
Programming With the Xt Intrinsics

Version 11, Release 3

HP 9000 Series 300/800 Computers

HP Part Number 98794-90008

rli~ HEWLETT
~~ PACKARD

Hewlett-Packard Company
1000 NE Circle Blvd., Corvallis OR 97330

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT UMITED TO,

THE IMPUED WARRANTIES OF MER:::HANTABIUTY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incldentai or consequential damages in connection with the furnishing, performance,

or use of this material.

Copyright 1989 Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior written consent of Hewlett-Packard Company, except as provided

below. The information contained in this document is subject to change without notice.

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions as set.forth in paragraph (b)(3)(B) of the Rights in Technicai Data and
Software clause in DAR 7-104.9(8).

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only. Additionai copies of the

programs can be made for security and back-up purposes only. Resale of the programs in their present form or with aHerations, is expressly

prohibited.

Copyright 1987, 1988, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Parts of this software and documentation are based In part on software and documentation developed and distributed by Massachusetts Institute

of Technology. Permission to use, copy, modify, and distribute only those parts for any purpose and without fee is hereby granted, provided that
the above copyright notices appear in ail copies and that those copyright notices and this permission notice appear in supporting documentation,

and that the names of Hewlett-Packard and M.I.T. not be used in advertising or publicity pertaining to distribution of the software without specific,

written prior permission.

UNIX is a trademark of AT&T.

Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages that are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections and updates that are
incorporated at reprint do not cause the date to change.) The manual part number changes
when extensive technical changes are incorporated.

July 1988 ... Edition 1
December 1988 ... Edition 2
September 1989 ... Edition 3

Contents

1
1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7
1.4.8
1.4.9
1.4.10

2
2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.5
2.5.1
2.5.2
2.6
2.6.1
2.7
2.7.1
2.7.2

Intrinsics and Widgets .. 1-1
Terminology .. 1-2
Intrinsics 1-3
Widgets .. 1-5

Core Widgets .. 1-6
Composite Widgets .. 1-10
Constraint Widgets .. 1-11

Widget Classing .. 1-12
Widget Naming Conventions .. 1-13
Widget Subclassing in Public .h Files .. 1-14
Widget Subclassing in Private .h Files ... 1-15
Widget Subclassing in .c Files ... 1-17
Widget Class and Superclass Look Up ... 1-20
Widget Subclass Verification .. 1-20
Superclass Chaining ... 1-21
Class Initialization 1-22
Inheritance of Super class Operations .. 1-24
Invocation of Superclass Operations ... 1-25

Widget Instantiation ... 2-1
Initializing the X Toolkit 2-2
Loading the Resource Database .. 2-5
Parsing the Command Line .. 2-7
Creating Widgets .. 2-9

Creating and Merging Argument Lists ... 2-10
Creating a Widget Instance .. 2-11
Creating an Application Shell Instance ... 2-13
Widget Instance Initialization 2-14
Constraint Widget Instance Initialization ... 2-15
Nonwidget Data Initialization .. 2-16

Realizing Widgets .. 2-16
Widget Instance Window Creation .. 2-18
Window Creation Convenience Routine .. 2-19

Obtaining Window Information from a Widget ... 2-20
U nrealizing Widgets .. 2-21

Destroying Widgets .. 2-22
Adding and Removing Destroy Callbacks .. 2-23
Dynamic Data Deallocation ... 2-24

Contents 1

2.7.3 Dynamic Constraint Data Deallocation .. 2-25
2.8 Exiting from an Application ... 2-25

3 Composite Widgets and Their Children .. 3-1
3.1 Verifying the Class of a Composite Widget .. 3-2
3.2 Addition of Children to a Composite Widget .. 3-3
3.3 Insertion Order of Children .. 3-3
3.4 Deletion of Children .. 3-4
3.5 Adding and Removing Children from the Managed Set 3-4
3.5.1 Managing Children .. 3-4
3.5.2 Unmanaging Children ... 3-6
3.5.3 Determining if a Widget Is Managed .. 3-7
3.6 Controlling When Widgets Get Mapped .. 3-7
3.7 Constrained Composite Widgets ... 3-8

4 Shell Widgets .. 4-1
4.1 Shell Widget Definitions ... 4-2
4.1.1 ShellClassPart Definitions .. 4-2
4.1.2 ShellPart Definition ... 4-5
4.1.3 ShellPart Default Values ... 4-7

5 Pop-Up Widgets ... 5-1
5.1 Pop-Up Widget 'Types ... 5-1
5.2 Creating a Pop-Up Shell ... 5-2
5.3 Creating Pop-Up Children .. 5-3
5.4 Mapping a Pop-Up Widget ... 5-4
5.5 Unmapping a Pop-Up Widget .. 5-7

6 Geometry Management ... 6-1
6.1 Initiating Geometry Changes .. 6-1
6.2 General Geometry Manager Requests ... 6-2
6.3 Resize Requests ... 6-5
6.4 Potential Geometry Changes .. 6-6
6.5 Child Geometry Management 6-6
6.6 Widget Placement and Sizing ... 6-8
6.7 Preferred Geometry ... 6-10
6.8 Size Change Management .. 6-12

2 Contents

7
7.1
7.1.1
7.1.2
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.9.1
7.9.2
7.9.3
7.10
7.10.1
7.10.2
7.11
7.11.1
7.11.2\
7.11.3

8
8.1
8.2
8.3
8.4
8.5
8.6

9
9.1
9.2
9.3
9.4
9.5
9.6
9.6.1
9.6.2
9.6.3
9.6.4
9.6.5

Event Management
Adding and Deleting Additional Event Sources

Adding and Removing Input Sources
Adding and Removing Timeouts

Constraining Events to a Cascade of Widgets
Focusing Events on a Child
Querying Event Sources
Dispatching Events
The Application Input Loop .. .
Setting and Checking the Sensitivity State of a Widget
Adding Background Work Procedures
X Event Filters .. .

P · M' CA .. omter otlon ompresslon
Enter /Leave Com pression
Exposure Compression .. .

Widget Exposure and Visibility
Redisplay of a Widget
Widget Visibility .. .

X Event Handlers
Event Handlers that Select Events
Event Handlers that Do Not Select Events

7-1
7-1
7-2
7-3
7-4
7-6
7-7
7-9

7-10
7-10
7-12
7-13
7-13
7-13
7-13
7-14
7-14
7-15
7-16
7-16
7-17

Current Event Mask 7-19

Callbacks .. .
U sing Callback Procedure and Callback List Definitions
Identifying Callback Lists
Adding Callback Procedures
Removing Callback Procedures .. .
Executing Callback Procedures
Checking the Status of a Callback List

Resource Management
Resource Lists
Byte Offset Calculations
Superclass to Subclass Chaining of Resource Lists .. .
Subresources .. .
Obtaining Application Resources
Resource Conversions .. .

Predefined Resource Converters .. .
New Resource Converters
Issuing Conversion Warnings .. .
Registering a New Resource Converter
Resource Converter Invocation .. .

8-1
8-1
8-2
8-2
8-3
8-4
8-5

9-1
9-1
9-6
9-6
9-7
9-8
9-8
9-9

9-10
9-12
9-12
9-14

Contents 3

9.7 Reading and Writing Widget State .. 9-15
9.7.1 Obtaining Widget State ... 9-15
9.7.2 Setting Widget State .. 9-17

10
10.1
10.1.1
10.1.2
10.2
10.2.1
10.2.2
10.3
10.4
10.5

11
11.1
11.2
11.3
11.4
11.5
11.5.1
11.5.2
11.6
11.7
11.S
11.9

A

1ranslation Management ... 10-1
Action Tables .. 10-1

Action Table Registration ... 10-2
Action Names to Procedure Translations ... 10-3

Translation Tables .. 10-3
Event Sequences ... 10-4
Action Sequences ... 10-5

Translation Table Management ... 10-5
U sing Accelerators ... 10-7
KeyCode-to-KeySym Conversions ... 10-9

Utility Functions .. 11-1
Determining the Number of Elements in an Array... 11-1
Translating Strings to Widget Instances .. 11-2
Managing Memory Usage ... 11-2
Sharing Graphics Contexts ... 11-5
Managing Selections .. 11-6

Setting and Getting the Selection Timeout Value 11-6
U sing Atomic Transfers .. 11-7

Merging Exposure Events into a Region .. 11-12
Translating Widget Coordinates .. 11-13
Translating a Window to a Widget .. 11-13
Handling Errors ... 11-14

Resource File Format .. A-I

B 1ranslation Table Syntax .. B-1
B.1 Notation ... B-1
B.2 Syntax ... B-1
B.3 Modifier Names ... B-2
B.4 Event 'fypes ... B-5
B.5 Canonical Representation ... B-S
B.6 Examples .. B-9

4 Contents

C Conversion Notes ... C-l

D Standard Errors and Warnings .. D-l

E StringDefs.h Header File

Reference Information

E-l

Contents 5

Intrinsics and Widgets 1
The X Toolkit Intrinsics and a widget set make up the X Toolkit. The X Toolkit Intrinsics
provide the base mechanisms necessary to build a wide variety of widget sets and
application environments. Because the X Toolkit Intrinsics mask implementation details
from the widget and application programmer, the widgets and the application
environments built with them are fully extensible and support independently developed
new or extended components. By following a small set of conventions, widget
programmers can extend their widget sets in new ways and can have these extensions
function smoothly with the existing facilities.

The X Toolkit Intrinsics is a library package layered on top of Xlib. As such, the X
Toolkit Intrinsics provide mechanisms (functions and structures) for extending the basic
programming abstractions provided by the X Window System. By providing mechanisms
for intercomponent and intracomponent interactions, the X Toolkit Intrinsics provide the
next layer of functionality from which the widget sets are built.

Figure 1-1 illustrates this extended three-tiered X programming environment.

+---+
I I
I Application I
I I
I I
+-------------------------------+-------+-------+
I I I I
I Widget I I I
I Set I I I
I I I I
+-------+-----------------------+ I I
I I I
I Intrinsics I I
I I I
I +-------------------------------+ I
I I
I Xlib I
I I
+---+

Intrinsics and Widgets 1 -1

A typical X Toolkit application is most likely to be a client of a given widget set, a subset of
the X Toolkit Intrinsics functions, and a smaller set of Xlib functions. This is illustrated by
a left-to-right viewing of Figure 1-1. At the same time, a widget set is a client of both the
X Toolkit Intrinsics and Xlib, and the X Toolkit Intrinsics are a client of Xlib only. This is
illustrated by a top-to-bottom viewing of Figure 1-1.

For the application programmer, the X Toolkit provides:

• A consistent interface (widget set) for writing applications

• A small set of X Toolkit Intrinsics mechanisms that also are used in writing
applications

For the widget programmer, the X Toolkit provides:

• A set of X Toolkit Intrinsics mechanisms for building widgets

• An architectural model for constructing and composing widgets

• A consistent interface (widget set) for programming

To the extent possible, the X Toolkit is policy free. The application environment, not the X
Toolkit, defines, implements, and enforces:

• Policy

• Consistency

• Style

Each individual widget implementation defines its own policy. The X Toolkit design allows
for the development of radically differing widget implementations.

1.1 Terminology
In addition to the terms already defined for X programming (see Programming with Xlib),
the following terms are specific to the X Toolkit Intrinsics and used throughout this book.

Application programmer
A programmer who uses the X Toolkit to produce an application user interface.

Class
The' general group to which a specific object belongs.

Client
A function that uses a widget in an application or for composing other widgets.

1 - 2 Intrinsics and Widgets

Instance
A specific widget object as opposed to a general widget class.

Method
The functions or procedures that a widget class implements.

Name
The name that is specific to an instance of a widget for a given client.

Object
A software data abstraction consisting of private data and private and public
functions that operate on the private data. Users of the abstraction can interact with
the object only through calls to the object's public functions. In the X Toolkit, some
of the object's public functions are called directly by the application, while others are
called indirectly when the application calls the common X Toolkit Intrinsics
funt;tions. In general, if a function is common to all widgets, an application uses a
single Intrinsic function to invoke the function for all types of widgets. If a function
is unique to a single widget type, the widget exports the function as another "Xt"
function.

Resource

User

A named piece of data in a widget that can be set by a client, by an application, or by
user defaults.

A person interacting with a workstation.

Widget
An object providing a user-interface abstraction (for example, a Scrollbar widget).

Widget class
The general group to which a specific widget belongs, otherwise known as the type of
the widget.

Widget programmer
A programmer who adds new widgets to the X Toolkit.

1.2 Intrinsics

The X Toolkit Intrinsics provide the base mechanisms (functions and structures) that
simplify the design of application user interfaces. In addition, it assists widget and
application programmers by providing a commonly used set of underlying user-interface
functions to manage:

Intrinsics and Widgets 1 -3

• Toolkit initialization Widgets

• Memory

• Window, file, and timer events

• Widget geometry

• Input focus

• Selections

• Resources and resource conversion

• Translation of events

• Graphics contexts

• Pixmaps

• Errors and warnings

Although all X Toolkit Intrinsics mechanisms are primarily intended for use by widget
programmers, some are also intended for use by application programmers. The
architectural model for the X Toolkit Intrinsics lets the widget programmer create new
widgets by using the supplied mechanisms and/or by combining existing widgets.
Therefore, an application interface layers built with the X Toolkit Intrinsics will provide a
coordinated set of widgets and composition policies. While some of the widgets that are
built with the X Toolkit Intrinsics are common across a number of application domains,
others are restricted to a specific application domain.

The X Toolkit Intrinsics are based on an architectural model that also is flexible enough to
accommodate a variety of different application interface layers. In addition, the supplied
set of X Toolkit Intrinsics mechanisms are:

• Functionally complete and policy free

• Stylistically and functionally consistent with the X Window System primitives

• Portable across languages, computer architectures, and operating systems

Applications that use the X Toolkit Intrinsics mechanisms must include the following
header files:

• <Xll/Intrinsic.h>

• <Xll/StringDefs.h>

In addition, they may also include:

• <Xll/Xatoms.h>

1 - 4 Intrinsics and Widgets

• <Xll/Shell.h>

Finally, widget implementations should include:

• <Xll/IntrinsicP. h> instead of <XII/Intrinsic. h>.

The applications should also include the additional headers for each widget class that they
are to use (for example, <Xll/Label.h> or <Xll/Scroll.h». The X Toolkit
Intrinsics object library file is named libXt. a and is usually referenced as -lXt.

1.3 Widgets

The fundamental abstraction and data type of the X Toolkit is the widget, which is a
combination of an X window and its associated semantics and which is dynamically
allocated and contains state information. Logically, a widget is a rectangle with associated
input/output semantics. Some widgets display information (for example, text or graphics),
and others are merely containers for other widgets (for example, a menu box). Some
widgets are output-only and do not react to pointer or keyboard input, and others change
their display in response to input and can invoke functions that an application has attached
to them.

Every widget belongs to exactly one widget class that is statically allocated and initialized
and that contains the operations allowable on widgets of that class. Logically, a widget
class is the procedures and data that is associated with all widgets belonging to that class.
These procedures and data can be inherited by subclasses. Physically, a widget class is a
pointer to a structure. The contents of this structure are constant for all widgets of the
widget class but will vary from class to class. (Here, constant means the class structure is
initialized at compile-time and never changed, except for a one-time class initialization and
in-place compilation of resource lists, which takes place when the first widget of the class
or subclass is created.) For further information, see Section 2.4.

The organization of the declarations and code for a new widget class between a public .h
file, a private .h file, and the implementation .c file is described in Section 1.4. The
predefined widget classes adhere to these conventions.

A widget instance is composed of two parts:

• A data structure that contains instance-specific values

• A class structure that contains information that is applicable to all widgets of that
class

Much of the input/output of a widget (for example, fonts, colors, sizes, border widths, and
so on) is customizable by users.

The next three sections discuss the base widget classes:

Intrinsics and Widgets 1- 5

• Core widgets

• Composite widgets

• Constraint widgets

The chapter ends with a discussion of widget classing.

1.3.1 Core Widgets

The Core widget contains the definitions of fields common to all widgets. All widgets
are subclasses of Core, which is defined by the CoreClassPart and CorePart
structures.

CoreClassPart Structure
The common fields for all widget classes are defined in the CoreClassPart structure:

typedef struct {
WidgetClass superclass; See Section 1.4
String class_name; See Section 1.4
Cardinal widget_size; See Section 2.4
XtProc class_initialize; See Section 1.4
XtWidgetClassProc class-part_initialize;See Section 1.4
Boolean class_inited; See Section 1.4
XtlnitProc initialize; See Section 2.4
XtArgsProc initialize_hook; See Section 2.4
XtRealizeProc realize; See Section 2.4
XtActionList actions; See Chapter 10
Cardinal num_actions; See Chapter 10
XtResourceList resources; See Chapter 9
Cardinal num_resources; See Chapter 9
XrmClass xrm_class; Private to resource manager
Boolean compress_motion; See Section 7.9.1
Boolean compress_exposure; See Section 7.9.3
Boolean compress_enterleave; See Section 7.9.2
Boolean visible_interest; See Section 7.10
XtWidgetProc destroy; See Section 2.7
XtWidgetProc resize; See Chapter 6
XtExposeProc expose; See Section 7.10
XtSetValuesFunc set_values; See Section 9.7
XtArgsFunc set_ values_hook; See Section 9.7
XtAlmostProc set_values_almost;See Section 9.7
XtArgsProc get_values_hook; See Section 9.7
XtAcceptFocusProc accept_focus;See Section 7.3
XtVersionType version; See Section 1.4
_XtOffsetList callback-private;Private to callbacks
String tm_table; See Chapter 10
XtGeometryHandler query_geometry;See Chapter 6
XtStringProc display_accelerator;See Chapter 10
caddr_t extension; See Section 1.4

CoreClassPart;

1- 6 Intrinsics and Widgets

All widget classes have the core class fields as their first component. The prototypical
WidgetClass is defined with only this set of fields. Various routines can cast widget
class pointers, as needed, to specific widget class types, for example:

typedef struct {
CoreClassPart core_class;

} WidgetClassRec, *WidgetClass;

The predefined class record and pointer for WidgetClassRec are:

extern WidgetClassRec widgetClassRec;

extern WidgetClass widgetClass;

The opaque types Widget and WidgetClass and the opaque variable
widgetClass are defined for generic actions on widgets.

CorePart Structure
The common fields for all widget instances are defined in the CorePart structure:

Intrinsics and Widgets 1-7

typedef struct CorePart {
Widget self:
WidgetClass widget_class: See Section 1.4
Widget parent: See Section 1.4
XrmName xrm_name: Private to resource manager
Boolean being_destroyed: See Section 2.7
XtCallbackList destroy_callbacks:See Section 2.7
caddr_t constraints: See Section 3.7
Position x: See Chapter 6
Position y: See Chapter 6
Dimension width: See Chapter 6
Dimension height: See Chapter 6
Dimension border_width: See Chapter 6
Boolean managed: See Chapter 3
Boolean sensitive: See Section 7.7
Boolean ancestor_sensitive; See Section 7.7
XtEventTable event_table: Private to event manager
XtTMRec tm: Private to translation manager
XtTranslations accelerators: See Chapter 10
Pixel border-pixel: See Section 2.6
Pixmap border-pixmap; See Section 2.6
WidgetList popup_list: See Chapter 5
Cardinal num-popups: See Chapter 5
String name; See Chapter 9
Screen *screen: See Section 2.6
Colormap colormap: See Section 2.6
Window window: See Section 2.6
Cardinal depth; See Section 2.5
Pixel background-pixel; See Section 2.6
Pixmap background-pixmap: See Section 2.6
Boolean visible: See Section 7.10
Boolean mapped_when_managed: See Chapter 3

CorePart:

All widget instances have the core fields as their first component. The prototypical type
Widget is defined with only this set of fields. Various routines can cast widget pointers,
as needed, to specific widget types; for example:

typedef struct {
CorePart core;

} WidgetRec, *Widget:

CorePart Default Values
The default values for the core fields, which are filled in by the Core resource list and
the Core initialize procedure, are:

1- 8 Intrinsics and Widgets

Field

self
widget_class

parent

xrm name

being destroyed
destroy_callbacks
constraints
x

Y
width
height
border width
manag~d
sensitive
ancestor sensitive
event table
tm
accelerators
border _pixel
border yixmap
popup_list
numyopups
name

screen

colormap
window
depth
background yixel
backgroundyixmap
visible
map_when _managed

Default Value

Address of the widget structure (may not be changed)
widget_class argument to XtCreateWidget (may
not be changed)
parent argument to XtCreateWidget (may not be
changed)
Encoded name argument to XtCreateWidget (may
not be changed)
Parent's being_destroyed value
NULL
NULL
o
o
o
o
1
False
True
Bitwise AND of parent's sensitive & ancestor_sensitive
Initialized by the event manager
Initialized by the translation manager
NULL
XtDefaultForeground
NULL
NULL
o
name argument to XtCreateWidget (may not be
changed)
Parent's screen, top-level widget gets it from display
specifier (may not be changed)
Default color map for the screen
NULL
Parent's depth, top-level widget gets root window depth
XtDefaultBackground
NULL
True
True

Intrinsics and Widgets 1 - 9

1.3.2 Composite Widgets

Composite widgets are a subclass of the Core widget (see Chapter 3) are intended to
be containers for other widgets, and are defined by the CompositeClassPart and
Compos i tePart structures.

CompositeClassPart Structure
In addition to the Core widget class fields, Compos i te widgets have the following class
fields:

typedef struct
XtGeometryHandler geometry_manager;See Chapter 6
XtWidgetProc change_managed; See Chapter 3
XtWidgetProc insert_child; See Chapter 3
XtWidgetProc delete_child; See Chapter 3
caddr_t extension; See Section 1.4

CompositeClassPart;

Compos i te widget classes have the composite fields immediately following the core
fields:

typedef struct
CoreClassPart core_class;
CompositeClassPart composite class;

} CompositeClassRec, *CompositeWidgetClass; -

The predefined class record and pointer for CompositeClassRec are:

extern CompositeClassRec compositeClassRec;

extern WidgetClass compositeWidgetClass;

The opaque types CompositeWidget and CompositeWidgetClass and the
opaque variable compos i teWidgetClass are defined for generic operations on
widgets that are a subclass of CompositeWidget.

CompositePart Structure
In addition to the CorePart fields, Composite widgets have the following fields
defined in the Compos i tePart structure:

typedef struct {
WidgetList children;
Cardinal num_children;
Cardinal num_slots;
XtOrderProc insert-position;

CompositePart;

1 -10 Intrinsics and Widgets

See Section 1.4
See Section 1.4
See Chapter 3
See Section 2.4

Compo site widgets have the composite fields immediately following the core fields:

typedef struct {
CorePart core;
CompositePart composite;

} CompositeRec, *CompositeWidget;

Composite Part Default Values
The default values for the composite fields, which are filled in by the Compos i te
resource list and the Compo site initialize procedure, are:

Field Default Value

children NULL
num children 0
num-slots 0
insert_position Internal function InsertAtEnd

1.3.3 Constraint Widgets

Cons traint widgets are a subclass of the Compos i te widget (see Section 3.7) that
maintain additional state data for each child, for example, client-defined constraints on the
child's geometry. They are defined by the ConstraintClassPart and
ConstraintPart structures.

ConstraintClassPart Structure
In addition to the Composite class fields, Constraint widgets have the following
class fields:

typedef struct {
XtResourceList resources;
Cardinal num_resources;
Cardinal constraint_size;
XtlnitProc initialize;
XtWidgetProc destroy;
XtSetValuesFunc set_values;
caddr_t extension;

} ConstraintClassPart;

See Section 3.7
See Section 3.7
See Section 3.7
See Section 3.7
See Section 3.7
See Section 3.7
See Section 1.4

Constraint widget classes have the constraint fields immediately following the
composite fields:

Intrinsics and Widgets 1-11

typedef struct {
CoreClassPart core_class;
CompositeClassPart composite_class;
ConstraintClassPart constraint class;

} ConstraintClassRec, *ConstraintWidgetClass; -

The predefined class record and pointer for ConstraintClassRec are:

extern ConstraintClassRec constraintClassRec;

extern WidgetClass constraintWidgetClass;

The opaque types ConstraintWidget and ConstraintWidgetClass and the
opaque variable constraintWidgetClass are defined for generic operations on
widgets that are a subclass of ConstraintWidgetClass.

ConstraintPart Structure
In addition to the CompositePart fields, Constraint widgets have the following
fields defined in the ConstraintPart structure:

typedef struct { int empty; } ConstraintPart;

Constraint widgets have the constraint fields immediately following the composite
fields:

typedef struct
CorePart core;
CompositePart composite;
ConstraintPart constraint;

} ConstraintRec, *ConstraintWidget;

1.4 Widget Classing

The widget class field of a widget points to its widget class structure, which contains
informatiOI~ that is constant across all widgets of that class. As a consequence, widget
classes usually do not implement directly callable procedures; rather, they implement
procedures that are available through their widget class structure. These methods are
invoked by generic procedures that envelop common actions around the procedures
implemented by the widget class. Such procedures are applicable to all widgets of that
class and also to widgets that are subclasses of that class.

1-12 Intrinsics and Widgets

All widget classes are a subclass of Core and can be subclassed further. Subclassing
reduces the amount of code and declarations you write to make a new widget class that is
similar to an existing class. For example, you do not have to describe every resource your
widget uses in an XtResourceList. Instead, you describe only the resources your
widget has that its super class does not. Subclasses usually inherit many of their
superclass's procedures (for example, the expose procedure or geometry handler).

Subclassing, however, can be taken too far. If you create a subclass that inherits none of
the procedures of its super class, you should consider whether or not you have chosen the
most appropriate superclass.

To make good use of subclassing, widget declarations and naming conventions are highly
stylized. A widget consists of three files:

• A public .h file that is used by client widgets or applications

• A private .h file that is used by widgets that are subclasses of the widget

• A .c file that implements the widget class

1.4.1 Widget Naming Conventions

The X Toolkit Intrinsics provide a vehicle by which programmers can create new widgets
and organize a collection of widgets into an application. To ensure that applications need
not deal with as many styles of capitalization and spelling as the number of widget classes it
uses, the following guidelines should be followed when writing new widgets:

• Use the X naming conventions that are applicable. For example, a record
component name is all lowercase and uses underscores U for compound words (for
example, background pixmap). Type and procedure names start with uppercase and
use capitalization for ~ompound words (for example, ArgList or
XtSetValues).

• A resource name string is spelled identically to the field name except that compound
names use capitalization rather than underscore. To let the compiler catch spelling
errors, each resource name should have a macro definition prefixed with XtN. For
example, the background pixmap field has the corresponding resource name
identifier XtNbackgroundPixmap, which is defined as the string
"backgroundPixmap". Many predefined names are listed in
< Xll/S tringDefs . h >. Before you invent a new name, you should make sure
that your proposed name is not already defined or that there is not already a name
that you can use.

Intrinsics and Widgets 1-13

• A resource class string starts with a capital letter and uses capitalization for
compound names (for example, "BorderWidth"). Each resource class string should
have a macro definition prefixed with XtC (for example, XtCBorderWidth).

• A resource representation string is spelled identically to the type name (for example,
"TranslationTable"). Each representation string should have a macro definition
prefixed with XtR (for example, XtRTranslationTable).

• New widget classes start with a capital and use uppercase for compound words.
Given a new class name AbcX yz you should derive several names:

• Partial widget instance structure name AbcXyzPart

• Complete widget instance structure names AbcXyzRec and _ AbcXyzRec

• Widget instance pointer type name AbcXyzWidget

• Partial class structure name AbcXyzClassPart

• Complete class structure names AbcXyzClassRec and _ AbcXyzClassRec

• Class structure variable abcX yzClassRec

• Class pointer variable abcXyzWidgetClass

• Action procedures available to translation specifications should follow the same
naming conventions as procedures. That is, they start with a capital letter and
compound names use uppercase (for example, "Highlight" and "NotifyClient").

1.4.2 Widget Subclassing in PubliC .h Files

The public.h file for a widget class is imported by clients and contains:

• A reference to the public .h files for the super class

• The names and classes of the new resources that this widget adds to its super class

• The class record pointer that you use to create widget instances

• The C type that you use to declare widget instances of this class

• Entry points for new class methods

For example, the following is the public .h file for a possible implementation of a Label
widget:

:f/:ifndef LABEL_H
f/define LABEL_H

1-14 Intrinsics and Widgets

1* New resources *1
4;define XtNjustify "justify"
4;define XtNforeground "foreground"
:f/:define XtNlabel "label"
:f/:define XtNfont "font"
4;define XtNinternalWidth" internalWidth"
4;define XtNinternalHeight" internalHeight"

1* Class record pointer *1
extern WidgetClass labelWidgetClass;

1* C Widget type definition *1
typedef struct _LabeLRec *LabelWidget;

1* New class method entry points *1
extern void Label SetText();

Ii< Widget w *1
1* String text *1

extern String Label GetText();
1* Widget w *1

The conditional inclusion of the text allows the application to include header files for
different widgets without being concerned that they already may be included as a
super class of another widget.

To accommodate operating systems with file name length restrictions, the name of the
public .h file is the first ten characters of the widget class. For example, the public .h file
for the Constraint widget is Constraint. h.

1.4.3 Widget Subclassing in Private .h Files

The private .h file for a widget is imported by widget classes that are subclasses of the
widget and contains:

• A reference to the public .h file for the class

• A reference to the private .h file for the super class

• The new fields that the widget instance adds to its superclass's widget structure

• The complete widget instance structure for this widget

• The new fields that this widget class adds to its superclass's Constraint structure
if the widget is a subclass of Constraint

• The complete Constraint structure if the widget is a subclass of Constraint

• The new fields that this widget class adds to its superclass's widget class structure

Intrinsics and Widgets 1-15

• The complete widget class structure for this widget

• The name of a constant of the generic widget class structure

~ n inherit procedure for subclasses that wish to inherit a superclass operation for
each new procedure in the widget class structure

For example, the following is the private .h file for a possible Label widget:

#ifndef LABELP_H
#define LABELP_H

#include <Xll/Label.h>

1* New fields for the Label widget record *1
typedef struct {
1* Settable resources *1

Pixel foreground;
XFontStruct *font;
String label;
XtJustify justify;
Dimension internal_width;
Dimension internal_height;

1* Data derived from resources *1
GC normal_ GC ;
GC gray_GC;
Pixmap gray-pixmap;
Position label_x;
Position label_y;
Dimension label_width;
Dimension label_height;
Cardinal label_len;
Boolean display sensitive;

LabelPart; -

1* text to display *1

1* # of pixels horizontal border */
1* # of pixels vertical border *1

1* Full instance record declaration *1
typedef struct _LabeLRec {

CorePart core;
LabelPart label;

LabeLRec;

1* Types for label class methods *1
typedef void (*LabelSetTextProc)();

1* Widget w *1
1* String text *1

typedef String (*LabelGetTextProc)();
1* Widget w *1

1 -16 Intrinsics and Widgets

/* New fields for the Label widget class record */
typedef struct {

LabelSetTextProc set_text;
LabelGetTextProc get_text;
caddr_t extension;

LabelClassPart;

/* Full class record declaration */
typedef struct _LabelClassRec {

CoreClassPart core_class;
LabelClassPart label_class;

} LabelClassRec;

/* Class record variable */
extern LabelClassRec labelClassRec;

#define LabellnheritSetText«LabelSetTextProc) Xtlnherit)
#define LabellnheritGetText«LabelGetTextProc)=Xtlnherit)
4!endif LABELP _ H

To accommodate operating systems with file name length restrictions, the name of the
private .h file is the first nine characters of the widget class followed by a capital P. For
example, the private.h file for the Constraint widget is ConstrainP. h.

1.4.4 Widget Subclassing in .C Files

The .c file for a widget contains the structure initializer for the class record variable, which
contains the following parts:

• Class information (for example, super class, class_name, widget_size, class_initialize,
and class_inited)

• Data constants (for example, resources and num resources, actions and
num _ actions, visible_interest, compress_motion, ~ompress _exposure, and version)

• Widget operations (for example, initialize, realize, destroy, resize, expose, set_values,
accept_focus, and any operations specific to the widget)

The super class field points to the superclass WidgetClass record. For direct
subclasses of the generic core widget, super class should be initialized to the address of the
widgetClassRec structure. The superclass is used for class chaining operations and for
inheriting or enveloping a superclass's operations. (See Sections 1.4.7, 1.4.9, and 1.4.10).

The class_name field contains the text name for this class (used by the resource manager).
For example, the Label widget has the string "Label". More than one widget class can
share the same text class name.

The widget_size field is the size of the corresponding widget structure (not the size of the
Class structure).

Intrinsics and Widgets 1 -17

The version field indicates the toolkit version number and is used for run-time consistency
checking of the X Toolkit and widgets in an application. Widget writers must set it to the
symbolic value XtVersion in the widget class initialization. Those widget writers who
know that their widgets are backwards compatible with previous versions of the X Toolkit
Intrinsics can put the special value XtVersionDontCheck in the version field to turn
off version checking for those widgets.

The extension field is for future upwards compatibility. If you add additional fields to class
parts, all subclass structure layouts change, requiring complete recompilation. To allow
clients to avoid recompilation, an extension field at the end of each class part can point to
a record that contains any additional class information required.

All other fields are described in their respective sections.

The following is an abbreviated version of the" .c" file for the Label widget. (The
resources table is described in the Chapter 9.)

/* Resources specific to Label */
1idefine XtRJustify"Justify"
static XtResource resources[] = {

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffset(LabelWidget, label.foreground), XtRString, XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),
XtOffset(LabelWidget, label.font),XtRString, XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label. label), XtRString, NULL},

/* Forward declarations of procedures */
static void ClassInitialize();
static void Initialize();
static void Realize();
static void SetText();
static void GetText();

/* Class record constant */
LabelClassRec labelClassRec =

{
/* core_class fields */

/* superclass */
/* class name * /
/* widget_size */
/* class initialize
/* class~art_initialize
/* class_inited */

1-18 Intrinsics and Widgets

(WidgetClass) &widgetClassRec,
"Label" ,
sizeof(LabelRec),
*/ClassInitialize,
*/NULL,
False,

1* initialize *1 Initialize,
1* initialize_hook *1 NULL,
1* realize *1 Realize,
1* actions *1 NULL,
1* num_actions *1 0,
1* resources *1 resources,
1* num_resources *1 XtNumber(resources),
1* xrm_class *1 NULLQUARK,
1* compress_motion *1 True,
1* compress_exposure */True,
1* compress_enter leave */True,
1* visible_interest */False,
1* destroy *1 NULL,
1* resize *1 Resize,
1* expose *1 Redisplay,
1* set_values *1 SetValues,
1* set values_hook *1 NULL,
1* set_values_almost */XtInheritSetValuesAlmost,
1* get_values_hook *1 NULL,
1* accept_focus *1 NULL,
1* version *1 XtVersion,
1* callback offsets */NULL,
1* tm_table *1 NULL,
1* query_geometry *1 XtlnheritQueryGeometry,
1* display_accelerator */NULL,
1* extension *1 NULL

},
{

1* Label class fields *1
1* get_text *1 GetText,
1* set_text *1 SetText,
1* extension *1 NULL

};

1* Class record pointer *1
WidgetClass labelWidgetClass = (WidgetClass) &labelClassRec;

1* New method access routines *1
void Label SetText(w, text)

Widget W;
String text;

Label WidgetClass lwc = (Label WidgetClass)XtClass(w);
XtCheckSubclass(w, labelWidgetClass, NULL);
*(lwc->label_class.set_text)(w, text)

}
1* Private procedures *1

Intrinsics and Widgets 1-19

1.4.5 Widget Class and Superclass Look Up

To obtain the class of a widget, use XtClass.

WidgetClass XtClass(w)
Widget w;

w Specifies the widget.

The XtClass function returns a pointer to the widget's class structure.

To obtain the super class of a widget, use XtSuperclass.

WidgetClass XtSuperclass(w)
Widget w;

w Specifies the widget.

The XtSuperclass function returns a pointer to the widget's super class class structure.

1.4.6 Widget Subclass Verification

To check the subclass that a widget belongs to, use XtIsSubclass.

Boolean XtIsSubclass (w, widget_class)
Widget w;
WidgetClass widget_class;

w Specifies the widget.

Specifies the widget class to test against.

The XtIsSubclass function returns True if the class of the specifi{(d widget is equal
to or is a subclass of the specified widget class. The specified widget can be any number of
subclasses down the chain and need not be an immediate subclass of the specified widget
class. Composite widgets that need to restrict the class of the items they contain can use
XtIsSubclass to find out if a widget belongs to the desired class of objects.

To check the subclass that a widget belongs to and generate a debugging error message,
use XtCheckSubclass.

void XtCheckSubclass(w, widget_class, message)
Widget w;
WidgetClass widget_class;
String message;

1-20 Intrinsics and Widgets

w

message

Specifies the widget.

Specifies the widget class to test against.

Specifies the message that is to be used.

The XtCheckSubclass macro determines if the class of the specified widget is equal
to or is a subclass of the specified widget class. The widget can be any number of
subclasses down the chain and need not be an immediate subclass of the specified widget
class. If the specified widget is not a subclass, XtCheckSubclass constructs an error
message from the supplied message, the widget's actual class, and the expected class and
calls XtErrorMsg. XtCheckSubclass should be used at the entry point of
exported routines to ensure that the client has passed in a valid widget class for the
exported operation.

XtCheckSubclass is only executed when the widget has been compiled with the
compiler symbol DEBUG defined; otherwise, it is defined as the empty string and
generates no code.

1.4.7 Superclass Chaining

While most fields in a widget class structure are self-contained, some fields are linked to
their corresponding field in their superclass or subclass structures. With a linked field, the
X Toolkit Intrinsics access it value only after accessing its corresponding superclass value
(called downward super class chaining) or before accessing its corresponding superclass
value (called upward superclass chaining). The self-contained fields in a widget class are:

• class name

• class initialize

• widget_size

• realize

• visible interest

• resize

• expose

• accept_focus

• compress_motion

• compress_exposure

• compress _ enterleave

• set values almost - -

Intrinsics and Widgets 1- 21

• tm table

• verSIon

With downward super class chaining, the invocation of an operation first accesses the field
from the Core class structure, then the subclass structure, and so on down the class chain
to that widget's class structure. These superclass-to-subclass fields are:

• class _part_initialize

• get_values_hook

• initialize

• initialize hook

• set values

• set values hook - -
• resources

In addition, for subclasses of Constraint, the resources field of the
ConstraintClassPart structure is chained from the Constraint class down to the
subclass.

With upward super class chaining, the invocation of an operation first accesses the field
from the widget class structure, then the field from the super class structure, and so on up
the class chain to the Core class structure. The subclass-to-superclass fields are:

• destroy

• actions

1.4.8 Class.,lnitialization

Many class records can be initialized completely at compile time. In some cases, however,
a class may need to register type converters or perform other sorts of one-time
initialization.

Because the C language does not have initialization procedures that are invoked
automatically when a program starts up, a widget class can declare a class initialize
procedure that will be automatically called exactly once by the X Toolkit. A class
initialization procedure pointer is of type XtProc:

typedef void (*XtProc)();

1-22 Intrinsics and Widgets

A widget class indicates that it has no class initialization procedure by specifying NULL in
the class initialize field.

In addition to having class initializations done exactly once, some classes need to perform
additional initialization for fields in its part of the class record. These are performed not
just for the particular class but for subclasses as well. This is done in the class's class part
initialization procedure, which is stored in the class yart_initialize field. The
classyart_initialize procedure pointer is of type XtWidgetClassProc:

typedef void (*XtWidgetClassProc) (WidgetClass);

During class initialization, the class part initialization procedure for the class and all its
superclasses are called in superclass-to-subclass order on the class record. These
procedures have the responsibility of doing any dynamic initializations necessary to their
class's part of the record. The most common is the resolution of any inherited methods
defined in the class. For example, if a widget class C has super classes Core,
Composite, A, and B, the class record for C first is passed to Core's
classyart_initialize record. This resolves any inherited core methods and compiles the
textual representations of the resource list and action table that are defined in the class
record. Next, the Composite's classyart}nitialize is called to initialize the composite
part of C's class record. Finally, the class part initialize procedures for A, B, and C (in
order) are called. For further informatioii", see-Section 1.4.9. Classes that do not define
any new class fields or that need no extra processing for them can specify NULL in the
class yart_initialize field.

All widget classes, whether they have a class initialization procedure or not, must start with
their class inited field False.

The first time a widget of a class is created, XtCreateWidget ensures that the widget
class and all superclasses are initialized, in superclass to subclass order, by checking each
class inited field and if it is False, by calling the class initialize and the
classyart_initialize procedures for the class and all its superclasses. The X Toolkit
Intrinsics then set the class _inited field to True. After the one-time initialization, a class
structure is constant.

The following provides the class initialization procedure for Label.

static void Classlnitialize()
{

XtQEleft = XrmStringToQuark("left");
XtQEcenter = XrmStringToQuark("center");
XtQEright = XrmStringToQuark (" right") ;

XtAddConverter(XtRString, XtRJustify, CvtStringToJustify, NULL, 0);

Intrinsics and Widgets 1 - 23

A class is initialized the first time a widget of that class or any subclass is created. If the
class initialization procedure registers type converters, these type converters are not
available until this first widget is created (see Section 9.6).

1.4.9 Inheritance of Superclass Operations

A widget class is free to use any of its superclass's self-contained operations rather than
implementing its own code. The most frequently inherited operations are:

• expose

• realize

• insert child

• delete child

• geometry_manager

• set values almost - -
To inherit an operationxyz, specify the constant Xtlnheri tXyz in your class record.

Every class that declares a new procedure in its widget class part must provide for
inheriting the procedure in its class part initialize procedure. (The special chained
operations initialize, set_values, and destroy declared in the Core record do not have
inherit procedures. Widget classes that do nothing beyond what their super class does
specify NULL for chained procedures in their class records.)

Inheriting works by comparing the value of the field with a known, special value and by
copying in the superclass's value for that field if a match occurs. This special value is
usually the X Toolkit Intrinsics internal value _Xtlnheri t castto the appropriate type.
(_Xtlnheri t is a procedure that issues an error message if it is actually called.)

For example, the Compos i te class's private include file contains these definitions:

#define XtlnheritGeometryManager «XtGeometryHandler) Xtlnherit)
#define XtlnheritChangeManaged «XtWidgetProc) Xtlnhe;it)
#define XtlnheritlnsertChild «XtArgsProc) XtI~herit)
#define XtlnheritDeleteChild «XtWidgetProc) _Xtlnherit)

The Composite's class _part_initialize procedure begins as follows:

static void CompositeClassPartlnitialize(widgetClass)
WidgetClass widgetClass;

register CompositeWidgetClass wc = (CompositeWidgetClass) widgetClass;
CompositeWidgetClass super = (CompositeWidgetClass) wc->core_class.superclass

1- 24 Intrinsics and Widgets

if (wc->composite_class.geometry_manager == XtlnheritGeometryManager) {
wc->composite_class.geometry_manager = super->composite_class.geometry_manager;

if (wc->composite class.change managed == XtlnheritChangeManaged) {
wc->composite=class.change=managed = super->composite_class.change_managed;

The inherit constants defined for Core are:

• XtInheritRealize

• XtInheritResize

• XtInheritExpose

• XtInheritSetValuesAlmost

• XtInheritAcceptFocus

• XtInheritDisplayAccelerator

The inherit constants defined for Compos i te are:

• XtInheritGeometryManager

• XtInheritChangeManaged

• XtInheritInsertChild

• XtInheritDeleteChild

1.4.10 Invocation of Superclass Operations

A widget class sometimes explicitly needs to call a superclass operation that usually is not
chained. For example, a widget's expose procedure might call its superclass's expose and
then perform a little more work of its own. Compos i te classes with fixed children can
implement insert_child by first calling their superclass's insert_child procedure and then
calling XtManageChild to add the child to the managed list.

Note that a method should call its own superclass method, not the widget's superclass
method. That is, it should use its own class pointers only, not the widget's class pointers.
This technique is referred to as enveloping the superclass's operation.

Intrinsics and Widgets 1- 25

Widget Instantiation 2
A collection of widget instances constitutes a widget tree. The shell widget returned by
XtAppCreateShell is the root of the widget tree instance. The widgets with one or
more children are the intermediate nodes of that tree, and the widgets with no children of
any kind are the leaves of a widget tree. With the exception of pop-up children (see
Chapter 5), this widget tree instance defines the associated X Window tree.

Widgets can be either composite or primitive. Both kinds of widgets can contain children,
but the X Toolkit Intrinsics provide a set of management mechanisms for constructing and
interfacing between composite widgets, their children, and other clients.

Composite widgets, subclasses of Compos i te, are containers for an arbitrary but
implementation-defined collection of children, which may be instantiated by the composite
widget itself, by other clients, or by a combination of the two. Composite widgets also
contain methods for managing the geometry (layout) of any child widget. Under unusual
circumstances, a composite widget may have zero children, but it usually has at least one.
By contrast, primitive widgets that contain children typically instantiate specific children of
known class themselves and do not expect external clients to do so. Primitive widgets also
do not have general geometry management methods.

In addition, the X Toolkit Intrinsics recursively perform many operations (for example,
realization and destruction) on composite widgets and all of their children. Primitive
widgets that have children must be prepared to perform the recursive operations
themselves on behalf of their children.

A widget tree is manipulated by several X Toolkit Intrinsics functions. For example,
XtRealizeWidget traverses the tree downward and recursively realizes all pop-up
widgets and children of composite widgets. XtDestroyWidget traverses the tree
downward and destroys all pop-up widgets and children of composite widgets. The
functions that fetch and modify resources traverse the tree upward and determine the
inheritance of resources from a widget's ancestors. XtMakeGeometryRequest
traverses the tree up one level and calls the geometry manager that is responsible for a
widget child's geometry.

To facilitate up-traversal of the widget tree, each widget has a pointer to its parent widget.
The Shell widget that XtAppCreateShell returns, however, has a parent pointer of
NULL.

Widget Instantiation 2 - 1

To facilitate down-traversal of the widget tree, each composite widget has a pointer to an
array of children widgets, which includes all normal children created, not just the subset of
children that are managed by the composite widget's geometry manager. Primitive widgets
that instantiate children are entirely responsible for all operations that require downward
traversal below themselves. In addition, every widget has a pointer to an array of pop-up
children widgets.

2.1 Initializing the X Toolkit

Before an application can call any of the X Toolkit Intrinsics functions, it must initialize
the X Toolkit by using:

• XtToolki tlni tialize, which initializes the X Toolkit internals

• XtCreateApplicationContext, which initializes the per application state

• XtDisplaylnitialize or XtOpenDisplay, which initializes the per display
state

• XtAppCreateShell, which creates the initial widget

Multiple instances of X Toolkit applications may be implemented by a single program in a
single address space. Each instance needs to be able to read input and dispatch events
independently of any other instance. Further, an application may need multiple display
connections or need to have widgets on multiple screens. To accommodate both
requirements, the X Toolkit Intrinsics define application contexts, each of which provides
the information needed to distinguish one application instance from another. The major
component of an application context is a list of X Display pointers for that application.
The application context type XtAppContext is opaque to clients.

To initialize the X Toolkit internals, use XtToolkitlnitialize.

void XtToolkitlnitialize()

The semantics of calling XtToolki tlni tialize more than once are undefined.

To create an application context, use XtCreateApplicationContext.

XtAppContext XtCreateApplicationContext()

The XtCreateApplicationContext function returns an application context, which
is an opaque type. Every application must have at least one application context.

2 -2 Widget Instantiation

To destroy an application context and close any displays in it, usc
XtDestroyApplicationContext.

void XtDestroyApplicationContext(app_cont~)
XtAppContext app_cont~;

app _context Specifics the application context.

The XtDestroyApplicationContext function destroys the specified application
context as soon as it is safe to do so. If called from with an event dispatch (for example, a
callback procedure), XtDestroyApplicationContext does not destroy the
application context until the dispatch is complete.

To get the application context for a given widget, use
XtWidgetToApplicationContext.

XtAppContext XtWidgetToApplicationContext(w)
Widget w;

w Specifics the widget for which you want the application context .

The XtWidgetToApplicationContext function returns the application context for
the specified widget.

To initialize a display and add it to an application context, use
XtDisplaylnitialize.

void XtDisplaylni tialize (app _cont~, display, application _name, application _class,
options, num _options, argc, argv)

XtAppContext app cont~;
Display *display; -
String application name;
String application -class;
XrmOptionDescRec- *options;
Cardinal num options;
Cardinal *arge;
String *argv;

Specifies the application context. app _context

display Specifies the display. Note that a display can be in at most one
application context.

application _ name

application _class

Specifies the name of the application instance.

Specifies the class name of this application, which is usually the
generic name for all instances of this application.

Widget Instantiation 2 -3

options Specifies how to parse the command line for any application
specific resources. The options argument is passed as a parameter
to XrmParseComrnand. For further information, see
Programming with Xlib .

num _options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line parameters.

argv Specifies the command line parameters.

The XtDisplayIni tialize function builds the resource database, calls the Xlib
XrmParseComrnand function to parse the command line, and performs other per display
initialization. After XrmParseComrnand has been called, argc and argv contain only
those parameters that were not in the standard option table or in the table specified by the
options argument. If the modified argc is not zero, most applications simply print out the
modified argv along with a message listing the allowable options. The application name is
usually the final component of argv[O). If the synchronize resource is True for the
specified application, XtDisplayInitialize calls the Xlib XSynchronize
function to put Xlib into synchronous mode for this display connection. If the
reverse Video resource is True, the X Toolkit Intrinsics exchange
XtDefaul tForeground and XtDefaul tBackground for widgets created on this
display. (See Section 9.6.1).

To open a display, initialize it, and add it to an application context, use
XtOpenDisplay.

Display *XtOpenDisplay (app _context, display_string, application _name, application _class,
options, nurn options, argc, argv)

XtAppContext app context; -
String display string;
String applicciiion name;
String application -class;
XrmOptionDescRec- *options;
Cardinal nurn options;
Cardinal *argC;
String *argv;

app _context

display _string

application_name

application _class

Specifies the application context.

Specifies the display string. Note that a display can be in at most
one application context.

Specifies the name of the application instance.

Specifies the class name of this application, which is usually the
generic name for all instances of this application.

2 - 4 Widget Instantiation

options

num _options

argc

Specifies how to parse the command line for any application
specific resources. The options argument is passed as a parameter
to XrmParseCommand. For further information, see
Programming with Xlib .

Specifies the number of entries in the options list.

Specifies a pointer to the number of command line parameters.

argv Specifies the command line parameters.

The XtOpenDisplay function calls XOpenDisplay the specified display name. If
display_string is NULL, XtOpenDisplay uses the current value of the -display option
specified in argv and if no display is specified in argv, uses the user's default display (this is
the value of the DISPLAY environment variable).

If this succeeds, it then calls XtDisplaylnitialize and pass it the opened display
and the value of the -name option specified in argv as the application name. If no name
option is specified, it uses the application name passed to XtOpenDisplay. If the
application name is NULL, it uses the last component of argv[O]. XtOpenDisplay
returns the newly opened display or NULL if it failed.

XtOpenDisplay is provided as a convenience to the application programmer.

To close a display and remove it from an application context, use XtCloseDisplay.

void XtCloseDisplay(d~play)
Display *display;

display Specifies the display.

The XtCloseDisplay function closes the specified display as soon as it is safe to do so.
If called from within an event dispatch (for example, a callback procedure),
XtCloseDisplay does not close the display until the dispatch is complete. Note that
applications need only call XtCloseDisp lay if they are to continue executing after
closing the display; otherwise, they should call XtDestroyApplicationContext or
just exit.

2.2 Loading the Resource Database

The XtDisplaylni tialize function loads the application's resource database for this
display/host/application combination from the following sources (in order):

• Application-specific class resource file on the client host

Widget Instantiation 2 -5

• Application-specific user resource file on the client host

• Resource property on the server or user preference resource file on the client host

• Per-host user environment resource file on the client host

• Application command line (argv)

Each resource database is kept on a per-display basis.

The application-specific class resource file name is constructed from the class name of the
application. It points to a site-specific resource file that usually is installed by the site
manager when the application is installed. This file usually is /usr/lib/Xll/app
defaults/class, where class is the application class name. This file is expected to be
provided by the developer of the application and may be required for the application to
function properly.

The application-specific user resource file name is constructed from the class name of the
application and points to a user-specific resource file. This file is owned by the application
and typically stores user customizations. This file name is constructed from the user's
XAPPLRESDIR variable by appending class to it, where class is the application class
name. If XAPPLRESDIR is hot defined, it defaults to the user's home directory. If the
resulting resource file exists, it is merged into the resource database. This file may be
provided with the application or constructed by the user.

The server resource file is the contents of the X server's RESOURCE_MANAGER property
that was returned by XOpenDisplay. If no such property exists for the display, the
contents of the resource file in the user's home directory is used instead. The usual name
for the user preference resource file is . Xdefaul ts. If the resulting resource file exists,
it is merged into the resource database. The server resource file is constructed entirely by
the user and contains both display-independent and display-specific user preferences.

If one exists, a user's environment resource file is then loaded and merged into the
resource database. This file name is user and host specific. The user's environment
resource file name is constructed from the value of the user's XENVIRONMENT variable
for the full path of the file. If this environment variable does not exist,
XtDisplaylni tialize searches the user's home directory for the . Xdefaul ts
host file, where host is the name of the machine on which the application is running. If the
resulting resource file exists, it is merged into the resource database. The environment
resource file is expected to contain process-specific resource specifications that are to
supplement those user-preference specifications in the server resource file.

To obtain the resource database for a particular display, use XtDatabase.

XrmDatabase XtDatabase(display)
Display *display;

2 - 6 Widget Instantiation

display Specifies the display.

The XtDatabase function returns the fully merged resource database that was built by
XtDisplaylni tialize associated with the display that was passed in. If this display
has not been initialized by XtDisplayIni tialize, the results are not defined.

2.3 Parsing the Command Line
The XtOpenDisplay function first parses the command line for the following options:

-display Specifies the display name for XOpenDisplay, which overrides the
display name passed to XtDisplaylni tialize.

-name Sets the resource name prefix, which overrides the application name passed
to XtDisplaylnitialize.

XtDisplaylnitialize has a table of standard command line options that are passed
to XrmParseCommand for adding resources to the resource database, and it takes as a
parameter additional application-specific resource abbreviations. The format of this table
is:

typedef enum {
XrmoptionNoArg,
XrmoptionIsArg,
XrmoptionStickyArg,
XrmoptionSepArg,
XrmoptionSkipArg,
XrmoptionSkipLine

} XrmOptionKind;

typedef struct {

1* Value is specified in OptionDescRec.value *1
1* Value is the option string itself *1
1* Value is characters immediately following option *1
1* Value is next argument in argv *1
1* Ignore this option and the next argument in argv *1
1* Ignore this option and the rest of argv *1

char *option; 1* Option name in argv *1
char *specifier; 1* Resource name (without application name) *1
XrmOptionKind argKind; 1* Which style of option it is *1
caddr_t value; 1* Value to provide if XrmoptionNoArg *1

XrmOptionDescRec, *XrmOptionDescList;

The standard table contains the following entries:

Widget Instantiation 2 -7

Option String Resource Name Argument Kind Resource Value

-background background SepArg next argument
-bd borderColor SepArg next argument
-bg background SepArg next argument
-borderwidth borderWidth SepArg next argument
-bordercolor border Color SepArg next argument
-bw borderWidth SepArg next argument
-display display SepArg next argument
-fg foreground SepArg next argument
-fn font SepArg next argument
-font font SepArg next argument
-foreground foreground SepArg next argument
-geometry geometry SepArg next argument

. -iconic iconic NoArg true
-name name SepArg next argument
-reverse reverse Video NoArg on
-rv reverse Video NoArg on
+rv reverseVideo NoArg off
-selectionTimeout selectionTimeout SepArg next argument
-synchronous synchronize NoArg on
+ synchronous synchronize NoArg off
-title title SepArg next argument
-xrm next argument ResArg next argument

Note that any unique abbreviation for an option name in the standard table or in the
application table is accepted.

If reverseVideo is set, the values of XtDefaul tForeground and
XtDefaul tBackground are exchanged. If synchronize is set, the X Toolkit Intrinsics
put Xlib into synchronous mode for all connections.

The -xrm option provides a method of setting any resource in an application. The next
argument should be a quoted string identical in format to a line in the user resources file.
For example, to give a red background to all command buttons in an application named
xmh, you can start it up as:

xmh -xrm 'xmh*Command.background: red'

2 - 8 Widget Instantiation

When it parses the command line, XtDisplaylni tialize merges the application
option table with the standard option table before calling the Xlib XrmParseCommand
function. An entry in the application table with the same name as an entry in the standard
table overrides the standard table entry. If an option name is a prefix of another option
name, both names are kept in the merged table.

2,,4 Creating Widgets

The creation of widget instances is a three-phase process:

1. The widgets are allocated and initialized with resources and are optionally added to
the managed subset of their parent.

2. All composite widgets are notified of their managed children in a bottom-up
traversal of the widget tree.

3. The widgets create X windows that then get mapped.

To start the first phase, the application calls XtCreateWidget for all its widgets and
adds some (usually, most or all) of its widgets to their respective parent's managed set by
calling XtManageChild. To avoid an 0 (n 2

) creation process where each composite
widget lays itself out each time a widget is created and managed, parent widgets are not
notified of changes in their managed set during this phase.

After all widgets have been created, the application calls XtRealizeWidget on the
top-level widget to start the second and third phases. XtRealizeWidget first
recursively traverses the widget tree in a post-order (bottom-up) traversal and then notifies
each composite widget with one or more managed children by means of its
change_managed procedure.

Notifying a parent about its managed set involves geometry layout and possibly geometry
negotiation. A parent deals with constraints on its size imposed from above (for example,
when a user specifies the application window size) and suggestions made from below (for
example, when a primitive child computes its preferred size). One difference between the
two can cause geometry changes to ripple in both directions through the widget tree. The
parent may force some of its children to change size and position and may issue geometry
requests to its own parent in order to better accommodate all its children. You cannot
predict where anything will go on the screen until this process finishes.

Consequently, in the first and second phases, no X windows are actually created because it
is likely that they will get moved around after creation. This avoids unnecessary requests
to the X server.

Widget Instantiation 2 • 9

Finally, XtRealizeWidget starts the third phase by making a pre-order (top-down)
traversal of the widget tree, allocates an X window to each widget by means of its realize
procedure, and finally maps the widgets that are managed.

2.4.1 Creating and Merging Argument Lists

Many X Toolkit Intrinsics functions need to be passed pairs of resource names and values.
These are passed as an Ar gLi s t, which contains:

typedef something XtArgVal;

typedef struct {
String name;
XtArgVal value;

} Arg, *ArgList;

Where something is a type large enough to contain caddr _ t, char *, long, int *, or a pointer
to a function.

If the size of the resource is less than or equal to the size of an X tAr g Val, the resource
value is stored directly in value; otherwise, a pointer to it is stored into value.

To set values in an ArgList, use XtSetArg.

XtSetArg(mg, name, value)
Arg arg;

arg

name

value

String name;
XtArgVal value;

Specifies the name-value pair to set.

Specifies the name of the resource.

Specifies the value of the resource if it will fit in an X tAr g Valor the address.

The XtSetArg function is usually used in a highly stylized manner to minimize the
probability of making a mistake; for example:

Arg args[20];
int n;

n = 0;
XtSetArg(args[n], XtNheight, 100); n++;
XtSetArg(args[n], XtNwidth, 200); n++;
XtSetValues(widget, args, n);

Alternatively, an application can statically declare the argument list and use XtNumber:

2 - 10 Widget Instantiation

static Args arhs[) = {

} ;

{XtNheight, (XtArgVal) lOa},
{XtNwidth, (XtArgVal) ZOO},

XtSetValues(Widget, args, XtNumber(args»;

Note that you should not use auto-increment or auto-decrement within the first argument
to XtSetArg. XtSetArg can be implemented as a macro that dereferences the first
argument twice.

To merge two ArgLis t structures, use XtMergeArgLis ts.

ArgList XtMergeArgLists(argsl, num_argsl, mgs2, num_args2)
ArgList argsl;
Cardinal num argsl;
ArgList args2;-
Cardinal num _ args2 ;

Specifies the first ArgLis t. argsl

nutn_argsl

args2

Specifies the number of arguments in the first argument list.

Specifies the second ArgList.

num _ args2 Specifies the number of arguments in the second argument list.

The XtMergeArgLists function allocates enough storage to hold the combined
ArgList structures and copies them into it. Note that it does not check for duplicate
entries. When it is no longer needed, free the returned storage by using XtFree.

2.4.2 Creating a Widget Instance

To create an instance of a widget, use XtCreateWidget.

Widget XtCreateWidget (name, widget class, parent, args, num _args)
String name; -

name

WidgetClass widget class;
Widget parent; -
ArgList args;
Cardinal num _ args;

Specifies the resource name for the created widget, which is used for
retrieving resources and, for that reason, should not be the same as any
other widget that is a child of same parent.

widget_class

parent

Specifies the widget class pointer for the created widget.

Specifies the parent widget.

Widget Instantiation 2 -11

args

Ilum_args

Specifies the argument list to override the resource defaults.

Specifies the number of arguments in the argument list.

The XtCrea teWidge t function performs much of the boilerplate operations of widget
creation:

• Checks to see if the class_initialize procedure has been called for this class and for
all superclasses and, if not, calls those necessary in a superclass-to-subclass order.

• Allocates memory for the widget instance.

• If the parent is a subclass of constraintWidgetClass, it allocates memory for
the parent's constraints and stores the address of this memory into the constraints
field.

• Initializes the core nonresource data fields (for example, parent and visible).

• Initializes the resource fields (for example, background_pixel) by using the resource
lists specified for this class and all superclasses.

• If the parent is a subclass of constraintWidgetClass, it initializes the
resource fields of the constraints record by using the constraint resource list
specified for the parent's class and all super classes up to
constraintWidgetClass.

• Calls the initialize procedures for the widget by starting at the Core initialize
procedure on down to the widget's initialize procedure.

• If the parent is a subclass of compositeWidgetClass, it puts the widget into its
parent's children list by calling its parent's insert_child procedure. For further
information, see Section 3.5.

• If the parent is a subclass of constraintWidgetClass, it calls the constraint
initialize procedures, starting at constraintWidgetClass on down to the
parent's constraint initialize procedure.

Note that you can determine the number of arguments in an argument list by using the
XtNumber macro. For further information, see Section 11.1. (See also
XtCrea teManagedWidge t.)

2 -12 Widget Instantiation

2.4.3 Creating an Application Shell Instance

An application can have multiple top-level widgets, which can potentially be on many
different screens. An application uses XtAppCreateShell if it needs to have several
independent windows. The XtAppCreateShell function creates a top-level widget
t hat is the root of a widget tree.

Widget XtAppCreateShell(application _name, application _class, widget_class, display,
args, num args)

String application name; -
String application -class;
WidgetClass widget class;
Display *display; -
ArgList args;
Cardinal num _ args;

application _ name Specifies the name of the application instance. If
application_name is NULL, the application name passed to
XtDisplaylni tialize is used.

application _class

widget_class

display

args

num_args

Specifies the class name of this application.

Specifies the widget class that the application top-level widget
should be (normally, applicationShellWidgetClass) .

Specifies the display from which to get the resources.

Specifies the argument list in which to set in the WM _ COMMAND
property.

Specifies the number of arguments in the argument list.

The XtAppCreateShell function saves the specified application name and application
class for qualifying all widget resource specifiers. The application name and application
class are used as the left-most components in all widget resource names for this
application. XtAppCreateShell should be used to create a new logical application
within a program or to create a shell on another display. In the first case, it allows the
specification of a new root in the resource hierarchy. In the second case, it uses the
resource database associated with the other display.

Note that the widget returned by XtAppCreateShell has the WM_ COMMAND
property set for session managers (see Chapter 4).

To create multiple top-level shells within a single (logical) application, you can use one of
two methods:

• Designate one shell as the real top-level shell and create the others as pop-up
children of it by using XtCreatePopupShell.

Widget Instantiation 2 -13

• Have all shells as pop-up children of an unrealized top-level shell.

The first method, which is best used when there is a clear choice for what is the main
window, leads to resource specifications like the following:

xmail.geometry: . . . (the main window)
xmail.read.geometry: . .. (the read window)
xmail. compose. geometry: ... (the compose window)

The second method, which is best if there is no main window, leads to resource
specifications like the following:

xmail.headers.geometry: ... (the headers window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry: ... (the compose window)

2.4.4 Widget Instance Initialization

The initialize procedure pointer in a widget class is of type Xtlni tProc:

typedef void (*XtlnitProc) (Widget, Widget);
Widget request;
Widget new;

request

new

Specifies the widget with resource values as requested by the argument list, the
resource database, and the widget defaults.

Specifies a widget with the new vaiues, both resource and nonresource, that
are actually allowed.

An initialization procedure performs the following:

• Allocates space for and copies any resources that are referenced by address. For
example, if a widget has a field that is a String it cannot depend on the characters
at that address remaining constant but must dynamically allocate space for the string
and copy it to the new space. (Note that you should not allocate space for or copy
callback lists.)

• Computes values for unspecified resource fields. For example, if width and height
are zero, the widget should compute an appropriate width and height based on other
resources. This is the only time that a widget should ever directly assign its own
width and height.

• Computes va1ues for uninitialized nonresource fields that are derived from resource
fields. For example, graphics contexts (GCs) that the widget uses are derived from
resources like background, foreground, and font.

2 -14 Widget Instantiation

An initialization procedure also can check certain fields for internal consistency. For
example, it makes no sense to specify a color map for a depth that does not support that
color map.

Initialization procedures are called in superclass-to-subclass order. Most of the
initialization code for a specific widget class deals with fields defined in that class and not
with fields defined in its superclasses.

If a subclass does not need an initialization procedure because it does not need to perform
any of the above operations, it can specify NULL for the initialize field in the class record.

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular,
size calculations of a super class are often incorrect for a subclass and in this case, the
subclass must modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the
width and height calculated by the superclass initialize procedure are too small and need to
be incremented by the size of the surround. The subclass needs to know if its superclass's
size was calculated by the super class or was specified explicitly. All widgets must place
themselves into whatever size is explicitly given, but they should compute a reasonable size
if no size is requested.

The request and new arguments provide the necessary information for how a subclass
knows the difference between a specified size and a size computed by a superclass. The
request widget is the widget as originally requested. The new widget starts with the values
in the request, but it has been updated by all superclass initialization procedures called so
far. A subclass initialize procedure can compare these two to resolve any potential
conflicts.

In the above example, the subclass with the visual surround can see if the width and height
in the request widget are zero. If so, it adds its surround size to the width and height fields
in the new widget. If not, it must make do with the size originally specified.

The new widget will become the actual widget instance record. Therefore, the
initialization procedure should do all its work on the new widget (the request widget
should never be modified), and if it needs to call any routines that operate on a widget, it
should specify new as the widget instance.

2.4.5 Constraint Widget Instance Initialization

The constraint_initialize procedure pointer is of type Xtlni tProc. The values passed
to the parent constraint initialization procedure are the same as those passed to the child's
class widget initialization procedure.

Widget Instantiation 2 - 15

The constraint initialization procedure should compute any constraint fields derived from
constraint resources. It can make further changes to the widget to make the widget
conform to the specified constraints, for example, changing the widget's size or position.

If a constraint class does not need a constraint initialization procedure, it can specify
NULL for the initialize field of the Cons trail:(lassPar/t:in the class record.

2.4.6 Nonwidget Data Initialization

The initialize_hook procedure pointer is of type XtArgsPrbc:

typedef void (*XtArgsProc) (Widget, ArgList, Cardinal *);
Widget w;
ArgList args;
Cardinal *num _ args;

w Specifies the widget.

args

nUI1l_args

Specifies the argument list to override the resource defaults.

Specifies the number of arguments in the argument list.

If this procedure is not NULL, it is called immediately after the corresponding initialize
procedure or in its place if the initialize procedure is NULL.

The initialize hook procedure allows a widget instance to initialize nonwidget data using
information f;om the specified argument list. For example, the Text widget has subparts
that are not widgets, yet these subparts have resources that can be specified by means of
the resource file or an argument list. See also Section 9.4.

2.5 Realizing Widgets
To realize a widget instance, usc XtRealizeWidget.

void XtRealizeWidget(w)
Widget w;

w Specifics the widget.

If the widget is already realized, XtRealizeWidget simply returns. Otherwise, it
performs the following:

• Binds all action names in the widget's translation table to procedures (sec Section
10.1.2).

2 - 16 Widget Instantiation

• Makes a post -order traversal of the widget tree rooted at the specified widget and
calls the change managed procedure of each composite widget that has one or more
managed children.

• Constructs an XSetWindowAttributes structure filled in with information
derived from the Core widget fields and calls the realize procedure for the widget,
which adds any widget -specific attributes and creates the X window.

• If the widget is not a subclass of compositeWidgetClass,
XtRealizeWidget returns; otherwise, it continues and performs the following:

• Descends recursively to each of the widget's managed children and calls the
realize procedures. Primitive widgets that instantiate children are responsible
for realizing those children themselves.

• Maps all of the managed children windows that have mapped_when _ managed
True. (If a widget is managed but mapped_when _managed is False, the
widget is allocated visual space but is not displayed. Some people seem to like
this to indicate certain states.)

If the widget is a top-level shell widget (that is, it has no parent), and
mapped_when _managed is True, XtRealizeWidget maps the widget window.

XtCreateWidget, XtRealizeWidget, XtManageChildren,
XtUnmanageChildren, and XtDestroyWidget maintain the following invariants:

• If a widget is realized, then all its managed children are realized.

• If a widget is realized, then all its managed children that are also
mapped_when _ managed are mapped.

All X Toolkit Intrinsics functions and all widget routines should work with either realized
or unrealized widgets.

To check whether or not a widget has been realized, use XtIsRealized.

Boolean XtIsRealized(w)
Widget w;

w Specifies the widget.

The XtIsRealized function returns True if the widget has been realized, that is, if
the widget has a nonzero X window ID.

Some widget procedures (for example, set_values) might wish to operate differently after
the widget has been realized.

Widget Instantiation 2 -17

2.5.1 Widget Instance Window Creation

The realize procedure pointer in a widget class is of type XtRealizeProc:

typedef void (*XtRealizeProc) (Widget, XtValueMask *, XSetWindowAttributes *);
Widget w;

w

XtValueMask *value mask;
XSetWindowAt tr ibutes *attributes;

Specifies the widget.

value mask Specifies which fields in the attributes structure to use.

attributes Specifies the window attributes to use in the XCreateWindow call.

The realize procedure must create the widget's window.

The generic XtRealizeWidget function fills in a mask and a corresponding
XSetWindowAttributes structure. It sets the following fields based on information in
the widget Core structure:

• The background _pixmap (or background_pixel if background _pixmap is NULL) is
filled in from the corresponding field.

• The border _pixmap (or border_pixel if border J>ixmap is NULL) is filled in from the
corresponding field.

• The event mask is filled in based on the event handlers registered, the event
translatio~s specified, whether expose is non-NULL, and whether visible_interest is
True.

• The bit_gravity is set to NorthWes tGravi ty if the expose field is NULL.

• The do _not_propagate _mask is set to propagate all pointer and keyboard events up
the window tree. A composite widget can implement functionality caused by an
event anywhere inside it (including on top of children widgets) as long as children do
not specify a translation for the event.

All other fields in attributes (and the corresponding bits in value_mask) can be set by the
realize procedure.

Note that because realize is not a chained operation, the widget class realize procedure
must update the XSetWindowAttributes structure with all the appropriate fields
from non- Core superclasses.

A widget class can inherit its realize procedure from its superclass during class
initialization. The realize procedure defined for Core calls XtCreateWindow with
the passed value_mask and attributes and with windowClass and visual set to

2 -18 Widget Instantiation

CopyFromParent. Both CompositeWidgetClass and
ConstraintWidgetClass inherit this realize procedure, and most new widget
subclasses can do the same (see Section 1.4.9).

The most common noninherited realize procedures set bit gravity in the mask and
attributes to the appropriate value and then create the window. For example, depending
on its justification, Label sets bit gravity to Wes tGravi ty, CenterGravi ty, or
Eas tGr avi ty. Consequently, ~hrinking it just moves the bits appropriately, and no
Expose event is needed for repainting.

If a composite widget's children should be realized in a particular order (typically to
control the stacking order), it should call XtRealizeWidget on its children itself in the
appropriate order from within its own realize procedure.

Widgets that have children and that are not a subclass of compositeWidgetClass are
responsible for calling XtRealizeWidget on their children, usually from within the
realize procedure.

2.5.2 Window Creation Convenience Routine

Rather than call the Xlib XCreateWindow function explicitly, a realize procedure
should call the X Toolkit Intrinsics analog XtCreateWindow, which simplifies the
creation of windows for widgets.

void XtCreateWindow(w, window class, visual, value_mask, attributes)
Widget w; -

w

unsigned int window class;
Visual *visual; -
XtValueMask value mask;
XSetWindowAttrib~tes *attributes;

window class

Specifies the widget that is used to set the x,y coordinates and so on.

Specifies the Xlib window class (for example, InputOutput,
InputOnly, or CopyFromParent).

visual

value mask

attributes

Specifies the visual type (usually CopyFromParent).

Specifies which attribute fields to use.

Specifies the window attributes to use in the XCrea teWindow call.

The XtCreateWindow function calls the Xlib XCreateWindow function with values
from the widget structure and the passed parameters. Then, it assigns the created window
to the widget's window field.

XtCrea teWindow evaluates the following fields of the Core widget structure:

Widget Instantiation 2 - 19

• depth

• screen

• parent -> core.window

• x

• y

• width

• height

• border width

2.6 Obtaining Window Information from a Widget
The Core widget definition contains the screen and window IDs. The window field may
be NULL for a while (see Sections 2.4 and 2.5).

The display pointer, the parent widget, screen pointer, and window of a widget are
available to the widget writer by means of macros and to the application writer by means
of functions.

Display *XtDisplay(w)
Widget wi

w Specifies the widget.

XtDisplay returns the display pointer for the specified widget.

Widget XtParent(w)
Widget wi

w Specifies the widget.

XtParent returns the parent widget for the specified widget.

Screen *XtScreen(w)
Widget wi

2 -20 Widget Instantiation

w Specifies the widget.

XtSereen returns the screen pointer for the specified widget.

Window XtWindow(w)
Widget wi

w Specifies the widget.

XtWindow returns the window of the specified widget.

Several window attributes are locally cached in the widget. Thus, they can be set by the
resource manager and XtSetValues as well as used by routines that derive structures
from these values (for example, depth for deriving pixmaps, background .J>ixel for deriving
GCs, and so on) or in the XtCreateWindow call.

The X, y, width, height, and border width window attributes are available to geometry
managers. These fields are maintained synchronously inside the X Toolkit. When an
XConfigureWindow is issued on the widget's window (on request of its parent), these
values are updated immediately rather than sometime later when the server generates a
ConfigureNotifyevent. (In fact, most widgets do not have
Subs true tureNotify turned on.) This ensures that all geometry calculations are
based on the internally consistent toolkit world, rather than on either an inconsistent world
updated by asynchronous ConfigureNotify events or a consistent but slow world in
which geometry managers ask the server for window sizes whenever they need to layout
their managed children (see Chapter 6).

2.6.1 Unrealizing Widgets

To destroy the windows associated with a widget and its descendants, use
XtUnrealizeWidget.

void XtUnrealizeWidget(w)
Widget Wi

w Specifies the widget.

The XtUnrealizeWidget function destroys the windows of an existing widget and all
of its children (recursively down the widget tree). To recreate the windows at a later time,
call XtRealizeWidget again. If the widget was managed, it will be unmanaged
automatically before its window is freed.

Widget Instantiation 2 -21

2.7 Destroying Widgets

The X Toolkit Intrinsics provide support to:

• Destroy all the pop-up children of the widget being destroyed and destroy all
children of composite widgets

• Remove (and unmap) the widget from its parent

• Call the callback procedures that have been registered to trigger when the widget is
destroyed

• Minimize the number of things a widget has to deallocate when destroyed

• Minimize the number of XDes troyWindow calls

To destroy a widget instance, use XtDestroyWidget.

void XtDestroyWidget(w)
Widget w;

w Specifies the widget.

The XtDestroyWidget function provides the only method of destroying a widget,
including widgets that need to destroy themselves. It can be called at any time, including
from an application callback routine of the widget being destroyed. This requires a two
phase destroy process in order to avoid dangling references to destroyed widgets.

In phase one, XtDestroyWidget performs the following:

• If the being_destroyed field of the widget is True, it returns immediately.

• Recursively descends the widget tree and sets the being destroyed field to True for
the widget and all children. -

• Adds the widget to a list of widgets (the destroy list) that should be destroyed when
it is safe to do so.

Entries on the destroy list satisfy the invariant that if w2 occurs after wI on the destroy list
then w2 is not a descendent of wI. (A descendant refers to both normal and pop-up
children.)

Phase two occurs when all procedures that should execute as a result of the current event
have been called (including all procedures registered with the event and translation
managers), that is, when the current invocation of XtDispatchEvent is about to return
or immediately if not in XtDispatchEvent.

2 -22 Widget Instantiation

In phase two, XtDestroyWidget performs the following on each entry in the destroy
list:

• Calls the destroy callback procedures registered on the widget (and all descendants)
in post -order (it calls children callbacks before parent callbacks).

• If the widget's parent is a subclass of compositeWidgetClass and if the parent
is not being destroyed, it calls XtUnmanageChild on the widget and then calls
the widget's parent's delete_child procedure (see Section 3.4).

• If the widget's parent is a subclass of constraintWidgetClass, it calls the
constraint destroy procedure for the parent, then the parent's super class, until finally
it calls the constraint destroy procedure for constraintWidgetClass.

• Calls the destroy methods for the widget (and all descendants) in post -order. For
each such widget, it calls the destroy procedure declared in the widget class, then the
destroy procedure declared in its superclass, until finally it calls the destroy
procedure declared in the Core class record.

• Calls XDestroyWindow if the widget is realized (that is, has an X window). The
server recursively destroys all descendant windows.

• Recursively descends the tree and deallocates all pop-up widgets, constraint records,
callback lists and, if the widget is a subclass of compositeWidgetClass,
children.

2.7.1 Adding and Removing Destroy Callbacks

When a application needs to perform additional processing during the destruction of a
widget, it should register a destroy callback procedure for the widget. The destroy callback
procedures use the mechanism described in Chapter 8. The destroy callback list is
identified by the resource name XtNdestroyCallback.

For example, the following adds an application-supplied destroy callback procedure
ClientDestroy with client data to a widget by calling XtAddCallback.

XtAddCallback (w, XtNdestroyCallback, ClientDestroy, client_data)

Similarly, the following removes the application-supplied destroy callback procedure
ClientDestroy by calling XtRemoveCallback.

XtRemoveCallback (w, XtNdes troyCallback, ClientDestroy, client_data)

The ClientDestroy argument is of type XtCallbackProc:

Widget Instantiation 2 -23

typedef void (*XtCallbackProc) (Widget, caddr_t, caddr_t);

For further information, see Section 8.1.

2.7.2 Dynamic Data Deallocation

The destroy procedure pointer in the CoreClassPart structure is of type
XtWidgetProc:

typedef void (*XtWidgetProc)(Widget);

The destroy procedures are called in subclass-to-superclass order. Therefore, a widget's
destroy procedure only should deallocate storage that is specific to the subclass and should
not bother with the storage allocated by any of its superclasses. The destroy procedure
should only deallocate resources that have been explicitly created by the subclass. Any
resource that was obtained from the resource database or was passed in in an argument
list was not created by the widget and, therefore, should not be destroyed by it. If a widget
does not need to deallocate any storage, the destroy procedure entry in its widget class
record can be NULL.

Deallocating storage includes but is not limited to:

• Calling XtFree on dynamic storage allocated with XtMalloc, XtCalloc, and
so on

• Calling XFreePixrnap on pixmaps created with direct X calls

• Calling XtDestroyGC on GCs allocated with XtGetGC

• Calling XFreeGC on GCs allocated with direct X calls

• Calling XtRernoveEventHandler on event handlers added with
XtAddEventHandler

• Calling XtRernoveTirneOut on timers created with XtAppAddTimeOut

• Calling XtDestroyWidget for each child if the widget has children and is not a
subclass of compositeWidgetClass

2 ·24 Widget Instantiation

2.7.3 Dynamic Constraint Data Deallocation

The constraint destroy procedure identified in the ConstraintClassPart structure is
called for a widget whose parent is a subclass of constraintWidgetClass. This
constraint destroy procedure pointer is of type XtWidgetProc. The constraint destroy
procedures are called in subclass-to-superclass order, starting at the widget's parent and
ending at constraintWidgetClass. Therefore, a parent's constraint destroy
procedure only should deallocate storage that is specific to the constraint subclass and not
the storage allocated by any of its superclasses.

If a parent does not need to deallocate any constraint storage, the constraint destroy
procedure entry in its class record can be NULL.

2.8 Exiting from an Application

All X Toolkit applications should terminate by calling
XtDestroyApplicationContext and then exiting using the standard method for
their operating system (typically, by calling eXit). The quickest way to make the
windows disappear while exiting is to call XtUnrnapWidget on each top-level shell
widget. The X Toolkit has no resources beyond those in the program image, and the X
server will free its resources when its connection to the application is broken.

Widget Instantiation 2 -25

Composite Widgets and Their Children 3
Composite widgets (widgets that are a subclass of compos i teWidgetClass) can have
an arbitrary number of children. Consequently, they are responsible for much more than
primitive widgets. Their responsibilities (either implemented directly by the widget class
or indirectly by X Toolkit Intrinsics functions) include:

• Overall management of children from creation to destruction

• Destruction of descendants when the composite widget is destroyed

• Physical arrangement (geometry management) of a displayable subset of children
(that is, the managed children)

• Mapping and unmapping of a subset of the managed children

Overall management is handled by the generic procedures XtCreateWidget and
XtDestroyWidget. XtCreateWidget adds children to their parent by calling the
parent's insert child procedure. XtDestroyWidget removes children from their
parent by calli~g the parent's delete_child procedure and ensures that all children of a
destroyed composite widget also get destroyed.

Only a subset of the total number of children is actually managed by the geometry
manager and, hence, possibly visible. For example, a multibuffer composite editor widget
might allocate one child widget for each file buffer, but it only might display a small
number of the existing buffers. Windows that are in this displayable subset are called
managed windows and enter into geometry manager calculations. The other children are
called unmanaged windows and, by definition, are not mapped.

Children are added to and removed from the managed set by using XtManageChild,
XtManageChildren, XtUnmanageChild, and XtUnmanageChildren, which
notify the parent to recalculate the physical layout of its children by calling the parent's
change_managed procedure. The XtCreateManagedWidget convenience function
calls XtCreateWidget and XtManageChild on the result.

Most managed children are mapped, but some widgets can be in a state where they take up
physical space but do not show anything. Managed widgets are not mapped automatically
if their map_when_managed field is False. The default is True and is changed by
using XtSetMappedWhenManaged.

Composite Widgets and Their Children 3-1

Each composite widget class has a geometry manager, which is responsible for figuring out
where the managed children should appear within the composite widget's window.
Geometry management techniques fall into four classes:

• Fixed boxes

Fixed boxes have a fixed number of children that are created by the parent. All of
these children are managed, and none ever make geometry manager requests.

• Homogeneous boxes

Homogeneous boxes treat all children equally and apply the same geometry
constraints to each child. Many clients insert and delete widgets freely.

• Heterogeneous boxes

Heterogeneous boxes have a specific location where each child is placed. This
location usually is not specified in pixels, because the window may be resized, but is
expressed rather in terms of the relationship between a child and the parent or
between the child and other specific children. Heterogeneous boxes are usually
subclasses of Constraint.

• Shell boxes

Shell boxes have only one child, which is exactly the size of the shell. The geometry
manager must communicate with the window manager if it exists, and the box must
also accept ConfigureNotify events when the window size is changed by the
window manager.

3.1 Verifying the Class of a Composite Widget

To test if a given widget is a subclass of Composite, use XtIsComposite.

Boolean XtIsComposite(w)
Widget w;

w Specifies the widget.

The XtIsComposite function is a convenience function that is equivalent to
XtIsSubclass with composi teWidgetClass specified.

3 -2 Composite Widgets and Their Children

3.2 Addition of Children to a Composite Widget
To add a child to the parent's list of children, the XtCreateWidget function calls the
parent's class routine insert child. The insert child procedure pointer in a composite
widget is of type XtWidge-tProc: -

typedef void (*XtWidgetProc) (Widget) i

Most composite widgets inherit their superclass's operation. Composite's insert child
routine calls the insertyosition procedure and inserts the child at the specified position.

Some composite widgets define their own insert child routine so that they can order their
children in some convenient way, create companion controller widgets for a new widget, or
limit the number or type of their children widgets.

If there is not enough room to insert a new child in the children array (that is,
num children = num slots), the insert child procedure must first reallocate the array and
update num slots. The insert child procedure then places the child wherever it wants and
increments the num children field.

3.3 Insertion Order of Children

Instances of composite widgets need to specify about the order in which their children are
kept. For example, an application may want a set of command buttons in some logical
order grouped by function, and it may want buttons that represent file names to be kept in
alphabetical order.

The insertyosition procedure pointer in a composite widget instance is of type
XtOrderProc:

typedef Cardinal (*XtOrderProc)(Widget)i
Widget Wi

w Specifies the widget.

Composite widgets that allow clients to order their children (usually homogeneous boxes)
can call their widget instance's insertyosition procedure from the class's insert_child
procedure to determine where a new child should go in its children array. Thus, a client of
a composite class can apply different sorting criteria to widget instances of the class,
passing in a different insert_position procedure when it creates each composite widget
instance.

Composite Widgets and Their Children 3 -3

The return value of the insert position procedure indicates how many children should go
before the widget. Returning-zero indicates that the widget should go before all other
children, and returning num children indicates that it should go after all other children.
The default insertyosition function returns num _children and can be overridden by a
specific composite widget's resource list or by the argument list provided when the
composite widget is created.

3.4 Deletion of Children

To remove the child from the parent's children array, the XtDestroyWidget function
eventually causes a call to the composite parent's class delete child procedure. The
delete_child procedure pointer is of type XtWidgetProc:-

typedef void (*XtWidgetProc)(Widget);

Most widgets inherit the delete child procedure from their superclass. Composite widgets
that create companion widgets define their own delete child procedure to remove these
companion widgets. -

3.5 Adding and Removing Children from the Managed Set
The X Toolkit Intrinsics provide a set of generic routines to permit the addition of widgets
to or the removal of widgets from a composite widget's managed set. These generic
routines eventually call the widget's change_managed procedure. The change_managed
procedure pointer is of type XtWidgetProc.

3.5.1 Managing Children

To add a list of widgets to the geometry-managed (and, hence, displayable) subset of its
composite parent widget, the application must first create the widgets
(XtCreateWidget) and then call XtManageChildren.

typedef Widget *WidgetList;

void XtManageChildren(children, nU11l_children)
WidgetList children;
Cardinal num _children;

children

num children

Specifies a list of child widgets.

Specifies the number of children.

The XtManageChildren function performs the following:

3 -4 Composite Widgets and Their Children

• Issues an error if the children do not all have the same parent or if the parent is not
a subclass of compos i teWidgetClass.

• Returns immediately if the common parent is being destroyed; otherwise, for each
unique child on the list, XtManageChildren ignores the child if it already is
managed or is being destroyed and marks it if not.

• If the parent is realized and after all children have been marked, it makes some of
the newly managed children viewable:

• Calls the change_managed routine of the widgets' parent.

• Calls XtRealizeWidget on each previously unmanaged child that is
unrealized.

• Maps each previously unmanaged child that has map_when _ managed True.

Managing children is independent of the ordering of children and independent of creating
and deleting children. The layout routine of the parent should consider children whose
managed field is True and should ignore all other children. Note that some composite
widgets, especially fixed boxes, call XtManageChild from their insert_child procedure.

If the parent widget is realized, its change managed procedure is called to notify it that its
set of managed children has changed. Th~ parent can reposition and resize any of its
children. It moves each child as needed by calling XtMoveWidget, which first updates
the x and y fields and then calls XMoveWindow if the widget is realized.

If the composite widget wishes to change the size or border width of any of its children, it
calls XtResizeWidget, which first updates the Core fields and then calls the Xlib
XConfigureWindow function if the widget i~ realized.

To add a single child to a parent widget's list of managed children, first create the child
widget (XtCreateWidget) and then use XtManageChild.

void XtManageChild(child)
Widget child;

child Specifies the child.

The XtManageChild function constructs a WidgetList of length one and calls
XtManageChildren.

To create and manage a child widget in a single procedure, use
XtCreateManagedWidget.

Composite Widgets and Their Children 3 -5

Widget XtCreateManagedWidget (name, widget_class, parent, args, num _ args)
String name;
WidgetClass widget class;
Widget parent; -
ArgList args;
Cardinal num _ args ;

name Specifies the text name for the created widget.

widget_class

parent

Specifies the widget class pointer for the created widget.

Specifies the parent widget.

args Specifies the argument list to override the resource defaults.

num _ args Specifies the number of arguments in the argument list.

The XtCreateManagedWidget function is a convenience routine that calls
XtCreateWidget and XtManageChild.

3.5.2 Unmanaging Children

To remove a list of children from a parent widget's managed list, use
XtUnmanageChildren.

void XtUnmanageChildren(children, num _children)
WidgetList children;
Cardinal num _children;

children

num children

Specifies a list of child widgets.

Specifies the number of children.

The XtUnmanageChildren function performs the following:

• Issues an error if the children do not all have the same parent or if the parent is not
a subclass of compositeWidgetClass.

• Returns immediately if the common parent is being destroyed; otherwise, for each
unique child on the list, XtUnmanageChildren performs the following:

• Ignores the child if it already is unmanaged or is being destroyed and marks it if
not.

• If the child is realized, it makes it nonvisible by unmapping it.

• Calls the change managed routine of the widgets' parent after all children have been
marked if the pa;ent is realized.

3 - 6 Com po site Widgets and Their Children

XtUnmanageChildren does not destroy the children widgets. Removing widgets from
a parent's managed set is often a temporary banishment, and, some time later, you may
manage the children again. To destroy widgets entirely, see Section 2.7.

To remove a single child from its parent's managed set, use XtUnmanageChild.

void XtUnmanageChild(child)
Widget child;

child Specifies the child.

The XtUnmanageChild function constructs a widget list of length one and calls
XtUnmanageChildren.

These generic functions are low-level routines that are used by generic composite widget
building routines. In addition, composite widgets can provide widget-specific, high-level
convenience procedures to let applications create and manage children more easily.

3.5.3 Determining if a Widget Is Managed

To determine the managed state of a given child widget, use XtIsManaged.

Boolean XtIsManaged(w)
Widget w;

w Specifies the widget.

The XtIsManaged macro (for widget programmers) or function (for application
programmers) returns True if the specified child widget is managed or False if it is
not.

3.6 Controlling When Widgets Get Mapped

A widget is normally mapped if it is managed. However, this behavior can be overridden
by setting the XtNmappedWhenManaged resource for the widget when it is created or by
setting the map_when _ managed field to Fal s e .

To change the value of a given widget's map when managed field, use
XtSetMappedWhenManaged. --

void XtSetMappedWhenManaged(w, map when managed)
Widget w; - -
Boolean map_when _managed;

Composite Widgets and Their Children 3 -7

w Specifies the widget.

map _when_managed Specifies a Boolean value that indicates the new value of the
map_when _ managed field.

If the widget is realized and managed and if the new value of map _ when _ managed is
True, XtSetMappedWhenManaged maps the window. If the widget is realized and
managed and if the new value of map_when _managed is False, it unmaps the window.
XtSetMappedWhenManaged is a convenience function that is equivalent to (but slightly
faster than) calling XtSetValues and setting the new value for the
mappedWhenManaged resource. As an alternative to using
XtSetMappedWhenManaged to control mapping, a client may set
mapped_when_managed to False and use XtMapWidget and XtUnmapWidget
explicitly.

To map a widget explicitly, use XtMapWidget.

XtMapWidget(w)
Widget w;

w Specifies the widget.

To unmap a widget explicitly, use XtUnmapWidget.

XtUnmapWidget(w)
Widget w;

w Specifies the widget.

3.7 Constrained Composite Widgets

Constraint widgets are a subclass of compositeWidgetClass. Their name is
derived from the fact that they may manage the geometry of their children based on
constraints associated with each child. These constraints can be as simple as the maximum
width and height the parent will allow the child to occupy or can be as complicated as how
other children should change if this child is moved or resized. Constraint widgets let
a parent define resources that are supplied for their children. For example, if the
Constraint parent defines the maximum sizes for its children, these new size resources
are retrieved for each child as if they were resources that were defined by the child widget.
Accordingly, constraint resources may be included in the argument list or resource file just
like any other resource for the child.

3 - 8 Composite Widgets and Their Children

Constraint widgets have all the responsibilities of normal composite widgets and, in
addition, must process and act upon the constraint information associated with each of
their children.

To make it easy for widgets and the X Toolkit Intrinsics to keep track of the constraints
associated with a child, every widget has a constraints field, which is the address of a
parent-specific structure that contains constraint information about the child. If a child's
parent is not a subclass of constraintWidgetClass, then the child's constraints field
is NULL.

Subclasses of a Constraint widget can add additional constraint fields to their
super class. To allow this, widget writers should define the constraint records in their
private .h file by using the same conventions as used for widget records. For example, a
widget that needs to maintain a maximum width and height for each child might define its
constraint record as follows:

typedef struct {
Dimension max_width, max_height;

} MaxConstraintPart;

typedef struct {
MaxConstraintPart max;

} MaxConstraintRecord, *MaxConstraint;

A subclass of this widget that also needs to maintain a minimum size would define its
constraint record as follows:

typedef struct {
Dimension min width, min_height;

} MinConstraintPart;

typedef struct {
MaxConstraintPart max;
MinConstraintPart min;

} MaxMinConstraintRecord, *MaxMinConstraint;

Constraints are allocated, initialized, deallocated, and otherwise maintained insofar as
possible by the X Toolkit Intrinsics. The constraint class record part has several entries
that facilitate this. All entries in Cons traintClassPart are information and
procedures that are defined and implemented by the parent, but they are called whenever
actions are performed on the parent's children.

Composite Widgets and Their Children 3 -9

The XtCreateWidget function uses the constraint size field to allocate a constraint
record when a child is created. The constraint size ficld gives the number of bytes
occupied by a constraint record. XtCreateWidget also uses the constraint resources
to fill in resource fields in the constraint;record associated with a child. It then calls the
constraint initialize procedure so that the parent can compute constraint fields that are
derived from constraint resources and. can possibly move or resize the child to conform to
the given constraints.

The XtGetValues and Xt§~t-Vaiues functions use the constraint resources to get
the values or set the valu~s~6fconstraints associated with a child. XtSetValues then
calls the constraint st;.vValues procedures so that a parent can recompute derived
constraint fields ~d ~ove or resize the child as appropriate.

The XtDespi~yWidget function calls the constraint destroy procedure to deallocate
any dynamic storage associated with a constraint record. The constraint record itself must
not be deallocated by the constraint destroy procedure; XtDestroyWidget does this
automatically.

3 -10 Composite Widgets and Their Children

Shell Widgets 4

Shell widgets hold an application's top-level widgets to allow them to communicate with
the window manager. Shells have been designed to be as nearly invisible as possible.
Clients have to create them, but they should never have to worry about their sizes.

If a shell widget is resized from the outside (typically by a window manager), the shell
widget also resizes its child widget automatically. Similarly, if the shell's child widget needs
to change size, it can make a geometry request to the shell, and the shell negotiates the
size change with the outer environment. Clients should never attempt to change the size of
their shells directly.

The four types of public shells are:

OverrideShell Used for shell windows that completely bypass the window manager (for
example, pop-up menu shells).

TransientShell Used for shell windows that can be manipulated by the window manager
but are not allowed to be iconified separately (for example, Dialog boxes
that make no sense without their associated application). They are
iconified by the window manager only if the main application shell is
iconified.

TopLevelShell Used for normal top-level windows (for example, any additional top-level
widgets an application needs).

ApplicationShell Used by the window manager to define a separate application instance,
which is the main top-level window of the application.

Shell Widgets 4 ·1

4.1 Shell Widget Definitions

Widgets negotiate their size and position with their parent widget, that is, the widget that
directly contains them. Widgets at the top of the hierarchy· do not have parent widgets.
Instead, they must deal with the outside world. To provide for this, each top-level widget is
encapsulated in a special widget, called a She 11.

Shell widgets, a subclass of the Compos i te widget, encapsulate other widgets and can
allow a widget to avoid the geometry clipping imposed by the parent/child window
relationship. They also can provide a layer of communication with the window manager.

The seven different types of shells are:

She 11 Provides the base class for shell widgets and the fields needed for all
shells. Shell is a direct subclass of compositeWidgetClass.

OverrideShell Used for shell windows that completely bypass the window manager
subclass of She 11.

WMShell Contains fields needed by the common window manager protocol all
subclass of She 11.

VendorShell Contains fields used by vendor-specific window managers and is a su
WMShel1.

TransientShell Used for shell windows that can be manipulated by the window man;
that are not allowed to be iconified and is a subclass of VendorShE

TopLevelShell Used for normal top level windows and is a subclass of VendorShE

ApplicationShell Used for an application's top-level window and is a subclass of
TopLeve 1 She 11.

Note that the classes Shell, WMShell, and VendorShell are internal and should
not be instantiated or subclassed. Only OverrrideShell, TransientShell,
TopLevelShell, and ApplicationShell are for public use.

4.1.1 SheliClassPart Definitions

None of the shell widget classes has any additional fields:

typedef struct { caddr_t extension; } ShellClassPart, OverrideShellClassPart,
WMShellClassPart, VendorShellClassPart, TransientShellClassPart,
TopLevelShellClassPart, ApplicationShellClassPart;

4 -2 Shell Widgets

Shell widget classes have the (empty) shell fields immediately following the composite
fields:

typedef struct _ShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;

ShellClassRec;

typedef struct _OverrideShellClassRec
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
OverrideShellClassPart override_shell_class;

OverrideShellClassRec;

typedef struct _WMShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;

WMShellClassRec;

typedef struct _VendorShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;

VendorShellClassRec;

typedef struct _TransientShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TransientShellClassPart transient_shell_class;

TransientShellClassRec;

typedef struct _TopLevelShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TopLevelShellClassPart top_level_shell_class;

TopLevelShellClassRec;

Shell Widgets 4 -3

typedef struct _ApplicationShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_sheil_class;
TopLevelShellClassPart top_level_shell_class;
ApplicationShellClassPart application_sheil_class;

} ApplicationShellClassRec;

The predefined class records and pointers for shells are:

extern ShellClassRec shellClassRec;
extern OverrideShellClassRec overrideShellClassRec;
extern WMShellClassRec wmShellClassRec;
extern VendorShellClassRec vendorShellClassRec;
extern TransientShellClassRec transientShellClassRec;
extern TopLevelShellClassRec topLevelShellClassRec;
extern ApplicationShellClassRec applicationShellClassRec;

extern WidgetClass shellWidgetClass;
extern WidgetClass overrideShellWidgetClass;
extern WidgetClass wmShellWidgetClass;
extern WidgetClass vendorShellWidgetClass;
extern WidgetClass transientShellWidgetClass;
extern WidgetClass topLevelShellWidgetClass;
extern WidgetClass applicationShellWidgetClass;

The following opaque types and opaque variables are defined for generic operations on
widgets that are a subclass of ShellWidgetClass:

4 -4 Shell Widgets

1)rpes

ShellWidget
OverrideShellWidget
WMShellWidget
VendorShellWidget
TransientShellWidget
TopLevelShellWidget
ApplicationShellWidget
ShellWidgetClass
OverrideShellWidgetClass
WMShellWidgetClass
VendorShellWidgetClass
TransientShellWidgetClass
TopLevelShellWidgetClass
ApplicationShellWidgetClass

4.1.2 Shell Part Definition

Variables

shellWidgetClass
overrideShellWidgetClass
wmShellWidgetClass
vendorShellWidgetClass
transientShellWidgetClass
topLevelShellWidgetClass
applicationShellWidgetClass

The various shells have the following additional fields defined in their widget records:

typedef struct {
String geometry;
XtCreatePopupChildProc create-popup_child-proc;
XtGrabKind grab_kind;
Boolean spring_loaded;
Boolean popped_up;
Boolean allow_sheIl_resize;
Boolean client_specified;
Boolean save under;
Boolean over;ide_redirect;
XtCallbackList popup_callback;
XtCallbackList popdown_callback;

} ShellPart;

typedef struct { int empty; } OverrideShellPart;

Shell Widgets 4 - 5

typedef struct {
String title;
int WIn_timeout;
Boolean wait_far_WIn;
Boolean transient;
XSizeHints size_hints;
XWMHints WIn_hints;

WMShellPart;

typedef struct
int vendor specific;

} VendorShellPart;

typedef struct int empty; } TransientShellPart;

typedef struct
String icon_name;
Boolean iconic;

TopLevelShellPart;

typedef struct {
char *class;
XrmClass xrm_class;
int argc;
char **argv;

ApplicationShellPart;

The full definitions of the various shell widgets have shell fields following composite fields:

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;

ShellRec, *ShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
OverrideShellPart override;

OverrideShelLRec, *OverrideShellWidget;

4 -6 Shell Widgets

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart WIll;

} WMShellRec, *WMShellWidget;

typedef struct {
Core Part core;
CompositePart composite;
ShellPart shell;
WMShellPart WIll;
VendorShellPart vendor;

VendorShellRec, *VendorShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart WIll;
VendorShellPart vendor;
TransientShellPart transient;

TransientShellRec, *TransientShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart WIll;
VendorShellPart vendor;
TopLevelShellPart topLevel;

TopLevelShellRec, *TopLevelShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart WIll;
VendorShellPart vendor;
TopLevelShellPart topLevel;
ApplicationShellPart application;

ApplicationShellRec, *ApplicationShellWidget;

4.1.3 Shell Part Default Values

The default values for fields common to all classes of public shells (filled in by the She 11
resource lists and the She 11 initialize procedures) are:

Shell Widgets 4 -7

Field

geometry
create yopup _ child yroc
grab kind
spring loaded
popped up
allow shell resize
client-specified
save i'inder

override redirect
popup callback
popdo~ _callback

Default Value

NULL
NULL
(internal)
(internal)
(internal)
False
(internal)
True for OverrideShell and
TransientShell, False otherwise
True for OverrideShell, False otherwise
NULL
NULL

The geometry resource specifies the size and position and is usually done only from a
command line or a defaults file. For further information, see Programming with Xlib. The
create yopup _ child _proc is called by the X tPopup procedure and is usually NULL. The
allow shell resize field controls whether or not the widget contained by the shell is
allowed to try to resize itself. If allow shell resize is False, any geometry requests
always return XtGeometryNo. Setting save under instructs the server to attempt to
save the contents of windows obscured by the shell when it is mapped and to restore its
contents automatically later. It is useful for pop-up menus. Setting override_redirect
determines whether or not the shell window is visible to the window manager. If it is
True, the window is immediately mapped without the manager's intervention. The popup
and popdown callbacks are called during XtPopup and XtPopdown. For further
information, see Programming with Xlib .

The default values for shell fields in WMShe 11 and its subclasses are:

4 -8 Shell Widgets

Field

title

wm timeout
wait for wm
transient
min width
min height
max-width
max-height
width inc
height)nc
min _ aspect _ x
min _ aspect_y
max _ aspect_ x
max _ aspect_y
input
initial state
iconyixmap
icon window
Icon x
icon y
icon-mask
window group

Default Value

Icon name, if specified, otherwise the application's
name
Five seconds
True
True for TransientShell, False otherwise
None
None
None
None
None
None
None
None
None
None
False
Normal
None
None
None
None
None
None

The title is a string to be displayed by the window manager. The wm timeout resource
limits the amount of time a shell is to wait for confirmation of a geon"i"etry request to the
window manager. If none comes back within that time, the shell assumes the window
manager is not functioning properly and sets wait for wm to be False (later events may
reset this value). The wait for wm resource sets the initial state for this flag. When the
flag is False, the shell does not wait for a response but relies on asynchronous
notification. All other resources are for fields in the window manager hints and the
window manager size hints. For further information, see Programming with Xlib and the
Inter-Client Communcation Conventions Manual (Draft).

TopLevel shells have the the following additional resources:

Shell Widgets 4 - 9

Field

icon name
iconic

Default Value

Shell widget's name
False

The icon name field is the string to display in the shell's icon, and the iconic field is an
alternati;e way to set the initialS tate resource to indicate that a shell should be initially
displayed as an icon.

Application shells have the following additional resources:

Field Default Value

argc 0
argv NULL

The argc and argv fields are used to initialize the standard property WM _COMMAND. See
the Inter-Client Communcation Conventions Manual (Draft) for more information.

4 -10 Shell Widgets

Pop-Up Widgets 5
Pop-up widgets are used to create windows that are outside of the window hierarchy
defined by the widget tree. Each pop-up child has a window that is a descendant of the
root window so that the pop-up window is not clipped by the pop-up widget's parent
window. Therefore, pop-ups are created and attached differently to their widget parent
than from normal widget children.

A parent of a pop-up widget does not actively manage its pop-up children; in fact, it usually
never notices them or operates upon them. The popup list field in the CorePart
structure contains the list of its pop-up children. This pop-up list exists mainly to provide
the proper place in the widget hierarchy for the pop-up to get resources and to provide a
place for XtDestroyWidget to look for all extant children.

A Composite widget can have both normal and pop-up children. A pop-up can be
popped up from almost anywhere, not just by its parent. A child always refers to a normal,
geometry-managed child on the children list, and a pop-up child always refers to a child on
the pop-up list.

5.1 Pop-Up Widget Types
There are three kinds of pop-up widgets:

• Modeless pop-ups

A modeless pop-up (for example, a modeless dialog box) is usually visible to the
window manager and looks like any other application from the user's point of view.
(The application itself is a special form of a modeless pop-up.)

• Modal pop-ups

A modal pop-up (for example, a modal dialog box) mayor may not be visible to the
window manager and, except for events that occur in the dialog box, disables user
event processing by the application.

• Spring-loaded pop-ups

Pop-Up Widgets 5-1

A spring-loaded pop-up (for example, a menu) is not visible to the window manager
and, except for events that occur in the menu, disables user-event processing by all
applications.

Modal pop-ups and spring-loaded pop-ups are very similar and should be coded as if they
are the same. In fact, the same widget (for examI ie, a ButtonBox or Menu) can be used
both as a modal pop-up and as a spring-loaded pop-up within the same application. The
main difference is that spring-loaded pop-ups are brought up with the pointer and, because
of the grab that the pointer button causes, require different processing by the X Toolkit
Intrinsics. Further, button up takes down a spring-loaded pop-up no matter where the
button up occurs.

Any kind of pop-up, in turn, can pop up other widgets. Modal and spring-loaded pop-ups
can constrain user events to the most recent such pop-up or to any of the modaljspring
loaded pop-ups currently mapped.

Regardless of their type, all pop-up widget classes are responsible for communicating with
the X window manager and, therefore, are subclasses of She 11.

5.2 Creating a Pop-Up Shell

For a widget to pop up, it must be the child of a pop-up widget shell. A pop-up shell is
never allowed more than one child, referred to as the pop-up child. Both the shell and
child taken together are referred to as the pop-up. When you need to use a pop-up, you
always should specify the pop-up shell, not the pop-up child.

To create a pop-up shell, use XtCreatePopupShe11.

Widget XtCreatePopupShell (name , widget_class, parent, args, num _ args)
String name;

name

WidgetClass widget class;
Widget parent; -
ArgList args;
Cardinal num _ args ;

Specifies the text name for the created shell widget.

widget_class

parent

Specifies the widget class pointer for the created shell widget.

Specifies the parent widget.

args

num_args

Specifies the argument list to override the resource defaults.

Specifies the number of arguments in the argument list.

s -2 Pop-Up Widgets

The XtCreatePopupShell function ensures that the specified class is a subclass of
Shell and, rather than using insert child to attach the widget to the parent's children list,
attaches the shell to the parent's pop:ups list directly.

A spring-loaded pop-up invoked from a translation table already must exist at the time that
the translation is invoked, so the translation manager can find the shell by name. Pop-ups
invoked in other ways can be created "on-the-fly" when the pop-up actually is needed.
This delayed creation of the shell is particularly useful when you pop up an unspecified
number of pop-ups. You can look to see if an appropriate unused shell (that· is, not
currently popped up) exists and create a new shell if needed.

5.3 Creating Pop-Up Children

Once a pop-up shell is created, the single child of the pop-up shell can be created in one of
two ways:

• Static

• Dynamic

At startup, an application can create the child of the pop-up shell, which is appropriate for
pop-up children that are composed of a fixed set of widgets. The application can change
the state of the subparts of the pop-up child as the application state changes. For example,
if an application creates a static menu, it can call XtSetSensi tive (or, in general,
XtSetValues) on any of the buttons that make up the menu. Creating the pop-up child
early means that pop-up time is minimized, especially if the application calls
XtRealizeWidget on the pop-up shell at startup. When the menu is needed, all the
widgets that make up the menu already exist and need only be mapped. The menu should
pop up as quickly as the X server can respond.

Alternatively, an application can postpone the creation of the child until it is needed, which
minimizes application startup time and allows the pop-up child to reconfigure itself each
time it is popped up. In this case, the pop-up child creation routine should poll the
application to find out if it should change the sensitivity of any of its subparts.

Pop-up child creation does not map the pop-up, even if you create the child and call
XtRealizeWidget on the pop-up shell.

All shells have pop-up and pop-down callbacks, which provide the opportunity either to
make last-minute changes to a pop-up child before it is popped up or to change it after it is
popped down. Note that excessive use of pop-up callbacks can make popping up occur
more slowly.

Pop-Up Widgets 5 -3

5.4 Mapping a Pop-Up Widget

Pop-ups can be popped up through several mechanisms:

• A call to X tPopup

• One of the supplied callback procedures (for example, XtCallbackNone,
XtCallbackNonexclusive,or XtCallbackExclusive)

• The standard translation action MenuPopup

Some of these routines take an argument of type XtGrabKind, which is defined as:

typedef enum {XtGrabNone, XtGrabNonexclusive, XtGrabExclusive} XtGrabKind;

To map a pop-up from within an application, use XtPopup.

void XtPopup(popup shell, grab kind)
Widget popup-shell; -
XtGrabKind grab_kind;

popup _shell

grab_kind

Specifies the widget shell.

Specifies the way in which user events should be constrained.

The XtPopup function performs the following:

• Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

• Generates an error if the shell's popped_up field is already True.

• Calls the callback procedures on the shell's popup_callback list.

• Sets the shell popped up field to True, the shell spring loaded field to False,
and the shell grab _ ki~d field from grab_kind. -

• If the shell's create popup child field is non-NULL, XtPopup calls it with
popup shell as the parameter.

• If grab_kind is either XtGrabNonexclusive or XtGrabExclusive, it calls:

XtAddGrab(popup_sbell, (grab_kind == XtGrabExclusive), False}

• Calls XtRealizeWidget with popup_shell specified.

5 - 4 Pop-Up Widgets

• Calls XMapWindow with popup_shell specified.

To map a pop-up from a given widget's callback list, you also can use the
XtCallbackNone, XtCallbackNonexclusive,or XtCallbackExclusive
convenience routines.

void XtCallbackNone (w, client_data, call_data)
Widget w;

w

c addr t client data;
caddr=t call_d'ata;

client data

Specifies the widget.

Specifies the pop-up shell.

call data Specifies the callback data, which is not used by this procedure.

void XtCallbackNonexclusive{w, client_data, call_data)
Widget w;

w

c addr t client data;
c addr = t call_d'ata;

Specifies the widget.

Specifies the pop-up shell. client data

call data Specifies the callback data, which is not used by this procedure.

void XtCallbackExclusive(w, client_data, call_data)
Widget w;

w

c addr t client data;
caddr=t call_d'ata;

Specifies the widget.

Specifies the pop-up shell. client data

call data Specifies the callback data, which is not used by this procedure.

Pop-Up Widgets 5-5

The XtCallbackNone, XtCallbackNonexclusive,and
XtCallbackExclusive functions call XtPopup with the shell specified by the client
data argument and grab kind set as the name specifies. XtCallbackNone,
XtCallbackNonexcfusive, and XtCallbackExclusive specify XtGrabNone,
XtGrabNonexclusive, and XtGrabExclusive, respectively. Each function then
sets the widget that executed the callback list to be insensitive by using
XtSetSensitive. Using these functions in callbacks is not required. In particular, an
application must provide customized code for callbacks that create pop-up shells
dynamically or that must do more than desensitizing the button.

To pop up a menu when a pointer button is pressed or when the pointer is moved into
some window, use MenuPopup. From a translation writer's point of view, the definition
for this translation action is:

void MenuPopup(shell name)
String shell_name;

shell name Specifies the name of the widget shell to pop up.

MenuPopup is known to the translation manager, which must perform special actions for
spring-loaded pop-ups. Calls to MenuPopup in a translation specification are mapped
into calls to a nonexported action procedure, and the translation manager fills in
parameters based on the event specified on the left-hand side of a translation.

If MenuPopup is invoked on ButtonPress (possibly with modifiers), the translation
manager pops up the shell with grab kind set to XtGrabExclusive and spring loaded
set to True. If MenuPopup is invoked on EnterWindow (possibly with modifiers),
the translation manager pops up the shell with grab kind set to XtGrabNonexclusive
and spring loaded set to False. Otherwise, the t;anslation manager generates an error.
When the ;'idget is popped up, the following actions occur:

• Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

• Generates an error if the shell's popped_up field is already True.

• Calls the callback procedures on the shell's popup_callback list.

• Sets the shell popped up field to True and the shell grab kind and spring loaded
fields appropriately. - --

• If the shell's create popup child field is non-NULL, it is called with popup shell as
the parameter. - - -

• Calls:

XtAddGrab(popup_shell, (grab_kind == XtGrabExclusive), spring_loaded)

5-6 Pop-Up Widgets

• Calls XtRealizeWidget with popup_shell specified.

• Calls XMapWindow with popup_shell specified.

(Note that these actions are the same as those for XtPopup.) MenuPopup tries to
find the shell by searching the widget tree starting at the parent of the widget in which it is
invoked. If it finds a shell with the specified name in the pop-up children of that parent, it
pops up the shell with the appropriate parameters. Otherwise, it moves up the parent
chain as needed. If MenuPopup gets to the application widget and cannot find a
matching shell, it generates an error.

5.5 Unmapping a Pop-Up Widget

Pop-ups can be popped down through several mechanisms:

• A call to XtPopdown

• The supplied callback procedure XtCallbackPopdown

• The standard translation action MenuPopdown

To unmap a pop-up from within an application, use XtPopdown.

void XtPopdown(popup shell)
Widget popup _shell;

popup _shell Specifies the widget shell to pop down.

The XtPopdown function performs the following:

• Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

• Checks that popup_shell is currently popped_up; otherwise, it generates an error.

• Unmaps popup_shell's window.

• Ifpopup shell's grab kind is either XtGrabNonexclusive or
XtGrabExclusiv;, it calls XtRernoveGrab.

• Sets pop-up shell's popped_up field to False.

• Calls the callback procedures on the shell's popdown _callback list.

To pop down pop-up that have been popped up with one of the callback routines
(XtCallbackNone, XtCallbackNonexclusive, XtCallbackExclusive),use
the callback XtCallbackPopdown.

Pop-Up Widgets 5-7

void XtCallbackPopdown(w, client_data, call_data)
Widget w;

w

c addr t client data;
c addr = t call_data;

Specifies the widget.

client data Specifies a pointer to the XtPopdownID structure.

call data Specifies the callback data, which is not used by this procedure.

The XtCallbackPopdown function casts the client data parameter to an
XtPopdownID pointer:

typedef struct {
Widget shell_widget;
Widget enable_widget;

} XtPopdownIDRec, *XtPopdownID;

The shell widget is the pop-up shell to pop down, and the enable widget is the widget that
was used to pop it up. -

XtCallbackPopdown calls XtPopdown with the specified shell_widget and then calls
XtSetSens i ti ve to resensitize the enable_widget.

To pop down a spring-loaded menu when a pointer button is released or when the pointer
is moved into some window, use MenuPopdown. From a translation writer's point of
view, the definition for this translation action is:

void MenuPopdown (shell name)
String shell_name;

shell name Specifies the name of the widget shell to pop down.

If a shell name is not given, MenuPopdown calls XtPopdown with the widget for which
the translation is specified. If a shell name is specified in the translation table,
MenuPopdown tries to find the shell by looking up the widget tree starting at the parent
of the widget in which it is invoked. If it finds a shell with the specified name in the pop-up
children of that parent, it pops down the shell; otherwise, it moves up the parent chain as
needed. If MenuPopdown gets to the application top-level shell widget and cannot find a
matching shell, it generates an error.

5 ·8 Pop-U p Widgets

Geometry Management 6
A widget does not directly control its size and location; rather, its parent is responsible for
controlling its size and location. Although the position of children is usually left up to their
parent, the widgets themselves often have the best idea of their optimal sizes and, possibly,
preferred locations.

To resolve physical layout conflicts between sibling widgets and between a widget and its
parent, the X Toolkit Intrinsics provide the geometry management mechanism. Almost
all Composite widgets have a geometry manager (geometry_manager field in the widget
class record) that is responsible for the size, position, and stacking order of the widget's
children. The only exception are fixed boxes, which create their children themselves and
can ensure that their children will never make a geometry request.

6.1 Initiating Geometry Changes
Parents, children, and clients all initiate geometry changes differently. Because a parent
has absolute control of its children's geometry, it changes the geometry directly by calling
XtMoveWidget, XtResizeWidget, or XtConfigureWidget. A child must ask its
parent for a geometry change by calling XtMakeGeometryRequest or
XtMakeResizeRequest to convey its wishes to its parent. An application or other
client code initiates a geometry change by calling XtSetValues on the appropriate
geometry fields, thereby giving the widget the opportunity to modify or reject the client
request before it gets propagated to the parent and the opportunity to respond
appropriately to the parent's reply.

When a widget that needs to change its size, position, border width, or stacking depth asks
its parent's geometry manager to make the desired changes, the geometry manager can do
one of the following:

• Allow the request

• Disallow the request

• Suggest a compromise

Geometry Management 6-1

When the geometry manager is asked to change the geometry of a child, the geometry
manager may also rearrange and resize any or all of the other children that it controls.
The geometry manager can move children around freely using XtMoveWidget. When it
resizes a child (that is, changes width, height, or border_width) other than the one making
the request, it should do so by calling XtResizeWidget. It can simultaneously move
and resize a child with a single call to XtConfigureWidget.

Often, geometry managers find that they can satisfy a request only if they can reconfigure
a widget that they are not in control of (in particular, when the Compos i te widget wants
to change its own size). In this case, the geometry manager makes a request to its parent's
geometry manager. Geometry requests can cascade this way to arbitrary depth.

Because such cascaded arbitration of widget geometry can involve extended negotiation,
windows are not actually allocated to widgets at application startup until all widgets are
satisfied with their geometry. For further information, see Sections 2.4 and 2.5.

NOTE

1. The X Toolkit Intrinsics treatment of stacking requests is
deficient in several areas. Stacking requests for unrealized
widgets are granted but will have no effect. In addition, there
is no way to do an XtSetValues that will generate a
stacking geometry request.

2. After a successful geometry request (one that returned
XtGeometryYes), a widget does not know whether or not its
resize procedure has been called. Widgets should have resize
procedures that can be called more than once without ill
effects.

6.2 General Geometry Manager Requests

To make a general geometry manager request from a widget, use
XtMakeGeometryRequest.

XtGeometryResult XtMakeGeometryRequest(w I request I reply...!etum)
Widget w;
XtWidgetGeometry *request;
XtWidgetGeometry *reply...!etum;

6 -2 Geometry Management

w Specifies the widget that is making the request.

request Specifies the desired widget geometry (size, position, border width, and
stacking order).

Returns the allowed widget size or may be NULL if the requesting
widget is not interested in handling XtGeometryAlmost.

Depending on the condition, XtMakeGeometryRequest performs the following:

• If the widget is unmanaged or the widget's parent is not realized, it makes the
changes and returns XtGeometryYes.

• If the parent is not a subclass of compositeWidgetClass or the parent's
geometry_manager is NULL, it issues an error.

• If the widget's being_destroyed field is True, it returns XtGeometryNo.

• If the widget X, y, width, height and border width fields are all equal to the requested
values, it returns XtGeometryYes; othe~se, it calls the parent's
geometry_manager procedure with the given parameters.

• If the parent's geometry manager returns XtGeometryYes and if
XtCWQueryOnly is not set in the request mode and if the widget is realized,
XtMakeGeometryRequest calls the XConfigureWindow Xlib function to
reconfigure the widget's window (set its size, location, and stacking order as
appropriate).

• If the geometry manager returns XtGeometryDone, the change has been
approved and ?ctually has been done. In this case, XtMakeGeometryRequest
does no configuring and returns XtGeometryYes.
XtMakeGeometryRequest never returns XtGeometryDone.

Otherwise, XtMakeGeometryRequest returns the resulting value from the parent's
geometry manager.

Children of primitive widgets are always unmanaged; thus, XtMakeGeometryRequest
always returns XtGeometryYes when called by a child of a primitive widget.

The return codes from geometry managers are:

typedef enum _XtGeometryResult {
XtGeometryYes,
XtGeometryNo,
XtGeometryAlmost,
XtGeometryDone

} XtGeometryResult;

Geometry Management 6 -3

The XtWidgetGeometry structure is quite similar but not identical to the
corresponding Xlib structure:

typedef unsigned long XtGeometryMask;

typedef struct {
XtGeometryMask request_mode;
Position x, y;
Dimension width, height;
Dimension border_Width;
Widget sibling;
int stack_mode;

} XtWidgetGeometry;

The request_mode definitions are from < XII/X. h >:

define
define
#define
define
#define
#define
#define

cwx
cm
CWWidth
CWHeight
CWBorderWidth
CWSibling
CWStackMode

(1< <0)
(1< <1)
(1< <2)
(1< <3)
(1< <4)
(1< <5)
(1< <6)

The X Toolkit Intrinsics also support the following value:

define XtCWQueryOnly (1 < <7)

XtCWQueryOnly indicates that the corresponding geometry request is only a query as to
what would happen if this geometry request were made and that no widgets should actually
be changed.

XtMakeGeometryRequest, like the XConfigureWindow Xlib function, uses
request mode to determine which fields in the XtWidgetGeometry structure you want
to specify.

The stack_mode definitions are from < XII IX . h > :

#define Above
#define Below
define TopIf
#define BottomIf
define Opposite

6 - 4 Geometry Management

o
1
2
3
4

The X Toolkit Intrinsics also support the following value:

#define XtSMDontChange 5

For definition and behavior of Above, Below, TopIf, BottomIf, and Opposite,
see Programming with Xlib. XtSMDontChange indicates that the widget wants its
current stacking order preserved.

6.3 Resize Requests
To make a simple resize request from a widget, you can use XtMakeResizeRequest
as an alternative to XtMakeGeometryRequest.

XtGeometryResult XtMakeResizeRequest(w, width, height, widthJetum, heightJetum)
Widget w;
D imens i on width, height;
Dimension *width Jetum, *heightJetum

w

width
height

width return
height ..!eturn

Specifies the widget.

Specify the desired widget width and height.

Return the allowed widget width and height.

The XtMakeResizeRequest function, a simple interface to
XtMakeGeometryRequest, creates a XtWidgetGeometry structure and specifies
that width and height should change. The geometry manager is free to modify any of the
other window attributes (position or stacking order) to satisfy the resize request. If the
return value is XtGeometryAlmost, width return and height return contain a
compromise width and height. If these are acceptable, the widget should immediately
make an XtMakeResizeRequest and request that the compromise width and height
be applied. If the widget is not interested in XtGeometryAlmost replies, it can pass
NULL for width_return and height_return.

Geometry Management 6 - 5

6.4 Potential Geometry Changes
Sometimes a geometry manager cannot respond to a geometry request from a child
without first making a geometry request to the widget's own parent (the requestor's
grandparent). If the request to the grandparent would allow the parent to satisfy the
original request, the geometry manager can make the intermediate geometry request as if
it were the originator. On the other hand, if the geometry manager already has
determined that the original request cannot be completely satisfied (for example, if it
always denies position changes), it needs to tell the grandparent to respond to the
intermediate request without actually changing the geometry because it does not know if
the child will accept the compromise. To accomplish this, the geometry manager uses
XtCWQueryOnly in the intermediate request.

When XtCWQueryOnly is used, the geometry manager needs to cache enough
information to exactly reconstruct the intermediate request. If the grandparent's response
to the intermediate query was XtGeornetryAlrnost, the geometry manager needs to
cache the entire reply geometry in the event the child accepts the parent's compromise.

If the grandparent's response was XtGeornetryAlrnost, it may also be necessary to
cache the entire reply geometry from the grandparent when XtCWQueryOnly is not
used. If the geometry manager is still able to satisfy the original request, it may
immediately accept the grandparent's compromise and then act on the child's request. If
the grandparent's compromise geometry is insufficient to allow the child's request and if
the geometry manager is willing to offer a different compromise to the child, the
grandparent's compromise should not be accepted until the child has accepted the new
compromise.

Note that a compromise geometry returned with XtGeornetryAlrnost is guaranteed
only for the next call to the same widget; therefore, a cache of size one is sufficient.

6.5 Child Geometry Management
The geometry_manager procedure pointer in a composite widget class is of type
XtGeornetryHandler:

typedef XtGeometryResult (*XtGeometryHandler) (Widget, XtWidgetGeometry *, XtWidgetGeometry *:
Widget w;
XtWidgetGeometry *request;
XtWidgetGeometry *geometry Jeturn ;

A class can inherit its superclass's geometry manager during class initialization.

6 - 6 Geometry Management

A bit set to zero in the request's mask field means that the child widget does not care
about the value of the corresponding field. Then, the geometry manager can change it as
it wishes. A bit set to 1 means that the child wants that geometry element changed to the
value in the corresponding field.

If the geometry manager can satisfy all changes requested and if XtCWQueryOnly is not
specified, it updates the widget's X, y, width, height, and border width values appropriately.
Then, it returns XtGeometryYes, and the value of the geometry return argument is
undefined. The widget's window is moved and resized automatically by
XtMakeGeometryRequest.

Homogeneous composite widgets often find it convenient to treat the widget making the
request the same as any other widget, possibly reconfiguring it as part of its layout process,
unless XtCWQueryOnly is specified. If it does this, it should return
XtGeometryDone to inform XtMakeGeometryRequest that it does not need to do
the configuration itself.

Although XtMakeGeometryRequest resizes the widget's window (if the geometry
manager returns XtGeometryYes), it does not call the widget class's resize procedure.
The requesting widget must perform whatever resizing calculations are needed explicitly.

If the geometry manager chooses to disallow the request, the widget cannot change its
geometry. The value of the geometry_return parameter is undefined, and the geometry
manager returns XtGeometryNo.

Sometimes the geometry manager cannot satisfy the request exactly, but it may be able to
satisfy a similar request. That is, it could satisfy only a subset of the requests (for example,
size but not position) or a lesser request (for example, it cannot make the child as big as
the request but it can make the child bigger than its current size). In such cases, the
geometry manager fills in geometry return with the actual changes it is willing to make,
including an appropriate mask, and-;:eturns XtGeometryAlmost. Ifa bit in
geometry return- > request mode is zero, the geometry manager does not change the
correspo;ding value if the geometry return is used immediately in a new request. If a bit
is one, the geometry manager does dange that element to the corresponding value in
geometry return. More bits may be set in geometry return than in the original request if
the geometry manager intends to change other field; should the child accept the
compromise.

When XtGeometryAlmost is returned, the widget must decide if the compromise
suggested in geometry return is acceptable. If it is, the widget must not change its
geometry directly; rather, it must make another call to XtMakeGeometryRequest.

Geometry Management 6-7

If the next geometry request from this child uses the geometry return box filled in by an
XtGeometryAlmost return and if there have been no inte~ning geometry requests on
either its parent or any of its other children, the geometry manager must grant the request,
if possible. That is, if the child asks immediately with the returned geometry, it should get
an answer of XtGeometryYes. However, the user's window manager may affect the
final outcome.

To return an XtGeometryYes, the geometry manager frequently rearranges the
position of other managed children by calling XtMoveWidget. However, a few
geometry managers may sometimes change the size of other managed children by calling
XtResizeWidget or XtConfigureWidget. If XtCWQueryOnly is specified, the
geometry manager must return how it would react to this geometry request without
actually moving or resizing any widgets.

Geometry managers must not assume that the request and geometry return arguments
point to independent storage. The caller is permitted to use the same field for both, and
the geometry manager must allocate its own temporary storage, if necessary.

6.6 Widget Placement and Sizing
To move a sibling widget of the child making the geometry request, use XtMoveWidget.

void XtMoveWidget(w, x, y)
Widget w;
Position x;
Position y;

w Specifies the widget.

x
y Specify the new widget x and y coordinates.

The XtMoveWidget function returns immediately if the specified geometry fields are
the same as the old values. Otherwise, XtMoveWidget writes the new x and y values
into the widget and, if the widget is realized, issues an Xlib XMoveWindow call on the
widget's window.

To resize a sibling widget of the child making the geometry request, use
XtResizeWidget.

void XtResizeWidget(w, width, height, border_width)
Widget wi

Dimension width;
Dimension height;
Dimension border_width;

6 -8 Geometry Management

w

width
height
border width

Specifies the widget.

Specify the new widget size.

The XtResizeWidget function returns immediately if the specified geometry fields are
the same as the old values. Otherwise, XtResizeWidget writes the new width, height,
and border_width values into the widget and, if the widget is realized, issues an
XConfigureWindow call on the widget's window.

If the new width or height are different from the old values, XtResizeWidget calls the
widget's resize procedure to notify it of the size change.

To move and resize the sibling widget of the child making the geometry request, use
XtConfigureWidget.

void XtConfigureWidget(w, x, y, width, height, border_width>
Widget w;
Position x;
Position y;
Dimension width;
Dimension height;
Dimens ion border_width;

w Specifies the widget.

x
y Specify the new widget x and y coordinates.

width
height
border width Specify the new widget size.

The XtConfigureWidge t function returns immediately if the specified geometry
fields are the same as the old values. Otherwise, XtConfigureWidget writes the new
X, y, width, height, and border width values into the widget and, if the widget is realized,
makes an Xlib XConfigureWindow call on the widget's window.

If either the new width or height is different from its old value, XtConfigureWidget
calls the widget's resize procedure to notify it of the size change; otherwise, it simply
returns.

To resize a child widget that already has the new values of its width, height, and border
width fields, use XtResizeWindow.

Geometry Management 6 - 9

void XtResizeWindow(w)
Widget w;

w Specifies the widget.

The XtResizeWindow function calls the XConfigureWindow Xlib function to make
the window of the specified widget match its width, height, and border width. This request
is done unconditionally because there is no way to tell if these values match the current
values. Note that the widget's resize procedure is not called.

There are very few times to use XtResizeWindow; instead, you should use
XtResizeWidget.

6.7 Preferred Geometry

Some parents may be willing to adjust their layouts to accommodate the preferred
geometries of their children. They can use XtQueryGeornetry to obtain the preferred
geometry and, as they see fit, can use or ignore any portion of the response.

To query a child widget's preferred geometry, use XtQueryGeometry.

XtGeometryResult XtQueryGeometry(w, intended, prefe1Ted return)
Widget Wi -

XtWidgetGeometry *intended, *prefelTed Jeturn ;

w

intended

preferred .!etum

Specifies the widget.

Specifies any changes the parent plans to make to the child's
geometry or NULL.

Returns the child widget's preferred geometry.

To discover a child's preferred geometry, the child's parent sets any changes that it intends
to make to the child's geometry in the corresponding fields of the intended structure, sets
the corresponding bits in intended.request_ mode, and calls XtQueryGeome try.

XtQueryGeornetry clears all bits in the preferred return->request mode and checks
the query_geometry field of the specified widget's class record. If que-;y _geometry is not
NULL, XtQueryGeornetry calls the query geometry procedure and passes as
arguments the specified widget, intended, and-preferred return structures. If the intended
argument is NULL, XtQueryGeornetry replaces it with a pointer to an
XtWidgetGeornetry structure with request_ mode=O before calling query_geometry.

The query_geometry procedure pointer is of type XtGeornetryHandler.

6 -10 Geometry Management

typedef XtGeometryResult (*XtGeometryHandler) (Widget, XtWidgetGeometry *, XtWidgetGeometry *);
Widget w;
XtWidgetGeometry *request;
XtWidgetGeometry *geometry Jetum;

The query geometry procedure is expected to examine the bits set in
request -> ~equest _ mode, evaluate the preferred geometry of the widget, and store the
result in geometry return (setting the bits in geometry return- > request mode
corresponding to those geometry fields that it cares about). If the proposed geometry
change is acceptable without modification, the query geometry procedure should return
XtGeometryYes. If at least one field in geometry -return is different from the
corresponding field in request or if a bit was set in geometry return that was not set in
request, the query geometry procedure should return XtGe-ometryAlmost. If the
preferred geometry is identical to the current geometry, the query geometry procedure
should return XtGeometryNo. -

After calling the query geometry procedure or if the query geometry field is NULL,
XtQueryGeometry -examines all the unset bits in geometry return->request mode and
sets the corresponding fields in geometry_return to the curre;t values from the-widget
instance. If CWStackMode is not set, the stack mode field is set to
XtSMDontChange. XtQueryGeometry rehIrns the value returned by the
query_geometry procedure or XtGeometryYes if the query_geometry field is NULL.

Therefore, the caller can interpret a return of XtGeometryYes as not needing to
evaluate the contents of reply and, more importantly, not needing to modify its layout
plans. A return of XtGeometryAlmost means either that both the parent and the child
expressed interest in at least one common field and the child's preference does not match
the parent's intentions or that the child expressed interest in a field that the parent might
need to consider. A return value of XtGeometryNo means that both the parent and the
child expressed interest in a field and that the child suggests that the field's current value is
its preferred value. In addition, whether or not the caller ignores the return value or the
reply mask, it is guaranteed that the reply structure contains complete geometry
information for the child.

Parents are expected to call XtQueryGeometry in their layout routine and wherever
other information is significant after change managed has been called. The
changed managed procedure may assume that the child's current geometry is its preferred
geometry. Thus, the child is still responsible for storing values into its own geometry
during its initialize procedure.

Geometry Management 6 -11

6.8 Size Change Management
A child can be resized by its parent at any time. Widgets usually need to know when they
have changed size so that they can layout their displayed data again to match the new size.
When a parent resizes a child, it calls XtResizeWidget, which updates the geometry
fields in the widget, configures the window if the widget is realized, and calls the child's
resize procedure to notify the child. The resize procedure pointer is of type
XtWidgetProc.

If a class need not recalculate anything when a widget is resized, it can specify NULL for
the resize field in its class record. This is an unusual case and should occur only for
widgets with very trivial display semantics. The resize procedure takes a widget as its only
argument. The X, y, width, height and border width fields of the widget contain the new
values. The resize procedure should recalcul~"te the layout of internal data as needed.
(For example, a centered Label in a window that changes size should recalculate the
starting position of the text.) The widget must obey resize as a command and must not
treat it as a request. A widget must not issue an XtMakeGeornetryRequest or
XtMakeRes izeReques t call from its resize procedure.

6 -12 Geometry Management

Event Management 7
While X allows the reading and processing of events anywhere in an application, widgets in
the X Toolkit neither directly read events nor grab the server or pointer. Widgets register
procedures that are to be called when an event or class of events occurs in that widget.

A typical application consists of startup code followed by an event loop that reads events
and dispatches them by calling the procedures that widgets have registered. The default
event loop provided by the X Toolkit Intrinsics is XtAppMainLoop.

The event manager is a collection of functions to perform the following tasks:

• Add or remove event sources other than X server events (in particular, timer
interrupts and file input).

• Query the status of event sources.

• Add or remove procedures to be called when an event occurs for a particular widget.

• Enable and disable the dispatching of user-initiated events (keyboard and pointer
events) for a particular widget.

• Constrain the dispatching of events to a cascade of pop-up widgets.

• Call the appropriate set of procedures currently registered when an event is read.

Most widgets do not need to call any of the event handler functions explicitly. The normal
interface to X events is through the higher-level translation manager, which maps
sequences of X events (with modifiers) into procedure calls. Applications rarely use any of
the event manager routines besides XtAppMainLoop.

7.1 Adding and Deleting Additional Event Sources

While most applications are driven only by X events, some applications need to
incorporate other sources of input into the X Toolkit event handling mechanism. The
event manager provides routines to integrate notification of timer events and file data
pending into this mechanism.

Event Management 7 -1

The next section describes functions that provide input gathering from files. The
application registers the files with the X Toolkit Intrinsics read routine. When input is
pending on one of the files, the registered callback procedures are invoked.

7.1.1 Adding and Removing Input Sources

To register a new file as an input source for a given application, use X tAppAddI npu t.

Xtlnputld XtAppAddlnput (app context, source, condition, proc, client_data)
XtAppContext app context;
int source; -
caddr_t condition;
XtlnputCallbackProc proc;
caddr_t client_data;

app _context

source

condition

proc

client data

Specifies the application context that identifies the application.

Specifies the source file descriptor on an operating system dependent
device specification.

Specifies the mask that indicates a read, write, or exception condition or
some operating system dependent condition.

Specifies the procedure that is to be called when input is available.

Specifies the argument that is to be passed to the specified procedure
when input is available.

The XtAppAddlnput function registers with the X Toolkit Intrinsics read routine a
new source of events, which is usually file input but can also be file output. Note that file
should be loosely interpreted to mean any sink or source of data. XtAppAddlnput
also specifies the conditions under which the source can generate events. When input is
pending on this source, the callback procedure is called.

The legal values for the condition argument are operating-system dependent. The
condition is some union of XtlnputReadMask, XtlnputWri teMask, and
XtlnputExceptMask.

Callback procedure pointers that are used when there are file events are of type
XtlnputCallbackProc:

typedef void (*XtlnputCallbackProc)(caddr t, int *, Xtlnputld *);
c addr t client data; -
int *source; -
Xtlnputld *id;

client data Specifies the client data that was registered for this procedure in
XtAppAddlnput.

7 -2 Event Management

source Specifies the source file descriptor generating the event.

id Specifies the ID returned from the corresponding XtAppAddlnput
call.

To discontinue a source of input, use XtRemovelnput.

void XtRemovelnput (id)
Xtlnputld id;

id Specifies the ID returned from the corresponding X tAppAddI npu t call.

The X tRemove I npu t function causes the X Toolkit Intrinsics read routine to stop
watching for input from the input source.

7.1.2 Adding and Removing Timeouts

The timeout facility notifies the application or the widget through a callback procedure
that a specified time interval has elapsed. Timeout values are uniquely identified by an
interval ID.

To create a timeout value, use XtAppAddTimeOut.

Xtlntervalld XtAppAddTimeOut(app_context, inte1Val, proc, client_data)
XtAppContext app _context;
unsigned long inte1Val;
XtTimerCallbackProc proc;
c addr _ t client_data;

app _context

interval

Specifies the application context for which the timer is to be set.

Specifies the time interval in milliseconds.

proc

client data

Specifies the procedure that is to be called when the time expires.

Specifies the argument that is to be passed to the specified procedure
when it is called.

The XtAppAddTimeOut function creates a timeout and returns an identifier for it. The
timeout value is set to interval. The callback procedure is called when the time interval
elapses, and then the timeout is removed.

Callback procedure pointer that are used when timeouts expire are of type
XtTirnerCallbackProc:

Event Management 7 - 3

typedef void (*XtTimerCallbackProc)(caddr t, Xtlntervalld *);
c addr t client data; -
Xtlnt;rvalld-*id;

client data

id

Specifies the client data that was registered for this procedure in
XtAppAddTimeOut.

Specifies the ID returned from the corresponding XtAppAddTimeOut
call.

To clear a timeout value, use XtRemoveTimeOut.

void XtRemoveTimeOut (timer)
Xtlntervalld timer;

timer Specifies the ID for the timeout request to be destroyed.

The XtRemoveTimeOut function removes the timeout. Note that timeouts are
automatically removed once they trigger.

7.2 Constraining Events to a Cascade of Widgets

Modal widgets are widgets that, except for the input directly to them, lock out user input to
the application.

When a modal menu or modal dialog box is popped up using XtPopup, user events
(keyboard and pointer events) that occur outside the modal widget should be delivered to
the modal widget or ignored. In no case will user events be delivered to a widget outside
the modal widget.

Menus can pop up submenus and dialog boxes can pop up further dialog boxes to create a
pop-up cascade. In this case, user events may be delivered to one of several modal widgets
in the cascade.

Display-related events should be delivered outside the modal cascade so that expose events
and the like keep the application's display up to date. Any event that occurs within the
cascade is delivered as usual. The user events that are delivered to the most recent
spring-loaded shell in the cascade when they occur outside the cascade are called remap
events and are KeyPress, KeyRelease, ButtonPress, and ButtonRelease.
The user events that are ignored when they occur outside the cascade are
MotionNotify, EnterNotify, and LeaveNotify. All other events are delivered
normally.

7 - 4 Event Management

XtPopup uses the XtAddGrab and XtRemoveGrab functions to constrain user
events to a modal cascade and subsequently to remove a grab when the modal widget goes
away. Usually you should have no need to call them explicitly.

To redirect user input to a modal widget, use XtAddGrab.

void XtAddGrab(w, exclusive, spring loaded)
Widget w; -
Boolean exclusive;
Boolean spring_loaded;

w Specifies the widget to add to the modal cascade.

exclusive Specifies whether user events should be dispatched exclusively to this
widget or also to previous widgets in the cascade.

spring}oaded Specifies whether this widget was popped up because the user pressed
a pointer button.

The XtAddGrab function appends the widget (and associated parameters) to the modal
cascade and checks that exclusive is True if spring}oaded is True. If these are not
True, XtAddGrab generates an error.

The modal cascade is used by XtDispatchEvent when it tries to dispatch a user event.
When at least one modal widget is in the widget cascade, XtDispatchEvent first
determines if the event should be delivered. It starts at the most recent cascade entry and
follows the cascade up to and including the most recent cascade entry added with the
exclusive parameter True.

This subset of the modal cascade along with all descendants of these widgets comprise the
active subset. User events that occur outside the widgets in this subset are ignored or
remapped. Modal menus with submenus generally add a submenu widget to the cascade
with exclusive False. Modal dialog boxes that need to restrict user input to the most
deeply nested dialog box add a subdialog widget to the cascade with exclusive True.
User events that occur within the active subset are delivered to the appropriate widget,
which is usually a child or further descendant of the modal widget.

Regardless of where on the screen they occur, remap events are always delivered to the
most recent widget in the active subset of the cascade that has spring loaded True, if any
such widget exists. -

To remove the redirection of user input to a modal widget, use XtRernoveGrab.

void XtRemoveGrab(w)
Widget w;

Event Management 7 -5

w Specifies the widget to remove from the modal cascade.

The XtRemoveGrab function removes widgets from the modal cascade starting at the
most recent widget up to and including the specified widget. It issues an error if the
specified widget is not on the modal cascade.

7.3 Focusing Events on a Child
To redirect keyboard input to a child of a Compo site widget without calling
XSetlnputFocus,use XtSetKeyboardFocus.

XtSetKeyboardFocus (subtree, descendant)
Widget subtree, descendant;

subtree

descendant

Specifies the subtree of the hierarchy for which the keyboard focus is to be
set.

Specifies either the widget in the subtree structure which is to receive the
keyboard event, or None. Note that it is not an error to specify None
when no input focus was previously set.

If a future KeyPress or KeyRelease event occurs within the specified subtree,
XtSetKeyboardFocus causes XtDispatchEvent to remap and send the event to
the specified descendant widget.

When there is no modal cascade, keyboard events can occur within a widget W in one of
three ways:

• W has the X input focus.

• W has the keyboard focus of one of its ancestors, and the event occurs within the
ancestor or one of the ancestor's descendants.

• No ancestor of W has a descendant within the keyboard focus, and the pointer is
within W.

When there is a modal cascade, a widget W receives keyboard events if an ancestor of W is
in the active subset of the modal cascade and one or more of the previous conditions is
True.

When subtree or one of its descendants acquires the X input focus or the pointer moves
into the subtree such that keyboard events would now be delivered to subtree, a
Focusln event is generated for the descendant if FocusNotify events have been
selected by the descendant. Similarly, when W loses the X input focus or the keyboard
focus for one of its ancestors, a FocusOut event is generated for descendant if

7 - 6 Event Management

FocusNotify events have been selected by the descendant.

The accept_focus procedure pointer is of type XtAcceptFocusProc:

typedef Boolean (*XtAcceptFocusProc) (Wldget, Time);
Widget w;
Time *time;

w Specifies the widget.

time Specifies the X time of the event causing the accept focus.

Widgets that need the input focus can call XSetlnputFocus explicitly. To allow
outside agents to cause a widget to get the input focus, every widget exports an
accept focus procedure. The widget returns whether it actually took the focus or not, so
that the parent can give the focus to another widget. Widgets that need to know when they
lose the input focus must use the Xlib focus notification mechanism explicitly (typically by
specifying translations for Focusln and FocusOut events). Widgets that never want
the input focus should set their accept_focus procedure pointer to NULL.

To call a widget's accept_focus procedure, use XtCallAcceptFocus.

Boolean XtCallAcceptFocus (w, time)
Widget Wj

Time *timej

w Specifies the widget.

time Specifies the X time of the event that is causing the accept focus.

The XtCallAcceptFocus function calls the specified widget's accept focus procedure,
passing it the specified widget and time, and returns what the accept_focUS procedure
returns. If accept_focus is NULL, XtCallAcceptFocus returns False.

7.4 Querying Event Sources

The event manager provides several functions to examine and read events (including file
and timer events) that are in the queue. The next three functions handle X Toolkit
Intrinsics equivalents of the XPending, XPeekEvent, and XNextEvent Xlib calls.

To determine if there are any events on the input queue for a given application, use
XtAppPending.

Event Management 7 -7

XtlnputMask XtAppPending (app context)
XtAppContext app _context;

app _context Specifies the application context that identifies the application to check.

The XtAppPending function returns a nonzero value if there are events pending from
the X server, timer pending, or other input sources pending. The value teturned is a bit
mask that is the OR of XtIMXEvent, XtIMTimer, and XtlMAl ternatelnput
(see XtAppProcessEvent). If there are no events pending, XtAppPending flushes
the output buffer and returns zero.

To return the value from the head of a given application's input queue without removing
input from the queue, use XtAppPeekEvent.

Boolean XtAppPeekEvent (app context, event return)
XtAppContext app context; -
XEvent *event Jeturn ;

app _context Specifies the application context that identifies the application.

event return Returns the event information to the specified event structure.

If there is an event in the queue, XtAppPeekEvent fills in the event and returns a
nonzero value. If no X input is on the queue, XtAppPeekEvent flushes the output
buffer and blocks until input is available (possibly calling some timeout callbacks in the
process). If the input is an event, XtAppPeekEvent fills in the event and returns a
nonzero value. Otherwise, the input is for an alternate input source, and
XtAppPeekEvent returns zero.

To return the value from the head of a given application's input queue, use
XtAppNextEvent.

void XtAppNextEvent(app context, eventJeturn)
XtAppContext app context;
XEvent *event Jeturn;

app _context Specifies the application context that identifies the application.

event return Returns the event information to the specified event structure.

If no input is on the X input queue, XtAppNextEvent flushes the X output buffer and
waits for an event while looking at the other input sources and timeout values and calling
any callback procedures triggered by them. This wait time can be used for background
processing (see Section 7.8).

7 -8 Event Management

7.5 Dispatching Events
The X Toolkit Intrinsics provide functions that dispatch events to widgets or other
application code. Every client interested in X events on a widget uses
XtAddEventHandler to register which events it is interested in and a procedure (event
handler) that is to be called when the event happens in that window. The translation
manager automatically registers event handlers for widgets that use translation tables (see
Chapter 10).

Applications that need direct control of the processing of different types of input should
use XtAppProcessEvent.

void XtAppProcessEvent (app context I mask)
XtAppContext app context;
XtlnputMask mask;

mask

Specifies the application context that identifies the application for which
to process input.

Specifies what types of events to process. The mask is the bitwise
inclusive OR of any combination of XtIMXEvent, XtIMTimer, and
XtlMAlternatelnput. As a convenience, the X Toolkit defines the
symbolic name XtlMAll to be the bitwise inclusive OR of all event
types.

The XtAppProcessEvent function processes one timer, alternate input, or X event. If
there is nothing of the appropriate type to process, XtAppProcessEvent blocks until
there is. If there is more than one type of thing available to process, it is undefined which
will get processed. Usually, this procedure is not called by client applications (see
XtAppMainLoop). XtAppProcessEvent processes timer events by calling any
appropriate timer callbacks, alternate input by calling any appropriate alternate input
callbacks, and X events by calling XtDispatchEvent.

When an X event is received, it is passed to XtDispatchEvent, which calls the
appropriate event handlers and passes them the widget, the event, and client -specific data
registered with each procedure. If there are no handlers for that event registered, the
event is ignored and the dispatcher simply returns. The order in which the handlers are
called is undefined.

Boolean XtDispatchEvent (event)
XEvent *event;

Event Management 7 - 9

event Specifies a pointer to the event structure that is to be dispatched to the
appropriate event handler.

The XtDispatchEvent function sends those events to the event handler functions that
have been previously registered with the dispatch routine. XtDispatchEvent returns
True if it dispatched the event to some handler and Fa 1 s e if it found no handler to
dispatch the event to. The most common use of XtDispatchEvent is to dispatch
events acquired with the XtAppNextEvent procedure. However, it also can be used to
dispatch user-constructed events. XtDispatchEvent also is responsible for
implementing the grab semantics for XtAddGrab.

7.6 The Application Input Loop

To process input from a given application, use XtAppMainLoop.

void XtAppMainLoop(app cont~)
XtAppContext app =cont~;

app _context Specifies the application context that identifies the application.

The XtAppMainLoop function first reads the next incoming X event by calling
XtAppNextEvent and then it dispatches the event to the appropriate registered
procedure by calling XtDispatchEvent. This constitutes the main loop of X Toolkit
applications, and, as such, it does not return. Applications are expected to exit in response
to some user action. There is nothing special about XtAppMainLoop; it is simply an
infinite loop that calls XtAppNextEvent and then XtDispatchEvent.

Applications can provide their own version of this loop, which tests some global
termination flag or tests that the number of top-level widgets is larger than zero before
circling back to the call to XtAppNextEvent.

7.7 Setting and Checking the Sensitivity State of a Widget

Many widgets have a mode in which they assume a different appearance (for example, are
greyed out or stippled), do not respond to user events, and become dormant.

When dormant, a widget is considered to be insensitive. If a widget is insensitive, the
Event Manager does not dispatch any events to the widget with an event type of
KeyPress, KeyRelease, ButtonPress, ButtonRelease, MotionNotify,
EnterNotify, LeaveNotify, Focusln,or FocusOut.

7 -10 Event Management

A widget can be insensitive because its sensitive field is False or because one of its
parents is insensitive, and, thus, the widget's ancestor sensitive field also is False. A
widget can but does not need to distinguish these two-cases visually.

To set the sensitivity state of a widget, use XtSetSensitive.

void XtSetSensitive(w, sensitive)
Widget w;
Boolean sensitive;

w Specifies the widget.

sensitive Specifies a Boolean value that indicates whether the widget should receive
keyboard and pointer events.

The XtSetSensitive function first calls XtSetValues on the current widget with
an argument list specifying that the sensitive field should change to the new value. It then
recursively propagates the new value down the managed children tree by calling
XtSetValues on each child to set the ancestor sensitive to the new value if the new
values for sensitive and the child's ancestor sensitive are not the same.

XtSetSensitive calls XtSetValues to change sensitive and ancestor sensitive.
Therefore, when one of these changes, the widget's set values procedure should take
whatever display actions are needed (for example, greying out or stippling the widget).

XtSetSensi tive maintains the invariant that if parent has either sensitive or
ancestor_sensitive F al s e, then all children have ancestor_sensitive Fa 1 s e .

To check the current sensitivity state of a given widget (which is usually done by parents),
use XtIsSensitive.

Boolean XtIsSensitive(w)
Widget w;

w Specifies the widget.

The XtIsSensitive function returns True or False to indicate whether or not
user input events are being dispatched. If both core.sensitive and core.ancestor _ sensitive
are True, XtIsSensitive returns True; otherwise, it returns False.

Event Management 7 -11

7.8 Adding Background Work Procedures

The X Toolkit Intrinsics have limited support for background processing. Because most
applications spend most of their time waiting for input, you can register an idle-time work
procedure that will be called when the toolkit would otherwise block in
XtAppNextEvent or XtAppProcessEvent. Work procedure pointers are of type
XtWorkProc:

typedef Boolean (*XtWorkProc)(caddr t);
c addr _ t client_data; -

client data Client data specified when the work proc was registered.

This procedure returns True if it is done, that is, the work procedure should be removed.
Work procedures should be very judicious about how much they do. If they run for more
than a small part of a second, response time is likely to suffer.

To register a work procedure for a given application, use XtAppAddWorkProc.

XtWorkProcld XtAppAddWorkProc (app context, proc, client_data)
XtAppContext app context; -
XtWorkProc proc; -
c addr _ t client_data;

app _context

proc

client data

Specifies the application context that identifies the application.

Specifies the procedure that is to be called when the application is idle.

Specifies the argument that is to be passed to the specified procedure
when it is called.

The XtAppAddWorkProc function adds the specified work procedure for the
application identified by app _ context.

XtWorkProcId is an opaque unique identifier for this work procedure. Multiple work
procedures can be registered, and the most recently added one is always the one that is
called. However, if a work procedure adds another work procedure, the newly added one
has lower priority than the current one.

To remove a work procedure, either return True from the procedure when it is called or
use XtRemoveWorkProc.

void XtRemoveWorkProc (id)
XtWorkProcld id;

7 -12 Event Management

id Specifies which work procedure to remove.

The XtRemoveWorkProc function explicitly removes the specified background work
procedure.

7.9 X Event Filters
The event manager provides filters that can be applied to X user events. The filters, which
screen out events that are redundant or are temporarily unwanted, handle the following:

• Pointer motion compression

• Enter/leave compression

• Exposure compression

7.9.1 Pointer Motion Compression

Widgets can have a hard time keeping up with pointer motion events. Further, they usually
do not actually care about every motion event. To throw out redundant motion events, the
widget class field compress motion should be True. When a request for an event would
return a motion event, the X Toolkit Intrinsics check if there are any other motion events
immediately following the current one, and, if so, skip all but the last of them.

7 .9.2 Enter/Leave Compression

To throw out pairs of enter and leave events that have no intervening events, as can happen
when the user moves the pointer across a widget without stopping in it, the widget class
field compress enterleave should be True. These enter and leave events are not
delivered to the client if they are found together in the input queue.

7.9.3 Exposure Compression

Many widgets prefer to process a series of exposure events as a single expose region rather
than as individual rectangles. Widgets with complex displays might use the expose region
as a clip list in a graphics context, and widgets with simple displays might ignore the region
entirely and redisplay their whole window or might get the bounding box from the region
and redisplay only that rectangle.

Event Management 7 -13

In either case, these widgets do not care about getting partial expose events. If the
compress exposure field in the widget class structure is True, the event manager calls
the widget's expose procedure only once for each series of exposure events. In this case,
all Expose events are accumulated into a region. When the final Expose event in a
series (that is, the one with count zero) is received, the event manager replaces the
rectangle in the event with the bounding box for the region and calls the widget's expose
procedure, passing the modified exposure event and the region. (See Programming with
Xlib .)

If compress exposure is False, the event manager calls the widget's expose procedure
for every exPosure event, passing it the event and a region argument of NULL.

7.10 Widget Exposure and Visibility
Every primitive widget and some composite widgets display data on the screen by means of
raw Xlib calls. Widgets cannot simply write to the screen and forget what they have done.
They must keep enough state to redisplay the window or parts of it if a portion is obscured
and then reexposed.

7.10.1 Redisplay of a Widget

The expose procedure pointer in a widget class is of type X tExp 0 s e Pr 0 C :

typedef void (*XtExposeProc) (Widget, XEvent *, Region);
Widget w;
XEvent *event;
Region region;

w Specifies the widget instance requiring redisplay.

event Specifies the exposure event giving the rectangle requiring redisplay.

region Specifies the union of all rectangles in this exposure sequence.

The redisplay of a widget upon exposure is the responsibility of the expose procedure in
the widget's class record. If a widget has no display semantics, it can specify NULL for the
expose field. Many composite widgets serve only as containers for their children and have
no expose procedure.

NOTE

If the expose procedure is NULL, XtRealizeWidget fills in a
default bit gravity of NorthWestGravity before it calls the
widget's realize procedure.

7 -14 Event Management

If the widget's compress_exposure class field is False (see Section 7.9.3), region always
is NULL. If the widget's compress exposure class field is True, the event contains the
bounding box for region. -

A small simple widget (for example, Label) can ignore the bounding box information in
the event and redisplay the entire window. A more complicated widget (for example, Text)
can use the bounding box information to minimize the amount of calculation and redisplay
it does. A very complex widget uses the region as a clip list in a GC and ignores the event
information. The expose procedure is responsible for exposure of all super class data as
well as its own.

However, it often is possible to anticipate the display needs of several levels of subclassing.
For example, rather than separate display procedures for the widgets Label, Command,
and Toggle, you could write a single display routine in Label that uses display state fields
like the following:

Boolean invert
Boolean highlight
Dimension highlight_width

Label would have invert and highlight always False and highlight width zero.
Command would dynamically set highlight and highlight width, but it would leave invert
always False. Finally, Toggle would dynamically set all three. In this case, the expose
procedures for Command and Toggle inherit their superclass's expose procedure. For
further information, see Section 1.4.9.

7.10.2 Widget Visibility

Some widgets may use substantial computing resources to display data. However, this
effort is wasted if the widget is not actually visible on the screen, that is, if the widget is
obscured by another application or is iconified.

The visible field in the Core widget structure provides a hint to the widget that it need
not display data. This field is guaranteed True by the time an Exp 0 S e event is
processed if the widget is visible but is usually False if the widget is not visible.

Widgets can use or ignore the visible hint. If they ignore it, they should have
visible interest in their widget class record set False. In such cases, the visible field is
initiali;ed True and never changes. If visible interest is True, the event manager asks
for VisibilityNotify events for the widget and updates the visible field accordingly.

Event Management 7 -15

7.11 X Event Handlers

Event handlers are procedures that are called when specified events occur in a widget.
Most widgets need not use event handlers explicitly. Instead, they use the X Toolkit
Intrinsics translation manager. Event handler procedure pointers are of the type
XtEventHandler:

typedef void (*XtEventHandler) (Widget, caddr_t, XEvent *);
Widget w;

w

c addr t client data;
XEvent *event;-

Specifies the widget for which to handle events.

client data Specifies the client specific information registered with the event handler,
which is usually NULL if the event handler is registered by the widget
itself.

event Specifies the triggering event.

7.11.1 Event Handlers that Select Events

To register an event handler procedure with the dispatch mechanism, use
XtAddEventHandler.

void XtAddEventHandler(w, event mask, nonmaskable, proc, client_data)
Widget w; -
EventMask event mask;
Boolean nonmaskable;
XtEventHandler proc;
c addr _ t client_data;

w Specifies the widget for which this event handler is being registered.

event mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies a Boolean value that indicates whether this procedure should be
called on the nonmaskable events (GraphicsExpose, NoExpose,
SelectionClear, SelectionRequest, SelectionNotify,
ClientMessage, and MappingNotify).

proc Specifies the procedure that is to be called.

client data Specifies additional data to be passed to the client's event handler.

7 ·16 Event Management

The XtAddEventHandler function registers a procedure with the dispatch mechanism
that is to be called when an event that matches the mask occurs on the specified widget. If
the procedure is already registered with the same client data, the specified mask is ORed
into the existing mask. If the widget is realized, XtAddEventHandler calls
XSelectlnput, if necessary.

To remove a previously registered event handler, use XtRemoveEventHandler.

void XtRemoveEventHandler (w, event_mask, nonmaskable, proc, client_data)
Widget w;
EventMask event mask;
Boolean nonmaskable;
XtEventHandler proc;
c addr _ t client_data;

w Specifies the widget for which this procedure is registered.

event mask Specifies the event mask for which to unregister this procedure.

nonmaskable Specifies a Boolean value that indicates whether this procedure should be
removed on the nonmaskable events (GraphicsExpose, NoExpose,
SelectionClear, SelectionRequest, SelectionNotify,
ClientMessage, and MappingNotify).

proc Specifies the procedure that is to be removed.

client data Specifies the client data registered.

The XtRemoveEventHandler function stops the specified procedure from receiving
the specified events. The request is ignored if client data does not match the value given
in the call to XtAddEventHandler. If the widget is realized,
XtRemoveEventHandler calls XSelectlnput, if necessary. If the specified
procedure has not been registered or if it has been registered with a different value of
client_data, XtRemoveEventHandler returns without reporting an error.

To stop a procedure from receiving any events, which will remove it from the widget's
event table entirely, call XtRemoveEventHandler with an event mask of
XtAI-lEvents and with nonmaskable True. -

7.11.2 Event Handlers that Do Not Select Events

On occasion, clients need to register an event handler procedure with the dispatch
mechanism without causing the server to select for that event. To do this, use
XtAddRawEventHandler.

Event Management 7 -17

void XtAddRawEventHandler (w, event_mask, nonmaskable, proc, client_data)
Widget w;
EventMask event mask;
Boolean nonmaskable;
XtEventHandler proc;
c addr _ t client_data i

w Specifies the widget for which this event handler is being registered.

event mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies a Boolean value that indicates whether this procedure should be
removed on the nonmaskable events (GraphicsExpose, NoExpose,
SelectionClear, SelectionRequest, SelectionNotify,
ClientMessage, and MappingNotify).

proc Specifies the procedure that is to be registered.

client data Specifies additional data to be passed to the client's event handler.

The XtAddRawEventHandler function is similar to XtAddEventHandler except
that it does not affect the widget's mask and never causes an XSelectlnput for its
events. Note that the widget might already have those mask bits set because of other
nonraw event handlers registered on it.

To remove a previously registered raw event handler, use
XtRernoveRawEventHandler.

void XtRemoveRawEventHandler (w, event mask, nonmaskable, proc, client_data)
Widget w; -

w

EventMask event mask;
Boolean nonmaskable;
XtEventHandler proc;
c addr _ t client_data;

event mask

Specifies the widget for which this procedure is registered.

Specifies the event mask for which to unregister this procedure.

nonmaskable

proc

client data

Specifies a Boolean value that indicates whether this procedure should be
removed on the nonmaskable events (GraphicsExpose, NoExpose,
SelectionClear, SelectionRequest, SelectionNotify,
ClientMessage, and MappingNotify).

Specifies the procedure that is to be registered.

Specifies the client data registered.

7 -18 Event Management

The XtRemoveRawEventHandler function stops the specified procedure from
receiving the specified events. Because the procedure is a raw event handler, this does not
affect the widget's mask and never causes a call on XSelectlnput.

7.11.3 Current Event Mask

To retrieve the event mask for a given widget, use XtBuildEventMask.

EventMask XtBuildEventMask(w)
Widget w;

w Specifies the widget.

The XtBuildEventMask function returns the event mask representing the logical OR
of all event masks for event handlers registered on the widget with
XtAddEventHandler and all event translations, including accelerators, installed on the
widget. This is the same event mask stored into the XSetWindowAttributes
structure by XtRealizeWidget and sent to the server when event handlers and
translations are installed or removed on the realized widget.

Event Management 7 -19

Callbacks 8
Applications and other widgets (clients) often need to register a procedure with a widget
that gets called under certain conditions. For example, when a widget is destroyed, every
procedure on the widget's destroy callbacks list is called to notify clients of the widget's
impending doom. -

Every widget has a destroy_callbacks list. Widgets can define additional callback lists as
they see fit. For example, the Command widget has a callback list to notify clients when
the button has been activated.

8.1 Using Callback Procedure and Callback List
Definitions

Callback procedure fields for use in callback lists are of type XtCallbackProc:

typedef void (*XtCallbackProc) (Widget, caddr_t, caddr_t);
Widget w;
caddr t client data;
caddr=t call_d'ata;

w Specifies the widget for which the callback is registered.

client data Specifies the data that the widget should pass back to the client when the
widget executes the client's callback procedure.

call data Specifies any callback-specific data the widget wants to pass to the client.
For example, when Scrollbar executes its thumbChanged callback list, it
passes the new position of the thumb.

The client_data argument provides a way for the client registering the callback also to
register client-specific data (for example, a pointer to additional information about the
widget, a reason for invoking the callback, and so on). The client data value should be
NULL if all necessary information is in the widget. The call data-argument is a
convenience to avoid having simple cases where the client could otherwise call
XtGetValues or a widget-specific function to retrieve data from the widget. Widgets

Callbacks 8 -1

should generally avoid putting complex state information in call data. The client can use
the more general data retrieval methods, if necessary. -

Whenever a client wants to pass a callback list as an argument in an XtCreateWidget,
XtSetValues, or XtGetValues call, it should specify the address of a null-terminated
array of type XtCallbackList:

typedef struct {
XtCallbackProc callback;
caddr_t closure;

} XtCallbackRec, *XtCallbackList;

For example, the callback list for procedures A and B with client data clientDataA and
clientDataB, respectively, is:

static XtCallbackRec callbacks[] = {

} ;

{A, (caddr_t) clientDataA},
{B, (caddr_t) clientDataB},
{(XtCallbackProc) NULL, (caddr_t) NULL}

Although callback lists are passed by address in argument lists, the X Toolkit Intrinsics
know about callback lists. Your widget initialize and set values procedures should not
allocate memory for the callback list. The X Toolkit Int;-insics automatically do this for
you by using a different structure for their internal representation.

8.2 Identifying Callback Lists

Whenever a widget contains a callback list for use by clients, it also exports in its public .h
file the resource name of the callback list. Applications and client widgets never access
callback list fields directly. Instead, they always identify the desired callback list by using
the exported resource name. All the callback manipulation functions described in this
chapter check to see that the requested callback list is indeed implemented by the widget.

For the X Toolkit Intrinsics to find and correctly handle callback lists, they should be
declared with a resource type of XtRCallback.

8.3 Adding Callback Procedures

To add a callback procedure to a given widget's callback list, use XtAddCallback.

8 -2 Callbacks

void XtAddCallback (w, callback name, callback, client_data)
Widget w; -

w

String callback name;
XtCallbackProc callback;
c addr _ t client_data;

Specifies the widget.

callback name

callback

Specifies the callback list to which the procedure is to be appended.

Specifies the callback procedure.

client data Specifies the argument that is to be passed to the specified procedure
when it is invoked by XtCallCallbacks or NULL.

A callback will be invoked as many times as it occurs in the callback list.

To add a list of callback procedures to a given widget's callback list, use
XtAddCallbacks.

void XtAddCallbacks (w, callback name, callbacks)

w

Widget w; -
String callback name;
XtCallbackList callbacks;

Specifies the widget.

callback name

callbacks

Specifies the callback list to which the procedure is to be appended.

Specifies the null-terminated list of callback procedures and
corresponding client data.

8.4 Removing Callback Procedures

To delete a callback procedure from a given widget's callback list, use
XtRemoveCallback.

void XtRemoveCallback(w, callback name, callback, client_data)
Widget w; -

w

String callback name;
XtCallbackProc callback;
c addr _ t client_data;

Specifies the widget.

callback name Specifies the callback list from which the procedure is to be deleted.

Callbacks 8 -3

callback Specifies the callback procedure.

client data Specifies the client data to match on the registered callback procedure.

The XtRernoveCallback function removes a callback only if both the procedure and
the client data match.

To delete a list of callback procedures from a given widget's callback list, use
XtRernoveCallbacks.

void XtRemoveCallbacks(w, callback name, callbacks)

w

Widget w; -
String callback name;
XtCallbackList callbacks;

Specifies the widget.

callback name

callbacks

Specifies the callback list from which the procedures are to be deleted.

Specifies the null-terminated list of callback procedures and
corresponding client data.

To delete all callback procedures from a given widget's callback list and free all storage
associated with the callback list, use XtRernoveAllCallbacks.

void XtRemoveAllCallbacks (w, callback_name)
Widget w;
String callback yame;

w Specifies the widget.

callback name Specifies the callback list to be removed.

8.5 Executing Callback Procedures

To execute the procedures in a given widget's callback list, use XtCallCallbacks.

void XtCallCallbacks (w, callback name, call_data)
Widget w; -
String callback name;
c addr _ t call_diia;

w Specifies the widget.

callback name Specifies the callback list to be executed.

8 - 4 Callbacks

call data Specifies a callback-list specific data value to pass to each of the
callback procedure in the list.

If no data is needed (for example, the commandActivated callback list in Command needs
only to notify its clients that the button has been activated), the call data argument can be
NULL. The call data argument is the actual data if only one (32-bii) longword is needed
or is the address of the data if more than one word is needed.

8.6 Checking the Status of a Callback List

To find out the status of a given widget's callback list, use XtHasCallbacks.

typedef enum {XtCallbackNoList, XtCallbackHasNone, XtCallbackHasSome} XtCallbackStatus;

XtCallbackStatus XtHasCallbacks (w, callback_name)
Widget w;
String callback_name;

w Specifies the widget.

callback name Specifies the callback list to be checked.

The XtHasCallbacks function first checks to see if the widget has a callback list
identified by callback_name. If the callback list does not exist, XtHasCallbacks
returns XtCallbackNoList. If the callback list exists but is empty, it returns
XtCallbackHasNone. If the callback list exists and has at least one callback registered,
it returns XtCallbackHasSome.

Callbacks 8 -5

Resource Management 9
A resource is a field in the widget record with a corresponding resource entry in the
resource list of the widget or any of its superclasses. This means that the field is settable
by XtCreateWidget (by naming the field in the argument list), by an entry in the
default resource files (by using either the name or class), and by XtSe tValues. In
addition, it is readable by XtGetValues. Not all fields in a widget record are resources.
Some are for bookkeeping use by the generic routines (like managed and
being destroyed). Others can be for local bookkeeping, and still others are derived from
resou;ces (many graphics contexts and pixmaps).

Writers of widgets need to obtain a large set of resources at widget creation time. Some of
the resources come from the argument list supplied in the call to XtCreateWidget,
some from the resource database, and some from the internal defaults specified for the
widget. Resources are obtained first from the argument list, then from the resource
database for all resources not specified in the argument list, and lastly from the internal
default, if needed.

9.1 Resource Lists
A resource entry specifies a field in the widget, the textual name and class of the field that
argument lists and external resource files use to refer to the field and a default value that
the field should get if no value is specified. The declaration for the XtResource
structure is:

typedef struct {
String resource_name;
String resource_class;
String resource_type;
Cardinal resource size;
Cardinal resource=offset;
String default_type;
caddr_t default_address;

} XtResource, *XtResourceList;

Resource Management 9 -1

The resource name field contains the name used by clients to access the field in the
widget. By convention, it starts with a lowercase letter and is spelled identically to the field
name, except all underscores (-> are deleted and the next letter is replaced by its
uppercase counterpart. For example, the resource name for background_pixel becomes
backgroundPixel. Widget header files typically contain a symbolic name for each resource
name. All resource names, classes, and types used by the X Toolkit Intrinsics are named
in < Xll/StringDefs. h >. The X Toolkit Intrinsics symbolic resource names begin
with XtN and are followed by the string name (for example, XtNbackgroundPixel for
backgroundPixel) .

A resource class provides two functions:

• It isolates an application from different representations that widgets can use for a
similar resource .

• It lets you specify values for several actual resources with a single name. A resource
class should be chosen to span a group of closely related fields.

For exam pIc, a widget can have several pixel resources: background, foreground, border,
block cursor, pointer cursor, and so on. Typically, the background defaults to white and
everything else to black. The resource class for each of these resources in the resourcc list
should be chosen so that it takes the minimal number of entries in the resource database
to make background off white and everything else darkblue.

In this case, the background pixel should have a resource class of Background and all
the other pixel entries a resource class of Foreground. Then, the resource file needs
only two lines to change all pixels to offwhite or darkblue:

*Background:
*Foreground:

offwhite
darkblue

Similarly, a widget may have several resource fonts (such as normal and bold), but all fonts
should have the class Font. Thus, changing all fonts simply requires only a single line in
the default resource file:

*Font: 6x13

(6x13 would be a valid font only if there was a fonts. al ias file providing use of that
name. Otherwise, the whole font specification must be used. See /flUsing the X Window
System/fp for more information about fonts.

By convention, resource classes are always spelled starting with a capital letter. Their
symbolic names are preceded with XtC (for example, XtCBackground).

9 - 2 Resource Management

The resource_type field is the physical representation type of the resource. By convention,
it starts with an uppercase letter and is spelled identically to the type name of the field.
The resource type is used when resources are fetched to convert from the resource
database format (usually String) or the default resource format (almost anything, but often
String) to the desired physical representation (see Section 9.6). The X Toolkit Intrinsics
define the following resource types:

Resource Type Structure or Field Type

XtRAcceleratorTable XtAccclerators
XtRBoolean Boolean
XtRBool Bool
XtRCallback XtCallbackList
XtRColor XColor
XtRCursor Cursor
XtRDimension Dimension
XtRDisplay Display*
XtRFile FILE*
XtRFloat float
XtRFont Font
XtRFontStruct XFontStruct *
XtRFunction (*)0
XtRlnt int
XtRPixel Pixel
XtRPixmap Pixmap
XtRPointer caddr t
XtRPosition Position
XtRShort short
XtRString char*
XtRTranslationTable XtTranslations
XtRUnsignedChar unsigned char
XtRWidget Widget
XtRWindow Window

Resource Management 9 ·3

The resource_size field is the size of the physical representation in bytes; you should
specify it as "sizeof(type)" so that the compiler fills in the value. The resource_offset field
is the offset in bytes of the field within the widget. You should use the XtOffset macro
to retrieve this value. The default type field is the representation type of the default
resource value. If default type is different from resource type and the default type is
needed, the resource manager invokes a conversion procedure from default type to
resource type. Whenever possible, the default type should be identical to the resource
type in o;-der to minimize widget creation time. However, there are sometimes no values
of the type that the program can easily specify. In this case, it should be a value that the
converter is guaranteed to work for (for example, XtDefaultForeground for a pixel
resource). The default_address field is the address of the default resource value. The
default is used if a resource is not specified in the argument list or in the resource database
or if the conversion from the representation type stored in the resource database fails,
which can happen for various reasons (for example, a misspelled entry in a resource file).

Two special representation types (XtRImmediate and XtRCallProc) are usable only
as default resource types. XtRImmediate indicates that the value in the
default address field is the actual value of the resource rather than the address of the
value. The value must be in correct representation type for the resource. No conversion is
possible since there is no source representation type. XtRCallProc indicates that the
value in the default address field is a procedure variable. This procedure is automatically
invoked with the widget, resource offset, and a pointer to the Xrm Val ue in which to
store the result and is an XtRes~urceDefaul tProc:

typedef void (*XtResourceDefaultProc) (Widget, int, XrmValue *)
Widget w;

w

offset

value

int offset;
XrmValue *value;

Specifies the widget whose resource is to be obtained.

Specifies the offset of the field in the widget record.

Specifies the resource value to fill in.

The XtResourceDefaultProc procedure should fill in the addr field of the value
with a pointer to the default data in its correct type.

NOTE

The default address field in the resource structure is declared as a
caddr t. oJi some machine architectures, this may be insufficient to
hold Procedure variables.

9 - 4 Resource Management

To get the resource list structure for a particular class, use XtGetResourceList:

void XtGetResourceList(class, resources return, numJesourcesJetum);
WidgetClass class; -
XtResourceList *resources return;
Cardinal *num Jesources Jdum ;

Specifies the widget class.

resources return Specifies a pointer to where to store the returned resource list.
The caller must free this storage using XtFree when done
with it.

num resources return Specifies a pointer to where to store the number of entries in
the resource list.

If it is called before the widget class is initialized (that is, before the first widget of that
class has been created), XtGetResourceList returns the resource list as specified in
the widget class record. If it is called after the widget class has been initialized,
XtGetResourceList returns a merged resource list that contains the resources for all
superclasses.

The routines XtSetValues and XtGetValues also use the resource list to set and
get widget state. For further information, see Sections 9.7.1 and 9.7.2.

Here is an abbreviated version of the resource list in the Label widget:

1* Resources specific to Label */
static XtResource resources[] = {
{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),

XtOffset(LabelWidget, label.foreground), XtRString, XtDefaultForeground},
{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),

XtOffset(LabelWidget, label.font),XtRString, XtDefaultFont},
{XtNlabel, XtCLabel, XtRString, sizeof(String),

XtOffset(LabelWidget, label. label), XtRString, NULL},

}

The complete resource name for a field of a widget instance is the concatenation of the
application shell name (from XtAppCreateShell), the instance names of all the
widget's parents up to the ApplicationShellWidget, the instance name of the
widget itself, and the resource name of the specified field of the widget. Likewise, the full
resource class of a field of a widget instance is the concatenation of the application class
(from XtAppCreateShell), the widget class names of all the widget's parents up to

Resource Management 9 -5

the ApplicationShellWidget (not the superclasses), the widget class name of the
widget itself, and the resource name of the specified field of the widget.

9.2 Byte Offset Calculations

To determine the byte offset of a field within a structure, use XtOffset.

Cardinal XtOffset (pointer_type. field _name)
Type pointcr Jvpe;
Fie ld field _name;

pointer_type

field _flume

Specifics a type that is declared as a pointer to the structure.

Specifics the name of the field for which to calculate the byte offset.

The X to f f set macro is usually used to determine the offset of various resource fields
from the heginning of a widget and can he used at compile time in static initializations.

9.3 Superclass to Subclass Chaining of Resource Lists

The XtCrea teWidge t function gets resources as a superclass-to-subclass operation.
That is, the resources specified in Core resource list are fetched, then those in the
subclass, and so on down to the resources specified for this widget's class. Within a class,
resources are fetched in the order they are declared.

In general, if a widget resource field is declared in a superclass, that field is included in the
superclass's resource list and need not be included in the subclass's resource list. For
example, the Core class contains a resource entry for background_pixel. Consequently,
the implementation of Label need not also have a resource entry for background_pixel.
However, a subclass, by specifying a resource entry for that field in its own resource list,
can override the resource entry for any field declared in a superclass. This is most often
done to override the defaults provided in the superclass with new ones. At class
initialization time, resource lists for that class are scanned from the superclass down to the
class to look for resources with the same offset. A matching resource in a subclass will be
reordered to override the super class entry. (A copy of the superclass resource list is made
to avoid affecting other subclasses of the superclass.)

9 - 6 Resource Management

9.4 Subresources
A widget does not do anything to get its own resources; instead, XtCreateWidget does
this automatically before calling the class initialize procedure.

Some widgets have subparts that are not widgets but for which the widget would like to
fetch resources. For example, the Text widget fetches resources for its source and sink.
Such widgets call XtGetSubresources to accomplish this.

void XtGetSubresources (w, base, name, class, resources, num Jesources, args, num _ args)
Widget w;

w

base

name

class

caddr_t base;
String name;
String class;
XtResourceList resources;
Cardinal num resources;
ArgList args; -
Cardinal num _.args;

Specifies the widget that wants resources for a subpart.

Specifies the base address of the subpart data structure where the
resources should be written.

resources

Specifics the name of the subpart.

Specifies the class of the subpart.

Specifies the rcsource list for the subpart.

num resources

args

num_args

Specifies the number of resources in the resource list.

Specifies the argument list to override resources obtained from the
resource database.

Specifies the number of arguments in the argument list.

The XtGetSubresources function constructs a name/class list from the application
name/class, the name/classes of all its ancestors, and the widget itself. Then, it appends to
this list the name/class pair passed in. The resources are fetched from the argument list,
the resource database, or the default values in the resource list. Then, they are copied into
the subpart record. If args is NULL, num args must be zero. However, if num args is
zero, the argument list is not referenced. - -

Resource Management 9 - 7

9.5 Obtaining Application Resources
To retrieve resources that are not specific to a widget but apply to the overall application,
use XtGetApplicationResources.

void XtGetApplicationResources (w, base, resources, num Jesources, args, num _ args)
Widget w;

w

base

caddr_t base;
XtResourceList resources;
Cardinal num Jesources ;
ArgList args;
Cardinal num _ args ;

Specifies the widget that identifies the resource database to search.
(The database is that associated with the display for this widget.)

Specifies the base address of the subpart data structure where the
resources should be written.

resources Specifies the resource list for the subpart.

num resources

args

Specifies the number of resources in the resource list.

Specifies the argument list to override resources obtained from the
resource database.

num _ args Specifies the number of arguments in the argument list.

The XtGetApplicationResources function first uses the passed widget, which is
usually an application shell, to construct a resource name and class list, Then, it retrieves
the resources from the argument list, the resource database, or the resource list default
values. After adding base to each address, XtGetApplicationResources copies the
resources into the address given in the resource list. If args is NULL, num _ args must be
zero. However, if num args is zero, the argument list is not referenced. The portable way
to specify application resources is to declare them as members of a structure and pass the
address of the structure as the base argument.

9.6 Resource Conversions
The X Toolkit Intrinsics provide a mechanism for registering representation converters
that are automatically invoked by the resource fetching routines. The X Toolkit Intrinsics
additionally provide and registers several commonly used converters. This resource
conversion mechanism serves several purposes:

9 - 8 Resource Management

• It permits user and application resource files to contain ASCII representations of
nontextual values.

• It allows textual or other representations of default resource values that are
dependent on the display, screen, or color map, and thus must be computed at run
time.

• It caches all conversion source and result data. Conversions that require much
computation or space (for example, string to translation table) or that require round
trips to the server (for example, string to font or color) are performed only once.

9.6.1 Predefined Resource Converters
The X Toolkit Intrinsics define all the representations used in the Core, Compos i te,
Constraint, and Shell widgets. It registers the following resource converters:

From XtRString to:

XtRAcceleratorTable, XtRBoolean, XtRBool, XtRCursor,
XtRDimension, XtRDisplay, XtRFile, XtRFloat, XtRFont,
XtRFontStruct, XtRlnt, XtRPixel, XtRPosition, XtRShort,
XtRTranslationTable, and XtRUnsignedChar.

From XtRColor, to: XtRPixel.

From XRlnt, to:

XtRBoolean, XtRBool, XtRColor, XtRDimension, XtRFloat,
XtRFont, XtRPixel, XtRPixmap, XtRPosition, XtRShort, and
XtRUnsignedChar.

From XtRPixel, to: XtRColor.

The string to pixel conversion has two predefined constants that are guaranteed to work
and contrast with each other (XtDefaul tForeground and
XtDefaul tBackground). They evaluate the black and white pixel values of the
widget's screen, respectively. For applications that run with reverse video, however, they
evaluate the white and black pixel values of the widget's screen, respectively. Similarly, the
string to font and font structure converters recognize the constant XtDefaul tFont and
evaluate this to the font in the screen's default graphics context.

Resource Management 9 - 9

9.6.2 New Resource Converters

Type converters use pointers to XrmValue structures (defined in
< Xll/Xresource. h » for input and output values.

typedef struct {
unsigned int size;
caddr_t addr;

} XrmValue, *XrmValuePtr;

A resource converter procedure pointer is of type XtConverter:

typedef void (*XtConverter)(XrmValue *, Cardinal *, XrmValue *, XrmValue *);
XrmValue *args;
Cardinal *num _ args;
XrmValue *from;
XrmValue *10;

args Specifies a list of additional XrmValue arguments to the converter if
additional context is needed to perform the conversion or NULL. For
example, the string-to-font converter needs the widget's screen, or the string
to pixel converter needs the widget's screen and color map.

num_args Specifies the number of additional XrmValue arguments or zero.

from Specifies the value to convert.

to Specifies the descriptor to use to return the converted value.

Type converters should perform the following actions:

• Check to see that the number of arguments passed is correct.

• Attempt the type conversion.

• If successful, return a pointer to the data in the to parameter; otherwise, call
XtWarningMsg and return without modifying the to argument.

Most type converters just take the data described by the specified from argument and
return data by writing into the specified to argument. A few need other information,
which is available in the specified argument list. A type converter can invoke another type
converter, which allows differing sources that may convert into a common intermediate
result to make maximum use of the type converter cache.

Note that the address written to- > addr cannot be that of a local variable of the converter
because this is not valid after the converter returns. It should be a pointer to a static
variable, as in the following example where screenColor is returned.

The following is an example of a converter that takes a string and converts it to a Pixel:

9 -10 Resource Management

static void CvtStringToPixel(args, num_args, fromVal, toVal)
XrmValue *args;

} ;

Cardinal *num_args;
XrmValue *fromVal;
XrmValue *toVal;

static XColor screenColor;
XColor exactColor;
Screen
Colormap
Status
char
XrmQuark
String
Cardinal

*screen;
colormap;

status;
message[1000];
q;

params [1] ;
numyarams = 1;

if (*num_args != 2)
XtErrorMsg("cvtStringToPixel","wrongParameters","XtToolkitError",

"String to pixel conversion needs screen and colormap arguments",
(String *)NULL, (Cardinal *)NULL);

screen = *«(Screen **) args[O].addr);
colormap = *«Colormap *) args[l].addr);

LowerCase«char *) fromVal->addr, message);
q = XrmStringToQuark(message);

if (q

if (q
XtQExtdefaultbackground)
XtQExtdefaultforeground)

done (&screen->whiteyixel, Pixel); return;
done(&screen->black_pixel, Pixel); return;

if «char) fromVal->addr[O] == '#') /* some color rgb definition */

status = XParseColor(DisplayOfScreen(screen), colormap, (String) fromVal->addr,
&screenColor) ;

if (status != 0) status = XAllocColor(DisplayOfScreen(screen), colormap, &screenColor);

else /* some color name */

status = XAllocNamedColor(DisplayOfScreen(screen), colormap, (String) fromVal->addr,
&screenColor, &exactColor);

if (status == 0) {

params[O]=(String)fromVal->addr;
XtWarningMsg("cvtStringToPixel","noColormap","XtToolkitError",

"Cannot allocate colormap entry for \"%s\"", params, &numyarams);

else {

toVal->addr
toVal->size

(caddr_t)&screenColor.pixel;
sizeof(Pixel) ;

Resource Management 9 -11

All type converters should define some set of conversion values that they are guaranteed to
succeed on so these can be used in the resource defaults. This issue arises only with
conversions, such as fonts and colors, where there is no string representation that all server
implementations will necessarily recognize. For resources like these, the converter should
define a symbolic constant (for example, XtDefa 11 tForeground,
XtDefaul tBackground, or XtDefaul tFont).

9.6.3 Issuing Conversion Warnings

The XtStringConversionWarning function is a convenience routine for new
resource converters that convert from strings.

void XtStr ingConvers ionWarning (src, dst _type)
String src, dst_type;

src Specifies the string that could not be converted.

Specifies the name of the type to which the string could not be converted.

The XtStringConversionWarning function issues a warning message with name
"conversionError", type "string", class "XtToolkitError, and the default message string
"Cannot convert "src" to type dst _type".

9.6.4 Registering a New Resource Converter

To register a new converter, use XtAppAddConverter.

void XtAppAddConverter (app _context, from _type, to _type, converter, convert _ args, num _ args)
XtAppContext app context;
String from type; -
String to type;
XtConverter converter;
XtConvertArgList conven args;
Cardinal num _ args ; -

app _context

from_type

to_type

converter

num_args

Specifies the application context.

Specifies the source type.

Specifies the destination type.

Specifies the type converter procedure.

Specifies how to compute the additional arguments to the converter or
NULL.

Specifies the number of additional arguments to the converter or zero.

9 -12 Resource Management

If the same from type and to type are specified in two calls to XtAppAddConverter,
the second call o~errides the first. For the few type converters that need additional
arguments, the X Toolkit Intrinsics conversion mechanism provides a method of specifying
how these arguments should be computed. The enumerated type XtAddre s sMode and
the structure XtConvertArgRec specify how each argument is derived. These are
defined in < XII/Convert. h >.

typedef enum {
/* address mode

XtAddress,
XtBaseOffset,
Xtlmmediate,
XtResourceString,
XtResourceQuark

} XtAddressMode;

typedef struct {

parameter representation */
/* address */
/* offset */
/* constant */
/* resource name string */
/* resource name quark */

XtAddressMode address_mode;
caddr_t address_id;
Cardinal size;

} XtConvertArgRec, *XtConvertArgList;

The address mode field specifies how the address id field should be interpreted.
XtAddres; causes address id to be interpreted;s the address of the data.
XtBaseOffset causes add-;ess id to be interpreted as the offset from the widget base.
XtInunediate causes address id to be interpreted as a constant.
XtResourceString causes ;ddress id to be interpreted as the name of a resource that
is to be converted into an offset from Widget base. XtResourceQuark is an internal
compiled form of an XtResourceString. The size field specifies the length of the
data in bytes. .

The following provides the code that was used to register the CvtStringToPixel routine
shown earlier:

static XtConvertArgRec colorConvertArgs[J = {
{XtBaseOffset, (caddr t) XtOffset(Widget, core. screen), sizeof(Screen *)},
{XtBaseOffset, (caddr=t) XtOffset(Widget, core. colo'rmap), sizeof(Colormap)}

} ;

XtAddConverter (XtRString, XtRPixel, CvtStringToPixel';
colorConvertArgs, XtNumber(colorConvertArgs»;

The conversion argument descriptors colorConvertArgs and ~creenConvertArg are
predefined. The screenConvertArg descriptor puts the widget's Screen field into args[O].
The colorConvertArgs descriptor puts the widget's screen field into args[O], and the
widget's colormap field into args[l]. .

Resource Management 9 -13

Conversion routines should not just put a descriptor for the address of the base of the
widget into args[O], and use that in the routine. They should pass in the actual values that
the conversion depends on. By keeping the dependencies of the conversion procedure
specific, it is more likely that subsequent conversions will find what they need in the
conversion cache. This way the cache is smaller and has fewer and more widely applicable
entries.

9.6.5 Resource Converter Invocation

All resource-fetching routines (for example, XtGetSubresources,
XtGetApplicationResources, and so on) call resource converters if the user
specifies a resource that is a different representation from the desired representation or if
the widget's default resource value representation is different from the desired
representation.

To invoke resource conversions, use XtConvert or XtDirectConvert.

void XtConvert(w, from type, from, to_type, to...!eturn)
Widget w; -

w

String from type;
XrmValuePtr- from;
String to type;
XrmValuePtr to ...!eturn;

front_type

from

Specifies the widget to use for additional arguments (if any are needed).

Specifies the source type.

Specifies the value to be converted.

Specifies the destination type.

Returns the converted value.

to _type

to return

.... oid XtDirectConvert (converter, args, num args, from, to ...!eturn)
XtConverter converter; -
XrmValuePtr args;
Cardinal num args;
XrmValuePtr from;
XrmValuePtr to ...!eturn;

COllverter Specifies the conversion procedure that is to be called.

args Specifies the argument list that contains the additional arguments needed to
perform the conversion (often NULL).

9 ·14 Resource Management

num_args

from

Specifies the number of additional arguments (often zero).

Specifies the value to be converted.

to return Returns the converted value.

The XtConvert function looks up the type converter registered to convert from_type to
to_type, computes any additional arguments needed, and then calls XtDirectConvert.
The XtDirectConvert function looks in the converter cache to see if this conversion
procedure has been called with the specified arguments. If so, it returns a descriptor for
information stored in the cache; otherwise, it calls the converter and enters the result in
the cache.

Before calling the specified converter, XtDirectConvert sets the return value size to
zero and the return value address to NULL. To determine if the conversion was
successful, the client should check to _return. address for non-NULL.

9.7 Reading and Writing Widget State

Any resource field in a widget can be read or written by a client. On a write operation, the
widget decides what changes it will actually allow and updates all derived fields
appropriately.

9.7.1 Obtaining Widget State

To retrieve the current value of a resource associated with a widget instance, use
XtGetValues.

void XtGetValuesCw, mgs, num_~)
Widget w;
ArgList args;
Cardinal num _ args ;

w Specifies the widget.

args Specifies the argument list of name/address pairs that contain the resource
name and the address into which the resource value is to be stored. The
resource names are widget-dependent.

num _ args Specifies the number of arguments in the argument list.

Resource Management 9 -15

The XtGetValues function starts with the resources specified for the core widget fields
and proceeds down the subclass chain to the widget. The value field of a passed argument
list should contain the address into which to store the corresponding resource value. It is
the caller's responsibility to allocate and deallocate this storage according to the size of the
resource representation type used within the widget.

If the widget's parent is a subclass of constraintWidgetClass, XtGetValues
then fetches the values for any constraint resources requested. It starts with the constraint
resources specified for constraintWidgetClass and proceeds down to the subclass
chain to the parent's constraint resources. If the argument list contains a resource name
that is not found in any of the resource lists searched, the value at the corresponding
address is not modified. Finally, if the get values hook procedures are non-NULL, they
are called in superclass-to-subclass order after ali'the resource values have been fetched by
XtGetValues. This permits a subclass to provide nonwidget resource data to
XtGetValues.

Widget Subpart Resource Data
Widgets that have subparts can return resource values from them for XtGetValues by
supplying a get_values_hook procedure. The get_values_hook procedure pointer is of type
XtArgsProc:

typedef void (*XtArgsProc) (Widget, ArgList, Cardinal *);
Widget w;
ArgList args;
Cardinal *num _ args ;

w Specifies the widget whose nonwidget resource values are to be retrieved.

args Specifies the argument list that was passed to XtCreateWidget.

num _ args Specifies the number of arguments in the argument list.

The widget should call XtGetSubvalues and pass in its subresource list and the arg
and num _ args parameters.

Widget Subpart State
To retrieve the current value of a nonwidget resource data associated with a widget
instance, use XtGetSubvalues. For a discussion of nonwidget subclass resources, see
Section 9.4.

void XtGetSubvalues (base, resources, num .!esources, args, num _ args)
caddr_t base;
XtResourceList resources;
Cardinal num resources;
ArgList args; -
Cardinal num _ args ;

9 -16 Resource Management

base

resources

num resources

args

Specifies the base address of the subpart data structure where the
resources should be retrieved.

Specifies the nonwidget resources list.

Specifies the number of resources in the resource list.

Specifies the argument list of name/address pairs that contain the
resource name and the address into which the resource value is to be
stored. The arguments and values passed in are dependent on the
subpart. The storage for argument values that are pointed to by the
argument list must be deallocated by the application when no longer
needed.

num _ args Specifies the number of arguments in the argument list.

The XtGetSubvalues function obtains resource values from the structure identified by
base.

9.7.2 Setting Widget State

To modify the current value of a resource associated with a widget instance, use
XtSetValues.

void XtSetValues (w, args, num _ args)
Widget w;
ArgList args;
Cardinal num _ args ;

w Specifies the widget.

args Specifies the argument list of name/value pairs that contain the resources to
be modified and their new values. The resources and values passed are
dependent on the widget being modified.

num _ args Specifies the number of arguments in the argument list.

The XtSetValues function starts with the resources specified for the Core widget
fields and proceeds down the subclass chain to the widget. At each stage, it writes the new
value (if specified by one of the arguments) or the existing value (if no new value is
specified) to a new widget data record. XtSetValues then calls the set values
procedures for the widget in superclass-to-subclass order. If the widget has-any non
NULL set values hook fields, these are called immediately after the corresponding
set values -proced~re. This procedure permits subclasses to set nonwidget data for
XtSetValues.

Resource Management 9 -17

If the widget's parent is a subclass of constraintWidgetClass, XtSetValues
also updates the widget's constraints. It starts with the constraint resources specified for
constraintWidgetClass and proceeds down the subclass chain to the parent's class.
At each stage, it writes the new value or the existing value to a new constraint record. It
then calls the constraint set values procedures from constraintWidgetClass down
to the parent's class. The constraint set values procedures are called with widget
arguments, as for all set values procedu"i-es, not just the constraint record arguments, so
that they can make adjustments to the desired values based on full information about the
widget.

XtSetValues determines if a geometry request is needed by comparing the current
widget to the new widget. If any geometry changes are required, it makes the request, and
the geometry manager returns XtGeometryYes, XtGeometryAlmost, or
XtGeometryNo. If XtGeometryYes, XtSetValues calls the widget's resize
procedure. If XtGeometryNo, XtSetValues resets the geometry fields to their
original values. If XtGeometryAlmost, XtSetValues calls the set_values_almost
procedure, which determines what should be done and writes new values for the geometry
fields into the new widget. XtSetValues then repeats this process, deciding once
more whether the geometry manager should be called.

Finally, if any of the set_values procedures returned True, XtSetValues causes the
widget's expose procedure to be invoked by calling the Xlib XClearArea function on
the widget's window.

Widget State
The set_values procedure pointer in a widget class is of type XtSetValuesFunc:

typedef Boolean (*XtSetValuesFunc) (Widget, Widget, Widget);
Widget cUITent;
Widget request;
Widget new;

current

request

new

Specifies a copy of the widget as it was before the XtSetValues call.

Specifies a copy of the widget with all values changed as asked for by the
XtSetValues call before any class set_values procedures have been called.

Specifies the widget with the new values that are actually allowed.

The set values procedure should recompute any field derived from resources that are
changed (for example, many GCs depend on foreground and background). If no
recomputation is necessary and if none of the resources specific to a subclass require the
window to be redisplayed when their values are changed, you can specify NULL for the
set values field in the class record.

9 -18 Resource Management

Like the initialize procedure, set values mostly deals only with the fields defined in the
subclass, but it has to resolve co;flicts with its super class, especially conflicts over width
and height.

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular,
size calculations of a superclass are often incorrect for a subclass and in this case, the
subclass must modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the
width and height calculated by the super class set values procedure are too small and need
to be incremented by the size of the surround. The subclass needs to know if its
superclass's size was calculated by the superclass or was specified explicitly. All widgets
must place themselves into whatever size is explicitly given, but they should compute a
reasonable size if no size is requested. How does a subclass know the difference between a
specified size and a size computed by a superclass?

The request and new parameters provide the necessary information. The request widget is
the widget as originally requested. The new widget starts with the values in the request,
but it has been updated by all superclass set values procedures called so far. A subclass
set_values procedure can compare these tw; to resolve any potential conflicts.

In the above example, the subclass with the visual surround can see if the width and height
in the request widget are zero. If so, it adds its surround size to the width and height fields
in the new widget. If not, it must make do with the size originally specified.

The new widget is the actual widget instance record. Therefore, the set values procedure
should do all its work on the new widget (the request widget should never be modified),
and if it needs to call any routines that operate on a widget, it should specify new as the
widget instance.

The widget specified by new starts with the values of that specified by request but has been
modified by any super class set values procedures. A widget need not refer to the request
widget, unless it must resolve conflicts between the current and new widgets. Any changes
that the widget needs to make, including geometry changes, should be made in the new
widget.

Finally, the set values procedure must return a Boolean that indicates whether the widget
needs to be redisplayed. Note that a change in the geometry fields alone does not require
the set_values procedure to return True; the X server will eventually generate an
Expose event, if necessary. After calling all the set values procedures, XtSetValues
forces a redisplay by calling the Xlib XClearArea -function if any of the set_values
procedures returned True. Therefore, a set values procedure should not try to do its
own redisplaying. -

Resource Management 9 -19

Set values procedures should not do any work in response to changes in geometry because
XtSetValues eventually will perform a geometry request, and that request might be
denied. If the widget actually changes size in response to a XtSetValues, its resize
procedure are called. Widgets should do any geometry-related work in their resize
procedure.

Note that it is permissible to call XtSetValues before a widget is realized. Therefore,
the set_values proc must not assume that the widget is realized.

Widget State
The set_values_almost procedure pointer in a widget class is of type XtAlmos tProc:

typedef void (*XtAlmostProc) (Widget, Widget, XtWidgetGeometry *, XtWidgetGeometry *);
Widget w;

w

Widget new widget return;
XtWidgetGe;metry *request;
XtWidgetGeometry *repry;

Specifies the widget on which the geometry change is requested.

Specifies the new widget into which the geometry changes are to
be stored.

request Specifies the original geometry request that was sent to the
geometry manager that returned XtGeometryAlmost.

reply Specifies the compromise geometry that was returned by the
geometry manager that returned XtGeometryAlmost.

Most classes inherit this operation from their superclass by specifying
XtlnheritSetValuesAlmost in the class initialization. The Core
set_values_almost procedure accepts the compromise suggested.

The set_values_almost procedure is called when a client tries to set a widget's geometry by
means of a call to XtSetValues, and the geometry manager cannot satisfy the request
but instead returns XtGeometryAlmost and a compromise geometry. The
set_values_almost procedure takes the original geometry and the compromise geometry
and determines whether the compromise is acceptable or a different compromise might
work. It returns its results in the new_widget parameter, which is then sent back to the
geometry manager for another try.

9 -20 Resource Management

Widget State
The constraint set_values procedure pointer is of type X t Set Val ue s Func. The values
passed to the parent's constraint set values procedure are the same as those passed to the
child's class set values procedure. A class can specify NULL for the set values field of the
Cons traintPart if it need not compute anything. -

The constraint set values procedure should recompute any constraint fields derived from
constraint resource that are changed. Further, it should modify the widget fields as
appropriate. For example, if a constraint for the maximum height of a widget is changed
to a value smaller than the widget's current height, the constraint set values procedure
should reset the height field in the widget. -

Widget Subpart State
To set the current value of a nonwidget resource associated with a widget instance, use
XtSe tSubvalues. For a discussion of nonwidget subclass resources, see Section 9.4.

void XtSetSubvalues (base, resources, num Jesources, args, num _ args)
caddr_t base;

base

XtResourceList resources;
Cardinal num resources;
ArgList args; -
Cardinal num _ args ;

Specifies the base address of the subpart data structure where the
resources should be written.

resources Specifies the current nonwidget resources values.

Specifies the number of resources in the resource list. num resources

args Specifies the argument list of name/value pairs that contain the
resources to be modified and their new values. The resources and
values passed are dependent on the subpart of the widget being
modified.

num _ args Specifies the number of arguments in the argument list.

The XtSetSubvalues function stores resources into the structure identified by base.

Widget Subpart Resource Data
Widgets that have a subpart can set the resource values by using XtSetValues and
supplying a set values hook procedure. The set values hook procedure pointer in a
widget class is "Of type -XtArgsFunc: --

typedef Boolean (*XtArgsFunc) (Widget, Arglist, Cardinal *);
Widget w;
ArgList args;
Cardinal *num _ args;

Resource Management 9 -21

w Specifies the widget whose nonwidget resource values are to be changed.

args Specifies the argument list that was passed to XtCreateWidget.

num _ args Specifies the number of arguments in the argument list.

9 -22 Resource Management

Translation Management 10
Except under unusual circumstances, widgets do not hardwire the mapping of user events
into widget behavior by using the event manager. Instead, they provide a default mapping
of events into behavior that you can override.

The translation manager provides an interface to specify and manage the mapping of X
Event sequences into widget -supplied functionality, for example, calling procedure Abc
when the y key is pressed.

The translation manager uses two kinds of tables to perform translations:

• The action tables, which are in the widget class structure, specify the mapping of
externally available procedure name strings to the corresponding procedure
implemented by the widget class.

• A translation table, which is in the widget class structure, specifies the mapping of
event sequence to procedure name strings.

You can override the translation table in the class structure for a specific widget instance
by supplying a different translation table for the widget instance. The resource name is
XtNtranslations.

10.1 Action Tables
All widget class records contain an action table. In addition, an application can register its
own action tables with the translation manager so that the translation tables it provides to
widget instances can access application functionality. The translation action yroc
procedure pointer is of type XtActionProc:

typedef void (*XtActionProc) (Widget, XEvent *, String *, Cardinal *);
Widget w;
XEvent *event;
String *params;
Cardinal *num "'params ;

w Specifies the widget that caused the action to be called.

Translation Management 10 -1

event Specifies the event that caused the action to be called. If the action is
called after a sequence of events, then the last event in the sequence is
used.

params Specifies a pointer to the list of strings that were specified in the
translation table as arguments to the action.

num yarams Specifies the number of arguments specified in the translation table.

typedef struct _XtActionsRec {
String action_name;
XtActionProc action_proc;

} XtActionsRec, *XtActionList;

The action name field is the name that you use in translation tables to access the
procedure.-The actionyroc field is a pointer to a procedure that implements the
functionality.

For example, the Command widget has procedures to take the following actions:

• Set the command button to indicate it is activated

• Unset the button back to its normal mode

• Highlight the button borders

• Unhighlight the button borders

• Notify any callbacks that the button has been activated

The action table for the Command widget class makes these functions available to
translation tables written for Command or any subclass. The string entry is the name used
in translation tables. The procedure entry (often spelled identically to the string) is the
name of the C procedure that implements that function:

XtActionsRec actionTable[] = {

} ;

{"Set", Set},
{"Unset", Unset},
{"Highlight" ,Highlight},
{"Unhighlight", Unhighlight}
{"Notify", Notify},

1 0.1.1 Action Table Registration

To declare an action table and register it with the translation manager, use
XtAppAddAc tions.

10 -2 Translation Management

void XtAppAddActions (app context, actions, num _actions)
XtAppContext app context;
XtActionList actions;
Cardinal num _actions ;

app _context

actions

Specifies the application context.

Specifies the action table to register.

num _ args Specifies the number of entries in this action table.

If more than one action is registered with the same name, the most recently registered
action is used. If duplicate actions exist in an action table, the first is used. The X Toolkit
Intrinsics register an action table for MenuPopup and MenuPopdown as part of X
Toolkit initialization.

10.1.2 Action Names to Procedure Translations

The translation manager uses a simple algorithm to convert the name of a procedure
specified in a translation table into the actual procedure specified in an action table.
When the widget is realized, the translation manager performs a search for the name in
the following tables:

• The widget's class action table for the name

• The widget's superclass action table and on up the superclass chain

• The action tables registered with XtAddAc tions (from the most recently added
table to the oldest table)

As soon as it finds a name, the translation manager stops the search. If it cannot find a
name, the translation manager generates an error.

10.2 Translation Tables
All widget instance records contain a translation table, which is a resource with no default
value. A translation table specifies what action procedures are invoked for an event or a
sequence of events. A translation table is a string containing a list of translations from an
event sequence into one or more action procedure calls. The translations are separated
from one another by newline characters (ASCII LF). The complete syntax of translation
tables is specified in Appendix B.

As an example, the default behavior of Command is:

• Highlight on enter window

• Unhighlight on exit window

Translation Management 10 -3

• Invert on button 1 down

• Call callbacks and reinvert on button 1 up

The following illustrates the Command's default translation table:

static String defaultTranslations =
"<EnterWindow>:Highlight()\n\
<LeaveWindow>:Unhighlight()\n\
<BtnlDown>: Set()\n\
<BtnlUp>: Notify () Unset()";

The tm table field of the CoreClass record should be filled in at static initialization
time with the string containing the class's default translations. If a class wants to inherit its
superclass's translations, it can store the special value XtlnheritTranslations into
tm table. After the class initialization procedures have been called, the X Toolkit
Int;insics compile this translation table into an efficient internal form. Then, at widget
creation time, this default translation table is used for any widgets that have not had their
core translations field set by the resource manager or the initialize procedures.

The resource conversion mechanism automatically compiles string translation tables that
are resources. If a client uses translation tables that are not resources, it must compile
them itself using XtParseTranslationTable.

The X Toolkit Intrinsics use the compiled form of the translation table to register the
necessary events with the event manager. Widgets need do nothing other than specify the
action and translation tables for events to be processed by the translation manager.

10.2.1 Event Sequences

An event sequence is a comma separated list of X event descriptions that describes a
specific sequence of X events to map to a set of program actions. Each X event description
consists of three parts:

• The X event type

• A prefix consisting of the X modifier bits

• An event specific suffix

Various abbreviations are supported to make translation tables easier to read.

10 -4 Translation Management

10.2.2 Action Sequences

Action sequences specify what program or widget actions to take in response to incoming
X events. An action sequence of action procedure call specifications. Each action
procedure call consists of the name of an action procedure and a parenthesized list of
string parameters to pass to that procedure.

10.3 Translation Table Management

Sometimes an application needs to destructively or nondestructively add its own
translations to a widget's translation. For example, a window manager provides functions
to move a window. It usually may move the window when any pointer button is pressed
down in a title bar, but it allows the user to specify other translations for buttons 2 or 3
down in the title bar, and it ignores any user translations for button 1 down.

To accomplish this, the window manager first should create the title bar and then should
merge the two translation tables into the title bar's translations. One translation table
contains the translations that the window manager wants only if the user has not specified
a translation for a particular event (or event sequence). The other translation table
contains the translations that the window manager wants regardless of what the user has
specified.

Three X Toolkit Intrinsics functions support this merging:

XtParseTranslationTable Compiles a translation table.

XtAugrnentTranslations Nondestructively merges a compiled translation table into a
widget's compiled translation table.

XtOverrideTranslations Destructively merges a compiled translation table into a widget
compiled translation table.

To compile a translation table, use XtParseTranslationTable.

XtTranslations XtParseTranslationTable (table)
String table;

table Specifies the translation table to compile.

Translation Management 10 -5

The XtParseTranslationTable function compiles the translation table into the
opaque internal representation of type XtTranslations. Note that if an empty
translation table is required for any purpose, one can be obtained by calling
XtParseTranslationTable and passing an empty string.

To merge new translations into an existing translation table, use
XtAugrnentTranslations.

void XtAugmentTranslations (w, translations)
Widget w;
XtTranslations translations;

w

translations

Specifies the widget into which the new translations are to be merged.

Specifies the compiled translation table to merge in (must not be
NULL).

The XtAugrnentTranslations function nondestructive1y merges the new translations
into the existing widget translations. If the new translations contain an event or event
sequence that already exists in the widget's translations, the new translation is ignored.

To overwrite existing translations with new translations, use
XtOverrideTranslations.

void XtOverrideTranslations (w, translations)
Widget w;
XtTranslations translations;

w

trans lations

Specifies the widget into which the new translations are to be merged.

Specifies the compiled translation table to merge in (must not be
NULL).

The XtOverrideTranslations function destructively merges the new translations
into the existing widget translations. If the new translations contain an event or event
sequence that already exists in the widget's translations, the new translation is merged in
and override the widget's translation.

To replace a widget's translations completely, use XtSetValues on the XtNtranslations
resource and specifiy a compiled translation table as the value.

10 - 6 Translation Management

To make it possible for users to easily modify translation tables in their resource files, the
string-to-translation-table resource type converter allows specifying whether the table
should replace, augment, or override any existing translation table in the widget. As an
option, you can specify a number sign (#) as the first character of the table followed by
"replace" (default), "augment", or "override" to indicate whether to replace, augment, or
override any existing table.

To completely remove existing translations, use XtUninstallTranslations.

void XtUninstallTranslations{w)
Widget w;

w Specifies the widget from which the translations are to be removed.

The XtUninstallTranslations function causes the entire translation table for
widget to be removed.

10.4 Using Accelerators
It is often convenient to be able to bind events in one widget to actions in another. In
particular, it is often useful to be able to invoke menu actions from the keyboard. The X
Toolkit Intrinsics provide a facility, called accelerators, that let you accomplish this. An
accelerator is a translation table that is bound with its actions in the context of a particular
widget. The accelerator table can then be installed on some destination widget. When an
action in the destination widget would cause an accelerator action to be taken, rather than
causing an action in the context of the destination, the actions are executed as though
triggered by an action in the accelerator widget.

Each widget instance contains that widget's exported accelerator table. Each class of
widget exports a method that takes a displayable string representation of the accelerators
so that widgets can display their current accelerators. The representation is the
accelerator table in canonical translation table form (see Appendix B). The
display_accelerator procedure pointer is of type XtStringProc:

typedef void (*XtStringProc) (Widget, String);
Widget w;
String string;

w Specifies the widget that the accelerators are installed on.

string Specifies the string representation of the accelerators for this widget.

Translation Management 10-7

Accelerators can be specified in defaults files, and the string representation is the same as
for a translation table. However, the interpretation of the #augment and #override
directives apply to what will happen when the accelerator is installed, that is, whether or
not the accelerator translations will override the translations in the destination widget.
The default is #augment, which means that the accelerator translations have lower priority
than the destination translations. The #replace directive is ignored for accelerator tables.

To parse an accelerator table, use XtParseAcceleratorTable.

XtAccelerators XtParseAcceleratorTable(sou~e)
String sou~e;

source Specifies the accelerator table to compile.

The XtParseAcceleratorTable function compiles the accelerator table into the
opaque internal representation.

To install accelerators from a widget on another widget, use
XtlnstallAccelerators.

void XtInstallAccelerators (destination, sou~e)
Widget destination;
Widget sou~e;

destination

source

Specifies the widget on which the accelerators are to be installed.

Specifies the widget from which the accelerators are to come.

The XtlnstallAccelerators function installs the accelerators from source onto
destination by augmenting the destination translations with the source accelerators. If the
source display accelerator method is non-NULL, XtlnstallAccelerators calls it
with the source widget and a string representation of the accelerator table, which indicates
that its accelerators have been installed and that it should display them appropriately. The
string representation of the accelerator table is its canonical translation table
representation.

As a convenience for installing all accelerators from a widget and all its descendants onto
one destination, use XtlnstallAllAccelerators.

void XtInstallAllAccelerators (destination, source)
Widget destination;
Widget source;

destination Specifies the widget on which the accelerators are to be installed.

10 - 8 Translation Management

source Specifies the root widget of the widget tree from which the accelerators
are to come.

The XtlnstallAllAccelerators function recursively descends the widget tree
rooted at source and installs the accelerators of each widget encountered onto destination.
A common use is to call XtlnstallAllAccelerators and pass the application main
window as the source.

10.5 KeyCode-to-KeySym Conversions

The translation manager provides support for automatically translating key codes in
incoming key events into KeySyms. KeyCode-to-KeySym-translator procedure pointers
are of type XtKeyProc:

typedef void (*XtKeyProc)(Display *, KeyCode, Modifiers, Modifiers *, KeySym *);
Display *display;
KeyCode keycode;
Modifiers modifiers;
Modifiers *modifiers return;
KeySym *keysym Jeturn-;

display

keycode

modifiers

modifiers ...!etum

keysym ...!etum

Specifies the display that the KeyCode is from.

Specifies the KeyCode to translate.

Specifies the modifiers to the KeyCode.

Returns a mask that indicates the subset of all modifiers that are
examined by the key translator.

Returns the resulting KeySym.

This procedure takes a KeyCode and modifiers and produces a KeySym. For any given
key translator function, modifiers return will be a constant that indicates the subset of all
modifiers that are examined by the key translator.

To register a key translator, use XtSetKeyTranslator.

void XtSetKeyTranslator(display, proc)
Display *display;
XtKeyProc proc;

display

proc

Specifies the display from which to translate the events.

Specifies the procedure that is to perform key translations.

Translation Management 10 -9

The XtSetKeyTranslator function sets the specified procedure as the current key
translator. The default translator is XtTranslateKey, an XtKeyProc that uses Shift
and Lock modifiers with the interpretations defined by the core protocol. It is provided so
that new translators can call it to get default KeyCode-to-KeySym translations and so that
the default translator can be reinstalled.

To invoke the currently registered KeyCode-to-KeySym translator, use
XtTranslateKeycode.

void XtTranslateKeycode (display, keycode, modifiers, modifiers return, keysym return)
Display *display; --
KeyCode keycode;
Modifiers modifiers;
Modifiers *modifiers _return;
KeySym *keysym _return ;

display

keycode

modifiers

modifiers ...!eturn

keysym ..!eturn

Specifies the display that the KeyCode is from.

Specifies the KeyCode to translate.

Specifies the modifiers to the KeyCode.

Returns a mask that indicates the modifiers actually used to
generate the KeySym.

Returns the resulting KeySym.

The XtTranslateKeycode function passes the specified arguments directly to the
currently registered KeyCode to KeySym translator.

To handle capitalization of nonstandard KeySyms, the X Toolkit Intrinsics allow clients to
register case conversion routines. Case converter procedure pointers are of type
XtCaseProc:

typedef void (*XtCaseProc)(KeySym *, KeySym *, KeySym *);
KeySym *keysym;
KeySym *lower return;
KeySym *upperJetum;

keysym

lower return

upper ...!eturn

Specifies the KeySym to convert.

Specifies the lowercase equivalent for the KeySym.

Specifies the uppercase equivalent for the KeySym.

10 -10 Translation Management

If there is no case distinction, this procedure should store the KeySym into both return
values.

To register a case converter, use XtRegis terCaseConverter.

void XtRegisterCaseConverter(display, proc, start, stoP)
Display *display;
XtCaseProc proc;
KeySym start;
KeySym stop;

display

proc

starl

Specifies the display from which the key events are to come.

Specifies the XtCaseProc that is to do the conversions.

Specifies the first KeySym for which this converter is valid.

stop Specifies the last KeySym for which this converter is valid.

The XtRegis terCaseConverter registers the specified case converter. The start
and stop arguments provide the inclusive range of KeySyms for which this converter is to
be called. The new converter overrides any previous converters for KeySyms in that range.
No interface exists to remove converters; you need to register an identity converter. When
a new converter is registered, the X Toolkit Intrinsics refreshes the keyboard state if
necessary. The default converter understands case conversion for all KeySyms defined in
the core protocol.

To determine upper and lowercase equivalents for a KeySym, use XtConvertCase.

void XtConvertCase(display, keysym, lowerJeturn, upper_return)
Display *display;
KeySym keysym;
KeySym *lower return;
KeySym *upper __ return ;

display

keysym

lower return

upper ..!eturn

Specifies the display that the KeySym came from.

Specifies the KeySym to convert.

Returns the lowercase equivalent of the KeySym.

Returns the uppercase equivalent of the KeySym.

The XtConvertCase function calls the appropriate converter and returns the results.
A user-supplied XtKeyProc may need to use this function.

Translation Management 10 -11

Utility Functions

The X Toolkit Intrinsics provide a number of utility functions that you can use to:

• Determine the number of elements in an array

• Translate strings to widget instances

• Manage memory usage

• Share graphics contexts

• Manipulate selections

• Merge exposure events into a region

• Translate widget coordinates

• Translate a window to a widget

• Handle errors

11.1 Determining the Number of Elements in an Array

To determine the number of elements in a fixed-size array, use X tNumb e r .

Cardinal XtNumber(mTqy)
ArrayVariable mTqy;

array Specifies a fixed-size array.

11

The XtNumber macro returns the number of elements in the specified argument lists,
resources lists, and other counted arrays.

Utility Functions 11-1

11.2 Translating Strings to Widget Instances
To translate a widget name to widget instance, use XtNameToWidget.

Widget XtNameToWidget(reference, names);
Widget reference;
String names;

reference

names

Specifies the widget from which the search is to start.

Specifies the fully qualified name of the desired widget.

The XtNameToWidget function looks for a widget whose name is the first component in
the specified names and that is a pop-up child of reference (or a normal child if reference
is a subclass of composi teWidgetClass). It then uses that widget as the new
reference and repeats the search after deleting the first component from the specified
names. If it cannot find the specified widget, XtNameToWidget returns NULL.

Note that the names argument contains the name of a widget with respect to the specified
reference widget and can contain more than one widget name (separated by periods) for
widgets that are not direct children of the specified reference widget.

If more than one child of the reference widget matches the name, XtNameToWidget can
return any of the children. The X Toolkit Intrinsics do not require that all children of a
widget have unique names. If the specified names contain more than one component and
if more than one child matches the first component, XtNameToWidget can return
NULL if the single branch that it follows does not contain the named widget. That is,
XtNameToWidget does not back up and follow other matching branches of the widget
tree.

11.3 Managing Memory Usage
The X Toolkit Intrinsics memory management functions provide uniform checking for null
pointers and error reporting on memory allocation errors. These functions are completely
compatible with their standard C language runtime counterparts (malloc, calloc,
realloc, and free) with the following added functionality:

• XtMalloc, XtCalloc, and XtRealloc give an error if there is not enough
memory.

• XtFree simply returns if passed a NULL pointer.

• XtRealloc simply allocates new storage if passed a NULL pointer.

11- 2 Utility Functions

See the standard C library documentation on malloc, calloc, realloc, and
free for more information.

To allocate storage, use XtMalloc.

char *XtMalloc(size)i
Cardinal size i

size Specifies the number of bytes desired.

The XtMalloc functions returns a pointer to a block of storage of at least the specified
size bytes. If there is insufficient memory to allocate the new block, XtMalloc calls
XtErrorMsg.

To allocate and initialize an array, use XtCalloc.

char *XtCalloc (num, size) i
Cardinal num i
Cardinal size i

num Specifies the number of array elements to allocate.

size Specifies the size of an array element in bytes.

The XtCalloc function allocates space for the specified number of array elements of
the specified size and initializes the space to zero. If there is insufficient memory to
allocate the new block, XtCalloc calls XtErrorMsg.

To change the size of an allocated block of storage, use XtRealloc.

char *XtRealloc (ptr, num) i
char *ptri
Cardinal num;

ptr Specifies a pointer to the old storage.

num Specifies number of bytes desired in new storage.

The XtRealloc function changes the size of a block of storage (possibly moving it).
Then, it copies the old contents (or as much as will fit) into the new block and frees the old
block. If there is insufficient memory to allocate the new block, XtRealloc calls
XtErrorMsg. If ptr is NULL, XtRealloc allocates the new storage without copying
the old contents; that is, it simply calls XtMalloc.

Utility Functions 11-3

To free an allocated block of storage, use XtFree.

void XtFree (ptr) ;
char *ptr;

ptr Specifies a pointer to the block of storage that is to be freed.

The XtFree function returns storage and allows it to be reused. If ptr is NULL,
XtFree returns immediately.

To allocate storage for a new instance of a data type, use XtNew.

type *XtNew(type);
type;

type Specifies a previously declared data type.

XtNew returns a pointer to the allocated storage. If there is insufficient memory to
allocate the new block, XtNew calls XtErrorMsg. XtNew is a convenience macro
that calls XtMalloc with the following arguments specified:

«type *) XtMalloc«unsigned) sizeof(type»

To copy an instance of a string, use XtNewString.

String XtNewString(string);
String string;

string Specifies a previously declared string.

XtNewString returns a pointer to the allocated storage. If there is insufficient memory
to allocate the new block, XtNewString calls XtErrorMsg. XtNewString is a
convenience macro that calls XtMalloc with the following arguments specified:

(strcpy(XtMalloc«unsigned) strlen(str) + 1), str»

11- 4 Utility Functions

11.4 Sharing Graphics Contexts

The X Toolkit Intrinsics provide a mechanism whereby cooperating clients can share a
graphics context (GC), thereby reducing both the number of GCs created and the total
number of server calls in any given application. The mechanism is a simple caching
scheme, and all GCs obtained by means of this mechanism must be treated as read-only.
If a changeable GC is needed, the Xlib XCrea teGC function should be used instead.

To obtain a read-only, sharable GC, use XtGetGC.

GC XtGetGC (w, value mask, values)

w

Widget w; -
XtGCMask value mask;
XGCValues *values;

Specifies the widget.

value mask

values

Specifies which fields of the values are specified.

Specifies the actual values for this GC.

The XtGetGC function returns a sharable, read-only GC. The parameters to this
function are the same as those for XCreateGC except that a widget is passed instead of a
display. XtGetGC shares only GCs in which all values in the GC returned by
XCreateGC are the same. In particular, it does not use the value mask provided to
determine which fields of the GC a widget considers relevant. The-value mask is used
only to tell the server which fields should be filled in with widget data and which it should
fill in with default values. For further information about value mask and values, see
XCrea teGC in the Programming with Xlib . -

To deallocate a shared GC when it is no longer needed, use XtReleaseGC.

void XtReleaseGC(w, gc)
Widget w;
GC gc;

w Specifies the widget.

gc Specifies the GC to be deallocated.

References to sharable GCs are counted and a free request is generated to the server
when the last user of a given GC destroys it.

Utility Functions 11- 5

11.5 Managing Selections
Arbitrary widgets (possibly not all in the same application) can communicate with each
other by means of the X Toolkit global selection mechanism, which is defined in the Inter
Client Communcation Conventions Manual (Draft). The X Toolkit Intrinsics provide
functions for providing and receiving selection data in one logical piece (atomic transfers).
The actual transfer between the selection owner and the X Toolkit Intrinsics is not
required to be atomic; the X Toolkit Intrinsics will break a too-large selection into smaller
pieces for transport if necessary.

The next sections discuss how to:

• Set and get the selection timeout value

• Use atomic transfers

11.5.1 Setting and Getting the Selection Timeout Value

To set the X Toolkit Intrinsics selection timeout, use XtAppSetSelectionTimeout.

void XtAppSetSelectionTimeout(app context, timeout)
XtAppContext app context; -
unsigned long tinleout;

app _context

timeout

Specifies the application context.

Specifies the selection timeout in milliseconds.

To get the current selection timeout value, use XtAppGetSelectionTimeout.

unsigned long XtAppGetSelectionTimeout(app context)
XtAppContext app _context; -

app _context Specifies the application context.

The XtAppGetSelectionTimeout function returns the current selection timeout
value, in milliseconds. The selection timeout is the time within whic" the two
communicating applications must respond to one another. The initial timeout value is set
by the selectionTimeout application resource, or, if selectionTimeout is not
specified, it defaults to five seconds.

11- 6 Utility Functions

11.5.2 Using Atomic Transfers

The next three three sections discuss:

• Atomic transfer procedures

• Getting the selection value

• Setting the selection owner

Atomic Transfer Procedures
The following procedures are to be used with atomic transfers. The first three are used by
the selection owner, and the last one is used by the requestor.

typedef Boolean (*XtConvertSelectionProc) (Widget, Atom *, Atom *, Atom *,
caddr_t *, unsigned long *, int *)i

w

Widget Wi
Atom *selection i
Atom *targeti
Atom *type return i
c addr t *Value return i
unsig~ed long - *length return i
int *format ..!eturn ; -

Specifies the widget which currently owns this selection.

selection Specifies the atom that describes the type of selection requested (for
example, XA_PRlMARY or XA_SECONDARY).

target

type..!eturn

value return

length ..!eturn

Specifies the target type of the selection that has been requested, which
indicates the desired information about the selection (for example, File
Name, Text, Window).

Specifies a pointer to an atom into which the property type of the
converted value of the selection is to be stored. For instance, either file
name or text might have property type XA_STRING.

Specifies a pointer into which a pointer to the converted value of the
selection is to be stored. The selection owner is responsible for
allocating this storage. If the selection owner has provided an
XtSelectionDoneProc for the selection, this storage is owned by
the selection owner; otherwise, it is owned by the X Toolkit Intrinsics
selection mechanism, which frees it by calling XtFree when it is done
with it.

Specifies a pointer into which the number of elements in value (each of
size indicated by format) is to be stored.

Utility Functions 11-7

fonnat .!eturn Specifies a pointer into which the size in bits of the data elements of
the selection value is to be stored.

This procedure is called by the X Toolkit Intrinsics selection mechanism to get the value
of a selection as a given type from the current selection owner. It returns True if the
owner successfully converted the selection to the target type or False otherwise. If the
procedure returns False the values of the return arguments are undefined. Each
XtConvertSelectionProc should respond to target value TARGETS by returning a
value containing the list of the targets they are prepared to convert their selection into.

typedef void (*XtLoseSelectionProc) (Widget, Atom *);
Widget w;
Atom *selection;

w

selection

Specifies the widget that has lost selection ownership.

Specifies the atom that describes the selection type.

This procedure is called by the X Toolkit Intrinsics selection mechanism to inform the
specified widgets that it has lost the given selection. Note that this procedure does not ask
the widget to lose the selection ownership.

typedef void (*XtSelectionDoneProc) (Widget, Atom *, Atom *);
Widget Wi
Atom *selection;
Atom *target;

w Specifies the widget that owns the converted selection.

selection Specifies the atom that describes the selection type that was converted.

Specifies the target type to which the conversion was done. target

This procedure is called by the X Toolkit Intrinsics selection mechanism to inform the
selection owner when a selection requestor has successfully retrieved a selection value. If
the selection owner has registered an XtSelectionDoneProc, it should expect it to be
called once for each conversion that it performs but after the converted value has been
successfully transferred to the requestor. If the selection owner has registered an
XtSelectionDoneProc, it also owns the storage containing the converted selection
value.

11-8 Utility Functions

pedef void (*XtSelectionCallbackProc)(Widget. caddr_t. Atom *. Atom *. caddr_t. unsigned long *. int *);
Widget w;

w

c addr t client data;
Atom *selection;
Atom *type;
c addr t value;
unsig~ed long *kn~h;
int *format;

Specifies the widget that requested the selection value.

client data

selection

Specifies a value passed in by the widget when it requested the selection.

Specifies the type of selection that was requested.

type

value

Specifies the representation type of the selection value (for example,
XA_STRING). Note that it is not the target that was requested but the
type that is used to represent the target. The special X Toolkit atom
XT_CONVERT_FAIL is used to indicate that the selection conversion
failed because the selection owner did not respond within the X Toolkit
Intrinsics 's selection timeout interval.

Specifies a pointer to the selection value. The requesting client owns this
storage and is responsible for freeing it by calling XtFree when it is
done with it.

length Specifies the number of elements in value.

lonnat Specifies the size in bits of the data elements of value.

This procedure is called by the X Toolkit Intrinsics selection mechanism to deliver the
requested selection to the requestor.

Getting the Selection Value
To obtain the selection value in a single, logical unit, use XtGetSelectionValue or
XtGetSelectionValues.

void XtGetSelectionValue(w. selection. target, callback, client_data, time)
Widget w;
Atom selection;
Atom target;
XtSelectionCallbackProc callback;
caddr_t client_data;
Time time;

w Specifies the widget that is making the request.

selection Specifies the particular selection desired (that is, primary or secondary).

Specifies the type of the information that is needed about the selection. target

Utility Functions 11- 9

callback

client data

time

Specifies the callback procedure that is to be called when the selection
value has been obtained. Note that this is how the selection value is
communicated back to the client.

Specifies the argument that is to be passed to the specified procedure
when it is called.

Specifies the timestamp that indicates when the selection is desired. This
should be the timestamp of the event which triggered this request; the
value CurrentTime is not acceptable.

The XtGetSelectionValue function requests the value of the selection that has been
converted to the target type. The specified callback will be called some time after
XtGetSelectionValue is called; in fact, it may be called before or after
XtGetSelectionValue returns.

void XtGetSelectionValues(w, selection, targets, count, callback, client_data, time)
Widget w;
Atom selection;
Atom *targets;
int count;
XtSelectionCallbackProc callback;
caddr t client data;
Time time; -

w

selection

targets

count

callback

client data

time

Specifies the widget that is making the request.

Specifies the particular selection desired (that is, primary or secondary).

Specifies the types of information that is needed about the selection.

Specifies the length of the targets and client_data lists.

Specifies the callback procedure that is to be called with each selection
value obtained. Note that this is how the selection values are
communicated back to the client.

Specifies the client data (one for each target type) that is passed to the
callback procedure when it is called for that target.

Specifies the timestamp that indicates when the selection value is desired.
This should be the timestamp of the event which triggered this request;
the value CurrentTime is not acceptable.

11-10 Utility Functions

The XtGetSelectionValues function is similar to XtGetSelectionValue
except that it takes a list of target types and a list of client data and obtains the current
value of the selection converted to each of the targets. The effect is as if each target were
specified in a separate call to XtGetSelectionValue. The callback is called once
with the corresponding client data for each target. XtGetSelectionValues does
guarantee that all the conversions will use the same selection value becaues the ownership
of the selection cannot change in the middle of the list, as would be when calling
XtGetSelectionValue repeatedly.

Setting the Selection Owner
To set the selection owner when using atomic transfers, use XtOwnSelection.

Boolean XtOwnSelection(w, selection, time, convert"'proc, lose_selection, doneyroc)
Widget w;
Atom selection;
Time time;
XtConvertSelectionProc convert "'proc;
XtLoseSelectionProc lose selection;
XtSelectionDoneProc done"'proc;

w

selection

time

convert yroc

lose selection

doneyroc

Specifies the widget that wishes to become the owner.

Specifies an atom that describes the type of the selection (for
example, XA_PRIMARY, XA_SECONDARY, or XA_CLIPBOARD).

Specifies the timestamp that indicates when the selection ownership
should commence. This should be the timestamp of the event that
triggered ownership; the value CurrentTime is not acceptable.

Specifies the procedure that is to be called whenever someone
requests the current value of the selection.

Specifies the procedure that is to be called whenever the widget has
lost selection ownership or NULL if the owner is not interested in
being called back.

Specifies the procedure that is called after the requestor has received
the selection or NULL if the owner is not interested in being called
back.

The XtOwnSelection function informs the X Toolkit Intrinsics selection mechanism
that a widget believes it owns a selection. It returns True if the widget has successfully
become the owner and False otherwise. The widget may fail to become the owner if
some other widget has asserted ownership at a time later than this widget. Note that
widgets can lose selection ownership either because someone else asserted later ownership
of the selection or because the widget voluntarily gave up ownership of the selection. Also

Utility Functions 11-11

note that the lose selection procedure is not called if the widget fails to obtain selection
ownership in the first place.

Usually, the X Toolkit Intrinsics selection mechanism informs an application when one of
its widgets has lost ownership of the selection. However, in response to some user actions
(for example, when a user deletes the information selected), the application should
explicitly inform the X Toolkit Intrinsics that it's widget no longer is to be the selection
owner by using XtDisownSelection.

void XtDisownSelection (w, selection, time)
Widget w;
Atom selection;
Time time;

w Specifies the widget that wishes to relinquish ownership.

selection Specifies the atom that specifies which selection it is giving up.

Specifies the timestamp that indicates when the selection ownership is
relinquished.

time

The XtDisownSelection function informs the X Toolkit Intrinsics selection
mechanism that the specified widget is to lose ownership of the selection. If the widget
does not currently own the selection either because it lost the selection or because it never
had the selection to begin with, XtDisownSelection does nothing.

After a widget has called XtDisownSelection, its convert procedure is not called
even if a request arrives later with a timestamp during the period that this widget owned
the selection. However, its done procedure will be called if a conversion that started
before the call to XtDisownSelection finishes after the call to
XtDisownSelection.

11.6 Merging Exposure Events into a Region

The X Toolkit Intrinsics provide the XtAddExposureToRegion utility function that
merges Expose and GraphicsExpose events into a region that clients can process at
once rather than processing individual rectangles. (For further information about regions,
see Programming with Xlib .)

To merge Expose and GraphicsExpose events into a region, use
XtAddExposureToRegion.

11 -12 Utility Functions

void XtAddExposureToRegion(event, re~on)
XEvent *event;
Region re~on;

event Specifies a pointer to the Expose or GraphicsExpose event.

region Specifies the region object (as defined in < Xll/Xutil. h ».

The XtAddExposureToRegion function computes the union of the rectangle defined
by the exposure event and the specified region. Then, it stores the results back in region.
If the event argument is not an Expose or GraphicsExpose event,
XtAddExposureToRegion returns without an error and without modifying region.

This function is used by the exposure compression mechanism (see Section 7.9.3).

11.7 Translating Widget Coordinates

To translate an x-y coordinate pair from widget coordinates to root coordinates, use
XtTranslateCoords.

void XtTranslateCoords (w, x, y, rootx return, rooty Jeturn)
Widget w; -

w

x
y

Position x, y;
Posi tion *rootx Jeturn, *rooty Jeturn;

Specifies the widget.

Specify the widget-relative x and y coordinates.

roolX return
rooty ..!etum Returns the root-relative x and y coordinates.

While XtTranslateCoords is similar to the Xlib XTranslateCoordinates
function, it does not generate a server request because all the required information already
is in the widget's data structures.

11.8 Translating a Window to a Widget

To translate a window and display pointer into a widget instance, use
XtWindowToWidget.

Widget XtWindowToWidget (display, window)
Display *display;
Window window;

Utility Functions 11-13

display

window

Specifies the display on which the window is defined.

Specify the window for which you want the widget.

11.9 Handling Errors
The X Toolkit Intrinsics let a client register procedures that are to be called whenever a
fatal or nonfatal error occurs. These facilities are intended for both error reporting and
logging and for error correction or recovery.

Two levels of interface are provided:

• A high-level interface that takes an error name and class and looks the error up in an
error resource database

• A low-level interface that takes a simple string

The high-level functions construct a string to pass to the lower-level interface. The error
database usually is /usr/lib/Xll/XtErrorDB.

NOTE

The application context specific error handling in not implemented
on many systems. Most implementations will have just one set of
error handlers. If they are set for different application contexts, the
one performed last will prevail.

To obtain the error database (for example, to merge with an application or widget specific
database), use XtAppGetErrorDatabase.

XrmDatabase *XtAppGetErrorDatabase(app conteu)
XtAppContext app _conteu; -

app _context Specifies the application context.

The XtAppGetErrorDatabase function returns the address of the error database.
The X Toolkit Intrinsics do a lazy binding of the error database and do not merge in the
database file until the first call to XtAppGetErrorDatbaseText.

For a complete listing of all errors and warnings that can be generated by the X Toolkit
Intrinsics , see Appendix D.

11-14 Utility Functions

The high-level error and warning handler procedure pointers are of the type
XtErrorMsgHandler:

typedef void (*XtErrorMsgHandler) (String, String, String, String, String *, Cardinal *);
String name;
String type;
String class;
String defaultp;
String *params;
Cardinal *num yarams ;

name

type

class

Specifies the name that is concatenated with the specified type to form the
resource name of the error message.

Specifies the type that is concatenated with the name to form the resource
name of the error message.

Specifies the resource class of the error message.

defaultp Specifies the default message to use if no error database entry is found.

Specifies a pointer to a list of values to be substituted in the message. params

num yarams Specifies the number of values in the parameter list.

The specified name can be a general kind of error, like invalidParameters or
invalidWindow, and the specified type gives extra information. Standard printf
notation is used to substitute the parameters into the message.

An error message handler can obtain the error database text for an error or a warning by
calling XtAppGetErrorDatabaseText.

void XtAppGetErrorDatabaseText (app context, name, type, class, default, buffer ..!eturn, nbytes, database)
XtAp"context app _context; -
char *name, *type, *class;
char *default;
char *buJfer return;
int nbytes; -
XrmDatabase database;

app _context Specifies the application context.

name
type

class

Specifies the name and type that are concatenated to form the resource
name of the error message.

Specifies the resource class of the error message.

Utility Functions 11-15

default

buffer ..!eturn

nbytes

database

Specifies the default message to use if an error database entry is not
found.

Specifies the buffer into which the error message is to be returned.

Specifies the size of the buffer in bytes.

Specifies the name of the alternative database that is to be used or
NULL if the application's database is to be used.

The XtAppGetErrorDatabaseText returns the appropriate message from the error
database or returns the specified default message if one is not found in the error database.

To register a procedure to be called on fatal error conditions, use
XtAppSetErrorMsgHandler.

void XtAppSetErrorMsgHandlerCapp cont~, nlig_handler)
XtAppContext app context; -
XtErrorMsgHandle~ msg_handler;

app _context Specifies the application context.

msg_ handler Specifies the new fatal error procedure, which should not return.

The default error handler provided by the X Toolkit Intrinsics constructs a string from the
error resource database and calls XtError. Fatal error message handlers should not
return. If one does, subsequent X Toolkit behavior is undefined.

To call the high-level error handler, use XtAppErrorMsg.

void XtAppErrorMsg Capp context I name I type I class I default I params I num yarams)
XtAppContext app context;
String name; -
String type;
String class;
String default;
String *paranli;
Cardinal *num yarams;

name

type

class

default

Specifies the application context.

Specifies the general kind of error.

Specifies the detailed name of the error.

Specifies the resource class.

Specifies the default message to use if an error database entry is not
found.

11-16 Utility Functions

params Specifies a pointer to a list of values to be stored in the message.

num yarams Specifies the number of values in the parameter list.

The X Toolkit Intrinsics internal errors all have class XtToolkitError.

To register a procedure to be called on nonfatal error conditions, use
XtAppSetWarningMsgHandler.

void XtAppSetWarningMsgHandler(~p cont~, ~g_handler)
XtAppContext ~p cont~; -
XtErrorMsgHandler ~g_handler;

app _context Specifies the application context.

msg_ handler Specifies the new nonfatal error procedure, which usually returns.

The default warning handler provided by the X Toolkit Intrinsics constructs a string from
the error resource database and calls XtWarning.

To call the installed high-level warning handler, use XtAppWarningMsg.

void XtAppWarningMsg (~p cont~ I name I type I class I default I params I num yarams)
XtAppContext ~p_context;
String name;
String type;
String class;
String default;
String *params;
Cardinal *num yarams;

app _context

name

type

class

default

params

Specifies the application context.

Specifies the general kind of error.

Specifies the detailed name of the error.

Specifies the resource class.

Specifies the default message to use if an error database entry is not
found.

Specifies a pointer to a list of values to be stored in the message.

num yarams Specifies the number of values in the parameter list.

The X Toolkit Intrinsics internal warninings all have class XtToolki tError.

Utility Functions 11-17

The low-level error and warning handler procedure pointers are of type
XtErrorHandler:

typedef void (*XtErrorHandler)(String);
String message;

message Specifies the error message.

The error handler should display the message string in some appropriate fashion.

To register a procedure to be called on fatal error conditions, use
XtAppSetErrorHandler.

void XtAppSetErrorHandler (app _context, handler)
XtAppContext app cont~;
XtErrorHandler handler;

app _context

handler

Specifies the application context.

Specifies the new fatal error procedure, which should not return.

The default error handler provided by the X Toolkit Intrinsics is _XtError. It prints
the message to standard error and terminates the application. Fatal error message
handlers should not return. If one does, subsequent X Toolkit behavior is undefined.

To call the installed fatal error procedure, use XtAppError.

void XtAppError (app cont~, message)
XtAppContext 'Opp cont~;
String message; -

app _context Specifies the application context.

message Specifies the message that is to be reported.

Most programs should use XtAppErrorMsg, not XtAppError, to provide for
customization and internationalization of error messages.

To register a procedure to be called on nonfatal error conditions, use
XtAppSetWarningHandler.

void XtAppSetWarningHandler (app cont~, handler)
XtAppContext app cont~; -
XtErrorHandler handler;

app _context Specifies the application context.

11-18 Utility Functions

handler Specifies the new nonfatal error procedure, which usually returns.

The default warning handler provided by the X Toolkit Intrinsics is _XtWarning. It
prints the message to standard error and returns to the caller.

To call the installed nonfatal error procedure, use XtAppWarning.

void XtAppWarning (app context, message)
XtAppContext app context;
String message; -

Specifies the application context.

message Specifies the nonfatal error message that is to be reported.

Most programs should use XtAppWarningMsg, not XtAppWarning, to provide for
customization and internationalization of warning messages.

Utility Functions 11-19

Resource File Format A
A resource file contains text representing the default resource values for an application or
set of applications. The resource file is an ASCII text file that consists of a number of
lines with the following EBNF syntax:

resourcefile
line
comment
production
resourcename
string
name

= {line "\ \n"}.
= (comment I production).
= "!" string.
= resourcename ":" string.
= ["*"] name {("." I "*") name}.
= {< any character not including eol> }.
= {"A"-"Z" I "a"-"z" I "O"-"9"}.

If the last character on a line is a backslash (\), that line is assumed to continue on the next
line.

To include a newline character in a string, use "\n".

Resource File Format A -1

Translation Table Syntax

B.1 Notation
Syntax is specified in EBNF notation with the following conventions:

[a] Means either nothing or "a"
{ a } Means zero or more occurrences of "a"

All terminals are enclosed in double quotation masks (" "). Informal descriptions are
enclosed in angle brackets « ».

B.2 Syntax
The syntax of the translation table file is:

B

Translation Table Syntax B -1

translationTable
directive
production
lhs
keyseq
keychar
event
modifier list
modifier-
count
modifier name
event type
detail-
rhs
name
namechar
params
string
quoted_string
unquoted _ string

= [directive] { production }
= ("#replace" 1 "#override" 1 "#augment") "\ \n"
= lhs ":" rhs "\ \n"
= (event 1 keyseq) { "," (event 1 keyseq) }
= '''''' keychar {keychar} """
= ["A" 1 "$" 1 "\ \"] < ISO Latin 1 character>
= [modifier_list] II < II event _ type" > II [II (" count[" + "] ")"] {detail}
= (["!" 1 ":"] {modifier}) 1 "None"
= ["-"] modifier name
= ("1" 1 "2" 1 "3"1 "4" 1 ...)
= "@" <keysym> 1 <see ModifierNames table below>
= < see Event Types table below>
= < event specific details>
= { name "(" [params] ")" }
= namechar { namechar }
= { "ali-liz" 1 "A"-"Z" 1 "0"-"9" 1 "$" 1 " II }

= string {"," string}. -
= quoted string 1 unquoted string
= """ { <Latin 1 character> filII"
= {<Latin 1 character except space, tab, ",", newline, ")"> }

It is often convenient to include newlines in a translation table to make it more readable.
In C, indicate a newline with a "\n":

"<BtnlDown>: DoSomething()\n\
<Btn2Down>: DoSomethingElse()"

8.3 Modifier Names
The modifier field is used to specify normal X keyboard and button modifier mask bits.
Modifiers are legal on event types KeyPress, KeyRelease, ButtonPress,
ButtonRelease, MotionNotify, EnterNotify, LeaveNotify, and their
abbreviations. An error is generated when a translation table that contains modifiers for
any other events is parsed .

• If the modifier Jist has no entries and is not "None", it means "don't care" on all
modifiers.

• If an exclamation point (!) is specified at the beginning of the modifier list, it means
that the listed modifiers must be in the correct state and no other modifiers can be
asserted.

B-2 Translation Table Syntax

• If any modifiers are specified and an exclamation point (!) is not specified, it means
that the listed modifiers must be in the correct state and "don't care" about any
other modifiers.

• If a modifier is preceded by a tilde C), it means that that modifier must not be
asserted.

• If "None" is specified, it means no modifiers can be asserted.

• If a colon (:) is specified at the beginning of the modifier list, it directs the X Toolkit
Intrinsics to apply any standard modifiers in the event to map the event keycode into
a keysym. The default standard modifiers are Shift and Lock, with the interpretation
as defined in X "Window System Protocol, X Version 11. The resulting keysym must
exactly match the specified keysym, and the nonstandard modifiers in the event must
match the modifier list. For example, ": < Key> a" is distinct from ": < Key> A", and
":Shift<Key>A" is-distinct from ":<Key>A".

• If a colon (:) is not specified, no standard modifiers are applied. Then, for example,
"<Key>A" and "<Key>a" are equivalent.

In key sequences, a circumflex (") is an abbreviation for the Control modifier, a dollar sign
($) is an abbreviation for Meta, and a backslash (\) can be used to quote any character, in
particular a double quote ("), a circumflex ("), a dollar sign ($), and another backslash (\).
Briefly:

No Modifiers: None <event> detail
Any Modifiers: <event> detail
Only these Modifiers: ! modl mod2 <event> detail
These modifiers and any others:modl mod2 <event> detail

The use of "None" for a modifier list is identical to the use of and exclamation point with
no modifers. -

Translation Table Syntax B-3

Modifier Abbreviation Meaning

Ctrl c Control modifier bit
Shift s Shift modifier bit
Lock I Lock modifier bit
Meta m Meta key modifier (see below)
Hyper h Hyper key modifier (see below)
Super su Super key modifier (see below)
Alt a Alt key modifier (see below)
Mod1 Mod1 modifier bit
Mod2 Mod2 modifier bit
Mod3 Mod3 modifier bit
Mod4 Mod4 modifier bit
ModS ModS modifier bit
Button1 Button1 modifier bit
Button2 Button2 modifier bit
Button3 Button3 modifier bit
Button4 Button4 modifier bit
ButtonS ButtonS modifier bit
ANY Any combination

A key modifier is any modifier bit whose corresponding keycode contains the
corresponding left or right keysym. For example, "m" or "Meta" means any modifier bit
mapping to a keycode whose keysym list contains XK _Meta _ L or XK _ Meta _ R. Note that
this interpretation is for each display, not global or even for each application context. The
Control, Shift, and Lock modifier names refer explicitly to the corresponding modifier bits;
there is no additional interpretation of keysyms for these modifiers.

Because it is possible to associate arbitrary keysyms with modifiers, the set of modifier key
modifiers is extensible. The "@" < keysym > syntax means any modifier bit whose
corresponding keycode contains the specified keysym.

A modifier list/keysym combination in a translation matches a modifiers/keycode
combinatio'ii in an event in the following:

1. If a colon (:) is used, the X Toolkit Intrinsics call the display's XtKeyProc with
the keycode and modifiers. To match, (modifiers & -modifiers_return) must equal
modifier_list, and keysym _return must equal the given keysym.

B -4 Translation Table Syntax

2. If (:) is not used, the X Toolkit Intrinsics mask off all don't -care bits from the
modifiers. This value must be equal to modifier list. Then, for each possible
combination of don't -care modifiers in the modifier list, the X Toolkit Intrinsics call
the display's XtKeyProc with the keycode and that combination ORed with the
cared-about modifier bits from the event. Keysym return must match the keysym in
the translation. -

8.4 Event Types
The EventType field describes XEvent types. The following are the currently defined
EventType values:

Translation Table Syntax B -5

Type Meaning

Key KeyPress
KeyDown
KeyUp KeyRelease
BtnDown ButtonPress
BtnUp ButtonRelease
Motion MotionNotify
PtrMoved
MouseMoved
Enter EnterNotify
EnterWindow
Leave LeaveNotify
Leave'Vindow
Focusln FocusIn
FocusOut FocusOut
Keymap KeymapNotify
Expose Expose
GrExp GraphicsExpose
NoExp NoExpose
Visible VisihilityNotify
Create CreateNotify
Destroy DestroyNotify
Unmap UnmapNotify
Map MapNotify
MapReq MapRequest
Reparent ReparentNotify
Configure ConfigureNotify
ConfigureReq ConfigureRequest
Grav GravityNotify
ResReq ResizeRequest
Circ CirculateNotify
CircReq CirculateRequest
Prop PropertyNotify
SelClr SelectionClear
SelReq SelectionRequest
Select SelectionNotify
Clrmap ColormapNotify
Message ClientMessage
Mapping MappingNotify

B -6 Translation Table Syntax

The supported abbreviations are:

Abbreviation

Ctrl
Meta
Shift
Btn1Down
Btn1Up
Btn2Down
Btn2Up
Btn3Down
Btn3Up
Btn4Down
Btn4Up
BtnSDown
BtnSUp
BtnMotion
Btn1Motion
Btn2Motion
Btn3Motion
Btn4Motion
BtnSMotion

Meaning

KeyPress with control modifier
KeyPress with meta modifier
KeyPress with shift modifier
ButtonPress with Btn1 detail
ButtonRelease with Btn1 detail
ButtonPress with Btn2 detail
ButtonRelease with Btn2 detail
ButtonPress with Btn3 detail
ButtonRelease with Btn3 detail
ButtonPress with Btn4 detail
ButtonRelease with Btn4 detail
ButtonPress with BtnS detail
ButtonRelease with BtnS detail
MotionNotify with any button modifier
MotionNotify with Button1 modifier
MotionNotify with Button2 modifier
MotionNotify with Button3 modifier
MotionNotify with Button4 modifier
MotionNotify with ButtonS modifier

The Detail field is event specific and normally corresponds to the detail field of an X
Event, for example, <Key>A. If no detail field is specified, then ANY is assumed.

A keysym can be specified as any of the standard keysym names, a hexadecimal number
prefixed with "Ox" or "OX", an octal number prefixed with "0" or a decimal number. A
keysym expressed as a single digit is interpreted as the corresponding Latin 1 keysym, for
example, "0" is the keysym XK o. Other single character keysyms are treated as literal
constants from Latin 1, for exa';;'ple, "!" is treated as Ox21.

Standard keysym names are as defined in < Xll/keysymdef . h > with the "XK _" prefix
removed. For example, "!" is XK exclam" with a value of 0x021. To reference the "!"
keysym, use "exclam." -

Translation Table Syntax B -7

8.5 Canonical Representation
Every translation table has a unique, canonical text representation. This representation is
passed to a widget's display_accelerator method to describe the accelerators
installed on that widget. The canonical representation of a translation table file is (see also
"Syntax") :

translationTable
production
lhs
event
modifier list
modifier-
count
modifier name
event type
detair
rhs
name
namechar
params
string
quoted_string

= { production }
= lhs ":" rhs "\ \n"
= event { "," event }
= [modifier list] II <"event type">" ["(" count["+"] ")"] {detail}
= ["!" 1 ":") [modifier} -
= ["-") modifier name
= ("1" 1 "2" 1 "3';-1 "4" 1 ••.)
= "@" <keysym> 1 <see canonical modifier names below>
= < see canonical event types below>
= < event specific details>
= { name "(" [params) ")" }
= namechar { namechar }
= { "a"_"z" I"A"-"Z" 1 "0"-"9" 1 "$" 1 II II }

= string {"," string}. -
= quoted string
= 111111 { < L~tin 1 character> } 111111

The canonical modifier names are:

Ctrl Button!
Shift Button2
Lock Button3
Mod! Button4
Mod2 Button5
Mod3
Mod4
Mod5

The canonical event types are:

B - 8 Translation Table Syntax

KeyPress
ButtonPress
M~tionNotify
LeaveNotify
FocusOut
Expose
NoExpose
CreateNotify
UnmapNotify
MapRequest
ConfigureNotify
GravityNotify
CirculateNotify
PropertyNotify
SelectionRequest
ColormapNotify

B.6 Examples

KeyRelease
ButtonRelease
EnterNotify
Focusln
KeymapNotify
GraphicsExpose,
VisibilityNotify
DestroyNotify
MapNotify
ReparentNotify
ConfigureRequest
ResizeRequest
CirculateRequest
SelectionClear
SelectionNotify
ClientMessage

• Always put more specific events in the table before more general ones:

Shift <BtnlDown> : twas()\n\
<BtnlDown> : brillig()

• For double-click on Button 1 Up with Shift, use this specification:

Shift<BtnlUp>(2) : and()

This is equivalent to the following line with appropriate timers set between events:

Shift<BtnlDown>,Shift<BtnlUp>,Shift<BtnlDown>,Shift<BtnlUp> : and()

• For double-click on Button 1 Down with Shift, use this specification:

Shift<BtnlDown> (2) : thee)

This is equivalent to the following line with appropriate timers set between events:

Translation Table Syntax B - 9

Shift<BtnlDown>,Shift<BtnlUp>,Shift<BtnlDown> : thee)

• Mouse motion is always discarded when it occurs between events in a table where no
motion event is specified:

<BtnlDown>,<BtnlUp> : slithy()

This is taken, even if the pointer moves a bit between the down and up events.
Similarly, any motion event specified in a translation matches any number of motion
events. If the motion event causes an action procedure to be invoked, the procedure
is invoked after each motion event.

• If an event sequence consists of a sequence of events that is also a non-initial
subsequence of another translation, it is not taken if it occurs in the context of the
longer sequence. This occurs mostly in sequences like the following:

<BtnlDown>,<BtnlUp> : toves()\n\
<BtnlUp>: did()

The second translation is taken only if the button release is not preceded by a button
press or if there are intervening events between the press and the release. Be
particularly aware of this when using the repeat notation, above, with buttons and
keys because their expansion includes additional events, and when specifying motion
events because they are implicitly included between any two other events. In
particular, pointer motion and double-click translations cannot coexist in the same
translation table.

• For single click on Button 1 Up with Shift and Meta, use this specification:

Shift Meta <BtnlDown>, Shift Meta<BtnlUp>: gyre()

• You can use a plus sign (+) to indicate "for any number of clicks greater than or
equal to count"; for example:

Shift <BtnlUp>(2+) : and()

• To indicate EnterNotify with any modifiers, use this specification:

<Enter> : gimble()

• To indicate EnterNotify with no modifiers, use this specification:

B -10 Translation Table Syntax

None <Enter> : inC)

• To indicate EnterNotify with Button 1 Down and Button 2 Up and don't care
about the other modifiers, use this specification:

Buttonl -Button2 <Enter> : thee)

• To indicate EnterNotify with Button1 Down and Button2 Down exclusively, use
this specification:

! Buttonl Button2 <Enter> : wabe()

You do not need to use a tilde C) with an exclamation point (!).

Translation Table Syntax B -11

Conversion Notes c
In the X Version 10 and alpha release X Version 11 X Toolkit each widget class
implemented an Xt< Widget> Create (for example, XtLabelCreate) function, in which
most of the code was identical from widget to widget. In this X Toolkit, a single generic
XtCreateWidget performs most of the common work and then calls the initialize
procedure implemented for the particular widget class.

Each composite widget class also implemented the procedures Xt < Widget> Add and an
Xt< Widget> Delete (for example, XtButtonBoxAddButton and
XtButtonBoxDeleteButton). In the beta release X Version 11 X Toolkit, the
composite generic procedures XtManageChildren and XtUnmanageChildren
perform error-checking and screening out of certain children. Then, they call the
change managed procedure implemented for the widget's composite class. If the widget's
parent has not yet been realized, the call on the change managed procedure is delayed
until realization time. -

Old style calls can be implemented in the X Toolkit by defining one-line procedures or
macros that invoke a generic routine. For example, you could define the macro
XtCreateLabel as:

1!define XtCreateLabel (name I parent I args I num args) \
((LabelWidget) XtCreateWidget (name I -labelWidgetClass I parent I args I num _ args))

Pop-up shells no longer automatically perform an XtManageChild on their child within
their insert child procedure. Creators of pop-up children need to call XtManageChild
themselves~

As a convenience to people converting from earlier versions of the toolkit and for greater
orthogonality, the following routines exist: XtIni tialize, XtMainLoop,
XtNextEvent, XtProcessEvent, XtPeekEvent, XtPending, XtAddInput,
XtAddTirneOut, XtAddWorkProc,and XtCreateApplicationShell.

Conversion Notes C -1

Widget XtInitialize(shell name, application class, options, num_options, orge, Q18V)
String shell name; - -
String applkation _class;
XrmOptionDescRec options [] ;
Cardinal num options;
Cardinal *argC;
String Q18V [] ;

shell name

application _class

options

num _options

argc

argv

This parameter is ignored; therefore, you can specify NULL.

Specifies the class name of this application.

Specifies how to parse the command line for any application
specific resources. The options argument is passed as a parameter
to XrmParseCommand. For further information, see
Programming with Xlib .

Specifies the number of entries in options list.

Specifies a pointer to the number of command line parameters.

Specifies the command line parameters.

Xtlni tialize calls XtToolki tlni tialize to initialize the toolkit internals,
creates a default application context for use by the other convenience routines, then calls
XtOpenDisplay with a display string of NULL and an application name of NULL, and
finally calls XtAppCreateShel1 with an application name of NULL and returns the
created shell. The semantics of calling Xtlni tializ-e more than once are undefined.
See XtCreateApplicationContext, XtDisplaylnitialize,and
XtAppCreateShell for more information.

void XtMainLoop()

XtMainLoop first reads the next incoming file, timer, or X event by calling
XtNextEvent. Then, it dispatches this to the appropriate registered procedure by
calling XtDispatchEvent. This can be used as the main loop of X Toolkit
applications, and, as such, it does not return. Applications are expected to exit in response
to some user action. This routine has been replaced by XtAppMainLoop.

There is nothing special about XtMainLoop. It is simply an infinite loop that calls
XtNextEventthen XtDispatchEvent.

void XtNextEvent (event return)
XEvent *eventJetiirn;

event return Returns the event information to the specified event structure.

c -2 Conversion Notes

If no input is on the X input queue for the default application context, XtNextEvent
flushes the X output buffer and waits for an event while looking at the other input sources
and timeout values and calling any callback procedures triggered by them. This routine
has been replaced by XtAppNextEvent. Xtlnitialize must be called before
using this routine.

void XtProcessEvent(mask)
XtlnputMask mask;

mask Specifies the type of input to process.

XtProcessEvent processes one input event, timeout, or alternate input source
(depending on the value of mask), waiting if necessary. It has been replaced by
XtAppProcessEvent. Xtlni tialize must be called before using this function.

Boolean XtPeekEvent (event return)
XEvent *event Jeturn ;-

event return Returns the event information to the specified event structure.

If there is an event in the queue for the default application context, XtPeekEvent fills
in the event and returns a non-zero value. If no X input is on the queue, XtPeekEvent
flushes the output buffer and blocks until input is available, possibly calling some timeout
callbacks in the process. If the input is an event, XtPeekEvent fills in the event and
returns a non-zero value. Otherwise, the input is for an alternate input source, and
XtPeekEvent returns zero. This routine has been replaced by XtAppPeekEvent.
Xtlni tialize must be called before using this routine.

Boolean XtPending()

The XtPending returns a nonzero value if there are events pending from the X server
or other input sources in the default application context. If there are no events pending, it
flushes the output buffer and returns a zero value. It has been replaced by
XtAppPending. Xtlni tialize must be called before using this routine.

Xtlnputld XtAddlnput (source, condition, proc, client_data)
int source;
c addr _ t condition;
XtInputCallbackProc proc;
c addr _ t client_data;

Conversio)l Notes C-3

source

condition

proc

client data

Specifies the source file descriptor on an operating system dependent
device specification.

Specifies the mask that indicates either a read, write, or exception
condition or some operating system dependent condition.

Specifies the procedure that is called when input is available.

Specifies the parameter to be passed to proc when input is available.

The XtAddlnput function registers with the X Toolkit default application context a new
source of events, which is usually file input but can also be file output. (The word "file"
should be loosely interpreted to mean any sink or source of data.) XtAddlnput also
specifies the conditions under which the source can generate events. When input is
pending on this source in the default application context, the callback procedure is called.
This routine has been replaced by XtAppAddlnput. Xtlnitialize must be called
before using this routine.

XtlntervalId XtAddTimeOut (imelVal, proc, client_data)
unsigned long intetval;
XtTimerCallbackProc proc;
c addr _ t client_data;

interval

proc

client data

Specifies the time interval in milliseconds.

Specifies the procedure to be called when time expires.

Specifies the parameter to be passed to proc when it is called.

The XtAddTimeOut function creates a timeout in the default application context and
returns an identifier for it. The timeout value is set to interval. The callback procedure
will be called after the time interval elapses, after which the timeout is removed. This
routine has been replaced by XtAppAddTimeOut. Xtlni tialize must be called
before using this routine.

XtWorkProcld XtAddWorkProc (proc, closure)
XtWorkProc proc;
Opaque closure;

proc

closure

Procedure to call to do the work.

Client data to pass to proc when it is called.

This routine registers a work proc in the default application context. It has been replaced
by XtAppAddWorkProc. Xtlni tialize must be called before using this routine.

c -4 Conversion Notes

Widget XtCreateApplicationShell(name, widget_class, args, num_args)
String name;
WidgetClass widget class;
ArgList args; -
Cardinal num _ args ;

name This parameter is ignored; therefore, you can specify NULL.

Specifies the widget class pointer for the created application shell
widget. This will usually be topLevelShellWidgetClass or a
subclass thereof.

args Specifies the argument list to override the resource defaults.

num _args Specifies the number of arguments in args.

XtCreateApplicationShel1 calls XtAppCreateShell with an application name
of NULL, the application class passed to XtIni tialize and the default application
context created by XtInf tialize. This routine has been replaced by
XtAppCreateShell.

To register a new converter, use the procedure XtAddConverter.

void XtAddConverter (from type, to _type, converter, convert _ args, num _ args)
String from type; -
String to type;
XtConverter converter;
XtConvertArgList convert args;
Cardinal num _ args ; -

JromJype

to_type

converter

Specifies the source type.

Specifies the destination type.

Specifies the type converter procedure.

Specifies how to compute the additional arguments to the converter or
NULL.

num _ args Specifies the number of additional arguments to the converter or zero.

For the few type converters that need additional arguments, the X Toolkit Intrinsics
conversion mechanism provides a method of specifying how these arguments should be
computed. The enumerated type XtAddressMode and the structure
XtConvertArgRec specify how each argument is derived. These are defined in
< XII/Convert. h >.

typedef enum {

Conversion Notes C -5

1* address mode parameter representation */
XtAddress, /* address */
XtBaseOffset, /* offset */
Xtlmmediate, /* constant */
XtResourceString,
XtResourceQuark

/* resource name string */
/* resource name quark */

} XtAddressMode;

typedef struct {
XtAddressMode address_mode;
caddr_t address_id;
Cardinal size;

} XtConvertArgRec, *XtConvertArgList;

The address mode field specifies how the address id field should be interpreted.
XtAddres; causes address id to be interpreted;s the address of the data.
XtBaseOffset causes address id to be interpreted as the offset from the widget base.
Xtlmmediate causes address id to be interpreted as a constant.
XtResourceString causes ;ddress id to be interpreted as the name of a resource that
is to be converted into an offset from Widget base. XtResourceQuark is an internal
compiled form of an XtResourceString. The size field specifies the length of the
data in bytes.

The following provides the code that was used to register the CvtStringToPixel routine
shown earlier:

static XtConvertArgRec colorConvertArgs[] = {

} ;

{XtBaseOffset, (caddr_t) XtOffset(Widget, core.screen), sizeof(Screen *)},
{XtBaseOffset, (caddr_t) XtOffset(Widget, core.colormap),sizeof(Colormap)}

XtAddConverter(XtRString, XtRPixel, CvtStringToPixel,
colorConvertArgs, XtNumber(colorConvertArgs»;

The conversion argument descriptors colorConvertArgs and screenConvertArg are
predefined. The screenConvertArg descriptor puts the widget's screen field into args[O].
The colorConvertArgs descriptor puts the widget's screen field into args[O], and the
widget's colormap field into args[l].

Conversion routines should not just put a descriptor for the address of the base of the
widget into args[O], and use that in the routine. They should pass in the actual values that
the conversion depends on. By keeping the dependencies of the conversion procedure
specific, it is more likely that subsequent conversions will find what they need in the
conversion cache. This way the cache is smaller and has fewer and more widely applicable
entries.

To deallocate a shared GC when it is no longer needed, use XtDestroyGC.

C - 6 Conversion Notes

void XtDestroyGC(w, gc)
Widget w;
GC gc;

w Specifies the widget.

gc Specifies the GC to be deallocated.

References to sharable GCs are counted and a free request is generated to the server
when the last user of a given GC destroys it. Note that some earlier versions of
XtDestroyGC had only a gc argument. Therefore, this function is not very portable, and
you are encouraged to use XtReleaseGC instead.

To declare an action table and register it with the translation manager, use
X tAddAc t ions.

void XtAddActions (actions, num actions)
XtActionList actions; -
Cardinal num _actions ;

actions Specifies the action table to register.

num _ args Specifies the number of entries in this action table.

If more than one action is registered with the same name, the most recently registered
action is used. If duplicate actions exist in an action table, the first is used. The X Toolkit
Intrinsics register an action table for MenuPopup and MenuPopdown as part of X
Toolkit initialization.

To set the X Toolkit Intrinsics selection timeout, use XtSetSelectionTimeout.

void XtSetSelectionTimeout (timeout)
unsigned long timeout;

timeout Specifies the selection timeout in milliseconds.

To get the current selection timeout value, use XtGetSelectionTimeout.

unsigned long XtGetSelectionTimeout()

Conversion Notes C-7

The selection timeout is the time within which the two communicating applications must
respond to one another. If one of them does not respond within this interval, the X Toolkit
Intrinsics aborts the selection request. The default value of the selection timeout is five
seconds.

To obtain the error database (for example, to merge with an application or widget specific
database), use XtGetErrorDatabase.

XrmDatabase *XtGetErrorDatabase()

The XtGetErrorDatabase function returns tha address of the error database. The X
Toolkit Intrinsics do a lazy binding of the error database and do not merge in the database
file until the first call to XtGetErrorDatbaseText.

For a complete listing of all errors and warnings that can be generated by the X Toolkit
Intrinsics, see Appendix D.

An error message handler can obtain the error database text for an error or a warning by
calling XtGetErrorDatabaseText.

void XtGetErrorDatabaseText (name, type, class, default, buffer Jeturn, nbytes)
char *name, *type, *class;

name
type

class

default

char *default;
char *buffer return;
int nbytes; -

Specifies the name and type that are concatenated to form the resource
name of the error message.

Specifies the resource class of the error message.

Specifies the default message to use if an error database entry is not
found.

buffer ...!etum

nbytes

Specifies the buffer into which the error message is to be returned.

Specifies the size of the buffer in bytes.

The XtGetErrorDatabaseText returns the appropriate message from the error
database or returns the specified default message if one is not found in the error database.

To register a procedure to be called on fatal error conditions, use
XtSetErrorMsgHandler.

C - 8 Conversion Notes

void XtSetErrorMsgHandler (msg handler)
XtErrorMsgHandler msg_handler;

Specifies the new fatal error procedure, which should not return.

The default error handler provided by the X Toolkit Intrinsics constructs a string from the
error resource database and calls XtError. Fatal error message handlers should not
return. If one does, subsequent X Toolkit behavior is undefined.

To call the high-level error handler, use XtErrorMsg.

void XtErrorMsg (name, type, class, default, params, num yarams)
String name;
String type;
String class;
String default;
String *params;
Cardinal *num yarams ;

name

type

class

Specifies the general kind of error.

Specifies the detailed name of the error.

Specifies the resource class.

default

params

Specifies the default message to use if an error database entry is not found.

Specifies a pointer to a list of values to be stored in the message.

num yarams Specifies the number of values in the parameter list.

The X Toolkit Intrinsics internal errors all have class XtToo lki tError.

To register a procedure to be called on nonfatal error conditions, use
XtSetWarningMsgHandler.

void XtSetWarningMsgHandler (msg handler)
XtErrorMsgHandler msg_handler;

Specifies the new nonfatal error procedure, which usually returns.

The default warning handler provided by the X Toolkit Intrinsics constructs a string from
the error resource database and calls XtWarning.

To call the installed high-level warning handler, use XtWarningMsg.

Conversion Notes C - 9

void XtWarningMsg (name, type, class, de/CUllt, params, num "params)
String name;
String type;
String class;
String de/CUllt;
Str ing *params;
Cardinal *num "params ;

name

type

class

default

params

Specifies the general kind of error.

Specifies the detailed name of the error.

Specifies the resource class.

Specifies the default message to use if an error database entry is not found.

Specifies a pointer to a list of values to be stored in the message.

num yarams Specifies the number of values in the parameter list.

The X Toolkit Intrinsics internal warninings all have class XtToolki tError.

To register a procedure to be called on fatal error conditions, use
XtSetErrorHandler.

void XtSetErrorHandler(handler)
XtErrorHandler handler;

handler Specifies the new fatal error procedure, which should not return.

The default error handler provided by the X Toolkit Intrinsics is _XtError. It prints
the message to standard error and terminates the application. Fatal error message
handlers should not return. If one does, subsequent X Toolkit behavior is undefined.

To call the installed fatal error procedure, use XtError.

void XtError (message)
String message;

message Specifies the message that is to be reported.

Most programs should use XtErrorMsg, not XtError, to provide for customization
and internationalization of error messages.

To register a procedure to be called on nonfatal error conditions, use
XtSetWarningHandler.

C -10 Conversion Notes

void XtSetWarningHandler(handla)
XtErrorHandler handla;

handler Specifies the new nonfatal error procedure, which usually returns.

The default warning handler provided by the X Toolkit Intrinsics is _XtWarning. It
prints the message to standard error and returns to the caller.

To call the installed nonfatal error procedure, use XtWarning.

void XtWarning (message)
String message;

message Specifies the nonfatal error message that is to be reported.

Most programs should use XtWarningMsg, not XtWarning, to provide for
customization and internationalization of warning messages.

Conversion Notes C -11

Standard Errors and Warnings D
All X Toolkit errors and warnings have class XtToolkitError. The following two
tables summarize all of the errors and warnings that can be generated by the X Toolkit.

Name

allocError
allocError
allocError
communicationError
internalError

invalidArgCount

invalidArgCount

invalidClass

invalid Class

invalidClass

invalid Class

invalidClass

invalidClass

invalidDimension

invalidDimension

Errors

Type

calloc
malloc
realloc
select
shell

xtGetValues

xtSetValues

constraintSet Value

xtAppCreateShell

xtCreatePopupShell

xtCreate Widget

xtPopdown

xtPopup

xtCreateWindow

shellRealize

Default Message

Cannot perform calloc
Cannot perform malloc
Cannot perform realloc
Select failed
Shell's window manager interaction
is broken
Argument count > 0 on NULL
argument list in XtGetValues
Argument count > 0 on NULL
argument list in XtSetValues
Subclass of Constraint required in
CallConstraintSet Values
XtAppCreateShell requires non
NULL widget class
XtCreatePopupShell requires non
NULL widget class
XtCreateWidget requires non
NULL widget class
XtPopdown requires a subclass of
shellWidgetClass
XtPopup requires a subclass of
shellWidgetClass
Widget %s has zero width and/or
height
Shell widget %s has zero width
and/or height

Standard Errors and Warnings D -1

invalidDisplay xtInitialize
invalidGeometryManagerxtMakeGeometryRequest

invalidParameter

invalidParameter

invalidParameters

invalidParameters

invalidParent

invalidParent

invalidParent

invalidParent

invalidParent

invalidParent

invalidParent

invalidPopup
invalidPopup
invalidProcedure
invalidProcedure
invalidWindow
missingEvent

removePopupFromParent

xtAddInput

xtMenuPopupAction

xtmenuPopdown

realize

xtCreatePopupShell

xtCreate Widget

xtMakeGeometryRequest

xtMakeGeometryRequest

xtManageChildren

xt U nmanageChildren

xtMenuPopup
xtMenuPopup
inheritanceProc
realizeProc
eventHandler
shell

Can't Open display
XtMakeGeometryRequest - parent
has no geometry manger
RemovePopupFromParent requires
non-NULL popuplist
invalid condition passed to
XtAddInput
MenuPopup wants exactly one
argument
XtMenuPopdown called with
num yarams ! = 0 or 1
Application shell is not a windowed
widget?
XtCreatePopupShell requires non
NULL parent
XtCreate Widget requires non
NULL parent
XtMakeGeometryRequest - NULL
parent. Use SetValues instead
XtMakeGeometryRequest - parent
not composite
Attempt to manage a child when
parent is not Composite
Attempt to unman age a child when
parent is not Composite
Can't find popup in _ XtMenuPopup
Can't find popup in _ XtMenuPopup
Unresolved inheritance operation
No realize class procedure defined
Event with wrong window
Events are disappearing from under
Shell

noAppContext widgetToApplicationContextCouldn't find ancestor with display

noPerDisplay

noPerDisplay

noSelectionProperties

nullProc
subclassMismatch

closeDisplay

getPer Display

freeSelectionProperty

insert Child
xtCheckSubclass

D -2 Standard Errors and Warnings

information
Couldn't find per display
information
Couldn't find per display
information
internal error: no selection property
context for display
NULL insert child procedure
Widget class %s found when
subclass of %s expected: %s

translationError

wrongParameters

wrongParameters

wrongParameters

wrongParameters

wrongParameters

Name

ambigiousParent

ambigiousParent

communicationError
conversionError

displayError
grabError

grabError

grabError

initializationError
invalidArgCount

invalidCallbackList

invalidCallbackList

invalidCallbackList

mergingTablesWithCycles Trying to merge translation tables
with cycles, and can't resolve this
cycle.

cvtlntOrPixelToXColor Pixel to color conversion needs
screen and colormap arguments

cvtStringToCursor String to cursor conversion needs
screen argument

cvtStringToFont String to font conversion needs
screen argument

cvtStringToFontStruct String to cursor conversion needs
screen argument

cvtStringToPixel String to pixel conversion needs
screen and colormap arguments

Warnings

Type Default Message

xtManageChildren Not all children have same parent
in XtManageChildren

xtUnmanageChildren Not all children have same parent
in XtUnmanageChildren

windowManager Window Manager is confused
string Cannot convert string "%s" to type

"%s"
invalidDisplay Can't find display structure
grabDestroyCallback XtAddGrab requires exclusive grab

if spring loaded is TRUE
grabDestroyCallback XtAddGrab requires exclusive grab

if spring)oaded is TRUE
xtRemoveGrab XtRemoveGrab asked to remove a

widget not on the grab list
xtInitialize Initializing Resource Lists twice
getResources argument count > 0 on NULL

argument list
xtAddCallbacks Cannot find callback list in

XtAddCallbacks
xtCallCallback Cannot find callback list in

XtCallCallbacks
xtOverrideCallback

Standard Errors and Warnings D -3

invalidCallbackList xtRemoveAllCallback

invalidCaIlbackList xtRemoveCallbacks

invalid Child xtManageChildren

invalid Child xtUnmanageChildren

invaIidDepth setValues
invalidGeometry xtMakeGeometryRequest

invalidParameters compileAccelerators

invalidParameters compileTranslations

invalidParameters mergeTranslations

invalidParent xtCopyFromParent

invalidPopup unsupported Operation

invalidPopup unsupported Operation

invalidProcedure deleteChild

invalidProcedure inputHandler

invalidProcedure set values almost - -
invalidResourceCount getResources

invalidResourceName computeArgs

invalidShell xtTranslateCoords
invalidSizeOverride xtDependencies

invalidTypeOverride xtDependencies

invalidWidget removePopupFromParent

D -4 Standard Errors and Warnings

Cannot find callback list in
XtOverrideCallbacks
Cannot find callback list in
XtRemoveAllCallbacks
Cannot find callback list in
XtRemoveCallbacks
null child passed to
XtManageChildren
Null child passed to
XtUnmanageChildren
Can't change widget depth
Shell subclass did not take care of
geometry in XtSetValues
String to AcceleratorTable needs no
extra arguments
String to TranslationTable needs no
extra arguments
MergeTM to TranslationTable
needs no extra arguments
CopyFromParent must have non
NULL parent
Pop-up menu creation is only
supported on ButtonPress or
Enter Notify events.
Pop-up menu creation is only
supported on ButtonPress or
Enter Notify events.
null delete _ child procedure in
XtDestroy
XtRemoveInput: Input handler not
found
set values almost procedure
shouldn't be NULL
resource count > 0 on NULL
resource list
Cannot find resource name %s as
argument to conversion
Widget has no shell ancestor
Representation size %d must match
superclass's to override %s
Representation type %s must
match superclass's to override %s

noColormap cvtStringToPixel

registerWindowError xtRegisterWindow

registerWindowError xt UnregisterWindow

translation error nullTable

translation error nullTable

translationError ambigiousActions

translationError mergingNullTable

translationError nullTable

translationError unboundActions
translationError xtTranslateInitialize

translationParseError showLine
translationParseError parseError
translationParseError parseString
typeConversionError noConverter
versionMismatch widget

wrongParameters cvtIntToBool

wrongParameters cvtIntToBoolean

wrongParameters cvtIntToFont

wrongParameters cvtIntToPixel

wrongParameters cvtIntToPixmap

wrongParameters cvtIntToShort

wrongParameters cvtStringToBool

wrongParameters cvtStringToBoolean

RemovePopupFromParent,widget
not on parent list
Cannot allocate colormap entry for
"%s"
Attempt to change already
registered window.
Attempt to unregister invalid
window.
Can't remove accelerators from
NULL table
Tried to remove non-existant
accelerators
Overriding earlier translation
manager actions.
Old translation table was null,
cannot modify.
Can't translate event thorugh
NULL table
Actions not found: %s
Intializing Translation manager
twice.
... found while parsing '%s'

translation table syntax error: %s
Missing '\'.
No type converter registered for
Widget class %s version mismatch:
widget %d vs. intrinsics %d.
Integer to Bool conversion needs no
extra arguments
Integer to Boolean conversion
needs no extra arguments
Integer to Font conversion needs no
extra arguments
Integer to Pixel conversion needs
no extra arguments
Integer to Pixmap conversion needs
no extra arguments
Integer to Short conversion needs
no extra arguments
String to Bool conversion needs no
extra arguments
String to Boolean conversion needs
no extra arguments

Standard Errors and Warnings D -5

wrongParameters

wrongParameters

wrongParameters

wrongParameters

wrongParameters

wrongParameters

cvtStringToDisplay String to Display conversion needs
no extra arguments

cvtStringToFile String to File conversion needs no
extra arguments

cvtStringToInt String to Integer conversion needs
no extra arguments

cvtStringToShort String to Integer conversion needs
no extra arguments

cvtStringToUnsignedChar String to Integer conversion needs
no extra arguments

cvtXColorToPixel Color to Pixel conversion needs no
extra arguments

D - 6 Standard Errors and Warnings

StringDefs.h Header File

The StringDefs. h header file contains:

1* Resource names *1

#define XtNaccelerators
#define XtNallowHoriz
#define XtNallowVert
#define XtNancestorSensitive
#define XtNbackground
#define XtNbackgroundPixmap
#define XtNborderColor
#define XtNborder
#define XtNborderPixmap
#define XtNborderWidth
#define XtNcallback
#define XtNcolormap
#define XtNdepth
#define XtNdestroyCallback
#define XtNeditType
#define XtNfont
#define XtNforceBars
#define XtNforeground
#define XtNfunction
#define XtNheight
#define XtNhSpace
#define XtNindex
#define XtNinnerHeight
#define XtNinnerWidth
#define XtNinnerWindow
#define XtNinsertPosition
#define XtNinternalHeight
#define XtNinternalWidth
#define XtNjustify
#define XtNknobHeight
#define XtNknobIndent
#define XtNknobPixel
#define XtNknobWidth
#define XtNlabel
#define XtNlength
#define XtNlowerRight
#define XtNmappedWhenManaged
#define XtNmenuEntry
#define XtNname
#define XtNnotify

"accelerators"
"allowHoriz"
"allowVert"
"ancestorSensitive"
"background"
"backgroundPixmap"
"borderColor"
"borderColor"
"borderPixmap"
"borderWidth"
"callback"
"colormap"
"depth"
"destroyCallback"
"editType"
"font"
"forceBars"
"foreground"
"function"
"height"
"hSpace"
"index"
"innerHeight"
"innerWidth"
"innerWindow"
"insertPosition"
"internalHeight"
"internalWidth"
"justify"
"knobHeight"
"knob Indent "
"knobPixel"
"knobWidth"
"label"
"length"
"lowerRight"
"mappedWhenManaged"
"menuEntry"
"name"
"notify"

E

StringDefs.h Header File E -1

Idefine XtNorientation "orientation"
Ide fine XtNparameter "parameter"
Idefine XtNpopupCallback "popupCallback"
Idefine XtNpopdownCallback "popdownCallback"
Idefine XtNreverseVideo "reverseVideo"
Idefine XtNscreen "screen"
Idefine XtNscrollProc "scrollProc"
Ide fine XtNscrollDCursor "scrollDownCursor"
Idefine XtNscrollHCursor "scrollHorizontalCursor"
Idefine XtNscrollLCursor "scrollLeftCursor"
Idefine XtNscrollRCursor "scrollRightCursor"
Idefine XtNscrollUCursor "scrollUpCursor"
Idefine XtNscrollVCursor "scrollVerticalCursor"
Idefine XtNselection "selection"
Idefine XtNselectionArray "selectionArray"
Idefine XtNsensitive "sensitive"
Idefine XtNshown "shown"
Idefine XtNspace "space"
11define XtNstring "string"
Idefine XtNtextOptions "textOptions"
#define XtNtextSink "textSink"
11define XtNtextSource "textSource"
Idefine XtNthickness "thickness"
Idefine XtNthumb "thumb"
Idefine XtNthumbProc "thurnbProc"
Idefine XtNtop "top"
Idefine XtNtranslations "translations"
Idefine XtNuseBottom "useBottom"
Idefine XtNuseRight "useRight"
11define XtNvalue "value"
#define XtNvSpace "vSpace"
#define XtNwidth "width"
#define XtNwindow "window"
#define XtNx "x"
11define XtNy "y"

1* Class types *1

11define XtCAccelerators "Accelerators"
#define XtCBackground "Background"
11define XtCBoolean "Boolean"
#define XtCBorderColor "BorderColor"
#define XtCBorderWidth "BorderWidth"
Idefine XtCCallback "Callback"
#define XtCColormap "Colormap"
11define XtCColor "Color"
11define XtCCursor "Cursor"
11define XtCDepth "Depth"
11define XtCEditType "EditType"
11define XtCEventBindings "EventBindings"
Idefine XtCFile "File"
11define XtCFont "Font"
11define XtCForeground "Foreground"
11define XtCFraction "Fraction"
11define XtCFunction "Function"
#define XtCHeight "Height"
11define XtCHSpace "HSpace"

E - 2 StringDefs.h Header File

#define XtCIndex
#define XtCInterval
#define XtCJustify
#define XtCKnobIndent
#define XtCKnobPixel
#define XtCLabel
#define XtCLength
#define XtCMappedWhenManaged
#define XtCMargin
#define XtCMenuEntry
#define XtCNotify
#define XtCOrientation
#define XtCParameter
Idefine XtCPixmap
#define XtCPosition
#define XtCScreen
#define XtCScrollProc
#define XtCScrollDCursor
#define XtCScrollHCursor
Idefine XtCScrollLCursor
#define XtCScrollRCursor
#define XtCScrollUCursor
#define XtCScrollVCursor
#define XtCSelection
#define XtCSensitive
#define XtCSelectionArray
#define XtCSpace
#define XtCString
#define XtCTextOptions
#define XtCTextPosition
#define XtCTextSink
#define XtCTextSource
#define XtCThickness
#define XtCThumb
#define XtCTranslations
#define XtCValue
#define XtCVSpace
Ide fine XtCWidth
Idefine XtCWindow
#define XtCX
//define XtCY

/* Representation types *1

Idefine XtRAcceleratorTable
Idefine XtRBoolean
Idefine XtRCallback
#define XtRCallProc
Idefine XtRColor
#define XtRCursor
#define XtRDimension
#define XtRDisplay
#define XtREditMode
#define XtRF 11e
#define XtRFont

"Index"
"Interval"
"Justify"
"Knob Indent "
"KnobPixel"
"Label"
"Length"
"MappedWhenManaged"
"Margin"
"MenuEntry"
"Notify"
"Orientation"
"Parameter"
"Pixmap"
"Position"
"Screen"
"ScrollProc"
"ScrollDownCursor"
"ScrollHorizontalCursor"
"ScrollLeftCursor"
"ScrollRightCursor"
"ScrollUpCursor"
"ScrollVerticalCursor"
"Selection"
"Sensitive"
"SelectionArray"
"Space"
"String"
"TextOptions"
"TextPosition"
"TextSink"
"TextSource"
"Thickness"
"Thumb"
"Translations"
"Value"
"VSpace"
"Width"
"Window"
"X"
"Y"

"AcceleratorTable"
"Boolean"
"Callback"
"CallProc"
"Color"
"Cursor"
"Dimension"
"Display"
"EditMode"
"File"
"Font"

StringDefs.h Header File E -3

#define XtRFontStruct
#define XtRFunction
#define XtRGeometry
#define XtRImmediate
1/define XtRInt
#define XtRJustify
#define XtRLongBoolean
#define XtROrientation
#define XtRPixel
#define XtRPixmap
#define XtRPointer
#define XtRPosition
#define XtRShort
#define XtRString
#define XtRStringTable
#define XtRUnsignedChar
#define XtRTranslationTable
#define XtRWindow

"FontStruct"
"Function"
"Geometry"
"Immediate"
"Int"
"Justify"
"LongBoolean"
"Orientation"
"Pixel"
"Pixmap"
"Pointer"
"Position"
"Short"
"String"
"StringTable"
"UnsignedChar"
"TranslationTable"
"Window"

1* Boolean enumeration constants *1

1/define XtEoff "off"
1/define XtEfalse "false"
1/define XtEno "no"
1/define XtEon "on"
1/define XtEtrue "true"
1/define XtEyes "yes"

1* Orientation enumeration constants *1

#define XtEvertical
#define XtEhorizontal

"vertical"
"horizontal"

1* text edit enumeration constants *1

#define XtEtextRead
#define XtEtextAppend
#define XtEtextEdit

"read"
"append"
"edit"

1* color enumeration constants *1

11define XtExtdefaultbackground "xtdefaultbackground"
1/define XtExtdefaultforeground "xtdefaultforeground"

1* font constant *1

#define XtExtdefaultfont "xtdefaultfont"

E • 4 StringDefs.h Header File

Reference Information
This section contrains reference information about the Xt Intrinsics included with the X
Window System. The entries are arranged aphabetically, with each entry starting on its
own "page 1."

Function

MenuPopdown
MenuPopup
XtAddCallback
XtAddCallbacks
XtAddEventHandler
XtAddExposureToRegion
XtAddGrab
XtAddRawEventHandler
XtAppAddActions
XtAppAddConverter
XtAppAddInput
XtAppAddTimeOut
XtAppAddWorkProc
XtAppCreateShell
XtAppError
XtAppErrorMsg
XtAppGetErrorDatabase
XtAppGetErrorDatabaseText
XtAppGetSelectionTimeout
XtAppMainLoop
XtAppNextEvent
XtAppPeekEvent
XtAppPending
XtAppProcessEvent
XtAppSetErrorHandler
XtAppSetErrorMsgHandler
XtAppSetSelectionTimeout
XtAppSetWarningHandler

Location

XtPopdown(3X)
XtPopup(3X)
XtAddCallback(3X)
XtAddCallback(3X)
XtAddEventHandler(3X)
XtAddExposureToRegion(3X)
XtAddGrab(3X)
XtAddEventHandler(3X)
XtAppAddActions(3X)
XtAppAddConverter(3X)
XtAppAddInput(3X)
XtAppAddTimeOut(3X)
XtAppAddWorkProc(3X)
XtAppCreateShell(3X)
XtAppError(3X)
XtAppErrorMsg(3X)
XtAppGetErrorDatabase(3X)
XtAppGetErrorDatabase(3X)
XtAppGetSelectionTimeout(3X)
XtAppNextEvent(3X)
XtAppNextEvent(3X)
XtAppNextEvent(3X)
XtAppNextEvent(3X)
XtAppNextEvent(3X)
XtAppError(3X)
XtAppErrorMsg(3X)
XtAppGetSelectionTimeout(3X)
XtAppError(3X)

Reference Information 1

Function

XtAppSetWarningMsgHandler
XtAppWarningMsg
XtAugmentTranslations
XtBuildEventMask
XtCallAcceptFocus
XtCallbackExclusive
XtCallbackNone
XtCallbackN onexclusive
XtCallbackPopdown
XtCallCallbacks
XtCalloc
XtCheckSubclass
XtClass
XtCloseDisplay
XtConfigure Widget
XtConvert
XtConvertCase
XtCreateApplicationContext
XtCreateManagedWidget
XtCreatePopupShell
XtCreate Widget
XtCreateWindow
XtDatabase
XtDestroyApplicationContext
XtDestroyWidget
XtDirectConvert
XtDisownSelection
XtDispatchEvent
XtDisplay
XtDisplaylnitialize
XtFree
XtGetApplicationResources
XtGetGC
XtGetResourceList
XtGetSelection Value
XtGetSelection Values
XtGetSelection ValuesIncremental
XtGetSubresources

Reference Information 2

Location

XtAppErrorMsg(3X)
XtAppErrorMsg(3X)
XtParseTranslationTable(3X)
XtBuildEventMask(3X)
XtCallAcceptFocus(3X)
XtPopup(3X)
XtPopup(3X)
XtPopup(3X)
XtPopdown(3X)
XtCallCallbacks(3X)
XtMalloc(3X)
XtClass(3X)
XtClass(3X)
XtDisplaylnitialize(3X)
XtConfigure Widget(3X)
XtConvert(3X)
XtSetKeyrranslator(3X)
XtCreateApplicationContext(3X)
XtCreate Widget (3X)
XtCreatePopupShell(3X)
XtCreateWidget(3X)
XtCreateWindow(3X)
XtDisplaylnitialize(3X)
XtCreateApplicationContext(3X)
XtCreate Widget(3X)
XtConvert(3X)
XtOwnSelection(3X)
XtAppNextEvent(3X)
XtDisplay(3X)
XtDisplaylnitialize(3X)
XtMalloc(3X)
XtGetSubresources(3X)
XtGetGC(3X)
XtGetResourceList(3X)
XtGetSelection Value (3X)
XtGetSelection Value (3X)
XtGetSelection Value (3X)
XtGetSubresources(3X)

Function

XtGetSubvalues
XtGetValues
XtGrabKey
XtGrabKeyboard
XtHasCallbacks
XtInitialize
XtInstallAccelerators
XtInstallAllAccelerators
XtIsComposite
XtIsManaged
XtIsRealized
XtIsSensitive
XtIsSubclass
XtMakeGeometryRequest
XtMakeResizeRequest
XtMalloc
XtMapWidget
XtManageChild
XtManageChildren
XtMergeArgLists
XtMove Widget
XtNameToWidget
XtNew
XtNewString
XtNumber
XtOffset
XtOpenDisplay
XtOverrideTranslations
XtOwnSelection
XtParent
XtParseAcceleratorTable
XtParseTranslationTable
XtPopdown
XtPopup
XtQueryGeometry
XtRealize Widget
XtRealloc
XtRegisterCaseConverter

Location

XtSet Values (3X)
XtSet Values(3X)
XtGrabKeyboard(3X)
XtGrabKeyboard(3X)
XtCallCallbacks(3X)
XtInitialize(3X)
XtParseAcceleratorTable(3X)
XtParseAcceleratorTable(3X)
XtClass(3X)
XtClass(3X)
XtRealize Widget (3X)
XtSetSensitive(3X)
XtClass(3X)
XtMakeGeometryRequest(3X)
XtMakeGeometryRequest(3X)
XtMalloc(3X)
XtMapWidget(3X)
XtManageChildren(3X)
XtManageChildren(3X)
XtSetArg(3X)
XtConfigure Widget (3X)
XtNameToWidget(3X)
XtMalloc(3X)
XtMalloc(3X)
XtOffset(3X)
XtOffset(3X)
XtDisplaylnitialize(3X)
XtParseTranslationTable(3X)
XtOwnSelection(3X)
XtDisplay(3X)
XtParseAcceleratorTable(3X)
XtParseTranslationTable(3X)
XtPopdown(3X)
XtPopup(3X)
XtQueryGeometry(3X)
XtRealize Widget (3X)
XtMalloc(3X)
XtSetKeyTranslator(3X)

Reference Information 3

Function

XtReleaseGC
XtRemoveAllCallbacks
XtRemoveCallback
XtRemoveCallbacks
XtRemoveEventHandler
XtRemoveGrab
XtRemoveInput
XtRemoveRawEventHandler
XtRemoveTimeOut
XtRemove WorkProc
XtResize Widget
XtScreen
XtSetArg
XtSetKeyboardFocus
XtSetKeyTranslator
XtSet~appedWhen~anaged

XtSetSensitive
XtSetSubvalues
XtSetValues
XtStringConversion Warning
XtSuperClass
XtToolkitInitialize
XtTranslateCoordinates
XtTranslateKeycode
XtUngrabKey
XtUngrabKeyboard
Xt U ninstallTranslations
XtU nmanageChild
Xt U nmanageChildren
XtU nmapWidget
Xt U nrealize Widget
Xt Widget Callbacks
XtWidgetHasCallbacks
XtWidgetToApplicationContext
XtWidgetToWindow
XtWindow

Reference Information 4

Location

XtGetGC(3X)
XtAddCallback(3X)
XtAddCallback(3X)
XtAddCallback(3X)
XtAddEventHandler(3X)
XtAddGrab(3X)
XtAppAddInput(3X)
XtAddEventHandler(3X)
XtAppAddTimeOut(3X)
XtAppAddWorkProc(3X)
XtConfigureWidget(3X)
XtDisplay(3X)
XtSetArg(3X)
XtSetKeyboardFocus(3X)
XtSetKeyTranslator(3X)
Xt~apWidget(3X)

XtSetSensitive(3X)
XtSet Values (3X)
XtSetValues(3X)
XtStringConversion Warning(3X)
XtClass(3X)
XtCreateApplicationContext(3X)
XtTranslateCoordinates(3X)
XtSetKeyTranslator(3X)
XtUngrabKey(3X)
XtUngrabKeyboard(3X)
XtParseTranslationTable(3X)
Xt~anageChildren(3X)

Xt~anageChildren(3X)

Xt~apWidget(3X)

XtRealize Widget(3X)
XtWidgetCallbacks(3X)
XtWidgetHasCallbacks(3X)
XtCreateApplicationContext(3X)
XtNameToWidget(3X)
XtDisplay(3X)

XtAddCaDback(3X) XtAddCaDback(3X)

NAME

SYNTAX

Series 300 and 800 Only

XtAddCallback, XtAddCallbacks, XtRemoveCallback, XtRemoveCallbacks,
XtRemoveAlICallbacks - add and remove callback procedures

void XtAddCallback(w, callback name, callback, client data)
Widgetw; - -
String callback name;
XtCallbackProe callback;
caddr t client data;

void XtAddCallbacks(w, callback name, callbacks)
Widgetw; -
String callback name;
XtCallbackList callbacks;

void XtRemoveCallback(w, callback name, callback, client data)
Widgetw; - -
String callback name;
XtCallbackProe callback;
caddr t client data;

void XtRemovec3llbacks(w, callback name, callbacks)
Widgetw; -
String callback name;
XtCallbackListcallbacks;

void XtRemoveAlICallbacks(w, callback name)
Widgetw; -
String callback_name;

ARGUMENTS
callback Specifies the callback procedure.

callbacks

callback name

client data

w

DESCRIPTION

Specifies the null-terminated list of callback procedures and corresponding
client data.

Specifies the callback list to which the procedure is to be appended or
deleted.

Specifies the argument that is to be passed to the specified procedure when
it is inVoked by XtCallbacks or NULL, or the client data to match on the
registered callback procedures.

Specifies the widget.

The XtAddCallback function adds the specified callback procedure to the specified widget's
callback list. The XtAddCallbacks add the specified list of callbacks to the specified widget's
callback list. The XtRemoveCallback function removes a callback only if both the procedure and
the client data match. The XtRemoveCallbacks function removes the specified callback
procedures from the specified widget's callback list. The XtRemoveAllCallbacks function
removes all the callback procedures from the specified widget's callback list.

SEE ALSO
XtCallCallbacks(3X)
Programming with Xlib

Hewlett-Packard Company - 1- JuI16,1989

XtAddEventHandIer (3X) XtAddEventHandIer(3X)

NAME

SYNTAX

Series 300 and 800 Only

XtAddEventHandler, XtAddRawEventHandler, XtRemoveEventHandler
XtRemoveRawEventHandler - add and remove event handlers

void XtAddEventHandler(w, event mask, nonmaskable,proc, client data)
Widgetw; - -
EventMask event mask;
Boolean nonmas'kable;
XtEventHandler proc;
caddr t client data;

void XtAddRawEVentHandler(w, event mask, nonmaskable,proc, client data)
Widgetw; - -
EventMask event mask;
Boolean nonmas'kable;
XtEventHandler proc;
caddr t client data;

void XtRemoveEVentHandler(w, event mask, nonmaskable,proc, client data)
Widgetw; - -
EventMask event mask;
Boolean nonmas'kable;
XtEventHandler proc;
caddr t client data;

void XtRemoveRawEventHandler(w, event_mask, nonmaskable,proc, client_data)
Widgetw;
EventMask event mask;
Boolean nonmas'kable;
XtEventHandler proc;
caddr _ t client_data;

ARGUMENTS
client data

event mask
nonmaskable

proc

w

DESCRIPTION

Specifies additional data to be passed to the client's event handler.

Specifies the event mask for which to caU or unregister this procedure.

Specifies a Boolean value that indicates whether this procedure should be
caUed or removed on the nonmaskable events (GraphicsExpose, NoExpose,
SelectionClear, SelectionRequest, SelectionNotify, ClientMessage, and
MappingNotify).

Specifies the procedure that is to be added or removed.

Specifies the widget for which this event handler is being registered.

The XtAddEventHandler function registers a procedure with the dispatch mechanism that is to be
caned when an event that matches the mask occurs on the specified widget. If the procedure is
already registered with the same client data, the specified mask is ORed into the existing mask. If
the widget is realized, XtAddEventHandler caUs XSelectInput, if necessary. The
XtAddRawEventHandler function is similar to XtAddEventHandler except that it does not affect
the widget's mask and never causes an XSelectInput for its events. Note that the widget might
already have those mask bits set because of other nonraw event handlers registered on it. The
XtAddRawEventHandler function is similar to XtAddEventHandler except that it does not affect
the widget's mask and never causes an XSelectInput for its events. Note that the widget might
already have those mask bits set because of other nonraw event handlers registered on it. The
XtRemoveRawEventHandler function stops the specified procedure from receiving the specified
events. Because the procedure is a raw event handler, this does not affect the widget's mask and
never causes a caU on XSelectJnput.

SEE ALSO
XtAppNextEvent(3X), XtBuildEventMask(3X)
Programming with Xlib

Hewlett-Packard Company - 1- Jul 16, 1989

XtAddExposureToRegion (3X) XtAddExposureToRegion (3X)
Series 300 and 800 Only

NAME
XtAddExposureToRegion - merge exposure events into a region

SYNTAX
void XtAddExposureToRegion(event, region)

XEvent *event;
Region region;

ARGUMENTS
event
region

DESCRIPTION

Specifies a pointer to the Expose or GrapbicsExpose event.

Specifies the region object (as defined in <Xll/Xutil.h».

The XtAddExposureToRegion function computes the union of the rectangle defined by the
exposure event and the specified region. Then, it stores the results back in region. If the event
argument is not an Expose or GrapbicsExpose event, XtAddExposureToRegion returns without
an error and without modifying region. This function is used by the exposure compression
mechanism (see Section 7.9.3).

SEE ALSO
Programming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

XtAddGrab(3X) XtAddGrab(3X)
Series 300 and 800 Only

NAME
XtAddGrab, XtRemoveGrab - redirect user input to a modal widget

SYNTAX
void XtAddGrab(w, exclusive, springjoaded)

Widgetw;
Boolean exclusive;
Boolean spring loaded;

void XtRemoveGrab(w)
Widgetw;

ARGUMENTS
exclusive Specifies whether user events should be dispatched exclusively to this widget

or also to previous widgets in the cascade.

springjoaded

w

DESCRIPTION

Specifies whether this widget was popped up because the user pressed a
pointer button.

Specifies the widget to add to or remove from the modal cascade.

The XtAddGrab function appends the widget (and associated parameters) to the modal cascade
and checks that exclusive is True if spring loaded is True. If these are not True, XtAddGrab
generates an error. The modal cascade is-used by XtDispatchEvent when it tries to dispatch a
user event. When at least one modal widget is in the widget cascade, XtDispatchEvent first
determines if the event should be delivered. It starts at the most recent cascade entry and follows
the cascade up to and including the most recent cascade entty added with the exclusive parameter
True. This subset of the modal cascade along with all descendants of these widgets comprise the
active subset. User events that occur outside the widgets in this subset are ignored or remapped.
Modal menus with submenus generally add a submenu widget to the cascade with exclusive False.
Modal dialog boxes that need to restrict user input to the most deeply nested dialog box add a
subdialog widget to the cascade with exclusive True. User events that occur within the active
subset are delivered to the appropriate widget, which is usually a child or further descendant of
the modal widget. Regardless of where on the screen they occur, remap events are always
delivered to the most recent widget in the active subset of the cascade that has spring_loaded
True, if any such widget exists. The XtRemoveGrab function removes widgets from the modal
cascade starting at the most recent widget up to and including the specified widget. It issues an
error if the specified widget is not on the modal cascade.

SEE ALSO
Programming with Xlib

Hewlett-Packard Company -1- Ju116,1989

XtAppAddActions (3X)
Series 300 and 800 Only

NAME
XtAppAddActions - register an action table

SYNTAX
void XtAppAddActions(app context, actions, num actions)

XtAppContext app context; -
XtActionList actions;
Cardinal num _actions;

ARGUMENTS
app _context
actions

Specifies the application context.

Specifies the action table to register.

num _ args Specifies the number of entries in this action table.

DESCRIPTION

XtAppAddActions (3X)

The XtAppAddActions function adds the specified action table and registers it with the translation
manager.

SEE ALSO
XtParseTranslationTable(3X)
Programming with Xlib

Hewlett-Packard Company -1- Ju116, 1989

XtAppAddConverter (3X)
Series 300 and 800 Only

NAME
XtAppAddConverter - register resource converter

SYNTAX

XtAppAddConverter (3X)

void XtAppAddConverter(app _context, from _type, to _type, converter, convert _ args, num _ args)
XtAppContext app context;
String from type; -
String to type;
XtConveirterconverter,
XtConvertArgList convert args;
Cardinal num _ args; -

ARGUMENTS
Specifies the application context.

Specifies the type converter procedure.

app _context
converter
convert _ args Specifies how to compute the additional arguments to the converter or

NULL.

Specifies the source type. from_type

num_args
to_type

Specifies the number of additional arguments to the converter or zero.

Specifies the destination type.

DESCRIPTION
The XtAppAddConverter registers a the specified resource converter.

SEE ALSO
XtConvert(3Xt), XtStringConversion Waming(3Xt)
Programming with Xlib

Hewlett-Packard Company -1- Ju116, 1989

XtAppAddInput (3X) XtAppAddInput (3X)
Series 300 and 800 Only

NAME
XtAppAddlnput, XtRemovelnput - register and remove an input source

SYNTAX
Xtlnputld XtAppAddlnput(app _context, source, condition, proc, client_data)

XtAppContext app _context;
intsource;
caddr t condition;
XtlnputCallbackProc proc;
caddr t client data;

void XtRemovelnput(id)
Xtlnputld id;

ARGUMENTS
Specifies the application context that identifies the application. app _context

client data Specifies the argument that is to be passed to the specified procedure when
input is available.

condition

id

proc
source

DESCRIPTION

Specifies the mask that indicates a read, write, or exception condition or
some operating system dependent condition.

Specifies the ID returned from the corresponding XtAppAddInput call.

Specifies the procedure that is to be called when input is available.

Specifies the source file descriptor on a UNIX-based system or other
operating system dependent device specification.

The XtAppAddlnput function registers with the X Toolkit Intrinsics read routine a new source of
events, which is usually file input but can also be file output. Note that file should be loosely
interpreted to mean any sink or source of data. XtAppAddlnput also specifies the conditions
under which the source can generate events. When input is pending on this source, the callback
procedure is called. The legal values for the condition argument are operating-system dependent.
On a UNIX-based system, the condition is some union of XtInputReadMask, XtInputWriteMask,
and XtInputExceptMask. The XtRemoveInput function causes the X Toolkit Intrinsics read
routine to stop watching for input from the input source.

SEE ALSO
XtAppAddTimeOut(3X)
Programming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

XtAppAddTimeOut (3X) XtAppAddTimeOut (3X)
Series 300 and 800 Only

NAME
XtAppAddTimeOut, XtRemoveTimeOut - register and remove timeouts

SYNTAX
Xtlntervalld XtAppAddTimeOut(app context, interval,proc, client data)

XtAppContext app _context; - -
unsigned long interval;
XtTimerCallbackProc proc;
caddr t client data;

void XtRemoveTfmeOut(timer)
Xtlntervalld timer;

ARGUMENTS
app _context
client data

interval
proc
timer

DESCRIPTION

Specifies the application context for which the timer is to be set.

Specifies the argument that is to be passed to the specified procedure when.

Specifies the time interval in milliseconds.

Specifies the procedure that is to be called when time expires.

Specifies the ID for the timeout request to be destroyed.

The XtAppAddTimeOut function creates a timeout and returns an identifier for it. The timeout
value is set to interval. The callback procedure is called when the time interval elapses, and then
the timeout is removed. The XtRemoveTimeOut function removes the timeout. Note that
timeouts are automatically removed once they trigger.

SEE ALSO
XtAppAddInput(3X)
Programming with Xlib

Hewlett-Packard Company - 1- Jul16, 1989

XtAppAddWorkProc(3X) XtAppAddWorkProc (3X)
Series 300 and 800 Only

NAME
XtAppAddWorkProc, XtRemoveWorkProc - Add and remove background processing procedures

SYNTAX
XtWorkProcld XtAppAddWorkProc(app context,proc, client data)

XtAppContext app contextj - -
XtWorkProc procj -
caddr t client dataj

void XtRemoveWorkProc(id)
XtWorkProcld idj

ARGUMENTS
Specifies the application context that identifies the application. app _context

client data Specifies the argument that is to be passed to the specified procedure when
it is called.

proc Specifies the procedure that is.

id Specifies which work procedure to remove.

DESCRIPTION
The XtAppAddWorkProc function adds the specified work procedure for the application
identified by app _context. The XtRernoveWorkProc function explicitly removes the specified
background work procedure.

SEE ALSO
XtAppNextEvent(3X)
Programming with Xlib

Hewlett-Packard Company -1- JuI16,1989

XtAppCreateShell(3X) XtAppCreateSbell (3X)
Series 300 and 800 Only

NAME
XtAppCreateShell - create top-level widget instance

SYNTAX
Widget XtAppCreateShell(application_name, application_class, widget_class, display,

tugs, num tugs)
String application mime;
String application -class;
WidgetClass widget_class;
Display *display;
ArgList tugs;
Cardinal num _tugs;

ARGUMENTS
application _class Specifies the class name of this application.

application _name Specifies the name of the application instance.

tugs Specifies the argument list in which to set in the WM _ COMMAND property.

display Specifies the display from which to get the resources.

num _tugs Specifies the number of arguments in the argument list.

widget_class Specifies the widget class that the application top-level widget should be.

DESCRIPTION
The XtAppCreateShell function saves the specified application name and application class for
qualifying all widget resource specifiers. The application name and application class are used as
the left-most components in all widget resource names for this application. XtAppCreateShell
should be used to create a new logical application within a program or to create a shell on another
display. In the first case, it allows the specification of a new root in the resource hierarchy. In the
second case, it uses the resource database associated with the other display. Note that the widget
returned by XtAppCreateShell has the WM _COMMAND property set for session managers (see
Chapter 4).

SEE ALSO
XtCreateWidget(3X)
Programming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

XtAppError (3X) XtAppError (3X)

NAME

SYNTAX

Series 300 and 800 Only

XtAppError, XtAppSetErrorHandler, XtAppSetWarningHandler, XtAppWarning - low-level
error handlers

void XtAppError(app _context, message)
XtAppContext app _context;
String message;

void XtAppSetErrorHandler(app context, handler)
XtAppContext app context; -
XtErrorHandler handler,

void XtAppSetWarningHandler(app context, handler)
XtAppContext app _context; -
XtErrorHandler handler,

void XtAppWarning(app context, message)
XtAppContext app _context;
String message;

ARGUMENTS
app _context

message

handler

message
DESCRIPTION

Specifies the application context.

Specifies the nonfatal error message that is to be reported.

Specifies the new fatal error procedure, which should not return, or the
nonfatal error procedure, which usually returns.

Specifies the message that is to be reported.

The XtAppError function calls the installed error procedure and pa,sses the specified message.
The XtAppSetErrorHandler function registers the specified procedure, which is called when a
fatal error condition occurs. The XtAppSetWarningHandler registers the specified procedure,
which is called when a nonfatal error condition occurs. The XtAppWarning function calls the
installed nonfatal error procedure and passes the specified message.

SEE ALSO
XtAppGetErrorDatabase(3X), XtAppErrorMsg(3X)
Programming with Xlib

Hewlett-Packard Company -1- Ju116,1989

XtAppErrorMsg(3X) XtAppErrorMsg(3X)

NAME

SYNTAX

Series 300 and 800 Only

XtAppErrorMsg, XtAppSetErrorMsgHandler, XtAppSetWarningMsgHandler,
XtAppWarningMsg - high-level error handlers

void XtAppErrorMsg(app _context, name, type, class, default, params, num yarams)
XtAppContext app context;
String name; -
String type;
String class;
String default;
String *params;
Cardinal *num yarams;

void XtAppSetErrorMsgHandler(app context, msg handler)
XtAppContext app context; - -
XtErrorMsgHandler msg handler,

void XtAppSetWarningMsgH7mdler(app context, msg handler)
XtAppContext app context; - -
XtErrorMsgHandler msg handler,

void XtAppWarningMsg(app =context, name, type, class, default,params, num yarams)
XtAppContext app context;
String name; -
String type;
String class;
String default;
String *params;
Cardinal *num yarams;

ARGUMENTS
app _context
class

default
name

numyarams

params
DESCRIPTION

Specifies the application context.

Specifies the resource class.

Specifies the default message to use.

Specifies the general kind of error.

Specifies the detailed name of the error.

Specifies the new fatal error procedure, which should not return or the
nonfatal error procedure, which usually returns.

Specifies the number of values in the parameter list.

Specifies a pointer to a list of values to be stored in the message.

The XtAppErrorMsg function calls the high-level error handler and passes the specified
information. The XtAppSetErrorMsgHandler function registers the specified procedure, which
is called when a fatal error occurs. The XtAppSetWarningMsgHandler function registers the
specified procedure, which is called when a nonfatal error condition occurs. The
XtAppWarningMsg function calls the high-level error handler and passes the specified
information.

SEE ALSO
XtAppGetErrorDatabase(3X), XtAppError(3X)
Programming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

XtAppGetErrorDatabase (3X) XtAppGetErrorDatabase (3X)

NAME

SYNTAX

Series 300 and 800 Only

XtAppGetErrorDatabase, XtAppGetErrorDatabaseText - obtain error database

XrmDatabase *XtAppGetErrorDatabase(app context)
XtAppContext app context; -

void XtAppGetErrorDatabaseText(app context, name, type, class, default, buffer return, nbytes,
database) - -

XtAppContext app context;
char *name, *type, "class;
char *default;
char *buffer return;
int nbytes; -
XrmDatabase database;

ARGUMENTS
app _context

buffer_return

class

database

default

name
type

nbytes

DESCRIPfION

Specifies the application context.

Specifies the buffer into which the error message is to be returned.

Specifies the resource class of the error message.

Specifies the name of the alternative database that is to be used or NULL if
the application's database is to be used.

Specifies the default message to use.

Specifies the name and type that are concatenated to form the resource
name of the error message.

Specifies the size of the buffer in bytes.

The XtAppGetErrorDatabase function returns the address of the error database. The X Toolkit
Intrinsics do a lazy binding of the error database and do not merge in the database file until the
first call to XtAppGetErrorDatbaseText. The XtAppGetErrorDatabaseText returns the
appropriate message from the error database or returns the specified default message if one is not
found in the error database.

SEE ALSO
XtAppError(3X), XtAppErrorMsg(3X)
Programming with)(Jib

Hewlett-Packard Company -1- Jul 16, 1989

XtAppGetSelectionTlmeout (3X) XtAppGetSelectionTimeout (3X)
Series 300 and 800 Only

NAME
XtAppGetSelectionTimeout, XtAppSetSelectionTimeout- set and obtain selection timeout values

SYNTAX
unsigned long XtAppGetSelectionTimeout(app context)

XtAppContext app context; -
void XtAppSetSelectionTimeout(app context, timeout)

XtAppContext app _context; -
unsigned long timeout;

ARGUMENTS
app _context
timeout

DESCRIPTION

Specifies the application context.

Specifies the selection timeout in milliseconds.

The XtAppGetSelectionTimeout function returns the current selection timeout value, in
milliseconds. The selection timeout is the time within which the two communicating applications
must respond to one another. The initial timeout value is set by the selectionTimeout application
resource, or, if selectionTimeout is not specified, it defaults to five seconds. The
XtAppSetSelectionTimeout function sets the X Toolkit Intrinsics 's selection timeout mechanism.
Note that most applications should not set the selection timeout.

SEE ALSO
XtOwnSelection(3X)
Programming with Xlib

Hewlett-Packard Company -1-)uI16,1989

XtAppNextEvent (3X) XtAppNextEvent (3X)

NAME

SYNTAX

Series 300 and 800 Only

XtAppNextEvent, XtAppPending, XtAppPeekEvent, XtAppProcessEvent, XtDispatchEvent,
XtAppMainLoop - query and process events and input

void XtAppNextEvent(app context, event return)
XtAppContext app context; -
XEvent *event return;

Boolean XtAppPeekEvent(app _context, event_return)
XtAppContext app _context;
XEvent *event return;

XtlnputMask XtAppPending(app context)
XtAppContext app context; -

void XtAppProcessEvent(app _context, mask)
XtAppContext app _context;
XtlnputMask mask;

Boolean XtDispatchEvent(event)
XEvent *event;

void XtAppMainLoop(app context)
XtAppContext app _context;

ARGUMENTS

event return

mask

DESCRIPTION

Specifies the application context that identifies the application.

Specifies a pointer to the event structure that is to be dispatched to the
appropriate event handler.

Returns the event information to the specified event structure.

Specifies what types of events to process. The mask is the bitwise inclusive
OR of any combination of XtIMXEvent, XtIMfimer, and
XtIMAlternatelnput. As a convenience, the X Toolkit defines the symbolic
name XtIMAll to be the bitwise inclusive OR of all event types.

If no input is on the X input queue, XtAppNextEvent flushes the X output buffer and waits for an
event while looking at the other input sources and timeout values and calling any callback
procedures triggered by them. This wait time can be used for background processing (see Section
7.8). If there is an event in the queue, XtAppPeekEvent fills in the event and returns a nonzero
value. If no X input is on the queue, XtAppPeekEvent flushes the output bulIer and blocks until
input is available (possibly calling some timeout callbacks in the process). If the input is an event,
XtAppPeekEvent fills in the event and returns a nonzero value. Otherwise, the input is for an
alternate input source, and XtAppPeekEvent returns zero. The XtAppPending function returns a
nonzero value if there are events pending from the X server, timer pending, or other input sources
pending. The value returned is a bit mask that is the OR of XtIMXEvent, XtIMfimer, and
XtIMAlternatelnput (see XtAppProcessEvent). If there are no events pending, XtAppPending
flushes the output buffer and returns zero. The XtAppProcessEvent function processes one timer,
alternate input, or X event. If there is nothing of the appropriate type to process,
XtAppProcessEvent blocks until there is. If there is more than one type of thing available to
process, it is undefined which will get processed. Usually, this procedure is not called by client
applications (see XtAppMainLoop). XtAppProcessEvent processes timer events by calling any
appropriate timer callbacks, alternate input by calling any appropriate alternate input callbacks,
and X events by calling XtDispatchEvent. When an X event is received, it is passed to
XtDispatchEvent, which calls the appropriate event handlers and passes them the widget, the
event, and client-specific data registered with each procedure. If there are no handlers for that
event registered, the event is ignored and the dispatcher simply returns. The order in which the
handlers are called is undefined. The XtDispatchEvent function sends those events to the event
handler functions that have been previously registered with the dispatch routine.
XtDispatchEvent returns True if it dispatched the event to some handler and False if it found no
handler to dispatch the event to. The most common use of XtDispatchEvent is to dispatch events
acquired with the XtAppNextEvent procedure. However, it also can be used to dispatch user-

Hewlett-Packard Company -1- Jul 16, 1989

XtAppNextEvent (3X) XtAppNextEvent(3X)
Series 300 and 800 Only

constructed events. XtDispatchEvent also is responsible for implementing the grab semantics for
XtAddGrab. The XtAppMainLoop function first reads the next incoming X event by catting
XtAppNextEvent and then it dispatches the event to the appropriate registered procedure by
catting XtDispatchEvent. This constitutes the main loop of X Toolkit applications, and, as such, it
does not return. Applications are expected to exit in response to some user action. There is
nothing special about XtAppMainLoop; it is simply an infinite loop that caUs XtAppNextEvent
and then XtDispatchEvent. Applications can provide their own version of this loop, which tests
some global termination flag or tests that the number of top-level widgets is larger than zero
before circling back to the can to XtAppNextEvent.

SEE ALSO
Programming with Xlib

Hewlett-Packard Company -2- Ju116, 1989

XtBuildEventMask(3X)
Series 300 and 800 Only

NAME
XtBuildEventMask - retrieve a widget's event mask

SYNTAX
EventMask XtBuildEventMask(w)

Widgetw;

ARGUMENTS
w Specifies the widget.

DESCRIPTION

XtBuildEventMask(3X)

The XtBuildEventMask function returns the event mask representing the logical OR of all event
masks for event handlers registered on the widget with XtAddEventHandler and all event
translations,inc1uding accelerators, installed on the widget. This is the same event mask stored
into the XSetW"mdowAttributes structure by XtRealizeWidget and sent to the server when event
handlers and translations are installed or removed on the realized widget.

SEE ALSO
XtAddEventHandler(3X)
Programming with Xlib

Hewlett-Packard Company -1- JuI16,1989

XtCallAcceptFocus (3X) XtCallAcceptFocus (3X)
Series 300 and 800 Only

NAME
XtCallAcceptFocus - call a widget's accept_focus procedure

SYNTAX
Boolean XtCallAcceptFocus(w, time)

Widgetw;
Time *time;

ARGUMENTS
time
w

DESCRIPTION

Specifies the X time of the event that is causing the accept focus.

Specifies the widget.

The XtCaUAcceptFocus function calls the specified widget's acceptJocus procedure, passing it the
specified widget and time, and returns what the accept focus procedure returns. If accept focus is
NULL, XtCallAcceptFocus returns False. - -

SEE ALSO
XtSetKeyboardFocus(3X)
Programming with Xlib

Hewlett-Packard Company - 1- Jul 16, 1989

XtCaIlCaUbacks (3X) XlCallCaUbacks (3X)
Series 300 and 800 Only

NAME
XtCallCallbacks, XtHasCallbacks - process callbacks

SYNTAX
void XtCallCallbacks(w, callback name, call data)

Widgetw; --
String callback name;
caddr t call dQia;

typedef enum {XtCallbackNoList, XtCallbackHasNone, XtCallbackHasSome} XtCallbackStatus;

XtCallbackStatus XtHasCallbacks(w, callback name)
Widgetw; -
String callback_name;

ARGUMENTS
callback name Specifies the callback list to be executed or checked.

call data Specifies a callback-list specific data value to pass to each of the callback
procedure in the list.

w Specifies the widget.

DESCRIPfION
The XtCallCallbacks function calls each procedure that is registered in the specified widget's
callback list. The XtHasCallbacks function first checks to see if the widget has a callback list
identified by callback name. If the callback list does not exist, XtHasCallbat:ks returns
XtCallbackNoList. if the callback list exists but is empty, it returns XtCallbackHasNone. If the
callback list exists and has at least one callback registered, it returns XtCallbackHasSome.

SEE ALSO
XtAddCallback(3X)
Programming with Xlib

Hewlett-Packard Company -1- Ju116, 1989

XtClass (3X) XtClass (3X)

NAME

SYNTAX

Series 300 and 800 Only

XtClass, XtSuperClass, XtlsSubclass, XtCheckSubclass, XtIsComposite, XtlsManaged - obtain
and verify a widget's class

WidgetClass XtClass(w)
Widgetw;

WidgetClass XtSuperclass(w)
Widgetw;

Boolean XtlsSubclass(w, widget class)
Widgetw; -
WidgetClass widget class;

void XtCheckSubclass(w, widget class, message)
Widgetw; -
WidgetClass widget class;
String message; -

Boolean XtlsComposite(w)
Widgetw;

Boolean XtlsManaged(w)
Widgetw;

ARGUMENTS
w

widget_class

message

DESCRIPTION

Specifies the widget.

Specifies the widget class.

Specifies the message that is to be used.

The XtClass function returns a pointer to the widget's class structure. The XtSuperclass function
returns a pointer to the widget's superclass class structure. The XtIsSubcIass function returns
True if the class of the specified widget is equal to or is a subclass of the specified widget class.
The specified widget can be any number of subclasses down the chain and need not be an
immediate subclass of the specified widget class. Composite widgets that need to restrict the class
of the items they contain can use XtIsSubclass to find out if a widget belongs to the desired class
of objects. The XtCheckSubclass macro determines if the class of the specified widget is equal to
or is a subclass of the specified widget class. The widget can be any number of subclasses down
the chain and need not be an immediate subclass of the specified widget class. If the specified
widget is not a subclass, XtCheckSubclass constructs an error message from the supplied
message, the widget's actual class, and the expected class and calls XtErrorMsg.
XtCheckSubclass should be used at the entry point of exported routines to ensure that the client
has passed in a valid widget class for the exported operation. XtCheckSubclass is only executed
when the widget has been compiled with the compiler symbol DEBUG defined; otherwise, it is
defined as the empty string and generates no code. The XtIsComposite function is a convenience
function that is equivalent to XtIsSubclass with compositeWidgetClass specified. The
XtIsManaged macro (for widget programmers) or function (for application programmers) returns
True if the specified child widget is managed or False if it is not.

SEE ALSO
XtAppErrorMsg(3X), XtDisplay(3X)
Programming with Xlib

Hewlett-Packard Company -1- Ju116, 1989

XtConrJgUreWidget (3X) XtConf"JgureWidget (3X)
Series 300 and 800 Only

NAME
XtConfigureWidget, XtMoveWidget, XtResizeWidget - move and resize widgets

SYN1J\X
void XtConfigureWidget(w,x,y, width, height, border width)

Widgetw; -
Position x;
Positiony;
Dimension width;
Dimension height;
Dimension border width;

void XtMoveWidget(w, x, y)
Widgetw;
Position x;
Positiony;

void XtResizeWidget(w, width, height, border width)
Widgetwj -
Dimension width;
Dimension height;
Dimension border width;

void XtResizeWindoW(w)
Widgetw;

ARGUMENTS
width
height
border width Specify the new widget size.

w

x
y

DESCRIPfION

Specifies the widget.

Specify the new widget x and y coordinates.

The XtConfigureWidget function returns immediately if the specified geometry fields are the
same as the old values. Otherwise, XtConf"JgUreWidget writes the new X, y, width, height, and
border_width values into the widget and, if the widget is realized, makes an Xlib
XConf"JgUreWmdow call on the widget's window. If either the new width or height is different
from its old value, XtConf"IgUreWidget calls the widget's resize procedure to notify it of the size
change; otherwise, it simply returns. The XtMoveWidget function returns immediately if the
specified geometry fields are the same as the old values. Otherwise, XtMoveWidget writes the
new x and y values into the widget and, if the widget is realized, issues an Xlib XMoveWmdow call
on the widget's window. The XtResizeWidget function returns immediately if the specified
geometry fields are the same as the old values. Otherwise, XtResizeWidget writes the new width,
height, and border_width values into the widget and, if the widget is realized, issues an
XConf"JgUreWindow call on the widget's window. If the new width or height are different from the
old values, XtResizeWidget calls the widget's resize procedure to notify it of the size change~ The
XtResizeWmdow function calls the XConf"JgUreWmdow Xlib function to make the window of the
specified widget match its width, height, and border width. This request is done unconditionally
because there is no way to tell if these values match the current values. Note that the widget's
resize procedure is not called. There are very few times to use XtResizeWmdow; instead, you
should use XtResizeWidget.

SEE ALSO
XtMakeGeometryRequest(3X), XtQueryGeometry(3X)
Programming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

XtConvert (3X) XtConvert (3X)
Series 300 and 800 Only

NAME
XtConvert, XtDirectConvert - invoke resource converters

SYNTAX
void XtConvert(w, from type, from, to type, to return)

Widget w; - --
String from type;
XnnValuePtr from;
String to type;
XnnValuePtr to return;

void XtDirectConvert(converter, args, num args,from, to return)
XtConverter converter, - -
XnnValuePtr args;
Cardinal num args;
XnnValuePtr from;
XnnValuePtr to _return;

ARGUMENTS
args Specifies the argument list that contains the additional arguments needed to

perform the conversion (often NULL).

converter

from

from_type

num_args
to_type

Specifies the conversion procedure that is to be called.

Specifies the value to be converted.

Specifies the source type.

Specifies the number of additional arguments (often zero).

Specifies the destination type.

Returns the converted value. to return

w Specifies the widget to use for additional arguments (if any are needed).

DESCRIPTION
The XtConvert function looks up the type converter registered to convert from_type to to_type,
computes any additional arguments needed, and then calls XtDirectConvert. The
XtDirectConvert function looks in the converter cache to see if this conversion procedure has
been called with the specified arguments. If so, it returns a descriptor for information stored in
the cache; othetwise, it calls the converter and enters the result in the cache. Before calling the
specified converter, XtDirectConvert sets the return value size to zero and the return value
address to NULL. To determine if the conversion was successful, the client should check
to return.address for non-NULL.

SEE ALSO
XtAppAddConverter(3X), XtStringConversionWarning(3X)
Pro8amming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

XtCreateApplicationContext (3X) XtCreateApplicationContext (3X)

NAME

SYNTAX

Series 300 and 800 Only

XtCreateApplicationContext, XtDestroyApplicationContext, XtWidgetToApplicationContext,
XtToolkitlnitialize - create, destroy, and obtain an application context

XtAppContext XtCreateApplicationContextO
void XtDestroyApplicationContext(app context)

XtAppContext app context; -
XtAppContext XtWidgetToApplicationContext(w)

Widgetw;
void XtToolkitlnitializeO

ARGUMENTS
app _context
w

DESCRIPTION

Specifies the application context.

Specifies the widget.

The XtCreateApplicationContext function returns an application context, which is an opaque type.
Every application must have at least one application context. The XtDestroyApplicationContext
function destroys the specified application context as soon as it is safe to do so. If called from with
an event dispatch (for example, a callback procedure), XtDestroyApplicationContext does not
destroy the application context until the dispatch is complete. The
XtWidgetToApplicationContext function returns the application context for the specified widget.
The semantics of calling XtToolkitInitialize more than once are undefined.

SEE ALSO
XtDisplayInitialize(3X)
Programming with Xlib

Hewlett-Packard Company - 1- Jul 16, 1989

XtCreatePopupShell(3X) XtCreatePopupShell(3X)
Series 300 and 800 Only

NAME
XtCreatePopupShell

SYNTAX
Widget XtCreatePopupShell(name, widget class,parent, args, num args)

String name; - -
WidgetClass widget class;
Widget parent; -
ArgList args;
Cardinal num _ args;

ARGUMENTS
args
name

num_args
parent

Specifies the argument list to override the resource defaults.

Specifies the text name for the created shell widget.

Specifies the number of arguments in the argument list.

Specifies the parent widget.

widget_class Specifies the widget class pointer for the created shell widget.

DESCRIYfION
The XtCreatePopupShell function ensures that the specified class is a subclass of Shell and,
rather than using insert_child to attach the widget to the parent's children list, attaches the shell to
the parent's pop-ups list directly. A spring-loaded pop-up invoked from a translation table already
must exist at the time that the translation is invoked, so the translation manager can find the shell
by name. Pop-ups invoked in other ways can be created "on-the-fly" when the pop-up actually is
needed. This delayed creation of the shell is particularly useful when you pop up an unspecified
number of pop-ups. You can look to see if an appropriate unused shell (that is, not currently
popped up) exists and create a new shell if needed.

SEE ALSO
XtCreateWidget(3X), XtPopdown(3X), XtPopup(3X)
Programming with Xlib

Hewlett-Packard Company -1- Ju116, 1989

XtCreateWidget (3X) XtCreateWidget (3X)
Series 300 and 800 Only

NAME
XtCreateWidget, XtCreateManagedWidget, XtDestroyWidget - create and destroy widgets

SYNTAX
Widget XtCreateWidget(name, widget class,parent, args, num args)

String name; - -
WidgetClass widget class;
Widget parent; -
ArgList args;
Cardinal num args;

Widget XtCreateManagedWidget(name, widget class,parent, args, num args)
String name; - -
WidgetClass widget_class;
Widget parent;
ArgList args;
Cardinal num args;

void XtDestroyWklget(w)
Widgetw;

ARGUMENTS
args Specifies the argument list to override the resource defaults.

name Specifies the resource name for the created widget, which is used for
retrieving resources and, for that reason, should not be the same as any
other widget that is a child of same parent.

num_args
parent

w

Specifies the number of arguments in the argument list.

Specifies the parent widget.

Specifies the widget.

widget _class Specifies the widget class pointer for the created widget.

DESCRIPTION
The XtCreateWidget function performs much of the boilerplate operations of widget creation:

• Checks to see if the class_initialize procedure has been called for this class and for all
superclasses and, if not, calls those necessary in a superclass-to-subclass order.

• Allocates memory for the widget instance.

• If the parent is a subclass of constraintWidgetClass, it allocates memory for the parent's
constraints and stores the address of this memory into the constraints field.

• Initializes the core non resource data fields (for example, parent and visible).

• Initializes the resource fields (for example, background ""pixel) by using the resource lists
specified for this class and all superclasses.

• If the parent is a subclass of constraintWidgetClass, it initializes the resource fields of the
constraints record by using the constraint resource list specified for the parent's class and all
superclasses up to constraintWidgetClass.

• Calls the initialize procedures for the widget by starting at the Core initialize procedure on
down to the widget's initialize procedure.

• If the parent is a subclass of compositeWidgetClass, it puts the widget into its parent's
children list by calling its parent's insert child procedure. For further information, see
Section 35. -

• If the parent is a subclass of constraintWidgetClass, it calls the constraint initialize
procedures, starting at constraintWidgetClass on down to the parent's constraint initialize
procedure. Note that you can determine the number of arguments in an argument list by
using the XtNumber macro. For further information, see Section 11.1. The
XtCreateManagedWidget function is a convenience routine that calls XtCreateWidget and
XtManageChild. The XtDestroyWidget function provides the only method of destroying a
widget, including widgets that need to destroy themselves. It can be called at any time,

Hewlett-Packard Company -1- JuI16,1989

XtCreateWidget (3X) XtCreateWidget (3X)
Series 300 and 800 Only

including from an application callback routine of the widget being destroyed. This requires
a two-phase destroy process in order to avoid dangling references to destroyed widgets. In
phase one, XtDestroyWidget performs the following:

• If the being_destroyed field of the widget is True, it returns immediately.

• Recursively descends the widget tree and sets the being_destroyed field to True for the
widget and all children.

• Adds the widget to a list of widgets (the destroy list) that should be destroyed when it is safe
to do so. Entries on the destroy list satisfy the invariant that if w2 occurs after w1 on the
destroy list then w2 is not a descendent of w1. (A descendant refers to both normal and
pop-up children.) Phase two occurs when all procedures that should execute as a result of
the current event have been called (including all procedures registered with the event and
translation managers), that is, when the current invocation of XtDispatchEvent is about to
return or immediately if not in XtDispatchEvent. In phase two, XtDestroyWidget performs
the following on each entry in the destroy list:

• Calls the destroy callback procedures registered on the widget (and all descendants) in
post-order (it calls children callbacks before parent callbacks).

• If the widget's parent is a subclass of compositeWidgetClass and if the parent is not being
destroyed, it calls XtUnmanageChild on the widget and then calls the widget's parent's
delete_child procedure (see Section 3.4).

• If the widget's parent is a subclass of constraintWidgetClass, it calls the constraint destroy
procedure for the parent, then the parent's superclass, until finally it calls the constraint
destroy procedure for constraintWidgetClass.

• Calls the destroy methods for the widget (and all descendants) in post-order. For each such
widget, it calls the destroy procedure declared in the widget class, then the destroy
procedure declared in its superclass, until finally it calls the destroy procedure declared in
the Core class record.

• Calls XDestroyWindow if the widget is realized (that is, has an X window). The server
recursively destroys all descendant windows.

• Recursively descends the tree and deallocates all pop-up widgets, constraint records,
callback lists and, if the widget is a subclass of compositeWidgetClass, children.

SEE ALSO
XtAppCreateShell(3X), XtCreatePopupShell(3X)
Programming with Xlib

Hewlett-Packard Company -2- Jul 16, 1989

XtCre8teWindow(3X) XtCreateWindow(3X)

NAME

SYN'L\X

Series 300 and 800 Only

XtCreateWindow - window creation convenience function

void XtCreateWindow(w, window_class, visual, value_mask, attributes)
Widgetw;
unsigned int window class;
Visual *visual; -
XtValueMask value mask;
XSetWindowAttributes *attributes;

ARGUMENTS
attributes Specifies the window attributes to use in the XCreateWindow call.

value mask

visual

w

window class

DESCRIPTION

Specifies which attribute fields to use.

Specifies-the visual type (usually CopyFromParent).

Specifies the widget that is used to set the x,y coordinates and so on.

Specifies the X1ib window class (for example, InputOutput, InputOnly, or
CopyFromParent).

The XtCreateWindow function calls the Xlib XCreateWindow function with values from the
widget structure and the passed parameters. Then, it assigns the created window to the widget's
window field. XtCreateWindow evaluates the following fields of the Core widget structure:

• depth

• screen

• parent -> core.window

• x

• y

• width

• height

• border width

SEE ALSO
Programming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

XtDisplay(3X) XtDisplay(3X)
Series 300 and 800 Only

NAME
XtDisplay, XtParent, XtScreen, XtWindow - obtain window information about a widget

SYNTAX
Display *XtDisplay(w)

Widgetw;
Widget XtParent(w)

Widgetw;
Screen *XtScreen(w)

Widgetw;
Window XtWindow(w)

Widgetw;

ARGUMENTS
w Specifies the widget.

DESCRIPTION
XtDisplay returns the display pointer for the specified widget. XtParent returns the parent widget
for the specified widget. XtScreen returns the screen pointer for the specified widget. XtWindow
returns the window of the specified widget.

SEE ALSO
XtClass(3X)
Programming with Xlib

Hewlett-Packard Company -1 - Jul 16, 1989

XtDispJayInitiaJize (3X) XtDispJayInitiaIize (3X)

NAME

SYNTAX

Series 300 and 800 Only

XtDisplaylnitialize - a function that initializes the toolkit's view of a display and adds it to an
application context.

#include <Xm/Xm.h>

Widget XtDisplaylnitialize (app context, display, application name, application class, options,
num options, argc, mgv) - --

- XtAppContext app context;
Display * diiplay;
String application name;
String application =class;
XrmOptionDescRec options;
Cardinal num options;
Cardinal * cui;
String mgv;

DESCRIPTION
XtDisplayInitialize parses the command line that invoked the application, and loads the resource
database. XtDisplayInitialize is a back-end routine that is usually called be XtInitialize. It may be
called directly if the application needs to open more than one display. XtDiplayInitialize is passed
an open display. XtOpenDisplay can be used in the case where an open display has not yet been
generated.

By passing the command line that invoked your application to XtDisplayInitialize, the function
can parse the line to allow users to specify certain resources (such as fonts and colors) for your
application at run time. XtDisplaylnitialize scans the command line and removes those options.
The rest of your application sees only the remaining options.

XtDisplayInitialize supports localization of defaults files based on the value of the lANG
environment variable. The user can specify a language by using the LANG environment variable.
Elements of this variable are then used to establish a path to the proper resource files. The
following substitutions are used in building the path:

• %N is replaced by class_name of the application.

• %L is replaced by the value of LANG environment variable.

• %1 is replaced by the language part of LANG environment variable.

• %t is replaced by the territory part of LANG environment variable.

• o/oe is replaced by the code set part of LANG environment variable.

• %% is replaced by %.

If the LANG environment variable is not defined, or if one of its parts is missing, then a %
element that references it is replaced by NULL.

The paths contain a series of elements separated by colons. Each element denotes a file name,
and the file names are looked up left to right till one of them succeeds. Before doing the lookup,
substitutions are performed.

NOTE: We are using the X/Open convention of collapsing multiple adjoining slashes in a
filename into one slash.

The XtInitalize function loads the resource database by merging in resources from these sources:

• Application-specific class resource file on the local host.

• Application-specific user resource file on the local host.

• Resource property on the server or user preference resource file on the local host.

• Per-host user environment resource file on the local host.

Hewlett-Packard Company -1- Jul 16, 1989

XtDisplayInitiBlize(3X) XtDisplayInitiBlize (3X)
Series 300 and 800 Only

• The application command line (argv).

To load the application-specific class resource file, XtDisplayInitialize performs the appropriate
substitutions on this path:

• /usr/lib/Xll/%L/app-defaults/%N:/usr/lib/Xll/app-defaults/%N

If lANG environment variable is not defined (or the first path lookup using lANG fails), then the
lookup will default to the current non-language specific location
(fusr/lib/Xll/app _ defaults/%N).

To load the user's application resource file, XtDisplayInitialize performs the following steps:

• Use XAPPLRESlANGPATH environment variable to look up the file. A possible value for
XAPPLRESIANGDIR is:

./%N:$HOME/app-defaults/%L/%N:$HOME/app-defaults/%N:$HOME/%L/%N:$HOME/%N

• If that fails, or if XAPPLPRESIANGPATH is not defined, and if XAPPLRESDIR is defined,
use the following as the path:

$XAPPLRESDIR%L/%N:$XAPPLRESDIR%N

• else use:

$HOME/%L/%N:$HOME/%N

Note that if the XAPPLRESIANGPATH lookup is not successful and lANG is not defined the
lookup is then eq uivalent to that used by the R3 specification of XtInitialize (actually described
under XtDisplayInitialize).

The parameters for XtDisplayInitialize are defined below:

app _context Specifies the application context.

display Specifies the display. Note that a display can be in at most one
application context.

application -"arne
application _class

options

num _options

argc
argv

SEE ALSO
Xtinitialize(3X)

Hewlett-Packard Company

Specifies the name of this application.

Specifies the class name of this application, which usually is the generic
name for all instances of this application. By convention, the class name
is formed by reversing the case of the application's first letter. The class
name is used to locate the files used to initialize the resource database.

Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to
XrmParseCommand.

Specifies the number of entries in options list

Specifies a pointer to the number of command line parameters.

Specifies the command line parameters.

-2- Jul 16, 1989

XtGetGC(3X) XtGetGC(3X)
Series 300 and 800 Only

NAME
XtGetGC, XtReleaseGC - obtain and destroy a sharable GC

SYNTAX
GC XtGetGC(w, value mask, values)

Widgetw; -
XtGCMask value mask;
XGCValues *valUes;

void XtReleaseGC(w, gc)
Widgetw;
GCgc;

ARGUMENTS
gc

values

value mask

w

DESCRIPTION

Specifies the GC to be deallocated.

Specifies the actual values for this Gc.

Specifies which fields of the values are specified.

Specifies the widget.

The XtGetGC function returns a sharable, read-only Gc. The parameters to this function are the
same as those for XCreateGC except that a widget is passed instead of a display. XtGetGC shares
only GCs in which all values in the GC returned by XCreateGC are the same. In particular, it
does not use the value mask provided to determine which fields of the GC a widget considers
relevant. The value mask is used only to tell the server which fields should be filled in with
widget data and which it should fill in with default values. For further information about
value_mask and values, see XCreateGC in the Programming with Xlib. The XtReleaseGC
function deallocate the specified shared GC.

SEE ALSO
Programming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

XtGetResourceList (3X) XtGetResourceList (3X)
Series 300 and 800 Only

NAME
XtGetResourceList - obtain resource list

SYNTAX
void XtGetResourceList(class, resources return, num resources return);

WidgetClass class; - - -
"':.._AesourceList *resources return;
Cardinal *num Jesources Ji!turn;

ARGUMENTS
num resources return

- - Specifies a pointer to where to store the number of entries in the resource
list.

resources return

widget_class
DESCRIPTION

Specifies a pointer to where to store the returned resource list. The caller
must free this storage using XtFree when done with it.

Specifies the widget class.

If it is called before the widget class is initialized (that is, before the first widget of that class has
been created), XtGetResourceList returns the resource list as specified in the widget class record.
If it is called after the widget class has been initialized, XtGetResourceList returns a merged
resource list that contains the resources for all superclasses.

SEE ALSO
XtGetSubresources(3X), XtOffset(3X)
Programming with Xlib

Hewlett-Packard Company -1- Ju116,1989

XtParseTranslationTable (3X) XtParseTranslationTable (3X)

NAME

SYNTAX

Series 300 and 800 Only

XtParseTranslationTable, XtAugmentTranslations, XtOverrideTranslations,
XtUninstallTranslations - manage translation tables

XtTranslations XtParseTranslationTable(table)
String table;

void XtAugmentTranslations(w, translations)
Widgetw;
XtTranslations translations;

void XtOverrideTranslations(w, translations)
Widgetw;
XtTranslations translations;

void XtUninstallTranslations(w)
Widgetw;

ARGUMENTS
table Specifies the translation table to compile.

translations

w

DESCRIPTION

Specifies the compiled translation table to merge in (must not be NULL).

Specifies the widget into which the new translations are to be merged or
removed.

The XtParseTranslationrable function compiles the translation table into the opaque internal
representation of type XtTranslations. Note that if an empty translation table is required for any
purpose, one can be obtained by calling XtParseTranslationrable and passing an empty string.
The XtAugmentTranslations function nondestructively merges the new translations into the
existing widget translations. If the new translations contain an event or event sequence that
already exists in the widget's translations, the new translation is ignored. The
XtOverrideTranslations function destructively merges the new translations into the existing widget
translations. If the new translations contain an event or event sequence that already exists in the
widget's translations, the new translation is merged in and override the widget's translation. To
replace a widget's translations completely, use XtSetValues on the XtNtranslations resource and
specifiya compiled translation table as the value. The XtUninstallTranslations function causes
the entire translation table for widget to be removed.

SEE ALSO
XtAppAddActions(3X), XtCreatePopupShell(3X), XtParseAcceleratotfable(3X), XtPopup(3X)
Programming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

XtPopdown (3X)
Series 300 and 800 Only

NAME
XtPopdown, XtCallbackPopdown, MenuPopdown - unmap a pop-up

SYNTAX
void XtPopdown(popup _shell)

Widget popup _shell;
void XtCallbackPopdown(w, client data, call data)

Widgetw; --
caddr t client data;
caddr - t call data;

void MenuPopdown(shell name)
String shell_name; -

ARGUMENTS

XtPopdown (3X)

call data Specifies the callback data, which is not used by this procedure.

client data

popup _shell

shell name

Specifies a pointer to the XtPopdownlD structure.

Specifies the widget shell to pop down.

w

Specifies the name of the widget shell to pop down.

Specifies the widget.

DESCRIPTION
The XtPopdown function performs the following:

• Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

• Checks that popup_shell is currently popped_up; otherwise, it generates an error.

• Unmaps popup_shell's window.

• If popup_shell's grab_kind is either XtGrabNonexclusive or XtGrabExdusive, it calls
XtRemoveGrab.

• Sets pop-up shell's popped_up field to False.

• Calls the callback procedures on the shell's popdown _callback list. The
XtCallbackPopdown function casts the client data parameter to an XtPopdownlD pointer:
typedef struct {

Widget shell widget;
Widget enable widget;

} XtPopdownIDRec, *XtPopdownID;
The shell widget is the pop-up shell to pop down, and the enable widget is the widget that was used to
pop it up~ XtCallbackPopdown calls XtPopdown with the specified shell_widget and then calls
XtSetSensitive to resensitize the enable widget. If a shell name is not given, MenuPopdown calls
XtPopdown with the widget for which the translation is specified. If a shell name is specified in the
translation table, MenuPopdown tries to find the shell by looking up the widget tree starting at the parent
of the widget in which it is invoked. If it finds a shell with the specified name in the pop-up children of
that parent, it pops down the shell; otherwise, it moves up the parent chain as needed. If MenuPopdown
gets to the application top-level shell widget and cannot find a matching shell, it generates an error.

SEE ALSO
XtCreatePopupShell(3X), XtPopup(3X)
Programming with Xlib

Hewlett-Packard Company - 1 - Jul 16, 1989

XtPopup(3X) XtPopup (3X)

NAME

SYNTAX

Series 300 and 800 Only

XtPopup, XtCallbackNone, XtCallbackNonexclusive, XtCallbackExclusive, MenuPopup - map a
pop-up

void XtPopup(popup shell, grab kind)
Widget popup shell; -
XtGrabKind grab kind;

void XtCallbackNone(w, client data, call data)
Widgetw; --
caddr t client data;
caddr - t call data;

void XtaiilbackNonexclusive(w, client data, call data)
Widgetw; --
caddr t client data;
caddr - t call data;

void XtaiilbackExclusive(w, client data, call data)
Widgetw; --
caddr t client data;
caddr - t call data;

void MenUPopup(shell name)
Stringshell~ame;-

ARGUMENTS
call data

client data

grab_kind

popup_shell

w

DESCRIPTION

Specifies the callback data, which is not used by this procedure.

Specifies the pop-up shell.

Specifies the way in which user events should be constrained.

Specifies the widget shell.

Specifies the widget.

The XtPopup function performs the following:

• Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

• Generates an error if the shell's popped_up field is already True.

• Calls the callback procedures on the shell's popup _callback list.

• Sets the shell popped up field to True, the shell spring loaded field to False, and the shell
grab_kind field from grab _kind. -

• If the shell's create ~pup _child field is non-NULL, XtPopup calls it with popup_shell as
the parameter.

• If grab_kind is either XtGrabNonexclusive or XtGrabExclusive, it calls:
XtAddGrab(popup _shell, (grab_kind = = XtGrabExclusive), False)

• Calls XtReaIizeWidget with popup_shell specified.

• Calls XMapWmdow with popup shell specified. The XtCallbackNone,
XtCallbackNonexclusive, and XtCallbackExclusive functions call XtPopup with the shell
specified by the client data argument and grab kind set as the name specifies.
XtCallbackNone, XtCallbackNonexclusive, and XtCallbackExclusive specify XtGrabNone,
XtGrabNonexclusive, and XtGrabExclusive, respectively. Each function then sets the
widget that executed the callback list to be insensitive by using XtSetSensitive. Using these
functions in callbacks is not required. In particular, an application must provide customized
code for callbacks that create pop-up shells dynamically or that must do more than
desensitizing the button. MenuPopup is known to the translation manager, which must
perform special actions for spring-loaded pop-ups. Calls to MenuPopup in a translation
specification are mapped into calls to a nonexported action procedure, and the translation
manager fills in parameters based on the event specified on the left-hand side of a
translation. If MenuPopup is invoked on ButtonPress (possibly with modifiers), the

Hewlett-Packard Company -1- Jul 16, 1989

XtPopup(3X) XtPopup(3X)
Series 300 and 800 Only

translation manager pops up the shell with grab kind set to XtGrabExclusive and
spring)oaded set to True. If MenuPopup is invoked on EnterWmdow (possiblywith
modifiers), the translation manager pops up the shell with grab kind set to
XtGrabNonexciusive and spring loaded set to False. Otherwise, the translation manager
generates an error. When the wfdget is popped up, the following actions occur:

• Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

• Generates an error if the shell's popped_up field is already True.

• Calls the callback procedures on the shell's popup_callback list.

• Sets the shell popped up field to True and the shell grab kind and spring loaded fields
appropriately. - --

• If the shell's create yopup _child field is non-NULL, it is called with popup_shell as the
parameter.

• Calls:
XtAddGrab(popup _shell, (grab_kind = = XtGrabExclusive), spring)oaded)

• Calls XtRealizeWidget with popup_shell specified.

• Calls XMapWindow with popup shell specified. (Note that these actions are the same as
those for XtPopup.) MenuPopup tries to find the shell by searching the widget tree starting
at the parent of the widget in which it is invoked. If it finds a shell with the specified name
in the pop-up children of that parent, it pops up the shell with the appropriate parameters.
Otherwise, it moves up the parent chain as needed. If MenuPopup gets to the application
widget and cannot find a matching shell, it generates an error.

SEE ALSO
XtCreatePopupShell(3X), XtPopdown(3X)
Programming with Xlib

Hewlett-Packard Company -2- Ju116, 1989

XtQueryGeometry(3X) XtQueryGeometry(3X)
Series 300 and 800 Only

NAME
XtQueryGeometry - query the preferred geometry of a child widget

SYNTAX
XtGeometryResult XtQueryGeometry(w, intended, preferred Jetum)

Widgetw;
XtWidgetGeometry *intended, *prefetTed Jetum;

ARGUMENTS
intended Specifies any changes the parent plans to make to the child's geometry or

NULL.

DESCRIPTION

Returns the child widget's preferred geometry.

Specifies the widget.

To discover a child's preferred geometry, the child's parent sets any changes that it intends to
make to the child's geometry in the corresponding fields of the intended structure, sets the
corresponding bits in intended.request mode, and calls XtQueryGeometry. XtQueryGeometry
clears all bits in the preferred Jeturn-:> request_mode and checks the query_geometry field of the
specified widget's class record. If query geometry is not NULL, XtQueryGeometry calls the
query_geometry procedure and passes as arguments the specified widget, intended, and
preferred return structures. If the intended argument is NULL, XtQueryGeometry replaces it
with a pointer to an XtWidgetGeometry structure with request_mode =0 before calling
query_geometry.

SEE ALSO
XtConfigureWidget(3X), XtMakeGeometryRequest(3X)
Programming with Xlib

Hewlett-Packard Company - 1- Jul 16, 1989

XtReallzeWidget(3X) XtRealizeWidget (3X)
Series 300 and 800 Only

NAME
XtRealizeWidget, XtlsRealized, XtUnrealizeWidget - realize and unrealize widgets

SYNTAX
void XtRealizeWidget(w)

Widgetw;
Boolean XtlsRealized(w)

Widgetw;
void XtUnrealizeWidget(w)

Widgetw;

ARGUMENTS
w Specifies the widget.

DESCRIPTION
If the widget is already realized, XtRealizeWidget simply returns. Otherwise, it performs the
following:

• Binds all action names in the widget's translation table to procedures (see Section 10.1.2).

• Makes a post-order traversal of the widget tree rooted at the specified widget and calls the
change managed procedure of each composite widget that has one or more managed
children.

• Constructs an XSetWindowAttributes structure filled in with information derived from the
Core widget fields and calls the realize procedure for the widget, which adds any widget
specific attributes and creates the X window.

• If the widget is not a subclass of compositeWidgetClass, XtRealizeWidget returns;
otherwise, it continues and performs the following:

Descends recursively to each of the widget's managed children and calls the realize
procedures. Primitive widgets that instantiate children are responsible for realizing
those children themselves.

Maps all of the managed children windows that have mapped when managed True.
(If a widget is managed but mapped when managed is False;-the widget is allocated
visual space but is not displayed. Some people seem to like this to indicate certain
states.)

If the widget is a top-level shell widget (that is, it has no parent), and mapped_when _managed is
True, XtRealizeWidget maps the widget window. The XtIsRealized function returns True if the
widget has been realized, that is, if the widget has a nonzero X window ID. Some widget
procedures (for example, set_values) might wish to operate differently after the widget has been
realized. The XtUnrealizeWidget function destroys the windows of an existing widget and all of its
children (recursively down the widget tree). To recreate the windows at a later time, call
XtRealizeWidget again. If the widget was managed, it will be unmanaged automatically before its
window is freed.

SEE ALSO
XtManageChildren(3X)
Programming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

XtSetArg(3X)

NAME

SYNTAX

Series 300 and 800 Only

XtSetArg, XtMergeArgLists - set and merge ArgLists

XtSetArg(tug, name, value)
Argcug;
String name;
XtArgVal value;

ArgList XtMergeArgLists(mgsl, num mgsl, args2, num mgs2)
ArgList mgsl; - -
Cardinal num mgsl;
ArgList mgs2;-
Cardinal num _ mgs2;

ARGUMENTS
tug

mgsl

Specifies the name-value pair to set.

Specifies the first ArgList.

Specifies the second ArgList.

Specifies the number of arguments in the first argument list.

Specifies the number of arguments in the second argument list.

Specifies the name of the resource.

XtSetArg(3X)

mgs2

num_mgsl

num_mgs2

name

value Specifies the value of the resource if it will fit in an XtArgVal or the address.

DESCRIPTION
The XtSetArg function is usually used in a highly stylized manner to minimize the probability of
making a mistake; for example:
Arg args[20);
into;

n = 0;
XtSetArg(args[n), XtNbeight, 100); n+ +;
XtSetArg(args[n), XtNwidtb, 200); n+ +;
XtSetValues(widget, args, n);

Alternatively, an application can statically declare the argument list and use XtNumber:
static Args args[] = {

};

{XtNheight, (XtArgVal) 1OO},
{XtNwidth, (XtArgVal) 2oo},

XtSetValues(Widget, args, XtNumber(args»;
Note that you should not use auto-increment or auto-decrement within the first argument to XtSetArg.
XtSetArg can be implemented as a macro that dereferences the first argument twice. The
XtMergeArgLists function allocates enough storage to hold the combined ArgList structures and copies
them into it. Note that it does not check for duplicate entries. When it is no longer needed, free the
returned storage by using XtFree.

SEE AlSO
XtOffset(3X)
Programming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

XtSetKeyboardFocus (3X) XtSetKeyboardFocus (3X)
Series 300 and 800 Only

NAME
XtSetKeyboardFocus - focus events on a child widget

SYNTAX
XtSetKeyboardFocus(subtree, descendant)

Widget subtree, descendant;

ARGUMENTS
descendant Specifies either the widget in the subtree structure which is to receive the

keyboard event, or None. Note that it is not an error to specify None when
no input focus was previously set.

w Specifies the widget for which the keyboard focus is to be set.

DESCRIPTION
If a future KeyPress or KeyRelease event occurs within the specified subtree,
XtSetKeyboardFocus causes XtDispatchEvent to remap and send the event to the specified
descendant widget When there is no modal cascade, keyboard events can occur within a widget
W in one of three ways:

• W has the X input focus.

• W has the keyboard focus of one of its ancestors, and the event occurs within the ancestor or
one of the ancestor's descendants.

• No ancestor of W has a descendant within the keyboard_ focus, and the pointer is within W.
When there is a modal cascade, a widget W receives keyboard events if an ancestor of W is
in the active subset of the modal cascade and one or more of the previous conditions is
True. When subtree or one of its descendants acquires the X input focus or the pointer
moves into the subtree such that keyboard events would now be delivered to subtree, a
Focusln event is generated for the descendant if FocusNotify events have been selected by
the descendant. Similarly, when W loses the X input focus or the keyboard focus for one of
its ancestors, a FocusOut event is generated for descendant if FocusNotify events have been
selected by the descendant.

SEE ALSO
XtCallAcceptFocus(3X)
Programming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

XtSetKey'Iranslator (3X) XtSetKey'Iranslator (3X)

NAME

Series 300 and 800 Only

XtSetKeyTranslator, XtTranslateKeycode, XtRegisterCaseConverter, XtConvertCase - convert
KeySym to KeyCodes

SYNTAX
void XtSetKeyTranslator(display, proc)

Display *display;
XtKeyProc proc;

void XtTranslateKeycode(display, keycode, modifiers, modifiers return, keysym return)
Display *display; --
KeyCode keycode;
Modifiers modifiers;
Modifiers *modifiers return;
KeySym *keysym return;

void XtRegisterCaseConverter(display, proc, start, stop)
Display * display;
XtCaseProc proc;
KeySym start;
KeySym stop;

void XtConvertCase(display, keysym, lower return, upper return)
Display *display; --
KeySym keysym;
KeySym *lower return;
KeySym *upper"Jeturn;

ARGUMENTS
display Specifies the display.

keycode

keysym

Specifies the KeyCode to translate.

Specifies the KeySym to convert.

Returns the resulting KeySym.

Returns the lowercase equivalent of the KeySym.

Returns the uppercase equivalent of the KeySym.

Specifies the modifiers to the KeyCode.

keysym _return
lower return

upper_return

modifiers
modifiers_return Returns a mask that indicates the modifiers actuaIIy used to generate the

KeySym.

proc

start
Specifies the procedure that is to perform key translations or conversions.

Specifies the first KeySym for which this converter is valid.

stop Specifies the last KeySym for which this converter is valid.

DESCRIPTION
The XtSetKeyI'ranslator function sets the specified procedure as the current key translator. The
default translator is XtTranslateKey, an XtKeyProc that uses Shift and Lock modifiers with the
interpretations defined by the core protocol. It is provided so that new translators can caU it to get
default KeyCode-to-KeySym translations and so that the default translator can be reinstaUed. The
XtTranslateKeycode function passes the specified arguments directly to the currently registered
KeyCode to KeySym translator. The XtRegisterCaseConverter registers the specified case
converter. The start and stop arguments provide the inclusive range of KeySyms for which this
converter is to be caUed. The new converter overrides any previous converters for KeySyms in
that range. No interface exists to remove converters; you need to register an identity converter.
When a new converter is registered, the X Toolkit Intrinsics refreshes the keyboard state if
necessary. The default converter understands case conversion for an KeySyms defined in the core
protocol. The XtConvertCase function caUs the appropriate converter and returns the results. A
user-supplied XtKeyProc may need to use this function.

SEE ALSO
Programming with)(Jib

Hewlett-Packard Company -1- Ju116, 1989

XtSetSensitlve (3X) XtSetSensitlve (3X)
Series 300 and 800 Only

NAME
XtSetSensitive, XtIsSensitive - set and check a widget's sensitivity state

SYNTAX
void XtSetSensitive(w, sensitive)

Widgetw;
Boolean sensitive;

Boolean XtlsSensitive(w)
Widgetw;

ARGUMENTS
sensitive Specifies a Boolean value that indicates whether the widget should receive

keyboard and pointer events.

w Specifies the widget.

DESCRIPl10N
The XtSetSensitive function first calls XtSetValues on the current widget with an argument list
specifying that the sensitive field should change to the new value. It then recursively propagates
the new value down the managed children tree by calling XtSetValues on each child to set the
ancestor sensitive to the new value if the new values for sensitive and the child's ancestor sensitive
are not the same. XtSetSensitive calls XtSetValues to change sensitive and ancestor senSitive.
Therefore, when one of these changes, the widget's set values procedure should take whatever
display actions are needed (for example, greying out or stippling the widget). XtSetSensitive
maintains the invariant that ifparent has either sensitive or ancestor sensitive False, then all
children have ancestor sensitive False. The XtlsSensitive function returns True or False to
indicate whether or not user input events are being dispatched. If both core.sensitive and
core. ancestor_sensitive are True, XtlsSensitive returns True; otherwise, it returns False.

SEE ALSO
Programming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

XtSetValues (3X) XtSetValues (3X)
Series 300 and 800 Only

NAME
XtSetValues, XtSetSubvalues, XtGetValues, XtGetSubvalues - obtain and set widget resources

SYNTAX
void XtSetValues(w, args, num args)

Widgetw; -
ArgList args;
Cardinal num args;

void XtSetSubvalues(base, resources, num resources, args, num args)
caddr t base; - -
XtReSourceList resources;
Cardinal num resources;
ArgList args; -
Cardinal num args;

void XtGetValues(w, args, num args)
Widgetw; -
ArgList args;
Cardinal num args;

void XtGetSubvalues(base, resources, num ..!esources, args, num _ args)
caddr t base;
XtReSourceList resources;
Cardinal num resources;
ArgList args; -
Cardinal num _ args;

ARGUMENTS
args Specifies the argument list of name/address pairs that contain the resource

name and either the address into which the resource value is to be stored or
their new values.

base

num_args

resources

num resources
w

DESCRIPTION

Specifies the base address of the subpart data structure where the resources
should be retrieved or written.

Specifies the number of arguments in the argument list.

Specifies the nonwidget resource list or values.

Specifies the number of resources in the resource list.

Specifies the widget.

The XtSetValues function starts with the resources specified for the Core widget fields and
proceeds down the subclass chain to the widget. At each stage, it writes the new value (if specified
by one of the arguments) or the existing value (if no new value is specified) to a new widget data
record. XtSetValues then calls the set values procedures for the widget in superclass-to-subclass
order. If the widget has any non-NULL set values hook fields, these are called immediately after
the corresponding set_values procedure. This procedure permits subclasses to set nonwidget data
for XtSetValues. If the widget's parent is a subclass of constraintWidgetClass, XtSetValues also
updates the widget's constraints. It starts with the constraint resources specified for
constraintWidgetClass and proceeds down the subclass chain to the parent's class. At each stage,
it writes the new value or the existing value to a new constraint record. It then calls the constraint
set_values procedures from constraintWidgetClass down to the parent's class. The constraint
set_values procedures are called with widget arguments, as for all set_values procedures, not just
the constraint record arguments, so that they can make adjustments to the desired values based on
full information about the widget. XtSetValues determines if a geometry request is needed by
comparing the current widget to the new widget. If any geometry changes are required, it makes
the request, and the geometry manager returns XtGeornetryYes, XtGeornetryAlmost, or
XtGeornetryNo. If XtGeometryYes, XtSetValues calls the widget's resize procedure. If
XtGeometryNo, XtSetValues resets the geometry fields to their original values. If
XtGeornetryAlmost, XtSetValues calls the set values almost procedure, which determines what
should be done and writes new values for the geometry fields into the new widget. XtSetValues

Hewlett-Packard Company -1- JuI16,1989

XtSetValues (3X) XtSetValues (3X)
Series 300 and 800 Only

then repeats this process, deciding once more whether the geometry manager should be called.
Finally, if any of the set_values procedures returned True, XtSetValues causes the widget's expose
procedure to be invoked by calling the Xlib XClearArea function on the widget's window. The
XtSetSubvalues function stores resources into the structure identified by base. The XtGetValues
function starts with the resources specified for the core widget fields and proceeds down the
subclass chain to the widget. The value field of a passed argument list should contain the address
into which to store the corresponding resource value. It is the caller's responsibility to allocate
and deallocate this storage according to the size of the resource representation type used within
the widget. If the widget's parent is a subclass of constraintWidgetClass, XtGetValues then
fetches the values for any constraint resources requested. It starts with the constraint resources
specified for constraintWidgetClass and proceeds down to the subclass chain to the parent's
constraint resources. If the argument list contains a resource name that is not found in any of the
resource lists searched, the value at the corresponding address is not modified. Finally, if the
get values hook procedures are non-NULL, they are called in superclass-to-subclass order after
all the resource values have been fetched by XtGetValues. This permits a subclass to provide
nonwidget resource data to XtGetValues. The XtGetSubvalues function obtains resource values
from the structure identified by base.

SEEAISO
Programming with Xlib

Hewlett-Packard Company -2- Jul 16, 1989

XtStringConversionWarning(3X)
Series 300 and 800 OnJ)'

NAME
XtStringConversionWarning - issue a conversion warning message

SYNTAX
void XtStringConversion Warning(src, dst type)

String src, dst _type; -

XtStringConversionWarning(3X)

ARGUMENTS
src Specifies the string that could not be converted.

dst_type Specifies the name of the type to which the string could not be converted.

DESCRIPI10N
The XtStringConversionWarning function issues a warning message with name
"conversionError", type "string", class "XtToolkitError, and the default message string "Cannot
convert "src" to type dst_type".

SEE ALSO
XtAppAddConverter(3X), XtAppErrorMsg(3X), XtConvert(3X)
Programming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

Xt1i'anslateCoordinates (3X)
Series 300 and 800 Only

NAME
XtTranslateCoordinates - translate widget coordinates

SYNTAX
void XtTranslateCoords(w,x,y, rootx return, rooty return)

Widgetwj --
Position x, Yj
Position *rootx ..!eturn, *rooty Jf!turnj

ARGUMENTS
rootx return
rooty ..!eturn
x
y

W

DESCRIPTION

Returns the root-relative x and y coordinates.

Specify the widget-relative x and y coordinates.

Specifies the widget.

Xt1i'ansJateCoordinates (3X)

While XtTranslateCoords is similar to the Xlib XTranslateCoordinates function, it does not
generate a server request because all the required information already is in the widget's data
structures.

SEE ALSO
Programming with Xlib

Hewlett-Packard Company -1- Ju116,1989

XtUngrabKey(3X) XtUngrabKey (3X)
Series 300 and 800 Only

NAME
XtUngrabKey - a function that cancels a passive grab on a key combination.

SYNTAX
#indude <Xll/PassivGrab.h>

void XtUngrabKey (widget, keycode, modifiers)
Widget widget;
Keycode keycode;
unsigned int modifiers;

DESCRIPTION
XtUngrabKey cancels the passive grab on the key combination on the specified widget and allows
the client to redirect the specified key event to the root widget of a hierarchy.

widget

keycode

modifiers

Specifies the root widget to the XtUngrabKey call.

Specifies the Keycode. This maps to the specific key to be grabbed.

Specifies the set of keymasks. This mask is the bitwise inclusive OR of these
keymask bits: ShiftMask, LockMask, ControlMask, ModlMask, Mod2Mask,
M0d3Mask, Mod4Mask, Mod5Mask. You can also pass AnyModifier, which is
equivalent to issuing the ungrab key request for all possible modifier
combinations, including the combination of no modifiers.

SEE ALSO
XtGrabKey(3X)

Hewlett-Packard Company -1- JuI16,1989

XlUngrabKeyboard (3X) XlUngrabKeyboard(3X)
Series 300 and 800 Only

NAME
XtUngrabKeyboard - a function releases an active grab on the keyboard.

SYNTAX
#include <Xll/PassivGrab.h>

void XtUngrabKeyboard (widget, time))
Widget widget;
Time time;

DESCRIPTION
XtUngrabKeyboard :.-eleases any active grab on the keyboard.

Specifies the root widget to the XtUngrabKeyboard call. widget

time Specifies the time. You can pass either a timestamp, expressed in milliseconds, or
CurrentTime.

SEE ALSO
XtGrabKeyboard(3X)

Hewlett-Packard Company -1- Jul 16, 1989

XtGetSelectionValue (3X) XtGetSelectionValue (3 X)

NAME

SYNTAX

Series 300 and 800 Only

XtGetSelectionValue, XtGetSelectionValues, XtGetSelectionValueslncremental- obtain selection
values

void XtGetSelectionValue(w, selection, target, callback, client_data, time)
Widgetw;
Atom selection;
Atom target;
XtSelectionCallbackProc callback;
caddr t client data;
Time time; -

void XtGetSelectionValues(w, selection, targets, count, callback, client_data, time)
Widgetw;
Atom selection;
Atom *targets;
int count;
XtSelectionCallbackProc callback;
caddr t client data;
Time time; -

void XtGetSelectionValueslncremental(w, selection, targets, count, selection _callback,
cancel_callback, client_data, time)

Widgetw;
Atom selection;
Atom *targets;
int count;
XtSelectionlncrCallbackProc selection callback;
XtCancelConvertSelectionProc cancel-callback;
caddr t client data; -
Time time; -

ARGUMENTS
callback

cancel callback

client data

client data

count

selection

selection callback

target

targets

time

w

DESCRIPTION

Specifies the callback procedure that is to be called when the selection value
has been obtained.

Specifies the callback procedure that is to be called if the connection is lost.

Specifies the argument that is to be passed to the specified procedure when
it is called.

Specifies the client data (one for each target type) that is passed to the
callback procedure when it is called for that target.

Specifies the length of the targets and client_data lists.

Specifies the particular selection desired (that is, primary or secondary).

Specifies the callback procedure that is to be called to obtain the next
incremental chunk of data or for each selection value obtained.

Specifies the type of the information that is needed about the selection.

Specifies the types of information that is needed about the selection.

Specifies the timestamp that indicates when the selection value is desired.

Specifies the widget that is making the request.

The XtGetSelectionValue function requests the value of the selection that has been converted to
the target type. The specified callback will be called some time after XtGetSelectionValue is called;
in fact, it may be called before or after XtGetSelectionValue returns. The XtC..etSelectionValues
function is similar to XtGetSelectionValue except that it takes a list of target types and a list of
client data and obtains the current value of the selection converted to each of the targets. The
effect is as if each target were specified in a separate cali to XtGetSelectionValue. The callback is

Hewlett-Packard Company - 1 - Jul 16, 1989

XtGetSelectionValue (3X) XtGetSelectionValue (3X)
Series 300 and 800 Only

called once with the corresponding client data for each target. XtGetSelectionValues does
guarantee that all the conversions will use the same selection value becaues the ownership of the
selection cannot change in the middle of the list, as would be when calling XtGetSelectionValue
repeatedly. The XtGetSelectionValuelncremental function is similar to XtGetSelectionValue
except that the callback procedure will be called repeatedly each time upon delivery of the next
segment of the selection value. The end of the selection value is detected when callback is called
with a value of length zero. If the transfer of the selection is aborted in the middle of a transfer,
the cancel callback procedure is called so that the requestor can dispose of the partial selection
value it has collected up until that point. The XtGetSelectionValueslncremental function is similar
to XtGetSelectionValuelncremental except that it takes a list of targets and c1ient_ data.
XtGetSelectionValueslncremental is equivalent to calling XtGetSelectionValuelncremental
successively for each target/client_data pair. XtGetSelectionValueslncremental does guarantee
that all the conversions will use the same selection value because the ownership of the selection
cannot change in the middle of the list, as would be possible when calling
XtGetSelectionValuelncrernental repeatedly.

SEE ALSO
XtAppGetSelectionTimeout(3X), XtOwnSelection(3X)
Programming with Xlib

Hewlett-Packard Company -2- Jul 16, 1989

XtGetSubresources (3X) XtGetSubresources (3X)
Series 300 and 800 Only

NAME
XtGetSubresources, XtGetApplicationResources - obtain sub resources or application resources

SYNTAX
void XtGetSubresources(w, base, name, class, resources, num resources, args, num args)

Widgetw; --
caddr t base;
String-name;
String class;
XtResourceList resources;
Cardinal num resources;
ArgList args; -
Cardinal num args;

void XtGetApplicationResources(w, base, resources, num resources, args, num args)
Widgetw; --
caddr t base;
XtReSourceList resources;
Cardinal num resources;
ArgList args; -
Cardinal num _ args;

ARGUMENTS
args Specifies the argument list to override resources obtained from the resource

database.

base

class

name

num_args
num resources

resources
w

DESCRIPfiON

Specifies the base address of the subpart data structure where the resources
should be written.

Specifies the class of the subpart.

Specifies the name of the subpart.

Specifies the number of arguments in the argument list.

Specifies the number of resources in the resource list.

Specifies the resource list for the subpart.

Specifies the widget that wants resources for a subpart or that identifies the
resource database to search.

The XtGetSubresources function constructs a name/class list from the application name/class, the
name/classes of all its ancestors, and the widget itself. Then, it appends to this list the name/class
pair passed in. The resources are fetched from the argument list, the resource database, or the
default values in the resource list. Then, they are copied into the subpart record. If args is NULL,
num args must be zero. However, if num args is zero, the argument list is not referenced. The
XtGetApplicationResources function first uses the passed widget, which is usually an application
shell, to construct a resource name and class list, Then, it retrieves the resources from the
argument list, the resource database, or the resource list default values. After adding base to each
address, XtGetApplicationResources copies the resources into the address given in the resource
list. If args is NULL, num args must be zero. However, if num args is zero, the argument list is
not referenced. The portable way to specify application resources is to declare them as members
of a structure and pass the address of the structure as the base argument.

SEE ALSO
XtGetResourceList(3X)
Programming with Xlib

Hewlett-Packard Company -1- 1ul 16, 1989

XtGrabKey(3X) XtGrabKey(3X)
Series 300 and 800 Only

NAME
XtGrabKey - a function that establishes a passive grab on the specified keys.

SYNTAX
#include <Xm/Xm.h>

void XtGrabKey (widget, keycode, modifiers, owner_events, pointer_mode, keyboard_mode)
Widget widget;
Keycode keycode;
unsigned int modifiers;
Boolean owner events;
int pointer mode;
int keyboard_mode;

DESCRIPTION
XtGrabKey establishes a passive grab on the specified keys, such that when the specified
key/modifier combination is pressed, the keyboard is grabbed. It also allows the client to redirect
the specified key event to the root widget of a hierarchy.

widget

keycode

modifiers

owner events

SEE ALSO

Specifies the root widget to the XtGrabKeyboard call. All key events
that would have been dispatched to other subwindows will get
dispatched to it subject to owner_events.

Specifies the Keycode. This maps to the specific key to be grabbed.

Specifies the set of keymasks. This mask is the bitwise inclusive OR of
these keymask bits: Shift Mask, ~kMask, ControlMask, ModlMask,
Mod2Mask, M0d3Mask, M0d4Mask, ModSMask. You can also pass
AnyModifier, which is equivalent to issuing the grab key request for all
possible modifier combinations, including the combination of no
modifiers.

Specifies if the pointer events are to be reported normally (frue) or
with respect to the grab window if selected by the event mask (False).

Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

XGrabKey(3X) and XtUngrabKey(3X).

Hewlett-Packard Company -1- Jul 16, 1989

XtGrabKeyboard (3X) XtGrabKeyboard (3X)
Series 300 and 800 Only

NAME
XtGrabKeyboard - a function that actively grabs control of the main keyboard.

SYNTAX
#include <Xll/PassivGrab.h>

int XtGrabKeyboard (widget, owner events, pointer mode, keyboard mode, time)
Widget widget; - -
Boolean owner events;
int pointer mode;
int keybotUd mode;
Time time; -

DESCRIPTION
XtGrabKeyboard actively grabs control of the main keyboard. If the grab is successful, it returns
the constant GrabSuccess. Further key events are reported to the grab widget.

widget

owner events

pointer_mode

keyboard -",ode

time

RETURN VALUE

Specifies the root widget to the XtGrabKeyboard call. All key events
that would have been dispatched to other subwindows will get
dispatched to it subject to owner_events.
Specifies if the pointer events are to be reported normally (frue) or
with respect to the grab window if selected by the event mask (False).

Specifies further processing of pointer events. You can pass
GrabModeSync: or GrabModeAsync:.

Specifies further processing of keyboard events. You can pass
GrabModeSync: or GrabModeAsync:.

Specifies the time. You can pass either a timestamp, expressed in
milliseconds, or CurrentTime.

Returns the constant GrabSuccess.

SEE ALSO
XtUngrabKeyboard(3X).

Hewlett-Packard Company -1- Jul 16, 1989

XtInitiaJize (3X) XtInitiaJize (3X)
Series 300 and 800 Only

NAME
Xtlnitialize - a function that initializes the toolkit and returns a top-level shell.

SYNTAX
#include <Xm/Xm.h>

Widget Xtlnitialize (shell_name, application_class, options, num_options, argc, argv)
String shell name;
String applTcation class;
XrmOptionDescRec options; -
Cardinal num options;
Cardinal • argc;
String argv;

DESCRIPTION
The Xt Intrinsics must be initialized before making any other calls to Xt Intrinsics functions.
Xtlnitialize establishes the connection to the display setver, parses the command line that invoked
the application, loads the resource database, and creates a shell widget to setve as the parent of
your application widget hierarchy.

By passing the command line that invoked your application to XtInitialize, the function can parse
the line to allow users to specify certain resources (such as fonts and colors) for your application
at run time. XtInitialize scans the command line and removes those options. The rest of your
application sees only the remaining options.

There is an alternate set of functions that you can use to initialize the Xt Intrinsics that is not as
convenient as XtInitialize; however, it is more flexible because it lets you decide the type of shell
you want to use. The function XtToolkitInitialize just initializes the toolkit. It does not open the
display or create an application shell. You must do this yourself using XtOpenDisplay and
XtAppCreateShell.

Xtlnitialize supports localization of defaults files based on the value of the LANG environment
variable. The user can specify a language by using the LANG environment variable. Elements of
this variable are then used to establish a path to the proper resource files. The following
substitutions are used in building the path:

• %N is replaced by class_name of the application.

• %L is replaced by the value of LANG environment variable.

• %1 is replaced by the language part of LANG environment variable.

• %t is replaced by the territory part of lANG environment variable.

• %c is replaced by the code set part of lANG environment variable.

• %% is replaced by %.

If the LANG environment variable is not defined, or if one of its parts is missing, then a %
element that references it is replaced by NULL.

The paths contain a series of elements separated by colons. Each element denotes a file name,
and the file names are looked up left to right till one of them succeeds. Before doing the lookup,
substitutions are performed.

NOTE: We are using the X/Open convention of collapsing multiple adjoining slashes in a
filename into one slash.

The XtInitalize function loads the resource database by merging in resources from these sources:

• Application-specific class resource file on the local host.

• Application-specific user resource file on the local host.

• Resource property on the server or user preference resource file on the local host.

Hewlett-Packard Company -1- Ju116,1989

Xtlnitialize (3X) Xtlnitialize (3X)
Series 300 and 800 Only

• Per-host user environment resource file on the local host.

• The application command line (argv).

To load the application-specific class resource file, XtInitialize performs the appropriate
substitutions on this path:

• /usr /lib/Xll/%L/app~efaults/%N:/usr /lib /Xll/app~efaults/%N

If lANG environment variable is not defined (or the first path lookup using lANG fails), then the
lookup will default to the current non-language specific location
(fusr/lib/Xll/app _ defaults/%N).

To load the user's application resource file, XtInitialize performs the following steps:

• Use XAPPLRESIANGPATH environment variable to look up the file. A possible value for
XAPPLRESIANGDIR is:

./%N:$HOME/app-defaults/%L/%N:$HOME/app-defaults/%N:$HOME/%L/%N:$HOME/%N

• If that fails, or if XAPPLPRESIANGPATH is not defined, and if XAPPLRESDIR is defined,
use the following as the path:

$XAPPLRESDIR%L/%N:$XAPPLRESDIR%N

• else use:

$HOME/%L/%N:$HOME/%N

Note that if the XAPPLRESIANGPATH lookup is not successful and LANG is not defined the
lookup is then equivalent to that used by the R3 specification of XtInitialize (actually described
under XtDisplayInitialize).

The parameters for XtInitialize are defined below:

shell name Specifies the name of the application shell widget instance, which usually
- is something generic like "main." This name is used by the Xt Intrinsics

to search for resources that belong specifically to this shell widget. The
application name is derived from the -name command line argument or
if that is not present the trailing component of argv(O].

application _class

options

num _options

argc

argv

RETURN VALUE

Specifies the class name of this application, which usually is the generic
name for all instances of this application. By convention, the class name
is formed by reversing the case of the application's first letter. The class
name is used to locate the files used to initialize the resource database.

Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to
XrmParseCommand.

Specifies the number of entries in options list.

Specifies a pointer to the number of command line parameters.

Specifies the command line parameters.

Returns the widget ID of the top-level shell. The class of the shell is
ApplicationShellWidgetClass.

SEE ALSO
XtDisplayInitialize(3X).

Hewlett-Packard Company -2- Jul 16, 1989

XtMakeGeometryRequest (3X) XtMakeGeometryRequest(3X)
Series 300 and 800 Only

NAME
XtMakeGeometryRequest, XtMakeResizeRequest - make geometry manager request

SYNTAX
XtGeometryResult XtMakeGeometryRequest(w, request, reply return)

Widgetwj -
XtWidgetGeometry *requestj
XtWidgetGeometry *reply returnj

XtGeometryResult XtMakeResizeRequest(w, width, height, width Jeturn, height_return)
Widgetwj
Dimension width, height;
Dimension *width _return, * height ..!eturn

ARGUMENTS
reply Jeturn Returns the allowed widget size or may be NULL if the requesting widget is

not interested in handling XtGeometryAlmost.

request Specifies the desired widget geometry (size, position, border width, and
stacking order).

w Specifies the widget that is making the request.

width return
heigh~ return Return the allowed widget width and height.

DESCRIPTION
Depending on the condition, XtMakeGeometryRequest performs the following:

• If the widget is unmanaged or the widget's parent is not realized, it makes the changes and
returns XtGeometryYes.

• If the parent is not a subclass of compositeWidgetClass or the parent's geometry manager is
NULL, it issues an error. -

• If the widget's being_destroyed field is True, it returns XtGeometryNo.

• If the widget X, y, width, height and border_width fields are all equal to the requested values,
it returns XtGeometryYesj otherwise, it calls the parent's geometry manager procedure with
the given parameters. -

• If the parent's geometry manager returns XtGeometryYes and if XtCWQueryOnly is not set
in the request mode and if the widget is realized, XtMakeGeometryRequest calls the
XConfigureWlndow Xlib function to reconfigure the widget's window (set its size, location,
and stacking order as appropriate).

• If the geometry manager returns XtGeometryDone, the change has been approved and
actually has been done. In this case, XtMakeGeometryRequest does no configuring and
returns XtGeometryYes. XtMakeGeometryRequest never returns XtGeometryDone.
Otherwise, XtMakeGeometryRequest returns the resulting value from the parent's geometry
manager. Children of primitive widgets are always unmanagedj thus,
XtMakeGeometryRequest always returns XtGeometryYes when called by a child of a
primitive widget. The XtMakeResizeRequest function, a simple interface to
XtMakeGeometryRequest, creates a XtWidgetGeometry structure and specifies that width
and height should change. The geometry manager is free to modify any of the other window
attributes (position or stacking order) to satisfy the resize request. If the return value is
XtGeometryAlmost, width Jeturn and heightJeturn contain a compromise width and
height. If these are acceptable, the widget should immediately make an
XtMakeResizeRequest and request that the compromise width and height be applied. If the
widget is not interested in XtGeometryAlmost replies, it can pass NULL for width return
and heightJeturn. -

SEE ALSO
XtConfigure Widget(3X), XtQueryGeometery(3X)
Programming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

XtMalloc(3X) XtMalloc(3X)
Series 300 and 800 Only

NAME
XtMalloc, XtCalloc, XtRealloc, XtFree, XtNew, XtNe",-5tring - memory management functions

SYNTAX
char *XtMalloc(size);

Cardinal size;
char *XtCalloc(num, size);

Cardinal num;
Cardinal size;

char *XtRealloc(ptr, num);
char *plr,
Cardinal num;

void XtFree(ptr);
char *plr,

type *XtNew(type);
type;

String XtNewString(string);
String string;

ARGUMENTS
num Specifies the number of bytes or array elements.

ptr Specifies a pointer to the old storage or to the block of storage that is to be
freed.

size Specifies the size of an array element (in bytes) or the number of bytes
desired.

string

type

DESCRIPTION

Specifies a previously declared string.

Specifies a previously declared data type.

The XtMalloc functions returns a pointer to a block of storage of at least the specified size bytes.
If there is insufficient memory to allocate the new block, XtMalloc calls XtErrorMsg. The
XtCalloc function allocates space for the specified number of array elements of the specified size
and initializes the space to zero. If there is insufficient memory to allocate the new block,
XtCalloc calls XtErrorMsg. The XtRealloc function changes the size of a block of storage
(possibly moving it). Then, it copies the old contents (or as much as will fit) into the new block
and frees the old block. If there is insufficient memory to allocate the new block, XtRealloc calls
XtErrorMsg. If ptr is NULL, XtRealloc allocates the new storage without copying the old
contents; that is, it simply calls XtMalloc. The XtFree function returns storage and allows it to be
reused. If ptr is NULL, XtFree returns immediately. XtNew returns a pointer to the allocated
storage. If there is insufficient memory to allocate the new block, XtNew calls XtErrorMsg.
XtNew is a convenience macro that calls XtMalloc with the following arguments specified:
«type *) XtMalloc«unsigned) sizeof(type»

XtNewString returns a pointer to the allocated storage. If there is insufficient memory to allocate the new block,
XtNewString calls XtErrorMsg. XtNewString is a convenience macro that calls XtMalloc with the following arguments
specifIed:
(strcpy(XtMalloc((unsigned) strlen(str) + 1), str))

SEE ALSO
Programming with Xlib

Hewlett-Packard Company -1- JuI16,1989

XtManageCbildren (3X) XtManageChildren (3X)

NAME

SYNTAX

Series 300 and 800 Only

XtManageChildren, XtManageChild, XtUnmanageChildren, XtUnmanageChild - manage and
unmanage children

typedef Widget *WidgetList;

void XtManageChildren(children, num children)
WidgetList children; -
Cardinal num children;

void XtManageChlld(child)
Widget child;

void XtUnmanageChildren(children, num children)
WidgetList children; -
Cardinal num children;

void XtU nmanageChild(child)
Widget child;

ARGUMENTS
child Specifies the child.

children

num children

DESCRIPTION

Specifies a list of child widgets.

Specifies the number of children.

The XtManageChildren function performs the following:

• Issues an error if the children do not all have the same parent or if the parent is not a
subclass of eompositeWidgetClass.

• Returns immediately if the common parent is being destroyed; otherwise, for each unique
child on the list, XtManageChildren ignores the child if it already is managed or is being
destroyed and marks it if not.

• If the parent is realized and after all children have been marked, it makes some of the newly
managed children viewable:

Calls the change_managed routine of the widgets' parent.

Calls XtRealizeWidget on each previously unmanaged child that is unrealized.

Maps each previously unmanaged child that has map when managed True.
Managing children is independent of the ordering of children and indePendent of creating and
deleting children. The layout routine of the parent should consider children whose managed field
is True and should ignore all other children. Note that some composite widgets, especially fixed
boxes, call XtManageChild from their insert child procedure. If the parent widget is realized, its
change managed procedure is called to notifY it that its set of managed children has changed. The
parent can reposition and resize any of its children. It moves each child as needed by calling
XtMoveWidget, which first updates the x and y fields and then calls XMoveWindow if the widget
is realized. The XtManageChild function constructs a WidgetList of length one and calls
XtManageChildren. The XtUnmanageChildren function performs the following:

• Issues an error if the children do not all have the same parent or if the parent is not a
subclass of eompositeWidgetClass.

• Returns immediately if the common parent is being destroyed; otherwise, for each unique
child on the list, XtUnmanageChildren performs the fOllowing:

Ignores the child if it already is unmanaged or is being destroyed and marks it if not.

If the child is realized, it makes it nonvisible by unmapping it.

• Calls the change managed routine of the widgets' parent after all children have been
marked if the parent is realized. XtUnmanageChildren does not destroy the children
widgets. Removing widgets from a parent's managed set is often a temporary banishment,
and, some time later, you may manage the children again. The XtUnmanageChild function

Hewlett-Packard Company -1- Jul 16, 1989

XtManageCbildren (3X)
Series 300 and 800 Only

constructs a widget list of length one and calls XtUnmanageChildren.

SEE ALSO
XtMapWidget(3X), XtRealizeWidget(3X)
Programming with Xlib

Hewlett-Packard Company -2-

XtManageCbildren (3X)

Jul 16, 1989

XtMapWidget (3X) XtMapWidget (3X)
Series 300 and 800 Only

NAME
XtMapWidget, XtSetMappedWhenManaged, XtUnmapWidget - .map and unmap widgets

SYNTAX
XtMapWidget(w)

Widgetw;
void XtSetMappedWhenManaged(w, map when managed)

Widgetw; - -
Boolean map when managed;

XtUnmapWidget(w) -
Widgetw;

ARGUMENTS
map _when_managed

w

DESCRIPI10N

Specifies a Boolean value that indicates the new value of the
map_when _managed field.

Specifies the widget.

If the widget is realized and managed and if the new value of map_when _managed is True,
XtSetMappedWbeoManaged maps the window. If the widget is realized and managed and if the
new value of map_when _managed is False, it unmaps the window. XtSetMappedWbenManaged
is a convenience function that is equivalent to (but slightly faster than) calling XtSetValues and
setting the new value for the mappedWhenManaged resource. As an alternative to using
XtSetMappedWbeoManaged to control mapping, a client may set mapped_when _managed to
False and use XtMapWidget and XtUnmapWidget explicitly.

SEE ALSO
XtManageChildren(3X)
Programming with Xlib

Hewlett-Packard Company - 1- Jul 16, 1989

XtNameToWidget (3X) XtNameToWidget (3X)
Series 300 and 800 Only

NAME
XtNameToWidget, XtWidgetToWindow - translating strings to widgets or widgets to windows

SYNTAX
Widget XtNameToWidget(reference, names);

Widget reference;
String names;

Widget XtWindowToWidget(display, window)
Display *display;
Window window;

ARGUMENTS
display

names

reference

window

DESCRIPTION

Specifies the display on which the window is defined.

Specifies the fully qualified name of the desired widget.

Specifies the widget from which the search is to start.

Specify the window for which you want the widget.

The XtNameToWidget function looks for a widget whose name is the first component in the
specified names and that is a pop-up child of reference (or a normal child if reference is a subclass
of compositeWidgetClass). It then uses that widget as the new reference and repeats the search
after deleting the first component from the specified names. If it cannot find the specified widget,
XtNameToWidget returns NULL. Note that the names argument contains the name of a widget
with respect to the specified reference widget and can contain more than one widget name
(separated by periods) for widgets that are not direct children of the specified reference widget. If
more than one child of the reference widget matches the name, XtNameToWidget can return any
of the children. The X Toolkit Intrinsics do not require that all children of a widget have unique
names. If the specified names contain more than one component and if more than one child
matches the first component, XtNameToWidget can return NULL if the single branch that it
follows does not contain the named widget. That is, XtNameToWidget does not back up and
follow other matching branches of the widget tree. The XtWindoWfoWidget function translates
the specified window and display pointer into the appropriate widget instance.

SEE ALSO
Programming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

XtOft'set (3X)
Series 300 and 800 Only

NAME
XtOffset, XtNumber - determine the byte offset or number of array elements

SYNTAX
Cardinal XtOffset(pointer type, field name)

Type pointer type; - -
Field field yame;

Cardinal XtNumber(mray)
ArrayVariable mray;

ARGUMENTS
mray Specifies a fixed-size array.

XtOft'set(3X)

Specifies the name of the field for which to calculate the byte offset.

pointer _type Specifies a type that is declared as a pointer to the structure.

DESCRIPTION
The XtOffset macro is usually used to determine the offset of various resource fields from the
beginning of a widget and can be used at compile time in static initializations. The XtNumber
macro returns the number of elements in the specified argument lists, resources lists, and other
counted arrays.

SEE ALSO
XtGetResourceList(3X), XtSetArg(3X)
Programming with Xlib

Hewlett-Packard Company -1- Ju116, 1989

XtOwnSeIection (3X) XtOwnSelection (3X)

NAME

SYNTAX

Series 300 and 800 Only

XtOwnSelection, XtDisownSelection - set selection owner

Boolean XtOwnSelection(w, selection, time, convert yroc, lose _selection, done yroc)
Widgetw;
Atom selection;
Time time;
XtConvertSelectionProc convert yroc;
XtLoseSelectionProc lose selection;
XtSelectionDoneProc done yroc;

void XtDisownSelection(w, selection, time)
Widgetw;
Atom selection;
Time time;

ARGUMENTS
cancel callback

client data

convert yroc

doneyroc

lose selection

selection

time

w

DESCRIPTION

Specifies the callback procedure.

Specifies the argument that is to be passed to the appropriate procedure
when one of the condition occurs.

Specifies the procedure that is to be called whenever someone requests the
current value of the selection.

Specifies the procedure that is called after the requestor has received the
selection or NULL if the owner is not interested in being called back.

Specifies the procedure that is to be called whenever the widget has lost
selection ownership or NULL if the owner is not interested in being called
back.

Specifies an atom that describes the type of the selection (for example,
XA _PRIMARY, XA _SECONDARY, or XA _CLIPBOARD).

Specifies the timestamp that indicates when the selection ownership should
commence or is to be relinquished.

Specifies the widget that wishes to become the owner or to relinquish
ownership.

The XtOwnSelection function informs the X Toolkit Intrinsics selection mechanism that a widget
believes it owns a selection. It returns True if the widget has successfully become the owner and
False otherwise. The widget may fail to become the owner if some other widget has asserted
ownership at a time later than this widget. Note that widgets can lose selection ownership either
because someone else asserted later ownership of the selection or because the widget voluntarily
gave up ownership of the selection. Also note that the lose_selection procedure is not called if the
widget fails to obtain selection ownership in the first place. The XtOwnSelectionIncremental
informs the X Toolkit Intrinsics incremental selection mechanism that the specified widget
believes it owns the selection. It returns True if the specified widget successfully becomes the
selection owner or False otherwise. Widgets that use the incremental transfer mechanism should
use XtDisownSelection to relinquish selection ownership. The XtDisownSelection function
informs the X Toolkit Intrinsics selection mechanism that the specified widget is to lose
ownership of the selection. If the widget does not currently own the selection either because it lost
the selection or because it never had the selection to begin with, XtDisownSelection does nothing.
Mter a widget has caned XtDisownSelection, its convert procedure is not called even if a request
arrives later with a timestamp during the period that this widget owned the selection. However, its
done procedure will be called if a conversion that started before the call to XtDisownSelection
finishes after the call to XtDisownSelection.

SEE ALSO
XtAppGetSelectionTimeout(3X), XtGetSelectionValue(3X)
Programming with Xlib

Hewlett-Packard Company -1 - Jul 16, 1989

XtParseAcceleratorTable (3X) XtParseAcceleratorTable (3X)

NAME

SYNTAX

Series 300 and 800 Only

XtParseAcceleratotTable, XtInstallAcceierators, XtInstallAllAccelerators - managing accelerator
tables

XtAccelerators XtParseAcceleratotTable(source)
String source;

void XtInstallAccelerators(destination, source)
Widget destination;
Widget source;

void XtInstal!AllAccelerators(destination, source)
Widget destination;
Widget source;

ARGUMENTS
source

destination

source

DESCRIPTION

Specifics the accelerator table to compile.

Specifies the widget on which the accelerators are to be installed.

Specifies the widget or the root widget of the widget tree from which the
accelerators are to come.

The XtParseAcceleratoifable function compiles the accelerator table into the opaque internal
representation. The XtInstallAcceIerators function installs the accelerators from source onto
destination by augmenting the destination translations with the source accelerators. If the source
display accelerator method is non-NULL, XtlnstaIlAcceIerators calls it with the source widget
and a string representation of the accelerator table, which indicates that its accelerators have been
installed and that it should display them appropriately. The string representation of the
accelerator table is its canonical translation table representation. The XtlnstallAlIAccelerators
function recursively descends the widget tree rooted at source and installs the accelerators of each
widget encountered onto destination. A common use os to call XtlnstaIlAllAccelerators and pass
the application main window as the source.

SEE ALSO
XtParseTranslationTable(3X)
Programming with Xlib

Hewlett-Packard Company -1- Jul 16, 1989

XtWidgetCallCallbacks (3X) XtWidgetCallCallbacks (3X)
Series 300 and 800 Only

NAME
XtWidgetCallCallbacks - a function that invokes the entries on a callback list.

SYNTAX
#include <Xm/Xm.h>

void XtWidgetCallCallbacks (callbacks, call data)
XtCallbackList callbacks;-
Opaque call_data;

DESCRIPTION
XtWidgetCallCallbacks calls the entries on a callback list. The widget knows the address of the
callback list and avoids extra processing by using this function. The external version of this
routine is XtCallCallbacks.

ARGUMENTS
callbacks

call data

Specifies the callback list to execute.

Specifies a callback-list specific data value to pass to each of the callback
procedures in the list.

Hewlett-Packard Company - 1- Jul 16, 1989

XtWidgetHasCaUbacks (3X) XtWidgetHasCaUbacks (3X)
Series 300 and 800 Only

NAME
XtWidgetHasCallbacks - a function that finds out the status of a callback list.

SYNTAX
#include <Xm/Xm.h>

XtCallbackStatus XtWidgetHasCallbacks (callbacks)
XtCallbackList callbacks;

DESCRIPTION
XtWidgetHasCallbacks returns the status of the specified callback list. The external version of
this routine is XtHasCallbacks.

callbacks

call data

RETURN VALUE

Specifies the callback list to execute.

Specifies a callback-list specific data value to pass to each of the callback
procedures in the list.

Returns XtCallbackNoList if no callback list; XtCallbackHasNone if the callback list is empty, or
XtCallbackHasSome if the callback list has at least one callback registered.

Hewlett-Packard Company -1- Jul 16, 1989

Index

A
Above, 6-4, 6-5
Accelerator, Defined, 10-7
accept_focus procedure, 7-7
Action Table, 10-2
Action yroc procedure, Defined, 10-1
Application, 4-10
Application context, Defined, 2-2
Application programmer, Defined, 1-2
ApplicationShell, 4-1, 4-2
ApplicationShellWidget, 4-4, 9-5
applicationShellWidgetClass, 4-4
ArgList, 1-13, 2-10, 2-11

Defined, 2-10

B
Background, 9-2
Below, 6-4, 6-5
BottomIf, 6-4, 6-5
ButtonPress, 5-6, 7-4, 7-10, B-2, B-5, B-7,

B-8
ButtonRelease, 7-4, 7-10, B-2, B-5, B-7,

B-8

c
calloc, 11-2
Center Gravity, 2-19
Chaining, 2-14, 2-15, 9-6

Subclass, 1-21
superclass, 1-21

change_managed procedure, 3-4
CirculateNotify, B-5, B-8
CirculateRequest, B-5, B-8
Class, Defined, 1-2
Class Initialization, 1-22

Class_initialize procedure, Defined, 1-22
Class_name, Defined, 1-17
Client, Defined, 1-2
ClientMessage, 7-16, 7-17, 7-18, B-5, B-8
ColormapNotify, B-5, B-8
Composite, 1-9, 1-10, 1-11, 1-23, 1-24,

1-25,2-1,3-2,4-2,5-1,6-1,6-2, 7-6,
9-9

Defined, 1-9
Composite widgets, 2-1
CompositeClassPart, 1-9

Defined, 1-10
CompositeClassRec, 1-10
CompositePart, 1-9, 1-10, 1-12

Defined, 1-10
CompositeWidget, 1-10

Defined, 1-11
compositeWidgetClass, 1-10,2-1,2-12,

2-17
Composite WidgetClass, 2-18
compositeWidgetClass, 2-19, 2-23, 2-24,

3-2,3-4,3-6,3-8,4-2,6-3, 11-2
Composite WidgetClass, Defined, 1-10
compress _ enterleave, 7-13
compress_expose field, 7-13
compress motion, 7-13
Configure Window, 5-1
ConfigureNotify, 2-21, 3-2, B-5, B-8
ConfigureRequest, B-5, B-8
ConstrainP.h, 1-17
Constraint, 1-11, 1-12, 1-15, 1-17, 1-22,3-2,

3-8,3-9,9-9
Defined, 1-11

ConstraintClassPart, 1-11, 1-22,2-16,2-24,
3-9

Defined, 1-11
ConstraintClassRec, 1-12
Constraint.h, 1-15

Index 1

ConstraintPart, 1-11, 1-12,9-20
Defined, 1-12

ConstraintWidget, 1-12
Defined, 1-12

constraintWidgetClass, 1-12, 2-12
ConstraintWidgetClass, 2-18
constraintWidgetClass, 2-23, 2-24, 3-9,

9-16,9-17
ConstraintWidgetClass, Defined, 1-11
CopyFromParent, 2-18, 2-19
Core, 1-6, 1-8, 1-9, 1-10, 1-12, 1-22, 1-23,

1-24, 1-25,2-12,2-17,2-18,2-19,
2-20,3-5, 7-15, 9-6, 9-9, 9-17, 9-20

Defined, 1-6
Core Class, 10-4
CoreClassPart, 1-6,2-24

Defined, 1-6
CorePart, 1-6, 1-7, 1-10,5-1

Defined, 1-7
CreateNotify, B-5, B-8
CurrentTime, 11-10, 11-11
CWBorderWidth, 6-4
CWHeight, 6-4
CWSibling, 6-4
CWStackMode, 6-4, 6-11
CWWidth, 6-4
CWX, 6-4
CWY, 6-4

o
delete child procedure, 3-4
Destroy Callbacks, 2-23, 7-1
Destroy procedure, Defined, 2-24
DestroyNotify, B-5, B-8
Display, 2-2
display accelerator, B-7
Display accelerator procedure, Defined,

10-7

2 Index

E
EastGravity, 2-19
EnterNotify, 7-4, 7-10, B-2, B-5, B-8, B-10,

B-11
EnterWindow, 5-6
Events, 7-7
exit, 2-25
Expose, 2-19, 7-13, 7-15,9-19, 11-12,

11-13, B-5, B-8
expose procedure, 7-14

F
False, 1-8, 1-23,2-17,3-1,3-7,3-8,4-7,4-8,

4-9,5-4,5-6,5-7, 7-5, 7-7, 7-10, 7-11,
7-14, 7-15, 11-8, 11-11

FocusIn, 7-6, 7-7, 7-10, B-5, B-8
FocusNotify, 7-6
FocusOut, 7-6, 7-7, 7-10, B-5, B-8
fonts. alias, 9-2
Foreground, 9-2
free, 11-2

G
Geometry Management, 5-1
geometry manager field, 5-1
Get_values_hook procedure, Defined,

9-16
Grabbing Input, 7-4
GraphicsExpose, 7-16, 7-17, 7-18, 11-12,

11-13, B-5
GraphicsExpose" B-8
GravityNotify, B-5, B-8

H
hook, 9-16, 9-17

Inheritance, 1-21,2-14,2-15,2-18,9-6
Initialization, 1-22,2-14,2-15,2-16
initialize procedure, 2-15
Initialize procedure, Defined, 2-14
Initialize hook procedure, Defined, 2-16
Input Grabbing, 7-4
InputOnly, 2-19
InputOutput, 2-19
insert child procedure, 1-25,3-2,5-2, C-1
Insert-child procedure, Defined, 3-2
Instance, Defined, 1-2

K
key modifier, B-4
KeymapNotify, B-5, B-8
KeyPress, 7-4, 7-6, 7-10, B-2, B-5, B-7, B-8
KeyRelease, 7-4, 7-6, 7-10, B-2, B-5, B-8

L
LeaveNotify, 7-4, 7-10, B-2, B-5, B-8
libXt.a, 1-5

M
malloc, 11-2
MapNotify, B-5, B-8
MappingNotify, 7-16, 7-17, 7-18, B-5
MapRequest, B-5, B-8
MenuPopdown, 5-7, 5-8,10-3, C-7

Defined, 5-8
MenuPopup, 5-4, 5-6, 5-7,10-3, C-7

Defined, 5-6
Method, Defined, 1-3
MotionNotify, 7-4, 7-10, B-2, B-5, B-7, B-8

N
Name, Defined, 1-3
NoExpose, 7-16, 7-17, 7-18, B-5, B-8
None, 7-6
NorthWestGravity, 2-18,7-14

o
Object, Defined, 1-3
Opposite, 6-4, 6-5
OverrideShell, 4-1, 4-2, 4-7
OverrideShellWidget, 4-4
overrideShellWidgetClass, 4-4
OverrrideShell,4-2

p
pop-up

child, 5-1, 5-2
Pop-up, Defined, 5-1
pop-up, list, 5-1

shell, 5-2
printf, 11-15
PropertyNotify, B-5, B-8

Q

query geometry procedure, 6-11
Queti.geometry procedure, Defined, 6-10

R
realize procedure, 2-19
realloc, 11-2
ReparentNotify, B-5, B-8
Resize procedure, Defined, 6-11
ResizeRequest, B-5, B-8
Resource, Defined, 1-3
Resource Management, 9-1

Index 3

5
SelectionClear, 7-16, 7-17, 7-1S, B-5, B-S
SelectionNotify, 7-16, 7-17, 7-1S, B-5, B-S
SelectionRequest, 7-16, 7-17, 7-1S, B-5,

B-8
selectionTimeout, 11-6
set values procedure, 9-20
Set values procedure, Defined, 9-1S
Set-values almost procedure, Defined,

- 9-20-
set values hook procedure, 9-21
Set values- hook procedure, Defined, 9-21
Shell, 2-1,4-1,4-2,4-7,5-2,5-4,5-6,5-7,

9-9
Defined, 3-1

ShellPart, Defined, 4-5
ShellWidget, 4-4

Defined, 4-6
ShellWidgetClass, 4-4
String, 2-14
StringDefs.h, D-1
Subclass Chaining, Defined, 1-21
SubstructureNotify,2-21
Superclass, Defined, 1-17
Superclass Chaining, 2-14, 2-15, 9-6

Defined, 1-21

T
TARGETS, 11-S
TopIf, 6-4, 6-5
TopLevel, 4-9
TopLevelShell, 4-1, 4-2
TopLevelShellWidget, 4-4
topLevelShellWidgetClass, 4-4, C-5
TransientShell, 4-1, 4-2, 4-7, 4-S
TransientShellWidget, 4-4
transientShellWidgetClass, 4-4
Translation Table, 10-4
Translation tables, A-1
True, 1-8, 1-20, 1-23,2-4,2-17, 2-1S, 2-22,

3-1,3-5,3-7, 3-S, 4-7, 4-S, 5-4,5-6,

4 Index

U

6-3, 7-5, 7-6, 7-10, 7-11, 7-12, 7-13,
7-15, 7-17, 9-1S, 9-19, 11-S, 11-11

UnmapNotify, B-5, B-S
User, Defined, 1-3
/usr /lib /X11/app-defaults/, 2-6
/usr/lib/X11/XtErrorDB, 11-14

v
VendorShell,4-2
VendorShellWidget, 4-4
vendorShellWidgetClass, 4-4
Version, Defined, 1-17
Visibility, 7-15
VisibilityNotify, 7-15, B-5, B-S
Visible, 7-15

w
WestGravity,2-19
Widget, 1-7, 1-S

Defined, 1-3, l-S
Widget class, Defined, 1-3
Widget programmer, Defined, 1-3
WidgetClass, 1-6, 1-7, 1-17

Defined, 1-7
Widget class, Defined, 1-12
WidgetClassRec, 1-7
widgetClassRec, 1-17
WidgetList, 3-5
Widget size, Defined, 1-17
WMShell, 4-2, 4-S
WMShellWidget, 4-4
wmShellWidgetClass, 4-4

X
X11/Convert.h, 9-12, C-5
X11/Intrinsic.h, 1-4, 1-5
X11/IntrinsicP.h, 1-5

X11/keysymdef.h, B-7
X11/Label.h, 1-5
X11/Scroll.h, 1-5
X11/Shell.h, 1-4
X11/StringDefs.h, 1-4, 1-13, 9-1
X11/Xatoms.h, 1-4
X11/X.h, 6-4
X11/Xresource.h, 9-9
X11/XutiI.h, 11-13
XA _CLIPBOARD, 11-11
XA_PRIMARY, 11-7, 11-11
XA_SECONDARY, 11-7, 11-11
XA STRING, 11-7, 11-9
XCfearArea, 9-18, 9-19
XConfigureWindow, 2-21, 3-5, 6-3, 6-4,

6-9,6-10
XCreateGC, 11-4, 11-5
XCreateWindow, 2-18, 2-19
.Xdefaults, 2-6
.Xdefaults-host, 2-6
XDestroyWindow, 2-22, 2-23
XFreeGC, 2-24
XFreePixmap, 2-24
XMapWindow, 5-4, 5-7
xmh,2-8
XMoveWindow, 3-5, 6-8
XNextEvent, 7-7
XOpenDisplay, 2-5, 2-6, 2-7
XPeekEvent, 7-7
XPending, 7-7
XRInt, 9-9
XrmOptionDescRec, Defined, 2-7
XrmParseCommand, 2-3, 2-4, 2-7, 2-8, C-2
XrmValue, 9-4, 9-9, 9-10
XSelectInput, 7-16, 7-17, 7-18
XSetInputFocus, 7-6, 7-7
XSetWindowAttributes, 2-17, 2-18, 7-19
XSynchronize, 2-4
XtAcceptFocusProc, 7-7

Defined, 7-7
XtActionList, 10-2
XtActionProc, 10-1

Defined, 10-1

XtActionsRec, 10-2
XtAddActions, 10-3, C-7

Defined, C-7
XtAddCallback, 2-23,8-2

Defined, 8-2
XtAddCallbacks, 8-3

Defined, 8-3
XtAddConverter, C-5

Defined, C-5
XtAddEventHandler, 2-24, 7-8, 7-16, 7-17,

7-18, 7-19
Defined, 7-16

XtAddExposureToRegion, 11-12, 11-13
Defined, 11-12

XtAddGrab, 7-4, 7-5, 7-10
Defined, 7-5

XtAddlnput, C-1, C-4
Defined, C-3

XtAddRawEventHandler, 7-17, 7-18
Defined, 7-17

XtAddress, 9-13, C-6
XtAddressMode, 9-12, C-5
XtAddTimeOut, C-1, C-4

Defined, C-4
XtAddWorkProc, C-1

Defined, C-4
XtAllEvents, 7-17
XtAlmostProc, 9-20

Defined, 9-20
XtAppAddActions, 10-2

Defined, 10-2
XtAppAddConverter, 9-12

Defined, 9-12
XtAppAddlnput, 7-2, 7-3, C-4

Defined, 7-2
XtAppAddTimeOut, 2-24,7-3, 7-4, C-4

Defined, 7-3
XtAppAddWorkProc, 7-12, C-4

Defined, 7-12
XtAppContext, 2-2

Defined, 2-2
XtAppCreateShell, 1-1,2-1,2-2,2-12,

2-13,9-5, C-2, C-5

Index 5

Defined, 2-13
XtAppError, 11-18

Defined, 11-18
XtAppErrorMsg, 11-16, 11-18

Defined, 11-16
XtAppGetError Database, 11-14

Defined, 11-14
XtAppGetError DatabaseText, 11-15,

11-16
Defined, 11-15

XtAppGetErrorDatbaseText, 11-14
XtAppGetSelectionTimeout, 11-6

Defined, 11-6
XtAppMainLoop, 7-1, 7-9, 7-10, C-2

Defined, 7-10
XtAppNextEvent, 7-8, 7-10, 7-11, C-2

Defined, 7-8
XtAppPeekEvent, 7-8, C-3

Defined, 7-8
XtAppPending, 7-7, 7-8, C-3

Defined, 7-7
XtAppProcessEvent, 7-8, 7-9, 7-11, C-3

Defined, 7-9
XtAppSetErrorHandler, 11-18

Defined, 11-18
XtAppSetErrorMsgHandler, 11-16

Defined, 11-16
XtAppSetSelectionTimeout, 11-6

Defined, 11-6
XtAppSetWarningHandler, 11-18

Defined, 11-18
XtAppSetWarningMsgHandler, 11-17

Defined, 11-17
XtAppWarning, 11-19

Defined, 11-19
XtAppWarningMsg, 11-17, 11-19

Defined, 11-17
XtArgsFunc, 9-21

Defined, 9-21
XtArgsProc, 2-16, 9-16

Defined, 2-16
XtArgVal, 2-10
XtAugmentTranslations, 10-5, 10-6

6 Index

Defined, 10-6
XtBaseOffset, 9-13, C-6
XtBuildEventMask, 7-19

Defined, 7-19
XtButtonBoxAddButton, C-l
XtButtonBoxDeleteButton, C-l
XtC, 1-13,9-2
XtCallAcceptFocus, 7-7

Defined, 7-7
XtCallbackExclusive, 5-4, 5-5, 5-7

Defined, 5-5
XtCallbackHasNone, 8-5
XtCallbackHasSome, 8-5
XtCallbackList, 8-1, 8-2

Defined, 8-2
XtCallbackNoList, 8-5
XtCallbackNone, 5-4, 5-5, 5-7

Defined, 5-5
XtCallbackNonexclusive, 5-4, 5-5, 5-7

Defined, 5-5
XtCallbackPopdown, 5-7, 5-8

Defined, 5-7
XtCallbackProc, 2-23, 8-1

Defined, 8-1
XtCallbackRec, Defined, 8-2
XtCallCallbacks, 8-3, 8-4

Defined, 8-4
XtCalloc, 2-24, 11-2, 11-3

Defined, 11-3
XtCaseProc, 10-10, 10-11

Defined, 10-10
XtCheckSubclass, 1-20, 1-21,5-4,5-6,5-7

Defined, 1-20
XtClass, 1-19, 1-20

Defined, 1-19
XtCloseDisplay, 2-5

Defined, 2-5
XtConfigure Widget, 6-1, 6-8, 6-9

Defined, 6-9
XtConvert, 9-14, 9-15

Defined, 9-14
XtConvertArgRec, 9-12, C-5
XtConvertCase, 10-11

Defined, 10-11
XtConverter, 9-10

Defined, 9-10
XT CONVERT FAIL, 11-9
XtConvertSeIectfonProc, 11-8

Defined, 11-7
XtCreateApplicationContext, 2-2, C-2

Defined, 2-2
XtCreateApplicationShell, C-l, C-5

Defined, C-4
XtCreateLabeI, C-l
XtCreateManagedWidget, 2-12, 3-1, 3-5,

3-6
Defined, 3-5

XtCreatePopupSheII, 2-13, 5-2
Defined, 5-2

XtCreateWidget, 1-8, 1-23,2-9,2-11,2-12,
2-17,3-1,3-2,3-4,3-5,3-6,3-9,8-1,
8-2,9-1,9-6,9-16,9-22, B-1

Defined, 2-11
XtCreateWindow, 2-18, 2-19, 2-21

Defined, 2-19
XtCWQueryOnIy, 6-3, 6-4, 6-5, 6-6, 6-7,

6-8
XtDatabase, 2-6, 2-7

Defined, 2-6
XtDefauItBackground, 1-8,2-4,2-8,9-9,

9-11
XtDefauItFont, 9-9, 9-11
XtDefaultForeground, 1-8,2-4,2-8,9-3,

9-9,9-11
XtDestroyApplicationContext, 2-2, 2-3,

2-5,2-25
Defined, 2-2

XtDestroyGC, 2-24, C-6, C-7
Defined, C-6

XtDestroyWidget, 2-1, 2-17, 2-22, 2-24,
3-1, 3-4, 3-10, 5-1

Defined, 2-22
XtDirectConvert, 9-14, 9-15

Defined, 9-14
XtDisownSelection, 11-12

Defined, 11-12

XtDispatchEvent, 2-22, 7-5, 7-6, 7-9, 7-10,
C-2

Defined, 7-9
XtDisplay, 2-20

Defined, 2-20
XtDisplaylnitialize, 2-2,2-3, 2-4, 2-5, 2-6,

2-7,2-8,2-13, C-2
Defined, 2-3

XtError, 11-16
_ XtError, 11-18
XtError, C-9, C-I0

Defined, C-I0
XtErrorHandler, 11-17

Defined, 11-17
XtErrorMsg, 1-21, 11-3,11-4, C-9, C-I0

Defined, C-9
XtErrorMsgHandler, 11-14

Defined, 11-14
XtEventHandler, 7-15

Defined, 7-15
XtExposeProc, 7-14

Defined, 7-14
XtFree, 2-11, 2-24, 9-5, 11-2, 11-3, 11-4,

11-7, 11-9
Defined, 11-3

XtGeometryAlmost, 6-3, 6-5, 6-6, 6-7,
6-11,9-18,9-20

XtGeometryDone, 6-3, 6-7
XtGeometryHandler, 6-6, 6-10

Defined, 6-6
XtGeometryMask, 6-4
XtGeometryNo, 4-8, 6-3,6-7,6-11,9-18
XtGeometryResult, 6-3
XtGeometryYes, 6-2, 6-3, 6-7, 6-8, 6-11,

9-18
XtGetApplicationResources, 9-7, 9-8, 9-14

Defined, 9-7
XtGetErrorDatabase, C-8

Defined, C-8
XtGetErrorDatabaseText, C-8

Defined, C-8
XtGetErrorDatbaseText, C-8
XtGetGC, 2-24, 11-5

Index 7

Defined, 11-5
XtGetResourceList, 9-5

Defined, 9-5
XtGetSelectionTimeout, C-7

Defined, C-7
XtGetSelectionValue, 11-9, 11-10

Defined, 11-9
XtGetSelectionValues, 11-9, 11-10

Defined, 11-10
XtGetSubresources, 9-7, 9-14

Defined, 9-7
XtGetSubvalues, 9-16, 9-17

Defined, 9-16
XtGetValues, 3-10, 8-1, 8-2, 9-5, 9-15,9-16

Defined, 9-15
XtGrabExclusive, 5-4, 5-5, 5-6, 5-7
XtGrabKind, 5-4
XtGrabNone, 5-5
XtGrabNonexclusive, 5-4, 5-5, 5-6, 5-7
XtHasCallbacks, 8-5

Defined, 8-5
XtIMAll, 7-9
XtIMAlternatelnput, 7-8, 7-9
XtImmediate, 9-13, C-6
XtIMTimer, 7-8, 7-9
XtIMXEvent, 7-8, 7-9
XtInherit, 1-24

XtInheritAcceptFocus, 1-25
XtInheritChangeManaged, 1-25
XtInheritDeleteChild, 1-25
XtlnheritDisplayAccelerator, 1-25
XtInheritExpose, 1-25
XtInheritGeometryManager, 1-25
XtInheritInsertChild, 1-25
XtInheritRealize, 1-25
XtInheritResize, 1-25
XtInheritSetValuesAlmost, 1-25, 9-20
XtInheritTranslations, 10-4
XtInitialize, C-l, C-2, C-3, C-4, C-5

Defined, C-l
XtInitProc, 2-14, 2-15

Defined, 2-14
XtInputCallbackProc, 7-2

8 Index

Defined, 7-2
XtInputExceptMask, 7-2
XtInputReadMask, 7-2
XtInputWriteMask, 7-2
XtInstallAccelerators, 10-8

Defined, 10-8
XtInstallAllAccelerators, 10-8, 10-9

Defined, 10-8
XtIsComposite, 3-2

Defined, 3-2
XtIsManaged, 3-7

Defined, 3-7
XtIsRealized, 2-17

Defined, 2-17
XtIsSensitive, 7-11

Defined, 7-11
XtIsSubclass, 1-20,3-2

Defined, 1-20
XtKeyProc, 10-9, 10-11, B-4

Defined, 10-9
XtLabelCreate, B-1
XtLoseSelectionProc, Defined, 11-8
XtMainLoop, C-l, C-2

Defined, C-2
XtMakeGeometryRequest, 2-1, 6-1, 6-2,

6-3,6-4,6-5,6-7,6-12
Defined, 6-2

XtMakeResizeRequest, 6-1, 6-5, 6-12
Defined, 6-5

XtMalloc, 2-24, 11-2, 11-3, 11-4
Defined, 11-3

XtManageChild, 1-25,2-9,3-1,3-5,3-6,
C-l

Defined, 3-5
XtManageChildren, 2-17, 3-1, 3-4, 3-5, C-1

Defined, 3-4
XtMapWidget, 3-8

Defined, 3-8
XtMergeArgLists, 2-11

Defined, 2-11
XtMoveWidget, 3-5,6-1,6-8

Defined, 6-8
XtN, 1-13,9-1

XtNameToWidget, 11-1, 11-2
Defined, 11-1

XtNew, 11-4
Defined, 11-4

XtNewString, 11-4
Defined, 11-4

XtNextEvent, C-1, C-2
Defined, C-2

XtN umber, 2-10, 2-12, 11-1
Defined, 11-1

XtOffset, 9-3, 9-6
Defined, 9-6

XtOpenDisplay, 2-2, 2-4, 2-5, 2-7, C-2
Defined, 2-4

XtOrderProc, 3-3
Defined, 3-3

XtOverrideTranslations, 10-5, 10-6
Defined, 10-6

XtOwnSelection, 11-11
Defmed, 11-11

XtParent, 2-20
Defined, 2-20

XtParseAcceleratorTable, 10-8
Defined, 10-8

XtParseTranslationTable, 10-4, 10-5
Defined, 10-5

XtPeekEvent, C-1, C-3
Defined, C-3

XtPending, C-1, C-3
Defined, C-3

XtPopdown, 4-8, 5-7, 5-8
Defined, 5-7

XtPopdownID, 5-8
XtPopup, 4-8, 5-4, 5-5,5-7, 7-4

Defined, 5-4
XtProc, 1-22

Defmed, 1-22
XtProcessEvent, C-1, C-3

Defined, C-2
XtQueryGeometry, 6-10, 6-11

Defined, 6-10
XtR, 1-14
XtRAcceleratorTable, 9-3, 9-9

XTranslateCoordinates, 11-13
XtRBool, 9-3, 9-9
XtRBoolean, 9-3, 9-9
XtRCallback, 8-2, 9-3
XtRCallProc, 9-4
XtRColor, 9-3, 9-9
XtRCursor, 9-3, 9-9
XtRDimension, 9-3, 9-9
XtRDisplay, 9-3, 9-9
XtRealizeProc, 2-17

Defined, 2-17
XtRealizeWidget, 2-1, 2-9, 2-16, 2-17, 2-18

2-19,2-21,3-5,5-3,5-4,5-7, 7-14,
7-19

Defined, 2-16
XtRealloc, 11-2, 11-3

Defined, 11-3
XtRegisterCaseConverter, 10-11

Defined, 10-11
XtReleaseGC, 11-5, C-7

Defined, 11-5
XtRemoveAllCallbacks, 8-4

Defined, 8-4
XtRemoveCallback, 2-23, 8-3, 8-4

Defined, 8-3
XtRemoveCallbacks, 8-4

Defined, 8-4
XtRemoveEventHandler, 2-24, 7-17

Defined, 7-17
XtRemoveGrab, 5-7, 7-4, 7-5, 7-6

Defined, 7-5
XtRemovelnput, 7-3

Defined, 7-3
XtRemoveRawEventHandler, 7-18

Defined, 7-18
XtRemoveTimeOut, 2-24, 7-4

Defined, 7-4
XtRemoveWorkProc, 7-12, 7-13

Defined, 7-12
XtResizeWidget, 3-5,6-1,6-8,6-9,6-10,

6-11
Defined, 6-8

XtResizeWindow, 6-9,6-10

Index 9

Defined, 6-9
XtResource, 9-1
XtResourceDefaultProc, 9-4
XtResourceList, 1-12, 9-1
XtResourceQuark, 9-13, C-6
XtResourceString, 9-13, C-6
XtRFile, 9-3, 9-9
XtRFloat, 9-3, 9-9
XtRFont, 9-3, 9-9
XtRFontStruct, 9-3, 9-9
XtRFunction, 9-3
XtRlmmediate, 9-4
XtRlnt, 9-3, 9-9
XtRPixel, 9-3, 9-9
XtRPixmap, 9-3, 9-9
XtRPointer, 9-3
XtRPosition, 9-3, 9-9
XtRShort, 9-3, 9-9
XtRString, 9-3, 9-9
XtRTranslationTable, 9-3, 9-9
XtRUnsignedChar, 9-3, 9-9
XtRWidget, 9-3
XtRWindow, 9-3
XtScreen, 2-21

Defined, 2-20
XtSelectionCallbackProc, Defined, 11-8
XtSelectionDoneProc, 11-7, 11-8

Defined, 11-8
XtSetArg, 2-10, 2-11

Defined, 2-10
XtSetError Handler, C-10

Defined, C-10
XtSetError MsgHandler, C-8

Defined, C-8
XtSetKeyboardFocus, 7-6

Defined, 7-6
XtSetKeYfranslator, 10-9

Defined, 10-9
XtSetMappedWhenManaged, 3-1, 3-7, 3-8

Defined, 3-7
XtSetSelectionTimeout, C-7

Defined, C-7
XtSetSensitive, 5-3, 5-5, 5-8, 7-11

10 Index

Defined, 7-11
XtSetSubvalues, 9-21

Defined, 9-21
XtSetValues, 1-13, 2-21, 3-8, 3-10, 5-3, 6-1,

6-2, 7-11, 8-1, 8-2, 9-5, 9-17, 9-18,
9-19,9-20,9-21, 10-6

Defined, 9-17
XtSetValuesFunc, 9-18, 9-20

Defined, 9-18
XtSetWarningHandler, C-10

Defined, C-10
XtSetWarningMsgHandler, C-9

Defined, C-9
XtSMDontChange, 6-5, 6-11
XtStringConversion Warning, 9-12
XtStringProc, 10-7

Defined, 10-7
XtSuperclass, 1-20

Defined, 1-20
XtTimerCallbackProc, 7-3

Defined, 7-3
XtToolkitError, 11-17, C-1, C-9, C-10
XtToolkitInitialize, 2-2, C-2

Defined, 2-2
XtTranslateCoords, 11-13

Defined, 11-13
XtTranslateKey, 10-9
XtTranslateKeycode, 10-10

Defined, 10-10
XtTranslations, 10-5
Xt UninstallTranslations, 10-7

Defined, 10-7
XtUnmanageChild, 2-23, 3-1,3-7

Defined, 3-7
XtUnmanageChildren, 2-17, 3-1, 3-6, 3-7,

C-1
Defined, 3-6

XtUnmapWidget, 2-25, 3-8
Defined, 3-8

Xt U nrealize Widget, 2-21
Defined, 2-21

XtVersion, 1-17
Xt VersionDontCheck, 1-17

XtWarning, 11-17
XtWarning, 11-19

XtWarning, C-9
XtWarning, C-ll

XtWarning, Defined, C-ll
XtWarningMsg, 9-10, C-9, C-ll

Dermed, C-9
XtWidgetClassProc, 1-23

Defined, 1-23
XtWidgetGeometry, 6-3, 6-4, 6-5, 6-10
XtWidgetProc, 2-24, 3-2, 3-4, 6-11

Defined, 2-24
XtWidgetToAppIicationContext, 2-3

Defined, 2-3
XtWindow, 2-21

Defined, 2-21
XtWindoWfoWidget, 11-13

Defined, 11-13
XtWorkProc, 7-11

Defined, 7-11
XtWorkProcId, 7-12

Index 11

HP Part Number
98794-90008
Microfiche No. 98794-99008
Printed in U.S.A. E0989

Flin- HEWLETT
~~ PACKARD

98794-90609
For Internal Use Only

