
HP 9000 Computers

HP-UX Technical BASIC
Programming Guide, Vol. 2

r/"~ HEWLETT
~~ PACKARD

HP-UX Technical BASIC
Programming Guide, Vol. 2

for HP 9000 Computers

HP Part Number 97068-90001

© Copyright 1986 Hewlett-Packard Company

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of Hewlett
Packard Company. The information contained in this document is subject to change without notice.

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the Rights
in Technical Data and Software clause in DAR 7-104.9(a).

© Copyright 1980, Bell Telephone Laboratories, Inc.

Hewlett-Packard Company
. 3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional pages
to be merged into the manual by the user. Each updated page will be indicated by a revision
date at the bottom of the page. A vertical bar in the margin indicates the changes on each page.
Note that pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing.date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint
do not cause the date to change.) The manual part number changes when extensive technical
changes are incorporated.

February 1986 ... Edition 1

ii

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the fumishing, performance,
or use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

Table of Contents
Chapter 9: Communicating with the Operator

Introduction. .. 9-1
Chapter Contents ... 9-1

Overview .. 9-2
A Simplified Model .. 9-2
Importance of the Human Interface 9-3
General Design Suggestions .. 9-3

Sending Messages to the Operator. .. 9-4
Sending Audio Messages .. 9-4
Displaying Messages on the Alpha Screen 9-5
Printers .. 9-13
Formatting Information .. 9-15

Accepting Messages from the Operator .. 9-21
Types of Keyboard Inputs. .. 9-21
Softkeys 9-22
Alphanumeric Input Methods. .. 9-24
Enabling and Disabling Keys 9-28
Low-Level Keyboard Input Routines. .. 9-29
Reading Text from the Screen .. 9-30

Chapter 10: Using the Clock and Timers
Introduction. .. 10-1

Chapter Contents .. 10-1
Using the Clock. .. 10-2

Reading the Date. .. 10-2
Reading the Time of Day. .. 10-2
Time and Date Format Conversions .. 10-3
Timing the Interval Between Events .. 10-5

Using the Timers. .. 10-6
Timer Interrupts 10-6
Timer Functions ... 10-9
Timers and Subprograms. .. 10-10

iii

Chapter 11: Data Storage and Retrieval
Introduction. 11-1

Chapter Contents .. 11-2
Storing Data in Programs. .. 11-3

Storing Data in Variables .. 11-3
Data Input by the User .. 11-4
Using DATA and READ Statements. .. 11-4

Using BASIC/DATA Files .. 11-9
Brief Mass Storage Tutorial. .. 11-9
Introduction to File Access Techniques. .. 11-11
A Closer Look at BASIC/DATA File Access 11-14
A Closer Look at Serial Access. .. 11-20
Random File Access ... 11-24
Determining Data Types 11-28
Trapping EOF and EOR Conditions .. 11-29

Using text/data Files .. 11-31
Writing to a text/data File 11-31
Reading from a text/data File .. 11-32

Chapter 12: C Binaries

iv

Introduction. .. 12-1
Chapter Contents .. 12-1

Overview. .. 12-2
Structure of C Programs and Binaries 12-2
Compiling and Linking. .. 12-3
Summary of Parameter-Type Matching. .. 12-5
Restrictions. .. 12-5

A Closer Look at Compiling and Linking .. 12-7
Example C Binaries. .. 12-9

Passing Simple Numeric Parameters. .. 12-9
Passing Numeric Array Parameters 12-11
Passing Simple String Parameters. .. 12-13
BASIC String Length Headers. .. 12-15
Passing String Arrays. .. 12-17

Examples of C File I/O ... 12-19

Chapter 13: Pascal Binaries
Introduction. .. 13-1

Chapter Contents .. 13-1
Overview. .. 13-2

Structure of Pascal Programs and Binaries. .. 13-2
Compiling and Linking. .. 13-3
Summary of Parameter-Type Matching. .. 13-5
Restrictions. .. 13-6

A Closer Look at Compiling and Linking. .. 13-8
Example Pascal Binaries. .. 13-10

Passing Simple Numeric Parameters. .. 13-10
Passing Numeric Array Parameters 13-13
Passing Simple String Parameters. .. 13-17
BASIC String Length Headers .. 13-19
Passing String Arrays. .. 13-21
Using Files with Pascal Binaries. .. 13-24

Chapter 14: FORTRAN Binaries
Introduction. .. 14-1

Chapter Contents .. 14-1
Overview. .. 14-2

Structure of FORTRAN Programs and Binaries 14-2
Compiling and Linking. .. 14-3
Summary of Parameter-Type Matching. .. 14-5
Restrictions .. 14-6

A Closer Look at Compiling and Linking .. 14-8
Examples of FORTRAN Binaries .. 14-10

Passing Simple Numeric Parameters. .. 14-10
Passing Numeric Array Parameters 14-12
Passing Simple String Parameters. .. 14-15
Passing String Arrays. .. 14-20
Using Files with FORTRAN Binaries 14-22

Chapter 15: Graphics
Chapter Contents 15-1

Example Graphics Programs .. 15-2
Example of Graphics Output (Plotting) .. 15-2
Example of Graphics Input. .. 15-4

Determining Your Device's Capabilities 15-6
List of Output (Plotting) Capabilities. .. 15-6

v

Specifying Graphics Devices. .. 15-9
Explicitly Specifying a Plotting Device 15-9
Explicitly Specifying Separate Input and Output Devices. 15-11

Limits and Coordinates .. 15-12
Overview. .. 15-12
A Closer Look at Coordinate Systems .. 15-15
Axes and Grids .. 15-19
User Units. .. 15-22
Changing Units: SETGU and SETUU .. 15-29
Moving the Graphics Limits. .. 15-32
Aspect Ratio. .. 15-34
Plotting Boundaries. .. 15-36
Reflecting Images ... 15-48
Digitizing Graphics Limits and Plotting Bounds. .. 15-49

Graphics Input. .. 15-52
Input Capabilities. .. 15-52
What Is Digitizing? .. 15-52
Digitizing the Input Locator's Position 15-52

Pens and Background .. 15-54
Moving the Pen and Drawing .. 15-56

Moving and Drawing .. 15-57
Line Types .. 15-64

Labeling 15-65
Plotting and Reading Pixels '. .. 15-69

Plotting Pixels (BPLOT) .. 15-69
Reading Pixels (BREAD) 15-70
A Closer Look at Byte Plotting. .. 15-70
A Closer Look at Byte Reading. .. 15-71

Storing and Retrieving Raster Images. .. 15-73
Storing Graphics in a File 15-73
Retrieving Graphics from a File. .. 15-73
Dumping Graphics to Printers 15-74

Using Plotters .. 15-75
Graphics Defaults Restored .. 15-75
Additional Considerations 15-75
Digitizing Plotter Pen Locations .. 15-76
Graphics Using HPGL Commands .. 15-82

Index

vi

Communicating with the Operator 9
Introduction
Have you ever been confused by the question posed by a program? Have you ever wondered
which button to press next? Have you ever gotten a cryptic error message, or lost some
important or irreproducible data? If you answered "yes" to any of these questions, then you
know some of the frustrations of using a poorly designed computer/human interface l .

As a programmer, you are on the other side of this interface. You have the responsibility of
designing a program that others can use and, more importantly, will want to use. How will
you ask questions? What assumptions are you going to make? How much time will you spend
making your program easy to use? The time and effort you invest could mean the difference
between a popular piece of software and one that everyone avoids like the plague.

Chapter Contents
This chapter describes the system features available for communicating with the computer op
erator. It contains these task and topics:

Task/Topics Page

An overview of the elements in a human interface 9-2

General suggestions for improving computer/human communications 9-3

Sending audio messages 9-4

Sending alphanumeric messages 9-5

Accepting input from the softkeys 9-22

Accepting information from the keyboard 9-24

1 A computer/human interface, or simply human interface, is informally defined to be the means by which the computer operator interacts

with the computer. This interface includes hardware, software, and information.

Communicating with the Operator 9-1

Overview
In order to design an effective human interface for a program, you need to take a closer look at
the operator/program communication process.

A Simplified Model
Although the human interface involves many aspects of the flow of information between computer
to operator, here is a simplistic model of the communication process at this interface:

1. The computer prompts the operator for information.

2. The operator receives the message.

3. The operator thinks about the question, and then formulates a response.

4. The operator makes the response.

5. The computer accepts the information entered by the operator.

Communications Devices
These steps in the communication process are generally carried out by the following physical
devices:

• Computer output. devices: alphanumeric and graphics displays, beepers and voice-
synthesis devices

• Human input devices: eyes, ears, sense of touch

• Human information processor: brain

• Human output devices: fingers and hands, voice

• Computer input devices: keyboards, graphics input devices (such as a knob, mouse,
touch screen, and digitizer stylus), and voice-recognition devices

Other Factors
Along with these output and input devices, there are some other factors that affect the commu
nication of information.

• Method of presenting the information (terminology, page layout, etc.)

• Placement of the preceding output and input devices

• Operator's past experience and present mental state

• Various other human factors

9-2 Communicating with the Operator

Importance of the Human Interface
In general, the most important function of a computer is to manipulate data. Although the
computer can receive data from other computers and devices, it is probably more common that
it gets data from a computer operator.

If you are the only person that uses a program you've written, then that program may not need a
quality human interface. This normal requirement is eliminated because you know exactly what
data the program needs, when it is needed, and how to enter it into the computer. However, if
a program is used by other people, then the demands for a good human interface rise greatly
- especially if they have different backgrounds. When the intended users do not understand
computers, your program must be very skillfully written so that it does not confuse or intimidate
the operator or make great demands on their computer expertise.

This part of the process of using software is one of the most error-prone, because it involves
the subtly complex process of human communications. And the problem is further compounded
because the humans are separated by space and time, as well as restricted to communicating
with limited means - usually only visual computer prompts and manual human input.

General Design Suggestions
Good human interfaces don't just happen; they require effort, logical thinking, and thorough
testing. In many programs, at least 25% of the code is dedicated to the human interface. And
it is not unusual to use 60% of a good program for explanatory messages, operator interaction,
error trapping, and so forth. Obviously, these estimates depend upon many factors, such as
the task being performed and the intended operators; however, they do show that a significant
portion of the program design effort should be devoted to the human interface.

Here is a brief list of general suggestions for developing an effective human interface.

• Ask simple, definite questions or prompts

• Present the questions and prompts in a natural, logical order

• Limit the set of alternative answers, if possible

• Supply a default answer, if possible

• Provide a chance for the operator to verify choice(s) picked or information entered

• Trap invalid operator responses, and give them another chance

Communicating with the Operator 9-3

Sending Messages to the Operator
The information you can send to the operator generally fits into these two categories:

• Descriptions of what the program is currently doing (or what mode it is currently operating
in)

• Descriptions of what the user is expected to do

These "status reports" and "prompts" for information, respectively, may be made in one of these
ways:

• With words (text)

• With pictures (graphics)

• With sound (auditory messages)

Let's deal with sound first, because of the simplicity of the related Technical BASIC features,
and then with text. Graphics are covered in the "Graphics" chapter.

Sending Audio Messages
It would be a real attention getter to have the computer synthesize a pleasant voice that says:
"Please don't touch the keyboard right now." However, sometimes a simple warning "beep" is
enough to give the same message.

Generic Beeps
With some terminals and consoles!, the only audio message available is the "bell" sound. This
BASIC statement directs the terminal to make the bell sound.

BEEP

You can also get the same response by "displaying" the bell control character:

DISP CHR$(7)

This method works well when the operator probably knows what he is doing is wrong, but just
needs a gentle reminder.

The tones that your terminal or console can generate are listed in the Implementation Specifics appendix to the HP·UX Technical BASIC

Language Reference.

9-4 Communicating with the Operator

Varying Tones
On other terminals and consoles there is a tone generator, which you can use to produce sounds
of varying frequency and duration. Execute this statement to see if your machine has these
capabilities.

BEEP 10,10 @ BEEP 20,20

If you get two different pitches, then your hardware has these capabilities.

The first parameter in the BEEP statement controls the frequency, while the second controls the
duration.

BEEP Frequency,Duration

The range of the frequency and duration parameters are given in the Specifics appendix for your
system.

Displaying Messages on the Alpha Screen
The mechanics of using alpha displays with HP-UX Technical BASIC systems vary from system
to system. This section contains some general information about using displays with all systems.
Consequently, you may want to refer to the Getting Started Guide for your Technical BASIC
system as you read this section.

Using printers to display information is described in a subsequent section.

The Essence of Displaying Messages
Giving instructions to the operator can be condensed into these basic steps:

1. Clear the display of any irrelevant information.

2. Make sure that the display device is operating in the proper mode (for instance, not in
insert mode)

3. Use as much of the display as necessary to give unambiguous, understandable instructions.

In the early days of computers, memory was a scarce and expen,sive resource. Programmers
were encouraged to use as little memory as possible. It seemed as though there was a contest
to see who could put the most information into a short message.

Please realize that those days are over. Take a typical HP-UX system as an example. The
standard machine is shipped with over a half-million characters of memory, and there is no
significant restriction on program size. Neither is there any real restriction due to the display
size, since most HP displays supported on Technical BASIC usually have at least 20 lines of
80 characters each visible at all times. It is generally false economy to display tiny, cryptic
messages.

Communicating with the Operator 9-5

Which Device Is the Display Screen?
Statements that display text (like DISP and CAT) send the characters to the current CRT IS device.
Normally this device will be the screen on which characters appear as you type l .

You can see which screen is the CRT IS device by executing the following statement:

DISP "This is the current CRT IS device."

The display (or printer) on which the message appears is currently the CRT IS device. Normally
it will be your terminal or console screen. However, if these characters are currently being sent
to a printer (or file), then you can specify that your console is now to be the display device by
executing this statement:

CRT IS 1

The numeric parameter 1 specifies the screen's device selector.

You can also specify that a file is to be the CRT IS device. If a file does not exist, then you can
create one for this purpose. Then assign a file selector to the file, and specify this file number
as the CRT IS device.

CREATE "CRTISFile".1
ASSIGN 11 TO "CRTISFile"
CRT IS 11

The CREATE statement creates a text/data2 file in the current working directory. The ASSIGN

statement assigns a file selector of 11 to the file named CRTISFile. Since no directory path was
specified, the file was assumed to be in the current working directory. If there is no file named
CRTISFile in that directory, then the system automatically creates it.

Subsequent information that would normally be sent to the screen (such as output of CAT. LIST)

will be sent to this file. If the file already exists and has information in it, then the subsequent
information is appended to the file.

You can also specify a screenwidth in the CRT IS statement. For instance:

CRT IS 1.65

1 If you see no characters on your screen as you type at the keyboard, press the carriage-return key, then type in an ALPHA command,

and execute the command by pressing the carriage-return key again. Executing this statement turns on the alpha display.

2 You can read files of this type from BASIC by using ASSIGN to open the file and then reading lines of text with the ENTERs statement.

For example. see "Using text/data Files" in the "Data Storage Retrieval" chapter.

9-6 Communicating with the Operator

BASIC will subsequently allow the Drsp statement to display only 65 columns of text on the
screen. (Other methods of writing to the screen are not affected, however.)

Now that you have seen how to determine which display you will be using, and how to specify
another, the next step is to find out what you can do with it.

Determining Display Capabilities
An inherent requirement of using the steps above is knowing (or determining) the display device's
capabilities. If you don't know, for instance, the width of an alphanumeric display screen, then
you might try to put more than one line of text on a display line.

Here are some relevant questions you might ask about a display device's attributes and capabil
ities:

• What is the screen's width (number of columns) and height (number of row's)?

• What characters can it display, including enhancements (such as half-bright and underlin
ing)?

• Can you position its cursor? (The cursor is a pointer that indicates the location at which
the next character will be displayed.)

• Does it have special insert or delete modes or operations?

• Can you scroll the text on the display?

There are several approaches that you can take to determine a display device's capabilities:

• Read the display device's documentation.

• Observe its operation.

• Have the program determine them.

Using the first approach, you can read a display device's documentation, which is usually
shipped with the device. For instance, if you are using an Integral Personal Computer, then you
can read its installation and operating manuals. A list of the characters it can display, along with
operating modes and escape code sequences it implements, is provided in the Implementation

Specifics appendix shipped with the Integral HP-UX Technical BASIC system.

Multi-user systems, such as Series 500 HP-UX, are capable of supporting several different ter
minals at one time. In this case, you will need to read the documentation for each terminal to
determine its capabilities.

Communicating with the Operator 9-7

Using the second approach, you could begin displaying some character codes on the screen
and observe the results. You should eventually do this anyway to get a feel for what is pleasing
to the eye and effectively conveys the desired information.

The following example shows an application of the third approach: determining display width
with a BASIC program l .

100 DIM Lines$[170]
110 Lines$=RPT$(" 1,40)&1401&RPT$(" ",8)&"50"
120 Lines$=Lines$&RPT$(" ",28)&"80" !

String pos 41,51.
String pos 81.
String pos 161. 130 Lines$=Lines$&RPT$(" ",78)&"160"

140
150
160
170
180
190
200
210
220
230
240
250

CLEAR
ALPHA 1,1 !
AWRIT Lines$

Clear the screen.
Home the cursor (Row 1, Column 1).
Write line (excess will "wrap" to next line).

ALPHA 3,1! Move cursor to start of second line.
AREAD Lines$ Read characters (which will show width).
ScreenWidth=VAL(Lines$) ! Convert string to number.
ALPHA 6,1! Move cursor to start of sixth line.
DISP "Width of screen=I;ScreenWidth;lcharacters."

END

Here are the results of running the program on an 80-column screen.

40 50

80

160
Width of screen= 80 characters.

1 The AREAD statement works on "line-oriented" terminals. A "line-oriented" terminal is one that can send and receive characters a line

at a time. If you can type in a BASIC statement or command, execute it, move the cursor back onto the line, and then successfully

re-execute it, you have a "line-oriented" terminal.

9-8 Communicating with the Operator

The program creates a string (Lines$) that is longer than any line that any screen can display.
It places characters such as "40", "50", and so forth at string locations 41, 51, and so forth,
respectively. (Note that there is a space between 80 and 160 in the above results. This is the
because a line-feed is inserted after the eightieth character on a line.) The ALPHA statement next
positions the cursor at column 1 of row 1. The AWRIT statement writes this string into screen
memory beginning at the current cursor location. Since the length of the string is greater than
a screen width, some of the characters will be placed ("wrapped") onto subsequent row(s) of
the screen. The AREAD statement then reads the number on the third row, which represents
the width of the screen. The VAL function converts the string read by AREAD into a numeric
value, which is assigned to the numeric variable named ScreenWidth. You can use an analogous
technique to determine the number of lines (rows) on the screen.

Although this is a way for the program to determine the screen's width, it may not be the most
reassuring thing for a program's user to see as he begins using the program.

An alternate method of programmatically determining screen width might be as follows: set up
a table that lists each type of terminal's capabilities; have the program ask the user to identify the
product number of the screen device; access the entry in the table that describes that device's
capabilities; set up the communication model for that terminal based on the device's capabilities.

Clearing the Screen
It is confusing to the operator (and embarassing to the programmer) when two or more displays
combine in an unplanned manner. The culprits are often "left-over" alpha and graphics.

To completely erase the alpha display, use this statement:

CLEAR

It moves the cursor to its "home" position (upper, left corner), scrolling the text if necessary,
and clears all characters from the display.

To completely clear left-over graphics, execute GCLEAR. Note that alpha and graphics are displayed
separately on some consoles and terminals, but are displayed simultaneously on others.

Communicating with the Operator 9-9

Turning Off Unwanted Modes
As another example, suppose that the previous user left the cursor in the middle of a screen of
text with "insert mode" left on. If a subsequent program attempts to display new text without
turning off insert mode and clearing the screen, then the result may be a chaotic screen.

The DISP statement does not provide a high-level method for getting the display out of modes like
"insert character." Those modes are controlled by sending an escape sequence to the display.
In this case, you will need to cancel the insert mode (return to not inserting characters before
current cursor position). Here is a simple example:

440 CancelInsert$=CHR$(27)&IIR II
450 DISP Cancellnsert$;

The PRINTALL statement directs the system to print all information that is sent to the display
screen; the information is printed on the current PRINTER IS device. You can cancel this mode
by executing a NORMAL statement.

Positioning the Cursor
Whenever you execute a statement that displays characters on the screen, these characters are
displayed beginning at the current cursor location. For instance, one of the preceding examples
showed a method of moving the cursor. Here is a similar example:

100 DIM Chars$[170]
110 Chars$=IICursor location. II
120
130 CLEAR !
140
140
150
170

DISP Chars$
DISP Chars$

Clear screen. and IIhome ll cursor (row 1. column 1).

Display beginning at cursor location.

180
190
200
210

ALPHA 3.20! Move cursor to line 3. column 20.
AWRIT IICursor location doesn't change. 1I

AWRIT IIWith AWRIT. loc ll

220 END

Here are the program's results:

Cursor location.
Cursor location.

With AWRIT. loc doesn't change.

The CLEAR statement clears the display and sets the cursor location to row 1 and column 1. The
subsequent DISP statement displays characters beginning at this location. As the DISP statement
finishes, it automatically moves the cursor to the next line by sending an "end-of-line" (EOL)
sequence: a carriage-return control character followed by a line-feed control character.

9-10 Communicating with the Operator

The cursor is then moved to column 20 of row 3 with the ALPHA statement. The AWRIT statement
then writes the specified characters on the display. AWRIT is different from DISP in that it does
not update the cursor location, as shown by the second AWRIT statement beginning at the same
location (3,20) and overwriting characters written by the first one.

Determining the Cursor's Location
If you are not sure where the cursor is, you can determine its location by using the CURSROW and
CURSCOL functions.

• CURSROW returns the row .

• CURSCOL returns the column.

You can use these functions just as you would other numeric system functions. Here is an
example of using them in a program.

100 Star$="*"
110
120 CLEAR
130 FOR RowNumber=l TO 16 STEP 3
140 Col_=RND *60 ! Random column.
150 ALPHA RowNumber.Col_
160 AWRIT Star$!
170 Row_=CURSROW!
180 Col_=CURSCOL!
190 ALPHA .CURSCOL +3 !

Move cursor.
Display the "*".
Determine row.
Determine column.

200 DISP "(";Row_;".";Col_;")"
Move cursor (relative).
Show row and column.

210 NEXT RowNumber
220
230 END

Here are typical results of running the program:

* (1 . 43)

* (4 . 33)

* (7 . 37)

* (10 . 36)

* (13 . 14)

* (16 . 7)

Communicating with the Operator 9-11

Turning the Cursor On and Off
The cursor is the screen location -at which subsequently typed or displayed characters will begin
appearing. Normally the cursor's location is indicated by an inverse-video block or a blinking
underline character.

To disable the visual cursor, execute this statement 1 :

OFF CURSOR

To re-enable the visual cursor, execute:

ON CURSOR

Displaying Blank Lines
If the cursor position is at the start of a blank line when Drsp is executed, that line remains
blank. However, if there is text on that line, the text remains. This behavior is due to the
fact that a Drsp statement with no parameters simply sends an end-of-line sequence, which is a
different operation than writing a line of blank characters - ASCII spaces, or CHR$ (32). This
is not to say that it is "wrong" to use Drsp with no parameters. It just means that you cannot
guarantee the output of a blank line by using Drsp with no parameters.

To print a blank line, blanks must be printed. One of the most convenient ways to send a line
full of blanks is to use the TAB -function. Here is a sequence that prints three blank lines:

100 ScreenWidth=80! This may vary for your display device.
110 DrSp TAB(ScreenWidth)
120 DrSp TAB(ScreenWidth)
t30 DrSp TAB(ScreenWidth)

Before getting into greater detail about formatting information that you sent to the display, let's
take a look at what capabilities you have for sending information to printers.

1 This feature is not implemented on some consoles and terminals_

9-12 Communicating with the Operator

Printers
The mechanics of using printers with HP-UX Technical BASIC systems vary from system to
system. This section contains some general information about using printers with all systems.
Consequently, you may want to refer to the Getting Started Guide for your Technical BASIC
system as you read this section.

The PRINT statement sends information to a printer in the same fashion as the DISP statement
sends information to a screen display. The device specified in the last PRINTER IS statement,
or the default system printerl , receives PRINT statements' output2 .

To see which printer is the current PRINTER IS device, execute this statement:

PRINT "This is sent to the PRINTER IS device."

You can also specify that another device is to be the system printer. Here is an example of
creating a file and then specifying that the file is to be the system printer.

CREATE "PRTISFile".1
ASSIGN 11 TO "PRTISFile"
PRINTER IS 11

The CREATE statement creates a text/data file in the current working directory. The ASSIGN

statement assigns a file selector of 11 to the file named PRTISFile. Since no directory path was
specified, the file was assumed to be in the current working directory. If there is no file named
PRTISFile in that directory, then the system automatically creates it.

There are times when you want to have printed records of what has been displayed on the
screen. The PRINT ALL statement directs the system to print a copy of whatever information is
sent to the display on the current PRINTER IS device.

If you have not been operating in PRINT ALL mode, but you find that you need to get a printed
version of what is currently on the screen, you can use the DUMP ALPHA 3 statement to send a
copy to the current PRINTER IS device.

With single-user Integral HP-UX systems, the default system printer is the built-in printer. With other single-user and multi-user HP-UX

systems, the default system printer is the display screen.

2 Multi-user HP-UX systems use intermediate files to receive the output of PRINT statements, which are then "spooled" to the printer.

3 DUMP ALPHA requires that the printer is capable of displaying graphics. Note also that it is not implemented on some terminals. For

further details, see the "Graphics" chapter of the HP-UX Technical BASIC Programming Guide (this manual) for your particular HP-UX

Technical BASIC system.

Communicating with the Operator 9-13

A Typical Printer's Character Set
Most ASCII characters are printed on an external printer much like they appear on the display
screen!. However, depending on your printer, there will be exceptions. Several printers will also
support an alternate character set; this alternate set is often a foriegn character set, a graphics
character set, or an enhanced character set. If your printer supports an alternate character set,
it usually is accessed by sending a special command to the printer. This section describes typical
characters that printers can print and use as control information.

Control Characters
In addition to a "printable" character set, printers usually respond to control characters. These
non-printing characters produce a response from the printer. The following table shows some of
the control characters and their effect.

Table 9-1. Control Characters

Control Character's Keyboard
Printer's Response ASCII Value Character

ring printer's bell 7 CTRL-G

backspace one character 8 CTRL-H

horizontal tab 9 CTRL-I

line-feed' 10 CTRL-J

form-feed 12 CTRL-L

carriage-return 13 CTRL-M

One way to send control characters to the printer is with the CHR$ function. Execute the following.

PRINT CHR$ (12)

The printer usually responds by executing a form-feed - it moves the paper to the beginning
of the next blank sheet, and re-positions the print head to the beginning of the first line.

Other control characters may be valid for your printer. For example, sending a control-N to the
829058 printer changes the character size of subsequent text.

30 Big$=CHR$(14)
40 PRINT Big$;"Double-Width Text"
50 END

1 A list of the characters available on a particular printer is given in the documentation sent with that printer.

9-14 Communicating with the Operator

Refer to the appropriate printer manual for a complete listing of control characters and their
effect on your printer. Note that some printers allow control characters to affect only the line
of text on which they were used.

Escape-Code Sequences
Similar in use to control characters, escape-code sequences allow additional control over most
printers. These sequences consist of the escape control character, CHR$ (27), followed by one
or more characters.

For example, the 2631A printer is capable of printing characters in several different fonts. To
print extended characters on this printer, an escape code sequence is sent to the printer before
the actual text to be printed is sent.

20 Esc$=CHR$(27)
30 Big$=I&k1S"
40 Regular$="&kOSII
50 PRINT Esc$;Big$;"Extended-Font Text"
60 PRINT Esc$;Regular$;"Back to normal. II
70 END

Since each printer may respond differently to control characters and escape code sequences,
check the manual that came with your printer.

Formatting Information
This section describes how to use the DISP and PRINT statements to "format" the information
you print.

For many applications the PRINT or DISP statement provides adequate formatting. The simplest
method of formatting is by specifying a comma or semicolon between items.

When the comma is used to separate items, the items are aligned on field boundries. Fields
start in column one and occur every 21 columns (columns 1,22,43,64, ...). Here is an example
of this type of formatting with PRINT statements:

PRINT "123456789012345678901234567890123456789";
PRINT "012345678901234567890123456789"
DATA 1.1,-22.2,300000,5.1E+8
READ A,B.C,D
PRINT A,B,C,D

Here are the results:

123456789012345678901234567890123456789012345678901234567890123456789
1.1 -22.2 300000 510000000

Communicating with the Operator 9-15

Using the semicolon as the separator causes the numbers to be put as closely together as the
compact form allows. The compact form always uses one leading space (or - when the number
is negative) and one trailing space. That is why the positive numbers in the previous example
appear to print one column to the right of the field boundries. The next example shows how
the compact form prevents numeric values from running together.

PRINT "123456789012345678901234567890123456789";
PRINT "012345678901234567890123456789"
DATA 1.1,-22.2,300000,5.1E+8
READ A,B,C,D
PRINT A;B;C;D

Here are the results:

123456789012345678901234567890123456789012345678901234567890123456789
1.1 -22.2 300000 510000000

The comma and semicolon are often all that is needed to format a simple table.

You can also format the entire contents of an array, using the comma or semicolon to control
the format of the output. Here is an example of printing an array in which each array element
contains the value of its subscript:

10 OPTION BASE 1
20 DIM A(5)
30 DATA 1,2,3,4,5
40 READ A(1) ,A(2) ,A(3) ,A(4) ,A(5)
50 PRINT A(1) ;A(2) ;A(3) ;A(4) ;A(5)
60 END

Here are the results:

1 234 5

Another method of aligning items is to use the TAB function.

10 PRINT "123456789012345678901234567890123456789"
20 PRINT TAB(16) ;"*"
30 END

Here are the results:

123456789012345678901234567890123456789

*

A more powerful formatting technique employs the ability of the PRINT and DISP statements to
use an image to specify the format.

9-16 Communicating with the Operator

Using Images
Just as a mold is used for a casting, an image can be used to format data. An image specifies
how each item should appear. The computer then attempts to format the items according to
the image.

One way to specify an image is to include it in the PRINT statement. The image specifier is
enclosed within quotes and consists of one or more field specifiers. A semicolon then separates
the image from the list of items to be printed.

This statement prints the value of 7r (3.141592654 ...) rounded to three digits to the right of
the decimal point.

PRINT USING "D.DDD";PI

Here is its result:

3.142

For each character "0" within the image, one digit is printed. Whenever the number contains
more non-zero digits to the right of the decimal than provided by the field specifier, the last digit
is rounded. If more precision is desired, more characters can be used within the image.

PRINT USING "D.14D";PI

3.14159265358979

Instead of typing fourteen "0" specifiers, one for each digit, a shorter notation was used to
specify a repeat factor before the digit field specifier. The image "OOOOOD" is the same as the
image "60".

The image specifier can be included in the PRINT or DISP statement or on its own line. When
the specifier is on a different line the PRINT or DISP statement accesses the image by either its
line number or line label.

100 Format: IMAGE 6Z.DD,X
110 DATA 1.5,25.57, .056,-.555,-3.4,-88.9
120 READ A,B,C,D,E,F
130 PRINT USING Format;A,B,C
120 PRINT USING 100;D,E,F
150 END

Executing this program gives the following results:

000001.50 000025.57 000000.06
-00000.56 -00003.40 -00088.90

Notice that the image specifier Z filled the field to the left of the radix with zeros.

Communicating with the Operator 9-17

Numeric Image Specifiers
Several characters may be used within an image to specify the appearance of a numeric value.

Table 9-2. Numeric Image Specifiers

Image Specifier Purpose

D Replace this specifier with one digit of the number to be printed.

Z

E

K

S

M

R

If the digit is a leading zero, then print a space. If the value is
negative, then one leading space may be used by the negative
sign.

Same as "D" except that leading zeros are printed.

Prints two digit of the exponent after printing the sequence "E+".
This specifier is equal to "ESZZ". See the Technical BASIC Lan-
guage Reference for more details.

Print the entire number without leading or trailing spaces.

Print the sign of the number: either a "+" or "-".

Print the sign if the number is negative; if positive, print a space.

Print the decimal point (radix).

Print the comma radix.

To better understand the operation of the image specifiers examine the following examples and
results.

Statement Output

PRINT USING "KII;33.666 33.666
PRINT USING IIDD.DDDII;33.666 33.666
PRINT USING IIZZZ.3DII;33.666 033.666

PRINT USING IIZZZII; .444 000
PRINT USING IIZZZII;5.55 005

PRINT USING IISD.3DEII;6.023E+23 +6.023E+23
PRINT USING IIS3D.3DEII;6.023E+23 +602.300E+21
PRINT USING IIS5D.3DEII;6.023E+23 +60230.000E+19

9-18 Communicating with the Operator

To specify multiple fields within the image, the field specifiers are separated by commas.

PRINT USING "K,5D,5D";100,200,300

100 200 300

PRINT USING "ZZ,DD,DD";l,2,3

01 2 3

If the items to be printed can each use the same image, then the image need be listed only once.
The image will then be re-used for the subsequent items.

10 PRINT "123456789012345678901234567890123"
20 PRINT USING "5D.DD" ; 3.98,5.95,27.5,129.95
30 END

This program produces the following after execution:

123456789012345678901234567890123
3.98 5.95 27.50 129.95

The image is re-used for each value. However, an error will result if the number cannot be
accurately printed by the image specifier. For instance, the number 20 cannot be accurately
printed by the "D" image specifier, since it requires at least two significant digits.

String Image Specifiers
Similar to the numeric field image characters, several characters are provided for the formatting
of strings.

Table 9-3. String Image Specifiers

Image Specifier Purpose

A Print one character of the string. If all characters of the
string have been printed, then print a trailing blank.

X Print a space, CHR$ (32).

"literal" Print the characters between the quotes.

Note that the long strings of numbers above the results are used to show column spacing they
are not part of the result. The same type of long number strings were used in previous programs
for the same purpose but they were part of the program output.

Communicating with the Operator 9-19

The following examples show various ways to use string specifiers.

Executing these statements:

PRINT "123456789012345678901234567"
PRINT USING "5X,10A,2X,10A";"Tom","Smith"

Produces the following results:

123456789012345678901234567
Tom Smith

Executing these statements:

10 IMAGE 5X, II John II ,2X,10A
20 PRINT "1234567890123456789012"
30 PRINT USING 10;ISmith"
40 END

Produces the following:

1234567890123456789012
John Smith

Executing these statements:

10 IMAGE "PART NUMBER" ,2X,10D
20 PRINT "12345678901234567890123"
30 PRINT USING 10;90001234
40 END

Produces the following:

123456789012345678901234
PART NUMBER 90001234

Additional Image Specifiers
The following image specifiers serve a special purpose.

Table 9-4. Additional Image Specifiers

Image Specifier Purpose

B Print the ASCII character whose code is given by the "bi-
nary" number. (This is similar to the CHR$ function.)

Suppress the otherwise automatic end-of-line sequence
(carriage-return and line-feed).

/ Send an end-of-line sequence.

9-20 Communicating with the Operator

Examples

To print a form-feed but suppress the automatic end-of-line sequence, execute the following:

PRINT USING "#,B";12

To print the ASCII characters that correspond to the codes given by three integers, execute the
following statement:

PRINT USING "B,B,B";67,97,l16

The following appears on the display:

Cat

Accepting Messages from the Operator
There are several ways to get data from the operator:

• From the keyboard

• From a positioning device (such as a mouse or graphics-tablet stylus)

• From an audio input device

The main focus of this section is on inputs from the keyboard. Inputs from positioning devices
are described in the "Graphics" chapter. Audio input is beyond the scope of this book.

Types of Keyboard Inputs
There are two general methods of getting operator input through the keyboard:

• With softkeys

• With alphanumeric keys

Communicating with the Operator 9-21

Softkeys
When possible, using softkeys is a very good choice. It limits the number of alternative inputs,
thereby eliminating the need for translating an endless variety of typing mistakes that might be
made by the operator. Another benefit is that softkey input is very tightly controlled by the
programmer. For information on softkeys as "typing-aids" read the section "Using Typing-Aids
Keys" in the Technical BASIC Getting Started Guide.

ON KEY# statements are used to set up and enable interrupt service routines to be executed when
each softkey is pressed 1 . The KEY LABEL statement updates the screen with visual reminders of
each softkey's definition.

100 This program shows simple usage
110 ! of the softkeys and system clock.
120
130 CLEAR ! Clear alpha screen.
140 OFF CURSOR! Disable visual cursor.
150
160 ! Set up softkey definitions.
170 ON KEY# l,IStart" GOSUB Starts
180 ON KEY# 2,IStop" GOSUB Stops
190 ON KEY# 3,IReset" GOSUB Resets
200 ON KEY# 4,ILap" GOSUB LapTime
210 KEY LABEL ! Show softkey labels on screen.
220
230 ! Set up initial screen.
240 ALPHA 2,1 ~ DISP "Time of day: II ,TIME$
250 ALPHA 4,1 ~ DISP "Start time: II ,HMS$(O)
260 ALPHA 6,1 ~ DISP "Elapsed time: II ,HMS$(O)
270 ALPHA 8,1 ~ DISP "Lap time: II ,HMS$(O)
280
290 Loop: ALPHA 2,22 ~ DISP TIME$
300 WAIT 1000! Dummy delay.
310 IF NOT Timing THEN Loop! Don't update elapsed.
320 ALPHA 6,22 ~ DISP HMS$(TIME-Tstart) ! Elapsed.
330 GOTO Loop
340
350 Starts: Tstart=TIME
360 Timing=l! Set flag.
370 ALPHA 4,22 ~ DISP HMS$(Tstart)
380 RETURN
390
400 Stops: Timing=O Clear flag.
410 RETURN
420

1 Service routines are described in the "Program Structure and Flow" chapter.

9-22 Communicating with the Operator

430 Resets: Timing=O! Clear flag.
440 ALPHA 4,22 @ DISP HMS$(O)
450 ALPHA 6,22 @ DISP HMS$(O)
460 ALPHA 8,22 @ DISP HMS$(O)
470 RETURN
480
490 LapTime: IF NOT Timing THEN RETURN
500 ALPHA 8,22 @ DISP HMS$(TIME-Tstart)
510 RETURN
520
530
540 END

Here is a typical starting screen produced by the program:

Time of day: 14:35:45

Start time: 00:00:00

Elapsed time: 00:00:00

Lap time: 00:00:00

When the program begins execution, only the time of day is updated. The other times shown
remain 00:00:00.

Pressing the [Start I key initiates a branch to the subroutine named flag" by assigning a value of
1 to the variable named Timing. When this flag is set, the elapsed time is shown along with the
time of day when the timing was started (in the "Loop" segment).

Pressing the [Lap I key initiates a program branch to the Lap Time subroutine, which displays the
time elapsed since the [Start I key was pressed.

Pressing the [Stop I key initiates a branch to the Stops subroutine, which halts timing by clearing
the timing flag. When the main loop is executed subsequently, the elapsed time is no longer
updated.

Pressing the [Reset I key initiates a branch to the subroutine named Resets. This routine displays
00:00:00 for Start, Elapsed, and Lap times.

The program employs several techniques of moving the cursor and displaying data that were
shown earlier in this chapter.

Communicating with the Operator 9-23

Alphanumeric Input Methods
Unfortunately, it is often necessary to leave the comfortable, controlled world of softkeys. For
instance, suppose you need to get a number, such as a device selector, from the operator. Valid
values of device selectors range from 1 through 1030. You can't very well define a softkey that
increments a variable and expect the operator to press it several hundred times! Instead, you
will normally ask the operator to use numeric keys to enter the number.

There are two methods that you can use to accept alphanumeric inputs from the keyboard:

• Use INPUT or LINPUT to enter values that can be assigned to string and numeric variables.

• Use ON KYBD to input individual keystrokes.

With the INPUT and LINPUT statements, the operator can type in information, use the cursor
control or backspace keys to edit the data if necessaryl, and then press the carriage-return key
to send the data to the BASIC system for evaluation and assignment to corresponding BASIC
variable(s}. This method is the "high-level" approach to accepting keyboard input, since it lets
the system handle the often tricky details of moving the cursor, displaying and erasing characters
on the screen, and so forth.

With the ON KYBD statement, each key is handled individually by a service routine, and you, the
programmer, have to implement any desired editing capabilities. The ON KYBD method is the
"low-level" method, since it involves much more detail; however, it gives the program greater
control and flexibility.

With both of these methods, you can use the ENABLE KBD statement to enable or disable certain
keys (or groups of keys). For instance, you can disable the I Reset I and I Break I keysl while still
allOWing the typing-aid and alphanumeric keys to function normally.

Before getting into the details of using these methods, here are some general suggestions that
apply to all methods of accepting keyboard inputs.

These keys may be labeled differently on your particular keyboard. See the subsequent section called "Enabling and Disabling Keys" for

further details.

9-24 Communicating with the Operator

Anticipate Common Problems
One task that can be performed by the input routine is to anticipate common problems. Many
techniques are covered in this section's examples, but here is a preview.

• You know that exceeding the dimensioned length of a string gives error 18, so don't use
short string variables in an INPUT statement.

• You know that CAPS LOCK might be on or off when the operator starts typing, so use the
UPC$ string function to convert the inputs to uppercase characters before comparing them
to string constants.

• You know that an operator is likely to just execute CONT (continue) if he isn't sure how
to respond, so make sure that your input routine can handle a null response and that it
assigns a reasonable default answer for such inputs.

Error Trapping Simplifies Input Routines
No matter how much time you have spent anticipating possible errors and making an input routine
"bomb-proof," you can always find someone who can enter an incorrect response. However,
don't feel bad, because the proper handling of keyboard input may be one of the most difficult
areas of applications programs. Instead of writing elaborate input routines that can parse broken
English with misspelled words, you can use the ON ERROR mechanism to trap errors that have
not been (or cannot be) anticipated. The objective in such an approach is two-fold: to keep the
program running, and to give the operator a chance to correct the mistake.

Here is a typical example. You ask the operator for a file name. Your program can't tell if the
operator entered the name of a file that exists until it accesses the disc. The ON ERROR routine
can tell the operator that the file does not exist on the specified (or default) volume and then ask
for another file name. See the "Handling Errors" chapter for more information on error-trapping
techniques.

The Two High-Level Input Methods
As mentioned before, there are two keywords available for accepting alphanumeric keyboard
inputs:

• INPUT

• LINPUT

Communicating with the Operator 9-25

Both statements allow you to enter string values into BASIC variables; however, only INPUT also
allows inputs into numeric variables. Here is an examples of using INPUT:

100 ON ERROR GOTO AskEmplNum ! Set up error trap.
110
200 AskEmplNum: DISP "Please enter your employee number."
210 INPUT EmplNum
220 DISP "Is this correct? (Y/N)",EmplNum
230 INPUT Answer$
240 IF UPC$(Answer$)<>"Y" THEN AskEmplNum
250 OFF ERROR! De-activate error trap.

The example first sets up an ON ERROR branch to the beginning of the input routine. Let's look
at how the routine would be executed without input errors before describing its error-trapping
behavior.

The program displays a prompt for information (with DISP), and then directs the system to
await numeric input data (with INPUT). The operator is then expected to type in a number and
press the carriage-return key (to send the data to the system for evaluation and assignment into
the numeric variable named EmpINum). If the operator enters a "valid" number, then program
execution continues with the next line (220).

Next the program "echoes" the input data on the screen and asks the operator to verify that it
is correct. If it is, then the operator is expected to type a "Y" and press the carriage-return key
again. Note that this section anticipates a common problem - lettercase disagreement - by
converting that the first character of the answer to an uppercase letter before comparing it with
the uppercase "Y" that indicates an affirmative response.

Now back to the error-trapping mechanism. This is probably the simplest form of error trapping
during input from the operator; it merely asks for the operator to input data again. The program
will continue to do so until there are no run-time errors during the program. A typical error
would be the operator entering string data with no numeric characters. In such case, the system
would normally report: Error 43 on line 210 NUMERIC INPUT REQUIRED. However, since this
program branches to AskEmplNum upon detecting an error, the error report is disabled and the
operator is asked again to enter the number.

9-26 Communicating with the Operator

Here is a similar example that uses LINPUT. (LINPUT stands for "Literal INPUT".)

100 ON ERROR GOTO Asklncome ! Set up error trap.
110
120 Asklncome: LINPUT "Monthly income?".Income$
130 LINPUT "Is this correct? (yiN) "&Income$. Answer$
140 IF UPC$(Answer$)<>"Y" THEN Asklncome
150 OFF ERROR! Disable error trap.

This program uses LINPUT for the primary reason that most people (in America, anyway) use
commas in numbers between the hundreds and thousands places, and so forth. For example:
1 .500.00. If you tried to use INPUT to enter this number into a numeric or string variable,
you would get an erroneous value of 1. This is because INPUT interprets the comma as a field
separator. Using the LINPUT statement allows you to enter the number, commas and all, into a
string variable. The program can then parse the string to remove the commas, if necessary.

The preceding examples show that there are several differences between INPUT and LINPUT.

The main advantages of INPUT are as follows:

• Either numeric or string values can be input.

• A single INPUT statement can process multiple fields, and those fields can be a mix of
string and numeric data.

The INPUT statement can be powerful and flexible. When you know the skill level of the person
running the program, INPUT can save some programming effort. However, this statement does
demand that the operator enter the requested fields properly.

Two of the disadvantages of INPUT are as follows:

• Improper entries to numeric variables can cause errors, such as Error 130 NUMERIC VALUE
REQUIRED and Error 2 OVERFLOW.

• Certain characters can cause problems. Commas and quote marks have special meanings
and are the primary offenders.

The problem with INPUT is that the program is powerless to overcome the disadvantages. If you
are asking for a numeric quantity and the operator keeps trying to enter a name, the program
will never leave the INPUT statement. The BASIC system will display error 43 until the operator
either gets tired or realizes the mistake. In the event of an error, the computer automatically
re-executes the INPUT statement until the operator satisfies all the requirements. Your program
never gets a look at the input, because the erroneous input initiates a branch back to the
beginning of the input routine.

Communicating with the Operator 9-27

The LINPUT statement can help with these potential problems. The result of any LINPUT state
ment is a single string that contains an exact image of what the operator typed. If no data are
input, then the variable is given the value of the "null string" (a string of length 0 characters). If
you need things like default values, numeric quantities, and multiple values, then you will need
to process the string after you get it.

Since LINPUT accepts any characters without any special considerations, the only normal error
would be string overflow. If the string used to hold the LINPUT characters is dimensioned to hold
a line of text (usually 80 characters) or more, then it becomes highly unlikely that the operator
will overflow the string from the keyboard. Therefore, LINPUT is a very "safe" way to get data
from the keyboard.

To find out further details regarding the use of INPUT and LINPUT, see the HP-UX Technical
BASIC Language Reference.

Enabling and Disabling Keys
You can use the ENABLE KBD statement to enable and disable certain keys and groups of keys.
For instance, you can disable the special function keys (during program execution) by executing
this statement:

100 ENABLE KBD 255-2-5 ! All bits 1, except bit 5.

The numeric parameter is the mask that specifies which keys are to be enabled or disabled; a 1
in a certain bit position enables that key (or group), while a 0 disables the key(s). Bit definitions
in the mask are shown in the HP-UX Technical BASIC Language Reference.

Here are the two keys and two key groups that can be enabled and disabled with this statement:

.~

• [PAUSE [I

• Special function keys (or "softkeys")

• All other keys (such as alphanumeric and cursor-control keys)

The corresponding keycap labels are shown in the Getting Started manual for your particular
Technical BASIC system.

1 Information for pausing a program is found in the HP-UX Technical BASIC Getting Started Guide in the chapter "Running Programs"

under the section entitled "Pausing and Continuing a Program_"

9-28 Communicating with the Operator

Low-Level Keyboard Input Routines
With Technical BASIC, you have the capability of trapping every keystroke using the ON KYBD
statement. You can use this feature to design very effective keyboard interfaces. However, the
programming effort for this type of application is often relatively large. In fact, using ON KYBD
to accept keyboard input while displaying a cursor and positioning text is essentially writing a
text editor. Unfortunately, programs of that magnitude are beyond the scope of this manual.

Here is an example that shows a simple usage of ON KYBD to detect presses of alphanumeric
keys.

INTEGER KeyBuffer
Keys$="ABC" !
!

Key codes will be stored in this variable.
Define keys that will initiate branches.

100
110
120
130
140

ON KYBD KeyBuffer,Keys$ GOSUB KBDService

150 Spin: GOTO Spin
160
170 KBDService: ! Service routine for ON KYBD
180 IF KeyBuffer=NUM("A") THEN DISP "Alpha"
190 IF KeyBuffer=NUM("B") THEN DISP "Bravo"
200 IF KeyBuffer=67 THEN DISP "Charlie"
210 RETURN

The INTEGER statement declares a variable named Key Buffer , which will be used as a one
keystroke buffer; in other words, when a key is pressed, the numeric code that it generates will
be stored in this variable.

The Keys$ string variable is used to define which keys will be enabled to initiate a program
branch. As each key is pressed, the string specified by Keys$ is searched for the presence of
the corresponding code. If a match is found, then the branch is initiated; if not, the keystroke
is ignored.

The ON KYBD statement enables branching to the subroutine called KBDService; the branch will
be initiated whenever any of the keys that generate a code specified in the Keys$ variable is
pressed. For instance, running the program and pressing an uppercase A will initiate a branch
to the service routine.

The service routine can then determine which key was pressed by accessing the integer variable
named Key Buffer. This service routine defines different actions for pressing each key; pressing
A results in the program displaying "Alpha"; pressing B results in "Bravo"; pressing C results in
"Charlie".

Communicating with the Operator 9-29

Note that the key buffer contains the numeric code for the key, not the alphanumeric character
that the key produces on the screen. Note also that pressing a key which generates a lowercase
letter does not initiate a branch to the service routine.

Since the keyboard buffer is only one character in length, the service routine can miss keystrokes
if keys are not processed qUickly. This is due to the fact that keycodes are placed in the buffer
as each keypress is detected; if a keycode is already there, then it is overwritten.

In order to disable certain key(s) from initiating the branch, you can execute an OFF KYBD
statement that specifies the key(s). For example, this statement would disable only uppercase
C from initiating the previously defined branch.

OFF KYBD IICII

Here is an example of disabling all keyboard branching:

OFF KYBD

With ON KYBD, you can also trap keystrokes which would otherwise cause immediate action. For
example, most keyboards have a I Back space I key that you can press to move the cursor left
one space and erase the character at that location. Since this type of key produces an "escape
sequence" (a sequence of characters beginning with the ASCII control character "escape"), you
can include the key's escape sequence in the key stringl. Here is an example:

320 BackSpace$=CHR$(27)&IIDII
330 ON KYBD KeyBuffer,BackSpace$ GOSUB KBDService

The program segment places the escape code that is produced by the I Backspace 1 key (on the
Integral computer) into the variable named I Backspace I, and then enables the I Backspace 1 key to
initiate a branch by executing an ON KYBD statement.

Reading Text from the Screen
Somewhere between the high-level INPUT or LINPUT and the low-level ON KYBD statements lies
another method of accepting alphanumeric input. The AREAD statement reads text from the
screen into a string variable. See the example of using this statement in the preceding section
of this chapter called "Sending Messages to the Operator".

A list of the keys and the code that each produces is provided in the Implementation Specifics appendix to the HP-UX Technical BASIC

Language Reference.

9-30 Communicating with the Operator

Using the Clock
and Timers
Introduction

10
HP-UX systems feature a real-time clock that maintains date and time of day. You can access
this clock from the Technical BASIC system l . There are also timers that allow you to generate
interrupts at specified intervals.

Chapter Contents
This chapter covers using the clock and timers. Here are the task and topics covered:

Task/Topics Page

Reading the current date 10-2

Reading the current time of day 10-2

Converting between various time and date formats 10-3

Measuring time intervals 10-6

Enabling timers to interrupt normal program flow at 10·10
specified intervals

1 On multi-user HP-UX systems, only the system administrator can set the time and date.

Using the Clock and Timers 10-1

Using the Clock
This section discusses the Technical BASIC features available for reading the date and time of
day, and for measuring time between events.

Reading the Date
The DATE$ string function returns the current date in the form: yy/mm/dd (year/month/day).

DATE$
84/10/17

The numeric function for obtaining the date is DATE. Executing this function returns a date in
the form: yyddd (yy indicates the last two digits of the year; ddd indicates the day of the year,
in the range 1 through 366).

DATE
84291

where the date displayed is the 291st day of the year 1984.

Reading the Time of Day
The TIME$ string function returns the system clock reading in this 24-hour notation: hh:mm:ss
(hours:minutes:seconds). Assuming your system clock has been properly set, the reading returned
by the TIME$ function shows the time elapsed since midnight of the current day.

TIME$
8:54:47

Another method for determining the time elapsed since midnight is to use the TIME numeric
function. This function returns the total number of seconds elapsed since midnight. This example
of invoking the TIME function returns the numeric equivalent of a time of day of "8:54:57".

TIME
32087

The last value returned in a day's time is 86399. When the counter reaches this value, it is
reset to 0 and the date is incremented by one. Note that all of the functions mentioned in this
section are programmable. The following short program is an example:

10 DISP "Today's date is: "; DATE$;" or";DATE
20 DISP "This program was run at: ";TIME$
30 DISP "Time of day (in seconds since midnight) is: ";TIME
40 END

10-2 Using the Clock and Timers

Time and Date Format Conversions
Technical BASIC has additional time functions that perform the following notational conversions:

• Converting a specified number of seconds (since midnight) to an hours:minutes:seconds
(hh:mm:ss) string format.

• Converting a string in the form hh:mm:ss to the equivalent number of seconds (since
midnight).

• Converting a specified Julian day number to a month/day/year (mm/dd/yyyy) string for
mat.

• Converting a string in the form month/day/year (mm/dd/yyyy) to the equivalent Julian
day number.

Time: Numeric to String Conversions
HMS$ is a function which converts a specified number of seconds (since midnight) to an equivalent
string in the form hh:mm:ss (hours:minutes:seconds). An example is as follows:

HMS$(TIME)

Here is what it might return:

09:45:52

Here is another example:

DISP "Elapsed time = ";HMS$(Time2-Time1)

In this case, the time returned would not be in seconds since midnight; however it would be in
a more usable form than just seconds:

10:10:00

Thus, the elapsed time is 10 hours, ten minutes, and no seconds.

Using the Clock and Timers 10-3

Time: String to Numeric Conversions
The HMS function does the opposite of HMS$. This function converts a string in the form hh:mm:ss
(hours:minutes:seconds) to the integer equivalent in seconds. Here is an example:

100
110
120

Calculate time differential
and display in "hh:mm:ss" format.

130 DISP "Time between 6:08:29 p.m."
140
150
160
170
180
190
200
210
220
230

DISP " and 10:14:32 a.m."
!
! Now calculate difference (in minutes) .
Diff=HMS("12:00:00")+HMS("06:08:29")-HMS("10:14:32")
! Then re-format for human consumption.
Diff$=HMS$(Diff)

DISP " is ";Diff$

END

Here are the program's results.

Time between 6:08:29 p.m.
and 10:14:32 a.m.
is 7:53:57

The HMS function can be also be executed from the keyboard:

HMS("13:30:15")

which returns on the display:

48615

Date: Numeric to String Conversions
The MDY$ string function converts a Julian Day number l to an equivalent string expression in the
form: mm/dd/yyyy (month/day/year). The range of Julian Day numbers that you can pass to
this function is from 2299161 through 3199160; these limits correspond to October 15, 15822

and November 25, 4046, respectively.

Here is an example of how you can use MDY$:

MDY$(2446000)

The function returns the Julian Day number in a more understandable format.

10/26/1984

The Julian Day number is an astronomical convention representing the number of days since January 1,4713 S.c.

2 The beginning date of the modern Gregorian calendar.

10-4 Using the Clock and Timers

Date: String to Numeric Conversions
The MDY numeric function does the opposite of the MDY$ function. When it is given a string
in the form mm/dd/yyyy, it returns the equivalent Julian Day number. Note that the string
must lie between the dates 10/15/1582 and 11/25/4046, and consist of exactly 10 characters
(including the two slashes). Here is an example of using the function from the keyboard:

MDY("11/25/4046")

returns the following on the display:

3199160

Here is a more current example:

MDY("10/17/1984")

returns the following on the display:

2445991

Timing the Interval Between Events
Measuring the time between two events is quite simple.

100 Tinit=TIME
110
120 FOR J=1 TO 5555
130
140 NEXT J
150
160 Tfinal=TIME
170

Initial time.

Final time.

180 DISP "Elapsed time =";Tfinal-Tinit;"seconds."
190
200 END

Here are typical results of running the program:

Elapsed time = 15 seconds.

Note that the program does not keep track of changes in the day. Thus, if you are timing events
that will occur near midnight, you may get a negative time interval. You may want to add code
that keeps track of days also. For example, you could multiply the difference in days by the
number of seconds in a day (86 400), and add this figure to the differential.

Using the Clock and Timers 10-5

Using the Timers
This section covers the following timer operations:

• Timer branches.

• Measuring time elapsed since a timer was set to interrupt.

Timer Interrupts
The subject of event-initiated branching was discussed near the end of the "Program Structure
and Flow" chapter. If you are not familiar with the concept, you may want to read that section
before reading this section.

Here are the statements that control timer-initiated branches:

• ON TIMER# sets a specified timer to zero and immediately activates it. The end-of-line
branch is initiated when the specified time interval has elapsed. Three timers are available
for this purpose; they are numbered 1, 2, and 3.

• OFF TIMER# disables branching for the specified timer.

You can use these timers to generate these types of interrupts:

• Cyclic interrupts

• Delay interrupts

• Time-of-day interrupts

Cycle and Delay Interrupts
The ON TIMER# statement enables a branch to be taken as soon as the specified number of
milliseconds have elapsed. For instance, the following statement enables a GOSUB branch to the
subroutine called Cycle2 to occur two seconds from the time that the statement is executed:

ON TIMER# 1. 2000 GOSUB Cycle2

ON TIMER# remains in effect, re-initiating a branch every two seconds until an OFF TIMER# state
ment is executed (for timer number 1). Thus, the ON TIMER# statement creates a cyclic interrupt.

To produce a one-time timer interrupt (Le., a delay interrupt), you will need to execute an OFF

TIMER# statement in the timer service routine.

10-6 Using the Clock and Timers

This example shows both usages of timers. It displays the time (hours:minutes:seconds) for
a period of two seconds and then prints five random numbers. It repeats this process until
eight seconds have elapsed, at which time the program is ended. The ON TIMER# 1 is a cyclic
interrupt, while the ON TIMER# 2 statement, along with its OFF TIMER# 2 counterpart, act as a
one-time delay interrupt.

100 ON TIMER# 1,2000 GOSUB TwoSecCycle
110 ON TIMER# 2,8000 GOTO EightSecDelay
120
130 CLEAR! Clear screen.
140
150 DumrnyLoop: ALPHA 5,1 @ DISP TIME$
160 GOTO DumrnyLoop
170
180 TwoSecCycle: ALPHA 8,1
190 FOR Number=1 TO 5
200 DISP RND ! Random number.
210 NEXT Number
220
230 RETURN
240
250 EightSecDelay: OFF TIMER# 2
260 ALPHA 15,1
270 DISP "Finished"
280
290 END

Here is typical output from the program.

12:20:25

.744804223761712

.0289620654927213

.559984130375072

.311563463240455

.114398065498712

Finished

Using the Clock and Timers 10-7

Simulated Time-of-Day Interrupts
The ON TIMER# statement allows you to define and enable a branch to be taken when the timer
reaches a specified count. You can simulate time-of-day interrupts by using this procedure:

1. Determine the current time of day.

2. Determine the desired time of day at which the interrupt will occur.

3. Calculate the number of seconds between the two.

4. Set a timer interrupt for that number of seconds (from the present time).

Typically, the ON TIMER# statement is used to cause a branch at a specified time. This statement
can be use as an interval timer in a program, by storing in a program variable the value of the
system clock when the program is started (using the function called TIME) and subtracting this
value from a specified final time. The following example uses the interval timer as an alarm to
remind you to go to -lunch.

100 DISP "This is the present time of day: ";TIME$
110 DISP
120 DISP "Specify alarm time using this format: 'hh:mm:ss'"
130 LINPUT Tfinal$ @ DISP "Thank you."
140 !
150 ! Determine number of seconds since midnight.
160 Tfinal=HMS(Tfinal$)
170 ! Set timer to interrupt in Tfinal-TIME (seconds).
180 ON TIMER# 1, (Tfinal-TIME) *1000 GOSUB Alarm
190
200 Spin: GOTO Spin! Twiddle thumbs.
210
220 Alarm:
230 BEEP
240 CLEAR
250 DISP @ DISP @ DISP "Time for lunch!" @ DISP
260 OFF TIMER# 1
270 RETURN
280
290 END

Here are is the screen that the program produces:

This is the present time of day: 9:38:54

Specify alarm time using this format: 'hh:mm:ss'
? 11 :45 :00
Thank you.

10-8 Using the Clock and Timers

The first line of output gives the current time of day. The second line asks you to set the
alarm for a time of your choosing using the 'hh:mm:ss' format. The string you enter (11 :45:00
above) is converted by the numeric function HMS into seconds since midnight and assigned to the
variable Tfinal. Next, timer number 1 is set to interrupt; the time interval is calculated as the
difference between "Tfinal" and the current TIME (it is multiplied by 1000 to convert the result
to milliseconds, which is how the ON TIMER# statement interprets the interval parameter).

When the specified time interval has elapsed, the timer interrupt service routine displays the
"lunch alarm" message.

Time for lunch!

Timer Functions
The READTIM numeric function returns the number of seconds currently registered on the specified
system timer.

• For timer numbers 1, 2, or 3, this is the number of seconds (not milliseconds) since the
timer was set in the program, or since it last initiated a branch.

• For timer O,it is the number of seconds elapsed since the system clock was last set, either
by the system administrator or by power on.

• If the timer is not currently being used, then READTIM returns O.

• After an OFF TIMER# statement, READTIM returns the reading of the timer at the point it
was disabled.

The following program makes use of the READTIM function. It programmatically defines a function
key to call a routine which displays the number of seconds elapsed since timer 1 was set. After
ten minutes have elapsed, it displays the message:

Ten minutes have elapsed.

and then issues a beep.

100 ON TIMER# 1,10*60*1000 GOSUB TenMin
110 ON KEY# 1,"Seconds" GOSUB Elapsed!
120
130 Spin: GOTO Spin !
140 !
150 STOP
160

Interrupt after 10 min.
Show elapsed time.

Idle loop.

170 TenMin: DISP "Ten minutes have elapsed."
180 BEEP
190 RETURN
200
210 Elapsed: DISP READTIM(1); "seconds since timer 1 set."
220 RETURN

Using the Clock and Timers 10-9

Pressing [ill! directs the program to display the number of seconds since TIMER# 1 was set.
Here are typical results that the Elapsed subroutine displays:

3 seconds since timer 1 set.
4 seconds since timer 1 set.
9 seconds since timer 1 set.

Timers and Subprograms
It is possible for a context (program or subprogram) to enable a timer interrupt and then call one
or more subprograms before the timer interrupt occurs. As long as the context is not executing
a subprogram when the timer is expected to interrupt, the interrupt will initiate its branch at
the correct time. However, if the subprogram is being executed when the timer would have
otherwise initiated its branch, then the branch to the service routine is not executed until after
control returns to the context that defined the timer interrupt.

Timer Interrupts While Not Executing a Subprogram
The following program is an example of the situation in which the subprogram is finished before
the timer interrupts. (The situation of the subprogram being executed when the calling context's
timer interrupt would have occurred is covered in the next section).

100 ON TIMER# 1,10000 GOSUB TenSecs! 10-second cycles.
110 !
120 Tinit=TIME Store initial time.
130
140 FOR 1=1 TO 3 Wait 3 seconds.
150 WAIT 1000 @ DISP TIME-Tinit; "seconds. "
160 NEXT I
170 !
180 CALL "SUBTimerl" (Tinit)
190 !
200 FOR 1=1 TO 3! Wait 3 more seconds (to allow interrupt).
210 WAIT 1000 @ DISP TIME-Tinit; "seconds. "
220 NEXT I
230 !
240 END
250
260 TenSecs: DISP
270 DISP "At branch to 'TenSecs', READTIM(l)=";READTIM(l)
280 DISP
290 RETURN

1 On some consoles, this key is labeled [QJ. Refer to the Getting Started Guide for your particular Technical BASIC system for a

description of ON KEY# parameters and soft key labels.

10-10 Using the Clock and Timers

Here is the subprogram.

100 SUB "SUBTimerl" (Tinit)
110 DISP
120 DISP "Entering SUBTimer 1 . "
130 DISP
140 FOR 1=1 TO 5
150 WAIT 1000
160 DISP TIME-Tinit; "seconds. "
170 NEXT I
180 DISP
190 DISP "Exiting SUBTimerl."
200 DISP
210 SUBEND

Here are the results of running this program.

1 seconds.
2 seconds.
3 seconds.

Entering SUBTimerl.

4 seconds.
5 seconds.
6 seconds.
7 seconds.
8 seconds.

Exiting SUBTimerl.

9 seconds.
10 seconds.

At branch to 'TenSecs', READTIM(l)= 0

11 seconds.

The main program starts out by setting timer number 1 to interrupt in ten seconds. The elapsed
time is then read every second and displayed until branching to the subprogram.

The subprogram displays a message telling you that it has been given control. It also displays
elapsed times every second (for 5 seconds). After five seconds have elapsed, control is returned
back to the calling program.

When timer 1 has counted to 10 seconds, the branch to TenSecs is initiated.

Using the Clock and Timers 10-11

The main point of this example is that the main program's timer interrupt occurs at the expected
time, because the subprogram is not being executed when the timer interrupts.

The program also shows that the timer is reset to 0 (as determined by the READTIM function);
however, it does not show that the timer is cyclic and is automatically re-enabled and begins
counting again. In this case, the program ended before a second interrupt occurred.

Timer Interrupts while Executing Subprograms
The following program and subprogram show an example in which the subprogram is being
executed when the calling context's timer interrupts. Note that they are slightly modified versions
of the preceding program and subprogram.

100 ON TIMER# 1,10000 GOSUB TenSecs
110
120 Tinit=TIME Store initial time.
130 !
140 FOR 1=1 TO 3 Wait 3 seconds.

10-second cycles.

150 WAIT 1000 @ DISP TIME-Tinit;"seconds."
160 NEXT I
170 !
180 CALL "SUBTimer2" (Tinit)
190 !
200 FOR 1=1 TO 11 Wait 11 more seconds (to allow interrupt).
210 WAIT 1000 @ DISP TIME-Tinit; "seconds. "
220 NEXT I
230
240 END
250 !
260 TenSecs: DISP
270 DISP "At branch to 'TenSecs', READTIM(1)=";READTIM(1)
280 DISP
290 RETURN

Here is the subprogram.

100 SUB "SUBTimer2" (Tinit)
110 DISP
120 DISP "Entering SUBTimer2."
130 DISP
140 FOR 1=1 TO 10
150 WAIT 1000
160 DISP TIME-Tinit;"seconds."
170 NEXT I
180 DISP
190 DISP "Exiting SUBTimer2."
200 DISP
210 SUBEND

10-12 Using the Clock and Timers

Here are the results of running this program.

1 seconds.
2 seconds.
3 seconds.

Entering SUBTimer2.

4 seconds.
5 seconds.
6 seconds.
7 seconds.
8 seconds.
9 seconds.
10 seconds.
11 seconds.
12 seconds.
13 seconds.

Exiting SUBTimer2.

At branch to 'TenSecs'. READTIM(1)= 3

14 seconds.
15 seconds.
16 seconds.
17 seconds.
18 seconds.
19 seconds.
20 seconds.

At branch to 'TenSecs'. READTIM(1)= 0

21 seconds.
22 seconds.
23 seconds.
24 seconds.

The main program starts out by setting timer number 1 to interrupt in ten seconds. The elapsed
time is then read every second and displayed until branching to the subprogram.

The subprogram displays a message telling you that it has been given control. It also displays
elapsed times every second (for 10 seconds this time). After ten seconds have elapsed, control
is returned back to the calling program.

Using the Clock and Timers 10-13

The timer in the main program would have initiated its branch, but could not because the
subprogram was being executed. This result is shown by the value 3 being returned by the
READTIM function. In the calling context (here the program), timer 1 did count to 10 seconds,
but it could not initiate the branch to TenSecs because it was not in the current context (the
subprogram).

The main point of this example is that the main program's timer interrupt is delayed, because
the subprogram does not return control to the calling context (main program) until after the
timer interrupt should have occurred. However, the branch is initiated as soon as control returns
to the context in which it is enabled.

The program executes 10 additional I-second waits, in order to demonstrate that the timer will
indeed initiate subsequent branches as expected.

10-14 Using the Clock and Timers

Data Storage and Retrieval 11
Introduction
This chapter describes some useful techniques for storing and retrieving data. The methods fall
into these categories:

• Storing data with programs (using DATA and READ statements)

• Storing data in BASIC/DATA files (using ASSIGN#. PRINT#. and READ#)

• Storing data in text/data files (using ASSIGN. QUTPUT. and ENTER)

To store and retrieve data that is part of the BASIC program, use DATA statement(s) to specify
data that is to be stored in the memory area used by BASIC programs; thus, the data is always
kept in the same file as the program. The data items can be retrieved by using READ statements
to assign the values to variables. This is a particularly effective technique for small amounts of
data that you want to maintain in a program file.

For larger amounts of data, mass storage BASIC/DATA files are more appropriate. These files
provide means of storing data on mass storage devices. The BASIC/DATA files available with
Technical BASIC are described in this chapter. A number of different techniques for accessing
data in these files are described in detail.

Files of type text/data are used as the interchange method for sharing data between Technical
BASIC and the HP-UX system.

Data Storage and Retrieval 11-1

Chapter Contents
This chapter discusses these topics:

Tasks/Topics Page

Storing data in programs 11-3

Using data files 11-9

Brief mass storage tutorial 11-9

Introduction to BASIC/DATA file access techniques 11-11

A closer look at file access 11-14

A closer look at serial access 11-20

Random file access 11-24

Determining data types 11-28

Trapping EOF and EOR conditions 11-29

Using text/data files 11-31

11-2 Data Storage and Retrieval

Storing Data in Programs
This section describes a number of ways to store values in memory. In general, these techniques
involve using program variables to store data. The data are kept with the program when it is
stored on a mass storage device (with STORE and SAVE). These techniques allow extremely fast
access of the data. They provide good use of the computer's memory for storing relatively small
amounts of data.

Storing Data in Variables
Probably the simplest method of storing data is to use a simple assignment, such as the following
LET statements:

100 LET Cm_per_inch=2.54
110 Inch_per_cm=1/Cm_per_inch

The data stored in each variable can then be retrieved simply by specifying the variable's name.

This technique was used in the first example program in the "Program Development" chapter.
It was a convenient way to store data without knowing anything about data files.

110 OPTION BASE 1
120 DIM IncomeName$(2)
130 REAL TargetIncome(2)
140
150 ! Assign values to variables.
160 LET IncomeName$ (1) =IIPayrolP
170 LET IncomeName$(2)=IInvestments"
180 LET TargetIncome(1)=1680.00
190 LET TargetIncome(2)=345.67

This technique works well when there are only a relatively few "constants" to be stored, or
when several data values are to be computed from the value of a few items. The program will
execute faster when variables are used than when expressions containing constants are used; for
instance, using the variable Inch_per_cm in the preceding example would be faster than using
the constant expression 1/2.54. In addition, it is easier to modify the value of an item when it
appears in only one place (Le., in one LET statement).

Data Storage and Retrieval 11-3

Data Input by the User
You also can assign values to variables at run-time with the INPUT and LINPUT statements as
shown in the following examples.

100 DISP "Please enter your 10. and press Return."
110 INPUT 10

210 LINPUT "Enter the value of X".Response$

Note that with this type of storage, the values assigned to the corresponding variables are not

kept with the program when it is stored; they must be entered each time the program is run.
This type of data storage can be used when the data are to be checked or modified by the user
each time the program is run. As with the preceding example, the data stored in each variable
can then be retrieved simply by specifying the variable's name.

Using DATA and READ Statements
The DATA and READ statements provide another technique for storing and retrieving data from
the computer's read/write (R/W) memory. The DATA statement allows you to store a stream of
data items in memory, and the READ statement allows you retrieve data items from the stream.
You can have any number of READ and DATA statements in a program, limited only by computer
memory (or disc space when the program is stored in a file).

Storing Data
When you RUN a program, the system concatenates all DATA statements in a given context into a
single "data stream." Each subprogram has its own data stream. The following DATA statements
distributed in a program would produce the following data stream.

100 DATA Payroll. Investments

200 DATA 1680.56.345.67

300 DATA Mortgage

Payroll Investments 1680.56 345.67 Mortgage

Figure 11-1. Data Stream

11-4 Data Storage and Retrieval

As you can see from the example above, a data stream can contain both numeric and string
data items.

Each data item must be separated by a comma; string items can optionally be enclosed in quotes.
Strings that contain a comma or exclamation mark must be enclosed in quotes. In addition, you
must use the following notation for every quote you want in the string. For example, to enter the
strings UNQUOTED, UNQUOTED, and "QUOTED" into a data stream, use this DATA statement:

100 DATA UNQUOTED. "UNQUOTED". II-IIQUOTED-II II

The tilde characters indicate that the quote mark that follows it is to be part of the data read
into a string variable.

Retrieving Data
To retrieve a data item, assign it to a variable with the READ statement. Syntactically, READ is
analogous to DATA; but instead of a data list, you use a variable list. Here is an example:

100 DATA PayrOll. Investments

200 DATA 1680.56.345.67

100 READ Income1Name$.IncomeName2$.Targetlncome1

This READ statement would read three data items from the data stream into the three variables.
Note that the first and second variables are string and the third is a numeric. This corresponds
to the order and type of data items in the data stream.

Numeric data items can be READ into either numeric or string variables, with the following
restrictions:

• If the numeric data item is of a different specific numeric type than the numeric variable,
then the item is automatically converted. For instance, REALs are converted to INTEGERs,
and INTEGERs to REALs. However, if the value is out of range for that numeric data type,
then an error is reported.

• If the string variable has not been dimensioned to a size large enough to hold the entire
data item, then error 56 is reported.

Data Storage and Retrieval 11-5

The Data Pointer
The system keeps track of which data item to READ next by using a points to the next data item
to be assigned to the next variable in a READ statement. When you run a program segment, the
data pointer initially points at the first item of the data stream. Every time you READ an item
from the stream, the pointer is moved to the next data item. When a subprogram is called by
a main program (or another subprogram), the position of the data pointer is recorded and then
restored when you return to the calling context.

Starting from the position of the data pointer, data items are assigned to variables one by one
until all variables in a READ statement have been assigned a value. If there are more variables
than data items, the system returns an error, and the data pointer is moved back to the position
it occupied before the READ statement was executed.

Examples
The following example shows how data is stored in a data stream and then retrieved. Note that
DATA statements can come after READ statements even though they contain the data being READ.
This is because DATA statements are linked during program pre-run, whereas READ statements
aren't executed until the program actually runs.

10 DATA November.26
20 READ Month$.Day.Year$
30 DATA 1984. "The date is "
40 READ Str$
50 Print Str$;Month$;Day;Year$
60 END

The date is November 26 1984

11-6 Data Storage and Retrieval

Storage and Retrieval of Arrays
In addition to using READ to assign values to string and numeric variables, you can also READ data
into arrays. The system will match data items with variables one at a time until it has filled a
row. The next data item then becomes the first element in the next row. You must have enough
data items to fill the array or you will get an error. In the example below, we show how DATA
values can be assigned to elements of a 3-by-3 numeric array.

10 OPTION BASE 1
20 DIM Example(3,3)
30 DATA 1,2,3,4,5,6,7,8,9,10,11
40 MAT READ Example
50 MAT PRINT USING 113(X,K)'/1I ; Example
60 END
RUN

123

456

789

The data pointer is left at item 10; thus, items 10 and 11 are saved for the next READ statement.

Data Storage and Retrieval 11-7

Moving the Data Pointer
In some programs, you will want to assign the same data items to different variables. To do
this, you have to move the data pointer so that it is pointing at the desired data item. You can
accomplish this with the RESTORE statement. If you don't specify a line number or label, RESTORE
returns the data pointer to the first data item of the first data stream in that context. If you
do include a line identifier in the RESTORE statement, the data pointer is moved to the first data
item in the DATA statement at the identified line. The example below illustrates how to use the
RESTORE statement.

100 DIM Arrayl(2)
110 DIM Array2(4)
120 DATA 1,2,3,4
130 DATA 5,6,7
140 READ A,B,C
150 MAT READ Array2
160 DATA 8,9
170
180
190
200
210
220

RESTORE
MAT READ Arrayl
RESTORE 160
READ D

3-element array (OPTION BASE 0).
5-element array (OPTION BASE 0).

Reads first 3 items in stream.
Reads next 5 items in stream.

Re-positions pointer to 1st item (line 120).
Reads first 3 items in stream.
Moves data pOinter to item "8".
Reads "8".

230
240
250
260
270
280

PRINT "Arrayl contains:"
MAT PRINT Arrayl
PRINT "Array2 contains:"
MAT PRINT Array2
PRINT "A,B,C,D equal: ";A;B;C;D
END

Here are the results of running the program.

Arrayl contains:
1
2
3

Array2 contains:
4
5
6
7
8

A,B,C,D equal: 1 2 3 8

11-8 Data Storage and Retrieval

Using BASIC/DATA Files
This section of this chapter describes the another general class of data storage and retrieval
methods - that of using mass storage BASIC/DATAl files. This material is broken up into
several parts.

• A look at mass storage, directories, and BASIC/DATA files

• Introduction to accessing BASIC/DATA files

• A closer look at using files

• Determining data types

• Trapping EOF and EOR conditions

Brief Mass Storage Tutorial
This section briefly discusses these topics:

• Mass storage in general

• Directories

• BASIC/DATA files

As the adjective "mass" suggests, mass storage devices are data-storage devices which are
generally capable of storing "large" amounts of data. Just how much data constitutes a large
amount depends on the device itself. However, most mass storage devices are capable of storing
on the order of hundreds of thousands to several million data items.

Besides having the ability to store data, mass storage devices are capable of providing means
for keeping data organized so that logical groups may be accessed systematically and efficiently.

• Data items are organized into logical groups known as files; a file is merely a collection
of data items which are accessed through one name. Each file may contain one or more
logical records; each logical record in a file is much like a subset of the file in that it can
also contain several data items.

• Files are organized by directories. A directory is an index of files; in any directory, there
is an entry for every file within that directory.

1 The subsequent section called "Using text/data Files" discusses techniques for accessing files of type text/data. which is the file type

that both Technical BASIC and HP-UX can use (such as for data interchange).

Data Storage and Retrieval 11-9

When a data file is initially created, it contains nothing. However, you can fill it with any data
that you want, which gives the file the general structure shown below.

Beginning
of File

Type
Field

Data Item Data Item

Type
Field

Data

Data Item

Figure 11-2. General Structure

t
~

t
EOF or EOR Physical

Marker End of File

The data items are stored using either ASCII characters (for string items) or an internal repre
sentation (for numeric items). The type fields indicate whether the item is a string or a numeric
item. Subsequent sections provide further details of just what the file contains and how to write
to and read from them.

The CAT statement shows some of the information that is stored in a directory. Executing CAT
with no directory path tells the system to get a catalog of the current working directory! .

CAT

Specifying a directory path with the file name gives a listing of the files in that directory.

CAT II/users/mark/BASICFILE"

If you don't know the meaning of the term "current working directory," then refer to the discussion of the HP-UX file system in your

HP-UX system's documentation.

11-10 Data Storage and Retrieval

Introduction to File Access Techniques
This section presents BASIC programming techniques useful for accessing BASIC/DATA files.
The first section gives a brief introduction to the steps you might take to store data in a file.
Subsequent sections describe further details of these steps.

Methods of Accessing Data Files
There are two methods of accessing BASIC/DATA files:

• Serial access: writing to or reading from the file in sequential order - one item at a
time, from the beginning .

• Random access: writing to (or reading from) the file, starting at the beginning of any
logical record within the file. Within any logical record, however, access is strictly serial.

Technical BASIC allows you to use both types of access methods on one file, with only a few
restrictions. Each access method has uses in certain applications.

Example of Writing Serially to a File
Storing data in files requires a few simple steps. The following program segment shows a simple
example of placing several items in a data file.

100 ! Allocate memory for variables.
110 OPTION BASE 1
120 DIM IncomeName$(2)
130 REAL TargetIncome(2)
140 !
150 ! Assign variables.
160 IncomeName$(1)="Payroll"
170 IncomeName$(2)="Investments"
180
190 TargetIncome(1)=1680.56
200 TargetIncome(2)=345.67
210 !
220 ! Create a data file.
230 CREATE "Oct84Income" ,1
240 ASSIGN# 1 TO "Oct84Income"

Size = 1 logical record.
Assign a buffer to it.

250
260 PRINT# 1
270 PRINT# 1
280

IncomeName$(1),TargetIncome(1)
IncomeName$(2) ,TargetIncome(2)

290 ASSIGN# 1 TO "*"
300

Close file (release buffer) .

310 END

Data Storage and Retrieval 11-11

In order to store data in a file, a data file must be created (or already exist) on the mass storage
media to be used. In this case, line 230 creates a BASIC/DATA file for storage. The file is
created with 1 logical record, which has a default size of 256 bytes. This is a large enough file
to store the data in this example. (File size, logical records, and record size are discussed in the
subsequent section called "A Closer Look at File Access".)

The file is created in the "current working directory." If the file is to be created in another
directory, then the appropriate directory path must be prefixed to the file name. This example
creates a file in another directory:

CREATE "/users/mark/NovIncomes".4

See the Getting Started manual for your particular Technical BASIC system for specific informa
tion about directories on your system.

Then, in order to store data in (or retrieve data from) the file, you must assign a buffer number

to the file. Line 240 shows an example of assigning a buffer number to the file (also called
"opening the file"). The PRINT# statements on lines 260 and 270 send the previously defined
data items being sent to the file.

The file is closed after all data have been sent to the file. (In this case, the close operation is
not necessary, because all files are automatically closed by the system by the END statement.)

NOTE

This is a closed data file and cannot be retrieved/read with GET or LOAD.
To retrieve/read the data use the program shown next.

Here is a conceptual diagram of the file's contents after the program has finished execution.

Payroll

t
Beginning
of File

1680.56 Investments 345.67

t
EOR

Marker

Figure 11-3. File's Contents

11-12 Data Storage and Retrieval

~
t

Physical
End of File

Although they are not shown in the drawing, the system automatically adds the type fields.
You can use the TYP function to read it from BASIC and thus determine the item's type. The
subsequent section called "Determining Data Types" gives further details.

The end-of-record (EOR) marker is always placed after the last item written into a file. It is used
instead of an end-of-file (EOF) marker, because Technical BASIC allows both random and serial
access of the same file. Note, however, that the file is initially filled with EOF markers (when
the disc is initialized). Subsequent sections explain EOR and EOF markers in greater depth.

Example of Serially Reading from a File
Here is a simple program that reads the data stored in the file created and written in the
preceding example.

100 ! Allocate memory for variables.
110 OPTION BASE 1 Implicit lower subscript bound.
120 DIM IncNam$(2)
130 REAL TgtInc(2)
140
150 ASSIGN# 1 TO "Oct84Income"
160
170 READ# 1;IncNam$(1) ,TgtInc(1)
180 READ# 1;IncNam$(2),TgtInc(2)
190
200 DISP
210 DISP" Category
220 DISP" ----------
230 DISP IncNam$(1),TgtInc(1)
240 DISP IncNam$(2),TgtInc(2)
250
260 ASSIGN# 1 TO "*"
270
280 END

Assign buffer.

Read 2 items from file.
Read 2 more items.

Target"
--------"

As in the preceding example, you must assign a file number to the data file before you can
access it. Line 150 makes this assignment.

The subsequent READ# statements (lines 170 and 180) read the data into program variables.
The general suggestion is to "read it like you wrote it"; in other words, match the order and
type of each item in the file to the variable into which the item will be read. For instance, if you
wrote a SHORT variable, a REAL numeric expression, and a string of length 36 characters into
the file, then you should read these items using a SHORT variable, a REAL variable, and a string
variable with a length of (at least) 36 characters.

Data Storage and Retrieval 11-13

NOTE

The variable used to read each data item need only be of the same
general data type as the data item (Le., numeric or string). It is not strictly
required to be of the same specific type (Le., INTEGER. SHORT, or REAL
for numeric items; or identical length for string items). However, if the
specific types of variables and items are not matched, it becomes possible
to generate range errors; for instance, a value of lE+200 is out of range
for INTEGER and SHORT variables, and a string of 200 characters is out
of range for a string variable with maximum length of 18 characters.

As you can see, these are very simple examples. However, they show the general steps you
must take to serially access files.

A Closer Look at BASIC/DATA File Access
The preceding section showed simple examples of writing data in a file and then reading it
back. This section describes what is happening "behind the scenes." It will help you to better
understand how to create and use BASIC/DATA files.

File and Record Size Calculations
In the preceding example of serially writing a file , the following program line created a file that
was used to store the program's data:

230 CREATE "Oct84Income",1 ! Size = 1 logical record.

The size of the file was specified to be one logical record with (default) record size of 256 bytes.
The example stated that this file size was sufficient to store the data. This section will help you
verify that statement and show you how to calculate the size of file required to store any data.

11-14 Data Storage and Retrieval

The following chart describes the amount of space necessary to store numeric and string data
items.

Table 11-1 Data Storage Requirements

Data Type Storage Requirements (Per Data Item)

Simple REAL numbers 1 byte for type field,
+ 8 bytes for number.

Simple SHORT numbers 1 byte for type field,
+ 8 bytes for number.

Simple INTEGERs 1 byte for type field,
+ 4 bytes for number.

Simple strin9 3 bytes for type field,
+ 1 byte per character,
+ 3 bytes each time the string crosses a logical
record boundary.

REAL array (each element) 1 byte for type field,
+ 8 bytes for number.

SHORT array (each element!) 1 byte for type field,
+ 4 bytes for number.

INTEGERarray (each element) 1 byte for type field,
+ 4 bytes for number.

String array Each array element requires the same amount
of space required for simple string items (shown
above)

Using the data from the preceding serial access example, here are the calculations for the size
of file required to store the data:

Table 11-2 Storage Calculations

Item Type of data Bytes required

IncomeName$ "Payroll" 7+3 = 10

"Investments" 11+3=14

T argetincome Two REAL numbers 2*(1+8) = 18

Total = 42

If an entire SHORT array is written into the file as an array variable, then each element requires 5 bytes; however, if SHORT array

elements are written indiVidually. then each element requires 9 bytes.

Data Storage and Retrieval 11-15

The file size could be 1 logical record (with default size of 256 bytes). You would not need to
partition it into smaller logical records, since the data items in the file are only accessed serially.

Note that the size of the file actually created will always be an integral multiple of 1 024 bytes.
This effect is due to the fact that the HP-UX file system can only address portions of the disc
as small as a 1 024-byte block. Blocks and records are discussed next.

Records and Blocks
A record or block is the smallest unit of mass storage space that is independently addressable.
There are three types:

• Logical records are the smallest unit of mass storage that can be addressed by a BASIC
program. You can specify the size of logical records in a file when you execute a CREATE

statement. If no logical record length is specified, a length of 256 bytes is assumed.

• Blocks are the smallest unit of mass storage that can be handled by the HP-UX file system.
HP-UX file system blocks are always 1024 bytes in length.

• Physical records are the smallest unit of storage that can be addressed by a mass storage
device. With most HP disc drives, physical records are 256, 512, or 1 024 bytes in length.

Logical records make it possible to partition a file into several smaller units, each of which the
BASIC system can address independently. In fact, each logical record is similar to a file in the
respect that it is independently addressable. Within any file, all logical records are the same
length; however, each file may have a different logical record length.

Blocks are mentioned only so that you will understand why a file with length of 1 024 bytes will
be created if you try to create a file with a length of 256 bytes.

Physical records are only mentioned to avoid confusion with logical records and blocks, should
you happen to see that term in your disc manual.

11-16 Data Storage and Retrieval

When you create a data file, you specify these parameters: file name, number of logical records,
and logical record length (optional). The following drawing shows the file that is created by this
statement:

CREATE "File_xyz",1,300

Block
(1024 bytes)

Physical Record
(512 bytes)

Physical Record
(512 bytes)

A '" I " "
Used by Logical Logical

the System Record 1 Record 2 Unused

(256 bytes) (300 bytes) (300 bytes) (168 bytes)

Figure 11-4. Data File Parameters

The example shows several important points about files.

,

• The file takes up 1 024 bytes of storage, since a file always contains an integral number
of blocks. (Similarly, files always begin on a physical record boundary, and thus always
contain an integral number of physical records.)

• The Technical BASIC system always uses the first 256 bytes of a BASIC/DATA file for
keeping information such as logical record size, number of records, etc.

• After aliocating the first 256 bytes for overhead, the system allocates logical records. The
first logical record begins at the byte followIng the last byte of system overhead, and the
second record begins on the byte just following the last byte of the first logical record.

The example also shows that the system will allocate more logical records than specified,
if there is room in the file. In this case, there was enough room for one more logical
record. As another example, if you create a file with 1 logical record of length 256 bytes,
then the file will actually contain 3 records; the system allocates two additional records,
rather than leaving the last 512 bytes unusable.

• There are 168 bytes of unusable space at the end of this example file (1 024-256-2*300),
because the next file begins on the next block boundary (which also aligns with the physical
record boundary).

Data Storage and Retrieval 11-17

The File Pointer
The system uses a file pointer to locate and access the data items in a file. The file pointer
points to the place where data will be:

• written with the next PRINT# statement, or

• read with the next READ# statement.

The file pointer is updated automatically by the system whenever the file is accessed. More
information about the file pointer will be given in subsequent examples.

File Buffers
When a buffer number is assigned to a file, such as in the following statement:

ASSIGN# 2 TO "Oct84Income"

the BASIC system sets up a file buffer through which it communicates with the mass storage
device. This buffer is a small portion of your BASIC memory area, usually a few hundred bytes
in length.

Here is a pictorial representation of the communication path.

Computer
Mass Storage

I Device
I Memory
I

I I J
I

I
Controller

I

I
Buffer

I I
Processor I

I
Storage

I

~ BASIC Media
I
I

Program

I
I
I

I File I
I

Figure 11-5. File Buffer

The purpose of the buffer is to decrease access time for information and reduce the wear on
the physical mass storage devices.

11-18 Data Storage and Retrieval

Here is an example of how a buffer works. Assume the following conditions: you have created
a file with logical records of 9 bytes each, and you want to access 20 of these records in a short
program segment.

Without buffering, the BASIC system would have to make 20 different accesses of a mass
storage device to obtain the information. And each time an item is requested from the mass
storage device, the BASIC system would get a whole block (1 024 bytes) of information, since
that is the smallest unit of data that the HP-UX file system can address. Considering the
possibility that all of these items might all be located in the same 1 024-byte block, the system
would, in this case, be getting about 100 times the information it needs in each of 20 separate
mass storage accesses.

With buffering, the BASIC system loads a physical record of information from the mass storage
device, and then extracts from that record the information it needs. In our example, if all 20
logical records are in the same mass storage block, the computer only has to make 1 mass
storage access; it then can extract each logical record from the buffer. Overall, in this particular
example, the amount of disc access has been reduced by a factor of 20, and the information
flow has been reduced by a factor of about 2000 (=100*20).

This example is not necessarily representative of how much mass storage wear and access time
can be saved by buffering, but it does make the point that buffering is generally a good technique
to use.

File buffers are automatically sent to the mass storage device (while writing) at the following
times:

• Whenever the buffer gets full, or when data items in another block are accessed.

• When the file is closed (or when the file number is re-assigned).

• When the program is halted (Le., when PAUSE, STOP, or END is executed).

• When program execution is interrupted (by an event that is set up to cause an "event
initiated branch", as described in the "Program Structure and Flow" chapter).

• When a PRINT# statement is executed from the keyboard.

Data Storage and Retrieval 11-19

A Closer Look at Serial Access
Serial access is used when a quantity of data is to be stored sequentially in a file and then
read back in the same (sequential) order. With this type of access, the file itself is the smallest
addressable unit of storage. This is true even if the file being accessed consists of more than one
logical record, because the data items are stored and retrieved without regard to logical record
divisions (during serial access).

Serial Write Operations
When a file is opened, the file pointer is placed at the beginning of the file.

ASSIGN# 1 TO "BudgetData"

File Pointer

:
EOF Marker

Figure 11-6. File Initially

Physical
End of File

The drawing shows that the file initially contains an end-of-file (EOF) marker at the beginning of
the file. Actually, the file is entirely full with EOF markers at the point the file is created.

When a PRINT# statement writes data into the file (through the buffer assigned to the file), the
data items are sent one at a time, from left to right in the list, starting at the location indicated
by the file pointer. As each item in the data list is stored, the pointer is updated to point to the
next available location. When all items in the list have been recorded, the file pointer points at
a location just past the end of the recorded data. An end-of-record l (EOR) marker indicates the
position of the last recorded data item.

1 An EOR marker is used instead of an EOF marker, because you can randomly and serially access a file.

11-20 Data Storage and Retrieval

The location of the file pointer is the point at which a subsequent PRINT# statement will begin.

PRINT# 1;IncomeName$(1),TargetIncome(1)

File Pointer

t

t ~ Payroll 1680.56

EOR Marker Physical
End of File

Figure 11-7. File Pointer Location 1

Execution of a subsequent PRINT# statement to the same buffer records the items in the corre
sponding data list beginning at the current file pointer. The system overwrites the existing EOR
marker, writes the items (and corresponding type fields), and then writes another EOR marker
at the end of this newly recorded data.

PRINT# 1;IncomeName$(2),TargetIncome(2)

File Pointer

t
Payroll 1680.56 Investments 345.67

t t
EOR Marker Physical

End of File

Figure 11-8. File Pointer Location 2

Data Storage and Retrieval 11-21

Earlier in the chapter, it was stated that serial writing essentially ignores logical record boundaries.
Here is what actually happens when a serial PRINT# statement crosses a logical record boundary.

PRINT# 1;12.05."String data"

End of Beginning File Pointer
Preceding of Record

Record ~/ !
12.05 I I String data

t t t
EaR Unused EaR

Marker Marker

Figure 11-9. Record Markers

In the above example, there was enough space left in the current logical record to store the
numeric item, so it was written. However, there was not enough space to store the string item
(at least 4 bytes is required), so an EOR marker was written into the record. The file pointer
was then placed at the beginning of the next logical record, and the string item was written. The
file pointer is left at the location following the string item. (The only situation in which an EOR
is not written into the logical record is when there is exactly enough room for a numeric item at
the end of the record.)

The pointer will continue to move sequentially through the file as shown in the preceding ex
amples, unless moved in another manner. For instance, executing an ASSIGN# statement on the
same buffer number moves to the file pointer to the beginning of the file.

ASSIGN# 1 TO "Income84"

File Pointer

t
I PayrOll 1680.56 Investments 345.67

t
EaR Marker

Figure 11-10. File Pointer Location 3

11-22 Data Storage and Retrieval

~
t

Physical
End of File

The movement of the file pointer and EOR marker influence the way in which the serial files
are updated. For instance, if the pointer is reset to the beginning of the file (as in the preceding
ASSIGN# statement) after serially reading a long list of data items, then a subsequent serial PRINT#
statement will record new data items over the previous ones. In addition, an EOR marker is
placed at the end of the new data items, so the result is that all previous data in the file is
inaccessi ble.

PRINT# 1; IINew data ll

File Pointer

t
New data Previous data (inaccessible) =l t

EOR Marker Physical
End of File

Figure 11-11. File Pointer Location 4

Extending Serial Files
These examples do not show that Technical BASIC files are extensible. That is, if you create a
file and then attempt to serially write past the current physical end-of-file (not just past an EOR
or EOF marker), then the system will automatically extend the file for you. Each extension is
either one block or one logical record in length, whichever is greater.

Serial Read Operations
Data that has been stored in a data file must be retrieved (Le., read back into computer memory)
before it can be used by the program. Reading data from a file transfers a copy of the data
through a buffer in computer memory.

When a file is opened, the file pointer is placed at the beginning of the file.

ASSIGN# 1 TO IIOct84Income il

File Pointer

Payroll 1680.56 Investments 345.67

t
EOR Marker

Figure 11-12. File Pointer Location 5

~
t

Physical
End of File

Data Storage and Retrieval 11-23

Serial reading is accomplished by the READ# statement; items in the data list are filled from left
to right. As each data item is retrieved, the file pointer is updated to point to the next data
item in the file. Items are accessed sequentially, ignoring any logical record boundaries.

READ# 1;IncNam$(1),TgtInc(1)

File Pointer

t

t ~ Payroll 1680.56 I Investments 345.67

EaR Marker Physical
End of File

Figure 11-13. File Pointer Location 6

The variables used to read the data in the file must be of the same general data type as the
data item (Le., numeric or string), but they need not be of the same specific type (Le., INTEGER,
SHORT, or REAL for numeric items; or identical length for string items). However, matching
specific types always works best because it prevents value range errors.

If a READ# statement attempts to read past an EOF marker, an error is reported. You can trap
these errors with the ON ERROR statement. See the subsequent section called "Trapping EOF
and EOR Conditions" for further details.

Both data stored serially and data stored randomly can be retrieved serially.

Random File Access
Random access allows you to move the file pointer to the beginning of any logical record within
a file. This is in contrast to only setting the pointer to the beginning of a file for serial access,
and then sequentially reading data items from the file and having the file pointer be updated
automatically by the system. However, random access is like serial access after moving the
pointer to the beginning of a logical record, because you will then serially access the data in that

record.

11-24 Data Storage and Retrieval

Random Writing
Here is an example of creating a file with 12 logical records: each one contains target incomes
(names and values) for a month of the year.

100 OPTION BASE 1! Lower bound of array subscripts.
110 DIM IncomeName$(2)
120 REAL TargetIncome(2)
130 !
140 IncomeName$ (1) ="Payroll"
150 IncomeName$(2)="Investments"
160
170 TargetIncome(1)=1680.56
180 TargetIncome(2)=345.67
190 !
200 ! Create and open a file.
210 CREATE "TgtInc84",12,42
220 ASSIGN# 1 TO "TgtInc84"
230 !
240 FOR Month=1 TO 12
250 PRINT# 1,Month! Move pointer to start of record (random "seek").
260 FOR Category=1 TO 2
270 PRINT# 1;IncomeName$(Category),TargetIncome(Category) Serial wrt.
280 NEXT Category
290 NEXT Month
300
310 END

Here is a conceptual drawing of what is in each logical record.

End of
Record

Beginning of End of Beginning of
N-1 Record N Record N Record N+1

'XI ~I
I Payroll 1680. 56 I Investments I 345.67 I

Figure 11-14. Logical Record

Data Storage and Retrieval 11-25

Here are the differences between serially and randomly writing to files.

• In order to randomly write to a data file, you must use a PRINT# statement that specifies
a record number.

200 PRINT# l,3;Str$,Intgr ! Write 2 data items in record 3.

When a random PRINT# statement is executed, the file pointer is moved to the beginning
of the specified record. The data items in the PRINT# statement are then recorded in the
record, and an end-of-record (EOR) marker is placed after the last item (if there is at least
1 byte left in the record).

• If you want to merely position the file pointer at the beginning of a record, without writing
any data, then execute a PRINT# statement specifying only the record number (omitting
the data list).

PRINT# 1,5

• Record divisions are not ignored, as they were in serial access. Thus, if you attempt to
store more data in one logical record than that record will hold, an EOR error is reported:

ERROR 69 : RANDOM OVF

or

ERROR 72 : RECORD

Randomly Reading
Here is an example of reading the data that was stored using random access methods. Note
that the logical records are accessed in reverse order (12, 11, 10, ... , 1).

100 OPTION BASE 1
110 DIM IncomeName$(2)
120 REAL TargetIncome(2)
130
140 ! Open the file.
150 ASSIGN# 7 TO "TgtInc84" Buffer # 7.
160
170
180
190
200
210
220
230
240
250

FOR Month=12 TO 1 STEP -1 Access records in reverse order.
READ# 7,Month! Move pOinter to start of record (random "seek").
DISP "Month:";Month
DISP "---------"
FOR Category=l TO 2

READ# 7; IncomeName$(Category) ,TargetIncome(Category)
DISP "Income name: " ,IncomeName$(Category)
DISP "Target income:",TargetIncome(Category)
DISP

260 NEXT Category
270 NEXT Month
280
290 END

11-26 Data Storage and Retrieval

Serial read.

Here are the results of running the program.

Month: 12

Income name:
Target income:

Income name:
Target income:

Month: 11

Income name:
Target income:

Income name:
Target income:

Month: 1

Income name:
Target income:

Income name:
Target income:

Payroll
1680.56

Investments
345.67

Payroll
1680.56

Investments
345.67

Payroll
1680.56

Investments
345.67

Randomly reading files is slightly different from serially reading files.

• In order to read data from a "random" record of a data file, you must use a READ#

statement that specifies a record number.

200 READ# 1,3;A$,I ! Read 2 data items from record 3.

When a record is specified, the file pointer is moved to the beginning of that record. The
data item(s) in the READ# statement are then transferred serially (through the buffer) into
the specified variable(s).

• Logical record boundaries are not ignored. If you attempt to read more data items than
are in the record, an EOR error will be reported (ERROR 72 : RECORD).

• If you want to merely position the file pointer at the beginning of a record without reading
any data, then execute a READ# statement specifying only the record number (omitting the
data list).

READ# 1,3

Data Storage and Retrieval 11-27

As with serial reading, the variables used to read the data in the file must be of the same general
data type as the data item (Le., numeric or string), but they need not be of the same specific type
(Le., INTEGER. SHORT, or REAL for numeric items; or identical length for string items). However,
matching specific data types is always best, because it eliminates the potential for value range
errors.

Determining Data Types
A preceding section mentioned that each item written in a data file is preceded by a type field.
You can use the TYP function to read this field and thereby determine the item's data type.

This function allows you to avoid errors such as attempting to read a string data item into a
numeric variable. It also allows you to determine whether the file pointer is pointing at the
current end-of-file (EOF) or end-of-record (EOR) marker.

Data-Type Field Values
Here is an example of using the TYP function:

ItemType=TYP (1)

The function reads the type field of the item at which the file pointer is currently pointing. The
parameter passed to the function specifies which buffer is to be read. The preceding statement
determines the type of the item at the current location of the file pointer in buffer number 1.
An example program is shown below.

Here is the range of integer values that the TYP function can return, and the corresponding data
types.

Table 11-3 Data Types

TYP Value Data Type

1 Numeric

2 Full string

3 End-of-file marker

4 End-of-record marker

8 Start of string

9 Middle of string

10 End of string

11-28 Data Storage and Retrieval

Sensing EOF and EOR Conditions
Here is a simple example of using the TYP function to determine whether the file pointer is
currently pointing at an EOF marker.

100 DEF FNEOF(BuffNo) = TYP(BuffNo)=3

Here is an example of using the function:

200 WhileNotEOF: IF NOT FNEOF(2) THEN ReadItem ELSE EndOfFile

Sensing an EOR marker is almost identical.

110 DEF FNEOR(BuffNo) = TYP(BuffNo)=4

Here is an example of using the function:

200 IF NOT FNEOR(2) THEN ReadItem ELSE NextRecord

Trapping EOF and EOR Conditions
There are certain conditions that you can encounter while writing and reading files that will
generate an error. This section describes them.

The following operations will generate an end-of-file (EOF) or end-of-record (EOR) error condition:

• Attempting to read past either an EOF marker or the physical end of file (ERROR 71: EOF).

• Attempting to read more data items than there are in a logical record during a random
read operation (ERROR 72: RECORD).

• Attempting to write more data than will fit in a logical record during a random! write
operation (ERROR 69: RANDOM OVF).

This error is only reported during random writes, because attempting to write past the physical end of file during a serial write causes

the system to automatically extend the file.

Data Storage and Retrieval 11-29

Here is an example of using the ON ERROR mechanism to trap EOF errors while reading a file.
The file is assumed to contain only string data.

100 DIM StringData$[65530]
110
120 Ask: DISP "Enter file name." (Q INPUT File$
130 DISP "Is this correct? '''&File$&'', (YIN)" (Q INPUT Ans$
140 IF UPC$ (Ans$ [1,1]) <>"Y" THEN Ask
150
160 ASSIGN# 2 TO File$! Open specified file.
170
180 ON ERROR GOTO ErrorTrap! Set up branch for errors.
190 !
200 ! Loop until EOF (or other error).
210 Nextltem: READ# 2;StringData$ Read as string; if error,
220 branch to ErrorTrap.
230 DISP StringData$
240 GOTO Nextltem
250
260
270
280

ErrorTrap: IF ERRN=71 THEN DISP "End of file found." (Q GOTO Ask
! ELSE ERRN<>71, so display error message.
ERRM

290 END

The program runs until either an EOF error (71) or another error is encountered. When an
EOF is encountered, the message End of file found. is displayed, and the program asks for
another file name. When another error is encountered, the system's normal error message is
displayed. You can easily expand the ErrorTrap routine to respond to other file-related errors.

11-30 Data Storage and Retrieval

Using text/data Files
This section briefly describes how to write and read files of type text/data. This type of file
provides a method of interchanging data files between Technical BASIC and the HP-UX system
(they are HP-UX "ASCII" files).

Accessing this type of file with binary programs is described in the "Examples of File I/O" section
in the "Binary Programs" chapter.

Writing to a textl data File
This program shows how to open and write data into a file of type text/data. If the file does
not already exist, the BASIC system will create it for you. Numeric and string data items are
then written into the file.

100 INTEGER IntVar
110 IntVar=32000
120
130 SHORT ShortVar
140 ShortVar=3e+031
150
160 REAL RealVar
170 RealVar=1e+308
180
190 DIM StringVar$[20]
200 StringVar$="This is a string."
210 !
220 ASSIGN 14 TO "text_file" !
230
240 OUTPUT 14 IntVar;ShortVar
250 OUTPUT 14 RealVar;StringVar$
260
270 ASSIGN 14 TO "*" !
280
290 END

Assign a file selector.

Write two values into file.
Write two more values into file.

Close file.

Note that the items specified in the OUTPUT statement are written according to the rules of the
OUTPUT statement; see the HP-UX Technical BASIC I/O Programming Guide or the HP-UX
Technical BASIC Language Reference for details.

In this example, the items in the OUTPUT statements are separated by semicolons; therefore, the
items will not be separated (in the output data stream) by an end-of-line (EOl) sequence, which
is normally a carriage-return followed by a line-feed (control characters). However, the EOl
sequence is automatically sent after the last item in the OUTPUT statement (unless suppressed
with a semicolon or comma).

Data Storage and Retrieval 11-31

Note also that the OUTPUT statement does not put end-of-record (EOR) or end-of-file (EOF) markers
in the file.

Reading from a text/data File
This example reads the data from the text/data file written with the preceding example. It
uses this general rule: read the file in the same way that it was written.

100 INTEGER IntVar
110 IntVar=-1
120
130 SHORT ShortVar
140 ShortVar=-1
150 !
160 REAL RealVar
170 RealVar=-1
180 !
190 DIM StringVar$[20]
200 StringVar$="Initial value."
210 !
220 DISP "Value of IntVar
230 DISP "Value of ShortVar
240 DISP "Value of RealVar
250 DISP "Value of StringVar$
260 DISP
270 !
280 ASSIGN 14 TO "text_file" !
290 !

";IntVar ! Show values BEFORE reading file.
";ShortVar
";ReaIVar
";StringVar$

Assign a file selector.

300 ENTER 14
310 ENTER 14

IntVar.ShortVar !
ReaIVar.StringVar$

Read two values from file.
Read two more values from file.

320 !
330 DISP "Value of IntVar
340 DISP "Value of ShortVar
350 DISP "Value of RealVar
360 DISP "Value of StringVar$
370 !
380 ASSIGN 14 TO "*" !
390 !
400 END

Here is the output of the program.

Value of IntVar -1
Value of ShortVar -1
Value of RealVar -1
Value of StringVar$ Initial

Value of IntVar 32000
Value of ShortVar 3e+031
Value of RealVar 1e+308
Value of StringVar$ This is

11-32 Data Storage and Retrieval

";IntVar Now show values read FROM FILE.
";ShortVar
";ReaIVar
";StringVar$

Close file.

value.

a string.

C Binaries 12
Introduction
Generally, you will be using the Technical BASIC system to execute programs written in the
Technical BASIC language. However, you can also write programs in the C language and then
call (execute) them from Technical BASIC. In this manual, such programs are termed binary
programs. The term "binary" was probably coined because the programs written in another
language and compiled into executable object code cannot be easily read by humans from the
BASIC system-they look like just a bunch of binary patterns.

Binary programs are useful in the following situations:

• An application is already written in C, and you don't want or have time to translate it into
Technical BASIC code .

• C supports a feature that is not available in Technical BASIC, or the C version runs faster
that the BASIC version.

Chapter Contents
Tasks/Topics Page

Overview 12-2

Structure of C programs and binaries 12-2

Compiling and linking C binaries 12-3

Summary of parameter-type matching 12-5

Restrictions 12-5

A closer look at compiling and linking 12-7

Examples of passing parameters 12-9

Examples of file I/O 12-19

C Binaries 12-1

Overview
This section briefly covers the following topics. It is intended to quickly give you a global view
of using C binaries. Specific details of each topic are presented in the subsequent sections.

• Structure of C programs and binaries.

• Procedure for creating C binaries.

• Parameter-type matching.

• Restrictions on C binaries.

Structure of C Programs and Binaries
C programs have the following structure. The un shaded portion can be used up as a binary
that is, it can be separately compiled and linked to the BASIC system, and then called as a
separate entry point by a BASIC program.

/* Now the C function. */
entry_pt(formal_param)

{

}

int *formal_param;

/* Double the value passed to the routine. */
*formal_param = *formal_param * 2;

C Function l

(can be used

as a binary)

C Program

1 Note that this is not the same as a BASIC function in that it does not return a value like a BASIC function (such as SIN (X) or

FNmyfunc (Argument)).

12-2 C Binaries

Here are the results of running the program:

Before calling 'entry_pt':
pass_param= 7

After calling 'entry_pt':
pass_param= i4

Note that the C function 1 named entry_pt was able to modify the variable pass_param's con
tents, since the parameter was passed by reference.

Compiling and Linking

1. If the C code is structured as a program, you will need to re'structure it so that it is a
stand-alone C function. Store this code in a file separate from the original copy. In the
above example, this is the routine named entry _pt.

entry_pt(formal_param)

{

}

int *formal_param;

/* Double the value passed to the routine. */
*formal_param = *formal_param * 2'

NOTE

You should have, at this point, thoroughly debugged the C binary by
calling it from a C program (as in the example C program above). The
reason for this approach is that even though BASIC attempts to trap
errors, it cannot trap them all.

2. While in the HP-UX shell, compile the C binary and link it to any libraries required to
resolve the external references. A shell script is provided for this purpose. When you use
the script, specify the name of the file in which you want the binary to be stored. For
instance, if the binary is in a file named bini. c, then the script call would be:

$ /usr/bin/makebin_c bini I Return I

1 Note that this is not the same as a BASIC function in that it does not return a value like a BASIC function (such as SIN (X) or

FNmyfunc (Argument»).

C Binaries 12-3

3. Enter the Technical BASIC system, and type in and run a BASIC program that loads
and calls the binary. Make sure that the parameters passed to the binary match those
expected by the subsequent table for a complete list of correspondence between BASIC
and C parameters.)

Here is an example BASIC program that calls the preceding binary:

100 LOADBIN "binl"
110
120 INTEGER WholeNumber
130 WholeNumber=7
140
150 CLEAR
160 DISP "Before CALLBIN:"
170 DISP "WholeNumber =";WholeNumber
180 DISP
190 CALLBIN "entry_pt" (WholeNumber)
200 DISP
210 DISP "After CALLBIN:"
220 DISP "WholeNumber =";WholeNumber
230
240 SCRATCHBIN "binl"
250 END

The LOADBIN statement (line 100) links the binary to BASIC. This example assumes that
the binary is the file named binl in the current working directory. (If it is not in a file in
that directory, then you would need to specify a path name.)

The BASIC program next assigns a value to an INTEGER variable (line 130), and then
displays the value (lines 160 and 170).

The CALLBIN statement (line 190) branches to the specified· entry point in the binary; in
this case, the entry point is named entry _pt.

After the binary has finished execution, it returns control to the BASIC program. In this
example, the BASIC program displays the modified value of the variable WholeNumber.
Note that the BASIC variable WholeNumber is passed by reference, which allows the binary
to modify the variable's contents. Passing parameters is further described in subsequent
sections.

Once you no longer need the binary, you can unlink it from BASIC with the SCRATCHBIN
statement (line 240). Note that the file is still in the HP-UX file system; however, it is not
linked to Technical BASIC any longer, and is therefore inaccessible from BASIC.

12-4 C Binaries

Summary of Parameter-Type Matching
Here is a list of all the pass parameter types that you can send to a C binary, along with the
corresponding C formal parameter types.

Table 12-1. Matching Parameters in BASIC Programs and C Binaries

BASIC Data Type C Data Type

simple INTEGER int

INTEGER array array of int

simple SHORT float

SHORT array array of float

simple REAL double

REAL array array of double

simple string char, or array of char!

string array array of char

Restrictions
You can use almost all the features of a language in a binary program. However, there are a
few things that you cannot do with C binaries.

Maximum Number of Binaries
At anyone time, there can be up to 5 C binaries loaded (using LOADBIN). If there are Pascal,
Fortran, and C binaries concurrently loaded, then the maximum number of C binaries is 3.

Note, however, that an individual binary may contain several entry points-C functions-as long
as they are placed in one object file.

File I/O Restrictions
Binary programs can perform I/O operations on files, with only one restriction: if the binary
is to access a file of text/data (HP-UX "ASCII"), then the binary must open the file, access
the information, and close the file while BASIC is not accessing it. For instance, if a BASIC
program has a particular text/data file currently open, then no binary should access that file.
After BASIC has closed it, the binary may open it, perform I/O operations on it, and then close
it. (The converse situation has the same restriction.)

Simple BASIC strings can be passed either by reference or by value. However, if a string is passed by value, then it must be declared as

an array of type char in the C binary.

C Binaries 12-5

Note, however, that there is no additional restriction on the number of files that BASIC or C
may have open at one time. For instance, BASIC can still have up to 10 files of type text/data
open simultaneously, while C can have up to 20 files open at one time.

Examples of C file I/O are given in the last section of this chapter.

HP-UX Environment May Not Be Accessible
HP-UX environment variables, such as TERM and PATH, may not be accessible to binaries System
calls, such as ioctl, should be used with caution in binaries.

Standard 1/0 Streams Are Not Accessible
Binaries should not perform operations on the "standard I/O streams"-namely, displaying on
the screen (stdout and stderr in C) or getting characters from the keyboard (stdin in C). For
example, there is no guarantee that the C standard I/O library function printf will work in all
binaries, although you may get it to work in some instances.

Error Trapping in Binaries
Technical BASIC usually recovers gracefully from errors encountered while using binaries. How
ever, there are some errors that BASIC cannot handle, and thus may even cause the HP-UX
system to log you out. Here are some suggestions on how to avoid this type of situation.

1. The best approach to avoiding errors when using binaries is to thoroughly test the binary
(with a stand-alone program) before calling it from BASIC.

2. When you are ready to actually call it from BASIC, make sure that the you match pass
parameters correctly: same number of parameters, correct type-matching, and in the right
order. (Later sections provide additional examples of passing parameters to C-Ianguage
binaries.) Also be sure that the binary stays within the bounds of data structures and
arrays, especially when the binary uses pointers.

3. If you do get an error while loading or executing a binary, you should fix the problem in
the binary first. Then when back in BASIC, you should use SCRATCHBIN to unload the old
copy before using LOADBIN to load the latest copy. This action must be taken, because
LOADBIN will not load a binary if a binary of the same name is currently loaded.

12-6 C Binaries

A Closer Look at Compiling and Linking
The example binary used in this section is the same one used earlier in the chapter; it doubles
the value of an integer that is passed to it.

int *formal_param;

{

}

/* Double the value passed to the routine. */
*formal_param = *formal_param * 2;

While in the HP-UX shell, compile the C binary and link it to any libraries required to resolve
the external references. Use the makebin_c shell script for this purpose; the default location of
this script is in the /usr/bin directory. Assuming the C program is called bini. c, you could
type:

$ /usr/bin/makebin_c bini I Return I

C Binaries 12-7

Here are the contents of the makebin_c shell script (for Series 500 systems):

for filec
do

cc -c $filec.c
Id -rd -0 $filec $filec.o /usr/lib/bcrtO.o -lc

done

filec is a variable that contains the name of the file specified when the script
was executed; in this example, this variable contains bini.

cc

-c

Id

-rd

-0

/usr/lib/bcrtO.o

-lc

is the "C compiler" command.

specifies not to generate the normal linked, executable (a. out) object file.
Instead, the C compiler is to generate an unlinked, relocatable object
file-a file named bini. 0 in this case.

is the "link editor" command.

options indicate (respectively):

the specified object file (bini. o) is to be loaded as relocatable (re-linkable)
code;

the definition of "COMMON" storage is to be forced.

option specifies that the object file is to be named bini, rather than given
the default name a. out.

is a special version of the crt. 0 library that must be searched when
linking C binaries to BASIC.

option specifies that the C libraries are to be made accessible to the binary.
(With Series 200/300 systems, the makebin_c shell script specifies -lb

to search the libb. a library instead of the libc. a library.)

If there are still unresolved references! after executing this script, then you will have to specify
additional libraries:

• for system libraries (llib/libxxx. a), include the appropriate Id option-such as -1m;

• for other libraries, specify the library by name-such as the /usr /lib/bcrtO. 0 library file
specified in this script.

Now you are ready to enter the Technical BASIC system, load the binary, and then call it from
BASIC.

1 If the LOADBIN or CALLBIN statements report an error, there are probably unresolved references in the binary. You can use the

HP-UX nm command to find them.

12-8 C Binaries

Example C Binaries
This section contains examples and corresponding explanations of the following tasks:

• Passing parameters between BASIC and C binaries.

• Simple numerics.

• Numeric arrays.

• Simple strings.

• String arrays .

• Using text/data type files for data interchange between BASIC and C binaries.

If you have trouble understanding the mechanisms of "passing by reference" or "passing by value",
then you may want to study further examples of passing parameters in the "Subprograms" section
of the "User-Defined Functions and Subprograms" chapter. Additional details of text/data files
are provided in the "Data Storage and Retrieval" chapter section called "Using text/data Files".

Passing Simple Numeric Parameters
There are three BASIC data types: INTEGER, SHORT, and REAL. You can pass all of these types
to C programs. Here is the required correspondence between BASIC simple-numeric pass
parameters and C formal parameters:

Table 12-2. Matching Simple Numeric Parameters

BASIC Corresponding C
Pass Parameter Formal Parameter

INTEGER int

SHORT float

REAL double

C Binaries 12-9

Here are general rules for passing these types of parameters (examples are given subsequently):

• If a parameter is to be passed by reference, then it must be placed in a BASIC variable.
The C binary must declare the corresponding parameter as a pointer (to the appropriate
C type listed above).

• If a parameter is to be passed by value, the BASIC parameter must be an expression (such
as a numeric literal, a variable enclosed in parentheses, or a combination of numeric items
containing numeric operators). The corresponding C formal parameter must be declared
as a variable of the appropriate type-not as a pointer.

This BASIC program passes three parameters to the subsequent C binary.

100 INTEGER RadiusB
110 RadiusB=10
120 REAL AreaB
130 !
140 LOADBIN "area"
150 CALLBIN "area" (PI,(RadiusB) ,AreaB)
160 DISP "Area of circle with radius";RadiusB;"=";AreaB
170 SCRATCHBIN "area"
180 END

Here is a C binary that would work with the ",hove BASIC program.

area(Pi,RadiusC,AreaC)

{

}

double
int
double

Pi;
RadiusC;
*AreaC;

*AreaC Pi * RadiusC * RadiusC;

Here are the results of running the program:

Area of circle with radius 10 is 314.159265358979

The first BASIC pass parameter, PI, is passed by value since it is a numeric function (which
qualifies it as a numeric expression). The corresponding C formal parameter is of type double,
since PI is a function of BASIC type REAL.

The second BASIC pass parameter, (RadiusB), is also passed by value since it has been enclosed
in parentheses (which makes it an expression). The corresponding C formal parameter is of type
into Note that this parameter must not be passed by reference, since C expects a value, not an
address (a C pointer).

12-10 C Binaries

The third BASIC pass parameter, Area, is passed by reference since it is a variable which is not
part of an expression. The corresponding C formal parameter is of type pointer to double, as
indicated by the leading *. A pointer variable is one that contains the address of the variable,
rather than its value. This is required because the corresponding BASIC pass parameter is
passed "by address" (by reference). Passing a variable by reference allows the binary to modify
the BASIC variable's contents, thereby allowing information to be "passed back" to BASIC.

Passing Numeric Array Parameters
Here is the required correspondence between BASIC numeric-array pass parameters and C
formal parameters:

Table 12-3. Matching Numeric Array Parameters

BASIC Corresponding C
Pass Parameter Formal Parameter

INTEGER array Array of int

SHORT array Array of float

REAL array Array of double

Note that arrays are always passed by reference to binaries.

C Binaries 12-11

The following BASIC program, a modification of the preceding example, passes two numeric
arrays to a C binary.

100 INTEGER RadiiB(4)
110 FOR 1=0 TO 4
120 RadiiB(I)=I
130 NEXT I
140 !
150 REAL AreasB(4)
160 !
170 LOADBIN "arrays"

5 elements (OPTION BASE 0).

180 CALLBIN "arrays" (PI,RadiiB() ,AreasB())
190 DISP "Radii Areas"
200 DISP "----- -----"
210 FOR 1=0 TO 4
220 DISP USING "DD.DD,XX,DD.DD" RadiiB(I) ,AreasB(I)
230 NEXT I
240 SCRATCHBIN "arrays"
250 END

Here is a C binary that would work with the preceding BASIC program.

arrays(Pi,RadiiC,AreasC)

{

}

double Pi;
int *RadiiC; /* Pointer to array. */
double AreasC[5]; /* Can also be AreasC[] */

int i;

for (i=O; i<5; i++) /* Assume 5 elements in each array. */
AreasC[i] = Pi * *(RadiiC+i) * * (RadiiC+i) ;

Here are the results of running the BASIC program:

Radii Areas

0.00 0.00
1.00 3.14
2.00 12.56
3.00 28.27
4.00 50.26

12-12 C Binaries

Notice that the binary assumes that the calling BASIC program will send an array with at least
five elements. A more general method would be to pass arrays of variable sizes to the binary.
Here are two possible methods:

• By passing parameter(s) that indicate the number of elements (and dimensions).

• By assigning a unique "flag" value to an array element to indicate that it is the last element
in the array.

Note that the C array declarations in the program use different notation:

int
double

RadiiC; / Pointer to array.
AreasC[5]; /* Can also be AreasC[]

These two declarations are equivalent in purpose because they each declare a pointer to the
first element of an array (i.e., the element with subscript 0). The notation you use in the
declaration dictates the notation that you will use in accessing array elements. For instance,
individual elements of the RadiiC array are accessed by specifying the subscript: Areas [i] ,
for example. The elements of the RadiiC array are accessed by using pointer expressions: for
instance, * (RadiiC+i) .

Passing Simple String Parameters
Here is the required correspondence between BASIC simple-string pass parameters and C formal
parameters:

Table 12-4. Matching Simple String Parameters

BASIC Corresponding C
Pass Parameter Formal Parameter

Simple string char or Array of charI

Simple BASIC strings can be passed either by reference or by value. However. if a string is passed by value, then it must be treated as

an array of type char in the C binary.

C Binaries 12-13

Here are general rules for passing these types of parameters (examples are given subsequently):

• If a parameter is to be passed by reference, then it must be placed in a BASIC variable.
The C binary must declare the corresponding parameter as a pointer to the appropriate
type listed above. Note that even though a C binary may change a BASIC string variable's
contents, it cannot change the BASIC string variable's length. (This topic is discussed in
the section called "BASIC String Length Headers".)

• If a parameter is to be passed by value, the BASIC parameter must be an expression
(such as a quoted string literal, a variable enclosed in parentheses, or a combination of
string items containing the string concatenation operator &). The corresponding C formal
parameter must be declared as a variable of the appropriate type-not as a pointer.

The following BASIC program and C binary illustrate passing string parameters. (The string
length header does not require modification in this program; see the next program for example
techniques.)

100 DIM ByRef$[9] ,ByValue$[11]
110 ByRef$=lvariable"&CHR$(O)
120 ByValue$=lexpression"&CHR$(O)
130 DISP
140 DISP "ByRef$ before call
150 DISP "ByValue$ before call
160 DISP
170 LOADBIN Istrings1"

'I;ByRef$;I'"
'I;ByValue$;I'"

180 CALLBIN Istrings1" (ByRef$,ByValue$&"I)
190
200 DISP "ByRef$ after call
210 DISP "ByValue$ after call
220 SCRATCHBIN Istrings1"
230 END

Here is the corresponding C binary.

strings1 (ByRef ,ByValue)

char *ByRef,
ByValue[10] ;

{
int i;

'I;ByRef$;I'"
'I;ByValue$;I'"

/* Assign new value to formal parameter 'ByRef'. */

}

strcpy(ByRef,lmodified") ;

/* Assign new value to formal parameter 'ByValue'. */
for (i=O; ByValue[i] !='\O'; i++)

ByValue[i] = 'x';

12-14 C Binaries

Here are the results of running the program.

ByRef$ before call
ByValue$ before call

ByRef$ after call
ByValue$ after call

'variable'
'expression'

'modified'
'expression'

Note that the contents of variables passed by value to the binary are not changed; only the
contents of variables passed by reference can be modified by binaries.

BASIC String Length Headers
BASIC strings have a length header that indicates how many characters the string currently
contains. However, this header is not passed to any binary. C strings have no such header;
they are instead terminated by the null control character: \0 in C; CHR$ (0) in BASIC. Thus, C
binaries cannot modify the BASIC string variable's length.

For instance, suppose that you pass a string variable (by reference) to a C binary. The binary
then proceeds to cha~ge the length of the string, but it does not modify the BASIC string's length
header (because it has no access to it). Thus upon returning to BASIC, there is no indication
that the length of the string variable is any different than when it was passed to the binary.

Here is an example that illustrates this behavior:

100 DIM ByRef$[10]
110 ByRef$="variable"
120 !
130 DISP "ByRef$ before call = '";ByRef$;"'"
140 DISP "String length = ";LEN(ByRef$)
150 DISP
160 CALLBIN "strings2" (ByRef$)
170 !
180 DISP "ByRef$ after call = '";ByRef$;"'"
190 DISP "String length = ";LEN(ByRef$)
200 SCRATCHBIN "strings2"
210 END

Here is the corresponding C binary:

strings2(ByRef)

char *ByRef;

{

}

/* Now make string shorter. */
strcpy(ByRef."len=5") ;

C Binaries 12-15

Here is the program's output:

ByRef$ before call = 'variable'
String length = 8

ByRef$ after call
String length = 8

'len=51e'

The BASIC program sets the variable's length in the assign statement (line 110), and then
displays its value and length.

The binary then assigns the string a new value. The new length of this string, according to C,
is five characters. The binary then returns control to BASIC. Since the BASIC string variable
was passed by reference (address), its contents are affected by the binary; however, the BASIC
variable's length is not changed accordingly.

The BASIC program displays the string's contents and length. This display shows that only
the first six characters of the variable were changed: the five characters len=5; and the null
character, \0, which is not displayed unless the "display functions" mode is in effect. The BASIC
variable's length and the remaining two characters, Ie, are not changed.

There are two steps in the general work-around for this type of situation:

1. Before passing the variable (by reference), pad the string with blank characters to the
maximum length of string that the binary can return. For instance, the following statement
pads the BASIC string variable with trailing blanks and sets its length to the maximum
(dimensioned) length.

ByRef$[LEN(ByRef$)+1]=" "

Note that this particular statement will cause an error if the string length is already equal
to the maximum (dimensioned) length.

2. After returning to the BASIC program, determine the string's new length.

a. Search the returned string for a null character, CHR$(O), and then set the string
length to 1 less than the position of the null.

NullPos=POS(ByRef$.CHR$(O»
ByRef$=ByRef$[1.NullPos-1]

b. Pass a string length parameter (by reference) to the binary. After the binary changes
the string's length, it can set the length parameter accordingly and then pass it back
to BASIC.

ByRef$=ByRef$[1.Length]

12-16 C Binaries

Passing String Arrays
Here is the required correspondence between BASIC string-array pass parameters and C formal
parameters:

Table 12-5. Matching String Array Parameters

BASIC Corresponding C
Pass Parameter Formal Parameter

String array Array of char

As with numeric arrays, string arrays can only be passed by reference. The C binary must
declare the corresponding formal parameter appropriately. Here are some examples of string
array declarations and pass parameter lists, and their corresponding C declaractions.

BASIC Declaration & Call

100 OPTION BASE 1
110 DIM StrArray$(5)
120 CALLBIN "entry_pt"(StrArray$(»

100 OPTION BASE 0
110 DIM StrArray$(9) [30]
120 CALLBIN "entry_pt"(StrArray$(»

100 OPTION BASE 1
110 DIM StrArray$(5,10) [20]
120 CALLBIN "entry_pt"(StrArray$(,»

100 OPTION BASE 0
110 DIM StrArray$(5,10) [50]
120 CALLBIN "entry_pt"(StrArray$(,»

C Declaration

char *StringArr;
or

char StringArr [5] [18] ;
or

char StringArr[] [18];

char *StringArr;
or

char StringArr[10] [30] ;
or

char StringArr[] [30];

char *StringArr;
or

char StringArr [5] [10] [20] ;
or

char StringArr[] [10][20];

char *StringArr;
or

char StringArr[6] [11] [50] ;
or

char StringArr[] [11][50];

The implications of using the declaration char *StringArr versus char StringArr [] are the
same as for numeric array declarations: the notation you use in the declaration dictates the
notation tha~ you must use to specify individual array elements.

C Binaries 12-17

Here is an example of how to specify array elements when the first declaration method has been
used (that is, *StringArr):

str_array1(st_arr)

{

}

strcpy(st_arr."Line a");
strcpy(st_arr+18."Line b");
strcpy(st_arr+36."Line c");
strcpy(st_arr+54."Line d");
strcpy(st_arr+72."Line e");

Here is an example of specifying array elements when either the second or the third declaration
method has been used (that is, char StringArr [5J [10J [20J ; or char StringArr [J [10J [20J ;):

char st_arr[5J [18J ;

{

}

strcpy(st_arr[OJ . "Line a");
strcpy(st_arr[1J . "Line b");
strcpy(st_arr[2J . "Line c");
strcpy(st_arr[3J ."Line d");
strcpy(st_arr[4J ."Line e");

The implications of using StringArr [5J versus StringArr [J are that the former specifies the
(maximum) size of the array, while the latter allows the size of the array to vary.

12-18 C Binaries

Examples of C File 1/0
C binaries can perform general file I/O operations-as long as they open files, access them, and
close files while BASIC is not currently accessing it. For instance, if a BASIC program currently
has a particular text/data file open (with ASSIGN), then a binary should not access that file.
However, once BASIC closes the file, the binary may access it. (The converse situation has the
same restrictions.)

Note, however, that there is no additional restriction on the number of files that BASIC or C
may have open at one time. For instance, BASIC can still have up to 10 files of type text/data

open simultaneously, while C can have up to 20 files open at one time.

In addition, if BASIC is also to use a file used by a binary, then the file type must be of the type
which which BASIC calls type text/data; in HP-UX, these files are known as "ASCII" files.

• If a file already exists, you can determine whether or not it is a text/data file by using
the CAT statement.

• If you want to create it with BASIC, use the ASSIGN statement. See the "Using text/data
Files" section of the "Data Storage and Retrieval" chapter for an example of creating and
using this type of file.

This section shows examples of BASIC programs which call C binaries that write to a file and
read from it.

C Binaries 12-19

BASIC Calls a Binary that Writes to a File
The first program passes a file name, a string array, and a parameter indicating the number of
array elements to a binary; the binary then writes the data into the specified file. (Note that in
this particular example the BASIC program does not create, write to, or read from the file
although it certainly could. See the "Using text/data Files" in the "Data Storage and Retrieval"
chapter for examples.)

100 FileName$="sometext"
110 !
120 DIM StringArray$(10) [79]
130 StringArray$(O)="This is the first
140 StringArray$(1)="This is the second
150 StringArray$(2)="This is the third
160 StringArray$(3)="This is the fourth
170 StringArray$(4)="This is the fifth
180 !
190 LOADBIN "text_write"

line of
line of
line of
line of
line of

text. "&CHR$ (0)
text. "&CHR$ (0)
text. "&CHR$ (0)
text. "&CHR$ (0)
text. "&CHR$ (0)

200 CALLBIN "text_write" (FileName$. StringArray$ 0 .5)
210 DISP "Finished writing to file."
220 !
230 SCRATCHBIN "text_write"
240 END

Here is a listing of the binary that writes the string array into the specified file.

#include <stdio.h>

char *file_name.
str _array [] [79] ;

int nlines;

{

}

FILE *file_pointer.
*fopenO,
*fcloseO;

int line;

/* Open the file for writing. */
/* (File must NOT be open in BASIC.) */
file_pointer = fopen(file_name,"w");

/* Write the string array into the file. */
for (line = 0; line < nlines; line++)

fprintf(file_pointer,"%s \n",str_array[line]);

/* Close the file before returning to BASIC. */
fclose(file_pointer) ;

12-20 C Binaries

BASIC Calls a Binary that Reads the File
Here is a BASIC program that calls another binary which reads the data written by the preceding
BASIC and binary programs.

100 FileName$=lIsometextll
110
120 DIM StringArray$(10) [79]
130 FOR Line=O TO 4 ! Fill strings with spaces
140 (to set string length)
150 StringArray$(Line)[2]=1I II
160 NEXT Line
170
180 LOADBIN IItext read ll
190 CALLBIN IItext_read ll (FileName$,StringArray$0 ,5)
200
210 FOR Line=O TO 4
220 DISP StringArray$(Line)
230 NEXT Line
240 SCRATCHBIN IItext_read ll
250 END

Here is a binary that reads the file.

#include <stdio.h>

char *file_name,
str_array[] [79] ;

int nlines;

{

FILE *file_pointer,
*fopenO,
*fcloseO;

int line,
i;

char c;

/* Open the file for reading. */
file_pointer = fopen(file_name,lIrll);

if (file_pointer != NULL)
/* Then file was opened w/o errors. */
{

/* Read the data in the file line by line. */
for (line = 0; line < nlines; line++)
{

i = 0; /* copy line char-by-char */

C Binaries 12-21

}

while «c = getc(file_pointer)) != '\n')
str_array[line] [i++] = c;

} /* end for */

} /* end if */
else
/* File was not opened, or other error occurred. */

strcpy(str_array[O] ,"ERROR");

/* Close the file before returning to BASIC. */
fclose(file_pointer) ;

12-22 C Binaries

Pascal Binaries 13
Introduction

. Generally, you will be using the Technical BASIC system to execute programs written in the
Technical BASIC language. However, you can also write programs in the Pascal language and
then call (execute) them from Technical BASIC. In this manual, such programs are termed
binary programs. The term "binary" was probably coined because the programs written in
another language and compiled into executable object code cannot be easily read by humans
from the BASIC system-they look like just a bunch of binary patterns.

Binary programs are useful in the following situations:

• An application is already written in Pascal, and you don't want or have time to translate
it into Technical BASIC code.

• Pascal supports a feature that is not available in Technical BASIC, or the Pascal version
runs faster that the BASIC version.

Chapter Contents
Tasks/Topics Page

Overview 13-2

Structure of Pascal programs and binaries 13-2

Compiling and linking Pascal binaries 13-3

Summary of parameter type matching 13-5

Restrictions 13-6

A closer look at compiling and linking 13-8

Examples of passing parameters 13-10

Examples of file I/O 13-22

Pascal Binaries 13-1

Overview
This section briefly covers the following topics. It is intended to quickly give you a global view
of using Pascal binaries. Specific details of each topic are presented in the subsequent sections.

• Structure of Pascal programs and binaries.

• Procedure for creating Pascal binaries.

• Parameter-type matching.

• Restrictions on Pascal binaries.

Structure of Pascal Programs and Binaries
Here is an HP Pascal program that contains (and uses) a module. The unshaded portion (the
module) can be used up as a binary-that is, it can be separately compiled and linked to the
BASIC system, and then called as a separate entry point by a BASIC program.

module pmodl;

export
procedure entpt(var formal_param integer);

implement
procedure entpt(var formal_param integer);

begin
formal_param formal_param * 2;

end;

end;

13-2 Pascal Binaries

Pascal Module

(can be used

as a binary)

Pascal Program

Here are the results of running the program:

Before calling "entpt":
pass_param= 7

After calling "entpt":
pass_param= 14

Note that the Pascal procedure named entpt was able to modify the variable pass_param's
contents, since the parameter was passed by reference.

Compiling and Linking

1. If the Pascal code is structured as a program, you will need to re-structure it as a module
that exports the desired entry points. Store this code in a file separate from the original
copy. In the above example, this is the module named pmod1. (Notice that the semicolon
following module's the end statement has been changed to a period to allow separate
compilation.)

module pmod1;

export
procedure entpt(var formal_param integer);

implement
procedure entpt(var formal_param integer);

begin
formal_param formal_param * 2'

end;

end.

NOTE

You should have, at this point, thoroughly debugged the Pascal module
by calling it from a Pascal program (as in the example Pascal program
above). The reason for this approach is that even though BASIC at
tempts to trap errors, it cannot trap them all.

2. While in the HP-UX shell, compile the Pascal binary and link it to any libraries required
to resolve the external references. A shell script is provided for this purpose. When you
use the script, specify the name of the file in which you want the binary to be stored. For
instance, if the binary is in a file named pmod1. p, then the script call would be:

$ /usr/bin/makebin_p pmod1 I Return I

Pascal Binaries 13-3

3. Enter the Technical BASIC system, and type in and run a BASIC program that loads and
calls the binary. Make sure that the parameters passed to the binary match those expected
by the binary-in both number and in type of each parameter. (See the subsequent table
for a complete list of correspondence between BASIC and Pascal parameters.)

Here is an example BASIC program that calls the preceding binary:

100 INTEGER PassParam.echo
110 PassParam=7
120

Declare simple numeric types.

130 DISP " Before binary called. "
140 DISP "PassParam = ";PassParam
150 DISP
160
170 LOADBIN "pmod1"
180 echo=O
190 CALLBIN "brt_pascalinit" (echo) ! Initialization routine.
200
210 CALLBIN "pmodLentpt" (PassParam)
220
230 DISP " After binary called. "
240 DISP "PassParam = ";PassParam
250
260 CALLBIN "brt_pascalwrap"
270 !
280 SCRATCHBIN "pmod1"
290 END

The LOADBIN statement (line 170) links the binary to BASIC. This example assumes that
the binary is the file named bini in the current working directory. (If it is not in a file in
that directory, then you would need to specify a path name.)

After executing LOADBIN and before calling a Pascal binary, you must execute the following
statement (line 190):

CALLBIN "brt_pascalinit" (echo)

The pass parameter echo must be declared to be a BASIC INTEGER, and it must have a
value of O.

The CALLBIN statement (line 210) branches to the specified entry point in the binary. In
this case, the entry point is named pmod1_entpt; the pmod1 portion matches the module
name; the entpt portion is the procedure (entry point) name; the underscore character (J
separates the two portions.

13-4 Pascal Binaries

After the binary has finished execution, it returns control to the BASIC program. In
this example, the BASIC program displays the modified variable PassParam is passed by
reference, which allows the binary to modify the variable's contents. Passing parameters
is further described in subsequent sections.

After finishing all calls to a Pascal binary, you should execute a call to the following routine
(line 260):

CALLBIN "brt_pascalwrap"

NOTE

Calls to brt_pascalwrap will occasionally fail if a previous call to a Pascal
binary failed.

Once you no longer need the binary, you can unlink it from BASIC with the SCRATCHBIN statement
(line 280). Note that the file is still in the HP-UX file system; however, it is not linked to Technical
BASIC any longer, and is therefore inaccessible from BASIC.

Summary of Parameter-Type Matching
Here is a list of all the pass parameter types that you can send to a Pascal binary, along with
the corresponding Pascal formal parameter types.

Table 13-1. Matching Parameters in BASIC and Pascal Binaries

BASIC Data Type Pascal Data Type

Simple INTEGER integer

INTEGER array packed array of integer

Simple SHORT real

SHORT array packed array of real

Simple REAL longreal

REAL array packed array of longreal

Simple string packed array of char

String array packed array of char

Note that arrays must always be passed by reference.

Pascal Binaries 13-5

Restrictions
You can use almost all the features of a language in a binary program. However, there are a
few things that you cannot do with Pascal binaries.

Maximum Number of Binaries
At anyone time, there can be only 1 Pascal binary loaded at a time. Note, however, that
an individual binary may contain several entry points-Pascal procedures-as long as they are
placed in one Pascal module.

NOTE

BASIC cannot check to see if there is a Fortran binary currently loaded;
therefore, no error will be reported if you try to load a second Fortran
binary. Always use SCRATCHBIN to unload the current Fortran binary
before loading another Fortran binary.

File 1/0 Restrictions
Binary programs can perform I/O operations on files, with only one restriction: if the binary is
to access a file of text/data (HP-UX "ASCII"), then the binary must open the file, access the
information, and close the file when BASIC is not accessing the file. For instance, if a BASIC
program has a particular text/data file currently open, then no binary should access that file.
After BASIC has closed it, the binary may open it, perform I/O operations on it, and then close
it. (The converse situation has the same restriction.)

Note, however, that there is no additional restriction on the number of files that BASIC or Pascal
may have open at one time. For instance, BASIC can still have up to 10 files of type text/data
open simultaneously, while Pascal can have as many as 10 files open at one time.

Examples of Pascal file I/O are given in the last section of this chapter.

HP-UX Environment May Not Be Accessible
HP-UX environment variables, such as TERM and PATH, may not be accessible to binaries. System
calls, such as ioctl, should be used with caution.

13-6 Pascal Binaries

Standard 1/0 Streams Are Not Accessible
Binaries should not perform operations on the "standard I/O streams"-namely, displaying on
the screen (output in Pascal) or getting characters from the keyboard (input and keyboard in
Pascal). For example, there is no guarantee that the Pascal standard procedure wri teln (to
output) will work in all binaries, although you may get it to work in some instances.

Error Trapping in Binaries
Technical BASIC usually recovers gracefully from errors encountered while using binaries. How
ever, there are some errors that BASIC cannot handle, and thus may even cause the HP-UX
system to log you out. Here are some suggestions on how to avoid this type of situation.

1. The best approach to avoiding errors when using binaries is to thoroughly test the binary
(with a stand-alone program) before calling it from BASIC.

2. When you are ready to actually call it from BASIC, make sure that the you match pass
parameters correctly: same number of parameters, correct type-matching, and in the
right order. (Later sections provide additional examples of passing parameters to Pascal
binaries.) Also be sure that the binary stays withing the bounds of data structures and
arrays, expecially when the binary uses pointers.

3. If you do get an error while loading or executing a binary, you should fix the problem in
the binary first. Then when back in BASIC, you should use SCRATCHBIN to unload the old
copy before using LOADBIN to load the latest copy. This action must be taken, because
LOADBIN will not load a binary if a binary of the same name is currently loaded.

Pascal Binaries 13-7

A Closer Look at Compiling and Linking
The example binary used in this section is the same one used earlier; it doubles the value of an
integer that is passed to it.

module pmod1;

export
procedure entpt(var formal_param integer);

implement
procedure entpt(var formal_param integer);

begin
formal_param formal_param * 2;

end;

end.

While in the HP-UX shell, compile the Pascal binary and link it to BASIC. Use the makebin_p
shell script for this purpose; the default location of this script is in the /usr /bin directory.
Assuming the Pascal program is called pmod1 . p, you could type:

$ /usr/bin/makebin_p pmod1 [Returnl

13-8 Pascal Binaries

Here are the contents of the makebin_p shell script (for Series 500 systems):

pc -c $1.p
Id -rd -0 $1 $1.0 /usr/lib/bprtO.o -lheap2 -lpc -lb

pc

-c

$1

Id

invokes the Pascal compiler.

suppresses the otherwise automatic linking step; that is, the Pascal compiler
is told to generate an unlinked, relocatable object file (suffix. o)-the file's
name is specified in the next parameter.

specifies that the parameter passed to the script (in this case, pmod1) is to be
used here. Thus, the file named pmod1 . p is to be compiled. Consequently,
the name pmod1 .0 is given to the relocatable object file.

is the "link editor" command.

-rd options that indicate (respectively):

the specified object file (pmod1. 0) is to be loaded as relocatable (re-linkable)
code;

the definition of "COMMON" storage is to be forced.

-0 $1 specifies that the object file is to be named pmod1, rather than given the
default name a. out.

$1.0 specifies which file is to be loaded (pmod1. 0 in this case).

/usr/lib/bprtO.o is a special version of the crt. 0 library that is to be searched when linking
Pascal binaries to BASIC.

-lheap2 indicates that the /lib/libheap2. a library is to be searched.

-lpc indicates that the /lib/libpc.a library is to be searched.

-lb indicates that the /lib/libb. a library is to be searched.

If there are still unresolved references! after executing this script, you will have to specify
additional libraries:

• if the reference is to a system library (llib/libxxx. a) J then specify it in an Id
option, such as -lpc;

• if the reference is to another library, such as the /usr/lib/bprtO. 0 library above, then
you will need to specify it by name.

Now you can enter the Technical BASIC system, and run a BASIC program that loads and calls
the binary.

1 If the LOADBIN or CALLBIN statements report an error. there are probably unresolved references in the binary. You can use the

HP·UX nm command to find them.

Pascal Binaries 13-9

Example Pascal Binaries
This section contains examples and corresponding explanations of the following tasks:

• Passing parameters between BASIC and Pascal binaries.

• Simple numerics.

• Numeric arrays.

• Simple strings.

• String arrays.

• Using text/data type files for data interchange.

If you have trouble understanding the mechanisms of "passing by reference" or "passing by
value", then you may want to study examples of passing parameters in the "Subprograms"
section of the "User-Defined Functions and Subprograms" chapter. Additional details about text
files are provided in the "Data Storage and Retrieval" chapter section called "Using text/data
Files."

Passing Simple Numeric Parameters
There are three BASIC numeric data types: INTEGER, SHORT, and REAL. All of these types can be
passed to Pascal binaries. Here is the required correspondence between BASIC pass parameters
and Pascal formal parameters:

Table 13-2. Matching Simple Numeric Parameters

BASIC Corresponding Pascal
Pass Parameter Formal Parameter

INTEGER integer

SHORT real

REAL longreal

Here are general rules for passing these types of parameters (examples are given subsequently):

• If a parameter is to be passed by reference, then it must be placed in a BASIC variable.
The Pascal binary must declare the corresponding parameter as a var parameter in the
Pascal procedure heading.

• If a parameter is to be passed by value, the BASIC parameter must be an expression (such
as a numeric literal, a variable enclosed in parentheses, or a combination of numeric items
containing numeric operators). The corresponding Pascal formal parameter must not have
a var declaration.

13-10 Pascal Binaries

This BASIC program passes three parameters to the subsequent Pascal binary.

100 INTEGER IntVar.echo
110 IntVar=1000000
120
130 REAL RealVar !
140 RealVar=8e+307
150

Declare simple numeric types.

Redundant. since REAL is default
(when type is not declared) .

160 DISP " Before binary called. "
170 DISP "------------------------------"
180 DISP "Integer variable
190 DISP "Real variable
200 DISP
210
220 LOADBIN "pmodns"
230 echo=O

";IntVar
" ; RealVar

240 CALLBIN "brt_pascalinit" (echo) ! Initialization routine.
250
260 CALLBIN "pmodns_ns" (IntVar.1.5.RealVar)
270
280 DISP " After binary called. "
290 DISP "------------------------------"
300 DISP "Integer variable
310 DISP "Real variable
320
330 CALLBIN "brt_pascalwrap"
340 !
350 SCRATCHBIN "pmodns"
360 END

Here is the Pascal binary.

module pmodns;

export

procedure ns(var intv
long1

var long2

implement

procedure ns(var intv
long1

var long2

";IntVar
" ; RealVar

integer;
longreal;
longreal);

integer;
longreal;
longreal);

begin
intv
long2

end;

intv * 2;
long1 * long2;

end.

Pascal Binaries 13-11

Here are the results of running the program:

Before binary called.

Integer variable
Real variable

1000000
8e+307

After binary called.

Integer variable
Real variable

2000000
1.2e+308

The 1st BASIC pass parameter, IntVar, is passed by reference. The corresponding Pascal
formal parameter is a var parameter of type integer. Passing a variable by reference allows
the binary to modify that variable's contents, thereby allowing information to be "passed back"
to BASIC.

The 2nd BASIC pass parameter, 1.5, is passed by value since it is an expression. Note that the
corresponding Pascal formal parameter has no var declaration in the procedure heading.

The 3rd parameter is passed by reference, since it is a variable. The corresponding Pascal formal
parameter is a var parameter of type longreal.

13-12 Pascal Binaries

Passing Numeric Array Parameters
There are three BASIC numeric array types: INTEGER, SHORT, and REAL. All of these types
can be passed to Pascal binaries. Here is the required correspondence between BASIC pass
parameters and Pascal formal parameters:

Table 13-3. Matching Numeric Array Parameters

BASIC Corresponding Pascal
Pass Parameter Formal Parameter

INTEGER array Array of integer

SHORT array Array of real

REAL array Array of longreal

Note that arrays are always passed by reference, using BASIC array variables. The Pascal
binary must declare the corresponding parameter as a var parameter in the Pascal procedure
heading.

Pascal Binaries 13-13

The following example passes 2 arrays to a Pascal binary.

100 DISP" Before calling binary. "
110 DISP "-----------------------------"
120 OPTION BASE 1
130 REAL RealArray(4) ! 4 elements
135
140 FOR 1=1 TO 4
150 ReaIArray(I)=5*I
160 DISP "RealArray(";I;") "\RealArray(I)
170 NEXT I
180 DISP
190 INTEGER IntArray(2.3) 2 by 3 array.
200 FOR RowN=l TO 2
210 FOR CoIN=l TO 3
220 IntArray(RowN.CoIN)=10*RowN+CoIN
230 DISP "IntArray(";RowN;".";ColN;") ";IntArray(RowN.ColN)
240 NEXT CoIN
250 NEXT RowN
260 DISP
270 LOADBIN "pmodan"
280 echo=O
290 CALLBIN "brt_pascalinit" (echo) ! Initialization routine.
300
310 CALLBIN "pmodan_arrayn" (RealArray() .IntArray()) ! Always by refe~ence.
320
330 DISP " After calling binary. "
340 DISP "-----------------------------"
350 FOR 1=1 TO 4
360 DISP "RealArray(";I;") = ";RealArray(I)
370 NEXT I
380 DISP
390 FOR RowN=l TO 2
400 FOR CoIN=l TO 3
410 DISP "IntArray(";RowN;".";CoIN;")
420 NEXT CoIN
430 NEXT RowN
440
450 CALLBIN "brt_pascalwrap"
460 SCRATCHBIN "pmodan"
470 END

13-14 Pascal Binaries

";IntArray(RowN.CoIN)

Here is an example Pascal binary that would work with the preceding BASIC CALLBIN statement.

module pmodan;

export

type
lrealarr_type
intarr_type

packed array [1 .. 4] of longreal;
packed array [1 .. 2, 1 .. 3] of integer;

procedure arrayn(var lrealarr
var intarr

implement

procedure arrayn(var lrealarr
var intarr

var
element,
row, col

begin

integer;

for element := 1 to 4 do

lrealarr_type;
intarr_type);

lrealarr_type;
intarr_type);

lrealarr[element] lrealarr[element] + 100;

end.

for row := 1 to 2 do
for col := 1 to 3 do

intarr[row,col] := intarr[row,col] + 100*row;
end;

Pascal Binaries 13-15

Here are the results of running the BASIC program:

Before calling binary.

RealArray(1 5
RealArray(2 10
RealArray(3 15
RealArray(4 20

IntArray(1 1 11
IntArray(1 2 12
IntArray(1 3 13
IntArray(2 1 21
IntArray(2 2 22
IntArray(2 3 23

After calling binary.

RealArray(1 105
RealArray(2 110
RealArray(3 115
RealArray(4 120

IntArray(1 1 111
IntArray(1 2 112
IntArray(1 3 113
IntArray(2 1 221
IntArray(2 2 222
IntArray(2 3 223

The binary assumes that the calling BASIC program will send a real array with 4 elements and
a 2 X 3 integer array. A more general method would be to pass arrays of variable sizes to the
binary. In such cases, the calling program could communicate the size of the array; here are
two possible methods:

• By passing parameter(s) that indicate the number of elements (and dimensions).

• By assigning a unique "flag" value to an array element to indicate that it is the last element
in the array.

13-16 Pascal Binaries

Passing Simple String Parameters
Here is the required correspondence between simple BASIC string pass parameters and Pascal
formal parameters:

Table 13-4. Matching Simple String Parameters

BASIC Corresponding Pascal
Pass Parameter Formal Parameter

Simple string Packed array of char

Here are general rules for passing these types of parameters (examples are given subsequently):

• If a parameter is to be passed by reference, then it must be placed in a BASIC variable.
The Pascal binary must declare the corresponding parameter as a var parameter in the
Pascal procedure heading. Note that even though a Pascal binary may change a BASIC
string variable's contents, it cannot change the BASIC string variable's length. (This topic
is discussed in the section called "BASIC String Length Headers".)

• If a parameter is to be passed by value, the BASIC parameter must be an expression (such
as a quoted string literal, a variable enclosed in parentheses, or a combination of string
items containing the string concatenation operator &). The corresponding Pascal formal
parameter must not have a var declaration.

Pascal Binaries 13-17

The following BASIC program and Pascal binary illustrate passing sirriple string parameters.

100 DISP " Before binary called."
110 DISP "----------------------------"
120 DIM StrVar$[18]! Simple string of 18 chars (default length).
130 StrVar$="BASIC string value"
140 DISP "StrVar$ = ";StrVar$
150 DISP
160 LOADBIN "pmodss"
170 echo=O
180 CALLBIN "brt_pascalinit" (echo) ! Initialization routine.
190
200 CALLBIN "pmodss_simples" (StrVar$,StrVar$&" ")
210 DISP " After binary called."
220 DISP "----------------------------"
230 DISP "StrVar$ = ";StrVar$
240 DISP
250 CALLBIN "brt_pascalwrap"
260 SCRATCHBIN "pmodss"
270 END

Here is the corresponding Pascal binary.

module pmodss;

export

type
simple_str_type = packed array [1 .. 18] of char;

procedure simples(var simple_str1
simple_str2

implement

procedure simples(var simple_str1
simple_str2

simple_str_type;
simple_str_type);

simple_str_type;
simple_str_type);

begin
simple_str1
simple_str2

end;

'new characters ';
'new characters too';

end.

13-18 Pascal Binaries

Here are the results of running the program.

Before binary called.

StrVar$ = BASIC string value

After binary called.

StrVar$ = new characters

The 1st parameter was passed by reference, and the 2nd was passed by value (the concatenation
operation formed a string expression, which is always passed by value). That is why the Pascal
assignment to the first variable, simple_strl, changed the value of the BASIC variable called
StrVar$; but the assignment to simple_str2 didn't.

BASIC String Length Headers
BASIC string variables have a length header that indicates how many characters the variable
currently contains. However, this header is not accessible to Pascal binaries. (Pascal string
variables have their own header, but it is not set to match the BASIC header.) Thus, Pascal
binaries cannot modify the BASIC string variable's length.

For instance, suppose that you pass a string variable (by reference) to a Pascal binary. The
binary then proceeds to change the length of the string; however, it cannot modify the BASIC
string variable's length header. Thus upon returning to BASIC, there is no indication that the
length of the string variable is any different than when it was passed to the binary.

There are two steps in the general work-around for this type of situation:

1. Before passing the variable (by reference), pad the string with blank characters to the
maximum length of string that the binary can return. For instance, the following statement
pads the BASIC string variable with trailing blanks and sets its length to the maximum
(dimensioned) length.

ByRef$[LEN(ByRef$)+l]=" "

Note that this particular statement will cause an error if the string length is already equal
to the maximum (dimensioned) length.

Pascal Binaries 13-19

2. After returning to the BASIC program, determine the string variable's new length.

a. If a string length parameter is passed (by reference) to the binary, then the binary
can modify the string and corresponding length parameter accordingly and then pass
it back to BASIC. Here is an example of this technique.

100 String$="123456"
110 Length=LEN(String$)
120 CALLBIN strmod(String$.Length)

procedure strmod(var strvar
var strlength

string_type;
integer) ;

begin
strlength
strvar

end;

strlen(strvar) / 2; (* Cut length in half. *)
str(strvar .1. strlength); (* Use chars 1 .. strlength. *)

130 String$=String$[l.Length]

b. If the binary has a special character to mark the end of the string, such as CHR$(O),
then BASIC can search the string and set the string length to 1 less than the position
of the null. Here is an example of this technique.

NullPos=POS(ByRef$.CHR$(O))
ByRef$=ByRef$[l.NullPos-l]

13-20 Pascal Binaries

Passing String Arrays
Here is the required correspondence between BASIC string-array pass parameters and Pascal
formal parameters:

Table 13-5. Matching String Array Parameters

BASIC Corresponding Pascal
Pass Parameter Formal Parameter

String array Packed array of char

Note that arrays are always passed by reference, using BASIC array variables. The Pascal
binary must declare the corresponding parameter as a var parameter in the Pascal procedure
heading.

Note that even though a Pascal binary may change a BASIC string variable's contents, it cannot
change the BASIC string variable's length. (This topic is discussed in the preceding section called
"BASIC String Length Headers".)

Pascal Binaries 13-21

Here is an example of passing a string array to a Pascal binary.

100 DIM StrArr$(4) [5] ! 5 elements, 5 chars each.
110 StrArr$(O)="What "
120 StrArr$(l)="is
130 StrArr$(2)="your "
140 StrArr$(3)="name II

150 StrArr$(4)=I?"
160 DISP " Before calling binary. II

170 DISP "-------------------------"
180 FOR 1=0 TO 4
190 DISP StrArr$(I);"/";
200 NEXT I
210 DISP (Q DISP
220
230 LOADBIN "pmodas"
240 echo=O
250 CALLBIN "brt_pascalinit" (echo) ! Initialize.
260
270 CALLBIN "pmodas_arrays" (StrArr$ 0)
280
290 DISP II After calling binary."
300 DISP "-------------------------"
310 FOR 1=0 TO 4
320 DISP StrArr$(I) ;"/";
330 NEXT I
340 DISP (Q DISP
350
360 CALLBIN "brt_pascalwrap"
370 SCRATCHIN "pmodas"
380 END

13-22 Pascal Binaries

Here is an example of a Pascal binary that would work with the preceding CALLBIN statement.

module pmodas;

export

type
str_array_type = packed array [1 .. 5,1 .. 5] of char;

procedure arrays(var pass_array : str_array_type);

implement

procedure arrays(var pass_array: str_array_type);
var temp_array str_array_type;

end.

row,col : integer;

begin
(* Make backup copy of words to be changed. *)
for row:=1 to 4 do

temp_array [row] := pass_array [row] ;

(* Now rearrange
pass_array [1]
pass_array [2]
pass_array [3]
pass_array [4]

end;

words. *)
temp_array [3] ;
temp_array [4] ;
temp_array [2] ;
temp_array [1] ;

Here are the results of running the program.

Before calling binary.

What lis /your /name /?/

After calling binary.

your /name lis /What/?/

Note once again that the Pascal binary modifies some of the string variables' lengths; however,
the BASIC program variables' string lengths are not modified. (See the preceding section for a
work-around.)

Pascal Binaries 13-23

Using Files with Pascal Binaries
BASIC programs and Pascal binaries can also communicate via text files. The main restriction is
that BASIC and Pascal use the file independently. That is, if BASIC opens and accesses a file,
then it should close the file before the binary attempts to open the file. The converse situation
has the same restrictions. Note, however, that there is no additional restriction on the number
of files that BASIC or the Pascal binary may have open at anyone time. For instance, BASIC
can still have up to 10 files of type text/data open simultaneously.

Here is an example of a BASIC program opening a text file, putting some words into it, then
closing it before calling a binary. The binary then opens the same file, modifies its contents, and
returns control to BASIC.

100 DIM StrArr$(4) [5]
110 StrArr$(O)="What "
120 StrArr$(l)="is
130 StrArr$(2)="your "
140 StrArr$(3)="name "
150 StrArr$(4)="?
160
170 ASSIGN 11 TO "text_file"
180 FOR 1=0 TO 4 !
190 OUTPUT 11 ; StrArr$(I)
200 NEXT I

String array (5 elements. 5 chars each).
Pad strings to max. length.

Open text file (BASIC will
create it. if non-existent).

Write string items into file.

210 CLEAR ! Clear screen.
220 DISP " Before calling binary."
230 DISP "-------------------------"
240 ASSIGN 11 TO "text_file" ! Reset file pOinter (for read).
250 FOR 1=0 TO 4
260 ENTER 11 ; StrArr$(I)
270 DISP StrArr$(I) ;"/";
280 NEXT I
290 DISP @ DISP
300 ASSIGN 11 TO "*"
310
320 LOADBIN "pmodf"
330 echo=O

Read string items from file.

Close file.

340 CALLBIN "brt_pascalinit" (echo) Initialization routine.
350 !

13-24 Pascal Binaries

360 FileName$=ltext_file"
370 CALLBIN "pmodf_tf" (FileName$)
380
390 DISP II After calling binary. II

400 DISP "-------------------------"
410 ASSIGN 11 TO "text_file" ! Reset file pointer.
420 FOR I=O TO 4
430 ENTER 11 ; StrArr$(I)
440 DISP StrArr$(I);I/";
450 NEXT I

Read string items from file.

460 ASSIGN 11 TO "*" !
470 DISP (Q DISP
480
490 CALLBIN "brt_pascalwrap"
500 SCRATCHBIN "pmodf"
510 END

Close file.

Here is an example Pascal binary that would work with the preceding BASIC program.

module pmodf;

export

type
pathname_type = packed array [1 .. 18] of char;

procedure tf(var file_name: pathname_type);

implement

procedure tf(var file_name pathname_type);
var file var text;

from_file,
to_file
row

begin

packed array [1 .. 5,1 .. 5] of char;
integer;

(* Open file for reading. *)
reset (file_var,file_name) ;

(* Read lines of file. *)
for row:=1 to 5 do

readln(file_var,from_file[row]);

Pascal Binaries 13-25

end.

close(file_var) ;

(* Now rearrange words. *)
to_file[1] from_file [3] ;
to_file[2] from_file [4] ;
to_file[3] from_file [2] ;
to_file[4] from_file [1] ;
to_file[5] from_file [5] ;

(* Then rewrite file. *)
rewrite(file_var,file_name) ;
for row:=1 to 5 do

writeln(file_var,to_file[rowJ);

close (file_var) ;

end;

Here are the results of the BASIC program calling the Pascal binary.

Before calling binary.

What lis Iyour Iname /? I

After calling binary.

your Iname lis IWhat I? I

13-26 Pascal Binaries

FORTRAN Binaries 14
Introduction
Generally, you will be using the Technical BASIC system to execute programs written in the
Technical BASIC language. However, you can also write programs in the FORTRAN language
and then call (execute) them from Technical BASIC. In this manual, such programs are termed
binary programs. The term "binary" was probably coined because the programs written in
another language and compiled into executable object code cannot be easily read by humans
from the BASIC system-they look like just a bunch of binary patterns.

Binary programs are useful in the following situations:

• An application is already written in FORTRAN, and you don't want or have time to
translate it into Technical BASIC code .

• FORTRAN supports a feature that is not available in Technical BASIC, or the FORTRAN
version runs faster that the BASIC version.

Chapter Contents
Tasks/Topics Page

Overview 14-2

Structure of FORTRAN programs and binaries 14-2

Compiling and linking FORTRAN binaries 14-3

Summary of parameter type matching 14·5

Restrictions 14-6

A closer look at compiling and linking 14-8

Examples of passing parameters 14-10

Examples of file I/O 14-22

FORTRAN Binaries 14-1

Overview
This section briefly covers the following topics. It is intended to quickly give you a global view
of using FORTRAN binaries. Specific details of each topic are presented in the subsequent
sections.

• Structure of FORTRAN programs and binaries.

• Procedure for creating FORTRAN binaries.

• Parameter-type matching.

• Restrictions on FORTRAN binaries.

Structure of FORTRAN Programs and Binaries
Here is a FORTRAN program that contains (and uses) a SUBROUTINE. The unshaded portion (the
subroutine) can be used up as a binary-that is, it can be separately compiled and linked to
BASIC, and then called as a separate entry point by a BASIC program.

PROGRAM callbin1

INTEGER*4 pass_param

pass_param=7
PRINT *."Before calling 'entry_pt':"
PRINT *."pass_param=".pass_param

PRINT *."After calling 'entry_pt':"
PRINT *. "pass_param=" . pass_param

END

SUBROUTINE entry_pt(formal_param)

INTEGER*4 formal_param

RETURN
END

14-2 FORTRAN Binaries

Here are the results of running the program:

Before calling 'entry_pt':
pass_param=7
After calling 'entry_pt':
pass_param=i4

Note that the FORTRAN subroutine named entry _pt was able to modify the variable
pass_param's contents, since the parameter was passed by reference. (Note that all param
eters must be passed by reference to FORTRAN binaries, since FORTRAN does not support
pass by value.)

Compiling and Linking

1. If the FORTRAN code is structured as a program, you will need to re-structure it as
subroutine(s}-one for each entry point. Store this code in a file separate from the
original copy. In the above example, this is the SUBROUTINE named entry _pt.

SUBROUTINE entry_pt(formal_param)

INTEGER*4 formal_param

RETURN
END

NOTE

You should have, at this point, thoroughly debugged the FORTRAN
subroutine by calling it from a FORTRAN program (as in the example
FORTRAN program above). The reason for this approach is that even
though BASIC attempts to trap errors, it cannot trap them all.

2. While in the HP-UX shell, compile the FORTRAN binary and link it to any libraries that
are required to resolve the external references. A shell script is provided for this purpose.
When you use the script, specify the name of the file in which you want the binary to be
stored. For instance, if the binary is in a file named bini. f, then the script call would be:

$ /usr/bin/makebin_f bini I Return I

FORTRAN Binaries 14-3

3. Enter the Technical BASIC system, and type in and run a BASIC program that loads and
calls the binary. Make sure that the parameters passed to the binary match those expected
by the binary-in both number and in type of each parameter. (See the subsequent table
for a complete list of correspondence between BASIC and FORTRAN parameters.)

Here is an example BASIC program that calls the preceding binary:

100 INTEGER PassParam
110 PassPararn=7
120

Declare simple numeric type.

130 DISP " Before binary called. "
140 DISP "PassPararn = ";PassParam
150 DISP
160
170 LOADBIN
180
190 CALLBIN
200

"bini"

Initialization routine.

210 CALLBIN "entry_pt" (PassParam)
220 !
230 DISP " After binary called. "
240 DISP "PassPararn = ";PassParam
250
260 SCRATCHBIN "bini"
270 END

The first part of the program (lines 100 to 150) declare an INTEGER type variable, assign
it a value of 7, and then display its contents.

The LOADBIN statement (line 170) links the binary to BASIC. This example assumes that
the binary is the file named bini in the current working directory. (If it is not in a file in
that directory, then you would need to specify a path name.)

After executing LOADBIN and before calling a FORTRAN binary, you must execute the
following statement (line 190):

CALLBIN "f_init"

The CALLBIN statement (line 210) branches to the specified entry point in the binary. In
this case, the entry point is named entry _pt.

After the binary has finished execution, it returns control to the BASIC program. In this
example, the BASIC program displays the modified value of the variable PassPararn. Note
that the BASIC binary to modify the variable's contents. Passing parameters is further
described in subsequent sections.

14-4 FORTRAN Binaries

Once you no longer need the binary, you can unlink it from BASIC with the SCRATCHBIN

statement (line 260). Note that the file is still in the HP-UX file system; however, it is not
linked to Technical BASIC, and is therefore inaccessible from BASIC.

Summary of Parameter-Type Matching
Here is a list of all the pass parameter types that you can send to a FORTRAN binary, along
with the corresponding FORTRAN formal parameter types.

Table 14-1. Matching BASIC Pass Parameters with FORTRAN Formal Parameters

BASIC
Data Type FORTRAN Data Type

Simple INTEGER INTEGER*4

INTEGER array Array of INTEGER*4

Simple SHORT REAL

SHORT array Array of REAL

Simple REAL DOUBLE PRECISION

REAL array Array of DOUBLE PRECISION

Simple string Series 200/300:
CHARACTER ·string_length

Series 500:
INTEGER vector (I-dimensional array)

String array Series 200/300:
Array of CHARACTER *string_Iength

Series 500:
INTEGER array

Note that all parameters are passed by reference with FORTRAN, since the language does not
support passing parameters by value.

FORTRAN Binaries 14-5

Restrictions
You can use almost all the features of a language in a binary program. However, there are a
few things that you cannot do with FORTRAN binaries.

Maximum Number of Binaries
At anyone time, there can be only 1 FORTRAN binary loaded at a time. Note, however, that
an individual binary may contain several entry points-FORTRAN subroutines-as long as they
are placed in one object file.

NOTE

BASIC cannot check to see if there is a FORTRAN binary currently
loaded; therefore, no error will be reported if you try to load a sec
ond FORTRAN binary. Always use SCRATCHBIN to unload the current
FORTRAN binary before loading another FORTRAN binary.

File 1/0 Restrictions
Binary programs can perform I/O operations on files, with only one restriction: if the binary is
to access a file of text/data (HP-UX "ASCII"), then the binary must open the file, access the
information, and close the file while BASIC is not accessing the file. For instance, if a BASIC
program has a particular text/data file currently open, then no binary should access that file.
After BASIC has closed it, the binary may open it, perform I/O operations on it, and then close
it. (The converse situation has the same restriction.)

Note, however, that there is no additional restriction on the number of files that BASIC or
FORTRAN may have open at one time. For instance, BASIC can still have up to 10 files of type
text/data open simultaneously. FORTRAN binaries can have as many files open as allowed by
the HP-UX system.

Examples of FORTRAN file I/O are given in the last section of this chapter.

14-6 FORTRAN Binaries

HP-UX Environment May Not Be Accessible
HP-UX environment variables, such as TERM and PATH, may not be accessible. System calls, such
as ioctl, should be used with caution.

Standard 1/0 Streams Are Not Accessible
Binaries should not perform operations on the "standard I/O streams"-namely, displaying on
the screen (unit 6 in FORTRAN) or getting characters from the keyboard (unit 5 in FORTRAN).
For example, there is no guarantee that the FORTRAN standard subroutine PRINT (to unit 6)

will work in all binaries, although you may get it to work in some instances.

Error Trapping in Binaries
Technical BASIC usually recovers gracefully from errors encountered while using binaries. How
ever, there are some errors that BASIC cannot handle, and thus may even cause the HP-UX
system to log you out. Here are some suggestions on how to avoid this type of situation.

1. The best approach to avoiding errors when using binaries is to thoroughly test the binary
(with a stand-alone program) before calling it from BASIC.

2. When you are ready to actually call it from BASIC, make sure that the you match pass
parameters correctly: same number of parameters, correct type-matching, and in the right
order. (Later sections provide additional examples of passing parameters to FORTRAN
binaries.) You also need to be careful to stay within the bounds of arrays while in the binary.
Also note that BASIC uses row-major order in arrays, while FORTRAN uses column

major order. This results in the array subscripts being reversed when going from BASIC
to FORTRAN, and vice versa. (See the discussions of passing arrays in the "Example
FORTRAN Binaries" section.)

3. If you do get an error while loading or executing a binary, you should fix the problem in
the binary first. Then when back in BASIC, you should use SCRATCHBIN to unload the old
copy before using LOADBIN to load the latest copy. This action must be taken, because
LOADBIN will not load a binary if a binary of the same name is currently loaded.

FORTRAN Binaries 14-7

A Closer Look at Compiling and Linking
The example FORTRAN binary used in this section is the same one used earlier; it doubles the
value of an integer that is passed to it.

SUBROUTINE entry_pt(formal_param)

INTEGER*4 formal_param

formal_param = formal_param * 2

RETURN
END

While in the HP-UX shell, compile the FORTRAN binary and link it to BASIC. Use the makebin_f
shell script for this purpose; the default location of this script is in the lusr Ibin directory.
Assuming the FORTRAN program is called bini. f, you could type:

$ lusr/bin/makebin_f bin1 1 Return I

14-8 FORTRAN Binaries

Here are the contents of the makebin_f shell script (for Series 500 systems):

fc

-c

for filef
do

fc -c
ld -rd

done

$filef.f
-0 $filef $filef.o /usr/lib/bfrtO.o -1177 -lF77 -1m -lc

invokes the FORTRAN compiler.

suppresses the otherwise automatic linking step; that is, the FORTRAN
compiler is told to generate an unlinked, relocatable object file (suffix .0)

the file's name is specifi-ed in the next parameter.

$filef.f specifies that the parameter passed to the script (in this case, bini) is to be
used here. Thus, the file named bini. f is to be compiled. Consequently,
the name bini. 0 is given to the relocatable object file.

ld

-rd

is the "link editor" command.

options that indicate (respectively):

the specified object file (bini. 0) is to be loaded as relocatable (re-linkable)
code;

the definition of "COMMON" storage is to be forced.

-0 $filef. 0 specifies which file is to be loaded (bini. 0 in this case).

/usr/lib/bfrtO.o a special version of the crt. 0 library that must be searched when linking
FORTRAN binaries to BASIC.

-1I77 indicates that the /lib/libI77. a library is to be searched.

-lF77 indicates that the /lib/libF77. a library is to be searched.

-1m indicates that the /lib/libm.a library is to be searched.

-lc indicates that the /lib/libc. a library is to be searched.

If there are still unresolved references! after executing this script, you will have to specify
additional libraries:

• if the reference is to a system library (llib/libxxx.a), then specify it in an ld option,
such as -1m;

• if the reference is to another library, such as the /usr/lib/bfrtO. 0 library above, then
you will need to specify it by name.

1 If the LOADBIN or CALLBIN statements report an error, there are probably unresolved references in the binary. You can use the

HP-UX nm command to find them.

FORTRAN Binaries 14-9

Examples of FORTRAN Binaries
This section contains examples and explanations of the following tasks:

• Passing parameters between BASIC and FORTRAN binaries.

• Simple numerics

• Numeric arrays

• Simple strings

• String arrays

• Using text/data type files for data interchange between BASIC and FORTRAN binaries.

If you have trouble understanding the mechanism of "passing by reference", then you may want
to study further examples of passing parameters in the "Subprograms" section of the "User
Defined Functions and Subprograms" chapter. Additional details of using text/data files are
provided in the "Data Storage and Retrieval" chapter section called "Using text/data Files".

Passing Simple Numeric Parameters
There are three BASIC numeric data types: INTEGER, SHORT, and REAL. You can pass all of
these types to FORTRAN binaries. Here is the required correspondence between BASIC pass
parameters and FORTRAN formal parameters:

Table 14-2. Matching Simple Numeric Parameters

BASIC Corresponding
Pass Parameter FORTRAN

Formal Parameter

INTEGER INTEGER *4

SHORT REAL

REAL DOUBLE PRECISION

All BASIC parameters must be passed by reference to FORTRAN binaries. (FORTRAN binaries
do not support pass by value.)

14-10 FORTRAN Binaries

This BASIC program passes three parameters to the subsequent FORTRAN binary.

100 INTEGER IntVar
110 IntVar=1000000
120

Declare simple numeric types.

130 REAL RealVar !
140 RealVar=8e+307
150

Redundant, since REAL is default
(when type is not declared) .

160 DISP " Before binary called. "
170 DISP "------------------------------"
180 DISP "Integer variable
190 DISP "Real variable
200 DISP
210
220 LOADBIN "fsn"

";IntVar
= ";RealVar

230 CALLBIN "f_init"
240

Initialization routine.

250 CALLBIN "fsimplen" (IntVar,RealVar)
260
270 DISP " After binary called. "
280 DISP "------------------------------"
290 DISP "Integer variable
300 DISP "Real variable
310
320 SCRATCHBIN "fsn"
330 END

";IntVar
= ";RealVar

Here is the FORTRAN binary program.

SUBROUTINE fsimplen(Int,Real)

INTEGER*4 Int
DOUBLE PRECISION Real

Int=2*Int
Real=2*Real

RETURN
END

Here are the results of running the program:

Before binary called.

Integer variable
Real variable

1000000
8e+307

After binary called.

Integer variable
Real variable

2000000
1.6e+308

FORTRAN Binaries 14-11

Both BASIC pass parameters, IntVar and RealVar, are passed by reference. The corresponding
FORTRAN formal parameters are of type INTEGER*4 and DOUBLE PRECISION, respectively. Pass
ing a variable by reference allows the binary to modify that variable's contents, thereby allowing
information to be "passed back" to BASIC.

Passing Numeric Array Parameters
There are three BASIC numeric data types: INTEGER, SHORT, and REAL. You can pass all of
these types to FORTRAN binaries. Here is the required correspondence between BASIC pass
parameters and FORTRAN formal parameters:

Table 14-3. Matching Numeric Array Parameters

BASIC Corresponding
Pass Parameter FORTRAN

Formal Parameter

INTEGER array INTEGER *4 array

SHORT array REAL array

REAL array DOUBLE PRECISION array

All BASIC parameters must be passed by reference to FORTRAN binaries. (FORTRAN binaries
do not support pass by value.)

Here is an example that passes 2 arrays to a FORTRAN binary.

100 OPTION BASE 1
110 DISP " Before calling binary. "
120 DISP "-----------------------------"
130 REAL RealArray(4)
140 FOR 1=1 TO 4
150 RealArray(I)=I
160 DISP "RealArray(";I;") ";RealArray(I)
170 NEXT I
180 DISP
190 INTEGER IntArray(2,3)
200 FOR BASICrow=l TO 2
210 FOR BASICcol=l TO 3
220 IntArray(BASICrow, BASICcol) =10*BASICrow+BASICcol
230 DISP "IntArray(";BASICrow;",";BASICcol;") ".
240 DISP IntArray(BASICrow,BASICcol)

14-12 FORTRAN Binaries

250 NEXT BASICcol
260 NEXT BASICrow
270 DISP
280 LOADBIN "fan"
290 CALLBIN "f_init"
300

Initialization routine.

310 CALLBIN "farrayn" (RealArray() ,IntArray(»
320
330 DISP " After calling binary. "
340 DISP "-----------------------------"
350 FOR 1=1 TO 4
360 DISP "RealArray (" ; I; ") = "; RealArray (1)
370 NEXT I
380 DISP
390 FOR BASICrow=1 TO 2
400 FOR BASICcol=1 TO 3
410 DISP "IntArray(";BASICrow;",";BASICcol;")
420 DISP IntArray(BASICrow,BASICcol)
430 NEXT BASICcol
440 NEXT BASICrow
450
460 SCRATCHBIN "fan"
470 END

Always pass by ref.

".

Here is an example FORTRAN binary program that would work with the preceding BASIC
CALLBIN statement.

SUBROUTINE farrayn(RealArray,IntArray)

DOUBLE PRECISION RealArray(4)
INTEGER*4 IntArray(3,2)! Note reversal of subscripts!!
INTEGER BASICrow,BASICcol

DO 20 BASICrow=1,2
DO 10 BASICcol=1,3
IntArray(BASICcol,BASICrow)=IntArray(BASICcol,BASICrow)
+100*BASICrow

10 CONTINUE
20 CONTINUE

RETURN
END

FORTRAN Binaries 14-13

Here are the results of running the BASIC program:

Before calling binary.

RealArray(1 1
RealArray(2 2
RealArray(3 3
RealArray(4 4

IntArray(1 1 11
IntArray(1 2 12
IntArray(1 3 13
IntArray(2 1 21
IntArray(2 2 22
IntArray(2 3 23

After calling binary.

RealArray(1 1
RealArray(2 2
RealArray(3 3
RealArray(4 4

IntArray(1 1 111
IntArray(1 2 112
IntArray(1 3 113
IntArray(2 1 221
IntArray(2 2 222
IntArray(2 3 223

This example binary assumes that the calling BASIC program will send a REAL array with 4
elements and a 2 X 3 INTEGER array. A more general method would be to pass arrays of variable
sizes to the binary. In such cases, the calling program can communicate the size of the array to
the binary. Here are two possible methods:

• By passing parameter(s) that indicate the number of elements (and dimensions).

• By assigning a unique "flag" value to an array element to indicate that it is the last element
in the array.

14-14 FORTRAN Binaries

Passing Simple String Parameters
Here is the required correspondence between simple BASIC string pass parameters and FOR
TRAN formal parameters:

Table 14-4. Matching Simple String Parameters

BASIC Corresponding FORTRAN
Pass Parameter Formal Parameter

Simple string Series 200/300:
CHARACTER *string length

Series 500:
INTEGER vector 1

All BASIC parameters must be passed by reference to FORTRAN binaries. (FORTRAN binaries
do not support pass by value.)

A FORTRAN binary may change a string variable's contents but it cannot change the variable's
string-length header. This topic is discussed in the section called "BASIC String-Length Headers."

1 A vector is a I-dimensional array.

FORTRAN Binaries 14-15

Series 200/300 Example
The following BASIC program and Series 200/300 FORTRAN binary illustrate passing simple
string parameters.

100 DISP " Before binary called."
110 DISP "----------------------------"
120 DIM StrVar$[20] Simple string of 20 chars.
130 StrVar$="BASIC string value"
140 DISP "StrVar$ = ";StrVar$
150 DISP "Length = ";LEN(StrVar$)
160 DISP
170 LOADBIN "fss3"
180 CALLBIN "f_init" Initialization routine.
190 CALLBIN "str300" (StrVar$)
200 DISP " After binary called."
210 DISP "----------------------------"
220 DISP "StrVar$ = ";StrVar$
230 DISP "Length = ";LEN(StrVar$)
240 DISP
250 SCRATCHBIN "fss3"
260 END

Here is a Series 200/300 FORTRAN binary that works with the preceding BASIC program.

C

C

SUBROUTINE str300(StringVar)

CHARACTER *20 StringVar

StringVar = 'FORTRAN' II StringVar(8:20)

RETURN
END

Here are the results of running the program.

Before binary called.

StrVar$ = BASIC string value
Length 20

After binary called.

StrVar$ = FORTRAN string value
Length = 20

14-16 FORTRAN Binaries

Series 500 Example
The following BASIC program and Series 500 FORTRAN binary illustrate passing simple string
parameters.

100 DISP " Before binary called."
110 DISP "----------------------------"
120 DIM StrVar$[14]
130 StrVar$="BASIC string"
140 StrLen=LEN(StrVar$)
150 DISP "StrVar$ = ";StrVar$
160 DISP "Length = ";StrLen
170 DISP
180 LOADBIN "fss5"
190 CALLBIN "f_init" Initialization routine.
200 CALLBIN "str500" (StrVar$,StrLen)
210 !
220 DISP " After binary called."
230 DISP "----------------------------"
240 DISP "StrVar$ = ";StrVar$
250 DISP "Length = ";LEN(StrVar$)
260 DISP
270 SCRATCHBIN "fss5"
280 END

Here is a Series 500 FORTRAN binary that works with the preceding BASIC program.

SUBROUTINE str500(IntVector,StringLen)

C IntVector can hold 16 characters:
C (4 characters per 32-bit integer element).

INTEGER IntVector(4),StringLen,CopyVector(4)

CHARACTER *16 StringVar
EQUIVALENCE (CopyVector,StringVar)

FORTRAN Binaries 14-17

C Set length of string variable (16 spaces).
StringVar = '

C Now copy IntVector into StringVar.
DO 20 1=1,4

CopyVector(I) = IntVector(I)
20 CONTINUE

C Now perform string manipulation.
StringVar = 'FORTRAN' II StringVar(8:14)

C Now copy string back into pass parameter.
DO 30 1=1,4

IntVector (I) =CopyVector (I)
30 CONTINUE

RETURN
END

Here are the results of running the program.

Before binary called.

StrVar$ = BASIC string
Length 14

After binary called.

StrVar$ = FORTRAN string
Length = 14

BASIC String-Length Headers
BASIC strings have a length header that indicates how many characters the string currently
contains; however, this header is not passed to a binary when the string is passed. Thus,
FORTRAN binaries cannot modify the BASIC string variable's length.

For instance, suppose that you pass a string variable (by reference) to a FORTRAN binary. The
binary then proceeds to change the length of the string, but it cannot modify the BASIC string's
length header. Upon returning to BASIC, there is no indication that the length of the string
variable is any different than when it was passed to the binary.

14-18 FORTRAN Binaries

There are two steps in the general work-around for this type of situation:

1. Before passing the variable (by reference), pad the string with blank characters to the
maximum length of string that the binary can return. For instance, the following statement
pads the BASIC string variable with trailing blanks and sets its length to the maximum
(dimensioned) length.

ByRef$[LEN(ByRef$)+1]=" "

Note that this particular statement will cause an error if the string length is already equal
to the maximum (dimensioned) length.

2. After returning to the BASIC program, determine the string's new length.

a. If a string length parameter is passed (by reference) to the binary, then the binary
can modify the string and corresponding length parameter accordingly and then pass
it back to BASIC. Here is an example of this technique.

100 String$="123456"
110 Length=LEN(String$)
120 CALLBIN strmod(String$.Length)

SUBROUTINE strmod(strvar. strlength);

CHARACTER *18 strvar
INTEGER strlength

C Cut length in half.
strlength := strlength / 2

C Use chars 1 .. strlength

C
strvar strvar(1:strlength)

RETURN
END

130 String$=String$[1.Length]

b. If the binary has a special character to mark the end of the string, such as CHR$ (0),
then BASIC can search the string and set the string length to 1 less than the position
of the null. Here is an example of this technique.

NullPos=POS(ByRef$.CHR$(O))
ByRef$=ByRef$[1.NullPos-1]

FORTRAN Binaries 14-19

Passing String Arrays
Here is the required correspondence between BASIC string-array pass parameters and FOR
TRAN formal parameters:

Table 14-5. Matching String Array Parameters

BASIC Corresponding FORTRAN
Pass Parameter Formal Parameter

String array Series 200/300:
Array of CHARACTER *string length

Series 500:
INTEGER arrayl

(with 2 dimensions)

All BASIC parameters must be passed by reference to FORTRAN binaries. (FORTRAN binaries
do not support pass by value.)

A FORTRAN binary may change a string variable's contents, but it cannot change the variable's
string-length header. This topic is discussed in the preceding section called "BASIC String-Length
Headers."

Series 200/300 Example
Here is an example of passing a string array to a Series 200/300 FORTRAN binary.

100 DIM StrArr$(4) [5] ! 5 elements, 5 chars each.
110 StrArr$(O)="What "
120 StrArr$(1)="is
130 StrArr$(2)="your "
140 StrArr$(3)="name "
150 StrArr$(4)="?"
160 DISP " Before calling binary."
170 DISP "-------------------------,,
180 FOR 1=0 TO 4
190 DISP StrArr$(I);"/";
200 NEXT I
210 DISP CO DISP

Due to the complexity of manipulating Series 500 FORTRAN string

arrays and length headers, this topic is not discussed in this manual.

14-20 FORTRAN Binaries

220
230 LOADBIN "fas"
240 CALLBIN "f_init" Initialization routine.
250 CALLBIN "farrays" (StrArr$())
260
270 DISP " After calling binary."
280 DISP "-------------------------"
290 FOR 1=0 TO 4
300 DISP StrArr$(I) ;"1";
310 NEXT I
320 DISP (Q DISP
330
340 END

Here is an example of a Series 200/300 FORTRAN binary that would work with the preceding
CALLBIN statement.

SUBROUTINE farrays(StringArray)
C

CHARACTER *5 StringArray(5) , TempArray(5)
C
C First copy the passed array.

C

TempArray(1) StringArray(1)
TempArray(2) StringArray(2)
TempArray(3) StringArray(3)
TempArray(4) StringArray(4)
TempArray(5) StringArray(5)

Now rearrange
StringArray(1)
StringArray(2)
StringArray(3)
StringArray(4)

RETURN
END

elements.
TempArray(3)
TempArray(4)
TempArray(2)
TempArray (1)

Here are the results of running the program.

Before calling binary.

What lis Iyour Iname I?I

After calling binary.

your Iname lis IWhat I?I

Note once again that the FORTRAN program modifies some of the string variables' lengths;
however, the BASIC program string length is not modified. (See the preceding section for a
work-around.)

FORTRAN Binaries 14-21

Using Files with FORTRAN Binaries
BASIC programs and FORTRAN binaries can also communicate via BASIC type text/data
files-HP-UX "ASCII" files. The main restriction is that BASIC and FORTRAN use the file
exclusive of one another. That is, if BASIC opens and accesses a file, then it should close the
file before the binary attempts to access the file.

Here is an example of a BASIC program opening a text file, putting some words into it, then
closing it before calling a binary.

100 ASSIGN 11 TO "text_file"
110
120 OUTPUT
130 OUTPUT
140 OUTPUT
150 OUTPUT
160 OUTPUT
170

11 USING
11 USING
11 USING
11 USING
11 USING

"K"
"K"
"K"
"K"
"K"

"What
"is
"your
"name
"?

Open text file (BASIC will
create it. if non-existent).

" ! Write items into file.

"
"

180 DISP " Before calling binary."
190 DISP "-------------------------"
200 ASSIGN 11 TO "text_file" Reset file pointer.
210 FOR I=l TO 5
220 ENTER 11 ; String$ Read string items from file.
230 DISP String$;"/";
240 NEXT I
250 DISP @ DISP
260 ASSIGN 11 TO "*"
270
280 LOADBIN "ftf"
290 CALLBIN "f_init"
300 CALLBIN "ftf"
310

Close file.

Initialization routine.

320 DISP " After calling binary."
330 DISP "-------------------------"
340 ASSIGN 11 TO "text_file" Reset file pointer.
350 FOR I=l TO 5
360 ENTER 11 ; String$ Read string items from file.
370 DISP String$;"/";
380 NEXT I
390 DISP @ DISP
400
410 ASSIGN 11 TO "*"
420 SCRATCHBIN "ftf"
430 END

14-22 FORTRAN Binaries

Close file.

Here is an example FORTRAN binary that would work with the preceding BASIC program.

SUBROUTINE ftf

CHARACTER *5 String, StringArray(5) ,ArrayCopy(5)

C Read the text file contents.
OPEN(45,FILE='text_file' ,STATUS='OLD')
DO 10 1=1,5

READ(45,'(A5)') String
StringArray(I)=String
ArrayCopy(I) =StringArray (I)

10 CONTINUE
CLOSE(45)

C Now rearrange words.
StringArray(1)=ArrayCopy(3)
StringArray (2) =ArrayCopy (4)
StringArray(3)=ArrayCopy(2)
StringArray (4) =ArrayCopy (1)

OPEN(45,FILE='text_file',STATUS='OLD')
DO 20 1=1,5

WRITE(45, , (A5) ,) StringArray(I)
20 CONTINUE

CLOSE(45)

RETURN
END

Here are the results of the BASIC program calling the FORTRAN binary.

Before calling binary.

What lis Iyour Iname I? I

After calling binary.

your Iname lis IWhat I? I

FORTRAN Binaries 14-23

Notes

14-24 FORTRAN Binaries

Graphics 15
Graphics are a powerful means of presenting information. Computer graphics can be equally
powerful but an extra step is required between the conception of the idea and the final image.
This step is the construction of a mathematical model of the image within the computer.

Since computers only do what they are told, it is essential to have a complete knowledge of the
commands that communicate between the real world and the computer's world. This knowledge
is needed to create the model within the computer's memory and to understand the resulting
image of the model.

Chapter Contents
Tasks/Topics Page

Example programs 15-2

Determining your device's capabilities 15-6

Specifying graphics devices 15-9

Limits and coordinates 15-12

Graphics input 15-52

Pens 15-54

Moving the pen and drawing 15-56

Labeling 15-65

Plotting and reading pixels 15- 69

Storing and retrieving raster images 15-73

Using plotters 15-75

Graphics 15-1

Example Graphics Programs
This section shows two examples of graphics programs--one for graphics output, and one for
both graphics input and output.

NOTE

These examples are intended to briefly show you the elements of graph
ics programming. They should allow you to begin using this graphics
system as quickly as possible.

If you want more information on any particular statement, the tables
following the programs list which section of the manual elaborates on
the statement.

Example of Graphics Output (Plotting)
Here is an example of a graphics image created by a Technical BASIC program.

HlJ

9
(f) 8
OJ 7 OJ
>.... 6
0

....--I 5
0...

4 C
W 3

2

~U1 co t-- CD 0) lSI C\I (T) ...,.
t-- t-- t-- t-- t-- CD CD CD CD CD

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Year

Figure 15-1. Example of Plotting

15-2 Graphics

Here is the program that created the picture.

100 CLEAR! Clear alpha raster.
110 PLOTTER IS 1 ! Choose plotter (and initialize it).
120 GCLEAR ! Clear any existing graphics.
125
130 FRAME !
140 LOCATE 30,100,30,90
150 FRAME
160 !
170 SCALE 1975,1984,0,10
180 LAXES 1,1,1975,0,1,1,5
190 !

Draw line around plotting bounds.
Define smaller plotting area.
Draw new bounds.

Scaling maps into LOCATE bounds.
Create labeled axes.

200 MOVE 1978,-3 !
210 CSIZE 6,0.5 !
220 LABEL "Year"

Move pen (before labeling x axis) .
Use taller, narrower characters.

230 !
240 MOVE 1973,3! Move pen (before labeling y axis).
250 DEG © LDIR 90 Label direction is up (90 degrees).
260 LABEL "Employees"
270 !
280 DIM Employees(9) ! Array with 10 points (OPTION BASE 0).
290 DATA 1,3,3,4,6,5,7,8,9,8
300 FOR Year=1975 TO 1984
310 READ Employees(Year-1975) Read DATA item.
320 DRAW Year,Employees(Year-1975) Draw to new x,y location.
330 NEXT Year
340 !
350 END

Program Line

110 PLOTTER IS

120 GCLEAR

130 FRAME

140 LOCATE
150 FRAME
170 SCALE

180 LAXES

210 CSIZE
220 LABEL
250 DEG © LDIR
260 LABEL

200 MOVE

240 MOVE
320 DRAW

For Further Explanation, See: Page

"Specifying Graphics Devices" section 15-9

BASIC Reference Manual

"Limits and Coordinates" section 15-12

"Labeling" section 15-65

"Moving the Pen and Drawing" section 15-56

Graphics 15-3

Example of Graphics Input
The following example uses a graphics input device to pick points, which are then connected
by lines on the plotting device. (Note that the 'digitize button' is the I Return I key if your input
device is your keyboard.) Here is an example of what you can draw using the program.

Figure 15-2. Simple Example of Digitizing

15-4 Graphics

100 CLEAR! Clear alpha raster.
110 PLOTTER IS 1! Specify CRT as plotter.
120
1300ISP "1. Move cursor with input device."
140 OISP "2. Press 'digitize button' to pick point."
150 OISP "3. Repeat 5 more times."
160 OISP
170
180 ! Pick first point.
190 OIGITIZE Xold,Yold
200
210 FOR Point=1 TO 5! Connect point with preceding one.
220 DIGITIZE Xnew,Ynew
230 MOVE Xold,Yold
240 DRAW Xnew,Ynew
250 Xold=Xnew
260 Yold=Ynew
270 NEXT Point
280 DISP "Finished."
290
300 END

Program Line

110 PLOTTER IS

190 DIGITIZE
220 DIGITIZE

230 MOVE
240 DRAW

Move pen to last pOint.
Draw line to this pOint.
Save last point.

For Further Explanation, See:

"Specifying Graphics Devices" section

"Graphics Input" section

"Moving the Pen and Drawing" section

Page

15-9

15-52

15-56

Graphics 15-5

Determining Your Device's Capabilities
These are the three basic capabilities that your graphics device(s) may have l :

• Output (or "plotting"): operations such as moving the pen, drawing lines, labeling, and
setting up coordinate systems.

• Input (or "digitizing"): operations in which you move an "input locator," whose "x,y"
coordinates the computer can determine.

• Block read/write (or "bit block transfer"): operations in which individual or groups of
pixels (picture elements) on a raster display are read or written.

To determine the capabilities of your particular device(s), see the discussion of the ASSIGN

statement in the HP-UX Technical BASIC Reference Manual.

NOTE

Many graphics devices have both "input" and "output" capabilities. For
instance, the graphics raster of an HP 2627 Graphics Terminal is an
output device, and the keyboard's cursor and
I Return I keys are the input device.

List of Output (Plotting) Capabilities
There are several categories of graphics output operations:

• Graphics device selection.

• Graphics display control.

• Graphics boundaries and scaling.

• Moving the pen and drawing.

• Labeling.

Operations in each of these categories are listed below.

In order to perform any graphics operations, you must have installed the Starbase Graphics Library on your HP-UX system. See the

Starbase manuals for installation instructions.

15-6 Graphics

Graphics Device Selection
PLOTTER IS Specifies the plotting device (and input device).

Graphics Display Control
CLEAR Clears the alpha display (and also the graphics display, on devices that use the

same raster for both alpha and graphics).

DUMP GRAPHICS Outputs the graphics display to the system printer.

GCLEAR

GRAPHICS

Clears all or portions of the graphics display.

T urns on the graphics display (if not already on; this is useful only on displays
with separate alpha and graphics rasters).

Graphics Limits and Coordinates
CLIP Specifies plotting boundaries in current scale units.

LIMIT

LOCATE

MSCALE

RATIO

SCALE

SETGU

SETUU

SHOW

UNCLIP

Specifies graphics limits in millimeter units.

Specifies the plotting boundaries in GU's.

Scales the plotting area in millimeter user units.

Returns the ratio of the graphics limits-horizontaljvertkal.

Scales the plotting area by the specified user units.

Sets the system to graphics units mode.

Sets the system to user units mode.

Scales the plotting area with equal x and y user units.

Sets the plotting boundaries equal to the graphics limits.

Moving the Pen and Drawing
AXES Plots x and y axes.

DRAW

FRAME

GRID

IDRAW

IMOVE

IPLOT

LAXES

Draws a line to the specified point.

Draws a frame around the plotting area.

Draws grid lines.

Draws a line incrementally to the specified point.

Lifts the pen and moves it incrementally to the specified point.

Moves the pen incrementally to the specified point with pen control.

Draws and labels x and y axes.

Graphics 15-7

LGRID

LINE TYPE

MOVE

POIR

PEN

PENUP

PLOT

RPLOT

WHERE

XAXIS

YAXIS

Draws and labels a grid.

Specifies the line type used for lines, axes, and grids.

Lifts the pen and moves it to the specified point.

Establishes plotting direction for relative and incremental plotting.

Specifies the pen number.

Lifts the pen.

Moves the pen to the specified point with pen control.

Moves the pen with pen control to a point specified relative to a moveable
origin.

Reads the location of the "logical" pen.

Draws an x axis.

Draws a y axis.

Graphics Labeling
CSIZE Establishes character size and shape for labels.

FXO

LABEL

LAXES

LOIR

LGRID

LORG

Specifies the format of floating-point numeric data items in labels for LAXES
and LGRID.

Plots a label at the current pen position.

Draw and labels x and y axes.

Specifies label direction.

Draws and labels a grid.

Defines the position of labels relative to the current pen position.

List of Input Capabilities
CURSOR Reads the location and status of the input locator.

DIGITIZE Suspends program execution until the input locator's position is entered.

List of Block Read/Write Capabilities
BPLOT Plots individual (or groups of) pixels on a graphics-raster display.

BREAD Reads individual (or groups of) pixels on a graphics-raster display.

Complementing These can be used to exclusive OR the current pen and existing pixels.
pens

15-8 Graphics

Specifying Graphics Devices
The PLOTTER IS statement specifies the graphics output and input device(s). This statement
should precede all other graphic statements, as this statement initializes the graphics system by
setting up default conditions. Once this statement is successfully executed, the graphics system
is ready for use.

The following statement usually works to specify your console or terminal display:

PLOTTER IS 1

There are two possible outcomes of executing this statement:

• If no error is reported, execute the following statement:

FRAME

If lines are drawn around your plotting area, then the device has been selected and properly
initialized. (If this is the case, skip to the section called "Explicitly Specifying Separate
Input and Output Devices"-about 2 pages ahead.)

If the FRAME statement does nothing, then you will need to use the procedure described in
the next section.

• If an error is reported when you execute the PLOTTER IS 1 statement, you will need to
use the following procedure to explicitly specify a plotting device.

Explicitly Specifying a Plotting Device
Assign a device selector to your plotting device. You can use any integer in the range 3 through
10, as long as it is not currently assigned (with an ASSIGN statement). Assign it to the appropriate
Starbase driver type and special (device) file.

ASSIGN device selector TO "Starbase type. device file"

The Starbase type identifies the type of Star base (graphics library) driver that is to be used with
this resource. (A driver is a program that is used by the system to communicate with a particular
device or interface.)

The device file parameter is the actual name of an HP-UX file that the System Administrator
associated with an interface or device (using the HP-UX rnknod, "make node," command). This
file is assumed to be in the / dev directory if a path name is not specified.

Graphics 15-9

Here are some examples:

ASSIGN 5 TO "hp2623.tty"
PLOTTER IS 5

ASSIGN 6 TO "hp262x./dev/tty_name"
PLOTTER IS 5

ASSIGN 7 TO "hp300h .Idev/device_file"
PLOTTER IS 7

ASSIGN 9 TO "hpwindow9837./dev/screen/TBgraphl"
PLOTTER IS 9

NOTE

Once you have assigned a device selector to a Star base resource, you
must cancel the assignment (such as ASSIGN 5 TO "*") before attempting
to make another assignment using the same device selector.

Many output devices also have input capabilities; for instance, most terminals have input capa
bilities through the use of their graphics-cursor positioning keys.

• If your device does have input capabilities (and you either don't have or don't want to
use a separate input device), then you need not read the following section. Skip to the
subsequent "Coordinate Systems" section, or to the section that will answer questions
about your particular graphics tasks.

• If you want or need to use a separate input device, then read the following section.

15-10 Graphics

Explicitly Specifying Separate Input\and Output Devices
When you have a plotting device without input capabilities, such as an HP 2625 Terminal or an
HP 9837 Console display, or if you want to use separate input and output devices, you will need
to use the ASSIGN and PLOTTER IS statements to specify the input device. (See the Technical
BASIC Reference Manual for a complete list of devices, capabilities, and examples of assigning
device selectors).

Example 1: A Display and an HIL Locator
The output device, specified first, is an HP 9837A display (hp9837./dev/hp9837dev_file). The
input device is the HP Human Interface Link (HIL) device at HIL address 2 (hil.hi12).

100 ASSIGN 5 TO "hp9837.hp9837dev_file; hil.hi12"
110 PLOTTER IS 5

NOTE

If an HP Human Interface Loop (HIL) input device is currently assigned,
then you must first cancel the assignment (for instance, ASSIGN 5 TO
"*") before making a new assignment.

Example 2: A Graphics Window and an HIL Locator
The following output device is an HP Windows/9000 graphics window (hpwindow98700.
hp98700). The input device is the HP Human Interface Link (HIL) device at HIL address 3
(hil. hi13).

100 ASSIGN 6 TO "hpwindow98700./dev/screen/windowl; hil.hi13"
110 PLOTTER IS 6

Example 3: A Plotter and an HP-IB Tablet
The following output device is an HP 7475A plotter (hpgl./dev/hp7475A). The input device
is an HP 9111 Graphics Tablet (hpgl.hp9111A) connected to the computer through an HP-IB
interface.

100 ASSIGN 6 TO "hpgl.hp7475A; hpgl.hp9111A"
110 PLOTTER IS 6

NOTE

With hpgl Star base types, such as HP-IB plotters and graphics tablets,
the corresponding nodes must be "auto-addressed;" that is, there must
be primary addressing in the minor number. See ASSIGN in the Technical
BASIC Reference Manual for further details.

Graphics 15-11

Limits and Coordinates
Since you create graphics by telling the computer where to draw points and lines, the drawing
area must have a coordinate system that allows you to specify the locations of these points and
lines. With Technical BASIC, there are several different methods available for setting up limits
and a coordinate system.

Overview
The first example at the beginning of the chapter set some bounds within which plotting was to
take place, and then set up a useful coordinate system within those bounds. This section goes
further into the topic of limits and how various coordinate systems can be set up within these
limits.

Physical Limits
The raster display and all other plotting devices have physical limits which define the maximum
size of graphics image that can be produced on the device. For example, you cannot produce
an image on a graphics display screen that is larger than its graphics raster. Similarly, the
physical limits of a plotter determine the maximum size of drawing that it can produce.

Device's Physical Limits

i i

Maximum Size of Plotting Area
Is Defined by the

Device's Physical Limits

! !
Figure 15-3. Physical Limits on a Graphics Output Device

15-12 Graphics

Graphics Limits
Within the physical limits of a device, you can choose the location of the graphics output by
setting the graphics limits. The graphics limits are the boundaries for aliI graphics output.

Device's Physical Limits
~------------------------l

: Graph 1 CS Lim i ts I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I :
I Plotting Outside of Graphics Limits NOT Allowed I L ________________________ ~

Figure 15-4. Graphics Limits Can Be Moved

The graphics limits are set to their default when the BASIC system is entered2 .

The only exceptions to this statement are the byte-plotting operations performed on a graphics raster, which can be performed outside

of the current graphics limits (but not outside the physical limits).

The default graphics limits for your console's or terminal's graphics raster are described in the device's documentation. The default

graphics limits vary for different external plotters. but are generally close to the physical limits of the device. Refer to the documentation

accompanying the plotter for additional information regarding physical and default graphics limits.

Graphics 15-13

Scaling Maps into the Graphics Limits
When you want to move the pen, you specify the coordinates to which you want the pen to
move. For instance, this statement tells the pen to move to the coordinate 50,50.

MOVE 50,50

The physical location to which the pen moves depends on the coordinate system currently set
up for the device. As an example, this sequence of statements moves the graphics limits, sets
up a user units (UU's) coordinate system which maps into the graphics limits, and shows the
coordinate system.

100 LOCATE 20,120,20,80
110 SCALE 0,140,0,100 !
120 LAXES 20,20,0,0,20,20,300

Sets plotting bounds (in GU's) .
Sets up UU coordinates.
Draws and labels axes.

Device's Physical Limits

~------------------------l

: Scaling Maps into Graphics Limits I

I 100 :
I I
I 80 I
I I
I 60 I
I I
I 40 I
I I
I 20 I
I I
II 0 r.s;) r.s;) r.s;) r.s;) r.s;) r.s;) r.s;) r.s;) I

N ~ ~ m r.s;) N ~ I L _______________ ~ __ ~ __ ~ __ ~
Figure 15-5. Scaling maps into Graphics Limits

The X coordinate of the left graphic limit is 0, while the X coordinate of the right limit is 140.
The Y coordinates of the lower and upper graphics limits are ° and 100, respectively.

15-14 Graphics

The length of 1 user unit in the X direction is determined by the difference in X coordinates of
the graphics limits (here 140) divided by the physical distance between right and left graphics
limits (depends on the plotting device). The length of 1 user unit in the Y direction is determined
similarly.

This is only a brief look at scaling. However, it does show how the coordinate system is mapped
onto the physical plotting device. More details of scaling methods are shown in the next section.
Details of changing the graphics limits are described in "Moving the Limits" section.

A Closer Look at Coordinate Systems
Once the plotting area is defined, either by default or by specifying the graphics limits, the scale
can be chosen to suit your particular graphics application. You can use the default scale
graphics units (GU's)-or you can specify your own scale-user units (UU's). If you do not
specify your own units, the BASIC system sets UU's equal to GU's.

Graphics 15-15

The Default Coordinates: Graphics Units (GU's)
When the graphics system is initialized (by PLOTTER IS), the default scale is measured in Graphic
Units. The origin (location 0,0) is in the lower left corner of the graphics raster. The shorter
side of the raster is 100 GU's in length. The number of GU's in the longer side is determined
by the aspect ratio: width/height. For instance, if the screen is exactly two times as wide as it
is high, then its aspect ratio is 2. Thus the X coordinate of the right bound is 200, while the Y
coordinate of the upper bound is 100.

This example shows the default (GU) scaling for a graphics raster which has an aspect ratio of
a little greater than 2.

100

f-

f-

f-

f-

50

r-

I--

-

f-

o I I I I I
lSI

I I I I I I I
lSI
Lf)
~

I I I

Figure 15-6. Example of Default Graphics Units (GU) Mapping

15-16 Graphics

I
tsl
tsl
N

Graphics Units Mapping
The graphics units scale maps onto the area defined by the graphics limits. When the graphics
limits change, the size of the graphics units scale also changes. For example, this statement
moves the graphics limits to form a 50-by-70-millimeter plotting area:

LIMIT 10,60,0,70

The graphics unit scale now maps onto this plotting area. The length of one GU is equal to
1/100 (one percent) of the length of the shortest side of the area bounded by the graphics
limits. The length of the longest side of the plotting area is again something greater than 100,
depending on the width/height aspect ratio.

140 GUs

o

~--------------------~

Plotting
Area

0---------.... • 100GUs

Figure 15-7. Graphics Units (GU) Map into LIMIT Bounds

The graphics units scale provides a simple method of scaling the plotting area on a percentage
basis, regardless of the size of the plotting area.

Graphics 15-17

The following program draws a line from point (0,0), in GUs, to the opposite corner of the plotting
area. Enter the graphics limits from the keyboard; the RATIO function is used to compute the
length in GUs of the longest side of the plotting area.

100 ! *** Graphics Units ***
110 PLOTTER IS 1 !
120 GCLEAR
130 DISP "Enter LIMIT parameter:
140 INPUT xmin,xmax,ymin,ymax
150 LIMIT xmin,xmax,ymin,ymax
160 DISP "RATIO = ",RATIO!
170 WAIT 2000
180
190 GCLEAR !
200 FRAME !
210 MOVE 0,0
220 !
230 Xmax=100*MAX(1,RATIO)
240 Ymax=100*MAX(1,1/RATIO)
250 DRAW Xmax,Ymax !
260
270 END

The display is the plotter.

xmin,xmax,ymin,ymax"

Specifies graphics limits.
Displays current RATIO.

Clears the graphics area.
Frames plotting area.

Moves the pen to lower-left
corner.

Maximum x value in GUs.
Maximum y value in GUs.

Draws a line to upper-right
corner.

Execute the above program and enter the following data when prompted to do so.

10,110,5,55

An alpha display of the RATIO is given as the first part of the result.

RATIO = 2

15-18 Graphics

The final part of the result from executing the program is this graphics display:

Figure 15-8. Using RATIO in GU Coordinate Calculation

Axes and Grids
The AXES statement can be used to draw axes and to put tick marks on the axes. The following
example shows the use of all of the parameters, interpreted as GU's, available with the AXES

statement:

AXES XtickSpc,YtickSpc,XLocYAxis,YLocXAxis,Xmajor,Ymajor,Size

The XtickSpc and YtickSpc parameters specify the number of units between the tick marks.

XLocYAxis and YLocXAxis specify the location of the intersection of the axes: XLocYAxis is the
X location at which the Y axis crosses the X axis, and YLocXAxis is the Y location at which the
X axis crosses the Y axis. If these parameters are not specified, the default intersection is:

• the lower, left corner (when tick spacing is not specified)

• 0, ° (when tick-spacing is specified)

Xmaj or and Ymaj or specify which ticks are to be "major" (full-size) ticks; all other ticks will be
"minor" (half-size) ticks. For example, if Xmaj or is set to 4, then every fourth tick on the X axis
will be a major tick.

Graphics 15-19

Tick length is determined by the Size parameter. It specifies the size, in GU's, of the major
ticks; minor ticks are always half the length of major ticks. If it is not specified, major ticks have
a default length of 2 GU's, and minor ticks have a default length of 1 Gu.

The following program shows two examples of axes.

100 PLOTTER IS 1
110 AXES 10,10 !
120 AXES 20,20,50,30
130 END

10 units between the ticks with origin at (0,0).
20 units between the ticks with origin at (50,30).

. .

Figure 15-9. Using AXES to Draw X and Y Axes

The AXES statement has a related statement: GRID. This statement is best thought of as a pair of
axes with very long tick marks. GRID uses the same parameters as AXES, except that the Size
parameter specifies the minor tick length (since GRID's "major ticks" span the plotting area).

GRID Xtick,Ytick,Xorigin,Yorigin,Xmajor,Ymajor,Size

15-20 Graphics

Here are examples of using GRID in a program.

100 PLOTTER IS 1
110 GCLEAR
120 !
130 GRID 10,10
140 WAIT 5000
150

Grid with X and Y ticks 10 GU's apart.

160 GCLEAR
170 GRID 20,20,0,0,3,2,4
180
190
200
210

Ticks 10 GU's apart;
origin at 0,0;
X major tick every 3rd grid;
Y major tick every 2nd grid;
Tick length = 4 GU's.

Figure 15-10a. Output of GRID 10,10

Graphics 15-21

r

l-

i-

I I I I I I

Figure 15-10b. Output of GRID 20,20,0,0,3,2,4

User Units
The first example in this chapter set up a more relevant plotting scale with this statement:

170 SCALE 1975,1984,0,10

The parameters define the coordinates of left, right, lower, and upper boundaries of the plotting
area, respectively. The scaling units set up by this statement are known as User Units, or UU's.

Here is a SCALE statement that uses meaningful variable names to specify the parameters that
set up a User Units coordinate system:

170 SCALE Left,Right,Bottom,Top

The next section describes UU's in greater detail.

User Units Scales
There are three scaling statements that allow you to specify the user units scale:

• SCALE-sets up scaling in user units (UU's)

• SHOW-like SCALE, but the units in X and Y directions are equal in length (isotropic scaling)

• MSCALE-sets up scaling in mm units

All three scaling statements specify the scale for the current plotting area (defined by the graphics
limits) or by a LOCATE statement (which also specifies plotting boundaries).

15-22 Graphics

Anisotropic Scaling (SCALE)
The SCALE statement defines the coordinates of the limits of the current plotting area. The
syntax for scale is as follows:

The parameters can be numeric constants, variables, or expressions.

This program shows an example of setting up a user-units coordinate system:

100 ! *** Scale ***
110 PLOTTER IS 1 !
120 GCLEAR !
130

The display is the plotter.
Clears the graphics display.

Specifies UU scale. 140 SCALE -2,2,-4,4
150 GRID 1,1,0,0
160

Draws a grid with 1 UU spacing.

170 DEG ! Sets degrees mode.
180 MOVE 1,0 Moves to the start of the ellipse.
190 FOR Degrees=O TO 360 STEP 10! 10 degree increments.
200 DRAW COS (Degrees) ,SIN(Degrees) ! Draws in UU's.
210 NEXT Degrees
220 END

The following graphics display is the result of executing the above program.

v---- ~
~ ~

Figure 15-11. SCALE Sets Up UU Scaling (Shown by GRID)

The SCALE statement specifies user units independently in the X and Y directions.

Graphics 15-23

Isotropic Scaling (SHOW)
The SHOW statement specifies user units for a plotting device such that one unit on the X axis is
the same length as one unit on the Y axis (isotropic scaling). Thus, the plotting area is scaled
with unit squares. The SHOW statement parameters specify the minimum number of units to be
mapped onto the current plotting area. If necessary, units are added to a dimension to scale the
plotting area isotropically (an example is provided subsequently).

The syntax for the SHOW statement is as follows:

To use the SHOW statement, replace the SCALE statement in the previous example with the SHOW
statement. Because of equal unit scaling, the figure drawn is now a circle instead of an ellipse.
Line 140 of your program should look like this:

140 SHOW -2,2,-4,4

and your changed program should be as follows:

100 ! *** Scale ***
110 PLOTTER IS 1 !
120 GCLEAR !
130 !
140 SHOW -2,2,-4,4
150 GRID 1,1,0,0
160 !

The display is the plotter.
Clears the graphics display.

«<------- Specifies 'isotropic' UU scale.
Draws a grid with 1 UU spacing.

170 DEG ! Sets degrees mode.
180 MOVE 1,0 Moves to the start of the ellipse.
190 FOR Degrees=O TO 360 STEP 10! 10 degree increments.
200 DRAW COS (Degrees) ,SIN(Degrees) ! Draws in UU's.
210 NEXT Degrees
220 END

15-24 Graphics

I
I v \ I

I I" ,/ I

i i
I

Figure 15-12. SHOW Sets Up Isotropic Scaling

The SHOW statement sets up UU's such that the coordinate system is as large as possible and is
centered within the graphics limits (or within the plotting boundaries, if specified). For example,
if the LIMIT rectangle is twice as wide as it is high (for example, LIMIT 0,100, 0,50), then SHOW

-1,1,-1,1 is equivalent to SCALE -2,2,-1,1.

1
100
GUs

j
(-2, -1)

'III

(1, 1) (2,1)

(-1, -1)

200 GUs

Figure 15-13. SHOW Sets Up as Large a Coordinate System as Possible

Graphics 15-25

Millimetre Scale (MSCALE)
The MSCALE statement sets millimetres as user units and specifies the location of the origin.
MSCALE is useful when correspondence between an image and a physical object is desirable, as
in drafting applications. The accuracy of the scale depends entirely on the graphics device in
use.

The MSCALE statement parameters are different than parameters in the SCALE and SHOW state
ments.

MSCALE specifies user units equal to millimetres, and offsets the origin (0,0) in millimetre spacing,
from the lower-left graphics limits corner by the specified distance, in millimetres. The MSCALE
parameters can be numeric constants, variables, or expressions.

For example, the following statement specifies that 1 user unit equals 1 mm; the origin is offset
10 mm to the right and 15 mm up from the lower-left corner of the plotting area.

MSCALE 10,15

Like SCALE and SHOW, the MSCALE statement must follow operations that set or move the graphics
limits or the LOCATE plotting boundaries in order to map the user units scale onto the current
plotting area. MSCALE also works after default conditions have been restored by PLOTTER IS.

The following program uses the MSCALE statement to draw a metric ruler on the display.

100 ! *** Metric Ruler ***
110 PLOTTER IS 1
120 GCLEAR
130 FRAME
140 MSCALE 10,40 !
150 !
160 CLIP 0,100,0,10
170 FRAME !
180 AXES 2,10,0,10,5,10,5
190 MOVE 30,3

Specifies metric user units with
10 mm x_offset and 40 mm y_offset.
Clips plotting area in millimetres.
Frames the plotting area (ruler).
Draws the ruler's metric scale.

200 LABEL USING "K" ; "10 cm Metric Scale"
210 END

15-26 Graphics

The results from executing this program are as shown in the following picture:

r 111/1111/1111/1111/1111/1111/1111/1111 JlIII JlIIII
10 cm Metric Scale

Figure 15-14. Example of MSCALE (Millimetre) Scaling

The specified MSCALE origin need not be located inside the graphics limits; you can plot, for
example, in negative millimetre units by specifying the origin of your MSCALE beyond the maximum
X and Y dimensions of the graphics limits.

Graphics 15-27

The following program draws a metric grid; the MSCALE origin is offset to the upper-right corner
of the plotti[lg area.

100 ! *** Negative MSCALE ***
110 PLOTTER IS 1
120 GRAPHICS !
130 LIMIT 0,160,0,60
140 MSCALE 160,60 !
150
160
170 FRAME
180 GRID 2,2,0,0,10,10
190
200
210 END

Sets the display to graphics mode.
Specifies the graphics limits.
Specifies metric UUs and places
the origin at the upper-right
corner of the plotting area.
Frames the plotting area.
Draws a metric grid with 10mm
spacing and 2mm tic marks on the
x and y axes.

Execution of the previous program results in the following display:

IIII II II 11111111 11111111:

::
-
-

Figure 15-15. Example of MSCALE (Millimetre) Scaling

15-28 Graphics

Changing Units: SETGU and SETUU
The two types of units used by the computer in plotting operations are graphics units (GUs) and
user units (UUs). The current units mode refers to the type of units in use during plotting. At
entry to the BASIC system, the computer is set to user units mode and the current user units
scale is GUs, by default. However, you can switch modes at any time and access the current
UU's and GU's scales by executing the mode change statements: SETGU, and SETUlJ.

The SETGU statement sets the system to graphics units mode, establishing GU's as the current
scale. Executing SETGU does not disturb the current user units scale, and allows you to plot
outside the plotting boundaries set by the LOCATE and CLIP statements (discussion of plotting
boundaries appears later in this section). The SETGU statement is the only means by which the
computer is set to graphics mode. Unless SETGU is executed, the computer plots according to the
current user units scale as defined by SCALE. SHOW. MSCALE, or by default (GU's). The syntax
for setting the graphics unit mode is:

SETGU

SETUU sets user units (UUs) as the current units mode. User units mode is also set by the SCALE.

SHOW. MSCALE. LIMIT, and PLOTTER IS statements, and by default. The syntax for setting the
user units mode is as follows:

SETUU

If the system is set to graphics units mode, you need to return it to user units mode in order for
the plotting boundaries set by LOCATE or CLIP to be active. SETGU establishes the area bounded
by the graphics limits as the current plotting area.

Graphics 15-29

The following program makes use of both scales: UU's and GU's. The GU's scale is determined
by the graphics limits, and is recalled by the SETGU statement.

100 PLOTTER IS 1 ! Sets to UU's (=GU's now) .
110 GCLEAR
120 FRAME Show display limits.
130 CSIZE 3
140 !
150 LOCATE 40,100,30,80 Move plotting bounds (GU's).
160 FRAME
170 !
180 SCALE -20,20,-20,20! Scale in UU's.
190 MOVE 0,0
200 LABEL II 0,0 UU'S"
210 DRAW 20,20
220 LABEL "20,20 UU'S"
230 !
240 SETGU Change back to GU's.
250 MOVE 2,2
260 LABEL II 0,0 GU'S"
270 MOVE 0,0
280 DRAW 20,20 !
290 LABEL II 20,20 GU'S"
300 END

15-30 Graphics

Execution of the previous program results in the following display:

Graphics Limits (LIMIT)

.----______________ ~ 2~, 2~ UU's

~,~ UU's

2~,2~ GU's
Plotting Boundaries (LOCATE)

~,~ GU's

Figure 15-16. Changing from GU's to UU's (and Back)

Once a scaling statement is executed, the current user-defined scale is active until one of the
following occur:

• A new scaling statement is executed (SCALE. SHOW, or MSCALE).

• The system is exited and re-entered, in which case UU's default to GU's.

• A LIMIT or PLOTTER IS statement is executed (UU's set equal to GU's).

• The system is switched to graphics units mode by executing SETGU.

Graphics 15-31

Moving the Graphics Limits
A device's physical limits (such as "PI" and "P2" on plotters) are read by the BASIC system
when it executes a PLOTTER IS statement. These limits are the default plotting bounds. You
can move these plotting bounds with the LIMIT I statement.

LIMIT xmin,xmax,ymin,ymax

Since the LIMIT parameters are in millimetres, they specify the absolute locations of the
graphics limits. The origin (0,0) is normally the lower-left physical limit of the plotting device.
X coordinates increase as you move toward the right physical limit of the plotting area, while
Y coordinates increase toward the top physical limit. LIMIT enables you to move the graphics
limits anywhere within the physical limits of the plotting device.

The following program shows an example of default and user-defined graphics limits:

100 ! *** Limit ***
110 PLOTTER IS 1 !
120
130 GCLEAR !
140 LINE TYPE 5
150 FRAME
160
170 LIMIT 90,90+80,70,70+40
180
190
200 FRAME
210 END

Specifies the CRT as the plotter

Clears the graphics display.
Specifies the dashed line type.
Frames the plotting area for
reference.
Specifies an 80 mm X 40 mm plotting
area that is offset from the display's
lower-left physical bounds.
Frames the specified plotting area.

1 LIMIT does not change PI and P2 on plotters. It does, however. restore default graphics conditions. See the HP-UX Technical BASIC

Reference Manual for further details about graphics defaults.

15-32 Graphics

Specified graphics limits (x max, y max)

'\ r
.-------~----------------------~I

1 Default

1....- ~ra~hics
1 limits

Plotting area

1

1

1

1

(x min, y min) 1

1 1

L __________________________ I

Figure 15-17. Default and User-Defined Graphics Limits

Scope of LIMIT Statements
As demonstrated by the program, the LIMIT statement overrides any previously set or default
graphics limits. These graphics limits remain in effect until one of the following operations is
performed:

• Another LIMIT statement is executed.

• A PLOTTER IS statement is executed.

• The BASIC system is exited and re-entered.

If you do not execute a LIMIT statement in a program and your plot turns out smaller than you
expected, then the plotting device is probably using the graphics limits set by a previous LIMIT

statement.

Range of Graphics Limit Parameters
The ranges of the LIMIT parameters are determined by the current PLOTTER IS device's physical
limits. for the graphics raster of your console or terminal, the range of LIMIT parameters are
supplied in the Implementation Specifics appendix for your particular Technical BASIC system.
for external plotters, the range is given in the documentation supplied with the plotter.

If a LIMIT statement parameter is out-of-bounds, the system may return an error message and
either ignore the statement or set the limits to the defaults.

Graphics 15-33

Aspect Ratio
The current output device's aspect ratio (width/height) is returned by the following BASIC
function.

RATIO

Here is how the RATIO is calculated:

RATIO = width / height = (Xmax-Xmin) / (Ymax-Ymin)

Thus RATIO has no units, since they cancel in the division of width by height.

RATIO can be used to determine the length of the longer side of the plotting area, since GU's
are specifically chosen so that the shorter of the plotter's width or height is exactly 100 GU's
long. If the height is shorter than the width, then this expression gives the plotting area's width
(in GU's).

100*RATIO

If the width is shorter than the height (indicated by RATIO returning a value less than one), then
this expression gives the plotting area's height (in GU's).

100/RATIO

The value of the RATIO function depends on the current graphics limits, which can be set by
default, by LIMIT, or manually on the plotting device.

10 LIMIT 5,95,10,60
20 DISP RATIO
30 END

New graphiCS limits (in mm) .
Width/height=(95-5)/(60-10)=90/50.

The value returned by RATIO is:

1.8

15-34 Graphics

The RATIO function is useful for determining the aspect ratio of the graphics limits before
changing the size or location of the plotting area while maintaining the same aspect ratio. A
sample program is given below.

100 ! *** RATIO ***
110 PLOTTER IS 1 !
120 LIMIT 0,460/2.84,0,192/2.84
130 GCLEAR
140 FRAME
150
160 LIMIT 20,110,0,65
170 FRAME !
180
190 R=RATIO
200 LIMIT 5,R*(60-20)+5,20,60
210 FRAME
220
230 LIMIT 70,100,10,(100-70)/R+10
240 FRAME !

Restore default limits.

Show default limits.

Move limits.
Show

Determine width/height.
Use RATIO in new limits.
Show new limits.

Move limits.
Show them.

D
Figure 15-18. Maintaining Aspect Ratios When Setting New Limits

Graphics 15-35

Plotting Boundaries
While plotting is restricted either to the default graphics limits or those specified by a LIMIT

statement, the LOCATE and CLIP statements specify plotting boundaries. Like the graphics limits,
plotting boundaries mark the limits of the plotting area. However:

• Plotting boundaries differ from graphics limits in that they represent conditional limits.
Plotting outside the plotting boundaries is possible while the system is set to graphics units,
GU, mode, or while labeling. (For instance, plotting boundaries can be set to reserve space
within the graphics limits for labeling.)

• Plotting boundaries can be used to create windows for showing portions of a plot.

The diagram below shows different ways in which plotting boundaries can be set with respect
to the graphics limits. Although the plotting boundaries can extend beyond the graphics limits,
or for that matter, the physical limits of the plotting device, you can't plot or label outside the
graphics limits.

r---------- ----,

r----..,
I

L ____ .J

Graphics limits

+

r-----I--,
I I

/1
Plotting boundaries L ...I

L __ _ ~
Figure 15-19. Plotting Boundaries and Graphics Limits

15-36 Graphics

.J

LOCATE Boundaries
The LOCATE statement enables you to relocate the plotting area within the graphics limits by
specifying the plotting boundaries. This allows you to leave space for labels outside of the plotting
area, but within the graphics limits. The parameters in the LOCATE statement are expressed
in GU's. Thus, LOCATE defines the plotting boundaries as a percentage of the graphics limits.
The syntax for the LOCATE statement is as follows:

LOCATE Xmin.Xmax.Ymin.Ymax

The first two parameters specify the left and right boundaries, and the last two parameters
specify the lower and upper boundaries. The parameters can be numeric constants, variables,
or expressions.

Like the LIMIT statement, LOCATE can be exchanged to reflect the plot across the x and y axes.
However, note that the reflection does not begin until a scaling operation is performed (such as
SCALE or SHOW). Refer to the section of this chapter called "Reflecting Images" for further details.

When the LOCATE statement is executed prior to a scaling statement (SCALE. SHOW, or MSCALE),
the user units scale is mapped onto the area defined by LOCATE rather than the graphics limits.

The plotting boundaries specified by the LOCATE statement replace any previously defined plotting
boundaries. In turn, the LOCATE-defined plotting boundaries are redefined by the CLIP statement.
The LIMIT. UNCLIP, and PLOTTER IS statements default the plotting boundaries to the graphics
limits. The plotting boundaries are also set to the graphics limits whenever display memory
is reapportioned or the computer is turned on. When the computer is set to graphics units
mode by executing SETGU, the graphics limits define the current plotting area. Executing SETUU
restores the LOCATE or CLIP-defined plotting boundaries.

Graphics 15-37

The following drawings show the available plotting area and the current scale in user units mode
and graphics units mode for the given LIMIT, LOCATE, and SCALE statements. Labeling is allowed
anywhere within the graphics limits, regardless of the current units mode. The graphics limits
are drawn in solid lines; the plotting· boundaries are drawn in dotted lines. The plotting area is
the shaded portion.

LIMIT 0,120,0,60
LOCATE 100,300,50,150
SCALE 0,10,0,10

User Units Mode

(-5,-5)

o

---,
I
I
I
I

_.....J

10

(300,150) ,-----------,
I I
I I

1 00 rT7rrrf:~777J77rrrr0S7777T77?7: I

Graphics Units Mode 50

o
o 100

Figure 15-20a. LOCATE, UU's, and GU's

15-38 Graphics

200

I
----~

LIMIT 0.120.0.60
LOCATE 50.150.25.75
SCALE O. 10 . 0 . 10

User Units Mode

(-5,-5)

75
i??

Graphics Units Mode 1:\
:::::;:;:::

25 ;:;::::

0
o

::::;:;:::::

(15,15)

o 10

::::;::::: ::::::

!1:!l! !!:l :::;:;:::;

:

01 a
:ii ::

:::::::::::

50 150 200

Figure 15-20h. LOCATE, UU's, and GU's

Graphics 15-39

LIMIT 0,120,0,60
LOCATE -50,250,-50,150
SCALE 0, 10 , 0 , 10

(10,10)

7.5 __

User Units Mode

1.7 8.3

-------------(0,0)

(250,150)

1---- -- -------1

1 1
1 1
1 1

Graphics Units Mode 1 1
I 1
1 1
1 200 I

1- ____________ I
(-50,-50)

Figure 15-20c. LOCATE, UU's, and GU's

15-40 Graphics

The following program sequentially frames the default graphics limits, the graphics limits specified
by a LIMIT statement, and the LOCATE-specified plotting boundaries.

100 ! *** Locate ***
110 PLOTTER IS 1
120 GRAPHICS
130 FRAME ! Frames the default graphics limits.
140 LIMIT 10,150,10,50
150 LINE TYPE 3,2 Specifies a dotted line type.
160 FRAME ! Frames the specified graphics limits.
170 FOR 1=1 TO 49 STEP 2
180 LOCATE 50-1,50+1,50-1,50+1 ! Plotting boundaries in
190 increments of 2 GUs.
200 LINE TYPE 1 ! Specifies a solid line type.
210 FRAME
220 NEXT I
230 END

Execution of the previous program results in the following display:

Figure 15-21. Limits and Plotting Bounds

Graphics 15-41

CLIP Boundaries
The CLIP statement specifies the plotting boundaries according to the currents units: GU's, or
UU's. Previously set plotting boundaries are replaced by the CLIP-defined boundaries. Plotting
boundaries set by LOCATE or CLIP affect lines plotted in user units mode, but have no effect on
lines plotted in graphics units mode or labels. The syntax for the CLIP statement is as follows:

CLIP Xmin,Xmax,Ymin,Ymax

The first two parameters specify the left and right plotting boundaries, respectively, and the
second two parameters specify the lower and upper plotting boundaries, respectively. The
parameters can be numeric constants, variables, or expressions.

The CLIP parameters are interpreted according to the current units, in contrast to the LOCATE
statement which always uses GU's. The plotting area defined by the CLIP statement cannot be
scaled by any of the three scaling statements: SCALE, SHOW, and MSCALE. If a scaling statement
is executed after the CLIP statement, the user units scale is mapped onto the current plotting
area as defined by the graphics limits or, if specified, the LOCATE plotting boundaries.

15-42 Graphics

The graphics units scale is mapped onto the plotting area defined by the graphics limits. For
example:

100 *** Clip ***
110 PLOTTER IS 1
120 GCLEAR
130 FRAME !
140 LOCATE 10,90,10,70
150 FRAME !
160 CLIP 50,120,50,90
170 FRAME !
180 SCALE 0,5,0,5
190 GRID 1,1 !
200
210
220 LOCATE 10,90,10,70
230
240 LINE TYPE 3
250 GRID 1, 1 !
260 END

Frames the default plotting area.
Locates the plotting boundaries.
Frames the LOCATE plotting area.
Specifies new CLIP plotting boundaries.
Frames the CLIP plotting area.
Scales the LOCATE plotting area.

Draws a grid within the CLIP-defined
plotting area according to the scale
mapped onto the LOCATE-defined area.
Returns plotting boundaries to original
LOCATE-defined position.
Specifies a dotted line type.
Draws a grid on the LOCATE plotting area.

Execution of the previous program results in the following display:

•• 00/ CLIP
plotting

~----------~00TI00001800] area

area

Figure 15-22. CLIP Boundaries vs. LOCATE Boundaries

Graphics 15-43

The following program uses the CLIP statement to specify plotting boundaries and demonstrates
plotting in graphics units mode and user units mode.

100 ! *** Clip-Plot ***
110 PLOTTER IS 1
120 GRAPHICS
130 GCLEAR ~ FRAME
140 LIMIT 10,110,5,70
150 LINE TYPE 6 ~ FRAME
160 CLIP 10,RATIO*100-10,25,75
170
180 !
190 LINE TYPE 3 ~ FRAME
200 LINE TYPE 1
210 MOVE 0,100
220 FOR X=5 TO RATIO*100 STEP 5
230 IF X<50*RATIO THEN SETGU ELSE SETUU
240
250
260
270
280

Set new graphics limits.

Plotting boundaries in
GUs - the current user
units scale.

! Sets graphics units mode
for left half of plot,
user units mode for right
half of plot. Plotting
scale is GUs for both
modes.

290 IF INT((-1)A(X/5))=1
300 DRAW X,Y

THEN Y=100 ELSE Y=O

310 NEXT X
320 ! *** Labeling is not restricted by the plotting boundaries ***
330 !
340 MOVE 3,10 ~ LABEL "Graphics Units Mode"
350 MOVE 85,10 ~ LABEL "User Units Mode"
360 END

15-44 Graphics

Execution of the previous program results in the following display:

Figure 15-23. CLIP, GU's, and UU's

Unclipping Plotting Boundaries
The UNCLIP statement sets the plotting boundaries equal to the graphics limits, establishing the
area bound by the graphics limits as the current plotting area. The syntax of this statement is
as follows:

UNCLIP

UNCLIP doesn't disturb the current units; the system remains in the current scaling units mode.
The SETGU statement also establishes the area within the graphics limits as the current plotting
area, but without resetting the plotting boundaries. SETGU sets the system to graphics units
mode.

Graphics 15-45

The UNCLIP statement is used in the following program to reset the LOCATE-specified plotting
boundaries to the graphics limits. The user units scale is preserved.

100 ! *** Unclip ***
110 PLOTTER IS 1
120 GCLEAR
130 !
140 LIMIT 0,115,0,75 @ FRAME! Specifies and frames graphics limits (mm).
150 LOCATE 40,120,20,80 @ FRAME! Locates and frames the plotting
160 boundaries (GU's).
170 SCALE 0,10,0,10 Scales the LOCATE plotting area (UU's).
180 GRID 1,1 ! Draws a grid on the LOCATE area.
190 !
200 CSIZE 9,0.9
210 MOVE 2.2,-1.9
220
230

Specifies character size.
Moves the pen outside the plotting
boundaries.

240 DISP "Program paused. Type CONT to continue." @ PAUSE
250 !
260 LABEL "UNCLIP"
270 !
280 UNCLIP !
290
300 GRID 1,1
310
320
330 END

Labels the character string "UNCLIP".

Sets the plotting boundaries (LOCATE)
back to the graphics limits (LIMIT).
Draws a grid on the plotting area
bounded by the graphics limits; UUs
are unchanged.

Execution of the previous program results in the following display:

Il J r····J (Il I IP

Figure 15-24. UNCLIP Resets Default Plotting Bounds

15-46 Graphics

The following table summarizes the statements and conditions which affect the position and scale

of the plotting area.

Table 15-1. Graphics Boundaries and Scaling

Effect on Effect on Effect on Effect on
Condition or Parameter Mode Scaling Graphics Plotting
Statement Units GU's vs. UU's Units Limits Boundaries

Power-on - Set to UU's UU's=GU's Set to default Set to default
mode graphics limits graphics limits

of the graphics of the graphics
display. display.

PLOTTER IS - Set to UU's UU's=GU's Read from Set to graphics
mode device limits.

LIMIT millimetres Set to UU's UU's=GU's Set to specified Set to graphics
mode limits. limits specified

by LIMIT.
LOCATE GU's No effect No effect No effect Set to

boundries
specified by
LOCATE.

CLIP Current units No effect No effect No effect Set to
boundries
specified by
CLIP

UNCLIP - No effect No effect No effect Resets to
current graphics
limits

SCALE UU's Set to UU's UU's specified No effect No effect
mode by SCALE.

SHOW UU'S Set to UU's UU's specifed No effect No effect
mode by SHOW (in

equal x& y
units).

MSCALE millimetres Set to UU's UU's specified No effect No effect
mode by MSCALE in

millimetres.
SETGU - Set to GU's GU's No effect Temporarily

mode. Plotting set to graphics
area is defined limits
by graphics
limits.

SETUU - Set to UU's Current UU's No effect Restores plot-
mode. Plotting as specified by ting boundaries
area is defined the above
by plotting statements
boundries. and conditions.

Graphics 15-47

Reflecting Images
The normal sequence of parameters in the LIMIT statement puts the origin of your graph in the
lower-left corner of the graphics output. By changing the order of parameters, you can produce a
reflected image of the plot (except labels) without any additional changes in the program. Three
kinds of reflected images are possible:

Exchanging the x_min with the x_max parameter reflects the image across the y axis.

Exchanging the y _min with the y _max parameter reflects the image across the x axis.

Exchanging the x_min with the x_max parameter, and the y _min with the y _max parameter
reflects the image across origin.

The SCALE, SHOW, and LOCATE statements can also be used to reflect plots by exchanging param
eters similarly.

NOTE

Note that BPLOT images are not reflected. In some cases, labels are not
reflected; you can explicitly reflect labels with the CSIZE statement.

15-48 Graphics

Digitizing Graphics Limits and Plotting Bounds
When executed without parameters, the LIMIT, LOCATE, and CLIP statements allow you to
manually move the graphics limits or plotting boundaries on the plotting device. Executing these
statements without parameters suspends program execution.

• With the LIMIT statement, the system waits to receive a message from the graphics input
device containing the location of the lower-left and upper-right graphics limits .

• With LOCATE and CLIP, the system waits to receive the location of the lower-left and
upper-right CLIP or LOCATE plotting boundaries.

The procedure for digitizing the graphics limits or the plotting boundaries is as follows:

1. Execute LIMIT. LOCATE, or CLIP, which suspends program execution.

2. Move the input locator (or pen) to the desired lower-left limit or boundary and press
the "digitize button." The locator's coordinates are sent to the system, where they are
interpreted as the lower-left limit or plotting boundary. The system beeps (if hardware
is installed) when the button is pressed to signify that the digitized information has been
received.

3. Move the input locator (or pen) to the desired upper-right limit or boundary and press the
digitize button again. The locator's coordinates are sent to the system and interpreted
as the upper-right graphics limit or plotting boundary. The computer beeps once again,
if possible, after pressing the digitize button to signify that the digitized information has
been received.

4. The digitized graphics limits or plotting boundaries are now active, and program execution
continues.

Graphics 15-49

Normally you would want to enter the lower-left limit or boundary first and the upper-right limit
or boundary second. However, you can also digitize the graphics limits or plotting boundaries
in different orientations to get a reflected image of your plot. For example, if you enter the
upper-right limit first and the lower-left limit second, your plot will appear as if it was reflected
through the origin. The procedure is analogous to exchanging parameters in the LIMIT or
LOCATE statement. The sequence (first or second) and location (lower-left, upper-right, upper-left,
or lower-right) of the digitized graphics limit or plotting boundary corner determines the type of
reflection. The three types of reflections are summarized in the table below. (Note that digitized
CLIP boundaries cannot be used to reflect plots.)

LIMIT and LOCATE Reflected Plots

Reflection Reflection Reflection
Unreflected across across across

plot origin x-axis y-axis

Location of first lower-left upper-right upper-left lower-right
digitized limit or corner corner corner corner
boundary

Location of second upper-right lower-left lower-right upper-left
digitized limit or corner corner corner corner
boundary

The following program digitizes the graphics limits, frames the plotting area, and then draws
an arrow; the arrow points from the first digitized corner to the second digitized corner of the
graphics limits. Experiment with your plotter by digitizing different graphics limits, and note how
the shape and orientation of the figure changes.

100 ! ASSIGN 5 to Ihpgl,/dev/hp7475A"
110 PLOTTER IS 1! Specifies the plotting device.
120 !
130 Loop: ! Repeat digitizing limits.
140 CLEAR
150 DISP "Digitize graphics limits: II
160 DISP
170 DISP
180 !
190 LIMIT
200 !
210 CLEAR

II

II

1. Move
2. Move

220 DISP "Plotting."
230 !
240 FRAME !
250 FOR 1=1 TO 8 !
260 READ X,Y

input locator to 1st point; press ENTER. II

input locator to 2nd point; press ENTER. II

Computer waits while you digitize the
graphics limits from the plotter.

Frames the digitized plotting area.
Plot the arrow.

270 IF 1=1 THEN MOVE X,Y ELSE DRAW X,Y

15-50 Graphics

280 NEXT I
290
300 FOR 1=1 TO 5 ! Plot box in arrow.
310 READ X,Y
320 IF 1=1 THEN MOVE X,Y ELSE DRAW X,Y
330 NEXT I
340 !
350 RESTORE
360 GOTO Loop
370 !

Restore DATA pOinter.

380 DATA 20,10,10,20,20,30,10,40,60,60,40,10,30,20,20,10
390 DATA 37,17,41,17,41,21,37,21,37,17
400 !
410 END

The example output below shows the image of two arrows, each of which is the reflection
(through the origin) of the other. It was produced by first digitizing the lower-left and upper-right
corners, followed by digitizing the upper-right and lower-left corners-the same points, but in
reverse order.

Figure 15-25. Reflecting Plots

Graphics 15-51

Graphics Input
Technical BASIC has the ability to accept inputs from graphics devices. The "Example Graphics
Programs" section at the beginning of the chapter showed a simple example of graphics input.
This section further describes these operations.

Input Capabilities
The following capabilities are supported:

• Digitizing individual points using an input or output (plottingl) device, by first moving the
input locator and then pressing the "digitize button." (If the graphics raster is on when
DIGITIZE is executed, movements of the input locator will be "tracked" by a cursor on
the output device.)

• Determining the input locator's current coordinates (without waiting for the "digitize but
ton" to be pressed).

What Is Digitizing?
Digitizing is essentially the inverse of plotting.

• During plotting operations, the computer sends x,y coordinate values (and pen up/down
instructions) to the plotting device, directing the pen to the specified location on the plotting
area.

• During digitizing operations, you (optionally) move the graphics input locator to the desired
point and then press a button to tell the system to determine the coordinates of the point
(i.e., digitize it).

The digitizing process enables you to convert graphics information into digital information. For
example, you could trace the outline of a drawing or photograph, digitizing points along the way.

Digitizing the Input Locator's Position
Digitizing the input locator's position is an operation which involves both the plotter and the
computer. Here is an example statement:

DIGITIZE Xpos,Ypos

1 See the "Using Plotters" section for specific details of digitizing using plotters.

15-52 Graphics

The system first asks the input device for the locator's coordinates. When the "digitize button" is
pressed, the device then sends the coordinates to the computer. The BASIC system then stores
the information in the numeric variables specified. The variables are assigned values according

to the current scaling units.

There is also another statement which can be used to digitize the input locator's location: CURSOR.

Here is an example of using the CURSOR statement:

CURSOR Xpos.Ypos

where Xpos and Ypos are the variables that receive the coordinates of the input locator.

The syntax is the same as for the DIGITIZE statement, but the statements use different methods
for entering the digitized information into computer memory:

• The DIGITIZE statement suspends program execution while you position the input loca
tor to the desired location and waits until the "digitize button" is pressed. The locator's
coordinates are read into computer memory only after the "digitize button" is pressed.
(Tracking is enabled if the graphics raster is on when DIGITIZE is executed.)

• The CURSOR statement does not suspend program execution. The input locator's coor
dinates are read and placed in the specified variables immediately-without suspending
program execution until the digitize button is pressed.

Therefore, the locator must be positioned at the desired positi<;m before executing the CURSOR

statement. The DIGITIZE statement allows you to position the locator and enter the digitized
information after DIGITIZE is executed.

NOTE

The optional pen status parameter available with DIGITIZE and CURSOR is
meaningless when the graphics input device is separate from the graphics
output device. It is only useful when the input and output devices are a
single device; for instance, it can be useful when using many pen plotters,
because the pen is both output device and input locator. Note, however,
that this parameter is set by the last plotting operation, not by the last
input operation. See the subsequent section called "Using Plotters" for
additional details.

Graphics 15-53

Pens and Background
Traditionally, drawing requires pen and paper. With raster graphics, the paper is replaced by
the graphics raster, and the pen is replaced by software that turns raster pixels on and off.

The preceding examples did not need to specify a pen number, since the default is PEN 1, which
draws a white line {on a black background}.

Monochromatic Pens
On monochromatic graphics rasters, the PEN statement lets you choose between three different
pens:

Table 15-2. Monochromatic Pens

Pen Number Effect

PEN 1 white pen-turns pixels on

PEN 0 black pen-turns pixels off

PEN -1 complementing pen-white pixels are changed to black, and
black pixels are changed to white {providing the display supports
block read/write operations; see ASSIGN in the BASIC Reference

Manual for a list of displays with this capability}.

15-54 Graphics

Color Pens
On color graphics rasters, the PEN statement is also the means of selecting any of the available

color pens. For instance, here is the default set of colors for the HP 98700 Color Display

Controller.

Table 15-3. Default Color Pens

Pen Number Default Color

PEN 7 Magenta

PEN 6 Blue

PEN 5 Cyan

PEN 4 Green

PEN 3 Yellow

PEN 2 Red

PEN 1 White

PEN 0 Black

Negative pens l Complementing pens

The background is normally black, and all pens write in "dominant" mode-that is, they overwrite

any color (or black) that is currently on the screenl .

Other displays may have a different set of color pens available2 .

1 "Complementing" pens are available by using the negative of the pen number. For instance. on the 98700 display. dominant red is PEN
2 and complementing red is PEN -2. The resultant operations for the complementing pens are as follows: for each pixel drawn on the

screen. take the bits of the screen pixel (the destination) and exclusive or them with the bits of the pen color (the source); the resultant

value is placed into the screen pixel (destination).

With some color displays. you can also re-define the default color map. See "Section 3: Starbase Color Graphics" of the HP-UX Concepts

111ld Tutorials. Vol. 6. Graphics manual for details. It is possible to either do this while in the HP-UX system and then enter BASIC. or

to do it in a binary program that the BASIC system calls (see one of the "Binaries" chapters for examples of calling a routine written in

another language).

Graphics 15-55

Moving the Pen and Drawing
Several statements control the movement of the pen on the drawing surface.

MOVE X,Y

DRAW X,Y

PLOT X,Y,PenCtrl

IMOVE X,Y

IDRAW X,Y

PLOT X,Y,PenCtrl

IPLOT X,Y,PenCtrl

RPLOT X,Y,PenCtrl

15-56 Graphics

moves the pen to the coordinate X, Y (without drawing).

draws a line from the current pen position to the coordinate X, Y.

moves or draws to point X, Y as directed by the value of PenCtrl.

moves to point X, Y using the current pen position as the origin.

draws to point X, Y using the current pen position as the origin.

moves or draws to point X, Y as directed by the value of PenCtrl.

moves or draws to point X, Y, as directed by the value of PenCtrl,
using the current pen position as the origin.

moves or draws to point X, Y, as directed by the value of PenCtrl,
using the last pen location (specified by another plotting statement) as
the origin.

Moving and Drawing
Try the following example.

100 PLOTTER IS 1
110 GCLEAR
120 FRAME
130 DRAW 60.50
140 LABEL" X=60. Y=50"

X=60 Y=50 .,

Figure 15-26. Drawing and Labeling

A white line is drawn from the lower left corner to the middle of the screen. Why from the
lower left corner? Because executing the statement PLOTTER IS 1 returns the pen to location
0,0. This is currently the lower left corner of the display.

Graphics 15-57

Execute the following program to see these statements' effects. (If your display does not support
block read/write operations l , then this example will not work as described below.)

100 PLOTTER IS 1
110 !
120 PEN 1 !
130 GCLEAR !
140 MOVE 0,50
150 DRAW 100,50
160 WAIT 3000 !
170
180 MOVE 50,50 !
190 PEN 0 !
200 DRAW 0,50
210 WAIT 3000
220
230 PEN -1 !
240 DRAW 100,50
250
260 END

White pen.
Clear graphics raster.
Move to left center.
Draw solid white line.
Wait 3 seconds.

Move to center of line.
Change to black pen.
Draw over left half of line.
Wait another 3 seconds.

Complementing pen.
Draw over entire line.

1st screen.

2nd screen.

3rd screen.

Figure 15-27 .. Using the Complementing Pen

A white line is first drawn across the screen. Then the pen is moved to the midpoint of the line,
and a black pen draws over the left half of the line. Finally, the entire line is complemented.

1 See ASSIGN in the BASIC Reference Manual for a list of devices with block read/write capability.

15-58 Graphics

Pen Control with PLOT
Pen action is automatically defined for the MOVE and DRAW statements. The pen is always raised
before a MOVE and lowered before a DRAW. The PLOT statement has an optional pen control
parameter that determines the pen's action according to the following table.

Table 15-4. PLOT Pen-Control Parameters

Control Result
Value

Positive Odd Move pen, then lower it

Positive Even Move pen, then raise it

Negative Odd Lower pen, then move it

Negative Even Raise pen, then move it

Note that when a positive parameter is used, the pen's up/down status is not changed before
moving it. For instance, if the pen is currently lowered and a postive pen control parameter
is used in a PLOT, then the pen remains down throughout the entire operation; it is not raised
before the move and then lowered after the move.

Graphics 15-59

The following example shows controlling the up/down motion of the pen by using the optional
pen control parameter.

100 PLOTTER IS 1
110 !
120 PEN 1 !
130 GCLEAR !
140 !
150 PENUP !
160 PLOT 20,20,1
170 PLOT 40,20 !
180 PLOT 40,40,0
190 PLOT 20,20,1
200 PLOT 20,40
210 PENUP
220
230 END

White line.
Clear graphics raster.

Make sure pen is rasied.
Move, then lower.
Draw (since pen lowered).
Draw, then raise.
Move, then lower.
Draw again.
Raise pen.

let PLOT >
Figure 15-28. Using Pen Control Parameters with PLOT

Relative Plotting
A second method of moving and drawing involves using a new origin, and specifying pen move
ments relative to this origin. The relative plot (RPLOT) statement uses the current pen position
as a new origin to define a second coordinate system. This new origin is located wherever the
last plotting statement (other than RPLOT) left the pen. Since RPLOT uses a movable origin, it is
useful when drawing a figure that needs to be repeated at different locations on the display.

Here is an example usage of the statement:

RPLOT X,Y,PenControl

x and Y specify relative displacements from the current RPLOT origin.

15-60 Graphics

This program draws a triangle at three different locatioll;:'.

100 PLOTTER IS 1
110 GCLEAR © FRAME
120
130 MOVE 50,50! Sets the relative origin.
140 GOSUB Triangle
150
160 MOVE 10,10! Move the relative origin.
170 GOSUB Triangle
180
190 MOVE 80,80! Move it again.
200 GOSUB Triangle
210
220 STOP
230
240 Triangle: ! Draw using relative coordinates.
250 RPLOT 20,10,-1
260 RPLOT 20,0
270 RPLOT 0,0,2 ! Pen up after draw.
280 RETURN

Figure 15-29. Relative Plotting (RPLOT)

Note that the comm,and RPLOT 0,0 returns the pen to the "local" origin (e.g. 50,50) not the
"absolute" origin (0,0).

Graphics 15-61

Incremental Pen Positioning
It also useful in some situations to have statements that define the pen's current location as a
new origin. Plotting coordinates are then specified relative to this new origin, which is moved
every time the pen is moved.

IDRAW X,Y

IMOVE X,Y

IPLOT X,Y,P

This type of plotting is similar to RPLOT, except that every pen movement defines a new origin
including those produced by IDRAW, IMOVE, and IPLOT.

Execute the following program and watch the results.

10 PLOTTER IS 1
20
30 MOVE 40,40
40 IDRAW 30,0
50 IDRAW 0,30
60 IMOVE -30,0
70 IDRAW 0,-30 !

Draw right.
Draw up.
Move left.
Draw down.

IMOVE

<

1st !DRAW>

/~

""U
1:

N

Figure 15-30. Incremental Plotting (IDRAW)

With each incremental movement of the pen, a new origin is created for the subsequent
incremental-plotting (IPLOT) statement.

15-62 Graphics

Rotating Incrementally Plotted Lines
Lines generated by incremental plotting (IDRAW, IMOVE, and IPLOT) can be rotated by the PDIR
(plot direction) statement. The current angle mode determines how the angle parameter is
interpreted; in the following example, the DEG statement specifies that the angle parameter of
PDIR is to be interpreted in degrees.

100 PLOTTER IS 1
110 GCLEAR @ FRAME
120 !
130 DEG ! Use angular mode of degrees.
140 FOR Angle=O TO 90 STEP 10
150 PDIR Angle
160 MOVE 0,0
170 IDRAW 100,0 Rotated Angle degrees.
180 NEXT Angle

Figure 15-31. Rotating Plots

PDIR 0 will return to the system to normal (no rotation).

Graphics 15-63

Line Types
There are eight different types of lines available with the LINE TYPE statement. Examples are
solid, dashed, dotted, and alternating dashes and dots. The HP-UX Technical BASIC Reference
Manual shows examples of each type.

Two parameters are allowed with the LINE TYPE statement:

• line type (default is 1)

• repeat length (default is 5).

Thus, the default is LINE TYPE 1.5. (The repeat length cannot be changed on some Series
200/300 and 500 devices.)

100 PLOTTER IS 1
110 !
120 FOR LineType=1 TO 8
130 LINE TYPE LineType
140 MOVE 10.90-10*LineType
150 DRAW 90.90-10*LineType
160 NEXT LineType
170 END

LINE TYPE 8

LINE TYPE 7

LINE TYPE 6

LINE TYPE 5

LINE TYPE 4

LINE TYPE 3

LINE TYPE 2

LINE TYPE 1

Figure 15-32. A Sample of Line Types

When the graphics raster is used as the plotting device, the repeat factor is system-dependent.

15-64 Graphics

Labeling
Although images can convey a great deal of information, a few labels help explain what is being
presented. The following program places a label on the graphics raster.

10 PLOTTER IS 1
20 GCLEAR ~ FRAME
30
40 MOVE 50,50
50 CSIZE 12 ! Large characters.
60 LABEL "Sin X"

Sin X

Figure 15-33. Simple Example of Labeling

Table 15-5. Statements that Affect the Printing of Labels

CSIZE controls the character size, aspect ratio, and slant.

LDIR (label direction) specifies the printing angle of the label.

LORG (label origin) adjusts the location of the label.

Graphics 15-65

Each of the following examples illustrates one of the above statements.

100 PLOTTER IS 1
110 GCLEAR @ FRAME
120 !
130 MOVE 15,40
140 CSIZE 10,4 Height 10; aspect ratio 4
150 LABEL "WIDE"
160 !
170 MOVE 15,15
180 CSIZE 20,0.2 Height 20; aspect ratio=0.2
190 LABEL "TALL"

I~ll

Figure 15-34. Changing the Size of Graphics Labels

15-66 Graphics

Label direction is interpreted according to the current angular mode: degrees, radians, or grads.

100 PLOTTER IS 1 @ FRAME
110
120 DEG ! Set degrees angular mode.
130
140 MOVE 90,30
150 CSIZE 9
160 LDIR 90 ! Label direction is bottom to top.
170 LABEL II VERTICAL II
180
190 MOVE 80,30
200 LDIR 180 ! Label direction is right to left.
210 LABEL "UPSIDE DOWN"
220 END

NMOO 30ISdn

Figure 15-35. Changing Graphics Label Direction

Graphics 15-67

There are nine possible label origins used for adjusting the location of the label. This program
shows three. (See the HP-UX Technical BASIC Language Reference for a description of all nine.)

100 PLOTTER IS 1
110 GCLEAR ~ FRAME
120 CSIZE 6
130 !
140 MOVE 60,70
150 LORG 1 !
160 LABEL USING
170
180 MOVE 60,50
190 LORG 5 ! 2nd
200 LABEL USING
210 !
220 MOVE 60,30

1st "label origin" statement.
"K"; "RIGHT"

"label origin" statement.
"K"; "CENTER"

230 LORG 9! 3rd "label origin" statement.
240 LABEL USING "K"; "LEFT"
250 END

RIGHT

CENTER

LEFT

Figure 15-36. Changing the Graphics Label Origin

Note that the BASIC system uses default widths of 21 characters with some types of data in
labels. The effects of this convention are not apparent when using LORG values 1 through 3,
because these values specify that the field is to be left-justified (and trailing blanks do not show
up). However, they may become a problem when using LORG values of 4 through 9, since these
values specify that text is to be centered or right-justified in these 21-character fields. You can
suppress these additional characters by using LABEL USING "K"; ... , since LABEL USING allows
formatted labels to be plotted just as PRINT USING allows formatted text to be printed.

15-68 Graphics

Plotting and Reading Pixels
This section describes a special plotting operations that are available on raster devices that
support block read/write operations. These operations are also called "bit block transfers."

Plotting Pixels (SPLOT)
The BPLOT, or byte plot, statement performs a type of plotting operation in which the system
accesses individual pixels on the graphics raster, changing them according to the parameters in
the BPLOT statement.

Here is the general form of the statement:

BPLOT byte_plaCstring, pixels_per Jaw

Here are two examples:

WhitePen$=CHR$(1) I
TenWhitePixels$=RPT$(WhitePen$,10)
Fi vePerRow=5 Plots this:
MOVE 20,20
BPLOT TenWhitePixels$,FivePerRow

RedPen$=CHR$(2)
TwelveRedPixls$=RPT$(RedPen$,12)
SixPerRow=6
MOVE 30,30
BPLOT TwelveRedPixls$,SixPerRow

I Plots this:

coordinates = 20,20

-(....
•••••

coordinates = 30,30

-¥ •••••
••••••

Figure 15-37. Plotting Pixels

Graphics 15-69

Reading Pixels (BREAD)
The BREAD statement allows you to read pixels on the graphics raster. The raster is read dot by
dot and placed into a character string.

coordinates = 50,50

I Reads this:

~ ...
DIM FourByFive$ [20] • • • •
MOVE 50,50 • • • •
BREAD FourByFive,4 • • • • • • • •

Figure 15-38. Reading Pixels

BREAD performs the opposite function as BPLOT; the two statements are often used cooperatively
for creating and storing graphics raster images.

A Closer Look at Byte Plotting
This section elaborates on how BPLOT works.

How the String Parameter Is Used
With the BPLOT statement, each character in the string expression specifies the color of one pixel
on the graphics raster.

Starting Location
BPLOT can begin at any pixel location. The starting location for BPLOT is determined in two ways:

• If the most recent pen movement was directed by any statement other than BPLOT, then
the BPLOT begins at the current pen position (or the closest pixel to it).

• If the most recent pen movement was directed by a BPLOT statement, then the next BPLOT

string begins one row below the left end of the last byte-plotted string.

The BPLOT statement doesn't affect the pen position for other plotting operations. On the other
hand, all of the other plotting statements which move the pen do affect the beginning location
of subsequent byte-plotted information. (Note that byte plots can't be reflected by changing
graphics limits or scaling, as can other plotted images.)

15-70 Graphics

Number of Pixels Per Row
The pixels_per Jaw parameter specifies the number of pixels per row; it can be a numeric
constant, variable, or expression.

• If the pixels_per Jaw parameter is positive, the BPLOT statement performs an exclusive or
with the existing dots on the display screen.

• If it is negative, the pixels are overwritten by the pen number specified in the corresponding
string character. (This is also known as a "dominant" pen.)

When the specified number of pixels per row are plotted, BPLOT repositions the pen to the left
end of the row just plotted, then moves down one row. BPLOT continues to plot pixels until the
entire character string is used to plot pixels.

Additional Details

• The plotting area is set up using the same procedures as for plotting data, axes, and labels.

• You can start a BPLOT operation anywhere within the current graphics limits (default limits,
or those specified by a LIMIT 3tatement). The operation may even spill over into an area
outside these limits; however, the pen cannot be positioned outside the current graphics
limits prior to BPLOT, unless the system is set to graphics units (GU) mode.

• The PEN statement is ignored during BPLOT operations. BPLOT plots dots according to the
BPLOT's string parameter (the first parameter).

A Closer Look at Byte Reading
You can read the current states of pixels on the raster by using the BREAD statement. Here is
the general form of the statement:

BREAD byteJead_string. pixels_per Jaw

The BREAD (byte read) statement performs the converse of BPLOT: it reads pixels from the graphics
display and stores them as characters in the string variable-one pixel per character.

How the String Parameter Is Used
With the BREAD statement, each character in the string expression receives the pen number of
one pixel on the graphics raster.

Graphics 15-71

Starting Location
The byte reading begins at the current pen position, reading rows of pixels from left to right.
The pen number of each pixel is read, and placed into the string, beginning at the first character
and sequentially moving through the string.

After reading one row of the specified number of pixels, the statement moves down one row of
dots and begins reading that row. The BREAD statement continues to read bytes across and down
- bUilding the character string until the string variable has reached its allocated length. Recall
that strings longer than 18 characters must be allocated memory through a DIM statement.

Number of Pixels Per Row
The pixels_per JOW parameter can be a numeric constant, variable, or expression; negative
values are interpreted as their absolute value.

BREAD does not effect the pen location for any plotting operation other than BREAD and BPLOT.

An example of using BREAD is as follows:

BREAD String$,32

where String$ is the string variable that is to receive the pixels to be read, and 32 is the number
of pixels per row.

Additional Details

• The plotting area is set up using the same procedures as for plotting data, axes, and labels.

• You can start a BREAD operation anywhere within the current graphics limits (default limits,
or those specified by a LIMIT statement). The operation may read pixels from an area
outside these limits; however, the pen cannot be positioned outside the current graphics
limits prior to BREAD, unless the system is set to graphics units (GU) mode.

15-72 Graphics

Storing and Retrieving Raster Images
One handy feature of using the graphics raster as a plotting device is that the image can be
stored in a file and later retrievedl , or dumped to a compatible printer2 .

Storing Graphics in a File
There are two methods of performing this operation:

• Use GSTORE to store the entire raster in a BASIC/GRAF file.

• Use BREAD to read a portion of the raster, then write the information in a file (with OUTPUT
or PRINT#).

Using GSTORE
The following statement stores the current graphics raster in the file named LORG_Raster.

GSTORE "LORG_Raster"

The statement creates a file of type BASIC/GRAF in the current working directory, and then stores
the pixels in the file.

Retrieving Graphics from a File
Like storing the graphics raster, there are two ways to retrieve a stored raster:

• Use GLOAD to load a GSTORE'd raster in a BASIC/GRAF file.

• Read the information in a file (with ENTER or READ#). Use BPLOT to write the corresponding
portion of the raster.

1 GSTORE. GLOAD, and DUMP GRAPHICS are only possible with graphics raster devices which support block read/write operations. See

ASSIGN in the BASIC Reference Manual for a list of devices with this capability.

The printer must support the "HP Raster Interface Standard" for graphics dumps, in addition to the graphics raster display supporting

block read/write operations. See your printer's manual. or an HP Configuration Guide, to determine whether your printer has this

capability.

Graphics 15-73

Using GLOAD
The image can be returned to the graphics raster from a file by this statement:

GLOAD "LORG_Raster"

The BASIC/GRAF file's contents are loaded back into the raster.

The general rule with GSTORE and GLOAD is to store and load from the same size display screen
or window. For instance, if you GSTORE a 512x390 graphics screen, then you should GLOAD it
back into the same size screen. Attempting to GSTORE an image on a particular size of screen
and then GLOAD it back into a different size of screen or window will not generally work.

Dumping Graphics to Printers
You cannot directly send graphics commands to a printer like you can to a plotter. However,
printers that support the "HP Raster Interface Standard!», such as the Thinkjet and Laserjet
printers, are capable of reproducing on paper the image on the graphics raster. Usually there is
a one-for-one correspondence between a pixel on the screen and a dot on the printed paper.

Execute the DUMP GRAPHICS statement to dump the graphics raster to a printer.

DUMP GRAPHICS I Return I

NOTE

Since you will be using a "raw" device (not a "spooled" device), you will
need to make sure nobody else is using the printer during the dump.

1 DUMP GRAPHICS is only possible with graphics raster devices which support block read/write operations. See ASSIGN in the BASIC

Reference Manual for a list of devices with this capability.

In addition, the printer must support the "HP Raster Interface Standard" for graphics dumps, in addition to the graphics raster display

supporting block read/write operations. See your printer's manual, or an HP Configuration Guide, to determine whether your printer

has this capability.

15-74 Graphics

Using Plotters
Now that you have used most of the features of graphics raster devices, it is time to expand
this knowledge to include pen plotters. Most of the operations described in preceding sections
are applicable to using plotters. However, there are a few differences and additional capabilities
with plotters. This section describes the additional considerations that you will need to make
when using plotters.

Graphics Defaults Restored
When you change plotting devices (with PLOTTER IS), the system sets up certain default condi
tions on the device and in the BASIC graphics system itself. See PLOTTER IS in the Technical
BASIC Reference Manual for details. (Note that the current pen may not be affected by executing
PLOTTER IS.)

The following operations also set up default graphics conditions:

• Executing a LIMIT statement.

• Exiting and re-entering BASIC.

For a complete list of graphics default conditions, refer to the HP-UX Technical BASIC Reference.

Additional Considerations
There are several special considerations when using an external plotter.

• For instance, PENUP lifts a plotter's pen from the surface of the paper. The logical pen
used with raster graphics could care less where it sits, but real pens with real ink make a
real mess unless lifted from the paper. Thus programs that use pen plotters should make
a point of lifting the pen whenever it is not moving. After plotting, cap the pen (or execute
PEN 0 to put the pen away).

NOTE

PENUP may not be executed immediatly due to the buffering of commands
by the HP-UX system.

• The aspect ratio of an external plotter is often different than the aspect ratio of a graphics
raster. Character size is also affected by this difference.

• Lines drawn by the LINE TYPE statement will differ from those defined for the display.
Check the plotter's manual for descriptions of line type parameters.

Graphics 15-75

Digitizing Plotter Pen Locations
Since most plotters have both input and output capabilities1 , you can use the pen as an input
device during digitizing operations. You can digitize any point on the plotting area and store
its coordinates for later use. In order to better understand these operations, however, you may
need a little background.

Physical and Logical Pens
The the ink pen on a pen plotter is considered to be a "physical pen," because it actually draws
points, lines, and curves.

The BASIC system has a pen of its own, known as the "logical pen". The x and y coordinates
and up/down status of the logical pen reside in memory and are determined by the most recently
executed statement affecting logical pen location and status. For example, executing MOVE 10.20

moves the logical pen to the coordinates 10,20 (the physical coordinates of which are determined
the current scaling units).

On some devices, the physical pen location can be changed at the device. For example, you can
move a plotter pen by using the front-panel pen-movement controls. The physical pen location
can also be altered by executing a plotting statement (for example PLOT, MOVE, or LABEL). The
physical pen is always located within the physical limits of the plotting device, but not necessarily
within the current plotting area.

The location and status of the logical pen are unaffected by the pen movement controls on the
plotting device. The logical pen can be located anywhere inside or outside the physical limits of
the device.

The plotter must be speCified as both input and output device; you cannot have separate input and output devices (such as a display and

a mouse). See ASSIGN in the Technical BASIC Reference Manual for further information.

15-76 Graphics

Although the physical and logical pens coincide with each other during most plotting operations,
they are each recognized individually by the system. Listed below, are some instances where
the logical and physical pens have different locations.

• Whenever the graphics default conditions are activated, the logical pen moves to the
lower-left corner of the plotting area. However, the physical pen location is unaffected.

• When a plotting statement directs the pen to a point outside the current plotting area,
the physical pen stops short of the intended point, at the current graphics limit or plotting
boundary and is lifted (refer to the diagram below). In contrast, the logical pen location
and status always coincide with the destination point and status specified by the plotting
statement, regardless of whether or not the point lies within the current plotting area and
whether or not it was actually plotted.

• Whenever the plotting device is changed, the physical and logical pens may have different
locations depending on the initial physical pen position and the last executed plotting
statement.

• Whenever the physical pen is moved using the pen movement controls at the external
plotting device, the physical and logical pen locations differ.

Graphics 15-77

The following diagram shows the location of the physical and logical pens during the sequence
of plotting statements listed in the table below. The framed plotting area is scaled from 0 to
15 in the X direction and from 0 to 10 in the Y direction. The solid black line indicates a line
drawn during physical pen movement. The dashed black line indicates physical pen movement
without line drawing. Note that the computer plots successive points according to the logical
pen location.

lO~------~

5

/

(-3,-3)

/

/
/

/

(5,5)

(10,8) I

!

I

10 15

(10,-5)

Figure 15-39. Physical and Logical Pen Locations

Table 15-6. Physical and Logical Pen Movement Operations

Resulting physical Resulting logical
pen location pen location

Execute: and status and status

PLOT 10,B,1 (10,8) down (10,8) down

DRAW 10,-5 (10,0) up (10,-5) down

PLOT 5,5 (5,5) down (5,5) down

MOVE -3,-3 (0,0) up (-3,-3) up

15-78 Graphics

Digitizing the Physical Pen Location
Digitizing the plotter's physical pen is an operation which involves both the plotter and the
computer. Here is an example statement that digitizes the PLOTTER IS device's physical pen

location:

DIGITIZE Xpos,Ypos,PenStatus

The system first asks the plotter for the pen's coordinates and up/down status. When the I Enter I
button is pressed, the plotter then sends the information (as numbers) to the computer. The
BASIC system then stores the information in the three numeric variables specified. The first two
variables identify the coordinate location of the physical pen; the third variable identifies the pen
status. The variables are assigned values according to the current scaling units. The optional
third variable parameter is assigned the pen status information. If the pen is up, 0 is assigned
to the variable. If the pen is down, 1 is assigned to the variable. All three variables must be
numeric variables.

NOTE

The PenStatus parameter does not reflect the current pen's up/down
status. Instead, it is set by the last drawing operation that affected pen
status. For instance, if the last drawing operation was a MOVE, then the
PenStatus parameter would indicate that the pen is "up". If the pen
was put down since the MOVE (by a manual operation at the plotter),
then the PenStatus parameter will not reflect the pen's up/down status
correctly.

There is also another statement which can be used to digitize the physical pen's location: CURSOR.

The syntax is the same as for the DIGITIZE statement, but the statements use different methods
for entering the digitized information into computer memory:

• The DIGITIZE statement suspends program execution while you position the plotter's
pen to the desired location and waits until the I Enter I button is pressed on the plotter.
The physical pen's coordinates and up/down status are read into computer memory only
when the I Enter I button is pressed. When the computer receives the digitized information,
program execution continues. Here is an example that uses the DIGITIZE statement:

DIGITIZE Xvar,Yvar,PenStatus

where Xvar and Yvar are the coordinates of the point that was plotted and PenStatus is
the pen status which tells whether the pen is in the up or down position.

Graphics 15-79

• The CURSOR statement does not suspend program execution. The physical pen's coor
dinates and up/down status are read into the specified variables immediately - without
pressing the plotter's I Enter I button. Here is an example that uses the CURSOR statement:

CURSOR Xvar,Yvar,PenStatus

where Xvar and Yvar are the variables that receive the coordinates of the point that was
plotted and PenStatus is the pen status which tells whether the pen is in the up or down
position.

NOTE

The PenStatus parameter does not reflect the current pen's up/down
status. Instead, it is set by the last drawing operation that affected pen
status. For instance, if the last drawing operation was a MOVE, then the
PenStatus parameter would indicate that the pen is "up". If the pen
was put down since the MOVE (by a manual operation at the plotter),
then the PenStatus parameter will not reflect the pen's up/down status
correctly.

Keep in mind that the pen must be positioned at the desired location for digitizing prior to
executing the CURSOR statement. The DIGITIZE statement allows you to position the pen and
enter the digitized information after DIGITIZE is executed.

Digitizing the Logical Pen Location
The WHERE statement assigns the current logical pen coordinates and status to the specified vari
ables. The parameters are the same as the parameters in the CURSOR and DIGITIZE statements.

The location and up/down status of the logical pen is determined by the most recently executed
statement which changes pen status or location. All of the plotting statements which direct
pen movement also affect the logical pen location. In addition, statements and conditions which
activate the default graphics conditions also lift the logical pen and move it to the origin (0,0).
However, the physical pen's location and status are unaffected by activating the default graphics
conditions.

The logical and physical pens often have the same location and status; any plotting statement
which directs pen movement inside the current plotting area moves the physical pen as well as
the logical pen.

15-80 Graphics

The following program demonstrates th<? difference between the physical and logical pen positions
as read by the CURSOR and WHERE statements. When program execution is suspended, move the
pen (using the plotter's front panel controls) to a new location, lower the pen, execute CONT. The
computer displays the resulting physical (CURSOR) and logical (WHERE) pen coordinate locations
and pen status. In the example output below, the physical pen was moved to the coordinate
location x = 76.6, y = 68.0, and lowered.

100 ASSIGN 7 to IIhpgl.ldev/ohpglll
110 PLOTTER IS 7! Specifies the plotting device.
120 MOVE 50,50 Moves the pen to the pOint (50,50)
130 PAUSE ! Pauses the program while you move
140 the plotter pen to a new position.
150 WHERE WX,WY,WP Assigns logical pen position and
160 status to the variables WX,WY,WP.
170 CURSOR CX,CY,CP Assigns physical pen position and
180 status to the variables CX,CY,CP.
190 CLEAR
200 DISP USING 118A,2X,2(3D.D) ,3X,DII;IIWHEREII,WX;WY;WP
210 DISP USING 118A,2X,2(3D.D) ,3X,DII;IICURSORII,CX;CY;CP
220 END

The results from the programs execution are:

WHERE
CURSOR

50.0 50.0 0
76.6 68.0 1

Graphics 15-81

Graphics Using HPGL Commands
To simplify communicating with the wide variety of HP graphics devices, a standard set of graphic
commands has been adopted. The Hewlett-Packard Graphics Language (HPGL) consists of about
sixty, two-letter commands that can be used to control the operation of most HP plotters. If
fact, when BASIC statements are used to control an external plotter, they are converted (by
the system) into a series of HPGL commands which are then sent to the plotter. Refer to the
plotter's manual for details concerning which HPGL commands the plotter can recognize.

NOTE

In order to use these graphics techniques, you should have a firm grasp
of plotting operations in general. In addition, you will need to determine
which HPGL commands are supported on your plotter.

Also, you should avoid intermixing HPGL commands and Technical BA
SIC graphics commands, because BASIC makes some assumptions which
you may have invalidated by using HPGL commands ..

Introduction
While most plotting applications can be accomplished by using BASIC statements, some plotters
have capabilities that can only be accessed by using HPGL commands. When it is neccessary (or
desirable) to communicate directly with the plotter, the OUTPUT statement can be used to send
HPGL commands. For example l :

ASSIGN 7 TO "hpib"
OUTPUT 705; "DF; " ;

Some Examples
This statement sends the HPGL command to restore the default conditions of the plotter. Many
of the HPGL commands have one or more parameters. For instance:

ASSIGN 7 TO "hpib"
OUTPUT 705; "LT 6;";

This statement sets the line type to pattern number 6. The line type is plotter dependent and
not likely to be the same pattern displayed on the CRT by the LINE TYPE statement in Technical
BASIC.

1 This must be a "raw" node-one with a primary address of if in the minor number. See ASSIGN in the Technical BASIC Reference

Manual for details.

15-82 Graphics

In general, an HPGL command is terminated by either a semicolon or a line-feed. The parameters
in commands are usually separated by commas. In the previous example statement, a semicolon
is included in the string sent to the external plotter to indicate the end of a command. The
OUTPUT statement's trailing semicolon suppresses the current end-of-line sequence from being
sent to the plotter.

Some HPGL commands request the plotter to send back information to the computer. The
ENTER statement is used to receive the information. The following example interrogates the
plotter for the coordinates of the lower-left (PI) and upper-right (P2) graphics limit.

100 This program determines the coordinates of
105 the lower-left corner (Pi) and upper-right corner (P2)
110 of the "plotting area" (in "absolute device units").
115
120 ASSIGN 7 TO "hpib"
130 !
140 ! Ask plotter to "Output Points Pi and P2".
150 OUTPUT 705; "OP;";
160
170 ! Now input the points.
180 ENTER 705 ; P1x,P1y,P2x,P2y
190
200 ! Now show the coordinates.
210 CLEAR (Q DISP
220 DISP "Lower-left corner, Pi: (";P1x;",";P1y;")"
220 DISP "Upper-right corner, P2: (";P2x;",";P2y;")"
230 END

The results of executing this program on an HP 747 SA plotter are as follows:

Lower-left corner, Pi: (250 , 596)
Upper-right corner, P2: (10250 , 7796)

The OUTPUT statement sends the "Output Points PI and P2" command to the plotter, ,and the
ENTER statement accepts the X and Y coordinates for PI (lower-left corner) and P2 (upper-right
corner) sent by the plotter. The values returned are in "absolute device units," not in GU's or
UU's. One absolute device unit is equal to 0.025 millimetre.

Graphics 15-83

You might wonder how the mapping of GU's, UU's, and absolute device units is accomplished.
Consider the following statements l :

10 ASSIGN 7 TO "hpgl./dev/ohpgl"
20 PLOTTER IS 7

This statement actually sends several HPGL commands to the plotter and accepts the current
setting of PI and P2 for use by the computer in converting the values used by Technical BASIC
statements into the values needed for HPGL commands.

If you wish to change the locations of PI and P2, it will be necessary to re-execute the PLOTTER
IS statement (after changing PI and P2). This allows Technical BASIC to become aware of the
new graphics limits, and set up the correspondence between UU's (or GU's) and absolute device
units.

This must be an "auto-addressed" node-one with primary addressing in the minor number. See ASSIGN in the Technical BASIC

Reference Manual for details.

15-84 Graphics

Index

a
ABS .. 4-20
Absolute difference .. 4-11
Absolute graphics device units ... 15-83
ABSUM ... 4-71
Accessing data files ... 11-11
ACS .. 4-17
Activation record .. 6-34
Additional image specifiers ... 9-20
Algorithms .. 2-2, 2-6
Allocation of subprograms ... 6-12
ALPHA ... 9-6, 9-8, 9-11
Alpha screen .. 9-6
Alphanumeric inputs. .. 9-24
AMAX ... 4-71
AMAXCOL ... 4-71
AMAXROW ... 4-71
AMIN ... 4-71
AMINCOL ... 4-71
AMINROW , ... 4-71
Anisotropic scaling .. 15-23
Anticipating problems 9-25
Appending strings .. 5-5
Arbitrary loop exit points .. 3-22
AREAD .. 9-8, 9-30
Arithmetic:

Hierarchy
Operators

Array:

4-5
4-6

Dimensions .. 4-24
Displaying ... 4-27
Empty .. 4-50
Functions, misc .. 4-71
Numeric ... 4-22
Printing ... ' .. 4-28
Redimensioning ... 4-33

Scalar arithmetic .. 4-52
Storing .. 11-6
String .. 5-3, 5-17
Subscripts ~ .. 4-23, 4-24
Summing rows and columns .. 4-54
Terminator ... 4-29
Transpose ... 4-56
Variable names .. 4-27

ASCII:
Characters ... 5-13, 11-10
File .. 2-23

ASN .. 4-17
Aspect ratio (width/height) 15-18, 15-34
ASSIGN .. 6-35, 9-6, 12-19, 13-24, 14-22, 15-9
ASSIGN# 11-13,11-18,11-20,11-23,11-25,11-26
Assigning:

Array variables .. 4-27
String variables ... " 5-2
Values to arrays ... 4-37
Variables ... 4-2

Assumptions, questioning .. 8-18
ATN .. 4-17
ATN2 ... 4-17
Audio messages .. 9-4
AWRIT .. 9-8, 9-11
AXES .. 15-19
Axes intersection ... 15-20

b
Background color (raster) ... 15-54
BackSpace key .. 9-30
BASIC editor .. 2-14, 2-20
BASIC/DATA files " .. 6-13, 11-12
BASIC/GRAF file .. 15-73
BASIC/PROG files " .. 6-13, 6-14
BASIC/SUBP files .. 6-14, 6-16
BEEP .. 2-8, 9-4
BINAND 4-14
Binaries:

C .. 12-1
FORTRAN 14-1
Pascal .. 13-1

Binary:
(base 2) 4-15
Operations ... 4-14
Programs .. 2-11

BINCMP 4-14
BINEOR .. 4-14
BINIOR ... 4-14, 4-14
BIT .. 4-14
Blank lines, displaying .. 9-12
Blocks ... 11-16
Boolean expressions ... 3-11, 4-10
Boundary conditions .. 7-3, 8-18
BPLOT .. 15-69
Branching:

Conditions ... 8-19
Event-initiated .. 3-24

BREAD .. 15-69
Break key .. 9-24, 9-28
Breaking programs up .. 3-30
Breakpoints .. 8-13
brt_pascalwrap procedure .. 13-5
BTD ... 4-16
Budget program, example .. 2-3
Buffer number ... 11-12
Bugs:

Definition of 8~ 1
Source of .. 8-3

Bulleted lists .. 1-6
Byte plotting (graphics) 15-69
Byte reading (graphics) ... 15-69, 15-69

c
C binaries:

Compiling ... 12-3, 12-7, 12-8
Error trapping .. 12-6
File I/O ... 12-5, 12-19
Introduction .. 12-1
Linking ... 12-3, 12-7, 12-8
makebin_c script ... 12-7, 12-8
Maximum number of ... 12-5
Parameter matching .. 12-5

Parameter passing ... 12-9
Passing by reference ... 12-10
Passing by value .. 12-10
Restrictions .. 12-5
String length .. 12-15

C functions .. 12-2
C programs .. 12-2
Calculations from keyboard .. 8-14
CALL ... : 6-8
CALLBIN .. 2-11, 12-4, 13-4, 14-4
Capabilities, graphics ... 15-6
Capabilities of displays ... 9-7
CAPS LOCK ... 9-25
CAT ... 11-10
cc command ... 12-8
CEIL ... 4-20
CFLAG .. 6-31, 6-35
CHAIN ... 3-30, 6-30, 6-33
Chaining programs ... 3-30
Chapter previews ... 1-6
Character sets, printer .. 9-14
Character size (graphics) 15-65
Characteristics of COM ... 6-28
Choosing program segments .. 3-14
CHR$... 2-11, 5-13, 9-14
Circle , .. 15-24
CLEAR. .. 9-9, 9-10
Clearing:

Flags ... 6-31
The screen 9-9

CLIP .. 15-36, 15-42, 15-42, 15-47
Clock ... 10-2
Closing files ... 11-12,11-31
CNORM .. 4-71
CNORMCOL .. 4-71
Code walk-throughs ... 8-4
Codes, for keys ... 9-30
Coding programs ... 2-2, 2-8
COL .. 4-29
Color pens .. 15-54

Column-major order .. 4-31
COM ... 3-30, 4-26, 5-2, 6-27, 6-33
COM characteristics ... 6-28
Commands ... 2-12
Comments ... 2-9, 3-34
Common:

Storage .. 4-26, 6-27
Variables .. 3-30

Communica tion:
Between programs ... 3-31
Program/ subprogram ... 6-19

Comparisons, numeric .. 4-11, 7-5
Compiling C binaries ... 12-3
Compiling FORTRAN binaries 14-3, 14-8
Compiling Pascal binaries ... 13-3, 13-8
Computer /human interface .. 9-1
CON .. 4-33
Concatenating statements :....................................... 2-9
Concatenation, string .. 5-4
Conditional:

Branching
Execution
GO TO

3-12
3-10
3-12

Console .. 9-6
Constant:

Matrices ... 4-40
Numeric 4-5

Constructs, nesting ... 3-14
CONT .. 3-5, 8-15, 9-25
Context ... 3-6, 6-10, 6-35, 6-35
Continuing execution ... 8-15
Control:

C .. 8-12
Characters 9-14

Conversions:
Lettercase ... 5-15
Number-base ... 4-15
String .. 5-11
Time and date .. 10-3

Coordinate systems ... 15-12

Copying:
Program segments ... 2-20
Subarrays .. 4-43

cos .. 4-18
COT .. 4-18
CREATE 6-35,9-6,11-12,11-14,11-25
CROSS ... 4-62
Cross:

Product ... 4-62
References .. 8-5

CRT IS .. 6-35, 9-6
CSC .. 4-18
CSIZE .. 15-65
CSUM ... 4-54
Current working directory .. 11-10
CURSCOL ... 9-11
CURSOR .. 15-52, 15-80
Cursor:

Location 9-11
Positioning ... 9-10
Turning on ... 9-12

CURSROW ... 9-11
Cyclic timer interrupts .. 10-6

DATA

Data:

d
3-34, 4-39, 11-4

File access .. 11-11
Files .. 11-9
Items .. 11 - 1 0
Pointer .. 11-6
Pointer, moving ... 11-8
Structures .. 2-2, 2-6
Types .. 2-10, 4-3, 11-24, 11-28

Date ... 10-2
DATE ... 10-2
DATE$... 10-2
Date format conversions ... 10-3
Debugging:

Methods 8-4
Programs .. 2-3, 2-24

Decisions ... 3-1
Declarations:

Implicit .. 4-4
Of function parameters 6-7

Declaring:
COM variables ... 6-27
Pass parameter types ... 6-24
Variables .. 2-10, 4-4

DEF FN .. 3-34
Default graphics limits ... 15-12
DEFAULT OFF ... 6-35, 7-2
DEFAULT ON .. 6-35
Default scale .. 15-14, 15-15
Defaults, graphics ... 15-75
DEG ... 4-17, 6-35, 15-63, 15-67
Delay interrupts ... 10-6
DELETE .. 2-16
Deleting program lines .. 2-16
Describing the problem .. 2-3
DET .. 4-71
DETL ... 4-71
dev directory ... 15-9
Developing programs .. 2-2
Device file ... 15-9
Device selector .. 9-6, 15-9, 15-82
Device units, absolute graphic .. 15-83
Devices, graphics .. 15-9
Devices, graphics output .. 15-75
Difference:

Absolute .. 4-11
Relative ... 4-11

DIGITIZE .. 15-4, 15-52, 15-79
Digitizing ... 15-76
Digitizing graphics limits .. 15-49
DIM .. 2-10, 3-34, 4-4, 5-2, 5-17
Dimensioned length, string .. 5-2
Dimensioning:

Implicit .. 4-26
Numeric arrays. .. 4-24
Strings .. 5-2, 5-17

Directory ... 11-10
DIRECTORY ... 6-11, 6-12, 6-17
Disabling keys .. 9-30
DISP .. 2-8, 9-6, 9-10, 9-12
DISP item separators ... 9-16
DISP USING .. 4-31
Display:

Capabilities ... 9-7
Screen ... 9-6
Screen modes .. 9-10

Displaying:
Blank lines ... 9-12
Messages ... 9-5

DIV ... 4-8
Documenting programs .. 2-3, 2-24
Documents:

External ... 2-29
Internal ... 2-34

DOT .. 4-71
DRAW ... 6-35, 15-56
Drawing .. 15-56
DTB$... 4-15
DTH$

DTO$

DTR

4-15
4-15
4-18

DUMP ALPHA ... 2-14, 9-13
DUMP GRAPHICS .. 2-14, 15-74
Dyadic operators ... 4-8

e
Editing:

Global operations .. 2-14
Search operations .. 2-18

Editor:
BASIC .. 2-14
vi .. 2-22

Elements of BASIC program ... 2-8
Ellipse ... 15-23
Empty arrays ... 4-50
ENABLE KBD ... 9-24, 9-28
Enabling keys ... 9-28

END .. 2-9
END ... ,." 2-9
End-of-record marker .. 11-13
Entry point .. 12-4, 13-4, 14-4
EOF:

Conditions .. 11-29
Markers .. 11-20,11-24,11-29

EOL, sequence 9-10
EOR:

Conditions .. 11-29
Markers .. 11-13, 11-20, 11-29

EPS .. 4-20
ERRL .. 7-7
ERRM
ERRN
Error:

7-8
7-7

Default response ... 7-2
File ... 11-29
Handling ... 7-1
Location ... 7-7
Messages .. 2-14, 7-8
Numbers ... 7-7
Reporting .. 7-2
Trapping .. 7-6, 9-25

Escape~ode sequences ... 9-15, 9-30
Euclidian norm .. 4-72
Evaluating:

Numeric expressions. .. 4-4
Strings ... 5-4

Event-initiated branching 3-24
Events, types of ... 3-24
EXP .. 4-'20
Expressions:

Calls and functions .. 4-9
Evaluating numeric .. 4-4
String .. 5-4, 5-18

Extending BASIC/DATA files .. 11-23
Extensible files ... 11-23
External documents .. 2-29

f
f c command 0 14-9
Field boundaries, DISP and PRINT 0 9-16
Field specifiers 0 9-1 7
File access:

Random 0 11-24, 11-26
Serial 0 11 - 11
text/data 00 0 0 11-31

File I/O:
C binaries 0 12-5, 12-19
FORTRAN binaries 0 00 14-6, 14-22
Pascal binaries 0 13-6, 13-24

File:
ASCII 00 0 0 0 0 0 0 2-23
BASIC/DATA 0 6-13
BASIC/GRAF 0 15-73
BASIC/PROG 00000000000000000000000000000 00000000000000000000 6-13,6-14
BASIC/SUBP 0 6-14, 6-16
Buffers 0 11-18
Closing 000 0 11-12,11-31
Data types 0 11-28
Names 00 0 0 0 000 6-14
Opening 0 11-31
Overhead 00000000000 00000000000000000000 000000000000000000000000 11-17
Pointer 0 11-18
Selector 0 9-6, 9-13
Size calculations 0 11-14
text/data 0 11-31, 12-5, 13-6, 14-6, 14-22

FINDPROG 0 6-11, 6-13
f_init subroutine 00000000000000000000000000 00000000000000000000 00000 14-4
FLAG 0 6-31, 6-35
Flags, system 0 6-30
FLIP 00 0 0 0 0 0 0 000 6-35
FLOOR 00 0 0 00000000000000000000000000000000 0 0 0 0 0 00000000000000000000 4-20
FN END 0000000000000000000 0000000000 0 0 0 0 0 0 0 0000000000000000000 00000 3-34
FNORM 00 0 00 0 0 0000 4-71
Formal parameters 0 6-4, 12-2, 13-2, 14-2
Formatted printing 0 9-15
FORo o NEXT 00000000000000000000000000000000' 0 0 0 0 0 0 0 00000000000000000 3-18

FORTRAN binaries:
Compiling .. 14-3, 14-8
Error trapping .. 14-7
File I/O ... 14-6, 14-22
Introduction .. 14-1
Linking .. 14-3, 14-8
makebin_c script ... 14-8, 14-9
Maximum number of ... 14-6
Parameter matching .. 14-5
Parameter passing .. 14-10
Passing by reference 14-10
Passing by value .. 14-10
Restrictions .. 14-6
String length .. 14-18

FORTRAN programs ... 14-2
FORTRAN SUBROUTINEs .. 14-2
FP ... 4-20
Froebenius norm .. 4-72
Functions:

Binary .. 4-14
C .. 12-2
Constant ... 6-3
Data-type declarations ... 6-7
Limitations of user-defined .. 6-7
Local variables ... 6-5
Misc. array .. 4-71
Misc. numeric .. 4-20
Multi-line ... 6-5
Passing parameters to .. 6-4
Resident .. , 2-11
Resident trig ... 4-1 7
Step ... , 4-10
String .. 5-9, 5-14
Timer .. 10-9
User-defined ... 2-11, 5-16, 6-1, 6-2

9
GCLEAR 9-9, 15-3
General steps in development .. 2-2
GET ... 2-22, 6-13
Getting Started Guide , 1-3,2-14

GLOAD .. 15-73
Global:

Declarations .. 6-35
Program editing ... 2-14

GOSUB .. " 3-7
GOTO:

Conditional .. 3-12
Unconditional .. 3-6

GRAD .. 4-17, 6-35
Graphics .. 15-1
Graphics capabilities 15-6
Graphics character size .. 15-65
Graphics, clearing screen ... 9-9
Graphics defaults ... 15-75
Graphics devices, specifying .. 15-9
Graphics, digitizing .. 15-49, 15-52
Graphics dump .. 15-74
Graphics examples .. 15-2, 15-4
Graphics, initializing .. 15-9
Graphics input .. 15-4, 15-52
Graphics limits ... 15-13, 15-36, 15-83
Graphics limits, default ... 15-12
Graphics limits, digitizing ... 15-49
Graphics limits, moving 15-14, 15-32, 15-36
Graphics limits, range .. 15-33
Graphics limits, summary ... 15-47
Graphics mapping .. 15-12, 15-14
Graphics output devices 15-9, 15-75, 15-75
Graphics plotters ... 15-11
Graphics printers ... 15-74
Graphics scaling .. 15-14
Graphics tablets .. 15-11
Graphics units, absolute .. 15-83
Graphics Units (GU's) 15-14, 15-15, 15-29
Graphics windows .. 15-11
GRID .. 15-21
GSTORE 15-73

h
Halting program execution .. 3-3
Hardcopy, of the screen ... 2-14
Hardware installation .. 1-2
Hewlett-Packard Graphics Language (HPGL) 15-82
Hexadecimal (base 16) .. 4-15
Hiding the details ... 2-6
Hierarchy:

Arithmetic .. 4-5
String ... 5-4

HIL input locators .. 15-11
HMS ... 10-4, 10-9
HMS$... 10-3
HP-IB graphics tablets ... 15-11
HP-IB primary address ... 15-82
HP-UX Technical BASIC Getting Started Guide 1-3,2-14
HP-UX Technical BASIC Language Reference 1-3
HP-UX:

File system .. 1-2
Knowledge .. 1-2

HPGL ... 15-82
HTO .. 4-16
Human/ computer interface 9-1, 9-3

.
I

Identity matrix .. 4-42
ION .. 4-33
IORAW .. 15-56
IMAGE .. 4-31, 9-17
Image specifiers:

Additional ... 9-20
Definition .. 9-17
Numeric 9-18
String .. 9-19

IMOVE .. 15-56
Implicit:

Declarations ... 4-4
Dimensioning ... 4-26
Redimensioning ... 4-35

Incremental drawing ... 15-56

Incremental moving ... 15-56
Incremental plotting ... 15-56
Indenting program lines ... 2-28
INF .. 4-20
INIT ... 3-32, 8-15, 8-16
Initializing graphics ... 15-9
INPUT .. 2-8, 9-24, 11-4
Input, graphics .. 15-4, 15-52
Input locators .. 15-11
Input:

Alphanumeric .. 9-24
From keyboard. .. 9-21, 9-23
Keyboard .. 9-30

Insert mode (screen) .. 9-10
Inserting program lines .. 2-15
INT .. 4-13
INTEGER .. 2-10,3-34,4-3, 11-24
Integral numbers .. 2-10
Interactions between timers and subprograms 10-10
Internal documents ... 2-24
Interrupts:

Cyclic timer .. 10-6
Delay ... 10-6
Time-of-day .. 10-8
Timer .. 10-6

Intersection of axes ... 15-20
Interval timing .. 10-5
Intrinsic functions:

General ... 2-11
String .. 5-9, 5-14

Inverting matrices .. 4-64
IP ... 4-21
IPLOT .. 15-56
Isotropic scaling .. 15-24
Iterations .. 3-18

.
J

Joining strings ... 5-5
Jump .. 3-6

k
KEY LABEL ... 9-23
Key:

Buffer .. 9-30
Codes .. 9-30
Disabling .. 9-30
Enabling .. 9-28
Labels .. 3-26
Special function ... 9-22

Keyboard:
Calculations .. 8-14
Enable mask .. 9-28
Errors ... 7-2
Input ... 9-30
Inputs ... 9-21, 9-23

Keywords .. 1-5, 2-8

I
LABEL 15-65
Label area (softkeys) .. 3-26
Label direction ... 15-65
Label origin ... 15-65
Labeling 15-65
LAXES .. 15-14
LBND ... 4-71
ld command ... 12-8, 13-9, 14-9
LDIR .. 15-65
LEN ... 5-9
Length of string 5-2, 12-15, 13-19, 14-18
LET ... 2-8, 4-2
Lettercase conversion ... 5-15
LGT .. 4-21
Libraries, subprogram .. 6-10
LIMIT. 15-17, 15-32, 15-36, 15-37, 15-38, 15-39, 15-40, 15-47
Limiting range of values ... 4-12
Limits, graphics .. 15-13
Limits, physical (graphics) ... 15-12
Line length (LINE TYPE) .. 15-64
LINE TYPE .. 15-64

Line:
Labels .. 2-9, 2-25
Numbers ... 2-9
Where referenced (XREF L) .. 8-6

Linear:
Equations 4-66
Flow .. 3-3

Linking C binaries ... 12-3
Linking FORTRAN binaries 14-3, 14-8
Linking object files ... 12-8, 13-9, 14-9
Linking Pascal binaries ... 13-3, 13-8
LINPUT .. 9-24, 11-4
Listings ... 2-14
Lists:

In program lines .. 2-8
Parameter ... 6-4, 6-20

LOAD ... 6-13
LOADBIN ... 12-4, 13-4, 14-4
Loading subprograms .. 6-17, 6-18
Local:

Declarations .. 6-35
Variables ... 6-6

LOCATE .. 15-14, 15-36, 15-37, 15-38, 15-39, 15-40, 15-47
Locators, input .. 15-11
LOG .. 4-21
Logging in and out .. 1-2
Logical pen location ... 15-76, 15-80
Logical record ... 11-10, 11-16, 11-25
Loop counter ... 3-18
Looping ... 3-18
LORG .. 15-65
LWC$... 5-15

Machine language programs
makebin_c script
makebin_f script
makebin_p script
Manual:

m
2-11

12-3, 12-7, 12-8
14-3, 14-8, 14-9
13-3, 13-8, 13-9

Organization .. 1-4
Overview ... 1-1

Mapping, graphics .. 15-12
Markers:

EOF , " ... , , " 11-13,11-20,11-24,11-29
EOR .. 11-13, 11-20, 11-29

MASS STORAGE IS .. 6-35
Mass storage tutorial ... 11-9
MAT ... 4-39, 4-52
MAT DISP .. 4-28
MAT DISP USING ... " 4-31
MAT INPUT ... 4-37
MAT PRINT ... 4-28
MAT PRINT USING .. 4-31
MAT READ .. 4-39
MAT .. CON ... 4-33, 4-40
MAT .. CROSS .. 4-62
MAT .. CSUM ... 4-54
Math hierarchy .. , 4-6
MAT .. ION ... 4-33,4-42
MAT .. INV .. 4-64
Matrix:

Inversion " 4-64
Multiplication ... 4-57

MAT .. RSUM ... 4-54
MAT .. SYS .. 4-66
MAT .. TRN .. 4-56
MAT .. ZER ... 4-33,4-40
MAX ... 4-12, 4-21
MAXAB ... 4-71
MAXABCOL .. 4-72
MAXABROW .. 4-7 2
MDY .. 10-5
MDY$... 10-4
Mechanics of program development 2-14
Memory management (subprograms) 6-34
Menu (softkeys) ... 3-26
MERGE ... 2-21
Messages:

Accepting .. 9-21
Audio :... 9-4
Displayed ... 9-5
From operator .. 9-21
To the operator .. 9-4

Methods of passing parameters 6-21
Millimetre scaling ... 15-26
MIN .. '.' 4-12, 4-21
mlmod command ... 15-9
MOD ... 4-8
Model:

Of computer/human interface .. 9-2
Of software design process .. 8-3

Modes, display screen .. 9-10
Modules, Pascal ... 13-2
Moment ... 4-62
Monadic operators .. 4-8
Monochromatic pens .. 15-54
MOVE .. 15-56
Moving graphics limits 15-14, 15-32, 15-36
Moving the pen .. 15-56
Moving:

Data pointer .. 11-6
Program segments ... 2-20

MSCALE .. 15-22, 15-47
Multiplying matrices .. 4-57

n
Names:

Array variables .. 4-27
Of C binaries ... 12-4
Of FORTRAN binaries .. 14-4
Of numeric variables .. 4-2
Of Pascal binaries ., 13-4
String variables .. 5-2
Subprogram .. 6-14

Nesting constructs ... 3-14
Newline character (C) .. 12-20
Non-executed statements .. 3-34
NORMAL 6-35, 8-5, 9-10
Notation for program lines .. 2-9
NPAR ... 6-25
Null character (C string terminator) 12-16
NUM ... 4-21, 5-11
Number-base conversions .. 4-15

Numbers:
INTEGERs ... 4-3
Random ... 4-19
Range of ... 4-3
REAL .. ; ... 4-3
SHORT 4-3

Numeric:
Arrays .. 4-22
Comparisons ... 4-11
Data types .. 4-3
Functions, misc. ... 4-20
Image specifiers ... 9-18
Variables ... 4-4

o
Object files .. 12-8, 13-9, 14-9
Octal (base 8) .. 4-15
OFF CURSOR ... 6-35, 9-12
OFF ERROR ... 6-35
OFF KEY# ... 3-27, 6-35
OFF KYBD .. 6-35
OFF TIMEOUT ... 6-35
OFF TIMER# .. 6-35, 10-6, 10-9
ON CURSOR .. 6-35, 9-12
ON ERROR ... 6-35,7-6,9-25,11-29
ON KEY# ... 3-24, 6-35, 9-22
ON KYBD ... 6-35, 9-24, 9-30
ON TIMEOUT .. 6-35
ON TIMER# .. 6-35, 10-6
ON .. GOSUB ... 3-15
Opening files .. 11-31
Operations, string .. 5-18
Operator:

Arithmetic .. 4-6
Errors ... 7-3
String ... 5-5

OPTION BASE .. 2-13, 4-4, 5-17
Optional pass parameters .. 6-25
Organization of manual .. 1-4
Origin ... 15-32

Origin, graphics .. 15-14
oro .. 4-16
Output devices, graphics .. 15-9, 15-75
Overview ... 1-1, 1-6

p
PI, P2 15-83
Parameter matching:

C binaries ... 12-5
FORTRAN binaries .. 14-5
Pascal binaries .. 13-5

Parameter passing:
C binaries ... 12-9
FORTRAN binaries ... 14-10
Pascal binaries ... 13-10

Parameter:
Formal .. 6-4, 12-2, 13-2, 14-2
Lists ... 6-4, 6-20
Optional . ". .. 6-25
Pass ... 6-4, 12-2, 13-2, 14-2, 14-4
Passing ... 6-4, 6-19
Statement .. 2-8

Pascal binaries:
Compiling .. 13-3, 13-8
Error trapping .. 13-7
File I/O ... 13-6, 13-24
Introduction .. 13-1
Linking .. 13-3, 13-8
makebin_p script ... 13-8, 13-9
Maximum number of ... 13-6
Parameter matching .. 13-5
Parameter passing .. 13-10
Passing by reference 13-10
Passing by value .. 13-10
Restrictions .. 13-6
String length .. 13-19

Pascal modules .. " 13-2
Pascal procedures .. 13-2
Pascal programs ... 13-2

Pass parameters:
C Binaries .. 12-2, 12-4
Declaring types ... 6-24
FORTRAN Binaries ... 14-2, 14-4
Optional .. 6-25
Pascal Binaries ... 13-2, 13-4
Types .. 6-20

Passing:
By reference 6-21, 12-10, 13-10, 14-10
By value 6-23, 12-10, 13-10, 14-10
Parameters .. 6-4, 6-19, 6-21

PAUSE .. 3-5, 8-13
PAUSE .. 9-28
Pausing execution .. 8-12
pc command ... 13-9
PDIR .. 15-63
PEN ... 6-35, 15-54
Pen control (PLOT) .. 15-56
Pen, logical ... 15-76, 15-80
Pen, physical .. 15-76
Pen status .. 15-53, 15-79
Physical limits (graphics) .. 15-12
Physical pen location .. 15-76
Physical records .. 11-16
PI ... 4-21
Pitches, beeper .. 9-5
Pixels (picture elements) .. 15-69
PLOT ... 6-35, 15-56
Plotter considerations .. 15-75
PLOTTER IS 6-35, 15-9, 15-47, 15-75
Plotters .. 15-11
Plotting .. 15-56
Plotting area .. 15-12, 15-32, 15-36
Plotting bounds 15-12, 15-32, 15-36, 15-42
Plotting bounds, digitizing ... 15-49
Plotting bounds (summary) .. 15-47
Plotting devices .. 15-7 5
Plotting direction ... 15-63
Plotting pixels ... 15-69
Plotting with HPGL ... 15-82
Pointer, data ... 11-6

POS .. 4-21, 5-9
Positioning cursor 9-1 °
Pre-run .. 3-32
Precedence, arithmetic ... 4-6
Prerequisites .. 1-2
Primary address .. 15-82
PRINT. .. 9-13
PRINT# ... 11-12, 11-18, 11-25
PRINT ALL .. 6-35, 8-5, 9-10
PRINT item separators .. 9-16
PRINT USING .. 4-31, 9-17
Printer character sets ... 9-14
Printer graphics .. 15-74
PRINTER IS .. 6-35, 9-10, 9-13
Printers ... 9-13
Printing:

Arrays .. 9-16
Formatted ... 9-15
Screen contents ... 2-14

Problem solving steps .. 2-2
Procedures, Pascal ... 13-2
Program segments:

Choosing .. 3-14
Repeating 3-18

Program:
Binary .. 2-11
C .. 12-2
Communication between 3-31
Counter .. 3-2
Definition of ... 2-9
Editing globally .. 2-14
Elements ... 2-8
Entering ... 2-14
Execution .. 3-32
Flow .. 3-1,3-2
FORTRAN ... 14-2
Line numbers .. 2-9
Lines .. 2-9
Lines, maximum length .. 2-9
Listings ... 2-14
Machine language 2-11

Pascal .. 13-2
Running ... 2-14
Storing .. " 2-14
Structure ... 3-1

Program/subprogram communication 6-19
Prohibited statements (in IF .. THEN) 3-12
Put (vi) .. 2-23

q
Questioning assumptions .. 8-18
Quotes in strings .. 11-5

r
RAD 4-17,6-35
Random:

File access .. 11-11, 11-24, 11-26
Numbers .. 4-19

RANDOMIZE ... 4-19
Range limits .. 4-12
Raster images, retrieving ... 15-73
Raster images, storing ... 15-73
RATIO .. 15-18, 15-34
Ratio, aspect (width/height) 15-18, 15-34
READ ... 11-4
READ# .. 11-13, 11-18,11-24, 11-26
Reading pixels ... 15-69
Reading:

Flags ... 6-31
Text from screen .. 9-30

READTIM ... 10-9
REAL .. 2-10,3-34,4-3, 11-24
Real numbers ... 2-10
Record size calculations .. 11-14
Records .. 11-16
Redimensioning arrays .. 4-33
Refining .. 2-2, 2-7
Reflecting images ... 15-48, 15-51
Relative difference ... 4-11
Relative plotting .. 15-56
Relocatable object files 12-8, 13-9, 14-9
REM ... 2-25, 3-34

Remark statements .. 2-25
REN .. 2-16
Renaming variables .. 2-19
Renumbering programs .. 2-16
Repeat .. 3-20
Repeat factor (LINE TYPE) .. 15-64
Repeating strings .. 5-14
Repetition ... 3-1 7
REPLACEVAR .. 2-19
Reset key ... 9-24, 9-28
Resident:

Binary functions ... 4-14
Functions .. 2-11
Trig functions .. 4-17

RESTORE ... 11-8
Restrictions:

C binaries ... 12-5
FORTRAN binaries .. 14-6
Pascal binaries .. 13-6

Retrieving raster images .. 15-73
RETURN ... 3-7, 7-7
REV$... 5-14
Reversing strings .. 5-14
RMD .. 4-21
RND .. 4-19
RNORM ... 4-72
RNORMCOL .. 4-7 2
RNORMROW .. 4-7 2
ROTATE$... 4-14
Rotating lines .. 15-56
Rounding .. 4-13
ROW .. 4-30
Row-major order .. 4-33
RPLOT .. 15-56
RPT$... 5-14
RSUM ... 4-54
RTD .. 4-18
RUN ... 3-32,6-17,8-15,8-16
Run-time errors .. 7-3
Running programs ... 2-14

5
SAVE 2-23, 6-11, 6-16
Scalar array arithmetic .. 4-52
SCALE. .. 15-14, 15-22, 15-37, 15-38, 15-39, 15-40, 15-47
Scaling, anisotropic ... 15-23
Scaling, default graphic .. 15-15
Scaling, graphics ... 15-14
Scaling (graphics) ... 15-22
Scaling, isotropic ... 15-24
Scaling, millimetre .. 15-26
Scaling (summary) .. 15-47
SCAN ... 2-18
Scanning for literals .. 2-18
SCRATCH ... 6-11
SCRATCHBIN .. 12-4, 13-4, 14-4
SCRATCHSUB ... 6-17, 6-34
Screen:

Clearing .. 9-9
Display ... " 9-6
Dumps .. 2-14, 15-74
Reading text from ... 9-30

Screen width ... 9-7
Searching for literals. .. 2-18
SEC .. 4-18
Seed, random numbe~ .. 4-19
Selection of program segments .. 3-1 °
Selector:

Device ... 9-6
File ... 9-6

Self-documenting programs ... 2-25
Sending messages .. 9-4
Separators, DISP and PRINT .. 9-16
Serial file access 11-11, 11-13, 11-20, 11-23
Service routines .. 3-26, 9-30
SETGU .. 15-29, 15-47
Setting flags .. 6-31
SETUU .. 15-29, 15-47
SFLAG .. 6-31, 6-35
SGN .. 4-21
SHORT , 2-10,3-34,4-3,11-24
SHOW .. 15-22, 15-47

Simple:
Branching .. 3-6
Strings ;....................................... 5-3

SIN ... 2-11,4-18
Single-stepping programs .. 8-16
SINGLESTEP .. 8-16
Size:

of files ... 11-15
of records .. 11-16

Softkeys 3-25, 9-22, 9-28
Software:

Installation .. 1-2
Testing .. 8-17

Solving:
Problems ... 2-2
Simultaneous equations ... 4-66

Spaghetti code ... 3-6
Special (device) file 15-9
Special function keys .. 9-22, 9-28
Specifiers:

Field ... 9-17
Image .. 9-17

Specifying graphics devices .. 15-9
SQR .. 4-21
Star base type ... 15-9
Statements 2-8
Step functions .. 4-10
Stepwise refinement ... 2-2, 2-7
STOP and END .. 3-4
Stopwatch example .. 9-23
Storage, common .. 4-26
STORE ... 2-21,6-11,6-15
Storing raster images .. 15-73
Storing:

Arrays .. 11-7
Data in variables .. 11-3
Programs .. 2-14

String length .. 12-15, 13-19, 14-18
String terminator (C) .. 12-16

String:
Alphanumeric .. 2-10
Arrays .. 5-3, 5-17
Concatenation ... 5-4
Conversions .. 5-11
Definition of .. ~ .. 5-2
Dimensioning ... 5-1 7
Evaluating expressions ... 5-4
Expressions .. 5-18
Functions .. 5-9, 5-14
Hierarchy .. 5-4
Image specifiers ... 9-19
In numeric expressions .. 4-10
Length ... 5-9
Operators .. 5-5
Position .. 5-9
Repeat .. 5-14
Reverse ... 5-14
Simple ... 5-3
Subscripts .. 5-6
Trim ... 5-15
Variable length ... 5-2
Variable names ... 5-2

SUB ... 2-11,6-8,6-11
Subarrays, copying .. 4-42, 4-47
SUBEND .. 6-8, 6-11
SUBEXIT ... 6-11
Subprogram:

Benefits of .. 6-9
Creating .. 6-11
Definition .. 2-11
Introduction to ... 6-1, 6-8
Libraries .. 6-10
Loading .. 6-17, 6-18
Memory management ... 6-34
Names .. 6-14
Scratching ... 6-17

Subprogram/program communication 6-19
Subroutine:

General suggestions ... 3-9
GOSUB .. 3-7

SUBROUTINEs, FORTRAN .. 14-2
Subscript:

Bounds
String

Substring:

4-24
5-6

Definition ... 5-6
Double-subscript .. 5-7
Position .. 5-9
Single-subscript .. 5-6

SUM .. 4-72
Summing arrays ... 4-54
Syntax of keywords ... 1-5
SYS .. 4-66
System:

Clock ... 10-2
Error message ... 7 -8
Flags ... 6-30
Of equations ... 4-66
Timers .. 10-9
Warnings ... 7-3

t
TAB 9-12, 9-16
Tablets, graphics ... 15-11
Tablets, HP-IB graphics .. 15-11
TAN .. 4-18
Terminator, numeric array ... 4-29
Testing:

Programs .. 2-3, 2-24
Software .. 8-1 7

text/data files 11-31, 12-9, 13-10, 14-10, 14-22
Tick marks. 15-19
Tilde" "character ,....................... 11-5
TIME ... ;... 10-2
TIME$.. 10-2
Time format conversions .. 10-3
Time of day .. 10-2
Time-of-day interrupts .. 10-8

Timer:
Functions .. 10-9
Interrupts .. 10-6
Interrupts (w / subprograms) ... 10-10
Using ... 10-6

Timing intervals ... 10-5
Tones .. 9-5
Top-down design .. 6-10
TRACE .. 8-8
TRACE ALL ... 8-11
TRACE VAR .. 8-9
Tracing:

All flow ... 8-11
Branches ... 8-7
Variables .. 8-10

Transposing arrays ... 4-56
Trapping errors ... 7-6, 9-25, 11-29
Trigonometric functions ... 4-17
TRIM$.. '. 5-15
Trimming strings .. 5-15
TRN .. 4-56
TYP ... 11-13, 11-28
Type fields (files) ... 11-28
Type:

Fields (files) ... 11-13
Of pass parameters ;................. 6-21
Of program flow '. .. 3-2
Pass parameters ... 6-24

Types of lines ... 15-64

u
UBND ... 4-72
UNCLIP .. 15-45, 15-47
Unconditional GOTO .. 3-6
Understanding the problem 2-3
Unit matrix .. 4-42
UNIX .. 1-2
Unlinked object files .. 12-8, 13-9, 14-9
UPC$.. 5-15,9-25
User documents (for your programs) 2-29
User Units (UU's) ... 15-22, 15-29

User-defined:
Function limitations ... 6-7
Functions , 2-11,5-16,6-1,6-2
Keys ... 3-25

Using plotters. .. 15-75

VAL
VAL$
Variable:

v
4-21, 5-11
4-21, 5-12

Allocation of ... 3-32
Assigning ... 4-2
Declarations .. '. . . . , . .. 2-10
In COM .. 6-27
Names .. 2-25, 4-2
Names of strings ... 5-2
Numeric .. 4-4
Numeric arrays. .. 4-22
Renaming .. 2-19
String ... 5-2
String length .. 5-2
Types of .. 2-10
Where used (XREF V) .. 8-5

Vector:
Components .. 4-63
Cross product .. 4-62
Magnitude ... 4~63

vi editor 2-22

w
Walk-throughs 8-4
Warnings ... 7-3
WHERE .. 15-80
While ... 3-21
Width of screen .. 9-7
Windows, graphics .. 15-11

XREF
XREF L
XREF V

Yank (vi)

ZER

x

y

z

8-5
8-6
8-5

2-23

4-33
Zero matrices ... 4-40

Name:

Company:

Address:

Phone No:

MANUAL COMMENT CARD

HP-UX Technical BASIC
Programming Guide, Vol. 2

for HP 9000 Computers

Manual Reorder No. 97068-90001

Please note the latest printing date from the Printing History (page ii) of this
manual and any applicable update(s); so we know which material you are
commenting on ___________ _

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

LOVELAND,COLORADO

I II II I
NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

HP Part Number
97068-90001
Microfiche No. 97068-99001

Printed in U.S.A. 2/86

FliOW HEWLETT
~~ PACKARD

~ III"" ~ I
97Db8-9DbDb
For Internal Use Only

