
HP 9000 Computers

HP-UX Technical BASIC
Programming Guide, Vol. 1

rll~ HEWLETT
~e.. PACKARD

HP-UX Technical BASIC
Programming Guide, Vol. 1

for H P 9000 Computers

HP Part Number 97068-90001

© Copyright 1986 Hewlett-Packard Company

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of Hewlett
Packard Company. The information contained in this document is subject to change without notice.

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the Rights
in Technical Data and Software clause in DAR 7-104.9(a).

© Copyright 1980, Bell Telephone Laboratories, Inc.

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional pages
to be merged into the manual by the user. Each updated page will be indicated by a revision
date at the bottom of the page. A vertical bar in the margin indicates the changes on each page.
Note that pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint
do not cause the date to change.) The manual part number changes when extensive technical
changes are incorporated.

February 1986 ... Edition 1

ii

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO.
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the fumishing, performance,
or use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

Table of Contents

Chapter 1: Overview
Chapter Contents ... 1-1

Prerequisites .. 1-2
Hardware Installation. .. 1-2
Software Installation ... 1-2
HP-UX Knowledge ... 1-2
BASIC Knowledge. .. 1-3

What's In This Guide? .. 1-4
What this Guide Contains 1-4
How It Is Organized. .. 1-4
What this Guide Does Not Contain 1-5
How to Read This Guide .. 1-5
Chapter Previews ... 1-6

Chapter 2: Program Development
Chapter Contents ... 2-1

General Steps in Program Development. .. 2-2
Sample Development Session. .. 2-3
Step 1: Understand and Describe the Problem. .. 2-3
Step 2: Outline the Solution .. 2-6

Maintain Proper Perspective. .. 2-6
Let the Data Structure the Algorithms .. 2-6

Step 3: Design, and Then Refine. .. 2-7
Step 4: Code the Program .. 2-8

Elements of a BASIC Program. .. 2-8
Back to Step 4 .. 2-12
Mechanics of Program Development. .. 2-14
Global Program Editing .. 2-14
Copying and Moving Program Segments 2-20

Step 5: Debug and Test ... 2-24
Step 6: Document and Support. .. 2-24

Internal Documents. .. 2-24
Internally Self-Documenting Programs. .. 2-25
External Documentation. .. 2-29

iii

Chapter 3: Program Structure and Flow
Chapter Contents ... 3-1

The Program Counter. .. 3-2
Types of Program Flow . " 3-2

Sequences of Program Segments .. 3-3
Linear Flow .. " 3-3
Halting Program Execution 3-3
Simple Branching ... 3-6

Selection of Program Segments .. 3-10
An Example .. 3-10
Types of Conditional Execution. .. 3-10
Conditional Execution of One Segment 3-11
Choosing One of Two Segments 3-14
Choosing One of Many Segments. .. 3-15

Repetition .. 3-1 7
Fixed Number of Iterations 3-18
Conditional Number of Iterations. .. 3-20
Arbitrary Exit Points .. 3-22

Event-Initiated Branching. .. 3-24
Types of Events. .. 3-24
An Example of Using Softkeys .. 3-25
Deactivating Events. .. 3-27

Chaining Programs ... 3-30
General Features. .. 3-30
A Simple Example. .. 3-30
Program-to-Program Communications. .. 3-31

A Closer Look at Program Execution. .. 3-32
Prerun (RUN and IN IT) 3-32
Normal Program Execution 3-33
Non-Executed Statements 3-34

Chapter 4: Numeric Computation
Introduction .. " 4-1

Chapter Contents ... 4-1
Assigning Values to Variables. .. 4-2
Numeric Data Types ... " 4-3

REAL Numbers ... 4-3
SHORT Real Numbers ... 4-3
INTEGERs ... " 4-3
Declaring a Variable's Data Type " 4-4

iv

Evaluating Scalar Expressions .. , 4-5
Arithmetic Hierarchy. .. 4-5
Operators .. , 4-8
Expressions, Calls, and Functions. .. 4-9
Strings in Numeric Expressions 4-10

Making Comparisons Work ... 4-11
Range Limits. .. 4-12
Rounding. .. 4-13
Binary Operations .. 4-14

Resident Binary Functions. .. 4-14
Number-Base Conversions .. 4-15

Converting from Decimal .. 4-15
Converting to Decimal .. 4-16

Trigonometric Functions ... 4-17
Resident Trigonometric Functions 4-17

Random Numbers .. 4-19
Scaling .. 4-19
A New Seed .. 4-19

Miscellaneous Numeric Functions. .. 4-20
Resident General Numeric Functions 4-20

Arrays. .. 4-22
Array Concepts. .. 4-23
Dimensioning Arrays. .. 4-24
Assigning Values to Individual Elements. .. 4-27
Displaying and Printing Entire Arrays. .. 4-28
Redimensioning Arrays .. 4-33
Assigning Values to an Entire Array. .. 4-37
Constant and Zero Matrices .. 4-40
The Identity Matrix .. 4-42
Copying Subarrays ... 4-43
Scalar Arithmetic Array Operations .. 4-52
Summing Rows and Columns. .. 4-54
Array Transpose. .. 4-56
Matrix Multiplication 4-57
Vector Cross Product .. " 4-62
Inverting a Matrix .. 4-64
Solving a System of Linear Equations 4-66
Additional Array Functions 4-71

v

Chapter 5: String Manipulation
Introduction. .. 5-1

Chapter Contents ... 5-1
What is a String? ... 5-2

Assigning Values to String Variables. .. 5-2
String Variable Names. .. 5-2
String Variable Lengths .. 5-2
Dimensioning String Variables 5-3

Evaluating String Expressions. .. 5-4
Evaluation Hierarchy .. 5-4
String Concatenation .. 5-4
Relational Operations. .. 5-5

Substrings .. 5-6
Single-Subscript Substrings. .. 5-6
Double-Subscript Substrings .. 5-7
Special Considerations. .. 5-7

String-Related Functions .. 5-9
String Length .. 5-9
Substring Position .. 5-9
String-to-Numeric Conversion. .. 5-11
N umeric-to-String Conversion. .. 5-12

String Functions ... 5-14
String Reverse , 5-14
String Repeat 5-14
Trimming a String. .. 5-15
Lettercase Conversion .. 5-15
User-Defined String Functions 5-16

String Arrays. .. 5-17
Dimensioning String Arrays .. 5-17
String Expressions and Operations. .. 5-18

Chapter 6: User-Defined Functions and Subprograms

vi

Introduction. .. 6-1
Chapter Contents ... 6-1

User-Defined Functions 6-2
Review of Resident Functions 6-2
Introduction to User-Defined Functions. .. 6-3
Example Constant Function .. 6-3
Passing Parameters to Functions 6-4
An Example Multiple-Line Function .. 6-5
Functions and Local Variables .. 6-6
Formal Parameter Data-Type Declarations .. 6-7
Limitations 6-7

Introduction to Subprograms .. 6-8
Simple Examples .. 6-8
Benefits of Using Subprograms 6-9
Difference Between Functions and Subprograms. .. 6-10

Creating and Calling Subprograms .. 6-11
Checking Memory Contents .. 6-12
Entering a Main Program .. 6-13
Entering a New Subprogram 6-14
Entering a New Subprogram 6-15
Storing the Subprogram. .. 6-16
Entering and Storing the Second Subprogram. .. 6-16
Running the Program. .. 6-1 7
Subprograms Are Automatically Loaded 6-17
Deleting a Subprogram 6-17
Explicitly Loading Subprograms (For Editing) .. 6-18

Program/Subprogram Communication .. 6-19
Passing Parameters .. 6-19
Using COM Variables .. 6-27
Using System Flags .. 6-30

Memory Management with Subprograms 6-34
Context Switching .. 6-35

Global Declarations .. 6-35
Local Declarations .. 6-35

Chapter 7: Error Handling
Introduction. .. 7-1

Chapter Contents ... 7-1
How the System Handles Errors 7 - 2

Errors in Keyboard Calculations. .. 7-2
Run-Time Errors. .. 7-3

Anticipating Operator Errors .. 7-3
Boundary Conditions. .. 7-3
REAL Numbers and Comparisons .. 7-5

Trapping Errors. .. 7-6
Setting Up the Error Branch 7 -6
Determining Error Number and Location .. 7-7
Error Subroutines 7 - 7
Displaying the System Error Message. .. 7-8

vii

Chapter 8: Debugging Programs
Introduction. .. 8-1

Chapter Contents .. 8-2
Whence Cometh Bugs? .. 8-3

A Model of the Software Development Process. .. 8-3
Methods of Debugging Programs .. 8-4

Walk-Throughs ... 8-4
Printed Records of Debugging .. 8-5
Cross References. .. 8-5
Program Traces. ., 8-7
Pausing Program Execution 8-12
Setting Breakpoints with PAUSE .. 8-13
Accessing Variables from the Keyboard .. 8-14
Executing Commands and Statements 8-15
Continuing Program Execution. .. 8-15
Single-Stepping a Program .. 8-16

Software Testing ., 8-1 7
Testing the Example Program 8-18

Index

viii

Overview 1
The HP-UX Technical BASIC system runs on the HP-UX operating system. It is a robust BASIC
language, containing a generous complement of capabilities.

This guide describes how to develop Technical BASIC programs. It covers the range of topics
from designing algorithms through writing advanced BASIC programs. Before getting into the
technical details of the system, however, you can benefit from looking at what is in this chapter
and in this guide.

Chapter Contents
This chapter covers these topics:

Tasks/Topics Page

Prerequisites for using this guide. 1-2

A description of what's in this guide. 1-4

Overview 1-1

Prerequisites
Here are the prerequisites that you must meet before using the HP-UX Technical BASIC system:

• Hardware must already be installed.

• Both HP-UX and Technical BASIC software must already be installed.

• Previous experience with HP-UX (or UNIX1) and BASIC will be helpful, although not a
formal prerequisite.

Hardware Installation
All hardware must have already been installed. If not, refer to the installation manual for your
model of computer.

Software Installation
The HP-UX system and the Technical BASIC system must have already been installed onto your
disc. If the BASIC system is not already installed, refer to the HP-UX manuals for your particular
system.

HP-UX Knowledge
Although this guide assumes that you have had some previous programming experience and a
knowledge of UNIX or HP-UX, you need not have a high level of skill in either area. \

In order to use Technical BASIC on the HP-UX operating system, you should be familiar with
the following topics:

• How to log in and out of HP-UX (relevant only with multi-user HP-UX systems).

• How the HP-UX file system is structured.

Background information on using HP-UX can be found in the the manuals supplied with your
HP-UX system.

1 UNIX is a trademark of AT&T Bell Laboratories

1-2 Overview

BASIC Knowledge
This Programming Guide discusses only the Technical BASIC language; it does not describe using
the Technical BASIC system. For instance, it describes writing programs using the language's
features; however, it does not discuss using the system to store the program in a file, get a
printed listing of the program, or run the program. Such operations are described in the Getting
Started Guide for Technical BASIC on your particular HP-UX system. If you have not yet read
that manual, you should do so before getting very far into the details of this guide.

If you have never programmed a computer before, you will probably be more comfortable starting
with one of the many beginner's BASIC text books available from various publishing companies.
However, some beginners may find that they are able to start in this guide by concentrating on
the fundamentals presented in the first few chapters.

If you are a programming expert or are already familiar with the BASIC language of other
HP desktop computers, you may start faster by going directly to the HP-UX Technical BASIC
Language Reference and checking the keywords you normally use. If you don't find the keywords
you expect to find, then refer to the Table of Contents or Index for the appropriate topic.

Once you have satisfied the above prerequisites, you are ready to being using Technical BASIC
on the HP-UX operating system.

Overview 1-3

What's In This Guide?
This section describes the contents of this guide. It discusses these topics:

• What this guide contains

• How it is organized

• What it does not contain

• How to read the guide

• Previews of each chapter

What this Guide Contains
This gUide provides programming techniques, helpful hints, and explanations of capabilities.
It mainly consists of examples of BASIC algorithms used to perform programming tasks. Any
BASIC statements appropriate to the topic being discussed are included in each chapter, whether
they have been previously introduced or not.

How It Is Organized
The explanations and programming hints in this guide are organized topically. It reflects the
organization of a well-written program: A program performs various "sub-tasks" as it completes
its overall job, so many of these tasks can (and should) be viewed separately to be understood
more easily and used more effectively. Here are two examples:

• Perhaps you have reduced your favorite formula to program form and now want a graph of
the results. You will find a chapter called "Graphics" that explains many ways to generate
plots and graphs.

• Perhaps you have experience in another programming language. You know exactly what
a "loop" does, but you didn't find the statement you were looking for in the HP-UX
Technical BASIC Language Reference. In the chapter on "Program Structure and Flow",
there is a section called "Repetition" which explains the kinds of loops available and all
the statements needed to create them.

1-4 Overview

What this Guide Does Not Contain
This guide is not a rigorous description of the BASIC language; that is provided by the HP-UX
Technical BASIC Language Reference. Because it is organized by topics and concepts, it is not
a good place to find an individual keyword in a hurry. Keywords can be found using the index,
but even so, they are often imbedded in discussions, contained in more than one place, or only
partially explained.

Also, this is not a good place to find complete syntactic details. Program statements are often
presented only in the form that applies to the specific concept being discussed, even though there
may be other forms of the statement that accomplish different purposes. If you want to qUickly
find the complete formal syntax of a keyword, use the language reference. It is specifically
intended for that purpose.

How to Read This Guide
All readers should read this "Overview" chapter. Since you are now reading this discussion,
you will have already learned much about the Technical BASIC documentation set. Whether or
not you decide to read any of the other chapters of this manual, you will definitely benefit from
reading the rest of this chapter.

Once you have finished reading the subsequent "Chapter Previews" section, you should realize
that many of the keys to designing Technical BASIC programs are revealed in the chapter called
"Program Development." All readers should read that chapter also.

Once you feel comfortable using the system, you may choose to read only the chapter{s) and
section{s) that are relevant to your programming tasks. Since most users will not read this gUide
from cover to cover anyway, this approach should not present any significant problems. In those
cases when you have difficulty getting the meaning of certain items from context, consult the
Index to find additional information about that topic.

Overview 1-5

Use the Overviews
We have attempted to provide many "overviews" and "previews" so that you can determine the
contents of a chapter or section and then decide whether or not to read them. For instance,
most introductions to chapters and sections provide a "bulleted list" of what the subsequent text
describes. Here is an example:

Bulleted lists provide the following features:

• They "stand out" visually, allowing you to scan text and easily find them.

• They provide a way of qUickly delimiting several key points.

• They allow you to maintain a "global" view, rather than getting bogged down in details.

These lists will help you to more quickly learn the material provided in the text, as well as steer
you around sections that are irrelevant to you at a particular time.

Chapter Previews
The following is a preview of each chapter in this guide.

Chapter 1: Overview

This chapter (the one you are now reading) covers the necessary prerequisites for using this
guide and a description of each chapter.

Chapter 2: Program Development

This chapter discusses the overall process of developing programs. It briefly discusses the steps
in designing, coding, debugging, and supporting programs.

Chapter 3: Program Structure and Flow

This chapter describes how you can tell a program to make decisions and then execute the
corresponding part(s) of your program.

Chapter 4: Numeric Computation

This chapter covers mathematical operations and the use of numeric variables. It includes dis
cussions on types of variables, expression evaluation, arrays, and methods of managing memory.

1-6 Overview

Chapter 5: String Manipulation

This chapter explains the programming tools available for processing strings. Strings are char
acters, words, and text. Since words are more pleasant than numbers to humans, skillful use
of strings can make the input and output of programs much more natural to those using the
programs.

Chapter 6: User-Defined Functions and Subprograms

This chapter discusses an outstanding feature of this language - its ability to call other program
contexts and the speed with which it can do so. Alternate contexts, or environments, are available
as user-defined functions or subprograms.

Chapter 7: Error Handling

This chapter discusses techniques for intercepting or trapping errors that might occur while a
program is running. Many errors can be dealt with easily by a well written program. Error
trapping keeps the program running and provides valuable assistance to the computer operator.

Chapter 8: Program Debugging

This chapter explains the powerful debugging features available on the Technical BASIC system.
We all wish that every program would run perfectly the first time and every time. Unfortunately,
there is little evidence in real life to support that dream. The next best thing is to get the
computer to do most of the debugging work for you.

Chapter 9: Communicating with the Operator

This chapter provides suggestions and techniques for providing information to and receiving
it from a person who is using the computer. For instance, it discusses techniques useful for
creating organized, highly readable printouts on printers and display screens.

Chapter 10: Using the Clock and Timers

This chapter describes using the HP-UX system's real-time clock and the Technical BASIC
system's timers.

Chapter 11: Data Storage and Retrieval

This chapter shows many of the alternatives available for storing the data that is intended as
program input or created as program output. The two main means for storing and retrieving
data are program files and mass storage data files.

Overview 1-7

Chapter 12: C Binaries

This chapter explains how to make calls to programs written in the C languages from Technical
BASIC programs.

Chapter 13: Pascal Binaries

This chapter explains how to make calls to programs written in the Pascal language from Technical
BASIC programs.

Chapter 14: FORTRAN Binaries

This chapter explains how to make calls to programs written in the FORTRAN language from
Technical BASIC programs.

Chapter 15: Graphies

This chapter discusses the techniques of programming with graphics and how they are very
useful for displaying data in a form that humans easily understand.

1-8 Overview

Program Development 2
There are several stages in the design and development of programs: determining what is re
quired; outlining algorithms and data structures; translating the algorithms and data structures
into BASIC statements (coding); checking to see that the program works without errors (debug
ging); documenting the program; and supporting and enhancing it.

There are also several steps in the mechanics of program development once you begin coding
the program: entering, storing, listing, and editing it.

Chapter Contents
This chapter contains the following areas of program development:

Tasks/Topics Page

General steps in program design and development 2-2

Sample development session 2-3

Step 1: Understand and describe the problem 2-3

Step 2: Outline a solution 2-6

Step 3: Design data structures and algorithms, then refine 2-7

Step 4: Code the program 2-8

Mechanics of Program Development 2-14

Global program editing 2-14

Sample development session (cont.) 2-24

Step 5: Debug and test the program 2-24

Step 6: Document and support the program 2-24

Program Development 2-1

General Steps in Program Development
This section describes the general steps that you will take as you develop programs. The
following sections in this chapter and manual show how to apply them.

1. Understand and describe the problem. You cannot design a solution to a problem without
clear understanding of the problem. You must get a clear grasp of these two elements:

a. What action the program is required to perform.

b. What data it will be given or will compute.

1. Even though this step sometimes seems trivial or obvious, taking time to methodically
describe it may simplify the design process immensely.

2. Outline the solution. This phase initially consists of verbally describing what steps your
program will take to solve the problem. At this point, splitting up the program's respon
sibilities into various tasks is very important, especially if each task is to be written by a
different programmer. Interactions between various tasks are also important.

3. Design algorithms and data structures, and then refine. The algorithms that you design
(or choose from computing literature) will consist of the individual steps that your program
will take. The data structures required may be global or applicable to only one or two
steps of the overall solution.

The "refine" part of this step suggests the highly effective approach of beginning with
large tasks and then breaking each one up into smaller tasks. You can keep repeating this
approach on each subtask, until you have broken the problem up into a set of rudimentary
steps.

4. Code the data structure and algorithms. This step involves translating the data structure
and algorithms defined in earlier steps into the programming language that you will be using
- in this case, BASIC. This guide gives several examples of programs and code segments
which are implementations of various algorithms.

5. Debug and test the program. Debugging a program involves getting the program to
run without crashing and giving you BASIC error messages like Error 56: STRING OVF.

Testing a program involves making sure that it does what you want it to do. Ideally, you
should be able to test each separate "module" of your program independently, which is
sometimes called "bottom-up" testing. The chapter called "Debugging Programs" discusses
these topics in greater detail.

6. Document and support it. Documenting the program involves telling both the program's
users and its future supporters what the program does. See the section of this chapter
called "Documenting Your Programs" for further details. Support involves fixing bugs and
enhancing the program.

2-2 Program Development

Sample Development Session
The remaining sections of this chapter, and some subsequent chapters, show how to apply the
suggestions in the preceding section in developing a simple "budget" program. Seeing that the
suggestions really work will help you to have faith in them and begin to apply them.

Step 1: Understand and Describe the Problem
As you begin to conceptualize your budget program, one of the first question you might ask is,
"What is a budget for?" The answer is that it is an attempt to evaluate present income and
spending for the purpose of planning and controlling future income and spending. But how does
it help you accomplish these two tasks? Here some things that will help you to evaluate present
income and expenses.

1. Determine target income and expenses.

2. Determine actual income and expenses.

3. Calculate the differences between the targets and actuals.

For simplicity, using this information in planning and controlling future income and spending will
not be part of the program's responsibility.

Program Development 2-3

Now that the program's action has been generally defined, you are ready to ask the second
question: "What data is required?" Here is an example of the data that the user will supply
to the program (also known as input data):

Income
Category Target Actual
--------------- -------- --------

Payroll 1680.56 1680.56

Investments 345.67 290.32

Expenses
Category Target Actual
--------------- -------- --------

Mortgage 654.32 654.32

Taxes 432.10 432.10

Insurance 123.45 123.45

Food 432.00 501.81

Medical 75.00 125.90

Transportation 165.00 134.32

Education 100.00 95.00

Entertainment 75.00 98.55

Alphanumeric data will be used in the "Category" column; with BASIC, this data type is also
known as string data. The data in the "Target" and "Actual" columns will be real numbers.

2-4 Program Development

Here is an example of the data that the program will compute and display for the user (also
known as output):

Income
Difference

Category $ %
--------------- -------- --------

Payroll 0.00 0

Investments - 55.35 - 16

Total difference - 55.35

Expenses
Difference

Category $ %
--------------- -------- --------

Mortgage 0.00 0

Taxes 0.00 0

Insurance 0.00 0

Food + 69.81 + 16

Medical + 50.90 + 68

Transportation - 30.68 - 19

Education 5.00 5

Entertainment + 23.55 + 31

Total difference + 108.58

Net Savings Deposit
(Withdrawal) (163.93)

The "$ differences" will be represented as real numbers, since it may be important to keep track
of cents as well as dollars. The "% differences" can be integers, since 1% resolution is probably
adequate.

Now that you understand and can describe the problem, both in terms of what it does and what
data is required, you are ready to begin creating the solution.

Program Development 2-5

Step 2: Outline the Solution
Here are the general steps that a program can take to solve the problem:

1. Show you the target income and expenses (for all categories).

2. Ask you for the actual income and expenses (for each category).

3. Compute the differences between target and actual (for each category).

4. Show you the results (for all categories).

5. Compute the difference between total income and total expenses.

6. Show you the net deposit to (or withdrawal from) your savings.

Maintain Proper Perspective
At this point, you should not get into the details of any step; just stick to the broad perspective.
You will be getting into more details in the next step. By hiding the details of each step in a
procedure, you can more easily understand what is happening in the procedure (and consequently
maintain better control of it).

Let the Data Structure the Algorithms
You can now begin to see that the steps are more or less structured according to the data that
you have. This is in fact one of the most important principles that you can use in designing your
programs: Let the structure of the data determine the structure of the algorithms.

2-6 Program Development

Step 3: Design, and Then Refine
You have shown what general steps the program will take to solve the problem, but you have
not yet described the procedure explicitly enough for a computer to understand what you want
it to do (at least not for the Technical BASIC language). The next step is to take each of these
general steps and begin to refine it, or break it down into smaller and smaller tasks.

For brevity, let's take the first step:

1. Show you the target income and expenses (for all categories), and break it down into
smaller steps.

a. For each income category:

• Determine the target income value.

• Display the category name and target value.

b. For each expense category:

• Determine the target expense value.

• Display the category name and target value.

With this level of detail you can begin translating the algorithm into BASIC code.

Program Development 2-7

Step 4: Code the Program
This section consists of two parts:

• The first part gives a brief description of the fundamental building blocks of a BASIC
program .

• The second part, called "Back to Step 4," presents a BASIC program.

If you already know anothpr version of BASIC, or other programming language, then you may
want to skim the first section, called "Elements of a BASIC Program."

Elements of a BASIC Program
This section descri~es the fundamental building blocks of Technical BASIC programs. These
terms and concepts will prepare you for translating your data structure and algorithms into
BASIC code.

Keywords
A keyword is a group of characters that is understood by the BASIC language system to invoke
some predefined action. Examples of keywords are BEEP. DISP. INPUT, and LET.

Statements
A statement is a keyword (sometimes optional) followed by any parameters, lists, specifiers, and
secondary keywords that are allowed with that keyword. These are examples of statements:

BEEP

DISP "THIS IS A STATEMENT II

INPUT Income

LET Expense=10

Tells the computer to produce a short beep.

Tells the computer to display the message "THIS IS A
STATEMENT" on the screen.

Tells the computer to allow the user to enter a value (from
the keyboard) into the numeric variable named Income.

Tells the computer to assign a value of 10 to the numeric
variable named Expense.

NOTE

Note that the notation used in this guide is to print the statements that
you can actually type into the computer in a special dot-matrix font.

2-8 Program Development

Program Lines
A program line contains a line number followed by at least one BASIC statement. Here are two
legal program lines.

10 PRINT "THIS IS A PROGRAM LINE"
20 END! SO IS THIS

Line 10 prints the characters between the quotes, while line 20 indicates the end of the program.
The text following the END statement on line 20 is a comment; it is separated from the END
statement with the exclamation point.

You can place several statements on a single program line by separating them with (D character.

10 PRINT "THIS IS A " (D PRINT "PROGRAM LINE"

A line number may be optionally followed by a line label. A line label is a name that is placed
after the line number and is terminated by a colon (:).

20 Done: END! SO IS THIS

The subsequent section called "Documenting Your Programs" further describes using comments
and line labels.

Programs
In Technical BASIC, a program is a list of program lines, usually with an END statement on the
last line. The two following program lines define a program.

10 DISP "THIS IS A PROGRAM LINE"
20 END ! SO IS THIS

The maximum length of a program line entered from the keyboard is 159 characters l unless you
have a line-oriented terminal where the maximum length is 80 characters per line. Check the
"GLOSSARY" of the HP-UX Technical BASIC Language Reference under line-oriented terminal.

1 BASIC program lines longer than 159 characters can be created using another editor and then retrieved with the GET statement; however,

only the first 159 characters will be stored on the line.

Program Development 2-9

Data Types
With Technical BASIC, there are two general pre-defined types of data: numeric and alphanu
meric (or "string"). And within the numeric data category, there are two divisions: real1 numbers
and integers. Here are examples of each.

String Real Integer Short

a 1.2 16 -1.987
Word 1E+300 32767 1E+10

MORE letters

Here are examples of creating storage locations, called variables, for these fundamental types of
data.

DIM StringVar$[20]

INTEGER WholeNumber

SHORT ShortReal

REAL LongReal

REAL RealArray(10)

Declares a simple variable named StringVar$ to be of type string,
and allocates a storage space of size 20 characters for it.

Declares a simpl~ variable named WholeNumber to be of type IN
TEGER' and allocates the corresponding amount of memory for it.

Declares a simple variable named Short Real to be of type SHORT,
and allocates the corresponding amount of memory for it. Note that
real variables of type SHORT are stored in half the memory that it
takes for a variable of type REAL.

Declares a simple variable named LongReal to be of type REAL, and
allocates the corresponding amount of memory for it.

Declares an array variable named RealArray to be of type REAL,
and allocates the corresponding amount of memory for it. The
array structure in BASIC is a group of variables, each of which
has the same data type and variable name. Each variable in the
array is specified by an index value; for instance, the 4th element
is ReaIArray(4), if OPTION BASE 1 is in effect. Note that OPTION
BASE determines the lower bound(s) of a numeric or string array's
subscript(s); the default is OPTION BASE O.

You can also use these fundamental types to implement your own data types, if you wish.

1 With HP·UX Technical BASIC, there are actually two pre· defined representations of real numbers: REAL and SHORT. The difference
between the two is the range of values that they can represent. See the chapter called "Numeric Computation" for further details.

2-10 Program Development

Functions
Functions perform operations that always return a value. The Technical BASIC system provides
two types of functions:

• Resident - provided by the system .

• User-defined - you can implement these yourself.

Resident functions are part of the BASIC language. For instance, SIN (PI/2) and CHR$ (10) are
examples of calling the resident functions SIN and CHR$. respectively. Resident functions are
discussed in the "Numeric Computations" and "String Manipulations" chapters.

You can implement your own user-defined functions to provide any function you desire. These
types of functions are described in the "User-Defined Functions and Subprograms" chapter.

Subprograms
Subprograms also perform operations, but they do not necessarily return a value. Like programs,
subprograms are also lists of program lines, but they can be stored independently and "called"
from a main program or another subprogram. Each is also stored in its own portion of BASIC
memory, which is separate from the main program. Here is a simple example subprogram:

100 SUB IFirstSub"
110 DISP "This is displayed by 'FirstSub'. II
120 SUBEND

Here is how you can call it from a main program.

100 CALL IFirstSub"

Subprograms are a useful programming tool, but the computer is capable of running just fine
without them. Subprograms are covered in depth in the chapter called "User-Defined Functions
and Subprograms".

Binary Programs
The Technical BASIC system has the capability of loading and calling "binary programs". The
term "binary programs" is used to identify programs that are stored in the "machine" language
used by the computer's central processor, rather than in a high-level language like BASIC. Thus,
"binary" programs can be run directly by the processor, rather than having to be translated from
the high-level language into machine language.

The usual purpose of a binary program is to add capabilities to the language of the computer.
In this respect, the computer's operating system and the Technical BASIC system might be
considered "binary programs". However, they cannot be accessed using the CALLBIN statement.
For further details read the "Binary Programs" chapter.

Program Development 2-11

Commands (Not Part of Programs)
Commands are like statements in that they consist of a keyword, and sometimes appropriate
parameters; however, they cannot be stored in a program line - you can only execute them
from the keyboard. Examples of commands are DELETE and SCRATCH.

Back to Step 4
Now that you have seen the bUilding blocks of a program, you are ready to begin translating it
into BASIC language code. For convenience, here are copies of the data structure and algorithm
from the solution presented earlier. The translation into BASIC code follows:

Data structure
Income

Category

Payroll

Investments

Algorithm
For each income category:

Target

1680.56

345.67

• Determine the target income value .

• Display the category name and target value.

A Coded Program Segment
Here is one way of implementing the data structure and algorithm. (Don't be concerned if you
don't understand every line of the program right now; each line is explained after the program
listing.)

100 ! Allocate memory for data storage.
110 OPTION BASE 1
120 DIM IncomeName$(2)
130 REAL Targetlncome(2)
140
150
160
170
180
190
200
210
220
230
240

! Assign values to variables.
LET IncomeName$(l)=IPayroll"
LET IncomeName$(2)=IInvestments"
LET TargetIncome(1)=1680.00
LET TargetIncome(2)=345.67

DISP II Category Target II
DISP 11__________ --------11
DISP IncomeName$(l) ,TargetIncome(l)
DISP IncomeName$(2),TargetIncome(2)

2-12 Program Development

Here are the results of running the program:

Category

Payroll
Investments

Target

1680
345.67

Here is a line-by-Iine description of what the program does. You can skip the explanation if you
already understand what is happening.

Line 100 is a comment. It is a way for the programmer to describe what he is doing in the
program; they help him to understand what the program is doing the next time that he edits it.
It is especially useful when he, or someone else, must modify the program a long time later.

Line 110 defines the lower bound of array element indexes. In this case, a value of 1 dictates
that the first element of an array is specified with an index value of 1; e.g., IncomeName$(l).
OPTION BASE 0 indicates that the first element would be specified with an index value of 0; e.g.,
IncomeName$(O).

The DIM statement on line 120 declares the string variable named IncomeName$, and allocates
memory for it. In this case, the subscript (2) specifies that it is an array variable with 2 elements
(1st, and 2nd) which are both string variables.

The REAL statement on line 130 performs the same function for the real array called ActualIn
come.

Lines 140 and 150 are also comments.

The LET statement on line 160 stores the characters "Payroll" in element 1 of the string array
variable named IncomeName$. Line 180 performs a similar function for element 1 of the REAL

array named TargetIncome. Lines 170 and 190 perform similar operations for element 2 of the
respective arrays.

Line 200 is another comment.

The DISP statements on lines 210 through 240 display messages on the CRT screen. The first
two DISP statements display the table headings, while the second two display values in the table.
On line 230 the index value of 1 specifies that 1st element of the IncomeName$ string array is
to be displayed. This string variable's value is "Payroll". Similarly, the value of the 1st element
of the TargetIncome array is 1680.

Program Development 2-13

Mechanics of Program Development
Now that you have a real program to work with, the next step is to learn the mechanics of
entering, storing, listing, and running programs. Some of these operations are system-dependent;
in other words, they vary slightly according to the HP-UX system you are using. Therefore,
they have been covered in the Getting Started Guide for your particular HP-UX Technical BASIC
system.

Here is the list of operations covered therein:

• Initial program entry using the Technical BASIC editor, including specifics of using your
keyboard.

• Storing the program in a file (STORE or SAVE).

• Checking to see if the file was stored (CAT).

• Getting a listing of the program (LIST and PLIST).

• Running the program (RUN).

• Getting a hardcopy of the screen (DUMP ALPHA and DUMP GRAPHICS).

• Dealing with error messages.

If you are not familiar with these operations, please refer to your Getting Started Guide now.

Global Program Editing
The Getting Started Guide for your particular Technical BASIC system describes entering pro
grams using the BASIC editor; it also describes editing programs on a line-by-line basis. This
section describes the following "global" program editing operations which are provided by Tech
nical BASIC keywords:

• Inserting new program lines between existing lines.

• Deleting existing lines.

• Renumbering existing lines.

• Scanning for string literals.

• Renaming variables.

• Copying and moving program segments.

2-14 Program Development

/

~

(

Inserting Lines
Lines can be easily inserted into a program. As an example, assume that you want to insert
some lines between line 200 and line 210 of our example program.

180 LET TargetIncome(1)=1680.00
190 LET TargetIncome(2)=345.67
200 !
210 DISP" Category Target"
220 DISP "---------- --------"

You can begin by numbering the first line 201, the second one 202, and so forth (up through
209 without overwriting existing lines).

201 CLEAR! Clear the alpha screen.
202

Note that while inserting lines, you should keep track of the line numbers you have inserted so
that you do not inadvertantly:

• Overwrite existing lines .

• Insert lines into the wrong place.

You can generate a program listing with LIST or PLIST to keep track of where lines have been
placed.

180
190
200
201
202
210
220

LET TargetIncome(1)=1680.00
LET Targetlncome(2)=345.67
!
CLEAR ! Clear the alpha screen.

DISP " Category
DISP "----------

Target"
--------"

Program Development 2-15

Deleting Lines
The DELETE command can be used to delete single or groups of program lines. When the
keyword DELETE is followed by a single line number, only a single line is deleted. For example,
executing:

DELETE 201

deletes only line 201 of your program.

Blocks of program lines can be deleted by using two line numbers in the DELETE command. The
first number identifies the start of the segment to be deleted, and the second number identifies
the end of the segment to be deleted. Here are some examples.

DELETE 100,200

DELETE 150,65535

DELETE 100, 10

deletes lines 100 thru 200, inclusively.

deletes all the lines from line 150 through the end of the program.

would do nothing except generate an error if a program is currently in
memory.

Renumbering a Program
No matter how careful you have been while entering lines, there will inevitably be a time when
you need to renumber a program. And it is also good practice to renumber occasionally to
improve readability.

You can renumber a program by using the REN command. When no parameters are specified,
the first line number is renumbered to 10 and the line-number increment is 10.

2-16 Program Development

Both the starting line number and the interval between lines can be specified. For example,
this command renumbers the entire program, using 100 for the first line number and an increment
of 5.

REN 100,5

100 ! Allocate memory for data storage.
105 OPTION BASE 1
110 DIM IncomeName$(2)
115 REAL TargetIncome(2)
120
125 ! Assign values to variables.
130 LET IncomeName$ (1) ="Payroll"
135 LET IncomeName$(2)=IInvestments"
140 LET TargetIncome(1)=1680.00
145 LET TargetIncome(2)=345.67
150
155 CLEAR! Clear alpha display.
160
165 DISP II Category Target II
170 DISP 11__________ --------11
175 DISP IncomeName$(l) ,TargetIncome(l)
180 DISP IncomeName$(2) ,TargetIncome(2)

If only the beginning line number is specified, a line-number increment 10 is assumed. For
example, this command renumbers the entire program using 1000 for the first line number and
an increment of 10:

REN 1000

1000 ! Allocate memory for data storage.
1010 OPTION BASE 1
1020 DIM IncomeName$(2)
1030 REAL TargetIncome(2)
1040
1050 ! Assign values to variables.
1060 LET IncomeName$ (1) =IIPayroll"
1070 LET IncomeName$(2)=IInvestments"
1080 LET TargetIncome(1)=1680.00
1090 LET TargetIncome(2)=345.67
1100
1110 CLEAR! Clear alpha display.
1120
1130 DISP II Category
1140 DISP 11----------

Target II -- ______ 11
1150 DISP IncomeName$(l) ,TargetIncome(l)
1160 DISP IncomeName$(2) ,TargetIncome(2)

Program Development 2-17

You can also renumber a portion of a program. For instance, this command renumbers only
line numbers 1000 through 1080 to lines 10 through 90.

REN 10,10,1000,1080

10 ! Allocate memory for data storage.
20 OPTION BASE 1
30 DIM IncomeName$(2)
40 REAL TargetIncome(2)
50 !
60 ! Assign values to variables.
70 LET IncomeName$(l)=IIPayroll"
80 LET IncomeName$(2)=IIInvestments"
90 LET TargetIncome(1)=1680.00
1090 LET TargetIncome(2)=345.67
1100 !
1110 CLEAR! Clear alpha display.
1120 !
1130 DISP II Category Target II
1140 DISP ,,---------- --------"
1150 DISP IncomeName$(l),Targetlncome(l)
1160 DISP IncomeName$(2),TargetIncome(2)

NOTE

Note that the REN command cannot be used to move lines. Moving and
copying program lines is the topic of a subsequent section.

To get back to the original program, you can use this sequence:

DELETE 1110,1120
REN 100

Scanning for Literals
The SCAN command is used for finding all the occurrences of a particular string literal or variable
name in a program. In our continuing example program, let's look for the literal "Income":

SCAN "Income"

2-18 Program Development

(

Here is the system's response:

Scanning ...
130 REAL Targetlncome(2)
180 LET Targetlncome(1)=1680.00
190 LET Targetlncome(2)=345.67
210 DISP" Category Target"
230 DISP IncomeName$(l),Targetlncome(l)
240 DISP IncomeName$(2),Targetlncome(2)
... end of scan

Here is a more useful example. Suppose that you have the string literal "Tax" in several places
in your program, and you want to change it to either "State Tax" or "Federal Tax" - and which
one you change it to depends on the context of the statement. Use the following command to
find and list all occurrences of the string "Tax":

SCAN "Tax"

You can then look at each line and decide whether it should be changed to "State Tax" or
"Federal Tax".

To verify that all change(s) have been made, execute another SCAN command specifying the
string for which you were originally searching. (Using this command avoids a long listing of the
program.) The command lists all program lines containing the string "State Tax" or "Federal
Tax", since the string "Tax" is a subset of those strings.

Renaming Variables
You can rename variables with the the REPLACEVAR ... BY command. Here is an example:

REPLACEVAR Targetlncome BY TargetExpense

REPLACEVAR ... BY is like SCAN in that it looks for specific patterns of characters; however, RE
PLACEVAR is different in two ways:

• It can only find occurrences of the specified variable name, not any combination of char
acters in the program .

• It automatically replaces the first variable name with the second one.

Here is an example of replacing one variable name with another. Suppose that you have the
following program in memory:

10 A=20
20 B=30
30 T=A+B
40 DISP T
50 T=A*B
60 DISP T
70 END

Program Development 2-19

You decide after entering the program that you want to replace the variable "T" with the
variable name "RESULT" , but you do not want to go through the program and replace "T"
with "RESULT" everywhere you see it as it would take a long time to do so. This is particularly
true for large programs. The following command allows you to do this:

REPLACEVAR T BY RESULT

When you do a listing of you program it now looks like this:

10 A=20
20 B=30
30 RESULT=A+B
40 DrSp RESULT
50 RESULT=A*B
60 Drsp RESULT
70 END

Copying and Moving Program Segments
During program development you often enter a section of code that performs some function,
thinking that this function will be needed at that place. Sure enough, a short time later you find
that you need to move it to another location. But how on earth do you move those thirty-five
lines of code? You certainly do not want to retype the whole thing.

The following paragraphs show you how to move program segments using three different meth
ods:

• Using the Technical BASIC editor (if you have a terminal or console that supports screen
oriented editing).

• Using Technical BASIC's STORE and MERGE commands.

• Using the HP-UX system's "vi" editor

Moving Lines with the Technical BASIC Editor

NOTE

You can only use this method if you have a terminal or console that
supports screen-oriented editing. See the Getting Started Guide for your
particular Technical BASIC system to determine whether your terminal
or console supports this feature.

2-20 Program Development

Here are the steps that you will be taking with this method:

1. Perform a LIST operation on the lines to be moved.

2. Change a statement's line number by moving the cursor onto the line and typing over the
existing number.

3. Store the line by pressing the carriage return key.

4. Repeat steps 2 and 3 until you have changed the line numbers of all program lines to be
moved. (You may have to perform another LIST if you are moving more than a screenful
of lines.)

S. Verify that the lines have been copied into the desired location. (Note that the original
lines are still present.)

6. DELETE the original copies of the lines. (If you are duplicating the lines into another
location, then you will skip this step.)

Moving Lines with the MERGE Command
The following procedure allows you to move a program segment using the Technical BASIC's
MERGE command.

1. Store the program which you have just entered under a file name of your choosing by
executing a STORE command that specifies the desired file name.

2. To assist in determining where the lines are you wish to move, list the program using the
LIST statement. Make a note of those lines for later reference.

3. Delete all the lines in your program except those which you wish to move to another
location in the program. Use the DELETE command, which was explained earlier in this
section.

If, for instance, you want to move lines 300 through 390 to another location, you could
execute:

DELETE 1,299

and then execute

DELETE 391,lasCIine

4. Store the remaining lines in a temporary file. Use the STORE command and specify the
name of the temporary file; this file's name must be different from the one you stored in
step 1.

S. Reload the original program.

Program Development 2-21

6. Delete the lines in this file that you want to move. (If you are just making a second copy
of these lines, you can skip this step.)

If, as in the preceding example, you were moving lines 300 through 390, you would now
delete these lines:

DELETE 300, 390.

7. Finally, merge the lines stored in the "temporary" file into the new location in original
program.

Use the MERGE command and specify the temporary file's name. Following the file name,
specify the line number where you want the insertion to occur and the increment for
each line. Note that the increment of 1 is used so that lines of the existing program
are not overwritten and that lines are not "interleaved" between existing lines of code.
For example, if you were merging the contents of the file named TEMP into this program,
beginning at line 850, you would specify that line number and the increment of 1 after the
file name. Your statement would be specified as follows:

MERGE "TEMP" 850,1

After executing the above procedure, purge the temporary file by using PURGE.

Moving Lines with the HP-UX vi Editor
The editors available on your HP-UX system read and write text using ASCII-format files. The
Technical BASIC system can also read and write ASCII files using the GET and SAVE commands.
The general procedure you will use is as follows:

1. Create a program with the BASIC editor, SAVE it in an ASCII file, and exit the BASIC
system.

2. Read this file with an HP-UX editor, and move the desired lines. Note that your program
lines and statements refering to them have to be renumbered. Then store this modified
file, and exit the HP-UX editor.

3. Load the modified file into BASIC memory with the GET command.

2-22 Program Development

Here are the details of the preceding procedure using the HP-UX system's vi editor.

1. While in BASIC, use the SAVE command to store the program. This command creates an
ASCII file and stores the program as ASCII text in the file.

2. Exit the BASIC system.

3. Execute the vi command, specifying the name of the file saved in step 1.

4. Locate the program lines you want to move and place the cursor on the first line to
be moved. Next, type the number of program lines you wish to move followed by the
uppercase letter Y (for "yank"). This will place the indicated number of program lines into
the vi editor's buffer.

5. Next, move the cursor to the line above which you wish to copy the text contained in the
buffer. Type an uppercase P (for "put"). Your program lines have been moved; however,
the same program lines still exist in their previous location and need to be removed from
the program. To remove these line place the cursor on each of the lines to be removed
and type lowercase dd.

6. Renumber the program lines and statements refering to them.

7. Store the file by typing uppercase ZZ. Typing this command also exits the vi editor.

8. Enter the BASIC system. Execute a GET command, specifying the name of the modified
file.

Program Development 2-23

Step 5: Debug and Test
This phase of the development process involves two main things:

• Getting the program to run (without program-execution errors).

• Making sure the program does what is expected.

Since these are rather large topics, they are discussed in the separate chapter called "Debugging".
Both debugging and testing programs are mentioned there, but the focus is on the Technical
BASIC features available for debugging. An exhaustive treatise of software testing is beyond the
scope of this manual.

Step 6: Document and Support
Documentation for a program describes relevant facts about the program, such as what the
program does and what kind of data it requires. Support involves both fixing errors and adding
enhancements. Documentation is described in this chapter, but a detailed treatment of software
support is beyond the scope of this text.

There are basically two types of documentation that you can produce for your programs:

• Internal documents - those available to someone supporting or enhancing the program.

• External documents - those available to the program's users.

Internal Documents
There are basically two ways to document programs for those who will be supporting or revising
them:

• Within the program itself.

• In a separate document.

The focus of this section is on self-documenting programs. The topic of producing separate
documents, while extremely useful, is not discussed in this manual.

2-24 Program Development

Internally Self· Documenting Programs
When first learning how to program, many people may view the use of comments, long variable
names, descriptive printouts, and other documentation tools as merely extra typing that is not
really necessary in their short programs. However, as old programs are expanded or become
more widely used, or new programs are written, software support activities eventually become
necessary. For example, when some obscure bug is found, someone must address the problem.

A programmer (often the original designer) picks up a copy of the program written a year ago
and can't begin to see what "Xl" was or why you would ever want to divide it by "X2". Program
documentation can make the difference between a supportable tool that adapts to the needs of
the users and a support nightmare that never really does exactly what the current user wants.
Keep in mind that the local software support person just might be you.

Relevant Features
The Technical BASIC language on HP-UX makes it easy to write self-documenting programs. In
addition to BASIC's standard REM (remark) capability, its primary documentation features are as
follows:

• Line labels (up to 32 characters)

• Variable names (up to 32 characters)

• Remark (REM) statements

• End-of-line comments (that follow statements on a program line)

• Indentation of statements on program lines

Although this section deals primarily with commenting methods, all of these features work
together to make a readable program.

A Comparison
The following example shows two versions of the same program.

• The first version is uncommented and uses "traditional" BASIC variable names.

• The second version uses the features of the Technical BASIC language to make the program
more easily understood.

After reading both programs, answer this question: Which version would you rather work
with?

Program Development 2-25

100
110
120
130
140
150
160
170
180
190
200
210

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

A=0.03
B=0.02
C=A+B
D=O
DISP "Input item price" <D INPUT D
IF D<O THEN GOTO 210
E=D*C
F=D+E
DISP "Tax =1;E,"Item cost =";F
DISP
GOTO 130
END

**
This program computes the sales tax
for a list of prices.

Input: Item prices are input individually.

Output: The tax and total cost for
each item are displayed.

Program terminated with negative cost.

Sales tax rates are assigned on lines 270
and 280. The rates used in this version
of the program were in effect 9/1/84.

**

tate_tax=.03
City_tax=.02

Local tax rates

!
Tax_rate=State_tax+City_tax
!

320 Get_price: ! Start of main loop
330 Price=O! Don't change totals if no entry
340 DISP "Input item price (negative price to quit)."
350 INPUT Price
360 IF Price < 0 THEN GOTO Finished
370 Tax=Price*Tax_rate
380 Item_cost=Price+Tax
390 DISP "Tax =";Tax," Item cost =";Item_cost
400 DISP
410 GOTO Get_price
420
430 Finished: END

2-26 Program Development

Repeat loop for next item

There are two methods for including comments in your programs. The use of an exclama
tion point is demonstrated in the second example program. The exclamation point marks the
boundary between an executable statement and comment text. There does not have to be an
executable statement on a line containing a comment. Therefore, the exclamation point can be
used to introduce a line of comments, to add comments to a statement, or simply to create a
"blank" line to separate program segments. Exclamation points may be indented as necessary
to help keep the comments neat.

Note that when the exclamation point is used on the same line as syntax, the exclamation point
and comment are moved a space away from the syntax by the interpreter. If you wish to make
your comment stand out from the syntax on that line, you need to use blank spaces between the
exclamation point and the comment. An example of this was shown in the previous program.

The REM statement can also be used for comments. The exclamation point is neater and more
flexible, but the REM statement provides compatability with other BASIC languages. The REM
keyword must be the first entry after the line identifier and must be followed by at least one
blank. Here are some examples of comments.

Obscure Better

20 REM bal. array 20 REM Check Book Balance

50 X=PIR-2 ~ REM Area of circle

General Suggestions on Comments
Each programmer has an individual style in the use of comments. Therefore, the following are
not formal rules - they are simply some general suggestions on the effective use of comments.

• Include a heading on programs that tells the purpose of the program: Why was the program
written? What does it do? Who will probably be using it?

• Give any helpful support information, such as the author of the program, the revision date,
where to call or write for help, and instructions for any modifications that might be made
by a normal user.

• Identify all significant variables, especially global variables. A descriptive variable name
may do the job, or a more detailed explanation may be needed.

• Describe any input or output devices that are required for the proper running of the
program. This may even include an explanation of how to modify the program to accom
modate alternate devices (when such changes are reasonable).

Program Development 2-27

• Make major segments and entry points visible. Many tools are available for this, including
descriptive line labels, indenting (described in the next section), spacing, and comments
describing program flow.

• Use comments freely to describe the action of complex lines, equations, fancy manip
ulations, and "low-level" operations like escape code sequences. These heavily coded
operations can be very important to the computer and very mysterious to the human
trying to read the program.

Indenting
Indenting is used to make the structure of a program more intuitively obvious by placing program
lines in their "appropriate places". "Appropriate places" means indenting whenever there is a
beginning or end of a program statement which:

• causes looping,

• is conditionally executed,

• is a separated program segment (such as a function),

• is the first character of each program line contained in that segment - excluding the line
number.

The following program is an example of indenting and commenting (but a poor example of
variable names):

10 PRINT "I J" !
20 FOR I = 1 TO 3 !
30 FOR J = 4 TO 6
40 PRINT I;J
50 NEXT J
60 NEXT I
70 END

2-28 Program Development

Prints heading.
Begins "I" loop.
Begins "J" loop.

Ends "J" lOOp.
Ends "I" lOOp.

External Documentation
Like internal program documents, there are two ways that external documentation can be pre
sented to the user:

• By the program itself.

• In a separate manual.

Externally Self-Documenting Programs
Ultimately, a program should require no external documents for its users. It should communicate
what it does and how to use it through these two principles:

• If it operates "as the user would expect," then it doesn't need any documentation. The
chapter called "Communicating with the Operator" presents some examples of this princi
ple.

• If an interaction is so complex as to require description, then it should do so while it is
running. For instance, it should prompt the user for data when required, giving as much
description as necessary.

Since most programs do not have this level of "human interface," you will probably need to
produce an external document for the human who is to use it.

External User Documents
Although the topic of producing documentation for the program user is a large one, here are a
few general suggestions:

• Give users a global view of all the things that they can do with the program.

• Describe how to complete each task. Present these discussions in logical progression.

• Provide relevant examples, and be sure that they work.

• If a task requires some level of expertise or knowledge, then state what is required. If
possible, present relevant concept(s) at that point. If that is not possible, then give them
a way to fulfill the requirement (such as by consulting another document or local expert).

• Summarize tasks at the end of tutorials.

Program Development 2-29

Notes

2-30 Program Development

Program Structure and Flow 3
Two of the most significant characteristics of a computer lie in its abilities to:

• Perform quick and accurate computations .

• Execute decisions within programs.

If the execution sequence could never be changed within a program, the computer could do little
more than plug numbers into a formula. Technical BASIC has powerful computational features,
but the heart of its usefulness is its ability to make decisions.

The computational power of Technical BASIC is exercised as it evaluates the expressions con
tained in the program lines. The chapters entitled "Numeric Computation" and "String Manipu
lation" present the various tools available for data manipulation.

The decision-making power is used to determine the order in which lines will be executed. This
chapter discusses the ways of controlling the "flow" of program execution.

Chapter Contents
Here are the general topics covered in this chapter.

Tasks/Topics Page

The program counter 3-2

Sequences of program flow 3-3

Linear flow 3-3

Halting program execution 3-3

Simple branching 3-6

Selection of program segments 3-10

Repetition of program segments (looping) 3-17

Event-initiated branching 3-24

Chaining programs 3-30

A closer look at program execution 3-32

Program Structure and Flow 3-1

The Program Counter
The key to the concept of decision making in a computer is an understanding of the program
counter. The program counter is the part of the computer's internal system that tells it which
line to execute. Unless otherwise specified, the program counter automatically updates at the ~
end of each line so that it points to the next program line. This is illustrated in the following
drawing.

Program Lines

1
120
130
131
lLlO
150

R=R+2
Area=PI*R"2
PRINT R
PRINT "Area
STOP

Value in Program Counter
at End of Line

c:J]Q=:J
[J}O
CEO

=" ; A re a c:J]Q=:J
Idon't carel

This fundamental type of program flow is called "linear flow". As shown by the arrow, you can
visualize the flow of statement execution as being a straight line through the program listing.
Although linear flow seems very elementary, always remember that this is the computer's normal
mode of operation. Even experienced programmers are sometimes embarrassed to discover that
a "bug" in their program was due to the program linearly flowing into a portion of the program
that was not supposed to be executed.

Types of Program Flow
As stated in the introduction of this chapter, a computer would be little more than a glorified
adding machine if it were limited to linear flow. Here are the three general categories of program
flow:

• Sequentially executed program segments (one after the other)

• Selection of program segments (conditional execution)

• Repetition of program segments (loops)

In addition to capabilities in all three of these categories, your computer also has a powerful
special case of selection, called event-initiated branching. The rest of this chapter shows how
to use all of these types of program flow and gives suggestions for choosing the type of flow
that is best for your application.

3-2 Program Structure and Flow

Sequences of Program Segments
There are several types of sequences that the computer can use in executing program segments:

• Linear flow (no changes to normal sequence)

• Halting program execution

• Simple branching (modifying the normal sequence)

Linear Flow
The simplest form of sequence is linear flow. The preceding section showed an example of this
type of flow. Although linear flow is not at all glamorous, it has a very important purpose. Most
operations required of the computer are too complex to perform using one line of BASIC. Linear
flow allows many program lines to be grouped together to perform a specific task in a predictable
manner. Although this form of flow requires little explanation, keep these characteristics in mind:

• Linear flow involves no decision making. Unless there is an error condition, the program
lines involved in this type of flow will always be executed in exactly the same order,
regardless of the results of or arguments to any expression.

• Linear flow is the default mode of program execution. Unless you include a statement
that stops or alters program flow, the computer will always "fall through" to the next
higher-numbered line after finishing the line it is on.

Halting Program Execution
One of the obvious alternatives to executing the next line in sequence is not to execute anything.
There are three statements that can be used to block the execution of the next line and halt
program flow:

• END

• STOP

• PAUSE

Each of these statements has a specific purpose, as explained in the follOWing paragraphs.

Program Structure and Flow 3-3

STOP and END
The "Program Development" chapter defined a main program as a list of program lines with
an optional END or STOP statement on the last line. Marking the end of the main program is
the primary purpose of the END statement; its secondary purpose is to stop program execution.
When an END statement is executed, program flow stops and the program moves into the stopped
(non-continuable) state.

It is often necessary to stop the program flow at some point other than the end of the main
program. This is another purpose of the END or STOP statements. A program can contain
any number of STOP statements in any program context. When a STOP statement is executed,
program flow stops and the program moves into the stopped (non-continuable) state. Also, if the
STOP statement is executed in a subprogram context, the main program context is not restored.
(Subprograms and context switching are explained in the chapter "User-Defined Functions and
Su bprograms".)

As an example of the use of STOP and END, enter the following program.

100 Radius=5
110 Circum=PI*2*Radius
120 PRINT INT(Circum)
130 STOP
140 Area=PI*Radius-2
150 PRINT INT(Area)
160 END

When you execute RUN, the computer prints 31 on the display. This first execution of the RUN
command caused linear execution of lines 100 thru 130, with line 130 stopping that execution.
If you execute RUN again, the same thing will happen; the program does not resume execution
from its stopping point in response to a RUN command. However, RUN can specify a starting
point, so you can execute a command like RUN 140. The computer prints 0 and then stops. This
command caused linear execution of lines 140 thru 160, with line 160 stopping that execution.
However, a RUN command also causes a pre-run initialization, which zeroed the value of the
variable Radius l .

1 See the subsequent section of this chapter called "A Closer Look at Program Execution" for an explanation of pre·run.

3-4 Program Structure and Flow

(
~

PAUSE
A stopped program is not continuable. This leads up to the third statement for halting program
flow. Replace the STOP statement on line 130 of the preceding program with a PAUSE statement,
yielding the following program.

100 Radius=5
110 Circum=PI*2*Radius
120 PRINT INT(Circum)
130 PAUSE
140 Area=PI*Radius-2
150 PRINT INT(Area)
160 END

Now execute RUN. The computer prints 31 on the display. Then execute CONT. The computer
prints 78 on the display. The purpose of the PAUSE statement is to temporarily halt program
execution, leaving the program counter intact and the program in a continuable state. One
common use for the PAUSE statement is in program troubleshooting and debugging. This is
covered in the chapter "Program Debugging." Another use for PAUSE is to allow time for the
computer user to read messages or follow instructions.

It would be ridiculous to use a WAIT statement to try to anticipate the number of seconds required
for these actions. Note that the WAIT statement causes a delay in program execution until the
specified number of milliseconds has elapsed. The PAUSE statement gives freedom to the user
to take as little or as much time as necessary.

When CONT is executed, the program resumes with any necessary input of file names and
assignments.

You can also pause a program by using an interrupt signal. The signal is generated when a key
sequence assigned that function has been pressed. Usually this key sequence is I CTRL 1-0. See
"Pausing and Continuing a Program" section of the Getting Started Guide for details.

Program Structure and Flow 3-5

Simple Branching
An alternative to linear flow is branching. Although conditional branching is one of the building
blocks for selection structures, the unconditional branch is simply a redirection of sequential flow.
The keywords which provide unconditional branching are GO TO . GOSUB. CALL, and FN. The CALL

and FN keywords invoke new contexts, in addition to their branching action. The term context
refers to the fact that each subprogram and user-defined function has its own independent set
of variables and line labels. This is a complex subject that is the topic of an entire chapter
("User-Defined Functions and Subprograms"). This section discusses the use of GOSUB and GOTO
for local branching.

Using GOTO
First, you should be aware that it desirable to avoid the excessive or unnecessary use of the
unconditional GOTO. The problem is not anything inherent in the GOTO statement. The problem
lies in some programmers' tendencies to "patch together" pieces of a poorly planned algorithm,
using more and more GOTOs with each revision. Then comes that inevitable day when a fatal bug
reveals that it is impossible to "GET BACK FROM" the last "GO TO". A program that contains
sloppy and excessive use of GOTO has been appropriately named spaghetti code. Keep this very
descriptive term in mind when you are deciding whether to "just throw something together" or
to take a little more time to organize and plan a project.

The only difference between linear flow and a GO TO is that the GO TO loads the program counter
with a value that is (usually) different from the next-higher line number. The GO TO statement can
specify either the line number or the line label of the destination. The following drawing shows
the program flow and contents of the program counter in a program segment containing a GOTO.

Value in Program Counter
Program Lines at End of Line

R=R+2
Area=PI*R""2
GOTO 240
Width=Width+1
Len9'th=Len9'th+1
Area=Width*Len9'th
PRINT "Area =" iArea
GOTO 210

[J]Q]
[]QQ]
~
~
~
~
~
[]3]J

As you can see, the execution is still sequential and no decision making is involved. The first
GOTO (line 200) produces a forward jump, and the second GOTO (line 250) produces a backward
jump. A forward jump is used to skip over a section of the program. An unconditional backward
jump can produce an infinite loop. This is the endless repetition of a section of the program.
In this example, the infinite loop is lines 210 thru 250.

3-6 Program Structure and Flow

An infinite loop by itself is not a desirable program structure. However, it does have its place
when mixed with conditional branching or event-initiated branching. Examples of these structures
are given later in this chapter.

Using GOSUB
The GOSUB statement is used to transfer program execution to a subroutine. Note that a
subroutine and a subprogram are very different in Technical BASIC. Calling a subprogram invokes
a new context; subprograms can declare formal parameters and local variables. A subroutine is
simply another segment of the current program context that is entered with a GOSUB and exited
with a RETURN. There are no parameters passed and no local variables. If you are a newcomer
to Technical BASIC, be careful to distingui~h between these two terms. They have been used
differently in some other programming languages.

The GOSUB statement is very useful in structuring and controlling program flow. GOSUB executes
a branch to a subroutine, which performs a certain task or tasks. When those task are complete,
control returns to the main body of the program. The GOSUB statement can specify either the
line label or the line number of the desired subroutine entry point. The following drawing shows
the program flow and contents of the program counter in a program segment containing a GOSUB.

Value in Program Counter
Subroutine Program Lines

Value in Program Counter
at End of Line Program Lines at End of Line

1000
1010
1020
1030
1040

PRINT Areaj"sCJuare
Cent=Area*G.451G
PRINT Centj"sCJuare
PRINT
RETURN

in + II

CfTl"

~f'J 3(}(}

[ill2J ~ 310
110301 3:0
110401 330
~ '~ 340 +- 350

R=R+2
Area=PI*R··2
GOSUB 1000
Width=Width+1
Len9th=Length+l
! Program continues

~
~
[i]QQ]
~
~

Program execution is sequential and no decision making is involved. The main reason that a
GOSUB is a more desirable action than a GOTO is the effect of the RETURN statement. The RETURN

statement always returns program execution to the line that would have been executed if the
GOSUB had not occurred. This is especially useful when using an event-initiated GOSUB. Since it
is usually impossible to predict when a user might press a softkey (for example), it is usually
impossible to predict what program line should be returned to at the end of a service routine.
Note that softkeys are keys on your keyboard which are defined by their corresponding label on
the display. By using GOSUB and RETURN, the computer does the work for you. There are more
details on this use of GOSUB later in this chapter.

Program Structure and Flow 3-7

Another common advantage gained from the use of GaSUB is program economy resulting from
the consolidation of common tasks. For example, assume that you are writing a page formatter
program to neatly print letters, reports, etc. The actions taken at the end of each page might
be such things as follows:

1. Skip two blank lines

2. Print the page number

3. Update the page counter

4. Print a form-feed

5. Zero the line counter

These end-of-page actions might be necessary at many places in the program. For example: in
the new-page segment, in the conditional-page algorithm, in the normal line-printing segment,
and in the end-of-file process. It would be wasteful duplication to repeat all those end-of-page
steps every place they are needed.

That kind of duplication also opens the door to updating problems. Suppose that you wanted
to modify the end-of-page action to make it print line-feeds instead of a form-feed for the benefit
of a printer that doesn't use form-feeds. If you had duplicated the end-of-page routine in five
different places in the program (or was that six?), you will be doing five times as much typing
to make the change, and you will probably miss a spot.

The solution is a subroutine. For the sake of completeness in this example, the hypothetical
end-of-page subroutine is shown below.

540 End_page:
550 PRINT USING "2/,K" ; Pagenumber
560 Pagenumber=Pagenumber+1
570 PRINT CHR$(12);
580 Lines=O
590 RETURN

3-8 Program Structure and Flow

There are no well defined rules to dictate when a program task should be a subroutine and when
it should be in the linear flow. The following suggestions may help you decide.

• A subroutine should have some identifiable task, such as opening a file, normalizing a
variable, executing an end-of-page algorithm, decoding a keypress, parsing a string, and so
forth. It is handy for a subroutine to "hide the details" of performing a task so that these
details do not obscure the readability (and supportability) of the routine.

• Decisions about subroutines are best made on a conceptual level. Although there
is nothing wrong with aCcidentally discovering that you repeated ten lines which would
make a good subroutine, it is better to identify the appropriateness of subroutines during
planning. One question to ask yourself is, "Does it make sense to handle this task in a
subroutine?" If it takes a dozen flags! to select all the variations that are needed from
one usage of the subroutine to the next, then a subprogram is probably a cleaner solution.
Lines of code that just happen to be repeated in several places are not necessarily good
candidates for a subroutine.

• There is no significant speed penalty for using a subroutine. The time required to
process the GOSUB and RETURN is extremely small. If you are having trouble getting your
application to run fast enough, it is doubtful that your problems will be solved by removing
a couple of GOSUBs. In fact, the resulting loss of "readability" may actually make it more
difficult to identify and correct the real problem in timing.

• The "cross-over point" in line overhead is a subroutine that is only three lines long and is
called from only two places in the program. In other words, it takes the same number of
program lines to duplicate three lines as it does to stick a RETURN on the end of them and
add two GOSUB statements. However, there is nothing "magical" about this observation. It
does not mean that you shouldn't have a subroutine shorter than three lines, or that you
should go around making a subroutine out of every three-line sequence you see repeated.
It should simply make you aware of possible improvements that could be made if you see
the same sequence repeated in several places in your program.

System flags are system variables that you can use to keep track of information. For instance, you can use a flag to keep track of

an operating mode by storing it as a numeric value: IF FLAG(l) THEN End_page. See the "Using System Flags" section of the

"User-Defined Functions and Subprograms" for further information.

Program Structure and Flow 3-9

Selection of Program Segments
The heart of a computer's decision-making power is the category of program flow called selection,
or conditional execution. As the name implies, a certain segment of the program either is or
is not executed according to the results of a test or condition. This is the basic action which
gives the computer an appearance of possessing intelligence. Actually, it is the intelligence of
the programmer which is remembered by the program and reflected in the pattern of conditional
execution.

An Example
Consider a chemistry lab application as an example. There would be little use for a computer
whose only function was to turn on a valve when a technician pressed "START" button. The
technician might just as well turn the valve himself. However, if the computer turned on a valve
when the "START" was pressed and turned off the valve when a specified pH level occurred,
then it is performing a much more useful task.

If the example is extended to include state-of-the-art remote-control valves and electronic pH
measuring devices, the computer is now significantly out-performing the technician. In this
example, (in spite of any fancy instrumentation) the quality that moved the computer from
"useless" to "useful" was its ability to decide when to turn off the valve. It was the programmer
(you) who actually specified the criteria for the decision .. Those criteria were then communicated
to the computer using conditional-execution program structures. As a result, the computer was
able to repeat the programmer's intention with much greater speed and accuracy than a human.

Types of Conditional Execution
This section presents the conditional-execution statements according to various applications. The
following is a summary of these groupings.

1. Conditional execution of one segment.

2. Conditionally choosing one of two segments.

3. Conditionally choosing one of many segments.

3-10 Program Structure and Flow

Conditional Execution of One Segment
The basic decision to execute or not execute a program segment is made by the IF ... THEN
statement. This statement includes a numeric expression that is evaluated as being either true
or false. If true (non-zero), the conditional segment is executed. If false (zero), the conditional
segment is bypassed. Although the expression contained in an IF ... THEN is treated as a Boolean
expression 1 , note that there is no BOOLEAN data type in BASIC. Any valid numeric expression
is allowed.

The conditional segment can be either a single BASIC statement or a program segment containing
any number of statements. The first example shows conditional execution of a single BASIC
statement.

100 IF Ph>7.7 THEN PRINT "Ph is > 7.7."

Notice the test (Ph> 7.7) and the conditional statement (PRINT ...) which appear on either side
of the keyword THEN. When the computer executes this program line, it evaluates the expression
Ph> 7.7. If the value contained in the variable Ph is 7.7 or less, then the expression evaluates
to 0 (false) and the line is not executed. If the value contained in the variable Ph is greater
than 7.7, then the expression evaluates as 1 (true) and the PRINT statement is executed. If you
don't already understand logical and relational operators, refer to the chapter entitled "Numeric
Computation" or the chapter entitled "String Computation".

The same variable is allowed on both sides of an IF ... THEN statement. For example, the
following statement could be used to keep a user-supplied value within bounds.

IF Number>9 THEN Number=9

When the computer executes this statement, it checks the initial value of Number. If the variable
contains a value less than or equal to nine, that value is left unchanged, and the statement is
exited. If the value of Number is greater than nine, the conditional assignment is performed,
replacing the original value in Number with the value nine.

1 A Boolean expression can have one of two values: true (1), or false (0).

Program Structure and Flow 3-11

Prohibited Statements
Certain statements are not allowed as the conditional statement in an IF ... THEN statement. The
disallowed statements are used for various purposes, but the "common demoninator" is that the
computer needs to find them during prerun as the first keyword on a line. (A possible exception
to this reasoning is REM. which is not allowed because it makes no sense to allow it. Comments
certainly aren't executed conditionally. If comments are necessary on an IF ... THEN line, the
exclamation point can be used.) The following statements are not allowed in an IF ... THEN
statement.

Keywords used in the declaration of variables:

OPTION BASE
DIM
INTEGER

COM
SHORT
REAL

Keywords that define context boundaries:

DEF FN
SUB

FNEND
SUBEND

Keywords that define program structures:

FOR
NEXT

Keywords used to identify lines that are literals:

DATA
REM

Conditional Branching
Powerful control structures can be developed by using branching statements in an IF ... THEN.
Here are some examples.

110 IF Free_space<100 THEN GOSUB Expand_file
120 The line after is always executed

This statement checks the value of a variable called Free_space, and executes a file-expansion
subroutine if the value tested is not large enough. The same technique can be used with a CALL
statement to invoke a subprogram conditionally. One important feature of this structure is that
the program flow is essentially linear, except for the conditional "side trip" to a subroutine and
back. This is illustrated in the following drawing.

3-12 Program Structure and Flow

in. " R=R+2
Area=PI*R"'2

1000
1010
1020
1030
1040

PRINT Area;"s9uare
Cent=Area*6.4516
PRINT Cent;"s9uare
PRINT
RETURN

Cfll" ~
310
320
33() N1 300

l 34(:)

IF P_flaS THEN GOSUB 1000
Width=Width+l
LenSth=Lensth+l

The conditional GO TO is such a commonly used technique that the computer allows a special
case of syntax to specify it. Assuming that line number 200 is labeled "Start", the following
statements will all cause a branch to line 200 if X is equal to 3.

IF X=3 THEN GOTO 200
IF X=3 THEN GOTO Start
IF X=3 THEN 200
IF X=3 THEN Start

When a line number or line label is specified immediately after THEN, the computer assumes a
GO TO statement for that line. (This improves the readability of programs, because phrases like
"then start" sound more like English and less like computer jargon.) If execution is redirected
by a conditional implied GOTO, then the program flow does not automatically return to the line
following the IF ... THEN. Thus, a conditional GOTO acts like a switch on a railroad track. This is
illustrated in the following drawing.

1100 Record: ! File~ 550 Send_text: !
1110 ! Test for open f i Ie = 1 560 IF File THEN Record
1120 ! Do any CREATE, ASSIGN, etc • File 570 PRINT Text$
1130 OUTPUT @FileiText$ = () 580 Lines=Lines+l
1140 ! Continue IAI it h f i Ie operation 590 ! Continue IAI it h print inS,

Multiple-Line Conditional Segments
If the conditional program segment requires more than one statement, a slightly different structure
is used. Let's expand the valve-control example.

100 ! This is a multiple-line IF ... THEN structure.
110 IF Ph<=7.7 THEN GOTO Skip
120 PRINT "Ph is > 7.7"
130 PRINT "Final Ph = ";Ph
140 PRINT "Conditional Test Ends"
150 Skip: ! Execution resumes here.

Program Structure and Flow 3-13

Any number of program lines can be placed between the line containing the IF ... THEN statement
(line 110 here) and the line number specified in the GOTO (line 150 here). In executing this
example, the computer evaluates the expression Ph<=7.7 following the IF clause. If the result
is true, then the program counter is set to 150 (Le., the GOTO is executed), and execution resumes
with that line. If the condition is false, the program counter is set to 120 (Le., the GOTO is not
executed), and the "conditional" statements (lines 120, 130, and 140) are executed. Line 150
is then where "normal" execution resumes.

If an other branching construct is used within a multiple-line IF ... THEN structure, the entire
structure should 'be contained in the conditional segment. This is called nesting constructs. The
following example shows some properly nested constructs. Notice that the use of indenting
improves the readability of the otherwise messy code.

100
110
120
130

PRINT "Enter an integer value between 1 and 5."
INPUT Value
IF Value<=l THEN GOTO NotGrThanl

140
150
160
170
180 NotLsThan5:
190
200 NotGrThanl:
210 END

Begin outer IF.
PRINT "Value is greater than 1."
IF Value>=5 THEN NotLsThan5

! Begin nested IF.
PRINT "Value is less than 5."
! End of nested IF.

End of outer IF.

Choosing One of Two Segments
This language has an IF ... THEN ... ELSE construct which makes the one-of-two choices easy
and readable. The following example looks at a device selector which mayor may not contain a
primary address. The variable Isc is needed later in the program and must be only an interface
select code. If the operator-supplied device selector is greater than 31, the interface select code
is extracted from it. If it is equal to or less than 31, it already is an interface select code. (This
example assumes that no secondary addressing is used.)

500 IF Select>31 THEN Isc=Select DIV 100 ELSE Isc=Select

Notice that this structure requires you to type the IF ... THEN ... ELSE structure on one contiguous
line, which is not easy to read. Note that you may place multiple statements after the THEN and
ELSE in this construct, as long as they are concatenated by the (Q character. For example:

IF X > 5 THEN X=X+5 (Q DISP X ELSE X=X-2 (Q DISP X

3-14 Program Structure and Flow

This is one way of implementing multiple statements within the IF ... THEN ... ELSE construct.
However, one contiguous line of 159 characters is not easy to read. A more readable way to
implement the choice between one of two segments is as follows:

100 ! Choosing one of two segments.
110 IF X>5 THEN GOTO Seg1 ELSE GOTO Seg2
120 Seg1:
130 X=X+5
140 DISP X
150 GO TO CommonExit
160 Seg2:
170 X=X-2
180 DISP X
190 CornmonExit: Both segments "continue" here.
200 END

Choosing One of Many Segments
This requires chosing from one of several possibilities, and is like executing a sequence of
IF ... THEN statements. This type of program flow can be generated with the ON statement
and some additional processing. Consider as an example the processing of readings from a
voltmeter. In this example, we assume that the reading has already been entered, and it
contained a function code. These hypothetical function codes identify the type of reading and
are shown in the following table.

Table 3-1. Function Codes

Function Code Type of Reading

DV DC Volts

AV AC Volts

01 DC Current

AI AC Current

OM Ohms

Using the ON ... GO SUB statement, all the anticipated values are placed in a simple string. This
string is then searched using the POS function. The results of the POS function are adjusted
to become consecutive integers beginning with one. This result can then be used in the ON
statement.

100 Match$="DVAVDIAIOM"
110
120
500 Pointer=POS(Match$,UPC$(Funct$))
510 Pointer=INT«Pointer-1)/2+1)
520 ON Pointer+1 GOSUB Case_else ,Case_DV,Case_AV,Case_DI ,Case_AI ,Case_OM

Program Structure and Flow 3-15

Notice that a match can only cause values of 1, 3, 5, 7, or 9 from the POS function. The POS
function returns the position of the first character of a substring within another string. A "match
not found" gives a value of 0. Line 510 converts these to consecutive integers from ° thru 5.
The Pointer+ 1 expression in line 520 shifts the values to a range 1 thru 6, which is acceptable
to the ON statement.

The values of the match characters will determine the "pre-processing" necessary. If you are
trying to match single bytes, simply adding one to the results of the pas is all that is necessary.
Finding 3-letter sequences requires a line like 510, but with a division by 3. Note also that,
except for single bytes, this method may not always work. For example, if the current ranges
had been indicated by DA and AA (instead of DI and AI), Match$ would be "DVAVDAAAOM". A
subsequent search for "AA" would return 6 instead of 7 - not good. In a case like that, there
are two choices. One approach is to rearrange the string being searched; "DVAVDAOMAA"
would work. Perhaps the items in the string could be separated with a "pad" character and the
calculation adjusted accordingly. The other approach is to make each match value a separate
element of a string array. The array could then be "searched" with a FOR ... NEXT loop. This
approach works well to resolve conflicts, especially with long match strings. However, the extra
code lines and array accesses slow the process down significantly.

The ON statement can also be used for numeric values. If the numeric values you are trying to
match just happen to be consecutive integers starting with one, the variable to be tested can be
used in the ON statement. However, programmers are not usually that lucky. To match arbitrary
values, the following trick can be used. This example tests the three cases: <0, 1, and > 1.

100 DISP "Enter an integer X."
110 INPUT X
120 Pointer=1*(X<0)+2*(X=1)+3*(X>1)
130 ON Pointer GOSUB Negative,One,Greater
140 Negative:
150 DISP "The value entered is negative."
160 GOTO Quit
170 One:
180 DISP "The value entered is a positive 1."
190 GO TO Quit
200 Greater:
210 DISP "The value entered is positive."
220 GOTO Quit
230 Quit: END

Assuming that you use non-overlapping comparison tests, only one of the values in parentheses
will be true. The system returns a value of "1" for true. This is multiplied times the corre
sponding factor to give the final value to Pointer. All the other factors drop out because their
comparison result is zero. Programmers who like strong type checking may raise an eyebrow at
this technique, but it works.

3-16 Program Structure and Flow

Another useful trick for testing for numbers that are integers between 0 and 255 is to use the
CHR$ function to create string bytes and apply the POS function as explained previously. The
code lines for this are left as an exercise for the reader.

Repetition
Humans usually prefer tasks with variety that avoid tedious repetition. A computer does not
have this shortcoming. Although a computer is usually a miserable failure at creative thought,
it is in full glory when called upon to accurately repeat the same boring task millions of times.

With Technical BASIC, you have only one structure available for creating repetition. However,
the others can be built using the GO TO statement.

This section covers the repetitive capabilities common to all versions of BASIC and explains how
you can implement them using Technical BASIC. These capabilities are:

• Repeating a program segment a predetermined number of times (using the FOR ... NEXT

construct)

• Repeating a program segment indefinitely (using the GOTO statement), waiting for a specified
condition to occur

• Creating an iterative structure that allows multiple exit points at arbitrary locations (using
the GOTO statement)

Program Structure and Flow 3-17

Fixed Number of Iterations
The general concept of repetitive program flow can be shown with the FOR ... NEXT structure,
available in all BASIC language systems. With this structure, a program segment is executed
a predetermined number of times. The FOR statement marks the beginning of the repeated
segment and establishes the number of repetitions. The NEXT statement marks the end of the
repeated segment. This structure uses a numeric variable as a loop counter. This variable is
available for use within the loop, if desired. The following drawing shows the basic elements of
a FOR ... NEXT loop.

200

{

210
REPEATED 220
SEGMENT 230

240

STARTING
VALUE

LOOP I FINAL STEP
COUNTER VALUE SIZE
~~ ~ ~

FOR Count=10 TO 0 STEP -1
BEEP
PRINT Count
WA IT 1

NE)-(T Count

The number of loop iterations is determined by the FOR statement. This statement identifies
the loop counter, assigns a starting value to it, specifies the desired final value, and determines
the step size that will be used to take the loop counter from the starting value to the final
value. When the loop counter is an INTEGER, the number of iterations can be predicted using
the following formula:

INT
StepSize + FinalValue - StartingValue

StepSize

Note that the formula applies to the values in the variables, not necessarily the numbers in the
program source. For example, if you use an INTEGER loop counter and specify a step size of 0.7,
the value will be rounded to one. Therefore, 1 should be used in the formula, not 0.7. Note
also that the step size is a default of 1 when it is not included in the FOR ... NEXT statement.

The loop counter can be a REAL number, with REAL quantities for the step size, starting, or final
values. In some cases, using REAL numbers will cause the number of iterations to be off by one
from the preceding formula. This is because of inaccuracy in the comparison of REAL numbers.

3-18 Program Structure and Flow

If you are interested, this is discussed in the next chapter. However, there is no "clean" way
around it with FOR ... NEXT loops. Here is an example:

200 Counter=O
210 FOR X=10 TO 20
220 Counter=Counter+1
230 PRINT Counter
240 NEXT X
250 END

According to the formula, this loop should execute 11 times: INT((1+20-10)jl=II). The
result on the display confirms this when the loop is executed. If line 210 is changed to:

210 FOR X=1 TO 2 STEP .1

the formula still yields 11 as the number of iterations. However, executing the loop produces
only 10 repetitions. This is because of a, very small accumulated error that results from the
successive addition of one-tenth. The error is less significant than the 15th digit, but discernible
to the computer. In this case, rounding cannot be performed at a time that would help. When
you find yourself in this situation, one way out is to shift the final value very slightly.

The following line does give the 11 iterations predicted by the formula.

210 FOR X=1 TO 2.0001 STEP .1

Remembering the "increment and compare" operation at the bottom of the loop is helpful. After
the loop counter is updated, it is compared to the final value established by the FOR statement.
If the loop counter has passed the specified final value, the loop is exited. If it has not passed
the specified final value, the loop is repeated. The loop counter retains its exit value after the
loop is finished. This is not necessarily one full step past the final value. For example:

FOR 1=1 TO 9.9

This statement establishes a loop that executes nine times (the default step size is one). The
variable I has the value 10 when the loop is exited.

FOR Count=12 TO 1 STEP -0.3

This statement establishes a loop that executes 37 times. The variable Count has the value. 9
when the loop is exited. Notice that negative step sizes are allowed using the same keywords
as positive step sizes.

Program Structure and Flow 3-19

Some final points to mention concern the execution of the FOR statement. If any variables are
present to the right of the equal sign, the value used is the value they have when the FOR
statement is executed. Remember that the FOR statement is only executed once before the loop
begins. Also, if the number of iterations evaluates to zero or less, the loop is not executed and
program execution goes immediately to the line following the NEXT statement.

Conditional Number of Iterations
The FOR ... NEXT loop produces a fixed number of iterations, established by the FOR statement
before the loop is executed. Some applications need a loop that is executed until a certain
condition is true, without specifically stating the number of iterations involved. Consider a
very simple example. The following segment asks the operator to input a positive number.
Presumably, negative numbers are not acceptable. A looping structure is used to repeat the
entry operation if an improper value is given. Notice that it is not important how many times
the loop is executed. If it only takes once, that is just fine. If the operator takes ten tries
before he realizes what the computer is asking for, so be it. What is important is that a specific
condition is met. In this example, the condition is that a value be non-negative. As soon as that
condition has been satisfied, the loop is exited.

800 Repeat:
810 DISP "Enter a positive number."
820 INPUT Number
830! INPUT "Enter a positive number",Number
840 IF Number<O THEN Repeat ! Until Number>=O
1000
1010 DISP "Now this wasn't so bad."
1020 END

A typical use of this is an iterative problem involving non-linear increments. One example is
musical notes. Performing the same operation on all the notes in a 3-octave band is a repetitive
process, but not a linear one. Musical notes are related geometrically by the 12th root of two.
The following example simply prints the frequencies involved, but your application could involve
any number of operations.

1200 Note=110 ! Start at low A
1210 Repeat:
1220 DISP "Enter a positive greater than 100."
1230 INPUT Note
1240 PRINT Note;
1250 Note=Note*2-(1/12)
1260 IF Note<880 THEN Repeat End at high A
2000 !
2010 DISP "It's getting better; not much."
2020 END

3-20 Program Structure and Flow

For this example, a FOR ... NEXT loop might have been used, with the loop counter appearing
in an exponent. That would work because it is relatively easy to know how many notes there
are in three octaves of the musical scale. However, the Repeat ... Until structure implemented
with the IF ... THEN and GO TO statements is more flexible than FOR ... NEXT when working with
exponential data in general.

The While ... End While loop structure, which executes from one to N number of statements
several times until the loop condition is met, is used for the same purpose as the Repeat ... Until
loop structure and is implemented using the GOTO statement l .

The only difference between the two is the location of the test for exiting the loop. The Repeat
structure has its test at the bottom (post-test). This means that the loop is always executed
at least once, regardless of the value of the condition. The While structure has its test at the
top (pre-text). Therefore, it is possible for the loop to be skipped entirely (if the conditions so
dictate).

The Repeat ... Until and While ... End While structures are especially useful for tasks that are
impossible with a FOR ... NEXT loop. One such situation is a loop where both the loop counter
and the final value are changing. Consider the example of stripping all control characters from a
string. This can't be done in a loop that starts FOR 1=1 TO LEN (A$), because the length of A$
changes each time a character is deleted. Therefore, the loop counter used as a subscript will
eventually exceed the length of the string by more than one, generating an error. The While
loop structure does not have this problem. Note that the test at the top of the loop prevents
the subscripting from being attempted on a null string. This is necessary to avoid an error.

100 1=1
110 While: ! I<LEN(Str$)
120 IF I>LEN(Str$) THEN End_While
130 IF Str$[I,I]<CHR$(32) THEN Remove ELSE 1=1+1 @ GOTO While
140 Remove: LastChar=LEN(Str$)
150 Str$[I,LastChar-1]=Str$[I+1,LastChar] ! Remove ctrl. char.
160 Str$=Str$[1,LastChar-1] Remove trailing character.
170 GOTO While
180 End_While:

1 Keep in mind that the Repeat ... Until and While ... End While keywords are not implemented in Technical BASIC.

Program Structure and Flow 3-21

Arbitrary Exit Points
A pass through any of the loop structures discussed so far included the entire program segment
between the top and the bottom of the loop. There are times when this is not the desired
program flow. One alternative is to place a conditional GOTO in the middle of the loop that
directs program flow to a point beyond the bottom of the loop. In fact, with Technical BASIC,
this is the way it is accomplished.

For the first example, consider a search and replace operation on string data. In this example,
the "shift out" control character is being used to initiate underlining on a printer that understands
standard escape sequences. The "shift in" control character is used to turn off the underline
mode. (There is nothing significant about this choice of characters. any combination of characters
could serve the same purpose.)

One approach is to use a loop to search every character in every string to see if it is one of the
special characters. There are two problems with this method. First, it is a little cumbersome
when the replacement string is a different length than the target string. Second, it is slow.
Admittedly, speed is not a significant consideration when driving common mechanical printers,
but the destination might eventually be a laser printer or mass storage file, making the program's
speed more visible.

A better approach is to use the POS function to locate the target string. Since this function
locates only the first occurrence of a pattern, it must be placed in a loop to insure that multiple
occurrences will be found. The generalized Loop structure is well suited to this task, as shown
in the following example.

2000 Loop1:
2010 Position=POS(A$,CHR$(14))
2020 IF NOT Position THEN GOTO End_Loop1 ! "Exit Loop1"
2030 A$ [Position] =CHR$(27)&"&dD"&A$ [Position+1]
2040 GOTO Loop1
2050 End_LOOp 1 :
2060
2070 Loop2:
2080 Position=POS(A$,CHR$(15))
2090 IF NOT Position THEN GOTO End_Loop2
2100 A$ [Position] =CHR$ (27)&II&d<O"&A$ [Position+1]
2110 GOTO Loop2
2120 End_Loop2:

In this segment, all occurrences of "shift out" are replaced by "escape &dO" to enable underline
mode. All occurrences of "shift in" are replaced by "escape &d@" to disable underlining. Notice
that there is no problem replacing one character with four (assuming that A$ is large enough).
Lines containing no special characters are processed by only two POS functions, which is much
faster and cleaner than performing two comparisons for every character in every line.

3-22 Program Structure and Flow

Another common use for this structure is the processing of operator input. Recall the Re
peat ... Until structure that tested for the input of a positive number. Although this structure
kept the computer happy, it left the operator in the dark. The Loop structure provides for the
additional processing needed, as shown in the following example.

200 Loop:
210 DISP "Enter a positive number."
220 INPUT Number
230 IF Number>=O THEN End_Loop
240 BEEP
250 PRINT
260 PRINT "Negative numbers are not allowed."
270 PRINT "Repeat entry with a positive number."
280 GO TO Loop
290 End_LOOp: END

Another point to remember is that the Loop structure permits more than one exit point. This
allows loops that are exited on a "whichever comes first" basis. Also, the exiting can occur at
the top or bottom of the loop. This means that the Loop structure can serve the same purposes
as the Repeat and While structures, if that suits your programming style.

Program Structure and Flow 3-23

Event·lnitiated Branching
Your computer has a special kind of program flow that provides some very powerful tools. This
tool, called event-initiated branching, uses interrupts to redirect program flow. Interrupts are
conditions declared in a program that are constantly being monitored by the computer. When
these particular conditions occur a branch is made from the normal program flow.

The process can be visualized as a special case of selection. Every time program flow leaves
a line, the BASIC system executes an "event-checking" subroutine. The process of "event
checking" is represented in the following lines.

10 PRINT X (gosub evenCcheck)
20 X=X+1 (gosub evenCcheck)
30 GOTO 10 (gosub evenCcheck)

Notice that it is possible for event-initiated branching to occur at the end of any program line,
which includes the lines of a subprogram. These potential branching points are marked in the
above BASIC program by the words "gosub evenCcheck". These event checks are "if ... then"
statements that the BASIC system executes. If an event is enabled to initiate a branch (such as
with ON KEY#) and the event occurs, then this "event-checking" routine initiates a branch to the
service routine for the event (which you have designated in BASIC).

Notice that in the sample program above if the operating system finds a "true" event, a branch
is taken at the end of the current line. If not, program execution resumes with the "normal"
program flow.

Types of Events
Event-initiated branching is established by the ON-event statements. Here is a list of the statements
that fall in this category:

ON KYBD
ON TIMER#

ON ERROR
ON KEY#
ON TIMEOUT

The ON ERROR statement is used to trap run.-time errors by specifying a branch to an error
handling routine. This subject is discussed in the chapter called "Error Handling".

3-24 Program Structure and Flow

The ON KYBD and ON KEY# events pertain to various parts of the keyboard and are used to
enhance the "human interface" of programs. ON KYBD enables an event-initiated branch to be
taken when the specified key(s) is (are) pressed during program execution. The term enable
means to turn on the particular interrupt condition so that the computer can start monitoring
that condition. The ON KEY# statement is used to define and label the soft keys on your keyboard,
and enables an event-initiated branch for them.

The ON TIMEOUT events pertain to interfaces and I/O operations. ON TIMEOUT enables end-of
line branching when an interface timeout occurs on the specified interface. These topics are
discussed in the HP-UX Technical BASIC I/O Programming Guide.

ON TIMER# defines an end-of-line branch to be taken when the specified time interval has elapsed.
Note that the OFF command of all keywords mentioned above cancels that command. Timers
are discussed in the "Clock and Timers" chapter.

An Example of Using Softkeys
The best way to understand how event-initiated branches operate in a program is to sit down at
the computer and try a few examples. Start by entering the follOWing short program.

100 ON KEY# 1,"Inc" GOSUB Plus
110 ON KEY# 5,"Dec" GOSUB Minus
115 ON KEY# 4," Qui t" GOSUB Quit
120 KEY LABEL
130
140 Spin: DISP X
150 GOTO Spin
160
170 Plus: X=X+l
180 RETURN
190
200 Minus: X=X-l
210 RETURN
220 Quit: END

Program Structure and Flow 3-25

Notice the various structures in this sample program. The ON KEY# statements are executed
only once at the start of the program. Once defined, these event-initiated branches remain in
effect for the rest of the program. (Disabling and deactivating are discussed later.) The program
segment labeled "Spin" is an infinite loop. If it weren't for interrupts, this program couldn't do
anything except display a zero. However, there is an implied IF ... THEN at the end of lines 140
and 150 because of the ON KEY action. This allows a selection process to occur. Either the
"Plus" or the "Minus" subroutine can be selected as a result of softkey presses. These are normal
subroutines terminated with a RETURN statement. (In the context of interrupt programming, these
subroutines are called service routines.) The following section of pseudo code shows what the
program flow of the "Spin" segment actually looks like to the BASIC system.

140 Spin: DISP X
If Key# 1 pressed, then gosub Plus.
If Key# 5 pressed, then gosub Minus.

150 GOTO Spin

This pseudo code is an over-simplification of what is actually happening, but it shows that the
"Spin" segment is not really an infinite loop with no decision-making structure. Actually, most
programs that use event-initiated branching to control program flow will contain what appears
to be an infinite loop. That is the easiest way to "keep the computer busy" while it is waiting
for an interrupt.

Now run the sample program you just entered. Notice that the the screen displays an inverse
video label area. These labels are arranged to correspond to the layout of the softkeys. The
labels are displayed when the softkeys are active and are not displayed when the softkeys are
not active. Any label which your program has not defined is blank. The label areas are defined
in the ON KEY# statement by typing a comma after the key number and the key label name inside
of quotes.

The starting value in the display line is zero, since numeric variables are initialized to zero at
prerun. Each time you press [ill!, the displayed value of X is incremented. Each time you press
[E[]!, the displayed value of X is decremented. This simple demonstration should acquaint you
with the basic action of the softkeys.

It is possible to make structures that are much more elaborate, with assignable priorities for each
key, and keys that interrupt the service routines of other keys. There are many applications
where priorites are not of any real significance, such as the example program running now.
However, priorities will sometimes cause unexpected flow problems. For more information on
priorities, read the "Branch Precedence Table" found in the HP-UX Technical BASIC Language

Reference.

Key labels differ slightly for the various computers that run Technical BASIC. For information on key labels, refer to your particular

HP-UX Technical BASIC system's Getting Started Guide.

3-26 Program Structure and Flow

Deactivating Events
Knowing how to "turn off" the interrupt mechanism is just as important as knowing how to
enable it. Often, an event is a desired input during one part of the program, but not during
another. You might use softkeys to set certain process parameters at the start of a program,
but you don't want interrupts from those keys once the process starts. For example, a report
generating program could use a softkey to select single or double spacing. This key should be
disabled once the printout starts so that an accidental keypress does not cause the computer to
abort the printout and return to the questions at the beginning of the program. On the other
hand, you might want an "Abort" key that does precisely that. The important thing is that you
decide on the desired action and make the computer obey your wishes.

A key is deactivated, if it no longer has any influence on program flow. You can press a
deactivated key all day long and nothing will happen.

All the "ON-event" statements have a corresponding "OFF-event" statement. This is one way to
deactivate an interrupt source. Here is a summary of the various "OFF-event" statements.

• OFF ERROR deactivates interrupts resulting from run-time errors. If these events occur while
deactivated, the program pauses and an error message is displayed.

• OFF KYBD deactivates end-of-line branching previously enabled by an ON KYBD statement.

• OFF KEY# deactivates interrupts from the softkeys. If a softkey is pressed while deactivated,
it does nothing.

• OFF TIMEOUT deactivates interrupts from interface timeouts. There is no such thing as a
"timeout" when ON TIMEOUT is deactivated.

• OFF TIMER# deactivates end-of-line branching for the specified timer.

Program Structure and Flow 3-27

The following example shows one use of OFF KEY# to disable the softkeys.

100 Begin:
110 ON KEY# 1,"StpSz" GOSUB Step_size
120 ON KEY# 4,"Start" GO TO Process
130 ON KEY# 5,"Quit " GOTD Quit
140 KEY LABEL
150
160 Inc=1
170 DISP "Step Size 1"
180 !
190 Spin: GOTO Spin ! Wait for keypress
200
210 Step_size:
220 Inc=Inc+1 Change increment
230 DISP "Step Size ";Inc
240 RETURN
250
260 Process:
270 OFF KEY# Deactivate first choices
280 ON KEY# 8," ABORT" GOTO Leave
290 KEY LABEL
300 Number=O
310 FOR 1=1 TO 10
320 Number=Number+lnc
330 PRINT Number
340 WAIT 600
350 NEXT I
360 Leave:
370 OFF KEY# 8 Deactivate ABORT
380 PRINT! End line
390 GOTO Begin Start over
400
410 Quit: END

3-28 Program Structure and Flow

A softkey is used to select a parameter for a small printing routine. Each press of [EIJ increments
and displays the step size that will be used as an interval between the printed numbers. When
the desired step size has been selected, [ill is pressed to start the printout. Enter and run this
example. Notice that with line 270 and 280 commented out, the softkey menu, or label area,
never changes.

Now run the example again and press [EIJ or [ill while the printout is in progress. Notice that
the keys are still active and produce undesired effects on the printing process. To "fix this bug",
remove the exclamation point from line 270. This disables all the softkeys when the printing
process starts. Notice that the softkey menu goes away when no sofkeys are active. This is a
very handy feature while you are experimenting with interupts. It provides immediated feedback
to indicate when interrupts are active and when they are not.

Finally, remove the exclamation point from line 280. Now, the softkey menu appears during the
printing process. However, the choices are different than at the start of the program. The keys
used to select the parameter and start the process are not active, because they are not needed
at this point in the program.

The OFF KEY# statement can include a key number to deactivate a selected key. This was done
in line 370.

Program Structure and Flow 3-29

Chaining Programs
You may have had in the past a program which was quite large, and you wanted to reduce the
amount of memory required to run the program. The Technical BASIC system allows a running
program to load and run another program. This section explains this type of operation.

General Features
Chaining allows you to break up a program into smaller segments, loading and running only one
segment at a time.

If you need to pass information from the program currently running to the program being chained,
you can use the COM statement to place the shared variables in a "common" storage area. All
that is necessary is to insure that the COM declarations in both programs match, and use the
CHAIN command to call the other program.

A Simple Example
The following three short programs illustrate chaining. (If you are going to type these programs
into your computer for this example, note that you will need to STORE them, not SAVE them.
CHAIN only works with files created by the STORE command.)

10 REM ****************** Program#1 ****************************
20 PRINT IIProgram#1 11

30 CHAIN IIProgram#2 11

40 END

10 REM ****************** Program#2 ****************************
20 PRINT IIProgram#2 11

30 CHAIN IProgram#3"
40 END

10 REM ****************** Program#3 ****************************
20 PRINT IIProgram#3"
30 END

When Program# 1 is run, the following output is printed:

Program#1
Program#2
Program#3

3-30 Program Structure and Flow

Program-to-Program Communications
All variables not placed in "common storage" (Le., declared by a COM statement) are scratched
when the chained program is loaded. So if you want chained programs to communicate with
one another, then you will need to declare variables with the COM statement.

The preceding three programs have been modified to place four variables in COM, thereby pro
viding a means for the programs to communicate. Note that the variables can be accessed with
different names as they are passed between programs.

10 REM ****************** Program#1C ****************************
20 COM A,B$[1] ,C,D
30 A=1 ~ B$="x" ~ C=3 ~ D=4
40 PRINT "Program#1C";A;B$;C;D
50 CHAIN "Program#2C"
60 END

10 REM ****************** Program#2C ****************************
20 COM T,Y$[1]
30 COM C,D
40 PRINT "Program#2C";T;Y$;C;D
50 CHAIN "Program#3C"
60 END

10 REM ****************** Program#3C ****************************
20 COM Q,R$[1]
30 COM W,X
40 PRINT "Program#3C";Q;R$;W;X
50 END

When Program# 1 C is run, the following output is printed:

Program#1C 1 x 3 4
Program#2C 1 x 3 4
Program#3C 1 x 3 4

This is a simplistic example; however, it does show the general tasks involved in chaining pro
grams. For further details about numeric and string variables, read the "Numeric Computations"
and "String Manipulation" chapters, respectively. For further information about COM, read the
"User-Defined Functions and Subprograms" chapter.

Program Structure and Flow 3-31

A Closer Look at Program Execution
The normal running of a program is started by the RUN command. Before being able to run a
program, however, the computer must make a "pre-run," during which it performs such tasks as
allocating memory for variables and verifying that the line numbers specified in branch instructions
(GOTO and GOSUB) actually exist. The computer then begins normal program execution, starting
with the lowest numbered line in the main program.

This section describes some of the things that are happening during pre run and while the program
is being executed. You may skip this section with no loss of continuity if you are not interested
in this level of detail.

Prerun (RUN and INIT)
Pre run is executed automatically by the RUN command. It is also executed by the IN IT command,
which allows you to perform a prerun without starting program execution - a handy operation
to have for use with the SINGLESTEP command (see the "Program Debugging" chapter for details).

There are three primary reasons for the prerun.

• To reserve sufficient memory for all the variables in the program. This includes all variables
in COM. DIM. INTEGER. SHORT, and REAL statements, and all implicitly declared variables.
(The chapter entitled "Numeric Computation" explains the declaration of numeric variables,
and the chapter "String Manipulation" covers the dimensioning of string variables.)

• To detect errors that involve interaction between lines. The computer checks for syntax
errors before it stores a program line. However, there are some errors that can't be
detected by looking at a single line. For example, a program line that uses properly placed
subscripts can appear to be correct when it is stored. However, if that line references two
dimensions in an array that had previously been declared to have only one dimension, it
is in error. To detect an error of that kind, the computer needs to "search" the entire
program to see all the dimension statements as well as the variables used in each line.
Another example of this kind of error is a GOTO or GOSUB that specifies a line that does
not exist.

• To locate all the user-defined function boundaries. These are defined by the DEF FN

statement and the FNEND statement with multiple-line, user-defined functions. (See the
"User-Defined Functions and Subprograms" chapter for a complete description of user
defined functions.)

Note that these types of "prerun errors" are not caught by ON ERROR (discussed in the "Error
Handling" chapter).

3-32 Program Structure and Flow

Normal Program Execution
The term execution is used to describe the process used by the computer while it is completing
the tasks described in its program. The process of program execution is summarized below.

1. Determine which program line is to be acted upon next.

2. Identify the statement that follows the line number and label (if any) on that line.

3. If the statement has a run-time action, then perform that action.

4. Repeat steps 1 thru 3 until an END. STOP. PAUSE or an error occurs.

The continuing process of determining which line is to be executed next is discussed in detail in
preceding sections of this chapter. The RUN command determines which line is acted on first.
Executing RUN with no parameters, causes the execution process to begin at the first (lowest
numbered) line of the main program. Execution can be started anywhere in the main program
by using the RUN command with a line identifier. For example:

RUN 220

This command causes execution to begin at line 220, if there is such a line. If there is no line
220 in the main program, execution begins with the line whose number is closest to and greater
than 220.

Note that the prerun phase is always the same, whether the actual execution begins at the
program start or somewhere in the middle. Also, if a starting line is specified, that line must
be in the main program. An error 3 results when RETURN is executed if you attempt to start
a program in a user-defined function or subprogram. Even if the starting point is correctly
specified, be alert to the effects of starting a program in the middle. Skipping over a section of
the program may result in null values for some of the variables.

Program Structure and Flow 3-33

Non-Executed Statements
In the preceding summary of normal execution, step 3 mentioned that only statements with
run-time actions are executed. The term run-time refers to the state that exists after the prerun,
when the computer is actually performing the sequence of actions described by the program.
Some statements are not executed in the course of normal program flow, but are merely "looked
at" and then bypassed.

The following is a list of some statements that do not cause an action as a result of run-time
execution.

• Comments and REM statements: these never cause an action. (See the "Program Develop
ment" chapter for more complete details.)

• Variable declarations: COM. DIM. INTEGER. SHORT, and REAL. These are executed during
pre run but skipped at run time. The OPTION BASE statement is also part of the declaration
process. (See the "Numeric Computation"s and "String Manipulations" chapters for further
descriptions of these statements.)

• DEF FN and FNEND statements. These are used during pre run to establish the program
structure and are skipped over at run time. (See the "User-Define Functions and Subpro
grams" chapter for a complete description.)

• DATA statements: these are accessed by the READ statement, but are not executed. (See
the "Data Storage and Retrieval" chapter for further information.)

3-34 Program Structure and Flow

Numeric Computation 4
Introduction
When most people think about computers, the first thing that they think of is number-crunching
-the giant calculator with a brain. Whether this is an accurate impression or not, numeric
computations are an important part of computer programming.

Numeric computations deal exclusively with numeric values. For instance, adding two numbers
and calculating a sine or a logarithm are all numeric operations. Making numeric computations
from the keyboard and within a program are covered in this chapter.

Even though numeric computation includes converting a number to a string, and vice versa, these
tasks are not described in this chapter; they are covered in the "String Manipulations" chapter.

Chapter Contents
Here are the major topics covered in this chapter.

Task/Topic Page

Assigning values to numeric variables 4-2

Numeric data types 4-3

Evaluating scalar expressions 4-5

Making comparisons work 4-11

Range limits 4-12

Rounding 4-13

Binary operations 4-14

Number-base conversions 4-15

Trigonometric functions 4-17

Random numbers 4-19

Miscellaneous numeric functions 4-20

Array operations 4-22

Numeric Computation 4-1

Assigning Values to Variables
One of the most fundamental numeric operations is the assignment operation, achieved with the
LET statement. The LET statement originally required the keyword LET for BASIC interpreters,
but Technical BASIC makes it optional. Thus, the following program lines are equivalent:

100 LET A=A+1
100 A=A+1

However, when executing these statements from the keyboard, there is a difference:

• A=A+1 is evaluated as a boolean expression .

• LET A=A+1 is an assignment to the variable A.

Unless you have declared otherwise, the data type of numeric variables in this example is REAL.
This is the default data type of numeric variables. The next section discusses other numeric
data types and shows how to declare the type of a variable.

Numeric Variable Names
The rules for naming simple numeric variables are as follows: the name can be up to 32 characters
in length, and it may contain alphabetic (uppercase and lowercase) characters, decimal digits,
and the underscore (J character. The only restriction is that the first character must be a letter.

Here are some examples:

A
AVeryDescriptiveVariableNarne
Const22
NumericResult
a15
z_coordinate

4-2 Numeric Computation

Numeric Data Types
There are three pre-defined numeric data types in Technical BASIC:

• INTEGER

• SHORT

• REAL

Any numeric variable that is not explicitly declared an INTEGER or SHORT is implicitly declared
to be of type REAL.

REAL Numbers
The range of REAL numeric variables is the largest range of numeric values. The largest value of
a REAL variable is returned by the numeric INF (infinity) function, and the smallest positive value
is returned by the EPS (epsilon) function. For a more complete description of the range on your
system, see the Implementation Specifics appendix for your particular BASIC system.

SHORT Real Numbers
The range of SHORT numeric variables is less than that of REAL numbers. For an exact description
of the range of REALs on your system, see your Implementation Specifics appendix.

INTEGERs
The range of INTEGER numeric variables is less than that of REAL and SHORT numbers. Also,
INTEGERS are whole numbers, and cannot contain any fractional part.

For an exact description of the range of INTEGERS on your system, see your Implementation
Specifics appendix.

Numeric Computation 4-3

Declaring a Variable's Data Type
The DIM, REAL, SHORT, and INTEGER statements are provided for explicitly declaring numeric
variables:

DIM SimpleReal,RealArray(4,5)
REAL XCoord,YCoord,Voltage(4,13)
SHORT LogBasel0,Hours(52,7)
INTEGER I,J,Days(5),Weeks(5,17)

Each of the above statements declares both simple and array variables .

• A simple variable can, at any given time, contain only a single value.

• An array variable can contain multiple values, each of which is accessed by subscripts.

With Technical BASIC, you can only define the upper bound of array subscripts; the current
OPTION BASE is always defined to be the lower bound. Details on declarations of arrays and how
to use them are provided in the subsequent "Arrays" section of this chapter.

Implicit Type Declarations
When a variable is used in a program without its type being previously declared (such as with
SHORT or INTEGER), it is implicitly declared to be of type REAL. Even though you can use this
feature to implicitly declare a REAL variable's type, it is better programming practice to explicitly

declare all variabies. As shown in the preceding example, the DIM statement may also be used
to declare REAL variables.

4-4 Numeric Computation

Evaluating Scalar Expressions
This section describes some additional details of how the computer evaluates scalar arithmetic
expressions (as opposed to array expressions, which is discussed in the subsequent "Arrays"
section).

Arithmetic Hierarchy
If you look at the expression 2+4/2+6, it can be evaluated in several ways:

• 2+(4/2)+6 = 10

• (2+4)/2+6 = 9

• 2+4/(2+6) = 2.5

• (2+4)/(2+6) = .75

Computers do not deal well with ambiguity, so a hierarchy is used for evaluating expressions.
These rules were made to eliminate any questions about the meaning of an expression. When the
computer encounters a mathematical expression, an "expression evaluator" is called. If you do
not understand the expression evaluator, you can easily be surprised by the value returned for a
given expression. In order to understand the expression evaluator, it is necessary to understand
the valid elements in an expression and the evaluation hierarchy (the order of evaluation of the
elements).

Six items can appear in a numeric expression:

• Constants - represent numbers or strings with fixed value.

• Variables - represent the value stored in the variable.

• Operators - modify or perform operations on other elements in the expression.

• Intrinsic numeric functions - represent numeric values.

• User-defined numeric functions - represent numeric values.

• Parentheses - used to modify the default arithmetic hierarchy.

Numeric Computation 4-5

The following table defines the hierarchy used by the computer in evaluating numeric expressions.

Table 4-1. Math Hierarchy

Precedence Operator

Highest Parentheses: () used to force the order of evaluation
Functions: both user-defined and machine-resident
Exponentiation: -
The logical "Not" monadic operator: NOT
Multiplication and division: * / MOD DIV
Addition and subtraction, and monadic operators: + -
Relational operators: < <= = >= > <>
Logical "And" operator: AND

Lowest Logical "Or" operators: OR EXOR

When an expression is evaluated, it is read from left to right; operations are performed as
encountered, unless one of the following is encountered:

• A higher precedence operation is encountered immediately to the right of the operation
being evaluated .

• The hierarchy is modified by parentheses.

If the computer cannot deal immediately with the operation, it is stacked and the expression
evaluator continues to read the expression until it encounters an operation it can perform. It is
easier to understand if you see how an expression is actually handled. The following expression
is complex enough to demonstrate most of what goes on in expression evaluation.

A = 5+3*(4+2)/SIN(X)+X*(1>X)+FNNegl*(X<5 AND X>O)

4-6 Numeric Computation

In order to evaluate this expression, it is necessary to have some background information. We
will assume that DEG has been executed, that X=90, and that FNNeg1 returns -1. Evaluation
proceeds as follows:

5+3* (4 + 2) /SIN (X) +X* (1)X) +FNNeg1* (X<5 AND X>O)
'-v-"

5+3 * 6/SIN (X) +X* (1)X) +FNNeg1* (X<5 AND X>O)
~

5+18/SIN(X)+X*(1>X)+FNNeg1*(X<5 AND X>O)
'-v-"

5+18=1+X*(1)X)+FNNeg1*(X<5 AND X>O)
~

5 + 18+X* (1)X) +FNNeg1* (X<5 AND X>O)
'-v-"

23+X* (1 > X) +FNNeg1* (X<5 AND X>O)
~

23+X * 0+FNNeg1* (X<5 AND X>O)
~

23 + 0+FNNeg1* (X<5 AND X>O)
'-v-"

23+FNNeg1*(X<5 AND X>O)
'-v-"

23+-1* (X < 5 AND X>O)
~

23+-1* (0 AND X> 0)
~

23+-1*(0 AND 1)
'-v-'

23+-1*0
~

23 + 0
'-v-"

23

Numeric Computation 4-7

Operators
There are three types of operators in BASIC: monadic, dyadic, and comparison.

• A monadic operator performs its operation on the expression immediately to its right.
The monadic operators are: + NOT.

Examples of usage:

-5

NOT True

• A dyadic operator performs its operation on the two values it is between. The dyadic
operators are: A * I MOD DIV + < <= >= > AND OR EXOR.

Examples of usage:

5+3

Varl MOD Var2 Varl=44

While the use of most operators is obvious from the descriptions in the Technical BASIC Language
Reference, some of the operators have uses and side effects that are not always apparent.
Examples of such subtleties for DIV and MOD are shown in the next section.

DIVand MOD
Two additional arithmetic operators are DIV (integer division) and MOD (modulo). These operators
can be used exactly like the arithmetic operators previously discussed.

The DIV operator uses this formula:

A DIV B = IP(A/B)

where IP returns the integer portion of the quotient of AlB.

The MOD operator returns the remainder resulting from a normal division. Given two numbers,
A and B, A MOD B is defined by the equation:

A MOD B = A - B * INT(A/B)

4-8 Numeric Computation

where INT (A/B) is the greatest integer less than or equal to the quotient of A/B. It turns out
that:

O<=(A MOD B)<B ti B>O

and

B< (A MOD B) <=0 ti B<O.

By definition, A MOD 0 is A.

Try the following arithmetic operations:

Expression Result

16 DIV 5 3
19 DIV 5 3

5 DIV 16 0
5 DIV 6 0

16 MOD 5 1
17 MOD 5 2
-8 MOD 3 1

- (8 MOD 3) -2

The expression 1-8 MOD 3 is not evaluated the same way as 1- (8 MOD 3), because the monadic
i-operator has a higher priority than the MOD operator.

Expressions, Calls, and Functions
All numeric expressions are passed by value to subprograms. Thus 5+ X is obviously passed by
value. Not quite so obviously, + X is also passed by value. The monadic operator makes it an
expression. For more information on functions and subprograms read the chapter "User-Defined
Functions and Subprograms".

Numeric Computation 4-9

Strings in Numeric Expressions
String expressions can be directly included in numeric expressions if they are separated by
comparison operators. For instance:

A$="ABC"

The comparison operators always yield "boolean" results, which are numeric values in BASIC.
This numeric expression is 1 if the string variable names A$ is equal to the string ABC, and 0
otherwise.

Step Functions
The comparison operators are obviously useful for conditional branching (IF ... THEN statements),
but are also valuable for creating numeric expressions representing step functions. For example,
you can easily represent this function with a numeric expression:

• IF Select<O THEN Result=O

• IF O<=Select<1 THEN Result=(AI2+BI2)-lh.

• IF Select>=1 THEN Result=15

It is possible to generate the required response through a series of IF ... THEN statements, but
it can also be done with the following expression:

1210 Result=(Select<O)+(Select>=O AND Select<1)*SQR(A-2+B-2)+ (Select>=1)*15

While the technique may not please the purist, it actually represents the step function very well.
The "boolean" (comparison) expressions each return a 1 or 0, which is then multiplied by the
accompanying expression. Expressions not matching the selection return 0, and are not included
in the result. The value assigned to Select before the expression is evaluated determines the
computation placed in Result. This technique can be used to represent other functions, as long
as the program statement does not exceed the maximum allowable line length.

4-10 Numeric Computation

Making Comparisons Work
If you are comparing INTEGER numbers, no special precautions are necessary. However, if you
are comparing REAL or SHORT values, especially those which are the results of calculations and
functions, it is possible to run into problems due to rounding and other limits inherent in the
system. For example, consider the use of comparison operators in IF .. THEN statments to check
for equality in any situation resembling the following:

120 DEG
130 A=25.3765477
140 IF SIN(A)-2+COS(A)-2=1 THEN PRINT "OK" ELSE PRINT "Not OK"

You may find that the equality test fails due to rounding errors or other errors caused by the
inherent limitations of finite machines. A repeating decimal or irrational number cannot be
represented exactly in any finite machine.

A good example of equality error occurs when multiplying or dividing data values. A product
of two non-integer values nearly always results in more digits beyond the decimal point than
exists in either of the two numbers being multiplied. Any tests for equality must consider the
exact variable value to its greatest resolution. If you cannot guarantee that all digits beyond the
required resolution are zero, there are three techniques that can be used to eliminate equality
errors:

• Use the value of the absolute difference between the two values, and test for the difference
less than a specified limit.

IF ABS(A-B)<.001 THEN DISP "Equal" ELSE DISP "Not Equal"

• Use the absolute value of the relative difference between two values, and test for the
difference less than a specified limit:

IF ABS((A-B)/B)<.001 THEN DISP "Equal" ELSE DISP "Not equal"

• Eliminate unwanted resolution before comparing results. For instance, you could use a
specified number of significant digits in the comparison.

Numeric Computation 4-11

Range Limits
It is sometimes necessary to limit the range of values that are assigned to a variable. You can
do that with IF ... THEN statements, as shown in these statements:

200 IF X>MaxX THEN X = MaxX
210 IF X<MinX THEN X = MinX

However, it is more convenient to use the MAX and MIN functions.

200 X = MAX(X.MinX)
210 X = MIN(X.MaxX)

Note that MAX is used to establish the lower bound, and MIN is used to establish the upper bound.
If you think about it a minute, it makes sense.

Here is a faster version of the above computation:

190 X = MIN(MAX(X.MinX).MaxX)

4-12 Numeric Computation

Rounding
Rounding occurs frequently in computer operations. The most common rounding occurs in
printouts and displays, where it can be handled effectively with a USING clause in an output
operation. For instance:

DISP USING IDD.DDD";Number

The value in the variable Number is displayed using (up to) two decimal digits preceding the
decimal point radix, and three digits following the decimal point. For further details, see the
"Formatting Information" section of the "Communicating with the Operator" chapter. This
feature works in statements such as DISP. PRINT. LABEL, and OUTPUT.

Sometimes it is necessary to round a number in a calculation in order to eliminate unwanted
resolution. There are two basic types of rounding:

• Rounding to a number of significant decimal digits

• Rounding to a number of significant decimal places (limiting fractional information)

Both types of rounding have their own application in programming.

There is a tendency for the number of decimal places to grow as calculations are performed on
the results of other calculations. One of the first things covered in training for engineering and
the sciences is how to handle the growth of the number of decimal places in a calculation. If the
initial measurements from an experiment produced three digits of information per reading, it is
very misleading to produce a seven-digit number as the result of a long series of calculations.

In rounding to a number of decimal places, the idea is to eliminate decimal representation beyond
a specific power of ten. A simple approach to it is to shift the desired decimal information to the
left of the radix, round up (add 0.5 to the resulting quantity), use INT to get rid of the undesired
decimal information, then shift the number (to the right) back to its original position.

180 X=123.456
190 Places=2! Round to two digits after decimal point.
200 ScaleFactor=10-Places
210 XRounded=INT(X*ScaleFactor+0.5)/ScaleFactor
220 DISP XRounded

Here are the program's results:

123.46

ScaleFactor and Places should both be INTEGERs. The example shows rounding to 2 decimal
places (to the right of the decimal point). Places should be set to a negative number to round
to a number of digits to the left of the decimal point.

Numeric Computation 4-13

Binary Operations
We humans usually think of numbers being represented as decimal numbers, so this is the default
representation for most input and output operations (such as INPUT and DISP). However, all
operations the computer performs use the binary number representation. You usually don't see
this, because the computer changes decimal numbers you input into its own binary representation,
performs operations using these binary numbers, and then changes them back to their decimal
representation before it displaying or printing them.

There are some operations available with Technical BASIC that deal with binary numbers. For
example, the BINIOR function performs a bit-by-bit "inclusive or" operation on the two arguments,
and returns the result:

BINIOR (2,5)
7

When any of these operations are used, the arguments are first converted to INTEGER (if they
are not already of this type) and then the specified operation is performed. Therefore it is best
to restrict bit-oriented binary operations to declared INTEGERs. However, if it is necessary to
operate on a REAL or SHORT, then you should make sure that the argument is not beyond the
range of INTEGERs (to avoid an error).

Resident Binary Functions
In the following descriptions, the variable(s) shown in parentheses (such as Argl, NthBi t, and
Shift) signify that the function requires numeric argument(s), which can be any numeric expres
sion.

Function Description

BINAND (Argl ,Arg2) Returns the bit-by-bit logical "AND" of the two arguments.

BINCMP (Arg) Returns the bit-by-bit "complement" of the argument.

BINEOR (Argl ,Arg2) Returns the bit-by-bit exclusive "OR" of the two arguments.

BINIOR(Argl, Arg2) Returns the bit-by-bit inclusive "OR" of the two arguments.

BIT (Arg, NthBi t) Returns the state of bit NthBi t of Arg.

ROTATE$ (String$, Shift) Returns a string obtained by shifting the characters in the string
argument String$ the number of positions specified by Shift, with
wraparound. (Even though this is a string function, you may also
find it useful for binary operations. See the "String Manipulations"
chapter for details.)

4-14 Numeric Computation

Number-Base Conversions
The computer treats all numeric values as decimal (base 10) quantities. However, it is often
necessary to handle numbers represented in these number bases:

• Binary (base 2)

• Octal (base 8)

• Hexadecimal (base 16)

This section describes the functions that allow you to convert between these number bases.

Converting from Decimal
Technical BASIC provides resident functions for converting from decimal to binary, octal, and
hexadecimal number bases. These functions are as follows:

DTB$ Converts a decimal number to a binary string

DTO$ Converts a decimal number to an octal string

DTH$ Converts a decimal number to a hexadecimal string

The DTB$ (Decimal-To-Binary) string function returns a string containing the base-2 representation
of the decimal argument. For example, to find the binary representation of 15, use this function:

DTB$ (15)

The following "32-bit" string value is returned:

00000000000000000000000000001111

The DTO$ (Decimal-To-Octal) string function returns a string containing the octal representation
of the decimal argument. The following function call returns the octal string representation of
decimal 15:

DTO$(15)

This string value is returned:

00000000017

The DTH$ (Decimal-To-Hexadecimal) string function returns a string containing the hexadecimal
representation of the decimal argument. To find the hexadecimal value for 15, use the following
function call:

DTH$(15)

Numeric Computation 4-15

The following string value is returned:

OOOOOOOF

Converting to Decimal
Technical BASIC also provides functions to convert numbers from binary, octal, and hexadecimal
number bases to a decimal numeric representation. These functions are as follows:

BTD Converts a binary string to a decimal number

OTD Converts an octal string to a decimal number

HTD Converts a hexadecimal string to a decimal number

The BTD (Binary-To-Decimal) numeric function returns the decimal equivalent of the specified
binary number (which is represented by a string expression). For instance, this function converts
an "8-bit" string-binary number to a decimal numeric value:

BTD(111111111")

Here is the numeric value it returns:

255

The OTD (Octal-To-Decimal) numeric function returns the decimal equivalent of the specified octal
number (which is represented by a string expression). For instance, this function converts a
string-octal number to a decimal numeric value:

OTD(1377")

Here is the numeric value it returns:

255

The HTD (Hexadecimal-To-Decimal) numeric function returns the decimal equivalent of the speci
fied hexadecimal number (which is represented by a string expression). For example, this function
converts an "16-bit" string-hexadecimal number to a decimal numeric value:

HTD(lIffll)

Here is the numeric value it returns:

255

4-16 Numeric Computation

Trigonometric Functions
Technical BASIC provides several functions for dealing with angles and angular measure: SIN,

COS, TAN; CSC, SEC, COT; ASN, ACS, ATN, ATN2; DTR and RTD. Each function has a different
purpose, as described subsequently; however, all deal with angles. The interpretation of the
argument, and consequent value returned, is dependent on the angular unit of measure currently
being used.

• The default unit for all angular measure is radians.
You can use the RAD statement to set this mode.
(There are 2 7r radians in a circle.)

• Degrees can be selected with the DEG statement.
(There are 360 degrees in a circle.)

• Grads can be selected with the GRAD statement.
(There are 400 grads in a circle.)

Radians may be re-selected by the RAD statement.

It is a good idea to explicitly set a mode for any angular calculations, even if you are using the
default (radian) mode. Subprograms inherit the angular mode from the context that calls it. And
if the subprogram changes the mode, then the mode used in the calling context is not restored.

Resident Trigonometric Functions
In the following descriptions, the variable(s} shown in parentheses (such as Angle, and X) signify
that the function requires numeric argument(s}, which can be any numeric expression.

Function

ACS(Cosine)

ASN(Sine)

ATN(Tangent)

ATN2(Y,X)

Description

Returns the arccosine of an expression (1-11 <Cosine 1 <1) as an angle in
first or second quadrant. The resultant angle returned is dependent upon
the current DEG/RAD/GRAD mode.

Returns the arcsine of an expression (1-11 <Sine 1 <1) as an angle in first
or fourth quadrant. The resultant angle returned is dependent upon the
current DEG/RAD/GRAD mode.

Returns the arctangent of an expression as an angle in first or fourth
quadrant. The resultant angle returned is dependent upon the current
DEG/RAD/GRAD mode.

Returns the arctangent of Y divided by X (Y IX) in the proper quadrant.
(X, Y) is the rectangular coordinate position of a point. The resultant angle
returned is dependent upon the current DEG/RAD/GRAD mode.

Numeric Computation 4-17

COS (Angle)

COT (Angle)

CSC(Angle)

Returns the cosine of the angle specified by the expression. The interpre
tation of the specified angle is dependent upon the current DEG/RAD/GRAD

mode.

Returns the cotangent of the angle specified by the expression. The inter
pretation of the specified angle is dependent upon the current
DEG/RAD/GRAD mode.

Returns the cosecant of the angle specified by the expression. The interpre
tation of the specified angle is dependent upon the current DEG/RAD/GRAD

mode.

DTR(DegreeAngle) Converts the specified angle expression from degrees to radians. The
result returned is independent of the current DEG/RAD/GRAD mode.

RTD (RadianAngle) Converts an angle expression from radians to degrees. (The value this
function returns is independent of the current DEG/RAD/GRAD mode.)

SEC (Angle) Returns the secant of the angle represented by an expression. The interpre
tation of the specified angle is dependent upon the current DEG/RAD/GRAD

mode.

SIN (Angle)

TAN (Angle)

Returns the sine of the angle specified by the numeric expression. The in
terpretation of the specified angle is dependent upon the current
DEG/RAD/GRAD mode.

Returns the tangent of the angle represented by an expression. The
interpretation of the specified angle is dependent upon the current
DEG/RAD/GRAD mode.

4-18 Numeric Computation

Random Numbers
The RND numeric function returns a pseudo-random random number greater than or equal to 0
and less than 1.

RND
0.0459608752708518

Scaling
Since many modeling systems require random numbers with arbitrary ranges, it may be necessary
to scale the numbers.

200 R=INT(RND*Range)+Offset

The above statement will return an integer between Offset and Offset+Range.

A New Seed
The random number generator is seeded with the a default value at system reset, power-on,
SCRATCH, and pre-run. You can change the seed with the RANDOMIZE statement, which will give
a new pattern of numbers.

RANDOMIZE NewSeed

Numeric Computation 4-19

Miscellaneous Numeric Functions
Technical BASIC provides a generous complement of numeric functions. For instance, the ABS.
MIN, and MAX functions have been used in preceding examples. This section lists some of the
general numeric functions which are not described elsewhere in this chapter.

Resident General Numeric Functions
In the following descriptions, the variable(s) shown in parentheses (such as Number and Arg)
signify that the function requires numeric argument(s), which can be any numeric expression.

Function

ABS(Number)

CEIL (Number)

EPS

EXP(PowerOfE)

FLOOR (Number)

FP(RealNumber)

INF

INT(Number)

Description

Returns the absolute value of the expression Number.

Returns the smallest integer greater than or equal to the expression
Number.

Returns the machine's "epsilon" - the smallest positive number
greater than zero that the system can handle. Note that this is system
specific; refer to the Specifics appendix for you particular system.

Raise the natural e to the power specified by the expression PowerOfE.
(e ~ 2.718281828459 aS).

Returns the greatest integer that is less than or equal to the specified
expression Number. (Same as INT function.)

Returns the "fractional" part of the specified expression RealNumber.

Returns the machine's "infinity" - the largest positive number that
the system can handle. This number is system-specific; refer to the
Specifics appendix for you particular system.

Returns the greatest integer that is less than or equal to the specified
expression Number. The result is of the same type (INTEGER or REAL)
as the original number. It differs from IP with negative numbers. For
example:

INT(-45.66)

IP(-45.66)

returns the value -46.

returns the value -45.

4-20 Numeric Computation

IP(Number)

LGT(Number)

LOG (Number)

MAX(Argl,Arg2)

MIN(Argl,Arg2)

NUM(String$)

PI

Returns the integer part of the expression Number. (Similar to INT

above.)

Returns the base 10 logarithm of the specified decimal expression
Number.

Returns the natural logarithm (base e) of the specified decimal expres
sion Number.

Compares Argl and Arg2, and returns the larger of the two values.

Compares Argl and Arg2, and returns the smaller of the two values.

Returns the decimal code of the first character in the specified String$

expression.

A constant function which returns a IS-digit approximation of 7r;
3.141 59265358979.

POS (Source$, Target$) Returns the position (index) of the Target$ string expression in the
Source$ string expression. (See the "String Manipulations" chapter
for examples.)

RMD Divides Dividend by Divisor (Dividend/Divisor) and returns the re-

(Di vidend, Di visor) mainder of the division (not the quotient, as in DIV).

SGN (Number) Returns the arithmetic sign of the expression Number: 1 if positive, °
if 0, -1 if negative.

SQR(PositiveN) Returns the positive square root of the non-negative expression Posi

tiveN.

VAL (String$)

VAL$(Number)

Returns the decimal number represented by the string expression.

Returns the string representation of the specified Number.

Numeric Computation 4-21

Arrays
This section describes the broad topic of arrays. Here are the topics discussed in the remainder
of this chapter:

• Concepts - what is an array?

• Creating an array variable - dimensioning.

• Assigning value to individual elements.

• Displaying arrays.

• Redimensioning arrays.

• Assigning values to all elements of an array.

• Constant and zero matrices.

• Identity matrices.

• Copying subarrays.

• Scalar arithmetic array operations.

• Summing rows and columns.

• Array transpose.

• Matrix multiplication.

• Vector cross products.

• Matrix inversion.

• Solving systems of linear equations.

4-22 Numeric Computation

Array Concepts
An array variable (or simply, an array) is a group of data items of one type, collectively referred
to by one variable name. Subscripts enclosed in parentheses after the array name reference
individual items in the collection.

Technical BASIC allows one- and two-dimensional arrays. A one-dimensional array (also called
a vector) can be thought of as a list of items consisting of several rows but only one column;
items are referenced by one integer subscript. A two-dimensional array is like a table of items.
The table has multiple rows and columns, and elements in the table are accessed by two integer
subscripts separated by commas.

The number of items, or elements, in an array is determined by the lower and upper bounds
of its subscripts. The lower bound of an array subscript is the lowest value that the subscript
can be assigned; the upper bound of an array subscript is the highest value subscript that the
subscript can be assigned. For example, the following group of ten numbers can be organized
several different ways: as one ten-item list; as two five-item lists; or as five two-item lists.

1 2
3 4
5 6
7 8
9 10

The following array is organized as one ten-item array.

Numbers (0)=1
Numbers (2)=3
Numbers (4)=5
Numbers (6)=7
Numbers (8)=9

Numbers (1)=2
Numbers (3)=4
Numbers (5)=6
Numbers (7)=8
Numbers (9)=10

The lower bound of the array subscript is 0, and the upper bound is 9. Non-integer subscripts
are rounded to the nearest integer. Negative subscripts are not allowed.

The following assignments treat the data as two five-item lists (Le., two one-dimensional arrays
of five elements each).

OddNumbers(0)=1
OddNumbers(1)=3
OddNumbers(2) =5
OddNumbers(3) =7
OddNumbers(4)=9

EvenNumbers(0)=2
EvenNumbers(1)=4
EvenNumbers(2)=6
EvenNumbers(3)=8
EvenNumbers(4)=10

Numeric Computation 4-23

Now organize the two lists as one two-dimensional array. The two subscripts used to reference
the items are separated by commas; the first subscript designates the row, the second subscript
designates the column.

Numbers(O.O)=l
Numbers(1.0)=3
Numbers(2.0)=5
Numbers(3.0)=7
Numbers(4.0)=9

Numbers (0. 1)=2
Numbers(1.1)=4
Numbers (2. 1)=6
Numbers (3. 1)=8
Numbers (4. 1)=10

The lower bound of both subscripts in the Numbers array is O. Note that there are different
upper bounds for each of the two subscripts: 4 and 1.

The above examples used numeric arrays. The computer also allows string arrays; see the
"String Manipulations" chapter for details.

Dimensioning Arrays
Dimensioning an array establishes the array-subscript upper bound(s) and reserves computer
memory for the array elements. After a variable is dimensioned, you can reference the individual
elements by using the array name and the appropriate subscript(s). Here is a simple example:

100 DIM RealArray(9)
110
120 RealArray(0)=123
130 RealArray(7)=3.142
140

Dimension the array.

Assign value to element O.
Assign value to element 7.
Now display an element's value.

150 DISP IIValue of element 7 =1I;RealArray(7)

Here are the program's results:

Value of element 7 = 3.142

Array Subscript Bounds
The array in the preceding example had 10 elements, specified by the array subscripts 0 through
9. The upper bound (9) was specified in the DIM statement. The maximum upper bound of any
numeric array subscript is 65530.

The lower bound of an array subscript, always 0 or 1, is established either by default or explicitly.
Technical BASIC assumes that all array subscripts have a lower bound of 0, unless you specify
otherwise using this statement:

OPTION BASE 1

4-24 Numeric Computation

Since the computer assumes OPTION BASE 0 unless told otherwise, the OPTION BASE 0 statement
is used only for documentation purposes.

An OPTION BASE statement can be included only once in a program. Once an option base has
been declared (or assumed), that option base is used throughout the program. The OPTION BASE
declaration in a program must appear before any array variables are dimensioned or referenced.
And you cannot execute an OPTION BASE statement from the keyboard after running a program.

Declaration Statements
These declarative statements are available for dimensioning arrays - declaring the type and
size of the array:

• REAL (and DIM)

• SHORT

• INTEGER

• COM

The DIM statement is used to declare REAL variables - both simple and arrays. The REAL
statement is also used to dimension REAL variables; it is the preferred method, because it
documents the variable's type more clearly.

10 OPTION BASE 1
20 REAL Light,Energy(20) !
30

Simple variable Light, and
20-element array Energy.

All numeric variables in DIM statements, both simple and array, are assumed to be of type REAL.
The only way to declare them to be of type INTEGER or SHORT is to explicitly declare them using
the corresponding INTEGER or SHORT declaration statement.

The SHORT statement declares simple numeric and numeric array variables of type SHORT.

10 OPTION BASE 0
20 SHORT Change(9,15),Delta,PSI ! 160-element array Change,
30 and simple variables Delta and PSI.

The INTEGER statement declares simple numeric or numeric array variables of type INTEGER.

10 OPTION BASE 0
20 INTEGER Day,Pointer(40) !
30

Simple variable Day, and
41-element array Pointer.

Numeric Computation 4-25

The COM statement can declare variables of any type. It is used to reserve memory in com
mon storage. Programs and subprograms use common storage for communicating with one an
other. Program-to-program communication is discussed in the "Chaining Programs" section of the
"Program Structure and Flow" chapter. Subprogram-to-program and subprogram-to-subprogram
communications are discussed in the "Program/Subprogram Communication" section of the
"User-defined Functions and Subprograms" chapter.

Implicit Dimensioning
You need not dimension an array if its upper bounds are less than or equal to 10. Any array
not explicitly dimensioned (such as with DIM) is assumed to have upper bound(s) of 10. Here
are the number of elements that implicitly dimensioned arrays will have:

OPTION BASE 0

OPTION BASE 1

One-dimensional
Array

11
10

Two-dimensional
Array

121 (11*11)

100 (10*10)

If you want an array to have fewer elements, you must dimension it explicitly. This also conserves
memory by allocating space for fewer elements.

Because of implicit dimensioning, the statement that explicitly dimensions an array variable must
appear before any elements of the array are referenced. Otherwise, the system first dimensions
the array implicitly and then reports an error when the second dimension is attempted (the explicit
declaration) 1 . Here is an example that will generate Error 35 : DIM EXIST VRBL ("attempted
to dimension an existing variable"):

100 OPTION BASE 1
110 Array(3)=44 !
120 DIM Array(10)

Implicitly dimensions 'Array(10) , .
Causes error 35 (at pre-run).

Regardless of the method used to dimension an array, it can be dimensioned only once in a
program. A second attempt to dimension an array variable generates this pre-run error (35).

This error will be caught during program pre-run, which occurs at RUN and IN IT. Pre-run is described in the section called "A Closer

Look at Program Execution" in the "Program Structure and Flow" chapter.

4-26 Numeric Computation

Array Variable Names
The rules for naming simple numeric variables also apply to numeric arrays. The name can be
up to 32 characters in length, and may contain alphabetic (uppercase and lowercase) characters,
decimal digits, and the underscore (J character. The only restriction is that the first character
must be a letter.

In addition, a simple variable may be given the same name as an array variable. However,
the simple variable is referenced using the name without subscripts, while an array element is
referenced using one or two subscripts in parentheses. For example:

Variable
Variable(2,4)

Simple numeric variable.
Element of a numeric array.

Assigning Values to Individual Elements
Here is an example of dimensioning an array, assigning values to its elements, and displaying
the array elements individually:

10 OPTION BASE 1
20 DIM Squares(8)
25
30 FOR Element=1 TO 8
40 Squares (Element)=Element*Element
50 PRINT Element; "times" ; Element ; "=" ; Squares (Element)
60 NEXT Element
70 END

The program produces the following results:

1 times 1 1
2 times 2 4
3 times 3 9
4 times 4 16
5 times 5 25
6 times 6 36
7 times 7 49
8 times 8 64

Numeric Computation 4-27

Displaying and Printing Entire Arrays
Preceding examples have shown how to display and print individual array elements. However,
it is often easier to use some resident features of the Technical BASIC system to do that for
you. There are two statements for displaying and for printing arrays: MAT DISP and MAT PRINT.
MAT DISP displays the array on the current (CRT IS) screen, while MAT PRINT prints arrays on
the current (PRINTER IS) system printer.

Here are examples of using the MAT DISP and MAT PRINT statements:

100 OPTION BASE 1
110 REAL Array33(3,3) ! 3x3 array.
120
130 DATA 11,12,13,21,22,23,31,32,33
140 MAT READ Array33
150

MAT DISP Array33, Trailing II

DISP
II ,

MAT DISP Array33; Trailing 11.11 ,
DISP

means 21-col. fields.

means compact.

160
170
180
190
200
210
220
230
240

MAT DISP Array33/ Trailing II/II means line-feed.

END

Here are the program's results:

11 12 13
21 22 23
31 32 33

11 12 13
21 22 23
31 32 33

11
12
13
21
22
23
31
32
33

4-28 Numeric Computation

The terminator following the array name (semicolon, comma, or slash) is used to specify the
spacing between elements of the array.

Table 4-2. Terminators

Terminator Spacing Between Elements

, Fields - elements will be placed at the beginning of 21-column
fields. (This is also the default terminator if another is not
specified.)

; Compact - elements will have one leading and one trailing
space. If the number is negative, then the leading space is
replaced by a minus sign.

/ One element per line.

You can also specify whether an array is to be displayed by rows (default) or by columns.
Normally, vectors (one-dimensional arrays) are displayed or printed with one element per line.
If you specify COL before the vector name, however, elements of the vector are displayed or
printed across a line. Here is an example:

100 OPTION BASE 1
110 DIM Vector(9)
120
130 DATA 1,2,3,4,5,6,7,8,9
140 MAT READ Vector
150
160 MAT DISP Vector; One element per line.
170
180 MAT DISP COL Vector;
190

All elements on same line.

200 END

Upon execution of this program, the following is displayed:

1
2
3
4
5
6
7
8
9
1 2 3 4 5 6 7 8 9

Numeric Computation 4-29

This statement displays Array33 by rows with compact spacing and then by columns with
compact spacing.

100 OPTION BASE 1
110 REAL Array33(3,3) 3x3 array.
120
130 DATA 11,12,13,21,22,23,31,32,33
140 MAT READ Array33
150
160 MAT DISP Array33; Default (by rows) .
170 DISP
180
190 MAT DISP ROW Array33; By rows.
200 DISP
210
220 MAT DISP COL Array33; By columns.
230 DISP
240
250 END

Here is the program's output:

11 12 13
21 22 23
31 32 33

11 12 13
21 22 23
31 32 33

11 21 31
12 22 32
13 23 33

If you do not specify either ROW or COL, then the default (ROW) display order is used. If you specify
ROW before an array name, elements are displayed or printed on each line by rows, beginning
with the first row (0 or 1, depending on the current OPTION BASE in effect). Each row begins
on a new line, and the elements in each row are listed in order from the first column to the
last. More than one line may be required to list the elements in each row, depending on the
terminator following the array name, the number of elements in each row, the number of digits
in the values of the elements, and the display's screenwidth or printer's linewidth.

4-30 Numeric Computation

If you specify COL before an array name, elements are displayed or printed on each line by
columns, beginning with the first column ("column-major" order). Each column begins on a new
line; and the elements in each column are listed in order from the first row to the last. Again,
more than one line may be required to list the elements in each column; this depends on the
terminator following the array name, the number of elements in each column, the number of
digits in the values of the elements, and the printer line width.

Specifying neither ROW nor COL before an array name has the same effect as specifying ROW.

If more than one array is specified, a blank line appears between the display or printout of each
array.

Using Images
You can achieve more complete control of the spacing between array elements with the MAT
DISP USING and MAT PRINT USING statements.

One form of these statements includes an image string that specifies how array elements are
displayed or printed.

MAT DISP USING "5D.D";Numbers,

Another form specifies the line number of an IMAGE statement.

100 IMAGE 5D.D
110 MAT DISP USING 100;Numbers,

Numeric Computation 4-31

As with the MAT DISP and MAT PRINT statements, specifying COL before the array name causes
elements to be displayed or printed one column per display (or printer) line: the array elements
are sent in column-major order, from first row to last row of a column, from the first column to
the last column. Otherwise, elements are displayed or printed in row-major order. Here is an
example:

100 OPTION BASE 1
110 DIM Array43(4,3) ,Vectorl0(10) ,Array45(4,5)
120
130 DATA 126.4,5.4,243.3,364.4,248.2,215.7
140 DATA 548.9,548.6,18.5,75,10.3,518.1
150 MAT READ Array43
160 PRINT "Array43:"
170 MAT PRINT USING "2X,3D.2D" Array43
180 PRINT
190
200 DATA 48,21,94,4,18,44,27,98,72,69
210 MAT READ Vectorl0
220 IMAGE "Vectorl0:"/10(DDD)
230 MAT PRINT USING 220 ; COL Vectorl0
240 PRINT
250
260 DATA 25,23,17,12,77,17,13,11,7,48
270 DATA 21,18,12,13,64,63,54,40,32,189
280 MAT READ Array45
290 PRINT "Array45:"
300 MAT PRINT USING 310 Array45
310 IMAGE 4(2D,X),X,3D/
320
330 END

This program prints the contents of three arrays using three different implementations of the
MAT PRINT USING statement. Here are the results.

Array43:
126.40 5.40 243.30
364.40 248.20 215.70
548.90 548.60 18.50
75.00 10.30 518.10

Vectorl0:
48 21 94 4 18 44 27 98 72 69

Array43:
25 23 17 12 77
17 13 11 7 48
21 18 12 13 64
63 54 40 32 189

4-32 Numeric Computation

Redimensioning Arrays
Once an array has been dimensioned, you can reorganize it into a different size by redimensioning
it. This example dimensions Array4 with 4 elements, and then redimensions it to a working size
of 3 elements.

100 OPTION BASE 1
110 DIM Array4(4) 4-element array.

400 REDIM Array4(3) ! Change working size to 3 elements.

Subsequent statements affect only the elements included in the new working size. In this example,
you cannot access the 4th element of the array. Although this 4th element still exists in memory,
the value of this element cannot be changed until the array is appropriately redimensioned (again).

The redimensioning subscripts are numeric expressions that specify a new upper bound for
each dimension; they can be variables, constants, or arithmetic expressions. The number of
subscripts must be the same as the number specified in the original DIM, REAL, SHORT, or
INTEGER statement. For example, you cannot redimension a two-dimensional array into a one
dimensional array. Furthermore, the total number of elements in the new working size cannot
exceed the number originally dimensioned. For example, you cannot redimension a 3x5 array
into a 4x5 array, but you can redimension it into a 5x3 or a 7x2 array.

This example redimensions Array2 from a 3x5 array (15 elements) into a 4x2 array (8 elements).

100 OPTION BASE 1
110 DIM Array35(3,5) ! 3x5 array (15 elements).

400 REDIM Array35(4,2) ! 4x2 array (8 elements).

This statement redimensions Array4 and Array35 to their original sizes.

REDIM Array4(4),Array35(3,5)

This example redimensions Array29 from a 2 x 9 array into a 3 X 6 array.

100 OPTION BASE 0
110 DIM Array29(l,8)

395 X=2 ~ REDIM Array29(X,10/X)

Numeric Computation 4-33

When the array is redimensioned, the values in the array variable in memory are not changed.
The only difference is that the correspondence between subscript(s) and elements are changed.
The following example shows how values in an array variable are accessed when an array
originally declared to be 3 x 3 is redimensioned into a 2 x 2 array.

100 OPTION BASE 1
110 DIM Array33(3,3)
120 !
130 DATA 11,12,13,21,22,23,31,32,33
140 MAT READ Array33 ! Reads in "row major" order.
150
160 MAT DISP Array33; ! 3x3 array.
170 DISP
180
190 REDIM Array33(2,2) 2x2 array.
200 MAT DISP Array33;
210 DISP
220
230 REDIM Array33(3,3) 3x3 array.
240 MAT DISP Array33;
250
260 END

The results of running the program look like this:

11 12 13
21 22 23
31 32 33

11 12
13 21

11 12 13
21 22 23
31 32 33

The program first dimensions Array33 to be a 3x3 array. The MAT READ statement fills Array33
with values specified in the DATA statement. The DATA values are placed into the array in "row
major" order: all column elements of a row are read, beginning with the lowest-numbered column,
and then the next higher-numbered row is read, and so forth through the highest-numbered row.
Note that each element's value corresponds to its subscripts; for instance, Array33(1, 1)= 11 and
Array33(2,2)=22.

The program displays Array33, and then redimensions it to a 2x2 array. The 2x2 array is
then displayed, and redimensioned back to the original array size and displayed once again.

4-34 Numeric Computation

Note that redimensioning an array does not isolate a subarray. In other words, if you redimension
a 3 X 3 array into a 2 X 2 array, the resulting array is not the 2 X 2 subarray in the upper left corner
of the original array. Such operations are covered in the subsequent section called "Copying
Subarrays."

REDIM is not the only statement that redimensions an array. The MAT ... CON, MAT ... ZER, and
MAT ... IDN statements allow you to optionally specify redimensioning subscripts. These state
ments assign certain values to the array specified. If redimensioning subscripts are specified, the
array is redimensioned before the assignments are performed. See the corresponding sections
later in this chapter for further information.

Implicit redimensioning may also be performed with statements that specify both a result array
and an operand array. Here is an example:

OPTION BASE 1
DIM Array22(2,2) ,Array33(3,3)
!

100
110
120
130
140
150
160
170
180
190
200
210
220

OISP "Before assigning values from a smaller array."
MAT OISP Array33, ! Will contain all O's.
OISP (Q OISP

OISP "After assigning values from a smaller array."
MAT Array22=(2)! Assign '2' to all elements.
MAT Array33=Array22 Now assign 2x2 to 3x3 array.
MAT OISP Array33, Now show new values.
!
ENO

Here are the results of running the program:

Before assigning values from a smaller array.
000
000
000

After assigning values from a smaller array.
2 2
2 2

The program first dimensions two arrays: Array22 is a 2x2 array, while Array33 is a 3x3
array.

The contents of Array33 are then displayed. From the three rows of three columns of O's, you
can see that it is a 3 X 3 array.

Numeric Computation 4-35

The contents of the smaller Array22 (2x2) are assigned to the larger Array33 (3x3). The result
of the assignment is that Array33 is first implicitly redimensioned to a 2x 2 array, and then the
contents of elements of Array"22 are assigned to corresponding elements of Array33.

Here is a description of the general case. The result array (such as Array33 above) is redimen
sioned to accommodate the elements of the operand array (such as Array22 above) before the
new values are assigned. The number of rows in the result array will then equal the number of
rows in the operand array, and the same is true for the number of columns. If the size of the
result array is greater than that of the operand array, then the result array is first redimensioned
to match the size of the smaller operand array. Conversely, if the current size of the result array
is smaller than that of the operand array, then the result array is first redimensioned to match
the size of the larger operand array. Note, however, that this second case requires that the size
of the result array (when originally dimensioned) was at least as large as the current size of the
operand array; if not, an error is reported.

NOTE

When an array has been redimensioned - either explicitly or implicitly
- the array remains redimensioned even when the program that orig
inally dimensioned it is run again. The array is not dimensioned back
to the original size declared in the program's DIM. REAL. SHORT, or IN

TEGER statement. If a program is rerun, and it contains an array that
is redimensioned (either in the program or from the keyboard), then a
REDIM statement that specifies the original size should be included in the
program between the DIM. REAL. SHORT, or INTEGER statement and the
first statement or function that accesses the array or one of its elements.

4-36 Numeric Computation

Assigning Values to an Entire Array
Earlier sections showed examples of assigning values to individual array elements. This section
describes several methods of assigning values to every element of an array with a single BASIC
statement.

Assigning Values From the Keyboard
The MAT INPUT statement allows you to assign values to elements of a numeric array from the
keyboard. The MAT INPUT statement is programmable only; it cannot be executed from the
keyboard. Here is an example:

100 OPTION BASE 1
110 DIM Vector(3) ,FirstMatrix(5,4) ,SecondMatrix(2,3)
120 MAT INPUT Vector,FirstMatrix
130 RAD ~ X=PI/6 ~ Y=PI/3
140 MAT INPUT SecondMatrix
150
160 MAT PRINT Vector;
170 MAT PRINT FirstMatrix;
180 MAT PRINT SecondMatrix;
190
200 END

When the computer prompts you for the first element of Vector:

Vector(1)?

Enter all 3 elements of Vector as follows:

1 , 2 ,3 I Return I

Since all three elements of Vector have been entered, the program then prompts you to enter
the first element of the 5 X 4 array named FirstMatrix.

FirstMatrix(1,1)?

Respond to the prompt by entering the first 10 of twenty elements:

1,2,3,4,5,6,7,8,9,10 I Return I

All elements are assigned values in order from lowest-numbered column to highest-numbered
column within a row, beginning with the lowest-numbered row and finishing with the highest
numbered row. After you press the carriage return key, the computer displays the name of the
next element to be assigned a value. In this case, the next prompt requests that you enter the
eleventh element of FirstMatrix.

FirstMatrix(3,3)?

Numeric Computation 4-37

Respond to this prompt by entering the remaining 10 elements as follows:

11,12,13,14,15,16,17,18,19,20 I Return I

The next request that you enter the first element of the 2 X 3 array named SecondMatrix.

SecondMatrix(l,l)

Values can be entered as numbers, as numeric variables, or as numeric expressions. Input into
the array continues until all elements have been assigned values. If an array becomes full in the
middle of an input line, then the remaining elements on the line are ignored.

You can also enter expressions that contain variables and system-resident functions. Note that
the values assigned to the variables and the values computed for the variable functions are
entered into the corresponding elements.

Enter the following for SecondMatrix(1,1):

X,SIN(X),l-COS(2*X) I Return I

The final prompt given is:

SecondMatrix(2,l)

Now enter the remaining 3 elements into array SecondMatrix.

Y,COS(Y),l-SIN(2*Y) I Return I

The execution of your program is now complete. Here is what the program prints (assuming
that you entered the values shown in preceding paragraphs):

1
2
3
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
.523598775598299 .5 .5
1.0471975511966 .5 .133974596215561

This program's purpose was to show you how the MAT INPUT statement prompts you to enter all
values into an array. It also showed how several elements could be entered at one time. However,
if you prefer entering elements individually, then you can enter one numeric expression at a time,
pressing the carriage-return key after each one.

4-38 Numeric Computation

Assigning Values from a DATA Statement
Like the READ statement, the MAT READ statement can be used in conjunction with one or more
DATA statements. When MAT READ is executed, elements of the array are assigned values from
the list of numbers in a DATA statement. Array elements are assigned values in row-major order,
just as they are in the MAT INPUT statement. The items in a DATA statement that correspond to
numeric array elements must be valid numeric values, not string values.

The MAT READ statement is programmable only; it cannot be executed from the keyboard. The
following program is an example of using this statement.

100 OPTION BASE 1
110 INTEGER Numbers(2,5)
120 DIM Title1$[11] ,Title2$[12]
130 !
140 ! Years
150 DATA 1920,1930,1940,1950,1960
160
170 ! Numbers of U.S. drivers.
180 DATA 14,38,48,62,87
190 DATA "Millions of","U.S. Drivers"
200
210 MAT PRINT Numbers
220 READ Title1$,Title2$
230
240 PRINT Title1$
250 PRINT Title2$
260 PRINT "------------,,
270 FOR Line=1 TO 5
280 PRINT Numbers (1 ,Line) ; Numbers (2 ,Line)
290 NEXT Line
300
310 END

The results of executing this program are as follows:

Millions of
U.S. Drivers

1920 14
1930 38
1940 48
1950 62
1960 87

Numeric Computation 4-39

Assigning the Same Value to Every Element
The MAT statement also allows you to assign the value of a numeric expression to all elements
of an array. For instance, this statement assigns the value 30.48 to all elements of array X.

MAT X = (30.48)

This statement assigns the value of the variable M to all elements of array Y.

MAT Y = (M)

This statement assigns the result of the expression 2*PI*Raduis"'2 to all elements of array Z.

MAT Z = (2*PI*Radius-2)

Constant and Zero Matrices
The MAT ... CON statement assigns the value 1 to all elements of an array. Here is an example:

MAT Array! = CON

Every element in the array will now contain a value of 1.

You can also use this statement to redimension an array:

MAT Array3 = CON(2.2)

Assuming OPTION BASE !, if array A was originally a 3 X 3 array, then it would be redimensioned
to a 2 X 2 array. All elements of the redimensioned array would then be assigned a value of 1.

The MAT ... ZER statement assigns the value 0 to all elements of the result array. An array in
which all elements are zero is called a zero matrix. Likewise, a vector of which all elements are
zero is called a zero vector. Here is an example:

MAT Array3 = ZER

You can also redimension the array:

MAT A = ZER(5.2)

4-40 Numeric Computation

Assuming OPTION BASE 1, if array A was originally a 5 X 5 array, then it would be redimensioned
to a 5 X 2 array. All elements of the redimensioned array would then be assigned a value of o.

Here is another example.

100 OPTION BASE 1
110 DIM Array43(4,3)
120 !
130 MAT Array43=ZER! Zero 4x3 array.
140 MAT DISP Array43;
150 DISP
160
170 MAT Array43=CON(3,2) Redim, and assign 1 to first 6 elements.
180 MAT DISP Array43;
190 DISP
200
210 REDIM Array43(4,3) Restore 4x3 array subscripts.
220 MAT DISP Array43;
230
240 END

This program displays the following results:

0 0 0
0 0 0
0 0 0
0 0 0

1 1
1 1
1 1

1 1 1
1 1 1
0 0 0
0 0 0

Numeric Computation 4-41

The Identity Matrix
An identity matrix is created using the MAT ... ION statement. MAT ... ION assigns the value 1 to
all diagonal elements of the result matrix and assigns the value 0 to all other elements. (Diagonal
elements are those for which the row subscript is equal to the column subscript.) A matrix
created using the MAT ... ION statement is also called a unit matrix. An example program using
MAT ... ION is as follows:

100 OPTION BASE 1
110 OIM Array33(3.3) .Array55(5.5)
120
130 MAT Array33=ION
140 MAT OISP Array33;
150 OISP
160
170 MAT Array55=ION(4.4)
180 MAT OISP Array55;
190
200 ENO

Execution of the above program produces the following result:

1 0 0
0 1 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

This program dimensions Array33 to be a 3 X 3 array and dimensions Array55 to be a 5 x 5
array. It also makes them both identity matrices and displays them. Note that Array55 is
redimensioned to a 4 X 4 identity matrix by specifying the corresponding subscript values in the
MAT ... ION statement. Note also, however, that you cannot redimension arrays to be larger than
the dimensions specified in the declaration statement that originally specified the array's size.

NOTE

The array specified in a MAT ... IDN statement must be a square matrix;
that is, it must have two dimensions, and the number of rows must be
the same as the number of columns.

4-42 Numeric Computation

Copying Subarrays
An earlier section discussed copying the contents of an entire array into another array. For
instance, this statement is used to copy every element of Array33 into Array55.

MAT Array55=Array33

If Array33 and Array55 are of the same size, then each element of Array33 is copied into the
corresponding element of Array55. However, if Array33 is a 3x3 array and Array55 is a 5x5
array, then this statement redimensions Array55 into a 3 X 3 array and then copies the nine
elements of Array33 into corresponding elements of Array55.

With Technical BASIC, you can also copy a subset of an array (herein called a "subarray") into
another array. Here is a simple example:

100 OPTION BASE 1
110 DIM Array55(5,5),Array33(3,3)
120
130 MAT Array55=(5) ! Fill with all 5's.
140 MAT DISP Array55;
150 DISP
160
170 MAT Array33=(3) Fill with all 3's.
180 MAT DISP Array33;
190 DISP
200
210 MAT Array55(2:4,2:4)=Array33
220 MAT DISP Array55;

Put Array33 into subarray.

230
240 END

Here are the program's results:

5 5 5 5 5
5 5 5 5 5
5 5 5 5 5
5 5 5 5 5
5 5 5 5 5

3 3 3
3 3 3
3 3 3

5 5 5 5 5
5 3 3 3 5
5 3 3 3 5
5 3 3 3 5
5 5 5 5 5

Numeric Computation 4-43

The example copies all of Array33 into columns 2 through 4 of rows 2 through 4 of Array55.
The rest of Array55 is not changed, and the array is not redimensioned.

In general, you can specify both starting and ending row and starting and ending column for
both the operand (Array33 above) and result (Array55 above). Subsequent examples explain
this more clearly.

Several Examples of Copying Subarrays
The following examples show several usages of the MAT statement in copying subarrays. For
these examples, assume that OPTION BASE 1 is in effect and that all values in the 5 x 5 array
named Result55 are set to zero before each statement is executed. The values shown for the
Result arrays are the values that it will contain after the corresponding MAT statement has been
executed.

This statement copies the value from each element of Operand55 into the corresponding element
of Result55.

MAT Result55 Operand55

Operand55

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55

Result55

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55

This statement redimensions Result55 to a 3 X 3 matrix (since no subscripts were specified for
the Result55 array); then it copies the values from columns 1 through 3 of rows 1 through 3 of
Operand55 into the redimensioned Result55.

MAT Result55 = Operand55(1:3.1:3)

Operand55

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55

4-44 Numeric Computation

Result55

11 12 13
21 22 23
31 32 33

This statement copies the third element of Vector into the element in row 3 of column 2 of
Result55.

MAT Result55(3,2) = Vector(3)

Vector Result55

1 0 0 0 0 0
2 0 0 0 0 0
3 0 3 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0

This statement copies the values from row 1 columns 2 through 4 of Operand55 into row 3
columns 1 through 3 of Resu1t55.

MAT Result55(3,1:3) = Operand55(1,2:4)

Operand55 Result55

11 12 13 14 15 0 0 0 0 0
21 22 23 24 25 0 0 0 0 0
31 32 33 34 35 12 13 14 0 0
41 42 43 44 45 0 0 0 0 0
51 52 53 54 55 0 0 0 0 0

This statement copies the values from rows 4 and 5 of column 1 of Operand55 into rows 2 and
3 of column 5 of Result55.

MAT Result55(2:3,5) = Operand55(4:5,1)

Operand55 Result55

11 12 13 14 15 0 0 0 0 0
21 22 23 24 25 0 0 0 o 41
31 32 33 34 35 0 0 0 o 51
41 42 43 44 45 0 0 0 0 0
51 52 53 54 55 0 0 0 0 0

Numeric Computation 4-45

This statement copies the entire Vector into the entire third row of Result55.

MAT Result55(3,) = Vector

Vector Result55

1 0 0 0 0 0
2 0 0 0 0 0
3 1 2 3 4 5
4 0 0 0 0 0
5 0 0 0 0 0

This statement copies the entire second column of Operand55 into Vector.

MAT Vector = Operand55(,2)

Operand55 Vector

11 12 13 14 15 12
21 22 23 24 25 22
31 32 33 34 35 32
41 42 43 44 45 42
51 52 53 54 55 52

This statement copies the values from rows 1 and 2 of columns 2 through 5 of Operand55 into
rows 2 and 3 of columns 1 through 4 of Result55.

MAT Result55(2:3,1:4) = Operand55(1:2,2:5)

Operand55 Result55

11 12 13 14 15 0 0 0 0 0
21 22 23 24 25 12 13 14 15 0
31 32 33 34 35 22 23 24 25 0
41 42 43 44 45 0 0 0 0 0
51 52 53 54 55 0 0 0 0 0

This statement redimensions Result55 into a 2 X 3 matrix, and copies the values from rows 1
and 2 of columns 3 through 5 of Operand55 into Result55.

MAT Result55 = Operand55(1:2,3:5)

Operand55

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55

4-46 Numeric Computation

Result55

13 14 15
23 24 25

Summary of General Rules

• The array elements are always copied and assigned in row-major order - from the first
column to the last column of each row, beginning with the first row and proceeding through
the last row.

• If all elements of the result array are to be assigned values, then do not specify row
numbers or column numbers in the result array.

• If all elements of the operand array are to be copied into the result array, then do not
specify row numbers or column numbers in the operand array.

• If row and/or column numbers are specified, they must be enclosed in parentheses and
separated by a comma.

• If no row or column numbers are specified after the result array, then it is redimensioned
(if necessary) before values are assigned to it. If row or column numbers are specified after
the result array, then values are assigned to the corresponding elements and the array is
not redimensioned.

• If the array is a vector, then specify only the row number(s).

• If only one row is to be copied or assigned values, then you need only specify that one
row number; if more than one row is to be copied or assigned values, then specify the first
row number and the last row number, separated by a colon. Similarly, if only one column
is to be copied or assigned values, then you need only specify that one column number;
if more than one column is to be copied or assigned values, then specify the first column
number and the last column number, separated by a colon.

• If entire row(s) are to be copied or assigned values, then you may omit the column numbers
but include a comma after the row number(s). Similarly, if entire column(s) are to be copied
or assigned values, then you may omit the row numbers but include a comma before the
column number(s).

• Unless either the operand array or the result array is a vector, the number of rows
specified after the result array must be the same as the number of rows to be copied from
the operand array. The number of columns specified after the result array must be the
same as the number of columns to be copied from the operand array.

• Unless the operand array is a vector, a column from the operand array cannot be copied,
using just one statement, into a row in the result array. Similarly, unless the result array is
a vector, a row from the operand array cannot be copied, using just one statement, into a
column of the result array. These types of copy operations can, however, be made using
two statements, as shown in the next example.

Numeric Computation 4-47

In this example, row 1 of Array33 is copied into column 3 of array Result55, then column 3 of
Array33 is copied into row 2 of array Result55.

100 OPTION BASE 1
110 DIM Operand33(3,3),Result33(3,3),Vector3(3)
120
130
140
150
160
170
180
190
200
210

DATA 1,2,3,4,5,6,7,8,9
MAT READ Operand33 !
MAT DISP Operand33; !
DrSp

Fill 3x3 matrix.
Show contents.

MAT Result33=ZER
MAT Vector3=Operand33(l,) !
MAT Result33(,3)=Vector3 !
MAT DISP Result33;

Fill result with O's.
Copy row 1 into vector.
Copy vector into column 3.

220 DISP
230
240 MAT Result33=ZER Fill result with O's.
250 MAT Vector3=Operand33(,3) ! Copy column 3 into vector.
260 MAT Result33(2,)=Vector3! Copy vector into row 2.
270 MAT DISP Result33;
280
290 END

Here are the results obtained from the program:

123
456
789

001
002
003

000
369
000

The first matrix displayed is Operand33. The next matrix displayed is matrix Result33, with
column 3 containing values from row 1 of matrix Operand33. The final matrix displayed is
Result33 again, but this time with row 2 containing values from column 3 of Operand33.

The row and column number(s) can be specified not only as constants, like those in the preceding
examples, but also as variables or expressions. Here is an example:

245 Column=2
250 MAT Vector3=Operand33(,Column)! Copy column 2 into vector.
255 BottomRow=3
260 MAT Result33(BottomRow-2,)=Vector3 Copy vector into row 1.

4-48 Numeric Computation

The first row (or column) number specified is usually less than the second row (or column)
number. However, if the first row number is greater than the second (or if the first column
number is greater than the second), then elements will be copied or assigned values in reverse
orderl. The first row or column number actually copied or assigned values is one less than the
specified beginning row/column number. Similarly, the last row or column copied or assigned
values is one greater than the specified last row/column number. For instance, the following
statement copies rows 4 through 1 of the operand into rows 1 through 4 of the result array.

180 MAT Result(1:4,l:4)=Operand(5:0,l:4)

Here is an example program containing this statement:

100 OPTION BASE 1
110 DIM Result(4,4),Operand(4,4)
120 !
130 DATA 1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4
140 MAT READ Operand
150 MAT DISP Operand;
160 DISP
170
180 MAT Result(1:4,l:4)=Operand(5:0,l:4)
190
200 MAT DISP Result;
210
220 END

Here is the program's output:

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

4 4 4 4
3 3 3 3
2 2 2 2
1 1 1 1

Copy Operand rows 4 thru 1
into Result rows 1 thru 4.

The program reverses rows 1 through 4 of the Operand array as it copies them into the Result
array.

1 An important special case occurs when the first row number specified is just one greater than the second row number, or when the first

column number specified is just one greater than the second column number. This subject will be discussed in the subsequent section

called "A Special Case: Empty Arrays."

Numeric Computation 4-49

A Special Case: Empty Arrays
Here is the special case mentioned earlier: When the first row specified is just one greater than
the second row, and with the corresponding case for columns, then no elements will be copied or
assigned values. Furthermore, if no row or column numbers are specified after the result array
(and OPTION BASE 1 is in effect), then the result array is redimensioned to have zero rows or
zero columns l . The value of these features will be more apparent after we discuss this special
case a bit more.

Examples of this special case are contained in this program:

100 OPTION BASE 1
110 DIM Operand (4 ,4) ,Result(4,4)
120 MAT Operand=CON! Assign all l's.
130 DISP
140 MAT DISP Operand;
150 DISP
160 K=1
170 MAT Result=Operand(1:K-1,2)
180 DISP "After copying Operand rows '1:0'."
190 MAT DISP Result;
200 DISP
210 MAT Result=Operand(1:4,1:K-l)
220 DISP "After copying Operand columns '1:0'."
230 MAT DISP Result;
240 !
250 END

The program yields this output:

1 1
111
111
111

After copying Operand rows '1:0'.

After copying Operand columns '1:0'.

The display of Operand shows that it is indeed a constant matrix. The first display of array
Result showed nothing because it was redimensioned to a 0 X 2 array, which is by definition an
"empty" array. The second display of array Result was the same as the first, except that the
number of columns is 0 and the array is redimensioned to a 4 x 0 empty array. Empty arrays
should not be confused with zero arrays, which contain all O's. If you should display or print ~

an empty array, there will be no output since there are no elements in the array (according to ~

current dimensions).

1 If OPTION BASE 0 is in effect, the result array is not redimensioned, and a DIM SIZE error message is reported.

4-50 Numeric Computation

Empty arrays can be specified in subsequent statements and functions with meaningful results; the
usual rules of redimensioning and row/column matching apply (in statements with two operand
arrays). The following situations are of particular interest:

• Statements specifying only one operand array will, if that array is empty, redimension the
destination array to be empty. For example, if the Operand array has been redimensioned
to a Ox3 array, then this statement redimensions the Result array to Ox3:

MAT Result = Operand

• If both operand arrays are empty, then performing a matrix multiplication1 can yield a
result array that is not empty. However, in such cases the statement assigns the value 0
to all elements of the destination array, regardless of the current values in the operand
arrays.

For example, if matrix OperandI has been redimensioned to be 3xO, and matrix Operand2 has
been redimensioned to be 0 xl, then this statement:

MAT Result = Operand1*Operand2

redimensions matrix Result to 3 xl, since 3 X 0·0 X 1 =3 X 1 according to the rules of matrix
multiplication. The Result array is not empty, since neither its number of rows nor number
of columns is zero. However, it is a zero matrix, since the value 0 has been assigned to
all (three) elements.

The fact that no elements are copied or assigned values when the first row or column number is
just one greater than the second, plus the characteristics previously described above for resulting
empty arrays, simplifies programs that do certain matrix manipulations.

1 Matrix multiplication is discussed in a subsequent section.

Numeric Computation 4-51

Scalar Arithmetic Array Operations
You can perform scalar arithmetic operations with a scalar numeric expression (such as a constant,
variable, or expression) and each element of an operand array. For example, you could add the
constant 4 to each element of an array:

MAT ArrayX=(4)+ArrayX

The resulting values are assigned to the corresponding elements of the result array (ArrayX).

The scalar arithmetic operations that you can perform with MAT keywords are as follows:

• Addition (+)

• Subtraction (-)

• Scalar multiplication (.), also known as the inner or dot product

• Division U)

The following program makes Array44 an identity matrix. (An identity matrix is a square matrix
which contains all ones in a diagonal which begins at its first element and moves down to its last
element; the remainder of the elements in the identity array contain zeros.) The program then
multiplies each element of that array by the scalar 2.

100 OPTION BASE 1
110 DIM Array44(4,4)
120 !
130 MAT Array44=IDN
140 MAT PRINT Array44;
150 PRINT
160
170 MAT Array44=(2)*Array44
180 MAT PRINT Array44;
190
200 END

The result of executing the above program looks like this:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2 0 0 0
0 :2 0 0
0 0 2 0
0 0 0 :2

4-52 Numeric Computation

If you need to change the signs of all elements in a matrix, you can do so inserting the following
statement in the preceding program:

145 MAT Array44 = -Array44

The array now contains these values:

-2 0 0 0
o -2 0 0
o 0 -2 0
o 0 0-2

You can also perform these scalar arithmetic operations with corresponding elements of two
operand arrays: addition, subtraction, (dot-product) multiplication, and division. For instance,
this statement calculates the squares of the elements in an array:

MAT Array33=Array33.Array33

The statement multiplies Array33(1,1) by Array33(1,1) and places the result in Array33(1,1).
It does the same for each corresponding element of the operand arrays. Multiplication of
corresponding elements is known as the dot product or inner product of the arrays; the operator
for this type of operation is a period (.)1. Note that the two operand arrays must have the same
number of elements in each dimension.

The result of two scalar multiplications can be added in one statement. An example is given
below:

100 OPTION BASE 1
110 DIM Arrayl(2,4),Array2(2,4)
120
130 DATA 12,52,76,33,81,70,72,14
140 MAT READ Arrayl
150
160 MAT Array2=(50) @ Array2(l,2),Array2(2,l)=0
170
180 DEG ! Use degrees mode (for angular functions).
190 MAT Arrayl=(0.7)*Arrayl+(0.3*SIN(60))*Array2
200 MAT DISP USING "2X,DD.D" ; Array1
210
220 END

1 The asterisk (*) is used to denote matrix multiplication, which is a different kind of operation and is described in the subsequent section

called "Matrix Multiplication."

Numeric Computation 4-53

The results of executing this program are as follows:

21.4 36.4 66.2 36.1
56.7 62.0 63.4 22.8

Subtracting the results of two scalar multiplications can be accomplished in one statement by
changing the sign of the second scalar. in the preceding example, change the statement 190 to:

190 MAT Arrayl=(0.7)*Array1+(-0.3*SIN(60))*Array2

Here are the modified program's results:

-4.6 36.4 40.2 10.1
56.7 36.0 37.4 -3.2

However, multiplying or dividing the results of two scalar multiplications cannot be performed
with one statement.

Summing Rows and Columns
Technical BASIC provides MAT capabilities that allow you to compute the sum of elements in
rows and columns of arrays .

• MAT ... RSUM calculates the sum of elements in a row .

• MAT ... CSUM calculates the sum of elements in a column.

Usages of MAT ... RSUM and MAT ... CSUM are shown in the following example.

Here is the Whack it Racket Company's monthly forecast data table. It is organized into sales
regions (East, Midwest, and West) and racket model (WROl, WR02, and WR03).

Table 4-3. Monthly Sales Forecast (Thousands of Units)

Model
Sales Region WROI WR02 WR03 WR04

East 25 23 17 12

Midwest 17 13 11 7

West 21 18 12 13

The program calculates and prints the total forecast for all racket models - one forecast by
region, and another by racket model. Since each row contains the forecasts for all models in ~

a region, the total forecast for all models in each region can be found using the MAT ... RSUM ~

statement. Likewise, since each column contains the forecasts for one model in all regions, the
total forecast for each model in all regions can be found using the MAT ... CSUM statement.

4-54 Numeric Computation

100 OPTION BASE 1
110 DIM Forecasts(3,4),RegionSums(3) ,ModelSums(1,4)
120 ! Forecast for the Eastern region.
130 DATA 25,23,17,12
140 ! Midwest region.
150 DATA 17,13,11,7
160 ! West region.
170 DATA 21,18,12,13
180 MAT READ Forecasts
190
200 PRINT "Forecasts:"
210 PRINT "----------"
220 MAT PRINT Forecasts;
230 PRINT
240 MAT RegionSums=RSUM(Forecasts)
250 PRINT "Forecasts by Region:"

Row sums to vector.

260 PRINT "--------------------"
270 MAT PRINT RegionSums;
280 PRINT
290 PRINT "Forecasts by Model:"
300 PRINT "-------------------"
310 MAT ModelSums=CSUM(Forecasts)
320 MAT PRINT ModelSums;
330
340 END

Columns sums to matrix.

The results displayed after program execution are:

Forecasts:

25 23
17 13
21 18

17 12
11 7
12 13

Forecasts by Region:

77
48
64

Forecasts by Model:

63 54 40 32

The first matrix displayed is the monthly sales forecast (in thousands of units); the rows corre
spond to regions, and the columns correspond to racket models. The second matrix has in its
rows the total sales for the East, Midwest, and West regions, respectively. finally the last matrix
has in its columns the total sales of models WROl, WR02, WR03, and WR04, respectively.

Numeric Computation 4-55

General Rules
Here are the rules that govern this type of operation:

• MAT ... RSUM adds the values of the elements in each row of the operand array, and then
assigns the sum to the corresponding element of the result array (a vector or single-column
matrix). If the result array is a vector, it is first redimensioned (if necessary) to have as
many elements as the number of rows as the operand array. If the result array is a matrix,
it is first redimensioned (if necessary) to have one column and as many rows as in the
operand array .

• Likewise, MAT ... CSUM adds the values of the elements in each column of the operand
array, and then assigns the sum to the corresponding element of the result array (a vector
or single-row matrix). If the result array is a vector, it is first redimensioned (if necessary)
to have as many elements as the number of columns as the operand array. If the result
array is a matrix, it is first redimensioned (if necessary) to have one row and as many
columns as in the operand array.

Array Transpose
The MAT ... TRN statement computes the transpose of the operand array - interchanges the rows
and columns of the array - and places the values in the result array. The following program
shows how this statement can be used within a program:

100 OPTION BASE 1
110 DIM Array23(2.3) .Array55(5.5)
120 DATA 1.2.3.4.5.6
130 MAT READ Array23
140 MAT PRINT Array23;
150 PRINT
160 MAT Array23=TRN(Array23) Redim. then transpose.
170 MAT PRINT Array23;
180 PRINT
190 MAT Array55=TRN(Array23) Redim. then transpose.
200 MAT PRINT Array55;
210 END

4-56 Numeric Computation

(

Here is the program's output:

1 2 3
4 5 6

1 4
2 5
3 6

1 2 3
4 5 6

The first matrix displayed is the original Array23 - a 2x3 matrix. The transpose of Array23
is then calculated, after which the Array23 variable is redimensioned (to a 3 x 2 matrix) and then
and assigned the transposed Array23; the second matrix shown above is the result. Next, the
transpose of Array23 is computed, then Array55 is redimensioned from a 5x5 matrix to a 2x3
matrix, and is then assigned the values of the transposed matrix Array23.

Matrix Multiplication
The MAT statement can be used to calculate the (outer) product of two arrays. The value
of each element of the destination array is determined according to the usual rules of matrix
multiplication. Here is an example:

A * B = Result

l
all a121 *Ibll b121=lall*bll + a12*b2l
a2l a22 b2l b22 a2l*bll + a22*b2l

all*b12 + a12*b22I
a2l*b12 + a22*b22

The number of columns in the first operand array (A) must be the same as the number of rows
in the second operand array (8). The Result array has the same number of rows as the first
operand array and the same number of columns as the second operand array. Either (but not
both) of the operand arrays can be vectors.

Numeric Computation 4-57

An Example
Here is an example program that performs the multiplication:

100 OPTION BASE 1
110 DIM Array23(2,3) ,Array32(3,2) ,Array22(2,2)
120 DATA 1,2,3,4,5,6
130 MAT READ Array23! Fill 2x3 matrix.
140 MAT DISP Array23;
150 DISP
160 DATA 1,4,2,5,3,6
170 MAT READ Array32 Fill 3x2 matrix.
180 MAT DISP Array32;
190 DISP
200 MAT Array22=Array23*Array32 Multiply.
210 MAT DISP Array22; ! Result is a 2x2 matrix.
220 END

Here are the program's results:

123
456

1 4
2 5
3 6

14 32
32 77

The first array displayed is the first operand. The second array is the second operand. The
third array is the product of matrix multiplication on the two operands.

Another Example
The following problem illustrates the use of matrix multiplication. The Whackit Racket Company
is considering raising the prices on each of its four models: WROl, WR02, WR03, and WR04.
The sales manager wants a program that uses the data in the following table to calculate and
print a matrix that shows the total income (in thousands of dollars) in each of the three sales
regions at the old and at the new prices. (The price increase is not expected to affect the number
of units sold.)

4-58 Numeric Computation

Table 4-4. Monthly Sales Forecast (Thousands of Units)

Model
Sales Region WROI WR02 WR03 WR04

East 25 23 17 12

Midwest 17 13 11 7

West 21 18 12 13

Table 4-5. Price (Per Unit)

Model Old New

WROI $10 $15
WR02 $20 $27

WR03 $35 $50
WR04 $60 $80

In each sales region, the total income (either at the old or at the new prices) can be determined
by multiplying the quantity of each model by the price of each model, then adding the results.
Applying this process to the data in the forecast and price tables above, multiply each entry in a
row of the forecast table by the corresponding entry in a column of the price table, and then add
the results. The sum could be entered into the same row and column of another table, in which
each row shows the total income in a sales region and each column shows the total income at
the old or at the new prices.

Since all this is just what happens in matrix multiplication, these calculations can be done
compactly with the matrix multiplication Incomes=Forecasts*Prices, in which:

• The Forecasts matrix contains the sales forecasts (in thousands of units). The rows corre
spond to the three sales regions, and the four columns correspond to the four models.

• The Prices matrix contains the prices (per unit) of each model. The four rows correspond
to the four models, and the two columns correspond to the two price lists (old and new).

• The Incomes matrix will contain the total income in each sales region at the old and at
the new prices. The three rows will correspond to the three sales regions, and the two
columns will correspond to the two price lists.

Numeric Computation 4-59

100 OPTION BASE 1
110 DIM Forecasts(3,4) ,Prices(4,2),Incomes(3,2)
120 ! Sales for East region.
130 DATA 25,23,17,12
140 ! Sales for Midwest region.
150 DATA 17,13,11,7
160 ! Sales for West region.
170 DATA 21,18,12,13
180 ! Prices.
190 DATA 10,15,20,27,35,50,60,80
200 MAT READ Forecasts,Prices
210 !
220 MAT Incomes=Forecasts*Prices
230 PRINT
240 PRINT " Old New"
250 PRINT "Income Income"
260 PRINT" (k$) (k$)"
270 PRINT "------ ------"
280 IMAGE X,DC3D,4X,DC3D
290 MAT PRINT USING 280 ; Incomes
300 END

Executing the program produces this result:

Old New
Income Income

(k$) (k$)

2,025 2,806
1,235 1,716
1,770 2,441

The first row shows incomes from the East region. The second row shows incomes from the
Midwest region. The third row shows incomes from the West region.

Transposing before Multiplying
If you want to multiply two matrices, but the dimensions need to be transposed, you can multiply
the transpose of one array by the other array. The following problem helps illustrate this usage.

Assume the manufacturing capacity of the Whack it Racket Company is limited this quarter; it
can produce only a percentage of the rackets demanded. The table below shows the percentage
that can be supplied to each region in the next two months. Using the forecast data in the table
of the preceding problem, calculate and print a matrix showing how many of each racket model
will be produced each month.

4-60 Numeric Computation

Table 4-6. Production Quota (Percentage)

Sales Region June July

East 80 90

Midwest 75 85

West 85 95

The quantity of each racket model that will be produced (during either month) can be determined
by multiplying the quantity of each model by the percentage for that model, and then adding
the results. As in the preceding example, these calculations can be performed easily with a
matrix multiplication of elements in the sales forecast table by elements in the production quota
table. To do so, however, requires that the multiplication use the transpose of either the matrix
containing the forecasts or the matrix containing the quotas. The following program multiplies
the transpose of the matrix containing the forecasts by a matrix containing the quotas.

100 OPTION BASE 1
110 DIM Forecasts(3,4),Quotas(3,2),Units(4,2)
120 ! Sales for East region.
130 DATA 25,23,17,12
140 ! Sales for Midwest region.
150 DATA 17,13,11,7
160 ! Sales for West region.
170 DATA 21,18,12,13
180 ! Production quotas.
190 DATA 80,90,75,85,85,95
200 MAT READ Forecasts,Quotas
210
220 MAT Quotas=(O.Ol)*Quotas! Converts percentages to decimal values.
230 MAT Units=TRN(Forecasts)*Quotas
240 PRINT
250 PRINT" June July"
260 PRINT "(k-Units) (k-Units)"
270 PRINT ,,--------- ---------"
280 IMAGE 2X,2D.D,7X,2D.D
290 MAT PRINT USING 230 ; Units
300 END

The results from executing this program are shown below:

June July
(k-Units) (k-Units)
--------- ---------

50.6 56.9
43.5 48.8
32.0 36.0
25.9 29.1

Numeric Computation 4-61

Before making the calculation, you will need to resolve the vectors Radius and Force into their
components in the x, y, and z directions.

You can determine the components of Radius by looking at the drawing. They are as follows:

Radius(x) = 5
Radius(y) = 14
Radius(z) = 2

You will need to calculate the Force vector. Since you know that the 960-pound force is exerted
in the direction of the Guy vector, the x, y, and z components of Force and Guy are proportional.

Force(x)

Guy(x)

Force(y)

Guy(y)

Force(z) IForcel

Guy(z) IGuYI

The unknowns in this equation are the x, y, and z components of Force; you already know its
magnitude, and you can determine the components of Guy and its magnitude.

The components of Guy, from the illustration, are as follows:

Guy(x) = -9 - 5 = -14
Guy(y) = 10 - 14 = -4
Guy(z) = -4 - 2 = -6

The magnitude of Guy is equal to the square root of the sum of the squares of each component.
Here is the equation:

MagGuy = SQR(Guy(xr2 + Guy(yr2 + Guy(zr2)

The program makes this calculation in line 200 below.

You can now calculate each component of Force by multiplying the corresponding component
of Guy by the ratio of the magnitude of Force to the magnitude of Guy.

Force(x) =Guy(x) *
I lForcel I

I IGuYI I

The program performs this calculation in statement 230.

Numeric Computation 4-63

The components of Moment (in lb-ft) are determined by the following program:

100 OPTION BASE 1
110 DIM Radius (3) ,Force(3),Guy(3) ,Moment (3)
120 !
130 ! Components of Radius.
140 DATA 5,14,2
150 ! Components of Guy.
160 DATA -14,-4,-6
170 MAT READ Radius,Guy
180
190 ! Calculate magnitude of Guy.
200 MagGuy=SQR(Guy(1)-2+Guy(2)-2+Guy(3)-2)
210
220 ! Calculate components of Force vector.
230 MAT Force=(960/MagGuy)*Guy
240
250 ! Calculate components of Moment.
260 MAT Moment=CROSS(Radius,Force)
270 MAT PRINT USING "50.00" ; Moment
280
290 END

The components of Moment are as follows:

-4632.96
121.92

10728.97

The x-component is printed first, then the y-component, and finally the z-component.

Inverting a Matrix
The MAT ... INV statement finds the inverse of the operand matrix. The inverse of a matrix is
the matrix that, when multiplied by the. original matrix, results in an identity matrix. The main
restriction on the operand matrix is that it must be square - that is, the number of rows must
be the same as the number of columns.

Find the inverse of the matrix shown below. Check that when the inverse is multiplied by the
matrix itself, the result is an identity matrix.

Original

4-64 Numeric Computation

(

The following program provides a solution to the problem:

100 OPTION BASE 1
110 DIM Original(2,2),Inverse(2,2),Identity(2,2)
120
130 ! Elements of Original matrix.
140 DATA 2,3,4,5
150 MAT READ Original
160 IMAGE 3D.D
170 MAT PRINT USING 160 Original
180 PRINT
190
200 MAT Inverse=INV(Original)
210 MAT PRINT USING 160 ; Inverse
220 PRINT
230
240 MAT Identity=Inverse*Original
250 MAT PRINT USING 160 ; Identity
260
270 END

Here are the results of executing the program:

2.0 3.0
4.0 5.0

-2.5 1.5
2.0 -1. 0

1.0 0.0
0.0 1.0

The first four elements are the contents of matrix Original. The next group of four elements are
the inverted contents of matrix Original. The last group of four elements show that the product
of Original and inverse of Original is indeed an identity matrix.

You can also multiply the inverse of a matrix by another matrix using just one MAT statement.
The syntax for this type of operation is as follows:

MAT Result = INV (Operandi) * Operand2

When the determinant of a matrix is zero, the matrix does not have an inverse. Therefore, if
you attempt to find the inverse of such a matrix using the MAT ... INV statement, Error 112:
DETERMINANT IS ZERO is reported. You can use the DET (determinant) function to check the
determinant before attempting to invert a matrix.

Numeric Computation 4-65

Calculating the inverse of a matrix is typically done in the process of solving the matrix equation:
Coefficients * Unknowns = Constants. However, a more accurate solution than the one provided
by MAT Unknown = INV(Coefficients)*Constants can be obtained using the MAT ... SYS state
ment, which is described in the next section.

Solving a System of Linear Equations
Suppose that you have a system of n linear equations with n unknowns. Here is the general
system:

c(l,l)*x(l) +

c(2,1)*x(1) +

c(n,l)*x(l) +

c(1,2)*x(2)

c(2,2)*x(2)

c(n,2)*x(2)

+
+

+

It can also be expressed using this matrix notation:

C· X = K

in which:

c(l,l) c(1,2) c(l,n)

c(2,1) c(2,2) c(2,n)

C=

c(n,l) c(n,2) c(n,n)

c(1, n)*x(n)

c(2,n)*x(n)

c(n,n)*x(n)

x(l)

x(2)

X=

x(n)

k(l)

k(2)

k(n)

and K =

k(l)

k(2)

k(n)

C is the coefficient array; K is the constant array. The solution to this system of equations is
the set of elements of array X.

The MAT ... SYS statement is used to solve the matrix equation:

MAT X = SYS(C,K)

for the array X.

4-66 Numeric Computation

The following example illustrates the use of MAT ... SYS in solving this system of equations:

2x + y - z = 0

x-y+z=6

x + 2y + z = 3

First express the system of equations in matrix notation AX = B:

C=

2 1 -1

1 -1 1

121

x

y , and K =

z

The program to solve this system of equations is as follows:

100 OPTION BASE 1
110 DIM C(3,3) ,X(3),K(3)
120
130 ! Read coefficient matrix.
140 DATA 2,1,-1,1,-1,1,1,2,1
150 MAT READ C
160 ! Read constant vector.
170 DATA 0,6,3
180 MAT READ K
190
200 ! Solve the equations.
210 MAT X=SYS(C,K)
220
230 ! Display solution.
240 MAT DISP X
250
260 END

Here are the results from executing the program:

2
-1

3

o
6

3

The value of x is 2, the value of y is -1, and the value of z is 3.

As mentioned earlier, the solution to the matrix equation C*X = K can also be obtained using
the statement MAT X = INV (C) *K. The solution obtained using the statement MAT X = SYS (C, K)
is somewhat more accurate; however, to achieve this accuracy two extra blocks of memory are
used, each the size of the array X.

Numeric Computation 4-67

Although in typical applications the result array X and constant array K are each vectors or one
column matrices, the MAT ... SYS statement does not restrict these arrays to only one column.
This allows you, for example, to simultaneously solve two different systems of n equations in n
unknowns, provided that the coefficients in both systems of equations are identical.

A useful example of this is described in the following problem. Your company's publications
manager wants to determine the cost factors used by two outside printers. Each printer estimates
jobs based on these criteria:

• The number of pages.

• The number of photographs.

• A fixed setup charge.

Here are estimates obtained from two printers for jobs that have varying numbers of pages and
photographs.

Table 4-7. Printer Jobs

Numbers Number of Total Cost
Jobs of Pages Photographs Printer Printer 2

1 273 35 $5835.00 $7362.50

2 150 8 $3240.00 $4085.00

3 124 19 $2775.00 $3517.50

Given the three estimates from each printer shown in the table above, you need to develop a
program that calculates the printer's charge per page, cost per photograph, and once-per-job
setup charge.

To solve the problem, you can set up the following system of equations for two sets of cost
estimates:

273*x(l) + 35*x(2) + l*x(3) = Estimate(I,Printer)

150*x(l) + 8*x(2) + l*x(3) = Estimate(2,Printer)

124*x(l) + 19*x(2) + l*x(3) = Estimate(3,Printer)

These equations can be represented in matrix notation as follows:

ltems*Cost Factors = Estimates

4-68 Numeric Computation

Items is the coefficient matrix containing the number of items for each job.

Items =

273

150

124

35

8

19

1

1

1

Each row contains data for a different job. Column 1 of each row contains the number of pages
for the job. Column 2 of each row contains the number of photographs for the job. Column 3
of each row contains the number of setup charges for the job.

Estimates is the constant array that contains the cost estimates of three jobs (from two printers).

Estimate =

5835.00 7362.50

3240.00 4085.00

2775.00 3517.50

Each row contains cost estimates for one job. Column 1 contains printer l's cost estimates for
each job. Column 2 contains printer 2's cost estimates for each job.

CostFactors is the array that contains the unknown cost factors: x(l) is the cost per page, x(2)
is the cost per photograph, and x(3) is the setup charge.

Since you are solving two systems of equations, the result array CostFactors must be a matrix;
that is, it should originally be declared with two dimensions. (If CostFactor is not the same size
as that of the constant array Estimates, then it is automatically redimensioned to the size of
Estimates before the MAT ... SYS statement is executed.) Each column contains the cost factors
for one printer.

Numeric Computation 4-69

A program to solve this manager's problem is listed below:

100 OPTION BASE 1
110 DIM Items(3,3),CostFactors(3,2),Estimates(3,2)
120
130 ! Items for job 1.
140 DATA 273,35,1
150 ! Items for job 2.
160 DATA 150,8,1
170 ! Items for job 3.
180 DATA 124,19,1
190 MAT READ Items
200
210 ! Estimates for job 1.
220 DATA 5835,7362.5
230 ! Estimates for job 2.
240 DATA 3240,4085
250 ! Estimates for job 3.
260 DATA 2775,3517.5
270 MAT READ Estimates
280
290 ! Calculate cost factors.
300 MAT CostFactors=SYS(Items,Estimates)
310
320 ! Now print results.
330 PRINT "Printer 1 Printer 2"
340 PRINT "--------- ---------11
350 MAT PRINT USING IX,3D.2D,6X,3D.2D" CostFactors
360
370 END

The program displays the cost factors for each printer:

Printer 1 Printer 2

20.00 25.00
5.00 7.50

200.00 275.00

The first line of the table displayed above gives the cost per page. The second line gives the
cost per photograph. The final line of the table gives the setup charge.

4-70 Numeric Computation

Additional Array Functions
Technical BASIC provides several functions that deal with numeric arrays. For instance, pre
ceding sections gave examples of LBND, UBND, and DET. This section describes the array-related
numeric functions that have not yet been described.

In the following descriptions, the variable(s) shown in parentheses (such as Array and Subscript)

signify that the function requires numeric argument(s), which can be any numeric expression.

Function

ABSUM(Array)

AM AX (Array)

AMAXCoL

AMAXRoW

AMIN(Array)

AMINCoL

AMINRoW

CNoRM(Array)

CNoRMCoL

DET(Matrix)

DETL

Description

Returns the sum of the absolute values of all the elements in Array.

Returns the value of the largest element in Array.

Returns the number of the column which contained the largest element
in the array specified in the last AMAX function.

Returns the number of the row which contained the largest element in
the array specified in the last AMAX function.

Returns the value of the smallest element in Array.

Returns the number of the column which contained the smallest ele
ment in the array specified in the last AMIN function.

Returns the number of the row which contained the smallest element
in the array specified in the last AMIN function.

Returns the column norm of Array - the largest sum of absolute
values obtained by summing the absolute values of elements in each
column of the array.

Returns the number of the column (of the array specified in the last
CNoRM function) which contained the largest sum of absolute values.

Returns the determinant of Matrix, which must be a square matrix.

Returns the determinant of the matrix which was last inverted. (Matri
ces are inverted by the MAT ... INV and MAT ... SYS statements).

DOT (Vectorl, Vector2) Returns the inner (dot) product of the two vectors.

FNoRM(Array)

LBND

(Array ,Subscript)

MAXAB(Array)

Returns the square root of the sum of the squares of all elements in
Array. This value is known as the Froebenius or Euclidian norm.

Returns the lower bound of Subscript in Array (Le., the current OP

TION BASE).

Returns the largest absolute value of any element in Array.

Numeric Computation 4-71

MAXABCOL

MAXABROW

RNORM(Array)

RNORMROW

SUM (Array)

UBND

(Array, Subscript)

Returns the number of the column which contained the largest absolute
value of any element in the array specified in the last MAXAB function.

Returns the number of the row which contained the largest absolute
value of any element in the array specified in the last MAXAB function.

Returns the row norm of Array - the largest sum of absolute values
obtained by summing the absolute values of elements in each row of
the array.

Returns the number of the row which contained the largest sum of
absolute values in the array specified in the last RNORM function.

Returns the sum of all the elements in Array.

Returns the upper bound of Subscript in Array.

4-72 Numeric Computation

String Manipulation 5
Introduction
It is often desirable to store non-numerical information in the computer. For instance, you will
often need to store and manipulate alphanumeric characters (text) with programs. This chapter
describes several techniques for working with string data.

Chapter Contents
The sections of this chapter cover the following topics:

Tasks/Topics Page

What is a string? 5-2

Evaluating string expressions 5-4

Substrings 5-6

String-related functions 5-9

Number-base conversions 5-11

Additional string functions 5-14

User-defined string functions 5-16

String array operations 5-17

String Manipulation 5-1

What is a String?
A string is defined as any sequence of characters. A word, a name, or a message can be stored
in the computer as a string. Each character in a string is stored as an eight-bit quantity; thus,
there are 255 different characters available with Technical BASIC.

Assigning Values to String Variables
The following are valid assignments to sting variables. Quotation marks are used to delimit the
beginning and ending of the string.

LET StringVariable$=lcomputer"
Fail$="The test has failed."
FileName$=IINVENTORY"
Test$=Fail$[5,8]

The left-hand side of the assignment (the variable name) is assigned the string value on the
right-hand side of the assignment (the literal).

String Variable Names
String variable names are identical to numeric variable names with the exception of a dollar sign
($) appended to the end of the name. They may contain up to 32 characters, including all letters
of the alphabet (both uppercase and lowercase), decimal digits 0 through 9, and the underbar
L) character. Just about the only restriction on string variable names is that the first character
must be an alphabetic character.

String Variable Lengths
The length of a string is the number of characters in the string. In the previous example, the
length of StringVariable$ is 8, since there are eight characters in the string literal "computer".

BASIC allows the dimensioned length of a string to range from 1 to 65 530 characters; the
current length (number of characters in the string) can range from 0 to the dimensioned length.
A string of zero characters is often called a null string or an empty string.

The default dimensioned length of a string is 18 characters. The DIM and COM statements are
used to define string lengths up to the maximum length of 65 530 characters. An error results
whenever a string variable is assigned more characters than its dimensioned length.

A string may contain any character. The only special case is when a quotation mark needs to
be in a string. A quote preceded by the tilde n character will embed a quote within a string.

5-2 String Manipulation

10 Quote$="The time is -"NOW-"."
20 PRINT Quote$
30 END

Produces: The time is "NOW".

Dimensioning String Variables
Strings whose length exceeds the default length of 18 characters must have space reserved
before assignment. The following statements may be used.

DIM Long$ [400] Reserves memory for a 400-character string.

COM Line$ [80] Reserves memory for an 80-character string variable in "common" storage.

The maximum length of any string must not exceed 65530 characters. A string may also be
dimensioned to a length less than the default length of 18 characters.

Simple String Variables
The DIM statement reserves storage for simple string variables.

DIM Part_number$[10] ,Description$[64],Cost$[5]

The COM statement defines common variables that can be used by subprograms and chained
programs.

COM Name$[40] ,Phone$[14]

Strings that have been dimensioned but not assigned values contain the null string.

String Arrays
Large amounts of text are easily handled in arrays. For example:

DIM File$(1000) [80]

This statement reserves storage for 1000 lines of 80 characters per line. Do not confuse the
brackets, which define the length of each string array element, with the parentheses, which define
the number of strings in the array. Each string in the array can be accessed by a subscript. For
example:

PRINT File$(27)

Prints element 27 of the array. Since each character in a string uses one bytes of memory and
each string in the array is allocated as many bytes as the maximum length of the string, string
arrays can quickly use a lot of memory.

String Manipulation 5-3

Evaluating String Expressions
This section describes how the Technical BASIC system evaluates string expressions.

Evaluation Hierarchy
Evaluation of string expressions is simpler than evaluation of numerical expressions. The three al
lowed operations are extracting a substring, concatenation, and parenthesization. The evaluation
hierarchy is presented in the following table.

Table 5-1. Evaluation Hierarchy

Order Operation

High Parentheses
Substrings and Functions

Low Concatenation

String Concatenation
Two separate strings are joined together by using the concatenation operator "&". The following
program combines two strings into one.

100 One$="WRIST"
110 Two$="WATCH"
120 Concat$=One$&Two$
130 PRINT One$,Two$,Concat$
140 END

Prints:

WRIST WATCH WRISTWATCH

The concatenation operation, in line 30, appends the second string to the end of the first string.
The result is assigned to a third string. An error results if the concatenation operation produces
a string that is longer than the dimensioned length of the string being assigned.

5-4 String Manipulation

Relational Operations
Most of the relational operators used for numeric expression evaluation can also be used for the
evaluation of strings.

The following examples show some of the possible tests.

II ABC II "ABC" True
II ABC II II ABC" False

II ABC II < II AbC II True
"6" > "7" False

II long II <= II longer II True
"RE-SAVE" >= "RESAVE" False

Any of these relational operators may be used: <, >, <=, >=, =, <>.

Testing begins with the first character in the string and proceeds, character by character, until
the relationship has been determined.

The outcome of a relational test is based on the characters in the strings, not on the length of
the strings. For example:

"BRONTOSAURUS" < II CAT II

This relationship is true since the letter "C" is greater in ASCII value than the letter "8".

String Manipulation 5-5

Substrings
A subscript can be appended to a string variable name to define a substring. A substring may
comprise all or just part of the original string. Brackets enclose the subscript which can be a
constant, variable, or numeric expression. For instance:

String$ [4] Specifies a substring starting with the fourth character of the String$ variable,
and continuing through the end of the variable's current contents.

Note that the brackets now indicate the substring's starting position, instead of the total length
of the string as when reserving storage for a string. The subscript must be in the range: 1 to
the string's current length (not dimensioned length). Any subscript value larger than this causes
an error.

Subscripted strings may appear on either side of the assignment.

Single-Subscript Substrings
When a substring is specified with only one numerical expression, enclosed with brackets, the
expression is evaluated and rounded to an integer indicating the position of the first character
of the substring within the string.

The following examples use the variable A$ which has been assigned the literal "DICTIONARY".

Statement Output

PRINT A$ DICTIONARY

PRINT A$ [0] {error}

PRINT A$ [1] DICTIONARY

PRINT A$ [5] IONARY

PRINT A$ [10] Y

PRINT A$ [11] {error}

When a single subscript is used it specifies the starting character position of the substring, within
the string. An error results when the subscript evaluates to zero or greater than the current
length of the string.

5-6 String Manipulation

Double-Subscript Substrings
A substring may have two subscripts, within brackets, to specify a range of characters. When
a comma is used to separate the items within brackets, the first subscript marks the beginning
position of the substring, while the second subscript is the ending position of the substring. The
form is: String$ [Start. End]

LET String$=IJABBERWOCKY"
PRINT String$[4.6]
BER

In the following examples the variable B$ has been assigned to the literal "ENLIGHTENMENT":

Statement Output

PRINT B$ ENLIGHTENMENT

PRINT B$[1.13] ENLIGHTENMENT

PRINT B$ [1.9] ENLIGHTEN

PRINT B$[3.7] LIGHT

PRINT B$[4.4] I

PRINT B$[13.26] (error)

An error results if either the first or the second subscript is greater than the current string length.

Special Considerations
All substring operations allow a subscript to specify the first position past the end of a string.
This allows strings to be concatenated without the concatenation operator. For instance:

100 A$="CONCAT"
110 A$[7]=IENATION"
120 PRINT A$
130 END

Produces: CONCATENATION

The substring assignment is only valid if the substring already has characters up to the specified
position. Access beyond the first position past the end of a string results in the insertion of blank
spaces.

It is a good practice to dimension all strings including those shorter than the default length of
eighteen characters. This helps to manage the amount of memory space used by a string so
that no memory space is wasted.

String Manipulation 5-7

Some very interesting assignments can be attempted. For example, a 14-character string can be
assigned to a 3-character substring.

100 Big$="Too big to fit"
110 Small$="Little string"
120 !
130 Small$[l,3]=Big$
140 !
150 PRINT Small$
160 END

Prints: Tootle string

When a substring assignment specifies fewer characters than are available,' any extra trailing
characters are truncated.

The alternate assignment is shown in the next example. Here a 4-character string is assigned to
a 8-character substring.

100 Big$="A large string"
110 Small$="tiny"
120 !
130 Big$[3,10]=Small$
140 !
150 PRINT Big$
160 END

Prints: A tiny ring

Since the subscripted length of the substring is greater than the length of the replacement string,
enough blanks (ASCII spaces) are added to the end of the replacement string to fill the entire
specified substring.

5-8 String Manipulation

(

String-Related Functions
Several intrinsic functions are available in BASIC for the manipulation of strings. These functions
include conversions between string and numeric values.

String Length
The "length" of a string is the number of characters in the string. The LEN function returns an
integer whose value is equal to the string length. The range is from 0 (null string) thru 65530.
For example:

PRINT LEN("HELP ME")

Prints: 7

The following example program prints the length of a string that is typed on the keyboard.

100 DIM In$[160]
110 INPUT In$
120 Length=LEN(In$)
130 DISP Length; II characters in ";In$
140 END

Try finding the length of a string containing only spaces. When the INPUT statement is used,
any leading or trailing spaces are removed from items typed on the keyboard. Change INPUT to
LINPUT in line 20 to allow leading and trailing spaces to be entered.

Substring Position
The "position" of a substring within a string is determined by the POS function. The function
returns the value of the starting position of the substring or zero if the entire substring was not
found. For instance:

PRINT POS("DISAPPEARANCE". "APPEAR")

Prints: 4

String Manipulation 5-9

The following example prints the positions of substrings found within a string.

OPTION BASE 1
DIM Sentence$[40] ,Word$(6) [8]
DATA CAT,ON,A,HOT,TEN,NATION

10
20
30
40
50
60

FOR 1=1 TO 6 @ READ Word$(I) @ NEXT I
Sentence$=IIWHERE IS THE CAT IN CONCATENATION II

70 FOR 1=1 TO 6
80 Position=POS(Sentence$,Word$(I)) <- POS function
90 IF Position THEN SEGl ELSE SEG2
100 SEG1:

PRINT Sentence$ 110
120
130

PRINT TAB(Position);Word$(I) ;TAB(35);lIis at II;Position
PRINT @ GOTO 170

140 SEG2:
150
160

PRINT lI'II;Word$(I) ;11' was not found ll
PRINT

170 End of multi-line IF ... THEN ... ELSE construct.
180 NEXT I
190 END

If POS returns a non-zero value, the entire substring occurs in the first string and the value
specifies the starting position of the substring.

Note that POS returns the first occurrence of a substring within a string. By adding a subscript,
and indexing through the string, the POS function can be used to find all occurrences of a
substring. The following program uses this technique to extract each word from a sentence.

100 DIM A$[80]
110 A$=III know you think you understand what I said, but you don't. 1I

120 INTEGER Scanner,Found
130 Scanner=l
140 PRINT A$
150 REPEAT:
160 Found=POS (A$ [Scanner] ,II II) !
170 IF Found THEN SEGl ELSE SEG2
180 SEG1:

Current substring position

Find the next ASCII space

190 PRINT A$[Scanner,Scanner+Found-l] Print the word
200 Scanner=Scanner+Found @ GOTO 140! Adjust IIScanll past last match
210 SEG2:
220 PRINT A$[Scanner] !
230 IF Found THEN REPEAT
240 END

Print last word in string
End of REPEAT construct.

As each occurrence is found, the new subscript specifies the remaining portion of the string to
be searched.

5-10 String Manipulation

String-to-Numeric Conversion
The VAL function converts a string expression into a numeric value. The string must evaluate
to a valid number or error 89 will result.

Error 89 INVALID PARAM

The number returned by the VAL function will be converted to and from scientific notation when
necessary. For example:

PRINT VAL("123.4E3")

Prints: 123400

The following program converts a fraction into its equivalent decimal value.

100 PRINT "Enter a fraction (i.e. 3/4)"
110 INPUT Fraction$
120
130 ON ERROR GOTO Err
140 Numerator=VAL(Fraction$)
150
160 IF POS(Fraction$."/") THEN SEG1 ELSE SEG2
170 SEG1:
180 Delimiter=POS(Fraction$."/")
190 Denominator=VAL(Fraction$[Delimiter+l])
200 GOTO 240
210 SEG2:
220
230
240
250

PRINT "Invalid fraction"
GOTO Err
End of multi-line IF ... THEN ... ELSE construct.

260 PRINT Fraction$;" = ";Numerator/Denominator
270 GO TO Quit
280 Err: PRINT "ERROR Invalid fraction"
290 OFF ERROR
300 Quit: END

Similar techniques can be used for converting: feet and inches to decimal feet or hours and
minutes to decimal hours.

The NUM function converts a single character into its equivalent numeric value. The number
returned is in the range: 0 to 255. For example:

PRINT NUM (" A")

Prints: 65

String Manipulation 5-11

The next program prints the value of each character in a name.

100 PRINT "Enter your first name."
110 INPUT Name$
120 PRINT Name$
130 PRINT
140 FOR 1=1 TO LEN(Name$)
150 PRINT NUM(Name$[I]); Print value of each character
160 NEXT I
170 PRINT
180 END

Entering the name: JOHN will produce the following.

JOHN
74 79 72 78

Numeric-to-String Conversion
The VAL$ function converts the value of a numeric expression into a character string. The string
contains the same characters (digits) that appear when the numeric variable is printed. For
example:

PRINT 10000000000000000,VAL$(10000000000000000)

Prints: le+016 le+016

Note that scientific notation does not start until there are seventeen digits to the left of the
decimal point.

The next program converts a number into a string so the POS function can be used to separate the
mantissa from the exponent. Note that this program only works with large positive exponents
of size 16 or greater. For example, enter the following program:

100 PRINT
110 PRINT "Enter a number with an exponent"
120 INPUT Number
130 !
140 Number$=VAL$(Number)
150
160 PRINT Number$
170 E=POS(UPC$(Number$) ,"E")
180 IF E THEN SEGl ELSE SEG2
190 SEG1:
200 PRINT "Mantissa is",Number$[l,E-l]
210 PRINT "Exponent is",Number$[E+l]
220 GO TO Quit
230 SEG2:
240 PRINT "No exponent"
250 GOTO Quit
260 Quit: END

5-12 String Manipulation

The program when executed prompts you with the following:

ENTER A NUMBER WITH AN EXPONENT
?

Enter the following number with its exponent:

3E+16 I Return I

This returns:

3e+016
MANTISSA IS 3
EXPONENT IS +016

The CHR$ function converts a number into an ASCII character. The number can be of type
INTEGER or REAL since the value is rounded, and a modulo 255 is performed. For example:

PRINT CHR$(97) ;CHR$(98) ;CHR$(99)

Prints: abc

The next program prints the values in the data statement as characters.

100 OPTION BASE 1
110 PRINT
120 CLEAR
130
140 DATA 34,89,111,117,32,103,111,116,32,105,116,33,34
150 INTEGER N(13)
160 MAT READ N
170 FOR 1=1 TO 13
180 PRINT CHR$(N(I));
190 MEXT I
200 PRINT CHR$(7)
210 END

String Manipulation 5-13

String Functions
Several additional string functions are available when using HP-UX Technical BASIC. This sections
provides examples of these functions and a sample user-defined string function.

String Reverse
The REV$ function returns a string created by reversing the sequence of characters in the given
string.

PRINT REV$(IISnack cansll)

Prints: snac kcanS

A common use for the REV$ function is to find the last occurrence of an item in a string.

100 DIM List$[30]
110 List$=113.22 4.33 1.10 8.55 12.20 1.7711
120 Length=LEN(List$)
130 Last_space=POS(REV$(List$),II II)
140DISP liThe last item is: II ;List$[1+Length-Last_space]
150 END

Displays: The last item is: 1.77

String Repeat
The RPT$ function returns a string created by repeating the specified string, a given number of
times.

PRINT RPT$(II* *11,10)

Prints: * ** ** ** ** ** ** ** ** ** *

Here is a short program that uses RPT$ to create an image for a formatted print statement.

100 OPTION BASE 1
110 DATA 50,900,2,444,37,2001,32768
120 DIM Array(7)
130 MAT READ Array
140 Maxdigits=O
150 FOR 1=1 TO 7
160 Digits=INT(1+LGT(Array(I)))
170 IF Digits>Maxdigits THEN Maxdigits=Digits
180 NEXT I
190 Form$=IIXX, II&RPT$(IIDII ,Maxdigits)&11 .DDII
200 PRINT IIUsing the image: II;Form$
210 MAT PRINT USING Form$; Array
220 END

5-14 String Manipulation

Trimming a String
The TRIM$ function returns a string with all leading and trailing blanks (ASCII spaces) removed.

PRINT "*";TRIM$(" 1.23 II) ; "*"

Prints: * 1 . 23*

TRIM$ is often used to extract fields from data statements or keyboard input.

100 DISP "Enter your first and last name."
110 INPUT Name$
120 First$=TRIM$(Name$[l.POS(Name$." II)])
130 Last$=TRIM$(Name$[l+LEN(Name$)-POS(REV$(Name$)." II)])
140 PRINT Name$.LEN(Name$)
150 PRINT Last$.LEN(Last$)
160 PRINT First$.LEN(First$)
170 END

If you need to enter leading or trailing spaces, use the LINPUT statement.

Lettercase Conversion
The lettercase conversion functions, UPC$ and LWC$, return strings with all characters converted
to the same lettercase. UPC$ converts all lowercase characters to their corresponding upper
case characters, and LWC$ converts any uppercase characters to their corresponding lowercase
characters.

100 DIM Word$[160]
110 LINPUT "Enter a few characters on this line: ".Word$
120 PRINT
130 PRINT "You typed: ";Word$
140 PRINT "Uppercase: ";UPC$(Word$)
150 PRINT "Lowercase: ";LWC$(Word$)
160 END

String Manipulation 5-15

User-Defined String Functions
Many string functions not provided by Technical BASIC can be implemented separately as user
defined functions. The following program contains a string function.

100 DEF FNStmt$(X) = "Account #"&VAL$(X)
110 Acctnum=10699
120 DrSp FNStmt$(Acctnum)
130 END

The results after executing this program are:

Account #10699

For a detailed discussion on user-defined string functions, read the chapter entitled "User-Defined
Functions and Subprograms".

5-16 String Manipulation

String Arrays
A string array is collection of character strings collected under the same string variable name and
having the same maximum length. The computer allows both one- and two-dimensional string
arrays.

Dimensioning String Arrays
The DIM statement is used to set the upper bounds of the string array and to specify the maximum
number of characters in each element.

DIM String1$(25) [20] ,String2$(15,15) [20]

The one-dimensional array String1$ has an upper bound of 25 and a length per element of 20.
The two-dimensional array String2$ has an upper bound of 15 for both its rows and columns
and a length per element of 20. Note that the upper bound(s) and length per element cannot
exceed 65530. The lower bound of a string array is determined by the OPTION BASE of the
program. The OPTION BASE has no effect on the maximum string length.

String arrays, numeric arrays, and simple variables can be dimensioned in the same DIM state
ment. For example:

10 OPTION BASE 0
20 REM NAMES$ has 11 elements, each with maximum length of 25 characters.
30 REM GRADES has 66 REAL numeric elements.
40 DIM NAMES$(10) [25], GRADES (10 ,5)

If a string array is not explicitly dimensioned, it is implicitly dimensioned with upper bound(s)
equal to 10 and maximum string length equal to 18.

The COM statement is used to dimension string arrays which are to be preserved in common
between chained programs.

String Manipulation 5-17

String Expressions and Operations
All the operations and functions provided for manipulating simple string variables can also be
used with elements of string arrays.

Operations

Assignment

Concatenation

Substring

Modification

Comparison

Examples

STRING$(1)="eclipse"
STRING$(2)="lunar"
STRING$(3)="75"

EVENT$=STRING$(2) & " " & STRING$(1)
DISP EVENT$
lunar eclipse

MOUTH$=STRING$(1) [3.5]
DISP MOUTH$
lip

STRING$(2) [1.3]="sol"
DISP STRING$(2)
solar

STRING$(2) < STRING$(1)
o

5-18 String Manipulation

Functions Examples

LEN LEN(STRING$(l))
7

POS PLACE= POS(STRING$(l) ."p")
DISP PLACE
5

VAL DISP VAL(STRING$(3))
75

VAL$ STRING$ (4)=VAL$ (12345)
DISP STRING$(3)&STRING$(4)
7512345

CHR$ STRING$ (5)=CHR$ (40)
DISP STRING$(5)
(

NUM DECVAL=NUM(STRING$(3))
DISP DECVAL
55

UPC$ SUN$=UPC$(STRING$(2))
SUN$
SOLAR

String Manipulation 5-19

The following program sorts a list of words alphabetically. Since string comparisons are based
on the decimal codes assigned to each letter, all lowercase letters are converted to uppercase
letters before sorting begins.

100 OPTION BASE 1
110 DIM Word$(20) [30]
120 FOR 1=1 TO 16 !
130 READ Word$(I)
140 Word$(I)=UPC$(Word$(I»)
150 PRINT Word$(I);" ".
160 NEXT I !
170 PRINT

Dimensions 20-element string array.
This loop reads and prints DATA.

Converts word to all uppercase letters.

End loop.

180 FOR J=2 TO 16 ! Begin sort.
190 Temp$=Word$(J)
200 FOR I=J-1 TO 1 STEP -1
210 IF Temp$>=Word$(I) THEN GO TO Insert
220 Word$(I+1)=Word$(I)! Move element down one position.
230 NEXT I
240 Insert: Word$(I+1)=Temp$ Insert element at position 1+1.
250 NEXT J
260 FOR 1=1 TO 16 ! Print sorted list.
270 PRINT Word$(I);" ".
280 NEXT I
290 PRINT
300 DATA HOW.CAN.you.BE.IN.TWO.PLACES.AT.once.WHEN.YOU.ARE
310 DATA not.ANYWHERE.AT.ALL
320 END

5-20 String Manipulation

User-Defined Functions
and Subprograms
Introduction

6
It is often handy to write algorithms that can be used in several places in a program or by other
programmers. The "Program Structure and Flow" chapter described using subroutines for this
purpose. Another handy feature of subroutines is that you can use them to "hide the details"
of performing tasks from the "main" algorithm, so as not to obscure the readability of the main
algorithm.

User-defined functions and subprograms also accomplish these two tasks, but they provide many
additional capabilities. This chapter describes these two powerful features of the Technical
BASIC language.

Chapter Contents
This chapter discusses the following topics.

Tasks/Topics Page

Introduction to user-defined functions 6-2

Passing parameters 6-4

Multiple-line functions 6-5

Functions and local variables 6-6

Data types and declarations 6-7

Introduction to subprograms 6-8

Benefits of using subprograms 6-9

Creating, storing, and calling subprograms 6-11

Deleting, loading, and editing subprograms 6-17

Program/ subprogram communication 6-19

Passing parameters 6-19

Using COM variables 6-27

Using system flags 6-30

Memory management with subprograms 6-34

Context switching 6-35

User-Defined Functions and Subprograms 6-1

User-Defined Functions
This section reviews some resident functions and then introduces you to user-defined functions.
It describes several aspects of creating and using user-defined functions.

Review of Resident Functions
There are several resident functions built into the Technical BASIC language. Here are some
examples:

Y=SIN(X+Phase)
Root1=(-B+SQR(B*B-4*A*C))!(2*A)
DISP "The value of pi = ",PI
PRINT "ASCII code = ";Number;" Character = ";CHR$(Number)

In the first example, the SIN function calculates the sine of the argument X and returns the value
so that it can be added to the value of the variable named Phase, and the sum then assigned to
the variable Y.

In the second example, the SQR function calculates the square root of the argument B*B-4*A*C,
which is then added to the negative value of the variable B, divided by the product 2*A, and
this value is assigned to the variable Root 1.

In the third example, the constant function PI returns the value 3.141 59265358979, which
is then displayed following the text.

In the fourth example, the CHR$ string function takes the numeric argument Number and returns
the corresponding ASCII character.

Note that in all examples, the functions return a single value.

6-2 User-Defined Functions and Subprograms

Introduction to User-Defined Functions
You can also define your own functions, which effectively allows you to extend the language if
you need a function not provided in BASIC. Here are two examples:

X=1/FNSinh(Y-4)
Angle=FNAtn2(Y.X)

A general rule of thumb for using subprograms is that if you want to take a set of data and
analyze it to generate a single value, then you probably want to define a function. On the other
hand, if you want to actually change the data itself, generate more than one value, or perform
any sort of I/O activity, it is better to use a subprogram. (A subsequent section describes
subprograms.)

With this system, you can define either single-line or multi-line functions. Let's first look at an
example of a single-line function.

Example Constant Function
Here is an example of a user-defined string function that returns a constant.

DEF FNName$="John Doe"

Since a constant function always returns the same value, there is no "argument" to be sent to
it. Here are examples of using the function:

DISP "His name is ";FNName$
105 IF LEN(Name$)=O THEN StudentName$(N)=FNName$

NOTE

Functions can be defined anywhere in a program. They need not appear
before they are referenced.

Let's look at a more common example - a function with argument(s).

User-Defined Functions and Subprograms 6-3

Passing Parameters to Functions
The following line defines a function that computes the area of a circle, when supplied with a
radius (the "argument").

50 DEF FNArea(Radius)=PI*Radius-2

Here are examples of invoking the function:

100 DISP "The area of a circle of radius 10 = ";FNArea(10)

250 Total_Area=FNArea(R1) +FNArea(R2) +FNArea(R3)

Note that a numeric value was "passed" to the function each time it was called: the function
call in line 100 passed a value of 10; the function calls in line 250 passed values of variables
R1, R2, R3. These values are known as pass parameters.

The variable named Radius in the Area function is known as a formal parameter. It specifies the
variable in the function that is to receive the value passed to the function.

Parameter Lists
From the preceding example, it is clear that there are two types of parameter lists:

• Formal parameter lists

• Pass parameter lists

The formal parameter list shows how many values may be passed to a function and gives the
names the function will use to refer to those values. The formal parameter list for this example
function:

50 DEF FNArea(Radius)=PI*Radius-2

is simply (Radius) - it is a list with one element.

The pass parameter list specifies the value(s) to be sent to the function. The pass parameter list
for the following function call:

FNArea(iO)

is simply (10).

6-4 User-Defined Functions and Subprograms

Each parameter in the pass parameter list corresponds to a parameter in the formal parameter
list provided by the function. The function has the power to demand that the function call match
the types declared in the formal parameter list exactly - otherwise an error results. It is also
perfectly legal for both the formal and pass parameter lists to be null (non-existent), as long as
both match.

Single-line functions are not restricted to being passed one parameter; you can pass up to 16
numeric or 7 string parameters. These parameters include both simple numeric and string
variables and numeric and string arrays.

An Example Multiple-Line Function
Since it is difficult to implement many significant functions while limited to one line of BASIC
code, you can also define multiple-line functions. Here is a simple example.

110 PRINT "Decimal","Octal"
120 FOR Decimal_no=l TO 100 STEP 5
130 PRINT Decimal_no,FNOctal(Decimal_no)
140 NEXT Decimal_no
150 STOP
160
170
lS0
190
200
210
220
230
240

DEF FNOctal(Decimal_Number)
Octal_Equiv=O
Remainder=Decimal_Number
FOR Octal_Place=10 TO 0 STEP -1

Octal_Digit=IP(Remainder/S-Octal_Place)
Remainder=Remainder MOD S-Octal_Place
Octal_Equiv=Octal_Equiv+Octal_Digit*10-0ctal_Place

NEXT Octal_Place
250 FNOctal=Octal_Equiv
260 FN END

The function's formal parameters are defined in the DEF FN statement. The value of the function
is not defined in this declaration statement; instead, it is defined later in the function (line 250
in this example).

User-Defined Functions and Subprograms 6-5

Functions and Local Variables
In general, all main program variables are accessible to functions. This is true whether they are
declared explicitly (with statements such as DIM) or implicitly (for instance, numeric variables are
assumed REAL unless explicitly declared otherwise). Here is an example:

10 Scale_factor=2
20 DEF FNXyz(Arg)=Scale_factor*Arg~3
30 DISP "FNXyz(2)=";FNXyz(2)
40 END

The results of this function call are 16 (=2*2"'3) rather than 8 (=2"'3). Thus, the main program's
variable named Scale_factor was accessible to the function.

On the other hand, all variables declared in the formal parameter list are not accessible to the
rest of the program; they are "local" to the function. This includes function variables that have
the same name as a main program variable. For instance, the function's Radius variable is not
available to the main program. Here is an example:

10 Radius=123
20 DEF FNArea(Radius)=PI*Radius~2
30 DISP "Result of 'Area(10)' =";FNArea(10)
40 DISP "Main program's variable 'Radius' =";Radius
50 END

Here are the results of running the program.

Result of 'Area(10), = 314.159265358979
Main Radius = 123

In line 10, the main program assigned a value of 123 to its variable named Radius. The call to
Area (line 30) specified that the function's variable named Radius is to be assigned a value of
10. The results of line 30 verify that the function's variable named Radius was assigned a value
of 10, while line 40 verifies that the main program's variable named Radius was not changed
when the function's Radius was assigned the value of 10.

6-6 User-Defined Functions and Subprograms

Formal Parameter Data-Type Declarations
Variables can be declared either implicitly or explicitly. Here is how variables are implicitly
declared:

• Numeric variables are assumed to be of type REAL, unless explicitly declared INTEGER or
SHORT .

• String variables are dimensioned to have a maximum length of 18 characters.

Explicit type declarations are made with DIM. REAL. SHORT, and INTEGER statements.

Since a function's formal parameters are .local to the function, the type of each variable is
implicitly declared in its DEF FN statement. Suppose, however, that you want to be able to pass
a string longer than 18 characters to a function. In order to do that, you will need to declare a
greater string length in the function heading. Here is an example:

DEF FNDo_something$(Arg$[100])=

Limitations
Functions cannot be used recursively. For instance, a function cannot call itself nor can it call
another function that is used in its definition.

Functions are not restricted to being passed one parameter; you can pass up to 30 parameters to
a user-defined function. These parameters include both simple numeric and string variables and
numeric and string arrays. However, user-defined string functions are restricted to returning
a maximum of 18 characters.

User-Defined Functions and Subprograms 6-7

Introduction to Subprograms
This section shows you what subprograms are and gives you a glimpse of their capabilities. You
will see how to enter and call two simple subroutines from a program.

Simple Examples
As described in the Program Structure and Flow chapter, subroutines are common routines that
can be executed by several parts of the program. Subprograms are like subroutines in this
respect, but they are much more powerful. But before discussing the additional capabilities that
they provide, let's take a look at some simple examples.

Here is a "main" program that calls two subprograms. (A subsequent section shows how to
enter, store, and load them.)

100 DISP "This is displayed by MAIN program. II

110 DISP
120 CALL IFirstSub"
130
140 CALL ISecondSub" ("String pass parameter")
150
160 DISP "This is the MAIN program again. II

170
180 END

Here are the subprograms.

100 SUB IFirstSub"
110 DISP "This is displayed by 'FirstSub'."
120 DISP
130 SUBEND

100 SUB "SecondSub" (Formal_param$)
110 DISP "This is displayed by 'SecondSub'."
120 DISP liThe value sent to me is '";Formal_param$;"'."
130 DISP
140 SUBEND

Here are the results of running the program.

This is displayed by the MAIN program.

This is displayed by 'FirstSub'.

This is displayed by 'SecondSub'.
The value sent to me is 'String pass parameter' .

This is the MAIN program again.

6-8 User-Defined Functions and Subprograms

Here is how the program flows. Executing RUN transfers control to the main program, beginning
with line 100. This program line displays the first line of the results shown above. Control then
moves to line 110 (DISP) and to line 120, which calls the subprogram named FirstSub. This
CALL transfers control to the subprogram.

Lines 110 and 120 of FirstSub then display the third and fourth lines of the above results. Line
130 transfers control back to the calling context (here, the main program).

Line 140 of the main program calls the subprogram named SecondSub. The value String pass
parameter is passed to the subprogram; it is known as a "pass parameter." Control is then
given to SecondSub.

Lines 110 through 130 of SecondSub display the fifth through seventh lines of the above results;
in particular, line 120 displays the value String pass parameter, which was passed to it by
the main program. (You will see more about how parameters get passed in the section called
"Program/Subprogram Communication.") Control is then returned to the calling program.

Finally, the main program (line 160) displays the final line of the above results, and program
execution is finished when the END statement is reached (line 180).

These simple examples show that subprograms have several things in common with subroutines.
Then why use subprograms? The next section provides the answer.

Benefits of Using Subprograms
Like subroutines, subprograms provide the main program with the ability to execute a common
algorithm. A subprogram also depends on a main program and cannot be executed alone. It
can execute internal subroutines, and can call other subprograms. However, subprograms also
provide many additional capabilities.

The main power of subprograms is provided by these two characteristics:

• Subprograms can be handled independently - that is, they are not part of any main
program, so they can be created, stored, and retrieved separately .

• You can give (or deny) a subprogram access to any or all of the variables and values
in the main program (or subprogram) that calls it. You can "pass" specific parameters
to them, or allow them to access specific common (COM) variables.

In short, a subprogram provides an easy way to isolate a useful programming routine, store it,
and call it back into main memory for execution whenever needed.

User-Defined Functions and Subprograms 6-9

There are several benefits to be realized by using subprograms:

• The subprogram allows the you to take advantage of the "top-down" method of designing
programs. In this technique, the problem to be solved is broken up into a set of smaller and
more easily solvable problems (known as "stepwise refinement.") These smaller problems
can in turn be broken up into smaller problems yet, and so on. This technique has been
shown to greatly improve the design, coding, and testing of programs.

• By separating all the details of performing the subtasks from the overall logic flow of the
main program, the program is much easier to read (assuming you name the subprograms
judiciously). The programmer can see at a high level what he's trying to accomplish, rather
than immediately getting lost in the details of each little sub-task.

• Subprograms can do everything a main program can do. A subprogram has its own
"context," or state, which is distinct from a main program and all other subprograms. This
means that every subprogram has its own independent set of variables, DATA blocks, line
labels, and so forth. Thus, you don't have think about not re-using such things as variable
names and line labels used in the main program, because there will never be a conflict.

• One of the most time-consuming parts of writing a program is debugging it, or forcing it
to run correctly. The time-consuming part of fixing bugs in a program is finding where the
bug is in the first place. By using subprograms and testing each one independently, it
is easier to locate and correct problems. (This is also known as a "bottom-up" method of
testing.)

• Finally, libraries of commonly used subprograms can be assembled for widespread use.
Many different users doing diverse types of problems still may require some identical
subprograms.

Difference Between Functions and Subprograms
A subprogram is invoked explicitly using the CALL statement. A user-defined function is called
implicitly by using the function name in an expression. The function name can be used in a
numeric or string expression the same way a resident system function or constant is used. A
function's purpose is to return a single value (either a real number or a string). A subprogram's
purpose is generally to calculate more than one value.

6-10 User-Defined Functions and Subprograms

Creating and Calling Subprograms
Here are the general steps that you will need to take to enter a subprogram into memory, make
a copy of it in mass storage, and call it from a program (or subprogram):

1. Determine what is currently in memory. (This step is optional.)

a. Use the DIRECTORY statement to get a listing of the program and subprogram(s)
currently in memory, if any.

2. If an unwanted program and subprogram(s) are currently in memory, then use SCRATCH to
erase them.

3. Enter and store a main program (that calls a subprogram).

a. Execute FINDPROG with no file name to "point" the editor at the main program's
memory area.

b. Enter the BASIC program lines, which include a CALL to the subprogram (to be
written subsequently).

c. Use the STORE command or SAVE statement to record a copy of the program in a
mass storage file.

4. Enter a new subprogram.

a. Use FINDPROG followed by a subprogram name to point the editor at a memory area
to be used for the new subprogram.

b. Enter the heading by typing SUB followed by the subprogram name (and formal
parameters, if any).

c. Enter the rest of the BASIC code for the subprogram.

d. End the subprogram with a SUB END or SUBEXIT statement.

e. Use the STORE command to record a copy of the subprogram in file.

5. Run the main program.

User-Defined Functions and Subprograms 6-11

Checking Memory Contents
Before entering any new program or subprograms, use the DIRECTORY statement to check what
is currently in your BASIC memory area.

DIRECTORY

If no main program or subprogram is currently in memory, then you should see the following
display.

BASIC program bytes lines allocated

> MAIN o o no

If the main program and two subprograms shown in the preceding example were in your BASIC
memory area, then you would see something like this:

BASIC program

> MAIN
FirstSub
SecondSub

bytes lines allocated

196 9 yes
76 4 yes

156 5 yes

Here is a brief description of the columns of the DIRECTORY statement's results.

BASIC program lists the name(s) of the subprogram(s) currently in <memory>. Also shows
the size of the "MAIN" program. (There is no main program in memory of
both the bytes and lines columns show 0).

bytes

lines

allocated

>

shows the amount of memory required by the program or subprogram.

shows the number of lines contained in the program or subprogram.

effectively indicates whether or not the program or subprogram has been
"initialized" (by INIT) or run (by RUN).

indicates which program/subprogram can currently be edited, listed, etc.

NOTE

You can simultaneously have one program and several subprograms
within the memory allocated for your use by Technical BASIC. How
ever, you can only "look at" one of them at a time. For instance,
executing a LIST command would only show one of them - the one to
which the > is pointing. More about this feature momentarily.

6-12 User-Defined Functions and Subprograms

Entering a Main Program
Now point the system editor at the main program by executing a FINDPROG statement without
specifying a file name:

FINDPROG

(This is a redundant step if you just executed a SCRATCH command as shown in the preceding
discussion.)

Now execute this command to verify that you can enter the main program.

DIRECTORY

You should get this result:

BASIC program bytes lines allocated

> MAIN o 0 no

The> pointing toward MAIN indicates that the main program is the one which you can now edit
(or, in this case, the one you can enter). This is also the condition of memory at power-up.

Now enter the lines of the example program:

100 DISP "This is displayed by MAIN program. II

110
120 CALL "FirstSub"
130
140 CALL "SecondSub" ("String pass paramet er")
150
160 DISP "This is the MAIN program again. "
170
180 END

Now store the main program using either the STORE command:

STORE "MainProg"

or the SAVE statement:

SAVE "MainProg"

The differences between these methods are as follows:

l. STORE creates a BASIC/PROG ("object") file, while SAVE creates a BASIC/DATA (ASCII
source) file.

2. LOAD retrieves files stored with STORE, while GET retrieves files stored with SAVE.

User-Defined Functions and Subprograms 6-13

Entering a New Subprogram
Use the FINDPROG statement again, this time to point the editor at the beginning of the memory
area which will be used for the subprogram that you will be entering. For simplicity, let's call
the new subprogram FirstSub.

FINDPROG IFirstSub"

The system should respond with this message:

New program

NOTE

If a subprogram file (of type BASICjSUBP) with this name already
exists, then this message is not shown, because the system automatically
loads the subprogram from mass storage. However, if a program file
(BASICjPROG) with this name already exists, an ERROR 68: FILE TYPE
error will be reported.

The FINDPROG statement also directs all subsequent program-editing operations (like DELETE,
LIST, etc.) to be made on this subprogram.

You should now see something like this:

BASIC program bytes lines allocated

MAIN 196 9 no
> FirstSub o 0 no

The > points to the subprogram (or program) that will be the target of subsequent editing
operations. After verifying that the editor is now pointed at subprogram "FirstSub", you can
begin typing it in.

6-14 User-Defined Functions and Subprograms

A Note about Naming Subprograms
A subprogram has a name which may be up to 14 characters long, just as with line labels and
variable names. Here are some legal subprogram names:

PlotDATA
InitializeDisc
Read_DVM
Sort_2D_array

Because up to 14 characters are allowed for naming subprograms, it is easy and convenient
to name subprograms in such a way as to reflect the purpose for which the subprogram was
written.

NOTE

The name of the subprogram specified in FINDPROG statement is also
the name that you must specify in the STORE statement that stores the
subprogram in a file. Although you can use any name in the SUB heading,
it is probably best to use the same name there, also.

Entering a New Subprogram
Now that you have reserved a location in memory for the subprogram, you can begin typing it
in. Enter this example subroutine.

100 SUB "FirstSub"
110 DISP "This is displayed by 'FirstSub'."
120 DISP
130 SUBEND

Note that the first line must contain the heading declaration SUB followed by the subprogram
name. Note also that line numbers in the subprogram are completely independent of line numbers
in the main program, so the subprogram can start with any (valid) line number.

User-Defined Functions and Subprograms 6-15

Storing the Subprogram
Use the STORE command to store a copy of the subprogram in a file. You will need to specify
the same name that you specified in the FINDPROG statement that pointed the editor at this
subprogram. In this example, you would type:

STORE IFirstSub"

Only the first 14 characters of the file name are used if you specify one longer than 14 characters.

Now that the subprogram is stored, you can easily call it from any program {or from any other
subprogram, for that matter}.

NOTE

Do not use the SAVE command to record a subprogram, because SAVE
does not put the subprogram in the proper file type {BASIC/SUBP} for
subsequent FINDPROG and CALL statements.

Entering and Storing the Second Subprogram
Now you are ready to perform similar steps to enter and store the second example subprogram.
Here is another listing for your convenience.

100 SUB ISecondSub" (Formal_param$)
110 DISP "This is displayed by , SecondSub' . II
120 DISP liThe value sent to me is '";Formal_param$;"'."
130 DISP
140 SUBEND

Repeat the procedure you used to enter and store the first subprogram.

6-16 User-Defined Functions and Subprograms

Running the Program
Now that you have entered the program and both subprograms, you are ready to run the
program. Execute:

RUN

You should get results like these:

This is displayed by the MAIN program.

This is displayed by 'FirstSub'.

This is displayed by 'SecondSub'.
The value sent to me is 'String pass parameter'.

This is the MAIN program again.

Subprograms Are Automatically Loaded
Since the subprogram in the preceding example was already in memory when the main program
was executed, the system did not need to load it. However, if a subprogram is not in memory
when called, then it will be automatically loaded. In order to verify that this is the case, let's first
delete one of the subprograms.

Deleting a Subprogram
Use the SCRATCHSUB statement to delete a subprogram currently in your BASIC memory area.
This example deletes subprogram FirstSub:

SCRATCHSUB IFirstSub"

Executing a DIRECTORY statement will now show that the subprogram is not in memory.

DIRECTORY

BASIC program

> MAIN
SecondSub

bytes lines allocated

196 9 yes
156 5 yes

If you run the program at this point, the system will automatically load the subprogram when it
is called.

Note that you can also execute SCRATCHSUB from a running program; see the subsequent "Mem
ory Management with Subprograms" section for more complete details.

User-Defined Functions and Subprograms 6-17

Explicitly Loading Subprograms (For Editing)
There are two general instances when subprograms will be loaded:

• When a program calls it.

• When you want to edit it.

As mentioned previously, when a subprogram that is not currently in memory is called, the
system automatically loads it. Thus, about the only time that you will need to explicitly load a
subprogram is for editing purposes.

To load a subprogram for editing purposes, merely execute a FINDPROG statement, specifying
the subprogram name - which is also the file name. (It is possible to bring in as many
subprograms into the computer as you like, limited only by available memory.) Let's load the
example subprogram created in an earlier section:

FINDPROG "FirstSub"

Executing a DIRECTORY statement will verify that the subprogram has been loaded:

DIRECTORY

BASIC program bytes lines allocated

MAIN 196 9 yes
SecondSub 156 5 yes

> FirstSub 76 4 no

Any subsequent LIST statements or editing operations (such as entering a line or using SCAN,
etc.) will be performed on this subprogram.

For further information about loading and deleting subprograms, see the subsequent section
called "Memory Management with Subprograms."

Now that you have the basic mechanics of entering, storing, and calling simple subprograms,
let's look closer at some of their more powerful usages.

6-18 User-Defined Functions and Subprograms

Program/Subprogram Communication
As mentioned earlier, the two main features of subprograms that make them so powerful are as
follows:

• You can handle each subprogram like a separate program.

• You can allow (or deny) a subprogram access to certain variables and values in the main
program (or subprogram) that calls it.

This section disusses the second feature.

Here are the methods that a subprogram can communicate with the main program or with other
subprograms:

• By passing parameters (through parameter lists)

• By sharing common variables (declared in COM statements)

• By using system flags.

System flags are accessible to every subprogram (and user-defined function). However, all vari
ables and values in the calling program that are not explicitly passed to the subprogram or in
COM are not accessible to the subprogram.

Passing Parameters
The second subprogram presented earlier in this chapter showed one means of communicating
with a subprogram. Here is the relevant statement in the main program.

130 CALL IISecondSub li (IiString pass parameter ll
)

The characters String pass parameter are passed to SecondSub by specifying it as a pass
parameter (in parentheses).

The SUB declaration in the subprogram (line 100) has a corresponding parameter - the string
variable named FormaLparam$.

100 SUB II SecondSub II (Formal_param$)
110 DISP IIThis is displayed by 'SecondSub'.1I
120 DISP liThe value sent to me is II;Formal_param$; II , .11

130 SUBEND

User-Defined Functions and Subprograms 6-19

The subprogram has been defined to receive a string parameter from the context that calls it.
Within the subprogram, this "local" variable will initially be assigned the value passed to it.

Here are the lines that the subprogram displays.

This is displayed by 'SecondSub'.
The value sent to me is 'String pass parameter'.

These results verify that the value specified in the CALL was the value that the subprogram
received. Let's take a closer look at parameter lists.

Parameter Lists
There are two kinds of parameter lists:

• Pass parameter lists

• Formal parameter lists

The calling context provides a pass parameter list. It contains values that are sent to the
subprogram. Here is the pass parameter list used in a call to the preceding example subprogram:

130 CALL "SecondSub" ("String pass parameter")

Each item in this list corresponds to an item in the subprogram's formal parameter list.

The formal parameter list is part of the subprogram's definition. It immediately follows the
subprogram's name. Here is the formal parameter list of the preceding example subprogram:

100 SUB "SecondSub" (Formal_param$)

The formal parameter list serves three main purposes:

• It tells how many values may be passed to a subprogram: the calling context can pass one
value for every formal parameter l .

• It names the variables that the subprogram will use to store and access those values.

• It shows the general type2 of each pass parameter - numeric or string.

The general type of each pass parameter - numeric or string - must match the general type of
the corresponding formal parameter; otherwise Error 32 : PARAM MISMATCH is reported. The
next section provides more details on how the specific type of each parameter is declared.

1 Note that the calling context may also pass fewer parameters than are declared in the formal parameter list. See the subsequent section

called "Optional Pass Parameters."
2 Note, however, that the formal parameter list does not declare the parameter's specific type - such as INTEGER for numeric parameters,

and string length for string parameters. That subject is discussed in the subsequent section called "When Are Pass Parameter Types

Declared?"

6-20 User-Defined Functions and Subprograms

Methods of Passing Parameters
There are two ways for the calling context to pass parameters to a subprogram:

• By reference (or "address").

• By value.

The subprogram has no control over whether its parameters are sent by value or by reference.
That is determined by the parameters placed in the calling context's pass parameter list.

• To pass a parameter by reference, the pass parameter list (in the calling context) must
use a variable name for that parameter.

• To pass a parameter by value, the pass parameter list must use an expression for that
parameter. (Note that enclosing a variable in parentheses is sufficient to create an expres
sion.)

The main difference between the two methods is that a subprogram can alter the value of
a variable passed by reference from the calling context. The calling context actually gives the
subprogram access to its value area (for that variable). A parameter passed by value provides
no such access.

Example of Passing by Reference
This program passes a string variable and an INTEGER variable by reference:

100 ! Pass two parameters BY REFERENCE.
110 !
120 DIM String$ [30]
130 String$="A string of thirty characters."
140 !
150 INTEGER Intgr
160 Intgr=32
170 !
180 DISP "Before pass by reference: II

190 DISP String$.Intgr
200 DISP
210 CALL IChangeParams" (String$.Intgr)
220
230 DISP "After pass by ref erence: "
240 DISP String$.Intgr
250 DISP
260
270 END

User-Defined Functions and Subprograms 6-21

Here is the subprogram:

100 SUB "ChangeParams" (Formal$,FormalN)
110 !
120 orsp "At subprogram entry:"
130 orsp Formal$,FormalN
140 orsp
150
160 Formal$="Short string."
170 FormalN=FormalN*2
180
190 orsp "At subprogram exit:"
200 orsp Formal$,FormalN
210 orsp
220
230 SUBENO

Here are the results of running the program.

Before pass by reference:
A string of thirty characters.

At subprogram entry:
A string of thirty characters.

At subprogram exit:
Short string. 64

After pass by reference:
Short string. 64

32

32

The program passes the variables String$ and Intgr to the subprogram by reference. The
subprogram accesses them as Formal$ and FormalN, but it is actually accessing the main program
variables String$ and Intgr. When the subprogram changes the value of these variables, the
change is made directly to the main program's String$ and Intgr variables.

6-22 User-Defined Functions and Subprograms

Example of Passing by Value
This program passes a string value and an INTEGER variable by value:

100 ! Pass two parameters BY VALUE.
110 !
120 DIM String$[30]
130 String$="A string of thirty characters."
140 !
150 INTEGER Intgr
160 Intgr=32
170
180
190
200
210
220
230
240
250
260

DISP
DISP
DISP
CALL

DISP
DISP
DISP

270 END

"Before pass by
String$.Intgr

"ChangeParams"

"After pass by
String$.Intgr

value:"

("String value.". (Intgr»

value:"

Note that the program calls the same subprogram as in the last example. Here are the results
of running the program.

Before pass by value:
A string of thirty characters. 32

At subprogram entry:
String value. 32

At subprogram exit:
Short string. 64

After pass by value:
A string of thirty characters. 32

These parameters were passed by value, which means that the values were assigned to the
formal parameters Formal$ and FormalN but no "addresses" of any main program variables
were passed with the values. Thus the value of Intgr was not changed, because the subprogram
did not have access to the variable.

User-Defined Functions and Subprograms 6-23

When Are Pass Parameter Types Declared?
As you studied the preceding examples, you may have wondered just how and when the data
type of a subprogram's formal parameters are declared. The answer depends on how the
parameter was passed to the subprogram:

• If the parameter is passed by reference, then the corresponding formal parameter inherits

information about the variable from the calling context (data type, simple or array variable,
etc.) .

• If the parameter is passed by value, then the formal parameter has the default attributes
for that general data type: 18 characters for strings, and REAL for numerics.

Thus it is possible, for example, to pass an INTEGER, SHORT, or REAL variable to a subprogram
without causing ERROR 113 : PARAM MISMATCH. (Of course, the corresponding formal parameter
must be a numeric variable.) Here is a simple example:

100 ! Explicitly declare an INTEGER.
110 INTEGER Intgr ! Explicitly declared an INTEGER.
120 Intgr=32
130 CALL IShowParam" (Intgr)
140 !
150 ! Implicitly declare a REAL.
160 Number=12.34
170 CALL IShowParam" (Number)
180
190 END

Here is the subprogram that it calls.

100 SUB IShowParam" (AnyNumeric)
110 !
120 DISP "Value of numeric parameter =";AnyNumeric
130 DISP
140
150 SUBEND

Here are the program's results.

Value of numeric parameter 32

Value of numeric parameter 12.34

6-24 User-Defined Functions and Subprograms

The program first explicitly! declares the simple numeric variable named Intgr to be of type
INTEGER, assigns it a value, and then passes the value by reference to the subprogram. The
subprogram then displays the value, and returns control to the calling program.

The program then implicitly declares the simple numeric variable named Number to be of type
REAL, assigns it a value, and then passes the value to the subprogram by reference. The
subprogram displays this value, and then returns control to the calling program.

In summary, the declaration of a variable's type, whether explicit or implicit, is made in the
defining context - the passed to a subprogram by reference, information about the variable
(type; simple or array, and array size; etc.) is inherited by the subprogram.

Optional Pass Parameters
Another important feature of passing parameters is that all pass parameters are optional.
However, the rules requiring matching of pararrieter types still apply. For instance, you may
legally pass just three parameters to a subprogram that lists five formal parameters. However,
these three pass parameters must match (in order, by type) the first three formal parameters.
You cannot pass, for example, only the last three parameters.

There is a standard function called NPAR which can be used inside the subprogram to find out
how many parameters the calling context actually did pass. If no parameters are passed to the
subprogram, NPAR will return O. (If used inside the main program, it will also return 0.)

The optional parameter feature is very effectively used in situations requiring external instrument
setups. Most instruments have several different ranges, modes, settings, etc., which can be used
depending upon the requirements of the user. Often, the user doesn't require the entire flexibility
the instrument has to offer, and would rather use some reasonable defaults.

Consider the HP 3437 A Digital Voltmeter. Among other things, this device has two data
formats (packed and ASCII), three trigger modes (internal, external, and hold/manual), three
voltage ranges (0.1 V, 1 V, and 10V), and also has programmable values for delay between
readings, and numbers of readings taken. Naturally, the values used for the various settings will
depend entirely upon the application for which the voltmeter is being used, but let's make some
assumptions:

• The values for delay and number of readings are going to be changed frequently, so they
will not be optional parameters.

• Of the remaining parameters, the range is most likely to be altered.

1 Further details of explicit and implicit type declarations are given in the "Numeric Computation" and "String Manipulation" chapters.

User-Defined Functions and Subprograms 6-25

A reasonable setup routine for the voltmeter might look like this:

2000 SUB IDVM_Setup" (Dvm, Readings ,Delay ,PRange ,PTrigr,PFormat)
2010 ! Assume that AT LEAST 3 parameters will always be passed.
2020
2030 (Re)set defaults.
2040 Range=2 ! 1-Volt range.
2050 Trigr=1 ! Internal trigger.
2060 Format=1 ! ASCII format.
2070
2080 IF NPAR<4 THEN GOTO Build_Strings
2090 Range=PRange
2100 !
2110 IF NPAR<5 THEN GOTO Build_Strings
2120 Trigr=PTrigr
2130 !
2140 IF NPAR<6 THEN GOTO BUild_Strings
2150 Format=PFormat
2160
2170 BUild_Strings: Rdngs$=INI&VAL$(Readings)&IS"
2180 Delay$=IDI&VAL$(Delay)&IS"
2190 Range$=IR"&VAL$(Range)
2200 Trigr$=IT"&VAL$(Trigr)
2210 Format$=IF"&VAL$(Format)
2220
2230 OUTPUT Dvm Rdngs$&Delay$&Range$&Trigr$&Format$
2240
2250 SUBEND

The subprogram defines defaults for voltmeter range, trigger, and format modes (lines 2040
through 2060) for the instances when these parameters are not passed to it. If, for instance, a
value for range is passed (through PRange), then the subprogram assigns this value to the local
variable named Range.

Legal invocations of the Setup_dvm subprogram are as follows:

570 CALL IDVM_Setup" (Dvm,100,O.001) !
630 CALL II DVM_Setup II (Dvm,500,O.05,3) !
850 CALL IDVM_Setup" (Dvm,50,O.005,l,2)
950 CALL IDVM_Setup" (Dvm,50,O.005,1,2,2)

6-26 User-Defined Functions and Subprograms

Default Range,Trigr,Format
Default Trigr,Format.
Default Format.
Explicitly define all params.

Using COM Variables
Since we've discussed parameter lists in detail, let's turn now to the second method a subprogram
has of communicating with the main program or with other subprograms - using COM variables l .

Here is an example of a valid COM declaration:

10 OPTION BASE 1
20 COM Array(15) ,INTEGER,CMin,CMax,Pile_status$[20] ,Tolerance

The following COM declaration would be legal in a subprogram (or in a chained program that is
to keep the same COM structure):

100 OPTION BASE 1
110 COM Z(15),INTEGER,MinC,MaxC,St$[20] ,ErrorMax

As in parameter lists, COM variables are matched by position and type, not by variable names.
Note that the OPTION BASE must match, and that COM statements must be placed following the
OPTION BASE statement and before any other reference to the variable.

Note also that, from left to right in a given COM list, all variables following a numeric data-type
declaration keyword have that numeric type until another numeric declaration keyword appears
in the list. In the above examples, both CMin and CMax (MinC and MaxC) are INTEGERs, but
Tolerance (ErrorMax) is a REAL variable; this effect is due to the fact that Pile_status$ (St$) is a
string, which causes the following numeric variable to be of the default numeric type REAL.

Consider the follOWing COM declaration:

10 COM INTEGER Range,Format,N,REAL Delay,Lastdata(40),Status$[20]

The following COM block matches the preceding COM block explicitly and is legal:

110 COM INTEGER Range ,Format ,N,REAL Delay,Lastdata(40) ,Status$[20]

1 Note that COM variables can also be used for program-to-program communications when chaining programs; however. COM cannot be

used within a user-defined function. See the chapter called "Program Structure and Flow" for a description of chaining. The subsequent

section of this chapter called "Passing Flags to Chained Programs" describes using COM for program-to-program communications during

chaining.

User-Defined Functions and Subprograms 6-27

The following COM declaration within a different subprogram matches the preceding COM statement
and is also legal. (Even though some variables' names have been changed, the order and number
of variables and their types are the same).

110 COM INTEGER R,F,N,REAL D,L(40) ,S$[20]

The following declaration is illegal, since it uses explicit size specifications on the array and
string which do not match the original definition (line 10).

120 COM INTEGER Range,Format,N,REAL Delay,Lastdata(30) ,Status$[15]

The following declaration is also illegal, since it violates the types set forth by the defining block
(here Range, Format, and N are implicitly declared to be of type REAL).

120 COM Range,Format,N,REAL Delay,Lastdata(40) ,Status$[20]

COM Characteristics
There are several characteristics of COM variables which distinguish them from parameter lists as
a means of communications between contexts.

COM survives pre-run l . In general, all numeric variables are assigned values of 0 and strings
are assigned the null string by executing RUN or IN IT , or upon entering a subprogram; this is
also true of COM the first time RUN or IN!T is executed. However, after COM variables are defined,
they retain their values until one of the following conditions occurs:

• SCRATCH is executed.

• A COM statement is modified.

• LOAD or CHAIN loads a new program which has a COM structure that doesn't match the
existing COM structure (which includes programs that don't declare any COM at all).

COM blocks can be arbitrarily large. One limitation on parameter lists (both pass and formal
parameter lists) is that they must fit into a single program line along with such things as the line
number, possibly a line label, and the subprogram header. Depending upon the situation, this
can impose a restriction on the size of your parameter lists.

COM blocks can take as many statements as necessary. All COM statements within a context
are part of the definition of that context's COM structure. COM statements can be interwoven with
other statements, though this is considered sloppy practice.

1 Pre-run is described in the section called "A Closer Look at Program Execution" in the "Program Structure and Flow" chapter.

6-28 User-Defined Functions and Subprograms

COM blocks can be used for communicating between contexts that do not invoke each
other. Information such as modes and states can be an integral part of communicating between
contexts, even though those contexts don't explicitly call each other. For instance, one routine
might be responsible for setting the voltage range on a voltmeter, while another routine which
may need to know what the current voltage range is in order to set up the scale on a graph
properly. (Technical BASIC also has system flags which you can use for this purpose. See the
subsequent section of this chapter called "Using System Flags" for details.)

COM blocks can be used to communicate between subprograms that are not in memory
simultaneously. Similar to the case above, subprograms can communicate with each other
through COM blocks even though combinations of CALL and SCRATCHSUB may preclude their
simultaneous presence in memory.

COM blocks can be used to retain the value of "local" variables between subprogram calls.
In general, the variables used by a subprogram are discarded when the subprogram is exited.
However, there are situations where it might be useful for a subprogram to "remember" a value.
A machine which tests capacitors in an incoming inspection department may require calibration
after every 100 tests are performed. If the subprogram which does the testing has a way to
count how many tests it has already performed (using a COM variable), then this task can be
left to the testing routine, simplifying the rest of the system.

COM blocks allow subprograms to share data without the intervention of the main program.
Subprogram libraries may consist of elaborate relationships of both programs and data structures.
In many cases, a major portion of the data structures are only used for support of the task being
performed, rather than being integral to the task itself. Thus the main program does not need
to declare the supportive data structures.

An example of this situation might include data base management libraries: hashing tables may
need to be maintained for accessing data qUickly. Three dimensional graphics libraries are
another example: window, viewport, and clip information need to be kept, as well as object
definitions and related transformations.

User-Defined Functions and Subprograms 6-29

Using System Flags
System flags are the third method for communications between a main program and its subpro
grams (and also subsequently chained programs). In programming, the term "flag" denotes an
indicator or reminder. Flags are used flags for various functions, such as in determining when to
branch or in calculating the value to be assigned to a variable. For instance, you can use a flag
to keep track of which mode a routine is operating in and thus whether to call a subroutine:

200 InsertMode=1 ! Set the flag.

300 IF InsertMode THEN GOSUB Insert ! Branch if flag set.

With Technical BASIC, you can also resident flags (numbered 1 through 64). Here is an example
analogous to the preceding one:

100 InsertFlag=10! Specify system flag used for Insert Mode.

200 SFLAG(InsertFlag) Set the flag.

300 IF FLAG(InsertFlag) THEN GOSUB Insert! Branch if flag set.

If the FLAG function returns aI, then the program branches to the subroutine called Insert.

General System Flag Features
Each of 64 flags which can be individually set and cleared. When set, a flag contains a value
of 1. When cleared, its value returns to O. They are initially cleared upon entering the BASIC
system.

The normal scope of system flags is a program and its subprogram(s), since executing a CHAIN
statement clears all flags. However, you can store the flags in COM, as discussed later in this
section, to pass them to chained programs.

While flags are usually used within running programs, they can also be set, tested, and cleared
from the keyboard.

6-30 User-Defined Functions and Subprograms

Setting Flags
Individual flags are set by using the SFLAG statement. For instance, this statement sets system
flag 32 (to 1).

SFLAG 32

Note that this statement may be used within a program:

100 LET MinFlag=MIN(N1,N2)
110 SFLAG MinFlag

Reading Flags
The following function call determines the current setting of system flag 32:

FLAG (32)

If the flag is set, then this function call returns the numeric value 1; if currently clear, then 0 is
returned.

Clearing Flags
The following statement clears system flag 32:

CFLAG 32

Executing this function call now returns a numeric value of 0:

FLAG (32)
o

The CFLAG statement clears one flag at a time, whereas executing IN IT , RUN, or CHAIN clears
all 64 flags. Note also that a parameter less than 1 or greater than 64 will generate an error
report. Also, both CFLAG and SFLAG rounds flag numbers containing fractional parts.

Accessing System Flags as a String
The concise way to set or clear each of the 64 flags in a single statement is to use this syntax
of the SFLAG command:

SFLAG FlagString8$

This FlagString8$ expression may contain up to 8 characters (64 bits) of information. The value
of the characters in the string determine whether flags are set or cleared: flags that correspond
to 1 bits (in the binary representation of the character) are set, and flags that correspond to 0
bits are cleared.

User-Defined Functions and Subprograms 6-31

For example, if you were to set the flags using the character string "ABCD0123", you could
determine the resultant bit patterns (and corresponding flag settings) using the following method:

Table 6-1. FLAGS and BIT Patterns

Character Decimal Code Binary Code String Position

A 65 01000001 1

B 66 01000010 2

C 67 01000011 3

D 68 01000100 4

0 48 00110000 5

1 49 00110001 6

2 50 00110010 7

3 51 00110011 8

Using l' sand 0' s, the following diagram specifies the settings of flags 1 through 64 from left to
right, respectively; the 64 bits (flags) have been grouped into eight characters (or bytes).

(01000001)

1

(00110000)

5

(01000010)

2

(00110001)

6

(01000011)

3

(00110010)

7

(01000100)

4

(00110011)

8

You can use either of the following programs to set the flags shown in the above diagram:

10 SFLAG "ABCD0123"

or

20 END

10 FlagString8$;CHR$(65)&CHR$(66)&CHR$(67)&CHR$(68)
20 FlagString8$;FlagString8$&CHR$ (48)&CHR$ (49)&CHR$ (50)&C HR$(51)
30 SFLAG FlagString8$
40 END

SFLAG truncates strings longer than eight characters at the eighth character. Strings shorter than
eight characters are filled with "null" control characters, CHR$ (0); consequently, all flags after
the last one are set to 0 (cleared).

6-32 User-Defined Functions and Subprograms

Passing Flags to Chained Programs
If you desire to pass flags from program to program as you chain them, then you will need to
use the COM statement, because the CHAIN statement clears all flags. The following segment of
a program is an example of how flags can be passed to the next program when chaining.

100 COM SysFlags$[8]

790 SysFlags$=FLAG$
800 CHAIN INextProg" ! Must have identical COM structure.

This passes all 64 flags to the chained program through the "common" variable storage area.
Note that the chained program must have a matching COM structure, or the existing COM will
be destroyed by the new COM, and the new COM variables will be initialized implicitly: numeric
variables will be set to 0, and string variables will be set to the null string.

User-Defined Functions and Subprograms 6-33

Memory Management with Subprograms
The CALL and SCRATCHSUB statements allow for subprogram overlays to re-use the same memory
space. This is useful for programs which are large enough that they won't all fit into memory at
once, whether the programs themselves are too numerous and/or too large, or whether variables
and arrays use enormous amounts of space.

The SCRATCHSUB statement allows you two options:

• You can specify the name of a single subprogram to be deleted from memory.

SCRATCHSUB "Sort"

• You can specify a subprogram and delete that subprogram and all subprograms in memory
from that point on.

SCRATCHSUB "Control valves" TO END

If the system tries to delete a subprogram which is not currently in memory, no error will be
reported.

A subprogram can only be deleted if it is not currently "active.". This means that:

• A subprogram can not delete itself.

• A subprogram cannot delete the subprogram that called it. {Otherwise it wouldn't have
any place to go when the SUBEND or SUBEXIT statement was encountered!}

Between the time that a subprogram is entered and the time it is exited, the Technical BASIC
system keeps track of an "activation record" for that subprogram. Thus if the subprogram calls
a subprogram which calls a subprogram, and so forth, then none of the subsequently called
subprograms can delete the original one {or any of the ones in between}, because the system
knows from the activation record that eventually the program will need to return to the calling
context.

6-34 User-Defined Functions and Subprograms

Context Switching
As mentioned in the introduction to this chapter, a subprogram has its own context, or state,
which is distinct from a main program and all other subprograms. Consequently there are
many things, such as line numbers, line labels, and variables, which are "local" to programs and
subprograms. On the other hand, there are several modes, flags, and so forth, that are "global"
to programs and subprograms. This section shows what is local and what is global.

Global Declarations
Default lower bound
of array dimensions

OPTION BASEl

Trigonometric modes DEG, RAD, and GRAD

All working directory changes MASS STORAGE IS

All file-create operations CREATE

System screen operations CRT IS, ON CURSOR, OFF CURSOR, FLIP

System printer operations PRINTER IS, PRINT ALL, NORMAL

All graphics operations PLOT, DRAW, PEN, PLOTTER IS etc.

Error reporting DEF AUL T ON, DEF AUL T OFF

System flags FLAG, SFLAG, CFLAG

File buffers ASSIGN#

Local Declarations
Error trapping

Softkey interrupts

Keystroke trapping

Timeout interrupts

Timer interrupts

ON ERROR GOTO/GOSUB, OFF ERROR

ON KEY# .. GOTO/GOSUB, OFF KEY#

ON KYBD GOTO/GOSUB, OFF KYBD

ON TIMEOUT ... GOTO/GOSUB, OFF TIMEOUT

ON TIMER# ... GOTO/GOSUB, OFF TIMER#

For further details on each statement, see the Technical BASIC Language Reference.

1 Since OPTION BASE is global. attempting to use different OPTION BASE statements in program and subprograms will produce errors.

User-Defined Functions and Subprograms 6-35

Notes

6-36 User-Defined Functions and Subprograms

Error Handling 7
Introduction
Most programs are initially subject to errors at run time, even if all the typographical/syntactical
errors have been shaken out while entering the program into the computer. There are three
general courses of action to take with respect to run-time errors:

1. Try to prevent the error from happening in the first place.

2. Once an error occurs, try to recover from it and continue execution.

3. Do nothing - let the program "roll over and die" if an error occurs.

The last alternative, which may seem frivolous at first glance, is certainly the easiest to implement.
Furthermore, the friendly nature of the HP-UX Technical BASIC system makes this a feasible
choice - if the person running the program is a programmer, or better yet is the person who
wrote the program. Upon encountering a run-time error, the BASIC system pauses program
execution and displays a message giving the error number l and the line in which the error
happened. The operator/programmer can then examine the program in light of this information
and fix things up.

On the other hand, if the the person running the program did not write it, then the first two
approaches above should be used. The program should attempt to prevent errors from happening
in the first place, and when they do occur to recover gracefully and continue running.

Chapter Contents
This chapter discusses the following topics:

Tasks/Topics Page

How the BASIC system handles errors 7-2

Anticipating operator errors 7-3

Checking for boundary conditions 7-3

Comparison errors 7-5

Trapping errors 7-6

Determining error numbers and location 7-7

Displaying the normal system error message 7-8

1 A complete list of error numbers and definitions is provided in the back of the HP-UX Technical BASIC Language Reference.

Error Handling 7 -1

How the System Handles Errors
The Technical BASIC system is designed to recognize a broad range of errors. For instance, if a
program attempts to evaluate a mathematical operation whose results are not defined (such as
division by zero), then the system will report an error condition. This section briefly describes
how the system normally reports these errors. The subsequent sections describe how you can
anticipate these errors and handle them from a program.

Errors in Keyboard Calculations
Errors encountered while you are trying to execute a command or evaluate an expression from
the keyboard are trapped by the system. The default response of the system is to give you a
warning. Here is an erroneous math operation:

1/0

Here is the system's default response to attempting the operation:

warning 2 OVERFLOW
1.79769313486231e+308

The system attempts to tell you more about the error by shoWing that the result is larger than it
can represent; the value shown is the largest number that the system can handle. This is known
as the "default value" for the out-of-range result. (There are similar errors in the range of error
number 1 through 8.)

If you now execute:

DEFAULT OFF

The system will not display the "default value" for the out-of-range math error. Here are the
results of performing the preceding 1/0 calculation with DEFAULT OFF:

Error 2 OVERFLOW

The differences between DEFAULT ON and DEFAULT OFF while a program is running are much
more significant. They are the topic of the subsequent paragraphs.

7 - 2 Error Handling

Run-Time Errors
Run-time errors occur while a program is being executed. There are three ways that the BASIC
system can handle "out-of-range" math errors:

• Display a warning, give the default value, and continue the calculation with the default
value. (This is the system's response with DEFAULT ON.)

• Halt execution and display an error report. (This is the system's response with DEFAULT
OFF.)

• Not display the report, but pass it on to an "error handler" routine in the BASIC program.

The next section shows how to anticipate (and thereby avoid) most errors. The section after
that shows how to trap errors (and optionally correct them) from a running program.

Anticipating Operator Errors
The programmer that writes a program (hopefully) knows exactly what the program is expected
to do and what kinds of inputs make sense for each task. Given this viewpoint, there is a strong
tendency not to take into account the possibility that other people using the program might not
understand the range of valid inputs.

As a programmer who wants your programs to be reasonably reliable, you really have no
choice but to assume that users can make mistakes that cause errors every time they have the
opportunity to enter information. Thus, the goal is to make the program reasonably foolproof.

Boundary Conditions
A classic example of anticipating an operator error is the "division by zero" situation. For
instance, suppose that an INPUT statement is used to get the value for a variable, and the
variable is used as a divisor later in the program. If the operator should happen to enter a zero,
accidentally or intentionally, the program crashes with an error 31. It is far better to be watching
for an out-of-range input and respond gracefully. One method is shown in the following example.

100 DISP "Miles traveled and total hours" @ INPUT Miles,Hours
110 IF Hours<=O THEN 120 ELSE 160
120 BEEP
130 PRINT "Improper value entered for hours. II

140 PRINT "Try again! II

150 GOTO 100
160 Input OK, so continue normally.

Error Handling 7 -3

Consider another simple example of giving a user the choice of six colors for a bar graph. It
might be preferable to have the user pick a number corresponding to the color he wished to
choose instead of having to type in up to six characters. In this case, the program wouldn't have
to check for each number, but rather it could use the logical comparators to check for an entire
range:

100 CLEAR
110 DATA GREEN ,BLUE ,RED ,YELLOW , PURPLE ,PINK
120 DIM Colors$(6) [6]
130 FOR Indx=l TO 6
140 READ Colors$(Indx)
150 NEXT Indx
160 FOR 1=1 TO 6
170 PRINT USING "DD,X,K";I,Colors$(I)
180 NEXT I
190 Ask: DISP "Pick the number of a color" (Q INPUT I
200 IF 1>=1 AND 1<=6 THEN Valid_Color
210 BEEP
220 DISP "Invalid answer -- ".
230 WAIT 1
240 GOTO Ask
250 Valid_color: ! Program continues here when input is OK.

The above example needs a little extra safeguarding. The input variable I should be declared to
be an INTEGER, since the only valid inputs are 1, 2, 3, 4, 5, and 6. An answer like "You have
picked the 3.14th color listed" does not make sense.

Here is an example that tests real number boundaries:

7000 AskFreq:
7010
7020
7025
7030 AskAmpl:
7040
7050
7055
7060 ASkDeg:
7070
7080

DISP "Enter the waveform's frequency (in KHz)"
INPUT Frequency
IF Frequency<=O THEN AskFreq

DISP "Enter the amplitude (0-10 volts)"
INPUT Amplitude
IF Amplitude<O OR Amplitude>10 THEN AskAmpl
!
DISP "Enter the phase angle (in degrees)"
INPUT Angle
IF Angle<O OR Angle>180 THEN AskDeg

7 -4 Error Handling

REAL Numbers and Comparisons
A word of caution is in order about the use of the = comparison operator in conjunction with real
numbers - numbers of type REAL and SHORT. Numbers on this computer are stored in a binary
form, which means that the information stored is not guaranteed to be an exact representation
of a decimal number - even though it will be really close! What this means is that a program
should not use the = operator for comparing real numbers. The comparison will yield a 'false'
or '0' value if the two are different by even one bit, even though the two numbers might really
be equal for all practical purposes.

There are two ways around this problem. The first is to try to state the comparison in terms of
the <= or >= comparators. However, if it is absolutely necessary to do an equality comparison
with a pair of real numbers, then a second method must be used. This method involves picking
an error tolerance for how close to being equal the two numbers can be to satisfy the test.

Real number line ~(--------~I~----~I-~~------~-~~
Xl X2

I ~8~ I
So if the difference between two real numbers Xl and X2 is less than or equal to a tolerance
8, we'll say that Xl and X2 are "equal" to each other for all practical purposes. The value of
8 will depend upon the application, and must be chosen with care.

For an example, assume that we've picked a tolerance of lE-12 for comparing two real numbers
for equality. The proper way to compare the two numbers would be:

950 IF ABS(Xl-X2)<=lE-12 THEN Numbers_equal
960 ! Otherwise they're not equal

Error Handling 7 -5

Trapping Errors
Despite your best efforts at screening the operator's inputs to avoid errors, errors will still
occasionally happen. It is still possible to recover from run-time errors, provided you predict the
places where errors are most likely to happen.

Setting Up the Error Branch
The ON ERROR command sets up a branch which will be initiated any time a recoverable error is
encountered at run time. The branching action taken may be either GOTO or GOSUB. GOTO and
GOSUB are purely local in scope - that is, they are active only within the context in which the
ON ERROR is declared, not in any subprogram or user-defined function.

Here is a simplistic example of using the ON ERROR statement:

10 ON ERROR GO TO Trap
20 A=1/0
30 Drsp "DONE"! This and next line not executed.
40 STOP
50
60 Trap: DrSp "ERROR: Division by 0"
70 END

Executing an ON ERROR statement directs the BASIC system not to report subsequent errors;
instead, the system is to initiate a branch, GOTO or GOSUB, to the specified location in the program.
The BASIC statements at that location can then handle the error.

When line 20 is executed, an error is detected and the system executes the GO TO Trap specified
in the ON ERROR statement. For simplicity, the Trap routine mereiy prints the corresponding
message and ends the program. (Note that lines 30 and 40 are not executed.)

7 -6 Error Handling

Determining Error Number and Location
In the preceding example, it was assumed that the only error that could be produced was error
2 - the division by 0 in line 20. However, it is rarely the case that you know which error has
happened or where it has happened. A more general error-trapping routine would determine
which error happened and where it happened.

ERRN is a function which returns the error number which caused the branch to be taken. ERRN
is a global function; it can be used in the main program or in any subprogram to determine the
number of the most recent error. H~re are a couple of simple examples:

100 OISP "Error number "; ERRN; II has occurred. II

740 IF ERRN=18 THEN GOTO String_Error

ERRL is a function which is used to find the line in which the error was encountered. ERRL is a
boolean function. The program passes it a line identifier (either line number or label), and the
function returns either a 1 or a 0 - depending upon whether or not the specified identifier
indicates the line which caused the error, respectively. ERRL is also a global function.

1140 IF ERRL(710) THEN OISP liThe error occurred in line 710."

910 IF ERRL(Compute) THEN Fix_compute

Error Subroutines
The ON ERROR GOSUB statement sets up and enables a branch to the error service routine which
will RETURN execution to the line following the one that caused the error.

100 Radical=B*B-4*A*C
110 Imaginary=O
120 ON ERROR GOSUB Esr
130 Partial=SQR(Radical)
140 IF Imaginary THEN Partial=SQR(Radical)
150 OFF ERROR

350 Esr: IF ERRN=10 THEN Imagin ELSE OtherError
360 Imagin: Imaginary=1 Set flag.

Re-calculate.

370 Radical=ABS(Radical) ! Make argo positive.
380 GOTO EndIf
390 OtherError: BEEP
400 BEEP
410 OISP "Unexpected Error (";ERRN;")"
420 PAUSE
430 EndIf: RETURN

Error Handling 7 -7

Displaying the System Error Message
When you trap an error programmatically, you disable the system's normal error reporting
mechanism. The system assumes that you want to handle errors yourself, which may include
correcting the problem and then re-trying the operation. However, there are certain times when
you do not (or cannot) fix the error. In some of these cases, you may want to report the error
to the computer operator, who may just note the error or try to correct it.

The ERRM statement displays the "error message" that would have been reported by the system
when the last error occurred. Here is an example of using this feature.

100 IF StillNotFixed THEN ERRM
110 RETURN

7 -8 Error Handling

Debugging Programs 8
Introduction
Naturally, the ideal way to develop a program is to design and implement it correctly the first
time and not have to debug it at all. This is a worthwhile goal, and most programmers strive
constantly to achieve it. Hopefully, the techniques discussed in preceding chapters will help you
get a little closer to this goal.

However, no matter how good a programmer you are or how much time you have spent designing
your programs, most programs will at one time or another be plagued with a "bug" - a bug is
present whenever the program does not do what the user expects it to do.

You may usually think of a bug as something that generates an error condition, such as ERROR

68 FILE TYPE. However, a bug doesn't always inform you of its existence. In fact, the most
insidious bugs cause your program to give a wrong answer without any indication that a bug
even exists. This chapter deals with the methods available with Technical BASIC to diagnose
problems in both logic and semantics.

The problem of debugging a program is distinct from the issues raised in the "Error Handling"
chapter. That chapter was based on the premise that the programmer is already satisfied that
the program works as it should, and that the next step is to make it as foolproof as possible.
That assumption could be construed as putting the cart before the horse - before you can
make a program foolproof, you must get it to run correctly in the first place.

Debugging Programs 8-1

Chapter Contents
This chapter discusses the following topics:

Tasks/Topics Page

Whence cometh bugs? 8-3

Methods of debugging programs 8-4

Code walk-throughs 8-4

Printing all program results 8-5

Cross references 8-5

Tracing program flow 8-7

Setting breakpoints 8-13

Checking variables' contents from the keyboard 8-14

Continuing program execution. 8-15

Single-stepping a program 8-16

Software testing. 8-17

8-2 Debugging Programs

Whence Cometh Bugs?
As mentioned in the introduction of this chapter, a bug! is present when the program does not
do what the user reasonably expects it to do. Generally, this definition involves two main steps:

• Determining (or setting) the user's expectations.

• Making sure that the program actually does what is expected.

This chapter discusses getting your program to do what is expected. Determining and setting
users' expectations are discussed in the chapter called "Communicating with the Operator."

The following two topics are discussed, with the primary focus on the second one:

• Methods of designing programs so that they do what you want them to do.

• Methods of checking to see that part(s) of a program are doing what you want.

A Model of the Software Development Process
In order to find places where bugs originate, let's take a brief look back at the steps of the
software design process shown in the "Program Development" chapter.

1. Understand and describe the problem.

2. Outline a solution.

3. Design algorithms and data structures, and then refine.

4. Translate the data structure and algorithms into BASIC code.

5. Debug and test the program.

6. Document and support the program.

Note that most of these steps somehow involve either the communication or translation of infor
mation. For instance, step 1 involves translating the user's needs into a set of "requirements",
while step 4 involves translating the algorithms data structures into a set of programming lan
guage statements.

This translation process is one of the largest sources of bugs. It is here that you should begin
debugging programs, because many errors in the program are only manifestations of these
problems.

1 For an excellent treatise on the origin and extermination of bugs. see Software Reliability by Glenford J. Meyers, John Wiley and Sons.

New York. 1976.

Debugging Programs 8-3

Methods of Debugging Programs
Now that you have at least an inkling of where bugs originate, you are better prepared to find
them in your programs. This section describes several methods of ridding your programs of
these annoying little creatures.

Here are the general methods discussed in the remainder of this chapter:

• Algorithm and code walk-throughs

• Cross references

• Tracing program flow

• Setting breakpoints

• Examining variables' contents from the keyboard

• Single-stepping the program

Walk-Throughs
There are generally two times when you can walk through a program:

• Before it is coded.

• After it is coded.

In general, the sooner you find a bug, the less it costs to fix it.

Algorithm Walk· Throughs
After developing an algorithm (and before coding it), you should walk through it. This walk
through is especially useful in checking whether you have properly translated the problem de
scription into the outline and then into the algorithms and data structures.

You will perform the walk-through by acting as if you were the computer executing the algorithm
on some actual data. At this point, you should walk through the algorithms with those program
mers whose algorithms will be interacting with yours. It is also a good idea to include at least
one programmer who is not involved with the project in this exercise.

You may also want to use specific test data (with known results) in this phase.

BASIC Code Walk· Throughs
Once you have coded your program, you should perform the exercise of walking through it to
verify again that it is going to do what you want it to do. This walk through checks to see
whether you have correctly translated the algorithms and data structures into program code.

8-4 Debugging Programs

Printed Records of Debugging
When using the techniques presented in the remainder of this chapter, you will often find that
you want to get printed records of what has happened. Normally, the cross-reference and tracing
statements direct information to the current CRT IS device. However, you can use the PRINT
ALL statement to direct the system to duplicate these messages on a printer, or you can specify
another CRT IS device. For details of using printers and displays with your particular system,
see the Getting Started Guide for your HP-UX Technical BASIC system_

To return to sending the information only to the display, use the NORMAL statement.

Cross References
A cross reference is a list of this information:

• Where variables are used in the program .

• Where line numbers (and labels) are referenced by GOTO and GOSUB statements.

This section explains how to obtain and interpret cross references.

The XREF statement is programmable as well as executable from the keyboard. It provides
a cross-reference table of program line numbers, line labels, and user-defined functions in the
program (or subprogram) currently in memory.

Where Are Variables Used?
XREF V displays a cross-reference table of all the variable and user-defined functions in the current
program (or subprogram). It is very handy in finding such subtle errors as misspelled variable
names.

Test the XREF V command out by entering the following program:

10 OPTION BASE 1
20 DIM SArray$(l) [5]
30 SArray$(l) = "Codes"
40 DISP "SArray$ (1) = "; SAray$ (1)
50 END

Next, execute this statement:

XREF V

Debugging Programs 8-5

The resulting display looks like this:

Variable Dim1 Dim2 MaxI Type References

SArray$ 1 5 string 20 30 40

... end of xrefv

The listing makes it easier to see that there are two variables, one of which is merely a misspelled
version of the other.

Here is what information each column contains:

Variable

Dim1

the name of the variable or user-defined function.

the upper bound of the first subscript in an array variable (left blank if the variable
is not an array).

Dim2 the upper bound of the second subscript in an array variable (also left blank if
the variable is not an array, or is an array with only one subscript).

MaxI the maximum length of a string variable (left blank if the variable is not a string).

Type INTEGER. REAL. SHORT, array, or string.

References lines referencing the variable or user-defined function, including function defi
nitions (DEF FN ...), function value assignments (FN ... = ...), and function calls
(FN ...).

Where Are Program Lines Referenced?
XREF L generates an entry in the line cross-reference table whenever a line number or line label
is referenced. To test the XREF L command, enter the following program:

10 X=10
20 Y=20
30 IF X=10 THEN GOTO 50
40 Total=X+Y
50 IF Total > 300 THEN Finish
60 DrSp "Total = ";Total
70 Finish: END

Next, execute this command:

XREF L

8-6 Debugging Programs

The resulting table looks like this on your display:

Line Cross Reference Table

50 _____________ occurs on 30
70 Finish: ______ occurs on 50

... end of xrefl

Line numbers on the left of the display show a line that is referenced (such as with a GaTa or
GaSUB). Line numbers on the right side of the display show where the reference occurred. In
this example, a reference to line 50 occurs on line 30 (in the GaTa statement). A reference to
line label Finish (line number 70) occurs on line 50 (also in a GaTa).

Program Traces
The Technical BASIC system provides means of tracing the following events:

• A branch in the linear flow, such as when a GaTa or GaSUB is executed.

• An assignment to a variable.

• All program flow (including flow of control from one line to the next) and all variable
assignments.

Debugging Programs 8-7

Tracing Branches
For this section, you will be tracing bugs in the following segment of code:

100 DIM Arg$[100] ,Result$[100]
110 INTEGER BeginPos,EndPos

!
Arg$=" Text

120
130
140
150
160
170

DISP "Arg$=(I;Arg$;I)
GOSUB Trim

", II LEN= II ; LEN (Arg$)

DISP IResult$=(I;Result$;") 1,"LEN=I;LEN(Result$)

180 STOP
190 **
200 Given string in Arg$, this subroutine
210 trims leading and trailing blanks.
220 Trimmed string is returned in Result$.
230 **
240 Trim:
250 BeginPos=O
260 TrimFront: BeginPos=BeginPos+l
270 IF BeginPos>LEN(Arg$) THEN Result$="11 (g RETURN
280 IF Arg$[BeginPos,BeginPos]=1I II THEN TrimFront
290 !
300 EndPos=LEN(Arg$)+1
310 TrimEnd: EndPos=EndPos-l
320 IF Arg$[EndPos,EndPos]=1I II THEN TrimEnd
330 !
340 Result$=Arg$[BeginPos,EndPos]
350 !
360 RETURN

Here are the results of running the program without tracing.

Arg$=(Text)
Result$=(Text)

LEN= 8
LEN= 4

Here are the results of executing a TRACE statement and then running the program.

Arg$=(Text LEN= 8
Trace line 150 to 240
Trace line 280 to 260
Trace line 280 to 260
Trace line 320 to 310
Trace line 320 to 310
Trace line 360 to 160
Result$=(Text) LEN= 4

8-8 Debugging Programs

As you can see, only the branches (from otherwise linear program flow) are shown on the TRACE
listing. Note also that the program's output also appears on the screen.

You can also use TRACE statements in a program to enable tracing for only selected portions of
the program. For instance, insert these lines into the preceding program:

255 TRACE

285 NORMAL

Now execute:

NORMAL

to disable the TRACE enabled earlier.

Here are the corresponding results of running the program.

Arg$=(Text LEN= 8
Trace line 280 to 260
Trace line 280 to 260
Result$=(Text) LEN= 4

Note that TRACE also shows when a subprogram is called. Here is a typical display:

Entering subprogram SUB_la

The trace also shows when the subprogram is exited:

Leaving subprogram SUB_la

However, note that TRACE in this case is not enabled while in the subprogram. To do that, you
will need to store a TRACE statement in a line that will be executed when the subprogram is
called.

When tracing user-defined functions, only the line number is shown, which is the same as with
normal branches.

Debugging Programs 8-9

Tracing Variable Assignments
You can use the TRACE VAR statement to display a message when a variable is assigned a value.

Using the preceding example program, trace the variable named BeginPos. (If you inserted the
TRACE and NORMAL statements on lines 255 and 285, respectively, you may want to delete them
now; if so, then you will also have to execute IN!T before executing the TRACE VAR statement.)

TRACE VAR BeginPos
RUN

Here are the results:

Arg$=(Text LEN=
Trace line 250 BeginPos=O
Trace line 260 BeginPos=1
Trace line 260 BeginPos=2
Trace line 260 BeginPos=3
Result$=(Text) LEN=

8

4

As the variable being traced is assigned values, the trace shows the line number where the
assignment is made. For numeric variables, the trace also shows the value assigned to the
variable. For string variables, the value assigned to the variable is not shown. For instance, here
is a trace of a string variable. (Note that the tracing of the variable named BeginPos is disabled
with the NORMAL statement.)

NORMAL
TRACE VAR Arg$
RUN

Tracing line 130 Arg$
Arg$=(Text) LEN= 8
Result$=(Text) LEN= 4

As with other TRACE statements, TRACE VAR can be executed from a program or from the
keyboard.

If you need to trace variables in subprograms, you will need to put a TRACE VAR statement on a
line of the subprogram that will be executed when the subprogram is called.

NOTE

The TRACE VAR statement does not trace variables in user-defined func
tions.

8-10 Debugging Programs

Tracing All Flow and Variables
When the TRACE ALL statement is executed, it causes the system to issue a message prior to
executing every line, not just those where branches occur. This shows the order in which all
statements were executed.

Here is a long, boring TRACE ALL of the example program shown in the preceding sections:

Trace line 100 to 110
Trace line 110 to 120
Trace line 120 to 130
Tracing line 130 Arg$
Trace line 130 to 140
Arg$=(Text) LEN=
Trace line 140 to 150
Trace line 150 to 240
Trace line 240 to 250
Trace line 250 BeginPos=O
Trace line 250 to 260
Trace line 260 BeginPos=1
Trace line 260 to 270
Trace line 270 to 280
Trace line 280 to 260
Trace line 260 BeginPos=2
Trace line 260 to 270
Trace line 270 to 280
Trace line 280 to 260
Trace line 260 BeginPos=3
Trace line 260 to 270
Trace line 270 to 280
Trace line 280 to 290
Trace line 290 to 300
Trace line 300 BeginPos=9
Trace line 300 to 310
Trace line 310 BeginPos=8
Trace line 310 to 320
Trace line 320 to 310
Trace line 310 BeginPos=7
Trace line 310 to 320
Trace line 320 to 310
Trace line 310 BeginPos=6
Trace line 310 to 320
Trace line 320 to 330
Trace line 330 to 340
Tracing line 340 Result$
Trace line 340 to 350
Trace line 350 to 360
Trace line 360 to 160

8

Result$=(Text) LEN= 4
Trace line 160 to 170
Trace line 170 to 180

Debugging Programs 8-11

If you have a large program, you will probably not want to perform a TRACE ALL of the whole
thing. You can insert a program line containing TRACE ALL at the beginning of where you want
to enable tracing, and insert a line containing NORMAL where you want to disable it.

If you need to enable TRACE ALL in subprograms, you will need to put a TRACE ALL statement
on a line of the subprogram that will be executed when the subprogram is called.

NOTE

The TRACE ALL statement does not trace either line numbers or variables
in user-defined functions.

Returning to Normal Execution
NORMAL cancels the effects of any active TRACE. TRACE VAR, or TRACE ALL statements. It also
disables PRINT ALL mode. The NORMAL statement may be executed either from the program or
from the keyboard.

Pausing Program Execution
On most consoles and terminals, you can pause (temporarily halt) program execution. You can
use I CTRL I-C]] providing it has been defined as the interrupt key. See the section "Testing for
the PAUSE Capabilities" of the "Running Programs" chapter of the HP-UX Technical BASIC
Getting Started Guide for details. This is a rather crude way of debugging, since it does not
allow you to determine which program line will be executed next. The next section describes a
better way to debug using breakpoints.

8-12 Debugging Programs

Setting Breakpoints with PAUSE
A breakpoint is a point in the program where execution is halted. With Technical BASIC, you
can use the PAUSE statement to set a breakpoint. Let's use the example program from the last
section. Here is another listing of the program for convenience:

100
110
120
130
140
150
160
110
180
190
200
210
220
230
240
250
260
210
280
290
300
310
320
330
340
350

DIM Arg$[100] ,Result$[100]
INTEGER BeginPos,EndPos
!
Arg$=11 Text
DISP "Arg$=(" ;Arg$; II) ","LEN=" ;LEN(Arg$)
GOSUB Trim
DISP IResult$=(I;Result$;") 1,ILEN=";LEN(Result$)

STOP
**
Given string in Arg$, this subroutine
trims leading and trailing blanks.
Trimmed string is returned in Result$.
**

Trim:
BeginPos=O
TrimFront: BeginPos=BeginPos+1

IF BeginPos>LEN(Arg$) THEN Result$="" (Q RETURN
IF Arg$[BeginPos,BeginPos]=" II THEN TrimFront

EndPos=LEN(Arg$)+1
TrimEnd: EndPos=EndPos-1

IF Arg$[EndPos,EndPos]=1I II THEN TrimEnd
!

Result$=Arg$ [BeginPos ,EndPos]

360 RETURN

(If you still have a TRACE on line 255 and NORMAL on line 285 from a previous example, then
you may want to delete these lines now.)

Insert this statement into the program:

245 PAUSE (Q DISP "Breakpoint 1"

Now run the program. It will display the message Breakpoint 1 and then pause.

Debugging Programs 8-13

You can do any of several things at this point:

• Start tracing variables or program flow.

• Examine or change the value of variables.

• Execute statements or commands.

• Resume execution by executing the CONT (continue) command.

• Single-step the program.

Tracing operations were explained in the preceding section. Subsequent sections explain the
latter four topics.

Accessing Variables from the Keyboard
One of the pleasing characteristics of Technical BASIC system is that you can access variables
from the keyboard any time that it is in the "paused" state. You can also change variable's
values from the keyboard. Note, however, that you cannot access another variables in another
context; for instance, you cannot access the main program's variables while in a subprogram.

You can determine the current value of a variable (in the current context) by typing its name
on a blank line and then pressing the carriage return key:

BeginPos

The system responds with:

o

You can also perform calculations, such as:

LEN (Arg$)

The system responds:

8

You can also assign a new value to a variable. For example, to assign a value of 5 to the
variable named BeginPos, execute:

LET BeginPos=5

Now examine the variable by typing:

BeginPos

8-14 Debugging Programs

It will return:

5

If you had typed this instead:

BeginPos=5

You would have gotten this response:

o

because BeginPos=5 is a boolean expression whose value is "false" (since BeginPos is not equal
to 5); the system represents a false condition with a 0, while a boolean true is represented by a
1.

Note also that you can create a variable from the keyboard by assigning it a value:

LET NewVariable=6.023

You can use this variable in subsequent keyboard operations.

NewVariable-l
5.023

NewVariable>O
1

Executing Commands and Statements
You can also issue commands while a program is paused. For instance, you can examine the
catalog of a directory, list the program to a printer, and turn the graphics or alpha displays on
and off.

Continuing Program Execution
When the program is in a paused state, you can continue program execution with the CONT
command. Program execution then resumes normally, or in the trace mode that was in effect at
the time the program was paused.

Preceding paragraphs declared that you can execute nearly all commands from the keyboard
while a program is paused. You can also add, modify, or delete program lines, or attempt to
alter the control structures of the program; however, the program cannot be continued after
such modifications. You will have to pre-run 1 the program (using INIT) or execute RUN.

1 Pre-run is described in the "Program Structure and flow" chapter.

Debugging Programs 8-15

Single-Stepping a Program
One of the most powerful debugging tools available is the capability of single-stepping a program
- executing it one line at a time. This process allows you to access variables before or after
each line of a program is executed.

Single-stepping is performed with the SINGLESTEP command. There are two prerequisites to
using this command:

• The program must have been "pre-run" by executing INIT or RUN .

• The program must be in the paused state.

Type in the following example, execute an IN IT command, and then begin single-stepping by
executing the SINGLESTEP command three or four times. (If you typed in the preceding example
program, then you will probably want to store it now, because you will be using it again in the
next section.)

100 OPTION BASE 1
110 REAL Array(5) ,ArraySum
120 INTEGER Indx
130
140 ! Enter five numbers, and calculate their sum.
150 ArraySum=O
160 FOR Indx=1 TO 5
170 DISP "Enter numeric value #";Indx
180 INPUT Array(Indx)
190 ArraySum=ArraySum+Array(Indx)
200 NEXT Indx
210
220 ! Display input data and sum.
230 DISP "Array:"
240 MAT PRINT Array;
250 PRINT "Sum of array elements: ",ArraySum
260
270 END

Notice that it is difficult to tell which program line is being executed without using the TRACE
ALL command.

As you can see from the TRACE ALL results, the SINGLESTEP command executes a program line
and then increments the program counter to the next program line. Thus, SINGLESTEP steps
through every program line, including those containing non-executed statements like OPTION
BASE, REAL, INTEGER, and ! comments (which are handled during pre-run and cause no action
during program execution).

8-16 Debugging Programs

As you single-step through the program, you can check variables' contents to see how they
change. You can also change them as desired to create and test special conditions.

If the program is in an INPUT or LINPUT statement, then SINGLESTEP is sufficient to terminate the
operation. After executing SINGLESTEP on one of these input statements, you must first enter
the expected data from the keyboard and then terminate it with a carriage return. Executing a
subsequent SINGLESTEP then will execute the following line.

Software Testing
In general, testing a program involves verifying that it does work without errors. So in order
to test a program, you will ordinarily use it across its normal range of conditions. In addition,
you will often want to ensure that it will not crash when asked by a user to operate outside this
range.

There are many methods of testing; they range from testing segments individually to testing the
entire program as a whole. Although the subject of software testing is extensive, it is mentioned
here to make sure that you are aware of the need for testing and to help you realize that there
are many texts available that describe methodical approaches to testing.

Despite the gamut of available testing methods, here are some approaches that are common to
most methods:

• It is difficult to thoroughly test your own programs. It is best to have someone else test
code that you have written.

• Question assumptions. For instance, you may assume falsely that the user will not input
string data when numeric data is expected.

• Determine boundary conditions for valid inputs, and test each one. For instance, if you
are expecting a string of up to 20 characters, test your software for strings with lengths 0
and 20 (maybe even 21).

• Check every local branch in the code to make sure that each will be executed properly in
all directions. Then globally make a test case for each unique path through the program.

• Check to see if there are any sensitivities to any particular data patterns.

The "Error Handling" and "Communicating with the Operator" chapters also discuss anticipating
and handling erroneous inputs.

Debugging Programs 8-17

Testing the Example Program
Using the program presented earlier in this chapter, you can get a feel for implementing some
of the suggestions shown above. Here is the program again.

100 DIM Arg$[100] ,Result$[100]
110 INTEGER BeginPos,EndPos

180 STOP
190 **
200 Given string in Arg$, this subroutine
210 trims leading and trailing blanks.
220 Trimmed string is returned in Result$.
230 **
240 Trim:
250 BeginPos=O
260 TrimFront: BeginPos=BeginPos+l
270 IF BeginPos>LEN(Arg$) THEN Result$="" (Q RETURN
280 IF Arg$[BeginPos,BeginPos]=1I II THEN TrimFront
290 !
300 EndPos=LEN(Arg$)+1
310 TrimEnd: EndPos=EndPos-l
320 IF Arg$[EndPos,EndPos]=" II THEN TrimEnd
330 !
340 Result$=Arg$[BeginPos,EndPos]
350 !
360 RETURN

Since you didn't write this program, you qualify as a candidate for testing it.

Some assumptions that you may question are as follows:

• Will the input always be less than 100 characters?

• Is it acceptable to leave leading or trailing, non-printing control characters, such as CHR$ (0),
in the string? or is the program to remove them before removing the spaces?

• Is a string of length a acceptable? or should it generate an error message?

Boundary conditions for the routine are strings of length 0, 100, and 101.

8-18 Debugging Programs

There are three, two-way branches in the program. From studying the permutations of possible
branch combinations, there are six unique, valid paths through the code (some of the possible

paths are identical l). Here are the cases that test these paths:

1. Null Arg$ (LEN=O) with no leading or trailing spaces.

2. Null Arg$ with leading and trailing spaces.

3. Non-null Arg$ with leading spaces.

4. Non-null Arg$ with no leading or trailing spaces.

5. Non-null Arg$ with trailing spaces.

6. Non-null Arg$ with both leading and trailing spaces.

There seem to be no sensitivities to particular data patterns. However, note that the case of the

non-printing control character embedded in leading or trailing spaces may fit into this category.

This listing shows testing the routine with the five cases shown above.

100 OIM Arg$[100] ,Result$[100]
110 INTEGER BeginPos,EndPos
120 !
121 Arg$=1I1I
122 OISP IIArg$=(1I ;Arg$; II) II ,IILEN=II ;LEN(Arg$)
123 GOSUB Trim
124 OISP IIResult$=(II;Result$;II) ",IILEN=II;LEN(Result$)

!
Arg$=11
OISP IIArg$=(II;Arg$;II)
GOSUB Trim

1I,IILEN=II;LEN(Arg$)

125
126
127
128
129
130
131
132
133
134

OISP IIResult$=(II;Result$;II)
!

1I,IILEN=II;LEN(Result$)

Arg$=11 ! #*1?1I
OISP IIArg$=(II;Arg$;II)
GOSUB Trim

1I,IILEN=II;LEN(Arg$)

OISP IIResult$=(II;Result$;II) 1I,IILEN=II;LEN(Result$)
135 !
136 Arg$=II::; ; «==»??II
137 OISP IIArg$=(II;Arg$;II)
138 GOSUB Trim

II, IILEN=II ;LEN(Arg$)

139 OISP IIResult$=(II;Result$;II)
140

1I,"LEN=II;LEN(Result$)

141 Arg$=II~A-_'a{}

142 OISP IIArg$=(II;Arg$;II)
143 GOSUB Trim

II, IILEN=II ;LEN(Arg$)

Some identical combinations are: 1. Only leading spaces and null Arg$ (LEN=O) or Arg$ is all spaces; 2. Only trailing spaces and null

Arg$; 3. Both leading and trailing spaces and null Arg$.

Debugging Programs 8-19

144 DISP "Result$=(";Result$;") ","LEN=";LEN(Result$)
145 !
146 Arg$=" Two Words "
147 DISP "Arg$=(" ;Arg$;") ", "LEN=" ;LEN(Arg$)
148 GOSUB Trim
149 DISP IResult$=(";Result$;") ","LEN=";LEN(Result$)
150
180 STOP
190 **
200 Given string in Arg$, this subroutine
210 trims leading and trailing blanks.
220 Trimmed string is returned in Result$.
230 **
240 Trim:
250 BeginPos=O
260 TrimFront: BeginPos=BeginPos+l
270 IF BeginPos>LEN(Arg$) THEN Result$="" CO RETURN
280 IF Arg$[BeginPos,BeginPos]=" " THEN TrimFront
290 !
300 EndPos=LEN(Arg$)+1
310 TrimEnd: EndPos=EndPos-l
320 IF Arg$[EndPos,EndPos]=" " THEN TrimEnd
330 !
340 Result$=Arg$ [BeginPos ,EndPos]
350 !
360 RETURN

Here are the results of running this test program (without tracing).

Arg$=O LEN= 0
Result$=O LEN= 0
Arg$=(LEN= 8
Result$=O LEN= 0
Arg$=(!#*1?) LEN= 8
Resul t$= (! #*1?) LEN= 5
Arg$=(::; ; «==»??) LEN= 12
Result$=(::; ; «==»??) LEN= 12
Arg$=(COAA_'a{}) LEN= 12
Result$=(COAA_'a{}) LEN= 8
Arg$=(Two Words) LEN= 12
Result$=(Two Words) LEN= 9

Note that several different characters were used in several of the tests. This may help show that
the display device has no data sensitivities. Also note that only the last test tried using spaces
embedded in the argument. This illustrates that testing almost never stops.

8-20 Debugging Programs

Index

a
ABS 4-20
Absolute difference .. 4-11
Absolute graphics device units ... 15-83
ABSUM ... 4-71
Accessing data files ... 11-11
ACS .. 4-17
Activation record .. 6-34
Additional image specifiers ... 9-20
Algorithms .. 2-2, 2-6
Allocation of subprograms ... 6-12
ALPHA ... 9-6, 9-8, 9-11
Alpha screen .. 9-6
Alphanumeric inputs .. 9-24
AMAX ... 4-71
AMAXCOL ... 4-71
AMAXROW ... 4-71
AMIN ... 4-71
AMINCOL ... 4-71
AMINROW ... 4-71
Anisotropic scaling .. 15-23
Anticipating problems ., .. 9-25
Appending strings .. 5-5
Arbitrary loop exit points .. 3-22
AREAD .. 9-8, 9-30
Arithmetic:

Hierarchy
Operators

Array:

4-5
4-6

Dimensions .. 4-24
Displaying ... 4-27
Empty .. 4-50
Functions, misc .. 4-71
Numeric .. 4-22
Printing ... 4-28
Redimensioning ... 4-33

Scalar arithmetic .. 4-52
Storing .. 11-6
String .. 5-3, 5-17
Subscripts .. 4-23, 4-24
Summing rows and columns .. 4-54
Terminator ... 4-29
Transpose ... 4-56
Variable names 4-27

ASCII:
Characters ... 5-13, 11-10
File .. 2-23

ASN .. 4-17
Aspect ratio (width/height) 15-18, 15-34
ASSIGN .. 6-35, 9-6, 12-19, 13-24, 14-22, 15-9
ASSIGN# 11-13,11-18,11-20,11-23,11-25,11-26
Assigning:

Array variables 4-27
String variables .. 5-2
Values to arrays ... 4-37
Variables ... 4-2

Assumptions, questioning .. 8-18
ATN .. 4-17
ATN2 ... 4-17
Audio messages .. 9-4
AWRIT .. 9-8, 9-11
AXES .. 15-19
Axes intersection 15-20

b
Background color (raster) ... 15-54
BackSpace key .. 9-30
BASIC editor .. 2-14, 2-20
BASIC/DATA files 6-13, 11-12
BASIC/GRAF file .. 15-73
BASIC/PROG files 6-13, 6-14
BASIC/SUBP files .. 6-14,6-16
BEEP .. 2-8, 9-4
BINAND .. 4-14
Binaries:

C .. 12-1
FORTRAN 14-1
Pascal ;.......................... 13-1

Binary:
(base 2) 4-15
Operations ... 4-14
Programs .. 2-11

BINCMP .. 4-14
BINEOR .. 4-14
BINIOR ... 4-14,4-14
BIT .. 4-14
Blank lines, displaying .. 9-12
Blocks .. 11-16
Boolean expressions ... 3-11, 4-10
Boundary conditions ... 7-3, 8-18
BPLOT .. 15-69
Branching:

Conditions ... 8-19
Event-initiated .. 3-24

BREAD. .. 15-69
Break key .. 9-24, 9-28
Breaking programs up .. 3-30
Breakpoints .. 8-13
brt_pascalwrap procedure .. 13-5
BTD .. 4-16
Budget program, example ... 2-3
Buffer number ... 11-12
Bugs:

Definition of 8-1
Source of 8-3

Bulleted lists .. 1-6
Byte plotting (graphics) 15-69
Byte reading (graphics) ... 15-69, 15-69

c
C binaries:

Compiling ... 12-3, 12-7, 12-8
Error trapping .. 12-6
File I/O ... 12-5, 12-19
Introduction .. 12-1
Linking ... 12-3, 12-7, 12-8
makebin_c script ... 12-7, 12-8
Maximum number of ... 12-5
Parameter matching .. 12-5

Parameter passing ... 12-9
Passing by reference ... 12-10
Passing by value .. 12-10
Restrictions .. 12-5
String length .. 12-15

C functions .. 12-2
C programs .. 12-2
Calculations from keyboard .. 8-14
CALL .. 6-8
CALLBIN .. 2-11, 12-4, 13-4, 14-4
Capabilities, graphics ... 15-6
Capabilities of displays ... 9-7
CAPS LOCK ... 9-25
CAT ... 11-10
cc command ... 12-8
CEIL ... 4-20
CFLAG .. 6-31, 6-35
CHAIN ... 3-30, 6-30, 6-33
Chaining programs ... 3-30
Chapter previews ... 1-6
Character sets, printer .. 9-14
Character size (graphics) 15-65
Characteristics of COM ... 6-28
Choosing program segments .. 3-14
CHR$... 2-11,5-13, 9-14
Circle .. 15-24
CLEAR. .. 9-9, 9-10
Clearing:

Flags ... 6-31
The screen .. 9-9

CLIP .. 15-36, 15-42, 15-42, 15-47
Clock .. 10-2
Closing files ... 11-12, 11-31
CNORM ... 4-71
CNORMCOL .. 4-71
Code walk-throughs ... 8-4
Codes, for keys ... 9-30
Coding programs ... 2-2, 2-8
COL .. 4-29
Color pens .. 15-54

Column-major order .. 4-31
COM ... 3-30, 4-26, 5-2, 6-27, 6-33
COM characteristics ... 6-28
Commands ... " 2-12
Comments ... 2-9, 3-34
Common:

Storage .. 4-26, 6-27
Variables .. 3-30

Communication:
Between programs ... 3-31
Program/subprogram ... 6-19

Comparisons, numeric .. 4-11, 7-5
Compiling C binaries ... 12-3
Compiling FORTRAN binaries 14-3, 14-8
Compiling Pascal binaries ... 13-3, 13-8
Computer /human interface .. 9-1
CON .. 4-33
Concatenating statements ... 2-9
Concatenation, string .. 5-4
Conditional:

Branching
Execution
GOTO

3-12
3-10
3-12

Console .. 9-6
Constant:

Matrices ... 4-40
Numeric .. " 4-5

Constructs, nesting 3-14
CaNT .. 3-5, 8-15, 9-25
Context ... 3-6,6-10,6-35, 6-35
Continuing execution ... 8-15
Control:

C .. 8-12
Characters 9-14

Conversions:
Lettercase ... 5-15
Number-base ... 4-15
String .. 5-11
Time and date .. 10-3

Coordinate systems ... 15-12

Copying:
Program segments 2-20
Subarrays .. " 4-43

COS .. 4-18
COT .. 4-18
CREATE 6-35,9-6, 11-12, 11-14, 11-25
CROSS ... " 4-62
Cross:

Product ... 4-62
References .. 8-5

CRT IS 6-35, 9-6
CSC .. 4-18
CSIZE .. 15-65
CSUM ... 4-54
Current working directory 11-10
CURSCOL ... 9-11
CURSOR 15-52, 15-80
Cursor:

Location 9-11
Positioning ... 9-10
Turning on ... 9-12

CURSROW ... 9-11
Cyclic timer interrupts .. 10-6

d
DATA 3-34,4-39, 11-4
Data:

File access .. 11-11
Files .. " 11-9
Items .. 11-10
Pointer 11-6
Pointer, moving ... 11-8
Structures .. 2-2, 2-6
Types .. 2-10,4-3,11-24,11-28

Date ... 10-2
DATE ... 10-2
DATE$... " 10-2
Date format conversions ... 10-3
Debugging:

Methods .. 8-4
Programs .. 2-3, 2-24

Decisions ... 3-1
Declarations:

Implicit .. 4-4
Of function parameters ... 6-7

Declaring:
COM variables ... 6-27
Pass parameter types ... 6-24
Variables .. 2-10,4-4

DEF FN .. 3-34
Default graphics limits ... 15-12
DEFAULT OFF ... 6-35, 7-2
DEFAULT ON .. 6-35
Default scale .. 15-14, 15-15
Defaults, graphics 15-75
DEG ... 4-17, 6-35, 15-63, 15-67
Delay interrupts ... 10-6
DELETE .. 2-16
Deleting program lines .. 2-16
Describing the problem .. , .. 2-3
DET .. 4-71
DETL 4-71
dev directory ... 15-9
Developing programs .. 2-2
Device file ... 15-9
Device selector .. 9-6, 15-9, 15-82
Device units, absolute graphic .. 15-83
Devices, graphics .. 15-9
Devices, graphics output .. 15-75
Difference:

Absolute .. ' 4-11
Relative ... 4-11

DIGITIZE .. 15-4, 15-52, 15-79
Digitizing ... 15-76
Digitizing graphics limits .. 15-49
DIM .. 2-10,3-34,4-4,5-2,5-17
Dimensioned length, string .. 5-2
Dimensioning:

Implicit .. 4-26
Numeric arrays ... , 4-24
Strings .. 5-2, 5-17

Directory ... 11 - 1 0
DIRECTORY ... 6-11,6-12,6-17
Disabling keys .. 9-30
DISP .. 2-8, 9-6, 9-10, 9-12
DISP item separators ... 9-16
DISP USING .. 4-31
Display:

Capabilities ... 9-7
Screen ... 9-6
Screen modes .. 9-10

Displaying:
Blank lines ... 9-12
Messages ... 9-5

DIV ... 4-8
Documenting programs .. 2-3, 2-24
Documents:

External ... 2-29
Internal ... 2-34

DOT .. 4-71
DRAW ... 6-35, 15-56
Drawing .. 15-56
DTB$... 4-15
DTH$... 4-15
DTO$

DTR

4-15
4-18

DUMP ALPHA ... 2-14,9-13
DUMP GRAPHICS .. 2-14, 15-74
Dyadic operators ... 4-8

e
Editing:

Globaloperations .. 2-14
Search operations .. 2-18

Editor:
BASIC .. 2-14
vi .. 2-22

Elements of BASIC program ... 2-8
Ellipse ... 15-23
Empty arrays ... 4-50
ENABLE KBD ... 9-24, 9-28
Enabling keys ... 9-28

END .. > •••••••••••••••••• 2-9
END ... 2-9
End-of-record marker .. 11-13
Entry point .. 12-4, 13-4, 14-4
EOF:

Conditions .. 11-29
Markers .. 11-20, 11-24, 11-29

EOL, sequence 9-1 °
EOR:

Conditions .. 11-29
Markers .. 11-13, 11-20, 11-29

EPS .. 4-20
ERRL .. 7-7
ERRM
ERRN
Error:

7-8
7-7

Default response ... 7-2
File ... 11-29
Handling ... 7-1
Location ... 7-7
Messages .. 2-14, 7-8
Numbers ... 7-7
Reporting 7-2
Trapping .. 7-6, 9-25

Escape-code sequences ... 9-15, 9-30
Euclidian norm .. 4-72
Evaluating:

Numeric expressions .. 4-4
Strings ... 5-4

Event-initiated branching 3-24
Events, types of ... 3-24
EXP .. 4-20
Expressions:

Calls and functions .. 4-9
Evaluating numeric .. 4-4
String .. 5-4, 5-18

Extending BASIC/DATA files 11-23
Extensible files ... 11-23
External documents .. 2-29

f
fc command ... 14-9
Field boundaries, DISP and PRINT .. 9-16
Field specifiers .. 9-17
File access:

Random .; .. 11-24,11-26
Serial .. 11 - 11
text/data .. 11-31

File I/O:
C binaries ... 12-5, 12-19
FORTRAN binaries .. 14-6, 14-22
Pascal binaries .. 13-6, 13-24

File:
ASCII .. 2-23
BASIC/DATA .. 6-13
BASIC/GRAF ... 15-73
BASIC/PROG ... 6-13,6-14
BASIC/SUBP ... 6-14, 6-16
Buffers 11-18
Closing .. 11-12, 11-31
Data types .. 11-28
Names .. 6-14
Opening 11-31
Overhead ... 11-17
Pointer .. 11-18
Selector ... 9-6, 9-13
Size calculations .. 11-14
text/data 11-31, 12-5, 13-6, 14-6, 14-22

FINDPROG ... 6-11,6-13
f _ini t subroutine ... 14-4
FLAG .. 6-31, 6-35
Flags, system ... 6-30
FLIP,... 6-35
FLOOR .. , 4-20
FN END ... , 3-34
FNORM .. , 4-71
Formal parameters 6-4, 12-2, 13-2, 14-2
Formatted printing ... 9-15
FOR .. NEXT ... 3-18

FORTRAN binaries:
Compiling .. 14-3, 14-8
Error trapping .. 14-7
File I/O ... 14-6, 14-22
Introduction .. 14-1
Linking .. 14-3, 14-8
makebin_c script ... 14-8, 14-9
Maximum number of ... 14-6
Parameter matching .. 14-5
Parameter passing .. 14-10
Passing by reference 14-10
Passing by value .. 14-10
Restrictions .. 14-6
String length .. 14-18

FORTRAN programs ... 14-2
FORTRAN SUBROUTINEs .. 14-2
FP ... 4-20
Froebenius norm .. 4-72
Functions:

Binary .. 4-14
C '" ... 12-2
Constant ... 6-3
Data-type declarations ... 6-7
Limitations of user-defined .. 6-7
Local variables ... 6-5
Misc. array .. 4-71
Misc. numeric .. 4-20
Multi-line ... 6-5
Passing parameters to .. 6-4
Resident. .. 2-11
Resident trig ... 4-1 7
Step .. 4-10
String .. 5-9, 5-14
Timer .. 10-9
User-defined ... 2-11,5-16,6-1,6-2

9
GCLEAR 9-9, 15-3
General steps in development .. 2-2
GET ... 2-22, 6-13
Getting Started Guide ... 1-3, 2-14

GLOAD .. 15-73
Global:

Declarations > •• 6-35
Program editing ... 2-14

GOSUB ... , 3-7
GOTO:

Conditional ..,..... 3-12
Unconditional .. 3-6

GRAD .. 4-17,6-35
Graphics > • • • • • • • • • • • • • • • • •• 15-1
Graphics capabilities 15-6
Graphics character size 15-65
Graphics, clearing screen ... 9-9
Graphics defaults ... 15-75
Graphics devices, specifying .. 15-9
Graphics, digitizing 15-49, 15-52
Graphics dump. .. 15-74
Graphics examples .. 15-2, 15-4
Graphics, initializing .. 15-9
Graphics input .. 15-4, 15-52
Graphics limits ... 15-13, 15-36, 15-83
Graphics limits, default ... 15-12
Graphics limits, digitizing ... 15-49
Graphics limits, moving 15-14, 15-32, 15-36
Graphics limits, range 15-33
Graphics limits, summary ... 15-47
Graphics mapping .. 15-12, 15-14
Graphics output devices 15-9, 15-75, 15-75
Graphics plotters ... 15-11
Graphics printers ... 15-74
Graphics scaling .. 15-14
Graphics tablets .. 15-11
Graphics units, absolute .. 15-83
Graphics Units (GU's) 15-14, 15-15, 15-29
Graphics windows > • • • • • • • • • • • • •• 15-11
GRID .. 15-21
GSTORE 15-73

h
Halting program execution .. 3-3
Hardcopy, of the screen ... 2-14
Hardware installation .. 1-2
Hewlett-Packard Graphics Language (HPGL) 15-82
Hexadecimal (base 16) .. 4-15
Hiding the details ... 2-6
Hierarchy:

Arithmetic .. 4-5
String ... 5-4

HIL input locators .. 15-11
HMS ... 10-4, 10-9
HMS$... 10-3
HP-IB graphics tablets ... 15-11
HP-IB primary address ... 15-82
HP-UX Technical BASIC Getting Started Guide 1-3, 2-14
HP-UX Technical BASIC Language Reference 1-3
HP-UX:

File system .. 1-2
Knowledge .. 1-2

HPGL ... 15-82
HTD .. 4-16
Human/ computer interface .. 9-1, 9-3

.
I

Identity matrix .. 4-42
IDN .. 4-33
IDRAW .. 15-56
IMAGE .. 4-31, 9-17
Image specifiers:

Additional ... 9-20
Definition .. 9-1 7
Numeric .. 9-18
String .. 9-19

IMOVE .. 15-56
Implicit:

Declarations ... 4-4
Dimensioning ... 4-26
Redimensioning ... 4-35

Incremental drawing ... 15-56

Incremental moving ... 15-56
Incremental plotting ... 15-56
Indenting program lines ... 2-28
INF .. 4-20
IN IT ... 3-32, 8-15, 8-16
Initializing graphics ... 15-9
INPUT .. 2-8, 9-24, 11-4
Input, graphics .. 15-4, 15-52
Input locators .. 15-11
Input:

Alphanumeric .. 9-24
From keyboard ... 9-21, 9-23
Keyboard .. 9-30

Insert mode (screen) .. 9-10
Inserting program lines .. 2-15
INT .. 4-13
INTEGER .. 2-10, 3-34, 4-3, 11-24
Integral numbers .. 2-10
Interactions between timers and subprograms 10-10
Internal documents ... 2-24
Interrupts:

Cyclic timer .. 10-6
Delay ... 10-6
Time-of-day .. 10-8
Timer .. 10-6

Intersection of axes ... 15-20
Interval timing .. 10-5
Intrinsic functions:

General ... 2-11
String .. 5-9, 5-14

Inverting matrices .. 4-64
IP ... 4-21
IPLOT .. 15-56
Isotropic scaling .. 15-24
Iterations .. 3-18

j
Joining strings ... 5-5
Jump .. 3-6

k
KEY LABEL ... 9-23
Key:

Buffer .. 9-30
Codes .. 9-30
Disabling .. 9-30
Enabling ... 9-28
Labels .. 3-26
Special function ... 9-22

Keyboard:
Calculations .. 8-14
Enable mask .. 9-28
Errors ... 7-2
Input ... 9-30
Inputs ... 9-21, 9-23

Keywords .. 1-5, 2-8

I
LABEL 15-65
Label area (softkeys) .. 3-26
Label direction ... 15-65
Label origin ... 15-65
Labeling 15-65
LAXES .. 15-14
LBND ... 4-71
Id command ... 12-8, 13-9, 14-9
LOIR .. 15-65
LEN ... 5-9
Length of string 5-2, 12-15, 13-19, 14-18
LET ... 2-8,4-2
Lettercase conversion ... 5-15
LGT .. 4-21
Libraries, subprogram .. 6-10
LIMIT. 15-17, 15-32, 15-36, 15-37, 15-38, 15-39, 15-40, 15-47
Limiting range of values ... 4-12
Limits, graphics .. 15-13
Limits, physical (graphics) ... 15-12
Line length (LINE TYPE) .. 15-64
LINE TYPE .. 15-64

Line:
Labels .. 2-9, 2-25
Numbers ... 2-9
Where referenced (XREF L) .. 8-6

Linear:
Equations 4-66
Flow .. 3-3

Linking C binaries ... 12-3
Linking FORTRAN binaries 14-3, 14-8
Linking object files ... 12-8, 13-9, 14-9
Linking Pascal binaries ... 13-3, 13-8
LINPUT ... 9-24, 11-4
Listings ... 2-14
Lists:

In program lines .. 2-8
Parameter ... 6-4, 6-20

LOAD ... 6-13
LOADBIN ... 12-4, 13-4, 14-4
Loading subprograms .. 6-17, 6-18
Local:

Declarations .. 6-35
Variables ... 6-6

LOCATE .. 15-14, 15-36, 15-37, 15-38, 15-39, 15-40, 15-47
Locators, input .. 15-11
LOG .. 4-21
Logging in and out .. 1-2
Logical pen location ... 15-76, 15-80
Logical record ... 11-10, 11-16, 11-25
Loop counter ... 3-18
Looping ... 3-18
LORG .. 15-65
LWC$... 5-15

Machine language programs
makebin_c script
makebin_f script
makebin_p script
Manual:

m
2-11

12-3, 12-7, 12-8
14-3, 14-8, 14-9
13-3, 13-8, 13-9

Organization .. 1-4
Overview ... 1-1

Mapping, graphics .. 15-12
Markers:

EOF ... 11-13,11-20,11-24,11-29
EOR .. 11-13, 11-20, 11-29

MASS STORAGE IS .. 6-35
Mass storage tutorial ... 11-9
MAT ... 4-39, 4-52
MAT DISP .. 4-28
MAT DISP USING 4-31
MAT INPUT ... 4-37
MAT PRINT ... 4-28
MAT PRINT USING .. 4-31
MAT READ .. 4-39
MAT .. CON ... 4-33, 4-40
MAT .. CROSS .. 4-62
MAT .. CSUM ... 4-54
Math hierarchy .. 4-6
MAT .. IDN ... 4-33, 4-42
MAT .. INV .. 4-64
Matrix:

Inversion .. 4-64
Multiplication ... 4-57

MAT .. RSUM ... 4-54
MAT .. SYS 4-66
MAT .. TRN .. 4-56
MAT .. ZER ... 4-33, 4-40
MAX ... 4-12, 4-21
MAXAB ... 4-71
MAXABCOL .. 4-7 2
MAXABROW .. 4-7 2
MDY .. 10-5
MDY$... 10-4
Mechanics of program development 2-14
Memory management (subprograms) 6-34
Menu (soft keys) ... 3-26
MERGE ... 2-21
Messages:

Accepting .. 9-21
Audio ... 9-4
Displayed ... 9-5
From operator .. 9-21
To the operator .. 9-4

Methods of passing parameters 6-21
Millimetre scaling ... 15-26
MIN ... 4-12, 4-21
mknod command ... 15-9
MOD ... 4-8
Model:

Of computer/human interface 9-2
Of software design process .. 8-3

Modes, display screen .. 9-10
Modules, Pascal ... 13-2
Moment ... 4-62
Monadic operators .. 4-8
Monochromatic pens .. 15-54
MOVE .. 15-56
Moving graphics limits 15-14, 15-32, 15-36
Moving the pen .. 15-56
Moving:

Data pointer .. 11-6
Program segments ... 2-20

MSCALE .. 15-22, 15-47
Multiplying matrices .. 4-57

n
Names:

Array variables .. 4-27
Of C binaries ... 12-4
Of FORTRAN binaries ... 14-4
Of numeric variables ... " 4-2
Of Pascal binaries 13-4
String variables ... " 5-2
Subprogram .. 6-14

Nesting constructs ... 3-14
Newline character (C) .. 12-20
Non-executed statements .. 3-34
NORMAL ... 6-35,8-5,9-10
Notation for program lines .. 2-9
NPAR ... 6-25
Null character (C string terminator) 12-16
NUM ... 4-21, 5-11
Number-base conversions .. 4-15

Numbers:
INTEGERs ... 4-3
Random ... 4-19
Range of ... 4-3
REAL .. 4-3
SHORT .. 4-3

Numeric:
Arrays .. 4-22
Comparisons ... 4-11
Data types .. 4-3
Functions, misc. ... 4-20
Image specifiers ... 9-18
Variables ... 4-4

o
Object files .. 12-8, 13-9, 14-9
Octal (base 8) .. 4-15
OFF CURSOR ... 6-35, 9-12
OFF ERROR ... 6-35
OFF KEY# ... 3-27, 6-35
OFF KYBD .. 6-35
OFF TIMEOUT ... 6-35
OFF TIMER# .. 6-35, 10-6, 10-9
ON CURSOR .. 6-35, 9-12
ON ERROR ... 6-35, 7-6, 9-25, 11-29
ON KEY# ... 3-24, 6-35, 9-22
ON KYBD ... 6-35, 9-24, 9-30
ON TIMEOUT .. 6-35
ON TIMER# .. 6-35, 10-6
ON .. GOSUB ... 3-15
Opening files .. 11-31
Operations, string .. 5-18
Operator:

Arithmetic .. 4-6
Errors ... 7-3
String ... 5-5

OPTION BASE .. 2-13,4-4,5-17
Optional pass parameters .. 6-25
Organization of manual 1-4
Origin ... 15-32

Origin, graphics .. 15-14
orD .. 4-16
Output devices, graphics .. 15-9, 15-75
Overview ... 1-1, 1-6

p
PI, P2 15-83
Parameter matching:

C binaries ... 12-5
FORTRAN binaries .. 14-5
Pascal binaries .. 13-5

Parameter passing:
C binaries ... 12-9
FORTRAN binaries ... 14-10
Pascal binaries ... 13-10

Parameter:
Formal .. 6-4, 12-2, 13-2, 14-2
Lists ... 6-4, 6-20
Optional .. 6-25
Pass ... 6-4, 12-2, 13-2, 14-2, 14-4
Passing ... 6-4, 6-19
Statement .. 2-8

Pascal binaries:
Compiling .. 13-3, 13-8
Error trapping .. 13-7
File I/O ... 13-6, 13-24
Introduction .. 13-1
Linking .. 13-3, 13-8
makebin_p script ... 13-8, 13-9
Maximum number of ... 13-6
Parameter matching .. 13-5
Parameter passing .. 13-10
Passing by reference ... 13-10
Passing by value .. 13-10
Restrictions .. 13-6
String length .. 13-19

Pascal modules 13-2
Pascal procedures .. 13-2
Pascal programs ... 13-2

Pass parameters:
C Binaries .. 12-2, 12-4
Declaring types ... 6-24
FORTRAN Binaries ... 14-2, 14-4
Optional ... 6-25
Pascal Binaries ... 13-2, 13-4
Types .. 6-20

Passing:
By reference 6-21, 12-10, 13-10, 14-10
By value " 6-23, 12-10, 13-10, 14-10
Parameters .. 6-4, 6-19, 6-21

PAUSE ... 3-5, 8-13
PAUSE .. 9-28
Pausing execution .. 8-12
pc command ... 13-9
PDrR .. 15-63
PEN .. 6-35, 15-54
Pen control (PLOT) .. 15-56
Pen, logical ... 15-76, 15-80
Pen, physical .. 15-76
Pen status .. 15-53, 15-79
Physical limits (graphics) .. 15-12
Physical pen location .. 15-7 6
Physical records .. 11-16
PI ... 4-21
Pitches, beeper .. 9-5
Pixels (picture elements) .. 15-69
PLOT ... 6-35, 15-56
Plotter considerations .. 15-75
PLOTTER IS 6-35, 15-9, 15-47, 15-75
Plotters .. 15-11
Plotting .. 15-56
Plotting area .. 15-12, 15-32, 15-36
Plotting bounds 15-12, 15-32, 15-36, 15-42
Plotting bounds, digitizing .. 15-49
Plotting bounds (summary) .. 15-47
Plotting devices .. 15-7 5
Plotting direction ... 15-63
Plotting pixels ... 15-69
Plotting with HPGL ... 15-82
Pointer, data ... 11-6

POS .. 4-21, 5-9
Positioning cursor .. 9-1 °
Pre-run .. 3-32
Precedence, arithmetic ... 4-6
Prerequisites .. 1-2
Primary address .. 15-82
PRINT ... 9-13
PRINT# ... 11-12, 11-18, 11-25
PRINT ALL .. 6-35, 8-5, 9-10
PRINT item separators .. 9-16
PRINT USING .. 4-31, 9-17
Printer character sets ... 9-14
Printer graphics .. 15-7 4
PRINTER IS .. 6-35,9-10,9-13
Printers ... 9-13
Printing:

Arrays .. 9-16
Formatted ... 9-15
Screen contents ... 2-14

Problem solving steps .. 2-2
Procedures, Pascal ... 13-2
Program segments:

Choosing .. 3-14
Repeating ... 3-18

Program:
Binary .. 2-11
C .. 12-2
Communication between .. 3-31
Counter .. 3-2
Definition of 2-9
Editing globally .. 2-14
Elements ... 2-8
Entering ... 2-14
Execution .. 3-32
Flow ... 3-1,3-2
FORTRAN ... 14-2
Line numbers .. 2-9
Lines .. 2-9
Lines, maximum length .. 2-9
Listings ... 2-14
Machine language .. 2-11

Pascal .. 13-2
Running ... 2-14
Storing .. 2-14
Structure ... 3-1

Program/ subprogram communication 6-19
Prohibited statements (in IF .. THEN) 3-12
Put (vi) .. 2-23

q
Questioning assumptions .. 8-18
Quotes in strings .. 11-5

r
RAD 4-17,6-35
Random:

File access .. 11-11,11-24,11-26
Numbers .. 4-19

RANDOMIZE ... 4-19
Range limits .. 4-12
Raster images, retrieving ... 15-73
Raster images, storing ... 15-73
RATIO .. 15-18, 15-34
Ratio, aspect (width/height) 15-18, 15-34
READ ... 11-4
READ# .. 11-13, 11-18,11-24,11-26
Reading pixels ... 15-69
Reading:

Flags ... 6-31
Text from screen .. 9-30

READTIM ... 10-9
REAL .. 2-10,3-34,4-3,11-24
Real numbers ... 2-10
Record size calculations .. 11-14
Records .. 11-16
Redimensioning arrays .. 4-33
Refining .. 2-2, 2-7
Reflecting images ... 15-48, 15-51
Relative difference ... 4-11
Relative plotting .. 15-56
Relocatable object files 12-8, 13-9, 14-9
REM ... 2-25, 3-34

Remark statements .. 2-25
REN .. 2-16
Renaming variables .. 2-19
Renumbering programs .. 2-16
Repeat 3-20
Repeat factor (LINE TYPE) .. 15-64
Repeating strings .. 5-14
Repetition ... 3-17
REPLACEVAR .. 2-19
Reset key .. 9-24, 9-28
Resident:

Binary functions ... 4-14
Functions .. 2-11
Trig functions 4-17

RESTORE ... 11-8
Restrictions:

C binaries ... 12-5
FORTRAN binaries .. 14-6
Pascal binaries .. 13-6

Retrieving raster images .. 15-73
RETURN ... 3-7, 7-7
REV$... 5-14
Reversing strings .. 5-14
RMD .. 4-21
RND .. 4-19
RNORM ... 4-72
RNORMCOL 4-72
RNORMROW .. 4-72
ROTATE$... 4-14
Rotating lines .. 15-56
Rounding .. 4-13
ROW .. 4-30
Row-major order .. 4-33
RPLOT .. 15-56
RPT$... 5-14
RSUM ... 4-54
RTD .. 4-18
RUN ... 3-32,6-17,8-15,8-16
Run-time errors .. 7-3
Running programs ... 2-14

5
SAVE 2-23, 6-11, 6-16
Scalar array arithmetic .. 4-52
SCALE. .. 15-14, 15-22, 15-37, 15-38, 15-39, 15-40, 15-47
Scaling, anisotropic ... 15-23
Scaling, default graphic .. 15-15
Scaling, graphics ... 15-14
Scaling (graphics) ... 15-22
Scaling, isotropic ... 15-24
Scaling, millimetre .. 15-26
Scaling (summary) .. 15-47
SCAN ... 2-18
Scanning for literals .. 2-18
SCRATCH 6-11
SCRATCHBIN .. 12-4, 13-4, 14-4
SCRATCHSUB ... 6-17, 6-34
Screen:

Clearing .. 9-9
Display .. 9-6
Dumps .. 2-14, 15-74
Reading text from ... 9-30

Screenwidth ... 9-7
Searching for literals .. 2-18
SEC .. 4-18
Seed, random numbers .. 4-19
Selection of program segments .. 3-1 °
Selector:

Device ... 9-6
File ... 9--6

Self-documenting programs 2-25
Sending messages .. 9-4
Separators, DISP and PRINT .. 9-16
Serial file access 11-11, 11-13, 11-20, 11-23
Service routines .. 3-26, 9-30
SETGU .. 15-29, 15-47
Setting flags .. 6-31
SETUU .. 15-29, 15-47
SFLAG .. 6-31, 6-35
SGN .. 4-21
SHORT .. 2-10,3-34,4-3, 11-24
SHOW .. 15-22, 15-47

Simple:
Branching .. 3-6
Strings ... 5-3

SIN ... 2-11,4-18
Single-stepping programs .. 8-16
SINGLESTEP .. 8-16
Size:

of files ... 11-15
of records .. 11-16

Softkeys 3-25, 9-22, 9-28
Software:

Installation .. 1-2
Testing .. 8-17

Solving:
Problems ... 2-2
Simultaneous equations ... 4-66

Spaghetti code ... 3-6
Special (device) file 15-9
Special function keys .. 9-22, 9-28
Specifiers:

Field ... 9-17
Image .. 9-17

Specifying graphics devices .. 15-9
SQR .. 4-21
Star base type 15-9
Statements .. 2-8
Step functions .. 4-10
Stepw~e refinement ... 2-2, 2-7
STOP and END .. 3-4
Stopwatch example .. 9-23
Storage, common .. 4-26
STORE ... 2-21, 6-11, 6-15
Storing raster images .. 15-73
Storing:

Arrays .. 11-7
Data in variables .. 11-3
Programs .. 2-14

String length .. 12-15, 13-19, 14-18
String terminator (C) .. 12-16

String:
Alphanumeric .. 2-10
Arrays .. 5-3, 5-17
Concatenation ... 5-4
Conversions .. 5-11
Definition of ... 5-2
Dimensioning ... 5-17
Evaluating expressions ... 5-4
Expressions .. 5-18
Functions .. 5-9, 5-14
Hierarchy .' 5-4
Image specifiers ... 9-19
In numeric expressions .. 4-10
Length ... 5-9
Operators .. 5-5
Position .. 5-9
Repeat 5-14
Reverse ... 5-14
Simple ... 5-3
Subscripts .. 5-6
Trim ... 5-15
Variable length ... 5-2
Variable names ... 5-2

SUB ... 2-11, 6-8, 6-11
Subarrays, copying .. 4-42, 4-47
SUBEND 6-8, 6-11
SUBEXIT ... 6-11
Subprogram:

Benefits of .. 6-9
Creating 6-11
Definition .. 2-11
Introduction to ... 6-1, 6-8
Libraries .. 6-10
Loading ... 6-17, 6-18
Memory management ... 6-34
Names .. 6-14
Scratching ... 6-17

Subprogram/program communication
Subroutine:

6-19

General suggestions ... 3-9
GOSUB .. 3-7

SUBROUTINEs, FORTRAN .. 14-2
Subscript:

Bounds
String

Substring:

4-24
5-6

Definition ... 5-6
Double-subscript .. 5-7
Position .. 5-9
Single-subscript .. 5-6

SUM .. 4-72
Summing arrays ... 4-54
Syntax of keywords ... 1-5
SYS .. 4-66
System:

Clock ... 10-2
Error message ... 7-8
Flags ... 6-30
Of equations ... 4-66
Timers .. 10-9
Warnings ... 7-3

t
TAB ... 9-12, 9-16
Tablets, graphics ... 15-11
Tablets, HP-IB graphics .. 15-11
TAN .. 4-18
Terminator, numeric array ... 4-29
Testing:

Programs .. 2-3, 2-24
Software .. 8-1 7

text/data files 11-31, 12-9, 13-10, 14-10, 14-22
Tick marks .. 15-19
Tilde " "character ... 11-5
TIME 10-2
TIME$.,. .. 10-2
Time format conversions .. 10-3
Time of day .. 10-2
Time-of-day interrupts .. 10-8

Timer:
Functions .. 10-9
Interrupts 10-6
Interrupts (w / subprograms) ... 10-10
Using ... 10-6

Timing intervals ... 10-5
Tones .. 9-5
Top-down design .. 6-10
TRACE .. 8-8
TRACE ALL ... 8-11
TRACE VAR ... 8-9
Tracing:

All flow ... 8-11
Branches ... 8-7
Variables .. 8-10

Transposing arrays ... 4-56
Trapping errors ... 7-6, 9-25, 11-29
Trigonometric functions ... 4-17
TRIM$.. 5-15
Trimming strings .. 5-15
TRN .. 4-56
TYP ... 11-13, 11-28
Type fields (files) ... 11-28
Type:

Fields (files) ... 11-13
Of pass parameters ... 6-21
Of program flow .. 3-2
Pass parameters ... 6-24

Types of lines ... 15-64

u
UBND ... 4-72
UNCLIP 15-45, 15-47
Unconditional GOTO ... 3-6
Understanding the problem 2-3
Unit matrix .. 4-42
UNIX .. 1-2
Unlinked object files .. 12-8, 13-9, 14-9
UPC$.. 5-15, 9-25
User documents (for your programs) 2-29
User Units (UU's) ... 15-22, 15-29

User-defined:
Function limitations ... 6-7
Functions ... 2-11,5-16,6-1,6-2
Keys ... 3-25

Using plotters .. 15-75

VAL
VAL$
Variable:

v
4-21,5-11
4-21, 5-12

Allocation of ... 3-32
Assigning ... 4-2
Declarations .. 2-10
In COM .. 6-27
Names .. 2-25, 4-2
Names of strings ... 5-2
Numeric .. " 4-4
Numeric arrays. .. 4-22
Renaming .. 2-19
String ... 5-2
String length .. 5-2
Types of .. 2-10
Where used (XREF V) .. 8-5

Vector:
Components .. 4-63
Cross product .. 4-62
Magnitude ... 4-63

vi editor 2-22

w
Walk-throughs 8-4
Warnings ... 7 -3
WHERE .. 15-80
While ... 3-21
Width of screen .. 9-7
Windows, graphics .. 15-11

XREF
XREF L
XREF V

Yank (vi)

ZER

x

y

z

8-5
8-6
8-5

2-23

4-33
Zero matrices ... 4-40

Name:

Company:

Address:

Phone No:

MANUAL COMMENT CARD
HP-UX Technical BASIC

Programming Guide, Vol. 1
for HP 9000 Computers

Manual Reorder No. 97068-90001

Please note the latest printing date from the Printing History (page ii) of this
manual and any applicable update(s); so we know which material you are
commenting on ___________ _

~

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

LOVELAND,COLORADO

~~ ...

I II II I

~

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

HP Part Number
97068-90001
Microfiche No. 97068-99001

Printed in U.S.A. 2/86

F/iOW HEWLETT
a!~ PACKARD

97068-90606
For Internal Use Only

