes. (Remember that memory
volume blocks are 512 bytes each, while mini-disc sectors are 256 bytes each.) See the Memvol
command in the Overview chapter for more specific details on creating memory volumes.

The following examples assume that either you have two disc volumes on-line or that you have
created a memory volume of sufficient size. For these examples, a memory volume of 100 blocks
is sufficient.

The Librarian 8-9

Creating Libraries of Object Modules
To create libraries, you can combine either modules provided by HP or your own modules, or
any combination of the two. Let's first look at adding modules to the System Library file.

Adding Modules to the System Library
A common way to use library modules is to add them to the current System Library file. Let's
assume that it is the file named LIBRARY for present purposes, although you can change it to
any file by using the What command at the Main Command Level. The procedure used to add
modules to LIBRARY is very similar to that of storing modules in a user library, which is the
next example.

Here is ~ brief summary of the steps required: first, make a new library file, and copy into it
all of the modules currently in LIBRARY; next, add ModuleThree and ModuleTwo to the new
file (in this case the order of modules is arbitrary, since the loader will load them in the right
order); then replace the LIBRARY file with this new library; execute the program, and the
modules are loaded automatically for you. The actual procedure is given below.

1. Invoke the Librarian. This is done by pressing IT] from the Main Command Level. (If the
Librarian is not on-line, insert the ACCESS: disc and try again. Remove the ACCESS:
disc once the Librarian has loaded.) Now use the Librarian to create the new library.

2. Put the SYSVOL: disc (or the one containing the LIBRARY file) in the #3 drive. Press
OJ and then type #3: LIBRARY. and press I Return I or I Enter I to enter the Input file. You must
include a trailing period to prevent the Librarian from appending the . CODE suffix.

When the Librarian finds the Input file, the display will show the name of the first module
in the file. (You should see the module named RND if you have not yet modified the
LIBRARY file.) If you have a printer, you can press W to list all of the modules in the
Input library.

3. (For this example, we will assume that you are using unit #4 as the second volume;
however, if the LIBRARY file is small enough, you can also put the new library file on
drive #3. We will also assume that the destination volume has enough room for the new
library file.)

Press [QJ and enter #4: NEWLIB. as the Output file. Again, a trailing period prevents the
. CODE suffix from being appended to the file name. If you are using a memory volume,
use the unit number of the memory volume.

(If you are using a disc, this disc must not be removed until you have finished creating
the new NEWLIB file.)

4. Press W to enter the Edit mqde. You should now see this prompt (in the middle of the
screen):

F First module: RND
U Until module: (end of file)

5. You can now transfer all modules in the Input file to the Output file, including the last
module, by pressing IT] (for Copy).

8-10 The Librarian

6. When the preceding transfer is complete, press m to append a module to the NEWLIB
Output file. The Librarian prompts with Input file:. Put the DOC: disc, or whichever
disc now contains ModuleThree, in Unit #3 (not #4, which must not be removed). Enter
#3:MOD_3 as the Input file.

7. The Librarian now prompts with Enter list of modules or = for all. Enter = for all.
After ModuleThree has been transferred to the NEWLIB library, the Librarian prompts
with Append done. <space> to continue. Press the spacebar to clear the prompt.

Now use steps 6 and 7 again to copy ModuleTwo (in' file MOD_2.CODE) into the NEWLIB
file.

8. Now that all modules have been added to the NEWLIB file, press [[] to stop editing and
[KJ to keep the file.

9. You should now verify that the modules were indeed copied to the Output file. Press OJ
and enter #4: NEWLIB. as the Input file. Press the spacebar repe?-tedly to scan through the
modules in the new library file. If you have a printer, press m to get a File Directory
listing.

10. If all modules are present, then press [QJ to Quit the Librarian.

11. Now you have one of two options to make this library the System Library: you can use the
What command at the Main Level to specify the file named NEWLIB (on the destination
volume) to be the System Library; or you can replace the LIBRARY file on the SYSVOL:
disc with this file. If you choose the second option, it is probably better to keep the
current copy of LIBRARY on the disc; you should first use the Filer to Change its name
to something like OLDLIB and then Filecopy the NEWLIB file onto the SYSVOL: disc,
changing its name to LIBRARY.

12. Make sure that the System Library file is on-line, and then eXecute or Run the program.

As the program is loaded, the imported modules will also be loaded automatically. Here are the
results of running the program.

*************** ProgramOne ***************
I came from ModuleTwo and brought this:
I came from ModuleThree
*************** ProgramOne ***************

After the program has completed execution, the memory used by both program and modules
can be used for other purposes.

As you can see, the System Library is a special library of object modules that is automatically
accessed by the linking loader at program execution time (and by the Compiler at compile
time). Because of this automatic access, you do not need to use the Permanent-load command
to access this library's contents. This library would normally store those modules often used in
your programs. Further descriptions of using HP-supplied libraries are given in the Pascal 3.2
Procedure Library and Pascal 3.2 Graphics Techniques manuals.

The Librarian 8-11

Making Your Own Library
Since we created a library that contains the modules named ModuleTwo and ModuleThree in
the preceding example, you already know what is required to make your own library. The only
difference is that you will not be adding the current LIBRARY modules to your library.

Here is a brief summary of the steps you will take in this example: first, create a new library
with the Librarian and add the example modules ModuleTwo and ModuleThree to it (as with
the last example, the order of modules is arbitrary; since they are in one file, the loader will take
care of loading them in the proper order); P-Ioad this library; and execute or run the program.
A more detailed procedure follows.

Note

During the transfer process, you must not move the destination disc
(the one that contains the Output file).

1. From the Main Command Level, press [TI to enter the Librarian. Your screen should
now display the Main Prompt for the Librarian.

2. Put the destination disc in drive #4. Then press [QJ, and type #4:USERLIB and press
I Return I or I Enter I to enter the Output file specification.

3. Place the DOC: Disc into the #3: disc drive. Then press OJ, and enter #3:MOD_3 as
the Input file specification. 'You will see MOD_3. CODE displayed as the Input file. The
first object module found in the object file, MODULETHREE, is also displayed. The
computer is in Copying mode as shown by the word COPYING on the prompt.

4. Transfer the object module MODULETHREE using the T command. Since MOD
ULETHREE is the only module in that file, the A command would have done the same
job.

5. Repeat steps 3 and 4 to name MOD_2 as the Input file and Transfer the object module
MODULETWO into your new library.

6. If you had other modules to transfer, you would repeat steps 3 and 4 as needed.

7. Press [KJ to Keep the new file on the destination volume.

8. Press []J to Quit the Librarian and return to the Main Command Level.

9. If you P-Ioaded these modules as you worked through the preceding example, then you
need to re-boot in order to fully test your new library (to ensure that the modules P-Ioaded
in the preceding example aren't accessed instead).

10. Press m for the Permanent-load command. You are prompted: Load what code file?
Enter #4 :USERLIB (you don't need a period if you didn't include one when you specified
this file as the Output file).

11. Now press []] to eXecute ProgramOne. Answer the Execute what file? prompt by
entering #3: PROG_l as the file specification.

8-12 The Librarian

The results of the executed program are shown below.

*************** ProgramOne ***************
I came from ModuleTwo and brought this:
I came from ModuleThree
*************** ProgramOne ***************

As mentioned earlier, you could also have separately P-Ioaded ModuleThree and ModuleTwo,
in that order, and then run the program. Or, as with the preceding example, you could also
have added these modules to the System Library. You could also have used What at the Main
Command Level to specify this library as the System Library. The method you use depends
on factors such as these: whether you are developing and testing the modules; whether you are
also using other modules in the System Library; who will be using the modules; and so forth.

The Librarian 8-13

Linking Object Files Together
The Librarian permanently links modules together by combining their module directories into
a single directory. To see this process in action, you will be linking the two example modules
and the example program together.

1. Put the ACCESS: disc in a drive and press [TI to run the Librarian.

2. Put the DOC: disc in the #3 drive. Press [QJ, and then type #3: TEST_1 and press I Return I
or I Enter I to enter the Output file specification. #3:TEST _1.CODE will be our linked
library's name; #3: TEST1. CODE is now displayed as the Output file. When an Output file
is named, the menu replaces the Band H command prompts with the L Link prompt.
The Librarian also enters the COPYING mode.

3. Enter the LINKING mode by pressing [TI. This is the first step in the two-step linking
process. Your screen now displays a new command prompt, as shown below.

Librarian [Rev. 3.2 i5-Jan~87]

Q Quit
P Printout OFF PRINTER:LINK.ASC
o Output file: TEST_i.CODE
C Copy
N Name of new module: (none)
R Relocation base: 0
G Global base: 0
S Space for patches:
D output Def table? YES
X copyright notice:

I Input file: (none)

command?

2i-Jan-87 8:05:08

LINKING

4. Press []] and enter NEWNAME as the new module name. If you did not do this, the object
module contained in the new object file, TEST_1.CODE, would be the module name of
the first module transferred. To avoid confusion, use "NEWNAME".

5. Press OJ and enter #3: PROG_l as the Input file. (The ".CODE" suffix is automatically
appended to the Input file's name.) PROG_1.CODE is now the Input file.

6. Press m to transfer all object modules contained in PROG_1.CODE into
TEST _1.CODE. Since PROG_1.CODE contains only one module, [!] would have done
the same job.

8-14 The Librarian

7. Repeat steps 5 and 6 to transfer MOD_2.CODE and MOD_3.CODE. When all files are
transferred, final linking must be done.

8. Press W to complete the linking process. This is the second step in the linking process.
Remember that all object modules must be on-line when you complete the linking process.

9. Press m to Keep the new file, and press @] to Quit the Librarian and return to the
Main Command Level.

To see that everything works, execute your new program. From the Main Command Prompt
press 00, and then enter TEST_l as the file specification. The ".CODE" is automatically added
to the file name. Your screen should now display the the following:

*************** ProgramOne ***************
I came from ModuleTwo and brought this:
I came from ModuleThree
*************** ProgramOne ***************

The benefit gained over merely combining modules into one library is that linking modules
together reduces the amount of space required to store the library.

Subtle Points about Linking
There are several subtle side effects that occur when modules are linked that should be discussed
here.

• When you link object modules, the interface text is removed. Thus, linked modules
cannot be searched by the Compiler when it is attempting to satisfy IMPORT statements;
however:, these modules can be used by other modules at load time by P-Ioading them
or placing them in the System Library. (Remember that you can also keep a copy of the
unlinked object module which can, of course, be imported by other modules at compile
time.)

• The linking process always produces relocatable object code. This code has been relocated
to the values specified by Global base and Relocatable base, but it will be relocated again
when it is loaded for execution. For this reason, you don't need to specify Global base
and Relocatable base - just leave them zero.

• If two or more programs are linked together into one object file, the resultant file contains
code with only one start address (rather than the two that you began with). Contrast
this to the situation in which / you put two programs in an object file; when this file is
executed, the two programs get executed separately in the order encountered in the file.
This is the reason that you cannot link the INITLIB modules together; it is actually a
set of programs and modules in a library file.

• After linking, most programs will still have unsatisfied external references (such as calls to
the File System read and write routines). These unsatisfied references do not cause error
messages; they are satisfied by the linking loader as the program is prepared for execution.
These system routines are not part of the compiled or linked program; rather, the entire
operating system looks to the linking loader like a group of P-Ioaded user libraries.

The Librarian 8-15

• NOTE: do not create any module whose DEF table is bigger than 65534 bytes. The
Librarian can create it, but after it's created neither the Librarian nor the linking loader
can work with that module. This can only happen if you have an extremely large program
that is linked together while keeping the DEF's. You can tell how big the DEF table is
by looking at the header generated by any Un assemble command in the Librarian. A
work-around is to break that one module into more than one module, probably in the
same file.

Summary of Linking Object Files

Note

All input modules must remain on-line for the duration of steps 6
through 9. The output file -must be on-line for steps 3 thru 10.

1. Enter the Librarian.

2. Be sure the disc containing the file to be linked is in the appropriate disc drive.

3. Specify an Output file name.

4. Press [TI to begin the linking process

5. Name the new module with the Name Command.

6. Specify the Input file containing the modules you want to link.

7. Transfer only those modules you want into the new Output file using the All and Transfer
commands.

8. Repeat steps 6 and 7 until all modules are transferred.

9. Press [TI to complete the Linking process.

10. Press []] to keep your output file.

11. Press [QJ to quit the Librarian

8-16 The Librarian

Getting Detailed Object File Information
Let's un assemble the file MOD_2.CODE to see how the Librarian provides detailed information
about a code file. It is best to have a printer on-line while unassemblirig; however, if you don't,
you can declare a Printout file as described in the following procedure.

1. The Librarian is on the ACCESS: disc shipped with your system. To access the Librarian,
you will need to put this disc on-line, or copy the file to a disc that is on-line, or P-Ioad
the file. After the file is on-line, press [IJ (at the Main Command Level) to load the
Librarian subsystem into the computer.

2. If you don't have a printer on-line, then you must specify a file to which the un assembled
information is sent. Press m (for Printout) and enter a file specification; if no suffix or
trailing period is included, then ".TEXT" is appended to the file name. The screen will
be updated to show that the printout device is ON and that it is the file you specified.

3. Press OJ and enter #3: MOD_2 as the Input file. No Output file is needed.

4. Press [[] to get into the U nassemble mode.

Your screen should now show the Librarian Un assemble menu.

Librarian [Rev. 3.2 15-Jan-87]

Q Quit
S Stop unassembling
T print import Text
E print Ext table
D print Def table
A unassemble all (Assembler conventions)
C unassemble all (Compiler conventions)
P PC range (Assembler conventions)
L Line range (Compiler conventions)

unassemble option?

21-Jan-87 9:45:02

When the first command key is pressed, an information header is printed along with the desired
information. This header is printed only this one time. An internal counter keeps track of the
line count and prints a page heading at the top of every new page. If you change the placement
of the printer paper, you may waste some paper when the counter sends a form-feed to the
printer. When you quit, a final form-feed is sent to the printer automatically.

The Librarian 8-17

The Text and Table Commands
Use these commands to obtain Interface Text and REF and DEF tables of modules.

The Print Import (or Interface) Text Command
Pressing [f] prints the interface text (DEFINE SOURCE) of the module, if any. In a compiled
module, the DEFINE SOURCE portion consists of the text in the MODULE, IMPORT (if
present), and EXPORT declarations; in an assembled module, this text consists of the lines
containing the SRC pseudo op. (Note that any comments and indentation have been removed.)

Librarian [Rev. 3.2 15-Jan-87] 23-Jan-87 7: 6:51

MODULE MODULETWO Created 23-Apr-84
NOTICE: (none)

Produced by Pascal Compiler of 23-Apr-84
Revision number 3
Directory size 174 bytes
Module size 3072 bytes
Module NOT executable
Code base 0 Size
Global base 0 Size
EXT block 5 Size
DEF block 3 Size
EXPORT block 1 Size
There are 1 TEXT records

DEFINE SOURCE of 'MODULETWO':

MODULE MODULETWO;
IMPORT ModuleThree;

EXPORT
PROCEDURE TwoLines;

END;

The Print EXT Table Command

72 bytes
90 bytes
74 bytes

104 bytes
o bytes

page 1

Pressing m prints the table of External symbols the module references. Detailed information
on the EXT table may be found later in this chapter.

EXT table of 'MODULETWO':

FS_FWRITELN
FS_FWRITEPAOC
MODULETHREE_THIRDLINE
SYSGLOBALS

8-18 The Librarian

The Print DEF Table Command
Pressing []] prints the table of symbols the module itself defines. Detailed information on the
DEF table may be found later in this chapter.

DEF table of 'MODULETWO':

MODULETWO
MODULETWO_MODULETWO
MODULETWO_TWOLINES
MODULETWO __ BASE

The. Unassemble Commands

Gbase
Rbase+102
Rbase+2
Rbase

There are two conventions used when unassembling object files: Compiler and Assembler. The
reason for this is that the Compiler and Assembler use different conventions for the object code
that they generate.

The Compiler generates code so that each procedure begins with a TRAP #1 or a LINK #n. A6 and
ends with a JMP or RTS. The Librarian uses this information to assume that everything from the
beginning of the file to the first TRAP #1 or LINK is a constant. From the end of the procedure
to the next TRAP #1 or LINK is also unassembled as constants. Everything else is unassembled
as instructions. The Assembler convention assumes that everything is an instruction.

Note

All Un assemble commands require a printer unless a destination file is
specified with the P command.

The Unassemble All (Compiler convention) Command
Pressing W directs the Librarian to unassemble the specified object module using the Compiler
convention described above. You can use this command on files that were created by either the
Assembler or Compiler. Here are the results of using this command with the MOD_2.CODE
compiled object file.

Librarian [Rev. 3.2 15-Jan-87] 23-Jan-87 9:58:42

MODULE MODULETWO Created 23-Apr-84
NOTICE: (none)

Produced by Pascal Compiler of 23-Apr-84
Revision number 3
Directory size 174 bytes
Module size 3072 bytes
Module NOT executable
Code base 0 Size
Global base 0 Size
EXT block 5 Size 72 bytes
DEF block 3 Size 90 bytes
EXPORT block 1 Size 74 bytes
There are 1 TEXT records

104 bytes
o bytes

page 1

The Librarian 8-19

TEXT RECORD #
TEXT start block 2
REF start block 4
LOAD address Rbase

o 0000

2 4E41 0000
6 2F2D FFA6

10 2F17
12 487A 0030
16 3F3C 0027
20 3F3C FFFF
24 4~B9 0000

0000
30 4AAD FFEA
34 6702
36 4E43
38 4EB9 0000

0000
44 4AAD FFEA
48 6702
50 4E43
52 4EB9 0000

0000
58 4E5E
60 4E75
62 4920
64 6361
66 6D65
68 2066
70 726F
72 6D20
74 4D6F
76 6475
78 6C65
80 5477
82 6F20
84 616E
86 6420
88 6272
90 6F75
92 6768
94 7420
96 7468
98 6973

100 3AOO
102 4E75

8-20 The Librarian

1 of 'MODULETWO':
Size
Size

104 bytes
24 bytes

dc.w 0 or dc.b 0,0 or dc.b '
- - - - - - MODULETWO_TWOL1NES

trap #1,#0
move.l SYSGLOBALS-90(a5),-(sp)
move.l (sp),-(sp)
pea Rbase+62
move.w #39,-(sp)
move.w #-l,-(sp)
jsr FS_FWR1TEPAOC

tst.l SYSGLOBALS-22(a5)
beq.s Rbase+38
trap #3
jsr FS_FWR1TELN

tst.l SYSGLOBALS-22(a5)
beq.s Rbase+52
trap #3
jsr MODULETHREE_TH1RDL1NE

unlk a6
rts
dc.w 18720
dc.w 25441
dc.w 28005
dc.w 8294
dc.w 29295
dc.w 27936
dc.w 19823
dc.w 25717
dc.w 27749
dc.w 21623
dc.w 28448
dc.w 24942
dc.w 25632
dc.w 25202
dc.w 28533
dc.w 26472
dc.w 29728
dc.w 29800
dc.w 26995
dc.w 14848
dc.w 20085

or dc.b 73,32
or dc.b 99,97
or dc.b 109,101
or dc.b 32,102
or dc.b 114,111
or dc.b 109,32
or dc.b 77,111
or dc.b 100,117
or dc.b 108,101
or dc.b 84,119
or dc. b 111,32
or dc.b 97,110
or dc.b 100,32
or dc.b 98,114
or dc.b 111,117
or dc.b 103,104
or dc.b 116,32
or dc.b 116,104
or dc.b 105,115
or dc.b 58,0
or dc.b 78,117

or dc.b 'I '
or dc.b 'ca'
or dc.b 'me'
or dc.b ' f'
or dc.b 'ro'
or dc.b 'm '
or dc.b 'Mo'
or dc.b 'du'
or dc.b 'Ie'
or dc.b 'Tw'
or dc.b '0 '

or dc.b 'an'
or dc.b 'd '
or dc.b 'br'
or dc.b 'ou'
or dc.b 'gh'
or dc.b 't '
or dc.b 'th'
or dc.b 'is'
or dc.b ,. ,
or dc.b 'Nu'

The Unassemble All (Assembler Convention) Command
Pressing m will cause your computer to unassemble the specified object module using the
Assembler convention described above. You can use this command on files that were created
by either the Assembler or Compiler.

Note

Use of the Assembler convention may produce unpredictable results,
because under this convention there is no way to tell code from data.
Files produced by the Compiler and unassembled under the Compiler
convention will almost always produce reasonable results.

Here is the unassembly of the MOD_2.CODE object file using the Assembler convention. Notice
that, with Assembler convention, the first two bytes ($0000) are assumed to be code; with
Compiler convention they are assumed to be data (remember that the Compiler convention
assumes that anything until the first TRAP #1 or LINK #n,A6 is assumed to be data). Notice also
that the module heading shows that this object module was produced by the Compiler.

Librarian [Rev. 3.2 15-Jan-87] 23-Jan-87 10: 1:34 page 1

MODULE MODULETWO Created 23-Apr-84
NOTICE: (none)

Produced by Pascal Compiler of 23-Apr-84
Revision number 3
Directory size 174 bytes
Module size 3072 bytes
Module NOT executable
Code base
Global base
EXT block
DEF block

5
3
1

Size
Size
Size

o
o

Size
Size

EXPORT block
There are 1 TEXT records

72 bytes
90 bytes
74 bytes

TEXT RECORD # 1 of 'MODULETWO':

104 bytes
o bytes

TEXT start block 2 Size
REF start block 4 Size

104 bytes
24 bytes

LOAD address Rbase

The Librarian 8-21

0 0000 4E41 ori. b #65, dO
4 0000 2F2D ori. b #45, dO
8 FFA6 dc.w -90 or dc.b 255,166 or dc.b '

10 2F17 move.l (sp),-(sp)
12 487A 0030 pea Rbase+62
16 3F3C 0027 move.w #39,-(sp)
20 3F3C FFFF move.w #-l,-(sp)
24 4EB9 0000 jsr FS_FWRITEPAOC

0000
30 4AAD FFEA tst.l SYSGLOBALS-22(a5)
34 6702 beq.s Rbase+38
36 4E43 trap #3
38 4EB9 0000 jsr FS_FWRITELN

0000
44 4AAD FFEA tst.l SYSGLOBALS-22(a5)
48 6702 beq.s Rbase+52
50 4E43 trap #3
52 4EB9 0000 jsr MODULETHREE_THIRDLINE

0000
58 4E5E unlk a6
60 4E75 rts
62 4920 lea -(aO),a4
64 6361 bls.s Rbase+163
66 6D65 blt.s Rbase+169
68 2066 movea.l -(a6).aO
70 726F moveq #lll,dl
72 6D20 blt.s Rbase+l06
74 4D6F 6475 lea 25717(sp).a6
78 6C65 bge.s Rbase+181
80 5477 6F20 addq.w #2,32(sp.d6.l)
84 616E bsr.s Rbase+196
86 6420 bcc.s Rbase+120
88 6272 bhi.s Rbase+204
90 6F75 ble.s Rbase+209
92 6768 beq.s Rbase+198
94 7420 moveq #32.d2
96 7468 moveq #104,d2
98 6973 bvs.s Rbase+215

100 3AOO move.w dO,d5
102 4E75 rts

The Line Range (Compiler Convention) Command
Pressing [TI causes two prompts to be displayed. The computer needs to know the line number
range to unassemble. The code will then be un assembled up to, but not including, the upper
range value. The object module must have been compiled using the $DEBUG ON$ Compiler
option to ~be unassembled with this command.

The PC Range (Assembler Convention) Command
Pressing W causes two prompts to be displayed. The computer needs the location counter
values of the segment of code you want un assembled (relative to the relocation base of the
module). The code will then be unassembled up to but not including the upper location counter
value.

8-22 The Librarian

Creating a New Boot File
At power-up, the Boot ROM searches mass storage for system Boot files: Boot ROMs 3.0 and
later versions search all mass storage devices on-line and let you choose which Boot file you
want; earlier Boot ROMs choose the first Boot file found on the right-hand internal disc drive.
A Boot file is then loaded by the Boot ROM. The Boot file in turn may load other parts of a
system. (For further details of how this system boots, see the discussion called The Booting
Process in the Special Configurations chapter.)

The m command is used to create Boot files. This is an advanced option and should only be
used if you have a clear understanding of system generation.

The following is an overview of the system generation process using the m command.

Note

The B command cannot create boot files in WS1.0 directories.

1. Use the Editor to produce the programs and modules that will make up the new boot
program. Both Assembler language and Pascal modules may be used.

2. Assemble the Assembler language modules and compile the Pascal modules.

3. Use the Librarian to Link the code files together as desired. Be sure to specify the global
and relocation bases. In addition, this file must have no external references. Note that the
first program linked will provide the start address for the Linked file. This start address
will also become the start execution address of the system Boot file at boot time.

4. Keep the linked file.

5. Specify the linked file as the Librarian Input file.

6. Now press m to properly place the module name in the destination's directory and
format the code for use by the boot ROM. The B command moves the cursor up to the
Output file prompt.

7. Specify the Output file as SYSTEM_xxx (the xxx can be any characters syntactically
allowed for file names. With Boot ROMs 3.0 and later, the name can be SYSxxxxxxx;
see Re-Naming BOOT: Files in the Special Configurations chapter for examples). Be sure
to append a trailing period to the file name to keep a suffix from automatically being
appended to the name.

Note

To create a Boot file which will be recognized on an HFS disc, it is
necessary to follow this process, then, using the OSINSTALL utility
described in Chapter 21, convert the format to that recognized by
HFS.

The Librarian 8-23

8. Transfer the Input file into the boot file. This copies the code file.

9. Press [[] again to finish the Boot operation.

10. You can now either Quit the Librarian or power up and test your new system.

Librarian Command Reference
The Librarian command set consists of single-letter commands allowed when the letter prompts
are displayed on the screen. You press the corresponding key to cause the command to be
executed.

m In Copying and Linking modes, this command transfers All modules from the Input
file to the Output file.

In Edit mode, this command is used to Append modules to the Output file.

In Un assemble mode, this command directs the Librarian to unassemble the Input file
using Assembler conventions.

[[] The Boot command is used to create code files that are loadable by the Boot ROM.
The Boot command is given instead of the Output file command. The Input modules
are then combined in a format that is boot able. This command should only be used
by system designers. A boot file must be a self-contained processor environment. It
must be stored on a LIF or SRM volume and be named SYSTEM_xxx, where xxx
represents any combination of characters. If you have Boot ROM 3.0 or later version,
the file can be named SYSxxxxxxx or stored on an SRM system under the /SYSTEMS
directory. For systems using HFS, the OSINSTALL utility must be used to convert
the LIF format Boot file into a suitable format for HFS discs.

[QJ In the Link mode, this command returns you to Copy mode. While in Copy mode, you
can combine modules into a library without Linking. This mode can be used to add
modules to (or remove them from) the System Library, your own library, or INITLIB
(the Initialization Library file which is executed during the boot process).

In Edit mode, this command Copies the First module up to (but not including) the
Until module to the Output file.

In Un assemble mode, this command un assembles the Input file according to Compiler
conventions.

[[] In Link mode, this command controls whether or not the DEF table is included in the
Output file. If the Output file is to be Linked to another file later, the DEF table must
be left in the Output file. If the Output file is not to be Linked, you can save memory
space by removing the DEF table. A YES includes the DEF table, a NO removes it.
Pressing [[] toggles between these two choices.

In Un assemble mode, this command prints the DEF table.

m This command is available when you have specified both Input and Output files. It
puts you into Edit mode, which allows you to combine modules in the Input file with
Append modules and place them into the Output file (while either Copying or Linking).

In U nassemble mode, this command prints the Ext table.

8-24 The Librarian

[£J This command prints the File directory of _the Input file on the current Printout file
(external printer or file). It doesn't matter whether the Printout prompt is ON or OFF;
the printout will be sent to the Printout file.

In Edit mode, this command is used to specify the First module to be transferred to
the Output file. (The First module must precede the Until module in the Input file.)

[]] In Linking mode, designate the Global base address (most useful when preparing a file
for use as a system Boot file).

[}[] The Header command allows you to change the size of the library header. From 1
through 18 module entries require only one header block, so a header size of 18 is
the minimum. If you specify less (but not 0), you will still be given 18. From 19
through 38 module entries requires two header blocks. This is the default header size.
The specification is made in units of module entries - not blocks. The Librarian
calculates how many blocks are necessary to maintain the number of modules you
specify and then gives you the maximum number of entries that will fit in that number
of blocks.

IT] Name the Input file containing the modules you want to transfer to the Output file.
".CODE" is automatically appended to the file name unless suppressed by a trailing
period (or by the presence of another standard suffix). This prompt can be used many
times to collect modules from several object files into your new object file.

[KJ Keep the Output file. Close and lock it into the directory, purging any old file of the
same name.

[IJ Enter Linking mode or finish Linking.

In Unassemble mode, you can use this command to unassemble a section of code
defined by two Line values using the Compiler convention. The code must have been
compiled using the $DEBUG ON$ Compiler option.

Q[J Enter the specific Module name you want to transfer. (The first module in the Input
file is automatically displayed when an Input file is specified.)

[[] In Linking mode, name the New object module to be created by the Librarian. If
you do not specify a new module name, the name of the first module transferred
will be used.

[QJ Name your Output file. ".CODE" is appended automatically unless suppressed by a
trailing period (or standard suffix) in the file name. This Output file must remain
on-line throughout the process of transferring modules to it.

m This command is used to turn the Printout option ON or OFF (the default is OFF)
and to select a Printout file. Pressing m and I Return I or I Enter I turns the option ON.
With the option ON, the device to which the information is sent is shown on the screen.
The default Printout file specification is "PRINTER:LINK.ASC" unless you specify
another. ".TEXT" is automatically appended to the file name unless it is suppressed
by a trailing period (or standard suffix) in the file name.

The Librarian 8-25

Before 'any information is sent to the Printout file, the Librarian first sends heading
information to the device. When Linking, you will get a map of all Linking done by
the Librarian. This option does not affect any information sent to the Printout file by
the U nassemble commands.

In Unassemble mode, this command allows you to unassemble (using Assembler con
ventions) a section of code defined by two location counter range values.

[QJ Quit the Librarian and return to the Main Command Level.

[]] In Linking mode, designate the Relocation base address to be used. Usually used only
when creating a boot file.

[]] In Linking mode, this command assigns Space for patches. To save execution time and
memory space, the Compiler can be made to use PC-Relative addressing instead of
Long-Absolute addressing. This is done with the Compiler option $CALLABS OFF$.
The PC-Relative addressing mode has an address range of - 32768 through 32767
bytes; if the referenced procedure is out of this range, an error will occur at load or
link time. This error prints an error message naming the module having the link out
of range. To fix this, relink the modules adding patch space between them as needed.
The number of bytes needed depends on the particular module. As a rule of thumb,
begin with a patch of 100 bytes.

In Edit or U nassemble modes, this command Stops the Edit or U nassemble session and
returns to the Librarian's main prompt. (This will not stop an ongoing Unassemble;
however, the ~ key will.)

CO In Copying and Linking modes, this command Transfers the object module currently
named in the Transfer prompt to the Output file.

In Un assemble mode, this command prints the interface Text (DEFINE SOURCE) of
the current Input module.

OIJ Enter the U nassemble mode.

In Edit mode, this command allows you to specify the Until module. If you enter a null
response (by pressing I Return lor I Enter I with no file specification), then (end of file) is
displayed; a subsequent Copy will copy all remaining modules in the Input file (Le.,
up to the end of the file) to the Output file.

W This command gets you into the Verify mode. This mode displays the name of each
module iIi the Input file and allows you to Transfer it to the Output file (press CO), to
Unassemble it, or to not transfer or un assemble it (press the space bar) and step to the
next module name. After all module names have been displayed, you automatically
leave this mode. To re-verify the file's contents, press W again.

[]] In Linking mode, this command allows you to enter a copyright notice as part of the
Output file. The notice is part of the heading information sent to the Printout file.
The notice can be up to 255 characters long.

8-26 The Librarian

Glossary of Object Code Terminology
Here are detailed definitions of the terms used in this manual regarding object-code library files.

DEF table (Definition Symbol Table)
There is only one DEF table per module. It contains one DEF record for each symbol which
is exported from the module. The DEF table begins on a block boundary which is specified
in the directory for the module. Its length is also given in the directory. The DEF table is
contiguous over its length, which means that individual DEF records within the table may cross
block boundaries.

Each DEF record has two parts. The first part is a packed string containing the name of the
,~ymbol which is defined. The string begins and ends on a word (even-byte) boundary. If the
string length is odd, then an extra byte is added to the end for padding so that the next part
of the DEF record will begin on a word boundary.

The second part of a DEF record is a general value or address record (GVR) which defines the
value of the symbol which is being exported. GVR is defined later in this section.

The value extension is 4 bytes or 8 bytes long, according to the data size field. The value of
the symbol is defined to be the value extension plus what ever references are specified by the
primary type and any Reference Pointers that may exist. The value extension must be present.

DEF record

low
LEN=6 S

y M

B 0
i'

L padding

} First part

flags len=8

value (high part)

value (low part)

ref pointers (....) high

}

Second part
(len is Second part length)

(GVR includes any number of reference pointers)

Caution: do not create any module whose DEF table is bigger than 65534 bytes. The Librarian
can create it, but after it's created neither the Librarian nor the linking loader can work with
that module. This can only happen if you have an extremely large program that is linked
together while keeping the DEF's. You can tell how big the DEF table is by looking at the
header generated by any Unassemble command in the Librarian. A work-around is to break
that one module into more than one module, probably in the same file.

The Librarian 8-27

DEFINE SOURCE
This is the section of an object module that is searched by the Compiler when the module is
imported (also called "interface text"). With Pascal modules, the DEFINE SOURCE consists of
the declarations made by the reserved words MODULE, IMPORT (if present), and EXPORT.
With Assembler modules, it consists of the lines defined by the SRC pseudo op, which are
intended to serve the same function as in Pascal modules (however, it may be any arbitrary
text).

There may be one table of DEFINE SOURCE per module. It begins on a block boundary,
which is given in the module directory. The length is also given in the directory.

EXT Table (External Symbol Table)
The EXT table contains records (Pascal strings), each of which is the name ofa symbol refer
enced in this module, but not defined in it (i.e., these symbols are declared in another module
which this one imports and to which this module is linked at load time).

There may be one EXT table per module. The EXT table begins on a block boundary which
is specified in the directory for the module. Its length is also given in the directory. The EXT
table is contiguous over its length, which means that individual EXT records within the table
may cross block boundaries.

Each EXT record is a multiple of four bytes long. The first byte of each string is its length
(according to the Pascal string type); thus strings may be from 1 to 255 bytes long. If
strlen(string)+ 1 is not a multiple of 4, then 1 to 3 bytes are added as padding to make the
EXT record extend to the proper boundary.

The first eight bytes of the EXT table are reserved. Thus, the first string in the table starts at
an offset of 8 from the start of the table.

The EXT table is restricted to 65532 bytes in length (plus the length of the last string). This
is so that any entry in the table can be uniquely referenced by 14 bits; the reference is relative
to the start of the table. See the description of the reference pointer.

EXT Record

low left byte right byte This one is 8 bytes long.
LEN=6 S

y M The formula is:

B 0 EXTsize = len + 4 - (len mod 4)

high L padding

8-2S The Librarian

EXPORT
EXPORT is a reserved word used in the Pascal Module. It is used to declare those procedures,
functions, constants, types, and variables that are exported, or made available, to other modules
that import the module.

Flags
Flags are used in the DEF table, in REF tables, and in the GVR. Their form is shown below.

Bit 7 Bit 6 Bit 5 Bit A Bit 3 Bit 2 Bit 1 Bit ([)

Primary Type Data Size Patchable Value-Extend Long Offset

primary type: 00 absolute
01 relocatable
10 global

:no REFERENCE POINTERS follow
:no REFERENCE POINTERS follow
:no REFERENCE POINTERS follow
:one or more POINTERS follow 11 general

data size: 000 signed byte (8 bits)
001 signed word (16 bits)
010 signed long (32 bits)
011 (reserved)

-128 .. 127
- 32768 .. 32767
- 2147483648 .. 2147483647

patchable:

value extend:

long offset:

100 unsigned byte (8 bits)
101 unsigned word (16 bits)
110 (reserved)
111 (reserved)

0 .. 255
0 .. 65535

Indicates that the linker may patch a location in a TEXT record. Applicable only
in a REF record and must be false everywhere else.

o No extension present, assume 0
1 Value extension present. Length is 4 bytes .

. Always true in DEF records.

o Use short form (1 byte) of offset field. Value is in the range 0 .. 255 and specifies
the total length of the GVR except in REF records.

1 Use long form (3 bytes) and offset field. Value is a 24 bit unsigned number
in the range 0 .. 16777215. Applicable only in some REF records.

Note

Data Size should be signed long everywhere except in a REF record.

The Librarian 8-29

General Value or Address Record (GVR)
The GVR is a variable length record which is intended to represent any absolute, relocatable,
or linkable value.

TYPE DATATYPE = (sbyte, sword, sint, fltpt, ubyte,uword);
RELOCTYPE = (absolute, relocatable, global, general);

GENERALVALUE = PACKED RECORD
PRIMARYTYPE : RELOCTYPE;

DATASIZE : DATATYPE;
PATCHABLE,
VALUEEXTENDED : BOOLEAN;
CASE LONGOFFSET : BOOLEAN OF

FALSE: (short:0 .. 255);
TRUE: long:O .. 16777215);

END;
VALUEEXTENTION = PACKED

RECORD
CASE DATATYPE OF

(*allows quick indication
of most common types*)

(*specifies 1,2 or 4 bytes, signed or not*)
(*specifies self relative field in branch*)
(*indicates valueextenion*)
(*1 or 3 byte offset*)
(*unsigned 8bits*)
(*unsigned 24 bit value*)

(*present if value extended bit above is set*)

SBYTE,SWORD,SINT,
UBYTE,UWORD : (value integer);

END;
REFERENCEPTR = PACKED RECORD

ADDRESS: O .. 16383;
OP : (ADDIT,SUBIT);
LAST : BOOLEAN;

END;
GVR = CONCATENATION

GENERALVALUE;
VALUEEXTENTION;
ARRAY[zero or more] OF

REFERENCEPTR;
END;

IMPLEMENT

(*one or more present if type = general*)
(*multiply by 4 to get address of EXT symbol*)
(*add or subtract the modifying value*)
(*indicated end of list*)

(*NOTE* This is pseudo pascal*)
(*2 to 4 bytes of header info*)
(*0 or 4 bytes of value*)

(*list of EXT references*)

IMPLEMENT is a reserved word used in the Pascal Module. It is used as a flag to indicate
the beginning of the module body. The module body can be either empty or may contain those
constants, variables, procedures and functions used internally by the module. None of this
information is available outside the module (unless it is also declared in the module's EXPORT
section).

IMPORT
IMPORT is a reserved word used in the Pascal Module. It names the modules whose DEFINE
SOURCE sections must be examined by the Compiler in order to resolve references to constants,
variables, procedures, and functions exported by the modules. The Compiler uses a module's
name in conjunction with names of constants, procedures, and functions declared in the module
to generate EXT strings for w:hich the loader will search (and link) at run time.

8-30 The Librarian

LIBRARIAN
The Librarian is a subsystem designed to manage HP Workstation Pascal and Assembler object
files, link and un assemble object modules, and create system Boot files. It can merge object
files containing object modules and optionally link the object modules together. It is the file
named LIBRARIAN in your operating system, which can be changed with the Main Level's
What command. It is accessed by pressing W from the Main Command Level.

Library
A library is an object file produced by the Assembler,Compiler, or Librarian. Its purpose is to
contain object module(s).

LIBRARY
LIBRARY is a library file included with your operating system. During the boot process, this
file (if on-line) generally becomes the System Library; you can also use the What command at
the Main Level to specify any file as the System Library.

Only a few useful object modules are included in the file when you received it. Feel free to
examine them with the Librarian. Other object modules are supplied with the system (in the
10 and GRAPHICS libraries for example) and may be added to the LIBRARY.

Object File
An Object File is the unit of object code managed by the Librarian. It is made up of a Library
directory and one or more object modules. The Assembler generates one object file from each
source file assembled; the Compiler also generates one object file per invocation. The Compiler's
object file can contain one or more object modules depending upon the source file's construction.
If the source file contains a number of compilable modules, that number of object modules will
be created in the object file.

Object Module
Each object module is made up of a module directory and a module body. The module body is
made up of the following items:

One EXT table

One DEF table

One DEFINE SOURCE Area

One or more
Text-Record /REF -Table pairs

A table of the symbols imported by the module.

A table of symbols exported by the module.

A software interface between the module and any program
which imports it.

A text record consists of the constants and code instructions
that make up the the program. The REF table is a directory
of linkage information required by the TEXT record.

The Librarian 8-31

Pascal Module
HP Pascal allows source modules to be compiled separately into object modules. The object
modules are generally not executable, but are used to complete other Pascal programs. Examples
are given earlier in this chapter.

REF tables
Each REF table follows a TEXT record and is associated with that TEXT record. The REF
table begins on a block boundary, which is specified in the directory for the module. Its length
is also given in the directory. The REF table is contiguous over its length.

Each REF record is associated with one object (byte, word or integer) within the preceding
TEXT record: There can be at most one REF record for a given object in the TEXT record.
The REF records are ordered within the table according to the TEXT objects they reference.

The offset field specifies which text object is referenced. The first REF record gives an offset
from the beginning of the TEXT record. Subsequent REF records give an offset from the object
referenced by the previous,REF record.

low Ref record is a GVR.
flags I offset

offset (low part) offset, 1 or 3 bytes, indicates next object in TEXT record.

high Ref pOinters Can include any number of Ref Pointers.

Reference Pointer

Bit 15 thru Bit 2 Bit 1 Bit 0

Address of an EXT Record
Relative to Beginning of EXT Table Add or Sub End Flag

A REFERENCE POINTER is the relative address of an entry in the EXT table.

The add or sub flag indicates whether the value of the external symbol is to be added (0) or
subtracted (1) from the GVR value in order to obtain the actual value. There may be any
number of REFERENCE POINTERS in a GVR, and there may be more than one reference
to the same EXT record. There may not, however, be both an add reference and a subtract
reference to the same symbol, since these would cancel each other.

The end flag indicates whether there are any more REFERENCE POINTERS in the GVR. (0)
indicates more to come, (1) indicates the end.

8-32 The Librarian

There are two special cases for the EXT address .

• Address 0 (bit pattern OOOOOOOOOOOOOOxx) refers to the relocation delta for the current
module (i.e. new load address minus the old load address) .

• Address 4 (bit pattern OOOOOOOOOOOOOlxx) refers to the global delta for the current module
(i.e. new data address minus old data address)

Address 8 (bit pattern OOOOOOOOOOOOlOxx is the first valid reference to an external symbol.

There are REFERENCE POINTERS in a GVR only if the primary type field specifies general.

System Library
The System Library is a file that is automatically accessed by the Compiler at compile time
and by the linking loader at execution time. Object modules stored in this object file are
automatically available to any program importing them.

During the booting process, the LIBRARY file usually gets designated as the System Library;
however, you can use the What command at the Main Level to specify any file. See LIBRARY
above.

Text Record
A Text record is a contiguous section of code, beginning on a block boundary, which has an
entry in the module directory. The length is also given in the directory. The text record can be
any arbitrary data, but is usually the object code produced by the Compiler or Assembler.

The Librarian 8-33

8-34 The Librarian

The Debugger 9
Introduction
The Workstation Pascal System features a programming aid called the Debugger. As you
probably have guessed, the major purpose of the Debugger is to make program debugging as
painless as possible.

You may have already seen a reference to this Debugger when you got this message:

RESTART WITH DEBUGGER?

The question is in response to a user program generating but not trapping an "exception." You
will learn how to answer the question in this chapter.

Here are some of the operations you can perform with the Debugger:

• Step through programs on a procedure, statement, or machine-instruction basis.

• Maintain a record of the statements which have already been executed (in order of exe
cution).

• Examine any memory locations and CPU registers, and display the contents in any of the
following formats: binary, octal, decimal, or hexadecimal integer; real number; alphanu
meric character; and Assembler instruction.

• Set up "breakpoints" and "error traps" in the program, optionally displaying h~lpful
information when each is encountered.

• Perform number-base conversions and integer arithmetic calculations.

The main emphasis of this chapter is to describe using the Debugger to debug Pascal programs.
Debugging an Assembler-language program is more direct; that information is obtainable from
the Debugger Reference Section.

Is the Debugger Loaded?
The Debugger is a very powerful subsystem, because it allows any user to access everything in the
computer. It is therefore a potentially dangerous feature in the hands of users who don't know
how to use it (or who you don't want to use it). For this reason, and for space considerations,
it is not automaticaily loaded when you boot the system (as shipped). Therefore, you will need
to load the Debugger before attempting to use it (or install it in INITLIB). (In most previous
system versions, it was automatically loaded at boot time, as it was part of the INITLIB file).
Loading the Debugger is explained in the following Sample Session section.

The Debugger 9-1

A Sample Session
This section describes methods for debugging Pascal programs with the aid of the sample pro
gram called DEBUG, supplied to you on the DOC (documentation) disc. The program is given in
source-code and object-code form.

• DOC: DEBUG. TEXT - the source-code file

• DOC: DEBUG. CODE - the object-code file

The Example Program
A listing of the program is included here for reference. Note that a Pascal source program must
contain the $DEBUG ON$ Compiler option if you want to have the ability to halt the program
at particular line numbers. The effects of this option are further described in the Compiler
chapter.

Pascal [Rev 3.2 1/15/87] DEBUG. TEXT 28-Jan-87 14:21:55 Page 1

l:D o $DEBUG ON$ { Enable debugging. }

2:S
3:D o PROGRAM XYZ (OUTPUT);
4:D 1 VAR
5:D -4 1 i INTEGER;
6:D -8 1 j INTEGER;
7:D -16 1 x REAL;
8:D -24 1 Y REAL;
9:D -25 1 chi CHAR;

10:D -26 1 ch2 CHAR;
11:S
12:D 1 PROCEDURE Level_l;
13:D 2 VAR
14:D -4 2 i INTEGER;
15:D -8 2 x INTEGER;
16:D -12 2 Y INTEGER;
17:S
18:D 2 PROCEDURE Level_2b;
19:C 3 BEGIN
20*C 3 WRITE('Level 2b: ') ;
21*C 3 WRITE (, i=' ,i:2,' x=' ,x:4);
22*C 3 WRITELN(, chl=' ,chi: 1);
23*C 3 END;
24:S
25:D 2 PROCEDURE Level_2a;
26:D 3 VAR
27:D -12 3 i, x, y INTEGER;
28:S
29:D 3 PROCEDURE Level_3;
30:C 4 BEGIN
31*C 4 IF i < 4 THEN
32:C 5 BEGIN
33*C 5 WRITE (, Level 3: ') ;
34*C 5 WRITE (, i=' ,i :2, , x=' ,x:4);
35*C 5 WRITELN(, chl=' ,chl:l);
36*C 5 i:= i + 1;
37*C 5 Level_3;
38:C 5 END;
39*C 4 IF chl='a' THEN

9-2 The Debugger

40:C
41*C
42*C
43*C
44*C
45:C
46*C
47:8
48:C
49*C
50*C
51*C
52*C
53*C
54*C
55*C
56*C
57:8
58:C
59*C
60*C
61*C
62*C
63*C
64*C
65*C
66:8
67:C
68*C
69*C
70*C
71*C
72*C
73*C
74*C
75*C
76*C
77*C
78*C
79:8

5
5
5
5
5
5
4

BEGIN
ch1:= 'x';
WRITE('Leve13: ');
WRITE(' i=' ,i:2,' x=' ,x:4);
WRITELN(' ch1=',ch1:1);

END;
END;

3 BEGIN
3 WRITE('Leve12a: ');
3 WRITE(' i=' ,i:2,' x=' ,x:4);
3 WRITELN(' ch1=',ch1:1);
3 i:= 1; x:= 2; y:= 3;
3 Level_3;
3 i:= 4; x:= 5; y:= 6;
3 Level_2b;
3 END;

2 BEGIN
2 i:= 0; x:= 0; y:= 0;
2 WRITE('Level1: ');
2 WRITE(' i=',i:2,' x=',x:4);
2 WRITELN(' ch1=',ch1:1);
2 Level_2b;
2 Level_2a;
2 END;

1 BEGIN
1 i:= 10;
1 x:= 20.0; y:= 30.0;
1 ch1:= 'a'; ch2:= 'b';
1 WRITE('Main: ');
1 WRI TE (, i =' ,i : 2,' x=', x : 2 : 1) ;
1 WRITELN(' ch1=' ,ch1:1);
1 Level_1;
1 WRITE('Main: ');
1 WRITE(' i=' ,i:2,' x=',x:2:1);
1 WRITELN(' ch1=',ch1:1);
1 END.

No errors. No warnings.

Please Participate
You will learn much more about the Debugger if you participate in this sample session. Execute
the code file one time to see the program's output before attempting the sample session.

The Debugger 9-3

Loading the Debugger
As previously mentioned, the Debugger is not automatically loaded as part of the standard
system, so you will need to load it into the computer. You can load the module in either of two
ways:

• Execute it using the eXecute command (from the Main Command Level); the program
installs itself .

• Add the DEBUGGER module to INITLIB, and re-boot the system; the program is then
installed automatically.

Loading the Debugger with the eXecute command allows you to use it until you re-boot the
system, at which time you will have to eXecute it again to use it. By adding the module
to INITLIB, you give all users (who subsequently boot with this INITLIB file) access to the
Debugger. You will not want to use this second method unless you want to give all users access
to the Debugger.

Executing the Debugger
First, make sure that the ASM: disc is on-line or that the file is otherwise accessible. Then, from
the Main Command Level, press the 00 key to initiate the eXecute command. The system will
prompt you with this message:

Execute what file?

Respond by entering the specification of the DEBUGGER file; ASM:DEBUGGER. will work if you are
loading the program from the original disc (remember to type a trailing period to suppress the
. CODE suffix). The system then loads and executes the program, which installs itself permanently
in memory.

Adding the Debugger to INITLIB
Use the Librarian (from the Main Command Level) to add this module to the INITLIB file. In
general, the steps can be summarized as follows:

1. Make a back-up copy of INITLIB.

2. Edit the INITLIB file with the Librarian, adding the DEBUGGER module (supplied on
the ASM: disc) to the file. The DEBUGGER can be anywhere after the modules named
KEYS, BAT, CLOCK, and any CRT drivers (CRT, CRTB, etc.); however, it must be
before the module named LAST. (Editing libraries is described in the Librarian chapter.)

3. Store the new library file (using the Keep command).

4. Remove the IN IT LIB file on your BOOT: disc, and add your new INITLIB file.

5. Re-boot the system.

After re-booting the system, the Debugger should be in memory.

9-4 The Debugger

A Note about Key Notations
Throughout this chapter, you will be shown which keys invoke certain Debugger functions. Since
you may have one of various keyboards connected to your computer, each with a different set
of keys, you will need to learn which key to press on your keyboard. Here are examples of keys
used to invoke a few functions on the different keyboards l .

Desired Function HP 46020A/21A Key(s) HP 98203B/C Key(s) HP 98203A Key(s)

Pause I Break I I PAUSE I I PSE I

Single Step (I System I) [ill I STEP I I STEP I

Slow Step (I System I) I CTRL I-[ill I CTRL I-I STEP I I CTRL I-I STEP I

Continue (I System I) [!!] I CONTINUE I I CONTI

For instance, invoke the Pause function on a 46020/21 keyboard by pressing the Break key. On
a 98203B/C keyboard, press the I PAUSE I key. With a 98203A keyboard, press the I PSE I key.

As another example, suppose that you want to invoke the Single-Step function. On 98203A, B
and C keyboards, press the I STEP I key; the label is on the key itself On a 46020/21 keyboard it
will be the System key labeled [ill on the key, which is labeled STEP on the screen while in the
System-key mode. (If you are not already in System-key mode, then you will need to press the
I System I key before pressing [ill). The same notation is used for the other System keys on the
46020/21 keyboard; the actual System key (i.e., []] through [][I) is not given in text; the label is
given instead. You will need to make the association, which you can easily do by looking at the
System-key labels while the Menu is being displayed (press the I Menu I key to toggle the Menu
on and off). If you are not familiar with the I System I and I Menu I keys, read the discussion in the
Pascal User's Guide.

The convention used in this manual is to show the 46020/21 keys first (followed by the equivalent
98203B/C key in parentheses). For instance, the I Break I (I PAUSE I) key invokes the Pause function:
on the 46020/21, it is the I Break I key; on a 98203B/C keyboard, it is the! PAUSE I key. (The 98203A
IpSE 1 key is not shown, because it is close enough to the I PAUSE I label that you should be able to
easily make the connection.)

Is the Debugger Installed?
Before proceeding, you should verify that the Debugger is currently installed. On a 46020/21
keyboard, press I Break I (I PAUSE I) to pause the system. If a p is displayed in the lower, right
hand corner of the screen, then the Debugger is installed. Press CONT (I CONTINUE I) to resume
operation.

If the Debugger is not installed, then pressing I Break 1 will do nothing.

1 This discussion only gives a few examples; the Debugger Keyboard section near the end of the chapter describes all key(s).

The Debugger 9-5

Invoking the Debugger
The Debugger is called from the Main Command Level. When the Debugger is invoked, the
system will then take steps to determine which program you want to debug. Before invoking
the Debugger, let's look at how it determines which program to debug.

Specifying a Program
When the Debugger is invoked, the system will either look for a code file on its own or ask you
for the code file's name, according to the following priorities. (If the Debugger is not installed,
then the D command is identical to the eXecute command.)

1. If there is currently an object-code workfile, the file is automatically loaded into computer
memory. If there is a source-code workfile (but not an object-code file), the system reports
that it cannot open the file because it was not found.

2. If there is no workfile, the second check made is for the last file compiled since power-up.
If present, that file is then loaded.

3. If neither such file exists, you are prompted for a file name.

If you plan to debug, edit, and recompile a program several times in a session, using a workfile
may be the best alternative; you will not have to keep typing in the file name, because the
current workfile is the automatic object of those subsystems.

For this session, we will set up a workfile. First, use the Filer's What command to see if there
is already a workfile. If it happens to be the DEBUG.CODE file, you need do nothing more
(before exiting the Filer). Otherwise, use the Get command to specify the example program as
the workfile. Here is the prompt you will see:

Get what file?

Answer by entering the file specification of the example program. Type:

DEBUG I Return I or I ENTER I

The filer responds with something like this:

Source and code file loaded.

You may now Quit the Filer. Now press the [QJ key while at the Main Command Level to
invoke the Debugger.

Answering RESTART WITH DEBJJGGER?
As mentioned earlier, this prompt is shown any time that a "user" program generates but does
not trap an exception. Answering "Yes" to this question will also get you into the Debugger;
you will effectively be at the same point as if you had used the D command. (If the Debugger
is not currently installed, answering "Yes" will only re-execute the program.)

9-6 The Debugger

The Debugger Command Screen
You are now in the Debugger's command screen. This message indicates that the Debugger is
ready for further instructions:

NOW AT START
>

The d shown at the lower, right-hand corner of the screen also indicates that you are currently
in the Debugger.

The Debugger prompt is a >. When this screen and prompt are displayed, you can type Debugger
commands on the line with the cursor. Enter each command by pressing the 1 Return I, 1 ENTER I,
or 1 Select 1 (I EXECUTE I) key. Note that the CONT key resumes normal program execution. When
execution of the program is complete, control returns to the Main Command Line.

Single-Stepping a Program
When the Debugger is at this starting point, it is ready to step through your Pascal program
one statement at a time; this mode is called Single-Step Mode. (It can also do many other
things, which will be discussed momentarily.) In the lower, right-hand corner of the screen, the
Debugger also conveniently displays the program line number which contains the next statement
to be executed (if the program was compiled with $DEBUG ON$. This line number corresponds to
the line number given in the Compiler listing of the program.

For instance, when debugging our example program, line number 57 is initially displayed. This
is the line that contains the Pascal statement that will be executed the next time you press the
STEP key. Press the STEP key once and note that the line number changes to 58, which is the
line number of the next statement to be executed.

Pressing STEP a second time results in no change in line number. This response is due to the
fact that the Debugger steps through the program one statement at a time, not one line at a
time. Pressing STEP a third time changes the line number to 59.

Slow Program Execution
The Debugger also allows you to execute a program at a rate of about two statements per
second. Press 1 CTRL 1 - STEP to use this execution mode (Slow-Step Mode). Line numbers are
flashed on the screen as each is encountered. You can return to Single-Step Mode by pressing
the STEP key.

The Debugger 9-7

Returning to the Debugger Command Screen
You may have noticed that the Debugger prompt disappeared when you began stepping through
the program. Instead, the Debugger displays the screen that will be used for the program's
output so that you can see what the program is doing at each step of execution.

Note that any keys pressed while in this mode appear in the system's type-ahead buffer, not in
a Debugger command line. This action allows you to type in responses to any input statements
in the program as you would normally type them in. The program reads this buffer when an
input statement is encountered and executed.

At some point in the program's execution you may want to return to the Debugger command
screen to execute a command. To do so, press 1 CTRL H Break 1 (I CTRL H PAUSE I). The Debugger
restores the last Debugger command screen, which is the one that you saw before you be
gan single-stepping the program. You can then execute Debugger commands or return to the
program screen by stepping through the program with the STEP key.

Toggling Between Screens
While in the Debugger command mode, you can also toggle between these displays (without
changing modes) by pressing 1 CTRL 1- ALPHA. For example, suppose you want to quickly check
the program screen to see last line displayed by the program. You can do so (without getting
out of the Debugger command mode) by pressing 1 CTRL 1 - ALPHA. When you've examined all
you want on the program screen and are ready to return to the Debugger's command screen,
press 1 CTRL 1- ALPHA again.

Screen Dumps
While in the Debugger, you can dump the current contents of the alpha or graphics screens.
Use either the DMP A (I DUMP ALPHA I) key or DMP G (I DUMP GRAPHICS I) key, or execute a DA or DC
command.

Note that this feature is only allowed when running a program in the processor's "user" state!.
It is not possible while executing programs in "supervisor" state. If attempted while disallowed,
no dump is performed and the following message is displayed:

NOT ALLOWED NOW

1 All user programs are executed in the "user" privilege state, while "Interrupt Service Routines" are executed in "supervisor"
privilege 'state. See the MC68000 User's Manual for a more comprehensive description of these states.

9-8 The Debugger

A Look at the Queue
At this point, you may want to continue stepping through the program and noting the order of
execution of lines. You can also get a log of all Pascal program lines executed thus far by the
Debugger by executing the Queue command. (Actually, these are the line numbers of Pascal
statements executed thus far.) Here is an example of the results of this command (assuming
that we have only pressed the STEP key three times in our example):

>Q

206144- 69
206160- 69
206176- 68
206188- 67
START

The line numbers are shown in the right column. (The six-digit numbers in the left column, each
followed by -, are memory addresses for use when debugging Assembler language programs; you
don't usually need to be concerned with them while debugging Pascal programs.)

Note that the line numbers in the queue are in reverse order of execution: the first line executed
is at the bottom of the queue listing, the second is listed above the first, and so forth. Also note
that the line at the top of the list has not yet been executed; it will be executed the next time
the STEP key is pressed.

Note that Pascal line numbers will only be shown if the $DEBUG ON$ Compiler option was
used.

Note also that when the question RESTART WITH DEBUGGER? is displayed after encountering an
exception that was not trapped, you can get a listing of the queue by pressing I CTRL H Break I and
then executing a Q command. You can also direct the Debugger to trap exceptions, as described
in the Exception Trapping section of this chapter.

Displaying Data
Before showing how to use many of the more powerful Debugger features, let's look at some
simple Display operations. Execute the following command:

>D 8+32
+40

From this example, you can deduce that the literal numbers that you entered were interpreted
as decimal integers and that the result was a signed decimal integer.

Note that you don't need to specify the D in commands that begin with non-alphabetic charac
ters.

>8+32
+40

The Debugger 9-9

Now execute this command:

>D -32768-32768
-65536

From this result, you can see that the range of integers is at least 16 bits. In fact, it is 32 bits.
The range is - 231 through 231 - 1 (or - 2 147 483 648 through 2 147 483 647).

Executing these commands might help to see this range of integers more clearly:

>D 127*256*256*256
+2130706432
>D 128*256*256*256

OVERFLOW

Note that only integer arithmetic operations are performed. For instance, division produces the
integer portion of a quotient:

>5/3
+1

Display FO,rmats
Since the Debugger uses the processor's 32-bit registers for expression evaluation, most results
are four-byte quantities and are formatted to reflect that fact. Here are two equivalent examples
of using the default format of one signed (four-byte) INTEGER:

>D 255
+255

>D 255:114
+255

The format specifier is the ':114' appended to the literal number 255: the leading 1 indicates
that one quantity is to be generated; the I indicates that the quantity is to be displayed as a
signed, decimal Integer; the trailing 4 indicates that 4 bytes are to be formatted.

If the default format of one four-byte decimal integer is not what you'd like, you can explicitly
specify another format. For example, the following command generates four one-byte binary
numbers (the!'s indicate binary notation):

>D 1024+255:4Bl
!OOOOOOOO !OOOOOOOO !00000100 !11111111

Here is an example of formatting the integer into four one-byte octal numbers (the %'s indicate
octal notation):

>D 1024+255:401
%0 %0 %4 %377

9-10 The Debugger

Now specify that the number is to be formatted as one four-byte hexadecimal number with
either of the equivalent commands (the $'s indicate hex notation):

>D 1024+255:1H4
$000004FF
>D 1024+255:H
$000004FF

The leading 1 and trailing 4 are the defaults assumed when these parameters are omitted.

This format specification directs the Debugger to display two bytes as a hex value:

>D 1024+255:H2
$0000

Note that D's were displayed because the Debugger begins its display with the most-significant
bits of the four-byte integer. Here is a more meaningful display format for the same data:

>D 1024+255:2H2
$0000 $04FF

It is also possible to display literal strings with the data you are formatting for the display.
Either single or double quotes can be used to delimit the string. For example, this command
gives a more descriptive display:

>D -7: '-7 in Hexadecimal = ' ,H4
-7 in Hexadecimal = $FFFFFFF9

You can also dis-assemble machine-language instructions by using the X format specifier. Here
is an example:

>D $4E750000:X
RTS

This is usually only helpful while debugging Assembler-language programs. (Note that you must
load module REVASM into memory with the P-Ioad command from the Main Command Level
in order to use this format.)

Another format specifier is the slash (/). When a "I" is encountered in a Display command,
the display is continued on the next line.

>D 23+45:/,'RESULT = ' ,I4/

RESULT = +68

>

The Debugger 9-11

Input Formats
The !, %, and $ symbols preceding numbers in the above examples were used to indicate the
base of the numbers displayed on the screen. Similarly, you can use them with literal numbers
input in the command. This feature allows number-base conversions.

For example, suppose that you want to convert the binary number 11001010 to its decimal
representation. Here is a sample command:

>D !11001010:1
+202

To display the number in hex, execute this command:

>D !00110110:H
$00000036

Changing the Default Display Format
The default format caq. be changed by glvmg an F (Format) command. For example, the
following command changes the default to ':1H4', which instructs the Debugger to take 4 bytes
and display them as one four-byte Hexadecimal value:

FH

This command sets the default format to Octal (': 104 '):

FO

This command changes the default format to ':1U4', which directs the Debugger to display 1
four-byte Unsigned decimal integer.

FU

This command sets the default format back to signed decimal Integer (114):

F1

Now that you've had an introduction to the Display commands, let's look at some more powerful
commands.

9-12 The Debugger

Controlling Execution with Breakpoints
A breakpoint is a point in the program where you want execution to be temporarily halted.
With a Pascal program, the point will be at a program line. Thus, when the Debugger is
executing a program and encounters a breakpoint, it halts just before executing the program
line.

Setting Breakpoints
To set a breakpoint, use the BS command. Specify the location as an integer which follows the
letters "BS", separated by a space. For example, to set a breakpoint at Pascal program line 74,
enter the following command:

BS 74

Press CONT (CONTINUE) and the program begins executing again. When it encounters line 74, it
pauses before executing the line and displays the message:

NOW AT LINE 74

The Debugger then prompts you for another command. At this point, you can do any of the
following:

• Step through the program one line at a time (if it was compiled with $DEBUG ON$)

• Execute other Debugger commands (such as examine memory or register contents)

• Continue the program

Once the program has finished execution, all breakpoints are automatically de-activated. You
will have to explicitly re-activate them, as described in a subsequent section.

Up to ni{le such breakpoints may be defined at one time. Most breakpoints remain in effect
until cleared or de-activated.

The Count Option
An optional count can be included by adding an integer after the location. The count instructs
the Debugger to stop when it reaches the location the indicated number of times. For example,
enter the following command:

BS 31 3

This particular command instructs the Debugger to halt the program immediately before the
third execution of line 31. Press CONT, and the program executes until line 31 is reached the
third time and then halts. Note that this type of breakpoint is automatically cleared when
encountered the specified number of times.

The Debugger 9-13

Breakpoints with Commands
Another form of the BS command is the "BS" and the location number followed by a Debug
ger command string enclosed in quotes. The command string is one or more legal Debugger
commands (separated by semi-colons). These commands are immediately executed when the
location is encountered. The Debugger automatically continues program execution after exe
cuting the command string. Here is an example that will provide a visual record of how many
times line 37 was executed:

BS 37 "D 'LINE 37 REACHED. '"

Of course, you will need to get back into the Debugger command screen to see the results of
this breakpoint being encountered. The D (Display) command is explained in detail later.

You can pause the program by making the last command in the string a question mark. This
command directs the Debugger to pause and wait for input from the keyboard. For example,
enter the following command breakpoint:

BS 59 "D PC; ?"

The Debugger stops at line 59, displays the Program Counter, and waits for input.

Here is another e;xample of using a breakpoint with a command:

BS 59 'IF 1=1; D "1=1"; ELSE; D "1<>1";?; END'

The relational expression following the IF command, in this case 1=1, is first evaluated. If it
is true, then the command(s) between the IF and the ELSE are executed. If it is false, then
the command(s) between the ELSE and END are executed. This type of command is useful
for purposes like checking the value of a variable and then pausing if its value is out of an
expected, range. The IF, ELSE, and END commands are further explained in the reference
section. Checking the value of variables is explained later in this tutorial.

Deactivating Breakpoints
The BD command deactivates breakpoints. If a line number is included, the breakpoint is de
activated for that line number. For instance, the following command deactivates the breakpoint
at line 41:

BD 41

If no line number is included, all breakpoints are disabled. For example, this command disables
all breakpoints:

BD

9-14 The Debugger

Displaying the Breakpoint Table
The B command displays the breakpoint table or the breakpoint at the specified line number.
Execute the following command:

B

and you'll see a display similar to the following:

>B
BREAK POINTS

A
A
A

74 0
37 D 'LINE 37 REACHED'
59 D 'IF l=l;D "l=l";ELSE;D "l<>l";?;END

The first character on each line of the table is either "A" for active, or "D" for deactivated.
The second parameter is the line number of the breakpoint. If the third entry in the table is a
positive number, then a count option is in effect for the breakpoint (execution will pause when
the Debugger reaches the line that number of times). If the third entry is a command string,
then that command is executed each time the line is encountered. If it is a "0", then it is a
normal breakpoint (i.e., no count nor command was specified with the breakpoint).

Reactivating Breakpoints
The BA command reactivates disabled breakpoints. If the line number is included, the break
point is reactivated for that line number, otherwise, all breakpoints are affected. For example,
the following command reactivates the breakpoint that was deactivated in the example above:

BA 41

Try the B command to see the table again.

When a program runs to completion and is then restarted (by pressing the [QJ key), the break
points are still there; they are just deactivated. Use the BA command to reactivate some or all
breakpoints.

Clearing Breakpoints
The Be command clears breakpoints by removing them from the table. If a line number is
included, the breakpoint is removed only for that line; otherwise, all breakpoints are cleared.
Enter the following command to remove only the breakpoint at line 41:

BC 41

The Debugger 9-15

The Pause Function and Breakpoints
If the Debugger is not installed, the I Break I (I PAUSE I) key is a no-op. The rest of this discussion
assumes that the Debugger is installed.

While not in the Debugger command mode, pressing I Break I effectively halts any program at the
current execution point. (Note that this key may not pause the program on a line boundary
like the STEP key does.)

While in the Debugger command mode, however, pressing I Break I returns you to the user program
display and pauses the program at the current execution point. Press continue to finish program
execution.

If you press (Break) after encountering an active breakpoint, it will also get you to the
program's display. However, if you pause exactly on a currently active breakpoint (but before
encountering it), pressing (Break) will not get you into the program's display. You will have to
press csreak) again to cause the breakpoint to take immediate effect. CONT will then work as
expected.

Executing a Number of Statements
Go commands set a tenth temporary breakpoint. They are one-time commands to pause exe
cution before a specified program instruction.

The G command tells the Debugger to Go. If you include a number after the "G" , that nunlber
of statements is executed, after which the Debugger halts and waits for another command. For
example, this command tells the Debugger to Go 8 statements:

G 8

If no number is given, the remaining instructions are executed (same as pressing CONT).

The GF (Go and Flash) command is the same as the G command except execution is slowed
and line numbers are flashed in the lower right corner of the screen.

The GT (Go 'Til) command is the same as Go except a location is specified rather than a count.
For example, this command tells the Debugger to Go 'Til line 39 is reached:

GT 39

Another form of this command tells the Debugger to Go 'Til the location is reached a number of
times. For example, the following command tells the Debugger to stop before line 41 is executed
the third time.

GT 41 3

The GT statement also allows the command string option. For example, this command directs
the Debugger to do the following: execute the program until line 42 is reached, then display the
Program Counter and await further instructions.

GT 42 liD PC; ?"

The GTF (Go 'Til and Flash) command is the same as GT except execution is slowed and line
numbers are flashed in the lower right corner of the CRT.

9-16 The Debugger

Tracing Program Flow through Procedures
You can also halt execution of a program as it enters and exits procedures. For instance, suppose
that you want to halt the program when the current procedure is exited. To do that, execute
the PX (Procedure eXit) command:

PX

Execution will be halted after the procedure is exited (i.e., after the last line of this procedure
is executed, but before the subsequent program line is executed). For instance, executing this
command while in LeveL3 results in this display:

>PX
PROe EXITED

The Debugger shows that the next line to be executed is line 31.

To halt the program at the point that the current procedure (or main program) calls another
procedure, use the PN (Procedure Next) command: <

PN

When the next procedure is encountered, the Debugger reports this message:

NEXT PROe

and the program is halted before executing the first executable line of the procedure. If the
current procedure is exited before another is called, the Debugger reports this message:

PRoe EXITED

and the program is halted before the next executable line of the calling procedure is executed.

A Look at the Stack Frame
Another handy feature to use while walking though the program on a procedure basis is the SF
(Stack Frame) command. Here is an example display of this command:

>SF
46 LEVEL_1

PROe ADDRESS -403316-
CALLED FROM -402718-

LINE 55

The first line of the display shows the first (executable) line of the program next to the pro
cedure's name. The second line shows the memory address of the procedure (which is not
important while debugging Pascal programs). The third line shows the address of the proce
dure. The fourth line shows the number of the line from which this procedure was called.

The Debugger 9-17

Examining Variables
Without the ability to check the value of program variables, debugging a program could become
more tedious than it already is. Rest assured that this Debugger does allow you to look at
the contents of any variable in computer memory. However, in order to check the contents of
program variables, you will need to know two important facts: where they are in memory, and
how to format them into an understandable form.

To see where a variable is stored in memory, it is necessary to look at the Compiler listing.
Each variable has a negative integer printed next to it on the listing. This negative value is the
offset (in bytes) from the base address where the variables are located. The base address for a
procedure's local variables is the current stack frame pointer (SF); the main program's variables
have a base address offset which is the value of the program name (here XYZ) from A5.

That's' why it's helpful if, when writing the program, you declare each variable on a separate
line so that an offset will be printed on the listing for each variable. Alternatively, you can
use the $TABLES$ Compiler option to get a printout which tells all about each data type and
variable. This option is explained further under "Formats for Structured Variables".

To format the variable's value in memory, you will need to use the Display command. Let's go
back to the example program and let it finish by clearing the breakpoints using "BC" and then
press CONT. Restart the program and then execute GT 60 command to Go Til line number 60.

To see the value of the local variable i that is declared in the procedure called LeveLl, look at
the Compiler listing (line 14) to see that it has an offset of -4. This is an offset from the stack
frame pointer (SF) of that procedure. Subtract 4 from the stack frame pointer, and use "A"
after the expression to indicate you want the contents of the memory location referenced by the
value of the expression in parentheses. Enter the following command:

>0 (SF-4)A:, X = ',I
X = 0

To see the value of y, execute:

>0 (SF-8)A:, Y = ',I
Y = 0

And to see the value of z, execute:

>0 (SF-12)A:, Z = ',I
Z = 0

You may also specify that all three integer variables be displayed at the same time by executing
this command:

>0 (SF-12)A:3
000

The display will show the three integer variables separated with spaces. The variable with the
offset of -12 will be the first one displayed, the one with the offset of -8 is second, then the
third one has offset -4.

9-18 The Debugger

When looking for local variable values, be sure that you have stopped the program in the
procedure that defines the variables. Each procedure that is called has a stack frame created
for it even if there are no local variables. If you have stopped the program in a procedure which
is contained inside of or called by another procedure, you can use the walk commands to get to
the stack frames of the outer level procedures (see "Static and Dynamic Links").

The global variables in the main program or globals declared in modules are located at offsets
from their specific global bases. The global areas each have a symbol associated with them.
The symbol has a value which is the offset or distance from (A5). So when you reference global
variables, add the program or module name to A5 and then subtract the offset for the particular
variable location.

For example, if you wanted to see the value of the variable x in the main program (here it is
named XYZ), use this command:

D (A5+XYZ-4)A

To see the value of Y, execute:

D (A5+XYZ-8)A

To see the value of the two character variables in chI and ch2 (of program DEBUG), it is
necessary to specify a format, because the default format is integer. To see the variables chI
and ch2, execute this command:

D (A5+XYZ-26)A:2Al

The format specifies that 2 ASCII values are to be displayed, each having I byte. They are
located at an offset of -26 from the value of symbol XYZ, relative to A5.

The processor registers that can have their values displayed are listed below:

AO .. A7
AA
DO .. D7
DO
PC
SR

(the Address registers)
(All Address registers)
(the Data registers)
(all Data registers)
(the Program Counter)
(the Status register)

To display the numeric values of the contents of address register AO and the Program Counter,
execute this command:

D AO PC

To display the numeric value at the location referenced by the the Program Counter (i.e., whose
address is stored in the PC), execute the following command:

The Debugger 9-19

To display the value at the location referenced by the Program Counter, interpreting it as an
Assembler language instruction, execute this command (remember that module REVASM must
be P-Ioaded to use this format):

D PC"":X

The Debugger symbols and corresponding definitions are as follows:

LN (Line Number)
EC (Escape Code)
10 (I/O result code)
GB (the Global variable Base)
RB (the code Relocation Base)
SF (the current Stack Frame pointer)

Examining Consecutive Memory Locations
The Open command is like the Display command except the address is displayed with the value
and you are prompted to press either the up-arrow key or the down-arrow key. This causes the
address value to increment or decrement depending on the key choice'. The adjustment is 1 byte
with the OB command, 2 bytes with the OW command and 4 bytes with the OL command.
When you have seen enough, press 1 Return I, 1 ENTER I, or 1 Select 1 (I EXECUTE I) to terminate Open mode
and return to the Debugger command mode. For example, to see the hex values which are the
machine codes for the current program, use this command:

FH

(See the Default Formats section for more details.)

To examine the (16-bit) word pointed to by the current contents of the Program Counter, use
this command:

OW PC""

The> to the right of the display prompts for an up-arrow key (~) or down-arrow key (0).
To see the next word in memory, press the up-arrow key. Continue until you have seen enough.
Press 1 Return 1 or 1 ENTER 1 to exit the Open command.

9-20 The Debugger

Formats for Structured Variables
There is a mechanism for displaying non sequential values also. It is necessary to specify one
memory location to set the memory pointer. Then by using special symbols, you can alter the
value in the memory pointer. You can also display the value of the memory pointer. All these
symbols are part of the format and are typed following the location specification and a colon
(:) .

"*" is the value of the memory pointer

"<" preceded by a number. decrements the value of the memory
pointer by the number

">" preceded by a number. increments the value of the memory
pOinter by the number

II-II causes the memory pointer to take the value at the
location indicated by the current pointer

These mechanisms make it possible to examine different fields of structured variables.

First, a note about structured variables. When space is allocated for a structured variable, the
number of bytes needed is determined and given to the variable. The individual elements of the
structure are then assigned space at ascending locations. For example, if you had the following
Pascal record, 14 bytes are needed to store the whole record:

Pasc_Rec = RECORD
x : INTEGER;
y : INTEGER;
ch1 : CHAR;
ch2 : CHAR;
pointer: -Pasc_Rec;

END;

If a variable of this type is the first variable for a procedure, then the record would occupy the
first 14 bytes below the stack frame pointer (SF-14r. The elements in the record would be at
positive offsets from this location. Variable x would have an offset of a (SF-14r; y has an offset
of 4 (SF-14+4r; ChI has an offset of 8 (SF-14+8r; etc. This information is easily obtainable
when the $TABLES$ Compiler directive is used, and a Compiler listing is generated.

The following drawing illustrates the structure of the RECORD variable in memory.

SF-
POINTER

CH2

CH1

y

X

-14-

The Debugger 9-21

Rather than displaying the values of the record individually, you can use the following Debugger
command:

D (SF-14)A:I4.4>.2Al. A.4>.I4.*

This command tells the Debugger to go to the memory location 14 bytes below the Stack
Frame pointer (the bottom of the record), display the four-byte integer (x), go up 4 bytes and
display the 2 Alpha characters, assume the value that is stored after the characters (the pointer
field), then go up 4 bytes in the new record and display the four-byte integer (y), and then
display the current location. Notice that the Debugger display pointer is left at the subsequent
locations after the particular displays are made. In other words, after the display of (x), it is
only necessary to move 4 bytes rather than 8, to position the display pointer to the character
variables.

Changing Memory Contents
The ability to change the values in memory is, among other things, the ability to get a program
back on the right track. In one Debugger session, you can detect several problems with a
program without having to stop, edit and recompile the program for each one. Simply change
the values of the variables that are causing the problem. To change the values of variables in a
Pascal program, use the Open commands. Variables are referenced the same way they are with
the Display command.

The Open commands are as follows:

• OB - for byte values.

• OW - for word values.

• OL - for long word (four-byte) values.

Suppose you want to change the value of a variable to 8; assume that it is local to the current
procedure, that it is an integer variable, and that it has an offset of -4 from the procedure's
stack frame pointer (SF). It is necessary to use the OL form of the Open command, since integers
are 4 bytes long. Execute the following command:

DL (SF-4)A 8

As another example, suppose you want to change the value of the global (main program's)
variable chI to "x". Because characters only use 1 byte of storage, use the OB form of the
command.

DB (GB-25)A "x"

By changing the values of those variables, the sequence of execution is drastically altered.

9-22 The Debugger

Static and Dynamic Links
Each time a procedure is called in a Pascal program, a new stack frame is created. This stack
frame contains all the local variables in the procedure as well as the procedure's static and
dynamic links!.

The Debugger contains a mechanism for following these links. It is the Walk command. The
Walk command takes three forms:

• WS - follows the static link back one step.

• WD - follows the dynamic link back one step.

• WR - resets to the current stack frame.

There are no options or parameters. These commands in no way affect or influence program
execution.

Restart the Debugger by pressing the ~ key and the [[] key. Set a breakpoint on line 31 for
the third execution of the procedure LeveL3.

BS 31 3

Press I Return 1 or I ENTER I, and then press CONT. The program will stop the third time line 31 is
reached.

The sequence of calls is as follows:

Program XYZ

Procedure Level 1

Procedure Level_2b

Procedure Level_2a

Procedure Level_3

Procedure Level_3

Procedure Level_3

Give six successive WD (Walk Dynamic) commands and you'll get the above information pre
sented in reverse order. The information displayed for each WD command is the stack frame
information for the current procedure and then the same for the calling procedure. The stack
frame pointer is updated to point to the calling procedure's stack frame. You can look at those
variables and the links stored in that stack frame. Consecutive WD commands walk us back
through the entire calling sequence. We can stop anywhere along this path and examine the
variables in a procedure's stack frame.

1 Static and dynamic links are described in detail in the section of the Compiler chapter called How Pascal Programs Use the
Stack.

The Debugger 9-23

To return to the stack frame for LeveL3 where you stopped the program, execute a Walk Reset
command:

WR

This command resets the Debugger stack frame pointer variable.

You can also walk the static link. This gives you the ability to examine variables whose scope
statically (textually) includes the current procedure. Execute:

WS

This command brings us to the Stack Frame for LeveL2a which contains the variables i, x, and
y.

Use the Display command to examine the value of i.

D (SF-4)"

The value of i is displayed.

The value of i is only affected by successive executions of LeveL3. If LeveL3 had local variables,
they would display different values in each stack frame. However, only one copy of the variable
i exists in the one stack frame for procedure LeveL2a. The value of i is as it was when we
stopped program execution during the third invocation of LeveL3. That value is 3.

Exception Trapping
It is possible to stop execution of a program at an exception to normal processing. Normally,
an escape is made by the system and successive recovery mechanisms allow termination of the
program. At the time of termination, the system displays the escape code and the line number
in the outer level recovery (if the program was compiled with $DEBUG ON$). The escape code is
valid information, but the line number may not be the location of the error. By re-executing
the program with a trap set for the exception, we can stop execution at the point of the error,
have the actual line number of the error displayed, and examine variables for the problem.

There are three commands for exception trapping. We can trap selected escape codes with the
Escape Trap instruction. The following command directs the Debugger to trap orily escape code
100.

ET 100

When escape code 100 is encountered, control is returned to the Debugger and the following
message is displayed on the screen:

-EXCEPTION
ESCAPE CODE 100
SR=$OOOO PC= -207532 LINE +12

9-24 The Debugger

We can stop at all except selected escape codes with the Escape Trap Not instruction. This
command directs the Debugger to trap every escape code except 100.

ETN 100

Not specifying an escape code causes the command to work for every escape code. This command
directs the Debugger to trap all escape codes.

ET

This command doesn't trap any exceptions.

ETN

When the exception occurs, execution stops and control is transferred to the Debugger. At that
point, you can examine the state of the program.

When the Debugger is initiated, the default escape trapping command is the following:

ETN 0 -20

These are the escape codes for normal termination and the []!2£J key. The Debugger will trap
all escape codes except those.

The third type of escape trap command allows you to execute command(s) when the escape is
detected. Here is an example:

ETC 'D "ESCAPE HAS OCCURRED";?'

This command displays its message and then halts the program, awaiting further Debugger
commands.

Generating Escapes
With the Debugger, you can also generate escapes. For instance, this command generates an
ESCAPE(10) at the current point in the program.

>EC 10

The result of this command is the same as if the program had encountered the escape at
the current location. If you have an ET command currently defined for the escape code, the
Debugger will trap it also.

The Debugger 9-25

A Note about Assembly Language Programs
All of the Debugger commands apply when debugging an Assembler language program as well.
The difference is that the location specification is given as an address and not a line number.
An address is specified with a "A" appended to the location specifier. For example, the following
command says to Go Til the address FFFF 1432 is encountered:

GT FFFF1423'"

The Debugger knows about symbols which have been DEFed. The entry points into assembly
modules, programs, and procedures should have been defined (with DEF). You can specify an
'address in an assembly routine by specifying an offset from the routine's entry point. The offset
in the routine can be found on the Assembler output. For example, the following (equivalent)
commands direct the Debugger to Go Til encountering the the address 16 decimal (10 hex)
memory locations past the entry point into "routine":

GT (routine+16)'"

or:

GT (routine+$10)'"

Note that (routine+l0)'" should be that start of a MC68xxx opcode for the Debugger to pause
there; if the address points at the middle of an instruction (e.g. an operand), or to data, the
Debugger will not pause there.

Read about the particulars of each command in the subsequent Command Reference section.

9-26 The Debugger

Debugger Named Reboot

Named reboot is a cabability added to the Debugger in revision 3.22. It gives you a way to
specify a system to reboot using extensions to the sb command.

The format of the system boot (sb) command of the debugger is show below. It has been
expanded to offer reboot capability based on the parameters you provide. If no parameters are
given, the pre-3.22 usage will not be affected. sb must be in lower-case letters (use the I Shift I
key to generate lower-case letters in the Debugger), and there must be a space preceeding each
parameter.

sb [SYSTEMNAMEI* [MsuSI* [LANIDI*]]]

NAME
The SYSTEMNAME parameter is one to ten ASCII characters long and should contain the name of
a boot file (boot file names seen by the boot ROM at power up can be displayed by pressing
any key after the boot ROM has seen the keyboard). The name is a string and must be within
quotes.

If the SYSTEMNAME parameter is given as an *, then the currently booted systems's name will be
used.

MSUS
MSUS is an acronym for Mass Storage Unit Specifier, although current systems can also boot
from devices such as ROM or Local Area Networks (LAN) which are not thought of as mass
storage devices.

The MSUS string may be one of three forms:

• An * will cause the currently booted system's MSUS to be used.

• A file system unit specifier. Unit specifiers should have no trailing colon-#ll is correct,
#11: is incorrect. Only unit specifiers are allowed: a volume name would be an error.

• An 8 hex-digit number (32 bits) which will replace the boot ROM supplied 32 bit MSUS.

This MSUS contains four fields of 2 hex digits (8 bits) each. If the MSUS parameter were
coded $11000700, it would mean:

Device ID Unit Number Select Code Bus Address

$11 (CS80 device) $00 (Volume 0, Unit 0) $07 $00

The Debugger 9-27

Listed below are the parameter values for MSUS.

ID (Device ID) Value (defined as of December 1988)

$00

$04

$05

$06

$07

$08

$09

$OA

$OB

$OC

$OD

$OE

$10

$11

$14

$16

$EO

$El

$E2

Series 200 internal 5.25in mini-floppy

9895 8in floppy or 913x 5.25in micro-winchester (HP-IB)

82900 series 5.25in mini-floppy (HP-IB)

9885 8in floppy (GPIO)

913xA 5 megabyte 5.25in micro-winchester (HP-IB)

913xB 10 megabyte 5.25in micro-winchester (HP-IB)

913xC 15 megabyte 5.25in micro-winchester (HP-IB)

7905 hard disc (HP -IB)

7906 hard disc (HP -IB)

7920 hard disc (HP-IB)

7925 hard disc (HP -IB)

SCSI Direct Access Devices

CS/80 and SS/80 devices with 256-byte blocks (HPIB)

All other CS/80 and SS/80 devices (HP-IB)

EPROM card (HP98255)

BUBBLES (HP98259)

ROM (no other MSUS fields apply)

SRM

LAN (only the MSUS select code field applies)

Note

The presence of a device type in the above list does not imply Pascal
Workstation support for the device, nor does it imply the support by
all boot ROM revisions for the device.

UN (Unit Nunber) Value (dependent on ID value)

For ID $00 UN 00 is the right-hand drive, UN 01 is the left-hand drive

For ID $10 and $11 First digit of UN is a volume number and the second digit is the unit number

For ID $14 This field indicates the device's position relative to other EPROM devices. For
instance, 01 is the lowest EPROM device, 02 is the second lowest EPROM device,
etc.

For ID $EO, $E2, No unit number exists, therefore this number is treated as a don't care.
and $16

For all other,ID's UN is encoded with the unit number associated with the physical device.

9-28 The Debugger

SC (Select Code) Value

SC (Select Code) The select code associated with the physical device is placed here for all Device
ID's except $00, $EO and $14. The internal HP-IB is coded as $07.

BA
(Bus Address) Value

BA (Bus Address) For Device ID's $El, $07, or $OE, this field contains the bus address associated
with that physical device.

LANID
LANID is required only when the Device ID in the MSUS indicates a LAN ($E2). It contains the
12 digit HEX string that identifies the boot system across the LAN.

Examples
Below are examples using the sb command. If the debugger finds an error when parsing the
parameters, it displays an error message and cancels the reboot.

sb

sb *
sb * *
sb * * *
sb 'SYSHPUX'

sb 'SYSP3.22' $El081500

sb 'SYSP3.22' #11

sb * #11

sb * * '080009000986'

reboot, ROM will perform an UNATTENDED boot

reboot the current system

reboot the current system

reboot the current system

reboot system SYSHPUX from the current boot media

reboot system SYSP3.22 from an SRM

reboot system SYSP3.22 from the mass storage device
specified at unit number 11

reboot same system name from the mass storage device
specified at unit number 11

reboot same system name from different host

The Debugger 9-29

Debugger Keyboard
This section describes the key definitions while in the Debugger. Note that once you are in the
Debugger there are two modes: Command Mode and Step Mode.

A Note about Key Notations
Throughout this section, you will be shown which keys invoke certain Debugger functions. Since
you may have one of various keyboards connected to your computer, each with a different set
of keys, you will need to learn which key to press on your keyboard. Here are examples of keys
used to invoke a few functions on the different keyboards.

Desired Function HP 46020A/21A Key(s) HP 98203B/C Key(s) HP 98203A Key(s)

Pause I Break I I PAUSE I I PSE I

Single Step (I System I) [1[] I STEP I I STEP I

Slow Step (I System I) I CTRL 1-[1[] I CTRL I-I STEP I I CTRL I-I STEP I

Continue (I System I) ffiJ I CONTINUE I ICONTI

For instance, invoke the Pause function on a 46020/21 keyboard by pressing the Break key. On
a 98203B/C keyboard, press the I PAUSE I key. With a 98203A keyboard, press the PSE key.

As another example, suppose that you want to invoke the Single-Step function. On both 98203A,
Band C keyboards, press the I STEP I key; the label is on the key itself. On a 46020/21 keyboard
it will be the System key labeled [1[] on the key, which is labeled STEP on the screen while in
the System-key mode. (If you are not already in System-key mode, then you will need to press
the I System I key before pressing [1[]). The same notation is used for the other System keys on the
46020/21 keyboard (i.e., [ill through [][)): the actual System key is not given in text; the label
is given instead. You will need to make the association, which you can easily do by looking
at the System-key labels while the Menu is being displayed (press the I Menu I key to toggle the
Menu on and off). If you are not familiar with the I System I and I Menu I keys, read the discussion
in the Pascal User's Guide.

The convention used in this manual is to show the 46020/21 keys first (followed by the equivalent
98203B key in parentheses). For instance, the I Break I (I PAUSE I) key invokes the Pause function:
on the 46020/21, it is the I Break I key; on a 98203B/C keyboard, it is the! PAUSE I key. (The 98203A
I PSE I key is not shown, because it is close enough to the I PAUSE I label that you should be able to
easily make the connection.)

9-30 The Debugger

Is the Debugger Installed?
Before proceeding, you should verify that the Debugger is currently installed. Press 1 Break I
(I PAUSE I) to pause the system. If a p is displayed in the lower, right-hand corner of the screen,
then the Debugger is installed. Press CONT (I CONTINUE I) to resume operation.

If the Debugger is not installed, then pressing 1 Break I will do nothing.

Calling the Debugger from the Main Command Level
From the Main Command Level, pressing the []] key calls the Debugger (if
installed) .

Step Modes
Here are the available operations and key definitions while in the Debugger Single-Step and
Slow-Step Mode.

Getting into the Step Modes
STEP Causes the program to halt on the next line number; or, if already halted, execute

one Pascal statement. (This key gets you ,into the Single-~tep Mode.)

1 CTRL ~STEP Causes program execution to be slowed (to about 2 statements per second) and
line numbers displayed. (This key gets you into the Slow-Step Mode.)

Controlling Program Execution

1 Break I

(PAUSE)

~

Program execution is paused. Note that the type-ahead buffer is still active and
immediate-execute keys still function (e.g,. DMP A).

Stops program execution.

Getting into Command Mode
1 CTRL H Break I
(I CTRL ~
PAUSE)

This key provides immediate entry into Debugger Command Mode. (Do not use
1 Shift H Reset I to do this, unless 1 CTRL H Break I does not work, and you must enter
Command Mode. 1 Shift H Reset I may corrupt the system, and require rebooting to
restore it.

Returning to the Main Command Level
CONT Causes program execution to resume with Step mode cancelled.
(CONTINUE)

The Debugger 9-31

Command Mode
Here is a description of available operations and key definitions while in the Debugger Command
Mode. If it is not installed, the command is identical to the eXecute command.

Entering Commands
Alphanumeric Keys Used to enter Debugger commands. The characters generated are

uppercase; you must use I Shift I to produce lowercase characters.
~ (I CAPS LOCK I) is disabled iri the Debugger.

I Return lor , Enter I Terminates input and initiates execution of the command.

I Select I (EXECUTE) Terminates input and initiates execution of the command.

,CTRL ~ALPHA Alternates between the Debugger command screen and System
screen (I CTRL ~EXEC on the 98203A keyboard).

~ Disabled (keyboard is always in CAPS mode).

'Shift I With numeric-pad keys, produces special characters (only 46020/21
key boards) .

, CTRL I With alphanumeric and numeric-pad keys, allows entry of ASCII
control characters.

I Back space I Back spaces the cursor and blanks one character (If the cursor is at
the extreme left, this key is a no-op).

'Clear line lor 'Delete line I Clears the input line.
(I Clear line I or , Delete line I)

RECALL Clears the input line and recalls the last executed line.

'Insert char I ('Insert char I) Inserts one (1) blank character at the cursor position (does not
switch to an "insert mode," as there is none).

, Delete char I (I Delete char I) Deletes the character at the cursor position.

CLR->END Deletes all characters to the right of the cursor.

kO, m:::J thru [1[], Typing-aid keys (explained under K commands).
and k9
(kO thru k9)

Knob Same as left/right arrow keys.

'Shift ~Knob Same as up/down arrow keys.

Left arrow and Right arrow Move the cursor in the corresponding direction.

[IJ and [Y] Have meaning only with the Open commands (OL, OW, OB).

9-32 The Debugger

Screen Control
I Clear display I
(I Clear display I)

ALPHA

DMPA

(DUMP ALPHA)

I CTRL ~ALPHA

GRAPH

(GRAPHICS)

DMPG

(DUMP GRAPHICS)

Clears the alpha raster. In Step Modes, this key clears the System screen;
in Command mode, it clears the Debugger Command screen.

Turns on the alpha raster and turns off the graphics raster (I Shift ~RCL on
the 98203A key board). Disabled on bitmap displays.

Performs a DUMP ALPHA function (the current alpha raster, or bitmap
display, is sent to the PRINTER: volume). (I SHIFT ~[lli[]] on the 98203A
keyboard).

Alternates between the Debugger and System screen images (I CTRL ~EXEC
on the 98203A keyboard).

Turns on the graphics raster and turns off the alpha raster. (I Shift H Insert line I
on the 98203A keyboard.) Disabled on bitmap displays.

Performs a DUMP GRAPHICS function (sends the current graphics
raster, or bitmap display, to the PRINTER: volume). (I Shift H Delete char I
on the 98203A keyboard.)

Controlling Program Execution

I Break I
(PAUSE)

[]!2EJ

Program execution is paused. Note that the type-ahead buffer is still
active and immediate-execute keys still function (e.g,. DMP A).

Stops program execution.

Getting into Step Mode
STEP

I CTRL ~STEP

Causes the program to continue executing until the next line number is
encountered (i.e., gets you into Single-Step Mode).

Causes the program to continue executing slowly, displaying line numbers
as they are encountered (i.e., gets you into Slow-Step Mode).

Returning to the Main Command Level
CONT

(CONTINUE)

Causes program execution to resume with Command mode cancelled.

The Debugger 9-33

Debugger Command Summary
This section briefly summarizes the Debugger commands for quick reference purposes. A more
complete description of each command is presented in the following Command Reference section.

Breakpoint Commands
BS

BD

BA

Be
B

Sets a breakpoint at the specified location.

Disables (but does not remove) breakpoint(s).

Activates disabled breakpoint (s).

Clears breakpoint (s).

Displays the breakpoint table.

Call Command
CALL Calls the machine language routine at the specified memory address.

Display Commands
D Displays the specified object(s). Objects can be specified immediately, directly,

or indirectly. Formats describe the internal representation of the data.

TD Displays the command string which is defined by the soft key k4.

TD I Restores the initial command string to k4.

Dump Commands
DA

DG

Performs the DUMP ALPHA function.

Performs the DUMP GRAPHICS function.

Escape Code Commands
EC Generates the specified escape.

ET Sets up escape trapping of specified escape codes; Debugger halts when an escape
is executed.

ETC Sets up escape trapping of all codes; Debugger executes the specified command
when an escape is executed.

ETN Sets up escape trapping of all codes except those specified; DebuggeL executes
the specified command when an escape is executed.

9-34 The Debugger

Format Commands
FB

FH

FI

FO

FU

Sets the default display format to Binary.

Sets the default display format to Hexadecimal.

Sets the default display format to signed Integer.

Sets the default display format to Octal.

Sets the default display format to Unsigned integer.

Go Commands
G

GT

Causes execution to resume (same as CONTINUE).

Causes execution to resume until specified location is encountered.

GTF or GFT Same as GT except that execution is slowed and the line numbers are flashed in
the lower right-hand corner of the screen.

IF, ELSE, and END Commands
IF

ELSE

END

Allows conditional execution of subsequent commands based on the result of
evaluating the specified expression.

Delimits the commands that will be executed when the IF condition is FALSE.

Ends the IF command.

Open Memory Commands
OB,OL,
and OW

Used to display (and optionally alter) the values of memory locations.

Procedure Commands
PN

PX, or P

Halts program execution when the next procedure is called (or when the current
one is exited, whichever occurs first).

Halts program execution when the current procedure is exited.

Queue Commands
Q Displays the Queue, which is a record of which line numbers were executed (or

PC values of instructions executed).

QE

QS

Ends recording of line number values in the Queue.

Starts the recording of information in the Queue.

The Debugger 9-35

Register Operations
AO .. A7, Display or assign values to the corresponding processor register(s).
DO .. D7,
PC, SP, US,
SR

Softkey Commands
kO .. kg Defines the command string to be displayed when the soft key is pressed (while

in the Debugger).

System Boot Command
t

sb The system boot command puts the computer in the power-up state for re-
booting. (The command must be typed in lowercase letters.)

Trace Commands
T

TQ

TT

Causes the specified number of instructions to be executed, each followed by an
implicit TD command.

Same as the T command except that the TD command is executed only after
the last instruction.

Same as TQ except that a location is specified rather than a count.

Walk Procedure Links Commands
WD The Stack Frame pointer (SF) is moved to the stack frame of the calling

procedure.

WS The SF is moved to the stack frame of the nesting procedure.

WR The SF is returned to the current stack frame.

9-36 The Debugger

Debugger Command Reference
This section contains a formal description of syntax and semantics for each Debugger command.

Debugger Expressions
With the Debugger, all expressions are integer expressions.

The Debugger 9-37

Item Description

binary operator an operator that requires two operands

register symbol a symbol representing a processor register

Debugger symbol a symbol known to the Debugger

any symbol in the system symbol table

Range

+ , -, /, *,
<,<=,=,>=,>,<>

AO .. A7, DO .. D7, PC, SP, US,
SR

LN (Line Number)

EC (Escape Code)

10 (I/O result code)

GB (the Global variable Base)

RB (the code Relocation Base)

SF (the current Stack Frame
pointer)

system symbol

address a numeric expression followed by a "~", which - 231 thru 231 - 1
refers to the contents of the specified memory

size

address

integer expression that specifies the number of 1 thru 4
bytes to be used

The "U" (unsigned integer) and "I" (signed integer) option paths indicate whether the value at
the specified address and with specified number of bytes (size) is to be treated as a signed or
unsigned integer.

Multiple Commands on a Line
Several commands may be entered on the same line. These commands are separated by a
semicolon (;).

single
Debugger command

9-38 The Debugger

Breakpoint Commands
Breakpoints are points in a program where execution may be halted. The Breakpoint commands
control program execution by setting up, activating, and dearing breakpoints in a program.

B
The "B" command causes the breakpoint table to be displayed.

Item

line number

address

Description Range

an expression that identifies a program line

an expression, followed by a "A", that identifies a _231 thru 231 _1
location in memory

The first column contains an "A" for an active breakpoint or a "D" for a deactivated breakpoint.
If no location is specified, the table displays all breakpoints.

BA
The "BA" command Activates disabled breakpoints. If a location is specified, then only that
breakpoint is re-activated; otherwise, all breakpoints are re-activated.

Item

line number

address

Description Range

an expression that identifies a program line

an expression, followed by a "A", that identifies a - 231 thru 231 _1
location in memory

The Debugger 9-39

Be
The "BC" command Clears breakpoints. If a location is specified, then only that breakpoint is
cleared; otherwise, all breakpoints are cleared.

Item

line number

address

BO

Description Range

an expression that identifies a program line

an expression, followed by a "A", that identifies a - 231 thru 231 -1
location in memory

The "BD" command De-activates breakpoints. If a location is specified, then only that
breakpoint is de-activated; otherwise, all breakpoints are de-activated.

Item Description Range

line number an expression that identifies a program line

address an expression, followed by a "A", that identifies a _231 thru 231 -1
location in memory

9-40 The Debugger

BS
Setting breakpoints with the "BS" command causes the program to stop or perform some
operation at a given line number or instruction address.

Item

line number

address

count

Debugger
command

Description Range

an expression that identifies a program line

an expression, followed by a "A", that identifies a _231 thru 231 _1
location in memory

expression

any legal commands delimited with single or dou
ble quotes

If only a location is specified, the breakpoint is set at that location and then activated. The
program will halt just before it subsequently reaches that point.

Specifying a count sets a breakpoint that will halt the program after the count has been
decremented to o. (The count is decremented each time the location is reached.) When the
program is halted, this type of breakpoint is automatically cleared. (The other two types of
breakpoints set with the BS command are not cleared when encountered.)

Adding a command string to the breakpoint causes the command to be executed each time the
point is reached. A "?" in the command string causes the Debugger to wait for input from the
keyboard. Otherwise, the command is executed and program execution resumes.

The Debugger 9-41

The Call Command
This command is used to call the subroutine at the specified address.

@---l address ~

Item Description Range

address an expression, followed by a "A", that identifies a _231 thru 231 -1
location in memory

The effect of this command is as if a Jump to Subroutine (JSR) instruction was encountered
just before the current program counter (PC).

The CALL command can be abbreviated with the letters CA.

9-42 The Debugger

Display Command

o
The D command is like a print statement where the parameters are objects and formats.

expression
contiguous

data specifier

contiguous data specifier:

Item

expression

string constant

softkey symbol

address

count

contiguous
data specifier

integer expression

Ii teral value

Description

a symbol (not the actual key)

contiguous
data specifier

Range

_231 thru 231 -1

any character delimited with
single or double quotes

"KO" thru "Kg"

an expression, followed by a "All, that identifies a _231 thru 231 -1
location in memory

integer constant 1 thru 231 -1

The Debugger 9-43

address specifier:

Item

type

size

contiguous
data specifier

Description

A = Alpha character
B = Binary
H = Hexadecimal
I = Integer (size = 1..4)
a = Octal (size = 1..4)
S = String type (size is declared size)
R = Real (size not allowed)
U = Unsigned integer
X = reverse assembly (size not allowed)

integer constant

Objects can be immediate, direct, or indirect.

contiguous
data specifier

Range

_231 thru 231 -1
(except where
noted above)

Formats describe the internal representation of the data. Non-consecutive data can be displayed
using the format options available when the address parameter is used.

9-44 The Debugger

Dump Commands
These commands allow you to perform the DUMP ALPHA and DUMP GRAPHICS functions
while in the Debugger.

DA
The DA command performs the DUMP ALPHA function.

DG
The DG command performs the DUMP GRAPHICS function.

Note

These commands can only be used while executing programs in the
processor's "user mode." If attempted while in "supervisor mode,"
the following error will be reported:

NOT ALLOWED NOW

The Debugger 9-45

Escape Code Commands
These commands allow you generate and trap escape codes while in the Debugger.

EC
The effect of executing this command is the same as if you had executed an ESCAPE(code) in
the program just before the current PC. If any ET, ETC, or ETN commands have been used
to set up escape code trapping, then the Debugger will be halted and the escape code displayed
on the screen.

~
~

Item

escape code

Description Range

signed integer expression; negative for system _215 thru 215

escapes, positive for user escapes.

Here is an example display:

>EC 10
-EXCEPTION-
ESCAPE CODE
SR=$0004 PC=

ET

+10
-228230 LINE +9

The Escape Trap command allows you to specify that either all escape codes or specified escape
codes are to be trapped by the Debugger.

Item

escape code

Description Range

signed integer expression; negative for system _2 15 thru 215 -1
escapes, positive for user escapes

If an escape code that is in the list is encountered, execution stops and control is given to the
Debugger. If no escape codes are specified, then processing stops for all escape codes.

Up to 4 escape codes may be specified with the ET command.

9-46 The Debugger

ETC
The Escape Trap Command allows you to set up command(s) to be executed when an ESCAPE
is generated.

Item

Debugger
command

ETN

Description Range

command to be executed when an escape is en- any valid Debugger command
countered

The Escape Trap Not command specifies that processing should stop for all escape codes except
the ones listed. If none are listed, then processing won't stop for any escape codes.

Item

escape code

Description Range

signed integer expression; negative for system _215 thru 215 -1
escapes, positive for user escapes

If the program was started with the D command, then ETN -20 0 (which traps all except the
~ key and normal program termination) is in effect.

Up to 4 escape codes may be specified with the ETN command.

The Debugger 9-47

Format Commands
The format commands allow you to specify the default display format.

FB
The Format Binary command sets the default format to Binary values.

FH
The Format Hex command sets the default format to Hexadecimal values.

FI
The Format Integer command sets the default format to signed Integer values.

FO
The Format Octal command sets the default format to signed Octal values.

FU
The Format Integer command sets the default format to Unsigned integer values.

9-48 The Debugger

Go Commands
The Go commands control program execution by telling the Debugger how many lines to execute
or the line at which to halt.

G
The "G" command causes normal execution to resume. If a count option is used, that number
of statements is executed.

Item Description Range

count integer expression

GF
The "GF" command is the same as the "G" command except execution is slowed and line
numbers are Flashed in the lower right corner of the CRT.

Item Description Range

count integer expression

The Debugger 9-49

GT
The "GT" command causes execution to Go 'Til the specified location is reached.

Item

line number

address

count

Debugger
command

Description Range

an expression that identifies a program line

integer expression, followed by a "A", that iden- - 231 thru 231 _1
tifies a location in memory

integer constant

any legal Debugger commands delimited with
single or double quotes

If a count option is used, execution continues until the location is reached that number of times.

If the Debugger command option is used, the command(s) are executed when the location is
reached.

GTF
The "GTF" command is the same as the "GT" command except execution is slowed and line
numbers are flashed in the lower right corner of the CRT.

Item

line number

address

count

Debugger
command

Description Range

an expression that identifies a program line

integer expression, followed by a "A", that iden- - 231 thru 231 _1
tifies a location in memory

integer constant

any legal Debugger commands delimited with
single or double quotes

9-50 The Debugger

IF, ELSE, and END Commands
These commands allow conditional execution of Debugger commands.

Debugger
command (s)

Debugger command (s):

Item

Debugger
command(s)

expression

single De bugger
command

expression

Debugger
command (s)

Debugger
command (s)

Description Range

command(s) to be executed when the sense bit is see drawing
TRUE
numeric or boolean expression whose value deter- any valid Debugger expression
mines the state of the "sense bit"

one Debugger command any valid Debugger command
described in this reference sec
tion

In order to better understand how IF, ELSE, and END statements work, you need some
background information. There is a sense bit that determines whether or not Debugger
commands are executed. This sense bit is set to TRUE at the beginning of every command line.
Commands on the line are executed as long as this bit is TRUE and skipped when the sense bit
is FALSE.

The Debugger 9-51

When an IF statement is encountered, the expression is evaluated. If it evaluates to non-zero
or TRUE, then the sense bit is set TRUE. Subsequent commands are executed while this bit is
TRUE. When an ELSE command is encountered, the sense bit is complemented (i.e., if it was
TRUE, then it is set to FALSE, and vice versa). When an END statement is encountered, the
sense bit is set to TRUE. Here is an example of this situation:

>IF 1=1;0 'NoN-ZERo';D 'TRUE';ELSE;O 'ZERo';D 'FALSE';ENO;O 'ALWAYS'
NON-ZERO
TRUE
ALWAYS

Here is an example of the converse situation.

>IF 0;0 'NoN-ZERo';D 'TRUE';ELSE;O 'ZERo';O 'FALSE';END;D 'ALWAYS'
ZERO
FALSE
ALWAYS

Notice that the commands after the END statement are always executed. Note that the IF
statement does not have to be the first command in the line.

The ELSE command can be abbreviated as EL; the END command can be abbreviated as EN.

9-52 The Debugger

Open Memory Commands
These commands allow you to examine, and optionally modify, the contents of memory locations.

OL, OW, 08
The Open Byte, Open Long, and Open Word commands are used to examine consecutive
memory locations and to assign values to the locations.

Item Description Range

address an expression, followed by a "A", that identifies - 231 thru 231 _1
a location in memory (with OW and OL, the

expression

string constant

Semantics

address must be an even number)

integer expression

literal

_231 thru 231 _1

any character delimited with
single or double quotes

When no value is specified after the location, the location and the contents of the location are
displayed and followed by a special prompt. The prompt is for an up-arrow key, a down-arrow
key, or the I Return I or I Enter I key, or a numeric expression followed by the I Return I or I Enter I key.

• The up-arrow key causes the next higher location and value to be displayed and the
special "Open" prompt.

• The down-arrow key is the same except that the next lower address is displayed.

• The I Return I or I Enter I key causes termination of the "Open" prompt and a return to the
standard Debugger prompt.

• A numeric followed by I Return I or I Enter I will place the value of the expression into the
current location.

The amount of the increment/decrement is as follows:

• 1 byte for the "OB" command

• 2 bytes for the "OW" command

• 4 bytes for the "OL" command

When the Open memory commands are invoked with value options, the specified value is
assigned to the corresponding location. No attempt is made to read the corresponding memory
location.

The Debugger 9-53

Procedure Commands
These commands allow you to halt the program when a procedure is called or exited. Both of
these commands will only work if the procedures were compiled with $DEBUG ON$.

PN
The PN (Procedure Next) command halts the Debugger when a procedure is called by the
current procedure or main program (or when the current procedure is exited).

When the current procedure or main program calls another procedure, the Debugger displays
NEXT PROC and halts the program before executing the first line of the called procedure.

If the current procedure is exited before another is called, the message PROC EXITED is displayed
and the Debugger i~ halted before executing the first line of the procedure that called the current
one.

PX
The PX (Procedure eXit) command allows you to halt program execution when the current
procedure is exited.

When the current procedure is exited, the message PROC EXITED is displayed and the program
is halted before executing the next line of the procedure that called the current one. Calling a
procedure while in the current one is not reported (as with PN).

9-54 The Debugger

Queue Commands
The Queue commands control and display the Queue, which is a record of the line numbers of
statements (or memory addresses of processor instructions) encountered during the execution
of a program. Note that the program being debugged must have been compiled with $DEBUG

ON$ for line numbers to enter the Queue.

Q
The "Q" command displays the addresses or line numbers and addresses of the most recent
statements executed since a "QS" command or the start of execution of the current program.

"MORE" is given as a prompt when part of the Queue has been displayed and there is more to
come; a reply of I Return I, I Enter I, or I Select 1 (EXECUTE) will cause the next 1..21 Queue entries to be
displayed. Any other reply will be interpreted as another command.

QE
"QE" ends the recording of information in the Queue

QS
"QS" starts the recording of information in the Queue

The Debugger 9-55

Register Operations
With the Debugger, you can display or alter the contents of processor registers.

Item

register symbol

expression

string constant

Description

AO ... A7, DO ... D7, SP, US, SR, PC

AA = All Address registers

DD = All Data registers

integer numeric expression

any character delimited with

Range

If a value follows the register symbol, that value is assigned to the register. Otherwise, the
current value of the register is displayed. Without the assignment, the command is the same as
the D command.

"AA" and "DD" cannot be used to assign values.

9-56 The Debugger

Softkey Commands
The Softkey commands allow you to define System softkeys to display literal values and
commands, so that these keys will be used as typing aids.

"KO" thru "Kg"
These commands allow you to define the softkeys as typing-aid keys; when the softkey is
subsequently pressed, it puts the string constant or the result of evaluating the integer expression
into the Debugger command-input line.

Item

softkey symbol

string constant

numeric value

Description

literal symbol that denotes a softkey

literal value

integer expression

Range

KO thru Kg

any characters delimited with
single or double quotes

_231 thru 231 _1

Numeric values or command strings can be assigned to the soft key symbols KO through Kg by
typing the softkey symbol (not by pressing the actual key) and then typing the value to be
assigned to the key.

If a string constant is assigned to the soft key symbol, subsequently pressing the corresponding
soft key will cause the literal value to be placed in the Debugger command-input line. If a
numeric expression is assigned to the softkey symbol, the result of evaluating the expression is
placed in the input line.

After the command on a line is completed, pressing I Return I, I ENTER I, or I Select 1 (I EXECUTE I) causes
the line to be interpreted.

To see the string constant or numeric value that is currently assigned to a soft key symbol, type
the softkey symbol and press I Return I.

The Debugger 9-57

System Boot
This command causes the computer to boot the system defined by the parameters given.

Item Description

NAME String or string constant

MSUS Mass Storage Unit Specifier

LANID String or string constant

Range

1 to 10 characters (Name of
boot file)

file system unit number or
8 hex digit value

12 digits (boot system across
the LAN)

Note that sb must be entered in lowercase letters (use the I Shift I key to generate lowercase letters
in the Debugger).

Trace Commands
These commands are primarily for use with Assembly language debugging. Note that these
commands ignore address breakpoints.

T
The Trace command with count specification causes that number of machine instructions to be
executed. A TD command is executed after each machine instruction.

C) ~ _____ . ~. I
~ count ~

Item Description Range

count integer constant

9-58 The Debugger

TO
The TD command displays the command string which is defined by the [ill ([ill) softkey.

At power up, [ill is defined to display the PC, the instruction at (PC), the status register, the
SP, and all the A (address) and D (data) registers. This display may be altered by changing
the definition of [ill.

The optional parameter "I" restores the initial definition to soft key [ill.

TQ
Causes execution of machine instructions until the specified address is reached. Then a "TD"
is executed. This command also records the Program Counter (not line number) values in the
Queue.

G)---~~. ~~.I
~ count ~

Item Description Range

count integer constant

TT
Same as the "GT" command except that PC values are recorded in the Queue and a "TD" is
executed after the last machine instruction is executed.

Item

line number

address

count

Debugger
command

Description Range

an integer numeric expression identifying a pro- 0 thru 216 _1
gram line.

an integer numeric expression followed by a "A" - 231 -1

integer constant -1 thru 231 _1

Any legal commands delimited with single or -
double quotes

The Debugger 9-59

Walking the Procedure Links

we
The Walk Dynamic link command causes execution of an "SF" command and then the Debugger
symbol, "SF", takes the value of the dynamic link from the current Stack Frame. Another "SF"
command is then executed.

WR
The Walk Reset command restores A6 to "SF".

WS
The Walk Static link command is the same as the "WD" command except that the Debugger
symbol, "SF" takes the value of the static link. This brings you to the Stack Frame of the
nesting procedure as opposed to the calling procedure. Levell procedures have no static link.

9-60 The Debugger

I/O System Errors
These are the values found in the system variable 10RESULT and
the corresponding error message which the system prints out auto
matically for you.

o No I/O error reported
1 Panty (CRG) wrong. I/O dnver will do several retnes
2 Illegal unit number - valid range IS 1 50
3 Illegal I/O request (e g .. read from pnnter)
4 Device timeout
5 Volume went off-line
6 File lost In directory
7 Bad file name
8 No room on volume
9 Volume not found

10 File not found
11 Duplicate directory entry
12 File already open
13 File not open
14 Bad Input format
1 5 DIsc block out of range
16 Device absent or Inaccessible
17 Media Initialization failed
18 Media IS wnte-protected
19 Unexpected Interrupt
20 Hardware/media failure
21 Unrecognized error state
22 DMA absent or unavailable
23 File size not compatible with type
24 File not opened for reading
25 File not opened for writing
26 File not opened for direct access
27 No room In directory
28 String subscnpt out of range
29 Bad stnng parameter on close of file
30 Attempt to read past end-of-flle mark
31 Media not Initialized
32 Block not found
33 Device not ready or media absent
34 Media absent
35 No directory on volume
36 File type Illegal or does not match request
37 Parameter illegal or out of range
38 File cannot be extended
39 Undefined operalion for file
40 File not lockable
41 File already locked
42 File not locked
43 Directory not empty
44 Too many files open on device
45 Access to file not allowed
46 Invalid password
47 File IS not a directory
48 Operation not allowed on a directory
49 Cannot create /WORKSTATIONS/TEMP _FILES
50 Unrecognized SRM error
51 Medium may have been changed
52 File system corrupt
53 File or file system too big
54 No permission for requested action
55 Dnver cache full
56 Dnver configuration failed
57 10RESULT was 57

Graphics System Errors
When writing graphics programs, it will be helpful to enclose the main
body of the program in a TRY block. In the RECOVER block, test the
value of ESCAPECODE. If ESCAPECODE=-27, invoke a graphics
function called GRAPHICSERROR. This will return a number which
can be cross-referenced with the following list of error messages.

o No errors since last call to GRAPHICSERROR or IN IT GRAPHICS
1 GraphiCS system not Initialized -
2 GraphiCS display IS not enabled
3 Locator device not enabled
4 ECHO value reqUIres a graphic display to be enabled
5 GraphiCS system is already enabled
6 Illegal aspect ratio specified
7 Illegal parameters specified
8 Parameters specified are outside phYSical display limits
9 Parameters specified are outside limits of window

10 Logical locator and logical display use same device
11 Parameters speCified are outside virtual coordinate system boundary
12 Escape function requested not supported by display device
13 Parameters specified are outside phYSical locator limits

Loader/SEGMENTER Errors
Here is a list of errors that can be generated by the loader or by a
program that uses the SEGMENTER module.

100.105
110
111
112
116
117
118

-119/119
120
121
122

Field overflow trying to link or relocate something
Circular or too deeply nested symbol definitions
Improper link information format
Not enough memory
File was not a code file
Not enough space In the explicit global area.
Incorrect version number
Unresolved external references
Generated by the dummy procedure returned by FIND_PROC
UNLOAD_SEGMENT called when there are no more segments to unload
Not enough space In the explicit code area

I/O Library Errors
These are the values and corresponding error messages that may
develop when using the I/O library. A call to IOERROR_MESSAGE
will generate the appropriate message.

o No error
1 No card at select code
2 Interface should be HP-IB.
3 Not active controller/commands not supported
4 Should be device address. not select code
5 No space left In buffer
6 No data left In buffer
7 Improper transfer attempted
8 The select code IS busy
9 The buffer IS busy

10 Improper transfer count
11 Bad timeout value/timeout not supported
12 No dnver for this card
13 No DMA
14 Word operations not allowed
15 Not addressed as talker /wnte not allowed
16 Not addressed as listener/read not allowed
17 A timeout has occurred/no device
18 Not system controller
19 Bad status or control
20 Bad set/clear/test operation
21 Interface card IS dead
22 End/eod has occurred
23 Miscellaneous-value of parameter error

306 Datacomm Interface failure
313 USART receive buffer overflow
314 Receive buffer overflow.
315 MiSSing clock
316 CTS false too long
317 Lost carner disconnect
318 No activity disconnect
319 Connection not established
325 Bad data bits/panty combination
326 Bad status/control register
327 Control value out of range

Operating System Runtime Error Messages
Errors detected by the operating system during the execution of a
program generate one of the following error messages. The numbers
correspond to the value of ESCAPE CODE.

o Normal termination
·1 Abnormal termination
-2 Not enough memory
-3 Reference to NIL pOinter
-4 Integer overflow.
-5 DIVide by zero
-6 Real math overflow. The number was too large
-7 Real math underflow. The number was too small
-8 Value range error
-9 Case value range error

-10 Non-zero 10RESULT. (See 'I/O System Errors"
-11 CPU word access to odd address
-12 CPU bus error
-13 Illegal CPU Instruction
-14 CPU privilege Violation
-15 Bad argument - SIN/COS
-16 Bad argument - LN (natural log)
-17 Bad argument - SQRT (square root)
-18 Bad argument - real/BCD conversion
-19 Bad argument - BCD/real conversion
-20 Stopped by user
-21 Unassigned CPU trap
-22 Reserved
-23 Reserved
-24 Macro parameter not 0 .. 9 or a z
-25 Undefined macro parameter
-26 Non-zero 10E-RESULT, (See "I/O Library Errors'.)
-27 Non-zero GRAPHICSERROR, (See "Graphics System Errors
-28 Parity error In memory
-29 Miscellaneous hardware floating-point error,

-30 Bad argument - arcsine/arccosine, Argument> 1
-31 Illegal real number

VMELIBRARY Errors
When a VME error occurs while using the VME_DRIVER module
procedures, you can determine which has occurred by using a
TRY ... RECOVER construct and calling the ESCAPECODE function
in the RECOVER block.

800 Range error select code < 7 or > 31
801 Tried to access the HP VMEbus Interface using an odd'Select Code
802 Timeout error, the VMEbus System Controller does not grant the bus to

the HP VMEbus Interface Within the amount of seconds speCified in the
last'SET TIMEOUT call

803 NumOfCh;;r <0 or > declared size of 'Data' In VME StrRead
NumOfBytes <0 VME_BlockRead or VME_BIOckWrrte,

805 Odd NumOfBytes when using Transfer mode Wordlnc or WordFxd
806 The VMEbus Interface Card is not an HP 98646A VMEbus Interface Card

o

o

o

o

o

o

1
2
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
50
51
52
53
54
55
56
58
59
98
99

100
101
102
103
104

106
107
108

lb
111
121
123
125
126
127
129
i30

i 36
137
138
I

',4f)

~ 4 1
'142
HJ
1,14

14~

I ,~7

14~

150
j 52
1 S4
i56
158
160
163
164
165
166
167
168
169
171
i77
181
18~'
183
18,1
185

301
J02
3.JJ

Pascal Compiler Syntax Errors
ANSI/ISO Pascal Errors

Erroneous declaration of simple type.
Expected an identifier
Expected a right parenthesis 'T'.
Expected a colon ., "
Symbol is not valid in this context
Error in parameter list.
Expected the keyword OF.
Expected a left parenthesis "C'
Erroneous type declaration.
Expected a left bracket "[".
Expected a right bracket 'T.
Expected the keyword END.
Expected a semicolon ";"
Expected an integer.
Expected an equal sign "~".
Expected the keyword BEGIN.
Expected a digit follOWing , ,
Error In field list of a record declaration.
Expected a comma ","
Expected a period" "
Expected a range specification symbol"
Expected an end-of-comment delimiter
Expected a dollar sign "$"
Error in constant specification.
Expected an aSSignment operator "._"
Expected the keyword THEN
Expected the keyword UNTIL
Expected the keyword DO.
Expected the keyword TO or DOWNTO
Variable expected
Erroneous factor in expression
Erroneous symbol following a variable.
Illegal character in source text
End of source text reached before end of program
End of program reached before end of source text
Identifier was already declared
Low bound greater than high bound in range of constants
Identifier is not of the appropriate class
Identifier W<JS not declared
Non .. numenc expressions cannol. be signed
Expc('teci a nUnleriC constant here
EndpOint values of range must be compatible and ordinal
j'.jJi,_ rnay not h(~ redeclareej
I ayfiei(j type: In cl vari2('t record if, not ordinal
Vanant ca"e 'ar)e: IS no' compatlOle w,lh tagf'elc!
{>,rray dlrTIenSiO!1 iype 1<'; not ordlna:
S8\ basE' type IS not ordinal
.An unsatisfied forvvard reterence remains.
Pass by' value parameter c,wnot t,e type FILE
1 ype of function resu:t !S fll.sslng from declarati(w
Erroneous type ~)f argument for bUilt-In routine
"Jurnl>'" ()f o,rguments different from ::umber of formal parameter',
jl\J~_!l_::n€i.t i~· n,)! compatible with corresponding par3rn0re~
()t:k;,:-ajv)~~ :t are not compatlblt~
Secnrrd ,~! tN is not () set

Orl!y equalItY tests an(j <: ::» al!o~~~·~!.0 on thiY tyr:~"'
resr:~ fOf stnct lncluSlon ("<.: or :>: n~:·t ~ihJWC;j or~
F ;e,dt!0f1,;; cornp3n::-,~~\r"1 r.ot allowed on ~h;s tYPf
C}::)erar~(j\~1 ,3J"? ~>rv~'F!r type for trw::. Opt";falU'::"i

E. ,«(Y;~S~l~""I; d ,)f;', r":l)t 8v(t!uate to a bO(JI"2":H~ rtJsu~t
;:;At elements arc r,,)t 01 ordinal type
Set elements 3((' ;·c': \'JI1rl set base type
Variable !S not an t-\RR;\'{
Array Index. IS no: compatlbie with deClared suDSCrtp'
Variable 1:- not d F1ECOnD structu,e
Variable IS not a pOlnh,r or FILE structur(··
Packing ali owed only on last dtmensioq cDnforrnant array
FOR loop control vall3t;le IS I'ot of crjlr>al type
CASE ',elector IS not (;t <"dina: type
lImt1. v~ILJes nat corrrpaHr")I~; \lvnh lOOP control vanable
Case label IS not compatible with selector
Array dimension IS no! [)c;Ylde,.1.
Illegal to assign value to t)~J,;t-I" function ,dentd't-'
No field of that name in thE pefllnent record
Illegal argument to mater) pass-tly-reierence pararnetsr
Case label has ali t'ady been used
Structure IS not a variant record
PreViOUS deciaratlon WdS not FORWARD
StCltement label nllt ill range 0 9999
Target of nonlocal GOTO not In outermost compound statement
Statement labe! has already been use.::j
Statement label was already declared
Statement label was nO! declared
Undefined statement labe!
Set base type 15 not bounded
Parameter 1:3t confiicts With forwa!'d dec!aratlc'n
Cannot assign \'a!ue t(j funetlOi', oU(:'.lde its t,ody
Funch:1f must contain aSSignment to (·;',<:;tlon resuit
Set elerr!ent :S not In ran(Je of sH tl<l, f' type
Fiie ,.',25 illegal element type
File r:arameter must tJe of tvpe TEXI
U'1(1f0Ciareci cxterna! fife or ~o ti!8 pararretcr
;'.l,C':npt tu u~e tYP9 Identifier In its own deCialatlon
01\/,,310;"1 L;"y Z€f"O

Ovel"iiow Iii constant expressIon
Index expresslc.n O{.Jt Df bounds
Value out ct rdrllW

3(J,t Elerne:'"~t eXf~reSStcr. ~ut of rang~~
4fX) Un3b fe (O Of)(,~i Ii':~ file
401 hi'" valurn!" .1n' fount::

403-409 Cornoiler trrOrs

600
601
602
604
605
606
607
608
609
610
611
612
613
614
620
621
646
647
648
649

651
652
653
655
657
658
659
660
661
662
663
665
667
668
671
672
673
674
676
677
6"18
579
58D
531

701
702
704
705
706
707
708
70f]
llC

90C
901
902
90J
90',
90~;

906
ge7
900\

Compiler Options
Directive is not at beginning of the program.
Indentation too large for PAGEWIDTH.
Directive not valid in executable code.
Too many parameters to SEARCH.
Conditional compilation directives out of order.
Feature not in standard Pascal flagged by ANSI ON.
Feature only allowed when UCSD enabled.
INCLUDE exceeds maximum allowed depth of files
Cannot access this INCLUDE file.
INCLUDE or IMPORT nesting too deep.
Error in accessing library file.
Language extension not enabled.
Imported module does not have interface text.
L1NENUM must be in the range O .. 65535.
Only first instance of routine may have ALIAS.
ALIAS not in procedure or function header
Directive not allowed in EXPORT section
Illegal file name.
Illegal operand in compiler directive
Unrecognized compiler directive

Implementation Restrictions
Reference to a standard routine that is not implemented
Illegal aSSignment or CALL involving a standard procedure
CaNST, TYPE, VAR, or MODULE cannot follow routine
Record or array constructor not allowed in executable statement
Loop control variable must be local variable.
Sets are restricted to the ordinal range 0 .. 8175 (default) or 0.261999 (max)
Cannot blank pad literal to more than 255 characters
String constant cannot extend past text line
Integer constant exceeds the range implemented
Nesting level of identifier scopes exceeds maximum (20)
Nesting level of declared routines exceeds maximum (15).
CASE statement must have non-OTHERWISE clause.
Routine was already declared FORWARD
FORWARD routine may not be EXTERNAL.
Procedure too long
Structure is too large to be allocated.
File component size must be in range 1 .. 32766
Field In record constructor Improper or missing
Structured constant has been discar<:18d (ci SAVE CONS1
Constant overflow
Allowable string length IS 1 . .255 characters
Range of case labels too larqe
11eal constant has t00 Illany digits
~leal ,..,!)mber r!ot allollved
Error jr) structured c('nS~afll
More than 32 767 bytes of data
Expression too complex
Vanable In FlEAr.' 0' INF.ITE list exceeds 32767 by·tes

2~!~n~~td!h rnOdl:;\i;~:~~: 'i~ ~~sn~~~6~~;) sectlon

Structured constant not allowed In FORWARD moduk,
!Viodule name may not ~')(ceed I:., characters
I\rr '~l'/ ':~I,::·tnpntS are not DCicked

~,~~j62;~~'~,t~~l:~~~~et~o iar98

32-bit arithmetiC overllc'\"

Non-ISO Language Features
Cannot dereference vdnable of type ANvPTfi
Ca'll1ot make an aSSignment to thiS type of variable
lI!egal use of moeiule name
Too many concrete modules
Concrete or external Instance reqUired
Variable ,s of type not al!owed In variant records
:riieser IviiuWlI1Y IS gredier Uldr"1 255"
lI!egal character In a "#' string
IIleqal It,,,tn In EXPORT section
fl(pec!,':cj ;r1e keyword IMPLEMENT
E";',,xted tr,e keyword RECOVER
b.88W,.j the keyw.Jrd EXPORT
E,pected trle keyword MODULE
Structured constant has erroneOL;S type

ttei":: IFl !MP(jRT sect;on
to other than a p'ocedural variable

1\~('.Ciule already i1nplcrnented (duplicate modUle).
Concrete module not allowed here
Sonlctl)ied constant component Incompatible with correspond,ng type

cOI,stan~. has Incorrect number of elements
5pecif,cation reqUired

Type Identifier required
Error In constant exoression
Funct:or', result type must be aSSignable
!nsufficle'll space to opt:n code fil8
InS'Jfficient space to open REF
Insufficl01'1t space to ooei' CEf !,;~
E.r.-~~~' CJpenjng code TIl::-
!~,:~ror jrj openinq REF fiii;
i:~rror :1"1 DEF tile
Code fHe
Pi:'F ~!le ftl;!
DE~: file h.:li

Error Messages A
This appendix contains all of the error messages and conditions that you are likely to encounter
while using the Pascal system. They can be placed into the following categories; each category
is discussed in a subsequent section.

• Unreported errors - certain errors do not get reported by this implementation of Pascal.

• Boot-time errors - these are errors that occur while the Pascal system is booting (they
are reported by the system loader).

• Run-time errors - These are general errors which may occur while you are using the
system.

Run-time errors -10, -26, and -27 have special meanings:

• I/O System errors - When run-time error -10 occurs, there has been a problem
with the I/O system. The operating system then prints an error message from the
list of I/O system errors.

• I/O Library errors - When run-time error -26 occurs, there has been a problem
in an 10 library procedure.

• Graphics Library errors - When run-time error -27 occurs, there has been a
problem in a GRAPHICS library procedure.

• Loader/SEGMENTER errors.

• Compiler syntax errors.

• Assembler errors and conditions.

• Debugger errors and conditions.

Error Messages A-I

Unreported Errors
The following errors in Pascal programs are not reported by this implementation of the language.

• Disposing a pointer while in the scope of a WITH referencing the variable to which it points.

• Disposing a pointer while the variable it points to is being used as a var parameter.

• Disposing an uninitialized or NIL pointer.

• Disposing a pointer to a variant record using the wrong tagfield list.

• Assignment to a FOR-loop control variable while inside the loop.

• GO TO into a conditional structured statement.

• Exiting a function before a result value has been assigned.

• Changing the tagfield of a dynamic variable to a value other than what was specified in
the call to NEW.

• Accessing a variant field when the tagfield indicates a different variant.

• Negative field width parameters in a WRITE statement.

• The underscore character "_" is allowed in identifiers. This is permitted in HP Pascal,
but is not reported as an error when compiling with $ANSI$ specified.

• Value range error is not always reported when an illegal value is assigned to a variable of
type SET.

800t-Time Errors
Errors that occur while your system is booting will report a message like this:

IORESULT, ERROR: 0, 112

The value of IORESULT is shown first (0 in the above display). See the I/O System Errors section
for descriptions of those error numbers.

The value of ERROR is shown second (112 in the above display). See the Loader/SEGMENTER
Errors section for a description of those error numbers.

A - 2 Error Messages

Run-Time Errors
Errors detected by the operating system during the execution of a program generate one of the
error messages listed on this page (unless you trap it with a TRY .. RECOVER construct).

Note

Note that when error -10 occurs, the error message listed here will
not be shown; the message on the next page (in I/O System Errors)
will be shown instead.

When using a TRY .. RECOVER construct (which requires the $SYSPROG ON$ Compiler
option), the following numbers correspond to the value returned by the ESCAPECODE
function.

o Normal termination.
-1 Abnormal termination.
-2 Not enough memory.
-3 Reference to NIL pointer.
-4 Integer overflow.
-5 Divide by zero.
-6 Real math overflow. The number was too large.
-7 Real math underflow. The number was too small.
-8 Value range error.
-9 Case value range error.

-10 Non-zero 10RESULT. (See "I/O System Errors".)
-11 CPU word access to odd address.
-12 CPU bus error.
-13 Illegal CPU instruction.
-14 CPU privilege violation.
-15 Bad argument - SIN/COS.
-16 Bad argument - LN (natural log).
-17 Bad argument - SQRT (square root).
-18 Bad argument - real/BCD conversion.
-19 Bad argument - BCD/real conversion.
-20 Stopped by user.
-21 Unassigned CPU trap.
-22 Reserved.
-23 Reserved.
-24 Macro parameter not 0 .. 9 or a .. z.
-25 Undefined macro parameter.
-26 Non-zero 10E-RESULT. (See "I/O Library Errors".)
-27 Non-zero GRAPHICSERROR. (See "Graphics System Errors" .)
-28 Parity error in memory.
-29 Miscellaneous hardware floating-point error.
-30 Bad argument - arcsine/arccosine. Argument> l.
-31 Illegal real number.

Error Messages A-3

I/O System Errors
These error messages are automatically printed by the system unless you have enclosed the
error-producing statement in a TRY .. RECOVER construct. Within the RECOVER block, the
ESCAPECODE function returning a value of -10 indicates that one of the following errors has
occurred; you can determine which error has occurred by using the IORESULT function.

o No I/O error reported.
1 Parity (CRC) wrong. I/O driver will do several retries.
2 Illegal unit number - valid range is 1. .50.
3 Illegal I/O request (e.g., .read from printer).
4 Device timeout ..
5 Volume went off-line.
6 File lost in directory.
7 Bad file name.
8 No room on volume.
9 Volume not found.

10 File not found.
11 Duplicate directory entry.
12 File already open.
13 File not open.
14 Bad input format.
15 Disc block out of range.
16 Device absent or inaccessible.
17 Media initialization failed.
18 Media is write-protected.
19 Unexpected interrupt.
20 Hardware/media failure.
21 Unrecognized error state.
22 DMA absent or unavailable.
23 File size not compatible with type.
24 File not opened for reading.
25 File not opened for writing.
26 File not opened for direct access.
27 No room in directory.
28 String subscript out of range.
29 Bad string parameter on close of file.
30 Attempt to read past end-of-file mark.
31 Media not initialized.
32 Block not found.
33 Device not ready or media absent.
34 Media absent.
35 No directory on volume.
36 File type illegal or does not match request.
37 Parameter illegal or out of range.
38 File cannot be extended.
39 Undefined operatio~ for file.
40 File not lockable.
41 File already locked.
42 File not locked.
43 Directory not empty.
44 Too many files open on device.
45 Access to file not allowed.
46 Invalid password.
47 File is not a directory.
48 Operation not allowed on a directory.
49 Cannot create /WORKSTATIONS/TEMP _FILES.

A -4 Error Messages

50 Unrecognized SRM error.
51 Medium may have been changed.
52 File system is corrupt.
53 File system or file is bigger than 231 - 1 bytes.
54 No permission for requested access.
55 File system cache full.
56 Driver configuration failed.

Error Messages A-5

I/O Library Errors
When run-time error -26 occurs, there has been a problem in an I/O library procedure.
By importing the 10DECLARATIONS module, you can use the 10E_RESULT and IOER
ROR_MESSAGE functions to get a textual error description. For example:

$SYSPROG ON$

import IODECLARATIONS. GENERAL_3

begin
try

recover

end.

if ESCAPECODE = IOESCAPECODE then writeln (IOERROR_MESSAGE(IOE_RESULT));
ESCAPE(ESCAPECODE);

IOESCAPECODE is a constant (= -26) which you can import from the IODECLARATIONS
module. ESCAPE is a procedure and ESCAPECODE is a function; both are accessible when
you use the $SYSPROG ON$ Compiler option.

o No error.
1 No card at select code.
2 Interface should be HP-IB.
3 Not active controller/commands not supported.
4 Should be device address, not select code.
5 No space left in buffer.
6 No data left in buffer.
7 Improper transfer attempted.
8 The select code is busy.
9 The buffer is busy.

10 Improper transfer count.
11 Bad timeout value/timeout not supported.
12 No driver for this card.
13 No DMA.
14 Word operations not allowed.
15 Not addressed as talker/write not allowed.
16 Not addressed as listener/read not allowed.
17 A timeout has occurred/no device.
18 Not system controller.
19 Bad status or control.
20 Bad set/clear/test operation.
21 Interface card is dead.
22 End/ eod has occurred.
23 Miscellaneous-value of parameter ~rror.

306 Datacomm interface failure.
313 USART receive buffer overflow.
314 Receive buffer overflow.
315 Missing clock.
316 CTS false too long.
317 Lost carrier disconnect.
318 No activity disconnect.
319 Connection not established.
325 Bad data bits/parity combination.
326 Bad status/control register.
327 Control value out of range.

A-6 Error Messages

Graphics Errors
When run-time error -27 occurs, there has been an error in a GRAPHICS library routine.

By importing the DGL_LIB module, you can call the GRAPHICSERROR function which returns an
INTEGER value you can cross reference with the numbered list of graphics errors.

$SYSPROG ON$

import DGL_LIB;

begin
try

recover
if ESCAPECODE = -27

then writeln ('Graphics error #', GRAPHICSERROR,' has occurred')
else ESCAPE(ESCAPECODE);

end.

You may wish to write a procedure which takes the INTEGER value from GRAPHICSERROR
and prints the description of the error on the CRT. You could keep this procedure with your
program or, for more global use, in the System Library (normally SYSVOL:LIBRARY).

o No errors since last call to GRAPHICSERROR or INIT_GRAPHICS.

1 Graphics system not initialized.

2 Graphics display is not enabled.

3 Locator device not enabled.

4 ECHO value requires a graphic display to be enabled.

5 Graphics system is already enabled.

6 Illegal aspect ratio specified.

7 Illegal parameters specified.

8 Parameters specified are outside physical display limits.

9 Parameters specified are outside limits of window.

10 Logical locator and logical display use same device.

11 Parameters specified are outside virtual coordinate system boundary.

12 Escape function requested not supported by display device.

13 Parameters specified are outside physical locator limits.

Error Messages A-7

Loader/SEGMENTER Errors
Here is a list of errors that can be generated by a program that uses the SEGMENTER module
(or by the loader; see Boot-Time Errors):

100 .. 105 Field overflow trying to link or relocate something.

110 Circular or too deeply nested symbol definitions.

111 Improper link information format.

112 Not enough memory.

116 File was not a code file.

117 Not enough space in the explicit global area.

118 Incorrect version number.

-119/119 Unresolved external references.

120 Generated by the dummy procedure returned by find_proG.

121 unload_segment called when there are no more segments to unload.

122 Not enough space in the explicit code area.

SEGMENTER Errors
When one of these errors occurs while using the SEGMENTER module procedures, you
can determine which has occurred by using a TRY .. RECOVER construct and calling the
ESCAPECODE function in the RECOVER block.

Loader Boot-Time Errors
When an error occurs while booting, a message such as the following will be reported:

IORESULT. ERROR = O. 112

The second number indicates which loader error has occurred. (The first number indicates which
I/O system error has occurred; see the preceding I/O System Errors section for descriptions of
each error.)

A-8 Error Messages

Pascal Compiler Errors
The following errors may occur during the compilation of a HP Pascal program.

1 Erroneous declaration of simple type.
2 Expected an identifier.
4 Expected a right parenthesis ")".
5 Expected a colon ":".
6 Symbol is not valid in this context.
7 Error in parameter list.
8 Expected the keyword OF.
9 Expected a left parenthesis "(".

10 Erroneous type declaration.
11 Expected a left bracket "[".
12 Expected a right bracket "]".
13 Expected the keyword END.
14 Expected a semicolon ";".
15 Expected an integer.
16 Expected an equal sign "=".
17 Expected the keyword BEGIN.
18 Expected a digit following '.'.
19 Error in field list of a record declaration.
20 Expected a comma ",".
21 Expected a period ".".
22 Expected a range specification symbol " .. ".
23 Expected an end-of-comment delimiter.
24 Expected a dollar sign "$".
50 Error in constant specification.
51 Expected an assignment operator ":=".
52 Expected the keyword THEN.
53 Expected the keyword UNTIL.
54 Expected the keyword DO.
55 Expected the keyword TO or DOWNTO.
56 Variable expected.
58 Erroneous factor in expression.
59 Erroneous symbol following a variable.
98 Illegal character in source text.
99 End of source text reached before end of program.

100 End of program reached before end of source text.
101 Identifier was already declared.
102 Low bound greater than high bound in range of constants.
103 Identifier is not of the appropriate class.
104 Identifier was not declared.
105 Non-numeric expressions cannot be signed.
106 Expected a numeric constant here.
107 Endpoint values of range must be compatible and ordinal.
108 NIL may not be redeclared.
110 Tagfield type in a variant record is not ordinal.
111 Variant case label is not compatible with tagfield.
113 Array dimension type is not ordinal.
115 Set base type is not ordinal.
117 An unsatisfied forward reference remains.
121 Pass by value parameter cannot be type FILE.
123 Type of function result is missing from declaration.
125 Erroneous type of argument for built-in routine.
126 Number of arguments different from number of formal parameters.
127 Argument is not compatible with corresponding parameter.
129 Operands in expression are not compatible.

Error Messages A-9

130 Second operand of IN is not a set.
131 Only equality tests (= and < » allowed on this type.
132 Tests for strict inclusion « or » not allowed on sets.
133 Relational comparison not allowed on this type.
134 Operand(s) are not proper type for this operation.
135 Expression does not evaluate to a boolean result.
136 Set elements are not of ordinal type.
137 Set eleme~ts are not compatible with set base type.
138 Variable is not an ARRAY structure.
139 Array index is not compatible with declared subscript.
140 Variable is not a RECORD structure.
141 Variable is not a pointer or FILE structure.
142 Packing allowed only on last dimension of conformant array.
143 FOR loop control variable is not of ordinal type.
144 CASE selector is not of ordinal type.
145 Limit values not compatible with loop control variable.
147 Case label is not compatible with selector.
149 Array dimension is not bounded.
150 Illegal to assign value to built-in function identifier.
152 No field of that name in the pertinent record.
154 Illegal argument to match pass-by-reference parameter.
156 Case label has already been used.
158 Structure is not a variant record.
160 Previous declaration was not FORWARD.
163 Statement label not in range 0 .. 9999.
164 Target of nonlocal GOTO not in outermost compound statement.
165 Statement label has already been used.
166 Statement label was already declared.
167 Statement label was not declared.
168 Undefined statement label.
169 Set base type is not bounded.
171 Parameter list conflicts with forward declaration.
177 Cannot assign value to function outside its body.
181 Function must contain assignment to function result.
182 Set element is not in range of set base type.
183 File has illegal element type.
184 File param.eter must be of type TEXT.
185 Undeclared external file or no file parameter.
190 Attempt to use type identifier in its own declaration.
300 Division by zero.
301 Overflow in constant expression.
302 Index expression out of bounds.
303 Value out of range.
304 Element expression out of range.
400 Unable to open list file.
401 File or volume not found. ~
403 - 409 Compiler errors.

A-IO Error Messages

Compiler Options

600 Directive is not at beginning of the program.
601 Indentation too large for PAGEWIDTH.
602 Directive not valid in executable code.
604 Too many parameters to SEARCH.
605 Conditional compilation directives out of order.
606 Feature not in standard Pascal flagged by ANSI ON.
607 Feature only allowed when UCSD enabled.
608 INCLUDE exceeds maximum allowed depth of files.
609 Cannot access this INCLUDE file.
610 INCLUDE or IMPORT nesting too deep.
611 Error in accessing library file.
612 Language extension not enabled.
613 Imported module does not have interface text.
614 LINENUM must be in the range 0 .. 65535.
620 Only first instance of routine may have ALIAS.
621 ALIAS not in procedure or function header.
646 Directive not allowed in EXPORT section.
647 Illegal file name.
648 Illegal operand in compiler directive.
649 Unrecognized compiler directive.

Implementation Restrictions

651 Reference to a standard routine that is not implemented.
652 Illegal assignment or CALL involving a standard procedure.
653 CONST, TYPE, VAR, or MODULE cannot follow routine.
655 Record or array constructor not allowed in executable statement.
657 Loop control variable must be local variable.
658 Sets are restricted to the ordinal range 0 .. 8175 (default) or 0 .. 261999 (max).
659 Cannot blank pad literal to more than 255 characters.
660 String constant cannot extend past text line.
661 Integer constant exceeds the range implemented.
662 Nesting level of identifier scopes exceeds maximum (20).
663 Nesting level of declared routines exceeds maximum (15).
665 CASE statement must have non-OTHERWISE clause.
667 Routine was already declared FORWARD.
668 FORWARD routine may not be EXTERNAL.
671 Procedure too long.
672 Structure is too large to be allocated.
673 File component size must be in range 1..32766.
674 Field in record constructor improper or missing.
676 Structured constant has been discarded (cf. SAVE_CONST).
677 Constant overflow.
678 Allowable string length is 1..255 characters.
679 Range of case labels too large.
680 Real constant has too many digits.
681 Real number' not allowed.
682 Error in structured constant.
683 More than 32767 bytes of data.
684 Expression too complex.
685 Variable in READ or WRITE list exceeds 32767 bytes.
686 Field width parameter must be in range 0 .. 255.
687 Cannot'IMPORT module name in its EXPORT section.
688 Structured constant not allowed in FORWARD module.
689 Module name may not exceed 15 characters.
696 Array elements are not packed.

Error Messages A-11

697 Array lower bound is too large.
698 File parameter required.
699 32-bit arithmetic overflow.

Non-ISO Language Features

701 Cannot dereference variable of type ANYPTR.
702 Cannot make an assignment to this type of variable.
704 Illegal use of module name.
705 Too many concrete modules.
706 Concrete or external instance required.
707 Variable is of type not allowed in variant records.
708 Integer following "#" is greater than 255.
709 Illegal character in a "#" string.
710 Illegal item in EXPORT section.
711 Expected the keyword IMPLEMENT.
712 Expe.cted the keyword RECOVER.
714 Expected the keyword EXPORT.
715 Expected the keyword MODULE.
716 Structured constant has erroneous type.
717 Illegal item in IMPORT section.
718 CALL to other than a procedural variable.
719 Module already implemented (duplicate module).
720 Concrete module not allowed here.
730 Structured constant component incompatible with corresponding type.
731 Array constant has incorrect number of elements.
732 Length specification required.
733 Type identifier required.
750 Error in constant expression.
751 Function result type must be assignable.
900 Insufficient space to open code file.
901 Insufficient space to open REF file.
902 Insufficient space to open DEF file.
903 Error in opening code file.
904 Error in opening REF file.
905 Error in opening DEF file.
906 Code file full.
907 REF file full.
908 DEF file full.

A-12 Error Messages

Assembler Errors
Error messages are listed under the line in which they occur. At the completion of the assembly,
the number of errors will be displayed. If there are errors, there will be a directive for you to
check the location of the last error in the program. At that location there will be a description
of the error. Also listed will be the location of the error above it if one exists. In this manner,
all errors can be located without having to search the whole listing.

Error Messages
Address Register Expected.
Attempt to Nest Included Files.
Blank or EOl Expected.
Comma Expected.
Code Segment Starts at Odd Address.
Duplicate Definition of Symbol.
Error Reading Source File.
Error Reading Code File.
Error Writing Source File.
Error Writing Code File.
Expression is Improper Mode.
External Reference Not Allowed.
Failed to Open Include File.
File could not be found.

Field Overflow
A specification of the assembly instruction will not fit within the appropriate field of the I.llachine
instruction.

Illegal Constant.
Illegal Expression.
Illegal Operand Size for this Instruction.
Illegal Syntax.
Improper Addressing Mode.
Improper Use of Mode Declaration.
Symbol already has mode or declaration appears after first use of symbol.

Error Messages A-13

Debugger Error Messages/Conditions
ADDRESS ERROR
An odd address has been referenced when an even address is required.

ADDRESS FORMAT NOT ALLOWED
The *, <, >, and - format codes are allowed only if the object is type address.

BAD DIGIT
There is an invalid digit in a number, for instance 8 in an octal number, in the current command.

BAD SYSTEM NAME
In an sb command, the system name parameter is invalid.

BUSERROR
An address has been accessed which does not exist in the machine's configuration.

DIVIDE BY ZERO
The value to the right of the / symbol is zero.

DUPLICATE BREAK
GT or TT has specified a location which already has a break point defined.

EXPRESSION TOO COMPLEX
The expression requires too much stack space to execute; for example, having more than three
levels of parentheses.

FORMAT REQUIRES MORE DATA
An attempt has been made to display more bytes than the object contains.

INPUT OVERFLOW
An internal input stack has overflowed .

. . . IS UNDEFINED SYMBOL
An expression contains a reference to a symbol which the debugger does not recognize.

MORE
For a Q command, there is more data to be displayed. Press I Return I or I Enter I to view that data.

NEXT PROC
The current PN command has completed, and a new procedure has just started.

NO STATIC LINK
A WS command was given, but there is no STATIC link in the current stack frame.

A-14 Error Messages

NOW AT LINE ...
A line specified in an active break point has been encountered. The debugger is now waiting
for input.

NOW AT START
A program was started with the D command. The debugger now has control and is ready to
execute the first instruction of the program.

OVERFLOW
A number entered or the result of an arithmetic operation cannot be represented in 32 bits.

PC NOW AT ...
The instuction at the address specified in an active break point has been encountered. The
debugger is now waiting for input.

PC/SP HAS ODD ADDRESS
An attempt to return to the user code has been made under the above conditions.

PROC EXITED
The current PN or PX command has completed, and the procedure executing when the command
was given has exited.

RAM PARITY ERROR
A parity error in the system's main memory has been detected. The last operation may have
been aborted or incorrectly done.

SIZE ERROR
An entered value does not fit in a required space such as a register.

SIZE FIELD TOO BIG
In a format, the size field is too large for the object being dumped or the format specification
being used. The size field for I and U is 1..4. The default size for string data is the length of
the string.

STATION ADDRESS ERROR
In an sb command, the LANID (STATION ADDRESS) parameter was syntactically invalid.

SYNTAX ERROR
The syntax rules for the current command have been violated.

TOO MANY CODES
There are too many escape codes in the ET or ETN list.

TYPE ERROR
The parameter entered for a command is not the correct type; for example, using an alpha value
when a line number or address is required.

Error Messages A-15

UNIT NUMBER INVALID FOR BOOT
In an sb cornman, the MSUS parameter was coded as a unit number. That number references
a nonexistent device or a device from which you cannot boot such as a CRT.

USER TRAP 15 AT ...
A TRAP 15 instruction has been encountered which was not placed in the code by the debugger.
The debugger is now waiting for input.

WHAT?
The first characters of a command are not recognized.

VMELIBRARY Errors
When a VME error occurs while using the VME_DRIVER module procedures, you can deter
mine which has occurred by using a TRY .. RECOVER construct and calling the ESCAPECODE
function in the RECOVER block.

800 Range Error: Select Code <7 or > 31.

801 Tried to access the HP VMEbus Interface using an odd Select Code

802 Timeout error, the VMEbus System Controller does not grant the bus to the HP VMEbus
Interface within the amount of seconds specified in the last 'SET_TIMEOUT' call.

803 NumOfChar <0 or > declared size of Data in VME_StrRead.
NumOffiytes < 0 in VME_BlockRead or VME-BlockWrite.

805 Odd NumOffiytes when using Transfer_mode WordInc or WordFxd.

806 The VMEbus Interface Card is not an HP98646A VMEbus Interface Card.

A-16 Error Messages

Index

a
Absolute~addressing (of variables) ... 11-6
Access command (Filer) .. 5-26
Access rights:

HFS .. 5-8
SRM ... 3-8, 5-8, 15-39

Addresses:
I/O .. B-20
Memory .. B-19
RAM .. B-19
ROM .. B-20
System B-22

Adjust command (Editor) .. 4-28
ALIAS (Compiler option) .. 6-23
ALLOW _PACKED (Compiler option) ... 6-24
Alternate DAMs ... 18-21, 18-65
ANSI (Compiler option) .. 6-25
ANYPTR type .. 12-3
ANYVAR type .. 12-2
APPEND (files) .. 15-24, 15-25, 15-34
Assembler pseudo ops:

COM .. 7-30
DC .. 7-31
DECIMAL ... 7-32
DEF ... 7-32
DS .. 7-32
END ... " 7-33
EQU .. 7-33
INCLUDE .. 7-34
LIST .. 7-34
LLEN ... 7-34
LMODE ... 7-35
LPRINT ... 7-35
MNAME ... 7-35
NOLIST ... 7-35
NOOBJ .. 7-36
NOSYMS .. 7-36
ORG .. 7-36
PAGE ... 7-36
REFA ... 7-37
REFR ... 7-37
RMODE ... 7-38
RORG ... 7-38
SMODE ... 7-39

Index 1

SPC ... 7-39
SPRINT ... 7-39
SRC ... 7-40
START .. 7-40
TTL ... 7-40

Assembler:
Addressing modes ... 7-26
Declaring global variables ... 7-9
Declaring module name ... 7-8
DEF table ... 7-7
Error recovery .. 7-13
Errors ... A-13
Exam pIe modules ... 7-41
Exception coding .. 7-15
Expressions ... 7-24
EXT Table .. 7-8
EXTERNAL procedures ... 7-16
IMPORT text ... 7-6
Instruction format ... 7-17
Introduction ... 7-1
Invoking .. 7-2
Listing ,.. 7-2
Local variables .. 7-11
Module initialization. .. 7-13
Modules .. 7-5
Object file ... 7-3
Opcode size suffix ... 7-20
Opcodes ... 7-19
Passing Parameters ... 7-8
Pseudo ops ... 7-30
Source file ... 7-2
Symbols .. 7-22
Use of the stack ... 7-15

Auto-Configuration:
Introduction ,.. 18-1
Process .. 18-8
Standard ... 18-9
TABLE program .. 18-7
Verifying modifications .. 18-69

AUTOKEYS files ... 18-7, 18-37
AUTOSTART files .. 18-7, 18-37

b
Backing up volumes ',' .. 5-13
BACKUP:

Full ... 20-3
Incremental .. 20-4
Limitations ... 20-8
Restore .. 20-5
Table-of-Contents ... 20-7

2 Index

Utility ... 20-2
Verification .. 20-10

Bad sector command (Filer) .. 5-29
Blocked and Unblocked Units .. 3-3
Blocked devices .. 18-10
Boot files (Renaming) ... 18-35
Boot ROM ... 18-4
Boot volume (defined) ... 18-6
Boot-time errors ... A-2
Booting from EPROM .. 19-20
Booting process ... 18-4
Breakpoints (Debugger) .. 9-13
BRSTUFF module (CTABLE) ... 18-63
Bubble memory:

Configuration ... 19-3
Driver module .. 19-5
Error correction .. 19-10
File System access of .. 19-10
Hardware device ... 19-11
Initializing .. 19-11
Interrupts ... 19-11
Introduction .. 19-1
Using .. 18-19, 19-3

C
CALL ... 12-4
CALLABS (Compiler option) ... 6~26
Cartridge tape drives ... 19-35
Change command (Filer) .. 5-18, 5-30
Changing memory contents (Debugger) .. 9-22
Chapter previews .. 2, 4
Character sets ... C-l
Clock .. 22-4
CLOSE (files) .. 15-25
Coalescing hard-disc volumes .. 18-14, 18-26
CODE (Compiler option) .. 6-27
Code file specification ... 9-6
CODE_OFFSETS (Compiler option) .. 6-28
Command Interpreter. .. 18-6
Command reference:

Debugger .. 9-37
Li brarian ... 8-24

Command summary:
Debugger ... 9-34, D-8
Editor .. D-2
Filer .. D-4
Librarian .. D-6
Main Command Level .. D-l

Commands:
eXecute (Main level) .. 2-5

Index 3

Initialize (Main Level) .. 2-6
Main Level .. 2-3, 2-4
Memory volume (Main Level) .. 2-7
New sysvol (Main Level) .. 2-9
Permanent (Main Level) ... 2-10
Run (Main Level) ... 2-11
Stream (Main Level) ... 2-12
Syntax diagram .. 2-4
User restart (Main Level) .. 2-15
Version (Main Level) .. 2-16
What (Main Level) .. 2-18

Compatibility hardware ... 22-10
Compiler option:

ALIAS ... 6-23
ALLOW _PACKED .. 6-24
ANSI .. 6-25
CALLABS ... 6-26
CODE ... 6-27
CODE_OFFSETS ... 6-28
COPYRIGHT .. 6-29
DEBUG ... 6-30
DEBUG ON .. 6-55
DEF ... 6-31
FLOAT_HDW .. 6-32
General .. 6-22
HEAP _DISPOSE ... 6-33
IF ... 6-34
INCLUDE 6-35
IOCHECK ... 6-36
LINENUM ... 6-37
LINES ... 6-38
LIST .. 6-39
OVFLCHECK .. c •••••• 6-40
PAGE ... 6-41
PAGEWIDTH .. 6-42
PARTIAL_EVAL .-... 6-43
RANGE ... 6-44
REF ... 6-45
SAVE_CONST .. 6-46
SEARCH .. 6-47
SEARCH_SIZE ... 6-48
STACKCHECK ... 6-49
STACKCHECK_ON ... 6-56
SWITCH_STRPOS .. 6-50
SYSPROG -..................... 6-51, 17-1
TABLES ... 6-52
UCSD ... 6-53
WARN ... 6-54

Compiler:
Absolute address (of variables) 11-6

4 Index

Absolute addressing (of variables) ... 11-6
ANYPTR type 11-6
CALL ... 12-4
Error trapping and simulation .. 17-1
Errors .. 6-19, 6-21
errors ... A-9
Function calls ... 6-58
Function results ... 6-59
Global variables ... 6-56
INCLUDE files .. 6-18
Introduction ... 6-1
Invoking .. 6-3
IOCHECK ... 17-3
IORESULT function ... 17-2
Listing .. 6-5
Mixing DISPOSE and RELEASE ... 16-4
Modules .. 6-7
Parameter passing ... 6-58
Proced ure calls ... 6-56
Relaxed typechecking .. 12-2
Running the program ... 6-5
SEARCH option .. 6-14
Separate module compilation ... 6-13
Stack usage .. _ 6-55
Static links ... 6-59
Strategy for compiling modules .. 8-5
UCSD options .. 6-53
Variable size .. 11-5
Workfile .. 6-6

Compiling modules ... 8-5
Configuration:

Example of SRM ... 18-72
Interfaces ... 18-16
Modifying the standard ... 18-26
Multi-disc SRM .. 18-83
Verifying changes to .. 18-69

Copy command (Editor) .. ".. 4-30
Copying discs ... 5-13
Copying files .. 5-16
Copying files (to SRM) .. 18-78
Copying system files .. 18-34
COPYRIGHT (Compiler option) .. 6-29
Creating an HFS directory ... 5-14
Creating an SRM directory .' .. 5-14
CRT highlight characters ... C-12
CS80 discs (configuration) ... 18-26
CTABLE program:

BRSTUFF module ... 18-63
Commentary .. 18-51
Compiling. ~ .. 18-69

Index 5

CTR module .. 18-62
Device address vectors ...•.... 18-54
Editing ... 18-68
Flexible disc units .. 18-53
Local printers .. 18-53
Modifying ... 18-50
Modifying for Bubble cards ... 19-8
OPTIONS module .. 18-52
Running .. 18-69
SCANSTUFF module ... 18-63
Secondary DAMs ... 18-52

CTR module (CTABLE) .. 18-62
Cursor wheel ~. .. 4-8, 4-21

d
DAMs (Directory access methods) 2-7, 18-23, 18-52
Data types:

ANYPTR .. 12-3
ANYVAR .. 12-2

Data-Cartridge tape drives .. 19-35
DEBUG (Compiler option) ... 6-30
DEBUG ON (Compiler option) ... 6-55,9-2
Debugger commands:

B ... 9-39
BA .. 9-39
BC .. 9-40
BD .. 9-40
BS .. 9-41
CALL ... 9-42
D ... 9-43
DA .. 9-45
DG .. 9-45
EC .. 9-46
ET .. 9-46
ETC ... 9-47
ETN ... 9-47
FB .. 9-48
FH .. 9-48
FI .. 9-48
FO .. 9-48
FU .. 9-48
G ... 9-49
GF .. 9-49
GT .. 9-50
GTF ... 9-50
IF, ELSE, END ... 9-51
OL,OW,OB .. 9-53
PN .. 9-54
PX .. 9-54
Q ... 9-55

6 Index

QE ... 9-55
QS .. 9-55
Register operations .. 9-56
sb (system boot) .. 9-58
Soft key commands .. 9-57
T ... 9-58
TD .. 9-59
TQ .. 9-59
TT .. 9-59
WD ... 9-60
WR .. ' 9-60
WS .. 9-60

Debugger:
Breakpoint Table .. 9-15
Breakpoints .. 9-13
Changing memory contents ... 9-22
Clearing Breakpoints .. 9-14
Code file specification ... 9-6
Command reference ... 9-37
Command screen ... 9-7
Command summary ... 9-34, D-8
DEBUG Compiler option 9-2
Default display formats .. 9-12
Display formats ... 9-10
Displaying data .. 9-9
Errors ... A-14
Examining consecutive memory ... 9-20
Examining variables ... 9-18
Example program ' .. 9-2
Exception trapping .. 9-24
Executing a number of statements ... 9-16
Expressions ... 9-37
Formats for structured variables. .. 9-21
Generating Escapes .. 9-25
Input formats ... 9-12
Introduction ... 9-1
Invoking .. 9-6
Is it installed? .. 9-5, 9-31
Key notation .. 9-5
Key board .. 9-30
Loading ... 9-1, 9-4
Named Reboot .. 9-27
Pause function .. 9-16
Prompt ... 9-7
Queue ... 9-9
Sample session ... 9-2
Screen dumps .. 9-8
Single-stepping .. :.. 9-7
Slow program execution ... 9-7
Stack frame .. 9-17

Index 7

Static and dynamic links ... 9-23
Tracing program flow .. 9-17

DEF (Compiler option) .. 6-31
DEF table. .. 7-7, 8-27
DEF table command (Librarian) .. 8-18
Default display formats (Debugger) .. 9-12
Default volume ... 2-18, 3-4, 5-3
Define Source ... 8-28
Delete command (Editor) .. 4-32
Deleting files .. 5-19
Device address vectors (CTABLE) .. 18-54
Device classes (TABLE program) ... 18-10
Device drivers ... 18-38
Device priority (while booting) ... 18-11
Device-driver modules ... 18-7
Direct access files .. 15-28
Directory access methods (DAMs) 2-7, 3-10, 18-21
Directory path syntax .. 3-6
Disassembly of a module ... 7-43
Disc drives .. 3-2
Disc interleave ... 15-41
Disc performance ... 18-18
Discs (general) ... 3-1
Discs (system) .. 18-5
Display formats (Debugger) .. 9-10
Displaying data (with Debugger) ... 9-9
Displays (Series 200/300) .. 22-2
DISPOSE .. 16-3
DMA card (configuration) .. 18-3
Drive numbers ... 3-3
Duplicate command (Filer) ... 5-32

e
Editor command:

Adjust ... 4-28
Copy .. 4-30
Delete ... 4-32
Equals (=) ... 4-34
Exchange .. 4-53
Find '. .. 4-35
Insert .. 4-37
Jump .. 4-40
Margin ... 4-41
Page ... 4-42
Quit ... 4-43
Replace .. 4-45,
Set .. 4-48
Verify .. 4-52
Zap .. 4-55

Editor:

8 Index

Anchor 0 4-21
Backing up your file 0000000000000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-20
Changing text 0 4-11
Command summary 00 0 0 0 000 D-2
Confirming or aborting commands 0 4-7
Copying text from other files 0 4-6
Creating a text file 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 •• 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 4-3
Creating text 0 0 • 0 0 • 0 • 0 • 0 0 • 0 0 0 • 0 0 0 • 00 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 o. 4-4
Cursor 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 • 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 •• 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 4-21
Deleting text . 0 0 0 0 • 0 • 0 0 0 0 • 0 0 0 • 0 ••• 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 0 0 • 0 0 • 0 •• 0 0 0 0 0 0 0 0 0 0 4-9
Duplicating text 0 0 • 0 0 0 • 0 0 • 0 0 0 • 0 0 0 • 0 0 0 0 0 ••• 0 0 0 • 0 0 0 0 0 0 0 • 0 0 • 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-11
Entering the 0 0 • 0 0 • 0 0 0 0 0 0 0 •• 0 0 .0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 • 0 0 0 0 0 ••• 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 4-2
Exiting the Editor .000 00000000.00000 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 • 0 0 00 0 0 4-19
File size 0 0 0 • 0 0 0 0 0 0 • 0 • 0 • 0 0 • 0 • 0 • 0 • 0 0 • 0 0 • 0 0 •• 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 0 4-22
Finding text patterns 0 0 0 0 0 0 0 0 •• 0 0 0 0 • 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 4-11
Formatting text 0 0 0 • 0 0 0 ••• 0 0 0 •• 0 0 0 0 • 0 0 • 0 0 0 •• 0 0 0 0 0 0 0 0 • 0 0 • 0 • 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 4-16
Introduction o. 0 0 0 0 • 0 0 0 0 0 0 • 0 0 ••• 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 •• 0 0 4-1
I/O errors . 0 0 0.0 0 0 0 • 0 0 0 • 0 0 0 0 • 0 •• 0 • 0 0 0 ••• 0 ••• 0 0 0 0 0 • 0 ••• 0 • 0 0 0 •• 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 4-24
Margining text 0 0 0 0 • 0 0 0000.00 •• 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 000000. 000 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-16
Moving text 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 • 0 • 0 •• 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 4-11
Moving the cursor o. 0 0 0 0 0 0 • 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 • 0 0 0 0 0 0 0 0 •• 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 4-8
Recovering deleted text 0 0 0 • 0 • 0 • 0 • 0 0 0 0 •• 0 •••• 0 0 • 0 0 0 0 0 •• 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 •• 0 0 0 0 •• 4-11
Setting the environment 0 0 0 • 0 • 0 •• 0 0 • 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 ••• 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 • •• 4-19
Storing your file 00.000 0.000 0 0 •• 0 0 0 0 • 0 •• 0 0 0 0 • 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 • 0 0 ••• 0 0 0 0 • 0 0 4-5, 4-19
Stream files 0 0 0 0 • 0 0 • 0 0 0 •••• 0 0 •••• 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 4-24
Text file structure o. 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 4-23
Using wor kfiles 0 0 0 0 0 0 0 0 0 0 0 0 0 ••• 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 •• 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 •• 4-24
Window 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 • 0 0 0 0 0 •• 0 0 0 0 0 0 • 0 0 0 • 0 • 0 0 • 0 0 0 0 • 0 0 0 0 0 0 • 0 0 0 0 0 0 4-21

EPROM memory:
As the system volume 00000.00 •• 000000000 •• 0 •• 0 0 0 0 0 0 0 0 0 0 0 00.0000.000000.00. 0 0 19-20
Blank check . 0 0 0 0 0 • 0 0 0 •• 0 • 0 0 •• 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 • 0 0 0 0 0 • 0 • 0 0 • 0 0 0 19-27
Burn failure .0 •• 00.0.0000 •• 0 •• 0 0 0 0 0 0 0 0 0 •• 0 0 • 0 • 0 0 0 0 ••• 0 •• 0 000 0 0 0 0 0 0 000 0 0 0 0 o. 19-29
Burn rate 00 0 0 0 0 •• 0 0 0 00000. 0 0 • 0 0 0 0 0 0 0 0 0 0.000.00000.0. 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 00 0 19-25
Check failure 0 •• 0000.0 •• 0.00 •• 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 • 0 0 0 0 0 0 • 0 000 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 o. 19-29
Configuration changes . 0 0 0 0 0 0 •• 0 • 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 • 0 '0 0 0 0 0 0 0 • 0 0 00 0 19-13
Configuration modifications 0000 .00.000000000.00 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 • 0 0 19-32
Driver module 00000000 •• 00.0 •• 000000000000000.00000 •• 0.0000 •• 00. 0 0 0 • 0 0 0 0 0 0 0 19-30
Driver modules 0 0 0 • 0 0 0 0 0 0 0 0 0 •• 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 •• 0 • 0 19-13
Empty sockets 000 •• 000.00000 •• 00000000000.000. 0 0 0 0 0 0 • 0 • 0 0 •• 0 •• 0 0 0 0 •• 0 0 0 0 0 0 0 19-26
File system access o. 0 0 0 • 0 0 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 ••• 0 0 0 0 0 0 0 0 0 • 0 0 •• 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 19-34
Headers o. 0 0 0 0 • 0 0 0 • 0 0 • 0 • 0 • 0 ••• 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 • 0 • 0 • 0 0 • 0 • 0 •• 0 0 0 0 • 0 0 0 0 0 19-20
Introduction 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 0 •• 0 • 0 0 0 0 0 0 0 0 •• 0 •• 0 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 •• 0 0 • 0 • 0 0 • 0 • 0 19-1
Memory addresses .. 0 0 0 •• 0 0 0 0 •• 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 •• 0 0 0 0 0 0 • 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 19-17
Memory card installation 0 0 0 0 0 •• 0 • 0 • 0 00.000.0000.00000 •• 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 •• 19-16
Overview of using 0.00 0 • 0 • 0 • 0 •• 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 • 0 000 0 •• 0 .00 0 0 0 0 • 0 0 • 0 0 • 0 0 0 0 0 0 0 19-12
Programmer card installation 0 •• 0 • 0 0 0 0 0 0 0 0 0 0 •• 0 .00000 •• 0 000 0 •• 0 • 0 0.000 0 000 00 0 19-14
Programmer card select code .0.000 0 0 0 0 0 00.00 0 0 0 0 000 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 19-14, 19-25
Programming utility 00 0000.000. 0 0 •• 0 0 0 • 0 0 0 0 •• 0 0 0 0 0 0 0 •• 0 .0.00 00.00 0 0 0 0 • 0 0 0 0 0 0 19-19
Transfer utility 0 0 0 0 • 0 0 0 0 0 0 0 •••• 0 0 0 0 0 0 0 0 0 •• 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 •• 0 0 0 •• 0 0 0 0 0 0 0 0 •• 19-23
Transferring files 0 0 • 0 0 0 0 • 0 0 • o •• 0 •• 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 • 0 0 • 0 0 0 0 • 0 0 0 o. 19-21

Index 9

Transferring volumes 0000 000 19-20, 19-28
Using 0 18-19, 19-12

Equals (=) command (Editor) 0 4-34
Errors:

Assembler 0 • 0 • 0 • 0 •• 0 ••• 0 0 • 0 •• 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 A-13
Boot-time 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 • 0 0 • 0 0 •• 0 • 0 •• 0 0 0 0 • 0 0 0 0 •• 0 0 •• 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 •• 0 0 A-2
Compiler 0 0 0 0 0 • 0 0 -0 • 0 0 0 0 0 • 0 0 0 0 •• 0 0 0 • 0 0 • 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 A-9
Debugger 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 .- 0 0 0 0 0 0 0 •• 0 • 0 • 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 • 0 • 0 0 A-14
Graphics errors . 0 • 0 0 0 0 • 0 • 0 • 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 • 0 A-7
I/O library 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 • 0 •• 0 • 0 0 0 • 0 0 0 • 0 0 ••• 0 0 0 0 0 0 0 • 0 0 A-6
I/O system 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 •• 0 •• 0 • 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 •• 0 0 • 0 0 A-4
Loader /Segmenter . 0 •• 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 •• 0 0 • 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 A-8
Messages 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 0 0 • 0 0 • 0 0 0 0 0 0 • 0 0 • 0 0 A-I
Recovery 0 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 • 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 • 0 • 0 7-13
Run-time 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 • 0 0 • 0 • 0 0 • 0 • 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 A-3
Syntax 0000000000000000000.0.0000000000 •• 000000000000.00000 0 0.0000.0000000.00 6-4
Trapping and simulation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 • 0 17-1
VMELIBRARY 0.000000.000000000000000.000000.0000000.0.00000.0000 0 0 0 0.00.0 A-16

Examining consecutive memory (Debugger) 00.00000.0000000.00000000.0000000000000 9-20
Examining variables (Debugger) o. 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 •• 0 • 0 0 0 0 • 0 0 0 • 0 • 0 0 • 0 0 0 0 0 •• 0 0 •• 9-18
Exception coding 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 7-15
Exception trapping (De bugger) 0 0 0 0 0 0 0 0 0 0 0 0 • 0 •••• 0 9-24
eXchange command (Editor) .. 0 0 • 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • • •• 4-53
eXecute Command (Main Level) 0 0 •• 0 0 • 0 0 0 ••• 0 0 ••••• 0 0 0 •••• 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 2-5
EXPORT .. 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 • 0 0 0 0 0 0 0 0 ••• 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 8-29
Expressions (Debugger) 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 •• 9-37
EXT Table 0 0 0 0 0 •• 0 0 • 0 0 0 •••• 0 0 • 0 0 0 0 • 0 0 0 0 0 • 0 • 0 0 • 0 00 0 • 0 •• 0 • 0 0 0 0 0 • 0 • 0 • 0 • 0 0 0 •• 7-8, 8-28
EXT table command (Librarian) 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 • 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 8-18
Extended directory command (Filer) . 0 • 0 0 0 0 0 •• 0 0 • 0 0 0 0 0 •• 0 • 0 0 •••• 0 0 0 0 • 0 0 • 0 0 0 o. 5-7, 5-34
Extensions (to Pascal) . 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 ••• 0 0 0 0 • 0 • 0 0 0 • 0 0 0 0 ••• 0 0 0 0 0 • •• 10-10
EXTERNAL procedures 0000000000.0000000.00000.0.0 •• 0.00.0.000 •• 00000000.0 0 0 0 7-16

f
Failure of TABLE program 0 •• 0 • 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 18-13
File directory .. 0 0 • 0 • 0 •• 0 0 0 0 0 0 0 0 0 0 •• 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 o. 8-2
File specification 0 0 • 0 0 0 • 0 •••••• 0 •••••••••••••••• 0 •• 0 • 0 ••••••• 0 0 • 0 ••• 0 0 •••••• 0 • 0 0 3-6
File System (Introduction) ... 00000 ••••• 0 ••• 00000 ••••• 0 •• 00.0000 •• 000 •• 0 0 0 • 0.0 00. 3-1
File types 0 ••• 0 •• 0 0 0 0 0 • 0 • 0 0 • 0 0 •••• 0 0 • 0 0 ••• 0 0 0 0 ••• 0 0 0 ••• 0 0 0 0 0 0 0 0 •• 0 0 •• 0 0 0 •••• 0 0 3-13
Filecopy command (Filer) 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 • 0 • 0 0 0 •••• 0 0 0 •• 0 • 0 •••• 0 0 ••• 0 0 5-13, 5-16, 5-37
Filer:

Access command 0 0 0 0 ••• 0 •• 0 0 • 0 0 0 0 ••••• 0 •••• 0 •• 0 0 0 0 •••• 0 0 0 •• 0 • • • •• 5-26
Bad sector command ... 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 •• 0 • 0 0 ••••••••••• 0 5-29
Change command o. 0 • 0 0 0 •• 0 ••• 0 ••• 0 •• 0 0 • 0 ••• 0 ••••• 0 •• 0 0 •• 0 •• 0 0 ••• 0 •• 0 o. 5-18, 5-30
Command summary .. 0 0 0 ••••••• 0 0 0 0 •• 0 0 • 0 0 •••••••• 0 ••••••••• 0 0 •• 0 •• 0 0 0 ••••• o. D-4
Confirming or aborting commands 0 0 0 0 0 0 0 0 • 0 •• 0 0 0 0 0 0 0 • 0 •• 0 • 0 0 0 0 0 •• 0 0 ••• 0 0 •••• 0 •• 5-2
Creating a directory (HFS) 0.0.0 •••••••••• 0 ••••• 0 0 0 •• 0 0 ••• 0 0 •••• 0 ••• 0 0 0 .0 •••• 0 5-14
Creating a directory (SRM) 0 0 • 0 ••• 0 • 0 0 •• 0 0 0 0 0 • 0 0 0 0 •• 0 0 •• 0 0 0 0 0 •• 0 0 0 •••• 0 • • • • •• 5-14
Deleting files 0 • 0 • 0 0 • 0 0 •• 0 • 0 0 • 0 ••••• 0 • 0 0 0 •• 0 0 • 0 0 0 ••••• 0 0 0 •••• 0 • 0 •• 0 0 0 ••• 0 •• 0 •• 5-19
Duplicate command 0 ••• " 0 • 0 • 0 0 0 0 0 0 0 • 0 0 0 ••• 0 ••• 0 • 0 •• 0 ••• 0 0 0 •• 0 0 0 0 •• 0 • • • •• 5-32
Duplicate_link ... 0 0 0 • 0 0 •• 0 0 0 0 0 0 • 0 0 • 0 0 0 0 •••• 0 • 0 ••• 0 •••• 0 ••••• 0 ••••••••• 0 ••• 0 18-78

10 Index

Entering the Filer .. 5-2
Extended directory command ... 5-7, 5-34
Filecopy command .. 5-13, 5-16, 5-37
Get command .. 5-40
HFS access rights .. 5-8
Hfs command ... 5-41
Introduction '. .. 5-1
Krunch command ... 5-44
Leaving the Filer .. 5-20
List-directory command .. 5-6, 5-46
Make command ... 5-48
New command .. 5-50
Prefix command .. 3-5, 5-51
Prompt .. 5-2
Quit command .. 5-53
Remove command ... 5-54
Removing files ... 5-1 9
Save command .. 5-56
SRM access rights .. 5-8
Stream command ... 2-12
Translate command. .. 3-15, 5-11, 5-57
Unit directory command ... 5-60
Volume back-up ... 5-13
Volumes command .. 3-2, 5-61
What command ... 5-62
What devices are accessible? ... 5-3
Wildcards .. '.' " 5-10
Workfile .. 5-20
Zero command .. 5-63

Files:
APPEND ... 15-24, 15-25, 15-34
Buffer Variable 15-22
CLOSE ... 15-25
Creating a text file ... 4-3
Current component ... 15-22
Debugging. .. 15-40
Declaring a TEXT file .. 15-30
Deleting .. 5-1 9
Disposing of ... 15-25
FA .. 15-22
File buffer ... 15-22
File modes .. 15-22
File position ',' .. 15-22
File specification (syntax) .. 5-24
File variable .. 15-6
Formatted I/O ... 15-33
General discussion .. 3-5
GET ... 15-27
HFS names ... 3-12
HFS· permissions ... 15-40

Index 11

Interchange between BASIC and Pascal .. B-18
LIF file names ... 3-10
Lookahead mode ... 15-23
MAXPOS ... 15-30
N ames to avoid .. 3-9
Naming conventions .. 3-6
Object (definition of) ... 8-2
Object modules .. 6-1
OPEN .. 15-24, 15-25, 15-34
Opening existing ... 15-25
Pascal operations .. 15-20
POSITION ,.. 15-30
Programming with .. 15-1
PUT .. 15-27
READ .. 15-26
Read mode .. 15-22
READDIR .. 15-28
Removing .. 5-19
Renaming .. 5-18
RESET ... 15-25, 15-34
REWRITE ... 15-5, 15-24, 15-26, 15-34
SEEK .. 15-29
Sequential operations ... 15-26
Size specification .. 3-12, 15-21
Specification ... 3-6
SRM concurrent file access ... 3-24, 15-37
SRM names .. 3-11
Stream files. .. 2-12, 4-24
Structure of text files .. 4-23
Suffixes .. 3-13
Suppressing the suffix .. 3-15
Syntax of name .. 3-6
Systm .. 18-4, 18-6
Temporary .. 15-21
Text file representation .. 15-31
Textfile I/O ... 15-30
Translating between data types ... 3-15
Types .. 3-10, 3-13, 15-4
Wildcards ... 3-16, 5-10
Workfile .. 4-24, 5-20, 6-6
WRITE ... 15-27
Write mode. .. 15-23
WRITEDIR ... 15-29
WSl.0 file names .. 3-18

Find command (Editor) .. 4-35
Flags .. 8-29
Flexible discs (CTABLE) .. 18-53
FLOAT_HDW (Compiler option) .. 6-32
Floppy drives (in the Unit Table) ... 18-11
Formats for structured variables (Debugger) 9-21

12 Index

Formatted I/O (files) ... 15-33
Full backup. .. 20-3
Function calls ... 6-59
Function results ... 6-59

9
General Value or Address Record (GVR) ... 8-30
Generating Escapes (Debugger) ... 9-25
Get command (Filer) .. 5-40
GET (files) .. 15-27
Global base 6-56
Global space .. 2-16
Global variables ... 2-10, 2-15, 6-56, 7-9
Glossary .. E-1
Glossary (Librarian) ... 8-27
Graphics errors .. A-7
Graphics input and output ,............................ 18-17

h
Hard disc:

Partitioning ... 18-11, 18-14, 18-55
Unit Numbers ... 18-11
Volumes .. 18-14, 18-;-26

Heap Management:
DISPOSE .. 16-3
MARK .. 16-2
RELEASE ... 16-2

HEAP _DISPOSE (compiler option) .. 6-33
Hfs command (Filer) 5-41
HFS:

Access rights .. 5-8
Creating a directory ... 5-14
File names ... 3-18
File permissions .. 15-40
HFSCK utility ... 21-10
Installing driver modules .. 18-23
Introduction .. 3-25
MKHFS utility. .. 21-2
OSINSTALL utility .. 21-5
Overview ... 21-1
Setup .. 21-1
System volume. .. 18-68

HFSCK utility (HFS) ... 21-10
Hierarchical directories (HFS) ... 3-25
Hierarchical directories (SRM) .. 3-20
High-speed disc interface (configuration) .. 18-18
Highlight Characters .. C-12, C-13
History of the system ... B-1

Index 13

•
I

ID PROM .. 22-7
IF (Compiler option) .. 6-34
IMPLEMENT .. 8-30
IMPORT ... 8-30
IMPO RT text ... 7-6
IMPORT text command (Librarian) ... 8-18
INCLUDE (Compiler option) ... 6-35
INCLUDE files (Compiler) ... 6-18
Incremental backup .. 20-4
Initialization Library file ... 18-5
Initialize Command (Main Level) ... 2-6
Initializing discs .. 15-42, 18-27
Initializing modules .. 7-13
INITLIB file:

Adding modules for SRM " .. 18-80
adding modules to .. 18-38
Introduction .. 18-5
Library .. 18-7
module descriptions .. 18-38
renaming .. 18-35
required order of modules ... 18-38

Input formats (Debugger) .. 9-12
Insert command (Editor) ... 4-37
Integer numb1ir range .. 13-1
Interchange of files ... B-18
Interface text .. 7-5, 7-6
Interface:

Drivers ... 18-41
HP 98265 SCSI bus interface card .. 18-3, 18-18
HP 98546 Display .. 22-10
HP 98620 DMA .. 18-16
HP 98622 GPIO ... 18-16
HP 98624 HP-IB ,... 18-16
HP 98625 (configuration) ... 18-3
HP 98625 High-speed disc (HP-IB) 18-16, 18-18
HP 98626 RS-232 serial ... 18-16
HP 98627 Color output ... 18-16
HP 98628 Datacomm ... 18-16
HP 98629 SRM .. 18-17
HP 98630 Breadboard .. 18-17
HP 98635 Floating-point math ... 18-17
HP 98643 and built-in LAN ... 18-17
HP 98644 RS232 serial .. 18-17
HP 98646 VMEbus ... 18-17
HP 98658 SCSI bus interface card 18-3, 18-18
HP built-in Parallel interface '. .. 18-17
HP-Human Interface Link (HP-HIL) .. 18-44

Interleave, discs .. 15-41

14 Index

I/O:
Addresses .. B-20
Li brary errors .. A-6
Memory map ... B-20
System errors .. A-4

10CHECK (Compiler option) ' 6-36
10RESULT function .. 17-2, 17-3

JSR instruction (68000)
Jump command (Editor)

.
J

k

6-56
4-40

Katakana display characters .. C-I0
Kernel (operating system) .. 18-5
Key notations (Debugger) .. 9-5, 9-30
Key notations in text ... 2-2
Keyboards ... 22-6
Knob .. ~........ 4-8, 4-26
Krunch command (Filer) ... 5-44

I
Language extensions .. 10-10
Length of strings .. 14-1
LIBRARIAN file .. 8-31
Librarian:

Adding modules to System Library .. 8-10
Command summary .. D-6
Creating a boot file .. 8-23
Creating libraries 8-12
DEF table .. 8-27
DEF table command ... 8-18
Define Source ... 8-28
Detailed file information ... 8-17
EXPORT .. 8-29
EXT table 8-28
EXT table command .. 8-18
Flags .. 8-29
General Value or Address Record (GVR) 8-30
Glossary ... 8-27
IMPLEMENT .. 8-30
IMPORT ... 8-30
IMPORT text command ... 8-18
Introduction ... 8-1
Invoking ... 8-10
Libraries .. 8-2
Linking object files together .. 8-14
Mass storage requirements. .. 18-45

Index 15

Mass storage setup ... 8-9
Object file '. .. 8-31
Object module " .. 8-31
REF tables ... 8-32
Reference Pointer ... 8-32
Text Record '. .. 8-33
Unassemble commands .. 8-19, 8-21
What it does '. .. 8-3

Libraries ... 18-7
LIBRARY file .. 8-1, 8-31
Library:

Definition of .. 8-31
Overview .. 8-2
System 8-33

LIF file names .. 3-10
Line length limitation ... 4-51, 15-9
LINENUM (Compiler option) ... 6-37
LINES (Compiler option) .. 6-38
LINK instruction (68000) ... 6-56, 7-11
Linking object files .. 8-14
LIST (Compiler option) .. 6-39
List-directory command (Filer) .. 5-6, 5-46
Listing of files. .. 5-11
Loader jSegmenter errors .. A-8
Loading a system. .. 18-4
Local printers (CTABLE) ... 18-53
Local variables .. 7-11
LOCKABLE files .. 15-34
Logical unit numbers .. 18-8
Logical units ... 3-3
Logical volumes (hard discs) ... 18-11, 18-14

m
Main Command Level .. 2-1, 2-4
Main Command Prompt .. 2-1
Main Level Command summary .. D-1
Main Level commands .. 2-3, 2-4
Make command (Filer) ... 5-48
Manualoverview ... 1, 4
Margin command (Editor) .. 4-41
MARK and RELEASE .. 16-2
Mass storage:

Comparison of .. 19-2
Configuration .. 18-17
Introduction ... 3-1
Volumes .. 3-2

MAXPOS (files) ... 15-30
MEDIAINIT program .. 15-42, 18-27
Memory map:

RAM .. B-19

16 Index

ROM 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 B-20
Software 00 0 0 0 0 0 0000000000 B-22

Memory volume command (Main ~evel) 000 2-7
Memory volumes 0 18-45
Memory-mapped I/O 0 B-20
Memory:

Bubble 0 18-19
Characteristics 0 0 0 0 0 ••••••• 0 ••••• 0 0 0 ••••••••••• 0 0 •••••• 0 0 0 ••• 0 0 0 0 0 0 0 0 0 ••• 0 0 0 o. 3-1
EPROM 0 0 0 0 0 0 0 '0 ; 0 18-19
RAM 00 0000000000000000000 3-1

Mixing DISPOSE and RELEASE 000 16-4
MKHFS utility 00 0 0 0 0 0 0 0 0 0 0 0 0 21-2
Modules:

Assembler 0 7-5
Developing and testing 0 , 0 6-10
Device drivers 0 • 0 0 0 0 18-5
Examples of 0 6-9, 6-10, 7-41, 7-42, 8-3
How the Compiler finds them 00 8-5
How the loader finds them 0 8-6
Importing 00000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 8-5, 8-6
Initialization 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 •••••••••••• 0 0 0 0 0 •••••••• 0 0 0 0 0 ••• 0 • 0 0 • 0 0 0 0 • 0 •• 0 7-13
INITLIB 0 18-5
INITLIB module descriptions 00 00000 0 0 0 0 0 000000000 0 0000000000000000000000 • 000 18-41
LAST (in INITLIB) 000000 .. 00 .. 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 .. 0 0 .. 0 0 0 0 0 0 0 .. 0 0 0 0 00000000 18-6
Names used by operating system 00 B-18
Object (definition of) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0 8-31
Pascal 0 8-32
PRINTER 0 0 0 0 0 0 0 0 0 0 0 0'0 18-17
Required order in INITLIB 0 0 0 0 0 0 0 0 ~ 0 18-39
Separate compilation 0 6-13
Strategy for compiling 0 6-14
Structure of 0 6-7

Mouse input device 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-8, 4-26, 18-44
Moving files 000000000 ••••••• 0 0 0 0 0 •• 00000 •• 0 0 0 0 0 0 •• 0 • 0 0 0 0 • 0 000 5-16
Multiple on-line systems 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 18-15

n
New command (Filer) 0 5-50
New sysvol Command (Main Level) 0 2-9
Non-disc mass storage (introduction) 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19-1

o
Object file 0 8-31
Object module 0 8-2, 8-31
On-Line devices 0000 0000 0 0 0 0 000000 0 0 0 0 0 0 0 0 0 0 0 , 0 0 0 000000000000 0 0 0 0 0 000000000 0 0 0 0 0 2-6
Opcodes (Assembler) 0 7-19
OPEN (files) 000 15-5, 15-24, 15-25, 15-34
Operating system kernel 0 18-5
OPTIONS module (CTABLE) 0 18-52

Index 17

OSINSTALL utility (HFS) ... 21-5
Other manua:ls ... 1, 2
Overview .. 1
OVFLCHECK (Compiler option) .. 6-40

p
Page command (Editor) .. 4-42
PAGE (Compiler option) ... 6-41
PAGEWIDTH (Compiler option) .. 6-42
Parallel printers .. 18-21
Parameter passing ... 6-58
PARTIAL_EVAL (Compiler option) .. 6-43
Partitioning hard discs:

Algorithm ... 18-11
Designing your own 18-59
Example .. 18-27
Modifying ... 18-14, 18-55
Recommendations .. 18-58

Pascal:
1.0 (description) ... B-1
2.0 (description) ... B-2
2.1 (description) .. B-2
3.0 (description) ... B-5
3.01 (description) .. B-9
3.1 (description) .. B-10
3.12 (description) ... B-14
3.2 (description) .. B-14
3.22 (description) ... B-17
Extensions .. 10-10
File operations ... 15-23
Modules ... 8-32
Program development ... 6-2
System history ... B-1
Volumes .. 3-2

Passing parameters .. 7-8
Passwords (SRM) .. 3-8
Peripheral drivers .. 18-41
Peripherals supported (by 3.0 system) .. B-7
Permanent Command (Main Level) .. 2-10
Permissions (HFS) ... 15-40
Physical memory map ... B-19
Porting software .. 22-1
POSITION (files) .. 15-30
Prefix command (Filer) .. 3-5, 5-51
Prefix volume .. 3-4
Primary DAMs .. 18-21
Printers:

Changing the System Printer .. 18-18
Modules .. 18-17
Serial devices .. 18-19

18 Index

Parallel ... 18-21
Problems:

Compiler ... 6-19
Debugging programs that use files .. 15-40
File names to avoid ... 3-9
Insufficient global space .. 6-20
No room on volume ... 3-19
Not Enough Memory .. 6-20
Syntax errors .. 6-4
TABLE program ... 18-13

Procedure calls (effects on stack) .. 6-56
Procedures (EXTERNAL) .. 7-16
Processor boards .. 22-3
Progra:m development ... 6-2
Programming system ... 7-5
Prompts:

Compiler '... 6-3
Date ... 2-17
Debugger .. 9-7
Editor .. ' 4-3
Filer .. 5-2
Librarian .. 8-8
Main Level .. 2-1
Time .. 2-17

PUT (files) .. 15-27

q
Queue (Debugger) .. 9-9
QUit command:

Editor .. 4-43
Filer ... 5-53
Li brarian .. 8-8

r
RAM:

Addresses .. B-19
Introduction ... 3-1
Memory map ... B-19

Random access files. .. 15-28
RANGE (Compiler option) ... 6-44
Range of addresse~ .. B-20
Range of numbers ... 13-1
READ (files) .. 15-26
READDIR (fifes) ... 15-28
Real number range .. 13-1
REF (Compiler option) .. 6-45
REF tables ... 8-32
Reference Pointer ... 8-32
Relaxed typechecking (Compiler) .. 12-2

Index 19

RELEASE and MARK .. 16-2
Remove command (Filer) ... 5-54
Removing files .. 5-19
Renaming:

Boot files 18-35
Files ... 5-18
Volumes ... 5-18

Replace command (Editor) ... 4-45
RESET (files) ... 15-5, 15-25, 15-34
Restore (BACKUP) ... 20-5
REWRITE (files) ... 15-5, 15-24, 15-26, 15-34
ROM memory map .. B-20
ROM:

Boot ROM ... 18-4
Run Command (Main Level) .. 2-11
Run-time errors .. A-3

s
Save Command (Filer) ... 5-56
SAVE_CaNST (Compiler option) ... 6-46
SCANSTUFF module (CTABLE) .. 18-63
Screen dumps (Debugger) ... 9-8
SCSI bus driver (SCSIDVR) ... 18-19
SCSI disc considerations ".............................. 18-19, 18-63
SCSI disc driver (SCSIDISC) .. 18-19
SCSIDISC ... 18-19
SCSIDVR ... 18-19
SCSI interfaces scanned ... 18-66
SCSIscanstuff module (CTABLE) .. 18-65
SCSI select codes searched .. 18-63
SEARCH (Compiler option) ',' 6-47
SEARCH_SIZE (Compiler option) ... 6-48
Secondary DAMs ... 18-21
SEEK (files) '. .. 15-29
Self test (during boot) ... 18-4
Serial printers. .. 18-19
Set command (Editor) ... 4-48
Single stepping a program ... 9-7
Slow program execution ... 9-7
Software memory map ... B-22
Software porting .. 22-1
Source program .. 6-2
Special configurations:

Definition of .. 18-1
Example changes .. 18-2
Examples of ... 18-14

SRM:
Access rights .. 3-8, 5-8, 15-39
Concurrent file access .. 3-24, 15-37
Configuration requirements .. 18-21

20 Index

Creating a directory .. ~ 5-14
Current working volume .. 3-22
Default volume ... 3-22
Directory configuration ... 18-75
Directory structure .. 3-20
Example configuration .. 18-72
File names .. '..... 3-18
File notation 3-21
Hardware setup .. 18-73
Installing driver modules .. 18-74
LOCKABLE files ... 15-34
Multi-disc ... 18-83
Multiple unit numbers .. 18-65
Overview of installation ... 18-73
Passwords ... 3-8
Unit numbers ... 3-22
Volumes ... 3-22

Stack frame (Debugger) .. 9-17
Stack (How Pascal uses it) ... 6-55
STACKCHECK (Compiler option) .. 6-49
STACKCHECK_ON (Compiler option) .. 6-56
Standard configurations (definition of) ... 18-1
Standard partitioning, hard discs ... 18-57
STARTUP file .. 18-6
STARTUP file, renaming .. 18-35
Static and dynamic links (Debugger) 9-23
Static links '. .. 6-59
Stream Command (Main Level) ... 2-12
Stream files. .. 4-24, 18-7, 18-37
String length ... 14-1
Strings and textfiles .. 15-34
Subsystems .. 2-1
Suffix Suppression ... 3-15
Suffixes .' ... 3-13
Summary:

Debugger commands ... 9-34
Editor commands ... 4-25
Filer Commands .. 5-21
Librarian commands ... 8-24

SWITCH_STRPOS (Compiler option) ... 6-50
Symbols (Assembler) .. 7-22
Syntax diagrams (introduction) .. 2-4
SYSPROG (Compiler option) .. 6-51, 17-1
System addresses .. B-22
System Boot file (SYSTEM_P) .. 18-5
System Boot files (naming) .. 18-15
System Boot files (renaming) .. 18-35
System discs .. 18-5
System files:

Copying. .. 18-34

Index 21

New sysvol command .. 2-9
What command ... 2-18

System history .. B-1
System Library .. 2-5, 2-9, 2-10, 2-18, 8-1, 8-33
System programming (extensions) ... 17-1
System version .. 2-16
System volume:

Bubble cards as ... 19-8
Definition ... 3-4
EPROMs as .. 19-20
New sysvol command ... 2-9
Search algorithm ... 18-61
SRM ... 18-80
TABLE selection ... 18-13
Vol ume listing ... 5-3
What command ... 2-18

SYSTEM_P file ... 18-5, 18-35
Systm files ... 18-4

t
TABLE program:

Auto-configuration .. 18-7
CTABLE source file .. 18-51
Failures ... 18-13
Initialize command ... 2-6
Modifying (CTABLE) .. 18-50
Renaming .. 18-35

Table-of-contents (BACKUP) ... 20-7
TABLES (Compiler option) .. 6-52
Tape backup utility ... 20-1, 20-9
Tape drives:

Access methods .. 19-35
Backup utility .. 20-1
Certify .. 20-13
File System access .. 20-13
Introduction ... 19-35
List of supported devices .. 19-35
Media-copy .. 20-11
Selective backup ... 20-15
Terminology .. 20-9
Verify ... 20-12
Volume backup .. 20-15

Technical Reference .. B-1
Text files:

Creating .. ~ 4-3, 4-4
Declaration .. 15-30
I/O ... 15-30
Representation ... 15-31
Strings .. 15-34
Structure of 4-23

22 Index

Text Record .. 8-33
Translate command (Filer) ... 3-15, 5-11, 5-57
TRAP instruction (68000) ... 6-56, 7-11
TRY/RECOVER ... 17-1

u
UCSD (Compiler option) ... 6-53
Un assemble commands (Librarian) ... 8-19, 8-21
Unblocked devices '. .. 18-10
U nit directory command (Filer) ... 5-60
Unit numbers:

How assigned ... 18-9
Initialize command ... 2-6
Logical units ... 3-3
Memory volume command ... 2-7
New sysvol command ... 2-9
Standard assignments .. 18-9
Unit table .. 18-8

. Unit Table ... 2-6, 2-9, 3-7, 18-8
Units, Blocked and Unblocked ... 3-3
UNLK instruction (68000) .. 6-57
U.S. ASCII characters .. C-2
User restart Command (Main Level) ... 2-15
U.S.jEuropean display characters ' ... C-4
Using the stack ... 7-15

v
Variables, (size of) .. 11-5
Variables:

Global ... 2-10, 2-15, 2-17
Zeroing ... 2-10, 2-15

Verification (BACKUP) ... 20-10
Verify command (Editor) ... 4-52
Version Command (Main Level) ... 2-16
Video compatibility hardware .. 22-10
Volume ID .. ' 3-7
Volumes command (Filer) .. 3-2, 5-3, 5-61
Volumes:

Auto-configuration .. 18-8
Backing up ... 5-13
Default volume .. 3-4
General ... 3-2
Pascal .. 3-2
Prefix volume .. 3-4
PRINTER .. 18-18
Renaming ... '... 5-18
Specification (syntax) .. 5-25
Syntax of identifier 3-7
System volume ... 3-4

Index 23

W
WARN (Compiler option) .. 6-54
What command (Filer) .. 5-62
What command (Main Level) ... 2-18
Wildc.ards ... 3-16, 5-10
Workfile .. 4-24, 5-20, 6-6
WRITE (files) ... 15-27
WRITEDIR (files) , .. 15-29
WS1.0 file names .. 3-18

z
Zap command (Editor) ... 4-55
Zero command (Filer) .. 5-63

24 Index

READER COMMENT CARD
Pascal 3.2 Workstation System, Volumes 1 &2

Manual Part Number 98615·90023 December 1991

Please use this Reader Comment Card to evaluate this document and tell us of problems or
suggest improvements. SERIOUS ERRORS rendering a product or device inoperative should
be entered in STARS (Software Tracking and Reporting System) by the HP Response Center
or your Support Engineer.

Please rate the quality of each item below in terms of your expectations:

Far Below Below Meets Exceeds Far Exceeds
Expectations Expectations Expectations Expectations Expectations

Retrievability: 1 2 3 4 5
Manual Title: 1 2 3 4 5
Table of Contents: 1 2 3 4 5
Tabs: 1 2 3 4 5
Headings in Chapters: 1 2 3 4 5
Cross-References: 1 2 3 4 5
Task References: 1 2 3 4 5
Index: 1 2 3 4 5

Organization: 1 2 3 4 5
Completeness: 1 2 3 4 5
Accuracy: 1 2 3 4 5
Readability: 1 2 3 4 5

Language Usage: 1 2 3 4 5
Layout: 1 2 3 4 5

Recommended improvements (attach additional information if needed):

Name: Company: __________________________ __

Job Title: ____________________ _ Address:

Phone:

Please enter the series number of your HP 9000 system, e.g. 200 or 300: _____ _

Hewlett-Packard has the right to use submitted suggestions without obligation, with all such
ideas becoming property of Hewlett-Packard.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37 LOVELAND,COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Attn: Learning Products Center
3404 East Harmony Road
Fort Collins, Colorado 80525-9988

11 •• 1.11 •••• 1.1 ••• 1.1.1.1.1.1 •• 1.1 •• 1 •• 1.1 •• .1 •• 11 •• 1

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Manual Part N
98615-90023 o.

~opyright © 1991
ewlett-Packa d

Printed in USl1~;rpany

