
SE 390: Series 300 HP-UX Internals

April 1993

Introduction

Introductions

Expectations

- This class must be practical.

- We are *very* interested in constructive criticism and
suggestions. As much as possible, put your comments in
writing on the evaluation that was page O.

- This class contains sensitive information - please be *very*
careful who you share it with.

- Please work in pairs, and work on the same machine all week long.

- if you trash your disk, you need to fix it

- we will be doing detailed work, which goes
faster with two people

- Expect to work hard. This is not a class for the faint-of-heart
or people that want to be spoon-fed.

- Realize that your instructor doesn't know everything - if he
doesn't say, "I don't know'' from time to time, get suspicious :-)

HP-UX source will not be a part of the class.

- Feel free to ask questions, but please defer them until lab
time if appropriate.

- "I hear and I forget. I see and I remember. I do and
I understand."

Overview of the Class

Background of HP-UX

The "Big Picture" of the Kernel

SE 390: Series 300 HP-UX Internals

Introduction

rlP-UX Origins and Compatibility

- Original UNIX(tm) came from Bell Labs in the late 1960s.

- Over time it was refined, and AT&T released version 7. It
has been said that V7 was better than either its predecessors
or its successors.

- AT&T released System III and System V, and System V has become
a standard that many people accept.

UC Berkeley took V7 or something similar and started going
another way. They have since released 4.1-4.3, and BSD
is a standard that another set of people accept.

- HP-UX on both the S300 and S800 is a port of BSD4.2, with a
System v call interface on top of it. It passes the SVID
(for V.2 as of May 1988), but has many of the smart things that
Berkeley did (demand-paged VM, HFS filesystem, etc) .

In 8.0, there is a totally different VM system, based largely
on System V.3.

3

HP-UX Structure Overview

s.~scalls
-~---- .. """"'""

' VM , device ""~ \
' t • ' ' , drivers ' t , ~

• t
' .
:~
' •
' t
~ LAN
~

' ~
\

'\,

' ' "' ' '

iomap(7)

compilers

SE 390: Series 300 HP-UX Internals

Introduction

The "Big Picture" of the Kernel

- What is it there for?

- manage resources

- make life easier for the programmer

- What are the major components?

- kernel processes: swapper, pager, [init], [CSPs] ...

- device drivers

- privileged library routines that deal with:

- processes

- memory

- the file system

- the ~/O system

- diskless nodes

- Timeout routines - not really a process, but they act
like it in the sense that they are responsible for
monitoring free memory, CPU scheduling, etc. If they
were part of a process, it would be process 0, but they
operate independently of it.

(These can be thought of as "internal at(l) jobs".
Inside the kernel, one can call a routine named timeout()
and tell it to call a particular function N clock ticks
from now.) ·

SE 390: Series 300 HP-UX Internals

Introduction

The Kernel in One Page :-)

- PROCESSES are running programs; they have their own private
address space, they (hopefully) get to use the CPU from time
to time, and the kernel keeps information about them in
structures called the "u area" and "proc table entry".

- The I/O system is largely composed of device drivers, each
of which specializes in a particular kind of device interface.
There are also general principles of how interrupt-driven
devices talk to the system and how we decide which driver
should be called for a given task.

- The FILESYSTEM is responsible for organizing non-volatile
data on the disk. HP-UX uses the Berkeley filesystem,
which can be thought of as many small Bell f ilesystems
stuck together on the disk. The filesystem also has
provisions in-core to handle other kinds of filesystems,
such as NFS or CDFS. It does this through an abstraction
called a "vnode".

- MEMORY is managed by the kernel in such a way that each
process gets some private address space, and the sum of
the amounts of memory used by each process can be much
greater than the amount of RAM in the machine.

+- - - - - - - - - - -- - -- -- -- - - - -- - - -- "". - - - - - - - -- - - - - - - - - -- - - -- - - -+
User Code

+- -+

Filesystem I Process Mgmt

I +---~~~~~~---+ I - -- - - -- - - - -- - - I HARDWARE I -- - - - - - - - - - - -- -
Other I +---~~i~~~~~I

VM
LAN Diskless

+---+

+- -+

SE 390: Series 300 HP-UX Internals

Introduction

Access to the Kernel

- System calls.

- front ends in libc

- 68K

- PA

- move system call number into dO (680x0 register)

- change modes with "trap 0", which kernel catches

- trap handler calls syscall()

- each process has something called a "gateway"
page mapped into its address space

- in this page there is a "gate" instruction,
which "promotes" the privilege level of the
process and calls the kernel routine syscall()

- actual system call code is called indirectly, using
the system call number as an index into sysent[]

- The assembly-level debugger, adb(l).

- The kernel debugger, SYSDEBUG (68K) or DDB (PA). This is most
useful for people in the lab's kernel group or people writing
drivers - not very useful without source (and DDB requires
a 300 or 400 to run on - it is not a standalone debugger)

- Calls to nlist(3) & /dev/kmem

- YOU ARE ON YOUR OWN

- call nlist(3) to get address of symbol from "a.out"
file (/hp-ux in this case)

- open /dev/kmem and seek to address

- read information

- YOU ARE ON YOUR OWN - KERNEL DATA STRUCTURES
CHANGE FROM RELEASE TO RELEASE!

Nov 04 10:30 1992 edited 9.0 space.h Page 1

!* @(#) $Revision: 1.8.62.17 $ */
#ifndef MSYS SPACE INCLUDED /* allows multiple inclusion */
#define =MSYS=SPACE=INCLUDED

#include " .. /ufs/fsdir.h"

#include " .. /h/user.h"
#include " .. /h/proc.h"
#include " .. /h/sem_beta.h"

#include " .. /h/vnode.h"
#include " .. /ufs/inode.h"

#include " .. /cdfs/cdfsdir.h"
#include " .. /cdfs/cdnode.h"
#include " .. /cdfs/cdfs.h"
#if def SIXR
#include 11

•• /machine/sna space.h" /* for SNAP*/
#endif -

#include
#include
#include
#include
#include
#include
if include
;I: include
#include
#include
#include
#include

#include
#include
#include
#include
#include
#include
#include

/*

.. /h/callout.h"

.. /h/kernel.h"

.. /h/map.h"

.. /h/buf.h"

.. /h/pty.h"

.. /h/nvs.h"

.. /machine/iobuf.h";
" .. /machine/dilio.h";
11

•• /dux/rmswap.h"
11

•• /dux/dm.h"
11

•• /dux/protocol.h"
11

•• /dux/nsp.h"

11
•• /machine/lnatypes.h"

11
•• /machine/intrpt.h"

11
•• /machine/hpibio.h"

" .. /machine/drvhw.h"
" .. /h/devices.h"
" .. /h/ dnlc. h"
II •• /h/file.h"

* System parameter formulae.
*/

struct timezone tz { TIMEZONE I DST } ;

short rootlink[3] = { Oxffff, Oxffff, Oxffff };
char *bootlink = O;
int lanselectcode -1;

int num cnodes = NUM_CNODES;

'*
** Size the using/serving arrays. USING_ARRAY_SIZE and SERVING ARRAY SIZE
** are configurable parameters.

Nov 04 10:30 1992 edited 9.0 space.h Page 2

.:/
int using_array_size = USING ARRAY SIZE;
struct using_entry using_array[USING_ARRAY_SIZE] ;

int serving array size = (SERVING ARRAY SIZE > MAX SERVING ARRAY) ? MAX SERV
struct serving_entry serving_array[(SERVING_ARRAY=SIZE > MAx_SERVING_ARRAY)

int dskless_f sbuf s = (DSKLESS_FSBUFS > MAX_SERVING_ARRAY) ? MAX_SERVING_ARRA

/*
** Define timeout periods for selftest and crash detection. SELFTEST PERIOD
** SEND_ALIVE PERIOD and CHECK_ALIVE_PERIOD are configurable parameters.
*/

/* If selftest period is O then no selftest, otherwise lowerbound of 90 secs
int selftest_period = ((SELFTEST_PERIOD == 0) ? SELFTEST_PERIOD ((SELFTEST

int check_al~ve_per~od = CHECK ALIVE PERIOD;
int retry_al1ve_per1od = RETRY=ALIVE=PERIOD;

int ngcsp = NGCSP;
int ncsp = NGCSP + 1;
struct nsp nsp[NGCSP+l];
struct nsp *nspNCSP = &nsp[NGCSP+l];

I* semaphore to prevent regular LAN
/* USEFUL ??? */
int DUX init = 1;
/* dskless subsystem initialization
int dskless_initialized = O;

/* always one for limited CSP */
/* always one for limited CSP */

init to reinitialize the network. */

flag */

#ifdef UIPC

/*

/* UIPC is the umbrella subsystem for networking */

* Networking
*/

#include " .. /h/mbuf.h"
#define PRUREQUESTS
#include " .. /h/protosw.h"
#include " .. /h/socket.h"

#ifdef INET
#include " .. /net/if.h"
#include " .. /net/route.h"
#include " .. /net/raw cb.h"
#include " .. /netinet7in.h"
#include " .. /netinet/if ether.h"
#include " .. /h/mib.h" -
#include " .. /netinet/mib kern.h"
#include " .. /net/if ni.h"
/* ni */ -
~_nt ni max = NNI;
struct-ni cb ni_cb[NNI];

q

Nov 04 10:30 1992 edited 9.0 space.h Page 3

'*
* Internet Domain
*/

#define TCPSTATES
#include " .. /netinet/tcp_fsm.h"
struct ifqueue ipintrq;

/*
* (X)NS Domain
*/

struct ifqueue nsintrq;

#endif /* INET */
#endif /* UIPC */

/*
* Netisr
*/

int netisr_priority = NETISR PRIORITY;
int netmemmax = NETMEMMAX;

#if def NSDIAG
#include " .. /sio/nsdiagO.h"
#define NSDIAG MAX QUEUE 500
int nsdiagO_high_water = NSDIAG_MAX_QUEUE;
nsdiag_event_msg_type *nsdiagO_msg_queue;
~endif /* NSDIAG */

#ifdef LAL~Ol
#include " .. /sio/lanc.h"
#include " .. /machine/drvhw_ift.h"

/* msg queue */

#if ((NUM LAN CARDS> O) && (MAX LAN CARDS> NUM_LAN_CARDS))
int num lan cards = NUM LAN CARDS; -
#else - - - -
#if (NUM LAN CARDS > MAX LAN CARDS)
int num Ian cards = MAX LAN CARDS; /* exceed MAX LAN CARDS */
#else 7* we force it to defatul */
int num lan cards = 2;
#endif -/* NuM LAN CARDS > MAX LAN CARDS */
#endif - - - -

lan_ift * lan_dio ift_ptr[lO];
#endif /* LANOl *7 .

/*
* Streams subsystem
*/

#ifdef HPSTREAMS

~_nt strmsgsz = STRMSGSZ;
lnt strctlsz = STRCTLSZ;
int nstrevent = NSTREVENT;

10

Nov 04 10:30 1992 edited 9.0 space.h Page 4

~nt nstrpush = NSTRPUSH;

#include 11
•• /streams/str hpux.h"

#include 11
•• /streams/str=stream.h"

#endif /* HPSTREAMS */

#define NETS LOP 20

#if def NO SWAP
#define NO SWAP 1
#else
#define NO SWAP 0
#endif

#define NCLIST (100+16*MAXUSERS)
int nclist = NCLIST;

int nproc = NPROC;
int ninode = NINODE;

/*
* maxfiles is the system default soft limit for the maximum number of
* open files per process. maxfiles defaults to 60 if not configured.
* maxf iles lim is the system default hard limit for the maximum number of
* open files per process. maxfiles lim defaults to 1024 if not configured.
*/

int maxfiles = MAXFILES;
int maxf iles_lim = MAXFILES_LIM;

/*The NCDNODE should be defined in master for configurability. Before we
can actually do it, this is what we can do now.*/
#define NCDNODE 150
int ncdnode = NCDNODE;
int ncallout = NCALLOUT;
long unlockable mem = UNLOCKABLE MEM;
int nfile = NFILE + FILE PAD; -
int file_pad = FILE PAD;-
int nbuf = NBUF; -
int nflocks = NFLOCKS;
int npty = NPTY;
int ndilbuffers = NDILBUFFERS;
int ncsize = NINODE;
struct ncache ncache[NINODE];

/*
* Hash table of open devices.
*/

dtaddr_t devhash[DEVHSZ];

int maxuprc MAXUPRC;
lnt maxdsiz = MAXDSIZ/NBPG; /* unit: page size */
int maxssiz MAXSSIZ/NBPG; /* unit: page size */
int maxtsiz MAXTSIZ/NBPG; /* unit: page size */

I l

Nov 04 10:30 1992 edited 9.0 space.h Page 5

parity option = PARITY OPTION;
reboot - opt ion = REBOOT-OPTION;.
noswap- = NOSWAP; -
install = NOSWAP;

/* unit: 20ms tick */

Lnt
int
int
int
int
int
int
int

timeslice = TIMESLICE;
acctsuspend = ACCTSUSPEND;
acctresume = ACCTRESUME;
dos_mem_byte = DOS_MEM_BYTE;

/* unit: percent of filesystem free
/* unit:. percent of filesystem free
/* mem. reserved for dos in bytes

mem no = 3; /* major device number of memory special file */
ieee802 no = 18; .
ethernet no = 19;
dos mem start; /* physical addr. of dos mem. */

int
int
int
uint
int scroll_Iines = SCROLL_LINES; /* number of lines of ITE buffer */

/*
The tty stuff that needs to be declared somewhere.

*/
#define NPCI 16
short npci = NPCI;
struct tty *tty_line[NPCI];
struct tty *cons_tty;

/*
* These have to be allocated somewhere; allocating
* them here forces loader errors if this file is omitted.
*/

struct proc *proc, *procNPROC, *cur_proc;
struct inode *inode, *inodeNINODE;
struct callout *callout;
struct file *file, *fileNFILE, *file reserve;
struct locklist locklist[NFLOCKS]; - /*The lock table itself */
struct tty pt tty[NPTY];
struct tty *pt_line[NPTY];
struct pty_info pty_info[NPTY];
struct nvsj nvsj [NPTY] ;
struct buf dil bufs[NDILBUFFERS];
struct iobuf dil-iobufs[NDILBUFFERS];
struct dil info dil info[NDILBUFFERS];
int (*fhs_timeout_proc) O = NULL;

/* declarations for stub routines for non-configurable portions of EISA bus
extern nop();
int (*eisa init routine)() = nop;
int (*eisa-nmi routine) () = nop;
int (*eisa=eoi=routine) () = nop;

/* declarations for stub routines for non-configurable portions of MTV (VME)
int (*vme_init_routine) () = nop;

/*
** The following supports savecore on the s300
*/

long
int

dumplo;
dumpsize;

/* offset into dumpdev */
/* amount of NBPG phys mem to save - dep on swap */

IL

Nov 04 10:30 1992 edited 9.0 space.h Page 6

Lnt dumpmag; /* magic number for savecore, Ox8fca0101 */
/* dumpdev is now generated into conf .c by config */

struct
struct
short
int
char

struct
struct

char
char
int
#ifdef
u char
#else
char
#endif

cblock *cfree;
buf *buf, *swbuf;
*swsize;
*swpf;
*buffers;

bufqhead bfreelist[BQUEUES];
buf bswlist;

runin;
runout;
runrun;
RTPRIO
curpri;
/* RTPRIO */
curpri;
/* RTPRIO */

ma:xmem;
physmem;
hand;
want in;
selwait;

/* heads of available lists */
/* head of free swap header list */

/* scheduling flag */
/* scheduling flag */
/* scheduling flag */

/* more scheduling */

/* more scheduling */

/* actual max memory per process */
/* physical memory on this CPU */
/* current index into coremap used b

int
int
int
int
int
/*

* The
*/

following is for the shared memory subsystem (if configured)

#if MESG==l
#include
#include

struct ipcmap
struct msqid_ds
struct msg
struct msginf o

} ;

MSGMAP,
MSGMAX,
MSGMNB,
MSGMNI,
MSGSSZ,
MSGTQL,
MSGSEG

" .. /h/ ipc. h"
" .. /h/msg.h"

msgmap [MSGMAP] ;
msgque [MSGMNI] ;
msgh [MSGTQL];
msginf o = {

int messages_present = 1;
#else
int messages_present O;
#endif

#if SEMA==l
ifndef IPC ALLOC
~ include 11 .:/h/ipc.h"
ft endif
#include " .. /h/sem.h"

Nov 04 10:30 1992 edited 9.0 space.h Page 7

Jtruct
struct
struct
struct
#define
int
union {

}

semid ds sema[SEMMNI];
sem - sem[SEMMNS];
map semmap[SEMMAP];

sem undo *sem undo[NPROCl;
SEMUSZ (sizeof (struct sem undo)+sizeof (struct
semll[((SEMUSZ*SEMMNU)+NBPW~l)/NBPW];

short semvals[SEMMSL];
struct semid ds ds;
struct sembuf semops[SEMOPM];
semtmp;

struct seminfo seminfo = {
SEMMAP,
SEMMNI,
SEMMNS,
SEMMNU,
SEMMSL,
SEMO PM,
SEMUME,
SEMUSZ,
SEMVMX,
SEMAEM

} ;
int semaphores_present = 1;
#else
int semaphores_present = O;
Jendif

#if SHMEM == 1
ifndef IPC ALLOC
include " .. 7h/ipc.h"
endif
#include " .. /h/shm.h"
struct shmid ds shmem[SHMMNI];
struct shminf o shminf o = {

} ;

SHMMAX,
SHMMIN,
SHMMNI,
SHM:SEG

int shared_memory_present = 1;
#else
ifndef IPC ALLOC
include " .. 7h/ipc.h"
endif
#include " .. /h/shm.h"
struct shmid ds shmem[l];
int shared_memory_present = O;
#endif

undo)*SEMUME)

/* The parser is
* assignment of
* right now its
*/

currently not configurable, but when it is, modify the
(*pn_getcomponent) () = to your choice of parser.
pn_getcomponent_n_computer() (8bit).

/* two-byte characters in file names. */

!ti

Nov 04 10:30 1992 edited 9.0 space.h Page 8

'*extern int pn getcomponent chinese t(}; not supported yet*/
e~tern int pn_getcomponent_n_computer(};
#ifndef PARSER
#define PARSER pn getcomponent n computer
#endif - - -
int (*pn_getcomponent} (} = PARSER;

struct pidchunk
{

int start;
int end;

} mypidchunks[NPROC];

/* The following are configuration flags for networking */
int rellnsc_l_flag = 1;
int rellnsc 2 flag = 1;
int rellnsc=3=flag = 1;

int
int
int
int
int
int

swapspc_cnt;
swapmem_max;
swapmem_cnt;
maxfs_pri;
maxdev_pri;
sys_mem;

/* pages of available swap space */
/* total pages of system available swap space */
/* pages of available memory for "swap" */
/* highest available device priority */
/* highest available swap prioirity*/
/* pages of memory not available for "swap" */

int minswapchunks = MINSWAPCHUNKS;

1;:tifdef X25
#if (defined(NUM PDNO) && (NUM PDNO >= O))
#ifndef IPPROTO ICMP -
#include " .. /netinet/in.h"
#endif /* NOT IPPROTO ICMP */
#ifndef IFF UP -
#include ".~/net/if.h"
#endif /* IFF UP not defined */
#include " .. /i25/x25gen.h"
#endif /* NUM PDNO */
#endif /* X25-*/

/*
* Double Stuff data structures/configuration; a -1 value means that the
* parameter will be calculated from available memory at boot time.
*/

#define VHNDFRAC -1
#define MAXPMEM -1

#include " .. /h/sysinfo.h"
#include " .. /h/pfdat.h"
#include 11

•• /h/swap.h"

int desperate;
struct minfo minfo;
struct pfdat **phash;
~truct pfdat *pfdat;
int phashmask; /* Page hash mask */
struct pfdat phead;

/6

Nov 04 10:30 1992 edited 9.0 space.h Page 9

~ong phread, phwrite;

int swchunk = SWCHUNK;

int nswapfs = NSWAPFS;
struct fswdevt fswdevt[NSWAPFS];

int nswapdev = NSWAPDEV;

struct swap_stats swap....,;stats[NSWAPDEV+NSWAPFS+l];

int swapmem on = SWAPMEM ON;
int sysmem max = SYSMEMM'Ax;
int maxswapchunks = MAXSWAPCHUNKS;

struct devpri swdev_pri[NSWPRI];
struct fspri swfs_pri[NSWPRI];

struct swaptab swaptab[MAXSWAPCHUNKS];

vm_sema_t swap_lock;
int nextswap;
int swapwant;
int mpid;

#include 11
•• /h/var.h"

struct var v = {
VHNDFRAC,

} ;
int ticks_since_boot;

/*

/* For generating unique process IDs */

* Variables used for sar
*/

#include " .. /h/sar.h"

long sar_swapin;
long sar swapout;
long sar-bswapin;
long sar=bswapout;
struct syswait syswait;

int procovf = O;
int istackptr = O;
int freemem cnt = O;

#ifdef GENESIS

/* True if running on istack */

/*Set by graphics_make_entry(), used in main() to decide whether or*/
/* not to start vdmad. */

int vdma_present = O;
#endif

/*

J LP

Nov 04 10:30 1992 edited 9.0 space.h Page 10

* A bunch of stuff was allocated in proc.h. I've moved it here.
*/

short freeproc_list; /* Header of free proc table slots */

struct prochd qs[NQS];
int whichqs[NQELS];

struct map *sysmap;
/*
* HACK ATTACK
*

/* Bit mask summarizing non-empty qs's */

/* Map of vaddr pool for system */

* Dux had defined this variable in cluster.c. Including this module,
* however leads to many more dux modules having to be compiled and linked
* into the kernel. Rather than deal with configurability now, we simply
* hack around the problem, knowing full well that this isnt' used for
* anything outside of a discless environment anyway.
*/

#include " .. /dux/duxparam.h"
#include " .. /dux/cct.h"
struct cct clustab[MAXSITE]; /* incore cluster configuration table*/

/* File system async flag. If set file system data structures
are written asychronously. */

lnt fs_async = FS_ASYNC;

/*
* flag to control creation of "fast" symbolic links.
*/

int create_fastlinks = CREATE_FASTLINKS;

/*
* flag to turn off new AES conformance behavior for hp-ux system calls.
*/

int hpux_aes_override = AES_OVERRIDE;

/* hash table size scale with number of items hashed */

/* lpow2 returns largest power of 2 less than arg, min value 16, max 8192 */
#define lpow2(arg) \

(arg) < 32? 16: \
(arg) < 64? 32: \
(arg) < 128? 64: \
(arg) < 256? 128: \
(arg) < 512? 256: \
(arg) < 1024? 512: \
(arg) < 2048? 1024: \
(arg) < 4096? 2048: \
(arg) < 8192? 4096: \
8192

Jdefine hashsize(length, items, default) \
(lpow2((items)/(length)))

J1

Nov 04 10:30 1992 edited 9.0 space.h Page 11

/* proc table */

#define PIDHSZ hashsize(4, NPROC, 64)
int PIDHMASK = PIDHSZ - 1;
short pidhash[PIDHSZ];

#define PGRPHSZ hashsize(4, NPROC, 64)
int PGRPHMASK = PGRPHSZ - 1;
short pgrphash[PGRPHSZ];

#define UIDHSZ hashsize(4, NPROC, 64)
int UIDHMASK = UIDHSZ - 1;
short uidhash[UIDHSZ];

#define SIDHSZ hashsize(4, NPROC, 64)
int SIDHMASK = SIDHSZ - 1;
short sidhash[SIDHSZ];

/* sleep table */

#define SQSIZEDEF hashsize(4, NPROC, 64)
int SQSIZE = SQSIZEDEF;
int SQMASK SQSIZEDEF-1;

struct proc *slpque[SQSIZEDEF];
atruct proc *slptl[SQSIZEDEF]; /*For FIFO sleep queues*/

/* buffer table */

/* average buf hash chain length desired -- see machdep.c */
int bufhash chain length = 4;
struct bufhd *bufhash; /* buffer hash table */
int BUFHSZ, BUFMASK;/* size and mask for accessing bufhash */

/* inode table */

#define INOHSZDEF hashsize(6, NINODE, 64)
int INOHSZ = INOHSZDEF;
int INOMASK = INOHSZDEF-1;
union ihead { /* inode LRU cache, Chris Maltby */

union ihead *ih head[2];
struct inode *ih=chain[2];

} ihead[INOHSZDEF];

/* spinlocks */

#define SPINSIZEDEF (B SEMA HTBL SIZE + SQSIZEDEF + 50)
int MAX SPINLOCKS = SPINSIZEDEF;-

lock t spin_alloc_base[SPINSIZEDEF] = { 0 };
1ock-t *spin_alloc_end = spin_alloc_base + SPINSIZEDEF;

int ddb boot DDBBOOT;

IA

Nov 04 10:34 1992 edited 9.0 msgbuf .h Page 1

'* @(#) $Revision: 1.11.61.2 $ */

#define MSG MAGIC
#define MSG-BSIZE

Ox063060
(4096 - 2 * sizeof (long))

struct

} ;

#ifdef
extern
#else
#ifdef
struct
#else
struct
#endif
#endif

msgbuf {
long msg_magic;
long msg bufx;
char msg=bufc[MSG_BSIZE];

_hp9000s800
struct msgbuf msgbuf;

_hp9000s300
msgbuf Msgbuf;

msgbuf msgbuf;
/* else not _hp9000s300 *'
/* else not _hp9000s80P */

SE 390: Series 300 HP-UX Internals

Process Management

The Big Picture

- How does HP-UX share system resources among competing processes?

The Little Picture(s)

- The context of a process.

- Signal handling & job control.

- Process creation/deletion.

- Fork - duplicate current process.

- Exec - replace current program with another.

- Context switching.

- Tunable parameters.

The Problem

$ ps -ef
fork failed - too many processes

What's going on here?

SE 390: Series 300 HP-UX Internals

Process Management

The Context of a Process (running program)

- Stack, text, and data areas.

- Registers, stack pointer, program counter, etc.

- Segment and page tables.

- The u area - defined in /usr/include/sys/user.h.

- available when process is in memory - won't be paged out,
but can be swapped with the process

- has stuff like arguments to system calls, a place to save
registers, the command that was typed, etc. These are
things we don't need to have available when the process is
swapped out.

the kernel stack is part of the u area, but is not defined
in user.h - it is actually in a different page and is not
part of the "user structure".

- the proc table entry - defined in /usr/include/sys/proc.h

- State

- stuff that needs to always be available - priority, PID,
signal masks, etc.

- running - we are the.currently executing process.

- runnable - we are ready to run, and are waiting for
the processor.

- in a run queue based on our priority

- stopped - we were running, but were stopped by ptrace(2)
or we received a SIGTSTP (BSD Job Control).

- sleeping - we are waiting for a resource.

- in a sleep queue based on temporary priority
(interruptible if sleep will *NOT* end quickly;
comatose if it will :-)

- zombie - we've exited, but parent hasn't done a wait(2)
on us yet; *all* resources are freed up except the
proc table entry (& u area in 8.0).

2

68K process logical address space:

5 pages
float area

2+ pages
u area

216 pages
big gap
for future
use

32 pages
dragon
area

user stack

/\
11

user
bss/data

text

Oxf ff ff f ff

1 MB

<-- top of

98635 FP card is mapped in
here if present & in use

98248 FP card is mapped in
here if present & in use

stac~ ~ d-) ah J
-7~~ ~ u ./ . ;j_ 0
~.

Shared libraries (mmap(2)ed
files) go here if in use
f-~~q .-i.} &. h s ~ ~/Jl-24. I;,
t&fe/!-r> ~ f LJa ~
t~

<-- top of data segment

OxOOOOOOOO

68K u area looks like this:

1 page
struct user

1 page
kernel stack

larger addresses

<-- top of 4k kernel stack

smaller addresses

In 8.0 and later releases, kernel stacks are actually allowed to use 4
pages (rather than just 1), but this is not often done (most kernel
functions do *not* use much stack space) .

SE 390: Series 300 HP-UX Internals

Process Management

Process-eye View of Memory Management (68K)

- The segment table pointer is the root of all address translation.

seg. table page tables RAM

/----------1 /----------1
+---------------+ I +-------v-------+ I +-------v-------+

--/ --/

--\

\----------1 /----------1
+-------v-------+ I +-------v-------+

- - I

--\

L --------I
The 68020 uses 2-level tables, like this
diagram shows. The 68030 (in >=8.0) and
68040 use 3-level tables - a "block table"
is inserted between the segment and page
tables, and the virtual address is split
into 4 parts instead of 3.

+-------v-------+

- The 680x0/MMU have stack and segment table pointers for both
user and supervisor modes. Whenever a process gets to use the
CPU, its segment table pointer and stack pointers are put into
the appropriate hardware registers. In the table below, each
item marked with Xs is changed at context-switch time.

segment table stack

user xxxxx I xxxxx
+- +

supervisor I I xxxxx I

5

700 Per-process Virtual Address Space

pre-9.0

I/O SPACE

-768 MB Shared Memory

4K of gateway page(s)

Quadrant 4 (sr7)

Shared Library text

Quadrant 3 (sr6)

-289 MB
Shared Library data

and
Private :MMFs

-80 MB
User Stack

Kernel Stack

UAREA

up to -656 MB

BSS

Initialized Data

Quadrant 2 (srS)

Shared Text

Quadrant 1 (sr4)

9.0

I/O SPACE

-768 MB Shared Stuff

4K of gateway page(s)

Quadrant 4 (sr7)

Shared Stuff

Quadrant 3 (sr6)

Reserved/redzone
---------------- kernel stack -------------

u area ------------------------- ----------------------
-80 MB

user stack

shared library data
and/or private :MMFs

I
v

A

BSS

Initialized Data

Quadrant 2 (srS)

Text (shared, unless EXEC MAGIC
a.out; then text is "dati":

text+data+priv :MMFs < 1.87GB)

Quadrant 1 (sr4)

{_/)

SE 390: Series 300 HP-UX Internals

Process Management

Signal Handling

- Signal sending

- crude form of IPC

accomplished with kill(2), which is the heart of
kill(l), as in

$ kill -1 2344

- SIGUSR[12] are available for cooperating processes

Signal receiving or "catching"

Read signal(S) for an overview of the various signal
families.

- can be controlled somewhat with sig*(2)

can specify a procedure to call when a given
signal comes in

- can specify an alternate signal stack

- if a non-default handler is specified, it will be called
in such a way that it appears to be a normal procedure
call

- SIGKILL (as in "kill -9") can NOT be caught or ignored

- special case for init(lm) - kill(2) will refuse
to send SIGKILL to PID 1!

SE 390: Series 300 HP-UX Internals

Process Management

Signal Implementation

- Signal sending

set a bit in the proc table entry of the receiving
process

- mark receiving process as runnable, *as long as it isn't
sleeping at a priority of PZERO or less* - this is
important to remember, but shouldn't often be an issue

Signal receiving

- check to see if we have signal(s) pending whenever we're
about to return to user mode from kernel mode and
whenever we block in the kernel (by calling sleep()).

- if we do, handle them or core dump or exit or whatever

- if we were in the middle of a system call, we may restart
it or we may return an error - depends on what programmer
asked for.

SE 390: Series 300 HP-UX Internals

Process Management

~rocess Creation/Deletion

- Created by fork(2).

- most things are exactly duplicated

- things like pid, ppid, etc. are different

- stdio buffers are duplicated

- vfork(2) is a fast version - it does NOT copy the stack
and data - it trusts the child to do an exec

- in 8.0, copy-on-write has made normal fork(2)
fast as well

- Currently-running program replaced by exec(2).

- things like file descriptors are preserved

- things like "when this signal comes in, call this
routine" are NOT preserved

- Deleted by exit(2) (voluntary), or most signals (involuntary).

>> - note that unless parent process does a wait(2), there <<
>> will be a zombie sitting around... <<

- A process gets created whenever

q

SE 390: Series 300 HP-UX Internals

Process Management

What Happens When Fork(2) Is Called

- The general idea is to "xerox" the calling process, changing
only the things that must be unique (PID, resource usage, etc)

Specifics:

- child will share

- text (code - including shared libs, if used),
shared memory; in general, any SHARED regions

- references to open files, current/root dirs

- child must have its own

- proc table entry and u area

- page tables (68K)

- if this is a real fork and not a vfork, child
will have its own

- data

- stack

- swap area for the above

- vfork(2) is a fast, cheap alternative to fork(2) - useful when
all we want to do is exec(2) something; the basic idea is to
borrow the parent's resources rather than making copies of them
that are immediately thrown away

- in 8.0, fork(2) is implemented with copy-on-write

- parent and child have the same physical pages mapped

- pages are marked readonly

- when parent *or* child modifies a page, it gets a
private copy of that page

- most of the time, very few pages are modified before
the child exits or execs; this winds up being a
significant performance win

- vfork(2) was initially implemented this way (in 8.x),
but this caused *serious* problems:

- the child had to have swap space allocated
- programs that used it as cheap shared memory

broke

IC

SE 390: Series 300 HP-UX Internals

Process Management

What Happens When Exec(2) Is Called

- Check modes: execute bits, set[ug]id bits, etc.

- Read in first few bytes· to see what kind of file it is.

- If it is non-shared, lump the data and text together as data.

- If it is a "#!" script, loop to get the real executable file.

- Be sure the file is as big as the header claims, but not too big.

- Copy arguments to a buffer.

- Be sure the file is big enough to have text, data, etc.

- Be sure text isn't busy: ptrace(2), open for write, etc.

- Get *swap* space.

- Release any locked memory.

- If we are a "vfork child", give memory back to the parent;
otherwise, release memory.

- Get virtual memory (actually just initialize page tables to
the appropriate thing - usually zero-fill-on-demand).

- Read data (and text if non-shared) in.

- Attach to text, reading it in if necessary.

- Set uid/gid.

- Copy arguments from buffer to new stack.

- Set registers (mostly clear them, but one is used to tell if we
have a floating point card and one is used to indicate processor
type) .

- Reset caught signal.s - there's nothing to catch them anymore!

- Close close-on-exec files.

j l

SE 390: Series 300 HP-UX Internals

Process Management

Context Switching - Priorities

Our fundamental goal is to be running the most important
process at any given time; for a typical process, its
"importance" is determined by its recent CPU usage and
its nice value.

- Every time the clock ticks (SO times/sec = every 20 ms for
the 300/400, 100 times/sec= every 10 ms for the 700),
the process that was running when the clock interrupted is
charged with a "tick" of CPU time (i.e. its p_cpu gets
incremented) .

- The system keeps a rough count of the number of processes that
are either runnable or will/could be very soon in an array
called "avenrun"; this is often referred to as the "load average"
and is what things like xload/top/uptime/monitor print.

- p_cpu is decayed once per second, and all process priorities are
recalculated:

- p_cpu = p_cpu*(2*load_ave)/(2*load_ave + 1) +nice value

- p_usrpri = PUSER + p_cpu/4 + 2*nice_value

- If process has been rtprio()'ed, forget the 2nd part

Process priorities are recalculated every second for all
processes on the system (via the two equations above), and
every four clock ticks for the current process.

- When some process becomes more_ important than the current one,
a context switch is requested. The switch won't actually happen
until we are ready to go back into user mode.

- A switch will automatically be requested every timeslice/HZ
of a second. Since timeslice is normally HZ/10, we will
default to requesting a switch every 1/lOth of a second.

300/400: HZ = 50 700: HZ = 100

/
·I
/

SE 390: Series 300 HP-UX Internals

Process Management

Context Switching - Mechanics

- Can only happen when

- process blocks by calling sleep{) (in the kernel);

- process is about to return to user mode from kernel mode;
this could be a return from an interrupt or exception
handler or a system call.

- Save current context into u area, which is mapped into the top of
the process' address space on the 68K and quadrant 2 on PA systems

- Restore other process' context from its u area.

- Resume execution.

SE 390: Series 300 HP-UX Internals

Process Management

Context Switching - Being Nice :-)

- Before 9.0, the "nice value" was used in the equations for
calculating process priority and had a *Sina.11* influence
on the swapper. It affected how much a process could use
the CPU, but did not really affect how much of the system's
throughput a process could consume.

- In 9.0, a process' nice value will have more effect on
how much it can do - the pager and swapper pay *much* more
attention to the nice value than they used to. This can be
used in positive and negative ways - to preserve interactive
performance, one could negatively nice the X server and
positively nice the chip simulator running in the background.

- nice(l) is a command wrapper around nice(2), which will change
the nice value of the current process (must be root to improve
it : -)

- renice(l) uses setpriority(2), which allows an appropriate user
to change the priority of other processes (not just the current
one). Top (version 2.5 or greater) also uses this.

14

SE 390: Series 300 HP-UX Internals

Process Management

Tunable Parameters

- maxfiles - default number of files a single process can open

- defaults to 60

- maxf iles lim - number of files a process can open if it does
a setrlimit(2) call

- defaults to 1024

- maxuprc - number of processes a single user (UID) can have

- setting it high allows a single user to take lots of the
system's resources

- setting it low can cause users to get angry

- nproc - maximum number of processes on the system at any given tim

- used to size a static array, the proc table

- it is also used to size other kernel data structures
that relate to the number of processes on the system

- timeslice - length of timeslice for round-robin CPU scheduling

normally lOOms (timeslice of "5" on 68K, "10" on PA)

- setting it too low makes us spend more of our
time switching, less of it working

- setting it too high means interactive response is bad

Kernel Variables Of Interest

- _nproc, timeslice from above; both are integers

- _proc - pointer to proc table; defined in proc.h

- u area - see getu.c

Summary

SE 390: Series 300 HP-UX Internals

Process Management

- A process is a running program, and consists of text, data,
and stack areas as well as a u area and proc-table entry. Most
processes also use shared libraries, and some use shared memory.

- Context switching refers to the kernel's efforts to be sure we
are running the "right" process at any given time. Processes
"lose" priority by using up CPU time, and the kernel sees if it
should switch processes any time the CPU is going from kernel
mode to user mode.

- Each process gets a slot in the "proc table", and this table is
sized by "nproc" (a tunable parameter). This parameter is also
used to size other things, so it is a good one to bump up if
there are general resource problems on the system.

- The proc-table entry is unique in that it will never be swapped
out for as long as the process exists. This is important, and
has much to do with the next point

- To send a signal, all we do is set a bit in the proc-table entry
of the receiving process, and (possibly) mark it runnable.,

- process logical address space:

4GB

0

2 pages
u area
k stack

user stack

sh mem

sh libs
mmap files

/\
11

bss/data

text

1 MB

<-- top of stack

<-- top of data

4GB

0

I;O
shared stuff
gateway pgs

shared stuff

stack, u area,
k stack, sh
lib data, data

code (+ data
if using
EXEC_MAGIC)

!&

Oct 14 10:39 1992 edited 9.0 proc.h Page 1

1 /*
2 * ®(#)proc.h: $Revision: 1.65.61.12 $ $Date: 92/06/29 10:44:30 $
3 *
4 */
5
6 #ifdef ~hp9000s300
7 #include <machine/pte.h>
8 #endif /* ~hp9000s300 */
9

10 #ifdef ~hp9000s800
11 #include <sys/fss.h>
12 #endif /* ~hp9000s800 */
13
14 #include <sys/vas.h>
15 #include <sys/pregion.h>
16 #include <sys/time.h>
17 #include <sys/mman.h>
18
19 /* Values for vfork_state field in struct vforkinfo */
20
21
22
23
24
25
26

#define
#define
#define
#define
#define

27 /*

VFORK_INIT
VFORK_PARENT
VFORK_CHILDRUN
VFORK_CHILDEXIT
VFORK BAD

0
1
2
3
4

28 * The following structure is used by vfork to hold state while a
29 * vfork is in progress.
30 */
31
32 struct vforkinfo {
33 int vfork_state;
34 struct proc *pprocp;
35 struct proc *cprocp;
36 unsigned long buffer_pages;
37 unsigned long u_and_stack_len;
38 #ifdef ~hp9000s300
39 unsigned char *u_and_stack_addr;
40 #endif
41 #ifdef ~hp9000s800
42 unsigned long saved_rp_ptr;
43 unsigned long saved_rp;
44 #endif
45 unsigned char *u and stack_buf;
46 struct vforkinfo *prev;
47 };
48
49 /*
50 * One structure allocated per active
51 * process. It contains all data needed
52 * about the process while the
53 * process may be swapped out.
54 * Other per process data (user.h)
55 * is swapped with the process.
56 */

!'I

Oct 14 10:39 1992 edited 9.0 proc.h Page 2

57 typedef struct proc {
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

#if def

77 #else
78
79 #endif

struct
struct
u_char
u_char
u_char
char
char
char
char
int
int

proc *p_link;
proc *p_rlink;
p_usrpri;
p_pri;
p_rtpri;
p_cpu;
p_stat;
p_nice;
p_cursig;
p_sig;
p_sigmask;

int p_sigignore;
int p_sigcatch;
int p_flag;
int p_flag2;
int p_coreflags;

_CLASSIC_ID_TYPES
u_short p_f iller_uid;
u_short p_uid;

uid_t p_uid;

80 #ifdef _CLASSIC_ID_TYPES
u_short p_f iller_suid;

/* linked list of running processes */

/* user-priority based on p_cpu and p_nice */
/* priority, lower numbers are higher pri */
/* real time priority */
/* cpu usage for scheduling */

/* nice for cpu usage */

/* signals pending to this process */
/* current signal mask */
/* signals being ignored */
/* signals being caught by user */
/* see flag defines below */
/* more flags; see below */
/* core file options; see core.h */

/* user id, used to direct tty signals */

/* user id, used to direct tty signals */

81
82 u_short p_suid; /* set (effective) uid */
83 #else
84
85
86
87
88
89
90

#endif
#if def

#else

91 #endif

uid t p suid;

CLASSIC_ID_TYPES
u_short p_filler_pgrp;
short p_pgrp;

gid_t p_pgrp;

92 #ifdef _CLASSIC_ID TYPES
93 u_short p_filler_pid;
94 short p_pid;
95 #else
96
97
98
99

100

#endif
#if def

101 #else
102
103 #endif
104
105
106
107
108
109
110
111
112

pid t p_pid;

CLASSIC_ID_TYPES
u_short p_filler_ppid;
short p_ppid; .

pid t p_ppid;

caddr t p_wchan;
size t
u_short
long
float
short
short
short
short

p_maxrss;
p_cpticks;
p_cptickstotal;
p_pctcpu;
p idhash;
p_pgrphx;
p uidhx;
p_fandx;

/* set (effective) uid */

/* name of process group leader */

/* name of process group leader */

/* unique process id */

/* unique process id */

/* process id of parent */

/* process id of parent */

/* event process is awaiting */
/* copy of u.u_limit[MAXRSS] */
/* ticks of cpu time */
/* total for life of process */
/* %cpu for this process during p_time */
/*hashed based on p_pid for kill+exit+ ... */
/* pgrp hash index */
/* uid hash index */
/* free/active proc structure index */

Oct 14 10:39 1992 edited 9.0 proc.h Page 3

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

short
struct
struct
struct
struct
struct
vas_t
preg_t
ushort
struct

short
short
u_short
char
char
short

p_pandx;
proc *p_pptr;
proc *p_cptr;
proc *p_osptr;
proc *p_ysptr;
proc *p_dptr;
*p_vas;
*p_upreg;
p_mpgneed;
proc *p_mlink;

p_memresv;
p_swpresv;
p_xstat;
p_time;
p_slptime;

/*
/*
/*
/*
/*
/*
/*
/*
/*

previous active proc structure index */
pointer to process structure of parent */
pointer to youngest living child */
pointer to older sibling processes */
pointer to younger siblings */
pointer to debugger, if not parent */
Virtual address space for process */
Pointer to pregion containing U area */
number of memory pages needed */

/* link list of processes
/* sleeping on memwant or
/* swapwant.

*/
*/
*/

/* # pages reserved by this proc */
/* # pages reserved by swapper this proc */
/* exit stauts */
/* resident time for scheduling */
/* time since last block */

struct
sid_t

p_ndx;
itimerval
p_sid;
p_sidhx;
p_idwrite;

p_realtimer;

short
short
struct
struct
u_char
u_char

fss *p_fss;
dbipc *p_dbipcp;
p_wakeup_pri;
p_reglocks;

caddr_t p_filelock;

/* session ID */
/* session ID hash index */
/* process ident write flag for auditing */
/* fair share group pointer */
/* dbipc pointer */
/* priority when proc awakens on semaphore */
/* num reglock() 's held (see vm_sched.c) */
/* VASSERTS in region.h know this is 1 byte */
/* address of file lock region process is

either blocked on or about to block on.*/
/* Doubly linked list of processes sharing the same controlling tty.

* Head of list is u.u_procp->p_ttyp->t_cttyhp.
*/

struct proc *p_cttyfp;
struct proc *p_cttybp;
caddr_t p_dlchan;
site_t p_faddr;
/* Fields used by the
struct timeval

p_utime,
p_stime;

dev_t p_ttyd;

/* forward ptr */
/* backward ptr */
/* Process deadlock channel
/* Process forwarding address

pstat system call. */

time_t p_start;

*/
*/

156 struct tty *p_ttyp; /* controlling tty pointer */
157 int p_wakeup_cnt; /* generic counter, wakeup when goes to O */
158 #ifdef MP
159 #if def SYNC_SEMA_RECOVERY
160
161
162
163
164
165
166
167
168

sema t *p_recover_sema; /* Semaphore to recover on exit from sleep */
#endif

#endif

int p_descnt; /*
int p_desproc; /*
int p_mpflag; /*
int p_procnum; /*
/* MP */
struct proc *p_wait_list;
struct proc *p_rwait_list;

proc desire age */
processor desired */
mp flag */
Processor it ran on, just for user info

/* Forward link for wait list */
/* Backward link for wait list */

*/

1q

Oct 14 10:39 1992 edited 9.0 proc.h Page 4

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

struct sema
struct sema

p_sleep_sema; / semaphore process is blocked on */
p_sema; / alpha: head of per-process semaphore list *

/* These fields have been moved from user.h because you can no
* longer retreive this information from a uarea which has been
* swapped out.
*/

int
struct
struct
struct

p_maxof;
vnode *p_cdir;
vnode *p_rdir;
ofile_t **p_ofilep;

/* max number of open files allowed */
/* current directory */
/* root directory of current process *
/* pointers to file descriptor chunks

to be allocated as needed. */

struct vforkinfo *p_vforkbuf; /* Vfork state information pointer */
struct msem_procinfo *p_msem_info; /* Pointer to msemaphore info struc

187 /* All workstation specific fields */
188 #ifdef _WSIO
189 /* support for dil interrupts */
190 struct buf *p_dil_event_f; /* head of list of pending dil interrupts *
191 struct buf *p_dil_event_l; /* tail of list of pending dil interrupts *
192 struct pte *p_addr; /* u-area kernel map address */
193 struct ste *p_segptr; /* physical segment table pointer */
194 int p_stackpages; /* Number of private kernel stack pages */
195 u char p_dil_signal; /* which signal to use for DIL interrupts */.
196 #endif /* _WSIO */
197
198
199 #ifdef ~hp9000s300
200 /* Only the 300 uses these time fields in this manner */
201 #define p_uticks p_utime.tv_sec
202 #define p_sticks p_stime.tv_sec
203

#endif /* ~hp9000s300 */

/* All 800 specific fields */
#ifdef ~hp9000s800

u_short p_pindx;
ifdef _WSIO

caddr_t graf_ss;
endif
#endif /* ~hp9000s800 */
} proc_t;

extern struct proc *pf ind() ;

/* index of this proc table entry */

/* graphics per-process (mostly coproc) data *

/* chain */

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

extern struct proc *proc, *procNPROC; /* the proc table itself */
extern int nproc;

220 #ifdef ~hp9000s800
221 #define NQS 160
222 #define NQSPEL 16
223 #define NQSPELLG 4
224 #define NQELS (NQS/NQSPEL)

/* 160 run queues = 128 RT + 32 TS */
/* Number of run queues per whichqs element*/
/* log2(NQSPEL)*/

/* 10 elements to hold bitmask(whichqs) */

Oct 14 10:39 1992 edited 9.0 proc.h Page s

225 #define TSQ 128
226 #define TSPRI_TO_RUNQ(pri)
227 #else /* not ~hp9000s800 */
228 #define NQS 256
229 #define NQSPEL 32
230 #define NQELS (NQS/NQSPEL)
231 #define TSPRI_TO_RUNQ(pri)
232 #endif /* not ~hp9000s800 */
233
234 struct prochd {

/* First time-sharing queue */
(TSQ + (((pri)-PTIMESHARE) >> 2))

/* 256 run queues 128 RT + 128 TS */
/* Number of run queues per whichqs element */
/* 8 32-bit elements to hold bitmask(whichqs)
(pri) /* Don't use anywhere but schedcpu! */

235
236

struct proc *ph_link; /* linked list of running processes */
struct proc *ph_rlink;

237 };
238

struct prochd qs[NQS]; 239
240
241
242
243
244
245
246
247
248
249
250

extern
extern
#endif

int whichqs[NQELS]; /*bit mask summarizing non-empty qs's */
/* _KERNEL */

/* stat codes */
#define SS LEEP 1
#define SWAIT 2
#define SRUN 3
#define SIDL 4
#define SZOMB 5
#define SS TOP 6

251 /* flag codes (p_flag) */
252 #define SLOAD OxOOOOOOOl
253 #define SSYS Ox00000002
254 #define SLOCK Ox00000004
255 #define STRC Ox00000008
256 #define SWTED OxOOOOOOlO
257 #define SKEEP Ox00000040
258 #define SOMASK Ox00000080
259 #define SWEXIT OxOOOOOlOO
260 #define SPHYSIO Ox00000200
261 #define SVFORK Ox00000400
262 #define SSEQL Ox00000800
263 #define SUANOM Ox00001000
264 #define SOUSIG Ox00002000
265 #define SOWEUPC Ox00004000
266 #define SSEL Ox00008000
267 #define SRTPROC OxOOOlOOOO
268 #define SSIGABL Ox00020000
269 #define SPRIV Ox00040000
270 #define SPREEMPT Ox00080000
271 #ifdef HPNSE
272 #define SPOLL Ox00100000
273 #endif
274
275 #ifdef WSIO

/* awaiting an event */
/* (abandoned state) */
/* running */
/* intermediate state in process
/* intermediate state in process
/* process being traced */

/* in core */
/* swapper or pager process */
/* process being swapped out */
/* process is being traced */
/* another tracing flag */

creation */
termination *

/* another flag to prevent swap out */
/* restore old mask after taking signal */
/* working on exiting */
/* doing physical i/o (bio.c) */
/* Vfork in process */
/* user warned of sequential vm behavior */
/* user warned of random vm behavior */
/* using old signal mechanism */
/* owe process an addupc() call at next ast */
/* selecting; wakeup/waiting danger */
/* real time processes */
/* signalable process */
/* compute privilege mask */
/* Preemption flag */

/* process is polling */

276 /* more p_flag bits, used for process deactivation */
277 #define SSTOPFAULTING Ox00200000
278 #define SSWAPPED Ox00400000
279 #define SFAULTING Ox00800000
280

Oct 14 10:39 1992 edited 9.0 proc.h Page 6

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

/* used to track number of faulting processes (not a p_flag bit) */
#define FAULTCNTPERPROC 8
#endif /* _WSIO */

/* flags for p_flag2 */
#define S2CLDSTOP
#define S2EXEC

#define SGRAPHICS
#define SADOPTIVE
#ifdef __ hp9000s800
#define SSAVED
#define SCHANGED
#define SPURGE_SIDS
#endif /* __ hp9000s800
#ifdef __ hp9000s300
#define S2DATA_WT
#define S2STACK_WT
#endif /* __ hp9000s300
#define SANYPAGE
#define SPA_ON

OxOOOOOOOl
Ox00000002

Ox00000004
Ox00000008

OxOOOOOOlO
Ox00000020
Ox00000100

*/

Ox00000010
Ox00000020

*/
Ox00000040
OxOOOOOOSO

/* send SIGCLD for stopped processes *
/* if bit set, process has completed

an exec(OS) call */
/* The process is a graphics process *
/* process adopted using ptrace */

/* registers saved for ptrace */
/* registers changed by ptrace */
/*purge cr12 and cr13 in resume() */

/* Process's data segment is write thr
/* Process's stack segment is write th

/* Doing any kind of pageing */
/* Under consideration for

activation control */
#define S2POSIX_NO_TRUNC OxOOOOlOOO /* no truncate flag for pathname lookup*
#define POSIX_NO_TRUNC S2POSIX_NO_TRUNC /* until dux_sdo.c is fixed */

305
306 #ifdef _WSIO
307 #define S2SENDDILSIG
308 #endif /* _WSIO */
309 #define SLKDONE

Ox00000200 /* whether to send DIL interrupt (cleared o

310 #define SISNFSLM
311
312

Ox00000400
Ox00000800

/*Process has done lockf() or fcntl()
/* Process is NFS lock manager. */
/* See nfs_fcntl() in nfs_server.c */

313 #define S2TRANSIENT Ox00002000 /* transient flag (fair share scheduler) */
314
315 #ifdef MP
316 /* These are p_mpflag values */
317 #define SLPT OxOOOOOOOl
318 #define SRUNPROC Ox00000002

/* a Lower Priv Transfer trap brought
/* Running on a processor */

319 #define SMPLOCK Ox00000004 /* Locked */
320 #define SMP_SEMA_WAKE Ox00000008 /* proc awakened by V operation,
321 not signal */
322 #define SMP_STOP Ox00000010
323 #define SMP_SEMA_BLOCK Ox00000020
324 #define SMP_SEMA NOSWAP Ox00000040
325 #endif /* MP */

/* Process entering stopped state. */
/* Process blocked on semaphore */
/* Do not swap this process */

326
327 #ifdef __ hp9000s300
328 #define PROCFLAGS2 (SADOPTIVEIS2EXECIS2SENDDILSIG)
329 #endif
330 #ifdef hp9000s800
331 #define-PROCFLAGS2 (SADOPTIVEIS2EXECISCHANGEDISSAVEDIS2TRANSIENT)
332 #endif
333
334 /* Constants which are used to call newproc */
335 #define FORK_PROCESS 1
336 #define FORK_VFORK 2

22-

Oct 14 10:39 1992 edited 9.0 proc.h Page 7

337 #define FORK_DAEMON 3
338
339 /* Return values for newproc/procdup */
340 #define FORKRTN_PARENT 0
341 #define FORKRTN_CHILD 1
342 #define FORKRTN_ERROR -1
343
344
345
346
347
348
349
350
351

/* Constants which
#define S_SWAPPER
#define S_INIT
#define S_PAGEOUT
#define S_STAT
#define S_DONTCARE

can be used to index proc table for kernel daemons*/
0
1
2
3
-1

352 /* Constants which can be used for pid argumen~ to newproc() */
353 /* Note: proc table slot and pid may be different for some processes */
354
355
356
357
358
359
360
361
362
363
364

#define
#define
#define
#define
#define
#define
#define
#define
#define

PID_SWAPPER
PID_INIT
PID_PAGEOUT
PID_STAT
PID_LCSP
PID_NETISR
PID_SOCKREGD
PID VDMAD
PID_MAXSYS

0
1
2
3
4
5
6
7
7 /* Used in dux/getpid.c */

23

Oct 14 10:39 1992 edited 9.0 user.h Page 1

1 /* ®(#) $Revision: 1.65.61.10 $ */
2
3
4
5
6
7
8
9

#include <machine/pcb.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/privgrp.h>
#include <errno.h>
#include <sys/signal.h>
#include <sys/proc.h>
#ifdef __ hp9000s300
#include <a.out.h>

/* u_error codes */
/* SIGARRAYSIZE */

10
11
12
13
14
15
16
17
18

#endif /* __ hp9000s300 */
#ifdef __ hp9000s800
#include <sys/vmmac.h>
#include <machine/save_state.h>
#include <machine/som.h>
#endif /* __ hp9000s800 */

19 /*
20 * NFDCHUNKS = number of file descriptor chunks of size SFDCHUNK available
21 * per process. SFDCHUNK must be NBTSPW = number of bits per int for
22 * select to work.
23 */
24 #define SFDCHUNK NBTSPW
25 #define NWORDS(n) ((((n) & (SFDCHUNK - 1)) == 0) ? (n >> 5) \
2 6 ((n » 5) + 1))

27 /* NWORDS is the number of words necessary for n file descriptors to allow
28 for one bit per file descriptor. */
29
30 #define NFDCHUNKS(n) NWORDS(n}
31
32 /*
33 * Some constants for fast multiplying, dividing, and mod-ing (%) by SFDCHUNK
34 */
35
36 #define SFDMASK Oxlf
37 #define SFDSHIFT 5
38
39 struct of ile_t {
40 struct file *ofile[SFDCHUNK];
41 char pofile[SFDCHUNK];
42 };
43
44 /*

/* file descriptor slots */
/* per process open file flags */

45 * since fuser() needs this information, we move it to the proc structure
46 * since uareas can be swapped out. In previous releases, fuser() was
47 * able to scan through the logical swap device to retrieve this information
48 * however, that capability is no longer supported.
49 */
50 #define u_maxof u_procp->p_maxof /* max # of open files allowed */
51 #define u_rdir u_procp->p_rdir /* root directory of current process *
52 #define u_cdir u_procp->p_cdir /* current directory */
53 #define u_ofilep u_procp->p_ofilep /* pointers to file descriptor chunks
54 to be allocated as needed. */
55
56 /*

Oct 14 10:39 1992 edited 9.0 user.h Page 2

57 * maxfiles is maximum number of open files per process.
58 * This is also the "soft limit" for the maximum number of open files per
59 * process. maxfiles_lim is the "hard limit" for the maximum number of open
60 * files per process.
61 */
62 extern int maxfiles;
63 extern int maxf iles_lim;
64
65 #define LOCK_TRACK_MAX
66
67 /*

10 /* for qfs lock tracking */

68 * Per process structure containing data that
69 * isn't needed in core when the process is swapped out.
70 */
71
72 #define SHSIZE
73
74 typedef struct user {
75 #ifdef __ hp9000s800

32

76 struct pcb u_pcb;
77 #endif
78 struct proc *u_procp; /* pointer to proc structure */
79 #ifdef __ hp9000s800
80 struct save_state *u_sstatep; /* pointer to a saved state */
81 #endif
82 #ifdef __ hp9000s300
83 int *u_arO; /* address of users sayed RO */
84 #endif /* __ hp9000s300 */
85 char u_comm[MAXCOMLEN + l];
86
87
88
89
90
91
92
93
94
95
96
97
98
99

/* syscall parameters, results and catches */

100
101

int u_arg[lO];
int *u_ap;
label t u_qsave;
u_short u_spare_short;
u_short u_error;

union {

#define r_vall
#define r val2

struct {
int
int

} u rv· - ' u_rv.R_vall
u_rv.R_val2

R_vall;
R_val2;

102 /* Bell-to-Berkeley translations */
103 #define u_rvall u_r.r_vall
104 #define u rval2 u_r.r_val2
105
106 off t r_off;
107 time_t r_time;
108 } u_r;
109 char u_eosys;
110 u_short u_syscall;
111
112 /* 1.1 - processes and protection */

/* arguments to current system call */
/* pointer to arglist */
/* for non-local gotos on interrupts *
/* Replaces top half of u_error */
/* return error code */

/* syscall return values */

/* special action on end of syscall */
/* syscall # passed to signal handler

Oct 14 10:39 1992 edited 9.0 user.h Page 3

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

struct ucred *u_cred; /* user credentials (uid, gid, etc) *
#define u_uid u_cred->cr_uid
#define u_gid u_cred->cr_gid
#define u_groups u_cred->cr_groups /* groups, NOGROUP terminated */
#define u_ruid u_cred->cr_ruid
#define u_rgid u_cred->cr_rgid

aid_t u_aid; /* audit id */
short u_audproc; /* audit process flag */
short u_audsusp; /* audit suspend flag */
struct audit_filename *u_audpath; /* ptr to audit pathname info
struct audit_string *u_audstr; /* ptr to string data for auditing */
struct audit_sock *u_audsock; /* ptr to sockaddr data for auditing *
char *u_audxparam; /* generic lee. to attach audit data *

#ifdef __ hp9000s800
u_int u_sparel[S]; /*spares for backward compatibility*

#endif /* __ hp9000s800 */
#ifdef _CLASSIC_ID_TYPES

#else

#endif

unsigned short u_f iller_sgid;
unsigned short u_sgid;

gid_t u_sgid;

u_int u_priv[PRIV_MASKSIZ];

137 /* 1.2 - memory management */
138 label_t u ssave;
139 #ifdef ___ hp9000s800
140 tlabel_t u_psave;
141 #endif /* __ hp9000s800 */
142 #ifdef ___ hp9000s300
143 label_t u_rsave;
144 label_t u_psave;
145 #endif /* __ hp9000s300 */
146 time_t u_outime;
147 short u_flag;
148 #define UF_MEMSIGL OxOOOOOOOl
149
150
151 /* 1.3 - signal management */

/* set (effective) gid */

/* set (effective) gid */

/* privlege mask */

/* label variable for swapping */

/* trap recovery vector - machine dep

/* for exchanging stacks */
/*for.probe simulation*/

/* user time at last sample */
/* See u_flag values */
/* Signal upon memory allocation

* and process locked

152 /* same for users and the kernel; see signal.h */
153 void (*u_signal[SIGARRAYSIZE]) (); /*disposition of signals*/
154 int u_sigmask[SIGARRAYSIZE]; /*signals to be blocked*/
155 int u_sigonstack; /* signals to take on sigstack */
156 int u_oldmask; /* saved mask from before sigpause */
157 int u_code; /* ''code'' to trap*/
158 struct sigstack u_sigstack; /* sp & on stack state variable */
159 #define u_onstack u_sigstack.ss_onstack
160 #define u_sigsp u_sigstack.ss_sp
161 #ifdef ___ hp9000s800
162 void (*u_sigreturn) (); /* handler return address */
163 #define PA83_CONTEXT Oxl
164
165
166
167
168

#define PA89_CONTEXT Ox2
int u_sigcontexttype;

#endif /* __ hp9000sBOO */
#ifdef __ hp9000s300

int u_sigcode[6];

/* to tell PA83 from PA89 contexts */

/* signal "trampoline" code */

Oct 14 10:39 1992 edited 9.0 user.h Page 4

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

#endif

#ifdef

#endif

/* 1.4

#define
#define

#if def

#endif
#define

#if def

#endif

/* _hp9000s300 */
int u_sigreset;

_hp9000s300
size_t u_lockovh;

/* _hp9000s300 */

- descriptor management */

UF_EXCLOSE Oxl
UF_MAPPED Ox2
int u_highestf d;

_WSIO
struct file *u_fp;

/* _WSIO */
UF_FDLOCK Ox4
int u_spare2[1];
HPNSE
dev_t u_ttyd;

short u_cmask;

192 /* 1.5 - timing and statistics */

/* reset handler after catching */

/* locked proc overhead size (clicks)
/* belongs with u_locksdsize */

/* auto-close on exec */
/* mapped from device */
/* highest file descriptor currently

opened by this process. */

/* current file pointer */

/* lockf was done,see vno_lockrelease
/* spare */

/* controlling tty dev */

/* mask for file creation */

193 /* The user accumulated seconds and system accumulated seconds fields
194 * of the following structure are maintained in the proc structure.
195 * This should be taken into account in computations.
196 */
197
198
199
200
201
202
203

struct
struct
struct
int
time_t
short

rusage u_ru;
rusage u_cru;
itimerval u_timer[3];
u_xxx [2];
u_ticks;
u_acflag;

204 /* 1.6 - resource controls */

/* stats for this proc */
/* sum of stats for reaped children */-

205 struct rlimit u_rlimit[RLIM_NLIMITS];
206
207 /* BEGIN TRASH */
208 char u_segflg;
209 caddr_t u_base;
210 unsigned int u_count;
211 off_t u_offset;
212

#if def _hp9000s800

/* O:user D; l:system; 2:user I */
/* base address for IO */
/* bytes remaining for IO */
/* offset in file for IO */

213
214
215
216
217
218
219
220
221
222
223
224

/* The magic
struct{

number, auxillary SOM header and spares */

#endif
#ifdef

int
struct

} u_exdata;

u_magic;
som_exec_auxhdr som_aux;

/* _hp9000s800 */
hp9000s300

~nion {
struct exec Ux_A;
char ux_shell[SHSIZE];

} u_exdata;
/* #! and name of interpreter */

Oct 14 10:39 1992 edited 9.0 user.h Page s

#endif /* ~hp9000s300 */
#ifdef ~hp9000s800

int u_spare[9];

u_magic

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

#define ux_mag
#define ux_tsize
#define ux_dsize
#define ux_bsize
#define ux_entloc
#define ux_tloc
#define ux_dloc
#define ux_tmem
#define ux_dmem
#define ux_flags
#define Z_EXEC_FLAG
#endif /* ~hp9000s800

som aux.exec_tsize
som_aux.exec_dsize
som_aux.exec_bsize
som_aux.exec_entry
som_aux.exec_tfile
som_aux.exec_dfile
som_aux.exec_tmem
som_aux.exec_dmem
som_aux.exec_flags
Oxl

*/

#ifdef ~hp9000s300
#define ux_mag Ux_A.a_magic.file_type
#define ux_system_id Ux_A.a_magic.system_id
#define ux_miscinfo Ux_A.a_miscinfo
#define ux_tsize ux_A.a_text
#define ux_dsize Ux_A.a_data
#define ux_bsize Ux_A.a_bss
#define ux entloc Ux_A.a_entry
#endif /* ~hp9000s300 */

252 caddr_t u_dirp; /* pathname pointer */
253 /* END TRASH */
254
255
256
257
258

struct TrHeaderT *u_trptr; /* QFS transaction header */
int u_lcount; /* stack size of lock keys */
int u_ldebug; /* for debug */
int u_lck_keys[LOCK_TRACK_MAX]; /* stack of lock keys */

259
260 dev_t u_devsused;
261 #ifdef ~hp9000s800
262 u_int u_spare3[8];
263 int u_sstep;
264 #define ULINK OxOlf
265 #define USSTEP Ox020
266 #define UPCQM Ox040
267 #define UBL Ox080
268 #define UBE OxlOO
269 unsigned u_pcsq_head;
270 unsigned u_pcoq_head;
271 unsigned u_pcsq_tail;
272 unsigned u_pcoq_tail;
273 unsigned u_ipsw;
274 int u_grl;
275 int u_gr2;
276 #endif /* hp9000s800 */
277 struct uprof {
278 short *pr_base;
279 unsigned pr_size;
280 unsigned pr_off;

/* count of locked devices */

/* spares for backward compatibility *
/* process single stepping flags */
/* link register */
/* process is single stepping */
/* pc queue modified */
/* branch and link at pcq head */
/* branch external at pcq head */
/* pc space and offset queue */
/* values for single stepping */

/* ipsw for single stepping */
/* value for general register 1 */
/* value for general register 2 */

/* profile arguments */
/* buffer base */
/* buffer size */
/* pc offset */

,Q

0

0

Oct 14 10:39 1992 edited 9.0 user.h Page 6

unsigned pr_scale; /* pc scaling */
} u_prof;

#if def _hp9000s800
u_int u_kpreemptcnt; /* kernel preemption counter: */

/* read with GETKPREEMPTCNT() */
/* clear with CLRKPREEMPTCNT() */
/* incremented in kpreempt(} */

#endif /* _hp9000s800 */
dm_message u_request; /* request message*/
struct nsp *u_nsp; /* nsp performing service*/
site_t u_site; /* site for which nsp executing */
int u_duxflags; /* see defines below */
char **u_cntxp; /* context pointer */
struct locklist *u_prelock; /* preallocated lock for lockadd()

302 int ki_clk_stack[KI_CLK_STACK_SIZE];
303
304 caddr_t u_vapor_mlist;
305 int u_ord_blk;
306 #ifdef _hp9000s300
307 struct pcb u_pcb;
308 #endif /* _hp9000s300 */
309
310
311
312
313
314
315
316

union {
double s_dummy;
int s_stack[l];

} u s·
- I

#define u stack u_s.s_stack
} user_t;-

317 /*

/* linked list of vapor_malloc mem */
/* last ordered write block */

/* should be last except u stack */

/* double word aligned stack */

/* must be last thing in user_t */

318 * These two defines are moved (logically) from param.h. Need to have them
319 * here to be able to get at sizeof (user_t)
320 */
321 #if def _hp9000s800
322 #define KSTACKBYTES 8192 /* size of kernel stack */
323 #define UPAGES btorp(sizeof (user_t) + KSTACKBYTES)
324 #endif
325
326 struct ucred {
327 #ifdef _CLASSIC_ID TYPES
328 unsigned short cr_filler_uid;
329 unsigned short cr_uid;
330 #else
331 uid_t cr_uid;
332 #endif
333 #ifdef _CLASSIC_ID_TYPES
334
335
336 #else

unsigned short cr_f iller_gid;
unsigned short cr_gid;

/* effective user id */

/* effective user id */

/* effective group id */

29

0

0

0

Oct 14 10:39 1992 edited 9.0 user.h Page 7

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

#endif
#ifdef

#else

#endif
#if def

#else

#endif
#ifdef

#else

#endif

} ;

gid_t cr_gid;

-CLASSIC_ID_TYPES
int cr_groups[NGROUPS];

gid_t cr_groups[NGROUPS];

-CLASSIC_ID TYPES
unsigned short cr_f iller_ruid;
unsigned short cr_ruid;

uid_t cr_ruid;

-CLASSIC_ID TYPES
unsigned short cr_f iller_rgid;
unsigned short cr_rgid;

gid_t cr_rgid;

short cr_ref;

359 #ifdef _KERNEL

/* effective group id */

/* groups, 0 terminated */

/* groups, 0 terminated */

/* real user id */

/* real user id */

/* real group id */

/* real group id */

/* reference count */

360 #define crhold(cr) {SPINLOCK(cred_lock); (cr)->cr_ref++;SPINUNLOCK(cred_lo
361 struct ucred *crget();
362 struct ucred *creepy();
363 struct ucred *crdup();
364 #endif /* _KERNEL */
365
366
367 /* u_eosys values */
368 #define EOSYS_NOTSYSCALL
369 #define EOSYS_NORMAL
370 #define EOSYS_INTERRUPTED
371 #define EOSYS_RESTART
372 #define EOSYS_NORESTART
373 #define RESTARTSYS
374
375 /*
376 * defines for u_duxflags
377 */
378 #define DUX_UNSP 4
379
380 /* u_error codes */
381 #include <errno.h>
382

O /*not in kernel via syscall() */
1 /* in syscall but nothing notable */
2 /* signal is not yet fully processed *
3 /* user has requested restart */
4 /* user has requested error return */
EOSYS_INTERRUPTED /*temporary!!! */

/* process is a user NSP */

/* Traditional */

383 #if defined(___ hp9000s800) && defined(_KERNEL)
384 /* WARNING: NEVER, NEVER, NEVER use u as a local variable
385 * name or as a structure element in I/O system or elsewhere in the
386 * kernel.
387 */
388 #define u (*uptr)
389 #define udot (*uptr)
390 #endif /* ___ hp9000s800 && KERNEL */
391

0

0

0

SE 390: Series 300 HP-UX Internals

I/O Overview

- Memory mapped I/O

- How I/O flows out of the system

- uses the f ilesystem

- uses the major number to go through the bdevsw/cdevsw
tables to get to the appropriate driver

- most of ·the work is done by the driver

- How I/O flows into the system

- interrupt comes in from I/O card and is handled by
the appropriate driver's interrupt service routine

- the driver may wake up sleeping processes, send out a
new.command, or do whatever is appropriate

- Device drivers

- provide the window to interface to the outside world

- provide the hardware specific routines

- provide a common interface t6 the kernel

- I/O Performance

co

0

0

SE 390: Series 300 HP-UX Internals

I/O Overview

How I/O Flows Out of the System

- Background: we create a device file something like this: --
$ mknod /dev/tty03 c 1 Ox0f0204

This creates a special file for port #2 on a mux card, and
says that it is hardwired.

- I/O to/from devices is handled using the same semantics as
normal files in the file system. Because of this, programs can
pretend that devices are just like regular files. However, the
filesystem does not know anything about particular devices; it
must use the relevant drivers to access them ...

- All I/O starts with accessing the filesystem (during the open) .
The "open" system call reads the device file's inode and keeps
the information for later use. The kernel will look at
the major number and type (char vs block) fields in the inode
to decide which driver to go through. It will also give the
driver a chance to do any necessary device dependent operations
(e.g. enable interrupts).

- To get to the right driver, the filesystem will use the type
to choose a switch table (bdevsw or cdevsw), and the major
number as an index into the chosen table. The operation it
is performing (open, read, write, etc) tells it which element
of the struct to use once it is there.

I/O Structure Overview

+- ---- ----- ---------- -- -+
I user process I
+-----------------------+
+-----------------------+
I filesystem I /-- bdevsw/cdevsw tables
+-----------------------+ I
--------------------------/
+- +

I
top half I
of driver

+-----------------------+
==
==

+- -+

I
bottom half I

of driver
+- -+
+- -+
I 986xx I
+- +

USER
CONTEXT

INTERRUPT
CONTEXT

0

~

Series 400 Memory Map
as seen from the CPU

FFFFFFFF

RAM

80000000

__, ~b
YME

40000000
EISA

30000000
soc

20000000
010

COREL'O

00000000 ROM

-i

v1" b
1 ~' ~tr.~
s .. ot:r
Yi- & YJ

0

~

Serles 700 Memory Map
as seen from the CPU

FFFFFFFF
FFCOOOOO

FCOOOOOO

FOOOOOOO

00000000

System CPU

EISA
SGC

Core 1/0

RAM

0

Figure 4. HP 9000 Series 400 and 700 Memory Mapa

Design and Integration of Mixed-bus Systems on HP-UX Workstations
BUSCON West - February 4-6, 1992

r/jpl HEWLETT
a.!U PACKARD

(0 68K I/O Address Space

SE 390: Series 300 HP-UX Internals

I/O Overview

- The PAS from Ox600000 to Ox800000 is "external I/O space", and is
where DIO-I cards are mapped. To figure out where a card will be
mapped, multiply its select code by 64K and add that to Ox600000.
The 64K starting at that address is available for the card to use.

I/O space is scanned at boot time to see what devices are present.
The boot rom does some of this, and prints out the list of cards
it finds. The kernel does it again, in preparation for doing I/O
later. Essentially all the kernel has to do is try to read from
a particular address. If it gets a bus error, that means nothing
is there. If it gets some data back, it will try to interpret
that and figure out which card is there based on the value
returned (the "ID byte" that cards are required to provide).

- When iomap(4) is used, it uses the minor number to calculate
the appropriate address, and then calls System v shared memory
routines to attach the user process's virtual address space to
the space for the card.

Kernel Virtual Address Space DIO-I External I/O Space

J 4GB +---------------+ +---------------+
~ 0 ·~titJ

G~

f

I RAM I
<
>
<

<
>
<

I I
< The space <
> from 6MB-8MB >
< is split into <

0

512MB + 8MB

512MB + 6MB

512 MB

32 MB

I I
+---------------+

DIO-I
external

I/O space
+---------------+

internal I/O
space

+---------------+

I I
<
>
<

I

>
<
>

I
+---------------+

big tables
bss
data

kernel code
0 MB +---------------+

7 MB

6 MB

64K chunks,
one per
select code

+---------------+
_SC_14_ (OxOe)

The first 8
-of these are
-kind of -

bogus; one __
can't

=necessarily_
_use them : -)

+---------------+

Lf

c:::J 68K Interrupt Handling

SE 390: Series 300 HP-UX Internals

I/O Overview

0

0

interrupt comes in from I/O card at card's IL

- IL indexes into _rupttable

- Each entry in rupttable is the head of a linked
list of structures, one per card. They are in
increasing order by select code, and look something
like this:

+--+
I register addr I value to expect I ISR addr I
+--+

- The kernel's interrupt handler walks the list, asking
each card if it was the one that interrupted. This is
done by reading a register on the card and comparing
the value with what the driver said would be there if
the card interrupted.

- When the right card is identified, its device driver is
called to process the interrupt (sending out a new command
grabbing the data off of the card, etc) .

_rupttable

low select code high select code
Interrupt level +------------+ +------------+ +------------+

1 I 1--->I 1--->I 1--->. · ·
+------------+ +------------+ +------------+
+------------+

2 I 1---> ...
+------------+
+------------+ +------------+

3 1--->I 1---> ...
+-------~----+ +------------+
+------------+ +------------+ +------------+

4 1--->I 1--->I 1--->. · ·
+------------+ +------------+ +------------+
+------------+ +------------+ +------------+

s I 1--->I 1--->I 1--->. · ·
+------------+ +------------+ +------------+
+------------+

6 I 1---> ...
+------------+

SE 390: Series 300 HP-UX Internals

I/O Overview

' 0700 Specifics

0

0

- The top 256MB of physical address space is where PA-RISC thinks
I/O space should be. Some interesting pieces of this space:

Oxf0820000 --> OxfOffffff

Oxf4000000 --> Oxf7ffffff
Oxf8000000 --> Oxfbffffff

OxfcOOOOOO --> Oxffbfffff

Core I/O (LAN, SCSI, HIL, etc)

SGC slot 1
SGC slot 2 (720 uses this one)

EISA

- When an interface needs to interrupt, its bit in a dedicated
register is set, and the CPU will notice this; note that
there is no need to *figure out* who interrupted since each
interface has a dedicated bit.

- Devices have no settable "interrupt priorities"; it is up to
the software to decide what to service first. Here's the
order the software uses as of 8.05:

bus errors (shouldn't happen)
EISA
graphics (doesn't often happen)
SCSI
LAN
parallel
serial
HIL (people are slow peripherals :-)

- The cards/adapters tend to have "smart DMA" on them:

- SCSI uses NCR chip that has a script processor;
this maximizes disk throughput and minimizes the
need for CPU intervention because the driver can
build a whole chain of commands and then point
the script processor at them

- The LAN interface has a 128-byte inbound buffer and 64-byte
outbound one. Each of the 2 RS232s has a 16-byte buffer
for inbound and another for outbound traffic.

- .EISA converter is basically a window between EISA
cards and the rest of the box

0

0

0

Types of Drivers

SE 390: Series 300 HP-UX Internals

I/O Overview

- block mode

- usually associated with the f ilesystem, and deals with
blocks of data of the same size

- used with random access devices

- almost *always* use DMA

- shields user from hardware details (like disk sector
size; a disk doesn't want any requests that aren't
a multiple of its hardware sector size)

- character mode

- usually sequential devices (e.g. printers, tapes)

- deals with "variable" lengths of data

- character mode does not mean it deals only
with "characters"

- may use DMA transfers, or may be solely CPU
(interrupt) transfers

- may be *very* similar to block-mode driver (e.g.
"raw" and "block" CS80 share about 90% of their code)

- Device drivers don't have to have hardware associated
with them; they are a general mechanism for extending
the kernel.

7

10

0

0

How Is A Driver Configured?

- Note: the config(lm) and master(4) manpages are good references.

- /etc/master contains the information on drivers. There are two
types of "driver" entry. There is the upper-level (device)
drivers (e.g. cs80, tty, etc) and the lower-level (interface or
card) drivers (e.g. parallel). Some drivers may combine both,
as in the SCSI driver.

- The driver information in /etc/master tells "config" what entries
to put in the conf .c file (which will in turn make the linker
do most of the work) . Here are some lines from /etc/master:

* name handle type mask block char
* cs SO cs SO 3 3FB 0 4
tape tp 1 FA -1 5
ramdisc ram 3 FB 4 20
98624 ti9914 10 100 -1 -1
98625 simon 10 100 -1 -1
98628 sio628 10 100 -1 -1
98642 sio642 10 100 -1 -1
* tty sy D FD -1 2

- A description of the fields are:

name - the name used in the "dfile" for this driver .
handle - the "handle" actually used in the kernel_ (e.g. the

tty driver's open routine is sy_open)
type - 5-bit attribute flag indicating "type" of driver:

4 3 2 1 0

I
I \- character device
\--- block device

\----- required driver
\------- specified only once

\--------- card
mask - 10-bit driver routine flag; tells config what routines to

include in conf .c for the driver
9 8 7 6 5 4 3 2 1 0

I ~-~=
\-----

\------­
\--------­

\----------­
\-----------""-

C ALLCLOSES flag
seltrue handler (select is always TRUE)
select handler
ioctl handler
write handler
read handler
close handler
open handler \--------------­

\-:---------------- link routine (links interrupt handler;
found in all interface diivers)

\------------------- size handler (in disc-type drivers)
block - major number for block device driver
char - major number for character device driver

The major (or driver) number indicates the array offset for the
routine entries in a device switch table.

0

0

Examples from conf .c for the routines "brought in" by the "type"
and "mask" values above are as follows:

extern cs80 open(), cs80 close(), cs80 read(), cs80 write(),
csao_ioctl(), csso_size(), csao_link(), csao_strategy();

extern sy_open(), sy_close(), sy_read(),· sy_write(), sy_ioctl()
sy_select();

extern ti9914_link();

Following are exerpts from the bdev/cdev switch tables. It is
via these two tables that the proper subroutine calls are made
for the appropriate driver. By modifying /etc/master's driver
numbers, you can change the "major" numbers :-)

struct bdevsw bdevsw[] = {
/* O*/ cs80_open, cs80_close, cs80_strategy, csSO_size, CALLCLO
/* 1*/ nodev, nodev, nodev, nodev, 0,

} i

struct cdevsw cdevsw[] = {

/* 2*/ sy_open, sy_close, sy_read, sy_write, sy_ioctl, sy_select
C_ALLCLOSES,

/* 4*/ cs80_open, cs80_close, cs80_read, cs80_write, cs80_ioctl,
seltrue, C_ALLCLOSES,

/*43*/ nodev, nodev, nodev, nodev, nodev, nodev, 0,

1 ~
J I

This structure is used during the startup to allow for linking of
"make_entry" routines for the drivers.

The make_entry() routine for each driver is called during startup
of the system. For each card found during bootup, the kernel
calls the make_entry routine. These routines check to see if
the card is theirs. If so, it may perform some initialization
and it reports finding the card. If not, the make_entry()
routine will call the next driver's make_entry(). There is
always a dummy routine at the end of the list that will report
no driver found for the card.

int (*driver_link[]) () =
{

} ;

cs80 link,
amigo link,
scsi link,
graphics link,
ptys link,

.
sio628 link,
sio642-link,
ite200-link,
(int ('i") ()) O

q

Feb 06 11:34 1992 df ile Page 1

0 1 *dskless
2 nipc
3 netman
4 ni
5 inet
6 lla
7 lanOl
8 cs80
9 scsi

10 scsitape
11 tape
12 st ape
13 printer
14 ptymas
15 ptyslv
16 hpib
17 98624
18 98625
19 98626
20 98628
21 98642
22 uipc
23 nbuf 1024
24 nproc 256
25 ninode 1000
26 nf ile 1000

0
27 swap auto
28 swap scsi f 0500 -1

0

I(

·O

0

0

Feb 06 11:34 1992 conf .c Page 1

1 /*
2 * Configuration information
3 */
4
5
6 #define MAXUSERS 8
7 #define TIMEZONE 420
8 #define DST 1
9 #define NPROC 256

10 #define NlJM_CNODES ((S*SERVER_NODE}+DSKLESS_NODE)
11 #define DSKLESS_NODE 0
12 #define SERVER_NODE 0
13 #define NINODE 1000
14 #define NFILE 1000
15 #define FILE_PAD 10
16 #define MAXFILES 60
17 #define MAXFILES_LIM 1024
18 #define NBUF 1024
19 #define FS_ASYNC 0
20 #define DOS_MEM_BYTE 0
21 #define NCALLOUT (16+NPROC+USING ARRAY_SIZE+SERVING_ARRAY_SIZE)
22 #define UNLOCKABLE_MEM 102400
23 #define NFLOCKS 200
24 #define NPTY 82
25 #define MAXUPRC 50
26 #define MAXDSIZ OxOlOOOOOO
27 #define MAXSSIZ Ox00200000
28 #define MAXTSIZ OxOlOOOOOO
29 #define PARITY OPTION 2
30 #define REBOOT_OPTION 1

31 #define TIMESLICE 0
ACCT SUSPEND 2
ACCTRESUME 4
NDILBUFFERS 30
FILESIZELIMIT Oxlfffffff
USING_ARRAY_SIZE (NPROC}

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

#define
#define
#define
#define
#define
#define
#define
#define
#define
int
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

SERVING ARRAY SIZE (SERVER_NODE*NUM_CNODES*MAXUSERS+2*MAXUSERS}
DSKLESS_FSBUFS (SERVING_ARRAY_SIZE}
SELFTEST_PERIOD 120
INDIRECT_PTES 1
indirect_ptes = INDIRECT_PTES;
CHECK_ALIVE_PERIOD 4
RETRY_ALIVE_PERIOD 21
MAXSWAPCHUNKS 512
MINSWAPCHUNKS 4
NSWAPDEV 10
NSWAPFS 10
NlJM_LAN_CARDS 2
NETISR PRIORITY -1
NGCSP (8*NUM_CNODES}
NNI 1
SCROLL_LINES 100
NlJM_PDNO -1

#define MESG
#define MSGMAP
#define MSGMAX

1

(MSGTQL+2)
8192

(/

io

0

0

Feb 06 11:34 1992 conf .c Page 2

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

MSGMNB
MSGMNI
MSGSSZ
MSGTQL
MSGSEG
SEMA
SEMMAP
SEMMNI
SEMMNS
SEMMNU
SEMUME
SEMVMX
SEMAEM
SHMEM
SHMMAX
SHMMIN
SHMMNI
SHMSEG

16384
so
1

40
16384
1
(SEMMNI+2)
64
128
30
10
32767
16384
1
Ox00600000
1
30
10

FPA 1
SWAPMEM_ON 0
SWCHUNK 2048

79 #define UIPC
80 #define UIPC
81 #define NIPC
82 #define !NET
83 #define !NET
84 #define NI
85 #define LANOl
86
87 #include
88 #include
89 #include
90 #include
91 #include
92 #include
93
94
95
96
97
98
99

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

11 /etc/conf/h/param.h"
11 /etc/conf/h/systm.h"
11 /etc/conf/h/tty.h"
11 /~tc/conf/h/space.h"
11 /etc/conf/h/opt.h"
11 /etc/conf/h/conf .h"

ieee802_open
ieee802_close
ieee802_read
ieee802_write
ieee802_link
ieee802_select
ethernet_open
ethernet_close
ethernet_read
ethernet_write
ethernet_link

lan_open
lan_close
lan_read
lan_write
lan_link
lan_select
lan_open
lan_close
lan_read
lan_write
lan_link

ethernet_select lan select
hpib_link gpio link
lla_link lan link

100
101
102
103
104
105
106
107
108
109

#define lanOl_link lan_link

110 extern nodev(), nulldev();
111 extern seltrue(), notty();
112

IL

0

0

Feb 06 11:34 1992 conf .c Page 3

113 extern cs80_open(), cs80_close(), cs80_read(), cs80_write(), cs80_ioctl(), cs8
114 extern swap_strategy(};
115 extern swapl_strategy(};
116 extern scsi_open(}, scsi_close(), scsi_read(}, scsi_write(), scsi_ioctl{), scs
117 extern cons_open(), cons_close(), cons_read(), cons_write(), cons_ioctl(}, con
118 extern tty_open(), tty_close(), tty_read{), tty_write(), tty_ioctl(), tty_sele
119 extern sy_open(), sy_close(), sy_read(), sy_write(), sy_ioctl{), sy_select{);
120 extern mm_read(}, mm_write(};
121 extern tp_open{), tp_close(}, tp_read(), tp_write{), tp_ioctl();
122 extern lp_open(), lp_close{), lp_write{), lp_ioctl();
123 extern swap_read{), swap_write();
124 extern stp_open{), stp_close(), stp_read(), stp_write(), stp_ioctl();
125 extern iomap_open(), iomap_close(), iomap_read(), iomap_write(), iomap_ioctlO
126 extern graphics_open{), graphics_close(), graphics_ioctl(), graphics_link();
127 extern ptym_open(), ptym_close(), ptym_read(), ptym_write(), ptym_ioctl(), pty
128 extern ptys_open(), ptys_close(), ptys_read(), ptys_write{), ptys_ioctl(), pty
129 extern lla_open{), lla_link();
130 extern lla_open(};
131 extern hpib_open(}, hpib_close(), hpib_read{), hpib_write(}, hpib_ioctl();
132 extern r8042_open(), r8042_close(), r8042_ioctl{);
133 extern hil_open{), hil_close(}, hil_read(}, hil_ioctl(), hil_select(}, hil_lin
134 extern nimitz_open(), nimitz_close(), nimitz_read(), nimitz_select();
135 extern scsitape_open(), scsitape_close(), scsitape_read(), scsitape_write(), s
136 extern ni_open(), ni_close(), ni_read(), ni_write(), ni_ioctl(), ni_select(),
137 extern audio_open(), audio_close(), audio_read(), audio_write(), audio_ioctl()
138 extern nm_open(), nm_close(), nm_read(}, nm_ioctl(), nm_select();
139
140 extern nipc_link();
141 extern inet_link();
142 extern uipc_link();
143 extern scsi_if_link();
144 extern ti9914_link();
145 extern simon_link();
146 extern sio626_link();
147 extern sio628_link();
148 extern sio642_link();
149 extern ite200_link();

bdevsw bdevsw[] = {
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

struct
/* O*/
/* l*/
/* 2*/
/* 3*/
/* 4*/
/* 5*/
/* 6*/
/* 7*/
} i

{csBO_open, csBO_close, csBO_strategy, cs80_dump, csBO_size, C ALLCLOS
{nodev, nodev, nodev, nodev, nodev, 0, nodev},

struct
/* O*/
/* l*/
/* 2*/
/* 3*/
/* 4*/
/* 5*/

{nodev, nodev, nodev, nodev, nodev, 0, nodev},
{nodev, nodev, swap_strategy, nodev, 0, 0, nodev},
{nodev, nodev, nodev, nodev, nodev, 0, nodev},
{nodev, nodev, swapl_strategy, nodev, 0, 0, nodev},
{nodev, nodev, nodev, nodev, nodev, O, nodev},
{scsi_open, scsi_close, scsi_strategy, scsi_dump, scsi_size, C_ALLCLOS

cdevsw cdevsw[] = {
{cons_open, cons_close, cons_read, cons_write, cons_ioctl, cons_select
{tty_open, tty_clo"se, tty_read, tty_write, tty_ioctl, tty_select, C_AL
{sy_open, sy_close, sy_read, sy_write, sy_ioctl, sy_select, C_ALLCLOSE
{nulldev, nulldev, mm_read, mm_write, notty, seltrue, O},
{csao_open, csao_close, csBO_read, csao_write, csBO_ioctl, seltrue, c_
{tp_open, tp_close, tp_read, tp_write, tp_ioctl, seltrue, o},

I?-;

0

0

Feb 06 11:34 1992 conf .c Page 4

169 /* 6*/
170 /* 7*/
171 /* 8*/
172 /* 9*/
173 /*10*/
174 /*11* I
175 /*12*/
176 /*13*/
177 /*14*/
178 /*15*/
179 /*16*/
180 /*17*/
181 /*18*/
182 /*19*/
183 /*20*/
184 /*21*/
185 /*22*/
186 /*23*/
187 /*24*/
188 /*25*/
189 /*26*/
190 /*27*/
191 /*28*/
192 /*29*/
193 /*30*/
194 /*31*/
195 /*32*/
196 /*33*/
197 /*34*/
198 /*35*/
199 /*36*/
200 /*37*/
201 /*38*/
202 /*39*/
203 /*40*/
204 /*41*/
205 /*42*/
206 /*43*/
207 /*44*/
208 /*45*/
209 /*46*/
210 /*47*/
211 /*48*/
212 /*49*/
213 /*SO*/
214 /*51*/
215 /*52*/
216 /*53*/
217 /*54*/
218 /*55*/
219 /*56*/
220 /*57*/
221 /*58*/
222 /*59*/
223 /*60*/
224 } ;

{nodev, nodev, nodev, nodev, nodev, nodev, o},
{lp_open, lp_close, nodev, lp_write, lp_ioctl, seltrue, o},
{nulldev, nulldev, swap_read, swap_write, notty, nodev, O},
{stp_open, stp_close, stp_read, stp_write, stp_ioctl, seltrue, o},
{iomap_open, iomap_clol!.,e, iomap_read, iomap_write, iomap_ioctl, nodev,
{nodev, nodev, nodev, nodev, nodev, nodev, o},
{graphics_open, graphics_close, nodev, nodev, graphics_ioctl, nodev, C
{nodev, nodev, nodev, nodev, nodev, nodev, o},
{nodev, nodev, nodev, nodev, nodev, nodev, o},
{nodev, nodev, nodev, nodev, nodev, nodev, o},
{ptym_open, ptym_close, ptym_read, ptym_write, ptym_ioctl, ptym_select
{ptys_open, ptys_close, ptys_read, ptys_write, ptys_ioctl, ptys_select
{lla_open, nulldev, nodev, nodev, notty, nodev, C_ALLCLOSES},
{lla_open, nulldev, nodev, nodev, notty, nodev, C_ALLCLOSES},
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{hpib_open, hpib_close, hpib_read, hpib_write, hpib_ioctl, seltrue, c_
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{r8042_open, r8042_close, nodev, nodev, r8042_ioctl, nodev, o},
{hil_open, hil_close, hil_read, nodev, hil_ioctl, hil_select, o},
{nimitz_open, nimitz_close, nimitz_read, nodev, notty, nimitz_select,
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{nodev, nodev, nodev, nodev, nodev, nodev, o},
{nodev, nodev, nodev, nodev, nodev, nodev, o},
{nodev, nodev, nodev, nodev, nodev, nodev, o},
{nodev, nodev, nodev, nodev, nodev, nodev, o},
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{nodev, nodev, nodev, nodev, nodev, nodev, o},
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{nodev, nodev, nodev, nodev, nodev, nodev, o},
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{nodev,· nodev, nodev, nodev, nodev, nodev, O},
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{ nodev, no'dev, nodev, nodev, nodev, nodev, 0} ,
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{nodev, nodev, nodev, nodev, nodev, nodev, o},
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{scsi_open, scsi_close, scsi_read, scsi_write, scsi_ioctl, seltrue, c_
{nodev, nodev, nodev, nodev, nodev, nodev, o},
{nodev, nodev, nodev, nodev, nodev, nodev, o},
{nodey, nodev, nodev, nodev, nodev, nodev, O},
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{nodev, nodev, nodev, nodev, nodev, nodev, o},
{scsitape_open, scsitape_close, scsitape_read, scsitape_write, scsitap
{nodev, nodev, nodev, nodev, nodev, nodev, O},
{ni_open, ni_close, ni_read, ni_write, ni_ioctl, ni_select, O},
{audio_open, audio_close, audio_read, audio_write, audio_ioctl, audio_
{nodev, nodev, nodev, nodev, nodev, nodev, 0},
{nodev, nodev, nodev 1 nodev, nodev, nodev, o},
{nm_open, nm_close, nm_read, nodev, nm_ioctl, nm_select, o},

IL/

0

\0

Feb 06 11:34 1992 conf .c Page 5

225
226 int
227 int
228

nblkdev = sizeof (bdevsw) / sizeof (bdevsw[O]);
nchrdev sizeof (cdevsw) I sizeof (cdevsw[O]);

229 dev_t ' rootdev = makedev(-1,0xFFFFFF);
230
231 /* The following three variables are dependent upon bdevsw and cdevsw. If
232 either changes then these variables must be checked for correctness */
233

dev_t swapdevl = makedev(5, OxOOOOOO);
int brmtdev = 6;
int crmtdev = 45;

struct swdevt swdevt [] = {
{ SWDEF, 0, -1, 0 },

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

{ makedev(7, Ox0f0500), 0, -1,
{ NODEV, 0, 0, 0 },
{ NODEV, 0, 0, 0 },
{ NODEV, 0, 0, 0 },
{ NODEV, 0, 0, 0 },
{ NODEV, 0, 0, 0 },
{ NODEV, 0, 0, 0 },
{ NODEV, 0, 0, 0 },
{ NODEV, 0, 0, 0 },

249 };
250
251 dev t
252

dumpdev = makedev(-1,0xFFFFFF);

253 int
254
255
256
257
258
259
260
261
262
263
264
265
266
267.
268
269
270
271
272
273
274 };

{*driver_link []) {)

cs80_link,
scsi_link,
graphics_link,
ptys_link,
lla_link,
hil_link,
ni_link,
audio_link,
nipc_link,
inet_link,
uipc_link,
scsi_if _link,
ti9914_link,
simon_link,
sio626_link,
sio628_link,
sio642_link,
ite200_link,
{int {*) ()) O

275 char dfile_data[] = "\
276 nipc\n\
277 netman\n\
278 ni\n\
279 inet\n\
280 lla\n\

0 } I

/6

Feb 06 11:34 1992 conf .c Page 6

1Q 281 lanOl\n\
282 cs80\n\
283 scsi\n\
284 scsitape\n\
285 tape\n\
286 stape\n\
287 printer\n\
288 ptymas\n\
289 ptyslv\n\
290 hpib\n\
291 98624\n\
292 98625\n\
293 98626\n\
294 98628\n\
295 98642\n\
296 uipc\n\
297 nbuf 1024\n\
298 nproc 256\n\
299 ninode 1000\n\
300 nfile 1000\n\
301 swap auto\n\
302 swap scsi f0500 -1\n\
303 II•

I

0

ll/J

0

0

0

Feb 06 11:34 1992 config.mk Page 1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

HP-UX System Makefile

.SILENT
STDDEFS=-Dhp9000s200 -D __ hp9000s200 -D __ hp9000s300 -Dhpux -D_HPUX_SO
IDENT=-D KERNEL -DKERNEL -Uvax -DHFS -DMC68030 -DPSTAT -DSAVECORE 30

~DREGION -DKVM -DGENESIS -DAUTOCHANGER -DEISA -DWRITE GUARD
REALTIME = -DRTPRIO -DPROCESSLOCK -DEISA

CC = /bin/cc
AS = /bin/as
LD = /bin/ld
SHELL = /bin/sh
ROOT = /etc/conf

LIBS = \
$(ROOT)/libuipc.a \
$(ROOT)/libnipc.a \
$(ROOT)/liblan.a \
$(ROOT)/libinet.a \
$(ROOT)/libnet.a \
$(ROOT)/libkreq.a \
$(ROOT)/libdreq.a \
$(ROOT)/libpm.a \
$(ROOT)/libvm.a \
$(ROOT)/libsysV.a \
$(ROOT)/libmin.a \
$(ROOT)/libdevelop.a \
$(ROOT)/libdil srm.a \
$(ROOT)/libkern.a \
$(ROOT)/libk.a

CFLAGS= +M -Wc,-Nd3500,-Ns7000 -Wp,-H250000 -I.
COPTS= $(STDDEFS) $(IDENT) $(REALTIME)
KREQl OBJS= exceptions.o locore.o vers.o
KREQ2-0BJS= name.o funcentry.o cdfs hooks.o
DEBUG=OBJS= debug.nms.o -

all: hp-ux

hp-ux: conf .o
rm -f hp-ux
ar x $(ROOT)/libkreq.a $(KREQ1 OBJS) $(KREQ2_0BJS)
@echo 'Loading hp-ux ... '
$(LD) -n -o hp-ux -e _start -x \

$(KREQ1 OBJS) conf.o $(KREQ2_0BJS) $(LIBS)
rm -f $(KREQ1 OBJS} $(KREQ2 OBJS)
chmod 755 hp-ux -

conf .o: conf.c
rm -f conf .o
@echo 'Compiling conf .c
$(CC) $(CFLAGS) $(COPTS) -c conf.c

- -

1'7

0

0

0

I/O Performance

- DMA

SE 390: Series 300 HP-me Internals

I/O Overview

- 300 and 400 each have two DMA channels

- 700 has a DMA channel for most any interface that
needs it

- As of 9.0, the 700 will schedule I/O based on 3 things:
- how long the request has been waiting
- disk latency (seek, rotational delay, etc)
- priority of the requesting process

- Measurement

- use iostat(l); if it just won't do the job, you
can monitor the structures it uses:

tk nin, tk nout count characters going in and
out of the-system via ttys

- dk_*[] arrays - for each of 8 devices,

dk time[i] tells how much time this drive
- has been active

dk seek[i] tells how many seeks this
- drive has done

dk_xfer[i] tells how many data transfers
this drive has done

dk_wds[i] tells how many 64-byte "words"
this drive has read/written

dk_mspw[i] tells how many milliseconds
per "word" it has taken

there is a bit in dk busy indicating
whether this drive is doing something
at the moment

18

co

0

0

RAMdisk Open
1
2
3
4
5
6
7
8
9

An open routine typically performs some driver specific operations. It
may be a driver that supports exclusive open (only one open at a time),
so returns an error for any additional opens. It may allocate buffer
space (if not already allocated). Also, it may perform card reset (e.g.
the gpio card) .

10
11 The RAM driver will allocate memory if it is the first open (that is,
12 there is presently no memory allocated for it) . The open also ensures
13 the requested device is in the range (and size) of the driver. The
14 information on the device (drive number and size) is packed into the
15 minor number. The macros in ram.h are written to pull out the
16 pertinent information. The kernel provides similar type macros for
17 extracting major, minor, selcode, volume, & unit numbers from the
18 11 dev 11 value passed to the driver. The major and minor number are
19 packed into the 32 bit value, with 8 bits for major number and 24 bits
20 for the minor number.
21
22
23 /* max ram volumes cannot exceed 16 */
24 #define RAM_MAXVOLS 16
25

/* io mapping minor number macros */
/* up to 1048575 - 256 byte sectors */
#define RAM_SIZE(x) ((x) & Oxfffff)

/* up 16 disc allowed */
.#define RAM_DISC (x) (((x) » 20) & Oxf)
#define RAM_MINOR(x) ((x) & Oxffffff)

#define LOG2SECSIZE 8 /* log2 of the "sector"

struct ram_descriptor {
char *addr; /* "disc space"

/* xxx */

/* xxx */
/* xxx */

size (256

in RAM */
int size; /* size of RAM disc */
short opencount; /* number of opens */
short flag;
int rdlk; /* Stats for lk reads */
int rd2k; /* Stats for 2k reads */
int rd3k; /* Stats for 3k reads */
int rd4k; /* Stats for 4k reads */
int rdSk; /* Stats for Sk reads */
int rd6k; /* Stats for 6k reads */
int rd'1k; /* Stats for 7k reads */
int rd8k; /* Stats for Sk reads */

bytes)

·26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
so
51
52
53
54
55
56
57
58
59
60

int rdother; /* Stats for other reads */
int wtlk; /* Stats for lk writes */
int wt2k; /* Stats for 2k writes */
int wt3k; /* Stats for 3k writes */
int wt4k; /* Stats for 4k writes */
int wtSk; /* Stats for 5k writes */
int wt6k; /* Stats for 6k writes */
int wt7k; /* Stats for 7k writes */
int wt8k; /* Stats for Bk writes */
int wtother; /* Stats for other writes */

} ram_device[RAM_MAXVOLS];

*/

0

0

62 /*
63 ** Open the ram device.
64 . */
65 ram_open(dev, flag)
66 dev_t dev;
67 int flag;
68 {

register unsigned long size;
register struct ram_descriptor *ram_des_ptr;

/* check if this is status open */
if (RAM_MINOR(dev) == 0)

return(O);

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

/* check if this device is greater than max number of volumes */
if ((size= RAM_DISC{dev)) > RAM_MAXVOLS)

return (EINVAL) ;

ram_des_ptr = &ram_device[size];

/* check the size of the ram disc less than 16 sectors */
if {{size= RAM_SIZE{dev)) < 16)

return {EINVAL) ;

/* check if already allocated */
if {ram_des_ptr->addr != NOLL) {

/* then check if size changed; must be the same size */
if (ram_des_ptr->size != size)

return (EINVAL) ;

/* bump open count */
ram_des_ptr->opencount++;

} else {
/* allocate the memory for the ram disc */
if ((ram_des_ptr->addr =

{char *)sys_memall(size<<LOG2SECSIZE)) -- NULL) {
return (ENOMEM);

100 }
101 /* save size in 256 byte "sectors" */
102 ram_des_ptr->size = size;
103
104 /* open count should be zero */
105 if (ram_des_ptr->opencount++) {
106 panic ("ram_open count wrong\n");
107 }
108 }
109 return(O);
110 . }

8-D

RAMdisk Read/Write routines

This is a "typical" read & write routine for drivers that have a block
. Qdriver as well, or that will use a conunon read/write "strategy" routine
· · and buffer headers. The physio() routine will take the information from

the uio and dev variables and construct a buf structure that contains
the information necessary for the strategy routine to perform the I/O.
Physic() will break up the transfers into small enough transfers for the
strategy routine to handle. The parameters to physic() are:

strategy

bp

address of the strategy() routine physic will call

pointer to a buf structure for physic to use; if
NULL, physic will get one from the buffer cache

dev the packed device info obtained when device opened

rw

mincnt

either B_READ or B_WRITE, indicating transfer type

address of mincnt() routine, a routine that
determines the max transfer size (usually the
kernel-provided minphys() (xfer size= 64k)

uio uio structure containing info about the user and
the I/O request (size & direction of transfer,
pointers to user's buffers for the I/O, etc.)

In the RAM disk driver, the read & write routines have
routine request a buf structure from the file system's

Othe kernel's minphys() routine, so strategy will break
to a maximum of 64k transfers.

ram read{dev, uio)
dev=t dev;
struct uio *uio;
{

the physic ()
buffers. It uses
up the transfers

}
return physio(ram_strategy, NULL, dev, B_READ, minphys, uio);

ram write(dev, uio)
dev-t dev;
struct uio *uio;
{

}
return physio{ram_strategy, NULL, dev, B_WRITE, minphys, uio);

0

21

,0

0

0

1
2
3
4
5
6
7
8
9

10
11
12

RAMdisk Strategy

This routine will actually perform the "I/0" to the RAM disc. The buf
structure passed to the strategy routine contains the necessary
information for the transfer. This info is filled in by kernel
routines; in the case of a character device, physic(} does this, and
for block devices, the filesystem takes care of filling in the data.

13 ram_strategy(bp}
14 register struct buf *bp;
15 {
16 register block_d7;
17 register char *addr;
18 register struct ram_descriptor *ram_des_ptr;
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
so
51

/* if this is a status request, return ram_device structure */
if (RAM_MINOR{bp->b_dev} == 0) {

}

if ((bp->b_flags & B_PHYS} && /* must be char dev */
(bp->b_flags & B_READ} &&

} else {

}

(bp->b_bcount == sizeof(ram_device))) {
bp->b_resid = bp->b_bcount;

/* return the "ram_device" structure */
bcopy(&ram_device[O], bp->b_un.b_addr,

sizeof(ram_device));

bp->b_error
bp->b_flags =

EIO;
B_ERROR;

goto done;

/* do the normal reads and writes to ram disc */
ram_des_ptr = &ram_device[RAM_DISC(bp->b_dev)];

/* sanity check if we got the memory */
if ({addr = ram_des_ptr->addr) ==NULL) {

panic{"no memory in ram_strategy\n");
}
/* make sure the request is within the size of the "disk" */
if {bpcheck{bp, ram_des_ptr->size, LOG2SECSIZE, O))

return;

/* calculate address to do the transfer */
addr += bp->b_un2.b_sectno<<LOG2SECSIZE;

/* for debugging file system only */
block_d7 = bp->b_un2.b_sectno>>2;

<O

0

0

S3
S4
SS
S6
S7
S8
S9
60
61
62
63
64
6S
66
67
68
69
70
71
72
73
74
7S
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

done:

}

if {bp->b_flags & B_READ) {
bcopy{addr, bp->b_un.b_addr, bp->b_bcount);
switch {bp->b_bcount/1024) {
case 1: ram_des__ptr->rdlk++;

break;
case 2: ram_des__ptr->rd2k++;

break;
case 3: ram_des__ptr->rd3k++;

break;
case 4: ram_des__ptr->rd4k++;

break;
case S: ram_des__ptr->rdSk++;

break;
case 6: ram_des__ptr->rd6k++;

break;
case 7: ram_des__ptr->rd7k++;

break;
case 8: ram_des__ptr->rd8k++;

break;
default: ram_des__ptr->rdother++;
}

} else { /* WRITE */

}

bcopy{bp->b_un.b_addr, addr, bp->b_bcount);
switch (bp->b_bcount/1024) {
case 1: ram_des__ptr->wtlk++;

break;
case 2: ram_des__ptr->wt2k++;

break;
case 3: ram_des__ptr->wt3k++;

break;
case 4: ram_des__ptr->wt4k++;

break;
case 5: ram_des__ptr->wtSk++;

break;
case 6: ram_des__ptr->wt6k++;

break;
case 7: ram_des__ptr->wt7k++;

break;
case 8: ram_des__ptr->wt8k++;

break;
default: ram_des__ptr->wtother++;
}

bp->b_resid -= bp->b_bcount;
biodone (bp) ;

0

0

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

RAMdisk Ioctl

The ioctl routine:
executed via ioctl(2);
purpose:

handles commands passed to it via ioctl
implement the various ioctls by including statements of the
following form:

#define CMD task(t, n, arg)
where:

CMD
t
n

arg
"task"

command name
arbitrary letter
sequential number (unique for each ioctl define for a
given ioctl routine)
optional arg for command

(a macro defined in sys/ioctl.h) is one of
_IO no arg
_IOR user reads info from the driver into arg
_IOW user writes info to driver from data in (or pointed

to by) arg
_IOWR both _IOR and _IOW

25 There are two ioctl's defined for the ramdisk driver. They are:
26
27 /* ioctl to deallocate ram volume */
28 #define RAM_DEALLOCATE _IOW(R, 1, int)
29
30
31
32
33

/* ioctl to reset the access counter to ram volume */
#define RAM_RESETCOUNTS _IOW(R, 2, int)

34
35 ram_ioctl(dev, cmd, addr, flag)
36 dev_t dev;
37 int cmd;
38 caddr_t addr;
39 int flag;
40 {
41
42
43
44
45
46
47
48
49
so
51
52
53
54

55
56
57
58
59

register struct ram_descriptor *ram_des_ptr;
register volume;

/* check if dev is the status dev */
if (RAM_MINOR(dev) != 0)

return(EIO);

/* check if 0 - 15 disc volume */
volume= *(int *)addr;
if ((volume % RAM_MAXVOLS) ! = volume)

return(EIO);

/* calculate which ram volume it is */
ram_des_ptr = &ram_device[volume];

/* if not allocated, then return error */
if (ram_des_ptr->addr == NULL) {

return (ENOMEM);
}

60 switch (and) {
61
62 /* mark for memory release on last close */

0
63 case RAM_DEALLOCATE:
64 ram_des_ptr->flag = RAM_RETORN;
65 break;
66
67 /* clear out access counts */
68 case RAM_RESETCOUNTS:
69 ram_des_ptr->rd8k = O;
70 ram_des_ptr->rd7k = O;
71 ram_des_ptr->rd6k = O;
72 ram_des_ptr->rd5k = O;
73 ram_des_ptr->rd4k = O;
74 ram_des_ptr->rd3k = O;
75 ram~des_ptr->rd2k = O;
76 ram_des_ptr->rdlk = O;
77 ram_des_ptr->rdother = O;
78 ram_des_ptr->wt8k = O;
79 ram_des_ptr->wt7k = O;
80 ram_des_ptr->wt6k = O;
81 ram_des_ptr->wt5k = O;
82 ram_des_ptr->wt4k = O;
83 _ ram_des_ptr- >wt3k = O;
84 ram_des_ptr->wt2k = O;
85 ram_des_ptr->wtlk = O;
86 ram_des_ptr->wtother = O;
87 break;
88 default:
89 return(EIO);

0
90
91 return(O);
92 }

0

0

1
2
3
4

RAMdisk Close

5 The close routine may typically perform some driver specific operations.
6 It may flush buffers if the device supports asyncronous I/O (e.g. tty
7 driver). It will usually decrement an "open" counter and may release
8 I/.O buffers, etc. on close.
9

10 The RAM disk driver just decrements an open count and releases memory on
11 last close iff the RAM_RETURN flag-ri.as previously been set (by an ioctl) .
12
13
14
15
16
17
18
19
20
21
22
23

#define RAM_RETURN 1

struct ram_descriptor {
char *addr;
int
short
short
int

size;
opencount;
flag;
rdlk;

24 } ram_device[RAM_MAXVOLS];
25
26 ram_close(dev)
27 dev t dev;
28 { -

29 register struct ram_descriptor *ram_des_ptr;
30 register i;

/* check if this is status close */
if (RAM_MINOR(dev) != 0) {

ram_des_ptr = &ram_device[RAM_DISC(dev)];

if (--ram_des_ptr->opencount < 0)

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

panic("ram close count less than zero\n");

55 } -

}

/* free all ram volumes with flag set and open count
/* RAM_RETURN flag is set by an ioctl call

ram_des_ptr = &ram device[O];
for (i = O; i < RAM_MAXVOLS; i++, ram_des_ptr++) {

if ((ram_des_ptr- >flag & RAM_RETURN) == O)
continue;

if (ram_des_ptr->opencount != O)
continue;

/* release the system memory */

0 */
*/

~ys_memfree(ram_des_ptr->addr, ram_des_ptr->size<<LOG2SECSIZE);

/* zero the whole entry */
bzero((char *)ram_des_ptr, sizeof(struct ram_descriptor));

0

0

STEPS TO ADD THE RAMDISK DRIVER TO YOUR KERNEL

STEP 1) # cd /etc/conf

STEP 2) make sure there is a line in /etc/master that looks like this:

ramdisc ram 3 FB 4 20

Note: Major numbers may differ; reflect this in the mk.nod commands below.

STEP 3) add "ramdisc" to your dfile

STEP 4) compile your source file and either put it in the library that
currently has the ramdisk driver in it or else put it in the
makefile after step 6

cc -c ramdisk.c
ar -rv libXXX.a ramdisk.o

STEP 5) # config dfile

STEP 6) # make -f config.mk

if you chose not to ar(l) the .o file into the library, edit
config.mk (might want to rename it to "makefile" first) to
include "ramdisk.0 11 just before the "LIBS" in the 11 ld 11 line:

ld -abcdefg x.o y.o z.o ramdisk.o $ (LIBS)

STEP 7) # mv hp-ux I

STEP 8) # reboot

STEP 9) # /etc/mknod /dev/ram b 4 OxVSSSSS Where V volume number (0 .. Oxf)
/etc/mknod /dev/rram c 20 OxVSSSSS SS SSS # of 256 byte sectors

•# /etc/mknod /dev/raml28K b 4 Ox000200 (block 128Kb ram volume)
/etc/mknod /dev/rram128K c 20 Ox000200 (char 128Kb ram volume)

/etc/mknod /dev/ramlM b 4 OxlOlOOO (block lMb ram volume)
/etc/mk.nod /dev/rramlM c 20 OxlOlOOO (char lMb ram volume)

/etc/mknod /dev/ram4M b 4 Ox404000 (block 4Mb ram volume)
/etc/mknod /dev/rram4M c 20 Ox404000 (char 4Mb ram volume)

STEP 10~# mkf s /dev/raml28K 128 8 8 8192 1024 32 0 60 8192 (mkf s for 128Kb volume)
mkf s /dev/ramlM 1024 (make file system for lMb volume)
mkf s /dev/ram4M 4096 (make file system for 4Mb volume)

STEP 11) # mkdir /raml28K
mount /dev/raml28K /raml28K (mount 128K ram volume)

To make the control /dev for "ramstat".
_# /etc/mknod /dev/ram c 20 OxO (status is raw dev only)

To release memory of disc #1 (and destroying all files on volume· at umount)
ramstat -d 1 /dev/ram

To get a status of all memory volumes
ramstat /dev/ram

To reset the access counters of a memory volume # 1.
ramstat -r 1 /dev/ram

0
Overview

0

0

SE 390: Series 300 HP-UX Internals

System Panics

- Panics happen when the system thinks that "1 == 0" and
realizes that thinking this is not a good sign :-)

- The (mounted) disks get sync(2)ed, but are *not* marked
clean, which will probably force an fsck(lm) when the
system boots.

- If running 7.0 or later, we will consider dumping physical
RAM to the swap area (known as "savecore"). This won't
happen unless there is local swap of some sort, and it
can be disabled in 8.0 and later releases by adb(l)ing the
kernel variable do savecore to 0.

- If the kernel debugger is active, control will be passed to
it; otherwise we halt in a tight loop, and the power must
be cycled for the system to reboot.

- If you are seeing significant numbers of panics, the most
likely possibility is a hardware problem.

The S700 has "analyze" available, and it is very helpful in
extracting useful information from a core dump.

I

0

0

0

SE 390: Series 300 HP-UX Internals

System Shutdown

(Hopefully un)Common Kinds of Panics

- Parity error - is a fact of life with parity-checking memory.

- Dup ialloc or freeing free {inode,frag} - usually caused by
mounting a corrupt disk. Pay attention when the system tells
you to fsck!

- Bus error - often indicates a hardware problem. If it happens to
a user, he is sent a signal. It should never happen in the kernel
and if it does the system will panic. It could also come from a
kernel bug, but most of the ones we've seen have been due to
hardware problems.

- I/O Error in Push - generally points to bad interface card, cable,
or disk. "Push"ing a page out refers to writing a page to the
swap area, and the system will panic if the write() fails.

In 8.0 this one will say something like "syncpageio detected
an error".

If you know of other "legitimate" panics, let me know so I
can include them on this list in the future.

0

0

0

SE 390: Series 300 HP-UX Internals

System Shutdown

Interpreting S300/400 Panic Dumps

- First column consists of stack addresses.

Numbers in the other columns that are either in the first one
or are sandwiched by numbers in the first one are probably
frame pointers.

- Find first appropriate address {frame pointer). It is the address
of the next one, which is the address of the next one

- Trace linked list of frame pointers.

- Numbers just to the right of the frame pointers are return
addresses.

- Feed return addresses to adb{l) to see who called who.

3

0

0

0

Reading Series 300 Panic Dumps

When in the course of human events an HP-UX system can't figure out what's
going on, it throws up its hands and decides to reboot and try again. When
this happens, it is known as a "panic", and the system tries to be helpful
by printing out the contents of the kernel stack as it dies. Here is part
of one:

97bdaa: 00051c90 OOOffeOl ffe79405 ffe79401 00000000 00979018 000ec7fa OOOec7fa
97bdca: 0006889a 00000000 ooooeooo 0006f66c 0097be26 00015314 oooec7fa 00000184
97bdea: 00000000 OOOOeOOO 00000000 00000000 03000000 00000000 00000000 00000000

The first column consists of stack addresses. The ·stack grows down in memory,
so the top line is the stuff that has been put on the stack most recently. The
trace goes from left to right, so the lowest address (most recently pushed) is
at the top left; the highest is at the bottom right.

The last eight columns are the actual contents of the stack. There are several
kinds of things on it:

- arguments to functions
- return addresses
- frame pointers
- local variables for functions
- saved copies of registers that will be trashed in the called function
- exception information {stuff put there in case of divide by 0, etc)
- junk

It would be nice if the last item didn't have to be there, but it does. This
is because not all code uses the conventions established by the HP-UX C
compiler. This will be dealt with a bit later.

The second item in the list above is a very important one - it is the key to
our ability to trace back through the dump. When a procedure is called, it
pushes the frame pointer (register a6 on the 680x0} orito the stack and then
copies the stack pointer into the frame pointer. It then subtracts from the
stack pointer (remember that the stack grows down} to make room for local
variables. The fact that the old frame pointer is pushed each time a
procedure is called is what enables us to "walk" or "unwind" the stack.

Since the frame pointers are stack addresses, the basic idea is to look
through columns 2-9 for a number that either appears in column 1 or is
sandwiched by two numbers in column 1. An important thing to remember is that
the addresses may be misaligned by two bytes. An example may help here:

98c9da: 00234567 0098c9fa 00034562
98c9fa:

The "0098c9fa" was properly aligned, but if the line had read

98c9da: 00234567 89ab0098 c9fa0003

that would have been OK too. Once the first address has been found, others
can be found by treating each one as a pointer; i.e., the frame pointers form
a linked list.

Surrounding each frame pointer is some interesting information. It is often
referred to as an "activation record". The first part of the record will be
arguments for the called procedure (keep in mind that these are treated as
local variables by the called procedure and thus may have been modified by
it}. Next, a return address for the calling procedure. Third, the saved
frame pointer. Next, space for local variables in the called procedure.
Last, space for registers that the called routine wants to use.

0

0

0

Consider the following example. The lines of the dump have been split apart
and directional lines have been drawn to show the linked list structure.

panic: init died
panic: sleep

97be4a: 0007ff24 00000001 0000800a 0124a6aa 0124a6aa 0097be76 000107ca 0124a6aa
v

/-----------------/
v

97be6a: 00000094 0124a6aa 00000000 0097be8a 00010062 0124a6aa 00000080 01242000
v

/--------------------------/
v

97be8a: 0097beb2 0001450a Ol24a6aa ooo9ce08 0125f280 oooooooa oooooooa 0008022b
v

\-----------------\
v

97beaa: 0097bec2 00024186 0097beca 00016cc8 0009ce08 ffff7dfc 0125f280 01242000
v

/-----------------/
v

97beca: 0097bf02 000099f4 00000000 OOOffcOl ffcb0405 ffcb0401 00000001 0000003c
v

\---\
v

97beea: ffff7dfc 0125babc OOOOa830 00080221 00000003 00000000 0097bf4a OOOOac8c
v

/---/
I

97bfOa: 100000080 0097bf52 0007f8fc ffff7dfc 012sbabc 00000002 00000001 0097bf46

I
I

97bf2a: IOOOldd7c 00989fe0 00000003 0125babc 00000003 OOOOOOOb 0000003c 00000080
I
\---\ /---\

A v v
97bf4a: 0097bf66 00004ae4 0007febc 00000004 ffff7dfc 00979018 00000000 0097bf76

v

/-----------------------------------/
v

97bf6a: 00004904 00000000 0097bfaa 0097bf9e OOOOebdc 00000031 00000040 ffcab004
v

\-----------------\
v

97bf8a: fffffa28 OOOlalb4 00000000 ffff7f98 00000007 ffff7e00 00000458 0097bfaa
AAAAAAAA

The buck stops here - this address isn't close to what's in the left column.

97bfaa: 00000005 00000001 00000001 00000020 OOOffcOl ffcb0405 ffcb0401 00000700

97bfca: 00000031 00000040 00012016 OOOlalOO ffcab004 fffffa28 OOOlalb4 00000000

97bfea: ffff7eOO ffff7df8 00000000 OOOllacc 0080000f fcbl

It is important to remember that much of this is dependent on routines using
the normal calling convention. There will be exceptions to this. If someone
writes a routine in assembly language and doesn't bother to save the frame
pointer, this will mess things up a bit. The frame pointers will be good, but
one of the activation records will have a return address that doesn't make too
much sense, because there is not a matching frame pointer. The same thing
will happen if an exception (such as a bus error} is encountered in kernel
mode. Note that either of these things can cause small glitches in the trace,

5 but they don't necessarily mean the end of the hunt. .

0

0

0

A third oddity is introduced when a routine is called indirectly. Probably
the most common example of this is a kernel routine named syscall(); it calls
the actual code for a given system call by jumping indirectly. Indirect calls
don't automatically end the trace, but the one in syscall() often does. The
reason is that the stack that is dumped out is the *kernel* stack - we can't
walk back into user land on the kernel stack. One thing that an indirect call
will always do is make things a bit less clear later on when ·we are trying to
figure out who called whom.

Once the stack has been unwound, how do we find out what the numbers mean? The
easiest way is probably to use the assembly level debugger, adb(l). If adb(l)
is run on the k~rnel that panicked (or one that is the same version and has
been configured IDENTICALLY), it will translate absolute addresses into
symbolic ones. By giving each address to adb(l) and doing a bit of
interpretation, a symbolic traceback can be constructed. It will usually have
things like boot() and panic() at the top and things like read() or setuid()
at the bottom. The important stuff will be in the middle.

To start, use a command something like this:

$ adb /hp-ux

Once adb(l) has started up, you can get it to do things like tie absolute
addresses to known symbols or disassemble parts of the code. The fundamental
command we will use will be of this form:

<address>?<n>i as in 32cea?20i

The address is typically an absolute hexadecimal number, the question mark
says to print out what that address is, <n> is the number of times to do it,
and 11 i 11 tells it to interpret the stuff as instructions. It can safely be
said that adb(l) is not one of the friendlier HP-UX utilities. For
instance: there is no prompt, and the commands (as seen above) are a bit
cryptic. Note that to exit you have two choices: "$q" or the old standby,
CTRL-d. And now back to our story

Since we know that the return address is just to the right in the printout
(was pushed just before the frame pointer), we can take this number and feed
it to adb(l) to find out what routine made the call. In the 2nd example, the
return address was 00034562. To find out what routine that is in, we might
use this:

34562?i

To see a bit of context, we would do something like this:

34550?20i

There is a catch with this. This is because instructions will sometimes be
aligned on even byte (word) boundaries, not on 4 byte (longword) boundaries.
Thus, if you tell adb(l) to start disassembling at an address that is halfway
through an instruction, you will get a bogus list of instructions. One way of
detecting this is to look and see if there is some kind of call instruction in
the disassembly listing - if there isn't, chances are *excellent* that the
disassembly is misaligned.

For an example, we'll look at the addresses in the stack tracing example
above. Just to the right of each frame pointer is the return address for that
call. By feeding these to adb(l), we can figure out who called whom. What
follows is a logfile of a session with adb(l), with three things done to it:
1) blank lines have been inserted for clarity; 2) most of the tries that
yielded misaligned results have been eliminated; 3) comments have been added;
they start with"#".

0

0

0

$ adb /hp-ux
executable file = /hp-ux
core file = core
ready

107ca?i
_biowait+Ox22: addq.w &Ox8,%a7

107af?l0i
_biowait+Ox7:

107b0?10i
_biowait+Ox8:

10062?i
_bwrite+Ox92:
10050?10i
_bwrite+Ox80:

1450a?i
_sbupdate+Ox4C:
144f0?10i
_sbupdate+Ox32:

16cc8?i
_update+OxD4:
16cb0?10i
_update+OxBC:

bgt.w _bmap+Ox523
eor.b %d4,%d0
ori.b &OxFFFFEC2D,%al
mov %sr,???
f sun - {%a0)
movq &Ox0,%d4
sub.w %a0,%d2
subq.w &Ox2,%a6
eor.b %d4,%d0
ori.w &OxlCSO, ???

ori.b &Ox4EB9,%a0
ori.b &Ox9EC,%d0
mov.l %d0, -Ox4 {%a6)
bra.b _biowait+Ox24
pea Ox94.w
pea (%a5)
jsr _sleep
addq.w &Ox8,%a7
mov.l (%a5) I %d0
movq &Ox2,%dl

mov.l %a5, (%a7)

jsr {%a0)
addq.w &Ox4,%a7
btst &Ox8,%d7
bne.b _bwrite+Ox9E
pea (%a5)
jsr _biowait
mov.l %as, (%a7)
jsr _brelse
addq.w &Ox4,%a7
bra.b _bwrite+OxAE

mov.l Ox34(%a5), (%a7)

mov.l %d0 t - (%a7)
mov.l Ox22(%a4),-(%a7)
pea (%a5)
jsr _bcopy
lea OxC(%a7),%a7
pea (%a4)
jsr _bwrite
mov.l Ox34 (%as) , (%a7)
mov.l Ox34(%a5),%d0
subq.l &Oxl,%d0

addq.w &Ox4,%a7

clr.b
mov.l
mov.l

OxDO{%aO)
-Ox4(%a6),%a0
_time,Ox20(%a0)

not looking good

should be a call to sleep
in here somewhere

try again!

#now we're talking ...
pop 8 bytes of args off stack

0

0

0

99f4?i
_boot+Ox8A:
99e6?10i
_boot+Ox7C:

ac8c?i
_panic+OxC4:
ac7c?6i
_panic+OxB4:

4ae4?i
exit+OxlDS:

4ad0?10i
_exit+Ox1C4:

4904?i
rexit+Ox20:

48f4?10i
_rexit+OxlO:

ebdc?i
_syscall+OxlSE:
ebc8?10i
_syscall+Ox14A:

pea
jsr
addq.w
lea
cmp.l
bcs.w
mov.l

(ta4)
_sbupdate
&Ox4,ta7
Ox18(%a4),ta4
ta4,&0x9CFE8
_update+Ox42
_inode,%a5

addq.w &Ox4,%a7

beq.w _boot+Ox90
pea
jsr
addcr.w
bra.w
pea
jsr
addq.w
pea
jsr

addq.w

???
pea
mov.1
jsr
addq.w
bra.w

OxO.w
_update
&Ox4,ta7
_boot+Ox9C
Oxl.w
_update

this is the one

&Ox4,%a7
_reboot_after_panic+OxlEO
_print£

&Ox8,%a7

(68881)
Ox8(%a6)
-Ox4(%a6),-(%a7)
_boot
&Ox8,%a7
_panic+OxC6

addq.w &Ox4,%a7

or.l
cmp.w
bne.b
pea
jsr
addq.w
mov.w
mov.l
mov.l
mov.l

%d4,%d6
%d0, Ox2A (%a5)
_exit+OxlDA
_nsysent+Ox88
_panic
&Ox4,%a7
OxA(%a6),0x52(%a5)
_u+Ox84E,Ox9C(%a5)
_u+Ox84A,Ox98(%a5)
_u+Ox846,0x94(%a5)

addq.w &Ox4,%a7

andi.l &OxFF,%dO
asl.l &Ox8,%d0
mov.l %d0,-(%a7)
jsr
addq.w
mov.l
unlk
rts

_exit
&Ox4,%a7
(%a7),%a5
%a6

link.w %a6,&0xFFFFFFFO
movm.l &<%d7,%a4,%a5>, (%a7)

lea

sub.l
mov.b
1

1
ea

_u+Ox78,%a0

%d2,%d0
&Oxl, {%a0)
_u+Ox9FA,%a0

0

0

0

$q

clr.w
mov.l
jsr
lea
tst.b
beq.b
lea

(tao)
Ox4(ta3),ta0
(tao) # note indirect call

_u+Ox78,ta0
(tao)
_syscall+Ox186
_u+Ox9FA,ta0

By looking at this bottom-up, we can see that the order of calls was like this:
syscall ()
rexit ()
exit()
panic()
boot()
update()
sbupdate ()
bwrite ()
biowait {)
sleep()

Note that we didn't see a 11 jsr _rexit" in syscall (); we just looked at where
we had been before.

What can we learn from all of this? That depends. It is conceivable that
this kind of information could help track down a kernel bug. It is also
possible that it could satisfy a customer's curiosity. One nice thing to know
is that as of 6.0, the kernel will construct a sybolic traceback complete with
the arguments to the calls - this will be printed on the screen just below the
stack dump.

q

..

0
.
The Big Picture

SE 390: Series 300 HP-UX Internals

File System

How does HP-UX organize disks and access files?

The Little Pictures

- History.

- The vnode layer & pathname lookup.

- Caching: buffers, inodes, cdnodes, and directory names.

- Mounting and unmounting file systems.

- General flow within the kernel.

- The HFS/Berkeley/McKusick file system.

- History and layout.

- On-disk data structures.

0 rhe Problem

0

A customer calls and says that he can't boot. You go to help him
out, and take a loaner disk. You boot off of the loaner and try
to fsck{lm) his disk. It fails, and after a bit of poking around
you deduce that someone has tar{l)ed over the first part of his
disk. What will you do?

J

0

0

0

SE 390: Series 300 HP-UX Internals

File System

The original UN*X file system

- Superblock (single copy on Oise)

- I-nodes (grouped together)

- Data blocks (small size = 512 bytes)

- Advantages:

* handles large numbers of small files efficiently

* easy to implement

- Disadvantages:

* limited file I/O throughput

* lack of locality on disk

* lack of robustness

* designed for "small" systems/disks

0

0

0

SE 390: Series 300 HP-UX Internals

File System

Picture of a Bell file system

Boot
Block

(BB)

Super
Block

(SB)

I-nodes

(I-n)

Data
Blocks

(DB)

(0

0

(0

SE 390: Series 300 HP-UX Internals

File System

How The Kernel & File System Fit Together

+----------+
I Kernel I
+----------+

+---------------------------------­
+------~-------+
I Vnode Layer I
+--------------+

+--+
I I I I

+------------+ +------------+ +------------+ +-----------+
I Diskless I I NFS I
+------------+ +------------+

I I
+--------\ /-------+

v
+---------------+
I LAN -> server I
+---------------+

I UFS I I CDFS I
+------------+ +-----------+

I I
+-------\ /------+

v
+------------------+

Buffer Cache -> I

dev. drivers ->
disk I

+------------------+

1-j

0

0

0

The Vnode Layer

- Why?

- How?

SE 390: Series 300 HP-UX Internals

File System U
~~·b.'

J~
- It does for the filesystem what the device driver

interface (open, close, read, write, strategy, etc)
did for device drivers.

- To allow the system to access files that are on a remote
machine, or that are on a disk that isn't HFS.

- To be compatible with the industry.

- Most file system activity revolves around "vnodes", which
are like inodes but are not implementation dependent.

- vnodes only exist in-core, and are part of in-core inodes
or cdnodes or ...

in-core inode
+---------------+

+-----------+
I vnode I
+-----------+
+-----------+

on-disk
in ode

+-----------+
+---------------+

At boot time, the vnode
in each in-core inode
will be initialized to
point at HFS routines;
if CD-ROM is configured
into the system, the vnode
in each cdnode would be
set up to point at CDFS
functions.

- The vnode layer is object-oriented in the sense that a
vnode carries a·round a list of operations that can be
done on it. If the system wants to read from a file
rep.resented by (struct vnode *)vp, it will do something
like this (this is not actual code):

(*(vp)->v_op->vn_read) (vp, rwflag, buf, size)
This will call a routine to read from the file, whether
the file is local, remote, on a PC, or whatever. In
concept, it is roughly this:

switch (vp->v_type)

case VHFS: hfs_read(vp, rwflag, buf, size)

case VNFS: nfs_read(vp, rwflag, buf, size)

case VCDFS: cdfs_read(vp, rwflag, buf, size)

s

SE 390: Series 300 HP-UX Internals

0 .Pathname Lookup

File System

0

0

- Many system calls take a character string that is a pathname.
Before they can do much, they must figure out where the file
is and what type it is. This requires lots of work

- The basic plan of attack for lookupname() is to look
for the vnode that corresponds to the pathname we're
interested in. Here's a greatly simplified view:

while there's another element in the patjµµ.rt~
if that element is in the dnlc~ ~- Al.o.

use the vp there ~~
else

call lookup for the type of
f s the current component is in

There are some "gotchas" left out here (RFA, Diskless, mount pts),
but this is the guts of the algorithm. The "else" clause above is
important - it's what allows us to cleanly resolve pathnames even
though each element of the path may belong to a different fs type.

DNLCA ~ fio \1 i~
+------------------+
I I vp

lib
I pvp

+------------------+
+------------------+

I vp
usr -------

1 pvp
+------------------+
+------------------+

lib
I vp

I pvp
+------------------+
+------------------+

I vp
local

I pvp
+------------------+
+------------------+

I vp
bin

I pvp
+------------------+
+------------------+

I vp

I pvp
+------------------+

in-core inode table

+=======================+

I
+=======================+
+=======================+

+================~======+

+=======================+

+=======================+
+=======================+

+=======================+
+=======================+

+=======================+
+=======================+

+=======================+

Ocaching

0

0

SE 390: Series 300 HP-UX Internals

File System

- The buff er cache - used to avoid reading things that were read
"recently" and to keep from having to write stuff out if it's just
going to get trashed shortly. Buffers are also available for use
as scratch space if drivers need to use them ..

- Prior to 9.0, the buffer cache was sized by nbuf/bufpages;
if these were nonzero, the system used them; otherwise,
68K machines would use 10% of the 1st SMB and 5% of
the rest of RAM; PA boxes would use 10% of RAM

- In 9.0, we have a "dynamic buffer cache" (DBC); it is
still possible to set a specific size using the tunables
above, but in general it is best to let the system
grow/shrink the cache as needed - as the filesystem
uses pages, the cache size will grow; if the system
runs short of memory (user processes ask for some), the
pager will take pages back from the DBC.

If the DBC is taking too much, either set nbuf/bufpages
explicitly or else adb{l) dbc_ceiling to set a limit
on the size of the cache.

dbc_ceiling ---> +--- physmem ---+

I <--- bufpages

dbc_bufpages --->
+------ 0 ------+

- dbc_bufpages is the "floor" - the minimum number of pages
the cache will have {default 64)

- dbc_ceiling is the maximum - {default physmem)

- bufpages is the· current number of pages taken by the
cache {if you set bufpages explicitly, it will do at
boot time what it used to.- hold the cache at that size)

- The inode cache - used to keep track of inodes so that we don't
always have to get them off of the disk. Pathname translation
boils down to accessing lots of inodes, so the less often we have
to get them from disk the better. If a file on a Berkeley Fs·
disk is open, there *must* be a copy of its inode in-core.

- Directory name lookup cache - speeds up pathname translation.
It consists of a set of filenames and their respective vnode
pointers. The system is frequently asked to open files in
/usr/lib; thus it makes sense to have "usr" and "lib" sitting in
the cache. This will often save several disk accesses for a
single pathname translation. The name is somewhat misleading;
there are ordinary filenames in the cache too.

7

.uh ·++'dd b

SE 390: Series 300 HP-UX Internals·

· . File System

0 Mounting And Umounting File Systems

0

0

- Only block devices need apply :-)

- Mounting a disk with vfsmount(2) makes that disk's file system
a part of the present file system; its root "covers" the directory
we mount it on.

- Pathname lookup is affected. When lookupname(} is resolving a
pathname, it checks the vnode for each element to see if it has
been "covered". If so, it jumps to the "covering" vnode and
continues the search. The "is this thing covered?" question is
asked before "where's the directory this vnode corresponds to?"

There is also a possibility that the current vnode is covering
another one and we are moving *up* in the directory hierarchy
{what if we are resolving" .. / .. "?); in this case, we must jump
to the vnode we are covering and continue on.

- When a disk is mounted, it is added to a list of mounted.file
systems. This is used for a number of things, not the least
of which is when reboot{2) is shutting down the system. In that
case, it's important that we not have to rely on /etc/mnttab!

- When a disk is umount{2)ed, the system checks to make sure no_
files on that disk are open; if they are, the umount{2) will fail
with EBUSY. No such checking is done with vfsmount{2) {try it :-)

SE 390: Series 300 HP-UX Internals

Qimportant Data Structures

File System

0

0

Per process:

- u_ofile - semi-static array in each process's u area. A
"file descriptor" is just an index into this array, so
whenever a process open(2)s a file, a slot in this array
is taken up. In >=8.0, this array-will be dynamic
and will be sized by calls to setrlimit(2), with an
upper bound of "maxfiles_lim" (1024) .

- u rdir - vnode pointer for this process' root directory.
see sys/user.h

- u cdir - vnode pointer for this process' current directory
See sys/user.h How does this interact with "cd"?

In 8.0, all of the above move to the proc table entry.

System wide:

- file - the kernel open file table. There is at.least
one slot in it for each file or socket that is open,
and it is sized by the tunable parameter "nfile".
See sys/file.h.

- inode - the inode cache. There is a slot in it for
each inode that is in core (remember that we do caching,
so a given in-core inode isn't necessarily being used),
and it is sized by (all together now:-)) "ninode".
Every file that is open on a local HFS disk *must* have
one slot in the inode table. See sys/inode.h and
sys/ino.h.

- ncache - the directory name lookup cache, also sized by
"ninode".

- In 8.0: fs_async decides whether the filesystem should
lean toward reliability or performance. If it is set ·
to O (default), the system will write inodes/blocks to
disk more often, which give reliability at the expense
of performance. If it is 1, the system will delay
these writes, yielding a great deal of performance
in some situations and very little in others.

>> Having it set to 1 pretty much guarantees having to do
a manual fsck(lm) if the system crashes or loses power. <<

9

co

(0

SE 390: Series 300 HP-UX Internals

File System

Relevant Kernel Structures

proc

+++++++++

<--

+++++++++

+++++++++

u area

+++++++++
- u_procp

I ---->
I

u of ile

------- -\
- - >

+++++++++

file

++++++++

++++++++

++++++++

--->
- -I

--\
I
--->

- an in-core inode looks something like this:

+---------------+

+-----------+
I vnode I
+-----------+

+-----------+
on-disk
in ode

+-----------+

+---------------+

in ode

++++++++

++++++++

++++++++

the disk

/===\
/-> I \

~ ~ ~
\-> \===/

-\
\
_I

Jc

iQ

(cl'-- +V' CD-ROM Layout

Our CD-ROM support conforms to the High Sierra & IS0-9660
standards. Here's a rough sketch of how a CD-ROM is organized:

System Area Contents not specified by standard
16 sectors = 32 kbytes

Primary Volume Descriptor
2 kbytes

Supplementary Volume Descriptor
2 kbytes

Volume Descriptor Set
Terminator

2 kbytes

Descriptor for 1st volume

Descriptors for additional volumes

Piece of data marking end of
volume descriptors

/////////////////////////////////// Potential empty space

Path Tables
Potentially four path tables: the
two required M & L tables, plus tw
additional optional M & L tables

/////////////////////////////////// Potential empty space

Root Directory Root directory for first volume

data Data (files) for first volume

//////II/////////////////////////// Potential empty space

Root Directory Root directory for next volume

data Data (files) for next volume
II

/////////////////////////////////// Potential empty space

Root Directory Etc., till end of CDROM or data

data

'O

12-

co

0

SE 390: Series 300 HP-UX Internals

File System

The Berkeley/McKusick file system

- often referred to as "HFS" or "ufs"

- retains advantages of the original Bell design

- includes remedies for most problem areas

* throughput: larger block size (4/8 Kbytes)

* locality: introduction of "cylinder groups"
(each resembles a Bell file system)

* robustness: superblock is replicated in each group

* extensible: can access files of 4+ Gbytes
(theoretical maximum - 4 Tbytes)

- see fs(4) for an explanation of many of the fields
in the superblock

- minfree is a space-for-time tradeoff; the filesystem wastes
some space in order to make block allocation stable and fast;
note that it is a *percentage*, not a fixed amount (yes, this
is still true on 1.3GB disks) ·

- a cylinder group contains a backup copy of the superblock,
a cylinder group block, some inodes, and some data

the information that changes in the superblock is
the kind of thing fsck(lm) can fix, so once the
filesystem is built the redundant superblocks are
not normally updated (convertfs{lm) is the most
conunon exception)

- there is a fixed number of inodes per cylinder group

- the information about which blocks/inodes are free
is in bit maps in the cylinder group blocks,
cg_free[] & cg_iused[]

- the last time CGB was written is stored in cg_time,
which is helpful to know when trying to "un-rm"

cO

'O

(0

SE 390: Series 300 HP-UX Internals

File System

Picture of a Berkeley file system

cylinder group 0:

BB SB SB CGB I-n DB
A

I
\-- CG summary info

cylinder group 1:

DB SB CGB I-n DB

cylinder group 2:

DB SB CGB I-n DB

Note that the groups are "walking" to the right - this is
because the system tries to stagger the backup superblocks
all over the disk. Given this staggering of the CG
beginnings, it would be hard.to find the inodes or CGB
or backup SB for any particular CG, except that there
are macros that will do it for us.

cgsblock(&sb, 5)

cgimin(&sb, 21)

will return the fragment address
of the beginning of the superblock
stored in CG 5

will return the fragment address
of the first inode in CG 21

14

(0

0

0

SE 390: Series 300 HP-OX Internals

File System

The space on a disk really comes from sectors that are organized into
tracks that are organized into surfaces/platters However, it is
easier to think about it in terms of a flat logical address space
(which is the interface modern disks present) :

+----------------------+
0 boot block

SK primary superblock

16K CG 0 superb lock

24K CG 0 cgblock

32K CG 0 inodes

40K CG 0 inodes

48K CG 0 inodes

56K CG o data
I

64K I
I

72K v

2048K CG 1 data

2056K CG 1 data

2064K CG 1 data

2072K CG 1 superblock

2080K cg 1 cgblock

2088K CG 1 inodes

2096K CG 1 inodes

2104K CG 1 inodes

2112K CG 1 data
I

2120K I
I

2128K v

2136K

both this and the primary SB are
CG O "data"; they just don't belong
to any particular file

<--- cgsblock(&super, O)*super.fs_fsize
or SBLOCK*DEV_BSIZE

<--- cgimin(&super, O)*super.fs_fsize;

(rest of CG O is data)

<--- cgbase(&super, l)*super.fs_fsize
Notice this data in front of CG l's
superblock - CG 2 would have even more
of it - this is to scatter superblocks
all over the disk.

<--- cgsblock(&super, l)*super.fs_fsize

<--- cgimin(&super, 1)*super.fs_fsize

Pl b

SE 390: Series 300 HP-UX Internals

co File System

How UFS Files Are Accessed

0

\0

(The following notes assume no non-UFS elements in the path)

- Directories contain i-number, record length, name length,
and filename (the record length is in there so that
deletions can be handled simply - we just add the record
~ength of the entry being zapped to the previous one.

- Root directory is called "/" and its i-number is always 2,
which is why we need both a device and an i-number to uniquely
identify a file.

- The inode has things like modification/access time stamps,
modes, uid/gid, etc, as well as pointers to the actual
data blocks. The structure of an inode is defined in
/usr/include/sys/ino*h.

- To find a file, the kernel must start from the current directory
or the root (depending on whether the name starts with "/") and
go through a directory and an inode per element of the path.

- The directory is the *only* place on the disk where the filename
is stored; the inode has everything else about the file.

- Normally, directories should be read with opendir(3)/readdir(3);
when you are reading them straight from the disk, though, be sure
to use the structure defined in /usr/include/ndir.h.

inum rlen nlen name
+-------------------------------------
' 2 I 12 I 1 I . --------------------------------------

2 I 12 I 2 I ..
I 3 I 20 I 10 I lost+found

' 9 I 12 I 3 I etc

I~

SE 390: Series 300 HP-UX Internals

0 Sunnnary

File System

0

0

Pathname lookup

- To use a path like "/users/se/smith", the kernel must translate
it to an i-number (or cd-number, etc.} To do this, it chops
the path up into individual names and lets the appropriate
f ilesystem code handle looking for the next name in that one
(assuming.it's a directory; if it's not, we must be done or
else the user goofed} .

The McKusick f ilesystem staggers backup superblocks around the disk,
and tries to put a file's data, directory entry, and inode close
together:·

cylinder group O

BB SB SB CGB I-n DB

cylinder grour 1

DB SB CGB I-n DB

cllinder
1
group 2

I

I DB SB I CGB I-n DB

On-disk data structures

- The superblock has fundamental information about the whole
filesystem: the block/fragment size, the number of cylinder
groups, the magic number, etc.

- All of the interesting information about a file (except its
name) is in its inode.

- The actual block pointers for the file's data are expressed
as fragment addresses and are found in the inode. There are
12 direct-block pointers and 3 ~ndirect block pointers. The
1st indirect-block pointer ·points at a block of pointers to
real disk blocks; the 2nd points to a block of pointers to
blocks of pointers to real data; the 3rd is presently unused :-)

IU

0

0

0

Nov 04 10:49 1992 edited 9.0 dnlc.h Page 1

1 /*
2 * dnlc.h: $Revision: 1.3.61.2 $ $Date: 91/06/19 13:45:42 $
3 * $Locker: $
4 */
5
6 #ifndef _SYS_DNLC_INCLUDED
7 #define _SYS_DNLC_INCLUDED
8
9 /*

10 * Copyright (c) 1984 Sun Microsystems Inc.
11 */
12
13 /*
14 * This structure describes the elements in the cache of recent
15 * names looked up.
16 */
17
18 #define NC_NAMLEN 15 /* maximum name segment length we bother wi
19

struct 20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

ncache {
struct ncache
struct
struct
struct
char

ncache
vnode
vnode

*hash_next, *hash_prev;
*lru_next, *lru_prev;
*vp;

/* hash chain, MOST BE FIRS
/* LRU chain */

*dp;
namlen;
name[NC_NAMLEN];

/* vnode the name refers to
/* vno of parent of name */
/* length of name */

char /* segment name */
struct ucred *cred; /* credentials */

} ;

#define
#define
/*

ANYCRED ((struct ucred *) -1)
NOCRED ((struct ucred *) O)

37

int
struct
*/

ncsize;
ncache *ncache;

38 #define NC_HASH_SIZE
39
40 /*

256 /* size of hash table */

41 * Stats on usefulness of name cache.
42 */
43 struct ncstats {
44
45
46
47
48
49
50 };
51
52 /*

int
int
int
int
int
int

hits;
misses;
long_enter;
long_ look;
lru_empty;
purges;

/* hits that we can really use */
/* cache misses */
/* long names tried to enter */
/* long names tried to look up */
/* LRU list empty */
/* number of purges of cache */

53 * Hash list of name cache entries for fast lookup.
54 */
55 struct nc_hash {
56 struct ncache *hash_next, *hash_prev;
57 };

1'7

0

0

0

Nov 04 10:50 1992 9.0 fs.h Page 1

1 /*
2 * @(#)fs.h: $Revision: 1.17.61.2 $$Date: 91/06/19 15:45:29 $
3 * $Locker: $
4 *
5 */
6
7 /* @(#) $Revision: 1.17.61.2 $ */
8 #ifndef _SYS_FS_INCLUDED /* allows multiple inclusion */
9 #define _SYS_FS_INCLUDED

10 /*
11 * Each disk drive contains some number of file systems.
12 * A file system consists of a number of cylinder groups.
13 * Each cylinder group has inodes and data.
14 *
15 * A file system is described by its super-block, which in turn
16 * describes the cylinder groups. The super-block is critical
17 * data and is replicated in each cylinder group to protect against
18 * catastrophic loss. This is done at mkfs time and the critical
19 * super-block data does not change, so the copies need not be
20 * referenced further unless disaster strikes.
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

·*
* For
* are
*
*
*
*
* The
* the
*
* The
*/

#define
#define
#define
#define

38 /*

file system fs, the offsets of the various blocks of interest
given in the super block as:

[fs->fs_sblkno] Super-block
[fs->fs_cblkno] Cylinder group block
[fs->fs_iblkno] Inode blocks
[fs->fs_dblkno] Data blocks

beginning of cylinder group cg in fs, is given by
''cgbase(fs, cg)'' macro.

first boot and super blocks are given in absolute disk addresses.

BBSIZE
SBSIZE
BB LOCK
SB LOCK

8192
8192
((daddr_t} (0)}
((daddr_t} (BBLOCK + BBSIZE / DEV_BSIZE}}

39 * Addresses stored in inodes are capable of addressing fragments
40 * of 'blocks' . File system blocks of at most size MAXBSIZE can
41 * be optionally broken into 2, 4, or 8 pieces, each of which is
42 * addressible; these pieces may be DEV_BSIZE, or some multiple of
43 * a DEV_BSIZE unit.
44 *
45 * Large files consist of exclusively large data blocks. To avoid
46 * undue wasted disk space, the last data block of a small file may be
47 * allocated as only as many fragments of a large block as are
48 * necessary. The file system format retains only a single pointer
49 * to such a fragment, which is a piece of a single large block that
SO * has been divided. The size of such a fragment is determinable from
51 *information in the inode, using the ''blksize(fs, ip, lbn} ''macro.
52 *
53
54
55
56

* The file system records space availability at the fragment level;
* to determine block availability, aligned fragments are examined.
*
*/

/g

0

0

0

Nov 04 10:50 1992 9.0 fs.h Page 2

57
58 /*
59 * Cylinder group related limits.
60 *
61 * For each cylinder we keep track of the availability of blocks at differe
62 * rotational positions, so that we can lay out the data to be picked
63 * up with minimum rotational latency. NRPOS is the number of rotational
64 * positions which we distinguish. With NRPOS 8 the resolution of our
65 * summary information is 2ms for a typical 3600 rpm drive.
66 */
67 #define NRPOS 8 /* number distinct rotational positions */
68
69 /*
70 * MAXIPG bounds the number of inodes per cylinder group, and
71 * is needed only to keep the structure simpler by having the
72 * only a single variable size element (the free bit map) .
73 *
74 * N.B.: MAXIPG must be a multiple of INOPB(fs).
75 */
76 #define MAXIPG 2048 /* max number inodes/cyl group */
77
78 /*
79 * MINBSIZE is the smallest allowable block size.
80 * In order to insure that it is possible to create files of size
81 * 2A32 with only two levels of indirection, MINBSIZE is set to 4096.
82 * MINBSIZE must be big enough to hold a cylinder group block,
83 * thus changes to (struct cg) must keep its size within MINBSIZE_.
84 * MAXCPG is limited only to dimension an array in (struct cg);
85 * it can be made larger as long as that structures size remains
86 * within the bounds dictated by MINBSIZE.
87 * Note that super blocks are always of size MAXBSIZE,
88 * and that MAXBSIZE must be >= MINBSIZE.
89 */
90 #define MINBSIZE 4096
91 #define MAXCPG 32 /* maximum fs_cpg */
92
93 /* MAXFRAG is the maximum number of fragments per block */
94 #define MAXFRAG 8
95
96 #ifndef NBBY
97 #define·NBBY
98
99

100
101
102 #endif
103
104 /*

8 /* number of bits in a byte */
/* NOTE: this is also defined */
/* in param.h. So if NBBY gets */
/* changed, change it in */
/* param.h also */

105 * The path name on which the file system is mounted is maintained
106 * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in
107 * the super block for this name.
108 * The limit on the amount of summary information per file system
109 * is defined by MAXCSBUFS. It is currently parameterized for a
110 * maximum of two million cylinders.
111 */
112 #define MAXMNTLEN 512

;q

0

0

0

Nov 04 10:50 1992 9.0 fs.h Page 3

113 #define MAXCSBUFS 32
114
115 /*
116 * Per cylinder group information; summarized in blocks allocated
117 * from first cylinder group data blocks. These blocks have to be
118 * read in from fs_csaddr (size fs_cssize) in addition to the
119 * super block.
120 *
121 * N.B. sizeof (struct csum) must be a power of two in order for
122 *the ''fs_cs'' macro to work (see below).
123 */
124
125
126
127
128
129
130

struct

} ;

131 /*

csum {
long
long
long
long

cs_ndir; /*
cs_nbfree; /*
cs_nifree; /*
cs_nffree; /*

132 * Super block for a file system.
133 */
134 #define FS_MAGIC Ox011954
135
136 /*

number
number
number
number

of
of
of
of

directories */
free blocks */
free inodes */
free frags */

137 * Magic number for file system allowing long file names.
138 */
139 #define FS_MAGIC_LFN Ox095014
140
141 /*
142 * Magic number for file systems which have their fs_featurebits field
143 * set up.
144 */
145 #define FD_FSMAGIC Oxl95612
146
147 /*
148 * Flags for fs_featurebits field.
149 */
150 #define FSF_LFN Oxl /* long file names */
151 #define FSF_KNOWN (FSF_LFN)
152 #define FSF_UNKNOWN(bits) ((bits) & -(FSF_KNOWN))
153
154 /*
155 * Quick check to see if inode is in a file system allowing
156 * long file names.
157 */
158 #define IS_LFN_FS(ip) \
159 (((ip)->i_fs->fs_magic == FS_MAGIC_LFN) I I \
160 ((ip)->i_fs->fs_featurebits & FSF_LFN))
161
162
163
164
165
166
167
168

#define FS_CLEAN
#define FS_OK
#define FS_NOTOK

/* f s_flags fields
#define FS_INSTALL
#define FS_QCLEAN

Oxl7
Ox53
Ox31

*/
Ox80
OxOl

0

0

0

Nov 04 10:50 1992 9.0 fs.h Page 4

169 #define FS_QOK Ox02
Ox03
Ox03

170 #define FS_QNOTOK
171 #define FS_QMASK
172 #define FS_QFLAG(p)
173 #define FS_QSET(p,val)

((p)->fs_flags & FS_QMASK)
{(p)->fs_flags &= -FS_QMASK, {p)->fs_flags I= {val)

174
175 /* Mirstate describes the mirror states of the root and primary swap */
176 /* devices. This information is only recorded in the super block of */
177 /* the root file system. If root and swap devices are mirrored, the */
178 /* bootup code will configure their states based on mirstate. */
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

struct mirinf o {
struct mirstate { /* mirror states for root and swap

u_int root:4, /* root mirror states */
rflag:l, /* root clean/unconf flag */
swap:4, /* swap mirror states */
sflag:l, /* swap clean/unconf flag */
spare:22; /* spare bits */

} state;
long mirtime; ~ ~/* mirror time stamp */

~;io~~. y~~~}J;'~
} ;

struct f s
{

struct fs *fs_link; /* linked list of file systems */
struct fs *fs_rlink; /* used for incore super blocks
daddr_t fs_sblkno; /* addr of super-block in filesys *
daddr_t fs_cblkno; /* offset of cyl-block in filesys *
daddr_t fs_iblkno; /* offset of inode-blocks in filesy
daddr_t
long
long
time_t
long
long
long
long
long
long

fs_dblkno; /* offset of first data after cg */
fs_cgoffset; /* cylinder group offset in cylinde
fs_cgmask; /* used to calc mod fs_ntrak */
fs_time; /* last time written */
fs_size; /* number of blocks in fs */
fs_dsize; /* number of data blocks in fs */
fs_ncg; /* number of cylinder groups */
fs_bsize; /* size of basic blocks in fs */
fs fsize; /* size of frag blocks in fs */
fs=frag; /* number of frags in a block in fs

/* these are
long
long
long

configuration parameters */
fs_minfree; /* minimum percentage of free block
fs rotdelay; /* num of ms for optimal next block
fs=rps; /* disk revolutions per second */
can be computed from the others */
fs_bmask; /* ''blkoff'' calc of blk offsets*
fs fmask; /* ''fragoff'' calc of frag offsets
fs=bshift; /* ''lblkno'' calc of logical blkno
fs fshift; /* ''numfrags'' calc number of frag

configuration parameters */

/* these fields
long
long
long
long

/* these are
long
long

/* these fields
long
long
long
long

fs_maxcontig; /* max number of contiguous blks */
fs_maxbpg; /* max number of blks per cyl group
can be computed from the others·•/
fs_fragshift; /* block to frag shift */
fs fsbtodb; /* fsbtodb and dbtofsb shift consta
fs=sbsize; /* actual size of super block */
fs_csmask; /* csum block offset */

2J

0

0

0

Nov 04 10:50 1992 9.0 fs.h Page 5

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

long fs_csshift; /* csum block number */
long fs_nindir; /* value of NINDIR */
long fs_inopb; /* value of INOPB */
long fs_nspf; /* value of NSPF */
long fs_id[2]; /* file system id */
struct mirinfo fs_mirror; /* mirror states of root/swap */
long fs_featurebits; /* feature bit flags */
long f s_optim; /* optimization preference - see be

/* sizes determined by number of cylinder groups and their sizes */
daddr_t fs_csaddr; /* blk addr of cyl grp summary area
long f s_cssize; /*· size of cyl grp summary area *I
long fs_cgsize; /* cylinder group size */

/* these fields should be derived from the hardware */
long fs_ntrak; /* tracks per cylinder */
long fs_nsect; /* sectors per track */
long fs_spc; /* sectors per cylinder */

/* this comes from the disk driver partitioning */
long fs_ncyl; /* cylinders in file system */

/* these fields can be computed from the others */
long fs_cpg; A n l /* cylinders per group *I
long fs_ipg; J.n ~ · /* inodes per group */
long fs_fpg; -r~ /* blocks per group * fs_frag */

/* this data must be re-computed after crashes */
struct csum fs_cstotal; /* cylinder summary information */

/* these fields are cleared at mount time */
char fs_fmod; /* super block modified flag */
char fs_clean; /* file system is clean flag */
char fs_ronly; /* mounted read-only flag */
char fs_flags; /* currently unused flag */
char fs fsmnt[MAXMNTLEN]; /*name mounted on*/

/* these fields retain the current block allocation info */
long fs_cgrotor; /* last cg searched */
struct csum *fs_csp[MAXCSBUFS] ;/* list of fs_cs info buffers */
long fs_cpc; /* cyl per cycle in postbl */
short fs_postbl[MAXCPG] [NRPOS] ;/*head of blocks for each rotatio
long fs_magic; /* magic number */
char fs fname[6]; /* file system name */
char fs=fpack[6]; /* file system pack name */
u_char fs_rotbl[l]; /*list ·of blocks for each rotation

/* actually longer */
} ;
/*

* Preference for optimization.
*/ .

#define FS_OP'ITIME 0 /* minimize allocation time */
#define FS_OPTSPACE 1 /* minimize disk fragmentation */

272 /*
273 * Convert cylinder group to base address of its global summary info.
274 *
275 * N.B. This macro assumes that sizeof (struct csum) is a power of two.
276 */
277 #define fs_cs(fs, indx) \
278 fs_csp [(indx) » (fs) - >fs_csshift] [(indx) & - (fs) - >fs_csmask]
279
280 /*

0

0

Nov 04 10:50 1992 9.0 fs.h Page 6

281 * MAXBPC bounds the size of the rotational layout tables and
282 * is limited by the fact that the super block is of size SBSIZE.
283 * The size of these tables is INVERSELY proportional to the block
284 * size of the file system. It is aggravated by sector sizes that
285 * are not powers of two, as this increases the number of cylinders
286 * included before the rotational pattern repeats (fs_cpc) .
287 * Its size is derived from the number of bytes remaining in (struct fs)
288 */
289 #define MAXBPC (SBSIZE - sizeof (struct fs))
290

/* 291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

* Cylinder group block ~ file system.

#~~fine CG_MAGI~ .. ~~ Ox090255
struct cg { (}"'{

struct cg *cg_link;
struct cg *cg_rlink;
time_t cg_time;
long cg_cgx;
short cg_ncyl;
short cg_niblk;
long cg_ndblk;
struct csum cg_cs;
long cg_rotor;
long cg_frotor;
long cg_irotor;
long cg_frsum[MAXFRAG];
long cg_btot[MAXCPG];
short cg_b[MAXCPG] [NRPOS];
char cg_iused[MAXIPG/NBBY];
long cg_magic;
u_char cg_free[l];

/* linked list of cyl groups */
/* used for incore cyl groups *
/* time last written */
/* we are the cgx'th cylinder group
/*number of cyl's this cg */
/* number of inode blocks this cg *
/* number of data blocks this cg */
/* cylinder summary information */
/* position of last used block */
/* position of last used frag */
/* position of last used inode */
/* counts of available frags */
/* block totals per cylinder */
/* positions of free blocks */
/* used inode map */
/* magic number */
/* free block map */

/* actually longer */
} ;

315
316 /*
317 * MAXBPG bounds the number of blocks of data per cylinder group,
318 * and is limited by the fact that cylinder groups are at most one block.
319 * Its size is derived from the size of blocks and the (struct cg) size,
320 * by the number of remaining bits.
321 */
322 #define MAXBPG{fs) \
323 (fragstoblks((fs), (NBBY * ({fs)->fs_bsize - (sizeof (struct cg)))}
324
325 /*
326
327
328
329
330
331

* Turn
* This
*/

#define
#define

332 /*

file system block numbers into disk block addresses.
maps file system blocks to device size blocks.

fsbtodb (fs, b)
dbtofsb(fs, b)

((b) << {fs)~>fs_fsbtodb)

((b) >> (fs)->fs_fsbtodb)

333 * Cylinder group macros to locate things in cylinder groups.
334 * They calc file system addresses of cylinder group data structures.
335 */
336 #define cgbase{fs, c) ((daddr_t) ((fs)->fs_fpg * (c)))

Nov 04 10:50 1992 9.0 fs.h Page 7

O:'. '1. 337

;<\~m
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

0 363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

0 390
391
392

#define cgstart(fs, c) \
(cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & -((fs)->fs_cgmask)))

#define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /*super bl
#define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /*cg block
#define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs~iblkno) /* inode bl
#define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /*1st data

/*
* Give
* Give
*/

#define
#define

/*

cylinder group number for a file system block.
cylinder group block number for a file system block.

dtog (fs, d)
dtogd(fs, d)

((d) I (fs)->fs_fpg)
((d) % (fs)->fs_fpg)

* Extract the bits for a block from a map.
* Compute the cylinder and rotational position of a cyl block addr.
*/

#define blkmap(fs, map, lee) \
(((map) [(lee} I NBBY] >> ((lee) & (NBBY-1))) & (Oxff >> (NBBY - (fs}->f

#define cbtocylno(fs, bno) \
((bno) * NSPF(fs) I (fs)->fs_spc)

#define cbtorpos(fs, bno) \
((bno) * NSPF(fs} % (fs}->fs_nsect * NRPOS / (fs)->fs_nsect)

/*
* The following macros optimize certain frequently_calculated
* quantities by using shifts and masks in place of divisions
* modules and multiplications.
*/

#define blkoff (fs, lee} /* calculates (loc % fs->fs_bsize} */ \
((lee} & -(fs}->fs_bmask}

#define fragoff (fs, lee) /* calculates Cloe % fs->fs_fsize} */ \
((lee} & -(fs}->fs_fmask}

#define lblkno(fs, lee} /* calculates (lee / fs->fs_bsize} */ \
((lee} >> (fs}->fs_bshift}

#define numfrags(fs, loc} /* calculates (lee I fs->fs_fsize} */ \
((lee} >> (fs}->fs_fshift}

#define blkroundup(fs, size} /* calculates roundup(size, fs->fs_bsize} *
(((size} + (fs}->fs_bsize - 1) & (fs}->fs_bmask}

#define fragroundup(fs, size} /* calculates roundup(size, fs->fs_fsize} *
(((size} + (fs}->fs fsize - l} & (fs}->fs fmask}

#define fragstoblks(fs, frags} /* calculates (frags I fs->fs_frag} */ \
((frags} >> (fs}->fs_fragshift}

#define blkstofrags(fs, blks} /* calculates (blks * fs->fs_frag} */ \
((blks} << (fs}->fs_fragshift)

#define fragnum(fs, fsb} /* calculates (fsb % .fs->fs_frag} */ \
((fsb) & ((fs)->fs_frag - 1))

#define blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) *
((fsb) &- ((fs)->fs_frag - 1))

/*
* Determine the number of available frags given a
* percentage to hold in reserve
*/

#define freespace(fs, percentreserved} \

O'

0

0

Nov 04 10:50 1992 9.0 fs.h Page 8

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

(blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \
(fs)->fs_cstotal.cs_nffree - ((fs)->fs_dsize * (percentreserved) I

/*
* Determining the size of a file blo~ in the file system.
*/

#define blksize(fs, ip, lbn) \
(((lbn) >= NDADDR I I (ip)->i size>= ((lbn) + 1) « (fs)->fs_bshift

? (fs)->fs_bsize \ -
: (fragroundup(fs, blkoff(fs, (ip)->i_size))))

#define dblksize(fs, dip, lbn) \
{((lbn) >= NDADDR I I {dip)->di_size >= ((lbn) + 1) << (fs)->fs_bshi

? {fs)->fs_bsize \
: (fragroundup{fs, blkoff(fs, {dip)->di_size))))

/*
* Number of disk sectors per block; assumes DEV_BSIZE byte sector size.
*/

#define NSPB (f s)
#define NSPF (fs)

((fs)->fs_nspf << (fs)->fs_fragshift)
{ Cf s) - >f s_nspf)

#endif /* not SYS_FS_INCLUDED */

25

0

0

Nov 04 10:48 1992 9.0 ino.h Page 1

1 /* ®{#) $Revision: 1.14.61.3 $ */
2 /* $Source: /ws_src/sys.UDL_MERGE_800/ufs/RCS/ino.h,v $
3 * $Revision: 1.14.61.3 $ $Author: rsh $
4 * $State: Exp $ $Locker: $
5 * $Date: 91/11/19 11:21:14 $
6 */
7 #ifndef _SYS_INO_INCLUDED /* allows multiple inclusion */
8 #define _SYS_INO_INCLUDED
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
so
51
52
53
54
55

struct

} i

struct

} i

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define

di node {
union {

struct
char

} di un·
- I

cinode {
union {

struct
char

} ci un·
- I

di ic
di_mode
di _nlink
di _uid
di _gid
di size -di db -di ib -di a time
di_mtime
di ctime
di _symlink
di _flags
di rdev
di_pseudo
di rsite
di_blocks
di _gen
di fversion -di _frptr
di _fwptr
di f rcnt -di fwcnt
di _fflag
di f ifosize -di cont in -

ci ic -ci_mode
ci _nlink
ci acl -

icommon di _icom;
di _size[l28];

icont ci_icont;
ci_size[l28];

di_un.di_icom
di_ic.ic_mode
di_ic. ic_nlink
di_ic.ic_uid
di_ic.ic_gid
di_ic.ic_size.val[l]
di_ic.ic_un2.ic_reg.ic_db
di_ic.ic_un2.ic_reg.ic_un.ic_ib
di_ic.ic_atime
di_ic.ic_mtime
di_ic.ic_ctime
di_ic.ic_un2.ic_symlink
di_ic. ic_flags
di_ic.ic_un2.ic_reg.ic_db[O]
di_ic.ic_un2.ic_reg.ic_db[l]
di_ic.ic_un2.ic_reg.ic_db[2]
di_ic.ic_blocks
di_ic.ic_gen
di_ic.ic_fversion
di_ic.ic_un2.ic_reg.ic_un.ic_fifo.if_frptr
di_ic.ic_un2.ic_reg.ic_un.ic_fifo.if_fwptr
di_ic.ic_un2.ic_reg.ic_un.ic_fifo.if_frcnt
di_ic.ic_un2.ic_reg.ic_un.ic_fifo.if_fwcnt
di_ic.ic_un2.ic_reg.ic_un.ic_fifo.if_fflag
di_ic.ic_un2.ic_reg.ic_un.ic_fifo.if_fifosize
di_ic.ic_contin

ci_un.ci_icont
ci_ic.icc_mode
ci_ic. icc_nlink
ci_un.ci_icont.icc_acl

56 #endif /* _SYS_INO_INCLUDED */

0

0

0

Nov 04 10:47 1992 edited 9.0 inode.h Page 1

1
2
3
4
5
6
7
8
9

/* ®(#} $Revision: 1.37.61.13 $ */
/* $Source: /ws_src/sys.UDL_MERGE_800/ufs/RCS/inode.h,v $

* $Revision: 1.37.61.13 $ $Author: smp $
* $State: Exp $ $Locker: $
* $Date: 92/05/04 09:28:13 $
*/

#ifndef _SYS_INODE_INCLUDED /* allows multiple inclusion */
#define _SYS_INODE_INCLUDED

10 #ifndef SYS_STDSYMS_INCLUDED
11 # include <sys/stdsyms.h>
12 #endif /* _SYS_STDSYMS_INCLUDED */
13
14 /*
15 * The I node is the focus of all file activity in UNIX.
16 * There is a unique inode allocated for each active file,
17 * each current directory, each mounted-on file, text file, and the root.
18 * An inode is 'named' by its dev/inumber pair. (iget/iget.c}
19 * Data in icommon is read in from permanent inode on volume.
20 */
21
22 #include <sys/sem_beta.h>
23
24 #ifndef SITEARRAYSIZE
25 #include <sys/sitemap.h>
26 #endif /* SITEARRAYSIZE */
27
28 #include <sys/vnode.h>
29
30 #include <sys/acl.h>
31
32 #define NDADDR 12
3.3 #define NIADDR 3
34
35
36
37
38 /*
39 * Fast symlinks --

/* direct addresses in inode */
/* indirect addresses in inode */
/* fife's depends on this value */
/* if this value changes, look */
/* at icommon.ic_un2.ic_reg.ic_un */

40 * symbolic links with paths short than MAX_FASTLINK_SIZE
41 * are stored in the inode where the direct and indirect
42 * block pointers are normally stored. The flag IC_FASTLINK
43 * (in i_flags} indicates that the symbolic link is of the
44 * "fast" variety.
45 *
46 * This implementation cannot change, or the filesystem will
47 * not be compatible with the OSF/l 11 ufs 11 filesystem.
48 */
49 #define MAX FASTLINK SIZE ((NDADDR + NIADDR} * sizeof (daddr_t))
50 #define IC_FASTLINK OxOOOOOOOl
51
52
53
54
55
56

struct inode {
struct
struct
struct
u_int

inode *i_chain[2]; /* must be first */
vnode i_vnode; /* vnode associated with this inode */
vnode *i_devvp; /* vnode for block i/o */
i_flag;

21

0

0

0

Nov 04 10:47 1992 · edited 9.0 inode.h Page 2

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

/*
*
*/

dev_t
ino_t
int
struct
struct
struct
struct

i_dev; /* device where inode resides */
i_number; /* i number, 1-to-1 with device address */
i_diroff; /* offset in dir, where we found last entry
inode *i_contip; /* pointer to the continuation inode */
fs *i_fs; /* file sys associated with this inode */
duxfs *i_dfs;
dquot *i_dquot; /* quota structure controlling this file */

Put the i_rdev here so the remote device stuff can change it
and still have the real device number around

dev_t i_rdev; /* if special, the device number */

union {
daddr_t if_lastr; /* last read {read-ahead) */
struct socket *is_socket;

} i_un;
struct {

} i_fr;

struct inode *if_freef;
struct inode **if_freeb;

struct i_select {
struct proc *i_selp;
short i selflag;

} i_fselr, i_fs;lw;
struct locklist *i_locklist;
struct sitemap i~opensites;
struct sitemap i_writesites;
site_t i_ilocksite;

/* free list forward */
/* free list back */

/* locked region list */
/* map of sites with file open */
/* map of sites writing to file */
/* site holding ilock */

short i_pid; /* pid of last process to lock this inode *
87 union
88 {
89 struct sitemap is_execsites; /* map of sites executing the file
90 struct sitemap is_fifordsites; /* map of sites reading fife */
91 } i_siteu;
92 #define i_execsites i_siteu.is_execsites
93 #define i_fifordsites i_siteu.is_fifordsites
94 struct dcount i_execdcount; /* # of local process exec the file
95 struct dcount i_refcount; /* real and virtual reference count
96 struct sitemap i_refsites; /* all other references */
97 struct mount *i_mount; /* mount table entry
98 * note this can be calculated as:
99 * {struct mount *)

100 * (ITOV(ip)->v_vfsp->v_data)
101 * but since this is a relatively
102 * frequent operation in DUX, we
103 * save it here to make it more
104 * efficient.
105 */
106 union
107 {
108
109
110
111
112

struct icommon
{

u_short ic_mode;
short ic_nlink;
ushort ic_uid;

/* O: mode and type of file */
/* 2: number of links to file */
/* 4: owner's user id*/

Q

0

0

Nov 04 10:47 1992 edited 9.0 inode.h Page 3

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

#if def

#else

#endif

#if def

ushort ic_gid; /* 6: owner's group id */
quad ic_size; /* 8: number of bytes in file */

KERNEL -

/*

struct timeval ic_atime;/* 16: time last accessed */
struct. timeval ic_mtime;/* 24: time last modified */
struct timeval ic_ctime;/* 32: last time in ode changed */

time t ic_atime; /* 16: time last accessed */
long ic_atspare;
time t ic_mtime; /* 24: time last modified */
long ic_mtspare;
time t ic_ctime; /* 32: last time inode changed */
long ic_ctspare;

_KERNEL */
union {

struct {
daddr t ic db[NDADDR]; /* 40: disk block addresses
union-{

daddr_t ic_ib[NIADDR]; /* 88: indirect blocks *
struct ic.fifo
{ -

short if_frptr;
short if_fwptr;
short if_frcnt;
short if_fwcnt;
short if_fflag;
short if_fifosize;

} ic_fifo;
} ic_un;

} ic_reg;
char ic symlink[MAX FASTLINK SIZE]; /* 40: short symlin

} ic_un2; - - -

long
long
long
long
long
ino_t

ic_flags;
ic_blocks;
ic_gen;
ic_fversion;
ic_spare[2];
ic_contin;

/* 100: status */
/* 104: blocks actually held */
/* 108: generation number */
/* 112: file version number */
/* 116: reserved, currently unused
/* 124: continuation inode number *

} i_ic;
struct icont
{

ushort
short

icc_mode;
icc_nlink; /* 2: number of links to file */

/* 4: The optional entries of the
* access control list
*/

KERNEL
161 struct acl_tuple icc_acl[NOPTI'UPLES];
162 #else /* not _KERNEL */
163 struct acl_entry_internal icc_acl[NOPTENTRIES];
164 #endif /* else not _KERNEL */
165 char ice spare[46]; /* 82: currently unused*/
166 } i_icc; -
167 } i_icun;
168 #ifdef HPNSE

29

0

0

0

Nov 04 10:47 1992 edited 9.0 inode.h Page 4

169 struct stdata *i_sptr; /* HP-UX NSE, associated stream */
170 #endif
171 unsigned char i_ord_flags; /* copied to buf for ordered writes
172 };
173
174 #define L_REMOTE Oxl
175

/* The process holding the lock is remote */

176
177
178

/* NOTE: Watch out for IWANT =
#define NFS_WANTS_LOCK Ox2

OxlO, which is also used as a lock flag */
/* NFS lock manager is waiting for lock */

179 struct locklist
180 {

/* NOTE link must be first in struct */
struct locklist *ll_link; /* link to next lock region */
short ll_count; /* reference count */

181
182
183
184
185
186
187
188
189
190
191
192

short ll_flags; /* current flags: L_REMOTE, IWANT, ILB
union

{ struct proc *llu_proc;
struct

/* process which owns region */

{ site_t llur_psite;
short llur_pid;

/* Site where process lives
/* PID of process

} llu_remote;
} ll_u;

193 #define ll_proc ll_u.llu_proc
194 #define ll_psite ll_u.llu_remote.llur_psite
195 #define ll_pid ll_u.llu_remote.llur_pid
196 off_t 11 start; /* starting offset */
197 off_t ll=end; /* ending offset, zero is eof */
198 short ll_type; /* type of lock (for fnctl) */
199 struct inode *ll_ip; /* Inode owning this locklist */
200 };
201 enum lockf_type {L_LOCKF, L_READ, L_WRITE, L_COPEN, L_FCNTL};

#define i_mode
#define i_nlink
#define i_uid
#define i_gid
#define i_size
#define i_db
#define i_ib
#define i_atime
#define i_mtime
#define i_ctime
#define i_symlink
#define i_flags
#define i_blocks

i_icun.i_ic.ic_mode
i_icun.i_ic.ic_nlink
i_icun.i_ic.ic_uid
i_icun. i_ic. ic_gid
i_icun.i_ic.ic_size.val[1]
i_icun.i_ic.ic_un2.ic_reg.ic_db
i_icun.i_ic.ic_un2.ic_reg.ic_un.ic_ib
i_icun.i_ic.ic_atime
i_icun.i_ic.ic_mtime
i_icun.i_ic.ic_ctime
i_icun.i_ic.ic_un2.ic_s'Ymlink
i_icun.i_ic.ic_flags
i_icun~i_ic.ic_blocks

*/
*/

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

/* Define 1) new name
#define i_device
#define i_rsite
#define i_gen

for real device number 2) name for device
i_icun.i_ic.ic_un2.ic_reg.ic_db[O]
i_icun.i_ic.ic_un2.ic_reg.ic_db[2]
i_icun.i_ic.ic_gen

site # */

223
224

#define i_lastr
#define i_socket
#define i~forw
#define i_back
#define i_freef

i_un.if_lastr
i_un.is_socket
i_chain [0]
i_chain [l]
i_fr.if_freef

30

0

0

0

Nov 04 10:47 1992 edited 9.0 inode.h Page 5

225 #define i_freeb
226 #define i_frptr
227 #define i_fwptr
228 #define i_frcnt
229 #define i_fwcnt
230 #define i_fflag
231 #de~ine i_fifosize
232 #define i_f if o
233 #define i_fversion
234

i_fr.if_freeb
i_icun.i_ic.ic_un2.ic_reg.ic_un.ic_fifo.if_frptr
i_icun.i_ic.ic_un2.ic_reg.ic_un.ic_fifo.if_fwptr
i_icun.i_ic.ic_un2.ic_reg.ic_un.ic_fifo.if_frcnt
i_icun.i_ic.ic_un2.ic_reg.ic_un.ic_fifo.if_fwcnt
i_icun.i_ic.ic_un2.ic_reg.ic_un.ic_fifo.if_fflag
i_icun.i_ic.ic_un2.ic_reg.ic_un.ic_fifo.if_fifosize
i_icun.i_ic.ic_un2.ic_reg.ic_un.ic_fifo
i_icun.i_ic.ic_fversion

235 #define i_contin
236 #define i_acl
237
238
239 /*

i_icun.i_ic.ic_contin
i_icun.i_icc.icc_acl

240 * Only include ino.h if we are defining _KERNEL. No need otherwise.
241 */
242 #if def _KERNEL
243 #include <sys/ino.h>
244 #endif /* _KERNEL */
245

#if def KERNEL -
#ifdef _hp9000s800
extern struct in ode
extern struct in ode

inode; / the inode table itself */
inodeNINODE; / the end of the inode table */

246
247
248
249
250
251
252
253
254

extern int ninode; /* number of slots in the table */

extern struct vnodeops ufs_vnodeops; /* vnode operations for uf s */
extern struct vnodeops dux_vnodeops; /* vnode operations for dux */

255 extern struct vnode *rootdir; /* pointer to inode of root directo
256 extern struct locklist locklist[]; /*The lock table itself*/
257 #endif /* _hp9000s800 */
258
259
260
261
262
263
264
265

#if def
struct
struct
int
extern
extern

_hp9000s300
inode *inode; /* the inode table itself */
inode *inodeNINODE; /* the end of the inode table */
ninode; /* number of slots in the table

struct vnodeops ufs_vnodeops; /* vnode operations for
struct vnodeops dux_vnodeops; /* vnode operations for

*/
uf s */
dux */

266 struct vnode *rootdir; /* pointer to inode of root directo
267 struct locklist locklist[]; /*The lock table itself*/
268 #endif /* _hp9000s300 */
269
270
271
272
273
274
275
276

struct
struct
struct
struct
struct
struct

in ode
in ode
in ode
in ode
in ode
in ode

*ialloc ();
*iget () ;
*if ind() ;
*owner();
*maknode();
*namei();

277 ino_t dirpref ();
278 #endif /* _KERNEL */
279
280 /* flags */

0

0

0

Nov 04 10:47 1992 edited 9.0 inode.h Page 6

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

#define
#define
#de~ine
#if def
#define
#endif
#define
#define
#define
#if def
#define
#define
#endif
#define
#define

I LOCKED
IUPD
IACC
notdef
I MOUNT

I WANT
I TEXT
ICHG
not def
ISHLOCK
IEXLOCK

ILWAIT
IREF

#define ILBUSY
#define !RENAME

#define IACLEXISTS

303 #define ISYNCLOCKED
304 #define ISYNC
305 #define IDOXMNT
306 #define ISYNCWANT
307 #define IDUXMRT
308 #define IBUFVALID
309 #define IPAGEVALID
310 #define !OPEN
311
312 #define IFRAG
313
314 #define IKARD
315 #define INOFLUSH
316

Oxl
Ox2
Ox4

Ox8

OxlO
Ox20
Ox40

Ox80
OxlOO

Ox200
Ox400

Ox800
OxlOOO

Ox2000

OxlOOOO
Ox20000
Ox40000
Ox80000
OxlOOOOO
Ox200000
Ox400000
Ox800000

OxOlOOOOOO

Ox2000000
Ox4000000

/* inode is locked */
/* file has been modified */
/* inode access time to be updated

/* inode is mounted on */

/* some process waiting on l~ck */
/* inode is pure text prototype */
/* inode has been changed */

/* file has shared lock */
/* file has exclusive lock */

/* someone waiting on file lock */
/* inode is being referenced */
/*change is use DUX!!! */
/* lock is not available */
/* this inode is the source of a

rename operation */
/* An acl exists for this inode */

/* inode locked for synchronization
/* synchronous I/O required */
/* inode mounted remotely */
/* a process waiting on ISYNCLOCKED
/* root inode of remotely mounted d
/* incore buffers presumed valid */
/* incore exec pages presumed valid
/* inode is currently being opened

/* fragment was allocated, must ref

/* hardened inode */
/* for iflush */

317
318
319
320
321
322
323

#if defined{~hp9000s800) && !defined{_WSIO)
#define IF_MI_DEV Ox08000000
#else /* ~hp9000s800 */
#define IF_MI_DEV OxOOOOOOOO
#endif /* ~~p9000s800 */
#define IFRAGSYNC OxlOOOOOOO

324 /* modes */
325 #define IFMT
326 #define IFIFO
327 #define IFCHR
328 #define IFDIR
329 #define IFBLK
330 #define IFCONT
331 #define IFREG
332 #define IFNWK
333 #define IFLNK
334 #define IFSOCK
335
336 #define ISUID

0170000
0010000
0020000
0040000
0060000
0070000
0100000
0110000.
0120000
0140000

04000

/* dev_t has mgr_index already */

/* s200 doesn't have mgr_index */

/* need synch. frag_fit{) */

/* type of file */
/* fife */
/* character special */
/* directory */
/* block special */
/* continuation inode */
/* regular */
/* network special */
/* symbolic link */
/* socket */

/* set user id on execution */

32

Nov 04 10:47 1992 edited 9.0 inode.h Page 7

#define ISGID
#define IENFMT
#define ISV'I'X
#define I READ
#define I WRITE
#define I EXEC

#define IFIR
#define IFIW
#define PIPSIZ
#define FSEL_COLL

351 #define DUX_ILOCK(ip)
352
353 #define NFS_ILOCK(ip)

#if def QFS
#define QFS_ILOCK(ip)
#define QFS_IUNLOCK(ip)
#else /* not QFS */
#define QFS_ILOCK(ip)
#define QFS_IUNLOCK(ip)
#endif /* not QFS */

#define ILOCK(ip) { \

02000
02000
01000
0400
0200
0100

01
02
8192
01

(ip)->i_ilocksite = u.u_site

(ip)->i_pid = u.u_procp->p_pid

record lock((int) ip)
remove=lock((int) ip)

354
355
356
357
358
359
360
361
362
363
364
365
366
367

QFS ILOCK(ip); \
while ((ip)->i_flag & ILOCKED) { \

(ip)->i_flag I= IWANT; \
sleep((caddr_t) (ip), PINOD); \

368 } \
369 (ip)->i_flag I= !LOCKED; \
370 DUX_ILOCK(ip); \
371 NFS_ILOCK(ip); \
372 }
373
374 #define IUNLOCK(ip) { \
375 (ip)->i_flag &=-!LOCKED; \
376 QFS_IUNLOCK(ip); \
377 if ((ip)->i_flag&IWANT) { \
378 (ip)->i_flag &= -IWANT; \
379 wakeup((~addr_t) (ip)); \
380 } \
381
382
383 #ifdef _KERNEL
384 /*
385 * Convert between inode pointers and vnode pointers
386 */
387 #define VTOI(VP) ((struct inode *) (VP)->v_data)
388 #define ITOV(IP) ((struct vnode *)&(IP)->i_vnode)
389
390 /*
391 * Convert between vnode types and inode formats
392 */

33

0

0

0

Nov 04 10:47 1992 edited 9.0 inode.h Page 8

393 extern enum vtype
394 extern int

iftovt_tab [];
vttoif_tab[];

395 #define IFTOVT(M}
396 #define VTTOIF(T}
397

((((M}&IFMT) == IFNWK}?VFNWK: ((((M}&IFMT} -- IFIFO)
(vttoif_tab [(int) {T)])

398 #define MAKEIMODE(T, M) {VTTOIF(T) I {M))
399
400 #define ES.AME (-1}
401 #ifdef __ hp9000s300
402 #define EREMOVE (-2)
403
404
405 #endif /* __ hp9000s300 */
406 #ifdef __ hp9000s800
407 #define EREMOVE {-2)
408
409
410 #endif /* __ hp9000s800 */
411 #define ERENAME {-3)
412
413 #define EPATHCONF_NONAME {-4)
414
415
416
417
418 /*

/* trying to rename linked files (special)

/* "source" file of link removed in the
middle of operation {happens only
originate from client)*/

/* "source" file of link removed in the
middle of operation (happens only
originate from client)*/

/* the inode being rename'd is in the path
of another rename operation*/

/* The posix standard says that if a user
requests an unknown name, it should not
change errorno but should return an erro
This indicates that is the case. */

419 * Check that file is owned by current user or user is su.
420 */
421 /*We can't do a straight comparision of {CR)->cr_uid against (IP)->i_uid.
422 * We also need to check the case where we are NFS, and network root (-2)
423 * and the inode is owned by "nobody" because i_uid is an ushort and -2 is
424 * stored as 65534.
425 */
426 /* name conflict with DIL */
427 #define OWNER_CR(CR, IP) \
428 (((CR}->cr_uid == (IP)->i_uid)? 0: \
429 ((((CR}->cr_uid == -2) && ((IP)->i_uid -- (ushort}-2)}? 0: \
430 (suser(}? 0: u.u_error))}
431
432 /*
433 * enums
434 */
435 enum de_op
436

{ DE_CREATE, DE_LINK, DE_RENAME } ;

437 #endif /* _KERNEL */
438 /*

/* direnter ops */

439 * This overlays the fid structure (see vfs.h). Used mainly in support
440 * of NFS 3.2 file handles, the fid structure should contain the minimum
441 * information necessary to uniquely identify a file, GIVEN a pointer to
442 * the file system.
443 */
444 struct uf id {
445
446
447
448 };

u_short uf id_len;
ino_t ufid_ino;
long uf id_gen;

0

-..

0

May 12 12:16 1993 edited 9.0 vnode.h Page 1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
3S
36
37
38
39
40
41
42
43
44
4S
46
47
48
49
so
51
S2
53
S4
SS
S6

/*
* The vnode is the focus of all file activity in UNIX.
* There is a unique vnode allocated for each active file,
* each current directory, each mounted-on file, text file, and the root.
*/

/*
* vnode types. VNON means no type.
*/

enum vtype
enum vf stype

{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VB.AD, VFIFO, VFNW
{ VDUMMY, VNFS, VUFS, VDOX, VDOX_PV, VDEV_VN, VNFS_SPEC,

VNFS_BDEV, VNFS_FIFO, VCDFS, VDOX_CDFS, VDUX_CDFS_PV }

struct vnode {
u_short v_flag; /* vnode flags (see below)*/
u_short v_shlockc; /* count of shared locks */
u_short v_exlockc; /* count of exclusive locks */
u_short v_tcount; /* private data for fs */
int v_count; /* reference count */
struct vf s *v_vfsmountedhere; /* ptr to vf s mounted here */
struct vnodeops *v_op; /* vnode operations */
struct socket *v socket·

- I
/* unix ipc */

struct vf s *v_vfsp; /* ptr to vf s we are in */
enum vtype v_type; /* vnode type */
dev_t v_rdev; /* device (VCHR, VBLK) */
caddr_t v_data; /* private data for fs */
enum vf stype v_fstype; /* file system type*/
struct vas *v vas·

- I
/* vm data structures */

vm_sema_t v_lock; /* vnode lock */
struct buf *v_ord_lastdatalink; /* for ordered writes */
struct buf *v_ord_lastmetalink; /* for ordered writes */
struct buf *v_cleanblkhd; /* clean buffer head */
struct buf *v_dirtyblkhd; /* dirty buffer head */

} ;

/*
* vnode flags.
*/

#define VROOT OxOl /* root of its file system */
#define VT EXT Ox02 /* vnode is a pure text prototype */
#define VEXLOCK OxlO /* exclusive lock */
#define VSHLOCK Ox20 /* shared lock */
#define VLWAIT Ox40 /* proc is waiting on shared or excl. lock */
#define VMMF OxlOO /* Vnode memory mapped */

/*
* Operations on vnodes.
*/

struct vnodeops {
int (*vn_open) (_farg) ;
int (*vn_close) { ___ farg);
int (*vn_rdwr) (_farg) ;
int (*vn_ioctl) (_farg) ;

0

0

0

May 12 12:16 1993 edited 9.0 vnode.h Page 2

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94 };
95
96

int (*vn_select) (__ farg);
int (*vn_getattr) (__ farg};
int (*vn_setattr} (__ farg);
int (*vn_access} (__ farg};
int (*vn_lookup) (__ farg);
int (*vn_create) (__ farg);
int (*vn_remove) (__ farg);
int (*vn_link) (__ farg) ;
int (*vn_rename) (__ farg);
int (*vn_mkdir) (__ farg) ;
int (*vn_rmdir) (__ farg) ;
int (*vn_readdir} (__ farg) ;
int (*vn_symlink) (__ farg);
int (*vn_readlink) (__ farg) ;
int (*vn_fsync) (__ farg) ;
int (*vn_inactive) (__ farg);
int (*vn_bmap} (__ farg) ;
int (*vn_strategy) (__ farg) ;
int (*vn_bread) (__ farg) ;
int (*vn_brelse) (__ farg);
int (*vn_pathsend) (__ farg) ;
int (*vn_setacl) (__ farg);
int (*vn_getacl) (__ farg);
int (*vn_pathconf) (__ farg) ;
int (*vn_fpathconf) (__ farg) ;
/*
*Add VOPs for support NFS 3.2 file locking. See below for more info
*/

int (*vn_lockctl) (__ farg);
int (*vn_lockf) (__ farg) ;
int (*vn_fid) (__ farg);
int (*vn_fsctl) (__ farg) ;
int (*vn_prefill) (__ farg);
int (*vn_pagein) (__ farg) ;
int (*vn_pageout) (__ farg);
int (*vn_dbddup) { __ farg) ;
int {*vn_dbddealloc) { __ farg) ;

97 #ifdef _KERNEL
98
99 #define VOP_OPEN(VPP,F,C) (*(*{VPP))->v_op->vn_open) {VPP, F, C)

100 #define VOP_CLOSE(VP,F,C) (*(VP)->v_op->vn_close) (VP,F,C)
101 #define VOP_RDWR(VP,UIOP,RW,F,C) (*{VP)->v_op->vn_rdwr) (VP,UIOP,RW,F,C)
102 #define VOP_IOCTL(VP,C,D,F,CR) (*(VP)->v_op->vn_ioctl) (VP,C,D,F,CR)
103 #define VOP_SELECT(VP,W,C) (*(VP)->v_op->vn_select) (VP,W,C)
104 /*An additional parameter specifying synchronization has been added to getattr
105 #define VOP_GETATTR(VP,VA,C,S) (*(VP)->v_op->vn_getattr) (VP,VA,C,S)
106 #define VOP_SETATTR(VP,VA,C,N) (*(VP)->v_6p->vn_setattr) (VP,VA,C,N)
107 #define VOP_ACCESS(VP,M,C) (*(VP)->v_op->vn_access) (VP,M,C)
108 #define VOP_LOOKUP(VP,NM,VPP,C,MVP) (*(VP)->v_op->vn_lookup) (VP,NM
109 #define VOP_CREATE(VP,NM,VA,E,M,VPP,C) (*(VP)->v_op->vn_create) \
110 (VP,NM,VA,E,M,VPP,C)
111 #define VOP_REMOVE(VP,NM,C) (*(VP)->v_op->vn_remove) (VP,NM,C)
112 #define VOP_LINK(VP,TDVP,TNM,C) (*(VP)->v_op->vn_link) (VP,TDVP,TNM,C)

r 0

0

0

May 12 12:16 1993 edited 9.0 vnode.h Page 3

113 #define VOP_RENAME(VP,NM,TDVP,TNM,C) (*(VP)->v_op->vn_rename) \
114 (VP,NM,TDVP,TNM,C)
115 #define VOP_MKDIR(VP,NM,VA,VPP,C) (*(VP)->v_op->vn_mkdir) (VP,NM,VA,VPP,C
116 #define VOP_RMDIR(VP,NM,C) (*(VP)->v_op->vn_rmdir) (VP,NM,C)
117 #define VOP_READDIR(VP,UIOP,C) (*(VP)->v_op->vn_readdir) (VP,UIOP,C)
118 #define VOP_SYMLINK(VP,LNM,VA,TNM,C) (*(VP)->v_op->vn_symlink) \
119 (VP,LNM,VA,TNM,C)
120 #define VOP_READLINK(VP,UIOP,C) (*(VP)->v_op->vn_readlink) (VP,UIOP,C)
121 #define VOP_FSYNC(VP,C, S} (*(VP)->v_op->vn_fsync) (VP,C,
122 #define VOP_INACTIVE(VP,C) (*(VP)->v_op->vn_inactive} (VP,C}
123 #define VOP_BMAP(VP,BN,VPP,BNP) (*(VP}->v_op->vn_bmap} (VP,BN,VPP,BNP)
124 #define VOP_STRATEGY(BP) (*(BP}->b_vp->v_op->vn_strategy} (BP}
125 #define VOP_BREAD(VP,BN,BPP} (*(VP}->v_op->vn_bread) (VP,BN,BPP}
126 #define VOP_BRELSE(VP,BP} (*(VP}->v_op->vn_brelse} (VP,BP}
127 #define VOP_PATHSEND(VPP,PNP,FOLLOW,NLINKP,DIRVPP,COMPVPP,OPCODE,DEPENDENT} \
128 ((*(*(VPP}}->v_op->vn_pathsend} ? \
129 (*(*(VPP}}->v_op->vn_pathsend} \
130 (VPP,PNP,FOLLOW,NLINKP,DIRVPP,COMPVPP,OPCODE,DEPENDENT} : \
131 (panic ("VOP_PATHSEND"), EINVAL}}
132 #define VOP_SETACL(VP,NT,BP} (*(VP}->v_op->vn_setacl} (VP,NT,BP}
133 #define VOP_GETACL(VP,NT,BP} (*(VP)->v_op->vn_getacl) (VP,NT,BP}
134 #define VOP_PATHCONF(VP,NT,BP,CR) (*(VP)->v_op->vn_pathconf) (VP,NT,BP,CR
135 #define VOP_FPATHCONF(VP,NT,BP,CR) (*(VP}->v_op->vn_fpathconf) (VP,NT,BP,C
136
137 /*
138 * VOPs for NFS 3.2 file locking. Ours are different because we support
139 * local file locking already in the kernel. VOP_LOCKCTL(} is called from
140 * fcntl() to process a lock request. We have an extra parameters because
141 * the lower level routines will need the file structure for the file
142 * being locked. The Lower Bound and Upper Bound are passed in because the
143 * higher level routine already computed them for error checking. This means
144 * that ALL functions calling these routines MUST include reasonable values
145 * for LB and UB. Also, Sun does not have a VOP_LOCKF(} because they
146 *emulate lockf(} as a library on top of fcntl(}, instead of two separate
147 * system calls like ours.
148 */
149 #define VOP_LOCKCTL(VP,LD,CMD,C,FP,LB,UB} (*(VP)->v_op->vn_lockctl} \
150 (VP,LD,CMD,C,FP,LB,UB}
151 #define VOP_LOCKF(VP,CMD,SIZE,C,FP,LB,UB) (*(VP}->v_op->vn_lockf) \
152 (VP,CMD,SIZE,C,FP,LB,UB}
153 /*
154 * Support for NFS 3.2 file handles. Given a vnode pointer, generate
155 * a "file id" which can be used to recreate the vnode later on.
156 */
157 #define VOP_FID(VP, FIDPP) (*(VP)->v_op->vn_fid) {VP, FIDPP)
158 #define VOP_FSCTL{VP, COMMAND, UIOP, CRED} (*(VP)->v_op->vn_fsctl) \
159 {VP, COMMAND, UIOP, CRED)
160 #define VOP_PREFILL(VP,PRP) (*{VP)->v_op->vn_prefill) (PRP)
161 #define VOP_DBDDUP(VP,DBD) (*(VP)->v_op->vn_dbddup) (VP, DBD)
162 #define VOP_DBDDEALLOC(VP,DBD) \
163 (((VP)->v_op->vn_dbddealloc)?{*(VP)->v_op->vn_dbddealloc) (VP,DBD) :1)
164 #define VOP_PAGEOUT(VP,PRP,START,END,FLAGS) \
165 (*(VP)->v_op->vn_pageout) (PRP,START,END,FLAGS)
166
167 #define VOP_PAGEIN(VP,PRP,WRT,SPACE,VADDR,START) \
168 {*{VP)->v_op->vn_pagein) {PRP,WRT,SPACE,VADDR,START)

57

0

0

0

May 12 12:16 1993 edited 9.0 vnode.h Page 4

169
170 /*
171 * flags for above
172 */
173 #define IO_UNIT
174 #define IO_APPEND
175 #define IO_SYNC

OxOl
Ox02
Ox04

/* do io as atomic unit for VOP_RDWR *
/* append write for VOP RDWR */
/* sync io for VOP_RDWR-*/

176
177 #endif /* _KERNEL */
178
179 /*
180 * Vnode attributes. A field value of -1
181 * represents a field whose value is unavailable
182 * (getattr) or which is not to be changed (setattr) .
183 */
184 /*DUX MESSAGE STRUCTURE*/
185 struct vattr {
186 enum vtype va_type; /* vnode type (for create) */
187 u_short va_mode; /* files .access mode and type */
188 u_short va_uid; /* owner user id */
189 u_short va_gid; /* owner group id */
190 /*moved va_nlink for alignment*/
191 short va_nlink; /* number of references to file */
192 long va_fsid; /* file system id (dev for now) */
193 long va_nodeid; /* node id */
194 u_long va_size; /* file size in bytes (quad?) */
195 long _ va_blocksize; /* blocksize preferred for i/o */
196 struct timeval va_atime; /* time of last access */
197 struct timeval va_mtime; /* time of last modification */
198 struct timeval va_ctime; /*time file ''created*/
199 dev_t va_rdev; /* device the file represents */
200 long va_blocks; /* kbytes of disk space held by file *
201 site_t va_rsite; /* site the device file represents */
202 site_t va_fssite; /* file system site (dev site) */
203 dev_t va_realdev; /* The real devcie number of device
204 containing the inode for this file
205 u_short va_basemode; /* the base mode bits unaltered */
206 u_short va_acl:l, /* set if optional ACL entries */
207 va_fstype:3,
208 : 12 i
209 };
210
211 /*
212 * Modes. Some values same as Ixxx entries from inode.h for now
213
214
215
216
217
218
219

*/
#define
#define
#define
#define
#define
#define

VSUID 04000
VSGID 02000
VSVTX 01000
VREAD 0400
VWR I TE 0200
VEXEC 0100

/* set user id on execution */
/* set group id on execution */
/* save swapped text even after use
/* read, write, execute permissions

*/
*/

J. Wakerly
26 February 1982

O The following description has appeared in a number of informal publications
)f computer users, and has been variously attributed to Jeff Berryman, Bruce

· VanAtta, and probably others as well. I'm not sure who the original author
is, but read, understand, and enjoy.

The Paging Game -- Rules

1. Each player gets several million things.

2. Things are kept in crates that hold 4096 things each. Things in the
same crate are called crate-mates.

3. Crates are stored either in the workshop or the warehouse. The workshop
is almost always too small to hold all the crates.

4. There is only one workshop but there may be several warehouses.
Everyone shares them.

5. Each thing has its own thing number.

6. What you do with a thing is to zark it. Everyone takes turns zarking.

7. You can only zark your things, not anyone else's.

8. Things can only be zarked when they are in the workshop.

09. Only the Thing King knows whether a thing is in the workshop or in a
warehouse.

10.

11.

12.

13.

0

The longer a thing goes without being zarked, the grubbier it is said
to become.

The way you get things is to ask the Thing ~ing. He only gives out
things in multiples of eight. This is to keep the royal overhead down.

The way you zark a thing is to give its thing number. If you give the
number of a thing that happens to be in a workshop it gets zarked
right away. If it is in a warehouse, the Thing King packs the crate
containing your thing back into the workshop. If there is no room in
the workshop, he first finds the grubbiest crate in the workshop,
whether it be yours or somebody else's, and packs it off with all its
crate-mates to a warehouse. In its place he puts the crate containing
your thing. Your thing then gets zarked and you never know that it
wasn't in the workshop all along.

Each player's stock of things have the same numbers as everybody
else's. The Thing King always knows who owns what thing and whose
turn it. is, so you can't ever accidentally zark somebody else's thing
even if it has the same thing number as one of yours.

1.

0
2.

3.

4.

5.

6.

0
7.

0

Notes

Traditionally, the Thing King sits at a large, -segmented table and is
attended to by pages (the so-called "table pages") whose job it is to
help the king remember where all the things are and who they belong to.

Rules 9 and 12 free players to concentrate on zarking their things,
letting the King do the worrying about where the ·things are located.

-One consequence of Rule 13 is that everybody's thing numbers will be
similar from game to game, regardless of the number of players.

The Thing King has a few things of his own, some of which move back and
forth between workshop and warehouse just like anybody else's, but some
of which are just too heavy to move out of the workshop.

With the given set of rules, oft-zarked things tend to get kept mostly
in the workshop, while little-zarked things stay mostly in a warehouse.
This is efficient stock control.

Sometimes even warehouses get full. The Thing King then has to
start piling things on the dump out back. This makes the game slower
because it takes a long time to get things off of the dump when they
are needed in the workshop. A forthcoming change in the rules will
allow the Thing King to select the grubbiest things in the warehouses
and send them to the dump in his spare time, thus keeping the
warehouses from getting too full. This means that the most
infrequently-zarked things will end up in the dump so the Thing King
won't have to get things from the dump so often. This should speed up
the game ·when there are a lot of players and the warehouses are
gett.ing full.

Every player is a winner in the paging game despite the apparent
autocratic nature of the King.

LONG LIVE THE THING KING!

3

Virtual Memory

Why?

How?

0

0

SE 390: Series 300 HP-UX Internals

Memory Management

- allow for (fairly) efficient stretching of memory

- allow all programs to think they are running by themselves
by providing virtual address space for each process

- There will always be swap space reserved for a process'
memory; it may or may not have enough physical RAM for
all it is doing.

- Pageout daemon kicks out pages if we're running short and
they aren't being referenced often enough; swapper kicks
out whole processes if we're *really* getting short.

- Virtual address translation

- 68K

- PA

- 32 bit address

10 bits tell which segment table entry

- 10 more tell which page table entry (pte)

- 12 bits for offset into 4k page

- pte has 20 bit physical address (of 4k page) and
has 12 bits left over for protection information,
flags, etc.

- 68040 requires 3-level tables, but the idea is
the same.

- system shares *large* virtual address space;
each process gets 4 lGB chunks of it;

- when there is a TLB miss, the system will use
the PDIR (reverse page table) to resolve the
address

0

0

0

SE 390: Series 300 HP-UX Internals

Memory Management

Foundation Principles

- Lots of things will be shared; the VM system should
encourage this by making it efficient:

- copy-on-write - allows for efficient fork(), etc

- shared libraries; allow sharing of text at granularity
of library rather than a.out

- A process address space is nothing more than a bunch of
collections of pages {abstracted as pregions/regions) .

- Machine independence:

- the bulk of the VM system is shared between 300/400
and 700/800 - the Hardware-Independent Layer {"HIL").

- the parts specific to one or the other are well
compartmentalized and there are clean interfaces
to this code - the Hardware-Dependent Layer {"HDL").

- The bulk of the system should deal in pages, but shouldn't
know much about them - all the HIL knows is that pages are
NBPG bytes in size and it can get at them via pfdat[].

0
Regions

0
Pregions

0

SE 390: Series 300 HP-UX Internals

Memory Management

- Regions are the building blocks for the whole VM system.

- A region is a logically contiguous set of pa_ges that are
used for *one* thing such as stack, text, shared lib, etc.

- Regions contain (among other things)

- the type of this region (unused, private, or shared)

- the number of pages in this region

- the number of physical pages in this region

- "disk block descriptors" - tell where the data can be
paged/swapped to; one for each page in the region

- a vnode * that tells which device/filesystem the data
in this region came/comes from

" " goes to

(The vnodes tell *which* device/filesystem; the DBDs

,z;::X:~*UokJhf~e:;tfJ~s;Jj~ ~ ~~ ~.
- A pregion can be thought of as a connection between a region

and a process.

- Note that in the region data structure there is no place for
things like the virtual address at which the region is mapped;
this is because regions are system-wide structures, and that
sort of information is per-process. To connect regions to
processes, we use structures called pregions. Some of the
more important fields in a pregion:

- pointers to the pregions on either side

- a pointer back to the vas

- the type of this pregion (text, data, stack, mapped file,
I/O, shared memory, etc)

- the virtual address (in the process' address space) this
pregion is mapped to

- a count of the number of pages this pregion is mapping

- a pointer to the region

0

0

0

SE 390: Series 300 HP-UX Internals

Memory Management

Per-process VM Structures

A process' memorY. map is represented by something called a
"vas" (virtual address space), which is little more than a
doubly-linked list of pregions. A typical process will have
4 "normal" pregions as well as some extra ones

pregion 9 - u area system 4GB
overhead -

pregion 8 - stack user stack
----------- <- - top of stack

~~
--->

pregions 3-7 --->
shared libs --->

(mapped files) --->
--->

/\
II ----------- <-- top of data segment

user
bss/data

pregion 2 - data
text

pregion 1 - text 0

We said above that a process' address space was represented by a "vas".
For any process, there is a pointer in its "proc structure" that points
to its vas. The vas has several things in it, most notably

- a pair of pointers to a doubly linked list of pregions,
sorted by where they are in the process' address space

- a pointer to hardware-dependent structures (such as the
segment/page tables for 680x0)

Note the hierarchy: each process has its own vas, which gets us
to the pregions, which point at (system-wide) region structures.
All of this is for the kernel; the MMU still uses segment and page
tables to do (virtual ---> physical) translation.

7

0

0

0

When To Do What

SE 390: Series 300 HP-UX Internals

Memory Management

Available Memory

+---~-----------------------------------+

If the amount of free physical
memory stays up here, life is
wonderful. If it falls

down
here,
though,
we're in
trouble ...

min(512K, 25% of user memory)
lotsfree +---------------------------------------+

desf ree

minf ree

pageout daemon runs below here
scans pages and may page
a few out

min(200K, 12.5% of user memory)
+- -------- ----- -- --- -- _,,;, _ ------- ------ --+

swapper will run below here, and
vhand will try harder

L(1>1'/"
min(64K, desfree/2)

+------------~--------------------------+
swapper will force active processes
out below here

+---------------------------------------+

Note: these numbers may change from release to release; the
general idea is likely to be around for a while.

SE 390: Series 300 HP-UX Internals

Memory Management

The Paging Game

- A (somewhat) graceful way of stretching the amount of
available memory.

- Implemented with a clock algorithm:

- "age hand" goes around at a calculated rate, marking
pages by clearing their reference bits

- if the process accesses the page, the reference bit will
be set again

if the "steal hand" comes around and the reference bit is
still clear, the page is likely to get kicked out

- if the process accesses a page that has been "kicked
out" but hasn't been given to someone else yet, a "soft"
page fault occurs and the page can be reclaimed

- the "hands" only look at active pregions; this way no
time is wasted looking at physical pages that can't be
paged out (i.e. a driver grabs some memory; that memory
can't be paged, so there's no reason for the kernel to
look at it)

- in 8.0 there is a severe problem with this scheme, because
if we kick out 20 pages in a row, they probably all
came from 1-2 pregions, and those were probably from
1-2 processes ~- (*** this is fixed in 9.0 ***

- Speed of hands is calculated to keep overhead <= 10% of CPU time.

- Pageout daemon is process 2; doesn't run at all if more than
"lotsfree" memory available.

The pager views memory as if it was around the face of a clock.
For our purposes, we'll unroll the clock and look at it as a
straight line (numbers above each pregion indicate its size) :

50
X text

140
X data

30
X stack

40
mwm text

95
mwm data ...

In 9.0 the pager will look through 1/16 of each pregion's pages
at a time, so it will go around the whole "clock" 16 times to
visit all of the eligible memory.

q

0

0

0

SE 390: Series 300 HP-UX Internals

Memory Management

The Pageout Daemon ("vhand"; process 2)

loop: -..
pages_to_scan = ma:xmem/scanrate/tune.t_vhandr

if we have plenty of RAM

else
pages_to_free = O

pages_to_free = desfree - freemem

if pages to free > O
do -

#1

#2

look for pageable pregion; if found #3
get _pageout routine from appropriate

filesystem to steal the pages; normally
this will be the "devswap" filesystem

while we haven't yet stolen pages_to_free pages

while pages_to_scan > O

find an "ageable" pregion (one that's not locked right now)

clear ref bits for its pages, starting where we left off
last time and dropping pages_to_scan appropriately

goto loop

Notes

1. "ma:xmem" is basically the number of pages the kernel didn't take
at boot time; "scanrate" is the number of seconds it should take
to go around the clock, assuming that vhand shouldn't take too
much of the system's time and that it should run faster/slower
depending on how much memory is currently free; "tune.t_vhandr"
tells how many times per second to run vhand - it is part of a
larger structure that controls the pager's operations

2. The fact that the pager is running means the system is short of
memory; how short it is will govern whether we actually steal
pages or not

3. The pager doesn't want to know about devices, so it hides behind
the vnode layer; when it wants to page out some of a pregion's
pages, it calls the filesystem associated with the region; this
would normally be the pseudo-filesystem "devswap" (which only has
pagein/pageout routines)

In

0
Swapping

0

0

SE 390: Series 300 HP-UX Internals

Memory Management

- A cumbersome way of stretching the amount of available memory.

- Can consume lots of the system's resources.

- Kick out whole process at a time, not just part of it.

- Only happens when we are really worried about the amount of
memory available.

- If the swapper runs much at all, the system is underconfigured.

- The basic plan is to kick out junk; if that fixes the problem,
we're OK. Only as a last resort will an active process get
swapped out.

- Deactivation (new in 9.0)

- move the process to a priority that the scheduler will
ignore (keep it from running, period)

- let the pager steal its pages

- swap out the u area & kernel stack, since the pager
is not allowed to touch those

- motivation is to keep from overloading the system
with swap traffic (pager is much nicer to system than
swapper)

J I

0

0

SE 390: Series 300 HP-UX Internals

Memory Management

I ('

Process 0: The Swapper I(" " ''S ~--

loop:
if ((>= 2 runnable procs) and (very short of RAM))

goto hardswap

walk through proc table, switching on p_stat {

case runnable but swapped out:

}

if this guy is the highest priority we've seen
remember him

case sleeping or stopped:
if this guy is dead in the water

kick him out

if nobody wants in
sleep until we're needed
goto loop

if it's not critical to bring someone in
wait awhile

else
goto loop

try to swap most important process in (usually works)
if it worked, goto loop

hardswap:
walk through proc table {

}

if process isn't swappable or is a zombie
skip it

if (proc. is stopped) or (has slept awhile at int'ible pri)
if it has slept longer than anyone we've seen

remember it ·
else if (don't have sleeper yet) and (it's runnablelasleep)

see how big it is
if it's one of the biggest we've seen

remember it

if we didn't find a long sleeper
pick "oldest" big job (based on nice value and time in-core)

if (found a sleeper) or (desperate and found *someone* to swap)
(someone needs in and someone else has been in for awhile) {

if we're desperate

}

fake like we're still short on memory
try to swap this guy out (will usually succeed)
goto loop

wait awhile and then goto loop

or

11-

0

0

0

SE 390: Series 300 HP-UX Internals

Memory Management

Swap Space Allocation/Management

- Space allocation - per region
\t.

- A page of swap is reserved for each page of the
region (assuming it is a data/stack sort of region) .

- The number of pages of swap available to reserve
is in a kernel global variable called "swapspc cnt";
the maximum is in "swapspc_max". -

- Space won't be allocated until we need it; at that
point, an address (really indices into the
swaptab[]/swapmap[] below) will be put into the DBD
for the page.

- Space allocation - shared objects

- Shared text can be released if no processes are
using it; note that it is not swapped; we just .arrange
to fault it in when it is referenced again.

- Shared memory can be swapped out if no processes are
using it (implying that doing constant
shmat(2)/shmdt(2)s is a bad idea).

- Space allocation - system-wide

- "swaptab" is an array with MAXSWAPCHUNKS entries,
each corresponding to 2 MB (default - parameter is
named "swchunk" and it defaults to 2048 (lk units))
of swap space.

- The major component of a swaptab[] entry is an array
called "swapmap" - it has an entry in it for each page
of space in this chunk.

- "swdevt" is an array, one element per disk that has
swap space on it. It is in /etc/conf/conf .c.

- If the swap space is spread over >1 disk, the
space is taken from equal-priority disks in a
round-robin fashion. Device swap is regarded as
a higher priority than filesystem swap, for a
given priority (e.g. device swap at priority 5 will
get used before fs swap at priority 5 which will get
used before device swap at 6)

- Filesystem swap is normally allocated from the
filesystem when it is needed and returned when not;
exception if system manager specifies a minimum
amount to take (and keep) .

- Note that we never guarantee contiguous chunks, but
will certainly accept them :-)

0

0

0

SE 390: Series 300 HP-UX Internals

Memory Management

Swap Space Allocation/Management

swap tab swdevt

+---------------+\
I 2 MB I \
----------------- ==>

2 MB I I

+---------------+
+------------+ -----1 I
I 7959; 4 MB I <--/ +---------------+
+------------+ 1----1 I

-----------------' +---------------+
I\

----------------- \
I ==>

----------------- I
I I I

1-1 . I
+---------------+ +------------+

I 7945; 6 MB I <--/
+------------+

-----------------' +------------+
==> I 7937; 2 MB I <-----/ f swdevt

+---------------+ +------------+ +---------------+
I I\
+---------------+ \
I I ==>
+---------------+ I

. I- - - I I
+------------+ I +---------------+
I 7958; fs I <---/
+------------+

I I I
+---------------+/

swdev_pri fswdev_pri

+---------------+ +---------------+
I 7937; pri 0 I ---> I 7959; pri 0 I
+---------------+ +~--------------+

+---------------+
I 7958; pri o I
+---------------+

+---------------+
I 7945; pr~ 1 I
+---------------+

swaptab each swaptab entry points at a swapmap[J,
which is an array of structures,

j------;-~-----j ---> {}l{Jt{}c{}r{}f{} {}c~}p{Je{}o{}h{}f {Jw{}

+---------------+
{} = use count and

ptr to next free entry

In a region, each page will have a VFD and a DBD. When a page
has been pushed out to the swap area, the DBD will have an index
into the swaptab[] and an index into that entry's swapmap[].

14

0

0

0

SE 390: Series 300 HP-UX Internals

Memory Management

Important Data Structures

- pfdat - used to keep track of physical memory. There's an entry
in it for each page of non-kernel memory. The structure is
defined in sys/pfdat.h.

- 68K:
- Segment table - one for each process. Each table has

1024 entries, each of which can point at a page table
(or block table, if 3-level tables are being used). The
structure for these tables is in machine/pte.h.

- Page table - 1024 entries, each of which can point to a
4K page of RAM.

- swdevt[] - an array of structures, one element per disk that
has swap on it; the structure contains things like where the
swap starts, how many blocks are there, etc. There is a

· similar structure called "fswdevt" for filesystem swap.

- swaptab[] - an array of structures, one for each 2MB (default)
of swap space. It is sized by the kernel parameter MAXSWAPCHUNKS,
and each entry points at a swapmap[] ...

- swapmap[] - (not related to pre-8.0 swapmap!) - an array that
hangs off of a swaptab[] entry; there is an entry in a swapmap[]
for each page of swap space in the (by default) 2MB chunk. The
entries consist of a use count and a pointer to the next free
entry in the swapmap.

- swdev_pri[] - an array of prioritized pointers to swap disks;
each disk that is at a particular swap priority has an entry
in swdev_pri[that_priority]

- vrometer and vmtotal - see the respective header files for these
structures; they have important summary information that things
like top and monitor display

/0

0

0

SE 390: Series 300 HP-UX Internals

Memory Management

Tunable Parameters

maxdsiz, maxssiz, maxtsiz - maximum sizes of the respective
parts of a process. There is no built-in "cost" for raising
these parameters - they are here as sanity checks.

- minswapchunks - minimum amount of swap for a diskless node. It
is always allocated to the node (this applies to other systems
as well, but is primarily an issue for diskless systems that
get their swap from a server}.

- maxswapchunks - maximum amount of swap space a system is allowed
to allocate; note that this is enforced on the node itself,
not by the diskless server ==> each system has its own value

- nswapdev - no. of entries in swdevt[]; if this number is more
than the number of "swap ... " lines in the dfile, there will
be room for dynamic swapon(lm} commands after boot time.

- swchunk - size of chunk in swaptab [] - defaults to 2048 fb/r/
which means 2MB

- unlockable mem - amount of RAM that can not be locked

Note that other parameters (such as nbuf) can have an e~fect on
the VM system (what if nbuf was 1024 on an SMB system?)

Kernel Variables Of Interest

_max?siz from above; all integers

- segment and page tables - see pte.h

_lotsfree, _desfree, minfree - integers used by pageout daemon

f reemem - integer used by pager to keep track of free memory

swdevt - array defined in conf .c

/{p

0 -. Sununary

0

0

0

SE 390: Series 300 HP-UX Internals

Memory Management

A process' memory map is represented by something called a
"vas" (virtual address space), which is little more than a
doubly-linked list of pregions. A typical process will have
4 "normal" pregions as well as some extra ones

pregion 9 - u area
pregion 8 - stack

--->
pregions 3-7 --->

shared libs --->
(mapped files) --->

--->

pregion 2 - data
pregion 1 - text

overhead
-user stack

4GB

<-- top of stack

this diagram is a 68K view;
though the 700 is different,
the same vas/pregion
structure is used.

----------- <-- top of data segment
user

bss/data

text O -- ---

Virtual-to-physical mapping is handled by the MMU, with the
aid of per-process segment and page tables. The first part
of the address indexes into the segment table, the next
indexes into the page table that the STE pointed at, and the
last piece is a 12-bit index into the page.

- "Regions" are groups of pages that are all of the same type
(e.g. text, stack, etc), and the system is set up to allow easy
sharing of them. If a process is using a particular region, it
will have a "pregion" that points to the region and tells
where in the process address space that region is mapped.

- "Paging" refers to kicking out individual pages {loosely based
on frequency of use) and then faulting them back in if needed;
"swapping" refers to kicking out and bringing in whole processes.
Paging is a much gentler way to stretch the amount of memory.

Swap space is reserved whenever a process starts (via fork/exec
or grows (via malloc (==> sbrk/brk)); it is actually allocated
to a particular page in a region when that page is about to
get swapped/paged. It is mapped via DBDs in the region; these
index into the swaptab[]/swapmap[] structure for the system.

co

0

··.O

1
2 From 9.0 /etc/conf/h/pregion.h:
3
4
5
6
7
8
9

/*
*
*/

Each process has a number of pregions which describe the
regions which are attached to the process.

struct p_lle {
struct pregion *lle_next;
struct pregion *lle_prev;

/* First pregion in list */
/* Last pregion in list */

10 };
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
4S
46
47
48
49
so
Sl
52
S3
54
SS
56
57
58
59
60
61
62
63
64
6S

typedef struct pregion {
struct p_lle p_ll;

#define p_next p_ll.lle_next
#define p_prev p_ll.lle_prev

short p_flags;
short p_type;
reg_t *p_reg;
space_t p_space;
caddr_t p_vaddr;
size_t p_off;
size_t p_count;
short p_prot;

/* Linked list of pregions in vas */

/*
/*
/*
/*
/*
/*

ushort p_ageremain; /*
size_t p_agescan; /*
size_t p_stealscan; /*
struct vas *p_vas; /*
struct pregion *p_forw; /*
struct pregion *p_back;
struct pregion *p_prpnext;
struct pregion *p_prpprev;
size_t p lastfault; /*
size_t p_lastpagein; /*
short p_trend_diff; /*
ushort p trend strength;/*
struct hdlpregion p_hdl;/*

} preg_t;

/* Pregion flags.
*/

#define PF_ALLOC
#define PF_MLOCK
#define PF_EXACT
#define PF_ACTIVE
#define PF_NOPAGE

#define PF_NOMAP

#define PF_PUBLIC

#define PF_DAEMON
#define PF WRITABLE

#define PF_INHERIT
#define PF VTEXT
#define PF_MMFATTACH

OxOOOl
Ox0002
Ox0004
Ox0008
OxOOlO

Ox0020

Ox0040

Ox0080
OxOlOO

Ox0200
Ox0400
Ox0800

Pointer to the region. */
virtual space for region */
virtual offset for region */
offset in region */
number of pages mapped by pregion */
protection ID of region */
remaining number of pages to age */
index of next scan for vhand's age hand *
index of next scan for vhand's steal hand
Pointer to vas we're under */
Active chain of pregions */

/* list of pregions off region */
/* list of pregions off region */
last page faulted by this pregion */
last page-in scheduled for this pregion *
difference between last two page faults *
number of times p_trend_diff was the same
HDL specific info for pregion */

/* Pregion allocated */
/* region is memory locked */
/* map pregion exactly */
/* Pregion on active chain */
/* Pregion locked against paging */
/* either another pregion is */
/* responsible for paging this */
/* region or we don't want it */
/* paged (UAR.EA and NULLDREF) */
/* Translations should not be */
/* resolved through this preg */
/* by HIL code (for priveleged */
/* shared libraries). */
/* May be public (for shared */
/* libraries) */
/* pregion is for kernel daemon */
/* May grant write access to */
/* pages. */
/* Inherit across exec() */
/* vnode was marked as VTEXT */
/* MMF pregion is being attached*/

#define PREGMLOCKED(PRP) (PRP->p_flags & PF_MLOCK)

rO

,,o

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103

/* Pregion types.
*/

#define PT_UNUSED 0 /* Unused pregion. */
#define PT_UAREA 1 /* U area */
#define PT_TEXT 2 /* Text region. */
#define PT_DATA 3 /* Data region. */
#define PT_STACK 4 /* Stack region. */
#define PT_SHMEM 5 /* Shared memory region. */
#define PT_NULLDREF 6 /* Null pointer dereference page */
#define PT_LIBTXT 7 /* shared library text region */
#define PT_LIBDAT 8 /* shared library data region */
#define PT_SIGSTACK 9 /* signal stack */
#define PT_IO 10 /* I/O region */
#define PT_MMAP 11 /* Memory mapped file */
#define PT_GRAFLOCKPG 12 /* Framebuf fer lock page */
#define PT_NTYPES 13 /* Total # pregion types defined */

From 9.0 /etc/conf/h/vas.h

#define VA_ CACHE_ SIZE 1

struct vas {
struct p_lle va_ll; /* Doubly linked list of pregions */

#define va_next va_ll.lle_next
#define va_prev va_ll.lle_prev

preg_t *va_cache[VA_CACHE_SIZE];
int va_refcnt; /* Number of pointers to this vas */
vm_sema_t va_lock; /* Lock structure */
u_int va_rss; /* Cached approx. of shared res. set size */
u_int va_prss; /* Cached approx. of private RSS (in mem) */
u_int va_swprss; /* Cached approx. of private RSS (on swap) */
u_long va_flags; /* various flags */
struct file *va_fp; /* file table entry for MMFs psuedo-vas */
u_long va_wcount; /* count of writable MMFs sharing psuedo-vas *
struct proc *va_proc; /* pointer to process, if there is one */
struct hdlvas va_hdl; /* HW Dependent info for vas */

104 };
105
106 typedef struct vas vas_t; /* this needs to be visible to compile proc.h */
107
108 /*
109
110
111
112
113
114
115
116

* Values for va_flags
*/

#define VA_HOLES
#define .VA_IOMAP
#define VA_NOTEXT

OxOOOOOOOl
Ox00000002
Ox00000004

/* vas may have holes within pregions
/* there may be an iomap pregion in th
/* No text region in vas (EXEC_MAGIC a

;q

cO

0

0

117 From 9.0 /etc/conf/h/region.h:
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

/*
* Per region descriptor. One is allocated for
* every active region in the system. Beware if you add
* data elements here: Dupreg may need to copy them.
*/

typedef struct
ushort
ushort
size_t
size_t
size_t

region {
r_flags;
r_type;
r_pgsz;
r_nvalid;
r_swnvalid;

/* type of region */
/* size in pages */
/* number of valid pages in region */
/* resident set size of swapped region */

} reg_t;

size_t
ushort
size_t
ushort
short

r_swalloc;
r_refcnt;
r_off;
r_incore;
r_mlockcnt;

int r_dbd;
struct vnode *r_fstore;
struct vnode *r_bstore;
struct region *r_forw;
struct region *r_back;
short r_zomb;
struct region

*r_hchain;
union {

struct old_aout {

/* (r_nvalid value when region swapped) */
/* for RF_SWLAZY, # pgs actually allocated *
/* number of users pointing at region */
/* offset into vnode (page aligned) */
/* number of users pointing at region */
/* number of processes that locked this */
/* region in memory. */
/* dbd for vfd's when swapped */
/* pointer to vnode where blocks come from *
/* pointer to vnode where blocks go */
/* links for list of all regions */

/* set by xinval to indicate text bad */
/* hash for region */

u_int r_ubyte; /* byte off in fstore (for old a.out) */
u int r ubytelen; /* byte len in fstore (for old a.out) */

} r_byt; -
struct mmf {

struct ucred *r_ummfcred; /* credentials for MMF */
u_long r_fillerl; /* unused */

} r_mmf;
} r un· - ,
vm_sema_t r_lock;
vm_sema_t r_mlock;
int r_poip;

struct broot
*r_root;

/* region lock */
/* wait for region to be locked in memory */
/* number of page I/Os in progress
*
* NOTE: must hold the region lock and the
* sleep_lock to increment the r_poip
* field (start an I/O) . Must hold
* the sleep_lock to decrement.
*/

/* Root of btree of vfd/dbd's */

unsigned long r_key; /* Each region contains chunk and one key */
chunk_t *r_chunk;
struct region *r_next; /* links for regions sharing pages */
struct region *r_prev;
struct pregion *r_pregs;/* list of pregions pointing to this region
struct hdlregion /* HDL fields in region */

r_hdl;

#define r_byte
#define r_bytelen
#define r_mmf cred

r_un.r_byt.r_ubyte
r_un.r_byt.r_ubytelen
r_un.r_mmf .r_ummfcred;

co

0

180 /*
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

* Region flags
*/

#define RF_NOFREE
#define RF_ALLOC
#define RF_MLOCKING

#define RF_ZOMB
#define RF_UNALIGNED

#define RF_SWLAZY
#define RF_WANTLOCK

#define RF_HASHED
#define RF_EVERSWP
#define RF_NOWSWP
#define RF_DAEMON
#define RF_UNMAP
#define RF_IOMAP

201 /*

OxOOOl
Ox0004
Ox0008

Ox0010
Ox0020

Ox0040
Ox0080

OxOlOO
Ox0200
Ox0400
Ox0800
OxlOOO
Ox2000

/* Don't free region on last detach */
/* region is not on free list */
/* set when locking region in memory */
/* wake up processes waiting on r_mlock */
/* when resetting this flag. */
/* set in xinval when a text turns bad */
/* Region is an unaligned view of vnode */
/* {support old a.out) */
/* Don't allocate all swap space up front */
/* someone else wants to lock this reg, */
/* so wakeup{rp) them. CHANGE FOR MP*/
/* region is hashed {fstore, byte) */
/* set if region has ever been swapped */
/* set if region is now swapped */
/* set if region is for a kernel daemon */
/* MMF region is being unmapped */
/* region is an iomap{7) region */

202 * Logical index from region offset to vnode offset in bytes.
203 */
204 #define vnodindx{RP, PGINDX) {ptob{PGINDX + {RP)->r_off))
205
206 /*
207
208
209
210
211
212
213
214
215

* Region types
*/

#define RT_UNUSED
#define RT_PRIVATE
#define RT_SHARED

0
1
2

/* Region not being used. */
/* Private (non~shared) region. */
/* Shared region */

(-o
\,~. ' ',,

0

216 From 9.0 /etc/conf/h/conf.h:
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

/*
* Swap device information
*/

typedef struct swdevt
{

dev_t
int
int
int
int
int
int
int
struct

sw_dev;
sw_enable;
sw_start;
sw_nblks;
sw_nfpgs;
sw_priority;
sw_head;
sw_tail;

swdevt *sw_next;
232 } swdev_t;
233
234
235 From 9.0 /etc/conf/h/swap.h:

int fs_swap_debug;

/* swap device */
/* enabled */
/!._offset for 300/700 */
/* number of blocks */
/* # of free pages */
/* priority of device */
/* first swaptab[] entry*/
/* last swaptab[] entry */
/* next swap device */

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
2_71
272
273
274
275
276
277
278

/* The following structure contains the data describing a
* swap file.
*/

typedef struct swapmap {
us ho rt
short

} swpm_t;

sm_ucnt;
sm_next;

/* number of users on this page */
/* index of free swapmap[] */

typedef struct swaptab {
short st_free;
short st_next;

int st_flags;
struct swdevt *st_dev;
struct fswdev~ *st_fsp;
struct vnode *st_vnode;

int st_nfpgs;
struct swapmap *st_swpmp;
int st_site;
union {
int st_start;
int st_swptab;
} st_union;

} swpt_t;

typedef struct fswdevt{
struct fswdevt *fsw_next;
int fsw enable;
int fsw_nfpgs;
int f sw_allocated;
uint f sw_min;
uint fsw_limit;
uint fsw_reserve;
int fsw_priority;
struct vnode *fsw_vnode;
short f sw_head;
short fsw_tail;
char fsw_mntpoint[256];

/*index of 1st free swapmap[]*/
/* index of next chunk for */
/* same dev or fs */
/* flags defined below. */
/* swap device. */
/* swap file system. */
/* dev or fs vnode */
/* system chunk */
/* nbr of free pages on device*/
/* ptr to swapmap[] array. */
/* site number (DUX) */

/* starting addr on S300
/* server swaptab[] index

*/
*/

/* next fs w/ same pri */
/* enabled */
/* # free pages */
/* # of blocks allocated*/
/* min # preallocated */
/* max # to allocate */
/* # to reserve */
/* priority */
/* file system vnode */
/* 1st swaptab[] entry */
/* last swaptab[] entry */
/* file system mount pt.*/

279 } fswdev_t;
280

22

co

0

typedef struct devpri{ 281
282
283
284
285
286
287
288
289
290
291

struct swdevt *first;
struct swdevt *curr;

/* first fs for a priority */
/* allocate from this fs first */

} devpri_t;

typedef struct fspri{
struct fswdevt *first; "/* first fs for a priority
struct fswdevt *curr; /* allocate from this f s first

} fspri_t;

292 /*
293 * This is an overlay structure for a regular dbd.
294 * It MOST be the same size as a dbd.
295 */
296 typedef struct swpdbd {
297 uint dbd_type:4,
298 dbd_swptb:l4,
299 dbd_swpmp:l4;
300 } swpdbd_t;

nswapfs;
nswapdev;
swchunk;
maxswapchunks;
swapmem_cnt;
swapspc_cnt;
maxfs_pri;
maxdev_pri;
struct vnode *swapdev_vp;
struct swaptab *swapMAXSWAPTAB;

*/
*/

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

vm_sema_t swap_lock; /* Lock for all swap entries */
vm_lock_t rswap_lock; /* Lock for reserveing swap */
int swapwant; /* Set non-zero if someone is */

#define SWTYPE_DEV
#define SWTYPE_FS
#define SWTYPE_LAN

Oxl
Ox2
Ox4

/* waiting for swap space. */

/* raw disk swap dev */
/* file system swap device */
/* diskless (lan) swap device */

23

co

0

(0

325 From 9.0 /etc/conf/h/vnuneter.h:
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

/*
* Virtual memory related instrumentation
*/

struct vnuneter
{
#define v_first v_swtch

unsigned v_swtch;
unsigned v_trap;
unsigned v_syscall;
unsigned v_intr;
unsigned v_pdma;
unsigned v_pswpin;
unsigned v_pswpout;
unsigned v_pgin;
unsigned v_pgout;
unsigned v_pgpgin;
unsigned v_pgpgout;
unsigned v_intrans;
unsigned v_pgrec;
unsigned v_xsfrec;
unsigned v_xifrec;
unsigned v_exfod;
unsigned v_zfod;
unsigned v_vrfod;
unsigned v_nexfod;
unsigned v_nzfod;
unsigned v_nvrfod;
unsigned v_pgfrec;
unsigned v_faults;
unsigned v_scan;
unsigned v_rev;
unsigned v_seqfree;
unsigned v_dfree;
unsigned v_cwfault;
unsigned f _bread;
unsigned f_breadcache;
unsigned f_breadsize;
unsigned f_breada;
unsigned f_breadacache;
unsigned f_breadasize;
unsigned f_bwrite;
unsigned f_bwritesize;
unsigned f_bdwrite;
unsigned f_bdwritesize;

#ifdef __ hp9000s800
unsigned v_pgtlb;
unsigned v_swpwrt;

#endif /* __ hp9000s800 */
unsigned v_fastpgrec;
unsigned f_clnbkfl;
unsigned f_flsempty;
unsigned f_bufbusy;
unsigned f_delwrite;

#define v_last f_delwrite

} ;

unsigned v_free;
unsigned v_swpin;
unsigned v_swpout;
unsigned v_runq;

/* context switches */
/* calls to trap */
/* calls to syscall() */
/* device interrupts */
/* pseudo-dma interrupts */
/* pages swapped in */
/* pages swapped out */
/* pageins */
/* pageouts */
/* pages paged in */
/* pages paged out */
/* intransit blocking page faults */
/* total page reclaims */
/* found in free list rather than on swapdev
/* found in free list rather than in f ilsys
/* pages filled on demand from executables *
/* pages zero filled on demand */
/* fills of pages mapped by vread() */
/* number of exfod's created */
/* number of zfod's created */
/* number of vrfod's created*/
/* page reclaims from free list */
/* total faults taken */
/* scans in page out daemon */
/* revolutions of the hand */
/* pages taken from sequential programs */
/* pages freed by daemon */
/* Copy on write faults */
/* total bread requests */
/* total bread cache hits */
/* total bread bytes */
/* total read aheads */
/* total read ahead cache hits */
/* total read ahead bytes */
/* total bwrite requests */
/* total bwrite bytes */
/* total bdwrite requests */
/* total bdwrite bytes */

/* tlb flushes */
/* swap writes */

/* fast reclaims in locore */
/* clean block found immediatly on free list
/* free list empty */
/* buffer busy */
/* delayed write buffer written */

/* free memory pages */
/* swapins */
/* swapouts */
/* current length qf run queue */

I!

1
r r/_1(;/. ·

#if def
extern
#endif

KERNEL
struct vmmeter cnt, rate, sum;

24

co

0

0

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

/* systemwide totals computed every five seconds */
struct vmtotal
{

unsigned int t _rq;
unsigned int t dw· - ,
unsigned int t_pw;
unsigned int t sl· - ,
unsigned int t sw· - ,
int t vm· - ,
int t avm· - ,
unsigned int t_rm;
unsigned int t_arm;
int t_vmtxt;
int t_avmtxt;
unsigned int t _rmtxt;
unsigned int t_armtxt;
unsigned int t_free;

} ;
#if def _KERNEL
extern struct vmtotal total;
#endif

414
415
416
417 From 9.0 /etc/conf/h/vmsystm.h:
418
419 /*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

length of the run queue */
jobs in ''disk wait'' (neg priority) */
jobs in page wait */
jobs sleeping in core */
swapped out runnable/short block jobs */
total virtual memory */
active virtual memory */
total real memory in use */
active real memory */
virtual memory used by text */
active virtual memory used by text */
real memory used by text */
active real memory used by text */
free memory pages */

420 *Miscellaneous virtual memory subsystem variables·and structures.
421 */
422
423
424
425
426
427
428
429
430
431
432

#if def KERNEL
extern int
extern int
extern int
extern int
extern int
extern int
extern int
extern int

freemem;
freemem_cnt;
avefree;
avefree30;
deficit;
nscan;
multprog;
desscan;

433
434
435
436
437
438
439

/* writable copies of tunables
extern int maxslp;
extern int lotsfree;
extern int minfree;
extern int desfree;
extern int saferss;

/* remaining blocks of free memory */
/* number of processes waiting on freemem */
/* moving average of remaining free blocks *
/* 30 sec (avefree is 5 sec) moving average
/* estimate of needs of new swapped in procs
/* number of scans in last second */
/* current multipr~granuning degree */
/* desired pages scanned per second */

*/
/* max sleep time before very swappable */
/* max free before clock £reezes */
/* minimum free pages before swapping begins
/* no of pages to try to keep free via daemo
/* no pages not to steal; decays with slptim

440 /* AGEFRACTION of n means we want to age 1/n of a region before going on */
441 /* AGEFRACTION of 16 is the smallest possible since p_ageremain is a short *
442 #define LOGAGEFRACTION 4
443 #define AGEFRACTION (1 << LOGAGEFRACTION)
444 #define AGEFRACTIONMASK (AGEFRACTION - 1)
445 #endif
446

The Big Picture

SE 390: Series 300 HP-me Internals

Diskless

- How does HP-me do without a disk?

The Little Picture(s)

- What a cnode can and can't do

- Context

- Crash Detection

- The server's view

- References

0

0

0

SE 390: Series 300 HP-UX Internals

Diskless

What a Cnode Can And Can't Do

- It can ...

... run programs & deal with I/O, context switching, etc .

... handle its own swapping if a local swap disk is present

... be a fully functional networking node/gateway

- It can't ...

... access its own filesystem - there's no disk!

- 8.0 allows "locally mounted filesystems";
really "locally attached filesystem disks",
since they are part of the cluster's filesystem

AAAAAAAAA

... allocate its own PIDs independently

... swap {assuming no local disk)

- local swap has always been allowed

- in 8.0 one cnode can act as the "swap server"
for other cnodes if f

a) it has a local swap disk and
b) its cnode id is shown as their

swap site in /etc/clusterconf

... automagically keep its clock in synch

... access devices on the server or other nodes {what
is a device file? what would remote device support
imply?)

0

0

0

SE 390: Series 300 HP-UX Internals

Diskless

Context

-. - Set at boot time.

- Provides a general mechanism for matching files with machines
and/or capabilities.

- If a machine has a floating point accelerator in it,
that implies that it needs to "see" a different math
library than a normal machine would need.

- In theory, this sort of thing could be used to allow
for having both UCB and AT&T command sets available, or
providing for a S300 and SSOO to get their respective
executables off of the same disk. This is in fact what
is done in 7.0/8.0 when we have an saoo serving 8300
clients; /bin and many other things become CDFs.

- The key place it is used in the kernel is in pathname lookup.
When the search for "/etc/reboot" finds its·way to the actual
disk, the system will notice if the file is a CDF. If it is,
it will drop down into the directory and start looking for
files that match a context string.

- What are the implications of having "system" files be CDFs?

0

0

0

Fun With CDFs

SE 3002: Surviving as a Workstation SE

Diskless

- they're tricky!

- be sure to use "-hidden" with find{l) if you care about CDFs

- "11 -H" is your friend :-)

- if something isn't a CDF when you first install the system,
it probably shouldn't be, e.g. making /etc a CDF so that
the passwd, group, ... files can be customized on each
client may seem clever at first, but will seem decidedly
un-clever next time you want to boot:-{

- be conscious of different "priorities" of context elements,
i.e. having a CDF element for the server {by its name) and
one for "localroot" too is a bad plan

- cnode-specific device files are often confused with CDFs, but
are something different - basically a cnode-specific device
file is one that can only be used on a particular cnode. By
default, a device file can only be used on the machine it is
created on; specifying additional options to mknod{lm) can
yield a device file that is 1) specific to another cnode;
2) global {usable by the whole cluster)

4·

SE 390: Series 300 HP-UX Internals

<:.)Crash Detection

Diskless

0

0

- When in the course of human events a diskless node goes out
to lunch, it takes cluster resources with it. It is important
that this be detected quickly, since other nodes may be waiting
on files or memory or whatever.

- Whenever a node receives a packet from another node, it keeps
track of this. If it notices that it hasn't received a packet
from a node very recently, it will send a message to that node
asking it to respond. If it does, fine; if not, it is declared
dead and its resources are reclaimed.

- The kernel parameters check_alive_period and retry_alive_period
deal with this. If for some reason it is OK/expected that nodes
will be unable to respond quickly, they may need to be raised,
but in general they should be left alone.

SE 390: Series 300 HP-UX Internals

Diskless

The Server's View

- The server is an ordinary system except that it has a few extra
processes running.

\L'V ... (')o ~
- When a server cluster(lm)'s, it starts up a "Limited CSP". This

CSP is only willing to do certain things; if it is asked to do
something that might take a while, it will put the request on a
queue and let a "General CSP" handle it.

- CSPs run at "important" priorities, i.e. better than normal
user processes, but not real-time.

- When a request comes in from a cnode, it is put on a queue. When
a CSP becomes available, it will grab the request and start
working on it.

- If a request takes too long, the CSP will commit suicide
when it finishes - it will already have been replaced.

- The server is responsible for keeping the clocks synchronized
(otherwise make wouldn't work right), allocating chunks of PIDs
to cnodes (lots of things use PIDs to generate filenames) , and
doing the swap and filesystem serving.

- The server must find out quickly if a node fails, so that
resources can be reclaimed.

- If the server needs to reboot, it must shut down all the clients
first, which is why /etc/reboot ±~ ~~ 2 f~. bM./"'- f J.Nfluh

. ~;DMftJvlfwi:

SE 390: Series 300 HP-UX Internals

System Startup

The Big Picture

- How do we get from a doing-nothing system to a system
running HP-UX?

The Little Pictures

- The boot ROM and secondary loader.

- Configuring the virtual-memory subsystem.

- Preparing for I/O.

- Kicking off the first processes.

- What is the correspondence between things being accomplished
and things being printed on the console's screen?

SE 390: Series 300 HP-UX Internals

System Startup

Boot Rom and Secondary Loader {S300/400)

The first SK block of the disk is a boot block, which
contains a LIF directory..,a.nd the secondary loader. A
copy of this block can be found in /etc/boot.

first SK {not to scale!)
+---+

SYSHPUX secon-
SYSBCKUP dary f ilesystem swap
SYSDEBUG : loader

+---+

- The boot ram reads the LIF directory for each disk present
and allows the user to choose one of the entries {assuming
attended boot) .

- Once an entry has been chosen, the bootrom loads the secondary
loader and starts it running. The secondary loader "knows"
where the bootrom keeps some of its variables, and it goes and
looks to see which of the possible filenames was picked.

{The bootrom uses the top page of physical RAM to store
variables. The kernel also has the top page mapped, and
the name of the kernel we booted is accessible via the kernel
variable "sysname"; the disk is designated by "msus".)

- The bootrom provides some very simple I/O routines, and the
secondary loader uses these to print out the message, "booting
/hp-ux" {assuming the default case) and to read in the kernel.

The secondary ioader has a bare-bones knowledge of the file
system, and is smart enough to go look in /etc/clusterconf and
pick an appropriate kernel out of /hp-ux+ based on that.

- Once the kernel has been read in, the loader jumps to it, passing
it the processor type, the address at which it was loaded, etc.

- The kernel is now on its own

SE 390: Series 300 HP-UX Internals

System Startup

System Boot (S700)

The first SK of the disk is a boot block, which
contains a LIF directory. Doing a "lifls -1" of some
bootable disk will show that there are quite a few
entries in the directory: filesystem, swap, HP-UX,
some stuff for debuggers, etc. Most of this stuff is
in the "boot area", which_ is at the end of a 700's disk.

A typical system disk might be laid out something like this:

+---+
ILIF dirl filesystem I swap I ISL, etc I
+---+

Note that this looks much like a 300/400 disk. The major
difference is that the "secondary loader" for a PA machine is
too big to fit into the 1st SK block of the disk like the 300
would do, so it has been moved to a 2MB area at the end.

- The bootrom will search for possible boot devices and consoles
if it hasn't been told in advance where to boot from. To
interact with it, press and hold ESC shortly after powering on
the machine; this will cause it to enter a menu-driven mode
in which lots of things can be set/changed (things like boot
paths, console/keyboard paths, the LANIC address, etc.

NOTE: typing "secure on" at this point will keep you from
ever being able to change bootpaths, console paths, etc.*

- Once a device has been chosen to boot from, find something
else to do; it will be quite a while before anything happens
on the console. Once the kernel is loaded and initialized,
though,_ the 700 will make up for its initial sluggishness.
It will ID cards (and really look quite a bit like a 300)
as it boots and observers will be hard-pressed to keep up with
what is being displayed.

- Once the kernel is running, the system will go through all of
the normal user-space things like /etc/re, /etc/netlinkrc, etc.

3

SE 390: Series 300 HP-UX Internals

System Startup

Starting Up The Virtual Memory System

- Set up the kernel page table ("Sysmap"} and turn on the MMU.

- Initialize kernel memory mapping. The kernel *must*
know about all physical memory: some is allocated to the
kernel itself, some is allocated to user processes, and
all of it must be kept track of.

- See what swap devices are available. The table is
specified in conf. c; and is called swdevt [] . At
boot time it is scanned, and the disks are checked
to make sure the space is really there, etc. This is
when the system prints

Swap device table: start and size given in 512-byte blocks ...
entry 0: autoconfigured on root device; start=X, size=Y

- Enable the first swap device in swdevt[].

- Fork process 2 to be the pageout daemon.

- Start looking for jobs to swap in/out.

SE 390: Series 300 HP-UX Internals

System Startup

Preparing For I/O.

- Call device driver link routines. Note the * link
routines in /etc/conf/conf .c after you have run config(lm).
At bootup time, the system will walk that whole list, calling
each routine in it. The routine will add an entry for its
driver to a list that will be used when we actually find cards.

- See what cards are installed. When a card is found, walk the
list mentioned above. When a driver claims the card as its
own, it will allocate data structures and do any other startup
initialization (e.g. adding an entry to rupttable on the 68K).

- Look for a console. See the Facilities (Concepts & Tutorials)
manual for the order in which things will be chosen.

- Mount the root f ilesystem. This is done by asking each disk
driver whether it knows about the disk the bootrom says we
booted from (this information is put in the top page of RAM by
the bootrom along with the name ("SYSHPUX", "SYSBCKUP", etc)).
When we find a driver that claims the disk, we can call its
"open" routine and mount the disk.

SE 390: Series 300 HP-UX Internals

System Startup

Starting The First Processes

- Build process O by hand; it will become the swapper.

- Start roundrobin scheduling. This isn't really a process, but
sort of acts like one. What we actually do is arrange for a
routine to be called every <timeslice> cpu ticks.

- Fork process 2 to become the pageout daemon.

- Start CSP if this is a diskless node.

- Fork process 1 to become init. We actually do some stuff to set
this up as a user process so that when /etc/init is exec(2)ed,
it is a normal user process. It is somewhat special, however,
because the kernel sort of looks out for it in a few areas (such
as not letting someone send SIGKILL to it, panic()ing if it
exit(2)s, etc).

In 8.0, the kernel runs /etc/pre_init_rc before starting
/etc/init so that the root filesystem can be checked without
any interference from user processes. Note that pre_init_rc
checks /dev/rroot, which is a character-special file that
represents the root disk (major & minor are both -1). If
/dev/rroot gets destroyed or isn't there for some reason,

mknod /dev/rroot c -1 -1 will fix it.

SE 390: Series 300 HP-UX Internals

System Startup

Internal Actions vs. External Signs (on a 68K system; 700 is similar)

- "booting /hp-ux"

set up kernel page table
get info. from bootrom: processor type, amount of RAM, ...
allocate RAM for buffer cache, cmap, inodes, etc.
clear out memory and decide if we have enough to continue
call device driver link routines
look for ttys, init. console

- "Console is ITE"
"ITE + o ports"
"680x0 processor"
"MC68881 coprocessor"

look for I/O cards

- "xxxxx at select code yy" - for each card found
"real mem = xxxxxxxx"
"mem reserved for dos = xxxxxxx"
"using xxx buffers containing yyyyyy bytes of memory"

twiddle data structures to reflect proc. O
start clock
initialize root device
initialize diskless stuff

- "Local link is xxxxxxxxx" \
"Server link is yyyyyyyy" > diskless systems only ...
"Swap site is nn" I
"Root device major is xx, minor is yyyy [root site is xx]"

initialize buffer cache

- "Swap device table: (start and size ...)" \ these are present
" (line for each entry) " I only if local swap
"Savecore image of xx pages will be saved at block yy in swap area

configure swap devices
mount root f ilesystem
start up CPU roundrobin scheduling
start up paging subsystem
start up limited CSP

8.0: check root filesystem via /etc/pre_init_rc

- "avail mem = xxxxxxxx"
"lockable mem = xxxxxxx"

fork init
become the swapper

<any further (normal) messages will be from init or its children>

Good cs Reference Books

The Design of the UNIX Operating System - Maurice Bach

_Advanced Programming in the UNIX Environment - w. Richard Stevens -·
Modern Operating Systems - Andrew Tanenbaum

Operating Systems: Design and Implementation - Andrew Tanenbaum

Operating Systems Design: The XINU Approach - Douglas Comer

The Design and Implementation of the 4.3BSD UNIX Operating System_
Leffler, McKusick, Karels, and Quarterman

\

Algorithms + Data Struct~res = Programs - Wirth

Algorithms - Sedgewick

Computer Networks - Tanenbaum

UNIX Network Programming_ - W. Richard Stevens

Fundamentals of Interactive Computer Graphics_ - Foley & Van Dam

Internetworking With TCP/IP - comer

Practical UNIX Security_ - Garfinkel & Spafford

Software Tools In Pascal - Kernighan & Plauge-r

The Elements of Programming Style_ - Kernighan & Plauger

The UNIX Programming Environment_ - Kernighan & Pike

UNIX System Administration Handbook - Nemeth, Snyder, & Seebass

A good place to get the above if you can't find them locally ...

Computer Literacy Bookshop
408-730-9955
520 Lawrence Expressway, Sunnyvale, CA 94086

2 blocks south of US 101, next to TOGO's
Open 7 days/week; mail orders, phone orders welcome
America's largest computer bookstore
10,000 professional and PC titles

I

Kernel Debugging Hints

1. Dealing with "hung" processes.

When a process needs something that it can't have (inside the kernel),
it will call a kernel routine named sleep(). One or-the arguments it
is called with is a priority; if this is less than PZERO (see param.h),
this means that the sleep is *not* interruptible. If this is the case,
the sleep() had better be pretty short; if it turns out not to be, we
will wind up with a non-killable hung process. This is not A Good Thing.

How to deal with it? There are several ways. The first is to run
monitor and see what its "single process info" screen will tell you
about the process. The second is to use "ps -1" to get the sleep
channel and priority. If the priority is < PZERO, chances are this is
a driver bug. If we want to keep on investigating, we can feed this
address to adb(l) to find out what's being waited for:

adb /hp-ux /dev/kmem

This will usually work, but there's a catch. Suppose the sleep channel
is Ox12345678. By default, adb(l) is only willing to look at addresses
less than ox1000000 (16 MB). If the sleep address is above this, it will
be necessary to change adb(l)'s mapping, like this:

/m o Oxlf ff ff ff o

This tells adb(l) to use a big piece of the address space, instead of
just a tiny one.

Once the mapping is straightened out, use a command like this:

Ox<sleep_channel>/i

If adb(l) can find a symbol near that address, it will print out
something like this:

Bufferaddr+Ox94:

This tells us that we may be waiting on a buffer. Sometimes this is
helpful, sometimes not; it is worth remembering.

2. Figuring out what went wrong in a system call or library routine.

This shouldn't be in here, but in the interest of fending off questions,
it is :-)

Let's suppose someone writes a new version of cat(l), like this:

'7_

#include <stdio.h>
#include <fcntl.h>

main(argc, argv)
int argc;
char *argv(];
{

}

int fd, n;
char buf(8192];

fd = open(argv(l], O_RDONLY);

while ((n = read(fd, buf, 8192)) > O)
write{!, buf, n);

close(fd);

Suppose that this is invoked on some file, and nothing comes out. Is it
necessarily because there isn't anything in the file? What if ... the mode
of the file didn't allow access?

3. Miscell~neous.

If you are getting absolutely *bizarre* behavior from your system,
consider the possibility that you have a mismatch between different
parts (kernel vs. commands, part of kernel vs. another part, etc).
I once had an SE call in with a *strange* set of symptoms that I
simply couldn't explain. It turned out that he had mixed 5.5 and ·6.0
kernel library archives!

CDFs can cause pretty bizarre behavior if you aren't watching out
for· them.

If a device driver (or some other configurable part of the kernel) is
not configured in, the error one gets back isn't necessarily clear
For instance, if diskless is not configured into the server's kernel
the cluster(lm) command will fail with "no such device or address".
How enlightening :-)

3

Driver Writing Information & Hints

Introduction

This document is taken from the prestudy for SE327, the now-defunct
driver-writing class. If you are looking for a basic introduction to
the concepts, this is worth reading. If you want more detailed information,
order the HP-UX Driver Development Guide (98577-90013 as of August 1991}.

What is a Driver?

Just what is a driver, anyway?

A. A "driver" is one of four distinct personality types, the other three
being "amiable", "expressive", and "analytic".

B. A "driver", along with the "iron", the "wedge", and the "putter",
comprise the equipment needed for a game of gel~. A driver is
designed to deliver maximum force to the ball, and to sink fastest
when thrown into water hazards in disgust. It also can be used to
create larger divots when irons are insufficient for the task.

C. A "dri ve.r" is the person sitting behind the steering apparatus of a
locomotion vehicle. The only known exception to this rule is the
"mother-in-law", which can be seated anywhere within the vehicle and
still drive ~ffectively.

D. A "driver" is a piece of code which enables conununication between the
user and a particular piece of hardware.

The correct answer, of course, is D. The driver bridges the gap between the
user and the target hardware.

User-Land Versus Kernel Drivers

A driver can run as a user process (in "user-land") or as a kernel process. A
driver executing as a user-land process runs at normal user priorities, and is
subject to the same· scheduling rules as any other process. The advantages of
a user-land driver are:

1. There is no kernel re-build or reboot necessary.

2. The driver writer can use adb/cdb for debugging.

3. The driver writer can use familiar user libraries in his/her code.

4. The driver writer has no need of kernel knowledge.

An example of a product which requires user-land drivers is the old VME
expander (98646A) . Drivers for VME cards installed in that product had to run
in user-land.

Some.of the disadvantages of user-land drivers are:

1. They're slow!

2. Interrupts aren't available.

3. DMA isn't available.

The driver writer needs to evaluate his/her application and weigh the
trade-offs between user-land and kernel drivers before deciding which is right
for the task. Often, a simple user-land program will do the job in situations
which don't require great speed, interrupts, or DMA. Some tools available for
writing user-land drivers are:

1. Pseudo-terminals (ptys) - for RS-232/serial devices;

2. Device I/O Library (DIL} - for HP-IB or GPIO devices;

3. Iomap - useful with just about any interface card for which the driver
writer has a register map. Maps a particular chunk of physical memory
into user space.

Since the purpose of the SE327 driver writing class is to fully describe
kernel drivers, only kernel drivers will be discussed from this point on.

Types of Drivers

There are two types of kernel drivers: interface drivers and device drivers.

The interface driver communicates with a particular type of interface card and
doesn't concern itself with the devices connected to that card, if any. For
example, there are interface drivers for the MUX card and the HP-IB card.

A device driver communicates with a particular class of device and doesn't care
about the interface it's connected to. For example, a device driver would talk
to a CS/80 disc, a ciper printer, or a serial device.

These two types of kernel drivers can be combined into one driver if only one
class of device can be connected to a particular interface card. Some of the
more complex interfaces, like HP-IB, have three interface drivers (for the
98624, the 98625, and the internal HP-IB interfaces) and a multitude of device
drivers {for HP-IB printers, ciper printers, CS/80 discs, other discs, 9-track
mag tape, etc.).

Types of Driver Access

There are two types of kernel driver access: block access and character {raw)
access.

When block access is used, data transferred between a user process and a
device is buffered. Data transfer occurs in units called blocks.

When character access is used, there is no particular buffering scheme used,
although the driver writer can use a buffering scheme if he/she so desires.
Data is transferred in units of one or more bytes.

The type of access used depends heavily on the device to which the driver
talks. Devices having the following characteristics are good candidates for
block access:

1. The device supports random access of blocks.

2. The data in each block is stable.

3. The data is not available until it is requested.

Typical block devices are discs and tapes.

Devices having the following characteristics are good candidates for character
access:

1. The data cannot be accessed randomly.

2. The data is not stable.

3. The data can be available before any process requests it.

Typical character devices are terminals and printers.

Note that most devices can be accessed both ways. However, one type of access·
is usually optimal for a particular type of device.

Driver Entry Points

The HP-UX kernel expects all drivers to consist of one or more routines whose
names are consistent across all drivers. These.routine names are called
"entry points". A driver may or may not have a particular entry point, but if
it does, that entry point will always have the same name (how an entry point
for one driver is distinguished from the same entry point for another driver is
discussed later in this document) .

There are a different set of entry points for character drivers and block
drivers. The character driver entry points are:

Entry Point Function
===

open Called from open(2)
close Called from close(2)
read Called from read(2)
write Called from write(2)
ioctl Called from ioctl(2)
select Called from select(2)

===

For block drivers, the entry points are:

Entry Point Function
==

open
close
strategy
size

Called from open(2)
Called from close(2)
Called from read(2) or write(2)
Not user-callable; returns size of
swap area on device, if any

==
These two sets of entry points simply mean that these are the routines the
kernel knows how to call, given a particular type of driver access. Nothing
stops the driver writer from writing a strategy routine for a character driver
(in fact this is often done). The kernel won't know how to call it, but the
driver code itself can explicitly call it.

In addition to these entry points, there are three more entry points for
interface routines (used in D~O drivers only) . The purpose of these routines
will be discussed in class. These interface routines are:

* link
* make_entry
* init

Finally, there are three "pseudo-driver" entry points. They are:

Entry Point Function
==

nulldev
nodev
seltrue

Does nothing; kernel returns successfully to user.
Does nothing; kernel returns an error to user.
Does nothing; kernel returns successfully to user.

Used in place of a select routine when device is
always ready for I/O.

==
These pseudo-driver entry points will be discussed in more detail later in
this document, and in class. Note that "seltrue" has identical functionality
to "nulldev". It exists at all simply because it is part of AT&T's standard
UNIX release.

The Cdevsw and Bdevsw Tables

How does the kernel keep track of the routines in each driver?

There are two data structures, called the cdevsw table and the bdevsw table,
which maintain pointers to the routines in each driver. The cdevsw table is
used for character drivers, and the bdevsw table is used for block drivers.

Each table is an array of structures. The array is indexed by the major
number of the driver. Thus, at bdevsw[O] one would expe~t to find pointers to
entry points in the block CS/80 driver (major number O), and in cdevsw[4] one
would expect to find pointers to entry points in the character CS/80 driver
(major number 4) .

Each cdevsw table entry looks like this:

struct cdevsw {

} ;

int (*d_open) () ;
int (*d_close) () ;
int (*d_read) () ;
int (*d_wri te) () ;
int (*d_ioctl) ().;
int (*d_select) () ;
int d_flags;

Each cdevsw table entry contains pointers for the six character driver entry
points, and a parameter 11 d_flags 11 to contain flags. The available flags are:

C_ALLCLOSES

C_NODELAY

specifies that the close entry point shall be called on all
closes of the device, instead of only the last close.

specifies that the kernel shall not wait for I/O to
complete, but shall return immediately to the user process.

Each bdevsw table entry is similar:

struct bdevsw {

} ;

int (*d_open) () ;
int (*d_close) () ;
int (*d_strategy) () ;
int (*d_psize) () ;

Each bdevsw table entry contains pointers for the four block driver entry
points, and the same flags parameter "d_flags".

Installing a Driver

The procedure for installing a driver into a Series 300 HP-UX kernel is really
quite simple. The overall procedure is given here, with more detail given in
later sections. The procedure is:

1. Compile driver.

2. Modify /etc/master.

3. Add driver name to dfile.

4. Execute "config".

5. Modify config.mk.

6. Execute "make".

This creates a new kernel which must be moved to /hp-ux. Once the system is
rebooted, the .new kernel is active.

Compile the Driver

Once the driver writer has written all his/her code, it must be compiled to
create a 11 .0 11 file.

Modify /etc/master

This is probably the most time-consuming step. A line of information
regarding the new driver must be added to /etc/master. The 11 config 11 routine
uses this information in setting up the cdevsw and bdevsw tables and other
data structures in conf .c.

Each line in the first section of /etc/master gives information for one
driver. Each line is of the form:

name prefix type mask bmajor cmajor

"Name" is the driver name for use in config's dfile. Use any descriptive name
not already in use.

"Prefix" can be the same as "name", or some other descriptive string. It is
this string that the kernel uses to differentiate your kernel driver's entry
points from other drivers' entry points. For example, if you specify a
"prefix" of "mycode", the kernel expects to find entry points named
11 mycode_open 11

, "mycode_close", etc. The driver writer presumably knows this
and codes his/her routine names accordingly.

"Type" is a five-bit attribute flag. It has the following form:

I 4 I 3 I 2 I i I o I

The meanings of the bits are:

bit o - Set this bit if the driver should have an entry in the cdevsw
table {which it should if it is a character driver} .

bit 1 - Set this bit if the driver should have an entry in the bdevsw
table {which it should if it is a block driver) .

bit 2 - Set this bit if the driver is a required driver. 11 Config 11 will
include the driver in the new kernel whether its name appears in
dfile or not.

·bit 3 - Set this bit if the driver name may only be specified once in
dfile. If the driver's name appears in dfile more than once, an
error is generated. Normally this is not an error.

bit 4 - Set this bit if this driver is an interface driver. This implies
the presence of link, make_entry, and init routines.

9

"Mask" is a 10-bit driver routine flag. It has the following form:

I 9 I s I 1 I 6 I s I 4 I 3 I 2 I 1 I o I

The meanings of the bits are:

bit O - Set this bit if the C_ALLCLOSES flag is desired. Otherwise, this
flag is left unset.

bit 1 - Set this bit if the 11 seltrue 11 pseudo entry point is desired
instead of an actual "select" entry point.

bit 2 - Set this bit if the driver has a select routine.

bit 3 - Set this bit ff the driver has an ioctl routine.

bit 4 - Set this bit if the driver has a write routine.

bit 5 - Set this bit if the driver has a read routine.

bit 6 - Set this bit if the driver has a close routine.

bit 7 - Set this bit if the driver has an open routine.

bit 8 - Set this bit if the driver has a link routine.

bit 9 - Set this bit if the driver has a size routine.

(Note that there is no bit specifying whether or not a block driver has a
strategy routine. It turns out that config expects to find a strategy
routine in all block drivers. An undefined external results if a block
driver having no strategy routine is installed.)

"Bmajor" is the block major number of the driver, if any. Specify -1
otherwise.

"Cmajor" is the character major number of the driver, if any. Specify -1
otherwise.

Determine values for all fields of the /etc/master line, and enter that line
in /etc/master. Here are some sample entries:

* name
*
cs SO
flex
amigo
tape
printer
st ape
srm
plot.old
rje
ptymas
ptyslv
ieee802
ethernet
hpib
gpio
ciper
snalink
dos

pref ix

cs SO
mf
amigo
tp
lp
stp
srm629
pt
rje
ptym
ptys
ieee802
ethernet
hpib
hpib
ciper
snalink
dos

type

3
3
3
1
1
1
1
1
1
9
9
1
1
1
1
1
1
1

mask

3FB
lFA
3FB

FA
DA
FA

1F2
F2

lFA
FC

lFD
lFD
lFD

FB
lFB

DA
lCO

F9

block

0
1
2

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

char

4
6

11
5
7
9

13
14
15
16
17
18
19
21
22
26
36
27

For example, in the "cs80" line above, the CS/80 driver should have both a 1n

cdevsw and bdevsw table entry (according to "type"), and contains routines
for all entry points except a true select routine (seltrue is used instead) .
The block major number is o, and the character major number is 4.

Add Driver Name to Dfile

Edit an existing dfile, or create your own, and add the name of your driver to
it (the name to enter is the same as "name" in the /etc/master entry you
created). This causes "config" to include it in the new kernel.

Execute Conf ig

Execute the "config" routine as follows:

conf ig df ile

Config uses the information in dfile and /etc/master to create a conf .c file
and a makefile called config.mk. The conf .c file contains all kernel
configuration information modified per the instructions in /etc/master and
dfile. For example, conf .c contains the new bdevsw and cdevsw tables, new
kernel parameter settings, if any, etc. The config.mk makefile contains the
instructions needed by "make" to compile and link a new kernel.

For each driver name mentioned in dfile, config finds a line in /etc/master
whose first field matches that name, and uses the information on that line to
complete configuration for that driver. It builds the cdevsw and bdevsw
tables by looking at "type" (to determine if entries should be built at all)
and "mask" (to determine which entry points the driver contains). Config
fills in the cdevsw/bdevsw tables with pointers to the actual routine names by
adding the "pref ix" and an underscore to the beginning of each entry point
defined by that driver, and installing the resulting string into the table.
It also adds an "external" declaration for the resulting routine name to
conf .c.

A portion of a cdevsw table from conf .c is shown below:

struct
/* O*/

/* 1*/

/* 2*/

/* 3*/
/* 4*/

/* 5*/
/* 6*/
/* 7*/

} i

cdevsw cdevsw[] = {
cons_open,cons_close,cons_read,cons_write,cons_ioctl,cons_select,
C_ALLCLOSES,
tty_open, tty_close, tty_read, tty_write, tty_ioctl, tty_select,
C_ALLCLOSES,
sy_open, sy_close, sy_read, sy_write, sy_ioctl, sy_select,
C_ALLCLOSES,
nulldev, nulldev, mm read, mm_write, nodev, seltrue, 0,
cs80_open, cs80_close, cs80_read, cs80_write, cs80_ioctl, seltrue,
C ALLCLOSES,
tp_open, tp_close, tp_read, tp_write, tp_ioctl, seltrue, 0,
nodev, nodev, nodev, nodev, nodev, nodev, O,
lp_open, lp_close, nodev, lp_write, lp_ioctl, seltrue, 0,

The commented numbers help identify which character major number each line is
associated with.

Note that missing entry points are automatically filled in by 11 config 11 with
"nodev". (Whether or not an entry point is missing is specified by "mask".)
This means that the kernel will do nothing and return an error if a user
process calls a system call corresponding to the entry point in whose slot the
"nodev" exists. For example, using the above table fragment, if a user issues
a read(2) system call on a device file using the lp driver (major number 7),
the kernel will do nothing and return an error. //

"Nodev" is appropriate anytime a driver does not have a particular entry point
routine, and when calling that routine is considered an error. "Nulldev" can
be used instead if calling a missing routine is not really erroneous. If you
want to specify "nulldev" instead of "hodev" for particular entries in the
cdevsw or bdevsw tables, you must edit conf .c by hand after "config" has
finished executing.

The C_ALLCLOSES flag can be specified via "mask". If it is not specified, a
zero appears in that slot. If the C_NODELAY flag is desired, it must be
manually added after 11 config11 is finished executing.

Modify Config.mk

The name of the new driver's object file must be added to the makefile created
by "config". The object file name must be added to the HP-UX dependencies
line and to the line containing the linker conunand string. The exact
placement is shown below (the new driver's object file is represented by
"MYDRIVER. 0 II) :

hp-ux:

Execute Make

conf .o MYDRIVER.o
rm -f hp-ux
ar x /etc/conf/libkreq.a locore.o vers.o name.o funcentry.o
@echo '·Loading hp-ux ... '
${LD) -m -n -o hp-ux -e _start -x \

locore.o vers.o conf .o name.o funcentry.o MYDRIVER.o \
$(LIBS1) $(LIBS)

rm -f locore.o vers.o name.a funcentry.o
chmod 755 hp-ux

Now execute "make" with

make -f config.mk

This will compile the new conf .c file and link it with the various kernel
libraries to produce a new HP-UX kernel. The new kernel is called "hp-ux",
and is created in your current directory (usually /etc/conf) .

Install the new kernel with:

mv /hp-ux /SYSBCKUP
mv hp-ux /hp-ux

and then reboot the system.

/2

DISKED(lM) DISKED(lM)

NAME
disked - interactive disk editor for HF'S

SYNOPSIS
disked [-w] [-b <#>] <special-file>

DF.sCRIPl'ION
Disked is an interactive disk editor that examines and
modifies an HFS file system. It operates on either a
character or block device associated with a file system.
The file system should be unmounted while disked is being
run on the file system.

Disked reads conunands from standard input and writes to
either standard output or standard error. Although it was
designed to be run interactively it can be used in batch
mode by redirecting standard input. Most of the conunands
read data from disk into a buff er maintained by disked.
Each conunand which reads from disk will overwrite this
buffer.

Disked normally opens special-file read-only. If the w
option is specified then s~eciar-:f ile is opened for reading
and writing. Only by setting the w option is it possible
for the user to damage the file system.

If ,b option is specified, disked will use the specified
alternate superblock instead of the primary superblock to
interpret the file system.

Disked maintains two buffers called the browser and edit
buffers. At any point in time only one of these two buffers
is considered the current buffer. The x conunand can be used
to switch the current buffer from the browser buffer to the
edit buffer and vice-versa. The only significant difference
between these two buffers is that it is possible to modify
the disk when using the edit buffer. Disked initially sets
the current buffer to the browser buffer. For more
information see the section on Buff er Conunands.

The output of most of the commands can be redirected using
the disked operators ">", ">>", and "I"· The">" symbol is
used to redirect the output of an individual conunand to a
file. The ">>" symbol provides the same functionality
except that the output is appended. The "I" symbol is used
to pipe the output of an individual conunand to any Unix
command. For example, if the user wanted to redirect the
output of the s command (display primary super-block) to a
file called "foo". The following command would .work:

s > f oo

Hewlett-Packard Company - 1 - Apr 26, 1989

DISKED(lM) DISKED(lM)

The following is a detailed list of commands:

General Commands:

command

b <n> <c>
f <n> <c>
r <n> <c>

short description

display <c> bytes starting from byte <n>
display <c> bytes starting from fragment <n>
display <c> bytes starting from sector <n>

These commands are used to display data. The user is given
the option of specifying a byte address (b command), a
fragment number (f command), or a raw disk sector (r command
- note: a raw disk sector is in terms of DEV BSIZE units.).
The count argument <c> is optional for the f-and r commands,
and defaults to the fragment size or to DEV BSIZE bytes,
repsectively. Each command displays data in-the same format.
The format is a byte address counter followed by a sequence
of numbers and the character representation of those bytes.
With the default settings, each number represents 4 bytes
and is displayed in hex. The counter is initially displayed
in decimal. The default values are changed by setting the
var~ables wordsize, displayin and countin ~see User settable
variables below). All of these commands will allow the user
to display from 1 to MAXBSIZE worth of data.

command

i <n>
p <path>
d <n> <c>

short description

display inode
display inode
display <c> bytes of directory entries
starting from fragment <n>

These commands allow the user to traverse the directory
tree. The i command can be used to display the contents of
the specified inode. The root inode of an HFS file system
is inode 2. The ~ command can be used to display the
contents of the inode represented by <path>. If <pa~ is a
relative pathname (does not begin with a'/'), it will be
interpreted as though the file system were mounted as the
root file system and the current working directory were the
root directory. An absolute pathname will be interpreted
first as if the file system were mounted at the current or
last mount point of a larger file hierarchy (using the
fs mnt field of the superblock); failing this, ~path> will
be interpreted as though the file system were mounted as the
root file system.

Hewlett-Packard Company - 2 - Apr 26, 1989

14

DISKED(lM) DISKED(lM)

The d command is useful for displaying the data blocks of a
directory inode as directory entries. Because data block
addresses in the inode are really fragment numbers, this
command (like the f command) takes an optional count
argument <c>. If <c> is not specified, it defaults to the
size of a fragment.

command short description

q exit the program

Allow normal termination of the program. If the edit buff er
has been modified the g command will not allow the user to
exit disked (see g connnand).

Buffer Commands:

command

x
x

short description

switch current buffer
switch meaning of browser and edit buffers

The x command is used to switch which buffer is the current
buffer. When disked is first invoked the current buffer is
the browser buffer. To edit the disk the user must change
the current buffer to be the edit buffer. Then the user can
read the data into the edit buffer and modify it. It is
then possible to leave the changes in the edit buffer and
switch buffers to the browser buffer. The user can then
search through the disk without losing the changes. When
the user wants to write the changes out, the user can switch
back to the edit buffer, and use the W command to write the
data to disk.

The X command is similar to the x command except that X
swaps the meaning of the browser-and edit buffers such-that
the current browser b~ffer, along with its contents, becomes
the edit buffer and vice versa. This makes it convenient to
modify data already in the browser buffer without having to
switch buffers and read in the same data to the edit buffer.

Modification Commands (edit buffer only):

command

m <off>[:<rep>] <arglist>
m <start>[-<stop>] <arglist>

Hewlett-Packard Company - 3 -

short description

modify buff er
modify buff er

Apr 26, 1989

16

DISKED(lM) DISKED(lM)

w write modified buffer

The m command allows the user to modify the current buff er
(which must be the edit buffer) at buffer offset <off> to be
<arglist>. <arglist> is a list of numbers or characters
separated by one or more blanks. If a r~p is specified then
the arglist will be repeated that many tl.Illes. Off may be
specified as either a number or as an offset into a known
structure (for a list of known offsets type h offsets).
Alternatively, the user may specify a range within the
buffer to be modified. Each term in the arglist is put into
a different word. Each word represents 1, 2 or 4 bytes
depending on the value of wordsize. The only legal values
for wordsize are 1, 2 or 4. The terms in the arglist will
be padded so that each term completely fills one wordsize
unit.

The W command is used to write the modified buffer to disk.

Note: Two ways exist to undo changes made to the current
buffer. The first is to read data into the current buffer.
This can· be done with almost any of the commands. The
second is to abort the program using the 2 conunand.

command short description

Q abort program

Abort the program even if the edit buffer has been modified.
All changes are ignored and the program is terminated.

Internal Data Structure Commands:

command

s [s] [r]
s <n> [r]

short description

display primary super-block
display redundant super-block <n>

These commands are used to display either the primary
super-block or the redundant super-block associated with
each cylinder group. Included in each super-block is a
rotational table. The r option is used to to display this
table. In addition, the first n blocks of data space
contain summary information. The s option can be used to
display this while displaying the primary super-block.

command short description

Hewlett-Packard Company - 4 - Apr 26, 1989

j{jJ

DISKED(lM) DISKED(lM)

c <n> display cylinder group <n>

This connnand is used to display the contents of any cylinder
group.

Use of expressions:

·Many disked commands expect one or more numbers as
arguments. If a connnand expects a number then the number
can always be replaced with an expression. An expression is
either an integer or a parenthesized expression containing
one or more of the following arithmetic operators: I, &, *,
/, +, -. Further, an expression can contain any number of
macros. Disked maintains a list of macros which can be
invoked (type - h macros)., As an example suppose the user
wanted to display the cylinder group associated with a
particular inode. One mechanism would be to use knowledge
of how a disk is laid out and calculate the number by hand.
The preferable method is to use the c command passing as an
argument itog(<inode number>). -

Free List Manipulation

command

w > <file>
w >> <file>

short description

write current buffer to <file>
append current buff er to <file>

With these two commands it is possible to walk through the
free lists and recover lost data.

example:

In the following manner it is possible to read the free data
blocks of one unmounted file system and write the data
blocks to a file on a mounted file system. The c command
can be used to obtain a list of free fragments in each
cylinder group. With this information the f connnand can be
used to read the free fragment into the current buffer. The
following formula will convert a cylinder group relative
fragment number to a file system relative fragment number
(<fragment-number>+ cgbase(<cylinder-group-number>)).
Once the data has been read into the current buffer, it can
be written to any file on a mounted file system with the w

Hewlett-Packard Company - 5 - Apr 26, 1989

/I/

DISKED(lM)

command.

Extended commands

command

copyi <inode number>
map
tell <fragment>
bgrep "string" <e>

DISKED(lM)

short description

display data for inode
display a map of this disk
describe fragment

Copyi takes as input an inode number and displays the data
blocks associated with it. It is very important that the
user ensure that the specified inode is valid. The size and
blocks fields in the inode must be correct or disked might
not be able to display the data blocks. In addition, it is
very important that checking not be turned off when this
command is executed (see User settable variables).

Map is used to display a fragment map of all fragments on
the disk.

Tell takes as input a fragment number and provides
information about the specified fragment •

. Bgrep searches for the specified string starting from
fragment and until fragment <e> and displays the
fragment number of any fragment that contains this string.
If and <e> are not specified, then the search defaults
to the whole disc. The string must be enclosed in double
quotes and may contain C style escape characters and grep(1)
style regular expressions.

User settable variables:

command short description

set <variable> <value> assign <value> to <variable>

This command is used to set any one of a number of different
global variables. What follows is a list of variables and
their possible values and then a description of what each
variable does:

variable possible values (default values are in bold)

Hewlett-Packard Company - 6 - Apr 26, 19.89

DISKED(lM)

check
count in
displayin
display
init
wordsize

(on, off)
(octal, hex, decimal)
(octal, hex, decimal)
(on, off)
(on, off)
(1, 2, or 4)

DISKED(lM)

check
This variable controls whether or not certain error
checks are performed by disked. Disked goes to great
lengths to prevent the user from damagmg the file
system. Turning this variable off will prevent disked
from perf arming these checks. This should obviously be
done only with great care if disked is being used with
the !!. option.

count in
This variable determines the radix in which the counter
is displayed for the .!?, !, and ~ commands.

display in
This variable determines the radix in which data is
displayed for outp~t (with the_!?,!, and~ commands).

display
This variable controls whether or not the b, f or r
commands will display the data when it is read in.- It
is useful to unset this variable when copying a known
set of free blocks from the device to a file on another
disk.

init This variable controls whether or not the edit and
browser buffers are re-initialized when a new disk is
opened (seen command). By unsetting this variable it
is possible to copy at most MAXBSIZE worth of data from
one disk to another.

wordsize
This variable controls the primary wordsize (number of
bytes in a word) for the program. On output, it
affects the amount of data to be displayed at any point
in time. On input, it will control the amount of data
overwritten for each argument in the arglist of the m
command.

Miscellaneous conunands:

command short description

Hewlett-Packard Company - 7 - Apr 26, 1989

;q

DISKED(lM) DISKED(JM)

provide on-line help
provide on-line help

h <topic>
? <topic>
h help
B
c
D
F
I
R
s

<command>

list topics available for help
display current buff er as data
display current buff er as cylinder
display current buff er as director
display current buff er as data
display current buff er as inodes
display current buff er as data
display current buff er as super-bl
execute monitor command

n [-w] [-b <#>] <special-file> restart program using <special-fil
and specified options

command short description

= <n> display number

This command takes as input an expression and displays the
value of that expression in hex, octal and decimal.

command short description

$<a-z> = expr assign a value to a local variable

This command assigns the expression to a local variable.
There are 26 local variables $a - $z. Once a local variable
has a value it can be used in any expression. To display
the value of a local variable use the = command.

In addition to the 26 local variables, disked supports two
local variables called $size and $address. These variables
are the size and address<5f"""the current buffer. They may be
used in any expression where a local variable is used. This
enables the user to reference the size and address of the
current buffer, without typing in the actual numbers.
Further, if the current buffer is the edit buffer then the
user can change the values of $size and $address. This has
the effect of changing where di"Sked believes the data
resides. By changing $address and then writing the edit
buffer out, the user can move data from one place to another
on the disk.

example:

The following example display the contents of the n-th
cylinder group; where n is (Ox314 + 12) / 013.

Hewlett-Packard Company - 8 - Apr 26, 1989

20

DISKED(lM)

$a = (Ox314 + 12) / 013
c $a

Hewlett-Packard Company - 9 -

DISKED(lM)

Apr 26, 1989

JJ

SE 390: Series 300 HP-UX Internals

Monday Afternoon Labs

0. If you have NOT used "monitor" much, run it and take a look at
each of the screens of information. Use the online help facility. What
things does monitor(lm) tell you that you can't (yet) make use of?

1. Using the template provided (ppt.c), print out the values of at
least 5 kernel parameters. Verify 2-3 of them with monitor(lm). If you
want ideas on what to print, look at space.h or monitor's C screen.

2. Look through the "pm" and "misc" directories in the examples
archive I gave you. Are there useful functions (or whole programs)?

3. Start work on your version of monitor, focusing on process stuff.
Consider printing (among other things)

- the process table (like ps does)
- the proc table entry and u area for a given process
- relevant kernel parameters

I

SE 390: Series 300 HP-UX Internals

Tuesday Afternoon Labs

1. Change the major number of some driver in /etc/master and rebuild
your kernel. Then make a corresponding device file and reboot. Change
something that 1) you can verify and 2) won't kill your machine if you
mess up. A good candidate would be character-mode SCSI/CSSO {whichever
one your disk is) .

2. Install the ramdisk driver on the system and add code to print out the
the size and lk block address whenever a block is read or written {there is
a printf {) in the kernel just like there is in libc for user programs).
You will probably need to replace the one that is already there
{use "ar t" to figure out which library it is in).

3. Reconfigure your kernel and look at the conf.c that gets generated.
Which parts of it come from dfile? Which come from /etc/master?

4. Force your system to panic and interpret the resulting stack trace.
{misc/th_init is helpful here ... :-))

5. Take a look at the supplied pseudo-driver called "pdisk". How does
it compare to the pty drivers (the things that enable telnet/Xll/script
to work)?

b.

SE 390: Series 300 HP-UX Internals

Wednesday Afternoon~

Be sure to look at the examples in the "fs" directory before doing·
these labs; also, note that many of them are easier on a ramdisk ***

Write a program to hunt for superblocks on a disk.

1. Translate a pathname to an i-number using adb ('l), fsdb (lm), disked (lm),
or a C program you write.

2. Modify "myls.c" to be something along the lines of "myll.c"; ·in other
words, get the inode for each file and print things like the size, owner
UID, etc.

3. Use the ramdisk driver (or pdisk driver/server) to learn about the
filesystem's layout and "habits". How is the filesystem affected by
f s_async?

4. Mess up the disk using disked(lm) or some other command (You needn't
get too violent - how about dd(l)ing over the 1st 16K?) Then fix it
using fsck(lm), disked(lm), or whatever you want (dd(l)ing from another
disk is strictly an option of last resort :-))

***** OR *****

Write a version of cat(l) that uses only a disk device file.

Diskless

1. Cluster your system with another, and look closely at what monitor(lm)
will tell you about both machines.

2. Locally mount a ramdisk, and make it so that noone else in the
class can access the stuff down under the mount point. This is not
tricky/hard/etc :-)

3

pr
/~

I

, -c~p r
/ i·

SE390: Series 300 HP-UX Internals

~0\~ VM System Labs

k through the "vm" directory in the examples archive I
ou. Are there useful functions (or whole programs)?

See what monitor, iostat(l), and vmstat(l) will tell you about the
te of the VM system. How does their output change if you run a
gram that chews up lots of RAM (try memory/paging.c)?

(2.l Write a program that will sununarize swap space usage by looking
-·at swaptab [] , swapspc_max, and swapspc_cnt. It should produce output
something like this:

there is a total of XXX MB on the system
YYY MB is free
zzz MB is allocated
AAA MB is reserved but not yet allocated

/You might want to enhance it to summarize diskless client usage as
{ well, i.e.
~ BBB MB has been allocated to <name of client 1>
i CCC MB has been allocated to <name of client 2> ...
\Note that you do not need to walk through each swaptab[]'s swapmap array.

\ ~
-,\ _ -

\ What had to change in "top" for it to -work in 8. O? Change it
o hat it sorts by size instead of CPU usage (i.e. have it print

the 10 (or whatever) *biggest* programs, rather than the 10 that are
usi~g the most CPU time).

VM-related stuff to the "monitor" you started on Monday.

n
J.i

· tlc

4

SE 390: Series 300 HP-UX Internals

Friday Labs

0. Shut down the system and reboot it, watching carefully to see what
gets printed out. What is the last line printed by the kernel? What
is the first line printed by init(lm)?

1. Finish/clean up your labs, and see if there are things in monitor
that you recognize now that didn't make sense earlier.

2. Give your instructor a copy of your monitor and your filesystem
programs. Please put them in a {shell,cpio,tar} archive. Thanks!

__ _6_

Feb 06 12:16 1992 ppt.c Page 1

1 #include <stdio.h>
2 #include <sys/param.h>
3 #include <fcntl.h>
4 #include <sys/user.h>
5 #include <sys/proc.h>
6
7 /*
8 * Example of reading /dev/kmem to get at kernel data
9 * structures. Note that this is NON-PORTABLE and

10 * UNSUPPORTED - it may break with future releases of
11 * HP-UX. It's fun, though :-}
12 *
13 *
14 * first we declare a data structure that will be passed to nlist(3};
15 * note that we are only filling in the first member of each structure
16 * in the array, and that we end with a null member
17 */
18

struct nlist nl [] = {
#if def hp9000s800

{ 11 nproc 11 },
{ 11 proc 11 } '

#else

19
20
21
22
23
24
25

{ 11 _nproc 11 },

26 #endif
27
28 };
29

{ 11 _proc 11

{ II II }

30 #define C_NPROC 0
31 #define C_PROC 1
32

},

/* setup for calls to nlist(3} */

/* # entries in process table */
/* pointer to process table */

/* # entries in process table */
/* pointer to process table */

/* indices into the above array */

33 int kmem;
34

/* file descriptor for kernel mem */

35
36 main()
37 {
38
39
40
41 }
42
43

startup();
walk_table () ;
exit(O);

44
45
46
47

startup() /* read symbol table & open kernel memory
{

if (nlist (11 /hp-ux 11 , nl) < O) {
perror(11 nlist(3)"); /* can't get symbol table

48 exit (1) ;
49 }
50
51 if ((kmem = open (11 /dev/kmem 11 , O_RDONLY)) < 0) {

*/

*/

52 perror(11 open(2) 11
); /* can't open kernel mem */

53 exit(l);
54 }
55 }
56

Feb 06 12:16 1992 ppt.c Page 2

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

walk table () /* step through the process table */
{ -

int i, nproc;
long pt_addr;
struct proc *proc_table, *p;

/*
*
*
*/

first go get the value of nproc from /dev/kmem, using
the address nlist(3) returned to us

lseek(kmem, nl[C_NPROC] .n_value, 0);
read(kmem, &nproc, sizeof nproc);
proc_table = (struct proc *) calloc(nproc, sizeof(struct proc));

/*
*
*
*
*/

now get the *address* of the proc table, seek there,
and get the real thing; this is because proc is a
pointer rather than a simple variable

lseek(kmem, nl[C_PROC] .n_value, O);
read(kmem, &pt_addr, sizeof pt_addr);
lseek(kmem, pt_addr, 0);
if ((i = read(kmem, proc_table, sizeof(struct proc)*nproc)) < O) {

perror("read proc_table");

}

/*
*
*
*
*/

close(kmem);
exit(l);

we have the proc table; get in a loop and step through
the whole thing, printing a line for each slot that
is being used

p = proc_table;

98 for (i = O; i < nproc; i++) {
99 if (p->p_stat) /* if entry in use */

100 printf ("pid, pgrp, uid, ruid are %d %d %d %d\n",
101 p->p_pid, p->p_pgrp, p->p_uid, p->p_suid);
102 p++;
103 }
104
105 close(kmem);
106 }
107
108
109

A Quick Introduction to adb(l)

When in the course of human events it becomes necessary to patch
a kernel or examine it, there are very few comnands that will do
the job. One possibility is adb(l), a general-purpose debugger
that is capable of doing most anything. It is hard to use, but
sometimes it's the only thing available •.•.

If you need to use adb(l), here are some annotated examples. Note that
adb(l) really only knows about executable files and core files; since
/hp-ux is an executable and /dev/kmem is kernel memory (which has basically
the same fo:rmat as a core file), we can use it to work on the kernel.
The "# " in each example was printed by the shell; everything else left of
the arrows below was typed in by the intrepid hacker :-)

adb /hp-ux
dfile data?s

19232?10i

<--- print variable "dfile_data" as a string
from /hp-we (note the "?")

<--- disassemble; print 10 instructions
starting at address 19232

adb -w /hp-ux /dev/kmem
fs async/D <--- print variable "fs_async" as an integer

from /dev/kmem (note the "/")
/W O <--- set it to O (turn it off) in /dev/kmem

Note that using "/" will cause adb (1) to work with the "core" file (/dev/kmem)
and that this will either take effect irnnediately (for a sirrple variable)
or not work at all (for something like nproc which sizes a data structure) .

Using "?" will direct adb(l) to the "a.out" (/hp-ux), which won't take
effect until you reboot (which nay be what you want, and which is your only
choice if you are changing the size of a table in the kernel) .

One last thing: adb(l) is, uh, somewhat lacking in its user interface :-)
It is *very* picky about syntax, case, etc; in the string "fs_async/D"
above, it really does have to be a capital "D". To get out of the
program, use either "$q" or the old standby, "<ctrl-d>".

SE390: Seri.es 300 HP-UX Internals

Memory Management

A Thousand Words Worth :-)

PER-PROCESS
Pregions

!-------~-~-~~""'."'.'---------\

!--------------\
4G system

overhead

user stack

shared
- libs ---- ---

/\
11

+----------+
proc

table
entry

I p_vas
·+------ ---+

v ;---\
\--->I vas I

\ I

I v
+---------:--+ I stack. I
+ - - - - - - - - -· - .~ +

. . A : I .
I : ,V

+-----------+ I . ~h lib I
+-----------+

A • I
I·.: v

+"'.'----------+
I data 1--\
+-----------+

A I
v

+ - - - - - - - - - - -.+
I text I

. + -- ---- ---- -·+
A user

bss/data \--------------~
text

0 \----------~-------------1 · ...

SYSTEM-WIDE

swap tab

+-------------------+
II each entry I->

swdevt I +-------------------+
I I in this table I

+--------+ I +-------------------+ I disk 1 I====\ L-~~~ _ :~~~~l_l~~: _ _i
-------- \ I worth of space I I disk 2 I\ i\i-------------------i

+--------+ \===/ +-------------------+
\ I I
\ +-------------------+

regions
v

+-------------+
[] [] [] [] _# valid pgs_

__put vnode_
get vnode

/--- DBDs I --
v

+-------+
I I
+-------+
I I
+-------+

There is a
DBD for
each page
in the
region

