
HP 9000 Computers

HP-UX Technical BASIC
I/0 Programming Guide

rli~ HEWLETT
~a PACKARD

HP-UX Technical BASIC
1/0 Programming Guide

for HP 9000 Computers

HP Part Number 97068-90030

© Copyright 1986 Hewlett-Packard Company

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of Hewlett
Packard Company. The information contained in this document is subject to change without notice.

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the Rights
in Technical Data and Software clause in DAR 7-104.9(a).

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only. Additional
copies of the programs can be made for security and back-up purposes only. Resale of the programs in their present form
or with alterations, is expressly prohibited.

© Copyright 1980, 1984, AT&T, Inc.

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional pages
to be merged into the manual by the user. Each updated page will be indicated by a revision
date at the bottom of the page. A vertical bar in the margin indicates the changes on each page.
Note that pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint
do not cause the date to change.) The manual part number changes when extensive technical
changes are incorporated.

February 1986 ... Edition 1

ii

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance,
or use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

Table of Contents
Chapter 1: An Introduction to I/O

Chapter Contents ... 1-2
The Role of an Interface .. 1-2

Mechanical and Electrical Compatibility 1-4
Data Compatibility. .. 1-4
Timing Compatibility .. 1-4

Specifying a Resource .. 1-6
Using Device Selector 1 .. 1-6
Assigning Your Own Device Selector .. 1-6
Using File Selectors .. 1-12

Chapter 2: Simple I/O Operations
Chapter Contents ... 2-2
Using Simple OUTPUT Statements .. 2-3
Using Simple ENTER Statements. .. 2-4

Entering Numeric Data ... 2-4
Entering String Data ... 2-6

Chapter 3: Formatted I/O Operations
Chapter Contents ... 3-1
Formatted OUTPUT ... 3-2

Numeric Images ... 3-2
String Images .. 3-6
Binary Images .. 3-7
End-of-Line Sequence Images .. 3-8

Formatted ENTER .. 3-9
Data Images 3-10
Terminator Images. .. 3-14
Inspecting Unknown Data. .. 3-18

Converting I/O Data .. 3-19

Chapter 4: Using I/O Buffers
Chapter Contents ... 4-1
What are I/O Buffers? .. 4-2

The IOBUFFER Statement 4-2
Registers .. 4-3

iii

Chapter 5: Interrupt Programming
Chapter Contents ... 5-2
End-of-Line Branch Programming. .. 5-2

Timeouts .. 5-2
Errors .. 5-5
ON KEY Interrupts .. 5-7
How Interrupts Interact .. 5-8

Chapter 6: Direct Interface Communication
Chapter Contents ... 6-2
Checking Interface Status ... 6-2
Interface Control .. 6-4

Chapter 7: Interface Dependent Statements
Chapter Contents ... 7-2
The SEND Statement .. 7-2
The RESET Statement. .. 7 3

Chapter 8: Using the HP-IB Interface
Chapter Contents ... 8-2
Controlling the Bus. .. 8-2
Advanced I/O Operations .. 8-5

Burst Mode I/O (only for Series 200/300) .. 8-5
Non-controller Addressing 8-6
Custom Bus Sequences .. 8-8
Multiple Listener Transfers. .. 8-8

Handling Service Requests. .. 8-10
Sensing Service Requests. .. 8-10
Determining the Problem " 8-10

Non-controller Operations .. 8-12
Passing Control .. 8-12
Receiving Control .,. .. 8-12
Non-controller Responses. .. 8-13
Sending Service Requests 8-13

Handling Interface Problems. .. 8-14
Avoiding Bus Hang-ups .. 8-14
Dealing With Problems .. 8-15

Chapter 9: The HP-IB Interface
Chapter Contents ... 9-1
General Structure of the HP-IB 9-2
HP-IB Signal Lines. .. 9-3

iv

Transmitting Data Bytes .. 9-4
HP-IB Control Lines. .. 9-5

HP-IB Messages. .. 9-6
Single-Line Messages .. 9-7
Multiple-Line Messages ... 9-8
Bus Sequences .. 9-10

Polling ... 9-13
Serial Polling .. 9-13
Parallel Polling .. 9-14

Chapter 10: Using the GPIO Interface
Chapter Contents .. 10-1
Programming With the GPIO Interface. 10-2

ENTER and OUTPUT Statements 10-3
Checking Interface Status ,............................ 10-4
Interface Control .. 10-4
The SEND Statement ... 10-6
The RESET Statement. .. 10-6

Appendix A: Status and Control Registers
Chapter Contents ... A-I
The HP-IB Interface .. A-2

Status Register 0: Interface Identification A-2
Status Register 2: HP-IB Control Lines A-2
Control Register 2: HP-IB Control Lines A-2
Status Register 4: HP-IB Address/System Controller A-3
Status Register 5: HP-IB State. .. A-3
Control Register 8: PPOLL Value A-4
Status Register 9: HP-IB Burst Mode A-5
Control Register 9: HP-IB Burst Mode A-5
Control Register 16: EOL Control A-6
Control Registers 17 through 23: EOL Sequence A-6

The GPIO Interface .. A-7

Index

Status Register 0: Interface Identification. .. A-7
Status Register 2: Line Status. .. A-7
Control Register 2: Assertion Control A-7
Control Register 16: EOL Control A-8
Control Registers 17 through 23: EOL Sequence A-8

v

vi

An Introduction to 1/0 1
This manual covers I/O programming techniques for HP-UX Technical BASIC. You can use
this language on certain Hewlett-Packard computers that use the HP-UX operating system. For
specific information on which computers support HP-UX Technical BASIC, ask your Hewlett
Packard dealer.

The term I/O stands for Input/Output, and refers to the process of communication between
a computer and its resources. We shall use the term computer in this manual to mean the
processor, its support hardware, the BASIC-language, and the operating system. The term
resource refers to all of the "data-handling" elements of the system. Computer resources include
the display, keyboard, interfaces, and peripheral devices.

HP-UX Technical BASIC provides more than 30 I/O statements. These statements can be used
to establish communication between the computer and its resources. Some statements are used
to send data to peripheral devices such as printers or to input data from peripheral devices
such as voltmeters. Other statements are used to control the branching in an I/O program or
to program the operation of the interfaces. This manual presents some selected programming
techniques that show how you might use these statements in your own application programs.
The HP-UX Technical BASIC Reference Manual provides syntax definitions of all of the BASIC
statements, including the I/O statements.

An Introduction to I/O 1-1

Chapter Contents
This chapter covers the following tasks and topics:

Tasks/Topics Page

The Role of an Interface 1-2

Specifying a Resource 1-6

Using Device Selector 1 1-6

Assigning Your Own Device Selector 1-6

Using File Selectors 1-12

The Role of an Interface
Before you can establish communication between the computer and its peripheral devices, you.
must establish a hardware link. An interface provides this hardware link. The role of the interface
is to provide compatibility in four major areas. These are:

• Mechanical Compatibility.

• Electrical Compatibility.

• Data Compatibility.

• Timing Compatibility.

1-2 An Introduction to I/O

The following diagram shows the basic function of an interface and its position between the
computer and the peripheral device:

Computer

,--
I Computer

Compatible

I Connector

L

Logic

Level

Matcher

Interface

Logic

Logic

Level

Matcher

--,
I
I

Ca~1
Device I

Compatible

Connector I

Peripheral

Device

Figure 1-1. Functional Diagram of an Interface

An Introduction to I/O 1-3

Mechanical and Electrical Compatibility
Mechanical compatibility means that the plugs and connectors must fit together. Accessory
interfaces are designed to plug directly into your computer or into a bus expansion module.
Some interfaces, such as the HP-IB, are always mechanically compatible with their peripheral
devices. Other interfaces, such as the GPIO, are supplied without peripheral connectors. For
such an interface, you need to install a mechanically compatible connector (refer to the interface
owner's manual).

Electrical compatibility means that the interface must change the voltage levels used by the
computer to those used by the peripheral device. The drivers and receivers match logic levels to
ensure that the interface is compatible with the computer and (usually) the peripheral devices.
If you have questions about electrical compatibility with a particular device, refer to the manuals
provided with the interface and peripheral device.

Data Compatibility
Mechanical and electrical compatibility alone does not guarantee that the computer and peripheral
device will be able to communicate. Each device must also understand the data being sent by
the other. Just as two humans who do not speak the same language need a translator, messages
between the computer and the peripheral device may require some form of translation. The
computer, with its versatile programming capability, usually performs this function. However,
this job is sometimes given to the interface. To handle those cases where the computer performs
the data translation or conversion, HP-UX Technical BASIC provides a wide variety of special
functions and conversion capabilities. These capabilities are covered in subsequent chapters of
this manual.

Timing Compatibility
Computers and their peripheral devices have such a wide range of operating speeds that an
orderly mechanism is needed for the successful transfer of data. This timing mechanism is
called handshaking. Although there are several types of handshaking, the typical sequence is as
follows:

1. The receiver signals that it is ready for an item of data, then waits for a signal from the
sender that the data is available.

2. The sender outputs an item of data and signals the receiver when the data is available.

3. When this "data is available" signal is recognized, the receiver inputs the data and signals
that it is busy with this input operation.

4. The sender waits until the receiver is ready before it makes a new item of data available.
When the receiver is ready, the process repeats.

1-4 An Introduction to I/O

The following simplified diagram further illustrates the concept of handshaking:

- "I am ready for data"
~

"The data is val'id now" .. -
Source t Destination

Handshake Lines

Data Lines)
Figure 1-2. Handshaking

An Introduction to I/O 1-5

Specifying a Resource
An interface and associated cable(s} provide the hardware link for communication between your
computer and its peripheral devices. To perform an I/O operation with a device connected
to the interface (or with the interface itself), the system must be able to uniquely identify this
resource. In this system, resources are identified by device selectors or file selectors.

Using Device Selector 1
Device selector 1 is pre-assigned to the CRT screen. This is the default destination for DISP and
PRINT statements, since the defaults are CRT IS 1 and PRINTER IS 1.

Thus, if you wanted to send some text to the display, you could use any of the following
statements:

OUTPUT 1; "This goes to the display."
DISP "This goes to the display."
PRINT "This goes to the display."

Device selector 1 uniquely specifies where the information is to be sent.

Assigning Your Own Device Selector
Since there are no pre-assigned device selectors for I/O devices other than the CRT, you will
need to use the ASSIGN statement to create your own association between a device selector and
a resource. Here is the general form of the ASSIGN statement used for I/O purposes:

ASSIGN device selector TO "I/O driver type, special (device) file"

• The device selector is an arbitrary integer in the range 3 through 10. (It should not
currently be assigned to a resource.)

• The I/O driver type identifies the type of interface driver that is to be used with this
resource. (A driver is a program that is used by the system to communicate with a
particular device or interface.) On this system, the I/O driver type must be either hpib or
gpio, since these are the only type of interfaces supported for general I/O operations.

• The special (device) file is the actual name of the driver file, which is assumed to be in
the / dev directory-unless explicitly specified otherwise. This file must be a device file
of the preceding I/O driver type. (This parameter is the name of the HP-UX file that
the System Administrator associated with an interface or device using the mknod, "make
node," command described on the following pages.)

Let's look at some examples for GPIO and HP-IB interfaces.

1-6 An Introduction to I/O

GPIO Device Selectors
In order to communicate with a GPIO device (or with the interface itself), you will need to assign
a device selector to it. You will specify it by the I/O device type, gpio, and an appropriate
device file. The following (equivalent) statements assign a device selector of 8 to a GPIO card:

ASSIGN 8 TO "gpio"
ASSIGN 8 TO "gpio,ldev/gpio"

Here is an example in which the device file is named gpio_device (since it is in the /dev
directory, you need not specify its pathname):

ASSIGN 8 TO "gpio.gpio_device"

This assignment assumes that a node has been created for this device using the following
HP-UX commands (which require superuser capabilities, usually possessed only by the System
Administrator!):

/etc/mknod /dev/gpio_device c 18 Ox030000 I Return I
chmod 666 /dev/gpio_device I Return I

where:

/dev/gpio_device

c

18

Ox030000

chmod 666

is the name of the special file to be created.

specifies "character" mode of operation on the interface or device.

specifies the driver number (also called the major number). For GPIO
interfaces on Series 200/300 computers, this number is 22; on Series
500 computers, the GPIO driver number is 18.

is the minor number, which contains the following fields:

Ox indicates that the minor node number is specified using hexadecimal
notation.

03 is the hardware interface select code of the GPIO interface. This is
a number either set by switches on the interface itself (Series 200/300)
or determined by the slot in which the interface is currently installed
(Series 500).

0000 is always used for GPIO devices (since there is no addressing
capability on this type of interface).

performs a "change mode" on the file access capabilities to allow
read/write capabilities for user, group, and public use of the device
file.

For further explanation of special (device) files and associated major and minor node numbers. see the HP-UX System Administrator

Manual.

An Introduction to I/O 1-7

You can check to see what the current device files are by using the HP-UX 11 command. While
in BASIC, type:

SHELL I Return I

You should now be in the HP-UX Bourne shell. Use the long list command to look at the
directory that contains the device files currently set up. The following command searches for all
device files with gpio in their names.

$ 11 /dev/*gpio* I Return I

The system should return information similar to this for Series 500 systems:

crw-rw-rw- 1 root other 18 Ox030000 Feb 4 15:24 /dev/gpio_device

and similar to this for Series 200/300 systems:

crw-rw-rw- 1 root other 22 Ox080000 Feb 4 15:24 /dev/gpio_device

The results show that there is a device file called gpio_device that is currently associated with
the GPIO interface at select code 3 (select code 8 for Series 200/300). If the device file's name
did not contain the letters gpio, you could use the 11 command and look for the appropriate
major number-22 for Series 200/300 computers, and 18 for Series 500 computers.

When you are ready to return to the BASIC system, type I CTRL I D I.

$ I CTRL I D 1

BASIC responds as follows:

Basic ready

NOTE

The examples throughout this manual, except where otherwise noted,
assume that device selector 8 has been assigned to the GPIO driver
/dev/gpio.

1-8 An Introduction to I/O

Hp·IB Device Selectors
For HP-IB device selectors, there are two types of nodes that you can use:

• Those with primary addressing ("auto-addressed" mode)-used to communicate with
specific devices .

• Those without primary addressing ("raw" mode)-used to communicate with the inter
face. (Addressing can be supplied in the BASIC I/O statements to address specific HP-IB
devices.)

Here is the general way of assigning a device selector to an HP-IB resource. The following
(equivalent) examples assign a value of 3 (the device selector) to a resource with a driver type of
hpib and special (device) file named /dev/hpib:

ASSIGN 3 TO "hpib,/dev/hpib"
ASSIGN 3 TO "hpib"

This assignment assumes that a node has been created for this device, but it does not indicate
whether the "raw" mode or the "auto-addressed" mode is being used.

An HP-IB node without addressing ("raw" mode) is created using the following HP-UX
commands (which require superuser capabilities, usually possessed only by the System
Administrator!):

/etc/mknod /dev/hpib c 12 Ox021fOO I Return I
chmod 666 /dev/hpib I Return I

where:

/dev/hpib is the name of the special file to be created.

c specifies "character" mode of operation.

12 specifies the driver number (also called the major number). For HP-IB interfaces
on Series 200/300 computers, this number is 21; on Series 500 computers, the
HP-IB driver number is 12.

Ox021fOO is the minor number, which contains the following fields:

Ox indicates that the minor node number will be specified in hexadecimal notation.

02 is the hardware interface select code of the HP-IB interface. This is a number
set either by switches (Series 200/300) or is determined by the slot into which the
interface is currently installed (Series 500).

if is a value that specifies that the node is in "raw" mode. (If a number other than
if is specified, such as 01, then this number identifies the HP-IB primary address
of the device.)

00 is always used for HP-IB interfaces and devices.

chmod 666 performs a "change mode" on the file access capabilities to allow user, group, and
public to use the device file.

For further explanation of special (device) files and associated major and minor node numbers, see the HP-UX System Administrator

Manual.

An Introduction to I/O 1-9

You can check to see what the current device files are by using the HP-UX long list (11) command.
While in the BASIC system, type:

SHELL I Return I

which should take you to the HP-UX Bourne shell. Now you can search for the device files with
hpib in their name:

$ 11 /dev/*hpib* I Return I

The system should respond with the following information (for Series 500 systems):

crw-rw-rw- 1 root other 12 Ox021fOO Feb 4 15:18 /dev/hpib

The results show that a device file called hpib is currently associated with the HP-IB interface at
select code 2. If the device file's name did not contain the letters hpib, you could use the HP-UX
11 command and look for the appropriate major number-21 for Series ;200/300 systems, and
12 for Series 500 systems. The 1f shows that there is no primary address associated with this
device file-instead, the interface will be used in "raw" mode.

To return to BASIC, type:

$ I CTRL I D I

BASIC should notify you that you have returned:

Basic ready

Now you can ASSIGN a device selector to the device file, and then use the device selector in I/O
statements. For instance:

ASSIGN 7 TO "hpib .Idev/hpib"
OUTPUT 701;"This is sent to the HP-IB device at address 01."
ENTER 722;Voltage
STATUS 7.1;Register_1
CONTROL 7.2;SRQ_line

Note that when using a device file in "raw mode," you can specify the primary address of HP-IB
devices, such as in the above OUTPUT 701; ... and ENTER 722; ... statements.

1-10 An Introduction to I/O

An HP-IB node with an address ("auto-addressed" mode) is created using the following
HP-UX commands (which require superuser capabilities, usually possessed only by the System
Administrator!):

/etc/mknod /dev/hpib_01 c 12 Ox020100 I Return I
chmod 666 /dev/hpib_01 I Return I

With a device selector assigned to this type of node, you could not use any primary addressing
in I/O statements that use this device selector. For instance, suppose that you search the / dev
directory and find the following node (created with the preceding commands):

SHELL I Return I
$ 11 /dev/hpib* I Return I
crw-rw-rw- 1 root other 12 Ox020100 Feb 4 15:22 /dev/hpib_01
$ I CTRL I D I
Basic ready

The device file /dev/hpib_01 is also associated with the HP-IB interface at select code 2, but
there is also a primary address included-Ol. Thus, you could only use statements such as the
following (which do not specify any primary addressing information):

ASSIGN 3 TO "hpib .Idev/hpib_01"
OUTPUT 3;"This goes to select code 2. address 01."
ENTER 3;Value_from_201

Note that the CONTROL and STATUS statements will not work, since they require that the device
selector be assigned to a "raw" node.

You can use whichever method works best for your purposes.

NOTE

The examples throughout this manual, except where otherwise noted,
assume that device selector 7 has been assigned to the HP-IB device file
named /dev/hpib. Also, the device file is assumed to be used in "raw"
mode-no primary addressing-as shown in the first example above.

For further explanation of special (device) files and associated major and minor node numbers. see the HP-UX System Administrator

Manual.

An Introduction to I/O 1-11

Using File Selectors
You can also use the ASSIGN statement to assign a file selector to an HP-UX file.

ASSIGN 11 TO "TextFile"
OUTPUT 11; "Text for the file."
OUTPUT 11;" 12345.67"
ASSIGN 11 TO "*"

ASSIGN 11 TO "TextFile"
ENTER 11;StrVar$
OISP StrVar$
ENTER 11;StrVar$
OISP StrVar$

Refer to the "Data Storage and Retrieval" chapter of the HP-UX Technical BASIC Programming
Guide for further examples, or to the HP-UX Technical BASIC Reference Manual for the complete
syntax of the ASSIGN statement.

1-12 An Introduction to I/O

Simple 1/0 Operations 2
The PRINTER IS and PRINT statements, which are described in the HP-UX Technical BASIC
Programming Guide, provide you with simple output, operations. However, these operations fall
short of the mark in many circumstances. The most obvious shortcoming is that there is no
corresponding statement to allow you to enter data from external devices. The PRINT statement
is convenient when you simply want to output data to a previously defined printer. However,
PRINT becomes cumbersome when you want to communicate with multiple devices, since you
must specify PRINTER IS each time you want to output to a different device.

The principal tools for using interfaces to move data into and out of the computer are the OUTPUT

and ENTER statements. These statements are the core of I/O operations. They are usually the
fastest and most convenient ways of getting data from the source to the destination in its final
form. Many applications require no more than the proper use of OUTPUT and ENTER.

Simple I/O Operations 2-1

Chapter Contents
This chapter covers the following tasks and topics:

Tasks/Topics Page

Using Simple OUTPUT Statements 2-3

Using Simple ENTER Statements 2-4

Simple OUTPUT and ENTER statements (described in this chapter) use ASCII representation for all
data. ASCII stands for American Standard Code for Information Interchange. It is a commonly
used code for representing letters, numerals, punctuation, and special characters. ASCII provides
a standard correspondence between binary codes that are easily understood by the computer
and alphanumeric symbols that are easily understood by humans.

The chapter "Formatted I/O Operations" covers the OUTPUT USING and ENTER USING statements.
These forms are very convenient if you need special formatting.

NOTE

Before you can use the OUTPUT or ENTER statements, you must assign
device selector numbers to each interface (refer to the chapter "An
Introduction to I/O").

2-2 Simple I/O Operations

Using Simple OUTPUT Statements
You can use a simple OUTPUT statement anywhere that a simple PRINT statement is proper. The
OUTPUT statement contains the device selector(s) of the destination device(s) and a list of items
to be output. The primary difference between OUTPUT and PRINT is that PRINT statements do
not contain a device selector. Here are some examples of properly written OUTPUT statements:

OUTPUT 701 ; "Hello"
OUTPUT 3 ; X
OUTPUT S1 ; A$,B$
OUTPUT 703,725 ; X;Y;Z;
OUTPUT 1000 ; A(1);B(3),N$[2,7]

Notice that a semicolon is used to separate the device selector from the output list, and that
commas or semicolons may be used to separate items within the output list. Items in the output
list may be numeric variables, numeric constants, string variables, or string constants. After the
last item in the output list has been output, an end-of-line sequence is output. You can suppress
this final end-of-line sequence by following the last item in the output list with a semicolon.

The difference between using a comma and a semicolon to separate items in the output list is
the spacing, or field of the items. The simple OUTPUT and PRINT statements both use the same
fields. The semicolon calls for a compact field, while the comma produces free field. These
fields are summarized in the follOWing table.

Table 2-1. Data Field

Numeric Data String Data

Compact Field Digits of the number are output, pre- Characters of the string are output
(;) ceded by a space (if positive) or a mi- with no leading or trailing spaces.

nus sign (if negative), and followed by
one space.

Free Field Digits of the number (with leading Characters of the string are output
(,) space or minus sign) are output left with no leading spaces and no more

justified in a field of 21 characters. than 20 trailing spaces.
Trailing spaces are output as neces-
sary to fill the unused portion of the
field.

Free field format divides the current line length into 21-column fields. The fields begin in columns
1, 22, 43, and 64 if the 80-column default line length is in use. If this is an undesirable format,
you may need to separate items in the output list with semicolons or use formatted output as
explained in the chapter "Formatted I/O Operations."

Simple I/O Operations 2-3

Using Simple ENTER Statements
A simple ENTER statement may be used to enter data anywhere that an INPUT statement is
proper. The ENTER statement contains the device selector of the source device and a list of
items to be entered. Remember that INPUT statements always use the keyboard as the source
and contain no device selector, while ENTER statements always use a peripheral device as the
source and contain the device selector of that device. Here are some examples of properly
formed ENTER statements:

ENTER 3 ; X
ENTER Sl ; A$,B$,C$
ENTER 703 ; X,Y,Z
ENTER 1000 ; A(l) ,B(3).N$

Notice that a semicolon is used to separate the device selector from the enter list, and commas
are used to separate items within the enter list. Items in the enter list may be numeric variables
or string variables.

To use the ENTER statement effectively, it is important to understand what constitutes the begin
ning and ending of an entry into a variable. The simple ENTER statements just shown use a free
field format for processing incoming characters. This format operates differently with string and
numeric data.

Entering Numeric Data
The computer enters numeric values by reading the ASCII representations of those values. For
example, if the computer reads an ASCII 1, then an ASCII 2, and finally an ASCII 5, it places
the value one hundred twenty five into a numeric variable.

Understanding the process that the computer uses to read a free field number can help you to
remove much of the mystery from I/O. Suppose that your program has the statement:

ENTER 3 ; X,Y

2-4 Simple I/O Operations

Now assume that when this statement is executed, the following character sequence is received
through the interface at device selector 3:

9 8 4 Icrllf I

The computer ignores all leading spaces and non-numeric characters, so the MONDAY JUNE charac
ters do nothing. Then the 11 is read. Once the computer has started to read a number, a space
or non-numeric character signals the end of that number. Therefore, the comma after the 11

causes the computer to place the value eleven into variable X and start looking for the next value.
The space in front of 1984 is ignored and the computer reads the 1984. The carriage-return
character causes the computer to place the value nineteen hundred eighty four into variable Y.
Finally, the computer keeps reading until it finds a line-feed character. This terminates the ENTER

statement, so the computer goes on to the next program line with X=11 and Y=1984.

The process just described can be easily summarized. When entering numeric data using free
field format, the computer:

1. Ignores leading spaces and non-numeric characters.

2. Uses numeric characters to build a numeric value.

3. Terminates the building of a value when an embedded or trailing space or non-numeric
character is encountered.

4. Inputs characters until a line-feed character is encountered.

The discussion so far has referred to numeric and non-numeric characters without being specific.
The digits 0 through 9 are always numeric characters. Also, the decimal point, plus sign, minus
sign, and the letter E can be numeric if they occur at a meaningful place in a number. For
example, assume that the following character sequence is read by an ENTER statement:

11121·lsIEI-131

If a numeric value is being entered, the leading minus signs and the E in TEST will be ignored.
They have no meaningful numeric value when surrounded by non-numeric characters. However,
the characters 12. 5E-3 will be interpreted as 12. 5x10-3. In this case, the minus sign and the
exponent indicator (E) occur in a meaningful numeric order, so they are accepted as numeric
characters.

Simple I/O Operations 2-5

Entering String Data
The computer enters string data by placing ASCII characters into a string variable. The process
used for free field entry is straightforward. All characters received are placed into the string
until:

1. The string is full, or

2. A line feed character is received, or

3. A carriage return/line feed sequence is received.

Assume that the computer is executing the statement:

ENTER 705 ; A$.B$.C$

The following character sequence is received:

The letters HELLO are placed into A$ when the first line feed is encountered. Note that the line
feed itself is not placed into A$; it acts only as a terminator for the entry into A$. Then the
entry into B$ begins. However, a carriage return/line feed sequence is read immediately. This
terminates the entry into B$. Since neither the carriage return or the line feed is placed into B$,

B$ becomes the null string. Next, the entry into C$ begins. The characters THERE are placed
into C$, terminated by the carriage return/line feed following those characters. With the enter
list now satisfied and a line feed detected at the end of the data, command entry or program
execution (if running a program) continues on the next program line.

Note that carriage return characters are only ignored when they are immediately followed by a
line feed character. If a carriage return is received and not followed by a line feed, the carriage
return is placed into the string.

Another example can be used to show termination on a full string. This time, suppose the
program contains the following statements:

DIM X$ [3]
ENTER 705 ; X$

The following characters are sent to the computer:

IBlolYlclolT T cr H

The computer places the characters BOY into X$, which fills the dimensioned length of 3. The
computer continues to read (and "throwaway") the incoming characters until a line feed is
encountered. The line feed character terminates the ENTER statement, and the computer goes
on to the next program line with X$=IIBOyli.

2-6 Simple I/O Operations

Formatted 1/0 Operations 3
Although free-field format works well for some I/O operations, there are times when more control
over format is necessary. Perhaps the data is some binary pattern which has nothing to do with
ASCII; or a line feed terminator is not wanted or expected; or a column of numbers with the
decimal points in line is desired; or numbers with only two exponent digits, instead of three, are
required. There are many reasons for desiring format control during I/O operations.

The format of information sent or received through interfaces is controlled by the use of OUTPUT

or ENTER images. These images consist of image specifiers, and can be either placed in an IMAGE

statement or included directly in an OUTPUT ... USING or ENTER ... USING statement.

Chapter Contents
This chapter covers formatted I/O operations. It includes the following tasks and topics:

Tasks/Topics Page

Formatted OUTPUT 3-2

Formatted ENTER 3-9

Converting I/O Data 3-19

Formatted I/O Operations 3-1

Formatted OUTPUT
When you use the OUTPUT ... USING statement, the data is output according to an OUTPUT format
image. The OUTPUT image consists of one or more individual image specifiers that describe the
type and number of data bytes to be output. You can include the OUTPUT image directly in the
OUTPUT statement or you can reference it by the name of a string variable. You can also include
an OUTPUT image in an IMAGE statement. The OUTPUT ... USING statement can then refer to the
IMAGE statement by its line label or line number. The following statements are examples of these
four possibilities:

1. 100 OUTPUT 701 USING IISDDD.DDII 123.45

2. 100 A$="SDDD.DD"

110 OUTPUT 701 USING A$; 123.45

3. 100 FMAT: IMAGE 6A,SDDD.DD

110 OUTPUT 701 USING FMAT B$,Y

4. 100 IMAGE 6A,SDDD.DD

110 OUTPUT 701 USING 100 ; B$,Y

Notice that in each case a destination device is specified with a device selector, and the items to
be output are included in an output list. The output list is preceded by a semicolon, but it does
not matter whether commas or semicolons are used to separate items in the output list. The
output format is controlled by the output image. The complete syntax of the OUTPUT statement,
including the OUTPUT USING form, is covered in the HP-UX Technical BASIC Reference Manual.
The rest of this section explains the effect of the OUTPUT image specifiers. These image specifiers
are used not only by OUTPUT USING, but also by DISP USING and PRINT USING.

Numeric Images
Numeric images are used to control the form of numbers to be output. Three kinds of image
specifiers are used in numeric images:

• digit specifiers

• sign specifiers

• punctuation specifiers

3-2 Formatted I/O Operations

Digit Specifiers
These are the image specifiers that form the digits of a number to be output. They allow you to
determine the number of digits before and after the decimal point, display or suppress leading
zeros, and control the output of exponent information.

Image
Specifier

D

Z

*
E

e
K

Table 3-1. OUTPUT Digit Specifiers

Meaning
Causes one digit of a number to be output. If that digit is a leading zero, a space
is output instead. If the number is negative and no sign image has been provided,
the minus sign will occupy one digit place. If any sign is output, the sign will
"float" to a position just left of the left-most digit.
Same as D, except leading zeros are output.
Same as Z, except leading zeros are replaced with asterisks.
Causes the number's exponent information to be output. This is a 5-character
sequence including the letter E, the exponent sign, and three exponent digits.
Same as E, except only two exponent digits are output.
Causes the number to be output in compact format. Digits are output, preceded
by a space (if positive) or a minus sign (if negative), and followed by one space.

NOTE

Only the D, E, and e specifiers may be used after the radix symbol.

Formatted I/O Operations 3-3

Sign Specifiers
These are the image specifiers used to control the output of sign information. Note that if no
sign specifier is included in the image, negative numbers will use a digit position to output the
minus sign.

Table 3-2. OUTPUT Sign Specifiers

Image
Specifier Meaning

S Causes the output of a leading plus or minus sign to indicate the sign of the
number.

M Causes the output of a leading space for a positive number or a minus sign for a
negative number.

Punctuation Specifiers
These are the image specifiers used to control the output of punctuation within a number, such
as the inclusion of a decimal point.

Table 3-3. OUTPUT Punctuation Specifiers

Image
Specifier Meaning

Causes an American radix point to be output (a decimal point).
R Causes a European radix point to be output (a comma).
C Usually placed between groups of three digits. Causes a comma to be output to

separate the groups of digits (American convention).
p Same as C, except a period is used to separate the groups of digits (European

convention).

3-4 Formatted I/O Operations

The following examples show some of the ways of combining the numeric image specifiers and
the resulting output when numbers are sent to a typical printer:

Table 3-4. Combining the Numeric Image Specifiers

Statement Printed Output
OUTPUT 701 USING "ZZZZ.DD" ; 30.336 0030.34
OUTPUT 701 USING "4Z.2D" ; 30.336 0030.34
OUTPUT 701 USING "4Z.2D" ; -30.336 -030.34
OUTPUT 701 USING "***Z.DD" ; 0.336 ***0.34
OUTPUT 701 USING "3DC3DC3D" ; 1E6 1,000,000
OUTPUT 701 USING "3DC3DC3D" ; 1. 2345E4 12,345
OUTPUT 701 USING "3DC3DC3D" ;1.2E9 (overflow error)
OUTPUT 701 USING "SZ.DDD" ; .5 +0.500
OUTPUT 701 USING "MZ.DDD" ; .5 0.500
OUTPUT 701 USING "MD.DDD" ; .5 .500
OUTPUT 701 USING "Z.DDE" ; .00456 4. 56E-003
OUTPUT 701 USING "Z.DDe" ; .00456 4.56E-03
OUTPUT 701 USING "Z.DDe" ; -.00456 -.45E-02
OUTPUT 701 USING "MZ.DDe" ; -.00456 -4.56E-03

Notice in these examples that the image ZZZZ and the image 4Z mean the same thing. The same
is true for the D and * specifiers. You can indicate the number of digits desired by placing that
number in front of the specifier. The use of parentheses, as in 3(D), changes the meaning. The
image 3D means "output one numeric quantity in a three-digit field." The image 3(D) means
"output three numeric quantities, each in a one-digit field."

Be careful of overflow conditions when using these image specifiers. An overflow occurs when
the number of digits required to accurately represent a number is greater than the number of
digits specified in the image. If this happens, a warning is issued and something is output so
that the program can continue. However, exactly what is output is difficult to predict and will
probably bear little or no resemblance to the number that caused the overflow.

The above examples all show numeric constants in the output list. You may, of course, include
numeric variables in the output list. For example, if X=12. 123, the statement:

OUTPUT 701 USING "ZZZZ.DD" ; X

will result in the printed output 0012.12.

Formatted I/O Operations 3-5

String Images
The image specifiers in this group deal with the output of string characters. They may be used
in combination with the numeric image specifiers for spacing and labeling purposes.

Table 3-5. OUTPUT String Specifiers

Image
Specifier Meaning

A Causes the output of one string character. If all characters in the current
string have been used already, a trailing blank is output.

"literal" A literal is a string constant formed by placing text in quotation marks, by
using the CHR$ function, or by a combination of the two. When a literal
image is encountered, the specified character sequence is output. When the
literal is enclosed in quotes, the quotation marks themselves are not output.
Literal images are commonly used for labeling other output. Literal images
cannot be placed directly into OUTPUT statements. An IMAGE statement must
be used if literal images are desired.

X
K

Causes the output of one space.
Causes the string to be output in compact format. No leading or trailing
spaces are output.

The following examples show some of the many ways to use string image specifiers. The resulting
output is shown for a typical printer.

Table 3-6. Using String Image Specifiers

Statement Printed Output
OUTPUT 701 USING "5A,A" ; "X","Y" XY
OUTPUT 701 USING "K,3X,K" ; "UNCLE", "SAM" UNCLE SAM
OUTPUT 701 USING "K,3X,K" ; 98.6,99.9 98.6 99.9
10 IMAGE "TOTAL = ",3D,X,K TOTAL = 125 CARS
20 T=125 ~ A$="CARS"
30 OUTPUT 701 USING 10 ; T,A$

Notice that the X and A image speCifiers allow a number before them in the same fashion as
the D, Z, and * specifiers. The K specifier works equally well with string data or numeric data.
String and numeric image specifiers can be combined in the same OUTPUT image (usually to label
the output). If literal (string constant) images are desired, they must be placed in an IMAGE
statement. Other OUTPUT images may either be placed directly in an OUTPUT statement, or in an
IMAGE statement.

3-6 Formatted I/O Operations

Binary Images
These image specifiers are used to cause information to be output as one or two binary bytes,
rather than as a character representation. The items to be output using binary images must be
numbers in the proper range. If a value to be output is not an integer, it will be rounded to the
nearest integer before being sent as a binary value.

Table 3-7. OUTPUT Binary Specifiers

Image
Specifier Meaning

B Outputs a value as a single 8-bit byte. The value must be in the range 0 through
255. If the value is out of range, the value modulo (256) is output.

W Outputs a value as two 8-bit bytes comprising a 16-bit word. The most significant
byte of the word is output first, followed by the least significant byte. The value
to be output must be in the range -32,768 to +32,767. Negative numbers are
output in 16-bit twos complement form. If the value is out of range and positive,
32,767 is output. If the value is out of range and negative, -32,768 is output.

The following examples show how binary images may be used.

Table 3-8. Using Binary Image Specifiers

Statement Interface output (Bit Pattern)
OUTPUT 8 USING "B" ; 127 01111111
OUTPUT 8 USING "B" ; 3 00000011
OUTPUT 8 USING "W" ; 3 00000000 00000011
OUTPUT 8 USING "W" ; -1 11111111 11111111

Note that specifying a binary image does not automatically suppress the end-of-line sequence
after the last byte is output. Therefore, in the examples just given, the bit pattern shown is
output followed by a carriage return/line feed.

Formatted 1/0 Operations 3-7

End·of·Line Sequence Images
These image specifiers control the output of end-of-line sequences. An end-of-line sequence may
consist of one or more characters that are normally output after the last item in an output list
and/ or a signal on an interface line concurrent with the last byte output. Exactly what sequence
or signal is used depends upon the programming of the interface. Refer to the appendix for
information on selecting an end-of-line sequence. If your program does not change the end-of-line
sequence, the default is a two-character sequence: a carriage return followed by a line feed.

The following images do not alter the end-of-line sequence. They just control whether or not it
is output.

Table 3-9. OUTPUT EOL Sequence Specifiers

Image
Specifier Meaning

/ Causes the output of an end-of-line sequence. Often used for skipping lines in a
printout.

Suppresses the output of the final end-of-line sequence. This specifier is frequently
used with binary image specifiers to prevent the destination device from interpret-
ing the end-of-line characters as binary data.

The / specifier may be placed anywhere in the image list and may have a number before it to
indicate how many EOL (end-of-line) sequences are desired. The # specifier must be the first
item in an image list and can only be specified once. Note also that the # only suppresses
the EOL sequence that would ordinarily occur after the last item in the output list. It does not
suppress any embedded EOL sequences caused by the / specifier.

A typical use of the # image is to output one byte, and only one byte. The follOWing statement
does this:

OUTPUT 8 USING "#,B" ; X

This statement outputs the binary representation of X with no carriage return, line feed, or other
potentially unwanted bit patterns.

A typical use of the / image is shown by the statement:

OUTPUT 701 USING "K,4/,K" ;A$,B$

If the destination is a printer, A$ is printed, followed by three blank lines, then B$ is printed. If
A$="HI" and B$=" JOE", the character sequence output looks like this:

H cr H cr H cr H cr H J 0 ElcrlH

3-8 Formatted I/O Operations

Formatted ENTER
The ENTER USING statement is used to enter data from an interface into the listed variables
using the format image referenced by the USING secondary keyword. The ENTER image, like the
OUTPUT image, consists of one or more image specifiers that describe the type and number of
data bytes to enter. The ENTER image can be included directly in the ENTER statement or it can
be referenced by the name of a string variable. The ENTER image can also be included in an
IMAGE statement. The ENTER USING statement can then refer to the IMAGE statement by its line
label or line number. Examples of these four possibilities are listed below:

1. 100 ENTER 701 USING "SDDD.DD" ; X

2. 100 A$="SDDD.DD"

110 ENTER 701 USING A$; X

3. 100 FMAT: IMAGE 6A,SDDD.DD

110 ENTER 701 USING FMAT B$,Y

4. 100 IMAGE 6A,SDDD.DD

110 ENTER 701 USING 100 ; B$,Y

Each ENTER statement specifies an interface or device as the source, and a list of variables (string
or numeric) as the destination of the data to be entered. The variables in the enter list are
separated with commas and the list is preceded by a semicolon. The entry of data into the
listed variables is controlled by the ENTER image. ENTER images are analogous to OUTPUT images,
but consist of ENTER image specifiers. These specifiers differ in function from the OUTPUT image
specifiers, and are covered in the remainder of this section. The complete syntax of the ENTER

statement is covered in the HP-UX Technical BASIC Reference Manual.

ENTER images consist of data images and terminator images. These images give you a high
degree of control, respectively, in the following areas:

1. Accurately describing to the computer what the incoming data looks like and what should
be done with it.

2. Precisely specifying what conditions terminate an entry into a variable and what conditions
terminate the ENTER statement itself.

Formatted I/O Operations 3-9

Data Images
The image specifiers in this group are used to indicate what the computer should do with the
incoming data stream. The basic choices are:

1. Use characters to build a numeric variable.

2. Place characters into a string variable.

3. Input bytes as binary values.

4. Skip over a number of characters.

Numeric Image Specifiers. These specifiers are used to control the input of numeric characters
including digits, sign, exponent, and punctuation.

Image
Specifier

D

Z

*

S

M

E

e
C

K

Table 3-10. ENTER Numeric Specifiers

Meaning
These specifiers all accept one character to be used to build a number. The
incoming characters do not have to follow the specified format, but the number of
characters must be correct. The six different specifiers are provided so that your
program can document the expected format of the characters, and so that ENTER

and OUTPUT statements can share the same IMAGE statement. *

Accepts five characters to be used to build a number. The five characters need
not be exponent information, but they can be.
Same as E, but four characters are accepted to be used to build a number.
This specifier also accepts one character to be used to build a number. However,
if a C is present anywhere in a number's image, all commas will be ignored while
the number is being entered. Without this specifier, a comma would end numeric
input.
Enters a numeric or string variable using free field format (explained in chapter 2).

Only the D, E, and e specifiers may be used after the radix symbol.

3-10 Formatted I/O Operations

NOTE

The Rand P specifiers, used with the OUTPUT statement to provide a
European radix point and digit separator, may not be used with the
ENTER statement. If you need to enter European format numbers, you
can use the CONVERT statement (covered later in this chapter) to change
the number into American format.

String Image Specifiers
These specifiers are used to enter characters into string variables.

Table 3-11. ENTER String Specifiers

Image
Specifier Meaning

A Accepts one character to enter into a string variable.
K Enters a string or numeric variable using free field format (explained in the chapter

"Simple I/O Operations").

Some examples are in order. Suppose the following character sequence is received by the
computer:

1234 HE L LIOlcr11f

Any of the following ENTER statements can be used to enter a numeric variable followed by a
string variable:

ENTER 720 USING 114D,SAII ; X,Y$
ENTER 720 USING IIZ.DD,SAII ; X,Y$
ENTER 720 USING II*Z.D,SAII ; X,Y$
ENTER 720 USING lIe,KII ; X,Y$

Notice that any numeric image that accepts four characters will properly enter the 1234. String
data can be entered with an nA image if n (the number of characters) is known, or with a K if
the number of characters is not known.

Formatted I/O Operations 3-11

Suppose instead that the incoming data was:

I 1 I . I 2 I 3 I 4 I HIE L L 0 cr If

The ENTER image would now have to include a C for the entire 1234 to be entered. For example:

ENTER 720 USING IC4D,K" ; X,Y$
ENTER 720 USING IDDDDC,5A" ; X,Y$

Notice that the C does not have to appear at the same place in the image as the comma does
in the incoming data. However, the comma is counted as a character.

Binary Image Specifiers
These specifiers are used to enter data that is received in binary format.

Table 3-12. ENTER Binary Specifiers

Image
Specifier Meaning

B Accepts one byte of binary data and enters its equivalent decimal value into a
numeric variable.

W Accepts two bytes of binary data to be used to build a 16-bit twos complement
binary word. The equivalent decimal value of the resulting word is entered into a
numeric variable. The first byte entered is used as the most significant byte of the

.-
word.

Suppose that the computer receives two bytes of binary information: "00001000" followed by
"00001010". These two bytes could be read with either of the following statements:

ENTER 8 USING "B" X,Y
ENTER 8 USING "W" ; z

In the first statement the B image is used to read the first byte ("00001000"). Its decimal
equivalent (8) is entered into the variable X. The B image is then used to read the second byte
("00001010") and enter its decimal equivalent (10) into Y.

The second statement demonstrates how the W image differs from B. The W image reads the two
bytes as a 16-bit twos complement word ("0000100000001010"). The decimal equivalent of
that word (2058) is entered into the variable z.

3-12 Formatted I/O Operations

Skipping Unwanted Characters
The following specifiers can be used with incoming numeric or string data to skip over any
unwanted characters.

Table 3-13. ENTER Character Skipping Specifiers

Image
Specifier Meaning

X Causes one character to be skipped.
/ Causes all characters to be skipped until the next line feed character is received.

The X specifier should only be used when you have a good understanding of the structure of the
incoming data, but can be very useful in formatting operations. For example, suppose that text
is being entered from a remote computer that sends a line number at the beginning of every
string. You know that the line number information always appears in the first eight characters
of each string, and you don't want these line numbers in your data. The following format could
be used to strip off the line numbers:

ENTER 720 USING "8X,KIt ; A$

The / specifier is used to demand a line-feed field terminator before going on to the next variable.
To see the effect of this specifier, assume that the incoming data is as follows:

1 2 3 H If BYE cr If

Using the statement:

ENTER 720 USING "3D,KIt ; X,Y$

causes X to get the value 123 and Y$ becomes HI. However, if the statement:

ENTER 720 USING 13D.I,K" ; X, Y$

is used, X gets the value 123 and Y$ becomes BYE. The / specifier causes the computer to skip
all characters after X was satisfied until the line feed is received. Entry into Y$ begins with the
first character after the line feed. Without the / specifier, entry into Y$ begins as soon as the
3D field is satisfied.

Formatted I/O Operations 3-13

Terminator Images
Terminator images allow you to precisely define the condition or conditions that terminate entry
into a variable (field termination) and/or terminate the ENTER statement itself (statement termi
nation). Before we discuss the terminator image specifiers, let's see just what is meant by field
and statement termination.

Field and Statement Terminators. The purpose of an ENTER statement is to read a record. To
the programmer a record is a logical grouping of data items. To the computer a record is an
incoming stream of data ended with a record terminator. Since the ENTER statement is ended
when the record terminator is read, this manual refers to the record terminator as a statement
terminator. An incoming record often consists of multiple fields. A field terminator terminates
entry of a data field into a variable. Consider the entry of the following record:

I A I B I c I If I DIE I F I If I G I H I I I cr I If I

The record consists of three fields and could be read with the following ENTER statement:

ENTER 720 USING "K" ; A$,B$,C$

The K image reads each field into a variable in free-field format. ABC is entered into variable A$,

then the first line feed is encountered. The line feed acts as a field terminator and ends the entry
of data into A$. DEF is entered into B$, and the second line feed also acts as a field terminator.
Finally, GHI is entered into C$, and the carriage return/line feed terminates both the field and
the ENTER statement.

NOTE

To allow a carriage return/line feed sequence as a statement terminator,
ENTER ignores a carriage return if it is immediately followed by a line
feed. A carriage return will be entered into the string if it is not followed
by a line feed.

3-14 Formatted I/O Operations

In the above example it was not necessary to specify a terminator image. In most cases an ENTER

statement will function properly without a terminator image because the system has built-in field
terminators and a default statement terminator. These normal terminators are:

• A string field ends when the string is full (check your DIM statements), the character count
in an image field is satisfied, or a line feed is received.

• A numeric field ends when a space or non-numeric character is encountered, or the char
acter count from an image field is satisfied.

• The ENTER statement ends upon receipt of a line feed character or a carriage return/line
feed sequence. This can be the same line feed that satisfied the last field in the ENTER list.

Eliminating the Line Feed Requirement
Normally, the ENTER statement must "see" a line feed character at the end of the incoming data
before the program can go on to the next statement. If there is no line feed character at the
end of the data, the computer will be "hung up" waiting for one. If your incoming data does
not have a line feed at the end, you can use a terminator image to allow the ENTER statement to
terminate properly. You can use the # specifier to eliminate the requirement for a line feed to
terminate the ENTER statement. The ENTER statement terminates when the last variable in the
statement has been satisfied. When the # specifier is used for this purpose, it must be listed as
the first specifier in the ENTER image. For example:

ENTER 8 USING "#,K" ; A$
ENTER 720 USING "#,40,60" ; X,Y

The first statement shows an entry into a string variable using free-field format with the line feed
requirement removed. This statement terminates when the string is full. The second example
shows a formatted entry into numeric variables with the line feed requirement removed. This
statement terminates after entering ten characters. This use of the # specifier is the simplest
(and most common) terminator image application.

Advanced Use of Terminator Images
The ENTER image specifiers discussed thus far are sufficient to handle the great majority of
requirements. However, there are some special situations that demand even greater flexibility.
Most of these special cases involve the EOI (End or Identify) line on the HP-IB. The follOWing
discussion is of no concern to most programmers. However, if you have an application that
involves the EOI line, or if you have an unusual problem with line feeds, then read carefully.

Formatted I/O Operations 3-15

The following image specifiers can be used to modify both field and statement terminating
conditions.

Image
Specifier

#% (or %#)

Table 3-14. ENTER Termination Specifiers

Modifying
Field Termination

Modifying
Statement Termination

Eliminates line feed as a terminating con- Suppresses the requirement for a line
dition during free-field string entry. Line feed terminator. Statement ends when
feeds entered are placed into the string. last field is satisfied.

Allows EOI as an additional terminating Allows EOI or line feed as terminating
condition.
Allows EOI as an additional terminating
condition, and also eliminates line feed
as a terminator during free field string
entry.

conditions.
Specifies that EOI must be received to
terminate the statement, and that line
feed is not a terminator.

Each of these image specifiers can control either field termination or statement termination
depending upon its position in the ENTER image. The following statement illustrates this:

10 ENTER 720 USING "#,#K" ; A$

When the terminator image specifier is included by itself as the first item in the image list (like
the first i), it specifies a statement terminator. When the terminator image specifier is combined
with another specifier (like the #K), it specifies a field terminator. The #, %, and #% images all
follow this convention.

The use of the # specifier to eliminate the requirement for a line feed statement terminator has
already been discussed (refer to "Eliminating the Line Feed ReqUirement"). The #K image in the
above statement eliminates the line feed character as a field terminator. All incoming characters
(including line feeds) are entered into A$ until the string is filled. If A$ has a dimensioned length
of 10, the first 10 characters are entered. This satisfies the variable A$ and also terminates the
ENTER statement.

The statement:

20 ENTER 720 USING "#K" ; A$

also enters all incoming characters (including line feeds) into A$ until the string is full. However,
this statement requires a line feed statement terminator. Once A$ is full, this statement continues
to read (but "throwaway") incoming characters until a line feed is encountered.

3-16 Formatted I/O Operations

If you need to terminate fields and/or the statement with the EOI signal, use the % specifier:

30 ENTER 720 USING n%.%Kn ; A$

The %K image causes the computer to terminate a free field string entry with the EOI signal.
The initial % specifies that the statement may be terminated with an EOI signal (or with a line
feed character).

The statement:

50 ENTER 720 USING n%.#%K" ; A$

allows line feed characters to be entered into the string, the field being terminated by the EOI
signal. The statement will terminate on either the EOI signal or a line feed.

The image %K can also be used to terminate a free field numeric entry with the EOI signal. The
statement:

70 ENTER 720 USING n%.%K.%Kn ; X.Y

enters numeric data into X until an EOI signal is received. Numeric data is then entered into Y

until a second EOI signal is received, which terminates both the field and the statement.

The preceding examples cover only a few of the possible uses of terminator images. You may
find that some other combination of image specifiers suits your particular application. Note that
the built-in field terminators are always in effect. A string field always ends if the string is filled.
A numeric field always ends if a non-numeric character is received. Any field is terminated when
the character count from an image field is exceeded.

There Is Always an Exception
Not all terminator problems can be solved with terminator images. For example, suppose that
you want to enter a name field (string) followed by an age field (numeric). The names are variable
in length and separated from the age by a comma. If the ages came first, this would not be a
problem since the comma would terminate entry into the numeric variable. The task is a bit
trickier because the string data is entered first. You might be able to use a CONVERT statement
(explained in the end of this chapter) to change the comma into a line feed, then use the line
feed to terminate the string. If the application does not permit the blanket conversion of commas
to line feeds, the entire record would have to be input into a temporary string variable. Once
the record is entered, the POS function and string subscripts could be used to extract the name
and age fields. This hypothetical situation emphasizes the importance of knowing the nature of
the data you are trying to enter.

Formatted I/O Operations 3-17

Inspecting Unknown Data
The choice of a proper format image is critical to the success of any formatted I/O application.
The choice of a proper OUTPUT image is only a matter of definition. You know what data is
generated by your program, so you need only choose a desirable form for its output. The main
problem is to avoid image overflow conditions.

The choice of an ENTER image is made more difficult by the fact that you cannot determine the
exact nature of the incoming data if you cannot get it into the computer to study it. Fortunately,
there is a way to inspect a totally unknown character sequence. Any sequence of bytes, including
potential terminators, can be entered with the #. B image. The decimal eqUivalent of the binary
value of each byte will be entered. You can use the CHR$ function to determine the exact
character sequence that is being received. Then, knowing the exact nature of the incoming
data, you can choose an appropriate ENTER image. The following program is an example of this
technique:

100 ! Program to inspect incoming data
110 ASSIGN 8 TO "gpio"
120 Sl=8 ! Device selector for the gpio interface
130 ! Establish a terminating condition
140 SET TIMEOUT Sl;3000
150 ON TIMEOUT Sl GO TO 240
160
170 1=1 ! Initialize counter
180 ! Input 1 byte; display analysis
190 ENTER Sl USING "#.B" ; X
200 DISP "BYTE";I;TAB(l1);"VALUE =";X;TAB(24);"CHAR = ";CHR$(X)
210 1=1+1 ! Count bytes
220 GOTO 190
230 !
240 DISP "DATA INPUT HAS STOPPED"
250 RESET Sl Stop I/O operation
260 END

3-18 Formatted I/O Operations

Converting 1/0 Data
The final form of I/O data formatting involves changing the characters that are entered or output.
The CONVERT statement allows you to convert characters into other characters during an ENTER
or OUTPUT operation. The syntax of the CONVERT'statement is covered in the HP-UX Technical
BASIC Reference Manual. Some examples of the CONVERT statement follow:

1. CONVERT IN 7 PAIRS ; A$

2. CONVERT OUT 7 PAIRS ; A$

3. CONVERT IN 7 INDEX ; A$

These examples show that the conversion can take place during an ENTER operation (specify
IN) or during an OUTPUT operation (specify OUT). You can also specify that the conversion table
be accessed by either the PAIRS or the INDEX method, The actual conversion table must be
contained in a string variable (A$ in the above examples).

One problem that requires the use of CONVERT is the entry of European format numbers (with
periods separating digit groups and a comma for the radix point). There is no ENTER image to
accept this type of data directly, but the CONVERT statement can be used to convert commas to
periods and periods to spaces. The statements for doing this with an interface at device selector
7 are:

A$=", .. "
CONVERT IN 7 PAIRS ; A$

For example, "12.345,6" is converted to "12 345,6" by the above statements.

The statement:

ENTER 720 USING "K" ; X

could be used to read the number into variable X (the conversion is in effect for any data entered
through the interface at device selector 7). The converted data can be entered without an ENTER
image since free-field format ignores spaces within a number and recognizes a decimal point. It
is important to note that this CONVERT statement changes all periods to spaces and all commas
to periods, whether they are part of a European number or part of a block of text. Since this
could have some undesired effects, it is necessary to be able to turn off the conversion when it
is no longer desired. The following statement cancels the conversion:

CONVERT IN 7

Formatted I/O Operations 3-19

Giving only the direction and device selector number, without specifying PAIRS or INDEX or any
other parameters cancels a previously selected conversion.

Control characters, such as carriage return or line feed, can also be converted. The following
example shows the statements to convert a carriage return to a line feed. This conversion is
needed when entering data from a device that gives only a carriage return, without a line feed,
as a delimiter.

A$=CHR$(13)&CHR$(10)
CONVERT IN 7 PAIRS ; A$

The following program is an example of using the secondary keyword PAIRS with the CONVERT
OUT command. In this program, the string ConStr$ is used as a conversion table for the CONVERT
OUT statement. Notice that for each upper-case character in the string ConStr$ there is a lower
case character paired with it. The upper-case letter in the output string is then converted to the
lower-case value of the character it was matched with in the ConStr$ string.

100 DIM ConStr$[52]
110 ConStr$=IAaBbCcDdEeFfGgHhIiJjKkLl"
120 CONVERT OUT 1 PAIRS ; ConStr$
130 OUTPUT 1 ; "SOME UPPERCASE LETTERS. II

140 END

Executing the above program will produce the following results:

SOMe UPPeRcaSe leTTeRS.

3-20 Formatted I/O Operations

Using 1/0 Buffers 4
The previous two chapters have covered the OUTPUT and ENTER statements, and their use in
conducting data transfers to and from devices. This chapter provides a discussion on conducting
data transfers to and from I/O buffers.

Chapter Contents
Data transfers can be made to and from I/O buffers. This chapter covers how these data transfers
are made. It includes the following tasks and topics:

Tasks/Topics Page

I/O Buffers 4-2
The IOBUFFER Statement 4-2
Registers used by an I/O Buffer 4-3

Using I/O Buffers 4-1

What are 1/0 Buffers?
A buffer is a section of read/write memory set aside for the purpose of temporary data storage.
I/O buffers can be used as the source of data for ENTER, and as the destination for OUTPUT.

The IOBUFFER Statement
Before you can OUTPUT to or ENTER from an I/O buffer, you must declare it with the IOBUFFER

statement. You may declare up to 10 I/O buffers. To declare an I/O buffer, dimension a
string variable to the desired length, then execute an 10BUFFER statement for that variable.
To dimension the string variable Z$ to a length of 100 characters, then declare it to be an I/O
buffer, use the following statements:

DIM Z$ [100]
IOBUFFER Z$

Once you have declared an I/O buffer, you may use an ENTER or OUTPUT statement to exchange
data with the I/O buffer and the program variables. The figure shown below illustrates how
ENTER, OUTPUT, conversion, formatting, and I/O buffers work together.

OUTPUT

Program
variables -'" CONVERT .
and data - OUT -

A$ (X) , I , 1. 23

I/O Buffer

Program
CONVERT

variables .. -....
IN

....
A(I),X,B$

T

ENTFR

Figure 4-1. Data Exchange with the I/O Buffer

4-2 Using I/O Buffers

The OUTPUT statement takes data from program variables and does any necessary formatting
while placing that data into its ASCII representation. Then, if an output conversion is in effect,
the ASCII characters are converted accordingly and placed into the I/O buffer at the position
specified by the fill pointer. The I/O buffer is full when the fill pointer is at the end of the buffer.
Note that default OUTPUT operations to a buffer place a carriage return and a line feed at the
end of the data. This means that the buffer should be dimensioned to a length greater by two
when using the default OUTPUT operation.

The ENTER statement takes characters from the I/O buffer at the position specified by the empty
pointer. If an input conversion is in effect, these characters are converted accordingly, formatted
as necessary, and changed into the proper internal representation for the program variables. If
you are entering data from an active buffer, you can avoid errors by using the form:

ENTER Z$ USING "#.#K";A$

This form of ENTER removes the requirement for statement and field terminators, which may not
be in the buffer yet.

Registers
When you declare a string variable to be an I/O buffer (by executing the IOBUFFER statement),
two registers are created for that buffer. Registers 0 and 1 contain the buffer pointers. You can
read these registers with the STATUS statement and write to them with the CONTROL statement
(refer to the chapter "Direct Interface Communication").

Pointers
Register 1 contains the fill pointer. The fill pointer is initially equal to zero and indicates the
number of characters written into the buffer (the same value as that returned by the LEN function).
Placing a character into the buffer proceeds as follows:

• increment the fill pointer,

• store the character.

This operation is automatically handled by the OUTPUT statement and also by any string variable
assignment operations such as Z$=Z$&A$. You do not normally need to assign values to the fill
pointer.

Using I/O Buffers 4-3

Register 0 contains the empty pointer. The empty pointer is initially equal to one and indicates
the number of characters that have been read from the buffer. Taking a character from the
buffer proceeds as follows:

• read the character,

• increment the empty pointer.

This operation is performed automatically by the ENTER statement.

A buffer is full when the fill pointer equals the string's dimensioned length. Any OUTPUT operation
to a full buffer will result in an error. A buffer is empty when the empty pointer is equal to
the fill pointer plus one (regardless of the dimensioned length of the string). When a buffer is
emptied, the fill pointer is reset to 0 and the empty pointer is reset to 1. This is the same initial
condition as that set by executing the IOBUFFER statement, except that IOBUFFER also initializes
conversion table pointers.

Buffer Status and Control
You can monitor the status of the buffer pointers, by reading the appropriate registers with the
STATUS statement. The following table shows the appropriate statements to read the status of
the I/O buffer Z$:

Table 4-1. I/O Buffer Status

Default Register STATUS
Register Value Function Statement

0 1 Empty pointer STATUS Z$,O;TO
1 0 Fill pointer STATUS Z$,l;Tl

You may read these registers at any time for an I/O buffer. However, an error results if you
attempt to read the status of a string variable that has not been declared as an I/O buffer.

You can assign new values to the empty pointer and fill pointer by writing to Registers 0 and 1
with the CONTROL statement. This gives you the capability of sending the same data over and
over again without having to recompute the data. The following table shows the I/O buffer
control registers and how they are accessed.

4-4 Using I/O Buffers

Table 4-2. I/O Buffer Control

Default Register CONTROL
Register Value Function Statement

0 1 Empty pointer CONTROL Z$.O;value
1 0 Fill pointer CONTROL Z$. 1 ; value

You can write a new buffer pointer value (represented by value in the above statements) to these
registers at any time, but an error will result if you execute a CONTROL statement to a non-buffer
string variable.

You can do several operations by exercising control over the buffer empty and fill pointers. Some
typical applications are:

• Retransmit data.

• Transmit any portion of the data in the buffer.

• Write data into any section of the buffer.

• Read data out of any section of the buffer.

Using I/O Buffers 4-5

Notes

4-6 Using I/O Buffers

Interrupt Programming 5
An interrupt to a computer is very much like a telephone ringing while you are working. It is
a means of diverting your attention from whatever you are doing. "Servicing" an interrupt is
similar to the act of answering the ringing telephone. When the telephone business is completed,
you typically resume the "interrupted" activity where you left off.

If you have a switch that can disconnect the telephone bell, you can disable or enable that
interrupt by setting the switch. If your telephone has more than one line, you can enable or
disable more than one interrupt. The computer has essentially the same facility.

The computer has two types of interrupts to deal with:

• low-level, or hardware interrupts,

• high-level, or software interrupts.

In general, the hardware interrupt is used by the computer for its own purposes and is transparent
to the user. The software interrupt, or end-oj-line branch, is provided so that you can write
custom service routines for interrupts that are specific to your system.

The effect of an end-of-line branch is to check, at the end of each program line, for an event.
The event may be an error, a hardware interrupt, an interface timeout, a function key-press, or
a timer timeout. When one of these events occurs, a special portion of the program the service
routine is executed to deal with the event. The programmer can enable or disable the end-of-line
branch.

Interrupt Programming 5-1

Chapter Contents
This chapter deals with end-of-line branching on interrupts. It covers the following tasks and
topics:

Tasks/Topics Page

End-of-line Branching on Timeouts 5-2
End-of-line Branching on Errors 5-5
End-of-line Branching on Key Interrupts 5-7
How Interrupts Interact 5-8

End-of-Line Branch Programming
The rest of this chapter shows how you can write service routines to deal with end-of-line branches
for various I/O related events. Refer to the HP-UX Technical BASIC Reference Manual for the
complete syntax of the statements and functions covered in the following discussion.

Timeouts
If an external device is turned off, becomes disconnected, or otherwise fails to send or receive data
during an ENTER, OUTPUT, or SEND operation, the result is a loss of handshake. (Handshaking is a
means of reliably transferring data between two devices. Refer to the chapter "An Introduction
to I/O.") Loss of handshake during an ENTER, OUTPUT, or SEND operation prevents data from
being transferred and "hangs" the program until the operator becomes aware that something has
gone wrong. This is not acceptable for most I/O applications, especially those where unattended
operation is frequent.

5-2 Interrupt Programming

The SET TIMEOUT statement allows you to establish a maximum time period for the computer
to wait on an interface to handshake data. If an interface exceeds the timeout period, your
program can follow either of two courses of action. The default method just aborts the I/O
operation in progress and continues program execution at the next line. The other method
uses an ON TIMEOUT statement to execute a timeout service routine after the I/O operation is
aborted. As part of the syntax for the ON TIMEOUT statement, it is necessary to specify where
the service routine for an event is, and also whether the routine is a subroutine (GO SUB) or a
program segment (GOTO). Note that the computer must know where to branch to and what to
do before an interrupt occurs, or else it will be forced to ignore it. In the following example,
separate service routines are used for timeouts at device selectors 7 and 8:

100 ASSIGN 7 TO "hpib" ! II Raw II HP-IB device.
110 ASSIGN 8 TO "gpio" ! GPIO device.
120 ! Device selector : 7 = HP-IB; 8 = GPIO interface
130
140 SET TIMEOUT 7;2000 2 second HP-IB timeout.
150 SET TIMEOUT 8;4000 4 second GPIO timeout.
160
170 ON TIMEOUT 7 GOSUB HpibBranch Branch on HP-IB timeout.
180 ON TIMEOUT 8 GOSUB GpioBranch Branch on GPIO timeout.
190
200
210 Loopl: ENTER 724 ; Voltage! Enter data from device 724.
220 OUTPUT 8 ; Voltage ! Output data to GPIO device.
230 GO TO Loopl
240
250 !
260 HpibBranch: ! Timeout service for device selector 7.
270 DISP "HP-IB Timeout"
280 RESET 7 ! Attempt to recover.
290 RETURN
300 GpioBranch: ! Timeout service for device selector 8.
310 disp "GPIO Timeout"
320 RESET 8
330 RETURN
340 END

NOTE

When you enable timeout end-of-line branches for more than one select
code, the order of precedence of the branches is important. Refer to
"How Interrupts Interact" at the end of this chapter.

Interrupt Programming 5-3

Obviously, in a dedicated system more significant action could be taken than just printing a
message, aborting the operation with a RESET, and returning to the program. For example,
a flag could be set by the timeout routine which could be checked before attempting an I/O
operation on that device selector. This flag might indicate a printer out of paper, for example.
The following example shows how such a flag might be used to determine whether an operation
(data entry from device selector 7) has been successfully completed.

100 ASSIGN 7 TO "hpib" ! "Raw" device.
110 SET TIMEOUT 7;2000 ! Timeout = 2 seconds.
120 ON TIMEOUT 7 GOSUB HpibTimeout ! Sets up branch.
130 !
140 Flagl=O ! Clears timeout flag.
150 DIM Voltage(50) ! Dimensions variable V.
160 !
170 FOR 1=1 TO 10
180 IF Flagl<>O THEN GO TO Mesg ! Test timeout flag.
190 ENTER 724 ; Voltage(I) ! Enter the value of # I.
195 OUTPUT 1 ; Voltage(I) ! Output the value of # I.
200 NEXT I
210 Mesg: DISP I;" Values entered" ~ STOP
220 !
230 !
240 HpibTimeout:
250 DISP "Timeout end of data"
260 Flagl=l
270 RETURN
280 END

When a timeout occurs, the flag Flagl is set equal to 1, and the IF statement of line 180 causes
the ENTER statement of line 190 to be skipped. The loop is exited and the program continues.
(In this example, only a PRINT and STOP are shown for simplicity.) In this case, the cause of the
timeout is not a device failure, but rather the end of data to be received.

There is a corresponding disable statement for timeout end-of-line branches. The OFF TIMEOUT
statement can be used to cancel end-of-line service for a specified interface timeout. For more
information regarding the syntax of these statements, refer to the HP-UX Technical BASIC
Reference Manual.

5-4 Interrupt Programming

Errors
The ON ERROR statement allows you to set up an end-of-line branch to an error service routine.
ON ERROR works much like ON TIMEOUT. In this case the event that causes the branch is an error.
However, HP-UX Technical BASIC consists of five modules, each containing BASIC statements,
and each capable of generating error conditions, Thus, in ON ERROR servicing it is necessary
to determine which module is the source of the error. Error numbers up to 100 pertain to
the standard BASIC statements and functions. The I/O, Advanced Programming, Matrix, and
Graphics modules of BASIC share the error numbers above 100. If an error number above 100
occurs, you can identify the module that produced the error with the ERROM function. If the
error in question involves an I/O module statement, ERROM will return a value of 192. Refer to
the HP-UX Technical BASIC Reference Manual for the syntax of the ERROM function.

Once you have identified an error as an I/O module error, you should check to see if it is
an interface error. Error numbers 101 and 112 will not occur during a running program. All
other I/O module errors below 123 are interface-dependent errors. Therefore, a simple test
for ERRN<123 will determine whether the error is an interface error. If an interface error has
occurred, you can determine the select code of the interface that caused it by executing the
ERRse function.

Interrupt Programming 5-5

In trapping errors with service routines it is important to run the tests in the proper order. The
following simple program segment shows the recommended order of function checks to isolate
I/O errors. This segment only displays an error message. An actual error recovery routine
would also include statements to take whatever corrective action is appropriate in your specific
application.

10 ON ERROR GOSUB 100
20 ! Body of program goes here.

100 Test for non-I/O errors.
110 IF (ERRN<101) OR (ERROM<>192) THEN GOTO NonIOerror
120
130
140 Test for interface errors.
150 IF ERRN<123 THEN GOTO 260
160
170
180 Process I/O errors. (error #'s 123 through 131)
190 DISP "I/O ERROR" ;ERRN; II at line" ;ERRL
200
210 ! Recovery routine goes here.
220 !
230 RETURN
240
250
260 Process interface errors. (error #'s 101 through 122)
270 DISP "I/O ERROR";ERRN;"at line";ERRL
280 DISP "Problem on select code";ERRSC
290 !
300 ! Recovery routine goes here.
310 !
320 RETURN
330
340
350 NonIOerror: Process non-I/O error here (error #'s 1 through 100)
360 RETURN

Refer to the HP-UX Technical BASIC Reference Manual for a complete list of errors and their
meanings.

5-6 Interrupt Programming

ON KEY Interrupts
The ON KEY statement enables a program to execute an end-of-line branch when you press a
function key. For example, if a program contains the statement:

ON KEY# 1 GOTO 100

it will branch to line number 100 when you press function key number 1 ([ill).

The ON KEY statement is often used in conjunction with the ENABLE KBD statement for key mask
programming. In key mask programming, all keys are disabled except for those needed for
operator input. Thus, for example, your program can prevent an operator from accidentally
aborting an I/O operation in progress.

You can set up the desired key mask by specifying a key mask parameter in the ENABLE KBD
statement. The key mask parameter is a decimal number from 0 to 255 representing an eight-bit
byte. The upper four bits of this byte specify the key mask during program execution. The
lower four bits specify the key mask during the keyboard input mode of operation. Refer to
the HP-UX Technical BASIC Reference Manual for a complete discussion of the ENABLE KBD
statement.

The following example illustrates the use of ON KEY and ENABLE KBD. ENABLE KBD 1+32 masks
out all keys except the function keys during program execution. Alphanumeric input is enabled
(along with the function keys) in the keyboard input mode.

10 ENABLE KBD 1+32 ! Select allowed keys.
20 Start: ON KEY# 1 GOTO InputData
30 ON KEY# 2 GO TO SelectOpt
40 ON KEY# 3 GOTO EndProg
50 !
60 GOTO Start
70 !
90 !
100 InputData:
110 DISP "Enter date (Month,Day,Year)" (Q INPUT M,D,Y
120 DISP "Month" ;M; "Day" ;D; "Year";Y
130 GO TO Start
140
150 SelectOpt:
160 DISP "Select operating mode." (Q GOTO Start
170
180 EndProg:
190 DISP "End of program."
200 END

Interrupt Programming 5-7

You can select the desired program section by pressing the appropriate function key. When you
press function key number 1 ([[]), the program branches to the subroutine InputData. When
the INPUT statement of line 120 is executed, you can enter the date as requested.

How Interrupts Interact
Some comments are in order to help you predict the operation of programs that use end-of-line
branching.

End-of-line service occurs in a specific order. That is, if more than one end-of-line branch is
pending at the end of a program line, one of the branches will be taken before the other. The
following table lists the types of end-of-line branches and the select codes, and gives the order
of precedence for combinations of branch type and select code.

Table 5-1. Branch Precedence

Device Selector

Branch Type 3 4 5 6 7 8 9 10

ON ERROR ~ 1 l

ON TIMEOUT 2 3 4 5 6 7 8 9

ON TIMER ~ 10 l

ON KEY ~ 11 l

ON KYBD ! 12 l

For example, a pending ON TIMEOUT branch for select code 5 would be taken before a pending
ON TIMEOUT branch for device selector 9. Any pending ON ERROR branch would be taken after
any pending ON TIMEOUT branch (regardless of the select codes).

You should note that the term precedence is used here, not priority. This means that when
the computer is executing one service routine, other service routines are not implicitly locked
out. (In a priority system, any service routine having a lower priority than the routine currently
being executed will not receive control until the current routine is completed.) If two end-of-line
branches are pending, the one having precedence is executed first. However, after the first line
of that service routine executes, the still pending end-of-line branch to the second service routine
is taken!

5-8 Interrupt Programming

You can guarantee uninterrupted execution of the first service routine by using its first line to
disable the other routine's end-of-line branch. An example will illustrate this procedure:

10 ASSIGN 7 TO "hpib"
20 ASSIGN 8 to "gpio"
30 SET TIMEOUT 7;4000
40 SET TIMEOUT 8;4000
50 ON TIMEOUT 7 GOSUB 120
60 ON TIMEOUT 8 GOSUB 220
70
80 ! Program body goes here.
90 X=X+l C DISP X ! Dummy loop.
100 GOTO 90
110
120 OFF TIMEOUT 8 ! Now device selector 8 cannot get TIMEOUT service.
130 DISP lithe HP_IB interface has timed out. II
140 This routine would do necessary service functions
150 for device selector 7.
160
170
180
190 Now reenable TIMEOUT service for device selector 8.
200 ON TIMEOUT 8 GOSUB 220 ~ RETURN
210
220 OFF TIMEOUT 7 ! Now device selector 7 cannot get TIMEOUT service.
230 DISP liThe GPIO interface has timed out. II
240 DISP
250 This routine would do necessary service functions
260 for device selector 8.
270
280
290 Now reenable TIMEOUT service for device selector 7.
300 ON TIMEOUT 7 GOSUB 120 ~ RETURN
310 !
320 END

Assume that both interrupts occur while line 90 is executing. Both end-of-Iine branches are
pending when line 90 completes. The device selector 7 service routine has precedence, so line
120 is executed. Line 120 disables the device selector 8 service routine, so the end-of-line
branch that would have occurred is not taken. Line 200, the last line of the device selector 7
service routine, reenables the device selector 8 service routine. When the RETURN is executed,
the branch to line 220 occurs. Note that the OFF TIMEOUT does not eliminate the pending
end-of-line branch, it just defers the branch until an ON TIMEOUT is executed later.

Events such as timeouts and errors are "remembered" indefinitely, until a RESET or STOP occurs.
Therefore, once an event has occurred and remains unserviced, execution of an ON TIMEOUT
results in an immediate end-of-line branch.

Interrupt Programming 5-9

The type of branch taken can affect program operation. The most predictable program execution
occurs when GOSUB end-of-line branches are taken. You should use GOTO only when the program
is simple and only one or two end-of- line branches are expected. One very simple example of
this is:

ON TIMEOUT 7 GOTO 10000
ON TIMEOUT 8 GOTO 10000

These two statements direct program execution to line 10000 (presumably an END statement).
This kind of "bail-out" provision can be useful when developing certain types of programs that
could tie up the HP-IB or GPIO bus indefinitely.

5-10 Interrupt Programming

Direct Interface Communication 6
HP-UX Technical BASIC provides statements to access the control and status registers of your
interface, and thus to tailor the operation of the interface to the specific requirements of your
system.

You can monitor the status of interface operations with the STATUS statement. This status may
reflect the actual high/low voltage level of external I/O lines, or it may indicate the interface's
internal state, depending upon which status register is being read. You can also use STATUS to
check the status of an I/O buffer (refer to the chapter "Specialized Data Transfers").

You can use the CONTROL statement to direct the mode of operation of an interface. The interface
generally provides automatic control of external I/O lines according to the mode selected, and
also may provide for manual override of certain of the I/O lines for custom sequences.

Each interface has its own status and control registers. The functions of these registers are
interface dependent, and are covered in the appendix.

Direct Interface Communication 6-1

Chapter Contents
This chapter discusses the accessing of control and status registers for tailoring the operation
of your particular interface to the system needs. Tasks and topics which are covered in this
chapter are as follows:

Tasks/Topics Page

Checking Interface Status 6-2

Interface Control 6-4

Checking Interface Status
You can obtain the status of an interface register by specifying the select code of the interface, the
number of the desired register, and the name of a numeric variable in a STATUS statement. The
STATUS statement returns the value of the specified register. The following statement obtains the
value of the identification register (Status Register 0) for the HP-IB interface at device selector
7:

7?;\
Device Register Numeric

Selector Number Variable

The value of Status Register 0 is always the interface's identification code (1 for the HP-IB). For
the other status registers, STATUS returns a value that depends on the status of the interface
(refer to the appendix).

6-2 Direct Interface Communication

You can use one STATUS statement to obtain the values of several consecutive status registers.
Just specify the register number of the first status register in the series and list one numeric
variable for each status register to be read. For example, the following statement reads Status
Registers 4 and 5 (SR4 and SRS) of the HP-IB interface at device selector 7:

STATUS 7.4;X4.X5~

DeVice~~ ~turns Returns
Selector Register SR4 SR5

What you do with the contents of these registers depends upon your application, needs, and
type of interface. Status Registers 1 through 6 for the HP-IB interface indicate the following:

Status Register 4

Status Register 5

HP-IB address.

HP-IB state.

The GPIO interface returns different information for these same registers.

Direct Interface Communication 6-3

Interface Control
The CONTROL statement allows you to program the operation of the interface by writing to its
control registers. Two items of general interest are:

• setting and clearing interface control lines,

• selecting an end-of-line (EOL) sequence.

Control lines are interface dependent. In general, you can set or clear interface-specific control
lines by writing to Control Register 2 of the desired interface. Refer to the appendix for
information on Control Register 2 for each interface.

CAUTION

DO NOT WRITE TO THE INTERFACE CONTROL LINE REGISTER
(CONTROL REGISTER 2) UNLESS YOU ARE COMPLETELY FAMIL
IAR WITH THE PROTOCAL FOR YOUR INTERFACE. AN IMPROPER
CONTROL LINE OPERATION MAY CAUSE A LOSS OF DATA, A DE
VICE MALFUNCTION, OR DAMAGE TO YOUR INTERFACE.

Suppose that you want to set the REN (Remote Enable) control line on the HP-IB. You can do this
by writing the value 64 to Control Register 2 for the HP-IB. You can use either of the following
statements (assuming select code 7):

CONTROL 7.2;64
ASSERT 7;64

Both statements set the REN line true and immediately set the control line (REN in this case)
regardless of any I/O operation in progress.

A second item of general interest in control register programming is the end-of-line (EOL) character
sequence sent by the interface. This EOL sequence defaults to carriage return/line feed for all
interfaces, and is sent after every PRINT or OUTPUT operation (unless you suppress it). The EOL

sequence is also sent if you include the / (slash) image specifier in a PRINT or OUTPUT statement,
or if you specify EOL in a SEND statement.

You may occasionally want to change the EOL sequence to suit the needs of a particular device.
For example, you could use "carriage return/line feed/line feed" to obtain double spacing on
a printer. For a CRT terminal that performs an automatic line-feed when a carriage return is
received, you could use just a carriage return.

6-4 Direct Interface Communication

The HP-IB interface provides EOl sequence programmability with Control Registers 16 through
23. Up to seven EOl characters can be sent. You specify the number of characters by writing to
Control Register 16. You then specify the consecutive characters by writing to CR17 through
CR23. For example, you could use the following CONTROL statement to program a double line
feed EOl sequence with EOI (End Or Identify) set on the last line feed.

CONTROL 7,16;128+3,13,10,10

Enable~~rrtage ~-F •• d.
EOr Count Return

of 3

NOTE

Control Registers 16 through 23 are used in exactly the same way to
select an EOl sequence for the GPIO interface. The method is similar
for the GPIO interface, but the function of Control Register 16 is slightly
different (refer to the appendix).

In summary, the control registers provide the flexibility required to tailor interface operation to
your specific system requirements. They should be used with caution, however, so that you
don't get any unpleasant surprises. Study the register descriptions in the appendix to determine
which capabilities you need and how to implement them. You may need to experiment a bit to
obtain the result you desire.

Direct Interface Communication 6-5

Notes

6-6 Direct Interface Communication

Interface Dependent Statements 7
The BASIC I/O statements that we have covered so far have not been interface dependent.
That is, the operation of these statements is the same regardless of the interface that you are
using. 1 The remaining BASIC I/O statements have interface dependent operation. Many of these
statements are not applicable to all of the interfaces, and they may operate differently with each
interface.

The following table lists the interface-dependent BASIC I/O statements and indicates which
interfaces implement each statement. An asterisk (*) in an interface column indicates that the
statement is implemented by that interface. If the column contains "NA", the statement is not
applicable to that interface.

Table 7-1. Interface Dependent I/O Statements

Interface
BASIC Statement HP-IB GPIO
ASSERT * *

CLEAR * NA
LOCAL * NA
LOCAL LOCKOUT * NA
PASS CONTROL * NA
PPOLL * NA
REMOTE * NA
REQUEST * NA
RESET . .
SEND . .
SPOLL * NA
TRIGGER * NA

The HP-UX Technical BASIC Reference Manual defines the syntax of all BASIC statements, and
defines the operation of the above statements for each interface.

1 The operation of the STATUS and CONTROL statements is not interface dependent, although the effect of these statements is. This is
because the control and status registers are different for each interface (refer to the appendix).

Interface Dependent Statements 7 -1

Chapter Contents
This chapter covers the SEND and RESET statements. These statements apply to all of the
interfaces, though their operation is interface dependent.

The tasks and topics which are covered in this chapter are as follows:

Tasks/Topics Page
The SEND Statement 7-2
The RESET Statement 7-3

The SEND Statement
In some applications you may want to send an arbitrary data sequence from the computer to
one or more peripherals. You can use the SEND statement to send data to any of the interfaces.
The following are examples of properly formed SEND data statements:

SEND 7; DATA "Welcome to the world of I/O" EOL
SEND 8; DATA "0CT. 9", "NOV. 13"

An end-of-line sequence is sent by the interface if you specify EOL.

The commands that you may send depend on the interface that you are using. The HP-UX
Technical BASIC Reference Manual defines the syntax of the SEND statement. The following are
examples of correctly formed SEND command statements:

SEND 8; DATA 23
SEND 7; MTA UNL LISTEN 4,5 CMD F,H
SEND 7; CMD X$

Both commands and data may be included in the same SEND statement. For example:

SEND 710; DATA "ABC" CMD 23

7 -2 Interface Dependent Statements

The RESET Statement
RESET terminates the current I/O operation and returns all interfaces to their default states. This
should only be necessary when first beginning a program or when recovering from an interface
failure.

The remaining interface dependent statements are quite specific to the interface being used.
The operation of each statement for each interface is defined in the HP-UX Technical BASIC
Reference Manual. The following two chapters of this manual cover selected I/O programming
techniques for the various interfaces (the chapter "Using the HP-IB Interface" covers the HP-IB
interface and the chapter "Using the GPIO Interface" covers the GPIO interface). These chapters
give several examples involving the interface dependent statements.

Interface Dependent Statements 7 -3

Notes

7 -4 Interface Dependent Statements

Using the Hp·IB Interface 8
This chapter presents some selected programming techniques for the HP-IB interface. The
chapter "The HP-IB Interface" describes the HP-IB interface itself. Refer to the appendix for
a description of the HP-IB status and control registers. All of the applications presented in
this chapter assume that your computer is the system controller (except the examples in "Non
Controller Operations").

NOTE

Before you can perform any I/O operations with an interface, you must
assign an device selector number to it (refer to the chapter" An Introduc
tion to I/O"). The examples in this section assume that device selector
number 7 has been assigned to the HP-IB interface.

Using the HP-IB Interface 8-1

Chapter Contents
This chapter covers the following tasks and topics:

Tasks/Topics Page

Controlling the Bus 8-2

Advanced I/O Operations 8-5

Handling Service Requests 8-10

Non-controller Operations 8-12

Handling Interface Problems 8-14

Controlling the Bus
Typically, the first operation necessary for HP-IB systems is to program all devices for remote

operation. Most HP-IB devices are capable of manual (front panel) operation or of remote (bus
controlled) operation. You can put a device into remote mode by setting the REN (Remote
Enable) line true and addressing the device to listen. (HP-IB control lines are covered in the
chapter "The HP-IB Interface.") The computer sets the REN line when you turn on the power,
execute a hardware reset, or execute the REMOTE statement. You can address a device to listen
by executing any statement that includes the device's listen address. The REMOTE statement is
usually the most convenient method of setting devices to the remote mode. For example, to
place HP-IB devices 713 and 722 under remote control, execute the following statement:

10 REMOTE 713,722

The LOCAL LOCKOUT statement sends the LLO (Local Lockout) message. This prevents devices
from being returned to local control from the front panel (by the Return-to-Local switch). The
LOCAL LOCKOUT statement affects all devices connected to the interface at the specified device
selector number. The above example now looks like this:

10 REMOTE 713,722
20 LOCAL LOCKOUT 7

Now the system is set up for remote control with the front panel controls disabled. The next step
is to program each device for the desired mode of operation (for example, the appropriate range
setting of a voltmeter). In remote mode HP-IB devices interpret incoming bytes as command
sequences. Thus, you can program an HP-IB device with a simple OUTPUT statement directed
to its device selector. For example, suppose an HP 3437 A Digital Voltmeter is to be set to the
0.1 de voltage range in the continuous sample mode. The ASCII character sequence F1R1T1

8-2 Using the HP-IB Interface

will set the instrument to the desired range and mode. If the voltmeter has the device selector
722, the following statement will accomplish this:

50 OUTPUT 722 ; IIF1R1T111

The owner's manual for each HP-IB device gives the ASCII character sequences needed to select
different ranges and modes. The meaning of such a character sequence is device dependent.

Now let's look at a specific example. The figure below shows a monitoring configuration in
which an HP 3437 A Digital Voltmeter and an HP 5328A Frequency Counter are used to record
the input voltage and the output frequency of a voltage to frequency converter.

Figure 8-1. Monitoring Voltage and Frequency

Using the HP-IB Interface 8-3

The following program could be used to enter voltage and frequency readings into the computer:

10 ASSIGN 7 TO "hpib" ! "Raw" mode.
20 !
30 REMOTE 713,724
40 LOCAL LOCKOUT 7
50 ! Select .1vdc range on voltmeter.
60 OUTPUT 724; "F1Rl Tl"
70 ! Select lK hz resolution on frequency counter.
80 OUTPUT 713;IPF4G3S1S3S5T"
90 ! Take reading from voltmeter and place into V.
100 ENTER 724;V
110 ! Take reading from counter and place into F.
120 ENTER 713;F
130 PRINT "Voltage =";V
140 PRINT "Frequency =";F
150 LOCAL 713,724 ! Return devices to local control.
160 END

The above program just enters the most recent readings taken by the voltmeter and counter.
The following program obtains several voltage/frequency pairs, reading voltage and frequency
simultaneously, by triggering the instruments. The OUTPUT statements are changed to put the
instruments in the "triggered sample" operating mode, and a TRIGGER statement is inserted just
before the ENTER statements. The TRIGGER and ENTER statements are put into a loop to obtain
100 pairs of readings:

10 ASSIGN 7 TO "hpib"
20 !
20 REMOTE 713,724
30 LOCAL LOCKOUT 7
40 ! Select .1vdc range, "single trigger" mode on device 724 (voltmeter).
50 OUTPUT 724; II F2R2T2T3 II
60 ! Select lK hz resolution, "single trigger"
70 ! mode on device 713 (freq. counter).
80 OUTPUT 713; II PF4G3R II
90
100 FOR I=l TO 100
110 TRIGGER 713,724
120 ! Take reading from voltmeter and place into V.
130 ENTER 724;V
140 ! Take reading from counter and place into F.
150 ENTER 713;F
160 PRINT "Voltage =";V
170 PRINT "Frequency =";F
180 NEXT I
190
200 LOCAL 713,724 Return devices to local control.
210 END

8-4 Using the HP-IB Interface

Advanced 1/0 Operations
You can use the OUTPUT and ENTER statements (found in the chapters "Simple I/O Operations"
and "Formatted I/O Operations") in most I/O applications. These statements normally operate
without any dependence on the interface being used. This section covers a few I/O programming
situations involving OUTPUT, ENTER, and SEND that are specific to the HP-IB interface.

Burst Mode I/O (only for Series 200/300)
Burst mode provides low-overhead I/O on some HP-IB interfaces. This can result in much faster
data transfer.

NOTE

Burst mode only works for the HP 98624 HP-IB interface and the inter
nal HP-IB.

In burst mode, memory-mapped I/O address space assigned to the interface card select code
is mapped directly into user address space such that the user can transfer data directly to and
from the interface card. This eliminates the need for system calls and their associated overhead.
An example which uses the burst mode to input data from a fast voltmeter located at primary
address 24 is given below.

100 ASSIGN 7 TO "hpib"
110 CONTROL 7,9 ; 1 ! Enable "burst mode".
120 !
130 !
140 REMOTE 724
150 LOCAL LOCKOUT 7
160 ! Select .1vdc range on voltmeter.
170 OUTPUT 724 ; "F1R1TiI'
180 ! Take reading from the voltmeter and place into V.
190 ENTER 724 ; V
200 DISP "Voltage = ";V
210 LOCAL 724 ! Return devices to local control.
220 END

When burst mode is enabled, the interface is locked and no other processes are allowed to use
the interface until burst mode is disabled.

TIMEOUTs which may have been set up are disabled when burst mode is enabled. The only
way to interrupt a burst OUTPUT or ENTER is by pressing I CTRL 1- W which resets the program
executing these commands by returning it back to its non-executing state.

Using the HP-IB Interface 8-5

WARNING

ENABLING BURST MODE LOCKS THE HP-IB INTERFACE AND
SHOULD NOT BE USED WITH ANY INTERFACE SUPPORTING A
SYSTEM DISC OR SWAP DEVICE.

Non-controller Addressing
Non-controller addressing is used when the computer has passed control to another device and
is no longer the active controller, or when the HP-IB interface has been set to the non-syste~
controller mode (and has not received active control from the system controller).

When the computer (or any device, for that matter) is not the active controller, it must wait to
be addressed to talk or listen before it may output or enter data on the bus. There are two ways
the computer can wait to be addressed. The first method is automatic and would be the method
of choice for a simple system. If you specify the HP-IB select code (with no primary address) in
an ENTER or OUTPUT statement, the computer will wait to be addressed before transferring the
data. The following statements show the conditions necessary to begin a data transfer:

ENTER 7;A$

OUTPUT 7;A$

The non-controller computer waits to be addressed by the controller to
listen, then reads the data into A$.

The non-controller computer waits to be addressed by the controller to
talk, then sends A$.

The problem with this first method is that, although the computer does wait to be addressed
before starting the transfer, the program is held up at the ENTER or OUTPUT statement while it is
waiting.

8-6 Using the HP-IB Interface

In the second method the computer waits to be addressed by performing a status check for
the proper condition (addressed to talk or addressed to listen). This allows the computer to
accomplish some useful task while waiting to be addressed. (Refer to the appendix for a complete
discussion of HP-IB status registers.) The program proceeds with its normal task, then performs
the data transfer when the status check indicates that the computer has been addressed. For
example, the following program increments and displays a counter, then checks to see if the
computer has been talk addressed. If not, the program loops back to the increment and display
statements. Otherwise, the value of the counter is transferred to the HP-IB:

10 ASSIGN 7 TO "hpib,/dev/lp"
20 ! Lines 60, 70 check for talk-address state.
30 Start1: 1=0
40 Start2: 1=1+1
50 DISP I
60 STATUS 7,5 ; S
70 IF BIT(S,4)=0 THEN GO TO Start2 Is "TA" (Talker Active) bit set?
80 OUTPUT 7 ; I
90 GOTO Start1
100 END

You can apply the same procedure to an ENTER operation. In this case the status check indicates
whether the computer has been addressed to listen. The difference is in the bit to be tested,
and is shown in the following statements:

10 ASSIGN 7 TO "hpib"
20 STATUS 7,5 ; S
30 IF BIT(S,6)=0 THEN DISP "Not addressed to listen."
40 END

Bit 6 of Status Register 5 indicates the listen-addressed (LA) state when it is set to a 1. Bit 4
of the same register indicates the talk-addressed (TA) state when it is set to a 1.

Using the HP-IB Interface 8-7

Custom Bus Sequences
You may occasionally need to send a custom bus sequence to an HP-IB device under development
or to one that requires a sequence different from those normally sent by the computer. The SEND

statement makes such custom operations possible. With SEND you must specify every character
of the sequence yourself (other statements generate them automatically).

As one example of a custom bus sequence, the following statements send a Secondary Command
to an HP 9111 Graphics Tablet (device 06) on device selector 7. The Secondary Command "16"
causes the digitizer to output its status byte. This byte is read by the following ENTER statement
(notice that ENTER does not specify addressing).

Unlisten Address myself Address digitizer Send Secondary

all deVices~~ 11~/command 16

100 SEND 7;UNL MLA TALK 06 SCG16
110 ENTER 7 USING "#,B";S6

Other operations that could be performed include Parallel Poll Configure and Parallel Poll Un
configure. The chapter entitled, "The HP-IB Interface," discusses HP-IB control lines, messages,
and bus sequences.

Multiple Listener Transfers
If you want more than one device to receive the data being transferred by an OUTPUT or ENTER

statement, you may include these devices in a listen address group. You can use the SEND

statement to set up such a group. The procedure differs for input and output transfers, as
described in the following paragraphs.

In an OUTPUT operation the controller computer is automatically addressed to talk. If you want
more than one device to listen, you need only address the desired devices to listen in a SEND

statement. You may then execute the OUTPUT statement, specifying just the device selector
with no primary address. Note that all listeners and the talker must be on tqe same select
code. For example, assume that a string of characters (B$) is to be sent to a printer (device 04)
and a non-controller computer (device 20). The devices are connected to the HP-IB interface
(device selector 7) of the controller computer. You could use the following sequence of program
statements:

50 SEND 7; UNL LISTEN 4,20
60 OUTPUT 7;B$

8-8 Using the HP-IB Interface

If you are executing an ENTER operation, you may specify a talker plus multiple listeners with
SEND. Once you have configured the bus with SEND, you may execute the ENTER statement,
specifying only the device selector with no primary address. For example, suppose device 06 (a
voltmeter) is to be the talker and device 13 (a printer), device 04 (a disc drive), and your computer
(the controller) are to be listeners. The following sequence unlistens all previous listeners, sends
the new talk and listen addresses, then enters the data. Note that the computer is addressed
with MLA (My Listen Address).

50 SEND 7; UNL TALK 6 LISTEN 13,4 MLA
60 ENTER 7;V

NOTE

If you have configured the bus for a Listen Address Group with a SEND
statement, specify only the device selector with no primary address in
the OUTPUT or ENTER statement that follows. If you specify a primary
address, the bus will be reconfigured.

In some cases you may want to transfer data from a talker to one or more listeners on the
bus without the computer being involved. Although it is possible to initiate such a transfer, the
computer will not be able to tell when it is complete.

Using the HP-IB Interface 8-9

Handling Service Requests
This section deals with asynchronous requests for service. The cause of a service request (SRQ) is
device dependent (different devices have different reasons for requesting service). For example,
a printer may request service because it has just run out of paper, or a digitizer may request
service because an error has occurred. In any event, if a service request is received, it is
necessary to determine what device requested service and what the problem with that device is.

Sensing Service Requests
Your program can detect service requests by periodically checking the status of an HP-IB status
register (refer to the chapter "The HP-IB Interface"). Bit 5 of Status Register 2, when equal
to "I", indicates that a service request (SRQ) has been received. You can use the following
program lines to determine this:

10 STATUS 7.2;S
20 IF BIT(S.5)=1 THEN DISP "SRQ received II

Determining the Problem
The purpose of the HP-IB serial poll is to provide the active controller with specific, device
dependent information about the device being polled. The bits of the device's serial poll response
byte can have any meaning assigned to them and are generally used to indicate some problem
or special condition within the device. Bit 6, however, is reserved to indicate that the device is
currently requesting service.

To keep the discussion simple, assume that only one device is capable of requesting service,
device selector number 7, a printer. Assume that the bits of the status byte for this printer have
the following meanings:

Bit 0 Out of paper

Bit 1 Cover off

Bit 2 Parameter out of range

Bit 3 Improper escape sequence

Bit 4 Always 0

Bit 5 Always 0

Bit 6 SRQ Active

Bit 7 Always 0

8-10 Using the HP-IB Interface

The following is a possible service routine for the printer:

100 ASSIGN 7 TO "hpib" ! "Raw" device.
110 !
120 ! Service for device 701
130 SpollResponse=SPOLL(701)
140 IF BIT(SpollResponse.6)=1 THEN GOSUB SrqActive
150 IF BIT(SpollResponse.O)=l THEN GOSUB OutPaper
150 IF BIT(SpollResponse.l)=l THEN GOSUB CoverOff
170 ! And so forth

1240 SrqActive:
1250 DISP "The HP-IB printer is requesting service."
1260 RETURN
1270 !
1280 OutPaper:
1290 DISP "HP-IB printer is out of paper."
1300 DISP "Replace paper and type CONT <carriage return>."
1310 PAUSE
1320 RETURN
1330 !
1340 CoverOff:
1350 DISP "The printer's cover is off."
1360 DISP "Put the cover back on and type CO NT <carriage return>."
1370 PAUSE
1380 RETURN
1390 END

In the more usual system, with more than one device, the program would just perform sequential
polls to determine which device requested service, and to determine the current status of that
device. The following routine shows how this is done:

100 S=SPOLL(715)
110 IF NOT BIT(S.6) THEN GOTO 200
120 Lines 120 to 190 service device 715

200 S=SPOLL(723)
210 IF NOT BIT(S.6) THEN GOTO 300
220 Lines 220 to 290 service device 723

300 And so forth

Using the HP-IB Interface 8-11

Non-controller Operations
When the computer is not the active controller, you must observe certain rules in your programs
to avoid violating bus protocols. That is, certain operations can only be performed by the system
controller, others only by an active controller. A non-controller is only allowed to talk, listen,
and request service.

Passing Control
The computer, as active controller, can pass HP-IB controller responsibilities to another device
by executing the PASS CONTROL statement. This allows the computer to direct its attention
to activities other than bus control. The following statement passes control to device 20 on the
bus, another computer (currently a non-controller):

70 PASS CONTROL 720

The new controller may pass control back to the first computer. Thus, you must make a provision
for the first computer to determine that control has been passed back. This is described under
"Receiving Control." Even the system controller can become anon-controller. On a system
reset, the system controller becomes the active controller again. Only one system controller is
allowed.

Receiving Control
You can determine that the computer has received active control by checking interface status -
the "controller active" (CA) bit. The following program passes control to the peripheral device
located at device selector 724. The program continues to loop until the device receives control.

100 Checks to see whether or not
110 an HP-IB interface is currently in the
120 'Controller Active' (CA) state.
130
140 ASSIGN 7 TO IIhpib ll ! Must be a 'raw' device.
150 !
160 PASS CONTROL 724 ! Now pass control to someone else.
170 !
180 DISP IIWaiting for control. II
190 Loop: STATUS 7,5 ; HpibState ! Keep checking for CA state.
200 IF BIT(HpibState,5)=0 THEN NotCA=l
210 IF NotCA THEN GOTO Loop
220 DISP IIReceived control. II
230 ! ...

8-12 Using the HP-IB Interface

Non-controller Responses
The example program in this section monitors non-controller status. While the controller active
(CA) bit of status register 5 remains 0, the program continues to loop and display the following
messages:

Not in 'Listener Active' state.
Not in 'Talker Active' state.

As soon as a peripheral device receives control, the program exits the loop and displays the
message:

Received control.

The program is as follows:

100 ASSIGN 7 TO "hpib" ! Must be in 'raw' mode.
110 !
120 DISP "Monitoring non-controller status."
130 !
140 Loop: STATUS 7,5 ; HpibState ! Keep checking HP-IB state.
150 IF BIT(HpibState,6)=0 THEN NotLA=l
160 IF BIT(HpibState,5)=0 THEN NotCA=l
170 IF BIT(HpibState,4)=0 THEN NotTA=l
180 IF NotLA THEN DISP "Not in 'Listener Active' state."
190 IF NotTA THEN DISP "Not in 'Talker Active' state."
200 IF NotCA THEN GO TO Loop
210 !
220 DISP "Received control."
230 ! ...

Sending Service Requests
Some condition in a non-controller computer may require the attention of the active controller,
so the computer needs to be able to send a service request to the controller. The REQUEST
statement allows the computer to assert SRQ and to send a serial poll response byte when the
controller polls it. Bit 6 of this byte should be set to a 1 to indicate that the computer indeed
requested service, but the other bits may indicate anything that you (as the system designer)
deem to be important.

As an example, assume that a non-controller computer has passed control to device 724 and
needs to indicate that it is ready with data. Assume that bit 0 of the serial poll response byte
has been chosen to indicate the ready with data condition. The following statement sets SRQ
true for device selector 7 and sets bits 0 and 6 for the serial poll response byte:

REQUEST 7;1+64

Using the HP-IB Interface 8-13

Handling Interface Problems
This section describes some of the techniques you can use to avoid and deal with problems
that may arise when using the HP-IB interface. You should not expect problems, but good
programming practice anticipates problems and deals with them in advance.

Avoiding Bus Hang-ups
Generally, when an HP-IB device develops a problem, it holds up the current data transfer,
sends an SRQ (service request) to the controller, or it does both. End-of-line branches normally
can handle these conditions, but suppose the device stops handshaking in the middle of a data
transfer and at the same time sends an SRQ. The computer cannot branch to service the SRQ
since the end-of-line branch does not occur until the current program line is finished. The
computer is "hung" on the ENTER or OUTPUT statement that was being executed when the loss of
handshake occurred. The computer can recover from the loss of handshake, however, by using
an ON TIMEOUT branch.

The following example shows a sequence of operations that enables a program to recover from
a bus hang-up:

10 ASSIGN 7 TO "hpib" ! "Raw" mode.
20 ! First set up the timeout branch.
30 ON TIMEOUT 7 GOSUB TimeOutBranch
40 ! Then set a handshake time limit (2.0 sec).
50 SET TIMEOUT 7;2000
60 ! Now program the HP 3437 for triggered readings.
70 OUTPUT 724 ; "F1R1T2T3"
80 ! Now trigger and read the DVM.
90 Loop1: TRIGGER 724
100 ENTER 724 ; X
110 DISP X; "volts"
120 GOTO Loopl
130 !
135 !
140 TimeOutBranch:
141 This is the timeout service routine.
142 ! Its purpose is to allow you to correct
143 ! the problem which caused the timeout.
144 !
145
150 RETURN
155 !
160 END

It is up to you, as the programmer, to determine what actions the program takes in response to
the status check. In most cases it is necessary to RESET the interface, avoid transfers with the
device causing the hang-up, and signal to the system operator that a malfunction has occurred
in that device.

8-14 Using the HP-IB Interface

Dealing With Problems
While it is best to anticipate problems and make provisions for them in your program, some
condition may cause your system to fail. If the HP-IB system appears to be locked up (everything
is running, but nothing is happening) you can perform a hardware reset to regain control of the
computer.

You may now wish to perform a serial poll of the device in question to determine its condition.
This, however, requires that you know how to obtain the correct information for that particular
device. It may be sufficient to turn the device off, then back on to return it to normal operation.

The following table shows some techniques (and the reasons for each) that you may use when
writing a routine to handle HP-IB error conditions.

Table 8-1. Error Recovery Techniques

Action Reason/Result
FOR I=1 TO 5 Obtain the current state of the interface to determine the conditions
STATUS 7.I;S(I) and possible causes.
NEXT I
S=SPOLL (each device) Obtain current status of devices in the system. (A printer may be

out of paper, for example.)
CLEAR selected device Return the desired device to its particular device-dependent "clear"

state. (Like a reset.)
CLEAR 7 Return all devices to their device-dependent states.

It is a good practice to preserve a hard copy record of the interface and device status information
as it is obtained. You should also record the actions taken to correct the situation. This
information is vital for analyzing the cause of a system failure, and can be used in making the
necessary adjustments or corrections.

Using the HP-IB Interface 8-15

Notes

8-16 Using the HP-IB Interface

The Hp·IB Interface 9
An HP-IB interface is built into many Hewlett-Packard computers. The HP-IB (Hewlett-Packard
Interface Bus) interface system is Hewlett-Packard's implementation of the IEEE-488-1978 inter
face standard. HP-IB provides mechanical, electrical, timing, and data compatibility between all
devices adhering to the standard. A group of HP-IB devices can be connected together to form
a system, capable of maintaining orderly communication between the various devices. Since
HP-IB is a parallel bus system, it is commonly called the bus.

You may want to refer to one of the following sources for additional information on the HP-IB
interface:

• IEEE Standard Digital Interface for Programmable Instrumentation, IEEE Std. 488-1978,
Copyright 1978, Institute of Electrical and Electronics Engineers, Inc.

• Tutorial Description of the Hewlett-Packard Interface Bus, HP part number 59300-90007,
Copyright 1980, Hewlett-Packard Company.

Chapter Contents
This chapter covers the follOWing tasks and topics:

Tasks/Topics Page

General Structure of the HP-IB 9-2

HP-IB Signal Lines 9-3

HP-IB Messages 9-6

Polling 9-13

The HP-IB Interface 9-1

General Structure of the Hp·IB
As you would expect of any system, HP-IB has a protocol a precise set of rules that is followed
as the system conducts its business. This protocol is defined by the IEEE-488-1978 standard. A
complete discussion of HP-IB protocol is beyond the scope of this manual (refer to the IEEE Std.
488-1978 document). However, the general concepts of the HP-IB are covered in this chapter.

Although up to 15 devices can be connected to form an HP-IB system, one device - the system
controller - has primary control of the bus. Your computer is usually the system controller.
The system controller becomes the active controller when it is turned on, and assumes the
responsibility to maintain order on the bus. It determines which devices may "talk," which
devices may "listen," and so forth. However, the system controller can pass its controller duties
to another device on the bus (for example, another computer), which then becomes the active
controller. There can be only one system controller on the bus, and only one device may be
the active controller at any time. (More than one device may be capable of receiving control,
however).

The active controller (which may also be the system controller) enables an HP-IB device to
transmit messages by a process known as addressing to talk. The device that has been so
addressed is called the active talker. There can be only one active talker on the bus at any time.
The active controller can unaddress the active talker by sending an untalk command.

The active controller can enable one or more devices to "listen" to HP-IB messages by a process
known as addressing to listen. The devices that have been so addressed are called active listeners.
The active controller can unaddress the listeners by sending the unlisten command.

For many I/O applications using the HP-IB interface you need not concern yourself with messages,
listen addressing and so forth. OUTPUT, ENTER, and other I/O statements automatically perform
the necessary functions for you. However, you may have a specialized application that requires
a more detailed study of the HP-IB system. The rest of this chapter provides some specific
details about HP-IB. You should also refer to the chapter "BASIC Programming With the HP-IB
Interface" for some selected programming techniques using HP-IB.

9-2 The HP-IB Interface

Hp·IB Signal Lines
The Hewlett-Packard Interface Bus (HP-IB) consists of 16 parallel signal lines. These signal lines
are divided into three categories: the data bus, the handshake lines, and the control lines. The
figure below shows how these signal lines are used to connect HP-IB devices together:

t t t t t t t t ~
DEVICE A ~.

Data Bus
Able to talk. listen. C I-

-" and control
(8 signal lines)

(e.g •• Computer)

DEVICE B --0

Able to talk and listen

(e.g.. voltmeter)

<-=
~

Handshake Unes

- (3 signal lines)

DEVICE C f--o

Only able to listen

Control Unes
(e.g •• signal generator) (,- --.~

__ 1/

(5 signal lines)

DEVICE 0 r--O

Only able to talk

-
0....- 010 1 •• .8

(e.g •• graphics tablet) DAV

NRFD

NDAC

IFC

ATN

SRQ

REN

EOI

Figure 9-1. HP-IB Signal Lines

The HP-IB Interface 9-3

Transmitting Data Bytes
Eight of the signal lines are used as a parallel data bus. These lines (DI01 through DI08) are used
to transmit eight-bit bytes of data from the active talker to any active listeners on the bus. The
transmission of each byte of data is accomplished by a handshaking process using the handshake
lines. The three handshake lines are:

DAV Data Valid

NRFD Not Ready For Data

NDAC Not Data Accepted

Using these lines, a typical data exchange would proceed as follows. All devices currently
designated as active listeners would indicate (via the NRFD line) when they are ready for data.
A device that is not ready would assert this line true, while a device that is ready would let
the line go false. This line will stay true until all active listeners are ready for data. When the
talker senses this, it places the next data byte on the data lines, then asserts DAV true. This
tells the listeners that the information on the data lines is valid, and that they may read it. Each
listener (at its own speed) then reads the data and lets the NDAC line go false. Again, only when
all listeners have let NDAC go false will the talker sense that all listeners have read the data. It
can then let DAV go false and start the entire handshake sequence over again for the next byte
of data.

NOTE

All HP-IB data, control, and handshake lines use negative-true logic.

9-4 The HP-IB Interface

Hp·IB Control Lines
In addition to the eight data lines and three handshake lines, there are five HP-IB control lines.
The control lines are used by the system controller to send commands to other HP-IB devices,
or by external devices to send signals to the controlleT.

ATN (Attention)
Command messages are encoded on the data lines as eight-bit characters, and are distinguished
from normal data characters by the setting of the ATN (attention) line. That is, when the ATN line
is false, bytes on the data lines are interpreted as simple data characters. But, when the ATN

line is true, the data lines become the carriers of command information.

lFC (Interface Clear)
Only the system controller can set the lFC line true. When the !FC line is asserted, all bus activity
is unconditionally terminated, the system controller regains active controller status (if control has
been passed to another device), and any current talkers and listeners become unaddressed.
Normally, this line is only used to abort an unwanted operation, or to allow the system controller_
to regain control of the bus when something has gone wrong. It overrides any other activity that
is currently taking place on the bus.

REN (Remote Enable)
This line, when true, allows instruments on the bus to be 'programmed remotely by another
device on the bus, usually (but not necessarily) the active controller. Only the system controller
can change the state of this line. Any device that is addressed to listen while REN is true is
placed in the REMOTE mode of operation.

EO! (End or Identify)
Normally, data messages sent over the HP-IB are sent using the standard ASCII code and are
terminated by the ASCII line-feed character (LF = decimal 10). However, you may want to have
a device send blocks of information as eight-bit bytes that represent binary patterns rather than
ASCII characters. No specific eight-bit pattern can be designated as a terminating character
since it may occur anywhere in the data stream. In this case, the EOl line is used to mark the
end of the data sequence. When the listeners detect that the EO! line is true, they recognize
that the byte on the data lines is the last byte of the sequence.

The EO! line is also used in conjunction with the ATN line to initiate an identify (parallel poll)
sequence.

The HP-IB Interface 9-5

SRQ (Service Request)
The active controller is always in charge of the order of events on the HP-IB. If a device on
the bus has some information that the controller should know about, it can use the SRQ line to
ask for the controller's attention. For example, a printer might request service to inform the
controller that it is out of paper. Or a digitizer might assert SRQ to tell the controller that its
sample button was pressed by the operator and a reading is ready to be taken. This represents
a request (not a demand), and it is up to the controller to determine when and how it will
service that device. However, the device will continue to assert SRQ until it has been satisfied.
Exactly what will satisfy a service request depends on the individual device (refer to the owner's
manual for each device). If SRQ has been asserted, the controller can determine which device
has requested service by conducting a serial or parallel poll (refer to the subheading "Polling"
later in this chapter).

Hp·IB Messages
The term message, applied to HP-IB, can refer to a data byte message or to a command
message. A data byte message is an eight-bit byte of data transmitted over the HP-IB data
lines. HP-IB command messages may be generally classified as single-line messages and multiple
line messages. A single-line message is sent by asserting just one control line or handshake
line. Multiple-line messages are sent by asserting ATN, then sending a command byte over the
data lines. The tables that follow are complete lists of the single-line and multiple-line command
messages. The response to some of these messages is device dependent and/or user defined.
Most messages are originated by the controller and cause some specified action to take place
on another HP-IB device.

9-6 The HP-IB Interface

Single-Line Messages
The following single-line command messages are sent by asserting the specified control line or
handshake line:

Table 9-1. Single-Line Messages

Message
Menemonic Name Response

Control-Line Messages
ATN Attention The Controller Active device asserts ATN true to source com-

mands on the data bus or in conjunction with EOI, to do a
parallel poll. When ATN is false, data may be sent over the data
bus by a designated talker.

IFC Interface The system controller uses this to place talkers and listeners in
Clear an unaddressed state. If control has been passed, the system

(Abort) controller again becomes Controller Active when it asserts IFC.

REN Remote Removes all devices from Local Lockout mode and causes all
Enable devices to revert to manual control. Any device that is addressed

to listen while REN is true is placed in the REMOTE mode of
operation. Only the system controller can change the state of
this line.

SRQ Service Indicates a device's need for interaction with the controller.
Request

EOI End or Terminates a flow of data, and can be used with ATN to do a
Identify parallel poll.

Handshake-Line Messages
DAV Data Valid Allows source to validate data lines.

NRFD Not Used to inform the source that all listener devices are ready for
Ready data.

For Data

NDAC Not Data Used by devices to inform the source that data has been ac-
Accepted cepted.

The HP-IB Interface 9-7

Multiple-Line Messages
Multiple-line messages involve the ATN line and the eight data lines. The ATN line is asserted,
then the appropriate command byte is sent over the data lines. The following table gives the
mnemonic for each message, plus the decimal value of the command byte to be sent:

Table 9-2. Multiple-Line Messages

Message Decimal
Mnemonic Name Value Response

GTL Go To 1 Causes selected device(s) to switch to local (front
Local panel) control.

LAG Listen 32-62 A group of 31 listen addresses, one of which corre-
(LAO-LA30) Address sponds to the listen address of the interface.

Group

UNL Unlisten 63 Device(s) become unaddressed to listen.

TAG Talk 64-94 A group of 31 talk addresses.
(TAO-TA30) Address

Group

UNT Untalk 95 Device becomes unaddressed to talk.

LLO Local 17 Disables remote-mode override switch (the LOCAL
Lockout button) on peripheral device(s).

DeL Device 20 Causes all devices to be initialized to a predefined
Clear or power-up state.

SDC Selected 4 Causes a specified device to be initialized to a pre-
Device defined or power-up state.
Clear

9-8 The HP-IB Interface

Table 9-2. Multiple-Line Messages (continued)

Message Decimal
Mnemonic Name Value Response

SPD Serial 25 Devices exit serial poll mode to send their status
Poll byte.

Disable
SPE Serial 24 Devices enter serial poll mode and are allowed to

Poll send their status byte when addressed to talk.
Enable

GET Group 8 Signals one or more devices to simultaneously initi-
Execute ate a set of device dependent actions.
Trigger

TCT Take 9 Passes bus controller responsibilities from the cur-
Control rent controller to a device that can assume the bus

supervisory role.
SCG Secondary 96-127 A group of 32 commands that are only recognized

Command if they immediately follow a talk or listen address.
Group

The HP-IB Interface 9-9

Bus Sequences
HP-IB messages can be arranged to form bus sequences. A bus sequence is a series of messages
constructed to accomplish a particular I/O task. BASIC I/O statements such as OUTPUT and
ENTER operate by sending a predefined sequence of HP-IB messages over the bus. The table
below illustrates the command bus sequence produced by the following OUTPUT statement:

10 OUTPUT 705; "HEWLETT-PACKARD INTERFACE BUS"

Table 9-3. Typical OUTPUT Bus Sequence

ASCII Binary Decimal Mnemonic ATN Line
- 01011110 94 MTA (TA30 True
? 00111111 63 UNL True
% 00100101 37 LAG (LA5) True
H 01001000 72 (DATA) False
E 01000101 69 (DATA) False
W 01010111 87 (DATA) False

B 01000010 66 (DATA False
U 01010101 85 (DATA) False
S 01010011 83 (DATA) False

(CR) 00001101 13 False
(LF) 00001010 10 False

NOTE

The default address of the interface itself is 30. Thus, MTA ("My Talk
Address") is equivalent to TA30, and addresses the interface to talk. In
the same way, MLA ("My Listen Address") is equivalent to LA30 if the
default address of the interface has not been changed.

An analogous bus sequence is generated by the following ENTER statement (assuming the same
data):

10 ENTER 705;A$

9-10 The HP-IB Interface

Table 9-4. Typical ENTER Bus Sequence

ASCII Binary Decimal Mnemonic ATN Line
? 00111111 63 UNL True
> 00111110 62 MLA (LA30) True
E 01000101 69 TAG (TA5) True
H 01001000 72 (DATA) False
E 01000101 69 (DATA) False
W 01010111 87 (DATA) False

B 01000010 66 (DATA) False
U 01010101 85 (DATA) False
S 01010011 83 (DATA) False

(CR) 00001101 13 False
(LF) 00001010 10 False

Normally, you do not need to know the exact bus sequence of an OUTPUT, ENTER, or similar
statement. However, you may have an application that requires a non-standard sequence of
HP-IB messages. You can use the SEND statement to send a custom bus sequence. The following
SEND statement sends the HP-IB command messages GTL, UNT, and UNL, addresses the device
at primary address 01 to listen, addresses the interface itself to talk, then sends the data bytes
.. ABC" followed by a CR/LF EOL sequence:

10 SEND 7; CMD 1 UNT UNL LISTEN 1 MTA DATA "ABC" EOL

The HP-IB Interface 9-11

The bus sequence can be represented as follows:

Table 9-5. Custom Bus Sequence

ASCII Binary Decimal Mnemonic ATN Line
(SOH) 00000001 1 GTL True

- 01011111 95 UNT True
? 00111111 63 UNL True
! 00100001 33 LA1 True
- 01011110 94 MTA (TA30) True
A 01000001 65 (DATA) False
B 01000010 66 (DATA) False
C 01000011 67 (DATA) False

(CR) 00001101 13 False
(LF) 00001010 10 False

Note that some commands may be specified by mnemonic in a SEND statement (for example, UNL

and UNT). Other commands must be specified by the decimal number representing the command
byte (for example, GTL = decimal "1"). The complete syntax of the SEND statement is given in
the HP-UX Technical BASIC Reference Manual.

9-12 The HP-IB Interface

Polling
The active controller can determine the operating s.tatus of other devices on the bus by conducting
a polling operation. Two forms are available: the serial poll and the parallel poll. Polling is used
to determine the cause of an SRQ interrupt.

Serial Polling
A serial poll permits the active controller to obtain a status byte from any HP-IB device that
supports the serial poll function. When the controller detects a service request (SRQ line is set
true), it may serially poll the bus devices expected to have requested service. When a device is
polled, it always returns its status byte. Bit 6 of the status byte will be set to a "1" if the device
requested service; otherwise, the bit will be equal to "0". The other bits of the status byte can
be used to indicate the reason for the service request, and are device-dependent. You may use
the following method to detect an SRQ message:

100 STATUS 7,2;Reg2
110 IF BIT(Reg2,5) THEN GOTO SpoIl_Device

There may only be one bus device capable of requesting service, and perhaps for only one
purpose (for example, a printer out of paper). In this case, a serial poll may not be needed.
However, if a single device can assert SRQ for various reasons, or if more than one bus device is
capable of asserting SRQ, a serial poll can be used to determine which device(s) requested service
and why.

When your computer is the active controller, it can initiate a serial poll of an HP-IB device by
executing the SPOLL statement. The SPOLL statement specifies the device selector of the device
to be polled and causes the HP-IB interface to send the following sequence over the bus:

1. ATN is set true.

2. UNL (Un listen) command is sent to the device.

3. The interface addresses itself to listen and the peripheral device to talk.

4. SPE (Serial Poll Enable) is sent over the bus, followed by ATN going false. The device being
polled then sends its status byte. If it is the only device requesting service, SRQ is removed.
If it is not the only device asserting SRQ (or if it didn't request service), SRQ remains true,
indicating some other device requires service.

5. ATN is set true again followed by the SPD (Serial Poll Disable) command.

6. The UNT (Untalk) command is then sent over the bus causing the peripheral device to cease
being a talker.

The HP-IB Interface 9-13

Note in the above sequence that SRQ mayor may not be removed when a device is polled. SRQ

is removed if the device being polled is the one and only device requesting service. Therefore,
your program must specify the order in which the bus devices are polled and serviced. An
example of a serial poll routine is given in the chapter "BASIC Programming With the HP-IB
Interface. "

If your computer is not the active controller, you may allow it to request service with the REQUEST

statement followed by a program dependent status byte. Bit 6 of this status byte maps directly
to SRQ on the bus. The computer provides this status byte when it is serially polled by the
active controller. If it was requesting service, bit 6 will be set to a "I"; otherwise, it will be "0".
The computer removes SRQ when it sends its status byte if it is the one and only bus device
requesting service. However, if SRQ is removed, bit 6 remains set until changed by the program.

Parallel Polling
In a parallel poll each bus device is assigned one of the DID (data) lines for identification purposes.
Most Hewlett-Packard bus devices capable of responding to a parallel poll are configured to
assert the DID line that corresponds to its primary address. Primary addresses 00 through 07
correspond to data lines DIDl through 0108, respectively. Thus, in a parallel poll: device 0
asserts 0101, device 1 asserts DID2, and so forth.

The interface itself can respond to a parallel poll if some other device is the active controller.

You can conduct a parallel poll by executing the PPOLL statement. This statement initiates the
following sequence on the bus:

1. The ATN and EOI lines are set true.

2. The bus device(s) that requested service assert the appropriate DID line(s).

3. After waiting a sufficient time for the polled devices to assert their lines, the resulting
parallel poll response byte is read.

4. The ATN and EOI lines go false, causing the polled devices to drop their DID lines.

Once the parallel poll response byte has been obtained, you can use the BIT function to test
the eight bits and determine which device(s) originated the service request. A parallel poll can
be much faster than a serial poll because the controller reads DIDl through 0108 all at once.
However, only eight devices can be differentiated, and you may still need to use a serial poll to
determine why a device requested service.

9-14 The HP-IB Interface

Using the GPIO Interface 10
This chapter presents some selected programming techniques in Technical BASIC for the GPIO
interface. Refer to the appendix for a description of the status and control registers for this
interface. Refer to the owner's manual supplied with your interface for installation procedures
and technical information.

Chapter Contents
This chapter describes the use of the GPIO interface. It contains the following tasks and topics:

Tasks/Topics Page

Programming With the GPIO Interface 10-2

ENTER and OUTPUT Statements 10-3

Checking Interface Status 10-4

Interface Control 10-4

The SEND Statement 10-6

The RESET Statement 10-6

Using the GPIO Interface 10-1

Programming With the GPIO Interface
This section discusses the ENTER, OUTPUT, STATUS, CONTROL, and RESET statements as used with
the GPIO interface. "GPIO" stands for "General Purpose Input and Output" and reflects the
versatile nature of the interface. The GPIO interface is a parallel interface. You should become
familiar with the technical details of the GPIO interface before attempting to program it (refer
to the GPIO interface owner's manual).

WARNING

TO AVOID POSSIBLE ELECTRICAL SHOCK AND JOR EQUIPMENT
DAMAGE, FOLLOW THE INSTALLATION PROCEDURES IN THE
GPIO INTERFACE OWNER'S MANUAL CAREFULLY WHEN CON
NECTING PERIPHERAL DEVICES TO THE GPIO INTERFACE. TECH
NICAL FAMILIARITY WITH THE PERIPHERAL DEVICE AND THE
INTERFACE IS NECESSARY TO ACHIEVE SAFE, SUCCESSFUL OP
ERATION.

NOTE

Before you can perform any I/O operations with an interface, you must
assign an interface select code to it (refer to the chapter" An Introduction
to I/O"). The examples in this section assume that interface select code
8 has been assigned to the GPIO interface.

10-2 Using the GPIO Interface

ENTER and OUTPUT Statements
You may use the usual methods of transfer - OUTPUT and ENTER - with the GPIO interface.
Note that information for formatting using these statements can be found in the chapter in this
manual entitled "Formatted I/O Operations."

The choice of a proper OUTPUT image is only a matter of definition. You know what data is
generated by your program, so you need only choose a desirable form for its output. The main
problem is to avoid image overflow conditions.

The choice of an ENTER image can be easy if you know the nature of the incoming data or it
can be difficult if you do not. If you do not know what it is, there is a way to inspect a totally
unknown character sequence. Any sequence of bytes, including potential terminators, can be
entered with the #, B image. The decimal equivalent of the binary value of each byte will be
entered. You can use the CHR$ function to determine the exact character sequence that is being
received. Then, knowing the exact nature of the incoming data, you can choose an appropriate
ENTER image. The following program (also found in the chapter "Formatted I/O Operations" in
the section "Inspecting Unknown Data") is an example of this technique:

100 ! Program to inspect incoming data
110 ASSIGN 8 TO "gpio"
120 S1=8 ! Device selector for the gpio interface
130 ! Establish a terminating condition
140 SET TIMEOUT S1;3000
150 ON TIMEOUT S1 GOTO 240
160 !
170 1=1 ! Initialize counter
180 ! Input 1 byte; display analysis
190 ENTER S1 USING "#,B" ; X
200 DISP "BYTE" ;I;TAB(11); "VALUE =" ;X;TAB(24) ; "CHAR = ";CHR$(X)
210 1=1+1 ! Count bytes
220 GOTO 190
230 !
240 DISP "DATA INPUT HAS STOPPED"
250 RESET S1 Stop I/O operation
260 END

Using the GPIO Interface 10-3

Checking Interface Status
You can obtain the status of an interface register by specifying the select code of the interface,
the number of the desired register, and the name of a numeric variable in a STATUS statement.
The STATUS statement returns the value of the specified register. The following statement obtains
the value of the identification register (Status Register 0) for the GPIO interface at device selector
8:

7/'\
Device Register Numeric

Selector Number Variable

The value of Status Register 0 is always the interface's identification code (4 for the GPIO). For
the other status registers, STATUS returns a value that depends on the status of the interface
(refer to the appendix).

Interface Control
The CONTROL statement allows you to program the operation of the interface by writing to its
control registers. Two items of general interest are:

• setting and clearing interface control lines,

• selecting an end-of-line (EOL) sequence.

Control lines are interface dependent. In general, you can set or clear interface-specific control
lines by writing to Control Register 2 of the GPIO interface. Refer to the appendix for information
on Control Register 2 for the GPIO interface.

CAUTION

DO NOT WRITE TO THE INTERFACE CONTROL LINE REGISTER
(CONTROL REGISTER 2) UNLESS YOU ARE COMPLETELY FAMIL
IAR WITH THE PROTOCAL FOR YOUR INTERFACE. AN IMPROPER
CONTROL LINE OPERATION MAY CAUSE A LOSS OF DATA, A DE
VICE MALFUNCTION, OR DAMAGE TO YOUR INTERFACE.

10-4 Using the GPIO Interface

Suppose that you want to set the CTLA (Control A) control line on the GPIO. You can do this
by writing the value 1 to Control Register 2 for the GPIO. You can use either of the following
statements (assuming select code 8):

CONTROL 8,2;1
ASSERT 8;1

Both statements set the CTLA line true and immediately set the control line (CTLA in this case)
regardless of any I/O operation in progress.

A second item of general interest in control register programming is the end-of-line (EOL) char
acter sequence sent by the interface. This EOL sequence defaults to carriage return/line feed
for all interfaces, and is sent after every PRINT or OUTPUT operation (unless you suppress it).
The EOL sequence is also sent if you include the / (slash) image specifier in a PRINT or OUTPUT

statement, or if you specify EOL in a SEND statement.

You may occasionally want to change the EOL sequence to suit the needs of a particular device.
For example, you could use "carriage return/line feed/line feed" to obtain double spacing on
a printer. For a CRT terminal that performs an automatic line-feed when a carriage return is
received, you could use just a carriage return.

The GPIO interface provides EOL sequence programmability with Control Registers 16 through
23. Up to seven EOL characters can be sent. You specify the number of characters by writing to
Control Register 16. You then specify the consecutive characters by writing to CR17 through
CR23. For example, you could use the following CONTROL statement to program a double
line-feed EOL sequence with EOI (End Or Identify) set on the last line feed.

CONTROL 8,16;3,13,10,10

EOL~!se ~-Feeds
Count Return
of 3

NOTE

Control Registers 16 through 23 are used in exactly the same_ way to
select an EOL sequence for the HP-IB interface. The method is similar
for the HP-IB interface, but the function of Control Register 16 is slightly
different (refer to the appendix).

Using the GPIO Interface 10-5

In summary, the control registers provide the flexibility required to tailor interface operation to
your specific system requirements. They should be used with caution, however, so that you
don't get any unpleasant surprises. Study the register descriptions in the appendix to determine
which capabilities you need and how to implement them. You may need to experiment a bit to
obtain the result you desire.

The SEND Statement
In some applications you may want to send an arbitrary data sequence from the computer to
one or more peripherals. You can use the SEND statement to send data to any of the interfaces.
The following are examples of properly formed SEND data statements:

SEND 8; DATA "Welcome to the world of I/O" EOL
SEND 8; DATA "OCT. 9", "NOV. 13"

An end-of-line sequence is sent by the interface if you specify EOL.

The HP-UX Technical BASIC Reference Manual defines the syntax of the SEND statement. Note
that the SEND statement, when used with GPIO interfaces, can only use the secondary keyword
DATA, as shown above.

The RESET Statement
RESET terminates the current I/O operation and returns the interface to its power-up state. This
should only be necessary when first beginning a program or when recovering from an interface
failure.

The RESET command is used with the GPIO interface to reset peripherals and the interface. An
example of this statement is given below:

RESET 8

10-6 Using the GPIO Interface

Status and Control Registers A
HP-UX Technical BASIC provides a set of registers for each interface. There are three types of
registers:

• Status registers are read-only registers. You can read these registers with the STATUS

statement.

• Control registers are write-only registers. You can write to these registers with the CONTROL

statement.

• Status/control registers are read/write registers. Use the STATUS statement to read, and
the CONTROL statement to write to these registers.

Chapter Contents
This appendix covers the status, control, and status/control registers provided by BASIC for the
HP-IB and GPIO interfaces. Tasks and topics covered in this chapter are as follows:

Tasks/Topics Page

The HP-IB Interface A-2

The GPIO Interface A-7

Note that some interfaces may not implement all of the register functions documented here. For
example, some HP-IB interfaces may not allow you to access all of the control lines.

You can control the operation of your interface by accessing its registers with the STATUS and
CONTROL statements (refer to the chapter "Direct Interface Communication"). Some registers can
also be accessed with other statements such as ASSERT. For example, ASSERT 7; 32 is equivalent to
CONTROL 7.2; 32 for the HP-IB interface (refer to the chapter "Direct Interface Communication").

Status and Control Registers A-I

The Hp·IB Interface
This section describes the registers that HP-UX Technical BASIC provides for the HP-IB interface.

Status Register 0: Interface Identification
This register always returns a value of 1 ("00000001" binary), the identification code for an
HP-IB interface.

Status Register 2: Hp·IB Control Lines
A bit, when set, indicates that the corresponding HP-IB control line is true.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Not used Not used SRQ Not used Not used Not used NDAC Not used

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=1

NOTE

The operation of this register is hardware dependent.

Control Register 2: HP·IB Control Lines
This register gives direct access to the HP-IB control lines. When you set a bit in this register,
the corresponding control line is asserted.

Bit 7

Not used

Value=128

CAUTION

CONTROL REGISTER 2 PROVIDES DIRECT ACCESS TO THE HP-IB
CONTROL LINES. YOU MUST USE THIS REGISTER WITH CARE,
AND ONLY IF YOU ARE AWARE OF HP-IB PROTOCOLS! IMPROPER
USE OF THIS REGISTER MAY CAUSE A BUS MALFUNCTION, AND
MAY RESULT IN DAMAGE TO YOUR INTERFACE OR PERIPHERAL.

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

REN SRQ Not used Not used Not used Not used

Value=64 Value=32 Value=16 Value=8 Value=4 Value=2

A-2 Status and Control Registers

Bit 0

Not used

Value=1

NOTE

The operation of this register is hardware dependent.

An HP-IB control line will remain true as long as the corresponding Control Register 2 bit remains
set (equal to "1 "). The control line goes false when the bit is cleared (equal to "0"). Follow
HP-IB bus protocols carefully when using this register. For example, a non-system controller is
not supposed to assert the REN line.

Status Register 4: Hp·IB Address/System Controller
This register indicates the HP-IB address of the interface itself, and whether the interface is the
system controller.

Bit 7 Bit 6 Bit 5 Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0

Not used Not used
System

Controller
HP-IB Address

Value=128 Value=64 Value=32 Value=16 I Value=8 I Value=4 I Value=2 I Value=1

Bits 0 through 4: Hp·IB Address
These bits indicate the currently set HP-IB address of the interface.

Bit 5: System Controller
This bit, if set to a "1", indicates that the interface is the system controller.

Bits 6 and 7
These bits are always o.

Status Register 5: Hp·IB State
This register indicates the current HP-IB status of the interface. The default value is 160 (System
Controller and Controller Active).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SC LA CA TA Not used Not used REN Not used

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=1

Status and Control Registers A-3

Bit 1: Remote
This bit, when set, indicates that the interface is in a remote state (REN).

Bit 4: Talker Active
This bit, when set, indicates that the interface is addressed to talk (TA).

Bit 5: Controller Active
This bit, when set, indicates that the interface is Controller Active (CA).

Bit 6: Listener Active
This bit, when set, indicates that the interface is addressed to listen (LA).

Bit 7: System Controller
This bit, when set, indicates that the interface is the system controller (same as SR4 bit 5).

Control Register 8: PPOLL Value
This register controls the response to parallel poll.

Bit 7 Bit 6 Bit 5 Bit 4

Not used Not used Not used
PPOLL

Disable

Value=128 Value=64 Value=32 Value=16

Bits 0 through 2: PPOLL Response Line

Bit 3 Bit 2 I Bit 1 I Bit 0

PPOLL

Sense
PPOLL Response Line

Value=8 Value=4 I Value=2 I Value=1

These bits determine the data line on which the Status Bit is to be placed. For instance, if these
bits are "000", then the Status Bit is to be placed on DID1. If these bits are "111", then the
response is to be placed on DID8.

Bit 3: PPOLL Sense
This bit determines the logic sense of the Status Bit. If this bit is "0", then the "I need service"
message is a "0"; if this bit is "I", the "I need service" message is "1."

Bit 4: PPOLL Disable
This bit determines whether a response will or will not be configured. A "1" tells this controller
not to configure a response, and a "0" tells the controller to configure a response.

A-4 Status and Control Registers

Status Register 9: HP-IB Burst Mode
This register indicates whether burst mode is enabled for this interface. The default value is O.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

Not used Not used Not used Not used Not used Not used Not used

Yalue=128 Yalue=64 Yalue=32 Yalue=16 Yalue=8 Yalue=4 Yalue=2

Bit 0: Burst mode
This bit, if set to a "I", indicates that burst mode is enabled for this interface.

Bits 1 through 7
Not used.

Control Register 9: HP-IB Burst Mode
This register is used to enable and disable burst mode for this for the HP-IB interface.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

Not used Not used Not used Not used Not used Not used Not used

Yalue=128 Yalue=64 Yalue=32 Yalue=16 Yalue=8 Yalue=4 Yalue=2

Bit 0: Burst mode

Bit 0

Burst

mode

Yalue=1

Bit 0

Burst

mode

Yalue=1

Setting this bit to "I" enables burst mode for the HP-IB interface. Setting it to "0" disables burst
mode for the HP-IB interface.

Bits 1 through 7
Not used.

Status and Control Registers A-5

WARNING

ENABLING BURST MODE LOCKS THE HP-IB INTERFACE AND
SHOULD NOT BE USED WITH ANY INTERFACE SUPPORTING A
SYSTEM DISC OR SWAP DEVICE.

Control Register 16: EOL Control
This register controls the number of characters in the EOL (end-of-line) sequence that is sent out
at the end of a line of output or in response to the "I" output image specifier. You can also
specify that EOI (End or Identify) be asserted with the last character of a data transfer. The
default value is 2.

Bits 0 through 2: EOL Character Count
These bits specify the number of characters sent as the EOL (end-of-line) s~quence. The default
count is 2, which causes two characters (normally carriage return/line feed) from Control Regis
ters 17 and 18 to be sent. You can specify up to seven EOL characters. A count of ° specifies
that no EOL sequence is to be sent.

Bits 3 through 6
Not used.

Bit 7: EOI Enable
This bit, when set, causes the EO! control line to be asserted with the last byte of a data transfer.
If the EOL count is non-zero, EOI is asserted with the last character of the EOL sequence. If the
EOL count is zero, EOI is asserted with the last character of the data list being sent (PRINT and
SEND only).

Control Registers 17 through 23: EOL Sequence
Each of these registers specifies a character in the EOL sequence (by its ASCII decimal value).
The first character is specified by Control Register 17 (default = 13, "carriage return"), the
second by Control Register 18 (default = 10, "line feed"), and so forth. Control Registers 19
through 23 all have the default value "0" (no character).

You can define up to seven characters for an EOL sequence. To set up an EOL sequence for
double-spaced printing, for example, set the EOL character count to 3 and the EOL sequence to
CR, LF, LF:

CONTROL 7,16;3,13,10,10

A-6 Status and Control Registers

The GPIO Interface
This section describes the registers that HP-UX Technical BASIC provides for the GPIO interface.

Status Register 0: Interface Identification
Status Register 0 always returns the value 4 ("00000100"), the identification code for a GPIO
interface.

Status Register 2: Line Status
The bits of this register indicate the logical states (not necessarily the electrical states) of the
corresponding FLG lines. Flag lines are either "busy" or "ready." If a FLG line is busy, the
corresponding bit is set ("I"). If ready, the bit is clear ("0").

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FlGB FlGA
Not used Not used "1"=Busy "1"=Busy Not used Not used Not used Not used

"O"=Ready "O"=Ready

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=1

Control Register 2: Assertion Control
You can use either the CONTROL or ASSERT statement to write to this register. If you set a bit
equal to "1", the corresponding line is asserted to the true state. If you set a bit equal to "0",
the corresponding line goes false.

Bit 7 Bit 6 Bit 5 Bit 4

Not used Not used Not used Not used

Value=128 Value=64 Value=32 Value=16

Bit 0: CTLA Line
Setting this bit asserts the CTLA line true.

Bit 1
Not used.

Bit 2: CTLB Line
Setting this bit asserts the CTLB line true.

Bits 3 through 7
Not used.

Bit 3 Bit 2 Bit 1 Bit 0

Not used CIlB Not used CIlA

Value=8 Value=4 Value=2 Value=1

Status and Control Registers A-7

Control Register 16: EOL Control
Bits ° through 2 of this register specify the number of characters in the EOL (end-of-line) sequence.
Up to seven EOL characters may be specified. The default value is 2.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 I Bit 1 I Bit 0

Not used Not used Not used Not used Not used
Number of Characters

in EOl Sequence

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 I Value=2 I Value=1

Control Registers 17 through 23: EOL Sequence
Each of these registers specifies a character in the EOL sequence (by its ASCII decimal value).
The first character is specified by Control Register 17 (default = 13, "carriage return"), the
second by Control Register 18 (default = 10, "line feed"), and so forth. Control Registers 19
through 23 all have the default value "0" (no character).

A-8 Status and Control Registers

Index

a
Active:

controller ... 9-2
listener . " 9-2
talker .. 9-2

Addressing, Non-controller .. 8-6
Addressing to listen ... 9-2
Addressing to talk _. " 9-2
ASCII defined ... 2-2
ASSERT statement ... 7-1, A-I
ASSIGN statement ... 1-6
Attention (ATN) .. 9-5, 9-7, 9-13
Auto-addressed mode ... 1-9, 1-11

b
BASIC I/O statements ... 7-1
Binary image specifiers ... 3-12
Branch precedence .. 5-8
Buffer Status and Control " 4-4
Burst mode .. 8-5, A-5, A-6
Burst Mode I/O (only for Series 200/300) 8-5
Bus, Controlling the ... 8-2
Bus Hang-ups, Avoiding ... 8-14
Bus sequence:

custom .. 9-12
ENTER ... 9-11
OUTPUT • .. 9-10

Bus sequences .. 9-10

c
chmod 1-7
CLEAR statement .. 7-1
Command message ... 9-6
Communication, Direct Interface .. 6-1
Compact field .. 2-3

Consecutive status registers ... 6-3
Control, Buffer Status and .. 4-4
Control, Interface ... 6-4
Control lines .. 9-3
Control Lines, HP-IB .. 9-5
Control registers '. .. 6-1, A-I
CONTROL statement 4-4, 6-1, 10-5, A-I
Control:

Passing ... 8-12
Receiving .. 8-12

Controller Active (CA) ... 8-12, A-3
Controlling the Bus. .. 8-2
CONVERT IN:

INDEX ... 3-19
PAIRS ... 3-19

CONVERT OUT:

INDEX ... 3-19
PAIRS ... 3-19

CONVERT statement ... 3-11, 3-17, 3-19
Converting I/O Data .. 3-19
CRT IS statement ... 1-6
Custom bus sequence ... 8~8, 9-12

d
Data Bytes, Transmitting ... 9-4
Data, Inspecting Unknown ... 3-18
Data:

bus ... 9-3
byte message .. 9-6
Compatibility .. 1-2, 1-4
images .. 3-9, 3-10
Valid (DAV) .. 9-4, 9-7

Device Clear (DCl) .. 9-8
Device selector 1-6
Digit specifiers ... 3-2, 3-3
Digital Voltmeter, HP 3437 A .. 8-2, 8-3
DID (data) line .. 9-14
Direct Interface Communication .. 6-1
Driver number ... 1-7, 1-9

e
Electrical Compatibility ... 1-2, 1-4
Empty pointer ... 4-4,4-5
ENABLE KBD statement ... 5-7
End or Identify (EOI) , 3-15, 6-5, 9-5, 9-7
End-of-line branch 5-1
End-of-Line Branch Programming ... 5-2
End-of-line branching on:

errors. .. 5-5
key interrupts .. 5-7
timeouts .. 5-2

End-of-line (EOL) ... 10-4, A-6
ENTER, Formatted 3-9
ENTER Statements, Using Simple .. 2-4
ENTER USING statement .. 2-2,3-1,3-9
ENTER:

binary specifiers ... 3-12
bus sequence ' .. 9-11
character skipping specifiers .. 3-13
images ... 3-1,3-9, 3-15, 3-18
numeric specifiers .. 3-10
statement ... 2-1,3-11,4-1, 10-3
string specifiers ... 3-11
termination specifiers ... 3-16

EOL sequence .. 3-8, 6-4, 10-4, A-6
ERRN function .. 5-5
ERROM function ... 5-5
Error recovery techniques 8-15
Errors ... 5-5
ERRse function ... 5-5
Event 5-1

f
Field terminator ... 3-14
File selector .. 1-6, 1-12
File Selectors, Using .. 1-12
Fill pointer .. 4-3, 4-5
Formatted ENTER ... 3-9

Formatted I/O Operations .. 3-1
Formatted OUTPUT .. 3-2
Free field ... 2-3, 2-4
Frequency Counter, HP 5328A ... 8-3

9
Go To Local (GTL) .. 9-8
gpio .. 1-7
GPIO Interface, Programming With the 10-2
GPIO Interface, Using the 10-1
GPIO:

Control Register 16 (EOL Control) A-8
Control Register 2 (Assertion Control) A-7
Control Registers 17 through 23 (EOL Sequence) A-8
device selectors .. 1-7
interface .. 1-4,6-3, 10-1, A-I, A-7
Status Register 0 (Interface Identification) A-7
Status Register 2 (Line Status) ... A-7

Graphics Tablet, HP 9111 .. 8-8
Group Execute Trigger (GET) 9-9

h
Handshake lines .. 9-3
Handshaking .. 1-4, 1-5
Hewlett-Packard Interface Bus (HP-IB) 9-3
HP-IB, General Structure of the .. 9-2
HP-IB Interface, Using the .. 8-1
HP-IB:

address .. A-3
Control Lines .. 9-5
control register : . .. 8-1
Control Register 2 (HP-IB Control Lines) A-2
Control Register 8 (PPOLL Value) .. A-4
Control Register 9 (HP-IB Burst Mode) A-5
Control Registers 17 through 23 (EOL Sequence) A-6
device selectors .. 1-9
interface .. 1-4, 6-3, 8-6, 9-1, A-I, A-2
Messages ... 9-6
serial poll .. 8-10
status register ... 8-1
Status Register 0 (Interface Identification) A-2

Status Register 2 (HP-IB Control Lines) A-2
Status Register 4 (HP-IB Address/System Controller) A-3
Status Register 5 (HP-IB State) ,. .. A-3
Status Register 9 (HP-IB Burst Mode) A-5

HP 3437 A Digital Voltmeter ... 8-2, 8-3
HP 5328A Frequency Counter ... 8-3
HP 9111 Graphics Tablet ... 8-8
hpib 1-6

i
IEEE-488 9-1, 9-2
Image specifiers .. 3-1
IMAGE statement .. 3-2, 3-6, 3-9
Images, Numeric ... 3-2
Images, String ... 3-6
INPUT statement .. 2-4
Inspecting Unknown Data .. 3-18
Interface Clear (IFC) ... 9-5, 9-7
Interface Communication, Direct .. 6-1
Interface control ... 6-4, 10-4
Interface Dependent Statements .. 7-1
Interface, HP-IB .. 9-1
Interface Problems, Handling ... 8-14
Interface, Role of an:

Data Compatibility .. 1-2
Electrical Compatibility ... 1-2
Mechanical Compatibility ... 1-2
Timing Compatibility .. 1-2

Interface select code ... 1-7, 1-9
Interface Status, Checking ... 6-2, 10-4
Interface, Using the HP-IB .. 8-1
Interrupt ... 5-1
Interrupt Programming ... 5-1
Interrupt:

high-level ... 5-1
low-level .. 5-1

Interrupts Interact, How .. 5-8
I/O buffer, Registers used by an .. 4-3
I/O Buffers, Using .. 4-1
I/O Operations, Advanced .. 8-5
I/O Operations, Formatted .. 3-1

I/O Operations, Simple ... 2-1
I/O:

buffer control .. 4-5
buffers ... 4-1, 4-2
defined .. 1-1
dri ver type .. 1-6

IOBUFFER statement ... 4-2, 4-4

k
Key mask programming 5-7

I
Line Feed Requirement, Eliminating the 3-15
Listen Address Group (LAG) ... 9-8
Listen-addressed (LA) 8-7, A-3, A-3
Listener, active .. 9-2
Listener Transfers, Multiple ... 8-8
11 command .. 1-8
Loc~Lockout~LO) ... 8-2,9-8
LOCAL LOCKOUT statement 7-1, 8-2
LOCAL statement ... 7-1
Long list (11) command ... 1-8, 1-10

m
Mask programming, key .. 5-7
Mechanical Compatibility ... 1-2, 1-4
Message:

command ... 9-6
data byte ... 9-6

Minor number ... 1-7, 1-9
Multiple Listener Transfers .. 8-8
Multiple-Line Messages:

Device Clear (DCL) .. 9-8
Go To Local (GTL) .. 9-8
Group Execute Trigger (GET) .. 9-9
Listen Address Group (LAG) ... 9-8
Local Lockout (LLO) ... 9-8
Secondary Command Group (SCG) 9-9
Selected Device Clear (SOC) ... 9-8
Serial Poll Disable (SPD) .. 9-9

Serial Poll Enable (SPE) ... 9-9
Take Control (TCT) .. 9-9
Talk Address Group (TAG) ... 9-8
Unlisten (UNL) .. 9-8
Untalk (UNT) ... 9-8

My Listen Address (MLA) .. 8-9

n
NDAC (Not Data Accepted) .. A-2
Non-controllers:

Addressing 8-6
Operations ... 8-12
Responses ... 8-13

Not Data Accepted (NDAC) .. 9-4, A-2
Not Ready For Data (NRFD) .. 9-4, 9-7
Numeric Data, Entering .. 2-4
Numeric Images .. 3-2

o
OFF TIMEOUT statement .. 5-4, 5-9
ON ERROR statement ... 5-5, 5-8
ON KEY:

interrupts ... 5-7
statement _. .. 5-7

ON TIMEOUT statement 5-3, 5-5, 5-8, 5-9
Operations, Non-controller ... 8-12
OUTPUT, Formatted .. 3-2
OUTPUT Statements, Using Simple ... 2-3
OUTPUT USING statement .. 2-2, 3-1, 3-2
OUTPUT:

binary specifiers .. 3-7
bus sequence ... 9-10
digit specifiers ... 3-3
EOL sequence specifiers .. 3-8
format image .. 3-2
images .. 3-6,3-18
punctuation specifiers 3-4
sign specifiers .. 3-4
statement .. 2-1,3-6,4-1, 10-3
string specifiers .. 3-6

p
Parallel polling .. 9-14
PASS CONTROL statement ... 7-1, 8-12
Passing Control ... 8-12
Pointer:

empty ... 4-4, 4-5
fill .. 4-3,4-4,4-5

Pointers .. 4-3
Polling:

parallel 9-14
serial ... 9-13

PPOLL:

Disable ... A-4
Response Line ... A-4
Sense .. A-4
statement .. 7-1, 9-14

Precedence, branch ... 5-8
Primary address .. 1-9
PRINT statement 1-6, 2-1, 2-3
PRINTER IS statement ... 1-6, 2-1
Programming, End-of-Line Branch ... 5-2
Programming, Interrupt .. 5-1
Punctuation specifiers .. 3-2, 3-4

r
Raw mode ... 1-9, 1-10
Receiving Control 8-12
Registers used by an I/O buffer .. 4-3
Registers:

control :.......... . A-I
status .. A-I
status/control .. A-I

Remote Enable (REN) 6-4, 8-2, 9-5, A-2, A-3
REMOTE statement ... 7-1, 8-2
REQUEST statement .. 7-1, 8-13, 9-14
RESET statement 5-4, 7-1, 10-6
Responses, Non-controller .. 8-13

Role of an Interface:
Data Compatibility .. 1-2
Electrical Compatibility ... 1-2
Mechanical Compatibility ... 1-2
Timing Compatibility .. 1-2

5
Secondary Command Group (SCG) .. 9-9
Selected Device Clear (SDC) ... 9-8
SEND statement ... 7-1, 8-8, 10-5, 10-6
Sequences, custom bus ... " 8-8
Serial Poll Disable (SPD) ... 9-9, 9-13
Serial Poll Enable (SPE) .. 9-9, 9-13
Serial polling ... 9-13
Service Request (SRQ) 8-10, 9-13, A - 2
Service Requests, Sending ... 8-13
Service Requests:

Handling .. 8-10
Sensing ... 8-10

Service routine " 5-1
SET TIMEOUT statement .. 5-3
SHELL command ... 1-8, 1-10
Sign specifiers ... 3-2, 3-4
Single-Line Messages:

Attention (ATN) ... 9-5, 9-7
Data Valid (DAV) .. 9-4, 9-7
End or Identify (EOI) 9-5,9-7
Interface Clear (IFC) ... 9-5, 9-7
Not Data Accepted (NDAC) .. 9-4, 9-7
Not Ready For Data (NRFD) 9-4, 9-7
Remote Enable (REN) ... 9-5, 9-7
Service Request (SRQ) .. 9-6, 9-7

Skipping Unwanted Characters .. 3-13
special (device) file .. 1-6
Specifiers:

digit ... 3-2, 3-3
punctuation ... 3-2, 3-4
sign ... 3-2, 3-4

SPOLL statement ... 7-1, 9-13
Statement terminator ... 3-14
Status and Control, Buffer .. 4-4

Status, Checking Interface ... 6-2, 10-4
Status registers .. 6-1, A-I
STATUS statement .. 6-1, 10-4
Status/Control registers .. A-I
String Data, Entering .. 2-6
String Image Specifiers 3-11
String Images .. 3-6
System controller (SC) .. 9-2, A-3

t
Take Control (TCT) .. 9-9
Talk Address Group (TAG) ... 9-8
Talk-addressed (TA) .. 8-7, A-3
Talker, active .. 9-2
Terminator images ... 3-9, 3-14
Terminator Images, Advanced Use of 3-15
Timeouts ... 5-2
Timing Compatibility .. 1-2, 1-4
Transfers, Multiple Listener ... 8-8
Transmitting Data Bytes .. 9-4
TRIGGER statement .. 7-1, 8-4

u
Unlisten (UNL) ... 9-8, 9-13
Untalk (UNT) .. 9-8, 9-13

Name:

Company:

Address:

Phone No:

MANUAL COMMENT CARD
HP-UX Technical BASIC

I/O Programming Techniques
for HP 9000 Computers

Manual Reorder No. 97068-90030

Please note the latest printing date from the Printing History (page ii) of this
manual and any applicable update(s); so we know which material you are
commenting on ___________ _

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

LOVELAND,COLORADO

I II II I
NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Name:

Company:

Address:

Phone No:

MANUAL COMMENT CARD

HP-UX Technical BASIC
I/O Programming Techniques

for HP 9000 Computers

Manual Reorder No. 97068-90030

Please note the latest printing date from the Printing History (page ii) of this
manual and any applicable update(s); so we know which material you are
commenting on ___________ _

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

LOVELAND,COLORADO

I II II I

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

HP Part Number
97068-90030
Microfiche No. 97068-99030

Printed in U.S.A. 2/86

FliU- HEWLETT
~~ PACKARD

III 1111111111111111
97068-90603
For Internal Use Only

